1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 74 struct btrfs_iget_args { 75 u64 ino; 76 struct btrfs_root *root; 77 }; 78 79 struct btrfs_dio_data { 80 ssize_t submitted; 81 struct extent_changeset *data_reserved; 82 struct btrfs_ordered_extent *ordered; 83 bool data_space_reserved; 84 bool nocow_done; 85 }; 86 87 struct btrfs_dio_private { 88 /* Range of I/O */ 89 u64 file_offset; 90 u32 bytes; 91 92 /* This must be last */ 93 struct btrfs_bio bbio; 94 }; 95 96 static struct bio_set btrfs_dio_bioset; 97 98 struct btrfs_rename_ctx { 99 /* Output field. Stores the index number of the old directory entry. */ 100 u64 index; 101 }; 102 103 /* 104 * Used by data_reloc_print_warning_inode() to pass needed info for filename 105 * resolution and output of error message. 106 */ 107 struct data_reloc_warn { 108 struct btrfs_path path; 109 struct btrfs_fs_info *fs_info; 110 u64 extent_item_size; 111 u64 logical; 112 int mirror_num; 113 }; 114 115 /* 116 * For the file_extent_tree, we want to hold the inode lock when we lookup and 117 * update the disk_i_size, but lockdep will complain because our io_tree we hold 118 * the tree lock and get the inode lock when setting delalloc. These two things 119 * are unrelated, so make a class for the file_extent_tree so we don't get the 120 * two locking patterns mixed up. 121 */ 122 static struct lock_class_key file_extent_tree_class; 123 124 static const struct inode_operations btrfs_dir_inode_operations; 125 static const struct inode_operations btrfs_symlink_inode_operations; 126 static const struct inode_operations btrfs_special_inode_operations; 127 static const struct inode_operations btrfs_file_inode_operations; 128 static const struct address_space_operations btrfs_aops; 129 static const struct file_operations btrfs_dir_file_operations; 130 131 static struct kmem_cache *btrfs_inode_cachep; 132 133 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 134 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 135 136 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 137 struct page *locked_page, u64 start, 138 u64 end, struct writeback_control *wbc, 139 bool pages_dirty); 140 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 141 u64 len, u64 orig_start, u64 block_start, 142 u64 block_len, u64 orig_block_len, 143 u64 ram_bytes, int compress_type, 144 int type); 145 146 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 147 u64 root, void *warn_ctx) 148 { 149 struct data_reloc_warn *warn = warn_ctx; 150 struct btrfs_fs_info *fs_info = warn->fs_info; 151 struct extent_buffer *eb; 152 struct btrfs_inode_item *inode_item; 153 struct inode_fs_paths *ipath = NULL; 154 struct btrfs_root *local_root; 155 struct btrfs_key key; 156 unsigned int nofs_flag; 157 u32 nlink; 158 int ret; 159 160 local_root = btrfs_get_fs_root(fs_info, root, true); 161 if (IS_ERR(local_root)) { 162 ret = PTR_ERR(local_root); 163 goto err; 164 } 165 166 /* This makes the path point to (inum INODE_ITEM ioff). */ 167 key.objectid = inum; 168 key.type = BTRFS_INODE_ITEM_KEY; 169 key.offset = 0; 170 171 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 172 if (ret) { 173 btrfs_put_root(local_root); 174 btrfs_release_path(&warn->path); 175 goto err; 176 } 177 178 eb = warn->path.nodes[0]; 179 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 180 nlink = btrfs_inode_nlink(eb, inode_item); 181 btrfs_release_path(&warn->path); 182 183 nofs_flag = memalloc_nofs_save(); 184 ipath = init_ipath(4096, local_root, &warn->path); 185 memalloc_nofs_restore(nofs_flag); 186 if (IS_ERR(ipath)) { 187 btrfs_put_root(local_root); 188 ret = PTR_ERR(ipath); 189 ipath = NULL; 190 /* 191 * -ENOMEM, not a critical error, just output an generic error 192 * without filename. 193 */ 194 btrfs_warn(fs_info, 195 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 196 warn->logical, warn->mirror_num, root, inum, offset); 197 return ret; 198 } 199 ret = paths_from_inode(inum, ipath); 200 if (ret < 0) 201 goto err; 202 203 /* 204 * We deliberately ignore the bit ipath might have been too small to 205 * hold all of the paths here 206 */ 207 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 208 btrfs_warn(fs_info, 209 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 210 warn->logical, warn->mirror_num, root, inum, offset, 211 fs_info->sectorsize, nlink, 212 (char *)(unsigned long)ipath->fspath->val[i]); 213 } 214 215 btrfs_put_root(local_root); 216 free_ipath(ipath); 217 return 0; 218 219 err: 220 btrfs_warn(fs_info, 221 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 222 warn->logical, warn->mirror_num, root, inum, offset, ret); 223 224 free_ipath(ipath); 225 return ret; 226 } 227 228 /* 229 * Do extra user-friendly error output (e.g. lookup all the affected files). 230 * 231 * Return true if we succeeded doing the backref lookup. 232 * Return false if such lookup failed, and has to fallback to the old error message. 233 */ 234 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 235 const u8 *csum, const u8 *csum_expected, 236 int mirror_num) 237 { 238 struct btrfs_fs_info *fs_info = inode->root->fs_info; 239 struct btrfs_path path = { 0 }; 240 struct btrfs_key found_key = { 0 }; 241 struct extent_buffer *eb; 242 struct btrfs_extent_item *ei; 243 const u32 csum_size = fs_info->csum_size; 244 u64 logical; 245 u64 flags; 246 u32 item_size; 247 int ret; 248 249 mutex_lock(&fs_info->reloc_mutex); 250 logical = btrfs_get_reloc_bg_bytenr(fs_info); 251 mutex_unlock(&fs_info->reloc_mutex); 252 253 if (logical == U64_MAX) { 254 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 255 btrfs_warn_rl(fs_info, 256 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 257 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 258 CSUM_FMT_VALUE(csum_size, csum), 259 CSUM_FMT_VALUE(csum_size, csum_expected), 260 mirror_num); 261 return; 262 } 263 264 logical += file_off; 265 btrfs_warn_rl(fs_info, 266 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 267 inode->root->root_key.objectid, 268 btrfs_ino(inode), file_off, logical, 269 CSUM_FMT_VALUE(csum_size, csum), 270 CSUM_FMT_VALUE(csum_size, csum_expected), 271 mirror_num); 272 273 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 274 if (ret < 0) { 275 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 276 logical, ret); 277 return; 278 } 279 eb = path.nodes[0]; 280 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 281 item_size = btrfs_item_size(eb, path.slots[0]); 282 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 283 unsigned long ptr = 0; 284 u64 ref_root; 285 u8 ref_level; 286 287 while (true) { 288 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 289 item_size, &ref_root, 290 &ref_level); 291 if (ret < 0) { 292 btrfs_warn_rl(fs_info, 293 "failed to resolve tree backref for logical %llu: %d", 294 logical, ret); 295 break; 296 } 297 if (ret > 0) 298 break; 299 300 btrfs_warn_rl(fs_info, 301 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 302 logical, mirror_num, 303 (ref_level ? "node" : "leaf"), 304 ref_level, ref_root); 305 } 306 btrfs_release_path(&path); 307 } else { 308 struct btrfs_backref_walk_ctx ctx = { 0 }; 309 struct data_reloc_warn reloc_warn = { 0 }; 310 311 btrfs_release_path(&path); 312 313 ctx.bytenr = found_key.objectid; 314 ctx.extent_item_pos = logical - found_key.objectid; 315 ctx.fs_info = fs_info; 316 317 reloc_warn.logical = logical; 318 reloc_warn.extent_item_size = found_key.offset; 319 reloc_warn.mirror_num = mirror_num; 320 reloc_warn.fs_info = fs_info; 321 322 iterate_extent_inodes(&ctx, true, 323 data_reloc_print_warning_inode, &reloc_warn); 324 } 325 } 326 327 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 328 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 329 { 330 struct btrfs_root *root = inode->root; 331 const u32 csum_size = root->fs_info->csum_size; 332 333 /* For data reloc tree, it's better to do a backref lookup instead. */ 334 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 335 return print_data_reloc_error(inode, logical_start, csum, 336 csum_expected, mirror_num); 337 338 /* Output without objectid, which is more meaningful */ 339 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 340 btrfs_warn_rl(root->fs_info, 341 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 342 root->root_key.objectid, btrfs_ino(inode), 343 logical_start, 344 CSUM_FMT_VALUE(csum_size, csum), 345 CSUM_FMT_VALUE(csum_size, csum_expected), 346 mirror_num); 347 } else { 348 btrfs_warn_rl(root->fs_info, 349 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 350 root->root_key.objectid, btrfs_ino(inode), 351 logical_start, 352 CSUM_FMT_VALUE(csum_size, csum), 353 CSUM_FMT_VALUE(csum_size, csum_expected), 354 mirror_num); 355 } 356 } 357 358 /* 359 * Lock inode i_rwsem based on arguments passed. 360 * 361 * ilock_flags can have the following bit set: 362 * 363 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 364 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 365 * return -EAGAIN 366 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 367 */ 368 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 369 { 370 if (ilock_flags & BTRFS_ILOCK_SHARED) { 371 if (ilock_flags & BTRFS_ILOCK_TRY) { 372 if (!inode_trylock_shared(&inode->vfs_inode)) 373 return -EAGAIN; 374 else 375 return 0; 376 } 377 inode_lock_shared(&inode->vfs_inode); 378 } else { 379 if (ilock_flags & BTRFS_ILOCK_TRY) { 380 if (!inode_trylock(&inode->vfs_inode)) 381 return -EAGAIN; 382 else 383 return 0; 384 } 385 inode_lock(&inode->vfs_inode); 386 } 387 if (ilock_flags & BTRFS_ILOCK_MMAP) 388 down_write(&inode->i_mmap_lock); 389 return 0; 390 } 391 392 /* 393 * Unock inode i_rwsem. 394 * 395 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 396 * to decide whether the lock acquired is shared or exclusive. 397 */ 398 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 399 { 400 if (ilock_flags & BTRFS_ILOCK_MMAP) 401 up_write(&inode->i_mmap_lock); 402 if (ilock_flags & BTRFS_ILOCK_SHARED) 403 inode_unlock_shared(&inode->vfs_inode); 404 else 405 inode_unlock(&inode->vfs_inode); 406 } 407 408 /* 409 * Cleanup all submitted ordered extents in specified range to handle errors 410 * from the btrfs_run_delalloc_range() callback. 411 * 412 * NOTE: caller must ensure that when an error happens, it can not call 413 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 414 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 415 * to be released, which we want to happen only when finishing the ordered 416 * extent (btrfs_finish_ordered_io()). 417 */ 418 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 419 struct page *locked_page, 420 u64 offset, u64 bytes) 421 { 422 unsigned long index = offset >> PAGE_SHIFT; 423 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 424 u64 page_start = 0, page_end = 0; 425 struct page *page; 426 427 if (locked_page) { 428 page_start = page_offset(locked_page); 429 page_end = page_start + PAGE_SIZE - 1; 430 } 431 432 while (index <= end_index) { 433 /* 434 * For locked page, we will call btrfs_mark_ordered_io_finished 435 * through btrfs_mark_ordered_io_finished() on it 436 * in run_delalloc_range() for the error handling, which will 437 * clear page Ordered and run the ordered extent accounting. 438 * 439 * Here we can't just clear the Ordered bit, or 440 * btrfs_mark_ordered_io_finished() would skip the accounting 441 * for the page range, and the ordered extent will never finish. 442 */ 443 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 444 index++; 445 continue; 446 } 447 page = find_get_page(inode->vfs_inode.i_mapping, index); 448 index++; 449 if (!page) 450 continue; 451 452 /* 453 * Here we just clear all Ordered bits for every page in the 454 * range, then btrfs_mark_ordered_io_finished() will handle 455 * the ordered extent accounting for the range. 456 */ 457 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, 458 page_folio(page), offset, bytes); 459 put_page(page); 460 } 461 462 if (locked_page) { 463 /* The locked page covers the full range, nothing needs to be done */ 464 if (bytes + offset <= page_start + PAGE_SIZE) 465 return; 466 /* 467 * In case this page belongs to the delalloc range being 468 * instantiated then skip it, since the first page of a range is 469 * going to be properly cleaned up by the caller of 470 * run_delalloc_range 471 */ 472 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 473 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 474 offset = page_offset(locked_page) + PAGE_SIZE; 475 } 476 } 477 478 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 479 } 480 481 static int btrfs_dirty_inode(struct btrfs_inode *inode); 482 483 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 484 struct btrfs_new_inode_args *args) 485 { 486 int err; 487 488 if (args->default_acl) { 489 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 490 ACL_TYPE_DEFAULT); 491 if (err) 492 return err; 493 } 494 if (args->acl) { 495 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 496 if (err) 497 return err; 498 } 499 if (!args->default_acl && !args->acl) 500 cache_no_acl(args->inode); 501 return btrfs_xattr_security_init(trans, args->inode, args->dir, 502 &args->dentry->d_name); 503 } 504 505 /* 506 * this does all the hard work for inserting an inline extent into 507 * the btree. The caller should have done a btrfs_drop_extents so that 508 * no overlapping inline items exist in the btree 509 */ 510 static int insert_inline_extent(struct btrfs_trans_handle *trans, 511 struct btrfs_path *path, 512 struct btrfs_inode *inode, bool extent_inserted, 513 size_t size, size_t compressed_size, 514 int compress_type, 515 struct page **compressed_pages, 516 bool update_i_size) 517 { 518 struct btrfs_root *root = inode->root; 519 struct extent_buffer *leaf; 520 struct page *page = NULL; 521 char *kaddr; 522 unsigned long ptr; 523 struct btrfs_file_extent_item *ei; 524 int ret; 525 size_t cur_size = size; 526 u64 i_size; 527 528 ASSERT((compressed_size > 0 && compressed_pages) || 529 (compressed_size == 0 && !compressed_pages)); 530 531 if (compressed_size && compressed_pages) 532 cur_size = compressed_size; 533 534 if (!extent_inserted) { 535 struct btrfs_key key; 536 size_t datasize; 537 538 key.objectid = btrfs_ino(inode); 539 key.offset = 0; 540 key.type = BTRFS_EXTENT_DATA_KEY; 541 542 datasize = btrfs_file_extent_calc_inline_size(cur_size); 543 ret = btrfs_insert_empty_item(trans, root, path, &key, 544 datasize); 545 if (ret) 546 goto fail; 547 } 548 leaf = path->nodes[0]; 549 ei = btrfs_item_ptr(leaf, path->slots[0], 550 struct btrfs_file_extent_item); 551 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 552 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 553 btrfs_set_file_extent_encryption(leaf, ei, 0); 554 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 555 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 556 ptr = btrfs_file_extent_inline_start(ei); 557 558 if (compress_type != BTRFS_COMPRESS_NONE) { 559 struct page *cpage; 560 int i = 0; 561 while (compressed_size > 0) { 562 cpage = compressed_pages[i]; 563 cur_size = min_t(unsigned long, compressed_size, 564 PAGE_SIZE); 565 566 kaddr = kmap_local_page(cpage); 567 write_extent_buffer(leaf, kaddr, ptr, cur_size); 568 kunmap_local(kaddr); 569 570 i++; 571 ptr += cur_size; 572 compressed_size -= cur_size; 573 } 574 btrfs_set_file_extent_compression(leaf, ei, 575 compress_type); 576 } else { 577 page = find_get_page(inode->vfs_inode.i_mapping, 0); 578 btrfs_set_file_extent_compression(leaf, ei, 0); 579 kaddr = kmap_local_page(page); 580 write_extent_buffer(leaf, kaddr, ptr, size); 581 kunmap_local(kaddr); 582 put_page(page); 583 } 584 btrfs_mark_buffer_dirty(trans, leaf); 585 btrfs_release_path(path); 586 587 /* 588 * We align size to sectorsize for inline extents just for simplicity 589 * sake. 590 */ 591 ret = btrfs_inode_set_file_extent_range(inode, 0, 592 ALIGN(size, root->fs_info->sectorsize)); 593 if (ret) 594 goto fail; 595 596 /* 597 * We're an inline extent, so nobody can extend the file past i_size 598 * without locking a page we already have locked. 599 * 600 * We must do any i_size and inode updates before we unlock the pages. 601 * Otherwise we could end up racing with unlink. 602 */ 603 i_size = i_size_read(&inode->vfs_inode); 604 if (update_i_size && size > i_size) { 605 i_size_write(&inode->vfs_inode, size); 606 i_size = size; 607 } 608 inode->disk_i_size = i_size; 609 610 fail: 611 return ret; 612 } 613 614 615 /* 616 * conditionally insert an inline extent into the file. This 617 * does the checks required to make sure the data is small enough 618 * to fit as an inline extent. 619 */ 620 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 621 size_t compressed_size, 622 int compress_type, 623 struct page **compressed_pages, 624 bool update_i_size) 625 { 626 struct btrfs_drop_extents_args drop_args = { 0 }; 627 struct btrfs_root *root = inode->root; 628 struct btrfs_fs_info *fs_info = root->fs_info; 629 struct btrfs_trans_handle *trans; 630 u64 data_len = (compressed_size ?: size); 631 int ret; 632 struct btrfs_path *path; 633 634 /* 635 * We can create an inline extent if it ends at or beyond the current 636 * i_size, is no larger than a sector (decompressed), and the (possibly 637 * compressed) data fits in a leaf and the configured maximum inline 638 * size. 639 */ 640 if (size < i_size_read(&inode->vfs_inode) || 641 size > fs_info->sectorsize || 642 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 643 data_len > fs_info->max_inline) 644 return 1; 645 646 path = btrfs_alloc_path(); 647 if (!path) 648 return -ENOMEM; 649 650 trans = btrfs_join_transaction(root); 651 if (IS_ERR(trans)) { 652 btrfs_free_path(path); 653 return PTR_ERR(trans); 654 } 655 trans->block_rsv = &inode->block_rsv; 656 657 drop_args.path = path; 658 drop_args.start = 0; 659 drop_args.end = fs_info->sectorsize; 660 drop_args.drop_cache = true; 661 drop_args.replace_extent = true; 662 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 663 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 664 if (ret) { 665 btrfs_abort_transaction(trans, ret); 666 goto out; 667 } 668 669 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 670 size, compressed_size, compress_type, 671 compressed_pages, update_i_size); 672 if (ret && ret != -ENOSPC) { 673 btrfs_abort_transaction(trans, ret); 674 goto out; 675 } else if (ret == -ENOSPC) { 676 ret = 1; 677 goto out; 678 } 679 680 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 681 ret = btrfs_update_inode(trans, inode); 682 if (ret && ret != -ENOSPC) { 683 btrfs_abort_transaction(trans, ret); 684 goto out; 685 } else if (ret == -ENOSPC) { 686 ret = 1; 687 goto out; 688 } 689 690 btrfs_set_inode_full_sync(inode); 691 out: 692 /* 693 * Don't forget to free the reserved space, as for inlined extent 694 * it won't count as data extent, free them directly here. 695 * And at reserve time, it's always aligned to page size, so 696 * just free one page here. 697 */ 698 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 699 btrfs_free_path(path); 700 btrfs_end_transaction(trans); 701 return ret; 702 } 703 704 struct async_extent { 705 u64 start; 706 u64 ram_size; 707 u64 compressed_size; 708 struct page **pages; 709 unsigned long nr_pages; 710 int compress_type; 711 struct list_head list; 712 }; 713 714 struct async_chunk { 715 struct btrfs_inode *inode; 716 struct page *locked_page; 717 u64 start; 718 u64 end; 719 blk_opf_t write_flags; 720 struct list_head extents; 721 struct cgroup_subsys_state *blkcg_css; 722 struct btrfs_work work; 723 struct async_cow *async_cow; 724 }; 725 726 struct async_cow { 727 atomic_t num_chunks; 728 struct async_chunk chunks[]; 729 }; 730 731 static noinline int add_async_extent(struct async_chunk *cow, 732 u64 start, u64 ram_size, 733 u64 compressed_size, 734 struct page **pages, 735 unsigned long nr_pages, 736 int compress_type) 737 { 738 struct async_extent *async_extent; 739 740 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 741 if (!async_extent) 742 return -ENOMEM; 743 async_extent->start = start; 744 async_extent->ram_size = ram_size; 745 async_extent->compressed_size = compressed_size; 746 async_extent->pages = pages; 747 async_extent->nr_pages = nr_pages; 748 async_extent->compress_type = compress_type; 749 list_add_tail(&async_extent->list, &cow->extents); 750 return 0; 751 } 752 753 /* 754 * Check if the inode needs to be submitted to compression, based on mount 755 * options, defragmentation, properties or heuristics. 756 */ 757 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 758 u64 end) 759 { 760 struct btrfs_fs_info *fs_info = inode->root->fs_info; 761 762 if (!btrfs_inode_can_compress(inode)) { 763 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 764 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 765 btrfs_ino(inode)); 766 return 0; 767 } 768 /* 769 * Special check for subpage. 770 * 771 * We lock the full page then run each delalloc range in the page, thus 772 * for the following case, we will hit some subpage specific corner case: 773 * 774 * 0 32K 64K 775 * | |///////| |///////| 776 * \- A \- B 777 * 778 * In above case, both range A and range B will try to unlock the full 779 * page [0, 64K), causing the one finished later will have page 780 * unlocked already, triggering various page lock requirement BUG_ON()s. 781 * 782 * So here we add an artificial limit that subpage compression can only 783 * if the range is fully page aligned. 784 * 785 * In theory we only need to ensure the first page is fully covered, but 786 * the tailing partial page will be locked until the full compression 787 * finishes, delaying the write of other range. 788 * 789 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 790 * first to prevent any submitted async extent to unlock the full page. 791 * By this, we can ensure for subpage case that only the last async_cow 792 * will unlock the full page. 793 */ 794 if (fs_info->sectorsize < PAGE_SIZE) { 795 if (!PAGE_ALIGNED(start) || 796 !PAGE_ALIGNED(end + 1)) 797 return 0; 798 } 799 800 /* force compress */ 801 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 802 return 1; 803 /* defrag ioctl */ 804 if (inode->defrag_compress) 805 return 1; 806 /* bad compression ratios */ 807 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 808 return 0; 809 if (btrfs_test_opt(fs_info, COMPRESS) || 810 inode->flags & BTRFS_INODE_COMPRESS || 811 inode->prop_compress) 812 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 813 return 0; 814 } 815 816 static inline void inode_should_defrag(struct btrfs_inode *inode, 817 u64 start, u64 end, u64 num_bytes, u32 small_write) 818 { 819 /* If this is a small write inside eof, kick off a defrag */ 820 if (num_bytes < small_write && 821 (start > 0 || end + 1 < inode->disk_i_size)) 822 btrfs_add_inode_defrag(NULL, inode, small_write); 823 } 824 825 /* 826 * Work queue call back to started compression on a file and pages. 827 * 828 * This is done inside an ordered work queue, and the compression is spread 829 * across many cpus. The actual IO submission is step two, and the ordered work 830 * queue takes care of making sure that happens in the same order things were 831 * put onto the queue by writepages and friends. 832 * 833 * If this code finds it can't get good compression, it puts an entry onto the 834 * work queue to write the uncompressed bytes. This makes sure that both 835 * compressed inodes and uncompressed inodes are written in the same order that 836 * the flusher thread sent them down. 837 */ 838 static void compress_file_range(struct btrfs_work *work) 839 { 840 struct async_chunk *async_chunk = 841 container_of(work, struct async_chunk, work); 842 struct btrfs_inode *inode = async_chunk->inode; 843 struct btrfs_fs_info *fs_info = inode->root->fs_info; 844 struct address_space *mapping = inode->vfs_inode.i_mapping; 845 u64 blocksize = fs_info->sectorsize; 846 u64 start = async_chunk->start; 847 u64 end = async_chunk->end; 848 u64 actual_end; 849 u64 i_size; 850 int ret = 0; 851 struct page **pages; 852 unsigned long nr_pages; 853 unsigned long total_compressed = 0; 854 unsigned long total_in = 0; 855 unsigned int poff; 856 int i; 857 int compress_type = fs_info->compress_type; 858 859 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 860 861 /* 862 * We need to call clear_page_dirty_for_io on each page in the range. 863 * Otherwise applications with the file mmap'd can wander in and change 864 * the page contents while we are compressing them. 865 */ 866 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 867 868 /* 869 * We need to save i_size before now because it could change in between 870 * us evaluating the size and assigning it. This is because we lock and 871 * unlock the page in truncate and fallocate, and then modify the i_size 872 * later on. 873 * 874 * The barriers are to emulate READ_ONCE, remove that once i_size_read 875 * does that for us. 876 */ 877 barrier(); 878 i_size = i_size_read(&inode->vfs_inode); 879 barrier(); 880 actual_end = min_t(u64, i_size, end + 1); 881 again: 882 pages = NULL; 883 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 884 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 885 886 /* 887 * we don't want to send crud past the end of i_size through 888 * compression, that's just a waste of CPU time. So, if the 889 * end of the file is before the start of our current 890 * requested range of bytes, we bail out to the uncompressed 891 * cleanup code that can deal with all of this. 892 * 893 * It isn't really the fastest way to fix things, but this is a 894 * very uncommon corner. 895 */ 896 if (actual_end <= start) 897 goto cleanup_and_bail_uncompressed; 898 899 total_compressed = actual_end - start; 900 901 /* 902 * Skip compression for a small file range(<=blocksize) that 903 * isn't an inline extent, since it doesn't save disk space at all. 904 */ 905 if (total_compressed <= blocksize && 906 (start > 0 || end + 1 < inode->disk_i_size)) 907 goto cleanup_and_bail_uncompressed; 908 909 /* 910 * For subpage case, we require full page alignment for the sector 911 * aligned range. 912 * Thus we must also check against @actual_end, not just @end. 913 */ 914 if (blocksize < PAGE_SIZE) { 915 if (!PAGE_ALIGNED(start) || 916 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 917 goto cleanup_and_bail_uncompressed; 918 } 919 920 total_compressed = min_t(unsigned long, total_compressed, 921 BTRFS_MAX_UNCOMPRESSED); 922 total_in = 0; 923 ret = 0; 924 925 /* 926 * We do compression for mount -o compress and when the inode has not 927 * been flagged as NOCOMPRESS. This flag can change at any time if we 928 * discover bad compression ratios. 929 */ 930 if (!inode_need_compress(inode, start, end)) 931 goto cleanup_and_bail_uncompressed; 932 933 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 934 if (!pages) { 935 /* 936 * Memory allocation failure is not a fatal error, we can fall 937 * back to uncompressed code. 938 */ 939 goto cleanup_and_bail_uncompressed; 940 } 941 942 if (inode->defrag_compress) 943 compress_type = inode->defrag_compress; 944 else if (inode->prop_compress) 945 compress_type = inode->prop_compress; 946 947 /* Compression level is applied here. */ 948 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4), 949 mapping, start, pages, &nr_pages, &total_in, 950 &total_compressed); 951 if (ret) 952 goto mark_incompressible; 953 954 /* 955 * Zero the tail end of the last page, as we might be sending it down 956 * to disk. 957 */ 958 poff = offset_in_page(total_compressed); 959 if (poff) 960 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff); 961 962 /* 963 * Try to create an inline extent. 964 * 965 * If we didn't compress the entire range, try to create an uncompressed 966 * inline extent, else a compressed one. 967 * 968 * Check cow_file_range() for why we don't even try to create inline 969 * extent for the subpage case. 970 */ 971 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 972 if (total_in < actual_end) { 973 ret = cow_file_range_inline(inode, actual_end, 0, 974 BTRFS_COMPRESS_NONE, NULL, 975 false); 976 } else { 977 ret = cow_file_range_inline(inode, actual_end, 978 total_compressed, 979 compress_type, pages, 980 false); 981 } 982 if (ret <= 0) { 983 unsigned long clear_flags = EXTENT_DELALLOC | 984 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 985 EXTENT_DO_ACCOUNTING; 986 987 if (ret < 0) 988 mapping_set_error(mapping, -EIO); 989 990 /* 991 * inline extent creation worked or returned error, 992 * we don't need to create any more async work items. 993 * Unlock and free up our temp pages. 994 * 995 * We use DO_ACCOUNTING here because we need the 996 * delalloc_release_metadata to be done _after_ we drop 997 * our outstanding extent for clearing delalloc for this 998 * range. 999 */ 1000 extent_clear_unlock_delalloc(inode, start, end, 1001 NULL, 1002 clear_flags, 1003 PAGE_UNLOCK | 1004 PAGE_START_WRITEBACK | 1005 PAGE_END_WRITEBACK); 1006 goto free_pages; 1007 } 1008 } 1009 1010 /* 1011 * We aren't doing an inline extent. Round the compressed size up to a 1012 * block size boundary so the allocator does sane things. 1013 */ 1014 total_compressed = ALIGN(total_compressed, blocksize); 1015 1016 /* 1017 * One last check to make sure the compression is really a win, compare 1018 * the page count read with the blocks on disk, compression must free at 1019 * least one sector. 1020 */ 1021 total_in = round_up(total_in, fs_info->sectorsize); 1022 if (total_compressed + blocksize > total_in) 1023 goto mark_incompressible; 1024 1025 /* 1026 * The async work queues will take care of doing actual allocation on 1027 * disk for these compressed pages, and will submit the bios. 1028 */ 1029 ret = add_async_extent(async_chunk, start, total_in, total_compressed, pages, 1030 nr_pages, compress_type); 1031 BUG_ON(ret); 1032 if (start + total_in < end) { 1033 start += total_in; 1034 cond_resched(); 1035 goto again; 1036 } 1037 return; 1038 1039 mark_incompressible: 1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1041 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1042 cleanup_and_bail_uncompressed: 1043 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1044 BTRFS_COMPRESS_NONE); 1045 BUG_ON(ret); 1046 free_pages: 1047 if (pages) { 1048 for (i = 0; i < nr_pages; i++) { 1049 WARN_ON(pages[i]->mapping); 1050 btrfs_free_compr_page(pages[i]); 1051 } 1052 kfree(pages); 1053 } 1054 } 1055 1056 static void free_async_extent_pages(struct async_extent *async_extent) 1057 { 1058 int i; 1059 1060 if (!async_extent->pages) 1061 return; 1062 1063 for (i = 0; i < async_extent->nr_pages; i++) { 1064 WARN_ON(async_extent->pages[i]->mapping); 1065 btrfs_free_compr_page(async_extent->pages[i]); 1066 } 1067 kfree(async_extent->pages); 1068 async_extent->nr_pages = 0; 1069 async_extent->pages = NULL; 1070 } 1071 1072 static void submit_uncompressed_range(struct btrfs_inode *inode, 1073 struct async_extent *async_extent, 1074 struct page *locked_page) 1075 { 1076 u64 start = async_extent->start; 1077 u64 end = async_extent->start + async_extent->ram_size - 1; 1078 int ret; 1079 struct writeback_control wbc = { 1080 .sync_mode = WB_SYNC_ALL, 1081 .range_start = start, 1082 .range_end = end, 1083 .no_cgroup_owner = 1, 1084 }; 1085 1086 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1087 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1088 wbc_detach_inode(&wbc); 1089 if (ret < 0) { 1090 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1091 if (locked_page) { 1092 const u64 page_start = page_offset(locked_page); 1093 1094 set_page_writeback(locked_page); 1095 end_page_writeback(locked_page); 1096 btrfs_mark_ordered_io_finished(inode, locked_page, 1097 page_start, PAGE_SIZE, 1098 !ret); 1099 mapping_set_error(locked_page->mapping, ret); 1100 unlock_page(locked_page); 1101 } 1102 } 1103 } 1104 1105 static void submit_one_async_extent(struct async_chunk *async_chunk, 1106 struct async_extent *async_extent, 1107 u64 *alloc_hint) 1108 { 1109 struct btrfs_inode *inode = async_chunk->inode; 1110 struct extent_io_tree *io_tree = &inode->io_tree; 1111 struct btrfs_root *root = inode->root; 1112 struct btrfs_fs_info *fs_info = root->fs_info; 1113 struct btrfs_ordered_extent *ordered; 1114 struct btrfs_key ins; 1115 struct page *locked_page = NULL; 1116 struct extent_map *em; 1117 int ret = 0; 1118 u64 start = async_extent->start; 1119 u64 end = async_extent->start + async_extent->ram_size - 1; 1120 1121 if (async_chunk->blkcg_css) 1122 kthread_associate_blkcg(async_chunk->blkcg_css); 1123 1124 /* 1125 * If async_chunk->locked_page is in the async_extent range, we need to 1126 * handle it. 1127 */ 1128 if (async_chunk->locked_page) { 1129 u64 locked_page_start = page_offset(async_chunk->locked_page); 1130 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1131 1132 if (!(start >= locked_page_end || end <= locked_page_start)) 1133 locked_page = async_chunk->locked_page; 1134 } 1135 lock_extent(io_tree, start, end, NULL); 1136 1137 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1138 submit_uncompressed_range(inode, async_extent, locked_page); 1139 goto done; 1140 } 1141 1142 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1143 async_extent->compressed_size, 1144 async_extent->compressed_size, 1145 0, *alloc_hint, &ins, 1, 1); 1146 if (ret) { 1147 /* 1148 * We can't reserve contiguous space for the compressed size. 1149 * Unlikely, but it's possible that we could have enough 1150 * non-contiguous space for the uncompressed size instead. So 1151 * fall back to uncompressed. 1152 */ 1153 submit_uncompressed_range(inode, async_extent, locked_page); 1154 goto done; 1155 } 1156 1157 /* Here we're doing allocation and writeback of the compressed pages */ 1158 em = create_io_em(inode, start, 1159 async_extent->ram_size, /* len */ 1160 start, /* orig_start */ 1161 ins.objectid, /* block_start */ 1162 ins.offset, /* block_len */ 1163 ins.offset, /* orig_block_len */ 1164 async_extent->ram_size, /* ram_bytes */ 1165 async_extent->compress_type, 1166 BTRFS_ORDERED_COMPRESSED); 1167 if (IS_ERR(em)) { 1168 ret = PTR_ERR(em); 1169 goto out_free_reserve; 1170 } 1171 free_extent_map(em); 1172 1173 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1174 async_extent->ram_size, /* num_bytes */ 1175 async_extent->ram_size, /* ram_bytes */ 1176 ins.objectid, /* disk_bytenr */ 1177 ins.offset, /* disk_num_bytes */ 1178 0, /* offset */ 1179 1 << BTRFS_ORDERED_COMPRESSED, 1180 async_extent->compress_type); 1181 if (IS_ERR(ordered)) { 1182 btrfs_drop_extent_map_range(inode, start, end, false); 1183 ret = PTR_ERR(ordered); 1184 goto out_free_reserve; 1185 } 1186 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1187 1188 /* Clear dirty, set writeback and unlock the pages. */ 1189 extent_clear_unlock_delalloc(inode, start, end, 1190 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1191 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1192 btrfs_submit_compressed_write(ordered, 1193 async_extent->pages, /* compressed_pages */ 1194 async_extent->nr_pages, 1195 async_chunk->write_flags, true); 1196 *alloc_hint = ins.objectid + ins.offset; 1197 done: 1198 if (async_chunk->blkcg_css) 1199 kthread_associate_blkcg(NULL); 1200 kfree(async_extent); 1201 return; 1202 1203 out_free_reserve: 1204 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1205 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1206 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1207 extent_clear_unlock_delalloc(inode, start, end, 1208 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1209 EXTENT_DELALLOC_NEW | 1210 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1211 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1212 PAGE_END_WRITEBACK); 1213 free_async_extent_pages(async_extent); 1214 if (async_chunk->blkcg_css) 1215 kthread_associate_blkcg(NULL); 1216 btrfs_debug(fs_info, 1217 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1218 root->root_key.objectid, btrfs_ino(inode), start, 1219 async_extent->ram_size, ret); 1220 kfree(async_extent); 1221 } 1222 1223 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1224 u64 num_bytes) 1225 { 1226 struct extent_map_tree *em_tree = &inode->extent_tree; 1227 struct extent_map *em; 1228 u64 alloc_hint = 0; 1229 1230 read_lock(&em_tree->lock); 1231 em = search_extent_mapping(em_tree, start, num_bytes); 1232 if (em) { 1233 /* 1234 * if block start isn't an actual block number then find the 1235 * first block in this inode and use that as a hint. If that 1236 * block is also bogus then just don't worry about it. 1237 */ 1238 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1239 free_extent_map(em); 1240 em = search_extent_mapping(em_tree, 0, 0); 1241 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1242 alloc_hint = em->block_start; 1243 if (em) 1244 free_extent_map(em); 1245 } else { 1246 alloc_hint = em->block_start; 1247 free_extent_map(em); 1248 } 1249 } 1250 read_unlock(&em_tree->lock); 1251 1252 return alloc_hint; 1253 } 1254 1255 /* 1256 * when extent_io.c finds a delayed allocation range in the file, 1257 * the call backs end up in this code. The basic idea is to 1258 * allocate extents on disk for the range, and create ordered data structs 1259 * in ram to track those extents. 1260 * 1261 * locked_page is the page that writepage had locked already. We use 1262 * it to make sure we don't do extra locks or unlocks. 1263 * 1264 * When this function fails, it unlocks all pages except @locked_page. 1265 * 1266 * When this function successfully creates an inline extent, it returns 1 and 1267 * unlocks all pages including locked_page and starts I/O on them. 1268 * (In reality inline extents are limited to a single page, so locked_page is 1269 * the only page handled anyway). 1270 * 1271 * When this function succeed and creates a normal extent, the page locking 1272 * status depends on the passed in flags: 1273 * 1274 * - If @keep_locked is set, all pages are kept locked. 1275 * - Else all pages except for @locked_page are unlocked. 1276 * 1277 * When a failure happens in the second or later iteration of the 1278 * while-loop, the ordered extents created in previous iterations are kept 1279 * intact. So, the caller must clean them up by calling 1280 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1281 * example. 1282 */ 1283 static noinline int cow_file_range(struct btrfs_inode *inode, 1284 struct page *locked_page, u64 start, u64 end, 1285 u64 *done_offset, 1286 bool keep_locked, bool no_inline) 1287 { 1288 struct btrfs_root *root = inode->root; 1289 struct btrfs_fs_info *fs_info = root->fs_info; 1290 u64 alloc_hint = 0; 1291 u64 orig_start = start; 1292 u64 num_bytes; 1293 unsigned long ram_size; 1294 u64 cur_alloc_size = 0; 1295 u64 min_alloc_size; 1296 u64 blocksize = fs_info->sectorsize; 1297 struct btrfs_key ins; 1298 struct extent_map *em; 1299 unsigned clear_bits; 1300 unsigned long page_ops; 1301 bool extent_reserved = false; 1302 int ret = 0; 1303 1304 if (btrfs_is_free_space_inode(inode)) { 1305 ret = -EINVAL; 1306 goto out_unlock; 1307 } 1308 1309 num_bytes = ALIGN(end - start + 1, blocksize); 1310 num_bytes = max(blocksize, num_bytes); 1311 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1312 1313 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1314 1315 /* 1316 * Due to the page size limit, for subpage we can only trigger the 1317 * writeback for the dirty sectors of page, that means data writeback 1318 * is doing more writeback than what we want. 1319 * 1320 * This is especially unexpected for some call sites like fallocate, 1321 * where we only increase i_size after everything is done. 1322 * This means we can trigger inline extent even if we didn't want to. 1323 * So here we skip inline extent creation completely. 1324 */ 1325 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) { 1326 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1327 end + 1); 1328 1329 /* lets try to make an inline extent */ 1330 ret = cow_file_range_inline(inode, actual_end, 0, 1331 BTRFS_COMPRESS_NONE, NULL, false); 1332 if (ret == 0) { 1333 /* 1334 * We use DO_ACCOUNTING here because we need the 1335 * delalloc_release_metadata to be run _after_ we drop 1336 * our outstanding extent for clearing delalloc for this 1337 * range. 1338 */ 1339 extent_clear_unlock_delalloc(inode, start, end, 1340 locked_page, 1341 EXTENT_LOCKED | EXTENT_DELALLOC | 1342 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1343 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1344 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1345 /* 1346 * locked_page is locked by the caller of 1347 * writepage_delalloc(), not locked by 1348 * __process_pages_contig(). 1349 * 1350 * We can't let __process_pages_contig() to unlock it, 1351 * as it doesn't have any subpage::writers recorded. 1352 * 1353 * Here we manually unlock the page, since the caller 1354 * can't determine if it's an inline extent or a 1355 * compressed extent. 1356 */ 1357 unlock_page(locked_page); 1358 ret = 1; 1359 goto done; 1360 } else if (ret < 0) { 1361 goto out_unlock; 1362 } 1363 } 1364 1365 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1366 1367 /* 1368 * Relocation relies on the relocated extents to have exactly the same 1369 * size as the original extents. Normally writeback for relocation data 1370 * extents follows a NOCOW path because relocation preallocates the 1371 * extents. However, due to an operation such as scrub turning a block 1372 * group to RO mode, it may fallback to COW mode, so we must make sure 1373 * an extent allocated during COW has exactly the requested size and can 1374 * not be split into smaller extents, otherwise relocation breaks and 1375 * fails during the stage where it updates the bytenr of file extent 1376 * items. 1377 */ 1378 if (btrfs_is_data_reloc_root(root)) 1379 min_alloc_size = num_bytes; 1380 else 1381 min_alloc_size = fs_info->sectorsize; 1382 1383 while (num_bytes > 0) { 1384 struct btrfs_ordered_extent *ordered; 1385 1386 cur_alloc_size = num_bytes; 1387 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1388 min_alloc_size, 0, alloc_hint, 1389 &ins, 1, 1); 1390 if (ret == -EAGAIN) { 1391 /* 1392 * btrfs_reserve_extent only returns -EAGAIN for zoned 1393 * file systems, which is an indication that there are 1394 * no active zones to allocate from at the moment. 1395 * 1396 * If this is the first loop iteration, wait for at 1397 * least one zone to finish before retrying the 1398 * allocation. Otherwise ask the caller to write out 1399 * the already allocated blocks before coming back to 1400 * us, or return -ENOSPC if it can't handle retries. 1401 */ 1402 ASSERT(btrfs_is_zoned(fs_info)); 1403 if (start == orig_start) { 1404 wait_on_bit_io(&inode->root->fs_info->flags, 1405 BTRFS_FS_NEED_ZONE_FINISH, 1406 TASK_UNINTERRUPTIBLE); 1407 continue; 1408 } 1409 if (done_offset) { 1410 *done_offset = start - 1; 1411 return 0; 1412 } 1413 ret = -ENOSPC; 1414 } 1415 if (ret < 0) 1416 goto out_unlock; 1417 cur_alloc_size = ins.offset; 1418 extent_reserved = true; 1419 1420 ram_size = ins.offset; 1421 em = create_io_em(inode, start, ins.offset, /* len */ 1422 start, /* orig_start */ 1423 ins.objectid, /* block_start */ 1424 ins.offset, /* block_len */ 1425 ins.offset, /* orig_block_len */ 1426 ram_size, /* ram_bytes */ 1427 BTRFS_COMPRESS_NONE, /* compress_type */ 1428 BTRFS_ORDERED_REGULAR /* type */); 1429 if (IS_ERR(em)) { 1430 ret = PTR_ERR(em); 1431 goto out_reserve; 1432 } 1433 free_extent_map(em); 1434 1435 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1436 ram_size, ins.objectid, cur_alloc_size, 1437 0, 1 << BTRFS_ORDERED_REGULAR, 1438 BTRFS_COMPRESS_NONE); 1439 if (IS_ERR(ordered)) { 1440 ret = PTR_ERR(ordered); 1441 goto out_drop_extent_cache; 1442 } 1443 1444 if (btrfs_is_data_reloc_root(root)) { 1445 ret = btrfs_reloc_clone_csums(ordered); 1446 1447 /* 1448 * Only drop cache here, and process as normal. 1449 * 1450 * We must not allow extent_clear_unlock_delalloc() 1451 * at out_unlock label to free meta of this ordered 1452 * extent, as its meta should be freed by 1453 * btrfs_finish_ordered_io(). 1454 * 1455 * So we must continue until @start is increased to 1456 * skip current ordered extent. 1457 */ 1458 if (ret) 1459 btrfs_drop_extent_map_range(inode, start, 1460 start + ram_size - 1, 1461 false); 1462 } 1463 btrfs_put_ordered_extent(ordered); 1464 1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1466 1467 /* 1468 * We're not doing compressed IO, don't unlock the first page 1469 * (which the caller expects to stay locked), don't clear any 1470 * dirty bits and don't set any writeback bits 1471 * 1472 * Do set the Ordered (Private2) bit so we know this page was 1473 * properly setup for writepage. 1474 */ 1475 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1476 page_ops |= PAGE_SET_ORDERED; 1477 1478 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1479 locked_page, 1480 EXTENT_LOCKED | EXTENT_DELALLOC, 1481 page_ops); 1482 if (num_bytes < cur_alloc_size) 1483 num_bytes = 0; 1484 else 1485 num_bytes -= cur_alloc_size; 1486 alloc_hint = ins.objectid + ins.offset; 1487 start += cur_alloc_size; 1488 extent_reserved = false; 1489 1490 /* 1491 * btrfs_reloc_clone_csums() error, since start is increased 1492 * extent_clear_unlock_delalloc() at out_unlock label won't 1493 * free metadata of current ordered extent, we're OK to exit. 1494 */ 1495 if (ret) 1496 goto out_unlock; 1497 } 1498 done: 1499 if (done_offset) 1500 *done_offset = end; 1501 return ret; 1502 1503 out_drop_extent_cache: 1504 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1505 out_reserve: 1506 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1508 out_unlock: 1509 /* 1510 * Now, we have three regions to clean up: 1511 * 1512 * |-------(1)----|---(2)---|-------------(3)----------| 1513 * `- orig_start `- start `- start + cur_alloc_size `- end 1514 * 1515 * We process each region below. 1516 */ 1517 1518 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1519 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1520 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1521 1522 /* 1523 * For the range (1). We have already instantiated the ordered extents 1524 * for this region. They are cleaned up by 1525 * btrfs_cleanup_ordered_extents() in e.g, 1526 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1527 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1528 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1529 * function. 1530 * 1531 * However, in case of @keep_locked, we still need to unlock the pages 1532 * (except @locked_page) to ensure all the pages are unlocked. 1533 */ 1534 if (keep_locked && orig_start < start) { 1535 if (!locked_page) 1536 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1537 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1538 locked_page, 0, page_ops); 1539 } 1540 1541 /* 1542 * For the range (2). If we reserved an extent for our delalloc range 1543 * (or a subrange) and failed to create the respective ordered extent, 1544 * then it means that when we reserved the extent we decremented the 1545 * extent's size from the data space_info's bytes_may_use counter and 1546 * incremented the space_info's bytes_reserved counter by the same 1547 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1548 * to decrement again the data space_info's bytes_may_use counter, 1549 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1550 */ 1551 if (extent_reserved) { 1552 extent_clear_unlock_delalloc(inode, start, 1553 start + cur_alloc_size - 1, 1554 locked_page, 1555 clear_bits, 1556 page_ops); 1557 start += cur_alloc_size; 1558 } 1559 1560 /* 1561 * For the range (3). We never touched the region. In addition to the 1562 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1563 * space_info's bytes_may_use counter, reserved in 1564 * btrfs_check_data_free_space(). 1565 */ 1566 if (start < end) { 1567 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1568 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1569 clear_bits, page_ops); 1570 } 1571 return ret; 1572 } 1573 1574 /* 1575 * Phase two of compressed writeback. This is the ordered portion of the code, 1576 * which only gets called in the order the work was queued. We walk all the 1577 * async extents created by compress_file_range and send them down to the disk. 1578 * 1579 * If called with @do_free == true then it'll try to finish the work and free 1580 * the work struct eventually. 1581 */ 1582 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1583 { 1584 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1585 work); 1586 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1587 struct async_extent *async_extent; 1588 unsigned long nr_pages; 1589 u64 alloc_hint = 0; 1590 1591 if (do_free) { 1592 struct async_chunk *async_chunk; 1593 struct async_cow *async_cow; 1594 1595 async_chunk = container_of(work, struct async_chunk, work); 1596 btrfs_add_delayed_iput(async_chunk->inode); 1597 if (async_chunk->blkcg_css) 1598 css_put(async_chunk->blkcg_css); 1599 1600 async_cow = async_chunk->async_cow; 1601 if (atomic_dec_and_test(&async_cow->num_chunks)) 1602 kvfree(async_cow); 1603 return; 1604 } 1605 1606 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1607 PAGE_SHIFT; 1608 1609 while (!list_empty(&async_chunk->extents)) { 1610 async_extent = list_entry(async_chunk->extents.next, 1611 struct async_extent, list); 1612 list_del(&async_extent->list); 1613 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1614 } 1615 1616 /* atomic_sub_return implies a barrier */ 1617 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1618 5 * SZ_1M) 1619 cond_wake_up_nomb(&fs_info->async_submit_wait); 1620 } 1621 1622 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1623 struct page *locked_page, u64 start, 1624 u64 end, struct writeback_control *wbc) 1625 { 1626 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1627 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1628 struct async_cow *ctx; 1629 struct async_chunk *async_chunk; 1630 unsigned long nr_pages; 1631 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1632 int i; 1633 unsigned nofs_flag; 1634 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1635 1636 nofs_flag = memalloc_nofs_save(); 1637 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1638 memalloc_nofs_restore(nofs_flag); 1639 if (!ctx) 1640 return false; 1641 1642 unlock_extent(&inode->io_tree, start, end, NULL); 1643 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1644 1645 async_chunk = ctx->chunks; 1646 atomic_set(&ctx->num_chunks, num_chunks); 1647 1648 for (i = 0; i < num_chunks; i++) { 1649 u64 cur_end = min(end, start + SZ_512K - 1); 1650 1651 /* 1652 * igrab is called higher up in the call chain, take only the 1653 * lightweight reference for the callback lifetime 1654 */ 1655 ihold(&inode->vfs_inode); 1656 async_chunk[i].async_cow = ctx; 1657 async_chunk[i].inode = inode; 1658 async_chunk[i].start = start; 1659 async_chunk[i].end = cur_end; 1660 async_chunk[i].write_flags = write_flags; 1661 INIT_LIST_HEAD(&async_chunk[i].extents); 1662 1663 /* 1664 * The locked_page comes all the way from writepage and its 1665 * the original page we were actually given. As we spread 1666 * this large delalloc region across multiple async_chunk 1667 * structs, only the first struct needs a pointer to locked_page 1668 * 1669 * This way we don't need racey decisions about who is supposed 1670 * to unlock it. 1671 */ 1672 if (locked_page) { 1673 /* 1674 * Depending on the compressibility, the pages might or 1675 * might not go through async. We want all of them to 1676 * be accounted against wbc once. Let's do it here 1677 * before the paths diverge. wbc accounting is used 1678 * only for foreign writeback detection and doesn't 1679 * need full accuracy. Just account the whole thing 1680 * against the first page. 1681 */ 1682 wbc_account_cgroup_owner(wbc, locked_page, 1683 cur_end - start); 1684 async_chunk[i].locked_page = locked_page; 1685 locked_page = NULL; 1686 } else { 1687 async_chunk[i].locked_page = NULL; 1688 } 1689 1690 if (blkcg_css != blkcg_root_css) { 1691 css_get(blkcg_css); 1692 async_chunk[i].blkcg_css = blkcg_css; 1693 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1694 } else { 1695 async_chunk[i].blkcg_css = NULL; 1696 } 1697 1698 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1699 submit_compressed_extents); 1700 1701 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1702 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1703 1704 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1705 1706 start = cur_end + 1; 1707 } 1708 return true; 1709 } 1710 1711 /* 1712 * Run the delalloc range from start to end, and write back any dirty pages 1713 * covered by the range. 1714 */ 1715 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1716 struct page *locked_page, u64 start, 1717 u64 end, struct writeback_control *wbc, 1718 bool pages_dirty) 1719 { 1720 u64 done_offset = end; 1721 int ret; 1722 1723 while (start <= end) { 1724 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1725 true, false); 1726 if (ret) 1727 return ret; 1728 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1729 done_offset, wbc, pages_dirty); 1730 start = done_offset + 1; 1731 } 1732 1733 return 1; 1734 } 1735 1736 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1737 u64 bytenr, u64 num_bytes, bool nowait) 1738 { 1739 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1740 struct btrfs_ordered_sum *sums; 1741 int ret; 1742 LIST_HEAD(list); 1743 1744 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1745 &list, 0, nowait); 1746 if (ret == 0 && list_empty(&list)) 1747 return 0; 1748 1749 while (!list_empty(&list)) { 1750 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1751 list_del(&sums->list); 1752 kfree(sums); 1753 } 1754 if (ret < 0) 1755 return ret; 1756 return 1; 1757 } 1758 1759 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1760 const u64 start, const u64 end) 1761 { 1762 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1763 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1764 const u64 range_bytes = end + 1 - start; 1765 struct extent_io_tree *io_tree = &inode->io_tree; 1766 u64 range_start = start; 1767 u64 count; 1768 int ret; 1769 1770 /* 1771 * If EXTENT_NORESERVE is set it means that when the buffered write was 1772 * made we had not enough available data space and therefore we did not 1773 * reserve data space for it, since we though we could do NOCOW for the 1774 * respective file range (either there is prealloc extent or the inode 1775 * has the NOCOW bit set). 1776 * 1777 * However when we need to fallback to COW mode (because for example the 1778 * block group for the corresponding extent was turned to RO mode by a 1779 * scrub or relocation) we need to do the following: 1780 * 1781 * 1) We increment the bytes_may_use counter of the data space info. 1782 * If COW succeeds, it allocates a new data extent and after doing 1783 * that it decrements the space info's bytes_may_use counter and 1784 * increments its bytes_reserved counter by the same amount (we do 1785 * this at btrfs_add_reserved_bytes()). So we need to increment the 1786 * bytes_may_use counter to compensate (when space is reserved at 1787 * buffered write time, the bytes_may_use counter is incremented); 1788 * 1789 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1790 * that if the COW path fails for any reason, it decrements (through 1791 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1792 * data space info, which we incremented in the step above. 1793 * 1794 * If we need to fallback to cow and the inode corresponds to a free 1795 * space cache inode or an inode of the data relocation tree, we must 1796 * also increment bytes_may_use of the data space_info for the same 1797 * reason. Space caches and relocated data extents always get a prealloc 1798 * extent for them, however scrub or balance may have set the block 1799 * group that contains that extent to RO mode and therefore force COW 1800 * when starting writeback. 1801 */ 1802 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1803 EXTENT_NORESERVE, 0, NULL); 1804 if (count > 0 || is_space_ino || is_reloc_ino) { 1805 u64 bytes = count; 1806 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1807 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1808 1809 if (is_space_ino || is_reloc_ino) 1810 bytes = range_bytes; 1811 1812 spin_lock(&sinfo->lock); 1813 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1814 spin_unlock(&sinfo->lock); 1815 1816 if (count > 0) 1817 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1818 NULL); 1819 } 1820 1821 /* 1822 * Don't try to create inline extents, as a mix of inline extent that 1823 * is written out and unlocked directly and a normal NOCOW extent 1824 * doesn't work. 1825 */ 1826 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1827 ASSERT(ret != 1); 1828 return ret; 1829 } 1830 1831 struct can_nocow_file_extent_args { 1832 /* Input fields. */ 1833 1834 /* Start file offset of the range we want to NOCOW. */ 1835 u64 start; 1836 /* End file offset (inclusive) of the range we want to NOCOW. */ 1837 u64 end; 1838 bool writeback_path; 1839 bool strict; 1840 /* 1841 * Free the path passed to can_nocow_file_extent() once it's not needed 1842 * anymore. 1843 */ 1844 bool free_path; 1845 1846 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1847 1848 u64 disk_bytenr; 1849 u64 disk_num_bytes; 1850 u64 extent_offset; 1851 /* Number of bytes that can be written to in NOCOW mode. */ 1852 u64 num_bytes; 1853 }; 1854 1855 /* 1856 * Check if we can NOCOW the file extent that the path points to. 1857 * This function may return with the path released, so the caller should check 1858 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1859 * 1860 * Returns: < 0 on error 1861 * 0 if we can not NOCOW 1862 * 1 if we can NOCOW 1863 */ 1864 static int can_nocow_file_extent(struct btrfs_path *path, 1865 struct btrfs_key *key, 1866 struct btrfs_inode *inode, 1867 struct can_nocow_file_extent_args *args) 1868 { 1869 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1870 struct extent_buffer *leaf = path->nodes[0]; 1871 struct btrfs_root *root = inode->root; 1872 struct btrfs_file_extent_item *fi; 1873 u64 extent_end; 1874 u8 extent_type; 1875 int can_nocow = 0; 1876 int ret = 0; 1877 bool nowait = path->nowait; 1878 1879 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1880 extent_type = btrfs_file_extent_type(leaf, fi); 1881 1882 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1883 goto out; 1884 1885 /* Can't access these fields unless we know it's not an inline extent. */ 1886 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1887 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1888 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1889 1890 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1891 extent_type == BTRFS_FILE_EXTENT_REG) 1892 goto out; 1893 1894 /* 1895 * If the extent was created before the generation where the last snapshot 1896 * for its subvolume was created, then this implies the extent is shared, 1897 * hence we must COW. 1898 */ 1899 if (!args->strict && 1900 btrfs_file_extent_generation(leaf, fi) <= 1901 btrfs_root_last_snapshot(&root->root_item)) 1902 goto out; 1903 1904 /* An explicit hole, must COW. */ 1905 if (args->disk_bytenr == 0) 1906 goto out; 1907 1908 /* Compressed/encrypted/encoded extents must be COWed. */ 1909 if (btrfs_file_extent_compression(leaf, fi) || 1910 btrfs_file_extent_encryption(leaf, fi) || 1911 btrfs_file_extent_other_encoding(leaf, fi)) 1912 goto out; 1913 1914 extent_end = btrfs_file_extent_end(path); 1915 1916 /* 1917 * The following checks can be expensive, as they need to take other 1918 * locks and do btree or rbtree searches, so release the path to avoid 1919 * blocking other tasks for too long. 1920 */ 1921 btrfs_release_path(path); 1922 1923 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1924 key->offset - args->extent_offset, 1925 args->disk_bytenr, args->strict, path); 1926 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1927 if (ret != 0) 1928 goto out; 1929 1930 if (args->free_path) { 1931 /* 1932 * We don't need the path anymore, plus through the 1933 * csum_exist_in_range() call below we will end up allocating 1934 * another path. So free the path to avoid unnecessary extra 1935 * memory usage. 1936 */ 1937 btrfs_free_path(path); 1938 path = NULL; 1939 } 1940 1941 /* If there are pending snapshots for this root, we must COW. */ 1942 if (args->writeback_path && !is_freespace_inode && 1943 atomic_read(&root->snapshot_force_cow)) 1944 goto out; 1945 1946 args->disk_bytenr += args->extent_offset; 1947 args->disk_bytenr += args->start - key->offset; 1948 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1949 1950 /* 1951 * Force COW if csums exist in the range. This ensures that csums for a 1952 * given extent are either valid or do not exist. 1953 */ 1954 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1955 nowait); 1956 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1957 if (ret != 0) 1958 goto out; 1959 1960 can_nocow = 1; 1961 out: 1962 if (args->free_path && path) 1963 btrfs_free_path(path); 1964 1965 return ret < 0 ? ret : can_nocow; 1966 } 1967 1968 /* 1969 * when nowcow writeback call back. This checks for snapshots or COW copies 1970 * of the extents that exist in the file, and COWs the file as required. 1971 * 1972 * If no cow copies or snapshots exist, we write directly to the existing 1973 * blocks on disk 1974 */ 1975 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1976 struct page *locked_page, 1977 const u64 start, const u64 end) 1978 { 1979 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1980 struct btrfs_root *root = inode->root; 1981 struct btrfs_path *path; 1982 u64 cow_start = (u64)-1; 1983 u64 cur_offset = start; 1984 int ret; 1985 bool check_prev = true; 1986 u64 ino = btrfs_ino(inode); 1987 struct can_nocow_file_extent_args nocow_args = { 0 }; 1988 1989 /* 1990 * Normally on a zoned device we're only doing COW writes, but in case 1991 * of relocation on a zoned filesystem serializes I/O so that we're only 1992 * writing sequentially and can end up here as well. 1993 */ 1994 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 1995 1996 path = btrfs_alloc_path(); 1997 if (!path) { 1998 ret = -ENOMEM; 1999 goto error; 2000 } 2001 2002 nocow_args.end = end; 2003 nocow_args.writeback_path = true; 2004 2005 while (1) { 2006 struct btrfs_block_group *nocow_bg = NULL; 2007 struct btrfs_ordered_extent *ordered; 2008 struct btrfs_key found_key; 2009 struct btrfs_file_extent_item *fi; 2010 struct extent_buffer *leaf; 2011 u64 extent_end; 2012 u64 ram_bytes; 2013 u64 nocow_end; 2014 int extent_type; 2015 bool is_prealloc; 2016 2017 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2018 cur_offset, 0); 2019 if (ret < 0) 2020 goto error; 2021 2022 /* 2023 * If there is no extent for our range when doing the initial 2024 * search, then go back to the previous slot as it will be the 2025 * one containing the search offset 2026 */ 2027 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2028 leaf = path->nodes[0]; 2029 btrfs_item_key_to_cpu(leaf, &found_key, 2030 path->slots[0] - 1); 2031 if (found_key.objectid == ino && 2032 found_key.type == BTRFS_EXTENT_DATA_KEY) 2033 path->slots[0]--; 2034 } 2035 check_prev = false; 2036 next_slot: 2037 /* Go to next leaf if we have exhausted the current one */ 2038 leaf = path->nodes[0]; 2039 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2040 ret = btrfs_next_leaf(root, path); 2041 if (ret < 0) 2042 goto error; 2043 if (ret > 0) 2044 break; 2045 leaf = path->nodes[0]; 2046 } 2047 2048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2049 2050 /* Didn't find anything for our INO */ 2051 if (found_key.objectid > ino) 2052 break; 2053 /* 2054 * Keep searching until we find an EXTENT_ITEM or there are no 2055 * more extents for this inode 2056 */ 2057 if (WARN_ON_ONCE(found_key.objectid < ino) || 2058 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2059 path->slots[0]++; 2060 goto next_slot; 2061 } 2062 2063 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2064 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2065 found_key.offset > end) 2066 break; 2067 2068 /* 2069 * If the found extent starts after requested offset, then 2070 * adjust extent_end to be right before this extent begins 2071 */ 2072 if (found_key.offset > cur_offset) { 2073 extent_end = found_key.offset; 2074 extent_type = 0; 2075 goto must_cow; 2076 } 2077 2078 /* 2079 * Found extent which begins before our range and potentially 2080 * intersect it 2081 */ 2082 fi = btrfs_item_ptr(leaf, path->slots[0], 2083 struct btrfs_file_extent_item); 2084 extent_type = btrfs_file_extent_type(leaf, fi); 2085 /* If this is triggered then we have a memory corruption. */ 2086 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2087 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2088 ret = -EUCLEAN; 2089 goto error; 2090 } 2091 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2092 extent_end = btrfs_file_extent_end(path); 2093 2094 /* 2095 * If the extent we got ends before our current offset, skip to 2096 * the next extent. 2097 */ 2098 if (extent_end <= cur_offset) { 2099 path->slots[0]++; 2100 goto next_slot; 2101 } 2102 2103 nocow_args.start = cur_offset; 2104 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2105 if (ret < 0) 2106 goto error; 2107 if (ret == 0) 2108 goto must_cow; 2109 2110 ret = 0; 2111 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2112 if (!nocow_bg) { 2113 must_cow: 2114 /* 2115 * If we can't perform NOCOW writeback for the range, 2116 * then record the beginning of the range that needs to 2117 * be COWed. It will be written out before the next 2118 * NOCOW range if we find one, or when exiting this 2119 * loop. 2120 */ 2121 if (cow_start == (u64)-1) 2122 cow_start = cur_offset; 2123 cur_offset = extent_end; 2124 if (cur_offset > end) 2125 break; 2126 if (!path->nodes[0]) 2127 continue; 2128 path->slots[0]++; 2129 goto next_slot; 2130 } 2131 2132 /* 2133 * COW range from cow_start to found_key.offset - 1. As the key 2134 * will contain the beginning of the first extent that can be 2135 * NOCOW, following one which needs to be COW'ed 2136 */ 2137 if (cow_start != (u64)-1) { 2138 ret = fallback_to_cow(inode, locked_page, 2139 cow_start, found_key.offset - 1); 2140 cow_start = (u64)-1; 2141 if (ret) { 2142 btrfs_dec_nocow_writers(nocow_bg); 2143 goto error; 2144 } 2145 } 2146 2147 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2148 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2149 if (is_prealloc) { 2150 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2151 struct extent_map *em; 2152 2153 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2154 orig_start, 2155 nocow_args.disk_bytenr, /* block_start */ 2156 nocow_args.num_bytes, /* block_len */ 2157 nocow_args.disk_num_bytes, /* orig_block_len */ 2158 ram_bytes, BTRFS_COMPRESS_NONE, 2159 BTRFS_ORDERED_PREALLOC); 2160 if (IS_ERR(em)) { 2161 btrfs_dec_nocow_writers(nocow_bg); 2162 ret = PTR_ERR(em); 2163 goto error; 2164 } 2165 free_extent_map(em); 2166 } 2167 2168 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2169 nocow_args.num_bytes, nocow_args.num_bytes, 2170 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2171 is_prealloc 2172 ? (1 << BTRFS_ORDERED_PREALLOC) 2173 : (1 << BTRFS_ORDERED_NOCOW), 2174 BTRFS_COMPRESS_NONE); 2175 btrfs_dec_nocow_writers(nocow_bg); 2176 if (IS_ERR(ordered)) { 2177 if (is_prealloc) { 2178 btrfs_drop_extent_map_range(inode, cur_offset, 2179 nocow_end, false); 2180 } 2181 ret = PTR_ERR(ordered); 2182 goto error; 2183 } 2184 2185 if (btrfs_is_data_reloc_root(root)) 2186 /* 2187 * Error handled later, as we must prevent 2188 * extent_clear_unlock_delalloc() in error handler 2189 * from freeing metadata of created ordered extent. 2190 */ 2191 ret = btrfs_reloc_clone_csums(ordered); 2192 btrfs_put_ordered_extent(ordered); 2193 2194 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2195 locked_page, EXTENT_LOCKED | 2196 EXTENT_DELALLOC | 2197 EXTENT_CLEAR_DATA_RESV, 2198 PAGE_UNLOCK | PAGE_SET_ORDERED); 2199 2200 cur_offset = extent_end; 2201 2202 /* 2203 * btrfs_reloc_clone_csums() error, now we're OK to call error 2204 * handler, as metadata for created ordered extent will only 2205 * be freed by btrfs_finish_ordered_io(). 2206 */ 2207 if (ret) 2208 goto error; 2209 if (cur_offset > end) 2210 break; 2211 } 2212 btrfs_release_path(path); 2213 2214 if (cur_offset <= end && cow_start == (u64)-1) 2215 cow_start = cur_offset; 2216 2217 if (cow_start != (u64)-1) { 2218 cur_offset = end; 2219 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2220 cow_start = (u64)-1; 2221 if (ret) 2222 goto error; 2223 } 2224 2225 btrfs_free_path(path); 2226 return 0; 2227 2228 error: 2229 /* 2230 * If an error happened while a COW region is outstanding, cur_offset 2231 * needs to be reset to cow_start to ensure the COW region is unlocked 2232 * as well. 2233 */ 2234 if (cow_start != (u64)-1) 2235 cur_offset = cow_start; 2236 if (cur_offset < end) 2237 extent_clear_unlock_delalloc(inode, cur_offset, end, 2238 locked_page, EXTENT_LOCKED | 2239 EXTENT_DELALLOC | EXTENT_DEFRAG | 2240 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2241 PAGE_START_WRITEBACK | 2242 PAGE_END_WRITEBACK); 2243 btrfs_free_path(path); 2244 return ret; 2245 } 2246 2247 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2248 { 2249 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2250 if (inode->defrag_bytes && 2251 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2252 return false; 2253 return true; 2254 } 2255 return false; 2256 } 2257 2258 /* 2259 * Function to process delayed allocation (create CoW) for ranges which are 2260 * being touched for the first time. 2261 */ 2262 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2263 u64 start, u64 end, struct writeback_control *wbc) 2264 { 2265 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2266 int ret; 2267 2268 /* 2269 * The range must cover part of the @locked_page, or a return of 1 2270 * can confuse the caller. 2271 */ 2272 ASSERT(!(end <= page_offset(locked_page) || 2273 start >= page_offset(locked_page) + PAGE_SIZE)); 2274 2275 if (should_nocow(inode, start, end)) { 2276 ret = run_delalloc_nocow(inode, locked_page, start, end); 2277 goto out; 2278 } 2279 2280 if (btrfs_inode_can_compress(inode) && 2281 inode_need_compress(inode, start, end) && 2282 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2283 return 1; 2284 2285 if (zoned) 2286 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2287 true); 2288 else 2289 ret = cow_file_range(inode, locked_page, start, end, NULL, 2290 false, false); 2291 2292 out: 2293 if (ret < 0) 2294 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2295 end - start + 1); 2296 return ret; 2297 } 2298 2299 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2300 struct extent_state *orig, u64 split) 2301 { 2302 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2303 u64 size; 2304 2305 lockdep_assert_held(&inode->io_tree.lock); 2306 2307 /* not delalloc, ignore it */ 2308 if (!(orig->state & EXTENT_DELALLOC)) 2309 return; 2310 2311 size = orig->end - orig->start + 1; 2312 if (size > fs_info->max_extent_size) { 2313 u32 num_extents; 2314 u64 new_size; 2315 2316 /* 2317 * See the explanation in btrfs_merge_delalloc_extent, the same 2318 * applies here, just in reverse. 2319 */ 2320 new_size = orig->end - split + 1; 2321 num_extents = count_max_extents(fs_info, new_size); 2322 new_size = split - orig->start; 2323 num_extents += count_max_extents(fs_info, new_size); 2324 if (count_max_extents(fs_info, size) >= num_extents) 2325 return; 2326 } 2327 2328 spin_lock(&inode->lock); 2329 btrfs_mod_outstanding_extents(inode, 1); 2330 spin_unlock(&inode->lock); 2331 } 2332 2333 /* 2334 * Handle merged delayed allocation extents so we can keep track of new extents 2335 * that are just merged onto old extents, such as when we are doing sequential 2336 * writes, so we can properly account for the metadata space we'll need. 2337 */ 2338 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2339 struct extent_state *other) 2340 { 2341 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2342 u64 new_size, old_size; 2343 u32 num_extents; 2344 2345 lockdep_assert_held(&inode->io_tree.lock); 2346 2347 /* not delalloc, ignore it */ 2348 if (!(other->state & EXTENT_DELALLOC)) 2349 return; 2350 2351 if (new->start > other->start) 2352 new_size = new->end - other->start + 1; 2353 else 2354 new_size = other->end - new->start + 1; 2355 2356 /* we're not bigger than the max, unreserve the space and go */ 2357 if (new_size <= fs_info->max_extent_size) { 2358 spin_lock(&inode->lock); 2359 btrfs_mod_outstanding_extents(inode, -1); 2360 spin_unlock(&inode->lock); 2361 return; 2362 } 2363 2364 /* 2365 * We have to add up either side to figure out how many extents were 2366 * accounted for before we merged into one big extent. If the number of 2367 * extents we accounted for is <= the amount we need for the new range 2368 * then we can return, otherwise drop. Think of it like this 2369 * 2370 * [ 4k][MAX_SIZE] 2371 * 2372 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2373 * need 2 outstanding extents, on one side we have 1 and the other side 2374 * we have 1 so they are == and we can return. But in this case 2375 * 2376 * [MAX_SIZE+4k][MAX_SIZE+4k] 2377 * 2378 * Each range on their own accounts for 2 extents, but merged together 2379 * they are only 3 extents worth of accounting, so we need to drop in 2380 * this case. 2381 */ 2382 old_size = other->end - other->start + 1; 2383 num_extents = count_max_extents(fs_info, old_size); 2384 old_size = new->end - new->start + 1; 2385 num_extents += count_max_extents(fs_info, old_size); 2386 if (count_max_extents(fs_info, new_size) >= num_extents) 2387 return; 2388 2389 spin_lock(&inode->lock); 2390 btrfs_mod_outstanding_extents(inode, -1); 2391 spin_unlock(&inode->lock); 2392 } 2393 2394 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2395 { 2396 struct btrfs_root *root = inode->root; 2397 struct btrfs_fs_info *fs_info = root->fs_info; 2398 2399 spin_lock(&root->delalloc_lock); 2400 ASSERT(list_empty(&inode->delalloc_inodes)); 2401 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2402 root->nr_delalloc_inodes++; 2403 if (root->nr_delalloc_inodes == 1) { 2404 spin_lock(&fs_info->delalloc_root_lock); 2405 ASSERT(list_empty(&root->delalloc_root)); 2406 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2407 spin_unlock(&fs_info->delalloc_root_lock); 2408 } 2409 spin_unlock(&root->delalloc_lock); 2410 } 2411 2412 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2413 { 2414 struct btrfs_root *root = inode->root; 2415 struct btrfs_fs_info *fs_info = root->fs_info; 2416 2417 lockdep_assert_held(&root->delalloc_lock); 2418 2419 /* 2420 * We may be called after the inode was already deleted from the list, 2421 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2422 * and then later through btrfs_clear_delalloc_extent() while the inode 2423 * still has ->delalloc_bytes > 0. 2424 */ 2425 if (!list_empty(&inode->delalloc_inodes)) { 2426 list_del_init(&inode->delalloc_inodes); 2427 root->nr_delalloc_inodes--; 2428 if (!root->nr_delalloc_inodes) { 2429 ASSERT(list_empty(&root->delalloc_inodes)); 2430 spin_lock(&fs_info->delalloc_root_lock); 2431 ASSERT(!list_empty(&root->delalloc_root)); 2432 list_del_init(&root->delalloc_root); 2433 spin_unlock(&fs_info->delalloc_root_lock); 2434 } 2435 } 2436 } 2437 2438 /* 2439 * Properly track delayed allocation bytes in the inode and to maintain the 2440 * list of inodes that have pending delalloc work to be done. 2441 */ 2442 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2443 u32 bits) 2444 { 2445 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2446 2447 lockdep_assert_held(&inode->io_tree.lock); 2448 2449 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2450 WARN_ON(1); 2451 /* 2452 * set_bit and clear bit hooks normally require _irqsave/restore 2453 * but in this case, we are only testing for the DELALLOC 2454 * bit, which is only set or cleared with irqs on 2455 */ 2456 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2457 u64 len = state->end + 1 - state->start; 2458 u64 prev_delalloc_bytes; 2459 u32 num_extents = count_max_extents(fs_info, len); 2460 2461 spin_lock(&inode->lock); 2462 btrfs_mod_outstanding_extents(inode, num_extents); 2463 spin_unlock(&inode->lock); 2464 2465 /* For sanity tests */ 2466 if (btrfs_is_testing(fs_info)) 2467 return; 2468 2469 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2470 fs_info->delalloc_batch); 2471 spin_lock(&inode->lock); 2472 prev_delalloc_bytes = inode->delalloc_bytes; 2473 inode->delalloc_bytes += len; 2474 if (bits & EXTENT_DEFRAG) 2475 inode->defrag_bytes += len; 2476 spin_unlock(&inode->lock); 2477 2478 /* 2479 * We don't need to be under the protection of the inode's lock, 2480 * because we are called while holding the inode's io_tree lock 2481 * and are therefore protected against concurrent calls of this 2482 * function and btrfs_clear_delalloc_extent(). 2483 */ 2484 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2485 btrfs_add_delalloc_inode(inode); 2486 } 2487 2488 if (!(state->state & EXTENT_DELALLOC_NEW) && 2489 (bits & EXTENT_DELALLOC_NEW)) { 2490 spin_lock(&inode->lock); 2491 inode->new_delalloc_bytes += state->end + 1 - state->start; 2492 spin_unlock(&inode->lock); 2493 } 2494 } 2495 2496 /* 2497 * Once a range is no longer delalloc this function ensures that proper 2498 * accounting happens. 2499 */ 2500 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2501 struct extent_state *state, u32 bits) 2502 { 2503 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2504 u64 len = state->end + 1 - state->start; 2505 u32 num_extents = count_max_extents(fs_info, len); 2506 2507 lockdep_assert_held(&inode->io_tree.lock); 2508 2509 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2510 spin_lock(&inode->lock); 2511 inode->defrag_bytes -= len; 2512 spin_unlock(&inode->lock); 2513 } 2514 2515 /* 2516 * set_bit and clear bit hooks normally require _irqsave/restore 2517 * but in this case, we are only testing for the DELALLOC 2518 * bit, which is only set or cleared with irqs on 2519 */ 2520 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2521 struct btrfs_root *root = inode->root; 2522 u64 new_delalloc_bytes; 2523 2524 spin_lock(&inode->lock); 2525 btrfs_mod_outstanding_extents(inode, -num_extents); 2526 spin_unlock(&inode->lock); 2527 2528 /* 2529 * We don't reserve metadata space for space cache inodes so we 2530 * don't need to call delalloc_release_metadata if there is an 2531 * error. 2532 */ 2533 if (bits & EXTENT_CLEAR_META_RESV && 2534 root != fs_info->tree_root) 2535 btrfs_delalloc_release_metadata(inode, len, true); 2536 2537 /* For sanity tests. */ 2538 if (btrfs_is_testing(fs_info)) 2539 return; 2540 2541 if (!btrfs_is_data_reloc_root(root) && 2542 !btrfs_is_free_space_inode(inode) && 2543 !(state->state & EXTENT_NORESERVE) && 2544 (bits & EXTENT_CLEAR_DATA_RESV)) 2545 btrfs_free_reserved_data_space_noquota(fs_info, len); 2546 2547 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2548 fs_info->delalloc_batch); 2549 spin_lock(&inode->lock); 2550 inode->delalloc_bytes -= len; 2551 new_delalloc_bytes = inode->delalloc_bytes; 2552 spin_unlock(&inode->lock); 2553 2554 /* 2555 * We don't need to be under the protection of the inode's lock, 2556 * because we are called while holding the inode's io_tree lock 2557 * and are therefore protected against concurrent calls of this 2558 * function and btrfs_set_delalloc_extent(). 2559 */ 2560 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2561 spin_lock(&root->delalloc_lock); 2562 btrfs_del_delalloc_inode(inode); 2563 spin_unlock(&root->delalloc_lock); 2564 } 2565 } 2566 2567 if ((state->state & EXTENT_DELALLOC_NEW) && 2568 (bits & EXTENT_DELALLOC_NEW)) { 2569 spin_lock(&inode->lock); 2570 ASSERT(inode->new_delalloc_bytes >= len); 2571 inode->new_delalloc_bytes -= len; 2572 if (bits & EXTENT_ADD_INODE_BYTES) 2573 inode_add_bytes(&inode->vfs_inode, len); 2574 spin_unlock(&inode->lock); 2575 } 2576 } 2577 2578 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2579 struct btrfs_ordered_extent *ordered) 2580 { 2581 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2582 u64 len = bbio->bio.bi_iter.bi_size; 2583 struct btrfs_ordered_extent *new; 2584 int ret; 2585 2586 /* Must always be called for the beginning of an ordered extent. */ 2587 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2588 return -EINVAL; 2589 2590 /* No need to split if the ordered extent covers the entire bio. */ 2591 if (ordered->disk_num_bytes == len) { 2592 refcount_inc(&ordered->refs); 2593 bbio->ordered = ordered; 2594 return 0; 2595 } 2596 2597 /* 2598 * Don't split the extent_map for NOCOW extents, as we're writing into 2599 * a pre-existing one. 2600 */ 2601 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2602 ret = split_extent_map(bbio->inode, bbio->file_offset, 2603 ordered->num_bytes, len, 2604 ordered->disk_bytenr); 2605 if (ret) 2606 return ret; 2607 } 2608 2609 new = btrfs_split_ordered_extent(ordered, len); 2610 if (IS_ERR(new)) 2611 return PTR_ERR(new); 2612 bbio->ordered = new; 2613 return 0; 2614 } 2615 2616 /* 2617 * given a list of ordered sums record them in the inode. This happens 2618 * at IO completion time based on sums calculated at bio submission time. 2619 */ 2620 static int add_pending_csums(struct btrfs_trans_handle *trans, 2621 struct list_head *list) 2622 { 2623 struct btrfs_ordered_sum *sum; 2624 struct btrfs_root *csum_root = NULL; 2625 int ret; 2626 2627 list_for_each_entry(sum, list, list) { 2628 trans->adding_csums = true; 2629 if (!csum_root) 2630 csum_root = btrfs_csum_root(trans->fs_info, 2631 sum->logical); 2632 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2633 trans->adding_csums = false; 2634 if (ret) 2635 return ret; 2636 } 2637 return 0; 2638 } 2639 2640 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2641 const u64 start, 2642 const u64 len, 2643 struct extent_state **cached_state) 2644 { 2645 u64 search_start = start; 2646 const u64 end = start + len - 1; 2647 2648 while (search_start < end) { 2649 const u64 search_len = end - search_start + 1; 2650 struct extent_map *em; 2651 u64 em_len; 2652 int ret = 0; 2653 2654 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2655 if (IS_ERR(em)) 2656 return PTR_ERR(em); 2657 2658 if (em->block_start != EXTENT_MAP_HOLE) 2659 goto next; 2660 2661 em_len = em->len; 2662 if (em->start < search_start) 2663 em_len -= search_start - em->start; 2664 if (em_len > search_len) 2665 em_len = search_len; 2666 2667 ret = set_extent_bit(&inode->io_tree, search_start, 2668 search_start + em_len - 1, 2669 EXTENT_DELALLOC_NEW, cached_state); 2670 next: 2671 search_start = extent_map_end(em); 2672 free_extent_map(em); 2673 if (ret) 2674 return ret; 2675 } 2676 return 0; 2677 } 2678 2679 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2680 unsigned int extra_bits, 2681 struct extent_state **cached_state) 2682 { 2683 WARN_ON(PAGE_ALIGNED(end)); 2684 2685 if (start >= i_size_read(&inode->vfs_inode) && 2686 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2687 /* 2688 * There can't be any extents following eof in this case so just 2689 * set the delalloc new bit for the range directly. 2690 */ 2691 extra_bits |= EXTENT_DELALLOC_NEW; 2692 } else { 2693 int ret; 2694 2695 ret = btrfs_find_new_delalloc_bytes(inode, start, 2696 end + 1 - start, 2697 cached_state); 2698 if (ret) 2699 return ret; 2700 } 2701 2702 return set_extent_bit(&inode->io_tree, start, end, 2703 EXTENT_DELALLOC | extra_bits, cached_state); 2704 } 2705 2706 /* see btrfs_writepage_start_hook for details on why this is required */ 2707 struct btrfs_writepage_fixup { 2708 struct page *page; 2709 struct btrfs_inode *inode; 2710 struct btrfs_work work; 2711 }; 2712 2713 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2714 { 2715 struct btrfs_writepage_fixup *fixup = 2716 container_of(work, struct btrfs_writepage_fixup, work); 2717 struct btrfs_ordered_extent *ordered; 2718 struct extent_state *cached_state = NULL; 2719 struct extent_changeset *data_reserved = NULL; 2720 struct page *page = fixup->page; 2721 struct btrfs_inode *inode = fixup->inode; 2722 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2723 u64 page_start = page_offset(page); 2724 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2725 int ret = 0; 2726 bool free_delalloc_space = true; 2727 2728 /* 2729 * This is similar to page_mkwrite, we need to reserve the space before 2730 * we take the page lock. 2731 */ 2732 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2733 PAGE_SIZE); 2734 again: 2735 lock_page(page); 2736 2737 /* 2738 * Before we queued this fixup, we took a reference on the page. 2739 * page->mapping may go NULL, but it shouldn't be moved to a different 2740 * address space. 2741 */ 2742 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2743 /* 2744 * Unfortunately this is a little tricky, either 2745 * 2746 * 1) We got here and our page had already been dealt with and 2747 * we reserved our space, thus ret == 0, so we need to just 2748 * drop our space reservation and bail. This can happen the 2749 * first time we come into the fixup worker, or could happen 2750 * while waiting for the ordered extent. 2751 * 2) Our page was already dealt with, but we happened to get an 2752 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2753 * this case we obviously don't have anything to release, but 2754 * because the page was already dealt with we don't want to 2755 * mark the page with an error, so make sure we're resetting 2756 * ret to 0. This is why we have this check _before_ the ret 2757 * check, because we do not want to have a surprise ENOSPC 2758 * when the page was already properly dealt with. 2759 */ 2760 if (!ret) { 2761 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2762 btrfs_delalloc_release_space(inode, data_reserved, 2763 page_start, PAGE_SIZE, 2764 true); 2765 } 2766 ret = 0; 2767 goto out_page; 2768 } 2769 2770 /* 2771 * We can't mess with the page state unless it is locked, so now that 2772 * it is locked bail if we failed to make our space reservation. 2773 */ 2774 if (ret) 2775 goto out_page; 2776 2777 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2778 2779 /* already ordered? We're done */ 2780 if (PageOrdered(page)) 2781 goto out_reserved; 2782 2783 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2784 if (ordered) { 2785 unlock_extent(&inode->io_tree, page_start, page_end, 2786 &cached_state); 2787 unlock_page(page); 2788 btrfs_start_ordered_extent(ordered); 2789 btrfs_put_ordered_extent(ordered); 2790 goto again; 2791 } 2792 2793 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2794 &cached_state); 2795 if (ret) 2796 goto out_reserved; 2797 2798 /* 2799 * Everything went as planned, we're now the owner of a dirty page with 2800 * delayed allocation bits set and space reserved for our COW 2801 * destination. 2802 * 2803 * The page was dirty when we started, nothing should have cleaned it. 2804 */ 2805 BUG_ON(!PageDirty(page)); 2806 free_delalloc_space = false; 2807 out_reserved: 2808 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2809 if (free_delalloc_space) 2810 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2811 PAGE_SIZE, true); 2812 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2813 out_page: 2814 if (ret) { 2815 /* 2816 * We hit ENOSPC or other errors. Update the mapping and page 2817 * to reflect the errors and clean the page. 2818 */ 2819 mapping_set_error(page->mapping, ret); 2820 btrfs_mark_ordered_io_finished(inode, page, page_start, 2821 PAGE_SIZE, !ret); 2822 clear_page_dirty_for_io(page); 2823 } 2824 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE); 2825 unlock_page(page); 2826 put_page(page); 2827 kfree(fixup); 2828 extent_changeset_free(data_reserved); 2829 /* 2830 * As a precaution, do a delayed iput in case it would be the last iput 2831 * that could need flushing space. Recursing back to fixup worker would 2832 * deadlock. 2833 */ 2834 btrfs_add_delayed_iput(inode); 2835 } 2836 2837 /* 2838 * There are a few paths in the higher layers of the kernel that directly 2839 * set the page dirty bit without asking the filesystem if it is a 2840 * good idea. This causes problems because we want to make sure COW 2841 * properly happens and the data=ordered rules are followed. 2842 * 2843 * In our case any range that doesn't have the ORDERED bit set 2844 * hasn't been properly setup for IO. We kick off an async process 2845 * to fix it up. The async helper will wait for ordered extents, set 2846 * the delalloc bit and make it safe to write the page. 2847 */ 2848 int btrfs_writepage_cow_fixup(struct page *page) 2849 { 2850 struct inode *inode = page->mapping->host; 2851 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2852 struct btrfs_writepage_fixup *fixup; 2853 2854 /* This page has ordered extent covering it already */ 2855 if (PageOrdered(page)) 2856 return 0; 2857 2858 /* 2859 * PageChecked is set below when we create a fixup worker for this page, 2860 * don't try to create another one if we're already PageChecked() 2861 * 2862 * The extent_io writepage code will redirty the page if we send back 2863 * EAGAIN. 2864 */ 2865 if (PageChecked(page)) 2866 return -EAGAIN; 2867 2868 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2869 if (!fixup) 2870 return -EAGAIN; 2871 2872 /* 2873 * We are already holding a reference to this inode from 2874 * write_cache_pages. We need to hold it because the space reservation 2875 * takes place outside of the page lock, and we can't trust 2876 * page->mapping outside of the page lock. 2877 */ 2878 ihold(inode); 2879 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE); 2880 get_page(page); 2881 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2882 fixup->page = page; 2883 fixup->inode = BTRFS_I(inode); 2884 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2885 2886 return -EAGAIN; 2887 } 2888 2889 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2890 struct btrfs_inode *inode, u64 file_pos, 2891 struct btrfs_file_extent_item *stack_fi, 2892 const bool update_inode_bytes, 2893 u64 qgroup_reserved) 2894 { 2895 struct btrfs_root *root = inode->root; 2896 const u64 sectorsize = root->fs_info->sectorsize; 2897 struct btrfs_path *path; 2898 struct extent_buffer *leaf; 2899 struct btrfs_key ins; 2900 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2901 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2902 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2903 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2904 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2905 struct btrfs_drop_extents_args drop_args = { 0 }; 2906 int ret; 2907 2908 path = btrfs_alloc_path(); 2909 if (!path) 2910 return -ENOMEM; 2911 2912 /* 2913 * we may be replacing one extent in the tree with another. 2914 * The new extent is pinned in the extent map, and we don't want 2915 * to drop it from the cache until it is completely in the btree. 2916 * 2917 * So, tell btrfs_drop_extents to leave this extent in the cache. 2918 * the caller is expected to unpin it and allow it to be merged 2919 * with the others. 2920 */ 2921 drop_args.path = path; 2922 drop_args.start = file_pos; 2923 drop_args.end = file_pos + num_bytes; 2924 drop_args.replace_extent = true; 2925 drop_args.extent_item_size = sizeof(*stack_fi); 2926 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2927 if (ret) 2928 goto out; 2929 2930 if (!drop_args.extent_inserted) { 2931 ins.objectid = btrfs_ino(inode); 2932 ins.offset = file_pos; 2933 ins.type = BTRFS_EXTENT_DATA_KEY; 2934 2935 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2936 sizeof(*stack_fi)); 2937 if (ret) 2938 goto out; 2939 } 2940 leaf = path->nodes[0]; 2941 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2942 write_extent_buffer(leaf, stack_fi, 2943 btrfs_item_ptr_offset(leaf, path->slots[0]), 2944 sizeof(struct btrfs_file_extent_item)); 2945 2946 btrfs_mark_buffer_dirty(trans, leaf); 2947 btrfs_release_path(path); 2948 2949 /* 2950 * If we dropped an inline extent here, we know the range where it is 2951 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2952 * number of bytes only for that range containing the inline extent. 2953 * The remaining of the range will be processed when clearning the 2954 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2955 */ 2956 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2957 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2958 2959 inline_size = drop_args.bytes_found - inline_size; 2960 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2961 drop_args.bytes_found -= inline_size; 2962 num_bytes -= sectorsize; 2963 } 2964 2965 if (update_inode_bytes) 2966 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2967 2968 ins.objectid = disk_bytenr; 2969 ins.offset = disk_num_bytes; 2970 ins.type = BTRFS_EXTENT_ITEM_KEY; 2971 2972 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2973 if (ret) 2974 goto out; 2975 2976 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2977 file_pos - offset, 2978 qgroup_reserved, &ins); 2979 out: 2980 btrfs_free_path(path); 2981 2982 return ret; 2983 } 2984 2985 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2986 u64 start, u64 len) 2987 { 2988 struct btrfs_block_group *cache; 2989 2990 cache = btrfs_lookup_block_group(fs_info, start); 2991 ASSERT(cache); 2992 2993 spin_lock(&cache->lock); 2994 cache->delalloc_bytes -= len; 2995 spin_unlock(&cache->lock); 2996 2997 btrfs_put_block_group(cache); 2998 } 2999 3000 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3001 struct btrfs_ordered_extent *oe) 3002 { 3003 struct btrfs_file_extent_item stack_fi; 3004 bool update_inode_bytes; 3005 u64 num_bytes = oe->num_bytes; 3006 u64 ram_bytes = oe->ram_bytes; 3007 3008 memset(&stack_fi, 0, sizeof(stack_fi)); 3009 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3010 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3011 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3012 oe->disk_num_bytes); 3013 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3014 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 3015 num_bytes = oe->truncated_len; 3016 ram_bytes = num_bytes; 3017 } 3018 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3019 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3020 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3021 /* Encryption and other encoding is reserved and all 0 */ 3022 3023 /* 3024 * For delalloc, when completing an ordered extent we update the inode's 3025 * bytes when clearing the range in the inode's io tree, so pass false 3026 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3027 * except if the ordered extent was truncated. 3028 */ 3029 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3030 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3031 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3032 3033 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3034 oe->file_offset, &stack_fi, 3035 update_inode_bytes, oe->qgroup_rsv); 3036 } 3037 3038 /* 3039 * As ordered data IO finishes, this gets called so we can finish 3040 * an ordered extent if the range of bytes in the file it covers are 3041 * fully written. 3042 */ 3043 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3044 { 3045 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3046 struct btrfs_root *root = inode->root; 3047 struct btrfs_fs_info *fs_info = root->fs_info; 3048 struct btrfs_trans_handle *trans = NULL; 3049 struct extent_io_tree *io_tree = &inode->io_tree; 3050 struct extent_state *cached_state = NULL; 3051 u64 start, end; 3052 int compress_type = 0; 3053 int ret = 0; 3054 u64 logical_len = ordered_extent->num_bytes; 3055 bool freespace_inode; 3056 bool truncated = false; 3057 bool clear_reserved_extent = true; 3058 unsigned int clear_bits = EXTENT_DEFRAG; 3059 3060 start = ordered_extent->file_offset; 3061 end = start + ordered_extent->num_bytes - 1; 3062 3063 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3064 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3065 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3066 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3067 clear_bits |= EXTENT_DELALLOC_NEW; 3068 3069 freespace_inode = btrfs_is_free_space_inode(inode); 3070 if (!freespace_inode) 3071 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3072 3073 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3074 ret = -EIO; 3075 goto out; 3076 } 3077 3078 if (btrfs_is_zoned(fs_info)) 3079 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3080 ordered_extent->disk_num_bytes); 3081 3082 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3083 truncated = true; 3084 logical_len = ordered_extent->truncated_len; 3085 /* Truncated the entire extent, don't bother adding */ 3086 if (!logical_len) 3087 goto out; 3088 } 3089 3090 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3091 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3092 3093 btrfs_inode_safe_disk_i_size_write(inode, 0); 3094 if (freespace_inode) 3095 trans = btrfs_join_transaction_spacecache(root); 3096 else 3097 trans = btrfs_join_transaction(root); 3098 if (IS_ERR(trans)) { 3099 ret = PTR_ERR(trans); 3100 trans = NULL; 3101 goto out; 3102 } 3103 trans->block_rsv = &inode->block_rsv; 3104 ret = btrfs_update_inode_fallback(trans, inode); 3105 if (ret) /* -ENOMEM or corruption */ 3106 btrfs_abort_transaction(trans, ret); 3107 goto out; 3108 } 3109 3110 clear_bits |= EXTENT_LOCKED; 3111 lock_extent(io_tree, start, end, &cached_state); 3112 3113 if (freespace_inode) 3114 trans = btrfs_join_transaction_spacecache(root); 3115 else 3116 trans = btrfs_join_transaction(root); 3117 if (IS_ERR(trans)) { 3118 ret = PTR_ERR(trans); 3119 trans = NULL; 3120 goto out; 3121 } 3122 3123 trans->block_rsv = &inode->block_rsv; 3124 3125 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3126 if (ret) 3127 goto out; 3128 3129 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3130 compress_type = ordered_extent->compress_type; 3131 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3132 BUG_ON(compress_type); 3133 ret = btrfs_mark_extent_written(trans, inode, 3134 ordered_extent->file_offset, 3135 ordered_extent->file_offset + 3136 logical_len); 3137 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3138 ordered_extent->disk_num_bytes); 3139 } else { 3140 BUG_ON(root == fs_info->tree_root); 3141 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3142 if (!ret) { 3143 clear_reserved_extent = false; 3144 btrfs_release_delalloc_bytes(fs_info, 3145 ordered_extent->disk_bytenr, 3146 ordered_extent->disk_num_bytes); 3147 } 3148 } 3149 if (ret < 0) { 3150 btrfs_abort_transaction(trans, ret); 3151 goto out; 3152 } 3153 3154 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3155 ordered_extent->num_bytes, trans->transid); 3156 if (ret < 0) { 3157 btrfs_abort_transaction(trans, ret); 3158 goto out; 3159 } 3160 3161 ret = add_pending_csums(trans, &ordered_extent->list); 3162 if (ret) { 3163 btrfs_abort_transaction(trans, ret); 3164 goto out; 3165 } 3166 3167 /* 3168 * If this is a new delalloc range, clear its new delalloc flag to 3169 * update the inode's number of bytes. This needs to be done first 3170 * before updating the inode item. 3171 */ 3172 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3173 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3174 clear_extent_bit(&inode->io_tree, start, end, 3175 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3176 &cached_state); 3177 3178 btrfs_inode_safe_disk_i_size_write(inode, 0); 3179 ret = btrfs_update_inode_fallback(trans, inode); 3180 if (ret) { /* -ENOMEM or corruption */ 3181 btrfs_abort_transaction(trans, ret); 3182 goto out; 3183 } 3184 ret = 0; 3185 out: 3186 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3187 &cached_state); 3188 3189 if (trans) 3190 btrfs_end_transaction(trans); 3191 3192 if (ret || truncated) { 3193 u64 unwritten_start = start; 3194 3195 /* 3196 * If we failed to finish this ordered extent for any reason we 3197 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3198 * extent, and mark the inode with the error if it wasn't 3199 * already set. Any error during writeback would have already 3200 * set the mapping error, so we need to set it if we're the ones 3201 * marking this ordered extent as failed. 3202 */ 3203 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3204 &ordered_extent->flags)) 3205 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3206 3207 if (truncated) 3208 unwritten_start += logical_len; 3209 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3210 3211 /* 3212 * Drop extent maps for the part of the extent we didn't write. 3213 * 3214 * We have an exception here for the free_space_inode, this is 3215 * because when we do btrfs_get_extent() on the free space inode 3216 * we will search the commit root. If this is a new block group 3217 * we won't find anything, and we will trip over the assert in 3218 * writepage where we do ASSERT(em->block_start != 3219 * EXTENT_MAP_HOLE). 3220 * 3221 * Theoretically we could also skip this for any NOCOW extent as 3222 * we don't mess with the extent map tree in the NOCOW case, but 3223 * for now simply skip this if we are the free space inode. 3224 */ 3225 if (!btrfs_is_free_space_inode(inode)) 3226 btrfs_drop_extent_map_range(inode, unwritten_start, 3227 end, false); 3228 3229 /* 3230 * If the ordered extent had an IOERR or something else went 3231 * wrong we need to return the space for this ordered extent 3232 * back to the allocator. We only free the extent in the 3233 * truncated case if we didn't write out the extent at all. 3234 * 3235 * If we made it past insert_reserved_file_extent before we 3236 * errored out then we don't need to do this as the accounting 3237 * has already been done. 3238 */ 3239 if ((ret || !logical_len) && 3240 clear_reserved_extent && 3241 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3242 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3243 /* 3244 * Discard the range before returning it back to the 3245 * free space pool 3246 */ 3247 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3248 btrfs_discard_extent(fs_info, 3249 ordered_extent->disk_bytenr, 3250 ordered_extent->disk_num_bytes, 3251 NULL); 3252 btrfs_free_reserved_extent(fs_info, 3253 ordered_extent->disk_bytenr, 3254 ordered_extent->disk_num_bytes, 1); 3255 /* 3256 * Actually free the qgroup rsv which was released when 3257 * the ordered extent was created. 3258 */ 3259 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, 3260 ordered_extent->qgroup_rsv, 3261 BTRFS_QGROUP_RSV_DATA); 3262 } 3263 } 3264 3265 /* 3266 * This needs to be done to make sure anybody waiting knows we are done 3267 * updating everything for this ordered extent. 3268 */ 3269 btrfs_remove_ordered_extent(inode, ordered_extent); 3270 3271 /* once for us */ 3272 btrfs_put_ordered_extent(ordered_extent); 3273 /* once for the tree */ 3274 btrfs_put_ordered_extent(ordered_extent); 3275 3276 return ret; 3277 } 3278 3279 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3280 { 3281 if (btrfs_is_zoned(inode_to_fs_info(ordered->inode)) && 3282 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3283 list_empty(&ordered->bioc_list)) 3284 btrfs_finish_ordered_zoned(ordered); 3285 return btrfs_finish_one_ordered(ordered); 3286 } 3287 3288 /* 3289 * Verify the checksum for a single sector without any extra action that depend 3290 * on the type of I/O. 3291 */ 3292 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3293 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3294 { 3295 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3296 char *kaddr; 3297 3298 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3299 3300 shash->tfm = fs_info->csum_shash; 3301 3302 kaddr = kmap_local_page(page) + pgoff; 3303 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3304 kunmap_local(kaddr); 3305 3306 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3307 return -EIO; 3308 return 0; 3309 } 3310 3311 /* 3312 * Verify the checksum of a single data sector. 3313 * 3314 * @bbio: btrfs_io_bio which contains the csum 3315 * @dev: device the sector is on 3316 * @bio_offset: offset to the beginning of the bio (in bytes) 3317 * @bv: bio_vec to check 3318 * 3319 * Check if the checksum on a data block is valid. When a checksum mismatch is 3320 * detected, report the error and fill the corrupted range with zero. 3321 * 3322 * Return %true if the sector is ok or had no checksum to start with, else %false. 3323 */ 3324 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3325 u32 bio_offset, struct bio_vec *bv) 3326 { 3327 struct btrfs_inode *inode = bbio->inode; 3328 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3329 u64 file_offset = bbio->file_offset + bio_offset; 3330 u64 end = file_offset + bv->bv_len - 1; 3331 u8 *csum_expected; 3332 u8 csum[BTRFS_CSUM_SIZE]; 3333 3334 ASSERT(bv->bv_len == fs_info->sectorsize); 3335 3336 if (!bbio->csum) 3337 return true; 3338 3339 if (btrfs_is_data_reloc_root(inode->root) && 3340 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3341 NULL)) { 3342 /* Skip the range without csum for data reloc inode */ 3343 clear_extent_bits(&inode->io_tree, file_offset, end, 3344 EXTENT_NODATASUM); 3345 return true; 3346 } 3347 3348 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3349 fs_info->csum_size; 3350 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3351 csum_expected)) 3352 goto zeroit; 3353 return true; 3354 3355 zeroit: 3356 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3357 bbio->mirror_num); 3358 if (dev) 3359 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3360 memzero_bvec(bv); 3361 return false; 3362 } 3363 3364 /* 3365 * Perform a delayed iput on @inode. 3366 * 3367 * @inode: The inode we want to perform iput on 3368 * 3369 * This function uses the generic vfs_inode::i_count to track whether we should 3370 * just decrement it (in case it's > 1) or if this is the last iput then link 3371 * the inode to the delayed iput machinery. Delayed iputs are processed at 3372 * transaction commit time/superblock commit/cleaner kthread. 3373 */ 3374 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3375 { 3376 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3377 unsigned long flags; 3378 3379 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3380 return; 3381 3382 atomic_inc(&fs_info->nr_delayed_iputs); 3383 /* 3384 * Need to be irq safe here because we can be called from either an irq 3385 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3386 * context. 3387 */ 3388 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3389 ASSERT(list_empty(&inode->delayed_iput)); 3390 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3391 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3392 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3393 wake_up_process(fs_info->cleaner_kthread); 3394 } 3395 3396 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3397 struct btrfs_inode *inode) 3398 { 3399 list_del_init(&inode->delayed_iput); 3400 spin_unlock_irq(&fs_info->delayed_iput_lock); 3401 iput(&inode->vfs_inode); 3402 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3403 wake_up(&fs_info->delayed_iputs_wait); 3404 spin_lock_irq(&fs_info->delayed_iput_lock); 3405 } 3406 3407 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3408 struct btrfs_inode *inode) 3409 { 3410 if (!list_empty(&inode->delayed_iput)) { 3411 spin_lock_irq(&fs_info->delayed_iput_lock); 3412 if (!list_empty(&inode->delayed_iput)) 3413 run_delayed_iput_locked(fs_info, inode); 3414 spin_unlock_irq(&fs_info->delayed_iput_lock); 3415 } 3416 } 3417 3418 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3419 { 3420 /* 3421 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3422 * calls btrfs_add_delayed_iput() and that needs to lock 3423 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3424 * prevent a deadlock. 3425 */ 3426 spin_lock_irq(&fs_info->delayed_iput_lock); 3427 while (!list_empty(&fs_info->delayed_iputs)) { 3428 struct btrfs_inode *inode; 3429 3430 inode = list_first_entry(&fs_info->delayed_iputs, 3431 struct btrfs_inode, delayed_iput); 3432 run_delayed_iput_locked(fs_info, inode); 3433 if (need_resched()) { 3434 spin_unlock_irq(&fs_info->delayed_iput_lock); 3435 cond_resched(); 3436 spin_lock_irq(&fs_info->delayed_iput_lock); 3437 } 3438 } 3439 spin_unlock_irq(&fs_info->delayed_iput_lock); 3440 } 3441 3442 /* 3443 * Wait for flushing all delayed iputs 3444 * 3445 * @fs_info: the filesystem 3446 * 3447 * This will wait on any delayed iputs that are currently running with KILLABLE 3448 * set. Once they are all done running we will return, unless we are killed in 3449 * which case we return EINTR. This helps in user operations like fallocate etc 3450 * that might get blocked on the iputs. 3451 * 3452 * Return EINTR if we were killed, 0 if nothing's pending 3453 */ 3454 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3455 { 3456 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3457 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3458 if (ret) 3459 return -EINTR; 3460 return 0; 3461 } 3462 3463 /* 3464 * This creates an orphan entry for the given inode in case something goes wrong 3465 * in the middle of an unlink. 3466 */ 3467 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3468 struct btrfs_inode *inode) 3469 { 3470 int ret; 3471 3472 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3473 if (ret && ret != -EEXIST) { 3474 btrfs_abort_transaction(trans, ret); 3475 return ret; 3476 } 3477 3478 return 0; 3479 } 3480 3481 /* 3482 * We have done the delete so we can go ahead and remove the orphan item for 3483 * this particular inode. 3484 */ 3485 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3486 struct btrfs_inode *inode) 3487 { 3488 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3489 } 3490 3491 /* 3492 * this cleans up any orphans that may be left on the list from the last use 3493 * of this root. 3494 */ 3495 int btrfs_orphan_cleanup(struct btrfs_root *root) 3496 { 3497 struct btrfs_fs_info *fs_info = root->fs_info; 3498 struct btrfs_path *path; 3499 struct extent_buffer *leaf; 3500 struct btrfs_key key, found_key; 3501 struct btrfs_trans_handle *trans; 3502 struct inode *inode; 3503 u64 last_objectid = 0; 3504 int ret = 0, nr_unlink = 0; 3505 3506 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3507 return 0; 3508 3509 path = btrfs_alloc_path(); 3510 if (!path) { 3511 ret = -ENOMEM; 3512 goto out; 3513 } 3514 path->reada = READA_BACK; 3515 3516 key.objectid = BTRFS_ORPHAN_OBJECTID; 3517 key.type = BTRFS_ORPHAN_ITEM_KEY; 3518 key.offset = (u64)-1; 3519 3520 while (1) { 3521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3522 if (ret < 0) 3523 goto out; 3524 3525 /* 3526 * if ret == 0 means we found what we were searching for, which 3527 * is weird, but possible, so only screw with path if we didn't 3528 * find the key and see if we have stuff that matches 3529 */ 3530 if (ret > 0) { 3531 ret = 0; 3532 if (path->slots[0] == 0) 3533 break; 3534 path->slots[0]--; 3535 } 3536 3537 /* pull out the item */ 3538 leaf = path->nodes[0]; 3539 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3540 3541 /* make sure the item matches what we want */ 3542 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3543 break; 3544 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3545 break; 3546 3547 /* release the path since we're done with it */ 3548 btrfs_release_path(path); 3549 3550 /* 3551 * this is where we are basically btrfs_lookup, without the 3552 * crossing root thing. we store the inode number in the 3553 * offset of the orphan item. 3554 */ 3555 3556 if (found_key.offset == last_objectid) { 3557 /* 3558 * We found the same inode as before. This means we were 3559 * not able to remove its items via eviction triggered 3560 * by an iput(). A transaction abort may have happened, 3561 * due to -ENOSPC for example, so try to grab the error 3562 * that lead to a transaction abort, if any. 3563 */ 3564 btrfs_err(fs_info, 3565 "Error removing orphan entry, stopping orphan cleanup"); 3566 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3567 goto out; 3568 } 3569 3570 last_objectid = found_key.offset; 3571 3572 found_key.objectid = found_key.offset; 3573 found_key.type = BTRFS_INODE_ITEM_KEY; 3574 found_key.offset = 0; 3575 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3576 if (IS_ERR(inode)) { 3577 ret = PTR_ERR(inode); 3578 inode = NULL; 3579 if (ret != -ENOENT) 3580 goto out; 3581 } 3582 3583 if (!inode && root == fs_info->tree_root) { 3584 struct btrfs_root *dead_root; 3585 int is_dead_root = 0; 3586 3587 /* 3588 * This is an orphan in the tree root. Currently these 3589 * could come from 2 sources: 3590 * a) a root (snapshot/subvolume) deletion in progress 3591 * b) a free space cache inode 3592 * We need to distinguish those two, as the orphan item 3593 * for a root must not get deleted before the deletion 3594 * of the snapshot/subvolume's tree completes. 3595 * 3596 * btrfs_find_orphan_roots() ran before us, which has 3597 * found all deleted roots and loaded them into 3598 * fs_info->fs_roots_radix. So here we can find if an 3599 * orphan item corresponds to a deleted root by looking 3600 * up the root from that radix tree. 3601 */ 3602 3603 spin_lock(&fs_info->fs_roots_radix_lock); 3604 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3605 (unsigned long)found_key.objectid); 3606 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3607 is_dead_root = 1; 3608 spin_unlock(&fs_info->fs_roots_radix_lock); 3609 3610 if (is_dead_root) { 3611 /* prevent this orphan from being found again */ 3612 key.offset = found_key.objectid - 1; 3613 continue; 3614 } 3615 3616 } 3617 3618 /* 3619 * If we have an inode with links, there are a couple of 3620 * possibilities: 3621 * 3622 * 1. We were halfway through creating fsverity metadata for the 3623 * file. In that case, the orphan item represents incomplete 3624 * fsverity metadata which must be cleaned up with 3625 * btrfs_drop_verity_items and deleting the orphan item. 3626 3627 * 2. Old kernels (before v3.12) used to create an 3628 * orphan item for truncate indicating that there were possibly 3629 * extent items past i_size that needed to be deleted. In v3.12, 3630 * truncate was changed to update i_size in sync with the extent 3631 * items, but the (useless) orphan item was still created. Since 3632 * v4.18, we don't create the orphan item for truncate at all. 3633 * 3634 * So, this item could mean that we need to do a truncate, but 3635 * only if this filesystem was last used on a pre-v3.12 kernel 3636 * and was not cleanly unmounted. The odds of that are quite 3637 * slim, and it's a pain to do the truncate now, so just delete 3638 * the orphan item. 3639 * 3640 * It's also possible that this orphan item was supposed to be 3641 * deleted but wasn't. The inode number may have been reused, 3642 * but either way, we can delete the orphan item. 3643 */ 3644 if (!inode || inode->i_nlink) { 3645 if (inode) { 3646 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3647 iput(inode); 3648 inode = NULL; 3649 if (ret) 3650 goto out; 3651 } 3652 trans = btrfs_start_transaction(root, 1); 3653 if (IS_ERR(trans)) { 3654 ret = PTR_ERR(trans); 3655 goto out; 3656 } 3657 btrfs_debug(fs_info, "auto deleting %Lu", 3658 found_key.objectid); 3659 ret = btrfs_del_orphan_item(trans, root, 3660 found_key.objectid); 3661 btrfs_end_transaction(trans); 3662 if (ret) 3663 goto out; 3664 continue; 3665 } 3666 3667 nr_unlink++; 3668 3669 /* this will do delete_inode and everything for us */ 3670 iput(inode); 3671 } 3672 /* release the path since we're done with it */ 3673 btrfs_release_path(path); 3674 3675 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3676 trans = btrfs_join_transaction(root); 3677 if (!IS_ERR(trans)) 3678 btrfs_end_transaction(trans); 3679 } 3680 3681 if (nr_unlink) 3682 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3683 3684 out: 3685 if (ret) 3686 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3687 btrfs_free_path(path); 3688 return ret; 3689 } 3690 3691 /* 3692 * very simple check to peek ahead in the leaf looking for xattrs. If we 3693 * don't find any xattrs, we know there can't be any acls. 3694 * 3695 * slot is the slot the inode is in, objectid is the objectid of the inode 3696 */ 3697 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3698 int slot, u64 objectid, 3699 int *first_xattr_slot) 3700 { 3701 u32 nritems = btrfs_header_nritems(leaf); 3702 struct btrfs_key found_key; 3703 static u64 xattr_access = 0; 3704 static u64 xattr_default = 0; 3705 int scanned = 0; 3706 3707 if (!xattr_access) { 3708 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3709 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3710 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3711 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3712 } 3713 3714 slot++; 3715 *first_xattr_slot = -1; 3716 while (slot < nritems) { 3717 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3718 3719 /* we found a different objectid, there must not be acls */ 3720 if (found_key.objectid != objectid) 3721 return 0; 3722 3723 /* we found an xattr, assume we've got an acl */ 3724 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3725 if (*first_xattr_slot == -1) 3726 *first_xattr_slot = slot; 3727 if (found_key.offset == xattr_access || 3728 found_key.offset == xattr_default) 3729 return 1; 3730 } 3731 3732 /* 3733 * we found a key greater than an xattr key, there can't 3734 * be any acls later on 3735 */ 3736 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3737 return 0; 3738 3739 slot++; 3740 scanned++; 3741 3742 /* 3743 * it goes inode, inode backrefs, xattrs, extents, 3744 * so if there are a ton of hard links to an inode there can 3745 * be a lot of backrefs. Don't waste time searching too hard, 3746 * this is just an optimization 3747 */ 3748 if (scanned >= 8) 3749 break; 3750 } 3751 /* we hit the end of the leaf before we found an xattr or 3752 * something larger than an xattr. We have to assume the inode 3753 * has acls 3754 */ 3755 if (*first_xattr_slot == -1) 3756 *first_xattr_slot = slot; 3757 return 1; 3758 } 3759 3760 /* 3761 * read an inode from the btree into the in-memory inode 3762 */ 3763 static int btrfs_read_locked_inode(struct inode *inode, 3764 struct btrfs_path *in_path) 3765 { 3766 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3767 struct btrfs_path *path = in_path; 3768 struct extent_buffer *leaf; 3769 struct btrfs_inode_item *inode_item; 3770 struct btrfs_root *root = BTRFS_I(inode)->root; 3771 struct btrfs_key location; 3772 unsigned long ptr; 3773 int maybe_acls; 3774 u32 rdev; 3775 int ret; 3776 bool filled = false; 3777 int first_xattr_slot; 3778 3779 ret = btrfs_fill_inode(inode, &rdev); 3780 if (!ret) 3781 filled = true; 3782 3783 if (!path) { 3784 path = btrfs_alloc_path(); 3785 if (!path) 3786 return -ENOMEM; 3787 } 3788 3789 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3790 3791 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3792 if (ret) { 3793 if (path != in_path) 3794 btrfs_free_path(path); 3795 return ret; 3796 } 3797 3798 leaf = path->nodes[0]; 3799 3800 if (filled) 3801 goto cache_index; 3802 3803 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3804 struct btrfs_inode_item); 3805 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3806 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3807 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3808 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3809 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3810 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3811 round_up(i_size_read(inode), fs_info->sectorsize)); 3812 3813 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3814 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3815 3816 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3817 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3818 3819 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3820 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3821 3822 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3823 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3824 3825 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3826 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3827 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3828 3829 inode_set_iversion_queried(inode, 3830 btrfs_inode_sequence(leaf, inode_item)); 3831 inode->i_generation = BTRFS_I(inode)->generation; 3832 inode->i_rdev = 0; 3833 rdev = btrfs_inode_rdev(leaf, inode_item); 3834 3835 BTRFS_I(inode)->index_cnt = (u64)-1; 3836 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3837 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3838 3839 cache_index: 3840 /* 3841 * If we were modified in the current generation and evicted from memory 3842 * and then re-read we need to do a full sync since we don't have any 3843 * idea about which extents were modified before we were evicted from 3844 * cache. 3845 * 3846 * This is required for both inode re-read from disk and delayed inode 3847 * in the delayed_nodes xarray. 3848 */ 3849 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3850 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3851 &BTRFS_I(inode)->runtime_flags); 3852 3853 /* 3854 * We don't persist the id of the transaction where an unlink operation 3855 * against the inode was last made. So here we assume the inode might 3856 * have been evicted, and therefore the exact value of last_unlink_trans 3857 * lost, and set it to last_trans to avoid metadata inconsistencies 3858 * between the inode and its parent if the inode is fsync'ed and the log 3859 * replayed. For example, in the scenario: 3860 * 3861 * touch mydir/foo 3862 * ln mydir/foo mydir/bar 3863 * sync 3864 * unlink mydir/bar 3865 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3866 * xfs_io -c fsync mydir/foo 3867 * <power failure> 3868 * mount fs, triggers fsync log replay 3869 * 3870 * We must make sure that when we fsync our inode foo we also log its 3871 * parent inode, otherwise after log replay the parent still has the 3872 * dentry with the "bar" name but our inode foo has a link count of 1 3873 * and doesn't have an inode ref with the name "bar" anymore. 3874 * 3875 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3876 * but it guarantees correctness at the expense of occasional full 3877 * transaction commits on fsync if our inode is a directory, or if our 3878 * inode is not a directory, logging its parent unnecessarily. 3879 */ 3880 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3881 3882 /* 3883 * Same logic as for last_unlink_trans. We don't persist the generation 3884 * of the last transaction where this inode was used for a reflink 3885 * operation, so after eviction and reloading the inode we must be 3886 * pessimistic and assume the last transaction that modified the inode. 3887 */ 3888 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3889 3890 path->slots[0]++; 3891 if (inode->i_nlink != 1 || 3892 path->slots[0] >= btrfs_header_nritems(leaf)) 3893 goto cache_acl; 3894 3895 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3896 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3897 goto cache_acl; 3898 3899 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3900 if (location.type == BTRFS_INODE_REF_KEY) { 3901 struct btrfs_inode_ref *ref; 3902 3903 ref = (struct btrfs_inode_ref *)ptr; 3904 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3905 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3906 struct btrfs_inode_extref *extref; 3907 3908 extref = (struct btrfs_inode_extref *)ptr; 3909 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3910 extref); 3911 } 3912 cache_acl: 3913 /* 3914 * try to precache a NULL acl entry for files that don't have 3915 * any xattrs or acls 3916 */ 3917 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3918 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3919 if (first_xattr_slot != -1) { 3920 path->slots[0] = first_xattr_slot; 3921 ret = btrfs_load_inode_props(inode, path); 3922 if (ret) 3923 btrfs_err(fs_info, 3924 "error loading props for ino %llu (root %llu): %d", 3925 btrfs_ino(BTRFS_I(inode)), 3926 root->root_key.objectid, ret); 3927 } 3928 if (path != in_path) 3929 btrfs_free_path(path); 3930 3931 if (!maybe_acls) 3932 cache_no_acl(inode); 3933 3934 switch (inode->i_mode & S_IFMT) { 3935 case S_IFREG: 3936 inode->i_mapping->a_ops = &btrfs_aops; 3937 inode->i_fop = &btrfs_file_operations; 3938 inode->i_op = &btrfs_file_inode_operations; 3939 break; 3940 case S_IFDIR: 3941 inode->i_fop = &btrfs_dir_file_operations; 3942 inode->i_op = &btrfs_dir_inode_operations; 3943 break; 3944 case S_IFLNK: 3945 inode->i_op = &btrfs_symlink_inode_operations; 3946 inode_nohighmem(inode); 3947 inode->i_mapping->a_ops = &btrfs_aops; 3948 break; 3949 default: 3950 inode->i_op = &btrfs_special_inode_operations; 3951 init_special_inode(inode, inode->i_mode, rdev); 3952 break; 3953 } 3954 3955 btrfs_sync_inode_flags_to_i_flags(inode); 3956 return 0; 3957 } 3958 3959 /* 3960 * given a leaf and an inode, copy the inode fields into the leaf 3961 */ 3962 static void fill_inode_item(struct btrfs_trans_handle *trans, 3963 struct extent_buffer *leaf, 3964 struct btrfs_inode_item *item, 3965 struct inode *inode) 3966 { 3967 struct btrfs_map_token token; 3968 u64 flags; 3969 3970 btrfs_init_map_token(&token, leaf); 3971 3972 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3973 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3974 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3975 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3976 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3977 3978 btrfs_set_token_timespec_sec(&token, &item->atime, 3979 inode_get_atime_sec(inode)); 3980 btrfs_set_token_timespec_nsec(&token, &item->atime, 3981 inode_get_atime_nsec(inode)); 3982 3983 btrfs_set_token_timespec_sec(&token, &item->mtime, 3984 inode_get_mtime_sec(inode)); 3985 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3986 inode_get_mtime_nsec(inode)); 3987 3988 btrfs_set_token_timespec_sec(&token, &item->ctime, 3989 inode_get_ctime_sec(inode)); 3990 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3991 inode_get_ctime_nsec(inode)); 3992 3993 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 3994 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 3995 3996 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3997 btrfs_set_token_inode_generation(&token, item, 3998 BTRFS_I(inode)->generation); 3999 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4000 btrfs_set_token_inode_transid(&token, item, trans->transid); 4001 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4002 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4003 BTRFS_I(inode)->ro_flags); 4004 btrfs_set_token_inode_flags(&token, item, flags); 4005 btrfs_set_token_inode_block_group(&token, item, 0); 4006 } 4007 4008 /* 4009 * copy everything in the in-memory inode into the btree. 4010 */ 4011 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4012 struct btrfs_inode *inode) 4013 { 4014 struct btrfs_inode_item *inode_item; 4015 struct btrfs_path *path; 4016 struct extent_buffer *leaf; 4017 int ret; 4018 4019 path = btrfs_alloc_path(); 4020 if (!path) 4021 return -ENOMEM; 4022 4023 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1); 4024 if (ret) { 4025 if (ret > 0) 4026 ret = -ENOENT; 4027 goto failed; 4028 } 4029 4030 leaf = path->nodes[0]; 4031 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4032 struct btrfs_inode_item); 4033 4034 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4035 btrfs_mark_buffer_dirty(trans, leaf); 4036 btrfs_set_inode_last_trans(trans, inode); 4037 ret = 0; 4038 failed: 4039 btrfs_free_path(path); 4040 return ret; 4041 } 4042 4043 /* 4044 * copy everything in the in-memory inode into the btree. 4045 */ 4046 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4047 struct btrfs_inode *inode) 4048 { 4049 struct btrfs_root *root = inode->root; 4050 struct btrfs_fs_info *fs_info = root->fs_info; 4051 int ret; 4052 4053 /* 4054 * If the inode is a free space inode, we can deadlock during commit 4055 * if we put it into the delayed code. 4056 * 4057 * The data relocation inode should also be directly updated 4058 * without delay 4059 */ 4060 if (!btrfs_is_free_space_inode(inode) 4061 && !btrfs_is_data_reloc_root(root) 4062 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4063 btrfs_update_root_times(trans, root); 4064 4065 ret = btrfs_delayed_update_inode(trans, inode); 4066 if (!ret) 4067 btrfs_set_inode_last_trans(trans, inode); 4068 return ret; 4069 } 4070 4071 return btrfs_update_inode_item(trans, inode); 4072 } 4073 4074 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4075 struct btrfs_inode *inode) 4076 { 4077 int ret; 4078 4079 ret = btrfs_update_inode(trans, inode); 4080 if (ret == -ENOSPC) 4081 return btrfs_update_inode_item(trans, inode); 4082 return ret; 4083 } 4084 4085 /* 4086 * unlink helper that gets used here in inode.c and in the tree logging 4087 * recovery code. It remove a link in a directory with a given name, and 4088 * also drops the back refs in the inode to the directory 4089 */ 4090 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4091 struct btrfs_inode *dir, 4092 struct btrfs_inode *inode, 4093 const struct fscrypt_str *name, 4094 struct btrfs_rename_ctx *rename_ctx) 4095 { 4096 struct btrfs_root *root = dir->root; 4097 struct btrfs_fs_info *fs_info = root->fs_info; 4098 struct btrfs_path *path; 4099 int ret = 0; 4100 struct btrfs_dir_item *di; 4101 u64 index; 4102 u64 ino = btrfs_ino(inode); 4103 u64 dir_ino = btrfs_ino(dir); 4104 4105 path = btrfs_alloc_path(); 4106 if (!path) { 4107 ret = -ENOMEM; 4108 goto out; 4109 } 4110 4111 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4112 if (IS_ERR_OR_NULL(di)) { 4113 ret = di ? PTR_ERR(di) : -ENOENT; 4114 goto err; 4115 } 4116 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4117 if (ret) 4118 goto err; 4119 btrfs_release_path(path); 4120 4121 /* 4122 * If we don't have dir index, we have to get it by looking up 4123 * the inode ref, since we get the inode ref, remove it directly, 4124 * it is unnecessary to do delayed deletion. 4125 * 4126 * But if we have dir index, needn't search inode ref to get it. 4127 * Since the inode ref is close to the inode item, it is better 4128 * that we delay to delete it, and just do this deletion when 4129 * we update the inode item. 4130 */ 4131 if (inode->dir_index) { 4132 ret = btrfs_delayed_delete_inode_ref(inode); 4133 if (!ret) { 4134 index = inode->dir_index; 4135 goto skip_backref; 4136 } 4137 } 4138 4139 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4140 if (ret) { 4141 btrfs_info(fs_info, 4142 "failed to delete reference to %.*s, inode %llu parent %llu", 4143 name->len, name->name, ino, dir_ino); 4144 btrfs_abort_transaction(trans, ret); 4145 goto err; 4146 } 4147 skip_backref: 4148 if (rename_ctx) 4149 rename_ctx->index = index; 4150 4151 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4152 if (ret) { 4153 btrfs_abort_transaction(trans, ret); 4154 goto err; 4155 } 4156 4157 /* 4158 * If we are in a rename context, we don't need to update anything in the 4159 * log. That will be done later during the rename by btrfs_log_new_name(). 4160 * Besides that, doing it here would only cause extra unnecessary btree 4161 * operations on the log tree, increasing latency for applications. 4162 */ 4163 if (!rename_ctx) { 4164 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4165 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4166 } 4167 4168 /* 4169 * If we have a pending delayed iput we could end up with the final iput 4170 * being run in btrfs-cleaner context. If we have enough of these built 4171 * up we can end up burning a lot of time in btrfs-cleaner without any 4172 * way to throttle the unlinks. Since we're currently holding a ref on 4173 * the inode we can run the delayed iput here without any issues as the 4174 * final iput won't be done until after we drop the ref we're currently 4175 * holding. 4176 */ 4177 btrfs_run_delayed_iput(fs_info, inode); 4178 err: 4179 btrfs_free_path(path); 4180 if (ret) 4181 goto out; 4182 4183 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4184 inode_inc_iversion(&inode->vfs_inode); 4185 inode_inc_iversion(&dir->vfs_inode); 4186 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4187 ret = btrfs_update_inode(trans, dir); 4188 out: 4189 return ret; 4190 } 4191 4192 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4193 struct btrfs_inode *dir, struct btrfs_inode *inode, 4194 const struct fscrypt_str *name) 4195 { 4196 int ret; 4197 4198 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4199 if (!ret) { 4200 drop_nlink(&inode->vfs_inode); 4201 ret = btrfs_update_inode(trans, inode); 4202 } 4203 return ret; 4204 } 4205 4206 /* 4207 * helper to start transaction for unlink and rmdir. 4208 * 4209 * unlink and rmdir are special in btrfs, they do not always free space, so 4210 * if we cannot make our reservations the normal way try and see if there is 4211 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4212 * allow the unlink to occur. 4213 */ 4214 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4215 { 4216 struct btrfs_root *root = dir->root; 4217 4218 return btrfs_start_transaction_fallback_global_rsv(root, 4219 BTRFS_UNLINK_METADATA_UNITS); 4220 } 4221 4222 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4223 { 4224 struct btrfs_trans_handle *trans; 4225 struct inode *inode = d_inode(dentry); 4226 int ret; 4227 struct fscrypt_name fname; 4228 4229 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4230 if (ret) 4231 return ret; 4232 4233 /* This needs to handle no-key deletions later on */ 4234 4235 trans = __unlink_start_trans(BTRFS_I(dir)); 4236 if (IS_ERR(trans)) { 4237 ret = PTR_ERR(trans); 4238 goto fscrypt_free; 4239 } 4240 4241 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4242 false); 4243 4244 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4245 &fname.disk_name); 4246 if (ret) 4247 goto end_trans; 4248 4249 if (inode->i_nlink == 0) { 4250 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4251 if (ret) 4252 goto end_trans; 4253 } 4254 4255 end_trans: 4256 btrfs_end_transaction(trans); 4257 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4258 fscrypt_free: 4259 fscrypt_free_filename(&fname); 4260 return ret; 4261 } 4262 4263 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4264 struct btrfs_inode *dir, struct dentry *dentry) 4265 { 4266 struct btrfs_root *root = dir->root; 4267 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4268 struct btrfs_path *path; 4269 struct extent_buffer *leaf; 4270 struct btrfs_dir_item *di; 4271 struct btrfs_key key; 4272 u64 index; 4273 int ret; 4274 u64 objectid; 4275 u64 dir_ino = btrfs_ino(dir); 4276 struct fscrypt_name fname; 4277 4278 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4279 if (ret) 4280 return ret; 4281 4282 /* This needs to handle no-key deletions later on */ 4283 4284 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4285 objectid = inode->root->root_key.objectid; 4286 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4287 objectid = inode->location.objectid; 4288 } else { 4289 WARN_ON(1); 4290 fscrypt_free_filename(&fname); 4291 return -EINVAL; 4292 } 4293 4294 path = btrfs_alloc_path(); 4295 if (!path) { 4296 ret = -ENOMEM; 4297 goto out; 4298 } 4299 4300 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4301 &fname.disk_name, -1); 4302 if (IS_ERR_OR_NULL(di)) { 4303 ret = di ? PTR_ERR(di) : -ENOENT; 4304 goto out; 4305 } 4306 4307 leaf = path->nodes[0]; 4308 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4309 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4310 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4311 if (ret) { 4312 btrfs_abort_transaction(trans, ret); 4313 goto out; 4314 } 4315 btrfs_release_path(path); 4316 4317 /* 4318 * This is a placeholder inode for a subvolume we didn't have a 4319 * reference to at the time of the snapshot creation. In the meantime 4320 * we could have renamed the real subvol link into our snapshot, so 4321 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4322 * Instead simply lookup the dir_index_item for this entry so we can 4323 * remove it. Otherwise we know we have a ref to the root and we can 4324 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4325 */ 4326 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4327 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4328 if (IS_ERR_OR_NULL(di)) { 4329 if (!di) 4330 ret = -ENOENT; 4331 else 4332 ret = PTR_ERR(di); 4333 btrfs_abort_transaction(trans, ret); 4334 goto out; 4335 } 4336 4337 leaf = path->nodes[0]; 4338 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4339 index = key.offset; 4340 btrfs_release_path(path); 4341 } else { 4342 ret = btrfs_del_root_ref(trans, objectid, 4343 root->root_key.objectid, dir_ino, 4344 &index, &fname.disk_name); 4345 if (ret) { 4346 btrfs_abort_transaction(trans, ret); 4347 goto out; 4348 } 4349 } 4350 4351 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4352 if (ret) { 4353 btrfs_abort_transaction(trans, ret); 4354 goto out; 4355 } 4356 4357 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4358 inode_inc_iversion(&dir->vfs_inode); 4359 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4360 ret = btrfs_update_inode_fallback(trans, dir); 4361 if (ret) 4362 btrfs_abort_transaction(trans, ret); 4363 out: 4364 btrfs_free_path(path); 4365 fscrypt_free_filename(&fname); 4366 return ret; 4367 } 4368 4369 /* 4370 * Helper to check if the subvolume references other subvolumes or if it's 4371 * default. 4372 */ 4373 static noinline int may_destroy_subvol(struct btrfs_root *root) 4374 { 4375 struct btrfs_fs_info *fs_info = root->fs_info; 4376 struct btrfs_path *path; 4377 struct btrfs_dir_item *di; 4378 struct btrfs_key key; 4379 struct fscrypt_str name = FSTR_INIT("default", 7); 4380 u64 dir_id; 4381 int ret; 4382 4383 path = btrfs_alloc_path(); 4384 if (!path) 4385 return -ENOMEM; 4386 4387 /* Make sure this root isn't set as the default subvol */ 4388 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4389 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4390 dir_id, &name, 0); 4391 if (di && !IS_ERR(di)) { 4392 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4393 if (key.objectid == root->root_key.objectid) { 4394 ret = -EPERM; 4395 btrfs_err(fs_info, 4396 "deleting default subvolume %llu is not allowed", 4397 key.objectid); 4398 goto out; 4399 } 4400 btrfs_release_path(path); 4401 } 4402 4403 key.objectid = root->root_key.objectid; 4404 key.type = BTRFS_ROOT_REF_KEY; 4405 key.offset = (u64)-1; 4406 4407 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4408 if (ret < 0) 4409 goto out; 4410 if (ret == 0) { 4411 /* 4412 * Key with offset -1 found, there would have to exist a root 4413 * with such id, but this is out of valid range. 4414 */ 4415 ret = -EUCLEAN; 4416 goto out; 4417 } 4418 4419 ret = 0; 4420 if (path->slots[0] > 0) { 4421 path->slots[0]--; 4422 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4423 if (key.objectid == root->root_key.objectid && 4424 key.type == BTRFS_ROOT_REF_KEY) 4425 ret = -ENOTEMPTY; 4426 } 4427 out: 4428 btrfs_free_path(path); 4429 return ret; 4430 } 4431 4432 /* Delete all dentries for inodes belonging to the root */ 4433 static void btrfs_prune_dentries(struct btrfs_root *root) 4434 { 4435 struct btrfs_fs_info *fs_info = root->fs_info; 4436 struct rb_node *node; 4437 struct rb_node *prev; 4438 struct btrfs_inode *entry; 4439 struct inode *inode; 4440 u64 objectid = 0; 4441 4442 if (!BTRFS_FS_ERROR(fs_info)) 4443 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4444 4445 spin_lock(&root->inode_lock); 4446 again: 4447 node = root->inode_tree.rb_node; 4448 prev = NULL; 4449 while (node) { 4450 prev = node; 4451 entry = rb_entry(node, struct btrfs_inode, rb_node); 4452 4453 if (objectid < btrfs_ino(entry)) 4454 node = node->rb_left; 4455 else if (objectid > btrfs_ino(entry)) 4456 node = node->rb_right; 4457 else 4458 break; 4459 } 4460 if (!node) { 4461 while (prev) { 4462 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4463 if (objectid <= btrfs_ino(entry)) { 4464 node = prev; 4465 break; 4466 } 4467 prev = rb_next(prev); 4468 } 4469 } 4470 while (node) { 4471 entry = rb_entry(node, struct btrfs_inode, rb_node); 4472 objectid = btrfs_ino(entry) + 1; 4473 inode = igrab(&entry->vfs_inode); 4474 if (inode) { 4475 spin_unlock(&root->inode_lock); 4476 if (atomic_read(&inode->i_count) > 1) 4477 d_prune_aliases(inode); 4478 /* 4479 * btrfs_drop_inode will have it removed from the inode 4480 * cache when its usage count hits zero. 4481 */ 4482 iput(inode); 4483 cond_resched(); 4484 spin_lock(&root->inode_lock); 4485 goto again; 4486 } 4487 4488 if (cond_resched_lock(&root->inode_lock)) 4489 goto again; 4490 4491 node = rb_next(node); 4492 } 4493 spin_unlock(&root->inode_lock); 4494 } 4495 4496 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4497 { 4498 struct btrfs_root *root = dir->root; 4499 struct btrfs_fs_info *fs_info = root->fs_info; 4500 struct inode *inode = d_inode(dentry); 4501 struct btrfs_root *dest = BTRFS_I(inode)->root; 4502 struct btrfs_trans_handle *trans; 4503 struct btrfs_block_rsv block_rsv; 4504 u64 root_flags; 4505 u64 qgroup_reserved = 0; 4506 int ret; 4507 4508 down_write(&fs_info->subvol_sem); 4509 4510 /* 4511 * Don't allow to delete a subvolume with send in progress. This is 4512 * inside the inode lock so the error handling that has to drop the bit 4513 * again is not run concurrently. 4514 */ 4515 spin_lock(&dest->root_item_lock); 4516 if (dest->send_in_progress) { 4517 spin_unlock(&dest->root_item_lock); 4518 btrfs_warn(fs_info, 4519 "attempt to delete subvolume %llu during send", 4520 dest->root_key.objectid); 4521 ret = -EPERM; 4522 goto out_up_write; 4523 } 4524 if (atomic_read(&dest->nr_swapfiles)) { 4525 spin_unlock(&dest->root_item_lock); 4526 btrfs_warn(fs_info, 4527 "attempt to delete subvolume %llu with active swapfile", 4528 root->root_key.objectid); 4529 ret = -EPERM; 4530 goto out_up_write; 4531 } 4532 root_flags = btrfs_root_flags(&dest->root_item); 4533 btrfs_set_root_flags(&dest->root_item, 4534 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4535 spin_unlock(&dest->root_item_lock); 4536 4537 ret = may_destroy_subvol(dest); 4538 if (ret) 4539 goto out_undead; 4540 4541 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4542 /* 4543 * One for dir inode, 4544 * two for dir entries, 4545 * two for root ref/backref. 4546 */ 4547 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4548 if (ret) 4549 goto out_undead; 4550 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4551 4552 trans = btrfs_start_transaction(root, 0); 4553 if (IS_ERR(trans)) { 4554 ret = PTR_ERR(trans); 4555 goto out_release; 4556 } 4557 ret = btrfs_record_root_in_trans(trans, root); 4558 if (ret) { 4559 btrfs_abort_transaction(trans, ret); 4560 goto out_end_trans; 4561 } 4562 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4563 qgroup_reserved = 0; 4564 trans->block_rsv = &block_rsv; 4565 trans->bytes_reserved = block_rsv.size; 4566 4567 btrfs_record_snapshot_destroy(trans, dir); 4568 4569 ret = btrfs_unlink_subvol(trans, dir, dentry); 4570 if (ret) { 4571 btrfs_abort_transaction(trans, ret); 4572 goto out_end_trans; 4573 } 4574 4575 ret = btrfs_record_root_in_trans(trans, dest); 4576 if (ret) { 4577 btrfs_abort_transaction(trans, ret); 4578 goto out_end_trans; 4579 } 4580 4581 memset(&dest->root_item.drop_progress, 0, 4582 sizeof(dest->root_item.drop_progress)); 4583 btrfs_set_root_drop_level(&dest->root_item, 0); 4584 btrfs_set_root_refs(&dest->root_item, 0); 4585 4586 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4587 ret = btrfs_insert_orphan_item(trans, 4588 fs_info->tree_root, 4589 dest->root_key.objectid); 4590 if (ret) { 4591 btrfs_abort_transaction(trans, ret); 4592 goto out_end_trans; 4593 } 4594 } 4595 4596 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4597 BTRFS_UUID_KEY_SUBVOL, 4598 dest->root_key.objectid); 4599 if (ret && ret != -ENOENT) { 4600 btrfs_abort_transaction(trans, ret); 4601 goto out_end_trans; 4602 } 4603 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4604 ret = btrfs_uuid_tree_remove(trans, 4605 dest->root_item.received_uuid, 4606 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4607 dest->root_key.objectid); 4608 if (ret && ret != -ENOENT) { 4609 btrfs_abort_transaction(trans, ret); 4610 goto out_end_trans; 4611 } 4612 } 4613 4614 free_anon_bdev(dest->anon_dev); 4615 dest->anon_dev = 0; 4616 out_end_trans: 4617 trans->block_rsv = NULL; 4618 trans->bytes_reserved = 0; 4619 ret = btrfs_end_transaction(trans); 4620 inode->i_flags |= S_DEAD; 4621 out_release: 4622 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4623 if (qgroup_reserved) 4624 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4625 out_undead: 4626 if (ret) { 4627 spin_lock(&dest->root_item_lock); 4628 root_flags = btrfs_root_flags(&dest->root_item); 4629 btrfs_set_root_flags(&dest->root_item, 4630 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4631 spin_unlock(&dest->root_item_lock); 4632 } 4633 out_up_write: 4634 up_write(&fs_info->subvol_sem); 4635 if (!ret) { 4636 d_invalidate(dentry); 4637 btrfs_prune_dentries(dest); 4638 ASSERT(dest->send_in_progress == 0); 4639 } 4640 4641 return ret; 4642 } 4643 4644 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4645 { 4646 struct inode *inode = d_inode(dentry); 4647 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4648 int err = 0; 4649 struct btrfs_trans_handle *trans; 4650 u64 last_unlink_trans; 4651 struct fscrypt_name fname; 4652 4653 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4654 return -ENOTEMPTY; 4655 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4656 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4657 btrfs_err(fs_info, 4658 "extent tree v2 doesn't support snapshot deletion yet"); 4659 return -EOPNOTSUPP; 4660 } 4661 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4662 } 4663 4664 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4665 if (err) 4666 return err; 4667 4668 /* This needs to handle no-key deletions later on */ 4669 4670 trans = __unlink_start_trans(BTRFS_I(dir)); 4671 if (IS_ERR(trans)) { 4672 err = PTR_ERR(trans); 4673 goto out_notrans; 4674 } 4675 4676 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4677 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4678 goto out; 4679 } 4680 4681 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4682 if (err) 4683 goto out; 4684 4685 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4686 4687 /* now the directory is empty */ 4688 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4689 &fname.disk_name); 4690 if (!err) { 4691 btrfs_i_size_write(BTRFS_I(inode), 0); 4692 /* 4693 * Propagate the last_unlink_trans value of the deleted dir to 4694 * its parent directory. This is to prevent an unrecoverable 4695 * log tree in the case we do something like this: 4696 * 1) create dir foo 4697 * 2) create snapshot under dir foo 4698 * 3) delete the snapshot 4699 * 4) rmdir foo 4700 * 5) mkdir foo 4701 * 6) fsync foo or some file inside foo 4702 */ 4703 if (last_unlink_trans >= trans->transid) 4704 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4705 } 4706 out: 4707 btrfs_end_transaction(trans); 4708 out_notrans: 4709 btrfs_btree_balance_dirty(fs_info); 4710 fscrypt_free_filename(&fname); 4711 4712 return err; 4713 } 4714 4715 /* 4716 * Read, zero a chunk and write a block. 4717 * 4718 * @inode - inode that we're zeroing 4719 * @from - the offset to start zeroing 4720 * @len - the length to zero, 0 to zero the entire range respective to the 4721 * offset 4722 * @front - zero up to the offset instead of from the offset on 4723 * 4724 * This will find the block for the "from" offset and cow the block and zero the 4725 * part we want to zero. This is used with truncate and hole punching. 4726 */ 4727 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4728 int front) 4729 { 4730 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4731 struct address_space *mapping = inode->vfs_inode.i_mapping; 4732 struct extent_io_tree *io_tree = &inode->io_tree; 4733 struct btrfs_ordered_extent *ordered; 4734 struct extent_state *cached_state = NULL; 4735 struct extent_changeset *data_reserved = NULL; 4736 bool only_release_metadata = false; 4737 u32 blocksize = fs_info->sectorsize; 4738 pgoff_t index = from >> PAGE_SHIFT; 4739 unsigned offset = from & (blocksize - 1); 4740 struct folio *folio; 4741 gfp_t mask = btrfs_alloc_write_mask(mapping); 4742 size_t write_bytes = blocksize; 4743 int ret = 0; 4744 u64 block_start; 4745 u64 block_end; 4746 4747 if (IS_ALIGNED(offset, blocksize) && 4748 (!len || IS_ALIGNED(len, blocksize))) 4749 goto out; 4750 4751 block_start = round_down(from, blocksize); 4752 block_end = block_start + blocksize - 1; 4753 4754 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4755 blocksize, false); 4756 if (ret < 0) { 4757 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4758 /* For nocow case, no need to reserve data space */ 4759 only_release_metadata = true; 4760 } else { 4761 goto out; 4762 } 4763 } 4764 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4765 if (ret < 0) { 4766 if (!only_release_metadata) 4767 btrfs_free_reserved_data_space(inode, data_reserved, 4768 block_start, blocksize); 4769 goto out; 4770 } 4771 again: 4772 folio = __filemap_get_folio(mapping, index, 4773 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4774 if (IS_ERR(folio)) { 4775 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4776 blocksize, true); 4777 btrfs_delalloc_release_extents(inode, blocksize); 4778 ret = -ENOMEM; 4779 goto out; 4780 } 4781 4782 if (!folio_test_uptodate(folio)) { 4783 ret = btrfs_read_folio(NULL, folio); 4784 folio_lock(folio); 4785 if (folio->mapping != mapping) { 4786 folio_unlock(folio); 4787 folio_put(folio); 4788 goto again; 4789 } 4790 if (!folio_test_uptodate(folio)) { 4791 ret = -EIO; 4792 goto out_unlock; 4793 } 4794 } 4795 4796 /* 4797 * We unlock the page after the io is completed and then re-lock it 4798 * above. release_folio() could have come in between that and cleared 4799 * folio private, but left the page in the mapping. Set the page mapped 4800 * here to make sure it's properly set for the subpage stuff. 4801 */ 4802 ret = set_folio_extent_mapped(folio); 4803 if (ret < 0) 4804 goto out_unlock; 4805 4806 folio_wait_writeback(folio); 4807 4808 lock_extent(io_tree, block_start, block_end, &cached_state); 4809 4810 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4811 if (ordered) { 4812 unlock_extent(io_tree, block_start, block_end, &cached_state); 4813 folio_unlock(folio); 4814 folio_put(folio); 4815 btrfs_start_ordered_extent(ordered); 4816 btrfs_put_ordered_extent(ordered); 4817 goto again; 4818 } 4819 4820 clear_extent_bit(&inode->io_tree, block_start, block_end, 4821 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4822 &cached_state); 4823 4824 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4825 &cached_state); 4826 if (ret) { 4827 unlock_extent(io_tree, block_start, block_end, &cached_state); 4828 goto out_unlock; 4829 } 4830 4831 if (offset != blocksize) { 4832 if (!len) 4833 len = blocksize - offset; 4834 if (front) 4835 folio_zero_range(folio, block_start - folio_pos(folio), 4836 offset); 4837 else 4838 folio_zero_range(folio, 4839 (block_start - folio_pos(folio)) + offset, 4840 len); 4841 } 4842 btrfs_folio_clear_checked(fs_info, folio, block_start, 4843 block_end + 1 - block_start); 4844 btrfs_folio_set_dirty(fs_info, folio, block_start, 4845 block_end + 1 - block_start); 4846 unlock_extent(io_tree, block_start, block_end, &cached_state); 4847 4848 if (only_release_metadata) 4849 set_extent_bit(&inode->io_tree, block_start, block_end, 4850 EXTENT_NORESERVE, NULL); 4851 4852 out_unlock: 4853 if (ret) { 4854 if (only_release_metadata) 4855 btrfs_delalloc_release_metadata(inode, blocksize, true); 4856 else 4857 btrfs_delalloc_release_space(inode, data_reserved, 4858 block_start, blocksize, true); 4859 } 4860 btrfs_delalloc_release_extents(inode, blocksize); 4861 folio_unlock(folio); 4862 folio_put(folio); 4863 out: 4864 if (only_release_metadata) 4865 btrfs_check_nocow_unlock(inode); 4866 extent_changeset_free(data_reserved); 4867 return ret; 4868 } 4869 4870 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4871 { 4872 struct btrfs_root *root = inode->root; 4873 struct btrfs_fs_info *fs_info = root->fs_info; 4874 struct btrfs_trans_handle *trans; 4875 struct btrfs_drop_extents_args drop_args = { 0 }; 4876 int ret; 4877 4878 /* 4879 * If NO_HOLES is enabled, we don't need to do anything. 4880 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4881 * or btrfs_update_inode() will be called, which guarantee that the next 4882 * fsync will know this inode was changed and needs to be logged. 4883 */ 4884 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4885 return 0; 4886 4887 /* 4888 * 1 - for the one we're dropping 4889 * 1 - for the one we're adding 4890 * 1 - for updating the inode. 4891 */ 4892 trans = btrfs_start_transaction(root, 3); 4893 if (IS_ERR(trans)) 4894 return PTR_ERR(trans); 4895 4896 drop_args.start = offset; 4897 drop_args.end = offset + len; 4898 drop_args.drop_cache = true; 4899 4900 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4901 if (ret) { 4902 btrfs_abort_transaction(trans, ret); 4903 btrfs_end_transaction(trans); 4904 return ret; 4905 } 4906 4907 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4908 if (ret) { 4909 btrfs_abort_transaction(trans, ret); 4910 } else { 4911 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4912 btrfs_update_inode(trans, inode); 4913 } 4914 btrfs_end_transaction(trans); 4915 return ret; 4916 } 4917 4918 /* 4919 * This function puts in dummy file extents for the area we're creating a hole 4920 * for. So if we are truncating this file to a larger size we need to insert 4921 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4922 * the range between oldsize and size 4923 */ 4924 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4925 { 4926 struct btrfs_root *root = inode->root; 4927 struct btrfs_fs_info *fs_info = root->fs_info; 4928 struct extent_io_tree *io_tree = &inode->io_tree; 4929 struct extent_map *em = NULL; 4930 struct extent_state *cached_state = NULL; 4931 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4932 u64 block_end = ALIGN(size, fs_info->sectorsize); 4933 u64 last_byte; 4934 u64 cur_offset; 4935 u64 hole_size; 4936 int err = 0; 4937 4938 /* 4939 * If our size started in the middle of a block we need to zero out the 4940 * rest of the block before we expand the i_size, otherwise we could 4941 * expose stale data. 4942 */ 4943 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4944 if (err) 4945 return err; 4946 4947 if (size <= hole_start) 4948 return 0; 4949 4950 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4951 &cached_state); 4952 cur_offset = hole_start; 4953 while (1) { 4954 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 4955 if (IS_ERR(em)) { 4956 err = PTR_ERR(em); 4957 em = NULL; 4958 break; 4959 } 4960 last_byte = min(extent_map_end(em), block_end); 4961 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4962 hole_size = last_byte - cur_offset; 4963 4964 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4965 struct extent_map *hole_em; 4966 4967 err = maybe_insert_hole(inode, cur_offset, hole_size); 4968 if (err) 4969 break; 4970 4971 err = btrfs_inode_set_file_extent_range(inode, 4972 cur_offset, hole_size); 4973 if (err) 4974 break; 4975 4976 hole_em = alloc_extent_map(); 4977 if (!hole_em) { 4978 btrfs_drop_extent_map_range(inode, cur_offset, 4979 cur_offset + hole_size - 1, 4980 false); 4981 btrfs_set_inode_full_sync(inode); 4982 goto next; 4983 } 4984 hole_em->start = cur_offset; 4985 hole_em->len = hole_size; 4986 hole_em->orig_start = cur_offset; 4987 4988 hole_em->block_start = EXTENT_MAP_HOLE; 4989 hole_em->block_len = 0; 4990 hole_em->orig_block_len = 0; 4991 hole_em->ram_bytes = hole_size; 4992 hole_em->generation = btrfs_get_fs_generation(fs_info); 4993 4994 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4995 free_extent_map(hole_em); 4996 } else { 4997 err = btrfs_inode_set_file_extent_range(inode, 4998 cur_offset, hole_size); 4999 if (err) 5000 break; 5001 } 5002 next: 5003 free_extent_map(em); 5004 em = NULL; 5005 cur_offset = last_byte; 5006 if (cur_offset >= block_end) 5007 break; 5008 } 5009 free_extent_map(em); 5010 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5011 return err; 5012 } 5013 5014 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5015 { 5016 struct btrfs_root *root = BTRFS_I(inode)->root; 5017 struct btrfs_trans_handle *trans; 5018 loff_t oldsize = i_size_read(inode); 5019 loff_t newsize = attr->ia_size; 5020 int mask = attr->ia_valid; 5021 int ret; 5022 5023 /* 5024 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5025 * special case where we need to update the times despite not having 5026 * these flags set. For all other operations the VFS set these flags 5027 * explicitly if it wants a timestamp update. 5028 */ 5029 if (newsize != oldsize) { 5030 inode_inc_iversion(inode); 5031 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5032 inode_set_mtime_to_ts(inode, 5033 inode_set_ctime_current(inode)); 5034 } 5035 } 5036 5037 if (newsize > oldsize) { 5038 /* 5039 * Don't do an expanding truncate while snapshotting is ongoing. 5040 * This is to ensure the snapshot captures a fully consistent 5041 * state of this file - if the snapshot captures this expanding 5042 * truncation, it must capture all writes that happened before 5043 * this truncation. 5044 */ 5045 btrfs_drew_write_lock(&root->snapshot_lock); 5046 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5047 if (ret) { 5048 btrfs_drew_write_unlock(&root->snapshot_lock); 5049 return ret; 5050 } 5051 5052 trans = btrfs_start_transaction(root, 1); 5053 if (IS_ERR(trans)) { 5054 btrfs_drew_write_unlock(&root->snapshot_lock); 5055 return PTR_ERR(trans); 5056 } 5057 5058 i_size_write(inode, newsize); 5059 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5060 pagecache_isize_extended(inode, oldsize, newsize); 5061 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5062 btrfs_drew_write_unlock(&root->snapshot_lock); 5063 btrfs_end_transaction(trans); 5064 } else { 5065 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5066 5067 if (btrfs_is_zoned(fs_info)) { 5068 ret = btrfs_wait_ordered_range(inode, 5069 ALIGN(newsize, fs_info->sectorsize), 5070 (u64)-1); 5071 if (ret) 5072 return ret; 5073 } 5074 5075 /* 5076 * We're truncating a file that used to have good data down to 5077 * zero. Make sure any new writes to the file get on disk 5078 * on close. 5079 */ 5080 if (newsize == 0) 5081 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5082 &BTRFS_I(inode)->runtime_flags); 5083 5084 truncate_setsize(inode, newsize); 5085 5086 inode_dio_wait(inode); 5087 5088 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5089 if (ret && inode->i_nlink) { 5090 int err; 5091 5092 /* 5093 * Truncate failed, so fix up the in-memory size. We 5094 * adjusted disk_i_size down as we removed extents, so 5095 * wait for disk_i_size to be stable and then update the 5096 * in-memory size to match. 5097 */ 5098 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5099 if (err) 5100 return err; 5101 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5102 } 5103 } 5104 5105 return ret; 5106 } 5107 5108 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5109 struct iattr *attr) 5110 { 5111 struct inode *inode = d_inode(dentry); 5112 struct btrfs_root *root = BTRFS_I(inode)->root; 5113 int err; 5114 5115 if (btrfs_root_readonly(root)) 5116 return -EROFS; 5117 5118 err = setattr_prepare(idmap, dentry, attr); 5119 if (err) 5120 return err; 5121 5122 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5123 err = btrfs_setsize(inode, attr); 5124 if (err) 5125 return err; 5126 } 5127 5128 if (attr->ia_valid) { 5129 setattr_copy(idmap, inode, attr); 5130 inode_inc_iversion(inode); 5131 err = btrfs_dirty_inode(BTRFS_I(inode)); 5132 5133 if (!err && attr->ia_valid & ATTR_MODE) 5134 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5135 } 5136 5137 return err; 5138 } 5139 5140 /* 5141 * While truncating the inode pages during eviction, we get the VFS 5142 * calling btrfs_invalidate_folio() against each folio of the inode. This 5143 * is slow because the calls to btrfs_invalidate_folio() result in a 5144 * huge amount of calls to lock_extent() and clear_extent_bit(), 5145 * which keep merging and splitting extent_state structures over and over, 5146 * wasting lots of time. 5147 * 5148 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5149 * skip all those expensive operations on a per folio basis and do only 5150 * the ordered io finishing, while we release here the extent_map and 5151 * extent_state structures, without the excessive merging and splitting. 5152 */ 5153 static void evict_inode_truncate_pages(struct inode *inode) 5154 { 5155 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5156 struct rb_node *node; 5157 5158 ASSERT(inode->i_state & I_FREEING); 5159 truncate_inode_pages_final(&inode->i_data); 5160 5161 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5162 5163 /* 5164 * Keep looping until we have no more ranges in the io tree. 5165 * We can have ongoing bios started by readahead that have 5166 * their endio callback (extent_io.c:end_bio_extent_readpage) 5167 * still in progress (unlocked the pages in the bio but did not yet 5168 * unlocked the ranges in the io tree). Therefore this means some 5169 * ranges can still be locked and eviction started because before 5170 * submitting those bios, which are executed by a separate task (work 5171 * queue kthread), inode references (inode->i_count) were not taken 5172 * (which would be dropped in the end io callback of each bio). 5173 * Therefore here we effectively end up waiting for those bios and 5174 * anyone else holding locked ranges without having bumped the inode's 5175 * reference count - if we don't do it, when they access the inode's 5176 * io_tree to unlock a range it may be too late, leading to an 5177 * use-after-free issue. 5178 */ 5179 spin_lock(&io_tree->lock); 5180 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5181 struct extent_state *state; 5182 struct extent_state *cached_state = NULL; 5183 u64 start; 5184 u64 end; 5185 unsigned state_flags; 5186 5187 node = rb_first(&io_tree->state); 5188 state = rb_entry(node, struct extent_state, rb_node); 5189 start = state->start; 5190 end = state->end; 5191 state_flags = state->state; 5192 spin_unlock(&io_tree->lock); 5193 5194 lock_extent(io_tree, start, end, &cached_state); 5195 5196 /* 5197 * If still has DELALLOC flag, the extent didn't reach disk, 5198 * and its reserved space won't be freed by delayed_ref. 5199 * So we need to free its reserved space here. 5200 * (Refer to comment in btrfs_invalidate_folio, case 2) 5201 * 5202 * Note, end is the bytenr of last byte, so we need + 1 here. 5203 */ 5204 if (state_flags & EXTENT_DELALLOC) 5205 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5206 end - start + 1, NULL); 5207 5208 clear_extent_bit(io_tree, start, end, 5209 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5210 &cached_state); 5211 5212 cond_resched(); 5213 spin_lock(&io_tree->lock); 5214 } 5215 spin_unlock(&io_tree->lock); 5216 } 5217 5218 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5219 struct btrfs_block_rsv *rsv) 5220 { 5221 struct btrfs_fs_info *fs_info = root->fs_info; 5222 struct btrfs_trans_handle *trans; 5223 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5224 int ret; 5225 5226 /* 5227 * Eviction should be taking place at some place safe because of our 5228 * delayed iputs. However the normal flushing code will run delayed 5229 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5230 * 5231 * We reserve the delayed_refs_extra here again because we can't use 5232 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5233 * above. We reserve our extra bit here because we generate a ton of 5234 * delayed refs activity by truncating. 5235 * 5236 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5237 * if we fail to make this reservation we can re-try without the 5238 * delayed_refs_extra so we can make some forward progress. 5239 */ 5240 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5241 BTRFS_RESERVE_FLUSH_EVICT); 5242 if (ret) { 5243 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5244 BTRFS_RESERVE_FLUSH_EVICT); 5245 if (ret) { 5246 btrfs_warn(fs_info, 5247 "could not allocate space for delete; will truncate on mount"); 5248 return ERR_PTR(-ENOSPC); 5249 } 5250 delayed_refs_extra = 0; 5251 } 5252 5253 trans = btrfs_join_transaction(root); 5254 if (IS_ERR(trans)) 5255 return trans; 5256 5257 if (delayed_refs_extra) { 5258 trans->block_rsv = &fs_info->trans_block_rsv; 5259 trans->bytes_reserved = delayed_refs_extra; 5260 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5261 delayed_refs_extra, true); 5262 } 5263 return trans; 5264 } 5265 5266 void btrfs_evict_inode(struct inode *inode) 5267 { 5268 struct btrfs_fs_info *fs_info; 5269 struct btrfs_trans_handle *trans; 5270 struct btrfs_root *root = BTRFS_I(inode)->root; 5271 struct btrfs_block_rsv *rsv = NULL; 5272 int ret; 5273 5274 trace_btrfs_inode_evict(inode); 5275 5276 if (!root) { 5277 fsverity_cleanup_inode(inode); 5278 clear_inode(inode); 5279 return; 5280 } 5281 5282 fs_info = inode_to_fs_info(inode); 5283 evict_inode_truncate_pages(inode); 5284 5285 if (inode->i_nlink && 5286 ((btrfs_root_refs(&root->root_item) != 0 && 5287 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5288 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5289 goto out; 5290 5291 if (is_bad_inode(inode)) 5292 goto out; 5293 5294 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5295 goto out; 5296 5297 if (inode->i_nlink > 0) { 5298 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5299 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5300 goto out; 5301 } 5302 5303 /* 5304 * This makes sure the inode item in tree is uptodate and the space for 5305 * the inode update is released. 5306 */ 5307 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5308 if (ret) 5309 goto out; 5310 5311 /* 5312 * This drops any pending insert or delete operations we have for this 5313 * inode. We could have a delayed dir index deletion queued up, but 5314 * we're removing the inode completely so that'll be taken care of in 5315 * the truncate. 5316 */ 5317 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5318 5319 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5320 if (!rsv) 5321 goto out; 5322 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5323 rsv->failfast = true; 5324 5325 btrfs_i_size_write(BTRFS_I(inode), 0); 5326 5327 while (1) { 5328 struct btrfs_truncate_control control = { 5329 .inode = BTRFS_I(inode), 5330 .ino = btrfs_ino(BTRFS_I(inode)), 5331 .new_size = 0, 5332 .min_type = 0, 5333 }; 5334 5335 trans = evict_refill_and_join(root, rsv); 5336 if (IS_ERR(trans)) 5337 goto out; 5338 5339 trans->block_rsv = rsv; 5340 5341 ret = btrfs_truncate_inode_items(trans, root, &control); 5342 trans->block_rsv = &fs_info->trans_block_rsv; 5343 btrfs_end_transaction(trans); 5344 /* 5345 * We have not added new delayed items for our inode after we 5346 * have flushed its delayed items, so no need to throttle on 5347 * delayed items. However we have modified extent buffers. 5348 */ 5349 btrfs_btree_balance_dirty_nodelay(fs_info); 5350 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5351 goto out; 5352 else if (!ret) 5353 break; 5354 } 5355 5356 /* 5357 * Errors here aren't a big deal, it just means we leave orphan items in 5358 * the tree. They will be cleaned up on the next mount. If the inode 5359 * number gets reused, cleanup deletes the orphan item without doing 5360 * anything, and unlink reuses the existing orphan item. 5361 * 5362 * If it turns out that we are dropping too many of these, we might want 5363 * to add a mechanism for retrying these after a commit. 5364 */ 5365 trans = evict_refill_and_join(root, rsv); 5366 if (!IS_ERR(trans)) { 5367 trans->block_rsv = rsv; 5368 btrfs_orphan_del(trans, BTRFS_I(inode)); 5369 trans->block_rsv = &fs_info->trans_block_rsv; 5370 btrfs_end_transaction(trans); 5371 } 5372 5373 out: 5374 btrfs_free_block_rsv(fs_info, rsv); 5375 /* 5376 * If we didn't successfully delete, the orphan item will still be in 5377 * the tree and we'll retry on the next mount. Again, we might also want 5378 * to retry these periodically in the future. 5379 */ 5380 btrfs_remove_delayed_node(BTRFS_I(inode)); 5381 fsverity_cleanup_inode(inode); 5382 clear_inode(inode); 5383 } 5384 5385 /* 5386 * Return the key found in the dir entry in the location pointer, fill @type 5387 * with BTRFS_FT_*, and return 0. 5388 * 5389 * If no dir entries were found, returns -ENOENT. 5390 * If found a corrupted location in dir entry, returns -EUCLEAN. 5391 */ 5392 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5393 struct btrfs_key *location, u8 *type) 5394 { 5395 struct btrfs_dir_item *di; 5396 struct btrfs_path *path; 5397 struct btrfs_root *root = dir->root; 5398 int ret = 0; 5399 struct fscrypt_name fname; 5400 5401 path = btrfs_alloc_path(); 5402 if (!path) 5403 return -ENOMEM; 5404 5405 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5406 if (ret < 0) 5407 goto out; 5408 /* 5409 * fscrypt_setup_filename() should never return a positive value, but 5410 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5411 */ 5412 ASSERT(ret == 0); 5413 5414 /* This needs to handle no-key deletions later on */ 5415 5416 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5417 &fname.disk_name, 0); 5418 if (IS_ERR_OR_NULL(di)) { 5419 ret = di ? PTR_ERR(di) : -ENOENT; 5420 goto out; 5421 } 5422 5423 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5424 if (location->type != BTRFS_INODE_ITEM_KEY && 5425 location->type != BTRFS_ROOT_ITEM_KEY) { 5426 ret = -EUCLEAN; 5427 btrfs_warn(root->fs_info, 5428 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5429 __func__, fname.disk_name.name, btrfs_ino(dir), 5430 location->objectid, location->type, location->offset); 5431 } 5432 if (!ret) 5433 *type = btrfs_dir_ftype(path->nodes[0], di); 5434 out: 5435 fscrypt_free_filename(&fname); 5436 btrfs_free_path(path); 5437 return ret; 5438 } 5439 5440 /* 5441 * when we hit a tree root in a directory, the btrfs part of the inode 5442 * needs to be changed to reflect the root directory of the tree root. This 5443 * is kind of like crossing a mount point. 5444 */ 5445 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5446 struct btrfs_inode *dir, 5447 struct dentry *dentry, 5448 struct btrfs_key *location, 5449 struct btrfs_root **sub_root) 5450 { 5451 struct btrfs_path *path; 5452 struct btrfs_root *new_root; 5453 struct btrfs_root_ref *ref; 5454 struct extent_buffer *leaf; 5455 struct btrfs_key key; 5456 int ret; 5457 int err = 0; 5458 struct fscrypt_name fname; 5459 5460 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5461 if (ret) 5462 return ret; 5463 5464 path = btrfs_alloc_path(); 5465 if (!path) { 5466 err = -ENOMEM; 5467 goto out; 5468 } 5469 5470 err = -ENOENT; 5471 key.objectid = dir->root->root_key.objectid; 5472 key.type = BTRFS_ROOT_REF_KEY; 5473 key.offset = location->objectid; 5474 5475 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5476 if (ret) { 5477 if (ret < 0) 5478 err = ret; 5479 goto out; 5480 } 5481 5482 leaf = path->nodes[0]; 5483 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5484 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5485 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5486 goto out; 5487 5488 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5489 (unsigned long)(ref + 1), fname.disk_name.len); 5490 if (ret) 5491 goto out; 5492 5493 btrfs_release_path(path); 5494 5495 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5496 if (IS_ERR(new_root)) { 5497 err = PTR_ERR(new_root); 5498 goto out; 5499 } 5500 5501 *sub_root = new_root; 5502 location->objectid = btrfs_root_dirid(&new_root->root_item); 5503 location->type = BTRFS_INODE_ITEM_KEY; 5504 location->offset = 0; 5505 err = 0; 5506 out: 5507 btrfs_free_path(path); 5508 fscrypt_free_filename(&fname); 5509 return err; 5510 } 5511 5512 static void inode_tree_add(struct btrfs_inode *inode) 5513 { 5514 struct btrfs_root *root = inode->root; 5515 struct btrfs_inode *entry; 5516 struct rb_node **p; 5517 struct rb_node *parent; 5518 struct rb_node *new = &inode->rb_node; 5519 u64 ino = btrfs_ino(inode); 5520 5521 if (inode_unhashed(&inode->vfs_inode)) 5522 return; 5523 parent = NULL; 5524 spin_lock(&root->inode_lock); 5525 p = &root->inode_tree.rb_node; 5526 while (*p) { 5527 parent = *p; 5528 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5529 5530 if (ino < btrfs_ino(entry)) 5531 p = &parent->rb_left; 5532 else if (ino > btrfs_ino(entry)) 5533 p = &parent->rb_right; 5534 else { 5535 WARN_ON(!(entry->vfs_inode.i_state & 5536 (I_WILL_FREE | I_FREEING))); 5537 rb_replace_node(parent, new, &root->inode_tree); 5538 RB_CLEAR_NODE(parent); 5539 spin_unlock(&root->inode_lock); 5540 return; 5541 } 5542 } 5543 rb_link_node(new, parent, p); 5544 rb_insert_color(new, &root->inode_tree); 5545 spin_unlock(&root->inode_lock); 5546 } 5547 5548 static void inode_tree_del(struct btrfs_inode *inode) 5549 { 5550 struct btrfs_root *root = inode->root; 5551 int empty = 0; 5552 5553 spin_lock(&root->inode_lock); 5554 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5555 rb_erase(&inode->rb_node, &root->inode_tree); 5556 RB_CLEAR_NODE(&inode->rb_node); 5557 empty = RB_EMPTY_ROOT(&root->inode_tree); 5558 } 5559 spin_unlock(&root->inode_lock); 5560 5561 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5562 spin_lock(&root->inode_lock); 5563 empty = RB_EMPTY_ROOT(&root->inode_tree); 5564 spin_unlock(&root->inode_lock); 5565 if (empty) 5566 btrfs_add_dead_root(root); 5567 } 5568 } 5569 5570 5571 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5572 { 5573 struct btrfs_iget_args *args = p; 5574 5575 inode->i_ino = args->ino; 5576 BTRFS_I(inode)->location.objectid = args->ino; 5577 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5578 BTRFS_I(inode)->location.offset = 0; 5579 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5580 5581 if (args->root && args->root == args->root->fs_info->tree_root && 5582 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5583 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5584 &BTRFS_I(inode)->runtime_flags); 5585 return 0; 5586 } 5587 5588 static int btrfs_find_actor(struct inode *inode, void *opaque) 5589 { 5590 struct btrfs_iget_args *args = opaque; 5591 5592 return args->ino == BTRFS_I(inode)->location.objectid && 5593 args->root == BTRFS_I(inode)->root; 5594 } 5595 5596 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5597 struct btrfs_root *root) 5598 { 5599 struct inode *inode; 5600 struct btrfs_iget_args args; 5601 unsigned long hashval = btrfs_inode_hash(ino, root); 5602 5603 args.ino = ino; 5604 args.root = root; 5605 5606 inode = iget5_locked(s, hashval, btrfs_find_actor, 5607 btrfs_init_locked_inode, 5608 (void *)&args); 5609 return inode; 5610 } 5611 5612 /* 5613 * Get an inode object given its inode number and corresponding root. 5614 * Path can be preallocated to prevent recursing back to iget through 5615 * allocator. NULL is also valid but may require an additional allocation 5616 * later. 5617 */ 5618 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5619 struct btrfs_root *root, struct btrfs_path *path) 5620 { 5621 struct inode *inode; 5622 5623 inode = btrfs_iget_locked(s, ino, root); 5624 if (!inode) 5625 return ERR_PTR(-ENOMEM); 5626 5627 if (inode->i_state & I_NEW) { 5628 int ret; 5629 5630 ret = btrfs_read_locked_inode(inode, path); 5631 if (!ret) { 5632 inode_tree_add(BTRFS_I(inode)); 5633 unlock_new_inode(inode); 5634 } else { 5635 iget_failed(inode); 5636 /* 5637 * ret > 0 can come from btrfs_search_slot called by 5638 * btrfs_read_locked_inode, this means the inode item 5639 * was not found. 5640 */ 5641 if (ret > 0) 5642 ret = -ENOENT; 5643 inode = ERR_PTR(ret); 5644 } 5645 } 5646 5647 return inode; 5648 } 5649 5650 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5651 { 5652 return btrfs_iget_path(s, ino, root, NULL); 5653 } 5654 5655 static struct inode *new_simple_dir(struct inode *dir, 5656 struct btrfs_key *key, 5657 struct btrfs_root *root) 5658 { 5659 struct timespec64 ts; 5660 struct inode *inode = new_inode(dir->i_sb); 5661 5662 if (!inode) 5663 return ERR_PTR(-ENOMEM); 5664 5665 BTRFS_I(inode)->root = btrfs_grab_root(root); 5666 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5667 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5668 5669 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5670 /* 5671 * We only need lookup, the rest is read-only and there's no inode 5672 * associated with the dentry 5673 */ 5674 inode->i_op = &simple_dir_inode_operations; 5675 inode->i_opflags &= ~IOP_XATTR; 5676 inode->i_fop = &simple_dir_operations; 5677 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5678 5679 ts = inode_set_ctime_current(inode); 5680 inode_set_mtime_to_ts(inode, ts); 5681 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5682 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5683 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5684 5685 inode->i_uid = dir->i_uid; 5686 inode->i_gid = dir->i_gid; 5687 5688 return inode; 5689 } 5690 5691 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5692 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5693 static_assert(BTRFS_FT_DIR == FT_DIR); 5694 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5695 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5696 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5697 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5698 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5699 5700 static inline u8 btrfs_inode_type(struct inode *inode) 5701 { 5702 return fs_umode_to_ftype(inode->i_mode); 5703 } 5704 5705 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5706 { 5707 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5708 struct inode *inode; 5709 struct btrfs_root *root = BTRFS_I(dir)->root; 5710 struct btrfs_root *sub_root = root; 5711 struct btrfs_key location; 5712 u8 di_type = 0; 5713 int ret = 0; 5714 5715 if (dentry->d_name.len > BTRFS_NAME_LEN) 5716 return ERR_PTR(-ENAMETOOLONG); 5717 5718 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5719 if (ret < 0) 5720 return ERR_PTR(ret); 5721 5722 if (location.type == BTRFS_INODE_ITEM_KEY) { 5723 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5724 if (IS_ERR(inode)) 5725 return inode; 5726 5727 /* Do extra check against inode mode with di_type */ 5728 if (btrfs_inode_type(inode) != di_type) { 5729 btrfs_crit(fs_info, 5730 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5731 inode->i_mode, btrfs_inode_type(inode), 5732 di_type); 5733 iput(inode); 5734 return ERR_PTR(-EUCLEAN); 5735 } 5736 return inode; 5737 } 5738 5739 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5740 &location, &sub_root); 5741 if (ret < 0) { 5742 if (ret != -ENOENT) 5743 inode = ERR_PTR(ret); 5744 else 5745 inode = new_simple_dir(dir, &location, root); 5746 } else { 5747 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5748 btrfs_put_root(sub_root); 5749 5750 if (IS_ERR(inode)) 5751 return inode; 5752 5753 down_read(&fs_info->cleanup_work_sem); 5754 if (!sb_rdonly(inode->i_sb)) 5755 ret = btrfs_orphan_cleanup(sub_root); 5756 up_read(&fs_info->cleanup_work_sem); 5757 if (ret) { 5758 iput(inode); 5759 inode = ERR_PTR(ret); 5760 } 5761 } 5762 5763 return inode; 5764 } 5765 5766 static int btrfs_dentry_delete(const struct dentry *dentry) 5767 { 5768 struct btrfs_root *root; 5769 struct inode *inode = d_inode(dentry); 5770 5771 if (!inode && !IS_ROOT(dentry)) 5772 inode = d_inode(dentry->d_parent); 5773 5774 if (inode) { 5775 root = BTRFS_I(inode)->root; 5776 if (btrfs_root_refs(&root->root_item) == 0) 5777 return 1; 5778 5779 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5780 return 1; 5781 } 5782 return 0; 5783 } 5784 5785 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5786 unsigned int flags) 5787 { 5788 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5789 5790 if (inode == ERR_PTR(-ENOENT)) 5791 inode = NULL; 5792 return d_splice_alias(inode, dentry); 5793 } 5794 5795 /* 5796 * Find the highest existing sequence number in a directory and then set the 5797 * in-memory index_cnt variable to the first free sequence number. 5798 */ 5799 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5800 { 5801 struct btrfs_root *root = inode->root; 5802 struct btrfs_key key, found_key; 5803 struct btrfs_path *path; 5804 struct extent_buffer *leaf; 5805 int ret; 5806 5807 key.objectid = btrfs_ino(inode); 5808 key.type = BTRFS_DIR_INDEX_KEY; 5809 key.offset = (u64)-1; 5810 5811 path = btrfs_alloc_path(); 5812 if (!path) 5813 return -ENOMEM; 5814 5815 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5816 if (ret < 0) 5817 goto out; 5818 /* FIXME: we should be able to handle this */ 5819 if (ret == 0) 5820 goto out; 5821 ret = 0; 5822 5823 if (path->slots[0] == 0) { 5824 inode->index_cnt = BTRFS_DIR_START_INDEX; 5825 goto out; 5826 } 5827 5828 path->slots[0]--; 5829 5830 leaf = path->nodes[0]; 5831 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5832 5833 if (found_key.objectid != btrfs_ino(inode) || 5834 found_key.type != BTRFS_DIR_INDEX_KEY) { 5835 inode->index_cnt = BTRFS_DIR_START_INDEX; 5836 goto out; 5837 } 5838 5839 inode->index_cnt = found_key.offset + 1; 5840 out: 5841 btrfs_free_path(path); 5842 return ret; 5843 } 5844 5845 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5846 { 5847 int ret = 0; 5848 5849 btrfs_inode_lock(dir, 0); 5850 if (dir->index_cnt == (u64)-1) { 5851 ret = btrfs_inode_delayed_dir_index_count(dir); 5852 if (ret) { 5853 ret = btrfs_set_inode_index_count(dir); 5854 if (ret) 5855 goto out; 5856 } 5857 } 5858 5859 /* index_cnt is the index number of next new entry, so decrement it. */ 5860 *index = dir->index_cnt - 1; 5861 out: 5862 btrfs_inode_unlock(dir, 0); 5863 5864 return ret; 5865 } 5866 5867 /* 5868 * All this infrastructure exists because dir_emit can fault, and we are holding 5869 * the tree lock when doing readdir. For now just allocate a buffer and copy 5870 * our information into that, and then dir_emit from the buffer. This is 5871 * similar to what NFS does, only we don't keep the buffer around in pagecache 5872 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5873 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5874 * tree lock. 5875 */ 5876 static int btrfs_opendir(struct inode *inode, struct file *file) 5877 { 5878 struct btrfs_file_private *private; 5879 u64 last_index; 5880 int ret; 5881 5882 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5883 if (ret) 5884 return ret; 5885 5886 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5887 if (!private) 5888 return -ENOMEM; 5889 private->last_index = last_index; 5890 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5891 if (!private->filldir_buf) { 5892 kfree(private); 5893 return -ENOMEM; 5894 } 5895 file->private_data = private; 5896 return 0; 5897 } 5898 5899 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5900 { 5901 struct btrfs_file_private *private = file->private_data; 5902 int ret; 5903 5904 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5905 &private->last_index); 5906 if (ret) 5907 return ret; 5908 5909 return generic_file_llseek(file, offset, whence); 5910 } 5911 5912 struct dir_entry { 5913 u64 ino; 5914 u64 offset; 5915 unsigned type; 5916 int name_len; 5917 }; 5918 5919 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5920 { 5921 while (entries--) { 5922 struct dir_entry *entry = addr; 5923 char *name = (char *)(entry + 1); 5924 5925 ctx->pos = get_unaligned(&entry->offset); 5926 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5927 get_unaligned(&entry->ino), 5928 get_unaligned(&entry->type))) 5929 return 1; 5930 addr += sizeof(struct dir_entry) + 5931 get_unaligned(&entry->name_len); 5932 ctx->pos++; 5933 } 5934 return 0; 5935 } 5936 5937 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5938 { 5939 struct inode *inode = file_inode(file); 5940 struct btrfs_root *root = BTRFS_I(inode)->root; 5941 struct btrfs_file_private *private = file->private_data; 5942 struct btrfs_dir_item *di; 5943 struct btrfs_key key; 5944 struct btrfs_key found_key; 5945 struct btrfs_path *path; 5946 void *addr; 5947 LIST_HEAD(ins_list); 5948 LIST_HEAD(del_list); 5949 int ret; 5950 char *name_ptr; 5951 int name_len; 5952 int entries = 0; 5953 int total_len = 0; 5954 bool put = false; 5955 struct btrfs_key location; 5956 5957 if (!dir_emit_dots(file, ctx)) 5958 return 0; 5959 5960 path = btrfs_alloc_path(); 5961 if (!path) 5962 return -ENOMEM; 5963 5964 addr = private->filldir_buf; 5965 path->reada = READA_FORWARD; 5966 5967 put = btrfs_readdir_get_delayed_items(inode, private->last_index, 5968 &ins_list, &del_list); 5969 5970 again: 5971 key.type = BTRFS_DIR_INDEX_KEY; 5972 key.offset = ctx->pos; 5973 key.objectid = btrfs_ino(BTRFS_I(inode)); 5974 5975 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5976 struct dir_entry *entry; 5977 struct extent_buffer *leaf = path->nodes[0]; 5978 u8 ftype; 5979 5980 if (found_key.objectid != key.objectid) 5981 break; 5982 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5983 break; 5984 if (found_key.offset < ctx->pos) 5985 continue; 5986 if (found_key.offset > private->last_index) 5987 break; 5988 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5989 continue; 5990 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5991 name_len = btrfs_dir_name_len(leaf, di); 5992 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5993 PAGE_SIZE) { 5994 btrfs_release_path(path); 5995 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5996 if (ret) 5997 goto nopos; 5998 addr = private->filldir_buf; 5999 entries = 0; 6000 total_len = 0; 6001 goto again; 6002 } 6003 6004 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6005 entry = addr; 6006 name_ptr = (char *)(entry + 1); 6007 read_extent_buffer(leaf, name_ptr, 6008 (unsigned long)(di + 1), name_len); 6009 put_unaligned(name_len, &entry->name_len); 6010 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6011 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6012 put_unaligned(location.objectid, &entry->ino); 6013 put_unaligned(found_key.offset, &entry->offset); 6014 entries++; 6015 addr += sizeof(struct dir_entry) + name_len; 6016 total_len += sizeof(struct dir_entry) + name_len; 6017 } 6018 /* Catch error encountered during iteration */ 6019 if (ret < 0) 6020 goto err; 6021 6022 btrfs_release_path(path); 6023 6024 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6025 if (ret) 6026 goto nopos; 6027 6028 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6029 if (ret) 6030 goto nopos; 6031 6032 /* 6033 * Stop new entries from being returned after we return the last 6034 * entry. 6035 * 6036 * New directory entries are assigned a strictly increasing 6037 * offset. This means that new entries created during readdir 6038 * are *guaranteed* to be seen in the future by that readdir. 6039 * This has broken buggy programs which operate on names as 6040 * they're returned by readdir. Until we re-use freed offsets 6041 * we have this hack to stop new entries from being returned 6042 * under the assumption that they'll never reach this huge 6043 * offset. 6044 * 6045 * This is being careful not to overflow 32bit loff_t unless the 6046 * last entry requires it because doing so has broken 32bit apps 6047 * in the past. 6048 */ 6049 if (ctx->pos >= INT_MAX) 6050 ctx->pos = LLONG_MAX; 6051 else 6052 ctx->pos = INT_MAX; 6053 nopos: 6054 ret = 0; 6055 err: 6056 if (put) 6057 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6058 btrfs_free_path(path); 6059 return ret; 6060 } 6061 6062 /* 6063 * This is somewhat expensive, updating the tree every time the 6064 * inode changes. But, it is most likely to find the inode in cache. 6065 * FIXME, needs more benchmarking...there are no reasons other than performance 6066 * to keep or drop this code. 6067 */ 6068 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6069 { 6070 struct btrfs_root *root = inode->root; 6071 struct btrfs_fs_info *fs_info = root->fs_info; 6072 struct btrfs_trans_handle *trans; 6073 int ret; 6074 6075 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6076 return 0; 6077 6078 trans = btrfs_join_transaction(root); 6079 if (IS_ERR(trans)) 6080 return PTR_ERR(trans); 6081 6082 ret = btrfs_update_inode(trans, inode); 6083 if (ret == -ENOSPC || ret == -EDQUOT) { 6084 /* whoops, lets try again with the full transaction */ 6085 btrfs_end_transaction(trans); 6086 trans = btrfs_start_transaction(root, 1); 6087 if (IS_ERR(trans)) 6088 return PTR_ERR(trans); 6089 6090 ret = btrfs_update_inode(trans, inode); 6091 } 6092 btrfs_end_transaction(trans); 6093 if (inode->delayed_node) 6094 btrfs_balance_delayed_items(fs_info); 6095 6096 return ret; 6097 } 6098 6099 /* 6100 * This is a copy of file_update_time. We need this so we can return error on 6101 * ENOSPC for updating the inode in the case of file write and mmap writes. 6102 */ 6103 static int btrfs_update_time(struct inode *inode, int flags) 6104 { 6105 struct btrfs_root *root = BTRFS_I(inode)->root; 6106 bool dirty; 6107 6108 if (btrfs_root_readonly(root)) 6109 return -EROFS; 6110 6111 dirty = inode_update_timestamps(inode, flags); 6112 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6113 } 6114 6115 /* 6116 * helper to find a free sequence number in a given directory. This current 6117 * code is very simple, later versions will do smarter things in the btree 6118 */ 6119 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6120 { 6121 int ret = 0; 6122 6123 if (dir->index_cnt == (u64)-1) { 6124 ret = btrfs_inode_delayed_dir_index_count(dir); 6125 if (ret) { 6126 ret = btrfs_set_inode_index_count(dir); 6127 if (ret) 6128 return ret; 6129 } 6130 } 6131 6132 *index = dir->index_cnt; 6133 dir->index_cnt++; 6134 6135 return ret; 6136 } 6137 6138 static int btrfs_insert_inode_locked(struct inode *inode) 6139 { 6140 struct btrfs_iget_args args; 6141 6142 args.ino = BTRFS_I(inode)->location.objectid; 6143 args.root = BTRFS_I(inode)->root; 6144 6145 return insert_inode_locked4(inode, 6146 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6147 btrfs_find_actor, &args); 6148 } 6149 6150 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6151 unsigned int *trans_num_items) 6152 { 6153 struct inode *dir = args->dir; 6154 struct inode *inode = args->inode; 6155 int ret; 6156 6157 if (!args->orphan) { 6158 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6159 &args->fname); 6160 if (ret) 6161 return ret; 6162 } 6163 6164 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6165 if (ret) { 6166 fscrypt_free_filename(&args->fname); 6167 return ret; 6168 } 6169 6170 /* 1 to add inode item */ 6171 *trans_num_items = 1; 6172 /* 1 to add compression property */ 6173 if (BTRFS_I(dir)->prop_compress) 6174 (*trans_num_items)++; 6175 /* 1 to add default ACL xattr */ 6176 if (args->default_acl) 6177 (*trans_num_items)++; 6178 /* 1 to add access ACL xattr */ 6179 if (args->acl) 6180 (*trans_num_items)++; 6181 #ifdef CONFIG_SECURITY 6182 /* 1 to add LSM xattr */ 6183 if (dir->i_security) 6184 (*trans_num_items)++; 6185 #endif 6186 if (args->orphan) { 6187 /* 1 to add orphan item */ 6188 (*trans_num_items)++; 6189 } else { 6190 /* 6191 * 1 to add dir item 6192 * 1 to add dir index 6193 * 1 to update parent inode item 6194 * 6195 * No need for 1 unit for the inode ref item because it is 6196 * inserted in a batch together with the inode item at 6197 * btrfs_create_new_inode(). 6198 */ 6199 *trans_num_items += 3; 6200 } 6201 return 0; 6202 } 6203 6204 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6205 { 6206 posix_acl_release(args->acl); 6207 posix_acl_release(args->default_acl); 6208 fscrypt_free_filename(&args->fname); 6209 } 6210 6211 /* 6212 * Inherit flags from the parent inode. 6213 * 6214 * Currently only the compression flags and the cow flags are inherited. 6215 */ 6216 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6217 { 6218 unsigned int flags; 6219 6220 flags = dir->flags; 6221 6222 if (flags & BTRFS_INODE_NOCOMPRESS) { 6223 inode->flags &= ~BTRFS_INODE_COMPRESS; 6224 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6225 } else if (flags & BTRFS_INODE_COMPRESS) { 6226 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6227 inode->flags |= BTRFS_INODE_COMPRESS; 6228 } 6229 6230 if (flags & BTRFS_INODE_NODATACOW) { 6231 inode->flags |= BTRFS_INODE_NODATACOW; 6232 if (S_ISREG(inode->vfs_inode.i_mode)) 6233 inode->flags |= BTRFS_INODE_NODATASUM; 6234 } 6235 6236 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6237 } 6238 6239 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6240 struct btrfs_new_inode_args *args) 6241 { 6242 struct timespec64 ts; 6243 struct inode *dir = args->dir; 6244 struct inode *inode = args->inode; 6245 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6246 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6247 struct btrfs_root *root; 6248 struct btrfs_inode_item *inode_item; 6249 struct btrfs_key *location; 6250 struct btrfs_path *path; 6251 u64 objectid; 6252 struct btrfs_inode_ref *ref; 6253 struct btrfs_key key[2]; 6254 u32 sizes[2]; 6255 struct btrfs_item_batch batch; 6256 unsigned long ptr; 6257 int ret; 6258 6259 path = btrfs_alloc_path(); 6260 if (!path) 6261 return -ENOMEM; 6262 6263 if (!args->subvol) 6264 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6265 root = BTRFS_I(inode)->root; 6266 6267 ret = btrfs_get_free_objectid(root, &objectid); 6268 if (ret) 6269 goto out; 6270 inode->i_ino = objectid; 6271 6272 if (args->orphan) { 6273 /* 6274 * O_TMPFILE, set link count to 0, so that after this point, we 6275 * fill in an inode item with the correct link count. 6276 */ 6277 set_nlink(inode, 0); 6278 } else { 6279 trace_btrfs_inode_request(dir); 6280 6281 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6282 if (ret) 6283 goto out; 6284 } 6285 /* index_cnt is ignored for everything but a dir. */ 6286 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6287 BTRFS_I(inode)->generation = trans->transid; 6288 inode->i_generation = BTRFS_I(inode)->generation; 6289 6290 /* 6291 * We don't have any capability xattrs set here yet, shortcut any 6292 * queries for the xattrs here. If we add them later via the inode 6293 * security init path or any other path this flag will be cleared. 6294 */ 6295 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6296 6297 /* 6298 * Subvolumes don't inherit flags from their parent directory. 6299 * Originally this was probably by accident, but we probably can't 6300 * change it now without compatibility issues. 6301 */ 6302 if (!args->subvol) 6303 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6304 6305 if (S_ISREG(inode->i_mode)) { 6306 if (btrfs_test_opt(fs_info, NODATASUM)) 6307 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6308 if (btrfs_test_opt(fs_info, NODATACOW)) 6309 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6310 BTRFS_INODE_NODATASUM; 6311 } 6312 6313 location = &BTRFS_I(inode)->location; 6314 location->objectid = objectid; 6315 location->offset = 0; 6316 location->type = BTRFS_INODE_ITEM_KEY; 6317 6318 ret = btrfs_insert_inode_locked(inode); 6319 if (ret < 0) { 6320 if (!args->orphan) 6321 BTRFS_I(dir)->index_cnt--; 6322 goto out; 6323 } 6324 6325 /* 6326 * We could have gotten an inode number from somebody who was fsynced 6327 * and then removed in this same transaction, so let's just set full 6328 * sync since it will be a full sync anyway and this will blow away the 6329 * old info in the log. 6330 */ 6331 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6332 6333 key[0].objectid = objectid; 6334 key[0].type = BTRFS_INODE_ITEM_KEY; 6335 key[0].offset = 0; 6336 6337 sizes[0] = sizeof(struct btrfs_inode_item); 6338 6339 if (!args->orphan) { 6340 /* 6341 * Start new inodes with an inode_ref. This is slightly more 6342 * efficient for small numbers of hard links since they will 6343 * be packed into one item. Extended refs will kick in if we 6344 * add more hard links than can fit in the ref item. 6345 */ 6346 key[1].objectid = objectid; 6347 key[1].type = BTRFS_INODE_REF_KEY; 6348 if (args->subvol) { 6349 key[1].offset = objectid; 6350 sizes[1] = 2 + sizeof(*ref); 6351 } else { 6352 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6353 sizes[1] = name->len + sizeof(*ref); 6354 } 6355 } 6356 6357 batch.keys = &key[0]; 6358 batch.data_sizes = &sizes[0]; 6359 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6360 batch.nr = args->orphan ? 1 : 2; 6361 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6362 if (ret != 0) { 6363 btrfs_abort_transaction(trans, ret); 6364 goto discard; 6365 } 6366 6367 ts = simple_inode_init_ts(inode); 6368 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6369 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6370 6371 /* 6372 * We're going to fill the inode item now, so at this point the inode 6373 * must be fully initialized. 6374 */ 6375 6376 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6377 struct btrfs_inode_item); 6378 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6379 sizeof(*inode_item)); 6380 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6381 6382 if (!args->orphan) { 6383 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6384 struct btrfs_inode_ref); 6385 ptr = (unsigned long)(ref + 1); 6386 if (args->subvol) { 6387 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6388 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6389 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6390 } else { 6391 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6392 name->len); 6393 btrfs_set_inode_ref_index(path->nodes[0], ref, 6394 BTRFS_I(inode)->dir_index); 6395 write_extent_buffer(path->nodes[0], name->name, ptr, 6396 name->len); 6397 } 6398 } 6399 6400 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6401 /* 6402 * We don't need the path anymore, plus inheriting properties, adding 6403 * ACLs, security xattrs, orphan item or adding the link, will result in 6404 * allocating yet another path. So just free our path. 6405 */ 6406 btrfs_free_path(path); 6407 path = NULL; 6408 6409 if (args->subvol) { 6410 struct inode *parent; 6411 6412 /* 6413 * Subvolumes inherit properties from their parent subvolume, 6414 * not the directory they were created in. 6415 */ 6416 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6417 BTRFS_I(dir)->root); 6418 if (IS_ERR(parent)) { 6419 ret = PTR_ERR(parent); 6420 } else { 6421 ret = btrfs_inode_inherit_props(trans, inode, parent); 6422 iput(parent); 6423 } 6424 } else { 6425 ret = btrfs_inode_inherit_props(trans, inode, dir); 6426 } 6427 if (ret) { 6428 btrfs_err(fs_info, 6429 "error inheriting props for ino %llu (root %llu): %d", 6430 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6431 ret); 6432 } 6433 6434 /* 6435 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6436 * probably a bug. 6437 */ 6438 if (!args->subvol) { 6439 ret = btrfs_init_inode_security(trans, args); 6440 if (ret) { 6441 btrfs_abort_transaction(trans, ret); 6442 goto discard; 6443 } 6444 } 6445 6446 inode_tree_add(BTRFS_I(inode)); 6447 6448 trace_btrfs_inode_new(inode); 6449 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6450 6451 btrfs_update_root_times(trans, root); 6452 6453 if (args->orphan) { 6454 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6455 } else { 6456 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6457 0, BTRFS_I(inode)->dir_index); 6458 } 6459 if (ret) { 6460 btrfs_abort_transaction(trans, ret); 6461 goto discard; 6462 } 6463 6464 return 0; 6465 6466 discard: 6467 /* 6468 * discard_new_inode() calls iput(), but the caller owns the reference 6469 * to the inode. 6470 */ 6471 ihold(inode); 6472 discard_new_inode(inode); 6473 out: 6474 btrfs_free_path(path); 6475 return ret; 6476 } 6477 6478 /* 6479 * utility function to add 'inode' into 'parent_inode' with 6480 * a give name and a given sequence number. 6481 * if 'add_backref' is true, also insert a backref from the 6482 * inode to the parent directory. 6483 */ 6484 int btrfs_add_link(struct btrfs_trans_handle *trans, 6485 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6486 const struct fscrypt_str *name, int add_backref, u64 index) 6487 { 6488 int ret = 0; 6489 struct btrfs_key key; 6490 struct btrfs_root *root = parent_inode->root; 6491 u64 ino = btrfs_ino(inode); 6492 u64 parent_ino = btrfs_ino(parent_inode); 6493 6494 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6495 memcpy(&key, &inode->root->root_key, sizeof(key)); 6496 } else { 6497 key.objectid = ino; 6498 key.type = BTRFS_INODE_ITEM_KEY; 6499 key.offset = 0; 6500 } 6501 6502 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6503 ret = btrfs_add_root_ref(trans, key.objectid, 6504 root->root_key.objectid, parent_ino, 6505 index, name); 6506 } else if (add_backref) { 6507 ret = btrfs_insert_inode_ref(trans, root, name, 6508 ino, parent_ino, index); 6509 } 6510 6511 /* Nothing to clean up yet */ 6512 if (ret) 6513 return ret; 6514 6515 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6516 btrfs_inode_type(&inode->vfs_inode), index); 6517 if (ret == -EEXIST || ret == -EOVERFLOW) 6518 goto fail_dir_item; 6519 else if (ret) { 6520 btrfs_abort_transaction(trans, ret); 6521 return ret; 6522 } 6523 6524 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6525 name->len * 2); 6526 inode_inc_iversion(&parent_inode->vfs_inode); 6527 /* 6528 * If we are replaying a log tree, we do not want to update the mtime 6529 * and ctime of the parent directory with the current time, since the 6530 * log replay procedure is responsible for setting them to their correct 6531 * values (the ones it had when the fsync was done). 6532 */ 6533 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6534 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6535 inode_set_ctime_current(&parent_inode->vfs_inode)); 6536 6537 ret = btrfs_update_inode(trans, parent_inode); 6538 if (ret) 6539 btrfs_abort_transaction(trans, ret); 6540 return ret; 6541 6542 fail_dir_item: 6543 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6544 u64 local_index; 6545 int err; 6546 err = btrfs_del_root_ref(trans, key.objectid, 6547 root->root_key.objectid, parent_ino, 6548 &local_index, name); 6549 if (err) 6550 btrfs_abort_transaction(trans, err); 6551 } else if (add_backref) { 6552 u64 local_index; 6553 int err; 6554 6555 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6556 &local_index); 6557 if (err) 6558 btrfs_abort_transaction(trans, err); 6559 } 6560 6561 /* Return the original error code */ 6562 return ret; 6563 } 6564 6565 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6566 struct inode *inode) 6567 { 6568 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6569 struct btrfs_root *root = BTRFS_I(dir)->root; 6570 struct btrfs_new_inode_args new_inode_args = { 6571 .dir = dir, 6572 .dentry = dentry, 6573 .inode = inode, 6574 }; 6575 unsigned int trans_num_items; 6576 struct btrfs_trans_handle *trans; 6577 int err; 6578 6579 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6580 if (err) 6581 goto out_inode; 6582 6583 trans = btrfs_start_transaction(root, trans_num_items); 6584 if (IS_ERR(trans)) { 6585 err = PTR_ERR(trans); 6586 goto out_new_inode_args; 6587 } 6588 6589 err = btrfs_create_new_inode(trans, &new_inode_args); 6590 if (!err) 6591 d_instantiate_new(dentry, inode); 6592 6593 btrfs_end_transaction(trans); 6594 btrfs_btree_balance_dirty(fs_info); 6595 out_new_inode_args: 6596 btrfs_new_inode_args_destroy(&new_inode_args); 6597 out_inode: 6598 if (err) 6599 iput(inode); 6600 return err; 6601 } 6602 6603 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6604 struct dentry *dentry, umode_t mode, dev_t rdev) 6605 { 6606 struct inode *inode; 6607 6608 inode = new_inode(dir->i_sb); 6609 if (!inode) 6610 return -ENOMEM; 6611 inode_init_owner(idmap, inode, dir, mode); 6612 inode->i_op = &btrfs_special_inode_operations; 6613 init_special_inode(inode, inode->i_mode, rdev); 6614 return btrfs_create_common(dir, dentry, inode); 6615 } 6616 6617 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6618 struct dentry *dentry, umode_t mode, bool excl) 6619 { 6620 struct inode *inode; 6621 6622 inode = new_inode(dir->i_sb); 6623 if (!inode) 6624 return -ENOMEM; 6625 inode_init_owner(idmap, inode, dir, mode); 6626 inode->i_fop = &btrfs_file_operations; 6627 inode->i_op = &btrfs_file_inode_operations; 6628 inode->i_mapping->a_ops = &btrfs_aops; 6629 return btrfs_create_common(dir, dentry, inode); 6630 } 6631 6632 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6633 struct dentry *dentry) 6634 { 6635 struct btrfs_trans_handle *trans = NULL; 6636 struct btrfs_root *root = BTRFS_I(dir)->root; 6637 struct inode *inode = d_inode(old_dentry); 6638 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6639 struct fscrypt_name fname; 6640 u64 index; 6641 int err; 6642 int drop_inode = 0; 6643 6644 /* do not allow sys_link's with other subvols of the same device */ 6645 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6646 return -EXDEV; 6647 6648 if (inode->i_nlink >= BTRFS_LINK_MAX) 6649 return -EMLINK; 6650 6651 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6652 if (err) 6653 goto fail; 6654 6655 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6656 if (err) 6657 goto fail; 6658 6659 /* 6660 * 2 items for inode and inode ref 6661 * 2 items for dir items 6662 * 1 item for parent inode 6663 * 1 item for orphan item deletion if O_TMPFILE 6664 */ 6665 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6666 if (IS_ERR(trans)) { 6667 err = PTR_ERR(trans); 6668 trans = NULL; 6669 goto fail; 6670 } 6671 6672 /* There are several dir indexes for this inode, clear the cache. */ 6673 BTRFS_I(inode)->dir_index = 0ULL; 6674 inc_nlink(inode); 6675 inode_inc_iversion(inode); 6676 inode_set_ctime_current(inode); 6677 ihold(inode); 6678 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6679 6680 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6681 &fname.disk_name, 1, index); 6682 6683 if (err) { 6684 drop_inode = 1; 6685 } else { 6686 struct dentry *parent = dentry->d_parent; 6687 6688 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6689 if (err) 6690 goto fail; 6691 if (inode->i_nlink == 1) { 6692 /* 6693 * If new hard link count is 1, it's a file created 6694 * with open(2) O_TMPFILE flag. 6695 */ 6696 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6697 if (err) 6698 goto fail; 6699 } 6700 d_instantiate(dentry, inode); 6701 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6702 } 6703 6704 fail: 6705 fscrypt_free_filename(&fname); 6706 if (trans) 6707 btrfs_end_transaction(trans); 6708 if (drop_inode) { 6709 inode_dec_link_count(inode); 6710 iput(inode); 6711 } 6712 btrfs_btree_balance_dirty(fs_info); 6713 return err; 6714 } 6715 6716 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6717 struct dentry *dentry, umode_t mode) 6718 { 6719 struct inode *inode; 6720 6721 inode = new_inode(dir->i_sb); 6722 if (!inode) 6723 return -ENOMEM; 6724 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6725 inode->i_op = &btrfs_dir_inode_operations; 6726 inode->i_fop = &btrfs_dir_file_operations; 6727 return btrfs_create_common(dir, dentry, inode); 6728 } 6729 6730 static noinline int uncompress_inline(struct btrfs_path *path, 6731 struct page *page, 6732 struct btrfs_file_extent_item *item) 6733 { 6734 int ret; 6735 struct extent_buffer *leaf = path->nodes[0]; 6736 char *tmp; 6737 size_t max_size; 6738 unsigned long inline_size; 6739 unsigned long ptr; 6740 int compress_type; 6741 6742 compress_type = btrfs_file_extent_compression(leaf, item); 6743 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6744 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6745 tmp = kmalloc(inline_size, GFP_NOFS); 6746 if (!tmp) 6747 return -ENOMEM; 6748 ptr = btrfs_file_extent_inline_start(item); 6749 6750 read_extent_buffer(leaf, tmp, ptr, inline_size); 6751 6752 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6753 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6754 6755 /* 6756 * decompression code contains a memset to fill in any space between the end 6757 * of the uncompressed data and the end of max_size in case the decompressed 6758 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6759 * the end of an inline extent and the beginning of the next block, so we 6760 * cover that region here. 6761 */ 6762 6763 if (max_size < PAGE_SIZE) 6764 memzero_page(page, max_size, PAGE_SIZE - max_size); 6765 kfree(tmp); 6766 return ret; 6767 } 6768 6769 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6770 struct page *page) 6771 { 6772 struct btrfs_file_extent_item *fi; 6773 void *kaddr; 6774 size_t copy_size; 6775 6776 if (!page || PageUptodate(page)) 6777 return 0; 6778 6779 ASSERT(page_offset(page) == 0); 6780 6781 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6782 struct btrfs_file_extent_item); 6783 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6784 return uncompress_inline(path, page, fi); 6785 6786 copy_size = min_t(u64, PAGE_SIZE, 6787 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6788 kaddr = kmap_local_page(page); 6789 read_extent_buffer(path->nodes[0], kaddr, 6790 btrfs_file_extent_inline_start(fi), copy_size); 6791 kunmap_local(kaddr); 6792 if (copy_size < PAGE_SIZE) 6793 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6794 return 0; 6795 } 6796 6797 /* 6798 * Lookup the first extent overlapping a range in a file. 6799 * 6800 * @inode: file to search in 6801 * @page: page to read extent data into if the extent is inline 6802 * @start: file offset 6803 * @len: length of range starting at @start 6804 * 6805 * Return the first &struct extent_map which overlaps the given range, reading 6806 * it from the B-tree and caching it if necessary. Note that there may be more 6807 * extents which overlap the given range after the returned extent_map. 6808 * 6809 * If @page is not NULL and the extent is inline, this also reads the extent 6810 * data directly into the page and marks the extent up to date in the io_tree. 6811 * 6812 * Return: ERR_PTR on error, non-NULL extent_map on success. 6813 */ 6814 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6815 struct page *page, u64 start, u64 len) 6816 { 6817 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6818 int ret = 0; 6819 u64 extent_start = 0; 6820 u64 extent_end = 0; 6821 u64 objectid = btrfs_ino(inode); 6822 int extent_type = -1; 6823 struct btrfs_path *path = NULL; 6824 struct btrfs_root *root = inode->root; 6825 struct btrfs_file_extent_item *item; 6826 struct extent_buffer *leaf; 6827 struct btrfs_key found_key; 6828 struct extent_map *em = NULL; 6829 struct extent_map_tree *em_tree = &inode->extent_tree; 6830 6831 read_lock(&em_tree->lock); 6832 em = lookup_extent_mapping(em_tree, start, len); 6833 read_unlock(&em_tree->lock); 6834 6835 if (em) { 6836 if (em->start > start || em->start + em->len <= start) 6837 free_extent_map(em); 6838 else if (em->block_start == EXTENT_MAP_INLINE && page) 6839 free_extent_map(em); 6840 else 6841 goto out; 6842 } 6843 em = alloc_extent_map(); 6844 if (!em) { 6845 ret = -ENOMEM; 6846 goto out; 6847 } 6848 em->start = EXTENT_MAP_HOLE; 6849 em->orig_start = EXTENT_MAP_HOLE; 6850 em->len = (u64)-1; 6851 em->block_len = (u64)-1; 6852 6853 path = btrfs_alloc_path(); 6854 if (!path) { 6855 ret = -ENOMEM; 6856 goto out; 6857 } 6858 6859 /* Chances are we'll be called again, so go ahead and do readahead */ 6860 path->reada = READA_FORWARD; 6861 6862 /* 6863 * The same explanation in load_free_space_cache applies here as well, 6864 * we only read when we're loading the free space cache, and at that 6865 * point the commit_root has everything we need. 6866 */ 6867 if (btrfs_is_free_space_inode(inode)) { 6868 path->search_commit_root = 1; 6869 path->skip_locking = 1; 6870 } 6871 6872 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6873 if (ret < 0) { 6874 goto out; 6875 } else if (ret > 0) { 6876 if (path->slots[0] == 0) 6877 goto not_found; 6878 path->slots[0]--; 6879 ret = 0; 6880 } 6881 6882 leaf = path->nodes[0]; 6883 item = btrfs_item_ptr(leaf, path->slots[0], 6884 struct btrfs_file_extent_item); 6885 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6886 if (found_key.objectid != objectid || 6887 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6888 /* 6889 * If we backup past the first extent we want to move forward 6890 * and see if there is an extent in front of us, otherwise we'll 6891 * say there is a hole for our whole search range which can 6892 * cause problems. 6893 */ 6894 extent_end = start; 6895 goto next; 6896 } 6897 6898 extent_type = btrfs_file_extent_type(leaf, item); 6899 extent_start = found_key.offset; 6900 extent_end = btrfs_file_extent_end(path); 6901 if (extent_type == BTRFS_FILE_EXTENT_REG || 6902 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6903 /* Only regular file could have regular/prealloc extent */ 6904 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6905 ret = -EUCLEAN; 6906 btrfs_crit(fs_info, 6907 "regular/prealloc extent found for non-regular inode %llu", 6908 btrfs_ino(inode)); 6909 goto out; 6910 } 6911 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6912 extent_start); 6913 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6914 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6915 path->slots[0], 6916 extent_start); 6917 } 6918 next: 6919 if (start >= extent_end) { 6920 path->slots[0]++; 6921 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6922 ret = btrfs_next_leaf(root, path); 6923 if (ret < 0) 6924 goto out; 6925 else if (ret > 0) 6926 goto not_found; 6927 6928 leaf = path->nodes[0]; 6929 } 6930 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6931 if (found_key.objectid != objectid || 6932 found_key.type != BTRFS_EXTENT_DATA_KEY) 6933 goto not_found; 6934 if (start + len <= found_key.offset) 6935 goto not_found; 6936 if (start > found_key.offset) 6937 goto next; 6938 6939 /* New extent overlaps with existing one */ 6940 em->start = start; 6941 em->orig_start = start; 6942 em->len = found_key.offset - start; 6943 em->block_start = EXTENT_MAP_HOLE; 6944 goto insert; 6945 } 6946 6947 btrfs_extent_item_to_extent_map(inode, path, item, em); 6948 6949 if (extent_type == BTRFS_FILE_EXTENT_REG || 6950 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6951 goto insert; 6952 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6953 /* 6954 * Inline extent can only exist at file offset 0. This is 6955 * ensured by tree-checker and inline extent creation path. 6956 * Thus all members representing file offsets should be zero. 6957 */ 6958 ASSERT(extent_start == 0); 6959 ASSERT(em->start == 0); 6960 6961 /* 6962 * btrfs_extent_item_to_extent_map() should have properly 6963 * initialized em members already. 6964 * 6965 * Other members are not utilized for inline extents. 6966 */ 6967 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6968 ASSERT(em->len == fs_info->sectorsize); 6969 6970 ret = read_inline_extent(inode, path, page); 6971 if (ret < 0) 6972 goto out; 6973 goto insert; 6974 } 6975 not_found: 6976 em->start = start; 6977 em->orig_start = start; 6978 em->len = len; 6979 em->block_start = EXTENT_MAP_HOLE; 6980 insert: 6981 ret = 0; 6982 btrfs_release_path(path); 6983 if (em->start > start || extent_map_end(em) <= start) { 6984 btrfs_err(fs_info, 6985 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6986 em->start, em->len, start, len); 6987 ret = -EIO; 6988 goto out; 6989 } 6990 6991 write_lock(&em_tree->lock); 6992 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6993 write_unlock(&em_tree->lock); 6994 out: 6995 btrfs_free_path(path); 6996 6997 trace_btrfs_get_extent(root, inode, em); 6998 6999 if (ret) { 7000 free_extent_map(em); 7001 return ERR_PTR(ret); 7002 } 7003 return em; 7004 } 7005 7006 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7007 struct btrfs_dio_data *dio_data, 7008 const u64 start, 7009 const u64 len, 7010 const u64 orig_start, 7011 const u64 block_start, 7012 const u64 block_len, 7013 const u64 orig_block_len, 7014 const u64 ram_bytes, 7015 const int type) 7016 { 7017 struct extent_map *em = NULL; 7018 struct btrfs_ordered_extent *ordered; 7019 7020 if (type != BTRFS_ORDERED_NOCOW) { 7021 em = create_io_em(inode, start, len, orig_start, block_start, 7022 block_len, orig_block_len, ram_bytes, 7023 BTRFS_COMPRESS_NONE, /* compress_type */ 7024 type); 7025 if (IS_ERR(em)) 7026 goto out; 7027 } 7028 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 7029 block_start, block_len, 0, 7030 (1 << type) | 7031 (1 << BTRFS_ORDERED_DIRECT), 7032 BTRFS_COMPRESS_NONE); 7033 if (IS_ERR(ordered)) { 7034 if (em) { 7035 free_extent_map(em); 7036 btrfs_drop_extent_map_range(inode, start, 7037 start + len - 1, false); 7038 } 7039 em = ERR_CAST(ordered); 7040 } else { 7041 ASSERT(!dio_data->ordered); 7042 dio_data->ordered = ordered; 7043 } 7044 out: 7045 7046 return em; 7047 } 7048 7049 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7050 struct btrfs_dio_data *dio_data, 7051 u64 start, u64 len) 7052 { 7053 struct btrfs_root *root = inode->root; 7054 struct btrfs_fs_info *fs_info = root->fs_info; 7055 struct extent_map *em; 7056 struct btrfs_key ins; 7057 u64 alloc_hint; 7058 int ret; 7059 7060 alloc_hint = get_extent_allocation_hint(inode, start, len); 7061 again: 7062 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7063 0, alloc_hint, &ins, 1, 1); 7064 if (ret == -EAGAIN) { 7065 ASSERT(btrfs_is_zoned(fs_info)); 7066 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 7067 TASK_UNINTERRUPTIBLE); 7068 goto again; 7069 } 7070 if (ret) 7071 return ERR_PTR(ret); 7072 7073 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 7074 ins.objectid, ins.offset, ins.offset, 7075 ins.offset, BTRFS_ORDERED_REGULAR); 7076 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7077 if (IS_ERR(em)) 7078 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7079 1); 7080 7081 return em; 7082 } 7083 7084 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7085 { 7086 struct btrfs_block_group *block_group; 7087 bool readonly = false; 7088 7089 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7090 if (!block_group || block_group->ro) 7091 readonly = true; 7092 if (block_group) 7093 btrfs_put_block_group(block_group); 7094 return readonly; 7095 } 7096 7097 /* 7098 * Check if we can do nocow write into the range [@offset, @offset + @len) 7099 * 7100 * @offset: File offset 7101 * @len: The length to write, will be updated to the nocow writeable 7102 * range 7103 * @orig_start: (optional) Return the original file offset of the file extent 7104 * @orig_len: (optional) Return the original on-disk length of the file extent 7105 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7106 * @strict: if true, omit optimizations that might force us into unnecessary 7107 * cow. e.g., don't trust generation number. 7108 * 7109 * Return: 7110 * >0 and update @len if we can do nocow write 7111 * 0 if we can't do nocow write 7112 * <0 if error happened 7113 * 7114 * NOTE: This only checks the file extents, caller is responsible to wait for 7115 * any ordered extents. 7116 */ 7117 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7118 u64 *orig_start, u64 *orig_block_len, 7119 u64 *ram_bytes, bool nowait, bool strict) 7120 { 7121 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7122 struct can_nocow_file_extent_args nocow_args = { 0 }; 7123 struct btrfs_path *path; 7124 int ret; 7125 struct extent_buffer *leaf; 7126 struct btrfs_root *root = BTRFS_I(inode)->root; 7127 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7128 struct btrfs_file_extent_item *fi; 7129 struct btrfs_key key; 7130 int found_type; 7131 7132 path = btrfs_alloc_path(); 7133 if (!path) 7134 return -ENOMEM; 7135 path->nowait = nowait; 7136 7137 ret = btrfs_lookup_file_extent(NULL, root, path, 7138 btrfs_ino(BTRFS_I(inode)), offset, 0); 7139 if (ret < 0) 7140 goto out; 7141 7142 if (ret == 1) { 7143 if (path->slots[0] == 0) { 7144 /* can't find the item, must cow */ 7145 ret = 0; 7146 goto out; 7147 } 7148 path->slots[0]--; 7149 } 7150 ret = 0; 7151 leaf = path->nodes[0]; 7152 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7153 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7154 key.type != BTRFS_EXTENT_DATA_KEY) { 7155 /* not our file or wrong item type, must cow */ 7156 goto out; 7157 } 7158 7159 if (key.offset > offset) { 7160 /* Wrong offset, must cow */ 7161 goto out; 7162 } 7163 7164 if (btrfs_file_extent_end(path) <= offset) 7165 goto out; 7166 7167 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7168 found_type = btrfs_file_extent_type(leaf, fi); 7169 if (ram_bytes) 7170 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7171 7172 nocow_args.start = offset; 7173 nocow_args.end = offset + *len - 1; 7174 nocow_args.strict = strict; 7175 nocow_args.free_path = true; 7176 7177 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7178 /* can_nocow_file_extent() has freed the path. */ 7179 path = NULL; 7180 7181 if (ret != 1) { 7182 /* Treat errors as not being able to NOCOW. */ 7183 ret = 0; 7184 goto out; 7185 } 7186 7187 ret = 0; 7188 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7189 goto out; 7190 7191 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7192 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7193 u64 range_end; 7194 7195 range_end = round_up(offset + nocow_args.num_bytes, 7196 root->fs_info->sectorsize) - 1; 7197 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7198 if (ret) { 7199 ret = -EAGAIN; 7200 goto out; 7201 } 7202 } 7203 7204 if (orig_start) 7205 *orig_start = key.offset - nocow_args.extent_offset; 7206 if (orig_block_len) 7207 *orig_block_len = nocow_args.disk_num_bytes; 7208 7209 *len = nocow_args.num_bytes; 7210 ret = 1; 7211 out: 7212 btrfs_free_path(path); 7213 return ret; 7214 } 7215 7216 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7217 struct extent_state **cached_state, 7218 unsigned int iomap_flags) 7219 { 7220 const bool writing = (iomap_flags & IOMAP_WRITE); 7221 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7222 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7223 struct btrfs_ordered_extent *ordered; 7224 int ret = 0; 7225 7226 while (1) { 7227 if (nowait) { 7228 if (!try_lock_extent(io_tree, lockstart, lockend, 7229 cached_state)) 7230 return -EAGAIN; 7231 } else { 7232 lock_extent(io_tree, lockstart, lockend, cached_state); 7233 } 7234 /* 7235 * We're concerned with the entire range that we're going to be 7236 * doing DIO to, so we need to make sure there's no ordered 7237 * extents in this range. 7238 */ 7239 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7240 lockend - lockstart + 1); 7241 7242 /* 7243 * We need to make sure there are no buffered pages in this 7244 * range either, we could have raced between the invalidate in 7245 * generic_file_direct_write and locking the extent. The 7246 * invalidate needs to happen so that reads after a write do not 7247 * get stale data. 7248 */ 7249 if (!ordered && 7250 (!writing || !filemap_range_has_page(inode->i_mapping, 7251 lockstart, lockend))) 7252 break; 7253 7254 unlock_extent(io_tree, lockstart, lockend, cached_state); 7255 7256 if (ordered) { 7257 if (nowait) { 7258 btrfs_put_ordered_extent(ordered); 7259 ret = -EAGAIN; 7260 break; 7261 } 7262 /* 7263 * If we are doing a DIO read and the ordered extent we 7264 * found is for a buffered write, we can not wait for it 7265 * to complete and retry, because if we do so we can 7266 * deadlock with concurrent buffered writes on page 7267 * locks. This happens only if our DIO read covers more 7268 * than one extent map, if at this point has already 7269 * created an ordered extent for a previous extent map 7270 * and locked its range in the inode's io tree, and a 7271 * concurrent write against that previous extent map's 7272 * range and this range started (we unlock the ranges 7273 * in the io tree only when the bios complete and 7274 * buffered writes always lock pages before attempting 7275 * to lock range in the io tree). 7276 */ 7277 if (writing || 7278 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7279 btrfs_start_ordered_extent(ordered); 7280 else 7281 ret = nowait ? -EAGAIN : -ENOTBLK; 7282 btrfs_put_ordered_extent(ordered); 7283 } else { 7284 /* 7285 * We could trigger writeback for this range (and wait 7286 * for it to complete) and then invalidate the pages for 7287 * this range (through invalidate_inode_pages2_range()), 7288 * but that can lead us to a deadlock with a concurrent 7289 * call to readahead (a buffered read or a defrag call 7290 * triggered a readahead) on a page lock due to an 7291 * ordered dio extent we created before but did not have 7292 * yet a corresponding bio submitted (whence it can not 7293 * complete), which makes readahead wait for that 7294 * ordered extent to complete while holding a lock on 7295 * that page. 7296 */ 7297 ret = nowait ? -EAGAIN : -ENOTBLK; 7298 } 7299 7300 if (ret) 7301 break; 7302 7303 cond_resched(); 7304 } 7305 7306 return ret; 7307 } 7308 7309 /* The callers of this must take lock_extent() */ 7310 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7311 u64 len, u64 orig_start, u64 block_start, 7312 u64 block_len, u64 orig_block_len, 7313 u64 ram_bytes, int compress_type, 7314 int type) 7315 { 7316 struct extent_map *em; 7317 int ret; 7318 7319 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7320 type == BTRFS_ORDERED_COMPRESSED || 7321 type == BTRFS_ORDERED_NOCOW || 7322 type == BTRFS_ORDERED_REGULAR); 7323 7324 em = alloc_extent_map(); 7325 if (!em) 7326 return ERR_PTR(-ENOMEM); 7327 7328 em->start = start; 7329 em->orig_start = orig_start; 7330 em->len = len; 7331 em->block_len = block_len; 7332 em->block_start = block_start; 7333 em->orig_block_len = orig_block_len; 7334 em->ram_bytes = ram_bytes; 7335 em->generation = -1; 7336 em->flags |= EXTENT_FLAG_PINNED; 7337 if (type == BTRFS_ORDERED_PREALLOC) 7338 em->flags |= EXTENT_FLAG_FILLING; 7339 else if (type == BTRFS_ORDERED_COMPRESSED) 7340 extent_map_set_compression(em, compress_type); 7341 7342 ret = btrfs_replace_extent_map_range(inode, em, true); 7343 if (ret) { 7344 free_extent_map(em); 7345 return ERR_PTR(ret); 7346 } 7347 7348 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7349 return em; 7350 } 7351 7352 7353 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7354 struct inode *inode, 7355 struct btrfs_dio_data *dio_data, 7356 u64 start, u64 *lenp, 7357 unsigned int iomap_flags) 7358 { 7359 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7360 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7361 struct extent_map *em = *map; 7362 int type; 7363 u64 block_start, orig_start, orig_block_len, ram_bytes; 7364 struct btrfs_block_group *bg; 7365 bool can_nocow = false; 7366 bool space_reserved = false; 7367 u64 len = *lenp; 7368 u64 prev_len; 7369 int ret = 0; 7370 7371 /* 7372 * We don't allocate a new extent in the following cases 7373 * 7374 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7375 * existing extent. 7376 * 2) The extent is marked as PREALLOC. We're good to go here and can 7377 * just use the extent. 7378 * 7379 */ 7380 if ((em->flags & EXTENT_FLAG_PREALLOC) || 7381 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7382 em->block_start != EXTENT_MAP_HOLE)) { 7383 if (em->flags & EXTENT_FLAG_PREALLOC) 7384 type = BTRFS_ORDERED_PREALLOC; 7385 else 7386 type = BTRFS_ORDERED_NOCOW; 7387 len = min(len, em->len - (start - em->start)); 7388 block_start = em->block_start + (start - em->start); 7389 7390 if (can_nocow_extent(inode, start, &len, &orig_start, 7391 &orig_block_len, &ram_bytes, false, false) == 1) { 7392 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7393 if (bg) 7394 can_nocow = true; 7395 } 7396 } 7397 7398 prev_len = len; 7399 if (can_nocow) { 7400 struct extent_map *em2; 7401 7402 /* We can NOCOW, so only need to reserve metadata space. */ 7403 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7404 nowait); 7405 if (ret < 0) { 7406 /* Our caller expects us to free the input extent map. */ 7407 free_extent_map(em); 7408 *map = NULL; 7409 btrfs_dec_nocow_writers(bg); 7410 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7411 ret = -EAGAIN; 7412 goto out; 7413 } 7414 space_reserved = true; 7415 7416 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7417 orig_start, block_start, 7418 len, orig_block_len, 7419 ram_bytes, type); 7420 btrfs_dec_nocow_writers(bg); 7421 if (type == BTRFS_ORDERED_PREALLOC) { 7422 free_extent_map(em); 7423 *map = em2; 7424 em = em2; 7425 } 7426 7427 if (IS_ERR(em2)) { 7428 ret = PTR_ERR(em2); 7429 goto out; 7430 } 7431 7432 dio_data->nocow_done = true; 7433 } else { 7434 /* Our caller expects us to free the input extent map. */ 7435 free_extent_map(em); 7436 *map = NULL; 7437 7438 if (nowait) { 7439 ret = -EAGAIN; 7440 goto out; 7441 } 7442 7443 /* 7444 * If we could not allocate data space before locking the file 7445 * range and we can't do a NOCOW write, then we have to fail. 7446 */ 7447 if (!dio_data->data_space_reserved) { 7448 ret = -ENOSPC; 7449 goto out; 7450 } 7451 7452 /* 7453 * We have to COW and we have already reserved data space before, 7454 * so now we reserve only metadata. 7455 */ 7456 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7457 false); 7458 if (ret < 0) 7459 goto out; 7460 space_reserved = true; 7461 7462 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7463 if (IS_ERR(em)) { 7464 ret = PTR_ERR(em); 7465 goto out; 7466 } 7467 *map = em; 7468 len = min(len, em->len - (start - em->start)); 7469 if (len < prev_len) 7470 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7471 prev_len - len, true); 7472 } 7473 7474 /* 7475 * We have created our ordered extent, so we can now release our reservation 7476 * for an outstanding extent. 7477 */ 7478 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7479 7480 /* 7481 * Need to update the i_size under the extent lock so buffered 7482 * readers will get the updated i_size when we unlock. 7483 */ 7484 if (start + len > i_size_read(inode)) 7485 i_size_write(inode, start + len); 7486 out: 7487 if (ret && space_reserved) { 7488 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7489 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7490 } 7491 *lenp = len; 7492 return ret; 7493 } 7494 7495 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7496 loff_t length, unsigned int flags, struct iomap *iomap, 7497 struct iomap *srcmap) 7498 { 7499 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7500 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7501 struct extent_map *em; 7502 struct extent_state *cached_state = NULL; 7503 struct btrfs_dio_data *dio_data = iter->private; 7504 u64 lockstart, lockend; 7505 const bool write = !!(flags & IOMAP_WRITE); 7506 int ret = 0; 7507 u64 len = length; 7508 const u64 data_alloc_len = length; 7509 bool unlock_extents = false; 7510 7511 /* 7512 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7513 * we're NOWAIT we may submit a bio for a partial range and return 7514 * EIOCBQUEUED, which would result in an errant short read. 7515 * 7516 * The best way to handle this would be to allow for partial completions 7517 * of iocb's, so we could submit the partial bio, return and fault in 7518 * the rest of the pages, and then submit the io for the rest of the 7519 * range. However we don't have that currently, so simply return 7520 * -EAGAIN at this point so that the normal path is used. 7521 */ 7522 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7523 return -EAGAIN; 7524 7525 /* 7526 * Cap the size of reads to that usually seen in buffered I/O as we need 7527 * to allocate a contiguous array for the checksums. 7528 */ 7529 if (!write) 7530 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7531 7532 lockstart = start; 7533 lockend = start + len - 1; 7534 7535 /* 7536 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7537 * enough if we've written compressed pages to this area, so we need to 7538 * flush the dirty pages again to make absolutely sure that any 7539 * outstanding dirty pages are on disk - the first flush only starts 7540 * compression on the data, while keeping the pages locked, so by the 7541 * time the second flush returns we know bios for the compressed pages 7542 * were submitted and finished, and the pages no longer under writeback. 7543 * 7544 * If we have a NOWAIT request and we have any pages in the range that 7545 * are locked, likely due to compression still in progress, we don't want 7546 * to block on page locks. We also don't want to block on pages marked as 7547 * dirty or under writeback (same as for the non-compression case). 7548 * iomap_dio_rw() did the same check, but after that and before we got 7549 * here, mmap'ed writes may have happened or buffered reads started 7550 * (readpage() and readahead(), which lock pages), as we haven't locked 7551 * the file range yet. 7552 */ 7553 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7554 &BTRFS_I(inode)->runtime_flags)) { 7555 if (flags & IOMAP_NOWAIT) { 7556 if (filemap_range_needs_writeback(inode->i_mapping, 7557 lockstart, lockend)) 7558 return -EAGAIN; 7559 } else { 7560 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7561 start + length - 1); 7562 if (ret) 7563 return ret; 7564 } 7565 } 7566 7567 memset(dio_data, 0, sizeof(*dio_data)); 7568 7569 /* 7570 * We always try to allocate data space and must do it before locking 7571 * the file range, to avoid deadlocks with concurrent writes to the same 7572 * range if the range has several extents and the writes don't expand the 7573 * current i_size (the inode lock is taken in shared mode). If we fail to 7574 * allocate data space here we continue and later, after locking the 7575 * file range, we fail with ENOSPC only if we figure out we can not do a 7576 * NOCOW write. 7577 */ 7578 if (write && !(flags & IOMAP_NOWAIT)) { 7579 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7580 &dio_data->data_reserved, 7581 start, data_alloc_len, false); 7582 if (!ret) 7583 dio_data->data_space_reserved = true; 7584 else if (ret && !(BTRFS_I(inode)->flags & 7585 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7586 goto err; 7587 } 7588 7589 /* 7590 * If this errors out it's because we couldn't invalidate pagecache for 7591 * this range and we need to fallback to buffered IO, or we are doing a 7592 * NOWAIT read/write and we need to block. 7593 */ 7594 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7595 if (ret < 0) 7596 goto err; 7597 7598 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 7599 if (IS_ERR(em)) { 7600 ret = PTR_ERR(em); 7601 goto unlock_err; 7602 } 7603 7604 /* 7605 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7606 * io. INLINE is special, and we could probably kludge it in here, but 7607 * it's still buffered so for safety lets just fall back to the generic 7608 * buffered path. 7609 * 7610 * For COMPRESSED we _have_ to read the entire extent in so we can 7611 * decompress it, so there will be buffering required no matter what we 7612 * do, so go ahead and fallback to buffered. 7613 * 7614 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7615 * to buffered IO. Don't blame me, this is the price we pay for using 7616 * the generic code. 7617 */ 7618 if (extent_map_is_compressed(em) || 7619 em->block_start == EXTENT_MAP_INLINE) { 7620 free_extent_map(em); 7621 /* 7622 * If we are in a NOWAIT context, return -EAGAIN in order to 7623 * fallback to buffered IO. This is not only because we can 7624 * block with buffered IO (no support for NOWAIT semantics at 7625 * the moment) but also to avoid returning short reads to user 7626 * space - this happens if we were able to read some data from 7627 * previous non-compressed extents and then when we fallback to 7628 * buffered IO, at btrfs_file_read_iter() by calling 7629 * filemap_read(), we fail to fault in pages for the read buffer, 7630 * in which case filemap_read() returns a short read (the number 7631 * of bytes previously read is > 0, so it does not return -EFAULT). 7632 */ 7633 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7634 goto unlock_err; 7635 } 7636 7637 len = min(len, em->len - (start - em->start)); 7638 7639 /* 7640 * If we have a NOWAIT request and the range contains multiple extents 7641 * (or a mix of extents and holes), then we return -EAGAIN to make the 7642 * caller fallback to a context where it can do a blocking (without 7643 * NOWAIT) request. This way we avoid doing partial IO and returning 7644 * success to the caller, which is not optimal for writes and for reads 7645 * it can result in unexpected behaviour for an application. 7646 * 7647 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7648 * iomap_dio_rw(), we can end up returning less data then what the caller 7649 * asked for, resulting in an unexpected, and incorrect, short read. 7650 * That is, the caller asked to read N bytes and we return less than that, 7651 * which is wrong unless we are crossing EOF. This happens if we get a 7652 * page fault error when trying to fault in pages for the buffer that is 7653 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7654 * have previously submitted bios for other extents in the range, in 7655 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7656 * those bios have completed by the time we get the page fault error, 7657 * which we return back to our caller - we should only return EIOCBQUEUED 7658 * after we have submitted bios for all the extents in the range. 7659 */ 7660 if ((flags & IOMAP_NOWAIT) && len < length) { 7661 free_extent_map(em); 7662 ret = -EAGAIN; 7663 goto unlock_err; 7664 } 7665 7666 if (write) { 7667 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7668 start, &len, flags); 7669 if (ret < 0) 7670 goto unlock_err; 7671 unlock_extents = true; 7672 /* Recalc len in case the new em is smaller than requested */ 7673 len = min(len, em->len - (start - em->start)); 7674 if (dio_data->data_space_reserved) { 7675 u64 release_offset; 7676 u64 release_len = 0; 7677 7678 if (dio_data->nocow_done) { 7679 release_offset = start; 7680 release_len = data_alloc_len; 7681 } else if (len < data_alloc_len) { 7682 release_offset = start + len; 7683 release_len = data_alloc_len - len; 7684 } 7685 7686 if (release_len > 0) 7687 btrfs_free_reserved_data_space(BTRFS_I(inode), 7688 dio_data->data_reserved, 7689 release_offset, 7690 release_len); 7691 } 7692 } else { 7693 /* 7694 * We need to unlock only the end area that we aren't using. 7695 * The rest is going to be unlocked by the endio routine. 7696 */ 7697 lockstart = start + len; 7698 if (lockstart < lockend) 7699 unlock_extents = true; 7700 } 7701 7702 if (unlock_extents) 7703 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7704 &cached_state); 7705 else 7706 free_extent_state(cached_state); 7707 7708 /* 7709 * Translate extent map information to iomap. 7710 * We trim the extents (and move the addr) even though iomap code does 7711 * that, since we have locked only the parts we are performing I/O in. 7712 */ 7713 if ((em->block_start == EXTENT_MAP_HOLE) || 7714 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) { 7715 iomap->addr = IOMAP_NULL_ADDR; 7716 iomap->type = IOMAP_HOLE; 7717 } else { 7718 iomap->addr = em->block_start + (start - em->start); 7719 iomap->type = IOMAP_MAPPED; 7720 } 7721 iomap->offset = start; 7722 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7723 iomap->length = len; 7724 free_extent_map(em); 7725 7726 return 0; 7727 7728 unlock_err: 7729 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7730 &cached_state); 7731 err: 7732 if (dio_data->data_space_reserved) { 7733 btrfs_free_reserved_data_space(BTRFS_I(inode), 7734 dio_data->data_reserved, 7735 start, data_alloc_len); 7736 extent_changeset_free(dio_data->data_reserved); 7737 } 7738 7739 return ret; 7740 } 7741 7742 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7743 ssize_t written, unsigned int flags, struct iomap *iomap) 7744 { 7745 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7746 struct btrfs_dio_data *dio_data = iter->private; 7747 size_t submitted = dio_data->submitted; 7748 const bool write = !!(flags & IOMAP_WRITE); 7749 int ret = 0; 7750 7751 if (!write && (iomap->type == IOMAP_HOLE)) { 7752 /* If reading from a hole, unlock and return */ 7753 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7754 NULL); 7755 return 0; 7756 } 7757 7758 if (submitted < length) { 7759 pos += submitted; 7760 length -= submitted; 7761 if (write) 7762 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7763 pos, length, false); 7764 else 7765 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7766 pos + length - 1, NULL); 7767 ret = -ENOTBLK; 7768 } 7769 if (write) { 7770 btrfs_put_ordered_extent(dio_data->ordered); 7771 dio_data->ordered = NULL; 7772 } 7773 7774 if (write) 7775 extent_changeset_free(dio_data->data_reserved); 7776 return ret; 7777 } 7778 7779 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7780 { 7781 struct btrfs_dio_private *dip = 7782 container_of(bbio, struct btrfs_dio_private, bbio); 7783 struct btrfs_inode *inode = bbio->inode; 7784 struct bio *bio = &bbio->bio; 7785 7786 if (bio->bi_status) { 7787 btrfs_warn(inode->root->fs_info, 7788 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7789 btrfs_ino(inode), bio->bi_opf, 7790 dip->file_offset, dip->bytes, bio->bi_status); 7791 } 7792 7793 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7794 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7795 dip->file_offset, dip->bytes, 7796 !bio->bi_status); 7797 } else { 7798 unlock_extent(&inode->io_tree, dip->file_offset, 7799 dip->file_offset + dip->bytes - 1, NULL); 7800 } 7801 7802 bbio->bio.bi_private = bbio->private; 7803 iomap_dio_bio_end_io(bio); 7804 } 7805 7806 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7807 loff_t file_offset) 7808 { 7809 struct btrfs_bio *bbio = btrfs_bio(bio); 7810 struct btrfs_dio_private *dip = 7811 container_of(bbio, struct btrfs_dio_private, bbio); 7812 struct btrfs_dio_data *dio_data = iter->private; 7813 7814 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7815 btrfs_dio_end_io, bio->bi_private); 7816 bbio->inode = BTRFS_I(iter->inode); 7817 bbio->file_offset = file_offset; 7818 7819 dip->file_offset = file_offset; 7820 dip->bytes = bio->bi_iter.bi_size; 7821 7822 dio_data->submitted += bio->bi_iter.bi_size; 7823 7824 /* 7825 * Check if we are doing a partial write. If we are, we need to split 7826 * the ordered extent to match the submitted bio. Hang on to the 7827 * remaining unfinishable ordered_extent in dio_data so that it can be 7828 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7829 * remaining pages is blocked on the outstanding ordered extent. 7830 */ 7831 if (iter->flags & IOMAP_WRITE) { 7832 int ret; 7833 7834 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7835 if (ret) { 7836 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7837 file_offset, dip->bytes, 7838 !ret); 7839 bio->bi_status = errno_to_blk_status(ret); 7840 iomap_dio_bio_end_io(bio); 7841 return; 7842 } 7843 } 7844 7845 btrfs_submit_bio(bbio, 0); 7846 } 7847 7848 static const struct iomap_ops btrfs_dio_iomap_ops = { 7849 .iomap_begin = btrfs_dio_iomap_begin, 7850 .iomap_end = btrfs_dio_iomap_end, 7851 }; 7852 7853 static const struct iomap_dio_ops btrfs_dio_ops = { 7854 .submit_io = btrfs_dio_submit_io, 7855 .bio_set = &btrfs_dio_bioset, 7856 }; 7857 7858 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7859 { 7860 struct btrfs_dio_data data = { 0 }; 7861 7862 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7863 IOMAP_DIO_PARTIAL, &data, done_before); 7864 } 7865 7866 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7867 size_t done_before) 7868 { 7869 struct btrfs_dio_data data = { 0 }; 7870 7871 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7872 IOMAP_DIO_PARTIAL, &data, done_before); 7873 } 7874 7875 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7876 u64 start, u64 len) 7877 { 7878 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 7879 int ret; 7880 7881 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7882 if (ret) 7883 return ret; 7884 7885 /* 7886 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7887 * file range (0 to LLONG_MAX), but that is not enough if we have 7888 * compression enabled. The first filemap_fdatawrite_range() only kicks 7889 * in the compression of data (in an async thread) and will return 7890 * before the compression is done and writeback is started. A second 7891 * filemap_fdatawrite_range() is needed to wait for the compression to 7892 * complete and writeback to start. We also need to wait for ordered 7893 * extents to complete, because our fiemap implementation uses mainly 7894 * file extent items to list the extents, searching for extent maps 7895 * only for file ranges with holes or prealloc extents to figure out 7896 * if we have delalloc in those ranges. 7897 */ 7898 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7899 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7900 if (ret) 7901 return ret; 7902 } 7903 7904 btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED); 7905 7906 /* 7907 * We did an initial flush to avoid holding the inode's lock while 7908 * triggering writeback and waiting for the completion of IO and ordered 7909 * extents. Now after we locked the inode we do it again, because it's 7910 * possible a new write may have happened in between those two steps. 7911 */ 7912 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7913 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7914 if (ret) { 7915 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7916 return ret; 7917 } 7918 } 7919 7920 ret = extent_fiemap(btrfs_inode, fieinfo, start, len); 7921 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7922 7923 return ret; 7924 } 7925 7926 static int btrfs_writepages(struct address_space *mapping, 7927 struct writeback_control *wbc) 7928 { 7929 return extent_writepages(mapping, wbc); 7930 } 7931 7932 static void btrfs_readahead(struct readahead_control *rac) 7933 { 7934 extent_readahead(rac); 7935 } 7936 7937 /* 7938 * For release_folio() and invalidate_folio() we have a race window where 7939 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7940 * If we continue to release/invalidate the page, we could cause use-after-free 7941 * for subpage spinlock. So this function is to spin and wait for subpage 7942 * spinlock. 7943 */ 7944 static void wait_subpage_spinlock(struct page *page) 7945 { 7946 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 7947 struct folio *folio = page_folio(page); 7948 struct btrfs_subpage *subpage; 7949 7950 if (!btrfs_is_subpage(fs_info, page->mapping)) 7951 return; 7952 7953 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7954 subpage = folio_get_private(folio); 7955 7956 /* 7957 * This may look insane as we just acquire the spinlock and release it, 7958 * without doing anything. But we just want to make sure no one is 7959 * still holding the subpage spinlock. 7960 * And since the page is not dirty nor writeback, and we have page 7961 * locked, the only possible way to hold a spinlock is from the endio 7962 * function to clear page writeback. 7963 * 7964 * Here we just acquire the spinlock so that all existing callers 7965 * should exit and we're safe to release/invalidate the page. 7966 */ 7967 spin_lock_irq(&subpage->lock); 7968 spin_unlock_irq(&subpage->lock); 7969 } 7970 7971 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7972 { 7973 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7974 7975 if (ret == 1) { 7976 wait_subpage_spinlock(&folio->page); 7977 clear_page_extent_mapped(&folio->page); 7978 } 7979 return ret; 7980 } 7981 7982 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7983 { 7984 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7985 return false; 7986 return __btrfs_release_folio(folio, gfp_flags); 7987 } 7988 7989 #ifdef CONFIG_MIGRATION 7990 static int btrfs_migrate_folio(struct address_space *mapping, 7991 struct folio *dst, struct folio *src, 7992 enum migrate_mode mode) 7993 { 7994 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7995 7996 if (ret != MIGRATEPAGE_SUCCESS) 7997 return ret; 7998 7999 if (folio_test_ordered(src)) { 8000 folio_clear_ordered(src); 8001 folio_set_ordered(dst); 8002 } 8003 8004 return MIGRATEPAGE_SUCCESS; 8005 } 8006 #else 8007 #define btrfs_migrate_folio NULL 8008 #endif 8009 8010 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8011 size_t length) 8012 { 8013 struct btrfs_inode *inode = folio_to_inode(folio); 8014 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8015 struct extent_io_tree *tree = &inode->io_tree; 8016 struct extent_state *cached_state = NULL; 8017 u64 page_start = folio_pos(folio); 8018 u64 page_end = page_start + folio_size(folio) - 1; 8019 u64 cur; 8020 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8021 8022 /* 8023 * We have folio locked so no new ordered extent can be created on this 8024 * page, nor bio can be submitted for this folio. 8025 * 8026 * But already submitted bio can still be finished on this folio. 8027 * Furthermore, endio function won't skip folio which has Ordered 8028 * (Private2) already cleared, so it's possible for endio and 8029 * invalidate_folio to do the same ordered extent accounting twice 8030 * on one folio. 8031 * 8032 * So here we wait for any submitted bios to finish, so that we won't 8033 * do double ordered extent accounting on the same folio. 8034 */ 8035 folio_wait_writeback(folio); 8036 wait_subpage_spinlock(&folio->page); 8037 8038 /* 8039 * For subpage case, we have call sites like 8040 * btrfs_punch_hole_lock_range() which passes range not aligned to 8041 * sectorsize. 8042 * If the range doesn't cover the full folio, we don't need to and 8043 * shouldn't clear page extent mapped, as folio->private can still 8044 * record subpage dirty bits for other part of the range. 8045 * 8046 * For cases that invalidate the full folio even the range doesn't 8047 * cover the full folio, like invalidating the last folio, we're 8048 * still safe to wait for ordered extent to finish. 8049 */ 8050 if (!(offset == 0 && length == folio_size(folio))) { 8051 btrfs_release_folio(folio, GFP_NOFS); 8052 return; 8053 } 8054 8055 if (!inode_evicting) 8056 lock_extent(tree, page_start, page_end, &cached_state); 8057 8058 cur = page_start; 8059 while (cur < page_end) { 8060 struct btrfs_ordered_extent *ordered; 8061 u64 range_end; 8062 u32 range_len; 8063 u32 extra_flags = 0; 8064 8065 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8066 page_end + 1 - cur); 8067 if (!ordered) { 8068 range_end = page_end; 8069 /* 8070 * No ordered extent covering this range, we are safe 8071 * to delete all extent states in the range. 8072 */ 8073 extra_flags = EXTENT_CLEAR_ALL_BITS; 8074 goto next; 8075 } 8076 if (ordered->file_offset > cur) { 8077 /* 8078 * There is a range between [cur, oe->file_offset) not 8079 * covered by any ordered extent. 8080 * We are safe to delete all extent states, and handle 8081 * the ordered extent in the next iteration. 8082 */ 8083 range_end = ordered->file_offset - 1; 8084 extra_flags = EXTENT_CLEAR_ALL_BITS; 8085 goto next; 8086 } 8087 8088 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8089 page_end); 8090 ASSERT(range_end + 1 - cur < U32_MAX); 8091 range_len = range_end + 1 - cur; 8092 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 8093 /* 8094 * If Ordered (Private2) is cleared, it means endio has 8095 * already been executed for the range. 8096 * We can't delete the extent states as 8097 * btrfs_finish_ordered_io() may still use some of them. 8098 */ 8099 goto next; 8100 } 8101 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 8102 8103 /* 8104 * IO on this page will never be started, so we need to account 8105 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8106 * here, must leave that up for the ordered extent completion. 8107 * 8108 * This will also unlock the range for incoming 8109 * btrfs_finish_ordered_io(). 8110 */ 8111 if (!inode_evicting) 8112 clear_extent_bit(tree, cur, range_end, 8113 EXTENT_DELALLOC | 8114 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8115 EXTENT_DEFRAG, &cached_state); 8116 8117 spin_lock_irq(&inode->ordered_tree_lock); 8118 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8119 ordered->truncated_len = min(ordered->truncated_len, 8120 cur - ordered->file_offset); 8121 spin_unlock_irq(&inode->ordered_tree_lock); 8122 8123 /* 8124 * If the ordered extent has finished, we're safe to delete all 8125 * the extent states of the range, otherwise 8126 * btrfs_finish_ordered_io() will get executed by endio for 8127 * other pages, so we can't delete extent states. 8128 */ 8129 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8130 cur, range_end + 1 - cur)) { 8131 btrfs_finish_ordered_io(ordered); 8132 /* 8133 * The ordered extent has finished, now we're again 8134 * safe to delete all extent states of the range. 8135 */ 8136 extra_flags = EXTENT_CLEAR_ALL_BITS; 8137 } 8138 next: 8139 if (ordered) 8140 btrfs_put_ordered_extent(ordered); 8141 /* 8142 * Qgroup reserved space handler 8143 * Sector(s) here will be either: 8144 * 8145 * 1) Already written to disk or bio already finished 8146 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8147 * Qgroup will be handled by its qgroup_record then. 8148 * btrfs_qgroup_free_data() call will do nothing here. 8149 * 8150 * 2) Not written to disk yet 8151 * Then btrfs_qgroup_free_data() call will clear the 8152 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8153 * reserved data space. 8154 * Since the IO will never happen for this page. 8155 */ 8156 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 8157 if (!inode_evicting) { 8158 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8159 EXTENT_DELALLOC | EXTENT_UPTODATE | 8160 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8161 extra_flags, &cached_state); 8162 } 8163 cur = range_end + 1; 8164 } 8165 /* 8166 * We have iterated through all ordered extents of the page, the page 8167 * should not have Ordered (Private2) anymore, or the above iteration 8168 * did something wrong. 8169 */ 8170 ASSERT(!folio_test_ordered(folio)); 8171 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 8172 if (!inode_evicting) 8173 __btrfs_release_folio(folio, GFP_NOFS); 8174 clear_page_extent_mapped(&folio->page); 8175 } 8176 8177 /* 8178 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8179 * called from a page fault handler when a page is first dirtied. Hence we must 8180 * be careful to check for EOF conditions here. We set the page up correctly 8181 * for a written page which means we get ENOSPC checking when writing into 8182 * holes and correct delalloc and unwritten extent mapping on filesystems that 8183 * support these features. 8184 * 8185 * We are not allowed to take the i_mutex here so we have to play games to 8186 * protect against truncate races as the page could now be beyond EOF. Because 8187 * truncate_setsize() writes the inode size before removing pages, once we have 8188 * the page lock we can determine safely if the page is beyond EOF. If it is not 8189 * beyond EOF, then the page is guaranteed safe against truncation until we 8190 * unlock the page. 8191 */ 8192 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8193 { 8194 struct page *page = vmf->page; 8195 struct folio *folio = page_folio(page); 8196 struct inode *inode = file_inode(vmf->vma->vm_file); 8197 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8198 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8199 struct btrfs_ordered_extent *ordered; 8200 struct extent_state *cached_state = NULL; 8201 struct extent_changeset *data_reserved = NULL; 8202 unsigned long zero_start; 8203 loff_t size; 8204 vm_fault_t ret; 8205 int ret2; 8206 int reserved = 0; 8207 u64 reserved_space; 8208 u64 page_start; 8209 u64 page_end; 8210 u64 end; 8211 8212 ASSERT(folio_order(folio) == 0); 8213 8214 reserved_space = PAGE_SIZE; 8215 8216 sb_start_pagefault(inode->i_sb); 8217 page_start = page_offset(page); 8218 page_end = page_start + PAGE_SIZE - 1; 8219 end = page_end; 8220 8221 /* 8222 * Reserving delalloc space after obtaining the page lock can lead to 8223 * deadlock. For example, if a dirty page is locked by this function 8224 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8225 * dirty page write out, then the btrfs_writepages() function could 8226 * end up waiting indefinitely to get a lock on the page currently 8227 * being processed by btrfs_page_mkwrite() function. 8228 */ 8229 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8230 page_start, reserved_space); 8231 if (!ret2) { 8232 ret2 = file_update_time(vmf->vma->vm_file); 8233 reserved = 1; 8234 } 8235 if (ret2) { 8236 ret = vmf_error(ret2); 8237 if (reserved) 8238 goto out; 8239 goto out_noreserve; 8240 } 8241 8242 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8243 again: 8244 down_read(&BTRFS_I(inode)->i_mmap_lock); 8245 lock_page(page); 8246 size = i_size_read(inode); 8247 8248 if ((page->mapping != inode->i_mapping) || 8249 (page_start >= size)) { 8250 /* page got truncated out from underneath us */ 8251 goto out_unlock; 8252 } 8253 wait_on_page_writeback(page); 8254 8255 lock_extent(io_tree, page_start, page_end, &cached_state); 8256 ret2 = set_page_extent_mapped(page); 8257 if (ret2 < 0) { 8258 ret = vmf_error(ret2); 8259 unlock_extent(io_tree, page_start, page_end, &cached_state); 8260 goto out_unlock; 8261 } 8262 8263 /* 8264 * we can't set the delalloc bits if there are pending ordered 8265 * extents. Drop our locks and wait for them to finish 8266 */ 8267 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8268 PAGE_SIZE); 8269 if (ordered) { 8270 unlock_extent(io_tree, page_start, page_end, &cached_state); 8271 unlock_page(page); 8272 up_read(&BTRFS_I(inode)->i_mmap_lock); 8273 btrfs_start_ordered_extent(ordered); 8274 btrfs_put_ordered_extent(ordered); 8275 goto again; 8276 } 8277 8278 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8279 reserved_space = round_up(size - page_start, 8280 fs_info->sectorsize); 8281 if (reserved_space < PAGE_SIZE) { 8282 end = page_start + reserved_space - 1; 8283 btrfs_delalloc_release_space(BTRFS_I(inode), 8284 data_reserved, page_start, 8285 PAGE_SIZE - reserved_space, true); 8286 } 8287 } 8288 8289 /* 8290 * page_mkwrite gets called when the page is firstly dirtied after it's 8291 * faulted in, but write(2) could also dirty a page and set delalloc 8292 * bits, thus in this case for space account reason, we still need to 8293 * clear any delalloc bits within this page range since we have to 8294 * reserve data&meta space before lock_page() (see above comments). 8295 */ 8296 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8297 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8298 EXTENT_DEFRAG, &cached_state); 8299 8300 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8301 &cached_state); 8302 if (ret2) { 8303 unlock_extent(io_tree, page_start, page_end, &cached_state); 8304 ret = VM_FAULT_SIGBUS; 8305 goto out_unlock; 8306 } 8307 8308 /* page is wholly or partially inside EOF */ 8309 if (page_start + PAGE_SIZE > size) 8310 zero_start = offset_in_page(size); 8311 else 8312 zero_start = PAGE_SIZE; 8313 8314 if (zero_start != PAGE_SIZE) 8315 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8316 8317 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 8318 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 8319 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 8320 8321 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8322 8323 unlock_extent(io_tree, page_start, page_end, &cached_state); 8324 up_read(&BTRFS_I(inode)->i_mmap_lock); 8325 8326 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8327 sb_end_pagefault(inode->i_sb); 8328 extent_changeset_free(data_reserved); 8329 return VM_FAULT_LOCKED; 8330 8331 out_unlock: 8332 unlock_page(page); 8333 up_read(&BTRFS_I(inode)->i_mmap_lock); 8334 out: 8335 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8336 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8337 reserved_space, (ret != 0)); 8338 out_noreserve: 8339 sb_end_pagefault(inode->i_sb); 8340 extent_changeset_free(data_reserved); 8341 return ret; 8342 } 8343 8344 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8345 { 8346 struct btrfs_truncate_control control = { 8347 .inode = inode, 8348 .ino = btrfs_ino(inode), 8349 .min_type = BTRFS_EXTENT_DATA_KEY, 8350 .clear_extent_range = true, 8351 }; 8352 struct btrfs_root *root = inode->root; 8353 struct btrfs_fs_info *fs_info = root->fs_info; 8354 struct btrfs_block_rsv *rsv; 8355 int ret; 8356 struct btrfs_trans_handle *trans; 8357 u64 mask = fs_info->sectorsize - 1; 8358 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8359 8360 if (!skip_writeback) { 8361 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8362 inode->vfs_inode.i_size & (~mask), 8363 (u64)-1); 8364 if (ret) 8365 return ret; 8366 } 8367 8368 /* 8369 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8370 * things going on here: 8371 * 8372 * 1) We need to reserve space to update our inode. 8373 * 8374 * 2) We need to have something to cache all the space that is going to 8375 * be free'd up by the truncate operation, but also have some slack 8376 * space reserved in case it uses space during the truncate (thank you 8377 * very much snapshotting). 8378 * 8379 * And we need these to be separate. The fact is we can use a lot of 8380 * space doing the truncate, and we have no earthly idea how much space 8381 * we will use, so we need the truncate reservation to be separate so it 8382 * doesn't end up using space reserved for updating the inode. We also 8383 * need to be able to stop the transaction and start a new one, which 8384 * means we need to be able to update the inode several times, and we 8385 * have no idea of knowing how many times that will be, so we can't just 8386 * reserve 1 item for the entirety of the operation, so that has to be 8387 * done separately as well. 8388 * 8389 * So that leaves us with 8390 * 8391 * 1) rsv - for the truncate reservation, which we will steal from the 8392 * transaction reservation. 8393 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8394 * updating the inode. 8395 */ 8396 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8397 if (!rsv) 8398 return -ENOMEM; 8399 rsv->size = min_size; 8400 rsv->failfast = true; 8401 8402 /* 8403 * 1 for the truncate slack space 8404 * 1 for updating the inode. 8405 */ 8406 trans = btrfs_start_transaction(root, 2); 8407 if (IS_ERR(trans)) { 8408 ret = PTR_ERR(trans); 8409 goto out; 8410 } 8411 8412 /* Migrate the slack space for the truncate to our reserve */ 8413 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8414 min_size, false); 8415 /* 8416 * We have reserved 2 metadata units when we started the transaction and 8417 * min_size matches 1 unit, so this should never fail, but if it does, 8418 * it's not critical we just fail truncation. 8419 */ 8420 if (WARN_ON(ret)) { 8421 btrfs_end_transaction(trans); 8422 goto out; 8423 } 8424 8425 trans->block_rsv = rsv; 8426 8427 while (1) { 8428 struct extent_state *cached_state = NULL; 8429 const u64 new_size = inode->vfs_inode.i_size; 8430 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8431 8432 control.new_size = new_size; 8433 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8434 /* 8435 * We want to drop from the next block forward in case this new 8436 * size is not block aligned since we will be keeping the last 8437 * block of the extent just the way it is. 8438 */ 8439 btrfs_drop_extent_map_range(inode, 8440 ALIGN(new_size, fs_info->sectorsize), 8441 (u64)-1, false); 8442 8443 ret = btrfs_truncate_inode_items(trans, root, &control); 8444 8445 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8446 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8447 8448 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8449 8450 trans->block_rsv = &fs_info->trans_block_rsv; 8451 if (ret != -ENOSPC && ret != -EAGAIN) 8452 break; 8453 8454 ret = btrfs_update_inode(trans, inode); 8455 if (ret) 8456 break; 8457 8458 btrfs_end_transaction(trans); 8459 btrfs_btree_balance_dirty(fs_info); 8460 8461 trans = btrfs_start_transaction(root, 2); 8462 if (IS_ERR(trans)) { 8463 ret = PTR_ERR(trans); 8464 trans = NULL; 8465 break; 8466 } 8467 8468 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8469 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8470 rsv, min_size, false); 8471 /* 8472 * We have reserved 2 metadata units when we started the 8473 * transaction and min_size matches 1 unit, so this should never 8474 * fail, but if it does, it's not critical we just fail truncation. 8475 */ 8476 if (WARN_ON(ret)) 8477 break; 8478 8479 trans->block_rsv = rsv; 8480 } 8481 8482 /* 8483 * We can't call btrfs_truncate_block inside a trans handle as we could 8484 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8485 * know we've truncated everything except the last little bit, and can 8486 * do btrfs_truncate_block and then update the disk_i_size. 8487 */ 8488 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8489 btrfs_end_transaction(trans); 8490 btrfs_btree_balance_dirty(fs_info); 8491 8492 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8493 if (ret) 8494 goto out; 8495 trans = btrfs_start_transaction(root, 1); 8496 if (IS_ERR(trans)) { 8497 ret = PTR_ERR(trans); 8498 goto out; 8499 } 8500 btrfs_inode_safe_disk_i_size_write(inode, 0); 8501 } 8502 8503 if (trans) { 8504 int ret2; 8505 8506 trans->block_rsv = &fs_info->trans_block_rsv; 8507 ret2 = btrfs_update_inode(trans, inode); 8508 if (ret2 && !ret) 8509 ret = ret2; 8510 8511 ret2 = btrfs_end_transaction(trans); 8512 if (ret2 && !ret) 8513 ret = ret2; 8514 btrfs_btree_balance_dirty(fs_info); 8515 } 8516 out: 8517 btrfs_free_block_rsv(fs_info, rsv); 8518 /* 8519 * So if we truncate and then write and fsync we normally would just 8520 * write the extents that changed, which is a problem if we need to 8521 * first truncate that entire inode. So set this flag so we write out 8522 * all of the extents in the inode to the sync log so we're completely 8523 * safe. 8524 * 8525 * If no extents were dropped or trimmed we don't need to force the next 8526 * fsync to truncate all the inode's items from the log and re-log them 8527 * all. This means the truncate operation did not change the file size, 8528 * or changed it to a smaller size but there was only an implicit hole 8529 * between the old i_size and the new i_size, and there were no prealloc 8530 * extents beyond i_size to drop. 8531 */ 8532 if (control.extents_found > 0) 8533 btrfs_set_inode_full_sync(inode); 8534 8535 return ret; 8536 } 8537 8538 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8539 struct inode *dir) 8540 { 8541 struct inode *inode; 8542 8543 inode = new_inode(dir->i_sb); 8544 if (inode) { 8545 /* 8546 * Subvolumes don't inherit the sgid bit or the parent's gid if 8547 * the parent's sgid bit is set. This is probably a bug. 8548 */ 8549 inode_init_owner(idmap, inode, NULL, 8550 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8551 inode->i_op = &btrfs_dir_inode_operations; 8552 inode->i_fop = &btrfs_dir_file_operations; 8553 } 8554 return inode; 8555 } 8556 8557 struct inode *btrfs_alloc_inode(struct super_block *sb) 8558 { 8559 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8560 struct btrfs_inode *ei; 8561 struct inode *inode; 8562 struct extent_io_tree *file_extent_tree = NULL; 8563 8564 /* Self tests may pass a NULL fs_info. */ 8565 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) { 8566 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 8567 if (!file_extent_tree) 8568 return NULL; 8569 } 8570 8571 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8572 if (!ei) { 8573 kfree(file_extent_tree); 8574 return NULL; 8575 } 8576 8577 ei->root = NULL; 8578 ei->generation = 0; 8579 ei->last_trans = 0; 8580 ei->last_sub_trans = 0; 8581 ei->logged_trans = 0; 8582 ei->delalloc_bytes = 0; 8583 ei->new_delalloc_bytes = 0; 8584 ei->defrag_bytes = 0; 8585 ei->disk_i_size = 0; 8586 ei->flags = 0; 8587 ei->ro_flags = 0; 8588 ei->csum_bytes = 0; 8589 ei->index_cnt = (u64)-1; 8590 ei->dir_index = 0; 8591 ei->last_unlink_trans = 0; 8592 ei->last_reflink_trans = 0; 8593 ei->last_log_commit = 0; 8594 8595 spin_lock_init(&ei->lock); 8596 ei->outstanding_extents = 0; 8597 if (sb->s_magic != BTRFS_TEST_MAGIC) 8598 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8599 BTRFS_BLOCK_RSV_DELALLOC); 8600 ei->runtime_flags = 0; 8601 ei->prop_compress = BTRFS_COMPRESS_NONE; 8602 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8603 8604 ei->delayed_node = NULL; 8605 8606 ei->i_otime_sec = 0; 8607 ei->i_otime_nsec = 0; 8608 8609 inode = &ei->vfs_inode; 8610 extent_map_tree_init(&ei->extent_tree); 8611 8612 /* This io tree sets the valid inode. */ 8613 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8614 ei->io_tree.inode = ei; 8615 8616 ei->file_extent_tree = file_extent_tree; 8617 if (file_extent_tree) { 8618 extent_io_tree_init(fs_info, ei->file_extent_tree, 8619 IO_TREE_INODE_FILE_EXTENT); 8620 /* Lockdep class is set only for the file extent tree. */ 8621 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class); 8622 } 8623 mutex_init(&ei->log_mutex); 8624 spin_lock_init(&ei->ordered_tree_lock); 8625 ei->ordered_tree = RB_ROOT; 8626 ei->ordered_tree_last = NULL; 8627 INIT_LIST_HEAD(&ei->delalloc_inodes); 8628 INIT_LIST_HEAD(&ei->delayed_iput); 8629 RB_CLEAR_NODE(&ei->rb_node); 8630 init_rwsem(&ei->i_mmap_lock); 8631 8632 return inode; 8633 } 8634 8635 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8636 void btrfs_test_destroy_inode(struct inode *inode) 8637 { 8638 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8639 kfree(BTRFS_I(inode)->file_extent_tree); 8640 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8641 } 8642 #endif 8643 8644 void btrfs_free_inode(struct inode *inode) 8645 { 8646 kfree(BTRFS_I(inode)->file_extent_tree); 8647 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8648 } 8649 8650 void btrfs_destroy_inode(struct inode *vfs_inode) 8651 { 8652 struct btrfs_ordered_extent *ordered; 8653 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8654 struct btrfs_root *root = inode->root; 8655 bool freespace_inode; 8656 8657 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8658 WARN_ON(vfs_inode->i_data.nrpages); 8659 WARN_ON(inode->block_rsv.reserved); 8660 WARN_ON(inode->block_rsv.size); 8661 WARN_ON(inode->outstanding_extents); 8662 if (!S_ISDIR(vfs_inode->i_mode)) { 8663 WARN_ON(inode->delalloc_bytes); 8664 WARN_ON(inode->new_delalloc_bytes); 8665 } 8666 WARN_ON(inode->csum_bytes); 8667 WARN_ON(inode->defrag_bytes); 8668 8669 /* 8670 * This can happen where we create an inode, but somebody else also 8671 * created the same inode and we need to destroy the one we already 8672 * created. 8673 */ 8674 if (!root) 8675 return; 8676 8677 /* 8678 * If this is a free space inode do not take the ordered extents lockdep 8679 * map. 8680 */ 8681 freespace_inode = btrfs_is_free_space_inode(inode); 8682 8683 while (1) { 8684 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8685 if (!ordered) 8686 break; 8687 else { 8688 btrfs_err(root->fs_info, 8689 "found ordered extent %llu %llu on inode cleanup", 8690 ordered->file_offset, ordered->num_bytes); 8691 8692 if (!freespace_inode) 8693 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8694 8695 btrfs_remove_ordered_extent(inode, ordered); 8696 btrfs_put_ordered_extent(ordered); 8697 btrfs_put_ordered_extent(ordered); 8698 } 8699 } 8700 btrfs_qgroup_check_reserved_leak(inode); 8701 inode_tree_del(inode); 8702 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8703 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8704 btrfs_put_root(inode->root); 8705 } 8706 8707 int btrfs_drop_inode(struct inode *inode) 8708 { 8709 struct btrfs_root *root = BTRFS_I(inode)->root; 8710 8711 if (root == NULL) 8712 return 1; 8713 8714 /* the snap/subvol tree is on deleting */ 8715 if (btrfs_root_refs(&root->root_item) == 0) 8716 return 1; 8717 else 8718 return generic_drop_inode(inode); 8719 } 8720 8721 static void init_once(void *foo) 8722 { 8723 struct btrfs_inode *ei = foo; 8724 8725 inode_init_once(&ei->vfs_inode); 8726 } 8727 8728 void __cold btrfs_destroy_cachep(void) 8729 { 8730 /* 8731 * Make sure all delayed rcu free inodes are flushed before we 8732 * destroy cache. 8733 */ 8734 rcu_barrier(); 8735 bioset_exit(&btrfs_dio_bioset); 8736 kmem_cache_destroy(btrfs_inode_cachep); 8737 } 8738 8739 int __init btrfs_init_cachep(void) 8740 { 8741 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8742 sizeof(struct btrfs_inode), 0, 8743 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8744 init_once); 8745 if (!btrfs_inode_cachep) 8746 goto fail; 8747 8748 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8749 offsetof(struct btrfs_dio_private, bbio.bio), 8750 BIOSET_NEED_BVECS)) 8751 goto fail; 8752 8753 return 0; 8754 fail: 8755 btrfs_destroy_cachep(); 8756 return -ENOMEM; 8757 } 8758 8759 static int btrfs_getattr(struct mnt_idmap *idmap, 8760 const struct path *path, struct kstat *stat, 8761 u32 request_mask, unsigned int flags) 8762 { 8763 u64 delalloc_bytes; 8764 u64 inode_bytes; 8765 struct inode *inode = d_inode(path->dentry); 8766 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8767 u32 bi_flags = BTRFS_I(inode)->flags; 8768 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8769 8770 stat->result_mask |= STATX_BTIME; 8771 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8772 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8773 if (bi_flags & BTRFS_INODE_APPEND) 8774 stat->attributes |= STATX_ATTR_APPEND; 8775 if (bi_flags & BTRFS_INODE_COMPRESS) 8776 stat->attributes |= STATX_ATTR_COMPRESSED; 8777 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8778 stat->attributes |= STATX_ATTR_IMMUTABLE; 8779 if (bi_flags & BTRFS_INODE_NODUMP) 8780 stat->attributes |= STATX_ATTR_NODUMP; 8781 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8782 stat->attributes |= STATX_ATTR_VERITY; 8783 8784 stat->attributes_mask |= (STATX_ATTR_APPEND | 8785 STATX_ATTR_COMPRESSED | 8786 STATX_ATTR_IMMUTABLE | 8787 STATX_ATTR_NODUMP); 8788 8789 generic_fillattr(idmap, request_mask, inode, stat); 8790 stat->dev = BTRFS_I(inode)->root->anon_dev; 8791 8792 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 8793 stat->result_mask |= STATX_SUBVOL; 8794 8795 spin_lock(&BTRFS_I(inode)->lock); 8796 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8797 inode_bytes = inode_get_bytes(inode); 8798 spin_unlock(&BTRFS_I(inode)->lock); 8799 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8800 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8801 return 0; 8802 } 8803 8804 static int btrfs_rename_exchange(struct inode *old_dir, 8805 struct dentry *old_dentry, 8806 struct inode *new_dir, 8807 struct dentry *new_dentry) 8808 { 8809 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8810 struct btrfs_trans_handle *trans; 8811 unsigned int trans_num_items; 8812 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8813 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8814 struct inode *new_inode = new_dentry->d_inode; 8815 struct inode *old_inode = old_dentry->d_inode; 8816 struct btrfs_rename_ctx old_rename_ctx; 8817 struct btrfs_rename_ctx new_rename_ctx; 8818 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8819 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8820 u64 old_idx = 0; 8821 u64 new_idx = 0; 8822 int ret; 8823 int ret2; 8824 bool need_abort = false; 8825 struct fscrypt_name old_fname, new_fname; 8826 struct fscrypt_str *old_name, *new_name; 8827 8828 /* 8829 * For non-subvolumes allow exchange only within one subvolume, in the 8830 * same inode namespace. Two subvolumes (represented as directory) can 8831 * be exchanged as they're a logical link and have a fixed inode number. 8832 */ 8833 if (root != dest && 8834 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8835 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8836 return -EXDEV; 8837 8838 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8839 if (ret) 8840 return ret; 8841 8842 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8843 if (ret) { 8844 fscrypt_free_filename(&old_fname); 8845 return ret; 8846 } 8847 8848 old_name = &old_fname.disk_name; 8849 new_name = &new_fname.disk_name; 8850 8851 /* close the race window with snapshot create/destroy ioctl */ 8852 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8853 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8854 down_read(&fs_info->subvol_sem); 8855 8856 /* 8857 * For each inode: 8858 * 1 to remove old dir item 8859 * 1 to remove old dir index 8860 * 1 to add new dir item 8861 * 1 to add new dir index 8862 * 1 to update parent inode 8863 * 8864 * If the parents are the same, we only need to account for one 8865 */ 8866 trans_num_items = (old_dir == new_dir ? 9 : 10); 8867 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8868 /* 8869 * 1 to remove old root ref 8870 * 1 to remove old root backref 8871 * 1 to add new root ref 8872 * 1 to add new root backref 8873 */ 8874 trans_num_items += 4; 8875 } else { 8876 /* 8877 * 1 to update inode item 8878 * 1 to remove old inode ref 8879 * 1 to add new inode ref 8880 */ 8881 trans_num_items += 3; 8882 } 8883 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8884 trans_num_items += 4; 8885 else 8886 trans_num_items += 3; 8887 trans = btrfs_start_transaction(root, trans_num_items); 8888 if (IS_ERR(trans)) { 8889 ret = PTR_ERR(trans); 8890 goto out_notrans; 8891 } 8892 8893 if (dest != root) { 8894 ret = btrfs_record_root_in_trans(trans, dest); 8895 if (ret) 8896 goto out_fail; 8897 } 8898 8899 /* 8900 * We need to find a free sequence number both in the source and 8901 * in the destination directory for the exchange. 8902 */ 8903 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8904 if (ret) 8905 goto out_fail; 8906 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8907 if (ret) 8908 goto out_fail; 8909 8910 BTRFS_I(old_inode)->dir_index = 0ULL; 8911 BTRFS_I(new_inode)->dir_index = 0ULL; 8912 8913 /* Reference for the source. */ 8914 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8915 /* force full log commit if subvolume involved. */ 8916 btrfs_set_log_full_commit(trans); 8917 } else { 8918 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8919 btrfs_ino(BTRFS_I(new_dir)), 8920 old_idx); 8921 if (ret) 8922 goto out_fail; 8923 need_abort = true; 8924 } 8925 8926 /* And now for the dest. */ 8927 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8928 /* force full log commit if subvolume involved. */ 8929 btrfs_set_log_full_commit(trans); 8930 } else { 8931 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8932 btrfs_ino(BTRFS_I(old_dir)), 8933 new_idx); 8934 if (ret) { 8935 if (need_abort) 8936 btrfs_abort_transaction(trans, ret); 8937 goto out_fail; 8938 } 8939 } 8940 8941 /* Update inode version and ctime/mtime. */ 8942 inode_inc_iversion(old_dir); 8943 inode_inc_iversion(new_dir); 8944 inode_inc_iversion(old_inode); 8945 inode_inc_iversion(new_inode); 8946 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8947 8948 if (old_dentry->d_parent != new_dentry->d_parent) { 8949 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8950 BTRFS_I(old_inode), true); 8951 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8952 BTRFS_I(new_inode), true); 8953 } 8954 8955 /* src is a subvolume */ 8956 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8957 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8958 } else { /* src is an inode */ 8959 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8960 BTRFS_I(old_dentry->d_inode), 8961 old_name, &old_rename_ctx); 8962 if (!ret) 8963 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8964 } 8965 if (ret) { 8966 btrfs_abort_transaction(trans, ret); 8967 goto out_fail; 8968 } 8969 8970 /* dest is a subvolume */ 8971 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8972 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8973 } else { /* dest is an inode */ 8974 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8975 BTRFS_I(new_dentry->d_inode), 8976 new_name, &new_rename_ctx); 8977 if (!ret) 8978 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8979 } 8980 if (ret) { 8981 btrfs_abort_transaction(trans, ret); 8982 goto out_fail; 8983 } 8984 8985 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8986 new_name, 0, old_idx); 8987 if (ret) { 8988 btrfs_abort_transaction(trans, ret); 8989 goto out_fail; 8990 } 8991 8992 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8993 old_name, 0, new_idx); 8994 if (ret) { 8995 btrfs_abort_transaction(trans, ret); 8996 goto out_fail; 8997 } 8998 8999 if (old_inode->i_nlink == 1) 9000 BTRFS_I(old_inode)->dir_index = old_idx; 9001 if (new_inode->i_nlink == 1) 9002 BTRFS_I(new_inode)->dir_index = new_idx; 9003 9004 /* 9005 * Now pin the logs of the roots. We do it to ensure that no other task 9006 * can sync the logs while we are in progress with the rename, because 9007 * that could result in an inconsistency in case any of the inodes that 9008 * are part of this rename operation were logged before. 9009 */ 9010 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9011 btrfs_pin_log_trans(root); 9012 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9013 btrfs_pin_log_trans(dest); 9014 9015 /* Do the log updates for all inodes. */ 9016 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9017 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9018 old_rename_ctx.index, new_dentry->d_parent); 9019 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9020 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 9021 new_rename_ctx.index, old_dentry->d_parent); 9022 9023 /* Now unpin the logs. */ 9024 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9025 btrfs_end_log_trans(root); 9026 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9027 btrfs_end_log_trans(dest); 9028 out_fail: 9029 ret2 = btrfs_end_transaction(trans); 9030 ret = ret ? ret : ret2; 9031 out_notrans: 9032 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9033 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9034 up_read(&fs_info->subvol_sem); 9035 9036 fscrypt_free_filename(&new_fname); 9037 fscrypt_free_filename(&old_fname); 9038 return ret; 9039 } 9040 9041 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 9042 struct inode *dir) 9043 { 9044 struct inode *inode; 9045 9046 inode = new_inode(dir->i_sb); 9047 if (inode) { 9048 inode_init_owner(idmap, inode, dir, 9049 S_IFCHR | WHITEOUT_MODE); 9050 inode->i_op = &btrfs_special_inode_operations; 9051 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 9052 } 9053 return inode; 9054 } 9055 9056 static int btrfs_rename(struct mnt_idmap *idmap, 9057 struct inode *old_dir, struct dentry *old_dentry, 9058 struct inode *new_dir, struct dentry *new_dentry, 9059 unsigned int flags) 9060 { 9061 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 9062 struct btrfs_new_inode_args whiteout_args = { 9063 .dir = old_dir, 9064 .dentry = old_dentry, 9065 }; 9066 struct btrfs_trans_handle *trans; 9067 unsigned int trans_num_items; 9068 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9069 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9070 struct inode *new_inode = d_inode(new_dentry); 9071 struct inode *old_inode = d_inode(old_dentry); 9072 struct btrfs_rename_ctx rename_ctx; 9073 u64 index = 0; 9074 int ret; 9075 int ret2; 9076 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9077 struct fscrypt_name old_fname, new_fname; 9078 9079 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9080 return -EPERM; 9081 9082 /* we only allow rename subvolume link between subvolumes */ 9083 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9084 return -EXDEV; 9085 9086 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9087 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9088 return -ENOTEMPTY; 9089 9090 if (S_ISDIR(old_inode->i_mode) && new_inode && 9091 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9092 return -ENOTEMPTY; 9093 9094 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 9095 if (ret) 9096 return ret; 9097 9098 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 9099 if (ret) { 9100 fscrypt_free_filename(&old_fname); 9101 return ret; 9102 } 9103 9104 /* check for collisions, even if the name isn't there */ 9105 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 9106 if (ret) { 9107 if (ret == -EEXIST) { 9108 /* we shouldn't get 9109 * eexist without a new_inode */ 9110 if (WARN_ON(!new_inode)) { 9111 goto out_fscrypt_names; 9112 } 9113 } else { 9114 /* maybe -EOVERFLOW */ 9115 goto out_fscrypt_names; 9116 } 9117 } 9118 ret = 0; 9119 9120 /* 9121 * we're using rename to replace one file with another. Start IO on it 9122 * now so we don't add too much work to the end of the transaction 9123 */ 9124 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9125 filemap_flush(old_inode->i_mapping); 9126 9127 if (flags & RENAME_WHITEOUT) { 9128 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 9129 if (!whiteout_args.inode) { 9130 ret = -ENOMEM; 9131 goto out_fscrypt_names; 9132 } 9133 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9134 if (ret) 9135 goto out_whiteout_inode; 9136 } else { 9137 /* 1 to update the old parent inode. */ 9138 trans_num_items = 1; 9139 } 9140 9141 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9142 /* Close the race window with snapshot create/destroy ioctl */ 9143 down_read(&fs_info->subvol_sem); 9144 /* 9145 * 1 to remove old root ref 9146 * 1 to remove old root backref 9147 * 1 to add new root ref 9148 * 1 to add new root backref 9149 */ 9150 trans_num_items += 4; 9151 } else { 9152 /* 9153 * 1 to update inode 9154 * 1 to remove old inode ref 9155 * 1 to add new inode ref 9156 */ 9157 trans_num_items += 3; 9158 } 9159 /* 9160 * 1 to remove old dir item 9161 * 1 to remove old dir index 9162 * 1 to add new dir item 9163 * 1 to add new dir index 9164 */ 9165 trans_num_items += 4; 9166 /* 1 to update new parent inode if it's not the same as the old parent */ 9167 if (new_dir != old_dir) 9168 trans_num_items++; 9169 if (new_inode) { 9170 /* 9171 * 1 to update inode 9172 * 1 to remove inode ref 9173 * 1 to remove dir item 9174 * 1 to remove dir index 9175 * 1 to possibly add orphan item 9176 */ 9177 trans_num_items += 5; 9178 } 9179 trans = btrfs_start_transaction(root, trans_num_items); 9180 if (IS_ERR(trans)) { 9181 ret = PTR_ERR(trans); 9182 goto out_notrans; 9183 } 9184 9185 if (dest != root) { 9186 ret = btrfs_record_root_in_trans(trans, dest); 9187 if (ret) 9188 goto out_fail; 9189 } 9190 9191 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9192 if (ret) 9193 goto out_fail; 9194 9195 BTRFS_I(old_inode)->dir_index = 0ULL; 9196 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9197 /* force full log commit if subvolume involved. */ 9198 btrfs_set_log_full_commit(trans); 9199 } else { 9200 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9201 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9202 index); 9203 if (ret) 9204 goto out_fail; 9205 } 9206 9207 inode_inc_iversion(old_dir); 9208 inode_inc_iversion(new_dir); 9209 inode_inc_iversion(old_inode); 9210 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 9211 9212 if (old_dentry->d_parent != new_dentry->d_parent) 9213 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9214 BTRFS_I(old_inode), true); 9215 9216 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9217 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9218 } else { 9219 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9220 BTRFS_I(d_inode(old_dentry)), 9221 &old_fname.disk_name, &rename_ctx); 9222 if (!ret) 9223 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 9224 } 9225 if (ret) { 9226 btrfs_abort_transaction(trans, ret); 9227 goto out_fail; 9228 } 9229 9230 if (new_inode) { 9231 inode_inc_iversion(new_inode); 9232 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9233 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9234 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9235 BUG_ON(new_inode->i_nlink == 0); 9236 } else { 9237 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9238 BTRFS_I(d_inode(new_dentry)), 9239 &new_fname.disk_name); 9240 } 9241 if (!ret && new_inode->i_nlink == 0) 9242 ret = btrfs_orphan_add(trans, 9243 BTRFS_I(d_inode(new_dentry))); 9244 if (ret) { 9245 btrfs_abort_transaction(trans, ret); 9246 goto out_fail; 9247 } 9248 } 9249 9250 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9251 &new_fname.disk_name, 0, index); 9252 if (ret) { 9253 btrfs_abort_transaction(trans, ret); 9254 goto out_fail; 9255 } 9256 9257 if (old_inode->i_nlink == 1) 9258 BTRFS_I(old_inode)->dir_index = index; 9259 9260 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9261 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9262 rename_ctx.index, new_dentry->d_parent); 9263 9264 if (flags & RENAME_WHITEOUT) { 9265 ret = btrfs_create_new_inode(trans, &whiteout_args); 9266 if (ret) { 9267 btrfs_abort_transaction(trans, ret); 9268 goto out_fail; 9269 } else { 9270 unlock_new_inode(whiteout_args.inode); 9271 iput(whiteout_args.inode); 9272 whiteout_args.inode = NULL; 9273 } 9274 } 9275 out_fail: 9276 ret2 = btrfs_end_transaction(trans); 9277 ret = ret ? ret : ret2; 9278 out_notrans: 9279 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9280 up_read(&fs_info->subvol_sem); 9281 if (flags & RENAME_WHITEOUT) 9282 btrfs_new_inode_args_destroy(&whiteout_args); 9283 out_whiteout_inode: 9284 if (flags & RENAME_WHITEOUT) 9285 iput(whiteout_args.inode); 9286 out_fscrypt_names: 9287 fscrypt_free_filename(&old_fname); 9288 fscrypt_free_filename(&new_fname); 9289 return ret; 9290 } 9291 9292 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9293 struct dentry *old_dentry, struct inode *new_dir, 9294 struct dentry *new_dentry, unsigned int flags) 9295 { 9296 int ret; 9297 9298 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9299 return -EINVAL; 9300 9301 if (flags & RENAME_EXCHANGE) 9302 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9303 new_dentry); 9304 else 9305 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9306 new_dentry, flags); 9307 9308 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9309 9310 return ret; 9311 } 9312 9313 struct btrfs_delalloc_work { 9314 struct inode *inode; 9315 struct completion completion; 9316 struct list_head list; 9317 struct btrfs_work work; 9318 }; 9319 9320 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9321 { 9322 struct btrfs_delalloc_work *delalloc_work; 9323 struct inode *inode; 9324 9325 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9326 work); 9327 inode = delalloc_work->inode; 9328 filemap_flush(inode->i_mapping); 9329 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9330 &BTRFS_I(inode)->runtime_flags)) 9331 filemap_flush(inode->i_mapping); 9332 9333 iput(inode); 9334 complete(&delalloc_work->completion); 9335 } 9336 9337 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9338 { 9339 struct btrfs_delalloc_work *work; 9340 9341 work = kmalloc(sizeof(*work), GFP_NOFS); 9342 if (!work) 9343 return NULL; 9344 9345 init_completion(&work->completion); 9346 INIT_LIST_HEAD(&work->list); 9347 work->inode = inode; 9348 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 9349 9350 return work; 9351 } 9352 9353 /* 9354 * some fairly slow code that needs optimization. This walks the list 9355 * of all the inodes with pending delalloc and forces them to disk. 9356 */ 9357 static int start_delalloc_inodes(struct btrfs_root *root, 9358 struct writeback_control *wbc, bool snapshot, 9359 bool in_reclaim_context) 9360 { 9361 struct btrfs_inode *binode; 9362 struct inode *inode; 9363 struct btrfs_delalloc_work *work, *next; 9364 LIST_HEAD(works); 9365 LIST_HEAD(splice); 9366 int ret = 0; 9367 bool full_flush = wbc->nr_to_write == LONG_MAX; 9368 9369 mutex_lock(&root->delalloc_mutex); 9370 spin_lock(&root->delalloc_lock); 9371 list_splice_init(&root->delalloc_inodes, &splice); 9372 while (!list_empty(&splice)) { 9373 binode = list_entry(splice.next, struct btrfs_inode, 9374 delalloc_inodes); 9375 9376 list_move_tail(&binode->delalloc_inodes, 9377 &root->delalloc_inodes); 9378 9379 if (in_reclaim_context && 9380 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9381 continue; 9382 9383 inode = igrab(&binode->vfs_inode); 9384 if (!inode) { 9385 cond_resched_lock(&root->delalloc_lock); 9386 continue; 9387 } 9388 spin_unlock(&root->delalloc_lock); 9389 9390 if (snapshot) 9391 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9392 &binode->runtime_flags); 9393 if (full_flush) { 9394 work = btrfs_alloc_delalloc_work(inode); 9395 if (!work) { 9396 iput(inode); 9397 ret = -ENOMEM; 9398 goto out; 9399 } 9400 list_add_tail(&work->list, &works); 9401 btrfs_queue_work(root->fs_info->flush_workers, 9402 &work->work); 9403 } else { 9404 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9405 btrfs_add_delayed_iput(BTRFS_I(inode)); 9406 if (ret || wbc->nr_to_write <= 0) 9407 goto out; 9408 } 9409 cond_resched(); 9410 spin_lock(&root->delalloc_lock); 9411 } 9412 spin_unlock(&root->delalloc_lock); 9413 9414 out: 9415 list_for_each_entry_safe(work, next, &works, list) { 9416 list_del_init(&work->list); 9417 wait_for_completion(&work->completion); 9418 kfree(work); 9419 } 9420 9421 if (!list_empty(&splice)) { 9422 spin_lock(&root->delalloc_lock); 9423 list_splice_tail(&splice, &root->delalloc_inodes); 9424 spin_unlock(&root->delalloc_lock); 9425 } 9426 mutex_unlock(&root->delalloc_mutex); 9427 return ret; 9428 } 9429 9430 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9431 { 9432 struct writeback_control wbc = { 9433 .nr_to_write = LONG_MAX, 9434 .sync_mode = WB_SYNC_NONE, 9435 .range_start = 0, 9436 .range_end = LLONG_MAX, 9437 }; 9438 struct btrfs_fs_info *fs_info = root->fs_info; 9439 9440 if (BTRFS_FS_ERROR(fs_info)) 9441 return -EROFS; 9442 9443 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9444 } 9445 9446 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9447 bool in_reclaim_context) 9448 { 9449 struct writeback_control wbc = { 9450 .nr_to_write = nr, 9451 .sync_mode = WB_SYNC_NONE, 9452 .range_start = 0, 9453 .range_end = LLONG_MAX, 9454 }; 9455 struct btrfs_root *root; 9456 LIST_HEAD(splice); 9457 int ret; 9458 9459 if (BTRFS_FS_ERROR(fs_info)) 9460 return -EROFS; 9461 9462 mutex_lock(&fs_info->delalloc_root_mutex); 9463 spin_lock(&fs_info->delalloc_root_lock); 9464 list_splice_init(&fs_info->delalloc_roots, &splice); 9465 while (!list_empty(&splice)) { 9466 /* 9467 * Reset nr_to_write here so we know that we're doing a full 9468 * flush. 9469 */ 9470 if (nr == LONG_MAX) 9471 wbc.nr_to_write = LONG_MAX; 9472 9473 root = list_first_entry(&splice, struct btrfs_root, 9474 delalloc_root); 9475 root = btrfs_grab_root(root); 9476 BUG_ON(!root); 9477 list_move_tail(&root->delalloc_root, 9478 &fs_info->delalloc_roots); 9479 spin_unlock(&fs_info->delalloc_root_lock); 9480 9481 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9482 btrfs_put_root(root); 9483 if (ret < 0 || wbc.nr_to_write <= 0) 9484 goto out; 9485 spin_lock(&fs_info->delalloc_root_lock); 9486 } 9487 spin_unlock(&fs_info->delalloc_root_lock); 9488 9489 ret = 0; 9490 out: 9491 if (!list_empty(&splice)) { 9492 spin_lock(&fs_info->delalloc_root_lock); 9493 list_splice_tail(&splice, &fs_info->delalloc_roots); 9494 spin_unlock(&fs_info->delalloc_root_lock); 9495 } 9496 mutex_unlock(&fs_info->delalloc_root_mutex); 9497 return ret; 9498 } 9499 9500 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9501 struct dentry *dentry, const char *symname) 9502 { 9503 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9504 struct btrfs_trans_handle *trans; 9505 struct btrfs_root *root = BTRFS_I(dir)->root; 9506 struct btrfs_path *path; 9507 struct btrfs_key key; 9508 struct inode *inode; 9509 struct btrfs_new_inode_args new_inode_args = { 9510 .dir = dir, 9511 .dentry = dentry, 9512 }; 9513 unsigned int trans_num_items; 9514 int err; 9515 int name_len; 9516 int datasize; 9517 unsigned long ptr; 9518 struct btrfs_file_extent_item *ei; 9519 struct extent_buffer *leaf; 9520 9521 name_len = strlen(symname); 9522 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9523 return -ENAMETOOLONG; 9524 9525 inode = new_inode(dir->i_sb); 9526 if (!inode) 9527 return -ENOMEM; 9528 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9529 inode->i_op = &btrfs_symlink_inode_operations; 9530 inode_nohighmem(inode); 9531 inode->i_mapping->a_ops = &btrfs_aops; 9532 btrfs_i_size_write(BTRFS_I(inode), name_len); 9533 inode_set_bytes(inode, name_len); 9534 9535 new_inode_args.inode = inode; 9536 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9537 if (err) 9538 goto out_inode; 9539 /* 1 additional item for the inline extent */ 9540 trans_num_items++; 9541 9542 trans = btrfs_start_transaction(root, trans_num_items); 9543 if (IS_ERR(trans)) { 9544 err = PTR_ERR(trans); 9545 goto out_new_inode_args; 9546 } 9547 9548 err = btrfs_create_new_inode(trans, &new_inode_args); 9549 if (err) 9550 goto out; 9551 9552 path = btrfs_alloc_path(); 9553 if (!path) { 9554 err = -ENOMEM; 9555 btrfs_abort_transaction(trans, err); 9556 discard_new_inode(inode); 9557 inode = NULL; 9558 goto out; 9559 } 9560 key.objectid = btrfs_ino(BTRFS_I(inode)); 9561 key.offset = 0; 9562 key.type = BTRFS_EXTENT_DATA_KEY; 9563 datasize = btrfs_file_extent_calc_inline_size(name_len); 9564 err = btrfs_insert_empty_item(trans, root, path, &key, 9565 datasize); 9566 if (err) { 9567 btrfs_abort_transaction(trans, err); 9568 btrfs_free_path(path); 9569 discard_new_inode(inode); 9570 inode = NULL; 9571 goto out; 9572 } 9573 leaf = path->nodes[0]; 9574 ei = btrfs_item_ptr(leaf, path->slots[0], 9575 struct btrfs_file_extent_item); 9576 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9577 btrfs_set_file_extent_type(leaf, ei, 9578 BTRFS_FILE_EXTENT_INLINE); 9579 btrfs_set_file_extent_encryption(leaf, ei, 0); 9580 btrfs_set_file_extent_compression(leaf, ei, 0); 9581 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9582 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9583 9584 ptr = btrfs_file_extent_inline_start(ei); 9585 write_extent_buffer(leaf, symname, ptr, name_len); 9586 btrfs_mark_buffer_dirty(trans, leaf); 9587 btrfs_free_path(path); 9588 9589 d_instantiate_new(dentry, inode); 9590 err = 0; 9591 out: 9592 btrfs_end_transaction(trans); 9593 btrfs_btree_balance_dirty(fs_info); 9594 out_new_inode_args: 9595 btrfs_new_inode_args_destroy(&new_inode_args); 9596 out_inode: 9597 if (err) 9598 iput(inode); 9599 return err; 9600 } 9601 9602 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9603 struct btrfs_trans_handle *trans_in, 9604 struct btrfs_inode *inode, 9605 struct btrfs_key *ins, 9606 u64 file_offset) 9607 { 9608 struct btrfs_file_extent_item stack_fi; 9609 struct btrfs_replace_extent_info extent_info; 9610 struct btrfs_trans_handle *trans = trans_in; 9611 struct btrfs_path *path; 9612 u64 start = ins->objectid; 9613 u64 len = ins->offset; 9614 u64 qgroup_released = 0; 9615 int ret; 9616 9617 memset(&stack_fi, 0, sizeof(stack_fi)); 9618 9619 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9620 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9621 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9622 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9623 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9624 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9625 /* Encryption and other encoding is reserved and all 0 */ 9626 9627 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9628 if (ret < 0) 9629 return ERR_PTR(ret); 9630 9631 if (trans) { 9632 ret = insert_reserved_file_extent(trans, inode, 9633 file_offset, &stack_fi, 9634 true, qgroup_released); 9635 if (ret) 9636 goto free_qgroup; 9637 return trans; 9638 } 9639 9640 extent_info.disk_offset = start; 9641 extent_info.disk_len = len; 9642 extent_info.data_offset = 0; 9643 extent_info.data_len = len; 9644 extent_info.file_offset = file_offset; 9645 extent_info.extent_buf = (char *)&stack_fi; 9646 extent_info.is_new_extent = true; 9647 extent_info.update_times = true; 9648 extent_info.qgroup_reserved = qgroup_released; 9649 extent_info.insertions = 0; 9650 9651 path = btrfs_alloc_path(); 9652 if (!path) { 9653 ret = -ENOMEM; 9654 goto free_qgroup; 9655 } 9656 9657 ret = btrfs_replace_file_extents(inode, path, file_offset, 9658 file_offset + len - 1, &extent_info, 9659 &trans); 9660 btrfs_free_path(path); 9661 if (ret) 9662 goto free_qgroup; 9663 return trans; 9664 9665 free_qgroup: 9666 /* 9667 * We have released qgroup data range at the beginning of the function, 9668 * and normally qgroup_released bytes will be freed when committing 9669 * transaction. 9670 * But if we error out early, we have to free what we have released 9671 * or we leak qgroup data reservation. 9672 */ 9673 btrfs_qgroup_free_refroot(inode->root->fs_info, 9674 inode->root->root_key.objectid, qgroup_released, 9675 BTRFS_QGROUP_RSV_DATA); 9676 return ERR_PTR(ret); 9677 } 9678 9679 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9680 u64 start, u64 num_bytes, u64 min_size, 9681 loff_t actual_len, u64 *alloc_hint, 9682 struct btrfs_trans_handle *trans) 9683 { 9684 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9685 struct extent_map *em; 9686 struct btrfs_root *root = BTRFS_I(inode)->root; 9687 struct btrfs_key ins; 9688 u64 cur_offset = start; 9689 u64 clear_offset = start; 9690 u64 i_size; 9691 u64 cur_bytes; 9692 u64 last_alloc = (u64)-1; 9693 int ret = 0; 9694 bool own_trans = true; 9695 u64 end = start + num_bytes - 1; 9696 9697 if (trans) 9698 own_trans = false; 9699 while (num_bytes > 0) { 9700 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9701 cur_bytes = max(cur_bytes, min_size); 9702 /* 9703 * If we are severely fragmented we could end up with really 9704 * small allocations, so if the allocator is returning small 9705 * chunks lets make its job easier by only searching for those 9706 * sized chunks. 9707 */ 9708 cur_bytes = min(cur_bytes, last_alloc); 9709 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9710 min_size, 0, *alloc_hint, &ins, 1, 0); 9711 if (ret) 9712 break; 9713 9714 /* 9715 * We've reserved this space, and thus converted it from 9716 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9717 * from here on out we will only need to clear our reservation 9718 * for the remaining unreserved area, so advance our 9719 * clear_offset by our extent size. 9720 */ 9721 clear_offset += ins.offset; 9722 9723 last_alloc = ins.offset; 9724 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9725 &ins, cur_offset); 9726 /* 9727 * Now that we inserted the prealloc extent we can finally 9728 * decrement the number of reservations in the block group. 9729 * If we did it before, we could race with relocation and have 9730 * relocation miss the reserved extent, making it fail later. 9731 */ 9732 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9733 if (IS_ERR(trans)) { 9734 ret = PTR_ERR(trans); 9735 btrfs_free_reserved_extent(fs_info, ins.objectid, 9736 ins.offset, 0); 9737 break; 9738 } 9739 9740 em = alloc_extent_map(); 9741 if (!em) { 9742 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9743 cur_offset + ins.offset - 1, false); 9744 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9745 goto next; 9746 } 9747 9748 em->start = cur_offset; 9749 em->orig_start = cur_offset; 9750 em->len = ins.offset; 9751 em->block_start = ins.objectid; 9752 em->block_len = ins.offset; 9753 em->orig_block_len = ins.offset; 9754 em->ram_bytes = ins.offset; 9755 em->flags |= EXTENT_FLAG_PREALLOC; 9756 em->generation = trans->transid; 9757 9758 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9759 free_extent_map(em); 9760 next: 9761 num_bytes -= ins.offset; 9762 cur_offset += ins.offset; 9763 *alloc_hint = ins.objectid + ins.offset; 9764 9765 inode_inc_iversion(inode); 9766 inode_set_ctime_current(inode); 9767 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9768 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9769 (actual_len > inode->i_size) && 9770 (cur_offset > inode->i_size)) { 9771 if (cur_offset > actual_len) 9772 i_size = actual_len; 9773 else 9774 i_size = cur_offset; 9775 i_size_write(inode, i_size); 9776 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9777 } 9778 9779 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9780 9781 if (ret) { 9782 btrfs_abort_transaction(trans, ret); 9783 if (own_trans) 9784 btrfs_end_transaction(trans); 9785 break; 9786 } 9787 9788 if (own_trans) { 9789 btrfs_end_transaction(trans); 9790 trans = NULL; 9791 } 9792 } 9793 if (clear_offset < end) 9794 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9795 end - clear_offset + 1); 9796 return ret; 9797 } 9798 9799 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9800 u64 start, u64 num_bytes, u64 min_size, 9801 loff_t actual_len, u64 *alloc_hint) 9802 { 9803 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9804 min_size, actual_len, alloc_hint, 9805 NULL); 9806 } 9807 9808 int btrfs_prealloc_file_range_trans(struct inode *inode, 9809 struct btrfs_trans_handle *trans, int mode, 9810 u64 start, u64 num_bytes, u64 min_size, 9811 loff_t actual_len, u64 *alloc_hint) 9812 { 9813 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9814 min_size, actual_len, alloc_hint, trans); 9815 } 9816 9817 static int btrfs_permission(struct mnt_idmap *idmap, 9818 struct inode *inode, int mask) 9819 { 9820 struct btrfs_root *root = BTRFS_I(inode)->root; 9821 umode_t mode = inode->i_mode; 9822 9823 if (mask & MAY_WRITE && 9824 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9825 if (btrfs_root_readonly(root)) 9826 return -EROFS; 9827 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9828 return -EACCES; 9829 } 9830 return generic_permission(idmap, inode, mask); 9831 } 9832 9833 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9834 struct file *file, umode_t mode) 9835 { 9836 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9837 struct btrfs_trans_handle *trans; 9838 struct btrfs_root *root = BTRFS_I(dir)->root; 9839 struct inode *inode; 9840 struct btrfs_new_inode_args new_inode_args = { 9841 .dir = dir, 9842 .dentry = file->f_path.dentry, 9843 .orphan = true, 9844 }; 9845 unsigned int trans_num_items; 9846 int ret; 9847 9848 inode = new_inode(dir->i_sb); 9849 if (!inode) 9850 return -ENOMEM; 9851 inode_init_owner(idmap, inode, dir, mode); 9852 inode->i_fop = &btrfs_file_operations; 9853 inode->i_op = &btrfs_file_inode_operations; 9854 inode->i_mapping->a_ops = &btrfs_aops; 9855 9856 new_inode_args.inode = inode; 9857 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9858 if (ret) 9859 goto out_inode; 9860 9861 trans = btrfs_start_transaction(root, trans_num_items); 9862 if (IS_ERR(trans)) { 9863 ret = PTR_ERR(trans); 9864 goto out_new_inode_args; 9865 } 9866 9867 ret = btrfs_create_new_inode(trans, &new_inode_args); 9868 9869 /* 9870 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9871 * set it to 1 because d_tmpfile() will issue a warning if the count is 9872 * 0, through: 9873 * 9874 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9875 */ 9876 set_nlink(inode, 1); 9877 9878 if (!ret) { 9879 d_tmpfile(file, inode); 9880 unlock_new_inode(inode); 9881 mark_inode_dirty(inode); 9882 } 9883 9884 btrfs_end_transaction(trans); 9885 btrfs_btree_balance_dirty(fs_info); 9886 out_new_inode_args: 9887 btrfs_new_inode_args_destroy(&new_inode_args); 9888 out_inode: 9889 if (ret) 9890 iput(inode); 9891 return finish_open_simple(file, ret); 9892 } 9893 9894 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9895 { 9896 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9897 unsigned long index = start >> PAGE_SHIFT; 9898 unsigned long end_index = end >> PAGE_SHIFT; 9899 struct page *page; 9900 u32 len; 9901 9902 ASSERT(end + 1 - start <= U32_MAX); 9903 len = end + 1 - start; 9904 while (index <= end_index) { 9905 page = find_get_page(inode->vfs_inode.i_mapping, index); 9906 ASSERT(page); /* Pages should be in the extent_io_tree */ 9907 9908 /* This is for data, which doesn't yet support larger folio. */ 9909 ASSERT(folio_order(page_folio(page)) == 0); 9910 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len); 9911 put_page(page); 9912 index++; 9913 } 9914 } 9915 9916 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9917 int compress_type) 9918 { 9919 switch (compress_type) { 9920 case BTRFS_COMPRESS_NONE: 9921 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9922 case BTRFS_COMPRESS_ZLIB: 9923 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9924 case BTRFS_COMPRESS_LZO: 9925 /* 9926 * The LZO format depends on the sector size. 64K is the maximum 9927 * sector size that we support. 9928 */ 9929 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9930 return -EINVAL; 9931 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9932 (fs_info->sectorsize_bits - 12); 9933 case BTRFS_COMPRESS_ZSTD: 9934 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9935 default: 9936 return -EUCLEAN; 9937 } 9938 } 9939 9940 static ssize_t btrfs_encoded_read_inline( 9941 struct kiocb *iocb, 9942 struct iov_iter *iter, u64 start, 9943 u64 lockend, 9944 struct extent_state **cached_state, 9945 u64 extent_start, size_t count, 9946 struct btrfs_ioctl_encoded_io_args *encoded, 9947 bool *unlocked) 9948 { 9949 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9950 struct btrfs_root *root = inode->root; 9951 struct btrfs_fs_info *fs_info = root->fs_info; 9952 struct extent_io_tree *io_tree = &inode->io_tree; 9953 struct btrfs_path *path; 9954 struct extent_buffer *leaf; 9955 struct btrfs_file_extent_item *item; 9956 u64 ram_bytes; 9957 unsigned long ptr; 9958 void *tmp; 9959 ssize_t ret; 9960 9961 path = btrfs_alloc_path(); 9962 if (!path) { 9963 ret = -ENOMEM; 9964 goto out; 9965 } 9966 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9967 extent_start, 0); 9968 if (ret) { 9969 if (ret > 0) { 9970 /* The extent item disappeared? */ 9971 ret = -EIO; 9972 } 9973 goto out; 9974 } 9975 leaf = path->nodes[0]; 9976 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9977 9978 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9979 ptr = btrfs_file_extent_inline_start(item); 9980 9981 encoded->len = min_t(u64, extent_start + ram_bytes, 9982 inode->vfs_inode.i_size) - iocb->ki_pos; 9983 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9984 btrfs_file_extent_compression(leaf, item)); 9985 if (ret < 0) 9986 goto out; 9987 encoded->compression = ret; 9988 if (encoded->compression) { 9989 size_t inline_size; 9990 9991 inline_size = btrfs_file_extent_inline_item_len(leaf, 9992 path->slots[0]); 9993 if (inline_size > count) { 9994 ret = -ENOBUFS; 9995 goto out; 9996 } 9997 count = inline_size; 9998 encoded->unencoded_len = ram_bytes; 9999 encoded->unencoded_offset = iocb->ki_pos - extent_start; 10000 } else { 10001 count = min_t(u64, count, encoded->len); 10002 encoded->len = count; 10003 encoded->unencoded_len = count; 10004 ptr += iocb->ki_pos - extent_start; 10005 } 10006 10007 tmp = kmalloc(count, GFP_NOFS); 10008 if (!tmp) { 10009 ret = -ENOMEM; 10010 goto out; 10011 } 10012 read_extent_buffer(leaf, tmp, ptr, count); 10013 btrfs_release_path(path); 10014 unlock_extent(io_tree, start, lockend, cached_state); 10015 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10016 *unlocked = true; 10017 10018 ret = copy_to_iter(tmp, count, iter); 10019 if (ret != count) 10020 ret = -EFAULT; 10021 kfree(tmp); 10022 out: 10023 btrfs_free_path(path); 10024 return ret; 10025 } 10026 10027 struct btrfs_encoded_read_private { 10028 wait_queue_head_t wait; 10029 atomic_t pending; 10030 blk_status_t status; 10031 }; 10032 10033 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 10034 { 10035 struct btrfs_encoded_read_private *priv = bbio->private; 10036 10037 if (bbio->bio.bi_status) { 10038 /* 10039 * The memory barrier implied by the atomic_dec_return() here 10040 * pairs with the memory barrier implied by the 10041 * atomic_dec_return() or io_wait_event() in 10042 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10043 * write is observed before the load of status in 10044 * btrfs_encoded_read_regular_fill_pages(). 10045 */ 10046 WRITE_ONCE(priv->status, bbio->bio.bi_status); 10047 } 10048 if (!atomic_dec_return(&priv->pending)) 10049 wake_up(&priv->wait); 10050 bio_put(&bbio->bio); 10051 } 10052 10053 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10054 u64 file_offset, u64 disk_bytenr, 10055 u64 disk_io_size, struct page **pages) 10056 { 10057 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10058 struct btrfs_encoded_read_private priv = { 10059 .pending = ATOMIC_INIT(1), 10060 }; 10061 unsigned long i = 0; 10062 struct btrfs_bio *bbio; 10063 10064 init_waitqueue_head(&priv.wait); 10065 10066 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 10067 btrfs_encoded_read_endio, &priv); 10068 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 10069 bbio->inode = inode; 10070 10071 do { 10072 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 10073 10074 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 10075 atomic_inc(&priv.pending); 10076 btrfs_submit_bio(bbio, 0); 10077 10078 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 10079 btrfs_encoded_read_endio, &priv); 10080 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 10081 bbio->inode = inode; 10082 continue; 10083 } 10084 10085 i++; 10086 disk_bytenr += bytes; 10087 disk_io_size -= bytes; 10088 } while (disk_io_size); 10089 10090 atomic_inc(&priv.pending); 10091 btrfs_submit_bio(bbio, 0); 10092 10093 if (atomic_dec_return(&priv.pending)) 10094 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10095 /* See btrfs_encoded_read_endio() for ordering. */ 10096 return blk_status_to_errno(READ_ONCE(priv.status)); 10097 } 10098 10099 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10100 struct iov_iter *iter, 10101 u64 start, u64 lockend, 10102 struct extent_state **cached_state, 10103 u64 disk_bytenr, u64 disk_io_size, 10104 size_t count, bool compressed, 10105 bool *unlocked) 10106 { 10107 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10108 struct extent_io_tree *io_tree = &inode->io_tree; 10109 struct page **pages; 10110 unsigned long nr_pages, i; 10111 u64 cur; 10112 size_t page_offset; 10113 ssize_t ret; 10114 10115 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10116 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10117 if (!pages) 10118 return -ENOMEM; 10119 ret = btrfs_alloc_page_array(nr_pages, pages, 0); 10120 if (ret) { 10121 ret = -ENOMEM; 10122 goto out; 10123 } 10124 10125 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10126 disk_io_size, pages); 10127 if (ret) 10128 goto out; 10129 10130 unlock_extent(io_tree, start, lockend, cached_state); 10131 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10132 *unlocked = true; 10133 10134 if (compressed) { 10135 i = 0; 10136 page_offset = 0; 10137 } else { 10138 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10139 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10140 } 10141 cur = 0; 10142 while (cur < count) { 10143 size_t bytes = min_t(size_t, count - cur, 10144 PAGE_SIZE - page_offset); 10145 10146 if (copy_page_to_iter(pages[i], page_offset, bytes, 10147 iter) != bytes) { 10148 ret = -EFAULT; 10149 goto out; 10150 } 10151 i++; 10152 cur += bytes; 10153 page_offset = 0; 10154 } 10155 ret = count; 10156 out: 10157 for (i = 0; i < nr_pages; i++) { 10158 if (pages[i]) 10159 __free_page(pages[i]); 10160 } 10161 kfree(pages); 10162 return ret; 10163 } 10164 10165 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10166 struct btrfs_ioctl_encoded_io_args *encoded) 10167 { 10168 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10169 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10170 struct extent_io_tree *io_tree = &inode->io_tree; 10171 ssize_t ret; 10172 size_t count = iov_iter_count(iter); 10173 u64 start, lockend, disk_bytenr, disk_io_size; 10174 struct extent_state *cached_state = NULL; 10175 struct extent_map *em; 10176 bool unlocked = false; 10177 10178 file_accessed(iocb->ki_filp); 10179 10180 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10181 10182 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10183 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10184 return 0; 10185 } 10186 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10187 /* 10188 * We don't know how long the extent containing iocb->ki_pos is, but if 10189 * it's compressed we know that it won't be longer than this. 10190 */ 10191 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10192 10193 for (;;) { 10194 struct btrfs_ordered_extent *ordered; 10195 10196 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10197 lockend - start + 1); 10198 if (ret) 10199 goto out_unlock_inode; 10200 lock_extent(io_tree, start, lockend, &cached_state); 10201 ordered = btrfs_lookup_ordered_range(inode, start, 10202 lockend - start + 1); 10203 if (!ordered) 10204 break; 10205 btrfs_put_ordered_extent(ordered); 10206 unlock_extent(io_tree, start, lockend, &cached_state); 10207 cond_resched(); 10208 } 10209 10210 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 10211 if (IS_ERR(em)) { 10212 ret = PTR_ERR(em); 10213 goto out_unlock_extent; 10214 } 10215 10216 if (em->block_start == EXTENT_MAP_INLINE) { 10217 u64 extent_start = em->start; 10218 10219 /* 10220 * For inline extents we get everything we need out of the 10221 * extent item. 10222 */ 10223 free_extent_map(em); 10224 em = NULL; 10225 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10226 &cached_state, extent_start, 10227 count, encoded, &unlocked); 10228 goto out; 10229 } 10230 10231 /* 10232 * We only want to return up to EOF even if the extent extends beyond 10233 * that. 10234 */ 10235 encoded->len = min_t(u64, extent_map_end(em), 10236 inode->vfs_inode.i_size) - iocb->ki_pos; 10237 if (em->block_start == EXTENT_MAP_HOLE || 10238 (em->flags & EXTENT_FLAG_PREALLOC)) { 10239 disk_bytenr = EXTENT_MAP_HOLE; 10240 count = min_t(u64, count, encoded->len); 10241 encoded->len = count; 10242 encoded->unencoded_len = count; 10243 } else if (extent_map_is_compressed(em)) { 10244 disk_bytenr = em->block_start; 10245 /* 10246 * Bail if the buffer isn't large enough to return the whole 10247 * compressed extent. 10248 */ 10249 if (em->block_len > count) { 10250 ret = -ENOBUFS; 10251 goto out_em; 10252 } 10253 disk_io_size = em->block_len; 10254 count = em->block_len; 10255 encoded->unencoded_len = em->ram_bytes; 10256 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10257 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10258 extent_map_compression(em)); 10259 if (ret < 0) 10260 goto out_em; 10261 encoded->compression = ret; 10262 } else { 10263 disk_bytenr = em->block_start + (start - em->start); 10264 if (encoded->len > count) 10265 encoded->len = count; 10266 /* 10267 * Don't read beyond what we locked. This also limits the page 10268 * allocations that we'll do. 10269 */ 10270 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10271 count = start + disk_io_size - iocb->ki_pos; 10272 encoded->len = count; 10273 encoded->unencoded_len = count; 10274 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10275 } 10276 free_extent_map(em); 10277 em = NULL; 10278 10279 if (disk_bytenr == EXTENT_MAP_HOLE) { 10280 unlock_extent(io_tree, start, lockend, &cached_state); 10281 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10282 unlocked = true; 10283 ret = iov_iter_zero(count, iter); 10284 if (ret != count) 10285 ret = -EFAULT; 10286 } else { 10287 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10288 &cached_state, disk_bytenr, 10289 disk_io_size, count, 10290 encoded->compression, 10291 &unlocked); 10292 } 10293 10294 out: 10295 if (ret >= 0) 10296 iocb->ki_pos += encoded->len; 10297 out_em: 10298 free_extent_map(em); 10299 out_unlock_extent: 10300 if (!unlocked) 10301 unlock_extent(io_tree, start, lockend, &cached_state); 10302 out_unlock_inode: 10303 if (!unlocked) 10304 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10305 return ret; 10306 } 10307 10308 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10309 const struct btrfs_ioctl_encoded_io_args *encoded) 10310 { 10311 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10312 struct btrfs_root *root = inode->root; 10313 struct btrfs_fs_info *fs_info = root->fs_info; 10314 struct extent_io_tree *io_tree = &inode->io_tree; 10315 struct extent_changeset *data_reserved = NULL; 10316 struct extent_state *cached_state = NULL; 10317 struct btrfs_ordered_extent *ordered; 10318 int compression; 10319 size_t orig_count; 10320 u64 start, end; 10321 u64 num_bytes, ram_bytes, disk_num_bytes; 10322 unsigned long nr_pages, i; 10323 struct page **pages; 10324 struct btrfs_key ins; 10325 bool extent_reserved = false; 10326 struct extent_map *em; 10327 ssize_t ret; 10328 10329 switch (encoded->compression) { 10330 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10331 compression = BTRFS_COMPRESS_ZLIB; 10332 break; 10333 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10334 compression = BTRFS_COMPRESS_ZSTD; 10335 break; 10336 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10337 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10338 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10339 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10340 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10341 /* The sector size must match for LZO. */ 10342 if (encoded->compression - 10343 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10344 fs_info->sectorsize_bits) 10345 return -EINVAL; 10346 compression = BTRFS_COMPRESS_LZO; 10347 break; 10348 default: 10349 return -EINVAL; 10350 } 10351 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10352 return -EINVAL; 10353 10354 /* 10355 * Compressed extents should always have checksums, so error out if we 10356 * have a NOCOW file or inode was created while mounted with NODATASUM. 10357 */ 10358 if (inode->flags & BTRFS_INODE_NODATASUM) 10359 return -EINVAL; 10360 10361 orig_count = iov_iter_count(from); 10362 10363 /* The extent size must be sane. */ 10364 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10365 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10366 return -EINVAL; 10367 10368 /* 10369 * The compressed data must be smaller than the decompressed data. 10370 * 10371 * It's of course possible for data to compress to larger or the same 10372 * size, but the buffered I/O path falls back to no compression for such 10373 * data, and we don't want to break any assumptions by creating these 10374 * extents. 10375 * 10376 * Note that this is less strict than the current check we have that the 10377 * compressed data must be at least one sector smaller than the 10378 * decompressed data. We only want to enforce the weaker requirement 10379 * from old kernels that it is at least one byte smaller. 10380 */ 10381 if (orig_count >= encoded->unencoded_len) 10382 return -EINVAL; 10383 10384 /* The extent must start on a sector boundary. */ 10385 start = iocb->ki_pos; 10386 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10387 return -EINVAL; 10388 10389 /* 10390 * The extent must end on a sector boundary. However, we allow a write 10391 * which ends at or extends i_size to have an unaligned length; we round 10392 * up the extent size and set i_size to the unaligned end. 10393 */ 10394 if (start + encoded->len < inode->vfs_inode.i_size && 10395 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10396 return -EINVAL; 10397 10398 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10399 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10400 return -EINVAL; 10401 10402 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10403 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10404 end = start + num_bytes - 1; 10405 10406 /* 10407 * If the extent cannot be inline, the compressed data on disk must be 10408 * sector-aligned. For convenience, we extend it with zeroes if it 10409 * isn't. 10410 */ 10411 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10412 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10413 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10414 if (!pages) 10415 return -ENOMEM; 10416 for (i = 0; i < nr_pages; i++) { 10417 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10418 char *kaddr; 10419 10420 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10421 if (!pages[i]) { 10422 ret = -ENOMEM; 10423 goto out_pages; 10424 } 10425 kaddr = kmap_local_page(pages[i]); 10426 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10427 kunmap_local(kaddr); 10428 ret = -EFAULT; 10429 goto out_pages; 10430 } 10431 if (bytes < PAGE_SIZE) 10432 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10433 kunmap_local(kaddr); 10434 } 10435 10436 for (;;) { 10437 struct btrfs_ordered_extent *ordered; 10438 10439 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10440 if (ret) 10441 goto out_pages; 10442 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10443 start >> PAGE_SHIFT, 10444 end >> PAGE_SHIFT); 10445 if (ret) 10446 goto out_pages; 10447 lock_extent(io_tree, start, end, &cached_state); 10448 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10449 if (!ordered && 10450 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10451 break; 10452 if (ordered) 10453 btrfs_put_ordered_extent(ordered); 10454 unlock_extent(io_tree, start, end, &cached_state); 10455 cond_resched(); 10456 } 10457 10458 /* 10459 * We don't use the higher-level delalloc space functions because our 10460 * num_bytes and disk_num_bytes are different. 10461 */ 10462 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10463 if (ret) 10464 goto out_unlock; 10465 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10466 if (ret) 10467 goto out_free_data_space; 10468 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10469 false); 10470 if (ret) 10471 goto out_qgroup_free_data; 10472 10473 /* Try an inline extent first. */ 10474 if (start == 0 && encoded->unencoded_len == encoded->len && 10475 encoded->unencoded_offset == 0) { 10476 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10477 compression, pages, true); 10478 if (ret <= 0) { 10479 if (ret == 0) 10480 ret = orig_count; 10481 goto out_delalloc_release; 10482 } 10483 } 10484 10485 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10486 disk_num_bytes, 0, 0, &ins, 1, 1); 10487 if (ret) 10488 goto out_delalloc_release; 10489 extent_reserved = true; 10490 10491 em = create_io_em(inode, start, num_bytes, 10492 start - encoded->unencoded_offset, ins.objectid, 10493 ins.offset, ins.offset, ram_bytes, compression, 10494 BTRFS_ORDERED_COMPRESSED); 10495 if (IS_ERR(em)) { 10496 ret = PTR_ERR(em); 10497 goto out_free_reserved; 10498 } 10499 free_extent_map(em); 10500 10501 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10502 ins.objectid, ins.offset, 10503 encoded->unencoded_offset, 10504 (1 << BTRFS_ORDERED_ENCODED) | 10505 (1 << BTRFS_ORDERED_COMPRESSED), 10506 compression); 10507 if (IS_ERR(ordered)) { 10508 btrfs_drop_extent_map_range(inode, start, end, false); 10509 ret = PTR_ERR(ordered); 10510 goto out_free_reserved; 10511 } 10512 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10513 10514 if (start + encoded->len > inode->vfs_inode.i_size) 10515 i_size_write(&inode->vfs_inode, start + encoded->len); 10516 10517 unlock_extent(io_tree, start, end, &cached_state); 10518 10519 btrfs_delalloc_release_extents(inode, num_bytes); 10520 10521 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10522 ret = orig_count; 10523 goto out; 10524 10525 out_free_reserved: 10526 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10527 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10528 out_delalloc_release: 10529 btrfs_delalloc_release_extents(inode, num_bytes); 10530 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10531 out_qgroup_free_data: 10532 if (ret < 0) 10533 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10534 out_free_data_space: 10535 /* 10536 * If btrfs_reserve_extent() succeeded, then we already decremented 10537 * bytes_may_use. 10538 */ 10539 if (!extent_reserved) 10540 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10541 out_unlock: 10542 unlock_extent(io_tree, start, end, &cached_state); 10543 out_pages: 10544 for (i = 0; i < nr_pages; i++) { 10545 if (pages[i]) 10546 __free_page(pages[i]); 10547 } 10548 kvfree(pages); 10549 out: 10550 if (ret >= 0) 10551 iocb->ki_pos += encoded->len; 10552 return ret; 10553 } 10554 10555 #ifdef CONFIG_SWAP 10556 /* 10557 * Add an entry indicating a block group or device which is pinned by a 10558 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10559 * negative errno on failure. 10560 */ 10561 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10562 bool is_block_group) 10563 { 10564 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10565 struct btrfs_swapfile_pin *sp, *entry; 10566 struct rb_node **p; 10567 struct rb_node *parent = NULL; 10568 10569 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10570 if (!sp) 10571 return -ENOMEM; 10572 sp->ptr = ptr; 10573 sp->inode = inode; 10574 sp->is_block_group = is_block_group; 10575 sp->bg_extent_count = 1; 10576 10577 spin_lock(&fs_info->swapfile_pins_lock); 10578 p = &fs_info->swapfile_pins.rb_node; 10579 while (*p) { 10580 parent = *p; 10581 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10582 if (sp->ptr < entry->ptr || 10583 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10584 p = &(*p)->rb_left; 10585 } else if (sp->ptr > entry->ptr || 10586 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10587 p = &(*p)->rb_right; 10588 } else { 10589 if (is_block_group) 10590 entry->bg_extent_count++; 10591 spin_unlock(&fs_info->swapfile_pins_lock); 10592 kfree(sp); 10593 return 1; 10594 } 10595 } 10596 rb_link_node(&sp->node, parent, p); 10597 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10598 spin_unlock(&fs_info->swapfile_pins_lock); 10599 return 0; 10600 } 10601 10602 /* Free all of the entries pinned by this swapfile. */ 10603 static void btrfs_free_swapfile_pins(struct inode *inode) 10604 { 10605 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10606 struct btrfs_swapfile_pin *sp; 10607 struct rb_node *node, *next; 10608 10609 spin_lock(&fs_info->swapfile_pins_lock); 10610 node = rb_first(&fs_info->swapfile_pins); 10611 while (node) { 10612 next = rb_next(node); 10613 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10614 if (sp->inode == inode) { 10615 rb_erase(&sp->node, &fs_info->swapfile_pins); 10616 if (sp->is_block_group) { 10617 btrfs_dec_block_group_swap_extents(sp->ptr, 10618 sp->bg_extent_count); 10619 btrfs_put_block_group(sp->ptr); 10620 } 10621 kfree(sp); 10622 } 10623 node = next; 10624 } 10625 spin_unlock(&fs_info->swapfile_pins_lock); 10626 } 10627 10628 struct btrfs_swap_info { 10629 u64 start; 10630 u64 block_start; 10631 u64 block_len; 10632 u64 lowest_ppage; 10633 u64 highest_ppage; 10634 unsigned long nr_pages; 10635 int nr_extents; 10636 }; 10637 10638 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10639 struct btrfs_swap_info *bsi) 10640 { 10641 unsigned long nr_pages; 10642 unsigned long max_pages; 10643 u64 first_ppage, first_ppage_reported, next_ppage; 10644 int ret; 10645 10646 /* 10647 * Our swapfile may have had its size extended after the swap header was 10648 * written. In that case activating the swapfile should not go beyond 10649 * the max size set in the swap header. 10650 */ 10651 if (bsi->nr_pages >= sis->max) 10652 return 0; 10653 10654 max_pages = sis->max - bsi->nr_pages; 10655 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10656 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10657 10658 if (first_ppage >= next_ppage) 10659 return 0; 10660 nr_pages = next_ppage - first_ppage; 10661 nr_pages = min(nr_pages, max_pages); 10662 10663 first_ppage_reported = first_ppage; 10664 if (bsi->start == 0) 10665 first_ppage_reported++; 10666 if (bsi->lowest_ppage > first_ppage_reported) 10667 bsi->lowest_ppage = first_ppage_reported; 10668 if (bsi->highest_ppage < (next_ppage - 1)) 10669 bsi->highest_ppage = next_ppage - 1; 10670 10671 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10672 if (ret < 0) 10673 return ret; 10674 bsi->nr_extents += ret; 10675 bsi->nr_pages += nr_pages; 10676 return 0; 10677 } 10678 10679 static void btrfs_swap_deactivate(struct file *file) 10680 { 10681 struct inode *inode = file_inode(file); 10682 10683 btrfs_free_swapfile_pins(inode); 10684 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10685 } 10686 10687 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10688 sector_t *span) 10689 { 10690 struct inode *inode = file_inode(file); 10691 struct btrfs_root *root = BTRFS_I(inode)->root; 10692 struct btrfs_fs_info *fs_info = root->fs_info; 10693 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10694 struct extent_state *cached_state = NULL; 10695 struct extent_map *em = NULL; 10696 struct btrfs_chunk_map *map = NULL; 10697 struct btrfs_device *device = NULL; 10698 struct btrfs_swap_info bsi = { 10699 .lowest_ppage = (sector_t)-1ULL, 10700 }; 10701 int ret = 0; 10702 u64 isize; 10703 u64 start; 10704 10705 /* 10706 * If the swap file was just created, make sure delalloc is done. If the 10707 * file changes again after this, the user is doing something stupid and 10708 * we don't really care. 10709 */ 10710 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10711 if (ret) 10712 return ret; 10713 10714 /* 10715 * The inode is locked, so these flags won't change after we check them. 10716 */ 10717 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10718 btrfs_warn(fs_info, "swapfile must not be compressed"); 10719 return -EINVAL; 10720 } 10721 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10722 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10723 return -EINVAL; 10724 } 10725 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10726 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10727 return -EINVAL; 10728 } 10729 10730 /* 10731 * Balance or device remove/replace/resize can move stuff around from 10732 * under us. The exclop protection makes sure they aren't running/won't 10733 * run concurrently while we are mapping the swap extents, and 10734 * fs_info->swapfile_pins prevents them from running while the swap 10735 * file is active and moving the extents. Note that this also prevents 10736 * a concurrent device add which isn't actually necessary, but it's not 10737 * really worth the trouble to allow it. 10738 */ 10739 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10740 btrfs_warn(fs_info, 10741 "cannot activate swapfile while exclusive operation is running"); 10742 return -EBUSY; 10743 } 10744 10745 /* 10746 * Prevent snapshot creation while we are activating the swap file. 10747 * We do not want to race with snapshot creation. If snapshot creation 10748 * already started before we bumped nr_swapfiles from 0 to 1 and 10749 * completes before the first write into the swap file after it is 10750 * activated, than that write would fallback to COW. 10751 */ 10752 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10753 btrfs_exclop_finish(fs_info); 10754 btrfs_warn(fs_info, 10755 "cannot activate swapfile because snapshot creation is in progress"); 10756 return -EINVAL; 10757 } 10758 /* 10759 * Snapshots can create extents which require COW even if NODATACOW is 10760 * set. We use this counter to prevent snapshots. We must increment it 10761 * before walking the extents because we don't want a concurrent 10762 * snapshot to run after we've already checked the extents. 10763 * 10764 * It is possible that subvolume is marked for deletion but still not 10765 * removed yet. To prevent this race, we check the root status before 10766 * activating the swapfile. 10767 */ 10768 spin_lock(&root->root_item_lock); 10769 if (btrfs_root_dead(root)) { 10770 spin_unlock(&root->root_item_lock); 10771 10772 btrfs_exclop_finish(fs_info); 10773 btrfs_warn(fs_info, 10774 "cannot activate swapfile because subvolume %llu is being deleted", 10775 root->root_key.objectid); 10776 return -EPERM; 10777 } 10778 atomic_inc(&root->nr_swapfiles); 10779 spin_unlock(&root->root_item_lock); 10780 10781 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10782 10783 lock_extent(io_tree, 0, isize - 1, &cached_state); 10784 start = 0; 10785 while (start < isize) { 10786 u64 logical_block_start, physical_block_start; 10787 struct btrfs_block_group *bg; 10788 u64 len = isize - start; 10789 10790 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 10791 if (IS_ERR(em)) { 10792 ret = PTR_ERR(em); 10793 goto out; 10794 } 10795 10796 if (em->block_start == EXTENT_MAP_HOLE) { 10797 btrfs_warn(fs_info, "swapfile must not have holes"); 10798 ret = -EINVAL; 10799 goto out; 10800 } 10801 if (em->block_start == EXTENT_MAP_INLINE) { 10802 /* 10803 * It's unlikely we'll ever actually find ourselves 10804 * here, as a file small enough to fit inline won't be 10805 * big enough to store more than the swap header, but in 10806 * case something changes in the future, let's catch it 10807 * here rather than later. 10808 */ 10809 btrfs_warn(fs_info, "swapfile must not be inline"); 10810 ret = -EINVAL; 10811 goto out; 10812 } 10813 if (extent_map_is_compressed(em)) { 10814 btrfs_warn(fs_info, "swapfile must not be compressed"); 10815 ret = -EINVAL; 10816 goto out; 10817 } 10818 10819 logical_block_start = em->block_start + (start - em->start); 10820 len = min(len, em->len - (start - em->start)); 10821 free_extent_map(em); 10822 em = NULL; 10823 10824 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10825 if (ret < 0) { 10826 goto out; 10827 } else if (ret) { 10828 ret = 0; 10829 } else { 10830 btrfs_warn(fs_info, 10831 "swapfile must not be copy-on-write"); 10832 ret = -EINVAL; 10833 goto out; 10834 } 10835 10836 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10837 if (IS_ERR(map)) { 10838 ret = PTR_ERR(map); 10839 goto out; 10840 } 10841 10842 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10843 btrfs_warn(fs_info, 10844 "swapfile must have single data profile"); 10845 ret = -EINVAL; 10846 goto out; 10847 } 10848 10849 if (device == NULL) { 10850 device = map->stripes[0].dev; 10851 ret = btrfs_add_swapfile_pin(inode, device, false); 10852 if (ret == 1) 10853 ret = 0; 10854 else if (ret) 10855 goto out; 10856 } else if (device != map->stripes[0].dev) { 10857 btrfs_warn(fs_info, "swapfile must be on one device"); 10858 ret = -EINVAL; 10859 goto out; 10860 } 10861 10862 physical_block_start = (map->stripes[0].physical + 10863 (logical_block_start - map->start)); 10864 len = min(len, map->chunk_len - (logical_block_start - map->start)); 10865 btrfs_free_chunk_map(map); 10866 map = NULL; 10867 10868 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10869 if (!bg) { 10870 btrfs_warn(fs_info, 10871 "could not find block group containing swapfile"); 10872 ret = -EINVAL; 10873 goto out; 10874 } 10875 10876 if (!btrfs_inc_block_group_swap_extents(bg)) { 10877 btrfs_warn(fs_info, 10878 "block group for swapfile at %llu is read-only%s", 10879 bg->start, 10880 atomic_read(&fs_info->scrubs_running) ? 10881 " (scrub running)" : ""); 10882 btrfs_put_block_group(bg); 10883 ret = -EINVAL; 10884 goto out; 10885 } 10886 10887 ret = btrfs_add_swapfile_pin(inode, bg, true); 10888 if (ret) { 10889 btrfs_put_block_group(bg); 10890 if (ret == 1) 10891 ret = 0; 10892 else 10893 goto out; 10894 } 10895 10896 if (bsi.block_len && 10897 bsi.block_start + bsi.block_len == physical_block_start) { 10898 bsi.block_len += len; 10899 } else { 10900 if (bsi.block_len) { 10901 ret = btrfs_add_swap_extent(sis, &bsi); 10902 if (ret) 10903 goto out; 10904 } 10905 bsi.start = start; 10906 bsi.block_start = physical_block_start; 10907 bsi.block_len = len; 10908 } 10909 10910 start += len; 10911 } 10912 10913 if (bsi.block_len) 10914 ret = btrfs_add_swap_extent(sis, &bsi); 10915 10916 out: 10917 if (!IS_ERR_OR_NULL(em)) 10918 free_extent_map(em); 10919 if (!IS_ERR_OR_NULL(map)) 10920 btrfs_free_chunk_map(map); 10921 10922 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10923 10924 if (ret) 10925 btrfs_swap_deactivate(file); 10926 10927 btrfs_drew_write_unlock(&root->snapshot_lock); 10928 10929 btrfs_exclop_finish(fs_info); 10930 10931 if (ret) 10932 return ret; 10933 10934 if (device) 10935 sis->bdev = device->bdev; 10936 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10937 sis->max = bsi.nr_pages; 10938 sis->pages = bsi.nr_pages - 1; 10939 sis->highest_bit = bsi.nr_pages - 1; 10940 return bsi.nr_extents; 10941 } 10942 #else 10943 static void btrfs_swap_deactivate(struct file *file) 10944 { 10945 } 10946 10947 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10948 sector_t *span) 10949 { 10950 return -EOPNOTSUPP; 10951 } 10952 #endif 10953 10954 /* 10955 * Update the number of bytes used in the VFS' inode. When we replace extents in 10956 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10957 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10958 * always get a correct value. 10959 */ 10960 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10961 const u64 add_bytes, 10962 const u64 del_bytes) 10963 { 10964 if (add_bytes == del_bytes) 10965 return; 10966 10967 spin_lock(&inode->lock); 10968 if (del_bytes > 0) 10969 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10970 if (add_bytes > 0) 10971 inode_add_bytes(&inode->vfs_inode, add_bytes); 10972 spin_unlock(&inode->lock); 10973 } 10974 10975 /* 10976 * Verify that there are no ordered extents for a given file range. 10977 * 10978 * @inode: The target inode. 10979 * @start: Start offset of the file range, should be sector size aligned. 10980 * @end: End offset (inclusive) of the file range, its value +1 should be 10981 * sector size aligned. 10982 * 10983 * This should typically be used for cases where we locked an inode's VFS lock in 10984 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10985 * we have flushed all delalloc in the range, we have waited for all ordered 10986 * extents in the range to complete and finally we have locked the file range in 10987 * the inode's io_tree. 10988 */ 10989 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10990 { 10991 struct btrfs_root *root = inode->root; 10992 struct btrfs_ordered_extent *ordered; 10993 10994 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10995 return; 10996 10997 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10998 if (ordered) { 10999 btrfs_err(root->fs_info, 11000 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 11001 start, end, btrfs_ino(inode), root->root_key.objectid, 11002 ordered->file_offset, 11003 ordered->file_offset + ordered->num_bytes - 1); 11004 btrfs_put_ordered_extent(ordered); 11005 } 11006 11007 ASSERT(ordered == NULL); 11008 } 11009 11010 static const struct inode_operations btrfs_dir_inode_operations = { 11011 .getattr = btrfs_getattr, 11012 .lookup = btrfs_lookup, 11013 .create = btrfs_create, 11014 .unlink = btrfs_unlink, 11015 .link = btrfs_link, 11016 .mkdir = btrfs_mkdir, 11017 .rmdir = btrfs_rmdir, 11018 .rename = btrfs_rename2, 11019 .symlink = btrfs_symlink, 11020 .setattr = btrfs_setattr, 11021 .mknod = btrfs_mknod, 11022 .listxattr = btrfs_listxattr, 11023 .permission = btrfs_permission, 11024 .get_inode_acl = btrfs_get_acl, 11025 .set_acl = btrfs_set_acl, 11026 .update_time = btrfs_update_time, 11027 .tmpfile = btrfs_tmpfile, 11028 .fileattr_get = btrfs_fileattr_get, 11029 .fileattr_set = btrfs_fileattr_set, 11030 }; 11031 11032 static const struct file_operations btrfs_dir_file_operations = { 11033 .llseek = btrfs_dir_llseek, 11034 .read = generic_read_dir, 11035 .iterate_shared = btrfs_real_readdir, 11036 .open = btrfs_opendir, 11037 .unlocked_ioctl = btrfs_ioctl, 11038 #ifdef CONFIG_COMPAT 11039 .compat_ioctl = btrfs_compat_ioctl, 11040 #endif 11041 .release = btrfs_release_file, 11042 .fsync = btrfs_sync_file, 11043 }; 11044 11045 /* 11046 * btrfs doesn't support the bmap operation because swapfiles 11047 * use bmap to make a mapping of extents in the file. They assume 11048 * these extents won't change over the life of the file and they 11049 * use the bmap result to do IO directly to the drive. 11050 * 11051 * the btrfs bmap call would return logical addresses that aren't 11052 * suitable for IO and they also will change frequently as COW 11053 * operations happen. So, swapfile + btrfs == corruption. 11054 * 11055 * For now we're avoiding this by dropping bmap. 11056 */ 11057 static const struct address_space_operations btrfs_aops = { 11058 .read_folio = btrfs_read_folio, 11059 .writepages = btrfs_writepages, 11060 .readahead = btrfs_readahead, 11061 .invalidate_folio = btrfs_invalidate_folio, 11062 .release_folio = btrfs_release_folio, 11063 .migrate_folio = btrfs_migrate_folio, 11064 .dirty_folio = filemap_dirty_folio, 11065 .error_remove_folio = generic_error_remove_folio, 11066 .swap_activate = btrfs_swap_activate, 11067 .swap_deactivate = btrfs_swap_deactivate, 11068 }; 11069 11070 static const struct inode_operations btrfs_file_inode_operations = { 11071 .getattr = btrfs_getattr, 11072 .setattr = btrfs_setattr, 11073 .listxattr = btrfs_listxattr, 11074 .permission = btrfs_permission, 11075 .fiemap = btrfs_fiemap, 11076 .get_inode_acl = btrfs_get_acl, 11077 .set_acl = btrfs_set_acl, 11078 .update_time = btrfs_update_time, 11079 .fileattr_get = btrfs_fileattr_get, 11080 .fileattr_set = btrfs_fileattr_set, 11081 }; 11082 static const struct inode_operations btrfs_special_inode_operations = { 11083 .getattr = btrfs_getattr, 11084 .setattr = btrfs_setattr, 11085 .permission = btrfs_permission, 11086 .listxattr = btrfs_listxattr, 11087 .get_inode_acl = btrfs_get_acl, 11088 .set_acl = btrfs_set_acl, 11089 .update_time = btrfs_update_time, 11090 }; 11091 static const struct inode_operations btrfs_symlink_inode_operations = { 11092 .get_link = page_get_link, 11093 .getattr = btrfs_getattr, 11094 .setattr = btrfs_setattr, 11095 .permission = btrfs_permission, 11096 .listxattr = btrfs_listxattr, 11097 .update_time = btrfs_update_time, 11098 }; 11099 11100 const struct dentry_operations btrfs_dentry_operations = { 11101 .d_delete = btrfs_dentry_delete, 11102 }; 11103