1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 struct btrfs_dio_data { 61 u64 reserve; 62 loff_t length; 63 ssize_t submitted; 64 struct extent_changeset *data_reserved; 65 }; 66 67 static const struct inode_operations btrfs_dir_inode_operations; 68 static const struct inode_operations btrfs_symlink_inode_operations; 69 static const struct inode_operations btrfs_special_inode_operations; 70 static const struct inode_operations btrfs_file_inode_operations; 71 static const struct address_space_operations btrfs_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 74 static struct kmem_cache *btrfs_inode_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 struct kmem_cache *btrfs_free_space_bitmap_cachep; 79 80 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 81 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 83 static noinline int cow_file_range(struct btrfs_inode *inode, 84 struct page *locked_page, 85 u64 start, u64 end, int *page_started, 86 unsigned long *nr_written, int unlock); 87 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 88 u64 len, u64 orig_start, u64 block_start, 89 u64 block_len, u64 orig_block_len, 90 u64 ram_bytes, int compress_type, 91 int type); 92 93 static void __endio_write_update_ordered(struct btrfs_inode *inode, 94 const u64 offset, const u64 bytes, 95 const bool uptodate); 96 97 /* 98 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 99 * 100 * ilock_flags can have the following bit set: 101 * 102 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 103 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 104 * return -EAGAIN 105 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 106 */ 107 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 108 { 109 if (ilock_flags & BTRFS_ILOCK_SHARED) { 110 if (ilock_flags & BTRFS_ILOCK_TRY) { 111 if (!inode_trylock_shared(inode)) 112 return -EAGAIN; 113 else 114 return 0; 115 } 116 inode_lock_shared(inode); 117 } else { 118 if (ilock_flags & BTRFS_ILOCK_TRY) { 119 if (!inode_trylock(inode)) 120 return -EAGAIN; 121 else 122 return 0; 123 } 124 inode_lock(inode); 125 } 126 if (ilock_flags & BTRFS_ILOCK_MMAP) 127 down_write(&BTRFS_I(inode)->i_mmap_lock); 128 return 0; 129 } 130 131 /* 132 * btrfs_inode_unlock - unock inode i_rwsem 133 * 134 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 135 * to decide whether the lock acquired is shared or exclusive. 136 */ 137 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 138 { 139 if (ilock_flags & BTRFS_ILOCK_MMAP) 140 up_write(&BTRFS_I(inode)->i_mmap_lock); 141 if (ilock_flags & BTRFS_ILOCK_SHARED) 142 inode_unlock_shared(inode); 143 else 144 inode_unlock(inode); 145 } 146 147 /* 148 * Cleanup all submitted ordered extents in specified range to handle errors 149 * from the btrfs_run_delalloc_range() callback. 150 * 151 * NOTE: caller must ensure that when an error happens, it can not call 152 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 153 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 154 * to be released, which we want to happen only when finishing the ordered 155 * extent (btrfs_finish_ordered_io()). 156 */ 157 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 158 struct page *locked_page, 159 u64 offset, u64 bytes) 160 { 161 unsigned long index = offset >> PAGE_SHIFT; 162 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 163 u64 page_start = page_offset(locked_page); 164 u64 page_end = page_start + PAGE_SIZE - 1; 165 166 struct page *page; 167 168 while (index <= end_index) { 169 page = find_get_page(inode->vfs_inode.i_mapping, index); 170 index++; 171 if (!page) 172 continue; 173 ClearPagePrivate2(page); 174 put_page(page); 175 } 176 177 /* 178 * In case this page belongs to the delalloc range being instantiated 179 * then skip it, since the first page of a range is going to be 180 * properly cleaned up by the caller of run_delalloc_range 181 */ 182 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 183 offset += PAGE_SIZE; 184 bytes -= PAGE_SIZE; 185 } 186 187 return __endio_write_update_ordered(inode, offset, bytes, false); 188 } 189 190 static int btrfs_dirty_inode(struct inode *inode); 191 192 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 193 struct inode *inode, struct inode *dir, 194 const struct qstr *qstr) 195 { 196 int err; 197 198 err = btrfs_init_acl(trans, inode, dir); 199 if (!err) 200 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 201 return err; 202 } 203 204 /* 205 * this does all the hard work for inserting an inline extent into 206 * the btree. The caller should have done a btrfs_drop_extents so that 207 * no overlapping inline items exist in the btree 208 */ 209 static int insert_inline_extent(struct btrfs_trans_handle *trans, 210 struct btrfs_path *path, bool extent_inserted, 211 struct btrfs_root *root, struct inode *inode, 212 u64 start, size_t size, size_t compressed_size, 213 int compress_type, 214 struct page **compressed_pages) 215 { 216 struct extent_buffer *leaf; 217 struct page *page = NULL; 218 char *kaddr; 219 unsigned long ptr; 220 struct btrfs_file_extent_item *ei; 221 int ret; 222 size_t cur_size = size; 223 unsigned long offset; 224 225 ASSERT((compressed_size > 0 && compressed_pages) || 226 (compressed_size == 0 && !compressed_pages)); 227 228 if (compressed_size && compressed_pages) 229 cur_size = compressed_size; 230 231 if (!extent_inserted) { 232 struct btrfs_key key; 233 size_t datasize; 234 235 key.objectid = btrfs_ino(BTRFS_I(inode)); 236 key.offset = start; 237 key.type = BTRFS_EXTENT_DATA_KEY; 238 239 datasize = btrfs_file_extent_calc_inline_size(cur_size); 240 ret = btrfs_insert_empty_item(trans, root, path, &key, 241 datasize); 242 if (ret) 243 goto fail; 244 } 245 leaf = path->nodes[0]; 246 ei = btrfs_item_ptr(leaf, path->slots[0], 247 struct btrfs_file_extent_item); 248 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 249 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 250 btrfs_set_file_extent_encryption(leaf, ei, 0); 251 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 252 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 253 ptr = btrfs_file_extent_inline_start(ei); 254 255 if (compress_type != BTRFS_COMPRESS_NONE) { 256 struct page *cpage; 257 int i = 0; 258 while (compressed_size > 0) { 259 cpage = compressed_pages[i]; 260 cur_size = min_t(unsigned long, compressed_size, 261 PAGE_SIZE); 262 263 kaddr = kmap_atomic(cpage); 264 write_extent_buffer(leaf, kaddr, ptr, cur_size); 265 kunmap_atomic(kaddr); 266 267 i++; 268 ptr += cur_size; 269 compressed_size -= cur_size; 270 } 271 btrfs_set_file_extent_compression(leaf, ei, 272 compress_type); 273 } else { 274 page = find_get_page(inode->i_mapping, 275 start >> PAGE_SHIFT); 276 btrfs_set_file_extent_compression(leaf, ei, 0); 277 kaddr = kmap_atomic(page); 278 offset = offset_in_page(start); 279 write_extent_buffer(leaf, kaddr + offset, ptr, size); 280 kunmap_atomic(kaddr); 281 put_page(page); 282 } 283 btrfs_mark_buffer_dirty(leaf); 284 btrfs_release_path(path); 285 286 /* 287 * We align size to sectorsize for inline extents just for simplicity 288 * sake. 289 */ 290 size = ALIGN(size, root->fs_info->sectorsize); 291 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 292 if (ret) 293 goto fail; 294 295 /* 296 * we're an inline extent, so nobody can 297 * extend the file past i_size without locking 298 * a page we already have locked. 299 * 300 * We must do any isize and inode updates 301 * before we unlock the pages. Otherwise we 302 * could end up racing with unlink. 303 */ 304 BTRFS_I(inode)->disk_i_size = inode->i_size; 305 fail: 306 return ret; 307 } 308 309 310 /* 311 * conditionally insert an inline extent into the file. This 312 * does the checks required to make sure the data is small enough 313 * to fit as an inline extent. 314 */ 315 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 316 u64 end, size_t compressed_size, 317 int compress_type, 318 struct page **compressed_pages) 319 { 320 struct btrfs_drop_extents_args drop_args = { 0 }; 321 struct btrfs_root *root = inode->root; 322 struct btrfs_fs_info *fs_info = root->fs_info; 323 struct btrfs_trans_handle *trans; 324 u64 isize = i_size_read(&inode->vfs_inode); 325 u64 actual_end = min(end + 1, isize); 326 u64 inline_len = actual_end - start; 327 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 328 u64 data_len = inline_len; 329 int ret; 330 struct btrfs_path *path; 331 332 if (compressed_size) 333 data_len = compressed_size; 334 335 if (start > 0 || 336 actual_end > fs_info->sectorsize || 337 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 338 (!compressed_size && 339 (actual_end & (fs_info->sectorsize - 1)) == 0) || 340 end + 1 < isize || 341 data_len > fs_info->max_inline) { 342 return 1; 343 } 344 345 path = btrfs_alloc_path(); 346 if (!path) 347 return -ENOMEM; 348 349 trans = btrfs_join_transaction(root); 350 if (IS_ERR(trans)) { 351 btrfs_free_path(path); 352 return PTR_ERR(trans); 353 } 354 trans->block_rsv = &inode->block_rsv; 355 356 drop_args.path = path; 357 drop_args.start = start; 358 drop_args.end = aligned_end; 359 drop_args.drop_cache = true; 360 drop_args.replace_extent = true; 361 362 if (compressed_size && compressed_pages) 363 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 364 compressed_size); 365 else 366 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size( 367 inline_len); 368 369 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 370 if (ret) { 371 btrfs_abort_transaction(trans, ret); 372 goto out; 373 } 374 375 if (isize > actual_end) 376 inline_len = min_t(u64, isize, actual_end); 377 ret = insert_inline_extent(trans, path, drop_args.extent_inserted, 378 root, &inode->vfs_inode, start, 379 inline_len, compressed_size, 380 compress_type, compressed_pages); 381 if (ret && ret != -ENOSPC) { 382 btrfs_abort_transaction(trans, ret); 383 goto out; 384 } else if (ret == -ENOSPC) { 385 ret = 1; 386 goto out; 387 } 388 389 btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found); 390 ret = btrfs_update_inode(trans, root, inode); 391 if (ret && ret != -ENOSPC) { 392 btrfs_abort_transaction(trans, ret); 393 goto out; 394 } else if (ret == -ENOSPC) { 395 ret = 1; 396 goto out; 397 } 398 399 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 400 out: 401 /* 402 * Don't forget to free the reserved space, as for inlined extent 403 * it won't count as data extent, free them directly here. 404 * And at reserve time, it's always aligned to page size, so 405 * just free one page here. 406 */ 407 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 408 btrfs_free_path(path); 409 btrfs_end_transaction(trans); 410 return ret; 411 } 412 413 struct async_extent { 414 u64 start; 415 u64 ram_size; 416 u64 compressed_size; 417 struct page **pages; 418 unsigned long nr_pages; 419 int compress_type; 420 struct list_head list; 421 }; 422 423 struct async_chunk { 424 struct inode *inode; 425 struct page *locked_page; 426 u64 start; 427 u64 end; 428 unsigned int write_flags; 429 struct list_head extents; 430 struct cgroup_subsys_state *blkcg_css; 431 struct btrfs_work work; 432 atomic_t *pending; 433 }; 434 435 struct async_cow { 436 /* Number of chunks in flight; must be first in the structure */ 437 atomic_t num_chunks; 438 struct async_chunk chunks[]; 439 }; 440 441 static noinline int add_async_extent(struct async_chunk *cow, 442 u64 start, u64 ram_size, 443 u64 compressed_size, 444 struct page **pages, 445 unsigned long nr_pages, 446 int compress_type) 447 { 448 struct async_extent *async_extent; 449 450 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 451 BUG_ON(!async_extent); /* -ENOMEM */ 452 async_extent->start = start; 453 async_extent->ram_size = ram_size; 454 async_extent->compressed_size = compressed_size; 455 async_extent->pages = pages; 456 async_extent->nr_pages = nr_pages; 457 async_extent->compress_type = compress_type; 458 list_add_tail(&async_extent->list, &cow->extents); 459 return 0; 460 } 461 462 /* 463 * Check if the inode has flags compatible with compression 464 */ 465 static inline bool inode_can_compress(struct btrfs_inode *inode) 466 { 467 if (inode->flags & BTRFS_INODE_NODATACOW || 468 inode->flags & BTRFS_INODE_NODATASUM) 469 return false; 470 return true; 471 } 472 473 /* 474 * Check if the inode needs to be submitted to compression, based on mount 475 * options, defragmentation, properties or heuristics. 476 */ 477 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 478 u64 end) 479 { 480 struct btrfs_fs_info *fs_info = inode->root->fs_info; 481 482 if (!inode_can_compress(inode)) { 483 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 484 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 485 btrfs_ino(inode)); 486 return 0; 487 } 488 /* force compress */ 489 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 490 return 1; 491 /* defrag ioctl */ 492 if (inode->defrag_compress) 493 return 1; 494 /* bad compression ratios */ 495 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 496 return 0; 497 if (btrfs_test_opt(fs_info, COMPRESS) || 498 inode->flags & BTRFS_INODE_COMPRESS || 499 inode->prop_compress) 500 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 501 return 0; 502 } 503 504 static inline void inode_should_defrag(struct btrfs_inode *inode, 505 u64 start, u64 end, u64 num_bytes, u64 small_write) 506 { 507 /* If this is a small write inside eof, kick off a defrag */ 508 if (num_bytes < small_write && 509 (start > 0 || end + 1 < inode->disk_i_size)) 510 btrfs_add_inode_defrag(NULL, inode); 511 } 512 513 /* 514 * we create compressed extents in two phases. The first 515 * phase compresses a range of pages that have already been 516 * locked (both pages and state bits are locked). 517 * 518 * This is done inside an ordered work queue, and the compression 519 * is spread across many cpus. The actual IO submission is step 520 * two, and the ordered work queue takes care of making sure that 521 * happens in the same order things were put onto the queue by 522 * writepages and friends. 523 * 524 * If this code finds it can't get good compression, it puts an 525 * entry onto the work queue to write the uncompressed bytes. This 526 * makes sure that both compressed inodes and uncompressed inodes 527 * are written in the same order that the flusher thread sent them 528 * down. 529 */ 530 static noinline int compress_file_range(struct async_chunk *async_chunk) 531 { 532 struct inode *inode = async_chunk->inode; 533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 534 u64 blocksize = fs_info->sectorsize; 535 u64 start = async_chunk->start; 536 u64 end = async_chunk->end; 537 u64 actual_end; 538 u64 i_size; 539 int ret = 0; 540 struct page **pages = NULL; 541 unsigned long nr_pages; 542 unsigned long total_compressed = 0; 543 unsigned long total_in = 0; 544 int i; 545 int will_compress; 546 int compress_type = fs_info->compress_type; 547 int compressed_extents = 0; 548 int redirty = 0; 549 550 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 551 SZ_16K); 552 553 /* 554 * We need to save i_size before now because it could change in between 555 * us evaluating the size and assigning it. This is because we lock and 556 * unlock the page in truncate and fallocate, and then modify the i_size 557 * later on. 558 * 559 * The barriers are to emulate READ_ONCE, remove that once i_size_read 560 * does that for us. 561 */ 562 barrier(); 563 i_size = i_size_read(inode); 564 barrier(); 565 actual_end = min_t(u64, i_size, end + 1); 566 again: 567 will_compress = 0; 568 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 569 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 570 nr_pages = min_t(unsigned long, nr_pages, 571 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 572 573 /* 574 * we don't want to send crud past the end of i_size through 575 * compression, that's just a waste of CPU time. So, if the 576 * end of the file is before the start of our current 577 * requested range of bytes, we bail out to the uncompressed 578 * cleanup code that can deal with all of this. 579 * 580 * It isn't really the fastest way to fix things, but this is a 581 * very uncommon corner. 582 */ 583 if (actual_end <= start) 584 goto cleanup_and_bail_uncompressed; 585 586 total_compressed = actual_end - start; 587 588 /* 589 * skip compression for a small file range(<=blocksize) that 590 * isn't an inline extent, since it doesn't save disk space at all. 591 */ 592 if (total_compressed <= blocksize && 593 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 594 goto cleanup_and_bail_uncompressed; 595 596 total_compressed = min_t(unsigned long, total_compressed, 597 BTRFS_MAX_UNCOMPRESSED); 598 total_in = 0; 599 ret = 0; 600 601 /* 602 * we do compression for mount -o compress and when the 603 * inode has not been flagged as nocompress. This flag can 604 * change at any time if we discover bad compression ratios. 605 */ 606 if (inode_need_compress(BTRFS_I(inode), start, end)) { 607 WARN_ON(pages); 608 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 609 if (!pages) { 610 /* just bail out to the uncompressed code */ 611 nr_pages = 0; 612 goto cont; 613 } 614 615 if (BTRFS_I(inode)->defrag_compress) 616 compress_type = BTRFS_I(inode)->defrag_compress; 617 else if (BTRFS_I(inode)->prop_compress) 618 compress_type = BTRFS_I(inode)->prop_compress; 619 620 /* 621 * we need to call clear_page_dirty_for_io on each 622 * page in the range. Otherwise applications with the file 623 * mmap'd can wander in and change the page contents while 624 * we are compressing them. 625 * 626 * If the compression fails for any reason, we set the pages 627 * dirty again later on. 628 * 629 * Note that the remaining part is redirtied, the start pointer 630 * has moved, the end is the original one. 631 */ 632 if (!redirty) { 633 extent_range_clear_dirty_for_io(inode, start, end); 634 redirty = 1; 635 } 636 637 /* Compression level is applied here and only here */ 638 ret = btrfs_compress_pages( 639 compress_type | (fs_info->compress_level << 4), 640 inode->i_mapping, start, 641 pages, 642 &nr_pages, 643 &total_in, 644 &total_compressed); 645 646 if (!ret) { 647 unsigned long offset = offset_in_page(total_compressed); 648 struct page *page = pages[nr_pages - 1]; 649 650 /* zero the tail end of the last page, we might be 651 * sending it down to disk 652 */ 653 if (offset) 654 memzero_page(page, offset, PAGE_SIZE - offset); 655 will_compress = 1; 656 } 657 } 658 cont: 659 if (start == 0) { 660 /* lets try to make an inline extent */ 661 if (ret || total_in < actual_end) { 662 /* we didn't compress the entire range, try 663 * to make an uncompressed inline extent. 664 */ 665 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 666 0, BTRFS_COMPRESS_NONE, 667 NULL); 668 } else { 669 /* try making a compressed inline extent */ 670 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 671 total_compressed, 672 compress_type, pages); 673 } 674 if (ret <= 0) { 675 unsigned long clear_flags = EXTENT_DELALLOC | 676 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 677 EXTENT_DO_ACCOUNTING; 678 unsigned long page_error_op; 679 680 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 681 682 /* 683 * inline extent creation worked or returned error, 684 * we don't need to create any more async work items. 685 * Unlock and free up our temp pages. 686 * 687 * We use DO_ACCOUNTING here because we need the 688 * delalloc_release_metadata to be done _after_ we drop 689 * our outstanding extent for clearing delalloc for this 690 * range. 691 */ 692 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 693 NULL, 694 clear_flags, 695 PAGE_UNLOCK | 696 PAGE_START_WRITEBACK | 697 page_error_op | 698 PAGE_END_WRITEBACK); 699 700 /* 701 * Ensure we only free the compressed pages if we have 702 * them allocated, as we can still reach here with 703 * inode_need_compress() == false. 704 */ 705 if (pages) { 706 for (i = 0; i < nr_pages; i++) { 707 WARN_ON(pages[i]->mapping); 708 put_page(pages[i]); 709 } 710 kfree(pages); 711 } 712 return 0; 713 } 714 } 715 716 if (will_compress) { 717 /* 718 * we aren't doing an inline extent round the compressed size 719 * up to a block size boundary so the allocator does sane 720 * things 721 */ 722 total_compressed = ALIGN(total_compressed, blocksize); 723 724 /* 725 * one last check to make sure the compression is really a 726 * win, compare the page count read with the blocks on disk, 727 * compression must free at least one sector size 728 */ 729 total_in = ALIGN(total_in, PAGE_SIZE); 730 if (total_compressed + blocksize <= total_in) { 731 compressed_extents++; 732 733 /* 734 * The async work queues will take care of doing actual 735 * allocation on disk for these compressed pages, and 736 * will submit them to the elevator. 737 */ 738 add_async_extent(async_chunk, start, total_in, 739 total_compressed, pages, nr_pages, 740 compress_type); 741 742 if (start + total_in < end) { 743 start += total_in; 744 pages = NULL; 745 cond_resched(); 746 goto again; 747 } 748 return compressed_extents; 749 } 750 } 751 if (pages) { 752 /* 753 * the compression code ran but failed to make things smaller, 754 * free any pages it allocated and our page pointer array 755 */ 756 for (i = 0; i < nr_pages; i++) { 757 WARN_ON(pages[i]->mapping); 758 put_page(pages[i]); 759 } 760 kfree(pages); 761 pages = NULL; 762 total_compressed = 0; 763 nr_pages = 0; 764 765 /* flag the file so we don't compress in the future */ 766 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 767 !(BTRFS_I(inode)->prop_compress)) { 768 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 769 } 770 } 771 cleanup_and_bail_uncompressed: 772 /* 773 * No compression, but we still need to write the pages in the file 774 * we've been given so far. redirty the locked page if it corresponds 775 * to our extent and set things up for the async work queue to run 776 * cow_file_range to do the normal delalloc dance. 777 */ 778 if (async_chunk->locked_page && 779 (page_offset(async_chunk->locked_page) >= start && 780 page_offset(async_chunk->locked_page)) <= end) { 781 __set_page_dirty_nobuffers(async_chunk->locked_page); 782 /* unlocked later on in the async handlers */ 783 } 784 785 if (redirty) 786 extent_range_redirty_for_io(inode, start, end); 787 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 788 BTRFS_COMPRESS_NONE); 789 compressed_extents++; 790 791 return compressed_extents; 792 } 793 794 static void free_async_extent_pages(struct async_extent *async_extent) 795 { 796 int i; 797 798 if (!async_extent->pages) 799 return; 800 801 for (i = 0; i < async_extent->nr_pages; i++) { 802 WARN_ON(async_extent->pages[i]->mapping); 803 put_page(async_extent->pages[i]); 804 } 805 kfree(async_extent->pages); 806 async_extent->nr_pages = 0; 807 async_extent->pages = NULL; 808 } 809 810 /* 811 * phase two of compressed writeback. This is the ordered portion 812 * of the code, which only gets called in the order the work was 813 * queued. We walk all the async extents created by compress_file_range 814 * and send them down to the disk. 815 */ 816 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 817 { 818 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 819 struct btrfs_fs_info *fs_info = inode->root->fs_info; 820 struct async_extent *async_extent; 821 u64 alloc_hint = 0; 822 struct btrfs_key ins; 823 struct extent_map *em; 824 struct btrfs_root *root = inode->root; 825 struct extent_io_tree *io_tree = &inode->io_tree; 826 int ret = 0; 827 828 again: 829 while (!list_empty(&async_chunk->extents)) { 830 async_extent = list_entry(async_chunk->extents.next, 831 struct async_extent, list); 832 list_del(&async_extent->list); 833 834 retry: 835 lock_extent(io_tree, async_extent->start, 836 async_extent->start + async_extent->ram_size - 1); 837 /* did the compression code fall back to uncompressed IO? */ 838 if (!async_extent->pages) { 839 int page_started = 0; 840 unsigned long nr_written = 0; 841 842 /* allocate blocks */ 843 ret = cow_file_range(inode, async_chunk->locked_page, 844 async_extent->start, 845 async_extent->start + 846 async_extent->ram_size - 1, 847 &page_started, &nr_written, 0); 848 849 /* JDM XXX */ 850 851 /* 852 * if page_started, cow_file_range inserted an 853 * inline extent and took care of all the unlocking 854 * and IO for us. Otherwise, we need to submit 855 * all those pages down to the drive. 856 */ 857 if (!page_started && !ret) 858 extent_write_locked_range(&inode->vfs_inode, 859 async_extent->start, 860 async_extent->start + 861 async_extent->ram_size - 1, 862 WB_SYNC_ALL); 863 else if (ret && async_chunk->locked_page) 864 unlock_page(async_chunk->locked_page); 865 kfree(async_extent); 866 cond_resched(); 867 continue; 868 } 869 870 ret = btrfs_reserve_extent(root, async_extent->ram_size, 871 async_extent->compressed_size, 872 async_extent->compressed_size, 873 0, alloc_hint, &ins, 1, 1); 874 if (ret) { 875 free_async_extent_pages(async_extent); 876 877 if (ret == -ENOSPC) { 878 unlock_extent(io_tree, async_extent->start, 879 async_extent->start + 880 async_extent->ram_size - 1); 881 882 /* 883 * we need to redirty the pages if we decide to 884 * fallback to uncompressed IO, otherwise we 885 * will not submit these pages down to lower 886 * layers. 887 */ 888 extent_range_redirty_for_io(&inode->vfs_inode, 889 async_extent->start, 890 async_extent->start + 891 async_extent->ram_size - 1); 892 893 goto retry; 894 } 895 goto out_free; 896 } 897 /* 898 * here we're doing allocation and writeback of the 899 * compressed pages 900 */ 901 em = create_io_em(inode, async_extent->start, 902 async_extent->ram_size, /* len */ 903 async_extent->start, /* orig_start */ 904 ins.objectid, /* block_start */ 905 ins.offset, /* block_len */ 906 ins.offset, /* orig_block_len */ 907 async_extent->ram_size, /* ram_bytes */ 908 async_extent->compress_type, 909 BTRFS_ORDERED_COMPRESSED); 910 if (IS_ERR(em)) 911 /* ret value is not necessary due to void function */ 912 goto out_free_reserve; 913 free_extent_map(em); 914 915 ret = btrfs_add_ordered_extent_compress(inode, 916 async_extent->start, 917 ins.objectid, 918 async_extent->ram_size, 919 ins.offset, 920 async_extent->compress_type); 921 if (ret) { 922 btrfs_drop_extent_cache(inode, async_extent->start, 923 async_extent->start + 924 async_extent->ram_size - 1, 0); 925 goto out_free_reserve; 926 } 927 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 928 929 /* 930 * clear dirty, set writeback and unlock the pages. 931 */ 932 extent_clear_unlock_delalloc(inode, async_extent->start, 933 async_extent->start + 934 async_extent->ram_size - 1, 935 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 936 PAGE_UNLOCK | PAGE_START_WRITEBACK); 937 if (btrfs_submit_compressed_write(inode, async_extent->start, 938 async_extent->ram_size, 939 ins.objectid, 940 ins.offset, async_extent->pages, 941 async_extent->nr_pages, 942 async_chunk->write_flags, 943 async_chunk->blkcg_css)) { 944 struct page *p = async_extent->pages[0]; 945 const u64 start = async_extent->start; 946 const u64 end = start + async_extent->ram_size - 1; 947 948 p->mapping = inode->vfs_inode.i_mapping; 949 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 950 951 p->mapping = NULL; 952 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 953 PAGE_END_WRITEBACK | 954 PAGE_SET_ERROR); 955 free_async_extent_pages(async_extent); 956 } 957 alloc_hint = ins.objectid + ins.offset; 958 kfree(async_extent); 959 cond_resched(); 960 } 961 return; 962 out_free_reserve: 963 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 964 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 965 out_free: 966 extent_clear_unlock_delalloc(inode, async_extent->start, 967 async_extent->start + 968 async_extent->ram_size - 1, 969 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 970 EXTENT_DELALLOC_NEW | 971 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 972 PAGE_UNLOCK | PAGE_START_WRITEBACK | 973 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 974 free_async_extent_pages(async_extent); 975 kfree(async_extent); 976 goto again; 977 } 978 979 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 980 u64 num_bytes) 981 { 982 struct extent_map_tree *em_tree = &inode->extent_tree; 983 struct extent_map *em; 984 u64 alloc_hint = 0; 985 986 read_lock(&em_tree->lock); 987 em = search_extent_mapping(em_tree, start, num_bytes); 988 if (em) { 989 /* 990 * if block start isn't an actual block number then find the 991 * first block in this inode and use that as a hint. If that 992 * block is also bogus then just don't worry about it. 993 */ 994 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 995 free_extent_map(em); 996 em = search_extent_mapping(em_tree, 0, 0); 997 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 998 alloc_hint = em->block_start; 999 if (em) 1000 free_extent_map(em); 1001 } else { 1002 alloc_hint = em->block_start; 1003 free_extent_map(em); 1004 } 1005 } 1006 read_unlock(&em_tree->lock); 1007 1008 return alloc_hint; 1009 } 1010 1011 /* 1012 * when extent_io.c finds a delayed allocation range in the file, 1013 * the call backs end up in this code. The basic idea is to 1014 * allocate extents on disk for the range, and create ordered data structs 1015 * in ram to track those extents. 1016 * 1017 * locked_page is the page that writepage had locked already. We use 1018 * it to make sure we don't do extra locks or unlocks. 1019 * 1020 * *page_started is set to one if we unlock locked_page and do everything 1021 * required to start IO on it. It may be clean and already done with 1022 * IO when we return. 1023 */ 1024 static noinline int cow_file_range(struct btrfs_inode *inode, 1025 struct page *locked_page, 1026 u64 start, u64 end, int *page_started, 1027 unsigned long *nr_written, int unlock) 1028 { 1029 struct btrfs_root *root = inode->root; 1030 struct btrfs_fs_info *fs_info = root->fs_info; 1031 u64 alloc_hint = 0; 1032 u64 num_bytes; 1033 unsigned long ram_size; 1034 u64 cur_alloc_size = 0; 1035 u64 min_alloc_size; 1036 u64 blocksize = fs_info->sectorsize; 1037 struct btrfs_key ins; 1038 struct extent_map *em; 1039 unsigned clear_bits; 1040 unsigned long page_ops; 1041 bool extent_reserved = false; 1042 int ret = 0; 1043 1044 if (btrfs_is_free_space_inode(inode)) { 1045 WARN_ON_ONCE(1); 1046 ret = -EINVAL; 1047 goto out_unlock; 1048 } 1049 1050 num_bytes = ALIGN(end - start + 1, blocksize); 1051 num_bytes = max(blocksize, num_bytes); 1052 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1053 1054 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1055 1056 if (start == 0) { 1057 /* lets try to make an inline extent */ 1058 ret = cow_file_range_inline(inode, start, end, 0, 1059 BTRFS_COMPRESS_NONE, NULL); 1060 if (ret == 0) { 1061 /* 1062 * We use DO_ACCOUNTING here because we need the 1063 * delalloc_release_metadata to be run _after_ we drop 1064 * our outstanding extent for clearing delalloc for this 1065 * range. 1066 */ 1067 extent_clear_unlock_delalloc(inode, start, end, NULL, 1068 EXTENT_LOCKED | EXTENT_DELALLOC | 1069 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1070 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1071 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1072 *nr_written = *nr_written + 1073 (end - start + PAGE_SIZE) / PAGE_SIZE; 1074 *page_started = 1; 1075 goto out; 1076 } else if (ret < 0) { 1077 goto out_unlock; 1078 } 1079 } 1080 1081 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1082 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1083 1084 /* 1085 * Relocation relies on the relocated extents to have exactly the same 1086 * size as the original extents. Normally writeback for relocation data 1087 * extents follows a NOCOW path because relocation preallocates the 1088 * extents. However, due to an operation such as scrub turning a block 1089 * group to RO mode, it may fallback to COW mode, so we must make sure 1090 * an extent allocated during COW has exactly the requested size and can 1091 * not be split into smaller extents, otherwise relocation breaks and 1092 * fails during the stage where it updates the bytenr of file extent 1093 * items. 1094 */ 1095 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1096 min_alloc_size = num_bytes; 1097 else 1098 min_alloc_size = fs_info->sectorsize; 1099 1100 while (num_bytes > 0) { 1101 cur_alloc_size = num_bytes; 1102 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1103 min_alloc_size, 0, alloc_hint, 1104 &ins, 1, 1); 1105 if (ret < 0) 1106 goto out_unlock; 1107 cur_alloc_size = ins.offset; 1108 extent_reserved = true; 1109 1110 ram_size = ins.offset; 1111 em = create_io_em(inode, start, ins.offset, /* len */ 1112 start, /* orig_start */ 1113 ins.objectid, /* block_start */ 1114 ins.offset, /* block_len */ 1115 ins.offset, /* orig_block_len */ 1116 ram_size, /* ram_bytes */ 1117 BTRFS_COMPRESS_NONE, /* compress_type */ 1118 BTRFS_ORDERED_REGULAR /* type */); 1119 if (IS_ERR(em)) { 1120 ret = PTR_ERR(em); 1121 goto out_reserve; 1122 } 1123 free_extent_map(em); 1124 1125 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1126 ram_size, cur_alloc_size, 1127 BTRFS_ORDERED_REGULAR); 1128 if (ret) 1129 goto out_drop_extent_cache; 1130 1131 if (root->root_key.objectid == 1132 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1133 ret = btrfs_reloc_clone_csums(inode, start, 1134 cur_alloc_size); 1135 /* 1136 * Only drop cache here, and process as normal. 1137 * 1138 * We must not allow extent_clear_unlock_delalloc() 1139 * at out_unlock label to free meta of this ordered 1140 * extent, as its meta should be freed by 1141 * btrfs_finish_ordered_io(). 1142 * 1143 * So we must continue until @start is increased to 1144 * skip current ordered extent. 1145 */ 1146 if (ret) 1147 btrfs_drop_extent_cache(inode, start, 1148 start + ram_size - 1, 0); 1149 } 1150 1151 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1152 1153 /* we're not doing compressed IO, don't unlock the first 1154 * page (which the caller expects to stay locked), don't 1155 * clear any dirty bits and don't set any writeback bits 1156 * 1157 * Do set the Private2 bit so we know this page was properly 1158 * setup for writepage 1159 */ 1160 page_ops = unlock ? PAGE_UNLOCK : 0; 1161 page_ops |= PAGE_SET_PRIVATE2; 1162 1163 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1164 locked_page, 1165 EXTENT_LOCKED | EXTENT_DELALLOC, 1166 page_ops); 1167 if (num_bytes < cur_alloc_size) 1168 num_bytes = 0; 1169 else 1170 num_bytes -= cur_alloc_size; 1171 alloc_hint = ins.objectid + ins.offset; 1172 start += cur_alloc_size; 1173 extent_reserved = false; 1174 1175 /* 1176 * btrfs_reloc_clone_csums() error, since start is increased 1177 * extent_clear_unlock_delalloc() at out_unlock label won't 1178 * free metadata of current ordered extent, we're OK to exit. 1179 */ 1180 if (ret) 1181 goto out_unlock; 1182 } 1183 out: 1184 return ret; 1185 1186 out_drop_extent_cache: 1187 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1188 out_reserve: 1189 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1191 out_unlock: 1192 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1193 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1194 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1195 /* 1196 * If we reserved an extent for our delalloc range (or a subrange) and 1197 * failed to create the respective ordered extent, then it means that 1198 * when we reserved the extent we decremented the extent's size from 1199 * the data space_info's bytes_may_use counter and incremented the 1200 * space_info's bytes_reserved counter by the same amount. We must make 1201 * sure extent_clear_unlock_delalloc() does not try to decrement again 1202 * the data space_info's bytes_may_use counter, therefore we do not pass 1203 * it the flag EXTENT_CLEAR_DATA_RESV. 1204 */ 1205 if (extent_reserved) { 1206 extent_clear_unlock_delalloc(inode, start, 1207 start + cur_alloc_size - 1, 1208 locked_page, 1209 clear_bits, 1210 page_ops); 1211 start += cur_alloc_size; 1212 if (start >= end) 1213 goto out; 1214 } 1215 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1216 clear_bits | EXTENT_CLEAR_DATA_RESV, 1217 page_ops); 1218 goto out; 1219 } 1220 1221 /* 1222 * work queue call back to started compression on a file and pages 1223 */ 1224 static noinline void async_cow_start(struct btrfs_work *work) 1225 { 1226 struct async_chunk *async_chunk; 1227 int compressed_extents; 1228 1229 async_chunk = container_of(work, struct async_chunk, work); 1230 1231 compressed_extents = compress_file_range(async_chunk); 1232 if (compressed_extents == 0) { 1233 btrfs_add_delayed_iput(async_chunk->inode); 1234 async_chunk->inode = NULL; 1235 } 1236 } 1237 1238 /* 1239 * work queue call back to submit previously compressed pages 1240 */ 1241 static noinline void async_cow_submit(struct btrfs_work *work) 1242 { 1243 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1244 work); 1245 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1246 unsigned long nr_pages; 1247 1248 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1249 PAGE_SHIFT; 1250 1251 /* atomic_sub_return implies a barrier */ 1252 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1253 5 * SZ_1M) 1254 cond_wake_up_nomb(&fs_info->async_submit_wait); 1255 1256 /* 1257 * ->inode could be NULL if async_chunk_start has failed to compress, 1258 * in which case we don't have anything to submit, yet we need to 1259 * always adjust ->async_delalloc_pages as its paired with the init 1260 * happening in cow_file_range_async 1261 */ 1262 if (async_chunk->inode) 1263 submit_compressed_extents(async_chunk); 1264 } 1265 1266 static noinline void async_cow_free(struct btrfs_work *work) 1267 { 1268 struct async_chunk *async_chunk; 1269 1270 async_chunk = container_of(work, struct async_chunk, work); 1271 if (async_chunk->inode) 1272 btrfs_add_delayed_iput(async_chunk->inode); 1273 if (async_chunk->blkcg_css) 1274 css_put(async_chunk->blkcg_css); 1275 /* 1276 * Since the pointer to 'pending' is at the beginning of the array of 1277 * async_chunk's, freeing it ensures the whole array has been freed. 1278 */ 1279 if (atomic_dec_and_test(async_chunk->pending)) 1280 kvfree(async_chunk->pending); 1281 } 1282 1283 static int cow_file_range_async(struct btrfs_inode *inode, 1284 struct writeback_control *wbc, 1285 struct page *locked_page, 1286 u64 start, u64 end, int *page_started, 1287 unsigned long *nr_written) 1288 { 1289 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1290 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1291 struct async_cow *ctx; 1292 struct async_chunk *async_chunk; 1293 unsigned long nr_pages; 1294 u64 cur_end; 1295 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1296 int i; 1297 bool should_compress; 1298 unsigned nofs_flag; 1299 const unsigned int write_flags = wbc_to_write_flags(wbc); 1300 1301 unlock_extent(&inode->io_tree, start, end); 1302 1303 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1304 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1305 num_chunks = 1; 1306 should_compress = false; 1307 } else { 1308 should_compress = true; 1309 } 1310 1311 nofs_flag = memalloc_nofs_save(); 1312 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1313 memalloc_nofs_restore(nofs_flag); 1314 1315 if (!ctx) { 1316 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1317 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1318 EXTENT_DO_ACCOUNTING; 1319 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1320 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1321 1322 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1323 clear_bits, page_ops); 1324 return -ENOMEM; 1325 } 1326 1327 async_chunk = ctx->chunks; 1328 atomic_set(&ctx->num_chunks, num_chunks); 1329 1330 for (i = 0; i < num_chunks; i++) { 1331 if (should_compress) 1332 cur_end = min(end, start + SZ_512K - 1); 1333 else 1334 cur_end = end; 1335 1336 /* 1337 * igrab is called higher up in the call chain, take only the 1338 * lightweight reference for the callback lifetime 1339 */ 1340 ihold(&inode->vfs_inode); 1341 async_chunk[i].pending = &ctx->num_chunks; 1342 async_chunk[i].inode = &inode->vfs_inode; 1343 async_chunk[i].start = start; 1344 async_chunk[i].end = cur_end; 1345 async_chunk[i].write_flags = write_flags; 1346 INIT_LIST_HEAD(&async_chunk[i].extents); 1347 1348 /* 1349 * The locked_page comes all the way from writepage and its 1350 * the original page we were actually given. As we spread 1351 * this large delalloc region across multiple async_chunk 1352 * structs, only the first struct needs a pointer to locked_page 1353 * 1354 * This way we don't need racey decisions about who is supposed 1355 * to unlock it. 1356 */ 1357 if (locked_page) { 1358 /* 1359 * Depending on the compressibility, the pages might or 1360 * might not go through async. We want all of them to 1361 * be accounted against wbc once. Let's do it here 1362 * before the paths diverge. wbc accounting is used 1363 * only for foreign writeback detection and doesn't 1364 * need full accuracy. Just account the whole thing 1365 * against the first page. 1366 */ 1367 wbc_account_cgroup_owner(wbc, locked_page, 1368 cur_end - start); 1369 async_chunk[i].locked_page = locked_page; 1370 locked_page = NULL; 1371 } else { 1372 async_chunk[i].locked_page = NULL; 1373 } 1374 1375 if (blkcg_css != blkcg_root_css) { 1376 css_get(blkcg_css); 1377 async_chunk[i].blkcg_css = blkcg_css; 1378 } else { 1379 async_chunk[i].blkcg_css = NULL; 1380 } 1381 1382 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1383 async_cow_submit, async_cow_free); 1384 1385 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1386 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1387 1388 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1389 1390 *nr_written += nr_pages; 1391 start = cur_end + 1; 1392 } 1393 *page_started = 1; 1394 return 0; 1395 } 1396 1397 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1398 struct page *locked_page, u64 start, 1399 u64 end, int *page_started, 1400 unsigned long *nr_written) 1401 { 1402 int ret; 1403 1404 ret = cow_file_range(inode, locked_page, start, end, page_started, 1405 nr_written, 0); 1406 if (ret) 1407 return ret; 1408 1409 if (*page_started) 1410 return 0; 1411 1412 __set_page_dirty_nobuffers(locked_page); 1413 account_page_redirty(locked_page); 1414 extent_write_locked_range(&inode->vfs_inode, start, end, WB_SYNC_ALL); 1415 *page_started = 1; 1416 1417 return 0; 1418 } 1419 1420 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1421 u64 bytenr, u64 num_bytes) 1422 { 1423 int ret; 1424 struct btrfs_ordered_sum *sums; 1425 LIST_HEAD(list); 1426 1427 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1428 bytenr + num_bytes - 1, &list, 0); 1429 if (ret == 0 && list_empty(&list)) 1430 return 0; 1431 1432 while (!list_empty(&list)) { 1433 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1434 list_del(&sums->list); 1435 kfree(sums); 1436 } 1437 if (ret < 0) 1438 return ret; 1439 return 1; 1440 } 1441 1442 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1443 const u64 start, const u64 end, 1444 int *page_started, unsigned long *nr_written) 1445 { 1446 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1447 const bool is_reloc_ino = (inode->root->root_key.objectid == 1448 BTRFS_DATA_RELOC_TREE_OBJECTID); 1449 const u64 range_bytes = end + 1 - start; 1450 struct extent_io_tree *io_tree = &inode->io_tree; 1451 u64 range_start = start; 1452 u64 count; 1453 1454 /* 1455 * If EXTENT_NORESERVE is set it means that when the buffered write was 1456 * made we had not enough available data space and therefore we did not 1457 * reserve data space for it, since we though we could do NOCOW for the 1458 * respective file range (either there is prealloc extent or the inode 1459 * has the NOCOW bit set). 1460 * 1461 * However when we need to fallback to COW mode (because for example the 1462 * block group for the corresponding extent was turned to RO mode by a 1463 * scrub or relocation) we need to do the following: 1464 * 1465 * 1) We increment the bytes_may_use counter of the data space info. 1466 * If COW succeeds, it allocates a new data extent and after doing 1467 * that it decrements the space info's bytes_may_use counter and 1468 * increments its bytes_reserved counter by the same amount (we do 1469 * this at btrfs_add_reserved_bytes()). So we need to increment the 1470 * bytes_may_use counter to compensate (when space is reserved at 1471 * buffered write time, the bytes_may_use counter is incremented); 1472 * 1473 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1474 * that if the COW path fails for any reason, it decrements (through 1475 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1476 * data space info, which we incremented in the step above. 1477 * 1478 * If we need to fallback to cow and the inode corresponds to a free 1479 * space cache inode or an inode of the data relocation tree, we must 1480 * also increment bytes_may_use of the data space_info for the same 1481 * reason. Space caches and relocated data extents always get a prealloc 1482 * extent for them, however scrub or balance may have set the block 1483 * group that contains that extent to RO mode and therefore force COW 1484 * when starting writeback. 1485 */ 1486 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1487 EXTENT_NORESERVE, 0); 1488 if (count > 0 || is_space_ino || is_reloc_ino) { 1489 u64 bytes = count; 1490 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1491 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1492 1493 if (is_space_ino || is_reloc_ino) 1494 bytes = range_bytes; 1495 1496 spin_lock(&sinfo->lock); 1497 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1498 spin_unlock(&sinfo->lock); 1499 1500 if (count > 0) 1501 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1502 0, 0, NULL); 1503 } 1504 1505 return cow_file_range(inode, locked_page, start, end, page_started, 1506 nr_written, 1); 1507 } 1508 1509 /* 1510 * when nowcow writeback call back. This checks for snapshots or COW copies 1511 * of the extents that exist in the file, and COWs the file as required. 1512 * 1513 * If no cow copies or snapshots exist, we write directly to the existing 1514 * blocks on disk 1515 */ 1516 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1517 struct page *locked_page, 1518 const u64 start, const u64 end, 1519 int *page_started, 1520 unsigned long *nr_written) 1521 { 1522 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1523 struct btrfs_root *root = inode->root; 1524 struct btrfs_path *path; 1525 u64 cow_start = (u64)-1; 1526 u64 cur_offset = start; 1527 int ret; 1528 bool check_prev = true; 1529 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1530 u64 ino = btrfs_ino(inode); 1531 bool nocow = false; 1532 u64 disk_bytenr = 0; 1533 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1534 1535 path = btrfs_alloc_path(); 1536 if (!path) { 1537 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1538 EXTENT_LOCKED | EXTENT_DELALLOC | 1539 EXTENT_DO_ACCOUNTING | 1540 EXTENT_DEFRAG, PAGE_UNLOCK | 1541 PAGE_START_WRITEBACK | 1542 PAGE_END_WRITEBACK); 1543 return -ENOMEM; 1544 } 1545 1546 while (1) { 1547 struct btrfs_key found_key; 1548 struct btrfs_file_extent_item *fi; 1549 struct extent_buffer *leaf; 1550 u64 extent_end; 1551 u64 extent_offset; 1552 u64 num_bytes = 0; 1553 u64 disk_num_bytes; 1554 u64 ram_bytes; 1555 int extent_type; 1556 1557 nocow = false; 1558 1559 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1560 cur_offset, 0); 1561 if (ret < 0) 1562 goto error; 1563 1564 /* 1565 * If there is no extent for our range when doing the initial 1566 * search, then go back to the previous slot as it will be the 1567 * one containing the search offset 1568 */ 1569 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1570 leaf = path->nodes[0]; 1571 btrfs_item_key_to_cpu(leaf, &found_key, 1572 path->slots[0] - 1); 1573 if (found_key.objectid == ino && 1574 found_key.type == BTRFS_EXTENT_DATA_KEY) 1575 path->slots[0]--; 1576 } 1577 check_prev = false; 1578 next_slot: 1579 /* Go to next leaf if we have exhausted the current one */ 1580 leaf = path->nodes[0]; 1581 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1582 ret = btrfs_next_leaf(root, path); 1583 if (ret < 0) { 1584 if (cow_start != (u64)-1) 1585 cur_offset = cow_start; 1586 goto error; 1587 } 1588 if (ret > 0) 1589 break; 1590 leaf = path->nodes[0]; 1591 } 1592 1593 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1594 1595 /* Didn't find anything for our INO */ 1596 if (found_key.objectid > ino) 1597 break; 1598 /* 1599 * Keep searching until we find an EXTENT_ITEM or there are no 1600 * more extents for this inode 1601 */ 1602 if (WARN_ON_ONCE(found_key.objectid < ino) || 1603 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1604 path->slots[0]++; 1605 goto next_slot; 1606 } 1607 1608 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1609 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1610 found_key.offset > end) 1611 break; 1612 1613 /* 1614 * If the found extent starts after requested offset, then 1615 * adjust extent_end to be right before this extent begins 1616 */ 1617 if (found_key.offset > cur_offset) { 1618 extent_end = found_key.offset; 1619 extent_type = 0; 1620 goto out_check; 1621 } 1622 1623 /* 1624 * Found extent which begins before our range and potentially 1625 * intersect it 1626 */ 1627 fi = btrfs_item_ptr(leaf, path->slots[0], 1628 struct btrfs_file_extent_item); 1629 extent_type = btrfs_file_extent_type(leaf, fi); 1630 1631 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1632 if (extent_type == BTRFS_FILE_EXTENT_REG || 1633 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1634 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1635 extent_offset = btrfs_file_extent_offset(leaf, fi); 1636 extent_end = found_key.offset + 1637 btrfs_file_extent_num_bytes(leaf, fi); 1638 disk_num_bytes = 1639 btrfs_file_extent_disk_num_bytes(leaf, fi); 1640 /* 1641 * If the extent we got ends before our current offset, 1642 * skip to the next extent. 1643 */ 1644 if (extent_end <= cur_offset) { 1645 path->slots[0]++; 1646 goto next_slot; 1647 } 1648 /* Skip holes */ 1649 if (disk_bytenr == 0) 1650 goto out_check; 1651 /* Skip compressed/encrypted/encoded extents */ 1652 if (btrfs_file_extent_compression(leaf, fi) || 1653 btrfs_file_extent_encryption(leaf, fi) || 1654 btrfs_file_extent_other_encoding(leaf, fi)) 1655 goto out_check; 1656 /* 1657 * If extent is created before the last volume's snapshot 1658 * this implies the extent is shared, hence we can't do 1659 * nocow. This is the same check as in 1660 * btrfs_cross_ref_exist but without calling 1661 * btrfs_search_slot. 1662 */ 1663 if (!freespace_inode && 1664 btrfs_file_extent_generation(leaf, fi) <= 1665 btrfs_root_last_snapshot(&root->root_item)) 1666 goto out_check; 1667 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1668 goto out_check; 1669 1670 /* 1671 * The following checks can be expensive, as they need to 1672 * take other locks and do btree or rbtree searches, so 1673 * release the path to avoid blocking other tasks for too 1674 * long. 1675 */ 1676 btrfs_release_path(path); 1677 1678 ret = btrfs_cross_ref_exist(root, ino, 1679 found_key.offset - 1680 extent_offset, disk_bytenr, false); 1681 if (ret) { 1682 /* 1683 * ret could be -EIO if the above fails to read 1684 * metadata. 1685 */ 1686 if (ret < 0) { 1687 if (cow_start != (u64)-1) 1688 cur_offset = cow_start; 1689 goto error; 1690 } 1691 1692 WARN_ON_ONCE(freespace_inode); 1693 goto out_check; 1694 } 1695 disk_bytenr += extent_offset; 1696 disk_bytenr += cur_offset - found_key.offset; 1697 num_bytes = min(end + 1, extent_end) - cur_offset; 1698 /* 1699 * If there are pending snapshots for this root, we 1700 * fall into common COW way 1701 */ 1702 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1703 goto out_check; 1704 /* 1705 * force cow if csum exists in the range. 1706 * this ensure that csum for a given extent are 1707 * either valid or do not exist. 1708 */ 1709 ret = csum_exist_in_range(fs_info, disk_bytenr, 1710 num_bytes); 1711 if (ret) { 1712 /* 1713 * ret could be -EIO if the above fails to read 1714 * metadata. 1715 */ 1716 if (ret < 0) { 1717 if (cow_start != (u64)-1) 1718 cur_offset = cow_start; 1719 goto error; 1720 } 1721 WARN_ON_ONCE(freespace_inode); 1722 goto out_check; 1723 } 1724 /* If the extent's block group is RO, we must COW */ 1725 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1726 goto out_check; 1727 nocow = true; 1728 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1729 extent_end = found_key.offset + ram_bytes; 1730 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1731 /* Skip extents outside of our requested range */ 1732 if (extent_end <= start) { 1733 path->slots[0]++; 1734 goto next_slot; 1735 } 1736 } else { 1737 /* If this triggers then we have a memory corruption */ 1738 BUG(); 1739 } 1740 out_check: 1741 /* 1742 * If nocow is false then record the beginning of the range 1743 * that needs to be COWed 1744 */ 1745 if (!nocow) { 1746 if (cow_start == (u64)-1) 1747 cow_start = cur_offset; 1748 cur_offset = extent_end; 1749 if (cur_offset > end) 1750 break; 1751 if (!path->nodes[0]) 1752 continue; 1753 path->slots[0]++; 1754 goto next_slot; 1755 } 1756 1757 /* 1758 * COW range from cow_start to found_key.offset - 1. As the key 1759 * will contain the beginning of the first extent that can be 1760 * NOCOW, following one which needs to be COW'ed 1761 */ 1762 if (cow_start != (u64)-1) { 1763 ret = fallback_to_cow(inode, locked_page, 1764 cow_start, found_key.offset - 1, 1765 page_started, nr_written); 1766 if (ret) 1767 goto error; 1768 cow_start = (u64)-1; 1769 } 1770 1771 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1772 u64 orig_start = found_key.offset - extent_offset; 1773 struct extent_map *em; 1774 1775 em = create_io_em(inode, cur_offset, num_bytes, 1776 orig_start, 1777 disk_bytenr, /* block_start */ 1778 num_bytes, /* block_len */ 1779 disk_num_bytes, /* orig_block_len */ 1780 ram_bytes, BTRFS_COMPRESS_NONE, 1781 BTRFS_ORDERED_PREALLOC); 1782 if (IS_ERR(em)) { 1783 ret = PTR_ERR(em); 1784 goto error; 1785 } 1786 free_extent_map(em); 1787 ret = btrfs_add_ordered_extent(inode, cur_offset, 1788 disk_bytenr, num_bytes, 1789 num_bytes, 1790 BTRFS_ORDERED_PREALLOC); 1791 if (ret) { 1792 btrfs_drop_extent_cache(inode, cur_offset, 1793 cur_offset + num_bytes - 1, 1794 0); 1795 goto error; 1796 } 1797 } else { 1798 ret = btrfs_add_ordered_extent(inode, cur_offset, 1799 disk_bytenr, num_bytes, 1800 num_bytes, 1801 BTRFS_ORDERED_NOCOW); 1802 if (ret) 1803 goto error; 1804 } 1805 1806 if (nocow) 1807 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1808 nocow = false; 1809 1810 if (root->root_key.objectid == 1811 BTRFS_DATA_RELOC_TREE_OBJECTID) 1812 /* 1813 * Error handled later, as we must prevent 1814 * extent_clear_unlock_delalloc() in error handler 1815 * from freeing metadata of created ordered extent. 1816 */ 1817 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1818 num_bytes); 1819 1820 extent_clear_unlock_delalloc(inode, cur_offset, 1821 cur_offset + num_bytes - 1, 1822 locked_page, EXTENT_LOCKED | 1823 EXTENT_DELALLOC | 1824 EXTENT_CLEAR_DATA_RESV, 1825 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1826 1827 cur_offset = extent_end; 1828 1829 /* 1830 * btrfs_reloc_clone_csums() error, now we're OK to call error 1831 * handler, as metadata for created ordered extent will only 1832 * be freed by btrfs_finish_ordered_io(). 1833 */ 1834 if (ret) 1835 goto error; 1836 if (cur_offset > end) 1837 break; 1838 } 1839 btrfs_release_path(path); 1840 1841 if (cur_offset <= end && cow_start == (u64)-1) 1842 cow_start = cur_offset; 1843 1844 if (cow_start != (u64)-1) { 1845 cur_offset = end; 1846 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1847 page_started, nr_written); 1848 if (ret) 1849 goto error; 1850 } 1851 1852 error: 1853 if (nocow) 1854 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1855 1856 if (ret && cur_offset < end) 1857 extent_clear_unlock_delalloc(inode, cur_offset, end, 1858 locked_page, EXTENT_LOCKED | 1859 EXTENT_DELALLOC | EXTENT_DEFRAG | 1860 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1861 PAGE_START_WRITEBACK | 1862 PAGE_END_WRITEBACK); 1863 btrfs_free_path(path); 1864 return ret; 1865 } 1866 1867 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1868 { 1869 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1870 if (inode->defrag_bytes && 1871 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1872 0, NULL)) 1873 return false; 1874 return true; 1875 } 1876 return false; 1877 } 1878 1879 /* 1880 * Function to process delayed allocation (create CoW) for ranges which are 1881 * being touched for the first time. 1882 */ 1883 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1884 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1885 struct writeback_control *wbc) 1886 { 1887 int ret; 1888 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 1889 1890 if (should_nocow(inode, start, end)) { 1891 ASSERT(!zoned); 1892 ret = run_delalloc_nocow(inode, locked_page, start, end, 1893 page_started, nr_written); 1894 } else if (!inode_can_compress(inode) || 1895 !inode_need_compress(inode, start, end)) { 1896 if (zoned) 1897 ret = run_delalloc_zoned(inode, locked_page, start, end, 1898 page_started, nr_written); 1899 else 1900 ret = cow_file_range(inode, locked_page, start, end, 1901 page_started, nr_written, 1); 1902 } else { 1903 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1904 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1905 page_started, nr_written); 1906 } 1907 if (ret) 1908 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1909 end - start + 1); 1910 return ret; 1911 } 1912 1913 void btrfs_split_delalloc_extent(struct inode *inode, 1914 struct extent_state *orig, u64 split) 1915 { 1916 u64 size; 1917 1918 /* not delalloc, ignore it */ 1919 if (!(orig->state & EXTENT_DELALLOC)) 1920 return; 1921 1922 size = orig->end - orig->start + 1; 1923 if (size > BTRFS_MAX_EXTENT_SIZE) { 1924 u32 num_extents; 1925 u64 new_size; 1926 1927 /* 1928 * See the explanation in btrfs_merge_delalloc_extent, the same 1929 * applies here, just in reverse. 1930 */ 1931 new_size = orig->end - split + 1; 1932 num_extents = count_max_extents(new_size); 1933 new_size = split - orig->start; 1934 num_extents += count_max_extents(new_size); 1935 if (count_max_extents(size) >= num_extents) 1936 return; 1937 } 1938 1939 spin_lock(&BTRFS_I(inode)->lock); 1940 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1941 spin_unlock(&BTRFS_I(inode)->lock); 1942 } 1943 1944 /* 1945 * Handle merged delayed allocation extents so we can keep track of new extents 1946 * that are just merged onto old extents, such as when we are doing sequential 1947 * writes, so we can properly account for the metadata space we'll need. 1948 */ 1949 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1950 struct extent_state *other) 1951 { 1952 u64 new_size, old_size; 1953 u32 num_extents; 1954 1955 /* not delalloc, ignore it */ 1956 if (!(other->state & EXTENT_DELALLOC)) 1957 return; 1958 1959 if (new->start > other->start) 1960 new_size = new->end - other->start + 1; 1961 else 1962 new_size = other->end - new->start + 1; 1963 1964 /* we're not bigger than the max, unreserve the space and go */ 1965 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1966 spin_lock(&BTRFS_I(inode)->lock); 1967 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1968 spin_unlock(&BTRFS_I(inode)->lock); 1969 return; 1970 } 1971 1972 /* 1973 * We have to add up either side to figure out how many extents were 1974 * accounted for before we merged into one big extent. If the number of 1975 * extents we accounted for is <= the amount we need for the new range 1976 * then we can return, otherwise drop. Think of it like this 1977 * 1978 * [ 4k][MAX_SIZE] 1979 * 1980 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1981 * need 2 outstanding extents, on one side we have 1 and the other side 1982 * we have 1 so they are == and we can return. But in this case 1983 * 1984 * [MAX_SIZE+4k][MAX_SIZE+4k] 1985 * 1986 * Each range on their own accounts for 2 extents, but merged together 1987 * they are only 3 extents worth of accounting, so we need to drop in 1988 * this case. 1989 */ 1990 old_size = other->end - other->start + 1; 1991 num_extents = count_max_extents(old_size); 1992 old_size = new->end - new->start + 1; 1993 num_extents += count_max_extents(old_size); 1994 if (count_max_extents(new_size) >= num_extents) 1995 return; 1996 1997 spin_lock(&BTRFS_I(inode)->lock); 1998 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1999 spin_unlock(&BTRFS_I(inode)->lock); 2000 } 2001 2002 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2003 struct inode *inode) 2004 { 2005 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2006 2007 spin_lock(&root->delalloc_lock); 2008 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2009 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2010 &root->delalloc_inodes); 2011 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2012 &BTRFS_I(inode)->runtime_flags); 2013 root->nr_delalloc_inodes++; 2014 if (root->nr_delalloc_inodes == 1) { 2015 spin_lock(&fs_info->delalloc_root_lock); 2016 BUG_ON(!list_empty(&root->delalloc_root)); 2017 list_add_tail(&root->delalloc_root, 2018 &fs_info->delalloc_roots); 2019 spin_unlock(&fs_info->delalloc_root_lock); 2020 } 2021 } 2022 spin_unlock(&root->delalloc_lock); 2023 } 2024 2025 2026 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2027 struct btrfs_inode *inode) 2028 { 2029 struct btrfs_fs_info *fs_info = root->fs_info; 2030 2031 if (!list_empty(&inode->delalloc_inodes)) { 2032 list_del_init(&inode->delalloc_inodes); 2033 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2034 &inode->runtime_flags); 2035 root->nr_delalloc_inodes--; 2036 if (!root->nr_delalloc_inodes) { 2037 ASSERT(list_empty(&root->delalloc_inodes)); 2038 spin_lock(&fs_info->delalloc_root_lock); 2039 BUG_ON(list_empty(&root->delalloc_root)); 2040 list_del_init(&root->delalloc_root); 2041 spin_unlock(&fs_info->delalloc_root_lock); 2042 } 2043 } 2044 } 2045 2046 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2047 struct btrfs_inode *inode) 2048 { 2049 spin_lock(&root->delalloc_lock); 2050 __btrfs_del_delalloc_inode(root, inode); 2051 spin_unlock(&root->delalloc_lock); 2052 } 2053 2054 /* 2055 * Properly track delayed allocation bytes in the inode and to maintain the 2056 * list of inodes that have pending delalloc work to be done. 2057 */ 2058 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2059 unsigned *bits) 2060 { 2061 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2062 2063 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2064 WARN_ON(1); 2065 /* 2066 * set_bit and clear bit hooks normally require _irqsave/restore 2067 * but in this case, we are only testing for the DELALLOC 2068 * bit, which is only set or cleared with irqs on 2069 */ 2070 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2071 struct btrfs_root *root = BTRFS_I(inode)->root; 2072 u64 len = state->end + 1 - state->start; 2073 u32 num_extents = count_max_extents(len); 2074 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2075 2076 spin_lock(&BTRFS_I(inode)->lock); 2077 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2078 spin_unlock(&BTRFS_I(inode)->lock); 2079 2080 /* For sanity tests */ 2081 if (btrfs_is_testing(fs_info)) 2082 return; 2083 2084 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2085 fs_info->delalloc_batch); 2086 spin_lock(&BTRFS_I(inode)->lock); 2087 BTRFS_I(inode)->delalloc_bytes += len; 2088 if (*bits & EXTENT_DEFRAG) 2089 BTRFS_I(inode)->defrag_bytes += len; 2090 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2091 &BTRFS_I(inode)->runtime_flags)) 2092 btrfs_add_delalloc_inodes(root, inode); 2093 spin_unlock(&BTRFS_I(inode)->lock); 2094 } 2095 2096 if (!(state->state & EXTENT_DELALLOC_NEW) && 2097 (*bits & EXTENT_DELALLOC_NEW)) { 2098 spin_lock(&BTRFS_I(inode)->lock); 2099 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2100 state->start; 2101 spin_unlock(&BTRFS_I(inode)->lock); 2102 } 2103 } 2104 2105 /* 2106 * Once a range is no longer delalloc this function ensures that proper 2107 * accounting happens. 2108 */ 2109 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2110 struct extent_state *state, unsigned *bits) 2111 { 2112 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2113 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2114 u64 len = state->end + 1 - state->start; 2115 u32 num_extents = count_max_extents(len); 2116 2117 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2118 spin_lock(&inode->lock); 2119 inode->defrag_bytes -= len; 2120 spin_unlock(&inode->lock); 2121 } 2122 2123 /* 2124 * set_bit and clear bit hooks normally require _irqsave/restore 2125 * but in this case, we are only testing for the DELALLOC 2126 * bit, which is only set or cleared with irqs on 2127 */ 2128 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2129 struct btrfs_root *root = inode->root; 2130 bool do_list = !btrfs_is_free_space_inode(inode); 2131 2132 spin_lock(&inode->lock); 2133 btrfs_mod_outstanding_extents(inode, -num_extents); 2134 spin_unlock(&inode->lock); 2135 2136 /* 2137 * We don't reserve metadata space for space cache inodes so we 2138 * don't need to call delalloc_release_metadata if there is an 2139 * error. 2140 */ 2141 if (*bits & EXTENT_CLEAR_META_RESV && 2142 root != fs_info->tree_root) 2143 btrfs_delalloc_release_metadata(inode, len, false); 2144 2145 /* For sanity tests. */ 2146 if (btrfs_is_testing(fs_info)) 2147 return; 2148 2149 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2150 do_list && !(state->state & EXTENT_NORESERVE) && 2151 (*bits & EXTENT_CLEAR_DATA_RESV)) 2152 btrfs_free_reserved_data_space_noquota(fs_info, len); 2153 2154 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2155 fs_info->delalloc_batch); 2156 spin_lock(&inode->lock); 2157 inode->delalloc_bytes -= len; 2158 if (do_list && inode->delalloc_bytes == 0 && 2159 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2160 &inode->runtime_flags)) 2161 btrfs_del_delalloc_inode(root, inode); 2162 spin_unlock(&inode->lock); 2163 } 2164 2165 if ((state->state & EXTENT_DELALLOC_NEW) && 2166 (*bits & EXTENT_DELALLOC_NEW)) { 2167 spin_lock(&inode->lock); 2168 ASSERT(inode->new_delalloc_bytes >= len); 2169 inode->new_delalloc_bytes -= len; 2170 if (*bits & EXTENT_ADD_INODE_BYTES) 2171 inode_add_bytes(&inode->vfs_inode, len); 2172 spin_unlock(&inode->lock); 2173 } 2174 } 2175 2176 /* 2177 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2178 * in a chunk's stripe. This function ensures that bios do not span a 2179 * stripe/chunk 2180 * 2181 * @page - The page we are about to add to the bio 2182 * @size - size we want to add to the bio 2183 * @bio - bio we want to ensure is smaller than a stripe 2184 * @bio_flags - flags of the bio 2185 * 2186 * return 1 if page cannot be added to the bio 2187 * return 0 if page can be added to the bio 2188 * return error otherwise 2189 */ 2190 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2191 unsigned long bio_flags) 2192 { 2193 struct inode *inode = page->mapping->host; 2194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2195 u64 logical = bio->bi_iter.bi_sector << 9; 2196 struct extent_map *em; 2197 u64 length = 0; 2198 u64 map_length; 2199 int ret = 0; 2200 struct btrfs_io_geometry geom; 2201 2202 if (bio_flags & EXTENT_BIO_COMPRESSED) 2203 return 0; 2204 2205 length = bio->bi_iter.bi_size; 2206 map_length = length; 2207 em = btrfs_get_chunk_map(fs_info, logical, map_length); 2208 if (IS_ERR(em)) 2209 return PTR_ERR(em); 2210 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), logical, 2211 map_length, &geom); 2212 if (ret < 0) 2213 goto out; 2214 2215 if (geom.len < length + size) 2216 ret = 1; 2217 out: 2218 free_extent_map(em); 2219 return ret; 2220 } 2221 2222 /* 2223 * in order to insert checksums into the metadata in large chunks, 2224 * we wait until bio submission time. All the pages in the bio are 2225 * checksummed and sums are attached onto the ordered extent record. 2226 * 2227 * At IO completion time the cums attached on the ordered extent record 2228 * are inserted into the btree 2229 */ 2230 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2231 u64 dio_file_offset) 2232 { 2233 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2234 } 2235 2236 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio, 2237 unsigned int size) 2238 { 2239 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2240 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2241 struct btrfs_ordered_extent *ordered; 2242 u64 len = bio->bi_iter.bi_size + size; 2243 bool ret = true; 2244 2245 ASSERT(btrfs_is_zoned(fs_info)); 2246 ASSERT(fs_info->max_zone_append_size > 0); 2247 ASSERT(bio_op(bio) == REQ_OP_ZONE_APPEND); 2248 2249 /* Ordered extent not yet created, so we're good */ 2250 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page)); 2251 if (!ordered) 2252 return ret; 2253 2254 if ((bio->bi_iter.bi_sector << SECTOR_SHIFT) + len > 2255 ordered->disk_bytenr + ordered->disk_num_bytes) 2256 ret = false; 2257 2258 btrfs_put_ordered_extent(ordered); 2259 2260 return ret; 2261 } 2262 2263 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2264 struct bio *bio, loff_t file_offset) 2265 { 2266 struct btrfs_ordered_extent *ordered; 2267 struct extent_map *em = NULL, *em_new = NULL; 2268 struct extent_map_tree *em_tree = &inode->extent_tree; 2269 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2270 u64 len = bio->bi_iter.bi_size; 2271 u64 end = start + len; 2272 u64 ordered_end; 2273 u64 pre, post; 2274 int ret = 0; 2275 2276 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2277 if (WARN_ON_ONCE(!ordered)) 2278 return BLK_STS_IOERR; 2279 2280 /* No need to split */ 2281 if (ordered->disk_num_bytes == len) 2282 goto out; 2283 2284 /* We cannot split once end_bio'd ordered extent */ 2285 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2286 ret = -EINVAL; 2287 goto out; 2288 } 2289 2290 /* We cannot split a compressed ordered extent */ 2291 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2292 ret = -EINVAL; 2293 goto out; 2294 } 2295 2296 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2297 /* bio must be in one ordered extent */ 2298 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2299 ret = -EINVAL; 2300 goto out; 2301 } 2302 2303 /* Checksum list should be empty */ 2304 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2305 ret = -EINVAL; 2306 goto out; 2307 } 2308 2309 pre = start - ordered->disk_bytenr; 2310 post = ordered_end - end; 2311 2312 ret = btrfs_split_ordered_extent(ordered, pre, post); 2313 if (ret) 2314 goto out; 2315 2316 read_lock(&em_tree->lock); 2317 em = lookup_extent_mapping(em_tree, ordered->file_offset, len); 2318 if (!em) { 2319 read_unlock(&em_tree->lock); 2320 ret = -EIO; 2321 goto out; 2322 } 2323 read_unlock(&em_tree->lock); 2324 2325 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2326 /* 2327 * We cannot reuse em_new here but have to create a new one, as 2328 * unpin_extent_cache() expects the start of the extent map to be the 2329 * logical offset of the file, which does not hold true anymore after 2330 * splitting. 2331 */ 2332 em_new = create_io_em(inode, em->start + pre, len, 2333 em->start + pre, em->block_start + pre, len, 2334 len, len, BTRFS_COMPRESS_NONE, 2335 BTRFS_ORDERED_REGULAR); 2336 if (IS_ERR(em_new)) { 2337 ret = PTR_ERR(em_new); 2338 goto out; 2339 } 2340 free_extent_map(em_new); 2341 2342 out: 2343 free_extent_map(em); 2344 btrfs_put_ordered_extent(ordered); 2345 2346 return errno_to_blk_status(ret); 2347 } 2348 2349 /* 2350 * extent_io.c submission hook. This does the right thing for csum calculation 2351 * on write, or reading the csums from the tree before a read. 2352 * 2353 * Rules about async/sync submit, 2354 * a) read: sync submit 2355 * 2356 * b) write without checksum: sync submit 2357 * 2358 * c) write with checksum: 2359 * c-1) if bio is issued by fsync: sync submit 2360 * (sync_writers != 0) 2361 * 2362 * c-2) if root is reloc root: sync submit 2363 * (only in case of buffered IO) 2364 * 2365 * c-3) otherwise: async submit 2366 */ 2367 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2368 int mirror_num, unsigned long bio_flags) 2369 2370 { 2371 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2372 struct btrfs_root *root = BTRFS_I(inode)->root; 2373 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2374 blk_status_t ret = 0; 2375 int skip_sum; 2376 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2377 2378 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2379 !fs_info->csum_root; 2380 2381 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2382 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2383 2384 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2385 struct page *page = bio_first_bvec_all(bio)->bv_page; 2386 loff_t file_offset = page_offset(page); 2387 2388 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2389 if (ret) 2390 goto out; 2391 } 2392 2393 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2394 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2395 if (ret) 2396 goto out; 2397 2398 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2399 ret = btrfs_submit_compressed_read(inode, bio, 2400 mirror_num, 2401 bio_flags); 2402 goto out; 2403 } else { 2404 /* 2405 * Lookup bio sums does extra checks around whether we 2406 * need to csum or not, which is why we ignore skip_sum 2407 * here. 2408 */ 2409 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2410 if (ret) 2411 goto out; 2412 } 2413 goto mapit; 2414 } else if (async && !skip_sum) { 2415 /* csum items have already been cloned */ 2416 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2417 goto mapit; 2418 /* we're doing a write, do the async checksumming */ 2419 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2420 0, btrfs_submit_bio_start); 2421 goto out; 2422 } else if (!skip_sum) { 2423 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2424 if (ret) 2425 goto out; 2426 } 2427 2428 mapit: 2429 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2430 2431 out: 2432 if (ret) { 2433 bio->bi_status = ret; 2434 bio_endio(bio); 2435 } 2436 return ret; 2437 } 2438 2439 /* 2440 * given a list of ordered sums record them in the inode. This happens 2441 * at IO completion time based on sums calculated at bio submission time. 2442 */ 2443 static int add_pending_csums(struct btrfs_trans_handle *trans, 2444 struct list_head *list) 2445 { 2446 struct btrfs_ordered_sum *sum; 2447 int ret; 2448 2449 list_for_each_entry(sum, list, list) { 2450 trans->adding_csums = true; 2451 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2452 trans->adding_csums = false; 2453 if (ret) 2454 return ret; 2455 } 2456 return 0; 2457 } 2458 2459 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2460 const u64 start, 2461 const u64 len, 2462 struct extent_state **cached_state) 2463 { 2464 u64 search_start = start; 2465 const u64 end = start + len - 1; 2466 2467 while (search_start < end) { 2468 const u64 search_len = end - search_start + 1; 2469 struct extent_map *em; 2470 u64 em_len; 2471 int ret = 0; 2472 2473 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2474 if (IS_ERR(em)) 2475 return PTR_ERR(em); 2476 2477 if (em->block_start != EXTENT_MAP_HOLE) 2478 goto next; 2479 2480 em_len = em->len; 2481 if (em->start < search_start) 2482 em_len -= search_start - em->start; 2483 if (em_len > search_len) 2484 em_len = search_len; 2485 2486 ret = set_extent_bit(&inode->io_tree, search_start, 2487 search_start + em_len - 1, 2488 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2489 GFP_NOFS, NULL); 2490 next: 2491 search_start = extent_map_end(em); 2492 free_extent_map(em); 2493 if (ret) 2494 return ret; 2495 } 2496 return 0; 2497 } 2498 2499 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2500 unsigned int extra_bits, 2501 struct extent_state **cached_state) 2502 { 2503 WARN_ON(PAGE_ALIGNED(end)); 2504 2505 if (start >= i_size_read(&inode->vfs_inode) && 2506 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2507 /* 2508 * There can't be any extents following eof in this case so just 2509 * set the delalloc new bit for the range directly. 2510 */ 2511 extra_bits |= EXTENT_DELALLOC_NEW; 2512 } else { 2513 int ret; 2514 2515 ret = btrfs_find_new_delalloc_bytes(inode, start, 2516 end + 1 - start, 2517 cached_state); 2518 if (ret) 2519 return ret; 2520 } 2521 2522 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2523 cached_state); 2524 } 2525 2526 /* see btrfs_writepage_start_hook for details on why this is required */ 2527 struct btrfs_writepage_fixup { 2528 struct page *page; 2529 struct inode *inode; 2530 struct btrfs_work work; 2531 }; 2532 2533 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2534 { 2535 struct btrfs_writepage_fixup *fixup; 2536 struct btrfs_ordered_extent *ordered; 2537 struct extent_state *cached_state = NULL; 2538 struct extent_changeset *data_reserved = NULL; 2539 struct page *page; 2540 struct btrfs_inode *inode; 2541 u64 page_start; 2542 u64 page_end; 2543 int ret = 0; 2544 bool free_delalloc_space = true; 2545 2546 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2547 page = fixup->page; 2548 inode = BTRFS_I(fixup->inode); 2549 page_start = page_offset(page); 2550 page_end = page_offset(page) + PAGE_SIZE - 1; 2551 2552 /* 2553 * This is similar to page_mkwrite, we need to reserve the space before 2554 * we take the page lock. 2555 */ 2556 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2557 PAGE_SIZE); 2558 again: 2559 lock_page(page); 2560 2561 /* 2562 * Before we queued this fixup, we took a reference on the page. 2563 * page->mapping may go NULL, but it shouldn't be moved to a different 2564 * address space. 2565 */ 2566 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2567 /* 2568 * Unfortunately this is a little tricky, either 2569 * 2570 * 1) We got here and our page had already been dealt with and 2571 * we reserved our space, thus ret == 0, so we need to just 2572 * drop our space reservation and bail. This can happen the 2573 * first time we come into the fixup worker, or could happen 2574 * while waiting for the ordered extent. 2575 * 2) Our page was already dealt with, but we happened to get an 2576 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2577 * this case we obviously don't have anything to release, but 2578 * because the page was already dealt with we don't want to 2579 * mark the page with an error, so make sure we're resetting 2580 * ret to 0. This is why we have this check _before_ the ret 2581 * check, because we do not want to have a surprise ENOSPC 2582 * when the page was already properly dealt with. 2583 */ 2584 if (!ret) { 2585 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2586 btrfs_delalloc_release_space(inode, data_reserved, 2587 page_start, PAGE_SIZE, 2588 true); 2589 } 2590 ret = 0; 2591 goto out_page; 2592 } 2593 2594 /* 2595 * We can't mess with the page state unless it is locked, so now that 2596 * it is locked bail if we failed to make our space reservation. 2597 */ 2598 if (ret) 2599 goto out_page; 2600 2601 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2602 2603 /* already ordered? We're done */ 2604 if (PagePrivate2(page)) 2605 goto out_reserved; 2606 2607 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2608 if (ordered) { 2609 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2610 &cached_state); 2611 unlock_page(page); 2612 btrfs_start_ordered_extent(ordered, 1); 2613 btrfs_put_ordered_extent(ordered); 2614 goto again; 2615 } 2616 2617 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2618 &cached_state); 2619 if (ret) 2620 goto out_reserved; 2621 2622 /* 2623 * Everything went as planned, we're now the owner of a dirty page with 2624 * delayed allocation bits set and space reserved for our COW 2625 * destination. 2626 * 2627 * The page was dirty when we started, nothing should have cleaned it. 2628 */ 2629 BUG_ON(!PageDirty(page)); 2630 free_delalloc_space = false; 2631 out_reserved: 2632 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2633 if (free_delalloc_space) 2634 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2635 PAGE_SIZE, true); 2636 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2637 &cached_state); 2638 out_page: 2639 if (ret) { 2640 /* 2641 * We hit ENOSPC or other errors. Update the mapping and page 2642 * to reflect the errors and clean the page. 2643 */ 2644 mapping_set_error(page->mapping, ret); 2645 end_extent_writepage(page, ret, page_start, page_end); 2646 clear_page_dirty_for_io(page); 2647 SetPageError(page); 2648 } 2649 ClearPageChecked(page); 2650 unlock_page(page); 2651 put_page(page); 2652 kfree(fixup); 2653 extent_changeset_free(data_reserved); 2654 /* 2655 * As a precaution, do a delayed iput in case it would be the last iput 2656 * that could need flushing space. Recursing back to fixup worker would 2657 * deadlock. 2658 */ 2659 btrfs_add_delayed_iput(&inode->vfs_inode); 2660 } 2661 2662 /* 2663 * There are a few paths in the higher layers of the kernel that directly 2664 * set the page dirty bit without asking the filesystem if it is a 2665 * good idea. This causes problems because we want to make sure COW 2666 * properly happens and the data=ordered rules are followed. 2667 * 2668 * In our case any range that doesn't have the ORDERED bit set 2669 * hasn't been properly setup for IO. We kick off an async process 2670 * to fix it up. The async helper will wait for ordered extents, set 2671 * the delalloc bit and make it safe to write the page. 2672 */ 2673 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2674 { 2675 struct inode *inode = page->mapping->host; 2676 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2677 struct btrfs_writepage_fixup *fixup; 2678 2679 /* this page is properly in the ordered list */ 2680 if (TestClearPagePrivate2(page)) 2681 return 0; 2682 2683 /* 2684 * PageChecked is set below when we create a fixup worker for this page, 2685 * don't try to create another one if we're already PageChecked() 2686 * 2687 * The extent_io writepage code will redirty the page if we send back 2688 * EAGAIN. 2689 */ 2690 if (PageChecked(page)) 2691 return -EAGAIN; 2692 2693 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2694 if (!fixup) 2695 return -EAGAIN; 2696 2697 /* 2698 * We are already holding a reference to this inode from 2699 * write_cache_pages. We need to hold it because the space reservation 2700 * takes place outside of the page lock, and we can't trust 2701 * page->mapping outside of the page lock. 2702 */ 2703 ihold(inode); 2704 SetPageChecked(page); 2705 get_page(page); 2706 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2707 fixup->page = page; 2708 fixup->inode = inode; 2709 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2710 2711 return -EAGAIN; 2712 } 2713 2714 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2715 struct btrfs_inode *inode, u64 file_pos, 2716 struct btrfs_file_extent_item *stack_fi, 2717 const bool update_inode_bytes, 2718 u64 qgroup_reserved) 2719 { 2720 struct btrfs_root *root = inode->root; 2721 const u64 sectorsize = root->fs_info->sectorsize; 2722 struct btrfs_path *path; 2723 struct extent_buffer *leaf; 2724 struct btrfs_key ins; 2725 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2726 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2727 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2728 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2729 struct btrfs_drop_extents_args drop_args = { 0 }; 2730 int ret; 2731 2732 path = btrfs_alloc_path(); 2733 if (!path) 2734 return -ENOMEM; 2735 2736 /* 2737 * we may be replacing one extent in the tree with another. 2738 * The new extent is pinned in the extent map, and we don't want 2739 * to drop it from the cache until it is completely in the btree. 2740 * 2741 * So, tell btrfs_drop_extents to leave this extent in the cache. 2742 * the caller is expected to unpin it and allow it to be merged 2743 * with the others. 2744 */ 2745 drop_args.path = path; 2746 drop_args.start = file_pos; 2747 drop_args.end = file_pos + num_bytes; 2748 drop_args.replace_extent = true; 2749 drop_args.extent_item_size = sizeof(*stack_fi); 2750 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2751 if (ret) 2752 goto out; 2753 2754 if (!drop_args.extent_inserted) { 2755 ins.objectid = btrfs_ino(inode); 2756 ins.offset = file_pos; 2757 ins.type = BTRFS_EXTENT_DATA_KEY; 2758 2759 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2760 sizeof(*stack_fi)); 2761 if (ret) 2762 goto out; 2763 } 2764 leaf = path->nodes[0]; 2765 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2766 write_extent_buffer(leaf, stack_fi, 2767 btrfs_item_ptr_offset(leaf, path->slots[0]), 2768 sizeof(struct btrfs_file_extent_item)); 2769 2770 btrfs_mark_buffer_dirty(leaf); 2771 btrfs_release_path(path); 2772 2773 /* 2774 * If we dropped an inline extent here, we know the range where it is 2775 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2776 * number of bytes only for that range contaning the inline extent. 2777 * The remaining of the range will be processed when clearning the 2778 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2779 */ 2780 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2781 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2782 2783 inline_size = drop_args.bytes_found - inline_size; 2784 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2785 drop_args.bytes_found -= inline_size; 2786 num_bytes -= sectorsize; 2787 } 2788 2789 if (update_inode_bytes) 2790 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2791 2792 ins.objectid = disk_bytenr; 2793 ins.offset = disk_num_bytes; 2794 ins.type = BTRFS_EXTENT_ITEM_KEY; 2795 2796 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2797 if (ret) 2798 goto out; 2799 2800 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2801 file_pos, qgroup_reserved, &ins); 2802 out: 2803 btrfs_free_path(path); 2804 2805 return ret; 2806 } 2807 2808 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2809 u64 start, u64 len) 2810 { 2811 struct btrfs_block_group *cache; 2812 2813 cache = btrfs_lookup_block_group(fs_info, start); 2814 ASSERT(cache); 2815 2816 spin_lock(&cache->lock); 2817 cache->delalloc_bytes -= len; 2818 spin_unlock(&cache->lock); 2819 2820 btrfs_put_block_group(cache); 2821 } 2822 2823 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2824 struct btrfs_ordered_extent *oe) 2825 { 2826 struct btrfs_file_extent_item stack_fi; 2827 u64 logical_len; 2828 bool update_inode_bytes; 2829 2830 memset(&stack_fi, 0, sizeof(stack_fi)); 2831 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2832 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2833 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2834 oe->disk_num_bytes); 2835 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2836 logical_len = oe->truncated_len; 2837 else 2838 logical_len = oe->num_bytes; 2839 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2840 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2841 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2842 /* Encryption and other encoding is reserved and all 0 */ 2843 2844 /* 2845 * For delalloc, when completing an ordered extent we update the inode's 2846 * bytes when clearing the range in the inode's io tree, so pass false 2847 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2848 * except if the ordered extent was truncated. 2849 */ 2850 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 2851 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 2852 2853 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2854 oe->file_offset, &stack_fi, 2855 update_inode_bytes, oe->qgroup_rsv); 2856 } 2857 2858 /* 2859 * As ordered data IO finishes, this gets called so we can finish 2860 * an ordered extent if the range of bytes in the file it covers are 2861 * fully written. 2862 */ 2863 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2864 { 2865 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 2866 struct btrfs_root *root = inode->root; 2867 struct btrfs_fs_info *fs_info = root->fs_info; 2868 struct btrfs_trans_handle *trans = NULL; 2869 struct extent_io_tree *io_tree = &inode->io_tree; 2870 struct extent_state *cached_state = NULL; 2871 u64 start, end; 2872 int compress_type = 0; 2873 int ret = 0; 2874 u64 logical_len = ordered_extent->num_bytes; 2875 bool freespace_inode; 2876 bool truncated = false; 2877 bool clear_reserved_extent = true; 2878 unsigned int clear_bits = EXTENT_DEFRAG; 2879 2880 start = ordered_extent->file_offset; 2881 end = start + ordered_extent->num_bytes - 1; 2882 2883 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2884 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2885 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2886 clear_bits |= EXTENT_DELALLOC_NEW; 2887 2888 freespace_inode = btrfs_is_free_space_inode(inode); 2889 2890 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2891 ret = -EIO; 2892 goto out; 2893 } 2894 2895 if (ordered_extent->disk) 2896 btrfs_rewrite_logical_zoned(ordered_extent); 2897 2898 btrfs_free_io_failure_record(inode, start, end); 2899 2900 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2901 truncated = true; 2902 logical_len = ordered_extent->truncated_len; 2903 /* Truncated the entire extent, don't bother adding */ 2904 if (!logical_len) 2905 goto out; 2906 } 2907 2908 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2909 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2910 2911 btrfs_inode_safe_disk_i_size_write(inode, 0); 2912 if (freespace_inode) 2913 trans = btrfs_join_transaction_spacecache(root); 2914 else 2915 trans = btrfs_join_transaction(root); 2916 if (IS_ERR(trans)) { 2917 ret = PTR_ERR(trans); 2918 trans = NULL; 2919 goto out; 2920 } 2921 trans->block_rsv = &inode->block_rsv; 2922 ret = btrfs_update_inode_fallback(trans, root, inode); 2923 if (ret) /* -ENOMEM or corruption */ 2924 btrfs_abort_transaction(trans, ret); 2925 goto out; 2926 } 2927 2928 clear_bits |= EXTENT_LOCKED; 2929 lock_extent_bits(io_tree, start, end, &cached_state); 2930 2931 if (freespace_inode) 2932 trans = btrfs_join_transaction_spacecache(root); 2933 else 2934 trans = btrfs_join_transaction(root); 2935 if (IS_ERR(trans)) { 2936 ret = PTR_ERR(trans); 2937 trans = NULL; 2938 goto out; 2939 } 2940 2941 trans->block_rsv = &inode->block_rsv; 2942 2943 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2944 compress_type = ordered_extent->compress_type; 2945 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2946 BUG_ON(compress_type); 2947 ret = btrfs_mark_extent_written(trans, inode, 2948 ordered_extent->file_offset, 2949 ordered_extent->file_offset + 2950 logical_len); 2951 } else { 2952 BUG_ON(root == fs_info->tree_root); 2953 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2954 if (!ret) { 2955 clear_reserved_extent = false; 2956 btrfs_release_delalloc_bytes(fs_info, 2957 ordered_extent->disk_bytenr, 2958 ordered_extent->disk_num_bytes); 2959 } 2960 } 2961 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 2962 ordered_extent->num_bytes, trans->transid); 2963 if (ret < 0) { 2964 btrfs_abort_transaction(trans, ret); 2965 goto out; 2966 } 2967 2968 ret = add_pending_csums(trans, &ordered_extent->list); 2969 if (ret) { 2970 btrfs_abort_transaction(trans, ret); 2971 goto out; 2972 } 2973 2974 /* 2975 * If this is a new delalloc range, clear its new delalloc flag to 2976 * update the inode's number of bytes. This needs to be done first 2977 * before updating the inode item. 2978 */ 2979 if ((clear_bits & EXTENT_DELALLOC_NEW) && 2980 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 2981 clear_extent_bit(&inode->io_tree, start, end, 2982 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 2983 0, 0, &cached_state); 2984 2985 btrfs_inode_safe_disk_i_size_write(inode, 0); 2986 ret = btrfs_update_inode_fallback(trans, root, inode); 2987 if (ret) { /* -ENOMEM or corruption */ 2988 btrfs_abort_transaction(trans, ret); 2989 goto out; 2990 } 2991 ret = 0; 2992 out: 2993 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 2994 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2995 &cached_state); 2996 2997 if (trans) 2998 btrfs_end_transaction(trans); 2999 3000 if (ret || truncated) { 3001 u64 unwritten_start = start; 3002 3003 if (truncated) 3004 unwritten_start += logical_len; 3005 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3006 3007 /* Drop the cache for the part of the extent we didn't write. */ 3008 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3009 3010 /* 3011 * If the ordered extent had an IOERR or something else went 3012 * wrong we need to return the space for this ordered extent 3013 * back to the allocator. We only free the extent in the 3014 * truncated case if we didn't write out the extent at all. 3015 * 3016 * If we made it past insert_reserved_file_extent before we 3017 * errored out then we don't need to do this as the accounting 3018 * has already been done. 3019 */ 3020 if ((ret || !logical_len) && 3021 clear_reserved_extent && 3022 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3023 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3024 /* 3025 * Discard the range before returning it back to the 3026 * free space pool 3027 */ 3028 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3029 btrfs_discard_extent(fs_info, 3030 ordered_extent->disk_bytenr, 3031 ordered_extent->disk_num_bytes, 3032 NULL); 3033 btrfs_free_reserved_extent(fs_info, 3034 ordered_extent->disk_bytenr, 3035 ordered_extent->disk_num_bytes, 1); 3036 } 3037 } 3038 3039 /* 3040 * This needs to be done to make sure anybody waiting knows we are done 3041 * updating everything for this ordered extent. 3042 */ 3043 btrfs_remove_ordered_extent(inode, ordered_extent); 3044 3045 /* once for us */ 3046 btrfs_put_ordered_extent(ordered_extent); 3047 /* once for the tree */ 3048 btrfs_put_ordered_extent(ordered_extent); 3049 3050 return ret; 3051 } 3052 3053 static void finish_ordered_fn(struct btrfs_work *work) 3054 { 3055 struct btrfs_ordered_extent *ordered_extent; 3056 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3057 btrfs_finish_ordered_io(ordered_extent); 3058 } 3059 3060 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3061 u64 end, int uptodate) 3062 { 3063 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 3064 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3065 struct btrfs_ordered_extent *ordered_extent = NULL; 3066 struct btrfs_workqueue *wq; 3067 3068 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3069 3070 ClearPagePrivate2(page); 3071 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3072 end - start + 1, uptodate)) 3073 return; 3074 3075 if (btrfs_is_free_space_inode(inode)) 3076 wq = fs_info->endio_freespace_worker; 3077 else 3078 wq = fs_info->endio_write_workers; 3079 3080 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 3081 btrfs_queue_work(wq, &ordered_extent->work); 3082 } 3083 3084 /* 3085 * check_data_csum - verify checksum of one sector of uncompressed data 3086 * @inode: inode 3087 * @io_bio: btrfs_io_bio which contains the csum 3088 * @bio_offset: offset to the beginning of the bio (in bytes) 3089 * @page: page where is the data to be verified 3090 * @pgoff: offset inside the page 3091 * @start: logical offset in the file 3092 * 3093 * The length of such check is always one sector size. 3094 */ 3095 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 3096 u32 bio_offset, struct page *page, u32 pgoff, 3097 u64 start) 3098 { 3099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3100 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3101 char *kaddr; 3102 u32 len = fs_info->sectorsize; 3103 const u32 csum_size = fs_info->csum_size; 3104 unsigned int offset_sectors; 3105 u8 *csum_expected; 3106 u8 csum[BTRFS_CSUM_SIZE]; 3107 3108 ASSERT(pgoff + len <= PAGE_SIZE); 3109 3110 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3111 csum_expected = ((u8 *)io_bio->csum) + offset_sectors * csum_size; 3112 3113 kaddr = kmap_atomic(page); 3114 shash->tfm = fs_info->csum_shash; 3115 3116 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3117 3118 if (memcmp(csum, csum_expected, csum_size)) 3119 goto zeroit; 3120 3121 kunmap_atomic(kaddr); 3122 return 0; 3123 zeroit: 3124 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3125 io_bio->mirror_num); 3126 if (io_bio->device) 3127 btrfs_dev_stat_inc_and_print(io_bio->device, 3128 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3129 memset(kaddr + pgoff, 1, len); 3130 flush_dcache_page(page); 3131 kunmap_atomic(kaddr); 3132 return -EIO; 3133 } 3134 3135 /* 3136 * When reads are done, we need to check csums to verify the data is correct. 3137 * if there's a match, we allow the bio to finish. If not, the code in 3138 * extent_io.c will try to find good copies for us. 3139 * 3140 * @bio_offset: offset to the beginning of the bio (in bytes) 3141 * @start: file offset of the range start 3142 * @end: file offset of the range end (inclusive) 3143 */ 3144 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3145 struct page *page, u64 start, u64 end) 3146 { 3147 struct inode *inode = page->mapping->host; 3148 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3149 struct btrfs_root *root = BTRFS_I(inode)->root; 3150 const u32 sectorsize = root->fs_info->sectorsize; 3151 u32 pg_off; 3152 3153 if (PageChecked(page)) { 3154 ClearPageChecked(page); 3155 return 0; 3156 } 3157 3158 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3159 return 0; 3160 3161 if (!root->fs_info->csum_root) 3162 return 0; 3163 3164 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3165 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3166 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3167 return 0; 3168 } 3169 3170 ASSERT(page_offset(page) <= start && 3171 end <= page_offset(page) + PAGE_SIZE - 1); 3172 for (pg_off = offset_in_page(start); 3173 pg_off < offset_in_page(end); 3174 pg_off += sectorsize, bio_offset += sectorsize) { 3175 int ret; 3176 3177 ret = check_data_csum(inode, io_bio, bio_offset, page, pg_off, 3178 page_offset(page) + pg_off); 3179 if (ret < 0) 3180 return -EIO; 3181 } 3182 return 0; 3183 } 3184 3185 /* 3186 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3187 * 3188 * @inode: The inode we want to perform iput on 3189 * 3190 * This function uses the generic vfs_inode::i_count to track whether we should 3191 * just decrement it (in case it's > 1) or if this is the last iput then link 3192 * the inode to the delayed iput machinery. Delayed iputs are processed at 3193 * transaction commit time/superblock commit/cleaner kthread. 3194 */ 3195 void btrfs_add_delayed_iput(struct inode *inode) 3196 { 3197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3198 struct btrfs_inode *binode = BTRFS_I(inode); 3199 3200 if (atomic_add_unless(&inode->i_count, -1, 1)) 3201 return; 3202 3203 atomic_inc(&fs_info->nr_delayed_iputs); 3204 spin_lock(&fs_info->delayed_iput_lock); 3205 ASSERT(list_empty(&binode->delayed_iput)); 3206 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3207 spin_unlock(&fs_info->delayed_iput_lock); 3208 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3209 wake_up_process(fs_info->cleaner_kthread); 3210 } 3211 3212 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3213 struct btrfs_inode *inode) 3214 { 3215 list_del_init(&inode->delayed_iput); 3216 spin_unlock(&fs_info->delayed_iput_lock); 3217 iput(&inode->vfs_inode); 3218 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3219 wake_up(&fs_info->delayed_iputs_wait); 3220 spin_lock(&fs_info->delayed_iput_lock); 3221 } 3222 3223 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3224 struct btrfs_inode *inode) 3225 { 3226 if (!list_empty(&inode->delayed_iput)) { 3227 spin_lock(&fs_info->delayed_iput_lock); 3228 if (!list_empty(&inode->delayed_iput)) 3229 run_delayed_iput_locked(fs_info, inode); 3230 spin_unlock(&fs_info->delayed_iput_lock); 3231 } 3232 } 3233 3234 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3235 { 3236 3237 spin_lock(&fs_info->delayed_iput_lock); 3238 while (!list_empty(&fs_info->delayed_iputs)) { 3239 struct btrfs_inode *inode; 3240 3241 inode = list_first_entry(&fs_info->delayed_iputs, 3242 struct btrfs_inode, delayed_iput); 3243 run_delayed_iput_locked(fs_info, inode); 3244 } 3245 spin_unlock(&fs_info->delayed_iput_lock); 3246 } 3247 3248 /** 3249 * Wait for flushing all delayed iputs 3250 * 3251 * @fs_info: the filesystem 3252 * 3253 * This will wait on any delayed iputs that are currently running with KILLABLE 3254 * set. Once they are all done running we will return, unless we are killed in 3255 * which case we return EINTR. This helps in user operations like fallocate etc 3256 * that might get blocked on the iputs. 3257 * 3258 * Return EINTR if we were killed, 0 if nothing's pending 3259 */ 3260 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3261 { 3262 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3263 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3264 if (ret) 3265 return -EINTR; 3266 return 0; 3267 } 3268 3269 /* 3270 * This creates an orphan entry for the given inode in case something goes wrong 3271 * in the middle of an unlink. 3272 */ 3273 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3274 struct btrfs_inode *inode) 3275 { 3276 int ret; 3277 3278 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3279 if (ret && ret != -EEXIST) { 3280 btrfs_abort_transaction(trans, ret); 3281 return ret; 3282 } 3283 3284 return 0; 3285 } 3286 3287 /* 3288 * We have done the delete so we can go ahead and remove the orphan item for 3289 * this particular inode. 3290 */ 3291 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3292 struct btrfs_inode *inode) 3293 { 3294 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3295 } 3296 3297 /* 3298 * this cleans up any orphans that may be left on the list from the last use 3299 * of this root. 3300 */ 3301 int btrfs_orphan_cleanup(struct btrfs_root *root) 3302 { 3303 struct btrfs_fs_info *fs_info = root->fs_info; 3304 struct btrfs_path *path; 3305 struct extent_buffer *leaf; 3306 struct btrfs_key key, found_key; 3307 struct btrfs_trans_handle *trans; 3308 struct inode *inode; 3309 u64 last_objectid = 0; 3310 int ret = 0, nr_unlink = 0; 3311 3312 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3313 return 0; 3314 3315 path = btrfs_alloc_path(); 3316 if (!path) { 3317 ret = -ENOMEM; 3318 goto out; 3319 } 3320 path->reada = READA_BACK; 3321 3322 key.objectid = BTRFS_ORPHAN_OBJECTID; 3323 key.type = BTRFS_ORPHAN_ITEM_KEY; 3324 key.offset = (u64)-1; 3325 3326 while (1) { 3327 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3328 if (ret < 0) 3329 goto out; 3330 3331 /* 3332 * if ret == 0 means we found what we were searching for, which 3333 * is weird, but possible, so only screw with path if we didn't 3334 * find the key and see if we have stuff that matches 3335 */ 3336 if (ret > 0) { 3337 ret = 0; 3338 if (path->slots[0] == 0) 3339 break; 3340 path->slots[0]--; 3341 } 3342 3343 /* pull out the item */ 3344 leaf = path->nodes[0]; 3345 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3346 3347 /* make sure the item matches what we want */ 3348 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3349 break; 3350 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3351 break; 3352 3353 /* release the path since we're done with it */ 3354 btrfs_release_path(path); 3355 3356 /* 3357 * this is where we are basically btrfs_lookup, without the 3358 * crossing root thing. we store the inode number in the 3359 * offset of the orphan item. 3360 */ 3361 3362 if (found_key.offset == last_objectid) { 3363 btrfs_err(fs_info, 3364 "Error removing orphan entry, stopping orphan cleanup"); 3365 ret = -EINVAL; 3366 goto out; 3367 } 3368 3369 last_objectid = found_key.offset; 3370 3371 found_key.objectid = found_key.offset; 3372 found_key.type = BTRFS_INODE_ITEM_KEY; 3373 found_key.offset = 0; 3374 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3375 ret = PTR_ERR_OR_ZERO(inode); 3376 if (ret && ret != -ENOENT) 3377 goto out; 3378 3379 if (ret == -ENOENT && root == fs_info->tree_root) { 3380 struct btrfs_root *dead_root; 3381 int is_dead_root = 0; 3382 3383 /* 3384 * This is an orphan in the tree root. Currently these 3385 * could come from 2 sources: 3386 * a) a root (snapshot/subvolume) deletion in progress 3387 * b) a free space cache inode 3388 * We need to distinguish those two, as the orphan item 3389 * for a root must not get deleted before the deletion 3390 * of the snapshot/subvolume's tree completes. 3391 * 3392 * btrfs_find_orphan_roots() ran before us, which has 3393 * found all deleted roots and loaded them into 3394 * fs_info->fs_roots_radix. So here we can find if an 3395 * orphan item corresponds to a deleted root by looking 3396 * up the root from that radix tree. 3397 */ 3398 3399 spin_lock(&fs_info->fs_roots_radix_lock); 3400 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3401 (unsigned long)found_key.objectid); 3402 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3403 is_dead_root = 1; 3404 spin_unlock(&fs_info->fs_roots_radix_lock); 3405 3406 if (is_dead_root) { 3407 /* prevent this orphan from being found again */ 3408 key.offset = found_key.objectid - 1; 3409 continue; 3410 } 3411 3412 } 3413 3414 /* 3415 * If we have an inode with links, there are a couple of 3416 * possibilities. Old kernels (before v3.12) used to create an 3417 * orphan item for truncate indicating that there were possibly 3418 * extent items past i_size that needed to be deleted. In v3.12, 3419 * truncate was changed to update i_size in sync with the extent 3420 * items, but the (useless) orphan item was still created. Since 3421 * v4.18, we don't create the orphan item for truncate at all. 3422 * 3423 * So, this item could mean that we need to do a truncate, but 3424 * only if this filesystem was last used on a pre-v3.12 kernel 3425 * and was not cleanly unmounted. The odds of that are quite 3426 * slim, and it's a pain to do the truncate now, so just delete 3427 * the orphan item. 3428 * 3429 * It's also possible that this orphan item was supposed to be 3430 * deleted but wasn't. The inode number may have been reused, 3431 * but either way, we can delete the orphan item. 3432 */ 3433 if (ret == -ENOENT || inode->i_nlink) { 3434 if (!ret) 3435 iput(inode); 3436 trans = btrfs_start_transaction(root, 1); 3437 if (IS_ERR(trans)) { 3438 ret = PTR_ERR(trans); 3439 goto out; 3440 } 3441 btrfs_debug(fs_info, "auto deleting %Lu", 3442 found_key.objectid); 3443 ret = btrfs_del_orphan_item(trans, root, 3444 found_key.objectid); 3445 btrfs_end_transaction(trans); 3446 if (ret) 3447 goto out; 3448 continue; 3449 } 3450 3451 nr_unlink++; 3452 3453 /* this will do delete_inode and everything for us */ 3454 iput(inode); 3455 } 3456 /* release the path since we're done with it */ 3457 btrfs_release_path(path); 3458 3459 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3460 3461 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3462 trans = btrfs_join_transaction(root); 3463 if (!IS_ERR(trans)) 3464 btrfs_end_transaction(trans); 3465 } 3466 3467 if (nr_unlink) 3468 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3469 3470 out: 3471 if (ret) 3472 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3473 btrfs_free_path(path); 3474 return ret; 3475 } 3476 3477 /* 3478 * very simple check to peek ahead in the leaf looking for xattrs. If we 3479 * don't find any xattrs, we know there can't be any acls. 3480 * 3481 * slot is the slot the inode is in, objectid is the objectid of the inode 3482 */ 3483 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3484 int slot, u64 objectid, 3485 int *first_xattr_slot) 3486 { 3487 u32 nritems = btrfs_header_nritems(leaf); 3488 struct btrfs_key found_key; 3489 static u64 xattr_access = 0; 3490 static u64 xattr_default = 0; 3491 int scanned = 0; 3492 3493 if (!xattr_access) { 3494 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3495 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3496 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3497 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3498 } 3499 3500 slot++; 3501 *first_xattr_slot = -1; 3502 while (slot < nritems) { 3503 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3504 3505 /* we found a different objectid, there must not be acls */ 3506 if (found_key.objectid != objectid) 3507 return 0; 3508 3509 /* we found an xattr, assume we've got an acl */ 3510 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3511 if (*first_xattr_slot == -1) 3512 *first_xattr_slot = slot; 3513 if (found_key.offset == xattr_access || 3514 found_key.offset == xattr_default) 3515 return 1; 3516 } 3517 3518 /* 3519 * we found a key greater than an xattr key, there can't 3520 * be any acls later on 3521 */ 3522 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3523 return 0; 3524 3525 slot++; 3526 scanned++; 3527 3528 /* 3529 * it goes inode, inode backrefs, xattrs, extents, 3530 * so if there are a ton of hard links to an inode there can 3531 * be a lot of backrefs. Don't waste time searching too hard, 3532 * this is just an optimization 3533 */ 3534 if (scanned >= 8) 3535 break; 3536 } 3537 /* we hit the end of the leaf before we found an xattr or 3538 * something larger than an xattr. We have to assume the inode 3539 * has acls 3540 */ 3541 if (*first_xattr_slot == -1) 3542 *first_xattr_slot = slot; 3543 return 1; 3544 } 3545 3546 /* 3547 * read an inode from the btree into the in-memory inode 3548 */ 3549 static int btrfs_read_locked_inode(struct inode *inode, 3550 struct btrfs_path *in_path) 3551 { 3552 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3553 struct btrfs_path *path = in_path; 3554 struct extent_buffer *leaf; 3555 struct btrfs_inode_item *inode_item; 3556 struct btrfs_root *root = BTRFS_I(inode)->root; 3557 struct btrfs_key location; 3558 unsigned long ptr; 3559 int maybe_acls; 3560 u32 rdev; 3561 int ret; 3562 bool filled = false; 3563 int first_xattr_slot; 3564 3565 ret = btrfs_fill_inode(inode, &rdev); 3566 if (!ret) 3567 filled = true; 3568 3569 if (!path) { 3570 path = btrfs_alloc_path(); 3571 if (!path) 3572 return -ENOMEM; 3573 } 3574 3575 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3576 3577 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3578 if (ret) { 3579 if (path != in_path) 3580 btrfs_free_path(path); 3581 return ret; 3582 } 3583 3584 leaf = path->nodes[0]; 3585 3586 if (filled) 3587 goto cache_index; 3588 3589 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3590 struct btrfs_inode_item); 3591 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3592 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3593 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3594 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3595 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3596 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3597 round_up(i_size_read(inode), fs_info->sectorsize)); 3598 3599 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3600 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3601 3602 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3603 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3604 3605 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3606 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3607 3608 BTRFS_I(inode)->i_otime.tv_sec = 3609 btrfs_timespec_sec(leaf, &inode_item->otime); 3610 BTRFS_I(inode)->i_otime.tv_nsec = 3611 btrfs_timespec_nsec(leaf, &inode_item->otime); 3612 3613 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3614 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3615 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3616 3617 inode_set_iversion_queried(inode, 3618 btrfs_inode_sequence(leaf, inode_item)); 3619 inode->i_generation = BTRFS_I(inode)->generation; 3620 inode->i_rdev = 0; 3621 rdev = btrfs_inode_rdev(leaf, inode_item); 3622 3623 BTRFS_I(inode)->index_cnt = (u64)-1; 3624 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3625 3626 cache_index: 3627 /* 3628 * If we were modified in the current generation and evicted from memory 3629 * and then re-read we need to do a full sync since we don't have any 3630 * idea about which extents were modified before we were evicted from 3631 * cache. 3632 * 3633 * This is required for both inode re-read from disk and delayed inode 3634 * in delayed_nodes_tree. 3635 */ 3636 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3637 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3638 &BTRFS_I(inode)->runtime_flags); 3639 3640 /* 3641 * We don't persist the id of the transaction where an unlink operation 3642 * against the inode was last made. So here we assume the inode might 3643 * have been evicted, and therefore the exact value of last_unlink_trans 3644 * lost, and set it to last_trans to avoid metadata inconsistencies 3645 * between the inode and its parent if the inode is fsync'ed and the log 3646 * replayed. For example, in the scenario: 3647 * 3648 * touch mydir/foo 3649 * ln mydir/foo mydir/bar 3650 * sync 3651 * unlink mydir/bar 3652 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3653 * xfs_io -c fsync mydir/foo 3654 * <power failure> 3655 * mount fs, triggers fsync log replay 3656 * 3657 * We must make sure that when we fsync our inode foo we also log its 3658 * parent inode, otherwise after log replay the parent still has the 3659 * dentry with the "bar" name but our inode foo has a link count of 1 3660 * and doesn't have an inode ref with the name "bar" anymore. 3661 * 3662 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3663 * but it guarantees correctness at the expense of occasional full 3664 * transaction commits on fsync if our inode is a directory, or if our 3665 * inode is not a directory, logging its parent unnecessarily. 3666 */ 3667 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3668 3669 /* 3670 * Same logic as for last_unlink_trans. We don't persist the generation 3671 * of the last transaction where this inode was used for a reflink 3672 * operation, so after eviction and reloading the inode we must be 3673 * pessimistic and assume the last transaction that modified the inode. 3674 */ 3675 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3676 3677 path->slots[0]++; 3678 if (inode->i_nlink != 1 || 3679 path->slots[0] >= btrfs_header_nritems(leaf)) 3680 goto cache_acl; 3681 3682 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3683 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3684 goto cache_acl; 3685 3686 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3687 if (location.type == BTRFS_INODE_REF_KEY) { 3688 struct btrfs_inode_ref *ref; 3689 3690 ref = (struct btrfs_inode_ref *)ptr; 3691 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3692 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3693 struct btrfs_inode_extref *extref; 3694 3695 extref = (struct btrfs_inode_extref *)ptr; 3696 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3697 extref); 3698 } 3699 cache_acl: 3700 /* 3701 * try to precache a NULL acl entry for files that don't have 3702 * any xattrs or acls 3703 */ 3704 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3705 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3706 if (first_xattr_slot != -1) { 3707 path->slots[0] = first_xattr_slot; 3708 ret = btrfs_load_inode_props(inode, path); 3709 if (ret) 3710 btrfs_err(fs_info, 3711 "error loading props for ino %llu (root %llu): %d", 3712 btrfs_ino(BTRFS_I(inode)), 3713 root->root_key.objectid, ret); 3714 } 3715 if (path != in_path) 3716 btrfs_free_path(path); 3717 3718 if (!maybe_acls) 3719 cache_no_acl(inode); 3720 3721 switch (inode->i_mode & S_IFMT) { 3722 case S_IFREG: 3723 inode->i_mapping->a_ops = &btrfs_aops; 3724 inode->i_fop = &btrfs_file_operations; 3725 inode->i_op = &btrfs_file_inode_operations; 3726 break; 3727 case S_IFDIR: 3728 inode->i_fop = &btrfs_dir_file_operations; 3729 inode->i_op = &btrfs_dir_inode_operations; 3730 break; 3731 case S_IFLNK: 3732 inode->i_op = &btrfs_symlink_inode_operations; 3733 inode_nohighmem(inode); 3734 inode->i_mapping->a_ops = &btrfs_aops; 3735 break; 3736 default: 3737 inode->i_op = &btrfs_special_inode_operations; 3738 init_special_inode(inode, inode->i_mode, rdev); 3739 break; 3740 } 3741 3742 btrfs_sync_inode_flags_to_i_flags(inode); 3743 return 0; 3744 } 3745 3746 /* 3747 * given a leaf and an inode, copy the inode fields into the leaf 3748 */ 3749 static void fill_inode_item(struct btrfs_trans_handle *trans, 3750 struct extent_buffer *leaf, 3751 struct btrfs_inode_item *item, 3752 struct inode *inode) 3753 { 3754 struct btrfs_map_token token; 3755 3756 btrfs_init_map_token(&token, leaf); 3757 3758 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3759 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3760 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3761 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3762 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3763 3764 btrfs_set_token_timespec_sec(&token, &item->atime, 3765 inode->i_atime.tv_sec); 3766 btrfs_set_token_timespec_nsec(&token, &item->atime, 3767 inode->i_atime.tv_nsec); 3768 3769 btrfs_set_token_timespec_sec(&token, &item->mtime, 3770 inode->i_mtime.tv_sec); 3771 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3772 inode->i_mtime.tv_nsec); 3773 3774 btrfs_set_token_timespec_sec(&token, &item->ctime, 3775 inode->i_ctime.tv_sec); 3776 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3777 inode->i_ctime.tv_nsec); 3778 3779 btrfs_set_token_timespec_sec(&token, &item->otime, 3780 BTRFS_I(inode)->i_otime.tv_sec); 3781 btrfs_set_token_timespec_nsec(&token, &item->otime, 3782 BTRFS_I(inode)->i_otime.tv_nsec); 3783 3784 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3785 btrfs_set_token_inode_generation(&token, item, 3786 BTRFS_I(inode)->generation); 3787 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3788 btrfs_set_token_inode_transid(&token, item, trans->transid); 3789 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3790 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3791 btrfs_set_token_inode_block_group(&token, item, 0); 3792 } 3793 3794 /* 3795 * copy everything in the in-memory inode into the btree. 3796 */ 3797 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3798 struct btrfs_root *root, 3799 struct btrfs_inode *inode) 3800 { 3801 struct btrfs_inode_item *inode_item; 3802 struct btrfs_path *path; 3803 struct extent_buffer *leaf; 3804 int ret; 3805 3806 path = btrfs_alloc_path(); 3807 if (!path) 3808 return -ENOMEM; 3809 3810 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 3811 if (ret) { 3812 if (ret > 0) 3813 ret = -ENOENT; 3814 goto failed; 3815 } 3816 3817 leaf = path->nodes[0]; 3818 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3819 struct btrfs_inode_item); 3820 3821 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3822 btrfs_mark_buffer_dirty(leaf); 3823 btrfs_set_inode_last_trans(trans, inode); 3824 ret = 0; 3825 failed: 3826 btrfs_free_path(path); 3827 return ret; 3828 } 3829 3830 /* 3831 * copy everything in the in-memory inode into the btree. 3832 */ 3833 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3834 struct btrfs_root *root, 3835 struct btrfs_inode *inode) 3836 { 3837 struct btrfs_fs_info *fs_info = root->fs_info; 3838 int ret; 3839 3840 /* 3841 * If the inode is a free space inode, we can deadlock during commit 3842 * if we put it into the delayed code. 3843 * 3844 * The data relocation inode should also be directly updated 3845 * without delay 3846 */ 3847 if (!btrfs_is_free_space_inode(inode) 3848 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3849 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3850 btrfs_update_root_times(trans, root); 3851 3852 ret = btrfs_delayed_update_inode(trans, root, inode); 3853 if (!ret) 3854 btrfs_set_inode_last_trans(trans, inode); 3855 return ret; 3856 } 3857 3858 return btrfs_update_inode_item(trans, root, inode); 3859 } 3860 3861 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3862 struct btrfs_root *root, struct btrfs_inode *inode) 3863 { 3864 int ret; 3865 3866 ret = btrfs_update_inode(trans, root, inode); 3867 if (ret == -ENOSPC) 3868 return btrfs_update_inode_item(trans, root, inode); 3869 return ret; 3870 } 3871 3872 /* 3873 * unlink helper that gets used here in inode.c and in the tree logging 3874 * recovery code. It remove a link in a directory with a given name, and 3875 * also drops the back refs in the inode to the directory 3876 */ 3877 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3878 struct btrfs_root *root, 3879 struct btrfs_inode *dir, 3880 struct btrfs_inode *inode, 3881 const char *name, int name_len) 3882 { 3883 struct btrfs_fs_info *fs_info = root->fs_info; 3884 struct btrfs_path *path; 3885 int ret = 0; 3886 struct btrfs_dir_item *di; 3887 u64 index; 3888 u64 ino = btrfs_ino(inode); 3889 u64 dir_ino = btrfs_ino(dir); 3890 3891 path = btrfs_alloc_path(); 3892 if (!path) { 3893 ret = -ENOMEM; 3894 goto out; 3895 } 3896 3897 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3898 name, name_len, -1); 3899 if (IS_ERR_OR_NULL(di)) { 3900 ret = di ? PTR_ERR(di) : -ENOENT; 3901 goto err; 3902 } 3903 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3904 if (ret) 3905 goto err; 3906 btrfs_release_path(path); 3907 3908 /* 3909 * If we don't have dir index, we have to get it by looking up 3910 * the inode ref, since we get the inode ref, remove it directly, 3911 * it is unnecessary to do delayed deletion. 3912 * 3913 * But if we have dir index, needn't search inode ref to get it. 3914 * Since the inode ref is close to the inode item, it is better 3915 * that we delay to delete it, and just do this deletion when 3916 * we update the inode item. 3917 */ 3918 if (inode->dir_index) { 3919 ret = btrfs_delayed_delete_inode_ref(inode); 3920 if (!ret) { 3921 index = inode->dir_index; 3922 goto skip_backref; 3923 } 3924 } 3925 3926 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3927 dir_ino, &index); 3928 if (ret) { 3929 btrfs_info(fs_info, 3930 "failed to delete reference to %.*s, inode %llu parent %llu", 3931 name_len, name, ino, dir_ino); 3932 btrfs_abort_transaction(trans, ret); 3933 goto err; 3934 } 3935 skip_backref: 3936 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3937 if (ret) { 3938 btrfs_abort_transaction(trans, ret); 3939 goto err; 3940 } 3941 3942 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3943 dir_ino); 3944 if (ret != 0 && ret != -ENOENT) { 3945 btrfs_abort_transaction(trans, ret); 3946 goto err; 3947 } 3948 3949 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3950 index); 3951 if (ret == -ENOENT) 3952 ret = 0; 3953 else if (ret) 3954 btrfs_abort_transaction(trans, ret); 3955 3956 /* 3957 * If we have a pending delayed iput we could end up with the final iput 3958 * being run in btrfs-cleaner context. If we have enough of these built 3959 * up we can end up burning a lot of time in btrfs-cleaner without any 3960 * way to throttle the unlinks. Since we're currently holding a ref on 3961 * the inode we can run the delayed iput here without any issues as the 3962 * final iput won't be done until after we drop the ref we're currently 3963 * holding. 3964 */ 3965 btrfs_run_delayed_iput(fs_info, inode); 3966 err: 3967 btrfs_free_path(path); 3968 if (ret) 3969 goto out; 3970 3971 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3972 inode_inc_iversion(&inode->vfs_inode); 3973 inode_inc_iversion(&dir->vfs_inode); 3974 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3975 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3976 ret = btrfs_update_inode(trans, root, dir); 3977 out: 3978 return ret; 3979 } 3980 3981 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3982 struct btrfs_root *root, 3983 struct btrfs_inode *dir, struct btrfs_inode *inode, 3984 const char *name, int name_len) 3985 { 3986 int ret; 3987 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3988 if (!ret) { 3989 drop_nlink(&inode->vfs_inode); 3990 ret = btrfs_update_inode(trans, root, inode); 3991 } 3992 return ret; 3993 } 3994 3995 /* 3996 * helper to start transaction for unlink and rmdir. 3997 * 3998 * unlink and rmdir are special in btrfs, they do not always free space, so 3999 * if we cannot make our reservations the normal way try and see if there is 4000 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4001 * allow the unlink to occur. 4002 */ 4003 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4004 { 4005 struct btrfs_root *root = BTRFS_I(dir)->root; 4006 4007 /* 4008 * 1 for the possible orphan item 4009 * 1 for the dir item 4010 * 1 for the dir index 4011 * 1 for the inode ref 4012 * 1 for the inode 4013 */ 4014 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4015 } 4016 4017 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4018 { 4019 struct btrfs_root *root = BTRFS_I(dir)->root; 4020 struct btrfs_trans_handle *trans; 4021 struct inode *inode = d_inode(dentry); 4022 int ret; 4023 4024 trans = __unlink_start_trans(dir); 4025 if (IS_ERR(trans)) 4026 return PTR_ERR(trans); 4027 4028 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4029 0); 4030 4031 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4032 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4033 dentry->d_name.len); 4034 if (ret) 4035 goto out; 4036 4037 if (inode->i_nlink == 0) { 4038 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4039 if (ret) 4040 goto out; 4041 } 4042 4043 out: 4044 btrfs_end_transaction(trans); 4045 btrfs_btree_balance_dirty(root->fs_info); 4046 return ret; 4047 } 4048 4049 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4050 struct inode *dir, struct dentry *dentry) 4051 { 4052 struct btrfs_root *root = BTRFS_I(dir)->root; 4053 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4054 struct btrfs_path *path; 4055 struct extent_buffer *leaf; 4056 struct btrfs_dir_item *di; 4057 struct btrfs_key key; 4058 const char *name = dentry->d_name.name; 4059 int name_len = dentry->d_name.len; 4060 u64 index; 4061 int ret; 4062 u64 objectid; 4063 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4064 4065 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4066 objectid = inode->root->root_key.objectid; 4067 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4068 objectid = inode->location.objectid; 4069 } else { 4070 WARN_ON(1); 4071 return -EINVAL; 4072 } 4073 4074 path = btrfs_alloc_path(); 4075 if (!path) 4076 return -ENOMEM; 4077 4078 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4079 name, name_len, -1); 4080 if (IS_ERR_OR_NULL(di)) { 4081 ret = di ? PTR_ERR(di) : -ENOENT; 4082 goto out; 4083 } 4084 4085 leaf = path->nodes[0]; 4086 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4087 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4088 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4089 if (ret) { 4090 btrfs_abort_transaction(trans, ret); 4091 goto out; 4092 } 4093 btrfs_release_path(path); 4094 4095 /* 4096 * This is a placeholder inode for a subvolume we didn't have a 4097 * reference to at the time of the snapshot creation. In the meantime 4098 * we could have renamed the real subvol link into our snapshot, so 4099 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 4100 * Instead simply lookup the dir_index_item for this entry so we can 4101 * remove it. Otherwise we know we have a ref to the root and we can 4102 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4103 */ 4104 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4105 di = btrfs_search_dir_index_item(root, path, dir_ino, 4106 name, name_len); 4107 if (IS_ERR_OR_NULL(di)) { 4108 if (!di) 4109 ret = -ENOENT; 4110 else 4111 ret = PTR_ERR(di); 4112 btrfs_abort_transaction(trans, ret); 4113 goto out; 4114 } 4115 4116 leaf = path->nodes[0]; 4117 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4118 index = key.offset; 4119 btrfs_release_path(path); 4120 } else { 4121 ret = btrfs_del_root_ref(trans, objectid, 4122 root->root_key.objectid, dir_ino, 4123 &index, name, name_len); 4124 if (ret) { 4125 btrfs_abort_transaction(trans, ret); 4126 goto out; 4127 } 4128 } 4129 4130 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4131 if (ret) { 4132 btrfs_abort_transaction(trans, ret); 4133 goto out; 4134 } 4135 4136 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4137 inode_inc_iversion(dir); 4138 dir->i_mtime = dir->i_ctime = current_time(dir); 4139 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4140 if (ret) 4141 btrfs_abort_transaction(trans, ret); 4142 out: 4143 btrfs_free_path(path); 4144 return ret; 4145 } 4146 4147 /* 4148 * Helper to check if the subvolume references other subvolumes or if it's 4149 * default. 4150 */ 4151 static noinline int may_destroy_subvol(struct btrfs_root *root) 4152 { 4153 struct btrfs_fs_info *fs_info = root->fs_info; 4154 struct btrfs_path *path; 4155 struct btrfs_dir_item *di; 4156 struct btrfs_key key; 4157 u64 dir_id; 4158 int ret; 4159 4160 path = btrfs_alloc_path(); 4161 if (!path) 4162 return -ENOMEM; 4163 4164 /* Make sure this root isn't set as the default subvol */ 4165 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4166 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4167 dir_id, "default", 7, 0); 4168 if (di && !IS_ERR(di)) { 4169 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4170 if (key.objectid == root->root_key.objectid) { 4171 ret = -EPERM; 4172 btrfs_err(fs_info, 4173 "deleting default subvolume %llu is not allowed", 4174 key.objectid); 4175 goto out; 4176 } 4177 btrfs_release_path(path); 4178 } 4179 4180 key.objectid = root->root_key.objectid; 4181 key.type = BTRFS_ROOT_REF_KEY; 4182 key.offset = (u64)-1; 4183 4184 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4185 if (ret < 0) 4186 goto out; 4187 BUG_ON(ret == 0); 4188 4189 ret = 0; 4190 if (path->slots[0] > 0) { 4191 path->slots[0]--; 4192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4193 if (key.objectid == root->root_key.objectid && 4194 key.type == BTRFS_ROOT_REF_KEY) 4195 ret = -ENOTEMPTY; 4196 } 4197 out: 4198 btrfs_free_path(path); 4199 return ret; 4200 } 4201 4202 /* Delete all dentries for inodes belonging to the root */ 4203 static void btrfs_prune_dentries(struct btrfs_root *root) 4204 { 4205 struct btrfs_fs_info *fs_info = root->fs_info; 4206 struct rb_node *node; 4207 struct rb_node *prev; 4208 struct btrfs_inode *entry; 4209 struct inode *inode; 4210 u64 objectid = 0; 4211 4212 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4213 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4214 4215 spin_lock(&root->inode_lock); 4216 again: 4217 node = root->inode_tree.rb_node; 4218 prev = NULL; 4219 while (node) { 4220 prev = node; 4221 entry = rb_entry(node, struct btrfs_inode, rb_node); 4222 4223 if (objectid < btrfs_ino(entry)) 4224 node = node->rb_left; 4225 else if (objectid > btrfs_ino(entry)) 4226 node = node->rb_right; 4227 else 4228 break; 4229 } 4230 if (!node) { 4231 while (prev) { 4232 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4233 if (objectid <= btrfs_ino(entry)) { 4234 node = prev; 4235 break; 4236 } 4237 prev = rb_next(prev); 4238 } 4239 } 4240 while (node) { 4241 entry = rb_entry(node, struct btrfs_inode, rb_node); 4242 objectid = btrfs_ino(entry) + 1; 4243 inode = igrab(&entry->vfs_inode); 4244 if (inode) { 4245 spin_unlock(&root->inode_lock); 4246 if (atomic_read(&inode->i_count) > 1) 4247 d_prune_aliases(inode); 4248 /* 4249 * btrfs_drop_inode will have it removed from the inode 4250 * cache when its usage count hits zero. 4251 */ 4252 iput(inode); 4253 cond_resched(); 4254 spin_lock(&root->inode_lock); 4255 goto again; 4256 } 4257 4258 if (cond_resched_lock(&root->inode_lock)) 4259 goto again; 4260 4261 node = rb_next(node); 4262 } 4263 spin_unlock(&root->inode_lock); 4264 } 4265 4266 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4267 { 4268 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4269 struct btrfs_root *root = BTRFS_I(dir)->root; 4270 struct inode *inode = d_inode(dentry); 4271 struct btrfs_root *dest = BTRFS_I(inode)->root; 4272 struct btrfs_trans_handle *trans; 4273 struct btrfs_block_rsv block_rsv; 4274 u64 root_flags; 4275 int ret; 4276 4277 /* 4278 * Don't allow to delete a subvolume with send in progress. This is 4279 * inside the inode lock so the error handling that has to drop the bit 4280 * again is not run concurrently. 4281 */ 4282 spin_lock(&dest->root_item_lock); 4283 if (dest->send_in_progress) { 4284 spin_unlock(&dest->root_item_lock); 4285 btrfs_warn(fs_info, 4286 "attempt to delete subvolume %llu during send", 4287 dest->root_key.objectid); 4288 return -EPERM; 4289 } 4290 root_flags = btrfs_root_flags(&dest->root_item); 4291 btrfs_set_root_flags(&dest->root_item, 4292 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4293 spin_unlock(&dest->root_item_lock); 4294 4295 down_write(&fs_info->subvol_sem); 4296 4297 ret = may_destroy_subvol(dest); 4298 if (ret) 4299 goto out_up_write; 4300 4301 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4302 /* 4303 * One for dir inode, 4304 * two for dir entries, 4305 * two for root ref/backref. 4306 */ 4307 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4308 if (ret) 4309 goto out_up_write; 4310 4311 trans = btrfs_start_transaction(root, 0); 4312 if (IS_ERR(trans)) { 4313 ret = PTR_ERR(trans); 4314 goto out_release; 4315 } 4316 trans->block_rsv = &block_rsv; 4317 trans->bytes_reserved = block_rsv.size; 4318 4319 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4320 4321 ret = btrfs_unlink_subvol(trans, dir, dentry); 4322 if (ret) { 4323 btrfs_abort_transaction(trans, ret); 4324 goto out_end_trans; 4325 } 4326 4327 ret = btrfs_record_root_in_trans(trans, dest); 4328 if (ret) { 4329 btrfs_abort_transaction(trans, ret); 4330 goto out_end_trans; 4331 } 4332 4333 memset(&dest->root_item.drop_progress, 0, 4334 sizeof(dest->root_item.drop_progress)); 4335 btrfs_set_root_drop_level(&dest->root_item, 0); 4336 btrfs_set_root_refs(&dest->root_item, 0); 4337 4338 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4339 ret = btrfs_insert_orphan_item(trans, 4340 fs_info->tree_root, 4341 dest->root_key.objectid); 4342 if (ret) { 4343 btrfs_abort_transaction(trans, ret); 4344 goto out_end_trans; 4345 } 4346 } 4347 4348 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4349 BTRFS_UUID_KEY_SUBVOL, 4350 dest->root_key.objectid); 4351 if (ret && ret != -ENOENT) { 4352 btrfs_abort_transaction(trans, ret); 4353 goto out_end_trans; 4354 } 4355 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4356 ret = btrfs_uuid_tree_remove(trans, 4357 dest->root_item.received_uuid, 4358 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4359 dest->root_key.objectid); 4360 if (ret && ret != -ENOENT) { 4361 btrfs_abort_transaction(trans, ret); 4362 goto out_end_trans; 4363 } 4364 } 4365 4366 free_anon_bdev(dest->anon_dev); 4367 dest->anon_dev = 0; 4368 out_end_trans: 4369 trans->block_rsv = NULL; 4370 trans->bytes_reserved = 0; 4371 ret = btrfs_end_transaction(trans); 4372 inode->i_flags |= S_DEAD; 4373 out_release: 4374 btrfs_subvolume_release_metadata(root, &block_rsv); 4375 out_up_write: 4376 up_write(&fs_info->subvol_sem); 4377 if (ret) { 4378 spin_lock(&dest->root_item_lock); 4379 root_flags = btrfs_root_flags(&dest->root_item); 4380 btrfs_set_root_flags(&dest->root_item, 4381 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4382 spin_unlock(&dest->root_item_lock); 4383 } else { 4384 d_invalidate(dentry); 4385 btrfs_prune_dentries(dest); 4386 ASSERT(dest->send_in_progress == 0); 4387 } 4388 4389 return ret; 4390 } 4391 4392 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4393 { 4394 struct inode *inode = d_inode(dentry); 4395 int err = 0; 4396 struct btrfs_root *root = BTRFS_I(dir)->root; 4397 struct btrfs_trans_handle *trans; 4398 u64 last_unlink_trans; 4399 4400 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4401 return -ENOTEMPTY; 4402 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4403 return btrfs_delete_subvolume(dir, dentry); 4404 4405 trans = __unlink_start_trans(dir); 4406 if (IS_ERR(trans)) 4407 return PTR_ERR(trans); 4408 4409 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4410 err = btrfs_unlink_subvol(trans, dir, dentry); 4411 goto out; 4412 } 4413 4414 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4415 if (err) 4416 goto out; 4417 4418 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4419 4420 /* now the directory is empty */ 4421 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4422 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4423 dentry->d_name.len); 4424 if (!err) { 4425 btrfs_i_size_write(BTRFS_I(inode), 0); 4426 /* 4427 * Propagate the last_unlink_trans value of the deleted dir to 4428 * its parent directory. This is to prevent an unrecoverable 4429 * log tree in the case we do something like this: 4430 * 1) create dir foo 4431 * 2) create snapshot under dir foo 4432 * 3) delete the snapshot 4433 * 4) rmdir foo 4434 * 5) mkdir foo 4435 * 6) fsync foo or some file inside foo 4436 */ 4437 if (last_unlink_trans >= trans->transid) 4438 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4439 } 4440 out: 4441 btrfs_end_transaction(trans); 4442 btrfs_btree_balance_dirty(root->fs_info); 4443 4444 return err; 4445 } 4446 4447 /* 4448 * Return this if we need to call truncate_block for the last bit of the 4449 * truncate. 4450 */ 4451 #define NEED_TRUNCATE_BLOCK 1 4452 4453 /* 4454 * this can truncate away extent items, csum items and directory items. 4455 * It starts at a high offset and removes keys until it can't find 4456 * any higher than new_size 4457 * 4458 * csum items that cross the new i_size are truncated to the new size 4459 * as well. 4460 * 4461 * min_type is the minimum key type to truncate down to. If set to 0, this 4462 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4463 */ 4464 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4465 struct btrfs_root *root, 4466 struct btrfs_inode *inode, 4467 u64 new_size, u32 min_type) 4468 { 4469 struct btrfs_fs_info *fs_info = root->fs_info; 4470 struct btrfs_path *path; 4471 struct extent_buffer *leaf; 4472 struct btrfs_file_extent_item *fi; 4473 struct btrfs_key key; 4474 struct btrfs_key found_key; 4475 u64 extent_start = 0; 4476 u64 extent_num_bytes = 0; 4477 u64 extent_offset = 0; 4478 u64 item_end = 0; 4479 u64 last_size = new_size; 4480 u32 found_type = (u8)-1; 4481 int found_extent; 4482 int del_item; 4483 int pending_del_nr = 0; 4484 int pending_del_slot = 0; 4485 int extent_type = -1; 4486 int ret; 4487 u64 ino = btrfs_ino(inode); 4488 u64 bytes_deleted = 0; 4489 bool be_nice = false; 4490 bool should_throttle = false; 4491 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4492 struct extent_state *cached_state = NULL; 4493 4494 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4495 4496 /* 4497 * For non-free space inodes and non-shareable roots, we want to back 4498 * off from time to time. This means all inodes in subvolume roots, 4499 * reloc roots, and data reloc roots. 4500 */ 4501 if (!btrfs_is_free_space_inode(inode) && 4502 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4503 be_nice = true; 4504 4505 path = btrfs_alloc_path(); 4506 if (!path) 4507 return -ENOMEM; 4508 path->reada = READA_BACK; 4509 4510 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4511 lock_extent_bits(&inode->io_tree, lock_start, (u64)-1, 4512 &cached_state); 4513 4514 /* 4515 * We want to drop from the next block forward in case this 4516 * new size is not block aligned since we will be keeping the 4517 * last block of the extent just the way it is. 4518 */ 4519 btrfs_drop_extent_cache(inode, ALIGN(new_size, 4520 fs_info->sectorsize), 4521 (u64)-1, 0); 4522 } 4523 4524 /* 4525 * This function is also used to drop the items in the log tree before 4526 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4527 * it is used to drop the logged items. So we shouldn't kill the delayed 4528 * items. 4529 */ 4530 if (min_type == 0 && root == inode->root) 4531 btrfs_kill_delayed_inode_items(inode); 4532 4533 key.objectid = ino; 4534 key.offset = (u64)-1; 4535 key.type = (u8)-1; 4536 4537 search_again: 4538 /* 4539 * with a 16K leaf size and 128MB extents, you can actually queue 4540 * up a huge file in a single leaf. Most of the time that 4541 * bytes_deleted is > 0, it will be huge by the time we get here 4542 */ 4543 if (be_nice && bytes_deleted > SZ_32M && 4544 btrfs_should_end_transaction(trans)) { 4545 ret = -EAGAIN; 4546 goto out; 4547 } 4548 4549 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4550 if (ret < 0) 4551 goto out; 4552 4553 if (ret > 0) { 4554 ret = 0; 4555 /* there are no items in the tree for us to truncate, we're 4556 * done 4557 */ 4558 if (path->slots[0] == 0) 4559 goto out; 4560 path->slots[0]--; 4561 } 4562 4563 while (1) { 4564 u64 clear_start = 0, clear_len = 0; 4565 4566 fi = NULL; 4567 leaf = path->nodes[0]; 4568 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4569 found_type = found_key.type; 4570 4571 if (found_key.objectid != ino) 4572 break; 4573 4574 if (found_type < min_type) 4575 break; 4576 4577 item_end = found_key.offset; 4578 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4579 fi = btrfs_item_ptr(leaf, path->slots[0], 4580 struct btrfs_file_extent_item); 4581 extent_type = btrfs_file_extent_type(leaf, fi); 4582 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4583 item_end += 4584 btrfs_file_extent_num_bytes(leaf, fi); 4585 4586 trace_btrfs_truncate_show_fi_regular( 4587 inode, leaf, fi, found_key.offset); 4588 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4589 item_end += btrfs_file_extent_ram_bytes(leaf, 4590 fi); 4591 4592 trace_btrfs_truncate_show_fi_inline( 4593 inode, leaf, fi, path->slots[0], 4594 found_key.offset); 4595 } 4596 item_end--; 4597 } 4598 if (found_type > min_type) { 4599 del_item = 1; 4600 } else { 4601 if (item_end < new_size) 4602 break; 4603 if (found_key.offset >= new_size) 4604 del_item = 1; 4605 else 4606 del_item = 0; 4607 } 4608 found_extent = 0; 4609 /* FIXME, shrink the extent if the ref count is only 1 */ 4610 if (found_type != BTRFS_EXTENT_DATA_KEY) 4611 goto delete; 4612 4613 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4614 u64 num_dec; 4615 4616 clear_start = found_key.offset; 4617 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4618 if (!del_item) { 4619 u64 orig_num_bytes = 4620 btrfs_file_extent_num_bytes(leaf, fi); 4621 extent_num_bytes = ALIGN(new_size - 4622 found_key.offset, 4623 fs_info->sectorsize); 4624 clear_start = ALIGN(new_size, fs_info->sectorsize); 4625 btrfs_set_file_extent_num_bytes(leaf, fi, 4626 extent_num_bytes); 4627 num_dec = (orig_num_bytes - 4628 extent_num_bytes); 4629 if (test_bit(BTRFS_ROOT_SHAREABLE, 4630 &root->state) && 4631 extent_start != 0) 4632 inode_sub_bytes(&inode->vfs_inode, 4633 num_dec); 4634 btrfs_mark_buffer_dirty(leaf); 4635 } else { 4636 extent_num_bytes = 4637 btrfs_file_extent_disk_num_bytes(leaf, 4638 fi); 4639 extent_offset = found_key.offset - 4640 btrfs_file_extent_offset(leaf, fi); 4641 4642 /* FIXME blocksize != 4096 */ 4643 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4644 if (extent_start != 0) { 4645 found_extent = 1; 4646 if (test_bit(BTRFS_ROOT_SHAREABLE, 4647 &root->state)) 4648 inode_sub_bytes(&inode->vfs_inode, 4649 num_dec); 4650 } 4651 } 4652 clear_len = num_dec; 4653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4654 /* 4655 * we can't truncate inline items that have had 4656 * special encodings 4657 */ 4658 if (!del_item && 4659 btrfs_file_extent_encryption(leaf, fi) == 0 && 4660 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4661 btrfs_file_extent_compression(leaf, fi) == 0) { 4662 u32 size = (u32)(new_size - found_key.offset); 4663 4664 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4665 size = btrfs_file_extent_calc_inline_size(size); 4666 btrfs_truncate_item(path, size, 1); 4667 } else if (!del_item) { 4668 /* 4669 * We have to bail so the last_size is set to 4670 * just before this extent. 4671 */ 4672 ret = NEED_TRUNCATE_BLOCK; 4673 break; 4674 } else { 4675 /* 4676 * Inline extents are special, we just treat 4677 * them as a full sector worth in the file 4678 * extent tree just for simplicity sake. 4679 */ 4680 clear_len = fs_info->sectorsize; 4681 } 4682 4683 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4684 inode_sub_bytes(&inode->vfs_inode, 4685 item_end + 1 - new_size); 4686 } 4687 delete: 4688 /* 4689 * We use btrfs_truncate_inode_items() to clean up log trees for 4690 * multiple fsyncs, and in this case we don't want to clear the 4691 * file extent range because it's just the log. 4692 */ 4693 if (root == inode->root) { 4694 ret = btrfs_inode_clear_file_extent_range(inode, 4695 clear_start, clear_len); 4696 if (ret) { 4697 btrfs_abort_transaction(trans, ret); 4698 break; 4699 } 4700 } 4701 4702 if (del_item) 4703 last_size = found_key.offset; 4704 else 4705 last_size = new_size; 4706 if (del_item) { 4707 if (!pending_del_nr) { 4708 /* no pending yet, add ourselves */ 4709 pending_del_slot = path->slots[0]; 4710 pending_del_nr = 1; 4711 } else if (pending_del_nr && 4712 path->slots[0] + 1 == pending_del_slot) { 4713 /* hop on the pending chunk */ 4714 pending_del_nr++; 4715 pending_del_slot = path->slots[0]; 4716 } else { 4717 BUG(); 4718 } 4719 } else { 4720 break; 4721 } 4722 should_throttle = false; 4723 4724 if (found_extent && 4725 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4726 struct btrfs_ref ref = { 0 }; 4727 4728 bytes_deleted += extent_num_bytes; 4729 4730 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4731 extent_start, extent_num_bytes, 0); 4732 ref.real_root = root->root_key.objectid; 4733 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4734 ino, extent_offset); 4735 ret = btrfs_free_extent(trans, &ref); 4736 if (ret) { 4737 btrfs_abort_transaction(trans, ret); 4738 break; 4739 } 4740 if (be_nice) { 4741 if (btrfs_should_throttle_delayed_refs(trans)) 4742 should_throttle = true; 4743 } 4744 } 4745 4746 if (found_type == BTRFS_INODE_ITEM_KEY) 4747 break; 4748 4749 if (path->slots[0] == 0 || 4750 path->slots[0] != pending_del_slot || 4751 should_throttle) { 4752 if (pending_del_nr) { 4753 ret = btrfs_del_items(trans, root, path, 4754 pending_del_slot, 4755 pending_del_nr); 4756 if (ret) { 4757 btrfs_abort_transaction(trans, ret); 4758 break; 4759 } 4760 pending_del_nr = 0; 4761 } 4762 btrfs_release_path(path); 4763 4764 /* 4765 * We can generate a lot of delayed refs, so we need to 4766 * throttle every once and a while and make sure we're 4767 * adding enough space to keep up with the work we are 4768 * generating. Since we hold a transaction here we 4769 * can't flush, and we don't want to FLUSH_LIMIT because 4770 * we could have generated too many delayed refs to 4771 * actually allocate, so just bail if we're short and 4772 * let the normal reservation dance happen higher up. 4773 */ 4774 if (should_throttle) { 4775 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4776 BTRFS_RESERVE_NO_FLUSH); 4777 if (ret) { 4778 ret = -EAGAIN; 4779 break; 4780 } 4781 } 4782 goto search_again; 4783 } else { 4784 path->slots[0]--; 4785 } 4786 } 4787 out: 4788 if (ret >= 0 && pending_del_nr) { 4789 int err; 4790 4791 err = btrfs_del_items(trans, root, path, pending_del_slot, 4792 pending_del_nr); 4793 if (err) { 4794 btrfs_abort_transaction(trans, err); 4795 ret = err; 4796 } 4797 } 4798 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4799 ASSERT(last_size >= new_size); 4800 if (!ret && last_size > new_size) 4801 last_size = new_size; 4802 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4803 unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1, 4804 &cached_state); 4805 } 4806 4807 btrfs_free_path(path); 4808 return ret; 4809 } 4810 4811 /* 4812 * btrfs_truncate_block - read, zero a chunk and write a block 4813 * @inode - inode that we're zeroing 4814 * @from - the offset to start zeroing 4815 * @len - the length to zero, 0 to zero the entire range respective to the 4816 * offset 4817 * @front - zero up to the offset instead of from the offset on 4818 * 4819 * This will find the block for the "from" offset and cow the block and zero the 4820 * part we want to zero. This is used with truncate and hole punching. 4821 */ 4822 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4823 int front) 4824 { 4825 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4826 struct address_space *mapping = inode->vfs_inode.i_mapping; 4827 struct extent_io_tree *io_tree = &inode->io_tree; 4828 struct btrfs_ordered_extent *ordered; 4829 struct extent_state *cached_state = NULL; 4830 struct extent_changeset *data_reserved = NULL; 4831 bool only_release_metadata = false; 4832 u32 blocksize = fs_info->sectorsize; 4833 pgoff_t index = from >> PAGE_SHIFT; 4834 unsigned offset = from & (blocksize - 1); 4835 struct page *page; 4836 gfp_t mask = btrfs_alloc_write_mask(mapping); 4837 size_t write_bytes = blocksize; 4838 int ret = 0; 4839 u64 block_start; 4840 u64 block_end; 4841 4842 if (IS_ALIGNED(offset, blocksize) && 4843 (!len || IS_ALIGNED(len, blocksize))) 4844 goto out; 4845 4846 block_start = round_down(from, blocksize); 4847 block_end = block_start + blocksize - 1; 4848 4849 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4850 blocksize); 4851 if (ret < 0) { 4852 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4853 /* For nocow case, no need to reserve data space */ 4854 only_release_metadata = true; 4855 } else { 4856 goto out; 4857 } 4858 } 4859 ret = btrfs_delalloc_reserve_metadata(inode, blocksize); 4860 if (ret < 0) { 4861 if (!only_release_metadata) 4862 btrfs_free_reserved_data_space(inode, data_reserved, 4863 block_start, blocksize); 4864 goto out; 4865 } 4866 again: 4867 page = find_or_create_page(mapping, index, mask); 4868 if (!page) { 4869 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4870 blocksize, true); 4871 btrfs_delalloc_release_extents(inode, blocksize); 4872 ret = -ENOMEM; 4873 goto out; 4874 } 4875 ret = set_page_extent_mapped(page); 4876 if (ret < 0) 4877 goto out_unlock; 4878 4879 if (!PageUptodate(page)) { 4880 ret = btrfs_readpage(NULL, page); 4881 lock_page(page); 4882 if (page->mapping != mapping) { 4883 unlock_page(page); 4884 put_page(page); 4885 goto again; 4886 } 4887 if (!PageUptodate(page)) { 4888 ret = -EIO; 4889 goto out_unlock; 4890 } 4891 } 4892 wait_on_page_writeback(page); 4893 4894 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4895 4896 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4897 if (ordered) { 4898 unlock_extent_cached(io_tree, block_start, block_end, 4899 &cached_state); 4900 unlock_page(page); 4901 put_page(page); 4902 btrfs_start_ordered_extent(ordered, 1); 4903 btrfs_put_ordered_extent(ordered); 4904 goto again; 4905 } 4906 4907 clear_extent_bit(&inode->io_tree, block_start, block_end, 4908 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4909 0, 0, &cached_state); 4910 4911 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4912 &cached_state); 4913 if (ret) { 4914 unlock_extent_cached(io_tree, block_start, block_end, 4915 &cached_state); 4916 goto out_unlock; 4917 } 4918 4919 if (offset != blocksize) { 4920 if (!len) 4921 len = blocksize - offset; 4922 if (front) 4923 memzero_page(page, (block_start - page_offset(page)), 4924 offset); 4925 else 4926 memzero_page(page, (block_start - page_offset(page)) + offset, 4927 len); 4928 flush_dcache_page(page); 4929 } 4930 ClearPageChecked(page); 4931 set_page_dirty(page); 4932 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4933 4934 if (only_release_metadata) 4935 set_extent_bit(&inode->io_tree, block_start, block_end, 4936 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4937 4938 out_unlock: 4939 if (ret) { 4940 if (only_release_metadata) 4941 btrfs_delalloc_release_metadata(inode, blocksize, true); 4942 else 4943 btrfs_delalloc_release_space(inode, data_reserved, 4944 block_start, blocksize, true); 4945 } 4946 btrfs_delalloc_release_extents(inode, blocksize); 4947 unlock_page(page); 4948 put_page(page); 4949 out: 4950 if (only_release_metadata) 4951 btrfs_check_nocow_unlock(inode); 4952 extent_changeset_free(data_reserved); 4953 return ret; 4954 } 4955 4956 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4957 u64 offset, u64 len) 4958 { 4959 struct btrfs_fs_info *fs_info = root->fs_info; 4960 struct btrfs_trans_handle *trans; 4961 struct btrfs_drop_extents_args drop_args = { 0 }; 4962 int ret; 4963 4964 /* 4965 * Still need to make sure the inode looks like it's been updated so 4966 * that any holes get logged if we fsync. 4967 */ 4968 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4969 inode->last_trans = fs_info->generation; 4970 inode->last_sub_trans = root->log_transid; 4971 inode->last_log_commit = root->last_log_commit; 4972 return 0; 4973 } 4974 4975 /* 4976 * 1 - for the one we're dropping 4977 * 1 - for the one we're adding 4978 * 1 - for updating the inode. 4979 */ 4980 trans = btrfs_start_transaction(root, 3); 4981 if (IS_ERR(trans)) 4982 return PTR_ERR(trans); 4983 4984 drop_args.start = offset; 4985 drop_args.end = offset + len; 4986 drop_args.drop_cache = true; 4987 4988 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4989 if (ret) { 4990 btrfs_abort_transaction(trans, ret); 4991 btrfs_end_transaction(trans); 4992 return ret; 4993 } 4994 4995 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 4996 offset, 0, 0, len, 0, len, 0, 0, 0); 4997 if (ret) { 4998 btrfs_abort_transaction(trans, ret); 4999 } else { 5000 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5001 btrfs_update_inode(trans, root, inode); 5002 } 5003 btrfs_end_transaction(trans); 5004 return ret; 5005 } 5006 5007 /* 5008 * This function puts in dummy file extents for the area we're creating a hole 5009 * for. So if we are truncating this file to a larger size we need to insert 5010 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5011 * the range between oldsize and size 5012 */ 5013 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5014 { 5015 struct btrfs_root *root = inode->root; 5016 struct btrfs_fs_info *fs_info = root->fs_info; 5017 struct extent_io_tree *io_tree = &inode->io_tree; 5018 struct extent_map *em = NULL; 5019 struct extent_state *cached_state = NULL; 5020 struct extent_map_tree *em_tree = &inode->extent_tree; 5021 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5022 u64 block_end = ALIGN(size, fs_info->sectorsize); 5023 u64 last_byte; 5024 u64 cur_offset; 5025 u64 hole_size; 5026 int err = 0; 5027 5028 /* 5029 * If our size started in the middle of a block we need to zero out the 5030 * rest of the block before we expand the i_size, otherwise we could 5031 * expose stale data. 5032 */ 5033 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5034 if (err) 5035 return err; 5036 5037 if (size <= hole_start) 5038 return 0; 5039 5040 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5041 &cached_state); 5042 cur_offset = hole_start; 5043 while (1) { 5044 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5045 block_end - cur_offset); 5046 if (IS_ERR(em)) { 5047 err = PTR_ERR(em); 5048 em = NULL; 5049 break; 5050 } 5051 last_byte = min(extent_map_end(em), block_end); 5052 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5053 hole_size = last_byte - cur_offset; 5054 5055 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5056 struct extent_map *hole_em; 5057 5058 err = maybe_insert_hole(root, inode, cur_offset, 5059 hole_size); 5060 if (err) 5061 break; 5062 5063 err = btrfs_inode_set_file_extent_range(inode, 5064 cur_offset, hole_size); 5065 if (err) 5066 break; 5067 5068 btrfs_drop_extent_cache(inode, cur_offset, 5069 cur_offset + hole_size - 1, 0); 5070 hole_em = alloc_extent_map(); 5071 if (!hole_em) { 5072 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5073 &inode->runtime_flags); 5074 goto next; 5075 } 5076 hole_em->start = cur_offset; 5077 hole_em->len = hole_size; 5078 hole_em->orig_start = cur_offset; 5079 5080 hole_em->block_start = EXTENT_MAP_HOLE; 5081 hole_em->block_len = 0; 5082 hole_em->orig_block_len = 0; 5083 hole_em->ram_bytes = hole_size; 5084 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5085 hole_em->generation = fs_info->generation; 5086 5087 while (1) { 5088 write_lock(&em_tree->lock); 5089 err = add_extent_mapping(em_tree, hole_em, 1); 5090 write_unlock(&em_tree->lock); 5091 if (err != -EEXIST) 5092 break; 5093 btrfs_drop_extent_cache(inode, cur_offset, 5094 cur_offset + 5095 hole_size - 1, 0); 5096 } 5097 free_extent_map(hole_em); 5098 } else { 5099 err = btrfs_inode_set_file_extent_range(inode, 5100 cur_offset, hole_size); 5101 if (err) 5102 break; 5103 } 5104 next: 5105 free_extent_map(em); 5106 em = NULL; 5107 cur_offset = last_byte; 5108 if (cur_offset >= block_end) 5109 break; 5110 } 5111 free_extent_map(em); 5112 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5113 return err; 5114 } 5115 5116 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5117 { 5118 struct btrfs_root *root = BTRFS_I(inode)->root; 5119 struct btrfs_trans_handle *trans; 5120 loff_t oldsize = i_size_read(inode); 5121 loff_t newsize = attr->ia_size; 5122 int mask = attr->ia_valid; 5123 int ret; 5124 5125 /* 5126 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5127 * special case where we need to update the times despite not having 5128 * these flags set. For all other operations the VFS set these flags 5129 * explicitly if it wants a timestamp update. 5130 */ 5131 if (newsize != oldsize) { 5132 inode_inc_iversion(inode); 5133 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5134 inode->i_ctime = inode->i_mtime = 5135 current_time(inode); 5136 } 5137 5138 if (newsize > oldsize) { 5139 /* 5140 * Don't do an expanding truncate while snapshotting is ongoing. 5141 * This is to ensure the snapshot captures a fully consistent 5142 * state of this file - if the snapshot captures this expanding 5143 * truncation, it must capture all writes that happened before 5144 * this truncation. 5145 */ 5146 btrfs_drew_write_lock(&root->snapshot_lock); 5147 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5148 if (ret) { 5149 btrfs_drew_write_unlock(&root->snapshot_lock); 5150 return ret; 5151 } 5152 5153 trans = btrfs_start_transaction(root, 1); 5154 if (IS_ERR(trans)) { 5155 btrfs_drew_write_unlock(&root->snapshot_lock); 5156 return PTR_ERR(trans); 5157 } 5158 5159 i_size_write(inode, newsize); 5160 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5161 pagecache_isize_extended(inode, oldsize, newsize); 5162 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5163 btrfs_drew_write_unlock(&root->snapshot_lock); 5164 btrfs_end_transaction(trans); 5165 } else { 5166 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5167 5168 if (btrfs_is_zoned(fs_info)) { 5169 ret = btrfs_wait_ordered_range(inode, 5170 ALIGN(newsize, fs_info->sectorsize), 5171 (u64)-1); 5172 if (ret) 5173 return ret; 5174 } 5175 5176 /* 5177 * We're truncating a file that used to have good data down to 5178 * zero. Make sure any new writes to the file get on disk 5179 * on close. 5180 */ 5181 if (newsize == 0) 5182 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5183 &BTRFS_I(inode)->runtime_flags); 5184 5185 truncate_setsize(inode, newsize); 5186 5187 inode_dio_wait(inode); 5188 5189 ret = btrfs_truncate(inode, newsize == oldsize); 5190 if (ret && inode->i_nlink) { 5191 int err; 5192 5193 /* 5194 * Truncate failed, so fix up the in-memory size. We 5195 * adjusted disk_i_size down as we removed extents, so 5196 * wait for disk_i_size to be stable and then update the 5197 * in-memory size to match. 5198 */ 5199 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5200 if (err) 5201 return err; 5202 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5203 } 5204 } 5205 5206 return ret; 5207 } 5208 5209 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5210 struct iattr *attr) 5211 { 5212 struct inode *inode = d_inode(dentry); 5213 struct btrfs_root *root = BTRFS_I(inode)->root; 5214 int err; 5215 5216 if (btrfs_root_readonly(root)) 5217 return -EROFS; 5218 5219 err = setattr_prepare(&init_user_ns, dentry, attr); 5220 if (err) 5221 return err; 5222 5223 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5224 err = btrfs_setsize(inode, attr); 5225 if (err) 5226 return err; 5227 } 5228 5229 if (attr->ia_valid) { 5230 setattr_copy(&init_user_ns, inode, attr); 5231 inode_inc_iversion(inode); 5232 err = btrfs_dirty_inode(inode); 5233 5234 if (!err && attr->ia_valid & ATTR_MODE) 5235 err = posix_acl_chmod(&init_user_ns, inode, 5236 inode->i_mode); 5237 } 5238 5239 return err; 5240 } 5241 5242 /* 5243 * While truncating the inode pages during eviction, we get the VFS calling 5244 * btrfs_invalidatepage() against each page of the inode. This is slow because 5245 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5246 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5247 * extent_state structures over and over, wasting lots of time. 5248 * 5249 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5250 * those expensive operations on a per page basis and do only the ordered io 5251 * finishing, while we release here the extent_map and extent_state structures, 5252 * without the excessive merging and splitting. 5253 */ 5254 static void evict_inode_truncate_pages(struct inode *inode) 5255 { 5256 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5257 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5258 struct rb_node *node; 5259 5260 ASSERT(inode->i_state & I_FREEING); 5261 truncate_inode_pages_final(&inode->i_data); 5262 5263 write_lock(&map_tree->lock); 5264 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5265 struct extent_map *em; 5266 5267 node = rb_first_cached(&map_tree->map); 5268 em = rb_entry(node, struct extent_map, rb_node); 5269 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5270 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5271 remove_extent_mapping(map_tree, em); 5272 free_extent_map(em); 5273 if (need_resched()) { 5274 write_unlock(&map_tree->lock); 5275 cond_resched(); 5276 write_lock(&map_tree->lock); 5277 } 5278 } 5279 write_unlock(&map_tree->lock); 5280 5281 /* 5282 * Keep looping until we have no more ranges in the io tree. 5283 * We can have ongoing bios started by readahead that have 5284 * their endio callback (extent_io.c:end_bio_extent_readpage) 5285 * still in progress (unlocked the pages in the bio but did not yet 5286 * unlocked the ranges in the io tree). Therefore this means some 5287 * ranges can still be locked and eviction started because before 5288 * submitting those bios, which are executed by a separate task (work 5289 * queue kthread), inode references (inode->i_count) were not taken 5290 * (which would be dropped in the end io callback of each bio). 5291 * Therefore here we effectively end up waiting for those bios and 5292 * anyone else holding locked ranges without having bumped the inode's 5293 * reference count - if we don't do it, when they access the inode's 5294 * io_tree to unlock a range it may be too late, leading to an 5295 * use-after-free issue. 5296 */ 5297 spin_lock(&io_tree->lock); 5298 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5299 struct extent_state *state; 5300 struct extent_state *cached_state = NULL; 5301 u64 start; 5302 u64 end; 5303 unsigned state_flags; 5304 5305 node = rb_first(&io_tree->state); 5306 state = rb_entry(node, struct extent_state, rb_node); 5307 start = state->start; 5308 end = state->end; 5309 state_flags = state->state; 5310 spin_unlock(&io_tree->lock); 5311 5312 lock_extent_bits(io_tree, start, end, &cached_state); 5313 5314 /* 5315 * If still has DELALLOC flag, the extent didn't reach disk, 5316 * and its reserved space won't be freed by delayed_ref. 5317 * So we need to free its reserved space here. 5318 * (Refer to comment in btrfs_invalidatepage, case 2) 5319 * 5320 * Note, end is the bytenr of last byte, so we need + 1 here. 5321 */ 5322 if (state_flags & EXTENT_DELALLOC) 5323 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5324 end - start + 1); 5325 5326 clear_extent_bit(io_tree, start, end, 5327 EXTENT_LOCKED | EXTENT_DELALLOC | 5328 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5329 &cached_state); 5330 5331 cond_resched(); 5332 spin_lock(&io_tree->lock); 5333 } 5334 spin_unlock(&io_tree->lock); 5335 } 5336 5337 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5338 struct btrfs_block_rsv *rsv) 5339 { 5340 struct btrfs_fs_info *fs_info = root->fs_info; 5341 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5342 struct btrfs_trans_handle *trans; 5343 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5344 int ret; 5345 5346 /* 5347 * Eviction should be taking place at some place safe because of our 5348 * delayed iputs. However the normal flushing code will run delayed 5349 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5350 * 5351 * We reserve the delayed_refs_extra here again because we can't use 5352 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5353 * above. We reserve our extra bit here because we generate a ton of 5354 * delayed refs activity by truncating. 5355 * 5356 * If we cannot make our reservation we'll attempt to steal from the 5357 * global reserve, because we really want to be able to free up space. 5358 */ 5359 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5360 BTRFS_RESERVE_FLUSH_EVICT); 5361 if (ret) { 5362 /* 5363 * Try to steal from the global reserve if there is space for 5364 * it. 5365 */ 5366 if (btrfs_check_space_for_delayed_refs(fs_info) || 5367 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5368 btrfs_warn(fs_info, 5369 "could not allocate space for delete; will truncate on mount"); 5370 return ERR_PTR(-ENOSPC); 5371 } 5372 delayed_refs_extra = 0; 5373 } 5374 5375 trans = btrfs_join_transaction(root); 5376 if (IS_ERR(trans)) 5377 return trans; 5378 5379 if (delayed_refs_extra) { 5380 trans->block_rsv = &fs_info->trans_block_rsv; 5381 trans->bytes_reserved = delayed_refs_extra; 5382 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5383 delayed_refs_extra, 1); 5384 } 5385 return trans; 5386 } 5387 5388 void btrfs_evict_inode(struct inode *inode) 5389 { 5390 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5391 struct btrfs_trans_handle *trans; 5392 struct btrfs_root *root = BTRFS_I(inode)->root; 5393 struct btrfs_block_rsv *rsv; 5394 int ret; 5395 5396 trace_btrfs_inode_evict(inode); 5397 5398 if (!root) { 5399 clear_inode(inode); 5400 return; 5401 } 5402 5403 evict_inode_truncate_pages(inode); 5404 5405 if (inode->i_nlink && 5406 ((btrfs_root_refs(&root->root_item) != 0 && 5407 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5408 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5409 goto no_delete; 5410 5411 if (is_bad_inode(inode)) 5412 goto no_delete; 5413 5414 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5415 5416 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5417 goto no_delete; 5418 5419 if (inode->i_nlink > 0) { 5420 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5421 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5422 goto no_delete; 5423 } 5424 5425 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5426 if (ret) 5427 goto no_delete; 5428 5429 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5430 if (!rsv) 5431 goto no_delete; 5432 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5433 rsv->failfast = 1; 5434 5435 btrfs_i_size_write(BTRFS_I(inode), 0); 5436 5437 while (1) { 5438 trans = evict_refill_and_join(root, rsv); 5439 if (IS_ERR(trans)) 5440 goto free_rsv; 5441 5442 trans->block_rsv = rsv; 5443 5444 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 5445 0, 0); 5446 trans->block_rsv = &fs_info->trans_block_rsv; 5447 btrfs_end_transaction(trans); 5448 btrfs_btree_balance_dirty(fs_info); 5449 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5450 goto free_rsv; 5451 else if (!ret) 5452 break; 5453 } 5454 5455 /* 5456 * Errors here aren't a big deal, it just means we leave orphan items in 5457 * the tree. They will be cleaned up on the next mount. If the inode 5458 * number gets reused, cleanup deletes the orphan item without doing 5459 * anything, and unlink reuses the existing orphan item. 5460 * 5461 * If it turns out that we are dropping too many of these, we might want 5462 * to add a mechanism for retrying these after a commit. 5463 */ 5464 trans = evict_refill_and_join(root, rsv); 5465 if (!IS_ERR(trans)) { 5466 trans->block_rsv = rsv; 5467 btrfs_orphan_del(trans, BTRFS_I(inode)); 5468 trans->block_rsv = &fs_info->trans_block_rsv; 5469 btrfs_end_transaction(trans); 5470 } 5471 5472 free_rsv: 5473 btrfs_free_block_rsv(fs_info, rsv); 5474 no_delete: 5475 /* 5476 * If we didn't successfully delete, the orphan item will still be in 5477 * the tree and we'll retry on the next mount. Again, we might also want 5478 * to retry these periodically in the future. 5479 */ 5480 btrfs_remove_delayed_node(BTRFS_I(inode)); 5481 clear_inode(inode); 5482 } 5483 5484 /* 5485 * Return the key found in the dir entry in the location pointer, fill @type 5486 * with BTRFS_FT_*, and return 0. 5487 * 5488 * If no dir entries were found, returns -ENOENT. 5489 * If found a corrupted location in dir entry, returns -EUCLEAN. 5490 */ 5491 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5492 struct btrfs_key *location, u8 *type) 5493 { 5494 const char *name = dentry->d_name.name; 5495 int namelen = dentry->d_name.len; 5496 struct btrfs_dir_item *di; 5497 struct btrfs_path *path; 5498 struct btrfs_root *root = BTRFS_I(dir)->root; 5499 int ret = 0; 5500 5501 path = btrfs_alloc_path(); 5502 if (!path) 5503 return -ENOMEM; 5504 5505 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5506 name, namelen, 0); 5507 if (IS_ERR_OR_NULL(di)) { 5508 ret = di ? PTR_ERR(di) : -ENOENT; 5509 goto out; 5510 } 5511 5512 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5513 if (location->type != BTRFS_INODE_ITEM_KEY && 5514 location->type != BTRFS_ROOT_ITEM_KEY) { 5515 ret = -EUCLEAN; 5516 btrfs_warn(root->fs_info, 5517 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5518 __func__, name, btrfs_ino(BTRFS_I(dir)), 5519 location->objectid, location->type, location->offset); 5520 } 5521 if (!ret) 5522 *type = btrfs_dir_type(path->nodes[0], di); 5523 out: 5524 btrfs_free_path(path); 5525 return ret; 5526 } 5527 5528 /* 5529 * when we hit a tree root in a directory, the btrfs part of the inode 5530 * needs to be changed to reflect the root directory of the tree root. This 5531 * is kind of like crossing a mount point. 5532 */ 5533 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5534 struct inode *dir, 5535 struct dentry *dentry, 5536 struct btrfs_key *location, 5537 struct btrfs_root **sub_root) 5538 { 5539 struct btrfs_path *path; 5540 struct btrfs_root *new_root; 5541 struct btrfs_root_ref *ref; 5542 struct extent_buffer *leaf; 5543 struct btrfs_key key; 5544 int ret; 5545 int err = 0; 5546 5547 path = btrfs_alloc_path(); 5548 if (!path) { 5549 err = -ENOMEM; 5550 goto out; 5551 } 5552 5553 err = -ENOENT; 5554 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5555 key.type = BTRFS_ROOT_REF_KEY; 5556 key.offset = location->objectid; 5557 5558 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5559 if (ret) { 5560 if (ret < 0) 5561 err = ret; 5562 goto out; 5563 } 5564 5565 leaf = path->nodes[0]; 5566 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5567 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5568 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5569 goto out; 5570 5571 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5572 (unsigned long)(ref + 1), 5573 dentry->d_name.len); 5574 if (ret) 5575 goto out; 5576 5577 btrfs_release_path(path); 5578 5579 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5580 if (IS_ERR(new_root)) { 5581 err = PTR_ERR(new_root); 5582 goto out; 5583 } 5584 5585 *sub_root = new_root; 5586 location->objectid = btrfs_root_dirid(&new_root->root_item); 5587 location->type = BTRFS_INODE_ITEM_KEY; 5588 location->offset = 0; 5589 err = 0; 5590 out: 5591 btrfs_free_path(path); 5592 return err; 5593 } 5594 5595 static void inode_tree_add(struct inode *inode) 5596 { 5597 struct btrfs_root *root = BTRFS_I(inode)->root; 5598 struct btrfs_inode *entry; 5599 struct rb_node **p; 5600 struct rb_node *parent; 5601 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5602 u64 ino = btrfs_ino(BTRFS_I(inode)); 5603 5604 if (inode_unhashed(inode)) 5605 return; 5606 parent = NULL; 5607 spin_lock(&root->inode_lock); 5608 p = &root->inode_tree.rb_node; 5609 while (*p) { 5610 parent = *p; 5611 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5612 5613 if (ino < btrfs_ino(entry)) 5614 p = &parent->rb_left; 5615 else if (ino > btrfs_ino(entry)) 5616 p = &parent->rb_right; 5617 else { 5618 WARN_ON(!(entry->vfs_inode.i_state & 5619 (I_WILL_FREE | I_FREEING))); 5620 rb_replace_node(parent, new, &root->inode_tree); 5621 RB_CLEAR_NODE(parent); 5622 spin_unlock(&root->inode_lock); 5623 return; 5624 } 5625 } 5626 rb_link_node(new, parent, p); 5627 rb_insert_color(new, &root->inode_tree); 5628 spin_unlock(&root->inode_lock); 5629 } 5630 5631 static void inode_tree_del(struct btrfs_inode *inode) 5632 { 5633 struct btrfs_root *root = inode->root; 5634 int empty = 0; 5635 5636 spin_lock(&root->inode_lock); 5637 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5638 rb_erase(&inode->rb_node, &root->inode_tree); 5639 RB_CLEAR_NODE(&inode->rb_node); 5640 empty = RB_EMPTY_ROOT(&root->inode_tree); 5641 } 5642 spin_unlock(&root->inode_lock); 5643 5644 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5645 spin_lock(&root->inode_lock); 5646 empty = RB_EMPTY_ROOT(&root->inode_tree); 5647 spin_unlock(&root->inode_lock); 5648 if (empty) 5649 btrfs_add_dead_root(root); 5650 } 5651 } 5652 5653 5654 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5655 { 5656 struct btrfs_iget_args *args = p; 5657 5658 inode->i_ino = args->ino; 5659 BTRFS_I(inode)->location.objectid = args->ino; 5660 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5661 BTRFS_I(inode)->location.offset = 0; 5662 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5663 BUG_ON(args->root && !BTRFS_I(inode)->root); 5664 return 0; 5665 } 5666 5667 static int btrfs_find_actor(struct inode *inode, void *opaque) 5668 { 5669 struct btrfs_iget_args *args = opaque; 5670 5671 return args->ino == BTRFS_I(inode)->location.objectid && 5672 args->root == BTRFS_I(inode)->root; 5673 } 5674 5675 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5676 struct btrfs_root *root) 5677 { 5678 struct inode *inode; 5679 struct btrfs_iget_args args; 5680 unsigned long hashval = btrfs_inode_hash(ino, root); 5681 5682 args.ino = ino; 5683 args.root = root; 5684 5685 inode = iget5_locked(s, hashval, btrfs_find_actor, 5686 btrfs_init_locked_inode, 5687 (void *)&args); 5688 return inode; 5689 } 5690 5691 /* 5692 * Get an inode object given its inode number and corresponding root. 5693 * Path can be preallocated to prevent recursing back to iget through 5694 * allocator. NULL is also valid but may require an additional allocation 5695 * later. 5696 */ 5697 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5698 struct btrfs_root *root, struct btrfs_path *path) 5699 { 5700 struct inode *inode; 5701 5702 inode = btrfs_iget_locked(s, ino, root); 5703 if (!inode) 5704 return ERR_PTR(-ENOMEM); 5705 5706 if (inode->i_state & I_NEW) { 5707 int ret; 5708 5709 ret = btrfs_read_locked_inode(inode, path); 5710 if (!ret) { 5711 inode_tree_add(inode); 5712 unlock_new_inode(inode); 5713 } else { 5714 iget_failed(inode); 5715 /* 5716 * ret > 0 can come from btrfs_search_slot called by 5717 * btrfs_read_locked_inode, this means the inode item 5718 * was not found. 5719 */ 5720 if (ret > 0) 5721 ret = -ENOENT; 5722 inode = ERR_PTR(ret); 5723 } 5724 } 5725 5726 return inode; 5727 } 5728 5729 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5730 { 5731 return btrfs_iget_path(s, ino, root, NULL); 5732 } 5733 5734 static struct inode *new_simple_dir(struct super_block *s, 5735 struct btrfs_key *key, 5736 struct btrfs_root *root) 5737 { 5738 struct inode *inode = new_inode(s); 5739 5740 if (!inode) 5741 return ERR_PTR(-ENOMEM); 5742 5743 BTRFS_I(inode)->root = btrfs_grab_root(root); 5744 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5745 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5746 5747 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5748 /* 5749 * We only need lookup, the rest is read-only and there's no inode 5750 * associated with the dentry 5751 */ 5752 inode->i_op = &simple_dir_inode_operations; 5753 inode->i_opflags &= ~IOP_XATTR; 5754 inode->i_fop = &simple_dir_operations; 5755 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5756 inode->i_mtime = current_time(inode); 5757 inode->i_atime = inode->i_mtime; 5758 inode->i_ctime = inode->i_mtime; 5759 BTRFS_I(inode)->i_otime = inode->i_mtime; 5760 5761 return inode; 5762 } 5763 5764 static inline u8 btrfs_inode_type(struct inode *inode) 5765 { 5766 /* 5767 * Compile-time asserts that generic FT_* types still match 5768 * BTRFS_FT_* types 5769 */ 5770 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5771 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5772 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5773 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5774 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5775 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5776 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5777 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5778 5779 return fs_umode_to_ftype(inode->i_mode); 5780 } 5781 5782 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5783 { 5784 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5785 struct inode *inode; 5786 struct btrfs_root *root = BTRFS_I(dir)->root; 5787 struct btrfs_root *sub_root = root; 5788 struct btrfs_key location; 5789 u8 di_type = 0; 5790 int ret = 0; 5791 5792 if (dentry->d_name.len > BTRFS_NAME_LEN) 5793 return ERR_PTR(-ENAMETOOLONG); 5794 5795 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5796 if (ret < 0) 5797 return ERR_PTR(ret); 5798 5799 if (location.type == BTRFS_INODE_ITEM_KEY) { 5800 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5801 if (IS_ERR(inode)) 5802 return inode; 5803 5804 /* Do extra check against inode mode with di_type */ 5805 if (btrfs_inode_type(inode) != di_type) { 5806 btrfs_crit(fs_info, 5807 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5808 inode->i_mode, btrfs_inode_type(inode), 5809 di_type); 5810 iput(inode); 5811 return ERR_PTR(-EUCLEAN); 5812 } 5813 return inode; 5814 } 5815 5816 ret = fixup_tree_root_location(fs_info, dir, dentry, 5817 &location, &sub_root); 5818 if (ret < 0) { 5819 if (ret != -ENOENT) 5820 inode = ERR_PTR(ret); 5821 else 5822 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5823 } else { 5824 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5825 } 5826 if (root != sub_root) 5827 btrfs_put_root(sub_root); 5828 5829 if (!IS_ERR(inode) && root != sub_root) { 5830 down_read(&fs_info->cleanup_work_sem); 5831 if (!sb_rdonly(inode->i_sb)) 5832 ret = btrfs_orphan_cleanup(sub_root); 5833 up_read(&fs_info->cleanup_work_sem); 5834 if (ret) { 5835 iput(inode); 5836 inode = ERR_PTR(ret); 5837 } 5838 } 5839 5840 return inode; 5841 } 5842 5843 static int btrfs_dentry_delete(const struct dentry *dentry) 5844 { 5845 struct btrfs_root *root; 5846 struct inode *inode = d_inode(dentry); 5847 5848 if (!inode && !IS_ROOT(dentry)) 5849 inode = d_inode(dentry->d_parent); 5850 5851 if (inode) { 5852 root = BTRFS_I(inode)->root; 5853 if (btrfs_root_refs(&root->root_item) == 0) 5854 return 1; 5855 5856 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5857 return 1; 5858 } 5859 return 0; 5860 } 5861 5862 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5863 unsigned int flags) 5864 { 5865 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5866 5867 if (inode == ERR_PTR(-ENOENT)) 5868 inode = NULL; 5869 return d_splice_alias(inode, dentry); 5870 } 5871 5872 /* 5873 * All this infrastructure exists because dir_emit can fault, and we are holding 5874 * the tree lock when doing readdir. For now just allocate a buffer and copy 5875 * our information into that, and then dir_emit from the buffer. This is 5876 * similar to what NFS does, only we don't keep the buffer around in pagecache 5877 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5878 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5879 * tree lock. 5880 */ 5881 static int btrfs_opendir(struct inode *inode, struct file *file) 5882 { 5883 struct btrfs_file_private *private; 5884 5885 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5886 if (!private) 5887 return -ENOMEM; 5888 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5889 if (!private->filldir_buf) { 5890 kfree(private); 5891 return -ENOMEM; 5892 } 5893 file->private_data = private; 5894 return 0; 5895 } 5896 5897 struct dir_entry { 5898 u64 ino; 5899 u64 offset; 5900 unsigned type; 5901 int name_len; 5902 }; 5903 5904 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5905 { 5906 while (entries--) { 5907 struct dir_entry *entry = addr; 5908 char *name = (char *)(entry + 1); 5909 5910 ctx->pos = get_unaligned(&entry->offset); 5911 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5912 get_unaligned(&entry->ino), 5913 get_unaligned(&entry->type))) 5914 return 1; 5915 addr += sizeof(struct dir_entry) + 5916 get_unaligned(&entry->name_len); 5917 ctx->pos++; 5918 } 5919 return 0; 5920 } 5921 5922 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5923 { 5924 struct inode *inode = file_inode(file); 5925 struct btrfs_root *root = BTRFS_I(inode)->root; 5926 struct btrfs_file_private *private = file->private_data; 5927 struct btrfs_dir_item *di; 5928 struct btrfs_key key; 5929 struct btrfs_key found_key; 5930 struct btrfs_path *path; 5931 void *addr; 5932 struct list_head ins_list; 5933 struct list_head del_list; 5934 int ret; 5935 struct extent_buffer *leaf; 5936 int slot; 5937 char *name_ptr; 5938 int name_len; 5939 int entries = 0; 5940 int total_len = 0; 5941 bool put = false; 5942 struct btrfs_key location; 5943 5944 if (!dir_emit_dots(file, ctx)) 5945 return 0; 5946 5947 path = btrfs_alloc_path(); 5948 if (!path) 5949 return -ENOMEM; 5950 5951 addr = private->filldir_buf; 5952 path->reada = READA_FORWARD; 5953 5954 INIT_LIST_HEAD(&ins_list); 5955 INIT_LIST_HEAD(&del_list); 5956 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5957 5958 again: 5959 key.type = BTRFS_DIR_INDEX_KEY; 5960 key.offset = ctx->pos; 5961 key.objectid = btrfs_ino(BTRFS_I(inode)); 5962 5963 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5964 if (ret < 0) 5965 goto err; 5966 5967 while (1) { 5968 struct dir_entry *entry; 5969 5970 leaf = path->nodes[0]; 5971 slot = path->slots[0]; 5972 if (slot >= btrfs_header_nritems(leaf)) { 5973 ret = btrfs_next_leaf(root, path); 5974 if (ret < 0) 5975 goto err; 5976 else if (ret > 0) 5977 break; 5978 continue; 5979 } 5980 5981 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5982 5983 if (found_key.objectid != key.objectid) 5984 break; 5985 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5986 break; 5987 if (found_key.offset < ctx->pos) 5988 goto next; 5989 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5990 goto next; 5991 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5992 name_len = btrfs_dir_name_len(leaf, di); 5993 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5994 PAGE_SIZE) { 5995 btrfs_release_path(path); 5996 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5997 if (ret) 5998 goto nopos; 5999 addr = private->filldir_buf; 6000 entries = 0; 6001 total_len = 0; 6002 goto again; 6003 } 6004 6005 entry = addr; 6006 put_unaligned(name_len, &entry->name_len); 6007 name_ptr = (char *)(entry + 1); 6008 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 6009 name_len); 6010 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 6011 &entry->type); 6012 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6013 put_unaligned(location.objectid, &entry->ino); 6014 put_unaligned(found_key.offset, &entry->offset); 6015 entries++; 6016 addr += sizeof(struct dir_entry) + name_len; 6017 total_len += sizeof(struct dir_entry) + name_len; 6018 next: 6019 path->slots[0]++; 6020 } 6021 btrfs_release_path(path); 6022 6023 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6024 if (ret) 6025 goto nopos; 6026 6027 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6028 if (ret) 6029 goto nopos; 6030 6031 /* 6032 * Stop new entries from being returned after we return the last 6033 * entry. 6034 * 6035 * New directory entries are assigned a strictly increasing 6036 * offset. This means that new entries created during readdir 6037 * are *guaranteed* to be seen in the future by that readdir. 6038 * This has broken buggy programs which operate on names as 6039 * they're returned by readdir. Until we re-use freed offsets 6040 * we have this hack to stop new entries from being returned 6041 * under the assumption that they'll never reach this huge 6042 * offset. 6043 * 6044 * This is being careful not to overflow 32bit loff_t unless the 6045 * last entry requires it because doing so has broken 32bit apps 6046 * in the past. 6047 */ 6048 if (ctx->pos >= INT_MAX) 6049 ctx->pos = LLONG_MAX; 6050 else 6051 ctx->pos = INT_MAX; 6052 nopos: 6053 ret = 0; 6054 err: 6055 if (put) 6056 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6057 btrfs_free_path(path); 6058 return ret; 6059 } 6060 6061 /* 6062 * This is somewhat expensive, updating the tree every time the 6063 * inode changes. But, it is most likely to find the inode in cache. 6064 * FIXME, needs more benchmarking...there are no reasons other than performance 6065 * to keep or drop this code. 6066 */ 6067 static int btrfs_dirty_inode(struct inode *inode) 6068 { 6069 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6070 struct btrfs_root *root = BTRFS_I(inode)->root; 6071 struct btrfs_trans_handle *trans; 6072 int ret; 6073 6074 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6075 return 0; 6076 6077 trans = btrfs_join_transaction(root); 6078 if (IS_ERR(trans)) 6079 return PTR_ERR(trans); 6080 6081 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6082 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 6083 /* whoops, lets try again with the full transaction */ 6084 btrfs_end_transaction(trans); 6085 trans = btrfs_start_transaction(root, 1); 6086 if (IS_ERR(trans)) 6087 return PTR_ERR(trans); 6088 6089 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6090 } 6091 btrfs_end_transaction(trans); 6092 if (BTRFS_I(inode)->delayed_node) 6093 btrfs_balance_delayed_items(fs_info); 6094 6095 return ret; 6096 } 6097 6098 /* 6099 * This is a copy of file_update_time. We need this so we can return error on 6100 * ENOSPC for updating the inode in the case of file write and mmap writes. 6101 */ 6102 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6103 int flags) 6104 { 6105 struct btrfs_root *root = BTRFS_I(inode)->root; 6106 bool dirty = flags & ~S_VERSION; 6107 6108 if (btrfs_root_readonly(root)) 6109 return -EROFS; 6110 6111 if (flags & S_VERSION) 6112 dirty |= inode_maybe_inc_iversion(inode, dirty); 6113 if (flags & S_CTIME) 6114 inode->i_ctime = *now; 6115 if (flags & S_MTIME) 6116 inode->i_mtime = *now; 6117 if (flags & S_ATIME) 6118 inode->i_atime = *now; 6119 return dirty ? btrfs_dirty_inode(inode) : 0; 6120 } 6121 6122 /* 6123 * find the highest existing sequence number in a directory 6124 * and then set the in-memory index_cnt variable to reflect 6125 * free sequence numbers 6126 */ 6127 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6128 { 6129 struct btrfs_root *root = inode->root; 6130 struct btrfs_key key, found_key; 6131 struct btrfs_path *path; 6132 struct extent_buffer *leaf; 6133 int ret; 6134 6135 key.objectid = btrfs_ino(inode); 6136 key.type = BTRFS_DIR_INDEX_KEY; 6137 key.offset = (u64)-1; 6138 6139 path = btrfs_alloc_path(); 6140 if (!path) 6141 return -ENOMEM; 6142 6143 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6144 if (ret < 0) 6145 goto out; 6146 /* FIXME: we should be able to handle this */ 6147 if (ret == 0) 6148 goto out; 6149 ret = 0; 6150 6151 /* 6152 * MAGIC NUMBER EXPLANATION: 6153 * since we search a directory based on f_pos we have to start at 2 6154 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6155 * else has to start at 2 6156 */ 6157 if (path->slots[0] == 0) { 6158 inode->index_cnt = 2; 6159 goto out; 6160 } 6161 6162 path->slots[0]--; 6163 6164 leaf = path->nodes[0]; 6165 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6166 6167 if (found_key.objectid != btrfs_ino(inode) || 6168 found_key.type != BTRFS_DIR_INDEX_KEY) { 6169 inode->index_cnt = 2; 6170 goto out; 6171 } 6172 6173 inode->index_cnt = found_key.offset + 1; 6174 out: 6175 btrfs_free_path(path); 6176 return ret; 6177 } 6178 6179 /* 6180 * helper to find a free sequence number in a given directory. This current 6181 * code is very simple, later versions will do smarter things in the btree 6182 */ 6183 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6184 { 6185 int ret = 0; 6186 6187 if (dir->index_cnt == (u64)-1) { 6188 ret = btrfs_inode_delayed_dir_index_count(dir); 6189 if (ret) { 6190 ret = btrfs_set_inode_index_count(dir); 6191 if (ret) 6192 return ret; 6193 } 6194 } 6195 6196 *index = dir->index_cnt; 6197 dir->index_cnt++; 6198 6199 return ret; 6200 } 6201 6202 static int btrfs_insert_inode_locked(struct inode *inode) 6203 { 6204 struct btrfs_iget_args args; 6205 6206 args.ino = BTRFS_I(inode)->location.objectid; 6207 args.root = BTRFS_I(inode)->root; 6208 6209 return insert_inode_locked4(inode, 6210 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6211 btrfs_find_actor, &args); 6212 } 6213 6214 /* 6215 * Inherit flags from the parent inode. 6216 * 6217 * Currently only the compression flags and the cow flags are inherited. 6218 */ 6219 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6220 { 6221 unsigned int flags; 6222 6223 if (!dir) 6224 return; 6225 6226 flags = BTRFS_I(dir)->flags; 6227 6228 if (flags & BTRFS_INODE_NOCOMPRESS) { 6229 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6230 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6231 } else if (flags & BTRFS_INODE_COMPRESS) { 6232 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6233 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6234 } 6235 6236 if (flags & BTRFS_INODE_NODATACOW) { 6237 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6238 if (S_ISREG(inode->i_mode)) 6239 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6240 } 6241 6242 btrfs_sync_inode_flags_to_i_flags(inode); 6243 } 6244 6245 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6246 struct btrfs_root *root, 6247 struct inode *dir, 6248 const char *name, int name_len, 6249 u64 ref_objectid, u64 objectid, 6250 umode_t mode, u64 *index) 6251 { 6252 struct btrfs_fs_info *fs_info = root->fs_info; 6253 struct inode *inode; 6254 struct btrfs_inode_item *inode_item; 6255 struct btrfs_key *location; 6256 struct btrfs_path *path; 6257 struct btrfs_inode_ref *ref; 6258 struct btrfs_key key[2]; 6259 u32 sizes[2]; 6260 int nitems = name ? 2 : 1; 6261 unsigned long ptr; 6262 unsigned int nofs_flag; 6263 int ret; 6264 6265 path = btrfs_alloc_path(); 6266 if (!path) 6267 return ERR_PTR(-ENOMEM); 6268 6269 nofs_flag = memalloc_nofs_save(); 6270 inode = new_inode(fs_info->sb); 6271 memalloc_nofs_restore(nofs_flag); 6272 if (!inode) { 6273 btrfs_free_path(path); 6274 return ERR_PTR(-ENOMEM); 6275 } 6276 6277 /* 6278 * O_TMPFILE, set link count to 0, so that after this point, 6279 * we fill in an inode item with the correct link count. 6280 */ 6281 if (!name) 6282 set_nlink(inode, 0); 6283 6284 /* 6285 * we have to initialize this early, so we can reclaim the inode 6286 * number if we fail afterwards in this function. 6287 */ 6288 inode->i_ino = objectid; 6289 6290 if (dir && name) { 6291 trace_btrfs_inode_request(dir); 6292 6293 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6294 if (ret) { 6295 btrfs_free_path(path); 6296 iput(inode); 6297 return ERR_PTR(ret); 6298 } 6299 } else if (dir) { 6300 *index = 0; 6301 } 6302 /* 6303 * index_cnt is ignored for everything but a dir, 6304 * btrfs_set_inode_index_count has an explanation for the magic 6305 * number 6306 */ 6307 BTRFS_I(inode)->index_cnt = 2; 6308 BTRFS_I(inode)->dir_index = *index; 6309 BTRFS_I(inode)->root = btrfs_grab_root(root); 6310 BTRFS_I(inode)->generation = trans->transid; 6311 inode->i_generation = BTRFS_I(inode)->generation; 6312 6313 /* 6314 * We could have gotten an inode number from somebody who was fsynced 6315 * and then removed in this same transaction, so let's just set full 6316 * sync since it will be a full sync anyway and this will blow away the 6317 * old info in the log. 6318 */ 6319 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6320 6321 key[0].objectid = objectid; 6322 key[0].type = BTRFS_INODE_ITEM_KEY; 6323 key[0].offset = 0; 6324 6325 sizes[0] = sizeof(struct btrfs_inode_item); 6326 6327 if (name) { 6328 /* 6329 * Start new inodes with an inode_ref. This is slightly more 6330 * efficient for small numbers of hard links since they will 6331 * be packed into one item. Extended refs will kick in if we 6332 * add more hard links than can fit in the ref item. 6333 */ 6334 key[1].objectid = objectid; 6335 key[1].type = BTRFS_INODE_REF_KEY; 6336 key[1].offset = ref_objectid; 6337 6338 sizes[1] = name_len + sizeof(*ref); 6339 } 6340 6341 location = &BTRFS_I(inode)->location; 6342 location->objectid = objectid; 6343 location->offset = 0; 6344 location->type = BTRFS_INODE_ITEM_KEY; 6345 6346 ret = btrfs_insert_inode_locked(inode); 6347 if (ret < 0) { 6348 iput(inode); 6349 goto fail; 6350 } 6351 6352 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6353 if (ret != 0) 6354 goto fail_unlock; 6355 6356 inode_init_owner(&init_user_ns, inode, dir, mode); 6357 inode_set_bytes(inode, 0); 6358 6359 inode->i_mtime = current_time(inode); 6360 inode->i_atime = inode->i_mtime; 6361 inode->i_ctime = inode->i_mtime; 6362 BTRFS_I(inode)->i_otime = inode->i_mtime; 6363 6364 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6365 struct btrfs_inode_item); 6366 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6367 sizeof(*inode_item)); 6368 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6369 6370 if (name) { 6371 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6372 struct btrfs_inode_ref); 6373 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6374 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6375 ptr = (unsigned long)(ref + 1); 6376 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6377 } 6378 6379 btrfs_mark_buffer_dirty(path->nodes[0]); 6380 btrfs_free_path(path); 6381 6382 btrfs_inherit_iflags(inode, dir); 6383 6384 if (S_ISREG(mode)) { 6385 if (btrfs_test_opt(fs_info, NODATASUM)) 6386 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6387 if (btrfs_test_opt(fs_info, NODATACOW)) 6388 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6389 BTRFS_INODE_NODATASUM; 6390 } 6391 6392 inode_tree_add(inode); 6393 6394 trace_btrfs_inode_new(inode); 6395 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6396 6397 btrfs_update_root_times(trans, root); 6398 6399 ret = btrfs_inode_inherit_props(trans, inode, dir); 6400 if (ret) 6401 btrfs_err(fs_info, 6402 "error inheriting props for ino %llu (root %llu): %d", 6403 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6404 6405 return inode; 6406 6407 fail_unlock: 6408 discard_new_inode(inode); 6409 fail: 6410 if (dir && name) 6411 BTRFS_I(dir)->index_cnt--; 6412 btrfs_free_path(path); 6413 return ERR_PTR(ret); 6414 } 6415 6416 /* 6417 * utility function to add 'inode' into 'parent_inode' with 6418 * a give name and a given sequence number. 6419 * if 'add_backref' is true, also insert a backref from the 6420 * inode to the parent directory. 6421 */ 6422 int btrfs_add_link(struct btrfs_trans_handle *trans, 6423 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6424 const char *name, int name_len, int add_backref, u64 index) 6425 { 6426 int ret = 0; 6427 struct btrfs_key key; 6428 struct btrfs_root *root = parent_inode->root; 6429 u64 ino = btrfs_ino(inode); 6430 u64 parent_ino = btrfs_ino(parent_inode); 6431 6432 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6433 memcpy(&key, &inode->root->root_key, sizeof(key)); 6434 } else { 6435 key.objectid = ino; 6436 key.type = BTRFS_INODE_ITEM_KEY; 6437 key.offset = 0; 6438 } 6439 6440 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6441 ret = btrfs_add_root_ref(trans, key.objectid, 6442 root->root_key.objectid, parent_ino, 6443 index, name, name_len); 6444 } else if (add_backref) { 6445 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6446 parent_ino, index); 6447 } 6448 6449 /* Nothing to clean up yet */ 6450 if (ret) 6451 return ret; 6452 6453 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6454 btrfs_inode_type(&inode->vfs_inode), index); 6455 if (ret == -EEXIST || ret == -EOVERFLOW) 6456 goto fail_dir_item; 6457 else if (ret) { 6458 btrfs_abort_transaction(trans, ret); 6459 return ret; 6460 } 6461 6462 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6463 name_len * 2); 6464 inode_inc_iversion(&parent_inode->vfs_inode); 6465 /* 6466 * If we are replaying a log tree, we do not want to update the mtime 6467 * and ctime of the parent directory with the current time, since the 6468 * log replay procedure is responsible for setting them to their correct 6469 * values (the ones it had when the fsync was done). 6470 */ 6471 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6472 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6473 6474 parent_inode->vfs_inode.i_mtime = now; 6475 parent_inode->vfs_inode.i_ctime = now; 6476 } 6477 ret = btrfs_update_inode(trans, root, parent_inode); 6478 if (ret) 6479 btrfs_abort_transaction(trans, ret); 6480 return ret; 6481 6482 fail_dir_item: 6483 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6484 u64 local_index; 6485 int err; 6486 err = btrfs_del_root_ref(trans, key.objectid, 6487 root->root_key.objectid, parent_ino, 6488 &local_index, name, name_len); 6489 if (err) 6490 btrfs_abort_transaction(trans, err); 6491 } else if (add_backref) { 6492 u64 local_index; 6493 int err; 6494 6495 err = btrfs_del_inode_ref(trans, root, name, name_len, 6496 ino, parent_ino, &local_index); 6497 if (err) 6498 btrfs_abort_transaction(trans, err); 6499 } 6500 6501 /* Return the original error code */ 6502 return ret; 6503 } 6504 6505 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6506 struct btrfs_inode *dir, struct dentry *dentry, 6507 struct btrfs_inode *inode, int backref, u64 index) 6508 { 6509 int err = btrfs_add_link(trans, dir, inode, 6510 dentry->d_name.name, dentry->d_name.len, 6511 backref, index); 6512 if (err > 0) 6513 err = -EEXIST; 6514 return err; 6515 } 6516 6517 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6518 struct dentry *dentry, umode_t mode, dev_t rdev) 6519 { 6520 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6521 struct btrfs_trans_handle *trans; 6522 struct btrfs_root *root = BTRFS_I(dir)->root; 6523 struct inode *inode = NULL; 6524 int err; 6525 u64 objectid; 6526 u64 index = 0; 6527 6528 /* 6529 * 2 for inode item and ref 6530 * 2 for dir items 6531 * 1 for xattr if selinux is on 6532 */ 6533 trans = btrfs_start_transaction(root, 5); 6534 if (IS_ERR(trans)) 6535 return PTR_ERR(trans); 6536 6537 err = btrfs_get_free_objectid(root, &objectid); 6538 if (err) 6539 goto out_unlock; 6540 6541 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6542 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6543 mode, &index); 6544 if (IS_ERR(inode)) { 6545 err = PTR_ERR(inode); 6546 inode = NULL; 6547 goto out_unlock; 6548 } 6549 6550 /* 6551 * If the active LSM wants to access the inode during 6552 * d_instantiate it needs these. Smack checks to see 6553 * if the filesystem supports xattrs by looking at the 6554 * ops vector. 6555 */ 6556 inode->i_op = &btrfs_special_inode_operations; 6557 init_special_inode(inode, inode->i_mode, rdev); 6558 6559 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6560 if (err) 6561 goto out_unlock; 6562 6563 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6564 0, index); 6565 if (err) 6566 goto out_unlock; 6567 6568 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6569 d_instantiate_new(dentry, inode); 6570 6571 out_unlock: 6572 btrfs_end_transaction(trans); 6573 btrfs_btree_balance_dirty(fs_info); 6574 if (err && inode) { 6575 inode_dec_link_count(inode); 6576 discard_new_inode(inode); 6577 } 6578 return err; 6579 } 6580 6581 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6582 struct dentry *dentry, umode_t mode, bool excl) 6583 { 6584 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6585 struct btrfs_trans_handle *trans; 6586 struct btrfs_root *root = BTRFS_I(dir)->root; 6587 struct inode *inode = NULL; 6588 int err; 6589 u64 objectid; 6590 u64 index = 0; 6591 6592 /* 6593 * 2 for inode item and ref 6594 * 2 for dir items 6595 * 1 for xattr if selinux is on 6596 */ 6597 trans = btrfs_start_transaction(root, 5); 6598 if (IS_ERR(trans)) 6599 return PTR_ERR(trans); 6600 6601 err = btrfs_get_free_objectid(root, &objectid); 6602 if (err) 6603 goto out_unlock; 6604 6605 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6606 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6607 mode, &index); 6608 if (IS_ERR(inode)) { 6609 err = PTR_ERR(inode); 6610 inode = NULL; 6611 goto out_unlock; 6612 } 6613 /* 6614 * If the active LSM wants to access the inode during 6615 * d_instantiate it needs these. Smack checks to see 6616 * if the filesystem supports xattrs by looking at the 6617 * ops vector. 6618 */ 6619 inode->i_fop = &btrfs_file_operations; 6620 inode->i_op = &btrfs_file_inode_operations; 6621 inode->i_mapping->a_ops = &btrfs_aops; 6622 6623 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6624 if (err) 6625 goto out_unlock; 6626 6627 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6628 if (err) 6629 goto out_unlock; 6630 6631 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6632 0, index); 6633 if (err) 6634 goto out_unlock; 6635 6636 d_instantiate_new(dentry, inode); 6637 6638 out_unlock: 6639 btrfs_end_transaction(trans); 6640 if (err && inode) { 6641 inode_dec_link_count(inode); 6642 discard_new_inode(inode); 6643 } 6644 btrfs_btree_balance_dirty(fs_info); 6645 return err; 6646 } 6647 6648 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6649 struct dentry *dentry) 6650 { 6651 struct btrfs_trans_handle *trans = NULL; 6652 struct btrfs_root *root = BTRFS_I(dir)->root; 6653 struct inode *inode = d_inode(old_dentry); 6654 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6655 u64 index; 6656 int err; 6657 int drop_inode = 0; 6658 6659 /* do not allow sys_link's with other subvols of the same device */ 6660 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6661 return -EXDEV; 6662 6663 if (inode->i_nlink >= BTRFS_LINK_MAX) 6664 return -EMLINK; 6665 6666 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6667 if (err) 6668 goto fail; 6669 6670 /* 6671 * 2 items for inode and inode ref 6672 * 2 items for dir items 6673 * 1 item for parent inode 6674 * 1 item for orphan item deletion if O_TMPFILE 6675 */ 6676 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6677 if (IS_ERR(trans)) { 6678 err = PTR_ERR(trans); 6679 trans = NULL; 6680 goto fail; 6681 } 6682 6683 /* There are several dir indexes for this inode, clear the cache. */ 6684 BTRFS_I(inode)->dir_index = 0ULL; 6685 inc_nlink(inode); 6686 inode_inc_iversion(inode); 6687 inode->i_ctime = current_time(inode); 6688 ihold(inode); 6689 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6690 6691 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6692 1, index); 6693 6694 if (err) { 6695 drop_inode = 1; 6696 } else { 6697 struct dentry *parent = dentry->d_parent; 6698 6699 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6700 if (err) 6701 goto fail; 6702 if (inode->i_nlink == 1) { 6703 /* 6704 * If new hard link count is 1, it's a file created 6705 * with open(2) O_TMPFILE flag. 6706 */ 6707 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6708 if (err) 6709 goto fail; 6710 } 6711 d_instantiate(dentry, inode); 6712 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6713 } 6714 6715 fail: 6716 if (trans) 6717 btrfs_end_transaction(trans); 6718 if (drop_inode) { 6719 inode_dec_link_count(inode); 6720 iput(inode); 6721 } 6722 btrfs_btree_balance_dirty(fs_info); 6723 return err; 6724 } 6725 6726 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6727 struct dentry *dentry, umode_t mode) 6728 { 6729 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6730 struct inode *inode = NULL; 6731 struct btrfs_trans_handle *trans; 6732 struct btrfs_root *root = BTRFS_I(dir)->root; 6733 int err = 0; 6734 u64 objectid = 0; 6735 u64 index = 0; 6736 6737 /* 6738 * 2 items for inode and ref 6739 * 2 items for dir items 6740 * 1 for xattr if selinux is on 6741 */ 6742 trans = btrfs_start_transaction(root, 5); 6743 if (IS_ERR(trans)) 6744 return PTR_ERR(trans); 6745 6746 err = btrfs_get_free_objectid(root, &objectid); 6747 if (err) 6748 goto out_fail; 6749 6750 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6751 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6752 S_IFDIR | mode, &index); 6753 if (IS_ERR(inode)) { 6754 err = PTR_ERR(inode); 6755 inode = NULL; 6756 goto out_fail; 6757 } 6758 6759 /* these must be set before we unlock the inode */ 6760 inode->i_op = &btrfs_dir_inode_operations; 6761 inode->i_fop = &btrfs_dir_file_operations; 6762 6763 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6764 if (err) 6765 goto out_fail; 6766 6767 btrfs_i_size_write(BTRFS_I(inode), 0); 6768 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6769 if (err) 6770 goto out_fail; 6771 6772 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6773 dentry->d_name.name, 6774 dentry->d_name.len, 0, index); 6775 if (err) 6776 goto out_fail; 6777 6778 d_instantiate_new(dentry, inode); 6779 6780 out_fail: 6781 btrfs_end_transaction(trans); 6782 if (err && inode) { 6783 inode_dec_link_count(inode); 6784 discard_new_inode(inode); 6785 } 6786 btrfs_btree_balance_dirty(fs_info); 6787 return err; 6788 } 6789 6790 static noinline int uncompress_inline(struct btrfs_path *path, 6791 struct page *page, 6792 size_t pg_offset, u64 extent_offset, 6793 struct btrfs_file_extent_item *item) 6794 { 6795 int ret; 6796 struct extent_buffer *leaf = path->nodes[0]; 6797 char *tmp; 6798 size_t max_size; 6799 unsigned long inline_size; 6800 unsigned long ptr; 6801 int compress_type; 6802 6803 WARN_ON(pg_offset != 0); 6804 compress_type = btrfs_file_extent_compression(leaf, item); 6805 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6806 inline_size = btrfs_file_extent_inline_item_len(leaf, 6807 btrfs_item_nr(path->slots[0])); 6808 tmp = kmalloc(inline_size, GFP_NOFS); 6809 if (!tmp) 6810 return -ENOMEM; 6811 ptr = btrfs_file_extent_inline_start(item); 6812 6813 read_extent_buffer(leaf, tmp, ptr, inline_size); 6814 6815 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6816 ret = btrfs_decompress(compress_type, tmp, page, 6817 extent_offset, inline_size, max_size); 6818 6819 /* 6820 * decompression code contains a memset to fill in any space between the end 6821 * of the uncompressed data and the end of max_size in case the decompressed 6822 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6823 * the end of an inline extent and the beginning of the next block, so we 6824 * cover that region here. 6825 */ 6826 6827 if (max_size + pg_offset < PAGE_SIZE) 6828 memzero_page(page, pg_offset + max_size, 6829 PAGE_SIZE - max_size - pg_offset); 6830 kfree(tmp); 6831 return ret; 6832 } 6833 6834 /** 6835 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6836 * @inode: file to search in 6837 * @page: page to read extent data into if the extent is inline 6838 * @pg_offset: offset into @page to copy to 6839 * @start: file offset 6840 * @len: length of range starting at @start 6841 * 6842 * This returns the first &struct extent_map which overlaps with the given 6843 * range, reading it from the B-tree and caching it if necessary. Note that 6844 * there may be more extents which overlap the given range after the returned 6845 * extent_map. 6846 * 6847 * If @page is not NULL and the extent is inline, this also reads the extent 6848 * data directly into the page and marks the extent up to date in the io_tree. 6849 * 6850 * Return: ERR_PTR on error, non-NULL extent_map on success. 6851 */ 6852 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6853 struct page *page, size_t pg_offset, 6854 u64 start, u64 len) 6855 { 6856 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6857 int ret = 0; 6858 u64 extent_start = 0; 6859 u64 extent_end = 0; 6860 u64 objectid = btrfs_ino(inode); 6861 int extent_type = -1; 6862 struct btrfs_path *path = NULL; 6863 struct btrfs_root *root = inode->root; 6864 struct btrfs_file_extent_item *item; 6865 struct extent_buffer *leaf; 6866 struct btrfs_key found_key; 6867 struct extent_map *em = NULL; 6868 struct extent_map_tree *em_tree = &inode->extent_tree; 6869 struct extent_io_tree *io_tree = &inode->io_tree; 6870 6871 read_lock(&em_tree->lock); 6872 em = lookup_extent_mapping(em_tree, start, len); 6873 read_unlock(&em_tree->lock); 6874 6875 if (em) { 6876 if (em->start > start || em->start + em->len <= start) 6877 free_extent_map(em); 6878 else if (em->block_start == EXTENT_MAP_INLINE && page) 6879 free_extent_map(em); 6880 else 6881 goto out; 6882 } 6883 em = alloc_extent_map(); 6884 if (!em) { 6885 ret = -ENOMEM; 6886 goto out; 6887 } 6888 em->start = EXTENT_MAP_HOLE; 6889 em->orig_start = EXTENT_MAP_HOLE; 6890 em->len = (u64)-1; 6891 em->block_len = (u64)-1; 6892 6893 path = btrfs_alloc_path(); 6894 if (!path) { 6895 ret = -ENOMEM; 6896 goto out; 6897 } 6898 6899 /* Chances are we'll be called again, so go ahead and do readahead */ 6900 path->reada = READA_FORWARD; 6901 6902 /* 6903 * The same explanation in load_free_space_cache applies here as well, 6904 * we only read when we're loading the free space cache, and at that 6905 * point the commit_root has everything we need. 6906 */ 6907 if (btrfs_is_free_space_inode(inode)) { 6908 path->search_commit_root = 1; 6909 path->skip_locking = 1; 6910 } 6911 6912 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6913 if (ret < 0) { 6914 goto out; 6915 } else if (ret > 0) { 6916 if (path->slots[0] == 0) 6917 goto not_found; 6918 path->slots[0]--; 6919 ret = 0; 6920 } 6921 6922 leaf = path->nodes[0]; 6923 item = btrfs_item_ptr(leaf, path->slots[0], 6924 struct btrfs_file_extent_item); 6925 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6926 if (found_key.objectid != objectid || 6927 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6928 /* 6929 * If we backup past the first extent we want to move forward 6930 * and see if there is an extent in front of us, otherwise we'll 6931 * say there is a hole for our whole search range which can 6932 * cause problems. 6933 */ 6934 extent_end = start; 6935 goto next; 6936 } 6937 6938 extent_type = btrfs_file_extent_type(leaf, item); 6939 extent_start = found_key.offset; 6940 extent_end = btrfs_file_extent_end(path); 6941 if (extent_type == BTRFS_FILE_EXTENT_REG || 6942 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6943 /* Only regular file could have regular/prealloc extent */ 6944 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6945 ret = -EUCLEAN; 6946 btrfs_crit(fs_info, 6947 "regular/prealloc extent found for non-regular inode %llu", 6948 btrfs_ino(inode)); 6949 goto out; 6950 } 6951 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6952 extent_start); 6953 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6954 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6955 path->slots[0], 6956 extent_start); 6957 } 6958 next: 6959 if (start >= extent_end) { 6960 path->slots[0]++; 6961 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6962 ret = btrfs_next_leaf(root, path); 6963 if (ret < 0) 6964 goto out; 6965 else if (ret > 0) 6966 goto not_found; 6967 6968 leaf = path->nodes[0]; 6969 } 6970 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6971 if (found_key.objectid != objectid || 6972 found_key.type != BTRFS_EXTENT_DATA_KEY) 6973 goto not_found; 6974 if (start + len <= found_key.offset) 6975 goto not_found; 6976 if (start > found_key.offset) 6977 goto next; 6978 6979 /* New extent overlaps with existing one */ 6980 em->start = start; 6981 em->orig_start = start; 6982 em->len = found_key.offset - start; 6983 em->block_start = EXTENT_MAP_HOLE; 6984 goto insert; 6985 } 6986 6987 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6988 6989 if (extent_type == BTRFS_FILE_EXTENT_REG || 6990 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6991 goto insert; 6992 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6993 unsigned long ptr; 6994 char *map; 6995 size_t size; 6996 size_t extent_offset; 6997 size_t copy_size; 6998 6999 if (!page) 7000 goto out; 7001 7002 size = btrfs_file_extent_ram_bytes(leaf, item); 7003 extent_offset = page_offset(page) + pg_offset - extent_start; 7004 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7005 size - extent_offset); 7006 em->start = extent_start + extent_offset; 7007 em->len = ALIGN(copy_size, fs_info->sectorsize); 7008 em->orig_block_len = em->len; 7009 em->orig_start = em->start; 7010 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7011 7012 if (!PageUptodate(page)) { 7013 if (btrfs_file_extent_compression(leaf, item) != 7014 BTRFS_COMPRESS_NONE) { 7015 ret = uncompress_inline(path, page, pg_offset, 7016 extent_offset, item); 7017 if (ret) 7018 goto out; 7019 } else { 7020 map = kmap_local_page(page); 7021 read_extent_buffer(leaf, map + pg_offset, ptr, 7022 copy_size); 7023 if (pg_offset + copy_size < PAGE_SIZE) { 7024 memset(map + pg_offset + copy_size, 0, 7025 PAGE_SIZE - pg_offset - 7026 copy_size); 7027 } 7028 kunmap_local(map); 7029 } 7030 flush_dcache_page(page); 7031 } 7032 set_extent_uptodate(io_tree, em->start, 7033 extent_map_end(em) - 1, NULL, GFP_NOFS); 7034 goto insert; 7035 } 7036 not_found: 7037 em->start = start; 7038 em->orig_start = start; 7039 em->len = len; 7040 em->block_start = EXTENT_MAP_HOLE; 7041 insert: 7042 ret = 0; 7043 btrfs_release_path(path); 7044 if (em->start > start || extent_map_end(em) <= start) { 7045 btrfs_err(fs_info, 7046 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7047 em->start, em->len, start, len); 7048 ret = -EIO; 7049 goto out; 7050 } 7051 7052 write_lock(&em_tree->lock); 7053 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7054 write_unlock(&em_tree->lock); 7055 out: 7056 btrfs_free_path(path); 7057 7058 trace_btrfs_get_extent(root, inode, em); 7059 7060 if (ret) { 7061 free_extent_map(em); 7062 return ERR_PTR(ret); 7063 } 7064 return em; 7065 } 7066 7067 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7068 u64 start, u64 len) 7069 { 7070 struct extent_map *em; 7071 struct extent_map *hole_em = NULL; 7072 u64 delalloc_start = start; 7073 u64 end; 7074 u64 delalloc_len; 7075 u64 delalloc_end; 7076 int err = 0; 7077 7078 em = btrfs_get_extent(inode, NULL, 0, start, len); 7079 if (IS_ERR(em)) 7080 return em; 7081 /* 7082 * If our em maps to: 7083 * - a hole or 7084 * - a pre-alloc extent, 7085 * there might actually be delalloc bytes behind it. 7086 */ 7087 if (em->block_start != EXTENT_MAP_HOLE && 7088 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7089 return em; 7090 else 7091 hole_em = em; 7092 7093 /* check to see if we've wrapped (len == -1 or similar) */ 7094 end = start + len; 7095 if (end < start) 7096 end = (u64)-1; 7097 else 7098 end -= 1; 7099 7100 em = NULL; 7101 7102 /* ok, we didn't find anything, lets look for delalloc */ 7103 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 7104 end, len, EXTENT_DELALLOC, 1); 7105 delalloc_end = delalloc_start + delalloc_len; 7106 if (delalloc_end < delalloc_start) 7107 delalloc_end = (u64)-1; 7108 7109 /* 7110 * We didn't find anything useful, return the original results from 7111 * get_extent() 7112 */ 7113 if (delalloc_start > end || delalloc_end <= start) { 7114 em = hole_em; 7115 hole_em = NULL; 7116 goto out; 7117 } 7118 7119 /* 7120 * Adjust the delalloc_start to make sure it doesn't go backwards from 7121 * the start they passed in 7122 */ 7123 delalloc_start = max(start, delalloc_start); 7124 delalloc_len = delalloc_end - delalloc_start; 7125 7126 if (delalloc_len > 0) { 7127 u64 hole_start; 7128 u64 hole_len; 7129 const u64 hole_end = extent_map_end(hole_em); 7130 7131 em = alloc_extent_map(); 7132 if (!em) { 7133 err = -ENOMEM; 7134 goto out; 7135 } 7136 7137 ASSERT(hole_em); 7138 /* 7139 * When btrfs_get_extent can't find anything it returns one 7140 * huge hole 7141 * 7142 * Make sure what it found really fits our range, and adjust to 7143 * make sure it is based on the start from the caller 7144 */ 7145 if (hole_end <= start || hole_em->start > end) { 7146 free_extent_map(hole_em); 7147 hole_em = NULL; 7148 } else { 7149 hole_start = max(hole_em->start, start); 7150 hole_len = hole_end - hole_start; 7151 } 7152 7153 if (hole_em && delalloc_start > hole_start) { 7154 /* 7155 * Our hole starts before our delalloc, so we have to 7156 * return just the parts of the hole that go until the 7157 * delalloc starts 7158 */ 7159 em->len = min(hole_len, delalloc_start - hole_start); 7160 em->start = hole_start; 7161 em->orig_start = hole_start; 7162 /* 7163 * Don't adjust block start at all, it is fixed at 7164 * EXTENT_MAP_HOLE 7165 */ 7166 em->block_start = hole_em->block_start; 7167 em->block_len = hole_len; 7168 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7169 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7170 } else { 7171 /* 7172 * Hole is out of passed range or it starts after 7173 * delalloc range 7174 */ 7175 em->start = delalloc_start; 7176 em->len = delalloc_len; 7177 em->orig_start = delalloc_start; 7178 em->block_start = EXTENT_MAP_DELALLOC; 7179 em->block_len = delalloc_len; 7180 } 7181 } else { 7182 return hole_em; 7183 } 7184 out: 7185 7186 free_extent_map(hole_em); 7187 if (err) { 7188 free_extent_map(em); 7189 return ERR_PTR(err); 7190 } 7191 return em; 7192 } 7193 7194 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7195 const u64 start, 7196 const u64 len, 7197 const u64 orig_start, 7198 const u64 block_start, 7199 const u64 block_len, 7200 const u64 orig_block_len, 7201 const u64 ram_bytes, 7202 const int type) 7203 { 7204 struct extent_map *em = NULL; 7205 int ret; 7206 7207 if (type != BTRFS_ORDERED_NOCOW) { 7208 em = create_io_em(inode, start, len, orig_start, block_start, 7209 block_len, orig_block_len, ram_bytes, 7210 BTRFS_COMPRESS_NONE, /* compress_type */ 7211 type); 7212 if (IS_ERR(em)) 7213 goto out; 7214 } 7215 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 7216 block_len, type); 7217 if (ret) { 7218 if (em) { 7219 free_extent_map(em); 7220 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7221 } 7222 em = ERR_PTR(ret); 7223 } 7224 out: 7225 7226 return em; 7227 } 7228 7229 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7230 u64 start, u64 len) 7231 { 7232 struct btrfs_root *root = inode->root; 7233 struct btrfs_fs_info *fs_info = root->fs_info; 7234 struct extent_map *em; 7235 struct btrfs_key ins; 7236 u64 alloc_hint; 7237 int ret; 7238 7239 alloc_hint = get_extent_allocation_hint(inode, start, len); 7240 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7241 0, alloc_hint, &ins, 1, 1); 7242 if (ret) 7243 return ERR_PTR(ret); 7244 7245 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7246 ins.objectid, ins.offset, ins.offset, 7247 ins.offset, BTRFS_ORDERED_REGULAR); 7248 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7249 if (IS_ERR(em)) 7250 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7251 1); 7252 7253 return em; 7254 } 7255 7256 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7257 { 7258 struct btrfs_block_group *block_group; 7259 bool readonly = false; 7260 7261 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7262 if (!block_group || block_group->ro) 7263 readonly = true; 7264 if (block_group) 7265 btrfs_put_block_group(block_group); 7266 return readonly; 7267 } 7268 7269 /* 7270 * Check if we can do nocow write into the range [@offset, @offset + @len) 7271 * 7272 * @offset: File offset 7273 * @len: The length to write, will be updated to the nocow writeable 7274 * range 7275 * @orig_start: (optional) Return the original file offset of the file extent 7276 * @orig_len: (optional) Return the original on-disk length of the file extent 7277 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7278 * @strict: if true, omit optimizations that might force us into unnecessary 7279 * cow. e.g., don't trust generation number. 7280 * 7281 * Return: 7282 * >0 and update @len if we can do nocow write 7283 * 0 if we can't do nocow write 7284 * <0 if error happened 7285 * 7286 * NOTE: This only checks the file extents, caller is responsible to wait for 7287 * any ordered extents. 7288 */ 7289 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7290 u64 *orig_start, u64 *orig_block_len, 7291 u64 *ram_bytes, bool strict) 7292 { 7293 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7294 struct btrfs_path *path; 7295 int ret; 7296 struct extent_buffer *leaf; 7297 struct btrfs_root *root = BTRFS_I(inode)->root; 7298 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7299 struct btrfs_file_extent_item *fi; 7300 struct btrfs_key key; 7301 u64 disk_bytenr; 7302 u64 backref_offset; 7303 u64 extent_end; 7304 u64 num_bytes; 7305 int slot; 7306 int found_type; 7307 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7308 7309 path = btrfs_alloc_path(); 7310 if (!path) 7311 return -ENOMEM; 7312 7313 ret = btrfs_lookup_file_extent(NULL, root, path, 7314 btrfs_ino(BTRFS_I(inode)), offset, 0); 7315 if (ret < 0) 7316 goto out; 7317 7318 slot = path->slots[0]; 7319 if (ret == 1) { 7320 if (slot == 0) { 7321 /* can't find the item, must cow */ 7322 ret = 0; 7323 goto out; 7324 } 7325 slot--; 7326 } 7327 ret = 0; 7328 leaf = path->nodes[0]; 7329 btrfs_item_key_to_cpu(leaf, &key, slot); 7330 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7331 key.type != BTRFS_EXTENT_DATA_KEY) { 7332 /* not our file or wrong item type, must cow */ 7333 goto out; 7334 } 7335 7336 if (key.offset > offset) { 7337 /* Wrong offset, must cow */ 7338 goto out; 7339 } 7340 7341 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7342 found_type = btrfs_file_extent_type(leaf, fi); 7343 if (found_type != BTRFS_FILE_EXTENT_REG && 7344 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7345 /* not a regular extent, must cow */ 7346 goto out; 7347 } 7348 7349 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7350 goto out; 7351 7352 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7353 if (extent_end <= offset) 7354 goto out; 7355 7356 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7357 if (disk_bytenr == 0) 7358 goto out; 7359 7360 if (btrfs_file_extent_compression(leaf, fi) || 7361 btrfs_file_extent_encryption(leaf, fi) || 7362 btrfs_file_extent_other_encoding(leaf, fi)) 7363 goto out; 7364 7365 /* 7366 * Do the same check as in btrfs_cross_ref_exist but without the 7367 * unnecessary search. 7368 */ 7369 if (!strict && 7370 (btrfs_file_extent_generation(leaf, fi) <= 7371 btrfs_root_last_snapshot(&root->root_item))) 7372 goto out; 7373 7374 backref_offset = btrfs_file_extent_offset(leaf, fi); 7375 7376 if (orig_start) { 7377 *orig_start = key.offset - backref_offset; 7378 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7379 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7380 } 7381 7382 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7383 goto out; 7384 7385 num_bytes = min(offset + *len, extent_end) - offset; 7386 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7387 u64 range_end; 7388 7389 range_end = round_up(offset + num_bytes, 7390 root->fs_info->sectorsize) - 1; 7391 ret = test_range_bit(io_tree, offset, range_end, 7392 EXTENT_DELALLOC, 0, NULL); 7393 if (ret) { 7394 ret = -EAGAIN; 7395 goto out; 7396 } 7397 } 7398 7399 btrfs_release_path(path); 7400 7401 /* 7402 * look for other files referencing this extent, if we 7403 * find any we must cow 7404 */ 7405 7406 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7407 key.offset - backref_offset, disk_bytenr, 7408 strict); 7409 if (ret) { 7410 ret = 0; 7411 goto out; 7412 } 7413 7414 /* 7415 * adjust disk_bytenr and num_bytes to cover just the bytes 7416 * in this extent we are about to write. If there 7417 * are any csums in that range we have to cow in order 7418 * to keep the csums correct 7419 */ 7420 disk_bytenr += backref_offset; 7421 disk_bytenr += offset - key.offset; 7422 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7423 goto out; 7424 /* 7425 * all of the above have passed, it is safe to overwrite this extent 7426 * without cow 7427 */ 7428 *len = num_bytes; 7429 ret = 1; 7430 out: 7431 btrfs_free_path(path); 7432 return ret; 7433 } 7434 7435 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7436 struct extent_state **cached_state, bool writing) 7437 { 7438 struct btrfs_ordered_extent *ordered; 7439 int ret = 0; 7440 7441 while (1) { 7442 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7443 cached_state); 7444 /* 7445 * We're concerned with the entire range that we're going to be 7446 * doing DIO to, so we need to make sure there's no ordered 7447 * extents in this range. 7448 */ 7449 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7450 lockend - lockstart + 1); 7451 7452 /* 7453 * We need to make sure there are no buffered pages in this 7454 * range either, we could have raced between the invalidate in 7455 * generic_file_direct_write and locking the extent. The 7456 * invalidate needs to happen so that reads after a write do not 7457 * get stale data. 7458 */ 7459 if (!ordered && 7460 (!writing || !filemap_range_has_page(inode->i_mapping, 7461 lockstart, lockend))) 7462 break; 7463 7464 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7465 cached_state); 7466 7467 if (ordered) { 7468 /* 7469 * If we are doing a DIO read and the ordered extent we 7470 * found is for a buffered write, we can not wait for it 7471 * to complete and retry, because if we do so we can 7472 * deadlock with concurrent buffered writes on page 7473 * locks. This happens only if our DIO read covers more 7474 * than one extent map, if at this point has already 7475 * created an ordered extent for a previous extent map 7476 * and locked its range in the inode's io tree, and a 7477 * concurrent write against that previous extent map's 7478 * range and this range started (we unlock the ranges 7479 * in the io tree only when the bios complete and 7480 * buffered writes always lock pages before attempting 7481 * to lock range in the io tree). 7482 */ 7483 if (writing || 7484 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7485 btrfs_start_ordered_extent(ordered, 1); 7486 else 7487 ret = -ENOTBLK; 7488 btrfs_put_ordered_extent(ordered); 7489 } else { 7490 /* 7491 * We could trigger writeback for this range (and wait 7492 * for it to complete) and then invalidate the pages for 7493 * this range (through invalidate_inode_pages2_range()), 7494 * but that can lead us to a deadlock with a concurrent 7495 * call to readahead (a buffered read or a defrag call 7496 * triggered a readahead) on a page lock due to an 7497 * ordered dio extent we created before but did not have 7498 * yet a corresponding bio submitted (whence it can not 7499 * complete), which makes readahead wait for that 7500 * ordered extent to complete while holding a lock on 7501 * that page. 7502 */ 7503 ret = -ENOTBLK; 7504 } 7505 7506 if (ret) 7507 break; 7508 7509 cond_resched(); 7510 } 7511 7512 return ret; 7513 } 7514 7515 /* The callers of this must take lock_extent() */ 7516 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7517 u64 len, u64 orig_start, u64 block_start, 7518 u64 block_len, u64 orig_block_len, 7519 u64 ram_bytes, int compress_type, 7520 int type) 7521 { 7522 struct extent_map_tree *em_tree; 7523 struct extent_map *em; 7524 int ret; 7525 7526 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7527 type == BTRFS_ORDERED_COMPRESSED || 7528 type == BTRFS_ORDERED_NOCOW || 7529 type == BTRFS_ORDERED_REGULAR); 7530 7531 em_tree = &inode->extent_tree; 7532 em = alloc_extent_map(); 7533 if (!em) 7534 return ERR_PTR(-ENOMEM); 7535 7536 em->start = start; 7537 em->orig_start = orig_start; 7538 em->len = len; 7539 em->block_len = block_len; 7540 em->block_start = block_start; 7541 em->orig_block_len = orig_block_len; 7542 em->ram_bytes = ram_bytes; 7543 em->generation = -1; 7544 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7545 if (type == BTRFS_ORDERED_PREALLOC) { 7546 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7547 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7548 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7549 em->compress_type = compress_type; 7550 } 7551 7552 do { 7553 btrfs_drop_extent_cache(inode, em->start, 7554 em->start + em->len - 1, 0); 7555 write_lock(&em_tree->lock); 7556 ret = add_extent_mapping(em_tree, em, 1); 7557 write_unlock(&em_tree->lock); 7558 /* 7559 * The caller has taken lock_extent(), who could race with us 7560 * to add em? 7561 */ 7562 } while (ret == -EEXIST); 7563 7564 if (ret) { 7565 free_extent_map(em); 7566 return ERR_PTR(ret); 7567 } 7568 7569 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7570 return em; 7571 } 7572 7573 7574 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7575 struct inode *inode, 7576 struct btrfs_dio_data *dio_data, 7577 u64 start, u64 len) 7578 { 7579 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7580 struct extent_map *em = *map; 7581 int ret = 0; 7582 7583 /* 7584 * We don't allocate a new extent in the following cases 7585 * 7586 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7587 * existing extent. 7588 * 2) The extent is marked as PREALLOC. We're good to go here and can 7589 * just use the extent. 7590 * 7591 */ 7592 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7593 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7594 em->block_start != EXTENT_MAP_HOLE)) { 7595 int type; 7596 u64 block_start, orig_start, orig_block_len, ram_bytes; 7597 7598 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7599 type = BTRFS_ORDERED_PREALLOC; 7600 else 7601 type = BTRFS_ORDERED_NOCOW; 7602 len = min(len, em->len - (start - em->start)); 7603 block_start = em->block_start + (start - em->start); 7604 7605 if (can_nocow_extent(inode, start, &len, &orig_start, 7606 &orig_block_len, &ram_bytes, false) == 1 && 7607 btrfs_inc_nocow_writers(fs_info, block_start)) { 7608 struct extent_map *em2; 7609 7610 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7611 orig_start, block_start, 7612 len, orig_block_len, 7613 ram_bytes, type); 7614 btrfs_dec_nocow_writers(fs_info, block_start); 7615 if (type == BTRFS_ORDERED_PREALLOC) { 7616 free_extent_map(em); 7617 *map = em = em2; 7618 } 7619 7620 if (em2 && IS_ERR(em2)) { 7621 ret = PTR_ERR(em2); 7622 goto out; 7623 } 7624 /* 7625 * For inode marked NODATACOW or extent marked PREALLOC, 7626 * use the existing or preallocated extent, so does not 7627 * need to adjust btrfs_space_info's bytes_may_use. 7628 */ 7629 btrfs_free_reserved_data_space_noquota(fs_info, len); 7630 goto skip_cow; 7631 } 7632 } 7633 7634 /* this will cow the extent */ 7635 free_extent_map(em); 7636 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7637 if (IS_ERR(em)) { 7638 ret = PTR_ERR(em); 7639 goto out; 7640 } 7641 7642 len = min(len, em->len - (start - em->start)); 7643 7644 skip_cow: 7645 /* 7646 * Need to update the i_size under the extent lock so buffered 7647 * readers will get the updated i_size when we unlock. 7648 */ 7649 if (start + len > i_size_read(inode)) 7650 i_size_write(inode, start + len); 7651 7652 dio_data->reserve -= len; 7653 out: 7654 return ret; 7655 } 7656 7657 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7658 loff_t length, unsigned int flags, struct iomap *iomap, 7659 struct iomap *srcmap) 7660 { 7661 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7662 struct extent_map *em; 7663 struct extent_state *cached_state = NULL; 7664 struct btrfs_dio_data *dio_data = NULL; 7665 u64 lockstart, lockend; 7666 const bool write = !!(flags & IOMAP_WRITE); 7667 int ret = 0; 7668 u64 len = length; 7669 bool unlock_extents = false; 7670 7671 if (!write) 7672 len = min_t(u64, len, fs_info->sectorsize); 7673 7674 lockstart = start; 7675 lockend = start + len - 1; 7676 7677 /* 7678 * The generic stuff only does filemap_write_and_wait_range, which 7679 * isn't enough if we've written compressed pages to this area, so we 7680 * need to flush the dirty pages again to make absolutely sure that any 7681 * outstanding dirty pages are on disk. 7682 */ 7683 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7684 &BTRFS_I(inode)->runtime_flags)) { 7685 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7686 start + length - 1); 7687 if (ret) 7688 return ret; 7689 } 7690 7691 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7692 if (!dio_data) 7693 return -ENOMEM; 7694 7695 dio_data->length = length; 7696 if (write) { 7697 dio_data->reserve = round_up(length, fs_info->sectorsize); 7698 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7699 &dio_data->data_reserved, 7700 start, dio_data->reserve); 7701 if (ret) { 7702 extent_changeset_free(dio_data->data_reserved); 7703 kfree(dio_data); 7704 return ret; 7705 } 7706 } 7707 iomap->private = dio_data; 7708 7709 7710 /* 7711 * If this errors out it's because we couldn't invalidate pagecache for 7712 * this range and we need to fallback to buffered. 7713 */ 7714 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7715 ret = -ENOTBLK; 7716 goto err; 7717 } 7718 7719 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7720 if (IS_ERR(em)) { 7721 ret = PTR_ERR(em); 7722 goto unlock_err; 7723 } 7724 7725 /* 7726 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7727 * io. INLINE is special, and we could probably kludge it in here, but 7728 * it's still buffered so for safety lets just fall back to the generic 7729 * buffered path. 7730 * 7731 * For COMPRESSED we _have_ to read the entire extent in so we can 7732 * decompress it, so there will be buffering required no matter what we 7733 * do, so go ahead and fallback to buffered. 7734 * 7735 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7736 * to buffered IO. Don't blame me, this is the price we pay for using 7737 * the generic code. 7738 */ 7739 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7740 em->block_start == EXTENT_MAP_INLINE) { 7741 free_extent_map(em); 7742 ret = -ENOTBLK; 7743 goto unlock_err; 7744 } 7745 7746 len = min(len, em->len - (start - em->start)); 7747 if (write) { 7748 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7749 start, len); 7750 if (ret < 0) 7751 goto unlock_err; 7752 unlock_extents = true; 7753 /* Recalc len in case the new em is smaller than requested */ 7754 len = min(len, em->len - (start - em->start)); 7755 } else { 7756 /* 7757 * We need to unlock only the end area that we aren't using. 7758 * The rest is going to be unlocked by the endio routine. 7759 */ 7760 lockstart = start + len; 7761 if (lockstart < lockend) 7762 unlock_extents = true; 7763 } 7764 7765 if (unlock_extents) 7766 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7767 lockstart, lockend, &cached_state); 7768 else 7769 free_extent_state(cached_state); 7770 7771 /* 7772 * Translate extent map information to iomap. 7773 * We trim the extents (and move the addr) even though iomap code does 7774 * that, since we have locked only the parts we are performing I/O in. 7775 */ 7776 if ((em->block_start == EXTENT_MAP_HOLE) || 7777 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7778 iomap->addr = IOMAP_NULL_ADDR; 7779 iomap->type = IOMAP_HOLE; 7780 } else { 7781 iomap->addr = em->block_start + (start - em->start); 7782 iomap->type = IOMAP_MAPPED; 7783 } 7784 iomap->offset = start; 7785 iomap->bdev = fs_info->fs_devices->latest_bdev; 7786 iomap->length = len; 7787 7788 if (write && btrfs_use_zone_append(BTRFS_I(inode), em)) 7789 iomap->flags |= IOMAP_F_ZONE_APPEND; 7790 7791 free_extent_map(em); 7792 7793 return 0; 7794 7795 unlock_err: 7796 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7797 &cached_state); 7798 err: 7799 if (dio_data) { 7800 btrfs_delalloc_release_space(BTRFS_I(inode), 7801 dio_data->data_reserved, start, 7802 dio_data->reserve, true); 7803 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7804 extent_changeset_free(dio_data->data_reserved); 7805 kfree(dio_data); 7806 } 7807 return ret; 7808 } 7809 7810 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7811 ssize_t written, unsigned int flags, struct iomap *iomap) 7812 { 7813 int ret = 0; 7814 struct btrfs_dio_data *dio_data = iomap->private; 7815 size_t submitted = dio_data->submitted; 7816 const bool write = !!(flags & IOMAP_WRITE); 7817 7818 if (!write && (iomap->type == IOMAP_HOLE)) { 7819 /* If reading from a hole, unlock and return */ 7820 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7821 goto out; 7822 } 7823 7824 if (submitted < length) { 7825 pos += submitted; 7826 length -= submitted; 7827 if (write) 7828 __endio_write_update_ordered(BTRFS_I(inode), pos, 7829 length, false); 7830 else 7831 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7832 pos + length - 1); 7833 ret = -ENOTBLK; 7834 } 7835 7836 if (write) { 7837 if (dio_data->reserve) 7838 btrfs_delalloc_release_space(BTRFS_I(inode), 7839 dio_data->data_reserved, pos, 7840 dio_data->reserve, true); 7841 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7842 extent_changeset_free(dio_data->data_reserved); 7843 } 7844 out: 7845 kfree(dio_data); 7846 iomap->private = NULL; 7847 7848 return ret; 7849 } 7850 7851 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7852 { 7853 /* 7854 * This implies a barrier so that stores to dio_bio->bi_status before 7855 * this and loads of dio_bio->bi_status after this are fully ordered. 7856 */ 7857 if (!refcount_dec_and_test(&dip->refs)) 7858 return; 7859 7860 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7861 __endio_write_update_ordered(BTRFS_I(dip->inode), 7862 dip->logical_offset, 7863 dip->bytes, 7864 !dip->dio_bio->bi_status); 7865 } else { 7866 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7867 dip->logical_offset, 7868 dip->logical_offset + dip->bytes - 1); 7869 } 7870 7871 bio_endio(dip->dio_bio); 7872 kfree(dip); 7873 } 7874 7875 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7876 int mirror_num, 7877 unsigned long bio_flags) 7878 { 7879 struct btrfs_dio_private *dip = bio->bi_private; 7880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7881 blk_status_t ret; 7882 7883 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7884 7885 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7886 if (ret) 7887 return ret; 7888 7889 refcount_inc(&dip->refs); 7890 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7891 if (ret) 7892 refcount_dec(&dip->refs); 7893 return ret; 7894 } 7895 7896 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7897 struct btrfs_io_bio *io_bio, 7898 const bool uptodate) 7899 { 7900 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7901 const u32 sectorsize = fs_info->sectorsize; 7902 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7903 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7904 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7905 struct bio_vec bvec; 7906 struct bvec_iter iter; 7907 u64 start = io_bio->logical; 7908 u32 bio_offset = 0; 7909 blk_status_t err = BLK_STS_OK; 7910 7911 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7912 unsigned int i, nr_sectors, pgoff; 7913 7914 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7915 pgoff = bvec.bv_offset; 7916 for (i = 0; i < nr_sectors; i++) { 7917 ASSERT(pgoff < PAGE_SIZE); 7918 if (uptodate && 7919 (!csum || !check_data_csum(inode, io_bio, 7920 bio_offset, bvec.bv_page, 7921 pgoff, start))) { 7922 clean_io_failure(fs_info, failure_tree, io_tree, 7923 start, bvec.bv_page, 7924 btrfs_ino(BTRFS_I(inode)), 7925 pgoff); 7926 } else { 7927 blk_status_t status; 7928 7929 ASSERT((start - io_bio->logical) < UINT_MAX); 7930 status = btrfs_submit_read_repair(inode, 7931 &io_bio->bio, 7932 start - io_bio->logical, 7933 bvec.bv_page, pgoff, 7934 start, 7935 start + sectorsize - 1, 7936 io_bio->mirror_num, 7937 submit_dio_repair_bio); 7938 if (status) 7939 err = status; 7940 } 7941 start += sectorsize; 7942 ASSERT(bio_offset + sectorsize > bio_offset); 7943 bio_offset += sectorsize; 7944 pgoff += sectorsize; 7945 } 7946 } 7947 return err; 7948 } 7949 7950 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7951 const u64 offset, const u64 bytes, 7952 const bool uptodate) 7953 { 7954 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7955 struct btrfs_ordered_extent *ordered = NULL; 7956 struct btrfs_workqueue *wq; 7957 u64 ordered_offset = offset; 7958 u64 ordered_bytes = bytes; 7959 u64 last_offset; 7960 7961 if (btrfs_is_free_space_inode(inode)) 7962 wq = fs_info->endio_freespace_worker; 7963 else 7964 wq = fs_info->endio_write_workers; 7965 7966 while (ordered_offset < offset + bytes) { 7967 last_offset = ordered_offset; 7968 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7969 &ordered_offset, 7970 ordered_bytes, 7971 uptodate)) { 7972 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7973 NULL); 7974 btrfs_queue_work(wq, &ordered->work); 7975 } 7976 7977 /* No ordered extent found in the range, exit */ 7978 if (ordered_offset == last_offset) 7979 return; 7980 /* 7981 * Our bio might span multiple ordered extents. In this case 7982 * we keep going until we have accounted the whole dio. 7983 */ 7984 if (ordered_offset < offset + bytes) { 7985 ordered_bytes = offset + bytes - ordered_offset; 7986 ordered = NULL; 7987 } 7988 } 7989 } 7990 7991 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7992 struct bio *bio, 7993 u64 dio_file_offset) 7994 { 7995 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1); 7996 } 7997 7998 static void btrfs_end_dio_bio(struct bio *bio) 7999 { 8000 struct btrfs_dio_private *dip = bio->bi_private; 8001 blk_status_t err = bio->bi_status; 8002 8003 if (err) 8004 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8005 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8006 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8007 bio->bi_opf, bio->bi_iter.bi_sector, 8008 bio->bi_iter.bi_size, err); 8009 8010 if (bio_op(bio) == REQ_OP_READ) { 8011 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 8012 !err); 8013 } 8014 8015 if (err) 8016 dip->dio_bio->bi_status = err; 8017 8018 btrfs_record_physical_zoned(dip->inode, dip->logical_offset, bio); 8019 8020 bio_put(bio); 8021 btrfs_dio_private_put(dip); 8022 } 8023 8024 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8025 struct inode *inode, u64 file_offset, int async_submit) 8026 { 8027 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8028 struct btrfs_dio_private *dip = bio->bi_private; 8029 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 8030 blk_status_t ret; 8031 8032 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8033 if (async_submit) 8034 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8035 8036 if (!write) { 8037 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8038 if (ret) 8039 goto err; 8040 } 8041 8042 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8043 goto map; 8044 8045 if (write && async_submit) { 8046 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 8047 btrfs_submit_bio_start_direct_io); 8048 goto err; 8049 } else if (write) { 8050 /* 8051 * If we aren't doing async submit, calculate the csum of the 8052 * bio now. 8053 */ 8054 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 8055 if (ret) 8056 goto err; 8057 } else { 8058 u64 csum_offset; 8059 8060 csum_offset = file_offset - dip->logical_offset; 8061 csum_offset >>= fs_info->sectorsize_bits; 8062 csum_offset *= fs_info->csum_size; 8063 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 8064 } 8065 map: 8066 ret = btrfs_map_bio(fs_info, bio, 0); 8067 err: 8068 return ret; 8069 } 8070 8071 /* 8072 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 8073 * or ordered extents whether or not we submit any bios. 8074 */ 8075 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 8076 struct inode *inode, 8077 loff_t file_offset) 8078 { 8079 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8080 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 8081 size_t dip_size; 8082 struct btrfs_dio_private *dip; 8083 8084 dip_size = sizeof(*dip); 8085 if (!write && csum) { 8086 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8087 size_t nblocks; 8088 8089 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 8090 dip_size += fs_info->csum_size * nblocks; 8091 } 8092 8093 dip = kzalloc(dip_size, GFP_NOFS); 8094 if (!dip) 8095 return NULL; 8096 8097 dip->inode = inode; 8098 dip->logical_offset = file_offset; 8099 dip->bytes = dio_bio->bi_iter.bi_size; 8100 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 8101 dip->dio_bio = dio_bio; 8102 refcount_set(&dip->refs, 1); 8103 return dip; 8104 } 8105 8106 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 8107 struct bio *dio_bio, loff_t file_offset) 8108 { 8109 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 8110 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8111 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 8112 BTRFS_BLOCK_GROUP_RAID56_MASK); 8113 struct btrfs_dio_private *dip; 8114 struct bio *bio; 8115 u64 start_sector; 8116 int async_submit = 0; 8117 u64 submit_len; 8118 int clone_offset = 0; 8119 int clone_len; 8120 u64 logical; 8121 int ret; 8122 blk_status_t status; 8123 struct btrfs_io_geometry geom; 8124 struct btrfs_dio_data *dio_data = iomap->private; 8125 struct extent_map *em = NULL; 8126 8127 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 8128 if (!dip) { 8129 if (!write) { 8130 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8131 file_offset + dio_bio->bi_iter.bi_size - 1); 8132 } 8133 dio_bio->bi_status = BLK_STS_RESOURCE; 8134 bio_endio(dio_bio); 8135 return BLK_QC_T_NONE; 8136 } 8137 8138 if (!write) { 8139 /* 8140 * Load the csums up front to reduce csum tree searches and 8141 * contention when submitting bios. 8142 * 8143 * If we have csums disabled this will do nothing. 8144 */ 8145 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8146 if (status != BLK_STS_OK) 8147 goto out_err; 8148 } 8149 8150 start_sector = dio_bio->bi_iter.bi_sector; 8151 submit_len = dio_bio->bi_iter.bi_size; 8152 8153 do { 8154 logical = start_sector << 9; 8155 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8156 if (IS_ERR(em)) { 8157 status = errno_to_blk_status(PTR_ERR(em)); 8158 em = NULL; 8159 goto out_err_em; 8160 } 8161 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8162 logical, submit_len, &geom); 8163 if (ret) { 8164 status = errno_to_blk_status(ret); 8165 goto out_err_em; 8166 } 8167 ASSERT(geom.len <= INT_MAX); 8168 8169 clone_len = min_t(int, submit_len, geom.len); 8170 8171 /* 8172 * This will never fail as it's passing GPF_NOFS and 8173 * the allocation is backed by btrfs_bioset. 8174 */ 8175 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8176 bio->bi_private = dip; 8177 bio->bi_end_io = btrfs_end_dio_bio; 8178 btrfs_io_bio(bio)->logical = file_offset; 8179 8180 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8181 status = extract_ordered_extent(BTRFS_I(inode), bio, 8182 file_offset); 8183 if (status) { 8184 bio_put(bio); 8185 goto out_err; 8186 } 8187 } 8188 8189 ASSERT(submit_len >= clone_len); 8190 submit_len -= clone_len; 8191 8192 /* 8193 * Increase the count before we submit the bio so we know 8194 * the end IO handler won't happen before we increase the 8195 * count. Otherwise, the dip might get freed before we're 8196 * done setting it up. 8197 * 8198 * We transfer the initial reference to the last bio, so we 8199 * don't need to increment the reference count for the last one. 8200 */ 8201 if (submit_len > 0) { 8202 refcount_inc(&dip->refs); 8203 /* 8204 * If we are submitting more than one bio, submit them 8205 * all asynchronously. The exception is RAID 5 or 6, as 8206 * asynchronous checksums make it difficult to collect 8207 * full stripe writes. 8208 */ 8209 if (!raid56) 8210 async_submit = 1; 8211 } 8212 8213 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8214 async_submit); 8215 if (status) { 8216 bio_put(bio); 8217 if (submit_len > 0) 8218 refcount_dec(&dip->refs); 8219 goto out_err_em; 8220 } 8221 8222 dio_data->submitted += clone_len; 8223 clone_offset += clone_len; 8224 start_sector += clone_len >> 9; 8225 file_offset += clone_len; 8226 8227 free_extent_map(em); 8228 } while (submit_len > 0); 8229 return BLK_QC_T_NONE; 8230 8231 out_err_em: 8232 free_extent_map(em); 8233 out_err: 8234 dip->dio_bio->bi_status = status; 8235 btrfs_dio_private_put(dip); 8236 8237 return BLK_QC_T_NONE; 8238 } 8239 8240 const struct iomap_ops btrfs_dio_iomap_ops = { 8241 .iomap_begin = btrfs_dio_iomap_begin, 8242 .iomap_end = btrfs_dio_iomap_end, 8243 }; 8244 8245 const struct iomap_dio_ops btrfs_dio_ops = { 8246 .submit_io = btrfs_submit_direct, 8247 }; 8248 8249 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8250 u64 start, u64 len) 8251 { 8252 int ret; 8253 8254 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8255 if (ret) 8256 return ret; 8257 8258 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8259 } 8260 8261 int btrfs_readpage(struct file *file, struct page *page) 8262 { 8263 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8264 u64 start = page_offset(page); 8265 u64 end = start + PAGE_SIZE - 1; 8266 unsigned long bio_flags = 0; 8267 struct bio *bio = NULL; 8268 int ret; 8269 8270 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8271 8272 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); 8273 if (bio) 8274 ret = submit_one_bio(bio, 0, bio_flags); 8275 return ret; 8276 } 8277 8278 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8279 { 8280 struct inode *inode = page->mapping->host; 8281 int ret; 8282 8283 if (current->flags & PF_MEMALLOC) { 8284 redirty_page_for_writepage(wbc, page); 8285 unlock_page(page); 8286 return 0; 8287 } 8288 8289 /* 8290 * If we are under memory pressure we will call this directly from the 8291 * VM, we need to make sure we have the inode referenced for the ordered 8292 * extent. If not just return like we didn't do anything. 8293 */ 8294 if (!igrab(inode)) { 8295 redirty_page_for_writepage(wbc, page); 8296 return AOP_WRITEPAGE_ACTIVATE; 8297 } 8298 ret = extent_write_full_page(page, wbc); 8299 btrfs_add_delayed_iput(inode); 8300 return ret; 8301 } 8302 8303 static int btrfs_writepages(struct address_space *mapping, 8304 struct writeback_control *wbc) 8305 { 8306 return extent_writepages(mapping, wbc); 8307 } 8308 8309 static void btrfs_readahead(struct readahead_control *rac) 8310 { 8311 extent_readahead(rac); 8312 } 8313 8314 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8315 { 8316 int ret = try_release_extent_mapping(page, gfp_flags); 8317 if (ret == 1) 8318 clear_page_extent_mapped(page); 8319 return ret; 8320 } 8321 8322 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8323 { 8324 if (PageWriteback(page) || PageDirty(page)) 8325 return 0; 8326 return __btrfs_releasepage(page, gfp_flags); 8327 } 8328 8329 #ifdef CONFIG_MIGRATION 8330 static int btrfs_migratepage(struct address_space *mapping, 8331 struct page *newpage, struct page *page, 8332 enum migrate_mode mode) 8333 { 8334 int ret; 8335 8336 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8337 if (ret != MIGRATEPAGE_SUCCESS) 8338 return ret; 8339 8340 if (page_has_private(page)) 8341 attach_page_private(newpage, detach_page_private(page)); 8342 8343 if (PagePrivate2(page)) { 8344 ClearPagePrivate2(page); 8345 SetPagePrivate2(newpage); 8346 } 8347 8348 if (mode != MIGRATE_SYNC_NO_COPY) 8349 migrate_page_copy(newpage, page); 8350 else 8351 migrate_page_states(newpage, page); 8352 return MIGRATEPAGE_SUCCESS; 8353 } 8354 #endif 8355 8356 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8357 unsigned int length) 8358 { 8359 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8360 struct extent_io_tree *tree = &inode->io_tree; 8361 struct btrfs_ordered_extent *ordered; 8362 struct extent_state *cached_state = NULL; 8363 u64 page_start = page_offset(page); 8364 u64 page_end = page_start + PAGE_SIZE - 1; 8365 u64 start; 8366 u64 end; 8367 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8368 bool found_ordered = false; 8369 bool completed_ordered = false; 8370 8371 /* 8372 * we have the page locked, so new writeback can't start, 8373 * and the dirty bit won't be cleared while we are here. 8374 * 8375 * Wait for IO on this page so that we can safely clear 8376 * the PagePrivate2 bit and do ordered accounting 8377 */ 8378 wait_on_page_writeback(page); 8379 8380 if (offset) { 8381 btrfs_releasepage(page, GFP_NOFS); 8382 return; 8383 } 8384 8385 if (!inode_evicting) 8386 lock_extent_bits(tree, page_start, page_end, &cached_state); 8387 8388 start = page_start; 8389 again: 8390 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); 8391 if (ordered) { 8392 found_ordered = true; 8393 end = min(page_end, 8394 ordered->file_offset + ordered->num_bytes - 1); 8395 /* 8396 * IO on this page will never be started, so we need to account 8397 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8398 * here, must leave that up for the ordered extent completion. 8399 */ 8400 if (!inode_evicting) 8401 clear_extent_bit(tree, start, end, 8402 EXTENT_DELALLOC | 8403 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8404 EXTENT_DEFRAG, 1, 0, &cached_state); 8405 /* 8406 * whoever cleared the private bit is responsible 8407 * for the finish_ordered_io 8408 */ 8409 if (TestClearPagePrivate2(page)) { 8410 spin_lock_irq(&inode->ordered_tree.lock); 8411 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8412 ordered->truncated_len = min(ordered->truncated_len, 8413 start - ordered->file_offset); 8414 spin_unlock_irq(&inode->ordered_tree.lock); 8415 8416 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8417 start, 8418 end - start + 1, 1)) { 8419 btrfs_finish_ordered_io(ordered); 8420 completed_ordered = true; 8421 } 8422 } 8423 btrfs_put_ordered_extent(ordered); 8424 if (!inode_evicting) { 8425 cached_state = NULL; 8426 lock_extent_bits(tree, start, end, 8427 &cached_state); 8428 } 8429 8430 start = end + 1; 8431 if (start < page_end) 8432 goto again; 8433 } 8434 8435 /* 8436 * Qgroup reserved space handler 8437 * Page here will be either 8438 * 1) Already written to disk or ordered extent already submitted 8439 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8440 * Qgroup will be handled by its qgroup_record then. 8441 * btrfs_qgroup_free_data() call will do nothing here. 8442 * 8443 * 2) Not written to disk yet 8444 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8445 * bit of its io_tree, and free the qgroup reserved data space. 8446 * Since the IO will never happen for this page. 8447 */ 8448 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8449 if (!inode_evicting) { 8450 bool delete = true; 8451 8452 /* 8453 * If there's an ordered extent for this range and we have not 8454 * finished it ourselves, we must leave EXTENT_DELALLOC_NEW set 8455 * in the range for the ordered extent completion. We must also 8456 * not delete the range, otherwise we would lose that bit (and 8457 * any other bits set in the range). Make sure EXTENT_UPTODATE 8458 * is cleared if we don't delete, otherwise it can lead to 8459 * corruptions if the i_size is extented later. 8460 */ 8461 if (found_ordered && !completed_ordered) 8462 delete = false; 8463 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8464 EXTENT_DELALLOC | EXTENT_UPTODATE | 8465 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8466 delete, &cached_state); 8467 8468 __btrfs_releasepage(page, GFP_NOFS); 8469 } 8470 8471 ClearPageChecked(page); 8472 clear_page_extent_mapped(page); 8473 } 8474 8475 /* 8476 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8477 * called from a page fault handler when a page is first dirtied. Hence we must 8478 * be careful to check for EOF conditions here. We set the page up correctly 8479 * for a written page which means we get ENOSPC checking when writing into 8480 * holes and correct delalloc and unwritten extent mapping on filesystems that 8481 * support these features. 8482 * 8483 * We are not allowed to take the i_mutex here so we have to play games to 8484 * protect against truncate races as the page could now be beyond EOF. Because 8485 * truncate_setsize() writes the inode size before removing pages, once we have 8486 * the page lock we can determine safely if the page is beyond EOF. If it is not 8487 * beyond EOF, then the page is guaranteed safe against truncation until we 8488 * unlock the page. 8489 */ 8490 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8491 { 8492 struct page *page = vmf->page; 8493 struct inode *inode = file_inode(vmf->vma->vm_file); 8494 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8495 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8496 struct btrfs_ordered_extent *ordered; 8497 struct extent_state *cached_state = NULL; 8498 struct extent_changeset *data_reserved = NULL; 8499 unsigned long zero_start; 8500 loff_t size; 8501 vm_fault_t ret; 8502 int ret2; 8503 int reserved = 0; 8504 u64 reserved_space; 8505 u64 page_start; 8506 u64 page_end; 8507 u64 end; 8508 8509 reserved_space = PAGE_SIZE; 8510 8511 sb_start_pagefault(inode->i_sb); 8512 page_start = page_offset(page); 8513 page_end = page_start + PAGE_SIZE - 1; 8514 end = page_end; 8515 8516 /* 8517 * Reserving delalloc space after obtaining the page lock can lead to 8518 * deadlock. For example, if a dirty page is locked by this function 8519 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8520 * dirty page write out, then the btrfs_writepage() function could 8521 * end up waiting indefinitely to get a lock on the page currently 8522 * being processed by btrfs_page_mkwrite() function. 8523 */ 8524 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8525 page_start, reserved_space); 8526 if (!ret2) { 8527 ret2 = file_update_time(vmf->vma->vm_file); 8528 reserved = 1; 8529 } 8530 if (ret2) { 8531 ret = vmf_error(ret2); 8532 if (reserved) 8533 goto out; 8534 goto out_noreserve; 8535 } 8536 8537 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8538 again: 8539 down_read(&BTRFS_I(inode)->i_mmap_lock); 8540 lock_page(page); 8541 size = i_size_read(inode); 8542 8543 if ((page->mapping != inode->i_mapping) || 8544 (page_start >= size)) { 8545 /* page got truncated out from underneath us */ 8546 goto out_unlock; 8547 } 8548 wait_on_page_writeback(page); 8549 8550 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8551 ret2 = set_page_extent_mapped(page); 8552 if (ret2 < 0) { 8553 ret = vmf_error(ret2); 8554 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8555 goto out_unlock; 8556 } 8557 8558 /* 8559 * we can't set the delalloc bits if there are pending ordered 8560 * extents. Drop our locks and wait for them to finish 8561 */ 8562 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8563 PAGE_SIZE); 8564 if (ordered) { 8565 unlock_extent_cached(io_tree, page_start, page_end, 8566 &cached_state); 8567 unlock_page(page); 8568 up_read(&BTRFS_I(inode)->i_mmap_lock); 8569 btrfs_start_ordered_extent(ordered, 1); 8570 btrfs_put_ordered_extent(ordered); 8571 goto again; 8572 } 8573 8574 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8575 reserved_space = round_up(size - page_start, 8576 fs_info->sectorsize); 8577 if (reserved_space < PAGE_SIZE) { 8578 end = page_start + reserved_space - 1; 8579 btrfs_delalloc_release_space(BTRFS_I(inode), 8580 data_reserved, page_start, 8581 PAGE_SIZE - reserved_space, true); 8582 } 8583 } 8584 8585 /* 8586 * page_mkwrite gets called when the page is firstly dirtied after it's 8587 * faulted in, but write(2) could also dirty a page and set delalloc 8588 * bits, thus in this case for space account reason, we still need to 8589 * clear any delalloc bits within this page range since we have to 8590 * reserve data&meta space before lock_page() (see above comments). 8591 */ 8592 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8593 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8594 EXTENT_DEFRAG, 0, 0, &cached_state); 8595 8596 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8597 &cached_state); 8598 if (ret2) { 8599 unlock_extent_cached(io_tree, page_start, page_end, 8600 &cached_state); 8601 ret = VM_FAULT_SIGBUS; 8602 goto out_unlock; 8603 } 8604 8605 /* page is wholly or partially inside EOF */ 8606 if (page_start + PAGE_SIZE > size) 8607 zero_start = offset_in_page(size); 8608 else 8609 zero_start = PAGE_SIZE; 8610 8611 if (zero_start != PAGE_SIZE) { 8612 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8613 flush_dcache_page(page); 8614 } 8615 ClearPageChecked(page); 8616 set_page_dirty(page); 8617 SetPageUptodate(page); 8618 8619 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8620 8621 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8622 up_read(&BTRFS_I(inode)->i_mmap_lock); 8623 8624 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8625 sb_end_pagefault(inode->i_sb); 8626 extent_changeset_free(data_reserved); 8627 return VM_FAULT_LOCKED; 8628 8629 out_unlock: 8630 unlock_page(page); 8631 up_read(&BTRFS_I(inode)->i_mmap_lock); 8632 out: 8633 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8634 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8635 reserved_space, (ret != 0)); 8636 out_noreserve: 8637 sb_end_pagefault(inode->i_sb); 8638 extent_changeset_free(data_reserved); 8639 return ret; 8640 } 8641 8642 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8643 { 8644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8645 struct btrfs_root *root = BTRFS_I(inode)->root; 8646 struct btrfs_block_rsv *rsv; 8647 int ret; 8648 struct btrfs_trans_handle *trans; 8649 u64 mask = fs_info->sectorsize - 1; 8650 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8651 8652 if (!skip_writeback) { 8653 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8654 (u64)-1); 8655 if (ret) 8656 return ret; 8657 } 8658 8659 /* 8660 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8661 * things going on here: 8662 * 8663 * 1) We need to reserve space to update our inode. 8664 * 8665 * 2) We need to have something to cache all the space that is going to 8666 * be free'd up by the truncate operation, but also have some slack 8667 * space reserved in case it uses space during the truncate (thank you 8668 * very much snapshotting). 8669 * 8670 * And we need these to be separate. The fact is we can use a lot of 8671 * space doing the truncate, and we have no earthly idea how much space 8672 * we will use, so we need the truncate reservation to be separate so it 8673 * doesn't end up using space reserved for updating the inode. We also 8674 * need to be able to stop the transaction and start a new one, which 8675 * means we need to be able to update the inode several times, and we 8676 * have no idea of knowing how many times that will be, so we can't just 8677 * reserve 1 item for the entirety of the operation, so that has to be 8678 * done separately as well. 8679 * 8680 * So that leaves us with 8681 * 8682 * 1) rsv - for the truncate reservation, which we will steal from the 8683 * transaction reservation. 8684 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8685 * updating the inode. 8686 */ 8687 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8688 if (!rsv) 8689 return -ENOMEM; 8690 rsv->size = min_size; 8691 rsv->failfast = 1; 8692 8693 /* 8694 * 1 for the truncate slack space 8695 * 1 for updating the inode. 8696 */ 8697 trans = btrfs_start_transaction(root, 2); 8698 if (IS_ERR(trans)) { 8699 ret = PTR_ERR(trans); 8700 goto out; 8701 } 8702 8703 /* Migrate the slack space for the truncate to our reserve */ 8704 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8705 min_size, false); 8706 BUG_ON(ret); 8707 8708 /* 8709 * So if we truncate and then write and fsync we normally would just 8710 * write the extents that changed, which is a problem if we need to 8711 * first truncate that entire inode. So set this flag so we write out 8712 * all of the extents in the inode to the sync log so we're completely 8713 * safe. 8714 */ 8715 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8716 trans->block_rsv = rsv; 8717 8718 while (1) { 8719 ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode), 8720 inode->i_size, 8721 BTRFS_EXTENT_DATA_KEY); 8722 trans->block_rsv = &fs_info->trans_block_rsv; 8723 if (ret != -ENOSPC && ret != -EAGAIN) 8724 break; 8725 8726 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8727 if (ret) 8728 break; 8729 8730 btrfs_end_transaction(trans); 8731 btrfs_btree_balance_dirty(fs_info); 8732 8733 trans = btrfs_start_transaction(root, 2); 8734 if (IS_ERR(trans)) { 8735 ret = PTR_ERR(trans); 8736 trans = NULL; 8737 break; 8738 } 8739 8740 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8741 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8742 rsv, min_size, false); 8743 BUG_ON(ret); /* shouldn't happen */ 8744 trans->block_rsv = rsv; 8745 } 8746 8747 /* 8748 * We can't call btrfs_truncate_block inside a trans handle as we could 8749 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8750 * we've truncated everything except the last little bit, and can do 8751 * btrfs_truncate_block and then update the disk_i_size. 8752 */ 8753 if (ret == NEED_TRUNCATE_BLOCK) { 8754 btrfs_end_transaction(trans); 8755 btrfs_btree_balance_dirty(fs_info); 8756 8757 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8758 if (ret) 8759 goto out; 8760 trans = btrfs_start_transaction(root, 1); 8761 if (IS_ERR(trans)) { 8762 ret = PTR_ERR(trans); 8763 goto out; 8764 } 8765 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8766 } 8767 8768 if (trans) { 8769 int ret2; 8770 8771 trans->block_rsv = &fs_info->trans_block_rsv; 8772 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8773 if (ret2 && !ret) 8774 ret = ret2; 8775 8776 ret2 = btrfs_end_transaction(trans); 8777 if (ret2 && !ret) 8778 ret = ret2; 8779 btrfs_btree_balance_dirty(fs_info); 8780 } 8781 out: 8782 btrfs_free_block_rsv(fs_info, rsv); 8783 8784 return ret; 8785 } 8786 8787 /* 8788 * create a new subvolume directory/inode (helper for the ioctl). 8789 */ 8790 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8791 struct btrfs_root *new_root, 8792 struct btrfs_root *parent_root) 8793 { 8794 struct inode *inode; 8795 int err; 8796 u64 index = 0; 8797 u64 ino; 8798 8799 err = btrfs_get_free_objectid(new_root, &ino); 8800 if (err < 0) 8801 return err; 8802 8803 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, ino, ino, 8804 S_IFDIR | (~current_umask() & S_IRWXUGO), 8805 &index); 8806 if (IS_ERR(inode)) 8807 return PTR_ERR(inode); 8808 inode->i_op = &btrfs_dir_inode_operations; 8809 inode->i_fop = &btrfs_dir_file_operations; 8810 8811 set_nlink(inode, 1); 8812 btrfs_i_size_write(BTRFS_I(inode), 0); 8813 unlock_new_inode(inode); 8814 8815 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8816 if (err) 8817 btrfs_err(new_root->fs_info, 8818 "error inheriting subvolume %llu properties: %d", 8819 new_root->root_key.objectid, err); 8820 8821 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8822 8823 iput(inode); 8824 return err; 8825 } 8826 8827 struct inode *btrfs_alloc_inode(struct super_block *sb) 8828 { 8829 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8830 struct btrfs_inode *ei; 8831 struct inode *inode; 8832 8833 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8834 if (!ei) 8835 return NULL; 8836 8837 ei->root = NULL; 8838 ei->generation = 0; 8839 ei->last_trans = 0; 8840 ei->last_sub_trans = 0; 8841 ei->logged_trans = 0; 8842 ei->delalloc_bytes = 0; 8843 ei->new_delalloc_bytes = 0; 8844 ei->defrag_bytes = 0; 8845 ei->disk_i_size = 0; 8846 ei->flags = 0; 8847 ei->csum_bytes = 0; 8848 ei->index_cnt = (u64)-1; 8849 ei->dir_index = 0; 8850 ei->last_unlink_trans = 0; 8851 ei->last_reflink_trans = 0; 8852 ei->last_log_commit = 0; 8853 8854 spin_lock_init(&ei->lock); 8855 ei->outstanding_extents = 0; 8856 if (sb->s_magic != BTRFS_TEST_MAGIC) 8857 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8858 BTRFS_BLOCK_RSV_DELALLOC); 8859 ei->runtime_flags = 0; 8860 ei->prop_compress = BTRFS_COMPRESS_NONE; 8861 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8862 8863 ei->delayed_node = NULL; 8864 8865 ei->i_otime.tv_sec = 0; 8866 ei->i_otime.tv_nsec = 0; 8867 8868 inode = &ei->vfs_inode; 8869 extent_map_tree_init(&ei->extent_tree); 8870 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8871 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8872 IO_TREE_INODE_IO_FAILURE, inode); 8873 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8874 IO_TREE_INODE_FILE_EXTENT, inode); 8875 ei->io_tree.track_uptodate = true; 8876 ei->io_failure_tree.track_uptodate = true; 8877 atomic_set(&ei->sync_writers, 0); 8878 mutex_init(&ei->log_mutex); 8879 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8880 INIT_LIST_HEAD(&ei->delalloc_inodes); 8881 INIT_LIST_HEAD(&ei->delayed_iput); 8882 RB_CLEAR_NODE(&ei->rb_node); 8883 init_rwsem(&ei->i_mmap_lock); 8884 8885 return inode; 8886 } 8887 8888 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8889 void btrfs_test_destroy_inode(struct inode *inode) 8890 { 8891 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8892 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8893 } 8894 #endif 8895 8896 void btrfs_free_inode(struct inode *inode) 8897 { 8898 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8899 } 8900 8901 void btrfs_destroy_inode(struct inode *vfs_inode) 8902 { 8903 struct btrfs_ordered_extent *ordered; 8904 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8905 struct btrfs_root *root = inode->root; 8906 8907 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8908 WARN_ON(vfs_inode->i_data.nrpages); 8909 WARN_ON(inode->block_rsv.reserved); 8910 WARN_ON(inode->block_rsv.size); 8911 WARN_ON(inode->outstanding_extents); 8912 WARN_ON(inode->delalloc_bytes); 8913 WARN_ON(inode->new_delalloc_bytes); 8914 WARN_ON(inode->csum_bytes); 8915 WARN_ON(inode->defrag_bytes); 8916 8917 /* 8918 * This can happen where we create an inode, but somebody else also 8919 * created the same inode and we need to destroy the one we already 8920 * created. 8921 */ 8922 if (!root) 8923 return; 8924 8925 while (1) { 8926 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8927 if (!ordered) 8928 break; 8929 else { 8930 btrfs_err(root->fs_info, 8931 "found ordered extent %llu %llu on inode cleanup", 8932 ordered->file_offset, ordered->num_bytes); 8933 btrfs_remove_ordered_extent(inode, ordered); 8934 btrfs_put_ordered_extent(ordered); 8935 btrfs_put_ordered_extent(ordered); 8936 } 8937 } 8938 btrfs_qgroup_check_reserved_leak(inode); 8939 inode_tree_del(inode); 8940 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8941 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8942 btrfs_put_root(inode->root); 8943 } 8944 8945 int btrfs_drop_inode(struct inode *inode) 8946 { 8947 struct btrfs_root *root = BTRFS_I(inode)->root; 8948 8949 if (root == NULL) 8950 return 1; 8951 8952 /* the snap/subvol tree is on deleting */ 8953 if (btrfs_root_refs(&root->root_item) == 0) 8954 return 1; 8955 else 8956 return generic_drop_inode(inode); 8957 } 8958 8959 static void init_once(void *foo) 8960 { 8961 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8962 8963 inode_init_once(&ei->vfs_inode); 8964 } 8965 8966 void __cold btrfs_destroy_cachep(void) 8967 { 8968 /* 8969 * Make sure all delayed rcu free inodes are flushed before we 8970 * destroy cache. 8971 */ 8972 rcu_barrier(); 8973 kmem_cache_destroy(btrfs_inode_cachep); 8974 kmem_cache_destroy(btrfs_trans_handle_cachep); 8975 kmem_cache_destroy(btrfs_path_cachep); 8976 kmem_cache_destroy(btrfs_free_space_cachep); 8977 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8978 } 8979 8980 int __init btrfs_init_cachep(void) 8981 { 8982 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8983 sizeof(struct btrfs_inode), 0, 8984 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8985 init_once); 8986 if (!btrfs_inode_cachep) 8987 goto fail; 8988 8989 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8990 sizeof(struct btrfs_trans_handle), 0, 8991 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8992 if (!btrfs_trans_handle_cachep) 8993 goto fail; 8994 8995 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8996 sizeof(struct btrfs_path), 0, 8997 SLAB_MEM_SPREAD, NULL); 8998 if (!btrfs_path_cachep) 8999 goto fail; 9000 9001 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9002 sizeof(struct btrfs_free_space), 0, 9003 SLAB_MEM_SPREAD, NULL); 9004 if (!btrfs_free_space_cachep) 9005 goto fail; 9006 9007 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9008 PAGE_SIZE, PAGE_SIZE, 9009 SLAB_MEM_SPREAD, NULL); 9010 if (!btrfs_free_space_bitmap_cachep) 9011 goto fail; 9012 9013 return 0; 9014 fail: 9015 btrfs_destroy_cachep(); 9016 return -ENOMEM; 9017 } 9018 9019 static int btrfs_getattr(struct user_namespace *mnt_userns, 9020 const struct path *path, struct kstat *stat, 9021 u32 request_mask, unsigned int flags) 9022 { 9023 u64 delalloc_bytes; 9024 u64 inode_bytes; 9025 struct inode *inode = d_inode(path->dentry); 9026 u32 blocksize = inode->i_sb->s_blocksize; 9027 u32 bi_flags = BTRFS_I(inode)->flags; 9028 9029 stat->result_mask |= STATX_BTIME; 9030 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9031 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9032 if (bi_flags & BTRFS_INODE_APPEND) 9033 stat->attributes |= STATX_ATTR_APPEND; 9034 if (bi_flags & BTRFS_INODE_COMPRESS) 9035 stat->attributes |= STATX_ATTR_COMPRESSED; 9036 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9037 stat->attributes |= STATX_ATTR_IMMUTABLE; 9038 if (bi_flags & BTRFS_INODE_NODUMP) 9039 stat->attributes |= STATX_ATTR_NODUMP; 9040 9041 stat->attributes_mask |= (STATX_ATTR_APPEND | 9042 STATX_ATTR_COMPRESSED | 9043 STATX_ATTR_IMMUTABLE | 9044 STATX_ATTR_NODUMP); 9045 9046 generic_fillattr(&init_user_ns, inode, stat); 9047 stat->dev = BTRFS_I(inode)->root->anon_dev; 9048 9049 spin_lock(&BTRFS_I(inode)->lock); 9050 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9051 inode_bytes = inode_get_bytes(inode); 9052 spin_unlock(&BTRFS_I(inode)->lock); 9053 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9054 ALIGN(delalloc_bytes, blocksize)) >> 9; 9055 return 0; 9056 } 9057 9058 static int btrfs_rename_exchange(struct inode *old_dir, 9059 struct dentry *old_dentry, 9060 struct inode *new_dir, 9061 struct dentry *new_dentry) 9062 { 9063 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9064 struct btrfs_trans_handle *trans; 9065 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9066 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9067 struct inode *new_inode = new_dentry->d_inode; 9068 struct inode *old_inode = old_dentry->d_inode; 9069 struct timespec64 ctime = current_time(old_inode); 9070 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9071 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9072 u64 old_idx = 0; 9073 u64 new_idx = 0; 9074 int ret; 9075 int ret2; 9076 bool root_log_pinned = false; 9077 bool dest_log_pinned = false; 9078 9079 /* we only allow rename subvolume link between subvolumes */ 9080 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9081 return -EXDEV; 9082 9083 /* close the race window with snapshot create/destroy ioctl */ 9084 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9085 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9086 down_read(&fs_info->subvol_sem); 9087 9088 /* 9089 * We want to reserve the absolute worst case amount of items. So if 9090 * both inodes are subvols and we need to unlink them then that would 9091 * require 4 item modifications, but if they are both normal inodes it 9092 * would require 5 item modifications, so we'll assume their normal 9093 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9094 * should cover the worst case number of items we'll modify. 9095 */ 9096 trans = btrfs_start_transaction(root, 12); 9097 if (IS_ERR(trans)) { 9098 ret = PTR_ERR(trans); 9099 goto out_notrans; 9100 } 9101 9102 if (dest != root) { 9103 ret = btrfs_record_root_in_trans(trans, dest); 9104 if (ret) 9105 goto out_fail; 9106 } 9107 9108 /* 9109 * We need to find a free sequence number both in the source and 9110 * in the destination directory for the exchange. 9111 */ 9112 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9113 if (ret) 9114 goto out_fail; 9115 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9116 if (ret) 9117 goto out_fail; 9118 9119 BTRFS_I(old_inode)->dir_index = 0ULL; 9120 BTRFS_I(new_inode)->dir_index = 0ULL; 9121 9122 /* Reference for the source. */ 9123 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9124 /* force full log commit if subvolume involved. */ 9125 btrfs_set_log_full_commit(trans); 9126 } else { 9127 btrfs_pin_log_trans(root); 9128 root_log_pinned = true; 9129 ret = btrfs_insert_inode_ref(trans, dest, 9130 new_dentry->d_name.name, 9131 new_dentry->d_name.len, 9132 old_ino, 9133 btrfs_ino(BTRFS_I(new_dir)), 9134 old_idx); 9135 if (ret) 9136 goto out_fail; 9137 } 9138 9139 /* And now for the dest. */ 9140 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9141 /* force full log commit if subvolume involved. */ 9142 btrfs_set_log_full_commit(trans); 9143 } else { 9144 btrfs_pin_log_trans(dest); 9145 dest_log_pinned = true; 9146 ret = btrfs_insert_inode_ref(trans, root, 9147 old_dentry->d_name.name, 9148 old_dentry->d_name.len, 9149 new_ino, 9150 btrfs_ino(BTRFS_I(old_dir)), 9151 new_idx); 9152 if (ret) 9153 goto out_fail; 9154 } 9155 9156 /* Update inode version and ctime/mtime. */ 9157 inode_inc_iversion(old_dir); 9158 inode_inc_iversion(new_dir); 9159 inode_inc_iversion(old_inode); 9160 inode_inc_iversion(new_inode); 9161 old_dir->i_ctime = old_dir->i_mtime = ctime; 9162 new_dir->i_ctime = new_dir->i_mtime = ctime; 9163 old_inode->i_ctime = ctime; 9164 new_inode->i_ctime = ctime; 9165 9166 if (old_dentry->d_parent != new_dentry->d_parent) { 9167 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9168 BTRFS_I(old_inode), 1); 9169 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9170 BTRFS_I(new_inode), 1); 9171 } 9172 9173 /* src is a subvolume */ 9174 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9175 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9176 } else { /* src is an inode */ 9177 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9178 BTRFS_I(old_dentry->d_inode), 9179 old_dentry->d_name.name, 9180 old_dentry->d_name.len); 9181 if (!ret) 9182 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9183 } 9184 if (ret) { 9185 btrfs_abort_transaction(trans, ret); 9186 goto out_fail; 9187 } 9188 9189 /* dest is a subvolume */ 9190 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9191 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9192 } else { /* dest is an inode */ 9193 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9194 BTRFS_I(new_dentry->d_inode), 9195 new_dentry->d_name.name, 9196 new_dentry->d_name.len); 9197 if (!ret) 9198 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9199 } 9200 if (ret) { 9201 btrfs_abort_transaction(trans, ret); 9202 goto out_fail; 9203 } 9204 9205 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9206 new_dentry->d_name.name, 9207 new_dentry->d_name.len, 0, old_idx); 9208 if (ret) { 9209 btrfs_abort_transaction(trans, ret); 9210 goto out_fail; 9211 } 9212 9213 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9214 old_dentry->d_name.name, 9215 old_dentry->d_name.len, 0, new_idx); 9216 if (ret) { 9217 btrfs_abort_transaction(trans, ret); 9218 goto out_fail; 9219 } 9220 9221 if (old_inode->i_nlink == 1) 9222 BTRFS_I(old_inode)->dir_index = old_idx; 9223 if (new_inode->i_nlink == 1) 9224 BTRFS_I(new_inode)->dir_index = new_idx; 9225 9226 if (root_log_pinned) { 9227 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9228 new_dentry->d_parent); 9229 btrfs_end_log_trans(root); 9230 root_log_pinned = false; 9231 } 9232 if (dest_log_pinned) { 9233 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9234 old_dentry->d_parent); 9235 btrfs_end_log_trans(dest); 9236 dest_log_pinned = false; 9237 } 9238 out_fail: 9239 /* 9240 * If we have pinned a log and an error happened, we unpin tasks 9241 * trying to sync the log and force them to fallback to a transaction 9242 * commit if the log currently contains any of the inodes involved in 9243 * this rename operation (to ensure we do not persist a log with an 9244 * inconsistent state for any of these inodes or leading to any 9245 * inconsistencies when replayed). If the transaction was aborted, the 9246 * abortion reason is propagated to userspace when attempting to commit 9247 * the transaction. If the log does not contain any of these inodes, we 9248 * allow the tasks to sync it. 9249 */ 9250 if (ret && (root_log_pinned || dest_log_pinned)) { 9251 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9252 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9253 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9254 (new_inode && 9255 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9256 btrfs_set_log_full_commit(trans); 9257 9258 if (root_log_pinned) { 9259 btrfs_end_log_trans(root); 9260 root_log_pinned = false; 9261 } 9262 if (dest_log_pinned) { 9263 btrfs_end_log_trans(dest); 9264 dest_log_pinned = false; 9265 } 9266 } 9267 ret2 = btrfs_end_transaction(trans); 9268 ret = ret ? ret : ret2; 9269 out_notrans: 9270 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9271 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9272 up_read(&fs_info->subvol_sem); 9273 9274 return ret; 9275 } 9276 9277 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9278 struct btrfs_root *root, 9279 struct inode *dir, 9280 struct dentry *dentry) 9281 { 9282 int ret; 9283 struct inode *inode; 9284 u64 objectid; 9285 u64 index; 9286 9287 ret = btrfs_get_free_objectid(root, &objectid); 9288 if (ret) 9289 return ret; 9290 9291 inode = btrfs_new_inode(trans, root, dir, 9292 dentry->d_name.name, 9293 dentry->d_name.len, 9294 btrfs_ino(BTRFS_I(dir)), 9295 objectid, 9296 S_IFCHR | WHITEOUT_MODE, 9297 &index); 9298 9299 if (IS_ERR(inode)) { 9300 ret = PTR_ERR(inode); 9301 return ret; 9302 } 9303 9304 inode->i_op = &btrfs_special_inode_operations; 9305 init_special_inode(inode, inode->i_mode, 9306 WHITEOUT_DEV); 9307 9308 ret = btrfs_init_inode_security(trans, inode, dir, 9309 &dentry->d_name); 9310 if (ret) 9311 goto out; 9312 9313 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9314 BTRFS_I(inode), 0, index); 9315 if (ret) 9316 goto out; 9317 9318 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9319 out: 9320 unlock_new_inode(inode); 9321 if (ret) 9322 inode_dec_link_count(inode); 9323 iput(inode); 9324 9325 return ret; 9326 } 9327 9328 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9329 struct inode *new_dir, struct dentry *new_dentry, 9330 unsigned int flags) 9331 { 9332 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9333 struct btrfs_trans_handle *trans; 9334 unsigned int trans_num_items; 9335 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9336 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9337 struct inode *new_inode = d_inode(new_dentry); 9338 struct inode *old_inode = d_inode(old_dentry); 9339 u64 index = 0; 9340 int ret; 9341 int ret2; 9342 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9343 bool log_pinned = false; 9344 9345 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9346 return -EPERM; 9347 9348 /* we only allow rename subvolume link between subvolumes */ 9349 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9350 return -EXDEV; 9351 9352 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9353 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9354 return -ENOTEMPTY; 9355 9356 if (S_ISDIR(old_inode->i_mode) && new_inode && 9357 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9358 return -ENOTEMPTY; 9359 9360 9361 /* check for collisions, even if the name isn't there */ 9362 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9363 new_dentry->d_name.name, 9364 new_dentry->d_name.len); 9365 9366 if (ret) { 9367 if (ret == -EEXIST) { 9368 /* we shouldn't get 9369 * eexist without a new_inode */ 9370 if (WARN_ON(!new_inode)) { 9371 return ret; 9372 } 9373 } else { 9374 /* maybe -EOVERFLOW */ 9375 return ret; 9376 } 9377 } 9378 ret = 0; 9379 9380 /* 9381 * we're using rename to replace one file with another. Start IO on it 9382 * now so we don't add too much work to the end of the transaction 9383 */ 9384 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9385 filemap_flush(old_inode->i_mapping); 9386 9387 /* close the racy window with snapshot create/destroy ioctl */ 9388 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9389 down_read(&fs_info->subvol_sem); 9390 /* 9391 * We want to reserve the absolute worst case amount of items. So if 9392 * both inodes are subvols and we need to unlink them then that would 9393 * require 4 item modifications, but if they are both normal inodes it 9394 * would require 5 item modifications, so we'll assume they are normal 9395 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9396 * should cover the worst case number of items we'll modify. 9397 * If our rename has the whiteout flag, we need more 5 units for the 9398 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9399 * when selinux is enabled). 9400 */ 9401 trans_num_items = 11; 9402 if (flags & RENAME_WHITEOUT) 9403 trans_num_items += 5; 9404 trans = btrfs_start_transaction(root, trans_num_items); 9405 if (IS_ERR(trans)) { 9406 ret = PTR_ERR(trans); 9407 goto out_notrans; 9408 } 9409 9410 if (dest != root) { 9411 ret = btrfs_record_root_in_trans(trans, dest); 9412 if (ret) 9413 goto out_fail; 9414 } 9415 9416 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9417 if (ret) 9418 goto out_fail; 9419 9420 BTRFS_I(old_inode)->dir_index = 0ULL; 9421 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9422 /* force full log commit if subvolume involved. */ 9423 btrfs_set_log_full_commit(trans); 9424 } else { 9425 btrfs_pin_log_trans(root); 9426 log_pinned = true; 9427 ret = btrfs_insert_inode_ref(trans, dest, 9428 new_dentry->d_name.name, 9429 new_dentry->d_name.len, 9430 old_ino, 9431 btrfs_ino(BTRFS_I(new_dir)), index); 9432 if (ret) 9433 goto out_fail; 9434 } 9435 9436 inode_inc_iversion(old_dir); 9437 inode_inc_iversion(new_dir); 9438 inode_inc_iversion(old_inode); 9439 old_dir->i_ctime = old_dir->i_mtime = 9440 new_dir->i_ctime = new_dir->i_mtime = 9441 old_inode->i_ctime = current_time(old_dir); 9442 9443 if (old_dentry->d_parent != new_dentry->d_parent) 9444 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9445 BTRFS_I(old_inode), 1); 9446 9447 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9448 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9449 } else { 9450 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9451 BTRFS_I(d_inode(old_dentry)), 9452 old_dentry->d_name.name, 9453 old_dentry->d_name.len); 9454 if (!ret) 9455 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9456 } 9457 if (ret) { 9458 btrfs_abort_transaction(trans, ret); 9459 goto out_fail; 9460 } 9461 9462 if (new_inode) { 9463 inode_inc_iversion(new_inode); 9464 new_inode->i_ctime = current_time(new_inode); 9465 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9466 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9467 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9468 BUG_ON(new_inode->i_nlink == 0); 9469 } else { 9470 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9471 BTRFS_I(d_inode(new_dentry)), 9472 new_dentry->d_name.name, 9473 new_dentry->d_name.len); 9474 } 9475 if (!ret && new_inode->i_nlink == 0) 9476 ret = btrfs_orphan_add(trans, 9477 BTRFS_I(d_inode(new_dentry))); 9478 if (ret) { 9479 btrfs_abort_transaction(trans, ret); 9480 goto out_fail; 9481 } 9482 } 9483 9484 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9485 new_dentry->d_name.name, 9486 new_dentry->d_name.len, 0, index); 9487 if (ret) { 9488 btrfs_abort_transaction(trans, ret); 9489 goto out_fail; 9490 } 9491 9492 if (old_inode->i_nlink == 1) 9493 BTRFS_I(old_inode)->dir_index = index; 9494 9495 if (log_pinned) { 9496 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9497 new_dentry->d_parent); 9498 btrfs_end_log_trans(root); 9499 log_pinned = false; 9500 } 9501 9502 if (flags & RENAME_WHITEOUT) { 9503 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9504 old_dentry); 9505 9506 if (ret) { 9507 btrfs_abort_transaction(trans, ret); 9508 goto out_fail; 9509 } 9510 } 9511 out_fail: 9512 /* 9513 * If we have pinned the log and an error happened, we unpin tasks 9514 * trying to sync the log and force them to fallback to a transaction 9515 * commit if the log currently contains any of the inodes involved in 9516 * this rename operation (to ensure we do not persist a log with an 9517 * inconsistent state for any of these inodes or leading to any 9518 * inconsistencies when replayed). If the transaction was aborted, the 9519 * abortion reason is propagated to userspace when attempting to commit 9520 * the transaction. If the log does not contain any of these inodes, we 9521 * allow the tasks to sync it. 9522 */ 9523 if (ret && log_pinned) { 9524 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9525 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9526 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9527 (new_inode && 9528 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9529 btrfs_set_log_full_commit(trans); 9530 9531 btrfs_end_log_trans(root); 9532 log_pinned = false; 9533 } 9534 ret2 = btrfs_end_transaction(trans); 9535 ret = ret ? ret : ret2; 9536 out_notrans: 9537 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9538 up_read(&fs_info->subvol_sem); 9539 9540 return ret; 9541 } 9542 9543 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9544 struct dentry *old_dentry, struct inode *new_dir, 9545 struct dentry *new_dentry, unsigned int flags) 9546 { 9547 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9548 return -EINVAL; 9549 9550 if (flags & RENAME_EXCHANGE) 9551 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9552 new_dentry); 9553 9554 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9555 } 9556 9557 struct btrfs_delalloc_work { 9558 struct inode *inode; 9559 struct completion completion; 9560 struct list_head list; 9561 struct btrfs_work work; 9562 }; 9563 9564 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9565 { 9566 struct btrfs_delalloc_work *delalloc_work; 9567 struct inode *inode; 9568 9569 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9570 work); 9571 inode = delalloc_work->inode; 9572 filemap_flush(inode->i_mapping); 9573 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9574 &BTRFS_I(inode)->runtime_flags)) 9575 filemap_flush(inode->i_mapping); 9576 9577 iput(inode); 9578 complete(&delalloc_work->completion); 9579 } 9580 9581 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9582 { 9583 struct btrfs_delalloc_work *work; 9584 9585 work = kmalloc(sizeof(*work), GFP_NOFS); 9586 if (!work) 9587 return NULL; 9588 9589 init_completion(&work->completion); 9590 INIT_LIST_HEAD(&work->list); 9591 work->inode = inode; 9592 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9593 9594 return work; 9595 } 9596 9597 /* 9598 * some fairly slow code that needs optimization. This walks the list 9599 * of all the inodes with pending delalloc and forces them to disk. 9600 */ 9601 static int start_delalloc_inodes(struct btrfs_root *root, 9602 struct writeback_control *wbc, bool snapshot, 9603 bool in_reclaim_context) 9604 { 9605 struct btrfs_inode *binode; 9606 struct inode *inode; 9607 struct btrfs_delalloc_work *work, *next; 9608 struct list_head works; 9609 struct list_head splice; 9610 int ret = 0; 9611 bool full_flush = wbc->nr_to_write == LONG_MAX; 9612 9613 INIT_LIST_HEAD(&works); 9614 INIT_LIST_HEAD(&splice); 9615 9616 mutex_lock(&root->delalloc_mutex); 9617 spin_lock(&root->delalloc_lock); 9618 list_splice_init(&root->delalloc_inodes, &splice); 9619 while (!list_empty(&splice)) { 9620 binode = list_entry(splice.next, struct btrfs_inode, 9621 delalloc_inodes); 9622 9623 list_move_tail(&binode->delalloc_inodes, 9624 &root->delalloc_inodes); 9625 9626 if (in_reclaim_context && 9627 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9628 continue; 9629 9630 inode = igrab(&binode->vfs_inode); 9631 if (!inode) { 9632 cond_resched_lock(&root->delalloc_lock); 9633 continue; 9634 } 9635 spin_unlock(&root->delalloc_lock); 9636 9637 if (snapshot) 9638 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9639 &binode->runtime_flags); 9640 if (full_flush) { 9641 work = btrfs_alloc_delalloc_work(inode); 9642 if (!work) { 9643 iput(inode); 9644 ret = -ENOMEM; 9645 goto out; 9646 } 9647 list_add_tail(&work->list, &works); 9648 btrfs_queue_work(root->fs_info->flush_workers, 9649 &work->work); 9650 } else { 9651 ret = sync_inode(inode, wbc); 9652 if (!ret && 9653 test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9654 &BTRFS_I(inode)->runtime_flags)) 9655 ret = sync_inode(inode, wbc); 9656 btrfs_add_delayed_iput(inode); 9657 if (ret || wbc->nr_to_write <= 0) 9658 goto out; 9659 } 9660 cond_resched(); 9661 spin_lock(&root->delalloc_lock); 9662 } 9663 spin_unlock(&root->delalloc_lock); 9664 9665 out: 9666 list_for_each_entry_safe(work, next, &works, list) { 9667 list_del_init(&work->list); 9668 wait_for_completion(&work->completion); 9669 kfree(work); 9670 } 9671 9672 if (!list_empty(&splice)) { 9673 spin_lock(&root->delalloc_lock); 9674 list_splice_tail(&splice, &root->delalloc_inodes); 9675 spin_unlock(&root->delalloc_lock); 9676 } 9677 mutex_unlock(&root->delalloc_mutex); 9678 return ret; 9679 } 9680 9681 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9682 { 9683 struct writeback_control wbc = { 9684 .nr_to_write = LONG_MAX, 9685 .sync_mode = WB_SYNC_NONE, 9686 .range_start = 0, 9687 .range_end = LLONG_MAX, 9688 }; 9689 struct btrfs_fs_info *fs_info = root->fs_info; 9690 9691 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9692 return -EROFS; 9693 9694 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9695 } 9696 9697 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9698 bool in_reclaim_context) 9699 { 9700 struct writeback_control wbc = { 9701 .nr_to_write = nr, 9702 .sync_mode = WB_SYNC_NONE, 9703 .range_start = 0, 9704 .range_end = LLONG_MAX, 9705 }; 9706 struct btrfs_root *root; 9707 struct list_head splice; 9708 int ret; 9709 9710 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9711 return -EROFS; 9712 9713 INIT_LIST_HEAD(&splice); 9714 9715 mutex_lock(&fs_info->delalloc_root_mutex); 9716 spin_lock(&fs_info->delalloc_root_lock); 9717 list_splice_init(&fs_info->delalloc_roots, &splice); 9718 while (!list_empty(&splice)) { 9719 /* 9720 * Reset nr_to_write here so we know that we're doing a full 9721 * flush. 9722 */ 9723 if (nr == LONG_MAX) 9724 wbc.nr_to_write = LONG_MAX; 9725 9726 root = list_first_entry(&splice, struct btrfs_root, 9727 delalloc_root); 9728 root = btrfs_grab_root(root); 9729 BUG_ON(!root); 9730 list_move_tail(&root->delalloc_root, 9731 &fs_info->delalloc_roots); 9732 spin_unlock(&fs_info->delalloc_root_lock); 9733 9734 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9735 btrfs_put_root(root); 9736 if (ret < 0 || wbc.nr_to_write <= 0) 9737 goto out; 9738 spin_lock(&fs_info->delalloc_root_lock); 9739 } 9740 spin_unlock(&fs_info->delalloc_root_lock); 9741 9742 ret = 0; 9743 out: 9744 if (!list_empty(&splice)) { 9745 spin_lock(&fs_info->delalloc_root_lock); 9746 list_splice_tail(&splice, &fs_info->delalloc_roots); 9747 spin_unlock(&fs_info->delalloc_root_lock); 9748 } 9749 mutex_unlock(&fs_info->delalloc_root_mutex); 9750 return ret; 9751 } 9752 9753 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9754 struct dentry *dentry, const char *symname) 9755 { 9756 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9757 struct btrfs_trans_handle *trans; 9758 struct btrfs_root *root = BTRFS_I(dir)->root; 9759 struct btrfs_path *path; 9760 struct btrfs_key key; 9761 struct inode *inode = NULL; 9762 int err; 9763 u64 objectid; 9764 u64 index = 0; 9765 int name_len; 9766 int datasize; 9767 unsigned long ptr; 9768 struct btrfs_file_extent_item *ei; 9769 struct extent_buffer *leaf; 9770 9771 name_len = strlen(symname); 9772 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9773 return -ENAMETOOLONG; 9774 9775 /* 9776 * 2 items for inode item and ref 9777 * 2 items for dir items 9778 * 1 item for updating parent inode item 9779 * 1 item for the inline extent item 9780 * 1 item for xattr if selinux is on 9781 */ 9782 trans = btrfs_start_transaction(root, 7); 9783 if (IS_ERR(trans)) 9784 return PTR_ERR(trans); 9785 9786 err = btrfs_get_free_objectid(root, &objectid); 9787 if (err) 9788 goto out_unlock; 9789 9790 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9791 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9792 objectid, S_IFLNK|S_IRWXUGO, &index); 9793 if (IS_ERR(inode)) { 9794 err = PTR_ERR(inode); 9795 inode = NULL; 9796 goto out_unlock; 9797 } 9798 9799 /* 9800 * If the active LSM wants to access the inode during 9801 * d_instantiate it needs these. Smack checks to see 9802 * if the filesystem supports xattrs by looking at the 9803 * ops vector. 9804 */ 9805 inode->i_fop = &btrfs_file_operations; 9806 inode->i_op = &btrfs_file_inode_operations; 9807 inode->i_mapping->a_ops = &btrfs_aops; 9808 9809 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9810 if (err) 9811 goto out_unlock; 9812 9813 path = btrfs_alloc_path(); 9814 if (!path) { 9815 err = -ENOMEM; 9816 goto out_unlock; 9817 } 9818 key.objectid = btrfs_ino(BTRFS_I(inode)); 9819 key.offset = 0; 9820 key.type = BTRFS_EXTENT_DATA_KEY; 9821 datasize = btrfs_file_extent_calc_inline_size(name_len); 9822 err = btrfs_insert_empty_item(trans, root, path, &key, 9823 datasize); 9824 if (err) { 9825 btrfs_free_path(path); 9826 goto out_unlock; 9827 } 9828 leaf = path->nodes[0]; 9829 ei = btrfs_item_ptr(leaf, path->slots[0], 9830 struct btrfs_file_extent_item); 9831 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9832 btrfs_set_file_extent_type(leaf, ei, 9833 BTRFS_FILE_EXTENT_INLINE); 9834 btrfs_set_file_extent_encryption(leaf, ei, 0); 9835 btrfs_set_file_extent_compression(leaf, ei, 0); 9836 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9837 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9838 9839 ptr = btrfs_file_extent_inline_start(ei); 9840 write_extent_buffer(leaf, symname, ptr, name_len); 9841 btrfs_mark_buffer_dirty(leaf); 9842 btrfs_free_path(path); 9843 9844 inode->i_op = &btrfs_symlink_inode_operations; 9845 inode_nohighmem(inode); 9846 inode_set_bytes(inode, name_len); 9847 btrfs_i_size_write(BTRFS_I(inode), name_len); 9848 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9849 /* 9850 * Last step, add directory indexes for our symlink inode. This is the 9851 * last step to avoid extra cleanup of these indexes if an error happens 9852 * elsewhere above. 9853 */ 9854 if (!err) 9855 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9856 BTRFS_I(inode), 0, index); 9857 if (err) 9858 goto out_unlock; 9859 9860 d_instantiate_new(dentry, inode); 9861 9862 out_unlock: 9863 btrfs_end_transaction(trans); 9864 if (err && inode) { 9865 inode_dec_link_count(inode); 9866 discard_new_inode(inode); 9867 } 9868 btrfs_btree_balance_dirty(fs_info); 9869 return err; 9870 } 9871 9872 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9873 struct btrfs_trans_handle *trans_in, 9874 struct btrfs_inode *inode, 9875 struct btrfs_key *ins, 9876 u64 file_offset) 9877 { 9878 struct btrfs_file_extent_item stack_fi; 9879 struct btrfs_replace_extent_info extent_info; 9880 struct btrfs_trans_handle *trans = trans_in; 9881 struct btrfs_path *path; 9882 u64 start = ins->objectid; 9883 u64 len = ins->offset; 9884 int qgroup_released; 9885 int ret; 9886 9887 memset(&stack_fi, 0, sizeof(stack_fi)); 9888 9889 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9890 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9891 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9892 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9893 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9894 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9895 /* Encryption and other encoding is reserved and all 0 */ 9896 9897 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9898 if (qgroup_released < 0) 9899 return ERR_PTR(qgroup_released); 9900 9901 if (trans) { 9902 ret = insert_reserved_file_extent(trans, inode, 9903 file_offset, &stack_fi, 9904 true, qgroup_released); 9905 if (ret) 9906 goto free_qgroup; 9907 return trans; 9908 } 9909 9910 extent_info.disk_offset = start; 9911 extent_info.disk_len = len; 9912 extent_info.data_offset = 0; 9913 extent_info.data_len = len; 9914 extent_info.file_offset = file_offset; 9915 extent_info.extent_buf = (char *)&stack_fi; 9916 extent_info.is_new_extent = true; 9917 extent_info.qgroup_reserved = qgroup_released; 9918 extent_info.insertions = 0; 9919 9920 path = btrfs_alloc_path(); 9921 if (!path) { 9922 ret = -ENOMEM; 9923 goto free_qgroup; 9924 } 9925 9926 ret = btrfs_replace_file_extents(inode, path, file_offset, 9927 file_offset + len - 1, &extent_info, 9928 &trans); 9929 btrfs_free_path(path); 9930 if (ret) 9931 goto free_qgroup; 9932 return trans; 9933 9934 free_qgroup: 9935 /* 9936 * We have released qgroup data range at the beginning of the function, 9937 * and normally qgroup_released bytes will be freed when committing 9938 * transaction. 9939 * But if we error out early, we have to free what we have released 9940 * or we leak qgroup data reservation. 9941 */ 9942 btrfs_qgroup_free_refroot(inode->root->fs_info, 9943 inode->root->root_key.objectid, qgroup_released, 9944 BTRFS_QGROUP_RSV_DATA); 9945 return ERR_PTR(ret); 9946 } 9947 9948 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9949 u64 start, u64 num_bytes, u64 min_size, 9950 loff_t actual_len, u64 *alloc_hint, 9951 struct btrfs_trans_handle *trans) 9952 { 9953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9954 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9955 struct extent_map *em; 9956 struct btrfs_root *root = BTRFS_I(inode)->root; 9957 struct btrfs_key ins; 9958 u64 cur_offset = start; 9959 u64 clear_offset = start; 9960 u64 i_size; 9961 u64 cur_bytes; 9962 u64 last_alloc = (u64)-1; 9963 int ret = 0; 9964 bool own_trans = true; 9965 u64 end = start + num_bytes - 1; 9966 9967 if (trans) 9968 own_trans = false; 9969 while (num_bytes > 0) { 9970 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9971 cur_bytes = max(cur_bytes, min_size); 9972 /* 9973 * If we are severely fragmented we could end up with really 9974 * small allocations, so if the allocator is returning small 9975 * chunks lets make its job easier by only searching for those 9976 * sized chunks. 9977 */ 9978 cur_bytes = min(cur_bytes, last_alloc); 9979 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9980 min_size, 0, *alloc_hint, &ins, 1, 0); 9981 if (ret) 9982 break; 9983 9984 /* 9985 * We've reserved this space, and thus converted it from 9986 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9987 * from here on out we will only need to clear our reservation 9988 * for the remaining unreserved area, so advance our 9989 * clear_offset by our extent size. 9990 */ 9991 clear_offset += ins.offset; 9992 9993 last_alloc = ins.offset; 9994 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9995 &ins, cur_offset); 9996 /* 9997 * Now that we inserted the prealloc extent we can finally 9998 * decrement the number of reservations in the block group. 9999 * If we did it before, we could race with relocation and have 10000 * relocation miss the reserved extent, making it fail later. 10001 */ 10002 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10003 if (IS_ERR(trans)) { 10004 ret = PTR_ERR(trans); 10005 btrfs_free_reserved_extent(fs_info, ins.objectid, 10006 ins.offset, 0); 10007 break; 10008 } 10009 10010 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10011 cur_offset + ins.offset -1, 0); 10012 10013 em = alloc_extent_map(); 10014 if (!em) { 10015 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10016 &BTRFS_I(inode)->runtime_flags); 10017 goto next; 10018 } 10019 10020 em->start = cur_offset; 10021 em->orig_start = cur_offset; 10022 em->len = ins.offset; 10023 em->block_start = ins.objectid; 10024 em->block_len = ins.offset; 10025 em->orig_block_len = ins.offset; 10026 em->ram_bytes = ins.offset; 10027 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10028 em->generation = trans->transid; 10029 10030 while (1) { 10031 write_lock(&em_tree->lock); 10032 ret = add_extent_mapping(em_tree, em, 1); 10033 write_unlock(&em_tree->lock); 10034 if (ret != -EEXIST) 10035 break; 10036 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10037 cur_offset + ins.offset - 1, 10038 0); 10039 } 10040 free_extent_map(em); 10041 next: 10042 num_bytes -= ins.offset; 10043 cur_offset += ins.offset; 10044 *alloc_hint = ins.objectid + ins.offset; 10045 10046 inode_inc_iversion(inode); 10047 inode->i_ctime = current_time(inode); 10048 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10049 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10050 (actual_len > inode->i_size) && 10051 (cur_offset > inode->i_size)) { 10052 if (cur_offset > actual_len) 10053 i_size = actual_len; 10054 else 10055 i_size = cur_offset; 10056 i_size_write(inode, i_size); 10057 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10058 } 10059 10060 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10061 10062 if (ret) { 10063 btrfs_abort_transaction(trans, ret); 10064 if (own_trans) 10065 btrfs_end_transaction(trans); 10066 break; 10067 } 10068 10069 if (own_trans) { 10070 btrfs_end_transaction(trans); 10071 trans = NULL; 10072 } 10073 } 10074 if (clear_offset < end) 10075 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10076 end - clear_offset + 1); 10077 return ret; 10078 } 10079 10080 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10081 u64 start, u64 num_bytes, u64 min_size, 10082 loff_t actual_len, u64 *alloc_hint) 10083 { 10084 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10085 min_size, actual_len, alloc_hint, 10086 NULL); 10087 } 10088 10089 int btrfs_prealloc_file_range_trans(struct inode *inode, 10090 struct btrfs_trans_handle *trans, int mode, 10091 u64 start, u64 num_bytes, u64 min_size, 10092 loff_t actual_len, u64 *alloc_hint) 10093 { 10094 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10095 min_size, actual_len, alloc_hint, trans); 10096 } 10097 10098 static int btrfs_set_page_dirty(struct page *page) 10099 { 10100 return __set_page_dirty_nobuffers(page); 10101 } 10102 10103 static int btrfs_permission(struct user_namespace *mnt_userns, 10104 struct inode *inode, int mask) 10105 { 10106 struct btrfs_root *root = BTRFS_I(inode)->root; 10107 umode_t mode = inode->i_mode; 10108 10109 if (mask & MAY_WRITE && 10110 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10111 if (btrfs_root_readonly(root)) 10112 return -EROFS; 10113 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10114 return -EACCES; 10115 } 10116 return generic_permission(&init_user_ns, inode, mask); 10117 } 10118 10119 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10120 struct dentry *dentry, umode_t mode) 10121 { 10122 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10123 struct btrfs_trans_handle *trans; 10124 struct btrfs_root *root = BTRFS_I(dir)->root; 10125 struct inode *inode = NULL; 10126 u64 objectid; 10127 u64 index; 10128 int ret = 0; 10129 10130 /* 10131 * 5 units required for adding orphan entry 10132 */ 10133 trans = btrfs_start_transaction(root, 5); 10134 if (IS_ERR(trans)) 10135 return PTR_ERR(trans); 10136 10137 ret = btrfs_get_free_objectid(root, &objectid); 10138 if (ret) 10139 goto out; 10140 10141 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10142 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10143 if (IS_ERR(inode)) { 10144 ret = PTR_ERR(inode); 10145 inode = NULL; 10146 goto out; 10147 } 10148 10149 inode->i_fop = &btrfs_file_operations; 10150 inode->i_op = &btrfs_file_inode_operations; 10151 10152 inode->i_mapping->a_ops = &btrfs_aops; 10153 10154 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10155 if (ret) 10156 goto out; 10157 10158 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10159 if (ret) 10160 goto out; 10161 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10162 if (ret) 10163 goto out; 10164 10165 /* 10166 * We set number of links to 0 in btrfs_new_inode(), and here we set 10167 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10168 * through: 10169 * 10170 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10171 */ 10172 set_nlink(inode, 1); 10173 d_tmpfile(dentry, inode); 10174 unlock_new_inode(inode); 10175 mark_inode_dirty(inode); 10176 out: 10177 btrfs_end_transaction(trans); 10178 if (ret && inode) 10179 discard_new_inode(inode); 10180 btrfs_btree_balance_dirty(fs_info); 10181 return ret; 10182 } 10183 10184 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 10185 { 10186 struct inode *inode = tree->private_data; 10187 unsigned long index = start >> PAGE_SHIFT; 10188 unsigned long end_index = end >> PAGE_SHIFT; 10189 struct page *page; 10190 10191 while (index <= end_index) { 10192 page = find_get_page(inode->i_mapping, index); 10193 ASSERT(page); /* Pages should be in the extent_io_tree */ 10194 set_page_writeback(page); 10195 put_page(page); 10196 index++; 10197 } 10198 } 10199 10200 #ifdef CONFIG_SWAP 10201 /* 10202 * Add an entry indicating a block group or device which is pinned by a 10203 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10204 * negative errno on failure. 10205 */ 10206 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10207 bool is_block_group) 10208 { 10209 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10210 struct btrfs_swapfile_pin *sp, *entry; 10211 struct rb_node **p; 10212 struct rb_node *parent = NULL; 10213 10214 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10215 if (!sp) 10216 return -ENOMEM; 10217 sp->ptr = ptr; 10218 sp->inode = inode; 10219 sp->is_block_group = is_block_group; 10220 sp->bg_extent_count = 1; 10221 10222 spin_lock(&fs_info->swapfile_pins_lock); 10223 p = &fs_info->swapfile_pins.rb_node; 10224 while (*p) { 10225 parent = *p; 10226 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10227 if (sp->ptr < entry->ptr || 10228 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10229 p = &(*p)->rb_left; 10230 } else if (sp->ptr > entry->ptr || 10231 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10232 p = &(*p)->rb_right; 10233 } else { 10234 if (is_block_group) 10235 entry->bg_extent_count++; 10236 spin_unlock(&fs_info->swapfile_pins_lock); 10237 kfree(sp); 10238 return 1; 10239 } 10240 } 10241 rb_link_node(&sp->node, parent, p); 10242 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10243 spin_unlock(&fs_info->swapfile_pins_lock); 10244 return 0; 10245 } 10246 10247 /* Free all of the entries pinned by this swapfile. */ 10248 static void btrfs_free_swapfile_pins(struct inode *inode) 10249 { 10250 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10251 struct btrfs_swapfile_pin *sp; 10252 struct rb_node *node, *next; 10253 10254 spin_lock(&fs_info->swapfile_pins_lock); 10255 node = rb_first(&fs_info->swapfile_pins); 10256 while (node) { 10257 next = rb_next(node); 10258 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10259 if (sp->inode == inode) { 10260 rb_erase(&sp->node, &fs_info->swapfile_pins); 10261 if (sp->is_block_group) { 10262 btrfs_dec_block_group_swap_extents(sp->ptr, 10263 sp->bg_extent_count); 10264 btrfs_put_block_group(sp->ptr); 10265 } 10266 kfree(sp); 10267 } 10268 node = next; 10269 } 10270 spin_unlock(&fs_info->swapfile_pins_lock); 10271 } 10272 10273 struct btrfs_swap_info { 10274 u64 start; 10275 u64 block_start; 10276 u64 block_len; 10277 u64 lowest_ppage; 10278 u64 highest_ppage; 10279 unsigned long nr_pages; 10280 int nr_extents; 10281 }; 10282 10283 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10284 struct btrfs_swap_info *bsi) 10285 { 10286 unsigned long nr_pages; 10287 u64 first_ppage, first_ppage_reported, next_ppage; 10288 int ret; 10289 10290 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 10291 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 10292 PAGE_SIZE) >> PAGE_SHIFT; 10293 10294 if (first_ppage >= next_ppage) 10295 return 0; 10296 nr_pages = next_ppage - first_ppage; 10297 10298 first_ppage_reported = first_ppage; 10299 if (bsi->start == 0) 10300 first_ppage_reported++; 10301 if (bsi->lowest_ppage > first_ppage_reported) 10302 bsi->lowest_ppage = first_ppage_reported; 10303 if (bsi->highest_ppage < (next_ppage - 1)) 10304 bsi->highest_ppage = next_ppage - 1; 10305 10306 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10307 if (ret < 0) 10308 return ret; 10309 bsi->nr_extents += ret; 10310 bsi->nr_pages += nr_pages; 10311 return 0; 10312 } 10313 10314 static void btrfs_swap_deactivate(struct file *file) 10315 { 10316 struct inode *inode = file_inode(file); 10317 10318 btrfs_free_swapfile_pins(inode); 10319 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10320 } 10321 10322 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10323 sector_t *span) 10324 { 10325 struct inode *inode = file_inode(file); 10326 struct btrfs_root *root = BTRFS_I(inode)->root; 10327 struct btrfs_fs_info *fs_info = root->fs_info; 10328 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10329 struct extent_state *cached_state = NULL; 10330 struct extent_map *em = NULL; 10331 struct btrfs_device *device = NULL; 10332 struct btrfs_swap_info bsi = { 10333 .lowest_ppage = (sector_t)-1ULL, 10334 }; 10335 int ret = 0; 10336 u64 isize; 10337 u64 start; 10338 10339 /* 10340 * If the swap file was just created, make sure delalloc is done. If the 10341 * file changes again after this, the user is doing something stupid and 10342 * we don't really care. 10343 */ 10344 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10345 if (ret) 10346 return ret; 10347 10348 /* 10349 * The inode is locked, so these flags won't change after we check them. 10350 */ 10351 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10352 btrfs_warn(fs_info, "swapfile must not be compressed"); 10353 return -EINVAL; 10354 } 10355 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10356 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10357 return -EINVAL; 10358 } 10359 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10360 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10361 return -EINVAL; 10362 } 10363 10364 /* 10365 * Balance or device remove/replace/resize can move stuff around from 10366 * under us. The exclop protection makes sure they aren't running/won't 10367 * run concurrently while we are mapping the swap extents, and 10368 * fs_info->swapfile_pins prevents them from running while the swap 10369 * file is active and moving the extents. Note that this also prevents 10370 * a concurrent device add which isn't actually necessary, but it's not 10371 * really worth the trouble to allow it. 10372 */ 10373 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10374 btrfs_warn(fs_info, 10375 "cannot activate swapfile while exclusive operation is running"); 10376 return -EBUSY; 10377 } 10378 10379 /* 10380 * Prevent snapshot creation while we are activating the swap file. 10381 * We do not want to race with snapshot creation. If snapshot creation 10382 * already started before we bumped nr_swapfiles from 0 to 1 and 10383 * completes before the first write into the swap file after it is 10384 * activated, than that write would fallback to COW. 10385 */ 10386 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10387 btrfs_exclop_finish(fs_info); 10388 btrfs_warn(fs_info, 10389 "cannot activate swapfile because snapshot creation is in progress"); 10390 return -EINVAL; 10391 } 10392 /* 10393 * Snapshots can create extents which require COW even if NODATACOW is 10394 * set. We use this counter to prevent snapshots. We must increment it 10395 * before walking the extents because we don't want a concurrent 10396 * snapshot to run after we've already checked the extents. 10397 */ 10398 atomic_inc(&root->nr_swapfiles); 10399 10400 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10401 10402 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10403 start = 0; 10404 while (start < isize) { 10405 u64 logical_block_start, physical_block_start; 10406 struct btrfs_block_group *bg; 10407 u64 len = isize - start; 10408 10409 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10410 if (IS_ERR(em)) { 10411 ret = PTR_ERR(em); 10412 goto out; 10413 } 10414 10415 if (em->block_start == EXTENT_MAP_HOLE) { 10416 btrfs_warn(fs_info, "swapfile must not have holes"); 10417 ret = -EINVAL; 10418 goto out; 10419 } 10420 if (em->block_start == EXTENT_MAP_INLINE) { 10421 /* 10422 * It's unlikely we'll ever actually find ourselves 10423 * here, as a file small enough to fit inline won't be 10424 * big enough to store more than the swap header, but in 10425 * case something changes in the future, let's catch it 10426 * here rather than later. 10427 */ 10428 btrfs_warn(fs_info, "swapfile must not be inline"); 10429 ret = -EINVAL; 10430 goto out; 10431 } 10432 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10433 btrfs_warn(fs_info, "swapfile must not be compressed"); 10434 ret = -EINVAL; 10435 goto out; 10436 } 10437 10438 logical_block_start = em->block_start + (start - em->start); 10439 len = min(len, em->len - (start - em->start)); 10440 free_extent_map(em); 10441 em = NULL; 10442 10443 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10444 if (ret < 0) { 10445 goto out; 10446 } else if (ret) { 10447 ret = 0; 10448 } else { 10449 btrfs_warn(fs_info, 10450 "swapfile must not be copy-on-write"); 10451 ret = -EINVAL; 10452 goto out; 10453 } 10454 10455 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10456 if (IS_ERR(em)) { 10457 ret = PTR_ERR(em); 10458 goto out; 10459 } 10460 10461 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10462 btrfs_warn(fs_info, 10463 "swapfile must have single data profile"); 10464 ret = -EINVAL; 10465 goto out; 10466 } 10467 10468 if (device == NULL) { 10469 device = em->map_lookup->stripes[0].dev; 10470 ret = btrfs_add_swapfile_pin(inode, device, false); 10471 if (ret == 1) 10472 ret = 0; 10473 else if (ret) 10474 goto out; 10475 } else if (device != em->map_lookup->stripes[0].dev) { 10476 btrfs_warn(fs_info, "swapfile must be on one device"); 10477 ret = -EINVAL; 10478 goto out; 10479 } 10480 10481 physical_block_start = (em->map_lookup->stripes[0].physical + 10482 (logical_block_start - em->start)); 10483 len = min(len, em->len - (logical_block_start - em->start)); 10484 free_extent_map(em); 10485 em = NULL; 10486 10487 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10488 if (!bg) { 10489 btrfs_warn(fs_info, 10490 "could not find block group containing swapfile"); 10491 ret = -EINVAL; 10492 goto out; 10493 } 10494 10495 if (!btrfs_inc_block_group_swap_extents(bg)) { 10496 btrfs_warn(fs_info, 10497 "block group for swapfile at %llu is read-only%s", 10498 bg->start, 10499 atomic_read(&fs_info->scrubs_running) ? 10500 " (scrub running)" : ""); 10501 btrfs_put_block_group(bg); 10502 ret = -EINVAL; 10503 goto out; 10504 } 10505 10506 ret = btrfs_add_swapfile_pin(inode, bg, true); 10507 if (ret) { 10508 btrfs_put_block_group(bg); 10509 if (ret == 1) 10510 ret = 0; 10511 else 10512 goto out; 10513 } 10514 10515 if (bsi.block_len && 10516 bsi.block_start + bsi.block_len == physical_block_start) { 10517 bsi.block_len += len; 10518 } else { 10519 if (bsi.block_len) { 10520 ret = btrfs_add_swap_extent(sis, &bsi); 10521 if (ret) 10522 goto out; 10523 } 10524 bsi.start = start; 10525 bsi.block_start = physical_block_start; 10526 bsi.block_len = len; 10527 } 10528 10529 start += len; 10530 } 10531 10532 if (bsi.block_len) 10533 ret = btrfs_add_swap_extent(sis, &bsi); 10534 10535 out: 10536 if (!IS_ERR_OR_NULL(em)) 10537 free_extent_map(em); 10538 10539 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10540 10541 if (ret) 10542 btrfs_swap_deactivate(file); 10543 10544 btrfs_drew_write_unlock(&root->snapshot_lock); 10545 10546 btrfs_exclop_finish(fs_info); 10547 10548 if (ret) 10549 return ret; 10550 10551 if (device) 10552 sis->bdev = device->bdev; 10553 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10554 sis->max = bsi.nr_pages; 10555 sis->pages = bsi.nr_pages - 1; 10556 sis->highest_bit = bsi.nr_pages - 1; 10557 return bsi.nr_extents; 10558 } 10559 #else 10560 static void btrfs_swap_deactivate(struct file *file) 10561 { 10562 } 10563 10564 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10565 sector_t *span) 10566 { 10567 return -EOPNOTSUPP; 10568 } 10569 #endif 10570 10571 /* 10572 * Update the number of bytes used in the VFS' inode. When we replace extents in 10573 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10574 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10575 * always get a correct value. 10576 */ 10577 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10578 const u64 add_bytes, 10579 const u64 del_bytes) 10580 { 10581 if (add_bytes == del_bytes) 10582 return; 10583 10584 spin_lock(&inode->lock); 10585 if (del_bytes > 0) 10586 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10587 if (add_bytes > 0) 10588 inode_add_bytes(&inode->vfs_inode, add_bytes); 10589 spin_unlock(&inode->lock); 10590 } 10591 10592 static const struct inode_operations btrfs_dir_inode_operations = { 10593 .getattr = btrfs_getattr, 10594 .lookup = btrfs_lookup, 10595 .create = btrfs_create, 10596 .unlink = btrfs_unlink, 10597 .link = btrfs_link, 10598 .mkdir = btrfs_mkdir, 10599 .rmdir = btrfs_rmdir, 10600 .rename = btrfs_rename2, 10601 .symlink = btrfs_symlink, 10602 .setattr = btrfs_setattr, 10603 .mknod = btrfs_mknod, 10604 .listxattr = btrfs_listxattr, 10605 .permission = btrfs_permission, 10606 .get_acl = btrfs_get_acl, 10607 .set_acl = btrfs_set_acl, 10608 .update_time = btrfs_update_time, 10609 .tmpfile = btrfs_tmpfile, 10610 .fileattr_get = btrfs_fileattr_get, 10611 .fileattr_set = btrfs_fileattr_set, 10612 }; 10613 10614 static const struct file_operations btrfs_dir_file_operations = { 10615 .llseek = generic_file_llseek, 10616 .read = generic_read_dir, 10617 .iterate_shared = btrfs_real_readdir, 10618 .open = btrfs_opendir, 10619 .unlocked_ioctl = btrfs_ioctl, 10620 #ifdef CONFIG_COMPAT 10621 .compat_ioctl = btrfs_compat_ioctl, 10622 #endif 10623 .release = btrfs_release_file, 10624 .fsync = btrfs_sync_file, 10625 }; 10626 10627 /* 10628 * btrfs doesn't support the bmap operation because swapfiles 10629 * use bmap to make a mapping of extents in the file. They assume 10630 * these extents won't change over the life of the file and they 10631 * use the bmap result to do IO directly to the drive. 10632 * 10633 * the btrfs bmap call would return logical addresses that aren't 10634 * suitable for IO and they also will change frequently as COW 10635 * operations happen. So, swapfile + btrfs == corruption. 10636 * 10637 * For now we're avoiding this by dropping bmap. 10638 */ 10639 static const struct address_space_operations btrfs_aops = { 10640 .readpage = btrfs_readpage, 10641 .writepage = btrfs_writepage, 10642 .writepages = btrfs_writepages, 10643 .readahead = btrfs_readahead, 10644 .direct_IO = noop_direct_IO, 10645 .invalidatepage = btrfs_invalidatepage, 10646 .releasepage = btrfs_releasepage, 10647 #ifdef CONFIG_MIGRATION 10648 .migratepage = btrfs_migratepage, 10649 #endif 10650 .set_page_dirty = btrfs_set_page_dirty, 10651 .error_remove_page = generic_error_remove_page, 10652 .swap_activate = btrfs_swap_activate, 10653 .swap_deactivate = btrfs_swap_deactivate, 10654 }; 10655 10656 static const struct inode_operations btrfs_file_inode_operations = { 10657 .getattr = btrfs_getattr, 10658 .setattr = btrfs_setattr, 10659 .listxattr = btrfs_listxattr, 10660 .permission = btrfs_permission, 10661 .fiemap = btrfs_fiemap, 10662 .get_acl = btrfs_get_acl, 10663 .set_acl = btrfs_set_acl, 10664 .update_time = btrfs_update_time, 10665 .fileattr_get = btrfs_fileattr_get, 10666 .fileattr_set = btrfs_fileattr_set, 10667 }; 10668 static const struct inode_operations btrfs_special_inode_operations = { 10669 .getattr = btrfs_getattr, 10670 .setattr = btrfs_setattr, 10671 .permission = btrfs_permission, 10672 .listxattr = btrfs_listxattr, 10673 .get_acl = btrfs_get_acl, 10674 .set_acl = btrfs_set_acl, 10675 .update_time = btrfs_update_time, 10676 }; 10677 static const struct inode_operations btrfs_symlink_inode_operations = { 10678 .get_link = page_get_link, 10679 .getattr = btrfs_getattr, 10680 .setattr = btrfs_setattr, 10681 .permission = btrfs_permission, 10682 .listxattr = btrfs_listxattr, 10683 .update_time = btrfs_update_time, 10684 }; 10685 10686 const struct dentry_operations btrfs_dentry_operations = { 10687 .d_delete = btrfs_dentry_delete, 10688 }; 10689