1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include "compat.h" 43 #include "ctree.h" 44 #include "disk-io.h" 45 #include "transaction.h" 46 #include "btrfs_inode.h" 47 #include "ioctl.h" 48 #include "print-tree.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "volumes.h" 53 #include "compression.h" 54 #include "locking.h" 55 #include "free-space-cache.h" 56 #include "inode-map.h" 57 58 struct btrfs_iget_args { 59 u64 ino; 60 struct btrfs_root *root; 61 }; 62 63 static const struct inode_operations btrfs_dir_inode_operations; 64 static const struct inode_operations btrfs_symlink_inode_operations; 65 static const struct inode_operations btrfs_dir_ro_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct address_space_operations btrfs_symlink_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 struct kmem_cache *btrfs_trans_handle_cachep; 75 struct kmem_cache *btrfs_transaction_cachep; 76 struct kmem_cache *btrfs_path_cachep; 77 struct kmem_cache *btrfs_free_space_cachep; 78 79 #define S_SHIFT 12 80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 88 }; 89 90 static int btrfs_setsize(struct inode *inode, loff_t newsize); 91 static int btrfs_truncate(struct inode *inode); 92 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 93 static noinline int cow_file_range(struct inode *inode, 94 struct page *locked_page, 95 u64 start, u64 end, int *page_started, 96 unsigned long *nr_written, int unlock); 97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 98 struct btrfs_root *root, struct inode *inode); 99 100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 101 struct inode *inode, struct inode *dir, 102 const struct qstr *qstr) 103 { 104 int err; 105 106 err = btrfs_init_acl(trans, inode, dir); 107 if (!err) 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 109 return err; 110 } 111 112 /* 113 * this does all the hard work for inserting an inline extent into 114 * the btree. The caller should have done a btrfs_drop_extents so that 115 * no overlapping inline items exist in the btree 116 */ 117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 118 struct btrfs_root *root, struct inode *inode, 119 u64 start, size_t size, size_t compressed_size, 120 int compress_type, 121 struct page **compressed_pages) 122 { 123 struct btrfs_key key; 124 struct btrfs_path *path; 125 struct extent_buffer *leaf; 126 struct page *page = NULL; 127 char *kaddr; 128 unsigned long ptr; 129 struct btrfs_file_extent_item *ei; 130 int err = 0; 131 int ret; 132 size_t cur_size = size; 133 size_t datasize; 134 unsigned long offset; 135 136 if (compressed_size && compressed_pages) 137 cur_size = compressed_size; 138 139 path = btrfs_alloc_path(); 140 if (!path) 141 return -ENOMEM; 142 143 path->leave_spinning = 1; 144 145 key.objectid = btrfs_ino(inode); 146 key.offset = start; 147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 148 datasize = btrfs_file_extent_calc_inline_size(cur_size); 149 150 inode_add_bytes(inode, size); 151 ret = btrfs_insert_empty_item(trans, root, path, &key, 152 datasize); 153 if (ret) { 154 err = ret; 155 goto fail; 156 } 157 leaf = path->nodes[0]; 158 ei = btrfs_item_ptr(leaf, path->slots[0], 159 struct btrfs_file_extent_item); 160 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 162 btrfs_set_file_extent_encryption(leaf, ei, 0); 163 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 164 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 165 ptr = btrfs_file_extent_inline_start(ei); 166 167 if (compress_type != BTRFS_COMPRESS_NONE) { 168 struct page *cpage; 169 int i = 0; 170 while (compressed_size > 0) { 171 cpage = compressed_pages[i]; 172 cur_size = min_t(unsigned long, compressed_size, 173 PAGE_CACHE_SIZE); 174 175 kaddr = kmap_atomic(cpage); 176 write_extent_buffer(leaf, kaddr, ptr, cur_size); 177 kunmap_atomic(kaddr); 178 179 i++; 180 ptr += cur_size; 181 compressed_size -= cur_size; 182 } 183 btrfs_set_file_extent_compression(leaf, ei, 184 compress_type); 185 } else { 186 page = find_get_page(inode->i_mapping, 187 start >> PAGE_CACHE_SHIFT); 188 btrfs_set_file_extent_compression(leaf, ei, 0); 189 kaddr = kmap_atomic(page); 190 offset = start & (PAGE_CACHE_SIZE - 1); 191 write_extent_buffer(leaf, kaddr + offset, ptr, size); 192 kunmap_atomic(kaddr); 193 page_cache_release(page); 194 } 195 btrfs_mark_buffer_dirty(leaf); 196 btrfs_free_path(path); 197 198 /* 199 * we're an inline extent, so nobody can 200 * extend the file past i_size without locking 201 * a page we already have locked. 202 * 203 * We must do any isize and inode updates 204 * before we unlock the pages. Otherwise we 205 * could end up racing with unlink. 206 */ 207 BTRFS_I(inode)->disk_i_size = inode->i_size; 208 ret = btrfs_update_inode(trans, root, inode); 209 210 return ret; 211 fail: 212 btrfs_free_path(path); 213 return err; 214 } 215 216 217 /* 218 * conditionally insert an inline extent into the file. This 219 * does the checks required to make sure the data is small enough 220 * to fit as an inline extent. 221 */ 222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 223 struct btrfs_root *root, 224 struct inode *inode, u64 start, u64 end, 225 size_t compressed_size, int compress_type, 226 struct page **compressed_pages) 227 { 228 u64 isize = i_size_read(inode); 229 u64 actual_end = min(end + 1, isize); 230 u64 inline_len = actual_end - start; 231 u64 aligned_end = (end + root->sectorsize - 1) & 232 ~((u64)root->sectorsize - 1); 233 u64 hint_byte; 234 u64 data_len = inline_len; 235 int ret; 236 237 if (compressed_size) 238 data_len = compressed_size; 239 240 if (start > 0 || 241 actual_end >= PAGE_CACHE_SIZE || 242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 243 (!compressed_size && 244 (actual_end & (root->sectorsize - 1)) == 0) || 245 end + 1 < isize || 246 data_len > root->fs_info->max_inline) { 247 return 1; 248 } 249 250 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 251 &hint_byte, 1); 252 if (ret) 253 return ret; 254 255 if (isize > actual_end) 256 inline_len = min_t(u64, isize, actual_end); 257 ret = insert_inline_extent(trans, root, inode, start, 258 inline_len, compressed_size, 259 compress_type, compressed_pages); 260 if (ret && ret != -ENOSPC) { 261 btrfs_abort_transaction(trans, root, ret); 262 return ret; 263 } else if (ret == -ENOSPC) { 264 return 1; 265 } 266 267 btrfs_delalloc_release_metadata(inode, end + 1 - start); 268 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 269 return 0; 270 } 271 272 struct async_extent { 273 u64 start; 274 u64 ram_size; 275 u64 compressed_size; 276 struct page **pages; 277 unsigned long nr_pages; 278 int compress_type; 279 struct list_head list; 280 }; 281 282 struct async_cow { 283 struct inode *inode; 284 struct btrfs_root *root; 285 struct page *locked_page; 286 u64 start; 287 u64 end; 288 struct list_head extents; 289 struct btrfs_work work; 290 }; 291 292 static noinline int add_async_extent(struct async_cow *cow, 293 u64 start, u64 ram_size, 294 u64 compressed_size, 295 struct page **pages, 296 unsigned long nr_pages, 297 int compress_type) 298 { 299 struct async_extent *async_extent; 300 301 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 302 BUG_ON(!async_extent); /* -ENOMEM */ 303 async_extent->start = start; 304 async_extent->ram_size = ram_size; 305 async_extent->compressed_size = compressed_size; 306 async_extent->pages = pages; 307 async_extent->nr_pages = nr_pages; 308 async_extent->compress_type = compress_type; 309 list_add_tail(&async_extent->list, &cow->extents); 310 return 0; 311 } 312 313 /* 314 * we create compressed extents in two phases. The first 315 * phase compresses a range of pages that have already been 316 * locked (both pages and state bits are locked). 317 * 318 * This is done inside an ordered work queue, and the compression 319 * is spread across many cpus. The actual IO submission is step 320 * two, and the ordered work queue takes care of making sure that 321 * happens in the same order things were put onto the queue by 322 * writepages and friends. 323 * 324 * If this code finds it can't get good compression, it puts an 325 * entry onto the work queue to write the uncompressed bytes. This 326 * makes sure that both compressed inodes and uncompressed inodes 327 * are written in the same order that the flusher thread sent them 328 * down. 329 */ 330 static noinline int compress_file_range(struct inode *inode, 331 struct page *locked_page, 332 u64 start, u64 end, 333 struct async_cow *async_cow, 334 int *num_added) 335 { 336 struct btrfs_root *root = BTRFS_I(inode)->root; 337 struct btrfs_trans_handle *trans; 338 u64 num_bytes; 339 u64 blocksize = root->sectorsize; 340 u64 actual_end; 341 u64 isize = i_size_read(inode); 342 int ret = 0; 343 struct page **pages = NULL; 344 unsigned long nr_pages; 345 unsigned long nr_pages_ret = 0; 346 unsigned long total_compressed = 0; 347 unsigned long total_in = 0; 348 unsigned long max_compressed = 128 * 1024; 349 unsigned long max_uncompressed = 128 * 1024; 350 int i; 351 int will_compress; 352 int compress_type = root->fs_info->compress_type; 353 354 /* if this is a small write inside eof, kick off a defrag */ 355 if ((end - start + 1) < 16 * 1024 && 356 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 357 btrfs_add_inode_defrag(NULL, inode); 358 359 actual_end = min_t(u64, isize, end + 1); 360 again: 361 will_compress = 0; 362 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 363 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 364 365 /* 366 * we don't want to send crud past the end of i_size through 367 * compression, that's just a waste of CPU time. So, if the 368 * end of the file is before the start of our current 369 * requested range of bytes, we bail out to the uncompressed 370 * cleanup code that can deal with all of this. 371 * 372 * It isn't really the fastest way to fix things, but this is a 373 * very uncommon corner. 374 */ 375 if (actual_end <= start) 376 goto cleanup_and_bail_uncompressed; 377 378 total_compressed = actual_end - start; 379 380 /* we want to make sure that amount of ram required to uncompress 381 * an extent is reasonable, so we limit the total size in ram 382 * of a compressed extent to 128k. This is a crucial number 383 * because it also controls how easily we can spread reads across 384 * cpus for decompression. 385 * 386 * We also want to make sure the amount of IO required to do 387 * a random read is reasonably small, so we limit the size of 388 * a compressed extent to 128k. 389 */ 390 total_compressed = min(total_compressed, max_uncompressed); 391 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 392 num_bytes = max(blocksize, num_bytes); 393 total_in = 0; 394 ret = 0; 395 396 /* 397 * we do compression for mount -o compress and when the 398 * inode has not been flagged as nocompress. This flag can 399 * change at any time if we discover bad compression ratios. 400 */ 401 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 402 (btrfs_test_opt(root, COMPRESS) || 403 (BTRFS_I(inode)->force_compress) || 404 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 405 WARN_ON(pages); 406 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 407 if (!pages) { 408 /* just bail out to the uncompressed code */ 409 goto cont; 410 } 411 412 if (BTRFS_I(inode)->force_compress) 413 compress_type = BTRFS_I(inode)->force_compress; 414 415 ret = btrfs_compress_pages(compress_type, 416 inode->i_mapping, start, 417 total_compressed, pages, 418 nr_pages, &nr_pages_ret, 419 &total_in, 420 &total_compressed, 421 max_compressed); 422 423 if (!ret) { 424 unsigned long offset = total_compressed & 425 (PAGE_CACHE_SIZE - 1); 426 struct page *page = pages[nr_pages_ret - 1]; 427 char *kaddr; 428 429 /* zero the tail end of the last page, we might be 430 * sending it down to disk 431 */ 432 if (offset) { 433 kaddr = kmap_atomic(page); 434 memset(kaddr + offset, 0, 435 PAGE_CACHE_SIZE - offset); 436 kunmap_atomic(kaddr); 437 } 438 will_compress = 1; 439 } 440 } 441 cont: 442 if (start == 0) { 443 trans = btrfs_join_transaction(root); 444 if (IS_ERR(trans)) { 445 ret = PTR_ERR(trans); 446 trans = NULL; 447 goto cleanup_and_out; 448 } 449 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 450 451 /* lets try to make an inline extent */ 452 if (ret || total_in < (actual_end - start)) { 453 /* we didn't compress the entire range, try 454 * to make an uncompressed inline extent. 455 */ 456 ret = cow_file_range_inline(trans, root, inode, 457 start, end, 0, 0, NULL); 458 } else { 459 /* try making a compressed inline extent */ 460 ret = cow_file_range_inline(trans, root, inode, 461 start, end, 462 total_compressed, 463 compress_type, pages); 464 } 465 if (ret <= 0) { 466 /* 467 * inline extent creation worked or returned error, 468 * we don't need to create any more async work items. 469 * Unlock and free up our temp pages. 470 */ 471 extent_clear_unlock_delalloc(inode, 472 &BTRFS_I(inode)->io_tree, 473 start, end, NULL, 474 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 475 EXTENT_CLEAR_DELALLOC | 476 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 477 478 btrfs_end_transaction(trans, root); 479 goto free_pages_out; 480 } 481 btrfs_end_transaction(trans, root); 482 } 483 484 if (will_compress) { 485 /* 486 * we aren't doing an inline extent round the compressed size 487 * up to a block size boundary so the allocator does sane 488 * things 489 */ 490 total_compressed = (total_compressed + blocksize - 1) & 491 ~(blocksize - 1); 492 493 /* 494 * one last check to make sure the compression is really a 495 * win, compare the page count read with the blocks on disk 496 */ 497 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 498 ~(PAGE_CACHE_SIZE - 1); 499 if (total_compressed >= total_in) { 500 will_compress = 0; 501 } else { 502 num_bytes = total_in; 503 } 504 } 505 if (!will_compress && pages) { 506 /* 507 * the compression code ran but failed to make things smaller, 508 * free any pages it allocated and our page pointer array 509 */ 510 for (i = 0; i < nr_pages_ret; i++) { 511 WARN_ON(pages[i]->mapping); 512 page_cache_release(pages[i]); 513 } 514 kfree(pages); 515 pages = NULL; 516 total_compressed = 0; 517 nr_pages_ret = 0; 518 519 /* flag the file so we don't compress in the future */ 520 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 521 !(BTRFS_I(inode)->force_compress)) { 522 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 523 } 524 } 525 if (will_compress) { 526 *num_added += 1; 527 528 /* the async work queues will take care of doing actual 529 * allocation on disk for these compressed pages, 530 * and will submit them to the elevator. 531 */ 532 add_async_extent(async_cow, start, num_bytes, 533 total_compressed, pages, nr_pages_ret, 534 compress_type); 535 536 if (start + num_bytes < end) { 537 start += num_bytes; 538 pages = NULL; 539 cond_resched(); 540 goto again; 541 } 542 } else { 543 cleanup_and_bail_uncompressed: 544 /* 545 * No compression, but we still need to write the pages in 546 * the file we've been given so far. redirty the locked 547 * page if it corresponds to our extent and set things up 548 * for the async work queue to run cow_file_range to do 549 * the normal delalloc dance 550 */ 551 if (page_offset(locked_page) >= start && 552 page_offset(locked_page) <= end) { 553 __set_page_dirty_nobuffers(locked_page); 554 /* unlocked later on in the async handlers */ 555 } 556 add_async_extent(async_cow, start, end - start + 1, 557 0, NULL, 0, BTRFS_COMPRESS_NONE); 558 *num_added += 1; 559 } 560 561 out: 562 return ret; 563 564 free_pages_out: 565 for (i = 0; i < nr_pages_ret; i++) { 566 WARN_ON(pages[i]->mapping); 567 page_cache_release(pages[i]); 568 } 569 kfree(pages); 570 571 goto out; 572 573 cleanup_and_out: 574 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 575 start, end, NULL, 576 EXTENT_CLEAR_UNLOCK_PAGE | 577 EXTENT_CLEAR_DIRTY | 578 EXTENT_CLEAR_DELALLOC | 579 EXTENT_SET_WRITEBACK | 580 EXTENT_END_WRITEBACK); 581 if (!trans || IS_ERR(trans)) 582 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 583 else 584 btrfs_abort_transaction(trans, root, ret); 585 goto free_pages_out; 586 } 587 588 /* 589 * phase two of compressed writeback. This is the ordered portion 590 * of the code, which only gets called in the order the work was 591 * queued. We walk all the async extents created by compress_file_range 592 * and send them down to the disk. 593 */ 594 static noinline int submit_compressed_extents(struct inode *inode, 595 struct async_cow *async_cow) 596 { 597 struct async_extent *async_extent; 598 u64 alloc_hint = 0; 599 struct btrfs_trans_handle *trans; 600 struct btrfs_key ins; 601 struct extent_map *em; 602 struct btrfs_root *root = BTRFS_I(inode)->root; 603 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 604 struct extent_io_tree *io_tree; 605 int ret = 0; 606 607 if (list_empty(&async_cow->extents)) 608 return 0; 609 610 611 while (!list_empty(&async_cow->extents)) { 612 async_extent = list_entry(async_cow->extents.next, 613 struct async_extent, list); 614 list_del(&async_extent->list); 615 616 io_tree = &BTRFS_I(inode)->io_tree; 617 618 retry: 619 /* did the compression code fall back to uncompressed IO? */ 620 if (!async_extent->pages) { 621 int page_started = 0; 622 unsigned long nr_written = 0; 623 624 lock_extent(io_tree, async_extent->start, 625 async_extent->start + 626 async_extent->ram_size - 1); 627 628 /* allocate blocks */ 629 ret = cow_file_range(inode, async_cow->locked_page, 630 async_extent->start, 631 async_extent->start + 632 async_extent->ram_size - 1, 633 &page_started, &nr_written, 0); 634 635 /* JDM XXX */ 636 637 /* 638 * if page_started, cow_file_range inserted an 639 * inline extent and took care of all the unlocking 640 * and IO for us. Otherwise, we need to submit 641 * all those pages down to the drive. 642 */ 643 if (!page_started && !ret) 644 extent_write_locked_range(io_tree, 645 inode, async_extent->start, 646 async_extent->start + 647 async_extent->ram_size - 1, 648 btrfs_get_extent, 649 WB_SYNC_ALL); 650 kfree(async_extent); 651 cond_resched(); 652 continue; 653 } 654 655 lock_extent(io_tree, async_extent->start, 656 async_extent->start + async_extent->ram_size - 1); 657 658 trans = btrfs_join_transaction(root); 659 if (IS_ERR(trans)) { 660 ret = PTR_ERR(trans); 661 } else { 662 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 663 ret = btrfs_reserve_extent(trans, root, 664 async_extent->compressed_size, 665 async_extent->compressed_size, 666 0, alloc_hint, &ins, 1); 667 if (ret) 668 btrfs_abort_transaction(trans, root, ret); 669 btrfs_end_transaction(trans, root); 670 } 671 672 if (ret) { 673 int i; 674 for (i = 0; i < async_extent->nr_pages; i++) { 675 WARN_ON(async_extent->pages[i]->mapping); 676 page_cache_release(async_extent->pages[i]); 677 } 678 kfree(async_extent->pages); 679 async_extent->nr_pages = 0; 680 async_extent->pages = NULL; 681 unlock_extent(io_tree, async_extent->start, 682 async_extent->start + 683 async_extent->ram_size - 1); 684 if (ret == -ENOSPC) 685 goto retry; 686 goto out_free; /* JDM: Requeue? */ 687 } 688 689 /* 690 * here we're doing allocation and writeback of the 691 * compressed pages 692 */ 693 btrfs_drop_extent_cache(inode, async_extent->start, 694 async_extent->start + 695 async_extent->ram_size - 1, 0); 696 697 em = alloc_extent_map(); 698 BUG_ON(!em); /* -ENOMEM */ 699 em->start = async_extent->start; 700 em->len = async_extent->ram_size; 701 em->orig_start = em->start; 702 703 em->block_start = ins.objectid; 704 em->block_len = ins.offset; 705 em->bdev = root->fs_info->fs_devices->latest_bdev; 706 em->compress_type = async_extent->compress_type; 707 set_bit(EXTENT_FLAG_PINNED, &em->flags); 708 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 709 710 while (1) { 711 write_lock(&em_tree->lock); 712 ret = add_extent_mapping(em_tree, em); 713 write_unlock(&em_tree->lock); 714 if (ret != -EEXIST) { 715 free_extent_map(em); 716 break; 717 } 718 btrfs_drop_extent_cache(inode, async_extent->start, 719 async_extent->start + 720 async_extent->ram_size - 1, 0); 721 } 722 723 ret = btrfs_add_ordered_extent_compress(inode, 724 async_extent->start, 725 ins.objectid, 726 async_extent->ram_size, 727 ins.offset, 728 BTRFS_ORDERED_COMPRESSED, 729 async_extent->compress_type); 730 BUG_ON(ret); /* -ENOMEM */ 731 732 /* 733 * clear dirty, set writeback and unlock the pages. 734 */ 735 extent_clear_unlock_delalloc(inode, 736 &BTRFS_I(inode)->io_tree, 737 async_extent->start, 738 async_extent->start + 739 async_extent->ram_size - 1, 740 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 741 EXTENT_CLEAR_UNLOCK | 742 EXTENT_CLEAR_DELALLOC | 743 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 744 745 ret = btrfs_submit_compressed_write(inode, 746 async_extent->start, 747 async_extent->ram_size, 748 ins.objectid, 749 ins.offset, async_extent->pages, 750 async_extent->nr_pages); 751 752 BUG_ON(ret); /* -ENOMEM */ 753 alloc_hint = ins.objectid + ins.offset; 754 kfree(async_extent); 755 cond_resched(); 756 } 757 ret = 0; 758 out: 759 return ret; 760 out_free: 761 kfree(async_extent); 762 goto out; 763 } 764 765 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 766 u64 num_bytes) 767 { 768 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 769 struct extent_map *em; 770 u64 alloc_hint = 0; 771 772 read_lock(&em_tree->lock); 773 em = search_extent_mapping(em_tree, start, num_bytes); 774 if (em) { 775 /* 776 * if block start isn't an actual block number then find the 777 * first block in this inode and use that as a hint. If that 778 * block is also bogus then just don't worry about it. 779 */ 780 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 781 free_extent_map(em); 782 em = search_extent_mapping(em_tree, 0, 0); 783 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 784 alloc_hint = em->block_start; 785 if (em) 786 free_extent_map(em); 787 } else { 788 alloc_hint = em->block_start; 789 free_extent_map(em); 790 } 791 } 792 read_unlock(&em_tree->lock); 793 794 return alloc_hint; 795 } 796 797 /* 798 * when extent_io.c finds a delayed allocation range in the file, 799 * the call backs end up in this code. The basic idea is to 800 * allocate extents on disk for the range, and create ordered data structs 801 * in ram to track those extents. 802 * 803 * locked_page is the page that writepage had locked already. We use 804 * it to make sure we don't do extra locks or unlocks. 805 * 806 * *page_started is set to one if we unlock locked_page and do everything 807 * required to start IO on it. It may be clean and already done with 808 * IO when we return. 809 */ 810 static noinline int cow_file_range(struct inode *inode, 811 struct page *locked_page, 812 u64 start, u64 end, int *page_started, 813 unsigned long *nr_written, 814 int unlock) 815 { 816 struct btrfs_root *root = BTRFS_I(inode)->root; 817 struct btrfs_trans_handle *trans; 818 u64 alloc_hint = 0; 819 u64 num_bytes; 820 unsigned long ram_size; 821 u64 disk_num_bytes; 822 u64 cur_alloc_size; 823 u64 blocksize = root->sectorsize; 824 struct btrfs_key ins; 825 struct extent_map *em; 826 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 827 int ret = 0; 828 829 BUG_ON(btrfs_is_free_space_inode(inode)); 830 trans = btrfs_join_transaction(root); 831 if (IS_ERR(trans)) { 832 extent_clear_unlock_delalloc(inode, 833 &BTRFS_I(inode)->io_tree, 834 start, end, locked_page, 835 EXTENT_CLEAR_UNLOCK_PAGE | 836 EXTENT_CLEAR_UNLOCK | 837 EXTENT_CLEAR_DELALLOC | 838 EXTENT_CLEAR_DIRTY | 839 EXTENT_SET_WRITEBACK | 840 EXTENT_END_WRITEBACK); 841 return PTR_ERR(trans); 842 } 843 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 844 845 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 846 num_bytes = max(blocksize, num_bytes); 847 disk_num_bytes = num_bytes; 848 ret = 0; 849 850 /* if this is a small write inside eof, kick off defrag */ 851 if (num_bytes < 64 * 1024 && 852 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 853 btrfs_add_inode_defrag(trans, inode); 854 855 if (start == 0) { 856 /* lets try to make an inline extent */ 857 ret = cow_file_range_inline(trans, root, inode, 858 start, end, 0, 0, NULL); 859 if (ret == 0) { 860 extent_clear_unlock_delalloc(inode, 861 &BTRFS_I(inode)->io_tree, 862 start, end, NULL, 863 EXTENT_CLEAR_UNLOCK_PAGE | 864 EXTENT_CLEAR_UNLOCK | 865 EXTENT_CLEAR_DELALLOC | 866 EXTENT_CLEAR_DIRTY | 867 EXTENT_SET_WRITEBACK | 868 EXTENT_END_WRITEBACK); 869 870 *nr_written = *nr_written + 871 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 872 *page_started = 1; 873 goto out; 874 } else if (ret < 0) { 875 btrfs_abort_transaction(trans, root, ret); 876 goto out_unlock; 877 } 878 } 879 880 BUG_ON(disk_num_bytes > 881 btrfs_super_total_bytes(root->fs_info->super_copy)); 882 883 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 884 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 885 886 while (disk_num_bytes > 0) { 887 unsigned long op; 888 889 cur_alloc_size = disk_num_bytes; 890 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 891 root->sectorsize, 0, alloc_hint, 892 &ins, 1); 893 if (ret < 0) { 894 btrfs_abort_transaction(trans, root, ret); 895 goto out_unlock; 896 } 897 898 em = alloc_extent_map(); 899 BUG_ON(!em); /* -ENOMEM */ 900 em->start = start; 901 em->orig_start = em->start; 902 ram_size = ins.offset; 903 em->len = ins.offset; 904 905 em->block_start = ins.objectid; 906 em->block_len = ins.offset; 907 em->bdev = root->fs_info->fs_devices->latest_bdev; 908 set_bit(EXTENT_FLAG_PINNED, &em->flags); 909 910 while (1) { 911 write_lock(&em_tree->lock); 912 ret = add_extent_mapping(em_tree, em); 913 write_unlock(&em_tree->lock); 914 if (ret != -EEXIST) { 915 free_extent_map(em); 916 break; 917 } 918 btrfs_drop_extent_cache(inode, start, 919 start + ram_size - 1, 0); 920 } 921 922 cur_alloc_size = ins.offset; 923 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 924 ram_size, cur_alloc_size, 0); 925 BUG_ON(ret); /* -ENOMEM */ 926 927 if (root->root_key.objectid == 928 BTRFS_DATA_RELOC_TREE_OBJECTID) { 929 ret = btrfs_reloc_clone_csums(inode, start, 930 cur_alloc_size); 931 if (ret) { 932 btrfs_abort_transaction(trans, root, ret); 933 goto out_unlock; 934 } 935 } 936 937 if (disk_num_bytes < cur_alloc_size) 938 break; 939 940 /* we're not doing compressed IO, don't unlock the first 941 * page (which the caller expects to stay locked), don't 942 * clear any dirty bits and don't set any writeback bits 943 * 944 * Do set the Private2 bit so we know this page was properly 945 * setup for writepage 946 */ 947 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 948 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 949 EXTENT_SET_PRIVATE2; 950 951 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 952 start, start + ram_size - 1, 953 locked_page, op); 954 disk_num_bytes -= cur_alloc_size; 955 num_bytes -= cur_alloc_size; 956 alloc_hint = ins.objectid + ins.offset; 957 start += cur_alloc_size; 958 } 959 ret = 0; 960 out: 961 btrfs_end_transaction(trans, root); 962 963 return ret; 964 out_unlock: 965 extent_clear_unlock_delalloc(inode, 966 &BTRFS_I(inode)->io_tree, 967 start, end, locked_page, 968 EXTENT_CLEAR_UNLOCK_PAGE | 969 EXTENT_CLEAR_UNLOCK | 970 EXTENT_CLEAR_DELALLOC | 971 EXTENT_CLEAR_DIRTY | 972 EXTENT_SET_WRITEBACK | 973 EXTENT_END_WRITEBACK); 974 975 goto out; 976 } 977 978 /* 979 * work queue call back to started compression on a file and pages 980 */ 981 static noinline void async_cow_start(struct btrfs_work *work) 982 { 983 struct async_cow *async_cow; 984 int num_added = 0; 985 async_cow = container_of(work, struct async_cow, work); 986 987 compress_file_range(async_cow->inode, async_cow->locked_page, 988 async_cow->start, async_cow->end, async_cow, 989 &num_added); 990 if (num_added == 0) { 991 btrfs_add_delayed_iput(async_cow->inode); 992 async_cow->inode = NULL; 993 } 994 } 995 996 /* 997 * work queue call back to submit previously compressed pages 998 */ 999 static noinline void async_cow_submit(struct btrfs_work *work) 1000 { 1001 struct async_cow *async_cow; 1002 struct btrfs_root *root; 1003 unsigned long nr_pages; 1004 1005 async_cow = container_of(work, struct async_cow, work); 1006 1007 root = async_cow->root; 1008 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1009 PAGE_CACHE_SHIFT; 1010 1011 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 1012 1013 if (atomic_read(&root->fs_info->async_delalloc_pages) < 1014 5 * 1024 * 1024 && 1015 waitqueue_active(&root->fs_info->async_submit_wait)) 1016 wake_up(&root->fs_info->async_submit_wait); 1017 1018 if (async_cow->inode) 1019 submit_compressed_extents(async_cow->inode, async_cow); 1020 } 1021 1022 static noinline void async_cow_free(struct btrfs_work *work) 1023 { 1024 struct async_cow *async_cow; 1025 async_cow = container_of(work, struct async_cow, work); 1026 if (async_cow->inode) 1027 btrfs_add_delayed_iput(async_cow->inode); 1028 kfree(async_cow); 1029 } 1030 1031 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1032 u64 start, u64 end, int *page_started, 1033 unsigned long *nr_written) 1034 { 1035 struct async_cow *async_cow; 1036 struct btrfs_root *root = BTRFS_I(inode)->root; 1037 unsigned long nr_pages; 1038 u64 cur_end; 1039 int limit = 10 * 1024 * 1024; 1040 1041 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1042 1, 0, NULL, GFP_NOFS); 1043 while (start < end) { 1044 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1045 BUG_ON(!async_cow); /* -ENOMEM */ 1046 async_cow->inode = igrab(inode); 1047 async_cow->root = root; 1048 async_cow->locked_page = locked_page; 1049 async_cow->start = start; 1050 1051 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1052 cur_end = end; 1053 else 1054 cur_end = min(end, start + 512 * 1024 - 1); 1055 1056 async_cow->end = cur_end; 1057 INIT_LIST_HEAD(&async_cow->extents); 1058 1059 async_cow->work.func = async_cow_start; 1060 async_cow->work.ordered_func = async_cow_submit; 1061 async_cow->work.ordered_free = async_cow_free; 1062 async_cow->work.flags = 0; 1063 1064 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1065 PAGE_CACHE_SHIFT; 1066 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1067 1068 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1069 &async_cow->work); 1070 1071 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1072 wait_event(root->fs_info->async_submit_wait, 1073 (atomic_read(&root->fs_info->async_delalloc_pages) < 1074 limit)); 1075 } 1076 1077 while (atomic_read(&root->fs_info->async_submit_draining) && 1078 atomic_read(&root->fs_info->async_delalloc_pages)) { 1079 wait_event(root->fs_info->async_submit_wait, 1080 (atomic_read(&root->fs_info->async_delalloc_pages) == 1081 0)); 1082 } 1083 1084 *nr_written += nr_pages; 1085 start = cur_end + 1; 1086 } 1087 *page_started = 1; 1088 return 0; 1089 } 1090 1091 static noinline int csum_exist_in_range(struct btrfs_root *root, 1092 u64 bytenr, u64 num_bytes) 1093 { 1094 int ret; 1095 struct btrfs_ordered_sum *sums; 1096 LIST_HEAD(list); 1097 1098 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1099 bytenr + num_bytes - 1, &list, 0); 1100 if (ret == 0 && list_empty(&list)) 1101 return 0; 1102 1103 while (!list_empty(&list)) { 1104 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1105 list_del(&sums->list); 1106 kfree(sums); 1107 } 1108 return 1; 1109 } 1110 1111 /* 1112 * when nowcow writeback call back. This checks for snapshots or COW copies 1113 * of the extents that exist in the file, and COWs the file as required. 1114 * 1115 * If no cow copies or snapshots exist, we write directly to the existing 1116 * blocks on disk 1117 */ 1118 static noinline int run_delalloc_nocow(struct inode *inode, 1119 struct page *locked_page, 1120 u64 start, u64 end, int *page_started, int force, 1121 unsigned long *nr_written) 1122 { 1123 struct btrfs_root *root = BTRFS_I(inode)->root; 1124 struct btrfs_trans_handle *trans; 1125 struct extent_buffer *leaf; 1126 struct btrfs_path *path; 1127 struct btrfs_file_extent_item *fi; 1128 struct btrfs_key found_key; 1129 u64 cow_start; 1130 u64 cur_offset; 1131 u64 extent_end; 1132 u64 extent_offset; 1133 u64 disk_bytenr; 1134 u64 num_bytes; 1135 int extent_type; 1136 int ret, err; 1137 int type; 1138 int nocow; 1139 int check_prev = 1; 1140 bool nolock; 1141 u64 ino = btrfs_ino(inode); 1142 1143 path = btrfs_alloc_path(); 1144 if (!path) { 1145 extent_clear_unlock_delalloc(inode, 1146 &BTRFS_I(inode)->io_tree, 1147 start, end, locked_page, 1148 EXTENT_CLEAR_UNLOCK_PAGE | 1149 EXTENT_CLEAR_UNLOCK | 1150 EXTENT_CLEAR_DELALLOC | 1151 EXTENT_CLEAR_DIRTY | 1152 EXTENT_SET_WRITEBACK | 1153 EXTENT_END_WRITEBACK); 1154 return -ENOMEM; 1155 } 1156 1157 nolock = btrfs_is_free_space_inode(inode); 1158 1159 if (nolock) 1160 trans = btrfs_join_transaction_nolock(root); 1161 else 1162 trans = btrfs_join_transaction(root); 1163 1164 if (IS_ERR(trans)) { 1165 extent_clear_unlock_delalloc(inode, 1166 &BTRFS_I(inode)->io_tree, 1167 start, end, locked_page, 1168 EXTENT_CLEAR_UNLOCK_PAGE | 1169 EXTENT_CLEAR_UNLOCK | 1170 EXTENT_CLEAR_DELALLOC | 1171 EXTENT_CLEAR_DIRTY | 1172 EXTENT_SET_WRITEBACK | 1173 EXTENT_END_WRITEBACK); 1174 btrfs_free_path(path); 1175 return PTR_ERR(trans); 1176 } 1177 1178 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1179 1180 cow_start = (u64)-1; 1181 cur_offset = start; 1182 while (1) { 1183 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1184 cur_offset, 0); 1185 if (ret < 0) { 1186 btrfs_abort_transaction(trans, root, ret); 1187 goto error; 1188 } 1189 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1190 leaf = path->nodes[0]; 1191 btrfs_item_key_to_cpu(leaf, &found_key, 1192 path->slots[0] - 1); 1193 if (found_key.objectid == ino && 1194 found_key.type == BTRFS_EXTENT_DATA_KEY) 1195 path->slots[0]--; 1196 } 1197 check_prev = 0; 1198 next_slot: 1199 leaf = path->nodes[0]; 1200 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1201 ret = btrfs_next_leaf(root, path); 1202 if (ret < 0) { 1203 btrfs_abort_transaction(trans, root, ret); 1204 goto error; 1205 } 1206 if (ret > 0) 1207 break; 1208 leaf = path->nodes[0]; 1209 } 1210 1211 nocow = 0; 1212 disk_bytenr = 0; 1213 num_bytes = 0; 1214 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1215 1216 if (found_key.objectid > ino || 1217 found_key.type > BTRFS_EXTENT_DATA_KEY || 1218 found_key.offset > end) 1219 break; 1220 1221 if (found_key.offset > cur_offset) { 1222 extent_end = found_key.offset; 1223 extent_type = 0; 1224 goto out_check; 1225 } 1226 1227 fi = btrfs_item_ptr(leaf, path->slots[0], 1228 struct btrfs_file_extent_item); 1229 extent_type = btrfs_file_extent_type(leaf, fi); 1230 1231 if (extent_type == BTRFS_FILE_EXTENT_REG || 1232 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1233 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1234 extent_offset = btrfs_file_extent_offset(leaf, fi); 1235 extent_end = found_key.offset + 1236 btrfs_file_extent_num_bytes(leaf, fi); 1237 if (extent_end <= start) { 1238 path->slots[0]++; 1239 goto next_slot; 1240 } 1241 if (disk_bytenr == 0) 1242 goto out_check; 1243 if (btrfs_file_extent_compression(leaf, fi) || 1244 btrfs_file_extent_encryption(leaf, fi) || 1245 btrfs_file_extent_other_encoding(leaf, fi)) 1246 goto out_check; 1247 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1248 goto out_check; 1249 if (btrfs_extent_readonly(root, disk_bytenr)) 1250 goto out_check; 1251 if (btrfs_cross_ref_exist(trans, root, ino, 1252 found_key.offset - 1253 extent_offset, disk_bytenr)) 1254 goto out_check; 1255 disk_bytenr += extent_offset; 1256 disk_bytenr += cur_offset - found_key.offset; 1257 num_bytes = min(end + 1, extent_end) - cur_offset; 1258 /* 1259 * force cow if csum exists in the range. 1260 * this ensure that csum for a given extent are 1261 * either valid or do not exist. 1262 */ 1263 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1264 goto out_check; 1265 nocow = 1; 1266 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1267 extent_end = found_key.offset + 1268 btrfs_file_extent_inline_len(leaf, fi); 1269 extent_end = ALIGN(extent_end, root->sectorsize); 1270 } else { 1271 BUG_ON(1); 1272 } 1273 out_check: 1274 if (extent_end <= start) { 1275 path->slots[0]++; 1276 goto next_slot; 1277 } 1278 if (!nocow) { 1279 if (cow_start == (u64)-1) 1280 cow_start = cur_offset; 1281 cur_offset = extent_end; 1282 if (cur_offset > end) 1283 break; 1284 path->slots[0]++; 1285 goto next_slot; 1286 } 1287 1288 btrfs_release_path(path); 1289 if (cow_start != (u64)-1) { 1290 ret = cow_file_range(inode, locked_page, cow_start, 1291 found_key.offset - 1, page_started, 1292 nr_written, 1); 1293 if (ret) { 1294 btrfs_abort_transaction(trans, root, ret); 1295 goto error; 1296 } 1297 cow_start = (u64)-1; 1298 } 1299 1300 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1301 struct extent_map *em; 1302 struct extent_map_tree *em_tree; 1303 em_tree = &BTRFS_I(inode)->extent_tree; 1304 em = alloc_extent_map(); 1305 BUG_ON(!em); /* -ENOMEM */ 1306 em->start = cur_offset; 1307 em->orig_start = em->start; 1308 em->len = num_bytes; 1309 em->block_len = num_bytes; 1310 em->block_start = disk_bytenr; 1311 em->bdev = root->fs_info->fs_devices->latest_bdev; 1312 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1313 while (1) { 1314 write_lock(&em_tree->lock); 1315 ret = add_extent_mapping(em_tree, em); 1316 write_unlock(&em_tree->lock); 1317 if (ret != -EEXIST) { 1318 free_extent_map(em); 1319 break; 1320 } 1321 btrfs_drop_extent_cache(inode, em->start, 1322 em->start + em->len - 1, 0); 1323 } 1324 type = BTRFS_ORDERED_PREALLOC; 1325 } else { 1326 type = BTRFS_ORDERED_NOCOW; 1327 } 1328 1329 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1330 num_bytes, num_bytes, type); 1331 BUG_ON(ret); /* -ENOMEM */ 1332 1333 if (root->root_key.objectid == 1334 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1335 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1336 num_bytes); 1337 if (ret) { 1338 btrfs_abort_transaction(trans, root, ret); 1339 goto error; 1340 } 1341 } 1342 1343 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1344 cur_offset, cur_offset + num_bytes - 1, 1345 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1346 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1347 EXTENT_SET_PRIVATE2); 1348 cur_offset = extent_end; 1349 if (cur_offset > end) 1350 break; 1351 } 1352 btrfs_release_path(path); 1353 1354 if (cur_offset <= end && cow_start == (u64)-1) { 1355 cow_start = cur_offset; 1356 cur_offset = end; 1357 } 1358 1359 if (cow_start != (u64)-1) { 1360 ret = cow_file_range(inode, locked_page, cow_start, end, 1361 page_started, nr_written, 1); 1362 if (ret) { 1363 btrfs_abort_transaction(trans, root, ret); 1364 goto error; 1365 } 1366 } 1367 1368 error: 1369 if (nolock) { 1370 err = btrfs_end_transaction_nolock(trans, root); 1371 } else { 1372 err = btrfs_end_transaction(trans, root); 1373 } 1374 if (!ret) 1375 ret = err; 1376 1377 if (ret && cur_offset < end) 1378 extent_clear_unlock_delalloc(inode, 1379 &BTRFS_I(inode)->io_tree, 1380 cur_offset, end, locked_page, 1381 EXTENT_CLEAR_UNLOCK_PAGE | 1382 EXTENT_CLEAR_UNLOCK | 1383 EXTENT_CLEAR_DELALLOC | 1384 EXTENT_CLEAR_DIRTY | 1385 EXTENT_SET_WRITEBACK | 1386 EXTENT_END_WRITEBACK); 1387 1388 btrfs_free_path(path); 1389 return ret; 1390 } 1391 1392 /* 1393 * extent_io.c call back to do delayed allocation processing 1394 */ 1395 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1396 u64 start, u64 end, int *page_started, 1397 unsigned long *nr_written) 1398 { 1399 int ret; 1400 struct btrfs_root *root = BTRFS_I(inode)->root; 1401 1402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1403 ret = run_delalloc_nocow(inode, locked_page, start, end, 1404 page_started, 1, nr_written); 1405 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1406 ret = run_delalloc_nocow(inode, locked_page, start, end, 1407 page_started, 0, nr_written); 1408 } else if (!btrfs_test_opt(root, COMPRESS) && 1409 !(BTRFS_I(inode)->force_compress) && 1410 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1411 ret = cow_file_range(inode, locked_page, start, end, 1412 page_started, nr_written, 1); 1413 } else { 1414 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1415 &BTRFS_I(inode)->runtime_flags); 1416 ret = cow_file_range_async(inode, locked_page, start, end, 1417 page_started, nr_written); 1418 } 1419 return ret; 1420 } 1421 1422 static void btrfs_split_extent_hook(struct inode *inode, 1423 struct extent_state *orig, u64 split) 1424 { 1425 /* not delalloc, ignore it */ 1426 if (!(orig->state & EXTENT_DELALLOC)) 1427 return; 1428 1429 spin_lock(&BTRFS_I(inode)->lock); 1430 BTRFS_I(inode)->outstanding_extents++; 1431 spin_unlock(&BTRFS_I(inode)->lock); 1432 } 1433 1434 /* 1435 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1436 * extents so we can keep track of new extents that are just merged onto old 1437 * extents, such as when we are doing sequential writes, so we can properly 1438 * account for the metadata space we'll need. 1439 */ 1440 static void btrfs_merge_extent_hook(struct inode *inode, 1441 struct extent_state *new, 1442 struct extent_state *other) 1443 { 1444 /* not delalloc, ignore it */ 1445 if (!(other->state & EXTENT_DELALLOC)) 1446 return; 1447 1448 spin_lock(&BTRFS_I(inode)->lock); 1449 BTRFS_I(inode)->outstanding_extents--; 1450 spin_unlock(&BTRFS_I(inode)->lock); 1451 } 1452 1453 /* 1454 * extent_io.c set_bit_hook, used to track delayed allocation 1455 * bytes in this file, and to maintain the list of inodes that 1456 * have pending delalloc work to be done. 1457 */ 1458 static void btrfs_set_bit_hook(struct inode *inode, 1459 struct extent_state *state, int *bits) 1460 { 1461 1462 /* 1463 * set_bit and clear bit hooks normally require _irqsave/restore 1464 * but in this case, we are only testing for the DELALLOC 1465 * bit, which is only set or cleared with irqs on 1466 */ 1467 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1468 struct btrfs_root *root = BTRFS_I(inode)->root; 1469 u64 len = state->end + 1 - state->start; 1470 bool do_list = !btrfs_is_free_space_inode(inode); 1471 1472 if (*bits & EXTENT_FIRST_DELALLOC) { 1473 *bits &= ~EXTENT_FIRST_DELALLOC; 1474 } else { 1475 spin_lock(&BTRFS_I(inode)->lock); 1476 BTRFS_I(inode)->outstanding_extents++; 1477 spin_unlock(&BTRFS_I(inode)->lock); 1478 } 1479 1480 spin_lock(&root->fs_info->delalloc_lock); 1481 BTRFS_I(inode)->delalloc_bytes += len; 1482 root->fs_info->delalloc_bytes += len; 1483 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1484 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1485 &root->fs_info->delalloc_inodes); 1486 } 1487 spin_unlock(&root->fs_info->delalloc_lock); 1488 } 1489 } 1490 1491 /* 1492 * extent_io.c clear_bit_hook, see set_bit_hook for why 1493 */ 1494 static void btrfs_clear_bit_hook(struct inode *inode, 1495 struct extent_state *state, int *bits) 1496 { 1497 /* 1498 * set_bit and clear bit hooks normally require _irqsave/restore 1499 * but in this case, we are only testing for the DELALLOC 1500 * bit, which is only set or cleared with irqs on 1501 */ 1502 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1503 struct btrfs_root *root = BTRFS_I(inode)->root; 1504 u64 len = state->end + 1 - state->start; 1505 bool do_list = !btrfs_is_free_space_inode(inode); 1506 1507 if (*bits & EXTENT_FIRST_DELALLOC) { 1508 *bits &= ~EXTENT_FIRST_DELALLOC; 1509 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1510 spin_lock(&BTRFS_I(inode)->lock); 1511 BTRFS_I(inode)->outstanding_extents--; 1512 spin_unlock(&BTRFS_I(inode)->lock); 1513 } 1514 1515 if (*bits & EXTENT_DO_ACCOUNTING) 1516 btrfs_delalloc_release_metadata(inode, len); 1517 1518 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1519 && do_list) 1520 btrfs_free_reserved_data_space(inode, len); 1521 1522 spin_lock(&root->fs_info->delalloc_lock); 1523 root->fs_info->delalloc_bytes -= len; 1524 BTRFS_I(inode)->delalloc_bytes -= len; 1525 1526 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1527 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1528 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1529 } 1530 spin_unlock(&root->fs_info->delalloc_lock); 1531 } 1532 } 1533 1534 /* 1535 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1536 * we don't create bios that span stripes or chunks 1537 */ 1538 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1539 size_t size, struct bio *bio, 1540 unsigned long bio_flags) 1541 { 1542 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1543 struct btrfs_mapping_tree *map_tree; 1544 u64 logical = (u64)bio->bi_sector << 9; 1545 u64 length = 0; 1546 u64 map_length; 1547 int ret; 1548 1549 if (bio_flags & EXTENT_BIO_COMPRESSED) 1550 return 0; 1551 1552 length = bio->bi_size; 1553 map_tree = &root->fs_info->mapping_tree; 1554 map_length = length; 1555 ret = btrfs_map_block(map_tree, READ, logical, 1556 &map_length, NULL, 0); 1557 /* Will always return 0 or 1 with map_multi == NULL */ 1558 BUG_ON(ret < 0); 1559 if (map_length < length + size) 1560 return 1; 1561 return 0; 1562 } 1563 1564 /* 1565 * in order to insert checksums into the metadata in large chunks, 1566 * we wait until bio submission time. All the pages in the bio are 1567 * checksummed and sums are attached onto the ordered extent record. 1568 * 1569 * At IO completion time the cums attached on the ordered extent record 1570 * are inserted into the btree 1571 */ 1572 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1573 struct bio *bio, int mirror_num, 1574 unsigned long bio_flags, 1575 u64 bio_offset) 1576 { 1577 struct btrfs_root *root = BTRFS_I(inode)->root; 1578 int ret = 0; 1579 1580 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1581 BUG_ON(ret); /* -ENOMEM */ 1582 return 0; 1583 } 1584 1585 /* 1586 * in order to insert checksums into the metadata in large chunks, 1587 * we wait until bio submission time. All the pages in the bio are 1588 * checksummed and sums are attached onto the ordered extent record. 1589 * 1590 * At IO completion time the cums attached on the ordered extent record 1591 * are inserted into the btree 1592 */ 1593 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1594 int mirror_num, unsigned long bio_flags, 1595 u64 bio_offset) 1596 { 1597 struct btrfs_root *root = BTRFS_I(inode)->root; 1598 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1599 } 1600 1601 /* 1602 * extent_io.c submission hook. This does the right thing for csum calculation 1603 * on write, or reading the csums from the tree before a read 1604 */ 1605 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1606 int mirror_num, unsigned long bio_flags, 1607 u64 bio_offset) 1608 { 1609 struct btrfs_root *root = BTRFS_I(inode)->root; 1610 int ret = 0; 1611 int skip_sum; 1612 int metadata = 0; 1613 1614 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1615 1616 if (btrfs_is_free_space_inode(inode)) 1617 metadata = 2; 1618 1619 if (!(rw & REQ_WRITE)) { 1620 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1621 if (ret) 1622 return ret; 1623 1624 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1625 return btrfs_submit_compressed_read(inode, bio, 1626 mirror_num, bio_flags); 1627 } else if (!skip_sum) { 1628 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1629 if (ret) 1630 return ret; 1631 } 1632 goto mapit; 1633 } else if (!skip_sum) { 1634 /* csum items have already been cloned */ 1635 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1636 goto mapit; 1637 /* we're doing a write, do the async checksumming */ 1638 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1639 inode, rw, bio, mirror_num, 1640 bio_flags, bio_offset, 1641 __btrfs_submit_bio_start, 1642 __btrfs_submit_bio_done); 1643 } 1644 1645 mapit: 1646 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1647 } 1648 1649 /* 1650 * given a list of ordered sums record them in the inode. This happens 1651 * at IO completion time based on sums calculated at bio submission time. 1652 */ 1653 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1654 struct inode *inode, u64 file_offset, 1655 struct list_head *list) 1656 { 1657 struct btrfs_ordered_sum *sum; 1658 1659 list_for_each_entry(sum, list, list) { 1660 btrfs_csum_file_blocks(trans, 1661 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1662 } 1663 return 0; 1664 } 1665 1666 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1667 struct extent_state **cached_state) 1668 { 1669 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1670 WARN_ON(1); 1671 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1672 cached_state, GFP_NOFS); 1673 } 1674 1675 /* see btrfs_writepage_start_hook for details on why this is required */ 1676 struct btrfs_writepage_fixup { 1677 struct page *page; 1678 struct btrfs_work work; 1679 }; 1680 1681 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1682 { 1683 struct btrfs_writepage_fixup *fixup; 1684 struct btrfs_ordered_extent *ordered; 1685 struct extent_state *cached_state = NULL; 1686 struct page *page; 1687 struct inode *inode; 1688 u64 page_start; 1689 u64 page_end; 1690 int ret; 1691 1692 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1693 page = fixup->page; 1694 again: 1695 lock_page(page); 1696 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1697 ClearPageChecked(page); 1698 goto out_page; 1699 } 1700 1701 inode = page->mapping->host; 1702 page_start = page_offset(page); 1703 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1704 1705 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1706 &cached_state); 1707 1708 /* already ordered? We're done */ 1709 if (PagePrivate2(page)) 1710 goto out; 1711 1712 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1713 if (ordered) { 1714 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1715 page_end, &cached_state, GFP_NOFS); 1716 unlock_page(page); 1717 btrfs_start_ordered_extent(inode, ordered, 1); 1718 btrfs_put_ordered_extent(ordered); 1719 goto again; 1720 } 1721 1722 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1723 if (ret) { 1724 mapping_set_error(page->mapping, ret); 1725 end_extent_writepage(page, ret, page_start, page_end); 1726 ClearPageChecked(page); 1727 goto out; 1728 } 1729 1730 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1731 ClearPageChecked(page); 1732 set_page_dirty(page); 1733 out: 1734 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1735 &cached_state, GFP_NOFS); 1736 out_page: 1737 unlock_page(page); 1738 page_cache_release(page); 1739 kfree(fixup); 1740 } 1741 1742 /* 1743 * There are a few paths in the higher layers of the kernel that directly 1744 * set the page dirty bit without asking the filesystem if it is a 1745 * good idea. This causes problems because we want to make sure COW 1746 * properly happens and the data=ordered rules are followed. 1747 * 1748 * In our case any range that doesn't have the ORDERED bit set 1749 * hasn't been properly setup for IO. We kick off an async process 1750 * to fix it up. The async helper will wait for ordered extents, set 1751 * the delalloc bit and make it safe to write the page. 1752 */ 1753 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1754 { 1755 struct inode *inode = page->mapping->host; 1756 struct btrfs_writepage_fixup *fixup; 1757 struct btrfs_root *root = BTRFS_I(inode)->root; 1758 1759 /* this page is properly in the ordered list */ 1760 if (TestClearPagePrivate2(page)) 1761 return 0; 1762 1763 if (PageChecked(page)) 1764 return -EAGAIN; 1765 1766 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1767 if (!fixup) 1768 return -EAGAIN; 1769 1770 SetPageChecked(page); 1771 page_cache_get(page); 1772 fixup->work.func = btrfs_writepage_fixup_worker; 1773 fixup->page = page; 1774 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1775 return -EBUSY; 1776 } 1777 1778 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1779 struct inode *inode, u64 file_pos, 1780 u64 disk_bytenr, u64 disk_num_bytes, 1781 u64 num_bytes, u64 ram_bytes, 1782 u8 compression, u8 encryption, 1783 u16 other_encoding, int extent_type) 1784 { 1785 struct btrfs_root *root = BTRFS_I(inode)->root; 1786 struct btrfs_file_extent_item *fi; 1787 struct btrfs_path *path; 1788 struct extent_buffer *leaf; 1789 struct btrfs_key ins; 1790 u64 hint; 1791 int ret; 1792 1793 path = btrfs_alloc_path(); 1794 if (!path) 1795 return -ENOMEM; 1796 1797 path->leave_spinning = 1; 1798 1799 /* 1800 * we may be replacing one extent in the tree with another. 1801 * The new extent is pinned in the extent map, and we don't want 1802 * to drop it from the cache until it is completely in the btree. 1803 * 1804 * So, tell btrfs_drop_extents to leave this extent in the cache. 1805 * the caller is expected to unpin it and allow it to be merged 1806 * with the others. 1807 */ 1808 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1809 &hint, 0); 1810 if (ret) 1811 goto out; 1812 1813 ins.objectid = btrfs_ino(inode); 1814 ins.offset = file_pos; 1815 ins.type = BTRFS_EXTENT_DATA_KEY; 1816 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1817 if (ret) 1818 goto out; 1819 leaf = path->nodes[0]; 1820 fi = btrfs_item_ptr(leaf, path->slots[0], 1821 struct btrfs_file_extent_item); 1822 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1823 btrfs_set_file_extent_type(leaf, fi, extent_type); 1824 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1825 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1826 btrfs_set_file_extent_offset(leaf, fi, 0); 1827 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1828 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1829 btrfs_set_file_extent_compression(leaf, fi, compression); 1830 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1831 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1832 1833 btrfs_unlock_up_safe(path, 1); 1834 btrfs_set_lock_blocking(leaf); 1835 1836 btrfs_mark_buffer_dirty(leaf); 1837 1838 inode_add_bytes(inode, num_bytes); 1839 1840 ins.objectid = disk_bytenr; 1841 ins.offset = disk_num_bytes; 1842 ins.type = BTRFS_EXTENT_ITEM_KEY; 1843 ret = btrfs_alloc_reserved_file_extent(trans, root, 1844 root->root_key.objectid, 1845 btrfs_ino(inode), file_pos, &ins); 1846 out: 1847 btrfs_free_path(path); 1848 1849 return ret; 1850 } 1851 1852 /* 1853 * helper function for btrfs_finish_ordered_io, this 1854 * just reads in some of the csum leaves to prime them into ram 1855 * before we start the transaction. It limits the amount of btree 1856 * reads required while inside the transaction. 1857 */ 1858 /* as ordered data IO finishes, this gets called so we can finish 1859 * an ordered extent if the range of bytes in the file it covers are 1860 * fully written. 1861 */ 1862 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 1863 { 1864 struct inode *inode = ordered_extent->inode; 1865 struct btrfs_root *root = BTRFS_I(inode)->root; 1866 struct btrfs_trans_handle *trans = NULL; 1867 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1868 struct extent_state *cached_state = NULL; 1869 int compress_type = 0; 1870 int ret; 1871 bool nolock; 1872 1873 nolock = btrfs_is_free_space_inode(inode); 1874 1875 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 1876 ret = -EIO; 1877 goto out; 1878 } 1879 1880 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1881 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 1882 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1883 if (!ret) { 1884 if (nolock) 1885 trans = btrfs_join_transaction_nolock(root); 1886 else 1887 trans = btrfs_join_transaction(root); 1888 if (IS_ERR(trans)) 1889 return PTR_ERR(trans); 1890 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1891 ret = btrfs_update_inode_fallback(trans, root, inode); 1892 if (ret) /* -ENOMEM or corruption */ 1893 btrfs_abort_transaction(trans, root, ret); 1894 } 1895 goto out; 1896 } 1897 1898 lock_extent_bits(io_tree, ordered_extent->file_offset, 1899 ordered_extent->file_offset + ordered_extent->len - 1, 1900 0, &cached_state); 1901 1902 if (nolock) 1903 trans = btrfs_join_transaction_nolock(root); 1904 else 1905 trans = btrfs_join_transaction(root); 1906 if (IS_ERR(trans)) { 1907 ret = PTR_ERR(trans); 1908 trans = NULL; 1909 goto out_unlock; 1910 } 1911 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1912 1913 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1914 compress_type = ordered_extent->compress_type; 1915 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1916 BUG_ON(compress_type); 1917 ret = btrfs_mark_extent_written(trans, inode, 1918 ordered_extent->file_offset, 1919 ordered_extent->file_offset + 1920 ordered_extent->len); 1921 } else { 1922 BUG_ON(root == root->fs_info->tree_root); 1923 ret = insert_reserved_file_extent(trans, inode, 1924 ordered_extent->file_offset, 1925 ordered_extent->start, 1926 ordered_extent->disk_len, 1927 ordered_extent->len, 1928 ordered_extent->len, 1929 compress_type, 0, 0, 1930 BTRFS_FILE_EXTENT_REG); 1931 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1932 ordered_extent->file_offset, 1933 ordered_extent->len); 1934 } 1935 1936 if (ret < 0) { 1937 btrfs_abort_transaction(trans, root, ret); 1938 goto out_unlock; 1939 } 1940 1941 add_pending_csums(trans, inode, ordered_extent->file_offset, 1942 &ordered_extent->list); 1943 1944 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1945 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1946 ret = btrfs_update_inode_fallback(trans, root, inode); 1947 if (ret) { /* -ENOMEM or corruption */ 1948 btrfs_abort_transaction(trans, root, ret); 1949 goto out_unlock; 1950 } 1951 } 1952 ret = 0; 1953 out_unlock: 1954 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1955 ordered_extent->file_offset + 1956 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1957 out: 1958 if (root != root->fs_info->tree_root) 1959 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1960 if (trans) { 1961 if (nolock) 1962 btrfs_end_transaction_nolock(trans, root); 1963 else 1964 btrfs_end_transaction(trans, root); 1965 } 1966 1967 if (ret) 1968 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 1969 ordered_extent->file_offset + 1970 ordered_extent->len - 1, NULL, GFP_NOFS); 1971 1972 /* 1973 * This needs to be dont to make sure anybody waiting knows we are done 1974 * upating everything for this ordered extent. 1975 */ 1976 btrfs_remove_ordered_extent(inode, ordered_extent); 1977 1978 /* once for us */ 1979 btrfs_put_ordered_extent(ordered_extent); 1980 /* once for the tree */ 1981 btrfs_put_ordered_extent(ordered_extent); 1982 1983 return ret; 1984 } 1985 1986 static void finish_ordered_fn(struct btrfs_work *work) 1987 { 1988 struct btrfs_ordered_extent *ordered_extent; 1989 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 1990 btrfs_finish_ordered_io(ordered_extent); 1991 } 1992 1993 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1994 struct extent_state *state, int uptodate) 1995 { 1996 struct inode *inode = page->mapping->host; 1997 struct btrfs_root *root = BTRFS_I(inode)->root; 1998 struct btrfs_ordered_extent *ordered_extent = NULL; 1999 struct btrfs_workers *workers; 2000 2001 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2002 2003 ClearPagePrivate2(page); 2004 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2005 end - start + 1, uptodate)) 2006 return 0; 2007 2008 ordered_extent->work.func = finish_ordered_fn; 2009 ordered_extent->work.flags = 0; 2010 2011 if (btrfs_is_free_space_inode(inode)) 2012 workers = &root->fs_info->endio_freespace_worker; 2013 else 2014 workers = &root->fs_info->endio_write_workers; 2015 btrfs_queue_worker(workers, &ordered_extent->work); 2016 2017 return 0; 2018 } 2019 2020 /* 2021 * when reads are done, we need to check csums to verify the data is correct 2022 * if there's a match, we allow the bio to finish. If not, the code in 2023 * extent_io.c will try to find good copies for us. 2024 */ 2025 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2026 struct extent_state *state, int mirror) 2027 { 2028 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 2029 struct inode *inode = page->mapping->host; 2030 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2031 char *kaddr; 2032 u64 private = ~(u32)0; 2033 int ret; 2034 struct btrfs_root *root = BTRFS_I(inode)->root; 2035 u32 csum = ~(u32)0; 2036 2037 if (PageChecked(page)) { 2038 ClearPageChecked(page); 2039 goto good; 2040 } 2041 2042 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2043 goto good; 2044 2045 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2046 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2047 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2048 GFP_NOFS); 2049 return 0; 2050 } 2051 2052 if (state && state->start == start) { 2053 private = state->private; 2054 ret = 0; 2055 } else { 2056 ret = get_state_private(io_tree, start, &private); 2057 } 2058 kaddr = kmap_atomic(page); 2059 if (ret) 2060 goto zeroit; 2061 2062 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2063 btrfs_csum_final(csum, (char *)&csum); 2064 if (csum != private) 2065 goto zeroit; 2066 2067 kunmap_atomic(kaddr); 2068 good: 2069 return 0; 2070 2071 zeroit: 2072 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2073 "private %llu\n", 2074 (unsigned long long)btrfs_ino(page->mapping->host), 2075 (unsigned long long)start, csum, 2076 (unsigned long long)private); 2077 memset(kaddr + offset, 1, end - start + 1); 2078 flush_dcache_page(page); 2079 kunmap_atomic(kaddr); 2080 if (private == 0) 2081 return 0; 2082 return -EIO; 2083 } 2084 2085 struct delayed_iput { 2086 struct list_head list; 2087 struct inode *inode; 2088 }; 2089 2090 /* JDM: If this is fs-wide, why can't we add a pointer to 2091 * btrfs_inode instead and avoid the allocation? */ 2092 void btrfs_add_delayed_iput(struct inode *inode) 2093 { 2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2095 struct delayed_iput *delayed; 2096 2097 if (atomic_add_unless(&inode->i_count, -1, 1)) 2098 return; 2099 2100 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2101 delayed->inode = inode; 2102 2103 spin_lock(&fs_info->delayed_iput_lock); 2104 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2105 spin_unlock(&fs_info->delayed_iput_lock); 2106 } 2107 2108 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2109 { 2110 LIST_HEAD(list); 2111 struct btrfs_fs_info *fs_info = root->fs_info; 2112 struct delayed_iput *delayed; 2113 int empty; 2114 2115 spin_lock(&fs_info->delayed_iput_lock); 2116 empty = list_empty(&fs_info->delayed_iputs); 2117 spin_unlock(&fs_info->delayed_iput_lock); 2118 if (empty) 2119 return; 2120 2121 down_read(&root->fs_info->cleanup_work_sem); 2122 spin_lock(&fs_info->delayed_iput_lock); 2123 list_splice_init(&fs_info->delayed_iputs, &list); 2124 spin_unlock(&fs_info->delayed_iput_lock); 2125 2126 while (!list_empty(&list)) { 2127 delayed = list_entry(list.next, struct delayed_iput, list); 2128 list_del(&delayed->list); 2129 iput(delayed->inode); 2130 kfree(delayed); 2131 } 2132 up_read(&root->fs_info->cleanup_work_sem); 2133 } 2134 2135 enum btrfs_orphan_cleanup_state { 2136 ORPHAN_CLEANUP_STARTED = 1, 2137 ORPHAN_CLEANUP_DONE = 2, 2138 }; 2139 2140 /* 2141 * This is called in transaction commit time. If there are no orphan 2142 * files in the subvolume, it removes orphan item and frees block_rsv 2143 * structure. 2144 */ 2145 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2146 struct btrfs_root *root) 2147 { 2148 struct btrfs_block_rsv *block_rsv; 2149 int ret; 2150 2151 if (atomic_read(&root->orphan_inodes) || 2152 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2153 return; 2154 2155 spin_lock(&root->orphan_lock); 2156 if (atomic_read(&root->orphan_inodes)) { 2157 spin_unlock(&root->orphan_lock); 2158 return; 2159 } 2160 2161 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2162 spin_unlock(&root->orphan_lock); 2163 return; 2164 } 2165 2166 block_rsv = root->orphan_block_rsv; 2167 root->orphan_block_rsv = NULL; 2168 spin_unlock(&root->orphan_lock); 2169 2170 if (root->orphan_item_inserted && 2171 btrfs_root_refs(&root->root_item) > 0) { 2172 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2173 root->root_key.objectid); 2174 BUG_ON(ret); 2175 root->orphan_item_inserted = 0; 2176 } 2177 2178 if (block_rsv) { 2179 WARN_ON(block_rsv->size > 0); 2180 btrfs_free_block_rsv(root, block_rsv); 2181 } 2182 } 2183 2184 /* 2185 * This creates an orphan entry for the given inode in case something goes 2186 * wrong in the middle of an unlink/truncate. 2187 * 2188 * NOTE: caller of this function should reserve 5 units of metadata for 2189 * this function. 2190 */ 2191 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2192 { 2193 struct btrfs_root *root = BTRFS_I(inode)->root; 2194 struct btrfs_block_rsv *block_rsv = NULL; 2195 int reserve = 0; 2196 int insert = 0; 2197 int ret; 2198 2199 if (!root->orphan_block_rsv) { 2200 block_rsv = btrfs_alloc_block_rsv(root); 2201 if (!block_rsv) 2202 return -ENOMEM; 2203 } 2204 2205 spin_lock(&root->orphan_lock); 2206 if (!root->orphan_block_rsv) { 2207 root->orphan_block_rsv = block_rsv; 2208 } else if (block_rsv) { 2209 btrfs_free_block_rsv(root, block_rsv); 2210 block_rsv = NULL; 2211 } 2212 2213 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2214 &BTRFS_I(inode)->runtime_flags)) { 2215 #if 0 2216 /* 2217 * For proper ENOSPC handling, we should do orphan 2218 * cleanup when mounting. But this introduces backward 2219 * compatibility issue. 2220 */ 2221 if (!xchg(&root->orphan_item_inserted, 1)) 2222 insert = 2; 2223 else 2224 insert = 1; 2225 #endif 2226 insert = 1; 2227 atomic_dec(&root->orphan_inodes); 2228 } 2229 2230 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2231 &BTRFS_I(inode)->runtime_flags)) 2232 reserve = 1; 2233 spin_unlock(&root->orphan_lock); 2234 2235 /* grab metadata reservation from transaction handle */ 2236 if (reserve) { 2237 ret = btrfs_orphan_reserve_metadata(trans, inode); 2238 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2239 } 2240 2241 /* insert an orphan item to track this unlinked/truncated file */ 2242 if (insert >= 1) { 2243 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2244 if (ret && ret != -EEXIST) { 2245 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2246 &BTRFS_I(inode)->runtime_flags); 2247 btrfs_abort_transaction(trans, root, ret); 2248 return ret; 2249 } 2250 ret = 0; 2251 } 2252 2253 /* insert an orphan item to track subvolume contains orphan files */ 2254 if (insert >= 2) { 2255 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2256 root->root_key.objectid); 2257 if (ret && ret != -EEXIST) { 2258 btrfs_abort_transaction(trans, root, ret); 2259 return ret; 2260 } 2261 } 2262 return 0; 2263 } 2264 2265 /* 2266 * We have done the truncate/delete so we can go ahead and remove the orphan 2267 * item for this particular inode. 2268 */ 2269 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2270 { 2271 struct btrfs_root *root = BTRFS_I(inode)->root; 2272 int delete_item = 0; 2273 int release_rsv = 0; 2274 int ret = 0; 2275 2276 spin_lock(&root->orphan_lock); 2277 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2278 &BTRFS_I(inode)->runtime_flags)) 2279 delete_item = 1; 2280 2281 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2282 &BTRFS_I(inode)->runtime_flags)) 2283 release_rsv = 1; 2284 spin_unlock(&root->orphan_lock); 2285 2286 if (trans && delete_item) { 2287 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2288 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 2289 } 2290 2291 if (release_rsv) { 2292 btrfs_orphan_release_metadata(inode); 2293 atomic_dec(&root->orphan_inodes); 2294 } 2295 2296 return 0; 2297 } 2298 2299 /* 2300 * this cleans up any orphans that may be left on the list from the last use 2301 * of this root. 2302 */ 2303 int btrfs_orphan_cleanup(struct btrfs_root *root) 2304 { 2305 struct btrfs_path *path; 2306 struct extent_buffer *leaf; 2307 struct btrfs_key key, found_key; 2308 struct btrfs_trans_handle *trans; 2309 struct inode *inode; 2310 u64 last_objectid = 0; 2311 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2312 2313 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2314 return 0; 2315 2316 path = btrfs_alloc_path(); 2317 if (!path) { 2318 ret = -ENOMEM; 2319 goto out; 2320 } 2321 path->reada = -1; 2322 2323 key.objectid = BTRFS_ORPHAN_OBJECTID; 2324 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2325 key.offset = (u64)-1; 2326 2327 while (1) { 2328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2329 if (ret < 0) 2330 goto out; 2331 2332 /* 2333 * if ret == 0 means we found what we were searching for, which 2334 * is weird, but possible, so only screw with path if we didn't 2335 * find the key and see if we have stuff that matches 2336 */ 2337 if (ret > 0) { 2338 ret = 0; 2339 if (path->slots[0] == 0) 2340 break; 2341 path->slots[0]--; 2342 } 2343 2344 /* pull out the item */ 2345 leaf = path->nodes[0]; 2346 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2347 2348 /* make sure the item matches what we want */ 2349 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2350 break; 2351 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2352 break; 2353 2354 /* release the path since we're done with it */ 2355 btrfs_release_path(path); 2356 2357 /* 2358 * this is where we are basically btrfs_lookup, without the 2359 * crossing root thing. we store the inode number in the 2360 * offset of the orphan item. 2361 */ 2362 2363 if (found_key.offset == last_objectid) { 2364 printk(KERN_ERR "btrfs: Error removing orphan entry, " 2365 "stopping orphan cleanup\n"); 2366 ret = -EINVAL; 2367 goto out; 2368 } 2369 2370 last_objectid = found_key.offset; 2371 2372 found_key.objectid = found_key.offset; 2373 found_key.type = BTRFS_INODE_ITEM_KEY; 2374 found_key.offset = 0; 2375 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2376 ret = PTR_RET(inode); 2377 if (ret && ret != -ESTALE) 2378 goto out; 2379 2380 if (ret == -ESTALE && root == root->fs_info->tree_root) { 2381 struct btrfs_root *dead_root; 2382 struct btrfs_fs_info *fs_info = root->fs_info; 2383 int is_dead_root = 0; 2384 2385 /* 2386 * this is an orphan in the tree root. Currently these 2387 * could come from 2 sources: 2388 * a) a snapshot deletion in progress 2389 * b) a free space cache inode 2390 * We need to distinguish those two, as the snapshot 2391 * orphan must not get deleted. 2392 * find_dead_roots already ran before us, so if this 2393 * is a snapshot deletion, we should find the root 2394 * in the dead_roots list 2395 */ 2396 spin_lock(&fs_info->trans_lock); 2397 list_for_each_entry(dead_root, &fs_info->dead_roots, 2398 root_list) { 2399 if (dead_root->root_key.objectid == 2400 found_key.objectid) { 2401 is_dead_root = 1; 2402 break; 2403 } 2404 } 2405 spin_unlock(&fs_info->trans_lock); 2406 if (is_dead_root) { 2407 /* prevent this orphan from being found again */ 2408 key.offset = found_key.objectid - 1; 2409 continue; 2410 } 2411 } 2412 /* 2413 * Inode is already gone but the orphan item is still there, 2414 * kill the orphan item. 2415 */ 2416 if (ret == -ESTALE) { 2417 trans = btrfs_start_transaction(root, 1); 2418 if (IS_ERR(trans)) { 2419 ret = PTR_ERR(trans); 2420 goto out; 2421 } 2422 printk(KERN_ERR "auto deleting %Lu\n", 2423 found_key.objectid); 2424 ret = btrfs_del_orphan_item(trans, root, 2425 found_key.objectid); 2426 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 2427 btrfs_end_transaction(trans, root); 2428 continue; 2429 } 2430 2431 /* 2432 * add this inode to the orphan list so btrfs_orphan_del does 2433 * the proper thing when we hit it 2434 */ 2435 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2436 &BTRFS_I(inode)->runtime_flags); 2437 2438 /* if we have links, this was a truncate, lets do that */ 2439 if (inode->i_nlink) { 2440 if (!S_ISREG(inode->i_mode)) { 2441 WARN_ON(1); 2442 iput(inode); 2443 continue; 2444 } 2445 nr_truncate++; 2446 ret = btrfs_truncate(inode); 2447 } else { 2448 nr_unlink++; 2449 } 2450 2451 /* this will do delete_inode and everything for us */ 2452 iput(inode); 2453 if (ret) 2454 goto out; 2455 } 2456 /* release the path since we're done with it */ 2457 btrfs_release_path(path); 2458 2459 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2460 2461 if (root->orphan_block_rsv) 2462 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2463 (u64)-1); 2464 2465 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2466 trans = btrfs_join_transaction(root); 2467 if (!IS_ERR(trans)) 2468 btrfs_end_transaction(trans, root); 2469 } 2470 2471 if (nr_unlink) 2472 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2473 if (nr_truncate) 2474 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2475 2476 out: 2477 if (ret) 2478 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2479 btrfs_free_path(path); 2480 return ret; 2481 } 2482 2483 /* 2484 * very simple check to peek ahead in the leaf looking for xattrs. If we 2485 * don't find any xattrs, we know there can't be any acls. 2486 * 2487 * slot is the slot the inode is in, objectid is the objectid of the inode 2488 */ 2489 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2490 int slot, u64 objectid) 2491 { 2492 u32 nritems = btrfs_header_nritems(leaf); 2493 struct btrfs_key found_key; 2494 int scanned = 0; 2495 2496 slot++; 2497 while (slot < nritems) { 2498 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2499 2500 /* we found a different objectid, there must not be acls */ 2501 if (found_key.objectid != objectid) 2502 return 0; 2503 2504 /* we found an xattr, assume we've got an acl */ 2505 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2506 return 1; 2507 2508 /* 2509 * we found a key greater than an xattr key, there can't 2510 * be any acls later on 2511 */ 2512 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2513 return 0; 2514 2515 slot++; 2516 scanned++; 2517 2518 /* 2519 * it goes inode, inode backrefs, xattrs, extents, 2520 * so if there are a ton of hard links to an inode there can 2521 * be a lot of backrefs. Don't waste time searching too hard, 2522 * this is just an optimization 2523 */ 2524 if (scanned >= 8) 2525 break; 2526 } 2527 /* we hit the end of the leaf before we found an xattr or 2528 * something larger than an xattr. We have to assume the inode 2529 * has acls 2530 */ 2531 return 1; 2532 } 2533 2534 /* 2535 * read an inode from the btree into the in-memory inode 2536 */ 2537 static void btrfs_read_locked_inode(struct inode *inode) 2538 { 2539 struct btrfs_path *path; 2540 struct extent_buffer *leaf; 2541 struct btrfs_inode_item *inode_item; 2542 struct btrfs_timespec *tspec; 2543 struct btrfs_root *root = BTRFS_I(inode)->root; 2544 struct btrfs_key location; 2545 int maybe_acls; 2546 u32 rdev; 2547 int ret; 2548 bool filled = false; 2549 2550 ret = btrfs_fill_inode(inode, &rdev); 2551 if (!ret) 2552 filled = true; 2553 2554 path = btrfs_alloc_path(); 2555 if (!path) 2556 goto make_bad; 2557 2558 path->leave_spinning = 1; 2559 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2560 2561 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2562 if (ret) 2563 goto make_bad; 2564 2565 leaf = path->nodes[0]; 2566 2567 if (filled) 2568 goto cache_acl; 2569 2570 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2571 struct btrfs_inode_item); 2572 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2573 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 2574 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2575 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2576 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2577 2578 tspec = btrfs_inode_atime(inode_item); 2579 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2580 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2581 2582 tspec = btrfs_inode_mtime(inode_item); 2583 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2584 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2585 2586 tspec = btrfs_inode_ctime(inode_item); 2587 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2588 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2589 2590 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2591 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2592 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 2593 inode->i_generation = BTRFS_I(inode)->generation; 2594 inode->i_rdev = 0; 2595 rdev = btrfs_inode_rdev(leaf, inode_item); 2596 2597 BTRFS_I(inode)->index_cnt = (u64)-1; 2598 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2599 cache_acl: 2600 /* 2601 * try to precache a NULL acl entry for files that don't have 2602 * any xattrs or acls 2603 */ 2604 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2605 btrfs_ino(inode)); 2606 if (!maybe_acls) 2607 cache_no_acl(inode); 2608 2609 btrfs_free_path(path); 2610 2611 switch (inode->i_mode & S_IFMT) { 2612 case S_IFREG: 2613 inode->i_mapping->a_ops = &btrfs_aops; 2614 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2615 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2616 inode->i_fop = &btrfs_file_operations; 2617 inode->i_op = &btrfs_file_inode_operations; 2618 break; 2619 case S_IFDIR: 2620 inode->i_fop = &btrfs_dir_file_operations; 2621 if (root == root->fs_info->tree_root) 2622 inode->i_op = &btrfs_dir_ro_inode_operations; 2623 else 2624 inode->i_op = &btrfs_dir_inode_operations; 2625 break; 2626 case S_IFLNK: 2627 inode->i_op = &btrfs_symlink_inode_operations; 2628 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2629 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2630 break; 2631 default: 2632 inode->i_op = &btrfs_special_inode_operations; 2633 init_special_inode(inode, inode->i_mode, rdev); 2634 break; 2635 } 2636 2637 btrfs_update_iflags(inode); 2638 return; 2639 2640 make_bad: 2641 btrfs_free_path(path); 2642 make_bad_inode(inode); 2643 } 2644 2645 /* 2646 * given a leaf and an inode, copy the inode fields into the leaf 2647 */ 2648 static void fill_inode_item(struct btrfs_trans_handle *trans, 2649 struct extent_buffer *leaf, 2650 struct btrfs_inode_item *item, 2651 struct inode *inode) 2652 { 2653 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2654 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2655 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2656 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2657 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2658 2659 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2660 inode->i_atime.tv_sec); 2661 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2662 inode->i_atime.tv_nsec); 2663 2664 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2665 inode->i_mtime.tv_sec); 2666 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2667 inode->i_mtime.tv_nsec); 2668 2669 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2670 inode->i_ctime.tv_sec); 2671 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2672 inode->i_ctime.tv_nsec); 2673 2674 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2675 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2676 btrfs_set_inode_sequence(leaf, item, inode->i_version); 2677 btrfs_set_inode_transid(leaf, item, trans->transid); 2678 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2679 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2680 btrfs_set_inode_block_group(leaf, item, 0); 2681 } 2682 2683 /* 2684 * copy everything in the in-memory inode into the btree. 2685 */ 2686 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 2687 struct btrfs_root *root, struct inode *inode) 2688 { 2689 struct btrfs_inode_item *inode_item; 2690 struct btrfs_path *path; 2691 struct extent_buffer *leaf; 2692 int ret; 2693 2694 path = btrfs_alloc_path(); 2695 if (!path) 2696 return -ENOMEM; 2697 2698 path->leave_spinning = 1; 2699 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2700 1); 2701 if (ret) { 2702 if (ret > 0) 2703 ret = -ENOENT; 2704 goto failed; 2705 } 2706 2707 btrfs_unlock_up_safe(path, 1); 2708 leaf = path->nodes[0]; 2709 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2710 struct btrfs_inode_item); 2711 2712 fill_inode_item(trans, leaf, inode_item, inode); 2713 btrfs_mark_buffer_dirty(leaf); 2714 btrfs_set_inode_last_trans(trans, inode); 2715 ret = 0; 2716 failed: 2717 btrfs_free_path(path); 2718 return ret; 2719 } 2720 2721 /* 2722 * copy everything in the in-memory inode into the btree. 2723 */ 2724 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2725 struct btrfs_root *root, struct inode *inode) 2726 { 2727 int ret; 2728 2729 /* 2730 * If the inode is a free space inode, we can deadlock during commit 2731 * if we put it into the delayed code. 2732 * 2733 * The data relocation inode should also be directly updated 2734 * without delay 2735 */ 2736 if (!btrfs_is_free_space_inode(inode) 2737 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2738 btrfs_update_root_times(trans, root); 2739 2740 ret = btrfs_delayed_update_inode(trans, root, inode); 2741 if (!ret) 2742 btrfs_set_inode_last_trans(trans, inode); 2743 return ret; 2744 } 2745 2746 return btrfs_update_inode_item(trans, root, inode); 2747 } 2748 2749 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 2750 struct btrfs_root *root, struct inode *inode) 2751 { 2752 int ret; 2753 2754 ret = btrfs_update_inode(trans, root, inode); 2755 if (ret == -ENOSPC) 2756 return btrfs_update_inode_item(trans, root, inode); 2757 return ret; 2758 } 2759 2760 /* 2761 * unlink helper that gets used here in inode.c and in the tree logging 2762 * recovery code. It remove a link in a directory with a given name, and 2763 * also drops the back refs in the inode to the directory 2764 */ 2765 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2766 struct btrfs_root *root, 2767 struct inode *dir, struct inode *inode, 2768 const char *name, int name_len) 2769 { 2770 struct btrfs_path *path; 2771 int ret = 0; 2772 struct extent_buffer *leaf; 2773 struct btrfs_dir_item *di; 2774 struct btrfs_key key; 2775 u64 index; 2776 u64 ino = btrfs_ino(inode); 2777 u64 dir_ino = btrfs_ino(dir); 2778 2779 path = btrfs_alloc_path(); 2780 if (!path) { 2781 ret = -ENOMEM; 2782 goto out; 2783 } 2784 2785 path->leave_spinning = 1; 2786 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2787 name, name_len, -1); 2788 if (IS_ERR(di)) { 2789 ret = PTR_ERR(di); 2790 goto err; 2791 } 2792 if (!di) { 2793 ret = -ENOENT; 2794 goto err; 2795 } 2796 leaf = path->nodes[0]; 2797 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2798 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2799 if (ret) 2800 goto err; 2801 btrfs_release_path(path); 2802 2803 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2804 dir_ino, &index); 2805 if (ret) { 2806 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2807 "inode %llu parent %llu\n", name_len, name, 2808 (unsigned long long)ino, (unsigned long long)dir_ino); 2809 btrfs_abort_transaction(trans, root, ret); 2810 goto err; 2811 } 2812 2813 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2814 if (ret) { 2815 btrfs_abort_transaction(trans, root, ret); 2816 goto err; 2817 } 2818 2819 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2820 inode, dir_ino); 2821 if (ret != 0 && ret != -ENOENT) { 2822 btrfs_abort_transaction(trans, root, ret); 2823 goto err; 2824 } 2825 2826 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2827 dir, index); 2828 if (ret == -ENOENT) 2829 ret = 0; 2830 err: 2831 btrfs_free_path(path); 2832 if (ret) 2833 goto out; 2834 2835 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2836 inode_inc_iversion(inode); 2837 inode_inc_iversion(dir); 2838 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2839 ret = btrfs_update_inode(trans, root, dir); 2840 out: 2841 return ret; 2842 } 2843 2844 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2845 struct btrfs_root *root, 2846 struct inode *dir, struct inode *inode, 2847 const char *name, int name_len) 2848 { 2849 int ret; 2850 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2851 if (!ret) { 2852 btrfs_drop_nlink(inode); 2853 ret = btrfs_update_inode(trans, root, inode); 2854 } 2855 return ret; 2856 } 2857 2858 2859 /* helper to check if there is any shared block in the path */ 2860 static int check_path_shared(struct btrfs_root *root, 2861 struct btrfs_path *path) 2862 { 2863 struct extent_buffer *eb; 2864 int level; 2865 u64 refs = 1; 2866 2867 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2868 int ret; 2869 2870 if (!path->nodes[level]) 2871 break; 2872 eb = path->nodes[level]; 2873 if (!btrfs_block_can_be_shared(root, eb)) 2874 continue; 2875 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2876 &refs, NULL); 2877 if (refs > 1) 2878 return 1; 2879 } 2880 return 0; 2881 } 2882 2883 /* 2884 * helper to start transaction for unlink and rmdir. 2885 * 2886 * unlink and rmdir are special in btrfs, they do not always free space. 2887 * so in enospc case, we should make sure they will free space before 2888 * allowing them to use the global metadata reservation. 2889 */ 2890 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2891 struct dentry *dentry) 2892 { 2893 struct btrfs_trans_handle *trans; 2894 struct btrfs_root *root = BTRFS_I(dir)->root; 2895 struct btrfs_path *path; 2896 struct btrfs_inode_ref *ref; 2897 struct btrfs_dir_item *di; 2898 struct inode *inode = dentry->d_inode; 2899 u64 index; 2900 int check_link = 1; 2901 int err = -ENOSPC; 2902 int ret; 2903 u64 ino = btrfs_ino(inode); 2904 u64 dir_ino = btrfs_ino(dir); 2905 2906 /* 2907 * 1 for the possible orphan item 2908 * 1 for the dir item 2909 * 1 for the dir index 2910 * 1 for the inode ref 2911 * 1 for the inode ref in the tree log 2912 * 2 for the dir entries in the log 2913 * 1 for the inode 2914 */ 2915 trans = btrfs_start_transaction(root, 8); 2916 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2917 return trans; 2918 2919 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2920 return ERR_PTR(-ENOSPC); 2921 2922 /* check if there is someone else holds reference */ 2923 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2924 return ERR_PTR(-ENOSPC); 2925 2926 if (atomic_read(&inode->i_count) > 2) 2927 return ERR_PTR(-ENOSPC); 2928 2929 if (xchg(&root->fs_info->enospc_unlink, 1)) 2930 return ERR_PTR(-ENOSPC); 2931 2932 path = btrfs_alloc_path(); 2933 if (!path) { 2934 root->fs_info->enospc_unlink = 0; 2935 return ERR_PTR(-ENOMEM); 2936 } 2937 2938 /* 1 for the orphan item */ 2939 trans = btrfs_start_transaction(root, 1); 2940 if (IS_ERR(trans)) { 2941 btrfs_free_path(path); 2942 root->fs_info->enospc_unlink = 0; 2943 return trans; 2944 } 2945 2946 path->skip_locking = 1; 2947 path->search_commit_root = 1; 2948 2949 ret = btrfs_lookup_inode(trans, root, path, 2950 &BTRFS_I(dir)->location, 0); 2951 if (ret < 0) { 2952 err = ret; 2953 goto out; 2954 } 2955 if (ret == 0) { 2956 if (check_path_shared(root, path)) 2957 goto out; 2958 } else { 2959 check_link = 0; 2960 } 2961 btrfs_release_path(path); 2962 2963 ret = btrfs_lookup_inode(trans, root, path, 2964 &BTRFS_I(inode)->location, 0); 2965 if (ret < 0) { 2966 err = ret; 2967 goto out; 2968 } 2969 if (ret == 0) { 2970 if (check_path_shared(root, path)) 2971 goto out; 2972 } else { 2973 check_link = 0; 2974 } 2975 btrfs_release_path(path); 2976 2977 if (ret == 0 && S_ISREG(inode->i_mode)) { 2978 ret = btrfs_lookup_file_extent(trans, root, path, 2979 ino, (u64)-1, 0); 2980 if (ret < 0) { 2981 err = ret; 2982 goto out; 2983 } 2984 BUG_ON(ret == 0); /* Corruption */ 2985 if (check_path_shared(root, path)) 2986 goto out; 2987 btrfs_release_path(path); 2988 } 2989 2990 if (!check_link) { 2991 err = 0; 2992 goto out; 2993 } 2994 2995 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2996 dentry->d_name.name, dentry->d_name.len, 0); 2997 if (IS_ERR(di)) { 2998 err = PTR_ERR(di); 2999 goto out; 3000 } 3001 if (di) { 3002 if (check_path_shared(root, path)) 3003 goto out; 3004 } else { 3005 err = 0; 3006 goto out; 3007 } 3008 btrfs_release_path(path); 3009 3010 ref = btrfs_lookup_inode_ref(trans, root, path, 3011 dentry->d_name.name, dentry->d_name.len, 3012 ino, dir_ino, 0); 3013 if (IS_ERR(ref)) { 3014 err = PTR_ERR(ref); 3015 goto out; 3016 } 3017 BUG_ON(!ref); /* Logic error */ 3018 if (check_path_shared(root, path)) 3019 goto out; 3020 index = btrfs_inode_ref_index(path->nodes[0], ref); 3021 btrfs_release_path(path); 3022 3023 /* 3024 * This is a commit root search, if we can lookup inode item and other 3025 * relative items in the commit root, it means the transaction of 3026 * dir/file creation has been committed, and the dir index item that we 3027 * delay to insert has also been inserted into the commit root. So 3028 * we needn't worry about the delayed insertion of the dir index item 3029 * here. 3030 */ 3031 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 3032 dentry->d_name.name, dentry->d_name.len, 0); 3033 if (IS_ERR(di)) { 3034 err = PTR_ERR(di); 3035 goto out; 3036 } 3037 BUG_ON(ret == -ENOENT); 3038 if (check_path_shared(root, path)) 3039 goto out; 3040 3041 err = 0; 3042 out: 3043 btrfs_free_path(path); 3044 /* Migrate the orphan reservation over */ 3045 if (!err) 3046 err = btrfs_block_rsv_migrate(trans->block_rsv, 3047 &root->fs_info->global_block_rsv, 3048 trans->bytes_reserved); 3049 3050 if (err) { 3051 btrfs_end_transaction(trans, root); 3052 root->fs_info->enospc_unlink = 0; 3053 return ERR_PTR(err); 3054 } 3055 3056 trans->block_rsv = &root->fs_info->global_block_rsv; 3057 return trans; 3058 } 3059 3060 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 3061 struct btrfs_root *root) 3062 { 3063 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 3064 btrfs_block_rsv_release(root, trans->block_rsv, 3065 trans->bytes_reserved); 3066 trans->block_rsv = &root->fs_info->trans_block_rsv; 3067 BUG_ON(!root->fs_info->enospc_unlink); 3068 root->fs_info->enospc_unlink = 0; 3069 } 3070 btrfs_end_transaction(trans, root); 3071 } 3072 3073 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3074 { 3075 struct btrfs_root *root = BTRFS_I(dir)->root; 3076 struct btrfs_trans_handle *trans; 3077 struct inode *inode = dentry->d_inode; 3078 int ret; 3079 unsigned long nr = 0; 3080 3081 trans = __unlink_start_trans(dir, dentry); 3082 if (IS_ERR(trans)) 3083 return PTR_ERR(trans); 3084 3085 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3086 3087 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3088 dentry->d_name.name, dentry->d_name.len); 3089 if (ret) 3090 goto out; 3091 3092 if (inode->i_nlink == 0) { 3093 ret = btrfs_orphan_add(trans, inode); 3094 if (ret) 3095 goto out; 3096 } 3097 3098 out: 3099 nr = trans->blocks_used; 3100 __unlink_end_trans(trans, root); 3101 btrfs_btree_balance_dirty(root, nr); 3102 return ret; 3103 } 3104 3105 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3106 struct btrfs_root *root, 3107 struct inode *dir, u64 objectid, 3108 const char *name, int name_len) 3109 { 3110 struct btrfs_path *path; 3111 struct extent_buffer *leaf; 3112 struct btrfs_dir_item *di; 3113 struct btrfs_key key; 3114 u64 index; 3115 int ret; 3116 u64 dir_ino = btrfs_ino(dir); 3117 3118 path = btrfs_alloc_path(); 3119 if (!path) 3120 return -ENOMEM; 3121 3122 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3123 name, name_len, -1); 3124 if (IS_ERR_OR_NULL(di)) { 3125 if (!di) 3126 ret = -ENOENT; 3127 else 3128 ret = PTR_ERR(di); 3129 goto out; 3130 } 3131 3132 leaf = path->nodes[0]; 3133 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3134 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3135 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3136 if (ret) { 3137 btrfs_abort_transaction(trans, root, ret); 3138 goto out; 3139 } 3140 btrfs_release_path(path); 3141 3142 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3143 objectid, root->root_key.objectid, 3144 dir_ino, &index, name, name_len); 3145 if (ret < 0) { 3146 if (ret != -ENOENT) { 3147 btrfs_abort_transaction(trans, root, ret); 3148 goto out; 3149 } 3150 di = btrfs_search_dir_index_item(root, path, dir_ino, 3151 name, name_len); 3152 if (IS_ERR_OR_NULL(di)) { 3153 if (!di) 3154 ret = -ENOENT; 3155 else 3156 ret = PTR_ERR(di); 3157 btrfs_abort_transaction(trans, root, ret); 3158 goto out; 3159 } 3160 3161 leaf = path->nodes[0]; 3162 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3163 btrfs_release_path(path); 3164 index = key.offset; 3165 } 3166 btrfs_release_path(path); 3167 3168 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3169 if (ret) { 3170 btrfs_abort_transaction(trans, root, ret); 3171 goto out; 3172 } 3173 3174 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3175 inode_inc_iversion(dir); 3176 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3177 ret = btrfs_update_inode(trans, root, dir); 3178 if (ret) 3179 btrfs_abort_transaction(trans, root, ret); 3180 out: 3181 btrfs_free_path(path); 3182 return ret; 3183 } 3184 3185 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3186 { 3187 struct inode *inode = dentry->d_inode; 3188 int err = 0; 3189 struct btrfs_root *root = BTRFS_I(dir)->root; 3190 struct btrfs_trans_handle *trans; 3191 unsigned long nr = 0; 3192 3193 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 3194 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3195 return -ENOTEMPTY; 3196 3197 trans = __unlink_start_trans(dir, dentry); 3198 if (IS_ERR(trans)) 3199 return PTR_ERR(trans); 3200 3201 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3202 err = btrfs_unlink_subvol(trans, root, dir, 3203 BTRFS_I(inode)->location.objectid, 3204 dentry->d_name.name, 3205 dentry->d_name.len); 3206 goto out; 3207 } 3208 3209 err = btrfs_orphan_add(trans, inode); 3210 if (err) 3211 goto out; 3212 3213 /* now the directory is empty */ 3214 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3215 dentry->d_name.name, dentry->d_name.len); 3216 if (!err) 3217 btrfs_i_size_write(inode, 0); 3218 out: 3219 nr = trans->blocks_used; 3220 __unlink_end_trans(trans, root); 3221 btrfs_btree_balance_dirty(root, nr); 3222 3223 return err; 3224 } 3225 3226 /* 3227 * this can truncate away extent items, csum items and directory items. 3228 * It starts at a high offset and removes keys until it can't find 3229 * any higher than new_size 3230 * 3231 * csum items that cross the new i_size are truncated to the new size 3232 * as well. 3233 * 3234 * min_type is the minimum key type to truncate down to. If set to 0, this 3235 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3236 */ 3237 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3238 struct btrfs_root *root, 3239 struct inode *inode, 3240 u64 new_size, u32 min_type) 3241 { 3242 struct btrfs_path *path; 3243 struct extent_buffer *leaf; 3244 struct btrfs_file_extent_item *fi; 3245 struct btrfs_key key; 3246 struct btrfs_key found_key; 3247 u64 extent_start = 0; 3248 u64 extent_num_bytes = 0; 3249 u64 extent_offset = 0; 3250 u64 item_end = 0; 3251 u64 mask = root->sectorsize - 1; 3252 u32 found_type = (u8)-1; 3253 int found_extent; 3254 int del_item; 3255 int pending_del_nr = 0; 3256 int pending_del_slot = 0; 3257 int extent_type = -1; 3258 int ret; 3259 int err = 0; 3260 u64 ino = btrfs_ino(inode); 3261 3262 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3263 3264 path = btrfs_alloc_path(); 3265 if (!path) 3266 return -ENOMEM; 3267 path->reada = -1; 3268 3269 if (root->ref_cows || root == root->fs_info->tree_root) 3270 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3271 3272 /* 3273 * This function is also used to drop the items in the log tree before 3274 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3275 * it is used to drop the loged items. So we shouldn't kill the delayed 3276 * items. 3277 */ 3278 if (min_type == 0 && root == BTRFS_I(inode)->root) 3279 btrfs_kill_delayed_inode_items(inode); 3280 3281 key.objectid = ino; 3282 key.offset = (u64)-1; 3283 key.type = (u8)-1; 3284 3285 search_again: 3286 path->leave_spinning = 1; 3287 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3288 if (ret < 0) { 3289 err = ret; 3290 goto out; 3291 } 3292 3293 if (ret > 0) { 3294 /* there are no items in the tree for us to truncate, we're 3295 * done 3296 */ 3297 if (path->slots[0] == 0) 3298 goto out; 3299 path->slots[0]--; 3300 } 3301 3302 while (1) { 3303 fi = NULL; 3304 leaf = path->nodes[0]; 3305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3306 found_type = btrfs_key_type(&found_key); 3307 3308 if (found_key.objectid != ino) 3309 break; 3310 3311 if (found_type < min_type) 3312 break; 3313 3314 item_end = found_key.offset; 3315 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3316 fi = btrfs_item_ptr(leaf, path->slots[0], 3317 struct btrfs_file_extent_item); 3318 extent_type = btrfs_file_extent_type(leaf, fi); 3319 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3320 item_end += 3321 btrfs_file_extent_num_bytes(leaf, fi); 3322 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3323 item_end += btrfs_file_extent_inline_len(leaf, 3324 fi); 3325 } 3326 item_end--; 3327 } 3328 if (found_type > min_type) { 3329 del_item = 1; 3330 } else { 3331 if (item_end < new_size) 3332 break; 3333 if (found_key.offset >= new_size) 3334 del_item = 1; 3335 else 3336 del_item = 0; 3337 } 3338 found_extent = 0; 3339 /* FIXME, shrink the extent if the ref count is only 1 */ 3340 if (found_type != BTRFS_EXTENT_DATA_KEY) 3341 goto delete; 3342 3343 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3344 u64 num_dec; 3345 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3346 if (!del_item) { 3347 u64 orig_num_bytes = 3348 btrfs_file_extent_num_bytes(leaf, fi); 3349 extent_num_bytes = new_size - 3350 found_key.offset + root->sectorsize - 1; 3351 extent_num_bytes = extent_num_bytes & 3352 ~((u64)root->sectorsize - 1); 3353 btrfs_set_file_extent_num_bytes(leaf, fi, 3354 extent_num_bytes); 3355 num_dec = (orig_num_bytes - 3356 extent_num_bytes); 3357 if (root->ref_cows && extent_start != 0) 3358 inode_sub_bytes(inode, num_dec); 3359 btrfs_mark_buffer_dirty(leaf); 3360 } else { 3361 extent_num_bytes = 3362 btrfs_file_extent_disk_num_bytes(leaf, 3363 fi); 3364 extent_offset = found_key.offset - 3365 btrfs_file_extent_offset(leaf, fi); 3366 3367 /* FIXME blocksize != 4096 */ 3368 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3369 if (extent_start != 0) { 3370 found_extent = 1; 3371 if (root->ref_cows) 3372 inode_sub_bytes(inode, num_dec); 3373 } 3374 } 3375 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3376 /* 3377 * we can't truncate inline items that have had 3378 * special encodings 3379 */ 3380 if (!del_item && 3381 btrfs_file_extent_compression(leaf, fi) == 0 && 3382 btrfs_file_extent_encryption(leaf, fi) == 0 && 3383 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3384 u32 size = new_size - found_key.offset; 3385 3386 if (root->ref_cows) { 3387 inode_sub_bytes(inode, item_end + 1 - 3388 new_size); 3389 } 3390 size = 3391 btrfs_file_extent_calc_inline_size(size); 3392 btrfs_truncate_item(trans, root, path, 3393 size, 1); 3394 } else if (root->ref_cows) { 3395 inode_sub_bytes(inode, item_end + 1 - 3396 found_key.offset); 3397 } 3398 } 3399 delete: 3400 if (del_item) { 3401 if (!pending_del_nr) { 3402 /* no pending yet, add ourselves */ 3403 pending_del_slot = path->slots[0]; 3404 pending_del_nr = 1; 3405 } else if (pending_del_nr && 3406 path->slots[0] + 1 == pending_del_slot) { 3407 /* hop on the pending chunk */ 3408 pending_del_nr++; 3409 pending_del_slot = path->slots[0]; 3410 } else { 3411 BUG(); 3412 } 3413 } else { 3414 break; 3415 } 3416 if (found_extent && (root->ref_cows || 3417 root == root->fs_info->tree_root)) { 3418 btrfs_set_path_blocking(path); 3419 ret = btrfs_free_extent(trans, root, extent_start, 3420 extent_num_bytes, 0, 3421 btrfs_header_owner(leaf), 3422 ino, extent_offset, 0); 3423 BUG_ON(ret); 3424 } 3425 3426 if (found_type == BTRFS_INODE_ITEM_KEY) 3427 break; 3428 3429 if (path->slots[0] == 0 || 3430 path->slots[0] != pending_del_slot) { 3431 if (root->ref_cows && 3432 BTRFS_I(inode)->location.objectid != 3433 BTRFS_FREE_INO_OBJECTID) { 3434 err = -EAGAIN; 3435 goto out; 3436 } 3437 if (pending_del_nr) { 3438 ret = btrfs_del_items(trans, root, path, 3439 pending_del_slot, 3440 pending_del_nr); 3441 if (ret) { 3442 btrfs_abort_transaction(trans, 3443 root, ret); 3444 goto error; 3445 } 3446 pending_del_nr = 0; 3447 } 3448 btrfs_release_path(path); 3449 goto search_again; 3450 } else { 3451 path->slots[0]--; 3452 } 3453 } 3454 out: 3455 if (pending_del_nr) { 3456 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3457 pending_del_nr); 3458 if (ret) 3459 btrfs_abort_transaction(trans, root, ret); 3460 } 3461 error: 3462 btrfs_free_path(path); 3463 return err; 3464 } 3465 3466 /* 3467 * taken from block_truncate_page, but does cow as it zeros out 3468 * any bytes left in the last page in the file. 3469 */ 3470 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3471 { 3472 struct inode *inode = mapping->host; 3473 struct btrfs_root *root = BTRFS_I(inode)->root; 3474 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3475 struct btrfs_ordered_extent *ordered; 3476 struct extent_state *cached_state = NULL; 3477 char *kaddr; 3478 u32 blocksize = root->sectorsize; 3479 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3480 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3481 struct page *page; 3482 gfp_t mask = btrfs_alloc_write_mask(mapping); 3483 int ret = 0; 3484 u64 page_start; 3485 u64 page_end; 3486 3487 if ((offset & (blocksize - 1)) == 0) 3488 goto out; 3489 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3490 if (ret) 3491 goto out; 3492 3493 ret = -ENOMEM; 3494 again: 3495 page = find_or_create_page(mapping, index, mask); 3496 if (!page) { 3497 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3498 goto out; 3499 } 3500 3501 page_start = page_offset(page); 3502 page_end = page_start + PAGE_CACHE_SIZE - 1; 3503 3504 if (!PageUptodate(page)) { 3505 ret = btrfs_readpage(NULL, page); 3506 lock_page(page); 3507 if (page->mapping != mapping) { 3508 unlock_page(page); 3509 page_cache_release(page); 3510 goto again; 3511 } 3512 if (!PageUptodate(page)) { 3513 ret = -EIO; 3514 goto out_unlock; 3515 } 3516 } 3517 wait_on_page_writeback(page); 3518 3519 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 3520 set_page_extent_mapped(page); 3521 3522 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3523 if (ordered) { 3524 unlock_extent_cached(io_tree, page_start, page_end, 3525 &cached_state, GFP_NOFS); 3526 unlock_page(page); 3527 page_cache_release(page); 3528 btrfs_start_ordered_extent(inode, ordered, 1); 3529 btrfs_put_ordered_extent(ordered); 3530 goto again; 3531 } 3532 3533 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3534 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3535 0, 0, &cached_state, GFP_NOFS); 3536 3537 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3538 &cached_state); 3539 if (ret) { 3540 unlock_extent_cached(io_tree, page_start, page_end, 3541 &cached_state, GFP_NOFS); 3542 goto out_unlock; 3543 } 3544 3545 ret = 0; 3546 if (offset != PAGE_CACHE_SIZE) { 3547 kaddr = kmap(page); 3548 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3549 flush_dcache_page(page); 3550 kunmap(page); 3551 } 3552 ClearPageChecked(page); 3553 set_page_dirty(page); 3554 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3555 GFP_NOFS); 3556 3557 out_unlock: 3558 if (ret) 3559 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3560 unlock_page(page); 3561 page_cache_release(page); 3562 out: 3563 return ret; 3564 } 3565 3566 /* 3567 * This function puts in dummy file extents for the area we're creating a hole 3568 * for. So if we are truncating this file to a larger size we need to insert 3569 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3570 * the range between oldsize and size 3571 */ 3572 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3573 { 3574 struct btrfs_trans_handle *trans; 3575 struct btrfs_root *root = BTRFS_I(inode)->root; 3576 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3577 struct extent_map *em = NULL; 3578 struct extent_state *cached_state = NULL; 3579 u64 mask = root->sectorsize - 1; 3580 u64 hole_start = (oldsize + mask) & ~mask; 3581 u64 block_end = (size + mask) & ~mask; 3582 u64 last_byte; 3583 u64 cur_offset; 3584 u64 hole_size; 3585 int err = 0; 3586 3587 if (size <= hole_start) 3588 return 0; 3589 3590 while (1) { 3591 struct btrfs_ordered_extent *ordered; 3592 btrfs_wait_ordered_range(inode, hole_start, 3593 block_end - hole_start); 3594 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3595 &cached_state); 3596 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3597 if (!ordered) 3598 break; 3599 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3600 &cached_state, GFP_NOFS); 3601 btrfs_put_ordered_extent(ordered); 3602 } 3603 3604 cur_offset = hole_start; 3605 while (1) { 3606 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3607 block_end - cur_offset, 0); 3608 if (IS_ERR(em)) { 3609 err = PTR_ERR(em); 3610 break; 3611 } 3612 last_byte = min(extent_map_end(em), block_end); 3613 last_byte = (last_byte + mask) & ~mask; 3614 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3615 u64 hint_byte = 0; 3616 hole_size = last_byte - cur_offset; 3617 3618 trans = btrfs_start_transaction(root, 3); 3619 if (IS_ERR(trans)) { 3620 err = PTR_ERR(trans); 3621 break; 3622 } 3623 3624 err = btrfs_drop_extents(trans, inode, cur_offset, 3625 cur_offset + hole_size, 3626 &hint_byte, 1); 3627 if (err) { 3628 btrfs_abort_transaction(trans, root, err); 3629 btrfs_end_transaction(trans, root); 3630 break; 3631 } 3632 3633 err = btrfs_insert_file_extent(trans, root, 3634 btrfs_ino(inode), cur_offset, 0, 3635 0, hole_size, 0, hole_size, 3636 0, 0, 0); 3637 if (err) { 3638 btrfs_abort_transaction(trans, root, err); 3639 btrfs_end_transaction(trans, root); 3640 break; 3641 } 3642 3643 btrfs_drop_extent_cache(inode, hole_start, 3644 last_byte - 1, 0); 3645 3646 btrfs_update_inode(trans, root, inode); 3647 btrfs_end_transaction(trans, root); 3648 } 3649 free_extent_map(em); 3650 em = NULL; 3651 cur_offset = last_byte; 3652 if (cur_offset >= block_end) 3653 break; 3654 } 3655 3656 free_extent_map(em); 3657 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3658 GFP_NOFS); 3659 return err; 3660 } 3661 3662 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3663 { 3664 struct btrfs_root *root = BTRFS_I(inode)->root; 3665 struct btrfs_trans_handle *trans; 3666 loff_t oldsize = i_size_read(inode); 3667 int ret; 3668 3669 if (newsize == oldsize) 3670 return 0; 3671 3672 if (newsize > oldsize) { 3673 truncate_pagecache(inode, oldsize, newsize); 3674 ret = btrfs_cont_expand(inode, oldsize, newsize); 3675 if (ret) 3676 return ret; 3677 3678 trans = btrfs_start_transaction(root, 1); 3679 if (IS_ERR(trans)) 3680 return PTR_ERR(trans); 3681 3682 i_size_write(inode, newsize); 3683 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3684 ret = btrfs_update_inode(trans, root, inode); 3685 btrfs_end_transaction(trans, root); 3686 } else { 3687 3688 /* 3689 * We're truncating a file that used to have good data down to 3690 * zero. Make sure it gets into the ordered flush list so that 3691 * any new writes get down to disk quickly. 3692 */ 3693 if (newsize == 0) 3694 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 3695 &BTRFS_I(inode)->runtime_flags); 3696 3697 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3698 truncate_setsize(inode, newsize); 3699 ret = btrfs_truncate(inode); 3700 } 3701 3702 return ret; 3703 } 3704 3705 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3706 { 3707 struct inode *inode = dentry->d_inode; 3708 struct btrfs_root *root = BTRFS_I(inode)->root; 3709 int err; 3710 3711 if (btrfs_root_readonly(root)) 3712 return -EROFS; 3713 3714 err = inode_change_ok(inode, attr); 3715 if (err) 3716 return err; 3717 3718 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3719 err = btrfs_setsize(inode, attr->ia_size); 3720 if (err) 3721 return err; 3722 } 3723 3724 if (attr->ia_valid) { 3725 setattr_copy(inode, attr); 3726 inode_inc_iversion(inode); 3727 err = btrfs_dirty_inode(inode); 3728 3729 if (!err && attr->ia_valid & ATTR_MODE) 3730 err = btrfs_acl_chmod(inode); 3731 } 3732 3733 return err; 3734 } 3735 3736 void btrfs_evict_inode(struct inode *inode) 3737 { 3738 struct btrfs_trans_handle *trans; 3739 struct btrfs_root *root = BTRFS_I(inode)->root; 3740 struct btrfs_block_rsv *rsv, *global_rsv; 3741 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 3742 unsigned long nr; 3743 int ret; 3744 3745 trace_btrfs_inode_evict(inode); 3746 3747 truncate_inode_pages(&inode->i_data, 0); 3748 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3749 btrfs_is_free_space_inode(inode))) 3750 goto no_delete; 3751 3752 if (is_bad_inode(inode)) { 3753 btrfs_orphan_del(NULL, inode); 3754 goto no_delete; 3755 } 3756 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3757 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3758 3759 if (root->fs_info->log_root_recovering) { 3760 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3761 &BTRFS_I(inode)->runtime_flags)); 3762 goto no_delete; 3763 } 3764 3765 if (inode->i_nlink > 0) { 3766 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3767 goto no_delete; 3768 } 3769 3770 rsv = btrfs_alloc_block_rsv(root); 3771 if (!rsv) { 3772 btrfs_orphan_del(NULL, inode); 3773 goto no_delete; 3774 } 3775 rsv->size = min_size; 3776 global_rsv = &root->fs_info->global_block_rsv; 3777 3778 btrfs_i_size_write(inode, 0); 3779 3780 /* 3781 * This is a bit simpler than btrfs_truncate since 3782 * 3783 * 1) We've already reserved our space for our orphan item in the 3784 * unlink. 3785 * 2) We're going to delete the inode item, so we don't need to update 3786 * it at all. 3787 * 3788 * So we just need to reserve some slack space in case we add bytes when 3789 * doing the truncate. 3790 */ 3791 while (1) { 3792 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size); 3793 3794 /* 3795 * Try and steal from the global reserve since we will 3796 * likely not use this space anyway, we want to try as 3797 * hard as possible to get this to work. 3798 */ 3799 if (ret) 3800 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 3801 3802 if (ret) { 3803 printk(KERN_WARNING "Could not get space for a " 3804 "delete, will truncate on mount %d\n", ret); 3805 btrfs_orphan_del(NULL, inode); 3806 btrfs_free_block_rsv(root, rsv); 3807 goto no_delete; 3808 } 3809 3810 trans = btrfs_start_transaction(root, 0); 3811 if (IS_ERR(trans)) { 3812 btrfs_orphan_del(NULL, inode); 3813 btrfs_free_block_rsv(root, rsv); 3814 goto no_delete; 3815 } 3816 3817 trans->block_rsv = rsv; 3818 3819 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3820 if (ret != -EAGAIN) 3821 break; 3822 3823 nr = trans->blocks_used; 3824 btrfs_end_transaction(trans, root); 3825 trans = NULL; 3826 btrfs_btree_balance_dirty(root, nr); 3827 } 3828 3829 btrfs_free_block_rsv(root, rsv); 3830 3831 if (ret == 0) { 3832 trans->block_rsv = root->orphan_block_rsv; 3833 ret = btrfs_orphan_del(trans, inode); 3834 BUG_ON(ret); 3835 } 3836 3837 trans->block_rsv = &root->fs_info->trans_block_rsv; 3838 if (!(root == root->fs_info->tree_root || 3839 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3840 btrfs_return_ino(root, btrfs_ino(inode)); 3841 3842 nr = trans->blocks_used; 3843 btrfs_end_transaction(trans, root); 3844 btrfs_btree_balance_dirty(root, nr); 3845 no_delete: 3846 clear_inode(inode); 3847 return; 3848 } 3849 3850 /* 3851 * this returns the key found in the dir entry in the location pointer. 3852 * If no dir entries were found, location->objectid is 0. 3853 */ 3854 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3855 struct btrfs_key *location) 3856 { 3857 const char *name = dentry->d_name.name; 3858 int namelen = dentry->d_name.len; 3859 struct btrfs_dir_item *di; 3860 struct btrfs_path *path; 3861 struct btrfs_root *root = BTRFS_I(dir)->root; 3862 int ret = 0; 3863 3864 path = btrfs_alloc_path(); 3865 if (!path) 3866 return -ENOMEM; 3867 3868 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3869 namelen, 0); 3870 if (IS_ERR(di)) 3871 ret = PTR_ERR(di); 3872 3873 if (IS_ERR_OR_NULL(di)) 3874 goto out_err; 3875 3876 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3877 out: 3878 btrfs_free_path(path); 3879 return ret; 3880 out_err: 3881 location->objectid = 0; 3882 goto out; 3883 } 3884 3885 /* 3886 * when we hit a tree root in a directory, the btrfs part of the inode 3887 * needs to be changed to reflect the root directory of the tree root. This 3888 * is kind of like crossing a mount point. 3889 */ 3890 static int fixup_tree_root_location(struct btrfs_root *root, 3891 struct inode *dir, 3892 struct dentry *dentry, 3893 struct btrfs_key *location, 3894 struct btrfs_root **sub_root) 3895 { 3896 struct btrfs_path *path; 3897 struct btrfs_root *new_root; 3898 struct btrfs_root_ref *ref; 3899 struct extent_buffer *leaf; 3900 int ret; 3901 int err = 0; 3902 3903 path = btrfs_alloc_path(); 3904 if (!path) { 3905 err = -ENOMEM; 3906 goto out; 3907 } 3908 3909 err = -ENOENT; 3910 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3911 BTRFS_I(dir)->root->root_key.objectid, 3912 location->objectid); 3913 if (ret) { 3914 if (ret < 0) 3915 err = ret; 3916 goto out; 3917 } 3918 3919 leaf = path->nodes[0]; 3920 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3921 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3922 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3923 goto out; 3924 3925 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3926 (unsigned long)(ref + 1), 3927 dentry->d_name.len); 3928 if (ret) 3929 goto out; 3930 3931 btrfs_release_path(path); 3932 3933 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3934 if (IS_ERR(new_root)) { 3935 err = PTR_ERR(new_root); 3936 goto out; 3937 } 3938 3939 if (btrfs_root_refs(&new_root->root_item) == 0) { 3940 err = -ENOENT; 3941 goto out; 3942 } 3943 3944 *sub_root = new_root; 3945 location->objectid = btrfs_root_dirid(&new_root->root_item); 3946 location->type = BTRFS_INODE_ITEM_KEY; 3947 location->offset = 0; 3948 err = 0; 3949 out: 3950 btrfs_free_path(path); 3951 return err; 3952 } 3953 3954 static void inode_tree_add(struct inode *inode) 3955 { 3956 struct btrfs_root *root = BTRFS_I(inode)->root; 3957 struct btrfs_inode *entry; 3958 struct rb_node **p; 3959 struct rb_node *parent; 3960 u64 ino = btrfs_ino(inode); 3961 again: 3962 p = &root->inode_tree.rb_node; 3963 parent = NULL; 3964 3965 if (inode_unhashed(inode)) 3966 return; 3967 3968 spin_lock(&root->inode_lock); 3969 while (*p) { 3970 parent = *p; 3971 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3972 3973 if (ino < btrfs_ino(&entry->vfs_inode)) 3974 p = &parent->rb_left; 3975 else if (ino > btrfs_ino(&entry->vfs_inode)) 3976 p = &parent->rb_right; 3977 else { 3978 WARN_ON(!(entry->vfs_inode.i_state & 3979 (I_WILL_FREE | I_FREEING))); 3980 rb_erase(parent, &root->inode_tree); 3981 RB_CLEAR_NODE(parent); 3982 spin_unlock(&root->inode_lock); 3983 goto again; 3984 } 3985 } 3986 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3987 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3988 spin_unlock(&root->inode_lock); 3989 } 3990 3991 static void inode_tree_del(struct inode *inode) 3992 { 3993 struct btrfs_root *root = BTRFS_I(inode)->root; 3994 int empty = 0; 3995 3996 spin_lock(&root->inode_lock); 3997 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3998 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3999 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4000 empty = RB_EMPTY_ROOT(&root->inode_tree); 4001 } 4002 spin_unlock(&root->inode_lock); 4003 4004 /* 4005 * Free space cache has inodes in the tree root, but the tree root has a 4006 * root_refs of 0, so this could end up dropping the tree root as a 4007 * snapshot, so we need the extra !root->fs_info->tree_root check to 4008 * make sure we don't drop it. 4009 */ 4010 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4011 root != root->fs_info->tree_root) { 4012 synchronize_srcu(&root->fs_info->subvol_srcu); 4013 spin_lock(&root->inode_lock); 4014 empty = RB_EMPTY_ROOT(&root->inode_tree); 4015 spin_unlock(&root->inode_lock); 4016 if (empty) 4017 btrfs_add_dead_root(root); 4018 } 4019 } 4020 4021 void btrfs_invalidate_inodes(struct btrfs_root *root) 4022 { 4023 struct rb_node *node; 4024 struct rb_node *prev; 4025 struct btrfs_inode *entry; 4026 struct inode *inode; 4027 u64 objectid = 0; 4028 4029 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4030 4031 spin_lock(&root->inode_lock); 4032 again: 4033 node = root->inode_tree.rb_node; 4034 prev = NULL; 4035 while (node) { 4036 prev = node; 4037 entry = rb_entry(node, struct btrfs_inode, rb_node); 4038 4039 if (objectid < btrfs_ino(&entry->vfs_inode)) 4040 node = node->rb_left; 4041 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4042 node = node->rb_right; 4043 else 4044 break; 4045 } 4046 if (!node) { 4047 while (prev) { 4048 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4049 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4050 node = prev; 4051 break; 4052 } 4053 prev = rb_next(prev); 4054 } 4055 } 4056 while (node) { 4057 entry = rb_entry(node, struct btrfs_inode, rb_node); 4058 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4059 inode = igrab(&entry->vfs_inode); 4060 if (inode) { 4061 spin_unlock(&root->inode_lock); 4062 if (atomic_read(&inode->i_count) > 1) 4063 d_prune_aliases(inode); 4064 /* 4065 * btrfs_drop_inode will have it removed from 4066 * the inode cache when its usage count 4067 * hits zero. 4068 */ 4069 iput(inode); 4070 cond_resched(); 4071 spin_lock(&root->inode_lock); 4072 goto again; 4073 } 4074 4075 if (cond_resched_lock(&root->inode_lock)) 4076 goto again; 4077 4078 node = rb_next(node); 4079 } 4080 spin_unlock(&root->inode_lock); 4081 } 4082 4083 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4084 { 4085 struct btrfs_iget_args *args = p; 4086 inode->i_ino = args->ino; 4087 BTRFS_I(inode)->root = args->root; 4088 return 0; 4089 } 4090 4091 static int btrfs_find_actor(struct inode *inode, void *opaque) 4092 { 4093 struct btrfs_iget_args *args = opaque; 4094 return args->ino == btrfs_ino(inode) && 4095 args->root == BTRFS_I(inode)->root; 4096 } 4097 4098 static struct inode *btrfs_iget_locked(struct super_block *s, 4099 u64 objectid, 4100 struct btrfs_root *root) 4101 { 4102 struct inode *inode; 4103 struct btrfs_iget_args args; 4104 args.ino = objectid; 4105 args.root = root; 4106 4107 inode = iget5_locked(s, objectid, btrfs_find_actor, 4108 btrfs_init_locked_inode, 4109 (void *)&args); 4110 return inode; 4111 } 4112 4113 /* Get an inode object given its location and corresponding root. 4114 * Returns in *is_new if the inode was read from disk 4115 */ 4116 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4117 struct btrfs_root *root, int *new) 4118 { 4119 struct inode *inode; 4120 4121 inode = btrfs_iget_locked(s, location->objectid, root); 4122 if (!inode) 4123 return ERR_PTR(-ENOMEM); 4124 4125 if (inode->i_state & I_NEW) { 4126 BTRFS_I(inode)->root = root; 4127 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4128 btrfs_read_locked_inode(inode); 4129 if (!is_bad_inode(inode)) { 4130 inode_tree_add(inode); 4131 unlock_new_inode(inode); 4132 if (new) 4133 *new = 1; 4134 } else { 4135 unlock_new_inode(inode); 4136 iput(inode); 4137 inode = ERR_PTR(-ESTALE); 4138 } 4139 } 4140 4141 return inode; 4142 } 4143 4144 static struct inode *new_simple_dir(struct super_block *s, 4145 struct btrfs_key *key, 4146 struct btrfs_root *root) 4147 { 4148 struct inode *inode = new_inode(s); 4149 4150 if (!inode) 4151 return ERR_PTR(-ENOMEM); 4152 4153 BTRFS_I(inode)->root = root; 4154 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4155 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 4156 4157 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4158 inode->i_op = &btrfs_dir_ro_inode_operations; 4159 inode->i_fop = &simple_dir_operations; 4160 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4161 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4162 4163 return inode; 4164 } 4165 4166 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4167 { 4168 struct inode *inode; 4169 struct btrfs_root *root = BTRFS_I(dir)->root; 4170 struct btrfs_root *sub_root = root; 4171 struct btrfs_key location; 4172 int index; 4173 int ret = 0; 4174 4175 if (dentry->d_name.len > BTRFS_NAME_LEN) 4176 return ERR_PTR(-ENAMETOOLONG); 4177 4178 if (unlikely(d_need_lookup(dentry))) { 4179 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key)); 4180 kfree(dentry->d_fsdata); 4181 dentry->d_fsdata = NULL; 4182 /* This thing is hashed, drop it for now */ 4183 d_drop(dentry); 4184 } else { 4185 ret = btrfs_inode_by_name(dir, dentry, &location); 4186 } 4187 4188 if (ret < 0) 4189 return ERR_PTR(ret); 4190 4191 if (location.objectid == 0) 4192 return NULL; 4193 4194 if (location.type == BTRFS_INODE_ITEM_KEY) { 4195 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4196 return inode; 4197 } 4198 4199 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4200 4201 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4202 ret = fixup_tree_root_location(root, dir, dentry, 4203 &location, &sub_root); 4204 if (ret < 0) { 4205 if (ret != -ENOENT) 4206 inode = ERR_PTR(ret); 4207 else 4208 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4209 } else { 4210 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4211 } 4212 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4213 4214 if (!IS_ERR(inode) && root != sub_root) { 4215 down_read(&root->fs_info->cleanup_work_sem); 4216 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4217 ret = btrfs_orphan_cleanup(sub_root); 4218 up_read(&root->fs_info->cleanup_work_sem); 4219 if (ret) 4220 inode = ERR_PTR(ret); 4221 } 4222 4223 return inode; 4224 } 4225 4226 static int btrfs_dentry_delete(const struct dentry *dentry) 4227 { 4228 struct btrfs_root *root; 4229 struct inode *inode = dentry->d_inode; 4230 4231 if (!inode && !IS_ROOT(dentry)) 4232 inode = dentry->d_parent->d_inode; 4233 4234 if (inode) { 4235 root = BTRFS_I(inode)->root; 4236 if (btrfs_root_refs(&root->root_item) == 0) 4237 return 1; 4238 4239 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 4240 return 1; 4241 } 4242 return 0; 4243 } 4244 4245 static void btrfs_dentry_release(struct dentry *dentry) 4246 { 4247 if (dentry->d_fsdata) 4248 kfree(dentry->d_fsdata); 4249 } 4250 4251 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4252 unsigned int flags) 4253 { 4254 struct dentry *ret; 4255 4256 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4257 if (unlikely(d_need_lookup(dentry))) { 4258 spin_lock(&dentry->d_lock); 4259 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 4260 spin_unlock(&dentry->d_lock); 4261 } 4262 return ret; 4263 } 4264 4265 unsigned char btrfs_filetype_table[] = { 4266 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4267 }; 4268 4269 static int btrfs_real_readdir(struct file *filp, void *dirent, 4270 filldir_t filldir) 4271 { 4272 struct inode *inode = filp->f_dentry->d_inode; 4273 struct btrfs_root *root = BTRFS_I(inode)->root; 4274 struct btrfs_item *item; 4275 struct btrfs_dir_item *di; 4276 struct btrfs_key key; 4277 struct btrfs_key found_key; 4278 struct btrfs_path *path; 4279 struct list_head ins_list; 4280 struct list_head del_list; 4281 int ret; 4282 struct extent_buffer *leaf; 4283 int slot; 4284 unsigned char d_type; 4285 int over = 0; 4286 u32 di_cur; 4287 u32 di_total; 4288 u32 di_len; 4289 int key_type = BTRFS_DIR_INDEX_KEY; 4290 char tmp_name[32]; 4291 char *name_ptr; 4292 int name_len; 4293 int is_curr = 0; /* filp->f_pos points to the current index? */ 4294 4295 /* FIXME, use a real flag for deciding about the key type */ 4296 if (root->fs_info->tree_root == root) 4297 key_type = BTRFS_DIR_ITEM_KEY; 4298 4299 /* special case for "." */ 4300 if (filp->f_pos == 0) { 4301 over = filldir(dirent, ".", 1, 4302 filp->f_pos, btrfs_ino(inode), DT_DIR); 4303 if (over) 4304 return 0; 4305 filp->f_pos = 1; 4306 } 4307 /* special case for .., just use the back ref */ 4308 if (filp->f_pos == 1) { 4309 u64 pino = parent_ino(filp->f_path.dentry); 4310 over = filldir(dirent, "..", 2, 4311 filp->f_pos, pino, DT_DIR); 4312 if (over) 4313 return 0; 4314 filp->f_pos = 2; 4315 } 4316 path = btrfs_alloc_path(); 4317 if (!path) 4318 return -ENOMEM; 4319 4320 path->reada = 1; 4321 4322 if (key_type == BTRFS_DIR_INDEX_KEY) { 4323 INIT_LIST_HEAD(&ins_list); 4324 INIT_LIST_HEAD(&del_list); 4325 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4326 } 4327 4328 btrfs_set_key_type(&key, key_type); 4329 key.offset = filp->f_pos; 4330 key.objectid = btrfs_ino(inode); 4331 4332 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4333 if (ret < 0) 4334 goto err; 4335 4336 while (1) { 4337 leaf = path->nodes[0]; 4338 slot = path->slots[0]; 4339 if (slot >= btrfs_header_nritems(leaf)) { 4340 ret = btrfs_next_leaf(root, path); 4341 if (ret < 0) 4342 goto err; 4343 else if (ret > 0) 4344 break; 4345 continue; 4346 } 4347 4348 item = btrfs_item_nr(leaf, slot); 4349 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4350 4351 if (found_key.objectid != key.objectid) 4352 break; 4353 if (btrfs_key_type(&found_key) != key_type) 4354 break; 4355 if (found_key.offset < filp->f_pos) 4356 goto next; 4357 if (key_type == BTRFS_DIR_INDEX_KEY && 4358 btrfs_should_delete_dir_index(&del_list, 4359 found_key.offset)) 4360 goto next; 4361 4362 filp->f_pos = found_key.offset; 4363 is_curr = 1; 4364 4365 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4366 di_cur = 0; 4367 di_total = btrfs_item_size(leaf, item); 4368 4369 while (di_cur < di_total) { 4370 struct btrfs_key location; 4371 4372 if (verify_dir_item(root, leaf, di)) 4373 break; 4374 4375 name_len = btrfs_dir_name_len(leaf, di); 4376 if (name_len <= sizeof(tmp_name)) { 4377 name_ptr = tmp_name; 4378 } else { 4379 name_ptr = kmalloc(name_len, GFP_NOFS); 4380 if (!name_ptr) { 4381 ret = -ENOMEM; 4382 goto err; 4383 } 4384 } 4385 read_extent_buffer(leaf, name_ptr, 4386 (unsigned long)(di + 1), name_len); 4387 4388 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4389 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4390 4391 4392 /* is this a reference to our own snapshot? If so 4393 * skip it. 4394 * 4395 * In contrast to old kernels, we insert the snapshot's 4396 * dir item and dir index after it has been created, so 4397 * we won't find a reference to our own snapshot. We 4398 * still keep the following code for backward 4399 * compatibility. 4400 */ 4401 if (location.type == BTRFS_ROOT_ITEM_KEY && 4402 location.objectid == root->root_key.objectid) { 4403 over = 0; 4404 goto skip; 4405 } 4406 over = filldir(dirent, name_ptr, name_len, 4407 found_key.offset, location.objectid, 4408 d_type); 4409 4410 skip: 4411 if (name_ptr != tmp_name) 4412 kfree(name_ptr); 4413 4414 if (over) 4415 goto nopos; 4416 di_len = btrfs_dir_name_len(leaf, di) + 4417 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4418 di_cur += di_len; 4419 di = (struct btrfs_dir_item *)((char *)di + di_len); 4420 } 4421 next: 4422 path->slots[0]++; 4423 } 4424 4425 if (key_type == BTRFS_DIR_INDEX_KEY) { 4426 if (is_curr) 4427 filp->f_pos++; 4428 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4429 &ins_list); 4430 if (ret) 4431 goto nopos; 4432 } 4433 4434 /* Reached end of directory/root. Bump pos past the last item. */ 4435 if (key_type == BTRFS_DIR_INDEX_KEY) 4436 /* 4437 * 32-bit glibc will use getdents64, but then strtol - 4438 * so the last number we can serve is this. 4439 */ 4440 filp->f_pos = 0x7fffffff; 4441 else 4442 filp->f_pos++; 4443 nopos: 4444 ret = 0; 4445 err: 4446 if (key_type == BTRFS_DIR_INDEX_KEY) 4447 btrfs_put_delayed_items(&ins_list, &del_list); 4448 btrfs_free_path(path); 4449 return ret; 4450 } 4451 4452 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4453 { 4454 struct btrfs_root *root = BTRFS_I(inode)->root; 4455 struct btrfs_trans_handle *trans; 4456 int ret = 0; 4457 bool nolock = false; 4458 4459 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 4460 return 0; 4461 4462 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 4463 nolock = true; 4464 4465 if (wbc->sync_mode == WB_SYNC_ALL) { 4466 if (nolock) 4467 trans = btrfs_join_transaction_nolock(root); 4468 else 4469 trans = btrfs_join_transaction(root); 4470 if (IS_ERR(trans)) 4471 return PTR_ERR(trans); 4472 if (nolock) 4473 ret = btrfs_end_transaction_nolock(trans, root); 4474 else 4475 ret = btrfs_commit_transaction(trans, root); 4476 } 4477 return ret; 4478 } 4479 4480 /* 4481 * This is somewhat expensive, updating the tree every time the 4482 * inode changes. But, it is most likely to find the inode in cache. 4483 * FIXME, needs more benchmarking...there are no reasons other than performance 4484 * to keep or drop this code. 4485 */ 4486 int btrfs_dirty_inode(struct inode *inode) 4487 { 4488 struct btrfs_root *root = BTRFS_I(inode)->root; 4489 struct btrfs_trans_handle *trans; 4490 int ret; 4491 4492 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 4493 return 0; 4494 4495 trans = btrfs_join_transaction(root); 4496 if (IS_ERR(trans)) 4497 return PTR_ERR(trans); 4498 4499 ret = btrfs_update_inode(trans, root, inode); 4500 if (ret && ret == -ENOSPC) { 4501 /* whoops, lets try again with the full transaction */ 4502 btrfs_end_transaction(trans, root); 4503 trans = btrfs_start_transaction(root, 1); 4504 if (IS_ERR(trans)) 4505 return PTR_ERR(trans); 4506 4507 ret = btrfs_update_inode(trans, root, inode); 4508 } 4509 btrfs_end_transaction(trans, root); 4510 if (BTRFS_I(inode)->delayed_node) 4511 btrfs_balance_delayed_items(root); 4512 4513 return ret; 4514 } 4515 4516 /* 4517 * This is a copy of file_update_time. We need this so we can return error on 4518 * ENOSPC for updating the inode in the case of file write and mmap writes. 4519 */ 4520 static int btrfs_update_time(struct inode *inode, struct timespec *now, 4521 int flags) 4522 { 4523 struct btrfs_root *root = BTRFS_I(inode)->root; 4524 4525 if (btrfs_root_readonly(root)) 4526 return -EROFS; 4527 4528 if (flags & S_VERSION) 4529 inode_inc_iversion(inode); 4530 if (flags & S_CTIME) 4531 inode->i_ctime = *now; 4532 if (flags & S_MTIME) 4533 inode->i_mtime = *now; 4534 if (flags & S_ATIME) 4535 inode->i_atime = *now; 4536 return btrfs_dirty_inode(inode); 4537 } 4538 4539 /* 4540 * find the highest existing sequence number in a directory 4541 * and then set the in-memory index_cnt variable to reflect 4542 * free sequence numbers 4543 */ 4544 static int btrfs_set_inode_index_count(struct inode *inode) 4545 { 4546 struct btrfs_root *root = BTRFS_I(inode)->root; 4547 struct btrfs_key key, found_key; 4548 struct btrfs_path *path; 4549 struct extent_buffer *leaf; 4550 int ret; 4551 4552 key.objectid = btrfs_ino(inode); 4553 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4554 key.offset = (u64)-1; 4555 4556 path = btrfs_alloc_path(); 4557 if (!path) 4558 return -ENOMEM; 4559 4560 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4561 if (ret < 0) 4562 goto out; 4563 /* FIXME: we should be able to handle this */ 4564 if (ret == 0) 4565 goto out; 4566 ret = 0; 4567 4568 /* 4569 * MAGIC NUMBER EXPLANATION: 4570 * since we search a directory based on f_pos we have to start at 2 4571 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4572 * else has to start at 2 4573 */ 4574 if (path->slots[0] == 0) { 4575 BTRFS_I(inode)->index_cnt = 2; 4576 goto out; 4577 } 4578 4579 path->slots[0]--; 4580 4581 leaf = path->nodes[0]; 4582 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4583 4584 if (found_key.objectid != btrfs_ino(inode) || 4585 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4586 BTRFS_I(inode)->index_cnt = 2; 4587 goto out; 4588 } 4589 4590 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4591 out: 4592 btrfs_free_path(path); 4593 return ret; 4594 } 4595 4596 /* 4597 * helper to find a free sequence number in a given directory. This current 4598 * code is very simple, later versions will do smarter things in the btree 4599 */ 4600 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4601 { 4602 int ret = 0; 4603 4604 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4605 ret = btrfs_inode_delayed_dir_index_count(dir); 4606 if (ret) { 4607 ret = btrfs_set_inode_index_count(dir); 4608 if (ret) 4609 return ret; 4610 } 4611 } 4612 4613 *index = BTRFS_I(dir)->index_cnt; 4614 BTRFS_I(dir)->index_cnt++; 4615 4616 return ret; 4617 } 4618 4619 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4620 struct btrfs_root *root, 4621 struct inode *dir, 4622 const char *name, int name_len, 4623 u64 ref_objectid, u64 objectid, 4624 umode_t mode, u64 *index) 4625 { 4626 struct inode *inode; 4627 struct btrfs_inode_item *inode_item; 4628 struct btrfs_key *location; 4629 struct btrfs_path *path; 4630 struct btrfs_inode_ref *ref; 4631 struct btrfs_key key[2]; 4632 u32 sizes[2]; 4633 unsigned long ptr; 4634 int ret; 4635 int owner; 4636 4637 path = btrfs_alloc_path(); 4638 if (!path) 4639 return ERR_PTR(-ENOMEM); 4640 4641 inode = new_inode(root->fs_info->sb); 4642 if (!inode) { 4643 btrfs_free_path(path); 4644 return ERR_PTR(-ENOMEM); 4645 } 4646 4647 /* 4648 * we have to initialize this early, so we can reclaim the inode 4649 * number if we fail afterwards in this function. 4650 */ 4651 inode->i_ino = objectid; 4652 4653 if (dir) { 4654 trace_btrfs_inode_request(dir); 4655 4656 ret = btrfs_set_inode_index(dir, index); 4657 if (ret) { 4658 btrfs_free_path(path); 4659 iput(inode); 4660 return ERR_PTR(ret); 4661 } 4662 } 4663 /* 4664 * index_cnt is ignored for everything but a dir, 4665 * btrfs_get_inode_index_count has an explanation for the magic 4666 * number 4667 */ 4668 BTRFS_I(inode)->index_cnt = 2; 4669 BTRFS_I(inode)->root = root; 4670 BTRFS_I(inode)->generation = trans->transid; 4671 inode->i_generation = BTRFS_I(inode)->generation; 4672 4673 if (S_ISDIR(mode)) 4674 owner = 0; 4675 else 4676 owner = 1; 4677 4678 key[0].objectid = objectid; 4679 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4680 key[0].offset = 0; 4681 4682 key[1].objectid = objectid; 4683 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4684 key[1].offset = ref_objectid; 4685 4686 sizes[0] = sizeof(struct btrfs_inode_item); 4687 sizes[1] = name_len + sizeof(*ref); 4688 4689 path->leave_spinning = 1; 4690 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4691 if (ret != 0) 4692 goto fail; 4693 4694 inode_init_owner(inode, dir, mode); 4695 inode_set_bytes(inode, 0); 4696 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4697 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4698 struct btrfs_inode_item); 4699 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 4700 sizeof(*inode_item)); 4701 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4702 4703 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4704 struct btrfs_inode_ref); 4705 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4706 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4707 ptr = (unsigned long)(ref + 1); 4708 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4709 4710 btrfs_mark_buffer_dirty(path->nodes[0]); 4711 btrfs_free_path(path); 4712 4713 location = &BTRFS_I(inode)->location; 4714 location->objectid = objectid; 4715 location->offset = 0; 4716 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4717 4718 btrfs_inherit_iflags(inode, dir); 4719 4720 if (S_ISREG(mode)) { 4721 if (btrfs_test_opt(root, NODATASUM)) 4722 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4723 if (btrfs_test_opt(root, NODATACOW) || 4724 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4725 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4726 } 4727 4728 insert_inode_hash(inode); 4729 inode_tree_add(inode); 4730 4731 trace_btrfs_inode_new(inode); 4732 btrfs_set_inode_last_trans(trans, inode); 4733 4734 btrfs_update_root_times(trans, root); 4735 4736 return inode; 4737 fail: 4738 if (dir) 4739 BTRFS_I(dir)->index_cnt--; 4740 btrfs_free_path(path); 4741 iput(inode); 4742 return ERR_PTR(ret); 4743 } 4744 4745 static inline u8 btrfs_inode_type(struct inode *inode) 4746 { 4747 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4748 } 4749 4750 /* 4751 * utility function to add 'inode' into 'parent_inode' with 4752 * a give name and a given sequence number. 4753 * if 'add_backref' is true, also insert a backref from the 4754 * inode to the parent directory. 4755 */ 4756 int btrfs_add_link(struct btrfs_trans_handle *trans, 4757 struct inode *parent_inode, struct inode *inode, 4758 const char *name, int name_len, int add_backref, u64 index) 4759 { 4760 int ret = 0; 4761 struct btrfs_key key; 4762 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4763 u64 ino = btrfs_ino(inode); 4764 u64 parent_ino = btrfs_ino(parent_inode); 4765 4766 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4767 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4768 } else { 4769 key.objectid = ino; 4770 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4771 key.offset = 0; 4772 } 4773 4774 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4775 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4776 key.objectid, root->root_key.objectid, 4777 parent_ino, index, name, name_len); 4778 } else if (add_backref) { 4779 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4780 parent_ino, index); 4781 } 4782 4783 /* Nothing to clean up yet */ 4784 if (ret) 4785 return ret; 4786 4787 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4788 parent_inode, &key, 4789 btrfs_inode_type(inode), index); 4790 if (ret == -EEXIST) 4791 goto fail_dir_item; 4792 else if (ret) { 4793 btrfs_abort_transaction(trans, root, ret); 4794 return ret; 4795 } 4796 4797 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4798 name_len * 2); 4799 inode_inc_iversion(parent_inode); 4800 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4801 ret = btrfs_update_inode(trans, root, parent_inode); 4802 if (ret) 4803 btrfs_abort_transaction(trans, root, ret); 4804 return ret; 4805 4806 fail_dir_item: 4807 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4808 u64 local_index; 4809 int err; 4810 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4811 key.objectid, root->root_key.objectid, 4812 parent_ino, &local_index, name, name_len); 4813 4814 } else if (add_backref) { 4815 u64 local_index; 4816 int err; 4817 4818 err = btrfs_del_inode_ref(trans, root, name, name_len, 4819 ino, parent_ino, &local_index); 4820 } 4821 return ret; 4822 } 4823 4824 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4825 struct inode *dir, struct dentry *dentry, 4826 struct inode *inode, int backref, u64 index) 4827 { 4828 int err = btrfs_add_link(trans, dir, inode, 4829 dentry->d_name.name, dentry->d_name.len, 4830 backref, index); 4831 if (err > 0) 4832 err = -EEXIST; 4833 return err; 4834 } 4835 4836 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4837 umode_t mode, dev_t rdev) 4838 { 4839 struct btrfs_trans_handle *trans; 4840 struct btrfs_root *root = BTRFS_I(dir)->root; 4841 struct inode *inode = NULL; 4842 int err; 4843 int drop_inode = 0; 4844 u64 objectid; 4845 unsigned long nr = 0; 4846 u64 index = 0; 4847 4848 if (!new_valid_dev(rdev)) 4849 return -EINVAL; 4850 4851 /* 4852 * 2 for inode item and ref 4853 * 2 for dir items 4854 * 1 for xattr if selinux is on 4855 */ 4856 trans = btrfs_start_transaction(root, 5); 4857 if (IS_ERR(trans)) 4858 return PTR_ERR(trans); 4859 4860 err = btrfs_find_free_ino(root, &objectid); 4861 if (err) 4862 goto out_unlock; 4863 4864 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4865 dentry->d_name.len, btrfs_ino(dir), objectid, 4866 mode, &index); 4867 if (IS_ERR(inode)) { 4868 err = PTR_ERR(inode); 4869 goto out_unlock; 4870 } 4871 4872 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4873 if (err) { 4874 drop_inode = 1; 4875 goto out_unlock; 4876 } 4877 4878 /* 4879 * If the active LSM wants to access the inode during 4880 * d_instantiate it needs these. Smack checks to see 4881 * if the filesystem supports xattrs by looking at the 4882 * ops vector. 4883 */ 4884 4885 inode->i_op = &btrfs_special_inode_operations; 4886 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4887 if (err) 4888 drop_inode = 1; 4889 else { 4890 init_special_inode(inode, inode->i_mode, rdev); 4891 btrfs_update_inode(trans, root, inode); 4892 d_instantiate(dentry, inode); 4893 } 4894 out_unlock: 4895 nr = trans->blocks_used; 4896 btrfs_end_transaction(trans, root); 4897 btrfs_btree_balance_dirty(root, nr); 4898 if (drop_inode) { 4899 inode_dec_link_count(inode); 4900 iput(inode); 4901 } 4902 return err; 4903 } 4904 4905 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4906 umode_t mode, bool excl) 4907 { 4908 struct btrfs_trans_handle *trans; 4909 struct btrfs_root *root = BTRFS_I(dir)->root; 4910 struct inode *inode = NULL; 4911 int drop_inode = 0; 4912 int err; 4913 unsigned long nr = 0; 4914 u64 objectid; 4915 u64 index = 0; 4916 4917 /* 4918 * 2 for inode item and ref 4919 * 2 for dir items 4920 * 1 for xattr if selinux is on 4921 */ 4922 trans = btrfs_start_transaction(root, 5); 4923 if (IS_ERR(trans)) 4924 return PTR_ERR(trans); 4925 4926 err = btrfs_find_free_ino(root, &objectid); 4927 if (err) 4928 goto out_unlock; 4929 4930 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4931 dentry->d_name.len, btrfs_ino(dir), objectid, 4932 mode, &index); 4933 if (IS_ERR(inode)) { 4934 err = PTR_ERR(inode); 4935 goto out_unlock; 4936 } 4937 4938 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4939 if (err) { 4940 drop_inode = 1; 4941 goto out_unlock; 4942 } 4943 4944 /* 4945 * If the active LSM wants to access the inode during 4946 * d_instantiate it needs these. Smack checks to see 4947 * if the filesystem supports xattrs by looking at the 4948 * ops vector. 4949 */ 4950 inode->i_fop = &btrfs_file_operations; 4951 inode->i_op = &btrfs_file_inode_operations; 4952 4953 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4954 if (err) 4955 drop_inode = 1; 4956 else { 4957 inode->i_mapping->a_ops = &btrfs_aops; 4958 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4959 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4960 d_instantiate(dentry, inode); 4961 } 4962 out_unlock: 4963 nr = trans->blocks_used; 4964 btrfs_end_transaction(trans, root); 4965 if (drop_inode) { 4966 inode_dec_link_count(inode); 4967 iput(inode); 4968 } 4969 btrfs_btree_balance_dirty(root, nr); 4970 return err; 4971 } 4972 4973 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4974 struct dentry *dentry) 4975 { 4976 struct btrfs_trans_handle *trans; 4977 struct btrfs_root *root = BTRFS_I(dir)->root; 4978 struct inode *inode = old_dentry->d_inode; 4979 u64 index; 4980 unsigned long nr = 0; 4981 int err; 4982 int drop_inode = 0; 4983 4984 /* do not allow sys_link's with other subvols of the same device */ 4985 if (root->objectid != BTRFS_I(inode)->root->objectid) 4986 return -EXDEV; 4987 4988 if (inode->i_nlink == ~0U) 4989 return -EMLINK; 4990 4991 err = btrfs_set_inode_index(dir, &index); 4992 if (err) 4993 goto fail; 4994 4995 /* 4996 * 2 items for inode and inode ref 4997 * 2 items for dir items 4998 * 1 item for parent inode 4999 */ 5000 trans = btrfs_start_transaction(root, 5); 5001 if (IS_ERR(trans)) { 5002 err = PTR_ERR(trans); 5003 goto fail; 5004 } 5005 5006 btrfs_inc_nlink(inode); 5007 inode_inc_iversion(inode); 5008 inode->i_ctime = CURRENT_TIME; 5009 ihold(inode); 5010 5011 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5012 5013 if (err) { 5014 drop_inode = 1; 5015 } else { 5016 struct dentry *parent = dentry->d_parent; 5017 err = btrfs_update_inode(trans, root, inode); 5018 if (err) 5019 goto fail; 5020 d_instantiate(dentry, inode); 5021 btrfs_log_new_name(trans, inode, NULL, parent); 5022 } 5023 5024 nr = trans->blocks_used; 5025 btrfs_end_transaction(trans, root); 5026 fail: 5027 if (drop_inode) { 5028 inode_dec_link_count(inode); 5029 iput(inode); 5030 } 5031 btrfs_btree_balance_dirty(root, nr); 5032 return err; 5033 } 5034 5035 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5036 { 5037 struct inode *inode = NULL; 5038 struct btrfs_trans_handle *trans; 5039 struct btrfs_root *root = BTRFS_I(dir)->root; 5040 int err = 0; 5041 int drop_on_err = 0; 5042 u64 objectid = 0; 5043 u64 index = 0; 5044 unsigned long nr = 1; 5045 5046 /* 5047 * 2 items for inode and ref 5048 * 2 items for dir items 5049 * 1 for xattr if selinux is on 5050 */ 5051 trans = btrfs_start_transaction(root, 5); 5052 if (IS_ERR(trans)) 5053 return PTR_ERR(trans); 5054 5055 err = btrfs_find_free_ino(root, &objectid); 5056 if (err) 5057 goto out_fail; 5058 5059 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5060 dentry->d_name.len, btrfs_ino(dir), objectid, 5061 S_IFDIR | mode, &index); 5062 if (IS_ERR(inode)) { 5063 err = PTR_ERR(inode); 5064 goto out_fail; 5065 } 5066 5067 drop_on_err = 1; 5068 5069 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5070 if (err) 5071 goto out_fail; 5072 5073 inode->i_op = &btrfs_dir_inode_operations; 5074 inode->i_fop = &btrfs_dir_file_operations; 5075 5076 btrfs_i_size_write(inode, 0); 5077 err = btrfs_update_inode(trans, root, inode); 5078 if (err) 5079 goto out_fail; 5080 5081 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5082 dentry->d_name.len, 0, index); 5083 if (err) 5084 goto out_fail; 5085 5086 d_instantiate(dentry, inode); 5087 drop_on_err = 0; 5088 5089 out_fail: 5090 nr = trans->blocks_used; 5091 btrfs_end_transaction(trans, root); 5092 if (drop_on_err) 5093 iput(inode); 5094 btrfs_btree_balance_dirty(root, nr); 5095 return err; 5096 } 5097 5098 /* helper for btfs_get_extent. Given an existing extent in the tree, 5099 * and an extent that you want to insert, deal with overlap and insert 5100 * the new extent into the tree. 5101 */ 5102 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5103 struct extent_map *existing, 5104 struct extent_map *em, 5105 u64 map_start, u64 map_len) 5106 { 5107 u64 start_diff; 5108 5109 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5110 start_diff = map_start - em->start; 5111 em->start = map_start; 5112 em->len = map_len; 5113 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5114 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5115 em->block_start += start_diff; 5116 em->block_len -= start_diff; 5117 } 5118 return add_extent_mapping(em_tree, em); 5119 } 5120 5121 static noinline int uncompress_inline(struct btrfs_path *path, 5122 struct inode *inode, struct page *page, 5123 size_t pg_offset, u64 extent_offset, 5124 struct btrfs_file_extent_item *item) 5125 { 5126 int ret; 5127 struct extent_buffer *leaf = path->nodes[0]; 5128 char *tmp; 5129 size_t max_size; 5130 unsigned long inline_size; 5131 unsigned long ptr; 5132 int compress_type; 5133 5134 WARN_ON(pg_offset != 0); 5135 compress_type = btrfs_file_extent_compression(leaf, item); 5136 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5137 inline_size = btrfs_file_extent_inline_item_len(leaf, 5138 btrfs_item_nr(leaf, path->slots[0])); 5139 tmp = kmalloc(inline_size, GFP_NOFS); 5140 if (!tmp) 5141 return -ENOMEM; 5142 ptr = btrfs_file_extent_inline_start(item); 5143 5144 read_extent_buffer(leaf, tmp, ptr, inline_size); 5145 5146 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5147 ret = btrfs_decompress(compress_type, tmp, page, 5148 extent_offset, inline_size, max_size); 5149 if (ret) { 5150 char *kaddr = kmap_atomic(page); 5151 unsigned long copy_size = min_t(u64, 5152 PAGE_CACHE_SIZE - pg_offset, 5153 max_size - extent_offset); 5154 memset(kaddr + pg_offset, 0, copy_size); 5155 kunmap_atomic(kaddr); 5156 } 5157 kfree(tmp); 5158 return 0; 5159 } 5160 5161 /* 5162 * a bit scary, this does extent mapping from logical file offset to the disk. 5163 * the ugly parts come from merging extents from the disk with the in-ram 5164 * representation. This gets more complex because of the data=ordered code, 5165 * where the in-ram extents might be locked pending data=ordered completion. 5166 * 5167 * This also copies inline extents directly into the page. 5168 */ 5169 5170 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5171 size_t pg_offset, u64 start, u64 len, 5172 int create) 5173 { 5174 int ret; 5175 int err = 0; 5176 u64 bytenr; 5177 u64 extent_start = 0; 5178 u64 extent_end = 0; 5179 u64 objectid = btrfs_ino(inode); 5180 u32 found_type; 5181 struct btrfs_path *path = NULL; 5182 struct btrfs_root *root = BTRFS_I(inode)->root; 5183 struct btrfs_file_extent_item *item; 5184 struct extent_buffer *leaf; 5185 struct btrfs_key found_key; 5186 struct extent_map *em = NULL; 5187 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5188 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5189 struct btrfs_trans_handle *trans = NULL; 5190 int compress_type; 5191 5192 again: 5193 read_lock(&em_tree->lock); 5194 em = lookup_extent_mapping(em_tree, start, len); 5195 if (em) 5196 em->bdev = root->fs_info->fs_devices->latest_bdev; 5197 read_unlock(&em_tree->lock); 5198 5199 if (em) { 5200 if (em->start > start || em->start + em->len <= start) 5201 free_extent_map(em); 5202 else if (em->block_start == EXTENT_MAP_INLINE && page) 5203 free_extent_map(em); 5204 else 5205 goto out; 5206 } 5207 em = alloc_extent_map(); 5208 if (!em) { 5209 err = -ENOMEM; 5210 goto out; 5211 } 5212 em->bdev = root->fs_info->fs_devices->latest_bdev; 5213 em->start = EXTENT_MAP_HOLE; 5214 em->orig_start = EXTENT_MAP_HOLE; 5215 em->len = (u64)-1; 5216 em->block_len = (u64)-1; 5217 5218 if (!path) { 5219 path = btrfs_alloc_path(); 5220 if (!path) { 5221 err = -ENOMEM; 5222 goto out; 5223 } 5224 /* 5225 * Chances are we'll be called again, so go ahead and do 5226 * readahead 5227 */ 5228 path->reada = 1; 5229 } 5230 5231 ret = btrfs_lookup_file_extent(trans, root, path, 5232 objectid, start, trans != NULL); 5233 if (ret < 0) { 5234 err = ret; 5235 goto out; 5236 } 5237 5238 if (ret != 0) { 5239 if (path->slots[0] == 0) 5240 goto not_found; 5241 path->slots[0]--; 5242 } 5243 5244 leaf = path->nodes[0]; 5245 item = btrfs_item_ptr(leaf, path->slots[0], 5246 struct btrfs_file_extent_item); 5247 /* are we inside the extent that was found? */ 5248 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5249 found_type = btrfs_key_type(&found_key); 5250 if (found_key.objectid != objectid || 5251 found_type != BTRFS_EXTENT_DATA_KEY) { 5252 goto not_found; 5253 } 5254 5255 found_type = btrfs_file_extent_type(leaf, item); 5256 extent_start = found_key.offset; 5257 compress_type = btrfs_file_extent_compression(leaf, item); 5258 if (found_type == BTRFS_FILE_EXTENT_REG || 5259 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5260 extent_end = extent_start + 5261 btrfs_file_extent_num_bytes(leaf, item); 5262 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5263 size_t size; 5264 size = btrfs_file_extent_inline_len(leaf, item); 5265 extent_end = (extent_start + size + root->sectorsize - 1) & 5266 ~((u64)root->sectorsize - 1); 5267 } 5268 5269 if (start >= extent_end) { 5270 path->slots[0]++; 5271 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5272 ret = btrfs_next_leaf(root, path); 5273 if (ret < 0) { 5274 err = ret; 5275 goto out; 5276 } 5277 if (ret > 0) 5278 goto not_found; 5279 leaf = path->nodes[0]; 5280 } 5281 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5282 if (found_key.objectid != objectid || 5283 found_key.type != BTRFS_EXTENT_DATA_KEY) 5284 goto not_found; 5285 if (start + len <= found_key.offset) 5286 goto not_found; 5287 em->start = start; 5288 em->len = found_key.offset - start; 5289 goto not_found_em; 5290 } 5291 5292 if (found_type == BTRFS_FILE_EXTENT_REG || 5293 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5294 em->start = extent_start; 5295 em->len = extent_end - extent_start; 5296 em->orig_start = extent_start - 5297 btrfs_file_extent_offset(leaf, item); 5298 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5299 if (bytenr == 0) { 5300 em->block_start = EXTENT_MAP_HOLE; 5301 goto insert; 5302 } 5303 if (compress_type != BTRFS_COMPRESS_NONE) { 5304 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5305 em->compress_type = compress_type; 5306 em->block_start = bytenr; 5307 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5308 item); 5309 } else { 5310 bytenr += btrfs_file_extent_offset(leaf, item); 5311 em->block_start = bytenr; 5312 em->block_len = em->len; 5313 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5314 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5315 } 5316 goto insert; 5317 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5318 unsigned long ptr; 5319 char *map; 5320 size_t size; 5321 size_t extent_offset; 5322 size_t copy_size; 5323 5324 em->block_start = EXTENT_MAP_INLINE; 5325 if (!page || create) { 5326 em->start = extent_start; 5327 em->len = extent_end - extent_start; 5328 goto out; 5329 } 5330 5331 size = btrfs_file_extent_inline_len(leaf, item); 5332 extent_offset = page_offset(page) + pg_offset - extent_start; 5333 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5334 size - extent_offset); 5335 em->start = extent_start + extent_offset; 5336 em->len = (copy_size + root->sectorsize - 1) & 5337 ~((u64)root->sectorsize - 1); 5338 em->orig_start = EXTENT_MAP_INLINE; 5339 if (compress_type) { 5340 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5341 em->compress_type = compress_type; 5342 } 5343 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5344 if (create == 0 && !PageUptodate(page)) { 5345 if (btrfs_file_extent_compression(leaf, item) != 5346 BTRFS_COMPRESS_NONE) { 5347 ret = uncompress_inline(path, inode, page, 5348 pg_offset, 5349 extent_offset, item); 5350 BUG_ON(ret); /* -ENOMEM */ 5351 } else { 5352 map = kmap(page); 5353 read_extent_buffer(leaf, map + pg_offset, ptr, 5354 copy_size); 5355 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5356 memset(map + pg_offset + copy_size, 0, 5357 PAGE_CACHE_SIZE - pg_offset - 5358 copy_size); 5359 } 5360 kunmap(page); 5361 } 5362 flush_dcache_page(page); 5363 } else if (create && PageUptodate(page)) { 5364 BUG(); 5365 if (!trans) { 5366 kunmap(page); 5367 free_extent_map(em); 5368 em = NULL; 5369 5370 btrfs_release_path(path); 5371 trans = btrfs_join_transaction(root); 5372 5373 if (IS_ERR(trans)) 5374 return ERR_CAST(trans); 5375 goto again; 5376 } 5377 map = kmap(page); 5378 write_extent_buffer(leaf, map + pg_offset, ptr, 5379 copy_size); 5380 kunmap(page); 5381 btrfs_mark_buffer_dirty(leaf); 5382 } 5383 set_extent_uptodate(io_tree, em->start, 5384 extent_map_end(em) - 1, NULL, GFP_NOFS); 5385 goto insert; 5386 } else { 5387 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5388 WARN_ON(1); 5389 } 5390 not_found: 5391 em->start = start; 5392 em->len = len; 5393 not_found_em: 5394 em->block_start = EXTENT_MAP_HOLE; 5395 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5396 insert: 5397 btrfs_release_path(path); 5398 if (em->start > start || extent_map_end(em) <= start) { 5399 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5400 "[%llu %llu]\n", (unsigned long long)em->start, 5401 (unsigned long long)em->len, 5402 (unsigned long long)start, 5403 (unsigned long long)len); 5404 err = -EIO; 5405 goto out; 5406 } 5407 5408 err = 0; 5409 write_lock(&em_tree->lock); 5410 ret = add_extent_mapping(em_tree, em); 5411 /* it is possible that someone inserted the extent into the tree 5412 * while we had the lock dropped. It is also possible that 5413 * an overlapping map exists in the tree 5414 */ 5415 if (ret == -EEXIST) { 5416 struct extent_map *existing; 5417 5418 ret = 0; 5419 5420 existing = lookup_extent_mapping(em_tree, start, len); 5421 if (existing && (existing->start > start || 5422 existing->start + existing->len <= start)) { 5423 free_extent_map(existing); 5424 existing = NULL; 5425 } 5426 if (!existing) { 5427 existing = lookup_extent_mapping(em_tree, em->start, 5428 em->len); 5429 if (existing) { 5430 err = merge_extent_mapping(em_tree, existing, 5431 em, start, 5432 root->sectorsize); 5433 free_extent_map(existing); 5434 if (err) { 5435 free_extent_map(em); 5436 em = NULL; 5437 } 5438 } else { 5439 err = -EIO; 5440 free_extent_map(em); 5441 em = NULL; 5442 } 5443 } else { 5444 free_extent_map(em); 5445 em = existing; 5446 err = 0; 5447 } 5448 } 5449 write_unlock(&em_tree->lock); 5450 out: 5451 5452 trace_btrfs_get_extent(root, em); 5453 5454 if (path) 5455 btrfs_free_path(path); 5456 if (trans) { 5457 ret = btrfs_end_transaction(trans, root); 5458 if (!err) 5459 err = ret; 5460 } 5461 if (err) { 5462 free_extent_map(em); 5463 return ERR_PTR(err); 5464 } 5465 BUG_ON(!em); /* Error is always set */ 5466 return em; 5467 } 5468 5469 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5470 size_t pg_offset, u64 start, u64 len, 5471 int create) 5472 { 5473 struct extent_map *em; 5474 struct extent_map *hole_em = NULL; 5475 u64 range_start = start; 5476 u64 end; 5477 u64 found; 5478 u64 found_end; 5479 int err = 0; 5480 5481 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5482 if (IS_ERR(em)) 5483 return em; 5484 if (em) { 5485 /* 5486 * if our em maps to a hole, there might 5487 * actually be delalloc bytes behind it 5488 */ 5489 if (em->block_start != EXTENT_MAP_HOLE) 5490 return em; 5491 else 5492 hole_em = em; 5493 } 5494 5495 /* check to see if we've wrapped (len == -1 or similar) */ 5496 end = start + len; 5497 if (end < start) 5498 end = (u64)-1; 5499 else 5500 end -= 1; 5501 5502 em = NULL; 5503 5504 /* ok, we didn't find anything, lets look for delalloc */ 5505 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5506 end, len, EXTENT_DELALLOC, 1); 5507 found_end = range_start + found; 5508 if (found_end < range_start) 5509 found_end = (u64)-1; 5510 5511 /* 5512 * we didn't find anything useful, return 5513 * the original results from get_extent() 5514 */ 5515 if (range_start > end || found_end <= start) { 5516 em = hole_em; 5517 hole_em = NULL; 5518 goto out; 5519 } 5520 5521 /* adjust the range_start to make sure it doesn't 5522 * go backwards from the start they passed in 5523 */ 5524 range_start = max(start,range_start); 5525 found = found_end - range_start; 5526 5527 if (found > 0) { 5528 u64 hole_start = start; 5529 u64 hole_len = len; 5530 5531 em = alloc_extent_map(); 5532 if (!em) { 5533 err = -ENOMEM; 5534 goto out; 5535 } 5536 /* 5537 * when btrfs_get_extent can't find anything it 5538 * returns one huge hole 5539 * 5540 * make sure what it found really fits our range, and 5541 * adjust to make sure it is based on the start from 5542 * the caller 5543 */ 5544 if (hole_em) { 5545 u64 calc_end = extent_map_end(hole_em); 5546 5547 if (calc_end <= start || (hole_em->start > end)) { 5548 free_extent_map(hole_em); 5549 hole_em = NULL; 5550 } else { 5551 hole_start = max(hole_em->start, start); 5552 hole_len = calc_end - hole_start; 5553 } 5554 } 5555 em->bdev = NULL; 5556 if (hole_em && range_start > hole_start) { 5557 /* our hole starts before our delalloc, so we 5558 * have to return just the parts of the hole 5559 * that go until the delalloc starts 5560 */ 5561 em->len = min(hole_len, 5562 range_start - hole_start); 5563 em->start = hole_start; 5564 em->orig_start = hole_start; 5565 /* 5566 * don't adjust block start at all, 5567 * it is fixed at EXTENT_MAP_HOLE 5568 */ 5569 em->block_start = hole_em->block_start; 5570 em->block_len = hole_len; 5571 } else { 5572 em->start = range_start; 5573 em->len = found; 5574 em->orig_start = range_start; 5575 em->block_start = EXTENT_MAP_DELALLOC; 5576 em->block_len = found; 5577 } 5578 } else if (hole_em) { 5579 return hole_em; 5580 } 5581 out: 5582 5583 free_extent_map(hole_em); 5584 if (err) { 5585 free_extent_map(em); 5586 return ERR_PTR(err); 5587 } 5588 return em; 5589 } 5590 5591 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5592 struct extent_map *em, 5593 u64 start, u64 len) 5594 { 5595 struct btrfs_root *root = BTRFS_I(inode)->root; 5596 struct btrfs_trans_handle *trans; 5597 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5598 struct btrfs_key ins; 5599 u64 alloc_hint; 5600 int ret; 5601 bool insert = false; 5602 5603 /* 5604 * Ok if the extent map we looked up is a hole and is for the exact 5605 * range we want, there is no reason to allocate a new one, however if 5606 * it is not right then we need to free this one and drop the cache for 5607 * our range. 5608 */ 5609 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5610 em->len != len) { 5611 free_extent_map(em); 5612 em = NULL; 5613 insert = true; 5614 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5615 } 5616 5617 trans = btrfs_join_transaction(root); 5618 if (IS_ERR(trans)) 5619 return ERR_CAST(trans); 5620 5621 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5622 btrfs_add_inode_defrag(trans, inode); 5623 5624 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5625 5626 alloc_hint = get_extent_allocation_hint(inode, start, len); 5627 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5628 alloc_hint, &ins, 1); 5629 if (ret) { 5630 em = ERR_PTR(ret); 5631 goto out; 5632 } 5633 5634 if (!em) { 5635 em = alloc_extent_map(); 5636 if (!em) { 5637 em = ERR_PTR(-ENOMEM); 5638 goto out; 5639 } 5640 } 5641 5642 em->start = start; 5643 em->orig_start = em->start; 5644 em->len = ins.offset; 5645 5646 em->block_start = ins.objectid; 5647 em->block_len = ins.offset; 5648 em->bdev = root->fs_info->fs_devices->latest_bdev; 5649 5650 /* 5651 * We need to do this because if we're using the original em we searched 5652 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5653 */ 5654 em->flags = 0; 5655 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5656 5657 while (insert) { 5658 write_lock(&em_tree->lock); 5659 ret = add_extent_mapping(em_tree, em); 5660 write_unlock(&em_tree->lock); 5661 if (ret != -EEXIST) 5662 break; 5663 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5664 } 5665 5666 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5667 ins.offset, ins.offset, 0); 5668 if (ret) { 5669 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5670 em = ERR_PTR(ret); 5671 } 5672 out: 5673 btrfs_end_transaction(trans, root); 5674 return em; 5675 } 5676 5677 /* 5678 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5679 * block must be cow'd 5680 */ 5681 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5682 struct inode *inode, u64 offset, u64 len) 5683 { 5684 struct btrfs_path *path; 5685 int ret; 5686 struct extent_buffer *leaf; 5687 struct btrfs_root *root = BTRFS_I(inode)->root; 5688 struct btrfs_file_extent_item *fi; 5689 struct btrfs_key key; 5690 u64 disk_bytenr; 5691 u64 backref_offset; 5692 u64 extent_end; 5693 u64 num_bytes; 5694 int slot; 5695 int found_type; 5696 5697 path = btrfs_alloc_path(); 5698 if (!path) 5699 return -ENOMEM; 5700 5701 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5702 offset, 0); 5703 if (ret < 0) 5704 goto out; 5705 5706 slot = path->slots[0]; 5707 if (ret == 1) { 5708 if (slot == 0) { 5709 /* can't find the item, must cow */ 5710 ret = 0; 5711 goto out; 5712 } 5713 slot--; 5714 } 5715 ret = 0; 5716 leaf = path->nodes[0]; 5717 btrfs_item_key_to_cpu(leaf, &key, slot); 5718 if (key.objectid != btrfs_ino(inode) || 5719 key.type != BTRFS_EXTENT_DATA_KEY) { 5720 /* not our file or wrong item type, must cow */ 5721 goto out; 5722 } 5723 5724 if (key.offset > offset) { 5725 /* Wrong offset, must cow */ 5726 goto out; 5727 } 5728 5729 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5730 found_type = btrfs_file_extent_type(leaf, fi); 5731 if (found_type != BTRFS_FILE_EXTENT_REG && 5732 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5733 /* not a regular extent, must cow */ 5734 goto out; 5735 } 5736 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5737 backref_offset = btrfs_file_extent_offset(leaf, fi); 5738 5739 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5740 if (extent_end < offset + len) { 5741 /* extent doesn't include our full range, must cow */ 5742 goto out; 5743 } 5744 5745 if (btrfs_extent_readonly(root, disk_bytenr)) 5746 goto out; 5747 5748 /* 5749 * look for other files referencing this extent, if we 5750 * find any we must cow 5751 */ 5752 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5753 key.offset - backref_offset, disk_bytenr)) 5754 goto out; 5755 5756 /* 5757 * adjust disk_bytenr and num_bytes to cover just the bytes 5758 * in this extent we are about to write. If there 5759 * are any csums in that range we have to cow in order 5760 * to keep the csums correct 5761 */ 5762 disk_bytenr += backref_offset; 5763 disk_bytenr += offset - key.offset; 5764 num_bytes = min(offset + len, extent_end) - offset; 5765 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5766 goto out; 5767 /* 5768 * all of the above have passed, it is safe to overwrite this extent 5769 * without cow 5770 */ 5771 ret = 1; 5772 out: 5773 btrfs_free_path(path); 5774 return ret; 5775 } 5776 5777 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5778 struct buffer_head *bh_result, int create) 5779 { 5780 struct extent_map *em; 5781 struct btrfs_root *root = BTRFS_I(inode)->root; 5782 u64 start = iblock << inode->i_blkbits; 5783 u64 len = bh_result->b_size; 5784 struct btrfs_trans_handle *trans; 5785 5786 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5787 if (IS_ERR(em)) 5788 return PTR_ERR(em); 5789 5790 /* 5791 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5792 * io. INLINE is special, and we could probably kludge it in here, but 5793 * it's still buffered so for safety lets just fall back to the generic 5794 * buffered path. 5795 * 5796 * For COMPRESSED we _have_ to read the entire extent in so we can 5797 * decompress it, so there will be buffering required no matter what we 5798 * do, so go ahead and fallback to buffered. 5799 * 5800 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5801 * to buffered IO. Don't blame me, this is the price we pay for using 5802 * the generic code. 5803 */ 5804 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5805 em->block_start == EXTENT_MAP_INLINE) { 5806 free_extent_map(em); 5807 return -ENOTBLK; 5808 } 5809 5810 /* Just a good old fashioned hole, return */ 5811 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5812 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5813 free_extent_map(em); 5814 /* DIO will do one hole at a time, so just unlock a sector */ 5815 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5816 start + root->sectorsize - 1); 5817 return 0; 5818 } 5819 5820 /* 5821 * We don't allocate a new extent in the following cases 5822 * 5823 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5824 * existing extent. 5825 * 2) The extent is marked as PREALLOC. We're good to go here and can 5826 * just use the extent. 5827 * 5828 */ 5829 if (!create) { 5830 len = em->len - (start - em->start); 5831 goto map; 5832 } 5833 5834 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5835 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5836 em->block_start != EXTENT_MAP_HOLE)) { 5837 int type; 5838 int ret; 5839 u64 block_start; 5840 5841 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5842 type = BTRFS_ORDERED_PREALLOC; 5843 else 5844 type = BTRFS_ORDERED_NOCOW; 5845 len = min(len, em->len - (start - em->start)); 5846 block_start = em->block_start + (start - em->start); 5847 5848 /* 5849 * we're not going to log anything, but we do need 5850 * to make sure the current transaction stays open 5851 * while we look for nocow cross refs 5852 */ 5853 trans = btrfs_join_transaction(root); 5854 if (IS_ERR(trans)) 5855 goto must_cow; 5856 5857 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5858 ret = btrfs_add_ordered_extent_dio(inode, start, 5859 block_start, len, len, type); 5860 btrfs_end_transaction(trans, root); 5861 if (ret) { 5862 free_extent_map(em); 5863 return ret; 5864 } 5865 goto unlock; 5866 } 5867 btrfs_end_transaction(trans, root); 5868 } 5869 must_cow: 5870 /* 5871 * this will cow the extent, reset the len in case we changed 5872 * it above 5873 */ 5874 len = bh_result->b_size; 5875 em = btrfs_new_extent_direct(inode, em, start, len); 5876 if (IS_ERR(em)) 5877 return PTR_ERR(em); 5878 len = min(len, em->len - (start - em->start)); 5879 unlock: 5880 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5881 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5882 0, NULL, GFP_NOFS); 5883 map: 5884 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5885 inode->i_blkbits; 5886 bh_result->b_size = len; 5887 bh_result->b_bdev = em->bdev; 5888 set_buffer_mapped(bh_result); 5889 if (create) { 5890 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5891 set_buffer_new(bh_result); 5892 5893 /* 5894 * Need to update the i_size under the extent lock so buffered 5895 * readers will get the updated i_size when we unlock. 5896 */ 5897 if (start + len > i_size_read(inode)) 5898 i_size_write(inode, start + len); 5899 } 5900 5901 free_extent_map(em); 5902 5903 return 0; 5904 } 5905 5906 struct btrfs_dio_private { 5907 struct inode *inode; 5908 u64 logical_offset; 5909 u64 disk_bytenr; 5910 u64 bytes; 5911 u32 *csums; 5912 void *private; 5913 5914 /* number of bios pending for this dio */ 5915 atomic_t pending_bios; 5916 5917 /* IO errors */ 5918 int errors; 5919 5920 struct bio *orig_bio; 5921 }; 5922 5923 static void btrfs_endio_direct_read(struct bio *bio, int err) 5924 { 5925 struct btrfs_dio_private *dip = bio->bi_private; 5926 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5927 struct bio_vec *bvec = bio->bi_io_vec; 5928 struct inode *inode = dip->inode; 5929 struct btrfs_root *root = BTRFS_I(inode)->root; 5930 u64 start; 5931 u32 *private = dip->csums; 5932 5933 start = dip->logical_offset; 5934 do { 5935 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5936 struct page *page = bvec->bv_page; 5937 char *kaddr; 5938 u32 csum = ~(u32)0; 5939 unsigned long flags; 5940 5941 local_irq_save(flags); 5942 kaddr = kmap_atomic(page); 5943 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5944 csum, bvec->bv_len); 5945 btrfs_csum_final(csum, (char *)&csum); 5946 kunmap_atomic(kaddr); 5947 local_irq_restore(flags); 5948 5949 flush_dcache_page(bvec->bv_page); 5950 if (csum != *private) { 5951 printk(KERN_ERR "btrfs csum failed ino %llu off" 5952 " %llu csum %u private %u\n", 5953 (unsigned long long)btrfs_ino(inode), 5954 (unsigned long long)start, 5955 csum, *private); 5956 err = -EIO; 5957 } 5958 } 5959 5960 start += bvec->bv_len; 5961 private++; 5962 bvec++; 5963 } while (bvec <= bvec_end); 5964 5965 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5966 dip->logical_offset + dip->bytes - 1); 5967 bio->bi_private = dip->private; 5968 5969 kfree(dip->csums); 5970 kfree(dip); 5971 5972 /* If we had a csum failure make sure to clear the uptodate flag */ 5973 if (err) 5974 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5975 dio_end_io(bio, err); 5976 } 5977 5978 static void btrfs_endio_direct_write(struct bio *bio, int err) 5979 { 5980 struct btrfs_dio_private *dip = bio->bi_private; 5981 struct inode *inode = dip->inode; 5982 struct btrfs_root *root = BTRFS_I(inode)->root; 5983 struct btrfs_ordered_extent *ordered = NULL; 5984 u64 ordered_offset = dip->logical_offset; 5985 u64 ordered_bytes = dip->bytes; 5986 int ret; 5987 5988 if (err) 5989 goto out_done; 5990 again: 5991 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5992 &ordered_offset, 5993 ordered_bytes, !err); 5994 if (!ret) 5995 goto out_test; 5996 5997 ordered->work.func = finish_ordered_fn; 5998 ordered->work.flags = 0; 5999 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6000 &ordered->work); 6001 out_test: 6002 /* 6003 * our bio might span multiple ordered extents. If we haven't 6004 * completed the accounting for the whole dio, go back and try again 6005 */ 6006 if (ordered_offset < dip->logical_offset + dip->bytes) { 6007 ordered_bytes = dip->logical_offset + dip->bytes - 6008 ordered_offset; 6009 ordered = NULL; 6010 goto again; 6011 } 6012 out_done: 6013 bio->bi_private = dip->private; 6014 6015 kfree(dip); 6016 6017 /* If we had an error make sure to clear the uptodate flag */ 6018 if (err) 6019 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6020 dio_end_io(bio, err); 6021 } 6022 6023 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 6024 struct bio *bio, int mirror_num, 6025 unsigned long bio_flags, u64 offset) 6026 { 6027 int ret; 6028 struct btrfs_root *root = BTRFS_I(inode)->root; 6029 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 6030 BUG_ON(ret); /* -ENOMEM */ 6031 return 0; 6032 } 6033 6034 static void btrfs_end_dio_bio(struct bio *bio, int err) 6035 { 6036 struct btrfs_dio_private *dip = bio->bi_private; 6037 6038 if (err) { 6039 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 6040 "sector %#Lx len %u err no %d\n", 6041 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 6042 (unsigned long long)bio->bi_sector, bio->bi_size, err); 6043 dip->errors = 1; 6044 6045 /* 6046 * before atomic variable goto zero, we must make sure 6047 * dip->errors is perceived to be set. 6048 */ 6049 smp_mb__before_atomic_dec(); 6050 } 6051 6052 /* if there are more bios still pending for this dio, just exit */ 6053 if (!atomic_dec_and_test(&dip->pending_bios)) 6054 goto out; 6055 6056 if (dip->errors) 6057 bio_io_error(dip->orig_bio); 6058 else { 6059 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 6060 bio_endio(dip->orig_bio, 0); 6061 } 6062 out: 6063 bio_put(bio); 6064 } 6065 6066 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 6067 u64 first_sector, gfp_t gfp_flags) 6068 { 6069 int nr_vecs = bio_get_nr_vecs(bdev); 6070 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 6071 } 6072 6073 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 6074 int rw, u64 file_offset, int skip_sum, 6075 u32 *csums, int async_submit) 6076 { 6077 int write = rw & REQ_WRITE; 6078 struct btrfs_root *root = BTRFS_I(inode)->root; 6079 int ret; 6080 6081 bio_get(bio); 6082 6083 if (!write) { 6084 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 6085 if (ret) 6086 goto err; 6087 } 6088 6089 if (skip_sum) 6090 goto map; 6091 6092 if (write && async_submit) { 6093 ret = btrfs_wq_submit_bio(root->fs_info, 6094 inode, rw, bio, 0, 0, 6095 file_offset, 6096 __btrfs_submit_bio_start_direct_io, 6097 __btrfs_submit_bio_done); 6098 goto err; 6099 } else if (write) { 6100 /* 6101 * If we aren't doing async submit, calculate the csum of the 6102 * bio now. 6103 */ 6104 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 6105 if (ret) 6106 goto err; 6107 } else if (!skip_sum) { 6108 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 6109 file_offset, csums); 6110 if (ret) 6111 goto err; 6112 } 6113 6114 map: 6115 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 6116 err: 6117 bio_put(bio); 6118 return ret; 6119 } 6120 6121 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 6122 int skip_sum) 6123 { 6124 struct inode *inode = dip->inode; 6125 struct btrfs_root *root = BTRFS_I(inode)->root; 6126 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 6127 struct bio *bio; 6128 struct bio *orig_bio = dip->orig_bio; 6129 struct bio_vec *bvec = orig_bio->bi_io_vec; 6130 u64 start_sector = orig_bio->bi_sector; 6131 u64 file_offset = dip->logical_offset; 6132 u64 submit_len = 0; 6133 u64 map_length; 6134 int nr_pages = 0; 6135 u32 *csums = dip->csums; 6136 int ret = 0; 6137 int async_submit = 0; 6138 int write = rw & REQ_WRITE; 6139 6140 map_length = orig_bio->bi_size; 6141 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6142 &map_length, NULL, 0); 6143 if (ret) { 6144 bio_put(orig_bio); 6145 return -EIO; 6146 } 6147 6148 if (map_length >= orig_bio->bi_size) { 6149 bio = orig_bio; 6150 goto submit; 6151 } 6152 6153 async_submit = 1; 6154 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 6155 if (!bio) 6156 return -ENOMEM; 6157 bio->bi_private = dip; 6158 bio->bi_end_io = btrfs_end_dio_bio; 6159 atomic_inc(&dip->pending_bios); 6160 6161 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 6162 if (unlikely(map_length < submit_len + bvec->bv_len || 6163 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 6164 bvec->bv_offset) < bvec->bv_len)) { 6165 /* 6166 * inc the count before we submit the bio so 6167 * we know the end IO handler won't happen before 6168 * we inc the count. Otherwise, the dip might get freed 6169 * before we're done setting it up 6170 */ 6171 atomic_inc(&dip->pending_bios); 6172 ret = __btrfs_submit_dio_bio(bio, inode, rw, 6173 file_offset, skip_sum, 6174 csums, async_submit); 6175 if (ret) { 6176 bio_put(bio); 6177 atomic_dec(&dip->pending_bios); 6178 goto out_err; 6179 } 6180 6181 /* Write's use the ordered csums */ 6182 if (!write && !skip_sum) 6183 csums = csums + nr_pages; 6184 start_sector += submit_len >> 9; 6185 file_offset += submit_len; 6186 6187 submit_len = 0; 6188 nr_pages = 0; 6189 6190 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6191 start_sector, GFP_NOFS); 6192 if (!bio) 6193 goto out_err; 6194 bio->bi_private = dip; 6195 bio->bi_end_io = btrfs_end_dio_bio; 6196 6197 map_length = orig_bio->bi_size; 6198 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6199 &map_length, NULL, 0); 6200 if (ret) { 6201 bio_put(bio); 6202 goto out_err; 6203 } 6204 } else { 6205 submit_len += bvec->bv_len; 6206 nr_pages ++; 6207 bvec++; 6208 } 6209 } 6210 6211 submit: 6212 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6213 csums, async_submit); 6214 if (!ret) 6215 return 0; 6216 6217 bio_put(bio); 6218 out_err: 6219 dip->errors = 1; 6220 /* 6221 * before atomic variable goto zero, we must 6222 * make sure dip->errors is perceived to be set. 6223 */ 6224 smp_mb__before_atomic_dec(); 6225 if (atomic_dec_and_test(&dip->pending_bios)) 6226 bio_io_error(dip->orig_bio); 6227 6228 /* bio_end_io() will handle error, so we needn't return it */ 6229 return 0; 6230 } 6231 6232 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6233 loff_t file_offset) 6234 { 6235 struct btrfs_root *root = BTRFS_I(inode)->root; 6236 struct btrfs_dio_private *dip; 6237 struct bio_vec *bvec = bio->bi_io_vec; 6238 int skip_sum; 6239 int write = rw & REQ_WRITE; 6240 int ret = 0; 6241 6242 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6243 6244 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6245 if (!dip) { 6246 ret = -ENOMEM; 6247 goto free_ordered; 6248 } 6249 dip->csums = NULL; 6250 6251 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 6252 if (!write && !skip_sum) { 6253 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6254 if (!dip->csums) { 6255 kfree(dip); 6256 ret = -ENOMEM; 6257 goto free_ordered; 6258 } 6259 } 6260 6261 dip->private = bio->bi_private; 6262 dip->inode = inode; 6263 dip->logical_offset = file_offset; 6264 6265 dip->bytes = 0; 6266 do { 6267 dip->bytes += bvec->bv_len; 6268 bvec++; 6269 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6270 6271 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6272 bio->bi_private = dip; 6273 dip->errors = 0; 6274 dip->orig_bio = bio; 6275 atomic_set(&dip->pending_bios, 0); 6276 6277 if (write) 6278 bio->bi_end_io = btrfs_endio_direct_write; 6279 else 6280 bio->bi_end_io = btrfs_endio_direct_read; 6281 6282 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6283 if (!ret) 6284 return; 6285 free_ordered: 6286 /* 6287 * If this is a write, we need to clean up the reserved space and kill 6288 * the ordered extent. 6289 */ 6290 if (write) { 6291 struct btrfs_ordered_extent *ordered; 6292 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6293 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6294 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6295 btrfs_free_reserved_extent(root, ordered->start, 6296 ordered->disk_len); 6297 btrfs_put_ordered_extent(ordered); 6298 btrfs_put_ordered_extent(ordered); 6299 } 6300 bio_endio(bio, ret); 6301 } 6302 6303 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6304 const struct iovec *iov, loff_t offset, 6305 unsigned long nr_segs) 6306 { 6307 int seg; 6308 int i; 6309 size_t size; 6310 unsigned long addr; 6311 unsigned blocksize_mask = root->sectorsize - 1; 6312 ssize_t retval = -EINVAL; 6313 loff_t end = offset; 6314 6315 if (offset & blocksize_mask) 6316 goto out; 6317 6318 /* Check the memory alignment. Blocks cannot straddle pages */ 6319 for (seg = 0; seg < nr_segs; seg++) { 6320 addr = (unsigned long)iov[seg].iov_base; 6321 size = iov[seg].iov_len; 6322 end += size; 6323 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6324 goto out; 6325 6326 /* If this is a write we don't need to check anymore */ 6327 if (rw & WRITE) 6328 continue; 6329 6330 /* 6331 * Check to make sure we don't have duplicate iov_base's in this 6332 * iovec, if so return EINVAL, otherwise we'll get csum errors 6333 * when reading back. 6334 */ 6335 for (i = seg + 1; i < nr_segs; i++) { 6336 if (iov[seg].iov_base == iov[i].iov_base) 6337 goto out; 6338 } 6339 } 6340 retval = 0; 6341 out: 6342 return retval; 6343 } 6344 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6345 const struct iovec *iov, loff_t offset, 6346 unsigned long nr_segs) 6347 { 6348 struct file *file = iocb->ki_filp; 6349 struct inode *inode = file->f_mapping->host; 6350 struct btrfs_ordered_extent *ordered; 6351 struct extent_state *cached_state = NULL; 6352 u64 lockstart, lockend; 6353 ssize_t ret; 6354 int writing = rw & WRITE; 6355 int write_bits = 0; 6356 size_t count = iov_length(iov, nr_segs); 6357 6358 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6359 offset, nr_segs)) { 6360 return 0; 6361 } 6362 6363 lockstart = offset; 6364 lockend = offset + count - 1; 6365 6366 if (writing) { 6367 ret = btrfs_delalloc_reserve_space(inode, count); 6368 if (ret) 6369 goto out; 6370 } 6371 6372 while (1) { 6373 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6374 0, &cached_state); 6375 /* 6376 * We're concerned with the entire range that we're going to be 6377 * doing DIO to, so we need to make sure theres no ordered 6378 * extents in this range. 6379 */ 6380 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6381 lockend - lockstart + 1); 6382 6383 /* 6384 * We need to make sure there are no buffered pages in this 6385 * range either, we could have raced between the invalidate in 6386 * generic_file_direct_write and locking the extent. The 6387 * invalidate needs to happen so that reads after a write do not 6388 * get stale data. 6389 */ 6390 if (!ordered && (!writing || 6391 !test_range_bit(&BTRFS_I(inode)->io_tree, 6392 lockstart, lockend, EXTENT_UPTODATE, 0, 6393 cached_state))) 6394 break; 6395 6396 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6397 &cached_state, GFP_NOFS); 6398 6399 if (ordered) { 6400 btrfs_start_ordered_extent(inode, ordered, 1); 6401 btrfs_put_ordered_extent(ordered); 6402 } else { 6403 /* Screw you mmap */ 6404 ret = filemap_write_and_wait_range(file->f_mapping, 6405 lockstart, 6406 lockend); 6407 if (ret) 6408 goto out; 6409 6410 /* 6411 * If we found a page that couldn't be invalidated just 6412 * fall back to buffered. 6413 */ 6414 ret = invalidate_inode_pages2_range(file->f_mapping, 6415 lockstart >> PAGE_CACHE_SHIFT, 6416 lockend >> PAGE_CACHE_SHIFT); 6417 if (ret) { 6418 if (ret == -EBUSY) 6419 ret = 0; 6420 goto out; 6421 } 6422 } 6423 6424 cond_resched(); 6425 } 6426 6427 /* 6428 * we don't use btrfs_set_extent_delalloc because we don't want 6429 * the dirty or uptodate bits 6430 */ 6431 if (writing) { 6432 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6433 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6434 EXTENT_DELALLOC, NULL, &cached_state, 6435 GFP_NOFS); 6436 if (ret) { 6437 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6438 lockend, EXTENT_LOCKED | write_bits, 6439 1, 0, &cached_state, GFP_NOFS); 6440 goto out; 6441 } 6442 } 6443 6444 free_extent_state(cached_state); 6445 cached_state = NULL; 6446 6447 ret = __blockdev_direct_IO(rw, iocb, inode, 6448 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6449 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6450 btrfs_submit_direct, 0); 6451 6452 if (ret < 0 && ret != -EIOCBQUEUED) { 6453 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6454 offset + iov_length(iov, nr_segs) - 1, 6455 EXTENT_LOCKED | write_bits, 1, 0, 6456 &cached_state, GFP_NOFS); 6457 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6458 /* 6459 * We're falling back to buffered, unlock the section we didn't 6460 * do IO on. 6461 */ 6462 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6463 offset + iov_length(iov, nr_segs) - 1, 6464 EXTENT_LOCKED | write_bits, 1, 0, 6465 &cached_state, GFP_NOFS); 6466 } 6467 out: 6468 free_extent_state(cached_state); 6469 return ret; 6470 } 6471 6472 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6473 __u64 start, __u64 len) 6474 { 6475 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6476 } 6477 6478 int btrfs_readpage(struct file *file, struct page *page) 6479 { 6480 struct extent_io_tree *tree; 6481 tree = &BTRFS_I(page->mapping->host)->io_tree; 6482 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 6483 } 6484 6485 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6486 { 6487 struct extent_io_tree *tree; 6488 6489 6490 if (current->flags & PF_MEMALLOC) { 6491 redirty_page_for_writepage(wbc, page); 6492 unlock_page(page); 6493 return 0; 6494 } 6495 tree = &BTRFS_I(page->mapping->host)->io_tree; 6496 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6497 } 6498 6499 int btrfs_writepages(struct address_space *mapping, 6500 struct writeback_control *wbc) 6501 { 6502 struct extent_io_tree *tree; 6503 6504 tree = &BTRFS_I(mapping->host)->io_tree; 6505 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6506 } 6507 6508 static int 6509 btrfs_readpages(struct file *file, struct address_space *mapping, 6510 struct list_head *pages, unsigned nr_pages) 6511 { 6512 struct extent_io_tree *tree; 6513 tree = &BTRFS_I(mapping->host)->io_tree; 6514 return extent_readpages(tree, mapping, pages, nr_pages, 6515 btrfs_get_extent); 6516 } 6517 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6518 { 6519 struct extent_io_tree *tree; 6520 struct extent_map_tree *map; 6521 int ret; 6522 6523 tree = &BTRFS_I(page->mapping->host)->io_tree; 6524 map = &BTRFS_I(page->mapping->host)->extent_tree; 6525 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6526 if (ret == 1) { 6527 ClearPagePrivate(page); 6528 set_page_private(page, 0); 6529 page_cache_release(page); 6530 } 6531 return ret; 6532 } 6533 6534 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6535 { 6536 if (PageWriteback(page) || PageDirty(page)) 6537 return 0; 6538 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6539 } 6540 6541 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6542 { 6543 struct inode *inode = page->mapping->host; 6544 struct extent_io_tree *tree; 6545 struct btrfs_ordered_extent *ordered; 6546 struct extent_state *cached_state = NULL; 6547 u64 page_start = page_offset(page); 6548 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6549 6550 /* 6551 * we have the page locked, so new writeback can't start, 6552 * and the dirty bit won't be cleared while we are here. 6553 * 6554 * Wait for IO on this page so that we can safely clear 6555 * the PagePrivate2 bit and do ordered accounting 6556 */ 6557 wait_on_page_writeback(page); 6558 6559 tree = &BTRFS_I(inode)->io_tree; 6560 if (offset) { 6561 btrfs_releasepage(page, GFP_NOFS); 6562 return; 6563 } 6564 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 6565 ordered = btrfs_lookup_ordered_extent(inode, 6566 page_offset(page)); 6567 if (ordered) { 6568 /* 6569 * IO on this page will never be started, so we need 6570 * to account for any ordered extents now 6571 */ 6572 clear_extent_bit(tree, page_start, page_end, 6573 EXTENT_DIRTY | EXTENT_DELALLOC | 6574 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6575 &cached_state, GFP_NOFS); 6576 /* 6577 * whoever cleared the private bit is responsible 6578 * for the finish_ordered_io 6579 */ 6580 if (TestClearPagePrivate2(page) && 6581 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 6582 PAGE_CACHE_SIZE, 1)) { 6583 btrfs_finish_ordered_io(ordered); 6584 } 6585 btrfs_put_ordered_extent(ordered); 6586 cached_state = NULL; 6587 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 6588 } 6589 clear_extent_bit(tree, page_start, page_end, 6590 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6591 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6592 __btrfs_releasepage(page, GFP_NOFS); 6593 6594 ClearPageChecked(page); 6595 if (PagePrivate(page)) { 6596 ClearPagePrivate(page); 6597 set_page_private(page, 0); 6598 page_cache_release(page); 6599 } 6600 } 6601 6602 /* 6603 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6604 * called from a page fault handler when a page is first dirtied. Hence we must 6605 * be careful to check for EOF conditions here. We set the page up correctly 6606 * for a written page which means we get ENOSPC checking when writing into 6607 * holes and correct delalloc and unwritten extent mapping on filesystems that 6608 * support these features. 6609 * 6610 * We are not allowed to take the i_mutex here so we have to play games to 6611 * protect against truncate races as the page could now be beyond EOF. Because 6612 * vmtruncate() writes the inode size before removing pages, once we have the 6613 * page lock we can determine safely if the page is beyond EOF. If it is not 6614 * beyond EOF, then the page is guaranteed safe against truncation until we 6615 * unlock the page. 6616 */ 6617 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6618 { 6619 struct page *page = vmf->page; 6620 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6621 struct btrfs_root *root = BTRFS_I(inode)->root; 6622 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6623 struct btrfs_ordered_extent *ordered; 6624 struct extent_state *cached_state = NULL; 6625 char *kaddr; 6626 unsigned long zero_start; 6627 loff_t size; 6628 int ret; 6629 int reserved = 0; 6630 u64 page_start; 6631 u64 page_end; 6632 6633 sb_start_pagefault(inode->i_sb); 6634 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6635 if (!ret) { 6636 ret = file_update_time(vma->vm_file); 6637 reserved = 1; 6638 } 6639 if (ret) { 6640 if (ret == -ENOMEM) 6641 ret = VM_FAULT_OOM; 6642 else /* -ENOSPC, -EIO, etc */ 6643 ret = VM_FAULT_SIGBUS; 6644 if (reserved) 6645 goto out; 6646 goto out_noreserve; 6647 } 6648 6649 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6650 again: 6651 lock_page(page); 6652 size = i_size_read(inode); 6653 page_start = page_offset(page); 6654 page_end = page_start + PAGE_CACHE_SIZE - 1; 6655 6656 if ((page->mapping != inode->i_mapping) || 6657 (page_start >= size)) { 6658 /* page got truncated out from underneath us */ 6659 goto out_unlock; 6660 } 6661 wait_on_page_writeback(page); 6662 6663 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 6664 set_page_extent_mapped(page); 6665 6666 /* 6667 * we can't set the delalloc bits if there are pending ordered 6668 * extents. Drop our locks and wait for them to finish 6669 */ 6670 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6671 if (ordered) { 6672 unlock_extent_cached(io_tree, page_start, page_end, 6673 &cached_state, GFP_NOFS); 6674 unlock_page(page); 6675 btrfs_start_ordered_extent(inode, ordered, 1); 6676 btrfs_put_ordered_extent(ordered); 6677 goto again; 6678 } 6679 6680 /* 6681 * XXX - page_mkwrite gets called every time the page is dirtied, even 6682 * if it was already dirty, so for space accounting reasons we need to 6683 * clear any delalloc bits for the range we are fixing to save. There 6684 * is probably a better way to do this, but for now keep consistent with 6685 * prepare_pages in the normal write path. 6686 */ 6687 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6688 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6689 0, 0, &cached_state, GFP_NOFS); 6690 6691 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6692 &cached_state); 6693 if (ret) { 6694 unlock_extent_cached(io_tree, page_start, page_end, 6695 &cached_state, GFP_NOFS); 6696 ret = VM_FAULT_SIGBUS; 6697 goto out_unlock; 6698 } 6699 ret = 0; 6700 6701 /* page is wholly or partially inside EOF */ 6702 if (page_start + PAGE_CACHE_SIZE > size) 6703 zero_start = size & ~PAGE_CACHE_MASK; 6704 else 6705 zero_start = PAGE_CACHE_SIZE; 6706 6707 if (zero_start != PAGE_CACHE_SIZE) { 6708 kaddr = kmap(page); 6709 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6710 flush_dcache_page(page); 6711 kunmap(page); 6712 } 6713 ClearPageChecked(page); 6714 set_page_dirty(page); 6715 SetPageUptodate(page); 6716 6717 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6718 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6719 6720 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6721 6722 out_unlock: 6723 if (!ret) { 6724 sb_end_pagefault(inode->i_sb); 6725 return VM_FAULT_LOCKED; 6726 } 6727 unlock_page(page); 6728 out: 6729 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6730 out_noreserve: 6731 sb_end_pagefault(inode->i_sb); 6732 return ret; 6733 } 6734 6735 static int btrfs_truncate(struct inode *inode) 6736 { 6737 struct btrfs_root *root = BTRFS_I(inode)->root; 6738 struct btrfs_block_rsv *rsv; 6739 int ret; 6740 int err = 0; 6741 struct btrfs_trans_handle *trans; 6742 unsigned long nr; 6743 u64 mask = root->sectorsize - 1; 6744 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 6745 6746 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6747 if (ret) 6748 return ret; 6749 6750 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6751 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6752 6753 /* 6754 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6755 * 3 things going on here 6756 * 6757 * 1) We need to reserve space for our orphan item and the space to 6758 * delete our orphan item. Lord knows we don't want to have a dangling 6759 * orphan item because we didn't reserve space to remove it. 6760 * 6761 * 2) We need to reserve space to update our inode. 6762 * 6763 * 3) We need to have something to cache all the space that is going to 6764 * be free'd up by the truncate operation, but also have some slack 6765 * space reserved in case it uses space during the truncate (thank you 6766 * very much snapshotting). 6767 * 6768 * And we need these to all be seperate. The fact is we can use alot of 6769 * space doing the truncate, and we have no earthly idea how much space 6770 * we will use, so we need the truncate reservation to be seperate so it 6771 * doesn't end up using space reserved for updating the inode or 6772 * removing the orphan item. We also need to be able to stop the 6773 * transaction and start a new one, which means we need to be able to 6774 * update the inode several times, and we have no idea of knowing how 6775 * many times that will be, so we can't just reserve 1 item for the 6776 * entirety of the opration, so that has to be done seperately as well. 6777 * Then there is the orphan item, which does indeed need to be held on 6778 * to for the whole operation, and we need nobody to touch this reserved 6779 * space except the orphan code. 6780 * 6781 * So that leaves us with 6782 * 6783 * 1) root->orphan_block_rsv - for the orphan deletion. 6784 * 2) rsv - for the truncate reservation, which we will steal from the 6785 * transaction reservation. 6786 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6787 * updating the inode. 6788 */ 6789 rsv = btrfs_alloc_block_rsv(root); 6790 if (!rsv) 6791 return -ENOMEM; 6792 rsv->size = min_size; 6793 6794 /* 6795 * 1 for the truncate slack space 6796 * 1 for the orphan item we're going to add 6797 * 1 for the orphan item deletion 6798 * 1 for updating the inode. 6799 */ 6800 trans = btrfs_start_transaction(root, 4); 6801 if (IS_ERR(trans)) { 6802 err = PTR_ERR(trans); 6803 goto out; 6804 } 6805 6806 /* Migrate the slack space for the truncate to our reserve */ 6807 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 6808 min_size); 6809 BUG_ON(ret); 6810 6811 ret = btrfs_orphan_add(trans, inode); 6812 if (ret) { 6813 btrfs_end_transaction(trans, root); 6814 goto out; 6815 } 6816 6817 /* 6818 * setattr is responsible for setting the ordered_data_close flag, 6819 * but that is only tested during the last file release. That 6820 * could happen well after the next commit, leaving a great big 6821 * window where new writes may get lost if someone chooses to write 6822 * to this file after truncating to zero 6823 * 6824 * The inode doesn't have any dirty data here, and so if we commit 6825 * this is a noop. If someone immediately starts writing to the inode 6826 * it is very likely we'll catch some of their writes in this 6827 * transaction, and the commit will find this file on the ordered 6828 * data list with good things to send down. 6829 * 6830 * This is a best effort solution, there is still a window where 6831 * using truncate to replace the contents of the file will 6832 * end up with a zero length file after a crash. 6833 */ 6834 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 6835 &BTRFS_I(inode)->runtime_flags)) 6836 btrfs_add_ordered_operation(trans, root, inode); 6837 6838 while (1) { 6839 ret = btrfs_block_rsv_refill(root, rsv, min_size); 6840 if (ret) { 6841 /* 6842 * This can only happen with the original transaction we 6843 * started above, every other time we shouldn't have a 6844 * transaction started yet. 6845 */ 6846 if (ret == -EAGAIN) 6847 goto end_trans; 6848 err = ret; 6849 break; 6850 } 6851 6852 if (!trans) { 6853 /* Just need the 1 for updating the inode */ 6854 trans = btrfs_start_transaction(root, 1); 6855 if (IS_ERR(trans)) { 6856 ret = err = PTR_ERR(trans); 6857 trans = NULL; 6858 break; 6859 } 6860 } 6861 6862 trans->block_rsv = rsv; 6863 6864 ret = btrfs_truncate_inode_items(trans, root, inode, 6865 inode->i_size, 6866 BTRFS_EXTENT_DATA_KEY); 6867 if (ret != -EAGAIN) { 6868 err = ret; 6869 break; 6870 } 6871 6872 trans->block_rsv = &root->fs_info->trans_block_rsv; 6873 ret = btrfs_update_inode(trans, root, inode); 6874 if (ret) { 6875 err = ret; 6876 break; 6877 } 6878 end_trans: 6879 nr = trans->blocks_used; 6880 btrfs_end_transaction(trans, root); 6881 trans = NULL; 6882 btrfs_btree_balance_dirty(root, nr); 6883 } 6884 6885 if (ret == 0 && inode->i_nlink > 0) { 6886 trans->block_rsv = root->orphan_block_rsv; 6887 ret = btrfs_orphan_del(trans, inode); 6888 if (ret) 6889 err = ret; 6890 } else if (ret && inode->i_nlink > 0) { 6891 /* 6892 * Failed to do the truncate, remove us from the in memory 6893 * orphan list. 6894 */ 6895 ret = btrfs_orphan_del(NULL, inode); 6896 } 6897 6898 if (trans) { 6899 trans->block_rsv = &root->fs_info->trans_block_rsv; 6900 ret = btrfs_update_inode(trans, root, inode); 6901 if (ret && !err) 6902 err = ret; 6903 6904 nr = trans->blocks_used; 6905 ret = btrfs_end_transaction(trans, root); 6906 btrfs_btree_balance_dirty(root, nr); 6907 } 6908 6909 out: 6910 btrfs_free_block_rsv(root, rsv); 6911 6912 if (ret && !err) 6913 err = ret; 6914 6915 return err; 6916 } 6917 6918 /* 6919 * create a new subvolume directory/inode (helper for the ioctl). 6920 */ 6921 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6922 struct btrfs_root *new_root, u64 new_dirid) 6923 { 6924 struct inode *inode; 6925 int err; 6926 u64 index = 0; 6927 6928 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 6929 new_dirid, new_dirid, 6930 S_IFDIR | (~current_umask() & S_IRWXUGO), 6931 &index); 6932 if (IS_ERR(inode)) 6933 return PTR_ERR(inode); 6934 inode->i_op = &btrfs_dir_inode_operations; 6935 inode->i_fop = &btrfs_dir_file_operations; 6936 6937 set_nlink(inode, 1); 6938 btrfs_i_size_write(inode, 0); 6939 6940 err = btrfs_update_inode(trans, new_root, inode); 6941 6942 iput(inode); 6943 return err; 6944 } 6945 6946 struct inode *btrfs_alloc_inode(struct super_block *sb) 6947 { 6948 struct btrfs_inode *ei; 6949 struct inode *inode; 6950 6951 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6952 if (!ei) 6953 return NULL; 6954 6955 ei->root = NULL; 6956 ei->generation = 0; 6957 ei->last_trans = 0; 6958 ei->last_sub_trans = 0; 6959 ei->logged_trans = 0; 6960 ei->delalloc_bytes = 0; 6961 ei->disk_i_size = 0; 6962 ei->flags = 0; 6963 ei->csum_bytes = 0; 6964 ei->index_cnt = (u64)-1; 6965 ei->last_unlink_trans = 0; 6966 6967 spin_lock_init(&ei->lock); 6968 ei->outstanding_extents = 0; 6969 ei->reserved_extents = 0; 6970 6971 ei->runtime_flags = 0; 6972 ei->force_compress = BTRFS_COMPRESS_NONE; 6973 6974 ei->delayed_node = NULL; 6975 6976 inode = &ei->vfs_inode; 6977 extent_map_tree_init(&ei->extent_tree); 6978 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6979 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6980 ei->io_tree.track_uptodate = 1; 6981 ei->io_failure_tree.track_uptodate = 1; 6982 mutex_init(&ei->log_mutex); 6983 mutex_init(&ei->delalloc_mutex); 6984 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6985 INIT_LIST_HEAD(&ei->delalloc_inodes); 6986 INIT_LIST_HEAD(&ei->ordered_operations); 6987 RB_CLEAR_NODE(&ei->rb_node); 6988 6989 return inode; 6990 } 6991 6992 static void btrfs_i_callback(struct rcu_head *head) 6993 { 6994 struct inode *inode = container_of(head, struct inode, i_rcu); 6995 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6996 } 6997 6998 void btrfs_destroy_inode(struct inode *inode) 6999 { 7000 struct btrfs_ordered_extent *ordered; 7001 struct btrfs_root *root = BTRFS_I(inode)->root; 7002 7003 WARN_ON(!hlist_empty(&inode->i_dentry)); 7004 WARN_ON(inode->i_data.nrpages); 7005 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7006 WARN_ON(BTRFS_I(inode)->reserved_extents); 7007 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7008 WARN_ON(BTRFS_I(inode)->csum_bytes); 7009 7010 /* 7011 * This can happen where we create an inode, but somebody else also 7012 * created the same inode and we need to destroy the one we already 7013 * created. 7014 */ 7015 if (!root) 7016 goto free; 7017 7018 /* 7019 * Make sure we're properly removed from the ordered operation 7020 * lists. 7021 */ 7022 smp_mb(); 7023 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7024 spin_lock(&root->fs_info->ordered_extent_lock); 7025 list_del_init(&BTRFS_I(inode)->ordered_operations); 7026 spin_unlock(&root->fs_info->ordered_extent_lock); 7027 } 7028 7029 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7030 &BTRFS_I(inode)->runtime_flags)) { 7031 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 7032 (unsigned long long)btrfs_ino(inode)); 7033 atomic_dec(&root->orphan_inodes); 7034 } 7035 7036 while (1) { 7037 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7038 if (!ordered) 7039 break; 7040 else { 7041 printk(KERN_ERR "btrfs found ordered " 7042 "extent %llu %llu on inode cleanup\n", 7043 (unsigned long long)ordered->file_offset, 7044 (unsigned long long)ordered->len); 7045 btrfs_remove_ordered_extent(inode, ordered); 7046 btrfs_put_ordered_extent(ordered); 7047 btrfs_put_ordered_extent(ordered); 7048 } 7049 } 7050 inode_tree_del(inode); 7051 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7052 free: 7053 btrfs_remove_delayed_node(inode); 7054 call_rcu(&inode->i_rcu, btrfs_i_callback); 7055 } 7056 7057 int btrfs_drop_inode(struct inode *inode) 7058 { 7059 struct btrfs_root *root = BTRFS_I(inode)->root; 7060 7061 if (btrfs_root_refs(&root->root_item) == 0 && 7062 !btrfs_is_free_space_inode(inode)) 7063 return 1; 7064 else 7065 return generic_drop_inode(inode); 7066 } 7067 7068 static void init_once(void *foo) 7069 { 7070 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7071 7072 inode_init_once(&ei->vfs_inode); 7073 } 7074 7075 void btrfs_destroy_cachep(void) 7076 { 7077 if (btrfs_inode_cachep) 7078 kmem_cache_destroy(btrfs_inode_cachep); 7079 if (btrfs_trans_handle_cachep) 7080 kmem_cache_destroy(btrfs_trans_handle_cachep); 7081 if (btrfs_transaction_cachep) 7082 kmem_cache_destroy(btrfs_transaction_cachep); 7083 if (btrfs_path_cachep) 7084 kmem_cache_destroy(btrfs_path_cachep); 7085 if (btrfs_free_space_cachep) 7086 kmem_cache_destroy(btrfs_free_space_cachep); 7087 } 7088 7089 int btrfs_init_cachep(void) 7090 { 7091 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 7092 sizeof(struct btrfs_inode), 0, 7093 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7094 if (!btrfs_inode_cachep) 7095 goto fail; 7096 7097 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 7098 sizeof(struct btrfs_trans_handle), 0, 7099 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7100 if (!btrfs_trans_handle_cachep) 7101 goto fail; 7102 7103 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 7104 sizeof(struct btrfs_transaction), 0, 7105 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7106 if (!btrfs_transaction_cachep) 7107 goto fail; 7108 7109 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 7110 sizeof(struct btrfs_path), 0, 7111 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7112 if (!btrfs_path_cachep) 7113 goto fail; 7114 7115 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 7116 sizeof(struct btrfs_free_space), 0, 7117 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7118 if (!btrfs_free_space_cachep) 7119 goto fail; 7120 7121 return 0; 7122 fail: 7123 btrfs_destroy_cachep(); 7124 return -ENOMEM; 7125 } 7126 7127 static int btrfs_getattr(struct vfsmount *mnt, 7128 struct dentry *dentry, struct kstat *stat) 7129 { 7130 struct inode *inode = dentry->d_inode; 7131 u32 blocksize = inode->i_sb->s_blocksize; 7132 7133 generic_fillattr(inode, stat); 7134 stat->dev = BTRFS_I(inode)->root->anon_dev; 7135 stat->blksize = PAGE_CACHE_SIZE; 7136 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 7137 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9; 7138 return 0; 7139 } 7140 7141 /* 7142 * If a file is moved, it will inherit the cow and compression flags of the new 7143 * directory. 7144 */ 7145 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 7146 { 7147 struct btrfs_inode *b_dir = BTRFS_I(dir); 7148 struct btrfs_inode *b_inode = BTRFS_I(inode); 7149 7150 if (b_dir->flags & BTRFS_INODE_NODATACOW) 7151 b_inode->flags |= BTRFS_INODE_NODATACOW; 7152 else 7153 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 7154 7155 if (b_dir->flags & BTRFS_INODE_COMPRESS) { 7156 b_inode->flags |= BTRFS_INODE_COMPRESS; 7157 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 7158 } else { 7159 b_inode->flags &= ~(BTRFS_INODE_COMPRESS | 7160 BTRFS_INODE_NOCOMPRESS); 7161 } 7162 } 7163 7164 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 7165 struct inode *new_dir, struct dentry *new_dentry) 7166 { 7167 struct btrfs_trans_handle *trans; 7168 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7169 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7170 struct inode *new_inode = new_dentry->d_inode; 7171 struct inode *old_inode = old_dentry->d_inode; 7172 struct timespec ctime = CURRENT_TIME; 7173 u64 index = 0; 7174 u64 root_objectid; 7175 int ret; 7176 u64 old_ino = btrfs_ino(old_inode); 7177 7178 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 7179 return -EPERM; 7180 7181 /* we only allow rename subvolume link between subvolumes */ 7182 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 7183 return -EXDEV; 7184 7185 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 7186 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 7187 return -ENOTEMPTY; 7188 7189 if (S_ISDIR(old_inode->i_mode) && new_inode && 7190 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 7191 return -ENOTEMPTY; 7192 /* 7193 * we're using rename to replace one file with another. 7194 * and the replacement file is large. Start IO on it now so 7195 * we don't add too much work to the end of the transaction 7196 */ 7197 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 7198 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 7199 filemap_flush(old_inode->i_mapping); 7200 7201 /* close the racy window with snapshot create/destroy ioctl */ 7202 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7203 down_read(&root->fs_info->subvol_sem); 7204 /* 7205 * We want to reserve the absolute worst case amount of items. So if 7206 * both inodes are subvols and we need to unlink them then that would 7207 * require 4 item modifications, but if they are both normal inodes it 7208 * would require 5 item modifications, so we'll assume their normal 7209 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 7210 * should cover the worst case number of items we'll modify. 7211 */ 7212 trans = btrfs_start_transaction(root, 20); 7213 if (IS_ERR(trans)) { 7214 ret = PTR_ERR(trans); 7215 goto out_notrans; 7216 } 7217 7218 if (dest != root) 7219 btrfs_record_root_in_trans(trans, dest); 7220 7221 ret = btrfs_set_inode_index(new_dir, &index); 7222 if (ret) 7223 goto out_fail; 7224 7225 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7226 /* force full log commit if subvolume involved. */ 7227 root->fs_info->last_trans_log_full_commit = trans->transid; 7228 } else { 7229 ret = btrfs_insert_inode_ref(trans, dest, 7230 new_dentry->d_name.name, 7231 new_dentry->d_name.len, 7232 old_ino, 7233 btrfs_ino(new_dir), index); 7234 if (ret) 7235 goto out_fail; 7236 /* 7237 * this is an ugly little race, but the rename is required 7238 * to make sure that if we crash, the inode is either at the 7239 * old name or the new one. pinning the log transaction lets 7240 * us make sure we don't allow a log commit to come in after 7241 * we unlink the name but before we add the new name back in. 7242 */ 7243 btrfs_pin_log_trans(root); 7244 } 7245 /* 7246 * make sure the inode gets flushed if it is replacing 7247 * something. 7248 */ 7249 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7250 btrfs_add_ordered_operation(trans, root, old_inode); 7251 7252 inode_inc_iversion(old_dir); 7253 inode_inc_iversion(new_dir); 7254 inode_inc_iversion(old_inode); 7255 old_dir->i_ctime = old_dir->i_mtime = ctime; 7256 new_dir->i_ctime = new_dir->i_mtime = ctime; 7257 old_inode->i_ctime = ctime; 7258 7259 if (old_dentry->d_parent != new_dentry->d_parent) 7260 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7261 7262 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7263 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7264 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7265 old_dentry->d_name.name, 7266 old_dentry->d_name.len); 7267 } else { 7268 ret = __btrfs_unlink_inode(trans, root, old_dir, 7269 old_dentry->d_inode, 7270 old_dentry->d_name.name, 7271 old_dentry->d_name.len); 7272 if (!ret) 7273 ret = btrfs_update_inode(trans, root, old_inode); 7274 } 7275 if (ret) { 7276 btrfs_abort_transaction(trans, root, ret); 7277 goto out_fail; 7278 } 7279 7280 if (new_inode) { 7281 inode_inc_iversion(new_inode); 7282 new_inode->i_ctime = CURRENT_TIME; 7283 if (unlikely(btrfs_ino(new_inode) == 7284 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7285 root_objectid = BTRFS_I(new_inode)->location.objectid; 7286 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7287 root_objectid, 7288 new_dentry->d_name.name, 7289 new_dentry->d_name.len); 7290 BUG_ON(new_inode->i_nlink == 0); 7291 } else { 7292 ret = btrfs_unlink_inode(trans, dest, new_dir, 7293 new_dentry->d_inode, 7294 new_dentry->d_name.name, 7295 new_dentry->d_name.len); 7296 } 7297 if (!ret && new_inode->i_nlink == 0) { 7298 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7299 BUG_ON(ret); 7300 } 7301 if (ret) { 7302 btrfs_abort_transaction(trans, root, ret); 7303 goto out_fail; 7304 } 7305 } 7306 7307 fixup_inode_flags(new_dir, old_inode); 7308 7309 ret = btrfs_add_link(trans, new_dir, old_inode, 7310 new_dentry->d_name.name, 7311 new_dentry->d_name.len, 0, index); 7312 if (ret) { 7313 btrfs_abort_transaction(trans, root, ret); 7314 goto out_fail; 7315 } 7316 7317 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7318 struct dentry *parent = new_dentry->d_parent; 7319 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7320 btrfs_end_log_trans(root); 7321 } 7322 out_fail: 7323 btrfs_end_transaction(trans, root); 7324 out_notrans: 7325 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7326 up_read(&root->fs_info->subvol_sem); 7327 7328 return ret; 7329 } 7330 7331 /* 7332 * some fairly slow code that needs optimization. This walks the list 7333 * of all the inodes with pending delalloc and forces them to disk. 7334 */ 7335 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7336 { 7337 struct list_head *head = &root->fs_info->delalloc_inodes; 7338 struct btrfs_inode *binode; 7339 struct inode *inode; 7340 7341 if (root->fs_info->sb->s_flags & MS_RDONLY) 7342 return -EROFS; 7343 7344 spin_lock(&root->fs_info->delalloc_lock); 7345 while (!list_empty(head)) { 7346 binode = list_entry(head->next, struct btrfs_inode, 7347 delalloc_inodes); 7348 inode = igrab(&binode->vfs_inode); 7349 if (!inode) 7350 list_del_init(&binode->delalloc_inodes); 7351 spin_unlock(&root->fs_info->delalloc_lock); 7352 if (inode) { 7353 filemap_flush(inode->i_mapping); 7354 if (delay_iput) 7355 btrfs_add_delayed_iput(inode); 7356 else 7357 iput(inode); 7358 } 7359 cond_resched(); 7360 spin_lock(&root->fs_info->delalloc_lock); 7361 } 7362 spin_unlock(&root->fs_info->delalloc_lock); 7363 7364 /* the filemap_flush will queue IO into the worker threads, but 7365 * we have to make sure the IO is actually started and that 7366 * ordered extents get created before we return 7367 */ 7368 atomic_inc(&root->fs_info->async_submit_draining); 7369 while (atomic_read(&root->fs_info->nr_async_submits) || 7370 atomic_read(&root->fs_info->async_delalloc_pages)) { 7371 wait_event(root->fs_info->async_submit_wait, 7372 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7373 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7374 } 7375 atomic_dec(&root->fs_info->async_submit_draining); 7376 return 0; 7377 } 7378 7379 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7380 const char *symname) 7381 { 7382 struct btrfs_trans_handle *trans; 7383 struct btrfs_root *root = BTRFS_I(dir)->root; 7384 struct btrfs_path *path; 7385 struct btrfs_key key; 7386 struct inode *inode = NULL; 7387 int err; 7388 int drop_inode = 0; 7389 u64 objectid; 7390 u64 index = 0 ; 7391 int name_len; 7392 int datasize; 7393 unsigned long ptr; 7394 struct btrfs_file_extent_item *ei; 7395 struct extent_buffer *leaf; 7396 unsigned long nr = 0; 7397 7398 name_len = strlen(symname) + 1; 7399 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7400 return -ENAMETOOLONG; 7401 7402 /* 7403 * 2 items for inode item and ref 7404 * 2 items for dir items 7405 * 1 item for xattr if selinux is on 7406 */ 7407 trans = btrfs_start_transaction(root, 5); 7408 if (IS_ERR(trans)) 7409 return PTR_ERR(trans); 7410 7411 err = btrfs_find_free_ino(root, &objectid); 7412 if (err) 7413 goto out_unlock; 7414 7415 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7416 dentry->d_name.len, btrfs_ino(dir), objectid, 7417 S_IFLNK|S_IRWXUGO, &index); 7418 if (IS_ERR(inode)) { 7419 err = PTR_ERR(inode); 7420 goto out_unlock; 7421 } 7422 7423 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7424 if (err) { 7425 drop_inode = 1; 7426 goto out_unlock; 7427 } 7428 7429 /* 7430 * If the active LSM wants to access the inode during 7431 * d_instantiate it needs these. Smack checks to see 7432 * if the filesystem supports xattrs by looking at the 7433 * ops vector. 7434 */ 7435 inode->i_fop = &btrfs_file_operations; 7436 inode->i_op = &btrfs_file_inode_operations; 7437 7438 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7439 if (err) 7440 drop_inode = 1; 7441 else { 7442 inode->i_mapping->a_ops = &btrfs_aops; 7443 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7444 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7445 } 7446 if (drop_inode) 7447 goto out_unlock; 7448 7449 path = btrfs_alloc_path(); 7450 if (!path) { 7451 err = -ENOMEM; 7452 drop_inode = 1; 7453 goto out_unlock; 7454 } 7455 key.objectid = btrfs_ino(inode); 7456 key.offset = 0; 7457 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7458 datasize = btrfs_file_extent_calc_inline_size(name_len); 7459 err = btrfs_insert_empty_item(trans, root, path, &key, 7460 datasize); 7461 if (err) { 7462 drop_inode = 1; 7463 btrfs_free_path(path); 7464 goto out_unlock; 7465 } 7466 leaf = path->nodes[0]; 7467 ei = btrfs_item_ptr(leaf, path->slots[0], 7468 struct btrfs_file_extent_item); 7469 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7470 btrfs_set_file_extent_type(leaf, ei, 7471 BTRFS_FILE_EXTENT_INLINE); 7472 btrfs_set_file_extent_encryption(leaf, ei, 0); 7473 btrfs_set_file_extent_compression(leaf, ei, 0); 7474 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7475 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7476 7477 ptr = btrfs_file_extent_inline_start(ei); 7478 write_extent_buffer(leaf, symname, ptr, name_len); 7479 btrfs_mark_buffer_dirty(leaf); 7480 btrfs_free_path(path); 7481 7482 inode->i_op = &btrfs_symlink_inode_operations; 7483 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7484 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7485 inode_set_bytes(inode, name_len); 7486 btrfs_i_size_write(inode, name_len - 1); 7487 err = btrfs_update_inode(trans, root, inode); 7488 if (err) 7489 drop_inode = 1; 7490 7491 out_unlock: 7492 if (!err) 7493 d_instantiate(dentry, inode); 7494 nr = trans->blocks_used; 7495 btrfs_end_transaction(trans, root); 7496 if (drop_inode) { 7497 inode_dec_link_count(inode); 7498 iput(inode); 7499 } 7500 btrfs_btree_balance_dirty(root, nr); 7501 return err; 7502 } 7503 7504 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7505 u64 start, u64 num_bytes, u64 min_size, 7506 loff_t actual_len, u64 *alloc_hint, 7507 struct btrfs_trans_handle *trans) 7508 { 7509 struct btrfs_root *root = BTRFS_I(inode)->root; 7510 struct btrfs_key ins; 7511 u64 cur_offset = start; 7512 u64 i_size; 7513 int ret = 0; 7514 bool own_trans = true; 7515 7516 if (trans) 7517 own_trans = false; 7518 while (num_bytes > 0) { 7519 if (own_trans) { 7520 trans = btrfs_start_transaction(root, 3); 7521 if (IS_ERR(trans)) { 7522 ret = PTR_ERR(trans); 7523 break; 7524 } 7525 } 7526 7527 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7528 0, *alloc_hint, &ins, 1); 7529 if (ret) { 7530 if (own_trans) 7531 btrfs_end_transaction(trans, root); 7532 break; 7533 } 7534 7535 ret = insert_reserved_file_extent(trans, inode, 7536 cur_offset, ins.objectid, 7537 ins.offset, ins.offset, 7538 ins.offset, 0, 0, 0, 7539 BTRFS_FILE_EXTENT_PREALLOC); 7540 if (ret) { 7541 btrfs_abort_transaction(trans, root, ret); 7542 if (own_trans) 7543 btrfs_end_transaction(trans, root); 7544 break; 7545 } 7546 btrfs_drop_extent_cache(inode, cur_offset, 7547 cur_offset + ins.offset -1, 0); 7548 7549 num_bytes -= ins.offset; 7550 cur_offset += ins.offset; 7551 *alloc_hint = ins.objectid + ins.offset; 7552 7553 inode_inc_iversion(inode); 7554 inode->i_ctime = CURRENT_TIME; 7555 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7556 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7557 (actual_len > inode->i_size) && 7558 (cur_offset > inode->i_size)) { 7559 if (cur_offset > actual_len) 7560 i_size = actual_len; 7561 else 7562 i_size = cur_offset; 7563 i_size_write(inode, i_size); 7564 btrfs_ordered_update_i_size(inode, i_size, NULL); 7565 } 7566 7567 ret = btrfs_update_inode(trans, root, inode); 7568 7569 if (ret) { 7570 btrfs_abort_transaction(trans, root, ret); 7571 if (own_trans) 7572 btrfs_end_transaction(trans, root); 7573 break; 7574 } 7575 7576 if (own_trans) 7577 btrfs_end_transaction(trans, root); 7578 } 7579 return ret; 7580 } 7581 7582 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7583 u64 start, u64 num_bytes, u64 min_size, 7584 loff_t actual_len, u64 *alloc_hint) 7585 { 7586 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7587 min_size, actual_len, alloc_hint, 7588 NULL); 7589 } 7590 7591 int btrfs_prealloc_file_range_trans(struct inode *inode, 7592 struct btrfs_trans_handle *trans, int mode, 7593 u64 start, u64 num_bytes, u64 min_size, 7594 loff_t actual_len, u64 *alloc_hint) 7595 { 7596 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7597 min_size, actual_len, alloc_hint, trans); 7598 } 7599 7600 static int btrfs_set_page_dirty(struct page *page) 7601 { 7602 return __set_page_dirty_nobuffers(page); 7603 } 7604 7605 static int btrfs_permission(struct inode *inode, int mask) 7606 { 7607 struct btrfs_root *root = BTRFS_I(inode)->root; 7608 umode_t mode = inode->i_mode; 7609 7610 if (mask & MAY_WRITE && 7611 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7612 if (btrfs_root_readonly(root)) 7613 return -EROFS; 7614 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7615 return -EACCES; 7616 } 7617 return generic_permission(inode, mask); 7618 } 7619 7620 static const struct inode_operations btrfs_dir_inode_operations = { 7621 .getattr = btrfs_getattr, 7622 .lookup = btrfs_lookup, 7623 .create = btrfs_create, 7624 .unlink = btrfs_unlink, 7625 .link = btrfs_link, 7626 .mkdir = btrfs_mkdir, 7627 .rmdir = btrfs_rmdir, 7628 .rename = btrfs_rename, 7629 .symlink = btrfs_symlink, 7630 .setattr = btrfs_setattr, 7631 .mknod = btrfs_mknod, 7632 .setxattr = btrfs_setxattr, 7633 .getxattr = btrfs_getxattr, 7634 .listxattr = btrfs_listxattr, 7635 .removexattr = btrfs_removexattr, 7636 .permission = btrfs_permission, 7637 .get_acl = btrfs_get_acl, 7638 }; 7639 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7640 .lookup = btrfs_lookup, 7641 .permission = btrfs_permission, 7642 .get_acl = btrfs_get_acl, 7643 }; 7644 7645 static const struct file_operations btrfs_dir_file_operations = { 7646 .llseek = generic_file_llseek, 7647 .read = generic_read_dir, 7648 .readdir = btrfs_real_readdir, 7649 .unlocked_ioctl = btrfs_ioctl, 7650 #ifdef CONFIG_COMPAT 7651 .compat_ioctl = btrfs_ioctl, 7652 #endif 7653 .release = btrfs_release_file, 7654 .fsync = btrfs_sync_file, 7655 }; 7656 7657 static struct extent_io_ops btrfs_extent_io_ops = { 7658 .fill_delalloc = run_delalloc_range, 7659 .submit_bio_hook = btrfs_submit_bio_hook, 7660 .merge_bio_hook = btrfs_merge_bio_hook, 7661 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7662 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7663 .writepage_start_hook = btrfs_writepage_start_hook, 7664 .set_bit_hook = btrfs_set_bit_hook, 7665 .clear_bit_hook = btrfs_clear_bit_hook, 7666 .merge_extent_hook = btrfs_merge_extent_hook, 7667 .split_extent_hook = btrfs_split_extent_hook, 7668 }; 7669 7670 /* 7671 * btrfs doesn't support the bmap operation because swapfiles 7672 * use bmap to make a mapping of extents in the file. They assume 7673 * these extents won't change over the life of the file and they 7674 * use the bmap result to do IO directly to the drive. 7675 * 7676 * the btrfs bmap call would return logical addresses that aren't 7677 * suitable for IO and they also will change frequently as COW 7678 * operations happen. So, swapfile + btrfs == corruption. 7679 * 7680 * For now we're avoiding this by dropping bmap. 7681 */ 7682 static const struct address_space_operations btrfs_aops = { 7683 .readpage = btrfs_readpage, 7684 .writepage = btrfs_writepage, 7685 .writepages = btrfs_writepages, 7686 .readpages = btrfs_readpages, 7687 .direct_IO = btrfs_direct_IO, 7688 .invalidatepage = btrfs_invalidatepage, 7689 .releasepage = btrfs_releasepage, 7690 .set_page_dirty = btrfs_set_page_dirty, 7691 .error_remove_page = generic_error_remove_page, 7692 }; 7693 7694 static const struct address_space_operations btrfs_symlink_aops = { 7695 .readpage = btrfs_readpage, 7696 .writepage = btrfs_writepage, 7697 .invalidatepage = btrfs_invalidatepage, 7698 .releasepage = btrfs_releasepage, 7699 }; 7700 7701 static const struct inode_operations btrfs_file_inode_operations = { 7702 .getattr = btrfs_getattr, 7703 .setattr = btrfs_setattr, 7704 .setxattr = btrfs_setxattr, 7705 .getxattr = btrfs_getxattr, 7706 .listxattr = btrfs_listxattr, 7707 .removexattr = btrfs_removexattr, 7708 .permission = btrfs_permission, 7709 .fiemap = btrfs_fiemap, 7710 .get_acl = btrfs_get_acl, 7711 .update_time = btrfs_update_time, 7712 }; 7713 static const struct inode_operations btrfs_special_inode_operations = { 7714 .getattr = btrfs_getattr, 7715 .setattr = btrfs_setattr, 7716 .permission = btrfs_permission, 7717 .setxattr = btrfs_setxattr, 7718 .getxattr = btrfs_getxattr, 7719 .listxattr = btrfs_listxattr, 7720 .removexattr = btrfs_removexattr, 7721 .get_acl = btrfs_get_acl, 7722 .update_time = btrfs_update_time, 7723 }; 7724 static const struct inode_operations btrfs_symlink_inode_operations = { 7725 .readlink = generic_readlink, 7726 .follow_link = page_follow_link_light, 7727 .put_link = page_put_link, 7728 .getattr = btrfs_getattr, 7729 .setattr = btrfs_setattr, 7730 .permission = btrfs_permission, 7731 .setxattr = btrfs_setxattr, 7732 .getxattr = btrfs_getxattr, 7733 .listxattr = btrfs_listxattr, 7734 .removexattr = btrfs_removexattr, 7735 .get_acl = btrfs_get_acl, 7736 .update_time = btrfs_update_time, 7737 }; 7738 7739 const struct dentry_operations btrfs_dentry_operations = { 7740 .d_delete = btrfs_dentry_delete, 7741 .d_release = btrfs_dentry_release, 7742 }; 7743