xref: /linux/fs/btrfs/inode.c (revision 7ca26efb09a1543fddb29308ea3b63b66cb5d3ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_dio_data {
81 	ssize_t submitted;
82 	struct extent_changeset *data_reserved;
83 	struct btrfs_ordered_extent *ordered;
84 	bool data_space_reserved;
85 	bool nocow_done;
86 };
87 
88 struct btrfs_dio_private {
89 	/* Range of I/O */
90 	u64 file_offset;
91 	u32 bytes;
92 
93 	/* This must be last */
94 	struct btrfs_bio bbio;
95 };
96 
97 static struct bio_set btrfs_dio_bioset;
98 
99 struct btrfs_rename_ctx {
100 	/* Output field. Stores the index number of the old directory entry. */
101 	u64 index;
102 };
103 
104 /*
105  * Used by data_reloc_print_warning_inode() to pass needed info for filename
106  * resolution and output of error message.
107  */
108 struct data_reloc_warn {
109 	struct btrfs_path path;
110 	struct btrfs_fs_info *fs_info;
111 	u64 extent_item_size;
112 	u64 logical;
113 	int mirror_num;
114 };
115 
116 static const struct inode_operations btrfs_dir_inode_operations;
117 static const struct inode_operations btrfs_symlink_inode_operations;
118 static const struct inode_operations btrfs_special_inode_operations;
119 static const struct inode_operations btrfs_file_inode_operations;
120 static const struct address_space_operations btrfs_aops;
121 static const struct file_operations btrfs_dir_file_operations;
122 
123 static struct kmem_cache *btrfs_inode_cachep;
124 
125 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
126 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
127 static noinline int cow_file_range(struct btrfs_inode *inode,
128 				   struct page *locked_page,
129 				   u64 start, u64 end, int *page_started,
130 				   unsigned long *nr_written, int unlock,
131 				   u64 *done_offset);
132 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
133 				       u64 len, u64 orig_start, u64 block_start,
134 				       u64 block_len, u64 orig_block_len,
135 				       u64 ram_bytes, int compress_type,
136 				       int type);
137 
138 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
139 					  u64 root, void *warn_ctx)
140 {
141 	struct data_reloc_warn *warn = warn_ctx;
142 	struct btrfs_fs_info *fs_info = warn->fs_info;
143 	struct extent_buffer *eb;
144 	struct btrfs_inode_item *inode_item;
145 	struct inode_fs_paths *ipath = NULL;
146 	struct btrfs_root *local_root;
147 	struct btrfs_key key;
148 	unsigned int nofs_flag;
149 	u32 nlink;
150 	int ret;
151 
152 	local_root = btrfs_get_fs_root(fs_info, root, true);
153 	if (IS_ERR(local_root)) {
154 		ret = PTR_ERR(local_root);
155 		goto err;
156 	}
157 
158 	/* This makes the path point to (inum INODE_ITEM ioff). */
159 	key.objectid = inum;
160 	key.type = BTRFS_INODE_ITEM_KEY;
161 	key.offset = 0;
162 
163 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
164 	if (ret) {
165 		btrfs_put_root(local_root);
166 		btrfs_release_path(&warn->path);
167 		goto err;
168 	}
169 
170 	eb = warn->path.nodes[0];
171 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
172 	nlink = btrfs_inode_nlink(eb, inode_item);
173 	btrfs_release_path(&warn->path);
174 
175 	nofs_flag = memalloc_nofs_save();
176 	ipath = init_ipath(4096, local_root, &warn->path);
177 	memalloc_nofs_restore(nofs_flag);
178 	if (IS_ERR(ipath)) {
179 		btrfs_put_root(local_root);
180 		ret = PTR_ERR(ipath);
181 		ipath = NULL;
182 		/*
183 		 * -ENOMEM, not a critical error, just output an generic error
184 		 * without filename.
185 		 */
186 		btrfs_warn(fs_info,
187 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
188 			   warn->logical, warn->mirror_num, root, inum, offset);
189 		return ret;
190 	}
191 	ret = paths_from_inode(inum, ipath);
192 	if (ret < 0)
193 		goto err;
194 
195 	/*
196 	 * We deliberately ignore the bit ipath might have been too small to
197 	 * hold all of the paths here
198 	 */
199 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
200 		btrfs_warn(fs_info,
201 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
202 			   warn->logical, warn->mirror_num, root, inum, offset,
203 			   fs_info->sectorsize, nlink,
204 			   (char *)(unsigned long)ipath->fspath->val[i]);
205 	}
206 
207 	btrfs_put_root(local_root);
208 	free_ipath(ipath);
209 	return 0;
210 
211 err:
212 	btrfs_warn(fs_info,
213 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
214 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
215 
216 	free_ipath(ipath);
217 	return ret;
218 }
219 
220 /*
221  * Do extra user-friendly error output (e.g. lookup all the affected files).
222  *
223  * Return true if we succeeded doing the backref lookup.
224  * Return false if such lookup failed, and has to fallback to the old error message.
225  */
226 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
227 				   const u8 *csum, const u8 *csum_expected,
228 				   int mirror_num)
229 {
230 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
231 	struct btrfs_path path = { 0 };
232 	struct btrfs_key found_key = { 0 };
233 	struct extent_buffer *eb;
234 	struct btrfs_extent_item *ei;
235 	const u32 csum_size = fs_info->csum_size;
236 	u64 logical;
237 	u64 flags;
238 	u32 item_size;
239 	int ret;
240 
241 	mutex_lock(&fs_info->reloc_mutex);
242 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
243 	mutex_unlock(&fs_info->reloc_mutex);
244 
245 	if (logical == U64_MAX) {
246 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
247 		btrfs_warn_rl(fs_info,
248 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
249 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
250 			CSUM_FMT_VALUE(csum_size, csum),
251 			CSUM_FMT_VALUE(csum_size, csum_expected),
252 			mirror_num);
253 		return;
254 	}
255 
256 	logical += file_off;
257 	btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid,
260 			btrfs_ino(inode), file_off, logical,
261 			CSUM_FMT_VALUE(csum_size, csum),
262 			CSUM_FMT_VALUE(csum_size, csum_expected),
263 			mirror_num);
264 
265 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
266 	if (ret < 0) {
267 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
268 			     logical, ret);
269 		return;
270 	}
271 	eb = path.nodes[0];
272 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
273 	item_size = btrfs_item_size(eb, path.slots[0]);
274 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
275 		unsigned long ptr = 0;
276 		u64 ref_root;
277 		u8 ref_level;
278 
279 		while (true) {
280 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
281 						      item_size, &ref_root,
282 						      &ref_level);
283 			if (ret < 0) {
284 				btrfs_warn_rl(fs_info,
285 				"failed to resolve tree backref for logical %llu: %d",
286 					      logical, ret);
287 				break;
288 			}
289 			if (ret > 0)
290 				break;
291 
292 			btrfs_warn_rl(fs_info,
293 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
294 				logical, mirror_num,
295 				(ref_level ? "node" : "leaf"),
296 				ref_level, ref_root);
297 		}
298 		btrfs_release_path(&path);
299 	} else {
300 		struct btrfs_backref_walk_ctx ctx = { 0 };
301 		struct data_reloc_warn reloc_warn = { 0 };
302 
303 		btrfs_release_path(&path);
304 
305 		ctx.bytenr = found_key.objectid;
306 		ctx.extent_item_pos = logical - found_key.objectid;
307 		ctx.fs_info = fs_info;
308 
309 		reloc_warn.logical = logical;
310 		reloc_warn.extent_item_size = found_key.offset;
311 		reloc_warn.mirror_num = mirror_num;
312 		reloc_warn.fs_info = fs_info;
313 
314 		iterate_extent_inodes(&ctx, true,
315 				      data_reloc_print_warning_inode, &reloc_warn);
316 	}
317 }
318 
319 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
320 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
321 {
322 	struct btrfs_root *root = inode->root;
323 	const u32 csum_size = root->fs_info->csum_size;
324 
325 	/* For data reloc tree, it's better to do a backref lookup instead. */
326 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
327 		return print_data_reloc_error(inode, logical_start, csum,
328 					      csum_expected, mirror_num);
329 
330 	/* Output without objectid, which is more meaningful */
331 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
332 		btrfs_warn_rl(root->fs_info,
333 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
334 			root->root_key.objectid, btrfs_ino(inode),
335 			logical_start,
336 			CSUM_FMT_VALUE(csum_size, csum),
337 			CSUM_FMT_VALUE(csum_size, csum_expected),
338 			mirror_num);
339 	} else {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	}
348 }
349 
350 /*
351  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
352  *
353  * ilock_flags can have the following bit set:
354  *
355  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
356  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
357  *		     return -EAGAIN
358  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
359  */
360 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
361 {
362 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
363 		if (ilock_flags & BTRFS_ILOCK_TRY) {
364 			if (!inode_trylock_shared(&inode->vfs_inode))
365 				return -EAGAIN;
366 			else
367 				return 0;
368 		}
369 		inode_lock_shared(&inode->vfs_inode);
370 	} else {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock(&inode->vfs_inode);
378 	}
379 	if (ilock_flags & BTRFS_ILOCK_MMAP)
380 		down_write(&inode->i_mmap_lock);
381 	return 0;
382 }
383 
384 /*
385  * btrfs_inode_unlock - unock inode i_rwsem
386  *
387  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
388  * to decide whether the lock acquired is shared or exclusive.
389  */
390 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
391 {
392 	if (ilock_flags & BTRFS_ILOCK_MMAP)
393 		up_write(&inode->i_mmap_lock);
394 	if (ilock_flags & BTRFS_ILOCK_SHARED)
395 		inode_unlock_shared(&inode->vfs_inode);
396 	else
397 		inode_unlock(&inode->vfs_inode);
398 }
399 
400 /*
401  * Cleanup all submitted ordered extents in specified range to handle errors
402  * from the btrfs_run_delalloc_range() callback.
403  *
404  * NOTE: caller must ensure that when an error happens, it can not call
405  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
406  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
407  * to be released, which we want to happen only when finishing the ordered
408  * extent (btrfs_finish_ordered_io()).
409  */
410 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
411 						 struct page *locked_page,
412 						 u64 offset, u64 bytes)
413 {
414 	unsigned long index = offset >> PAGE_SHIFT;
415 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
416 	u64 page_start = 0, page_end = 0;
417 	struct page *page;
418 
419 	if (locked_page) {
420 		page_start = page_offset(locked_page);
421 		page_end = page_start + PAGE_SIZE - 1;
422 	}
423 
424 	while (index <= end_index) {
425 		/*
426 		 * For locked page, we will call end_extent_writepage() on it
427 		 * in run_delalloc_range() for the error handling.  That
428 		 * end_extent_writepage() function will call
429 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
430 		 * run the ordered extent accounting.
431 		 *
432 		 * Here we can't just clear the Ordered bit, or
433 		 * btrfs_mark_ordered_io_finished() would skip the accounting
434 		 * for the page range, and the ordered extent will never finish.
435 		 */
436 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
437 			index++;
438 			continue;
439 		}
440 		page = find_get_page(inode->vfs_inode.i_mapping, index);
441 		index++;
442 		if (!page)
443 			continue;
444 
445 		/*
446 		 * Here we just clear all Ordered bits for every page in the
447 		 * range, then btrfs_mark_ordered_io_finished() will handle
448 		 * the ordered extent accounting for the range.
449 		 */
450 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
451 					       offset, bytes);
452 		put_page(page);
453 	}
454 
455 	if (locked_page) {
456 		/* The locked page covers the full range, nothing needs to be done */
457 		if (bytes + offset <= page_start + PAGE_SIZE)
458 			return;
459 		/*
460 		 * In case this page belongs to the delalloc range being
461 		 * instantiated then skip it, since the first page of a range is
462 		 * going to be properly cleaned up by the caller of
463 		 * run_delalloc_range
464 		 */
465 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
466 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
467 			offset = page_offset(locked_page) + PAGE_SIZE;
468 		}
469 	}
470 
471 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
472 }
473 
474 static int btrfs_dirty_inode(struct btrfs_inode *inode);
475 
476 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
477 				     struct btrfs_new_inode_args *args)
478 {
479 	int err;
480 
481 	if (args->default_acl) {
482 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
483 				      ACL_TYPE_DEFAULT);
484 		if (err)
485 			return err;
486 	}
487 	if (args->acl) {
488 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
489 		if (err)
490 			return err;
491 	}
492 	if (!args->default_acl && !args->acl)
493 		cache_no_acl(args->inode);
494 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
495 					 &args->dentry->d_name);
496 }
497 
498 /*
499  * this does all the hard work for inserting an inline extent into
500  * the btree.  The caller should have done a btrfs_drop_extents so that
501  * no overlapping inline items exist in the btree
502  */
503 static int insert_inline_extent(struct btrfs_trans_handle *trans,
504 				struct btrfs_path *path,
505 				struct btrfs_inode *inode, bool extent_inserted,
506 				size_t size, size_t compressed_size,
507 				int compress_type,
508 				struct page **compressed_pages,
509 				bool update_i_size)
510 {
511 	struct btrfs_root *root = inode->root;
512 	struct extent_buffer *leaf;
513 	struct page *page = NULL;
514 	char *kaddr;
515 	unsigned long ptr;
516 	struct btrfs_file_extent_item *ei;
517 	int ret;
518 	size_t cur_size = size;
519 	u64 i_size;
520 
521 	ASSERT((compressed_size > 0 && compressed_pages) ||
522 	       (compressed_size == 0 && !compressed_pages));
523 
524 	if (compressed_size && compressed_pages)
525 		cur_size = compressed_size;
526 
527 	if (!extent_inserted) {
528 		struct btrfs_key key;
529 		size_t datasize;
530 
531 		key.objectid = btrfs_ino(inode);
532 		key.offset = 0;
533 		key.type = BTRFS_EXTENT_DATA_KEY;
534 
535 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
536 		ret = btrfs_insert_empty_item(trans, root, path, &key,
537 					      datasize);
538 		if (ret)
539 			goto fail;
540 	}
541 	leaf = path->nodes[0];
542 	ei = btrfs_item_ptr(leaf, path->slots[0],
543 			    struct btrfs_file_extent_item);
544 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
545 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
546 	btrfs_set_file_extent_encryption(leaf, ei, 0);
547 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
548 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
549 	ptr = btrfs_file_extent_inline_start(ei);
550 
551 	if (compress_type != BTRFS_COMPRESS_NONE) {
552 		struct page *cpage;
553 		int i = 0;
554 		while (compressed_size > 0) {
555 			cpage = compressed_pages[i];
556 			cur_size = min_t(unsigned long, compressed_size,
557 				       PAGE_SIZE);
558 
559 			kaddr = kmap_local_page(cpage);
560 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
561 			kunmap_local(kaddr);
562 
563 			i++;
564 			ptr += cur_size;
565 			compressed_size -= cur_size;
566 		}
567 		btrfs_set_file_extent_compression(leaf, ei,
568 						  compress_type);
569 	} else {
570 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
571 		btrfs_set_file_extent_compression(leaf, ei, 0);
572 		kaddr = kmap_local_page(page);
573 		write_extent_buffer(leaf, kaddr, ptr, size);
574 		kunmap_local(kaddr);
575 		put_page(page);
576 	}
577 	btrfs_mark_buffer_dirty(leaf);
578 	btrfs_release_path(path);
579 
580 	/*
581 	 * We align size to sectorsize for inline extents just for simplicity
582 	 * sake.
583 	 */
584 	ret = btrfs_inode_set_file_extent_range(inode, 0,
585 					ALIGN(size, root->fs_info->sectorsize));
586 	if (ret)
587 		goto fail;
588 
589 	/*
590 	 * We're an inline extent, so nobody can extend the file past i_size
591 	 * without locking a page we already have locked.
592 	 *
593 	 * We must do any i_size and inode updates before we unlock the pages.
594 	 * Otherwise we could end up racing with unlink.
595 	 */
596 	i_size = i_size_read(&inode->vfs_inode);
597 	if (update_i_size && size > i_size) {
598 		i_size_write(&inode->vfs_inode, size);
599 		i_size = size;
600 	}
601 	inode->disk_i_size = i_size;
602 
603 fail:
604 	return ret;
605 }
606 
607 
608 /*
609  * conditionally insert an inline extent into the file.  This
610  * does the checks required to make sure the data is small enough
611  * to fit as an inline extent.
612  */
613 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
614 					  size_t compressed_size,
615 					  int compress_type,
616 					  struct page **compressed_pages,
617 					  bool update_i_size)
618 {
619 	struct btrfs_drop_extents_args drop_args = { 0 };
620 	struct btrfs_root *root = inode->root;
621 	struct btrfs_fs_info *fs_info = root->fs_info;
622 	struct btrfs_trans_handle *trans;
623 	u64 data_len = (compressed_size ?: size);
624 	int ret;
625 	struct btrfs_path *path;
626 
627 	/*
628 	 * We can create an inline extent if it ends at or beyond the current
629 	 * i_size, is no larger than a sector (decompressed), and the (possibly
630 	 * compressed) data fits in a leaf and the configured maximum inline
631 	 * size.
632 	 */
633 	if (size < i_size_read(&inode->vfs_inode) ||
634 	    size > fs_info->sectorsize ||
635 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
636 	    data_len > fs_info->max_inline)
637 		return 1;
638 
639 	path = btrfs_alloc_path();
640 	if (!path)
641 		return -ENOMEM;
642 
643 	trans = btrfs_join_transaction(root);
644 	if (IS_ERR(trans)) {
645 		btrfs_free_path(path);
646 		return PTR_ERR(trans);
647 	}
648 	trans->block_rsv = &inode->block_rsv;
649 
650 	drop_args.path = path;
651 	drop_args.start = 0;
652 	drop_args.end = fs_info->sectorsize;
653 	drop_args.drop_cache = true;
654 	drop_args.replace_extent = true;
655 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
656 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
657 	if (ret) {
658 		btrfs_abort_transaction(trans, ret);
659 		goto out;
660 	}
661 
662 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
663 				   size, compressed_size, compress_type,
664 				   compressed_pages, update_i_size);
665 	if (ret && ret != -ENOSPC) {
666 		btrfs_abort_transaction(trans, ret);
667 		goto out;
668 	} else if (ret == -ENOSPC) {
669 		ret = 1;
670 		goto out;
671 	}
672 
673 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
674 	ret = btrfs_update_inode(trans, root, inode);
675 	if (ret && ret != -ENOSPC) {
676 		btrfs_abort_transaction(trans, ret);
677 		goto out;
678 	} else if (ret == -ENOSPC) {
679 		ret = 1;
680 		goto out;
681 	}
682 
683 	btrfs_set_inode_full_sync(inode);
684 out:
685 	/*
686 	 * Don't forget to free the reserved space, as for inlined extent
687 	 * it won't count as data extent, free them directly here.
688 	 * And at reserve time, it's always aligned to page size, so
689 	 * just free one page here.
690 	 */
691 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
692 	btrfs_free_path(path);
693 	btrfs_end_transaction(trans);
694 	return ret;
695 }
696 
697 struct async_extent {
698 	u64 start;
699 	u64 ram_size;
700 	u64 compressed_size;
701 	struct page **pages;
702 	unsigned long nr_pages;
703 	int compress_type;
704 	struct list_head list;
705 };
706 
707 struct async_chunk {
708 	struct btrfs_inode *inode;
709 	struct page *locked_page;
710 	u64 start;
711 	u64 end;
712 	blk_opf_t write_flags;
713 	struct list_head extents;
714 	struct cgroup_subsys_state *blkcg_css;
715 	struct btrfs_work work;
716 	struct async_cow *async_cow;
717 };
718 
719 struct async_cow {
720 	atomic_t num_chunks;
721 	struct async_chunk chunks[];
722 };
723 
724 static noinline int add_async_extent(struct async_chunk *cow,
725 				     u64 start, u64 ram_size,
726 				     u64 compressed_size,
727 				     struct page **pages,
728 				     unsigned long nr_pages,
729 				     int compress_type)
730 {
731 	struct async_extent *async_extent;
732 
733 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
734 	BUG_ON(!async_extent); /* -ENOMEM */
735 	async_extent->start = start;
736 	async_extent->ram_size = ram_size;
737 	async_extent->compressed_size = compressed_size;
738 	async_extent->pages = pages;
739 	async_extent->nr_pages = nr_pages;
740 	async_extent->compress_type = compress_type;
741 	list_add_tail(&async_extent->list, &cow->extents);
742 	return 0;
743 }
744 
745 /*
746  * Check if the inode needs to be submitted to compression, based on mount
747  * options, defragmentation, properties or heuristics.
748  */
749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
750 				      u64 end)
751 {
752 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
753 
754 	if (!btrfs_inode_can_compress(inode)) {
755 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
756 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
757 			btrfs_ino(inode));
758 		return 0;
759 	}
760 	/*
761 	 * Special check for subpage.
762 	 *
763 	 * We lock the full page then run each delalloc range in the page, thus
764 	 * for the following case, we will hit some subpage specific corner case:
765 	 *
766 	 * 0		32K		64K
767 	 * |	|///////|	|///////|
768 	 *		\- A		\- B
769 	 *
770 	 * In above case, both range A and range B will try to unlock the full
771 	 * page [0, 64K), causing the one finished later will have page
772 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
773 	 *
774 	 * So here we add an artificial limit that subpage compression can only
775 	 * if the range is fully page aligned.
776 	 *
777 	 * In theory we only need to ensure the first page is fully covered, but
778 	 * the tailing partial page will be locked until the full compression
779 	 * finishes, delaying the write of other range.
780 	 *
781 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
782 	 * first to prevent any submitted async extent to unlock the full page.
783 	 * By this, we can ensure for subpage case that only the last async_cow
784 	 * will unlock the full page.
785 	 */
786 	if (fs_info->sectorsize < PAGE_SIZE) {
787 		if (!PAGE_ALIGNED(start) ||
788 		    !PAGE_ALIGNED(end + 1))
789 			return 0;
790 	}
791 
792 	/* force compress */
793 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
794 		return 1;
795 	/* defrag ioctl */
796 	if (inode->defrag_compress)
797 		return 1;
798 	/* bad compression ratios */
799 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
800 		return 0;
801 	if (btrfs_test_opt(fs_info, COMPRESS) ||
802 	    inode->flags & BTRFS_INODE_COMPRESS ||
803 	    inode->prop_compress)
804 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
805 	return 0;
806 }
807 
808 static inline void inode_should_defrag(struct btrfs_inode *inode,
809 		u64 start, u64 end, u64 num_bytes, u32 small_write)
810 {
811 	/* If this is a small write inside eof, kick off a defrag */
812 	if (num_bytes < small_write &&
813 	    (start > 0 || end + 1 < inode->disk_i_size))
814 		btrfs_add_inode_defrag(NULL, inode, small_write);
815 }
816 
817 /*
818  * we create compressed extents in two phases.  The first
819  * phase compresses a range of pages that have already been
820  * locked (both pages and state bits are locked).
821  *
822  * This is done inside an ordered work queue, and the compression
823  * is spread across many cpus.  The actual IO submission is step
824  * two, and the ordered work queue takes care of making sure that
825  * happens in the same order things were put onto the queue by
826  * writepages and friends.
827  *
828  * If this code finds it can't get good compression, it puts an
829  * entry onto the work queue to write the uncompressed bytes.  This
830  * makes sure that both compressed inodes and uncompressed inodes
831  * are written in the same order that the flusher thread sent them
832  * down.
833  */
834 static noinline int compress_file_range(struct async_chunk *async_chunk)
835 {
836 	struct btrfs_inode *inode = async_chunk->inode;
837 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
838 	struct address_space *mapping = inode->vfs_inode.i_mapping;
839 	u64 blocksize = fs_info->sectorsize;
840 	u64 start = async_chunk->start;
841 	u64 end = async_chunk->end;
842 	u64 actual_end;
843 	u64 i_size;
844 	int ret = 0;
845 	struct page **pages = NULL;
846 	unsigned long nr_pages;
847 	unsigned long total_compressed = 0;
848 	unsigned long total_in = 0;
849 	int i;
850 	int will_compress;
851 	int compress_type = fs_info->compress_type;
852 	int compressed_extents = 0;
853 	int redirty = 0;
854 
855 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
856 
857 	/*
858 	 * We need to save i_size before now because it could change in between
859 	 * us evaluating the size and assigning it.  This is because we lock and
860 	 * unlock the page in truncate and fallocate, and then modify the i_size
861 	 * later on.
862 	 *
863 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
864 	 * does that for us.
865 	 */
866 	barrier();
867 	i_size = i_size_read(&inode->vfs_inode);
868 	barrier();
869 	actual_end = min_t(u64, i_size, end + 1);
870 again:
871 	will_compress = 0;
872 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
873 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
874 
875 	/*
876 	 * we don't want to send crud past the end of i_size through
877 	 * compression, that's just a waste of CPU time.  So, if the
878 	 * end of the file is before the start of our current
879 	 * requested range of bytes, we bail out to the uncompressed
880 	 * cleanup code that can deal with all of this.
881 	 *
882 	 * It isn't really the fastest way to fix things, but this is a
883 	 * very uncommon corner.
884 	 */
885 	if (actual_end <= start)
886 		goto cleanup_and_bail_uncompressed;
887 
888 	total_compressed = actual_end - start;
889 
890 	/*
891 	 * Skip compression for a small file range(<=blocksize) that
892 	 * isn't an inline extent, since it doesn't save disk space at all.
893 	 */
894 	if (total_compressed <= blocksize &&
895 	   (start > 0 || end + 1 < inode->disk_i_size))
896 		goto cleanup_and_bail_uncompressed;
897 
898 	/*
899 	 * For subpage case, we require full page alignment for the sector
900 	 * aligned range.
901 	 * Thus we must also check against @actual_end, not just @end.
902 	 */
903 	if (blocksize < PAGE_SIZE) {
904 		if (!PAGE_ALIGNED(start) ||
905 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
906 			goto cleanup_and_bail_uncompressed;
907 	}
908 
909 	total_compressed = min_t(unsigned long, total_compressed,
910 			BTRFS_MAX_UNCOMPRESSED);
911 	total_in = 0;
912 	ret = 0;
913 
914 	/*
915 	 * we do compression for mount -o compress and when the
916 	 * inode has not been flagged as nocompress.  This flag can
917 	 * change at any time if we discover bad compression ratios.
918 	 */
919 	if (inode_need_compress(inode, start, end)) {
920 		WARN_ON(pages);
921 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
922 		if (!pages) {
923 			/* just bail out to the uncompressed code */
924 			nr_pages = 0;
925 			goto cont;
926 		}
927 
928 		if (inode->defrag_compress)
929 			compress_type = inode->defrag_compress;
930 		else if (inode->prop_compress)
931 			compress_type = inode->prop_compress;
932 
933 		/*
934 		 * we need to call clear_page_dirty_for_io on each
935 		 * page in the range.  Otherwise applications with the file
936 		 * mmap'd can wander in and change the page contents while
937 		 * we are compressing them.
938 		 *
939 		 * If the compression fails for any reason, we set the pages
940 		 * dirty again later on.
941 		 *
942 		 * Note that the remaining part is redirtied, the start pointer
943 		 * has moved, the end is the original one.
944 		 */
945 		if (!redirty) {
946 			extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
947 			redirty = 1;
948 		}
949 
950 		/* Compression level is applied here and only here */
951 		ret = btrfs_compress_pages(
952 			compress_type | (fs_info->compress_level << 4),
953 					   mapping, start,
954 					   pages,
955 					   &nr_pages,
956 					   &total_in,
957 					   &total_compressed);
958 
959 		if (!ret) {
960 			unsigned long offset = offset_in_page(total_compressed);
961 			struct page *page = pages[nr_pages - 1];
962 
963 			/* zero the tail end of the last page, we might be
964 			 * sending it down to disk
965 			 */
966 			if (offset)
967 				memzero_page(page, offset, PAGE_SIZE - offset);
968 			will_compress = 1;
969 		}
970 	}
971 cont:
972 	/*
973 	 * Check cow_file_range() for why we don't even try to create inline
974 	 * extent for subpage case.
975 	 */
976 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
977 		/* lets try to make an inline extent */
978 		if (ret || total_in < actual_end) {
979 			/* we didn't compress the entire range, try
980 			 * to make an uncompressed inline extent.
981 			 */
982 			ret = cow_file_range_inline(inode, actual_end,
983 						    0, BTRFS_COMPRESS_NONE,
984 						    NULL, false);
985 		} else {
986 			/* try making a compressed inline extent */
987 			ret = cow_file_range_inline(inode, actual_end,
988 						    total_compressed,
989 						    compress_type, pages,
990 						    false);
991 		}
992 		if (ret <= 0) {
993 			unsigned long clear_flags = EXTENT_DELALLOC |
994 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
995 				EXTENT_DO_ACCOUNTING;
996 
997 			if (ret < 0)
998 				mapping_set_error(mapping, -EIO);
999 
1000 			/*
1001 			 * inline extent creation worked or returned error,
1002 			 * we don't need to create any more async work items.
1003 			 * Unlock and free up our temp pages.
1004 			 *
1005 			 * We use DO_ACCOUNTING here because we need the
1006 			 * delalloc_release_metadata to be done _after_ we drop
1007 			 * our outstanding extent for clearing delalloc for this
1008 			 * range.
1009 			 */
1010 			extent_clear_unlock_delalloc(inode, start, end,
1011 						     NULL,
1012 						     clear_flags,
1013 						     PAGE_UNLOCK |
1014 						     PAGE_START_WRITEBACK |
1015 						     PAGE_END_WRITEBACK);
1016 
1017 			/*
1018 			 * Ensure we only free the compressed pages if we have
1019 			 * them allocated, as we can still reach here with
1020 			 * inode_need_compress() == false.
1021 			 */
1022 			if (pages) {
1023 				for (i = 0; i < nr_pages; i++) {
1024 					WARN_ON(pages[i]->mapping);
1025 					put_page(pages[i]);
1026 				}
1027 				kfree(pages);
1028 			}
1029 			return 0;
1030 		}
1031 	}
1032 
1033 	if (will_compress) {
1034 		/*
1035 		 * we aren't doing an inline extent round the compressed size
1036 		 * up to a block size boundary so the allocator does sane
1037 		 * things
1038 		 */
1039 		total_compressed = ALIGN(total_compressed, blocksize);
1040 
1041 		/*
1042 		 * one last check to make sure the compression is really a
1043 		 * win, compare the page count read with the blocks on disk,
1044 		 * compression must free at least one sector size
1045 		 */
1046 		total_in = round_up(total_in, fs_info->sectorsize);
1047 		if (total_compressed + blocksize <= total_in) {
1048 			compressed_extents++;
1049 
1050 			/*
1051 			 * The async work queues will take care of doing actual
1052 			 * allocation on disk for these compressed pages, and
1053 			 * will submit them to the elevator.
1054 			 */
1055 			add_async_extent(async_chunk, start, total_in,
1056 					total_compressed, pages, nr_pages,
1057 					compress_type);
1058 
1059 			if (start + total_in < end) {
1060 				start += total_in;
1061 				pages = NULL;
1062 				cond_resched();
1063 				goto again;
1064 			}
1065 			return compressed_extents;
1066 		}
1067 	}
1068 	if (pages) {
1069 		/*
1070 		 * the compression code ran but failed to make things smaller,
1071 		 * free any pages it allocated and our page pointer array
1072 		 */
1073 		for (i = 0; i < nr_pages; i++) {
1074 			WARN_ON(pages[i]->mapping);
1075 			put_page(pages[i]);
1076 		}
1077 		kfree(pages);
1078 		pages = NULL;
1079 		total_compressed = 0;
1080 		nr_pages = 0;
1081 
1082 		/* flag the file so we don't compress in the future */
1083 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
1084 		    !(inode->prop_compress)) {
1085 			inode->flags |= BTRFS_INODE_NOCOMPRESS;
1086 		}
1087 	}
1088 cleanup_and_bail_uncompressed:
1089 	/*
1090 	 * No compression, but we still need to write the pages in the file
1091 	 * we've been given so far.  redirty the locked page if it corresponds
1092 	 * to our extent and set things up for the async work queue to run
1093 	 * cow_file_range to do the normal delalloc dance.
1094 	 */
1095 	if (async_chunk->locked_page &&
1096 	    (page_offset(async_chunk->locked_page) >= start &&
1097 	     page_offset(async_chunk->locked_page)) <= end) {
1098 		__set_page_dirty_nobuffers(async_chunk->locked_page);
1099 		/* unlocked later on in the async handlers */
1100 	}
1101 
1102 	if (redirty)
1103 		extent_range_redirty_for_io(&inode->vfs_inode, start, end);
1104 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1105 			 BTRFS_COMPRESS_NONE);
1106 	compressed_extents++;
1107 
1108 	return compressed_extents;
1109 }
1110 
1111 static void free_async_extent_pages(struct async_extent *async_extent)
1112 {
1113 	int i;
1114 
1115 	if (!async_extent->pages)
1116 		return;
1117 
1118 	for (i = 0; i < async_extent->nr_pages; i++) {
1119 		WARN_ON(async_extent->pages[i]->mapping);
1120 		put_page(async_extent->pages[i]);
1121 	}
1122 	kfree(async_extent->pages);
1123 	async_extent->nr_pages = 0;
1124 	async_extent->pages = NULL;
1125 }
1126 
1127 static int submit_uncompressed_range(struct btrfs_inode *inode,
1128 				     struct async_extent *async_extent,
1129 				     struct page *locked_page)
1130 {
1131 	u64 start = async_extent->start;
1132 	u64 end = async_extent->start + async_extent->ram_size - 1;
1133 	unsigned long nr_written = 0;
1134 	int page_started = 0;
1135 	int ret;
1136 	struct writeback_control wbc = {
1137 		.sync_mode		= WB_SYNC_ALL,
1138 		.range_start		= start,
1139 		.range_end		= end,
1140 		.no_cgroup_owner	= 1,
1141 	};
1142 
1143 	/*
1144 	 * Call cow_file_range() to run the delalloc range directly, since we
1145 	 * won't go to NOCOW or async path again.
1146 	 *
1147 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
1148 	 * can directly submit them without interruption.
1149 	 */
1150 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
1151 			     &nr_written, 0, NULL);
1152 	/* Inline extent inserted, page gets unlocked and everything is done */
1153 	if (page_started)
1154 		return 0;
1155 
1156 	if (ret < 0) {
1157 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1158 		if (locked_page) {
1159 			const u64 page_start = page_offset(locked_page);
1160 			const u64 page_end = page_start + PAGE_SIZE - 1;
1161 
1162 			set_page_writeback(locked_page);
1163 			end_page_writeback(locked_page);
1164 			end_extent_writepage(locked_page, ret, page_start, page_end);
1165 			unlock_page(locked_page);
1166 		}
1167 		return ret;
1168 	}
1169 
1170 	/* All pages will be unlocked, including @locked_page */
1171 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1172 	ret = extent_write_locked_range(&inode->vfs_inode, start, end, &wbc);
1173 	wbc_detach_inode(&wbc);
1174 	return ret;
1175 }
1176 
1177 static int submit_one_async_extent(struct btrfs_inode *inode,
1178 				   struct async_chunk *async_chunk,
1179 				   struct async_extent *async_extent,
1180 				   u64 *alloc_hint)
1181 {
1182 	struct extent_io_tree *io_tree = &inode->io_tree;
1183 	struct btrfs_root *root = inode->root;
1184 	struct btrfs_fs_info *fs_info = root->fs_info;
1185 	struct btrfs_ordered_extent *ordered;
1186 	struct btrfs_key ins;
1187 	struct page *locked_page = NULL;
1188 	struct extent_map *em;
1189 	int ret = 0;
1190 	u64 start = async_extent->start;
1191 	u64 end = async_extent->start + async_extent->ram_size - 1;
1192 
1193 	if (async_chunk->blkcg_css)
1194 		kthread_associate_blkcg(async_chunk->blkcg_css);
1195 
1196 	/*
1197 	 * If async_chunk->locked_page is in the async_extent range, we need to
1198 	 * handle it.
1199 	 */
1200 	if (async_chunk->locked_page) {
1201 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1202 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1203 
1204 		if (!(start >= locked_page_end || end <= locked_page_start))
1205 			locked_page = async_chunk->locked_page;
1206 	}
1207 	lock_extent(io_tree, start, end, NULL);
1208 
1209 	/* We have fall back to uncompressed write */
1210 	if (!async_extent->pages) {
1211 		ret = submit_uncompressed_range(inode, async_extent, locked_page);
1212 		goto done;
1213 	}
1214 
1215 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1216 				   async_extent->compressed_size,
1217 				   async_extent->compressed_size,
1218 				   0, *alloc_hint, &ins, 1, 1);
1219 	if (ret) {
1220 		free_async_extent_pages(async_extent);
1221 		/*
1222 		 * Here we used to try again by going back to non-compressed
1223 		 * path for ENOSPC.  But we can't reserve space even for
1224 		 * compressed size, how could it work for uncompressed size
1225 		 * which requires larger size?  So here we directly go error
1226 		 * path.
1227 		 */
1228 		goto out_free;
1229 	}
1230 
1231 	/* Here we're doing allocation and writeback of the compressed pages */
1232 	em = create_io_em(inode, start,
1233 			  async_extent->ram_size,	/* len */
1234 			  start,			/* orig_start */
1235 			  ins.objectid,			/* block_start */
1236 			  ins.offset,			/* block_len */
1237 			  ins.offset,			/* orig_block_len */
1238 			  async_extent->ram_size,	/* ram_bytes */
1239 			  async_extent->compress_type,
1240 			  BTRFS_ORDERED_COMPRESSED);
1241 	if (IS_ERR(em)) {
1242 		ret = PTR_ERR(em);
1243 		goto out_free_reserve;
1244 	}
1245 	free_extent_map(em);
1246 
1247 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1248 				       async_extent->ram_size,	/* num_bytes */
1249 				       async_extent->ram_size,	/* ram_bytes */
1250 				       ins.objectid,		/* disk_bytenr */
1251 				       ins.offset,		/* disk_num_bytes */
1252 				       0,			/* offset */
1253 				       1 << BTRFS_ORDERED_COMPRESSED,
1254 				       async_extent->compress_type);
1255 	if (IS_ERR(ordered)) {
1256 		btrfs_drop_extent_map_range(inode, start, end, false);
1257 		ret = PTR_ERR(ordered);
1258 		goto out_free_reserve;
1259 	}
1260 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1261 
1262 	/* Clear dirty, set writeback and unlock the pages. */
1263 	extent_clear_unlock_delalloc(inode, start, end,
1264 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1265 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1266 	btrfs_submit_compressed_write(ordered,
1267 			    async_extent->pages,	/* compressed_pages */
1268 			    async_extent->nr_pages,
1269 			    async_chunk->write_flags, true);
1270 	*alloc_hint = ins.objectid + ins.offset;
1271 done:
1272 	if (async_chunk->blkcg_css)
1273 		kthread_associate_blkcg(NULL);
1274 	kfree(async_extent);
1275 	return ret;
1276 
1277 out_free_reserve:
1278 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1279 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1280 out_free:
1281 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1282 	extent_clear_unlock_delalloc(inode, start, end,
1283 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1284 				     EXTENT_DELALLOC_NEW |
1285 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1286 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1287 				     PAGE_END_WRITEBACK);
1288 	free_async_extent_pages(async_extent);
1289 	goto done;
1290 }
1291 
1292 /*
1293  * Phase two of compressed writeback.  This is the ordered portion of the code,
1294  * which only gets called in the order the work was queued.  We walk all the
1295  * async extents created by compress_file_range and send them down to the disk.
1296  */
1297 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1298 {
1299 	struct btrfs_inode *inode = async_chunk->inode;
1300 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1301 	struct async_extent *async_extent;
1302 	u64 alloc_hint = 0;
1303 	int ret = 0;
1304 
1305 	while (!list_empty(&async_chunk->extents)) {
1306 		u64 extent_start;
1307 		u64 ram_size;
1308 
1309 		async_extent = list_entry(async_chunk->extents.next,
1310 					  struct async_extent, list);
1311 		list_del(&async_extent->list);
1312 		extent_start = async_extent->start;
1313 		ram_size = async_extent->ram_size;
1314 
1315 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1316 					      &alloc_hint);
1317 		btrfs_debug(fs_info,
1318 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1319 			    inode->root->root_key.objectid,
1320 			    btrfs_ino(inode), extent_start, ram_size, ret);
1321 	}
1322 }
1323 
1324 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1325 				      u64 num_bytes)
1326 {
1327 	struct extent_map_tree *em_tree = &inode->extent_tree;
1328 	struct extent_map *em;
1329 	u64 alloc_hint = 0;
1330 
1331 	read_lock(&em_tree->lock);
1332 	em = search_extent_mapping(em_tree, start, num_bytes);
1333 	if (em) {
1334 		/*
1335 		 * if block start isn't an actual block number then find the
1336 		 * first block in this inode and use that as a hint.  If that
1337 		 * block is also bogus then just don't worry about it.
1338 		 */
1339 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1340 			free_extent_map(em);
1341 			em = search_extent_mapping(em_tree, 0, 0);
1342 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1343 				alloc_hint = em->block_start;
1344 			if (em)
1345 				free_extent_map(em);
1346 		} else {
1347 			alloc_hint = em->block_start;
1348 			free_extent_map(em);
1349 		}
1350 	}
1351 	read_unlock(&em_tree->lock);
1352 
1353 	return alloc_hint;
1354 }
1355 
1356 /*
1357  * when extent_io.c finds a delayed allocation range in the file,
1358  * the call backs end up in this code.  The basic idea is to
1359  * allocate extents on disk for the range, and create ordered data structs
1360  * in ram to track those extents.
1361  *
1362  * locked_page is the page that writepage had locked already.  We use
1363  * it to make sure we don't do extra locks or unlocks.
1364  *
1365  * *page_started is set to one if we unlock locked_page and do everything
1366  * required to start IO on it.  It may be clean and already done with
1367  * IO when we return.
1368  *
1369  * When unlock == 1, we unlock the pages in successfully allocated regions.
1370  * When unlock == 0, we leave them locked for writing them out.
1371  *
1372  * However, we unlock all the pages except @locked_page in case of failure.
1373  *
1374  * In summary, page locking state will be as follow:
1375  *
1376  * - page_started == 1 (return value)
1377  *     - All the pages are unlocked. IO is started.
1378  *     - Note that this can happen only on success
1379  * - unlock == 1
1380  *     - All the pages except @locked_page are unlocked in any case
1381  * - unlock == 0
1382  *     - On success, all the pages are locked for writing out them
1383  *     - On failure, all the pages except @locked_page are unlocked
1384  *
1385  * When a failure happens in the second or later iteration of the
1386  * while-loop, the ordered extents created in previous iterations are kept
1387  * intact. So, the caller must clean them up by calling
1388  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1389  * example.
1390  */
1391 static noinline int cow_file_range(struct btrfs_inode *inode,
1392 				   struct page *locked_page,
1393 				   u64 start, u64 end, int *page_started,
1394 				   unsigned long *nr_written, int unlock,
1395 				   u64 *done_offset)
1396 {
1397 	struct btrfs_root *root = inode->root;
1398 	struct btrfs_fs_info *fs_info = root->fs_info;
1399 	u64 alloc_hint = 0;
1400 	u64 orig_start = start;
1401 	u64 num_bytes;
1402 	unsigned long ram_size;
1403 	u64 cur_alloc_size = 0;
1404 	u64 min_alloc_size;
1405 	u64 blocksize = fs_info->sectorsize;
1406 	struct btrfs_key ins;
1407 	struct extent_map *em;
1408 	unsigned clear_bits;
1409 	unsigned long page_ops;
1410 	bool extent_reserved = false;
1411 	int ret = 0;
1412 
1413 	if (btrfs_is_free_space_inode(inode)) {
1414 		ret = -EINVAL;
1415 		goto out_unlock;
1416 	}
1417 
1418 	num_bytes = ALIGN(end - start + 1, blocksize);
1419 	num_bytes = max(blocksize,  num_bytes);
1420 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1421 
1422 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1423 
1424 	/*
1425 	 * Due to the page size limit, for subpage we can only trigger the
1426 	 * writeback for the dirty sectors of page, that means data writeback
1427 	 * is doing more writeback than what we want.
1428 	 *
1429 	 * This is especially unexpected for some call sites like fallocate,
1430 	 * where we only increase i_size after everything is done.
1431 	 * This means we can trigger inline extent even if we didn't want to.
1432 	 * So here we skip inline extent creation completely.
1433 	 */
1434 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1435 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1436 				       end + 1);
1437 
1438 		/* lets try to make an inline extent */
1439 		ret = cow_file_range_inline(inode, actual_end, 0,
1440 					    BTRFS_COMPRESS_NONE, NULL, false);
1441 		if (ret == 0) {
1442 			/*
1443 			 * We use DO_ACCOUNTING here because we need the
1444 			 * delalloc_release_metadata to be run _after_ we drop
1445 			 * our outstanding extent for clearing delalloc for this
1446 			 * range.
1447 			 */
1448 			extent_clear_unlock_delalloc(inode, start, end,
1449 				     locked_page,
1450 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1451 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1452 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1453 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1454 			*nr_written = *nr_written +
1455 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1456 			*page_started = 1;
1457 			/*
1458 			 * locked_page is locked by the caller of
1459 			 * writepage_delalloc(), not locked by
1460 			 * __process_pages_contig().
1461 			 *
1462 			 * We can't let __process_pages_contig() to unlock it,
1463 			 * as it doesn't have any subpage::writers recorded.
1464 			 *
1465 			 * Here we manually unlock the page, since the caller
1466 			 * can't use page_started to determine if it's an
1467 			 * inline extent or a compressed extent.
1468 			 */
1469 			unlock_page(locked_page);
1470 			goto out;
1471 		} else if (ret < 0) {
1472 			goto out_unlock;
1473 		}
1474 	}
1475 
1476 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1477 
1478 	/*
1479 	 * Relocation relies on the relocated extents to have exactly the same
1480 	 * size as the original extents. Normally writeback for relocation data
1481 	 * extents follows a NOCOW path because relocation preallocates the
1482 	 * extents. However, due to an operation such as scrub turning a block
1483 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1484 	 * an extent allocated during COW has exactly the requested size and can
1485 	 * not be split into smaller extents, otherwise relocation breaks and
1486 	 * fails during the stage where it updates the bytenr of file extent
1487 	 * items.
1488 	 */
1489 	if (btrfs_is_data_reloc_root(root))
1490 		min_alloc_size = num_bytes;
1491 	else
1492 		min_alloc_size = fs_info->sectorsize;
1493 
1494 	while (num_bytes > 0) {
1495 		struct btrfs_ordered_extent *ordered;
1496 
1497 		cur_alloc_size = num_bytes;
1498 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1499 					   min_alloc_size, 0, alloc_hint,
1500 					   &ins, 1, 1);
1501 		if (ret < 0)
1502 			goto out_unlock;
1503 		cur_alloc_size = ins.offset;
1504 		extent_reserved = true;
1505 
1506 		ram_size = ins.offset;
1507 		em = create_io_em(inode, start, ins.offset, /* len */
1508 				  start, /* orig_start */
1509 				  ins.objectid, /* block_start */
1510 				  ins.offset, /* block_len */
1511 				  ins.offset, /* orig_block_len */
1512 				  ram_size, /* ram_bytes */
1513 				  BTRFS_COMPRESS_NONE, /* compress_type */
1514 				  BTRFS_ORDERED_REGULAR /* type */);
1515 		if (IS_ERR(em)) {
1516 			ret = PTR_ERR(em);
1517 			goto out_reserve;
1518 		}
1519 		free_extent_map(em);
1520 
1521 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1522 					ram_size, ins.objectid, cur_alloc_size,
1523 					0, 1 << BTRFS_ORDERED_REGULAR,
1524 					BTRFS_COMPRESS_NONE);
1525 		if (IS_ERR(ordered)) {
1526 			ret = PTR_ERR(ordered);
1527 			goto out_drop_extent_cache;
1528 		}
1529 
1530 		if (btrfs_is_data_reloc_root(root)) {
1531 			ret = btrfs_reloc_clone_csums(ordered);
1532 
1533 			/*
1534 			 * Only drop cache here, and process as normal.
1535 			 *
1536 			 * We must not allow extent_clear_unlock_delalloc()
1537 			 * at out_unlock label to free meta of this ordered
1538 			 * extent, as its meta should be freed by
1539 			 * btrfs_finish_ordered_io().
1540 			 *
1541 			 * So we must continue until @start is increased to
1542 			 * skip current ordered extent.
1543 			 */
1544 			if (ret)
1545 				btrfs_drop_extent_map_range(inode, start,
1546 							    start + ram_size - 1,
1547 							    false);
1548 		}
1549 		btrfs_put_ordered_extent(ordered);
1550 
1551 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1552 
1553 		/*
1554 		 * We're not doing compressed IO, don't unlock the first page
1555 		 * (which the caller expects to stay locked), don't clear any
1556 		 * dirty bits and don't set any writeback bits
1557 		 *
1558 		 * Do set the Ordered (Private2) bit so we know this page was
1559 		 * properly setup for writepage.
1560 		 */
1561 		page_ops = unlock ? PAGE_UNLOCK : 0;
1562 		page_ops |= PAGE_SET_ORDERED;
1563 
1564 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1565 					     locked_page,
1566 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1567 					     page_ops);
1568 		if (num_bytes < cur_alloc_size)
1569 			num_bytes = 0;
1570 		else
1571 			num_bytes -= cur_alloc_size;
1572 		alloc_hint = ins.objectid + ins.offset;
1573 		start += cur_alloc_size;
1574 		extent_reserved = false;
1575 
1576 		/*
1577 		 * btrfs_reloc_clone_csums() error, since start is increased
1578 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1579 		 * free metadata of current ordered extent, we're OK to exit.
1580 		 */
1581 		if (ret)
1582 			goto out_unlock;
1583 	}
1584 out:
1585 	return ret;
1586 
1587 out_drop_extent_cache:
1588 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1589 out_reserve:
1590 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1591 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1592 out_unlock:
1593 	/*
1594 	 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1595 	 * caller to write out the successfully allocated region and retry.
1596 	 */
1597 	if (done_offset && ret == -EAGAIN) {
1598 		if (orig_start < start)
1599 			*done_offset = start - 1;
1600 		else
1601 			*done_offset = start;
1602 		return ret;
1603 	} else if (ret == -EAGAIN) {
1604 		/* Convert to -ENOSPC since the caller cannot retry. */
1605 		ret = -ENOSPC;
1606 	}
1607 
1608 	/*
1609 	 * Now, we have three regions to clean up:
1610 	 *
1611 	 * |-------(1)----|---(2)---|-------------(3)----------|
1612 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1613 	 *
1614 	 * We process each region below.
1615 	 */
1616 
1617 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1618 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1619 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1620 
1621 	/*
1622 	 * For the range (1). We have already instantiated the ordered extents
1623 	 * for this region. They are cleaned up by
1624 	 * btrfs_cleanup_ordered_extents() in e.g,
1625 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1626 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1627 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1628 	 * function.
1629 	 *
1630 	 * However, in case of unlock == 0, we still need to unlock the pages
1631 	 * (except @locked_page) to ensure all the pages are unlocked.
1632 	 */
1633 	if (!unlock && orig_start < start) {
1634 		if (!locked_page)
1635 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1636 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1637 					     locked_page, 0, page_ops);
1638 	}
1639 
1640 	/*
1641 	 * For the range (2). If we reserved an extent for our delalloc range
1642 	 * (or a subrange) and failed to create the respective ordered extent,
1643 	 * then it means that when we reserved the extent we decremented the
1644 	 * extent's size from the data space_info's bytes_may_use counter and
1645 	 * incremented the space_info's bytes_reserved counter by the same
1646 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1647 	 * to decrement again the data space_info's bytes_may_use counter,
1648 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1649 	 */
1650 	if (extent_reserved) {
1651 		extent_clear_unlock_delalloc(inode, start,
1652 					     start + cur_alloc_size - 1,
1653 					     locked_page,
1654 					     clear_bits,
1655 					     page_ops);
1656 		start += cur_alloc_size;
1657 		if (start >= end)
1658 			return ret;
1659 	}
1660 
1661 	/*
1662 	 * For the range (3). We never touched the region. In addition to the
1663 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1664 	 * space_info's bytes_may_use counter, reserved in
1665 	 * btrfs_check_data_free_space().
1666 	 */
1667 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1668 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1669 				     page_ops);
1670 	return ret;
1671 }
1672 
1673 /*
1674  * work queue call back to started compression on a file and pages
1675  */
1676 static noinline void async_cow_start(struct btrfs_work *work)
1677 {
1678 	struct async_chunk *async_chunk;
1679 	int compressed_extents;
1680 
1681 	async_chunk = container_of(work, struct async_chunk, work);
1682 
1683 	compressed_extents = compress_file_range(async_chunk);
1684 	if (compressed_extents == 0) {
1685 		btrfs_add_delayed_iput(async_chunk->inode);
1686 		async_chunk->inode = NULL;
1687 	}
1688 }
1689 
1690 /*
1691  * work queue call back to submit previously compressed pages
1692  */
1693 static noinline void async_cow_submit(struct btrfs_work *work)
1694 {
1695 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1696 						     work);
1697 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1698 	unsigned long nr_pages;
1699 
1700 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1701 		PAGE_SHIFT;
1702 
1703 	/*
1704 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1705 	 * in which case we don't have anything to submit, yet we need to
1706 	 * always adjust ->async_delalloc_pages as its paired with the init
1707 	 * happening in run_delalloc_compressed
1708 	 */
1709 	if (async_chunk->inode)
1710 		submit_compressed_extents(async_chunk);
1711 
1712 	/* atomic_sub_return implies a barrier */
1713 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1714 	    5 * SZ_1M)
1715 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1716 }
1717 
1718 static noinline void async_cow_free(struct btrfs_work *work)
1719 {
1720 	struct async_chunk *async_chunk;
1721 	struct async_cow *async_cow;
1722 
1723 	async_chunk = container_of(work, struct async_chunk, work);
1724 	if (async_chunk->inode)
1725 		btrfs_add_delayed_iput(async_chunk->inode);
1726 	if (async_chunk->blkcg_css)
1727 		css_put(async_chunk->blkcg_css);
1728 
1729 	async_cow = async_chunk->async_cow;
1730 	if (atomic_dec_and_test(&async_cow->num_chunks))
1731 		kvfree(async_cow);
1732 }
1733 
1734 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1735 				    struct writeback_control *wbc,
1736 				    struct page *locked_page,
1737 				    u64 start, u64 end, int *page_started,
1738 				    unsigned long *nr_written)
1739 {
1740 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1741 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1742 	struct async_cow *ctx;
1743 	struct async_chunk *async_chunk;
1744 	unsigned long nr_pages;
1745 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1746 	int i;
1747 	unsigned nofs_flag;
1748 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1749 
1750 	nofs_flag = memalloc_nofs_save();
1751 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1752 	memalloc_nofs_restore(nofs_flag);
1753 	if (!ctx)
1754 		return false;
1755 
1756 	unlock_extent(&inode->io_tree, start, end, NULL);
1757 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1758 
1759 	async_chunk = ctx->chunks;
1760 	atomic_set(&ctx->num_chunks, num_chunks);
1761 
1762 	for (i = 0; i < num_chunks; i++) {
1763 		u64 cur_end = min(end, start + SZ_512K - 1);
1764 
1765 		/*
1766 		 * igrab is called higher up in the call chain, take only the
1767 		 * lightweight reference for the callback lifetime
1768 		 */
1769 		ihold(&inode->vfs_inode);
1770 		async_chunk[i].async_cow = ctx;
1771 		async_chunk[i].inode = inode;
1772 		async_chunk[i].start = start;
1773 		async_chunk[i].end = cur_end;
1774 		async_chunk[i].write_flags = write_flags;
1775 		INIT_LIST_HEAD(&async_chunk[i].extents);
1776 
1777 		/*
1778 		 * The locked_page comes all the way from writepage and its
1779 		 * the original page we were actually given.  As we spread
1780 		 * this large delalloc region across multiple async_chunk
1781 		 * structs, only the first struct needs a pointer to locked_page
1782 		 *
1783 		 * This way we don't need racey decisions about who is supposed
1784 		 * to unlock it.
1785 		 */
1786 		if (locked_page) {
1787 			/*
1788 			 * Depending on the compressibility, the pages might or
1789 			 * might not go through async.  We want all of them to
1790 			 * be accounted against wbc once.  Let's do it here
1791 			 * before the paths diverge.  wbc accounting is used
1792 			 * only for foreign writeback detection and doesn't
1793 			 * need full accuracy.  Just account the whole thing
1794 			 * against the first page.
1795 			 */
1796 			wbc_account_cgroup_owner(wbc, locked_page,
1797 						 cur_end - start);
1798 			async_chunk[i].locked_page = locked_page;
1799 			locked_page = NULL;
1800 		} else {
1801 			async_chunk[i].locked_page = NULL;
1802 		}
1803 
1804 		if (blkcg_css != blkcg_root_css) {
1805 			css_get(blkcg_css);
1806 			async_chunk[i].blkcg_css = blkcg_css;
1807 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1808 		} else {
1809 			async_chunk[i].blkcg_css = NULL;
1810 		}
1811 
1812 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1813 				async_cow_submit, async_cow_free);
1814 
1815 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1816 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1817 
1818 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1819 
1820 		*nr_written += nr_pages;
1821 		start = cur_end + 1;
1822 	}
1823 	*page_started = 1;
1824 	return true;
1825 }
1826 
1827 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1828 				       struct page *locked_page, u64 start,
1829 				       u64 end, int *page_started,
1830 				       unsigned long *nr_written,
1831 				       struct writeback_control *wbc)
1832 {
1833 	u64 done_offset = end;
1834 	int ret;
1835 	bool locked_page_done = false;
1836 
1837 	while (start <= end) {
1838 		ret = cow_file_range(inode, locked_page, start, end, page_started,
1839 				     nr_written, 0, &done_offset);
1840 		if (ret && ret != -EAGAIN)
1841 			return ret;
1842 
1843 		if (*page_started) {
1844 			ASSERT(ret == 0);
1845 			return 0;
1846 		}
1847 
1848 		if (ret == 0)
1849 			done_offset = end;
1850 
1851 		if (done_offset == start) {
1852 			wait_on_bit_io(&inode->root->fs_info->flags,
1853 				       BTRFS_FS_NEED_ZONE_FINISH,
1854 				       TASK_UNINTERRUPTIBLE);
1855 			continue;
1856 		}
1857 
1858 		if (!locked_page_done) {
1859 			__set_page_dirty_nobuffers(locked_page);
1860 			account_page_redirty(locked_page);
1861 		}
1862 		locked_page_done = true;
1863 		extent_write_locked_range(&inode->vfs_inode, start, done_offset,
1864 					  wbc);
1865 		start = done_offset + 1;
1866 	}
1867 
1868 	*page_started = 1;
1869 
1870 	return 0;
1871 }
1872 
1873 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1874 					u64 bytenr, u64 num_bytes, bool nowait)
1875 {
1876 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1877 	struct btrfs_ordered_sum *sums;
1878 	int ret;
1879 	LIST_HEAD(list);
1880 
1881 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1882 				      &list, 0, nowait);
1883 	if (ret == 0 && list_empty(&list))
1884 		return 0;
1885 
1886 	while (!list_empty(&list)) {
1887 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1888 		list_del(&sums->list);
1889 		kfree(sums);
1890 	}
1891 	if (ret < 0)
1892 		return ret;
1893 	return 1;
1894 }
1895 
1896 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1897 			   const u64 start, const u64 end,
1898 			   int *page_started, unsigned long *nr_written)
1899 {
1900 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1901 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1902 	const u64 range_bytes = end + 1 - start;
1903 	struct extent_io_tree *io_tree = &inode->io_tree;
1904 	u64 range_start = start;
1905 	u64 count;
1906 
1907 	/*
1908 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1909 	 * made we had not enough available data space and therefore we did not
1910 	 * reserve data space for it, since we though we could do NOCOW for the
1911 	 * respective file range (either there is prealloc extent or the inode
1912 	 * has the NOCOW bit set).
1913 	 *
1914 	 * However when we need to fallback to COW mode (because for example the
1915 	 * block group for the corresponding extent was turned to RO mode by a
1916 	 * scrub or relocation) we need to do the following:
1917 	 *
1918 	 * 1) We increment the bytes_may_use counter of the data space info.
1919 	 *    If COW succeeds, it allocates a new data extent and after doing
1920 	 *    that it decrements the space info's bytes_may_use counter and
1921 	 *    increments its bytes_reserved counter by the same amount (we do
1922 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1923 	 *    bytes_may_use counter to compensate (when space is reserved at
1924 	 *    buffered write time, the bytes_may_use counter is incremented);
1925 	 *
1926 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1927 	 *    that if the COW path fails for any reason, it decrements (through
1928 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1929 	 *    data space info, which we incremented in the step above.
1930 	 *
1931 	 * If we need to fallback to cow and the inode corresponds to a free
1932 	 * space cache inode or an inode of the data relocation tree, we must
1933 	 * also increment bytes_may_use of the data space_info for the same
1934 	 * reason. Space caches and relocated data extents always get a prealloc
1935 	 * extent for them, however scrub or balance may have set the block
1936 	 * group that contains that extent to RO mode and therefore force COW
1937 	 * when starting writeback.
1938 	 */
1939 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1940 				 EXTENT_NORESERVE, 0, NULL);
1941 	if (count > 0 || is_space_ino || is_reloc_ino) {
1942 		u64 bytes = count;
1943 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1944 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1945 
1946 		if (is_space_ino || is_reloc_ino)
1947 			bytes = range_bytes;
1948 
1949 		spin_lock(&sinfo->lock);
1950 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1951 		spin_unlock(&sinfo->lock);
1952 
1953 		if (count > 0)
1954 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1955 					 NULL);
1956 	}
1957 
1958 	return cow_file_range(inode, locked_page, start, end, page_started,
1959 			      nr_written, 1, NULL);
1960 }
1961 
1962 struct can_nocow_file_extent_args {
1963 	/* Input fields. */
1964 
1965 	/* Start file offset of the range we want to NOCOW. */
1966 	u64 start;
1967 	/* End file offset (inclusive) of the range we want to NOCOW. */
1968 	u64 end;
1969 	bool writeback_path;
1970 	bool strict;
1971 	/*
1972 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1973 	 * anymore.
1974 	 */
1975 	bool free_path;
1976 
1977 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1978 
1979 	u64 disk_bytenr;
1980 	u64 disk_num_bytes;
1981 	u64 extent_offset;
1982 	/* Number of bytes that can be written to in NOCOW mode. */
1983 	u64 num_bytes;
1984 };
1985 
1986 /*
1987  * Check if we can NOCOW the file extent that the path points to.
1988  * This function may return with the path released, so the caller should check
1989  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1990  *
1991  * Returns: < 0 on error
1992  *            0 if we can not NOCOW
1993  *            1 if we can NOCOW
1994  */
1995 static int can_nocow_file_extent(struct btrfs_path *path,
1996 				 struct btrfs_key *key,
1997 				 struct btrfs_inode *inode,
1998 				 struct can_nocow_file_extent_args *args)
1999 {
2000 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
2001 	struct extent_buffer *leaf = path->nodes[0];
2002 	struct btrfs_root *root = inode->root;
2003 	struct btrfs_file_extent_item *fi;
2004 	u64 extent_end;
2005 	u8 extent_type;
2006 	int can_nocow = 0;
2007 	int ret = 0;
2008 	bool nowait = path->nowait;
2009 
2010 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
2011 	extent_type = btrfs_file_extent_type(leaf, fi);
2012 
2013 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
2014 		goto out;
2015 
2016 	/* Can't access these fields unless we know it's not an inline extent. */
2017 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2018 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
2019 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
2020 
2021 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
2022 	    extent_type == BTRFS_FILE_EXTENT_REG)
2023 		goto out;
2024 
2025 	/*
2026 	 * If the extent was created before the generation where the last snapshot
2027 	 * for its subvolume was created, then this implies the extent is shared,
2028 	 * hence we must COW.
2029 	 */
2030 	if (!args->strict &&
2031 	    btrfs_file_extent_generation(leaf, fi) <=
2032 	    btrfs_root_last_snapshot(&root->root_item))
2033 		goto out;
2034 
2035 	/* An explicit hole, must COW. */
2036 	if (args->disk_bytenr == 0)
2037 		goto out;
2038 
2039 	/* Compressed/encrypted/encoded extents must be COWed. */
2040 	if (btrfs_file_extent_compression(leaf, fi) ||
2041 	    btrfs_file_extent_encryption(leaf, fi) ||
2042 	    btrfs_file_extent_other_encoding(leaf, fi))
2043 		goto out;
2044 
2045 	extent_end = btrfs_file_extent_end(path);
2046 
2047 	/*
2048 	 * The following checks can be expensive, as they need to take other
2049 	 * locks and do btree or rbtree searches, so release the path to avoid
2050 	 * blocking other tasks for too long.
2051 	 */
2052 	btrfs_release_path(path);
2053 
2054 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
2055 				    key->offset - args->extent_offset,
2056 				    args->disk_bytenr, args->strict, path);
2057 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
2058 	if (ret != 0)
2059 		goto out;
2060 
2061 	if (args->free_path) {
2062 		/*
2063 		 * We don't need the path anymore, plus through the
2064 		 * csum_exist_in_range() call below we will end up allocating
2065 		 * another path. So free the path to avoid unnecessary extra
2066 		 * memory usage.
2067 		 */
2068 		btrfs_free_path(path);
2069 		path = NULL;
2070 	}
2071 
2072 	/* If there are pending snapshots for this root, we must COW. */
2073 	if (args->writeback_path && !is_freespace_inode &&
2074 	    atomic_read(&root->snapshot_force_cow))
2075 		goto out;
2076 
2077 	args->disk_bytenr += args->extent_offset;
2078 	args->disk_bytenr += args->start - key->offset;
2079 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
2080 
2081 	/*
2082 	 * Force COW if csums exist in the range. This ensures that csums for a
2083 	 * given extent are either valid or do not exist.
2084 	 */
2085 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
2086 				  nowait);
2087 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
2088 	if (ret != 0)
2089 		goto out;
2090 
2091 	can_nocow = 1;
2092  out:
2093 	if (args->free_path && path)
2094 		btrfs_free_path(path);
2095 
2096 	return ret < 0 ? ret : can_nocow;
2097 }
2098 
2099 /*
2100  * when nowcow writeback call back.  This checks for snapshots or COW copies
2101  * of the extents that exist in the file, and COWs the file as required.
2102  *
2103  * If no cow copies or snapshots exist, we write directly to the existing
2104  * blocks on disk
2105  */
2106 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
2107 				       struct page *locked_page,
2108 				       const u64 start, const u64 end,
2109 				       int *page_started,
2110 				       unsigned long *nr_written)
2111 {
2112 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2113 	struct btrfs_root *root = inode->root;
2114 	struct btrfs_path *path;
2115 	u64 cow_start = (u64)-1;
2116 	u64 cur_offset = start;
2117 	int ret;
2118 	bool check_prev = true;
2119 	u64 ino = btrfs_ino(inode);
2120 	struct btrfs_block_group *bg;
2121 	bool nocow = false;
2122 	struct can_nocow_file_extent_args nocow_args = { 0 };
2123 
2124 	path = btrfs_alloc_path();
2125 	if (!path) {
2126 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
2127 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2128 					     EXTENT_DO_ACCOUNTING |
2129 					     EXTENT_DEFRAG, PAGE_UNLOCK |
2130 					     PAGE_START_WRITEBACK |
2131 					     PAGE_END_WRITEBACK);
2132 		return -ENOMEM;
2133 	}
2134 
2135 	nocow_args.end = end;
2136 	nocow_args.writeback_path = true;
2137 
2138 	while (1) {
2139 		struct btrfs_ordered_extent *ordered;
2140 		struct btrfs_key found_key;
2141 		struct btrfs_file_extent_item *fi;
2142 		struct extent_buffer *leaf;
2143 		u64 extent_end;
2144 		u64 ram_bytes;
2145 		u64 nocow_end;
2146 		int extent_type;
2147 		bool is_prealloc;
2148 
2149 		nocow = false;
2150 
2151 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2152 					       cur_offset, 0);
2153 		if (ret < 0)
2154 			goto error;
2155 
2156 		/*
2157 		 * If there is no extent for our range when doing the initial
2158 		 * search, then go back to the previous slot as it will be the
2159 		 * one containing the search offset
2160 		 */
2161 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2162 			leaf = path->nodes[0];
2163 			btrfs_item_key_to_cpu(leaf, &found_key,
2164 					      path->slots[0] - 1);
2165 			if (found_key.objectid == ino &&
2166 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2167 				path->slots[0]--;
2168 		}
2169 		check_prev = false;
2170 next_slot:
2171 		/* Go to next leaf if we have exhausted the current one */
2172 		leaf = path->nodes[0];
2173 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2174 			ret = btrfs_next_leaf(root, path);
2175 			if (ret < 0) {
2176 				if (cow_start != (u64)-1)
2177 					cur_offset = cow_start;
2178 				goto error;
2179 			}
2180 			if (ret > 0)
2181 				break;
2182 			leaf = path->nodes[0];
2183 		}
2184 
2185 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2186 
2187 		/* Didn't find anything for our INO */
2188 		if (found_key.objectid > ino)
2189 			break;
2190 		/*
2191 		 * Keep searching until we find an EXTENT_ITEM or there are no
2192 		 * more extents for this inode
2193 		 */
2194 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2195 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2196 			path->slots[0]++;
2197 			goto next_slot;
2198 		}
2199 
2200 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2201 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2202 		    found_key.offset > end)
2203 			break;
2204 
2205 		/*
2206 		 * If the found extent starts after requested offset, then
2207 		 * adjust extent_end to be right before this extent begins
2208 		 */
2209 		if (found_key.offset > cur_offset) {
2210 			extent_end = found_key.offset;
2211 			extent_type = 0;
2212 			goto out_check;
2213 		}
2214 
2215 		/*
2216 		 * Found extent which begins before our range and potentially
2217 		 * intersect it
2218 		 */
2219 		fi = btrfs_item_ptr(leaf, path->slots[0],
2220 				    struct btrfs_file_extent_item);
2221 		extent_type = btrfs_file_extent_type(leaf, fi);
2222 		/* If this is triggered then we have a memory corruption. */
2223 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2224 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2225 			ret = -EUCLEAN;
2226 			goto error;
2227 		}
2228 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2229 		extent_end = btrfs_file_extent_end(path);
2230 
2231 		/*
2232 		 * If the extent we got ends before our current offset, skip to
2233 		 * the next extent.
2234 		 */
2235 		if (extent_end <= cur_offset) {
2236 			path->slots[0]++;
2237 			goto next_slot;
2238 		}
2239 
2240 		nocow_args.start = cur_offset;
2241 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2242 		if (ret < 0) {
2243 			if (cow_start != (u64)-1)
2244 				cur_offset = cow_start;
2245 			goto error;
2246 		} else if (ret == 0) {
2247 			goto out_check;
2248 		}
2249 
2250 		ret = 0;
2251 		bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2252 		if (bg)
2253 			nocow = true;
2254 out_check:
2255 		/*
2256 		 * If nocow is false then record the beginning of the range
2257 		 * that needs to be COWed
2258 		 */
2259 		if (!nocow) {
2260 			if (cow_start == (u64)-1)
2261 				cow_start = cur_offset;
2262 			cur_offset = extent_end;
2263 			if (cur_offset > end)
2264 				break;
2265 			if (!path->nodes[0])
2266 				continue;
2267 			path->slots[0]++;
2268 			goto next_slot;
2269 		}
2270 
2271 		/*
2272 		 * COW range from cow_start to found_key.offset - 1. As the key
2273 		 * will contain the beginning of the first extent that can be
2274 		 * NOCOW, following one which needs to be COW'ed
2275 		 */
2276 		if (cow_start != (u64)-1) {
2277 			ret = fallback_to_cow(inode, locked_page,
2278 					      cow_start, found_key.offset - 1,
2279 					      page_started, nr_written);
2280 			if (ret)
2281 				goto error;
2282 			cow_start = (u64)-1;
2283 		}
2284 
2285 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2286 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2287 		if (is_prealloc) {
2288 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2289 			struct extent_map *em;
2290 
2291 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2292 					  orig_start,
2293 					  nocow_args.disk_bytenr, /* block_start */
2294 					  nocow_args.num_bytes, /* block_len */
2295 					  nocow_args.disk_num_bytes, /* orig_block_len */
2296 					  ram_bytes, BTRFS_COMPRESS_NONE,
2297 					  BTRFS_ORDERED_PREALLOC);
2298 			if (IS_ERR(em)) {
2299 				ret = PTR_ERR(em);
2300 				goto error;
2301 			}
2302 			free_extent_map(em);
2303 		}
2304 
2305 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2306 				nocow_args.num_bytes, nocow_args.num_bytes,
2307 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2308 				is_prealloc
2309 				? (1 << BTRFS_ORDERED_PREALLOC)
2310 				: (1 << BTRFS_ORDERED_NOCOW),
2311 				BTRFS_COMPRESS_NONE);
2312 		if (IS_ERR(ordered)) {
2313 			if (is_prealloc) {
2314 				btrfs_drop_extent_map_range(inode, cur_offset,
2315 							    nocow_end, false);
2316 			}
2317 			ret = PTR_ERR(ordered);
2318 			goto error;
2319 		}
2320 
2321 		if (nocow) {
2322 			btrfs_dec_nocow_writers(bg);
2323 			nocow = false;
2324 		}
2325 
2326 		if (btrfs_is_data_reloc_root(root))
2327 			/*
2328 			 * Error handled later, as we must prevent
2329 			 * extent_clear_unlock_delalloc() in error handler
2330 			 * from freeing metadata of created ordered extent.
2331 			 */
2332 			ret = btrfs_reloc_clone_csums(ordered);
2333 		btrfs_put_ordered_extent(ordered);
2334 
2335 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2336 					     locked_page, EXTENT_LOCKED |
2337 					     EXTENT_DELALLOC |
2338 					     EXTENT_CLEAR_DATA_RESV,
2339 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2340 
2341 		cur_offset = extent_end;
2342 
2343 		/*
2344 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2345 		 * handler, as metadata for created ordered extent will only
2346 		 * be freed by btrfs_finish_ordered_io().
2347 		 */
2348 		if (ret)
2349 			goto error;
2350 		if (cur_offset > end)
2351 			break;
2352 	}
2353 	btrfs_release_path(path);
2354 
2355 	if (cur_offset <= end && cow_start == (u64)-1)
2356 		cow_start = cur_offset;
2357 
2358 	if (cow_start != (u64)-1) {
2359 		cur_offset = end;
2360 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
2361 				      page_started, nr_written);
2362 		if (ret)
2363 			goto error;
2364 	}
2365 
2366 error:
2367 	if (nocow)
2368 		btrfs_dec_nocow_writers(bg);
2369 
2370 	if (ret && cur_offset < end)
2371 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2372 					     locked_page, EXTENT_LOCKED |
2373 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2374 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2375 					     PAGE_START_WRITEBACK |
2376 					     PAGE_END_WRITEBACK);
2377 	btrfs_free_path(path);
2378 	return ret;
2379 }
2380 
2381 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2382 {
2383 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2384 		if (inode->defrag_bytes &&
2385 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2386 				   0, NULL))
2387 			return false;
2388 		return true;
2389 	}
2390 	return false;
2391 }
2392 
2393 /*
2394  * Function to process delayed allocation (create CoW) for ranges which are
2395  * being touched for the first time.
2396  */
2397 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2398 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
2399 		struct writeback_control *wbc)
2400 {
2401 	int ret = 0;
2402 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2403 
2404 	/*
2405 	 * The range must cover part of the @locked_page, or the returned
2406 	 * @page_started can confuse the caller.
2407 	 */
2408 	ASSERT(!(end <= page_offset(locked_page) ||
2409 		 start >= page_offset(locked_page) + PAGE_SIZE));
2410 
2411 	if (should_nocow(inode, start, end)) {
2412 		/*
2413 		 * Normally on a zoned device we're only doing COW writes, but
2414 		 * in case of relocation on a zoned filesystem we have taken
2415 		 * precaution, that we're only writing sequentially. It's safe
2416 		 * to use run_delalloc_nocow() here, like for  regular
2417 		 * preallocated inodes.
2418 		 */
2419 		ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
2420 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2421 					 page_started, nr_written);
2422 		goto out;
2423 	}
2424 
2425 	if (btrfs_inode_can_compress(inode) &&
2426 	    inode_need_compress(inode, start, end) &&
2427 	    run_delalloc_compressed(inode, wbc, locked_page, start,
2428 				    end, page_started, nr_written))
2429 		goto out;
2430 
2431 	if (zoned)
2432 		ret = run_delalloc_zoned(inode, locked_page, start, end,
2433 					 page_started, nr_written, wbc);
2434 	else
2435 		ret = cow_file_range(inode, locked_page, start, end,
2436 				     page_started, nr_written, 1, NULL);
2437 
2438 out:
2439 	ASSERT(ret <= 0);
2440 	if (ret)
2441 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2442 					      end - start + 1);
2443 	return ret;
2444 }
2445 
2446 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2447 				 struct extent_state *orig, u64 split)
2448 {
2449 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2450 	u64 size;
2451 
2452 	/* not delalloc, ignore it */
2453 	if (!(orig->state & EXTENT_DELALLOC))
2454 		return;
2455 
2456 	size = orig->end - orig->start + 1;
2457 	if (size > fs_info->max_extent_size) {
2458 		u32 num_extents;
2459 		u64 new_size;
2460 
2461 		/*
2462 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2463 		 * applies here, just in reverse.
2464 		 */
2465 		new_size = orig->end - split + 1;
2466 		num_extents = count_max_extents(fs_info, new_size);
2467 		new_size = split - orig->start;
2468 		num_extents += count_max_extents(fs_info, new_size);
2469 		if (count_max_extents(fs_info, size) >= num_extents)
2470 			return;
2471 	}
2472 
2473 	spin_lock(&inode->lock);
2474 	btrfs_mod_outstanding_extents(inode, 1);
2475 	spin_unlock(&inode->lock);
2476 }
2477 
2478 /*
2479  * Handle merged delayed allocation extents so we can keep track of new extents
2480  * that are just merged onto old extents, such as when we are doing sequential
2481  * writes, so we can properly account for the metadata space we'll need.
2482  */
2483 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2484 				 struct extent_state *other)
2485 {
2486 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2487 	u64 new_size, old_size;
2488 	u32 num_extents;
2489 
2490 	/* not delalloc, ignore it */
2491 	if (!(other->state & EXTENT_DELALLOC))
2492 		return;
2493 
2494 	if (new->start > other->start)
2495 		new_size = new->end - other->start + 1;
2496 	else
2497 		new_size = other->end - new->start + 1;
2498 
2499 	/* we're not bigger than the max, unreserve the space and go */
2500 	if (new_size <= fs_info->max_extent_size) {
2501 		spin_lock(&inode->lock);
2502 		btrfs_mod_outstanding_extents(inode, -1);
2503 		spin_unlock(&inode->lock);
2504 		return;
2505 	}
2506 
2507 	/*
2508 	 * We have to add up either side to figure out how many extents were
2509 	 * accounted for before we merged into one big extent.  If the number of
2510 	 * extents we accounted for is <= the amount we need for the new range
2511 	 * then we can return, otherwise drop.  Think of it like this
2512 	 *
2513 	 * [ 4k][MAX_SIZE]
2514 	 *
2515 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2516 	 * need 2 outstanding extents, on one side we have 1 and the other side
2517 	 * we have 1 so they are == and we can return.  But in this case
2518 	 *
2519 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2520 	 *
2521 	 * Each range on their own accounts for 2 extents, but merged together
2522 	 * they are only 3 extents worth of accounting, so we need to drop in
2523 	 * this case.
2524 	 */
2525 	old_size = other->end - other->start + 1;
2526 	num_extents = count_max_extents(fs_info, old_size);
2527 	old_size = new->end - new->start + 1;
2528 	num_extents += count_max_extents(fs_info, old_size);
2529 	if (count_max_extents(fs_info, new_size) >= num_extents)
2530 		return;
2531 
2532 	spin_lock(&inode->lock);
2533 	btrfs_mod_outstanding_extents(inode, -1);
2534 	spin_unlock(&inode->lock);
2535 }
2536 
2537 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2538 				      struct btrfs_inode *inode)
2539 {
2540 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2541 
2542 	spin_lock(&root->delalloc_lock);
2543 	if (list_empty(&inode->delalloc_inodes)) {
2544 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2545 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2546 		root->nr_delalloc_inodes++;
2547 		if (root->nr_delalloc_inodes == 1) {
2548 			spin_lock(&fs_info->delalloc_root_lock);
2549 			BUG_ON(!list_empty(&root->delalloc_root));
2550 			list_add_tail(&root->delalloc_root,
2551 				      &fs_info->delalloc_roots);
2552 			spin_unlock(&fs_info->delalloc_root_lock);
2553 		}
2554 	}
2555 	spin_unlock(&root->delalloc_lock);
2556 }
2557 
2558 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2559 				struct btrfs_inode *inode)
2560 {
2561 	struct btrfs_fs_info *fs_info = root->fs_info;
2562 
2563 	if (!list_empty(&inode->delalloc_inodes)) {
2564 		list_del_init(&inode->delalloc_inodes);
2565 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2566 			  &inode->runtime_flags);
2567 		root->nr_delalloc_inodes--;
2568 		if (!root->nr_delalloc_inodes) {
2569 			ASSERT(list_empty(&root->delalloc_inodes));
2570 			spin_lock(&fs_info->delalloc_root_lock);
2571 			BUG_ON(list_empty(&root->delalloc_root));
2572 			list_del_init(&root->delalloc_root);
2573 			spin_unlock(&fs_info->delalloc_root_lock);
2574 		}
2575 	}
2576 }
2577 
2578 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2579 				     struct btrfs_inode *inode)
2580 {
2581 	spin_lock(&root->delalloc_lock);
2582 	__btrfs_del_delalloc_inode(root, inode);
2583 	spin_unlock(&root->delalloc_lock);
2584 }
2585 
2586 /*
2587  * Properly track delayed allocation bytes in the inode and to maintain the
2588  * list of inodes that have pending delalloc work to be done.
2589  */
2590 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2591 			       u32 bits)
2592 {
2593 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2594 
2595 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2596 		WARN_ON(1);
2597 	/*
2598 	 * set_bit and clear bit hooks normally require _irqsave/restore
2599 	 * but in this case, we are only testing for the DELALLOC
2600 	 * bit, which is only set or cleared with irqs on
2601 	 */
2602 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2603 		struct btrfs_root *root = inode->root;
2604 		u64 len = state->end + 1 - state->start;
2605 		u32 num_extents = count_max_extents(fs_info, len);
2606 		bool do_list = !btrfs_is_free_space_inode(inode);
2607 
2608 		spin_lock(&inode->lock);
2609 		btrfs_mod_outstanding_extents(inode, num_extents);
2610 		spin_unlock(&inode->lock);
2611 
2612 		/* For sanity tests */
2613 		if (btrfs_is_testing(fs_info))
2614 			return;
2615 
2616 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2617 					 fs_info->delalloc_batch);
2618 		spin_lock(&inode->lock);
2619 		inode->delalloc_bytes += len;
2620 		if (bits & EXTENT_DEFRAG)
2621 			inode->defrag_bytes += len;
2622 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2623 					 &inode->runtime_flags))
2624 			btrfs_add_delalloc_inodes(root, inode);
2625 		spin_unlock(&inode->lock);
2626 	}
2627 
2628 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2629 	    (bits & EXTENT_DELALLOC_NEW)) {
2630 		spin_lock(&inode->lock);
2631 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2632 		spin_unlock(&inode->lock);
2633 	}
2634 }
2635 
2636 /*
2637  * Once a range is no longer delalloc this function ensures that proper
2638  * accounting happens.
2639  */
2640 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2641 				 struct extent_state *state, u32 bits)
2642 {
2643 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2644 	u64 len = state->end + 1 - state->start;
2645 	u32 num_extents = count_max_extents(fs_info, len);
2646 
2647 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2648 		spin_lock(&inode->lock);
2649 		inode->defrag_bytes -= len;
2650 		spin_unlock(&inode->lock);
2651 	}
2652 
2653 	/*
2654 	 * set_bit and clear bit hooks normally require _irqsave/restore
2655 	 * but in this case, we are only testing for the DELALLOC
2656 	 * bit, which is only set or cleared with irqs on
2657 	 */
2658 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2659 		struct btrfs_root *root = inode->root;
2660 		bool do_list = !btrfs_is_free_space_inode(inode);
2661 
2662 		spin_lock(&inode->lock);
2663 		btrfs_mod_outstanding_extents(inode, -num_extents);
2664 		spin_unlock(&inode->lock);
2665 
2666 		/*
2667 		 * We don't reserve metadata space for space cache inodes so we
2668 		 * don't need to call delalloc_release_metadata if there is an
2669 		 * error.
2670 		 */
2671 		if (bits & EXTENT_CLEAR_META_RESV &&
2672 		    root != fs_info->tree_root)
2673 			btrfs_delalloc_release_metadata(inode, len, false);
2674 
2675 		/* For sanity tests. */
2676 		if (btrfs_is_testing(fs_info))
2677 			return;
2678 
2679 		if (!btrfs_is_data_reloc_root(root) &&
2680 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2681 		    (bits & EXTENT_CLEAR_DATA_RESV))
2682 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2683 
2684 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2685 					 fs_info->delalloc_batch);
2686 		spin_lock(&inode->lock);
2687 		inode->delalloc_bytes -= len;
2688 		if (do_list && inode->delalloc_bytes == 0 &&
2689 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2690 					&inode->runtime_flags))
2691 			btrfs_del_delalloc_inode(root, inode);
2692 		spin_unlock(&inode->lock);
2693 	}
2694 
2695 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2696 	    (bits & EXTENT_DELALLOC_NEW)) {
2697 		spin_lock(&inode->lock);
2698 		ASSERT(inode->new_delalloc_bytes >= len);
2699 		inode->new_delalloc_bytes -= len;
2700 		if (bits & EXTENT_ADD_INODE_BYTES)
2701 			inode_add_bytes(&inode->vfs_inode, len);
2702 		spin_unlock(&inode->lock);
2703 	}
2704 }
2705 
2706 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2707 					struct btrfs_ordered_extent *ordered)
2708 {
2709 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2710 	u64 len = bbio->bio.bi_iter.bi_size;
2711 	struct btrfs_ordered_extent *new;
2712 	int ret;
2713 
2714 	/* Must always be called for the beginning of an ordered extent. */
2715 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2716 		return -EINVAL;
2717 
2718 	/* No need to split if the ordered extent covers the entire bio. */
2719 	if (ordered->disk_num_bytes == len) {
2720 		refcount_inc(&ordered->refs);
2721 		bbio->ordered = ordered;
2722 		return 0;
2723 	}
2724 
2725 	/*
2726 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2727 	 * a pre-existing one.
2728 	 */
2729 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2730 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2731 				       ordered->num_bytes, len,
2732 				       ordered->disk_bytenr);
2733 		if (ret)
2734 			return ret;
2735 	}
2736 
2737 	new = btrfs_split_ordered_extent(ordered, len);
2738 	if (IS_ERR(new))
2739 		return PTR_ERR(new);
2740 	bbio->ordered = new;
2741 	return 0;
2742 }
2743 
2744 /*
2745  * given a list of ordered sums record them in the inode.  This happens
2746  * at IO completion time based on sums calculated at bio submission time.
2747  */
2748 static int add_pending_csums(struct btrfs_trans_handle *trans,
2749 			     struct list_head *list)
2750 {
2751 	struct btrfs_ordered_sum *sum;
2752 	struct btrfs_root *csum_root = NULL;
2753 	int ret;
2754 
2755 	list_for_each_entry(sum, list, list) {
2756 		trans->adding_csums = true;
2757 		if (!csum_root)
2758 			csum_root = btrfs_csum_root(trans->fs_info,
2759 						    sum->logical);
2760 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2761 		trans->adding_csums = false;
2762 		if (ret)
2763 			return ret;
2764 	}
2765 	return 0;
2766 }
2767 
2768 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2769 					 const u64 start,
2770 					 const u64 len,
2771 					 struct extent_state **cached_state)
2772 {
2773 	u64 search_start = start;
2774 	const u64 end = start + len - 1;
2775 
2776 	while (search_start < end) {
2777 		const u64 search_len = end - search_start + 1;
2778 		struct extent_map *em;
2779 		u64 em_len;
2780 		int ret = 0;
2781 
2782 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2783 		if (IS_ERR(em))
2784 			return PTR_ERR(em);
2785 
2786 		if (em->block_start != EXTENT_MAP_HOLE)
2787 			goto next;
2788 
2789 		em_len = em->len;
2790 		if (em->start < search_start)
2791 			em_len -= search_start - em->start;
2792 		if (em_len > search_len)
2793 			em_len = search_len;
2794 
2795 		ret = set_extent_bit(&inode->io_tree, search_start,
2796 				     search_start + em_len - 1,
2797 				     EXTENT_DELALLOC_NEW, cached_state);
2798 next:
2799 		search_start = extent_map_end(em);
2800 		free_extent_map(em);
2801 		if (ret)
2802 			return ret;
2803 	}
2804 	return 0;
2805 }
2806 
2807 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2808 			      unsigned int extra_bits,
2809 			      struct extent_state **cached_state)
2810 {
2811 	WARN_ON(PAGE_ALIGNED(end));
2812 
2813 	if (start >= i_size_read(&inode->vfs_inode) &&
2814 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2815 		/*
2816 		 * There can't be any extents following eof in this case so just
2817 		 * set the delalloc new bit for the range directly.
2818 		 */
2819 		extra_bits |= EXTENT_DELALLOC_NEW;
2820 	} else {
2821 		int ret;
2822 
2823 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2824 						    end + 1 - start,
2825 						    cached_state);
2826 		if (ret)
2827 			return ret;
2828 	}
2829 
2830 	return set_extent_bit(&inode->io_tree, start, end,
2831 			      EXTENT_DELALLOC | extra_bits, cached_state);
2832 }
2833 
2834 /* see btrfs_writepage_start_hook for details on why this is required */
2835 struct btrfs_writepage_fixup {
2836 	struct page *page;
2837 	struct btrfs_inode *inode;
2838 	struct btrfs_work work;
2839 };
2840 
2841 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2842 {
2843 	struct btrfs_writepage_fixup *fixup;
2844 	struct btrfs_ordered_extent *ordered;
2845 	struct extent_state *cached_state = NULL;
2846 	struct extent_changeset *data_reserved = NULL;
2847 	struct page *page;
2848 	struct btrfs_inode *inode;
2849 	u64 page_start;
2850 	u64 page_end;
2851 	int ret = 0;
2852 	bool free_delalloc_space = true;
2853 
2854 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2855 	page = fixup->page;
2856 	inode = fixup->inode;
2857 	page_start = page_offset(page);
2858 	page_end = page_offset(page) + PAGE_SIZE - 1;
2859 
2860 	/*
2861 	 * This is similar to page_mkwrite, we need to reserve the space before
2862 	 * we take the page lock.
2863 	 */
2864 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2865 					   PAGE_SIZE);
2866 again:
2867 	lock_page(page);
2868 
2869 	/*
2870 	 * Before we queued this fixup, we took a reference on the page.
2871 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2872 	 * address space.
2873 	 */
2874 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2875 		/*
2876 		 * Unfortunately this is a little tricky, either
2877 		 *
2878 		 * 1) We got here and our page had already been dealt with and
2879 		 *    we reserved our space, thus ret == 0, so we need to just
2880 		 *    drop our space reservation and bail.  This can happen the
2881 		 *    first time we come into the fixup worker, or could happen
2882 		 *    while waiting for the ordered extent.
2883 		 * 2) Our page was already dealt with, but we happened to get an
2884 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2885 		 *    this case we obviously don't have anything to release, but
2886 		 *    because the page was already dealt with we don't want to
2887 		 *    mark the page with an error, so make sure we're resetting
2888 		 *    ret to 0.  This is why we have this check _before_ the ret
2889 		 *    check, because we do not want to have a surprise ENOSPC
2890 		 *    when the page was already properly dealt with.
2891 		 */
2892 		if (!ret) {
2893 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2894 			btrfs_delalloc_release_space(inode, data_reserved,
2895 						     page_start, PAGE_SIZE,
2896 						     true);
2897 		}
2898 		ret = 0;
2899 		goto out_page;
2900 	}
2901 
2902 	/*
2903 	 * We can't mess with the page state unless it is locked, so now that
2904 	 * it is locked bail if we failed to make our space reservation.
2905 	 */
2906 	if (ret)
2907 		goto out_page;
2908 
2909 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2910 
2911 	/* already ordered? We're done */
2912 	if (PageOrdered(page))
2913 		goto out_reserved;
2914 
2915 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2916 	if (ordered) {
2917 		unlock_extent(&inode->io_tree, page_start, page_end,
2918 			      &cached_state);
2919 		unlock_page(page);
2920 		btrfs_start_ordered_extent(ordered);
2921 		btrfs_put_ordered_extent(ordered);
2922 		goto again;
2923 	}
2924 
2925 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2926 					&cached_state);
2927 	if (ret)
2928 		goto out_reserved;
2929 
2930 	/*
2931 	 * Everything went as planned, we're now the owner of a dirty page with
2932 	 * delayed allocation bits set and space reserved for our COW
2933 	 * destination.
2934 	 *
2935 	 * The page was dirty when we started, nothing should have cleaned it.
2936 	 */
2937 	BUG_ON(!PageDirty(page));
2938 	free_delalloc_space = false;
2939 out_reserved:
2940 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2941 	if (free_delalloc_space)
2942 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2943 					     PAGE_SIZE, true);
2944 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2945 out_page:
2946 	if (ret) {
2947 		/*
2948 		 * We hit ENOSPC or other errors.  Update the mapping and page
2949 		 * to reflect the errors and clean the page.
2950 		 */
2951 		mapping_set_error(page->mapping, ret);
2952 		end_extent_writepage(page, ret, page_start, page_end);
2953 		clear_page_dirty_for_io(page);
2954 	}
2955 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2956 	unlock_page(page);
2957 	put_page(page);
2958 	kfree(fixup);
2959 	extent_changeset_free(data_reserved);
2960 	/*
2961 	 * As a precaution, do a delayed iput in case it would be the last iput
2962 	 * that could need flushing space. Recursing back to fixup worker would
2963 	 * deadlock.
2964 	 */
2965 	btrfs_add_delayed_iput(inode);
2966 }
2967 
2968 /*
2969  * There are a few paths in the higher layers of the kernel that directly
2970  * set the page dirty bit without asking the filesystem if it is a
2971  * good idea.  This causes problems because we want to make sure COW
2972  * properly happens and the data=ordered rules are followed.
2973  *
2974  * In our case any range that doesn't have the ORDERED bit set
2975  * hasn't been properly setup for IO.  We kick off an async process
2976  * to fix it up.  The async helper will wait for ordered extents, set
2977  * the delalloc bit and make it safe to write the page.
2978  */
2979 int btrfs_writepage_cow_fixup(struct page *page)
2980 {
2981 	struct inode *inode = page->mapping->host;
2982 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2983 	struct btrfs_writepage_fixup *fixup;
2984 
2985 	/* This page has ordered extent covering it already */
2986 	if (PageOrdered(page))
2987 		return 0;
2988 
2989 	/*
2990 	 * PageChecked is set below when we create a fixup worker for this page,
2991 	 * don't try to create another one if we're already PageChecked()
2992 	 *
2993 	 * The extent_io writepage code will redirty the page if we send back
2994 	 * EAGAIN.
2995 	 */
2996 	if (PageChecked(page))
2997 		return -EAGAIN;
2998 
2999 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3000 	if (!fixup)
3001 		return -EAGAIN;
3002 
3003 	/*
3004 	 * We are already holding a reference to this inode from
3005 	 * write_cache_pages.  We need to hold it because the space reservation
3006 	 * takes place outside of the page lock, and we can't trust
3007 	 * page->mapping outside of the page lock.
3008 	 */
3009 	ihold(inode);
3010 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
3011 	get_page(page);
3012 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
3013 	fixup->page = page;
3014 	fixup->inode = BTRFS_I(inode);
3015 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
3016 
3017 	return -EAGAIN;
3018 }
3019 
3020 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
3021 				       struct btrfs_inode *inode, u64 file_pos,
3022 				       struct btrfs_file_extent_item *stack_fi,
3023 				       const bool update_inode_bytes,
3024 				       u64 qgroup_reserved)
3025 {
3026 	struct btrfs_root *root = inode->root;
3027 	const u64 sectorsize = root->fs_info->sectorsize;
3028 	struct btrfs_path *path;
3029 	struct extent_buffer *leaf;
3030 	struct btrfs_key ins;
3031 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3032 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
3033 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
3034 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3035 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
3036 	struct btrfs_drop_extents_args drop_args = { 0 };
3037 	int ret;
3038 
3039 	path = btrfs_alloc_path();
3040 	if (!path)
3041 		return -ENOMEM;
3042 
3043 	/*
3044 	 * we may be replacing one extent in the tree with another.
3045 	 * The new extent is pinned in the extent map, and we don't want
3046 	 * to drop it from the cache until it is completely in the btree.
3047 	 *
3048 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
3049 	 * the caller is expected to unpin it and allow it to be merged
3050 	 * with the others.
3051 	 */
3052 	drop_args.path = path;
3053 	drop_args.start = file_pos;
3054 	drop_args.end = file_pos + num_bytes;
3055 	drop_args.replace_extent = true;
3056 	drop_args.extent_item_size = sizeof(*stack_fi);
3057 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
3058 	if (ret)
3059 		goto out;
3060 
3061 	if (!drop_args.extent_inserted) {
3062 		ins.objectid = btrfs_ino(inode);
3063 		ins.offset = file_pos;
3064 		ins.type = BTRFS_EXTENT_DATA_KEY;
3065 
3066 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
3067 					      sizeof(*stack_fi));
3068 		if (ret)
3069 			goto out;
3070 	}
3071 	leaf = path->nodes[0];
3072 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3073 	write_extent_buffer(leaf, stack_fi,
3074 			btrfs_item_ptr_offset(leaf, path->slots[0]),
3075 			sizeof(struct btrfs_file_extent_item));
3076 
3077 	btrfs_mark_buffer_dirty(leaf);
3078 	btrfs_release_path(path);
3079 
3080 	/*
3081 	 * If we dropped an inline extent here, we know the range where it is
3082 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
3083 	 * number of bytes only for that range containing the inline extent.
3084 	 * The remaining of the range will be processed when clearning the
3085 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3086 	 */
3087 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3088 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3089 
3090 		inline_size = drop_args.bytes_found - inline_size;
3091 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3092 		drop_args.bytes_found -= inline_size;
3093 		num_bytes -= sectorsize;
3094 	}
3095 
3096 	if (update_inode_bytes)
3097 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
3098 
3099 	ins.objectid = disk_bytenr;
3100 	ins.offset = disk_num_bytes;
3101 	ins.type = BTRFS_EXTENT_ITEM_KEY;
3102 
3103 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
3104 	if (ret)
3105 		goto out;
3106 
3107 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
3108 					       file_pos - offset,
3109 					       qgroup_reserved, &ins);
3110 out:
3111 	btrfs_free_path(path);
3112 
3113 	return ret;
3114 }
3115 
3116 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
3117 					 u64 start, u64 len)
3118 {
3119 	struct btrfs_block_group *cache;
3120 
3121 	cache = btrfs_lookup_block_group(fs_info, start);
3122 	ASSERT(cache);
3123 
3124 	spin_lock(&cache->lock);
3125 	cache->delalloc_bytes -= len;
3126 	spin_unlock(&cache->lock);
3127 
3128 	btrfs_put_block_group(cache);
3129 }
3130 
3131 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3132 					     struct btrfs_ordered_extent *oe)
3133 {
3134 	struct btrfs_file_extent_item stack_fi;
3135 	bool update_inode_bytes;
3136 	u64 num_bytes = oe->num_bytes;
3137 	u64 ram_bytes = oe->ram_bytes;
3138 
3139 	memset(&stack_fi, 0, sizeof(stack_fi));
3140 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3141 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3142 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3143 						   oe->disk_num_bytes);
3144 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3145 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3146 		num_bytes = oe->truncated_len;
3147 		ram_bytes = num_bytes;
3148 	}
3149 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3150 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3151 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3152 	/* Encryption and other encoding is reserved and all 0 */
3153 
3154 	/*
3155 	 * For delalloc, when completing an ordered extent we update the inode's
3156 	 * bytes when clearing the range in the inode's io tree, so pass false
3157 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3158 	 * except if the ordered extent was truncated.
3159 	 */
3160 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3161 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3162 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3163 
3164 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3165 					   oe->file_offset, &stack_fi,
3166 					   update_inode_bytes, oe->qgroup_rsv);
3167 }
3168 
3169 /*
3170  * As ordered data IO finishes, this gets called so we can finish
3171  * an ordered extent if the range of bytes in the file it covers are
3172  * fully written.
3173  */
3174 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3175 {
3176 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3177 	struct btrfs_root *root = inode->root;
3178 	struct btrfs_fs_info *fs_info = root->fs_info;
3179 	struct btrfs_trans_handle *trans = NULL;
3180 	struct extent_io_tree *io_tree = &inode->io_tree;
3181 	struct extent_state *cached_state = NULL;
3182 	u64 start, end;
3183 	int compress_type = 0;
3184 	int ret = 0;
3185 	u64 logical_len = ordered_extent->num_bytes;
3186 	bool freespace_inode;
3187 	bool truncated = false;
3188 	bool clear_reserved_extent = true;
3189 	unsigned int clear_bits = EXTENT_DEFRAG;
3190 
3191 	start = ordered_extent->file_offset;
3192 	end = start + ordered_extent->num_bytes - 1;
3193 
3194 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3195 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3196 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3197 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3198 		clear_bits |= EXTENT_DELALLOC_NEW;
3199 
3200 	freespace_inode = btrfs_is_free_space_inode(inode);
3201 	if (!freespace_inode)
3202 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3203 
3204 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3205 		ret = -EIO;
3206 		goto out;
3207 	}
3208 
3209 	if (btrfs_is_zoned(fs_info))
3210 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3211 					ordered_extent->disk_num_bytes);
3212 
3213 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3214 		truncated = true;
3215 		logical_len = ordered_extent->truncated_len;
3216 		/* Truncated the entire extent, don't bother adding */
3217 		if (!logical_len)
3218 			goto out;
3219 	}
3220 
3221 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3222 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3223 
3224 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3225 		if (freespace_inode)
3226 			trans = btrfs_join_transaction_spacecache(root);
3227 		else
3228 			trans = btrfs_join_transaction(root);
3229 		if (IS_ERR(trans)) {
3230 			ret = PTR_ERR(trans);
3231 			trans = NULL;
3232 			goto out;
3233 		}
3234 		trans->block_rsv = &inode->block_rsv;
3235 		ret = btrfs_update_inode_fallback(trans, root, inode);
3236 		if (ret) /* -ENOMEM or corruption */
3237 			btrfs_abort_transaction(trans, ret);
3238 		goto out;
3239 	}
3240 
3241 	clear_bits |= EXTENT_LOCKED;
3242 	lock_extent(io_tree, start, end, &cached_state);
3243 
3244 	if (freespace_inode)
3245 		trans = btrfs_join_transaction_spacecache(root);
3246 	else
3247 		trans = btrfs_join_transaction(root);
3248 	if (IS_ERR(trans)) {
3249 		ret = PTR_ERR(trans);
3250 		trans = NULL;
3251 		goto out;
3252 	}
3253 
3254 	trans->block_rsv = &inode->block_rsv;
3255 
3256 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3257 		compress_type = ordered_extent->compress_type;
3258 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3259 		BUG_ON(compress_type);
3260 		ret = btrfs_mark_extent_written(trans, inode,
3261 						ordered_extent->file_offset,
3262 						ordered_extent->file_offset +
3263 						logical_len);
3264 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3265 						  ordered_extent->disk_num_bytes);
3266 	} else {
3267 		BUG_ON(root == fs_info->tree_root);
3268 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3269 		if (!ret) {
3270 			clear_reserved_extent = false;
3271 			btrfs_release_delalloc_bytes(fs_info,
3272 						ordered_extent->disk_bytenr,
3273 						ordered_extent->disk_num_bytes);
3274 		}
3275 	}
3276 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3277 			   ordered_extent->num_bytes, trans->transid);
3278 	if (ret < 0) {
3279 		btrfs_abort_transaction(trans, ret);
3280 		goto out;
3281 	}
3282 
3283 	ret = add_pending_csums(trans, &ordered_extent->list);
3284 	if (ret) {
3285 		btrfs_abort_transaction(trans, ret);
3286 		goto out;
3287 	}
3288 
3289 	/*
3290 	 * If this is a new delalloc range, clear its new delalloc flag to
3291 	 * update the inode's number of bytes. This needs to be done first
3292 	 * before updating the inode item.
3293 	 */
3294 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3295 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3296 		clear_extent_bit(&inode->io_tree, start, end,
3297 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3298 				 &cached_state);
3299 
3300 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3301 	ret = btrfs_update_inode_fallback(trans, root, inode);
3302 	if (ret) { /* -ENOMEM or corruption */
3303 		btrfs_abort_transaction(trans, ret);
3304 		goto out;
3305 	}
3306 	ret = 0;
3307 out:
3308 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3309 			 &cached_state);
3310 
3311 	if (trans)
3312 		btrfs_end_transaction(trans);
3313 
3314 	if (ret || truncated) {
3315 		u64 unwritten_start = start;
3316 
3317 		/*
3318 		 * If we failed to finish this ordered extent for any reason we
3319 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3320 		 * extent, and mark the inode with the error if it wasn't
3321 		 * already set.  Any error during writeback would have already
3322 		 * set the mapping error, so we need to set it if we're the ones
3323 		 * marking this ordered extent as failed.
3324 		 */
3325 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3326 					     &ordered_extent->flags))
3327 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3328 
3329 		if (truncated)
3330 			unwritten_start += logical_len;
3331 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3332 
3333 		/* Drop extent maps for the part of the extent we didn't write. */
3334 		btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
3335 
3336 		/*
3337 		 * If the ordered extent had an IOERR or something else went
3338 		 * wrong we need to return the space for this ordered extent
3339 		 * back to the allocator.  We only free the extent in the
3340 		 * truncated case if we didn't write out the extent at all.
3341 		 *
3342 		 * If we made it past insert_reserved_file_extent before we
3343 		 * errored out then we don't need to do this as the accounting
3344 		 * has already been done.
3345 		 */
3346 		if ((ret || !logical_len) &&
3347 		    clear_reserved_extent &&
3348 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3349 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3350 			/*
3351 			 * Discard the range before returning it back to the
3352 			 * free space pool
3353 			 */
3354 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3355 				btrfs_discard_extent(fs_info,
3356 						ordered_extent->disk_bytenr,
3357 						ordered_extent->disk_num_bytes,
3358 						NULL);
3359 			btrfs_free_reserved_extent(fs_info,
3360 					ordered_extent->disk_bytenr,
3361 					ordered_extent->disk_num_bytes, 1);
3362 		}
3363 	}
3364 
3365 	/*
3366 	 * This needs to be done to make sure anybody waiting knows we are done
3367 	 * updating everything for this ordered extent.
3368 	 */
3369 	btrfs_remove_ordered_extent(inode, ordered_extent);
3370 
3371 	/* once for us */
3372 	btrfs_put_ordered_extent(ordered_extent);
3373 	/* once for the tree */
3374 	btrfs_put_ordered_extent(ordered_extent);
3375 
3376 	return ret;
3377 }
3378 
3379 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3380 {
3381 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3382 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
3383 		btrfs_finish_ordered_zoned(ordered);
3384 	return btrfs_finish_one_ordered(ordered);
3385 }
3386 
3387 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3388 					  struct page *page, u64 start,
3389 					  u64 end, bool uptodate)
3390 {
3391 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3392 
3393 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
3394 }
3395 
3396 /*
3397  * Verify the checksum for a single sector without any extra action that depend
3398  * on the type of I/O.
3399  */
3400 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3401 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3402 {
3403 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3404 	char *kaddr;
3405 
3406 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3407 
3408 	shash->tfm = fs_info->csum_shash;
3409 
3410 	kaddr = kmap_local_page(page) + pgoff;
3411 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3412 	kunmap_local(kaddr);
3413 
3414 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3415 		return -EIO;
3416 	return 0;
3417 }
3418 
3419 /*
3420  * Verify the checksum of a single data sector.
3421  *
3422  * @bbio:	btrfs_io_bio which contains the csum
3423  * @dev:	device the sector is on
3424  * @bio_offset:	offset to the beginning of the bio (in bytes)
3425  * @bv:		bio_vec to check
3426  *
3427  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3428  * detected, report the error and fill the corrupted range with zero.
3429  *
3430  * Return %true if the sector is ok or had no checksum to start with, else %false.
3431  */
3432 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3433 			u32 bio_offset, struct bio_vec *bv)
3434 {
3435 	struct btrfs_inode *inode = bbio->inode;
3436 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3437 	u64 file_offset = bbio->file_offset + bio_offset;
3438 	u64 end = file_offset + bv->bv_len - 1;
3439 	u8 *csum_expected;
3440 	u8 csum[BTRFS_CSUM_SIZE];
3441 
3442 	ASSERT(bv->bv_len == fs_info->sectorsize);
3443 
3444 	if (!bbio->csum)
3445 		return true;
3446 
3447 	if (btrfs_is_data_reloc_root(inode->root) &&
3448 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3449 			   1, NULL)) {
3450 		/* Skip the range without csum for data reloc inode */
3451 		clear_extent_bits(&inode->io_tree, file_offset, end,
3452 				  EXTENT_NODATASUM);
3453 		return true;
3454 	}
3455 
3456 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3457 				fs_info->csum_size;
3458 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3459 				    csum_expected))
3460 		goto zeroit;
3461 	return true;
3462 
3463 zeroit:
3464 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3465 				    bbio->mirror_num);
3466 	if (dev)
3467 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3468 	memzero_bvec(bv);
3469 	return false;
3470 }
3471 
3472 /*
3473  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3474  *
3475  * @inode: The inode we want to perform iput on
3476  *
3477  * This function uses the generic vfs_inode::i_count to track whether we should
3478  * just decrement it (in case it's > 1) or if this is the last iput then link
3479  * the inode to the delayed iput machinery. Delayed iputs are processed at
3480  * transaction commit time/superblock commit/cleaner kthread.
3481  */
3482 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3483 {
3484 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3485 	unsigned long flags;
3486 
3487 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3488 		return;
3489 
3490 	atomic_inc(&fs_info->nr_delayed_iputs);
3491 	/*
3492 	 * Need to be irq safe here because we can be called from either an irq
3493 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3494 	 * context.
3495 	 */
3496 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3497 	ASSERT(list_empty(&inode->delayed_iput));
3498 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3499 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3500 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3501 		wake_up_process(fs_info->cleaner_kthread);
3502 }
3503 
3504 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3505 				    struct btrfs_inode *inode)
3506 {
3507 	list_del_init(&inode->delayed_iput);
3508 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3509 	iput(&inode->vfs_inode);
3510 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3511 		wake_up(&fs_info->delayed_iputs_wait);
3512 	spin_lock_irq(&fs_info->delayed_iput_lock);
3513 }
3514 
3515 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3516 				   struct btrfs_inode *inode)
3517 {
3518 	if (!list_empty(&inode->delayed_iput)) {
3519 		spin_lock_irq(&fs_info->delayed_iput_lock);
3520 		if (!list_empty(&inode->delayed_iput))
3521 			run_delayed_iput_locked(fs_info, inode);
3522 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3523 	}
3524 }
3525 
3526 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3527 {
3528 	/*
3529 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3530 	 * calls btrfs_add_delayed_iput() and that needs to lock
3531 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3532 	 * prevent a deadlock.
3533 	 */
3534 	spin_lock_irq(&fs_info->delayed_iput_lock);
3535 	while (!list_empty(&fs_info->delayed_iputs)) {
3536 		struct btrfs_inode *inode;
3537 
3538 		inode = list_first_entry(&fs_info->delayed_iputs,
3539 				struct btrfs_inode, delayed_iput);
3540 		run_delayed_iput_locked(fs_info, inode);
3541 		if (need_resched()) {
3542 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3543 			cond_resched();
3544 			spin_lock_irq(&fs_info->delayed_iput_lock);
3545 		}
3546 	}
3547 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3548 }
3549 
3550 /*
3551  * Wait for flushing all delayed iputs
3552  *
3553  * @fs_info:  the filesystem
3554  *
3555  * This will wait on any delayed iputs that are currently running with KILLABLE
3556  * set.  Once they are all done running we will return, unless we are killed in
3557  * which case we return EINTR. This helps in user operations like fallocate etc
3558  * that might get blocked on the iputs.
3559  *
3560  * Return EINTR if we were killed, 0 if nothing's pending
3561  */
3562 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3563 {
3564 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3565 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3566 	if (ret)
3567 		return -EINTR;
3568 	return 0;
3569 }
3570 
3571 /*
3572  * This creates an orphan entry for the given inode in case something goes wrong
3573  * in the middle of an unlink.
3574  */
3575 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3576 		     struct btrfs_inode *inode)
3577 {
3578 	int ret;
3579 
3580 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3581 	if (ret && ret != -EEXIST) {
3582 		btrfs_abort_transaction(trans, ret);
3583 		return ret;
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 /*
3590  * We have done the delete so we can go ahead and remove the orphan item for
3591  * this particular inode.
3592  */
3593 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3594 			    struct btrfs_inode *inode)
3595 {
3596 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3597 }
3598 
3599 /*
3600  * this cleans up any orphans that may be left on the list from the last use
3601  * of this root.
3602  */
3603 int btrfs_orphan_cleanup(struct btrfs_root *root)
3604 {
3605 	struct btrfs_fs_info *fs_info = root->fs_info;
3606 	struct btrfs_path *path;
3607 	struct extent_buffer *leaf;
3608 	struct btrfs_key key, found_key;
3609 	struct btrfs_trans_handle *trans;
3610 	struct inode *inode;
3611 	u64 last_objectid = 0;
3612 	int ret = 0, nr_unlink = 0;
3613 
3614 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3615 		return 0;
3616 
3617 	path = btrfs_alloc_path();
3618 	if (!path) {
3619 		ret = -ENOMEM;
3620 		goto out;
3621 	}
3622 	path->reada = READA_BACK;
3623 
3624 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3625 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3626 	key.offset = (u64)-1;
3627 
3628 	while (1) {
3629 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3630 		if (ret < 0)
3631 			goto out;
3632 
3633 		/*
3634 		 * if ret == 0 means we found what we were searching for, which
3635 		 * is weird, but possible, so only screw with path if we didn't
3636 		 * find the key and see if we have stuff that matches
3637 		 */
3638 		if (ret > 0) {
3639 			ret = 0;
3640 			if (path->slots[0] == 0)
3641 				break;
3642 			path->slots[0]--;
3643 		}
3644 
3645 		/* pull out the item */
3646 		leaf = path->nodes[0];
3647 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3648 
3649 		/* make sure the item matches what we want */
3650 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3651 			break;
3652 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3653 			break;
3654 
3655 		/* release the path since we're done with it */
3656 		btrfs_release_path(path);
3657 
3658 		/*
3659 		 * this is where we are basically btrfs_lookup, without the
3660 		 * crossing root thing.  we store the inode number in the
3661 		 * offset of the orphan item.
3662 		 */
3663 
3664 		if (found_key.offset == last_objectid) {
3665 			btrfs_err(fs_info,
3666 				  "Error removing orphan entry, stopping orphan cleanup");
3667 			ret = -EINVAL;
3668 			goto out;
3669 		}
3670 
3671 		last_objectid = found_key.offset;
3672 
3673 		found_key.objectid = found_key.offset;
3674 		found_key.type = BTRFS_INODE_ITEM_KEY;
3675 		found_key.offset = 0;
3676 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3677 		if (IS_ERR(inode)) {
3678 			ret = PTR_ERR(inode);
3679 			inode = NULL;
3680 			if (ret != -ENOENT)
3681 				goto out;
3682 		}
3683 
3684 		if (!inode && root == fs_info->tree_root) {
3685 			struct btrfs_root *dead_root;
3686 			int is_dead_root = 0;
3687 
3688 			/*
3689 			 * This is an orphan in the tree root. Currently these
3690 			 * could come from 2 sources:
3691 			 *  a) a root (snapshot/subvolume) deletion in progress
3692 			 *  b) a free space cache inode
3693 			 * We need to distinguish those two, as the orphan item
3694 			 * for a root must not get deleted before the deletion
3695 			 * of the snapshot/subvolume's tree completes.
3696 			 *
3697 			 * btrfs_find_orphan_roots() ran before us, which has
3698 			 * found all deleted roots and loaded them into
3699 			 * fs_info->fs_roots_radix. So here we can find if an
3700 			 * orphan item corresponds to a deleted root by looking
3701 			 * up the root from that radix tree.
3702 			 */
3703 
3704 			spin_lock(&fs_info->fs_roots_radix_lock);
3705 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3706 							 (unsigned long)found_key.objectid);
3707 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3708 				is_dead_root = 1;
3709 			spin_unlock(&fs_info->fs_roots_radix_lock);
3710 
3711 			if (is_dead_root) {
3712 				/* prevent this orphan from being found again */
3713 				key.offset = found_key.objectid - 1;
3714 				continue;
3715 			}
3716 
3717 		}
3718 
3719 		/*
3720 		 * If we have an inode with links, there are a couple of
3721 		 * possibilities:
3722 		 *
3723 		 * 1. We were halfway through creating fsverity metadata for the
3724 		 * file. In that case, the orphan item represents incomplete
3725 		 * fsverity metadata which must be cleaned up with
3726 		 * btrfs_drop_verity_items and deleting the orphan item.
3727 
3728 		 * 2. Old kernels (before v3.12) used to create an
3729 		 * orphan item for truncate indicating that there were possibly
3730 		 * extent items past i_size that needed to be deleted. In v3.12,
3731 		 * truncate was changed to update i_size in sync with the extent
3732 		 * items, but the (useless) orphan item was still created. Since
3733 		 * v4.18, we don't create the orphan item for truncate at all.
3734 		 *
3735 		 * So, this item could mean that we need to do a truncate, but
3736 		 * only if this filesystem was last used on a pre-v3.12 kernel
3737 		 * and was not cleanly unmounted. The odds of that are quite
3738 		 * slim, and it's a pain to do the truncate now, so just delete
3739 		 * the orphan item.
3740 		 *
3741 		 * It's also possible that this orphan item was supposed to be
3742 		 * deleted but wasn't. The inode number may have been reused,
3743 		 * but either way, we can delete the orphan item.
3744 		 */
3745 		if (!inode || inode->i_nlink) {
3746 			if (inode) {
3747 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3748 				iput(inode);
3749 				inode = NULL;
3750 				if (ret)
3751 					goto out;
3752 			}
3753 			trans = btrfs_start_transaction(root, 1);
3754 			if (IS_ERR(trans)) {
3755 				ret = PTR_ERR(trans);
3756 				goto out;
3757 			}
3758 			btrfs_debug(fs_info, "auto deleting %Lu",
3759 				    found_key.objectid);
3760 			ret = btrfs_del_orphan_item(trans, root,
3761 						    found_key.objectid);
3762 			btrfs_end_transaction(trans);
3763 			if (ret)
3764 				goto out;
3765 			continue;
3766 		}
3767 
3768 		nr_unlink++;
3769 
3770 		/* this will do delete_inode and everything for us */
3771 		iput(inode);
3772 	}
3773 	/* release the path since we're done with it */
3774 	btrfs_release_path(path);
3775 
3776 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3777 		trans = btrfs_join_transaction(root);
3778 		if (!IS_ERR(trans))
3779 			btrfs_end_transaction(trans);
3780 	}
3781 
3782 	if (nr_unlink)
3783 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3784 
3785 out:
3786 	if (ret)
3787 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3788 	btrfs_free_path(path);
3789 	return ret;
3790 }
3791 
3792 /*
3793  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3794  * don't find any xattrs, we know there can't be any acls.
3795  *
3796  * slot is the slot the inode is in, objectid is the objectid of the inode
3797  */
3798 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3799 					  int slot, u64 objectid,
3800 					  int *first_xattr_slot)
3801 {
3802 	u32 nritems = btrfs_header_nritems(leaf);
3803 	struct btrfs_key found_key;
3804 	static u64 xattr_access = 0;
3805 	static u64 xattr_default = 0;
3806 	int scanned = 0;
3807 
3808 	if (!xattr_access) {
3809 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3810 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3811 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3812 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3813 	}
3814 
3815 	slot++;
3816 	*first_xattr_slot = -1;
3817 	while (slot < nritems) {
3818 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3819 
3820 		/* we found a different objectid, there must not be acls */
3821 		if (found_key.objectid != objectid)
3822 			return 0;
3823 
3824 		/* we found an xattr, assume we've got an acl */
3825 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3826 			if (*first_xattr_slot == -1)
3827 				*first_xattr_slot = slot;
3828 			if (found_key.offset == xattr_access ||
3829 			    found_key.offset == xattr_default)
3830 				return 1;
3831 		}
3832 
3833 		/*
3834 		 * we found a key greater than an xattr key, there can't
3835 		 * be any acls later on
3836 		 */
3837 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3838 			return 0;
3839 
3840 		slot++;
3841 		scanned++;
3842 
3843 		/*
3844 		 * it goes inode, inode backrefs, xattrs, extents,
3845 		 * so if there are a ton of hard links to an inode there can
3846 		 * be a lot of backrefs.  Don't waste time searching too hard,
3847 		 * this is just an optimization
3848 		 */
3849 		if (scanned >= 8)
3850 			break;
3851 	}
3852 	/* we hit the end of the leaf before we found an xattr or
3853 	 * something larger than an xattr.  We have to assume the inode
3854 	 * has acls
3855 	 */
3856 	if (*first_xattr_slot == -1)
3857 		*first_xattr_slot = slot;
3858 	return 1;
3859 }
3860 
3861 /*
3862  * read an inode from the btree into the in-memory inode
3863  */
3864 static int btrfs_read_locked_inode(struct inode *inode,
3865 				   struct btrfs_path *in_path)
3866 {
3867 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3868 	struct btrfs_path *path = in_path;
3869 	struct extent_buffer *leaf;
3870 	struct btrfs_inode_item *inode_item;
3871 	struct btrfs_root *root = BTRFS_I(inode)->root;
3872 	struct btrfs_key location;
3873 	unsigned long ptr;
3874 	int maybe_acls;
3875 	u32 rdev;
3876 	int ret;
3877 	bool filled = false;
3878 	int first_xattr_slot;
3879 
3880 	ret = btrfs_fill_inode(inode, &rdev);
3881 	if (!ret)
3882 		filled = true;
3883 
3884 	if (!path) {
3885 		path = btrfs_alloc_path();
3886 		if (!path)
3887 			return -ENOMEM;
3888 	}
3889 
3890 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3891 
3892 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3893 	if (ret) {
3894 		if (path != in_path)
3895 			btrfs_free_path(path);
3896 		return ret;
3897 	}
3898 
3899 	leaf = path->nodes[0];
3900 
3901 	if (filled)
3902 		goto cache_index;
3903 
3904 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3905 				    struct btrfs_inode_item);
3906 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3907 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3908 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3909 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3910 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3911 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3912 			round_up(i_size_read(inode), fs_info->sectorsize));
3913 
3914 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3915 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3916 
3917 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3918 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3919 
3920 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3921 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3922 
3923 	BTRFS_I(inode)->i_otime.tv_sec =
3924 		btrfs_timespec_sec(leaf, &inode_item->otime);
3925 	BTRFS_I(inode)->i_otime.tv_nsec =
3926 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3927 
3928 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3929 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3930 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3931 
3932 	inode_set_iversion_queried(inode,
3933 				   btrfs_inode_sequence(leaf, inode_item));
3934 	inode->i_generation = BTRFS_I(inode)->generation;
3935 	inode->i_rdev = 0;
3936 	rdev = btrfs_inode_rdev(leaf, inode_item);
3937 
3938 	BTRFS_I(inode)->index_cnt = (u64)-1;
3939 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3940 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3941 
3942 cache_index:
3943 	/*
3944 	 * If we were modified in the current generation and evicted from memory
3945 	 * and then re-read we need to do a full sync since we don't have any
3946 	 * idea about which extents were modified before we were evicted from
3947 	 * cache.
3948 	 *
3949 	 * This is required for both inode re-read from disk and delayed inode
3950 	 * in delayed_nodes_tree.
3951 	 */
3952 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3953 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3954 			&BTRFS_I(inode)->runtime_flags);
3955 
3956 	/*
3957 	 * We don't persist the id of the transaction where an unlink operation
3958 	 * against the inode was last made. So here we assume the inode might
3959 	 * have been evicted, and therefore the exact value of last_unlink_trans
3960 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3961 	 * between the inode and its parent if the inode is fsync'ed and the log
3962 	 * replayed. For example, in the scenario:
3963 	 *
3964 	 * touch mydir/foo
3965 	 * ln mydir/foo mydir/bar
3966 	 * sync
3967 	 * unlink mydir/bar
3968 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3969 	 * xfs_io -c fsync mydir/foo
3970 	 * <power failure>
3971 	 * mount fs, triggers fsync log replay
3972 	 *
3973 	 * We must make sure that when we fsync our inode foo we also log its
3974 	 * parent inode, otherwise after log replay the parent still has the
3975 	 * dentry with the "bar" name but our inode foo has a link count of 1
3976 	 * and doesn't have an inode ref with the name "bar" anymore.
3977 	 *
3978 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3979 	 * but it guarantees correctness at the expense of occasional full
3980 	 * transaction commits on fsync if our inode is a directory, or if our
3981 	 * inode is not a directory, logging its parent unnecessarily.
3982 	 */
3983 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3984 
3985 	/*
3986 	 * Same logic as for last_unlink_trans. We don't persist the generation
3987 	 * of the last transaction where this inode was used for a reflink
3988 	 * operation, so after eviction and reloading the inode we must be
3989 	 * pessimistic and assume the last transaction that modified the inode.
3990 	 */
3991 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3992 
3993 	path->slots[0]++;
3994 	if (inode->i_nlink != 1 ||
3995 	    path->slots[0] >= btrfs_header_nritems(leaf))
3996 		goto cache_acl;
3997 
3998 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3999 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
4000 		goto cache_acl;
4001 
4002 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4003 	if (location.type == BTRFS_INODE_REF_KEY) {
4004 		struct btrfs_inode_ref *ref;
4005 
4006 		ref = (struct btrfs_inode_ref *)ptr;
4007 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4008 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4009 		struct btrfs_inode_extref *extref;
4010 
4011 		extref = (struct btrfs_inode_extref *)ptr;
4012 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4013 								     extref);
4014 	}
4015 cache_acl:
4016 	/*
4017 	 * try to precache a NULL acl entry for files that don't have
4018 	 * any xattrs or acls
4019 	 */
4020 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
4021 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
4022 	if (first_xattr_slot != -1) {
4023 		path->slots[0] = first_xattr_slot;
4024 		ret = btrfs_load_inode_props(inode, path);
4025 		if (ret)
4026 			btrfs_err(fs_info,
4027 				  "error loading props for ino %llu (root %llu): %d",
4028 				  btrfs_ino(BTRFS_I(inode)),
4029 				  root->root_key.objectid, ret);
4030 	}
4031 	if (path != in_path)
4032 		btrfs_free_path(path);
4033 
4034 	if (!maybe_acls)
4035 		cache_no_acl(inode);
4036 
4037 	switch (inode->i_mode & S_IFMT) {
4038 	case S_IFREG:
4039 		inode->i_mapping->a_ops = &btrfs_aops;
4040 		inode->i_fop = &btrfs_file_operations;
4041 		inode->i_op = &btrfs_file_inode_operations;
4042 		break;
4043 	case S_IFDIR:
4044 		inode->i_fop = &btrfs_dir_file_operations;
4045 		inode->i_op = &btrfs_dir_inode_operations;
4046 		break;
4047 	case S_IFLNK:
4048 		inode->i_op = &btrfs_symlink_inode_operations;
4049 		inode_nohighmem(inode);
4050 		inode->i_mapping->a_ops = &btrfs_aops;
4051 		break;
4052 	default:
4053 		inode->i_op = &btrfs_special_inode_operations;
4054 		init_special_inode(inode, inode->i_mode, rdev);
4055 		break;
4056 	}
4057 
4058 	btrfs_sync_inode_flags_to_i_flags(inode);
4059 	return 0;
4060 }
4061 
4062 /*
4063  * given a leaf and an inode, copy the inode fields into the leaf
4064  */
4065 static void fill_inode_item(struct btrfs_trans_handle *trans,
4066 			    struct extent_buffer *leaf,
4067 			    struct btrfs_inode_item *item,
4068 			    struct inode *inode)
4069 {
4070 	struct btrfs_map_token token;
4071 	u64 flags;
4072 
4073 	btrfs_init_map_token(&token, leaf);
4074 
4075 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4076 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4077 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4078 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4079 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4080 
4081 	btrfs_set_token_timespec_sec(&token, &item->atime,
4082 				     inode->i_atime.tv_sec);
4083 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4084 				      inode->i_atime.tv_nsec);
4085 
4086 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4087 				     inode->i_mtime.tv_sec);
4088 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4089 				      inode->i_mtime.tv_nsec);
4090 
4091 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4092 				     inode->i_ctime.tv_sec);
4093 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4094 				      inode->i_ctime.tv_nsec);
4095 
4096 	btrfs_set_token_timespec_sec(&token, &item->otime,
4097 				     BTRFS_I(inode)->i_otime.tv_sec);
4098 	btrfs_set_token_timespec_nsec(&token, &item->otime,
4099 				      BTRFS_I(inode)->i_otime.tv_nsec);
4100 
4101 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4102 	btrfs_set_token_inode_generation(&token, item,
4103 					 BTRFS_I(inode)->generation);
4104 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4105 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4106 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4107 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4108 					  BTRFS_I(inode)->ro_flags);
4109 	btrfs_set_token_inode_flags(&token, item, flags);
4110 	btrfs_set_token_inode_block_group(&token, item, 0);
4111 }
4112 
4113 /*
4114  * copy everything in the in-memory inode into the btree.
4115  */
4116 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4117 				struct btrfs_root *root,
4118 				struct btrfs_inode *inode)
4119 {
4120 	struct btrfs_inode_item *inode_item;
4121 	struct btrfs_path *path;
4122 	struct extent_buffer *leaf;
4123 	int ret;
4124 
4125 	path = btrfs_alloc_path();
4126 	if (!path)
4127 		return -ENOMEM;
4128 
4129 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
4130 	if (ret) {
4131 		if (ret > 0)
4132 			ret = -ENOENT;
4133 		goto failed;
4134 	}
4135 
4136 	leaf = path->nodes[0];
4137 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4138 				    struct btrfs_inode_item);
4139 
4140 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4141 	btrfs_mark_buffer_dirty(leaf);
4142 	btrfs_set_inode_last_trans(trans, inode);
4143 	ret = 0;
4144 failed:
4145 	btrfs_free_path(path);
4146 	return ret;
4147 }
4148 
4149 /*
4150  * copy everything in the in-memory inode into the btree.
4151  */
4152 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4153 				struct btrfs_root *root,
4154 				struct btrfs_inode *inode)
4155 {
4156 	struct btrfs_fs_info *fs_info = root->fs_info;
4157 	int ret;
4158 
4159 	/*
4160 	 * If the inode is a free space inode, we can deadlock during commit
4161 	 * if we put it into the delayed code.
4162 	 *
4163 	 * The data relocation inode should also be directly updated
4164 	 * without delay
4165 	 */
4166 	if (!btrfs_is_free_space_inode(inode)
4167 	    && !btrfs_is_data_reloc_root(root)
4168 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4169 		btrfs_update_root_times(trans, root);
4170 
4171 		ret = btrfs_delayed_update_inode(trans, root, inode);
4172 		if (!ret)
4173 			btrfs_set_inode_last_trans(trans, inode);
4174 		return ret;
4175 	}
4176 
4177 	return btrfs_update_inode_item(trans, root, inode);
4178 }
4179 
4180 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4181 				struct btrfs_root *root, struct btrfs_inode *inode)
4182 {
4183 	int ret;
4184 
4185 	ret = btrfs_update_inode(trans, root, inode);
4186 	if (ret == -ENOSPC)
4187 		return btrfs_update_inode_item(trans, root, inode);
4188 	return ret;
4189 }
4190 
4191 /*
4192  * unlink helper that gets used here in inode.c and in the tree logging
4193  * recovery code.  It remove a link in a directory with a given name, and
4194  * also drops the back refs in the inode to the directory
4195  */
4196 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4197 				struct btrfs_inode *dir,
4198 				struct btrfs_inode *inode,
4199 				const struct fscrypt_str *name,
4200 				struct btrfs_rename_ctx *rename_ctx)
4201 {
4202 	struct btrfs_root *root = dir->root;
4203 	struct btrfs_fs_info *fs_info = root->fs_info;
4204 	struct btrfs_path *path;
4205 	int ret = 0;
4206 	struct btrfs_dir_item *di;
4207 	u64 index;
4208 	u64 ino = btrfs_ino(inode);
4209 	u64 dir_ino = btrfs_ino(dir);
4210 
4211 	path = btrfs_alloc_path();
4212 	if (!path) {
4213 		ret = -ENOMEM;
4214 		goto out;
4215 	}
4216 
4217 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4218 	if (IS_ERR_OR_NULL(di)) {
4219 		ret = di ? PTR_ERR(di) : -ENOENT;
4220 		goto err;
4221 	}
4222 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4223 	if (ret)
4224 		goto err;
4225 	btrfs_release_path(path);
4226 
4227 	/*
4228 	 * If we don't have dir index, we have to get it by looking up
4229 	 * the inode ref, since we get the inode ref, remove it directly,
4230 	 * it is unnecessary to do delayed deletion.
4231 	 *
4232 	 * But if we have dir index, needn't search inode ref to get it.
4233 	 * Since the inode ref is close to the inode item, it is better
4234 	 * that we delay to delete it, and just do this deletion when
4235 	 * we update the inode item.
4236 	 */
4237 	if (inode->dir_index) {
4238 		ret = btrfs_delayed_delete_inode_ref(inode);
4239 		if (!ret) {
4240 			index = inode->dir_index;
4241 			goto skip_backref;
4242 		}
4243 	}
4244 
4245 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4246 	if (ret) {
4247 		btrfs_info(fs_info,
4248 			"failed to delete reference to %.*s, inode %llu parent %llu",
4249 			name->len, name->name, ino, dir_ino);
4250 		btrfs_abort_transaction(trans, ret);
4251 		goto err;
4252 	}
4253 skip_backref:
4254 	if (rename_ctx)
4255 		rename_ctx->index = index;
4256 
4257 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4258 	if (ret) {
4259 		btrfs_abort_transaction(trans, ret);
4260 		goto err;
4261 	}
4262 
4263 	/*
4264 	 * If we are in a rename context, we don't need to update anything in the
4265 	 * log. That will be done later during the rename by btrfs_log_new_name().
4266 	 * Besides that, doing it here would only cause extra unnecessary btree
4267 	 * operations on the log tree, increasing latency for applications.
4268 	 */
4269 	if (!rename_ctx) {
4270 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4271 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4272 	}
4273 
4274 	/*
4275 	 * If we have a pending delayed iput we could end up with the final iput
4276 	 * being run in btrfs-cleaner context.  If we have enough of these built
4277 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4278 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4279 	 * the inode we can run the delayed iput here without any issues as the
4280 	 * final iput won't be done until after we drop the ref we're currently
4281 	 * holding.
4282 	 */
4283 	btrfs_run_delayed_iput(fs_info, inode);
4284 err:
4285 	btrfs_free_path(path);
4286 	if (ret)
4287 		goto out;
4288 
4289 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4290 	inode_inc_iversion(&inode->vfs_inode);
4291 	inode_inc_iversion(&dir->vfs_inode);
4292 	inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4293 	dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4294 	dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
4295 	ret = btrfs_update_inode(trans, root, dir);
4296 out:
4297 	return ret;
4298 }
4299 
4300 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4301 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4302 		       const struct fscrypt_str *name)
4303 {
4304 	int ret;
4305 
4306 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4307 	if (!ret) {
4308 		drop_nlink(&inode->vfs_inode);
4309 		ret = btrfs_update_inode(trans, inode->root, inode);
4310 	}
4311 	return ret;
4312 }
4313 
4314 /*
4315  * helper to start transaction for unlink and rmdir.
4316  *
4317  * unlink and rmdir are special in btrfs, they do not always free space, so
4318  * if we cannot make our reservations the normal way try and see if there is
4319  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4320  * allow the unlink to occur.
4321  */
4322 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4323 {
4324 	struct btrfs_root *root = dir->root;
4325 
4326 	return btrfs_start_transaction_fallback_global_rsv(root,
4327 						   BTRFS_UNLINK_METADATA_UNITS);
4328 }
4329 
4330 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4331 {
4332 	struct btrfs_trans_handle *trans;
4333 	struct inode *inode = d_inode(dentry);
4334 	int ret;
4335 	struct fscrypt_name fname;
4336 
4337 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4338 	if (ret)
4339 		return ret;
4340 
4341 	/* This needs to handle no-key deletions later on */
4342 
4343 	trans = __unlink_start_trans(BTRFS_I(dir));
4344 	if (IS_ERR(trans)) {
4345 		ret = PTR_ERR(trans);
4346 		goto fscrypt_free;
4347 	}
4348 
4349 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4350 				false);
4351 
4352 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4353 				 &fname.disk_name);
4354 	if (ret)
4355 		goto end_trans;
4356 
4357 	if (inode->i_nlink == 0) {
4358 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4359 		if (ret)
4360 			goto end_trans;
4361 	}
4362 
4363 end_trans:
4364 	btrfs_end_transaction(trans);
4365 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4366 fscrypt_free:
4367 	fscrypt_free_filename(&fname);
4368 	return ret;
4369 }
4370 
4371 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4372 			       struct btrfs_inode *dir, struct dentry *dentry)
4373 {
4374 	struct btrfs_root *root = dir->root;
4375 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4376 	struct btrfs_path *path;
4377 	struct extent_buffer *leaf;
4378 	struct btrfs_dir_item *di;
4379 	struct btrfs_key key;
4380 	u64 index;
4381 	int ret;
4382 	u64 objectid;
4383 	u64 dir_ino = btrfs_ino(dir);
4384 	struct fscrypt_name fname;
4385 
4386 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4387 	if (ret)
4388 		return ret;
4389 
4390 	/* This needs to handle no-key deletions later on */
4391 
4392 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4393 		objectid = inode->root->root_key.objectid;
4394 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4395 		objectid = inode->location.objectid;
4396 	} else {
4397 		WARN_ON(1);
4398 		fscrypt_free_filename(&fname);
4399 		return -EINVAL;
4400 	}
4401 
4402 	path = btrfs_alloc_path();
4403 	if (!path) {
4404 		ret = -ENOMEM;
4405 		goto out;
4406 	}
4407 
4408 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4409 				   &fname.disk_name, -1);
4410 	if (IS_ERR_OR_NULL(di)) {
4411 		ret = di ? PTR_ERR(di) : -ENOENT;
4412 		goto out;
4413 	}
4414 
4415 	leaf = path->nodes[0];
4416 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4417 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4418 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4419 	if (ret) {
4420 		btrfs_abort_transaction(trans, ret);
4421 		goto out;
4422 	}
4423 	btrfs_release_path(path);
4424 
4425 	/*
4426 	 * This is a placeholder inode for a subvolume we didn't have a
4427 	 * reference to at the time of the snapshot creation.  In the meantime
4428 	 * we could have renamed the real subvol link into our snapshot, so
4429 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4430 	 * Instead simply lookup the dir_index_item for this entry so we can
4431 	 * remove it.  Otherwise we know we have a ref to the root and we can
4432 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4433 	 */
4434 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4435 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4436 		if (IS_ERR_OR_NULL(di)) {
4437 			if (!di)
4438 				ret = -ENOENT;
4439 			else
4440 				ret = PTR_ERR(di);
4441 			btrfs_abort_transaction(trans, ret);
4442 			goto out;
4443 		}
4444 
4445 		leaf = path->nodes[0];
4446 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4447 		index = key.offset;
4448 		btrfs_release_path(path);
4449 	} else {
4450 		ret = btrfs_del_root_ref(trans, objectid,
4451 					 root->root_key.objectid, dir_ino,
4452 					 &index, &fname.disk_name);
4453 		if (ret) {
4454 			btrfs_abort_transaction(trans, ret);
4455 			goto out;
4456 		}
4457 	}
4458 
4459 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4460 	if (ret) {
4461 		btrfs_abort_transaction(trans, ret);
4462 		goto out;
4463 	}
4464 
4465 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4466 	inode_inc_iversion(&dir->vfs_inode);
4467 	dir->vfs_inode.i_mtime = current_time(&dir->vfs_inode);
4468 	dir->vfs_inode.i_ctime = dir->vfs_inode.i_mtime;
4469 	ret = btrfs_update_inode_fallback(trans, root, dir);
4470 	if (ret)
4471 		btrfs_abort_transaction(trans, ret);
4472 out:
4473 	btrfs_free_path(path);
4474 	fscrypt_free_filename(&fname);
4475 	return ret;
4476 }
4477 
4478 /*
4479  * Helper to check if the subvolume references other subvolumes or if it's
4480  * default.
4481  */
4482 static noinline int may_destroy_subvol(struct btrfs_root *root)
4483 {
4484 	struct btrfs_fs_info *fs_info = root->fs_info;
4485 	struct btrfs_path *path;
4486 	struct btrfs_dir_item *di;
4487 	struct btrfs_key key;
4488 	struct fscrypt_str name = FSTR_INIT("default", 7);
4489 	u64 dir_id;
4490 	int ret;
4491 
4492 	path = btrfs_alloc_path();
4493 	if (!path)
4494 		return -ENOMEM;
4495 
4496 	/* Make sure this root isn't set as the default subvol */
4497 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4498 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4499 				   dir_id, &name, 0);
4500 	if (di && !IS_ERR(di)) {
4501 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4502 		if (key.objectid == root->root_key.objectid) {
4503 			ret = -EPERM;
4504 			btrfs_err(fs_info,
4505 				  "deleting default subvolume %llu is not allowed",
4506 				  key.objectid);
4507 			goto out;
4508 		}
4509 		btrfs_release_path(path);
4510 	}
4511 
4512 	key.objectid = root->root_key.objectid;
4513 	key.type = BTRFS_ROOT_REF_KEY;
4514 	key.offset = (u64)-1;
4515 
4516 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4517 	if (ret < 0)
4518 		goto out;
4519 	BUG_ON(ret == 0);
4520 
4521 	ret = 0;
4522 	if (path->slots[0] > 0) {
4523 		path->slots[0]--;
4524 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4525 		if (key.objectid == root->root_key.objectid &&
4526 		    key.type == BTRFS_ROOT_REF_KEY)
4527 			ret = -ENOTEMPTY;
4528 	}
4529 out:
4530 	btrfs_free_path(path);
4531 	return ret;
4532 }
4533 
4534 /* Delete all dentries for inodes belonging to the root */
4535 static void btrfs_prune_dentries(struct btrfs_root *root)
4536 {
4537 	struct btrfs_fs_info *fs_info = root->fs_info;
4538 	struct rb_node *node;
4539 	struct rb_node *prev;
4540 	struct btrfs_inode *entry;
4541 	struct inode *inode;
4542 	u64 objectid = 0;
4543 
4544 	if (!BTRFS_FS_ERROR(fs_info))
4545 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4546 
4547 	spin_lock(&root->inode_lock);
4548 again:
4549 	node = root->inode_tree.rb_node;
4550 	prev = NULL;
4551 	while (node) {
4552 		prev = node;
4553 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4554 
4555 		if (objectid < btrfs_ino(entry))
4556 			node = node->rb_left;
4557 		else if (objectid > btrfs_ino(entry))
4558 			node = node->rb_right;
4559 		else
4560 			break;
4561 	}
4562 	if (!node) {
4563 		while (prev) {
4564 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4565 			if (objectid <= btrfs_ino(entry)) {
4566 				node = prev;
4567 				break;
4568 			}
4569 			prev = rb_next(prev);
4570 		}
4571 	}
4572 	while (node) {
4573 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4574 		objectid = btrfs_ino(entry) + 1;
4575 		inode = igrab(&entry->vfs_inode);
4576 		if (inode) {
4577 			spin_unlock(&root->inode_lock);
4578 			if (atomic_read(&inode->i_count) > 1)
4579 				d_prune_aliases(inode);
4580 			/*
4581 			 * btrfs_drop_inode will have it removed from the inode
4582 			 * cache when its usage count hits zero.
4583 			 */
4584 			iput(inode);
4585 			cond_resched();
4586 			spin_lock(&root->inode_lock);
4587 			goto again;
4588 		}
4589 
4590 		if (cond_resched_lock(&root->inode_lock))
4591 			goto again;
4592 
4593 		node = rb_next(node);
4594 	}
4595 	spin_unlock(&root->inode_lock);
4596 }
4597 
4598 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4599 {
4600 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4601 	struct btrfs_root *root = dir->root;
4602 	struct inode *inode = d_inode(dentry);
4603 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4604 	struct btrfs_trans_handle *trans;
4605 	struct btrfs_block_rsv block_rsv;
4606 	u64 root_flags;
4607 	int ret;
4608 
4609 	/*
4610 	 * Don't allow to delete a subvolume with send in progress. This is
4611 	 * inside the inode lock so the error handling that has to drop the bit
4612 	 * again is not run concurrently.
4613 	 */
4614 	spin_lock(&dest->root_item_lock);
4615 	if (dest->send_in_progress) {
4616 		spin_unlock(&dest->root_item_lock);
4617 		btrfs_warn(fs_info,
4618 			   "attempt to delete subvolume %llu during send",
4619 			   dest->root_key.objectid);
4620 		return -EPERM;
4621 	}
4622 	if (atomic_read(&dest->nr_swapfiles)) {
4623 		spin_unlock(&dest->root_item_lock);
4624 		btrfs_warn(fs_info,
4625 			   "attempt to delete subvolume %llu with active swapfile",
4626 			   root->root_key.objectid);
4627 		return -EPERM;
4628 	}
4629 	root_flags = btrfs_root_flags(&dest->root_item);
4630 	btrfs_set_root_flags(&dest->root_item,
4631 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4632 	spin_unlock(&dest->root_item_lock);
4633 
4634 	down_write(&fs_info->subvol_sem);
4635 
4636 	ret = may_destroy_subvol(dest);
4637 	if (ret)
4638 		goto out_up_write;
4639 
4640 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4641 	/*
4642 	 * One for dir inode,
4643 	 * two for dir entries,
4644 	 * two for root ref/backref.
4645 	 */
4646 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4647 	if (ret)
4648 		goto out_up_write;
4649 
4650 	trans = btrfs_start_transaction(root, 0);
4651 	if (IS_ERR(trans)) {
4652 		ret = PTR_ERR(trans);
4653 		goto out_release;
4654 	}
4655 	trans->block_rsv = &block_rsv;
4656 	trans->bytes_reserved = block_rsv.size;
4657 
4658 	btrfs_record_snapshot_destroy(trans, dir);
4659 
4660 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4661 	if (ret) {
4662 		btrfs_abort_transaction(trans, ret);
4663 		goto out_end_trans;
4664 	}
4665 
4666 	ret = btrfs_record_root_in_trans(trans, dest);
4667 	if (ret) {
4668 		btrfs_abort_transaction(trans, ret);
4669 		goto out_end_trans;
4670 	}
4671 
4672 	memset(&dest->root_item.drop_progress, 0,
4673 		sizeof(dest->root_item.drop_progress));
4674 	btrfs_set_root_drop_level(&dest->root_item, 0);
4675 	btrfs_set_root_refs(&dest->root_item, 0);
4676 
4677 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4678 		ret = btrfs_insert_orphan_item(trans,
4679 					fs_info->tree_root,
4680 					dest->root_key.objectid);
4681 		if (ret) {
4682 			btrfs_abort_transaction(trans, ret);
4683 			goto out_end_trans;
4684 		}
4685 	}
4686 
4687 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4688 				  BTRFS_UUID_KEY_SUBVOL,
4689 				  dest->root_key.objectid);
4690 	if (ret && ret != -ENOENT) {
4691 		btrfs_abort_transaction(trans, ret);
4692 		goto out_end_trans;
4693 	}
4694 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4695 		ret = btrfs_uuid_tree_remove(trans,
4696 					  dest->root_item.received_uuid,
4697 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4698 					  dest->root_key.objectid);
4699 		if (ret && ret != -ENOENT) {
4700 			btrfs_abort_transaction(trans, ret);
4701 			goto out_end_trans;
4702 		}
4703 	}
4704 
4705 	free_anon_bdev(dest->anon_dev);
4706 	dest->anon_dev = 0;
4707 out_end_trans:
4708 	trans->block_rsv = NULL;
4709 	trans->bytes_reserved = 0;
4710 	ret = btrfs_end_transaction(trans);
4711 	inode->i_flags |= S_DEAD;
4712 out_release:
4713 	btrfs_subvolume_release_metadata(root, &block_rsv);
4714 out_up_write:
4715 	up_write(&fs_info->subvol_sem);
4716 	if (ret) {
4717 		spin_lock(&dest->root_item_lock);
4718 		root_flags = btrfs_root_flags(&dest->root_item);
4719 		btrfs_set_root_flags(&dest->root_item,
4720 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4721 		spin_unlock(&dest->root_item_lock);
4722 	} else {
4723 		d_invalidate(dentry);
4724 		btrfs_prune_dentries(dest);
4725 		ASSERT(dest->send_in_progress == 0);
4726 	}
4727 
4728 	return ret;
4729 }
4730 
4731 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4732 {
4733 	struct inode *inode = d_inode(dentry);
4734 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4735 	int err = 0;
4736 	struct btrfs_trans_handle *trans;
4737 	u64 last_unlink_trans;
4738 	struct fscrypt_name fname;
4739 
4740 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4741 		return -ENOTEMPTY;
4742 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4743 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4744 			btrfs_err(fs_info,
4745 			"extent tree v2 doesn't support snapshot deletion yet");
4746 			return -EOPNOTSUPP;
4747 		}
4748 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4749 	}
4750 
4751 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4752 	if (err)
4753 		return err;
4754 
4755 	/* This needs to handle no-key deletions later on */
4756 
4757 	trans = __unlink_start_trans(BTRFS_I(dir));
4758 	if (IS_ERR(trans)) {
4759 		err = PTR_ERR(trans);
4760 		goto out_notrans;
4761 	}
4762 
4763 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4764 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4765 		goto out;
4766 	}
4767 
4768 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4769 	if (err)
4770 		goto out;
4771 
4772 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4773 
4774 	/* now the directory is empty */
4775 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4776 				 &fname.disk_name);
4777 	if (!err) {
4778 		btrfs_i_size_write(BTRFS_I(inode), 0);
4779 		/*
4780 		 * Propagate the last_unlink_trans value of the deleted dir to
4781 		 * its parent directory. This is to prevent an unrecoverable
4782 		 * log tree in the case we do something like this:
4783 		 * 1) create dir foo
4784 		 * 2) create snapshot under dir foo
4785 		 * 3) delete the snapshot
4786 		 * 4) rmdir foo
4787 		 * 5) mkdir foo
4788 		 * 6) fsync foo or some file inside foo
4789 		 */
4790 		if (last_unlink_trans >= trans->transid)
4791 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4792 	}
4793 out:
4794 	btrfs_end_transaction(trans);
4795 out_notrans:
4796 	btrfs_btree_balance_dirty(fs_info);
4797 	fscrypt_free_filename(&fname);
4798 
4799 	return err;
4800 }
4801 
4802 /*
4803  * btrfs_truncate_block - read, zero a chunk and write a block
4804  * @inode - inode that we're zeroing
4805  * @from - the offset to start zeroing
4806  * @len - the length to zero, 0 to zero the entire range respective to the
4807  *	offset
4808  * @front - zero up to the offset instead of from the offset on
4809  *
4810  * This will find the block for the "from" offset and cow the block and zero the
4811  * part we want to zero.  This is used with truncate and hole punching.
4812  */
4813 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4814 			 int front)
4815 {
4816 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4817 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4818 	struct extent_io_tree *io_tree = &inode->io_tree;
4819 	struct btrfs_ordered_extent *ordered;
4820 	struct extent_state *cached_state = NULL;
4821 	struct extent_changeset *data_reserved = NULL;
4822 	bool only_release_metadata = false;
4823 	u32 blocksize = fs_info->sectorsize;
4824 	pgoff_t index = from >> PAGE_SHIFT;
4825 	unsigned offset = from & (blocksize - 1);
4826 	struct page *page;
4827 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4828 	size_t write_bytes = blocksize;
4829 	int ret = 0;
4830 	u64 block_start;
4831 	u64 block_end;
4832 
4833 	if (IS_ALIGNED(offset, blocksize) &&
4834 	    (!len || IS_ALIGNED(len, blocksize)))
4835 		goto out;
4836 
4837 	block_start = round_down(from, blocksize);
4838 	block_end = block_start + blocksize - 1;
4839 
4840 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4841 					  blocksize, false);
4842 	if (ret < 0) {
4843 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4844 			/* For nocow case, no need to reserve data space */
4845 			only_release_metadata = true;
4846 		} else {
4847 			goto out;
4848 		}
4849 	}
4850 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4851 	if (ret < 0) {
4852 		if (!only_release_metadata)
4853 			btrfs_free_reserved_data_space(inode, data_reserved,
4854 						       block_start, blocksize);
4855 		goto out;
4856 	}
4857 again:
4858 	page = find_or_create_page(mapping, index, mask);
4859 	if (!page) {
4860 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4861 					     blocksize, true);
4862 		btrfs_delalloc_release_extents(inode, blocksize);
4863 		ret = -ENOMEM;
4864 		goto out;
4865 	}
4866 
4867 	if (!PageUptodate(page)) {
4868 		ret = btrfs_read_folio(NULL, page_folio(page));
4869 		lock_page(page);
4870 		if (page->mapping != mapping) {
4871 			unlock_page(page);
4872 			put_page(page);
4873 			goto again;
4874 		}
4875 		if (!PageUptodate(page)) {
4876 			ret = -EIO;
4877 			goto out_unlock;
4878 		}
4879 	}
4880 
4881 	/*
4882 	 * We unlock the page after the io is completed and then re-lock it
4883 	 * above.  release_folio() could have come in between that and cleared
4884 	 * PagePrivate(), but left the page in the mapping.  Set the page mapped
4885 	 * here to make sure it's properly set for the subpage stuff.
4886 	 */
4887 	ret = set_page_extent_mapped(page);
4888 	if (ret < 0)
4889 		goto out_unlock;
4890 
4891 	wait_on_page_writeback(page);
4892 
4893 	lock_extent(io_tree, block_start, block_end, &cached_state);
4894 
4895 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4896 	if (ordered) {
4897 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4898 		unlock_page(page);
4899 		put_page(page);
4900 		btrfs_start_ordered_extent(ordered);
4901 		btrfs_put_ordered_extent(ordered);
4902 		goto again;
4903 	}
4904 
4905 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4906 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4907 			 &cached_state);
4908 
4909 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4910 					&cached_state);
4911 	if (ret) {
4912 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4913 		goto out_unlock;
4914 	}
4915 
4916 	if (offset != blocksize) {
4917 		if (!len)
4918 			len = blocksize - offset;
4919 		if (front)
4920 			memzero_page(page, (block_start - page_offset(page)),
4921 				     offset);
4922 		else
4923 			memzero_page(page, (block_start - page_offset(page)) + offset,
4924 				     len);
4925 	}
4926 	btrfs_page_clear_checked(fs_info, page, block_start,
4927 				 block_end + 1 - block_start);
4928 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
4929 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4930 
4931 	if (only_release_metadata)
4932 		set_extent_bit(&inode->io_tree, block_start, block_end,
4933 			       EXTENT_NORESERVE, NULL);
4934 
4935 out_unlock:
4936 	if (ret) {
4937 		if (only_release_metadata)
4938 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4939 		else
4940 			btrfs_delalloc_release_space(inode, data_reserved,
4941 					block_start, blocksize, true);
4942 	}
4943 	btrfs_delalloc_release_extents(inode, blocksize);
4944 	unlock_page(page);
4945 	put_page(page);
4946 out:
4947 	if (only_release_metadata)
4948 		btrfs_check_nocow_unlock(inode);
4949 	extent_changeset_free(data_reserved);
4950 	return ret;
4951 }
4952 
4953 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
4954 			     u64 offset, u64 len)
4955 {
4956 	struct btrfs_fs_info *fs_info = root->fs_info;
4957 	struct btrfs_trans_handle *trans;
4958 	struct btrfs_drop_extents_args drop_args = { 0 };
4959 	int ret;
4960 
4961 	/*
4962 	 * If NO_HOLES is enabled, we don't need to do anything.
4963 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4964 	 * or btrfs_update_inode() will be called, which guarantee that the next
4965 	 * fsync will know this inode was changed and needs to be logged.
4966 	 */
4967 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4968 		return 0;
4969 
4970 	/*
4971 	 * 1 - for the one we're dropping
4972 	 * 1 - for the one we're adding
4973 	 * 1 - for updating the inode.
4974 	 */
4975 	trans = btrfs_start_transaction(root, 3);
4976 	if (IS_ERR(trans))
4977 		return PTR_ERR(trans);
4978 
4979 	drop_args.start = offset;
4980 	drop_args.end = offset + len;
4981 	drop_args.drop_cache = true;
4982 
4983 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4984 	if (ret) {
4985 		btrfs_abort_transaction(trans, ret);
4986 		btrfs_end_transaction(trans);
4987 		return ret;
4988 	}
4989 
4990 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4991 	if (ret) {
4992 		btrfs_abort_transaction(trans, ret);
4993 	} else {
4994 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4995 		btrfs_update_inode(trans, root, inode);
4996 	}
4997 	btrfs_end_transaction(trans);
4998 	return ret;
4999 }
5000 
5001 /*
5002  * This function puts in dummy file extents for the area we're creating a hole
5003  * for.  So if we are truncating this file to a larger size we need to insert
5004  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5005  * the range between oldsize and size
5006  */
5007 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5008 {
5009 	struct btrfs_root *root = inode->root;
5010 	struct btrfs_fs_info *fs_info = root->fs_info;
5011 	struct extent_io_tree *io_tree = &inode->io_tree;
5012 	struct extent_map *em = NULL;
5013 	struct extent_state *cached_state = NULL;
5014 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5015 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5016 	u64 last_byte;
5017 	u64 cur_offset;
5018 	u64 hole_size;
5019 	int err = 0;
5020 
5021 	/*
5022 	 * If our size started in the middle of a block we need to zero out the
5023 	 * rest of the block before we expand the i_size, otherwise we could
5024 	 * expose stale data.
5025 	 */
5026 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5027 	if (err)
5028 		return err;
5029 
5030 	if (size <= hole_start)
5031 		return 0;
5032 
5033 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5034 					   &cached_state);
5035 	cur_offset = hole_start;
5036 	while (1) {
5037 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5038 				      block_end - cur_offset);
5039 		if (IS_ERR(em)) {
5040 			err = PTR_ERR(em);
5041 			em = NULL;
5042 			break;
5043 		}
5044 		last_byte = min(extent_map_end(em), block_end);
5045 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5046 		hole_size = last_byte - cur_offset;
5047 
5048 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5049 			struct extent_map *hole_em;
5050 
5051 			err = maybe_insert_hole(root, inode, cur_offset,
5052 						hole_size);
5053 			if (err)
5054 				break;
5055 
5056 			err = btrfs_inode_set_file_extent_range(inode,
5057 							cur_offset, hole_size);
5058 			if (err)
5059 				break;
5060 
5061 			hole_em = alloc_extent_map();
5062 			if (!hole_em) {
5063 				btrfs_drop_extent_map_range(inode, cur_offset,
5064 						    cur_offset + hole_size - 1,
5065 						    false);
5066 				btrfs_set_inode_full_sync(inode);
5067 				goto next;
5068 			}
5069 			hole_em->start = cur_offset;
5070 			hole_em->len = hole_size;
5071 			hole_em->orig_start = cur_offset;
5072 
5073 			hole_em->block_start = EXTENT_MAP_HOLE;
5074 			hole_em->block_len = 0;
5075 			hole_em->orig_block_len = 0;
5076 			hole_em->ram_bytes = hole_size;
5077 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5078 			hole_em->generation = fs_info->generation;
5079 
5080 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
5081 			free_extent_map(hole_em);
5082 		} else {
5083 			err = btrfs_inode_set_file_extent_range(inode,
5084 							cur_offset, hole_size);
5085 			if (err)
5086 				break;
5087 		}
5088 next:
5089 		free_extent_map(em);
5090 		em = NULL;
5091 		cur_offset = last_byte;
5092 		if (cur_offset >= block_end)
5093 			break;
5094 	}
5095 	free_extent_map(em);
5096 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5097 	return err;
5098 }
5099 
5100 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5101 {
5102 	struct btrfs_root *root = BTRFS_I(inode)->root;
5103 	struct btrfs_trans_handle *trans;
5104 	loff_t oldsize = i_size_read(inode);
5105 	loff_t newsize = attr->ia_size;
5106 	int mask = attr->ia_valid;
5107 	int ret;
5108 
5109 	/*
5110 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5111 	 * special case where we need to update the times despite not having
5112 	 * these flags set.  For all other operations the VFS set these flags
5113 	 * explicitly if it wants a timestamp update.
5114 	 */
5115 	if (newsize != oldsize) {
5116 		inode_inc_iversion(inode);
5117 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5118 			inode->i_mtime = current_time(inode);
5119 			inode->i_ctime = inode->i_mtime;
5120 		}
5121 	}
5122 
5123 	if (newsize > oldsize) {
5124 		/*
5125 		 * Don't do an expanding truncate while snapshotting is ongoing.
5126 		 * This is to ensure the snapshot captures a fully consistent
5127 		 * state of this file - if the snapshot captures this expanding
5128 		 * truncation, it must capture all writes that happened before
5129 		 * this truncation.
5130 		 */
5131 		btrfs_drew_write_lock(&root->snapshot_lock);
5132 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5133 		if (ret) {
5134 			btrfs_drew_write_unlock(&root->snapshot_lock);
5135 			return ret;
5136 		}
5137 
5138 		trans = btrfs_start_transaction(root, 1);
5139 		if (IS_ERR(trans)) {
5140 			btrfs_drew_write_unlock(&root->snapshot_lock);
5141 			return PTR_ERR(trans);
5142 		}
5143 
5144 		i_size_write(inode, newsize);
5145 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5146 		pagecache_isize_extended(inode, oldsize, newsize);
5147 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5148 		btrfs_drew_write_unlock(&root->snapshot_lock);
5149 		btrfs_end_transaction(trans);
5150 	} else {
5151 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5152 
5153 		if (btrfs_is_zoned(fs_info)) {
5154 			ret = btrfs_wait_ordered_range(inode,
5155 					ALIGN(newsize, fs_info->sectorsize),
5156 					(u64)-1);
5157 			if (ret)
5158 				return ret;
5159 		}
5160 
5161 		/*
5162 		 * We're truncating a file that used to have good data down to
5163 		 * zero. Make sure any new writes to the file get on disk
5164 		 * on close.
5165 		 */
5166 		if (newsize == 0)
5167 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5168 				&BTRFS_I(inode)->runtime_flags);
5169 
5170 		truncate_setsize(inode, newsize);
5171 
5172 		inode_dio_wait(inode);
5173 
5174 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5175 		if (ret && inode->i_nlink) {
5176 			int err;
5177 
5178 			/*
5179 			 * Truncate failed, so fix up the in-memory size. We
5180 			 * adjusted disk_i_size down as we removed extents, so
5181 			 * wait for disk_i_size to be stable and then update the
5182 			 * in-memory size to match.
5183 			 */
5184 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5185 			if (err)
5186 				return err;
5187 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5188 		}
5189 	}
5190 
5191 	return ret;
5192 }
5193 
5194 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5195 			 struct iattr *attr)
5196 {
5197 	struct inode *inode = d_inode(dentry);
5198 	struct btrfs_root *root = BTRFS_I(inode)->root;
5199 	int err;
5200 
5201 	if (btrfs_root_readonly(root))
5202 		return -EROFS;
5203 
5204 	err = setattr_prepare(idmap, dentry, attr);
5205 	if (err)
5206 		return err;
5207 
5208 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5209 		err = btrfs_setsize(inode, attr);
5210 		if (err)
5211 			return err;
5212 	}
5213 
5214 	if (attr->ia_valid) {
5215 		setattr_copy(idmap, inode, attr);
5216 		inode_inc_iversion(inode);
5217 		err = btrfs_dirty_inode(BTRFS_I(inode));
5218 
5219 		if (!err && attr->ia_valid & ATTR_MODE)
5220 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5221 	}
5222 
5223 	return err;
5224 }
5225 
5226 /*
5227  * While truncating the inode pages during eviction, we get the VFS
5228  * calling btrfs_invalidate_folio() against each folio of the inode. This
5229  * is slow because the calls to btrfs_invalidate_folio() result in a
5230  * huge amount of calls to lock_extent() and clear_extent_bit(),
5231  * which keep merging and splitting extent_state structures over and over,
5232  * wasting lots of time.
5233  *
5234  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5235  * skip all those expensive operations on a per folio basis and do only
5236  * the ordered io finishing, while we release here the extent_map and
5237  * extent_state structures, without the excessive merging and splitting.
5238  */
5239 static void evict_inode_truncate_pages(struct inode *inode)
5240 {
5241 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5242 	struct rb_node *node;
5243 
5244 	ASSERT(inode->i_state & I_FREEING);
5245 	truncate_inode_pages_final(&inode->i_data);
5246 
5247 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5248 
5249 	/*
5250 	 * Keep looping until we have no more ranges in the io tree.
5251 	 * We can have ongoing bios started by readahead that have
5252 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5253 	 * still in progress (unlocked the pages in the bio but did not yet
5254 	 * unlocked the ranges in the io tree). Therefore this means some
5255 	 * ranges can still be locked and eviction started because before
5256 	 * submitting those bios, which are executed by a separate task (work
5257 	 * queue kthread), inode references (inode->i_count) were not taken
5258 	 * (which would be dropped in the end io callback of each bio).
5259 	 * Therefore here we effectively end up waiting for those bios and
5260 	 * anyone else holding locked ranges without having bumped the inode's
5261 	 * reference count - if we don't do it, when they access the inode's
5262 	 * io_tree to unlock a range it may be too late, leading to an
5263 	 * use-after-free issue.
5264 	 */
5265 	spin_lock(&io_tree->lock);
5266 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5267 		struct extent_state *state;
5268 		struct extent_state *cached_state = NULL;
5269 		u64 start;
5270 		u64 end;
5271 		unsigned state_flags;
5272 
5273 		node = rb_first(&io_tree->state);
5274 		state = rb_entry(node, struct extent_state, rb_node);
5275 		start = state->start;
5276 		end = state->end;
5277 		state_flags = state->state;
5278 		spin_unlock(&io_tree->lock);
5279 
5280 		lock_extent(io_tree, start, end, &cached_state);
5281 
5282 		/*
5283 		 * If still has DELALLOC flag, the extent didn't reach disk,
5284 		 * and its reserved space won't be freed by delayed_ref.
5285 		 * So we need to free its reserved space here.
5286 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5287 		 *
5288 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5289 		 */
5290 		if (state_flags & EXTENT_DELALLOC)
5291 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5292 					       end - start + 1);
5293 
5294 		clear_extent_bit(io_tree, start, end,
5295 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5296 				 &cached_state);
5297 
5298 		cond_resched();
5299 		spin_lock(&io_tree->lock);
5300 	}
5301 	spin_unlock(&io_tree->lock);
5302 }
5303 
5304 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5305 							struct btrfs_block_rsv *rsv)
5306 {
5307 	struct btrfs_fs_info *fs_info = root->fs_info;
5308 	struct btrfs_trans_handle *trans;
5309 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5310 	int ret;
5311 
5312 	/*
5313 	 * Eviction should be taking place at some place safe because of our
5314 	 * delayed iputs.  However the normal flushing code will run delayed
5315 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5316 	 *
5317 	 * We reserve the delayed_refs_extra here again because we can't use
5318 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5319 	 * above.  We reserve our extra bit here because we generate a ton of
5320 	 * delayed refs activity by truncating.
5321 	 *
5322 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5323 	 * if we fail to make this reservation we can re-try without the
5324 	 * delayed_refs_extra so we can make some forward progress.
5325 	 */
5326 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5327 				     BTRFS_RESERVE_FLUSH_EVICT);
5328 	if (ret) {
5329 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5330 					     BTRFS_RESERVE_FLUSH_EVICT);
5331 		if (ret) {
5332 			btrfs_warn(fs_info,
5333 				   "could not allocate space for delete; will truncate on mount");
5334 			return ERR_PTR(-ENOSPC);
5335 		}
5336 		delayed_refs_extra = 0;
5337 	}
5338 
5339 	trans = btrfs_join_transaction(root);
5340 	if (IS_ERR(trans))
5341 		return trans;
5342 
5343 	if (delayed_refs_extra) {
5344 		trans->block_rsv = &fs_info->trans_block_rsv;
5345 		trans->bytes_reserved = delayed_refs_extra;
5346 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5347 					delayed_refs_extra, true);
5348 	}
5349 	return trans;
5350 }
5351 
5352 void btrfs_evict_inode(struct inode *inode)
5353 {
5354 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5355 	struct btrfs_trans_handle *trans;
5356 	struct btrfs_root *root = BTRFS_I(inode)->root;
5357 	struct btrfs_block_rsv *rsv = NULL;
5358 	int ret;
5359 
5360 	trace_btrfs_inode_evict(inode);
5361 
5362 	if (!root) {
5363 		fsverity_cleanup_inode(inode);
5364 		clear_inode(inode);
5365 		return;
5366 	}
5367 
5368 	evict_inode_truncate_pages(inode);
5369 
5370 	if (inode->i_nlink &&
5371 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5372 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5373 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5374 		goto out;
5375 
5376 	if (is_bad_inode(inode))
5377 		goto out;
5378 
5379 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5380 		goto out;
5381 
5382 	if (inode->i_nlink > 0) {
5383 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5384 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5385 		goto out;
5386 	}
5387 
5388 	/*
5389 	 * This makes sure the inode item in tree is uptodate and the space for
5390 	 * the inode update is released.
5391 	 */
5392 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5393 	if (ret)
5394 		goto out;
5395 
5396 	/*
5397 	 * This drops any pending insert or delete operations we have for this
5398 	 * inode.  We could have a delayed dir index deletion queued up, but
5399 	 * we're removing the inode completely so that'll be taken care of in
5400 	 * the truncate.
5401 	 */
5402 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5403 
5404 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5405 	if (!rsv)
5406 		goto out;
5407 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5408 	rsv->failfast = true;
5409 
5410 	btrfs_i_size_write(BTRFS_I(inode), 0);
5411 
5412 	while (1) {
5413 		struct btrfs_truncate_control control = {
5414 			.inode = BTRFS_I(inode),
5415 			.ino = btrfs_ino(BTRFS_I(inode)),
5416 			.new_size = 0,
5417 			.min_type = 0,
5418 		};
5419 
5420 		trans = evict_refill_and_join(root, rsv);
5421 		if (IS_ERR(trans))
5422 			goto out;
5423 
5424 		trans->block_rsv = rsv;
5425 
5426 		ret = btrfs_truncate_inode_items(trans, root, &control);
5427 		trans->block_rsv = &fs_info->trans_block_rsv;
5428 		btrfs_end_transaction(trans);
5429 		/*
5430 		 * We have not added new delayed items for our inode after we
5431 		 * have flushed its delayed items, so no need to throttle on
5432 		 * delayed items. However we have modified extent buffers.
5433 		 */
5434 		btrfs_btree_balance_dirty_nodelay(fs_info);
5435 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5436 			goto out;
5437 		else if (!ret)
5438 			break;
5439 	}
5440 
5441 	/*
5442 	 * Errors here aren't a big deal, it just means we leave orphan items in
5443 	 * the tree. They will be cleaned up on the next mount. If the inode
5444 	 * number gets reused, cleanup deletes the orphan item without doing
5445 	 * anything, and unlink reuses the existing orphan item.
5446 	 *
5447 	 * If it turns out that we are dropping too many of these, we might want
5448 	 * to add a mechanism for retrying these after a commit.
5449 	 */
5450 	trans = evict_refill_and_join(root, rsv);
5451 	if (!IS_ERR(trans)) {
5452 		trans->block_rsv = rsv;
5453 		btrfs_orphan_del(trans, BTRFS_I(inode));
5454 		trans->block_rsv = &fs_info->trans_block_rsv;
5455 		btrfs_end_transaction(trans);
5456 	}
5457 
5458 out:
5459 	btrfs_free_block_rsv(fs_info, rsv);
5460 	/*
5461 	 * If we didn't successfully delete, the orphan item will still be in
5462 	 * the tree and we'll retry on the next mount. Again, we might also want
5463 	 * to retry these periodically in the future.
5464 	 */
5465 	btrfs_remove_delayed_node(BTRFS_I(inode));
5466 	fsverity_cleanup_inode(inode);
5467 	clear_inode(inode);
5468 }
5469 
5470 /*
5471  * Return the key found in the dir entry in the location pointer, fill @type
5472  * with BTRFS_FT_*, and return 0.
5473  *
5474  * If no dir entries were found, returns -ENOENT.
5475  * If found a corrupted location in dir entry, returns -EUCLEAN.
5476  */
5477 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5478 			       struct btrfs_key *location, u8 *type)
5479 {
5480 	struct btrfs_dir_item *di;
5481 	struct btrfs_path *path;
5482 	struct btrfs_root *root = dir->root;
5483 	int ret = 0;
5484 	struct fscrypt_name fname;
5485 
5486 	path = btrfs_alloc_path();
5487 	if (!path)
5488 		return -ENOMEM;
5489 
5490 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5491 	if (ret < 0)
5492 		goto out;
5493 	/*
5494 	 * fscrypt_setup_filename() should never return a positive value, but
5495 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5496 	 */
5497 	ASSERT(ret == 0);
5498 
5499 	/* This needs to handle no-key deletions later on */
5500 
5501 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5502 				   &fname.disk_name, 0);
5503 	if (IS_ERR_OR_NULL(di)) {
5504 		ret = di ? PTR_ERR(di) : -ENOENT;
5505 		goto out;
5506 	}
5507 
5508 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5509 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5510 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5511 		ret = -EUCLEAN;
5512 		btrfs_warn(root->fs_info,
5513 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5514 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5515 			   location->objectid, location->type, location->offset);
5516 	}
5517 	if (!ret)
5518 		*type = btrfs_dir_ftype(path->nodes[0], di);
5519 out:
5520 	fscrypt_free_filename(&fname);
5521 	btrfs_free_path(path);
5522 	return ret;
5523 }
5524 
5525 /*
5526  * when we hit a tree root in a directory, the btrfs part of the inode
5527  * needs to be changed to reflect the root directory of the tree root.  This
5528  * is kind of like crossing a mount point.
5529  */
5530 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5531 				    struct btrfs_inode *dir,
5532 				    struct dentry *dentry,
5533 				    struct btrfs_key *location,
5534 				    struct btrfs_root **sub_root)
5535 {
5536 	struct btrfs_path *path;
5537 	struct btrfs_root *new_root;
5538 	struct btrfs_root_ref *ref;
5539 	struct extent_buffer *leaf;
5540 	struct btrfs_key key;
5541 	int ret;
5542 	int err = 0;
5543 	struct fscrypt_name fname;
5544 
5545 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5546 	if (ret)
5547 		return ret;
5548 
5549 	path = btrfs_alloc_path();
5550 	if (!path) {
5551 		err = -ENOMEM;
5552 		goto out;
5553 	}
5554 
5555 	err = -ENOENT;
5556 	key.objectid = dir->root->root_key.objectid;
5557 	key.type = BTRFS_ROOT_REF_KEY;
5558 	key.offset = location->objectid;
5559 
5560 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5561 	if (ret) {
5562 		if (ret < 0)
5563 			err = ret;
5564 		goto out;
5565 	}
5566 
5567 	leaf = path->nodes[0];
5568 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5569 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5570 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5571 		goto out;
5572 
5573 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5574 				   (unsigned long)(ref + 1), fname.disk_name.len);
5575 	if (ret)
5576 		goto out;
5577 
5578 	btrfs_release_path(path);
5579 
5580 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5581 	if (IS_ERR(new_root)) {
5582 		err = PTR_ERR(new_root);
5583 		goto out;
5584 	}
5585 
5586 	*sub_root = new_root;
5587 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5588 	location->type = BTRFS_INODE_ITEM_KEY;
5589 	location->offset = 0;
5590 	err = 0;
5591 out:
5592 	btrfs_free_path(path);
5593 	fscrypt_free_filename(&fname);
5594 	return err;
5595 }
5596 
5597 static void inode_tree_add(struct btrfs_inode *inode)
5598 {
5599 	struct btrfs_root *root = inode->root;
5600 	struct btrfs_inode *entry;
5601 	struct rb_node **p;
5602 	struct rb_node *parent;
5603 	struct rb_node *new = &inode->rb_node;
5604 	u64 ino = btrfs_ino(inode);
5605 
5606 	if (inode_unhashed(&inode->vfs_inode))
5607 		return;
5608 	parent = NULL;
5609 	spin_lock(&root->inode_lock);
5610 	p = &root->inode_tree.rb_node;
5611 	while (*p) {
5612 		parent = *p;
5613 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5614 
5615 		if (ino < btrfs_ino(entry))
5616 			p = &parent->rb_left;
5617 		else if (ino > btrfs_ino(entry))
5618 			p = &parent->rb_right;
5619 		else {
5620 			WARN_ON(!(entry->vfs_inode.i_state &
5621 				  (I_WILL_FREE | I_FREEING)));
5622 			rb_replace_node(parent, new, &root->inode_tree);
5623 			RB_CLEAR_NODE(parent);
5624 			spin_unlock(&root->inode_lock);
5625 			return;
5626 		}
5627 	}
5628 	rb_link_node(new, parent, p);
5629 	rb_insert_color(new, &root->inode_tree);
5630 	spin_unlock(&root->inode_lock);
5631 }
5632 
5633 static void inode_tree_del(struct btrfs_inode *inode)
5634 {
5635 	struct btrfs_root *root = inode->root;
5636 	int empty = 0;
5637 
5638 	spin_lock(&root->inode_lock);
5639 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5640 		rb_erase(&inode->rb_node, &root->inode_tree);
5641 		RB_CLEAR_NODE(&inode->rb_node);
5642 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5643 	}
5644 	spin_unlock(&root->inode_lock);
5645 
5646 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5647 		spin_lock(&root->inode_lock);
5648 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5649 		spin_unlock(&root->inode_lock);
5650 		if (empty)
5651 			btrfs_add_dead_root(root);
5652 	}
5653 }
5654 
5655 
5656 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5657 {
5658 	struct btrfs_iget_args *args = p;
5659 
5660 	inode->i_ino = args->ino;
5661 	BTRFS_I(inode)->location.objectid = args->ino;
5662 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5663 	BTRFS_I(inode)->location.offset = 0;
5664 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5665 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5666 
5667 	if (args->root && args->root == args->root->fs_info->tree_root &&
5668 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5669 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5670 			&BTRFS_I(inode)->runtime_flags);
5671 	return 0;
5672 }
5673 
5674 static int btrfs_find_actor(struct inode *inode, void *opaque)
5675 {
5676 	struct btrfs_iget_args *args = opaque;
5677 
5678 	return args->ino == BTRFS_I(inode)->location.objectid &&
5679 		args->root == BTRFS_I(inode)->root;
5680 }
5681 
5682 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5683 				       struct btrfs_root *root)
5684 {
5685 	struct inode *inode;
5686 	struct btrfs_iget_args args;
5687 	unsigned long hashval = btrfs_inode_hash(ino, root);
5688 
5689 	args.ino = ino;
5690 	args.root = root;
5691 
5692 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5693 			     btrfs_init_locked_inode,
5694 			     (void *)&args);
5695 	return inode;
5696 }
5697 
5698 /*
5699  * Get an inode object given its inode number and corresponding root.
5700  * Path can be preallocated to prevent recursing back to iget through
5701  * allocator. NULL is also valid but may require an additional allocation
5702  * later.
5703  */
5704 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5705 			      struct btrfs_root *root, struct btrfs_path *path)
5706 {
5707 	struct inode *inode;
5708 
5709 	inode = btrfs_iget_locked(s, ino, root);
5710 	if (!inode)
5711 		return ERR_PTR(-ENOMEM);
5712 
5713 	if (inode->i_state & I_NEW) {
5714 		int ret;
5715 
5716 		ret = btrfs_read_locked_inode(inode, path);
5717 		if (!ret) {
5718 			inode_tree_add(BTRFS_I(inode));
5719 			unlock_new_inode(inode);
5720 		} else {
5721 			iget_failed(inode);
5722 			/*
5723 			 * ret > 0 can come from btrfs_search_slot called by
5724 			 * btrfs_read_locked_inode, this means the inode item
5725 			 * was not found.
5726 			 */
5727 			if (ret > 0)
5728 				ret = -ENOENT;
5729 			inode = ERR_PTR(ret);
5730 		}
5731 	}
5732 
5733 	return inode;
5734 }
5735 
5736 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5737 {
5738 	return btrfs_iget_path(s, ino, root, NULL);
5739 }
5740 
5741 static struct inode *new_simple_dir(struct super_block *s,
5742 				    struct btrfs_key *key,
5743 				    struct btrfs_root *root)
5744 {
5745 	struct inode *inode = new_inode(s);
5746 
5747 	if (!inode)
5748 		return ERR_PTR(-ENOMEM);
5749 
5750 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5751 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5752 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5753 
5754 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5755 	/*
5756 	 * We only need lookup, the rest is read-only and there's no inode
5757 	 * associated with the dentry
5758 	 */
5759 	inode->i_op = &simple_dir_inode_operations;
5760 	inode->i_opflags &= ~IOP_XATTR;
5761 	inode->i_fop = &simple_dir_operations;
5762 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5763 	inode->i_mtime = current_time(inode);
5764 	inode->i_atime = inode->i_mtime;
5765 	inode->i_ctime = inode->i_mtime;
5766 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5767 
5768 	return inode;
5769 }
5770 
5771 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5772 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5773 static_assert(BTRFS_FT_DIR == FT_DIR);
5774 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5775 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5776 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5777 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5778 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5779 
5780 static inline u8 btrfs_inode_type(struct inode *inode)
5781 {
5782 	return fs_umode_to_ftype(inode->i_mode);
5783 }
5784 
5785 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5786 {
5787 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5788 	struct inode *inode;
5789 	struct btrfs_root *root = BTRFS_I(dir)->root;
5790 	struct btrfs_root *sub_root = root;
5791 	struct btrfs_key location;
5792 	u8 di_type = 0;
5793 	int ret = 0;
5794 
5795 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5796 		return ERR_PTR(-ENAMETOOLONG);
5797 
5798 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5799 	if (ret < 0)
5800 		return ERR_PTR(ret);
5801 
5802 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5803 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5804 		if (IS_ERR(inode))
5805 			return inode;
5806 
5807 		/* Do extra check against inode mode with di_type */
5808 		if (btrfs_inode_type(inode) != di_type) {
5809 			btrfs_crit(fs_info,
5810 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5811 				  inode->i_mode, btrfs_inode_type(inode),
5812 				  di_type);
5813 			iput(inode);
5814 			return ERR_PTR(-EUCLEAN);
5815 		}
5816 		return inode;
5817 	}
5818 
5819 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5820 				       &location, &sub_root);
5821 	if (ret < 0) {
5822 		if (ret != -ENOENT)
5823 			inode = ERR_PTR(ret);
5824 		else
5825 			inode = new_simple_dir(dir->i_sb, &location, root);
5826 	} else {
5827 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5828 		btrfs_put_root(sub_root);
5829 
5830 		if (IS_ERR(inode))
5831 			return inode;
5832 
5833 		down_read(&fs_info->cleanup_work_sem);
5834 		if (!sb_rdonly(inode->i_sb))
5835 			ret = btrfs_orphan_cleanup(sub_root);
5836 		up_read(&fs_info->cleanup_work_sem);
5837 		if (ret) {
5838 			iput(inode);
5839 			inode = ERR_PTR(ret);
5840 		}
5841 	}
5842 
5843 	return inode;
5844 }
5845 
5846 static int btrfs_dentry_delete(const struct dentry *dentry)
5847 {
5848 	struct btrfs_root *root;
5849 	struct inode *inode = d_inode(dentry);
5850 
5851 	if (!inode && !IS_ROOT(dentry))
5852 		inode = d_inode(dentry->d_parent);
5853 
5854 	if (inode) {
5855 		root = BTRFS_I(inode)->root;
5856 		if (btrfs_root_refs(&root->root_item) == 0)
5857 			return 1;
5858 
5859 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5860 			return 1;
5861 	}
5862 	return 0;
5863 }
5864 
5865 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5866 				   unsigned int flags)
5867 {
5868 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5869 
5870 	if (inode == ERR_PTR(-ENOENT))
5871 		inode = NULL;
5872 	return d_splice_alias(inode, dentry);
5873 }
5874 
5875 /*
5876  * All this infrastructure exists because dir_emit can fault, and we are holding
5877  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5878  * our information into that, and then dir_emit from the buffer.  This is
5879  * similar to what NFS does, only we don't keep the buffer around in pagecache
5880  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5881  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5882  * tree lock.
5883  */
5884 static int btrfs_opendir(struct inode *inode, struct file *file)
5885 {
5886 	struct btrfs_file_private *private;
5887 
5888 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5889 	if (!private)
5890 		return -ENOMEM;
5891 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5892 	if (!private->filldir_buf) {
5893 		kfree(private);
5894 		return -ENOMEM;
5895 	}
5896 	file->private_data = private;
5897 	return 0;
5898 }
5899 
5900 struct dir_entry {
5901 	u64 ino;
5902 	u64 offset;
5903 	unsigned type;
5904 	int name_len;
5905 };
5906 
5907 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5908 {
5909 	while (entries--) {
5910 		struct dir_entry *entry = addr;
5911 		char *name = (char *)(entry + 1);
5912 
5913 		ctx->pos = get_unaligned(&entry->offset);
5914 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5915 					 get_unaligned(&entry->ino),
5916 					 get_unaligned(&entry->type)))
5917 			return 1;
5918 		addr += sizeof(struct dir_entry) +
5919 			get_unaligned(&entry->name_len);
5920 		ctx->pos++;
5921 	}
5922 	return 0;
5923 }
5924 
5925 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5926 {
5927 	struct inode *inode = file_inode(file);
5928 	struct btrfs_root *root = BTRFS_I(inode)->root;
5929 	struct btrfs_file_private *private = file->private_data;
5930 	struct btrfs_dir_item *di;
5931 	struct btrfs_key key;
5932 	struct btrfs_key found_key;
5933 	struct btrfs_path *path;
5934 	void *addr;
5935 	struct list_head ins_list;
5936 	struct list_head del_list;
5937 	int ret;
5938 	char *name_ptr;
5939 	int name_len;
5940 	int entries = 0;
5941 	int total_len = 0;
5942 	bool put = false;
5943 	struct btrfs_key location;
5944 
5945 	if (!dir_emit_dots(file, ctx))
5946 		return 0;
5947 
5948 	path = btrfs_alloc_path();
5949 	if (!path)
5950 		return -ENOMEM;
5951 
5952 	addr = private->filldir_buf;
5953 	path->reada = READA_FORWARD;
5954 
5955 	INIT_LIST_HEAD(&ins_list);
5956 	INIT_LIST_HEAD(&del_list);
5957 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5958 
5959 again:
5960 	key.type = BTRFS_DIR_INDEX_KEY;
5961 	key.offset = ctx->pos;
5962 	key.objectid = btrfs_ino(BTRFS_I(inode));
5963 
5964 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5965 		struct dir_entry *entry;
5966 		struct extent_buffer *leaf = path->nodes[0];
5967 		u8 ftype;
5968 
5969 		if (found_key.objectid != key.objectid)
5970 			break;
5971 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5972 			break;
5973 		if (found_key.offset < ctx->pos)
5974 			continue;
5975 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5976 			continue;
5977 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5978 		name_len = btrfs_dir_name_len(leaf, di);
5979 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5980 		    PAGE_SIZE) {
5981 			btrfs_release_path(path);
5982 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5983 			if (ret)
5984 				goto nopos;
5985 			addr = private->filldir_buf;
5986 			entries = 0;
5987 			total_len = 0;
5988 			goto again;
5989 		}
5990 
5991 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5992 		entry = addr;
5993 		name_ptr = (char *)(entry + 1);
5994 		read_extent_buffer(leaf, name_ptr,
5995 				   (unsigned long)(di + 1), name_len);
5996 		put_unaligned(name_len, &entry->name_len);
5997 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5998 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5999 		put_unaligned(location.objectid, &entry->ino);
6000 		put_unaligned(found_key.offset, &entry->offset);
6001 		entries++;
6002 		addr += sizeof(struct dir_entry) + name_len;
6003 		total_len += sizeof(struct dir_entry) + name_len;
6004 	}
6005 	/* Catch error encountered during iteration */
6006 	if (ret < 0)
6007 		goto err;
6008 
6009 	btrfs_release_path(path);
6010 
6011 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6012 	if (ret)
6013 		goto nopos;
6014 
6015 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6016 	if (ret)
6017 		goto nopos;
6018 
6019 	/*
6020 	 * Stop new entries from being returned after we return the last
6021 	 * entry.
6022 	 *
6023 	 * New directory entries are assigned a strictly increasing
6024 	 * offset.  This means that new entries created during readdir
6025 	 * are *guaranteed* to be seen in the future by that readdir.
6026 	 * This has broken buggy programs which operate on names as
6027 	 * they're returned by readdir.  Until we re-use freed offsets
6028 	 * we have this hack to stop new entries from being returned
6029 	 * under the assumption that they'll never reach this huge
6030 	 * offset.
6031 	 *
6032 	 * This is being careful not to overflow 32bit loff_t unless the
6033 	 * last entry requires it because doing so has broken 32bit apps
6034 	 * in the past.
6035 	 */
6036 	if (ctx->pos >= INT_MAX)
6037 		ctx->pos = LLONG_MAX;
6038 	else
6039 		ctx->pos = INT_MAX;
6040 nopos:
6041 	ret = 0;
6042 err:
6043 	if (put)
6044 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6045 	btrfs_free_path(path);
6046 	return ret;
6047 }
6048 
6049 /*
6050  * This is somewhat expensive, updating the tree every time the
6051  * inode changes.  But, it is most likely to find the inode in cache.
6052  * FIXME, needs more benchmarking...there are no reasons other than performance
6053  * to keep or drop this code.
6054  */
6055 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6056 {
6057 	struct btrfs_root *root = inode->root;
6058 	struct btrfs_fs_info *fs_info = root->fs_info;
6059 	struct btrfs_trans_handle *trans;
6060 	int ret;
6061 
6062 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6063 		return 0;
6064 
6065 	trans = btrfs_join_transaction(root);
6066 	if (IS_ERR(trans))
6067 		return PTR_ERR(trans);
6068 
6069 	ret = btrfs_update_inode(trans, root, inode);
6070 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6071 		/* whoops, lets try again with the full transaction */
6072 		btrfs_end_transaction(trans);
6073 		trans = btrfs_start_transaction(root, 1);
6074 		if (IS_ERR(trans))
6075 			return PTR_ERR(trans);
6076 
6077 		ret = btrfs_update_inode(trans, root, inode);
6078 	}
6079 	btrfs_end_transaction(trans);
6080 	if (inode->delayed_node)
6081 		btrfs_balance_delayed_items(fs_info);
6082 
6083 	return ret;
6084 }
6085 
6086 /*
6087  * This is a copy of file_update_time.  We need this so we can return error on
6088  * ENOSPC for updating the inode in the case of file write and mmap writes.
6089  */
6090 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6091 			     int flags)
6092 {
6093 	struct btrfs_root *root = BTRFS_I(inode)->root;
6094 	bool dirty = flags & ~S_VERSION;
6095 
6096 	if (btrfs_root_readonly(root))
6097 		return -EROFS;
6098 
6099 	if (flags & S_VERSION)
6100 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6101 	if (flags & S_CTIME)
6102 		inode->i_ctime = *now;
6103 	if (flags & S_MTIME)
6104 		inode->i_mtime = *now;
6105 	if (flags & S_ATIME)
6106 		inode->i_atime = *now;
6107 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6108 }
6109 
6110 /*
6111  * find the highest existing sequence number in a directory
6112  * and then set the in-memory index_cnt variable to reflect
6113  * free sequence numbers
6114  */
6115 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6116 {
6117 	struct btrfs_root *root = inode->root;
6118 	struct btrfs_key key, found_key;
6119 	struct btrfs_path *path;
6120 	struct extent_buffer *leaf;
6121 	int ret;
6122 
6123 	key.objectid = btrfs_ino(inode);
6124 	key.type = BTRFS_DIR_INDEX_KEY;
6125 	key.offset = (u64)-1;
6126 
6127 	path = btrfs_alloc_path();
6128 	if (!path)
6129 		return -ENOMEM;
6130 
6131 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6132 	if (ret < 0)
6133 		goto out;
6134 	/* FIXME: we should be able to handle this */
6135 	if (ret == 0)
6136 		goto out;
6137 	ret = 0;
6138 
6139 	if (path->slots[0] == 0) {
6140 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6141 		goto out;
6142 	}
6143 
6144 	path->slots[0]--;
6145 
6146 	leaf = path->nodes[0];
6147 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6148 
6149 	if (found_key.objectid != btrfs_ino(inode) ||
6150 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6151 		inode->index_cnt = BTRFS_DIR_START_INDEX;
6152 		goto out;
6153 	}
6154 
6155 	inode->index_cnt = found_key.offset + 1;
6156 out:
6157 	btrfs_free_path(path);
6158 	return ret;
6159 }
6160 
6161 /*
6162  * helper to find a free sequence number in a given directory.  This current
6163  * code is very simple, later versions will do smarter things in the btree
6164  */
6165 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6166 {
6167 	int ret = 0;
6168 
6169 	if (dir->index_cnt == (u64)-1) {
6170 		ret = btrfs_inode_delayed_dir_index_count(dir);
6171 		if (ret) {
6172 			ret = btrfs_set_inode_index_count(dir);
6173 			if (ret)
6174 				return ret;
6175 		}
6176 	}
6177 
6178 	*index = dir->index_cnt;
6179 	dir->index_cnt++;
6180 
6181 	return ret;
6182 }
6183 
6184 static int btrfs_insert_inode_locked(struct inode *inode)
6185 {
6186 	struct btrfs_iget_args args;
6187 
6188 	args.ino = BTRFS_I(inode)->location.objectid;
6189 	args.root = BTRFS_I(inode)->root;
6190 
6191 	return insert_inode_locked4(inode,
6192 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6193 		   btrfs_find_actor, &args);
6194 }
6195 
6196 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6197 			    unsigned int *trans_num_items)
6198 {
6199 	struct inode *dir = args->dir;
6200 	struct inode *inode = args->inode;
6201 	int ret;
6202 
6203 	if (!args->orphan) {
6204 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6205 					     &args->fname);
6206 		if (ret)
6207 			return ret;
6208 	}
6209 
6210 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6211 	if (ret) {
6212 		fscrypt_free_filename(&args->fname);
6213 		return ret;
6214 	}
6215 
6216 	/* 1 to add inode item */
6217 	*trans_num_items = 1;
6218 	/* 1 to add compression property */
6219 	if (BTRFS_I(dir)->prop_compress)
6220 		(*trans_num_items)++;
6221 	/* 1 to add default ACL xattr */
6222 	if (args->default_acl)
6223 		(*trans_num_items)++;
6224 	/* 1 to add access ACL xattr */
6225 	if (args->acl)
6226 		(*trans_num_items)++;
6227 #ifdef CONFIG_SECURITY
6228 	/* 1 to add LSM xattr */
6229 	if (dir->i_security)
6230 		(*trans_num_items)++;
6231 #endif
6232 	if (args->orphan) {
6233 		/* 1 to add orphan item */
6234 		(*trans_num_items)++;
6235 	} else {
6236 		/*
6237 		 * 1 to add dir item
6238 		 * 1 to add dir index
6239 		 * 1 to update parent inode item
6240 		 *
6241 		 * No need for 1 unit for the inode ref item because it is
6242 		 * inserted in a batch together with the inode item at
6243 		 * btrfs_create_new_inode().
6244 		 */
6245 		*trans_num_items += 3;
6246 	}
6247 	return 0;
6248 }
6249 
6250 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6251 {
6252 	posix_acl_release(args->acl);
6253 	posix_acl_release(args->default_acl);
6254 	fscrypt_free_filename(&args->fname);
6255 }
6256 
6257 /*
6258  * Inherit flags from the parent inode.
6259  *
6260  * Currently only the compression flags and the cow flags are inherited.
6261  */
6262 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6263 {
6264 	unsigned int flags;
6265 
6266 	flags = dir->flags;
6267 
6268 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6269 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6270 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6271 	} else if (flags & BTRFS_INODE_COMPRESS) {
6272 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6273 		inode->flags |= BTRFS_INODE_COMPRESS;
6274 	}
6275 
6276 	if (flags & BTRFS_INODE_NODATACOW) {
6277 		inode->flags |= BTRFS_INODE_NODATACOW;
6278 		if (S_ISREG(inode->vfs_inode.i_mode))
6279 			inode->flags |= BTRFS_INODE_NODATASUM;
6280 	}
6281 
6282 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6283 }
6284 
6285 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6286 			   struct btrfs_new_inode_args *args)
6287 {
6288 	struct inode *dir = args->dir;
6289 	struct inode *inode = args->inode;
6290 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6291 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6292 	struct btrfs_root *root;
6293 	struct btrfs_inode_item *inode_item;
6294 	struct btrfs_key *location;
6295 	struct btrfs_path *path;
6296 	u64 objectid;
6297 	struct btrfs_inode_ref *ref;
6298 	struct btrfs_key key[2];
6299 	u32 sizes[2];
6300 	struct btrfs_item_batch batch;
6301 	unsigned long ptr;
6302 	int ret;
6303 
6304 	path = btrfs_alloc_path();
6305 	if (!path)
6306 		return -ENOMEM;
6307 
6308 	if (!args->subvol)
6309 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6310 	root = BTRFS_I(inode)->root;
6311 
6312 	ret = btrfs_get_free_objectid(root, &objectid);
6313 	if (ret)
6314 		goto out;
6315 	inode->i_ino = objectid;
6316 
6317 	if (args->orphan) {
6318 		/*
6319 		 * O_TMPFILE, set link count to 0, so that after this point, we
6320 		 * fill in an inode item with the correct link count.
6321 		 */
6322 		set_nlink(inode, 0);
6323 	} else {
6324 		trace_btrfs_inode_request(dir);
6325 
6326 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6327 		if (ret)
6328 			goto out;
6329 	}
6330 	/* index_cnt is ignored for everything but a dir. */
6331 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6332 	BTRFS_I(inode)->generation = trans->transid;
6333 	inode->i_generation = BTRFS_I(inode)->generation;
6334 
6335 	/*
6336 	 * Subvolumes don't inherit flags from their parent directory.
6337 	 * Originally this was probably by accident, but we probably can't
6338 	 * change it now without compatibility issues.
6339 	 */
6340 	if (!args->subvol)
6341 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6342 
6343 	if (S_ISREG(inode->i_mode)) {
6344 		if (btrfs_test_opt(fs_info, NODATASUM))
6345 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6346 		if (btrfs_test_opt(fs_info, NODATACOW))
6347 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6348 				BTRFS_INODE_NODATASUM;
6349 	}
6350 
6351 	location = &BTRFS_I(inode)->location;
6352 	location->objectid = objectid;
6353 	location->offset = 0;
6354 	location->type = BTRFS_INODE_ITEM_KEY;
6355 
6356 	ret = btrfs_insert_inode_locked(inode);
6357 	if (ret < 0) {
6358 		if (!args->orphan)
6359 			BTRFS_I(dir)->index_cnt--;
6360 		goto out;
6361 	}
6362 
6363 	/*
6364 	 * We could have gotten an inode number from somebody who was fsynced
6365 	 * and then removed in this same transaction, so let's just set full
6366 	 * sync since it will be a full sync anyway and this will blow away the
6367 	 * old info in the log.
6368 	 */
6369 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6370 
6371 	key[0].objectid = objectid;
6372 	key[0].type = BTRFS_INODE_ITEM_KEY;
6373 	key[0].offset = 0;
6374 
6375 	sizes[0] = sizeof(struct btrfs_inode_item);
6376 
6377 	if (!args->orphan) {
6378 		/*
6379 		 * Start new inodes with an inode_ref. This is slightly more
6380 		 * efficient for small numbers of hard links since they will
6381 		 * be packed into one item. Extended refs will kick in if we
6382 		 * add more hard links than can fit in the ref item.
6383 		 */
6384 		key[1].objectid = objectid;
6385 		key[1].type = BTRFS_INODE_REF_KEY;
6386 		if (args->subvol) {
6387 			key[1].offset = objectid;
6388 			sizes[1] = 2 + sizeof(*ref);
6389 		} else {
6390 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6391 			sizes[1] = name->len + sizeof(*ref);
6392 		}
6393 	}
6394 
6395 	batch.keys = &key[0];
6396 	batch.data_sizes = &sizes[0];
6397 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6398 	batch.nr = args->orphan ? 1 : 2;
6399 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6400 	if (ret != 0) {
6401 		btrfs_abort_transaction(trans, ret);
6402 		goto discard;
6403 	}
6404 
6405 	inode->i_mtime = current_time(inode);
6406 	inode->i_atime = inode->i_mtime;
6407 	inode->i_ctime = inode->i_mtime;
6408 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6409 
6410 	/*
6411 	 * We're going to fill the inode item now, so at this point the inode
6412 	 * must be fully initialized.
6413 	 */
6414 
6415 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6416 				  struct btrfs_inode_item);
6417 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6418 			     sizeof(*inode_item));
6419 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6420 
6421 	if (!args->orphan) {
6422 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6423 				     struct btrfs_inode_ref);
6424 		ptr = (unsigned long)(ref + 1);
6425 		if (args->subvol) {
6426 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6427 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6428 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6429 		} else {
6430 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6431 						     name->len);
6432 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6433 						  BTRFS_I(inode)->dir_index);
6434 			write_extent_buffer(path->nodes[0], name->name, ptr,
6435 					    name->len);
6436 		}
6437 	}
6438 
6439 	btrfs_mark_buffer_dirty(path->nodes[0]);
6440 	/*
6441 	 * We don't need the path anymore, plus inheriting properties, adding
6442 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6443 	 * allocating yet another path. So just free our path.
6444 	 */
6445 	btrfs_free_path(path);
6446 	path = NULL;
6447 
6448 	if (args->subvol) {
6449 		struct inode *parent;
6450 
6451 		/*
6452 		 * Subvolumes inherit properties from their parent subvolume,
6453 		 * not the directory they were created in.
6454 		 */
6455 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6456 				    BTRFS_I(dir)->root);
6457 		if (IS_ERR(parent)) {
6458 			ret = PTR_ERR(parent);
6459 		} else {
6460 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6461 			iput(parent);
6462 		}
6463 	} else {
6464 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6465 	}
6466 	if (ret) {
6467 		btrfs_err(fs_info,
6468 			  "error inheriting props for ino %llu (root %llu): %d",
6469 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6470 			  ret);
6471 	}
6472 
6473 	/*
6474 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6475 	 * probably a bug.
6476 	 */
6477 	if (!args->subvol) {
6478 		ret = btrfs_init_inode_security(trans, args);
6479 		if (ret) {
6480 			btrfs_abort_transaction(trans, ret);
6481 			goto discard;
6482 		}
6483 	}
6484 
6485 	inode_tree_add(BTRFS_I(inode));
6486 
6487 	trace_btrfs_inode_new(inode);
6488 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6489 
6490 	btrfs_update_root_times(trans, root);
6491 
6492 	if (args->orphan) {
6493 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6494 	} else {
6495 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6496 				     0, BTRFS_I(inode)->dir_index);
6497 	}
6498 	if (ret) {
6499 		btrfs_abort_transaction(trans, ret);
6500 		goto discard;
6501 	}
6502 
6503 	return 0;
6504 
6505 discard:
6506 	/*
6507 	 * discard_new_inode() calls iput(), but the caller owns the reference
6508 	 * to the inode.
6509 	 */
6510 	ihold(inode);
6511 	discard_new_inode(inode);
6512 out:
6513 	btrfs_free_path(path);
6514 	return ret;
6515 }
6516 
6517 /*
6518  * utility function to add 'inode' into 'parent_inode' with
6519  * a give name and a given sequence number.
6520  * if 'add_backref' is true, also insert a backref from the
6521  * inode to the parent directory.
6522  */
6523 int btrfs_add_link(struct btrfs_trans_handle *trans,
6524 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6525 		   const struct fscrypt_str *name, int add_backref, u64 index)
6526 {
6527 	int ret = 0;
6528 	struct btrfs_key key;
6529 	struct btrfs_root *root = parent_inode->root;
6530 	u64 ino = btrfs_ino(inode);
6531 	u64 parent_ino = btrfs_ino(parent_inode);
6532 
6533 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6534 		memcpy(&key, &inode->root->root_key, sizeof(key));
6535 	} else {
6536 		key.objectid = ino;
6537 		key.type = BTRFS_INODE_ITEM_KEY;
6538 		key.offset = 0;
6539 	}
6540 
6541 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6542 		ret = btrfs_add_root_ref(trans, key.objectid,
6543 					 root->root_key.objectid, parent_ino,
6544 					 index, name);
6545 	} else if (add_backref) {
6546 		ret = btrfs_insert_inode_ref(trans, root, name,
6547 					     ino, parent_ino, index);
6548 	}
6549 
6550 	/* Nothing to clean up yet */
6551 	if (ret)
6552 		return ret;
6553 
6554 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6555 				    btrfs_inode_type(&inode->vfs_inode), index);
6556 	if (ret == -EEXIST || ret == -EOVERFLOW)
6557 		goto fail_dir_item;
6558 	else if (ret) {
6559 		btrfs_abort_transaction(trans, ret);
6560 		return ret;
6561 	}
6562 
6563 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6564 			   name->len * 2);
6565 	inode_inc_iversion(&parent_inode->vfs_inode);
6566 	/*
6567 	 * If we are replaying a log tree, we do not want to update the mtime
6568 	 * and ctime of the parent directory with the current time, since the
6569 	 * log replay procedure is responsible for setting them to their correct
6570 	 * values (the ones it had when the fsync was done).
6571 	 */
6572 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6573 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6574 
6575 		parent_inode->vfs_inode.i_mtime = now;
6576 		parent_inode->vfs_inode.i_ctime = now;
6577 	}
6578 	ret = btrfs_update_inode(trans, root, parent_inode);
6579 	if (ret)
6580 		btrfs_abort_transaction(trans, ret);
6581 	return ret;
6582 
6583 fail_dir_item:
6584 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6585 		u64 local_index;
6586 		int err;
6587 		err = btrfs_del_root_ref(trans, key.objectid,
6588 					 root->root_key.objectid, parent_ino,
6589 					 &local_index, name);
6590 		if (err)
6591 			btrfs_abort_transaction(trans, err);
6592 	} else if (add_backref) {
6593 		u64 local_index;
6594 		int err;
6595 
6596 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6597 					  &local_index);
6598 		if (err)
6599 			btrfs_abort_transaction(trans, err);
6600 	}
6601 
6602 	/* Return the original error code */
6603 	return ret;
6604 }
6605 
6606 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6607 			       struct inode *inode)
6608 {
6609 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6610 	struct btrfs_root *root = BTRFS_I(dir)->root;
6611 	struct btrfs_new_inode_args new_inode_args = {
6612 		.dir = dir,
6613 		.dentry = dentry,
6614 		.inode = inode,
6615 	};
6616 	unsigned int trans_num_items;
6617 	struct btrfs_trans_handle *trans;
6618 	int err;
6619 
6620 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6621 	if (err)
6622 		goto out_inode;
6623 
6624 	trans = btrfs_start_transaction(root, trans_num_items);
6625 	if (IS_ERR(trans)) {
6626 		err = PTR_ERR(trans);
6627 		goto out_new_inode_args;
6628 	}
6629 
6630 	err = btrfs_create_new_inode(trans, &new_inode_args);
6631 	if (!err)
6632 		d_instantiate_new(dentry, inode);
6633 
6634 	btrfs_end_transaction(trans);
6635 	btrfs_btree_balance_dirty(fs_info);
6636 out_new_inode_args:
6637 	btrfs_new_inode_args_destroy(&new_inode_args);
6638 out_inode:
6639 	if (err)
6640 		iput(inode);
6641 	return err;
6642 }
6643 
6644 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6645 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6646 {
6647 	struct inode *inode;
6648 
6649 	inode = new_inode(dir->i_sb);
6650 	if (!inode)
6651 		return -ENOMEM;
6652 	inode_init_owner(idmap, inode, dir, mode);
6653 	inode->i_op = &btrfs_special_inode_operations;
6654 	init_special_inode(inode, inode->i_mode, rdev);
6655 	return btrfs_create_common(dir, dentry, inode);
6656 }
6657 
6658 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6659 			struct dentry *dentry, umode_t mode, bool excl)
6660 {
6661 	struct inode *inode;
6662 
6663 	inode = new_inode(dir->i_sb);
6664 	if (!inode)
6665 		return -ENOMEM;
6666 	inode_init_owner(idmap, inode, dir, mode);
6667 	inode->i_fop = &btrfs_file_operations;
6668 	inode->i_op = &btrfs_file_inode_operations;
6669 	inode->i_mapping->a_ops = &btrfs_aops;
6670 	return btrfs_create_common(dir, dentry, inode);
6671 }
6672 
6673 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6674 		      struct dentry *dentry)
6675 {
6676 	struct btrfs_trans_handle *trans = NULL;
6677 	struct btrfs_root *root = BTRFS_I(dir)->root;
6678 	struct inode *inode = d_inode(old_dentry);
6679 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6680 	struct fscrypt_name fname;
6681 	u64 index;
6682 	int err;
6683 	int drop_inode = 0;
6684 
6685 	/* do not allow sys_link's with other subvols of the same device */
6686 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6687 		return -EXDEV;
6688 
6689 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6690 		return -EMLINK;
6691 
6692 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6693 	if (err)
6694 		goto fail;
6695 
6696 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6697 	if (err)
6698 		goto fail;
6699 
6700 	/*
6701 	 * 2 items for inode and inode ref
6702 	 * 2 items for dir items
6703 	 * 1 item for parent inode
6704 	 * 1 item for orphan item deletion if O_TMPFILE
6705 	 */
6706 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6707 	if (IS_ERR(trans)) {
6708 		err = PTR_ERR(trans);
6709 		trans = NULL;
6710 		goto fail;
6711 	}
6712 
6713 	/* There are several dir indexes for this inode, clear the cache. */
6714 	BTRFS_I(inode)->dir_index = 0ULL;
6715 	inc_nlink(inode);
6716 	inode_inc_iversion(inode);
6717 	inode->i_ctime = current_time(inode);
6718 	ihold(inode);
6719 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6720 
6721 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6722 			     &fname.disk_name, 1, index);
6723 
6724 	if (err) {
6725 		drop_inode = 1;
6726 	} else {
6727 		struct dentry *parent = dentry->d_parent;
6728 
6729 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6730 		if (err)
6731 			goto fail;
6732 		if (inode->i_nlink == 1) {
6733 			/*
6734 			 * If new hard link count is 1, it's a file created
6735 			 * with open(2) O_TMPFILE flag.
6736 			 */
6737 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6738 			if (err)
6739 				goto fail;
6740 		}
6741 		d_instantiate(dentry, inode);
6742 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6743 	}
6744 
6745 fail:
6746 	fscrypt_free_filename(&fname);
6747 	if (trans)
6748 		btrfs_end_transaction(trans);
6749 	if (drop_inode) {
6750 		inode_dec_link_count(inode);
6751 		iput(inode);
6752 	}
6753 	btrfs_btree_balance_dirty(fs_info);
6754 	return err;
6755 }
6756 
6757 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6758 		       struct dentry *dentry, umode_t mode)
6759 {
6760 	struct inode *inode;
6761 
6762 	inode = new_inode(dir->i_sb);
6763 	if (!inode)
6764 		return -ENOMEM;
6765 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6766 	inode->i_op = &btrfs_dir_inode_operations;
6767 	inode->i_fop = &btrfs_dir_file_operations;
6768 	return btrfs_create_common(dir, dentry, inode);
6769 }
6770 
6771 static noinline int uncompress_inline(struct btrfs_path *path,
6772 				      struct page *page,
6773 				      struct btrfs_file_extent_item *item)
6774 {
6775 	int ret;
6776 	struct extent_buffer *leaf = path->nodes[0];
6777 	char *tmp;
6778 	size_t max_size;
6779 	unsigned long inline_size;
6780 	unsigned long ptr;
6781 	int compress_type;
6782 
6783 	compress_type = btrfs_file_extent_compression(leaf, item);
6784 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6785 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6786 	tmp = kmalloc(inline_size, GFP_NOFS);
6787 	if (!tmp)
6788 		return -ENOMEM;
6789 	ptr = btrfs_file_extent_inline_start(item);
6790 
6791 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6792 
6793 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6794 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6795 
6796 	/*
6797 	 * decompression code contains a memset to fill in any space between the end
6798 	 * of the uncompressed data and the end of max_size in case the decompressed
6799 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6800 	 * the end of an inline extent and the beginning of the next block, so we
6801 	 * cover that region here.
6802 	 */
6803 
6804 	if (max_size < PAGE_SIZE)
6805 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6806 	kfree(tmp);
6807 	return ret;
6808 }
6809 
6810 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6811 			      struct page *page)
6812 {
6813 	struct btrfs_file_extent_item *fi;
6814 	void *kaddr;
6815 	size_t copy_size;
6816 
6817 	if (!page || PageUptodate(page))
6818 		return 0;
6819 
6820 	ASSERT(page_offset(page) == 0);
6821 
6822 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6823 			    struct btrfs_file_extent_item);
6824 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6825 		return uncompress_inline(path, page, fi);
6826 
6827 	copy_size = min_t(u64, PAGE_SIZE,
6828 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6829 	kaddr = kmap_local_page(page);
6830 	read_extent_buffer(path->nodes[0], kaddr,
6831 			   btrfs_file_extent_inline_start(fi), copy_size);
6832 	kunmap_local(kaddr);
6833 	if (copy_size < PAGE_SIZE)
6834 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6835 	return 0;
6836 }
6837 
6838 /*
6839  * Lookup the first extent overlapping a range in a file.
6840  *
6841  * @inode:	file to search in
6842  * @page:	page to read extent data into if the extent is inline
6843  * @pg_offset:	offset into @page to copy to
6844  * @start:	file offset
6845  * @len:	length of range starting at @start
6846  *
6847  * Return the first &struct extent_map which overlaps the given range, reading
6848  * it from the B-tree and caching it if necessary. Note that there may be more
6849  * extents which overlap the given range after the returned extent_map.
6850  *
6851  * If @page is not NULL and the extent is inline, this also reads the extent
6852  * data directly into the page and marks the extent up to date in the io_tree.
6853  *
6854  * Return: ERR_PTR on error, non-NULL extent_map on success.
6855  */
6856 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6857 				    struct page *page, size_t pg_offset,
6858 				    u64 start, u64 len)
6859 {
6860 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6861 	int ret = 0;
6862 	u64 extent_start = 0;
6863 	u64 extent_end = 0;
6864 	u64 objectid = btrfs_ino(inode);
6865 	int extent_type = -1;
6866 	struct btrfs_path *path = NULL;
6867 	struct btrfs_root *root = inode->root;
6868 	struct btrfs_file_extent_item *item;
6869 	struct extent_buffer *leaf;
6870 	struct btrfs_key found_key;
6871 	struct extent_map *em = NULL;
6872 	struct extent_map_tree *em_tree = &inode->extent_tree;
6873 
6874 	read_lock(&em_tree->lock);
6875 	em = lookup_extent_mapping(em_tree, start, len);
6876 	read_unlock(&em_tree->lock);
6877 
6878 	if (em) {
6879 		if (em->start > start || em->start + em->len <= start)
6880 			free_extent_map(em);
6881 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6882 			free_extent_map(em);
6883 		else
6884 			goto out;
6885 	}
6886 	em = alloc_extent_map();
6887 	if (!em) {
6888 		ret = -ENOMEM;
6889 		goto out;
6890 	}
6891 	em->start = EXTENT_MAP_HOLE;
6892 	em->orig_start = EXTENT_MAP_HOLE;
6893 	em->len = (u64)-1;
6894 	em->block_len = (u64)-1;
6895 
6896 	path = btrfs_alloc_path();
6897 	if (!path) {
6898 		ret = -ENOMEM;
6899 		goto out;
6900 	}
6901 
6902 	/* Chances are we'll be called again, so go ahead and do readahead */
6903 	path->reada = READA_FORWARD;
6904 
6905 	/*
6906 	 * The same explanation in load_free_space_cache applies here as well,
6907 	 * we only read when we're loading the free space cache, and at that
6908 	 * point the commit_root has everything we need.
6909 	 */
6910 	if (btrfs_is_free_space_inode(inode)) {
6911 		path->search_commit_root = 1;
6912 		path->skip_locking = 1;
6913 	}
6914 
6915 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6916 	if (ret < 0) {
6917 		goto out;
6918 	} else if (ret > 0) {
6919 		if (path->slots[0] == 0)
6920 			goto not_found;
6921 		path->slots[0]--;
6922 		ret = 0;
6923 	}
6924 
6925 	leaf = path->nodes[0];
6926 	item = btrfs_item_ptr(leaf, path->slots[0],
6927 			      struct btrfs_file_extent_item);
6928 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6929 	if (found_key.objectid != objectid ||
6930 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6931 		/*
6932 		 * If we backup past the first extent we want to move forward
6933 		 * and see if there is an extent in front of us, otherwise we'll
6934 		 * say there is a hole for our whole search range which can
6935 		 * cause problems.
6936 		 */
6937 		extent_end = start;
6938 		goto next;
6939 	}
6940 
6941 	extent_type = btrfs_file_extent_type(leaf, item);
6942 	extent_start = found_key.offset;
6943 	extent_end = btrfs_file_extent_end(path);
6944 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6945 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6946 		/* Only regular file could have regular/prealloc extent */
6947 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6948 			ret = -EUCLEAN;
6949 			btrfs_crit(fs_info,
6950 		"regular/prealloc extent found for non-regular inode %llu",
6951 				   btrfs_ino(inode));
6952 			goto out;
6953 		}
6954 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6955 						       extent_start);
6956 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6957 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6958 						      path->slots[0],
6959 						      extent_start);
6960 	}
6961 next:
6962 	if (start >= extent_end) {
6963 		path->slots[0]++;
6964 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6965 			ret = btrfs_next_leaf(root, path);
6966 			if (ret < 0)
6967 				goto out;
6968 			else if (ret > 0)
6969 				goto not_found;
6970 
6971 			leaf = path->nodes[0];
6972 		}
6973 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6974 		if (found_key.objectid != objectid ||
6975 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6976 			goto not_found;
6977 		if (start + len <= found_key.offset)
6978 			goto not_found;
6979 		if (start > found_key.offset)
6980 			goto next;
6981 
6982 		/* New extent overlaps with existing one */
6983 		em->start = start;
6984 		em->orig_start = start;
6985 		em->len = found_key.offset - start;
6986 		em->block_start = EXTENT_MAP_HOLE;
6987 		goto insert;
6988 	}
6989 
6990 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6991 
6992 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6993 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6994 		goto insert;
6995 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6996 		/*
6997 		 * Inline extent can only exist at file offset 0. This is
6998 		 * ensured by tree-checker and inline extent creation path.
6999 		 * Thus all members representing file offsets should be zero.
7000 		 */
7001 		ASSERT(pg_offset == 0);
7002 		ASSERT(extent_start == 0);
7003 		ASSERT(em->start == 0);
7004 
7005 		/*
7006 		 * btrfs_extent_item_to_extent_map() should have properly
7007 		 * initialized em members already.
7008 		 *
7009 		 * Other members are not utilized for inline extents.
7010 		 */
7011 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
7012 		ASSERT(em->len == fs_info->sectorsize);
7013 
7014 		ret = read_inline_extent(inode, path, page);
7015 		if (ret < 0)
7016 			goto out;
7017 		goto insert;
7018 	}
7019 not_found:
7020 	em->start = start;
7021 	em->orig_start = start;
7022 	em->len = len;
7023 	em->block_start = EXTENT_MAP_HOLE;
7024 insert:
7025 	ret = 0;
7026 	btrfs_release_path(path);
7027 	if (em->start > start || extent_map_end(em) <= start) {
7028 		btrfs_err(fs_info,
7029 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7030 			  em->start, em->len, start, len);
7031 		ret = -EIO;
7032 		goto out;
7033 	}
7034 
7035 	write_lock(&em_tree->lock);
7036 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7037 	write_unlock(&em_tree->lock);
7038 out:
7039 	btrfs_free_path(path);
7040 
7041 	trace_btrfs_get_extent(root, inode, em);
7042 
7043 	if (ret) {
7044 		free_extent_map(em);
7045 		return ERR_PTR(ret);
7046 	}
7047 	return em;
7048 }
7049 
7050 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7051 						  struct btrfs_dio_data *dio_data,
7052 						  const u64 start,
7053 						  const u64 len,
7054 						  const u64 orig_start,
7055 						  const u64 block_start,
7056 						  const u64 block_len,
7057 						  const u64 orig_block_len,
7058 						  const u64 ram_bytes,
7059 						  const int type)
7060 {
7061 	struct extent_map *em = NULL;
7062 	struct btrfs_ordered_extent *ordered;
7063 
7064 	if (type != BTRFS_ORDERED_NOCOW) {
7065 		em = create_io_em(inode, start, len, orig_start, block_start,
7066 				  block_len, orig_block_len, ram_bytes,
7067 				  BTRFS_COMPRESS_NONE, /* compress_type */
7068 				  type);
7069 		if (IS_ERR(em))
7070 			goto out;
7071 	}
7072 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
7073 					     block_start, block_len, 0,
7074 					     (1 << type) |
7075 					     (1 << BTRFS_ORDERED_DIRECT),
7076 					     BTRFS_COMPRESS_NONE);
7077 	if (IS_ERR(ordered)) {
7078 		if (em) {
7079 			free_extent_map(em);
7080 			btrfs_drop_extent_map_range(inode, start,
7081 						    start + len - 1, false);
7082 		}
7083 		em = ERR_CAST(ordered);
7084 	} else {
7085 		ASSERT(!dio_data->ordered);
7086 		dio_data->ordered = ordered;
7087 	}
7088  out:
7089 
7090 	return em;
7091 }
7092 
7093 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7094 						  struct btrfs_dio_data *dio_data,
7095 						  u64 start, u64 len)
7096 {
7097 	struct btrfs_root *root = inode->root;
7098 	struct btrfs_fs_info *fs_info = root->fs_info;
7099 	struct extent_map *em;
7100 	struct btrfs_key ins;
7101 	u64 alloc_hint;
7102 	int ret;
7103 
7104 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7105 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7106 				   0, alloc_hint, &ins, 1, 1);
7107 	if (ret)
7108 		return ERR_PTR(ret);
7109 
7110 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7111 				     ins.objectid, ins.offset, ins.offset,
7112 				     ins.offset, BTRFS_ORDERED_REGULAR);
7113 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7114 	if (IS_ERR(em))
7115 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7116 					   1);
7117 
7118 	return em;
7119 }
7120 
7121 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7122 {
7123 	struct btrfs_block_group *block_group;
7124 	bool readonly = false;
7125 
7126 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7127 	if (!block_group || block_group->ro)
7128 		readonly = true;
7129 	if (block_group)
7130 		btrfs_put_block_group(block_group);
7131 	return readonly;
7132 }
7133 
7134 /*
7135  * Check if we can do nocow write into the range [@offset, @offset + @len)
7136  *
7137  * @offset:	File offset
7138  * @len:	The length to write, will be updated to the nocow writeable
7139  *		range
7140  * @orig_start:	(optional) Return the original file offset of the file extent
7141  * @orig_len:	(optional) Return the original on-disk length of the file extent
7142  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7143  * @strict:	if true, omit optimizations that might force us into unnecessary
7144  *		cow. e.g., don't trust generation number.
7145  *
7146  * Return:
7147  * >0	and update @len if we can do nocow write
7148  *  0	if we can't do nocow write
7149  * <0	if error happened
7150  *
7151  * NOTE: This only checks the file extents, caller is responsible to wait for
7152  *	 any ordered extents.
7153  */
7154 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7155 			      u64 *orig_start, u64 *orig_block_len,
7156 			      u64 *ram_bytes, bool nowait, bool strict)
7157 {
7158 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7159 	struct can_nocow_file_extent_args nocow_args = { 0 };
7160 	struct btrfs_path *path;
7161 	int ret;
7162 	struct extent_buffer *leaf;
7163 	struct btrfs_root *root = BTRFS_I(inode)->root;
7164 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7165 	struct btrfs_file_extent_item *fi;
7166 	struct btrfs_key key;
7167 	int found_type;
7168 
7169 	path = btrfs_alloc_path();
7170 	if (!path)
7171 		return -ENOMEM;
7172 	path->nowait = nowait;
7173 
7174 	ret = btrfs_lookup_file_extent(NULL, root, path,
7175 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7176 	if (ret < 0)
7177 		goto out;
7178 
7179 	if (ret == 1) {
7180 		if (path->slots[0] == 0) {
7181 			/* can't find the item, must cow */
7182 			ret = 0;
7183 			goto out;
7184 		}
7185 		path->slots[0]--;
7186 	}
7187 	ret = 0;
7188 	leaf = path->nodes[0];
7189 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7190 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7191 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7192 		/* not our file or wrong item type, must cow */
7193 		goto out;
7194 	}
7195 
7196 	if (key.offset > offset) {
7197 		/* Wrong offset, must cow */
7198 		goto out;
7199 	}
7200 
7201 	if (btrfs_file_extent_end(path) <= offset)
7202 		goto out;
7203 
7204 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7205 	found_type = btrfs_file_extent_type(leaf, fi);
7206 	if (ram_bytes)
7207 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7208 
7209 	nocow_args.start = offset;
7210 	nocow_args.end = offset + *len - 1;
7211 	nocow_args.strict = strict;
7212 	nocow_args.free_path = true;
7213 
7214 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7215 	/* can_nocow_file_extent() has freed the path. */
7216 	path = NULL;
7217 
7218 	if (ret != 1) {
7219 		/* Treat errors as not being able to NOCOW. */
7220 		ret = 0;
7221 		goto out;
7222 	}
7223 
7224 	ret = 0;
7225 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7226 		goto out;
7227 
7228 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7229 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7230 		u64 range_end;
7231 
7232 		range_end = round_up(offset + nocow_args.num_bytes,
7233 				     root->fs_info->sectorsize) - 1;
7234 		ret = test_range_bit(io_tree, offset, range_end,
7235 				     EXTENT_DELALLOC, 0, NULL);
7236 		if (ret) {
7237 			ret = -EAGAIN;
7238 			goto out;
7239 		}
7240 	}
7241 
7242 	if (orig_start)
7243 		*orig_start = key.offset - nocow_args.extent_offset;
7244 	if (orig_block_len)
7245 		*orig_block_len = nocow_args.disk_num_bytes;
7246 
7247 	*len = nocow_args.num_bytes;
7248 	ret = 1;
7249 out:
7250 	btrfs_free_path(path);
7251 	return ret;
7252 }
7253 
7254 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7255 			      struct extent_state **cached_state,
7256 			      unsigned int iomap_flags)
7257 {
7258 	const bool writing = (iomap_flags & IOMAP_WRITE);
7259 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7260 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7261 	struct btrfs_ordered_extent *ordered;
7262 	int ret = 0;
7263 
7264 	while (1) {
7265 		if (nowait) {
7266 			if (!try_lock_extent(io_tree, lockstart, lockend,
7267 					     cached_state))
7268 				return -EAGAIN;
7269 		} else {
7270 			lock_extent(io_tree, lockstart, lockend, cached_state);
7271 		}
7272 		/*
7273 		 * We're concerned with the entire range that we're going to be
7274 		 * doing DIO to, so we need to make sure there's no ordered
7275 		 * extents in this range.
7276 		 */
7277 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7278 						     lockend - lockstart + 1);
7279 
7280 		/*
7281 		 * We need to make sure there are no buffered pages in this
7282 		 * range either, we could have raced between the invalidate in
7283 		 * generic_file_direct_write and locking the extent.  The
7284 		 * invalidate needs to happen so that reads after a write do not
7285 		 * get stale data.
7286 		 */
7287 		if (!ordered &&
7288 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7289 							 lockstart, lockend)))
7290 			break;
7291 
7292 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7293 
7294 		if (ordered) {
7295 			if (nowait) {
7296 				btrfs_put_ordered_extent(ordered);
7297 				ret = -EAGAIN;
7298 				break;
7299 			}
7300 			/*
7301 			 * If we are doing a DIO read and the ordered extent we
7302 			 * found is for a buffered write, we can not wait for it
7303 			 * to complete and retry, because if we do so we can
7304 			 * deadlock with concurrent buffered writes on page
7305 			 * locks. This happens only if our DIO read covers more
7306 			 * than one extent map, if at this point has already
7307 			 * created an ordered extent for a previous extent map
7308 			 * and locked its range in the inode's io tree, and a
7309 			 * concurrent write against that previous extent map's
7310 			 * range and this range started (we unlock the ranges
7311 			 * in the io tree only when the bios complete and
7312 			 * buffered writes always lock pages before attempting
7313 			 * to lock range in the io tree).
7314 			 */
7315 			if (writing ||
7316 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7317 				btrfs_start_ordered_extent(ordered);
7318 			else
7319 				ret = nowait ? -EAGAIN : -ENOTBLK;
7320 			btrfs_put_ordered_extent(ordered);
7321 		} else {
7322 			/*
7323 			 * We could trigger writeback for this range (and wait
7324 			 * for it to complete) and then invalidate the pages for
7325 			 * this range (through invalidate_inode_pages2_range()),
7326 			 * but that can lead us to a deadlock with a concurrent
7327 			 * call to readahead (a buffered read or a defrag call
7328 			 * triggered a readahead) on a page lock due to an
7329 			 * ordered dio extent we created before but did not have
7330 			 * yet a corresponding bio submitted (whence it can not
7331 			 * complete), which makes readahead wait for that
7332 			 * ordered extent to complete while holding a lock on
7333 			 * that page.
7334 			 */
7335 			ret = nowait ? -EAGAIN : -ENOTBLK;
7336 		}
7337 
7338 		if (ret)
7339 			break;
7340 
7341 		cond_resched();
7342 	}
7343 
7344 	return ret;
7345 }
7346 
7347 /* The callers of this must take lock_extent() */
7348 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7349 				       u64 len, u64 orig_start, u64 block_start,
7350 				       u64 block_len, u64 orig_block_len,
7351 				       u64 ram_bytes, int compress_type,
7352 				       int type)
7353 {
7354 	struct extent_map *em;
7355 	int ret;
7356 
7357 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7358 	       type == BTRFS_ORDERED_COMPRESSED ||
7359 	       type == BTRFS_ORDERED_NOCOW ||
7360 	       type == BTRFS_ORDERED_REGULAR);
7361 
7362 	em = alloc_extent_map();
7363 	if (!em)
7364 		return ERR_PTR(-ENOMEM);
7365 
7366 	em->start = start;
7367 	em->orig_start = orig_start;
7368 	em->len = len;
7369 	em->block_len = block_len;
7370 	em->block_start = block_start;
7371 	em->orig_block_len = orig_block_len;
7372 	em->ram_bytes = ram_bytes;
7373 	em->generation = -1;
7374 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7375 	if (type == BTRFS_ORDERED_PREALLOC) {
7376 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7377 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7378 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7379 		em->compress_type = compress_type;
7380 	}
7381 
7382 	ret = btrfs_replace_extent_map_range(inode, em, true);
7383 	if (ret) {
7384 		free_extent_map(em);
7385 		return ERR_PTR(ret);
7386 	}
7387 
7388 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7389 	return em;
7390 }
7391 
7392 
7393 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7394 					 struct inode *inode,
7395 					 struct btrfs_dio_data *dio_data,
7396 					 u64 start, u64 *lenp,
7397 					 unsigned int iomap_flags)
7398 {
7399 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7400 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7401 	struct extent_map *em = *map;
7402 	int type;
7403 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7404 	struct btrfs_block_group *bg;
7405 	bool can_nocow = false;
7406 	bool space_reserved = false;
7407 	u64 len = *lenp;
7408 	u64 prev_len;
7409 	int ret = 0;
7410 
7411 	/*
7412 	 * We don't allocate a new extent in the following cases
7413 	 *
7414 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7415 	 * existing extent.
7416 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7417 	 * just use the extent.
7418 	 *
7419 	 */
7420 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7421 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7422 	     em->block_start != EXTENT_MAP_HOLE)) {
7423 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7424 			type = BTRFS_ORDERED_PREALLOC;
7425 		else
7426 			type = BTRFS_ORDERED_NOCOW;
7427 		len = min(len, em->len - (start - em->start));
7428 		block_start = em->block_start + (start - em->start);
7429 
7430 		if (can_nocow_extent(inode, start, &len, &orig_start,
7431 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7432 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7433 			if (bg)
7434 				can_nocow = true;
7435 		}
7436 	}
7437 
7438 	prev_len = len;
7439 	if (can_nocow) {
7440 		struct extent_map *em2;
7441 
7442 		/* We can NOCOW, so only need to reserve metadata space. */
7443 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7444 						      nowait);
7445 		if (ret < 0) {
7446 			/* Our caller expects us to free the input extent map. */
7447 			free_extent_map(em);
7448 			*map = NULL;
7449 			btrfs_dec_nocow_writers(bg);
7450 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7451 				ret = -EAGAIN;
7452 			goto out;
7453 		}
7454 		space_reserved = true;
7455 
7456 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7457 					      orig_start, block_start,
7458 					      len, orig_block_len,
7459 					      ram_bytes, type);
7460 		btrfs_dec_nocow_writers(bg);
7461 		if (type == BTRFS_ORDERED_PREALLOC) {
7462 			free_extent_map(em);
7463 			*map = em2;
7464 			em = em2;
7465 		}
7466 
7467 		if (IS_ERR(em2)) {
7468 			ret = PTR_ERR(em2);
7469 			goto out;
7470 		}
7471 
7472 		dio_data->nocow_done = true;
7473 	} else {
7474 		/* Our caller expects us to free the input extent map. */
7475 		free_extent_map(em);
7476 		*map = NULL;
7477 
7478 		if (nowait) {
7479 			ret = -EAGAIN;
7480 			goto out;
7481 		}
7482 
7483 		/*
7484 		 * If we could not allocate data space before locking the file
7485 		 * range and we can't do a NOCOW write, then we have to fail.
7486 		 */
7487 		if (!dio_data->data_space_reserved) {
7488 			ret = -ENOSPC;
7489 			goto out;
7490 		}
7491 
7492 		/*
7493 		 * We have to COW and we have already reserved data space before,
7494 		 * so now we reserve only metadata.
7495 		 */
7496 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7497 						      false);
7498 		if (ret < 0)
7499 			goto out;
7500 		space_reserved = true;
7501 
7502 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7503 		if (IS_ERR(em)) {
7504 			ret = PTR_ERR(em);
7505 			goto out;
7506 		}
7507 		*map = em;
7508 		len = min(len, em->len - (start - em->start));
7509 		if (len < prev_len)
7510 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7511 							prev_len - len, true);
7512 	}
7513 
7514 	/*
7515 	 * We have created our ordered extent, so we can now release our reservation
7516 	 * for an outstanding extent.
7517 	 */
7518 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7519 
7520 	/*
7521 	 * Need to update the i_size under the extent lock so buffered
7522 	 * readers will get the updated i_size when we unlock.
7523 	 */
7524 	if (start + len > i_size_read(inode))
7525 		i_size_write(inode, start + len);
7526 out:
7527 	if (ret && space_reserved) {
7528 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7529 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7530 	}
7531 	*lenp = len;
7532 	return ret;
7533 }
7534 
7535 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7536 		loff_t length, unsigned int flags, struct iomap *iomap,
7537 		struct iomap *srcmap)
7538 {
7539 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7540 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7541 	struct extent_map *em;
7542 	struct extent_state *cached_state = NULL;
7543 	struct btrfs_dio_data *dio_data = iter->private;
7544 	u64 lockstart, lockend;
7545 	const bool write = !!(flags & IOMAP_WRITE);
7546 	int ret = 0;
7547 	u64 len = length;
7548 	const u64 data_alloc_len = length;
7549 	bool unlock_extents = false;
7550 
7551 	/*
7552 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7553 	 * we're NOWAIT we may submit a bio for a partial range and return
7554 	 * EIOCBQUEUED, which would result in an errant short read.
7555 	 *
7556 	 * The best way to handle this would be to allow for partial completions
7557 	 * of iocb's, so we could submit the partial bio, return and fault in
7558 	 * the rest of the pages, and then submit the io for the rest of the
7559 	 * range.  However we don't have that currently, so simply return
7560 	 * -EAGAIN at this point so that the normal path is used.
7561 	 */
7562 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7563 		return -EAGAIN;
7564 
7565 	/*
7566 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7567 	 * to allocate a contiguous array for the checksums.
7568 	 */
7569 	if (!write)
7570 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7571 
7572 	lockstart = start;
7573 	lockend = start + len - 1;
7574 
7575 	/*
7576 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7577 	 * enough if we've written compressed pages to this area, so we need to
7578 	 * flush the dirty pages again to make absolutely sure that any
7579 	 * outstanding dirty pages are on disk - the first flush only starts
7580 	 * compression on the data, while keeping the pages locked, so by the
7581 	 * time the second flush returns we know bios for the compressed pages
7582 	 * were submitted and finished, and the pages no longer under writeback.
7583 	 *
7584 	 * If we have a NOWAIT request and we have any pages in the range that
7585 	 * are locked, likely due to compression still in progress, we don't want
7586 	 * to block on page locks. We also don't want to block on pages marked as
7587 	 * dirty or under writeback (same as for the non-compression case).
7588 	 * iomap_dio_rw() did the same check, but after that and before we got
7589 	 * here, mmap'ed writes may have happened or buffered reads started
7590 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7591 	 * the file range yet.
7592 	 */
7593 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7594 		     &BTRFS_I(inode)->runtime_flags)) {
7595 		if (flags & IOMAP_NOWAIT) {
7596 			if (filemap_range_needs_writeback(inode->i_mapping,
7597 							  lockstart, lockend))
7598 				return -EAGAIN;
7599 		} else {
7600 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7601 						       start + length - 1);
7602 			if (ret)
7603 				return ret;
7604 		}
7605 	}
7606 
7607 	memset(dio_data, 0, sizeof(*dio_data));
7608 
7609 	/*
7610 	 * We always try to allocate data space and must do it before locking
7611 	 * the file range, to avoid deadlocks with concurrent writes to the same
7612 	 * range if the range has several extents and the writes don't expand the
7613 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7614 	 * allocate data space here we continue and later, after locking the
7615 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7616 	 * NOCOW write.
7617 	 */
7618 	if (write && !(flags & IOMAP_NOWAIT)) {
7619 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7620 						  &dio_data->data_reserved,
7621 						  start, data_alloc_len, false);
7622 		if (!ret)
7623 			dio_data->data_space_reserved = true;
7624 		else if (ret && !(BTRFS_I(inode)->flags &
7625 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7626 			goto err;
7627 	}
7628 
7629 	/*
7630 	 * If this errors out it's because we couldn't invalidate pagecache for
7631 	 * this range and we need to fallback to buffered IO, or we are doing a
7632 	 * NOWAIT read/write and we need to block.
7633 	 */
7634 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7635 	if (ret < 0)
7636 		goto err;
7637 
7638 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7639 	if (IS_ERR(em)) {
7640 		ret = PTR_ERR(em);
7641 		goto unlock_err;
7642 	}
7643 
7644 	/*
7645 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7646 	 * io.  INLINE is special, and we could probably kludge it in here, but
7647 	 * it's still buffered so for safety lets just fall back to the generic
7648 	 * buffered path.
7649 	 *
7650 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7651 	 * decompress it, so there will be buffering required no matter what we
7652 	 * do, so go ahead and fallback to buffered.
7653 	 *
7654 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7655 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7656 	 * the generic code.
7657 	 */
7658 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7659 	    em->block_start == EXTENT_MAP_INLINE) {
7660 		free_extent_map(em);
7661 		/*
7662 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7663 		 * fallback to buffered IO. This is not only because we can
7664 		 * block with buffered IO (no support for NOWAIT semantics at
7665 		 * the moment) but also to avoid returning short reads to user
7666 		 * space - this happens if we were able to read some data from
7667 		 * previous non-compressed extents and then when we fallback to
7668 		 * buffered IO, at btrfs_file_read_iter() by calling
7669 		 * filemap_read(), we fail to fault in pages for the read buffer,
7670 		 * in which case filemap_read() returns a short read (the number
7671 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7672 		 */
7673 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7674 		goto unlock_err;
7675 	}
7676 
7677 	len = min(len, em->len - (start - em->start));
7678 
7679 	/*
7680 	 * If we have a NOWAIT request and the range contains multiple extents
7681 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7682 	 * caller fallback to a context where it can do a blocking (without
7683 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7684 	 * success to the caller, which is not optimal for writes and for reads
7685 	 * it can result in unexpected behaviour for an application.
7686 	 *
7687 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7688 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7689 	 * asked for, resulting in an unexpected, and incorrect, short read.
7690 	 * That is, the caller asked to read N bytes and we return less than that,
7691 	 * which is wrong unless we are crossing EOF. This happens if we get a
7692 	 * page fault error when trying to fault in pages for the buffer that is
7693 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7694 	 * have previously submitted bios for other extents in the range, in
7695 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7696 	 * those bios have completed by the time we get the page fault error,
7697 	 * which we return back to our caller - we should only return EIOCBQUEUED
7698 	 * after we have submitted bios for all the extents in the range.
7699 	 */
7700 	if ((flags & IOMAP_NOWAIT) && len < length) {
7701 		free_extent_map(em);
7702 		ret = -EAGAIN;
7703 		goto unlock_err;
7704 	}
7705 
7706 	if (write) {
7707 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7708 						    start, &len, flags);
7709 		if (ret < 0)
7710 			goto unlock_err;
7711 		unlock_extents = true;
7712 		/* Recalc len in case the new em is smaller than requested */
7713 		len = min(len, em->len - (start - em->start));
7714 		if (dio_data->data_space_reserved) {
7715 			u64 release_offset;
7716 			u64 release_len = 0;
7717 
7718 			if (dio_data->nocow_done) {
7719 				release_offset = start;
7720 				release_len = data_alloc_len;
7721 			} else if (len < data_alloc_len) {
7722 				release_offset = start + len;
7723 				release_len = data_alloc_len - len;
7724 			}
7725 
7726 			if (release_len > 0)
7727 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7728 							       dio_data->data_reserved,
7729 							       release_offset,
7730 							       release_len);
7731 		}
7732 	} else {
7733 		/*
7734 		 * We need to unlock only the end area that we aren't using.
7735 		 * The rest is going to be unlocked by the endio routine.
7736 		 */
7737 		lockstart = start + len;
7738 		if (lockstart < lockend)
7739 			unlock_extents = true;
7740 	}
7741 
7742 	if (unlock_extents)
7743 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7744 			      &cached_state);
7745 	else
7746 		free_extent_state(cached_state);
7747 
7748 	/*
7749 	 * Translate extent map information to iomap.
7750 	 * We trim the extents (and move the addr) even though iomap code does
7751 	 * that, since we have locked only the parts we are performing I/O in.
7752 	 */
7753 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7754 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7755 		iomap->addr = IOMAP_NULL_ADDR;
7756 		iomap->type = IOMAP_HOLE;
7757 	} else {
7758 		iomap->addr = em->block_start + (start - em->start);
7759 		iomap->type = IOMAP_MAPPED;
7760 	}
7761 	iomap->offset = start;
7762 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7763 	iomap->length = len;
7764 	free_extent_map(em);
7765 
7766 	return 0;
7767 
7768 unlock_err:
7769 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7770 		      &cached_state);
7771 err:
7772 	if (dio_data->data_space_reserved) {
7773 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7774 					       dio_data->data_reserved,
7775 					       start, data_alloc_len);
7776 		extent_changeset_free(dio_data->data_reserved);
7777 	}
7778 
7779 	return ret;
7780 }
7781 
7782 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7783 		ssize_t written, unsigned int flags, struct iomap *iomap)
7784 {
7785 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7786 	struct btrfs_dio_data *dio_data = iter->private;
7787 	size_t submitted = dio_data->submitted;
7788 	const bool write = !!(flags & IOMAP_WRITE);
7789 	int ret = 0;
7790 
7791 	if (!write && (iomap->type == IOMAP_HOLE)) {
7792 		/* If reading from a hole, unlock and return */
7793 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7794 			      NULL);
7795 		return 0;
7796 	}
7797 
7798 	if (submitted < length) {
7799 		pos += submitted;
7800 		length -= submitted;
7801 		if (write)
7802 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7803 						    pos, length, false);
7804 		else
7805 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7806 				      pos + length - 1, NULL);
7807 		ret = -ENOTBLK;
7808 	}
7809 	if (write) {
7810 		btrfs_put_ordered_extent(dio_data->ordered);
7811 		dio_data->ordered = NULL;
7812 	}
7813 
7814 	if (write)
7815 		extent_changeset_free(dio_data->data_reserved);
7816 	return ret;
7817 }
7818 
7819 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7820 {
7821 	struct btrfs_dio_private *dip =
7822 		container_of(bbio, struct btrfs_dio_private, bbio);
7823 	struct btrfs_inode *inode = bbio->inode;
7824 	struct bio *bio = &bbio->bio;
7825 
7826 	if (bio->bi_status) {
7827 		btrfs_warn(inode->root->fs_info,
7828 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7829 			   btrfs_ino(inode), bio->bi_opf,
7830 			   dip->file_offset, dip->bytes, bio->bi_status);
7831 	}
7832 
7833 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7834 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7835 					    dip->file_offset, dip->bytes,
7836 					    !bio->bi_status);
7837 	} else {
7838 		unlock_extent(&inode->io_tree, dip->file_offset,
7839 			      dip->file_offset + dip->bytes - 1, NULL);
7840 	}
7841 
7842 	bbio->bio.bi_private = bbio->private;
7843 	iomap_dio_bio_end_io(bio);
7844 }
7845 
7846 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7847 				loff_t file_offset)
7848 {
7849 	struct btrfs_bio *bbio = btrfs_bio(bio);
7850 	struct btrfs_dio_private *dip =
7851 		container_of(bbio, struct btrfs_dio_private, bbio);
7852 	struct btrfs_dio_data *dio_data = iter->private;
7853 
7854 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7855 		       btrfs_dio_end_io, bio->bi_private);
7856 	bbio->inode = BTRFS_I(iter->inode);
7857 	bbio->file_offset = file_offset;
7858 
7859 	dip->file_offset = file_offset;
7860 	dip->bytes = bio->bi_iter.bi_size;
7861 
7862 	dio_data->submitted += bio->bi_iter.bi_size;
7863 
7864 	/*
7865 	 * Check if we are doing a partial write.  If we are, we need to split
7866 	 * the ordered extent to match the submitted bio.  Hang on to the
7867 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7868 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7869 	 * remaining pages is blocked on the outstanding ordered extent.
7870 	 */
7871 	if (iter->flags & IOMAP_WRITE) {
7872 		int ret;
7873 
7874 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7875 		if (ret) {
7876 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7877 						    file_offset, dip->bytes,
7878 						    !ret);
7879 			bio->bi_status = errno_to_blk_status(ret);
7880 			iomap_dio_bio_end_io(bio);
7881 			return;
7882 		}
7883 	}
7884 
7885 	btrfs_submit_bio(bbio, 0);
7886 }
7887 
7888 static const struct iomap_ops btrfs_dio_iomap_ops = {
7889 	.iomap_begin            = btrfs_dio_iomap_begin,
7890 	.iomap_end              = btrfs_dio_iomap_end,
7891 };
7892 
7893 static const struct iomap_dio_ops btrfs_dio_ops = {
7894 	.submit_io		= btrfs_dio_submit_io,
7895 	.bio_set		= &btrfs_dio_bioset,
7896 };
7897 
7898 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7899 {
7900 	struct btrfs_dio_data data = { 0 };
7901 
7902 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7903 			    IOMAP_DIO_PARTIAL, &data, done_before);
7904 }
7905 
7906 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7907 				  size_t done_before)
7908 {
7909 	struct btrfs_dio_data data = { 0 };
7910 
7911 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7912 			    IOMAP_DIO_PARTIAL, &data, done_before);
7913 }
7914 
7915 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7916 			u64 start, u64 len)
7917 {
7918 	int	ret;
7919 
7920 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7921 	if (ret)
7922 		return ret;
7923 
7924 	/*
7925 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7926 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7927 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7928 	 * in the compression of data (in an async thread) and will return
7929 	 * before the compression is done and writeback is started. A second
7930 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7931 	 * complete and writeback to start. We also need to wait for ordered
7932 	 * extents to complete, because our fiemap implementation uses mainly
7933 	 * file extent items to list the extents, searching for extent maps
7934 	 * only for file ranges with holes or prealloc extents to figure out
7935 	 * if we have delalloc in those ranges.
7936 	 */
7937 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7938 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7939 		if (ret)
7940 			return ret;
7941 	}
7942 
7943 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7944 }
7945 
7946 static int btrfs_writepages(struct address_space *mapping,
7947 			    struct writeback_control *wbc)
7948 {
7949 	return extent_writepages(mapping, wbc);
7950 }
7951 
7952 static void btrfs_readahead(struct readahead_control *rac)
7953 {
7954 	extent_readahead(rac);
7955 }
7956 
7957 /*
7958  * For release_folio() and invalidate_folio() we have a race window where
7959  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7960  * If we continue to release/invalidate the page, we could cause use-after-free
7961  * for subpage spinlock.  So this function is to spin and wait for subpage
7962  * spinlock.
7963  */
7964 static void wait_subpage_spinlock(struct page *page)
7965 {
7966 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7967 	struct btrfs_subpage *subpage;
7968 
7969 	if (!btrfs_is_subpage(fs_info, page))
7970 		return;
7971 
7972 	ASSERT(PagePrivate(page) && page->private);
7973 	subpage = (struct btrfs_subpage *)page->private;
7974 
7975 	/*
7976 	 * This may look insane as we just acquire the spinlock and release it,
7977 	 * without doing anything.  But we just want to make sure no one is
7978 	 * still holding the subpage spinlock.
7979 	 * And since the page is not dirty nor writeback, and we have page
7980 	 * locked, the only possible way to hold a spinlock is from the endio
7981 	 * function to clear page writeback.
7982 	 *
7983 	 * Here we just acquire the spinlock so that all existing callers
7984 	 * should exit and we're safe to release/invalidate the page.
7985 	 */
7986 	spin_lock_irq(&subpage->lock);
7987 	spin_unlock_irq(&subpage->lock);
7988 }
7989 
7990 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7991 {
7992 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7993 
7994 	if (ret == 1) {
7995 		wait_subpage_spinlock(&folio->page);
7996 		clear_page_extent_mapped(&folio->page);
7997 	}
7998 	return ret;
7999 }
8000 
8001 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
8002 {
8003 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
8004 		return false;
8005 	return __btrfs_release_folio(folio, gfp_flags);
8006 }
8007 
8008 #ifdef CONFIG_MIGRATION
8009 static int btrfs_migrate_folio(struct address_space *mapping,
8010 			     struct folio *dst, struct folio *src,
8011 			     enum migrate_mode mode)
8012 {
8013 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
8014 
8015 	if (ret != MIGRATEPAGE_SUCCESS)
8016 		return ret;
8017 
8018 	if (folio_test_ordered(src)) {
8019 		folio_clear_ordered(src);
8020 		folio_set_ordered(dst);
8021 	}
8022 
8023 	return MIGRATEPAGE_SUCCESS;
8024 }
8025 #else
8026 #define btrfs_migrate_folio NULL
8027 #endif
8028 
8029 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8030 				 size_t length)
8031 {
8032 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
8033 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8034 	struct extent_io_tree *tree = &inode->io_tree;
8035 	struct extent_state *cached_state = NULL;
8036 	u64 page_start = folio_pos(folio);
8037 	u64 page_end = page_start + folio_size(folio) - 1;
8038 	u64 cur;
8039 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8040 
8041 	/*
8042 	 * We have folio locked so no new ordered extent can be created on this
8043 	 * page, nor bio can be submitted for this folio.
8044 	 *
8045 	 * But already submitted bio can still be finished on this folio.
8046 	 * Furthermore, endio function won't skip folio which has Ordered
8047 	 * (Private2) already cleared, so it's possible for endio and
8048 	 * invalidate_folio to do the same ordered extent accounting twice
8049 	 * on one folio.
8050 	 *
8051 	 * So here we wait for any submitted bios to finish, so that we won't
8052 	 * do double ordered extent accounting on the same folio.
8053 	 */
8054 	folio_wait_writeback(folio);
8055 	wait_subpage_spinlock(&folio->page);
8056 
8057 	/*
8058 	 * For subpage case, we have call sites like
8059 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8060 	 * sectorsize.
8061 	 * If the range doesn't cover the full folio, we don't need to and
8062 	 * shouldn't clear page extent mapped, as folio->private can still
8063 	 * record subpage dirty bits for other part of the range.
8064 	 *
8065 	 * For cases that invalidate the full folio even the range doesn't
8066 	 * cover the full folio, like invalidating the last folio, we're
8067 	 * still safe to wait for ordered extent to finish.
8068 	 */
8069 	if (!(offset == 0 && length == folio_size(folio))) {
8070 		btrfs_release_folio(folio, GFP_NOFS);
8071 		return;
8072 	}
8073 
8074 	if (!inode_evicting)
8075 		lock_extent(tree, page_start, page_end, &cached_state);
8076 
8077 	cur = page_start;
8078 	while (cur < page_end) {
8079 		struct btrfs_ordered_extent *ordered;
8080 		u64 range_end;
8081 		u32 range_len;
8082 		u32 extra_flags = 0;
8083 
8084 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8085 							   page_end + 1 - cur);
8086 		if (!ordered) {
8087 			range_end = page_end;
8088 			/*
8089 			 * No ordered extent covering this range, we are safe
8090 			 * to delete all extent states in the range.
8091 			 */
8092 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8093 			goto next;
8094 		}
8095 		if (ordered->file_offset > cur) {
8096 			/*
8097 			 * There is a range between [cur, oe->file_offset) not
8098 			 * covered by any ordered extent.
8099 			 * We are safe to delete all extent states, and handle
8100 			 * the ordered extent in the next iteration.
8101 			 */
8102 			range_end = ordered->file_offset - 1;
8103 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8104 			goto next;
8105 		}
8106 
8107 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8108 				page_end);
8109 		ASSERT(range_end + 1 - cur < U32_MAX);
8110 		range_len = range_end + 1 - cur;
8111 		if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
8112 			/*
8113 			 * If Ordered (Private2) is cleared, it means endio has
8114 			 * already been executed for the range.
8115 			 * We can't delete the extent states as
8116 			 * btrfs_finish_ordered_io() may still use some of them.
8117 			 */
8118 			goto next;
8119 		}
8120 		btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
8121 
8122 		/*
8123 		 * IO on this page will never be started, so we need to account
8124 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8125 		 * here, must leave that up for the ordered extent completion.
8126 		 *
8127 		 * This will also unlock the range for incoming
8128 		 * btrfs_finish_ordered_io().
8129 		 */
8130 		if (!inode_evicting)
8131 			clear_extent_bit(tree, cur, range_end,
8132 					 EXTENT_DELALLOC |
8133 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8134 					 EXTENT_DEFRAG, &cached_state);
8135 
8136 		spin_lock_irq(&inode->ordered_tree.lock);
8137 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8138 		ordered->truncated_len = min(ordered->truncated_len,
8139 					     cur - ordered->file_offset);
8140 		spin_unlock_irq(&inode->ordered_tree.lock);
8141 
8142 		/*
8143 		 * If the ordered extent has finished, we're safe to delete all
8144 		 * the extent states of the range, otherwise
8145 		 * btrfs_finish_ordered_io() will get executed by endio for
8146 		 * other pages, so we can't delete extent states.
8147 		 */
8148 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8149 						   cur, range_end + 1 - cur)) {
8150 			btrfs_finish_ordered_io(ordered);
8151 			/*
8152 			 * The ordered extent has finished, now we're again
8153 			 * safe to delete all extent states of the range.
8154 			 */
8155 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8156 		}
8157 next:
8158 		if (ordered)
8159 			btrfs_put_ordered_extent(ordered);
8160 		/*
8161 		 * Qgroup reserved space handler
8162 		 * Sector(s) here will be either:
8163 		 *
8164 		 * 1) Already written to disk or bio already finished
8165 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8166 		 *    Qgroup will be handled by its qgroup_record then.
8167 		 *    btrfs_qgroup_free_data() call will do nothing here.
8168 		 *
8169 		 * 2) Not written to disk yet
8170 		 *    Then btrfs_qgroup_free_data() call will clear the
8171 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8172 		 *    reserved data space.
8173 		 *    Since the IO will never happen for this page.
8174 		 */
8175 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8176 		if (!inode_evicting) {
8177 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8178 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8179 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8180 				 extra_flags, &cached_state);
8181 		}
8182 		cur = range_end + 1;
8183 	}
8184 	/*
8185 	 * We have iterated through all ordered extents of the page, the page
8186 	 * should not have Ordered (Private2) anymore, or the above iteration
8187 	 * did something wrong.
8188 	 */
8189 	ASSERT(!folio_test_ordered(folio));
8190 	btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
8191 	if (!inode_evicting)
8192 		__btrfs_release_folio(folio, GFP_NOFS);
8193 	clear_page_extent_mapped(&folio->page);
8194 }
8195 
8196 /*
8197  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8198  * called from a page fault handler when a page is first dirtied. Hence we must
8199  * be careful to check for EOF conditions here. We set the page up correctly
8200  * for a written page which means we get ENOSPC checking when writing into
8201  * holes and correct delalloc and unwritten extent mapping on filesystems that
8202  * support these features.
8203  *
8204  * We are not allowed to take the i_mutex here so we have to play games to
8205  * protect against truncate races as the page could now be beyond EOF.  Because
8206  * truncate_setsize() writes the inode size before removing pages, once we have
8207  * the page lock we can determine safely if the page is beyond EOF. If it is not
8208  * beyond EOF, then the page is guaranteed safe against truncation until we
8209  * unlock the page.
8210  */
8211 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8212 {
8213 	struct page *page = vmf->page;
8214 	struct inode *inode = file_inode(vmf->vma->vm_file);
8215 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8216 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8217 	struct btrfs_ordered_extent *ordered;
8218 	struct extent_state *cached_state = NULL;
8219 	struct extent_changeset *data_reserved = NULL;
8220 	unsigned long zero_start;
8221 	loff_t size;
8222 	vm_fault_t ret;
8223 	int ret2;
8224 	int reserved = 0;
8225 	u64 reserved_space;
8226 	u64 page_start;
8227 	u64 page_end;
8228 	u64 end;
8229 
8230 	reserved_space = PAGE_SIZE;
8231 
8232 	sb_start_pagefault(inode->i_sb);
8233 	page_start = page_offset(page);
8234 	page_end = page_start + PAGE_SIZE - 1;
8235 	end = page_end;
8236 
8237 	/*
8238 	 * Reserving delalloc space after obtaining the page lock can lead to
8239 	 * deadlock. For example, if a dirty page is locked by this function
8240 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8241 	 * dirty page write out, then the btrfs_writepages() function could
8242 	 * end up waiting indefinitely to get a lock on the page currently
8243 	 * being processed by btrfs_page_mkwrite() function.
8244 	 */
8245 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8246 					    page_start, reserved_space);
8247 	if (!ret2) {
8248 		ret2 = file_update_time(vmf->vma->vm_file);
8249 		reserved = 1;
8250 	}
8251 	if (ret2) {
8252 		ret = vmf_error(ret2);
8253 		if (reserved)
8254 			goto out;
8255 		goto out_noreserve;
8256 	}
8257 
8258 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8259 again:
8260 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8261 	lock_page(page);
8262 	size = i_size_read(inode);
8263 
8264 	if ((page->mapping != inode->i_mapping) ||
8265 	    (page_start >= size)) {
8266 		/* page got truncated out from underneath us */
8267 		goto out_unlock;
8268 	}
8269 	wait_on_page_writeback(page);
8270 
8271 	lock_extent(io_tree, page_start, page_end, &cached_state);
8272 	ret2 = set_page_extent_mapped(page);
8273 	if (ret2 < 0) {
8274 		ret = vmf_error(ret2);
8275 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8276 		goto out_unlock;
8277 	}
8278 
8279 	/*
8280 	 * we can't set the delalloc bits if there are pending ordered
8281 	 * extents.  Drop our locks and wait for them to finish
8282 	 */
8283 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8284 			PAGE_SIZE);
8285 	if (ordered) {
8286 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8287 		unlock_page(page);
8288 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8289 		btrfs_start_ordered_extent(ordered);
8290 		btrfs_put_ordered_extent(ordered);
8291 		goto again;
8292 	}
8293 
8294 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8295 		reserved_space = round_up(size - page_start,
8296 					  fs_info->sectorsize);
8297 		if (reserved_space < PAGE_SIZE) {
8298 			end = page_start + reserved_space - 1;
8299 			btrfs_delalloc_release_space(BTRFS_I(inode),
8300 					data_reserved, page_start,
8301 					PAGE_SIZE - reserved_space, true);
8302 		}
8303 	}
8304 
8305 	/*
8306 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8307 	 * faulted in, but write(2) could also dirty a page and set delalloc
8308 	 * bits, thus in this case for space account reason, we still need to
8309 	 * clear any delalloc bits within this page range since we have to
8310 	 * reserve data&meta space before lock_page() (see above comments).
8311 	 */
8312 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8313 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8314 			  EXTENT_DEFRAG, &cached_state);
8315 
8316 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8317 					&cached_state);
8318 	if (ret2) {
8319 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8320 		ret = VM_FAULT_SIGBUS;
8321 		goto out_unlock;
8322 	}
8323 
8324 	/* page is wholly or partially inside EOF */
8325 	if (page_start + PAGE_SIZE > size)
8326 		zero_start = offset_in_page(size);
8327 	else
8328 		zero_start = PAGE_SIZE;
8329 
8330 	if (zero_start != PAGE_SIZE)
8331 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8332 
8333 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8334 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8335 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8336 
8337 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8338 
8339 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8340 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8341 
8342 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8343 	sb_end_pagefault(inode->i_sb);
8344 	extent_changeset_free(data_reserved);
8345 	return VM_FAULT_LOCKED;
8346 
8347 out_unlock:
8348 	unlock_page(page);
8349 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8350 out:
8351 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8352 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8353 				     reserved_space, (ret != 0));
8354 out_noreserve:
8355 	sb_end_pagefault(inode->i_sb);
8356 	extent_changeset_free(data_reserved);
8357 	return ret;
8358 }
8359 
8360 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8361 {
8362 	struct btrfs_truncate_control control = {
8363 		.inode = inode,
8364 		.ino = btrfs_ino(inode),
8365 		.min_type = BTRFS_EXTENT_DATA_KEY,
8366 		.clear_extent_range = true,
8367 	};
8368 	struct btrfs_root *root = inode->root;
8369 	struct btrfs_fs_info *fs_info = root->fs_info;
8370 	struct btrfs_block_rsv *rsv;
8371 	int ret;
8372 	struct btrfs_trans_handle *trans;
8373 	u64 mask = fs_info->sectorsize - 1;
8374 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8375 
8376 	if (!skip_writeback) {
8377 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8378 					       inode->vfs_inode.i_size & (~mask),
8379 					       (u64)-1);
8380 		if (ret)
8381 			return ret;
8382 	}
8383 
8384 	/*
8385 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8386 	 * things going on here:
8387 	 *
8388 	 * 1) We need to reserve space to update our inode.
8389 	 *
8390 	 * 2) We need to have something to cache all the space that is going to
8391 	 * be free'd up by the truncate operation, but also have some slack
8392 	 * space reserved in case it uses space during the truncate (thank you
8393 	 * very much snapshotting).
8394 	 *
8395 	 * And we need these to be separate.  The fact is we can use a lot of
8396 	 * space doing the truncate, and we have no earthly idea how much space
8397 	 * we will use, so we need the truncate reservation to be separate so it
8398 	 * doesn't end up using space reserved for updating the inode.  We also
8399 	 * need to be able to stop the transaction and start a new one, which
8400 	 * means we need to be able to update the inode several times, and we
8401 	 * have no idea of knowing how many times that will be, so we can't just
8402 	 * reserve 1 item for the entirety of the operation, so that has to be
8403 	 * done separately as well.
8404 	 *
8405 	 * So that leaves us with
8406 	 *
8407 	 * 1) rsv - for the truncate reservation, which we will steal from the
8408 	 * transaction reservation.
8409 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8410 	 * updating the inode.
8411 	 */
8412 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8413 	if (!rsv)
8414 		return -ENOMEM;
8415 	rsv->size = min_size;
8416 	rsv->failfast = true;
8417 
8418 	/*
8419 	 * 1 for the truncate slack space
8420 	 * 1 for updating the inode.
8421 	 */
8422 	trans = btrfs_start_transaction(root, 2);
8423 	if (IS_ERR(trans)) {
8424 		ret = PTR_ERR(trans);
8425 		goto out;
8426 	}
8427 
8428 	/* Migrate the slack space for the truncate to our reserve */
8429 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8430 				      min_size, false);
8431 	/*
8432 	 * We have reserved 2 metadata units when we started the transaction and
8433 	 * min_size matches 1 unit, so this should never fail, but if it does,
8434 	 * it's not critical we just fail truncation.
8435 	 */
8436 	if (WARN_ON(ret)) {
8437 		btrfs_end_transaction(trans);
8438 		goto out;
8439 	}
8440 
8441 	trans->block_rsv = rsv;
8442 
8443 	while (1) {
8444 		struct extent_state *cached_state = NULL;
8445 		const u64 new_size = inode->vfs_inode.i_size;
8446 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8447 
8448 		control.new_size = new_size;
8449 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8450 		/*
8451 		 * We want to drop from the next block forward in case this new
8452 		 * size is not block aligned since we will be keeping the last
8453 		 * block of the extent just the way it is.
8454 		 */
8455 		btrfs_drop_extent_map_range(inode,
8456 					    ALIGN(new_size, fs_info->sectorsize),
8457 					    (u64)-1, false);
8458 
8459 		ret = btrfs_truncate_inode_items(trans, root, &control);
8460 
8461 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8462 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8463 
8464 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8465 
8466 		trans->block_rsv = &fs_info->trans_block_rsv;
8467 		if (ret != -ENOSPC && ret != -EAGAIN)
8468 			break;
8469 
8470 		ret = btrfs_update_inode(trans, root, inode);
8471 		if (ret)
8472 			break;
8473 
8474 		btrfs_end_transaction(trans);
8475 		btrfs_btree_balance_dirty(fs_info);
8476 
8477 		trans = btrfs_start_transaction(root, 2);
8478 		if (IS_ERR(trans)) {
8479 			ret = PTR_ERR(trans);
8480 			trans = NULL;
8481 			break;
8482 		}
8483 
8484 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8485 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8486 					      rsv, min_size, false);
8487 		/*
8488 		 * We have reserved 2 metadata units when we started the
8489 		 * transaction and min_size matches 1 unit, so this should never
8490 		 * fail, but if it does, it's not critical we just fail truncation.
8491 		 */
8492 		if (WARN_ON(ret))
8493 			break;
8494 
8495 		trans->block_rsv = rsv;
8496 	}
8497 
8498 	/*
8499 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8500 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8501 	 * know we've truncated everything except the last little bit, and can
8502 	 * do btrfs_truncate_block and then update the disk_i_size.
8503 	 */
8504 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8505 		btrfs_end_transaction(trans);
8506 		btrfs_btree_balance_dirty(fs_info);
8507 
8508 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8509 		if (ret)
8510 			goto out;
8511 		trans = btrfs_start_transaction(root, 1);
8512 		if (IS_ERR(trans)) {
8513 			ret = PTR_ERR(trans);
8514 			goto out;
8515 		}
8516 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8517 	}
8518 
8519 	if (trans) {
8520 		int ret2;
8521 
8522 		trans->block_rsv = &fs_info->trans_block_rsv;
8523 		ret2 = btrfs_update_inode(trans, root, inode);
8524 		if (ret2 && !ret)
8525 			ret = ret2;
8526 
8527 		ret2 = btrfs_end_transaction(trans);
8528 		if (ret2 && !ret)
8529 			ret = ret2;
8530 		btrfs_btree_balance_dirty(fs_info);
8531 	}
8532 out:
8533 	btrfs_free_block_rsv(fs_info, rsv);
8534 	/*
8535 	 * So if we truncate and then write and fsync we normally would just
8536 	 * write the extents that changed, which is a problem if we need to
8537 	 * first truncate that entire inode.  So set this flag so we write out
8538 	 * all of the extents in the inode to the sync log so we're completely
8539 	 * safe.
8540 	 *
8541 	 * If no extents were dropped or trimmed we don't need to force the next
8542 	 * fsync to truncate all the inode's items from the log and re-log them
8543 	 * all. This means the truncate operation did not change the file size,
8544 	 * or changed it to a smaller size but there was only an implicit hole
8545 	 * between the old i_size and the new i_size, and there were no prealloc
8546 	 * extents beyond i_size to drop.
8547 	 */
8548 	if (control.extents_found > 0)
8549 		btrfs_set_inode_full_sync(inode);
8550 
8551 	return ret;
8552 }
8553 
8554 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8555 				     struct inode *dir)
8556 {
8557 	struct inode *inode;
8558 
8559 	inode = new_inode(dir->i_sb);
8560 	if (inode) {
8561 		/*
8562 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8563 		 * the parent's sgid bit is set. This is probably a bug.
8564 		 */
8565 		inode_init_owner(idmap, inode, NULL,
8566 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8567 		inode->i_op = &btrfs_dir_inode_operations;
8568 		inode->i_fop = &btrfs_dir_file_operations;
8569 	}
8570 	return inode;
8571 }
8572 
8573 struct inode *btrfs_alloc_inode(struct super_block *sb)
8574 {
8575 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8576 	struct btrfs_inode *ei;
8577 	struct inode *inode;
8578 
8579 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8580 	if (!ei)
8581 		return NULL;
8582 
8583 	ei->root = NULL;
8584 	ei->generation = 0;
8585 	ei->last_trans = 0;
8586 	ei->last_sub_trans = 0;
8587 	ei->logged_trans = 0;
8588 	ei->delalloc_bytes = 0;
8589 	ei->new_delalloc_bytes = 0;
8590 	ei->defrag_bytes = 0;
8591 	ei->disk_i_size = 0;
8592 	ei->flags = 0;
8593 	ei->ro_flags = 0;
8594 	ei->csum_bytes = 0;
8595 	ei->index_cnt = (u64)-1;
8596 	ei->dir_index = 0;
8597 	ei->last_unlink_trans = 0;
8598 	ei->last_reflink_trans = 0;
8599 	ei->last_log_commit = 0;
8600 
8601 	spin_lock_init(&ei->lock);
8602 	ei->outstanding_extents = 0;
8603 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8604 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8605 					      BTRFS_BLOCK_RSV_DELALLOC);
8606 	ei->runtime_flags = 0;
8607 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8608 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8609 
8610 	ei->delayed_node = NULL;
8611 
8612 	ei->i_otime.tv_sec = 0;
8613 	ei->i_otime.tv_nsec = 0;
8614 
8615 	inode = &ei->vfs_inode;
8616 	extent_map_tree_init(&ei->extent_tree);
8617 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8618 	ei->io_tree.inode = ei;
8619 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8620 			    IO_TREE_INODE_FILE_EXTENT);
8621 	mutex_init(&ei->log_mutex);
8622 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8623 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8624 	INIT_LIST_HEAD(&ei->delayed_iput);
8625 	RB_CLEAR_NODE(&ei->rb_node);
8626 	init_rwsem(&ei->i_mmap_lock);
8627 
8628 	return inode;
8629 }
8630 
8631 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8632 void btrfs_test_destroy_inode(struct inode *inode)
8633 {
8634 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8635 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8636 }
8637 #endif
8638 
8639 void btrfs_free_inode(struct inode *inode)
8640 {
8641 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8642 }
8643 
8644 void btrfs_destroy_inode(struct inode *vfs_inode)
8645 {
8646 	struct btrfs_ordered_extent *ordered;
8647 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8648 	struct btrfs_root *root = inode->root;
8649 	bool freespace_inode;
8650 
8651 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8652 	WARN_ON(vfs_inode->i_data.nrpages);
8653 	WARN_ON(inode->block_rsv.reserved);
8654 	WARN_ON(inode->block_rsv.size);
8655 	WARN_ON(inode->outstanding_extents);
8656 	if (!S_ISDIR(vfs_inode->i_mode)) {
8657 		WARN_ON(inode->delalloc_bytes);
8658 		WARN_ON(inode->new_delalloc_bytes);
8659 	}
8660 	WARN_ON(inode->csum_bytes);
8661 	WARN_ON(inode->defrag_bytes);
8662 
8663 	/*
8664 	 * This can happen where we create an inode, but somebody else also
8665 	 * created the same inode and we need to destroy the one we already
8666 	 * created.
8667 	 */
8668 	if (!root)
8669 		return;
8670 
8671 	/*
8672 	 * If this is a free space inode do not take the ordered extents lockdep
8673 	 * map.
8674 	 */
8675 	freespace_inode = btrfs_is_free_space_inode(inode);
8676 
8677 	while (1) {
8678 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8679 		if (!ordered)
8680 			break;
8681 		else {
8682 			btrfs_err(root->fs_info,
8683 				  "found ordered extent %llu %llu on inode cleanup",
8684 				  ordered->file_offset, ordered->num_bytes);
8685 
8686 			if (!freespace_inode)
8687 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8688 
8689 			btrfs_remove_ordered_extent(inode, ordered);
8690 			btrfs_put_ordered_extent(ordered);
8691 			btrfs_put_ordered_extent(ordered);
8692 		}
8693 	}
8694 	btrfs_qgroup_check_reserved_leak(inode);
8695 	inode_tree_del(inode);
8696 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8697 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8698 	btrfs_put_root(inode->root);
8699 }
8700 
8701 int btrfs_drop_inode(struct inode *inode)
8702 {
8703 	struct btrfs_root *root = BTRFS_I(inode)->root;
8704 
8705 	if (root == NULL)
8706 		return 1;
8707 
8708 	/* the snap/subvol tree is on deleting */
8709 	if (btrfs_root_refs(&root->root_item) == 0)
8710 		return 1;
8711 	else
8712 		return generic_drop_inode(inode);
8713 }
8714 
8715 static void init_once(void *foo)
8716 {
8717 	struct btrfs_inode *ei = foo;
8718 
8719 	inode_init_once(&ei->vfs_inode);
8720 }
8721 
8722 void __cold btrfs_destroy_cachep(void)
8723 {
8724 	/*
8725 	 * Make sure all delayed rcu free inodes are flushed before we
8726 	 * destroy cache.
8727 	 */
8728 	rcu_barrier();
8729 	bioset_exit(&btrfs_dio_bioset);
8730 	kmem_cache_destroy(btrfs_inode_cachep);
8731 }
8732 
8733 int __init btrfs_init_cachep(void)
8734 {
8735 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8736 			sizeof(struct btrfs_inode), 0,
8737 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8738 			init_once);
8739 	if (!btrfs_inode_cachep)
8740 		goto fail;
8741 
8742 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8743 			offsetof(struct btrfs_dio_private, bbio.bio),
8744 			BIOSET_NEED_BVECS))
8745 		goto fail;
8746 
8747 	return 0;
8748 fail:
8749 	btrfs_destroy_cachep();
8750 	return -ENOMEM;
8751 }
8752 
8753 static int btrfs_getattr(struct mnt_idmap *idmap,
8754 			 const struct path *path, struct kstat *stat,
8755 			 u32 request_mask, unsigned int flags)
8756 {
8757 	u64 delalloc_bytes;
8758 	u64 inode_bytes;
8759 	struct inode *inode = d_inode(path->dentry);
8760 	u32 blocksize = inode->i_sb->s_blocksize;
8761 	u32 bi_flags = BTRFS_I(inode)->flags;
8762 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8763 
8764 	stat->result_mask |= STATX_BTIME;
8765 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8766 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8767 	if (bi_flags & BTRFS_INODE_APPEND)
8768 		stat->attributes |= STATX_ATTR_APPEND;
8769 	if (bi_flags & BTRFS_INODE_COMPRESS)
8770 		stat->attributes |= STATX_ATTR_COMPRESSED;
8771 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8772 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8773 	if (bi_flags & BTRFS_INODE_NODUMP)
8774 		stat->attributes |= STATX_ATTR_NODUMP;
8775 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8776 		stat->attributes |= STATX_ATTR_VERITY;
8777 
8778 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8779 				  STATX_ATTR_COMPRESSED |
8780 				  STATX_ATTR_IMMUTABLE |
8781 				  STATX_ATTR_NODUMP);
8782 
8783 	generic_fillattr(idmap, inode, stat);
8784 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8785 
8786 	spin_lock(&BTRFS_I(inode)->lock);
8787 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8788 	inode_bytes = inode_get_bytes(inode);
8789 	spin_unlock(&BTRFS_I(inode)->lock);
8790 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8791 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8792 	return 0;
8793 }
8794 
8795 static int btrfs_rename_exchange(struct inode *old_dir,
8796 			      struct dentry *old_dentry,
8797 			      struct inode *new_dir,
8798 			      struct dentry *new_dentry)
8799 {
8800 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8801 	struct btrfs_trans_handle *trans;
8802 	unsigned int trans_num_items;
8803 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8804 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8805 	struct inode *new_inode = new_dentry->d_inode;
8806 	struct inode *old_inode = old_dentry->d_inode;
8807 	struct timespec64 ctime = current_time(old_inode);
8808 	struct btrfs_rename_ctx old_rename_ctx;
8809 	struct btrfs_rename_ctx new_rename_ctx;
8810 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8811 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8812 	u64 old_idx = 0;
8813 	u64 new_idx = 0;
8814 	int ret;
8815 	int ret2;
8816 	bool need_abort = false;
8817 	struct fscrypt_name old_fname, new_fname;
8818 	struct fscrypt_str *old_name, *new_name;
8819 
8820 	/*
8821 	 * For non-subvolumes allow exchange only within one subvolume, in the
8822 	 * same inode namespace. Two subvolumes (represented as directory) can
8823 	 * be exchanged as they're a logical link and have a fixed inode number.
8824 	 */
8825 	if (root != dest &&
8826 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8827 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8828 		return -EXDEV;
8829 
8830 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8831 	if (ret)
8832 		return ret;
8833 
8834 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8835 	if (ret) {
8836 		fscrypt_free_filename(&old_fname);
8837 		return ret;
8838 	}
8839 
8840 	old_name = &old_fname.disk_name;
8841 	new_name = &new_fname.disk_name;
8842 
8843 	/* close the race window with snapshot create/destroy ioctl */
8844 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8845 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8846 		down_read(&fs_info->subvol_sem);
8847 
8848 	/*
8849 	 * For each inode:
8850 	 * 1 to remove old dir item
8851 	 * 1 to remove old dir index
8852 	 * 1 to add new dir item
8853 	 * 1 to add new dir index
8854 	 * 1 to update parent inode
8855 	 *
8856 	 * If the parents are the same, we only need to account for one
8857 	 */
8858 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8859 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8860 		/*
8861 		 * 1 to remove old root ref
8862 		 * 1 to remove old root backref
8863 		 * 1 to add new root ref
8864 		 * 1 to add new root backref
8865 		 */
8866 		trans_num_items += 4;
8867 	} else {
8868 		/*
8869 		 * 1 to update inode item
8870 		 * 1 to remove old inode ref
8871 		 * 1 to add new inode ref
8872 		 */
8873 		trans_num_items += 3;
8874 	}
8875 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8876 		trans_num_items += 4;
8877 	else
8878 		trans_num_items += 3;
8879 	trans = btrfs_start_transaction(root, trans_num_items);
8880 	if (IS_ERR(trans)) {
8881 		ret = PTR_ERR(trans);
8882 		goto out_notrans;
8883 	}
8884 
8885 	if (dest != root) {
8886 		ret = btrfs_record_root_in_trans(trans, dest);
8887 		if (ret)
8888 			goto out_fail;
8889 	}
8890 
8891 	/*
8892 	 * We need to find a free sequence number both in the source and
8893 	 * in the destination directory for the exchange.
8894 	 */
8895 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8896 	if (ret)
8897 		goto out_fail;
8898 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8899 	if (ret)
8900 		goto out_fail;
8901 
8902 	BTRFS_I(old_inode)->dir_index = 0ULL;
8903 	BTRFS_I(new_inode)->dir_index = 0ULL;
8904 
8905 	/* Reference for the source. */
8906 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8907 		/* force full log commit if subvolume involved. */
8908 		btrfs_set_log_full_commit(trans);
8909 	} else {
8910 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8911 					     btrfs_ino(BTRFS_I(new_dir)),
8912 					     old_idx);
8913 		if (ret)
8914 			goto out_fail;
8915 		need_abort = true;
8916 	}
8917 
8918 	/* And now for the dest. */
8919 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8920 		/* force full log commit if subvolume involved. */
8921 		btrfs_set_log_full_commit(trans);
8922 	} else {
8923 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8924 					     btrfs_ino(BTRFS_I(old_dir)),
8925 					     new_idx);
8926 		if (ret) {
8927 			if (need_abort)
8928 				btrfs_abort_transaction(trans, ret);
8929 			goto out_fail;
8930 		}
8931 	}
8932 
8933 	/* Update inode version and ctime/mtime. */
8934 	inode_inc_iversion(old_dir);
8935 	inode_inc_iversion(new_dir);
8936 	inode_inc_iversion(old_inode);
8937 	inode_inc_iversion(new_inode);
8938 	old_dir->i_mtime = ctime;
8939 	old_dir->i_ctime = ctime;
8940 	new_dir->i_mtime = ctime;
8941 	new_dir->i_ctime = ctime;
8942 	old_inode->i_ctime = ctime;
8943 	new_inode->i_ctime = ctime;
8944 
8945 	if (old_dentry->d_parent != new_dentry->d_parent) {
8946 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8947 					BTRFS_I(old_inode), true);
8948 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8949 					BTRFS_I(new_inode), true);
8950 	}
8951 
8952 	/* src is a subvolume */
8953 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8954 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8955 	} else { /* src is an inode */
8956 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8957 					   BTRFS_I(old_dentry->d_inode),
8958 					   old_name, &old_rename_ctx);
8959 		if (!ret)
8960 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
8961 	}
8962 	if (ret) {
8963 		btrfs_abort_transaction(trans, ret);
8964 		goto out_fail;
8965 	}
8966 
8967 	/* dest is a subvolume */
8968 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8969 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8970 	} else { /* dest is an inode */
8971 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8972 					   BTRFS_I(new_dentry->d_inode),
8973 					   new_name, &new_rename_ctx);
8974 		if (!ret)
8975 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
8976 	}
8977 	if (ret) {
8978 		btrfs_abort_transaction(trans, ret);
8979 		goto out_fail;
8980 	}
8981 
8982 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8983 			     new_name, 0, old_idx);
8984 	if (ret) {
8985 		btrfs_abort_transaction(trans, ret);
8986 		goto out_fail;
8987 	}
8988 
8989 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8990 			     old_name, 0, new_idx);
8991 	if (ret) {
8992 		btrfs_abort_transaction(trans, ret);
8993 		goto out_fail;
8994 	}
8995 
8996 	if (old_inode->i_nlink == 1)
8997 		BTRFS_I(old_inode)->dir_index = old_idx;
8998 	if (new_inode->i_nlink == 1)
8999 		BTRFS_I(new_inode)->dir_index = new_idx;
9000 
9001 	/*
9002 	 * Now pin the logs of the roots. We do it to ensure that no other task
9003 	 * can sync the logs while we are in progress with the rename, because
9004 	 * that could result in an inconsistency in case any of the inodes that
9005 	 * are part of this rename operation were logged before.
9006 	 */
9007 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9008 		btrfs_pin_log_trans(root);
9009 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9010 		btrfs_pin_log_trans(dest);
9011 
9012 	/* Do the log updates for all inodes. */
9013 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9014 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9015 				   old_rename_ctx.index, new_dentry->d_parent);
9016 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9017 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9018 				   new_rename_ctx.index, old_dentry->d_parent);
9019 
9020 	/* Now unpin the logs. */
9021 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9022 		btrfs_end_log_trans(root);
9023 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9024 		btrfs_end_log_trans(dest);
9025 out_fail:
9026 	ret2 = btrfs_end_transaction(trans);
9027 	ret = ret ? ret : ret2;
9028 out_notrans:
9029 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9030 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9031 		up_read(&fs_info->subvol_sem);
9032 
9033 	fscrypt_free_filename(&new_fname);
9034 	fscrypt_free_filename(&old_fname);
9035 	return ret;
9036 }
9037 
9038 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
9039 					struct inode *dir)
9040 {
9041 	struct inode *inode;
9042 
9043 	inode = new_inode(dir->i_sb);
9044 	if (inode) {
9045 		inode_init_owner(idmap, inode, dir,
9046 				 S_IFCHR | WHITEOUT_MODE);
9047 		inode->i_op = &btrfs_special_inode_operations;
9048 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9049 	}
9050 	return inode;
9051 }
9052 
9053 static int btrfs_rename(struct mnt_idmap *idmap,
9054 			struct inode *old_dir, struct dentry *old_dentry,
9055 			struct inode *new_dir, struct dentry *new_dentry,
9056 			unsigned int flags)
9057 {
9058 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9059 	struct btrfs_new_inode_args whiteout_args = {
9060 		.dir = old_dir,
9061 		.dentry = old_dentry,
9062 	};
9063 	struct btrfs_trans_handle *trans;
9064 	unsigned int trans_num_items;
9065 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9066 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9067 	struct inode *new_inode = d_inode(new_dentry);
9068 	struct inode *old_inode = d_inode(old_dentry);
9069 	struct btrfs_rename_ctx rename_ctx;
9070 	u64 index = 0;
9071 	int ret;
9072 	int ret2;
9073 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9074 	struct fscrypt_name old_fname, new_fname;
9075 
9076 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9077 		return -EPERM;
9078 
9079 	/* we only allow rename subvolume link between subvolumes */
9080 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9081 		return -EXDEV;
9082 
9083 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9084 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9085 		return -ENOTEMPTY;
9086 
9087 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9088 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9089 		return -ENOTEMPTY;
9090 
9091 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9092 	if (ret)
9093 		return ret;
9094 
9095 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9096 	if (ret) {
9097 		fscrypt_free_filename(&old_fname);
9098 		return ret;
9099 	}
9100 
9101 	/* check for collisions, even if the  name isn't there */
9102 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9103 	if (ret) {
9104 		if (ret == -EEXIST) {
9105 			/* we shouldn't get
9106 			 * eexist without a new_inode */
9107 			if (WARN_ON(!new_inode)) {
9108 				goto out_fscrypt_names;
9109 			}
9110 		} else {
9111 			/* maybe -EOVERFLOW */
9112 			goto out_fscrypt_names;
9113 		}
9114 	}
9115 	ret = 0;
9116 
9117 	/*
9118 	 * we're using rename to replace one file with another.  Start IO on it
9119 	 * now so  we don't add too much work to the end of the transaction
9120 	 */
9121 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9122 		filemap_flush(old_inode->i_mapping);
9123 
9124 	if (flags & RENAME_WHITEOUT) {
9125 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9126 		if (!whiteout_args.inode) {
9127 			ret = -ENOMEM;
9128 			goto out_fscrypt_names;
9129 		}
9130 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9131 		if (ret)
9132 			goto out_whiteout_inode;
9133 	} else {
9134 		/* 1 to update the old parent inode. */
9135 		trans_num_items = 1;
9136 	}
9137 
9138 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9139 		/* Close the race window with snapshot create/destroy ioctl */
9140 		down_read(&fs_info->subvol_sem);
9141 		/*
9142 		 * 1 to remove old root ref
9143 		 * 1 to remove old root backref
9144 		 * 1 to add new root ref
9145 		 * 1 to add new root backref
9146 		 */
9147 		trans_num_items += 4;
9148 	} else {
9149 		/*
9150 		 * 1 to update inode
9151 		 * 1 to remove old inode ref
9152 		 * 1 to add new inode ref
9153 		 */
9154 		trans_num_items += 3;
9155 	}
9156 	/*
9157 	 * 1 to remove old dir item
9158 	 * 1 to remove old dir index
9159 	 * 1 to add new dir item
9160 	 * 1 to add new dir index
9161 	 */
9162 	trans_num_items += 4;
9163 	/* 1 to update new parent inode if it's not the same as the old parent */
9164 	if (new_dir != old_dir)
9165 		trans_num_items++;
9166 	if (new_inode) {
9167 		/*
9168 		 * 1 to update inode
9169 		 * 1 to remove inode ref
9170 		 * 1 to remove dir item
9171 		 * 1 to remove dir index
9172 		 * 1 to possibly add orphan item
9173 		 */
9174 		trans_num_items += 5;
9175 	}
9176 	trans = btrfs_start_transaction(root, trans_num_items);
9177 	if (IS_ERR(trans)) {
9178 		ret = PTR_ERR(trans);
9179 		goto out_notrans;
9180 	}
9181 
9182 	if (dest != root) {
9183 		ret = btrfs_record_root_in_trans(trans, dest);
9184 		if (ret)
9185 			goto out_fail;
9186 	}
9187 
9188 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9189 	if (ret)
9190 		goto out_fail;
9191 
9192 	BTRFS_I(old_inode)->dir_index = 0ULL;
9193 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9194 		/* force full log commit if subvolume involved. */
9195 		btrfs_set_log_full_commit(trans);
9196 	} else {
9197 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9198 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9199 					     index);
9200 		if (ret)
9201 			goto out_fail;
9202 	}
9203 
9204 	inode_inc_iversion(old_dir);
9205 	inode_inc_iversion(new_dir);
9206 	inode_inc_iversion(old_inode);
9207 	old_dir->i_mtime = current_time(old_dir);
9208 	old_dir->i_ctime = old_dir->i_mtime;
9209 	new_dir->i_mtime = old_dir->i_mtime;
9210 	new_dir->i_ctime = old_dir->i_mtime;
9211 	old_inode->i_ctime = old_dir->i_mtime;
9212 
9213 	if (old_dentry->d_parent != new_dentry->d_parent)
9214 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9215 					BTRFS_I(old_inode), true);
9216 
9217 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9218 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9219 	} else {
9220 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9221 					   BTRFS_I(d_inode(old_dentry)),
9222 					   &old_fname.disk_name, &rename_ctx);
9223 		if (!ret)
9224 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9225 	}
9226 	if (ret) {
9227 		btrfs_abort_transaction(trans, ret);
9228 		goto out_fail;
9229 	}
9230 
9231 	if (new_inode) {
9232 		inode_inc_iversion(new_inode);
9233 		new_inode->i_ctime = current_time(new_inode);
9234 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9235 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9236 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9237 			BUG_ON(new_inode->i_nlink == 0);
9238 		} else {
9239 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9240 						 BTRFS_I(d_inode(new_dentry)),
9241 						 &new_fname.disk_name);
9242 		}
9243 		if (!ret && new_inode->i_nlink == 0)
9244 			ret = btrfs_orphan_add(trans,
9245 					BTRFS_I(d_inode(new_dentry)));
9246 		if (ret) {
9247 			btrfs_abort_transaction(trans, ret);
9248 			goto out_fail;
9249 		}
9250 	}
9251 
9252 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9253 			     &new_fname.disk_name, 0, index);
9254 	if (ret) {
9255 		btrfs_abort_transaction(trans, ret);
9256 		goto out_fail;
9257 	}
9258 
9259 	if (old_inode->i_nlink == 1)
9260 		BTRFS_I(old_inode)->dir_index = index;
9261 
9262 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9263 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9264 				   rename_ctx.index, new_dentry->d_parent);
9265 
9266 	if (flags & RENAME_WHITEOUT) {
9267 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9268 		if (ret) {
9269 			btrfs_abort_transaction(trans, ret);
9270 			goto out_fail;
9271 		} else {
9272 			unlock_new_inode(whiteout_args.inode);
9273 			iput(whiteout_args.inode);
9274 			whiteout_args.inode = NULL;
9275 		}
9276 	}
9277 out_fail:
9278 	ret2 = btrfs_end_transaction(trans);
9279 	ret = ret ? ret : ret2;
9280 out_notrans:
9281 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9282 		up_read(&fs_info->subvol_sem);
9283 	if (flags & RENAME_WHITEOUT)
9284 		btrfs_new_inode_args_destroy(&whiteout_args);
9285 out_whiteout_inode:
9286 	if (flags & RENAME_WHITEOUT)
9287 		iput(whiteout_args.inode);
9288 out_fscrypt_names:
9289 	fscrypt_free_filename(&old_fname);
9290 	fscrypt_free_filename(&new_fname);
9291 	return ret;
9292 }
9293 
9294 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9295 			 struct dentry *old_dentry, struct inode *new_dir,
9296 			 struct dentry *new_dentry, unsigned int flags)
9297 {
9298 	int ret;
9299 
9300 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9301 		return -EINVAL;
9302 
9303 	if (flags & RENAME_EXCHANGE)
9304 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9305 					    new_dentry);
9306 	else
9307 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9308 				   new_dentry, flags);
9309 
9310 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9311 
9312 	return ret;
9313 }
9314 
9315 struct btrfs_delalloc_work {
9316 	struct inode *inode;
9317 	struct completion completion;
9318 	struct list_head list;
9319 	struct btrfs_work work;
9320 };
9321 
9322 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9323 {
9324 	struct btrfs_delalloc_work *delalloc_work;
9325 	struct inode *inode;
9326 
9327 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9328 				     work);
9329 	inode = delalloc_work->inode;
9330 	filemap_flush(inode->i_mapping);
9331 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9332 				&BTRFS_I(inode)->runtime_flags))
9333 		filemap_flush(inode->i_mapping);
9334 
9335 	iput(inode);
9336 	complete(&delalloc_work->completion);
9337 }
9338 
9339 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9340 {
9341 	struct btrfs_delalloc_work *work;
9342 
9343 	work = kmalloc(sizeof(*work), GFP_NOFS);
9344 	if (!work)
9345 		return NULL;
9346 
9347 	init_completion(&work->completion);
9348 	INIT_LIST_HEAD(&work->list);
9349 	work->inode = inode;
9350 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9351 
9352 	return work;
9353 }
9354 
9355 /*
9356  * some fairly slow code that needs optimization. This walks the list
9357  * of all the inodes with pending delalloc and forces them to disk.
9358  */
9359 static int start_delalloc_inodes(struct btrfs_root *root,
9360 				 struct writeback_control *wbc, bool snapshot,
9361 				 bool in_reclaim_context)
9362 {
9363 	struct btrfs_inode *binode;
9364 	struct inode *inode;
9365 	struct btrfs_delalloc_work *work, *next;
9366 	struct list_head works;
9367 	struct list_head splice;
9368 	int ret = 0;
9369 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9370 
9371 	INIT_LIST_HEAD(&works);
9372 	INIT_LIST_HEAD(&splice);
9373 
9374 	mutex_lock(&root->delalloc_mutex);
9375 	spin_lock(&root->delalloc_lock);
9376 	list_splice_init(&root->delalloc_inodes, &splice);
9377 	while (!list_empty(&splice)) {
9378 		binode = list_entry(splice.next, struct btrfs_inode,
9379 				    delalloc_inodes);
9380 
9381 		list_move_tail(&binode->delalloc_inodes,
9382 			       &root->delalloc_inodes);
9383 
9384 		if (in_reclaim_context &&
9385 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9386 			continue;
9387 
9388 		inode = igrab(&binode->vfs_inode);
9389 		if (!inode) {
9390 			cond_resched_lock(&root->delalloc_lock);
9391 			continue;
9392 		}
9393 		spin_unlock(&root->delalloc_lock);
9394 
9395 		if (snapshot)
9396 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9397 				&binode->runtime_flags);
9398 		if (full_flush) {
9399 			work = btrfs_alloc_delalloc_work(inode);
9400 			if (!work) {
9401 				iput(inode);
9402 				ret = -ENOMEM;
9403 				goto out;
9404 			}
9405 			list_add_tail(&work->list, &works);
9406 			btrfs_queue_work(root->fs_info->flush_workers,
9407 					 &work->work);
9408 		} else {
9409 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9410 			btrfs_add_delayed_iput(BTRFS_I(inode));
9411 			if (ret || wbc->nr_to_write <= 0)
9412 				goto out;
9413 		}
9414 		cond_resched();
9415 		spin_lock(&root->delalloc_lock);
9416 	}
9417 	spin_unlock(&root->delalloc_lock);
9418 
9419 out:
9420 	list_for_each_entry_safe(work, next, &works, list) {
9421 		list_del_init(&work->list);
9422 		wait_for_completion(&work->completion);
9423 		kfree(work);
9424 	}
9425 
9426 	if (!list_empty(&splice)) {
9427 		spin_lock(&root->delalloc_lock);
9428 		list_splice_tail(&splice, &root->delalloc_inodes);
9429 		spin_unlock(&root->delalloc_lock);
9430 	}
9431 	mutex_unlock(&root->delalloc_mutex);
9432 	return ret;
9433 }
9434 
9435 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9436 {
9437 	struct writeback_control wbc = {
9438 		.nr_to_write = LONG_MAX,
9439 		.sync_mode = WB_SYNC_NONE,
9440 		.range_start = 0,
9441 		.range_end = LLONG_MAX,
9442 	};
9443 	struct btrfs_fs_info *fs_info = root->fs_info;
9444 
9445 	if (BTRFS_FS_ERROR(fs_info))
9446 		return -EROFS;
9447 
9448 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9449 }
9450 
9451 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9452 			       bool in_reclaim_context)
9453 {
9454 	struct writeback_control wbc = {
9455 		.nr_to_write = nr,
9456 		.sync_mode = WB_SYNC_NONE,
9457 		.range_start = 0,
9458 		.range_end = LLONG_MAX,
9459 	};
9460 	struct btrfs_root *root;
9461 	struct list_head splice;
9462 	int ret;
9463 
9464 	if (BTRFS_FS_ERROR(fs_info))
9465 		return -EROFS;
9466 
9467 	INIT_LIST_HEAD(&splice);
9468 
9469 	mutex_lock(&fs_info->delalloc_root_mutex);
9470 	spin_lock(&fs_info->delalloc_root_lock);
9471 	list_splice_init(&fs_info->delalloc_roots, &splice);
9472 	while (!list_empty(&splice)) {
9473 		/*
9474 		 * Reset nr_to_write here so we know that we're doing a full
9475 		 * flush.
9476 		 */
9477 		if (nr == LONG_MAX)
9478 			wbc.nr_to_write = LONG_MAX;
9479 
9480 		root = list_first_entry(&splice, struct btrfs_root,
9481 					delalloc_root);
9482 		root = btrfs_grab_root(root);
9483 		BUG_ON(!root);
9484 		list_move_tail(&root->delalloc_root,
9485 			       &fs_info->delalloc_roots);
9486 		spin_unlock(&fs_info->delalloc_root_lock);
9487 
9488 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9489 		btrfs_put_root(root);
9490 		if (ret < 0 || wbc.nr_to_write <= 0)
9491 			goto out;
9492 		spin_lock(&fs_info->delalloc_root_lock);
9493 	}
9494 	spin_unlock(&fs_info->delalloc_root_lock);
9495 
9496 	ret = 0;
9497 out:
9498 	if (!list_empty(&splice)) {
9499 		spin_lock(&fs_info->delalloc_root_lock);
9500 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9501 		spin_unlock(&fs_info->delalloc_root_lock);
9502 	}
9503 	mutex_unlock(&fs_info->delalloc_root_mutex);
9504 	return ret;
9505 }
9506 
9507 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9508 			 struct dentry *dentry, const char *symname)
9509 {
9510 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9511 	struct btrfs_trans_handle *trans;
9512 	struct btrfs_root *root = BTRFS_I(dir)->root;
9513 	struct btrfs_path *path;
9514 	struct btrfs_key key;
9515 	struct inode *inode;
9516 	struct btrfs_new_inode_args new_inode_args = {
9517 		.dir = dir,
9518 		.dentry = dentry,
9519 	};
9520 	unsigned int trans_num_items;
9521 	int err;
9522 	int name_len;
9523 	int datasize;
9524 	unsigned long ptr;
9525 	struct btrfs_file_extent_item *ei;
9526 	struct extent_buffer *leaf;
9527 
9528 	name_len = strlen(symname);
9529 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9530 		return -ENAMETOOLONG;
9531 
9532 	inode = new_inode(dir->i_sb);
9533 	if (!inode)
9534 		return -ENOMEM;
9535 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9536 	inode->i_op = &btrfs_symlink_inode_operations;
9537 	inode_nohighmem(inode);
9538 	inode->i_mapping->a_ops = &btrfs_aops;
9539 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9540 	inode_set_bytes(inode, name_len);
9541 
9542 	new_inode_args.inode = inode;
9543 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9544 	if (err)
9545 		goto out_inode;
9546 	/* 1 additional item for the inline extent */
9547 	trans_num_items++;
9548 
9549 	trans = btrfs_start_transaction(root, trans_num_items);
9550 	if (IS_ERR(trans)) {
9551 		err = PTR_ERR(trans);
9552 		goto out_new_inode_args;
9553 	}
9554 
9555 	err = btrfs_create_new_inode(trans, &new_inode_args);
9556 	if (err)
9557 		goto out;
9558 
9559 	path = btrfs_alloc_path();
9560 	if (!path) {
9561 		err = -ENOMEM;
9562 		btrfs_abort_transaction(trans, err);
9563 		discard_new_inode(inode);
9564 		inode = NULL;
9565 		goto out;
9566 	}
9567 	key.objectid = btrfs_ino(BTRFS_I(inode));
9568 	key.offset = 0;
9569 	key.type = BTRFS_EXTENT_DATA_KEY;
9570 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9571 	err = btrfs_insert_empty_item(trans, root, path, &key,
9572 				      datasize);
9573 	if (err) {
9574 		btrfs_abort_transaction(trans, err);
9575 		btrfs_free_path(path);
9576 		discard_new_inode(inode);
9577 		inode = NULL;
9578 		goto out;
9579 	}
9580 	leaf = path->nodes[0];
9581 	ei = btrfs_item_ptr(leaf, path->slots[0],
9582 			    struct btrfs_file_extent_item);
9583 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9584 	btrfs_set_file_extent_type(leaf, ei,
9585 				   BTRFS_FILE_EXTENT_INLINE);
9586 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9587 	btrfs_set_file_extent_compression(leaf, ei, 0);
9588 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9589 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9590 
9591 	ptr = btrfs_file_extent_inline_start(ei);
9592 	write_extent_buffer(leaf, symname, ptr, name_len);
9593 	btrfs_mark_buffer_dirty(leaf);
9594 	btrfs_free_path(path);
9595 
9596 	d_instantiate_new(dentry, inode);
9597 	err = 0;
9598 out:
9599 	btrfs_end_transaction(trans);
9600 	btrfs_btree_balance_dirty(fs_info);
9601 out_new_inode_args:
9602 	btrfs_new_inode_args_destroy(&new_inode_args);
9603 out_inode:
9604 	if (err)
9605 		iput(inode);
9606 	return err;
9607 }
9608 
9609 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9610 				       struct btrfs_trans_handle *trans_in,
9611 				       struct btrfs_inode *inode,
9612 				       struct btrfs_key *ins,
9613 				       u64 file_offset)
9614 {
9615 	struct btrfs_file_extent_item stack_fi;
9616 	struct btrfs_replace_extent_info extent_info;
9617 	struct btrfs_trans_handle *trans = trans_in;
9618 	struct btrfs_path *path;
9619 	u64 start = ins->objectid;
9620 	u64 len = ins->offset;
9621 	int qgroup_released;
9622 	int ret;
9623 
9624 	memset(&stack_fi, 0, sizeof(stack_fi));
9625 
9626 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9627 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9628 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9629 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9630 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9631 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9632 	/* Encryption and other encoding is reserved and all 0 */
9633 
9634 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9635 	if (qgroup_released < 0)
9636 		return ERR_PTR(qgroup_released);
9637 
9638 	if (trans) {
9639 		ret = insert_reserved_file_extent(trans, inode,
9640 						  file_offset, &stack_fi,
9641 						  true, qgroup_released);
9642 		if (ret)
9643 			goto free_qgroup;
9644 		return trans;
9645 	}
9646 
9647 	extent_info.disk_offset = start;
9648 	extent_info.disk_len = len;
9649 	extent_info.data_offset = 0;
9650 	extent_info.data_len = len;
9651 	extent_info.file_offset = file_offset;
9652 	extent_info.extent_buf = (char *)&stack_fi;
9653 	extent_info.is_new_extent = true;
9654 	extent_info.update_times = true;
9655 	extent_info.qgroup_reserved = qgroup_released;
9656 	extent_info.insertions = 0;
9657 
9658 	path = btrfs_alloc_path();
9659 	if (!path) {
9660 		ret = -ENOMEM;
9661 		goto free_qgroup;
9662 	}
9663 
9664 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9665 				     file_offset + len - 1, &extent_info,
9666 				     &trans);
9667 	btrfs_free_path(path);
9668 	if (ret)
9669 		goto free_qgroup;
9670 	return trans;
9671 
9672 free_qgroup:
9673 	/*
9674 	 * We have released qgroup data range at the beginning of the function,
9675 	 * and normally qgroup_released bytes will be freed when committing
9676 	 * transaction.
9677 	 * But if we error out early, we have to free what we have released
9678 	 * or we leak qgroup data reservation.
9679 	 */
9680 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9681 			inode->root->root_key.objectid, qgroup_released,
9682 			BTRFS_QGROUP_RSV_DATA);
9683 	return ERR_PTR(ret);
9684 }
9685 
9686 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9687 				       u64 start, u64 num_bytes, u64 min_size,
9688 				       loff_t actual_len, u64 *alloc_hint,
9689 				       struct btrfs_trans_handle *trans)
9690 {
9691 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9692 	struct extent_map *em;
9693 	struct btrfs_root *root = BTRFS_I(inode)->root;
9694 	struct btrfs_key ins;
9695 	u64 cur_offset = start;
9696 	u64 clear_offset = start;
9697 	u64 i_size;
9698 	u64 cur_bytes;
9699 	u64 last_alloc = (u64)-1;
9700 	int ret = 0;
9701 	bool own_trans = true;
9702 	u64 end = start + num_bytes - 1;
9703 
9704 	if (trans)
9705 		own_trans = false;
9706 	while (num_bytes > 0) {
9707 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9708 		cur_bytes = max(cur_bytes, min_size);
9709 		/*
9710 		 * If we are severely fragmented we could end up with really
9711 		 * small allocations, so if the allocator is returning small
9712 		 * chunks lets make its job easier by only searching for those
9713 		 * sized chunks.
9714 		 */
9715 		cur_bytes = min(cur_bytes, last_alloc);
9716 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9717 				min_size, 0, *alloc_hint, &ins, 1, 0);
9718 		if (ret)
9719 			break;
9720 
9721 		/*
9722 		 * We've reserved this space, and thus converted it from
9723 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9724 		 * from here on out we will only need to clear our reservation
9725 		 * for the remaining unreserved area, so advance our
9726 		 * clear_offset by our extent size.
9727 		 */
9728 		clear_offset += ins.offset;
9729 
9730 		last_alloc = ins.offset;
9731 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9732 						    &ins, cur_offset);
9733 		/*
9734 		 * Now that we inserted the prealloc extent we can finally
9735 		 * decrement the number of reservations in the block group.
9736 		 * If we did it before, we could race with relocation and have
9737 		 * relocation miss the reserved extent, making it fail later.
9738 		 */
9739 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9740 		if (IS_ERR(trans)) {
9741 			ret = PTR_ERR(trans);
9742 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9743 						   ins.offset, 0);
9744 			break;
9745 		}
9746 
9747 		em = alloc_extent_map();
9748 		if (!em) {
9749 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9750 					    cur_offset + ins.offset - 1, false);
9751 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9752 			goto next;
9753 		}
9754 
9755 		em->start = cur_offset;
9756 		em->orig_start = cur_offset;
9757 		em->len = ins.offset;
9758 		em->block_start = ins.objectid;
9759 		em->block_len = ins.offset;
9760 		em->orig_block_len = ins.offset;
9761 		em->ram_bytes = ins.offset;
9762 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9763 		em->generation = trans->transid;
9764 
9765 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9766 		free_extent_map(em);
9767 next:
9768 		num_bytes -= ins.offset;
9769 		cur_offset += ins.offset;
9770 		*alloc_hint = ins.objectid + ins.offset;
9771 
9772 		inode_inc_iversion(inode);
9773 		inode->i_ctime = current_time(inode);
9774 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9775 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9776 		    (actual_len > inode->i_size) &&
9777 		    (cur_offset > inode->i_size)) {
9778 			if (cur_offset > actual_len)
9779 				i_size = actual_len;
9780 			else
9781 				i_size = cur_offset;
9782 			i_size_write(inode, i_size);
9783 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9784 		}
9785 
9786 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9787 
9788 		if (ret) {
9789 			btrfs_abort_transaction(trans, ret);
9790 			if (own_trans)
9791 				btrfs_end_transaction(trans);
9792 			break;
9793 		}
9794 
9795 		if (own_trans) {
9796 			btrfs_end_transaction(trans);
9797 			trans = NULL;
9798 		}
9799 	}
9800 	if (clear_offset < end)
9801 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9802 			end - clear_offset + 1);
9803 	return ret;
9804 }
9805 
9806 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9807 			      u64 start, u64 num_bytes, u64 min_size,
9808 			      loff_t actual_len, u64 *alloc_hint)
9809 {
9810 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9811 					   min_size, actual_len, alloc_hint,
9812 					   NULL);
9813 }
9814 
9815 int btrfs_prealloc_file_range_trans(struct inode *inode,
9816 				    struct btrfs_trans_handle *trans, int mode,
9817 				    u64 start, u64 num_bytes, u64 min_size,
9818 				    loff_t actual_len, u64 *alloc_hint)
9819 {
9820 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9821 					   min_size, actual_len, alloc_hint, trans);
9822 }
9823 
9824 static int btrfs_permission(struct mnt_idmap *idmap,
9825 			    struct inode *inode, int mask)
9826 {
9827 	struct btrfs_root *root = BTRFS_I(inode)->root;
9828 	umode_t mode = inode->i_mode;
9829 
9830 	if (mask & MAY_WRITE &&
9831 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9832 		if (btrfs_root_readonly(root))
9833 			return -EROFS;
9834 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9835 			return -EACCES;
9836 	}
9837 	return generic_permission(idmap, inode, mask);
9838 }
9839 
9840 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9841 			 struct file *file, umode_t mode)
9842 {
9843 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9844 	struct btrfs_trans_handle *trans;
9845 	struct btrfs_root *root = BTRFS_I(dir)->root;
9846 	struct inode *inode;
9847 	struct btrfs_new_inode_args new_inode_args = {
9848 		.dir = dir,
9849 		.dentry = file->f_path.dentry,
9850 		.orphan = true,
9851 	};
9852 	unsigned int trans_num_items;
9853 	int ret;
9854 
9855 	inode = new_inode(dir->i_sb);
9856 	if (!inode)
9857 		return -ENOMEM;
9858 	inode_init_owner(idmap, inode, dir, mode);
9859 	inode->i_fop = &btrfs_file_operations;
9860 	inode->i_op = &btrfs_file_inode_operations;
9861 	inode->i_mapping->a_ops = &btrfs_aops;
9862 
9863 	new_inode_args.inode = inode;
9864 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9865 	if (ret)
9866 		goto out_inode;
9867 
9868 	trans = btrfs_start_transaction(root, trans_num_items);
9869 	if (IS_ERR(trans)) {
9870 		ret = PTR_ERR(trans);
9871 		goto out_new_inode_args;
9872 	}
9873 
9874 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9875 
9876 	/*
9877 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9878 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9879 	 * 0, through:
9880 	 *
9881 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9882 	 */
9883 	set_nlink(inode, 1);
9884 
9885 	if (!ret) {
9886 		d_tmpfile(file, inode);
9887 		unlock_new_inode(inode);
9888 		mark_inode_dirty(inode);
9889 	}
9890 
9891 	btrfs_end_transaction(trans);
9892 	btrfs_btree_balance_dirty(fs_info);
9893 out_new_inode_args:
9894 	btrfs_new_inode_args_destroy(&new_inode_args);
9895 out_inode:
9896 	if (ret)
9897 		iput(inode);
9898 	return finish_open_simple(file, ret);
9899 }
9900 
9901 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9902 {
9903 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9904 	unsigned long index = start >> PAGE_SHIFT;
9905 	unsigned long end_index = end >> PAGE_SHIFT;
9906 	struct page *page;
9907 	u32 len;
9908 
9909 	ASSERT(end + 1 - start <= U32_MAX);
9910 	len = end + 1 - start;
9911 	while (index <= end_index) {
9912 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9913 		ASSERT(page); /* Pages should be in the extent_io_tree */
9914 
9915 		btrfs_page_set_writeback(fs_info, page, start, len);
9916 		put_page(page);
9917 		index++;
9918 	}
9919 }
9920 
9921 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9922 					     int compress_type)
9923 {
9924 	switch (compress_type) {
9925 	case BTRFS_COMPRESS_NONE:
9926 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9927 	case BTRFS_COMPRESS_ZLIB:
9928 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9929 	case BTRFS_COMPRESS_LZO:
9930 		/*
9931 		 * The LZO format depends on the sector size. 64K is the maximum
9932 		 * sector size that we support.
9933 		 */
9934 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9935 			return -EINVAL;
9936 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9937 		       (fs_info->sectorsize_bits - 12);
9938 	case BTRFS_COMPRESS_ZSTD:
9939 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9940 	default:
9941 		return -EUCLEAN;
9942 	}
9943 }
9944 
9945 static ssize_t btrfs_encoded_read_inline(
9946 				struct kiocb *iocb,
9947 				struct iov_iter *iter, u64 start,
9948 				u64 lockend,
9949 				struct extent_state **cached_state,
9950 				u64 extent_start, size_t count,
9951 				struct btrfs_ioctl_encoded_io_args *encoded,
9952 				bool *unlocked)
9953 {
9954 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9955 	struct btrfs_root *root = inode->root;
9956 	struct btrfs_fs_info *fs_info = root->fs_info;
9957 	struct extent_io_tree *io_tree = &inode->io_tree;
9958 	struct btrfs_path *path;
9959 	struct extent_buffer *leaf;
9960 	struct btrfs_file_extent_item *item;
9961 	u64 ram_bytes;
9962 	unsigned long ptr;
9963 	void *tmp;
9964 	ssize_t ret;
9965 
9966 	path = btrfs_alloc_path();
9967 	if (!path) {
9968 		ret = -ENOMEM;
9969 		goto out;
9970 	}
9971 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9972 				       extent_start, 0);
9973 	if (ret) {
9974 		if (ret > 0) {
9975 			/* The extent item disappeared? */
9976 			ret = -EIO;
9977 		}
9978 		goto out;
9979 	}
9980 	leaf = path->nodes[0];
9981 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9982 
9983 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9984 	ptr = btrfs_file_extent_inline_start(item);
9985 
9986 	encoded->len = min_t(u64, extent_start + ram_bytes,
9987 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9988 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9989 				 btrfs_file_extent_compression(leaf, item));
9990 	if (ret < 0)
9991 		goto out;
9992 	encoded->compression = ret;
9993 	if (encoded->compression) {
9994 		size_t inline_size;
9995 
9996 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9997 								path->slots[0]);
9998 		if (inline_size > count) {
9999 			ret = -ENOBUFS;
10000 			goto out;
10001 		}
10002 		count = inline_size;
10003 		encoded->unencoded_len = ram_bytes;
10004 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
10005 	} else {
10006 		count = min_t(u64, count, encoded->len);
10007 		encoded->len = count;
10008 		encoded->unencoded_len = count;
10009 		ptr += iocb->ki_pos - extent_start;
10010 	}
10011 
10012 	tmp = kmalloc(count, GFP_NOFS);
10013 	if (!tmp) {
10014 		ret = -ENOMEM;
10015 		goto out;
10016 	}
10017 	read_extent_buffer(leaf, tmp, ptr, count);
10018 	btrfs_release_path(path);
10019 	unlock_extent(io_tree, start, lockend, cached_state);
10020 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10021 	*unlocked = true;
10022 
10023 	ret = copy_to_iter(tmp, count, iter);
10024 	if (ret != count)
10025 		ret = -EFAULT;
10026 	kfree(tmp);
10027 out:
10028 	btrfs_free_path(path);
10029 	return ret;
10030 }
10031 
10032 struct btrfs_encoded_read_private {
10033 	wait_queue_head_t wait;
10034 	atomic_t pending;
10035 	blk_status_t status;
10036 };
10037 
10038 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10039 {
10040 	struct btrfs_encoded_read_private *priv = bbio->private;
10041 
10042 	if (bbio->bio.bi_status) {
10043 		/*
10044 		 * The memory barrier implied by the atomic_dec_return() here
10045 		 * pairs with the memory barrier implied by the
10046 		 * atomic_dec_return() or io_wait_event() in
10047 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10048 		 * write is observed before the load of status in
10049 		 * btrfs_encoded_read_regular_fill_pages().
10050 		 */
10051 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
10052 	}
10053 	if (!atomic_dec_return(&priv->pending))
10054 		wake_up(&priv->wait);
10055 	bio_put(&bbio->bio);
10056 }
10057 
10058 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10059 					  u64 file_offset, u64 disk_bytenr,
10060 					  u64 disk_io_size, struct page **pages)
10061 {
10062 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10063 	struct btrfs_encoded_read_private priv = {
10064 		.pending = ATOMIC_INIT(1),
10065 	};
10066 	unsigned long i = 0;
10067 	struct btrfs_bio *bbio;
10068 
10069 	init_waitqueue_head(&priv.wait);
10070 
10071 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10072 			       btrfs_encoded_read_endio, &priv);
10073 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10074 	bbio->inode = inode;
10075 
10076 	do {
10077 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10078 
10079 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10080 			atomic_inc(&priv.pending);
10081 			btrfs_submit_bio(bbio, 0);
10082 
10083 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10084 					       btrfs_encoded_read_endio, &priv);
10085 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10086 			bbio->inode = inode;
10087 			continue;
10088 		}
10089 
10090 		i++;
10091 		disk_bytenr += bytes;
10092 		disk_io_size -= bytes;
10093 	} while (disk_io_size);
10094 
10095 	atomic_inc(&priv.pending);
10096 	btrfs_submit_bio(bbio, 0);
10097 
10098 	if (atomic_dec_return(&priv.pending))
10099 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10100 	/* See btrfs_encoded_read_endio() for ordering. */
10101 	return blk_status_to_errno(READ_ONCE(priv.status));
10102 }
10103 
10104 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10105 					  struct iov_iter *iter,
10106 					  u64 start, u64 lockend,
10107 					  struct extent_state **cached_state,
10108 					  u64 disk_bytenr, u64 disk_io_size,
10109 					  size_t count, bool compressed,
10110 					  bool *unlocked)
10111 {
10112 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10113 	struct extent_io_tree *io_tree = &inode->io_tree;
10114 	struct page **pages;
10115 	unsigned long nr_pages, i;
10116 	u64 cur;
10117 	size_t page_offset;
10118 	ssize_t ret;
10119 
10120 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10121 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10122 	if (!pages)
10123 		return -ENOMEM;
10124 	ret = btrfs_alloc_page_array(nr_pages, pages);
10125 	if (ret) {
10126 		ret = -ENOMEM;
10127 		goto out;
10128 		}
10129 
10130 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10131 						    disk_io_size, pages);
10132 	if (ret)
10133 		goto out;
10134 
10135 	unlock_extent(io_tree, start, lockend, cached_state);
10136 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10137 	*unlocked = true;
10138 
10139 	if (compressed) {
10140 		i = 0;
10141 		page_offset = 0;
10142 	} else {
10143 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10144 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10145 	}
10146 	cur = 0;
10147 	while (cur < count) {
10148 		size_t bytes = min_t(size_t, count - cur,
10149 				     PAGE_SIZE - page_offset);
10150 
10151 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10152 				      iter) != bytes) {
10153 			ret = -EFAULT;
10154 			goto out;
10155 		}
10156 		i++;
10157 		cur += bytes;
10158 		page_offset = 0;
10159 	}
10160 	ret = count;
10161 out:
10162 	for (i = 0; i < nr_pages; i++) {
10163 		if (pages[i])
10164 			__free_page(pages[i]);
10165 	}
10166 	kfree(pages);
10167 	return ret;
10168 }
10169 
10170 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10171 			   struct btrfs_ioctl_encoded_io_args *encoded)
10172 {
10173 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10174 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10175 	struct extent_io_tree *io_tree = &inode->io_tree;
10176 	ssize_t ret;
10177 	size_t count = iov_iter_count(iter);
10178 	u64 start, lockend, disk_bytenr, disk_io_size;
10179 	struct extent_state *cached_state = NULL;
10180 	struct extent_map *em;
10181 	bool unlocked = false;
10182 
10183 	file_accessed(iocb->ki_filp);
10184 
10185 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10186 
10187 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10188 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10189 		return 0;
10190 	}
10191 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10192 	/*
10193 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10194 	 * it's compressed we know that it won't be longer than this.
10195 	 */
10196 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10197 
10198 	for (;;) {
10199 		struct btrfs_ordered_extent *ordered;
10200 
10201 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10202 					       lockend - start + 1);
10203 		if (ret)
10204 			goto out_unlock_inode;
10205 		lock_extent(io_tree, start, lockend, &cached_state);
10206 		ordered = btrfs_lookup_ordered_range(inode, start,
10207 						     lockend - start + 1);
10208 		if (!ordered)
10209 			break;
10210 		btrfs_put_ordered_extent(ordered);
10211 		unlock_extent(io_tree, start, lockend, &cached_state);
10212 		cond_resched();
10213 	}
10214 
10215 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10216 	if (IS_ERR(em)) {
10217 		ret = PTR_ERR(em);
10218 		goto out_unlock_extent;
10219 	}
10220 
10221 	if (em->block_start == EXTENT_MAP_INLINE) {
10222 		u64 extent_start = em->start;
10223 
10224 		/*
10225 		 * For inline extents we get everything we need out of the
10226 		 * extent item.
10227 		 */
10228 		free_extent_map(em);
10229 		em = NULL;
10230 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10231 						&cached_state, extent_start,
10232 						count, encoded, &unlocked);
10233 		goto out;
10234 	}
10235 
10236 	/*
10237 	 * We only want to return up to EOF even if the extent extends beyond
10238 	 * that.
10239 	 */
10240 	encoded->len = min_t(u64, extent_map_end(em),
10241 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10242 	if (em->block_start == EXTENT_MAP_HOLE ||
10243 	    test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10244 		disk_bytenr = EXTENT_MAP_HOLE;
10245 		count = min_t(u64, count, encoded->len);
10246 		encoded->len = count;
10247 		encoded->unencoded_len = count;
10248 	} else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10249 		disk_bytenr = em->block_start;
10250 		/*
10251 		 * Bail if the buffer isn't large enough to return the whole
10252 		 * compressed extent.
10253 		 */
10254 		if (em->block_len > count) {
10255 			ret = -ENOBUFS;
10256 			goto out_em;
10257 		}
10258 		disk_io_size = em->block_len;
10259 		count = em->block_len;
10260 		encoded->unencoded_len = em->ram_bytes;
10261 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10262 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10263 							     em->compress_type);
10264 		if (ret < 0)
10265 			goto out_em;
10266 		encoded->compression = ret;
10267 	} else {
10268 		disk_bytenr = em->block_start + (start - em->start);
10269 		if (encoded->len > count)
10270 			encoded->len = count;
10271 		/*
10272 		 * Don't read beyond what we locked. This also limits the page
10273 		 * allocations that we'll do.
10274 		 */
10275 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10276 		count = start + disk_io_size - iocb->ki_pos;
10277 		encoded->len = count;
10278 		encoded->unencoded_len = count;
10279 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10280 	}
10281 	free_extent_map(em);
10282 	em = NULL;
10283 
10284 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10285 		unlock_extent(io_tree, start, lockend, &cached_state);
10286 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10287 		unlocked = true;
10288 		ret = iov_iter_zero(count, iter);
10289 		if (ret != count)
10290 			ret = -EFAULT;
10291 	} else {
10292 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10293 						 &cached_state, disk_bytenr,
10294 						 disk_io_size, count,
10295 						 encoded->compression,
10296 						 &unlocked);
10297 	}
10298 
10299 out:
10300 	if (ret >= 0)
10301 		iocb->ki_pos += encoded->len;
10302 out_em:
10303 	free_extent_map(em);
10304 out_unlock_extent:
10305 	if (!unlocked)
10306 		unlock_extent(io_tree, start, lockend, &cached_state);
10307 out_unlock_inode:
10308 	if (!unlocked)
10309 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10310 	return ret;
10311 }
10312 
10313 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10314 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10315 {
10316 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10317 	struct btrfs_root *root = inode->root;
10318 	struct btrfs_fs_info *fs_info = root->fs_info;
10319 	struct extent_io_tree *io_tree = &inode->io_tree;
10320 	struct extent_changeset *data_reserved = NULL;
10321 	struct extent_state *cached_state = NULL;
10322 	struct btrfs_ordered_extent *ordered;
10323 	int compression;
10324 	size_t orig_count;
10325 	u64 start, end;
10326 	u64 num_bytes, ram_bytes, disk_num_bytes;
10327 	unsigned long nr_pages, i;
10328 	struct page **pages;
10329 	struct btrfs_key ins;
10330 	bool extent_reserved = false;
10331 	struct extent_map *em;
10332 	ssize_t ret;
10333 
10334 	switch (encoded->compression) {
10335 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10336 		compression = BTRFS_COMPRESS_ZLIB;
10337 		break;
10338 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10339 		compression = BTRFS_COMPRESS_ZSTD;
10340 		break;
10341 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10342 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10343 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10344 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10345 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10346 		/* The sector size must match for LZO. */
10347 		if (encoded->compression -
10348 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10349 		    fs_info->sectorsize_bits)
10350 			return -EINVAL;
10351 		compression = BTRFS_COMPRESS_LZO;
10352 		break;
10353 	default:
10354 		return -EINVAL;
10355 	}
10356 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10357 		return -EINVAL;
10358 
10359 	orig_count = iov_iter_count(from);
10360 
10361 	/* The extent size must be sane. */
10362 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10363 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10364 		return -EINVAL;
10365 
10366 	/*
10367 	 * The compressed data must be smaller than the decompressed data.
10368 	 *
10369 	 * It's of course possible for data to compress to larger or the same
10370 	 * size, but the buffered I/O path falls back to no compression for such
10371 	 * data, and we don't want to break any assumptions by creating these
10372 	 * extents.
10373 	 *
10374 	 * Note that this is less strict than the current check we have that the
10375 	 * compressed data must be at least one sector smaller than the
10376 	 * decompressed data. We only want to enforce the weaker requirement
10377 	 * from old kernels that it is at least one byte smaller.
10378 	 */
10379 	if (orig_count >= encoded->unencoded_len)
10380 		return -EINVAL;
10381 
10382 	/* The extent must start on a sector boundary. */
10383 	start = iocb->ki_pos;
10384 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10385 		return -EINVAL;
10386 
10387 	/*
10388 	 * The extent must end on a sector boundary. However, we allow a write
10389 	 * which ends at or extends i_size to have an unaligned length; we round
10390 	 * up the extent size and set i_size to the unaligned end.
10391 	 */
10392 	if (start + encoded->len < inode->vfs_inode.i_size &&
10393 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10394 		return -EINVAL;
10395 
10396 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10397 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10398 		return -EINVAL;
10399 
10400 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10401 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10402 	end = start + num_bytes - 1;
10403 
10404 	/*
10405 	 * If the extent cannot be inline, the compressed data on disk must be
10406 	 * sector-aligned. For convenience, we extend it with zeroes if it
10407 	 * isn't.
10408 	 */
10409 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10410 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10411 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10412 	if (!pages)
10413 		return -ENOMEM;
10414 	for (i = 0; i < nr_pages; i++) {
10415 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10416 		char *kaddr;
10417 
10418 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10419 		if (!pages[i]) {
10420 			ret = -ENOMEM;
10421 			goto out_pages;
10422 		}
10423 		kaddr = kmap_local_page(pages[i]);
10424 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10425 			kunmap_local(kaddr);
10426 			ret = -EFAULT;
10427 			goto out_pages;
10428 		}
10429 		if (bytes < PAGE_SIZE)
10430 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10431 		kunmap_local(kaddr);
10432 	}
10433 
10434 	for (;;) {
10435 		struct btrfs_ordered_extent *ordered;
10436 
10437 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10438 		if (ret)
10439 			goto out_pages;
10440 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10441 						    start >> PAGE_SHIFT,
10442 						    end >> PAGE_SHIFT);
10443 		if (ret)
10444 			goto out_pages;
10445 		lock_extent(io_tree, start, end, &cached_state);
10446 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10447 		if (!ordered &&
10448 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10449 			break;
10450 		if (ordered)
10451 			btrfs_put_ordered_extent(ordered);
10452 		unlock_extent(io_tree, start, end, &cached_state);
10453 		cond_resched();
10454 	}
10455 
10456 	/*
10457 	 * We don't use the higher-level delalloc space functions because our
10458 	 * num_bytes and disk_num_bytes are different.
10459 	 */
10460 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10461 	if (ret)
10462 		goto out_unlock;
10463 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10464 	if (ret)
10465 		goto out_free_data_space;
10466 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10467 					      false);
10468 	if (ret)
10469 		goto out_qgroup_free_data;
10470 
10471 	/* Try an inline extent first. */
10472 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10473 	    encoded->unencoded_offset == 0) {
10474 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10475 					    compression, pages, true);
10476 		if (ret <= 0) {
10477 			if (ret == 0)
10478 				ret = orig_count;
10479 			goto out_delalloc_release;
10480 		}
10481 	}
10482 
10483 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10484 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10485 	if (ret)
10486 		goto out_delalloc_release;
10487 	extent_reserved = true;
10488 
10489 	em = create_io_em(inode, start, num_bytes,
10490 			  start - encoded->unencoded_offset, ins.objectid,
10491 			  ins.offset, ins.offset, ram_bytes, compression,
10492 			  BTRFS_ORDERED_COMPRESSED);
10493 	if (IS_ERR(em)) {
10494 		ret = PTR_ERR(em);
10495 		goto out_free_reserved;
10496 	}
10497 	free_extent_map(em);
10498 
10499 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10500 				       ins.objectid, ins.offset,
10501 				       encoded->unencoded_offset,
10502 				       (1 << BTRFS_ORDERED_ENCODED) |
10503 				       (1 << BTRFS_ORDERED_COMPRESSED),
10504 				       compression);
10505 	if (IS_ERR(ordered)) {
10506 		btrfs_drop_extent_map_range(inode, start, end, false);
10507 		ret = PTR_ERR(ordered);
10508 		goto out_free_reserved;
10509 	}
10510 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10511 
10512 	if (start + encoded->len > inode->vfs_inode.i_size)
10513 		i_size_write(&inode->vfs_inode, start + encoded->len);
10514 
10515 	unlock_extent(io_tree, start, end, &cached_state);
10516 
10517 	btrfs_delalloc_release_extents(inode, num_bytes);
10518 
10519 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10520 	ret = orig_count;
10521 	goto out;
10522 
10523 out_free_reserved:
10524 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10525 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10526 out_delalloc_release:
10527 	btrfs_delalloc_release_extents(inode, num_bytes);
10528 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10529 out_qgroup_free_data:
10530 	if (ret < 0)
10531 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10532 out_free_data_space:
10533 	/*
10534 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10535 	 * bytes_may_use.
10536 	 */
10537 	if (!extent_reserved)
10538 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10539 out_unlock:
10540 	unlock_extent(io_tree, start, end, &cached_state);
10541 out_pages:
10542 	for (i = 0; i < nr_pages; i++) {
10543 		if (pages[i])
10544 			__free_page(pages[i]);
10545 	}
10546 	kvfree(pages);
10547 out:
10548 	if (ret >= 0)
10549 		iocb->ki_pos += encoded->len;
10550 	return ret;
10551 }
10552 
10553 #ifdef CONFIG_SWAP
10554 /*
10555  * Add an entry indicating a block group or device which is pinned by a
10556  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10557  * negative errno on failure.
10558  */
10559 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10560 				  bool is_block_group)
10561 {
10562 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10563 	struct btrfs_swapfile_pin *sp, *entry;
10564 	struct rb_node **p;
10565 	struct rb_node *parent = NULL;
10566 
10567 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10568 	if (!sp)
10569 		return -ENOMEM;
10570 	sp->ptr = ptr;
10571 	sp->inode = inode;
10572 	sp->is_block_group = is_block_group;
10573 	sp->bg_extent_count = 1;
10574 
10575 	spin_lock(&fs_info->swapfile_pins_lock);
10576 	p = &fs_info->swapfile_pins.rb_node;
10577 	while (*p) {
10578 		parent = *p;
10579 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10580 		if (sp->ptr < entry->ptr ||
10581 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10582 			p = &(*p)->rb_left;
10583 		} else if (sp->ptr > entry->ptr ||
10584 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10585 			p = &(*p)->rb_right;
10586 		} else {
10587 			if (is_block_group)
10588 				entry->bg_extent_count++;
10589 			spin_unlock(&fs_info->swapfile_pins_lock);
10590 			kfree(sp);
10591 			return 1;
10592 		}
10593 	}
10594 	rb_link_node(&sp->node, parent, p);
10595 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10596 	spin_unlock(&fs_info->swapfile_pins_lock);
10597 	return 0;
10598 }
10599 
10600 /* Free all of the entries pinned by this swapfile. */
10601 static void btrfs_free_swapfile_pins(struct inode *inode)
10602 {
10603 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10604 	struct btrfs_swapfile_pin *sp;
10605 	struct rb_node *node, *next;
10606 
10607 	spin_lock(&fs_info->swapfile_pins_lock);
10608 	node = rb_first(&fs_info->swapfile_pins);
10609 	while (node) {
10610 		next = rb_next(node);
10611 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10612 		if (sp->inode == inode) {
10613 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10614 			if (sp->is_block_group) {
10615 				btrfs_dec_block_group_swap_extents(sp->ptr,
10616 							   sp->bg_extent_count);
10617 				btrfs_put_block_group(sp->ptr);
10618 			}
10619 			kfree(sp);
10620 		}
10621 		node = next;
10622 	}
10623 	spin_unlock(&fs_info->swapfile_pins_lock);
10624 }
10625 
10626 struct btrfs_swap_info {
10627 	u64 start;
10628 	u64 block_start;
10629 	u64 block_len;
10630 	u64 lowest_ppage;
10631 	u64 highest_ppage;
10632 	unsigned long nr_pages;
10633 	int nr_extents;
10634 };
10635 
10636 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10637 				 struct btrfs_swap_info *bsi)
10638 {
10639 	unsigned long nr_pages;
10640 	unsigned long max_pages;
10641 	u64 first_ppage, first_ppage_reported, next_ppage;
10642 	int ret;
10643 
10644 	/*
10645 	 * Our swapfile may have had its size extended after the swap header was
10646 	 * written. In that case activating the swapfile should not go beyond
10647 	 * the max size set in the swap header.
10648 	 */
10649 	if (bsi->nr_pages >= sis->max)
10650 		return 0;
10651 
10652 	max_pages = sis->max - bsi->nr_pages;
10653 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10654 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10655 
10656 	if (first_ppage >= next_ppage)
10657 		return 0;
10658 	nr_pages = next_ppage - first_ppage;
10659 	nr_pages = min(nr_pages, max_pages);
10660 
10661 	first_ppage_reported = first_ppage;
10662 	if (bsi->start == 0)
10663 		first_ppage_reported++;
10664 	if (bsi->lowest_ppage > first_ppage_reported)
10665 		bsi->lowest_ppage = first_ppage_reported;
10666 	if (bsi->highest_ppage < (next_ppage - 1))
10667 		bsi->highest_ppage = next_ppage - 1;
10668 
10669 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10670 	if (ret < 0)
10671 		return ret;
10672 	bsi->nr_extents += ret;
10673 	bsi->nr_pages += nr_pages;
10674 	return 0;
10675 }
10676 
10677 static void btrfs_swap_deactivate(struct file *file)
10678 {
10679 	struct inode *inode = file_inode(file);
10680 
10681 	btrfs_free_swapfile_pins(inode);
10682 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10683 }
10684 
10685 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10686 			       sector_t *span)
10687 {
10688 	struct inode *inode = file_inode(file);
10689 	struct btrfs_root *root = BTRFS_I(inode)->root;
10690 	struct btrfs_fs_info *fs_info = root->fs_info;
10691 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10692 	struct extent_state *cached_state = NULL;
10693 	struct extent_map *em = NULL;
10694 	struct btrfs_device *device = NULL;
10695 	struct btrfs_swap_info bsi = {
10696 		.lowest_ppage = (sector_t)-1ULL,
10697 	};
10698 	int ret = 0;
10699 	u64 isize;
10700 	u64 start;
10701 
10702 	/*
10703 	 * If the swap file was just created, make sure delalloc is done. If the
10704 	 * file changes again after this, the user is doing something stupid and
10705 	 * we don't really care.
10706 	 */
10707 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10708 	if (ret)
10709 		return ret;
10710 
10711 	/*
10712 	 * The inode is locked, so these flags won't change after we check them.
10713 	 */
10714 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10715 		btrfs_warn(fs_info, "swapfile must not be compressed");
10716 		return -EINVAL;
10717 	}
10718 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10719 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10720 		return -EINVAL;
10721 	}
10722 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10723 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10724 		return -EINVAL;
10725 	}
10726 
10727 	/*
10728 	 * Balance or device remove/replace/resize can move stuff around from
10729 	 * under us. The exclop protection makes sure they aren't running/won't
10730 	 * run concurrently while we are mapping the swap extents, and
10731 	 * fs_info->swapfile_pins prevents them from running while the swap
10732 	 * file is active and moving the extents. Note that this also prevents
10733 	 * a concurrent device add which isn't actually necessary, but it's not
10734 	 * really worth the trouble to allow it.
10735 	 */
10736 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10737 		btrfs_warn(fs_info,
10738 	   "cannot activate swapfile while exclusive operation is running");
10739 		return -EBUSY;
10740 	}
10741 
10742 	/*
10743 	 * Prevent snapshot creation while we are activating the swap file.
10744 	 * We do not want to race with snapshot creation. If snapshot creation
10745 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10746 	 * completes before the first write into the swap file after it is
10747 	 * activated, than that write would fallback to COW.
10748 	 */
10749 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10750 		btrfs_exclop_finish(fs_info);
10751 		btrfs_warn(fs_info,
10752 	   "cannot activate swapfile because snapshot creation is in progress");
10753 		return -EINVAL;
10754 	}
10755 	/*
10756 	 * Snapshots can create extents which require COW even if NODATACOW is
10757 	 * set. We use this counter to prevent snapshots. We must increment it
10758 	 * before walking the extents because we don't want a concurrent
10759 	 * snapshot to run after we've already checked the extents.
10760 	 *
10761 	 * It is possible that subvolume is marked for deletion but still not
10762 	 * removed yet. To prevent this race, we check the root status before
10763 	 * activating the swapfile.
10764 	 */
10765 	spin_lock(&root->root_item_lock);
10766 	if (btrfs_root_dead(root)) {
10767 		spin_unlock(&root->root_item_lock);
10768 
10769 		btrfs_exclop_finish(fs_info);
10770 		btrfs_warn(fs_info,
10771 		"cannot activate swapfile because subvolume %llu is being deleted",
10772 			root->root_key.objectid);
10773 		return -EPERM;
10774 	}
10775 	atomic_inc(&root->nr_swapfiles);
10776 	spin_unlock(&root->root_item_lock);
10777 
10778 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10779 
10780 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10781 	start = 0;
10782 	while (start < isize) {
10783 		u64 logical_block_start, physical_block_start;
10784 		struct btrfs_block_group *bg;
10785 		u64 len = isize - start;
10786 
10787 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10788 		if (IS_ERR(em)) {
10789 			ret = PTR_ERR(em);
10790 			goto out;
10791 		}
10792 
10793 		if (em->block_start == EXTENT_MAP_HOLE) {
10794 			btrfs_warn(fs_info, "swapfile must not have holes");
10795 			ret = -EINVAL;
10796 			goto out;
10797 		}
10798 		if (em->block_start == EXTENT_MAP_INLINE) {
10799 			/*
10800 			 * It's unlikely we'll ever actually find ourselves
10801 			 * here, as a file small enough to fit inline won't be
10802 			 * big enough to store more than the swap header, but in
10803 			 * case something changes in the future, let's catch it
10804 			 * here rather than later.
10805 			 */
10806 			btrfs_warn(fs_info, "swapfile must not be inline");
10807 			ret = -EINVAL;
10808 			goto out;
10809 		}
10810 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10811 			btrfs_warn(fs_info, "swapfile must not be compressed");
10812 			ret = -EINVAL;
10813 			goto out;
10814 		}
10815 
10816 		logical_block_start = em->block_start + (start - em->start);
10817 		len = min(len, em->len - (start - em->start));
10818 		free_extent_map(em);
10819 		em = NULL;
10820 
10821 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10822 		if (ret < 0) {
10823 			goto out;
10824 		} else if (ret) {
10825 			ret = 0;
10826 		} else {
10827 			btrfs_warn(fs_info,
10828 				   "swapfile must not be copy-on-write");
10829 			ret = -EINVAL;
10830 			goto out;
10831 		}
10832 
10833 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10834 		if (IS_ERR(em)) {
10835 			ret = PTR_ERR(em);
10836 			goto out;
10837 		}
10838 
10839 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10840 			btrfs_warn(fs_info,
10841 				   "swapfile must have single data profile");
10842 			ret = -EINVAL;
10843 			goto out;
10844 		}
10845 
10846 		if (device == NULL) {
10847 			device = em->map_lookup->stripes[0].dev;
10848 			ret = btrfs_add_swapfile_pin(inode, device, false);
10849 			if (ret == 1)
10850 				ret = 0;
10851 			else if (ret)
10852 				goto out;
10853 		} else if (device != em->map_lookup->stripes[0].dev) {
10854 			btrfs_warn(fs_info, "swapfile must be on one device");
10855 			ret = -EINVAL;
10856 			goto out;
10857 		}
10858 
10859 		physical_block_start = (em->map_lookup->stripes[0].physical +
10860 					(logical_block_start - em->start));
10861 		len = min(len, em->len - (logical_block_start - em->start));
10862 		free_extent_map(em);
10863 		em = NULL;
10864 
10865 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10866 		if (!bg) {
10867 			btrfs_warn(fs_info,
10868 			   "could not find block group containing swapfile");
10869 			ret = -EINVAL;
10870 			goto out;
10871 		}
10872 
10873 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10874 			btrfs_warn(fs_info,
10875 			   "block group for swapfile at %llu is read-only%s",
10876 			   bg->start,
10877 			   atomic_read(&fs_info->scrubs_running) ?
10878 				       " (scrub running)" : "");
10879 			btrfs_put_block_group(bg);
10880 			ret = -EINVAL;
10881 			goto out;
10882 		}
10883 
10884 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10885 		if (ret) {
10886 			btrfs_put_block_group(bg);
10887 			if (ret == 1)
10888 				ret = 0;
10889 			else
10890 				goto out;
10891 		}
10892 
10893 		if (bsi.block_len &&
10894 		    bsi.block_start + bsi.block_len == physical_block_start) {
10895 			bsi.block_len += len;
10896 		} else {
10897 			if (bsi.block_len) {
10898 				ret = btrfs_add_swap_extent(sis, &bsi);
10899 				if (ret)
10900 					goto out;
10901 			}
10902 			bsi.start = start;
10903 			bsi.block_start = physical_block_start;
10904 			bsi.block_len = len;
10905 		}
10906 
10907 		start += len;
10908 	}
10909 
10910 	if (bsi.block_len)
10911 		ret = btrfs_add_swap_extent(sis, &bsi);
10912 
10913 out:
10914 	if (!IS_ERR_OR_NULL(em))
10915 		free_extent_map(em);
10916 
10917 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10918 
10919 	if (ret)
10920 		btrfs_swap_deactivate(file);
10921 
10922 	btrfs_drew_write_unlock(&root->snapshot_lock);
10923 
10924 	btrfs_exclop_finish(fs_info);
10925 
10926 	if (ret)
10927 		return ret;
10928 
10929 	if (device)
10930 		sis->bdev = device->bdev;
10931 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10932 	sis->max = bsi.nr_pages;
10933 	sis->pages = bsi.nr_pages - 1;
10934 	sis->highest_bit = bsi.nr_pages - 1;
10935 	return bsi.nr_extents;
10936 }
10937 #else
10938 static void btrfs_swap_deactivate(struct file *file)
10939 {
10940 }
10941 
10942 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10943 			       sector_t *span)
10944 {
10945 	return -EOPNOTSUPP;
10946 }
10947 #endif
10948 
10949 /*
10950  * Update the number of bytes used in the VFS' inode. When we replace extents in
10951  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10952  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10953  * always get a correct value.
10954  */
10955 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10956 			      const u64 add_bytes,
10957 			      const u64 del_bytes)
10958 {
10959 	if (add_bytes == del_bytes)
10960 		return;
10961 
10962 	spin_lock(&inode->lock);
10963 	if (del_bytes > 0)
10964 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10965 	if (add_bytes > 0)
10966 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10967 	spin_unlock(&inode->lock);
10968 }
10969 
10970 /*
10971  * Verify that there are no ordered extents for a given file range.
10972  *
10973  * @inode:   The target inode.
10974  * @start:   Start offset of the file range, should be sector size aligned.
10975  * @end:     End offset (inclusive) of the file range, its value +1 should be
10976  *           sector size aligned.
10977  *
10978  * This should typically be used for cases where we locked an inode's VFS lock in
10979  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10980  * we have flushed all delalloc in the range, we have waited for all ordered
10981  * extents in the range to complete and finally we have locked the file range in
10982  * the inode's io_tree.
10983  */
10984 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10985 {
10986 	struct btrfs_root *root = inode->root;
10987 	struct btrfs_ordered_extent *ordered;
10988 
10989 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10990 		return;
10991 
10992 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10993 	if (ordered) {
10994 		btrfs_err(root->fs_info,
10995 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10996 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10997 			  ordered->file_offset,
10998 			  ordered->file_offset + ordered->num_bytes - 1);
10999 		btrfs_put_ordered_extent(ordered);
11000 	}
11001 
11002 	ASSERT(ordered == NULL);
11003 }
11004 
11005 static const struct inode_operations btrfs_dir_inode_operations = {
11006 	.getattr	= btrfs_getattr,
11007 	.lookup		= btrfs_lookup,
11008 	.create		= btrfs_create,
11009 	.unlink		= btrfs_unlink,
11010 	.link		= btrfs_link,
11011 	.mkdir		= btrfs_mkdir,
11012 	.rmdir		= btrfs_rmdir,
11013 	.rename		= btrfs_rename2,
11014 	.symlink	= btrfs_symlink,
11015 	.setattr	= btrfs_setattr,
11016 	.mknod		= btrfs_mknod,
11017 	.listxattr	= btrfs_listxattr,
11018 	.permission	= btrfs_permission,
11019 	.get_inode_acl	= btrfs_get_acl,
11020 	.set_acl	= btrfs_set_acl,
11021 	.update_time	= btrfs_update_time,
11022 	.tmpfile        = btrfs_tmpfile,
11023 	.fileattr_get	= btrfs_fileattr_get,
11024 	.fileattr_set	= btrfs_fileattr_set,
11025 };
11026 
11027 static const struct file_operations btrfs_dir_file_operations = {
11028 	.llseek		= generic_file_llseek,
11029 	.read		= generic_read_dir,
11030 	.iterate_shared	= btrfs_real_readdir,
11031 	.open		= btrfs_opendir,
11032 	.unlocked_ioctl	= btrfs_ioctl,
11033 #ifdef CONFIG_COMPAT
11034 	.compat_ioctl	= btrfs_compat_ioctl,
11035 #endif
11036 	.release        = btrfs_release_file,
11037 	.fsync		= btrfs_sync_file,
11038 };
11039 
11040 /*
11041  * btrfs doesn't support the bmap operation because swapfiles
11042  * use bmap to make a mapping of extents in the file.  They assume
11043  * these extents won't change over the life of the file and they
11044  * use the bmap result to do IO directly to the drive.
11045  *
11046  * the btrfs bmap call would return logical addresses that aren't
11047  * suitable for IO and they also will change frequently as COW
11048  * operations happen.  So, swapfile + btrfs == corruption.
11049  *
11050  * For now we're avoiding this by dropping bmap.
11051  */
11052 static const struct address_space_operations btrfs_aops = {
11053 	.read_folio	= btrfs_read_folio,
11054 	.writepages	= btrfs_writepages,
11055 	.readahead	= btrfs_readahead,
11056 	.invalidate_folio = btrfs_invalidate_folio,
11057 	.release_folio	= btrfs_release_folio,
11058 	.migrate_folio	= btrfs_migrate_folio,
11059 	.dirty_folio	= filemap_dirty_folio,
11060 	.error_remove_page = generic_error_remove_page,
11061 	.swap_activate	= btrfs_swap_activate,
11062 	.swap_deactivate = btrfs_swap_deactivate,
11063 };
11064 
11065 static const struct inode_operations btrfs_file_inode_operations = {
11066 	.getattr	= btrfs_getattr,
11067 	.setattr	= btrfs_setattr,
11068 	.listxattr      = btrfs_listxattr,
11069 	.permission	= btrfs_permission,
11070 	.fiemap		= btrfs_fiemap,
11071 	.get_inode_acl	= btrfs_get_acl,
11072 	.set_acl	= btrfs_set_acl,
11073 	.update_time	= btrfs_update_time,
11074 	.fileattr_get	= btrfs_fileattr_get,
11075 	.fileattr_set	= btrfs_fileattr_set,
11076 };
11077 static const struct inode_operations btrfs_special_inode_operations = {
11078 	.getattr	= btrfs_getattr,
11079 	.setattr	= btrfs_setattr,
11080 	.permission	= btrfs_permission,
11081 	.listxattr	= btrfs_listxattr,
11082 	.get_inode_acl	= btrfs_get_acl,
11083 	.set_acl	= btrfs_set_acl,
11084 	.update_time	= btrfs_update_time,
11085 };
11086 static const struct inode_operations btrfs_symlink_inode_operations = {
11087 	.get_link	= page_get_link,
11088 	.getattr	= btrfs_getattr,
11089 	.setattr	= btrfs_setattr,
11090 	.permission	= btrfs_permission,
11091 	.listxattr	= btrfs_listxattr,
11092 	.update_time	= btrfs_update_time,
11093 };
11094 
11095 const struct dentry_operations btrfs_dentry_operations = {
11096 	.d_delete	= btrfs_dentry_delete,
11097 };
11098