1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 unsigned long index = offset >> PAGE_SHIFT; 399 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 index++; 405 if (IS_ERR(folio)) 406 continue; 407 408 /* 409 * Here we just clear all Ordered bits for every page in the 410 * range, then btrfs_mark_ordered_io_finished() will handle 411 * the ordered extent accounting for the range. 412 */ 413 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 414 offset, bytes); 415 folio_put(folio); 416 } 417 418 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 419 } 420 421 static int btrfs_dirty_inode(struct btrfs_inode *inode); 422 423 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 424 struct btrfs_new_inode_args *args) 425 { 426 int err; 427 428 if (args->default_acl) { 429 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 430 ACL_TYPE_DEFAULT); 431 if (err) 432 return err; 433 } 434 if (args->acl) { 435 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 436 if (err) 437 return err; 438 } 439 if (!args->default_acl && !args->acl) 440 cache_no_acl(args->inode); 441 return btrfs_xattr_security_init(trans, args->inode, args->dir, 442 &args->dentry->d_name); 443 } 444 445 /* 446 * this does all the hard work for inserting an inline extent into 447 * the btree. The caller should have done a btrfs_drop_extents so that 448 * no overlapping inline items exist in the btree 449 */ 450 static int insert_inline_extent(struct btrfs_trans_handle *trans, 451 struct btrfs_path *path, 452 struct btrfs_inode *inode, bool extent_inserted, 453 size_t size, size_t compressed_size, 454 int compress_type, 455 struct folio *compressed_folio, 456 bool update_i_size) 457 { 458 struct btrfs_root *root = inode->root; 459 struct extent_buffer *leaf; 460 const u32 sectorsize = trans->fs_info->sectorsize; 461 char *kaddr; 462 unsigned long ptr; 463 struct btrfs_file_extent_item *ei; 464 int ret; 465 size_t cur_size = size; 466 u64 i_size; 467 468 /* 469 * The decompressed size must still be no larger than a sector. Under 470 * heavy race, we can have size == 0 passed in, but that shouldn't be a 471 * big deal and we can continue the insertion. 472 */ 473 ASSERT(size <= sectorsize); 474 475 /* 476 * The compressed size also needs to be no larger than a sector. 477 * That's also why we only need one page as the parameter. 478 */ 479 if (compressed_folio) 480 ASSERT(compressed_size <= sectorsize); 481 else 482 ASSERT(compressed_size == 0); 483 484 if (compressed_size && compressed_folio) 485 cur_size = compressed_size; 486 487 if (!extent_inserted) { 488 struct btrfs_key key; 489 size_t datasize; 490 491 key.objectid = btrfs_ino(inode); 492 key.type = BTRFS_EXTENT_DATA_KEY; 493 key.offset = 0; 494 495 datasize = btrfs_file_extent_calc_inline_size(cur_size); 496 ret = btrfs_insert_empty_item(trans, root, path, &key, 497 datasize); 498 if (ret) 499 goto fail; 500 } 501 leaf = path->nodes[0]; 502 ei = btrfs_item_ptr(leaf, path->slots[0], 503 struct btrfs_file_extent_item); 504 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 505 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 506 btrfs_set_file_extent_encryption(leaf, ei, 0); 507 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 508 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 509 ptr = btrfs_file_extent_inline_start(ei); 510 511 if (compress_type != BTRFS_COMPRESS_NONE) { 512 kaddr = kmap_local_folio(compressed_folio, 0); 513 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 514 kunmap_local(kaddr); 515 516 btrfs_set_file_extent_compression(leaf, ei, 517 compress_type); 518 } else { 519 struct folio *folio; 520 521 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 522 ASSERT(!IS_ERR(folio)); 523 btrfs_set_file_extent_compression(leaf, ei, 0); 524 kaddr = kmap_local_folio(folio, 0); 525 write_extent_buffer(leaf, kaddr, ptr, size); 526 kunmap_local(kaddr); 527 folio_put(folio); 528 } 529 btrfs_release_path(path); 530 531 /* 532 * We align size to sectorsize for inline extents just for simplicity 533 * sake. 534 */ 535 ret = btrfs_inode_set_file_extent_range(inode, 0, 536 ALIGN(size, root->fs_info->sectorsize)); 537 if (ret) 538 goto fail; 539 540 /* 541 * We're an inline extent, so nobody can extend the file past i_size 542 * without locking a page we already have locked. 543 * 544 * We must do any i_size and inode updates before we unlock the pages. 545 * Otherwise we could end up racing with unlink. 546 */ 547 i_size = i_size_read(&inode->vfs_inode); 548 if (update_i_size && size > i_size) { 549 i_size_write(&inode->vfs_inode, size); 550 i_size = size; 551 } 552 inode->disk_i_size = i_size; 553 554 fail: 555 return ret; 556 } 557 558 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 559 u64 offset, u64 size, 560 size_t compressed_size) 561 { 562 struct btrfs_fs_info *fs_info = inode->root->fs_info; 563 u64 data_len = (compressed_size ?: size); 564 565 /* Inline extents must start at offset 0. */ 566 if (offset != 0) 567 return false; 568 569 /* Inline extents are limited to sectorsize. */ 570 if (size > fs_info->sectorsize) 571 return false; 572 573 /* We do not allow a non-compressed extent to be as large as block size. */ 574 if (data_len >= fs_info->sectorsize) 575 return false; 576 577 /* We cannot exceed the maximum inline data size. */ 578 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 579 return false; 580 581 /* We cannot exceed the user specified max_inline size. */ 582 if (data_len > fs_info->max_inline) 583 return false; 584 585 /* Inline extents must be the entirety of the file. */ 586 if (size < i_size_read(&inode->vfs_inode)) 587 return false; 588 589 return true; 590 } 591 592 /* 593 * conditionally insert an inline extent into the file. This 594 * does the checks required to make sure the data is small enough 595 * to fit as an inline extent. 596 * 597 * If being used directly, you must have already checked we're allowed to cow 598 * the range by getting true from can_cow_file_range_inline(). 599 */ 600 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 601 u64 size, size_t compressed_size, 602 int compress_type, 603 struct folio *compressed_folio, 604 bool update_i_size) 605 { 606 struct btrfs_drop_extents_args drop_args = { 0 }; 607 struct btrfs_root *root = inode->root; 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_trans_handle *trans; 610 u64 data_len = (compressed_size ?: size); 611 int ret; 612 struct btrfs_path *path; 613 614 path = btrfs_alloc_path(); 615 if (!path) 616 return -ENOMEM; 617 618 trans = btrfs_join_transaction(root); 619 if (IS_ERR(trans)) { 620 btrfs_free_path(path); 621 return PTR_ERR(trans); 622 } 623 trans->block_rsv = &inode->block_rsv; 624 625 drop_args.path = path; 626 drop_args.start = 0; 627 drop_args.end = fs_info->sectorsize; 628 drop_args.drop_cache = true; 629 drop_args.replace_extent = true; 630 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 631 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 632 if (ret) { 633 btrfs_abort_transaction(trans, ret); 634 goto out; 635 } 636 637 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 638 size, compressed_size, compress_type, 639 compressed_folio, update_i_size); 640 if (ret && ret != -ENOSPC) { 641 btrfs_abort_transaction(trans, ret); 642 goto out; 643 } else if (ret == -ENOSPC) { 644 ret = 1; 645 goto out; 646 } 647 648 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 649 ret = btrfs_update_inode(trans, inode); 650 if (ret && ret != -ENOSPC) { 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } else if (ret == -ENOSPC) { 654 ret = 1; 655 goto out; 656 } 657 658 btrfs_set_inode_full_sync(inode); 659 out: 660 /* 661 * Don't forget to free the reserved space, as for inlined extent 662 * it won't count as data extent, free them directly here. 663 * And at reserve time, it's always aligned to page size, so 664 * just free one page here. 665 */ 666 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 667 btrfs_free_path(path); 668 btrfs_end_transaction(trans); 669 return ret; 670 } 671 672 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 673 struct folio *locked_folio, 674 u64 offset, u64 end, 675 size_t compressed_size, 676 int compress_type, 677 struct folio *compressed_folio, 678 bool update_i_size) 679 { 680 struct extent_state *cached = NULL; 681 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 682 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 683 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 684 int ret; 685 686 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 687 return 1; 688 689 lock_extent(&inode->io_tree, offset, end, &cached); 690 ret = __cow_file_range_inline(inode, size, compressed_size, 691 compress_type, compressed_folio, 692 update_i_size); 693 if (ret > 0) { 694 unlock_extent(&inode->io_tree, offset, end, &cached); 695 return ret; 696 } 697 698 /* 699 * In the successful case (ret == 0 here), cow_file_range will return 1. 700 * 701 * Quite a bit further up the callstack in extent_writepage(), ret == 1 702 * is treated as a short circuited success and does not unlock the folio, 703 * so we must do it here. 704 * 705 * In the failure case, the locked_folio does get unlocked by 706 * btrfs_folio_end_all_writers, which asserts that it is still locked 707 * at that point, so we must *not* unlock it here. 708 * 709 * The other two callsites in compress_file_range do not have a 710 * locked_folio, so they are not relevant to this logic. 711 */ 712 if (ret == 0) 713 locked_folio = NULL; 714 715 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 716 clear_flags, PAGE_UNLOCK | 717 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 718 return ret; 719 } 720 721 struct async_extent { 722 u64 start; 723 u64 ram_size; 724 u64 compressed_size; 725 struct folio **folios; 726 unsigned long nr_folios; 727 int compress_type; 728 struct list_head list; 729 }; 730 731 struct async_chunk { 732 struct btrfs_inode *inode; 733 struct folio *locked_folio; 734 u64 start; 735 u64 end; 736 blk_opf_t write_flags; 737 struct list_head extents; 738 struct cgroup_subsys_state *blkcg_css; 739 struct btrfs_work work; 740 struct async_cow *async_cow; 741 }; 742 743 struct async_cow { 744 atomic_t num_chunks; 745 struct async_chunk chunks[]; 746 }; 747 748 static noinline int add_async_extent(struct async_chunk *cow, 749 u64 start, u64 ram_size, 750 u64 compressed_size, 751 struct folio **folios, 752 unsigned long nr_folios, 753 int compress_type) 754 { 755 struct async_extent *async_extent; 756 757 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 758 if (!async_extent) 759 return -ENOMEM; 760 async_extent->start = start; 761 async_extent->ram_size = ram_size; 762 async_extent->compressed_size = compressed_size; 763 async_extent->folios = folios; 764 async_extent->nr_folios = nr_folios; 765 async_extent->compress_type = compress_type; 766 list_add_tail(&async_extent->list, &cow->extents); 767 return 0; 768 } 769 770 /* 771 * Check if the inode needs to be submitted to compression, based on mount 772 * options, defragmentation, properties or heuristics. 773 */ 774 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 775 u64 end) 776 { 777 struct btrfs_fs_info *fs_info = inode->root->fs_info; 778 779 if (!btrfs_inode_can_compress(inode)) { 780 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 781 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 782 btrfs_ino(inode)); 783 return 0; 784 } 785 /* 786 * Only enable sector perfect compression for experimental builds. 787 * 788 * This is a big feature change for subpage cases, and can hit 789 * different corner cases, so only limit this feature for 790 * experimental build for now. 791 * 792 * ETA for moving this out of experimental builds is 6.15. 793 */ 794 if (fs_info->sectorsize < PAGE_SIZE && 795 !IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 796 if (!PAGE_ALIGNED(start) || 797 !PAGE_ALIGNED(end + 1)) 798 return 0; 799 } 800 801 /* force compress */ 802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 803 return 1; 804 /* defrag ioctl */ 805 if (inode->defrag_compress) 806 return 1; 807 /* bad compression ratios */ 808 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 809 return 0; 810 if (btrfs_test_opt(fs_info, COMPRESS) || 811 inode->flags & BTRFS_INODE_COMPRESS || 812 inode->prop_compress) 813 return btrfs_compress_heuristic(inode, start, end); 814 return 0; 815 } 816 817 static inline void inode_should_defrag(struct btrfs_inode *inode, 818 u64 start, u64 end, u64 num_bytes, u32 small_write) 819 { 820 /* If this is a small write inside eof, kick off a defrag */ 821 if (num_bytes < small_write && 822 (start > 0 || end + 1 < inode->disk_i_size)) 823 btrfs_add_inode_defrag(inode, small_write); 824 } 825 826 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 827 { 828 unsigned long end_index = end >> PAGE_SHIFT; 829 struct folio *folio; 830 int ret = 0; 831 832 for (unsigned long index = start >> PAGE_SHIFT; 833 index <= end_index; index++) { 834 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 835 if (IS_ERR(folio)) { 836 if (!ret) 837 ret = PTR_ERR(folio); 838 continue; 839 } 840 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 841 end + 1 - start); 842 folio_put(folio); 843 } 844 return ret; 845 } 846 847 /* 848 * Work queue call back to started compression on a file and pages. 849 * 850 * This is done inside an ordered work queue, and the compression is spread 851 * across many cpus. The actual IO submission is step two, and the ordered work 852 * queue takes care of making sure that happens in the same order things were 853 * put onto the queue by writepages and friends. 854 * 855 * If this code finds it can't get good compression, it puts an entry onto the 856 * work queue to write the uncompressed bytes. This makes sure that both 857 * compressed inodes and uncompressed inodes are written in the same order that 858 * the flusher thread sent them down. 859 */ 860 static void compress_file_range(struct btrfs_work *work) 861 { 862 struct async_chunk *async_chunk = 863 container_of(work, struct async_chunk, work); 864 struct btrfs_inode *inode = async_chunk->inode; 865 struct btrfs_fs_info *fs_info = inode->root->fs_info; 866 struct address_space *mapping = inode->vfs_inode.i_mapping; 867 u64 blocksize = fs_info->sectorsize; 868 u64 start = async_chunk->start; 869 u64 end = async_chunk->end; 870 u64 actual_end; 871 u64 i_size; 872 int ret = 0; 873 struct folio **folios; 874 unsigned long nr_folios; 875 unsigned long total_compressed = 0; 876 unsigned long total_in = 0; 877 unsigned int poff; 878 int i; 879 int compress_type = fs_info->compress_type; 880 int compress_level = fs_info->compress_level; 881 882 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 883 884 /* 885 * We need to call clear_page_dirty_for_io on each page in the range. 886 * Otherwise applications with the file mmap'd can wander in and change 887 * the page contents while we are compressing them. 888 */ 889 ret = extent_range_clear_dirty_for_io(inode, start, end); 890 891 /* 892 * All the folios should have been locked thus no failure. 893 * 894 * And even if some folios are missing, btrfs_compress_folios() 895 * would handle them correctly, so here just do an ASSERT() check for 896 * early logic errors. 897 */ 898 ASSERT(ret == 0); 899 900 /* 901 * We need to save i_size before now because it could change in between 902 * us evaluating the size and assigning it. This is because we lock and 903 * unlock the page in truncate and fallocate, and then modify the i_size 904 * later on. 905 * 906 * The barriers are to emulate READ_ONCE, remove that once i_size_read 907 * does that for us. 908 */ 909 barrier(); 910 i_size = i_size_read(&inode->vfs_inode); 911 barrier(); 912 actual_end = min_t(u64, i_size, end + 1); 913 again: 914 folios = NULL; 915 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 916 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 917 918 /* 919 * we don't want to send crud past the end of i_size through 920 * compression, that's just a waste of CPU time. So, if the 921 * end of the file is before the start of our current 922 * requested range of bytes, we bail out to the uncompressed 923 * cleanup code that can deal with all of this. 924 * 925 * It isn't really the fastest way to fix things, but this is a 926 * very uncommon corner. 927 */ 928 if (actual_end <= start) 929 goto cleanup_and_bail_uncompressed; 930 931 total_compressed = actual_end - start; 932 933 /* 934 * Skip compression for a small file range(<=blocksize) that 935 * isn't an inline extent, since it doesn't save disk space at all. 936 */ 937 if (total_compressed <= blocksize && 938 (start > 0 || end + 1 < inode->disk_i_size)) 939 goto cleanup_and_bail_uncompressed; 940 941 total_compressed = min_t(unsigned long, total_compressed, 942 BTRFS_MAX_UNCOMPRESSED); 943 total_in = 0; 944 ret = 0; 945 946 /* 947 * We do compression for mount -o compress and when the inode has not 948 * been flagged as NOCOMPRESS. This flag can change at any time if we 949 * discover bad compression ratios. 950 */ 951 if (!inode_need_compress(inode, start, end)) 952 goto cleanup_and_bail_uncompressed; 953 954 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 955 if (!folios) { 956 /* 957 * Memory allocation failure is not a fatal error, we can fall 958 * back to uncompressed code. 959 */ 960 goto cleanup_and_bail_uncompressed; 961 } 962 963 if (inode->defrag_compress) { 964 compress_type = inode->defrag_compress; 965 compress_level = inode->defrag_compress_level; 966 } else if (inode->prop_compress) { 967 compress_type = inode->prop_compress; 968 } 969 970 /* Compression level is applied here. */ 971 ret = btrfs_compress_folios(compress_type, compress_level, 972 mapping, start, folios, &nr_folios, &total_in, 973 &total_compressed); 974 if (ret) 975 goto mark_incompressible; 976 977 /* 978 * Zero the tail end of the last page, as we might be sending it down 979 * to disk. 980 */ 981 poff = offset_in_page(total_compressed); 982 if (poff) 983 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 984 985 /* 986 * Try to create an inline extent. 987 * 988 * If we didn't compress the entire range, try to create an uncompressed 989 * inline extent, else a compressed one. 990 * 991 * Check cow_file_range() for why we don't even try to create inline 992 * extent for the subpage case. 993 */ 994 if (total_in < actual_end) 995 ret = cow_file_range_inline(inode, NULL, start, end, 0, 996 BTRFS_COMPRESS_NONE, NULL, false); 997 else 998 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 999 compress_type, folios[0], false); 1000 if (ret <= 0) { 1001 if (ret < 0) 1002 mapping_set_error(mapping, -EIO); 1003 goto free_pages; 1004 } 1005 1006 /* 1007 * We aren't doing an inline extent. Round the compressed size up to a 1008 * block size boundary so the allocator does sane things. 1009 */ 1010 total_compressed = ALIGN(total_compressed, blocksize); 1011 1012 /* 1013 * One last check to make sure the compression is really a win, compare 1014 * the page count read with the blocks on disk, compression must free at 1015 * least one sector. 1016 */ 1017 total_in = round_up(total_in, fs_info->sectorsize); 1018 if (total_compressed + blocksize > total_in) 1019 goto mark_incompressible; 1020 1021 /* 1022 * The async work queues will take care of doing actual allocation on 1023 * disk for these compressed pages, and will submit the bios. 1024 */ 1025 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1026 nr_folios, compress_type); 1027 BUG_ON(ret); 1028 if (start + total_in < end) { 1029 start += total_in; 1030 cond_resched(); 1031 goto again; 1032 } 1033 return; 1034 1035 mark_incompressible: 1036 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1037 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1038 cleanup_and_bail_uncompressed: 1039 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1040 BTRFS_COMPRESS_NONE); 1041 BUG_ON(ret); 1042 free_pages: 1043 if (folios) { 1044 for (i = 0; i < nr_folios; i++) { 1045 WARN_ON(folios[i]->mapping); 1046 btrfs_free_compr_folio(folios[i]); 1047 } 1048 kfree(folios); 1049 } 1050 } 1051 1052 static void free_async_extent_pages(struct async_extent *async_extent) 1053 { 1054 int i; 1055 1056 if (!async_extent->folios) 1057 return; 1058 1059 for (i = 0; i < async_extent->nr_folios; i++) { 1060 WARN_ON(async_extent->folios[i]->mapping); 1061 btrfs_free_compr_folio(async_extent->folios[i]); 1062 } 1063 kfree(async_extent->folios); 1064 async_extent->nr_folios = 0; 1065 async_extent->folios = NULL; 1066 } 1067 1068 static void submit_uncompressed_range(struct btrfs_inode *inode, 1069 struct async_extent *async_extent, 1070 struct folio *locked_folio) 1071 { 1072 u64 start = async_extent->start; 1073 u64 end = async_extent->start + async_extent->ram_size - 1; 1074 int ret; 1075 struct writeback_control wbc = { 1076 .sync_mode = WB_SYNC_ALL, 1077 .range_start = start, 1078 .range_end = end, 1079 .no_cgroup_owner = 1, 1080 }; 1081 1082 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1083 ret = run_delalloc_cow(inode, locked_folio, start, end, 1084 &wbc, false); 1085 wbc_detach_inode(&wbc); 1086 if (ret < 0) { 1087 if (locked_folio) 1088 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1089 start, async_extent->ram_size); 1090 btrfs_err_rl(inode->root->fs_info, 1091 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1092 __func__, btrfs_root_id(inode->root), 1093 btrfs_ino(inode), start, async_extent->ram_size, ret); 1094 } 1095 } 1096 1097 static void submit_one_async_extent(struct async_chunk *async_chunk, 1098 struct async_extent *async_extent, 1099 u64 *alloc_hint) 1100 { 1101 struct btrfs_inode *inode = async_chunk->inode; 1102 struct extent_io_tree *io_tree = &inode->io_tree; 1103 struct btrfs_root *root = inode->root; 1104 struct btrfs_fs_info *fs_info = root->fs_info; 1105 struct btrfs_ordered_extent *ordered; 1106 struct btrfs_file_extent file_extent; 1107 struct btrfs_key ins; 1108 struct folio *locked_folio = NULL; 1109 struct extent_state *cached = NULL; 1110 struct extent_map *em; 1111 int ret = 0; 1112 u64 start = async_extent->start; 1113 u64 end = async_extent->start + async_extent->ram_size - 1; 1114 1115 if (async_chunk->blkcg_css) 1116 kthread_associate_blkcg(async_chunk->blkcg_css); 1117 1118 /* 1119 * If async_chunk->locked_folio is in the async_extent range, we need to 1120 * handle it. 1121 */ 1122 if (async_chunk->locked_folio) { 1123 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1124 u64 locked_folio_end = locked_folio_start + 1125 folio_size(async_chunk->locked_folio) - 1; 1126 1127 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1128 locked_folio = async_chunk->locked_folio; 1129 } 1130 1131 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1132 submit_uncompressed_range(inode, async_extent, locked_folio); 1133 goto done; 1134 } 1135 1136 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1137 async_extent->compressed_size, 1138 async_extent->compressed_size, 1139 0, *alloc_hint, &ins, 1, 1); 1140 if (ret) { 1141 /* 1142 * We can't reserve contiguous space for the compressed size. 1143 * Unlikely, but it's possible that we could have enough 1144 * non-contiguous space for the uncompressed size instead. So 1145 * fall back to uncompressed. 1146 */ 1147 submit_uncompressed_range(inode, async_extent, locked_folio); 1148 goto done; 1149 } 1150 1151 lock_extent(io_tree, start, end, &cached); 1152 1153 /* Here we're doing allocation and writeback of the compressed pages */ 1154 file_extent.disk_bytenr = ins.objectid; 1155 file_extent.disk_num_bytes = ins.offset; 1156 file_extent.ram_bytes = async_extent->ram_size; 1157 file_extent.num_bytes = async_extent->ram_size; 1158 file_extent.offset = 0; 1159 file_extent.compression = async_extent->compress_type; 1160 1161 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1162 if (IS_ERR(em)) { 1163 ret = PTR_ERR(em); 1164 goto out_free_reserve; 1165 } 1166 free_extent_map(em); 1167 1168 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1169 1 << BTRFS_ORDERED_COMPRESSED); 1170 if (IS_ERR(ordered)) { 1171 btrfs_drop_extent_map_range(inode, start, end, false); 1172 ret = PTR_ERR(ordered); 1173 goto out_free_reserve; 1174 } 1175 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1176 1177 /* Clear dirty, set writeback and unlock the pages. */ 1178 extent_clear_unlock_delalloc(inode, start, end, 1179 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1180 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1181 btrfs_submit_compressed_write(ordered, 1182 async_extent->folios, /* compressed_folios */ 1183 async_extent->nr_folios, 1184 async_chunk->write_flags, true); 1185 *alloc_hint = ins.objectid + ins.offset; 1186 done: 1187 if (async_chunk->blkcg_css) 1188 kthread_associate_blkcg(NULL); 1189 kfree(async_extent); 1190 return; 1191 1192 out_free_reserve: 1193 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1194 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1195 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1196 extent_clear_unlock_delalloc(inode, start, end, 1197 NULL, &cached, 1198 EXTENT_LOCKED | EXTENT_DELALLOC | 1199 EXTENT_DELALLOC_NEW | 1200 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1201 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1202 PAGE_END_WRITEBACK); 1203 free_async_extent_pages(async_extent); 1204 if (async_chunk->blkcg_css) 1205 kthread_associate_blkcg(NULL); 1206 btrfs_debug(fs_info, 1207 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1208 btrfs_root_id(root), btrfs_ino(inode), start, 1209 async_extent->ram_size, ret); 1210 kfree(async_extent); 1211 } 1212 1213 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1214 u64 num_bytes) 1215 { 1216 struct extent_map_tree *em_tree = &inode->extent_tree; 1217 struct extent_map *em; 1218 u64 alloc_hint = 0; 1219 1220 read_lock(&em_tree->lock); 1221 em = search_extent_mapping(em_tree, start, num_bytes); 1222 if (em) { 1223 /* 1224 * if block start isn't an actual block number then find the 1225 * first block in this inode and use that as a hint. If that 1226 * block is also bogus then just don't worry about it. 1227 */ 1228 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1229 free_extent_map(em); 1230 em = search_extent_mapping(em_tree, 0, 0); 1231 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1232 alloc_hint = extent_map_block_start(em); 1233 if (em) 1234 free_extent_map(em); 1235 } else { 1236 alloc_hint = extent_map_block_start(em); 1237 free_extent_map(em); 1238 } 1239 } 1240 read_unlock(&em_tree->lock); 1241 1242 return alloc_hint; 1243 } 1244 1245 /* 1246 * when extent_io.c finds a delayed allocation range in the file, 1247 * the call backs end up in this code. The basic idea is to 1248 * allocate extents on disk for the range, and create ordered data structs 1249 * in ram to track those extents. 1250 * 1251 * locked_folio is the folio that writepage had locked already. We use 1252 * it to make sure we don't do extra locks or unlocks. 1253 * 1254 * When this function fails, it unlocks all pages except @locked_folio. 1255 * 1256 * When this function successfully creates an inline extent, it returns 1 and 1257 * unlocks all pages including locked_folio and starts I/O on them. 1258 * (In reality inline extents are limited to a single page, so locked_folio is 1259 * the only page handled anyway). 1260 * 1261 * When this function succeed and creates a normal extent, the page locking 1262 * status depends on the passed in flags: 1263 * 1264 * - If @keep_locked is set, all pages are kept locked. 1265 * - Else all pages except for @locked_folio are unlocked. 1266 * 1267 * When a failure happens in the second or later iteration of the 1268 * while-loop, the ordered extents created in previous iterations are cleaned up. 1269 */ 1270 static noinline int cow_file_range(struct btrfs_inode *inode, 1271 struct folio *locked_folio, u64 start, 1272 u64 end, u64 *done_offset, 1273 bool keep_locked, bool no_inline) 1274 { 1275 struct btrfs_root *root = inode->root; 1276 struct btrfs_fs_info *fs_info = root->fs_info; 1277 struct extent_state *cached = NULL; 1278 u64 alloc_hint = 0; 1279 u64 orig_start = start; 1280 u64 num_bytes; 1281 u64 cur_alloc_size = 0; 1282 u64 min_alloc_size; 1283 u64 blocksize = fs_info->sectorsize; 1284 struct btrfs_key ins; 1285 struct extent_map *em; 1286 unsigned clear_bits; 1287 unsigned long page_ops; 1288 int ret = 0; 1289 1290 if (btrfs_is_free_space_inode(inode)) { 1291 ret = -EINVAL; 1292 goto out_unlock; 1293 } 1294 1295 num_bytes = ALIGN(end - start + 1, blocksize); 1296 num_bytes = max(blocksize, num_bytes); 1297 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1298 1299 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1300 1301 if (!no_inline) { 1302 /* lets try to make an inline extent */ 1303 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1304 BTRFS_COMPRESS_NONE, NULL, false); 1305 if (ret <= 0) { 1306 /* 1307 * We succeeded, return 1 so the caller knows we're done 1308 * with this page and already handled the IO. 1309 * 1310 * If there was an error then cow_file_range_inline() has 1311 * already done the cleanup. 1312 */ 1313 if (ret == 0) 1314 ret = 1; 1315 goto done; 1316 } 1317 } 1318 1319 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1320 1321 /* 1322 * We're not doing compressed IO, don't unlock the first page (which 1323 * the caller expects to stay locked), don't clear any dirty bits and 1324 * don't set any writeback bits. 1325 * 1326 * Do set the Ordered (Private2) bit so we know this page was properly 1327 * setup for writepage. 1328 */ 1329 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1330 page_ops |= PAGE_SET_ORDERED; 1331 1332 /* 1333 * Relocation relies on the relocated extents to have exactly the same 1334 * size as the original extents. Normally writeback for relocation data 1335 * extents follows a NOCOW path because relocation preallocates the 1336 * extents. However, due to an operation such as scrub turning a block 1337 * group to RO mode, it may fallback to COW mode, so we must make sure 1338 * an extent allocated during COW has exactly the requested size and can 1339 * not be split into smaller extents, otherwise relocation breaks and 1340 * fails during the stage where it updates the bytenr of file extent 1341 * items. 1342 */ 1343 if (btrfs_is_data_reloc_root(root)) 1344 min_alloc_size = num_bytes; 1345 else 1346 min_alloc_size = fs_info->sectorsize; 1347 1348 while (num_bytes > 0) { 1349 struct btrfs_ordered_extent *ordered; 1350 struct btrfs_file_extent file_extent; 1351 1352 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1353 min_alloc_size, 0, alloc_hint, 1354 &ins, 1, 1); 1355 if (ret == -EAGAIN) { 1356 /* 1357 * btrfs_reserve_extent only returns -EAGAIN for zoned 1358 * file systems, which is an indication that there are 1359 * no active zones to allocate from at the moment. 1360 * 1361 * If this is the first loop iteration, wait for at 1362 * least one zone to finish before retrying the 1363 * allocation. Otherwise ask the caller to write out 1364 * the already allocated blocks before coming back to 1365 * us, or return -ENOSPC if it can't handle retries. 1366 */ 1367 ASSERT(btrfs_is_zoned(fs_info)); 1368 if (start == orig_start) { 1369 wait_on_bit_io(&inode->root->fs_info->flags, 1370 BTRFS_FS_NEED_ZONE_FINISH, 1371 TASK_UNINTERRUPTIBLE); 1372 continue; 1373 } 1374 if (done_offset) { 1375 /* 1376 * Move @end to the end of the processed range, 1377 * and exit the loop to unlock the processed extents. 1378 */ 1379 end = start - 1; 1380 ret = 0; 1381 break; 1382 } 1383 ret = -ENOSPC; 1384 } 1385 if (ret < 0) 1386 goto out_unlock; 1387 cur_alloc_size = ins.offset; 1388 1389 file_extent.disk_bytenr = ins.objectid; 1390 file_extent.disk_num_bytes = ins.offset; 1391 file_extent.num_bytes = ins.offset; 1392 file_extent.ram_bytes = ins.offset; 1393 file_extent.offset = 0; 1394 file_extent.compression = BTRFS_COMPRESS_NONE; 1395 1396 /* 1397 * Locked range will be released either during error clean up or 1398 * after the whole range is finished. 1399 */ 1400 lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1401 &cached); 1402 1403 em = btrfs_create_io_em(inode, start, &file_extent, 1404 BTRFS_ORDERED_REGULAR); 1405 if (IS_ERR(em)) { 1406 unlock_extent(&inode->io_tree, start, 1407 start + cur_alloc_size - 1, &cached); 1408 ret = PTR_ERR(em); 1409 goto out_reserve; 1410 } 1411 free_extent_map(em); 1412 1413 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1414 1 << BTRFS_ORDERED_REGULAR); 1415 if (IS_ERR(ordered)) { 1416 unlock_extent(&inode->io_tree, start, 1417 start + cur_alloc_size - 1, &cached); 1418 ret = PTR_ERR(ordered); 1419 goto out_drop_extent_cache; 1420 } 1421 1422 if (btrfs_is_data_reloc_root(root)) { 1423 ret = btrfs_reloc_clone_csums(ordered); 1424 1425 /* 1426 * Only drop cache here, and process as normal. 1427 * 1428 * We must not allow extent_clear_unlock_delalloc() 1429 * at out_unlock label to free meta of this ordered 1430 * extent, as its meta should be freed by 1431 * btrfs_finish_ordered_io(). 1432 * 1433 * So we must continue until @start is increased to 1434 * skip current ordered extent. 1435 */ 1436 if (ret) 1437 btrfs_drop_extent_map_range(inode, start, 1438 start + cur_alloc_size - 1, 1439 false); 1440 } 1441 btrfs_put_ordered_extent(ordered); 1442 1443 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1444 1445 if (num_bytes < cur_alloc_size) 1446 num_bytes = 0; 1447 else 1448 num_bytes -= cur_alloc_size; 1449 alloc_hint = ins.objectid + ins.offset; 1450 start += cur_alloc_size; 1451 cur_alloc_size = 0; 1452 1453 /* 1454 * btrfs_reloc_clone_csums() error, since start is increased 1455 * extent_clear_unlock_delalloc() at out_unlock label won't 1456 * free metadata of current ordered extent, we're OK to exit. 1457 */ 1458 if (ret) 1459 goto out_unlock; 1460 } 1461 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1462 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1463 done: 1464 if (done_offset) 1465 *done_offset = end; 1466 return ret; 1467 1468 out_drop_extent_cache: 1469 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1470 out_reserve: 1471 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1472 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1473 out_unlock: 1474 /* 1475 * Now, we have three regions to clean up: 1476 * 1477 * |-------(1)----|---(2)---|-------------(3)----------| 1478 * `- orig_start `- start `- start + cur_alloc_size `- end 1479 * 1480 * We process each region below. 1481 */ 1482 1483 /* 1484 * For the range (1). We have already instantiated the ordered extents 1485 * for this region, thus we need to cleanup those ordered extents. 1486 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1487 * are also handled by the ordered extents cleanup. 1488 * 1489 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1490 * finish the writeback of the involved folios, which will be never submitted. 1491 */ 1492 if (orig_start < start) { 1493 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1494 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1495 1496 if (!locked_folio) 1497 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1498 1499 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1500 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1501 locked_folio, NULL, clear_bits, page_ops); 1502 } 1503 1504 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1505 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1506 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1507 1508 /* 1509 * For the range (2). If we reserved an extent for our delalloc range 1510 * (or a subrange) and failed to create the respective ordered extent, 1511 * then it means that when we reserved the extent we decremented the 1512 * extent's size from the data space_info's bytes_may_use counter and 1513 * incremented the space_info's bytes_reserved counter by the same 1514 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1515 * to decrement again the data space_info's bytes_may_use counter, 1516 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1517 */ 1518 if (cur_alloc_size) { 1519 extent_clear_unlock_delalloc(inode, start, 1520 start + cur_alloc_size - 1, 1521 locked_folio, &cached, clear_bits, 1522 page_ops); 1523 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1524 } 1525 1526 /* 1527 * For the range (3). We never touched the region. In addition to the 1528 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1529 * space_info's bytes_may_use counter, reserved in 1530 * btrfs_check_data_free_space(). 1531 */ 1532 if (start + cur_alloc_size < end) { 1533 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1534 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1535 end, locked_folio, 1536 &cached, clear_bits, page_ops); 1537 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1538 end - start - cur_alloc_size + 1, NULL); 1539 } 1540 btrfs_err_rl(fs_info, 1541 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1542 __func__, btrfs_root_id(inode->root), 1543 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1544 return ret; 1545 } 1546 1547 /* 1548 * Phase two of compressed writeback. This is the ordered portion of the code, 1549 * which only gets called in the order the work was queued. We walk all the 1550 * async extents created by compress_file_range and send them down to the disk. 1551 * 1552 * If called with @do_free == true then it'll try to finish the work and free 1553 * the work struct eventually. 1554 */ 1555 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1556 { 1557 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1558 work); 1559 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1560 struct async_extent *async_extent; 1561 unsigned long nr_pages; 1562 u64 alloc_hint = 0; 1563 1564 if (do_free) { 1565 struct async_cow *async_cow; 1566 1567 btrfs_add_delayed_iput(async_chunk->inode); 1568 if (async_chunk->blkcg_css) 1569 css_put(async_chunk->blkcg_css); 1570 1571 async_cow = async_chunk->async_cow; 1572 if (atomic_dec_and_test(&async_cow->num_chunks)) 1573 kvfree(async_cow); 1574 return; 1575 } 1576 1577 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1578 PAGE_SHIFT; 1579 1580 while (!list_empty(&async_chunk->extents)) { 1581 async_extent = list_entry(async_chunk->extents.next, 1582 struct async_extent, list); 1583 list_del(&async_extent->list); 1584 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1585 } 1586 1587 /* atomic_sub_return implies a barrier */ 1588 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1589 5 * SZ_1M) 1590 cond_wake_up_nomb(&fs_info->async_submit_wait); 1591 } 1592 1593 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1594 struct folio *locked_folio, u64 start, 1595 u64 end, struct writeback_control *wbc) 1596 { 1597 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1598 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1599 struct async_cow *ctx; 1600 struct async_chunk *async_chunk; 1601 unsigned long nr_pages; 1602 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1603 int i; 1604 unsigned nofs_flag; 1605 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1606 1607 nofs_flag = memalloc_nofs_save(); 1608 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1609 memalloc_nofs_restore(nofs_flag); 1610 if (!ctx) 1611 return false; 1612 1613 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1614 1615 async_chunk = ctx->chunks; 1616 atomic_set(&ctx->num_chunks, num_chunks); 1617 1618 for (i = 0; i < num_chunks; i++) { 1619 u64 cur_end = min(end, start + SZ_512K - 1); 1620 1621 /* 1622 * igrab is called higher up in the call chain, take only the 1623 * lightweight reference for the callback lifetime 1624 */ 1625 ihold(&inode->vfs_inode); 1626 async_chunk[i].async_cow = ctx; 1627 async_chunk[i].inode = inode; 1628 async_chunk[i].start = start; 1629 async_chunk[i].end = cur_end; 1630 async_chunk[i].write_flags = write_flags; 1631 INIT_LIST_HEAD(&async_chunk[i].extents); 1632 1633 /* 1634 * The locked_folio comes all the way from writepage and its 1635 * the original folio we were actually given. As we spread 1636 * this large delalloc region across multiple async_chunk 1637 * structs, only the first struct needs a pointer to 1638 * locked_folio. 1639 * 1640 * This way we don't need racey decisions about who is supposed 1641 * to unlock it. 1642 */ 1643 if (locked_folio) { 1644 /* 1645 * Depending on the compressibility, the pages might or 1646 * might not go through async. We want all of them to 1647 * be accounted against wbc once. Let's do it here 1648 * before the paths diverge. wbc accounting is used 1649 * only for foreign writeback detection and doesn't 1650 * need full accuracy. Just account the whole thing 1651 * against the first page. 1652 */ 1653 wbc_account_cgroup_owner(wbc, locked_folio, 1654 cur_end - start); 1655 async_chunk[i].locked_folio = locked_folio; 1656 locked_folio = NULL; 1657 } else { 1658 async_chunk[i].locked_folio = NULL; 1659 } 1660 1661 if (blkcg_css != blkcg_root_css) { 1662 css_get(blkcg_css); 1663 async_chunk[i].blkcg_css = blkcg_css; 1664 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1665 } else { 1666 async_chunk[i].blkcg_css = NULL; 1667 } 1668 1669 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1670 submit_compressed_extents); 1671 1672 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1673 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1674 1675 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1676 1677 start = cur_end + 1; 1678 } 1679 return true; 1680 } 1681 1682 /* 1683 * Run the delalloc range from start to end, and write back any dirty pages 1684 * covered by the range. 1685 */ 1686 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1687 struct folio *locked_folio, u64 start, 1688 u64 end, struct writeback_control *wbc, 1689 bool pages_dirty) 1690 { 1691 u64 done_offset = end; 1692 int ret; 1693 1694 while (start <= end) { 1695 ret = cow_file_range(inode, locked_folio, start, end, 1696 &done_offset, true, false); 1697 if (ret) 1698 return ret; 1699 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1700 start, done_offset, wbc, pages_dirty); 1701 start = done_offset + 1; 1702 } 1703 1704 return 1; 1705 } 1706 1707 static int fallback_to_cow(struct btrfs_inode *inode, 1708 struct folio *locked_folio, const u64 start, 1709 const u64 end) 1710 { 1711 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1712 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1713 const u64 range_bytes = end + 1 - start; 1714 struct extent_io_tree *io_tree = &inode->io_tree; 1715 struct extent_state *cached_state = NULL; 1716 u64 range_start = start; 1717 u64 count; 1718 int ret; 1719 1720 /* 1721 * If EXTENT_NORESERVE is set it means that when the buffered write was 1722 * made we had not enough available data space and therefore we did not 1723 * reserve data space for it, since we though we could do NOCOW for the 1724 * respective file range (either there is prealloc extent or the inode 1725 * has the NOCOW bit set). 1726 * 1727 * However when we need to fallback to COW mode (because for example the 1728 * block group for the corresponding extent was turned to RO mode by a 1729 * scrub or relocation) we need to do the following: 1730 * 1731 * 1) We increment the bytes_may_use counter of the data space info. 1732 * If COW succeeds, it allocates a new data extent and after doing 1733 * that it decrements the space info's bytes_may_use counter and 1734 * increments its bytes_reserved counter by the same amount (we do 1735 * this at btrfs_add_reserved_bytes()). So we need to increment the 1736 * bytes_may_use counter to compensate (when space is reserved at 1737 * buffered write time, the bytes_may_use counter is incremented); 1738 * 1739 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1740 * that if the COW path fails for any reason, it decrements (through 1741 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1742 * data space info, which we incremented in the step above. 1743 * 1744 * If we need to fallback to cow and the inode corresponds to a free 1745 * space cache inode or an inode of the data relocation tree, we must 1746 * also increment bytes_may_use of the data space_info for the same 1747 * reason. Space caches and relocated data extents always get a prealloc 1748 * extent for them, however scrub or balance may have set the block 1749 * group that contains that extent to RO mode and therefore force COW 1750 * when starting writeback. 1751 */ 1752 lock_extent(io_tree, start, end, &cached_state); 1753 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1754 EXTENT_NORESERVE, 0, NULL); 1755 if (count > 0 || is_space_ino || is_reloc_ino) { 1756 u64 bytes = count; 1757 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1758 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1759 1760 if (is_space_ino || is_reloc_ino) 1761 bytes = range_bytes; 1762 1763 spin_lock(&sinfo->lock); 1764 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1765 spin_unlock(&sinfo->lock); 1766 1767 if (count > 0) 1768 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1769 NULL); 1770 } 1771 unlock_extent(io_tree, start, end, &cached_state); 1772 1773 /* 1774 * Don't try to create inline extents, as a mix of inline extent that 1775 * is written out and unlocked directly and a normal NOCOW extent 1776 * doesn't work. 1777 */ 1778 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1779 true); 1780 ASSERT(ret != 1); 1781 return ret; 1782 } 1783 1784 struct can_nocow_file_extent_args { 1785 /* Input fields. */ 1786 1787 /* Start file offset of the range we want to NOCOW. */ 1788 u64 start; 1789 /* End file offset (inclusive) of the range we want to NOCOW. */ 1790 u64 end; 1791 bool writeback_path; 1792 /* 1793 * Free the path passed to can_nocow_file_extent() once it's not needed 1794 * anymore. 1795 */ 1796 bool free_path; 1797 1798 /* 1799 * Output fields. Only set when can_nocow_file_extent() returns 1. 1800 * The expected file extent for the NOCOW write. 1801 */ 1802 struct btrfs_file_extent file_extent; 1803 }; 1804 1805 /* 1806 * Check if we can NOCOW the file extent that the path points to. 1807 * This function may return with the path released, so the caller should check 1808 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1809 * 1810 * Returns: < 0 on error 1811 * 0 if we can not NOCOW 1812 * 1 if we can NOCOW 1813 */ 1814 static int can_nocow_file_extent(struct btrfs_path *path, 1815 struct btrfs_key *key, 1816 struct btrfs_inode *inode, 1817 struct can_nocow_file_extent_args *args) 1818 { 1819 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1820 struct extent_buffer *leaf = path->nodes[0]; 1821 struct btrfs_root *root = inode->root; 1822 struct btrfs_file_extent_item *fi; 1823 struct btrfs_root *csum_root; 1824 u64 io_start; 1825 u64 extent_end; 1826 u8 extent_type; 1827 int can_nocow = 0; 1828 int ret = 0; 1829 bool nowait = path->nowait; 1830 1831 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1832 extent_type = btrfs_file_extent_type(leaf, fi); 1833 1834 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1835 goto out; 1836 1837 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1838 extent_type == BTRFS_FILE_EXTENT_REG) 1839 goto out; 1840 1841 /* 1842 * If the extent was created before the generation where the last snapshot 1843 * for its subvolume was created, then this implies the extent is shared, 1844 * hence we must COW. 1845 */ 1846 if (btrfs_file_extent_generation(leaf, fi) <= 1847 btrfs_root_last_snapshot(&root->root_item)) 1848 goto out; 1849 1850 /* An explicit hole, must COW. */ 1851 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1852 goto out; 1853 1854 /* Compressed/encrypted/encoded extents must be COWed. */ 1855 if (btrfs_file_extent_compression(leaf, fi) || 1856 btrfs_file_extent_encryption(leaf, fi) || 1857 btrfs_file_extent_other_encoding(leaf, fi)) 1858 goto out; 1859 1860 extent_end = btrfs_file_extent_end(path); 1861 1862 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1863 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1864 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1865 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1866 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1867 1868 /* 1869 * The following checks can be expensive, as they need to take other 1870 * locks and do btree or rbtree searches, so release the path to avoid 1871 * blocking other tasks for too long. 1872 */ 1873 btrfs_release_path(path); 1874 1875 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1876 args->file_extent.disk_bytenr, path); 1877 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1878 if (ret != 0) 1879 goto out; 1880 1881 if (args->free_path) { 1882 /* 1883 * We don't need the path anymore, plus through the 1884 * btrfs_lookup_csums_list() call below we will end up allocating 1885 * another path. So free the path to avoid unnecessary extra 1886 * memory usage. 1887 */ 1888 btrfs_free_path(path); 1889 path = NULL; 1890 } 1891 1892 /* If there are pending snapshots for this root, we must COW. */ 1893 if (args->writeback_path && !is_freespace_inode && 1894 atomic_read(&root->snapshot_force_cow)) 1895 goto out; 1896 1897 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1898 args->file_extent.offset += args->start - key->offset; 1899 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1900 1901 /* 1902 * Force COW if csums exist in the range. This ensures that csums for a 1903 * given extent are either valid or do not exist. 1904 */ 1905 1906 csum_root = btrfs_csum_root(root->fs_info, io_start); 1907 ret = btrfs_lookup_csums_list(csum_root, io_start, 1908 io_start + args->file_extent.num_bytes - 1, 1909 NULL, nowait); 1910 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1911 if (ret != 0) 1912 goto out; 1913 1914 can_nocow = 1; 1915 out: 1916 if (args->free_path && path) 1917 btrfs_free_path(path); 1918 1919 return ret < 0 ? ret : can_nocow; 1920 } 1921 1922 /* 1923 * Cleanup the dirty folios which will never be submitted due to error. 1924 * 1925 * When running a delalloc range, we may need to split the ranges (due to 1926 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1927 * out and previously successfully executed range will never be submitted, thus 1928 * we have to cleanup those folios by clearing their dirty flag, starting and 1929 * finishing the writeback. 1930 */ 1931 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1932 struct folio *locked_folio, 1933 u64 start, u64 end, int error) 1934 { 1935 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1936 struct address_space *mapping = inode->vfs_inode.i_mapping; 1937 pgoff_t start_index = start >> PAGE_SHIFT; 1938 pgoff_t end_index = end >> PAGE_SHIFT; 1939 u32 len; 1940 1941 ASSERT(end + 1 - start < U32_MAX); 1942 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1943 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1944 len = end + 1 - start; 1945 1946 /* 1947 * Handle the locked folio first. 1948 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1949 */ 1950 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1951 1952 for (pgoff_t index = start_index; index <= end_index; index++) { 1953 struct folio *folio; 1954 1955 /* Already handled at the beginning. */ 1956 if (index == locked_folio->index) 1957 continue; 1958 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1959 /* Cache already dropped, no need to do any cleanup. */ 1960 if (IS_ERR(folio)) 1961 continue; 1962 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1963 folio_unlock(folio); 1964 folio_put(folio); 1965 } 1966 mapping_set_error(mapping, error); 1967 } 1968 1969 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1970 struct extent_state **cached, 1971 struct can_nocow_file_extent_args *nocow_args, 1972 u64 file_pos, bool is_prealloc) 1973 { 1974 struct btrfs_ordered_extent *ordered; 1975 u64 len = nocow_args->file_extent.num_bytes; 1976 u64 end = file_pos + len - 1; 1977 int ret = 0; 1978 1979 lock_extent(&inode->io_tree, file_pos, end, cached); 1980 1981 if (is_prealloc) { 1982 struct extent_map *em; 1983 1984 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1985 BTRFS_ORDERED_PREALLOC); 1986 if (IS_ERR(em)) { 1987 unlock_extent(&inode->io_tree, file_pos, end, cached); 1988 return PTR_ERR(em); 1989 } 1990 free_extent_map(em); 1991 } 1992 1993 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1994 is_prealloc 1995 ? (1 << BTRFS_ORDERED_PREALLOC) 1996 : (1 << BTRFS_ORDERED_NOCOW)); 1997 if (IS_ERR(ordered)) { 1998 if (is_prealloc) 1999 btrfs_drop_extent_map_range(inode, file_pos, end, false); 2000 unlock_extent(&inode->io_tree, file_pos, end, cached); 2001 return PTR_ERR(ordered); 2002 } 2003 2004 if (btrfs_is_data_reloc_root(inode->root)) 2005 /* 2006 * Errors are handled later, as we must prevent 2007 * extent_clear_unlock_delalloc() in error handler from freeing 2008 * metadata of the created ordered extent. 2009 */ 2010 ret = btrfs_reloc_clone_csums(ordered); 2011 btrfs_put_ordered_extent(ordered); 2012 2013 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2014 EXTENT_LOCKED | EXTENT_DELALLOC | 2015 EXTENT_CLEAR_DATA_RESV, 2016 PAGE_UNLOCK | PAGE_SET_ORDERED); 2017 /* 2018 * On error, we need to cleanup the ordered extents we created. 2019 * 2020 * We do not clear the folio Dirty flags because they are set and 2021 * cleaered by the caller. 2022 */ 2023 if (ret < 0) 2024 btrfs_cleanup_ordered_extents(inode, file_pos, end); 2025 return ret; 2026 } 2027 2028 /* 2029 * when nowcow writeback call back. This checks for snapshots or COW copies 2030 * of the extents that exist in the file, and COWs the file as required. 2031 * 2032 * If no cow copies or snapshots exist, we write directly to the existing 2033 * blocks on disk 2034 */ 2035 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2036 struct folio *locked_folio, 2037 const u64 start, const u64 end) 2038 { 2039 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2040 struct btrfs_root *root = inode->root; 2041 struct btrfs_path *path; 2042 u64 cow_start = (u64)-1; 2043 /* 2044 * If not 0, represents the inclusive end of the last fallback_to_cow() 2045 * range. Only for error handling. 2046 */ 2047 u64 cow_end = 0; 2048 u64 cur_offset = start; 2049 int ret; 2050 bool check_prev = true; 2051 u64 ino = btrfs_ino(inode); 2052 struct can_nocow_file_extent_args nocow_args = { 0 }; 2053 2054 /* 2055 * Normally on a zoned device we're only doing COW writes, but in case 2056 * of relocation on a zoned filesystem serializes I/O so that we're only 2057 * writing sequentially and can end up here as well. 2058 */ 2059 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2060 2061 path = btrfs_alloc_path(); 2062 if (!path) { 2063 ret = -ENOMEM; 2064 goto error; 2065 } 2066 2067 nocow_args.end = end; 2068 nocow_args.writeback_path = true; 2069 2070 while (cur_offset <= end) { 2071 struct btrfs_block_group *nocow_bg = NULL; 2072 struct btrfs_key found_key; 2073 struct btrfs_file_extent_item *fi; 2074 struct extent_buffer *leaf; 2075 struct extent_state *cached_state = NULL; 2076 u64 extent_end; 2077 int extent_type; 2078 2079 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2080 cur_offset, 0); 2081 if (ret < 0) 2082 goto error; 2083 2084 /* 2085 * If there is no extent for our range when doing the initial 2086 * search, then go back to the previous slot as it will be the 2087 * one containing the search offset 2088 */ 2089 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2090 leaf = path->nodes[0]; 2091 btrfs_item_key_to_cpu(leaf, &found_key, 2092 path->slots[0] - 1); 2093 if (found_key.objectid == ino && 2094 found_key.type == BTRFS_EXTENT_DATA_KEY) 2095 path->slots[0]--; 2096 } 2097 check_prev = false; 2098 next_slot: 2099 /* Go to next leaf if we have exhausted the current one */ 2100 leaf = path->nodes[0]; 2101 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2102 ret = btrfs_next_leaf(root, path); 2103 if (ret < 0) 2104 goto error; 2105 if (ret > 0) 2106 break; 2107 leaf = path->nodes[0]; 2108 } 2109 2110 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2111 2112 /* Didn't find anything for our INO */ 2113 if (found_key.objectid > ino) 2114 break; 2115 /* 2116 * Keep searching until we find an EXTENT_ITEM or there are no 2117 * more extents for this inode 2118 */ 2119 if (WARN_ON_ONCE(found_key.objectid < ino) || 2120 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2121 path->slots[0]++; 2122 goto next_slot; 2123 } 2124 2125 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2126 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2127 found_key.offset > end) 2128 break; 2129 2130 /* 2131 * If the found extent starts after requested offset, then 2132 * adjust cur_offset to be right before this extent begins. 2133 */ 2134 if (found_key.offset > cur_offset) { 2135 if (cow_start == (u64)-1) 2136 cow_start = cur_offset; 2137 cur_offset = found_key.offset; 2138 goto next_slot; 2139 } 2140 2141 /* 2142 * Found extent which begins before our range and potentially 2143 * intersect it 2144 */ 2145 fi = btrfs_item_ptr(leaf, path->slots[0], 2146 struct btrfs_file_extent_item); 2147 extent_type = btrfs_file_extent_type(leaf, fi); 2148 /* If this is triggered then we have a memory corruption. */ 2149 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2150 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2151 ret = -EUCLEAN; 2152 goto error; 2153 } 2154 extent_end = btrfs_file_extent_end(path); 2155 2156 /* 2157 * If the extent we got ends before our current offset, skip to 2158 * the next extent. 2159 */ 2160 if (extent_end <= cur_offset) { 2161 path->slots[0]++; 2162 goto next_slot; 2163 } 2164 2165 nocow_args.start = cur_offset; 2166 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2167 if (ret < 0) 2168 goto error; 2169 if (ret == 0) 2170 goto must_cow; 2171 2172 ret = 0; 2173 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2174 nocow_args.file_extent.disk_bytenr + 2175 nocow_args.file_extent.offset); 2176 if (!nocow_bg) { 2177 must_cow: 2178 /* 2179 * If we can't perform NOCOW writeback for the range, 2180 * then record the beginning of the range that needs to 2181 * be COWed. It will be written out before the next 2182 * NOCOW range if we find one, or when exiting this 2183 * loop. 2184 */ 2185 if (cow_start == (u64)-1) 2186 cow_start = cur_offset; 2187 cur_offset = extent_end; 2188 if (cur_offset > end) 2189 break; 2190 if (!path->nodes[0]) 2191 continue; 2192 path->slots[0]++; 2193 goto next_slot; 2194 } 2195 2196 /* 2197 * COW range from cow_start to found_key.offset - 1. As the key 2198 * will contain the beginning of the first extent that can be 2199 * NOCOW, following one which needs to be COW'ed 2200 */ 2201 if (cow_start != (u64)-1) { 2202 ret = fallback_to_cow(inode, locked_folio, cow_start, 2203 found_key.offset - 1); 2204 if (ret) { 2205 cow_end = found_key.offset - 1; 2206 btrfs_dec_nocow_writers(nocow_bg); 2207 goto error; 2208 } 2209 cow_start = (u64)-1; 2210 } 2211 2212 ret = nocow_one_range(inode, locked_folio, &cached_state, 2213 &nocow_args, cur_offset, 2214 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2215 btrfs_dec_nocow_writers(nocow_bg); 2216 if (ret < 0) 2217 goto error; 2218 cur_offset = extent_end; 2219 } 2220 btrfs_release_path(path); 2221 2222 if (cur_offset <= end && cow_start == (u64)-1) 2223 cow_start = cur_offset; 2224 2225 if (cow_start != (u64)-1) { 2226 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2227 if (ret) { 2228 cow_end = end; 2229 goto error; 2230 } 2231 cow_start = (u64)-1; 2232 } 2233 2234 btrfs_free_path(path); 2235 return 0; 2236 2237 error: 2238 /* 2239 * There are several error cases: 2240 * 2241 * 1) Failed without falling back to COW 2242 * start cur_offset end 2243 * |/////////////| | 2244 * 2245 * In this case, cow_start should be (u64)-1. 2246 * 2247 * For range [start, cur_offset) the folios are already unlocked (except 2248 * @locked_folio), EXTENT_DELALLOC already removed. 2249 * Need to clear the dirty flags and finish the ordered extents. 2250 * 2251 * 2) Failed with error before calling fallback_to_cow() 2252 * 2253 * start cow_start end 2254 * |/////////////| | 2255 * 2256 * In this case, only @cow_start is set, @cur_offset is between 2257 * [cow_start, end) 2258 * 2259 * It's mostly the same as case 1), just replace @cur_offset with 2260 * @cow_start. 2261 * 2262 * 3) Failed with error from fallback_to_cow() 2263 * 2264 * start cow_start cow_end end 2265 * |/////////////|-----------| | 2266 * 2267 * In this case, both @cow_start and @cow_end is set. 2268 * 2269 * For range [start, cow_start) it's the same as case 1). 2270 * But for range [cow_start, cow_end), all the cleanup is handled by 2271 * cow_file_range(), we should not touch anything in that range. 2272 * 2273 * So for all above cases, if @cow_start is set, cleanup ordered extents 2274 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset). 2275 */ 2276 if (cow_start != (u64)-1) 2277 cur_offset = cow_start; 2278 2279 if (cur_offset > start) { 2280 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start); 2281 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2282 } 2283 2284 /* 2285 * If an error happened while a COW region is outstanding, cur_offset 2286 * needs to be reset to @cow_end + 1 to skip the COW range, as 2287 * cow_file_range() will do the proper cleanup at error. 2288 */ 2289 if (cow_end) 2290 cur_offset = cow_end + 1; 2291 2292 /* 2293 * We need to lock the extent here because we're clearing DELALLOC and 2294 * we're not locked at this point. 2295 */ 2296 if (cur_offset < end) { 2297 struct extent_state *cached = NULL; 2298 2299 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2300 extent_clear_unlock_delalloc(inode, cur_offset, end, 2301 locked_folio, &cached, 2302 EXTENT_LOCKED | EXTENT_DELALLOC | 2303 EXTENT_DEFRAG | 2304 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2305 PAGE_START_WRITEBACK | 2306 PAGE_END_WRITEBACK); 2307 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2308 } 2309 btrfs_free_path(path); 2310 btrfs_err_rl(fs_info, 2311 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2312 __func__, btrfs_root_id(inode->root), 2313 btrfs_ino(inode), start, end + 1 - start, ret); 2314 return ret; 2315 } 2316 2317 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2318 { 2319 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2320 if (inode->defrag_bytes && 2321 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2322 return false; 2323 return true; 2324 } 2325 return false; 2326 } 2327 2328 /* 2329 * Function to process delayed allocation (create CoW) for ranges which are 2330 * being touched for the first time. 2331 */ 2332 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2333 u64 start, u64 end, struct writeback_control *wbc) 2334 { 2335 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2336 int ret; 2337 2338 /* 2339 * The range must cover part of the @locked_folio, or a return of 1 2340 * can confuse the caller. 2341 */ 2342 ASSERT(!(end <= folio_pos(locked_folio) || 2343 start >= folio_pos(locked_folio) + folio_size(locked_folio))); 2344 2345 if (should_nocow(inode, start, end)) { 2346 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2347 return ret; 2348 } 2349 2350 if (btrfs_inode_can_compress(inode) && 2351 inode_need_compress(inode, start, end) && 2352 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2353 return 1; 2354 2355 if (zoned) 2356 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2357 true); 2358 else 2359 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2360 false, false); 2361 return ret; 2362 } 2363 2364 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2365 struct extent_state *orig, u64 split) 2366 { 2367 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2368 u64 size; 2369 2370 lockdep_assert_held(&inode->io_tree.lock); 2371 2372 /* not delalloc, ignore it */ 2373 if (!(orig->state & EXTENT_DELALLOC)) 2374 return; 2375 2376 size = orig->end - orig->start + 1; 2377 if (size > fs_info->max_extent_size) { 2378 u32 num_extents; 2379 u64 new_size; 2380 2381 /* 2382 * See the explanation in btrfs_merge_delalloc_extent, the same 2383 * applies here, just in reverse. 2384 */ 2385 new_size = orig->end - split + 1; 2386 num_extents = count_max_extents(fs_info, new_size); 2387 new_size = split - orig->start; 2388 num_extents += count_max_extents(fs_info, new_size); 2389 if (count_max_extents(fs_info, size) >= num_extents) 2390 return; 2391 } 2392 2393 spin_lock(&inode->lock); 2394 btrfs_mod_outstanding_extents(inode, 1); 2395 spin_unlock(&inode->lock); 2396 } 2397 2398 /* 2399 * Handle merged delayed allocation extents so we can keep track of new extents 2400 * that are just merged onto old extents, such as when we are doing sequential 2401 * writes, so we can properly account for the metadata space we'll need. 2402 */ 2403 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2404 struct extent_state *other) 2405 { 2406 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2407 u64 new_size, old_size; 2408 u32 num_extents; 2409 2410 lockdep_assert_held(&inode->io_tree.lock); 2411 2412 /* not delalloc, ignore it */ 2413 if (!(other->state & EXTENT_DELALLOC)) 2414 return; 2415 2416 if (new->start > other->start) 2417 new_size = new->end - other->start + 1; 2418 else 2419 new_size = other->end - new->start + 1; 2420 2421 /* we're not bigger than the max, unreserve the space and go */ 2422 if (new_size <= fs_info->max_extent_size) { 2423 spin_lock(&inode->lock); 2424 btrfs_mod_outstanding_extents(inode, -1); 2425 spin_unlock(&inode->lock); 2426 return; 2427 } 2428 2429 /* 2430 * We have to add up either side to figure out how many extents were 2431 * accounted for before we merged into one big extent. If the number of 2432 * extents we accounted for is <= the amount we need for the new range 2433 * then we can return, otherwise drop. Think of it like this 2434 * 2435 * [ 4k][MAX_SIZE] 2436 * 2437 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2438 * need 2 outstanding extents, on one side we have 1 and the other side 2439 * we have 1 so they are == and we can return. But in this case 2440 * 2441 * [MAX_SIZE+4k][MAX_SIZE+4k] 2442 * 2443 * Each range on their own accounts for 2 extents, but merged together 2444 * they are only 3 extents worth of accounting, so we need to drop in 2445 * this case. 2446 */ 2447 old_size = other->end - other->start + 1; 2448 num_extents = count_max_extents(fs_info, old_size); 2449 old_size = new->end - new->start + 1; 2450 num_extents += count_max_extents(fs_info, old_size); 2451 if (count_max_extents(fs_info, new_size) >= num_extents) 2452 return; 2453 2454 spin_lock(&inode->lock); 2455 btrfs_mod_outstanding_extents(inode, -1); 2456 spin_unlock(&inode->lock); 2457 } 2458 2459 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2460 { 2461 struct btrfs_root *root = inode->root; 2462 struct btrfs_fs_info *fs_info = root->fs_info; 2463 2464 spin_lock(&root->delalloc_lock); 2465 ASSERT(list_empty(&inode->delalloc_inodes)); 2466 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2467 root->nr_delalloc_inodes++; 2468 if (root->nr_delalloc_inodes == 1) { 2469 spin_lock(&fs_info->delalloc_root_lock); 2470 ASSERT(list_empty(&root->delalloc_root)); 2471 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2472 spin_unlock(&fs_info->delalloc_root_lock); 2473 } 2474 spin_unlock(&root->delalloc_lock); 2475 } 2476 2477 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2478 { 2479 struct btrfs_root *root = inode->root; 2480 struct btrfs_fs_info *fs_info = root->fs_info; 2481 2482 lockdep_assert_held(&root->delalloc_lock); 2483 2484 /* 2485 * We may be called after the inode was already deleted from the list, 2486 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2487 * and then later through btrfs_clear_delalloc_extent() while the inode 2488 * still has ->delalloc_bytes > 0. 2489 */ 2490 if (!list_empty(&inode->delalloc_inodes)) { 2491 list_del_init(&inode->delalloc_inodes); 2492 root->nr_delalloc_inodes--; 2493 if (!root->nr_delalloc_inodes) { 2494 ASSERT(list_empty(&root->delalloc_inodes)); 2495 spin_lock(&fs_info->delalloc_root_lock); 2496 ASSERT(!list_empty(&root->delalloc_root)); 2497 list_del_init(&root->delalloc_root); 2498 spin_unlock(&fs_info->delalloc_root_lock); 2499 } 2500 } 2501 } 2502 2503 /* 2504 * Properly track delayed allocation bytes in the inode and to maintain the 2505 * list of inodes that have pending delalloc work to be done. 2506 */ 2507 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2508 u32 bits) 2509 { 2510 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2511 2512 lockdep_assert_held(&inode->io_tree.lock); 2513 2514 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2515 WARN_ON(1); 2516 /* 2517 * set_bit and clear bit hooks normally require _irqsave/restore 2518 * but in this case, we are only testing for the DELALLOC 2519 * bit, which is only set or cleared with irqs on 2520 */ 2521 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2522 u64 len = state->end + 1 - state->start; 2523 u64 prev_delalloc_bytes; 2524 u32 num_extents = count_max_extents(fs_info, len); 2525 2526 spin_lock(&inode->lock); 2527 btrfs_mod_outstanding_extents(inode, num_extents); 2528 spin_unlock(&inode->lock); 2529 2530 /* For sanity tests */ 2531 if (btrfs_is_testing(fs_info)) 2532 return; 2533 2534 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2535 fs_info->delalloc_batch); 2536 spin_lock(&inode->lock); 2537 prev_delalloc_bytes = inode->delalloc_bytes; 2538 inode->delalloc_bytes += len; 2539 if (bits & EXTENT_DEFRAG) 2540 inode->defrag_bytes += len; 2541 spin_unlock(&inode->lock); 2542 2543 /* 2544 * We don't need to be under the protection of the inode's lock, 2545 * because we are called while holding the inode's io_tree lock 2546 * and are therefore protected against concurrent calls of this 2547 * function and btrfs_clear_delalloc_extent(). 2548 */ 2549 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2550 btrfs_add_delalloc_inode(inode); 2551 } 2552 2553 if (!(state->state & EXTENT_DELALLOC_NEW) && 2554 (bits & EXTENT_DELALLOC_NEW)) { 2555 spin_lock(&inode->lock); 2556 inode->new_delalloc_bytes += state->end + 1 - state->start; 2557 spin_unlock(&inode->lock); 2558 } 2559 } 2560 2561 /* 2562 * Once a range is no longer delalloc this function ensures that proper 2563 * accounting happens. 2564 */ 2565 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2566 struct extent_state *state, u32 bits) 2567 { 2568 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2569 u64 len = state->end + 1 - state->start; 2570 u32 num_extents = count_max_extents(fs_info, len); 2571 2572 lockdep_assert_held(&inode->io_tree.lock); 2573 2574 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2575 spin_lock(&inode->lock); 2576 inode->defrag_bytes -= len; 2577 spin_unlock(&inode->lock); 2578 } 2579 2580 /* 2581 * set_bit and clear bit hooks normally require _irqsave/restore 2582 * but in this case, we are only testing for the DELALLOC 2583 * bit, which is only set or cleared with irqs on 2584 */ 2585 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2586 struct btrfs_root *root = inode->root; 2587 u64 new_delalloc_bytes; 2588 2589 spin_lock(&inode->lock); 2590 btrfs_mod_outstanding_extents(inode, -num_extents); 2591 spin_unlock(&inode->lock); 2592 2593 /* 2594 * We don't reserve metadata space for space cache inodes so we 2595 * don't need to call delalloc_release_metadata if there is an 2596 * error. 2597 */ 2598 if (bits & EXTENT_CLEAR_META_RESV && 2599 root != fs_info->tree_root) 2600 btrfs_delalloc_release_metadata(inode, len, true); 2601 2602 /* For sanity tests. */ 2603 if (btrfs_is_testing(fs_info)) 2604 return; 2605 2606 if (!btrfs_is_data_reloc_root(root) && 2607 !btrfs_is_free_space_inode(inode) && 2608 !(state->state & EXTENT_NORESERVE) && 2609 (bits & EXTENT_CLEAR_DATA_RESV)) 2610 btrfs_free_reserved_data_space_noquota(fs_info, len); 2611 2612 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2613 fs_info->delalloc_batch); 2614 spin_lock(&inode->lock); 2615 inode->delalloc_bytes -= len; 2616 new_delalloc_bytes = inode->delalloc_bytes; 2617 spin_unlock(&inode->lock); 2618 2619 /* 2620 * We don't need to be under the protection of the inode's lock, 2621 * because we are called while holding the inode's io_tree lock 2622 * and are therefore protected against concurrent calls of this 2623 * function and btrfs_set_delalloc_extent(). 2624 */ 2625 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2626 spin_lock(&root->delalloc_lock); 2627 btrfs_del_delalloc_inode(inode); 2628 spin_unlock(&root->delalloc_lock); 2629 } 2630 } 2631 2632 if ((state->state & EXTENT_DELALLOC_NEW) && 2633 (bits & EXTENT_DELALLOC_NEW)) { 2634 spin_lock(&inode->lock); 2635 ASSERT(inode->new_delalloc_bytes >= len); 2636 inode->new_delalloc_bytes -= len; 2637 if (bits & EXTENT_ADD_INODE_BYTES) 2638 inode_add_bytes(&inode->vfs_inode, len); 2639 spin_unlock(&inode->lock); 2640 } 2641 } 2642 2643 /* 2644 * given a list of ordered sums record them in the inode. This happens 2645 * at IO completion time based on sums calculated at bio submission time. 2646 */ 2647 static int add_pending_csums(struct btrfs_trans_handle *trans, 2648 struct list_head *list) 2649 { 2650 struct btrfs_ordered_sum *sum; 2651 struct btrfs_root *csum_root = NULL; 2652 int ret; 2653 2654 list_for_each_entry(sum, list, list) { 2655 trans->adding_csums = true; 2656 if (!csum_root) 2657 csum_root = btrfs_csum_root(trans->fs_info, 2658 sum->logical); 2659 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2660 trans->adding_csums = false; 2661 if (ret) 2662 return ret; 2663 } 2664 return 0; 2665 } 2666 2667 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2668 const u64 start, 2669 const u64 len, 2670 struct extent_state **cached_state) 2671 { 2672 u64 search_start = start; 2673 const u64 end = start + len - 1; 2674 2675 while (search_start < end) { 2676 const u64 search_len = end - search_start + 1; 2677 struct extent_map *em; 2678 u64 em_len; 2679 int ret = 0; 2680 2681 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2682 if (IS_ERR(em)) 2683 return PTR_ERR(em); 2684 2685 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2686 goto next; 2687 2688 em_len = em->len; 2689 if (em->start < search_start) 2690 em_len -= search_start - em->start; 2691 if (em_len > search_len) 2692 em_len = search_len; 2693 2694 ret = set_extent_bit(&inode->io_tree, search_start, 2695 search_start + em_len - 1, 2696 EXTENT_DELALLOC_NEW, cached_state); 2697 next: 2698 search_start = extent_map_end(em); 2699 free_extent_map(em); 2700 if (ret) 2701 return ret; 2702 } 2703 return 0; 2704 } 2705 2706 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2707 unsigned int extra_bits, 2708 struct extent_state **cached_state) 2709 { 2710 WARN_ON(PAGE_ALIGNED(end)); 2711 2712 if (start >= i_size_read(&inode->vfs_inode) && 2713 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2714 /* 2715 * There can't be any extents following eof in this case so just 2716 * set the delalloc new bit for the range directly. 2717 */ 2718 extra_bits |= EXTENT_DELALLOC_NEW; 2719 } else { 2720 int ret; 2721 2722 ret = btrfs_find_new_delalloc_bytes(inode, start, 2723 end + 1 - start, 2724 cached_state); 2725 if (ret) 2726 return ret; 2727 } 2728 2729 return set_extent_bit(&inode->io_tree, start, end, 2730 EXTENT_DELALLOC | extra_bits, cached_state); 2731 } 2732 2733 /* see btrfs_writepage_start_hook for details on why this is required */ 2734 struct btrfs_writepage_fixup { 2735 struct folio *folio; 2736 struct btrfs_inode *inode; 2737 struct btrfs_work work; 2738 }; 2739 2740 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2741 { 2742 struct btrfs_writepage_fixup *fixup = 2743 container_of(work, struct btrfs_writepage_fixup, work); 2744 struct btrfs_ordered_extent *ordered; 2745 struct extent_state *cached_state = NULL; 2746 struct extent_changeset *data_reserved = NULL; 2747 struct folio *folio = fixup->folio; 2748 struct btrfs_inode *inode = fixup->inode; 2749 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2750 u64 page_start = folio_pos(folio); 2751 u64 page_end = folio_pos(folio) + folio_size(folio) - 1; 2752 int ret = 0; 2753 bool free_delalloc_space = true; 2754 2755 /* 2756 * This is similar to page_mkwrite, we need to reserve the space before 2757 * we take the folio lock. 2758 */ 2759 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2760 folio_size(folio)); 2761 again: 2762 folio_lock(folio); 2763 2764 /* 2765 * Before we queued this fixup, we took a reference on the folio. 2766 * folio->mapping may go NULL, but it shouldn't be moved to a different 2767 * address space. 2768 */ 2769 if (!folio->mapping || !folio_test_dirty(folio) || 2770 !folio_test_checked(folio)) { 2771 /* 2772 * Unfortunately this is a little tricky, either 2773 * 2774 * 1) We got here and our folio had already been dealt with and 2775 * we reserved our space, thus ret == 0, so we need to just 2776 * drop our space reservation and bail. This can happen the 2777 * first time we come into the fixup worker, or could happen 2778 * while waiting for the ordered extent. 2779 * 2) Our folio was already dealt with, but we happened to get an 2780 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2781 * this case we obviously don't have anything to release, but 2782 * because the folio was already dealt with we don't want to 2783 * mark the folio with an error, so make sure we're resetting 2784 * ret to 0. This is why we have this check _before_ the ret 2785 * check, because we do not want to have a surprise ENOSPC 2786 * when the folio was already properly dealt with. 2787 */ 2788 if (!ret) { 2789 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2790 btrfs_delalloc_release_space(inode, data_reserved, 2791 page_start, folio_size(folio), 2792 true); 2793 } 2794 ret = 0; 2795 goto out_page; 2796 } 2797 2798 /* 2799 * We can't mess with the folio state unless it is locked, so now that 2800 * it is locked bail if we failed to make our space reservation. 2801 */ 2802 if (ret) 2803 goto out_page; 2804 2805 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2806 2807 /* already ordered? We're done */ 2808 if (folio_test_ordered(folio)) 2809 goto out_reserved; 2810 2811 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2812 if (ordered) { 2813 unlock_extent(&inode->io_tree, page_start, page_end, 2814 &cached_state); 2815 folio_unlock(folio); 2816 btrfs_start_ordered_extent(ordered); 2817 btrfs_put_ordered_extent(ordered); 2818 goto again; 2819 } 2820 2821 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2822 &cached_state); 2823 if (ret) 2824 goto out_reserved; 2825 2826 /* 2827 * Everything went as planned, we're now the owner of a dirty page with 2828 * delayed allocation bits set and space reserved for our COW 2829 * destination. 2830 * 2831 * The page was dirty when we started, nothing should have cleaned it. 2832 */ 2833 BUG_ON(!folio_test_dirty(folio)); 2834 free_delalloc_space = false; 2835 out_reserved: 2836 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2837 if (free_delalloc_space) 2838 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2839 PAGE_SIZE, true); 2840 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2841 out_page: 2842 if (ret) { 2843 /* 2844 * We hit ENOSPC or other errors. Update the mapping and page 2845 * to reflect the errors and clean the page. 2846 */ 2847 mapping_set_error(folio->mapping, ret); 2848 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2849 folio_size(folio), !ret); 2850 folio_clear_dirty_for_io(folio); 2851 } 2852 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2853 folio_unlock(folio); 2854 folio_put(folio); 2855 kfree(fixup); 2856 extent_changeset_free(data_reserved); 2857 /* 2858 * As a precaution, do a delayed iput in case it would be the last iput 2859 * that could need flushing space. Recursing back to fixup worker would 2860 * deadlock. 2861 */ 2862 btrfs_add_delayed_iput(inode); 2863 } 2864 2865 /* 2866 * There are a few paths in the higher layers of the kernel that directly 2867 * set the folio dirty bit without asking the filesystem if it is a 2868 * good idea. This causes problems because we want to make sure COW 2869 * properly happens and the data=ordered rules are followed. 2870 * 2871 * In our case any range that doesn't have the ORDERED bit set 2872 * hasn't been properly setup for IO. We kick off an async process 2873 * to fix it up. The async helper will wait for ordered extents, set 2874 * the delalloc bit and make it safe to write the folio. 2875 */ 2876 int btrfs_writepage_cow_fixup(struct folio *folio) 2877 { 2878 struct inode *inode = folio->mapping->host; 2879 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2880 struct btrfs_writepage_fixup *fixup; 2881 2882 /* This folio has ordered extent covering it already */ 2883 if (folio_test_ordered(folio)) 2884 return 0; 2885 2886 /* 2887 * For experimental build, we error out instead of EAGAIN. 2888 * 2889 * We should not hit such out-of-band dirty folios anymore. 2890 */ 2891 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2892 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2893 btrfs_err_rl(fs_info, 2894 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2895 BTRFS_I(inode)->root->root_key.objectid, 2896 btrfs_ino(BTRFS_I(inode)), 2897 folio_pos(folio)); 2898 return -EUCLEAN; 2899 } 2900 2901 /* 2902 * folio_checked is set below when we create a fixup worker for this 2903 * folio, don't try to create another one if we're already 2904 * folio_test_checked. 2905 * 2906 * The extent_io writepage code will redirty the foio if we send back 2907 * EAGAIN. 2908 */ 2909 if (folio_test_checked(folio)) 2910 return -EAGAIN; 2911 2912 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2913 if (!fixup) 2914 return -EAGAIN; 2915 2916 /* 2917 * We are already holding a reference to this inode from 2918 * write_cache_pages. We need to hold it because the space reservation 2919 * takes place outside of the folio lock, and we can't trust 2920 * folio->mapping outside of the folio lock. 2921 */ 2922 ihold(inode); 2923 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2924 folio_get(folio); 2925 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2926 fixup->folio = folio; 2927 fixup->inode = BTRFS_I(inode); 2928 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2929 2930 return -EAGAIN; 2931 } 2932 2933 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2934 struct btrfs_inode *inode, u64 file_pos, 2935 struct btrfs_file_extent_item *stack_fi, 2936 const bool update_inode_bytes, 2937 u64 qgroup_reserved) 2938 { 2939 struct btrfs_root *root = inode->root; 2940 const u64 sectorsize = root->fs_info->sectorsize; 2941 struct btrfs_path *path; 2942 struct extent_buffer *leaf; 2943 struct btrfs_key ins; 2944 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2945 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2946 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2947 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2948 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2949 struct btrfs_drop_extents_args drop_args = { 0 }; 2950 int ret; 2951 2952 path = btrfs_alloc_path(); 2953 if (!path) 2954 return -ENOMEM; 2955 2956 /* 2957 * we may be replacing one extent in the tree with another. 2958 * The new extent is pinned in the extent map, and we don't want 2959 * to drop it from the cache until it is completely in the btree. 2960 * 2961 * So, tell btrfs_drop_extents to leave this extent in the cache. 2962 * the caller is expected to unpin it and allow it to be merged 2963 * with the others. 2964 */ 2965 drop_args.path = path; 2966 drop_args.start = file_pos; 2967 drop_args.end = file_pos + num_bytes; 2968 drop_args.replace_extent = true; 2969 drop_args.extent_item_size = sizeof(*stack_fi); 2970 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2971 if (ret) 2972 goto out; 2973 2974 if (!drop_args.extent_inserted) { 2975 ins.objectid = btrfs_ino(inode); 2976 ins.type = BTRFS_EXTENT_DATA_KEY; 2977 ins.offset = file_pos; 2978 2979 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2980 sizeof(*stack_fi)); 2981 if (ret) 2982 goto out; 2983 } 2984 leaf = path->nodes[0]; 2985 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2986 write_extent_buffer(leaf, stack_fi, 2987 btrfs_item_ptr_offset(leaf, path->slots[0]), 2988 sizeof(struct btrfs_file_extent_item)); 2989 2990 btrfs_release_path(path); 2991 2992 /* 2993 * If we dropped an inline extent here, we know the range where it is 2994 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2995 * number of bytes only for that range containing the inline extent. 2996 * The remaining of the range will be processed when clearning the 2997 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2998 */ 2999 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3000 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3001 3002 inline_size = drop_args.bytes_found - inline_size; 3003 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3004 drop_args.bytes_found -= inline_size; 3005 num_bytes -= sectorsize; 3006 } 3007 3008 if (update_inode_bytes) 3009 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3010 3011 ins.objectid = disk_bytenr; 3012 ins.type = BTRFS_EXTENT_ITEM_KEY; 3013 ins.offset = disk_num_bytes; 3014 3015 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3016 if (ret) 3017 goto out; 3018 3019 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3020 file_pos - offset, 3021 qgroup_reserved, &ins); 3022 out: 3023 btrfs_free_path(path); 3024 3025 return ret; 3026 } 3027 3028 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3029 u64 start, u64 len) 3030 { 3031 struct btrfs_block_group *cache; 3032 3033 cache = btrfs_lookup_block_group(fs_info, start); 3034 ASSERT(cache); 3035 3036 spin_lock(&cache->lock); 3037 cache->delalloc_bytes -= len; 3038 spin_unlock(&cache->lock); 3039 3040 btrfs_put_block_group(cache); 3041 } 3042 3043 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3044 struct btrfs_ordered_extent *oe) 3045 { 3046 struct btrfs_file_extent_item stack_fi; 3047 bool update_inode_bytes; 3048 u64 num_bytes = oe->num_bytes; 3049 u64 ram_bytes = oe->ram_bytes; 3050 3051 memset(&stack_fi, 0, sizeof(stack_fi)); 3052 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3053 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3054 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3055 oe->disk_num_bytes); 3056 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3057 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3058 num_bytes = oe->truncated_len; 3059 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3060 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3061 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3062 /* Encryption and other encoding is reserved and all 0 */ 3063 3064 /* 3065 * For delalloc, when completing an ordered extent we update the inode's 3066 * bytes when clearing the range in the inode's io tree, so pass false 3067 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3068 * except if the ordered extent was truncated. 3069 */ 3070 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3071 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3072 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3073 3074 return insert_reserved_file_extent(trans, oe->inode, 3075 oe->file_offset, &stack_fi, 3076 update_inode_bytes, oe->qgroup_rsv); 3077 } 3078 3079 /* 3080 * As ordered data IO finishes, this gets called so we can finish 3081 * an ordered extent if the range of bytes in the file it covers are 3082 * fully written. 3083 */ 3084 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3085 { 3086 struct btrfs_inode *inode = ordered_extent->inode; 3087 struct btrfs_root *root = inode->root; 3088 struct btrfs_fs_info *fs_info = root->fs_info; 3089 struct btrfs_trans_handle *trans = NULL; 3090 struct extent_io_tree *io_tree = &inode->io_tree; 3091 struct extent_state *cached_state = NULL; 3092 u64 start, end; 3093 int compress_type = 0; 3094 int ret = 0; 3095 u64 logical_len = ordered_extent->num_bytes; 3096 bool freespace_inode; 3097 bool truncated = false; 3098 bool clear_reserved_extent = true; 3099 unsigned int clear_bits = EXTENT_DEFRAG; 3100 3101 start = ordered_extent->file_offset; 3102 end = start + ordered_extent->num_bytes - 1; 3103 3104 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3105 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3106 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3107 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3108 clear_bits |= EXTENT_DELALLOC_NEW; 3109 3110 freespace_inode = btrfs_is_free_space_inode(inode); 3111 if (!freespace_inode) 3112 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3113 3114 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3115 ret = -EIO; 3116 goto out; 3117 } 3118 3119 if (btrfs_is_zoned(fs_info)) 3120 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3121 ordered_extent->disk_num_bytes); 3122 3123 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3124 truncated = true; 3125 logical_len = ordered_extent->truncated_len; 3126 /* Truncated the entire extent, don't bother adding */ 3127 if (!logical_len) 3128 goto out; 3129 } 3130 3131 /* 3132 * If it's a COW write we need to lock the extent range as we will be 3133 * inserting/replacing file extent items and unpinning an extent map. 3134 * This must be taken before joining a transaction, as it's a higher 3135 * level lock (like the inode's VFS lock), otherwise we can run into an 3136 * ABBA deadlock with other tasks (transactions work like a lock, 3137 * depending on their current state). 3138 */ 3139 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3140 clear_bits |= EXTENT_LOCKED; 3141 lock_extent(io_tree, start, end, &cached_state); 3142 } 3143 3144 if (freespace_inode) 3145 trans = btrfs_join_transaction_spacecache(root); 3146 else 3147 trans = btrfs_join_transaction(root); 3148 if (IS_ERR(trans)) { 3149 ret = PTR_ERR(trans); 3150 trans = NULL; 3151 goto out; 3152 } 3153 3154 trans->block_rsv = &inode->block_rsv; 3155 3156 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3157 if (ret) { 3158 btrfs_abort_transaction(trans, ret); 3159 goto out; 3160 } 3161 3162 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3163 /* Logic error */ 3164 ASSERT(list_empty(&ordered_extent->list)); 3165 if (!list_empty(&ordered_extent->list)) { 3166 ret = -EINVAL; 3167 btrfs_abort_transaction(trans, ret); 3168 goto out; 3169 } 3170 3171 btrfs_inode_safe_disk_i_size_write(inode, 0); 3172 ret = btrfs_update_inode_fallback(trans, inode); 3173 if (ret) { 3174 /* -ENOMEM or corruption */ 3175 btrfs_abort_transaction(trans, ret); 3176 } 3177 goto out; 3178 } 3179 3180 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3181 compress_type = ordered_extent->compress_type; 3182 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3183 BUG_ON(compress_type); 3184 ret = btrfs_mark_extent_written(trans, inode, 3185 ordered_extent->file_offset, 3186 ordered_extent->file_offset + 3187 logical_len); 3188 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3189 ordered_extent->disk_num_bytes); 3190 } else { 3191 BUG_ON(root == fs_info->tree_root); 3192 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3193 if (!ret) { 3194 clear_reserved_extent = false; 3195 btrfs_release_delalloc_bytes(fs_info, 3196 ordered_extent->disk_bytenr, 3197 ordered_extent->disk_num_bytes); 3198 } 3199 } 3200 if (ret < 0) { 3201 btrfs_abort_transaction(trans, ret); 3202 goto out; 3203 } 3204 3205 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3206 ordered_extent->num_bytes, trans->transid); 3207 if (ret < 0) { 3208 btrfs_abort_transaction(trans, ret); 3209 goto out; 3210 } 3211 3212 ret = add_pending_csums(trans, &ordered_extent->list); 3213 if (ret) { 3214 btrfs_abort_transaction(trans, ret); 3215 goto out; 3216 } 3217 3218 /* 3219 * If this is a new delalloc range, clear its new delalloc flag to 3220 * update the inode's number of bytes. This needs to be done first 3221 * before updating the inode item. 3222 */ 3223 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3224 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3225 clear_extent_bit(&inode->io_tree, start, end, 3226 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3227 &cached_state); 3228 3229 btrfs_inode_safe_disk_i_size_write(inode, 0); 3230 ret = btrfs_update_inode_fallback(trans, inode); 3231 if (ret) { /* -ENOMEM or corruption */ 3232 btrfs_abort_transaction(trans, ret); 3233 goto out; 3234 } 3235 out: 3236 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3237 &cached_state); 3238 3239 if (trans) 3240 btrfs_end_transaction(trans); 3241 3242 if (ret || truncated) { 3243 u64 unwritten_start = start; 3244 3245 /* 3246 * If we failed to finish this ordered extent for any reason we 3247 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3248 * extent, and mark the inode with the error if it wasn't 3249 * already set. Any error during writeback would have already 3250 * set the mapping error, so we need to set it if we're the ones 3251 * marking this ordered extent as failed. 3252 */ 3253 if (ret) 3254 btrfs_mark_ordered_extent_error(ordered_extent); 3255 3256 if (truncated) 3257 unwritten_start += logical_len; 3258 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3259 3260 /* 3261 * Drop extent maps for the part of the extent we didn't write. 3262 * 3263 * We have an exception here for the free_space_inode, this is 3264 * because when we do btrfs_get_extent() on the free space inode 3265 * we will search the commit root. If this is a new block group 3266 * we won't find anything, and we will trip over the assert in 3267 * writepage where we do ASSERT(em->block_start != 3268 * EXTENT_MAP_HOLE). 3269 * 3270 * Theoretically we could also skip this for any NOCOW extent as 3271 * we don't mess with the extent map tree in the NOCOW case, but 3272 * for now simply skip this if we are the free space inode. 3273 */ 3274 if (!btrfs_is_free_space_inode(inode)) 3275 btrfs_drop_extent_map_range(inode, unwritten_start, 3276 end, false); 3277 3278 /* 3279 * If the ordered extent had an IOERR or something else went 3280 * wrong we need to return the space for this ordered extent 3281 * back to the allocator. We only free the extent in the 3282 * truncated case if we didn't write out the extent at all. 3283 * 3284 * If we made it past insert_reserved_file_extent before we 3285 * errored out then we don't need to do this as the accounting 3286 * has already been done. 3287 */ 3288 if ((ret || !logical_len) && 3289 clear_reserved_extent && 3290 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3291 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3292 /* 3293 * Discard the range before returning it back to the 3294 * free space pool 3295 */ 3296 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3297 btrfs_discard_extent(fs_info, 3298 ordered_extent->disk_bytenr, 3299 ordered_extent->disk_num_bytes, 3300 NULL); 3301 btrfs_free_reserved_extent(fs_info, 3302 ordered_extent->disk_bytenr, 3303 ordered_extent->disk_num_bytes, 1); 3304 /* 3305 * Actually free the qgroup rsv which was released when 3306 * the ordered extent was created. 3307 */ 3308 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3309 ordered_extent->qgroup_rsv, 3310 BTRFS_QGROUP_RSV_DATA); 3311 } 3312 } 3313 3314 /* 3315 * This needs to be done to make sure anybody waiting knows we are done 3316 * updating everything for this ordered extent. 3317 */ 3318 btrfs_remove_ordered_extent(inode, ordered_extent); 3319 3320 /* once for us */ 3321 btrfs_put_ordered_extent(ordered_extent); 3322 /* once for the tree */ 3323 btrfs_put_ordered_extent(ordered_extent); 3324 3325 return ret; 3326 } 3327 3328 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3329 { 3330 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3331 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3332 list_empty(&ordered->bioc_list)) 3333 btrfs_finish_ordered_zoned(ordered); 3334 return btrfs_finish_one_ordered(ordered); 3335 } 3336 3337 /* 3338 * Verify the checksum for a single sector without any extra action that depend 3339 * on the type of I/O. 3340 */ 3341 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3342 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3343 { 3344 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3345 char *kaddr; 3346 3347 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3348 3349 shash->tfm = fs_info->csum_shash; 3350 3351 kaddr = kmap_local_page(page) + pgoff; 3352 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3353 kunmap_local(kaddr); 3354 3355 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3356 return -EIO; 3357 return 0; 3358 } 3359 3360 /* 3361 * Verify the checksum of a single data sector. 3362 * 3363 * @bbio: btrfs_io_bio which contains the csum 3364 * @dev: device the sector is on 3365 * @bio_offset: offset to the beginning of the bio (in bytes) 3366 * @bv: bio_vec to check 3367 * 3368 * Check if the checksum on a data block is valid. When a checksum mismatch is 3369 * detected, report the error and fill the corrupted range with zero. 3370 * 3371 * Return %true if the sector is ok or had no checksum to start with, else %false. 3372 */ 3373 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3374 u32 bio_offset, struct bio_vec *bv) 3375 { 3376 struct btrfs_inode *inode = bbio->inode; 3377 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3378 u64 file_offset = bbio->file_offset + bio_offset; 3379 u64 end = file_offset + bv->bv_len - 1; 3380 u8 *csum_expected; 3381 u8 csum[BTRFS_CSUM_SIZE]; 3382 3383 ASSERT(bv->bv_len == fs_info->sectorsize); 3384 3385 if (!bbio->csum) 3386 return true; 3387 3388 if (btrfs_is_data_reloc_root(inode->root) && 3389 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3390 NULL)) { 3391 /* Skip the range without csum for data reloc inode */ 3392 clear_extent_bits(&inode->io_tree, file_offset, end, 3393 EXTENT_NODATASUM); 3394 return true; 3395 } 3396 3397 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3398 fs_info->csum_size; 3399 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3400 csum_expected)) 3401 goto zeroit; 3402 return true; 3403 3404 zeroit: 3405 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3406 bbio->mirror_num); 3407 if (dev) 3408 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3409 memzero_bvec(bv); 3410 return false; 3411 } 3412 3413 /* 3414 * Perform a delayed iput on @inode. 3415 * 3416 * @inode: The inode we want to perform iput on 3417 * 3418 * This function uses the generic vfs_inode::i_count to track whether we should 3419 * just decrement it (in case it's > 1) or if this is the last iput then link 3420 * the inode to the delayed iput machinery. Delayed iputs are processed at 3421 * transaction commit time/superblock commit/cleaner kthread. 3422 */ 3423 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3424 { 3425 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3426 unsigned long flags; 3427 3428 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3429 return; 3430 3431 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3432 atomic_inc(&fs_info->nr_delayed_iputs); 3433 /* 3434 * Need to be irq safe here because we can be called from either an irq 3435 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3436 * context. 3437 */ 3438 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3439 ASSERT(list_empty(&inode->delayed_iput)); 3440 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3441 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3442 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3443 wake_up_process(fs_info->cleaner_kthread); 3444 } 3445 3446 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3447 struct btrfs_inode *inode) 3448 { 3449 list_del_init(&inode->delayed_iput); 3450 spin_unlock_irq(&fs_info->delayed_iput_lock); 3451 iput(&inode->vfs_inode); 3452 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3453 wake_up(&fs_info->delayed_iputs_wait); 3454 spin_lock_irq(&fs_info->delayed_iput_lock); 3455 } 3456 3457 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3458 struct btrfs_inode *inode) 3459 { 3460 if (!list_empty(&inode->delayed_iput)) { 3461 spin_lock_irq(&fs_info->delayed_iput_lock); 3462 if (!list_empty(&inode->delayed_iput)) 3463 run_delayed_iput_locked(fs_info, inode); 3464 spin_unlock_irq(&fs_info->delayed_iput_lock); 3465 } 3466 } 3467 3468 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3469 { 3470 /* 3471 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3472 * calls btrfs_add_delayed_iput() and that needs to lock 3473 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3474 * prevent a deadlock. 3475 */ 3476 spin_lock_irq(&fs_info->delayed_iput_lock); 3477 while (!list_empty(&fs_info->delayed_iputs)) { 3478 struct btrfs_inode *inode; 3479 3480 inode = list_first_entry(&fs_info->delayed_iputs, 3481 struct btrfs_inode, delayed_iput); 3482 run_delayed_iput_locked(fs_info, inode); 3483 if (need_resched()) { 3484 spin_unlock_irq(&fs_info->delayed_iput_lock); 3485 cond_resched(); 3486 spin_lock_irq(&fs_info->delayed_iput_lock); 3487 } 3488 } 3489 spin_unlock_irq(&fs_info->delayed_iput_lock); 3490 } 3491 3492 /* 3493 * Wait for flushing all delayed iputs 3494 * 3495 * @fs_info: the filesystem 3496 * 3497 * This will wait on any delayed iputs that are currently running with KILLABLE 3498 * set. Once they are all done running we will return, unless we are killed in 3499 * which case we return EINTR. This helps in user operations like fallocate etc 3500 * that might get blocked on the iputs. 3501 * 3502 * Return EINTR if we were killed, 0 if nothing's pending 3503 */ 3504 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3505 { 3506 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3507 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3508 if (ret) 3509 return -EINTR; 3510 return 0; 3511 } 3512 3513 /* 3514 * This creates an orphan entry for the given inode in case something goes wrong 3515 * in the middle of an unlink. 3516 */ 3517 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3518 struct btrfs_inode *inode) 3519 { 3520 int ret; 3521 3522 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3523 if (ret && ret != -EEXIST) { 3524 btrfs_abort_transaction(trans, ret); 3525 return ret; 3526 } 3527 3528 return 0; 3529 } 3530 3531 /* 3532 * We have done the delete so we can go ahead and remove the orphan item for 3533 * this particular inode. 3534 */ 3535 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3536 struct btrfs_inode *inode) 3537 { 3538 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3539 } 3540 3541 /* 3542 * this cleans up any orphans that may be left on the list from the last use 3543 * of this root. 3544 */ 3545 int btrfs_orphan_cleanup(struct btrfs_root *root) 3546 { 3547 struct btrfs_fs_info *fs_info = root->fs_info; 3548 struct btrfs_path *path; 3549 struct extent_buffer *leaf; 3550 struct btrfs_key key, found_key; 3551 struct btrfs_trans_handle *trans; 3552 u64 last_objectid = 0; 3553 int ret = 0, nr_unlink = 0; 3554 3555 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3556 return 0; 3557 3558 path = btrfs_alloc_path(); 3559 if (!path) { 3560 ret = -ENOMEM; 3561 goto out; 3562 } 3563 path->reada = READA_BACK; 3564 3565 key.objectid = BTRFS_ORPHAN_OBJECTID; 3566 key.type = BTRFS_ORPHAN_ITEM_KEY; 3567 key.offset = (u64)-1; 3568 3569 while (1) { 3570 struct btrfs_inode *inode; 3571 3572 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3573 if (ret < 0) 3574 goto out; 3575 3576 /* 3577 * if ret == 0 means we found what we were searching for, which 3578 * is weird, but possible, so only screw with path if we didn't 3579 * find the key and see if we have stuff that matches 3580 */ 3581 if (ret > 0) { 3582 ret = 0; 3583 if (path->slots[0] == 0) 3584 break; 3585 path->slots[0]--; 3586 } 3587 3588 /* pull out the item */ 3589 leaf = path->nodes[0]; 3590 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3591 3592 /* make sure the item matches what we want */ 3593 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3594 break; 3595 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3596 break; 3597 3598 /* release the path since we're done with it */ 3599 btrfs_release_path(path); 3600 3601 /* 3602 * this is where we are basically btrfs_lookup, without the 3603 * crossing root thing. we store the inode number in the 3604 * offset of the orphan item. 3605 */ 3606 3607 if (found_key.offset == last_objectid) { 3608 /* 3609 * We found the same inode as before. This means we were 3610 * not able to remove its items via eviction triggered 3611 * by an iput(). A transaction abort may have happened, 3612 * due to -ENOSPC for example, so try to grab the error 3613 * that lead to a transaction abort, if any. 3614 */ 3615 btrfs_err(fs_info, 3616 "Error removing orphan entry, stopping orphan cleanup"); 3617 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3618 goto out; 3619 } 3620 3621 last_objectid = found_key.offset; 3622 3623 found_key.objectid = found_key.offset; 3624 found_key.type = BTRFS_INODE_ITEM_KEY; 3625 found_key.offset = 0; 3626 inode = btrfs_iget(last_objectid, root); 3627 if (IS_ERR(inode)) { 3628 ret = PTR_ERR(inode); 3629 inode = NULL; 3630 if (ret != -ENOENT) 3631 goto out; 3632 } 3633 3634 if (!inode && root == fs_info->tree_root) { 3635 struct btrfs_root *dead_root; 3636 int is_dead_root = 0; 3637 3638 /* 3639 * This is an orphan in the tree root. Currently these 3640 * could come from 2 sources: 3641 * a) a root (snapshot/subvolume) deletion in progress 3642 * b) a free space cache inode 3643 * We need to distinguish those two, as the orphan item 3644 * for a root must not get deleted before the deletion 3645 * of the snapshot/subvolume's tree completes. 3646 * 3647 * btrfs_find_orphan_roots() ran before us, which has 3648 * found all deleted roots and loaded them into 3649 * fs_info->fs_roots_radix. So here we can find if an 3650 * orphan item corresponds to a deleted root by looking 3651 * up the root from that radix tree. 3652 */ 3653 3654 spin_lock(&fs_info->fs_roots_radix_lock); 3655 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3656 (unsigned long)found_key.objectid); 3657 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3658 is_dead_root = 1; 3659 spin_unlock(&fs_info->fs_roots_radix_lock); 3660 3661 if (is_dead_root) { 3662 /* prevent this orphan from being found again */ 3663 key.offset = found_key.objectid - 1; 3664 continue; 3665 } 3666 3667 } 3668 3669 /* 3670 * If we have an inode with links, there are a couple of 3671 * possibilities: 3672 * 3673 * 1. We were halfway through creating fsverity metadata for the 3674 * file. In that case, the orphan item represents incomplete 3675 * fsverity metadata which must be cleaned up with 3676 * btrfs_drop_verity_items and deleting the orphan item. 3677 3678 * 2. Old kernels (before v3.12) used to create an 3679 * orphan item for truncate indicating that there were possibly 3680 * extent items past i_size that needed to be deleted. In v3.12, 3681 * truncate was changed to update i_size in sync with the extent 3682 * items, but the (useless) orphan item was still created. Since 3683 * v4.18, we don't create the orphan item for truncate at all. 3684 * 3685 * So, this item could mean that we need to do a truncate, but 3686 * only if this filesystem was last used on a pre-v3.12 kernel 3687 * and was not cleanly unmounted. The odds of that are quite 3688 * slim, and it's a pain to do the truncate now, so just delete 3689 * the orphan item. 3690 * 3691 * It's also possible that this orphan item was supposed to be 3692 * deleted but wasn't. The inode number may have been reused, 3693 * but either way, we can delete the orphan item. 3694 */ 3695 if (!inode || inode->vfs_inode.i_nlink) { 3696 if (inode) { 3697 ret = btrfs_drop_verity_items(inode); 3698 iput(&inode->vfs_inode); 3699 inode = NULL; 3700 if (ret) 3701 goto out; 3702 } 3703 trans = btrfs_start_transaction(root, 1); 3704 if (IS_ERR(trans)) { 3705 ret = PTR_ERR(trans); 3706 goto out; 3707 } 3708 btrfs_debug(fs_info, "auto deleting %Lu", 3709 found_key.objectid); 3710 ret = btrfs_del_orphan_item(trans, root, 3711 found_key.objectid); 3712 btrfs_end_transaction(trans); 3713 if (ret) 3714 goto out; 3715 continue; 3716 } 3717 3718 nr_unlink++; 3719 3720 /* this will do delete_inode and everything for us */ 3721 iput(&inode->vfs_inode); 3722 } 3723 /* release the path since we're done with it */ 3724 btrfs_release_path(path); 3725 3726 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3727 trans = btrfs_join_transaction(root); 3728 if (!IS_ERR(trans)) 3729 btrfs_end_transaction(trans); 3730 } 3731 3732 if (nr_unlink) 3733 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3734 3735 out: 3736 if (ret) 3737 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3738 btrfs_free_path(path); 3739 return ret; 3740 } 3741 3742 /* 3743 * very simple check to peek ahead in the leaf looking for xattrs. If we 3744 * don't find any xattrs, we know there can't be any acls. 3745 * 3746 * slot is the slot the inode is in, objectid is the objectid of the inode 3747 */ 3748 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3749 int slot, u64 objectid, 3750 int *first_xattr_slot) 3751 { 3752 u32 nritems = btrfs_header_nritems(leaf); 3753 struct btrfs_key found_key; 3754 static u64 xattr_access = 0; 3755 static u64 xattr_default = 0; 3756 int scanned = 0; 3757 3758 if (!xattr_access) { 3759 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3760 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3761 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3762 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3763 } 3764 3765 slot++; 3766 *first_xattr_slot = -1; 3767 while (slot < nritems) { 3768 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3769 3770 /* we found a different objectid, there must not be acls */ 3771 if (found_key.objectid != objectid) 3772 return 0; 3773 3774 /* we found an xattr, assume we've got an acl */ 3775 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3776 if (*first_xattr_slot == -1) 3777 *first_xattr_slot = slot; 3778 if (found_key.offset == xattr_access || 3779 found_key.offset == xattr_default) 3780 return 1; 3781 } 3782 3783 /* 3784 * we found a key greater than an xattr key, there can't 3785 * be any acls later on 3786 */ 3787 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3788 return 0; 3789 3790 slot++; 3791 scanned++; 3792 3793 /* 3794 * it goes inode, inode backrefs, xattrs, extents, 3795 * so if there are a ton of hard links to an inode there can 3796 * be a lot of backrefs. Don't waste time searching too hard, 3797 * this is just an optimization 3798 */ 3799 if (scanned >= 8) 3800 break; 3801 } 3802 /* we hit the end of the leaf before we found an xattr or 3803 * something larger than an xattr. We have to assume the inode 3804 * has acls 3805 */ 3806 if (*first_xattr_slot == -1) 3807 *first_xattr_slot = slot; 3808 return 1; 3809 } 3810 3811 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3812 { 3813 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3814 3815 if (WARN_ON_ONCE(inode->file_extent_tree)) 3816 return 0; 3817 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3818 return 0; 3819 if (!S_ISREG(inode->vfs_inode.i_mode)) 3820 return 0; 3821 if (btrfs_is_free_space_inode(inode)) 3822 return 0; 3823 3824 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3825 if (!inode->file_extent_tree) 3826 return -ENOMEM; 3827 3828 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3829 /* Lockdep class is set only for the file extent tree. */ 3830 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3831 3832 return 0; 3833 } 3834 3835 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3836 { 3837 struct btrfs_root *root = inode->root; 3838 struct btrfs_inode *existing; 3839 const u64 ino = btrfs_ino(inode); 3840 int ret; 3841 3842 if (inode_unhashed(&inode->vfs_inode)) 3843 return 0; 3844 3845 if (prealloc) { 3846 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3847 if (ret) 3848 return ret; 3849 } 3850 3851 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3852 3853 if (xa_is_err(existing)) { 3854 ret = xa_err(existing); 3855 ASSERT(ret != -EINVAL); 3856 ASSERT(ret != -ENOMEM); 3857 return ret; 3858 } else if (existing) { 3859 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3860 } 3861 3862 return 0; 3863 } 3864 3865 /* 3866 * Read a locked inode from the btree into the in-memory inode and add it to 3867 * its root list/tree. 3868 * 3869 * On failure clean up the inode. 3870 */ 3871 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3872 { 3873 struct btrfs_root *root = inode->root; 3874 struct btrfs_fs_info *fs_info = root->fs_info; 3875 struct extent_buffer *leaf; 3876 struct btrfs_inode_item *inode_item; 3877 struct inode *vfs_inode = &inode->vfs_inode; 3878 struct btrfs_key location; 3879 unsigned long ptr; 3880 int maybe_acls; 3881 u32 rdev; 3882 int ret; 3883 bool filled = false; 3884 int first_xattr_slot; 3885 3886 ret = btrfs_init_file_extent_tree(inode); 3887 if (ret) 3888 goto out; 3889 3890 ret = btrfs_fill_inode(inode, &rdev); 3891 if (!ret) 3892 filled = true; 3893 3894 ASSERT(path); 3895 3896 btrfs_get_inode_key(inode, &location); 3897 3898 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3899 if (ret) { 3900 /* 3901 * ret > 0 can come from btrfs_search_slot called by 3902 * btrfs_lookup_inode(), this means the inode was not found. 3903 */ 3904 if (ret > 0) 3905 ret = -ENOENT; 3906 goto out; 3907 } 3908 3909 leaf = path->nodes[0]; 3910 3911 if (filled) 3912 goto cache_index; 3913 3914 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3915 struct btrfs_inode_item); 3916 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3917 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3918 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3919 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3920 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3921 btrfs_inode_set_file_extent_range(inode, 0, 3922 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3923 3924 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3925 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3926 3927 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3928 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3929 3930 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3931 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3932 3933 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3934 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3935 3936 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3937 inode->generation = btrfs_inode_generation(leaf, inode_item); 3938 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3939 3940 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3941 vfs_inode->i_generation = inode->generation; 3942 vfs_inode->i_rdev = 0; 3943 rdev = btrfs_inode_rdev(leaf, inode_item); 3944 3945 if (S_ISDIR(vfs_inode->i_mode)) 3946 inode->index_cnt = (u64)-1; 3947 3948 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3949 &inode->flags, &inode->ro_flags); 3950 btrfs_update_inode_mapping_flags(inode); 3951 3952 cache_index: 3953 /* 3954 * If we were modified in the current generation and evicted from memory 3955 * and then re-read we need to do a full sync since we don't have any 3956 * idea about which extents were modified before we were evicted from 3957 * cache. 3958 * 3959 * This is required for both inode re-read from disk and delayed inode 3960 * in the delayed_nodes xarray. 3961 */ 3962 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3963 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3964 3965 /* 3966 * We don't persist the id of the transaction where an unlink operation 3967 * against the inode was last made. So here we assume the inode might 3968 * have been evicted, and therefore the exact value of last_unlink_trans 3969 * lost, and set it to last_trans to avoid metadata inconsistencies 3970 * between the inode and its parent if the inode is fsync'ed and the log 3971 * replayed. For example, in the scenario: 3972 * 3973 * touch mydir/foo 3974 * ln mydir/foo mydir/bar 3975 * sync 3976 * unlink mydir/bar 3977 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3978 * xfs_io -c fsync mydir/foo 3979 * <power failure> 3980 * mount fs, triggers fsync log replay 3981 * 3982 * We must make sure that when we fsync our inode foo we also log its 3983 * parent inode, otherwise after log replay the parent still has the 3984 * dentry with the "bar" name but our inode foo has a link count of 1 3985 * and doesn't have an inode ref with the name "bar" anymore. 3986 * 3987 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3988 * but it guarantees correctness at the expense of occasional full 3989 * transaction commits on fsync if our inode is a directory, or if our 3990 * inode is not a directory, logging its parent unnecessarily. 3991 */ 3992 inode->last_unlink_trans = inode->last_trans; 3993 3994 /* 3995 * Same logic as for last_unlink_trans. We don't persist the generation 3996 * of the last transaction where this inode was used for a reflink 3997 * operation, so after eviction and reloading the inode we must be 3998 * pessimistic and assume the last transaction that modified the inode. 3999 */ 4000 inode->last_reflink_trans = inode->last_trans; 4001 4002 path->slots[0]++; 4003 if (vfs_inode->i_nlink != 1 || 4004 path->slots[0] >= btrfs_header_nritems(leaf)) 4005 goto cache_acl; 4006 4007 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4008 if (location.objectid != btrfs_ino(inode)) 4009 goto cache_acl; 4010 4011 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4012 if (location.type == BTRFS_INODE_REF_KEY) { 4013 struct btrfs_inode_ref *ref; 4014 4015 ref = (struct btrfs_inode_ref *)ptr; 4016 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4017 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4018 struct btrfs_inode_extref *extref; 4019 4020 extref = (struct btrfs_inode_extref *)ptr; 4021 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4022 } 4023 cache_acl: 4024 /* 4025 * try to precache a NULL acl entry for files that don't have 4026 * any xattrs or acls 4027 */ 4028 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4029 btrfs_ino(inode), &first_xattr_slot); 4030 if (first_xattr_slot != -1) { 4031 path->slots[0] = first_xattr_slot; 4032 ret = btrfs_load_inode_props(inode, path); 4033 if (ret) 4034 btrfs_err(fs_info, 4035 "error loading props for ino %llu (root %llu): %d", 4036 btrfs_ino(inode), btrfs_root_id(root), ret); 4037 } 4038 4039 if (!maybe_acls) 4040 cache_no_acl(vfs_inode); 4041 4042 switch (vfs_inode->i_mode & S_IFMT) { 4043 case S_IFREG: 4044 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4045 vfs_inode->i_fop = &btrfs_file_operations; 4046 vfs_inode->i_op = &btrfs_file_inode_operations; 4047 break; 4048 case S_IFDIR: 4049 vfs_inode->i_fop = &btrfs_dir_file_operations; 4050 vfs_inode->i_op = &btrfs_dir_inode_operations; 4051 break; 4052 case S_IFLNK: 4053 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4054 inode_nohighmem(vfs_inode); 4055 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4056 break; 4057 default: 4058 vfs_inode->i_op = &btrfs_special_inode_operations; 4059 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4060 break; 4061 } 4062 4063 btrfs_sync_inode_flags_to_i_flags(inode); 4064 4065 ret = btrfs_add_inode_to_root(inode, true); 4066 if (ret) 4067 goto out; 4068 4069 return 0; 4070 out: 4071 iget_failed(vfs_inode); 4072 return ret; 4073 } 4074 4075 /* 4076 * given a leaf and an inode, copy the inode fields into the leaf 4077 */ 4078 static void fill_inode_item(struct btrfs_trans_handle *trans, 4079 struct extent_buffer *leaf, 4080 struct btrfs_inode_item *item, 4081 struct inode *inode) 4082 { 4083 struct btrfs_map_token token; 4084 u64 flags; 4085 4086 btrfs_init_map_token(&token, leaf); 4087 4088 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4089 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4090 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4091 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4092 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4093 4094 btrfs_set_token_timespec_sec(&token, &item->atime, 4095 inode_get_atime_sec(inode)); 4096 btrfs_set_token_timespec_nsec(&token, &item->atime, 4097 inode_get_atime_nsec(inode)); 4098 4099 btrfs_set_token_timespec_sec(&token, &item->mtime, 4100 inode_get_mtime_sec(inode)); 4101 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4102 inode_get_mtime_nsec(inode)); 4103 4104 btrfs_set_token_timespec_sec(&token, &item->ctime, 4105 inode_get_ctime_sec(inode)); 4106 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4107 inode_get_ctime_nsec(inode)); 4108 4109 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4110 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4111 4112 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4113 btrfs_set_token_inode_generation(&token, item, 4114 BTRFS_I(inode)->generation); 4115 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4116 btrfs_set_token_inode_transid(&token, item, trans->transid); 4117 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4118 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4119 BTRFS_I(inode)->ro_flags); 4120 btrfs_set_token_inode_flags(&token, item, flags); 4121 btrfs_set_token_inode_block_group(&token, item, 0); 4122 } 4123 4124 /* 4125 * copy everything in the in-memory inode into the btree. 4126 */ 4127 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4128 struct btrfs_inode *inode) 4129 { 4130 struct btrfs_inode_item *inode_item; 4131 struct btrfs_path *path; 4132 struct extent_buffer *leaf; 4133 struct btrfs_key key; 4134 int ret; 4135 4136 path = btrfs_alloc_path(); 4137 if (!path) 4138 return -ENOMEM; 4139 4140 btrfs_get_inode_key(inode, &key); 4141 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4142 if (ret) { 4143 if (ret > 0) 4144 ret = -ENOENT; 4145 goto failed; 4146 } 4147 4148 leaf = path->nodes[0]; 4149 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4150 struct btrfs_inode_item); 4151 4152 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4153 btrfs_set_inode_last_trans(trans, inode); 4154 ret = 0; 4155 failed: 4156 btrfs_free_path(path); 4157 return ret; 4158 } 4159 4160 /* 4161 * copy everything in the in-memory inode into the btree. 4162 */ 4163 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4164 struct btrfs_inode *inode) 4165 { 4166 struct btrfs_root *root = inode->root; 4167 struct btrfs_fs_info *fs_info = root->fs_info; 4168 int ret; 4169 4170 /* 4171 * If the inode is a free space inode, we can deadlock during commit 4172 * if we put it into the delayed code. 4173 * 4174 * The data relocation inode should also be directly updated 4175 * without delay 4176 */ 4177 if (!btrfs_is_free_space_inode(inode) 4178 && !btrfs_is_data_reloc_root(root) 4179 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4180 btrfs_update_root_times(trans, root); 4181 4182 ret = btrfs_delayed_update_inode(trans, inode); 4183 if (!ret) 4184 btrfs_set_inode_last_trans(trans, inode); 4185 return ret; 4186 } 4187 4188 return btrfs_update_inode_item(trans, inode); 4189 } 4190 4191 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4192 struct btrfs_inode *inode) 4193 { 4194 int ret; 4195 4196 ret = btrfs_update_inode(trans, inode); 4197 if (ret == -ENOSPC) 4198 return btrfs_update_inode_item(trans, inode); 4199 return ret; 4200 } 4201 4202 /* 4203 * unlink helper that gets used here in inode.c and in the tree logging 4204 * recovery code. It remove a link in a directory with a given name, and 4205 * also drops the back refs in the inode to the directory 4206 */ 4207 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4208 struct btrfs_inode *dir, 4209 struct btrfs_inode *inode, 4210 const struct fscrypt_str *name, 4211 struct btrfs_rename_ctx *rename_ctx) 4212 { 4213 struct btrfs_root *root = dir->root; 4214 struct btrfs_fs_info *fs_info = root->fs_info; 4215 struct btrfs_path *path; 4216 int ret = 0; 4217 struct btrfs_dir_item *di; 4218 u64 index; 4219 u64 ino = btrfs_ino(inode); 4220 u64 dir_ino = btrfs_ino(dir); 4221 4222 path = btrfs_alloc_path(); 4223 if (!path) { 4224 ret = -ENOMEM; 4225 goto out; 4226 } 4227 4228 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4229 if (IS_ERR_OR_NULL(di)) { 4230 ret = di ? PTR_ERR(di) : -ENOENT; 4231 goto err; 4232 } 4233 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4234 if (ret) 4235 goto err; 4236 btrfs_release_path(path); 4237 4238 /* 4239 * If we don't have dir index, we have to get it by looking up 4240 * the inode ref, since we get the inode ref, remove it directly, 4241 * it is unnecessary to do delayed deletion. 4242 * 4243 * But if we have dir index, needn't search inode ref to get it. 4244 * Since the inode ref is close to the inode item, it is better 4245 * that we delay to delete it, and just do this deletion when 4246 * we update the inode item. 4247 */ 4248 if (inode->dir_index) { 4249 ret = btrfs_delayed_delete_inode_ref(inode); 4250 if (!ret) { 4251 index = inode->dir_index; 4252 goto skip_backref; 4253 } 4254 } 4255 4256 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4257 if (ret) { 4258 btrfs_info(fs_info, 4259 "failed to delete reference to %.*s, inode %llu parent %llu", 4260 name->len, name->name, ino, dir_ino); 4261 btrfs_abort_transaction(trans, ret); 4262 goto err; 4263 } 4264 skip_backref: 4265 if (rename_ctx) 4266 rename_ctx->index = index; 4267 4268 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4269 if (ret) { 4270 btrfs_abort_transaction(trans, ret); 4271 goto err; 4272 } 4273 4274 /* 4275 * If we are in a rename context, we don't need to update anything in the 4276 * log. That will be done later during the rename by btrfs_log_new_name(). 4277 * Besides that, doing it here would only cause extra unnecessary btree 4278 * operations on the log tree, increasing latency for applications. 4279 */ 4280 if (!rename_ctx) { 4281 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4282 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4283 } 4284 4285 /* 4286 * If we have a pending delayed iput we could end up with the final iput 4287 * being run in btrfs-cleaner context. If we have enough of these built 4288 * up we can end up burning a lot of time in btrfs-cleaner without any 4289 * way to throttle the unlinks. Since we're currently holding a ref on 4290 * the inode we can run the delayed iput here without any issues as the 4291 * final iput won't be done until after we drop the ref we're currently 4292 * holding. 4293 */ 4294 btrfs_run_delayed_iput(fs_info, inode); 4295 err: 4296 btrfs_free_path(path); 4297 if (ret) 4298 goto out; 4299 4300 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4301 inode_inc_iversion(&inode->vfs_inode); 4302 inode_set_ctime_current(&inode->vfs_inode); 4303 inode_inc_iversion(&dir->vfs_inode); 4304 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4305 ret = btrfs_update_inode(trans, dir); 4306 out: 4307 return ret; 4308 } 4309 4310 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4311 struct btrfs_inode *dir, struct btrfs_inode *inode, 4312 const struct fscrypt_str *name) 4313 { 4314 int ret; 4315 4316 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4317 if (!ret) { 4318 drop_nlink(&inode->vfs_inode); 4319 ret = btrfs_update_inode(trans, inode); 4320 } 4321 return ret; 4322 } 4323 4324 /* 4325 * helper to start transaction for unlink and rmdir. 4326 * 4327 * unlink and rmdir are special in btrfs, they do not always free space, so 4328 * if we cannot make our reservations the normal way try and see if there is 4329 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4330 * allow the unlink to occur. 4331 */ 4332 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4333 { 4334 struct btrfs_root *root = dir->root; 4335 4336 return btrfs_start_transaction_fallback_global_rsv(root, 4337 BTRFS_UNLINK_METADATA_UNITS); 4338 } 4339 4340 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4341 { 4342 struct btrfs_trans_handle *trans; 4343 struct inode *inode = d_inode(dentry); 4344 int ret; 4345 struct fscrypt_name fname; 4346 4347 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4348 if (ret) 4349 return ret; 4350 4351 /* This needs to handle no-key deletions later on */ 4352 4353 trans = __unlink_start_trans(BTRFS_I(dir)); 4354 if (IS_ERR(trans)) { 4355 ret = PTR_ERR(trans); 4356 goto fscrypt_free; 4357 } 4358 4359 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4360 false); 4361 4362 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4363 &fname.disk_name); 4364 if (ret) 4365 goto end_trans; 4366 4367 if (inode->i_nlink == 0) { 4368 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4369 if (ret) 4370 goto end_trans; 4371 } 4372 4373 end_trans: 4374 btrfs_end_transaction(trans); 4375 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4376 fscrypt_free: 4377 fscrypt_free_filename(&fname); 4378 return ret; 4379 } 4380 4381 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4382 struct btrfs_inode *dir, struct dentry *dentry) 4383 { 4384 struct btrfs_root *root = dir->root; 4385 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4386 struct btrfs_path *path; 4387 struct extent_buffer *leaf; 4388 struct btrfs_dir_item *di; 4389 struct btrfs_key key; 4390 u64 index; 4391 int ret; 4392 u64 objectid; 4393 u64 dir_ino = btrfs_ino(dir); 4394 struct fscrypt_name fname; 4395 4396 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4397 if (ret) 4398 return ret; 4399 4400 /* This needs to handle no-key deletions later on */ 4401 4402 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4403 objectid = btrfs_root_id(inode->root); 4404 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4405 objectid = inode->ref_root_id; 4406 } else { 4407 WARN_ON(1); 4408 fscrypt_free_filename(&fname); 4409 return -EINVAL; 4410 } 4411 4412 path = btrfs_alloc_path(); 4413 if (!path) { 4414 ret = -ENOMEM; 4415 goto out; 4416 } 4417 4418 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4419 &fname.disk_name, -1); 4420 if (IS_ERR_OR_NULL(di)) { 4421 ret = di ? PTR_ERR(di) : -ENOENT; 4422 goto out; 4423 } 4424 4425 leaf = path->nodes[0]; 4426 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4427 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4428 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4429 if (ret) { 4430 btrfs_abort_transaction(trans, ret); 4431 goto out; 4432 } 4433 btrfs_release_path(path); 4434 4435 /* 4436 * This is a placeholder inode for a subvolume we didn't have a 4437 * reference to at the time of the snapshot creation. In the meantime 4438 * we could have renamed the real subvol link into our snapshot, so 4439 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4440 * Instead simply lookup the dir_index_item for this entry so we can 4441 * remove it. Otherwise we know we have a ref to the root and we can 4442 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4443 */ 4444 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4445 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4446 if (IS_ERR(di)) { 4447 ret = PTR_ERR(di); 4448 btrfs_abort_transaction(trans, ret); 4449 goto out; 4450 } 4451 4452 leaf = path->nodes[0]; 4453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4454 index = key.offset; 4455 btrfs_release_path(path); 4456 } else { 4457 ret = btrfs_del_root_ref(trans, objectid, 4458 btrfs_root_id(root), dir_ino, 4459 &index, &fname.disk_name); 4460 if (ret) { 4461 btrfs_abort_transaction(trans, ret); 4462 goto out; 4463 } 4464 } 4465 4466 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4467 if (ret) { 4468 btrfs_abort_transaction(trans, ret); 4469 goto out; 4470 } 4471 4472 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4473 inode_inc_iversion(&dir->vfs_inode); 4474 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4475 ret = btrfs_update_inode_fallback(trans, dir); 4476 if (ret) 4477 btrfs_abort_transaction(trans, ret); 4478 out: 4479 btrfs_free_path(path); 4480 fscrypt_free_filename(&fname); 4481 return ret; 4482 } 4483 4484 /* 4485 * Helper to check if the subvolume references other subvolumes or if it's 4486 * default. 4487 */ 4488 static noinline int may_destroy_subvol(struct btrfs_root *root) 4489 { 4490 struct btrfs_fs_info *fs_info = root->fs_info; 4491 struct btrfs_path *path; 4492 struct btrfs_dir_item *di; 4493 struct btrfs_key key; 4494 struct fscrypt_str name = FSTR_INIT("default", 7); 4495 u64 dir_id; 4496 int ret; 4497 4498 path = btrfs_alloc_path(); 4499 if (!path) 4500 return -ENOMEM; 4501 4502 /* Make sure this root isn't set as the default subvol */ 4503 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4504 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4505 dir_id, &name, 0); 4506 if (di && !IS_ERR(di)) { 4507 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4508 if (key.objectid == btrfs_root_id(root)) { 4509 ret = -EPERM; 4510 btrfs_err(fs_info, 4511 "deleting default subvolume %llu is not allowed", 4512 key.objectid); 4513 goto out; 4514 } 4515 btrfs_release_path(path); 4516 } 4517 4518 key.objectid = btrfs_root_id(root); 4519 key.type = BTRFS_ROOT_REF_KEY; 4520 key.offset = (u64)-1; 4521 4522 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4523 if (ret < 0) 4524 goto out; 4525 if (ret == 0) { 4526 /* 4527 * Key with offset -1 found, there would have to exist a root 4528 * with such id, but this is out of valid range. 4529 */ 4530 ret = -EUCLEAN; 4531 goto out; 4532 } 4533 4534 ret = 0; 4535 if (path->slots[0] > 0) { 4536 path->slots[0]--; 4537 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4538 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4539 ret = -ENOTEMPTY; 4540 } 4541 out: 4542 btrfs_free_path(path); 4543 return ret; 4544 } 4545 4546 /* Delete all dentries for inodes belonging to the root */ 4547 static void btrfs_prune_dentries(struct btrfs_root *root) 4548 { 4549 struct btrfs_fs_info *fs_info = root->fs_info; 4550 struct btrfs_inode *inode; 4551 u64 min_ino = 0; 4552 4553 if (!BTRFS_FS_ERROR(fs_info)) 4554 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4555 4556 inode = btrfs_find_first_inode(root, min_ino); 4557 while (inode) { 4558 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4559 d_prune_aliases(&inode->vfs_inode); 4560 4561 min_ino = btrfs_ino(inode) + 1; 4562 /* 4563 * btrfs_drop_inode() will have it removed from the inode 4564 * cache when its usage count hits zero. 4565 */ 4566 iput(&inode->vfs_inode); 4567 cond_resched(); 4568 inode = btrfs_find_first_inode(root, min_ino); 4569 } 4570 } 4571 4572 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4573 { 4574 struct btrfs_root *root = dir->root; 4575 struct btrfs_fs_info *fs_info = root->fs_info; 4576 struct inode *inode = d_inode(dentry); 4577 struct btrfs_root *dest = BTRFS_I(inode)->root; 4578 struct btrfs_trans_handle *trans; 4579 struct btrfs_block_rsv block_rsv; 4580 u64 root_flags; 4581 u64 qgroup_reserved = 0; 4582 int ret; 4583 4584 down_write(&fs_info->subvol_sem); 4585 4586 /* 4587 * Don't allow to delete a subvolume with send in progress. This is 4588 * inside the inode lock so the error handling that has to drop the bit 4589 * again is not run concurrently. 4590 */ 4591 spin_lock(&dest->root_item_lock); 4592 if (dest->send_in_progress) { 4593 spin_unlock(&dest->root_item_lock); 4594 btrfs_warn(fs_info, 4595 "attempt to delete subvolume %llu during send", 4596 btrfs_root_id(dest)); 4597 ret = -EPERM; 4598 goto out_up_write; 4599 } 4600 if (atomic_read(&dest->nr_swapfiles)) { 4601 spin_unlock(&dest->root_item_lock); 4602 btrfs_warn(fs_info, 4603 "attempt to delete subvolume %llu with active swapfile", 4604 btrfs_root_id(root)); 4605 ret = -EPERM; 4606 goto out_up_write; 4607 } 4608 root_flags = btrfs_root_flags(&dest->root_item); 4609 btrfs_set_root_flags(&dest->root_item, 4610 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4611 spin_unlock(&dest->root_item_lock); 4612 4613 ret = may_destroy_subvol(dest); 4614 if (ret) 4615 goto out_undead; 4616 4617 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4618 /* 4619 * One for dir inode, 4620 * two for dir entries, 4621 * two for root ref/backref. 4622 */ 4623 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4624 if (ret) 4625 goto out_undead; 4626 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4627 4628 trans = btrfs_start_transaction(root, 0); 4629 if (IS_ERR(trans)) { 4630 ret = PTR_ERR(trans); 4631 goto out_release; 4632 } 4633 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4634 qgroup_reserved = 0; 4635 trans->block_rsv = &block_rsv; 4636 trans->bytes_reserved = block_rsv.size; 4637 4638 btrfs_record_snapshot_destroy(trans, dir); 4639 4640 ret = btrfs_unlink_subvol(trans, dir, dentry); 4641 if (ret) { 4642 btrfs_abort_transaction(trans, ret); 4643 goto out_end_trans; 4644 } 4645 4646 ret = btrfs_record_root_in_trans(trans, dest); 4647 if (ret) { 4648 btrfs_abort_transaction(trans, ret); 4649 goto out_end_trans; 4650 } 4651 4652 memset(&dest->root_item.drop_progress, 0, 4653 sizeof(dest->root_item.drop_progress)); 4654 btrfs_set_root_drop_level(&dest->root_item, 0); 4655 btrfs_set_root_refs(&dest->root_item, 0); 4656 4657 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4658 ret = btrfs_insert_orphan_item(trans, 4659 fs_info->tree_root, 4660 btrfs_root_id(dest)); 4661 if (ret) { 4662 btrfs_abort_transaction(trans, ret); 4663 goto out_end_trans; 4664 } 4665 } 4666 4667 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4668 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4669 if (ret && ret != -ENOENT) { 4670 btrfs_abort_transaction(trans, ret); 4671 goto out_end_trans; 4672 } 4673 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4674 ret = btrfs_uuid_tree_remove(trans, 4675 dest->root_item.received_uuid, 4676 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4677 btrfs_root_id(dest)); 4678 if (ret && ret != -ENOENT) { 4679 btrfs_abort_transaction(trans, ret); 4680 goto out_end_trans; 4681 } 4682 } 4683 4684 free_anon_bdev(dest->anon_dev); 4685 dest->anon_dev = 0; 4686 out_end_trans: 4687 trans->block_rsv = NULL; 4688 trans->bytes_reserved = 0; 4689 ret = btrfs_end_transaction(trans); 4690 inode->i_flags |= S_DEAD; 4691 out_release: 4692 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4693 if (qgroup_reserved) 4694 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4695 out_undead: 4696 if (ret) { 4697 spin_lock(&dest->root_item_lock); 4698 root_flags = btrfs_root_flags(&dest->root_item); 4699 btrfs_set_root_flags(&dest->root_item, 4700 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4701 spin_unlock(&dest->root_item_lock); 4702 } 4703 out_up_write: 4704 up_write(&fs_info->subvol_sem); 4705 if (!ret) { 4706 d_invalidate(dentry); 4707 btrfs_prune_dentries(dest); 4708 ASSERT(dest->send_in_progress == 0); 4709 } 4710 4711 return ret; 4712 } 4713 4714 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4715 { 4716 struct inode *inode = d_inode(dentry); 4717 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4718 int ret = 0; 4719 struct btrfs_trans_handle *trans; 4720 u64 last_unlink_trans; 4721 struct fscrypt_name fname; 4722 4723 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4724 return -ENOTEMPTY; 4725 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4726 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4727 btrfs_err(fs_info, 4728 "extent tree v2 doesn't support snapshot deletion yet"); 4729 return -EOPNOTSUPP; 4730 } 4731 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4732 } 4733 4734 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4735 if (ret) 4736 return ret; 4737 4738 /* This needs to handle no-key deletions later on */ 4739 4740 trans = __unlink_start_trans(BTRFS_I(dir)); 4741 if (IS_ERR(trans)) { 4742 ret = PTR_ERR(trans); 4743 goto out_notrans; 4744 } 4745 4746 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4747 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4748 goto out; 4749 } 4750 4751 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4752 if (ret) 4753 goto out; 4754 4755 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4756 4757 /* now the directory is empty */ 4758 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4759 &fname.disk_name); 4760 if (!ret) { 4761 btrfs_i_size_write(BTRFS_I(inode), 0); 4762 /* 4763 * Propagate the last_unlink_trans value of the deleted dir to 4764 * its parent directory. This is to prevent an unrecoverable 4765 * log tree in the case we do something like this: 4766 * 1) create dir foo 4767 * 2) create snapshot under dir foo 4768 * 3) delete the snapshot 4769 * 4) rmdir foo 4770 * 5) mkdir foo 4771 * 6) fsync foo or some file inside foo 4772 */ 4773 if (last_unlink_trans >= trans->transid) 4774 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4775 } 4776 out: 4777 btrfs_end_transaction(trans); 4778 out_notrans: 4779 btrfs_btree_balance_dirty(fs_info); 4780 fscrypt_free_filename(&fname); 4781 4782 return ret; 4783 } 4784 4785 /* 4786 * Read, zero a chunk and write a block. 4787 * 4788 * @inode - inode that we're zeroing 4789 * @from - the offset to start zeroing 4790 * @len - the length to zero, 0 to zero the entire range respective to the 4791 * offset 4792 * @front - zero up to the offset instead of from the offset on 4793 * 4794 * This will find the block for the "from" offset and cow the block and zero the 4795 * part we want to zero. This is used with truncate and hole punching. 4796 */ 4797 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4798 int front) 4799 { 4800 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4801 struct address_space *mapping = inode->vfs_inode.i_mapping; 4802 struct extent_io_tree *io_tree = &inode->io_tree; 4803 struct btrfs_ordered_extent *ordered; 4804 struct extent_state *cached_state = NULL; 4805 struct extent_changeset *data_reserved = NULL; 4806 bool only_release_metadata = false; 4807 u32 blocksize = fs_info->sectorsize; 4808 pgoff_t index = from >> PAGE_SHIFT; 4809 unsigned offset = from & (blocksize - 1); 4810 struct folio *folio; 4811 gfp_t mask = btrfs_alloc_write_mask(mapping); 4812 size_t write_bytes = blocksize; 4813 int ret = 0; 4814 u64 block_start; 4815 u64 block_end; 4816 4817 if (IS_ALIGNED(offset, blocksize) && 4818 (!len || IS_ALIGNED(len, blocksize))) 4819 goto out; 4820 4821 block_start = round_down(from, blocksize); 4822 block_end = block_start + blocksize - 1; 4823 4824 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4825 blocksize, false); 4826 if (ret < 0) { 4827 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4828 /* For nocow case, no need to reserve data space */ 4829 only_release_metadata = true; 4830 } else { 4831 goto out; 4832 } 4833 } 4834 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4835 if (ret < 0) { 4836 if (!only_release_metadata) 4837 btrfs_free_reserved_data_space(inode, data_reserved, 4838 block_start, blocksize); 4839 goto out; 4840 } 4841 again: 4842 folio = __filemap_get_folio(mapping, index, 4843 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4844 if (IS_ERR(folio)) { 4845 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4846 blocksize, true); 4847 btrfs_delalloc_release_extents(inode, blocksize); 4848 ret = -ENOMEM; 4849 goto out; 4850 } 4851 4852 if (!folio_test_uptodate(folio)) { 4853 ret = btrfs_read_folio(NULL, folio); 4854 folio_lock(folio); 4855 if (folio->mapping != mapping) { 4856 folio_unlock(folio); 4857 folio_put(folio); 4858 goto again; 4859 } 4860 if (!folio_test_uptodate(folio)) { 4861 ret = -EIO; 4862 goto out_unlock; 4863 } 4864 } 4865 4866 /* 4867 * We unlock the page after the io is completed and then re-lock it 4868 * above. release_folio() could have come in between that and cleared 4869 * folio private, but left the page in the mapping. Set the page mapped 4870 * here to make sure it's properly set for the subpage stuff. 4871 */ 4872 ret = set_folio_extent_mapped(folio); 4873 if (ret < 0) 4874 goto out_unlock; 4875 4876 folio_wait_writeback(folio); 4877 4878 lock_extent(io_tree, block_start, block_end, &cached_state); 4879 4880 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4881 if (ordered) { 4882 unlock_extent(io_tree, block_start, block_end, &cached_state); 4883 folio_unlock(folio); 4884 folio_put(folio); 4885 btrfs_start_ordered_extent(ordered); 4886 btrfs_put_ordered_extent(ordered); 4887 goto again; 4888 } 4889 4890 clear_extent_bit(&inode->io_tree, block_start, block_end, 4891 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4892 &cached_state); 4893 4894 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4895 &cached_state); 4896 if (ret) { 4897 unlock_extent(io_tree, block_start, block_end, &cached_state); 4898 goto out_unlock; 4899 } 4900 4901 if (offset != blocksize) { 4902 if (!len) 4903 len = blocksize - offset; 4904 if (front) 4905 folio_zero_range(folio, block_start - folio_pos(folio), 4906 offset); 4907 else 4908 folio_zero_range(folio, 4909 (block_start - folio_pos(folio)) + offset, 4910 len); 4911 } 4912 btrfs_folio_clear_checked(fs_info, folio, block_start, 4913 block_end + 1 - block_start); 4914 btrfs_folio_set_dirty(fs_info, folio, block_start, 4915 block_end + 1 - block_start); 4916 unlock_extent(io_tree, block_start, block_end, &cached_state); 4917 4918 if (only_release_metadata) 4919 set_extent_bit(&inode->io_tree, block_start, block_end, 4920 EXTENT_NORESERVE, NULL); 4921 4922 out_unlock: 4923 if (ret) { 4924 if (only_release_metadata) 4925 btrfs_delalloc_release_metadata(inode, blocksize, true); 4926 else 4927 btrfs_delalloc_release_space(inode, data_reserved, 4928 block_start, blocksize, true); 4929 } 4930 btrfs_delalloc_release_extents(inode, blocksize); 4931 folio_unlock(folio); 4932 folio_put(folio); 4933 out: 4934 if (only_release_metadata) 4935 btrfs_check_nocow_unlock(inode); 4936 extent_changeset_free(data_reserved); 4937 return ret; 4938 } 4939 4940 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4941 { 4942 struct btrfs_root *root = inode->root; 4943 struct btrfs_fs_info *fs_info = root->fs_info; 4944 struct btrfs_trans_handle *trans; 4945 struct btrfs_drop_extents_args drop_args = { 0 }; 4946 int ret; 4947 4948 /* 4949 * If NO_HOLES is enabled, we don't need to do anything. 4950 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4951 * or btrfs_update_inode() will be called, which guarantee that the next 4952 * fsync will know this inode was changed and needs to be logged. 4953 */ 4954 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4955 return 0; 4956 4957 /* 4958 * 1 - for the one we're dropping 4959 * 1 - for the one we're adding 4960 * 1 - for updating the inode. 4961 */ 4962 trans = btrfs_start_transaction(root, 3); 4963 if (IS_ERR(trans)) 4964 return PTR_ERR(trans); 4965 4966 drop_args.start = offset; 4967 drop_args.end = offset + len; 4968 drop_args.drop_cache = true; 4969 4970 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4971 if (ret) { 4972 btrfs_abort_transaction(trans, ret); 4973 btrfs_end_transaction(trans); 4974 return ret; 4975 } 4976 4977 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4978 if (ret) { 4979 btrfs_abort_transaction(trans, ret); 4980 } else { 4981 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4982 btrfs_update_inode(trans, inode); 4983 } 4984 btrfs_end_transaction(trans); 4985 return ret; 4986 } 4987 4988 /* 4989 * This function puts in dummy file extents for the area we're creating a hole 4990 * for. So if we are truncating this file to a larger size we need to insert 4991 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4992 * the range between oldsize and size 4993 */ 4994 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4995 { 4996 struct btrfs_root *root = inode->root; 4997 struct btrfs_fs_info *fs_info = root->fs_info; 4998 struct extent_io_tree *io_tree = &inode->io_tree; 4999 struct extent_map *em = NULL; 5000 struct extent_state *cached_state = NULL; 5001 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5002 u64 block_end = ALIGN(size, fs_info->sectorsize); 5003 u64 last_byte; 5004 u64 cur_offset; 5005 u64 hole_size; 5006 int ret = 0; 5007 5008 /* 5009 * If our size started in the middle of a block we need to zero out the 5010 * rest of the block before we expand the i_size, otherwise we could 5011 * expose stale data. 5012 */ 5013 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 5014 if (ret) 5015 return ret; 5016 5017 if (size <= hole_start) 5018 return 0; 5019 5020 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5021 &cached_state); 5022 cur_offset = hole_start; 5023 while (1) { 5024 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5025 if (IS_ERR(em)) { 5026 ret = PTR_ERR(em); 5027 em = NULL; 5028 break; 5029 } 5030 last_byte = min(extent_map_end(em), block_end); 5031 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5032 hole_size = last_byte - cur_offset; 5033 5034 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5035 struct extent_map *hole_em; 5036 5037 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5038 if (ret) 5039 break; 5040 5041 ret = btrfs_inode_set_file_extent_range(inode, 5042 cur_offset, hole_size); 5043 if (ret) 5044 break; 5045 5046 hole_em = alloc_extent_map(); 5047 if (!hole_em) { 5048 btrfs_drop_extent_map_range(inode, cur_offset, 5049 cur_offset + hole_size - 1, 5050 false); 5051 btrfs_set_inode_full_sync(inode); 5052 goto next; 5053 } 5054 hole_em->start = cur_offset; 5055 hole_em->len = hole_size; 5056 5057 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5058 hole_em->disk_num_bytes = 0; 5059 hole_em->ram_bytes = hole_size; 5060 hole_em->generation = btrfs_get_fs_generation(fs_info); 5061 5062 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5063 free_extent_map(hole_em); 5064 } else { 5065 ret = btrfs_inode_set_file_extent_range(inode, 5066 cur_offset, hole_size); 5067 if (ret) 5068 break; 5069 } 5070 next: 5071 free_extent_map(em); 5072 em = NULL; 5073 cur_offset = last_byte; 5074 if (cur_offset >= block_end) 5075 break; 5076 } 5077 free_extent_map(em); 5078 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5079 return ret; 5080 } 5081 5082 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5083 { 5084 struct btrfs_root *root = BTRFS_I(inode)->root; 5085 struct btrfs_trans_handle *trans; 5086 loff_t oldsize = i_size_read(inode); 5087 loff_t newsize = attr->ia_size; 5088 int mask = attr->ia_valid; 5089 int ret; 5090 5091 /* 5092 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5093 * special case where we need to update the times despite not having 5094 * these flags set. For all other operations the VFS set these flags 5095 * explicitly if it wants a timestamp update. 5096 */ 5097 if (newsize != oldsize) { 5098 inode_inc_iversion(inode); 5099 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5100 inode_set_mtime_to_ts(inode, 5101 inode_set_ctime_current(inode)); 5102 } 5103 } 5104 5105 if (newsize > oldsize) { 5106 /* 5107 * Don't do an expanding truncate while snapshotting is ongoing. 5108 * This is to ensure the snapshot captures a fully consistent 5109 * state of this file - if the snapshot captures this expanding 5110 * truncation, it must capture all writes that happened before 5111 * this truncation. 5112 */ 5113 btrfs_drew_write_lock(&root->snapshot_lock); 5114 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5115 if (ret) { 5116 btrfs_drew_write_unlock(&root->snapshot_lock); 5117 return ret; 5118 } 5119 5120 trans = btrfs_start_transaction(root, 1); 5121 if (IS_ERR(trans)) { 5122 btrfs_drew_write_unlock(&root->snapshot_lock); 5123 return PTR_ERR(trans); 5124 } 5125 5126 i_size_write(inode, newsize); 5127 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5128 pagecache_isize_extended(inode, oldsize, newsize); 5129 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5130 btrfs_drew_write_unlock(&root->snapshot_lock); 5131 btrfs_end_transaction(trans); 5132 } else { 5133 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5134 5135 if (btrfs_is_zoned(fs_info)) { 5136 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5137 ALIGN(newsize, fs_info->sectorsize), 5138 (u64)-1); 5139 if (ret) 5140 return ret; 5141 } 5142 5143 /* 5144 * We're truncating a file that used to have good data down to 5145 * zero. Make sure any new writes to the file get on disk 5146 * on close. 5147 */ 5148 if (newsize == 0) 5149 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5150 &BTRFS_I(inode)->runtime_flags); 5151 5152 truncate_setsize(inode, newsize); 5153 5154 inode_dio_wait(inode); 5155 5156 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5157 if (ret && inode->i_nlink) { 5158 int err; 5159 5160 /* 5161 * Truncate failed, so fix up the in-memory size. We 5162 * adjusted disk_i_size down as we removed extents, so 5163 * wait for disk_i_size to be stable and then update the 5164 * in-memory size to match. 5165 */ 5166 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5167 if (err) 5168 return err; 5169 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5170 } 5171 } 5172 5173 return ret; 5174 } 5175 5176 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5177 struct iattr *attr) 5178 { 5179 struct inode *inode = d_inode(dentry); 5180 struct btrfs_root *root = BTRFS_I(inode)->root; 5181 int err; 5182 5183 if (btrfs_root_readonly(root)) 5184 return -EROFS; 5185 5186 err = setattr_prepare(idmap, dentry, attr); 5187 if (err) 5188 return err; 5189 5190 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5191 err = btrfs_setsize(inode, attr); 5192 if (err) 5193 return err; 5194 } 5195 5196 if (attr->ia_valid) { 5197 setattr_copy(idmap, inode, attr); 5198 inode_inc_iversion(inode); 5199 err = btrfs_dirty_inode(BTRFS_I(inode)); 5200 5201 if (!err && attr->ia_valid & ATTR_MODE) 5202 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5203 } 5204 5205 return err; 5206 } 5207 5208 /* 5209 * While truncating the inode pages during eviction, we get the VFS 5210 * calling btrfs_invalidate_folio() against each folio of the inode. This 5211 * is slow because the calls to btrfs_invalidate_folio() result in a 5212 * huge amount of calls to lock_extent() and clear_extent_bit(), 5213 * which keep merging and splitting extent_state structures over and over, 5214 * wasting lots of time. 5215 * 5216 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5217 * skip all those expensive operations on a per folio basis and do only 5218 * the ordered io finishing, while we release here the extent_map and 5219 * extent_state structures, without the excessive merging and splitting. 5220 */ 5221 static void evict_inode_truncate_pages(struct inode *inode) 5222 { 5223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5224 struct rb_node *node; 5225 5226 ASSERT(inode->i_state & I_FREEING); 5227 truncate_inode_pages_final(&inode->i_data); 5228 5229 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5230 5231 /* 5232 * Keep looping until we have no more ranges in the io tree. 5233 * We can have ongoing bios started by readahead that have 5234 * their endio callback (extent_io.c:end_bio_extent_readpage) 5235 * still in progress (unlocked the pages in the bio but did not yet 5236 * unlocked the ranges in the io tree). Therefore this means some 5237 * ranges can still be locked and eviction started because before 5238 * submitting those bios, which are executed by a separate task (work 5239 * queue kthread), inode references (inode->i_count) were not taken 5240 * (which would be dropped in the end io callback of each bio). 5241 * Therefore here we effectively end up waiting for those bios and 5242 * anyone else holding locked ranges without having bumped the inode's 5243 * reference count - if we don't do it, when they access the inode's 5244 * io_tree to unlock a range it may be too late, leading to an 5245 * use-after-free issue. 5246 */ 5247 spin_lock(&io_tree->lock); 5248 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5249 struct extent_state *state; 5250 struct extent_state *cached_state = NULL; 5251 u64 start; 5252 u64 end; 5253 unsigned state_flags; 5254 5255 node = rb_first(&io_tree->state); 5256 state = rb_entry(node, struct extent_state, rb_node); 5257 start = state->start; 5258 end = state->end; 5259 state_flags = state->state; 5260 spin_unlock(&io_tree->lock); 5261 5262 lock_extent(io_tree, start, end, &cached_state); 5263 5264 /* 5265 * If still has DELALLOC flag, the extent didn't reach disk, 5266 * and its reserved space won't be freed by delayed_ref. 5267 * So we need to free its reserved space here. 5268 * (Refer to comment in btrfs_invalidate_folio, case 2) 5269 * 5270 * Note, end is the bytenr of last byte, so we need + 1 here. 5271 */ 5272 if (state_flags & EXTENT_DELALLOC) 5273 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5274 end - start + 1, NULL); 5275 5276 clear_extent_bit(io_tree, start, end, 5277 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5278 &cached_state); 5279 5280 cond_resched(); 5281 spin_lock(&io_tree->lock); 5282 } 5283 spin_unlock(&io_tree->lock); 5284 } 5285 5286 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5287 struct btrfs_block_rsv *rsv) 5288 { 5289 struct btrfs_fs_info *fs_info = root->fs_info; 5290 struct btrfs_trans_handle *trans; 5291 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5292 int ret; 5293 5294 /* 5295 * Eviction should be taking place at some place safe because of our 5296 * delayed iputs. However the normal flushing code will run delayed 5297 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5298 * 5299 * We reserve the delayed_refs_extra here again because we can't use 5300 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5301 * above. We reserve our extra bit here because we generate a ton of 5302 * delayed refs activity by truncating. 5303 * 5304 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5305 * if we fail to make this reservation we can re-try without the 5306 * delayed_refs_extra so we can make some forward progress. 5307 */ 5308 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5309 BTRFS_RESERVE_FLUSH_EVICT); 5310 if (ret) { 5311 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5312 BTRFS_RESERVE_FLUSH_EVICT); 5313 if (ret) { 5314 btrfs_warn(fs_info, 5315 "could not allocate space for delete; will truncate on mount"); 5316 return ERR_PTR(-ENOSPC); 5317 } 5318 delayed_refs_extra = 0; 5319 } 5320 5321 trans = btrfs_join_transaction(root); 5322 if (IS_ERR(trans)) 5323 return trans; 5324 5325 if (delayed_refs_extra) { 5326 trans->block_rsv = &fs_info->trans_block_rsv; 5327 trans->bytes_reserved = delayed_refs_extra; 5328 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5329 delayed_refs_extra, true); 5330 } 5331 return trans; 5332 } 5333 5334 void btrfs_evict_inode(struct inode *inode) 5335 { 5336 struct btrfs_fs_info *fs_info; 5337 struct btrfs_trans_handle *trans; 5338 struct btrfs_root *root = BTRFS_I(inode)->root; 5339 struct btrfs_block_rsv *rsv = NULL; 5340 int ret; 5341 5342 trace_btrfs_inode_evict(inode); 5343 5344 if (!root) { 5345 fsverity_cleanup_inode(inode); 5346 clear_inode(inode); 5347 return; 5348 } 5349 5350 fs_info = inode_to_fs_info(inode); 5351 evict_inode_truncate_pages(inode); 5352 5353 if (inode->i_nlink && 5354 ((btrfs_root_refs(&root->root_item) != 0 && 5355 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5356 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5357 goto out; 5358 5359 if (is_bad_inode(inode)) 5360 goto out; 5361 5362 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5363 goto out; 5364 5365 if (inode->i_nlink > 0) { 5366 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5367 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5368 goto out; 5369 } 5370 5371 /* 5372 * This makes sure the inode item in tree is uptodate and the space for 5373 * the inode update is released. 5374 */ 5375 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5376 if (ret) 5377 goto out; 5378 5379 /* 5380 * This drops any pending insert or delete operations we have for this 5381 * inode. We could have a delayed dir index deletion queued up, but 5382 * we're removing the inode completely so that'll be taken care of in 5383 * the truncate. 5384 */ 5385 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5386 5387 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5388 if (!rsv) 5389 goto out; 5390 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5391 rsv->failfast = true; 5392 5393 btrfs_i_size_write(BTRFS_I(inode), 0); 5394 5395 while (1) { 5396 struct btrfs_truncate_control control = { 5397 .inode = BTRFS_I(inode), 5398 .ino = btrfs_ino(BTRFS_I(inode)), 5399 .new_size = 0, 5400 .min_type = 0, 5401 }; 5402 5403 trans = evict_refill_and_join(root, rsv); 5404 if (IS_ERR(trans)) 5405 goto out; 5406 5407 trans->block_rsv = rsv; 5408 5409 ret = btrfs_truncate_inode_items(trans, root, &control); 5410 trans->block_rsv = &fs_info->trans_block_rsv; 5411 btrfs_end_transaction(trans); 5412 /* 5413 * We have not added new delayed items for our inode after we 5414 * have flushed its delayed items, so no need to throttle on 5415 * delayed items. However we have modified extent buffers. 5416 */ 5417 btrfs_btree_balance_dirty_nodelay(fs_info); 5418 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5419 goto out; 5420 else if (!ret) 5421 break; 5422 } 5423 5424 /* 5425 * Errors here aren't a big deal, it just means we leave orphan items in 5426 * the tree. They will be cleaned up on the next mount. If the inode 5427 * number gets reused, cleanup deletes the orphan item without doing 5428 * anything, and unlink reuses the existing orphan item. 5429 * 5430 * If it turns out that we are dropping too many of these, we might want 5431 * to add a mechanism for retrying these after a commit. 5432 */ 5433 trans = evict_refill_and_join(root, rsv); 5434 if (!IS_ERR(trans)) { 5435 trans->block_rsv = rsv; 5436 btrfs_orphan_del(trans, BTRFS_I(inode)); 5437 trans->block_rsv = &fs_info->trans_block_rsv; 5438 btrfs_end_transaction(trans); 5439 } 5440 5441 out: 5442 btrfs_free_block_rsv(fs_info, rsv); 5443 /* 5444 * If we didn't successfully delete, the orphan item will still be in 5445 * the tree and we'll retry on the next mount. Again, we might also want 5446 * to retry these periodically in the future. 5447 */ 5448 btrfs_remove_delayed_node(BTRFS_I(inode)); 5449 fsverity_cleanup_inode(inode); 5450 clear_inode(inode); 5451 } 5452 5453 /* 5454 * Return the key found in the dir entry in the location pointer, fill @type 5455 * with BTRFS_FT_*, and return 0. 5456 * 5457 * If no dir entries were found, returns -ENOENT. 5458 * If found a corrupted location in dir entry, returns -EUCLEAN. 5459 */ 5460 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5461 struct btrfs_key *location, u8 *type) 5462 { 5463 struct btrfs_dir_item *di; 5464 struct btrfs_path *path; 5465 struct btrfs_root *root = dir->root; 5466 int ret = 0; 5467 struct fscrypt_name fname; 5468 5469 path = btrfs_alloc_path(); 5470 if (!path) 5471 return -ENOMEM; 5472 5473 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5474 if (ret < 0) 5475 goto out; 5476 /* 5477 * fscrypt_setup_filename() should never return a positive value, but 5478 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5479 */ 5480 ASSERT(ret == 0); 5481 5482 /* This needs to handle no-key deletions later on */ 5483 5484 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5485 &fname.disk_name, 0); 5486 if (IS_ERR_OR_NULL(di)) { 5487 ret = di ? PTR_ERR(di) : -ENOENT; 5488 goto out; 5489 } 5490 5491 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5492 if (location->type != BTRFS_INODE_ITEM_KEY && 5493 location->type != BTRFS_ROOT_ITEM_KEY) { 5494 ret = -EUCLEAN; 5495 btrfs_warn(root->fs_info, 5496 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5497 __func__, fname.disk_name.name, btrfs_ino(dir), 5498 location->objectid, location->type, location->offset); 5499 } 5500 if (!ret) 5501 *type = btrfs_dir_ftype(path->nodes[0], di); 5502 out: 5503 fscrypt_free_filename(&fname); 5504 btrfs_free_path(path); 5505 return ret; 5506 } 5507 5508 /* 5509 * when we hit a tree root in a directory, the btrfs part of the inode 5510 * needs to be changed to reflect the root directory of the tree root. This 5511 * is kind of like crossing a mount point. 5512 */ 5513 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5514 struct btrfs_inode *dir, 5515 struct dentry *dentry, 5516 struct btrfs_key *location, 5517 struct btrfs_root **sub_root) 5518 { 5519 struct btrfs_path *path; 5520 struct btrfs_root *new_root; 5521 struct btrfs_root_ref *ref; 5522 struct extent_buffer *leaf; 5523 struct btrfs_key key; 5524 int ret; 5525 int err = 0; 5526 struct fscrypt_name fname; 5527 5528 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5529 if (ret) 5530 return ret; 5531 5532 path = btrfs_alloc_path(); 5533 if (!path) { 5534 err = -ENOMEM; 5535 goto out; 5536 } 5537 5538 err = -ENOENT; 5539 key.objectid = btrfs_root_id(dir->root); 5540 key.type = BTRFS_ROOT_REF_KEY; 5541 key.offset = location->objectid; 5542 5543 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5544 if (ret) { 5545 if (ret < 0) 5546 err = ret; 5547 goto out; 5548 } 5549 5550 leaf = path->nodes[0]; 5551 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5552 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5553 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5554 goto out; 5555 5556 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5557 (unsigned long)(ref + 1), fname.disk_name.len); 5558 if (ret) 5559 goto out; 5560 5561 btrfs_release_path(path); 5562 5563 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5564 if (IS_ERR(new_root)) { 5565 err = PTR_ERR(new_root); 5566 goto out; 5567 } 5568 5569 *sub_root = new_root; 5570 location->objectid = btrfs_root_dirid(&new_root->root_item); 5571 location->type = BTRFS_INODE_ITEM_KEY; 5572 location->offset = 0; 5573 err = 0; 5574 out: 5575 btrfs_free_path(path); 5576 fscrypt_free_filename(&fname); 5577 return err; 5578 } 5579 5580 5581 5582 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5583 { 5584 struct btrfs_root *root = inode->root; 5585 struct btrfs_inode *entry; 5586 bool empty = false; 5587 5588 xa_lock(&root->inodes); 5589 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5590 if (entry == inode) 5591 empty = xa_empty(&root->inodes); 5592 xa_unlock(&root->inodes); 5593 5594 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5595 xa_lock(&root->inodes); 5596 empty = xa_empty(&root->inodes); 5597 xa_unlock(&root->inodes); 5598 if (empty) 5599 btrfs_add_dead_root(root); 5600 } 5601 } 5602 5603 5604 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5605 { 5606 struct btrfs_iget_args *args = p; 5607 5608 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5609 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5610 5611 if (args->root && args->root == args->root->fs_info->tree_root && 5612 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5613 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5614 &BTRFS_I(inode)->runtime_flags); 5615 return 0; 5616 } 5617 5618 static int btrfs_find_actor(struct inode *inode, void *opaque) 5619 { 5620 struct btrfs_iget_args *args = opaque; 5621 5622 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5623 args->root == BTRFS_I(inode)->root; 5624 } 5625 5626 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5627 { 5628 struct inode *inode; 5629 struct btrfs_iget_args args; 5630 unsigned long hashval = btrfs_inode_hash(ino, root); 5631 5632 args.ino = ino; 5633 args.root = root; 5634 5635 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5636 btrfs_init_locked_inode, 5637 (void *)&args); 5638 if (!inode) 5639 return NULL; 5640 return BTRFS_I(inode); 5641 } 5642 5643 /* 5644 * Get an inode object given its inode number and corresponding root. Path is 5645 * preallocated to prevent recursing back to iget through allocator. 5646 */ 5647 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5648 struct btrfs_path *path) 5649 { 5650 struct btrfs_inode *inode; 5651 int ret; 5652 5653 inode = btrfs_iget_locked(ino, root); 5654 if (!inode) 5655 return ERR_PTR(-ENOMEM); 5656 5657 if (!(inode->vfs_inode.i_state & I_NEW)) 5658 return inode; 5659 5660 ret = btrfs_read_locked_inode(inode, path); 5661 if (ret) 5662 return ERR_PTR(ret); 5663 5664 unlock_new_inode(&inode->vfs_inode); 5665 return inode; 5666 } 5667 5668 /* 5669 * Get an inode object given its inode number and corresponding root. 5670 */ 5671 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5672 { 5673 struct btrfs_inode *inode; 5674 struct btrfs_path *path; 5675 int ret; 5676 5677 inode = btrfs_iget_locked(ino, root); 5678 if (!inode) 5679 return ERR_PTR(-ENOMEM); 5680 5681 if (!(inode->vfs_inode.i_state & I_NEW)) 5682 return inode; 5683 5684 path = btrfs_alloc_path(); 5685 if (!path) { 5686 iget_failed(&inode->vfs_inode); 5687 return ERR_PTR(-ENOMEM); 5688 } 5689 5690 ret = btrfs_read_locked_inode(inode, path); 5691 btrfs_free_path(path); 5692 if (ret) 5693 return ERR_PTR(ret); 5694 5695 unlock_new_inode(&inode->vfs_inode); 5696 return inode; 5697 } 5698 5699 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5700 struct btrfs_key *key, 5701 struct btrfs_root *root) 5702 { 5703 struct timespec64 ts; 5704 struct inode *vfs_inode; 5705 struct btrfs_inode *inode; 5706 5707 vfs_inode = new_inode(dir->i_sb); 5708 if (!vfs_inode) 5709 return ERR_PTR(-ENOMEM); 5710 5711 inode = BTRFS_I(vfs_inode); 5712 inode->root = btrfs_grab_root(root); 5713 inode->ref_root_id = key->objectid; 5714 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5715 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5716 5717 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5718 /* 5719 * We only need lookup, the rest is read-only and there's no inode 5720 * associated with the dentry 5721 */ 5722 vfs_inode->i_op = &simple_dir_inode_operations; 5723 vfs_inode->i_opflags &= ~IOP_XATTR; 5724 vfs_inode->i_fop = &simple_dir_operations; 5725 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5726 5727 ts = inode_set_ctime_current(vfs_inode); 5728 inode_set_mtime_to_ts(vfs_inode, ts); 5729 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5730 inode->i_otime_sec = ts.tv_sec; 5731 inode->i_otime_nsec = ts.tv_nsec; 5732 5733 vfs_inode->i_uid = dir->i_uid; 5734 vfs_inode->i_gid = dir->i_gid; 5735 5736 return inode; 5737 } 5738 5739 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5740 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5741 static_assert(BTRFS_FT_DIR == FT_DIR); 5742 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5743 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5744 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5745 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5746 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5747 5748 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5749 { 5750 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5751 } 5752 5753 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5754 { 5755 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5756 struct btrfs_inode *inode; 5757 struct btrfs_root *root = BTRFS_I(dir)->root; 5758 struct btrfs_root *sub_root = root; 5759 struct btrfs_key location = { 0 }; 5760 u8 di_type = 0; 5761 int ret = 0; 5762 5763 if (dentry->d_name.len > BTRFS_NAME_LEN) 5764 return ERR_PTR(-ENAMETOOLONG); 5765 5766 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5767 if (ret < 0) 5768 return ERR_PTR(ret); 5769 5770 if (location.type == BTRFS_INODE_ITEM_KEY) { 5771 inode = btrfs_iget(location.objectid, root); 5772 if (IS_ERR(inode)) 5773 return ERR_CAST(inode); 5774 5775 /* Do extra check against inode mode with di_type */ 5776 if (btrfs_inode_type(inode) != di_type) { 5777 btrfs_crit(fs_info, 5778 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5779 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5780 di_type); 5781 iput(&inode->vfs_inode); 5782 return ERR_PTR(-EUCLEAN); 5783 } 5784 return &inode->vfs_inode; 5785 } 5786 5787 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5788 &location, &sub_root); 5789 if (ret < 0) { 5790 if (ret != -ENOENT) 5791 inode = ERR_PTR(ret); 5792 else 5793 inode = new_simple_dir(dir, &location, root); 5794 } else { 5795 inode = btrfs_iget(location.objectid, sub_root); 5796 btrfs_put_root(sub_root); 5797 5798 if (IS_ERR(inode)) 5799 return ERR_CAST(inode); 5800 5801 down_read(&fs_info->cleanup_work_sem); 5802 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5803 ret = btrfs_orphan_cleanup(sub_root); 5804 up_read(&fs_info->cleanup_work_sem); 5805 if (ret) { 5806 iput(&inode->vfs_inode); 5807 inode = ERR_PTR(ret); 5808 } 5809 } 5810 5811 if (IS_ERR(inode)) 5812 return ERR_CAST(inode); 5813 5814 return &inode->vfs_inode; 5815 } 5816 5817 static int btrfs_dentry_delete(const struct dentry *dentry) 5818 { 5819 struct btrfs_root *root; 5820 struct inode *inode = d_inode(dentry); 5821 5822 if (!inode && !IS_ROOT(dentry)) 5823 inode = d_inode(dentry->d_parent); 5824 5825 if (inode) { 5826 root = BTRFS_I(inode)->root; 5827 if (btrfs_root_refs(&root->root_item) == 0) 5828 return 1; 5829 5830 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5831 return 1; 5832 } 5833 return 0; 5834 } 5835 5836 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5837 unsigned int flags) 5838 { 5839 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5840 5841 if (inode == ERR_PTR(-ENOENT)) 5842 inode = NULL; 5843 return d_splice_alias(inode, dentry); 5844 } 5845 5846 /* 5847 * Find the highest existing sequence number in a directory and then set the 5848 * in-memory index_cnt variable to the first free sequence number. 5849 */ 5850 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5851 { 5852 struct btrfs_root *root = inode->root; 5853 struct btrfs_key key, found_key; 5854 struct btrfs_path *path; 5855 struct extent_buffer *leaf; 5856 int ret; 5857 5858 key.objectid = btrfs_ino(inode); 5859 key.type = BTRFS_DIR_INDEX_KEY; 5860 key.offset = (u64)-1; 5861 5862 path = btrfs_alloc_path(); 5863 if (!path) 5864 return -ENOMEM; 5865 5866 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5867 if (ret < 0) 5868 goto out; 5869 /* FIXME: we should be able to handle this */ 5870 if (ret == 0) 5871 goto out; 5872 ret = 0; 5873 5874 if (path->slots[0] == 0) { 5875 inode->index_cnt = BTRFS_DIR_START_INDEX; 5876 goto out; 5877 } 5878 5879 path->slots[0]--; 5880 5881 leaf = path->nodes[0]; 5882 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5883 5884 if (found_key.objectid != btrfs_ino(inode) || 5885 found_key.type != BTRFS_DIR_INDEX_KEY) { 5886 inode->index_cnt = BTRFS_DIR_START_INDEX; 5887 goto out; 5888 } 5889 5890 inode->index_cnt = found_key.offset + 1; 5891 out: 5892 btrfs_free_path(path); 5893 return ret; 5894 } 5895 5896 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5897 { 5898 int ret = 0; 5899 5900 btrfs_inode_lock(dir, 0); 5901 if (dir->index_cnt == (u64)-1) { 5902 ret = btrfs_inode_delayed_dir_index_count(dir); 5903 if (ret) { 5904 ret = btrfs_set_inode_index_count(dir); 5905 if (ret) 5906 goto out; 5907 } 5908 } 5909 5910 /* index_cnt is the index number of next new entry, so decrement it. */ 5911 *index = dir->index_cnt - 1; 5912 out: 5913 btrfs_inode_unlock(dir, 0); 5914 5915 return ret; 5916 } 5917 5918 /* 5919 * All this infrastructure exists because dir_emit can fault, and we are holding 5920 * the tree lock when doing readdir. For now just allocate a buffer and copy 5921 * our information into that, and then dir_emit from the buffer. This is 5922 * similar to what NFS does, only we don't keep the buffer around in pagecache 5923 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5924 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5925 * tree lock. 5926 */ 5927 static int btrfs_opendir(struct inode *inode, struct file *file) 5928 { 5929 struct btrfs_file_private *private; 5930 u64 last_index; 5931 int ret; 5932 5933 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5934 if (ret) 5935 return ret; 5936 5937 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5938 if (!private) 5939 return -ENOMEM; 5940 private->last_index = last_index; 5941 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5942 if (!private->filldir_buf) { 5943 kfree(private); 5944 return -ENOMEM; 5945 } 5946 file->private_data = private; 5947 return 0; 5948 } 5949 5950 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5951 { 5952 struct btrfs_file_private *private = file->private_data; 5953 int ret; 5954 5955 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5956 &private->last_index); 5957 if (ret) 5958 return ret; 5959 5960 return generic_file_llseek(file, offset, whence); 5961 } 5962 5963 struct dir_entry { 5964 u64 ino; 5965 u64 offset; 5966 unsigned type; 5967 int name_len; 5968 }; 5969 5970 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5971 { 5972 while (entries--) { 5973 struct dir_entry *entry = addr; 5974 char *name = (char *)(entry + 1); 5975 5976 ctx->pos = get_unaligned(&entry->offset); 5977 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5978 get_unaligned(&entry->ino), 5979 get_unaligned(&entry->type))) 5980 return 1; 5981 addr += sizeof(struct dir_entry) + 5982 get_unaligned(&entry->name_len); 5983 ctx->pos++; 5984 } 5985 return 0; 5986 } 5987 5988 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5989 { 5990 struct inode *inode = file_inode(file); 5991 struct btrfs_root *root = BTRFS_I(inode)->root; 5992 struct btrfs_file_private *private = file->private_data; 5993 struct btrfs_dir_item *di; 5994 struct btrfs_key key; 5995 struct btrfs_key found_key; 5996 struct btrfs_path *path; 5997 void *addr; 5998 LIST_HEAD(ins_list); 5999 LIST_HEAD(del_list); 6000 int ret; 6001 char *name_ptr; 6002 int name_len; 6003 int entries = 0; 6004 int total_len = 0; 6005 bool put = false; 6006 struct btrfs_key location; 6007 6008 if (!dir_emit_dots(file, ctx)) 6009 return 0; 6010 6011 path = btrfs_alloc_path(); 6012 if (!path) 6013 return -ENOMEM; 6014 6015 addr = private->filldir_buf; 6016 path->reada = READA_FORWARD; 6017 6018 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6019 &ins_list, &del_list); 6020 6021 again: 6022 key.type = BTRFS_DIR_INDEX_KEY; 6023 key.offset = ctx->pos; 6024 key.objectid = btrfs_ino(BTRFS_I(inode)); 6025 6026 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6027 struct dir_entry *entry; 6028 struct extent_buffer *leaf = path->nodes[0]; 6029 u8 ftype; 6030 6031 if (found_key.objectid != key.objectid) 6032 break; 6033 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6034 break; 6035 if (found_key.offset < ctx->pos) 6036 continue; 6037 if (found_key.offset > private->last_index) 6038 break; 6039 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6040 continue; 6041 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6042 name_len = btrfs_dir_name_len(leaf, di); 6043 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6044 PAGE_SIZE) { 6045 btrfs_release_path(path); 6046 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6047 if (ret) 6048 goto nopos; 6049 addr = private->filldir_buf; 6050 entries = 0; 6051 total_len = 0; 6052 goto again; 6053 } 6054 6055 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6056 entry = addr; 6057 name_ptr = (char *)(entry + 1); 6058 read_extent_buffer(leaf, name_ptr, 6059 (unsigned long)(di + 1), name_len); 6060 put_unaligned(name_len, &entry->name_len); 6061 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6062 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6063 put_unaligned(location.objectid, &entry->ino); 6064 put_unaligned(found_key.offset, &entry->offset); 6065 entries++; 6066 addr += sizeof(struct dir_entry) + name_len; 6067 total_len += sizeof(struct dir_entry) + name_len; 6068 } 6069 /* Catch error encountered during iteration */ 6070 if (ret < 0) 6071 goto err; 6072 6073 btrfs_release_path(path); 6074 6075 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6076 if (ret) 6077 goto nopos; 6078 6079 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6080 if (ret) 6081 goto nopos; 6082 6083 /* 6084 * Stop new entries from being returned after we return the last 6085 * entry. 6086 * 6087 * New directory entries are assigned a strictly increasing 6088 * offset. This means that new entries created during readdir 6089 * are *guaranteed* to be seen in the future by that readdir. 6090 * This has broken buggy programs which operate on names as 6091 * they're returned by readdir. Until we reuse freed offsets 6092 * we have this hack to stop new entries from being returned 6093 * under the assumption that they'll never reach this huge 6094 * offset. 6095 * 6096 * This is being careful not to overflow 32bit loff_t unless the 6097 * last entry requires it because doing so has broken 32bit apps 6098 * in the past. 6099 */ 6100 if (ctx->pos >= INT_MAX) 6101 ctx->pos = LLONG_MAX; 6102 else 6103 ctx->pos = INT_MAX; 6104 nopos: 6105 ret = 0; 6106 err: 6107 if (put) 6108 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6109 btrfs_free_path(path); 6110 return ret; 6111 } 6112 6113 /* 6114 * This is somewhat expensive, updating the tree every time the 6115 * inode changes. But, it is most likely to find the inode in cache. 6116 * FIXME, needs more benchmarking...there are no reasons other than performance 6117 * to keep or drop this code. 6118 */ 6119 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6120 { 6121 struct btrfs_root *root = inode->root; 6122 struct btrfs_fs_info *fs_info = root->fs_info; 6123 struct btrfs_trans_handle *trans; 6124 int ret; 6125 6126 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6127 return 0; 6128 6129 trans = btrfs_join_transaction(root); 6130 if (IS_ERR(trans)) 6131 return PTR_ERR(trans); 6132 6133 ret = btrfs_update_inode(trans, inode); 6134 if (ret == -ENOSPC || ret == -EDQUOT) { 6135 /* whoops, lets try again with the full transaction */ 6136 btrfs_end_transaction(trans); 6137 trans = btrfs_start_transaction(root, 1); 6138 if (IS_ERR(trans)) 6139 return PTR_ERR(trans); 6140 6141 ret = btrfs_update_inode(trans, inode); 6142 } 6143 btrfs_end_transaction(trans); 6144 if (inode->delayed_node) 6145 btrfs_balance_delayed_items(fs_info); 6146 6147 return ret; 6148 } 6149 6150 /* 6151 * This is a copy of file_update_time. We need this so we can return error on 6152 * ENOSPC for updating the inode in the case of file write and mmap writes. 6153 */ 6154 static int btrfs_update_time(struct inode *inode, int flags) 6155 { 6156 struct btrfs_root *root = BTRFS_I(inode)->root; 6157 bool dirty; 6158 6159 if (btrfs_root_readonly(root)) 6160 return -EROFS; 6161 6162 dirty = inode_update_timestamps(inode, flags); 6163 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6164 } 6165 6166 /* 6167 * helper to find a free sequence number in a given directory. This current 6168 * code is very simple, later versions will do smarter things in the btree 6169 */ 6170 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6171 { 6172 int ret = 0; 6173 6174 if (dir->index_cnt == (u64)-1) { 6175 ret = btrfs_inode_delayed_dir_index_count(dir); 6176 if (ret) { 6177 ret = btrfs_set_inode_index_count(dir); 6178 if (ret) 6179 return ret; 6180 } 6181 } 6182 6183 *index = dir->index_cnt; 6184 dir->index_cnt++; 6185 6186 return ret; 6187 } 6188 6189 static int btrfs_insert_inode_locked(struct inode *inode) 6190 { 6191 struct btrfs_iget_args args; 6192 6193 args.ino = btrfs_ino(BTRFS_I(inode)); 6194 args.root = BTRFS_I(inode)->root; 6195 6196 return insert_inode_locked4(inode, 6197 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6198 btrfs_find_actor, &args); 6199 } 6200 6201 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6202 unsigned int *trans_num_items) 6203 { 6204 struct inode *dir = args->dir; 6205 struct inode *inode = args->inode; 6206 int ret; 6207 6208 if (!args->orphan) { 6209 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6210 &args->fname); 6211 if (ret) 6212 return ret; 6213 } 6214 6215 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6216 if (ret) { 6217 fscrypt_free_filename(&args->fname); 6218 return ret; 6219 } 6220 6221 /* 1 to add inode item */ 6222 *trans_num_items = 1; 6223 /* 1 to add compression property */ 6224 if (BTRFS_I(dir)->prop_compress) 6225 (*trans_num_items)++; 6226 /* 1 to add default ACL xattr */ 6227 if (args->default_acl) 6228 (*trans_num_items)++; 6229 /* 1 to add access ACL xattr */ 6230 if (args->acl) 6231 (*trans_num_items)++; 6232 #ifdef CONFIG_SECURITY 6233 /* 1 to add LSM xattr */ 6234 if (dir->i_security) 6235 (*trans_num_items)++; 6236 #endif 6237 if (args->orphan) { 6238 /* 1 to add orphan item */ 6239 (*trans_num_items)++; 6240 } else { 6241 /* 6242 * 1 to add dir item 6243 * 1 to add dir index 6244 * 1 to update parent inode item 6245 * 6246 * No need for 1 unit for the inode ref item because it is 6247 * inserted in a batch together with the inode item at 6248 * btrfs_create_new_inode(). 6249 */ 6250 *trans_num_items += 3; 6251 } 6252 return 0; 6253 } 6254 6255 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6256 { 6257 posix_acl_release(args->acl); 6258 posix_acl_release(args->default_acl); 6259 fscrypt_free_filename(&args->fname); 6260 } 6261 6262 /* 6263 * Inherit flags from the parent inode. 6264 * 6265 * Currently only the compression flags and the cow flags are inherited. 6266 */ 6267 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6268 { 6269 unsigned int flags; 6270 6271 flags = dir->flags; 6272 6273 if (flags & BTRFS_INODE_NOCOMPRESS) { 6274 inode->flags &= ~BTRFS_INODE_COMPRESS; 6275 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6276 } else if (flags & BTRFS_INODE_COMPRESS) { 6277 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6278 inode->flags |= BTRFS_INODE_COMPRESS; 6279 } 6280 6281 if (flags & BTRFS_INODE_NODATACOW) { 6282 inode->flags |= BTRFS_INODE_NODATACOW; 6283 if (S_ISREG(inode->vfs_inode.i_mode)) 6284 inode->flags |= BTRFS_INODE_NODATASUM; 6285 } 6286 6287 btrfs_sync_inode_flags_to_i_flags(inode); 6288 } 6289 6290 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6291 struct btrfs_new_inode_args *args) 6292 { 6293 struct timespec64 ts; 6294 struct inode *dir = args->dir; 6295 struct inode *inode = args->inode; 6296 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6297 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6298 struct btrfs_root *root; 6299 struct btrfs_inode_item *inode_item; 6300 struct btrfs_path *path; 6301 u64 objectid; 6302 struct btrfs_inode_ref *ref; 6303 struct btrfs_key key[2]; 6304 u32 sizes[2]; 6305 struct btrfs_item_batch batch; 6306 unsigned long ptr; 6307 int ret; 6308 bool xa_reserved = false; 6309 6310 path = btrfs_alloc_path(); 6311 if (!path) 6312 return -ENOMEM; 6313 6314 if (!args->subvol) 6315 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6316 root = BTRFS_I(inode)->root; 6317 6318 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6319 if (ret) 6320 goto out; 6321 6322 ret = btrfs_get_free_objectid(root, &objectid); 6323 if (ret) 6324 goto out; 6325 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6326 6327 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6328 if (ret) 6329 goto out; 6330 xa_reserved = true; 6331 6332 if (args->orphan) { 6333 /* 6334 * O_TMPFILE, set link count to 0, so that after this point, we 6335 * fill in an inode item with the correct link count. 6336 */ 6337 set_nlink(inode, 0); 6338 } else { 6339 trace_btrfs_inode_request(dir); 6340 6341 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6342 if (ret) 6343 goto out; 6344 } 6345 6346 if (S_ISDIR(inode->i_mode)) 6347 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6348 6349 BTRFS_I(inode)->generation = trans->transid; 6350 inode->i_generation = BTRFS_I(inode)->generation; 6351 6352 /* 6353 * We don't have any capability xattrs set here yet, shortcut any 6354 * queries for the xattrs here. If we add them later via the inode 6355 * security init path or any other path this flag will be cleared. 6356 */ 6357 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6358 6359 /* 6360 * Subvolumes don't inherit flags from their parent directory. 6361 * Originally this was probably by accident, but we probably can't 6362 * change it now without compatibility issues. 6363 */ 6364 if (!args->subvol) 6365 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6366 6367 if (S_ISREG(inode->i_mode)) { 6368 if (btrfs_test_opt(fs_info, NODATASUM)) 6369 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6370 if (btrfs_test_opt(fs_info, NODATACOW)) 6371 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6372 BTRFS_INODE_NODATASUM; 6373 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6374 } 6375 6376 ret = btrfs_insert_inode_locked(inode); 6377 if (ret < 0) { 6378 if (!args->orphan) 6379 BTRFS_I(dir)->index_cnt--; 6380 goto out; 6381 } 6382 6383 /* 6384 * We could have gotten an inode number from somebody who was fsynced 6385 * and then removed in this same transaction, so let's just set full 6386 * sync since it will be a full sync anyway and this will blow away the 6387 * old info in the log. 6388 */ 6389 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6390 6391 key[0].objectid = objectid; 6392 key[0].type = BTRFS_INODE_ITEM_KEY; 6393 key[0].offset = 0; 6394 6395 sizes[0] = sizeof(struct btrfs_inode_item); 6396 6397 if (!args->orphan) { 6398 /* 6399 * Start new inodes with an inode_ref. This is slightly more 6400 * efficient for small numbers of hard links since they will 6401 * be packed into one item. Extended refs will kick in if we 6402 * add more hard links than can fit in the ref item. 6403 */ 6404 key[1].objectid = objectid; 6405 key[1].type = BTRFS_INODE_REF_KEY; 6406 if (args->subvol) { 6407 key[1].offset = objectid; 6408 sizes[1] = 2 + sizeof(*ref); 6409 } else { 6410 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6411 sizes[1] = name->len + sizeof(*ref); 6412 } 6413 } 6414 6415 batch.keys = &key[0]; 6416 batch.data_sizes = &sizes[0]; 6417 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6418 batch.nr = args->orphan ? 1 : 2; 6419 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6420 if (ret != 0) { 6421 btrfs_abort_transaction(trans, ret); 6422 goto discard; 6423 } 6424 6425 ts = simple_inode_init_ts(inode); 6426 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6427 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6428 6429 /* 6430 * We're going to fill the inode item now, so at this point the inode 6431 * must be fully initialized. 6432 */ 6433 6434 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6435 struct btrfs_inode_item); 6436 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6437 sizeof(*inode_item)); 6438 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6439 6440 if (!args->orphan) { 6441 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6442 struct btrfs_inode_ref); 6443 ptr = (unsigned long)(ref + 1); 6444 if (args->subvol) { 6445 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6446 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6447 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6448 } else { 6449 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6450 name->len); 6451 btrfs_set_inode_ref_index(path->nodes[0], ref, 6452 BTRFS_I(inode)->dir_index); 6453 write_extent_buffer(path->nodes[0], name->name, ptr, 6454 name->len); 6455 } 6456 } 6457 6458 /* 6459 * We don't need the path anymore, plus inheriting properties, adding 6460 * ACLs, security xattrs, orphan item or adding the link, will result in 6461 * allocating yet another path. So just free our path. 6462 */ 6463 btrfs_free_path(path); 6464 path = NULL; 6465 6466 if (args->subvol) { 6467 struct btrfs_inode *parent; 6468 6469 /* 6470 * Subvolumes inherit properties from their parent subvolume, 6471 * not the directory they were created in. 6472 */ 6473 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6474 if (IS_ERR(parent)) { 6475 ret = PTR_ERR(parent); 6476 } else { 6477 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6478 parent); 6479 iput(&parent->vfs_inode); 6480 } 6481 } else { 6482 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6483 BTRFS_I(dir)); 6484 } 6485 if (ret) { 6486 btrfs_err(fs_info, 6487 "error inheriting props for ino %llu (root %llu): %d", 6488 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6489 } 6490 6491 /* 6492 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6493 * probably a bug. 6494 */ 6495 if (!args->subvol) { 6496 ret = btrfs_init_inode_security(trans, args); 6497 if (ret) { 6498 btrfs_abort_transaction(trans, ret); 6499 goto discard; 6500 } 6501 } 6502 6503 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6504 if (WARN_ON(ret)) { 6505 /* Shouldn't happen, we used xa_reserve() before. */ 6506 btrfs_abort_transaction(trans, ret); 6507 goto discard; 6508 } 6509 6510 trace_btrfs_inode_new(inode); 6511 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6512 6513 btrfs_update_root_times(trans, root); 6514 6515 if (args->orphan) { 6516 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6517 } else { 6518 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6519 0, BTRFS_I(inode)->dir_index); 6520 } 6521 if (ret) { 6522 btrfs_abort_transaction(trans, ret); 6523 goto discard; 6524 } 6525 6526 return 0; 6527 6528 discard: 6529 /* 6530 * discard_new_inode() calls iput(), but the caller owns the reference 6531 * to the inode. 6532 */ 6533 ihold(inode); 6534 discard_new_inode(inode); 6535 out: 6536 if (xa_reserved) 6537 xa_release(&root->inodes, objectid); 6538 6539 btrfs_free_path(path); 6540 return ret; 6541 } 6542 6543 /* 6544 * utility function to add 'inode' into 'parent_inode' with 6545 * a give name and a given sequence number. 6546 * if 'add_backref' is true, also insert a backref from the 6547 * inode to the parent directory. 6548 */ 6549 int btrfs_add_link(struct btrfs_trans_handle *trans, 6550 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6551 const struct fscrypt_str *name, int add_backref, u64 index) 6552 { 6553 int ret = 0; 6554 struct btrfs_key key; 6555 struct btrfs_root *root = parent_inode->root; 6556 u64 ino = btrfs_ino(inode); 6557 u64 parent_ino = btrfs_ino(parent_inode); 6558 6559 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6560 memcpy(&key, &inode->root->root_key, sizeof(key)); 6561 } else { 6562 key.objectid = ino; 6563 key.type = BTRFS_INODE_ITEM_KEY; 6564 key.offset = 0; 6565 } 6566 6567 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6568 ret = btrfs_add_root_ref(trans, key.objectid, 6569 btrfs_root_id(root), parent_ino, 6570 index, name); 6571 } else if (add_backref) { 6572 ret = btrfs_insert_inode_ref(trans, root, name, 6573 ino, parent_ino, index); 6574 } 6575 6576 /* Nothing to clean up yet */ 6577 if (ret) 6578 return ret; 6579 6580 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6581 btrfs_inode_type(inode), index); 6582 if (ret == -EEXIST || ret == -EOVERFLOW) 6583 goto fail_dir_item; 6584 else if (ret) { 6585 btrfs_abort_transaction(trans, ret); 6586 return ret; 6587 } 6588 6589 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6590 name->len * 2); 6591 inode_inc_iversion(&parent_inode->vfs_inode); 6592 /* 6593 * If we are replaying a log tree, we do not want to update the mtime 6594 * and ctime of the parent directory with the current time, since the 6595 * log replay procedure is responsible for setting them to their correct 6596 * values (the ones it had when the fsync was done). 6597 */ 6598 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6599 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6600 inode_set_ctime_current(&parent_inode->vfs_inode)); 6601 6602 ret = btrfs_update_inode(trans, parent_inode); 6603 if (ret) 6604 btrfs_abort_transaction(trans, ret); 6605 return ret; 6606 6607 fail_dir_item: 6608 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6609 u64 local_index; 6610 int err; 6611 err = btrfs_del_root_ref(trans, key.objectid, 6612 btrfs_root_id(root), parent_ino, 6613 &local_index, name); 6614 if (err) 6615 btrfs_abort_transaction(trans, err); 6616 } else if (add_backref) { 6617 u64 local_index; 6618 int err; 6619 6620 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6621 &local_index); 6622 if (err) 6623 btrfs_abort_transaction(trans, err); 6624 } 6625 6626 /* Return the original error code */ 6627 return ret; 6628 } 6629 6630 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6631 struct inode *inode) 6632 { 6633 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6634 struct btrfs_root *root = BTRFS_I(dir)->root; 6635 struct btrfs_new_inode_args new_inode_args = { 6636 .dir = dir, 6637 .dentry = dentry, 6638 .inode = inode, 6639 }; 6640 unsigned int trans_num_items; 6641 struct btrfs_trans_handle *trans; 6642 int err; 6643 6644 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6645 if (err) 6646 goto out_inode; 6647 6648 trans = btrfs_start_transaction(root, trans_num_items); 6649 if (IS_ERR(trans)) { 6650 err = PTR_ERR(trans); 6651 goto out_new_inode_args; 6652 } 6653 6654 err = btrfs_create_new_inode(trans, &new_inode_args); 6655 if (!err) 6656 d_instantiate_new(dentry, inode); 6657 6658 btrfs_end_transaction(trans); 6659 btrfs_btree_balance_dirty(fs_info); 6660 out_new_inode_args: 6661 btrfs_new_inode_args_destroy(&new_inode_args); 6662 out_inode: 6663 if (err) 6664 iput(inode); 6665 return err; 6666 } 6667 6668 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6669 struct dentry *dentry, umode_t mode, dev_t rdev) 6670 { 6671 struct inode *inode; 6672 6673 inode = new_inode(dir->i_sb); 6674 if (!inode) 6675 return -ENOMEM; 6676 inode_init_owner(idmap, inode, dir, mode); 6677 inode->i_op = &btrfs_special_inode_operations; 6678 init_special_inode(inode, inode->i_mode, rdev); 6679 return btrfs_create_common(dir, dentry, inode); 6680 } 6681 6682 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6683 struct dentry *dentry, umode_t mode, bool excl) 6684 { 6685 struct inode *inode; 6686 6687 inode = new_inode(dir->i_sb); 6688 if (!inode) 6689 return -ENOMEM; 6690 inode_init_owner(idmap, inode, dir, mode); 6691 inode->i_fop = &btrfs_file_operations; 6692 inode->i_op = &btrfs_file_inode_operations; 6693 inode->i_mapping->a_ops = &btrfs_aops; 6694 return btrfs_create_common(dir, dentry, inode); 6695 } 6696 6697 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6698 struct dentry *dentry) 6699 { 6700 struct btrfs_trans_handle *trans = NULL; 6701 struct btrfs_root *root = BTRFS_I(dir)->root; 6702 struct inode *inode = d_inode(old_dentry); 6703 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6704 struct fscrypt_name fname; 6705 u64 index; 6706 int err; 6707 int drop_inode = 0; 6708 6709 /* do not allow sys_link's with other subvols of the same device */ 6710 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6711 return -EXDEV; 6712 6713 if (inode->i_nlink >= BTRFS_LINK_MAX) 6714 return -EMLINK; 6715 6716 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6717 if (err) 6718 goto fail; 6719 6720 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6721 if (err) 6722 goto fail; 6723 6724 /* 6725 * 2 items for inode and inode ref 6726 * 2 items for dir items 6727 * 1 item for parent inode 6728 * 1 item for orphan item deletion if O_TMPFILE 6729 */ 6730 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6731 if (IS_ERR(trans)) { 6732 err = PTR_ERR(trans); 6733 trans = NULL; 6734 goto fail; 6735 } 6736 6737 /* There are several dir indexes for this inode, clear the cache. */ 6738 BTRFS_I(inode)->dir_index = 0ULL; 6739 inc_nlink(inode); 6740 inode_inc_iversion(inode); 6741 inode_set_ctime_current(inode); 6742 ihold(inode); 6743 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6744 6745 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6746 &fname.disk_name, 1, index); 6747 6748 if (err) { 6749 drop_inode = 1; 6750 } else { 6751 struct dentry *parent = dentry->d_parent; 6752 6753 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6754 if (err) 6755 goto fail; 6756 if (inode->i_nlink == 1) { 6757 /* 6758 * If new hard link count is 1, it's a file created 6759 * with open(2) O_TMPFILE flag. 6760 */ 6761 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6762 if (err) 6763 goto fail; 6764 } 6765 d_instantiate(dentry, inode); 6766 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6767 } 6768 6769 fail: 6770 fscrypt_free_filename(&fname); 6771 if (trans) 6772 btrfs_end_transaction(trans); 6773 if (drop_inode) { 6774 inode_dec_link_count(inode); 6775 iput(inode); 6776 } 6777 btrfs_btree_balance_dirty(fs_info); 6778 return err; 6779 } 6780 6781 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6782 struct dentry *dentry, umode_t mode) 6783 { 6784 struct inode *inode; 6785 6786 inode = new_inode(dir->i_sb); 6787 if (!inode) 6788 return ERR_PTR(-ENOMEM); 6789 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6790 inode->i_op = &btrfs_dir_inode_operations; 6791 inode->i_fop = &btrfs_dir_file_operations; 6792 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6793 } 6794 6795 static noinline int uncompress_inline(struct btrfs_path *path, 6796 struct folio *folio, 6797 struct btrfs_file_extent_item *item) 6798 { 6799 int ret; 6800 struct extent_buffer *leaf = path->nodes[0]; 6801 const u32 blocksize = leaf->fs_info->sectorsize; 6802 char *tmp; 6803 size_t max_size; 6804 unsigned long inline_size; 6805 unsigned long ptr; 6806 int compress_type; 6807 6808 compress_type = btrfs_file_extent_compression(leaf, item); 6809 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6810 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6811 tmp = kmalloc(inline_size, GFP_NOFS); 6812 if (!tmp) 6813 return -ENOMEM; 6814 ptr = btrfs_file_extent_inline_start(item); 6815 6816 read_extent_buffer(leaf, tmp, ptr, inline_size); 6817 6818 max_size = min_t(unsigned long, blocksize, max_size); 6819 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6820 max_size); 6821 6822 /* 6823 * decompression code contains a memset to fill in any space between the end 6824 * of the uncompressed data and the end of max_size in case the decompressed 6825 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6826 * the end of an inline extent and the beginning of the next block, so we 6827 * cover that region here. 6828 */ 6829 6830 if (max_size < blocksize) 6831 folio_zero_range(folio, max_size, blocksize - max_size); 6832 kfree(tmp); 6833 return ret; 6834 } 6835 6836 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6837 { 6838 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6839 struct btrfs_file_extent_item *fi; 6840 void *kaddr; 6841 size_t copy_size; 6842 6843 if (!folio || folio_test_uptodate(folio)) 6844 return 0; 6845 6846 ASSERT(folio_pos(folio) == 0); 6847 6848 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6849 struct btrfs_file_extent_item); 6850 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6851 return uncompress_inline(path, folio, fi); 6852 6853 copy_size = min_t(u64, blocksize, 6854 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6855 kaddr = kmap_local_folio(folio, 0); 6856 read_extent_buffer(path->nodes[0], kaddr, 6857 btrfs_file_extent_inline_start(fi), copy_size); 6858 kunmap_local(kaddr); 6859 if (copy_size < blocksize) 6860 folio_zero_range(folio, copy_size, blocksize - copy_size); 6861 return 0; 6862 } 6863 6864 /* 6865 * Lookup the first extent overlapping a range in a file. 6866 * 6867 * @inode: file to search in 6868 * @page: page to read extent data into if the extent is inline 6869 * @start: file offset 6870 * @len: length of range starting at @start 6871 * 6872 * Return the first &struct extent_map which overlaps the given range, reading 6873 * it from the B-tree and caching it if necessary. Note that there may be more 6874 * extents which overlap the given range after the returned extent_map. 6875 * 6876 * If @page is not NULL and the extent is inline, this also reads the extent 6877 * data directly into the page and marks the extent up to date in the io_tree. 6878 * 6879 * Return: ERR_PTR on error, non-NULL extent_map on success. 6880 */ 6881 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6882 struct folio *folio, u64 start, u64 len) 6883 { 6884 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6885 int ret = 0; 6886 u64 extent_start = 0; 6887 u64 extent_end = 0; 6888 u64 objectid = btrfs_ino(inode); 6889 int extent_type = -1; 6890 struct btrfs_path *path = NULL; 6891 struct btrfs_root *root = inode->root; 6892 struct btrfs_file_extent_item *item; 6893 struct extent_buffer *leaf; 6894 struct btrfs_key found_key; 6895 struct extent_map *em = NULL; 6896 struct extent_map_tree *em_tree = &inode->extent_tree; 6897 6898 read_lock(&em_tree->lock); 6899 em = lookup_extent_mapping(em_tree, start, len); 6900 read_unlock(&em_tree->lock); 6901 6902 if (em) { 6903 if (em->start > start || em->start + em->len <= start) 6904 free_extent_map(em); 6905 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6906 free_extent_map(em); 6907 else 6908 goto out; 6909 } 6910 em = alloc_extent_map(); 6911 if (!em) { 6912 ret = -ENOMEM; 6913 goto out; 6914 } 6915 em->start = EXTENT_MAP_HOLE; 6916 em->disk_bytenr = EXTENT_MAP_HOLE; 6917 em->len = (u64)-1; 6918 6919 path = btrfs_alloc_path(); 6920 if (!path) { 6921 ret = -ENOMEM; 6922 goto out; 6923 } 6924 6925 /* Chances are we'll be called again, so go ahead and do readahead */ 6926 path->reada = READA_FORWARD; 6927 6928 /* 6929 * The same explanation in load_free_space_cache applies here as well, 6930 * we only read when we're loading the free space cache, and at that 6931 * point the commit_root has everything we need. 6932 */ 6933 if (btrfs_is_free_space_inode(inode)) { 6934 path->search_commit_root = 1; 6935 path->skip_locking = 1; 6936 } 6937 6938 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6939 if (ret < 0) { 6940 goto out; 6941 } else if (ret > 0) { 6942 if (path->slots[0] == 0) 6943 goto not_found; 6944 path->slots[0]--; 6945 ret = 0; 6946 } 6947 6948 leaf = path->nodes[0]; 6949 item = btrfs_item_ptr(leaf, path->slots[0], 6950 struct btrfs_file_extent_item); 6951 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6952 if (found_key.objectid != objectid || 6953 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6954 /* 6955 * If we backup past the first extent we want to move forward 6956 * and see if there is an extent in front of us, otherwise we'll 6957 * say there is a hole for our whole search range which can 6958 * cause problems. 6959 */ 6960 extent_end = start; 6961 goto next; 6962 } 6963 6964 extent_type = btrfs_file_extent_type(leaf, item); 6965 extent_start = found_key.offset; 6966 extent_end = btrfs_file_extent_end(path); 6967 if (extent_type == BTRFS_FILE_EXTENT_REG || 6968 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6969 /* Only regular file could have regular/prealloc extent */ 6970 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6971 ret = -EUCLEAN; 6972 btrfs_crit(fs_info, 6973 "regular/prealloc extent found for non-regular inode %llu", 6974 btrfs_ino(inode)); 6975 goto out; 6976 } 6977 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6978 extent_start); 6979 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6980 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6981 path->slots[0], 6982 extent_start); 6983 } 6984 next: 6985 if (start >= extent_end) { 6986 path->slots[0]++; 6987 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6988 ret = btrfs_next_leaf(root, path); 6989 if (ret < 0) 6990 goto out; 6991 else if (ret > 0) 6992 goto not_found; 6993 6994 leaf = path->nodes[0]; 6995 } 6996 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6997 if (found_key.objectid != objectid || 6998 found_key.type != BTRFS_EXTENT_DATA_KEY) 6999 goto not_found; 7000 if (start + len <= found_key.offset) 7001 goto not_found; 7002 if (start > found_key.offset) 7003 goto next; 7004 7005 /* New extent overlaps with existing one */ 7006 em->start = start; 7007 em->len = found_key.offset - start; 7008 em->disk_bytenr = EXTENT_MAP_HOLE; 7009 goto insert; 7010 } 7011 7012 btrfs_extent_item_to_extent_map(inode, path, item, em); 7013 7014 if (extent_type == BTRFS_FILE_EXTENT_REG || 7015 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7016 goto insert; 7017 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7018 /* 7019 * Inline extent can only exist at file offset 0. This is 7020 * ensured by tree-checker and inline extent creation path. 7021 * Thus all members representing file offsets should be zero. 7022 */ 7023 ASSERT(extent_start == 0); 7024 ASSERT(em->start == 0); 7025 7026 /* 7027 * btrfs_extent_item_to_extent_map() should have properly 7028 * initialized em members already. 7029 * 7030 * Other members are not utilized for inline extents. 7031 */ 7032 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7033 ASSERT(em->len == fs_info->sectorsize); 7034 7035 ret = read_inline_extent(path, folio); 7036 if (ret < 0) 7037 goto out; 7038 goto insert; 7039 } 7040 not_found: 7041 em->start = start; 7042 em->len = len; 7043 em->disk_bytenr = EXTENT_MAP_HOLE; 7044 insert: 7045 ret = 0; 7046 btrfs_release_path(path); 7047 if (em->start > start || extent_map_end(em) <= start) { 7048 btrfs_err(fs_info, 7049 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7050 em->start, em->len, start, len); 7051 ret = -EIO; 7052 goto out; 7053 } 7054 7055 write_lock(&em_tree->lock); 7056 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7057 write_unlock(&em_tree->lock); 7058 out: 7059 btrfs_free_path(path); 7060 7061 trace_btrfs_get_extent(root, inode, em); 7062 7063 if (ret) { 7064 free_extent_map(em); 7065 return ERR_PTR(ret); 7066 } 7067 return em; 7068 } 7069 7070 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7071 { 7072 struct btrfs_block_group *block_group; 7073 bool readonly = false; 7074 7075 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7076 if (!block_group || block_group->ro) 7077 readonly = true; 7078 if (block_group) 7079 btrfs_put_block_group(block_group); 7080 return readonly; 7081 } 7082 7083 /* 7084 * Check if we can do nocow write into the range [@offset, @offset + @len) 7085 * 7086 * @offset: File offset 7087 * @len: The length to write, will be updated to the nocow writeable 7088 * range 7089 * @orig_start: (optional) Return the original file offset of the file extent 7090 * @orig_len: (optional) Return the original on-disk length of the file extent 7091 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7092 * 7093 * Return: 7094 * >0 and update @len if we can do nocow write 7095 * 0 if we can't do nocow write 7096 * <0 if error happened 7097 * 7098 * NOTE: This only checks the file extents, caller is responsible to wait for 7099 * any ordered extents. 7100 */ 7101 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7102 struct btrfs_file_extent *file_extent, 7103 bool nowait) 7104 { 7105 struct btrfs_root *root = inode->root; 7106 struct btrfs_fs_info *fs_info = root->fs_info; 7107 struct can_nocow_file_extent_args nocow_args = { 0 }; 7108 struct btrfs_path *path; 7109 int ret; 7110 struct extent_buffer *leaf; 7111 struct extent_io_tree *io_tree = &inode->io_tree; 7112 struct btrfs_file_extent_item *fi; 7113 struct btrfs_key key; 7114 int found_type; 7115 7116 path = btrfs_alloc_path(); 7117 if (!path) 7118 return -ENOMEM; 7119 path->nowait = nowait; 7120 7121 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7122 offset, 0); 7123 if (ret < 0) 7124 goto out; 7125 7126 if (ret == 1) { 7127 if (path->slots[0] == 0) { 7128 /* can't find the item, must cow */ 7129 ret = 0; 7130 goto out; 7131 } 7132 path->slots[0]--; 7133 } 7134 ret = 0; 7135 leaf = path->nodes[0]; 7136 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7137 if (key.objectid != btrfs_ino(inode) || 7138 key.type != BTRFS_EXTENT_DATA_KEY) { 7139 /* not our file or wrong item type, must cow */ 7140 goto out; 7141 } 7142 7143 if (key.offset > offset) { 7144 /* Wrong offset, must cow */ 7145 goto out; 7146 } 7147 7148 if (btrfs_file_extent_end(path) <= offset) 7149 goto out; 7150 7151 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7152 found_type = btrfs_file_extent_type(leaf, fi); 7153 7154 nocow_args.start = offset; 7155 nocow_args.end = offset + *len - 1; 7156 nocow_args.free_path = true; 7157 7158 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7159 /* can_nocow_file_extent() has freed the path. */ 7160 path = NULL; 7161 7162 if (ret != 1) { 7163 /* Treat errors as not being able to NOCOW. */ 7164 ret = 0; 7165 goto out; 7166 } 7167 7168 ret = 0; 7169 if (btrfs_extent_readonly(fs_info, 7170 nocow_args.file_extent.disk_bytenr + 7171 nocow_args.file_extent.offset)) 7172 goto out; 7173 7174 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7175 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7176 u64 range_end; 7177 7178 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7179 root->fs_info->sectorsize) - 1; 7180 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7181 if (ret) { 7182 ret = -EAGAIN; 7183 goto out; 7184 } 7185 } 7186 7187 if (file_extent) 7188 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7189 7190 *len = nocow_args.file_extent.num_bytes; 7191 ret = 1; 7192 out: 7193 btrfs_free_path(path); 7194 return ret; 7195 } 7196 7197 /* The callers of this must take lock_extent() */ 7198 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7199 const struct btrfs_file_extent *file_extent, 7200 int type) 7201 { 7202 struct extent_map *em; 7203 int ret; 7204 7205 /* 7206 * Note the missing NOCOW type. 7207 * 7208 * For pure NOCOW writes, we should not create an io extent map, but 7209 * just reusing the existing one. 7210 * Only PREALLOC writes (NOCOW write into preallocated range) can 7211 * create an io extent map. 7212 */ 7213 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7214 type == BTRFS_ORDERED_COMPRESSED || 7215 type == BTRFS_ORDERED_REGULAR); 7216 7217 switch (type) { 7218 case BTRFS_ORDERED_PREALLOC: 7219 /* We're only referring part of a larger preallocated extent. */ 7220 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7221 break; 7222 case BTRFS_ORDERED_REGULAR: 7223 /* COW results a new extent matching our file extent size. */ 7224 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7225 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7226 7227 /* Since it's a new extent, we should not have any offset. */ 7228 ASSERT(file_extent->offset == 0); 7229 break; 7230 case BTRFS_ORDERED_COMPRESSED: 7231 /* Must be compressed. */ 7232 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7233 7234 /* 7235 * Encoded write can make us to refer to part of the 7236 * uncompressed extent. 7237 */ 7238 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7239 break; 7240 } 7241 7242 em = alloc_extent_map(); 7243 if (!em) 7244 return ERR_PTR(-ENOMEM); 7245 7246 em->start = start; 7247 em->len = file_extent->num_bytes; 7248 em->disk_bytenr = file_extent->disk_bytenr; 7249 em->disk_num_bytes = file_extent->disk_num_bytes; 7250 em->ram_bytes = file_extent->ram_bytes; 7251 em->generation = -1; 7252 em->offset = file_extent->offset; 7253 em->flags |= EXTENT_FLAG_PINNED; 7254 if (type == BTRFS_ORDERED_COMPRESSED) 7255 extent_map_set_compression(em, file_extent->compression); 7256 7257 ret = btrfs_replace_extent_map_range(inode, em, true); 7258 if (ret) { 7259 free_extent_map(em); 7260 return ERR_PTR(ret); 7261 } 7262 7263 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7264 return em; 7265 } 7266 7267 /* 7268 * For release_folio() and invalidate_folio() we have a race window where 7269 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7270 * If we continue to release/invalidate the page, we could cause use-after-free 7271 * for subpage spinlock. So this function is to spin and wait for subpage 7272 * spinlock. 7273 */ 7274 static void wait_subpage_spinlock(struct folio *folio) 7275 { 7276 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7277 struct btrfs_subpage *subpage; 7278 7279 if (!btrfs_is_subpage(fs_info, folio)) 7280 return; 7281 7282 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7283 subpage = folio_get_private(folio); 7284 7285 /* 7286 * This may look insane as we just acquire the spinlock and release it, 7287 * without doing anything. But we just want to make sure no one is 7288 * still holding the subpage spinlock. 7289 * And since the page is not dirty nor writeback, and we have page 7290 * locked, the only possible way to hold a spinlock is from the endio 7291 * function to clear page writeback. 7292 * 7293 * Here we just acquire the spinlock so that all existing callers 7294 * should exit and we're safe to release/invalidate the page. 7295 */ 7296 spin_lock_irq(&subpage->lock); 7297 spin_unlock_irq(&subpage->lock); 7298 } 7299 7300 static int btrfs_launder_folio(struct folio *folio) 7301 { 7302 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7303 folio_size(folio), NULL); 7304 } 7305 7306 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7307 { 7308 if (try_release_extent_mapping(folio, gfp_flags)) { 7309 wait_subpage_spinlock(folio); 7310 clear_folio_extent_mapped(folio); 7311 return true; 7312 } 7313 return false; 7314 } 7315 7316 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7317 { 7318 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7319 return false; 7320 return __btrfs_release_folio(folio, gfp_flags); 7321 } 7322 7323 #ifdef CONFIG_MIGRATION 7324 static int btrfs_migrate_folio(struct address_space *mapping, 7325 struct folio *dst, struct folio *src, 7326 enum migrate_mode mode) 7327 { 7328 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7329 7330 if (ret != MIGRATEPAGE_SUCCESS) 7331 return ret; 7332 7333 if (folio_test_ordered(src)) { 7334 folio_clear_ordered(src); 7335 folio_set_ordered(dst); 7336 } 7337 7338 return MIGRATEPAGE_SUCCESS; 7339 } 7340 #else 7341 #define btrfs_migrate_folio NULL 7342 #endif 7343 7344 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7345 size_t length) 7346 { 7347 struct btrfs_inode *inode = folio_to_inode(folio); 7348 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7349 struct extent_io_tree *tree = &inode->io_tree; 7350 struct extent_state *cached_state = NULL; 7351 u64 page_start = folio_pos(folio); 7352 u64 page_end = page_start + folio_size(folio) - 1; 7353 u64 cur; 7354 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7355 7356 /* 7357 * We have folio locked so no new ordered extent can be created on this 7358 * page, nor bio can be submitted for this folio. 7359 * 7360 * But already submitted bio can still be finished on this folio. 7361 * Furthermore, endio function won't skip folio which has Ordered 7362 * already cleared, so it's possible for endio and 7363 * invalidate_folio to do the same ordered extent accounting twice 7364 * on one folio. 7365 * 7366 * So here we wait for any submitted bios to finish, so that we won't 7367 * do double ordered extent accounting on the same folio. 7368 */ 7369 folio_wait_writeback(folio); 7370 wait_subpage_spinlock(folio); 7371 7372 /* 7373 * For subpage case, we have call sites like 7374 * btrfs_punch_hole_lock_range() which passes range not aligned to 7375 * sectorsize. 7376 * If the range doesn't cover the full folio, we don't need to and 7377 * shouldn't clear page extent mapped, as folio->private can still 7378 * record subpage dirty bits for other part of the range. 7379 * 7380 * For cases that invalidate the full folio even the range doesn't 7381 * cover the full folio, like invalidating the last folio, we're 7382 * still safe to wait for ordered extent to finish. 7383 */ 7384 if (!(offset == 0 && length == folio_size(folio))) { 7385 btrfs_release_folio(folio, GFP_NOFS); 7386 return; 7387 } 7388 7389 if (!inode_evicting) 7390 lock_extent(tree, page_start, page_end, &cached_state); 7391 7392 cur = page_start; 7393 while (cur < page_end) { 7394 struct btrfs_ordered_extent *ordered; 7395 u64 range_end; 7396 u32 range_len; 7397 u32 extra_flags = 0; 7398 7399 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7400 page_end + 1 - cur); 7401 if (!ordered) { 7402 range_end = page_end; 7403 /* 7404 * No ordered extent covering this range, we are safe 7405 * to delete all extent states in the range. 7406 */ 7407 extra_flags = EXTENT_CLEAR_ALL_BITS; 7408 goto next; 7409 } 7410 if (ordered->file_offset > cur) { 7411 /* 7412 * There is a range between [cur, oe->file_offset) not 7413 * covered by any ordered extent. 7414 * We are safe to delete all extent states, and handle 7415 * the ordered extent in the next iteration. 7416 */ 7417 range_end = ordered->file_offset - 1; 7418 extra_flags = EXTENT_CLEAR_ALL_BITS; 7419 goto next; 7420 } 7421 7422 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7423 page_end); 7424 ASSERT(range_end + 1 - cur < U32_MAX); 7425 range_len = range_end + 1 - cur; 7426 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7427 /* 7428 * If Ordered is cleared, it means endio has 7429 * already been executed for the range. 7430 * We can't delete the extent states as 7431 * btrfs_finish_ordered_io() may still use some of them. 7432 */ 7433 goto next; 7434 } 7435 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7436 7437 /* 7438 * IO on this page will never be started, so we need to account 7439 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7440 * here, must leave that up for the ordered extent completion. 7441 * 7442 * This will also unlock the range for incoming 7443 * btrfs_finish_ordered_io(). 7444 */ 7445 if (!inode_evicting) 7446 clear_extent_bit(tree, cur, range_end, 7447 EXTENT_DELALLOC | 7448 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7449 EXTENT_DEFRAG, &cached_state); 7450 7451 spin_lock_irq(&inode->ordered_tree_lock); 7452 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7453 ordered->truncated_len = min(ordered->truncated_len, 7454 cur - ordered->file_offset); 7455 spin_unlock_irq(&inode->ordered_tree_lock); 7456 7457 /* 7458 * If the ordered extent has finished, we're safe to delete all 7459 * the extent states of the range, otherwise 7460 * btrfs_finish_ordered_io() will get executed by endio for 7461 * other pages, so we can't delete extent states. 7462 */ 7463 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7464 cur, range_end + 1 - cur)) { 7465 btrfs_finish_ordered_io(ordered); 7466 /* 7467 * The ordered extent has finished, now we're again 7468 * safe to delete all extent states of the range. 7469 */ 7470 extra_flags = EXTENT_CLEAR_ALL_BITS; 7471 } 7472 next: 7473 if (ordered) 7474 btrfs_put_ordered_extent(ordered); 7475 /* 7476 * Qgroup reserved space handler 7477 * Sector(s) here will be either: 7478 * 7479 * 1) Already written to disk or bio already finished 7480 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7481 * Qgroup will be handled by its qgroup_record then. 7482 * btrfs_qgroup_free_data() call will do nothing here. 7483 * 7484 * 2) Not written to disk yet 7485 * Then btrfs_qgroup_free_data() call will clear the 7486 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7487 * reserved data space. 7488 * Since the IO will never happen for this page. 7489 */ 7490 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7491 if (!inode_evicting) { 7492 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7493 EXTENT_DELALLOC | EXTENT_UPTODATE | 7494 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7495 extra_flags, &cached_state); 7496 } 7497 cur = range_end + 1; 7498 } 7499 /* 7500 * We have iterated through all ordered extents of the page, the page 7501 * should not have Ordered anymore, or the above iteration 7502 * did something wrong. 7503 */ 7504 ASSERT(!folio_test_ordered(folio)); 7505 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7506 if (!inode_evicting) 7507 __btrfs_release_folio(folio, GFP_NOFS); 7508 clear_folio_extent_mapped(folio); 7509 } 7510 7511 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7512 { 7513 struct btrfs_truncate_control control = { 7514 .inode = inode, 7515 .ino = btrfs_ino(inode), 7516 .min_type = BTRFS_EXTENT_DATA_KEY, 7517 .clear_extent_range = true, 7518 }; 7519 struct btrfs_root *root = inode->root; 7520 struct btrfs_fs_info *fs_info = root->fs_info; 7521 struct btrfs_block_rsv *rsv; 7522 int ret; 7523 struct btrfs_trans_handle *trans; 7524 u64 mask = fs_info->sectorsize - 1; 7525 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7526 7527 if (!skip_writeback) { 7528 ret = btrfs_wait_ordered_range(inode, 7529 inode->vfs_inode.i_size & (~mask), 7530 (u64)-1); 7531 if (ret) 7532 return ret; 7533 } 7534 7535 /* 7536 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7537 * things going on here: 7538 * 7539 * 1) We need to reserve space to update our inode. 7540 * 7541 * 2) We need to have something to cache all the space that is going to 7542 * be free'd up by the truncate operation, but also have some slack 7543 * space reserved in case it uses space during the truncate (thank you 7544 * very much snapshotting). 7545 * 7546 * And we need these to be separate. The fact is we can use a lot of 7547 * space doing the truncate, and we have no earthly idea how much space 7548 * we will use, so we need the truncate reservation to be separate so it 7549 * doesn't end up using space reserved for updating the inode. We also 7550 * need to be able to stop the transaction and start a new one, which 7551 * means we need to be able to update the inode several times, and we 7552 * have no idea of knowing how many times that will be, so we can't just 7553 * reserve 1 item for the entirety of the operation, so that has to be 7554 * done separately as well. 7555 * 7556 * So that leaves us with 7557 * 7558 * 1) rsv - for the truncate reservation, which we will steal from the 7559 * transaction reservation. 7560 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7561 * updating the inode. 7562 */ 7563 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7564 if (!rsv) 7565 return -ENOMEM; 7566 rsv->size = min_size; 7567 rsv->failfast = true; 7568 7569 /* 7570 * 1 for the truncate slack space 7571 * 1 for updating the inode. 7572 */ 7573 trans = btrfs_start_transaction(root, 2); 7574 if (IS_ERR(trans)) { 7575 ret = PTR_ERR(trans); 7576 goto out; 7577 } 7578 7579 /* Migrate the slack space for the truncate to our reserve */ 7580 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7581 min_size, false); 7582 /* 7583 * We have reserved 2 metadata units when we started the transaction and 7584 * min_size matches 1 unit, so this should never fail, but if it does, 7585 * it's not critical we just fail truncation. 7586 */ 7587 if (WARN_ON(ret)) { 7588 btrfs_end_transaction(trans); 7589 goto out; 7590 } 7591 7592 trans->block_rsv = rsv; 7593 7594 while (1) { 7595 struct extent_state *cached_state = NULL; 7596 const u64 new_size = inode->vfs_inode.i_size; 7597 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7598 7599 control.new_size = new_size; 7600 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7601 /* 7602 * We want to drop from the next block forward in case this new 7603 * size is not block aligned since we will be keeping the last 7604 * block of the extent just the way it is. 7605 */ 7606 btrfs_drop_extent_map_range(inode, 7607 ALIGN(new_size, fs_info->sectorsize), 7608 (u64)-1, false); 7609 7610 ret = btrfs_truncate_inode_items(trans, root, &control); 7611 7612 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7613 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7614 7615 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7616 7617 trans->block_rsv = &fs_info->trans_block_rsv; 7618 if (ret != -ENOSPC && ret != -EAGAIN) 7619 break; 7620 7621 ret = btrfs_update_inode(trans, inode); 7622 if (ret) 7623 break; 7624 7625 btrfs_end_transaction(trans); 7626 btrfs_btree_balance_dirty(fs_info); 7627 7628 trans = btrfs_start_transaction(root, 2); 7629 if (IS_ERR(trans)) { 7630 ret = PTR_ERR(trans); 7631 trans = NULL; 7632 break; 7633 } 7634 7635 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7636 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7637 rsv, min_size, false); 7638 /* 7639 * We have reserved 2 metadata units when we started the 7640 * transaction and min_size matches 1 unit, so this should never 7641 * fail, but if it does, it's not critical we just fail truncation. 7642 */ 7643 if (WARN_ON(ret)) 7644 break; 7645 7646 trans->block_rsv = rsv; 7647 } 7648 7649 /* 7650 * We can't call btrfs_truncate_block inside a trans handle as we could 7651 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7652 * know we've truncated everything except the last little bit, and can 7653 * do btrfs_truncate_block and then update the disk_i_size. 7654 */ 7655 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7656 btrfs_end_transaction(trans); 7657 btrfs_btree_balance_dirty(fs_info); 7658 7659 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7660 if (ret) 7661 goto out; 7662 trans = btrfs_start_transaction(root, 1); 7663 if (IS_ERR(trans)) { 7664 ret = PTR_ERR(trans); 7665 goto out; 7666 } 7667 btrfs_inode_safe_disk_i_size_write(inode, 0); 7668 } 7669 7670 if (trans) { 7671 int ret2; 7672 7673 trans->block_rsv = &fs_info->trans_block_rsv; 7674 ret2 = btrfs_update_inode(trans, inode); 7675 if (ret2 && !ret) 7676 ret = ret2; 7677 7678 ret2 = btrfs_end_transaction(trans); 7679 if (ret2 && !ret) 7680 ret = ret2; 7681 btrfs_btree_balance_dirty(fs_info); 7682 } 7683 out: 7684 btrfs_free_block_rsv(fs_info, rsv); 7685 /* 7686 * So if we truncate and then write and fsync we normally would just 7687 * write the extents that changed, which is a problem if we need to 7688 * first truncate that entire inode. So set this flag so we write out 7689 * all of the extents in the inode to the sync log so we're completely 7690 * safe. 7691 * 7692 * If no extents were dropped or trimmed we don't need to force the next 7693 * fsync to truncate all the inode's items from the log and re-log them 7694 * all. This means the truncate operation did not change the file size, 7695 * or changed it to a smaller size but there was only an implicit hole 7696 * between the old i_size and the new i_size, and there were no prealloc 7697 * extents beyond i_size to drop. 7698 */ 7699 if (control.extents_found > 0) 7700 btrfs_set_inode_full_sync(inode); 7701 7702 return ret; 7703 } 7704 7705 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7706 struct inode *dir) 7707 { 7708 struct inode *inode; 7709 7710 inode = new_inode(dir->i_sb); 7711 if (inode) { 7712 /* 7713 * Subvolumes don't inherit the sgid bit or the parent's gid if 7714 * the parent's sgid bit is set. This is probably a bug. 7715 */ 7716 inode_init_owner(idmap, inode, NULL, 7717 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7718 inode->i_op = &btrfs_dir_inode_operations; 7719 inode->i_fop = &btrfs_dir_file_operations; 7720 } 7721 return inode; 7722 } 7723 7724 struct inode *btrfs_alloc_inode(struct super_block *sb) 7725 { 7726 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7727 struct btrfs_inode *ei; 7728 struct inode *inode; 7729 7730 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7731 if (!ei) 7732 return NULL; 7733 7734 ei->root = NULL; 7735 ei->generation = 0; 7736 ei->last_trans = 0; 7737 ei->last_sub_trans = 0; 7738 ei->logged_trans = 0; 7739 ei->delalloc_bytes = 0; 7740 ei->new_delalloc_bytes = 0; 7741 ei->defrag_bytes = 0; 7742 ei->disk_i_size = 0; 7743 ei->flags = 0; 7744 ei->ro_flags = 0; 7745 /* 7746 * ->index_cnt will be properly initialized later when creating a new 7747 * inode (btrfs_create_new_inode()) or when reading an existing inode 7748 * from disk (btrfs_read_locked_inode()). 7749 */ 7750 ei->csum_bytes = 0; 7751 ei->dir_index = 0; 7752 ei->last_unlink_trans = 0; 7753 ei->last_reflink_trans = 0; 7754 ei->last_log_commit = 0; 7755 7756 spin_lock_init(&ei->lock); 7757 ei->outstanding_extents = 0; 7758 if (sb->s_magic != BTRFS_TEST_MAGIC) 7759 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7760 BTRFS_BLOCK_RSV_DELALLOC); 7761 ei->runtime_flags = 0; 7762 ei->prop_compress = BTRFS_COMPRESS_NONE; 7763 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7764 7765 ei->delayed_node = NULL; 7766 7767 ei->i_otime_sec = 0; 7768 ei->i_otime_nsec = 0; 7769 7770 inode = &ei->vfs_inode; 7771 extent_map_tree_init(&ei->extent_tree); 7772 7773 /* This io tree sets the valid inode. */ 7774 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7775 ei->io_tree.inode = ei; 7776 7777 ei->file_extent_tree = NULL; 7778 7779 mutex_init(&ei->log_mutex); 7780 spin_lock_init(&ei->ordered_tree_lock); 7781 ei->ordered_tree = RB_ROOT; 7782 ei->ordered_tree_last = NULL; 7783 INIT_LIST_HEAD(&ei->delalloc_inodes); 7784 INIT_LIST_HEAD(&ei->delayed_iput); 7785 init_rwsem(&ei->i_mmap_lock); 7786 7787 return inode; 7788 } 7789 7790 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7791 void btrfs_test_destroy_inode(struct inode *inode) 7792 { 7793 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7794 kfree(BTRFS_I(inode)->file_extent_tree); 7795 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7796 } 7797 #endif 7798 7799 void btrfs_free_inode(struct inode *inode) 7800 { 7801 kfree(BTRFS_I(inode)->file_extent_tree); 7802 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7803 } 7804 7805 void btrfs_destroy_inode(struct inode *vfs_inode) 7806 { 7807 struct btrfs_ordered_extent *ordered; 7808 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7809 struct btrfs_root *root = inode->root; 7810 bool freespace_inode; 7811 7812 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7813 WARN_ON(vfs_inode->i_data.nrpages); 7814 WARN_ON(inode->block_rsv.reserved); 7815 WARN_ON(inode->block_rsv.size); 7816 WARN_ON(inode->outstanding_extents); 7817 if (!S_ISDIR(vfs_inode->i_mode)) { 7818 WARN_ON(inode->delalloc_bytes); 7819 WARN_ON(inode->new_delalloc_bytes); 7820 WARN_ON(inode->csum_bytes); 7821 } 7822 if (!root || !btrfs_is_data_reloc_root(root)) 7823 WARN_ON(inode->defrag_bytes); 7824 7825 /* 7826 * This can happen where we create an inode, but somebody else also 7827 * created the same inode and we need to destroy the one we already 7828 * created. 7829 */ 7830 if (!root) 7831 return; 7832 7833 /* 7834 * If this is a free space inode do not take the ordered extents lockdep 7835 * map. 7836 */ 7837 freespace_inode = btrfs_is_free_space_inode(inode); 7838 7839 while (1) { 7840 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7841 if (!ordered) 7842 break; 7843 else { 7844 btrfs_err(root->fs_info, 7845 "found ordered extent %llu %llu on inode cleanup", 7846 ordered->file_offset, ordered->num_bytes); 7847 7848 if (!freespace_inode) 7849 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7850 7851 btrfs_remove_ordered_extent(inode, ordered); 7852 btrfs_put_ordered_extent(ordered); 7853 btrfs_put_ordered_extent(ordered); 7854 } 7855 } 7856 btrfs_qgroup_check_reserved_leak(inode); 7857 btrfs_del_inode_from_root(inode); 7858 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7859 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7860 btrfs_put_root(inode->root); 7861 } 7862 7863 int btrfs_drop_inode(struct inode *inode) 7864 { 7865 struct btrfs_root *root = BTRFS_I(inode)->root; 7866 7867 if (root == NULL) 7868 return 1; 7869 7870 /* the snap/subvol tree is on deleting */ 7871 if (btrfs_root_refs(&root->root_item) == 0) 7872 return 1; 7873 else 7874 return generic_drop_inode(inode); 7875 } 7876 7877 static void init_once(void *foo) 7878 { 7879 struct btrfs_inode *ei = foo; 7880 7881 inode_init_once(&ei->vfs_inode); 7882 } 7883 7884 void __cold btrfs_destroy_cachep(void) 7885 { 7886 /* 7887 * Make sure all delayed rcu free inodes are flushed before we 7888 * destroy cache. 7889 */ 7890 rcu_barrier(); 7891 kmem_cache_destroy(btrfs_inode_cachep); 7892 } 7893 7894 int __init btrfs_init_cachep(void) 7895 { 7896 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7897 sizeof(struct btrfs_inode), 0, 7898 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7899 init_once); 7900 if (!btrfs_inode_cachep) 7901 return -ENOMEM; 7902 7903 return 0; 7904 } 7905 7906 static int btrfs_getattr(struct mnt_idmap *idmap, 7907 const struct path *path, struct kstat *stat, 7908 u32 request_mask, unsigned int flags) 7909 { 7910 u64 delalloc_bytes; 7911 u64 inode_bytes; 7912 struct inode *inode = d_inode(path->dentry); 7913 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7914 u32 bi_flags = BTRFS_I(inode)->flags; 7915 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7916 7917 stat->result_mask |= STATX_BTIME; 7918 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7919 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7920 if (bi_flags & BTRFS_INODE_APPEND) 7921 stat->attributes |= STATX_ATTR_APPEND; 7922 if (bi_flags & BTRFS_INODE_COMPRESS) 7923 stat->attributes |= STATX_ATTR_COMPRESSED; 7924 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7925 stat->attributes |= STATX_ATTR_IMMUTABLE; 7926 if (bi_flags & BTRFS_INODE_NODUMP) 7927 stat->attributes |= STATX_ATTR_NODUMP; 7928 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7929 stat->attributes |= STATX_ATTR_VERITY; 7930 7931 stat->attributes_mask |= (STATX_ATTR_APPEND | 7932 STATX_ATTR_COMPRESSED | 7933 STATX_ATTR_IMMUTABLE | 7934 STATX_ATTR_NODUMP); 7935 7936 generic_fillattr(idmap, request_mask, inode, stat); 7937 stat->dev = BTRFS_I(inode)->root->anon_dev; 7938 7939 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7940 stat->result_mask |= STATX_SUBVOL; 7941 7942 spin_lock(&BTRFS_I(inode)->lock); 7943 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7944 inode_bytes = inode_get_bytes(inode); 7945 spin_unlock(&BTRFS_I(inode)->lock); 7946 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7947 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7948 return 0; 7949 } 7950 7951 static int btrfs_rename_exchange(struct inode *old_dir, 7952 struct dentry *old_dentry, 7953 struct inode *new_dir, 7954 struct dentry *new_dentry) 7955 { 7956 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7957 struct btrfs_trans_handle *trans; 7958 unsigned int trans_num_items; 7959 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7960 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7961 struct inode *new_inode = new_dentry->d_inode; 7962 struct inode *old_inode = old_dentry->d_inode; 7963 struct btrfs_rename_ctx old_rename_ctx; 7964 struct btrfs_rename_ctx new_rename_ctx; 7965 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7966 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7967 u64 old_idx = 0; 7968 u64 new_idx = 0; 7969 int ret; 7970 int ret2; 7971 bool need_abort = false; 7972 struct fscrypt_name old_fname, new_fname; 7973 struct fscrypt_str *old_name, *new_name; 7974 7975 /* 7976 * For non-subvolumes allow exchange only within one subvolume, in the 7977 * same inode namespace. Two subvolumes (represented as directory) can 7978 * be exchanged as they're a logical link and have a fixed inode number. 7979 */ 7980 if (root != dest && 7981 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7982 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7983 return -EXDEV; 7984 7985 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7986 if (ret) 7987 return ret; 7988 7989 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7990 if (ret) { 7991 fscrypt_free_filename(&old_fname); 7992 return ret; 7993 } 7994 7995 old_name = &old_fname.disk_name; 7996 new_name = &new_fname.disk_name; 7997 7998 /* close the race window with snapshot create/destroy ioctl */ 7999 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8000 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8001 down_read(&fs_info->subvol_sem); 8002 8003 /* 8004 * For each inode: 8005 * 1 to remove old dir item 8006 * 1 to remove old dir index 8007 * 1 to add new dir item 8008 * 1 to add new dir index 8009 * 1 to update parent inode 8010 * 8011 * If the parents are the same, we only need to account for one 8012 */ 8013 trans_num_items = (old_dir == new_dir ? 9 : 10); 8014 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8015 /* 8016 * 1 to remove old root ref 8017 * 1 to remove old root backref 8018 * 1 to add new root ref 8019 * 1 to add new root backref 8020 */ 8021 trans_num_items += 4; 8022 } else { 8023 /* 8024 * 1 to update inode item 8025 * 1 to remove old inode ref 8026 * 1 to add new inode ref 8027 */ 8028 trans_num_items += 3; 8029 } 8030 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8031 trans_num_items += 4; 8032 else 8033 trans_num_items += 3; 8034 trans = btrfs_start_transaction(root, trans_num_items); 8035 if (IS_ERR(trans)) { 8036 ret = PTR_ERR(trans); 8037 goto out_notrans; 8038 } 8039 8040 if (dest != root) { 8041 ret = btrfs_record_root_in_trans(trans, dest); 8042 if (ret) 8043 goto out_fail; 8044 } 8045 8046 /* 8047 * We need to find a free sequence number both in the source and 8048 * in the destination directory for the exchange. 8049 */ 8050 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8051 if (ret) 8052 goto out_fail; 8053 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8054 if (ret) 8055 goto out_fail; 8056 8057 BTRFS_I(old_inode)->dir_index = 0ULL; 8058 BTRFS_I(new_inode)->dir_index = 0ULL; 8059 8060 /* Reference for the source. */ 8061 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8062 /* force full log commit if subvolume involved. */ 8063 btrfs_set_log_full_commit(trans); 8064 } else { 8065 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8066 btrfs_ino(BTRFS_I(new_dir)), 8067 old_idx); 8068 if (ret) 8069 goto out_fail; 8070 need_abort = true; 8071 } 8072 8073 /* And now for the dest. */ 8074 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8075 /* force full log commit if subvolume involved. */ 8076 btrfs_set_log_full_commit(trans); 8077 } else { 8078 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8079 btrfs_ino(BTRFS_I(old_dir)), 8080 new_idx); 8081 if (ret) { 8082 if (need_abort) 8083 btrfs_abort_transaction(trans, ret); 8084 goto out_fail; 8085 } 8086 } 8087 8088 /* Update inode version and ctime/mtime. */ 8089 inode_inc_iversion(old_dir); 8090 inode_inc_iversion(new_dir); 8091 inode_inc_iversion(old_inode); 8092 inode_inc_iversion(new_inode); 8093 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8094 8095 if (old_dentry->d_parent != new_dentry->d_parent) { 8096 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8097 BTRFS_I(old_inode), true); 8098 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8099 BTRFS_I(new_inode), true); 8100 } 8101 8102 /* src is a subvolume */ 8103 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8104 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8105 if (ret) { 8106 btrfs_abort_transaction(trans, ret); 8107 goto out_fail; 8108 } 8109 } else { /* src is an inode */ 8110 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8111 BTRFS_I(old_dentry->d_inode), 8112 old_name, &old_rename_ctx); 8113 if (ret) { 8114 btrfs_abort_transaction(trans, ret); 8115 goto out_fail; 8116 } 8117 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8118 if (ret) { 8119 btrfs_abort_transaction(trans, ret); 8120 goto out_fail; 8121 } 8122 } 8123 8124 /* dest is a subvolume */ 8125 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8126 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8127 if (ret) { 8128 btrfs_abort_transaction(trans, ret); 8129 goto out_fail; 8130 } 8131 } else { /* dest is an inode */ 8132 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8133 BTRFS_I(new_dentry->d_inode), 8134 new_name, &new_rename_ctx); 8135 if (ret) { 8136 btrfs_abort_transaction(trans, ret); 8137 goto out_fail; 8138 } 8139 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8140 if (ret) { 8141 btrfs_abort_transaction(trans, ret); 8142 goto out_fail; 8143 } 8144 } 8145 8146 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8147 new_name, 0, old_idx); 8148 if (ret) { 8149 btrfs_abort_transaction(trans, ret); 8150 goto out_fail; 8151 } 8152 8153 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8154 old_name, 0, new_idx); 8155 if (ret) { 8156 btrfs_abort_transaction(trans, ret); 8157 goto out_fail; 8158 } 8159 8160 if (old_inode->i_nlink == 1) 8161 BTRFS_I(old_inode)->dir_index = old_idx; 8162 if (new_inode->i_nlink == 1) 8163 BTRFS_I(new_inode)->dir_index = new_idx; 8164 8165 /* 8166 * Now pin the logs of the roots. We do it to ensure that no other task 8167 * can sync the logs while we are in progress with the rename, because 8168 * that could result in an inconsistency in case any of the inodes that 8169 * are part of this rename operation were logged before. 8170 */ 8171 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8172 btrfs_pin_log_trans(root); 8173 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8174 btrfs_pin_log_trans(dest); 8175 8176 /* Do the log updates for all inodes. */ 8177 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8178 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8179 old_rename_ctx.index, new_dentry->d_parent); 8180 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8181 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8182 new_rename_ctx.index, old_dentry->d_parent); 8183 8184 /* Now unpin the logs. */ 8185 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8186 btrfs_end_log_trans(root); 8187 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8188 btrfs_end_log_trans(dest); 8189 out_fail: 8190 ret2 = btrfs_end_transaction(trans); 8191 ret = ret ? ret : ret2; 8192 out_notrans: 8193 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8194 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8195 up_read(&fs_info->subvol_sem); 8196 8197 fscrypt_free_filename(&new_fname); 8198 fscrypt_free_filename(&old_fname); 8199 return ret; 8200 } 8201 8202 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8203 struct inode *dir) 8204 { 8205 struct inode *inode; 8206 8207 inode = new_inode(dir->i_sb); 8208 if (inode) { 8209 inode_init_owner(idmap, inode, dir, 8210 S_IFCHR | WHITEOUT_MODE); 8211 inode->i_op = &btrfs_special_inode_operations; 8212 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8213 } 8214 return inode; 8215 } 8216 8217 static int btrfs_rename(struct mnt_idmap *idmap, 8218 struct inode *old_dir, struct dentry *old_dentry, 8219 struct inode *new_dir, struct dentry *new_dentry, 8220 unsigned int flags) 8221 { 8222 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8223 struct btrfs_new_inode_args whiteout_args = { 8224 .dir = old_dir, 8225 .dentry = old_dentry, 8226 }; 8227 struct btrfs_trans_handle *trans; 8228 unsigned int trans_num_items; 8229 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8230 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8231 struct inode *new_inode = d_inode(new_dentry); 8232 struct inode *old_inode = d_inode(old_dentry); 8233 struct btrfs_rename_ctx rename_ctx; 8234 u64 index = 0; 8235 int ret; 8236 int ret2; 8237 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8238 struct fscrypt_name old_fname, new_fname; 8239 8240 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8241 return -EPERM; 8242 8243 /* we only allow rename subvolume link between subvolumes */ 8244 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8245 return -EXDEV; 8246 8247 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8248 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8249 return -ENOTEMPTY; 8250 8251 if (S_ISDIR(old_inode->i_mode) && new_inode && 8252 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8253 return -ENOTEMPTY; 8254 8255 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8256 if (ret) 8257 return ret; 8258 8259 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8260 if (ret) { 8261 fscrypt_free_filename(&old_fname); 8262 return ret; 8263 } 8264 8265 /* check for collisions, even if the name isn't there */ 8266 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8267 if (ret) { 8268 if (ret == -EEXIST) { 8269 /* we shouldn't get 8270 * eexist without a new_inode */ 8271 if (WARN_ON(!new_inode)) { 8272 goto out_fscrypt_names; 8273 } 8274 } else { 8275 /* maybe -EOVERFLOW */ 8276 goto out_fscrypt_names; 8277 } 8278 } 8279 ret = 0; 8280 8281 /* 8282 * we're using rename to replace one file with another. Start IO on it 8283 * now so we don't add too much work to the end of the transaction 8284 */ 8285 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8286 filemap_flush(old_inode->i_mapping); 8287 8288 if (flags & RENAME_WHITEOUT) { 8289 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8290 if (!whiteout_args.inode) { 8291 ret = -ENOMEM; 8292 goto out_fscrypt_names; 8293 } 8294 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8295 if (ret) 8296 goto out_whiteout_inode; 8297 } else { 8298 /* 1 to update the old parent inode. */ 8299 trans_num_items = 1; 8300 } 8301 8302 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8303 /* Close the race window with snapshot create/destroy ioctl */ 8304 down_read(&fs_info->subvol_sem); 8305 /* 8306 * 1 to remove old root ref 8307 * 1 to remove old root backref 8308 * 1 to add new root ref 8309 * 1 to add new root backref 8310 */ 8311 trans_num_items += 4; 8312 } else { 8313 /* 8314 * 1 to update inode 8315 * 1 to remove old inode ref 8316 * 1 to add new inode ref 8317 */ 8318 trans_num_items += 3; 8319 } 8320 /* 8321 * 1 to remove old dir item 8322 * 1 to remove old dir index 8323 * 1 to add new dir item 8324 * 1 to add new dir index 8325 */ 8326 trans_num_items += 4; 8327 /* 1 to update new parent inode if it's not the same as the old parent */ 8328 if (new_dir != old_dir) 8329 trans_num_items++; 8330 if (new_inode) { 8331 /* 8332 * 1 to update inode 8333 * 1 to remove inode ref 8334 * 1 to remove dir item 8335 * 1 to remove dir index 8336 * 1 to possibly add orphan item 8337 */ 8338 trans_num_items += 5; 8339 } 8340 trans = btrfs_start_transaction(root, trans_num_items); 8341 if (IS_ERR(trans)) { 8342 ret = PTR_ERR(trans); 8343 goto out_notrans; 8344 } 8345 8346 if (dest != root) { 8347 ret = btrfs_record_root_in_trans(trans, dest); 8348 if (ret) 8349 goto out_fail; 8350 } 8351 8352 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8353 if (ret) 8354 goto out_fail; 8355 8356 BTRFS_I(old_inode)->dir_index = 0ULL; 8357 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8358 /* force full log commit if subvolume involved. */ 8359 btrfs_set_log_full_commit(trans); 8360 } else { 8361 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8362 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8363 index); 8364 if (ret) 8365 goto out_fail; 8366 } 8367 8368 inode_inc_iversion(old_dir); 8369 inode_inc_iversion(new_dir); 8370 inode_inc_iversion(old_inode); 8371 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8372 8373 if (old_dentry->d_parent != new_dentry->d_parent) 8374 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8375 BTRFS_I(old_inode), true); 8376 8377 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8378 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8379 if (ret) { 8380 btrfs_abort_transaction(trans, ret); 8381 goto out_fail; 8382 } 8383 } else { 8384 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8385 BTRFS_I(d_inode(old_dentry)), 8386 &old_fname.disk_name, &rename_ctx); 8387 if (ret) { 8388 btrfs_abort_transaction(trans, ret); 8389 goto out_fail; 8390 } 8391 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8392 if (ret) { 8393 btrfs_abort_transaction(trans, ret); 8394 goto out_fail; 8395 } 8396 } 8397 8398 if (new_inode) { 8399 inode_inc_iversion(new_inode); 8400 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8401 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8402 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8403 if (ret) { 8404 btrfs_abort_transaction(trans, ret); 8405 goto out_fail; 8406 } 8407 BUG_ON(new_inode->i_nlink == 0); 8408 } else { 8409 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8410 BTRFS_I(d_inode(new_dentry)), 8411 &new_fname.disk_name); 8412 if (ret) { 8413 btrfs_abort_transaction(trans, ret); 8414 goto out_fail; 8415 } 8416 } 8417 if (new_inode->i_nlink == 0) { 8418 ret = btrfs_orphan_add(trans, 8419 BTRFS_I(d_inode(new_dentry))); 8420 if (ret) { 8421 btrfs_abort_transaction(trans, ret); 8422 goto out_fail; 8423 } 8424 } 8425 } 8426 8427 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8428 &new_fname.disk_name, 0, index); 8429 if (ret) { 8430 btrfs_abort_transaction(trans, ret); 8431 goto out_fail; 8432 } 8433 8434 if (old_inode->i_nlink == 1) 8435 BTRFS_I(old_inode)->dir_index = index; 8436 8437 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8438 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8439 rename_ctx.index, new_dentry->d_parent); 8440 8441 if (flags & RENAME_WHITEOUT) { 8442 ret = btrfs_create_new_inode(trans, &whiteout_args); 8443 if (ret) { 8444 btrfs_abort_transaction(trans, ret); 8445 goto out_fail; 8446 } else { 8447 unlock_new_inode(whiteout_args.inode); 8448 iput(whiteout_args.inode); 8449 whiteout_args.inode = NULL; 8450 } 8451 } 8452 out_fail: 8453 ret2 = btrfs_end_transaction(trans); 8454 ret = ret ? ret : ret2; 8455 out_notrans: 8456 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8457 up_read(&fs_info->subvol_sem); 8458 if (flags & RENAME_WHITEOUT) 8459 btrfs_new_inode_args_destroy(&whiteout_args); 8460 out_whiteout_inode: 8461 if (flags & RENAME_WHITEOUT) 8462 iput(whiteout_args.inode); 8463 out_fscrypt_names: 8464 fscrypt_free_filename(&old_fname); 8465 fscrypt_free_filename(&new_fname); 8466 return ret; 8467 } 8468 8469 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8470 struct dentry *old_dentry, struct inode *new_dir, 8471 struct dentry *new_dentry, unsigned int flags) 8472 { 8473 int ret; 8474 8475 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8476 return -EINVAL; 8477 8478 if (flags & RENAME_EXCHANGE) 8479 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8480 new_dentry); 8481 else 8482 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8483 new_dentry, flags); 8484 8485 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8486 8487 return ret; 8488 } 8489 8490 struct btrfs_delalloc_work { 8491 struct inode *inode; 8492 struct completion completion; 8493 struct list_head list; 8494 struct btrfs_work work; 8495 }; 8496 8497 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8498 { 8499 struct btrfs_delalloc_work *delalloc_work; 8500 struct inode *inode; 8501 8502 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8503 work); 8504 inode = delalloc_work->inode; 8505 filemap_flush(inode->i_mapping); 8506 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8507 &BTRFS_I(inode)->runtime_flags)) 8508 filemap_flush(inode->i_mapping); 8509 8510 iput(inode); 8511 complete(&delalloc_work->completion); 8512 } 8513 8514 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8515 { 8516 struct btrfs_delalloc_work *work; 8517 8518 work = kmalloc(sizeof(*work), GFP_NOFS); 8519 if (!work) 8520 return NULL; 8521 8522 init_completion(&work->completion); 8523 INIT_LIST_HEAD(&work->list); 8524 work->inode = inode; 8525 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8526 8527 return work; 8528 } 8529 8530 /* 8531 * some fairly slow code that needs optimization. This walks the list 8532 * of all the inodes with pending delalloc and forces them to disk. 8533 */ 8534 static int start_delalloc_inodes(struct btrfs_root *root, 8535 struct writeback_control *wbc, bool snapshot, 8536 bool in_reclaim_context) 8537 { 8538 struct btrfs_delalloc_work *work, *next; 8539 LIST_HEAD(works); 8540 LIST_HEAD(splice); 8541 int ret = 0; 8542 bool full_flush = wbc->nr_to_write == LONG_MAX; 8543 8544 mutex_lock(&root->delalloc_mutex); 8545 spin_lock(&root->delalloc_lock); 8546 list_splice_init(&root->delalloc_inodes, &splice); 8547 while (!list_empty(&splice)) { 8548 struct btrfs_inode *inode; 8549 struct inode *tmp_inode; 8550 8551 inode = list_entry(splice.next, struct btrfs_inode, delalloc_inodes); 8552 8553 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8554 8555 if (in_reclaim_context && 8556 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8557 continue; 8558 8559 tmp_inode = igrab(&inode->vfs_inode); 8560 if (!tmp_inode) { 8561 cond_resched_lock(&root->delalloc_lock); 8562 continue; 8563 } 8564 spin_unlock(&root->delalloc_lock); 8565 8566 if (snapshot) 8567 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8568 if (full_flush) { 8569 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8570 if (!work) { 8571 iput(&inode->vfs_inode); 8572 ret = -ENOMEM; 8573 goto out; 8574 } 8575 list_add_tail(&work->list, &works); 8576 btrfs_queue_work(root->fs_info->flush_workers, 8577 &work->work); 8578 } else { 8579 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8580 btrfs_add_delayed_iput(inode); 8581 if (ret || wbc->nr_to_write <= 0) 8582 goto out; 8583 } 8584 cond_resched(); 8585 spin_lock(&root->delalloc_lock); 8586 } 8587 spin_unlock(&root->delalloc_lock); 8588 8589 out: 8590 list_for_each_entry_safe(work, next, &works, list) { 8591 list_del_init(&work->list); 8592 wait_for_completion(&work->completion); 8593 kfree(work); 8594 } 8595 8596 if (!list_empty(&splice)) { 8597 spin_lock(&root->delalloc_lock); 8598 list_splice_tail(&splice, &root->delalloc_inodes); 8599 spin_unlock(&root->delalloc_lock); 8600 } 8601 mutex_unlock(&root->delalloc_mutex); 8602 return ret; 8603 } 8604 8605 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8606 { 8607 struct writeback_control wbc = { 8608 .nr_to_write = LONG_MAX, 8609 .sync_mode = WB_SYNC_NONE, 8610 .range_start = 0, 8611 .range_end = LLONG_MAX, 8612 }; 8613 struct btrfs_fs_info *fs_info = root->fs_info; 8614 8615 if (BTRFS_FS_ERROR(fs_info)) 8616 return -EROFS; 8617 8618 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8619 } 8620 8621 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8622 bool in_reclaim_context) 8623 { 8624 struct writeback_control wbc = { 8625 .nr_to_write = nr, 8626 .sync_mode = WB_SYNC_NONE, 8627 .range_start = 0, 8628 .range_end = LLONG_MAX, 8629 }; 8630 struct btrfs_root *root; 8631 LIST_HEAD(splice); 8632 int ret; 8633 8634 if (BTRFS_FS_ERROR(fs_info)) 8635 return -EROFS; 8636 8637 mutex_lock(&fs_info->delalloc_root_mutex); 8638 spin_lock(&fs_info->delalloc_root_lock); 8639 list_splice_init(&fs_info->delalloc_roots, &splice); 8640 while (!list_empty(&splice)) { 8641 /* 8642 * Reset nr_to_write here so we know that we're doing a full 8643 * flush. 8644 */ 8645 if (nr == LONG_MAX) 8646 wbc.nr_to_write = LONG_MAX; 8647 8648 root = list_first_entry(&splice, struct btrfs_root, 8649 delalloc_root); 8650 root = btrfs_grab_root(root); 8651 BUG_ON(!root); 8652 list_move_tail(&root->delalloc_root, 8653 &fs_info->delalloc_roots); 8654 spin_unlock(&fs_info->delalloc_root_lock); 8655 8656 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8657 btrfs_put_root(root); 8658 if (ret < 0 || wbc.nr_to_write <= 0) 8659 goto out; 8660 spin_lock(&fs_info->delalloc_root_lock); 8661 } 8662 spin_unlock(&fs_info->delalloc_root_lock); 8663 8664 ret = 0; 8665 out: 8666 if (!list_empty(&splice)) { 8667 spin_lock(&fs_info->delalloc_root_lock); 8668 list_splice_tail(&splice, &fs_info->delalloc_roots); 8669 spin_unlock(&fs_info->delalloc_root_lock); 8670 } 8671 mutex_unlock(&fs_info->delalloc_root_mutex); 8672 return ret; 8673 } 8674 8675 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8676 struct dentry *dentry, const char *symname) 8677 { 8678 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8679 struct btrfs_trans_handle *trans; 8680 struct btrfs_root *root = BTRFS_I(dir)->root; 8681 struct btrfs_path *path; 8682 struct btrfs_key key; 8683 struct inode *inode; 8684 struct btrfs_new_inode_args new_inode_args = { 8685 .dir = dir, 8686 .dentry = dentry, 8687 }; 8688 unsigned int trans_num_items; 8689 int err; 8690 int name_len; 8691 int datasize; 8692 unsigned long ptr; 8693 struct btrfs_file_extent_item *ei; 8694 struct extent_buffer *leaf; 8695 8696 name_len = strlen(symname); 8697 /* 8698 * Symlinks utilize uncompressed inline extent data, which should not 8699 * reach block size. 8700 */ 8701 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8702 name_len >= fs_info->sectorsize) 8703 return -ENAMETOOLONG; 8704 8705 inode = new_inode(dir->i_sb); 8706 if (!inode) 8707 return -ENOMEM; 8708 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8709 inode->i_op = &btrfs_symlink_inode_operations; 8710 inode_nohighmem(inode); 8711 inode->i_mapping->a_ops = &btrfs_aops; 8712 btrfs_i_size_write(BTRFS_I(inode), name_len); 8713 inode_set_bytes(inode, name_len); 8714 8715 new_inode_args.inode = inode; 8716 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8717 if (err) 8718 goto out_inode; 8719 /* 1 additional item for the inline extent */ 8720 trans_num_items++; 8721 8722 trans = btrfs_start_transaction(root, trans_num_items); 8723 if (IS_ERR(trans)) { 8724 err = PTR_ERR(trans); 8725 goto out_new_inode_args; 8726 } 8727 8728 err = btrfs_create_new_inode(trans, &new_inode_args); 8729 if (err) 8730 goto out; 8731 8732 path = btrfs_alloc_path(); 8733 if (!path) { 8734 err = -ENOMEM; 8735 btrfs_abort_transaction(trans, err); 8736 discard_new_inode(inode); 8737 inode = NULL; 8738 goto out; 8739 } 8740 key.objectid = btrfs_ino(BTRFS_I(inode)); 8741 key.type = BTRFS_EXTENT_DATA_KEY; 8742 key.offset = 0; 8743 datasize = btrfs_file_extent_calc_inline_size(name_len); 8744 err = btrfs_insert_empty_item(trans, root, path, &key, 8745 datasize); 8746 if (err) { 8747 btrfs_abort_transaction(trans, err); 8748 btrfs_free_path(path); 8749 discard_new_inode(inode); 8750 inode = NULL; 8751 goto out; 8752 } 8753 leaf = path->nodes[0]; 8754 ei = btrfs_item_ptr(leaf, path->slots[0], 8755 struct btrfs_file_extent_item); 8756 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8757 btrfs_set_file_extent_type(leaf, ei, 8758 BTRFS_FILE_EXTENT_INLINE); 8759 btrfs_set_file_extent_encryption(leaf, ei, 0); 8760 btrfs_set_file_extent_compression(leaf, ei, 0); 8761 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8762 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8763 8764 ptr = btrfs_file_extent_inline_start(ei); 8765 write_extent_buffer(leaf, symname, ptr, name_len); 8766 btrfs_free_path(path); 8767 8768 d_instantiate_new(dentry, inode); 8769 err = 0; 8770 out: 8771 btrfs_end_transaction(trans); 8772 btrfs_btree_balance_dirty(fs_info); 8773 out_new_inode_args: 8774 btrfs_new_inode_args_destroy(&new_inode_args); 8775 out_inode: 8776 if (err) 8777 iput(inode); 8778 return err; 8779 } 8780 8781 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8782 struct btrfs_trans_handle *trans_in, 8783 struct btrfs_inode *inode, 8784 struct btrfs_key *ins, 8785 u64 file_offset) 8786 { 8787 struct btrfs_file_extent_item stack_fi; 8788 struct btrfs_replace_extent_info extent_info; 8789 struct btrfs_trans_handle *trans = trans_in; 8790 struct btrfs_path *path; 8791 u64 start = ins->objectid; 8792 u64 len = ins->offset; 8793 u64 qgroup_released = 0; 8794 int ret; 8795 8796 memset(&stack_fi, 0, sizeof(stack_fi)); 8797 8798 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8799 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8800 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8801 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8802 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8803 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8804 /* Encryption and other encoding is reserved and all 0 */ 8805 8806 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8807 if (ret < 0) 8808 return ERR_PTR(ret); 8809 8810 if (trans) { 8811 ret = insert_reserved_file_extent(trans, inode, 8812 file_offset, &stack_fi, 8813 true, qgroup_released); 8814 if (ret) 8815 goto free_qgroup; 8816 return trans; 8817 } 8818 8819 extent_info.disk_offset = start; 8820 extent_info.disk_len = len; 8821 extent_info.data_offset = 0; 8822 extent_info.data_len = len; 8823 extent_info.file_offset = file_offset; 8824 extent_info.extent_buf = (char *)&stack_fi; 8825 extent_info.is_new_extent = true; 8826 extent_info.update_times = true; 8827 extent_info.qgroup_reserved = qgroup_released; 8828 extent_info.insertions = 0; 8829 8830 path = btrfs_alloc_path(); 8831 if (!path) { 8832 ret = -ENOMEM; 8833 goto free_qgroup; 8834 } 8835 8836 ret = btrfs_replace_file_extents(inode, path, file_offset, 8837 file_offset + len - 1, &extent_info, 8838 &trans); 8839 btrfs_free_path(path); 8840 if (ret) 8841 goto free_qgroup; 8842 return trans; 8843 8844 free_qgroup: 8845 /* 8846 * We have released qgroup data range at the beginning of the function, 8847 * and normally qgroup_released bytes will be freed when committing 8848 * transaction. 8849 * But if we error out early, we have to free what we have released 8850 * or we leak qgroup data reservation. 8851 */ 8852 btrfs_qgroup_free_refroot(inode->root->fs_info, 8853 btrfs_root_id(inode->root), qgroup_released, 8854 BTRFS_QGROUP_RSV_DATA); 8855 return ERR_PTR(ret); 8856 } 8857 8858 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8859 u64 start, u64 num_bytes, u64 min_size, 8860 loff_t actual_len, u64 *alloc_hint, 8861 struct btrfs_trans_handle *trans) 8862 { 8863 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8864 struct extent_map *em; 8865 struct btrfs_root *root = BTRFS_I(inode)->root; 8866 struct btrfs_key ins; 8867 u64 cur_offset = start; 8868 u64 clear_offset = start; 8869 u64 i_size; 8870 u64 cur_bytes; 8871 u64 last_alloc = (u64)-1; 8872 int ret = 0; 8873 bool own_trans = true; 8874 u64 end = start + num_bytes - 1; 8875 8876 if (trans) 8877 own_trans = false; 8878 while (num_bytes > 0) { 8879 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8880 cur_bytes = max(cur_bytes, min_size); 8881 /* 8882 * If we are severely fragmented we could end up with really 8883 * small allocations, so if the allocator is returning small 8884 * chunks lets make its job easier by only searching for those 8885 * sized chunks. 8886 */ 8887 cur_bytes = min(cur_bytes, last_alloc); 8888 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8889 min_size, 0, *alloc_hint, &ins, 1, 0); 8890 if (ret) 8891 break; 8892 8893 /* 8894 * We've reserved this space, and thus converted it from 8895 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8896 * from here on out we will only need to clear our reservation 8897 * for the remaining unreserved area, so advance our 8898 * clear_offset by our extent size. 8899 */ 8900 clear_offset += ins.offset; 8901 8902 last_alloc = ins.offset; 8903 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8904 &ins, cur_offset); 8905 /* 8906 * Now that we inserted the prealloc extent we can finally 8907 * decrement the number of reservations in the block group. 8908 * If we did it before, we could race with relocation and have 8909 * relocation miss the reserved extent, making it fail later. 8910 */ 8911 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8912 if (IS_ERR(trans)) { 8913 ret = PTR_ERR(trans); 8914 btrfs_free_reserved_extent(fs_info, ins.objectid, 8915 ins.offset, 0); 8916 break; 8917 } 8918 8919 em = alloc_extent_map(); 8920 if (!em) { 8921 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8922 cur_offset + ins.offset - 1, false); 8923 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8924 goto next; 8925 } 8926 8927 em->start = cur_offset; 8928 em->len = ins.offset; 8929 em->disk_bytenr = ins.objectid; 8930 em->offset = 0; 8931 em->disk_num_bytes = ins.offset; 8932 em->ram_bytes = ins.offset; 8933 em->flags |= EXTENT_FLAG_PREALLOC; 8934 em->generation = trans->transid; 8935 8936 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8937 free_extent_map(em); 8938 next: 8939 num_bytes -= ins.offset; 8940 cur_offset += ins.offset; 8941 *alloc_hint = ins.objectid + ins.offset; 8942 8943 inode_inc_iversion(inode); 8944 inode_set_ctime_current(inode); 8945 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8946 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8947 (actual_len > inode->i_size) && 8948 (cur_offset > inode->i_size)) { 8949 if (cur_offset > actual_len) 8950 i_size = actual_len; 8951 else 8952 i_size = cur_offset; 8953 i_size_write(inode, i_size); 8954 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8955 } 8956 8957 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8958 8959 if (ret) { 8960 btrfs_abort_transaction(trans, ret); 8961 if (own_trans) 8962 btrfs_end_transaction(trans); 8963 break; 8964 } 8965 8966 if (own_trans) { 8967 btrfs_end_transaction(trans); 8968 trans = NULL; 8969 } 8970 } 8971 if (clear_offset < end) 8972 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8973 end - clear_offset + 1); 8974 return ret; 8975 } 8976 8977 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8978 u64 start, u64 num_bytes, u64 min_size, 8979 loff_t actual_len, u64 *alloc_hint) 8980 { 8981 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8982 min_size, actual_len, alloc_hint, 8983 NULL); 8984 } 8985 8986 int btrfs_prealloc_file_range_trans(struct inode *inode, 8987 struct btrfs_trans_handle *trans, int mode, 8988 u64 start, u64 num_bytes, u64 min_size, 8989 loff_t actual_len, u64 *alloc_hint) 8990 { 8991 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8992 min_size, actual_len, alloc_hint, trans); 8993 } 8994 8995 static int btrfs_permission(struct mnt_idmap *idmap, 8996 struct inode *inode, int mask) 8997 { 8998 struct btrfs_root *root = BTRFS_I(inode)->root; 8999 umode_t mode = inode->i_mode; 9000 9001 if (mask & MAY_WRITE && 9002 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9003 if (btrfs_root_readonly(root)) 9004 return -EROFS; 9005 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9006 return -EACCES; 9007 } 9008 return generic_permission(idmap, inode, mask); 9009 } 9010 9011 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9012 struct file *file, umode_t mode) 9013 { 9014 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9015 struct btrfs_trans_handle *trans; 9016 struct btrfs_root *root = BTRFS_I(dir)->root; 9017 struct inode *inode; 9018 struct btrfs_new_inode_args new_inode_args = { 9019 .dir = dir, 9020 .dentry = file->f_path.dentry, 9021 .orphan = true, 9022 }; 9023 unsigned int trans_num_items; 9024 int ret; 9025 9026 inode = new_inode(dir->i_sb); 9027 if (!inode) 9028 return -ENOMEM; 9029 inode_init_owner(idmap, inode, dir, mode); 9030 inode->i_fop = &btrfs_file_operations; 9031 inode->i_op = &btrfs_file_inode_operations; 9032 inode->i_mapping->a_ops = &btrfs_aops; 9033 9034 new_inode_args.inode = inode; 9035 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9036 if (ret) 9037 goto out_inode; 9038 9039 trans = btrfs_start_transaction(root, trans_num_items); 9040 if (IS_ERR(trans)) { 9041 ret = PTR_ERR(trans); 9042 goto out_new_inode_args; 9043 } 9044 9045 ret = btrfs_create_new_inode(trans, &new_inode_args); 9046 9047 /* 9048 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9049 * set it to 1 because d_tmpfile() will issue a warning if the count is 9050 * 0, through: 9051 * 9052 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9053 */ 9054 set_nlink(inode, 1); 9055 9056 if (!ret) { 9057 d_tmpfile(file, inode); 9058 unlock_new_inode(inode); 9059 mark_inode_dirty(inode); 9060 } 9061 9062 btrfs_end_transaction(trans); 9063 btrfs_btree_balance_dirty(fs_info); 9064 out_new_inode_args: 9065 btrfs_new_inode_args_destroy(&new_inode_args); 9066 out_inode: 9067 if (ret) 9068 iput(inode); 9069 return finish_open_simple(file, ret); 9070 } 9071 9072 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9073 int compress_type) 9074 { 9075 switch (compress_type) { 9076 case BTRFS_COMPRESS_NONE: 9077 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9078 case BTRFS_COMPRESS_ZLIB: 9079 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9080 case BTRFS_COMPRESS_LZO: 9081 /* 9082 * The LZO format depends on the sector size. 64K is the maximum 9083 * sector size that we support. 9084 */ 9085 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9086 return -EINVAL; 9087 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9088 (fs_info->sectorsize_bits - 12); 9089 case BTRFS_COMPRESS_ZSTD: 9090 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9091 default: 9092 return -EUCLEAN; 9093 } 9094 } 9095 9096 static ssize_t btrfs_encoded_read_inline( 9097 struct kiocb *iocb, 9098 struct iov_iter *iter, u64 start, 9099 u64 lockend, 9100 struct extent_state **cached_state, 9101 u64 extent_start, size_t count, 9102 struct btrfs_ioctl_encoded_io_args *encoded, 9103 bool *unlocked) 9104 { 9105 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9106 struct btrfs_root *root = inode->root; 9107 struct btrfs_fs_info *fs_info = root->fs_info; 9108 struct extent_io_tree *io_tree = &inode->io_tree; 9109 struct btrfs_path *path; 9110 struct extent_buffer *leaf; 9111 struct btrfs_file_extent_item *item; 9112 u64 ram_bytes; 9113 unsigned long ptr; 9114 void *tmp; 9115 ssize_t ret; 9116 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9117 9118 path = btrfs_alloc_path(); 9119 if (!path) { 9120 ret = -ENOMEM; 9121 goto out; 9122 } 9123 9124 path->nowait = nowait; 9125 9126 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9127 extent_start, 0); 9128 if (ret) { 9129 if (ret > 0) { 9130 /* The extent item disappeared? */ 9131 ret = -EIO; 9132 } 9133 goto out; 9134 } 9135 leaf = path->nodes[0]; 9136 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9137 9138 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9139 ptr = btrfs_file_extent_inline_start(item); 9140 9141 encoded->len = min_t(u64, extent_start + ram_bytes, 9142 inode->vfs_inode.i_size) - iocb->ki_pos; 9143 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9144 btrfs_file_extent_compression(leaf, item)); 9145 if (ret < 0) 9146 goto out; 9147 encoded->compression = ret; 9148 if (encoded->compression) { 9149 size_t inline_size; 9150 9151 inline_size = btrfs_file_extent_inline_item_len(leaf, 9152 path->slots[0]); 9153 if (inline_size > count) { 9154 ret = -ENOBUFS; 9155 goto out; 9156 } 9157 count = inline_size; 9158 encoded->unencoded_len = ram_bytes; 9159 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9160 } else { 9161 count = min_t(u64, count, encoded->len); 9162 encoded->len = count; 9163 encoded->unencoded_len = count; 9164 ptr += iocb->ki_pos - extent_start; 9165 } 9166 9167 tmp = kmalloc(count, GFP_NOFS); 9168 if (!tmp) { 9169 ret = -ENOMEM; 9170 goto out; 9171 } 9172 read_extent_buffer(leaf, tmp, ptr, count); 9173 btrfs_release_path(path); 9174 unlock_extent(io_tree, start, lockend, cached_state); 9175 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9176 *unlocked = true; 9177 9178 ret = copy_to_iter(tmp, count, iter); 9179 if (ret != count) 9180 ret = -EFAULT; 9181 kfree(tmp); 9182 out: 9183 btrfs_free_path(path); 9184 return ret; 9185 } 9186 9187 struct btrfs_encoded_read_private { 9188 struct completion *sync_reads; 9189 void *uring_ctx; 9190 refcount_t pending_refs; 9191 blk_status_t status; 9192 }; 9193 9194 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9195 { 9196 struct btrfs_encoded_read_private *priv = bbio->private; 9197 9198 if (bbio->bio.bi_status) { 9199 /* 9200 * The memory barrier implied by the refcount_dec_and_test() here 9201 * pairs with the memory barrier implied by the refcount_dec_and_test() 9202 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9203 * this write is observed before the load of status in 9204 * btrfs_encoded_read_regular_fill_pages(). 9205 */ 9206 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9207 } 9208 if (refcount_dec_and_test(&priv->pending_refs)) { 9209 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9210 9211 if (priv->uring_ctx) { 9212 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9213 kfree(priv); 9214 } else { 9215 complete(priv->sync_reads); 9216 } 9217 } 9218 bio_put(&bbio->bio); 9219 } 9220 9221 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9222 u64 disk_bytenr, u64 disk_io_size, 9223 struct page **pages, void *uring_ctx) 9224 { 9225 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9226 struct btrfs_encoded_read_private *priv, sync_priv; 9227 struct completion sync_reads; 9228 unsigned long i = 0; 9229 struct btrfs_bio *bbio; 9230 int ret; 9231 9232 /* 9233 * Fast path for synchronous reads which completes in this call, io_uring 9234 * needs longer time span. 9235 */ 9236 if (uring_ctx) { 9237 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9238 if (!priv) 9239 return -ENOMEM; 9240 } else { 9241 priv = &sync_priv; 9242 init_completion(&sync_reads); 9243 priv->sync_reads = &sync_reads; 9244 } 9245 9246 refcount_set(&priv->pending_refs, 1); 9247 priv->status = 0; 9248 priv->uring_ctx = uring_ctx; 9249 9250 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9251 btrfs_encoded_read_endio, priv); 9252 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9253 bbio->inode = inode; 9254 9255 do { 9256 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9257 9258 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9259 refcount_inc(&priv->pending_refs); 9260 btrfs_submit_bbio(bbio, 0); 9261 9262 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9263 btrfs_encoded_read_endio, priv); 9264 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9265 bbio->inode = inode; 9266 continue; 9267 } 9268 9269 i++; 9270 disk_bytenr += bytes; 9271 disk_io_size -= bytes; 9272 } while (disk_io_size); 9273 9274 refcount_inc(&priv->pending_refs); 9275 btrfs_submit_bbio(bbio, 0); 9276 9277 if (uring_ctx) { 9278 if (refcount_dec_and_test(&priv->pending_refs)) { 9279 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9280 btrfs_uring_read_extent_endio(uring_ctx, ret); 9281 kfree(priv); 9282 return ret; 9283 } 9284 9285 return -EIOCBQUEUED; 9286 } else { 9287 if (!refcount_dec_and_test(&priv->pending_refs)) 9288 wait_for_completion_io(&sync_reads); 9289 /* See btrfs_encoded_read_endio() for ordering. */ 9290 return blk_status_to_errno(READ_ONCE(priv->status)); 9291 } 9292 } 9293 9294 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9295 u64 start, u64 lockend, 9296 struct extent_state **cached_state, 9297 u64 disk_bytenr, u64 disk_io_size, 9298 size_t count, bool compressed, bool *unlocked) 9299 { 9300 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9301 struct extent_io_tree *io_tree = &inode->io_tree; 9302 struct page **pages; 9303 unsigned long nr_pages, i; 9304 u64 cur; 9305 size_t page_offset; 9306 ssize_t ret; 9307 9308 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9309 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9310 if (!pages) 9311 return -ENOMEM; 9312 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9313 if (ret) { 9314 ret = -ENOMEM; 9315 goto out; 9316 } 9317 9318 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9319 disk_io_size, pages, NULL); 9320 if (ret) 9321 goto out; 9322 9323 unlock_extent(io_tree, start, lockend, cached_state); 9324 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9325 *unlocked = true; 9326 9327 if (compressed) { 9328 i = 0; 9329 page_offset = 0; 9330 } else { 9331 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9332 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9333 } 9334 cur = 0; 9335 while (cur < count) { 9336 size_t bytes = min_t(size_t, count - cur, 9337 PAGE_SIZE - page_offset); 9338 9339 if (copy_page_to_iter(pages[i], page_offset, bytes, 9340 iter) != bytes) { 9341 ret = -EFAULT; 9342 goto out; 9343 } 9344 i++; 9345 cur += bytes; 9346 page_offset = 0; 9347 } 9348 ret = count; 9349 out: 9350 for (i = 0; i < nr_pages; i++) { 9351 if (pages[i]) 9352 __free_page(pages[i]); 9353 } 9354 kfree(pages); 9355 return ret; 9356 } 9357 9358 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9359 struct btrfs_ioctl_encoded_io_args *encoded, 9360 struct extent_state **cached_state, 9361 u64 *disk_bytenr, u64 *disk_io_size) 9362 { 9363 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9364 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9365 struct extent_io_tree *io_tree = &inode->io_tree; 9366 ssize_t ret; 9367 size_t count = iov_iter_count(iter); 9368 u64 start, lockend; 9369 struct extent_map *em; 9370 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9371 bool unlocked = false; 9372 9373 file_accessed(iocb->ki_filp); 9374 9375 ret = btrfs_inode_lock(inode, 9376 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9377 if (ret) 9378 return ret; 9379 9380 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9381 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9382 return 0; 9383 } 9384 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9385 /* 9386 * We don't know how long the extent containing iocb->ki_pos is, but if 9387 * it's compressed we know that it won't be longer than this. 9388 */ 9389 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9390 9391 if (nowait) { 9392 struct btrfs_ordered_extent *ordered; 9393 9394 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9395 start, lockend)) { 9396 ret = -EAGAIN; 9397 goto out_unlock_inode; 9398 } 9399 9400 if (!try_lock_extent(io_tree, start, lockend, cached_state)) { 9401 ret = -EAGAIN; 9402 goto out_unlock_inode; 9403 } 9404 9405 ordered = btrfs_lookup_ordered_range(inode, start, 9406 lockend - start + 1); 9407 if (ordered) { 9408 btrfs_put_ordered_extent(ordered); 9409 unlock_extent(io_tree, start, lockend, cached_state); 9410 ret = -EAGAIN; 9411 goto out_unlock_inode; 9412 } 9413 } else { 9414 for (;;) { 9415 struct btrfs_ordered_extent *ordered; 9416 9417 ret = btrfs_wait_ordered_range(inode, start, 9418 lockend - start + 1); 9419 if (ret) 9420 goto out_unlock_inode; 9421 9422 lock_extent(io_tree, start, lockend, cached_state); 9423 ordered = btrfs_lookup_ordered_range(inode, start, 9424 lockend - start + 1); 9425 if (!ordered) 9426 break; 9427 btrfs_put_ordered_extent(ordered); 9428 unlock_extent(io_tree, start, lockend, cached_state); 9429 cond_resched(); 9430 } 9431 } 9432 9433 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9434 if (IS_ERR(em)) { 9435 ret = PTR_ERR(em); 9436 goto out_unlock_extent; 9437 } 9438 9439 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9440 u64 extent_start = em->start; 9441 9442 /* 9443 * For inline extents we get everything we need out of the 9444 * extent item. 9445 */ 9446 free_extent_map(em); 9447 em = NULL; 9448 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9449 cached_state, extent_start, 9450 count, encoded, &unlocked); 9451 goto out_unlock_extent; 9452 } 9453 9454 /* 9455 * We only want to return up to EOF even if the extent extends beyond 9456 * that. 9457 */ 9458 encoded->len = min_t(u64, extent_map_end(em), 9459 inode->vfs_inode.i_size) - iocb->ki_pos; 9460 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9461 (em->flags & EXTENT_FLAG_PREALLOC)) { 9462 *disk_bytenr = EXTENT_MAP_HOLE; 9463 count = min_t(u64, count, encoded->len); 9464 encoded->len = count; 9465 encoded->unencoded_len = count; 9466 } else if (extent_map_is_compressed(em)) { 9467 *disk_bytenr = em->disk_bytenr; 9468 /* 9469 * Bail if the buffer isn't large enough to return the whole 9470 * compressed extent. 9471 */ 9472 if (em->disk_num_bytes > count) { 9473 ret = -ENOBUFS; 9474 goto out_em; 9475 } 9476 *disk_io_size = em->disk_num_bytes; 9477 count = em->disk_num_bytes; 9478 encoded->unencoded_len = em->ram_bytes; 9479 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9480 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9481 extent_map_compression(em)); 9482 if (ret < 0) 9483 goto out_em; 9484 encoded->compression = ret; 9485 } else { 9486 *disk_bytenr = extent_map_block_start(em) + (start - em->start); 9487 if (encoded->len > count) 9488 encoded->len = count; 9489 /* 9490 * Don't read beyond what we locked. This also limits the page 9491 * allocations that we'll do. 9492 */ 9493 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9494 count = start + *disk_io_size - iocb->ki_pos; 9495 encoded->len = count; 9496 encoded->unencoded_len = count; 9497 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9498 } 9499 free_extent_map(em); 9500 em = NULL; 9501 9502 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9503 unlock_extent(io_tree, start, lockend, cached_state); 9504 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9505 unlocked = true; 9506 ret = iov_iter_zero(count, iter); 9507 if (ret != count) 9508 ret = -EFAULT; 9509 } else { 9510 ret = -EIOCBQUEUED; 9511 goto out_unlock_extent; 9512 } 9513 9514 out_em: 9515 free_extent_map(em); 9516 out_unlock_extent: 9517 /* Leave inode and extent locked if we need to do a read. */ 9518 if (!unlocked && ret != -EIOCBQUEUED) 9519 unlock_extent(io_tree, start, lockend, cached_state); 9520 out_unlock_inode: 9521 if (!unlocked && ret != -EIOCBQUEUED) 9522 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9523 return ret; 9524 } 9525 9526 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9527 const struct btrfs_ioctl_encoded_io_args *encoded) 9528 { 9529 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9530 struct btrfs_root *root = inode->root; 9531 struct btrfs_fs_info *fs_info = root->fs_info; 9532 struct extent_io_tree *io_tree = &inode->io_tree; 9533 struct extent_changeset *data_reserved = NULL; 9534 struct extent_state *cached_state = NULL; 9535 struct btrfs_ordered_extent *ordered; 9536 struct btrfs_file_extent file_extent; 9537 int compression; 9538 size_t orig_count; 9539 u64 start, end; 9540 u64 num_bytes, ram_bytes, disk_num_bytes; 9541 unsigned long nr_folios, i; 9542 struct folio **folios; 9543 struct btrfs_key ins; 9544 bool extent_reserved = false; 9545 struct extent_map *em; 9546 ssize_t ret; 9547 9548 switch (encoded->compression) { 9549 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9550 compression = BTRFS_COMPRESS_ZLIB; 9551 break; 9552 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9553 compression = BTRFS_COMPRESS_ZSTD; 9554 break; 9555 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9556 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9557 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9558 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9559 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9560 /* The sector size must match for LZO. */ 9561 if (encoded->compression - 9562 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9563 fs_info->sectorsize_bits) 9564 return -EINVAL; 9565 compression = BTRFS_COMPRESS_LZO; 9566 break; 9567 default: 9568 return -EINVAL; 9569 } 9570 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9571 return -EINVAL; 9572 9573 /* 9574 * Compressed extents should always have checksums, so error out if we 9575 * have a NOCOW file or inode was created while mounted with NODATASUM. 9576 */ 9577 if (inode->flags & BTRFS_INODE_NODATASUM) 9578 return -EINVAL; 9579 9580 orig_count = iov_iter_count(from); 9581 9582 /* The extent size must be sane. */ 9583 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9584 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9585 return -EINVAL; 9586 9587 /* 9588 * The compressed data must be smaller than the decompressed data. 9589 * 9590 * It's of course possible for data to compress to larger or the same 9591 * size, but the buffered I/O path falls back to no compression for such 9592 * data, and we don't want to break any assumptions by creating these 9593 * extents. 9594 * 9595 * Note that this is less strict than the current check we have that the 9596 * compressed data must be at least one sector smaller than the 9597 * decompressed data. We only want to enforce the weaker requirement 9598 * from old kernels that it is at least one byte smaller. 9599 */ 9600 if (orig_count >= encoded->unencoded_len) 9601 return -EINVAL; 9602 9603 /* The extent must start on a sector boundary. */ 9604 start = iocb->ki_pos; 9605 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9606 return -EINVAL; 9607 9608 /* 9609 * The extent must end on a sector boundary. However, we allow a write 9610 * which ends at or extends i_size to have an unaligned length; we round 9611 * up the extent size and set i_size to the unaligned end. 9612 */ 9613 if (start + encoded->len < inode->vfs_inode.i_size && 9614 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9615 return -EINVAL; 9616 9617 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9618 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9619 return -EINVAL; 9620 9621 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9622 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9623 end = start + num_bytes - 1; 9624 9625 /* 9626 * If the extent cannot be inline, the compressed data on disk must be 9627 * sector-aligned. For convenience, we extend it with zeroes if it 9628 * isn't. 9629 */ 9630 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9631 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9632 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9633 if (!folios) 9634 return -ENOMEM; 9635 for (i = 0; i < nr_folios; i++) { 9636 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9637 char *kaddr; 9638 9639 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9640 if (!folios[i]) { 9641 ret = -ENOMEM; 9642 goto out_folios; 9643 } 9644 kaddr = kmap_local_folio(folios[i], 0); 9645 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9646 kunmap_local(kaddr); 9647 ret = -EFAULT; 9648 goto out_folios; 9649 } 9650 if (bytes < PAGE_SIZE) 9651 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9652 kunmap_local(kaddr); 9653 } 9654 9655 for (;;) { 9656 struct btrfs_ordered_extent *ordered; 9657 9658 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9659 if (ret) 9660 goto out_folios; 9661 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9662 start >> PAGE_SHIFT, 9663 end >> PAGE_SHIFT); 9664 if (ret) 9665 goto out_folios; 9666 lock_extent(io_tree, start, end, &cached_state); 9667 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9668 if (!ordered && 9669 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9670 break; 9671 if (ordered) 9672 btrfs_put_ordered_extent(ordered); 9673 unlock_extent(io_tree, start, end, &cached_state); 9674 cond_resched(); 9675 } 9676 9677 /* 9678 * We don't use the higher-level delalloc space functions because our 9679 * num_bytes and disk_num_bytes are different. 9680 */ 9681 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9682 if (ret) 9683 goto out_unlock; 9684 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9685 if (ret) 9686 goto out_free_data_space; 9687 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9688 false); 9689 if (ret) 9690 goto out_qgroup_free_data; 9691 9692 /* Try an inline extent first. */ 9693 if (encoded->unencoded_len == encoded->len && 9694 encoded->unencoded_offset == 0 && 9695 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9696 ret = __cow_file_range_inline(inode, encoded->len, 9697 orig_count, compression, folios[0], 9698 true); 9699 if (ret <= 0) { 9700 if (ret == 0) 9701 ret = orig_count; 9702 goto out_delalloc_release; 9703 } 9704 } 9705 9706 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9707 disk_num_bytes, 0, 0, &ins, 1, 1); 9708 if (ret) 9709 goto out_delalloc_release; 9710 extent_reserved = true; 9711 9712 file_extent.disk_bytenr = ins.objectid; 9713 file_extent.disk_num_bytes = ins.offset; 9714 file_extent.num_bytes = num_bytes; 9715 file_extent.ram_bytes = ram_bytes; 9716 file_extent.offset = encoded->unencoded_offset; 9717 file_extent.compression = compression; 9718 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9719 if (IS_ERR(em)) { 9720 ret = PTR_ERR(em); 9721 goto out_free_reserved; 9722 } 9723 free_extent_map(em); 9724 9725 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9726 (1 << BTRFS_ORDERED_ENCODED) | 9727 (1 << BTRFS_ORDERED_COMPRESSED)); 9728 if (IS_ERR(ordered)) { 9729 btrfs_drop_extent_map_range(inode, start, end, false); 9730 ret = PTR_ERR(ordered); 9731 goto out_free_reserved; 9732 } 9733 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9734 9735 if (start + encoded->len > inode->vfs_inode.i_size) 9736 i_size_write(&inode->vfs_inode, start + encoded->len); 9737 9738 unlock_extent(io_tree, start, end, &cached_state); 9739 9740 btrfs_delalloc_release_extents(inode, num_bytes); 9741 9742 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9743 ret = orig_count; 9744 goto out; 9745 9746 out_free_reserved: 9747 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9748 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9749 out_delalloc_release: 9750 btrfs_delalloc_release_extents(inode, num_bytes); 9751 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9752 out_qgroup_free_data: 9753 if (ret < 0) 9754 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9755 out_free_data_space: 9756 /* 9757 * If btrfs_reserve_extent() succeeded, then we already decremented 9758 * bytes_may_use. 9759 */ 9760 if (!extent_reserved) 9761 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9762 out_unlock: 9763 unlock_extent(io_tree, start, end, &cached_state); 9764 out_folios: 9765 for (i = 0; i < nr_folios; i++) { 9766 if (folios[i]) 9767 folio_put(folios[i]); 9768 } 9769 kvfree(folios); 9770 out: 9771 if (ret >= 0) 9772 iocb->ki_pos += encoded->len; 9773 return ret; 9774 } 9775 9776 #ifdef CONFIG_SWAP 9777 /* 9778 * Add an entry indicating a block group or device which is pinned by a 9779 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9780 * negative errno on failure. 9781 */ 9782 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9783 bool is_block_group) 9784 { 9785 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9786 struct btrfs_swapfile_pin *sp, *entry; 9787 struct rb_node **p; 9788 struct rb_node *parent = NULL; 9789 9790 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9791 if (!sp) 9792 return -ENOMEM; 9793 sp->ptr = ptr; 9794 sp->inode = inode; 9795 sp->is_block_group = is_block_group; 9796 sp->bg_extent_count = 1; 9797 9798 spin_lock(&fs_info->swapfile_pins_lock); 9799 p = &fs_info->swapfile_pins.rb_node; 9800 while (*p) { 9801 parent = *p; 9802 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9803 if (sp->ptr < entry->ptr || 9804 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9805 p = &(*p)->rb_left; 9806 } else if (sp->ptr > entry->ptr || 9807 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9808 p = &(*p)->rb_right; 9809 } else { 9810 if (is_block_group) 9811 entry->bg_extent_count++; 9812 spin_unlock(&fs_info->swapfile_pins_lock); 9813 kfree(sp); 9814 return 1; 9815 } 9816 } 9817 rb_link_node(&sp->node, parent, p); 9818 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9819 spin_unlock(&fs_info->swapfile_pins_lock); 9820 return 0; 9821 } 9822 9823 /* Free all of the entries pinned by this swapfile. */ 9824 static void btrfs_free_swapfile_pins(struct inode *inode) 9825 { 9826 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9827 struct btrfs_swapfile_pin *sp; 9828 struct rb_node *node, *next; 9829 9830 spin_lock(&fs_info->swapfile_pins_lock); 9831 node = rb_first(&fs_info->swapfile_pins); 9832 while (node) { 9833 next = rb_next(node); 9834 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9835 if (sp->inode == inode) { 9836 rb_erase(&sp->node, &fs_info->swapfile_pins); 9837 if (sp->is_block_group) { 9838 btrfs_dec_block_group_swap_extents(sp->ptr, 9839 sp->bg_extent_count); 9840 btrfs_put_block_group(sp->ptr); 9841 } 9842 kfree(sp); 9843 } 9844 node = next; 9845 } 9846 spin_unlock(&fs_info->swapfile_pins_lock); 9847 } 9848 9849 struct btrfs_swap_info { 9850 u64 start; 9851 u64 block_start; 9852 u64 block_len; 9853 u64 lowest_ppage; 9854 u64 highest_ppage; 9855 unsigned long nr_pages; 9856 int nr_extents; 9857 }; 9858 9859 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9860 struct btrfs_swap_info *bsi) 9861 { 9862 unsigned long nr_pages; 9863 unsigned long max_pages; 9864 u64 first_ppage, first_ppage_reported, next_ppage; 9865 int ret; 9866 9867 /* 9868 * Our swapfile may have had its size extended after the swap header was 9869 * written. In that case activating the swapfile should not go beyond 9870 * the max size set in the swap header. 9871 */ 9872 if (bsi->nr_pages >= sis->max) 9873 return 0; 9874 9875 max_pages = sis->max - bsi->nr_pages; 9876 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9877 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9878 9879 if (first_ppage >= next_ppage) 9880 return 0; 9881 nr_pages = next_ppage - first_ppage; 9882 nr_pages = min(nr_pages, max_pages); 9883 9884 first_ppage_reported = first_ppage; 9885 if (bsi->start == 0) 9886 first_ppage_reported++; 9887 if (bsi->lowest_ppage > first_ppage_reported) 9888 bsi->lowest_ppage = first_ppage_reported; 9889 if (bsi->highest_ppage < (next_ppage - 1)) 9890 bsi->highest_ppage = next_ppage - 1; 9891 9892 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9893 if (ret < 0) 9894 return ret; 9895 bsi->nr_extents += ret; 9896 bsi->nr_pages += nr_pages; 9897 return 0; 9898 } 9899 9900 static void btrfs_swap_deactivate(struct file *file) 9901 { 9902 struct inode *inode = file_inode(file); 9903 9904 btrfs_free_swapfile_pins(inode); 9905 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9906 } 9907 9908 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9909 sector_t *span) 9910 { 9911 struct inode *inode = file_inode(file); 9912 struct btrfs_root *root = BTRFS_I(inode)->root; 9913 struct btrfs_fs_info *fs_info = root->fs_info; 9914 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9915 struct extent_state *cached_state = NULL; 9916 struct btrfs_chunk_map *map = NULL; 9917 struct btrfs_device *device = NULL; 9918 struct btrfs_swap_info bsi = { 9919 .lowest_ppage = (sector_t)-1ULL, 9920 }; 9921 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 9922 struct btrfs_path *path = NULL; 9923 int ret = 0; 9924 u64 isize; 9925 u64 prev_extent_end = 0; 9926 9927 /* 9928 * Acquire the inode's mmap lock to prevent races with memory mapped 9929 * writes, as they could happen after we flush delalloc below and before 9930 * we lock the extent range further below. The inode was already locked 9931 * up in the call chain. 9932 */ 9933 btrfs_assert_inode_locked(BTRFS_I(inode)); 9934 down_write(&BTRFS_I(inode)->i_mmap_lock); 9935 9936 /* 9937 * If the swap file was just created, make sure delalloc is done. If the 9938 * file changes again after this, the user is doing something stupid and 9939 * we don't really care. 9940 */ 9941 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9942 if (ret) 9943 goto out_unlock_mmap; 9944 9945 /* 9946 * The inode is locked, so these flags won't change after we check them. 9947 */ 9948 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9949 btrfs_warn(fs_info, "swapfile must not be compressed"); 9950 ret = -EINVAL; 9951 goto out_unlock_mmap; 9952 } 9953 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9954 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9955 ret = -EINVAL; 9956 goto out_unlock_mmap; 9957 } 9958 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9959 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9960 ret = -EINVAL; 9961 goto out_unlock_mmap; 9962 } 9963 9964 path = btrfs_alloc_path(); 9965 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 9966 if (!path || !backref_ctx) { 9967 ret = -ENOMEM; 9968 goto out_unlock_mmap; 9969 } 9970 9971 /* 9972 * Balance or device remove/replace/resize can move stuff around from 9973 * under us. The exclop protection makes sure they aren't running/won't 9974 * run concurrently while we are mapping the swap extents, and 9975 * fs_info->swapfile_pins prevents them from running while the swap 9976 * file is active and moving the extents. Note that this also prevents 9977 * a concurrent device add which isn't actually necessary, but it's not 9978 * really worth the trouble to allow it. 9979 */ 9980 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9981 btrfs_warn(fs_info, 9982 "cannot activate swapfile while exclusive operation is running"); 9983 ret = -EBUSY; 9984 goto out_unlock_mmap; 9985 } 9986 9987 /* 9988 * Prevent snapshot creation while we are activating the swap file. 9989 * We do not want to race with snapshot creation. If snapshot creation 9990 * already started before we bumped nr_swapfiles from 0 to 1 and 9991 * completes before the first write into the swap file after it is 9992 * activated, than that write would fallback to COW. 9993 */ 9994 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9995 btrfs_exclop_finish(fs_info); 9996 btrfs_warn(fs_info, 9997 "cannot activate swapfile because snapshot creation is in progress"); 9998 ret = -EINVAL; 9999 goto out_unlock_mmap; 10000 } 10001 /* 10002 * Snapshots can create extents which require COW even if NODATACOW is 10003 * set. We use this counter to prevent snapshots. We must increment it 10004 * before walking the extents because we don't want a concurrent 10005 * snapshot to run after we've already checked the extents. 10006 * 10007 * It is possible that subvolume is marked for deletion but still not 10008 * removed yet. To prevent this race, we check the root status before 10009 * activating the swapfile. 10010 */ 10011 spin_lock(&root->root_item_lock); 10012 if (btrfs_root_dead(root)) { 10013 spin_unlock(&root->root_item_lock); 10014 10015 btrfs_drew_write_unlock(&root->snapshot_lock); 10016 btrfs_exclop_finish(fs_info); 10017 btrfs_warn(fs_info, 10018 "cannot activate swapfile because subvolume %llu is being deleted", 10019 btrfs_root_id(root)); 10020 ret = -EPERM; 10021 goto out_unlock_mmap; 10022 } 10023 atomic_inc(&root->nr_swapfiles); 10024 spin_unlock(&root->root_item_lock); 10025 10026 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10027 10028 lock_extent(io_tree, 0, isize - 1, &cached_state); 10029 while (prev_extent_end < isize) { 10030 struct btrfs_key key; 10031 struct extent_buffer *leaf; 10032 struct btrfs_file_extent_item *ei; 10033 struct btrfs_block_group *bg; 10034 u64 logical_block_start; 10035 u64 physical_block_start; 10036 u64 extent_gen; 10037 u64 disk_bytenr; 10038 u64 len; 10039 10040 key.objectid = btrfs_ino(BTRFS_I(inode)); 10041 key.type = BTRFS_EXTENT_DATA_KEY; 10042 key.offset = prev_extent_end; 10043 10044 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10045 if (ret < 0) 10046 goto out; 10047 10048 /* 10049 * If key not found it means we have an implicit hole (NO_HOLES 10050 * is enabled). 10051 */ 10052 if (ret > 0) { 10053 btrfs_warn(fs_info, "swapfile must not have holes"); 10054 ret = -EINVAL; 10055 goto out; 10056 } 10057 10058 leaf = path->nodes[0]; 10059 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10060 10061 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10062 /* 10063 * It's unlikely we'll ever actually find ourselves 10064 * here, as a file small enough to fit inline won't be 10065 * big enough to store more than the swap header, but in 10066 * case something changes in the future, let's catch it 10067 * here rather than later. 10068 */ 10069 btrfs_warn(fs_info, "swapfile must not be inline"); 10070 ret = -EINVAL; 10071 goto out; 10072 } 10073 10074 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10075 btrfs_warn(fs_info, "swapfile must not be compressed"); 10076 ret = -EINVAL; 10077 goto out; 10078 } 10079 10080 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10081 if (disk_bytenr == 0) { 10082 btrfs_warn(fs_info, "swapfile must not have holes"); 10083 ret = -EINVAL; 10084 goto out; 10085 } 10086 10087 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10088 extent_gen = btrfs_file_extent_generation(leaf, ei); 10089 prev_extent_end = btrfs_file_extent_end(path); 10090 10091 if (prev_extent_end > isize) 10092 len = isize - key.offset; 10093 else 10094 len = btrfs_file_extent_num_bytes(leaf, ei); 10095 10096 backref_ctx->curr_leaf_bytenr = leaf->start; 10097 10098 /* 10099 * Don't need the path anymore, release to avoid deadlocks when 10100 * calling btrfs_is_data_extent_shared() because when joining a 10101 * transaction it can block waiting for the current one's commit 10102 * which in turn may be trying to lock the same leaf to flush 10103 * delayed items for example. 10104 */ 10105 btrfs_release_path(path); 10106 10107 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10108 extent_gen, backref_ctx); 10109 if (ret < 0) { 10110 goto out; 10111 } else if (ret > 0) { 10112 btrfs_warn(fs_info, 10113 "swapfile must not be copy-on-write"); 10114 ret = -EINVAL; 10115 goto out; 10116 } 10117 10118 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10119 if (IS_ERR(map)) { 10120 ret = PTR_ERR(map); 10121 goto out; 10122 } 10123 10124 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10125 btrfs_warn(fs_info, 10126 "swapfile must have single data profile"); 10127 ret = -EINVAL; 10128 goto out; 10129 } 10130 10131 if (device == NULL) { 10132 device = map->stripes[0].dev; 10133 ret = btrfs_add_swapfile_pin(inode, device, false); 10134 if (ret == 1) 10135 ret = 0; 10136 else if (ret) 10137 goto out; 10138 } else if (device != map->stripes[0].dev) { 10139 btrfs_warn(fs_info, "swapfile must be on one device"); 10140 ret = -EINVAL; 10141 goto out; 10142 } 10143 10144 physical_block_start = (map->stripes[0].physical + 10145 (logical_block_start - map->start)); 10146 btrfs_free_chunk_map(map); 10147 map = NULL; 10148 10149 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10150 if (!bg) { 10151 btrfs_warn(fs_info, 10152 "could not find block group containing swapfile"); 10153 ret = -EINVAL; 10154 goto out; 10155 } 10156 10157 if (!btrfs_inc_block_group_swap_extents(bg)) { 10158 btrfs_warn(fs_info, 10159 "block group for swapfile at %llu is read-only%s", 10160 bg->start, 10161 atomic_read(&fs_info->scrubs_running) ? 10162 " (scrub running)" : ""); 10163 btrfs_put_block_group(bg); 10164 ret = -EINVAL; 10165 goto out; 10166 } 10167 10168 ret = btrfs_add_swapfile_pin(inode, bg, true); 10169 if (ret) { 10170 btrfs_put_block_group(bg); 10171 if (ret == 1) 10172 ret = 0; 10173 else 10174 goto out; 10175 } 10176 10177 if (bsi.block_len && 10178 bsi.block_start + bsi.block_len == physical_block_start) { 10179 bsi.block_len += len; 10180 } else { 10181 if (bsi.block_len) { 10182 ret = btrfs_add_swap_extent(sis, &bsi); 10183 if (ret) 10184 goto out; 10185 } 10186 bsi.start = key.offset; 10187 bsi.block_start = physical_block_start; 10188 bsi.block_len = len; 10189 } 10190 10191 if (fatal_signal_pending(current)) { 10192 ret = -EINTR; 10193 goto out; 10194 } 10195 10196 cond_resched(); 10197 } 10198 10199 if (bsi.block_len) 10200 ret = btrfs_add_swap_extent(sis, &bsi); 10201 10202 out: 10203 if (!IS_ERR_OR_NULL(map)) 10204 btrfs_free_chunk_map(map); 10205 10206 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10207 10208 if (ret) 10209 btrfs_swap_deactivate(file); 10210 10211 btrfs_drew_write_unlock(&root->snapshot_lock); 10212 10213 btrfs_exclop_finish(fs_info); 10214 10215 out_unlock_mmap: 10216 up_write(&BTRFS_I(inode)->i_mmap_lock); 10217 btrfs_free_backref_share_ctx(backref_ctx); 10218 btrfs_free_path(path); 10219 if (ret) 10220 return ret; 10221 10222 if (device) 10223 sis->bdev = device->bdev; 10224 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10225 sis->max = bsi.nr_pages; 10226 sis->pages = bsi.nr_pages - 1; 10227 return bsi.nr_extents; 10228 } 10229 #else 10230 static void btrfs_swap_deactivate(struct file *file) 10231 { 10232 } 10233 10234 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10235 sector_t *span) 10236 { 10237 return -EOPNOTSUPP; 10238 } 10239 #endif 10240 10241 /* 10242 * Update the number of bytes used in the VFS' inode. When we replace extents in 10243 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10244 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10245 * always get a correct value. 10246 */ 10247 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10248 const u64 add_bytes, 10249 const u64 del_bytes) 10250 { 10251 if (add_bytes == del_bytes) 10252 return; 10253 10254 spin_lock(&inode->lock); 10255 if (del_bytes > 0) 10256 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10257 if (add_bytes > 0) 10258 inode_add_bytes(&inode->vfs_inode, add_bytes); 10259 spin_unlock(&inode->lock); 10260 } 10261 10262 /* 10263 * Verify that there are no ordered extents for a given file range. 10264 * 10265 * @inode: The target inode. 10266 * @start: Start offset of the file range, should be sector size aligned. 10267 * @end: End offset (inclusive) of the file range, its value +1 should be 10268 * sector size aligned. 10269 * 10270 * This should typically be used for cases where we locked an inode's VFS lock in 10271 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10272 * we have flushed all delalloc in the range, we have waited for all ordered 10273 * extents in the range to complete and finally we have locked the file range in 10274 * the inode's io_tree. 10275 */ 10276 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10277 { 10278 struct btrfs_root *root = inode->root; 10279 struct btrfs_ordered_extent *ordered; 10280 10281 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10282 return; 10283 10284 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10285 if (ordered) { 10286 btrfs_err(root->fs_info, 10287 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10288 start, end, btrfs_ino(inode), btrfs_root_id(root), 10289 ordered->file_offset, 10290 ordered->file_offset + ordered->num_bytes - 1); 10291 btrfs_put_ordered_extent(ordered); 10292 } 10293 10294 ASSERT(ordered == NULL); 10295 } 10296 10297 /* 10298 * Find the first inode with a minimum number. 10299 * 10300 * @root: The root to search for. 10301 * @min_ino: The minimum inode number. 10302 * 10303 * Find the first inode in the @root with a number >= @min_ino and return it. 10304 * Returns NULL if no such inode found. 10305 */ 10306 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10307 { 10308 struct btrfs_inode *inode; 10309 unsigned long from = min_ino; 10310 10311 xa_lock(&root->inodes); 10312 while (true) { 10313 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10314 if (!inode) 10315 break; 10316 if (igrab(&inode->vfs_inode)) 10317 break; 10318 10319 from = btrfs_ino(inode) + 1; 10320 cond_resched_lock(&root->inodes.xa_lock); 10321 } 10322 xa_unlock(&root->inodes); 10323 10324 return inode; 10325 } 10326 10327 static const struct inode_operations btrfs_dir_inode_operations = { 10328 .getattr = btrfs_getattr, 10329 .lookup = btrfs_lookup, 10330 .create = btrfs_create, 10331 .unlink = btrfs_unlink, 10332 .link = btrfs_link, 10333 .mkdir = btrfs_mkdir, 10334 .rmdir = btrfs_rmdir, 10335 .rename = btrfs_rename2, 10336 .symlink = btrfs_symlink, 10337 .setattr = btrfs_setattr, 10338 .mknod = btrfs_mknod, 10339 .listxattr = btrfs_listxattr, 10340 .permission = btrfs_permission, 10341 .get_inode_acl = btrfs_get_acl, 10342 .set_acl = btrfs_set_acl, 10343 .update_time = btrfs_update_time, 10344 .tmpfile = btrfs_tmpfile, 10345 .fileattr_get = btrfs_fileattr_get, 10346 .fileattr_set = btrfs_fileattr_set, 10347 }; 10348 10349 static const struct file_operations btrfs_dir_file_operations = { 10350 .llseek = btrfs_dir_llseek, 10351 .read = generic_read_dir, 10352 .iterate_shared = btrfs_real_readdir, 10353 .open = btrfs_opendir, 10354 .unlocked_ioctl = btrfs_ioctl, 10355 #ifdef CONFIG_COMPAT 10356 .compat_ioctl = btrfs_compat_ioctl, 10357 #endif 10358 .release = btrfs_release_file, 10359 .fsync = btrfs_sync_file, 10360 }; 10361 10362 /* 10363 * btrfs doesn't support the bmap operation because swapfiles 10364 * use bmap to make a mapping of extents in the file. They assume 10365 * these extents won't change over the life of the file and they 10366 * use the bmap result to do IO directly to the drive. 10367 * 10368 * the btrfs bmap call would return logical addresses that aren't 10369 * suitable for IO and they also will change frequently as COW 10370 * operations happen. So, swapfile + btrfs == corruption. 10371 * 10372 * For now we're avoiding this by dropping bmap. 10373 */ 10374 static const struct address_space_operations btrfs_aops = { 10375 .read_folio = btrfs_read_folio, 10376 .writepages = btrfs_writepages, 10377 .readahead = btrfs_readahead, 10378 .invalidate_folio = btrfs_invalidate_folio, 10379 .launder_folio = btrfs_launder_folio, 10380 .release_folio = btrfs_release_folio, 10381 .migrate_folio = btrfs_migrate_folio, 10382 .dirty_folio = filemap_dirty_folio, 10383 .error_remove_folio = generic_error_remove_folio, 10384 .swap_activate = btrfs_swap_activate, 10385 .swap_deactivate = btrfs_swap_deactivate, 10386 }; 10387 10388 static const struct inode_operations btrfs_file_inode_operations = { 10389 .getattr = btrfs_getattr, 10390 .setattr = btrfs_setattr, 10391 .listxattr = btrfs_listxattr, 10392 .permission = btrfs_permission, 10393 .fiemap = btrfs_fiemap, 10394 .get_inode_acl = btrfs_get_acl, 10395 .set_acl = btrfs_set_acl, 10396 .update_time = btrfs_update_time, 10397 .fileattr_get = btrfs_fileattr_get, 10398 .fileattr_set = btrfs_fileattr_set, 10399 }; 10400 static const struct inode_operations btrfs_special_inode_operations = { 10401 .getattr = btrfs_getattr, 10402 .setattr = btrfs_setattr, 10403 .permission = btrfs_permission, 10404 .listxattr = btrfs_listxattr, 10405 .get_inode_acl = btrfs_get_acl, 10406 .set_acl = btrfs_set_acl, 10407 .update_time = btrfs_update_time, 10408 }; 10409 static const struct inode_operations btrfs_symlink_inode_operations = { 10410 .get_link = page_get_link, 10411 .getattr = btrfs_getattr, 10412 .setattr = btrfs_setattr, 10413 .permission = btrfs_permission, 10414 .listxattr = btrfs_listxattr, 10415 .update_time = btrfs_update_time, 10416 }; 10417 10418 const struct dentry_operations btrfs_dentry_operations = { 10419 .d_delete = btrfs_dentry_delete, 10420 }; 10421