1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 struct folio *locked_folio, 397 u64 offset, u64 bytes) 398 { 399 unsigned long index = offset >> PAGE_SHIFT; 400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 401 u64 page_start = 0, page_end = 0; 402 struct folio *folio; 403 404 if (locked_folio) { 405 page_start = folio_pos(locked_folio); 406 page_end = page_start + folio_size(locked_folio) - 1; 407 } 408 409 while (index <= end_index) { 410 /* 411 * For locked page, we will call btrfs_mark_ordered_io_finished 412 * through btrfs_mark_ordered_io_finished() on it 413 * in run_delalloc_range() for the error handling, which will 414 * clear page Ordered and run the ordered extent accounting. 415 * 416 * Here we can't just clear the Ordered bit, or 417 * btrfs_mark_ordered_io_finished() would skip the accounting 418 * for the page range, and the ordered extent will never finish. 419 */ 420 if (locked_folio && index == (page_start >> PAGE_SHIFT)) { 421 index++; 422 continue; 423 } 424 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 425 index++; 426 if (IS_ERR(folio)) 427 continue; 428 429 /* 430 * Here we just clear all Ordered bits for every page in the 431 * range, then btrfs_mark_ordered_io_finished() will handle 432 * the ordered extent accounting for the range. 433 */ 434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 435 offset, bytes); 436 folio_put(folio); 437 } 438 439 if (locked_folio) { 440 /* The locked page covers the full range, nothing needs to be done */ 441 if (bytes + offset <= page_start + folio_size(locked_folio)) 442 return; 443 /* 444 * In case this page belongs to the delalloc range being 445 * instantiated then skip it, since the first page of a range is 446 * going to be properly cleaned up by the caller of 447 * run_delalloc_range 448 */ 449 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 450 bytes = offset + bytes - folio_pos(locked_folio) - 451 folio_size(locked_folio); 452 offset = folio_pos(locked_folio) + folio_size(locked_folio); 453 } 454 } 455 456 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 457 } 458 459 static int btrfs_dirty_inode(struct btrfs_inode *inode); 460 461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 462 struct btrfs_new_inode_args *args) 463 { 464 int err; 465 466 if (args->default_acl) { 467 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 468 ACL_TYPE_DEFAULT); 469 if (err) 470 return err; 471 } 472 if (args->acl) { 473 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 474 if (err) 475 return err; 476 } 477 if (!args->default_acl && !args->acl) 478 cache_no_acl(args->inode); 479 return btrfs_xattr_security_init(trans, args->inode, args->dir, 480 &args->dentry->d_name); 481 } 482 483 /* 484 * this does all the hard work for inserting an inline extent into 485 * the btree. The caller should have done a btrfs_drop_extents so that 486 * no overlapping inline items exist in the btree 487 */ 488 static int insert_inline_extent(struct btrfs_trans_handle *trans, 489 struct btrfs_path *path, 490 struct btrfs_inode *inode, bool extent_inserted, 491 size_t size, size_t compressed_size, 492 int compress_type, 493 struct folio *compressed_folio, 494 bool update_i_size) 495 { 496 struct btrfs_root *root = inode->root; 497 struct extent_buffer *leaf; 498 const u32 sectorsize = trans->fs_info->sectorsize; 499 char *kaddr; 500 unsigned long ptr; 501 struct btrfs_file_extent_item *ei; 502 int ret; 503 size_t cur_size = size; 504 u64 i_size; 505 506 /* 507 * The decompressed size must still be no larger than a sector. Under 508 * heavy race, we can have size == 0 passed in, but that shouldn't be a 509 * big deal and we can continue the insertion. 510 */ 511 ASSERT(size <= sectorsize); 512 513 /* 514 * The compressed size also needs to be no larger than a sector. 515 * That's also why we only need one page as the parameter. 516 */ 517 if (compressed_folio) 518 ASSERT(compressed_size <= sectorsize); 519 else 520 ASSERT(compressed_size == 0); 521 522 if (compressed_size && compressed_folio) 523 cur_size = compressed_size; 524 525 if (!extent_inserted) { 526 struct btrfs_key key; 527 size_t datasize; 528 529 key.objectid = btrfs_ino(inode); 530 key.offset = 0; 531 key.type = BTRFS_EXTENT_DATA_KEY; 532 533 datasize = btrfs_file_extent_calc_inline_size(cur_size); 534 ret = btrfs_insert_empty_item(trans, root, path, &key, 535 datasize); 536 if (ret) 537 goto fail; 538 } 539 leaf = path->nodes[0]; 540 ei = btrfs_item_ptr(leaf, path->slots[0], 541 struct btrfs_file_extent_item); 542 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 544 btrfs_set_file_extent_encryption(leaf, ei, 0); 545 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 546 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 547 ptr = btrfs_file_extent_inline_start(ei); 548 549 if (compress_type != BTRFS_COMPRESS_NONE) { 550 kaddr = kmap_local_folio(compressed_folio, 0); 551 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 552 kunmap_local(kaddr); 553 554 btrfs_set_file_extent_compression(leaf, ei, 555 compress_type); 556 } else { 557 struct folio *folio; 558 559 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 560 ASSERT(!IS_ERR(folio)); 561 btrfs_set_file_extent_compression(leaf, ei, 0); 562 kaddr = kmap_local_folio(folio, 0); 563 write_extent_buffer(leaf, kaddr, ptr, size); 564 kunmap_local(kaddr); 565 folio_put(folio); 566 } 567 btrfs_mark_buffer_dirty(trans, leaf); 568 btrfs_release_path(path); 569 570 /* 571 * We align size to sectorsize for inline extents just for simplicity 572 * sake. 573 */ 574 ret = btrfs_inode_set_file_extent_range(inode, 0, 575 ALIGN(size, root->fs_info->sectorsize)); 576 if (ret) 577 goto fail; 578 579 /* 580 * We're an inline extent, so nobody can extend the file past i_size 581 * without locking a page we already have locked. 582 * 583 * We must do any i_size and inode updates before we unlock the pages. 584 * Otherwise we could end up racing with unlink. 585 */ 586 i_size = i_size_read(&inode->vfs_inode); 587 if (update_i_size && size > i_size) { 588 i_size_write(&inode->vfs_inode, size); 589 i_size = size; 590 } 591 inode->disk_i_size = i_size; 592 593 fail: 594 return ret; 595 } 596 597 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 598 u64 offset, u64 size, 599 size_t compressed_size) 600 { 601 struct btrfs_fs_info *fs_info = inode->root->fs_info; 602 u64 data_len = (compressed_size ?: size); 603 604 /* Inline extents must start at offset 0. */ 605 if (offset != 0) 606 return false; 607 608 /* 609 * Due to the page size limit, for subpage we can only trigger the 610 * writeback for the dirty sectors of page, that means data writeback 611 * is doing more writeback than what we want. 612 * 613 * This is especially unexpected for some call sites like fallocate, 614 * where we only increase i_size after everything is done. 615 * This means we can trigger inline extent even if we didn't want to. 616 * So here we skip inline extent creation completely. 617 */ 618 if (fs_info->sectorsize != PAGE_SIZE) 619 return false; 620 621 /* Inline extents are limited to sectorsize. */ 622 if (size > fs_info->sectorsize) 623 return false; 624 625 /* We cannot exceed the maximum inline data size. */ 626 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 627 return false; 628 629 /* We cannot exceed the user specified max_inline size. */ 630 if (data_len > fs_info->max_inline) 631 return false; 632 633 /* Inline extents must be the entirety of the file. */ 634 if (size < i_size_read(&inode->vfs_inode)) 635 return false; 636 637 return true; 638 } 639 640 /* 641 * conditionally insert an inline extent into the file. This 642 * does the checks required to make sure the data is small enough 643 * to fit as an inline extent. 644 * 645 * If being used directly, you must have already checked we're allowed to cow 646 * the range by getting true from can_cow_file_range_inline(). 647 */ 648 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 649 u64 size, size_t compressed_size, 650 int compress_type, 651 struct folio *compressed_folio, 652 bool update_i_size) 653 { 654 struct btrfs_drop_extents_args drop_args = { 0 }; 655 struct btrfs_root *root = inode->root; 656 struct btrfs_fs_info *fs_info = root->fs_info; 657 struct btrfs_trans_handle *trans; 658 u64 data_len = (compressed_size ?: size); 659 int ret; 660 struct btrfs_path *path; 661 662 path = btrfs_alloc_path(); 663 if (!path) 664 return -ENOMEM; 665 666 trans = btrfs_join_transaction(root); 667 if (IS_ERR(trans)) { 668 btrfs_free_path(path); 669 return PTR_ERR(trans); 670 } 671 trans->block_rsv = &inode->block_rsv; 672 673 drop_args.path = path; 674 drop_args.start = 0; 675 drop_args.end = fs_info->sectorsize; 676 drop_args.drop_cache = true; 677 drop_args.replace_extent = true; 678 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 679 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 680 if (ret) { 681 btrfs_abort_transaction(trans, ret); 682 goto out; 683 } 684 685 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 686 size, compressed_size, compress_type, 687 compressed_folio, update_i_size); 688 if (ret && ret != -ENOSPC) { 689 btrfs_abort_transaction(trans, ret); 690 goto out; 691 } else if (ret == -ENOSPC) { 692 ret = 1; 693 goto out; 694 } 695 696 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 697 ret = btrfs_update_inode(trans, inode); 698 if (ret && ret != -ENOSPC) { 699 btrfs_abort_transaction(trans, ret); 700 goto out; 701 } else if (ret == -ENOSPC) { 702 ret = 1; 703 goto out; 704 } 705 706 btrfs_set_inode_full_sync(inode); 707 out: 708 /* 709 * Don't forget to free the reserved space, as for inlined extent 710 * it won't count as data extent, free them directly here. 711 * And at reserve time, it's always aligned to page size, so 712 * just free one page here. 713 */ 714 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 715 btrfs_free_path(path); 716 btrfs_end_transaction(trans); 717 return ret; 718 } 719 720 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 721 struct folio *locked_folio, 722 u64 offset, u64 end, 723 size_t compressed_size, 724 int compress_type, 725 struct folio *compressed_folio, 726 bool update_i_size) 727 { 728 struct extent_state *cached = NULL; 729 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 730 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 731 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 732 int ret; 733 734 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 735 return 1; 736 737 lock_extent(&inode->io_tree, offset, end, &cached); 738 ret = __cow_file_range_inline(inode, size, compressed_size, 739 compress_type, compressed_folio, 740 update_i_size); 741 if (ret > 0) { 742 unlock_extent(&inode->io_tree, offset, end, &cached); 743 return ret; 744 } 745 746 /* 747 * In the successful case (ret == 0 here), cow_file_range will return 1. 748 * 749 * Quite a bit further up the callstack in extent_writepage(), ret == 1 750 * is treated as a short circuited success and does not unlock the folio, 751 * so we must do it here. 752 * 753 * In the failure case, the locked_folio does get unlocked by 754 * btrfs_folio_end_all_writers, which asserts that it is still locked 755 * at that point, so we must *not* unlock it here. 756 * 757 * The other two callsites in compress_file_range do not have a 758 * locked_folio, so they are not relevant to this logic. 759 */ 760 if (ret == 0) 761 locked_folio = NULL; 762 763 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 764 clear_flags, PAGE_UNLOCK | 765 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 766 return ret; 767 } 768 769 struct async_extent { 770 u64 start; 771 u64 ram_size; 772 u64 compressed_size; 773 struct folio **folios; 774 unsigned long nr_folios; 775 int compress_type; 776 struct list_head list; 777 }; 778 779 struct async_chunk { 780 struct btrfs_inode *inode; 781 struct folio *locked_folio; 782 u64 start; 783 u64 end; 784 blk_opf_t write_flags; 785 struct list_head extents; 786 struct cgroup_subsys_state *blkcg_css; 787 struct btrfs_work work; 788 struct async_cow *async_cow; 789 }; 790 791 struct async_cow { 792 atomic_t num_chunks; 793 struct async_chunk chunks[]; 794 }; 795 796 static noinline int add_async_extent(struct async_chunk *cow, 797 u64 start, u64 ram_size, 798 u64 compressed_size, 799 struct folio **folios, 800 unsigned long nr_folios, 801 int compress_type) 802 { 803 struct async_extent *async_extent; 804 805 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 806 if (!async_extent) 807 return -ENOMEM; 808 async_extent->start = start; 809 async_extent->ram_size = ram_size; 810 async_extent->compressed_size = compressed_size; 811 async_extent->folios = folios; 812 async_extent->nr_folios = nr_folios; 813 async_extent->compress_type = compress_type; 814 list_add_tail(&async_extent->list, &cow->extents); 815 return 0; 816 } 817 818 /* 819 * Check if the inode needs to be submitted to compression, based on mount 820 * options, defragmentation, properties or heuristics. 821 */ 822 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 823 u64 end) 824 { 825 struct btrfs_fs_info *fs_info = inode->root->fs_info; 826 827 if (!btrfs_inode_can_compress(inode)) { 828 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 829 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 830 btrfs_ino(inode)); 831 return 0; 832 } 833 /* 834 * Only enable sector perfect compression for experimental builds. 835 * 836 * This is a big feature change for subpage cases, and can hit 837 * different corner cases, so only limit this feature for 838 * experimental build for now. 839 * 840 * ETA for moving this out of experimental builds is 6.15. 841 */ 842 if (fs_info->sectorsize < PAGE_SIZE && 843 !IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 844 if (!PAGE_ALIGNED(start) || 845 !PAGE_ALIGNED(end + 1)) 846 return 0; 847 } 848 849 /* force compress */ 850 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 851 return 1; 852 /* defrag ioctl */ 853 if (inode->defrag_compress) 854 return 1; 855 /* bad compression ratios */ 856 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 857 return 0; 858 if (btrfs_test_opt(fs_info, COMPRESS) || 859 inode->flags & BTRFS_INODE_COMPRESS || 860 inode->prop_compress) 861 return btrfs_compress_heuristic(inode, start, end); 862 return 0; 863 } 864 865 static inline void inode_should_defrag(struct btrfs_inode *inode, 866 u64 start, u64 end, u64 num_bytes, u32 small_write) 867 { 868 /* If this is a small write inside eof, kick off a defrag */ 869 if (num_bytes < small_write && 870 (start > 0 || end + 1 < inode->disk_i_size)) 871 btrfs_add_inode_defrag(inode, small_write); 872 } 873 874 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 875 { 876 unsigned long end_index = end >> PAGE_SHIFT; 877 struct folio *folio; 878 int ret = 0; 879 880 for (unsigned long index = start >> PAGE_SHIFT; 881 index <= end_index; index++) { 882 folio = filemap_get_folio(inode->i_mapping, index); 883 if (IS_ERR(folio)) { 884 if (!ret) 885 ret = PTR_ERR(folio); 886 continue; 887 } 888 btrfs_folio_clamp_clear_dirty(inode_to_fs_info(inode), folio, start, 889 end + 1 - start); 890 folio_put(folio); 891 } 892 return ret; 893 } 894 895 /* 896 * Work queue call back to started compression on a file and pages. 897 * 898 * This is done inside an ordered work queue, and the compression is spread 899 * across many cpus. The actual IO submission is step two, and the ordered work 900 * queue takes care of making sure that happens in the same order things were 901 * put onto the queue by writepages and friends. 902 * 903 * If this code finds it can't get good compression, it puts an entry onto the 904 * work queue to write the uncompressed bytes. This makes sure that both 905 * compressed inodes and uncompressed inodes are written in the same order that 906 * the flusher thread sent them down. 907 */ 908 static void compress_file_range(struct btrfs_work *work) 909 { 910 struct async_chunk *async_chunk = 911 container_of(work, struct async_chunk, work); 912 struct btrfs_inode *inode = async_chunk->inode; 913 struct btrfs_fs_info *fs_info = inode->root->fs_info; 914 struct address_space *mapping = inode->vfs_inode.i_mapping; 915 u64 blocksize = fs_info->sectorsize; 916 u64 start = async_chunk->start; 917 u64 end = async_chunk->end; 918 u64 actual_end; 919 u64 i_size; 920 int ret = 0; 921 struct folio **folios; 922 unsigned long nr_folios; 923 unsigned long total_compressed = 0; 924 unsigned long total_in = 0; 925 unsigned int poff; 926 int i; 927 int compress_type = fs_info->compress_type; 928 929 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 930 931 /* 932 * We need to call clear_page_dirty_for_io on each page in the range. 933 * Otherwise applications with the file mmap'd can wander in and change 934 * the page contents while we are compressing them. 935 */ 936 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 937 938 /* 939 * All the folios should have been locked thus no failure. 940 * 941 * And even if some folios are missing, btrfs_compress_folios() 942 * would handle them correctly, so here just do an ASSERT() check for 943 * early logic errors. 944 */ 945 ASSERT(ret == 0); 946 947 /* 948 * We need to save i_size before now because it could change in between 949 * us evaluating the size and assigning it. This is because we lock and 950 * unlock the page in truncate and fallocate, and then modify the i_size 951 * later on. 952 * 953 * The barriers are to emulate READ_ONCE, remove that once i_size_read 954 * does that for us. 955 */ 956 barrier(); 957 i_size = i_size_read(&inode->vfs_inode); 958 barrier(); 959 actual_end = min_t(u64, i_size, end + 1); 960 again: 961 folios = NULL; 962 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 963 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 964 965 /* 966 * we don't want to send crud past the end of i_size through 967 * compression, that's just a waste of CPU time. So, if the 968 * end of the file is before the start of our current 969 * requested range of bytes, we bail out to the uncompressed 970 * cleanup code that can deal with all of this. 971 * 972 * It isn't really the fastest way to fix things, but this is a 973 * very uncommon corner. 974 */ 975 if (actual_end <= start) 976 goto cleanup_and_bail_uncompressed; 977 978 total_compressed = actual_end - start; 979 980 /* 981 * Skip compression for a small file range(<=blocksize) that 982 * isn't an inline extent, since it doesn't save disk space at all. 983 */ 984 if (total_compressed <= blocksize && 985 (start > 0 || end + 1 < inode->disk_i_size)) 986 goto cleanup_and_bail_uncompressed; 987 988 total_compressed = min_t(unsigned long, total_compressed, 989 BTRFS_MAX_UNCOMPRESSED); 990 total_in = 0; 991 ret = 0; 992 993 /* 994 * We do compression for mount -o compress and when the inode has not 995 * been flagged as NOCOMPRESS. This flag can change at any time if we 996 * discover bad compression ratios. 997 */ 998 if (!inode_need_compress(inode, start, end)) 999 goto cleanup_and_bail_uncompressed; 1000 1001 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 1002 if (!folios) { 1003 /* 1004 * Memory allocation failure is not a fatal error, we can fall 1005 * back to uncompressed code. 1006 */ 1007 goto cleanup_and_bail_uncompressed; 1008 } 1009 1010 if (inode->defrag_compress) 1011 compress_type = inode->defrag_compress; 1012 else if (inode->prop_compress) 1013 compress_type = inode->prop_compress; 1014 1015 /* Compression level is applied here. */ 1016 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4), 1017 mapping, start, folios, &nr_folios, &total_in, 1018 &total_compressed); 1019 if (ret) 1020 goto mark_incompressible; 1021 1022 /* 1023 * Zero the tail end of the last page, as we might be sending it down 1024 * to disk. 1025 */ 1026 poff = offset_in_page(total_compressed); 1027 if (poff) 1028 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 1029 1030 /* 1031 * Try to create an inline extent. 1032 * 1033 * If we didn't compress the entire range, try to create an uncompressed 1034 * inline extent, else a compressed one. 1035 * 1036 * Check cow_file_range() for why we don't even try to create inline 1037 * extent for the subpage case. 1038 */ 1039 if (total_in < actual_end) 1040 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1041 BTRFS_COMPRESS_NONE, NULL, false); 1042 else 1043 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1044 compress_type, folios[0], false); 1045 if (ret <= 0) { 1046 if (ret < 0) 1047 mapping_set_error(mapping, -EIO); 1048 goto free_pages; 1049 } 1050 1051 /* 1052 * We aren't doing an inline extent. Round the compressed size up to a 1053 * block size boundary so the allocator does sane things. 1054 */ 1055 total_compressed = ALIGN(total_compressed, blocksize); 1056 1057 /* 1058 * One last check to make sure the compression is really a win, compare 1059 * the page count read with the blocks on disk, compression must free at 1060 * least one sector. 1061 */ 1062 total_in = round_up(total_in, fs_info->sectorsize); 1063 if (total_compressed + blocksize > total_in) 1064 goto mark_incompressible; 1065 1066 /* 1067 * The async work queues will take care of doing actual allocation on 1068 * disk for these compressed pages, and will submit the bios. 1069 */ 1070 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1071 nr_folios, compress_type); 1072 BUG_ON(ret); 1073 if (start + total_in < end) { 1074 start += total_in; 1075 cond_resched(); 1076 goto again; 1077 } 1078 return; 1079 1080 mark_incompressible: 1081 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1082 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1083 cleanup_and_bail_uncompressed: 1084 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1085 BTRFS_COMPRESS_NONE); 1086 BUG_ON(ret); 1087 free_pages: 1088 if (folios) { 1089 for (i = 0; i < nr_folios; i++) { 1090 WARN_ON(folios[i]->mapping); 1091 btrfs_free_compr_folio(folios[i]); 1092 } 1093 kfree(folios); 1094 } 1095 } 1096 1097 static void free_async_extent_pages(struct async_extent *async_extent) 1098 { 1099 int i; 1100 1101 if (!async_extent->folios) 1102 return; 1103 1104 for (i = 0; i < async_extent->nr_folios; i++) { 1105 WARN_ON(async_extent->folios[i]->mapping); 1106 btrfs_free_compr_folio(async_extent->folios[i]); 1107 } 1108 kfree(async_extent->folios); 1109 async_extent->nr_folios = 0; 1110 async_extent->folios = NULL; 1111 } 1112 1113 static void submit_uncompressed_range(struct btrfs_inode *inode, 1114 struct async_extent *async_extent, 1115 struct folio *locked_folio) 1116 { 1117 u64 start = async_extent->start; 1118 u64 end = async_extent->start + async_extent->ram_size - 1; 1119 int ret; 1120 struct writeback_control wbc = { 1121 .sync_mode = WB_SYNC_ALL, 1122 .range_start = start, 1123 .range_end = end, 1124 .no_cgroup_owner = 1, 1125 }; 1126 1127 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1128 ret = run_delalloc_cow(inode, locked_folio, start, end, 1129 &wbc, false); 1130 wbc_detach_inode(&wbc); 1131 if (ret < 0) { 1132 btrfs_cleanup_ordered_extents(inode, locked_folio, 1133 start, end - start + 1); 1134 if (locked_folio) { 1135 const u64 page_start = folio_pos(locked_folio); 1136 1137 folio_start_writeback(locked_folio); 1138 folio_end_writeback(locked_folio); 1139 btrfs_mark_ordered_io_finished(inode, locked_folio, 1140 page_start, PAGE_SIZE, 1141 !ret); 1142 mapping_set_error(locked_folio->mapping, ret); 1143 folio_unlock(locked_folio); 1144 } 1145 } 1146 } 1147 1148 static void submit_one_async_extent(struct async_chunk *async_chunk, 1149 struct async_extent *async_extent, 1150 u64 *alloc_hint) 1151 { 1152 struct btrfs_inode *inode = async_chunk->inode; 1153 struct extent_io_tree *io_tree = &inode->io_tree; 1154 struct btrfs_root *root = inode->root; 1155 struct btrfs_fs_info *fs_info = root->fs_info; 1156 struct btrfs_ordered_extent *ordered; 1157 struct btrfs_file_extent file_extent; 1158 struct btrfs_key ins; 1159 struct folio *locked_folio = NULL; 1160 struct extent_state *cached = NULL; 1161 struct extent_map *em; 1162 int ret = 0; 1163 u64 start = async_extent->start; 1164 u64 end = async_extent->start + async_extent->ram_size - 1; 1165 1166 if (async_chunk->blkcg_css) 1167 kthread_associate_blkcg(async_chunk->blkcg_css); 1168 1169 /* 1170 * If async_chunk->locked_folio is in the async_extent range, we need to 1171 * handle it. 1172 */ 1173 if (async_chunk->locked_folio) { 1174 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1175 u64 locked_folio_end = locked_folio_start + 1176 folio_size(async_chunk->locked_folio) - 1; 1177 1178 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1179 locked_folio = async_chunk->locked_folio; 1180 } 1181 1182 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1183 submit_uncompressed_range(inode, async_extent, locked_folio); 1184 goto done; 1185 } 1186 1187 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1188 async_extent->compressed_size, 1189 async_extent->compressed_size, 1190 0, *alloc_hint, &ins, 1, 1); 1191 if (ret) { 1192 /* 1193 * We can't reserve contiguous space for the compressed size. 1194 * Unlikely, but it's possible that we could have enough 1195 * non-contiguous space for the uncompressed size instead. So 1196 * fall back to uncompressed. 1197 */ 1198 submit_uncompressed_range(inode, async_extent, locked_folio); 1199 goto done; 1200 } 1201 1202 lock_extent(io_tree, start, end, &cached); 1203 1204 /* Here we're doing allocation and writeback of the compressed pages */ 1205 file_extent.disk_bytenr = ins.objectid; 1206 file_extent.disk_num_bytes = ins.offset; 1207 file_extent.ram_bytes = async_extent->ram_size; 1208 file_extent.num_bytes = async_extent->ram_size; 1209 file_extent.offset = 0; 1210 file_extent.compression = async_extent->compress_type; 1211 1212 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1213 if (IS_ERR(em)) { 1214 ret = PTR_ERR(em); 1215 goto out_free_reserve; 1216 } 1217 free_extent_map(em); 1218 1219 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1220 1 << BTRFS_ORDERED_COMPRESSED); 1221 if (IS_ERR(ordered)) { 1222 btrfs_drop_extent_map_range(inode, start, end, false); 1223 ret = PTR_ERR(ordered); 1224 goto out_free_reserve; 1225 } 1226 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1227 1228 /* Clear dirty, set writeback and unlock the pages. */ 1229 extent_clear_unlock_delalloc(inode, start, end, 1230 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1231 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1232 btrfs_submit_compressed_write(ordered, 1233 async_extent->folios, /* compressed_folios */ 1234 async_extent->nr_folios, 1235 async_chunk->write_flags, true); 1236 *alloc_hint = ins.objectid + ins.offset; 1237 done: 1238 if (async_chunk->blkcg_css) 1239 kthread_associate_blkcg(NULL); 1240 kfree(async_extent); 1241 return; 1242 1243 out_free_reserve: 1244 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1245 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1246 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1247 extent_clear_unlock_delalloc(inode, start, end, 1248 NULL, &cached, 1249 EXTENT_LOCKED | EXTENT_DELALLOC | 1250 EXTENT_DELALLOC_NEW | 1251 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1252 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1253 PAGE_END_WRITEBACK); 1254 free_async_extent_pages(async_extent); 1255 if (async_chunk->blkcg_css) 1256 kthread_associate_blkcg(NULL); 1257 btrfs_debug(fs_info, 1258 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1259 btrfs_root_id(root), btrfs_ino(inode), start, 1260 async_extent->ram_size, ret); 1261 kfree(async_extent); 1262 } 1263 1264 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1265 u64 num_bytes) 1266 { 1267 struct extent_map_tree *em_tree = &inode->extent_tree; 1268 struct extent_map *em; 1269 u64 alloc_hint = 0; 1270 1271 read_lock(&em_tree->lock); 1272 em = search_extent_mapping(em_tree, start, num_bytes); 1273 if (em) { 1274 /* 1275 * if block start isn't an actual block number then find the 1276 * first block in this inode and use that as a hint. If that 1277 * block is also bogus then just don't worry about it. 1278 */ 1279 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1280 free_extent_map(em); 1281 em = search_extent_mapping(em_tree, 0, 0); 1282 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1283 alloc_hint = extent_map_block_start(em); 1284 if (em) 1285 free_extent_map(em); 1286 } else { 1287 alloc_hint = extent_map_block_start(em); 1288 free_extent_map(em); 1289 } 1290 } 1291 read_unlock(&em_tree->lock); 1292 1293 return alloc_hint; 1294 } 1295 1296 /* 1297 * when extent_io.c finds a delayed allocation range in the file, 1298 * the call backs end up in this code. The basic idea is to 1299 * allocate extents on disk for the range, and create ordered data structs 1300 * in ram to track those extents. 1301 * 1302 * locked_folio is the folio that writepage had locked already. We use 1303 * it to make sure we don't do extra locks or unlocks. 1304 * 1305 * When this function fails, it unlocks all pages except @locked_folio. 1306 * 1307 * When this function successfully creates an inline extent, it returns 1 and 1308 * unlocks all pages including locked_folio and starts I/O on them. 1309 * (In reality inline extents are limited to a single page, so locked_folio is 1310 * the only page handled anyway). 1311 * 1312 * When this function succeed and creates a normal extent, the page locking 1313 * status depends on the passed in flags: 1314 * 1315 * - If @keep_locked is set, all pages are kept locked. 1316 * - Else all pages except for @locked_folio are unlocked. 1317 * 1318 * When a failure happens in the second or later iteration of the 1319 * while-loop, the ordered extents created in previous iterations are kept 1320 * intact. So, the caller must clean them up by calling 1321 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1322 * example. 1323 */ 1324 static noinline int cow_file_range(struct btrfs_inode *inode, 1325 struct folio *locked_folio, u64 start, 1326 u64 end, u64 *done_offset, 1327 bool keep_locked, bool no_inline) 1328 { 1329 struct btrfs_root *root = inode->root; 1330 struct btrfs_fs_info *fs_info = root->fs_info; 1331 struct extent_state *cached = NULL; 1332 u64 alloc_hint = 0; 1333 u64 orig_start = start; 1334 u64 num_bytes; 1335 u64 cur_alloc_size = 0; 1336 u64 min_alloc_size; 1337 u64 blocksize = fs_info->sectorsize; 1338 struct btrfs_key ins; 1339 struct extent_map *em; 1340 unsigned clear_bits; 1341 unsigned long page_ops; 1342 int ret = 0; 1343 1344 if (btrfs_is_free_space_inode(inode)) { 1345 ret = -EINVAL; 1346 goto out_unlock; 1347 } 1348 1349 num_bytes = ALIGN(end - start + 1, blocksize); 1350 num_bytes = max(blocksize, num_bytes); 1351 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1352 1353 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1354 1355 if (!no_inline) { 1356 /* lets try to make an inline extent */ 1357 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1358 BTRFS_COMPRESS_NONE, NULL, false); 1359 if (ret <= 0) { 1360 /* 1361 * We succeeded, return 1 so the caller knows we're done 1362 * with this page and already handled the IO. 1363 * 1364 * If there was an error then cow_file_range_inline() has 1365 * already done the cleanup. 1366 */ 1367 if (ret == 0) 1368 ret = 1; 1369 goto done; 1370 } 1371 } 1372 1373 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1374 1375 /* 1376 * Relocation relies on the relocated extents to have exactly the same 1377 * size as the original extents. Normally writeback for relocation data 1378 * extents follows a NOCOW path because relocation preallocates the 1379 * extents. However, due to an operation such as scrub turning a block 1380 * group to RO mode, it may fallback to COW mode, so we must make sure 1381 * an extent allocated during COW has exactly the requested size and can 1382 * not be split into smaller extents, otherwise relocation breaks and 1383 * fails during the stage where it updates the bytenr of file extent 1384 * items. 1385 */ 1386 if (btrfs_is_data_reloc_root(root)) 1387 min_alloc_size = num_bytes; 1388 else 1389 min_alloc_size = fs_info->sectorsize; 1390 1391 while (num_bytes > 0) { 1392 struct btrfs_ordered_extent *ordered; 1393 struct btrfs_file_extent file_extent; 1394 1395 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1396 min_alloc_size, 0, alloc_hint, 1397 &ins, 1, 1); 1398 if (ret == -EAGAIN) { 1399 /* 1400 * btrfs_reserve_extent only returns -EAGAIN for zoned 1401 * file systems, which is an indication that there are 1402 * no active zones to allocate from at the moment. 1403 * 1404 * If this is the first loop iteration, wait for at 1405 * least one zone to finish before retrying the 1406 * allocation. Otherwise ask the caller to write out 1407 * the already allocated blocks before coming back to 1408 * us, or return -ENOSPC if it can't handle retries. 1409 */ 1410 ASSERT(btrfs_is_zoned(fs_info)); 1411 if (start == orig_start) { 1412 wait_on_bit_io(&inode->root->fs_info->flags, 1413 BTRFS_FS_NEED_ZONE_FINISH, 1414 TASK_UNINTERRUPTIBLE); 1415 continue; 1416 } 1417 if (done_offset) { 1418 *done_offset = start - 1; 1419 return 0; 1420 } 1421 ret = -ENOSPC; 1422 } 1423 if (ret < 0) 1424 goto out_unlock; 1425 cur_alloc_size = ins.offset; 1426 1427 file_extent.disk_bytenr = ins.objectid; 1428 file_extent.disk_num_bytes = ins.offset; 1429 file_extent.num_bytes = ins.offset; 1430 file_extent.ram_bytes = ins.offset; 1431 file_extent.offset = 0; 1432 file_extent.compression = BTRFS_COMPRESS_NONE; 1433 1434 lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1435 &cached); 1436 1437 em = btrfs_create_io_em(inode, start, &file_extent, 1438 BTRFS_ORDERED_REGULAR); 1439 if (IS_ERR(em)) { 1440 unlock_extent(&inode->io_tree, start, 1441 start + cur_alloc_size - 1, &cached); 1442 ret = PTR_ERR(em); 1443 goto out_reserve; 1444 } 1445 free_extent_map(em); 1446 1447 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1448 1 << BTRFS_ORDERED_REGULAR); 1449 if (IS_ERR(ordered)) { 1450 unlock_extent(&inode->io_tree, start, 1451 start + cur_alloc_size - 1, &cached); 1452 ret = PTR_ERR(ordered); 1453 goto out_drop_extent_cache; 1454 } 1455 1456 if (btrfs_is_data_reloc_root(root)) { 1457 ret = btrfs_reloc_clone_csums(ordered); 1458 1459 /* 1460 * Only drop cache here, and process as normal. 1461 * 1462 * We must not allow extent_clear_unlock_delalloc() 1463 * at out_unlock label to free meta of this ordered 1464 * extent, as its meta should be freed by 1465 * btrfs_finish_ordered_io(). 1466 * 1467 * So we must continue until @start is increased to 1468 * skip current ordered extent. 1469 */ 1470 if (ret) 1471 btrfs_drop_extent_map_range(inode, start, 1472 start + cur_alloc_size - 1, 1473 false); 1474 } 1475 btrfs_put_ordered_extent(ordered); 1476 1477 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1478 1479 /* 1480 * We're not doing compressed IO, don't unlock the first page 1481 * (which the caller expects to stay locked), don't clear any 1482 * dirty bits and don't set any writeback bits 1483 * 1484 * Do set the Ordered flag so we know this page was 1485 * properly setup for writepage. 1486 */ 1487 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1488 page_ops |= PAGE_SET_ORDERED; 1489 1490 extent_clear_unlock_delalloc(inode, start, start + cur_alloc_size - 1, 1491 locked_folio, &cached, 1492 EXTENT_LOCKED | EXTENT_DELALLOC, 1493 page_ops); 1494 if (num_bytes < cur_alloc_size) 1495 num_bytes = 0; 1496 else 1497 num_bytes -= cur_alloc_size; 1498 alloc_hint = ins.objectid + ins.offset; 1499 start += cur_alloc_size; 1500 cur_alloc_size = 0; 1501 1502 /* 1503 * btrfs_reloc_clone_csums() error, since start is increased 1504 * extent_clear_unlock_delalloc() at out_unlock label won't 1505 * free metadata of current ordered extent, we're OK to exit. 1506 */ 1507 if (ret) 1508 goto out_unlock; 1509 } 1510 done: 1511 if (done_offset) 1512 *done_offset = end; 1513 return ret; 1514 1515 out_drop_extent_cache: 1516 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1517 out_reserve: 1518 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1519 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1520 out_unlock: 1521 /* 1522 * Now, we have three regions to clean up: 1523 * 1524 * |-------(1)----|---(2)---|-------------(3)----------| 1525 * `- orig_start `- start `- start + cur_alloc_size `- end 1526 * 1527 * We process each region below. 1528 */ 1529 1530 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1531 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1532 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1533 1534 /* 1535 * For the range (1). We have already instantiated the ordered extents 1536 * for this region. They are cleaned up by 1537 * btrfs_cleanup_ordered_extents() in e.g, 1538 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1539 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1540 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1541 * function. 1542 * 1543 * However, in case of @keep_locked, we still need to unlock the pages 1544 * (except @locked_folio) to ensure all the pages are unlocked. 1545 */ 1546 if (keep_locked && orig_start < start) { 1547 if (!locked_folio) 1548 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1549 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1550 locked_folio, NULL, 0, page_ops); 1551 } 1552 1553 /* 1554 * At this point we're unlocked, we want to make sure we're only 1555 * clearing these flags under the extent lock, so lock the rest of the 1556 * range and clear everything up. 1557 */ 1558 lock_extent(&inode->io_tree, start, end, NULL); 1559 1560 /* 1561 * For the range (2). If we reserved an extent for our delalloc range 1562 * (or a subrange) and failed to create the respective ordered extent, 1563 * then it means that when we reserved the extent we decremented the 1564 * extent's size from the data space_info's bytes_may_use counter and 1565 * incremented the space_info's bytes_reserved counter by the same 1566 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1567 * to decrement again the data space_info's bytes_may_use counter, 1568 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1569 */ 1570 if (cur_alloc_size) { 1571 extent_clear_unlock_delalloc(inode, start, 1572 start + cur_alloc_size - 1, 1573 locked_folio, &cached, clear_bits, 1574 page_ops); 1575 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1576 } 1577 1578 /* 1579 * For the range (3). We never touched the region. In addition to the 1580 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1581 * space_info's bytes_may_use counter, reserved in 1582 * btrfs_check_data_free_space(). 1583 */ 1584 if (start + cur_alloc_size < end) { 1585 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1586 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1587 end, locked_folio, 1588 &cached, clear_bits, page_ops); 1589 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1590 end - start - cur_alloc_size + 1, NULL); 1591 } 1592 return ret; 1593 } 1594 1595 /* 1596 * Phase two of compressed writeback. This is the ordered portion of the code, 1597 * which only gets called in the order the work was queued. We walk all the 1598 * async extents created by compress_file_range and send them down to the disk. 1599 * 1600 * If called with @do_free == true then it'll try to finish the work and free 1601 * the work struct eventually. 1602 */ 1603 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1604 { 1605 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1606 work); 1607 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1608 struct async_extent *async_extent; 1609 unsigned long nr_pages; 1610 u64 alloc_hint = 0; 1611 1612 if (do_free) { 1613 struct async_cow *async_cow; 1614 1615 btrfs_add_delayed_iput(async_chunk->inode); 1616 if (async_chunk->blkcg_css) 1617 css_put(async_chunk->blkcg_css); 1618 1619 async_cow = async_chunk->async_cow; 1620 if (atomic_dec_and_test(&async_cow->num_chunks)) 1621 kvfree(async_cow); 1622 return; 1623 } 1624 1625 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1626 PAGE_SHIFT; 1627 1628 while (!list_empty(&async_chunk->extents)) { 1629 async_extent = list_entry(async_chunk->extents.next, 1630 struct async_extent, list); 1631 list_del(&async_extent->list); 1632 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1633 } 1634 1635 /* atomic_sub_return implies a barrier */ 1636 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1637 5 * SZ_1M) 1638 cond_wake_up_nomb(&fs_info->async_submit_wait); 1639 } 1640 1641 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1642 struct folio *locked_folio, u64 start, 1643 u64 end, struct writeback_control *wbc) 1644 { 1645 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1646 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1647 struct async_cow *ctx; 1648 struct async_chunk *async_chunk; 1649 unsigned long nr_pages; 1650 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1651 int i; 1652 unsigned nofs_flag; 1653 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1654 1655 nofs_flag = memalloc_nofs_save(); 1656 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1657 memalloc_nofs_restore(nofs_flag); 1658 if (!ctx) 1659 return false; 1660 1661 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1662 1663 async_chunk = ctx->chunks; 1664 atomic_set(&ctx->num_chunks, num_chunks); 1665 1666 for (i = 0; i < num_chunks; i++) { 1667 u64 cur_end = min(end, start + SZ_512K - 1); 1668 1669 /* 1670 * igrab is called higher up in the call chain, take only the 1671 * lightweight reference for the callback lifetime 1672 */ 1673 ihold(&inode->vfs_inode); 1674 async_chunk[i].async_cow = ctx; 1675 async_chunk[i].inode = inode; 1676 async_chunk[i].start = start; 1677 async_chunk[i].end = cur_end; 1678 async_chunk[i].write_flags = write_flags; 1679 INIT_LIST_HEAD(&async_chunk[i].extents); 1680 1681 /* 1682 * The locked_folio comes all the way from writepage and its 1683 * the original folio we were actually given. As we spread 1684 * this large delalloc region across multiple async_chunk 1685 * structs, only the first struct needs a pointer to 1686 * locked_folio. 1687 * 1688 * This way we don't need racey decisions about who is supposed 1689 * to unlock it. 1690 */ 1691 if (locked_folio) { 1692 /* 1693 * Depending on the compressibility, the pages might or 1694 * might not go through async. We want all of them to 1695 * be accounted against wbc once. Let's do it here 1696 * before the paths diverge. wbc accounting is used 1697 * only for foreign writeback detection and doesn't 1698 * need full accuracy. Just account the whole thing 1699 * against the first page. 1700 */ 1701 wbc_account_cgroup_owner(wbc, locked_folio, 1702 cur_end - start); 1703 async_chunk[i].locked_folio = locked_folio; 1704 locked_folio = NULL; 1705 } else { 1706 async_chunk[i].locked_folio = NULL; 1707 } 1708 1709 if (blkcg_css != blkcg_root_css) { 1710 css_get(blkcg_css); 1711 async_chunk[i].blkcg_css = blkcg_css; 1712 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1713 } else { 1714 async_chunk[i].blkcg_css = NULL; 1715 } 1716 1717 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1718 submit_compressed_extents); 1719 1720 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1721 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1722 1723 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1724 1725 start = cur_end + 1; 1726 } 1727 return true; 1728 } 1729 1730 /* 1731 * Run the delalloc range from start to end, and write back any dirty pages 1732 * covered by the range. 1733 */ 1734 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1735 struct folio *locked_folio, u64 start, 1736 u64 end, struct writeback_control *wbc, 1737 bool pages_dirty) 1738 { 1739 u64 done_offset = end; 1740 int ret; 1741 1742 while (start <= end) { 1743 ret = cow_file_range(inode, locked_folio, start, end, 1744 &done_offset, true, false); 1745 if (ret) 1746 return ret; 1747 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1748 start, done_offset, wbc, pages_dirty); 1749 start = done_offset + 1; 1750 } 1751 1752 return 1; 1753 } 1754 1755 static int fallback_to_cow(struct btrfs_inode *inode, 1756 struct folio *locked_folio, const u64 start, 1757 const u64 end) 1758 { 1759 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1760 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1761 const u64 range_bytes = end + 1 - start; 1762 struct extent_io_tree *io_tree = &inode->io_tree; 1763 struct extent_state *cached_state = NULL; 1764 u64 range_start = start; 1765 u64 count; 1766 int ret; 1767 1768 /* 1769 * If EXTENT_NORESERVE is set it means that when the buffered write was 1770 * made we had not enough available data space and therefore we did not 1771 * reserve data space for it, since we though we could do NOCOW for the 1772 * respective file range (either there is prealloc extent or the inode 1773 * has the NOCOW bit set). 1774 * 1775 * However when we need to fallback to COW mode (because for example the 1776 * block group for the corresponding extent was turned to RO mode by a 1777 * scrub or relocation) we need to do the following: 1778 * 1779 * 1) We increment the bytes_may_use counter of the data space info. 1780 * If COW succeeds, it allocates a new data extent and after doing 1781 * that it decrements the space info's bytes_may_use counter and 1782 * increments its bytes_reserved counter by the same amount (we do 1783 * this at btrfs_add_reserved_bytes()). So we need to increment the 1784 * bytes_may_use counter to compensate (when space is reserved at 1785 * buffered write time, the bytes_may_use counter is incremented); 1786 * 1787 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1788 * that if the COW path fails for any reason, it decrements (through 1789 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1790 * data space info, which we incremented in the step above. 1791 * 1792 * If we need to fallback to cow and the inode corresponds to a free 1793 * space cache inode or an inode of the data relocation tree, we must 1794 * also increment bytes_may_use of the data space_info for the same 1795 * reason. Space caches and relocated data extents always get a prealloc 1796 * extent for them, however scrub or balance may have set the block 1797 * group that contains that extent to RO mode and therefore force COW 1798 * when starting writeback. 1799 */ 1800 lock_extent(io_tree, start, end, &cached_state); 1801 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1802 EXTENT_NORESERVE, 0, NULL); 1803 if (count > 0 || is_space_ino || is_reloc_ino) { 1804 u64 bytes = count; 1805 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1806 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1807 1808 if (is_space_ino || is_reloc_ino) 1809 bytes = range_bytes; 1810 1811 spin_lock(&sinfo->lock); 1812 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1813 spin_unlock(&sinfo->lock); 1814 1815 if (count > 0) 1816 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1817 NULL); 1818 } 1819 unlock_extent(io_tree, start, end, &cached_state); 1820 1821 /* 1822 * Don't try to create inline extents, as a mix of inline extent that 1823 * is written out and unlocked directly and a normal NOCOW extent 1824 * doesn't work. 1825 */ 1826 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1827 true); 1828 ASSERT(ret != 1); 1829 return ret; 1830 } 1831 1832 struct can_nocow_file_extent_args { 1833 /* Input fields. */ 1834 1835 /* Start file offset of the range we want to NOCOW. */ 1836 u64 start; 1837 /* End file offset (inclusive) of the range we want to NOCOW. */ 1838 u64 end; 1839 bool writeback_path; 1840 bool strict; 1841 /* 1842 * Free the path passed to can_nocow_file_extent() once it's not needed 1843 * anymore. 1844 */ 1845 bool free_path; 1846 1847 /* 1848 * Output fields. Only set when can_nocow_file_extent() returns 1. 1849 * The expected file extent for the NOCOW write. 1850 */ 1851 struct btrfs_file_extent file_extent; 1852 }; 1853 1854 /* 1855 * Check if we can NOCOW the file extent that the path points to. 1856 * This function may return with the path released, so the caller should check 1857 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1858 * 1859 * Returns: < 0 on error 1860 * 0 if we can not NOCOW 1861 * 1 if we can NOCOW 1862 */ 1863 static int can_nocow_file_extent(struct btrfs_path *path, 1864 struct btrfs_key *key, 1865 struct btrfs_inode *inode, 1866 struct can_nocow_file_extent_args *args) 1867 { 1868 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1869 struct extent_buffer *leaf = path->nodes[0]; 1870 struct btrfs_root *root = inode->root; 1871 struct btrfs_file_extent_item *fi; 1872 struct btrfs_root *csum_root; 1873 u64 io_start; 1874 u64 extent_end; 1875 u8 extent_type; 1876 int can_nocow = 0; 1877 int ret = 0; 1878 bool nowait = path->nowait; 1879 1880 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1881 extent_type = btrfs_file_extent_type(leaf, fi); 1882 1883 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1884 goto out; 1885 1886 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1887 extent_type == BTRFS_FILE_EXTENT_REG) 1888 goto out; 1889 1890 /* 1891 * If the extent was created before the generation where the last snapshot 1892 * for its subvolume was created, then this implies the extent is shared, 1893 * hence we must COW. 1894 */ 1895 if (!args->strict && 1896 btrfs_file_extent_generation(leaf, fi) <= 1897 btrfs_root_last_snapshot(&root->root_item)) 1898 goto out; 1899 1900 /* An explicit hole, must COW. */ 1901 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1902 goto out; 1903 1904 /* Compressed/encrypted/encoded extents must be COWed. */ 1905 if (btrfs_file_extent_compression(leaf, fi) || 1906 btrfs_file_extent_encryption(leaf, fi) || 1907 btrfs_file_extent_other_encoding(leaf, fi)) 1908 goto out; 1909 1910 extent_end = btrfs_file_extent_end(path); 1911 1912 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1913 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1914 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1915 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1916 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1917 1918 /* 1919 * The following checks can be expensive, as they need to take other 1920 * locks and do btree or rbtree searches, so release the path to avoid 1921 * blocking other tasks for too long. 1922 */ 1923 btrfs_release_path(path); 1924 1925 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1926 key->offset - args->file_extent.offset, 1927 args->file_extent.disk_bytenr, args->strict, path); 1928 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1929 if (ret != 0) 1930 goto out; 1931 1932 if (args->free_path) { 1933 /* 1934 * We don't need the path anymore, plus through the 1935 * btrfs_lookup_csums_list() call below we will end up allocating 1936 * another path. So free the path to avoid unnecessary extra 1937 * memory usage. 1938 */ 1939 btrfs_free_path(path); 1940 path = NULL; 1941 } 1942 1943 /* If there are pending snapshots for this root, we must COW. */ 1944 if (args->writeback_path && !is_freespace_inode && 1945 atomic_read(&root->snapshot_force_cow)) 1946 goto out; 1947 1948 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1949 args->file_extent.offset += args->start - key->offset; 1950 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1951 1952 /* 1953 * Force COW if csums exist in the range. This ensures that csums for a 1954 * given extent are either valid or do not exist. 1955 */ 1956 1957 csum_root = btrfs_csum_root(root->fs_info, io_start); 1958 ret = btrfs_lookup_csums_list(csum_root, io_start, 1959 io_start + args->file_extent.num_bytes - 1, 1960 NULL, nowait); 1961 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1962 if (ret != 0) 1963 goto out; 1964 1965 can_nocow = 1; 1966 out: 1967 if (args->free_path && path) 1968 btrfs_free_path(path); 1969 1970 return ret < 0 ? ret : can_nocow; 1971 } 1972 1973 /* 1974 * when nowcow writeback call back. This checks for snapshots or COW copies 1975 * of the extents that exist in the file, and COWs the file as required. 1976 * 1977 * If no cow copies or snapshots exist, we write directly to the existing 1978 * blocks on disk 1979 */ 1980 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1981 struct folio *locked_folio, 1982 const u64 start, const u64 end) 1983 { 1984 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1985 struct btrfs_root *root = inode->root; 1986 struct btrfs_path *path; 1987 u64 cow_start = (u64)-1; 1988 u64 cur_offset = start; 1989 int ret; 1990 bool check_prev = true; 1991 u64 ino = btrfs_ino(inode); 1992 struct can_nocow_file_extent_args nocow_args = { 0 }; 1993 1994 /* 1995 * Normally on a zoned device we're only doing COW writes, but in case 1996 * of relocation on a zoned filesystem serializes I/O so that we're only 1997 * writing sequentially and can end up here as well. 1998 */ 1999 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2000 2001 path = btrfs_alloc_path(); 2002 if (!path) { 2003 ret = -ENOMEM; 2004 goto error; 2005 } 2006 2007 nocow_args.end = end; 2008 nocow_args.writeback_path = true; 2009 2010 while (cur_offset <= end) { 2011 struct btrfs_block_group *nocow_bg = NULL; 2012 struct btrfs_ordered_extent *ordered; 2013 struct btrfs_key found_key; 2014 struct btrfs_file_extent_item *fi; 2015 struct extent_buffer *leaf; 2016 struct extent_state *cached_state = NULL; 2017 u64 extent_end; 2018 u64 nocow_end; 2019 int extent_type; 2020 bool is_prealloc; 2021 2022 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2023 cur_offset, 0); 2024 if (ret < 0) 2025 goto error; 2026 2027 /* 2028 * If there is no extent for our range when doing the initial 2029 * search, then go back to the previous slot as it will be the 2030 * one containing the search offset 2031 */ 2032 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2033 leaf = path->nodes[0]; 2034 btrfs_item_key_to_cpu(leaf, &found_key, 2035 path->slots[0] - 1); 2036 if (found_key.objectid == ino && 2037 found_key.type == BTRFS_EXTENT_DATA_KEY) 2038 path->slots[0]--; 2039 } 2040 check_prev = false; 2041 next_slot: 2042 /* Go to next leaf if we have exhausted the current one */ 2043 leaf = path->nodes[0]; 2044 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2045 ret = btrfs_next_leaf(root, path); 2046 if (ret < 0) 2047 goto error; 2048 if (ret > 0) 2049 break; 2050 leaf = path->nodes[0]; 2051 } 2052 2053 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2054 2055 /* Didn't find anything for our INO */ 2056 if (found_key.objectid > ino) 2057 break; 2058 /* 2059 * Keep searching until we find an EXTENT_ITEM or there are no 2060 * more extents for this inode 2061 */ 2062 if (WARN_ON_ONCE(found_key.objectid < ino) || 2063 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2064 path->slots[0]++; 2065 goto next_slot; 2066 } 2067 2068 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2069 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2070 found_key.offset > end) 2071 break; 2072 2073 /* 2074 * If the found extent starts after requested offset, then 2075 * adjust extent_end to be right before this extent begins 2076 */ 2077 if (found_key.offset > cur_offset) { 2078 extent_end = found_key.offset; 2079 extent_type = 0; 2080 goto must_cow; 2081 } 2082 2083 /* 2084 * Found extent which begins before our range and potentially 2085 * intersect it 2086 */ 2087 fi = btrfs_item_ptr(leaf, path->slots[0], 2088 struct btrfs_file_extent_item); 2089 extent_type = btrfs_file_extent_type(leaf, fi); 2090 /* If this is triggered then we have a memory corruption. */ 2091 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2092 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2093 ret = -EUCLEAN; 2094 goto error; 2095 } 2096 extent_end = btrfs_file_extent_end(path); 2097 2098 /* 2099 * If the extent we got ends before our current offset, skip to 2100 * the next extent. 2101 */ 2102 if (extent_end <= cur_offset) { 2103 path->slots[0]++; 2104 goto next_slot; 2105 } 2106 2107 nocow_args.start = cur_offset; 2108 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2109 if (ret < 0) 2110 goto error; 2111 if (ret == 0) 2112 goto must_cow; 2113 2114 ret = 0; 2115 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2116 nocow_args.file_extent.disk_bytenr + 2117 nocow_args.file_extent.offset); 2118 if (!nocow_bg) { 2119 must_cow: 2120 /* 2121 * If we can't perform NOCOW writeback for the range, 2122 * then record the beginning of the range that needs to 2123 * be COWed. It will be written out before the next 2124 * NOCOW range if we find one, or when exiting this 2125 * loop. 2126 */ 2127 if (cow_start == (u64)-1) 2128 cow_start = cur_offset; 2129 cur_offset = extent_end; 2130 if (cur_offset > end) 2131 break; 2132 if (!path->nodes[0]) 2133 continue; 2134 path->slots[0]++; 2135 goto next_slot; 2136 } 2137 2138 /* 2139 * COW range from cow_start to found_key.offset - 1. As the key 2140 * will contain the beginning of the first extent that can be 2141 * NOCOW, following one which needs to be COW'ed 2142 */ 2143 if (cow_start != (u64)-1) { 2144 ret = fallback_to_cow(inode, locked_folio, cow_start, 2145 found_key.offset - 1); 2146 cow_start = (u64)-1; 2147 if (ret) { 2148 btrfs_dec_nocow_writers(nocow_bg); 2149 goto error; 2150 } 2151 } 2152 2153 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2154 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state); 2155 2156 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2157 if (is_prealloc) { 2158 struct extent_map *em; 2159 2160 em = btrfs_create_io_em(inode, cur_offset, 2161 &nocow_args.file_extent, 2162 BTRFS_ORDERED_PREALLOC); 2163 if (IS_ERR(em)) { 2164 unlock_extent(&inode->io_tree, cur_offset, 2165 nocow_end, &cached_state); 2166 btrfs_dec_nocow_writers(nocow_bg); 2167 ret = PTR_ERR(em); 2168 goto error; 2169 } 2170 free_extent_map(em); 2171 } 2172 2173 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2174 &nocow_args.file_extent, 2175 is_prealloc 2176 ? (1 << BTRFS_ORDERED_PREALLOC) 2177 : (1 << BTRFS_ORDERED_NOCOW)); 2178 btrfs_dec_nocow_writers(nocow_bg); 2179 if (IS_ERR(ordered)) { 2180 if (is_prealloc) { 2181 btrfs_drop_extent_map_range(inode, cur_offset, 2182 nocow_end, false); 2183 } 2184 unlock_extent(&inode->io_tree, cur_offset, 2185 nocow_end, &cached_state); 2186 ret = PTR_ERR(ordered); 2187 goto error; 2188 } 2189 2190 if (btrfs_is_data_reloc_root(root)) 2191 /* 2192 * Error handled later, as we must prevent 2193 * extent_clear_unlock_delalloc() in error handler 2194 * from freeing metadata of created ordered extent. 2195 */ 2196 ret = btrfs_reloc_clone_csums(ordered); 2197 btrfs_put_ordered_extent(ordered); 2198 2199 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2200 locked_folio, &cached_state, 2201 EXTENT_LOCKED | EXTENT_DELALLOC | 2202 EXTENT_CLEAR_DATA_RESV, 2203 PAGE_UNLOCK | PAGE_SET_ORDERED); 2204 2205 cur_offset = extent_end; 2206 2207 /* 2208 * btrfs_reloc_clone_csums() error, now we're OK to call error 2209 * handler, as metadata for created ordered extent will only 2210 * be freed by btrfs_finish_ordered_io(). 2211 */ 2212 if (ret) 2213 goto error; 2214 } 2215 btrfs_release_path(path); 2216 2217 if (cur_offset <= end && cow_start == (u64)-1) 2218 cow_start = cur_offset; 2219 2220 if (cow_start != (u64)-1) { 2221 cur_offset = end; 2222 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2223 cow_start = (u64)-1; 2224 if (ret) 2225 goto error; 2226 } 2227 2228 btrfs_free_path(path); 2229 return 0; 2230 2231 error: 2232 /* 2233 * If an error happened while a COW region is outstanding, cur_offset 2234 * needs to be reset to cow_start to ensure the COW region is unlocked 2235 * as well. 2236 */ 2237 if (cow_start != (u64)-1) 2238 cur_offset = cow_start; 2239 2240 /* 2241 * We need to lock the extent here because we're clearing DELALLOC and 2242 * we're not locked at this point. 2243 */ 2244 if (cur_offset < end) { 2245 struct extent_state *cached = NULL; 2246 2247 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2248 extent_clear_unlock_delalloc(inode, cur_offset, end, 2249 locked_folio, &cached, 2250 EXTENT_LOCKED | EXTENT_DELALLOC | 2251 EXTENT_DEFRAG | 2252 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2253 PAGE_START_WRITEBACK | 2254 PAGE_END_WRITEBACK); 2255 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2256 } 2257 btrfs_free_path(path); 2258 return ret; 2259 } 2260 2261 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2262 { 2263 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2264 if (inode->defrag_bytes && 2265 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2266 return false; 2267 return true; 2268 } 2269 return false; 2270 } 2271 2272 /* 2273 * Function to process delayed allocation (create CoW) for ranges which are 2274 * being touched for the first time. 2275 */ 2276 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2277 u64 start, u64 end, struct writeback_control *wbc) 2278 { 2279 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2280 int ret; 2281 2282 /* 2283 * The range must cover part of the @locked_folio, or a return of 1 2284 * can confuse the caller. 2285 */ 2286 ASSERT(!(end <= folio_pos(locked_folio) || 2287 start >= folio_pos(locked_folio) + folio_size(locked_folio))); 2288 2289 if (should_nocow(inode, start, end)) { 2290 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2291 goto out; 2292 } 2293 2294 if (btrfs_inode_can_compress(inode) && 2295 inode_need_compress(inode, start, end) && 2296 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2297 return 1; 2298 2299 if (zoned) 2300 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2301 true); 2302 else 2303 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2304 false, false); 2305 2306 out: 2307 if (ret < 0) 2308 btrfs_cleanup_ordered_extents(inode, locked_folio, start, 2309 end - start + 1); 2310 return ret; 2311 } 2312 2313 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2314 struct extent_state *orig, u64 split) 2315 { 2316 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2317 u64 size; 2318 2319 lockdep_assert_held(&inode->io_tree.lock); 2320 2321 /* not delalloc, ignore it */ 2322 if (!(orig->state & EXTENT_DELALLOC)) 2323 return; 2324 2325 size = orig->end - orig->start + 1; 2326 if (size > fs_info->max_extent_size) { 2327 u32 num_extents; 2328 u64 new_size; 2329 2330 /* 2331 * See the explanation in btrfs_merge_delalloc_extent, the same 2332 * applies here, just in reverse. 2333 */ 2334 new_size = orig->end - split + 1; 2335 num_extents = count_max_extents(fs_info, new_size); 2336 new_size = split - orig->start; 2337 num_extents += count_max_extents(fs_info, new_size); 2338 if (count_max_extents(fs_info, size) >= num_extents) 2339 return; 2340 } 2341 2342 spin_lock(&inode->lock); 2343 btrfs_mod_outstanding_extents(inode, 1); 2344 spin_unlock(&inode->lock); 2345 } 2346 2347 /* 2348 * Handle merged delayed allocation extents so we can keep track of new extents 2349 * that are just merged onto old extents, such as when we are doing sequential 2350 * writes, so we can properly account for the metadata space we'll need. 2351 */ 2352 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2353 struct extent_state *other) 2354 { 2355 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2356 u64 new_size, old_size; 2357 u32 num_extents; 2358 2359 lockdep_assert_held(&inode->io_tree.lock); 2360 2361 /* not delalloc, ignore it */ 2362 if (!(other->state & EXTENT_DELALLOC)) 2363 return; 2364 2365 if (new->start > other->start) 2366 new_size = new->end - other->start + 1; 2367 else 2368 new_size = other->end - new->start + 1; 2369 2370 /* we're not bigger than the max, unreserve the space and go */ 2371 if (new_size <= fs_info->max_extent_size) { 2372 spin_lock(&inode->lock); 2373 btrfs_mod_outstanding_extents(inode, -1); 2374 spin_unlock(&inode->lock); 2375 return; 2376 } 2377 2378 /* 2379 * We have to add up either side to figure out how many extents were 2380 * accounted for before we merged into one big extent. If the number of 2381 * extents we accounted for is <= the amount we need for the new range 2382 * then we can return, otherwise drop. Think of it like this 2383 * 2384 * [ 4k][MAX_SIZE] 2385 * 2386 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2387 * need 2 outstanding extents, on one side we have 1 and the other side 2388 * we have 1 so they are == and we can return. But in this case 2389 * 2390 * [MAX_SIZE+4k][MAX_SIZE+4k] 2391 * 2392 * Each range on their own accounts for 2 extents, but merged together 2393 * they are only 3 extents worth of accounting, so we need to drop in 2394 * this case. 2395 */ 2396 old_size = other->end - other->start + 1; 2397 num_extents = count_max_extents(fs_info, old_size); 2398 old_size = new->end - new->start + 1; 2399 num_extents += count_max_extents(fs_info, old_size); 2400 if (count_max_extents(fs_info, new_size) >= num_extents) 2401 return; 2402 2403 spin_lock(&inode->lock); 2404 btrfs_mod_outstanding_extents(inode, -1); 2405 spin_unlock(&inode->lock); 2406 } 2407 2408 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2409 { 2410 struct btrfs_root *root = inode->root; 2411 struct btrfs_fs_info *fs_info = root->fs_info; 2412 2413 spin_lock(&root->delalloc_lock); 2414 ASSERT(list_empty(&inode->delalloc_inodes)); 2415 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2416 root->nr_delalloc_inodes++; 2417 if (root->nr_delalloc_inodes == 1) { 2418 spin_lock(&fs_info->delalloc_root_lock); 2419 ASSERT(list_empty(&root->delalloc_root)); 2420 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2421 spin_unlock(&fs_info->delalloc_root_lock); 2422 } 2423 spin_unlock(&root->delalloc_lock); 2424 } 2425 2426 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2427 { 2428 struct btrfs_root *root = inode->root; 2429 struct btrfs_fs_info *fs_info = root->fs_info; 2430 2431 lockdep_assert_held(&root->delalloc_lock); 2432 2433 /* 2434 * We may be called after the inode was already deleted from the list, 2435 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2436 * and then later through btrfs_clear_delalloc_extent() while the inode 2437 * still has ->delalloc_bytes > 0. 2438 */ 2439 if (!list_empty(&inode->delalloc_inodes)) { 2440 list_del_init(&inode->delalloc_inodes); 2441 root->nr_delalloc_inodes--; 2442 if (!root->nr_delalloc_inodes) { 2443 ASSERT(list_empty(&root->delalloc_inodes)); 2444 spin_lock(&fs_info->delalloc_root_lock); 2445 ASSERT(!list_empty(&root->delalloc_root)); 2446 list_del_init(&root->delalloc_root); 2447 spin_unlock(&fs_info->delalloc_root_lock); 2448 } 2449 } 2450 } 2451 2452 /* 2453 * Properly track delayed allocation bytes in the inode and to maintain the 2454 * list of inodes that have pending delalloc work to be done. 2455 */ 2456 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2457 u32 bits) 2458 { 2459 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2460 2461 lockdep_assert_held(&inode->io_tree.lock); 2462 2463 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2464 WARN_ON(1); 2465 /* 2466 * set_bit and clear bit hooks normally require _irqsave/restore 2467 * but in this case, we are only testing for the DELALLOC 2468 * bit, which is only set or cleared with irqs on 2469 */ 2470 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2471 u64 len = state->end + 1 - state->start; 2472 u64 prev_delalloc_bytes; 2473 u32 num_extents = count_max_extents(fs_info, len); 2474 2475 spin_lock(&inode->lock); 2476 btrfs_mod_outstanding_extents(inode, num_extents); 2477 spin_unlock(&inode->lock); 2478 2479 /* For sanity tests */ 2480 if (btrfs_is_testing(fs_info)) 2481 return; 2482 2483 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2484 fs_info->delalloc_batch); 2485 spin_lock(&inode->lock); 2486 prev_delalloc_bytes = inode->delalloc_bytes; 2487 inode->delalloc_bytes += len; 2488 if (bits & EXTENT_DEFRAG) 2489 inode->defrag_bytes += len; 2490 spin_unlock(&inode->lock); 2491 2492 /* 2493 * We don't need to be under the protection of the inode's lock, 2494 * because we are called while holding the inode's io_tree lock 2495 * and are therefore protected against concurrent calls of this 2496 * function and btrfs_clear_delalloc_extent(). 2497 */ 2498 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2499 btrfs_add_delalloc_inode(inode); 2500 } 2501 2502 if (!(state->state & EXTENT_DELALLOC_NEW) && 2503 (bits & EXTENT_DELALLOC_NEW)) { 2504 spin_lock(&inode->lock); 2505 inode->new_delalloc_bytes += state->end + 1 - state->start; 2506 spin_unlock(&inode->lock); 2507 } 2508 } 2509 2510 /* 2511 * Once a range is no longer delalloc this function ensures that proper 2512 * accounting happens. 2513 */ 2514 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2515 struct extent_state *state, u32 bits) 2516 { 2517 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2518 u64 len = state->end + 1 - state->start; 2519 u32 num_extents = count_max_extents(fs_info, len); 2520 2521 lockdep_assert_held(&inode->io_tree.lock); 2522 2523 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2524 spin_lock(&inode->lock); 2525 inode->defrag_bytes -= len; 2526 spin_unlock(&inode->lock); 2527 } 2528 2529 /* 2530 * set_bit and clear bit hooks normally require _irqsave/restore 2531 * but in this case, we are only testing for the DELALLOC 2532 * bit, which is only set or cleared with irqs on 2533 */ 2534 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2535 struct btrfs_root *root = inode->root; 2536 u64 new_delalloc_bytes; 2537 2538 spin_lock(&inode->lock); 2539 btrfs_mod_outstanding_extents(inode, -num_extents); 2540 spin_unlock(&inode->lock); 2541 2542 /* 2543 * We don't reserve metadata space for space cache inodes so we 2544 * don't need to call delalloc_release_metadata if there is an 2545 * error. 2546 */ 2547 if (bits & EXTENT_CLEAR_META_RESV && 2548 root != fs_info->tree_root) 2549 btrfs_delalloc_release_metadata(inode, len, true); 2550 2551 /* For sanity tests. */ 2552 if (btrfs_is_testing(fs_info)) 2553 return; 2554 2555 if (!btrfs_is_data_reloc_root(root) && 2556 !btrfs_is_free_space_inode(inode) && 2557 !(state->state & EXTENT_NORESERVE) && 2558 (bits & EXTENT_CLEAR_DATA_RESV)) 2559 btrfs_free_reserved_data_space_noquota(fs_info, len); 2560 2561 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2562 fs_info->delalloc_batch); 2563 spin_lock(&inode->lock); 2564 inode->delalloc_bytes -= len; 2565 new_delalloc_bytes = inode->delalloc_bytes; 2566 spin_unlock(&inode->lock); 2567 2568 /* 2569 * We don't need to be under the protection of the inode's lock, 2570 * because we are called while holding the inode's io_tree lock 2571 * and are therefore protected against concurrent calls of this 2572 * function and btrfs_set_delalloc_extent(). 2573 */ 2574 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2575 spin_lock(&root->delalloc_lock); 2576 btrfs_del_delalloc_inode(inode); 2577 spin_unlock(&root->delalloc_lock); 2578 } 2579 } 2580 2581 if ((state->state & EXTENT_DELALLOC_NEW) && 2582 (bits & EXTENT_DELALLOC_NEW)) { 2583 spin_lock(&inode->lock); 2584 ASSERT(inode->new_delalloc_bytes >= len); 2585 inode->new_delalloc_bytes -= len; 2586 if (bits & EXTENT_ADD_INODE_BYTES) 2587 inode_add_bytes(&inode->vfs_inode, len); 2588 spin_unlock(&inode->lock); 2589 } 2590 } 2591 2592 /* 2593 * given a list of ordered sums record them in the inode. This happens 2594 * at IO completion time based on sums calculated at bio submission time. 2595 */ 2596 static int add_pending_csums(struct btrfs_trans_handle *trans, 2597 struct list_head *list) 2598 { 2599 struct btrfs_ordered_sum *sum; 2600 struct btrfs_root *csum_root = NULL; 2601 int ret; 2602 2603 list_for_each_entry(sum, list, list) { 2604 trans->adding_csums = true; 2605 if (!csum_root) 2606 csum_root = btrfs_csum_root(trans->fs_info, 2607 sum->logical); 2608 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2609 trans->adding_csums = false; 2610 if (ret) 2611 return ret; 2612 } 2613 return 0; 2614 } 2615 2616 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2617 const u64 start, 2618 const u64 len, 2619 struct extent_state **cached_state) 2620 { 2621 u64 search_start = start; 2622 const u64 end = start + len - 1; 2623 2624 while (search_start < end) { 2625 const u64 search_len = end - search_start + 1; 2626 struct extent_map *em; 2627 u64 em_len; 2628 int ret = 0; 2629 2630 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2631 if (IS_ERR(em)) 2632 return PTR_ERR(em); 2633 2634 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2635 goto next; 2636 2637 em_len = em->len; 2638 if (em->start < search_start) 2639 em_len -= search_start - em->start; 2640 if (em_len > search_len) 2641 em_len = search_len; 2642 2643 ret = set_extent_bit(&inode->io_tree, search_start, 2644 search_start + em_len - 1, 2645 EXTENT_DELALLOC_NEW, cached_state); 2646 next: 2647 search_start = extent_map_end(em); 2648 free_extent_map(em); 2649 if (ret) 2650 return ret; 2651 } 2652 return 0; 2653 } 2654 2655 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2656 unsigned int extra_bits, 2657 struct extent_state **cached_state) 2658 { 2659 WARN_ON(PAGE_ALIGNED(end)); 2660 2661 if (start >= i_size_read(&inode->vfs_inode) && 2662 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2663 /* 2664 * There can't be any extents following eof in this case so just 2665 * set the delalloc new bit for the range directly. 2666 */ 2667 extra_bits |= EXTENT_DELALLOC_NEW; 2668 } else { 2669 int ret; 2670 2671 ret = btrfs_find_new_delalloc_bytes(inode, start, 2672 end + 1 - start, 2673 cached_state); 2674 if (ret) 2675 return ret; 2676 } 2677 2678 return set_extent_bit(&inode->io_tree, start, end, 2679 EXTENT_DELALLOC | extra_bits, cached_state); 2680 } 2681 2682 /* see btrfs_writepage_start_hook for details on why this is required */ 2683 struct btrfs_writepage_fixup { 2684 struct folio *folio; 2685 struct btrfs_inode *inode; 2686 struct btrfs_work work; 2687 }; 2688 2689 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2690 { 2691 struct btrfs_writepage_fixup *fixup = 2692 container_of(work, struct btrfs_writepage_fixup, work); 2693 struct btrfs_ordered_extent *ordered; 2694 struct extent_state *cached_state = NULL; 2695 struct extent_changeset *data_reserved = NULL; 2696 struct folio *folio = fixup->folio; 2697 struct btrfs_inode *inode = fixup->inode; 2698 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2699 u64 page_start = folio_pos(folio); 2700 u64 page_end = folio_pos(folio) + folio_size(folio) - 1; 2701 int ret = 0; 2702 bool free_delalloc_space = true; 2703 2704 /* 2705 * This is similar to page_mkwrite, we need to reserve the space before 2706 * we take the folio lock. 2707 */ 2708 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2709 folio_size(folio)); 2710 again: 2711 folio_lock(folio); 2712 2713 /* 2714 * Before we queued this fixup, we took a reference on the folio. 2715 * folio->mapping may go NULL, but it shouldn't be moved to a different 2716 * address space. 2717 */ 2718 if (!folio->mapping || !folio_test_dirty(folio) || 2719 !folio_test_checked(folio)) { 2720 /* 2721 * Unfortunately this is a little tricky, either 2722 * 2723 * 1) We got here and our folio had already been dealt with and 2724 * we reserved our space, thus ret == 0, so we need to just 2725 * drop our space reservation and bail. This can happen the 2726 * first time we come into the fixup worker, or could happen 2727 * while waiting for the ordered extent. 2728 * 2) Our folio was already dealt with, but we happened to get an 2729 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2730 * this case we obviously don't have anything to release, but 2731 * because the folio was already dealt with we don't want to 2732 * mark the folio with an error, so make sure we're resetting 2733 * ret to 0. This is why we have this check _before_ the ret 2734 * check, because we do not want to have a surprise ENOSPC 2735 * when the folio was already properly dealt with. 2736 */ 2737 if (!ret) { 2738 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2739 btrfs_delalloc_release_space(inode, data_reserved, 2740 page_start, folio_size(folio), 2741 true); 2742 } 2743 ret = 0; 2744 goto out_page; 2745 } 2746 2747 /* 2748 * We can't mess with the folio state unless it is locked, so now that 2749 * it is locked bail if we failed to make our space reservation. 2750 */ 2751 if (ret) 2752 goto out_page; 2753 2754 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2755 2756 /* already ordered? We're done */ 2757 if (folio_test_ordered(folio)) 2758 goto out_reserved; 2759 2760 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2761 if (ordered) { 2762 unlock_extent(&inode->io_tree, page_start, page_end, 2763 &cached_state); 2764 folio_unlock(folio); 2765 btrfs_start_ordered_extent(ordered); 2766 btrfs_put_ordered_extent(ordered); 2767 goto again; 2768 } 2769 2770 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2771 &cached_state); 2772 if (ret) 2773 goto out_reserved; 2774 2775 /* 2776 * Everything went as planned, we're now the owner of a dirty page with 2777 * delayed allocation bits set and space reserved for our COW 2778 * destination. 2779 * 2780 * The page was dirty when we started, nothing should have cleaned it. 2781 */ 2782 BUG_ON(!folio_test_dirty(folio)); 2783 free_delalloc_space = false; 2784 out_reserved: 2785 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2786 if (free_delalloc_space) 2787 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2788 PAGE_SIZE, true); 2789 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2790 out_page: 2791 if (ret) { 2792 /* 2793 * We hit ENOSPC or other errors. Update the mapping and page 2794 * to reflect the errors and clean the page. 2795 */ 2796 mapping_set_error(folio->mapping, ret); 2797 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2798 folio_size(folio), !ret); 2799 folio_clear_dirty_for_io(folio); 2800 } 2801 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2802 folio_unlock(folio); 2803 folio_put(folio); 2804 kfree(fixup); 2805 extent_changeset_free(data_reserved); 2806 /* 2807 * As a precaution, do a delayed iput in case it would be the last iput 2808 * that could need flushing space. Recursing back to fixup worker would 2809 * deadlock. 2810 */ 2811 btrfs_add_delayed_iput(inode); 2812 } 2813 2814 /* 2815 * There are a few paths in the higher layers of the kernel that directly 2816 * set the folio dirty bit without asking the filesystem if it is a 2817 * good idea. This causes problems because we want to make sure COW 2818 * properly happens and the data=ordered rules are followed. 2819 * 2820 * In our case any range that doesn't have the ORDERED bit set 2821 * hasn't been properly setup for IO. We kick off an async process 2822 * to fix it up. The async helper will wait for ordered extents, set 2823 * the delalloc bit and make it safe to write the folio. 2824 */ 2825 int btrfs_writepage_cow_fixup(struct folio *folio) 2826 { 2827 struct inode *inode = folio->mapping->host; 2828 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2829 struct btrfs_writepage_fixup *fixup; 2830 2831 /* This folio has ordered extent covering it already */ 2832 if (folio_test_ordered(folio)) 2833 return 0; 2834 2835 /* 2836 * folio_checked is set below when we create a fixup worker for this 2837 * folio, don't try to create another one if we're already 2838 * folio_test_checked. 2839 * 2840 * The extent_io writepage code will redirty the foio if we send back 2841 * EAGAIN. 2842 */ 2843 if (folio_test_checked(folio)) 2844 return -EAGAIN; 2845 2846 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2847 if (!fixup) 2848 return -EAGAIN; 2849 2850 /* 2851 * We are already holding a reference to this inode from 2852 * write_cache_pages. We need to hold it because the space reservation 2853 * takes place outside of the folio lock, and we can't trust 2854 * page->mapping outside of the folio lock. 2855 */ 2856 ihold(inode); 2857 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2858 folio_get(folio); 2859 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2860 fixup->folio = folio; 2861 fixup->inode = BTRFS_I(inode); 2862 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2863 2864 return -EAGAIN; 2865 } 2866 2867 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2868 struct btrfs_inode *inode, u64 file_pos, 2869 struct btrfs_file_extent_item *stack_fi, 2870 const bool update_inode_bytes, 2871 u64 qgroup_reserved) 2872 { 2873 struct btrfs_root *root = inode->root; 2874 const u64 sectorsize = root->fs_info->sectorsize; 2875 struct btrfs_path *path; 2876 struct extent_buffer *leaf; 2877 struct btrfs_key ins; 2878 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2879 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2880 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2881 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2882 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2883 struct btrfs_drop_extents_args drop_args = { 0 }; 2884 int ret; 2885 2886 path = btrfs_alloc_path(); 2887 if (!path) 2888 return -ENOMEM; 2889 2890 /* 2891 * we may be replacing one extent in the tree with another. 2892 * The new extent is pinned in the extent map, and we don't want 2893 * to drop it from the cache until it is completely in the btree. 2894 * 2895 * So, tell btrfs_drop_extents to leave this extent in the cache. 2896 * the caller is expected to unpin it and allow it to be merged 2897 * with the others. 2898 */ 2899 drop_args.path = path; 2900 drop_args.start = file_pos; 2901 drop_args.end = file_pos + num_bytes; 2902 drop_args.replace_extent = true; 2903 drop_args.extent_item_size = sizeof(*stack_fi); 2904 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2905 if (ret) 2906 goto out; 2907 2908 if (!drop_args.extent_inserted) { 2909 ins.objectid = btrfs_ino(inode); 2910 ins.offset = file_pos; 2911 ins.type = BTRFS_EXTENT_DATA_KEY; 2912 2913 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2914 sizeof(*stack_fi)); 2915 if (ret) 2916 goto out; 2917 } 2918 leaf = path->nodes[0]; 2919 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2920 write_extent_buffer(leaf, stack_fi, 2921 btrfs_item_ptr_offset(leaf, path->slots[0]), 2922 sizeof(struct btrfs_file_extent_item)); 2923 2924 btrfs_mark_buffer_dirty(trans, leaf); 2925 btrfs_release_path(path); 2926 2927 /* 2928 * If we dropped an inline extent here, we know the range where it is 2929 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2930 * number of bytes only for that range containing the inline extent. 2931 * The remaining of the range will be processed when clearning the 2932 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2933 */ 2934 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2935 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2936 2937 inline_size = drop_args.bytes_found - inline_size; 2938 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2939 drop_args.bytes_found -= inline_size; 2940 num_bytes -= sectorsize; 2941 } 2942 2943 if (update_inode_bytes) 2944 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2945 2946 ins.objectid = disk_bytenr; 2947 ins.offset = disk_num_bytes; 2948 ins.type = BTRFS_EXTENT_ITEM_KEY; 2949 2950 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2951 if (ret) 2952 goto out; 2953 2954 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2955 file_pos - offset, 2956 qgroup_reserved, &ins); 2957 out: 2958 btrfs_free_path(path); 2959 2960 return ret; 2961 } 2962 2963 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2964 u64 start, u64 len) 2965 { 2966 struct btrfs_block_group *cache; 2967 2968 cache = btrfs_lookup_block_group(fs_info, start); 2969 ASSERT(cache); 2970 2971 spin_lock(&cache->lock); 2972 cache->delalloc_bytes -= len; 2973 spin_unlock(&cache->lock); 2974 2975 btrfs_put_block_group(cache); 2976 } 2977 2978 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2979 struct btrfs_ordered_extent *oe) 2980 { 2981 struct btrfs_file_extent_item stack_fi; 2982 bool update_inode_bytes; 2983 u64 num_bytes = oe->num_bytes; 2984 u64 ram_bytes = oe->ram_bytes; 2985 2986 memset(&stack_fi, 0, sizeof(stack_fi)); 2987 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2988 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2989 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2990 oe->disk_num_bytes); 2991 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2992 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2993 num_bytes = oe->truncated_len; 2994 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2995 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 2996 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2997 /* Encryption and other encoding is reserved and all 0 */ 2998 2999 /* 3000 * For delalloc, when completing an ordered extent we update the inode's 3001 * bytes when clearing the range in the inode's io tree, so pass false 3002 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3003 * except if the ordered extent was truncated. 3004 */ 3005 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3006 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3007 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3008 3009 return insert_reserved_file_extent(trans, oe->inode, 3010 oe->file_offset, &stack_fi, 3011 update_inode_bytes, oe->qgroup_rsv); 3012 } 3013 3014 /* 3015 * As ordered data IO finishes, this gets called so we can finish 3016 * an ordered extent if the range of bytes in the file it covers are 3017 * fully written. 3018 */ 3019 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3020 { 3021 struct btrfs_inode *inode = ordered_extent->inode; 3022 struct btrfs_root *root = inode->root; 3023 struct btrfs_fs_info *fs_info = root->fs_info; 3024 struct btrfs_trans_handle *trans = NULL; 3025 struct extent_io_tree *io_tree = &inode->io_tree; 3026 struct extent_state *cached_state = NULL; 3027 u64 start, end; 3028 int compress_type = 0; 3029 int ret = 0; 3030 u64 logical_len = ordered_extent->num_bytes; 3031 bool freespace_inode; 3032 bool truncated = false; 3033 bool clear_reserved_extent = true; 3034 unsigned int clear_bits = EXTENT_DEFRAG; 3035 3036 start = ordered_extent->file_offset; 3037 end = start + ordered_extent->num_bytes - 1; 3038 3039 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3040 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3041 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3042 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3043 clear_bits |= EXTENT_DELALLOC_NEW; 3044 3045 freespace_inode = btrfs_is_free_space_inode(inode); 3046 if (!freespace_inode) 3047 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3048 3049 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3050 ret = -EIO; 3051 goto out; 3052 } 3053 3054 if (btrfs_is_zoned(fs_info)) 3055 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3056 ordered_extent->disk_num_bytes); 3057 3058 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3059 truncated = true; 3060 logical_len = ordered_extent->truncated_len; 3061 /* Truncated the entire extent, don't bother adding */ 3062 if (!logical_len) 3063 goto out; 3064 } 3065 3066 /* 3067 * If it's a COW write we need to lock the extent range as we will be 3068 * inserting/replacing file extent items and unpinning an extent map. 3069 * This must be taken before joining a transaction, as it's a higher 3070 * level lock (like the inode's VFS lock), otherwise we can run into an 3071 * ABBA deadlock with other tasks (transactions work like a lock, 3072 * depending on their current state). 3073 */ 3074 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3075 clear_bits |= EXTENT_LOCKED; 3076 lock_extent(io_tree, start, end, &cached_state); 3077 } 3078 3079 if (freespace_inode) 3080 trans = btrfs_join_transaction_spacecache(root); 3081 else 3082 trans = btrfs_join_transaction(root); 3083 if (IS_ERR(trans)) { 3084 ret = PTR_ERR(trans); 3085 trans = NULL; 3086 goto out; 3087 } 3088 3089 trans->block_rsv = &inode->block_rsv; 3090 3091 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3092 if (ret) { 3093 btrfs_abort_transaction(trans, ret); 3094 goto out; 3095 } 3096 3097 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3098 /* Logic error */ 3099 ASSERT(list_empty(&ordered_extent->list)); 3100 if (!list_empty(&ordered_extent->list)) { 3101 ret = -EINVAL; 3102 btrfs_abort_transaction(trans, ret); 3103 goto out; 3104 } 3105 3106 btrfs_inode_safe_disk_i_size_write(inode, 0); 3107 ret = btrfs_update_inode_fallback(trans, inode); 3108 if (ret) { 3109 /* -ENOMEM or corruption */ 3110 btrfs_abort_transaction(trans, ret); 3111 } 3112 goto out; 3113 } 3114 3115 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3116 compress_type = ordered_extent->compress_type; 3117 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3118 BUG_ON(compress_type); 3119 ret = btrfs_mark_extent_written(trans, inode, 3120 ordered_extent->file_offset, 3121 ordered_extent->file_offset + 3122 logical_len); 3123 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3124 ordered_extent->disk_num_bytes); 3125 } else { 3126 BUG_ON(root == fs_info->tree_root); 3127 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3128 if (!ret) { 3129 clear_reserved_extent = false; 3130 btrfs_release_delalloc_bytes(fs_info, 3131 ordered_extent->disk_bytenr, 3132 ordered_extent->disk_num_bytes); 3133 } 3134 } 3135 if (ret < 0) { 3136 btrfs_abort_transaction(trans, ret); 3137 goto out; 3138 } 3139 3140 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3141 ordered_extent->num_bytes, trans->transid); 3142 if (ret < 0) { 3143 btrfs_abort_transaction(trans, ret); 3144 goto out; 3145 } 3146 3147 ret = add_pending_csums(trans, &ordered_extent->list); 3148 if (ret) { 3149 btrfs_abort_transaction(trans, ret); 3150 goto out; 3151 } 3152 3153 /* 3154 * If this is a new delalloc range, clear its new delalloc flag to 3155 * update the inode's number of bytes. This needs to be done first 3156 * before updating the inode item. 3157 */ 3158 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3159 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3160 clear_extent_bit(&inode->io_tree, start, end, 3161 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3162 &cached_state); 3163 3164 btrfs_inode_safe_disk_i_size_write(inode, 0); 3165 ret = btrfs_update_inode_fallback(trans, inode); 3166 if (ret) { /* -ENOMEM or corruption */ 3167 btrfs_abort_transaction(trans, ret); 3168 goto out; 3169 } 3170 out: 3171 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3172 &cached_state); 3173 3174 if (trans) 3175 btrfs_end_transaction(trans); 3176 3177 if (ret || truncated) { 3178 u64 unwritten_start = start; 3179 3180 /* 3181 * If we failed to finish this ordered extent for any reason we 3182 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3183 * extent, and mark the inode with the error if it wasn't 3184 * already set. Any error during writeback would have already 3185 * set the mapping error, so we need to set it if we're the ones 3186 * marking this ordered extent as failed. 3187 */ 3188 if (ret) 3189 btrfs_mark_ordered_extent_error(ordered_extent); 3190 3191 if (truncated) 3192 unwritten_start += logical_len; 3193 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3194 3195 /* 3196 * Drop extent maps for the part of the extent we didn't write. 3197 * 3198 * We have an exception here for the free_space_inode, this is 3199 * because when we do btrfs_get_extent() on the free space inode 3200 * we will search the commit root. If this is a new block group 3201 * we won't find anything, and we will trip over the assert in 3202 * writepage where we do ASSERT(em->block_start != 3203 * EXTENT_MAP_HOLE). 3204 * 3205 * Theoretically we could also skip this for any NOCOW extent as 3206 * we don't mess with the extent map tree in the NOCOW case, but 3207 * for now simply skip this if we are the free space inode. 3208 */ 3209 if (!btrfs_is_free_space_inode(inode)) 3210 btrfs_drop_extent_map_range(inode, unwritten_start, 3211 end, false); 3212 3213 /* 3214 * If the ordered extent had an IOERR or something else went 3215 * wrong we need to return the space for this ordered extent 3216 * back to the allocator. We only free the extent in the 3217 * truncated case if we didn't write out the extent at all. 3218 * 3219 * If we made it past insert_reserved_file_extent before we 3220 * errored out then we don't need to do this as the accounting 3221 * has already been done. 3222 */ 3223 if ((ret || !logical_len) && 3224 clear_reserved_extent && 3225 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3226 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3227 /* 3228 * Discard the range before returning it back to the 3229 * free space pool 3230 */ 3231 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3232 btrfs_discard_extent(fs_info, 3233 ordered_extent->disk_bytenr, 3234 ordered_extent->disk_num_bytes, 3235 NULL); 3236 btrfs_free_reserved_extent(fs_info, 3237 ordered_extent->disk_bytenr, 3238 ordered_extent->disk_num_bytes, 1); 3239 /* 3240 * Actually free the qgroup rsv which was released when 3241 * the ordered extent was created. 3242 */ 3243 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3244 ordered_extent->qgroup_rsv, 3245 BTRFS_QGROUP_RSV_DATA); 3246 } 3247 } 3248 3249 /* 3250 * This needs to be done to make sure anybody waiting knows we are done 3251 * updating everything for this ordered extent. 3252 */ 3253 btrfs_remove_ordered_extent(inode, ordered_extent); 3254 3255 /* once for us */ 3256 btrfs_put_ordered_extent(ordered_extent); 3257 /* once for the tree */ 3258 btrfs_put_ordered_extent(ordered_extent); 3259 3260 return ret; 3261 } 3262 3263 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3264 { 3265 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3266 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3267 list_empty(&ordered->bioc_list)) 3268 btrfs_finish_ordered_zoned(ordered); 3269 return btrfs_finish_one_ordered(ordered); 3270 } 3271 3272 /* 3273 * Verify the checksum for a single sector without any extra action that depend 3274 * on the type of I/O. 3275 */ 3276 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3277 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3278 { 3279 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3280 char *kaddr; 3281 3282 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3283 3284 shash->tfm = fs_info->csum_shash; 3285 3286 kaddr = kmap_local_page(page) + pgoff; 3287 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3288 kunmap_local(kaddr); 3289 3290 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3291 return -EIO; 3292 return 0; 3293 } 3294 3295 /* 3296 * Verify the checksum of a single data sector. 3297 * 3298 * @bbio: btrfs_io_bio which contains the csum 3299 * @dev: device the sector is on 3300 * @bio_offset: offset to the beginning of the bio (in bytes) 3301 * @bv: bio_vec to check 3302 * 3303 * Check if the checksum on a data block is valid. When a checksum mismatch is 3304 * detected, report the error and fill the corrupted range with zero. 3305 * 3306 * Return %true if the sector is ok or had no checksum to start with, else %false. 3307 */ 3308 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3309 u32 bio_offset, struct bio_vec *bv) 3310 { 3311 struct btrfs_inode *inode = bbio->inode; 3312 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3313 u64 file_offset = bbio->file_offset + bio_offset; 3314 u64 end = file_offset + bv->bv_len - 1; 3315 u8 *csum_expected; 3316 u8 csum[BTRFS_CSUM_SIZE]; 3317 3318 ASSERT(bv->bv_len == fs_info->sectorsize); 3319 3320 if (!bbio->csum) 3321 return true; 3322 3323 if (btrfs_is_data_reloc_root(inode->root) && 3324 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3325 NULL)) { 3326 /* Skip the range without csum for data reloc inode */ 3327 clear_extent_bits(&inode->io_tree, file_offset, end, 3328 EXTENT_NODATASUM); 3329 return true; 3330 } 3331 3332 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3333 fs_info->csum_size; 3334 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3335 csum_expected)) 3336 goto zeroit; 3337 return true; 3338 3339 zeroit: 3340 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3341 bbio->mirror_num); 3342 if (dev) 3343 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3344 memzero_bvec(bv); 3345 return false; 3346 } 3347 3348 /* 3349 * Perform a delayed iput on @inode. 3350 * 3351 * @inode: The inode we want to perform iput on 3352 * 3353 * This function uses the generic vfs_inode::i_count to track whether we should 3354 * just decrement it (in case it's > 1) or if this is the last iput then link 3355 * the inode to the delayed iput machinery. Delayed iputs are processed at 3356 * transaction commit time/superblock commit/cleaner kthread. 3357 */ 3358 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3359 { 3360 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3361 unsigned long flags; 3362 3363 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3364 return; 3365 3366 atomic_inc(&fs_info->nr_delayed_iputs); 3367 /* 3368 * Need to be irq safe here because we can be called from either an irq 3369 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3370 * context. 3371 */ 3372 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3373 ASSERT(list_empty(&inode->delayed_iput)); 3374 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3375 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3376 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3377 wake_up_process(fs_info->cleaner_kthread); 3378 } 3379 3380 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3381 struct btrfs_inode *inode) 3382 { 3383 list_del_init(&inode->delayed_iput); 3384 spin_unlock_irq(&fs_info->delayed_iput_lock); 3385 iput(&inode->vfs_inode); 3386 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3387 wake_up(&fs_info->delayed_iputs_wait); 3388 spin_lock_irq(&fs_info->delayed_iput_lock); 3389 } 3390 3391 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3392 struct btrfs_inode *inode) 3393 { 3394 if (!list_empty(&inode->delayed_iput)) { 3395 spin_lock_irq(&fs_info->delayed_iput_lock); 3396 if (!list_empty(&inode->delayed_iput)) 3397 run_delayed_iput_locked(fs_info, inode); 3398 spin_unlock_irq(&fs_info->delayed_iput_lock); 3399 } 3400 } 3401 3402 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3403 { 3404 /* 3405 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3406 * calls btrfs_add_delayed_iput() and that needs to lock 3407 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3408 * prevent a deadlock. 3409 */ 3410 spin_lock_irq(&fs_info->delayed_iput_lock); 3411 while (!list_empty(&fs_info->delayed_iputs)) { 3412 struct btrfs_inode *inode; 3413 3414 inode = list_first_entry(&fs_info->delayed_iputs, 3415 struct btrfs_inode, delayed_iput); 3416 run_delayed_iput_locked(fs_info, inode); 3417 if (need_resched()) { 3418 spin_unlock_irq(&fs_info->delayed_iput_lock); 3419 cond_resched(); 3420 spin_lock_irq(&fs_info->delayed_iput_lock); 3421 } 3422 } 3423 spin_unlock_irq(&fs_info->delayed_iput_lock); 3424 } 3425 3426 /* 3427 * Wait for flushing all delayed iputs 3428 * 3429 * @fs_info: the filesystem 3430 * 3431 * This will wait on any delayed iputs that are currently running with KILLABLE 3432 * set. Once they are all done running we will return, unless we are killed in 3433 * which case we return EINTR. This helps in user operations like fallocate etc 3434 * that might get blocked on the iputs. 3435 * 3436 * Return EINTR if we were killed, 0 if nothing's pending 3437 */ 3438 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3439 { 3440 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3441 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3442 if (ret) 3443 return -EINTR; 3444 return 0; 3445 } 3446 3447 /* 3448 * This creates an orphan entry for the given inode in case something goes wrong 3449 * in the middle of an unlink. 3450 */ 3451 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3452 struct btrfs_inode *inode) 3453 { 3454 int ret; 3455 3456 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3457 if (ret && ret != -EEXIST) { 3458 btrfs_abort_transaction(trans, ret); 3459 return ret; 3460 } 3461 3462 return 0; 3463 } 3464 3465 /* 3466 * We have done the delete so we can go ahead and remove the orphan item for 3467 * this particular inode. 3468 */ 3469 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3470 struct btrfs_inode *inode) 3471 { 3472 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3473 } 3474 3475 /* 3476 * this cleans up any orphans that may be left on the list from the last use 3477 * of this root. 3478 */ 3479 int btrfs_orphan_cleanup(struct btrfs_root *root) 3480 { 3481 struct btrfs_fs_info *fs_info = root->fs_info; 3482 struct btrfs_path *path; 3483 struct extent_buffer *leaf; 3484 struct btrfs_key key, found_key; 3485 struct btrfs_trans_handle *trans; 3486 struct inode *inode; 3487 u64 last_objectid = 0; 3488 int ret = 0, nr_unlink = 0; 3489 3490 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3491 return 0; 3492 3493 path = btrfs_alloc_path(); 3494 if (!path) { 3495 ret = -ENOMEM; 3496 goto out; 3497 } 3498 path->reada = READA_BACK; 3499 3500 key.objectid = BTRFS_ORPHAN_OBJECTID; 3501 key.type = BTRFS_ORPHAN_ITEM_KEY; 3502 key.offset = (u64)-1; 3503 3504 while (1) { 3505 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3506 if (ret < 0) 3507 goto out; 3508 3509 /* 3510 * if ret == 0 means we found what we were searching for, which 3511 * is weird, but possible, so only screw with path if we didn't 3512 * find the key and see if we have stuff that matches 3513 */ 3514 if (ret > 0) { 3515 ret = 0; 3516 if (path->slots[0] == 0) 3517 break; 3518 path->slots[0]--; 3519 } 3520 3521 /* pull out the item */ 3522 leaf = path->nodes[0]; 3523 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3524 3525 /* make sure the item matches what we want */ 3526 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3527 break; 3528 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3529 break; 3530 3531 /* release the path since we're done with it */ 3532 btrfs_release_path(path); 3533 3534 /* 3535 * this is where we are basically btrfs_lookup, without the 3536 * crossing root thing. we store the inode number in the 3537 * offset of the orphan item. 3538 */ 3539 3540 if (found_key.offset == last_objectid) { 3541 /* 3542 * We found the same inode as before. This means we were 3543 * not able to remove its items via eviction triggered 3544 * by an iput(). A transaction abort may have happened, 3545 * due to -ENOSPC for example, so try to grab the error 3546 * that lead to a transaction abort, if any. 3547 */ 3548 btrfs_err(fs_info, 3549 "Error removing orphan entry, stopping orphan cleanup"); 3550 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3551 goto out; 3552 } 3553 3554 last_objectid = found_key.offset; 3555 3556 found_key.objectid = found_key.offset; 3557 found_key.type = BTRFS_INODE_ITEM_KEY; 3558 found_key.offset = 0; 3559 inode = btrfs_iget(last_objectid, root); 3560 if (IS_ERR(inode)) { 3561 ret = PTR_ERR(inode); 3562 inode = NULL; 3563 if (ret != -ENOENT) 3564 goto out; 3565 } 3566 3567 if (!inode && root == fs_info->tree_root) { 3568 struct btrfs_root *dead_root; 3569 int is_dead_root = 0; 3570 3571 /* 3572 * This is an orphan in the tree root. Currently these 3573 * could come from 2 sources: 3574 * a) a root (snapshot/subvolume) deletion in progress 3575 * b) a free space cache inode 3576 * We need to distinguish those two, as the orphan item 3577 * for a root must not get deleted before the deletion 3578 * of the snapshot/subvolume's tree completes. 3579 * 3580 * btrfs_find_orphan_roots() ran before us, which has 3581 * found all deleted roots and loaded them into 3582 * fs_info->fs_roots_radix. So here we can find if an 3583 * orphan item corresponds to a deleted root by looking 3584 * up the root from that radix tree. 3585 */ 3586 3587 spin_lock(&fs_info->fs_roots_radix_lock); 3588 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3589 (unsigned long)found_key.objectid); 3590 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3591 is_dead_root = 1; 3592 spin_unlock(&fs_info->fs_roots_radix_lock); 3593 3594 if (is_dead_root) { 3595 /* prevent this orphan from being found again */ 3596 key.offset = found_key.objectid - 1; 3597 continue; 3598 } 3599 3600 } 3601 3602 /* 3603 * If we have an inode with links, there are a couple of 3604 * possibilities: 3605 * 3606 * 1. We were halfway through creating fsverity metadata for the 3607 * file. In that case, the orphan item represents incomplete 3608 * fsverity metadata which must be cleaned up with 3609 * btrfs_drop_verity_items and deleting the orphan item. 3610 3611 * 2. Old kernels (before v3.12) used to create an 3612 * orphan item for truncate indicating that there were possibly 3613 * extent items past i_size that needed to be deleted. In v3.12, 3614 * truncate was changed to update i_size in sync with the extent 3615 * items, but the (useless) orphan item was still created. Since 3616 * v4.18, we don't create the orphan item for truncate at all. 3617 * 3618 * So, this item could mean that we need to do a truncate, but 3619 * only if this filesystem was last used on a pre-v3.12 kernel 3620 * and was not cleanly unmounted. The odds of that are quite 3621 * slim, and it's a pain to do the truncate now, so just delete 3622 * the orphan item. 3623 * 3624 * It's also possible that this orphan item was supposed to be 3625 * deleted but wasn't. The inode number may have been reused, 3626 * but either way, we can delete the orphan item. 3627 */ 3628 if (!inode || inode->i_nlink) { 3629 if (inode) { 3630 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3631 iput(inode); 3632 inode = NULL; 3633 if (ret) 3634 goto out; 3635 } 3636 trans = btrfs_start_transaction(root, 1); 3637 if (IS_ERR(trans)) { 3638 ret = PTR_ERR(trans); 3639 goto out; 3640 } 3641 btrfs_debug(fs_info, "auto deleting %Lu", 3642 found_key.objectid); 3643 ret = btrfs_del_orphan_item(trans, root, 3644 found_key.objectid); 3645 btrfs_end_transaction(trans); 3646 if (ret) 3647 goto out; 3648 continue; 3649 } 3650 3651 nr_unlink++; 3652 3653 /* this will do delete_inode and everything for us */ 3654 iput(inode); 3655 } 3656 /* release the path since we're done with it */ 3657 btrfs_release_path(path); 3658 3659 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3660 trans = btrfs_join_transaction(root); 3661 if (!IS_ERR(trans)) 3662 btrfs_end_transaction(trans); 3663 } 3664 3665 if (nr_unlink) 3666 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3667 3668 out: 3669 if (ret) 3670 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3671 btrfs_free_path(path); 3672 return ret; 3673 } 3674 3675 /* 3676 * very simple check to peek ahead in the leaf looking for xattrs. If we 3677 * don't find any xattrs, we know there can't be any acls. 3678 * 3679 * slot is the slot the inode is in, objectid is the objectid of the inode 3680 */ 3681 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3682 int slot, u64 objectid, 3683 int *first_xattr_slot) 3684 { 3685 u32 nritems = btrfs_header_nritems(leaf); 3686 struct btrfs_key found_key; 3687 static u64 xattr_access = 0; 3688 static u64 xattr_default = 0; 3689 int scanned = 0; 3690 3691 if (!xattr_access) { 3692 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3693 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3694 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3695 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3696 } 3697 3698 slot++; 3699 *first_xattr_slot = -1; 3700 while (slot < nritems) { 3701 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3702 3703 /* we found a different objectid, there must not be acls */ 3704 if (found_key.objectid != objectid) 3705 return 0; 3706 3707 /* we found an xattr, assume we've got an acl */ 3708 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3709 if (*first_xattr_slot == -1) 3710 *first_xattr_slot = slot; 3711 if (found_key.offset == xattr_access || 3712 found_key.offset == xattr_default) 3713 return 1; 3714 } 3715 3716 /* 3717 * we found a key greater than an xattr key, there can't 3718 * be any acls later on 3719 */ 3720 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3721 return 0; 3722 3723 slot++; 3724 scanned++; 3725 3726 /* 3727 * it goes inode, inode backrefs, xattrs, extents, 3728 * so if there are a ton of hard links to an inode there can 3729 * be a lot of backrefs. Don't waste time searching too hard, 3730 * this is just an optimization 3731 */ 3732 if (scanned >= 8) 3733 break; 3734 } 3735 /* we hit the end of the leaf before we found an xattr or 3736 * something larger than an xattr. We have to assume the inode 3737 * has acls 3738 */ 3739 if (*first_xattr_slot == -1) 3740 *first_xattr_slot = slot; 3741 return 1; 3742 } 3743 3744 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3745 { 3746 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3747 3748 if (WARN_ON_ONCE(inode->file_extent_tree)) 3749 return 0; 3750 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3751 return 0; 3752 if (!S_ISREG(inode->vfs_inode.i_mode)) 3753 return 0; 3754 if (btrfs_is_free_space_inode(inode)) 3755 return 0; 3756 3757 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3758 if (!inode->file_extent_tree) 3759 return -ENOMEM; 3760 3761 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3762 /* Lockdep class is set only for the file extent tree. */ 3763 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3764 3765 return 0; 3766 } 3767 3768 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3769 { 3770 struct btrfs_root *root = inode->root; 3771 struct btrfs_inode *existing; 3772 const u64 ino = btrfs_ino(inode); 3773 int ret; 3774 3775 if (inode_unhashed(&inode->vfs_inode)) 3776 return 0; 3777 3778 if (prealloc) { 3779 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3780 if (ret) 3781 return ret; 3782 } 3783 3784 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3785 3786 if (xa_is_err(existing)) { 3787 ret = xa_err(existing); 3788 ASSERT(ret != -EINVAL); 3789 ASSERT(ret != -ENOMEM); 3790 return ret; 3791 } else if (existing) { 3792 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3793 } 3794 3795 return 0; 3796 } 3797 3798 /* 3799 * Read a locked inode from the btree into the in-memory inode and add it to 3800 * its root list/tree. 3801 * 3802 * On failure clean up the inode. 3803 */ 3804 static int btrfs_read_locked_inode(struct inode *inode, struct btrfs_path *path) 3805 { 3806 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3807 struct extent_buffer *leaf; 3808 struct btrfs_inode_item *inode_item; 3809 struct btrfs_root *root = BTRFS_I(inode)->root; 3810 struct btrfs_key location; 3811 unsigned long ptr; 3812 int maybe_acls; 3813 u32 rdev; 3814 int ret; 3815 bool filled = false; 3816 int first_xattr_slot; 3817 3818 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 3819 if (ret) 3820 goto out; 3821 3822 ret = btrfs_fill_inode(inode, &rdev); 3823 if (!ret) 3824 filled = true; 3825 3826 ASSERT(path); 3827 3828 btrfs_get_inode_key(BTRFS_I(inode), &location); 3829 3830 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3831 if (ret) { 3832 /* 3833 * ret > 0 can come from btrfs_search_slot called by 3834 * btrfs_lookup_inode(), this means the inode was not found. 3835 */ 3836 if (ret > 0) 3837 ret = -ENOENT; 3838 goto out; 3839 } 3840 3841 leaf = path->nodes[0]; 3842 3843 if (filled) 3844 goto cache_index; 3845 3846 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3847 struct btrfs_inode_item); 3848 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3849 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3850 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3851 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3852 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3853 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3854 round_up(i_size_read(inode), fs_info->sectorsize)); 3855 3856 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3857 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3858 3859 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3860 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3861 3862 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3863 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3864 3865 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3866 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3867 3868 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3869 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3870 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3871 3872 inode_set_iversion_queried(inode, 3873 btrfs_inode_sequence(leaf, inode_item)); 3874 inode->i_generation = BTRFS_I(inode)->generation; 3875 inode->i_rdev = 0; 3876 rdev = btrfs_inode_rdev(leaf, inode_item); 3877 3878 if (S_ISDIR(inode->i_mode)) 3879 BTRFS_I(inode)->index_cnt = (u64)-1; 3880 3881 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3882 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3883 3884 cache_index: 3885 /* 3886 * If we were modified in the current generation and evicted from memory 3887 * and then re-read we need to do a full sync since we don't have any 3888 * idea about which extents were modified before we were evicted from 3889 * cache. 3890 * 3891 * This is required for both inode re-read from disk and delayed inode 3892 * in the delayed_nodes xarray. 3893 */ 3894 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3895 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3896 &BTRFS_I(inode)->runtime_flags); 3897 3898 /* 3899 * We don't persist the id of the transaction where an unlink operation 3900 * against the inode was last made. So here we assume the inode might 3901 * have been evicted, and therefore the exact value of last_unlink_trans 3902 * lost, and set it to last_trans to avoid metadata inconsistencies 3903 * between the inode and its parent if the inode is fsync'ed and the log 3904 * replayed. For example, in the scenario: 3905 * 3906 * touch mydir/foo 3907 * ln mydir/foo mydir/bar 3908 * sync 3909 * unlink mydir/bar 3910 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3911 * xfs_io -c fsync mydir/foo 3912 * <power failure> 3913 * mount fs, triggers fsync log replay 3914 * 3915 * We must make sure that when we fsync our inode foo we also log its 3916 * parent inode, otherwise after log replay the parent still has the 3917 * dentry with the "bar" name but our inode foo has a link count of 1 3918 * and doesn't have an inode ref with the name "bar" anymore. 3919 * 3920 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3921 * but it guarantees correctness at the expense of occasional full 3922 * transaction commits on fsync if our inode is a directory, or if our 3923 * inode is not a directory, logging its parent unnecessarily. 3924 */ 3925 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3926 3927 /* 3928 * Same logic as for last_unlink_trans. We don't persist the generation 3929 * of the last transaction where this inode was used for a reflink 3930 * operation, so after eviction and reloading the inode we must be 3931 * pessimistic and assume the last transaction that modified the inode. 3932 */ 3933 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3934 3935 path->slots[0]++; 3936 if (inode->i_nlink != 1 || 3937 path->slots[0] >= btrfs_header_nritems(leaf)) 3938 goto cache_acl; 3939 3940 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3941 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3942 goto cache_acl; 3943 3944 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3945 if (location.type == BTRFS_INODE_REF_KEY) { 3946 struct btrfs_inode_ref *ref; 3947 3948 ref = (struct btrfs_inode_ref *)ptr; 3949 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3950 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3951 struct btrfs_inode_extref *extref; 3952 3953 extref = (struct btrfs_inode_extref *)ptr; 3954 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3955 extref); 3956 } 3957 cache_acl: 3958 /* 3959 * try to precache a NULL acl entry for files that don't have 3960 * any xattrs or acls 3961 */ 3962 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3963 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3964 if (first_xattr_slot != -1) { 3965 path->slots[0] = first_xattr_slot; 3966 ret = btrfs_load_inode_props(inode, path); 3967 if (ret) 3968 btrfs_err(fs_info, 3969 "error loading props for ino %llu (root %llu): %d", 3970 btrfs_ino(BTRFS_I(inode)), 3971 btrfs_root_id(root), ret); 3972 } 3973 3974 if (!maybe_acls) 3975 cache_no_acl(inode); 3976 3977 switch (inode->i_mode & S_IFMT) { 3978 case S_IFREG: 3979 inode->i_mapping->a_ops = &btrfs_aops; 3980 inode->i_fop = &btrfs_file_operations; 3981 inode->i_op = &btrfs_file_inode_operations; 3982 break; 3983 case S_IFDIR: 3984 inode->i_fop = &btrfs_dir_file_operations; 3985 inode->i_op = &btrfs_dir_inode_operations; 3986 break; 3987 case S_IFLNK: 3988 inode->i_op = &btrfs_symlink_inode_operations; 3989 inode_nohighmem(inode); 3990 inode->i_mapping->a_ops = &btrfs_aops; 3991 break; 3992 default: 3993 inode->i_op = &btrfs_special_inode_operations; 3994 init_special_inode(inode, inode->i_mode, rdev); 3995 break; 3996 } 3997 3998 btrfs_sync_inode_flags_to_i_flags(inode); 3999 4000 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true); 4001 if (ret) 4002 goto out; 4003 4004 return 0; 4005 out: 4006 iget_failed(inode); 4007 return ret; 4008 } 4009 4010 /* 4011 * given a leaf and an inode, copy the inode fields into the leaf 4012 */ 4013 static void fill_inode_item(struct btrfs_trans_handle *trans, 4014 struct extent_buffer *leaf, 4015 struct btrfs_inode_item *item, 4016 struct inode *inode) 4017 { 4018 struct btrfs_map_token token; 4019 u64 flags; 4020 4021 btrfs_init_map_token(&token, leaf); 4022 4023 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4024 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4025 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4026 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4027 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4028 4029 btrfs_set_token_timespec_sec(&token, &item->atime, 4030 inode_get_atime_sec(inode)); 4031 btrfs_set_token_timespec_nsec(&token, &item->atime, 4032 inode_get_atime_nsec(inode)); 4033 4034 btrfs_set_token_timespec_sec(&token, &item->mtime, 4035 inode_get_mtime_sec(inode)); 4036 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4037 inode_get_mtime_nsec(inode)); 4038 4039 btrfs_set_token_timespec_sec(&token, &item->ctime, 4040 inode_get_ctime_sec(inode)); 4041 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4042 inode_get_ctime_nsec(inode)); 4043 4044 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4045 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4046 4047 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4048 btrfs_set_token_inode_generation(&token, item, 4049 BTRFS_I(inode)->generation); 4050 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4051 btrfs_set_token_inode_transid(&token, item, trans->transid); 4052 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4053 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4054 BTRFS_I(inode)->ro_flags); 4055 btrfs_set_token_inode_flags(&token, item, flags); 4056 btrfs_set_token_inode_block_group(&token, item, 0); 4057 } 4058 4059 /* 4060 * copy everything in the in-memory inode into the btree. 4061 */ 4062 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4063 struct btrfs_inode *inode) 4064 { 4065 struct btrfs_inode_item *inode_item; 4066 struct btrfs_path *path; 4067 struct extent_buffer *leaf; 4068 struct btrfs_key key; 4069 int ret; 4070 4071 path = btrfs_alloc_path(); 4072 if (!path) 4073 return -ENOMEM; 4074 4075 btrfs_get_inode_key(inode, &key); 4076 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4077 if (ret) { 4078 if (ret > 0) 4079 ret = -ENOENT; 4080 goto failed; 4081 } 4082 4083 leaf = path->nodes[0]; 4084 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4085 struct btrfs_inode_item); 4086 4087 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4088 btrfs_mark_buffer_dirty(trans, leaf); 4089 btrfs_set_inode_last_trans(trans, inode); 4090 ret = 0; 4091 failed: 4092 btrfs_free_path(path); 4093 return ret; 4094 } 4095 4096 /* 4097 * copy everything in the in-memory inode into the btree. 4098 */ 4099 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4100 struct btrfs_inode *inode) 4101 { 4102 struct btrfs_root *root = inode->root; 4103 struct btrfs_fs_info *fs_info = root->fs_info; 4104 int ret; 4105 4106 /* 4107 * If the inode is a free space inode, we can deadlock during commit 4108 * if we put it into the delayed code. 4109 * 4110 * The data relocation inode should also be directly updated 4111 * without delay 4112 */ 4113 if (!btrfs_is_free_space_inode(inode) 4114 && !btrfs_is_data_reloc_root(root) 4115 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4116 btrfs_update_root_times(trans, root); 4117 4118 ret = btrfs_delayed_update_inode(trans, inode); 4119 if (!ret) 4120 btrfs_set_inode_last_trans(trans, inode); 4121 return ret; 4122 } 4123 4124 return btrfs_update_inode_item(trans, inode); 4125 } 4126 4127 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4128 struct btrfs_inode *inode) 4129 { 4130 int ret; 4131 4132 ret = btrfs_update_inode(trans, inode); 4133 if (ret == -ENOSPC) 4134 return btrfs_update_inode_item(trans, inode); 4135 return ret; 4136 } 4137 4138 /* 4139 * unlink helper that gets used here in inode.c and in the tree logging 4140 * recovery code. It remove a link in a directory with a given name, and 4141 * also drops the back refs in the inode to the directory 4142 */ 4143 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4144 struct btrfs_inode *dir, 4145 struct btrfs_inode *inode, 4146 const struct fscrypt_str *name, 4147 struct btrfs_rename_ctx *rename_ctx) 4148 { 4149 struct btrfs_root *root = dir->root; 4150 struct btrfs_fs_info *fs_info = root->fs_info; 4151 struct btrfs_path *path; 4152 int ret = 0; 4153 struct btrfs_dir_item *di; 4154 u64 index; 4155 u64 ino = btrfs_ino(inode); 4156 u64 dir_ino = btrfs_ino(dir); 4157 4158 path = btrfs_alloc_path(); 4159 if (!path) { 4160 ret = -ENOMEM; 4161 goto out; 4162 } 4163 4164 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4165 if (IS_ERR_OR_NULL(di)) { 4166 ret = di ? PTR_ERR(di) : -ENOENT; 4167 goto err; 4168 } 4169 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4170 if (ret) 4171 goto err; 4172 btrfs_release_path(path); 4173 4174 /* 4175 * If we don't have dir index, we have to get it by looking up 4176 * the inode ref, since we get the inode ref, remove it directly, 4177 * it is unnecessary to do delayed deletion. 4178 * 4179 * But if we have dir index, needn't search inode ref to get it. 4180 * Since the inode ref is close to the inode item, it is better 4181 * that we delay to delete it, and just do this deletion when 4182 * we update the inode item. 4183 */ 4184 if (inode->dir_index) { 4185 ret = btrfs_delayed_delete_inode_ref(inode); 4186 if (!ret) { 4187 index = inode->dir_index; 4188 goto skip_backref; 4189 } 4190 } 4191 4192 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4193 if (ret) { 4194 btrfs_info(fs_info, 4195 "failed to delete reference to %.*s, inode %llu parent %llu", 4196 name->len, name->name, ino, dir_ino); 4197 btrfs_abort_transaction(trans, ret); 4198 goto err; 4199 } 4200 skip_backref: 4201 if (rename_ctx) 4202 rename_ctx->index = index; 4203 4204 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4205 if (ret) { 4206 btrfs_abort_transaction(trans, ret); 4207 goto err; 4208 } 4209 4210 /* 4211 * If we are in a rename context, we don't need to update anything in the 4212 * log. That will be done later during the rename by btrfs_log_new_name(). 4213 * Besides that, doing it here would only cause extra unnecessary btree 4214 * operations on the log tree, increasing latency for applications. 4215 */ 4216 if (!rename_ctx) { 4217 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4218 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4219 } 4220 4221 /* 4222 * If we have a pending delayed iput we could end up with the final iput 4223 * being run in btrfs-cleaner context. If we have enough of these built 4224 * up we can end up burning a lot of time in btrfs-cleaner without any 4225 * way to throttle the unlinks. Since we're currently holding a ref on 4226 * the inode we can run the delayed iput here without any issues as the 4227 * final iput won't be done until after we drop the ref we're currently 4228 * holding. 4229 */ 4230 btrfs_run_delayed_iput(fs_info, inode); 4231 err: 4232 btrfs_free_path(path); 4233 if (ret) 4234 goto out; 4235 4236 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4237 inode_inc_iversion(&inode->vfs_inode); 4238 inode_set_ctime_current(&inode->vfs_inode); 4239 inode_inc_iversion(&dir->vfs_inode); 4240 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4241 ret = btrfs_update_inode(trans, dir); 4242 out: 4243 return ret; 4244 } 4245 4246 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4247 struct btrfs_inode *dir, struct btrfs_inode *inode, 4248 const struct fscrypt_str *name) 4249 { 4250 int ret; 4251 4252 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4253 if (!ret) { 4254 drop_nlink(&inode->vfs_inode); 4255 ret = btrfs_update_inode(trans, inode); 4256 } 4257 return ret; 4258 } 4259 4260 /* 4261 * helper to start transaction for unlink and rmdir. 4262 * 4263 * unlink and rmdir are special in btrfs, they do not always free space, so 4264 * if we cannot make our reservations the normal way try and see if there is 4265 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4266 * allow the unlink to occur. 4267 */ 4268 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4269 { 4270 struct btrfs_root *root = dir->root; 4271 4272 return btrfs_start_transaction_fallback_global_rsv(root, 4273 BTRFS_UNLINK_METADATA_UNITS); 4274 } 4275 4276 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4277 { 4278 struct btrfs_trans_handle *trans; 4279 struct inode *inode = d_inode(dentry); 4280 int ret; 4281 struct fscrypt_name fname; 4282 4283 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4284 if (ret) 4285 return ret; 4286 4287 /* This needs to handle no-key deletions later on */ 4288 4289 trans = __unlink_start_trans(BTRFS_I(dir)); 4290 if (IS_ERR(trans)) { 4291 ret = PTR_ERR(trans); 4292 goto fscrypt_free; 4293 } 4294 4295 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4296 false); 4297 4298 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4299 &fname.disk_name); 4300 if (ret) 4301 goto end_trans; 4302 4303 if (inode->i_nlink == 0) { 4304 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4305 if (ret) 4306 goto end_trans; 4307 } 4308 4309 end_trans: 4310 btrfs_end_transaction(trans); 4311 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4312 fscrypt_free: 4313 fscrypt_free_filename(&fname); 4314 return ret; 4315 } 4316 4317 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4318 struct btrfs_inode *dir, struct dentry *dentry) 4319 { 4320 struct btrfs_root *root = dir->root; 4321 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4322 struct btrfs_path *path; 4323 struct extent_buffer *leaf; 4324 struct btrfs_dir_item *di; 4325 struct btrfs_key key; 4326 u64 index; 4327 int ret; 4328 u64 objectid; 4329 u64 dir_ino = btrfs_ino(dir); 4330 struct fscrypt_name fname; 4331 4332 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4333 if (ret) 4334 return ret; 4335 4336 /* This needs to handle no-key deletions later on */ 4337 4338 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4339 objectid = btrfs_root_id(inode->root); 4340 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4341 objectid = inode->ref_root_id; 4342 } else { 4343 WARN_ON(1); 4344 fscrypt_free_filename(&fname); 4345 return -EINVAL; 4346 } 4347 4348 path = btrfs_alloc_path(); 4349 if (!path) { 4350 ret = -ENOMEM; 4351 goto out; 4352 } 4353 4354 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4355 &fname.disk_name, -1); 4356 if (IS_ERR_OR_NULL(di)) { 4357 ret = di ? PTR_ERR(di) : -ENOENT; 4358 goto out; 4359 } 4360 4361 leaf = path->nodes[0]; 4362 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4363 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4364 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4365 if (ret) { 4366 btrfs_abort_transaction(trans, ret); 4367 goto out; 4368 } 4369 btrfs_release_path(path); 4370 4371 /* 4372 * This is a placeholder inode for a subvolume we didn't have a 4373 * reference to at the time of the snapshot creation. In the meantime 4374 * we could have renamed the real subvol link into our snapshot, so 4375 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4376 * Instead simply lookup the dir_index_item for this entry so we can 4377 * remove it. Otherwise we know we have a ref to the root and we can 4378 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4379 */ 4380 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4381 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4382 if (IS_ERR(di)) { 4383 ret = PTR_ERR(di); 4384 btrfs_abort_transaction(trans, ret); 4385 goto out; 4386 } 4387 4388 leaf = path->nodes[0]; 4389 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4390 index = key.offset; 4391 btrfs_release_path(path); 4392 } else { 4393 ret = btrfs_del_root_ref(trans, objectid, 4394 btrfs_root_id(root), dir_ino, 4395 &index, &fname.disk_name); 4396 if (ret) { 4397 btrfs_abort_transaction(trans, ret); 4398 goto out; 4399 } 4400 } 4401 4402 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4403 if (ret) { 4404 btrfs_abort_transaction(trans, ret); 4405 goto out; 4406 } 4407 4408 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4409 inode_inc_iversion(&dir->vfs_inode); 4410 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4411 ret = btrfs_update_inode_fallback(trans, dir); 4412 if (ret) 4413 btrfs_abort_transaction(trans, ret); 4414 out: 4415 btrfs_free_path(path); 4416 fscrypt_free_filename(&fname); 4417 return ret; 4418 } 4419 4420 /* 4421 * Helper to check if the subvolume references other subvolumes or if it's 4422 * default. 4423 */ 4424 static noinline int may_destroy_subvol(struct btrfs_root *root) 4425 { 4426 struct btrfs_fs_info *fs_info = root->fs_info; 4427 struct btrfs_path *path; 4428 struct btrfs_dir_item *di; 4429 struct btrfs_key key; 4430 struct fscrypt_str name = FSTR_INIT("default", 7); 4431 u64 dir_id; 4432 int ret; 4433 4434 path = btrfs_alloc_path(); 4435 if (!path) 4436 return -ENOMEM; 4437 4438 /* Make sure this root isn't set as the default subvol */ 4439 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4440 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4441 dir_id, &name, 0); 4442 if (di && !IS_ERR(di)) { 4443 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4444 if (key.objectid == btrfs_root_id(root)) { 4445 ret = -EPERM; 4446 btrfs_err(fs_info, 4447 "deleting default subvolume %llu is not allowed", 4448 key.objectid); 4449 goto out; 4450 } 4451 btrfs_release_path(path); 4452 } 4453 4454 key.objectid = btrfs_root_id(root); 4455 key.type = BTRFS_ROOT_REF_KEY; 4456 key.offset = (u64)-1; 4457 4458 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4459 if (ret < 0) 4460 goto out; 4461 if (ret == 0) { 4462 /* 4463 * Key with offset -1 found, there would have to exist a root 4464 * with such id, but this is out of valid range. 4465 */ 4466 ret = -EUCLEAN; 4467 goto out; 4468 } 4469 4470 ret = 0; 4471 if (path->slots[0] > 0) { 4472 path->slots[0]--; 4473 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4474 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4475 ret = -ENOTEMPTY; 4476 } 4477 out: 4478 btrfs_free_path(path); 4479 return ret; 4480 } 4481 4482 /* Delete all dentries for inodes belonging to the root */ 4483 static void btrfs_prune_dentries(struct btrfs_root *root) 4484 { 4485 struct btrfs_fs_info *fs_info = root->fs_info; 4486 struct btrfs_inode *inode; 4487 u64 min_ino = 0; 4488 4489 if (!BTRFS_FS_ERROR(fs_info)) 4490 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4491 4492 inode = btrfs_find_first_inode(root, min_ino); 4493 while (inode) { 4494 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4495 d_prune_aliases(&inode->vfs_inode); 4496 4497 min_ino = btrfs_ino(inode) + 1; 4498 /* 4499 * btrfs_drop_inode() will have it removed from the inode 4500 * cache when its usage count hits zero. 4501 */ 4502 iput(&inode->vfs_inode); 4503 cond_resched(); 4504 inode = btrfs_find_first_inode(root, min_ino); 4505 } 4506 } 4507 4508 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4509 { 4510 struct btrfs_root *root = dir->root; 4511 struct btrfs_fs_info *fs_info = root->fs_info; 4512 struct inode *inode = d_inode(dentry); 4513 struct btrfs_root *dest = BTRFS_I(inode)->root; 4514 struct btrfs_trans_handle *trans; 4515 struct btrfs_block_rsv block_rsv; 4516 u64 root_flags; 4517 u64 qgroup_reserved = 0; 4518 int ret; 4519 4520 down_write(&fs_info->subvol_sem); 4521 4522 /* 4523 * Don't allow to delete a subvolume with send in progress. This is 4524 * inside the inode lock so the error handling that has to drop the bit 4525 * again is not run concurrently. 4526 */ 4527 spin_lock(&dest->root_item_lock); 4528 if (dest->send_in_progress) { 4529 spin_unlock(&dest->root_item_lock); 4530 btrfs_warn(fs_info, 4531 "attempt to delete subvolume %llu during send", 4532 btrfs_root_id(dest)); 4533 ret = -EPERM; 4534 goto out_up_write; 4535 } 4536 if (atomic_read(&dest->nr_swapfiles)) { 4537 spin_unlock(&dest->root_item_lock); 4538 btrfs_warn(fs_info, 4539 "attempt to delete subvolume %llu with active swapfile", 4540 btrfs_root_id(root)); 4541 ret = -EPERM; 4542 goto out_up_write; 4543 } 4544 root_flags = btrfs_root_flags(&dest->root_item); 4545 btrfs_set_root_flags(&dest->root_item, 4546 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4547 spin_unlock(&dest->root_item_lock); 4548 4549 ret = may_destroy_subvol(dest); 4550 if (ret) 4551 goto out_undead; 4552 4553 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4554 /* 4555 * One for dir inode, 4556 * two for dir entries, 4557 * two for root ref/backref. 4558 */ 4559 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4560 if (ret) 4561 goto out_undead; 4562 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4563 4564 trans = btrfs_start_transaction(root, 0); 4565 if (IS_ERR(trans)) { 4566 ret = PTR_ERR(trans); 4567 goto out_release; 4568 } 4569 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4570 qgroup_reserved = 0; 4571 trans->block_rsv = &block_rsv; 4572 trans->bytes_reserved = block_rsv.size; 4573 4574 btrfs_record_snapshot_destroy(trans, dir); 4575 4576 ret = btrfs_unlink_subvol(trans, dir, dentry); 4577 if (ret) { 4578 btrfs_abort_transaction(trans, ret); 4579 goto out_end_trans; 4580 } 4581 4582 ret = btrfs_record_root_in_trans(trans, dest); 4583 if (ret) { 4584 btrfs_abort_transaction(trans, ret); 4585 goto out_end_trans; 4586 } 4587 4588 memset(&dest->root_item.drop_progress, 0, 4589 sizeof(dest->root_item.drop_progress)); 4590 btrfs_set_root_drop_level(&dest->root_item, 0); 4591 btrfs_set_root_refs(&dest->root_item, 0); 4592 4593 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4594 ret = btrfs_insert_orphan_item(trans, 4595 fs_info->tree_root, 4596 btrfs_root_id(dest)); 4597 if (ret) { 4598 btrfs_abort_transaction(trans, ret); 4599 goto out_end_trans; 4600 } 4601 } 4602 4603 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4604 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4605 if (ret && ret != -ENOENT) { 4606 btrfs_abort_transaction(trans, ret); 4607 goto out_end_trans; 4608 } 4609 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4610 ret = btrfs_uuid_tree_remove(trans, 4611 dest->root_item.received_uuid, 4612 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4613 btrfs_root_id(dest)); 4614 if (ret && ret != -ENOENT) { 4615 btrfs_abort_transaction(trans, ret); 4616 goto out_end_trans; 4617 } 4618 } 4619 4620 free_anon_bdev(dest->anon_dev); 4621 dest->anon_dev = 0; 4622 out_end_trans: 4623 trans->block_rsv = NULL; 4624 trans->bytes_reserved = 0; 4625 ret = btrfs_end_transaction(trans); 4626 inode->i_flags |= S_DEAD; 4627 out_release: 4628 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4629 if (qgroup_reserved) 4630 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4631 out_undead: 4632 if (ret) { 4633 spin_lock(&dest->root_item_lock); 4634 root_flags = btrfs_root_flags(&dest->root_item); 4635 btrfs_set_root_flags(&dest->root_item, 4636 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4637 spin_unlock(&dest->root_item_lock); 4638 } 4639 out_up_write: 4640 up_write(&fs_info->subvol_sem); 4641 if (!ret) { 4642 d_invalidate(dentry); 4643 btrfs_prune_dentries(dest); 4644 ASSERT(dest->send_in_progress == 0); 4645 } 4646 4647 return ret; 4648 } 4649 4650 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4651 { 4652 struct inode *inode = d_inode(dentry); 4653 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4654 int ret = 0; 4655 struct btrfs_trans_handle *trans; 4656 u64 last_unlink_trans; 4657 struct fscrypt_name fname; 4658 4659 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4660 return -ENOTEMPTY; 4661 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4662 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4663 btrfs_err(fs_info, 4664 "extent tree v2 doesn't support snapshot deletion yet"); 4665 return -EOPNOTSUPP; 4666 } 4667 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4668 } 4669 4670 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4671 if (ret) 4672 return ret; 4673 4674 /* This needs to handle no-key deletions later on */ 4675 4676 trans = __unlink_start_trans(BTRFS_I(dir)); 4677 if (IS_ERR(trans)) { 4678 ret = PTR_ERR(trans); 4679 goto out_notrans; 4680 } 4681 4682 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4683 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4684 goto out; 4685 } 4686 4687 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4688 if (ret) 4689 goto out; 4690 4691 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4692 4693 /* now the directory is empty */ 4694 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4695 &fname.disk_name); 4696 if (!ret) { 4697 btrfs_i_size_write(BTRFS_I(inode), 0); 4698 /* 4699 * Propagate the last_unlink_trans value of the deleted dir to 4700 * its parent directory. This is to prevent an unrecoverable 4701 * log tree in the case we do something like this: 4702 * 1) create dir foo 4703 * 2) create snapshot under dir foo 4704 * 3) delete the snapshot 4705 * 4) rmdir foo 4706 * 5) mkdir foo 4707 * 6) fsync foo or some file inside foo 4708 */ 4709 if (last_unlink_trans >= trans->transid) 4710 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4711 } 4712 out: 4713 btrfs_end_transaction(trans); 4714 out_notrans: 4715 btrfs_btree_balance_dirty(fs_info); 4716 fscrypt_free_filename(&fname); 4717 4718 return ret; 4719 } 4720 4721 /* 4722 * Read, zero a chunk and write a block. 4723 * 4724 * @inode - inode that we're zeroing 4725 * @from - the offset to start zeroing 4726 * @len - the length to zero, 0 to zero the entire range respective to the 4727 * offset 4728 * @front - zero up to the offset instead of from the offset on 4729 * 4730 * This will find the block for the "from" offset and cow the block and zero the 4731 * part we want to zero. This is used with truncate and hole punching. 4732 */ 4733 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4734 int front) 4735 { 4736 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4737 struct address_space *mapping = inode->vfs_inode.i_mapping; 4738 struct extent_io_tree *io_tree = &inode->io_tree; 4739 struct btrfs_ordered_extent *ordered; 4740 struct extent_state *cached_state = NULL; 4741 struct extent_changeset *data_reserved = NULL; 4742 bool only_release_metadata = false; 4743 u32 blocksize = fs_info->sectorsize; 4744 pgoff_t index = from >> PAGE_SHIFT; 4745 unsigned offset = from & (blocksize - 1); 4746 struct folio *folio; 4747 gfp_t mask = btrfs_alloc_write_mask(mapping); 4748 size_t write_bytes = blocksize; 4749 int ret = 0; 4750 u64 block_start; 4751 u64 block_end; 4752 4753 if (IS_ALIGNED(offset, blocksize) && 4754 (!len || IS_ALIGNED(len, blocksize))) 4755 goto out; 4756 4757 block_start = round_down(from, blocksize); 4758 block_end = block_start + blocksize - 1; 4759 4760 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4761 blocksize, false); 4762 if (ret < 0) { 4763 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4764 /* For nocow case, no need to reserve data space */ 4765 only_release_metadata = true; 4766 } else { 4767 goto out; 4768 } 4769 } 4770 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4771 if (ret < 0) { 4772 if (!only_release_metadata) 4773 btrfs_free_reserved_data_space(inode, data_reserved, 4774 block_start, blocksize); 4775 goto out; 4776 } 4777 again: 4778 folio = __filemap_get_folio(mapping, index, 4779 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4780 if (IS_ERR(folio)) { 4781 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4782 blocksize, true); 4783 btrfs_delalloc_release_extents(inode, blocksize); 4784 ret = -ENOMEM; 4785 goto out; 4786 } 4787 4788 if (!folio_test_uptodate(folio)) { 4789 ret = btrfs_read_folio(NULL, folio); 4790 folio_lock(folio); 4791 if (folio->mapping != mapping) { 4792 folio_unlock(folio); 4793 folio_put(folio); 4794 goto again; 4795 } 4796 if (!folio_test_uptodate(folio)) { 4797 ret = -EIO; 4798 goto out_unlock; 4799 } 4800 } 4801 4802 /* 4803 * We unlock the page after the io is completed and then re-lock it 4804 * above. release_folio() could have come in between that and cleared 4805 * folio private, but left the page in the mapping. Set the page mapped 4806 * here to make sure it's properly set for the subpage stuff. 4807 */ 4808 ret = set_folio_extent_mapped(folio); 4809 if (ret < 0) 4810 goto out_unlock; 4811 4812 folio_wait_writeback(folio); 4813 4814 lock_extent(io_tree, block_start, block_end, &cached_state); 4815 4816 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4817 if (ordered) { 4818 unlock_extent(io_tree, block_start, block_end, &cached_state); 4819 folio_unlock(folio); 4820 folio_put(folio); 4821 btrfs_start_ordered_extent(ordered); 4822 btrfs_put_ordered_extent(ordered); 4823 goto again; 4824 } 4825 4826 clear_extent_bit(&inode->io_tree, block_start, block_end, 4827 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4828 &cached_state); 4829 4830 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4831 &cached_state); 4832 if (ret) { 4833 unlock_extent(io_tree, block_start, block_end, &cached_state); 4834 goto out_unlock; 4835 } 4836 4837 if (offset != blocksize) { 4838 if (!len) 4839 len = blocksize - offset; 4840 if (front) 4841 folio_zero_range(folio, block_start - folio_pos(folio), 4842 offset); 4843 else 4844 folio_zero_range(folio, 4845 (block_start - folio_pos(folio)) + offset, 4846 len); 4847 } 4848 btrfs_folio_clear_checked(fs_info, folio, block_start, 4849 block_end + 1 - block_start); 4850 btrfs_folio_set_dirty(fs_info, folio, block_start, 4851 block_end + 1 - block_start); 4852 unlock_extent(io_tree, block_start, block_end, &cached_state); 4853 4854 if (only_release_metadata) 4855 set_extent_bit(&inode->io_tree, block_start, block_end, 4856 EXTENT_NORESERVE, NULL); 4857 4858 out_unlock: 4859 if (ret) { 4860 if (only_release_metadata) 4861 btrfs_delalloc_release_metadata(inode, blocksize, true); 4862 else 4863 btrfs_delalloc_release_space(inode, data_reserved, 4864 block_start, blocksize, true); 4865 } 4866 btrfs_delalloc_release_extents(inode, blocksize); 4867 folio_unlock(folio); 4868 folio_put(folio); 4869 out: 4870 if (only_release_metadata) 4871 btrfs_check_nocow_unlock(inode); 4872 extent_changeset_free(data_reserved); 4873 return ret; 4874 } 4875 4876 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4877 { 4878 struct btrfs_root *root = inode->root; 4879 struct btrfs_fs_info *fs_info = root->fs_info; 4880 struct btrfs_trans_handle *trans; 4881 struct btrfs_drop_extents_args drop_args = { 0 }; 4882 int ret; 4883 4884 /* 4885 * If NO_HOLES is enabled, we don't need to do anything. 4886 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4887 * or btrfs_update_inode() will be called, which guarantee that the next 4888 * fsync will know this inode was changed and needs to be logged. 4889 */ 4890 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4891 return 0; 4892 4893 /* 4894 * 1 - for the one we're dropping 4895 * 1 - for the one we're adding 4896 * 1 - for updating the inode. 4897 */ 4898 trans = btrfs_start_transaction(root, 3); 4899 if (IS_ERR(trans)) 4900 return PTR_ERR(trans); 4901 4902 drop_args.start = offset; 4903 drop_args.end = offset + len; 4904 drop_args.drop_cache = true; 4905 4906 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4907 if (ret) { 4908 btrfs_abort_transaction(trans, ret); 4909 btrfs_end_transaction(trans); 4910 return ret; 4911 } 4912 4913 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4914 if (ret) { 4915 btrfs_abort_transaction(trans, ret); 4916 } else { 4917 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4918 btrfs_update_inode(trans, inode); 4919 } 4920 btrfs_end_transaction(trans); 4921 return ret; 4922 } 4923 4924 /* 4925 * This function puts in dummy file extents for the area we're creating a hole 4926 * for. So if we are truncating this file to a larger size we need to insert 4927 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4928 * the range between oldsize and size 4929 */ 4930 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4931 { 4932 struct btrfs_root *root = inode->root; 4933 struct btrfs_fs_info *fs_info = root->fs_info; 4934 struct extent_io_tree *io_tree = &inode->io_tree; 4935 struct extent_map *em = NULL; 4936 struct extent_state *cached_state = NULL; 4937 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4938 u64 block_end = ALIGN(size, fs_info->sectorsize); 4939 u64 last_byte; 4940 u64 cur_offset; 4941 u64 hole_size; 4942 int ret = 0; 4943 4944 /* 4945 * If our size started in the middle of a block we need to zero out the 4946 * rest of the block before we expand the i_size, otherwise we could 4947 * expose stale data. 4948 */ 4949 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 4950 if (ret) 4951 return ret; 4952 4953 if (size <= hole_start) 4954 return 0; 4955 4956 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4957 &cached_state); 4958 cur_offset = hole_start; 4959 while (1) { 4960 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 4961 if (IS_ERR(em)) { 4962 ret = PTR_ERR(em); 4963 em = NULL; 4964 break; 4965 } 4966 last_byte = min(extent_map_end(em), block_end); 4967 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4968 hole_size = last_byte - cur_offset; 4969 4970 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4971 struct extent_map *hole_em; 4972 4973 ret = maybe_insert_hole(inode, cur_offset, hole_size); 4974 if (ret) 4975 break; 4976 4977 ret = btrfs_inode_set_file_extent_range(inode, 4978 cur_offset, hole_size); 4979 if (ret) 4980 break; 4981 4982 hole_em = alloc_extent_map(); 4983 if (!hole_em) { 4984 btrfs_drop_extent_map_range(inode, cur_offset, 4985 cur_offset + hole_size - 1, 4986 false); 4987 btrfs_set_inode_full_sync(inode); 4988 goto next; 4989 } 4990 hole_em->start = cur_offset; 4991 hole_em->len = hole_size; 4992 4993 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 4994 hole_em->disk_num_bytes = 0; 4995 hole_em->ram_bytes = hole_size; 4996 hole_em->generation = btrfs_get_fs_generation(fs_info); 4997 4998 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 4999 free_extent_map(hole_em); 5000 } else { 5001 ret = btrfs_inode_set_file_extent_range(inode, 5002 cur_offset, hole_size); 5003 if (ret) 5004 break; 5005 } 5006 next: 5007 free_extent_map(em); 5008 em = NULL; 5009 cur_offset = last_byte; 5010 if (cur_offset >= block_end) 5011 break; 5012 } 5013 free_extent_map(em); 5014 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5015 return ret; 5016 } 5017 5018 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5019 { 5020 struct btrfs_root *root = BTRFS_I(inode)->root; 5021 struct btrfs_trans_handle *trans; 5022 loff_t oldsize = i_size_read(inode); 5023 loff_t newsize = attr->ia_size; 5024 int mask = attr->ia_valid; 5025 int ret; 5026 5027 /* 5028 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5029 * special case where we need to update the times despite not having 5030 * these flags set. For all other operations the VFS set these flags 5031 * explicitly if it wants a timestamp update. 5032 */ 5033 if (newsize != oldsize) { 5034 inode_inc_iversion(inode); 5035 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5036 inode_set_mtime_to_ts(inode, 5037 inode_set_ctime_current(inode)); 5038 } 5039 } 5040 5041 if (newsize > oldsize) { 5042 /* 5043 * Don't do an expanding truncate while snapshotting is ongoing. 5044 * This is to ensure the snapshot captures a fully consistent 5045 * state of this file - if the snapshot captures this expanding 5046 * truncation, it must capture all writes that happened before 5047 * this truncation. 5048 */ 5049 btrfs_drew_write_lock(&root->snapshot_lock); 5050 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5051 if (ret) { 5052 btrfs_drew_write_unlock(&root->snapshot_lock); 5053 return ret; 5054 } 5055 5056 trans = btrfs_start_transaction(root, 1); 5057 if (IS_ERR(trans)) { 5058 btrfs_drew_write_unlock(&root->snapshot_lock); 5059 return PTR_ERR(trans); 5060 } 5061 5062 i_size_write(inode, newsize); 5063 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5064 pagecache_isize_extended(inode, oldsize, newsize); 5065 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5066 btrfs_drew_write_unlock(&root->snapshot_lock); 5067 btrfs_end_transaction(trans); 5068 } else { 5069 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5070 5071 if (btrfs_is_zoned(fs_info)) { 5072 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5073 ALIGN(newsize, fs_info->sectorsize), 5074 (u64)-1); 5075 if (ret) 5076 return ret; 5077 } 5078 5079 /* 5080 * We're truncating a file that used to have good data down to 5081 * zero. Make sure any new writes to the file get on disk 5082 * on close. 5083 */ 5084 if (newsize == 0) 5085 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5086 &BTRFS_I(inode)->runtime_flags); 5087 5088 truncate_setsize(inode, newsize); 5089 5090 inode_dio_wait(inode); 5091 5092 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5093 if (ret && inode->i_nlink) { 5094 int err; 5095 5096 /* 5097 * Truncate failed, so fix up the in-memory size. We 5098 * adjusted disk_i_size down as we removed extents, so 5099 * wait for disk_i_size to be stable and then update the 5100 * in-memory size to match. 5101 */ 5102 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5103 if (err) 5104 return err; 5105 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5106 } 5107 } 5108 5109 return ret; 5110 } 5111 5112 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5113 struct iattr *attr) 5114 { 5115 struct inode *inode = d_inode(dentry); 5116 struct btrfs_root *root = BTRFS_I(inode)->root; 5117 int err; 5118 5119 if (btrfs_root_readonly(root)) 5120 return -EROFS; 5121 5122 err = setattr_prepare(idmap, dentry, attr); 5123 if (err) 5124 return err; 5125 5126 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5127 err = btrfs_setsize(inode, attr); 5128 if (err) 5129 return err; 5130 } 5131 5132 if (attr->ia_valid) { 5133 setattr_copy(idmap, inode, attr); 5134 inode_inc_iversion(inode); 5135 err = btrfs_dirty_inode(BTRFS_I(inode)); 5136 5137 if (!err && attr->ia_valid & ATTR_MODE) 5138 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5139 } 5140 5141 return err; 5142 } 5143 5144 /* 5145 * While truncating the inode pages during eviction, we get the VFS 5146 * calling btrfs_invalidate_folio() against each folio of the inode. This 5147 * is slow because the calls to btrfs_invalidate_folio() result in a 5148 * huge amount of calls to lock_extent() and clear_extent_bit(), 5149 * which keep merging and splitting extent_state structures over and over, 5150 * wasting lots of time. 5151 * 5152 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5153 * skip all those expensive operations on a per folio basis and do only 5154 * the ordered io finishing, while we release here the extent_map and 5155 * extent_state structures, without the excessive merging and splitting. 5156 */ 5157 static void evict_inode_truncate_pages(struct inode *inode) 5158 { 5159 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5160 struct rb_node *node; 5161 5162 ASSERT(inode->i_state & I_FREEING); 5163 truncate_inode_pages_final(&inode->i_data); 5164 5165 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5166 5167 /* 5168 * Keep looping until we have no more ranges in the io tree. 5169 * We can have ongoing bios started by readahead that have 5170 * their endio callback (extent_io.c:end_bio_extent_readpage) 5171 * still in progress (unlocked the pages in the bio but did not yet 5172 * unlocked the ranges in the io tree). Therefore this means some 5173 * ranges can still be locked and eviction started because before 5174 * submitting those bios, which are executed by a separate task (work 5175 * queue kthread), inode references (inode->i_count) were not taken 5176 * (which would be dropped in the end io callback of each bio). 5177 * Therefore here we effectively end up waiting for those bios and 5178 * anyone else holding locked ranges without having bumped the inode's 5179 * reference count - if we don't do it, when they access the inode's 5180 * io_tree to unlock a range it may be too late, leading to an 5181 * use-after-free issue. 5182 */ 5183 spin_lock(&io_tree->lock); 5184 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5185 struct extent_state *state; 5186 struct extent_state *cached_state = NULL; 5187 u64 start; 5188 u64 end; 5189 unsigned state_flags; 5190 5191 node = rb_first(&io_tree->state); 5192 state = rb_entry(node, struct extent_state, rb_node); 5193 start = state->start; 5194 end = state->end; 5195 state_flags = state->state; 5196 spin_unlock(&io_tree->lock); 5197 5198 lock_extent(io_tree, start, end, &cached_state); 5199 5200 /* 5201 * If still has DELALLOC flag, the extent didn't reach disk, 5202 * and its reserved space won't be freed by delayed_ref. 5203 * So we need to free its reserved space here. 5204 * (Refer to comment in btrfs_invalidate_folio, case 2) 5205 * 5206 * Note, end is the bytenr of last byte, so we need + 1 here. 5207 */ 5208 if (state_flags & EXTENT_DELALLOC) 5209 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5210 end - start + 1, NULL); 5211 5212 clear_extent_bit(io_tree, start, end, 5213 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5214 &cached_state); 5215 5216 cond_resched(); 5217 spin_lock(&io_tree->lock); 5218 } 5219 spin_unlock(&io_tree->lock); 5220 } 5221 5222 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5223 struct btrfs_block_rsv *rsv) 5224 { 5225 struct btrfs_fs_info *fs_info = root->fs_info; 5226 struct btrfs_trans_handle *trans; 5227 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5228 int ret; 5229 5230 /* 5231 * Eviction should be taking place at some place safe because of our 5232 * delayed iputs. However the normal flushing code will run delayed 5233 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5234 * 5235 * We reserve the delayed_refs_extra here again because we can't use 5236 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5237 * above. We reserve our extra bit here because we generate a ton of 5238 * delayed refs activity by truncating. 5239 * 5240 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5241 * if we fail to make this reservation we can re-try without the 5242 * delayed_refs_extra so we can make some forward progress. 5243 */ 5244 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5245 BTRFS_RESERVE_FLUSH_EVICT); 5246 if (ret) { 5247 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5248 BTRFS_RESERVE_FLUSH_EVICT); 5249 if (ret) { 5250 btrfs_warn(fs_info, 5251 "could not allocate space for delete; will truncate on mount"); 5252 return ERR_PTR(-ENOSPC); 5253 } 5254 delayed_refs_extra = 0; 5255 } 5256 5257 trans = btrfs_join_transaction(root); 5258 if (IS_ERR(trans)) 5259 return trans; 5260 5261 if (delayed_refs_extra) { 5262 trans->block_rsv = &fs_info->trans_block_rsv; 5263 trans->bytes_reserved = delayed_refs_extra; 5264 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5265 delayed_refs_extra, true); 5266 } 5267 return trans; 5268 } 5269 5270 void btrfs_evict_inode(struct inode *inode) 5271 { 5272 struct btrfs_fs_info *fs_info; 5273 struct btrfs_trans_handle *trans; 5274 struct btrfs_root *root = BTRFS_I(inode)->root; 5275 struct btrfs_block_rsv *rsv = NULL; 5276 int ret; 5277 5278 trace_btrfs_inode_evict(inode); 5279 5280 if (!root) { 5281 fsverity_cleanup_inode(inode); 5282 clear_inode(inode); 5283 return; 5284 } 5285 5286 fs_info = inode_to_fs_info(inode); 5287 evict_inode_truncate_pages(inode); 5288 5289 if (inode->i_nlink && 5290 ((btrfs_root_refs(&root->root_item) != 0 && 5291 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5292 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5293 goto out; 5294 5295 if (is_bad_inode(inode)) 5296 goto out; 5297 5298 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5299 goto out; 5300 5301 if (inode->i_nlink > 0) { 5302 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5303 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5304 goto out; 5305 } 5306 5307 /* 5308 * This makes sure the inode item in tree is uptodate and the space for 5309 * the inode update is released. 5310 */ 5311 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5312 if (ret) 5313 goto out; 5314 5315 /* 5316 * This drops any pending insert or delete operations we have for this 5317 * inode. We could have a delayed dir index deletion queued up, but 5318 * we're removing the inode completely so that'll be taken care of in 5319 * the truncate. 5320 */ 5321 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5322 5323 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5324 if (!rsv) 5325 goto out; 5326 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5327 rsv->failfast = true; 5328 5329 btrfs_i_size_write(BTRFS_I(inode), 0); 5330 5331 while (1) { 5332 struct btrfs_truncate_control control = { 5333 .inode = BTRFS_I(inode), 5334 .ino = btrfs_ino(BTRFS_I(inode)), 5335 .new_size = 0, 5336 .min_type = 0, 5337 }; 5338 5339 trans = evict_refill_and_join(root, rsv); 5340 if (IS_ERR(trans)) 5341 goto out; 5342 5343 trans->block_rsv = rsv; 5344 5345 ret = btrfs_truncate_inode_items(trans, root, &control); 5346 trans->block_rsv = &fs_info->trans_block_rsv; 5347 btrfs_end_transaction(trans); 5348 /* 5349 * We have not added new delayed items for our inode after we 5350 * have flushed its delayed items, so no need to throttle on 5351 * delayed items. However we have modified extent buffers. 5352 */ 5353 btrfs_btree_balance_dirty_nodelay(fs_info); 5354 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5355 goto out; 5356 else if (!ret) 5357 break; 5358 } 5359 5360 /* 5361 * Errors here aren't a big deal, it just means we leave orphan items in 5362 * the tree. They will be cleaned up on the next mount. If the inode 5363 * number gets reused, cleanup deletes the orphan item without doing 5364 * anything, and unlink reuses the existing orphan item. 5365 * 5366 * If it turns out that we are dropping too many of these, we might want 5367 * to add a mechanism for retrying these after a commit. 5368 */ 5369 trans = evict_refill_and_join(root, rsv); 5370 if (!IS_ERR(trans)) { 5371 trans->block_rsv = rsv; 5372 btrfs_orphan_del(trans, BTRFS_I(inode)); 5373 trans->block_rsv = &fs_info->trans_block_rsv; 5374 btrfs_end_transaction(trans); 5375 } 5376 5377 out: 5378 btrfs_free_block_rsv(fs_info, rsv); 5379 /* 5380 * If we didn't successfully delete, the orphan item will still be in 5381 * the tree and we'll retry on the next mount. Again, we might also want 5382 * to retry these periodically in the future. 5383 */ 5384 btrfs_remove_delayed_node(BTRFS_I(inode)); 5385 fsverity_cleanup_inode(inode); 5386 clear_inode(inode); 5387 } 5388 5389 /* 5390 * Return the key found in the dir entry in the location pointer, fill @type 5391 * with BTRFS_FT_*, and return 0. 5392 * 5393 * If no dir entries were found, returns -ENOENT. 5394 * If found a corrupted location in dir entry, returns -EUCLEAN. 5395 */ 5396 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5397 struct btrfs_key *location, u8 *type) 5398 { 5399 struct btrfs_dir_item *di; 5400 struct btrfs_path *path; 5401 struct btrfs_root *root = dir->root; 5402 int ret = 0; 5403 struct fscrypt_name fname; 5404 5405 path = btrfs_alloc_path(); 5406 if (!path) 5407 return -ENOMEM; 5408 5409 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5410 if (ret < 0) 5411 goto out; 5412 /* 5413 * fscrypt_setup_filename() should never return a positive value, but 5414 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5415 */ 5416 ASSERT(ret == 0); 5417 5418 /* This needs to handle no-key deletions later on */ 5419 5420 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5421 &fname.disk_name, 0); 5422 if (IS_ERR_OR_NULL(di)) { 5423 ret = di ? PTR_ERR(di) : -ENOENT; 5424 goto out; 5425 } 5426 5427 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5428 if (location->type != BTRFS_INODE_ITEM_KEY && 5429 location->type != BTRFS_ROOT_ITEM_KEY) { 5430 ret = -EUCLEAN; 5431 btrfs_warn(root->fs_info, 5432 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5433 __func__, fname.disk_name.name, btrfs_ino(dir), 5434 location->objectid, location->type, location->offset); 5435 } 5436 if (!ret) 5437 *type = btrfs_dir_ftype(path->nodes[0], di); 5438 out: 5439 fscrypt_free_filename(&fname); 5440 btrfs_free_path(path); 5441 return ret; 5442 } 5443 5444 /* 5445 * when we hit a tree root in a directory, the btrfs part of the inode 5446 * needs to be changed to reflect the root directory of the tree root. This 5447 * is kind of like crossing a mount point. 5448 */ 5449 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5450 struct btrfs_inode *dir, 5451 struct dentry *dentry, 5452 struct btrfs_key *location, 5453 struct btrfs_root **sub_root) 5454 { 5455 struct btrfs_path *path; 5456 struct btrfs_root *new_root; 5457 struct btrfs_root_ref *ref; 5458 struct extent_buffer *leaf; 5459 struct btrfs_key key; 5460 int ret; 5461 int err = 0; 5462 struct fscrypt_name fname; 5463 5464 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5465 if (ret) 5466 return ret; 5467 5468 path = btrfs_alloc_path(); 5469 if (!path) { 5470 err = -ENOMEM; 5471 goto out; 5472 } 5473 5474 err = -ENOENT; 5475 key.objectid = btrfs_root_id(dir->root); 5476 key.type = BTRFS_ROOT_REF_KEY; 5477 key.offset = location->objectid; 5478 5479 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5480 if (ret) { 5481 if (ret < 0) 5482 err = ret; 5483 goto out; 5484 } 5485 5486 leaf = path->nodes[0]; 5487 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5488 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5489 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5490 goto out; 5491 5492 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5493 (unsigned long)(ref + 1), fname.disk_name.len); 5494 if (ret) 5495 goto out; 5496 5497 btrfs_release_path(path); 5498 5499 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5500 if (IS_ERR(new_root)) { 5501 err = PTR_ERR(new_root); 5502 goto out; 5503 } 5504 5505 *sub_root = new_root; 5506 location->objectid = btrfs_root_dirid(&new_root->root_item); 5507 location->type = BTRFS_INODE_ITEM_KEY; 5508 location->offset = 0; 5509 err = 0; 5510 out: 5511 btrfs_free_path(path); 5512 fscrypt_free_filename(&fname); 5513 return err; 5514 } 5515 5516 5517 5518 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5519 { 5520 struct btrfs_root *root = inode->root; 5521 struct btrfs_inode *entry; 5522 bool empty = false; 5523 5524 xa_lock(&root->inodes); 5525 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5526 if (entry == inode) 5527 empty = xa_empty(&root->inodes); 5528 xa_unlock(&root->inodes); 5529 5530 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5531 xa_lock(&root->inodes); 5532 empty = xa_empty(&root->inodes); 5533 xa_unlock(&root->inodes); 5534 if (empty) 5535 btrfs_add_dead_root(root); 5536 } 5537 } 5538 5539 5540 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5541 { 5542 struct btrfs_iget_args *args = p; 5543 5544 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5545 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5546 5547 if (args->root && args->root == args->root->fs_info->tree_root && 5548 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5549 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5550 &BTRFS_I(inode)->runtime_flags); 5551 return 0; 5552 } 5553 5554 static int btrfs_find_actor(struct inode *inode, void *opaque) 5555 { 5556 struct btrfs_iget_args *args = opaque; 5557 5558 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5559 args->root == BTRFS_I(inode)->root; 5560 } 5561 5562 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5563 { 5564 struct inode *inode; 5565 struct btrfs_iget_args args; 5566 unsigned long hashval = btrfs_inode_hash(ino, root); 5567 5568 args.ino = ino; 5569 args.root = root; 5570 5571 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5572 btrfs_init_locked_inode, 5573 (void *)&args); 5574 return inode; 5575 } 5576 5577 /* 5578 * Get an inode object given its inode number and corresponding root. Path is 5579 * preallocated to prevent recursing back to iget through allocator. 5580 */ 5581 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5582 struct btrfs_path *path) 5583 { 5584 struct inode *inode; 5585 int ret; 5586 5587 inode = btrfs_iget_locked(ino, root); 5588 if (!inode) 5589 return ERR_PTR(-ENOMEM); 5590 5591 if (!(inode->i_state & I_NEW)) 5592 return inode; 5593 5594 ret = btrfs_read_locked_inode(inode, path); 5595 if (ret) 5596 return ERR_PTR(ret); 5597 5598 unlock_new_inode(inode); 5599 return inode; 5600 } 5601 5602 /* 5603 * Get an inode object given its inode number and corresponding root. 5604 */ 5605 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5606 { 5607 struct inode *inode; 5608 struct btrfs_path *path; 5609 int ret; 5610 5611 inode = btrfs_iget_locked(ino, root); 5612 if (!inode) 5613 return ERR_PTR(-ENOMEM); 5614 5615 if (!(inode->i_state & I_NEW)) 5616 return inode; 5617 5618 path = btrfs_alloc_path(); 5619 if (!path) 5620 return ERR_PTR(-ENOMEM); 5621 5622 ret = btrfs_read_locked_inode(inode, path); 5623 btrfs_free_path(path); 5624 if (ret) 5625 return ERR_PTR(ret); 5626 5627 unlock_new_inode(inode); 5628 return inode; 5629 } 5630 5631 static struct inode *new_simple_dir(struct inode *dir, 5632 struct btrfs_key *key, 5633 struct btrfs_root *root) 5634 { 5635 struct timespec64 ts; 5636 struct inode *inode = new_inode(dir->i_sb); 5637 5638 if (!inode) 5639 return ERR_PTR(-ENOMEM); 5640 5641 BTRFS_I(inode)->root = btrfs_grab_root(root); 5642 BTRFS_I(inode)->ref_root_id = key->objectid; 5643 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags); 5644 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5645 5646 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5647 /* 5648 * We only need lookup, the rest is read-only and there's no inode 5649 * associated with the dentry 5650 */ 5651 inode->i_op = &simple_dir_inode_operations; 5652 inode->i_opflags &= ~IOP_XATTR; 5653 inode->i_fop = &simple_dir_operations; 5654 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5655 5656 ts = inode_set_ctime_current(inode); 5657 inode_set_mtime_to_ts(inode, ts); 5658 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5659 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5660 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5661 5662 inode->i_uid = dir->i_uid; 5663 inode->i_gid = dir->i_gid; 5664 5665 return inode; 5666 } 5667 5668 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5669 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5670 static_assert(BTRFS_FT_DIR == FT_DIR); 5671 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5672 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5673 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5674 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5675 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5676 5677 static inline u8 btrfs_inode_type(struct inode *inode) 5678 { 5679 return fs_umode_to_ftype(inode->i_mode); 5680 } 5681 5682 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5683 { 5684 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5685 struct inode *inode; 5686 struct btrfs_root *root = BTRFS_I(dir)->root; 5687 struct btrfs_root *sub_root = root; 5688 struct btrfs_key location = { 0 }; 5689 u8 di_type = 0; 5690 int ret = 0; 5691 5692 if (dentry->d_name.len > BTRFS_NAME_LEN) 5693 return ERR_PTR(-ENAMETOOLONG); 5694 5695 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5696 if (ret < 0) 5697 return ERR_PTR(ret); 5698 5699 if (location.type == BTRFS_INODE_ITEM_KEY) { 5700 inode = btrfs_iget(location.objectid, root); 5701 if (IS_ERR(inode)) 5702 return inode; 5703 5704 /* Do extra check against inode mode with di_type */ 5705 if (btrfs_inode_type(inode) != di_type) { 5706 btrfs_crit(fs_info, 5707 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5708 inode->i_mode, btrfs_inode_type(inode), 5709 di_type); 5710 iput(inode); 5711 return ERR_PTR(-EUCLEAN); 5712 } 5713 return inode; 5714 } 5715 5716 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5717 &location, &sub_root); 5718 if (ret < 0) { 5719 if (ret != -ENOENT) 5720 inode = ERR_PTR(ret); 5721 else 5722 inode = new_simple_dir(dir, &location, root); 5723 } else { 5724 inode = btrfs_iget(location.objectid, sub_root); 5725 btrfs_put_root(sub_root); 5726 5727 if (IS_ERR(inode)) 5728 return inode; 5729 5730 down_read(&fs_info->cleanup_work_sem); 5731 if (!sb_rdonly(inode->i_sb)) 5732 ret = btrfs_orphan_cleanup(sub_root); 5733 up_read(&fs_info->cleanup_work_sem); 5734 if (ret) { 5735 iput(inode); 5736 inode = ERR_PTR(ret); 5737 } 5738 } 5739 5740 return inode; 5741 } 5742 5743 static int btrfs_dentry_delete(const struct dentry *dentry) 5744 { 5745 struct btrfs_root *root; 5746 struct inode *inode = d_inode(dentry); 5747 5748 if (!inode && !IS_ROOT(dentry)) 5749 inode = d_inode(dentry->d_parent); 5750 5751 if (inode) { 5752 root = BTRFS_I(inode)->root; 5753 if (btrfs_root_refs(&root->root_item) == 0) 5754 return 1; 5755 5756 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5757 return 1; 5758 } 5759 return 0; 5760 } 5761 5762 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5763 unsigned int flags) 5764 { 5765 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5766 5767 if (inode == ERR_PTR(-ENOENT)) 5768 inode = NULL; 5769 return d_splice_alias(inode, dentry); 5770 } 5771 5772 /* 5773 * Find the highest existing sequence number in a directory and then set the 5774 * in-memory index_cnt variable to the first free sequence number. 5775 */ 5776 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5777 { 5778 struct btrfs_root *root = inode->root; 5779 struct btrfs_key key, found_key; 5780 struct btrfs_path *path; 5781 struct extent_buffer *leaf; 5782 int ret; 5783 5784 key.objectid = btrfs_ino(inode); 5785 key.type = BTRFS_DIR_INDEX_KEY; 5786 key.offset = (u64)-1; 5787 5788 path = btrfs_alloc_path(); 5789 if (!path) 5790 return -ENOMEM; 5791 5792 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5793 if (ret < 0) 5794 goto out; 5795 /* FIXME: we should be able to handle this */ 5796 if (ret == 0) 5797 goto out; 5798 ret = 0; 5799 5800 if (path->slots[0] == 0) { 5801 inode->index_cnt = BTRFS_DIR_START_INDEX; 5802 goto out; 5803 } 5804 5805 path->slots[0]--; 5806 5807 leaf = path->nodes[0]; 5808 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5809 5810 if (found_key.objectid != btrfs_ino(inode) || 5811 found_key.type != BTRFS_DIR_INDEX_KEY) { 5812 inode->index_cnt = BTRFS_DIR_START_INDEX; 5813 goto out; 5814 } 5815 5816 inode->index_cnt = found_key.offset + 1; 5817 out: 5818 btrfs_free_path(path); 5819 return ret; 5820 } 5821 5822 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5823 { 5824 int ret = 0; 5825 5826 btrfs_inode_lock(dir, 0); 5827 if (dir->index_cnt == (u64)-1) { 5828 ret = btrfs_inode_delayed_dir_index_count(dir); 5829 if (ret) { 5830 ret = btrfs_set_inode_index_count(dir); 5831 if (ret) 5832 goto out; 5833 } 5834 } 5835 5836 /* index_cnt is the index number of next new entry, so decrement it. */ 5837 *index = dir->index_cnt - 1; 5838 out: 5839 btrfs_inode_unlock(dir, 0); 5840 5841 return ret; 5842 } 5843 5844 /* 5845 * All this infrastructure exists because dir_emit can fault, and we are holding 5846 * the tree lock when doing readdir. For now just allocate a buffer and copy 5847 * our information into that, and then dir_emit from the buffer. This is 5848 * similar to what NFS does, only we don't keep the buffer around in pagecache 5849 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5850 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5851 * tree lock. 5852 */ 5853 static int btrfs_opendir(struct inode *inode, struct file *file) 5854 { 5855 struct btrfs_file_private *private; 5856 u64 last_index; 5857 int ret; 5858 5859 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5860 if (ret) 5861 return ret; 5862 5863 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5864 if (!private) 5865 return -ENOMEM; 5866 private->last_index = last_index; 5867 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5868 if (!private->filldir_buf) { 5869 kfree(private); 5870 return -ENOMEM; 5871 } 5872 file->private_data = private; 5873 return 0; 5874 } 5875 5876 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5877 { 5878 struct btrfs_file_private *private = file->private_data; 5879 int ret; 5880 5881 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5882 &private->last_index); 5883 if (ret) 5884 return ret; 5885 5886 return generic_file_llseek(file, offset, whence); 5887 } 5888 5889 struct dir_entry { 5890 u64 ino; 5891 u64 offset; 5892 unsigned type; 5893 int name_len; 5894 }; 5895 5896 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5897 { 5898 while (entries--) { 5899 struct dir_entry *entry = addr; 5900 char *name = (char *)(entry + 1); 5901 5902 ctx->pos = get_unaligned(&entry->offset); 5903 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5904 get_unaligned(&entry->ino), 5905 get_unaligned(&entry->type))) 5906 return 1; 5907 addr += sizeof(struct dir_entry) + 5908 get_unaligned(&entry->name_len); 5909 ctx->pos++; 5910 } 5911 return 0; 5912 } 5913 5914 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5915 { 5916 struct inode *inode = file_inode(file); 5917 struct btrfs_root *root = BTRFS_I(inode)->root; 5918 struct btrfs_file_private *private = file->private_data; 5919 struct btrfs_dir_item *di; 5920 struct btrfs_key key; 5921 struct btrfs_key found_key; 5922 struct btrfs_path *path; 5923 void *addr; 5924 LIST_HEAD(ins_list); 5925 LIST_HEAD(del_list); 5926 int ret; 5927 char *name_ptr; 5928 int name_len; 5929 int entries = 0; 5930 int total_len = 0; 5931 bool put = false; 5932 struct btrfs_key location; 5933 5934 if (!dir_emit_dots(file, ctx)) 5935 return 0; 5936 5937 path = btrfs_alloc_path(); 5938 if (!path) 5939 return -ENOMEM; 5940 5941 addr = private->filldir_buf; 5942 path->reada = READA_FORWARD; 5943 5944 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 5945 &ins_list, &del_list); 5946 5947 again: 5948 key.type = BTRFS_DIR_INDEX_KEY; 5949 key.offset = ctx->pos; 5950 key.objectid = btrfs_ino(BTRFS_I(inode)); 5951 5952 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5953 struct dir_entry *entry; 5954 struct extent_buffer *leaf = path->nodes[0]; 5955 u8 ftype; 5956 5957 if (found_key.objectid != key.objectid) 5958 break; 5959 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5960 break; 5961 if (found_key.offset < ctx->pos) 5962 continue; 5963 if (found_key.offset > private->last_index) 5964 break; 5965 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5966 continue; 5967 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5968 name_len = btrfs_dir_name_len(leaf, di); 5969 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5970 PAGE_SIZE) { 5971 btrfs_release_path(path); 5972 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5973 if (ret) 5974 goto nopos; 5975 addr = private->filldir_buf; 5976 entries = 0; 5977 total_len = 0; 5978 goto again; 5979 } 5980 5981 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5982 entry = addr; 5983 name_ptr = (char *)(entry + 1); 5984 read_extent_buffer(leaf, name_ptr, 5985 (unsigned long)(di + 1), name_len); 5986 put_unaligned(name_len, &entry->name_len); 5987 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5988 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5989 put_unaligned(location.objectid, &entry->ino); 5990 put_unaligned(found_key.offset, &entry->offset); 5991 entries++; 5992 addr += sizeof(struct dir_entry) + name_len; 5993 total_len += sizeof(struct dir_entry) + name_len; 5994 } 5995 /* Catch error encountered during iteration */ 5996 if (ret < 0) 5997 goto err; 5998 5999 btrfs_release_path(path); 6000 6001 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6002 if (ret) 6003 goto nopos; 6004 6005 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6006 if (ret) 6007 goto nopos; 6008 6009 /* 6010 * Stop new entries from being returned after we return the last 6011 * entry. 6012 * 6013 * New directory entries are assigned a strictly increasing 6014 * offset. This means that new entries created during readdir 6015 * are *guaranteed* to be seen in the future by that readdir. 6016 * This has broken buggy programs which operate on names as 6017 * they're returned by readdir. Until we reuse freed offsets 6018 * we have this hack to stop new entries from being returned 6019 * under the assumption that they'll never reach this huge 6020 * offset. 6021 * 6022 * This is being careful not to overflow 32bit loff_t unless the 6023 * last entry requires it because doing so has broken 32bit apps 6024 * in the past. 6025 */ 6026 if (ctx->pos >= INT_MAX) 6027 ctx->pos = LLONG_MAX; 6028 else 6029 ctx->pos = INT_MAX; 6030 nopos: 6031 ret = 0; 6032 err: 6033 if (put) 6034 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6035 btrfs_free_path(path); 6036 return ret; 6037 } 6038 6039 /* 6040 * This is somewhat expensive, updating the tree every time the 6041 * inode changes. But, it is most likely to find the inode in cache. 6042 * FIXME, needs more benchmarking...there are no reasons other than performance 6043 * to keep or drop this code. 6044 */ 6045 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6046 { 6047 struct btrfs_root *root = inode->root; 6048 struct btrfs_fs_info *fs_info = root->fs_info; 6049 struct btrfs_trans_handle *trans; 6050 int ret; 6051 6052 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6053 return 0; 6054 6055 trans = btrfs_join_transaction(root); 6056 if (IS_ERR(trans)) 6057 return PTR_ERR(trans); 6058 6059 ret = btrfs_update_inode(trans, inode); 6060 if (ret == -ENOSPC || ret == -EDQUOT) { 6061 /* whoops, lets try again with the full transaction */ 6062 btrfs_end_transaction(trans); 6063 trans = btrfs_start_transaction(root, 1); 6064 if (IS_ERR(trans)) 6065 return PTR_ERR(trans); 6066 6067 ret = btrfs_update_inode(trans, inode); 6068 } 6069 btrfs_end_transaction(trans); 6070 if (inode->delayed_node) 6071 btrfs_balance_delayed_items(fs_info); 6072 6073 return ret; 6074 } 6075 6076 /* 6077 * This is a copy of file_update_time. We need this so we can return error on 6078 * ENOSPC for updating the inode in the case of file write and mmap writes. 6079 */ 6080 static int btrfs_update_time(struct inode *inode, int flags) 6081 { 6082 struct btrfs_root *root = BTRFS_I(inode)->root; 6083 bool dirty; 6084 6085 if (btrfs_root_readonly(root)) 6086 return -EROFS; 6087 6088 dirty = inode_update_timestamps(inode, flags); 6089 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6090 } 6091 6092 /* 6093 * helper to find a free sequence number in a given directory. This current 6094 * code is very simple, later versions will do smarter things in the btree 6095 */ 6096 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6097 { 6098 int ret = 0; 6099 6100 if (dir->index_cnt == (u64)-1) { 6101 ret = btrfs_inode_delayed_dir_index_count(dir); 6102 if (ret) { 6103 ret = btrfs_set_inode_index_count(dir); 6104 if (ret) 6105 return ret; 6106 } 6107 } 6108 6109 *index = dir->index_cnt; 6110 dir->index_cnt++; 6111 6112 return ret; 6113 } 6114 6115 static int btrfs_insert_inode_locked(struct inode *inode) 6116 { 6117 struct btrfs_iget_args args; 6118 6119 args.ino = btrfs_ino(BTRFS_I(inode)); 6120 args.root = BTRFS_I(inode)->root; 6121 6122 return insert_inode_locked4(inode, 6123 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6124 btrfs_find_actor, &args); 6125 } 6126 6127 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6128 unsigned int *trans_num_items) 6129 { 6130 struct inode *dir = args->dir; 6131 struct inode *inode = args->inode; 6132 int ret; 6133 6134 if (!args->orphan) { 6135 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6136 &args->fname); 6137 if (ret) 6138 return ret; 6139 } 6140 6141 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6142 if (ret) { 6143 fscrypt_free_filename(&args->fname); 6144 return ret; 6145 } 6146 6147 /* 1 to add inode item */ 6148 *trans_num_items = 1; 6149 /* 1 to add compression property */ 6150 if (BTRFS_I(dir)->prop_compress) 6151 (*trans_num_items)++; 6152 /* 1 to add default ACL xattr */ 6153 if (args->default_acl) 6154 (*trans_num_items)++; 6155 /* 1 to add access ACL xattr */ 6156 if (args->acl) 6157 (*trans_num_items)++; 6158 #ifdef CONFIG_SECURITY 6159 /* 1 to add LSM xattr */ 6160 if (dir->i_security) 6161 (*trans_num_items)++; 6162 #endif 6163 if (args->orphan) { 6164 /* 1 to add orphan item */ 6165 (*trans_num_items)++; 6166 } else { 6167 /* 6168 * 1 to add dir item 6169 * 1 to add dir index 6170 * 1 to update parent inode item 6171 * 6172 * No need for 1 unit for the inode ref item because it is 6173 * inserted in a batch together with the inode item at 6174 * btrfs_create_new_inode(). 6175 */ 6176 *trans_num_items += 3; 6177 } 6178 return 0; 6179 } 6180 6181 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6182 { 6183 posix_acl_release(args->acl); 6184 posix_acl_release(args->default_acl); 6185 fscrypt_free_filename(&args->fname); 6186 } 6187 6188 /* 6189 * Inherit flags from the parent inode. 6190 * 6191 * Currently only the compression flags and the cow flags are inherited. 6192 */ 6193 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6194 { 6195 unsigned int flags; 6196 6197 flags = dir->flags; 6198 6199 if (flags & BTRFS_INODE_NOCOMPRESS) { 6200 inode->flags &= ~BTRFS_INODE_COMPRESS; 6201 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6202 } else if (flags & BTRFS_INODE_COMPRESS) { 6203 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6204 inode->flags |= BTRFS_INODE_COMPRESS; 6205 } 6206 6207 if (flags & BTRFS_INODE_NODATACOW) { 6208 inode->flags |= BTRFS_INODE_NODATACOW; 6209 if (S_ISREG(inode->vfs_inode.i_mode)) 6210 inode->flags |= BTRFS_INODE_NODATASUM; 6211 } 6212 6213 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6214 } 6215 6216 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6217 struct btrfs_new_inode_args *args) 6218 { 6219 struct timespec64 ts; 6220 struct inode *dir = args->dir; 6221 struct inode *inode = args->inode; 6222 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6223 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6224 struct btrfs_root *root; 6225 struct btrfs_inode_item *inode_item; 6226 struct btrfs_path *path; 6227 u64 objectid; 6228 struct btrfs_inode_ref *ref; 6229 struct btrfs_key key[2]; 6230 u32 sizes[2]; 6231 struct btrfs_item_batch batch; 6232 unsigned long ptr; 6233 int ret; 6234 bool xa_reserved = false; 6235 6236 path = btrfs_alloc_path(); 6237 if (!path) 6238 return -ENOMEM; 6239 6240 if (!args->subvol) 6241 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6242 root = BTRFS_I(inode)->root; 6243 6244 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6245 if (ret) 6246 goto out; 6247 6248 ret = btrfs_get_free_objectid(root, &objectid); 6249 if (ret) 6250 goto out; 6251 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6252 6253 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6254 if (ret) 6255 goto out; 6256 xa_reserved = true; 6257 6258 if (args->orphan) { 6259 /* 6260 * O_TMPFILE, set link count to 0, so that after this point, we 6261 * fill in an inode item with the correct link count. 6262 */ 6263 set_nlink(inode, 0); 6264 } else { 6265 trace_btrfs_inode_request(dir); 6266 6267 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6268 if (ret) 6269 goto out; 6270 } 6271 6272 if (S_ISDIR(inode->i_mode)) 6273 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6274 6275 BTRFS_I(inode)->generation = trans->transid; 6276 inode->i_generation = BTRFS_I(inode)->generation; 6277 6278 /* 6279 * We don't have any capability xattrs set here yet, shortcut any 6280 * queries for the xattrs here. If we add them later via the inode 6281 * security init path or any other path this flag will be cleared. 6282 */ 6283 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6284 6285 /* 6286 * Subvolumes don't inherit flags from their parent directory. 6287 * Originally this was probably by accident, but we probably can't 6288 * change it now without compatibility issues. 6289 */ 6290 if (!args->subvol) 6291 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6292 6293 if (S_ISREG(inode->i_mode)) { 6294 if (btrfs_test_opt(fs_info, NODATASUM)) 6295 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6296 if (btrfs_test_opt(fs_info, NODATACOW)) 6297 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6298 BTRFS_INODE_NODATASUM; 6299 } 6300 6301 ret = btrfs_insert_inode_locked(inode); 6302 if (ret < 0) { 6303 if (!args->orphan) 6304 BTRFS_I(dir)->index_cnt--; 6305 goto out; 6306 } 6307 6308 /* 6309 * We could have gotten an inode number from somebody who was fsynced 6310 * and then removed in this same transaction, so let's just set full 6311 * sync since it will be a full sync anyway and this will blow away the 6312 * old info in the log. 6313 */ 6314 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6315 6316 key[0].objectid = objectid; 6317 key[0].type = BTRFS_INODE_ITEM_KEY; 6318 key[0].offset = 0; 6319 6320 sizes[0] = sizeof(struct btrfs_inode_item); 6321 6322 if (!args->orphan) { 6323 /* 6324 * Start new inodes with an inode_ref. This is slightly more 6325 * efficient for small numbers of hard links since they will 6326 * be packed into one item. Extended refs will kick in if we 6327 * add more hard links than can fit in the ref item. 6328 */ 6329 key[1].objectid = objectid; 6330 key[1].type = BTRFS_INODE_REF_KEY; 6331 if (args->subvol) { 6332 key[1].offset = objectid; 6333 sizes[1] = 2 + sizeof(*ref); 6334 } else { 6335 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6336 sizes[1] = name->len + sizeof(*ref); 6337 } 6338 } 6339 6340 batch.keys = &key[0]; 6341 batch.data_sizes = &sizes[0]; 6342 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6343 batch.nr = args->orphan ? 1 : 2; 6344 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6345 if (ret != 0) { 6346 btrfs_abort_transaction(trans, ret); 6347 goto discard; 6348 } 6349 6350 ts = simple_inode_init_ts(inode); 6351 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6352 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6353 6354 /* 6355 * We're going to fill the inode item now, so at this point the inode 6356 * must be fully initialized. 6357 */ 6358 6359 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6360 struct btrfs_inode_item); 6361 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6362 sizeof(*inode_item)); 6363 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6364 6365 if (!args->orphan) { 6366 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6367 struct btrfs_inode_ref); 6368 ptr = (unsigned long)(ref + 1); 6369 if (args->subvol) { 6370 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6371 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6372 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6373 } else { 6374 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6375 name->len); 6376 btrfs_set_inode_ref_index(path->nodes[0], ref, 6377 BTRFS_I(inode)->dir_index); 6378 write_extent_buffer(path->nodes[0], name->name, ptr, 6379 name->len); 6380 } 6381 } 6382 6383 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6384 /* 6385 * We don't need the path anymore, plus inheriting properties, adding 6386 * ACLs, security xattrs, orphan item or adding the link, will result in 6387 * allocating yet another path. So just free our path. 6388 */ 6389 btrfs_free_path(path); 6390 path = NULL; 6391 6392 if (args->subvol) { 6393 struct inode *parent; 6394 6395 /* 6396 * Subvolumes inherit properties from their parent subvolume, 6397 * not the directory they were created in. 6398 */ 6399 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6400 if (IS_ERR(parent)) { 6401 ret = PTR_ERR(parent); 6402 } else { 6403 ret = btrfs_inode_inherit_props(trans, inode, parent); 6404 iput(parent); 6405 } 6406 } else { 6407 ret = btrfs_inode_inherit_props(trans, inode, dir); 6408 } 6409 if (ret) { 6410 btrfs_err(fs_info, 6411 "error inheriting props for ino %llu (root %llu): %d", 6412 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6413 } 6414 6415 /* 6416 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6417 * probably a bug. 6418 */ 6419 if (!args->subvol) { 6420 ret = btrfs_init_inode_security(trans, args); 6421 if (ret) { 6422 btrfs_abort_transaction(trans, ret); 6423 goto discard; 6424 } 6425 } 6426 6427 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6428 if (WARN_ON(ret)) { 6429 /* Shouldn't happen, we used xa_reserve() before. */ 6430 btrfs_abort_transaction(trans, ret); 6431 goto discard; 6432 } 6433 6434 trace_btrfs_inode_new(inode); 6435 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6436 6437 btrfs_update_root_times(trans, root); 6438 6439 if (args->orphan) { 6440 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6441 } else { 6442 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6443 0, BTRFS_I(inode)->dir_index); 6444 } 6445 if (ret) { 6446 btrfs_abort_transaction(trans, ret); 6447 goto discard; 6448 } 6449 6450 return 0; 6451 6452 discard: 6453 /* 6454 * discard_new_inode() calls iput(), but the caller owns the reference 6455 * to the inode. 6456 */ 6457 ihold(inode); 6458 discard_new_inode(inode); 6459 out: 6460 if (xa_reserved) 6461 xa_release(&root->inodes, objectid); 6462 6463 btrfs_free_path(path); 6464 return ret; 6465 } 6466 6467 /* 6468 * utility function to add 'inode' into 'parent_inode' with 6469 * a give name and a given sequence number. 6470 * if 'add_backref' is true, also insert a backref from the 6471 * inode to the parent directory. 6472 */ 6473 int btrfs_add_link(struct btrfs_trans_handle *trans, 6474 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6475 const struct fscrypt_str *name, int add_backref, u64 index) 6476 { 6477 int ret = 0; 6478 struct btrfs_key key; 6479 struct btrfs_root *root = parent_inode->root; 6480 u64 ino = btrfs_ino(inode); 6481 u64 parent_ino = btrfs_ino(parent_inode); 6482 6483 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6484 memcpy(&key, &inode->root->root_key, sizeof(key)); 6485 } else { 6486 key.objectid = ino; 6487 key.type = BTRFS_INODE_ITEM_KEY; 6488 key.offset = 0; 6489 } 6490 6491 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6492 ret = btrfs_add_root_ref(trans, key.objectid, 6493 btrfs_root_id(root), parent_ino, 6494 index, name); 6495 } else if (add_backref) { 6496 ret = btrfs_insert_inode_ref(trans, root, name, 6497 ino, parent_ino, index); 6498 } 6499 6500 /* Nothing to clean up yet */ 6501 if (ret) 6502 return ret; 6503 6504 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6505 btrfs_inode_type(&inode->vfs_inode), index); 6506 if (ret == -EEXIST || ret == -EOVERFLOW) 6507 goto fail_dir_item; 6508 else if (ret) { 6509 btrfs_abort_transaction(trans, ret); 6510 return ret; 6511 } 6512 6513 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6514 name->len * 2); 6515 inode_inc_iversion(&parent_inode->vfs_inode); 6516 /* 6517 * If we are replaying a log tree, we do not want to update the mtime 6518 * and ctime of the parent directory with the current time, since the 6519 * log replay procedure is responsible for setting them to their correct 6520 * values (the ones it had when the fsync was done). 6521 */ 6522 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6523 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6524 inode_set_ctime_current(&parent_inode->vfs_inode)); 6525 6526 ret = btrfs_update_inode(trans, parent_inode); 6527 if (ret) 6528 btrfs_abort_transaction(trans, ret); 6529 return ret; 6530 6531 fail_dir_item: 6532 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6533 u64 local_index; 6534 int err; 6535 err = btrfs_del_root_ref(trans, key.objectid, 6536 btrfs_root_id(root), parent_ino, 6537 &local_index, name); 6538 if (err) 6539 btrfs_abort_transaction(trans, err); 6540 } else if (add_backref) { 6541 u64 local_index; 6542 int err; 6543 6544 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6545 &local_index); 6546 if (err) 6547 btrfs_abort_transaction(trans, err); 6548 } 6549 6550 /* Return the original error code */ 6551 return ret; 6552 } 6553 6554 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6555 struct inode *inode) 6556 { 6557 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6558 struct btrfs_root *root = BTRFS_I(dir)->root; 6559 struct btrfs_new_inode_args new_inode_args = { 6560 .dir = dir, 6561 .dentry = dentry, 6562 .inode = inode, 6563 }; 6564 unsigned int trans_num_items; 6565 struct btrfs_trans_handle *trans; 6566 int err; 6567 6568 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6569 if (err) 6570 goto out_inode; 6571 6572 trans = btrfs_start_transaction(root, trans_num_items); 6573 if (IS_ERR(trans)) { 6574 err = PTR_ERR(trans); 6575 goto out_new_inode_args; 6576 } 6577 6578 err = btrfs_create_new_inode(trans, &new_inode_args); 6579 if (!err) 6580 d_instantiate_new(dentry, inode); 6581 6582 btrfs_end_transaction(trans); 6583 btrfs_btree_balance_dirty(fs_info); 6584 out_new_inode_args: 6585 btrfs_new_inode_args_destroy(&new_inode_args); 6586 out_inode: 6587 if (err) 6588 iput(inode); 6589 return err; 6590 } 6591 6592 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6593 struct dentry *dentry, umode_t mode, dev_t rdev) 6594 { 6595 struct inode *inode; 6596 6597 inode = new_inode(dir->i_sb); 6598 if (!inode) 6599 return -ENOMEM; 6600 inode_init_owner(idmap, inode, dir, mode); 6601 inode->i_op = &btrfs_special_inode_operations; 6602 init_special_inode(inode, inode->i_mode, rdev); 6603 return btrfs_create_common(dir, dentry, inode); 6604 } 6605 6606 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6607 struct dentry *dentry, umode_t mode, bool excl) 6608 { 6609 struct inode *inode; 6610 6611 inode = new_inode(dir->i_sb); 6612 if (!inode) 6613 return -ENOMEM; 6614 inode_init_owner(idmap, inode, dir, mode); 6615 inode->i_fop = &btrfs_file_operations; 6616 inode->i_op = &btrfs_file_inode_operations; 6617 inode->i_mapping->a_ops = &btrfs_aops; 6618 return btrfs_create_common(dir, dentry, inode); 6619 } 6620 6621 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6622 struct dentry *dentry) 6623 { 6624 struct btrfs_trans_handle *trans = NULL; 6625 struct btrfs_root *root = BTRFS_I(dir)->root; 6626 struct inode *inode = d_inode(old_dentry); 6627 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6628 struct fscrypt_name fname; 6629 u64 index; 6630 int err; 6631 int drop_inode = 0; 6632 6633 /* do not allow sys_link's with other subvols of the same device */ 6634 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6635 return -EXDEV; 6636 6637 if (inode->i_nlink >= BTRFS_LINK_MAX) 6638 return -EMLINK; 6639 6640 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6641 if (err) 6642 goto fail; 6643 6644 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6645 if (err) 6646 goto fail; 6647 6648 /* 6649 * 2 items for inode and inode ref 6650 * 2 items for dir items 6651 * 1 item for parent inode 6652 * 1 item for orphan item deletion if O_TMPFILE 6653 */ 6654 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6655 if (IS_ERR(trans)) { 6656 err = PTR_ERR(trans); 6657 trans = NULL; 6658 goto fail; 6659 } 6660 6661 /* There are several dir indexes for this inode, clear the cache. */ 6662 BTRFS_I(inode)->dir_index = 0ULL; 6663 inc_nlink(inode); 6664 inode_inc_iversion(inode); 6665 inode_set_ctime_current(inode); 6666 ihold(inode); 6667 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6668 6669 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6670 &fname.disk_name, 1, index); 6671 6672 if (err) { 6673 drop_inode = 1; 6674 } else { 6675 struct dentry *parent = dentry->d_parent; 6676 6677 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6678 if (err) 6679 goto fail; 6680 if (inode->i_nlink == 1) { 6681 /* 6682 * If new hard link count is 1, it's a file created 6683 * with open(2) O_TMPFILE flag. 6684 */ 6685 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6686 if (err) 6687 goto fail; 6688 } 6689 d_instantiate(dentry, inode); 6690 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6691 } 6692 6693 fail: 6694 fscrypt_free_filename(&fname); 6695 if (trans) 6696 btrfs_end_transaction(trans); 6697 if (drop_inode) { 6698 inode_dec_link_count(inode); 6699 iput(inode); 6700 } 6701 btrfs_btree_balance_dirty(fs_info); 6702 return err; 6703 } 6704 6705 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6706 struct dentry *dentry, umode_t mode) 6707 { 6708 struct inode *inode; 6709 6710 inode = new_inode(dir->i_sb); 6711 if (!inode) 6712 return -ENOMEM; 6713 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6714 inode->i_op = &btrfs_dir_inode_operations; 6715 inode->i_fop = &btrfs_dir_file_operations; 6716 return btrfs_create_common(dir, dentry, inode); 6717 } 6718 6719 static noinline int uncompress_inline(struct btrfs_path *path, 6720 struct folio *folio, 6721 struct btrfs_file_extent_item *item) 6722 { 6723 int ret; 6724 struct extent_buffer *leaf = path->nodes[0]; 6725 char *tmp; 6726 size_t max_size; 6727 unsigned long inline_size; 6728 unsigned long ptr; 6729 int compress_type; 6730 6731 compress_type = btrfs_file_extent_compression(leaf, item); 6732 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6733 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6734 tmp = kmalloc(inline_size, GFP_NOFS); 6735 if (!tmp) 6736 return -ENOMEM; 6737 ptr = btrfs_file_extent_inline_start(item); 6738 6739 read_extent_buffer(leaf, tmp, ptr, inline_size); 6740 6741 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6742 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6743 max_size); 6744 6745 /* 6746 * decompression code contains a memset to fill in any space between the end 6747 * of the uncompressed data and the end of max_size in case the decompressed 6748 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6749 * the end of an inline extent and the beginning of the next block, so we 6750 * cover that region here. 6751 */ 6752 6753 if (max_size < PAGE_SIZE) 6754 folio_zero_range(folio, max_size, PAGE_SIZE - max_size); 6755 kfree(tmp); 6756 return ret; 6757 } 6758 6759 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6760 { 6761 struct btrfs_file_extent_item *fi; 6762 void *kaddr; 6763 size_t copy_size; 6764 6765 if (!folio || folio_test_uptodate(folio)) 6766 return 0; 6767 6768 ASSERT(folio_pos(folio) == 0); 6769 6770 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6771 struct btrfs_file_extent_item); 6772 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6773 return uncompress_inline(path, folio, fi); 6774 6775 copy_size = min_t(u64, PAGE_SIZE, 6776 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6777 kaddr = kmap_local_folio(folio, 0); 6778 read_extent_buffer(path->nodes[0], kaddr, 6779 btrfs_file_extent_inline_start(fi), copy_size); 6780 kunmap_local(kaddr); 6781 if (copy_size < PAGE_SIZE) 6782 folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size); 6783 return 0; 6784 } 6785 6786 /* 6787 * Lookup the first extent overlapping a range in a file. 6788 * 6789 * @inode: file to search in 6790 * @page: page to read extent data into if the extent is inline 6791 * @start: file offset 6792 * @len: length of range starting at @start 6793 * 6794 * Return the first &struct extent_map which overlaps the given range, reading 6795 * it from the B-tree and caching it if necessary. Note that there may be more 6796 * extents which overlap the given range after the returned extent_map. 6797 * 6798 * If @page is not NULL and the extent is inline, this also reads the extent 6799 * data directly into the page and marks the extent up to date in the io_tree. 6800 * 6801 * Return: ERR_PTR on error, non-NULL extent_map on success. 6802 */ 6803 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6804 struct folio *folio, u64 start, u64 len) 6805 { 6806 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6807 int ret = 0; 6808 u64 extent_start = 0; 6809 u64 extent_end = 0; 6810 u64 objectid = btrfs_ino(inode); 6811 int extent_type = -1; 6812 struct btrfs_path *path = NULL; 6813 struct btrfs_root *root = inode->root; 6814 struct btrfs_file_extent_item *item; 6815 struct extent_buffer *leaf; 6816 struct btrfs_key found_key; 6817 struct extent_map *em = NULL; 6818 struct extent_map_tree *em_tree = &inode->extent_tree; 6819 6820 read_lock(&em_tree->lock); 6821 em = lookup_extent_mapping(em_tree, start, len); 6822 read_unlock(&em_tree->lock); 6823 6824 if (em) { 6825 if (em->start > start || em->start + em->len <= start) 6826 free_extent_map(em); 6827 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6828 free_extent_map(em); 6829 else 6830 goto out; 6831 } 6832 em = alloc_extent_map(); 6833 if (!em) { 6834 ret = -ENOMEM; 6835 goto out; 6836 } 6837 em->start = EXTENT_MAP_HOLE; 6838 em->disk_bytenr = EXTENT_MAP_HOLE; 6839 em->len = (u64)-1; 6840 6841 path = btrfs_alloc_path(); 6842 if (!path) { 6843 ret = -ENOMEM; 6844 goto out; 6845 } 6846 6847 /* Chances are we'll be called again, so go ahead and do readahead */ 6848 path->reada = READA_FORWARD; 6849 6850 /* 6851 * The same explanation in load_free_space_cache applies here as well, 6852 * we only read when we're loading the free space cache, and at that 6853 * point the commit_root has everything we need. 6854 */ 6855 if (btrfs_is_free_space_inode(inode)) { 6856 path->search_commit_root = 1; 6857 path->skip_locking = 1; 6858 } 6859 6860 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6861 if (ret < 0) { 6862 goto out; 6863 } else if (ret > 0) { 6864 if (path->slots[0] == 0) 6865 goto not_found; 6866 path->slots[0]--; 6867 ret = 0; 6868 } 6869 6870 leaf = path->nodes[0]; 6871 item = btrfs_item_ptr(leaf, path->slots[0], 6872 struct btrfs_file_extent_item); 6873 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6874 if (found_key.objectid != objectid || 6875 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6876 /* 6877 * If we backup past the first extent we want to move forward 6878 * and see if there is an extent in front of us, otherwise we'll 6879 * say there is a hole for our whole search range which can 6880 * cause problems. 6881 */ 6882 extent_end = start; 6883 goto next; 6884 } 6885 6886 extent_type = btrfs_file_extent_type(leaf, item); 6887 extent_start = found_key.offset; 6888 extent_end = btrfs_file_extent_end(path); 6889 if (extent_type == BTRFS_FILE_EXTENT_REG || 6890 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6891 /* Only regular file could have regular/prealloc extent */ 6892 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6893 ret = -EUCLEAN; 6894 btrfs_crit(fs_info, 6895 "regular/prealloc extent found for non-regular inode %llu", 6896 btrfs_ino(inode)); 6897 goto out; 6898 } 6899 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6900 extent_start); 6901 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6902 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6903 path->slots[0], 6904 extent_start); 6905 } 6906 next: 6907 if (start >= extent_end) { 6908 path->slots[0]++; 6909 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6910 ret = btrfs_next_leaf(root, path); 6911 if (ret < 0) 6912 goto out; 6913 else if (ret > 0) 6914 goto not_found; 6915 6916 leaf = path->nodes[0]; 6917 } 6918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6919 if (found_key.objectid != objectid || 6920 found_key.type != BTRFS_EXTENT_DATA_KEY) 6921 goto not_found; 6922 if (start + len <= found_key.offset) 6923 goto not_found; 6924 if (start > found_key.offset) 6925 goto next; 6926 6927 /* New extent overlaps with existing one */ 6928 em->start = start; 6929 em->len = found_key.offset - start; 6930 em->disk_bytenr = EXTENT_MAP_HOLE; 6931 goto insert; 6932 } 6933 6934 btrfs_extent_item_to_extent_map(inode, path, item, em); 6935 6936 if (extent_type == BTRFS_FILE_EXTENT_REG || 6937 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6938 goto insert; 6939 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6940 /* 6941 * Inline extent can only exist at file offset 0. This is 6942 * ensured by tree-checker and inline extent creation path. 6943 * Thus all members representing file offsets should be zero. 6944 */ 6945 ASSERT(extent_start == 0); 6946 ASSERT(em->start == 0); 6947 6948 /* 6949 * btrfs_extent_item_to_extent_map() should have properly 6950 * initialized em members already. 6951 * 6952 * Other members are not utilized for inline extents. 6953 */ 6954 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 6955 ASSERT(em->len == fs_info->sectorsize); 6956 6957 ret = read_inline_extent(path, folio); 6958 if (ret < 0) 6959 goto out; 6960 goto insert; 6961 } 6962 not_found: 6963 em->start = start; 6964 em->len = len; 6965 em->disk_bytenr = EXTENT_MAP_HOLE; 6966 insert: 6967 ret = 0; 6968 btrfs_release_path(path); 6969 if (em->start > start || extent_map_end(em) <= start) { 6970 btrfs_err(fs_info, 6971 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6972 em->start, em->len, start, len); 6973 ret = -EIO; 6974 goto out; 6975 } 6976 6977 write_lock(&em_tree->lock); 6978 ret = btrfs_add_extent_mapping(inode, &em, start, len); 6979 write_unlock(&em_tree->lock); 6980 out: 6981 btrfs_free_path(path); 6982 6983 trace_btrfs_get_extent(root, inode, em); 6984 6985 if (ret) { 6986 free_extent_map(em); 6987 return ERR_PTR(ret); 6988 } 6989 return em; 6990 } 6991 6992 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 6993 { 6994 struct btrfs_block_group *block_group; 6995 bool readonly = false; 6996 6997 block_group = btrfs_lookup_block_group(fs_info, bytenr); 6998 if (!block_group || block_group->ro) 6999 readonly = true; 7000 if (block_group) 7001 btrfs_put_block_group(block_group); 7002 return readonly; 7003 } 7004 7005 /* 7006 * Check if we can do nocow write into the range [@offset, @offset + @len) 7007 * 7008 * @offset: File offset 7009 * @len: The length to write, will be updated to the nocow writeable 7010 * range 7011 * @orig_start: (optional) Return the original file offset of the file extent 7012 * @orig_len: (optional) Return the original on-disk length of the file extent 7013 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7014 * @strict: if true, omit optimizations that might force us into unnecessary 7015 * cow. e.g., don't trust generation number. 7016 * 7017 * Return: 7018 * >0 and update @len if we can do nocow write 7019 * 0 if we can't do nocow write 7020 * <0 if error happened 7021 * 7022 * NOTE: This only checks the file extents, caller is responsible to wait for 7023 * any ordered extents. 7024 */ 7025 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7026 struct btrfs_file_extent *file_extent, 7027 bool nowait, bool strict) 7028 { 7029 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7030 struct can_nocow_file_extent_args nocow_args = { 0 }; 7031 struct btrfs_path *path; 7032 int ret; 7033 struct extent_buffer *leaf; 7034 struct btrfs_root *root = BTRFS_I(inode)->root; 7035 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7036 struct btrfs_file_extent_item *fi; 7037 struct btrfs_key key; 7038 int found_type; 7039 7040 path = btrfs_alloc_path(); 7041 if (!path) 7042 return -ENOMEM; 7043 path->nowait = nowait; 7044 7045 ret = btrfs_lookup_file_extent(NULL, root, path, 7046 btrfs_ino(BTRFS_I(inode)), offset, 0); 7047 if (ret < 0) 7048 goto out; 7049 7050 if (ret == 1) { 7051 if (path->slots[0] == 0) { 7052 /* can't find the item, must cow */ 7053 ret = 0; 7054 goto out; 7055 } 7056 path->slots[0]--; 7057 } 7058 ret = 0; 7059 leaf = path->nodes[0]; 7060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7061 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7062 key.type != BTRFS_EXTENT_DATA_KEY) { 7063 /* not our file or wrong item type, must cow */ 7064 goto out; 7065 } 7066 7067 if (key.offset > offset) { 7068 /* Wrong offset, must cow */ 7069 goto out; 7070 } 7071 7072 if (btrfs_file_extent_end(path) <= offset) 7073 goto out; 7074 7075 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7076 found_type = btrfs_file_extent_type(leaf, fi); 7077 7078 nocow_args.start = offset; 7079 nocow_args.end = offset + *len - 1; 7080 nocow_args.strict = strict; 7081 nocow_args.free_path = true; 7082 7083 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7084 /* can_nocow_file_extent() has freed the path. */ 7085 path = NULL; 7086 7087 if (ret != 1) { 7088 /* Treat errors as not being able to NOCOW. */ 7089 ret = 0; 7090 goto out; 7091 } 7092 7093 ret = 0; 7094 if (btrfs_extent_readonly(fs_info, 7095 nocow_args.file_extent.disk_bytenr + 7096 nocow_args.file_extent.offset)) 7097 goto out; 7098 7099 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7100 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7101 u64 range_end; 7102 7103 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7104 root->fs_info->sectorsize) - 1; 7105 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7106 if (ret) { 7107 ret = -EAGAIN; 7108 goto out; 7109 } 7110 } 7111 7112 if (file_extent) 7113 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7114 7115 *len = nocow_args.file_extent.num_bytes; 7116 ret = 1; 7117 out: 7118 btrfs_free_path(path); 7119 return ret; 7120 } 7121 7122 /* The callers of this must take lock_extent() */ 7123 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7124 const struct btrfs_file_extent *file_extent, 7125 int type) 7126 { 7127 struct extent_map *em; 7128 int ret; 7129 7130 /* 7131 * Note the missing NOCOW type. 7132 * 7133 * For pure NOCOW writes, we should not create an io extent map, but 7134 * just reusing the existing one. 7135 * Only PREALLOC writes (NOCOW write into preallocated range) can 7136 * create an io extent map. 7137 */ 7138 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7139 type == BTRFS_ORDERED_COMPRESSED || 7140 type == BTRFS_ORDERED_REGULAR); 7141 7142 switch (type) { 7143 case BTRFS_ORDERED_PREALLOC: 7144 /* We're only referring part of a larger preallocated extent. */ 7145 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7146 break; 7147 case BTRFS_ORDERED_REGULAR: 7148 /* COW results a new extent matching our file extent size. */ 7149 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7150 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7151 7152 /* Since it's a new extent, we should not have any offset. */ 7153 ASSERT(file_extent->offset == 0); 7154 break; 7155 case BTRFS_ORDERED_COMPRESSED: 7156 /* Must be compressed. */ 7157 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7158 7159 /* 7160 * Encoded write can make us to refer to part of the 7161 * uncompressed extent. 7162 */ 7163 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7164 break; 7165 } 7166 7167 em = alloc_extent_map(); 7168 if (!em) 7169 return ERR_PTR(-ENOMEM); 7170 7171 em->start = start; 7172 em->len = file_extent->num_bytes; 7173 em->disk_bytenr = file_extent->disk_bytenr; 7174 em->disk_num_bytes = file_extent->disk_num_bytes; 7175 em->ram_bytes = file_extent->ram_bytes; 7176 em->generation = -1; 7177 em->offset = file_extent->offset; 7178 em->flags |= EXTENT_FLAG_PINNED; 7179 if (type == BTRFS_ORDERED_COMPRESSED) 7180 extent_map_set_compression(em, file_extent->compression); 7181 7182 ret = btrfs_replace_extent_map_range(inode, em, true); 7183 if (ret) { 7184 free_extent_map(em); 7185 return ERR_PTR(ret); 7186 } 7187 7188 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7189 return em; 7190 } 7191 7192 /* 7193 * For release_folio() and invalidate_folio() we have a race window where 7194 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7195 * If we continue to release/invalidate the page, we could cause use-after-free 7196 * for subpage spinlock. So this function is to spin and wait for subpage 7197 * spinlock. 7198 */ 7199 static void wait_subpage_spinlock(struct folio *folio) 7200 { 7201 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7202 struct btrfs_subpage *subpage; 7203 7204 if (!btrfs_is_subpage(fs_info, folio->mapping)) 7205 return; 7206 7207 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7208 subpage = folio_get_private(folio); 7209 7210 /* 7211 * This may look insane as we just acquire the spinlock and release it, 7212 * without doing anything. But we just want to make sure no one is 7213 * still holding the subpage spinlock. 7214 * And since the page is not dirty nor writeback, and we have page 7215 * locked, the only possible way to hold a spinlock is from the endio 7216 * function to clear page writeback. 7217 * 7218 * Here we just acquire the spinlock so that all existing callers 7219 * should exit and we're safe to release/invalidate the page. 7220 */ 7221 spin_lock_irq(&subpage->lock); 7222 spin_unlock_irq(&subpage->lock); 7223 } 7224 7225 static int btrfs_launder_folio(struct folio *folio) 7226 { 7227 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7228 PAGE_SIZE, NULL); 7229 } 7230 7231 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7232 { 7233 if (try_release_extent_mapping(folio, gfp_flags)) { 7234 wait_subpage_spinlock(folio); 7235 clear_folio_extent_mapped(folio); 7236 return true; 7237 } 7238 return false; 7239 } 7240 7241 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7242 { 7243 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7244 return false; 7245 return __btrfs_release_folio(folio, gfp_flags); 7246 } 7247 7248 #ifdef CONFIG_MIGRATION 7249 static int btrfs_migrate_folio(struct address_space *mapping, 7250 struct folio *dst, struct folio *src, 7251 enum migrate_mode mode) 7252 { 7253 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7254 7255 if (ret != MIGRATEPAGE_SUCCESS) 7256 return ret; 7257 7258 if (folio_test_ordered(src)) { 7259 folio_clear_ordered(src); 7260 folio_set_ordered(dst); 7261 } 7262 7263 return MIGRATEPAGE_SUCCESS; 7264 } 7265 #else 7266 #define btrfs_migrate_folio NULL 7267 #endif 7268 7269 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7270 size_t length) 7271 { 7272 struct btrfs_inode *inode = folio_to_inode(folio); 7273 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7274 struct extent_io_tree *tree = &inode->io_tree; 7275 struct extent_state *cached_state = NULL; 7276 u64 page_start = folio_pos(folio); 7277 u64 page_end = page_start + folio_size(folio) - 1; 7278 u64 cur; 7279 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7280 7281 /* 7282 * We have folio locked so no new ordered extent can be created on this 7283 * page, nor bio can be submitted for this folio. 7284 * 7285 * But already submitted bio can still be finished on this folio. 7286 * Furthermore, endio function won't skip folio which has Ordered 7287 * already cleared, so it's possible for endio and 7288 * invalidate_folio to do the same ordered extent accounting twice 7289 * on one folio. 7290 * 7291 * So here we wait for any submitted bios to finish, so that we won't 7292 * do double ordered extent accounting on the same folio. 7293 */ 7294 folio_wait_writeback(folio); 7295 wait_subpage_spinlock(folio); 7296 7297 /* 7298 * For subpage case, we have call sites like 7299 * btrfs_punch_hole_lock_range() which passes range not aligned to 7300 * sectorsize. 7301 * If the range doesn't cover the full folio, we don't need to and 7302 * shouldn't clear page extent mapped, as folio->private can still 7303 * record subpage dirty bits for other part of the range. 7304 * 7305 * For cases that invalidate the full folio even the range doesn't 7306 * cover the full folio, like invalidating the last folio, we're 7307 * still safe to wait for ordered extent to finish. 7308 */ 7309 if (!(offset == 0 && length == folio_size(folio))) { 7310 btrfs_release_folio(folio, GFP_NOFS); 7311 return; 7312 } 7313 7314 if (!inode_evicting) 7315 lock_extent(tree, page_start, page_end, &cached_state); 7316 7317 cur = page_start; 7318 while (cur < page_end) { 7319 struct btrfs_ordered_extent *ordered; 7320 u64 range_end; 7321 u32 range_len; 7322 u32 extra_flags = 0; 7323 7324 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7325 page_end + 1 - cur); 7326 if (!ordered) { 7327 range_end = page_end; 7328 /* 7329 * No ordered extent covering this range, we are safe 7330 * to delete all extent states in the range. 7331 */ 7332 extra_flags = EXTENT_CLEAR_ALL_BITS; 7333 goto next; 7334 } 7335 if (ordered->file_offset > cur) { 7336 /* 7337 * There is a range between [cur, oe->file_offset) not 7338 * covered by any ordered extent. 7339 * We are safe to delete all extent states, and handle 7340 * the ordered extent in the next iteration. 7341 */ 7342 range_end = ordered->file_offset - 1; 7343 extra_flags = EXTENT_CLEAR_ALL_BITS; 7344 goto next; 7345 } 7346 7347 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7348 page_end); 7349 ASSERT(range_end + 1 - cur < U32_MAX); 7350 range_len = range_end + 1 - cur; 7351 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7352 /* 7353 * If Ordered is cleared, it means endio has 7354 * already been executed for the range. 7355 * We can't delete the extent states as 7356 * btrfs_finish_ordered_io() may still use some of them. 7357 */ 7358 goto next; 7359 } 7360 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7361 7362 /* 7363 * IO on this page will never be started, so we need to account 7364 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7365 * here, must leave that up for the ordered extent completion. 7366 * 7367 * This will also unlock the range for incoming 7368 * btrfs_finish_ordered_io(). 7369 */ 7370 if (!inode_evicting) 7371 clear_extent_bit(tree, cur, range_end, 7372 EXTENT_DELALLOC | 7373 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7374 EXTENT_DEFRAG, &cached_state); 7375 7376 spin_lock_irq(&inode->ordered_tree_lock); 7377 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7378 ordered->truncated_len = min(ordered->truncated_len, 7379 cur - ordered->file_offset); 7380 spin_unlock_irq(&inode->ordered_tree_lock); 7381 7382 /* 7383 * If the ordered extent has finished, we're safe to delete all 7384 * the extent states of the range, otherwise 7385 * btrfs_finish_ordered_io() will get executed by endio for 7386 * other pages, so we can't delete extent states. 7387 */ 7388 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7389 cur, range_end + 1 - cur)) { 7390 btrfs_finish_ordered_io(ordered); 7391 /* 7392 * The ordered extent has finished, now we're again 7393 * safe to delete all extent states of the range. 7394 */ 7395 extra_flags = EXTENT_CLEAR_ALL_BITS; 7396 } 7397 next: 7398 if (ordered) 7399 btrfs_put_ordered_extent(ordered); 7400 /* 7401 * Qgroup reserved space handler 7402 * Sector(s) here will be either: 7403 * 7404 * 1) Already written to disk or bio already finished 7405 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7406 * Qgroup will be handled by its qgroup_record then. 7407 * btrfs_qgroup_free_data() call will do nothing here. 7408 * 7409 * 2) Not written to disk yet 7410 * Then btrfs_qgroup_free_data() call will clear the 7411 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7412 * reserved data space. 7413 * Since the IO will never happen for this page. 7414 */ 7415 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7416 if (!inode_evicting) { 7417 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7418 EXTENT_DELALLOC | EXTENT_UPTODATE | 7419 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7420 extra_flags, &cached_state); 7421 } 7422 cur = range_end + 1; 7423 } 7424 /* 7425 * We have iterated through all ordered extents of the page, the page 7426 * should not have Ordered anymore, or the above iteration 7427 * did something wrong. 7428 */ 7429 ASSERT(!folio_test_ordered(folio)); 7430 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7431 if (!inode_evicting) 7432 __btrfs_release_folio(folio, GFP_NOFS); 7433 clear_folio_extent_mapped(folio); 7434 } 7435 7436 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7437 { 7438 struct btrfs_truncate_control control = { 7439 .inode = inode, 7440 .ino = btrfs_ino(inode), 7441 .min_type = BTRFS_EXTENT_DATA_KEY, 7442 .clear_extent_range = true, 7443 }; 7444 struct btrfs_root *root = inode->root; 7445 struct btrfs_fs_info *fs_info = root->fs_info; 7446 struct btrfs_block_rsv *rsv; 7447 int ret; 7448 struct btrfs_trans_handle *trans; 7449 u64 mask = fs_info->sectorsize - 1; 7450 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7451 7452 if (!skip_writeback) { 7453 ret = btrfs_wait_ordered_range(inode, 7454 inode->vfs_inode.i_size & (~mask), 7455 (u64)-1); 7456 if (ret) 7457 return ret; 7458 } 7459 7460 /* 7461 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7462 * things going on here: 7463 * 7464 * 1) We need to reserve space to update our inode. 7465 * 7466 * 2) We need to have something to cache all the space that is going to 7467 * be free'd up by the truncate operation, but also have some slack 7468 * space reserved in case it uses space during the truncate (thank you 7469 * very much snapshotting). 7470 * 7471 * And we need these to be separate. The fact is we can use a lot of 7472 * space doing the truncate, and we have no earthly idea how much space 7473 * we will use, so we need the truncate reservation to be separate so it 7474 * doesn't end up using space reserved for updating the inode. We also 7475 * need to be able to stop the transaction and start a new one, which 7476 * means we need to be able to update the inode several times, and we 7477 * have no idea of knowing how many times that will be, so we can't just 7478 * reserve 1 item for the entirety of the operation, so that has to be 7479 * done separately as well. 7480 * 7481 * So that leaves us with 7482 * 7483 * 1) rsv - for the truncate reservation, which we will steal from the 7484 * transaction reservation. 7485 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7486 * updating the inode. 7487 */ 7488 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7489 if (!rsv) 7490 return -ENOMEM; 7491 rsv->size = min_size; 7492 rsv->failfast = true; 7493 7494 /* 7495 * 1 for the truncate slack space 7496 * 1 for updating the inode. 7497 */ 7498 trans = btrfs_start_transaction(root, 2); 7499 if (IS_ERR(trans)) { 7500 ret = PTR_ERR(trans); 7501 goto out; 7502 } 7503 7504 /* Migrate the slack space for the truncate to our reserve */ 7505 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7506 min_size, false); 7507 /* 7508 * We have reserved 2 metadata units when we started the transaction and 7509 * min_size matches 1 unit, so this should never fail, but if it does, 7510 * it's not critical we just fail truncation. 7511 */ 7512 if (WARN_ON(ret)) { 7513 btrfs_end_transaction(trans); 7514 goto out; 7515 } 7516 7517 trans->block_rsv = rsv; 7518 7519 while (1) { 7520 struct extent_state *cached_state = NULL; 7521 const u64 new_size = inode->vfs_inode.i_size; 7522 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7523 7524 control.new_size = new_size; 7525 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7526 /* 7527 * We want to drop from the next block forward in case this new 7528 * size is not block aligned since we will be keeping the last 7529 * block of the extent just the way it is. 7530 */ 7531 btrfs_drop_extent_map_range(inode, 7532 ALIGN(new_size, fs_info->sectorsize), 7533 (u64)-1, false); 7534 7535 ret = btrfs_truncate_inode_items(trans, root, &control); 7536 7537 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7538 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7539 7540 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7541 7542 trans->block_rsv = &fs_info->trans_block_rsv; 7543 if (ret != -ENOSPC && ret != -EAGAIN) 7544 break; 7545 7546 ret = btrfs_update_inode(trans, inode); 7547 if (ret) 7548 break; 7549 7550 btrfs_end_transaction(trans); 7551 btrfs_btree_balance_dirty(fs_info); 7552 7553 trans = btrfs_start_transaction(root, 2); 7554 if (IS_ERR(trans)) { 7555 ret = PTR_ERR(trans); 7556 trans = NULL; 7557 break; 7558 } 7559 7560 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7561 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7562 rsv, min_size, false); 7563 /* 7564 * We have reserved 2 metadata units when we started the 7565 * transaction and min_size matches 1 unit, so this should never 7566 * fail, but if it does, it's not critical we just fail truncation. 7567 */ 7568 if (WARN_ON(ret)) 7569 break; 7570 7571 trans->block_rsv = rsv; 7572 } 7573 7574 /* 7575 * We can't call btrfs_truncate_block inside a trans handle as we could 7576 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7577 * know we've truncated everything except the last little bit, and can 7578 * do btrfs_truncate_block and then update the disk_i_size. 7579 */ 7580 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7581 btrfs_end_transaction(trans); 7582 btrfs_btree_balance_dirty(fs_info); 7583 7584 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7585 if (ret) 7586 goto out; 7587 trans = btrfs_start_transaction(root, 1); 7588 if (IS_ERR(trans)) { 7589 ret = PTR_ERR(trans); 7590 goto out; 7591 } 7592 btrfs_inode_safe_disk_i_size_write(inode, 0); 7593 } 7594 7595 if (trans) { 7596 int ret2; 7597 7598 trans->block_rsv = &fs_info->trans_block_rsv; 7599 ret2 = btrfs_update_inode(trans, inode); 7600 if (ret2 && !ret) 7601 ret = ret2; 7602 7603 ret2 = btrfs_end_transaction(trans); 7604 if (ret2 && !ret) 7605 ret = ret2; 7606 btrfs_btree_balance_dirty(fs_info); 7607 } 7608 out: 7609 btrfs_free_block_rsv(fs_info, rsv); 7610 /* 7611 * So if we truncate and then write and fsync we normally would just 7612 * write the extents that changed, which is a problem if we need to 7613 * first truncate that entire inode. So set this flag so we write out 7614 * all of the extents in the inode to the sync log so we're completely 7615 * safe. 7616 * 7617 * If no extents were dropped or trimmed we don't need to force the next 7618 * fsync to truncate all the inode's items from the log and re-log them 7619 * all. This means the truncate operation did not change the file size, 7620 * or changed it to a smaller size but there was only an implicit hole 7621 * between the old i_size and the new i_size, and there were no prealloc 7622 * extents beyond i_size to drop. 7623 */ 7624 if (control.extents_found > 0) 7625 btrfs_set_inode_full_sync(inode); 7626 7627 return ret; 7628 } 7629 7630 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7631 struct inode *dir) 7632 { 7633 struct inode *inode; 7634 7635 inode = new_inode(dir->i_sb); 7636 if (inode) { 7637 /* 7638 * Subvolumes don't inherit the sgid bit or the parent's gid if 7639 * the parent's sgid bit is set. This is probably a bug. 7640 */ 7641 inode_init_owner(idmap, inode, NULL, 7642 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7643 inode->i_op = &btrfs_dir_inode_operations; 7644 inode->i_fop = &btrfs_dir_file_operations; 7645 } 7646 return inode; 7647 } 7648 7649 struct inode *btrfs_alloc_inode(struct super_block *sb) 7650 { 7651 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7652 struct btrfs_inode *ei; 7653 struct inode *inode; 7654 7655 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7656 if (!ei) 7657 return NULL; 7658 7659 ei->root = NULL; 7660 ei->generation = 0; 7661 ei->last_trans = 0; 7662 ei->last_sub_trans = 0; 7663 ei->logged_trans = 0; 7664 ei->delalloc_bytes = 0; 7665 ei->new_delalloc_bytes = 0; 7666 ei->defrag_bytes = 0; 7667 ei->disk_i_size = 0; 7668 ei->flags = 0; 7669 ei->ro_flags = 0; 7670 /* 7671 * ->index_cnt will be properly initialized later when creating a new 7672 * inode (btrfs_create_new_inode()) or when reading an existing inode 7673 * from disk (btrfs_read_locked_inode()). 7674 */ 7675 ei->csum_bytes = 0; 7676 ei->dir_index = 0; 7677 ei->last_unlink_trans = 0; 7678 ei->last_reflink_trans = 0; 7679 ei->last_log_commit = 0; 7680 7681 spin_lock_init(&ei->lock); 7682 ei->outstanding_extents = 0; 7683 if (sb->s_magic != BTRFS_TEST_MAGIC) 7684 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7685 BTRFS_BLOCK_RSV_DELALLOC); 7686 ei->runtime_flags = 0; 7687 ei->prop_compress = BTRFS_COMPRESS_NONE; 7688 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7689 7690 ei->delayed_node = NULL; 7691 7692 ei->i_otime_sec = 0; 7693 ei->i_otime_nsec = 0; 7694 7695 inode = &ei->vfs_inode; 7696 extent_map_tree_init(&ei->extent_tree); 7697 7698 /* This io tree sets the valid inode. */ 7699 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7700 ei->io_tree.inode = ei; 7701 7702 ei->file_extent_tree = NULL; 7703 7704 mutex_init(&ei->log_mutex); 7705 spin_lock_init(&ei->ordered_tree_lock); 7706 ei->ordered_tree = RB_ROOT; 7707 ei->ordered_tree_last = NULL; 7708 INIT_LIST_HEAD(&ei->delalloc_inodes); 7709 INIT_LIST_HEAD(&ei->delayed_iput); 7710 init_rwsem(&ei->i_mmap_lock); 7711 7712 return inode; 7713 } 7714 7715 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7716 void btrfs_test_destroy_inode(struct inode *inode) 7717 { 7718 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7719 kfree(BTRFS_I(inode)->file_extent_tree); 7720 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7721 } 7722 #endif 7723 7724 void btrfs_free_inode(struct inode *inode) 7725 { 7726 kfree(BTRFS_I(inode)->file_extent_tree); 7727 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7728 } 7729 7730 void btrfs_destroy_inode(struct inode *vfs_inode) 7731 { 7732 struct btrfs_ordered_extent *ordered; 7733 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7734 struct btrfs_root *root = inode->root; 7735 bool freespace_inode; 7736 7737 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7738 WARN_ON(vfs_inode->i_data.nrpages); 7739 WARN_ON(inode->block_rsv.reserved); 7740 WARN_ON(inode->block_rsv.size); 7741 WARN_ON(inode->outstanding_extents); 7742 if (!S_ISDIR(vfs_inode->i_mode)) { 7743 WARN_ON(inode->delalloc_bytes); 7744 WARN_ON(inode->new_delalloc_bytes); 7745 WARN_ON(inode->csum_bytes); 7746 } 7747 if (!root || !btrfs_is_data_reloc_root(root)) 7748 WARN_ON(inode->defrag_bytes); 7749 7750 /* 7751 * This can happen where we create an inode, but somebody else also 7752 * created the same inode and we need to destroy the one we already 7753 * created. 7754 */ 7755 if (!root) 7756 return; 7757 7758 /* 7759 * If this is a free space inode do not take the ordered extents lockdep 7760 * map. 7761 */ 7762 freespace_inode = btrfs_is_free_space_inode(inode); 7763 7764 while (1) { 7765 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7766 if (!ordered) 7767 break; 7768 else { 7769 btrfs_err(root->fs_info, 7770 "found ordered extent %llu %llu on inode cleanup", 7771 ordered->file_offset, ordered->num_bytes); 7772 7773 if (!freespace_inode) 7774 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7775 7776 btrfs_remove_ordered_extent(inode, ordered); 7777 btrfs_put_ordered_extent(ordered); 7778 btrfs_put_ordered_extent(ordered); 7779 } 7780 } 7781 btrfs_qgroup_check_reserved_leak(inode); 7782 btrfs_del_inode_from_root(inode); 7783 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7784 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7785 btrfs_put_root(inode->root); 7786 } 7787 7788 int btrfs_drop_inode(struct inode *inode) 7789 { 7790 struct btrfs_root *root = BTRFS_I(inode)->root; 7791 7792 if (root == NULL) 7793 return 1; 7794 7795 /* the snap/subvol tree is on deleting */ 7796 if (btrfs_root_refs(&root->root_item) == 0) 7797 return 1; 7798 else 7799 return generic_drop_inode(inode); 7800 } 7801 7802 static void init_once(void *foo) 7803 { 7804 struct btrfs_inode *ei = foo; 7805 7806 inode_init_once(&ei->vfs_inode); 7807 } 7808 7809 void __cold btrfs_destroy_cachep(void) 7810 { 7811 /* 7812 * Make sure all delayed rcu free inodes are flushed before we 7813 * destroy cache. 7814 */ 7815 rcu_barrier(); 7816 kmem_cache_destroy(btrfs_inode_cachep); 7817 } 7818 7819 int __init btrfs_init_cachep(void) 7820 { 7821 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7822 sizeof(struct btrfs_inode), 0, 7823 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7824 init_once); 7825 if (!btrfs_inode_cachep) 7826 return -ENOMEM; 7827 7828 return 0; 7829 } 7830 7831 static int btrfs_getattr(struct mnt_idmap *idmap, 7832 const struct path *path, struct kstat *stat, 7833 u32 request_mask, unsigned int flags) 7834 { 7835 u64 delalloc_bytes; 7836 u64 inode_bytes; 7837 struct inode *inode = d_inode(path->dentry); 7838 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7839 u32 bi_flags = BTRFS_I(inode)->flags; 7840 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7841 7842 stat->result_mask |= STATX_BTIME; 7843 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7844 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7845 if (bi_flags & BTRFS_INODE_APPEND) 7846 stat->attributes |= STATX_ATTR_APPEND; 7847 if (bi_flags & BTRFS_INODE_COMPRESS) 7848 stat->attributes |= STATX_ATTR_COMPRESSED; 7849 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7850 stat->attributes |= STATX_ATTR_IMMUTABLE; 7851 if (bi_flags & BTRFS_INODE_NODUMP) 7852 stat->attributes |= STATX_ATTR_NODUMP; 7853 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7854 stat->attributes |= STATX_ATTR_VERITY; 7855 7856 stat->attributes_mask |= (STATX_ATTR_APPEND | 7857 STATX_ATTR_COMPRESSED | 7858 STATX_ATTR_IMMUTABLE | 7859 STATX_ATTR_NODUMP); 7860 7861 generic_fillattr(idmap, request_mask, inode, stat); 7862 stat->dev = BTRFS_I(inode)->root->anon_dev; 7863 7864 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7865 stat->result_mask |= STATX_SUBVOL; 7866 7867 spin_lock(&BTRFS_I(inode)->lock); 7868 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7869 inode_bytes = inode_get_bytes(inode); 7870 spin_unlock(&BTRFS_I(inode)->lock); 7871 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7872 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7873 return 0; 7874 } 7875 7876 static int btrfs_rename_exchange(struct inode *old_dir, 7877 struct dentry *old_dentry, 7878 struct inode *new_dir, 7879 struct dentry *new_dentry) 7880 { 7881 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7882 struct btrfs_trans_handle *trans; 7883 unsigned int trans_num_items; 7884 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7885 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7886 struct inode *new_inode = new_dentry->d_inode; 7887 struct inode *old_inode = old_dentry->d_inode; 7888 struct btrfs_rename_ctx old_rename_ctx; 7889 struct btrfs_rename_ctx new_rename_ctx; 7890 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7891 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7892 u64 old_idx = 0; 7893 u64 new_idx = 0; 7894 int ret; 7895 int ret2; 7896 bool need_abort = false; 7897 struct fscrypt_name old_fname, new_fname; 7898 struct fscrypt_str *old_name, *new_name; 7899 7900 /* 7901 * For non-subvolumes allow exchange only within one subvolume, in the 7902 * same inode namespace. Two subvolumes (represented as directory) can 7903 * be exchanged as they're a logical link and have a fixed inode number. 7904 */ 7905 if (root != dest && 7906 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7907 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7908 return -EXDEV; 7909 7910 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7911 if (ret) 7912 return ret; 7913 7914 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7915 if (ret) { 7916 fscrypt_free_filename(&old_fname); 7917 return ret; 7918 } 7919 7920 old_name = &old_fname.disk_name; 7921 new_name = &new_fname.disk_name; 7922 7923 /* close the race window with snapshot create/destroy ioctl */ 7924 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 7925 new_ino == BTRFS_FIRST_FREE_OBJECTID) 7926 down_read(&fs_info->subvol_sem); 7927 7928 /* 7929 * For each inode: 7930 * 1 to remove old dir item 7931 * 1 to remove old dir index 7932 * 1 to add new dir item 7933 * 1 to add new dir index 7934 * 1 to update parent inode 7935 * 7936 * If the parents are the same, we only need to account for one 7937 */ 7938 trans_num_items = (old_dir == new_dir ? 9 : 10); 7939 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7940 /* 7941 * 1 to remove old root ref 7942 * 1 to remove old root backref 7943 * 1 to add new root ref 7944 * 1 to add new root backref 7945 */ 7946 trans_num_items += 4; 7947 } else { 7948 /* 7949 * 1 to update inode item 7950 * 1 to remove old inode ref 7951 * 1 to add new inode ref 7952 */ 7953 trans_num_items += 3; 7954 } 7955 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 7956 trans_num_items += 4; 7957 else 7958 trans_num_items += 3; 7959 trans = btrfs_start_transaction(root, trans_num_items); 7960 if (IS_ERR(trans)) { 7961 ret = PTR_ERR(trans); 7962 goto out_notrans; 7963 } 7964 7965 if (dest != root) { 7966 ret = btrfs_record_root_in_trans(trans, dest); 7967 if (ret) 7968 goto out_fail; 7969 } 7970 7971 /* 7972 * We need to find a free sequence number both in the source and 7973 * in the destination directory for the exchange. 7974 */ 7975 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 7976 if (ret) 7977 goto out_fail; 7978 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 7979 if (ret) 7980 goto out_fail; 7981 7982 BTRFS_I(old_inode)->dir_index = 0ULL; 7983 BTRFS_I(new_inode)->dir_index = 0ULL; 7984 7985 /* Reference for the source. */ 7986 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7987 /* force full log commit if subvolume involved. */ 7988 btrfs_set_log_full_commit(trans); 7989 } else { 7990 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 7991 btrfs_ino(BTRFS_I(new_dir)), 7992 old_idx); 7993 if (ret) 7994 goto out_fail; 7995 need_abort = true; 7996 } 7997 7998 /* And now for the dest. */ 7999 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8000 /* force full log commit if subvolume involved. */ 8001 btrfs_set_log_full_commit(trans); 8002 } else { 8003 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8004 btrfs_ino(BTRFS_I(old_dir)), 8005 new_idx); 8006 if (ret) { 8007 if (need_abort) 8008 btrfs_abort_transaction(trans, ret); 8009 goto out_fail; 8010 } 8011 } 8012 8013 /* Update inode version and ctime/mtime. */ 8014 inode_inc_iversion(old_dir); 8015 inode_inc_iversion(new_dir); 8016 inode_inc_iversion(old_inode); 8017 inode_inc_iversion(new_inode); 8018 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8019 8020 if (old_dentry->d_parent != new_dentry->d_parent) { 8021 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8022 BTRFS_I(old_inode), true); 8023 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8024 BTRFS_I(new_inode), true); 8025 } 8026 8027 /* src is a subvolume */ 8028 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8029 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8030 } else { /* src is an inode */ 8031 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8032 BTRFS_I(old_dentry->d_inode), 8033 old_name, &old_rename_ctx); 8034 if (!ret) 8035 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8036 } 8037 if (ret) { 8038 btrfs_abort_transaction(trans, ret); 8039 goto out_fail; 8040 } 8041 8042 /* dest is a subvolume */ 8043 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8044 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8045 } else { /* dest is an inode */ 8046 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8047 BTRFS_I(new_dentry->d_inode), 8048 new_name, &new_rename_ctx); 8049 if (!ret) 8050 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8051 } 8052 if (ret) { 8053 btrfs_abort_transaction(trans, ret); 8054 goto out_fail; 8055 } 8056 8057 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8058 new_name, 0, old_idx); 8059 if (ret) { 8060 btrfs_abort_transaction(trans, ret); 8061 goto out_fail; 8062 } 8063 8064 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8065 old_name, 0, new_idx); 8066 if (ret) { 8067 btrfs_abort_transaction(trans, ret); 8068 goto out_fail; 8069 } 8070 8071 if (old_inode->i_nlink == 1) 8072 BTRFS_I(old_inode)->dir_index = old_idx; 8073 if (new_inode->i_nlink == 1) 8074 BTRFS_I(new_inode)->dir_index = new_idx; 8075 8076 /* 8077 * Now pin the logs of the roots. We do it to ensure that no other task 8078 * can sync the logs while we are in progress with the rename, because 8079 * that could result in an inconsistency in case any of the inodes that 8080 * are part of this rename operation were logged before. 8081 */ 8082 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8083 btrfs_pin_log_trans(root); 8084 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8085 btrfs_pin_log_trans(dest); 8086 8087 /* Do the log updates for all inodes. */ 8088 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8089 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8090 old_rename_ctx.index, new_dentry->d_parent); 8091 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8092 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8093 new_rename_ctx.index, old_dentry->d_parent); 8094 8095 /* Now unpin the logs. */ 8096 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8097 btrfs_end_log_trans(root); 8098 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8099 btrfs_end_log_trans(dest); 8100 out_fail: 8101 ret2 = btrfs_end_transaction(trans); 8102 ret = ret ? ret : ret2; 8103 out_notrans: 8104 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8105 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8106 up_read(&fs_info->subvol_sem); 8107 8108 fscrypt_free_filename(&new_fname); 8109 fscrypt_free_filename(&old_fname); 8110 return ret; 8111 } 8112 8113 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8114 struct inode *dir) 8115 { 8116 struct inode *inode; 8117 8118 inode = new_inode(dir->i_sb); 8119 if (inode) { 8120 inode_init_owner(idmap, inode, dir, 8121 S_IFCHR | WHITEOUT_MODE); 8122 inode->i_op = &btrfs_special_inode_operations; 8123 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8124 } 8125 return inode; 8126 } 8127 8128 static int btrfs_rename(struct mnt_idmap *idmap, 8129 struct inode *old_dir, struct dentry *old_dentry, 8130 struct inode *new_dir, struct dentry *new_dentry, 8131 unsigned int flags) 8132 { 8133 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8134 struct btrfs_new_inode_args whiteout_args = { 8135 .dir = old_dir, 8136 .dentry = old_dentry, 8137 }; 8138 struct btrfs_trans_handle *trans; 8139 unsigned int trans_num_items; 8140 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8141 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8142 struct inode *new_inode = d_inode(new_dentry); 8143 struct inode *old_inode = d_inode(old_dentry); 8144 struct btrfs_rename_ctx rename_ctx; 8145 u64 index = 0; 8146 int ret; 8147 int ret2; 8148 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8149 struct fscrypt_name old_fname, new_fname; 8150 8151 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8152 return -EPERM; 8153 8154 /* we only allow rename subvolume link between subvolumes */ 8155 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8156 return -EXDEV; 8157 8158 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8159 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8160 return -ENOTEMPTY; 8161 8162 if (S_ISDIR(old_inode->i_mode) && new_inode && 8163 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8164 return -ENOTEMPTY; 8165 8166 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8167 if (ret) 8168 return ret; 8169 8170 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8171 if (ret) { 8172 fscrypt_free_filename(&old_fname); 8173 return ret; 8174 } 8175 8176 /* check for collisions, even if the name isn't there */ 8177 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8178 if (ret) { 8179 if (ret == -EEXIST) { 8180 /* we shouldn't get 8181 * eexist without a new_inode */ 8182 if (WARN_ON(!new_inode)) { 8183 goto out_fscrypt_names; 8184 } 8185 } else { 8186 /* maybe -EOVERFLOW */ 8187 goto out_fscrypt_names; 8188 } 8189 } 8190 ret = 0; 8191 8192 /* 8193 * we're using rename to replace one file with another. Start IO on it 8194 * now so we don't add too much work to the end of the transaction 8195 */ 8196 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8197 filemap_flush(old_inode->i_mapping); 8198 8199 if (flags & RENAME_WHITEOUT) { 8200 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8201 if (!whiteout_args.inode) { 8202 ret = -ENOMEM; 8203 goto out_fscrypt_names; 8204 } 8205 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8206 if (ret) 8207 goto out_whiteout_inode; 8208 } else { 8209 /* 1 to update the old parent inode. */ 8210 trans_num_items = 1; 8211 } 8212 8213 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8214 /* Close the race window with snapshot create/destroy ioctl */ 8215 down_read(&fs_info->subvol_sem); 8216 /* 8217 * 1 to remove old root ref 8218 * 1 to remove old root backref 8219 * 1 to add new root ref 8220 * 1 to add new root backref 8221 */ 8222 trans_num_items += 4; 8223 } else { 8224 /* 8225 * 1 to update inode 8226 * 1 to remove old inode ref 8227 * 1 to add new inode ref 8228 */ 8229 trans_num_items += 3; 8230 } 8231 /* 8232 * 1 to remove old dir item 8233 * 1 to remove old dir index 8234 * 1 to add new dir item 8235 * 1 to add new dir index 8236 */ 8237 trans_num_items += 4; 8238 /* 1 to update new parent inode if it's not the same as the old parent */ 8239 if (new_dir != old_dir) 8240 trans_num_items++; 8241 if (new_inode) { 8242 /* 8243 * 1 to update inode 8244 * 1 to remove inode ref 8245 * 1 to remove dir item 8246 * 1 to remove dir index 8247 * 1 to possibly add orphan item 8248 */ 8249 trans_num_items += 5; 8250 } 8251 trans = btrfs_start_transaction(root, trans_num_items); 8252 if (IS_ERR(trans)) { 8253 ret = PTR_ERR(trans); 8254 goto out_notrans; 8255 } 8256 8257 if (dest != root) { 8258 ret = btrfs_record_root_in_trans(trans, dest); 8259 if (ret) 8260 goto out_fail; 8261 } 8262 8263 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8264 if (ret) 8265 goto out_fail; 8266 8267 BTRFS_I(old_inode)->dir_index = 0ULL; 8268 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8269 /* force full log commit if subvolume involved. */ 8270 btrfs_set_log_full_commit(trans); 8271 } else { 8272 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8273 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8274 index); 8275 if (ret) 8276 goto out_fail; 8277 } 8278 8279 inode_inc_iversion(old_dir); 8280 inode_inc_iversion(new_dir); 8281 inode_inc_iversion(old_inode); 8282 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8283 8284 if (old_dentry->d_parent != new_dentry->d_parent) 8285 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8286 BTRFS_I(old_inode), true); 8287 8288 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8289 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8290 } else { 8291 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8292 BTRFS_I(d_inode(old_dentry)), 8293 &old_fname.disk_name, &rename_ctx); 8294 if (!ret) 8295 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8296 } 8297 if (ret) { 8298 btrfs_abort_transaction(trans, ret); 8299 goto out_fail; 8300 } 8301 8302 if (new_inode) { 8303 inode_inc_iversion(new_inode); 8304 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8305 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8306 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8307 BUG_ON(new_inode->i_nlink == 0); 8308 } else { 8309 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8310 BTRFS_I(d_inode(new_dentry)), 8311 &new_fname.disk_name); 8312 } 8313 if (!ret && new_inode->i_nlink == 0) 8314 ret = btrfs_orphan_add(trans, 8315 BTRFS_I(d_inode(new_dentry))); 8316 if (ret) { 8317 btrfs_abort_transaction(trans, ret); 8318 goto out_fail; 8319 } 8320 } 8321 8322 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8323 &new_fname.disk_name, 0, index); 8324 if (ret) { 8325 btrfs_abort_transaction(trans, ret); 8326 goto out_fail; 8327 } 8328 8329 if (old_inode->i_nlink == 1) 8330 BTRFS_I(old_inode)->dir_index = index; 8331 8332 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8333 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8334 rename_ctx.index, new_dentry->d_parent); 8335 8336 if (flags & RENAME_WHITEOUT) { 8337 ret = btrfs_create_new_inode(trans, &whiteout_args); 8338 if (ret) { 8339 btrfs_abort_transaction(trans, ret); 8340 goto out_fail; 8341 } else { 8342 unlock_new_inode(whiteout_args.inode); 8343 iput(whiteout_args.inode); 8344 whiteout_args.inode = NULL; 8345 } 8346 } 8347 out_fail: 8348 ret2 = btrfs_end_transaction(trans); 8349 ret = ret ? ret : ret2; 8350 out_notrans: 8351 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8352 up_read(&fs_info->subvol_sem); 8353 if (flags & RENAME_WHITEOUT) 8354 btrfs_new_inode_args_destroy(&whiteout_args); 8355 out_whiteout_inode: 8356 if (flags & RENAME_WHITEOUT) 8357 iput(whiteout_args.inode); 8358 out_fscrypt_names: 8359 fscrypt_free_filename(&old_fname); 8360 fscrypt_free_filename(&new_fname); 8361 return ret; 8362 } 8363 8364 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8365 struct dentry *old_dentry, struct inode *new_dir, 8366 struct dentry *new_dentry, unsigned int flags) 8367 { 8368 int ret; 8369 8370 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8371 return -EINVAL; 8372 8373 if (flags & RENAME_EXCHANGE) 8374 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8375 new_dentry); 8376 else 8377 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8378 new_dentry, flags); 8379 8380 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8381 8382 return ret; 8383 } 8384 8385 struct btrfs_delalloc_work { 8386 struct inode *inode; 8387 struct completion completion; 8388 struct list_head list; 8389 struct btrfs_work work; 8390 }; 8391 8392 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8393 { 8394 struct btrfs_delalloc_work *delalloc_work; 8395 struct inode *inode; 8396 8397 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8398 work); 8399 inode = delalloc_work->inode; 8400 filemap_flush(inode->i_mapping); 8401 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8402 &BTRFS_I(inode)->runtime_flags)) 8403 filemap_flush(inode->i_mapping); 8404 8405 iput(inode); 8406 complete(&delalloc_work->completion); 8407 } 8408 8409 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8410 { 8411 struct btrfs_delalloc_work *work; 8412 8413 work = kmalloc(sizeof(*work), GFP_NOFS); 8414 if (!work) 8415 return NULL; 8416 8417 init_completion(&work->completion); 8418 INIT_LIST_HEAD(&work->list); 8419 work->inode = inode; 8420 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8421 8422 return work; 8423 } 8424 8425 /* 8426 * some fairly slow code that needs optimization. This walks the list 8427 * of all the inodes with pending delalloc and forces them to disk. 8428 */ 8429 static int start_delalloc_inodes(struct btrfs_root *root, 8430 struct writeback_control *wbc, bool snapshot, 8431 bool in_reclaim_context) 8432 { 8433 struct btrfs_inode *binode; 8434 struct inode *inode; 8435 struct btrfs_delalloc_work *work, *next; 8436 LIST_HEAD(works); 8437 LIST_HEAD(splice); 8438 int ret = 0; 8439 bool full_flush = wbc->nr_to_write == LONG_MAX; 8440 8441 mutex_lock(&root->delalloc_mutex); 8442 spin_lock(&root->delalloc_lock); 8443 list_splice_init(&root->delalloc_inodes, &splice); 8444 while (!list_empty(&splice)) { 8445 binode = list_entry(splice.next, struct btrfs_inode, 8446 delalloc_inodes); 8447 8448 list_move_tail(&binode->delalloc_inodes, 8449 &root->delalloc_inodes); 8450 8451 if (in_reclaim_context && 8452 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 8453 continue; 8454 8455 inode = igrab(&binode->vfs_inode); 8456 if (!inode) { 8457 cond_resched_lock(&root->delalloc_lock); 8458 continue; 8459 } 8460 spin_unlock(&root->delalloc_lock); 8461 8462 if (snapshot) 8463 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 8464 &binode->runtime_flags); 8465 if (full_flush) { 8466 work = btrfs_alloc_delalloc_work(inode); 8467 if (!work) { 8468 iput(inode); 8469 ret = -ENOMEM; 8470 goto out; 8471 } 8472 list_add_tail(&work->list, &works); 8473 btrfs_queue_work(root->fs_info->flush_workers, 8474 &work->work); 8475 } else { 8476 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 8477 btrfs_add_delayed_iput(BTRFS_I(inode)); 8478 if (ret || wbc->nr_to_write <= 0) 8479 goto out; 8480 } 8481 cond_resched(); 8482 spin_lock(&root->delalloc_lock); 8483 } 8484 spin_unlock(&root->delalloc_lock); 8485 8486 out: 8487 list_for_each_entry_safe(work, next, &works, list) { 8488 list_del_init(&work->list); 8489 wait_for_completion(&work->completion); 8490 kfree(work); 8491 } 8492 8493 if (!list_empty(&splice)) { 8494 spin_lock(&root->delalloc_lock); 8495 list_splice_tail(&splice, &root->delalloc_inodes); 8496 spin_unlock(&root->delalloc_lock); 8497 } 8498 mutex_unlock(&root->delalloc_mutex); 8499 return ret; 8500 } 8501 8502 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8503 { 8504 struct writeback_control wbc = { 8505 .nr_to_write = LONG_MAX, 8506 .sync_mode = WB_SYNC_NONE, 8507 .range_start = 0, 8508 .range_end = LLONG_MAX, 8509 }; 8510 struct btrfs_fs_info *fs_info = root->fs_info; 8511 8512 if (BTRFS_FS_ERROR(fs_info)) 8513 return -EROFS; 8514 8515 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8516 } 8517 8518 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8519 bool in_reclaim_context) 8520 { 8521 struct writeback_control wbc = { 8522 .nr_to_write = nr, 8523 .sync_mode = WB_SYNC_NONE, 8524 .range_start = 0, 8525 .range_end = LLONG_MAX, 8526 }; 8527 struct btrfs_root *root; 8528 LIST_HEAD(splice); 8529 int ret; 8530 8531 if (BTRFS_FS_ERROR(fs_info)) 8532 return -EROFS; 8533 8534 mutex_lock(&fs_info->delalloc_root_mutex); 8535 spin_lock(&fs_info->delalloc_root_lock); 8536 list_splice_init(&fs_info->delalloc_roots, &splice); 8537 while (!list_empty(&splice)) { 8538 /* 8539 * Reset nr_to_write here so we know that we're doing a full 8540 * flush. 8541 */ 8542 if (nr == LONG_MAX) 8543 wbc.nr_to_write = LONG_MAX; 8544 8545 root = list_first_entry(&splice, struct btrfs_root, 8546 delalloc_root); 8547 root = btrfs_grab_root(root); 8548 BUG_ON(!root); 8549 list_move_tail(&root->delalloc_root, 8550 &fs_info->delalloc_roots); 8551 spin_unlock(&fs_info->delalloc_root_lock); 8552 8553 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8554 btrfs_put_root(root); 8555 if (ret < 0 || wbc.nr_to_write <= 0) 8556 goto out; 8557 spin_lock(&fs_info->delalloc_root_lock); 8558 } 8559 spin_unlock(&fs_info->delalloc_root_lock); 8560 8561 ret = 0; 8562 out: 8563 if (!list_empty(&splice)) { 8564 spin_lock(&fs_info->delalloc_root_lock); 8565 list_splice_tail(&splice, &fs_info->delalloc_roots); 8566 spin_unlock(&fs_info->delalloc_root_lock); 8567 } 8568 mutex_unlock(&fs_info->delalloc_root_mutex); 8569 return ret; 8570 } 8571 8572 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8573 struct dentry *dentry, const char *symname) 8574 { 8575 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8576 struct btrfs_trans_handle *trans; 8577 struct btrfs_root *root = BTRFS_I(dir)->root; 8578 struct btrfs_path *path; 8579 struct btrfs_key key; 8580 struct inode *inode; 8581 struct btrfs_new_inode_args new_inode_args = { 8582 .dir = dir, 8583 .dentry = dentry, 8584 }; 8585 unsigned int trans_num_items; 8586 int err; 8587 int name_len; 8588 int datasize; 8589 unsigned long ptr; 8590 struct btrfs_file_extent_item *ei; 8591 struct extent_buffer *leaf; 8592 8593 name_len = strlen(symname); 8594 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 8595 return -ENAMETOOLONG; 8596 8597 inode = new_inode(dir->i_sb); 8598 if (!inode) 8599 return -ENOMEM; 8600 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8601 inode->i_op = &btrfs_symlink_inode_operations; 8602 inode_nohighmem(inode); 8603 inode->i_mapping->a_ops = &btrfs_aops; 8604 btrfs_i_size_write(BTRFS_I(inode), name_len); 8605 inode_set_bytes(inode, name_len); 8606 8607 new_inode_args.inode = inode; 8608 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8609 if (err) 8610 goto out_inode; 8611 /* 1 additional item for the inline extent */ 8612 trans_num_items++; 8613 8614 trans = btrfs_start_transaction(root, trans_num_items); 8615 if (IS_ERR(trans)) { 8616 err = PTR_ERR(trans); 8617 goto out_new_inode_args; 8618 } 8619 8620 err = btrfs_create_new_inode(trans, &new_inode_args); 8621 if (err) 8622 goto out; 8623 8624 path = btrfs_alloc_path(); 8625 if (!path) { 8626 err = -ENOMEM; 8627 btrfs_abort_transaction(trans, err); 8628 discard_new_inode(inode); 8629 inode = NULL; 8630 goto out; 8631 } 8632 key.objectid = btrfs_ino(BTRFS_I(inode)); 8633 key.offset = 0; 8634 key.type = BTRFS_EXTENT_DATA_KEY; 8635 datasize = btrfs_file_extent_calc_inline_size(name_len); 8636 err = btrfs_insert_empty_item(trans, root, path, &key, 8637 datasize); 8638 if (err) { 8639 btrfs_abort_transaction(trans, err); 8640 btrfs_free_path(path); 8641 discard_new_inode(inode); 8642 inode = NULL; 8643 goto out; 8644 } 8645 leaf = path->nodes[0]; 8646 ei = btrfs_item_ptr(leaf, path->slots[0], 8647 struct btrfs_file_extent_item); 8648 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8649 btrfs_set_file_extent_type(leaf, ei, 8650 BTRFS_FILE_EXTENT_INLINE); 8651 btrfs_set_file_extent_encryption(leaf, ei, 0); 8652 btrfs_set_file_extent_compression(leaf, ei, 0); 8653 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8654 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8655 8656 ptr = btrfs_file_extent_inline_start(ei); 8657 write_extent_buffer(leaf, symname, ptr, name_len); 8658 btrfs_mark_buffer_dirty(trans, leaf); 8659 btrfs_free_path(path); 8660 8661 d_instantiate_new(dentry, inode); 8662 err = 0; 8663 out: 8664 btrfs_end_transaction(trans); 8665 btrfs_btree_balance_dirty(fs_info); 8666 out_new_inode_args: 8667 btrfs_new_inode_args_destroy(&new_inode_args); 8668 out_inode: 8669 if (err) 8670 iput(inode); 8671 return err; 8672 } 8673 8674 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8675 struct btrfs_trans_handle *trans_in, 8676 struct btrfs_inode *inode, 8677 struct btrfs_key *ins, 8678 u64 file_offset) 8679 { 8680 struct btrfs_file_extent_item stack_fi; 8681 struct btrfs_replace_extent_info extent_info; 8682 struct btrfs_trans_handle *trans = trans_in; 8683 struct btrfs_path *path; 8684 u64 start = ins->objectid; 8685 u64 len = ins->offset; 8686 u64 qgroup_released = 0; 8687 int ret; 8688 8689 memset(&stack_fi, 0, sizeof(stack_fi)); 8690 8691 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8692 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8693 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8694 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8695 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8696 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8697 /* Encryption and other encoding is reserved and all 0 */ 8698 8699 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8700 if (ret < 0) 8701 return ERR_PTR(ret); 8702 8703 if (trans) { 8704 ret = insert_reserved_file_extent(trans, inode, 8705 file_offset, &stack_fi, 8706 true, qgroup_released); 8707 if (ret) 8708 goto free_qgroup; 8709 return trans; 8710 } 8711 8712 extent_info.disk_offset = start; 8713 extent_info.disk_len = len; 8714 extent_info.data_offset = 0; 8715 extent_info.data_len = len; 8716 extent_info.file_offset = file_offset; 8717 extent_info.extent_buf = (char *)&stack_fi; 8718 extent_info.is_new_extent = true; 8719 extent_info.update_times = true; 8720 extent_info.qgroup_reserved = qgroup_released; 8721 extent_info.insertions = 0; 8722 8723 path = btrfs_alloc_path(); 8724 if (!path) { 8725 ret = -ENOMEM; 8726 goto free_qgroup; 8727 } 8728 8729 ret = btrfs_replace_file_extents(inode, path, file_offset, 8730 file_offset + len - 1, &extent_info, 8731 &trans); 8732 btrfs_free_path(path); 8733 if (ret) 8734 goto free_qgroup; 8735 return trans; 8736 8737 free_qgroup: 8738 /* 8739 * We have released qgroup data range at the beginning of the function, 8740 * and normally qgroup_released bytes will be freed when committing 8741 * transaction. 8742 * But if we error out early, we have to free what we have released 8743 * or we leak qgroup data reservation. 8744 */ 8745 btrfs_qgroup_free_refroot(inode->root->fs_info, 8746 btrfs_root_id(inode->root), qgroup_released, 8747 BTRFS_QGROUP_RSV_DATA); 8748 return ERR_PTR(ret); 8749 } 8750 8751 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8752 u64 start, u64 num_bytes, u64 min_size, 8753 loff_t actual_len, u64 *alloc_hint, 8754 struct btrfs_trans_handle *trans) 8755 { 8756 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8757 struct extent_map *em; 8758 struct btrfs_root *root = BTRFS_I(inode)->root; 8759 struct btrfs_key ins; 8760 u64 cur_offset = start; 8761 u64 clear_offset = start; 8762 u64 i_size; 8763 u64 cur_bytes; 8764 u64 last_alloc = (u64)-1; 8765 int ret = 0; 8766 bool own_trans = true; 8767 u64 end = start + num_bytes - 1; 8768 8769 if (trans) 8770 own_trans = false; 8771 while (num_bytes > 0) { 8772 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8773 cur_bytes = max(cur_bytes, min_size); 8774 /* 8775 * If we are severely fragmented we could end up with really 8776 * small allocations, so if the allocator is returning small 8777 * chunks lets make its job easier by only searching for those 8778 * sized chunks. 8779 */ 8780 cur_bytes = min(cur_bytes, last_alloc); 8781 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8782 min_size, 0, *alloc_hint, &ins, 1, 0); 8783 if (ret) 8784 break; 8785 8786 /* 8787 * We've reserved this space, and thus converted it from 8788 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8789 * from here on out we will only need to clear our reservation 8790 * for the remaining unreserved area, so advance our 8791 * clear_offset by our extent size. 8792 */ 8793 clear_offset += ins.offset; 8794 8795 last_alloc = ins.offset; 8796 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8797 &ins, cur_offset); 8798 /* 8799 * Now that we inserted the prealloc extent we can finally 8800 * decrement the number of reservations in the block group. 8801 * If we did it before, we could race with relocation and have 8802 * relocation miss the reserved extent, making it fail later. 8803 */ 8804 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8805 if (IS_ERR(trans)) { 8806 ret = PTR_ERR(trans); 8807 btrfs_free_reserved_extent(fs_info, ins.objectid, 8808 ins.offset, 0); 8809 break; 8810 } 8811 8812 em = alloc_extent_map(); 8813 if (!em) { 8814 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8815 cur_offset + ins.offset - 1, false); 8816 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8817 goto next; 8818 } 8819 8820 em->start = cur_offset; 8821 em->len = ins.offset; 8822 em->disk_bytenr = ins.objectid; 8823 em->offset = 0; 8824 em->disk_num_bytes = ins.offset; 8825 em->ram_bytes = ins.offset; 8826 em->flags |= EXTENT_FLAG_PREALLOC; 8827 em->generation = trans->transid; 8828 8829 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8830 free_extent_map(em); 8831 next: 8832 num_bytes -= ins.offset; 8833 cur_offset += ins.offset; 8834 *alloc_hint = ins.objectid + ins.offset; 8835 8836 inode_inc_iversion(inode); 8837 inode_set_ctime_current(inode); 8838 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8839 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8840 (actual_len > inode->i_size) && 8841 (cur_offset > inode->i_size)) { 8842 if (cur_offset > actual_len) 8843 i_size = actual_len; 8844 else 8845 i_size = cur_offset; 8846 i_size_write(inode, i_size); 8847 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8848 } 8849 8850 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8851 8852 if (ret) { 8853 btrfs_abort_transaction(trans, ret); 8854 if (own_trans) 8855 btrfs_end_transaction(trans); 8856 break; 8857 } 8858 8859 if (own_trans) { 8860 btrfs_end_transaction(trans); 8861 trans = NULL; 8862 } 8863 } 8864 if (clear_offset < end) 8865 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8866 end - clear_offset + 1); 8867 return ret; 8868 } 8869 8870 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8871 u64 start, u64 num_bytes, u64 min_size, 8872 loff_t actual_len, u64 *alloc_hint) 8873 { 8874 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8875 min_size, actual_len, alloc_hint, 8876 NULL); 8877 } 8878 8879 int btrfs_prealloc_file_range_trans(struct inode *inode, 8880 struct btrfs_trans_handle *trans, int mode, 8881 u64 start, u64 num_bytes, u64 min_size, 8882 loff_t actual_len, u64 *alloc_hint) 8883 { 8884 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8885 min_size, actual_len, alloc_hint, trans); 8886 } 8887 8888 static int btrfs_permission(struct mnt_idmap *idmap, 8889 struct inode *inode, int mask) 8890 { 8891 struct btrfs_root *root = BTRFS_I(inode)->root; 8892 umode_t mode = inode->i_mode; 8893 8894 if (mask & MAY_WRITE && 8895 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8896 if (btrfs_root_readonly(root)) 8897 return -EROFS; 8898 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8899 return -EACCES; 8900 } 8901 return generic_permission(idmap, inode, mask); 8902 } 8903 8904 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 8905 struct file *file, umode_t mode) 8906 { 8907 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8908 struct btrfs_trans_handle *trans; 8909 struct btrfs_root *root = BTRFS_I(dir)->root; 8910 struct inode *inode; 8911 struct btrfs_new_inode_args new_inode_args = { 8912 .dir = dir, 8913 .dentry = file->f_path.dentry, 8914 .orphan = true, 8915 }; 8916 unsigned int trans_num_items; 8917 int ret; 8918 8919 inode = new_inode(dir->i_sb); 8920 if (!inode) 8921 return -ENOMEM; 8922 inode_init_owner(idmap, inode, dir, mode); 8923 inode->i_fop = &btrfs_file_operations; 8924 inode->i_op = &btrfs_file_inode_operations; 8925 inode->i_mapping->a_ops = &btrfs_aops; 8926 8927 new_inode_args.inode = inode; 8928 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8929 if (ret) 8930 goto out_inode; 8931 8932 trans = btrfs_start_transaction(root, trans_num_items); 8933 if (IS_ERR(trans)) { 8934 ret = PTR_ERR(trans); 8935 goto out_new_inode_args; 8936 } 8937 8938 ret = btrfs_create_new_inode(trans, &new_inode_args); 8939 8940 /* 8941 * We set number of links to 0 in btrfs_create_new_inode(), and here we 8942 * set it to 1 because d_tmpfile() will issue a warning if the count is 8943 * 0, through: 8944 * 8945 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 8946 */ 8947 set_nlink(inode, 1); 8948 8949 if (!ret) { 8950 d_tmpfile(file, inode); 8951 unlock_new_inode(inode); 8952 mark_inode_dirty(inode); 8953 } 8954 8955 btrfs_end_transaction(trans); 8956 btrfs_btree_balance_dirty(fs_info); 8957 out_new_inode_args: 8958 btrfs_new_inode_args_destroy(&new_inode_args); 8959 out_inode: 8960 if (ret) 8961 iput(inode); 8962 return finish_open_simple(file, ret); 8963 } 8964 8965 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 8966 int compress_type) 8967 { 8968 switch (compress_type) { 8969 case BTRFS_COMPRESS_NONE: 8970 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 8971 case BTRFS_COMPRESS_ZLIB: 8972 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 8973 case BTRFS_COMPRESS_LZO: 8974 /* 8975 * The LZO format depends on the sector size. 64K is the maximum 8976 * sector size that we support. 8977 */ 8978 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 8979 return -EINVAL; 8980 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 8981 (fs_info->sectorsize_bits - 12); 8982 case BTRFS_COMPRESS_ZSTD: 8983 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 8984 default: 8985 return -EUCLEAN; 8986 } 8987 } 8988 8989 static ssize_t btrfs_encoded_read_inline( 8990 struct kiocb *iocb, 8991 struct iov_iter *iter, u64 start, 8992 u64 lockend, 8993 struct extent_state **cached_state, 8994 u64 extent_start, size_t count, 8995 struct btrfs_ioctl_encoded_io_args *encoded, 8996 bool *unlocked) 8997 { 8998 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 8999 struct btrfs_root *root = inode->root; 9000 struct btrfs_fs_info *fs_info = root->fs_info; 9001 struct extent_io_tree *io_tree = &inode->io_tree; 9002 struct btrfs_path *path; 9003 struct extent_buffer *leaf; 9004 struct btrfs_file_extent_item *item; 9005 u64 ram_bytes; 9006 unsigned long ptr; 9007 void *tmp; 9008 ssize_t ret; 9009 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9010 9011 path = btrfs_alloc_path(); 9012 if (!path) { 9013 ret = -ENOMEM; 9014 goto out; 9015 } 9016 9017 path->nowait = nowait; 9018 9019 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9020 extent_start, 0); 9021 if (ret) { 9022 if (ret > 0) { 9023 /* The extent item disappeared? */ 9024 ret = -EIO; 9025 } 9026 goto out; 9027 } 9028 leaf = path->nodes[0]; 9029 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9030 9031 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9032 ptr = btrfs_file_extent_inline_start(item); 9033 9034 encoded->len = min_t(u64, extent_start + ram_bytes, 9035 inode->vfs_inode.i_size) - iocb->ki_pos; 9036 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9037 btrfs_file_extent_compression(leaf, item)); 9038 if (ret < 0) 9039 goto out; 9040 encoded->compression = ret; 9041 if (encoded->compression) { 9042 size_t inline_size; 9043 9044 inline_size = btrfs_file_extent_inline_item_len(leaf, 9045 path->slots[0]); 9046 if (inline_size > count) { 9047 ret = -ENOBUFS; 9048 goto out; 9049 } 9050 count = inline_size; 9051 encoded->unencoded_len = ram_bytes; 9052 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9053 } else { 9054 count = min_t(u64, count, encoded->len); 9055 encoded->len = count; 9056 encoded->unencoded_len = count; 9057 ptr += iocb->ki_pos - extent_start; 9058 } 9059 9060 tmp = kmalloc(count, GFP_NOFS); 9061 if (!tmp) { 9062 ret = -ENOMEM; 9063 goto out; 9064 } 9065 read_extent_buffer(leaf, tmp, ptr, count); 9066 btrfs_release_path(path); 9067 unlock_extent(io_tree, start, lockend, cached_state); 9068 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9069 *unlocked = true; 9070 9071 ret = copy_to_iter(tmp, count, iter); 9072 if (ret != count) 9073 ret = -EFAULT; 9074 kfree(tmp); 9075 out: 9076 btrfs_free_path(path); 9077 return ret; 9078 } 9079 9080 struct btrfs_encoded_read_private { 9081 wait_queue_head_t wait; 9082 void *uring_ctx; 9083 atomic_t pending; 9084 blk_status_t status; 9085 }; 9086 9087 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9088 { 9089 struct btrfs_encoded_read_private *priv = bbio->private; 9090 9091 if (bbio->bio.bi_status) { 9092 /* 9093 * The memory barrier implied by the atomic_dec_return() here 9094 * pairs with the memory barrier implied by the 9095 * atomic_dec_return() or io_wait_event() in 9096 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9097 * write is observed before the load of status in 9098 * btrfs_encoded_read_regular_fill_pages(). 9099 */ 9100 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9101 } 9102 if (atomic_dec_and_test(&priv->pending)) { 9103 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9104 9105 if (priv->uring_ctx) { 9106 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9107 kfree(priv); 9108 } else { 9109 wake_up(&priv->wait); 9110 } 9111 } 9112 bio_put(&bbio->bio); 9113 } 9114 9115 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9116 u64 disk_bytenr, u64 disk_io_size, 9117 struct page **pages, void *uring_ctx) 9118 { 9119 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9120 struct btrfs_encoded_read_private *priv; 9121 unsigned long i = 0; 9122 struct btrfs_bio *bbio; 9123 int ret; 9124 9125 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9126 if (!priv) 9127 return -ENOMEM; 9128 9129 init_waitqueue_head(&priv->wait); 9130 atomic_set(&priv->pending, 1); 9131 priv->status = 0; 9132 priv->uring_ctx = uring_ctx; 9133 9134 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9135 btrfs_encoded_read_endio, priv); 9136 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9137 bbio->inode = inode; 9138 9139 do { 9140 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9141 9142 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9143 atomic_inc(&priv->pending); 9144 btrfs_submit_bbio(bbio, 0); 9145 9146 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9147 btrfs_encoded_read_endio, priv); 9148 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9149 bbio->inode = inode; 9150 continue; 9151 } 9152 9153 i++; 9154 disk_bytenr += bytes; 9155 disk_io_size -= bytes; 9156 } while (disk_io_size); 9157 9158 atomic_inc(&priv->pending); 9159 btrfs_submit_bbio(bbio, 0); 9160 9161 if (uring_ctx) { 9162 if (atomic_dec_return(&priv->pending) == 0) { 9163 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9164 btrfs_uring_read_extent_endio(uring_ctx, ret); 9165 kfree(priv); 9166 return ret; 9167 } 9168 9169 return -EIOCBQUEUED; 9170 } else { 9171 if (atomic_dec_return(&priv->pending) != 0) 9172 io_wait_event(priv->wait, !atomic_read(&priv->pending)); 9173 /* See btrfs_encoded_read_endio() for ordering. */ 9174 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9175 kfree(priv); 9176 return ret; 9177 } 9178 } 9179 9180 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9181 u64 start, u64 lockend, 9182 struct extent_state **cached_state, 9183 u64 disk_bytenr, u64 disk_io_size, 9184 size_t count, bool compressed, bool *unlocked) 9185 { 9186 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9187 struct extent_io_tree *io_tree = &inode->io_tree; 9188 struct page **pages; 9189 unsigned long nr_pages, i; 9190 u64 cur; 9191 size_t page_offset; 9192 ssize_t ret; 9193 9194 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9195 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9196 if (!pages) 9197 return -ENOMEM; 9198 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9199 if (ret) { 9200 ret = -ENOMEM; 9201 goto out; 9202 } 9203 9204 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9205 disk_io_size, pages, NULL); 9206 if (ret) 9207 goto out; 9208 9209 unlock_extent(io_tree, start, lockend, cached_state); 9210 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9211 *unlocked = true; 9212 9213 if (compressed) { 9214 i = 0; 9215 page_offset = 0; 9216 } else { 9217 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9218 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9219 } 9220 cur = 0; 9221 while (cur < count) { 9222 size_t bytes = min_t(size_t, count - cur, 9223 PAGE_SIZE - page_offset); 9224 9225 if (copy_page_to_iter(pages[i], page_offset, bytes, 9226 iter) != bytes) { 9227 ret = -EFAULT; 9228 goto out; 9229 } 9230 i++; 9231 cur += bytes; 9232 page_offset = 0; 9233 } 9234 ret = count; 9235 out: 9236 for (i = 0; i < nr_pages; i++) { 9237 if (pages[i]) 9238 __free_page(pages[i]); 9239 } 9240 kfree(pages); 9241 return ret; 9242 } 9243 9244 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9245 struct btrfs_ioctl_encoded_io_args *encoded, 9246 struct extent_state **cached_state, 9247 u64 *disk_bytenr, u64 *disk_io_size) 9248 { 9249 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9250 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9251 struct extent_io_tree *io_tree = &inode->io_tree; 9252 ssize_t ret; 9253 size_t count = iov_iter_count(iter); 9254 u64 start, lockend; 9255 struct extent_map *em; 9256 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9257 bool unlocked = false; 9258 9259 file_accessed(iocb->ki_filp); 9260 9261 ret = btrfs_inode_lock(inode, 9262 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9263 if (ret) 9264 return ret; 9265 9266 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9267 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9268 return 0; 9269 } 9270 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9271 /* 9272 * We don't know how long the extent containing iocb->ki_pos is, but if 9273 * it's compressed we know that it won't be longer than this. 9274 */ 9275 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9276 9277 if (nowait) { 9278 struct btrfs_ordered_extent *ordered; 9279 9280 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9281 start, lockend)) { 9282 ret = -EAGAIN; 9283 goto out_unlock_inode; 9284 } 9285 9286 if (!try_lock_extent(io_tree, start, lockend, cached_state)) { 9287 ret = -EAGAIN; 9288 goto out_unlock_inode; 9289 } 9290 9291 ordered = btrfs_lookup_ordered_range(inode, start, 9292 lockend - start + 1); 9293 if (ordered) { 9294 btrfs_put_ordered_extent(ordered); 9295 unlock_extent(io_tree, start, lockend, cached_state); 9296 ret = -EAGAIN; 9297 goto out_unlock_inode; 9298 } 9299 } else { 9300 for (;;) { 9301 struct btrfs_ordered_extent *ordered; 9302 9303 ret = btrfs_wait_ordered_range(inode, start, 9304 lockend - start + 1); 9305 if (ret) 9306 goto out_unlock_inode; 9307 9308 lock_extent(io_tree, start, lockend, cached_state); 9309 ordered = btrfs_lookup_ordered_range(inode, start, 9310 lockend - start + 1); 9311 if (!ordered) 9312 break; 9313 btrfs_put_ordered_extent(ordered); 9314 unlock_extent(io_tree, start, lockend, cached_state); 9315 cond_resched(); 9316 } 9317 } 9318 9319 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9320 if (IS_ERR(em)) { 9321 ret = PTR_ERR(em); 9322 goto out_unlock_extent; 9323 } 9324 9325 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9326 u64 extent_start = em->start; 9327 9328 /* 9329 * For inline extents we get everything we need out of the 9330 * extent item. 9331 */ 9332 free_extent_map(em); 9333 em = NULL; 9334 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9335 cached_state, extent_start, 9336 count, encoded, &unlocked); 9337 goto out_unlock_extent; 9338 } 9339 9340 /* 9341 * We only want to return up to EOF even if the extent extends beyond 9342 * that. 9343 */ 9344 encoded->len = min_t(u64, extent_map_end(em), 9345 inode->vfs_inode.i_size) - iocb->ki_pos; 9346 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9347 (em->flags & EXTENT_FLAG_PREALLOC)) { 9348 *disk_bytenr = EXTENT_MAP_HOLE; 9349 count = min_t(u64, count, encoded->len); 9350 encoded->len = count; 9351 encoded->unencoded_len = count; 9352 } else if (extent_map_is_compressed(em)) { 9353 *disk_bytenr = em->disk_bytenr; 9354 /* 9355 * Bail if the buffer isn't large enough to return the whole 9356 * compressed extent. 9357 */ 9358 if (em->disk_num_bytes > count) { 9359 ret = -ENOBUFS; 9360 goto out_em; 9361 } 9362 *disk_io_size = em->disk_num_bytes; 9363 count = em->disk_num_bytes; 9364 encoded->unencoded_len = em->ram_bytes; 9365 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9366 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9367 extent_map_compression(em)); 9368 if (ret < 0) 9369 goto out_em; 9370 encoded->compression = ret; 9371 } else { 9372 *disk_bytenr = extent_map_block_start(em) + (start - em->start); 9373 if (encoded->len > count) 9374 encoded->len = count; 9375 /* 9376 * Don't read beyond what we locked. This also limits the page 9377 * allocations that we'll do. 9378 */ 9379 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9380 count = start + *disk_io_size - iocb->ki_pos; 9381 encoded->len = count; 9382 encoded->unencoded_len = count; 9383 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9384 } 9385 free_extent_map(em); 9386 em = NULL; 9387 9388 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9389 unlock_extent(io_tree, start, lockend, cached_state); 9390 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9391 unlocked = true; 9392 ret = iov_iter_zero(count, iter); 9393 if (ret != count) 9394 ret = -EFAULT; 9395 } else { 9396 ret = -EIOCBQUEUED; 9397 goto out_unlock_extent; 9398 } 9399 9400 out_em: 9401 free_extent_map(em); 9402 out_unlock_extent: 9403 /* Leave inode and extent locked if we need to do a read. */ 9404 if (!unlocked && ret != -EIOCBQUEUED) 9405 unlock_extent(io_tree, start, lockend, cached_state); 9406 out_unlock_inode: 9407 if (!unlocked && ret != -EIOCBQUEUED) 9408 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9409 return ret; 9410 } 9411 9412 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9413 const struct btrfs_ioctl_encoded_io_args *encoded) 9414 { 9415 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9416 struct btrfs_root *root = inode->root; 9417 struct btrfs_fs_info *fs_info = root->fs_info; 9418 struct extent_io_tree *io_tree = &inode->io_tree; 9419 struct extent_changeset *data_reserved = NULL; 9420 struct extent_state *cached_state = NULL; 9421 struct btrfs_ordered_extent *ordered; 9422 struct btrfs_file_extent file_extent; 9423 int compression; 9424 size_t orig_count; 9425 u64 start, end; 9426 u64 num_bytes, ram_bytes, disk_num_bytes; 9427 unsigned long nr_folios, i; 9428 struct folio **folios; 9429 struct btrfs_key ins; 9430 bool extent_reserved = false; 9431 struct extent_map *em; 9432 ssize_t ret; 9433 9434 switch (encoded->compression) { 9435 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9436 compression = BTRFS_COMPRESS_ZLIB; 9437 break; 9438 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9439 compression = BTRFS_COMPRESS_ZSTD; 9440 break; 9441 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9442 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9443 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9444 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9445 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9446 /* The sector size must match for LZO. */ 9447 if (encoded->compression - 9448 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9449 fs_info->sectorsize_bits) 9450 return -EINVAL; 9451 compression = BTRFS_COMPRESS_LZO; 9452 break; 9453 default: 9454 return -EINVAL; 9455 } 9456 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9457 return -EINVAL; 9458 9459 /* 9460 * Compressed extents should always have checksums, so error out if we 9461 * have a NOCOW file or inode was created while mounted with NODATASUM. 9462 */ 9463 if (inode->flags & BTRFS_INODE_NODATASUM) 9464 return -EINVAL; 9465 9466 orig_count = iov_iter_count(from); 9467 9468 /* The extent size must be sane. */ 9469 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9470 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9471 return -EINVAL; 9472 9473 /* 9474 * The compressed data must be smaller than the decompressed data. 9475 * 9476 * It's of course possible for data to compress to larger or the same 9477 * size, but the buffered I/O path falls back to no compression for such 9478 * data, and we don't want to break any assumptions by creating these 9479 * extents. 9480 * 9481 * Note that this is less strict than the current check we have that the 9482 * compressed data must be at least one sector smaller than the 9483 * decompressed data. We only want to enforce the weaker requirement 9484 * from old kernels that it is at least one byte smaller. 9485 */ 9486 if (orig_count >= encoded->unencoded_len) 9487 return -EINVAL; 9488 9489 /* The extent must start on a sector boundary. */ 9490 start = iocb->ki_pos; 9491 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9492 return -EINVAL; 9493 9494 /* 9495 * The extent must end on a sector boundary. However, we allow a write 9496 * which ends at or extends i_size to have an unaligned length; we round 9497 * up the extent size and set i_size to the unaligned end. 9498 */ 9499 if (start + encoded->len < inode->vfs_inode.i_size && 9500 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9501 return -EINVAL; 9502 9503 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9504 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9505 return -EINVAL; 9506 9507 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9508 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9509 end = start + num_bytes - 1; 9510 9511 /* 9512 * If the extent cannot be inline, the compressed data on disk must be 9513 * sector-aligned. For convenience, we extend it with zeroes if it 9514 * isn't. 9515 */ 9516 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9517 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9518 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9519 if (!folios) 9520 return -ENOMEM; 9521 for (i = 0; i < nr_folios; i++) { 9522 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9523 char *kaddr; 9524 9525 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9526 if (!folios[i]) { 9527 ret = -ENOMEM; 9528 goto out_folios; 9529 } 9530 kaddr = kmap_local_folio(folios[i], 0); 9531 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9532 kunmap_local(kaddr); 9533 ret = -EFAULT; 9534 goto out_folios; 9535 } 9536 if (bytes < PAGE_SIZE) 9537 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9538 kunmap_local(kaddr); 9539 } 9540 9541 for (;;) { 9542 struct btrfs_ordered_extent *ordered; 9543 9544 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9545 if (ret) 9546 goto out_folios; 9547 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9548 start >> PAGE_SHIFT, 9549 end >> PAGE_SHIFT); 9550 if (ret) 9551 goto out_folios; 9552 lock_extent(io_tree, start, end, &cached_state); 9553 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9554 if (!ordered && 9555 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9556 break; 9557 if (ordered) 9558 btrfs_put_ordered_extent(ordered); 9559 unlock_extent(io_tree, start, end, &cached_state); 9560 cond_resched(); 9561 } 9562 9563 /* 9564 * We don't use the higher-level delalloc space functions because our 9565 * num_bytes and disk_num_bytes are different. 9566 */ 9567 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9568 if (ret) 9569 goto out_unlock; 9570 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9571 if (ret) 9572 goto out_free_data_space; 9573 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9574 false); 9575 if (ret) 9576 goto out_qgroup_free_data; 9577 9578 /* Try an inline extent first. */ 9579 if (encoded->unencoded_len == encoded->len && 9580 encoded->unencoded_offset == 0 && 9581 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9582 ret = __cow_file_range_inline(inode, encoded->len, 9583 orig_count, compression, folios[0], 9584 true); 9585 if (ret <= 0) { 9586 if (ret == 0) 9587 ret = orig_count; 9588 goto out_delalloc_release; 9589 } 9590 } 9591 9592 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9593 disk_num_bytes, 0, 0, &ins, 1, 1); 9594 if (ret) 9595 goto out_delalloc_release; 9596 extent_reserved = true; 9597 9598 file_extent.disk_bytenr = ins.objectid; 9599 file_extent.disk_num_bytes = ins.offset; 9600 file_extent.num_bytes = num_bytes; 9601 file_extent.ram_bytes = ram_bytes; 9602 file_extent.offset = encoded->unencoded_offset; 9603 file_extent.compression = compression; 9604 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9605 if (IS_ERR(em)) { 9606 ret = PTR_ERR(em); 9607 goto out_free_reserved; 9608 } 9609 free_extent_map(em); 9610 9611 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9612 (1 << BTRFS_ORDERED_ENCODED) | 9613 (1 << BTRFS_ORDERED_COMPRESSED)); 9614 if (IS_ERR(ordered)) { 9615 btrfs_drop_extent_map_range(inode, start, end, false); 9616 ret = PTR_ERR(ordered); 9617 goto out_free_reserved; 9618 } 9619 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9620 9621 if (start + encoded->len > inode->vfs_inode.i_size) 9622 i_size_write(&inode->vfs_inode, start + encoded->len); 9623 9624 unlock_extent(io_tree, start, end, &cached_state); 9625 9626 btrfs_delalloc_release_extents(inode, num_bytes); 9627 9628 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9629 ret = orig_count; 9630 goto out; 9631 9632 out_free_reserved: 9633 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9634 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9635 out_delalloc_release: 9636 btrfs_delalloc_release_extents(inode, num_bytes); 9637 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9638 out_qgroup_free_data: 9639 if (ret < 0) 9640 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9641 out_free_data_space: 9642 /* 9643 * If btrfs_reserve_extent() succeeded, then we already decremented 9644 * bytes_may_use. 9645 */ 9646 if (!extent_reserved) 9647 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9648 out_unlock: 9649 unlock_extent(io_tree, start, end, &cached_state); 9650 out_folios: 9651 for (i = 0; i < nr_folios; i++) { 9652 if (folios[i]) 9653 folio_put(folios[i]); 9654 } 9655 kvfree(folios); 9656 out: 9657 if (ret >= 0) 9658 iocb->ki_pos += encoded->len; 9659 return ret; 9660 } 9661 9662 #ifdef CONFIG_SWAP 9663 /* 9664 * Add an entry indicating a block group or device which is pinned by a 9665 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9666 * negative errno on failure. 9667 */ 9668 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9669 bool is_block_group) 9670 { 9671 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9672 struct btrfs_swapfile_pin *sp, *entry; 9673 struct rb_node **p; 9674 struct rb_node *parent = NULL; 9675 9676 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9677 if (!sp) 9678 return -ENOMEM; 9679 sp->ptr = ptr; 9680 sp->inode = inode; 9681 sp->is_block_group = is_block_group; 9682 sp->bg_extent_count = 1; 9683 9684 spin_lock(&fs_info->swapfile_pins_lock); 9685 p = &fs_info->swapfile_pins.rb_node; 9686 while (*p) { 9687 parent = *p; 9688 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9689 if (sp->ptr < entry->ptr || 9690 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9691 p = &(*p)->rb_left; 9692 } else if (sp->ptr > entry->ptr || 9693 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9694 p = &(*p)->rb_right; 9695 } else { 9696 if (is_block_group) 9697 entry->bg_extent_count++; 9698 spin_unlock(&fs_info->swapfile_pins_lock); 9699 kfree(sp); 9700 return 1; 9701 } 9702 } 9703 rb_link_node(&sp->node, parent, p); 9704 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9705 spin_unlock(&fs_info->swapfile_pins_lock); 9706 return 0; 9707 } 9708 9709 /* Free all of the entries pinned by this swapfile. */ 9710 static void btrfs_free_swapfile_pins(struct inode *inode) 9711 { 9712 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9713 struct btrfs_swapfile_pin *sp; 9714 struct rb_node *node, *next; 9715 9716 spin_lock(&fs_info->swapfile_pins_lock); 9717 node = rb_first(&fs_info->swapfile_pins); 9718 while (node) { 9719 next = rb_next(node); 9720 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9721 if (sp->inode == inode) { 9722 rb_erase(&sp->node, &fs_info->swapfile_pins); 9723 if (sp->is_block_group) { 9724 btrfs_dec_block_group_swap_extents(sp->ptr, 9725 sp->bg_extent_count); 9726 btrfs_put_block_group(sp->ptr); 9727 } 9728 kfree(sp); 9729 } 9730 node = next; 9731 } 9732 spin_unlock(&fs_info->swapfile_pins_lock); 9733 } 9734 9735 struct btrfs_swap_info { 9736 u64 start; 9737 u64 block_start; 9738 u64 block_len; 9739 u64 lowest_ppage; 9740 u64 highest_ppage; 9741 unsigned long nr_pages; 9742 int nr_extents; 9743 }; 9744 9745 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9746 struct btrfs_swap_info *bsi) 9747 { 9748 unsigned long nr_pages; 9749 unsigned long max_pages; 9750 u64 first_ppage, first_ppage_reported, next_ppage; 9751 int ret; 9752 9753 /* 9754 * Our swapfile may have had its size extended after the swap header was 9755 * written. In that case activating the swapfile should not go beyond 9756 * the max size set in the swap header. 9757 */ 9758 if (bsi->nr_pages >= sis->max) 9759 return 0; 9760 9761 max_pages = sis->max - bsi->nr_pages; 9762 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9763 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9764 9765 if (first_ppage >= next_ppage) 9766 return 0; 9767 nr_pages = next_ppage - first_ppage; 9768 nr_pages = min(nr_pages, max_pages); 9769 9770 first_ppage_reported = first_ppage; 9771 if (bsi->start == 0) 9772 first_ppage_reported++; 9773 if (bsi->lowest_ppage > first_ppage_reported) 9774 bsi->lowest_ppage = first_ppage_reported; 9775 if (bsi->highest_ppage < (next_ppage - 1)) 9776 bsi->highest_ppage = next_ppage - 1; 9777 9778 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9779 if (ret < 0) 9780 return ret; 9781 bsi->nr_extents += ret; 9782 bsi->nr_pages += nr_pages; 9783 return 0; 9784 } 9785 9786 static void btrfs_swap_deactivate(struct file *file) 9787 { 9788 struct inode *inode = file_inode(file); 9789 9790 btrfs_free_swapfile_pins(inode); 9791 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9792 } 9793 9794 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9795 sector_t *span) 9796 { 9797 struct inode *inode = file_inode(file); 9798 struct btrfs_root *root = BTRFS_I(inode)->root; 9799 struct btrfs_fs_info *fs_info = root->fs_info; 9800 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9801 struct extent_state *cached_state = NULL; 9802 struct extent_map *em = NULL; 9803 struct btrfs_chunk_map *map = NULL; 9804 struct btrfs_device *device = NULL; 9805 struct btrfs_swap_info bsi = { 9806 .lowest_ppage = (sector_t)-1ULL, 9807 }; 9808 int ret = 0; 9809 u64 isize; 9810 u64 start; 9811 9812 /* 9813 * If the swap file was just created, make sure delalloc is done. If the 9814 * file changes again after this, the user is doing something stupid and 9815 * we don't really care. 9816 */ 9817 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9818 if (ret) 9819 return ret; 9820 9821 /* 9822 * The inode is locked, so these flags won't change after we check them. 9823 */ 9824 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9825 btrfs_warn(fs_info, "swapfile must not be compressed"); 9826 return -EINVAL; 9827 } 9828 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9829 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9830 return -EINVAL; 9831 } 9832 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9833 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9834 return -EINVAL; 9835 } 9836 9837 /* 9838 * Balance or device remove/replace/resize can move stuff around from 9839 * under us. The exclop protection makes sure they aren't running/won't 9840 * run concurrently while we are mapping the swap extents, and 9841 * fs_info->swapfile_pins prevents them from running while the swap 9842 * file is active and moving the extents. Note that this also prevents 9843 * a concurrent device add which isn't actually necessary, but it's not 9844 * really worth the trouble to allow it. 9845 */ 9846 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9847 btrfs_warn(fs_info, 9848 "cannot activate swapfile while exclusive operation is running"); 9849 return -EBUSY; 9850 } 9851 9852 /* 9853 * Prevent snapshot creation while we are activating the swap file. 9854 * We do not want to race with snapshot creation. If snapshot creation 9855 * already started before we bumped nr_swapfiles from 0 to 1 and 9856 * completes before the first write into the swap file after it is 9857 * activated, than that write would fallback to COW. 9858 */ 9859 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9860 btrfs_exclop_finish(fs_info); 9861 btrfs_warn(fs_info, 9862 "cannot activate swapfile because snapshot creation is in progress"); 9863 return -EINVAL; 9864 } 9865 /* 9866 * Snapshots can create extents which require COW even if NODATACOW is 9867 * set. We use this counter to prevent snapshots. We must increment it 9868 * before walking the extents because we don't want a concurrent 9869 * snapshot to run after we've already checked the extents. 9870 * 9871 * It is possible that subvolume is marked for deletion but still not 9872 * removed yet. To prevent this race, we check the root status before 9873 * activating the swapfile. 9874 */ 9875 spin_lock(&root->root_item_lock); 9876 if (btrfs_root_dead(root)) { 9877 spin_unlock(&root->root_item_lock); 9878 9879 btrfs_exclop_finish(fs_info); 9880 btrfs_warn(fs_info, 9881 "cannot activate swapfile because subvolume %llu is being deleted", 9882 btrfs_root_id(root)); 9883 return -EPERM; 9884 } 9885 atomic_inc(&root->nr_swapfiles); 9886 spin_unlock(&root->root_item_lock); 9887 9888 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 9889 9890 lock_extent(io_tree, 0, isize - 1, &cached_state); 9891 start = 0; 9892 while (start < isize) { 9893 u64 logical_block_start, physical_block_start; 9894 struct btrfs_block_group *bg; 9895 u64 len = isize - start; 9896 9897 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 9898 if (IS_ERR(em)) { 9899 ret = PTR_ERR(em); 9900 goto out; 9901 } 9902 9903 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 9904 btrfs_warn(fs_info, "swapfile must not have holes"); 9905 ret = -EINVAL; 9906 goto out; 9907 } 9908 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9909 /* 9910 * It's unlikely we'll ever actually find ourselves 9911 * here, as a file small enough to fit inline won't be 9912 * big enough to store more than the swap header, but in 9913 * case something changes in the future, let's catch it 9914 * here rather than later. 9915 */ 9916 btrfs_warn(fs_info, "swapfile must not be inline"); 9917 ret = -EINVAL; 9918 goto out; 9919 } 9920 if (extent_map_is_compressed(em)) { 9921 btrfs_warn(fs_info, "swapfile must not be compressed"); 9922 ret = -EINVAL; 9923 goto out; 9924 } 9925 9926 logical_block_start = extent_map_block_start(em) + (start - em->start); 9927 len = min(len, em->len - (start - em->start)); 9928 free_extent_map(em); 9929 em = NULL; 9930 9931 ret = can_nocow_extent(inode, start, &len, NULL, false, true); 9932 if (ret < 0) { 9933 goto out; 9934 } else if (ret) { 9935 ret = 0; 9936 } else { 9937 btrfs_warn(fs_info, 9938 "swapfile must not be copy-on-write"); 9939 ret = -EINVAL; 9940 goto out; 9941 } 9942 9943 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 9944 if (IS_ERR(map)) { 9945 ret = PTR_ERR(map); 9946 goto out; 9947 } 9948 9949 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 9950 btrfs_warn(fs_info, 9951 "swapfile must have single data profile"); 9952 ret = -EINVAL; 9953 goto out; 9954 } 9955 9956 if (device == NULL) { 9957 device = map->stripes[0].dev; 9958 ret = btrfs_add_swapfile_pin(inode, device, false); 9959 if (ret == 1) 9960 ret = 0; 9961 else if (ret) 9962 goto out; 9963 } else if (device != map->stripes[0].dev) { 9964 btrfs_warn(fs_info, "swapfile must be on one device"); 9965 ret = -EINVAL; 9966 goto out; 9967 } 9968 9969 physical_block_start = (map->stripes[0].physical + 9970 (logical_block_start - map->start)); 9971 len = min(len, map->chunk_len - (logical_block_start - map->start)); 9972 btrfs_free_chunk_map(map); 9973 map = NULL; 9974 9975 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 9976 if (!bg) { 9977 btrfs_warn(fs_info, 9978 "could not find block group containing swapfile"); 9979 ret = -EINVAL; 9980 goto out; 9981 } 9982 9983 if (!btrfs_inc_block_group_swap_extents(bg)) { 9984 btrfs_warn(fs_info, 9985 "block group for swapfile at %llu is read-only%s", 9986 bg->start, 9987 atomic_read(&fs_info->scrubs_running) ? 9988 " (scrub running)" : ""); 9989 btrfs_put_block_group(bg); 9990 ret = -EINVAL; 9991 goto out; 9992 } 9993 9994 ret = btrfs_add_swapfile_pin(inode, bg, true); 9995 if (ret) { 9996 btrfs_put_block_group(bg); 9997 if (ret == 1) 9998 ret = 0; 9999 else 10000 goto out; 10001 } 10002 10003 if (bsi.block_len && 10004 bsi.block_start + bsi.block_len == physical_block_start) { 10005 bsi.block_len += len; 10006 } else { 10007 if (bsi.block_len) { 10008 ret = btrfs_add_swap_extent(sis, &bsi); 10009 if (ret) 10010 goto out; 10011 } 10012 bsi.start = start; 10013 bsi.block_start = physical_block_start; 10014 bsi.block_len = len; 10015 } 10016 10017 start += len; 10018 } 10019 10020 if (bsi.block_len) 10021 ret = btrfs_add_swap_extent(sis, &bsi); 10022 10023 out: 10024 if (!IS_ERR_OR_NULL(em)) 10025 free_extent_map(em); 10026 if (!IS_ERR_OR_NULL(map)) 10027 btrfs_free_chunk_map(map); 10028 10029 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10030 10031 if (ret) 10032 btrfs_swap_deactivate(file); 10033 10034 btrfs_drew_write_unlock(&root->snapshot_lock); 10035 10036 btrfs_exclop_finish(fs_info); 10037 10038 if (ret) 10039 return ret; 10040 10041 if (device) 10042 sis->bdev = device->bdev; 10043 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10044 sis->max = bsi.nr_pages; 10045 sis->pages = bsi.nr_pages - 1; 10046 sis->highest_bit = bsi.nr_pages - 1; 10047 return bsi.nr_extents; 10048 } 10049 #else 10050 static void btrfs_swap_deactivate(struct file *file) 10051 { 10052 } 10053 10054 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10055 sector_t *span) 10056 { 10057 return -EOPNOTSUPP; 10058 } 10059 #endif 10060 10061 /* 10062 * Update the number of bytes used in the VFS' inode. When we replace extents in 10063 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10064 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10065 * always get a correct value. 10066 */ 10067 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10068 const u64 add_bytes, 10069 const u64 del_bytes) 10070 { 10071 if (add_bytes == del_bytes) 10072 return; 10073 10074 spin_lock(&inode->lock); 10075 if (del_bytes > 0) 10076 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10077 if (add_bytes > 0) 10078 inode_add_bytes(&inode->vfs_inode, add_bytes); 10079 spin_unlock(&inode->lock); 10080 } 10081 10082 /* 10083 * Verify that there are no ordered extents for a given file range. 10084 * 10085 * @inode: The target inode. 10086 * @start: Start offset of the file range, should be sector size aligned. 10087 * @end: End offset (inclusive) of the file range, its value +1 should be 10088 * sector size aligned. 10089 * 10090 * This should typically be used for cases where we locked an inode's VFS lock in 10091 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10092 * we have flushed all delalloc in the range, we have waited for all ordered 10093 * extents in the range to complete and finally we have locked the file range in 10094 * the inode's io_tree. 10095 */ 10096 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10097 { 10098 struct btrfs_root *root = inode->root; 10099 struct btrfs_ordered_extent *ordered; 10100 10101 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10102 return; 10103 10104 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10105 if (ordered) { 10106 btrfs_err(root->fs_info, 10107 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10108 start, end, btrfs_ino(inode), btrfs_root_id(root), 10109 ordered->file_offset, 10110 ordered->file_offset + ordered->num_bytes - 1); 10111 btrfs_put_ordered_extent(ordered); 10112 } 10113 10114 ASSERT(ordered == NULL); 10115 } 10116 10117 /* 10118 * Find the first inode with a minimum number. 10119 * 10120 * @root: The root to search for. 10121 * @min_ino: The minimum inode number. 10122 * 10123 * Find the first inode in the @root with a number >= @min_ino and return it. 10124 * Returns NULL if no such inode found. 10125 */ 10126 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10127 { 10128 struct btrfs_inode *inode; 10129 unsigned long from = min_ino; 10130 10131 xa_lock(&root->inodes); 10132 while (true) { 10133 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10134 if (!inode) 10135 break; 10136 if (igrab(&inode->vfs_inode)) 10137 break; 10138 10139 from = btrfs_ino(inode) + 1; 10140 cond_resched_lock(&root->inodes.xa_lock); 10141 } 10142 xa_unlock(&root->inodes); 10143 10144 return inode; 10145 } 10146 10147 static const struct inode_operations btrfs_dir_inode_operations = { 10148 .getattr = btrfs_getattr, 10149 .lookup = btrfs_lookup, 10150 .create = btrfs_create, 10151 .unlink = btrfs_unlink, 10152 .link = btrfs_link, 10153 .mkdir = btrfs_mkdir, 10154 .rmdir = btrfs_rmdir, 10155 .rename = btrfs_rename2, 10156 .symlink = btrfs_symlink, 10157 .setattr = btrfs_setattr, 10158 .mknod = btrfs_mknod, 10159 .listxattr = btrfs_listxattr, 10160 .permission = btrfs_permission, 10161 .get_inode_acl = btrfs_get_acl, 10162 .set_acl = btrfs_set_acl, 10163 .update_time = btrfs_update_time, 10164 .tmpfile = btrfs_tmpfile, 10165 .fileattr_get = btrfs_fileattr_get, 10166 .fileattr_set = btrfs_fileattr_set, 10167 }; 10168 10169 static const struct file_operations btrfs_dir_file_operations = { 10170 .llseek = btrfs_dir_llseek, 10171 .read = generic_read_dir, 10172 .iterate_shared = btrfs_real_readdir, 10173 .open = btrfs_opendir, 10174 .unlocked_ioctl = btrfs_ioctl, 10175 #ifdef CONFIG_COMPAT 10176 .compat_ioctl = btrfs_compat_ioctl, 10177 #endif 10178 .release = btrfs_release_file, 10179 .fsync = btrfs_sync_file, 10180 }; 10181 10182 /* 10183 * btrfs doesn't support the bmap operation because swapfiles 10184 * use bmap to make a mapping of extents in the file. They assume 10185 * these extents won't change over the life of the file and they 10186 * use the bmap result to do IO directly to the drive. 10187 * 10188 * the btrfs bmap call would return logical addresses that aren't 10189 * suitable for IO and they also will change frequently as COW 10190 * operations happen. So, swapfile + btrfs == corruption. 10191 * 10192 * For now we're avoiding this by dropping bmap. 10193 */ 10194 static const struct address_space_operations btrfs_aops = { 10195 .read_folio = btrfs_read_folio, 10196 .writepages = btrfs_writepages, 10197 .readahead = btrfs_readahead, 10198 .invalidate_folio = btrfs_invalidate_folio, 10199 .launder_folio = btrfs_launder_folio, 10200 .release_folio = btrfs_release_folio, 10201 .migrate_folio = btrfs_migrate_folio, 10202 .dirty_folio = filemap_dirty_folio, 10203 .error_remove_folio = generic_error_remove_folio, 10204 .swap_activate = btrfs_swap_activate, 10205 .swap_deactivate = btrfs_swap_deactivate, 10206 }; 10207 10208 static const struct inode_operations btrfs_file_inode_operations = { 10209 .getattr = btrfs_getattr, 10210 .setattr = btrfs_setattr, 10211 .listxattr = btrfs_listxattr, 10212 .permission = btrfs_permission, 10213 .fiemap = btrfs_fiemap, 10214 .get_inode_acl = btrfs_get_acl, 10215 .set_acl = btrfs_set_acl, 10216 .update_time = btrfs_update_time, 10217 .fileattr_get = btrfs_fileattr_get, 10218 .fileattr_set = btrfs_fileattr_set, 10219 }; 10220 static const struct inode_operations btrfs_special_inode_operations = { 10221 .getattr = btrfs_getattr, 10222 .setattr = btrfs_setattr, 10223 .permission = btrfs_permission, 10224 .listxattr = btrfs_listxattr, 10225 .get_inode_acl = btrfs_get_acl, 10226 .set_acl = btrfs_set_acl, 10227 .update_time = btrfs_update_time, 10228 }; 10229 static const struct inode_operations btrfs_symlink_inode_operations = { 10230 .get_link = page_get_link, 10231 .getattr = btrfs_getattr, 10232 .setattr = btrfs_setattr, 10233 .permission = btrfs_permission, 10234 .listxattr = btrfs_listxattr, 10235 .update_time = btrfs_update_time, 10236 }; 10237 10238 const struct dentry_operations btrfs_dentry_operations = { 10239 .d_delete = btrfs_dentry_delete, 10240 }; 10241