1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 74 struct btrfs_iget_args { 75 u64 ino; 76 struct btrfs_root *root; 77 }; 78 79 struct btrfs_dio_data { 80 ssize_t submitted; 81 struct extent_changeset *data_reserved; 82 struct btrfs_ordered_extent *ordered; 83 bool data_space_reserved; 84 bool nocow_done; 85 }; 86 87 struct btrfs_dio_private { 88 /* Range of I/O */ 89 u64 file_offset; 90 u32 bytes; 91 92 /* This must be last */ 93 struct btrfs_bio bbio; 94 }; 95 96 static struct bio_set btrfs_dio_bioset; 97 98 struct btrfs_rename_ctx { 99 /* Output field. Stores the index number of the old directory entry. */ 100 u64 index; 101 }; 102 103 /* 104 * Used by data_reloc_print_warning_inode() to pass needed info for filename 105 * resolution and output of error message. 106 */ 107 struct data_reloc_warn { 108 struct btrfs_path path; 109 struct btrfs_fs_info *fs_info; 110 u64 extent_item_size; 111 u64 logical; 112 int mirror_num; 113 }; 114 115 /* 116 * For the file_extent_tree, we want to hold the inode lock when we lookup and 117 * update the disk_i_size, but lockdep will complain because our io_tree we hold 118 * the tree lock and get the inode lock when setting delalloc. These two things 119 * are unrelated, so make a class for the file_extent_tree so we don't get the 120 * two locking patterns mixed up. 121 */ 122 static struct lock_class_key file_extent_tree_class; 123 124 static const struct inode_operations btrfs_dir_inode_operations; 125 static const struct inode_operations btrfs_symlink_inode_operations; 126 static const struct inode_operations btrfs_special_inode_operations; 127 static const struct inode_operations btrfs_file_inode_operations; 128 static const struct address_space_operations btrfs_aops; 129 static const struct file_operations btrfs_dir_file_operations; 130 131 static struct kmem_cache *btrfs_inode_cachep; 132 133 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 134 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 135 136 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 137 struct page *locked_page, u64 start, 138 u64 end, struct writeback_control *wbc, 139 bool pages_dirty); 140 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 141 u64 len, u64 orig_start, u64 block_start, 142 u64 block_len, u64 orig_block_len, 143 u64 ram_bytes, int compress_type, 144 int type); 145 146 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 147 u64 root, void *warn_ctx) 148 { 149 struct data_reloc_warn *warn = warn_ctx; 150 struct btrfs_fs_info *fs_info = warn->fs_info; 151 struct extent_buffer *eb; 152 struct btrfs_inode_item *inode_item; 153 struct inode_fs_paths *ipath = NULL; 154 struct btrfs_root *local_root; 155 struct btrfs_key key; 156 unsigned int nofs_flag; 157 u32 nlink; 158 int ret; 159 160 local_root = btrfs_get_fs_root(fs_info, root, true); 161 if (IS_ERR(local_root)) { 162 ret = PTR_ERR(local_root); 163 goto err; 164 } 165 166 /* This makes the path point to (inum INODE_ITEM ioff). */ 167 key.objectid = inum; 168 key.type = BTRFS_INODE_ITEM_KEY; 169 key.offset = 0; 170 171 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 172 if (ret) { 173 btrfs_put_root(local_root); 174 btrfs_release_path(&warn->path); 175 goto err; 176 } 177 178 eb = warn->path.nodes[0]; 179 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 180 nlink = btrfs_inode_nlink(eb, inode_item); 181 btrfs_release_path(&warn->path); 182 183 nofs_flag = memalloc_nofs_save(); 184 ipath = init_ipath(4096, local_root, &warn->path); 185 memalloc_nofs_restore(nofs_flag); 186 if (IS_ERR(ipath)) { 187 btrfs_put_root(local_root); 188 ret = PTR_ERR(ipath); 189 ipath = NULL; 190 /* 191 * -ENOMEM, not a critical error, just output an generic error 192 * without filename. 193 */ 194 btrfs_warn(fs_info, 195 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 196 warn->logical, warn->mirror_num, root, inum, offset); 197 return ret; 198 } 199 ret = paths_from_inode(inum, ipath); 200 if (ret < 0) 201 goto err; 202 203 /* 204 * We deliberately ignore the bit ipath might have been too small to 205 * hold all of the paths here 206 */ 207 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 208 btrfs_warn(fs_info, 209 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 210 warn->logical, warn->mirror_num, root, inum, offset, 211 fs_info->sectorsize, nlink, 212 (char *)(unsigned long)ipath->fspath->val[i]); 213 } 214 215 btrfs_put_root(local_root); 216 free_ipath(ipath); 217 return 0; 218 219 err: 220 btrfs_warn(fs_info, 221 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 222 warn->logical, warn->mirror_num, root, inum, offset, ret); 223 224 free_ipath(ipath); 225 return ret; 226 } 227 228 /* 229 * Do extra user-friendly error output (e.g. lookup all the affected files). 230 * 231 * Return true if we succeeded doing the backref lookup. 232 * Return false if such lookup failed, and has to fallback to the old error message. 233 */ 234 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 235 const u8 *csum, const u8 *csum_expected, 236 int mirror_num) 237 { 238 struct btrfs_fs_info *fs_info = inode->root->fs_info; 239 struct btrfs_path path = { 0 }; 240 struct btrfs_key found_key = { 0 }; 241 struct extent_buffer *eb; 242 struct btrfs_extent_item *ei; 243 const u32 csum_size = fs_info->csum_size; 244 u64 logical; 245 u64 flags; 246 u32 item_size; 247 int ret; 248 249 mutex_lock(&fs_info->reloc_mutex); 250 logical = btrfs_get_reloc_bg_bytenr(fs_info); 251 mutex_unlock(&fs_info->reloc_mutex); 252 253 if (logical == U64_MAX) { 254 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 255 btrfs_warn_rl(fs_info, 256 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 257 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 258 CSUM_FMT_VALUE(csum_size, csum), 259 CSUM_FMT_VALUE(csum_size, csum_expected), 260 mirror_num); 261 return; 262 } 263 264 logical += file_off; 265 btrfs_warn_rl(fs_info, 266 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 267 inode->root->root_key.objectid, 268 btrfs_ino(inode), file_off, logical, 269 CSUM_FMT_VALUE(csum_size, csum), 270 CSUM_FMT_VALUE(csum_size, csum_expected), 271 mirror_num); 272 273 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 274 if (ret < 0) { 275 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 276 logical, ret); 277 return; 278 } 279 eb = path.nodes[0]; 280 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 281 item_size = btrfs_item_size(eb, path.slots[0]); 282 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 283 unsigned long ptr = 0; 284 u64 ref_root; 285 u8 ref_level; 286 287 while (true) { 288 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 289 item_size, &ref_root, 290 &ref_level); 291 if (ret < 0) { 292 btrfs_warn_rl(fs_info, 293 "failed to resolve tree backref for logical %llu: %d", 294 logical, ret); 295 break; 296 } 297 if (ret > 0) 298 break; 299 300 btrfs_warn_rl(fs_info, 301 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 302 logical, mirror_num, 303 (ref_level ? "node" : "leaf"), 304 ref_level, ref_root); 305 } 306 btrfs_release_path(&path); 307 } else { 308 struct btrfs_backref_walk_ctx ctx = { 0 }; 309 struct data_reloc_warn reloc_warn = { 0 }; 310 311 btrfs_release_path(&path); 312 313 ctx.bytenr = found_key.objectid; 314 ctx.extent_item_pos = logical - found_key.objectid; 315 ctx.fs_info = fs_info; 316 317 reloc_warn.logical = logical; 318 reloc_warn.extent_item_size = found_key.offset; 319 reloc_warn.mirror_num = mirror_num; 320 reloc_warn.fs_info = fs_info; 321 322 iterate_extent_inodes(&ctx, true, 323 data_reloc_print_warning_inode, &reloc_warn); 324 } 325 } 326 327 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 328 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 329 { 330 struct btrfs_root *root = inode->root; 331 const u32 csum_size = root->fs_info->csum_size; 332 333 /* For data reloc tree, it's better to do a backref lookup instead. */ 334 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 335 return print_data_reloc_error(inode, logical_start, csum, 336 csum_expected, mirror_num); 337 338 /* Output without objectid, which is more meaningful */ 339 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 340 btrfs_warn_rl(root->fs_info, 341 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 342 root->root_key.objectid, btrfs_ino(inode), 343 logical_start, 344 CSUM_FMT_VALUE(csum_size, csum), 345 CSUM_FMT_VALUE(csum_size, csum_expected), 346 mirror_num); 347 } else { 348 btrfs_warn_rl(root->fs_info, 349 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 350 root->root_key.objectid, btrfs_ino(inode), 351 logical_start, 352 CSUM_FMT_VALUE(csum_size, csum), 353 CSUM_FMT_VALUE(csum_size, csum_expected), 354 mirror_num); 355 } 356 } 357 358 /* 359 * Lock inode i_rwsem based on arguments passed. 360 * 361 * ilock_flags can have the following bit set: 362 * 363 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 364 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 365 * return -EAGAIN 366 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 367 */ 368 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 369 { 370 if (ilock_flags & BTRFS_ILOCK_SHARED) { 371 if (ilock_flags & BTRFS_ILOCK_TRY) { 372 if (!inode_trylock_shared(&inode->vfs_inode)) 373 return -EAGAIN; 374 else 375 return 0; 376 } 377 inode_lock_shared(&inode->vfs_inode); 378 } else { 379 if (ilock_flags & BTRFS_ILOCK_TRY) { 380 if (!inode_trylock(&inode->vfs_inode)) 381 return -EAGAIN; 382 else 383 return 0; 384 } 385 inode_lock(&inode->vfs_inode); 386 } 387 if (ilock_flags & BTRFS_ILOCK_MMAP) 388 down_write(&inode->i_mmap_lock); 389 return 0; 390 } 391 392 /* 393 * Unock inode i_rwsem. 394 * 395 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 396 * to decide whether the lock acquired is shared or exclusive. 397 */ 398 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 399 { 400 if (ilock_flags & BTRFS_ILOCK_MMAP) 401 up_write(&inode->i_mmap_lock); 402 if (ilock_flags & BTRFS_ILOCK_SHARED) 403 inode_unlock_shared(&inode->vfs_inode); 404 else 405 inode_unlock(&inode->vfs_inode); 406 } 407 408 /* 409 * Cleanup all submitted ordered extents in specified range to handle errors 410 * from the btrfs_run_delalloc_range() callback. 411 * 412 * NOTE: caller must ensure that when an error happens, it can not call 413 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 414 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 415 * to be released, which we want to happen only when finishing the ordered 416 * extent (btrfs_finish_ordered_io()). 417 */ 418 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 419 struct page *locked_page, 420 u64 offset, u64 bytes) 421 { 422 unsigned long index = offset >> PAGE_SHIFT; 423 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 424 u64 page_start = 0, page_end = 0; 425 struct page *page; 426 427 if (locked_page) { 428 page_start = page_offset(locked_page); 429 page_end = page_start + PAGE_SIZE - 1; 430 } 431 432 while (index <= end_index) { 433 /* 434 * For locked page, we will call btrfs_mark_ordered_io_finished 435 * through btrfs_mark_ordered_io_finished() on it 436 * in run_delalloc_range() for the error handling, which will 437 * clear page Ordered and run the ordered extent accounting. 438 * 439 * Here we can't just clear the Ordered bit, or 440 * btrfs_mark_ordered_io_finished() would skip the accounting 441 * for the page range, and the ordered extent will never finish. 442 */ 443 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 444 index++; 445 continue; 446 } 447 page = find_get_page(inode->vfs_inode.i_mapping, index); 448 index++; 449 if (!page) 450 continue; 451 452 /* 453 * Here we just clear all Ordered bits for every page in the 454 * range, then btrfs_mark_ordered_io_finished() will handle 455 * the ordered extent accounting for the range. 456 */ 457 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, 458 page_folio(page), offset, bytes); 459 put_page(page); 460 } 461 462 if (locked_page) { 463 /* The locked page covers the full range, nothing needs to be done */ 464 if (bytes + offset <= page_start + PAGE_SIZE) 465 return; 466 /* 467 * In case this page belongs to the delalloc range being 468 * instantiated then skip it, since the first page of a range is 469 * going to be properly cleaned up by the caller of 470 * run_delalloc_range 471 */ 472 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 473 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 474 offset = page_offset(locked_page) + PAGE_SIZE; 475 } 476 } 477 478 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 479 } 480 481 static int btrfs_dirty_inode(struct btrfs_inode *inode); 482 483 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 484 struct btrfs_new_inode_args *args) 485 { 486 int err; 487 488 if (args->default_acl) { 489 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 490 ACL_TYPE_DEFAULT); 491 if (err) 492 return err; 493 } 494 if (args->acl) { 495 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 496 if (err) 497 return err; 498 } 499 if (!args->default_acl && !args->acl) 500 cache_no_acl(args->inode); 501 return btrfs_xattr_security_init(trans, args->inode, args->dir, 502 &args->dentry->d_name); 503 } 504 505 /* 506 * this does all the hard work for inserting an inline extent into 507 * the btree. The caller should have done a btrfs_drop_extents so that 508 * no overlapping inline items exist in the btree 509 */ 510 static int insert_inline_extent(struct btrfs_trans_handle *trans, 511 struct btrfs_path *path, 512 struct btrfs_inode *inode, bool extent_inserted, 513 size_t size, size_t compressed_size, 514 int compress_type, 515 struct page **compressed_pages, 516 bool update_i_size) 517 { 518 struct btrfs_root *root = inode->root; 519 struct extent_buffer *leaf; 520 struct page *page = NULL; 521 char *kaddr; 522 unsigned long ptr; 523 struct btrfs_file_extent_item *ei; 524 int ret; 525 size_t cur_size = size; 526 u64 i_size; 527 528 ASSERT((compressed_size > 0 && compressed_pages) || 529 (compressed_size == 0 && !compressed_pages)); 530 531 if (compressed_size && compressed_pages) 532 cur_size = compressed_size; 533 534 if (!extent_inserted) { 535 struct btrfs_key key; 536 size_t datasize; 537 538 key.objectid = btrfs_ino(inode); 539 key.offset = 0; 540 key.type = BTRFS_EXTENT_DATA_KEY; 541 542 datasize = btrfs_file_extent_calc_inline_size(cur_size); 543 ret = btrfs_insert_empty_item(trans, root, path, &key, 544 datasize); 545 if (ret) 546 goto fail; 547 } 548 leaf = path->nodes[0]; 549 ei = btrfs_item_ptr(leaf, path->slots[0], 550 struct btrfs_file_extent_item); 551 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 552 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 553 btrfs_set_file_extent_encryption(leaf, ei, 0); 554 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 555 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 556 ptr = btrfs_file_extent_inline_start(ei); 557 558 if (compress_type != BTRFS_COMPRESS_NONE) { 559 struct page *cpage; 560 int i = 0; 561 while (compressed_size > 0) { 562 cpage = compressed_pages[i]; 563 cur_size = min_t(unsigned long, compressed_size, 564 PAGE_SIZE); 565 566 kaddr = kmap_local_page(cpage); 567 write_extent_buffer(leaf, kaddr, ptr, cur_size); 568 kunmap_local(kaddr); 569 570 i++; 571 ptr += cur_size; 572 compressed_size -= cur_size; 573 } 574 btrfs_set_file_extent_compression(leaf, ei, 575 compress_type); 576 } else { 577 page = find_get_page(inode->vfs_inode.i_mapping, 0); 578 btrfs_set_file_extent_compression(leaf, ei, 0); 579 kaddr = kmap_local_page(page); 580 write_extent_buffer(leaf, kaddr, ptr, size); 581 kunmap_local(kaddr); 582 put_page(page); 583 } 584 btrfs_mark_buffer_dirty(trans, leaf); 585 btrfs_release_path(path); 586 587 /* 588 * We align size to sectorsize for inline extents just for simplicity 589 * sake. 590 */ 591 ret = btrfs_inode_set_file_extent_range(inode, 0, 592 ALIGN(size, root->fs_info->sectorsize)); 593 if (ret) 594 goto fail; 595 596 /* 597 * We're an inline extent, so nobody can extend the file past i_size 598 * without locking a page we already have locked. 599 * 600 * We must do any i_size and inode updates before we unlock the pages. 601 * Otherwise we could end up racing with unlink. 602 */ 603 i_size = i_size_read(&inode->vfs_inode); 604 if (update_i_size && size > i_size) { 605 i_size_write(&inode->vfs_inode, size); 606 i_size = size; 607 } 608 inode->disk_i_size = i_size; 609 610 fail: 611 return ret; 612 } 613 614 615 /* 616 * conditionally insert an inline extent into the file. This 617 * does the checks required to make sure the data is small enough 618 * to fit as an inline extent. 619 */ 620 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 621 size_t compressed_size, 622 int compress_type, 623 struct page **compressed_pages, 624 bool update_i_size) 625 { 626 struct btrfs_drop_extents_args drop_args = { 0 }; 627 struct btrfs_root *root = inode->root; 628 struct btrfs_fs_info *fs_info = root->fs_info; 629 struct btrfs_trans_handle *trans; 630 u64 data_len = (compressed_size ?: size); 631 int ret; 632 struct btrfs_path *path; 633 634 /* 635 * We can create an inline extent if it ends at or beyond the current 636 * i_size, is no larger than a sector (decompressed), and the (possibly 637 * compressed) data fits in a leaf and the configured maximum inline 638 * size. 639 */ 640 if (size < i_size_read(&inode->vfs_inode) || 641 size > fs_info->sectorsize || 642 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 643 data_len > fs_info->max_inline) 644 return 1; 645 646 path = btrfs_alloc_path(); 647 if (!path) 648 return -ENOMEM; 649 650 trans = btrfs_join_transaction(root); 651 if (IS_ERR(trans)) { 652 btrfs_free_path(path); 653 return PTR_ERR(trans); 654 } 655 trans->block_rsv = &inode->block_rsv; 656 657 drop_args.path = path; 658 drop_args.start = 0; 659 drop_args.end = fs_info->sectorsize; 660 drop_args.drop_cache = true; 661 drop_args.replace_extent = true; 662 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 663 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 664 if (ret) { 665 btrfs_abort_transaction(trans, ret); 666 goto out; 667 } 668 669 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 670 size, compressed_size, compress_type, 671 compressed_pages, update_i_size); 672 if (ret && ret != -ENOSPC) { 673 btrfs_abort_transaction(trans, ret); 674 goto out; 675 } else if (ret == -ENOSPC) { 676 ret = 1; 677 goto out; 678 } 679 680 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 681 ret = btrfs_update_inode(trans, inode); 682 if (ret && ret != -ENOSPC) { 683 btrfs_abort_transaction(trans, ret); 684 goto out; 685 } else if (ret == -ENOSPC) { 686 ret = 1; 687 goto out; 688 } 689 690 btrfs_set_inode_full_sync(inode); 691 out: 692 /* 693 * Don't forget to free the reserved space, as for inlined extent 694 * it won't count as data extent, free them directly here. 695 * And at reserve time, it's always aligned to page size, so 696 * just free one page here. 697 */ 698 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 699 btrfs_free_path(path); 700 btrfs_end_transaction(trans); 701 return ret; 702 } 703 704 struct async_extent { 705 u64 start; 706 u64 ram_size; 707 u64 compressed_size; 708 struct page **pages; 709 unsigned long nr_pages; 710 int compress_type; 711 struct list_head list; 712 }; 713 714 struct async_chunk { 715 struct btrfs_inode *inode; 716 struct page *locked_page; 717 u64 start; 718 u64 end; 719 blk_opf_t write_flags; 720 struct list_head extents; 721 struct cgroup_subsys_state *blkcg_css; 722 struct btrfs_work work; 723 struct async_cow *async_cow; 724 }; 725 726 struct async_cow { 727 atomic_t num_chunks; 728 struct async_chunk chunks[]; 729 }; 730 731 static noinline int add_async_extent(struct async_chunk *cow, 732 u64 start, u64 ram_size, 733 u64 compressed_size, 734 struct page **pages, 735 unsigned long nr_pages, 736 int compress_type) 737 { 738 struct async_extent *async_extent; 739 740 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 741 if (!async_extent) 742 return -ENOMEM; 743 async_extent->start = start; 744 async_extent->ram_size = ram_size; 745 async_extent->compressed_size = compressed_size; 746 async_extent->pages = pages; 747 async_extent->nr_pages = nr_pages; 748 async_extent->compress_type = compress_type; 749 list_add_tail(&async_extent->list, &cow->extents); 750 return 0; 751 } 752 753 /* 754 * Check if the inode needs to be submitted to compression, based on mount 755 * options, defragmentation, properties or heuristics. 756 */ 757 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 758 u64 end) 759 { 760 struct btrfs_fs_info *fs_info = inode->root->fs_info; 761 762 if (!btrfs_inode_can_compress(inode)) { 763 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 764 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 765 btrfs_ino(inode)); 766 return 0; 767 } 768 /* 769 * Special check for subpage. 770 * 771 * We lock the full page then run each delalloc range in the page, thus 772 * for the following case, we will hit some subpage specific corner case: 773 * 774 * 0 32K 64K 775 * | |///////| |///////| 776 * \- A \- B 777 * 778 * In above case, both range A and range B will try to unlock the full 779 * page [0, 64K), causing the one finished later will have page 780 * unlocked already, triggering various page lock requirement BUG_ON()s. 781 * 782 * So here we add an artificial limit that subpage compression can only 783 * if the range is fully page aligned. 784 * 785 * In theory we only need to ensure the first page is fully covered, but 786 * the tailing partial page will be locked until the full compression 787 * finishes, delaying the write of other range. 788 * 789 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 790 * first to prevent any submitted async extent to unlock the full page. 791 * By this, we can ensure for subpage case that only the last async_cow 792 * will unlock the full page. 793 */ 794 if (fs_info->sectorsize < PAGE_SIZE) { 795 if (!PAGE_ALIGNED(start) || 796 !PAGE_ALIGNED(end + 1)) 797 return 0; 798 } 799 800 /* force compress */ 801 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 802 return 1; 803 /* defrag ioctl */ 804 if (inode->defrag_compress) 805 return 1; 806 /* bad compression ratios */ 807 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 808 return 0; 809 if (btrfs_test_opt(fs_info, COMPRESS) || 810 inode->flags & BTRFS_INODE_COMPRESS || 811 inode->prop_compress) 812 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 813 return 0; 814 } 815 816 static inline void inode_should_defrag(struct btrfs_inode *inode, 817 u64 start, u64 end, u64 num_bytes, u32 small_write) 818 { 819 /* If this is a small write inside eof, kick off a defrag */ 820 if (num_bytes < small_write && 821 (start > 0 || end + 1 < inode->disk_i_size)) 822 btrfs_add_inode_defrag(NULL, inode, small_write); 823 } 824 825 /* 826 * Work queue call back to started compression on a file and pages. 827 * 828 * This is done inside an ordered work queue, and the compression is spread 829 * across many cpus. The actual IO submission is step two, and the ordered work 830 * queue takes care of making sure that happens in the same order things were 831 * put onto the queue by writepages and friends. 832 * 833 * If this code finds it can't get good compression, it puts an entry onto the 834 * work queue to write the uncompressed bytes. This makes sure that both 835 * compressed inodes and uncompressed inodes are written in the same order that 836 * the flusher thread sent them down. 837 */ 838 static void compress_file_range(struct btrfs_work *work) 839 { 840 struct async_chunk *async_chunk = 841 container_of(work, struct async_chunk, work); 842 struct btrfs_inode *inode = async_chunk->inode; 843 struct btrfs_fs_info *fs_info = inode->root->fs_info; 844 struct address_space *mapping = inode->vfs_inode.i_mapping; 845 u64 blocksize = fs_info->sectorsize; 846 u64 start = async_chunk->start; 847 u64 end = async_chunk->end; 848 u64 actual_end; 849 u64 i_size; 850 int ret = 0; 851 struct page **pages; 852 unsigned long nr_pages; 853 unsigned long total_compressed = 0; 854 unsigned long total_in = 0; 855 unsigned int poff; 856 int i; 857 int compress_type = fs_info->compress_type; 858 859 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 860 861 /* 862 * We need to call clear_page_dirty_for_io on each page in the range. 863 * Otherwise applications with the file mmap'd can wander in and change 864 * the page contents while we are compressing them. 865 */ 866 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 867 868 /* 869 * We need to save i_size before now because it could change in between 870 * us evaluating the size and assigning it. This is because we lock and 871 * unlock the page in truncate and fallocate, and then modify the i_size 872 * later on. 873 * 874 * The barriers are to emulate READ_ONCE, remove that once i_size_read 875 * does that for us. 876 */ 877 barrier(); 878 i_size = i_size_read(&inode->vfs_inode); 879 barrier(); 880 actual_end = min_t(u64, i_size, end + 1); 881 again: 882 pages = NULL; 883 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 884 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 885 886 /* 887 * we don't want to send crud past the end of i_size through 888 * compression, that's just a waste of CPU time. So, if the 889 * end of the file is before the start of our current 890 * requested range of bytes, we bail out to the uncompressed 891 * cleanup code that can deal with all of this. 892 * 893 * It isn't really the fastest way to fix things, but this is a 894 * very uncommon corner. 895 */ 896 if (actual_end <= start) 897 goto cleanup_and_bail_uncompressed; 898 899 total_compressed = actual_end - start; 900 901 /* 902 * Skip compression for a small file range(<=blocksize) that 903 * isn't an inline extent, since it doesn't save disk space at all. 904 */ 905 if (total_compressed <= blocksize && 906 (start > 0 || end + 1 < inode->disk_i_size)) 907 goto cleanup_and_bail_uncompressed; 908 909 /* 910 * For subpage case, we require full page alignment for the sector 911 * aligned range. 912 * Thus we must also check against @actual_end, not just @end. 913 */ 914 if (blocksize < PAGE_SIZE) { 915 if (!PAGE_ALIGNED(start) || 916 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 917 goto cleanup_and_bail_uncompressed; 918 } 919 920 total_compressed = min_t(unsigned long, total_compressed, 921 BTRFS_MAX_UNCOMPRESSED); 922 total_in = 0; 923 ret = 0; 924 925 /* 926 * We do compression for mount -o compress and when the inode has not 927 * been flagged as NOCOMPRESS. This flag can change at any time if we 928 * discover bad compression ratios. 929 */ 930 if (!inode_need_compress(inode, start, end)) 931 goto cleanup_and_bail_uncompressed; 932 933 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 934 if (!pages) { 935 /* 936 * Memory allocation failure is not a fatal error, we can fall 937 * back to uncompressed code. 938 */ 939 goto cleanup_and_bail_uncompressed; 940 } 941 942 if (inode->defrag_compress) 943 compress_type = inode->defrag_compress; 944 else if (inode->prop_compress) 945 compress_type = inode->prop_compress; 946 947 /* Compression level is applied here. */ 948 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4), 949 mapping, start, pages, &nr_pages, &total_in, 950 &total_compressed); 951 if (ret) 952 goto mark_incompressible; 953 954 /* 955 * Zero the tail end of the last page, as we might be sending it down 956 * to disk. 957 */ 958 poff = offset_in_page(total_compressed); 959 if (poff) 960 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff); 961 962 /* 963 * Try to create an inline extent. 964 * 965 * If we didn't compress the entire range, try to create an uncompressed 966 * inline extent, else a compressed one. 967 * 968 * Check cow_file_range() for why we don't even try to create inline 969 * extent for the subpage case. 970 */ 971 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 972 if (total_in < actual_end) { 973 ret = cow_file_range_inline(inode, actual_end, 0, 974 BTRFS_COMPRESS_NONE, NULL, 975 false); 976 } else { 977 ret = cow_file_range_inline(inode, actual_end, 978 total_compressed, 979 compress_type, pages, 980 false); 981 } 982 if (ret <= 0) { 983 unsigned long clear_flags = EXTENT_DELALLOC | 984 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 985 EXTENT_DO_ACCOUNTING; 986 987 if (ret < 0) 988 mapping_set_error(mapping, -EIO); 989 990 /* 991 * inline extent creation worked or returned error, 992 * we don't need to create any more async work items. 993 * Unlock and free up our temp pages. 994 * 995 * We use DO_ACCOUNTING here because we need the 996 * delalloc_release_metadata to be done _after_ we drop 997 * our outstanding extent for clearing delalloc for this 998 * range. 999 */ 1000 extent_clear_unlock_delalloc(inode, start, end, 1001 NULL, 1002 clear_flags, 1003 PAGE_UNLOCK | 1004 PAGE_START_WRITEBACK | 1005 PAGE_END_WRITEBACK); 1006 goto free_pages; 1007 } 1008 } 1009 1010 /* 1011 * We aren't doing an inline extent. Round the compressed size up to a 1012 * block size boundary so the allocator does sane things. 1013 */ 1014 total_compressed = ALIGN(total_compressed, blocksize); 1015 1016 /* 1017 * One last check to make sure the compression is really a win, compare 1018 * the page count read with the blocks on disk, compression must free at 1019 * least one sector. 1020 */ 1021 total_in = round_up(total_in, fs_info->sectorsize); 1022 if (total_compressed + blocksize > total_in) 1023 goto mark_incompressible; 1024 1025 /* 1026 * The async work queues will take care of doing actual allocation on 1027 * disk for these compressed pages, and will submit the bios. 1028 */ 1029 ret = add_async_extent(async_chunk, start, total_in, total_compressed, pages, 1030 nr_pages, compress_type); 1031 BUG_ON(ret); 1032 if (start + total_in < end) { 1033 start += total_in; 1034 cond_resched(); 1035 goto again; 1036 } 1037 return; 1038 1039 mark_incompressible: 1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1041 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1042 cleanup_and_bail_uncompressed: 1043 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1044 BTRFS_COMPRESS_NONE); 1045 BUG_ON(ret); 1046 free_pages: 1047 if (pages) { 1048 for (i = 0; i < nr_pages; i++) { 1049 WARN_ON(pages[i]->mapping); 1050 btrfs_free_compr_page(pages[i]); 1051 } 1052 kfree(pages); 1053 } 1054 } 1055 1056 static void free_async_extent_pages(struct async_extent *async_extent) 1057 { 1058 int i; 1059 1060 if (!async_extent->pages) 1061 return; 1062 1063 for (i = 0; i < async_extent->nr_pages; i++) { 1064 WARN_ON(async_extent->pages[i]->mapping); 1065 btrfs_free_compr_page(async_extent->pages[i]); 1066 } 1067 kfree(async_extent->pages); 1068 async_extent->nr_pages = 0; 1069 async_extent->pages = NULL; 1070 } 1071 1072 static void submit_uncompressed_range(struct btrfs_inode *inode, 1073 struct async_extent *async_extent, 1074 struct page *locked_page) 1075 { 1076 u64 start = async_extent->start; 1077 u64 end = async_extent->start + async_extent->ram_size - 1; 1078 int ret; 1079 struct writeback_control wbc = { 1080 .sync_mode = WB_SYNC_ALL, 1081 .range_start = start, 1082 .range_end = end, 1083 .no_cgroup_owner = 1, 1084 }; 1085 1086 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1087 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1088 wbc_detach_inode(&wbc); 1089 if (ret < 0) { 1090 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1091 if (locked_page) { 1092 const u64 page_start = page_offset(locked_page); 1093 1094 set_page_writeback(locked_page); 1095 end_page_writeback(locked_page); 1096 btrfs_mark_ordered_io_finished(inode, locked_page, 1097 page_start, PAGE_SIZE, 1098 !ret); 1099 mapping_set_error(locked_page->mapping, ret); 1100 unlock_page(locked_page); 1101 } 1102 } 1103 } 1104 1105 static void submit_one_async_extent(struct async_chunk *async_chunk, 1106 struct async_extent *async_extent, 1107 u64 *alloc_hint) 1108 { 1109 struct btrfs_inode *inode = async_chunk->inode; 1110 struct extent_io_tree *io_tree = &inode->io_tree; 1111 struct btrfs_root *root = inode->root; 1112 struct btrfs_fs_info *fs_info = root->fs_info; 1113 struct btrfs_ordered_extent *ordered; 1114 struct btrfs_key ins; 1115 struct page *locked_page = NULL; 1116 struct extent_map *em; 1117 int ret = 0; 1118 u64 start = async_extent->start; 1119 u64 end = async_extent->start + async_extent->ram_size - 1; 1120 1121 if (async_chunk->blkcg_css) 1122 kthread_associate_blkcg(async_chunk->blkcg_css); 1123 1124 /* 1125 * If async_chunk->locked_page is in the async_extent range, we need to 1126 * handle it. 1127 */ 1128 if (async_chunk->locked_page) { 1129 u64 locked_page_start = page_offset(async_chunk->locked_page); 1130 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1131 1132 if (!(start >= locked_page_end || end <= locked_page_start)) 1133 locked_page = async_chunk->locked_page; 1134 } 1135 lock_extent(io_tree, start, end, NULL); 1136 1137 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1138 submit_uncompressed_range(inode, async_extent, locked_page); 1139 goto done; 1140 } 1141 1142 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1143 async_extent->compressed_size, 1144 async_extent->compressed_size, 1145 0, *alloc_hint, &ins, 1, 1); 1146 if (ret) { 1147 /* 1148 * Here we used to try again by going back to non-compressed 1149 * path for ENOSPC. But we can't reserve space even for 1150 * compressed size, how could it work for uncompressed size 1151 * which requires larger size? So here we directly go error 1152 * path. 1153 */ 1154 goto out_free; 1155 } 1156 1157 /* Here we're doing allocation and writeback of the compressed pages */ 1158 em = create_io_em(inode, start, 1159 async_extent->ram_size, /* len */ 1160 start, /* orig_start */ 1161 ins.objectid, /* block_start */ 1162 ins.offset, /* block_len */ 1163 ins.offset, /* orig_block_len */ 1164 async_extent->ram_size, /* ram_bytes */ 1165 async_extent->compress_type, 1166 BTRFS_ORDERED_COMPRESSED); 1167 if (IS_ERR(em)) { 1168 ret = PTR_ERR(em); 1169 goto out_free_reserve; 1170 } 1171 free_extent_map(em); 1172 1173 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1174 async_extent->ram_size, /* num_bytes */ 1175 async_extent->ram_size, /* ram_bytes */ 1176 ins.objectid, /* disk_bytenr */ 1177 ins.offset, /* disk_num_bytes */ 1178 0, /* offset */ 1179 1 << BTRFS_ORDERED_COMPRESSED, 1180 async_extent->compress_type); 1181 if (IS_ERR(ordered)) { 1182 btrfs_drop_extent_map_range(inode, start, end, false); 1183 ret = PTR_ERR(ordered); 1184 goto out_free_reserve; 1185 } 1186 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1187 1188 /* Clear dirty, set writeback and unlock the pages. */ 1189 extent_clear_unlock_delalloc(inode, start, end, 1190 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1191 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1192 btrfs_submit_compressed_write(ordered, 1193 async_extent->pages, /* compressed_pages */ 1194 async_extent->nr_pages, 1195 async_chunk->write_flags, true); 1196 *alloc_hint = ins.objectid + ins.offset; 1197 done: 1198 if (async_chunk->blkcg_css) 1199 kthread_associate_blkcg(NULL); 1200 kfree(async_extent); 1201 return; 1202 1203 out_free_reserve: 1204 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1205 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1206 out_free: 1207 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1208 extent_clear_unlock_delalloc(inode, start, end, 1209 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1210 EXTENT_DELALLOC_NEW | 1211 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1212 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1213 PAGE_END_WRITEBACK); 1214 free_async_extent_pages(async_extent); 1215 if (async_chunk->blkcg_css) 1216 kthread_associate_blkcg(NULL); 1217 btrfs_debug(fs_info, 1218 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1219 root->root_key.objectid, btrfs_ino(inode), start, 1220 async_extent->ram_size, ret); 1221 kfree(async_extent); 1222 } 1223 1224 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1225 u64 num_bytes) 1226 { 1227 struct extent_map_tree *em_tree = &inode->extent_tree; 1228 struct extent_map *em; 1229 u64 alloc_hint = 0; 1230 1231 read_lock(&em_tree->lock); 1232 em = search_extent_mapping(em_tree, start, num_bytes); 1233 if (em) { 1234 /* 1235 * if block start isn't an actual block number then find the 1236 * first block in this inode and use that as a hint. If that 1237 * block is also bogus then just don't worry about it. 1238 */ 1239 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1240 free_extent_map(em); 1241 em = search_extent_mapping(em_tree, 0, 0); 1242 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1243 alloc_hint = em->block_start; 1244 if (em) 1245 free_extent_map(em); 1246 } else { 1247 alloc_hint = em->block_start; 1248 free_extent_map(em); 1249 } 1250 } 1251 read_unlock(&em_tree->lock); 1252 1253 return alloc_hint; 1254 } 1255 1256 /* 1257 * when extent_io.c finds a delayed allocation range in the file, 1258 * the call backs end up in this code. The basic idea is to 1259 * allocate extents on disk for the range, and create ordered data structs 1260 * in ram to track those extents. 1261 * 1262 * locked_page is the page that writepage had locked already. We use 1263 * it to make sure we don't do extra locks or unlocks. 1264 * 1265 * When this function fails, it unlocks all pages except @locked_page. 1266 * 1267 * When this function successfully creates an inline extent, it returns 1 and 1268 * unlocks all pages including locked_page and starts I/O on them. 1269 * (In reality inline extents are limited to a single page, so locked_page is 1270 * the only page handled anyway). 1271 * 1272 * When this function succeed and creates a normal extent, the page locking 1273 * status depends on the passed in flags: 1274 * 1275 * - If @keep_locked is set, all pages are kept locked. 1276 * - Else all pages except for @locked_page are unlocked. 1277 * 1278 * When a failure happens in the second or later iteration of the 1279 * while-loop, the ordered extents created in previous iterations are kept 1280 * intact. So, the caller must clean them up by calling 1281 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1282 * example. 1283 */ 1284 static noinline int cow_file_range(struct btrfs_inode *inode, 1285 struct page *locked_page, u64 start, u64 end, 1286 u64 *done_offset, 1287 bool keep_locked, bool no_inline) 1288 { 1289 struct btrfs_root *root = inode->root; 1290 struct btrfs_fs_info *fs_info = root->fs_info; 1291 u64 alloc_hint = 0; 1292 u64 orig_start = start; 1293 u64 num_bytes; 1294 unsigned long ram_size; 1295 u64 cur_alloc_size = 0; 1296 u64 min_alloc_size; 1297 u64 blocksize = fs_info->sectorsize; 1298 struct btrfs_key ins; 1299 struct extent_map *em; 1300 unsigned clear_bits; 1301 unsigned long page_ops; 1302 bool extent_reserved = false; 1303 int ret = 0; 1304 1305 if (btrfs_is_free_space_inode(inode)) { 1306 ret = -EINVAL; 1307 goto out_unlock; 1308 } 1309 1310 num_bytes = ALIGN(end - start + 1, blocksize); 1311 num_bytes = max(blocksize, num_bytes); 1312 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1313 1314 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1315 1316 /* 1317 * Due to the page size limit, for subpage we can only trigger the 1318 * writeback for the dirty sectors of page, that means data writeback 1319 * is doing more writeback than what we want. 1320 * 1321 * This is especially unexpected for some call sites like fallocate, 1322 * where we only increase i_size after everything is done. 1323 * This means we can trigger inline extent even if we didn't want to. 1324 * So here we skip inline extent creation completely. 1325 */ 1326 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) { 1327 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1328 end + 1); 1329 1330 /* lets try to make an inline extent */ 1331 ret = cow_file_range_inline(inode, actual_end, 0, 1332 BTRFS_COMPRESS_NONE, NULL, false); 1333 if (ret == 0) { 1334 /* 1335 * We use DO_ACCOUNTING here because we need the 1336 * delalloc_release_metadata to be run _after_ we drop 1337 * our outstanding extent for clearing delalloc for this 1338 * range. 1339 */ 1340 extent_clear_unlock_delalloc(inode, start, end, 1341 locked_page, 1342 EXTENT_LOCKED | EXTENT_DELALLOC | 1343 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1344 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1345 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1346 /* 1347 * locked_page is locked by the caller of 1348 * writepage_delalloc(), not locked by 1349 * __process_pages_contig(). 1350 * 1351 * We can't let __process_pages_contig() to unlock it, 1352 * as it doesn't have any subpage::writers recorded. 1353 * 1354 * Here we manually unlock the page, since the caller 1355 * can't determine if it's an inline extent or a 1356 * compressed extent. 1357 */ 1358 unlock_page(locked_page); 1359 ret = 1; 1360 goto done; 1361 } else if (ret < 0) { 1362 goto out_unlock; 1363 } 1364 } 1365 1366 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1367 1368 /* 1369 * Relocation relies on the relocated extents to have exactly the same 1370 * size as the original extents. Normally writeback for relocation data 1371 * extents follows a NOCOW path because relocation preallocates the 1372 * extents. However, due to an operation such as scrub turning a block 1373 * group to RO mode, it may fallback to COW mode, so we must make sure 1374 * an extent allocated during COW has exactly the requested size and can 1375 * not be split into smaller extents, otherwise relocation breaks and 1376 * fails during the stage where it updates the bytenr of file extent 1377 * items. 1378 */ 1379 if (btrfs_is_data_reloc_root(root)) 1380 min_alloc_size = num_bytes; 1381 else 1382 min_alloc_size = fs_info->sectorsize; 1383 1384 while (num_bytes > 0) { 1385 struct btrfs_ordered_extent *ordered; 1386 1387 cur_alloc_size = num_bytes; 1388 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1389 min_alloc_size, 0, alloc_hint, 1390 &ins, 1, 1); 1391 if (ret == -EAGAIN) { 1392 /* 1393 * btrfs_reserve_extent only returns -EAGAIN for zoned 1394 * file systems, which is an indication that there are 1395 * no active zones to allocate from at the moment. 1396 * 1397 * If this is the first loop iteration, wait for at 1398 * least one zone to finish before retrying the 1399 * allocation. Otherwise ask the caller to write out 1400 * the already allocated blocks before coming back to 1401 * us, or return -ENOSPC if it can't handle retries. 1402 */ 1403 ASSERT(btrfs_is_zoned(fs_info)); 1404 if (start == orig_start) { 1405 wait_on_bit_io(&inode->root->fs_info->flags, 1406 BTRFS_FS_NEED_ZONE_FINISH, 1407 TASK_UNINTERRUPTIBLE); 1408 continue; 1409 } 1410 if (done_offset) { 1411 *done_offset = start - 1; 1412 return 0; 1413 } 1414 ret = -ENOSPC; 1415 } 1416 if (ret < 0) 1417 goto out_unlock; 1418 cur_alloc_size = ins.offset; 1419 extent_reserved = true; 1420 1421 ram_size = ins.offset; 1422 em = create_io_em(inode, start, ins.offset, /* len */ 1423 start, /* orig_start */ 1424 ins.objectid, /* block_start */ 1425 ins.offset, /* block_len */ 1426 ins.offset, /* orig_block_len */ 1427 ram_size, /* ram_bytes */ 1428 BTRFS_COMPRESS_NONE, /* compress_type */ 1429 BTRFS_ORDERED_REGULAR /* type */); 1430 if (IS_ERR(em)) { 1431 ret = PTR_ERR(em); 1432 goto out_reserve; 1433 } 1434 free_extent_map(em); 1435 1436 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1437 ram_size, ins.objectid, cur_alloc_size, 1438 0, 1 << BTRFS_ORDERED_REGULAR, 1439 BTRFS_COMPRESS_NONE); 1440 if (IS_ERR(ordered)) { 1441 ret = PTR_ERR(ordered); 1442 goto out_drop_extent_cache; 1443 } 1444 1445 if (btrfs_is_data_reloc_root(root)) { 1446 ret = btrfs_reloc_clone_csums(ordered); 1447 1448 /* 1449 * Only drop cache here, and process as normal. 1450 * 1451 * We must not allow extent_clear_unlock_delalloc() 1452 * at out_unlock label to free meta of this ordered 1453 * extent, as its meta should be freed by 1454 * btrfs_finish_ordered_io(). 1455 * 1456 * So we must continue until @start is increased to 1457 * skip current ordered extent. 1458 */ 1459 if (ret) 1460 btrfs_drop_extent_map_range(inode, start, 1461 start + ram_size - 1, 1462 false); 1463 } 1464 btrfs_put_ordered_extent(ordered); 1465 1466 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1467 1468 /* 1469 * We're not doing compressed IO, don't unlock the first page 1470 * (which the caller expects to stay locked), don't clear any 1471 * dirty bits and don't set any writeback bits 1472 * 1473 * Do set the Ordered (Private2) bit so we know this page was 1474 * properly setup for writepage. 1475 */ 1476 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1477 page_ops |= PAGE_SET_ORDERED; 1478 1479 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1480 locked_page, 1481 EXTENT_LOCKED | EXTENT_DELALLOC, 1482 page_ops); 1483 if (num_bytes < cur_alloc_size) 1484 num_bytes = 0; 1485 else 1486 num_bytes -= cur_alloc_size; 1487 alloc_hint = ins.objectid + ins.offset; 1488 start += cur_alloc_size; 1489 extent_reserved = false; 1490 1491 /* 1492 * btrfs_reloc_clone_csums() error, since start is increased 1493 * extent_clear_unlock_delalloc() at out_unlock label won't 1494 * free metadata of current ordered extent, we're OK to exit. 1495 */ 1496 if (ret) 1497 goto out_unlock; 1498 } 1499 done: 1500 if (done_offset) 1501 *done_offset = end; 1502 return ret; 1503 1504 out_drop_extent_cache: 1505 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1506 out_reserve: 1507 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1508 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1509 out_unlock: 1510 /* 1511 * Now, we have three regions to clean up: 1512 * 1513 * |-------(1)----|---(2)---|-------------(3)----------| 1514 * `- orig_start `- start `- start + cur_alloc_size `- end 1515 * 1516 * We process each region below. 1517 */ 1518 1519 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1520 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1521 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1522 1523 /* 1524 * For the range (1). We have already instantiated the ordered extents 1525 * for this region. They are cleaned up by 1526 * btrfs_cleanup_ordered_extents() in e.g, 1527 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1528 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1529 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1530 * function. 1531 * 1532 * However, in case of @keep_locked, we still need to unlock the pages 1533 * (except @locked_page) to ensure all the pages are unlocked. 1534 */ 1535 if (keep_locked && orig_start < start) { 1536 if (!locked_page) 1537 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1538 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1539 locked_page, 0, page_ops); 1540 } 1541 1542 /* 1543 * For the range (2). If we reserved an extent for our delalloc range 1544 * (or a subrange) and failed to create the respective ordered extent, 1545 * then it means that when we reserved the extent we decremented the 1546 * extent's size from the data space_info's bytes_may_use counter and 1547 * incremented the space_info's bytes_reserved counter by the same 1548 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1549 * to decrement again the data space_info's bytes_may_use counter, 1550 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1551 */ 1552 if (extent_reserved) { 1553 extent_clear_unlock_delalloc(inode, start, 1554 start + cur_alloc_size - 1, 1555 locked_page, 1556 clear_bits, 1557 page_ops); 1558 start += cur_alloc_size; 1559 } 1560 1561 /* 1562 * For the range (3). We never touched the region. In addition to the 1563 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1564 * space_info's bytes_may_use counter, reserved in 1565 * btrfs_check_data_free_space(). 1566 */ 1567 if (start < end) { 1568 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1569 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1570 clear_bits, page_ops); 1571 } 1572 return ret; 1573 } 1574 1575 /* 1576 * Phase two of compressed writeback. This is the ordered portion of the code, 1577 * which only gets called in the order the work was queued. We walk all the 1578 * async extents created by compress_file_range and send them down to the disk. 1579 * 1580 * If called with @do_free == true then it'll try to finish the work and free 1581 * the work struct eventually. 1582 */ 1583 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1584 { 1585 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1586 work); 1587 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1588 struct async_extent *async_extent; 1589 unsigned long nr_pages; 1590 u64 alloc_hint = 0; 1591 1592 if (do_free) { 1593 struct async_chunk *async_chunk; 1594 struct async_cow *async_cow; 1595 1596 async_chunk = container_of(work, struct async_chunk, work); 1597 btrfs_add_delayed_iput(async_chunk->inode); 1598 if (async_chunk->blkcg_css) 1599 css_put(async_chunk->blkcg_css); 1600 1601 async_cow = async_chunk->async_cow; 1602 if (atomic_dec_and_test(&async_cow->num_chunks)) 1603 kvfree(async_cow); 1604 return; 1605 } 1606 1607 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1608 PAGE_SHIFT; 1609 1610 while (!list_empty(&async_chunk->extents)) { 1611 async_extent = list_entry(async_chunk->extents.next, 1612 struct async_extent, list); 1613 list_del(&async_extent->list); 1614 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1615 } 1616 1617 /* atomic_sub_return implies a barrier */ 1618 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1619 5 * SZ_1M) 1620 cond_wake_up_nomb(&fs_info->async_submit_wait); 1621 } 1622 1623 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1624 struct page *locked_page, u64 start, 1625 u64 end, struct writeback_control *wbc) 1626 { 1627 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1628 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1629 struct async_cow *ctx; 1630 struct async_chunk *async_chunk; 1631 unsigned long nr_pages; 1632 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1633 int i; 1634 unsigned nofs_flag; 1635 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1636 1637 nofs_flag = memalloc_nofs_save(); 1638 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1639 memalloc_nofs_restore(nofs_flag); 1640 if (!ctx) 1641 return false; 1642 1643 unlock_extent(&inode->io_tree, start, end, NULL); 1644 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1645 1646 async_chunk = ctx->chunks; 1647 atomic_set(&ctx->num_chunks, num_chunks); 1648 1649 for (i = 0; i < num_chunks; i++) { 1650 u64 cur_end = min(end, start + SZ_512K - 1); 1651 1652 /* 1653 * igrab is called higher up in the call chain, take only the 1654 * lightweight reference for the callback lifetime 1655 */ 1656 ihold(&inode->vfs_inode); 1657 async_chunk[i].async_cow = ctx; 1658 async_chunk[i].inode = inode; 1659 async_chunk[i].start = start; 1660 async_chunk[i].end = cur_end; 1661 async_chunk[i].write_flags = write_flags; 1662 INIT_LIST_HEAD(&async_chunk[i].extents); 1663 1664 /* 1665 * The locked_page comes all the way from writepage and its 1666 * the original page we were actually given. As we spread 1667 * this large delalloc region across multiple async_chunk 1668 * structs, only the first struct needs a pointer to locked_page 1669 * 1670 * This way we don't need racey decisions about who is supposed 1671 * to unlock it. 1672 */ 1673 if (locked_page) { 1674 /* 1675 * Depending on the compressibility, the pages might or 1676 * might not go through async. We want all of them to 1677 * be accounted against wbc once. Let's do it here 1678 * before the paths diverge. wbc accounting is used 1679 * only for foreign writeback detection and doesn't 1680 * need full accuracy. Just account the whole thing 1681 * against the first page. 1682 */ 1683 wbc_account_cgroup_owner(wbc, locked_page, 1684 cur_end - start); 1685 async_chunk[i].locked_page = locked_page; 1686 locked_page = NULL; 1687 } else { 1688 async_chunk[i].locked_page = NULL; 1689 } 1690 1691 if (blkcg_css != blkcg_root_css) { 1692 css_get(blkcg_css); 1693 async_chunk[i].blkcg_css = blkcg_css; 1694 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1695 } else { 1696 async_chunk[i].blkcg_css = NULL; 1697 } 1698 1699 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1700 submit_compressed_extents); 1701 1702 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1703 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1704 1705 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1706 1707 start = cur_end + 1; 1708 } 1709 return true; 1710 } 1711 1712 /* 1713 * Run the delalloc range from start to end, and write back any dirty pages 1714 * covered by the range. 1715 */ 1716 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1717 struct page *locked_page, u64 start, 1718 u64 end, struct writeback_control *wbc, 1719 bool pages_dirty) 1720 { 1721 u64 done_offset = end; 1722 int ret; 1723 1724 while (start <= end) { 1725 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1726 true, false); 1727 if (ret) 1728 return ret; 1729 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1730 done_offset, wbc, pages_dirty); 1731 start = done_offset + 1; 1732 } 1733 1734 return 1; 1735 } 1736 1737 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1738 u64 bytenr, u64 num_bytes, bool nowait) 1739 { 1740 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1741 struct btrfs_ordered_sum *sums; 1742 int ret; 1743 LIST_HEAD(list); 1744 1745 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1746 &list, 0, nowait); 1747 if (ret == 0 && list_empty(&list)) 1748 return 0; 1749 1750 while (!list_empty(&list)) { 1751 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1752 list_del(&sums->list); 1753 kfree(sums); 1754 } 1755 if (ret < 0) 1756 return ret; 1757 return 1; 1758 } 1759 1760 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1761 const u64 start, const u64 end) 1762 { 1763 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1764 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1765 const u64 range_bytes = end + 1 - start; 1766 struct extent_io_tree *io_tree = &inode->io_tree; 1767 u64 range_start = start; 1768 u64 count; 1769 int ret; 1770 1771 /* 1772 * If EXTENT_NORESERVE is set it means that when the buffered write was 1773 * made we had not enough available data space and therefore we did not 1774 * reserve data space for it, since we though we could do NOCOW for the 1775 * respective file range (either there is prealloc extent or the inode 1776 * has the NOCOW bit set). 1777 * 1778 * However when we need to fallback to COW mode (because for example the 1779 * block group for the corresponding extent was turned to RO mode by a 1780 * scrub or relocation) we need to do the following: 1781 * 1782 * 1) We increment the bytes_may_use counter of the data space info. 1783 * If COW succeeds, it allocates a new data extent and after doing 1784 * that it decrements the space info's bytes_may_use counter and 1785 * increments its bytes_reserved counter by the same amount (we do 1786 * this at btrfs_add_reserved_bytes()). So we need to increment the 1787 * bytes_may_use counter to compensate (when space is reserved at 1788 * buffered write time, the bytes_may_use counter is incremented); 1789 * 1790 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1791 * that if the COW path fails for any reason, it decrements (through 1792 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1793 * data space info, which we incremented in the step above. 1794 * 1795 * If we need to fallback to cow and the inode corresponds to a free 1796 * space cache inode or an inode of the data relocation tree, we must 1797 * also increment bytes_may_use of the data space_info for the same 1798 * reason. Space caches and relocated data extents always get a prealloc 1799 * extent for them, however scrub or balance may have set the block 1800 * group that contains that extent to RO mode and therefore force COW 1801 * when starting writeback. 1802 */ 1803 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1804 EXTENT_NORESERVE, 0, NULL); 1805 if (count > 0 || is_space_ino || is_reloc_ino) { 1806 u64 bytes = count; 1807 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1808 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1809 1810 if (is_space_ino || is_reloc_ino) 1811 bytes = range_bytes; 1812 1813 spin_lock(&sinfo->lock); 1814 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1815 spin_unlock(&sinfo->lock); 1816 1817 if (count > 0) 1818 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1819 NULL); 1820 } 1821 1822 /* 1823 * Don't try to create inline extents, as a mix of inline extent that 1824 * is written out and unlocked directly and a normal NOCOW extent 1825 * doesn't work. 1826 */ 1827 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1828 ASSERT(ret != 1); 1829 return ret; 1830 } 1831 1832 struct can_nocow_file_extent_args { 1833 /* Input fields. */ 1834 1835 /* Start file offset of the range we want to NOCOW. */ 1836 u64 start; 1837 /* End file offset (inclusive) of the range we want to NOCOW. */ 1838 u64 end; 1839 bool writeback_path; 1840 bool strict; 1841 /* 1842 * Free the path passed to can_nocow_file_extent() once it's not needed 1843 * anymore. 1844 */ 1845 bool free_path; 1846 1847 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1848 1849 u64 disk_bytenr; 1850 u64 disk_num_bytes; 1851 u64 extent_offset; 1852 /* Number of bytes that can be written to in NOCOW mode. */ 1853 u64 num_bytes; 1854 }; 1855 1856 /* 1857 * Check if we can NOCOW the file extent that the path points to. 1858 * This function may return with the path released, so the caller should check 1859 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1860 * 1861 * Returns: < 0 on error 1862 * 0 if we can not NOCOW 1863 * 1 if we can NOCOW 1864 */ 1865 static int can_nocow_file_extent(struct btrfs_path *path, 1866 struct btrfs_key *key, 1867 struct btrfs_inode *inode, 1868 struct can_nocow_file_extent_args *args) 1869 { 1870 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1871 struct extent_buffer *leaf = path->nodes[0]; 1872 struct btrfs_root *root = inode->root; 1873 struct btrfs_file_extent_item *fi; 1874 u64 extent_end; 1875 u8 extent_type; 1876 int can_nocow = 0; 1877 int ret = 0; 1878 bool nowait = path->nowait; 1879 1880 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1881 extent_type = btrfs_file_extent_type(leaf, fi); 1882 1883 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1884 goto out; 1885 1886 /* Can't access these fields unless we know it's not an inline extent. */ 1887 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1888 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1889 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1890 1891 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1892 extent_type == BTRFS_FILE_EXTENT_REG) 1893 goto out; 1894 1895 /* 1896 * If the extent was created before the generation where the last snapshot 1897 * for its subvolume was created, then this implies the extent is shared, 1898 * hence we must COW. 1899 */ 1900 if (!args->strict && 1901 btrfs_file_extent_generation(leaf, fi) <= 1902 btrfs_root_last_snapshot(&root->root_item)) 1903 goto out; 1904 1905 /* An explicit hole, must COW. */ 1906 if (args->disk_bytenr == 0) 1907 goto out; 1908 1909 /* Compressed/encrypted/encoded extents must be COWed. */ 1910 if (btrfs_file_extent_compression(leaf, fi) || 1911 btrfs_file_extent_encryption(leaf, fi) || 1912 btrfs_file_extent_other_encoding(leaf, fi)) 1913 goto out; 1914 1915 extent_end = btrfs_file_extent_end(path); 1916 1917 /* 1918 * The following checks can be expensive, as they need to take other 1919 * locks and do btree or rbtree searches, so release the path to avoid 1920 * blocking other tasks for too long. 1921 */ 1922 btrfs_release_path(path); 1923 1924 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1925 key->offset - args->extent_offset, 1926 args->disk_bytenr, args->strict, path); 1927 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1928 if (ret != 0) 1929 goto out; 1930 1931 if (args->free_path) { 1932 /* 1933 * We don't need the path anymore, plus through the 1934 * csum_exist_in_range() call below we will end up allocating 1935 * another path. So free the path to avoid unnecessary extra 1936 * memory usage. 1937 */ 1938 btrfs_free_path(path); 1939 path = NULL; 1940 } 1941 1942 /* If there are pending snapshots for this root, we must COW. */ 1943 if (args->writeback_path && !is_freespace_inode && 1944 atomic_read(&root->snapshot_force_cow)) 1945 goto out; 1946 1947 args->disk_bytenr += args->extent_offset; 1948 args->disk_bytenr += args->start - key->offset; 1949 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1950 1951 /* 1952 * Force COW if csums exist in the range. This ensures that csums for a 1953 * given extent are either valid or do not exist. 1954 */ 1955 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1956 nowait); 1957 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1958 if (ret != 0) 1959 goto out; 1960 1961 can_nocow = 1; 1962 out: 1963 if (args->free_path && path) 1964 btrfs_free_path(path); 1965 1966 return ret < 0 ? ret : can_nocow; 1967 } 1968 1969 /* 1970 * when nowcow writeback call back. This checks for snapshots or COW copies 1971 * of the extents that exist in the file, and COWs the file as required. 1972 * 1973 * If no cow copies or snapshots exist, we write directly to the existing 1974 * blocks on disk 1975 */ 1976 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1977 struct page *locked_page, 1978 const u64 start, const u64 end) 1979 { 1980 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1981 struct btrfs_root *root = inode->root; 1982 struct btrfs_path *path; 1983 u64 cow_start = (u64)-1; 1984 u64 cur_offset = start; 1985 int ret; 1986 bool check_prev = true; 1987 u64 ino = btrfs_ino(inode); 1988 struct can_nocow_file_extent_args nocow_args = { 0 }; 1989 1990 /* 1991 * Normally on a zoned device we're only doing COW writes, but in case 1992 * of relocation on a zoned filesystem serializes I/O so that we're only 1993 * writing sequentially and can end up here as well. 1994 */ 1995 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 1996 1997 path = btrfs_alloc_path(); 1998 if (!path) { 1999 ret = -ENOMEM; 2000 goto error; 2001 } 2002 2003 nocow_args.end = end; 2004 nocow_args.writeback_path = true; 2005 2006 while (1) { 2007 struct btrfs_block_group *nocow_bg = NULL; 2008 struct btrfs_ordered_extent *ordered; 2009 struct btrfs_key found_key; 2010 struct btrfs_file_extent_item *fi; 2011 struct extent_buffer *leaf; 2012 u64 extent_end; 2013 u64 ram_bytes; 2014 u64 nocow_end; 2015 int extent_type; 2016 bool is_prealloc; 2017 2018 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2019 cur_offset, 0); 2020 if (ret < 0) 2021 goto error; 2022 2023 /* 2024 * If there is no extent for our range when doing the initial 2025 * search, then go back to the previous slot as it will be the 2026 * one containing the search offset 2027 */ 2028 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2029 leaf = path->nodes[0]; 2030 btrfs_item_key_to_cpu(leaf, &found_key, 2031 path->slots[0] - 1); 2032 if (found_key.objectid == ino && 2033 found_key.type == BTRFS_EXTENT_DATA_KEY) 2034 path->slots[0]--; 2035 } 2036 check_prev = false; 2037 next_slot: 2038 /* Go to next leaf if we have exhausted the current one */ 2039 leaf = path->nodes[0]; 2040 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2041 ret = btrfs_next_leaf(root, path); 2042 if (ret < 0) 2043 goto error; 2044 if (ret > 0) 2045 break; 2046 leaf = path->nodes[0]; 2047 } 2048 2049 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2050 2051 /* Didn't find anything for our INO */ 2052 if (found_key.objectid > ino) 2053 break; 2054 /* 2055 * Keep searching until we find an EXTENT_ITEM or there are no 2056 * more extents for this inode 2057 */ 2058 if (WARN_ON_ONCE(found_key.objectid < ino) || 2059 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2060 path->slots[0]++; 2061 goto next_slot; 2062 } 2063 2064 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2065 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2066 found_key.offset > end) 2067 break; 2068 2069 /* 2070 * If the found extent starts after requested offset, then 2071 * adjust extent_end to be right before this extent begins 2072 */ 2073 if (found_key.offset > cur_offset) { 2074 extent_end = found_key.offset; 2075 extent_type = 0; 2076 goto must_cow; 2077 } 2078 2079 /* 2080 * Found extent which begins before our range and potentially 2081 * intersect it 2082 */ 2083 fi = btrfs_item_ptr(leaf, path->slots[0], 2084 struct btrfs_file_extent_item); 2085 extent_type = btrfs_file_extent_type(leaf, fi); 2086 /* If this is triggered then we have a memory corruption. */ 2087 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2088 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2089 ret = -EUCLEAN; 2090 goto error; 2091 } 2092 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2093 extent_end = btrfs_file_extent_end(path); 2094 2095 /* 2096 * If the extent we got ends before our current offset, skip to 2097 * the next extent. 2098 */ 2099 if (extent_end <= cur_offset) { 2100 path->slots[0]++; 2101 goto next_slot; 2102 } 2103 2104 nocow_args.start = cur_offset; 2105 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2106 if (ret < 0) 2107 goto error; 2108 if (ret == 0) 2109 goto must_cow; 2110 2111 ret = 0; 2112 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2113 if (!nocow_bg) { 2114 must_cow: 2115 /* 2116 * If we can't perform NOCOW writeback for the range, 2117 * then record the beginning of the range that needs to 2118 * be COWed. It will be written out before the next 2119 * NOCOW range if we find one, or when exiting this 2120 * loop. 2121 */ 2122 if (cow_start == (u64)-1) 2123 cow_start = cur_offset; 2124 cur_offset = extent_end; 2125 if (cur_offset > end) 2126 break; 2127 if (!path->nodes[0]) 2128 continue; 2129 path->slots[0]++; 2130 goto next_slot; 2131 } 2132 2133 /* 2134 * COW range from cow_start to found_key.offset - 1. As the key 2135 * will contain the beginning of the first extent that can be 2136 * NOCOW, following one which needs to be COW'ed 2137 */ 2138 if (cow_start != (u64)-1) { 2139 ret = fallback_to_cow(inode, locked_page, 2140 cow_start, found_key.offset - 1); 2141 cow_start = (u64)-1; 2142 if (ret) { 2143 btrfs_dec_nocow_writers(nocow_bg); 2144 goto error; 2145 } 2146 } 2147 2148 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2149 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2150 if (is_prealloc) { 2151 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2152 struct extent_map *em; 2153 2154 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2155 orig_start, 2156 nocow_args.disk_bytenr, /* block_start */ 2157 nocow_args.num_bytes, /* block_len */ 2158 nocow_args.disk_num_bytes, /* orig_block_len */ 2159 ram_bytes, BTRFS_COMPRESS_NONE, 2160 BTRFS_ORDERED_PREALLOC); 2161 if (IS_ERR(em)) { 2162 btrfs_dec_nocow_writers(nocow_bg); 2163 ret = PTR_ERR(em); 2164 goto error; 2165 } 2166 free_extent_map(em); 2167 } 2168 2169 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2170 nocow_args.num_bytes, nocow_args.num_bytes, 2171 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2172 is_prealloc 2173 ? (1 << BTRFS_ORDERED_PREALLOC) 2174 : (1 << BTRFS_ORDERED_NOCOW), 2175 BTRFS_COMPRESS_NONE); 2176 btrfs_dec_nocow_writers(nocow_bg); 2177 if (IS_ERR(ordered)) { 2178 if (is_prealloc) { 2179 btrfs_drop_extent_map_range(inode, cur_offset, 2180 nocow_end, false); 2181 } 2182 ret = PTR_ERR(ordered); 2183 goto error; 2184 } 2185 2186 if (btrfs_is_data_reloc_root(root)) 2187 /* 2188 * Error handled later, as we must prevent 2189 * extent_clear_unlock_delalloc() in error handler 2190 * from freeing metadata of created ordered extent. 2191 */ 2192 ret = btrfs_reloc_clone_csums(ordered); 2193 btrfs_put_ordered_extent(ordered); 2194 2195 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2196 locked_page, EXTENT_LOCKED | 2197 EXTENT_DELALLOC | 2198 EXTENT_CLEAR_DATA_RESV, 2199 PAGE_UNLOCK | PAGE_SET_ORDERED); 2200 2201 cur_offset = extent_end; 2202 2203 /* 2204 * btrfs_reloc_clone_csums() error, now we're OK to call error 2205 * handler, as metadata for created ordered extent will only 2206 * be freed by btrfs_finish_ordered_io(). 2207 */ 2208 if (ret) 2209 goto error; 2210 if (cur_offset > end) 2211 break; 2212 } 2213 btrfs_release_path(path); 2214 2215 if (cur_offset <= end && cow_start == (u64)-1) 2216 cow_start = cur_offset; 2217 2218 if (cow_start != (u64)-1) { 2219 cur_offset = end; 2220 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2221 cow_start = (u64)-1; 2222 if (ret) 2223 goto error; 2224 } 2225 2226 btrfs_free_path(path); 2227 return 0; 2228 2229 error: 2230 /* 2231 * If an error happened while a COW region is outstanding, cur_offset 2232 * needs to be reset to cow_start to ensure the COW region is unlocked 2233 * as well. 2234 */ 2235 if (cow_start != (u64)-1) 2236 cur_offset = cow_start; 2237 if (cur_offset < end) 2238 extent_clear_unlock_delalloc(inode, cur_offset, end, 2239 locked_page, EXTENT_LOCKED | 2240 EXTENT_DELALLOC | EXTENT_DEFRAG | 2241 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2242 PAGE_START_WRITEBACK | 2243 PAGE_END_WRITEBACK); 2244 btrfs_free_path(path); 2245 return ret; 2246 } 2247 2248 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2249 { 2250 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2251 if (inode->defrag_bytes && 2252 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2253 return false; 2254 return true; 2255 } 2256 return false; 2257 } 2258 2259 /* 2260 * Function to process delayed allocation (create CoW) for ranges which are 2261 * being touched for the first time. 2262 */ 2263 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2264 u64 start, u64 end, struct writeback_control *wbc) 2265 { 2266 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2267 int ret; 2268 2269 /* 2270 * The range must cover part of the @locked_page, or a return of 1 2271 * can confuse the caller. 2272 */ 2273 ASSERT(!(end <= page_offset(locked_page) || 2274 start >= page_offset(locked_page) + PAGE_SIZE)); 2275 2276 if (should_nocow(inode, start, end)) { 2277 ret = run_delalloc_nocow(inode, locked_page, start, end); 2278 goto out; 2279 } 2280 2281 if (btrfs_inode_can_compress(inode) && 2282 inode_need_compress(inode, start, end) && 2283 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2284 return 1; 2285 2286 if (zoned) 2287 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2288 true); 2289 else 2290 ret = cow_file_range(inode, locked_page, start, end, NULL, 2291 false, false); 2292 2293 out: 2294 if (ret < 0) 2295 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2296 end - start + 1); 2297 return ret; 2298 } 2299 2300 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2301 struct extent_state *orig, u64 split) 2302 { 2303 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2304 u64 size; 2305 2306 lockdep_assert_held(&inode->io_tree.lock); 2307 2308 /* not delalloc, ignore it */ 2309 if (!(orig->state & EXTENT_DELALLOC)) 2310 return; 2311 2312 size = orig->end - orig->start + 1; 2313 if (size > fs_info->max_extent_size) { 2314 u32 num_extents; 2315 u64 new_size; 2316 2317 /* 2318 * See the explanation in btrfs_merge_delalloc_extent, the same 2319 * applies here, just in reverse. 2320 */ 2321 new_size = orig->end - split + 1; 2322 num_extents = count_max_extents(fs_info, new_size); 2323 new_size = split - orig->start; 2324 num_extents += count_max_extents(fs_info, new_size); 2325 if (count_max_extents(fs_info, size) >= num_extents) 2326 return; 2327 } 2328 2329 spin_lock(&inode->lock); 2330 btrfs_mod_outstanding_extents(inode, 1); 2331 spin_unlock(&inode->lock); 2332 } 2333 2334 /* 2335 * Handle merged delayed allocation extents so we can keep track of new extents 2336 * that are just merged onto old extents, such as when we are doing sequential 2337 * writes, so we can properly account for the metadata space we'll need. 2338 */ 2339 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2340 struct extent_state *other) 2341 { 2342 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2343 u64 new_size, old_size; 2344 u32 num_extents; 2345 2346 lockdep_assert_held(&inode->io_tree.lock); 2347 2348 /* not delalloc, ignore it */ 2349 if (!(other->state & EXTENT_DELALLOC)) 2350 return; 2351 2352 if (new->start > other->start) 2353 new_size = new->end - other->start + 1; 2354 else 2355 new_size = other->end - new->start + 1; 2356 2357 /* we're not bigger than the max, unreserve the space and go */ 2358 if (new_size <= fs_info->max_extent_size) { 2359 spin_lock(&inode->lock); 2360 btrfs_mod_outstanding_extents(inode, -1); 2361 spin_unlock(&inode->lock); 2362 return; 2363 } 2364 2365 /* 2366 * We have to add up either side to figure out how many extents were 2367 * accounted for before we merged into one big extent. If the number of 2368 * extents we accounted for is <= the amount we need for the new range 2369 * then we can return, otherwise drop. Think of it like this 2370 * 2371 * [ 4k][MAX_SIZE] 2372 * 2373 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2374 * need 2 outstanding extents, on one side we have 1 and the other side 2375 * we have 1 so they are == and we can return. But in this case 2376 * 2377 * [MAX_SIZE+4k][MAX_SIZE+4k] 2378 * 2379 * Each range on their own accounts for 2 extents, but merged together 2380 * they are only 3 extents worth of accounting, so we need to drop in 2381 * this case. 2382 */ 2383 old_size = other->end - other->start + 1; 2384 num_extents = count_max_extents(fs_info, old_size); 2385 old_size = new->end - new->start + 1; 2386 num_extents += count_max_extents(fs_info, old_size); 2387 if (count_max_extents(fs_info, new_size) >= num_extents) 2388 return; 2389 2390 spin_lock(&inode->lock); 2391 btrfs_mod_outstanding_extents(inode, -1); 2392 spin_unlock(&inode->lock); 2393 } 2394 2395 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2396 { 2397 struct btrfs_root *root = inode->root; 2398 struct btrfs_fs_info *fs_info = root->fs_info; 2399 2400 spin_lock(&root->delalloc_lock); 2401 ASSERT(list_empty(&inode->delalloc_inodes)); 2402 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2403 root->nr_delalloc_inodes++; 2404 if (root->nr_delalloc_inodes == 1) { 2405 spin_lock(&fs_info->delalloc_root_lock); 2406 ASSERT(list_empty(&root->delalloc_root)); 2407 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2408 spin_unlock(&fs_info->delalloc_root_lock); 2409 } 2410 spin_unlock(&root->delalloc_lock); 2411 } 2412 2413 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2414 { 2415 struct btrfs_root *root = inode->root; 2416 struct btrfs_fs_info *fs_info = root->fs_info; 2417 2418 lockdep_assert_held(&root->delalloc_lock); 2419 2420 /* 2421 * We may be called after the inode was already deleted from the list, 2422 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2423 * and then later through btrfs_clear_delalloc_extent() while the inode 2424 * still has ->delalloc_bytes > 0. 2425 */ 2426 if (!list_empty(&inode->delalloc_inodes)) { 2427 list_del_init(&inode->delalloc_inodes); 2428 root->nr_delalloc_inodes--; 2429 if (!root->nr_delalloc_inodes) { 2430 ASSERT(list_empty(&root->delalloc_inodes)); 2431 spin_lock(&fs_info->delalloc_root_lock); 2432 ASSERT(!list_empty(&root->delalloc_root)); 2433 list_del_init(&root->delalloc_root); 2434 spin_unlock(&fs_info->delalloc_root_lock); 2435 } 2436 } 2437 } 2438 2439 /* 2440 * Properly track delayed allocation bytes in the inode and to maintain the 2441 * list of inodes that have pending delalloc work to be done. 2442 */ 2443 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2444 u32 bits) 2445 { 2446 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2447 2448 lockdep_assert_held(&inode->io_tree.lock); 2449 2450 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2451 WARN_ON(1); 2452 /* 2453 * set_bit and clear bit hooks normally require _irqsave/restore 2454 * but in this case, we are only testing for the DELALLOC 2455 * bit, which is only set or cleared with irqs on 2456 */ 2457 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2458 u64 len = state->end + 1 - state->start; 2459 u64 prev_delalloc_bytes; 2460 u32 num_extents = count_max_extents(fs_info, len); 2461 2462 spin_lock(&inode->lock); 2463 btrfs_mod_outstanding_extents(inode, num_extents); 2464 spin_unlock(&inode->lock); 2465 2466 /* For sanity tests */ 2467 if (btrfs_is_testing(fs_info)) 2468 return; 2469 2470 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2471 fs_info->delalloc_batch); 2472 spin_lock(&inode->lock); 2473 prev_delalloc_bytes = inode->delalloc_bytes; 2474 inode->delalloc_bytes += len; 2475 if (bits & EXTENT_DEFRAG) 2476 inode->defrag_bytes += len; 2477 spin_unlock(&inode->lock); 2478 2479 /* 2480 * We don't need to be under the protection of the inode's lock, 2481 * because we are called while holding the inode's io_tree lock 2482 * and are therefore protected against concurrent calls of this 2483 * function and btrfs_clear_delalloc_extent(). 2484 */ 2485 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2486 btrfs_add_delalloc_inode(inode); 2487 } 2488 2489 if (!(state->state & EXTENT_DELALLOC_NEW) && 2490 (bits & EXTENT_DELALLOC_NEW)) { 2491 spin_lock(&inode->lock); 2492 inode->new_delalloc_bytes += state->end + 1 - state->start; 2493 spin_unlock(&inode->lock); 2494 } 2495 } 2496 2497 /* 2498 * Once a range is no longer delalloc this function ensures that proper 2499 * accounting happens. 2500 */ 2501 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2502 struct extent_state *state, u32 bits) 2503 { 2504 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2505 u64 len = state->end + 1 - state->start; 2506 u32 num_extents = count_max_extents(fs_info, len); 2507 2508 lockdep_assert_held(&inode->io_tree.lock); 2509 2510 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2511 spin_lock(&inode->lock); 2512 inode->defrag_bytes -= len; 2513 spin_unlock(&inode->lock); 2514 } 2515 2516 /* 2517 * set_bit and clear bit hooks normally require _irqsave/restore 2518 * but in this case, we are only testing for the DELALLOC 2519 * bit, which is only set or cleared with irqs on 2520 */ 2521 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2522 struct btrfs_root *root = inode->root; 2523 u64 new_delalloc_bytes; 2524 2525 spin_lock(&inode->lock); 2526 btrfs_mod_outstanding_extents(inode, -num_extents); 2527 spin_unlock(&inode->lock); 2528 2529 /* 2530 * We don't reserve metadata space for space cache inodes so we 2531 * don't need to call delalloc_release_metadata if there is an 2532 * error. 2533 */ 2534 if (bits & EXTENT_CLEAR_META_RESV && 2535 root != fs_info->tree_root) 2536 btrfs_delalloc_release_metadata(inode, len, true); 2537 2538 /* For sanity tests. */ 2539 if (btrfs_is_testing(fs_info)) 2540 return; 2541 2542 if (!btrfs_is_data_reloc_root(root) && 2543 !btrfs_is_free_space_inode(inode) && 2544 !(state->state & EXTENT_NORESERVE) && 2545 (bits & EXTENT_CLEAR_DATA_RESV)) 2546 btrfs_free_reserved_data_space_noquota(fs_info, len); 2547 2548 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2549 fs_info->delalloc_batch); 2550 spin_lock(&inode->lock); 2551 inode->delalloc_bytes -= len; 2552 new_delalloc_bytes = inode->delalloc_bytes; 2553 spin_unlock(&inode->lock); 2554 2555 /* 2556 * We don't need to be under the protection of the inode's lock, 2557 * because we are called while holding the inode's io_tree lock 2558 * and are therefore protected against concurrent calls of this 2559 * function and btrfs_set_delalloc_extent(). 2560 */ 2561 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2562 spin_lock(&root->delalloc_lock); 2563 btrfs_del_delalloc_inode(inode); 2564 spin_unlock(&root->delalloc_lock); 2565 } 2566 } 2567 2568 if ((state->state & EXTENT_DELALLOC_NEW) && 2569 (bits & EXTENT_DELALLOC_NEW)) { 2570 spin_lock(&inode->lock); 2571 ASSERT(inode->new_delalloc_bytes >= len); 2572 inode->new_delalloc_bytes -= len; 2573 if (bits & EXTENT_ADD_INODE_BYTES) 2574 inode_add_bytes(&inode->vfs_inode, len); 2575 spin_unlock(&inode->lock); 2576 } 2577 } 2578 2579 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2580 struct btrfs_ordered_extent *ordered) 2581 { 2582 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2583 u64 len = bbio->bio.bi_iter.bi_size; 2584 struct btrfs_ordered_extent *new; 2585 int ret; 2586 2587 /* Must always be called for the beginning of an ordered extent. */ 2588 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2589 return -EINVAL; 2590 2591 /* No need to split if the ordered extent covers the entire bio. */ 2592 if (ordered->disk_num_bytes == len) { 2593 refcount_inc(&ordered->refs); 2594 bbio->ordered = ordered; 2595 return 0; 2596 } 2597 2598 /* 2599 * Don't split the extent_map for NOCOW extents, as we're writing into 2600 * a pre-existing one. 2601 */ 2602 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2603 ret = split_extent_map(bbio->inode, bbio->file_offset, 2604 ordered->num_bytes, len, 2605 ordered->disk_bytenr); 2606 if (ret) 2607 return ret; 2608 } 2609 2610 new = btrfs_split_ordered_extent(ordered, len); 2611 if (IS_ERR(new)) 2612 return PTR_ERR(new); 2613 bbio->ordered = new; 2614 return 0; 2615 } 2616 2617 /* 2618 * given a list of ordered sums record them in the inode. This happens 2619 * at IO completion time based on sums calculated at bio submission time. 2620 */ 2621 static int add_pending_csums(struct btrfs_trans_handle *trans, 2622 struct list_head *list) 2623 { 2624 struct btrfs_ordered_sum *sum; 2625 struct btrfs_root *csum_root = NULL; 2626 int ret; 2627 2628 list_for_each_entry(sum, list, list) { 2629 trans->adding_csums = true; 2630 if (!csum_root) 2631 csum_root = btrfs_csum_root(trans->fs_info, 2632 sum->logical); 2633 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2634 trans->adding_csums = false; 2635 if (ret) 2636 return ret; 2637 } 2638 return 0; 2639 } 2640 2641 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2642 const u64 start, 2643 const u64 len, 2644 struct extent_state **cached_state) 2645 { 2646 u64 search_start = start; 2647 const u64 end = start + len - 1; 2648 2649 while (search_start < end) { 2650 const u64 search_len = end - search_start + 1; 2651 struct extent_map *em; 2652 u64 em_len; 2653 int ret = 0; 2654 2655 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2656 if (IS_ERR(em)) 2657 return PTR_ERR(em); 2658 2659 if (em->block_start != EXTENT_MAP_HOLE) 2660 goto next; 2661 2662 em_len = em->len; 2663 if (em->start < search_start) 2664 em_len -= search_start - em->start; 2665 if (em_len > search_len) 2666 em_len = search_len; 2667 2668 ret = set_extent_bit(&inode->io_tree, search_start, 2669 search_start + em_len - 1, 2670 EXTENT_DELALLOC_NEW, cached_state); 2671 next: 2672 search_start = extent_map_end(em); 2673 free_extent_map(em); 2674 if (ret) 2675 return ret; 2676 } 2677 return 0; 2678 } 2679 2680 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2681 unsigned int extra_bits, 2682 struct extent_state **cached_state) 2683 { 2684 WARN_ON(PAGE_ALIGNED(end)); 2685 2686 if (start >= i_size_read(&inode->vfs_inode) && 2687 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2688 /* 2689 * There can't be any extents following eof in this case so just 2690 * set the delalloc new bit for the range directly. 2691 */ 2692 extra_bits |= EXTENT_DELALLOC_NEW; 2693 } else { 2694 int ret; 2695 2696 ret = btrfs_find_new_delalloc_bytes(inode, start, 2697 end + 1 - start, 2698 cached_state); 2699 if (ret) 2700 return ret; 2701 } 2702 2703 return set_extent_bit(&inode->io_tree, start, end, 2704 EXTENT_DELALLOC | extra_bits, cached_state); 2705 } 2706 2707 /* see btrfs_writepage_start_hook for details on why this is required */ 2708 struct btrfs_writepage_fixup { 2709 struct page *page; 2710 struct btrfs_inode *inode; 2711 struct btrfs_work work; 2712 }; 2713 2714 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2715 { 2716 struct btrfs_writepage_fixup *fixup = 2717 container_of(work, struct btrfs_writepage_fixup, work); 2718 struct btrfs_ordered_extent *ordered; 2719 struct extent_state *cached_state = NULL; 2720 struct extent_changeset *data_reserved = NULL; 2721 struct page *page = fixup->page; 2722 struct btrfs_inode *inode = fixup->inode; 2723 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2724 u64 page_start = page_offset(page); 2725 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2726 int ret = 0; 2727 bool free_delalloc_space = true; 2728 2729 /* 2730 * This is similar to page_mkwrite, we need to reserve the space before 2731 * we take the page lock. 2732 */ 2733 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2734 PAGE_SIZE); 2735 again: 2736 lock_page(page); 2737 2738 /* 2739 * Before we queued this fixup, we took a reference on the page. 2740 * page->mapping may go NULL, but it shouldn't be moved to a different 2741 * address space. 2742 */ 2743 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2744 /* 2745 * Unfortunately this is a little tricky, either 2746 * 2747 * 1) We got here and our page had already been dealt with and 2748 * we reserved our space, thus ret == 0, so we need to just 2749 * drop our space reservation and bail. This can happen the 2750 * first time we come into the fixup worker, or could happen 2751 * while waiting for the ordered extent. 2752 * 2) Our page was already dealt with, but we happened to get an 2753 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2754 * this case we obviously don't have anything to release, but 2755 * because the page was already dealt with we don't want to 2756 * mark the page with an error, so make sure we're resetting 2757 * ret to 0. This is why we have this check _before_ the ret 2758 * check, because we do not want to have a surprise ENOSPC 2759 * when the page was already properly dealt with. 2760 */ 2761 if (!ret) { 2762 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2763 btrfs_delalloc_release_space(inode, data_reserved, 2764 page_start, PAGE_SIZE, 2765 true); 2766 } 2767 ret = 0; 2768 goto out_page; 2769 } 2770 2771 /* 2772 * We can't mess with the page state unless it is locked, so now that 2773 * it is locked bail if we failed to make our space reservation. 2774 */ 2775 if (ret) 2776 goto out_page; 2777 2778 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2779 2780 /* already ordered? We're done */ 2781 if (PageOrdered(page)) 2782 goto out_reserved; 2783 2784 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2785 if (ordered) { 2786 unlock_extent(&inode->io_tree, page_start, page_end, 2787 &cached_state); 2788 unlock_page(page); 2789 btrfs_start_ordered_extent(ordered); 2790 btrfs_put_ordered_extent(ordered); 2791 goto again; 2792 } 2793 2794 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2795 &cached_state); 2796 if (ret) 2797 goto out_reserved; 2798 2799 /* 2800 * Everything went as planned, we're now the owner of a dirty page with 2801 * delayed allocation bits set and space reserved for our COW 2802 * destination. 2803 * 2804 * The page was dirty when we started, nothing should have cleaned it. 2805 */ 2806 BUG_ON(!PageDirty(page)); 2807 free_delalloc_space = false; 2808 out_reserved: 2809 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2810 if (free_delalloc_space) 2811 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2812 PAGE_SIZE, true); 2813 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2814 out_page: 2815 if (ret) { 2816 /* 2817 * We hit ENOSPC or other errors. Update the mapping and page 2818 * to reflect the errors and clean the page. 2819 */ 2820 mapping_set_error(page->mapping, ret); 2821 btrfs_mark_ordered_io_finished(inode, page, page_start, 2822 PAGE_SIZE, !ret); 2823 clear_page_dirty_for_io(page); 2824 } 2825 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE); 2826 unlock_page(page); 2827 put_page(page); 2828 kfree(fixup); 2829 extent_changeset_free(data_reserved); 2830 /* 2831 * As a precaution, do a delayed iput in case it would be the last iput 2832 * that could need flushing space. Recursing back to fixup worker would 2833 * deadlock. 2834 */ 2835 btrfs_add_delayed_iput(inode); 2836 } 2837 2838 /* 2839 * There are a few paths in the higher layers of the kernel that directly 2840 * set the page dirty bit without asking the filesystem if it is a 2841 * good idea. This causes problems because we want to make sure COW 2842 * properly happens and the data=ordered rules are followed. 2843 * 2844 * In our case any range that doesn't have the ORDERED bit set 2845 * hasn't been properly setup for IO. We kick off an async process 2846 * to fix it up. The async helper will wait for ordered extents, set 2847 * the delalloc bit and make it safe to write the page. 2848 */ 2849 int btrfs_writepage_cow_fixup(struct page *page) 2850 { 2851 struct inode *inode = page->mapping->host; 2852 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2853 struct btrfs_writepage_fixup *fixup; 2854 2855 /* This page has ordered extent covering it already */ 2856 if (PageOrdered(page)) 2857 return 0; 2858 2859 /* 2860 * PageChecked is set below when we create a fixup worker for this page, 2861 * don't try to create another one if we're already PageChecked() 2862 * 2863 * The extent_io writepage code will redirty the page if we send back 2864 * EAGAIN. 2865 */ 2866 if (PageChecked(page)) 2867 return -EAGAIN; 2868 2869 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2870 if (!fixup) 2871 return -EAGAIN; 2872 2873 /* 2874 * We are already holding a reference to this inode from 2875 * write_cache_pages. We need to hold it because the space reservation 2876 * takes place outside of the page lock, and we can't trust 2877 * page->mapping outside of the page lock. 2878 */ 2879 ihold(inode); 2880 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE); 2881 get_page(page); 2882 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2883 fixup->page = page; 2884 fixup->inode = BTRFS_I(inode); 2885 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2886 2887 return -EAGAIN; 2888 } 2889 2890 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2891 struct btrfs_inode *inode, u64 file_pos, 2892 struct btrfs_file_extent_item *stack_fi, 2893 const bool update_inode_bytes, 2894 u64 qgroup_reserved) 2895 { 2896 struct btrfs_root *root = inode->root; 2897 const u64 sectorsize = root->fs_info->sectorsize; 2898 struct btrfs_path *path; 2899 struct extent_buffer *leaf; 2900 struct btrfs_key ins; 2901 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2902 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2903 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2904 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2905 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2906 struct btrfs_drop_extents_args drop_args = { 0 }; 2907 int ret; 2908 2909 path = btrfs_alloc_path(); 2910 if (!path) 2911 return -ENOMEM; 2912 2913 /* 2914 * we may be replacing one extent in the tree with another. 2915 * The new extent is pinned in the extent map, and we don't want 2916 * to drop it from the cache until it is completely in the btree. 2917 * 2918 * So, tell btrfs_drop_extents to leave this extent in the cache. 2919 * the caller is expected to unpin it and allow it to be merged 2920 * with the others. 2921 */ 2922 drop_args.path = path; 2923 drop_args.start = file_pos; 2924 drop_args.end = file_pos + num_bytes; 2925 drop_args.replace_extent = true; 2926 drop_args.extent_item_size = sizeof(*stack_fi); 2927 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2928 if (ret) 2929 goto out; 2930 2931 if (!drop_args.extent_inserted) { 2932 ins.objectid = btrfs_ino(inode); 2933 ins.offset = file_pos; 2934 ins.type = BTRFS_EXTENT_DATA_KEY; 2935 2936 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2937 sizeof(*stack_fi)); 2938 if (ret) 2939 goto out; 2940 } 2941 leaf = path->nodes[0]; 2942 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2943 write_extent_buffer(leaf, stack_fi, 2944 btrfs_item_ptr_offset(leaf, path->slots[0]), 2945 sizeof(struct btrfs_file_extent_item)); 2946 2947 btrfs_mark_buffer_dirty(trans, leaf); 2948 btrfs_release_path(path); 2949 2950 /* 2951 * If we dropped an inline extent here, we know the range where it is 2952 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2953 * number of bytes only for that range containing the inline extent. 2954 * The remaining of the range will be processed when clearning the 2955 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2956 */ 2957 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2958 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2959 2960 inline_size = drop_args.bytes_found - inline_size; 2961 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2962 drop_args.bytes_found -= inline_size; 2963 num_bytes -= sectorsize; 2964 } 2965 2966 if (update_inode_bytes) 2967 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2968 2969 ins.objectid = disk_bytenr; 2970 ins.offset = disk_num_bytes; 2971 ins.type = BTRFS_EXTENT_ITEM_KEY; 2972 2973 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2974 if (ret) 2975 goto out; 2976 2977 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2978 file_pos - offset, 2979 qgroup_reserved, &ins); 2980 out: 2981 btrfs_free_path(path); 2982 2983 return ret; 2984 } 2985 2986 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2987 u64 start, u64 len) 2988 { 2989 struct btrfs_block_group *cache; 2990 2991 cache = btrfs_lookup_block_group(fs_info, start); 2992 ASSERT(cache); 2993 2994 spin_lock(&cache->lock); 2995 cache->delalloc_bytes -= len; 2996 spin_unlock(&cache->lock); 2997 2998 btrfs_put_block_group(cache); 2999 } 3000 3001 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3002 struct btrfs_ordered_extent *oe) 3003 { 3004 struct btrfs_file_extent_item stack_fi; 3005 bool update_inode_bytes; 3006 u64 num_bytes = oe->num_bytes; 3007 u64 ram_bytes = oe->ram_bytes; 3008 3009 memset(&stack_fi, 0, sizeof(stack_fi)); 3010 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3011 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3012 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3013 oe->disk_num_bytes); 3014 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3015 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 3016 num_bytes = oe->truncated_len; 3017 ram_bytes = num_bytes; 3018 } 3019 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3020 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3021 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3022 /* Encryption and other encoding is reserved and all 0 */ 3023 3024 /* 3025 * For delalloc, when completing an ordered extent we update the inode's 3026 * bytes when clearing the range in the inode's io tree, so pass false 3027 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3028 * except if the ordered extent was truncated. 3029 */ 3030 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3031 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3032 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3033 3034 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3035 oe->file_offset, &stack_fi, 3036 update_inode_bytes, oe->qgroup_rsv); 3037 } 3038 3039 /* 3040 * As ordered data IO finishes, this gets called so we can finish 3041 * an ordered extent if the range of bytes in the file it covers are 3042 * fully written. 3043 */ 3044 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3045 { 3046 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3047 struct btrfs_root *root = inode->root; 3048 struct btrfs_fs_info *fs_info = root->fs_info; 3049 struct btrfs_trans_handle *trans = NULL; 3050 struct extent_io_tree *io_tree = &inode->io_tree; 3051 struct extent_state *cached_state = NULL; 3052 u64 start, end; 3053 int compress_type = 0; 3054 int ret = 0; 3055 u64 logical_len = ordered_extent->num_bytes; 3056 bool freespace_inode; 3057 bool truncated = false; 3058 bool clear_reserved_extent = true; 3059 unsigned int clear_bits = EXTENT_DEFRAG; 3060 3061 start = ordered_extent->file_offset; 3062 end = start + ordered_extent->num_bytes - 1; 3063 3064 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3065 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3066 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3067 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3068 clear_bits |= EXTENT_DELALLOC_NEW; 3069 3070 freespace_inode = btrfs_is_free_space_inode(inode); 3071 if (!freespace_inode) 3072 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3073 3074 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3075 ret = -EIO; 3076 goto out; 3077 } 3078 3079 if (btrfs_is_zoned(fs_info)) 3080 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3081 ordered_extent->disk_num_bytes); 3082 3083 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3084 truncated = true; 3085 logical_len = ordered_extent->truncated_len; 3086 /* Truncated the entire extent, don't bother adding */ 3087 if (!logical_len) 3088 goto out; 3089 } 3090 3091 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3092 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3093 3094 btrfs_inode_safe_disk_i_size_write(inode, 0); 3095 if (freespace_inode) 3096 trans = btrfs_join_transaction_spacecache(root); 3097 else 3098 trans = btrfs_join_transaction(root); 3099 if (IS_ERR(trans)) { 3100 ret = PTR_ERR(trans); 3101 trans = NULL; 3102 goto out; 3103 } 3104 trans->block_rsv = &inode->block_rsv; 3105 ret = btrfs_update_inode_fallback(trans, inode); 3106 if (ret) /* -ENOMEM or corruption */ 3107 btrfs_abort_transaction(trans, ret); 3108 goto out; 3109 } 3110 3111 clear_bits |= EXTENT_LOCKED; 3112 lock_extent(io_tree, start, end, &cached_state); 3113 3114 if (freespace_inode) 3115 trans = btrfs_join_transaction_spacecache(root); 3116 else 3117 trans = btrfs_join_transaction(root); 3118 if (IS_ERR(trans)) { 3119 ret = PTR_ERR(trans); 3120 trans = NULL; 3121 goto out; 3122 } 3123 3124 trans->block_rsv = &inode->block_rsv; 3125 3126 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3127 if (ret) 3128 goto out; 3129 3130 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3131 compress_type = ordered_extent->compress_type; 3132 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3133 BUG_ON(compress_type); 3134 ret = btrfs_mark_extent_written(trans, inode, 3135 ordered_extent->file_offset, 3136 ordered_extent->file_offset + 3137 logical_len); 3138 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3139 ordered_extent->disk_num_bytes); 3140 } else { 3141 BUG_ON(root == fs_info->tree_root); 3142 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3143 if (!ret) { 3144 clear_reserved_extent = false; 3145 btrfs_release_delalloc_bytes(fs_info, 3146 ordered_extent->disk_bytenr, 3147 ordered_extent->disk_num_bytes); 3148 } 3149 } 3150 if (ret < 0) { 3151 btrfs_abort_transaction(trans, ret); 3152 goto out; 3153 } 3154 3155 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3156 ordered_extent->num_bytes, trans->transid); 3157 if (ret < 0) { 3158 btrfs_abort_transaction(trans, ret); 3159 goto out; 3160 } 3161 3162 ret = add_pending_csums(trans, &ordered_extent->list); 3163 if (ret) { 3164 btrfs_abort_transaction(trans, ret); 3165 goto out; 3166 } 3167 3168 /* 3169 * If this is a new delalloc range, clear its new delalloc flag to 3170 * update the inode's number of bytes. This needs to be done first 3171 * before updating the inode item. 3172 */ 3173 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3174 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3175 clear_extent_bit(&inode->io_tree, start, end, 3176 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3177 &cached_state); 3178 3179 btrfs_inode_safe_disk_i_size_write(inode, 0); 3180 ret = btrfs_update_inode_fallback(trans, inode); 3181 if (ret) { /* -ENOMEM or corruption */ 3182 btrfs_abort_transaction(trans, ret); 3183 goto out; 3184 } 3185 ret = 0; 3186 out: 3187 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3188 &cached_state); 3189 3190 if (trans) 3191 btrfs_end_transaction(trans); 3192 3193 if (ret || truncated) { 3194 u64 unwritten_start = start; 3195 3196 /* 3197 * If we failed to finish this ordered extent for any reason we 3198 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3199 * extent, and mark the inode with the error if it wasn't 3200 * already set. Any error during writeback would have already 3201 * set the mapping error, so we need to set it if we're the ones 3202 * marking this ordered extent as failed. 3203 */ 3204 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3205 &ordered_extent->flags)) 3206 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3207 3208 if (truncated) 3209 unwritten_start += logical_len; 3210 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3211 3212 /* 3213 * Drop extent maps for the part of the extent we didn't write. 3214 * 3215 * We have an exception here for the free_space_inode, this is 3216 * because when we do btrfs_get_extent() on the free space inode 3217 * we will search the commit root. If this is a new block group 3218 * we won't find anything, and we will trip over the assert in 3219 * writepage where we do ASSERT(em->block_start != 3220 * EXTENT_MAP_HOLE). 3221 * 3222 * Theoretically we could also skip this for any NOCOW extent as 3223 * we don't mess with the extent map tree in the NOCOW case, but 3224 * for now simply skip this if we are the free space inode. 3225 */ 3226 if (!btrfs_is_free_space_inode(inode)) 3227 btrfs_drop_extent_map_range(inode, unwritten_start, 3228 end, false); 3229 3230 /* 3231 * If the ordered extent had an IOERR or something else went 3232 * wrong we need to return the space for this ordered extent 3233 * back to the allocator. We only free the extent in the 3234 * truncated case if we didn't write out the extent at all. 3235 * 3236 * If we made it past insert_reserved_file_extent before we 3237 * errored out then we don't need to do this as the accounting 3238 * has already been done. 3239 */ 3240 if ((ret || !logical_len) && 3241 clear_reserved_extent && 3242 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3243 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3244 /* 3245 * Discard the range before returning it back to the 3246 * free space pool 3247 */ 3248 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3249 btrfs_discard_extent(fs_info, 3250 ordered_extent->disk_bytenr, 3251 ordered_extent->disk_num_bytes, 3252 NULL); 3253 btrfs_free_reserved_extent(fs_info, 3254 ordered_extent->disk_bytenr, 3255 ordered_extent->disk_num_bytes, 1); 3256 /* 3257 * Actually free the qgroup rsv which was released when 3258 * the ordered extent was created. 3259 */ 3260 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, 3261 ordered_extent->qgroup_rsv, 3262 BTRFS_QGROUP_RSV_DATA); 3263 } 3264 } 3265 3266 /* 3267 * This needs to be done to make sure anybody waiting knows we are done 3268 * updating everything for this ordered extent. 3269 */ 3270 btrfs_remove_ordered_extent(inode, ordered_extent); 3271 3272 /* once for us */ 3273 btrfs_put_ordered_extent(ordered_extent); 3274 /* once for the tree */ 3275 btrfs_put_ordered_extent(ordered_extent); 3276 3277 return ret; 3278 } 3279 3280 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3281 { 3282 if (btrfs_is_zoned(inode_to_fs_info(ordered->inode)) && 3283 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3284 list_empty(&ordered->bioc_list)) 3285 btrfs_finish_ordered_zoned(ordered); 3286 return btrfs_finish_one_ordered(ordered); 3287 } 3288 3289 /* 3290 * Verify the checksum for a single sector without any extra action that depend 3291 * on the type of I/O. 3292 */ 3293 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3294 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3295 { 3296 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3297 char *kaddr; 3298 3299 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3300 3301 shash->tfm = fs_info->csum_shash; 3302 3303 kaddr = kmap_local_page(page) + pgoff; 3304 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3305 kunmap_local(kaddr); 3306 3307 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3308 return -EIO; 3309 return 0; 3310 } 3311 3312 /* 3313 * Verify the checksum of a single data sector. 3314 * 3315 * @bbio: btrfs_io_bio which contains the csum 3316 * @dev: device the sector is on 3317 * @bio_offset: offset to the beginning of the bio (in bytes) 3318 * @bv: bio_vec to check 3319 * 3320 * Check if the checksum on a data block is valid. When a checksum mismatch is 3321 * detected, report the error and fill the corrupted range with zero. 3322 * 3323 * Return %true if the sector is ok or had no checksum to start with, else %false. 3324 */ 3325 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3326 u32 bio_offset, struct bio_vec *bv) 3327 { 3328 struct btrfs_inode *inode = bbio->inode; 3329 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3330 u64 file_offset = bbio->file_offset + bio_offset; 3331 u64 end = file_offset + bv->bv_len - 1; 3332 u8 *csum_expected; 3333 u8 csum[BTRFS_CSUM_SIZE]; 3334 3335 ASSERT(bv->bv_len == fs_info->sectorsize); 3336 3337 if (!bbio->csum) 3338 return true; 3339 3340 if (btrfs_is_data_reloc_root(inode->root) && 3341 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3342 NULL)) { 3343 /* Skip the range without csum for data reloc inode */ 3344 clear_extent_bits(&inode->io_tree, file_offset, end, 3345 EXTENT_NODATASUM); 3346 return true; 3347 } 3348 3349 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3350 fs_info->csum_size; 3351 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3352 csum_expected)) 3353 goto zeroit; 3354 return true; 3355 3356 zeroit: 3357 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3358 bbio->mirror_num); 3359 if (dev) 3360 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3361 memzero_bvec(bv); 3362 return false; 3363 } 3364 3365 /* 3366 * Perform a delayed iput on @inode. 3367 * 3368 * @inode: The inode we want to perform iput on 3369 * 3370 * This function uses the generic vfs_inode::i_count to track whether we should 3371 * just decrement it (in case it's > 1) or if this is the last iput then link 3372 * the inode to the delayed iput machinery. Delayed iputs are processed at 3373 * transaction commit time/superblock commit/cleaner kthread. 3374 */ 3375 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3376 { 3377 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3378 unsigned long flags; 3379 3380 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3381 return; 3382 3383 atomic_inc(&fs_info->nr_delayed_iputs); 3384 /* 3385 * Need to be irq safe here because we can be called from either an irq 3386 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3387 * context. 3388 */ 3389 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3390 ASSERT(list_empty(&inode->delayed_iput)); 3391 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3392 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3393 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3394 wake_up_process(fs_info->cleaner_kthread); 3395 } 3396 3397 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3398 struct btrfs_inode *inode) 3399 { 3400 list_del_init(&inode->delayed_iput); 3401 spin_unlock_irq(&fs_info->delayed_iput_lock); 3402 iput(&inode->vfs_inode); 3403 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3404 wake_up(&fs_info->delayed_iputs_wait); 3405 spin_lock_irq(&fs_info->delayed_iput_lock); 3406 } 3407 3408 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3409 struct btrfs_inode *inode) 3410 { 3411 if (!list_empty(&inode->delayed_iput)) { 3412 spin_lock_irq(&fs_info->delayed_iput_lock); 3413 if (!list_empty(&inode->delayed_iput)) 3414 run_delayed_iput_locked(fs_info, inode); 3415 spin_unlock_irq(&fs_info->delayed_iput_lock); 3416 } 3417 } 3418 3419 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3420 { 3421 /* 3422 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3423 * calls btrfs_add_delayed_iput() and that needs to lock 3424 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3425 * prevent a deadlock. 3426 */ 3427 spin_lock_irq(&fs_info->delayed_iput_lock); 3428 while (!list_empty(&fs_info->delayed_iputs)) { 3429 struct btrfs_inode *inode; 3430 3431 inode = list_first_entry(&fs_info->delayed_iputs, 3432 struct btrfs_inode, delayed_iput); 3433 run_delayed_iput_locked(fs_info, inode); 3434 if (need_resched()) { 3435 spin_unlock_irq(&fs_info->delayed_iput_lock); 3436 cond_resched(); 3437 spin_lock_irq(&fs_info->delayed_iput_lock); 3438 } 3439 } 3440 spin_unlock_irq(&fs_info->delayed_iput_lock); 3441 } 3442 3443 /* 3444 * Wait for flushing all delayed iputs 3445 * 3446 * @fs_info: the filesystem 3447 * 3448 * This will wait on any delayed iputs that are currently running with KILLABLE 3449 * set. Once they are all done running we will return, unless we are killed in 3450 * which case we return EINTR. This helps in user operations like fallocate etc 3451 * that might get blocked on the iputs. 3452 * 3453 * Return EINTR if we were killed, 0 if nothing's pending 3454 */ 3455 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3456 { 3457 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3458 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3459 if (ret) 3460 return -EINTR; 3461 return 0; 3462 } 3463 3464 /* 3465 * This creates an orphan entry for the given inode in case something goes wrong 3466 * in the middle of an unlink. 3467 */ 3468 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3469 struct btrfs_inode *inode) 3470 { 3471 int ret; 3472 3473 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3474 if (ret && ret != -EEXIST) { 3475 btrfs_abort_transaction(trans, ret); 3476 return ret; 3477 } 3478 3479 return 0; 3480 } 3481 3482 /* 3483 * We have done the delete so we can go ahead and remove the orphan item for 3484 * this particular inode. 3485 */ 3486 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3487 struct btrfs_inode *inode) 3488 { 3489 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3490 } 3491 3492 /* 3493 * this cleans up any orphans that may be left on the list from the last use 3494 * of this root. 3495 */ 3496 int btrfs_orphan_cleanup(struct btrfs_root *root) 3497 { 3498 struct btrfs_fs_info *fs_info = root->fs_info; 3499 struct btrfs_path *path; 3500 struct extent_buffer *leaf; 3501 struct btrfs_key key, found_key; 3502 struct btrfs_trans_handle *trans; 3503 struct inode *inode; 3504 u64 last_objectid = 0; 3505 int ret = 0, nr_unlink = 0; 3506 3507 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3508 return 0; 3509 3510 path = btrfs_alloc_path(); 3511 if (!path) { 3512 ret = -ENOMEM; 3513 goto out; 3514 } 3515 path->reada = READA_BACK; 3516 3517 key.objectid = BTRFS_ORPHAN_OBJECTID; 3518 key.type = BTRFS_ORPHAN_ITEM_KEY; 3519 key.offset = (u64)-1; 3520 3521 while (1) { 3522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3523 if (ret < 0) 3524 goto out; 3525 3526 /* 3527 * if ret == 0 means we found what we were searching for, which 3528 * is weird, but possible, so only screw with path if we didn't 3529 * find the key and see if we have stuff that matches 3530 */ 3531 if (ret > 0) { 3532 ret = 0; 3533 if (path->slots[0] == 0) 3534 break; 3535 path->slots[0]--; 3536 } 3537 3538 /* pull out the item */ 3539 leaf = path->nodes[0]; 3540 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3541 3542 /* make sure the item matches what we want */ 3543 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3544 break; 3545 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3546 break; 3547 3548 /* release the path since we're done with it */ 3549 btrfs_release_path(path); 3550 3551 /* 3552 * this is where we are basically btrfs_lookup, without the 3553 * crossing root thing. we store the inode number in the 3554 * offset of the orphan item. 3555 */ 3556 3557 if (found_key.offset == last_objectid) { 3558 /* 3559 * We found the same inode as before. This means we were 3560 * not able to remove its items via eviction triggered 3561 * by an iput(). A transaction abort may have happened, 3562 * due to -ENOSPC for example, so try to grab the error 3563 * that lead to a transaction abort, if any. 3564 */ 3565 btrfs_err(fs_info, 3566 "Error removing orphan entry, stopping orphan cleanup"); 3567 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3568 goto out; 3569 } 3570 3571 last_objectid = found_key.offset; 3572 3573 found_key.objectid = found_key.offset; 3574 found_key.type = BTRFS_INODE_ITEM_KEY; 3575 found_key.offset = 0; 3576 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3577 if (IS_ERR(inode)) { 3578 ret = PTR_ERR(inode); 3579 inode = NULL; 3580 if (ret != -ENOENT) 3581 goto out; 3582 } 3583 3584 if (!inode && root == fs_info->tree_root) { 3585 struct btrfs_root *dead_root; 3586 int is_dead_root = 0; 3587 3588 /* 3589 * This is an orphan in the tree root. Currently these 3590 * could come from 2 sources: 3591 * a) a root (snapshot/subvolume) deletion in progress 3592 * b) a free space cache inode 3593 * We need to distinguish those two, as the orphan item 3594 * for a root must not get deleted before the deletion 3595 * of the snapshot/subvolume's tree completes. 3596 * 3597 * btrfs_find_orphan_roots() ran before us, which has 3598 * found all deleted roots and loaded them into 3599 * fs_info->fs_roots_radix. So here we can find if an 3600 * orphan item corresponds to a deleted root by looking 3601 * up the root from that radix tree. 3602 */ 3603 3604 spin_lock(&fs_info->fs_roots_radix_lock); 3605 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3606 (unsigned long)found_key.objectid); 3607 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3608 is_dead_root = 1; 3609 spin_unlock(&fs_info->fs_roots_radix_lock); 3610 3611 if (is_dead_root) { 3612 /* prevent this orphan from being found again */ 3613 key.offset = found_key.objectid - 1; 3614 continue; 3615 } 3616 3617 } 3618 3619 /* 3620 * If we have an inode with links, there are a couple of 3621 * possibilities: 3622 * 3623 * 1. We were halfway through creating fsverity metadata for the 3624 * file. In that case, the orphan item represents incomplete 3625 * fsverity metadata which must be cleaned up with 3626 * btrfs_drop_verity_items and deleting the orphan item. 3627 3628 * 2. Old kernels (before v3.12) used to create an 3629 * orphan item for truncate indicating that there were possibly 3630 * extent items past i_size that needed to be deleted. In v3.12, 3631 * truncate was changed to update i_size in sync with the extent 3632 * items, but the (useless) orphan item was still created. Since 3633 * v4.18, we don't create the orphan item for truncate at all. 3634 * 3635 * So, this item could mean that we need to do a truncate, but 3636 * only if this filesystem was last used on a pre-v3.12 kernel 3637 * and was not cleanly unmounted. The odds of that are quite 3638 * slim, and it's a pain to do the truncate now, so just delete 3639 * the orphan item. 3640 * 3641 * It's also possible that this orphan item was supposed to be 3642 * deleted but wasn't. The inode number may have been reused, 3643 * but either way, we can delete the orphan item. 3644 */ 3645 if (!inode || inode->i_nlink) { 3646 if (inode) { 3647 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3648 iput(inode); 3649 inode = NULL; 3650 if (ret) 3651 goto out; 3652 } 3653 trans = btrfs_start_transaction(root, 1); 3654 if (IS_ERR(trans)) { 3655 ret = PTR_ERR(trans); 3656 goto out; 3657 } 3658 btrfs_debug(fs_info, "auto deleting %Lu", 3659 found_key.objectid); 3660 ret = btrfs_del_orphan_item(trans, root, 3661 found_key.objectid); 3662 btrfs_end_transaction(trans); 3663 if (ret) 3664 goto out; 3665 continue; 3666 } 3667 3668 nr_unlink++; 3669 3670 /* this will do delete_inode and everything for us */ 3671 iput(inode); 3672 } 3673 /* release the path since we're done with it */ 3674 btrfs_release_path(path); 3675 3676 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3677 trans = btrfs_join_transaction(root); 3678 if (!IS_ERR(trans)) 3679 btrfs_end_transaction(trans); 3680 } 3681 3682 if (nr_unlink) 3683 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3684 3685 out: 3686 if (ret) 3687 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3688 btrfs_free_path(path); 3689 return ret; 3690 } 3691 3692 /* 3693 * very simple check to peek ahead in the leaf looking for xattrs. If we 3694 * don't find any xattrs, we know there can't be any acls. 3695 * 3696 * slot is the slot the inode is in, objectid is the objectid of the inode 3697 */ 3698 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3699 int slot, u64 objectid, 3700 int *first_xattr_slot) 3701 { 3702 u32 nritems = btrfs_header_nritems(leaf); 3703 struct btrfs_key found_key; 3704 static u64 xattr_access = 0; 3705 static u64 xattr_default = 0; 3706 int scanned = 0; 3707 3708 if (!xattr_access) { 3709 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3710 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3711 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3712 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3713 } 3714 3715 slot++; 3716 *first_xattr_slot = -1; 3717 while (slot < nritems) { 3718 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3719 3720 /* we found a different objectid, there must not be acls */ 3721 if (found_key.objectid != objectid) 3722 return 0; 3723 3724 /* we found an xattr, assume we've got an acl */ 3725 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3726 if (*first_xattr_slot == -1) 3727 *first_xattr_slot = slot; 3728 if (found_key.offset == xattr_access || 3729 found_key.offset == xattr_default) 3730 return 1; 3731 } 3732 3733 /* 3734 * we found a key greater than an xattr key, there can't 3735 * be any acls later on 3736 */ 3737 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3738 return 0; 3739 3740 slot++; 3741 scanned++; 3742 3743 /* 3744 * it goes inode, inode backrefs, xattrs, extents, 3745 * so if there are a ton of hard links to an inode there can 3746 * be a lot of backrefs. Don't waste time searching too hard, 3747 * this is just an optimization 3748 */ 3749 if (scanned >= 8) 3750 break; 3751 } 3752 /* we hit the end of the leaf before we found an xattr or 3753 * something larger than an xattr. We have to assume the inode 3754 * has acls 3755 */ 3756 if (*first_xattr_slot == -1) 3757 *first_xattr_slot = slot; 3758 return 1; 3759 } 3760 3761 /* 3762 * read an inode from the btree into the in-memory inode 3763 */ 3764 static int btrfs_read_locked_inode(struct inode *inode, 3765 struct btrfs_path *in_path) 3766 { 3767 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3768 struct btrfs_path *path = in_path; 3769 struct extent_buffer *leaf; 3770 struct btrfs_inode_item *inode_item; 3771 struct btrfs_root *root = BTRFS_I(inode)->root; 3772 struct btrfs_key location; 3773 unsigned long ptr; 3774 int maybe_acls; 3775 u32 rdev; 3776 int ret; 3777 bool filled = false; 3778 int first_xattr_slot; 3779 3780 ret = btrfs_fill_inode(inode, &rdev); 3781 if (!ret) 3782 filled = true; 3783 3784 if (!path) { 3785 path = btrfs_alloc_path(); 3786 if (!path) 3787 return -ENOMEM; 3788 } 3789 3790 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3791 3792 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3793 if (ret) { 3794 if (path != in_path) 3795 btrfs_free_path(path); 3796 return ret; 3797 } 3798 3799 leaf = path->nodes[0]; 3800 3801 if (filled) 3802 goto cache_index; 3803 3804 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3805 struct btrfs_inode_item); 3806 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3807 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3808 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3809 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3810 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3811 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3812 round_up(i_size_read(inode), fs_info->sectorsize)); 3813 3814 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3815 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3816 3817 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3818 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3819 3820 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3821 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3822 3823 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3824 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3825 3826 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3827 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3828 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3829 3830 inode_set_iversion_queried(inode, 3831 btrfs_inode_sequence(leaf, inode_item)); 3832 inode->i_generation = BTRFS_I(inode)->generation; 3833 inode->i_rdev = 0; 3834 rdev = btrfs_inode_rdev(leaf, inode_item); 3835 3836 BTRFS_I(inode)->index_cnt = (u64)-1; 3837 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3838 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3839 3840 cache_index: 3841 /* 3842 * If we were modified in the current generation and evicted from memory 3843 * and then re-read we need to do a full sync since we don't have any 3844 * idea about which extents were modified before we were evicted from 3845 * cache. 3846 * 3847 * This is required for both inode re-read from disk and delayed inode 3848 * in the delayed_nodes xarray. 3849 */ 3850 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3851 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3852 &BTRFS_I(inode)->runtime_flags); 3853 3854 /* 3855 * We don't persist the id of the transaction where an unlink operation 3856 * against the inode was last made. So here we assume the inode might 3857 * have been evicted, and therefore the exact value of last_unlink_trans 3858 * lost, and set it to last_trans to avoid metadata inconsistencies 3859 * between the inode and its parent if the inode is fsync'ed and the log 3860 * replayed. For example, in the scenario: 3861 * 3862 * touch mydir/foo 3863 * ln mydir/foo mydir/bar 3864 * sync 3865 * unlink mydir/bar 3866 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3867 * xfs_io -c fsync mydir/foo 3868 * <power failure> 3869 * mount fs, triggers fsync log replay 3870 * 3871 * We must make sure that when we fsync our inode foo we also log its 3872 * parent inode, otherwise after log replay the parent still has the 3873 * dentry with the "bar" name but our inode foo has a link count of 1 3874 * and doesn't have an inode ref with the name "bar" anymore. 3875 * 3876 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3877 * but it guarantees correctness at the expense of occasional full 3878 * transaction commits on fsync if our inode is a directory, or if our 3879 * inode is not a directory, logging its parent unnecessarily. 3880 */ 3881 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3882 3883 /* 3884 * Same logic as for last_unlink_trans. We don't persist the generation 3885 * of the last transaction where this inode was used for a reflink 3886 * operation, so after eviction and reloading the inode we must be 3887 * pessimistic and assume the last transaction that modified the inode. 3888 */ 3889 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3890 3891 path->slots[0]++; 3892 if (inode->i_nlink != 1 || 3893 path->slots[0] >= btrfs_header_nritems(leaf)) 3894 goto cache_acl; 3895 3896 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3897 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3898 goto cache_acl; 3899 3900 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3901 if (location.type == BTRFS_INODE_REF_KEY) { 3902 struct btrfs_inode_ref *ref; 3903 3904 ref = (struct btrfs_inode_ref *)ptr; 3905 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3906 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3907 struct btrfs_inode_extref *extref; 3908 3909 extref = (struct btrfs_inode_extref *)ptr; 3910 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3911 extref); 3912 } 3913 cache_acl: 3914 /* 3915 * try to precache a NULL acl entry for files that don't have 3916 * any xattrs or acls 3917 */ 3918 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3919 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3920 if (first_xattr_slot != -1) { 3921 path->slots[0] = first_xattr_slot; 3922 ret = btrfs_load_inode_props(inode, path); 3923 if (ret) 3924 btrfs_err(fs_info, 3925 "error loading props for ino %llu (root %llu): %d", 3926 btrfs_ino(BTRFS_I(inode)), 3927 root->root_key.objectid, ret); 3928 } 3929 if (path != in_path) 3930 btrfs_free_path(path); 3931 3932 if (!maybe_acls) 3933 cache_no_acl(inode); 3934 3935 switch (inode->i_mode & S_IFMT) { 3936 case S_IFREG: 3937 inode->i_mapping->a_ops = &btrfs_aops; 3938 inode->i_fop = &btrfs_file_operations; 3939 inode->i_op = &btrfs_file_inode_operations; 3940 break; 3941 case S_IFDIR: 3942 inode->i_fop = &btrfs_dir_file_operations; 3943 inode->i_op = &btrfs_dir_inode_operations; 3944 break; 3945 case S_IFLNK: 3946 inode->i_op = &btrfs_symlink_inode_operations; 3947 inode_nohighmem(inode); 3948 inode->i_mapping->a_ops = &btrfs_aops; 3949 break; 3950 default: 3951 inode->i_op = &btrfs_special_inode_operations; 3952 init_special_inode(inode, inode->i_mode, rdev); 3953 break; 3954 } 3955 3956 btrfs_sync_inode_flags_to_i_flags(inode); 3957 return 0; 3958 } 3959 3960 /* 3961 * given a leaf and an inode, copy the inode fields into the leaf 3962 */ 3963 static void fill_inode_item(struct btrfs_trans_handle *trans, 3964 struct extent_buffer *leaf, 3965 struct btrfs_inode_item *item, 3966 struct inode *inode) 3967 { 3968 struct btrfs_map_token token; 3969 u64 flags; 3970 3971 btrfs_init_map_token(&token, leaf); 3972 3973 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3974 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3975 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3976 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3977 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3978 3979 btrfs_set_token_timespec_sec(&token, &item->atime, 3980 inode_get_atime_sec(inode)); 3981 btrfs_set_token_timespec_nsec(&token, &item->atime, 3982 inode_get_atime_nsec(inode)); 3983 3984 btrfs_set_token_timespec_sec(&token, &item->mtime, 3985 inode_get_mtime_sec(inode)); 3986 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3987 inode_get_mtime_nsec(inode)); 3988 3989 btrfs_set_token_timespec_sec(&token, &item->ctime, 3990 inode_get_ctime_sec(inode)); 3991 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3992 inode_get_ctime_nsec(inode)); 3993 3994 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 3995 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 3996 3997 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3998 btrfs_set_token_inode_generation(&token, item, 3999 BTRFS_I(inode)->generation); 4000 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4001 btrfs_set_token_inode_transid(&token, item, trans->transid); 4002 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4003 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4004 BTRFS_I(inode)->ro_flags); 4005 btrfs_set_token_inode_flags(&token, item, flags); 4006 btrfs_set_token_inode_block_group(&token, item, 0); 4007 } 4008 4009 /* 4010 * copy everything in the in-memory inode into the btree. 4011 */ 4012 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4013 struct btrfs_inode *inode) 4014 { 4015 struct btrfs_inode_item *inode_item; 4016 struct btrfs_path *path; 4017 struct extent_buffer *leaf; 4018 int ret; 4019 4020 path = btrfs_alloc_path(); 4021 if (!path) 4022 return -ENOMEM; 4023 4024 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1); 4025 if (ret) { 4026 if (ret > 0) 4027 ret = -ENOENT; 4028 goto failed; 4029 } 4030 4031 leaf = path->nodes[0]; 4032 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4033 struct btrfs_inode_item); 4034 4035 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4036 btrfs_mark_buffer_dirty(trans, leaf); 4037 btrfs_set_inode_last_trans(trans, inode); 4038 ret = 0; 4039 failed: 4040 btrfs_free_path(path); 4041 return ret; 4042 } 4043 4044 /* 4045 * copy everything in the in-memory inode into the btree. 4046 */ 4047 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4048 struct btrfs_inode *inode) 4049 { 4050 struct btrfs_root *root = inode->root; 4051 struct btrfs_fs_info *fs_info = root->fs_info; 4052 int ret; 4053 4054 /* 4055 * If the inode is a free space inode, we can deadlock during commit 4056 * if we put it into the delayed code. 4057 * 4058 * The data relocation inode should also be directly updated 4059 * without delay 4060 */ 4061 if (!btrfs_is_free_space_inode(inode) 4062 && !btrfs_is_data_reloc_root(root) 4063 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4064 btrfs_update_root_times(trans, root); 4065 4066 ret = btrfs_delayed_update_inode(trans, inode); 4067 if (!ret) 4068 btrfs_set_inode_last_trans(trans, inode); 4069 return ret; 4070 } 4071 4072 return btrfs_update_inode_item(trans, inode); 4073 } 4074 4075 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4076 struct btrfs_inode *inode) 4077 { 4078 int ret; 4079 4080 ret = btrfs_update_inode(trans, inode); 4081 if (ret == -ENOSPC) 4082 return btrfs_update_inode_item(trans, inode); 4083 return ret; 4084 } 4085 4086 /* 4087 * unlink helper that gets used here in inode.c and in the tree logging 4088 * recovery code. It remove a link in a directory with a given name, and 4089 * also drops the back refs in the inode to the directory 4090 */ 4091 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4092 struct btrfs_inode *dir, 4093 struct btrfs_inode *inode, 4094 const struct fscrypt_str *name, 4095 struct btrfs_rename_ctx *rename_ctx) 4096 { 4097 struct btrfs_root *root = dir->root; 4098 struct btrfs_fs_info *fs_info = root->fs_info; 4099 struct btrfs_path *path; 4100 int ret = 0; 4101 struct btrfs_dir_item *di; 4102 u64 index; 4103 u64 ino = btrfs_ino(inode); 4104 u64 dir_ino = btrfs_ino(dir); 4105 4106 path = btrfs_alloc_path(); 4107 if (!path) { 4108 ret = -ENOMEM; 4109 goto out; 4110 } 4111 4112 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4113 if (IS_ERR_OR_NULL(di)) { 4114 ret = di ? PTR_ERR(di) : -ENOENT; 4115 goto err; 4116 } 4117 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4118 if (ret) 4119 goto err; 4120 btrfs_release_path(path); 4121 4122 /* 4123 * If we don't have dir index, we have to get it by looking up 4124 * the inode ref, since we get the inode ref, remove it directly, 4125 * it is unnecessary to do delayed deletion. 4126 * 4127 * But if we have dir index, needn't search inode ref to get it. 4128 * Since the inode ref is close to the inode item, it is better 4129 * that we delay to delete it, and just do this deletion when 4130 * we update the inode item. 4131 */ 4132 if (inode->dir_index) { 4133 ret = btrfs_delayed_delete_inode_ref(inode); 4134 if (!ret) { 4135 index = inode->dir_index; 4136 goto skip_backref; 4137 } 4138 } 4139 4140 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4141 if (ret) { 4142 btrfs_info(fs_info, 4143 "failed to delete reference to %.*s, inode %llu parent %llu", 4144 name->len, name->name, ino, dir_ino); 4145 btrfs_abort_transaction(trans, ret); 4146 goto err; 4147 } 4148 skip_backref: 4149 if (rename_ctx) 4150 rename_ctx->index = index; 4151 4152 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4153 if (ret) { 4154 btrfs_abort_transaction(trans, ret); 4155 goto err; 4156 } 4157 4158 /* 4159 * If we are in a rename context, we don't need to update anything in the 4160 * log. That will be done later during the rename by btrfs_log_new_name(). 4161 * Besides that, doing it here would only cause extra unnecessary btree 4162 * operations on the log tree, increasing latency for applications. 4163 */ 4164 if (!rename_ctx) { 4165 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4166 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4167 } 4168 4169 /* 4170 * If we have a pending delayed iput we could end up with the final iput 4171 * being run in btrfs-cleaner context. If we have enough of these built 4172 * up we can end up burning a lot of time in btrfs-cleaner without any 4173 * way to throttle the unlinks. Since we're currently holding a ref on 4174 * the inode we can run the delayed iput here without any issues as the 4175 * final iput won't be done until after we drop the ref we're currently 4176 * holding. 4177 */ 4178 btrfs_run_delayed_iput(fs_info, inode); 4179 err: 4180 btrfs_free_path(path); 4181 if (ret) 4182 goto out; 4183 4184 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4185 inode_inc_iversion(&inode->vfs_inode); 4186 inode_inc_iversion(&dir->vfs_inode); 4187 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4188 ret = btrfs_update_inode(trans, dir); 4189 out: 4190 return ret; 4191 } 4192 4193 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4194 struct btrfs_inode *dir, struct btrfs_inode *inode, 4195 const struct fscrypt_str *name) 4196 { 4197 int ret; 4198 4199 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4200 if (!ret) { 4201 drop_nlink(&inode->vfs_inode); 4202 ret = btrfs_update_inode(trans, inode); 4203 } 4204 return ret; 4205 } 4206 4207 /* 4208 * helper to start transaction for unlink and rmdir. 4209 * 4210 * unlink and rmdir are special in btrfs, they do not always free space, so 4211 * if we cannot make our reservations the normal way try and see if there is 4212 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4213 * allow the unlink to occur. 4214 */ 4215 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4216 { 4217 struct btrfs_root *root = dir->root; 4218 4219 return btrfs_start_transaction_fallback_global_rsv(root, 4220 BTRFS_UNLINK_METADATA_UNITS); 4221 } 4222 4223 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4224 { 4225 struct btrfs_trans_handle *trans; 4226 struct inode *inode = d_inode(dentry); 4227 int ret; 4228 struct fscrypt_name fname; 4229 4230 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4231 if (ret) 4232 return ret; 4233 4234 /* This needs to handle no-key deletions later on */ 4235 4236 trans = __unlink_start_trans(BTRFS_I(dir)); 4237 if (IS_ERR(trans)) { 4238 ret = PTR_ERR(trans); 4239 goto fscrypt_free; 4240 } 4241 4242 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4243 false); 4244 4245 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4246 &fname.disk_name); 4247 if (ret) 4248 goto end_trans; 4249 4250 if (inode->i_nlink == 0) { 4251 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4252 if (ret) 4253 goto end_trans; 4254 } 4255 4256 end_trans: 4257 btrfs_end_transaction(trans); 4258 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4259 fscrypt_free: 4260 fscrypt_free_filename(&fname); 4261 return ret; 4262 } 4263 4264 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4265 struct btrfs_inode *dir, struct dentry *dentry) 4266 { 4267 struct btrfs_root *root = dir->root; 4268 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4269 struct btrfs_path *path; 4270 struct extent_buffer *leaf; 4271 struct btrfs_dir_item *di; 4272 struct btrfs_key key; 4273 u64 index; 4274 int ret; 4275 u64 objectid; 4276 u64 dir_ino = btrfs_ino(dir); 4277 struct fscrypt_name fname; 4278 4279 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4280 if (ret) 4281 return ret; 4282 4283 /* This needs to handle no-key deletions later on */ 4284 4285 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4286 objectid = inode->root->root_key.objectid; 4287 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4288 objectid = inode->location.objectid; 4289 } else { 4290 WARN_ON(1); 4291 fscrypt_free_filename(&fname); 4292 return -EINVAL; 4293 } 4294 4295 path = btrfs_alloc_path(); 4296 if (!path) { 4297 ret = -ENOMEM; 4298 goto out; 4299 } 4300 4301 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4302 &fname.disk_name, -1); 4303 if (IS_ERR_OR_NULL(di)) { 4304 ret = di ? PTR_ERR(di) : -ENOENT; 4305 goto out; 4306 } 4307 4308 leaf = path->nodes[0]; 4309 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4310 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4311 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4312 if (ret) { 4313 btrfs_abort_transaction(trans, ret); 4314 goto out; 4315 } 4316 btrfs_release_path(path); 4317 4318 /* 4319 * This is a placeholder inode for a subvolume we didn't have a 4320 * reference to at the time of the snapshot creation. In the meantime 4321 * we could have renamed the real subvol link into our snapshot, so 4322 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4323 * Instead simply lookup the dir_index_item for this entry so we can 4324 * remove it. Otherwise we know we have a ref to the root and we can 4325 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4326 */ 4327 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4328 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4329 if (IS_ERR_OR_NULL(di)) { 4330 if (!di) 4331 ret = -ENOENT; 4332 else 4333 ret = PTR_ERR(di); 4334 btrfs_abort_transaction(trans, ret); 4335 goto out; 4336 } 4337 4338 leaf = path->nodes[0]; 4339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4340 index = key.offset; 4341 btrfs_release_path(path); 4342 } else { 4343 ret = btrfs_del_root_ref(trans, objectid, 4344 root->root_key.objectid, dir_ino, 4345 &index, &fname.disk_name); 4346 if (ret) { 4347 btrfs_abort_transaction(trans, ret); 4348 goto out; 4349 } 4350 } 4351 4352 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4353 if (ret) { 4354 btrfs_abort_transaction(trans, ret); 4355 goto out; 4356 } 4357 4358 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4359 inode_inc_iversion(&dir->vfs_inode); 4360 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4361 ret = btrfs_update_inode_fallback(trans, dir); 4362 if (ret) 4363 btrfs_abort_transaction(trans, ret); 4364 out: 4365 btrfs_free_path(path); 4366 fscrypt_free_filename(&fname); 4367 return ret; 4368 } 4369 4370 /* 4371 * Helper to check if the subvolume references other subvolumes or if it's 4372 * default. 4373 */ 4374 static noinline int may_destroy_subvol(struct btrfs_root *root) 4375 { 4376 struct btrfs_fs_info *fs_info = root->fs_info; 4377 struct btrfs_path *path; 4378 struct btrfs_dir_item *di; 4379 struct btrfs_key key; 4380 struct fscrypt_str name = FSTR_INIT("default", 7); 4381 u64 dir_id; 4382 int ret; 4383 4384 path = btrfs_alloc_path(); 4385 if (!path) 4386 return -ENOMEM; 4387 4388 /* Make sure this root isn't set as the default subvol */ 4389 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4390 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4391 dir_id, &name, 0); 4392 if (di && !IS_ERR(di)) { 4393 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4394 if (key.objectid == root->root_key.objectid) { 4395 ret = -EPERM; 4396 btrfs_err(fs_info, 4397 "deleting default subvolume %llu is not allowed", 4398 key.objectid); 4399 goto out; 4400 } 4401 btrfs_release_path(path); 4402 } 4403 4404 key.objectid = root->root_key.objectid; 4405 key.type = BTRFS_ROOT_REF_KEY; 4406 key.offset = (u64)-1; 4407 4408 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4409 if (ret < 0) 4410 goto out; 4411 if (ret == 0) { 4412 /* 4413 * Key with offset -1 found, there would have to exist a root 4414 * with such id, but this is out of valid range. 4415 */ 4416 ret = -EUCLEAN; 4417 goto out; 4418 } 4419 4420 ret = 0; 4421 if (path->slots[0] > 0) { 4422 path->slots[0]--; 4423 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4424 if (key.objectid == root->root_key.objectid && 4425 key.type == BTRFS_ROOT_REF_KEY) 4426 ret = -ENOTEMPTY; 4427 } 4428 out: 4429 btrfs_free_path(path); 4430 return ret; 4431 } 4432 4433 /* Delete all dentries for inodes belonging to the root */ 4434 static void btrfs_prune_dentries(struct btrfs_root *root) 4435 { 4436 struct btrfs_fs_info *fs_info = root->fs_info; 4437 struct rb_node *node; 4438 struct rb_node *prev; 4439 struct btrfs_inode *entry; 4440 struct inode *inode; 4441 u64 objectid = 0; 4442 4443 if (!BTRFS_FS_ERROR(fs_info)) 4444 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4445 4446 spin_lock(&root->inode_lock); 4447 again: 4448 node = root->inode_tree.rb_node; 4449 prev = NULL; 4450 while (node) { 4451 prev = node; 4452 entry = rb_entry(node, struct btrfs_inode, rb_node); 4453 4454 if (objectid < btrfs_ino(entry)) 4455 node = node->rb_left; 4456 else if (objectid > btrfs_ino(entry)) 4457 node = node->rb_right; 4458 else 4459 break; 4460 } 4461 if (!node) { 4462 while (prev) { 4463 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4464 if (objectid <= btrfs_ino(entry)) { 4465 node = prev; 4466 break; 4467 } 4468 prev = rb_next(prev); 4469 } 4470 } 4471 while (node) { 4472 entry = rb_entry(node, struct btrfs_inode, rb_node); 4473 objectid = btrfs_ino(entry) + 1; 4474 inode = igrab(&entry->vfs_inode); 4475 if (inode) { 4476 spin_unlock(&root->inode_lock); 4477 if (atomic_read(&inode->i_count) > 1) 4478 d_prune_aliases(inode); 4479 /* 4480 * btrfs_drop_inode will have it removed from the inode 4481 * cache when its usage count hits zero. 4482 */ 4483 iput(inode); 4484 cond_resched(); 4485 spin_lock(&root->inode_lock); 4486 goto again; 4487 } 4488 4489 if (cond_resched_lock(&root->inode_lock)) 4490 goto again; 4491 4492 node = rb_next(node); 4493 } 4494 spin_unlock(&root->inode_lock); 4495 } 4496 4497 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4498 { 4499 struct btrfs_root *root = dir->root; 4500 struct btrfs_fs_info *fs_info = root->fs_info; 4501 struct inode *inode = d_inode(dentry); 4502 struct btrfs_root *dest = BTRFS_I(inode)->root; 4503 struct btrfs_trans_handle *trans; 4504 struct btrfs_block_rsv block_rsv; 4505 u64 root_flags; 4506 u64 qgroup_reserved = 0; 4507 int ret; 4508 4509 down_write(&fs_info->subvol_sem); 4510 4511 /* 4512 * Don't allow to delete a subvolume with send in progress. This is 4513 * inside the inode lock so the error handling that has to drop the bit 4514 * again is not run concurrently. 4515 */ 4516 spin_lock(&dest->root_item_lock); 4517 if (dest->send_in_progress) { 4518 spin_unlock(&dest->root_item_lock); 4519 btrfs_warn(fs_info, 4520 "attempt to delete subvolume %llu during send", 4521 dest->root_key.objectid); 4522 ret = -EPERM; 4523 goto out_up_write; 4524 } 4525 if (atomic_read(&dest->nr_swapfiles)) { 4526 spin_unlock(&dest->root_item_lock); 4527 btrfs_warn(fs_info, 4528 "attempt to delete subvolume %llu with active swapfile", 4529 root->root_key.objectid); 4530 ret = -EPERM; 4531 goto out_up_write; 4532 } 4533 root_flags = btrfs_root_flags(&dest->root_item); 4534 btrfs_set_root_flags(&dest->root_item, 4535 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4536 spin_unlock(&dest->root_item_lock); 4537 4538 ret = may_destroy_subvol(dest); 4539 if (ret) 4540 goto out_undead; 4541 4542 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4543 /* 4544 * One for dir inode, 4545 * two for dir entries, 4546 * two for root ref/backref. 4547 */ 4548 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4549 if (ret) 4550 goto out_undead; 4551 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4552 4553 trans = btrfs_start_transaction(root, 0); 4554 if (IS_ERR(trans)) { 4555 ret = PTR_ERR(trans); 4556 goto out_release; 4557 } 4558 ret = btrfs_record_root_in_trans(trans, root); 4559 if (ret) { 4560 btrfs_abort_transaction(trans, ret); 4561 goto out_end_trans; 4562 } 4563 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4564 qgroup_reserved = 0; 4565 trans->block_rsv = &block_rsv; 4566 trans->bytes_reserved = block_rsv.size; 4567 4568 btrfs_record_snapshot_destroy(trans, dir); 4569 4570 ret = btrfs_unlink_subvol(trans, dir, dentry); 4571 if (ret) { 4572 btrfs_abort_transaction(trans, ret); 4573 goto out_end_trans; 4574 } 4575 4576 ret = btrfs_record_root_in_trans(trans, dest); 4577 if (ret) { 4578 btrfs_abort_transaction(trans, ret); 4579 goto out_end_trans; 4580 } 4581 4582 memset(&dest->root_item.drop_progress, 0, 4583 sizeof(dest->root_item.drop_progress)); 4584 btrfs_set_root_drop_level(&dest->root_item, 0); 4585 btrfs_set_root_refs(&dest->root_item, 0); 4586 4587 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4588 ret = btrfs_insert_orphan_item(trans, 4589 fs_info->tree_root, 4590 dest->root_key.objectid); 4591 if (ret) { 4592 btrfs_abort_transaction(trans, ret); 4593 goto out_end_trans; 4594 } 4595 } 4596 4597 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4598 BTRFS_UUID_KEY_SUBVOL, 4599 dest->root_key.objectid); 4600 if (ret && ret != -ENOENT) { 4601 btrfs_abort_transaction(trans, ret); 4602 goto out_end_trans; 4603 } 4604 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4605 ret = btrfs_uuid_tree_remove(trans, 4606 dest->root_item.received_uuid, 4607 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4608 dest->root_key.objectid); 4609 if (ret && ret != -ENOENT) { 4610 btrfs_abort_transaction(trans, ret); 4611 goto out_end_trans; 4612 } 4613 } 4614 4615 free_anon_bdev(dest->anon_dev); 4616 dest->anon_dev = 0; 4617 out_end_trans: 4618 trans->block_rsv = NULL; 4619 trans->bytes_reserved = 0; 4620 ret = btrfs_end_transaction(trans); 4621 inode->i_flags |= S_DEAD; 4622 out_release: 4623 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4624 if (qgroup_reserved) 4625 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4626 out_undead: 4627 if (ret) { 4628 spin_lock(&dest->root_item_lock); 4629 root_flags = btrfs_root_flags(&dest->root_item); 4630 btrfs_set_root_flags(&dest->root_item, 4631 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4632 spin_unlock(&dest->root_item_lock); 4633 } 4634 out_up_write: 4635 up_write(&fs_info->subvol_sem); 4636 if (!ret) { 4637 d_invalidate(dentry); 4638 btrfs_prune_dentries(dest); 4639 ASSERT(dest->send_in_progress == 0); 4640 } 4641 4642 return ret; 4643 } 4644 4645 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4646 { 4647 struct inode *inode = d_inode(dentry); 4648 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4649 int err = 0; 4650 struct btrfs_trans_handle *trans; 4651 u64 last_unlink_trans; 4652 struct fscrypt_name fname; 4653 4654 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4655 return -ENOTEMPTY; 4656 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4657 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4658 btrfs_err(fs_info, 4659 "extent tree v2 doesn't support snapshot deletion yet"); 4660 return -EOPNOTSUPP; 4661 } 4662 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4663 } 4664 4665 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4666 if (err) 4667 return err; 4668 4669 /* This needs to handle no-key deletions later on */ 4670 4671 trans = __unlink_start_trans(BTRFS_I(dir)); 4672 if (IS_ERR(trans)) { 4673 err = PTR_ERR(trans); 4674 goto out_notrans; 4675 } 4676 4677 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4678 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4679 goto out; 4680 } 4681 4682 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4683 if (err) 4684 goto out; 4685 4686 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4687 4688 /* now the directory is empty */ 4689 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4690 &fname.disk_name); 4691 if (!err) { 4692 btrfs_i_size_write(BTRFS_I(inode), 0); 4693 /* 4694 * Propagate the last_unlink_trans value of the deleted dir to 4695 * its parent directory. This is to prevent an unrecoverable 4696 * log tree in the case we do something like this: 4697 * 1) create dir foo 4698 * 2) create snapshot under dir foo 4699 * 3) delete the snapshot 4700 * 4) rmdir foo 4701 * 5) mkdir foo 4702 * 6) fsync foo or some file inside foo 4703 */ 4704 if (last_unlink_trans >= trans->transid) 4705 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4706 } 4707 out: 4708 btrfs_end_transaction(trans); 4709 out_notrans: 4710 btrfs_btree_balance_dirty(fs_info); 4711 fscrypt_free_filename(&fname); 4712 4713 return err; 4714 } 4715 4716 /* 4717 * Read, zero a chunk and write a block. 4718 * 4719 * @inode - inode that we're zeroing 4720 * @from - the offset to start zeroing 4721 * @len - the length to zero, 0 to zero the entire range respective to the 4722 * offset 4723 * @front - zero up to the offset instead of from the offset on 4724 * 4725 * This will find the block for the "from" offset and cow the block and zero the 4726 * part we want to zero. This is used with truncate and hole punching. 4727 */ 4728 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4729 int front) 4730 { 4731 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4732 struct address_space *mapping = inode->vfs_inode.i_mapping; 4733 struct extent_io_tree *io_tree = &inode->io_tree; 4734 struct btrfs_ordered_extent *ordered; 4735 struct extent_state *cached_state = NULL; 4736 struct extent_changeset *data_reserved = NULL; 4737 bool only_release_metadata = false; 4738 u32 blocksize = fs_info->sectorsize; 4739 pgoff_t index = from >> PAGE_SHIFT; 4740 unsigned offset = from & (blocksize - 1); 4741 struct folio *folio; 4742 gfp_t mask = btrfs_alloc_write_mask(mapping); 4743 size_t write_bytes = blocksize; 4744 int ret = 0; 4745 u64 block_start; 4746 u64 block_end; 4747 4748 if (IS_ALIGNED(offset, blocksize) && 4749 (!len || IS_ALIGNED(len, blocksize))) 4750 goto out; 4751 4752 block_start = round_down(from, blocksize); 4753 block_end = block_start + blocksize - 1; 4754 4755 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4756 blocksize, false); 4757 if (ret < 0) { 4758 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4759 /* For nocow case, no need to reserve data space */ 4760 only_release_metadata = true; 4761 } else { 4762 goto out; 4763 } 4764 } 4765 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4766 if (ret < 0) { 4767 if (!only_release_metadata) 4768 btrfs_free_reserved_data_space(inode, data_reserved, 4769 block_start, blocksize); 4770 goto out; 4771 } 4772 again: 4773 folio = __filemap_get_folio(mapping, index, 4774 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4775 if (IS_ERR(folio)) { 4776 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4777 blocksize, true); 4778 btrfs_delalloc_release_extents(inode, blocksize); 4779 ret = -ENOMEM; 4780 goto out; 4781 } 4782 4783 if (!folio_test_uptodate(folio)) { 4784 ret = btrfs_read_folio(NULL, folio); 4785 folio_lock(folio); 4786 if (folio->mapping != mapping) { 4787 folio_unlock(folio); 4788 folio_put(folio); 4789 goto again; 4790 } 4791 if (!folio_test_uptodate(folio)) { 4792 ret = -EIO; 4793 goto out_unlock; 4794 } 4795 } 4796 4797 /* 4798 * We unlock the page after the io is completed and then re-lock it 4799 * above. release_folio() could have come in between that and cleared 4800 * folio private, but left the page in the mapping. Set the page mapped 4801 * here to make sure it's properly set for the subpage stuff. 4802 */ 4803 ret = set_folio_extent_mapped(folio); 4804 if (ret < 0) 4805 goto out_unlock; 4806 4807 folio_wait_writeback(folio); 4808 4809 lock_extent(io_tree, block_start, block_end, &cached_state); 4810 4811 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4812 if (ordered) { 4813 unlock_extent(io_tree, block_start, block_end, &cached_state); 4814 folio_unlock(folio); 4815 folio_put(folio); 4816 btrfs_start_ordered_extent(ordered); 4817 btrfs_put_ordered_extent(ordered); 4818 goto again; 4819 } 4820 4821 clear_extent_bit(&inode->io_tree, block_start, block_end, 4822 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4823 &cached_state); 4824 4825 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4826 &cached_state); 4827 if (ret) { 4828 unlock_extent(io_tree, block_start, block_end, &cached_state); 4829 goto out_unlock; 4830 } 4831 4832 if (offset != blocksize) { 4833 if (!len) 4834 len = blocksize - offset; 4835 if (front) 4836 folio_zero_range(folio, block_start - folio_pos(folio), 4837 offset); 4838 else 4839 folio_zero_range(folio, 4840 (block_start - folio_pos(folio)) + offset, 4841 len); 4842 } 4843 btrfs_folio_clear_checked(fs_info, folio, block_start, 4844 block_end + 1 - block_start); 4845 btrfs_folio_set_dirty(fs_info, folio, block_start, 4846 block_end + 1 - block_start); 4847 unlock_extent(io_tree, block_start, block_end, &cached_state); 4848 4849 if (only_release_metadata) 4850 set_extent_bit(&inode->io_tree, block_start, block_end, 4851 EXTENT_NORESERVE, NULL); 4852 4853 out_unlock: 4854 if (ret) { 4855 if (only_release_metadata) 4856 btrfs_delalloc_release_metadata(inode, blocksize, true); 4857 else 4858 btrfs_delalloc_release_space(inode, data_reserved, 4859 block_start, blocksize, true); 4860 } 4861 btrfs_delalloc_release_extents(inode, blocksize); 4862 folio_unlock(folio); 4863 folio_put(folio); 4864 out: 4865 if (only_release_metadata) 4866 btrfs_check_nocow_unlock(inode); 4867 extent_changeset_free(data_reserved); 4868 return ret; 4869 } 4870 4871 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4872 { 4873 struct btrfs_root *root = inode->root; 4874 struct btrfs_fs_info *fs_info = root->fs_info; 4875 struct btrfs_trans_handle *trans; 4876 struct btrfs_drop_extents_args drop_args = { 0 }; 4877 int ret; 4878 4879 /* 4880 * If NO_HOLES is enabled, we don't need to do anything. 4881 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4882 * or btrfs_update_inode() will be called, which guarantee that the next 4883 * fsync will know this inode was changed and needs to be logged. 4884 */ 4885 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4886 return 0; 4887 4888 /* 4889 * 1 - for the one we're dropping 4890 * 1 - for the one we're adding 4891 * 1 - for updating the inode. 4892 */ 4893 trans = btrfs_start_transaction(root, 3); 4894 if (IS_ERR(trans)) 4895 return PTR_ERR(trans); 4896 4897 drop_args.start = offset; 4898 drop_args.end = offset + len; 4899 drop_args.drop_cache = true; 4900 4901 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4902 if (ret) { 4903 btrfs_abort_transaction(trans, ret); 4904 btrfs_end_transaction(trans); 4905 return ret; 4906 } 4907 4908 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4909 if (ret) { 4910 btrfs_abort_transaction(trans, ret); 4911 } else { 4912 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4913 btrfs_update_inode(trans, inode); 4914 } 4915 btrfs_end_transaction(trans); 4916 return ret; 4917 } 4918 4919 /* 4920 * This function puts in dummy file extents for the area we're creating a hole 4921 * for. So if we are truncating this file to a larger size we need to insert 4922 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4923 * the range between oldsize and size 4924 */ 4925 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4926 { 4927 struct btrfs_root *root = inode->root; 4928 struct btrfs_fs_info *fs_info = root->fs_info; 4929 struct extent_io_tree *io_tree = &inode->io_tree; 4930 struct extent_map *em = NULL; 4931 struct extent_state *cached_state = NULL; 4932 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4933 u64 block_end = ALIGN(size, fs_info->sectorsize); 4934 u64 last_byte; 4935 u64 cur_offset; 4936 u64 hole_size; 4937 int err = 0; 4938 4939 /* 4940 * If our size started in the middle of a block we need to zero out the 4941 * rest of the block before we expand the i_size, otherwise we could 4942 * expose stale data. 4943 */ 4944 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4945 if (err) 4946 return err; 4947 4948 if (size <= hole_start) 4949 return 0; 4950 4951 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4952 &cached_state); 4953 cur_offset = hole_start; 4954 while (1) { 4955 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 4956 if (IS_ERR(em)) { 4957 err = PTR_ERR(em); 4958 em = NULL; 4959 break; 4960 } 4961 last_byte = min(extent_map_end(em), block_end); 4962 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4963 hole_size = last_byte - cur_offset; 4964 4965 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4966 struct extent_map *hole_em; 4967 4968 err = maybe_insert_hole(inode, cur_offset, hole_size); 4969 if (err) 4970 break; 4971 4972 err = btrfs_inode_set_file_extent_range(inode, 4973 cur_offset, hole_size); 4974 if (err) 4975 break; 4976 4977 hole_em = alloc_extent_map(); 4978 if (!hole_em) { 4979 btrfs_drop_extent_map_range(inode, cur_offset, 4980 cur_offset + hole_size - 1, 4981 false); 4982 btrfs_set_inode_full_sync(inode); 4983 goto next; 4984 } 4985 hole_em->start = cur_offset; 4986 hole_em->len = hole_size; 4987 hole_em->orig_start = cur_offset; 4988 4989 hole_em->block_start = EXTENT_MAP_HOLE; 4990 hole_em->block_len = 0; 4991 hole_em->orig_block_len = 0; 4992 hole_em->ram_bytes = hole_size; 4993 hole_em->generation = btrfs_get_fs_generation(fs_info); 4994 4995 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4996 free_extent_map(hole_em); 4997 } else { 4998 err = btrfs_inode_set_file_extent_range(inode, 4999 cur_offset, hole_size); 5000 if (err) 5001 break; 5002 } 5003 next: 5004 free_extent_map(em); 5005 em = NULL; 5006 cur_offset = last_byte; 5007 if (cur_offset >= block_end) 5008 break; 5009 } 5010 free_extent_map(em); 5011 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5012 return err; 5013 } 5014 5015 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5016 { 5017 struct btrfs_root *root = BTRFS_I(inode)->root; 5018 struct btrfs_trans_handle *trans; 5019 loff_t oldsize = i_size_read(inode); 5020 loff_t newsize = attr->ia_size; 5021 int mask = attr->ia_valid; 5022 int ret; 5023 5024 /* 5025 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5026 * special case where we need to update the times despite not having 5027 * these flags set. For all other operations the VFS set these flags 5028 * explicitly if it wants a timestamp update. 5029 */ 5030 if (newsize != oldsize) { 5031 inode_inc_iversion(inode); 5032 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5033 inode_set_mtime_to_ts(inode, 5034 inode_set_ctime_current(inode)); 5035 } 5036 } 5037 5038 if (newsize > oldsize) { 5039 /* 5040 * Don't do an expanding truncate while snapshotting is ongoing. 5041 * This is to ensure the snapshot captures a fully consistent 5042 * state of this file - if the snapshot captures this expanding 5043 * truncation, it must capture all writes that happened before 5044 * this truncation. 5045 */ 5046 btrfs_drew_write_lock(&root->snapshot_lock); 5047 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5048 if (ret) { 5049 btrfs_drew_write_unlock(&root->snapshot_lock); 5050 return ret; 5051 } 5052 5053 trans = btrfs_start_transaction(root, 1); 5054 if (IS_ERR(trans)) { 5055 btrfs_drew_write_unlock(&root->snapshot_lock); 5056 return PTR_ERR(trans); 5057 } 5058 5059 i_size_write(inode, newsize); 5060 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5061 pagecache_isize_extended(inode, oldsize, newsize); 5062 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5063 btrfs_drew_write_unlock(&root->snapshot_lock); 5064 btrfs_end_transaction(trans); 5065 } else { 5066 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5067 5068 if (btrfs_is_zoned(fs_info)) { 5069 ret = btrfs_wait_ordered_range(inode, 5070 ALIGN(newsize, fs_info->sectorsize), 5071 (u64)-1); 5072 if (ret) 5073 return ret; 5074 } 5075 5076 /* 5077 * We're truncating a file that used to have good data down to 5078 * zero. Make sure any new writes to the file get on disk 5079 * on close. 5080 */ 5081 if (newsize == 0) 5082 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5083 &BTRFS_I(inode)->runtime_flags); 5084 5085 truncate_setsize(inode, newsize); 5086 5087 inode_dio_wait(inode); 5088 5089 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5090 if (ret && inode->i_nlink) { 5091 int err; 5092 5093 /* 5094 * Truncate failed, so fix up the in-memory size. We 5095 * adjusted disk_i_size down as we removed extents, so 5096 * wait for disk_i_size to be stable and then update the 5097 * in-memory size to match. 5098 */ 5099 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5100 if (err) 5101 return err; 5102 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5103 } 5104 } 5105 5106 return ret; 5107 } 5108 5109 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5110 struct iattr *attr) 5111 { 5112 struct inode *inode = d_inode(dentry); 5113 struct btrfs_root *root = BTRFS_I(inode)->root; 5114 int err; 5115 5116 if (btrfs_root_readonly(root)) 5117 return -EROFS; 5118 5119 err = setattr_prepare(idmap, dentry, attr); 5120 if (err) 5121 return err; 5122 5123 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5124 err = btrfs_setsize(inode, attr); 5125 if (err) 5126 return err; 5127 } 5128 5129 if (attr->ia_valid) { 5130 setattr_copy(idmap, inode, attr); 5131 inode_inc_iversion(inode); 5132 err = btrfs_dirty_inode(BTRFS_I(inode)); 5133 5134 if (!err && attr->ia_valid & ATTR_MODE) 5135 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5136 } 5137 5138 return err; 5139 } 5140 5141 /* 5142 * While truncating the inode pages during eviction, we get the VFS 5143 * calling btrfs_invalidate_folio() against each folio of the inode. This 5144 * is slow because the calls to btrfs_invalidate_folio() result in a 5145 * huge amount of calls to lock_extent() and clear_extent_bit(), 5146 * which keep merging and splitting extent_state structures over and over, 5147 * wasting lots of time. 5148 * 5149 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5150 * skip all those expensive operations on a per folio basis and do only 5151 * the ordered io finishing, while we release here the extent_map and 5152 * extent_state structures, without the excessive merging and splitting. 5153 */ 5154 static void evict_inode_truncate_pages(struct inode *inode) 5155 { 5156 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5157 struct rb_node *node; 5158 5159 ASSERT(inode->i_state & I_FREEING); 5160 truncate_inode_pages_final(&inode->i_data); 5161 5162 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5163 5164 /* 5165 * Keep looping until we have no more ranges in the io tree. 5166 * We can have ongoing bios started by readahead that have 5167 * their endio callback (extent_io.c:end_bio_extent_readpage) 5168 * still in progress (unlocked the pages in the bio but did not yet 5169 * unlocked the ranges in the io tree). Therefore this means some 5170 * ranges can still be locked and eviction started because before 5171 * submitting those bios, which are executed by a separate task (work 5172 * queue kthread), inode references (inode->i_count) were not taken 5173 * (which would be dropped in the end io callback of each bio). 5174 * Therefore here we effectively end up waiting for those bios and 5175 * anyone else holding locked ranges without having bumped the inode's 5176 * reference count - if we don't do it, when they access the inode's 5177 * io_tree to unlock a range it may be too late, leading to an 5178 * use-after-free issue. 5179 */ 5180 spin_lock(&io_tree->lock); 5181 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5182 struct extent_state *state; 5183 struct extent_state *cached_state = NULL; 5184 u64 start; 5185 u64 end; 5186 unsigned state_flags; 5187 5188 node = rb_first(&io_tree->state); 5189 state = rb_entry(node, struct extent_state, rb_node); 5190 start = state->start; 5191 end = state->end; 5192 state_flags = state->state; 5193 spin_unlock(&io_tree->lock); 5194 5195 lock_extent(io_tree, start, end, &cached_state); 5196 5197 /* 5198 * If still has DELALLOC flag, the extent didn't reach disk, 5199 * and its reserved space won't be freed by delayed_ref. 5200 * So we need to free its reserved space here. 5201 * (Refer to comment in btrfs_invalidate_folio, case 2) 5202 * 5203 * Note, end is the bytenr of last byte, so we need + 1 here. 5204 */ 5205 if (state_flags & EXTENT_DELALLOC) 5206 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5207 end - start + 1, NULL); 5208 5209 clear_extent_bit(io_tree, start, end, 5210 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5211 &cached_state); 5212 5213 cond_resched(); 5214 spin_lock(&io_tree->lock); 5215 } 5216 spin_unlock(&io_tree->lock); 5217 } 5218 5219 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5220 struct btrfs_block_rsv *rsv) 5221 { 5222 struct btrfs_fs_info *fs_info = root->fs_info; 5223 struct btrfs_trans_handle *trans; 5224 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5225 int ret; 5226 5227 /* 5228 * Eviction should be taking place at some place safe because of our 5229 * delayed iputs. However the normal flushing code will run delayed 5230 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5231 * 5232 * We reserve the delayed_refs_extra here again because we can't use 5233 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5234 * above. We reserve our extra bit here because we generate a ton of 5235 * delayed refs activity by truncating. 5236 * 5237 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5238 * if we fail to make this reservation we can re-try without the 5239 * delayed_refs_extra so we can make some forward progress. 5240 */ 5241 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5242 BTRFS_RESERVE_FLUSH_EVICT); 5243 if (ret) { 5244 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5245 BTRFS_RESERVE_FLUSH_EVICT); 5246 if (ret) { 5247 btrfs_warn(fs_info, 5248 "could not allocate space for delete; will truncate on mount"); 5249 return ERR_PTR(-ENOSPC); 5250 } 5251 delayed_refs_extra = 0; 5252 } 5253 5254 trans = btrfs_join_transaction(root); 5255 if (IS_ERR(trans)) 5256 return trans; 5257 5258 if (delayed_refs_extra) { 5259 trans->block_rsv = &fs_info->trans_block_rsv; 5260 trans->bytes_reserved = delayed_refs_extra; 5261 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5262 delayed_refs_extra, true); 5263 } 5264 return trans; 5265 } 5266 5267 void btrfs_evict_inode(struct inode *inode) 5268 { 5269 struct btrfs_fs_info *fs_info; 5270 struct btrfs_trans_handle *trans; 5271 struct btrfs_root *root = BTRFS_I(inode)->root; 5272 struct btrfs_block_rsv *rsv = NULL; 5273 int ret; 5274 5275 trace_btrfs_inode_evict(inode); 5276 5277 if (!root) { 5278 fsverity_cleanup_inode(inode); 5279 clear_inode(inode); 5280 return; 5281 } 5282 5283 fs_info = inode_to_fs_info(inode); 5284 evict_inode_truncate_pages(inode); 5285 5286 if (inode->i_nlink && 5287 ((btrfs_root_refs(&root->root_item) != 0 && 5288 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5289 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5290 goto out; 5291 5292 if (is_bad_inode(inode)) 5293 goto out; 5294 5295 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5296 goto out; 5297 5298 if (inode->i_nlink > 0) { 5299 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5300 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5301 goto out; 5302 } 5303 5304 /* 5305 * This makes sure the inode item in tree is uptodate and the space for 5306 * the inode update is released. 5307 */ 5308 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5309 if (ret) 5310 goto out; 5311 5312 /* 5313 * This drops any pending insert or delete operations we have for this 5314 * inode. We could have a delayed dir index deletion queued up, but 5315 * we're removing the inode completely so that'll be taken care of in 5316 * the truncate. 5317 */ 5318 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5319 5320 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5321 if (!rsv) 5322 goto out; 5323 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5324 rsv->failfast = true; 5325 5326 btrfs_i_size_write(BTRFS_I(inode), 0); 5327 5328 while (1) { 5329 struct btrfs_truncate_control control = { 5330 .inode = BTRFS_I(inode), 5331 .ino = btrfs_ino(BTRFS_I(inode)), 5332 .new_size = 0, 5333 .min_type = 0, 5334 }; 5335 5336 trans = evict_refill_and_join(root, rsv); 5337 if (IS_ERR(trans)) 5338 goto out; 5339 5340 trans->block_rsv = rsv; 5341 5342 ret = btrfs_truncate_inode_items(trans, root, &control); 5343 trans->block_rsv = &fs_info->trans_block_rsv; 5344 btrfs_end_transaction(trans); 5345 /* 5346 * We have not added new delayed items for our inode after we 5347 * have flushed its delayed items, so no need to throttle on 5348 * delayed items. However we have modified extent buffers. 5349 */ 5350 btrfs_btree_balance_dirty_nodelay(fs_info); 5351 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5352 goto out; 5353 else if (!ret) 5354 break; 5355 } 5356 5357 /* 5358 * Errors here aren't a big deal, it just means we leave orphan items in 5359 * the tree. They will be cleaned up on the next mount. If the inode 5360 * number gets reused, cleanup deletes the orphan item without doing 5361 * anything, and unlink reuses the existing orphan item. 5362 * 5363 * If it turns out that we are dropping too many of these, we might want 5364 * to add a mechanism for retrying these after a commit. 5365 */ 5366 trans = evict_refill_and_join(root, rsv); 5367 if (!IS_ERR(trans)) { 5368 trans->block_rsv = rsv; 5369 btrfs_orphan_del(trans, BTRFS_I(inode)); 5370 trans->block_rsv = &fs_info->trans_block_rsv; 5371 btrfs_end_transaction(trans); 5372 } 5373 5374 out: 5375 btrfs_free_block_rsv(fs_info, rsv); 5376 /* 5377 * If we didn't successfully delete, the orphan item will still be in 5378 * the tree and we'll retry on the next mount. Again, we might also want 5379 * to retry these periodically in the future. 5380 */ 5381 btrfs_remove_delayed_node(BTRFS_I(inode)); 5382 fsverity_cleanup_inode(inode); 5383 clear_inode(inode); 5384 } 5385 5386 /* 5387 * Return the key found in the dir entry in the location pointer, fill @type 5388 * with BTRFS_FT_*, and return 0. 5389 * 5390 * If no dir entries were found, returns -ENOENT. 5391 * If found a corrupted location in dir entry, returns -EUCLEAN. 5392 */ 5393 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5394 struct btrfs_key *location, u8 *type) 5395 { 5396 struct btrfs_dir_item *di; 5397 struct btrfs_path *path; 5398 struct btrfs_root *root = dir->root; 5399 int ret = 0; 5400 struct fscrypt_name fname; 5401 5402 path = btrfs_alloc_path(); 5403 if (!path) 5404 return -ENOMEM; 5405 5406 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5407 if (ret < 0) 5408 goto out; 5409 /* 5410 * fscrypt_setup_filename() should never return a positive value, but 5411 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5412 */ 5413 ASSERT(ret == 0); 5414 5415 /* This needs to handle no-key deletions later on */ 5416 5417 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5418 &fname.disk_name, 0); 5419 if (IS_ERR_OR_NULL(di)) { 5420 ret = di ? PTR_ERR(di) : -ENOENT; 5421 goto out; 5422 } 5423 5424 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5425 if (location->type != BTRFS_INODE_ITEM_KEY && 5426 location->type != BTRFS_ROOT_ITEM_KEY) { 5427 ret = -EUCLEAN; 5428 btrfs_warn(root->fs_info, 5429 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5430 __func__, fname.disk_name.name, btrfs_ino(dir), 5431 location->objectid, location->type, location->offset); 5432 } 5433 if (!ret) 5434 *type = btrfs_dir_ftype(path->nodes[0], di); 5435 out: 5436 fscrypt_free_filename(&fname); 5437 btrfs_free_path(path); 5438 return ret; 5439 } 5440 5441 /* 5442 * when we hit a tree root in a directory, the btrfs part of the inode 5443 * needs to be changed to reflect the root directory of the tree root. This 5444 * is kind of like crossing a mount point. 5445 */ 5446 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5447 struct btrfs_inode *dir, 5448 struct dentry *dentry, 5449 struct btrfs_key *location, 5450 struct btrfs_root **sub_root) 5451 { 5452 struct btrfs_path *path; 5453 struct btrfs_root *new_root; 5454 struct btrfs_root_ref *ref; 5455 struct extent_buffer *leaf; 5456 struct btrfs_key key; 5457 int ret; 5458 int err = 0; 5459 struct fscrypt_name fname; 5460 5461 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5462 if (ret) 5463 return ret; 5464 5465 path = btrfs_alloc_path(); 5466 if (!path) { 5467 err = -ENOMEM; 5468 goto out; 5469 } 5470 5471 err = -ENOENT; 5472 key.objectid = dir->root->root_key.objectid; 5473 key.type = BTRFS_ROOT_REF_KEY; 5474 key.offset = location->objectid; 5475 5476 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5477 if (ret) { 5478 if (ret < 0) 5479 err = ret; 5480 goto out; 5481 } 5482 5483 leaf = path->nodes[0]; 5484 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5485 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5486 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5487 goto out; 5488 5489 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5490 (unsigned long)(ref + 1), fname.disk_name.len); 5491 if (ret) 5492 goto out; 5493 5494 btrfs_release_path(path); 5495 5496 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5497 if (IS_ERR(new_root)) { 5498 err = PTR_ERR(new_root); 5499 goto out; 5500 } 5501 5502 *sub_root = new_root; 5503 location->objectid = btrfs_root_dirid(&new_root->root_item); 5504 location->type = BTRFS_INODE_ITEM_KEY; 5505 location->offset = 0; 5506 err = 0; 5507 out: 5508 btrfs_free_path(path); 5509 fscrypt_free_filename(&fname); 5510 return err; 5511 } 5512 5513 static void inode_tree_add(struct btrfs_inode *inode) 5514 { 5515 struct btrfs_root *root = inode->root; 5516 struct btrfs_inode *entry; 5517 struct rb_node **p; 5518 struct rb_node *parent; 5519 struct rb_node *new = &inode->rb_node; 5520 u64 ino = btrfs_ino(inode); 5521 5522 if (inode_unhashed(&inode->vfs_inode)) 5523 return; 5524 parent = NULL; 5525 spin_lock(&root->inode_lock); 5526 p = &root->inode_tree.rb_node; 5527 while (*p) { 5528 parent = *p; 5529 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5530 5531 if (ino < btrfs_ino(entry)) 5532 p = &parent->rb_left; 5533 else if (ino > btrfs_ino(entry)) 5534 p = &parent->rb_right; 5535 else { 5536 WARN_ON(!(entry->vfs_inode.i_state & 5537 (I_WILL_FREE | I_FREEING))); 5538 rb_replace_node(parent, new, &root->inode_tree); 5539 RB_CLEAR_NODE(parent); 5540 spin_unlock(&root->inode_lock); 5541 return; 5542 } 5543 } 5544 rb_link_node(new, parent, p); 5545 rb_insert_color(new, &root->inode_tree); 5546 spin_unlock(&root->inode_lock); 5547 } 5548 5549 static void inode_tree_del(struct btrfs_inode *inode) 5550 { 5551 struct btrfs_root *root = inode->root; 5552 int empty = 0; 5553 5554 spin_lock(&root->inode_lock); 5555 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5556 rb_erase(&inode->rb_node, &root->inode_tree); 5557 RB_CLEAR_NODE(&inode->rb_node); 5558 empty = RB_EMPTY_ROOT(&root->inode_tree); 5559 } 5560 spin_unlock(&root->inode_lock); 5561 5562 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5563 spin_lock(&root->inode_lock); 5564 empty = RB_EMPTY_ROOT(&root->inode_tree); 5565 spin_unlock(&root->inode_lock); 5566 if (empty) 5567 btrfs_add_dead_root(root); 5568 } 5569 } 5570 5571 5572 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5573 { 5574 struct btrfs_iget_args *args = p; 5575 5576 inode->i_ino = args->ino; 5577 BTRFS_I(inode)->location.objectid = args->ino; 5578 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5579 BTRFS_I(inode)->location.offset = 0; 5580 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5581 5582 if (args->root && args->root == args->root->fs_info->tree_root && 5583 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5584 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5585 &BTRFS_I(inode)->runtime_flags); 5586 return 0; 5587 } 5588 5589 static int btrfs_find_actor(struct inode *inode, void *opaque) 5590 { 5591 struct btrfs_iget_args *args = opaque; 5592 5593 return args->ino == BTRFS_I(inode)->location.objectid && 5594 args->root == BTRFS_I(inode)->root; 5595 } 5596 5597 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5598 struct btrfs_root *root) 5599 { 5600 struct inode *inode; 5601 struct btrfs_iget_args args; 5602 unsigned long hashval = btrfs_inode_hash(ino, root); 5603 5604 args.ino = ino; 5605 args.root = root; 5606 5607 inode = iget5_locked(s, hashval, btrfs_find_actor, 5608 btrfs_init_locked_inode, 5609 (void *)&args); 5610 return inode; 5611 } 5612 5613 /* 5614 * Get an inode object given its inode number and corresponding root. 5615 * Path can be preallocated to prevent recursing back to iget through 5616 * allocator. NULL is also valid but may require an additional allocation 5617 * later. 5618 */ 5619 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5620 struct btrfs_root *root, struct btrfs_path *path) 5621 { 5622 struct inode *inode; 5623 5624 inode = btrfs_iget_locked(s, ino, root); 5625 if (!inode) 5626 return ERR_PTR(-ENOMEM); 5627 5628 if (inode->i_state & I_NEW) { 5629 int ret; 5630 5631 ret = btrfs_read_locked_inode(inode, path); 5632 if (!ret) { 5633 inode_tree_add(BTRFS_I(inode)); 5634 unlock_new_inode(inode); 5635 } else { 5636 iget_failed(inode); 5637 /* 5638 * ret > 0 can come from btrfs_search_slot called by 5639 * btrfs_read_locked_inode, this means the inode item 5640 * was not found. 5641 */ 5642 if (ret > 0) 5643 ret = -ENOENT; 5644 inode = ERR_PTR(ret); 5645 } 5646 } 5647 5648 return inode; 5649 } 5650 5651 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5652 { 5653 return btrfs_iget_path(s, ino, root, NULL); 5654 } 5655 5656 static struct inode *new_simple_dir(struct inode *dir, 5657 struct btrfs_key *key, 5658 struct btrfs_root *root) 5659 { 5660 struct timespec64 ts; 5661 struct inode *inode = new_inode(dir->i_sb); 5662 5663 if (!inode) 5664 return ERR_PTR(-ENOMEM); 5665 5666 BTRFS_I(inode)->root = btrfs_grab_root(root); 5667 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5668 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5669 5670 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5671 /* 5672 * We only need lookup, the rest is read-only and there's no inode 5673 * associated with the dentry 5674 */ 5675 inode->i_op = &simple_dir_inode_operations; 5676 inode->i_opflags &= ~IOP_XATTR; 5677 inode->i_fop = &simple_dir_operations; 5678 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5679 5680 ts = inode_set_ctime_current(inode); 5681 inode_set_mtime_to_ts(inode, ts); 5682 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5683 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5684 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5685 5686 inode->i_uid = dir->i_uid; 5687 inode->i_gid = dir->i_gid; 5688 5689 return inode; 5690 } 5691 5692 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5693 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5694 static_assert(BTRFS_FT_DIR == FT_DIR); 5695 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5696 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5697 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5698 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5699 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5700 5701 static inline u8 btrfs_inode_type(struct inode *inode) 5702 { 5703 return fs_umode_to_ftype(inode->i_mode); 5704 } 5705 5706 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5707 { 5708 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5709 struct inode *inode; 5710 struct btrfs_root *root = BTRFS_I(dir)->root; 5711 struct btrfs_root *sub_root = root; 5712 struct btrfs_key location; 5713 u8 di_type = 0; 5714 int ret = 0; 5715 5716 if (dentry->d_name.len > BTRFS_NAME_LEN) 5717 return ERR_PTR(-ENAMETOOLONG); 5718 5719 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5720 if (ret < 0) 5721 return ERR_PTR(ret); 5722 5723 if (location.type == BTRFS_INODE_ITEM_KEY) { 5724 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5725 if (IS_ERR(inode)) 5726 return inode; 5727 5728 /* Do extra check against inode mode with di_type */ 5729 if (btrfs_inode_type(inode) != di_type) { 5730 btrfs_crit(fs_info, 5731 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5732 inode->i_mode, btrfs_inode_type(inode), 5733 di_type); 5734 iput(inode); 5735 return ERR_PTR(-EUCLEAN); 5736 } 5737 return inode; 5738 } 5739 5740 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5741 &location, &sub_root); 5742 if (ret < 0) { 5743 if (ret != -ENOENT) 5744 inode = ERR_PTR(ret); 5745 else 5746 inode = new_simple_dir(dir, &location, root); 5747 } else { 5748 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5749 btrfs_put_root(sub_root); 5750 5751 if (IS_ERR(inode)) 5752 return inode; 5753 5754 down_read(&fs_info->cleanup_work_sem); 5755 if (!sb_rdonly(inode->i_sb)) 5756 ret = btrfs_orphan_cleanup(sub_root); 5757 up_read(&fs_info->cleanup_work_sem); 5758 if (ret) { 5759 iput(inode); 5760 inode = ERR_PTR(ret); 5761 } 5762 } 5763 5764 return inode; 5765 } 5766 5767 static int btrfs_dentry_delete(const struct dentry *dentry) 5768 { 5769 struct btrfs_root *root; 5770 struct inode *inode = d_inode(dentry); 5771 5772 if (!inode && !IS_ROOT(dentry)) 5773 inode = d_inode(dentry->d_parent); 5774 5775 if (inode) { 5776 root = BTRFS_I(inode)->root; 5777 if (btrfs_root_refs(&root->root_item) == 0) 5778 return 1; 5779 5780 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5781 return 1; 5782 } 5783 return 0; 5784 } 5785 5786 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5787 unsigned int flags) 5788 { 5789 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5790 5791 if (inode == ERR_PTR(-ENOENT)) 5792 inode = NULL; 5793 return d_splice_alias(inode, dentry); 5794 } 5795 5796 /* 5797 * Find the highest existing sequence number in a directory and then set the 5798 * in-memory index_cnt variable to the first free sequence number. 5799 */ 5800 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5801 { 5802 struct btrfs_root *root = inode->root; 5803 struct btrfs_key key, found_key; 5804 struct btrfs_path *path; 5805 struct extent_buffer *leaf; 5806 int ret; 5807 5808 key.objectid = btrfs_ino(inode); 5809 key.type = BTRFS_DIR_INDEX_KEY; 5810 key.offset = (u64)-1; 5811 5812 path = btrfs_alloc_path(); 5813 if (!path) 5814 return -ENOMEM; 5815 5816 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5817 if (ret < 0) 5818 goto out; 5819 /* FIXME: we should be able to handle this */ 5820 if (ret == 0) 5821 goto out; 5822 ret = 0; 5823 5824 if (path->slots[0] == 0) { 5825 inode->index_cnt = BTRFS_DIR_START_INDEX; 5826 goto out; 5827 } 5828 5829 path->slots[0]--; 5830 5831 leaf = path->nodes[0]; 5832 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5833 5834 if (found_key.objectid != btrfs_ino(inode) || 5835 found_key.type != BTRFS_DIR_INDEX_KEY) { 5836 inode->index_cnt = BTRFS_DIR_START_INDEX; 5837 goto out; 5838 } 5839 5840 inode->index_cnt = found_key.offset + 1; 5841 out: 5842 btrfs_free_path(path); 5843 return ret; 5844 } 5845 5846 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5847 { 5848 int ret = 0; 5849 5850 btrfs_inode_lock(dir, 0); 5851 if (dir->index_cnt == (u64)-1) { 5852 ret = btrfs_inode_delayed_dir_index_count(dir); 5853 if (ret) { 5854 ret = btrfs_set_inode_index_count(dir); 5855 if (ret) 5856 goto out; 5857 } 5858 } 5859 5860 /* index_cnt is the index number of next new entry, so decrement it. */ 5861 *index = dir->index_cnt - 1; 5862 out: 5863 btrfs_inode_unlock(dir, 0); 5864 5865 return ret; 5866 } 5867 5868 /* 5869 * All this infrastructure exists because dir_emit can fault, and we are holding 5870 * the tree lock when doing readdir. For now just allocate a buffer and copy 5871 * our information into that, and then dir_emit from the buffer. This is 5872 * similar to what NFS does, only we don't keep the buffer around in pagecache 5873 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5874 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5875 * tree lock. 5876 */ 5877 static int btrfs_opendir(struct inode *inode, struct file *file) 5878 { 5879 struct btrfs_file_private *private; 5880 u64 last_index; 5881 int ret; 5882 5883 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5884 if (ret) 5885 return ret; 5886 5887 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5888 if (!private) 5889 return -ENOMEM; 5890 private->last_index = last_index; 5891 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5892 if (!private->filldir_buf) { 5893 kfree(private); 5894 return -ENOMEM; 5895 } 5896 file->private_data = private; 5897 return 0; 5898 } 5899 5900 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5901 { 5902 struct btrfs_file_private *private = file->private_data; 5903 int ret; 5904 5905 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5906 &private->last_index); 5907 if (ret) 5908 return ret; 5909 5910 return generic_file_llseek(file, offset, whence); 5911 } 5912 5913 struct dir_entry { 5914 u64 ino; 5915 u64 offset; 5916 unsigned type; 5917 int name_len; 5918 }; 5919 5920 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5921 { 5922 while (entries--) { 5923 struct dir_entry *entry = addr; 5924 char *name = (char *)(entry + 1); 5925 5926 ctx->pos = get_unaligned(&entry->offset); 5927 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5928 get_unaligned(&entry->ino), 5929 get_unaligned(&entry->type))) 5930 return 1; 5931 addr += sizeof(struct dir_entry) + 5932 get_unaligned(&entry->name_len); 5933 ctx->pos++; 5934 } 5935 return 0; 5936 } 5937 5938 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5939 { 5940 struct inode *inode = file_inode(file); 5941 struct btrfs_root *root = BTRFS_I(inode)->root; 5942 struct btrfs_file_private *private = file->private_data; 5943 struct btrfs_dir_item *di; 5944 struct btrfs_key key; 5945 struct btrfs_key found_key; 5946 struct btrfs_path *path; 5947 void *addr; 5948 LIST_HEAD(ins_list); 5949 LIST_HEAD(del_list); 5950 int ret; 5951 char *name_ptr; 5952 int name_len; 5953 int entries = 0; 5954 int total_len = 0; 5955 bool put = false; 5956 struct btrfs_key location; 5957 5958 if (!dir_emit_dots(file, ctx)) 5959 return 0; 5960 5961 path = btrfs_alloc_path(); 5962 if (!path) 5963 return -ENOMEM; 5964 5965 addr = private->filldir_buf; 5966 path->reada = READA_FORWARD; 5967 5968 put = btrfs_readdir_get_delayed_items(inode, private->last_index, 5969 &ins_list, &del_list); 5970 5971 again: 5972 key.type = BTRFS_DIR_INDEX_KEY; 5973 key.offset = ctx->pos; 5974 key.objectid = btrfs_ino(BTRFS_I(inode)); 5975 5976 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5977 struct dir_entry *entry; 5978 struct extent_buffer *leaf = path->nodes[0]; 5979 u8 ftype; 5980 5981 if (found_key.objectid != key.objectid) 5982 break; 5983 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5984 break; 5985 if (found_key.offset < ctx->pos) 5986 continue; 5987 if (found_key.offset > private->last_index) 5988 break; 5989 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5990 continue; 5991 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5992 name_len = btrfs_dir_name_len(leaf, di); 5993 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5994 PAGE_SIZE) { 5995 btrfs_release_path(path); 5996 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5997 if (ret) 5998 goto nopos; 5999 addr = private->filldir_buf; 6000 entries = 0; 6001 total_len = 0; 6002 goto again; 6003 } 6004 6005 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6006 entry = addr; 6007 name_ptr = (char *)(entry + 1); 6008 read_extent_buffer(leaf, name_ptr, 6009 (unsigned long)(di + 1), name_len); 6010 put_unaligned(name_len, &entry->name_len); 6011 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6012 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6013 put_unaligned(location.objectid, &entry->ino); 6014 put_unaligned(found_key.offset, &entry->offset); 6015 entries++; 6016 addr += sizeof(struct dir_entry) + name_len; 6017 total_len += sizeof(struct dir_entry) + name_len; 6018 } 6019 /* Catch error encountered during iteration */ 6020 if (ret < 0) 6021 goto err; 6022 6023 btrfs_release_path(path); 6024 6025 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6026 if (ret) 6027 goto nopos; 6028 6029 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6030 if (ret) 6031 goto nopos; 6032 6033 /* 6034 * Stop new entries from being returned after we return the last 6035 * entry. 6036 * 6037 * New directory entries are assigned a strictly increasing 6038 * offset. This means that new entries created during readdir 6039 * are *guaranteed* to be seen in the future by that readdir. 6040 * This has broken buggy programs which operate on names as 6041 * they're returned by readdir. Until we re-use freed offsets 6042 * we have this hack to stop new entries from being returned 6043 * under the assumption that they'll never reach this huge 6044 * offset. 6045 * 6046 * This is being careful not to overflow 32bit loff_t unless the 6047 * last entry requires it because doing so has broken 32bit apps 6048 * in the past. 6049 */ 6050 if (ctx->pos >= INT_MAX) 6051 ctx->pos = LLONG_MAX; 6052 else 6053 ctx->pos = INT_MAX; 6054 nopos: 6055 ret = 0; 6056 err: 6057 if (put) 6058 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6059 btrfs_free_path(path); 6060 return ret; 6061 } 6062 6063 /* 6064 * This is somewhat expensive, updating the tree every time the 6065 * inode changes. But, it is most likely to find the inode in cache. 6066 * FIXME, needs more benchmarking...there are no reasons other than performance 6067 * to keep or drop this code. 6068 */ 6069 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6070 { 6071 struct btrfs_root *root = inode->root; 6072 struct btrfs_fs_info *fs_info = root->fs_info; 6073 struct btrfs_trans_handle *trans; 6074 int ret; 6075 6076 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6077 return 0; 6078 6079 trans = btrfs_join_transaction(root); 6080 if (IS_ERR(trans)) 6081 return PTR_ERR(trans); 6082 6083 ret = btrfs_update_inode(trans, inode); 6084 if (ret == -ENOSPC || ret == -EDQUOT) { 6085 /* whoops, lets try again with the full transaction */ 6086 btrfs_end_transaction(trans); 6087 trans = btrfs_start_transaction(root, 1); 6088 if (IS_ERR(trans)) 6089 return PTR_ERR(trans); 6090 6091 ret = btrfs_update_inode(trans, inode); 6092 } 6093 btrfs_end_transaction(trans); 6094 if (inode->delayed_node) 6095 btrfs_balance_delayed_items(fs_info); 6096 6097 return ret; 6098 } 6099 6100 /* 6101 * This is a copy of file_update_time. We need this so we can return error on 6102 * ENOSPC for updating the inode in the case of file write and mmap writes. 6103 */ 6104 static int btrfs_update_time(struct inode *inode, int flags) 6105 { 6106 struct btrfs_root *root = BTRFS_I(inode)->root; 6107 bool dirty; 6108 6109 if (btrfs_root_readonly(root)) 6110 return -EROFS; 6111 6112 dirty = inode_update_timestamps(inode, flags); 6113 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6114 } 6115 6116 /* 6117 * helper to find a free sequence number in a given directory. This current 6118 * code is very simple, later versions will do smarter things in the btree 6119 */ 6120 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6121 { 6122 int ret = 0; 6123 6124 if (dir->index_cnt == (u64)-1) { 6125 ret = btrfs_inode_delayed_dir_index_count(dir); 6126 if (ret) { 6127 ret = btrfs_set_inode_index_count(dir); 6128 if (ret) 6129 return ret; 6130 } 6131 } 6132 6133 *index = dir->index_cnt; 6134 dir->index_cnt++; 6135 6136 return ret; 6137 } 6138 6139 static int btrfs_insert_inode_locked(struct inode *inode) 6140 { 6141 struct btrfs_iget_args args; 6142 6143 args.ino = BTRFS_I(inode)->location.objectid; 6144 args.root = BTRFS_I(inode)->root; 6145 6146 return insert_inode_locked4(inode, 6147 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6148 btrfs_find_actor, &args); 6149 } 6150 6151 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6152 unsigned int *trans_num_items) 6153 { 6154 struct inode *dir = args->dir; 6155 struct inode *inode = args->inode; 6156 int ret; 6157 6158 if (!args->orphan) { 6159 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6160 &args->fname); 6161 if (ret) 6162 return ret; 6163 } 6164 6165 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6166 if (ret) { 6167 fscrypt_free_filename(&args->fname); 6168 return ret; 6169 } 6170 6171 /* 1 to add inode item */ 6172 *trans_num_items = 1; 6173 /* 1 to add compression property */ 6174 if (BTRFS_I(dir)->prop_compress) 6175 (*trans_num_items)++; 6176 /* 1 to add default ACL xattr */ 6177 if (args->default_acl) 6178 (*trans_num_items)++; 6179 /* 1 to add access ACL xattr */ 6180 if (args->acl) 6181 (*trans_num_items)++; 6182 #ifdef CONFIG_SECURITY 6183 /* 1 to add LSM xattr */ 6184 if (dir->i_security) 6185 (*trans_num_items)++; 6186 #endif 6187 if (args->orphan) { 6188 /* 1 to add orphan item */ 6189 (*trans_num_items)++; 6190 } else { 6191 /* 6192 * 1 to add dir item 6193 * 1 to add dir index 6194 * 1 to update parent inode item 6195 * 6196 * No need for 1 unit for the inode ref item because it is 6197 * inserted in a batch together with the inode item at 6198 * btrfs_create_new_inode(). 6199 */ 6200 *trans_num_items += 3; 6201 } 6202 return 0; 6203 } 6204 6205 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6206 { 6207 posix_acl_release(args->acl); 6208 posix_acl_release(args->default_acl); 6209 fscrypt_free_filename(&args->fname); 6210 } 6211 6212 /* 6213 * Inherit flags from the parent inode. 6214 * 6215 * Currently only the compression flags and the cow flags are inherited. 6216 */ 6217 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6218 { 6219 unsigned int flags; 6220 6221 flags = dir->flags; 6222 6223 if (flags & BTRFS_INODE_NOCOMPRESS) { 6224 inode->flags &= ~BTRFS_INODE_COMPRESS; 6225 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6226 } else if (flags & BTRFS_INODE_COMPRESS) { 6227 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6228 inode->flags |= BTRFS_INODE_COMPRESS; 6229 } 6230 6231 if (flags & BTRFS_INODE_NODATACOW) { 6232 inode->flags |= BTRFS_INODE_NODATACOW; 6233 if (S_ISREG(inode->vfs_inode.i_mode)) 6234 inode->flags |= BTRFS_INODE_NODATASUM; 6235 } 6236 6237 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6238 } 6239 6240 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6241 struct btrfs_new_inode_args *args) 6242 { 6243 struct timespec64 ts; 6244 struct inode *dir = args->dir; 6245 struct inode *inode = args->inode; 6246 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6247 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6248 struct btrfs_root *root; 6249 struct btrfs_inode_item *inode_item; 6250 struct btrfs_key *location; 6251 struct btrfs_path *path; 6252 u64 objectid; 6253 struct btrfs_inode_ref *ref; 6254 struct btrfs_key key[2]; 6255 u32 sizes[2]; 6256 struct btrfs_item_batch batch; 6257 unsigned long ptr; 6258 int ret; 6259 6260 path = btrfs_alloc_path(); 6261 if (!path) 6262 return -ENOMEM; 6263 6264 if (!args->subvol) 6265 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6266 root = BTRFS_I(inode)->root; 6267 6268 ret = btrfs_get_free_objectid(root, &objectid); 6269 if (ret) 6270 goto out; 6271 inode->i_ino = objectid; 6272 6273 if (args->orphan) { 6274 /* 6275 * O_TMPFILE, set link count to 0, so that after this point, we 6276 * fill in an inode item with the correct link count. 6277 */ 6278 set_nlink(inode, 0); 6279 } else { 6280 trace_btrfs_inode_request(dir); 6281 6282 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6283 if (ret) 6284 goto out; 6285 } 6286 /* index_cnt is ignored for everything but a dir. */ 6287 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6288 BTRFS_I(inode)->generation = trans->transid; 6289 inode->i_generation = BTRFS_I(inode)->generation; 6290 6291 /* 6292 * We don't have any capability xattrs set here yet, shortcut any 6293 * queries for the xattrs here. If we add them later via the inode 6294 * security init path or any other path this flag will be cleared. 6295 */ 6296 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6297 6298 /* 6299 * Subvolumes don't inherit flags from their parent directory. 6300 * Originally this was probably by accident, but we probably can't 6301 * change it now without compatibility issues. 6302 */ 6303 if (!args->subvol) 6304 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6305 6306 if (S_ISREG(inode->i_mode)) { 6307 if (btrfs_test_opt(fs_info, NODATASUM)) 6308 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6309 if (btrfs_test_opt(fs_info, NODATACOW)) 6310 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6311 BTRFS_INODE_NODATASUM; 6312 } 6313 6314 location = &BTRFS_I(inode)->location; 6315 location->objectid = objectid; 6316 location->offset = 0; 6317 location->type = BTRFS_INODE_ITEM_KEY; 6318 6319 ret = btrfs_insert_inode_locked(inode); 6320 if (ret < 0) { 6321 if (!args->orphan) 6322 BTRFS_I(dir)->index_cnt--; 6323 goto out; 6324 } 6325 6326 /* 6327 * We could have gotten an inode number from somebody who was fsynced 6328 * and then removed in this same transaction, so let's just set full 6329 * sync since it will be a full sync anyway and this will blow away the 6330 * old info in the log. 6331 */ 6332 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6333 6334 key[0].objectid = objectid; 6335 key[0].type = BTRFS_INODE_ITEM_KEY; 6336 key[0].offset = 0; 6337 6338 sizes[0] = sizeof(struct btrfs_inode_item); 6339 6340 if (!args->orphan) { 6341 /* 6342 * Start new inodes with an inode_ref. This is slightly more 6343 * efficient for small numbers of hard links since they will 6344 * be packed into one item. Extended refs will kick in if we 6345 * add more hard links than can fit in the ref item. 6346 */ 6347 key[1].objectid = objectid; 6348 key[1].type = BTRFS_INODE_REF_KEY; 6349 if (args->subvol) { 6350 key[1].offset = objectid; 6351 sizes[1] = 2 + sizeof(*ref); 6352 } else { 6353 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6354 sizes[1] = name->len + sizeof(*ref); 6355 } 6356 } 6357 6358 batch.keys = &key[0]; 6359 batch.data_sizes = &sizes[0]; 6360 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6361 batch.nr = args->orphan ? 1 : 2; 6362 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6363 if (ret != 0) { 6364 btrfs_abort_transaction(trans, ret); 6365 goto discard; 6366 } 6367 6368 ts = simple_inode_init_ts(inode); 6369 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6370 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6371 6372 /* 6373 * We're going to fill the inode item now, so at this point the inode 6374 * must be fully initialized. 6375 */ 6376 6377 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6378 struct btrfs_inode_item); 6379 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6380 sizeof(*inode_item)); 6381 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6382 6383 if (!args->orphan) { 6384 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6385 struct btrfs_inode_ref); 6386 ptr = (unsigned long)(ref + 1); 6387 if (args->subvol) { 6388 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6389 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6390 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6391 } else { 6392 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6393 name->len); 6394 btrfs_set_inode_ref_index(path->nodes[0], ref, 6395 BTRFS_I(inode)->dir_index); 6396 write_extent_buffer(path->nodes[0], name->name, ptr, 6397 name->len); 6398 } 6399 } 6400 6401 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6402 /* 6403 * We don't need the path anymore, plus inheriting properties, adding 6404 * ACLs, security xattrs, orphan item or adding the link, will result in 6405 * allocating yet another path. So just free our path. 6406 */ 6407 btrfs_free_path(path); 6408 path = NULL; 6409 6410 if (args->subvol) { 6411 struct inode *parent; 6412 6413 /* 6414 * Subvolumes inherit properties from their parent subvolume, 6415 * not the directory they were created in. 6416 */ 6417 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6418 BTRFS_I(dir)->root); 6419 if (IS_ERR(parent)) { 6420 ret = PTR_ERR(parent); 6421 } else { 6422 ret = btrfs_inode_inherit_props(trans, inode, parent); 6423 iput(parent); 6424 } 6425 } else { 6426 ret = btrfs_inode_inherit_props(trans, inode, dir); 6427 } 6428 if (ret) { 6429 btrfs_err(fs_info, 6430 "error inheriting props for ino %llu (root %llu): %d", 6431 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6432 ret); 6433 } 6434 6435 /* 6436 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6437 * probably a bug. 6438 */ 6439 if (!args->subvol) { 6440 ret = btrfs_init_inode_security(trans, args); 6441 if (ret) { 6442 btrfs_abort_transaction(trans, ret); 6443 goto discard; 6444 } 6445 } 6446 6447 inode_tree_add(BTRFS_I(inode)); 6448 6449 trace_btrfs_inode_new(inode); 6450 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6451 6452 btrfs_update_root_times(trans, root); 6453 6454 if (args->orphan) { 6455 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6456 } else { 6457 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6458 0, BTRFS_I(inode)->dir_index); 6459 } 6460 if (ret) { 6461 btrfs_abort_transaction(trans, ret); 6462 goto discard; 6463 } 6464 6465 return 0; 6466 6467 discard: 6468 /* 6469 * discard_new_inode() calls iput(), but the caller owns the reference 6470 * to the inode. 6471 */ 6472 ihold(inode); 6473 discard_new_inode(inode); 6474 out: 6475 btrfs_free_path(path); 6476 return ret; 6477 } 6478 6479 /* 6480 * utility function to add 'inode' into 'parent_inode' with 6481 * a give name and a given sequence number. 6482 * if 'add_backref' is true, also insert a backref from the 6483 * inode to the parent directory. 6484 */ 6485 int btrfs_add_link(struct btrfs_trans_handle *trans, 6486 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6487 const struct fscrypt_str *name, int add_backref, u64 index) 6488 { 6489 int ret = 0; 6490 struct btrfs_key key; 6491 struct btrfs_root *root = parent_inode->root; 6492 u64 ino = btrfs_ino(inode); 6493 u64 parent_ino = btrfs_ino(parent_inode); 6494 6495 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6496 memcpy(&key, &inode->root->root_key, sizeof(key)); 6497 } else { 6498 key.objectid = ino; 6499 key.type = BTRFS_INODE_ITEM_KEY; 6500 key.offset = 0; 6501 } 6502 6503 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6504 ret = btrfs_add_root_ref(trans, key.objectid, 6505 root->root_key.objectid, parent_ino, 6506 index, name); 6507 } else if (add_backref) { 6508 ret = btrfs_insert_inode_ref(trans, root, name, 6509 ino, parent_ino, index); 6510 } 6511 6512 /* Nothing to clean up yet */ 6513 if (ret) 6514 return ret; 6515 6516 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6517 btrfs_inode_type(&inode->vfs_inode), index); 6518 if (ret == -EEXIST || ret == -EOVERFLOW) 6519 goto fail_dir_item; 6520 else if (ret) { 6521 btrfs_abort_transaction(trans, ret); 6522 return ret; 6523 } 6524 6525 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6526 name->len * 2); 6527 inode_inc_iversion(&parent_inode->vfs_inode); 6528 /* 6529 * If we are replaying a log tree, we do not want to update the mtime 6530 * and ctime of the parent directory with the current time, since the 6531 * log replay procedure is responsible for setting them to their correct 6532 * values (the ones it had when the fsync was done). 6533 */ 6534 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6535 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6536 inode_set_ctime_current(&parent_inode->vfs_inode)); 6537 6538 ret = btrfs_update_inode(trans, parent_inode); 6539 if (ret) 6540 btrfs_abort_transaction(trans, ret); 6541 return ret; 6542 6543 fail_dir_item: 6544 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6545 u64 local_index; 6546 int err; 6547 err = btrfs_del_root_ref(trans, key.objectid, 6548 root->root_key.objectid, parent_ino, 6549 &local_index, name); 6550 if (err) 6551 btrfs_abort_transaction(trans, err); 6552 } else if (add_backref) { 6553 u64 local_index; 6554 int err; 6555 6556 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6557 &local_index); 6558 if (err) 6559 btrfs_abort_transaction(trans, err); 6560 } 6561 6562 /* Return the original error code */ 6563 return ret; 6564 } 6565 6566 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6567 struct inode *inode) 6568 { 6569 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6570 struct btrfs_root *root = BTRFS_I(dir)->root; 6571 struct btrfs_new_inode_args new_inode_args = { 6572 .dir = dir, 6573 .dentry = dentry, 6574 .inode = inode, 6575 }; 6576 unsigned int trans_num_items; 6577 struct btrfs_trans_handle *trans; 6578 int err; 6579 6580 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6581 if (err) 6582 goto out_inode; 6583 6584 trans = btrfs_start_transaction(root, trans_num_items); 6585 if (IS_ERR(trans)) { 6586 err = PTR_ERR(trans); 6587 goto out_new_inode_args; 6588 } 6589 6590 err = btrfs_create_new_inode(trans, &new_inode_args); 6591 if (!err) 6592 d_instantiate_new(dentry, inode); 6593 6594 btrfs_end_transaction(trans); 6595 btrfs_btree_balance_dirty(fs_info); 6596 out_new_inode_args: 6597 btrfs_new_inode_args_destroy(&new_inode_args); 6598 out_inode: 6599 if (err) 6600 iput(inode); 6601 return err; 6602 } 6603 6604 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6605 struct dentry *dentry, umode_t mode, dev_t rdev) 6606 { 6607 struct inode *inode; 6608 6609 inode = new_inode(dir->i_sb); 6610 if (!inode) 6611 return -ENOMEM; 6612 inode_init_owner(idmap, inode, dir, mode); 6613 inode->i_op = &btrfs_special_inode_operations; 6614 init_special_inode(inode, inode->i_mode, rdev); 6615 return btrfs_create_common(dir, dentry, inode); 6616 } 6617 6618 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6619 struct dentry *dentry, umode_t mode, bool excl) 6620 { 6621 struct inode *inode; 6622 6623 inode = new_inode(dir->i_sb); 6624 if (!inode) 6625 return -ENOMEM; 6626 inode_init_owner(idmap, inode, dir, mode); 6627 inode->i_fop = &btrfs_file_operations; 6628 inode->i_op = &btrfs_file_inode_operations; 6629 inode->i_mapping->a_ops = &btrfs_aops; 6630 return btrfs_create_common(dir, dentry, inode); 6631 } 6632 6633 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6634 struct dentry *dentry) 6635 { 6636 struct btrfs_trans_handle *trans = NULL; 6637 struct btrfs_root *root = BTRFS_I(dir)->root; 6638 struct inode *inode = d_inode(old_dentry); 6639 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6640 struct fscrypt_name fname; 6641 u64 index; 6642 int err; 6643 int drop_inode = 0; 6644 6645 /* do not allow sys_link's with other subvols of the same device */ 6646 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6647 return -EXDEV; 6648 6649 if (inode->i_nlink >= BTRFS_LINK_MAX) 6650 return -EMLINK; 6651 6652 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6653 if (err) 6654 goto fail; 6655 6656 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6657 if (err) 6658 goto fail; 6659 6660 /* 6661 * 2 items for inode and inode ref 6662 * 2 items for dir items 6663 * 1 item for parent inode 6664 * 1 item for orphan item deletion if O_TMPFILE 6665 */ 6666 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6667 if (IS_ERR(trans)) { 6668 err = PTR_ERR(trans); 6669 trans = NULL; 6670 goto fail; 6671 } 6672 6673 /* There are several dir indexes for this inode, clear the cache. */ 6674 BTRFS_I(inode)->dir_index = 0ULL; 6675 inc_nlink(inode); 6676 inode_inc_iversion(inode); 6677 inode_set_ctime_current(inode); 6678 ihold(inode); 6679 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6680 6681 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6682 &fname.disk_name, 1, index); 6683 6684 if (err) { 6685 drop_inode = 1; 6686 } else { 6687 struct dentry *parent = dentry->d_parent; 6688 6689 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6690 if (err) 6691 goto fail; 6692 if (inode->i_nlink == 1) { 6693 /* 6694 * If new hard link count is 1, it's a file created 6695 * with open(2) O_TMPFILE flag. 6696 */ 6697 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6698 if (err) 6699 goto fail; 6700 } 6701 d_instantiate(dentry, inode); 6702 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6703 } 6704 6705 fail: 6706 fscrypt_free_filename(&fname); 6707 if (trans) 6708 btrfs_end_transaction(trans); 6709 if (drop_inode) { 6710 inode_dec_link_count(inode); 6711 iput(inode); 6712 } 6713 btrfs_btree_balance_dirty(fs_info); 6714 return err; 6715 } 6716 6717 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6718 struct dentry *dentry, umode_t mode) 6719 { 6720 struct inode *inode; 6721 6722 inode = new_inode(dir->i_sb); 6723 if (!inode) 6724 return -ENOMEM; 6725 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6726 inode->i_op = &btrfs_dir_inode_operations; 6727 inode->i_fop = &btrfs_dir_file_operations; 6728 return btrfs_create_common(dir, dentry, inode); 6729 } 6730 6731 static noinline int uncompress_inline(struct btrfs_path *path, 6732 struct page *page, 6733 struct btrfs_file_extent_item *item) 6734 { 6735 int ret; 6736 struct extent_buffer *leaf = path->nodes[0]; 6737 char *tmp; 6738 size_t max_size; 6739 unsigned long inline_size; 6740 unsigned long ptr; 6741 int compress_type; 6742 6743 compress_type = btrfs_file_extent_compression(leaf, item); 6744 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6745 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6746 tmp = kmalloc(inline_size, GFP_NOFS); 6747 if (!tmp) 6748 return -ENOMEM; 6749 ptr = btrfs_file_extent_inline_start(item); 6750 6751 read_extent_buffer(leaf, tmp, ptr, inline_size); 6752 6753 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6754 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6755 6756 /* 6757 * decompression code contains a memset to fill in any space between the end 6758 * of the uncompressed data and the end of max_size in case the decompressed 6759 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6760 * the end of an inline extent and the beginning of the next block, so we 6761 * cover that region here. 6762 */ 6763 6764 if (max_size < PAGE_SIZE) 6765 memzero_page(page, max_size, PAGE_SIZE - max_size); 6766 kfree(tmp); 6767 return ret; 6768 } 6769 6770 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6771 struct page *page) 6772 { 6773 struct btrfs_file_extent_item *fi; 6774 void *kaddr; 6775 size_t copy_size; 6776 6777 if (!page || PageUptodate(page)) 6778 return 0; 6779 6780 ASSERT(page_offset(page) == 0); 6781 6782 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6783 struct btrfs_file_extent_item); 6784 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6785 return uncompress_inline(path, page, fi); 6786 6787 copy_size = min_t(u64, PAGE_SIZE, 6788 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6789 kaddr = kmap_local_page(page); 6790 read_extent_buffer(path->nodes[0], kaddr, 6791 btrfs_file_extent_inline_start(fi), copy_size); 6792 kunmap_local(kaddr); 6793 if (copy_size < PAGE_SIZE) 6794 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6795 return 0; 6796 } 6797 6798 /* 6799 * Lookup the first extent overlapping a range in a file. 6800 * 6801 * @inode: file to search in 6802 * @page: page to read extent data into if the extent is inline 6803 * @start: file offset 6804 * @len: length of range starting at @start 6805 * 6806 * Return the first &struct extent_map which overlaps the given range, reading 6807 * it from the B-tree and caching it if necessary. Note that there may be more 6808 * extents which overlap the given range after the returned extent_map. 6809 * 6810 * If @page is not NULL and the extent is inline, this also reads the extent 6811 * data directly into the page and marks the extent up to date in the io_tree. 6812 * 6813 * Return: ERR_PTR on error, non-NULL extent_map on success. 6814 */ 6815 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6816 struct page *page, u64 start, u64 len) 6817 { 6818 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6819 int ret = 0; 6820 u64 extent_start = 0; 6821 u64 extent_end = 0; 6822 u64 objectid = btrfs_ino(inode); 6823 int extent_type = -1; 6824 struct btrfs_path *path = NULL; 6825 struct btrfs_root *root = inode->root; 6826 struct btrfs_file_extent_item *item; 6827 struct extent_buffer *leaf; 6828 struct btrfs_key found_key; 6829 struct extent_map *em = NULL; 6830 struct extent_map_tree *em_tree = &inode->extent_tree; 6831 6832 read_lock(&em_tree->lock); 6833 em = lookup_extent_mapping(em_tree, start, len); 6834 read_unlock(&em_tree->lock); 6835 6836 if (em) { 6837 if (em->start > start || em->start + em->len <= start) 6838 free_extent_map(em); 6839 else if (em->block_start == EXTENT_MAP_INLINE && page) 6840 free_extent_map(em); 6841 else 6842 goto out; 6843 } 6844 em = alloc_extent_map(); 6845 if (!em) { 6846 ret = -ENOMEM; 6847 goto out; 6848 } 6849 em->start = EXTENT_MAP_HOLE; 6850 em->orig_start = EXTENT_MAP_HOLE; 6851 em->len = (u64)-1; 6852 em->block_len = (u64)-1; 6853 6854 path = btrfs_alloc_path(); 6855 if (!path) { 6856 ret = -ENOMEM; 6857 goto out; 6858 } 6859 6860 /* Chances are we'll be called again, so go ahead and do readahead */ 6861 path->reada = READA_FORWARD; 6862 6863 /* 6864 * The same explanation in load_free_space_cache applies here as well, 6865 * we only read when we're loading the free space cache, and at that 6866 * point the commit_root has everything we need. 6867 */ 6868 if (btrfs_is_free_space_inode(inode)) { 6869 path->search_commit_root = 1; 6870 path->skip_locking = 1; 6871 } 6872 6873 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6874 if (ret < 0) { 6875 goto out; 6876 } else if (ret > 0) { 6877 if (path->slots[0] == 0) 6878 goto not_found; 6879 path->slots[0]--; 6880 ret = 0; 6881 } 6882 6883 leaf = path->nodes[0]; 6884 item = btrfs_item_ptr(leaf, path->slots[0], 6885 struct btrfs_file_extent_item); 6886 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6887 if (found_key.objectid != objectid || 6888 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6889 /* 6890 * If we backup past the first extent we want to move forward 6891 * and see if there is an extent in front of us, otherwise we'll 6892 * say there is a hole for our whole search range which can 6893 * cause problems. 6894 */ 6895 extent_end = start; 6896 goto next; 6897 } 6898 6899 extent_type = btrfs_file_extent_type(leaf, item); 6900 extent_start = found_key.offset; 6901 extent_end = btrfs_file_extent_end(path); 6902 if (extent_type == BTRFS_FILE_EXTENT_REG || 6903 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6904 /* Only regular file could have regular/prealloc extent */ 6905 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6906 ret = -EUCLEAN; 6907 btrfs_crit(fs_info, 6908 "regular/prealloc extent found for non-regular inode %llu", 6909 btrfs_ino(inode)); 6910 goto out; 6911 } 6912 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6913 extent_start); 6914 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6915 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6916 path->slots[0], 6917 extent_start); 6918 } 6919 next: 6920 if (start >= extent_end) { 6921 path->slots[0]++; 6922 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6923 ret = btrfs_next_leaf(root, path); 6924 if (ret < 0) 6925 goto out; 6926 else if (ret > 0) 6927 goto not_found; 6928 6929 leaf = path->nodes[0]; 6930 } 6931 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6932 if (found_key.objectid != objectid || 6933 found_key.type != BTRFS_EXTENT_DATA_KEY) 6934 goto not_found; 6935 if (start + len <= found_key.offset) 6936 goto not_found; 6937 if (start > found_key.offset) 6938 goto next; 6939 6940 /* New extent overlaps with existing one */ 6941 em->start = start; 6942 em->orig_start = start; 6943 em->len = found_key.offset - start; 6944 em->block_start = EXTENT_MAP_HOLE; 6945 goto insert; 6946 } 6947 6948 btrfs_extent_item_to_extent_map(inode, path, item, em); 6949 6950 if (extent_type == BTRFS_FILE_EXTENT_REG || 6951 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6952 goto insert; 6953 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6954 /* 6955 * Inline extent can only exist at file offset 0. This is 6956 * ensured by tree-checker and inline extent creation path. 6957 * Thus all members representing file offsets should be zero. 6958 */ 6959 ASSERT(extent_start == 0); 6960 ASSERT(em->start == 0); 6961 6962 /* 6963 * btrfs_extent_item_to_extent_map() should have properly 6964 * initialized em members already. 6965 * 6966 * Other members are not utilized for inline extents. 6967 */ 6968 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6969 ASSERT(em->len == fs_info->sectorsize); 6970 6971 ret = read_inline_extent(inode, path, page); 6972 if (ret < 0) 6973 goto out; 6974 goto insert; 6975 } 6976 not_found: 6977 em->start = start; 6978 em->orig_start = start; 6979 em->len = len; 6980 em->block_start = EXTENT_MAP_HOLE; 6981 insert: 6982 ret = 0; 6983 btrfs_release_path(path); 6984 if (em->start > start || extent_map_end(em) <= start) { 6985 btrfs_err(fs_info, 6986 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6987 em->start, em->len, start, len); 6988 ret = -EIO; 6989 goto out; 6990 } 6991 6992 write_lock(&em_tree->lock); 6993 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6994 write_unlock(&em_tree->lock); 6995 out: 6996 btrfs_free_path(path); 6997 6998 trace_btrfs_get_extent(root, inode, em); 6999 7000 if (ret) { 7001 free_extent_map(em); 7002 return ERR_PTR(ret); 7003 } 7004 return em; 7005 } 7006 7007 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7008 struct btrfs_dio_data *dio_data, 7009 const u64 start, 7010 const u64 len, 7011 const u64 orig_start, 7012 const u64 block_start, 7013 const u64 block_len, 7014 const u64 orig_block_len, 7015 const u64 ram_bytes, 7016 const int type) 7017 { 7018 struct extent_map *em = NULL; 7019 struct btrfs_ordered_extent *ordered; 7020 7021 if (type != BTRFS_ORDERED_NOCOW) { 7022 em = create_io_em(inode, start, len, orig_start, block_start, 7023 block_len, orig_block_len, ram_bytes, 7024 BTRFS_COMPRESS_NONE, /* compress_type */ 7025 type); 7026 if (IS_ERR(em)) 7027 goto out; 7028 } 7029 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 7030 block_start, block_len, 0, 7031 (1 << type) | 7032 (1 << BTRFS_ORDERED_DIRECT), 7033 BTRFS_COMPRESS_NONE); 7034 if (IS_ERR(ordered)) { 7035 if (em) { 7036 free_extent_map(em); 7037 btrfs_drop_extent_map_range(inode, start, 7038 start + len - 1, false); 7039 } 7040 em = ERR_CAST(ordered); 7041 } else { 7042 ASSERT(!dio_data->ordered); 7043 dio_data->ordered = ordered; 7044 } 7045 out: 7046 7047 return em; 7048 } 7049 7050 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7051 struct btrfs_dio_data *dio_data, 7052 u64 start, u64 len) 7053 { 7054 struct btrfs_root *root = inode->root; 7055 struct btrfs_fs_info *fs_info = root->fs_info; 7056 struct extent_map *em; 7057 struct btrfs_key ins; 7058 u64 alloc_hint; 7059 int ret; 7060 7061 alloc_hint = get_extent_allocation_hint(inode, start, len); 7062 again: 7063 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7064 0, alloc_hint, &ins, 1, 1); 7065 if (ret == -EAGAIN) { 7066 ASSERT(btrfs_is_zoned(fs_info)); 7067 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 7068 TASK_UNINTERRUPTIBLE); 7069 goto again; 7070 } 7071 if (ret) 7072 return ERR_PTR(ret); 7073 7074 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 7075 ins.objectid, ins.offset, ins.offset, 7076 ins.offset, BTRFS_ORDERED_REGULAR); 7077 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7078 if (IS_ERR(em)) 7079 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7080 1); 7081 7082 return em; 7083 } 7084 7085 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7086 { 7087 struct btrfs_block_group *block_group; 7088 bool readonly = false; 7089 7090 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7091 if (!block_group || block_group->ro) 7092 readonly = true; 7093 if (block_group) 7094 btrfs_put_block_group(block_group); 7095 return readonly; 7096 } 7097 7098 /* 7099 * Check if we can do nocow write into the range [@offset, @offset + @len) 7100 * 7101 * @offset: File offset 7102 * @len: The length to write, will be updated to the nocow writeable 7103 * range 7104 * @orig_start: (optional) Return the original file offset of the file extent 7105 * @orig_len: (optional) Return the original on-disk length of the file extent 7106 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7107 * @strict: if true, omit optimizations that might force us into unnecessary 7108 * cow. e.g., don't trust generation number. 7109 * 7110 * Return: 7111 * >0 and update @len if we can do nocow write 7112 * 0 if we can't do nocow write 7113 * <0 if error happened 7114 * 7115 * NOTE: This only checks the file extents, caller is responsible to wait for 7116 * any ordered extents. 7117 */ 7118 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7119 u64 *orig_start, u64 *orig_block_len, 7120 u64 *ram_bytes, bool nowait, bool strict) 7121 { 7122 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7123 struct can_nocow_file_extent_args nocow_args = { 0 }; 7124 struct btrfs_path *path; 7125 int ret; 7126 struct extent_buffer *leaf; 7127 struct btrfs_root *root = BTRFS_I(inode)->root; 7128 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7129 struct btrfs_file_extent_item *fi; 7130 struct btrfs_key key; 7131 int found_type; 7132 7133 path = btrfs_alloc_path(); 7134 if (!path) 7135 return -ENOMEM; 7136 path->nowait = nowait; 7137 7138 ret = btrfs_lookup_file_extent(NULL, root, path, 7139 btrfs_ino(BTRFS_I(inode)), offset, 0); 7140 if (ret < 0) 7141 goto out; 7142 7143 if (ret == 1) { 7144 if (path->slots[0] == 0) { 7145 /* can't find the item, must cow */ 7146 ret = 0; 7147 goto out; 7148 } 7149 path->slots[0]--; 7150 } 7151 ret = 0; 7152 leaf = path->nodes[0]; 7153 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7154 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7155 key.type != BTRFS_EXTENT_DATA_KEY) { 7156 /* not our file or wrong item type, must cow */ 7157 goto out; 7158 } 7159 7160 if (key.offset > offset) { 7161 /* Wrong offset, must cow */ 7162 goto out; 7163 } 7164 7165 if (btrfs_file_extent_end(path) <= offset) 7166 goto out; 7167 7168 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7169 found_type = btrfs_file_extent_type(leaf, fi); 7170 if (ram_bytes) 7171 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7172 7173 nocow_args.start = offset; 7174 nocow_args.end = offset + *len - 1; 7175 nocow_args.strict = strict; 7176 nocow_args.free_path = true; 7177 7178 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7179 /* can_nocow_file_extent() has freed the path. */ 7180 path = NULL; 7181 7182 if (ret != 1) { 7183 /* Treat errors as not being able to NOCOW. */ 7184 ret = 0; 7185 goto out; 7186 } 7187 7188 ret = 0; 7189 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7190 goto out; 7191 7192 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7193 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7194 u64 range_end; 7195 7196 range_end = round_up(offset + nocow_args.num_bytes, 7197 root->fs_info->sectorsize) - 1; 7198 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7199 if (ret) { 7200 ret = -EAGAIN; 7201 goto out; 7202 } 7203 } 7204 7205 if (orig_start) 7206 *orig_start = key.offset - nocow_args.extent_offset; 7207 if (orig_block_len) 7208 *orig_block_len = nocow_args.disk_num_bytes; 7209 7210 *len = nocow_args.num_bytes; 7211 ret = 1; 7212 out: 7213 btrfs_free_path(path); 7214 return ret; 7215 } 7216 7217 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7218 struct extent_state **cached_state, 7219 unsigned int iomap_flags) 7220 { 7221 const bool writing = (iomap_flags & IOMAP_WRITE); 7222 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7224 struct btrfs_ordered_extent *ordered; 7225 int ret = 0; 7226 7227 while (1) { 7228 if (nowait) { 7229 if (!try_lock_extent(io_tree, lockstart, lockend, 7230 cached_state)) 7231 return -EAGAIN; 7232 } else { 7233 lock_extent(io_tree, lockstart, lockend, cached_state); 7234 } 7235 /* 7236 * We're concerned with the entire range that we're going to be 7237 * doing DIO to, so we need to make sure there's no ordered 7238 * extents in this range. 7239 */ 7240 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7241 lockend - lockstart + 1); 7242 7243 /* 7244 * We need to make sure there are no buffered pages in this 7245 * range either, we could have raced between the invalidate in 7246 * generic_file_direct_write and locking the extent. The 7247 * invalidate needs to happen so that reads after a write do not 7248 * get stale data. 7249 */ 7250 if (!ordered && 7251 (!writing || !filemap_range_has_page(inode->i_mapping, 7252 lockstart, lockend))) 7253 break; 7254 7255 unlock_extent(io_tree, lockstart, lockend, cached_state); 7256 7257 if (ordered) { 7258 if (nowait) { 7259 btrfs_put_ordered_extent(ordered); 7260 ret = -EAGAIN; 7261 break; 7262 } 7263 /* 7264 * If we are doing a DIO read and the ordered extent we 7265 * found is for a buffered write, we can not wait for it 7266 * to complete and retry, because if we do so we can 7267 * deadlock with concurrent buffered writes on page 7268 * locks. This happens only if our DIO read covers more 7269 * than one extent map, if at this point has already 7270 * created an ordered extent for a previous extent map 7271 * and locked its range in the inode's io tree, and a 7272 * concurrent write against that previous extent map's 7273 * range and this range started (we unlock the ranges 7274 * in the io tree only when the bios complete and 7275 * buffered writes always lock pages before attempting 7276 * to lock range in the io tree). 7277 */ 7278 if (writing || 7279 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7280 btrfs_start_ordered_extent(ordered); 7281 else 7282 ret = nowait ? -EAGAIN : -ENOTBLK; 7283 btrfs_put_ordered_extent(ordered); 7284 } else { 7285 /* 7286 * We could trigger writeback for this range (and wait 7287 * for it to complete) and then invalidate the pages for 7288 * this range (through invalidate_inode_pages2_range()), 7289 * but that can lead us to a deadlock with a concurrent 7290 * call to readahead (a buffered read or a defrag call 7291 * triggered a readahead) on a page lock due to an 7292 * ordered dio extent we created before but did not have 7293 * yet a corresponding bio submitted (whence it can not 7294 * complete), which makes readahead wait for that 7295 * ordered extent to complete while holding a lock on 7296 * that page. 7297 */ 7298 ret = nowait ? -EAGAIN : -ENOTBLK; 7299 } 7300 7301 if (ret) 7302 break; 7303 7304 cond_resched(); 7305 } 7306 7307 return ret; 7308 } 7309 7310 /* The callers of this must take lock_extent() */ 7311 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7312 u64 len, u64 orig_start, u64 block_start, 7313 u64 block_len, u64 orig_block_len, 7314 u64 ram_bytes, int compress_type, 7315 int type) 7316 { 7317 struct extent_map *em; 7318 int ret; 7319 7320 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7321 type == BTRFS_ORDERED_COMPRESSED || 7322 type == BTRFS_ORDERED_NOCOW || 7323 type == BTRFS_ORDERED_REGULAR); 7324 7325 em = alloc_extent_map(); 7326 if (!em) 7327 return ERR_PTR(-ENOMEM); 7328 7329 em->start = start; 7330 em->orig_start = orig_start; 7331 em->len = len; 7332 em->block_len = block_len; 7333 em->block_start = block_start; 7334 em->orig_block_len = orig_block_len; 7335 em->ram_bytes = ram_bytes; 7336 em->generation = -1; 7337 em->flags |= EXTENT_FLAG_PINNED; 7338 if (type == BTRFS_ORDERED_PREALLOC) 7339 em->flags |= EXTENT_FLAG_FILLING; 7340 else if (type == BTRFS_ORDERED_COMPRESSED) 7341 extent_map_set_compression(em, compress_type); 7342 7343 ret = btrfs_replace_extent_map_range(inode, em, true); 7344 if (ret) { 7345 free_extent_map(em); 7346 return ERR_PTR(ret); 7347 } 7348 7349 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7350 return em; 7351 } 7352 7353 7354 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7355 struct inode *inode, 7356 struct btrfs_dio_data *dio_data, 7357 u64 start, u64 *lenp, 7358 unsigned int iomap_flags) 7359 { 7360 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7361 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7362 struct extent_map *em = *map; 7363 int type; 7364 u64 block_start, orig_start, orig_block_len, ram_bytes; 7365 struct btrfs_block_group *bg; 7366 bool can_nocow = false; 7367 bool space_reserved = false; 7368 u64 len = *lenp; 7369 u64 prev_len; 7370 int ret = 0; 7371 7372 /* 7373 * We don't allocate a new extent in the following cases 7374 * 7375 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7376 * existing extent. 7377 * 2) The extent is marked as PREALLOC. We're good to go here and can 7378 * just use the extent. 7379 * 7380 */ 7381 if ((em->flags & EXTENT_FLAG_PREALLOC) || 7382 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7383 em->block_start != EXTENT_MAP_HOLE)) { 7384 if (em->flags & EXTENT_FLAG_PREALLOC) 7385 type = BTRFS_ORDERED_PREALLOC; 7386 else 7387 type = BTRFS_ORDERED_NOCOW; 7388 len = min(len, em->len - (start - em->start)); 7389 block_start = em->block_start + (start - em->start); 7390 7391 if (can_nocow_extent(inode, start, &len, &orig_start, 7392 &orig_block_len, &ram_bytes, false, false) == 1) { 7393 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7394 if (bg) 7395 can_nocow = true; 7396 } 7397 } 7398 7399 prev_len = len; 7400 if (can_nocow) { 7401 struct extent_map *em2; 7402 7403 /* We can NOCOW, so only need to reserve metadata space. */ 7404 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7405 nowait); 7406 if (ret < 0) { 7407 /* Our caller expects us to free the input extent map. */ 7408 free_extent_map(em); 7409 *map = NULL; 7410 btrfs_dec_nocow_writers(bg); 7411 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7412 ret = -EAGAIN; 7413 goto out; 7414 } 7415 space_reserved = true; 7416 7417 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7418 orig_start, block_start, 7419 len, orig_block_len, 7420 ram_bytes, type); 7421 btrfs_dec_nocow_writers(bg); 7422 if (type == BTRFS_ORDERED_PREALLOC) { 7423 free_extent_map(em); 7424 *map = em2; 7425 em = em2; 7426 } 7427 7428 if (IS_ERR(em2)) { 7429 ret = PTR_ERR(em2); 7430 goto out; 7431 } 7432 7433 dio_data->nocow_done = true; 7434 } else { 7435 /* Our caller expects us to free the input extent map. */ 7436 free_extent_map(em); 7437 *map = NULL; 7438 7439 if (nowait) { 7440 ret = -EAGAIN; 7441 goto out; 7442 } 7443 7444 /* 7445 * If we could not allocate data space before locking the file 7446 * range and we can't do a NOCOW write, then we have to fail. 7447 */ 7448 if (!dio_data->data_space_reserved) { 7449 ret = -ENOSPC; 7450 goto out; 7451 } 7452 7453 /* 7454 * We have to COW and we have already reserved data space before, 7455 * so now we reserve only metadata. 7456 */ 7457 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7458 false); 7459 if (ret < 0) 7460 goto out; 7461 space_reserved = true; 7462 7463 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7464 if (IS_ERR(em)) { 7465 ret = PTR_ERR(em); 7466 goto out; 7467 } 7468 *map = em; 7469 len = min(len, em->len - (start - em->start)); 7470 if (len < prev_len) 7471 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7472 prev_len - len, true); 7473 } 7474 7475 /* 7476 * We have created our ordered extent, so we can now release our reservation 7477 * for an outstanding extent. 7478 */ 7479 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7480 7481 /* 7482 * Need to update the i_size under the extent lock so buffered 7483 * readers will get the updated i_size when we unlock. 7484 */ 7485 if (start + len > i_size_read(inode)) 7486 i_size_write(inode, start + len); 7487 out: 7488 if (ret && space_reserved) { 7489 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7490 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7491 } 7492 *lenp = len; 7493 return ret; 7494 } 7495 7496 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7497 loff_t length, unsigned int flags, struct iomap *iomap, 7498 struct iomap *srcmap) 7499 { 7500 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7501 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7502 struct extent_map *em; 7503 struct extent_state *cached_state = NULL; 7504 struct btrfs_dio_data *dio_data = iter->private; 7505 u64 lockstart, lockend; 7506 const bool write = !!(flags & IOMAP_WRITE); 7507 int ret = 0; 7508 u64 len = length; 7509 const u64 data_alloc_len = length; 7510 bool unlock_extents = false; 7511 7512 /* 7513 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7514 * we're NOWAIT we may submit a bio for a partial range and return 7515 * EIOCBQUEUED, which would result in an errant short read. 7516 * 7517 * The best way to handle this would be to allow for partial completions 7518 * of iocb's, so we could submit the partial bio, return and fault in 7519 * the rest of the pages, and then submit the io for the rest of the 7520 * range. However we don't have that currently, so simply return 7521 * -EAGAIN at this point so that the normal path is used. 7522 */ 7523 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7524 return -EAGAIN; 7525 7526 /* 7527 * Cap the size of reads to that usually seen in buffered I/O as we need 7528 * to allocate a contiguous array for the checksums. 7529 */ 7530 if (!write) 7531 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7532 7533 lockstart = start; 7534 lockend = start + len - 1; 7535 7536 /* 7537 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7538 * enough if we've written compressed pages to this area, so we need to 7539 * flush the dirty pages again to make absolutely sure that any 7540 * outstanding dirty pages are on disk - the first flush only starts 7541 * compression on the data, while keeping the pages locked, so by the 7542 * time the second flush returns we know bios for the compressed pages 7543 * were submitted and finished, and the pages no longer under writeback. 7544 * 7545 * If we have a NOWAIT request and we have any pages in the range that 7546 * are locked, likely due to compression still in progress, we don't want 7547 * to block on page locks. We also don't want to block on pages marked as 7548 * dirty or under writeback (same as for the non-compression case). 7549 * iomap_dio_rw() did the same check, but after that and before we got 7550 * here, mmap'ed writes may have happened or buffered reads started 7551 * (readpage() and readahead(), which lock pages), as we haven't locked 7552 * the file range yet. 7553 */ 7554 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7555 &BTRFS_I(inode)->runtime_flags)) { 7556 if (flags & IOMAP_NOWAIT) { 7557 if (filemap_range_needs_writeback(inode->i_mapping, 7558 lockstart, lockend)) 7559 return -EAGAIN; 7560 } else { 7561 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7562 start + length - 1); 7563 if (ret) 7564 return ret; 7565 } 7566 } 7567 7568 memset(dio_data, 0, sizeof(*dio_data)); 7569 7570 /* 7571 * We always try to allocate data space and must do it before locking 7572 * the file range, to avoid deadlocks with concurrent writes to the same 7573 * range if the range has several extents and the writes don't expand the 7574 * current i_size (the inode lock is taken in shared mode). If we fail to 7575 * allocate data space here we continue and later, after locking the 7576 * file range, we fail with ENOSPC only if we figure out we can not do a 7577 * NOCOW write. 7578 */ 7579 if (write && !(flags & IOMAP_NOWAIT)) { 7580 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7581 &dio_data->data_reserved, 7582 start, data_alloc_len, false); 7583 if (!ret) 7584 dio_data->data_space_reserved = true; 7585 else if (ret && !(BTRFS_I(inode)->flags & 7586 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7587 goto err; 7588 } 7589 7590 /* 7591 * If this errors out it's because we couldn't invalidate pagecache for 7592 * this range and we need to fallback to buffered IO, or we are doing a 7593 * NOWAIT read/write and we need to block. 7594 */ 7595 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7596 if (ret < 0) 7597 goto err; 7598 7599 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 7600 if (IS_ERR(em)) { 7601 ret = PTR_ERR(em); 7602 goto unlock_err; 7603 } 7604 7605 /* 7606 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7607 * io. INLINE is special, and we could probably kludge it in here, but 7608 * it's still buffered so for safety lets just fall back to the generic 7609 * buffered path. 7610 * 7611 * For COMPRESSED we _have_ to read the entire extent in so we can 7612 * decompress it, so there will be buffering required no matter what we 7613 * do, so go ahead and fallback to buffered. 7614 * 7615 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7616 * to buffered IO. Don't blame me, this is the price we pay for using 7617 * the generic code. 7618 */ 7619 if (extent_map_is_compressed(em) || 7620 em->block_start == EXTENT_MAP_INLINE) { 7621 free_extent_map(em); 7622 /* 7623 * If we are in a NOWAIT context, return -EAGAIN in order to 7624 * fallback to buffered IO. This is not only because we can 7625 * block with buffered IO (no support for NOWAIT semantics at 7626 * the moment) but also to avoid returning short reads to user 7627 * space - this happens if we were able to read some data from 7628 * previous non-compressed extents and then when we fallback to 7629 * buffered IO, at btrfs_file_read_iter() by calling 7630 * filemap_read(), we fail to fault in pages for the read buffer, 7631 * in which case filemap_read() returns a short read (the number 7632 * of bytes previously read is > 0, so it does not return -EFAULT). 7633 */ 7634 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7635 goto unlock_err; 7636 } 7637 7638 len = min(len, em->len - (start - em->start)); 7639 7640 /* 7641 * If we have a NOWAIT request and the range contains multiple extents 7642 * (or a mix of extents and holes), then we return -EAGAIN to make the 7643 * caller fallback to a context where it can do a blocking (without 7644 * NOWAIT) request. This way we avoid doing partial IO and returning 7645 * success to the caller, which is not optimal for writes and for reads 7646 * it can result in unexpected behaviour for an application. 7647 * 7648 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7649 * iomap_dio_rw(), we can end up returning less data then what the caller 7650 * asked for, resulting in an unexpected, and incorrect, short read. 7651 * That is, the caller asked to read N bytes and we return less than that, 7652 * which is wrong unless we are crossing EOF. This happens if we get a 7653 * page fault error when trying to fault in pages for the buffer that is 7654 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7655 * have previously submitted bios for other extents in the range, in 7656 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7657 * those bios have completed by the time we get the page fault error, 7658 * which we return back to our caller - we should only return EIOCBQUEUED 7659 * after we have submitted bios for all the extents in the range. 7660 */ 7661 if ((flags & IOMAP_NOWAIT) && len < length) { 7662 free_extent_map(em); 7663 ret = -EAGAIN; 7664 goto unlock_err; 7665 } 7666 7667 if (write) { 7668 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7669 start, &len, flags); 7670 if (ret < 0) 7671 goto unlock_err; 7672 unlock_extents = true; 7673 /* Recalc len in case the new em is smaller than requested */ 7674 len = min(len, em->len - (start - em->start)); 7675 if (dio_data->data_space_reserved) { 7676 u64 release_offset; 7677 u64 release_len = 0; 7678 7679 if (dio_data->nocow_done) { 7680 release_offset = start; 7681 release_len = data_alloc_len; 7682 } else if (len < data_alloc_len) { 7683 release_offset = start + len; 7684 release_len = data_alloc_len - len; 7685 } 7686 7687 if (release_len > 0) 7688 btrfs_free_reserved_data_space(BTRFS_I(inode), 7689 dio_data->data_reserved, 7690 release_offset, 7691 release_len); 7692 } 7693 } else { 7694 /* 7695 * We need to unlock only the end area that we aren't using. 7696 * The rest is going to be unlocked by the endio routine. 7697 */ 7698 lockstart = start + len; 7699 if (lockstart < lockend) 7700 unlock_extents = true; 7701 } 7702 7703 if (unlock_extents) 7704 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7705 &cached_state); 7706 else 7707 free_extent_state(cached_state); 7708 7709 /* 7710 * Translate extent map information to iomap. 7711 * We trim the extents (and move the addr) even though iomap code does 7712 * that, since we have locked only the parts we are performing I/O in. 7713 */ 7714 if ((em->block_start == EXTENT_MAP_HOLE) || 7715 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) { 7716 iomap->addr = IOMAP_NULL_ADDR; 7717 iomap->type = IOMAP_HOLE; 7718 } else { 7719 iomap->addr = em->block_start + (start - em->start); 7720 iomap->type = IOMAP_MAPPED; 7721 } 7722 iomap->offset = start; 7723 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7724 iomap->length = len; 7725 free_extent_map(em); 7726 7727 return 0; 7728 7729 unlock_err: 7730 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7731 &cached_state); 7732 err: 7733 if (dio_data->data_space_reserved) { 7734 btrfs_free_reserved_data_space(BTRFS_I(inode), 7735 dio_data->data_reserved, 7736 start, data_alloc_len); 7737 extent_changeset_free(dio_data->data_reserved); 7738 } 7739 7740 return ret; 7741 } 7742 7743 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7744 ssize_t written, unsigned int flags, struct iomap *iomap) 7745 { 7746 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7747 struct btrfs_dio_data *dio_data = iter->private; 7748 size_t submitted = dio_data->submitted; 7749 const bool write = !!(flags & IOMAP_WRITE); 7750 int ret = 0; 7751 7752 if (!write && (iomap->type == IOMAP_HOLE)) { 7753 /* If reading from a hole, unlock and return */ 7754 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7755 NULL); 7756 return 0; 7757 } 7758 7759 if (submitted < length) { 7760 pos += submitted; 7761 length -= submitted; 7762 if (write) 7763 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7764 pos, length, false); 7765 else 7766 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7767 pos + length - 1, NULL); 7768 ret = -ENOTBLK; 7769 } 7770 if (write) { 7771 btrfs_put_ordered_extent(dio_data->ordered); 7772 dio_data->ordered = NULL; 7773 } 7774 7775 if (write) 7776 extent_changeset_free(dio_data->data_reserved); 7777 return ret; 7778 } 7779 7780 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7781 { 7782 struct btrfs_dio_private *dip = 7783 container_of(bbio, struct btrfs_dio_private, bbio); 7784 struct btrfs_inode *inode = bbio->inode; 7785 struct bio *bio = &bbio->bio; 7786 7787 if (bio->bi_status) { 7788 btrfs_warn(inode->root->fs_info, 7789 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7790 btrfs_ino(inode), bio->bi_opf, 7791 dip->file_offset, dip->bytes, bio->bi_status); 7792 } 7793 7794 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7795 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7796 dip->file_offset, dip->bytes, 7797 !bio->bi_status); 7798 } else { 7799 unlock_extent(&inode->io_tree, dip->file_offset, 7800 dip->file_offset + dip->bytes - 1, NULL); 7801 } 7802 7803 bbio->bio.bi_private = bbio->private; 7804 iomap_dio_bio_end_io(bio); 7805 } 7806 7807 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7808 loff_t file_offset) 7809 { 7810 struct btrfs_bio *bbio = btrfs_bio(bio); 7811 struct btrfs_dio_private *dip = 7812 container_of(bbio, struct btrfs_dio_private, bbio); 7813 struct btrfs_dio_data *dio_data = iter->private; 7814 7815 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7816 btrfs_dio_end_io, bio->bi_private); 7817 bbio->inode = BTRFS_I(iter->inode); 7818 bbio->file_offset = file_offset; 7819 7820 dip->file_offset = file_offset; 7821 dip->bytes = bio->bi_iter.bi_size; 7822 7823 dio_data->submitted += bio->bi_iter.bi_size; 7824 7825 /* 7826 * Check if we are doing a partial write. If we are, we need to split 7827 * the ordered extent to match the submitted bio. Hang on to the 7828 * remaining unfinishable ordered_extent in dio_data so that it can be 7829 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7830 * remaining pages is blocked on the outstanding ordered extent. 7831 */ 7832 if (iter->flags & IOMAP_WRITE) { 7833 int ret; 7834 7835 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7836 if (ret) { 7837 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7838 file_offset, dip->bytes, 7839 !ret); 7840 bio->bi_status = errno_to_blk_status(ret); 7841 iomap_dio_bio_end_io(bio); 7842 return; 7843 } 7844 } 7845 7846 btrfs_submit_bio(bbio, 0); 7847 } 7848 7849 static const struct iomap_ops btrfs_dio_iomap_ops = { 7850 .iomap_begin = btrfs_dio_iomap_begin, 7851 .iomap_end = btrfs_dio_iomap_end, 7852 }; 7853 7854 static const struct iomap_dio_ops btrfs_dio_ops = { 7855 .submit_io = btrfs_dio_submit_io, 7856 .bio_set = &btrfs_dio_bioset, 7857 }; 7858 7859 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7860 { 7861 struct btrfs_dio_data data = { 0 }; 7862 7863 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7864 IOMAP_DIO_PARTIAL, &data, done_before); 7865 } 7866 7867 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7868 size_t done_before) 7869 { 7870 struct btrfs_dio_data data = { 0 }; 7871 7872 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7873 IOMAP_DIO_PARTIAL, &data, done_before); 7874 } 7875 7876 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7877 u64 start, u64 len) 7878 { 7879 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 7880 int ret; 7881 7882 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7883 if (ret) 7884 return ret; 7885 7886 /* 7887 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7888 * file range (0 to LLONG_MAX), but that is not enough if we have 7889 * compression enabled. The first filemap_fdatawrite_range() only kicks 7890 * in the compression of data (in an async thread) and will return 7891 * before the compression is done and writeback is started. A second 7892 * filemap_fdatawrite_range() is needed to wait for the compression to 7893 * complete and writeback to start. We also need to wait for ordered 7894 * extents to complete, because our fiemap implementation uses mainly 7895 * file extent items to list the extents, searching for extent maps 7896 * only for file ranges with holes or prealloc extents to figure out 7897 * if we have delalloc in those ranges. 7898 */ 7899 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7900 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7901 if (ret) 7902 return ret; 7903 } 7904 7905 btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED); 7906 7907 /* 7908 * We did an initial flush to avoid holding the inode's lock while 7909 * triggering writeback and waiting for the completion of IO and ordered 7910 * extents. Now after we locked the inode we do it again, because it's 7911 * possible a new write may have happened in between those two steps. 7912 */ 7913 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7914 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7915 if (ret) { 7916 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7917 return ret; 7918 } 7919 } 7920 7921 ret = extent_fiemap(btrfs_inode, fieinfo, start, len); 7922 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7923 7924 return ret; 7925 } 7926 7927 static int btrfs_writepages(struct address_space *mapping, 7928 struct writeback_control *wbc) 7929 { 7930 return extent_writepages(mapping, wbc); 7931 } 7932 7933 static void btrfs_readahead(struct readahead_control *rac) 7934 { 7935 extent_readahead(rac); 7936 } 7937 7938 /* 7939 * For release_folio() and invalidate_folio() we have a race window where 7940 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7941 * If we continue to release/invalidate the page, we could cause use-after-free 7942 * for subpage spinlock. So this function is to spin and wait for subpage 7943 * spinlock. 7944 */ 7945 static void wait_subpage_spinlock(struct page *page) 7946 { 7947 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 7948 struct folio *folio = page_folio(page); 7949 struct btrfs_subpage *subpage; 7950 7951 if (!btrfs_is_subpage(fs_info, page->mapping)) 7952 return; 7953 7954 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7955 subpage = folio_get_private(folio); 7956 7957 /* 7958 * This may look insane as we just acquire the spinlock and release it, 7959 * without doing anything. But we just want to make sure no one is 7960 * still holding the subpage spinlock. 7961 * And since the page is not dirty nor writeback, and we have page 7962 * locked, the only possible way to hold a spinlock is from the endio 7963 * function to clear page writeback. 7964 * 7965 * Here we just acquire the spinlock so that all existing callers 7966 * should exit and we're safe to release/invalidate the page. 7967 */ 7968 spin_lock_irq(&subpage->lock); 7969 spin_unlock_irq(&subpage->lock); 7970 } 7971 7972 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7973 { 7974 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7975 7976 if (ret == 1) { 7977 wait_subpage_spinlock(&folio->page); 7978 clear_page_extent_mapped(&folio->page); 7979 } 7980 return ret; 7981 } 7982 7983 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7984 { 7985 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7986 return false; 7987 return __btrfs_release_folio(folio, gfp_flags); 7988 } 7989 7990 #ifdef CONFIG_MIGRATION 7991 static int btrfs_migrate_folio(struct address_space *mapping, 7992 struct folio *dst, struct folio *src, 7993 enum migrate_mode mode) 7994 { 7995 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7996 7997 if (ret != MIGRATEPAGE_SUCCESS) 7998 return ret; 7999 8000 if (folio_test_ordered(src)) { 8001 folio_clear_ordered(src); 8002 folio_set_ordered(dst); 8003 } 8004 8005 return MIGRATEPAGE_SUCCESS; 8006 } 8007 #else 8008 #define btrfs_migrate_folio NULL 8009 #endif 8010 8011 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8012 size_t length) 8013 { 8014 struct btrfs_inode *inode = folio_to_inode(folio); 8015 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8016 struct extent_io_tree *tree = &inode->io_tree; 8017 struct extent_state *cached_state = NULL; 8018 u64 page_start = folio_pos(folio); 8019 u64 page_end = page_start + folio_size(folio) - 1; 8020 u64 cur; 8021 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8022 8023 /* 8024 * We have folio locked so no new ordered extent can be created on this 8025 * page, nor bio can be submitted for this folio. 8026 * 8027 * But already submitted bio can still be finished on this folio. 8028 * Furthermore, endio function won't skip folio which has Ordered 8029 * (Private2) already cleared, so it's possible for endio and 8030 * invalidate_folio to do the same ordered extent accounting twice 8031 * on one folio. 8032 * 8033 * So here we wait for any submitted bios to finish, so that we won't 8034 * do double ordered extent accounting on the same folio. 8035 */ 8036 folio_wait_writeback(folio); 8037 wait_subpage_spinlock(&folio->page); 8038 8039 /* 8040 * For subpage case, we have call sites like 8041 * btrfs_punch_hole_lock_range() which passes range not aligned to 8042 * sectorsize. 8043 * If the range doesn't cover the full folio, we don't need to and 8044 * shouldn't clear page extent mapped, as folio->private can still 8045 * record subpage dirty bits for other part of the range. 8046 * 8047 * For cases that invalidate the full folio even the range doesn't 8048 * cover the full folio, like invalidating the last folio, we're 8049 * still safe to wait for ordered extent to finish. 8050 */ 8051 if (!(offset == 0 && length == folio_size(folio))) { 8052 btrfs_release_folio(folio, GFP_NOFS); 8053 return; 8054 } 8055 8056 if (!inode_evicting) 8057 lock_extent(tree, page_start, page_end, &cached_state); 8058 8059 cur = page_start; 8060 while (cur < page_end) { 8061 struct btrfs_ordered_extent *ordered; 8062 u64 range_end; 8063 u32 range_len; 8064 u32 extra_flags = 0; 8065 8066 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8067 page_end + 1 - cur); 8068 if (!ordered) { 8069 range_end = page_end; 8070 /* 8071 * No ordered extent covering this range, we are safe 8072 * to delete all extent states in the range. 8073 */ 8074 extra_flags = EXTENT_CLEAR_ALL_BITS; 8075 goto next; 8076 } 8077 if (ordered->file_offset > cur) { 8078 /* 8079 * There is a range between [cur, oe->file_offset) not 8080 * covered by any ordered extent. 8081 * We are safe to delete all extent states, and handle 8082 * the ordered extent in the next iteration. 8083 */ 8084 range_end = ordered->file_offset - 1; 8085 extra_flags = EXTENT_CLEAR_ALL_BITS; 8086 goto next; 8087 } 8088 8089 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8090 page_end); 8091 ASSERT(range_end + 1 - cur < U32_MAX); 8092 range_len = range_end + 1 - cur; 8093 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 8094 /* 8095 * If Ordered (Private2) is cleared, it means endio has 8096 * already been executed for the range. 8097 * We can't delete the extent states as 8098 * btrfs_finish_ordered_io() may still use some of them. 8099 */ 8100 goto next; 8101 } 8102 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 8103 8104 /* 8105 * IO on this page will never be started, so we need to account 8106 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8107 * here, must leave that up for the ordered extent completion. 8108 * 8109 * This will also unlock the range for incoming 8110 * btrfs_finish_ordered_io(). 8111 */ 8112 if (!inode_evicting) 8113 clear_extent_bit(tree, cur, range_end, 8114 EXTENT_DELALLOC | 8115 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8116 EXTENT_DEFRAG, &cached_state); 8117 8118 spin_lock_irq(&inode->ordered_tree_lock); 8119 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8120 ordered->truncated_len = min(ordered->truncated_len, 8121 cur - ordered->file_offset); 8122 spin_unlock_irq(&inode->ordered_tree_lock); 8123 8124 /* 8125 * If the ordered extent has finished, we're safe to delete all 8126 * the extent states of the range, otherwise 8127 * btrfs_finish_ordered_io() will get executed by endio for 8128 * other pages, so we can't delete extent states. 8129 */ 8130 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8131 cur, range_end + 1 - cur)) { 8132 btrfs_finish_ordered_io(ordered); 8133 /* 8134 * The ordered extent has finished, now we're again 8135 * safe to delete all extent states of the range. 8136 */ 8137 extra_flags = EXTENT_CLEAR_ALL_BITS; 8138 } 8139 next: 8140 if (ordered) 8141 btrfs_put_ordered_extent(ordered); 8142 /* 8143 * Qgroup reserved space handler 8144 * Sector(s) here will be either: 8145 * 8146 * 1) Already written to disk or bio already finished 8147 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8148 * Qgroup will be handled by its qgroup_record then. 8149 * btrfs_qgroup_free_data() call will do nothing here. 8150 * 8151 * 2) Not written to disk yet 8152 * Then btrfs_qgroup_free_data() call will clear the 8153 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8154 * reserved data space. 8155 * Since the IO will never happen for this page. 8156 */ 8157 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 8158 if (!inode_evicting) { 8159 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8160 EXTENT_DELALLOC | EXTENT_UPTODATE | 8161 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8162 extra_flags, &cached_state); 8163 } 8164 cur = range_end + 1; 8165 } 8166 /* 8167 * We have iterated through all ordered extents of the page, the page 8168 * should not have Ordered (Private2) anymore, or the above iteration 8169 * did something wrong. 8170 */ 8171 ASSERT(!folio_test_ordered(folio)); 8172 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 8173 if (!inode_evicting) 8174 __btrfs_release_folio(folio, GFP_NOFS); 8175 clear_page_extent_mapped(&folio->page); 8176 } 8177 8178 /* 8179 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8180 * called from a page fault handler when a page is first dirtied. Hence we must 8181 * be careful to check for EOF conditions here. We set the page up correctly 8182 * for a written page which means we get ENOSPC checking when writing into 8183 * holes and correct delalloc and unwritten extent mapping on filesystems that 8184 * support these features. 8185 * 8186 * We are not allowed to take the i_mutex here so we have to play games to 8187 * protect against truncate races as the page could now be beyond EOF. Because 8188 * truncate_setsize() writes the inode size before removing pages, once we have 8189 * the page lock we can determine safely if the page is beyond EOF. If it is not 8190 * beyond EOF, then the page is guaranteed safe against truncation until we 8191 * unlock the page. 8192 */ 8193 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8194 { 8195 struct page *page = vmf->page; 8196 struct folio *folio = page_folio(page); 8197 struct inode *inode = file_inode(vmf->vma->vm_file); 8198 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8199 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8200 struct btrfs_ordered_extent *ordered; 8201 struct extent_state *cached_state = NULL; 8202 struct extent_changeset *data_reserved = NULL; 8203 unsigned long zero_start; 8204 loff_t size; 8205 vm_fault_t ret; 8206 int ret2; 8207 int reserved = 0; 8208 u64 reserved_space; 8209 u64 page_start; 8210 u64 page_end; 8211 u64 end; 8212 8213 ASSERT(folio_order(folio) == 0); 8214 8215 reserved_space = PAGE_SIZE; 8216 8217 sb_start_pagefault(inode->i_sb); 8218 page_start = page_offset(page); 8219 page_end = page_start + PAGE_SIZE - 1; 8220 end = page_end; 8221 8222 /* 8223 * Reserving delalloc space after obtaining the page lock can lead to 8224 * deadlock. For example, if a dirty page is locked by this function 8225 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8226 * dirty page write out, then the btrfs_writepages() function could 8227 * end up waiting indefinitely to get a lock on the page currently 8228 * being processed by btrfs_page_mkwrite() function. 8229 */ 8230 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8231 page_start, reserved_space); 8232 if (!ret2) { 8233 ret2 = file_update_time(vmf->vma->vm_file); 8234 reserved = 1; 8235 } 8236 if (ret2) { 8237 ret = vmf_error(ret2); 8238 if (reserved) 8239 goto out; 8240 goto out_noreserve; 8241 } 8242 8243 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8244 again: 8245 down_read(&BTRFS_I(inode)->i_mmap_lock); 8246 lock_page(page); 8247 size = i_size_read(inode); 8248 8249 if ((page->mapping != inode->i_mapping) || 8250 (page_start >= size)) { 8251 /* page got truncated out from underneath us */ 8252 goto out_unlock; 8253 } 8254 wait_on_page_writeback(page); 8255 8256 lock_extent(io_tree, page_start, page_end, &cached_state); 8257 ret2 = set_page_extent_mapped(page); 8258 if (ret2 < 0) { 8259 ret = vmf_error(ret2); 8260 unlock_extent(io_tree, page_start, page_end, &cached_state); 8261 goto out_unlock; 8262 } 8263 8264 /* 8265 * we can't set the delalloc bits if there are pending ordered 8266 * extents. Drop our locks and wait for them to finish 8267 */ 8268 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8269 PAGE_SIZE); 8270 if (ordered) { 8271 unlock_extent(io_tree, page_start, page_end, &cached_state); 8272 unlock_page(page); 8273 up_read(&BTRFS_I(inode)->i_mmap_lock); 8274 btrfs_start_ordered_extent(ordered); 8275 btrfs_put_ordered_extent(ordered); 8276 goto again; 8277 } 8278 8279 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8280 reserved_space = round_up(size - page_start, 8281 fs_info->sectorsize); 8282 if (reserved_space < PAGE_SIZE) { 8283 end = page_start + reserved_space - 1; 8284 btrfs_delalloc_release_space(BTRFS_I(inode), 8285 data_reserved, page_start, 8286 PAGE_SIZE - reserved_space, true); 8287 } 8288 } 8289 8290 /* 8291 * page_mkwrite gets called when the page is firstly dirtied after it's 8292 * faulted in, but write(2) could also dirty a page and set delalloc 8293 * bits, thus in this case for space account reason, we still need to 8294 * clear any delalloc bits within this page range since we have to 8295 * reserve data&meta space before lock_page() (see above comments). 8296 */ 8297 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8298 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8299 EXTENT_DEFRAG, &cached_state); 8300 8301 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8302 &cached_state); 8303 if (ret2) { 8304 unlock_extent(io_tree, page_start, page_end, &cached_state); 8305 ret = VM_FAULT_SIGBUS; 8306 goto out_unlock; 8307 } 8308 8309 /* page is wholly or partially inside EOF */ 8310 if (page_start + PAGE_SIZE > size) 8311 zero_start = offset_in_page(size); 8312 else 8313 zero_start = PAGE_SIZE; 8314 8315 if (zero_start != PAGE_SIZE) 8316 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8317 8318 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 8319 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 8320 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 8321 8322 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8323 8324 unlock_extent(io_tree, page_start, page_end, &cached_state); 8325 up_read(&BTRFS_I(inode)->i_mmap_lock); 8326 8327 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8328 sb_end_pagefault(inode->i_sb); 8329 extent_changeset_free(data_reserved); 8330 return VM_FAULT_LOCKED; 8331 8332 out_unlock: 8333 unlock_page(page); 8334 up_read(&BTRFS_I(inode)->i_mmap_lock); 8335 out: 8336 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8337 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8338 reserved_space, (ret != 0)); 8339 out_noreserve: 8340 sb_end_pagefault(inode->i_sb); 8341 extent_changeset_free(data_reserved); 8342 return ret; 8343 } 8344 8345 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8346 { 8347 struct btrfs_truncate_control control = { 8348 .inode = inode, 8349 .ino = btrfs_ino(inode), 8350 .min_type = BTRFS_EXTENT_DATA_KEY, 8351 .clear_extent_range = true, 8352 }; 8353 struct btrfs_root *root = inode->root; 8354 struct btrfs_fs_info *fs_info = root->fs_info; 8355 struct btrfs_block_rsv *rsv; 8356 int ret; 8357 struct btrfs_trans_handle *trans; 8358 u64 mask = fs_info->sectorsize - 1; 8359 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8360 8361 if (!skip_writeback) { 8362 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8363 inode->vfs_inode.i_size & (~mask), 8364 (u64)-1); 8365 if (ret) 8366 return ret; 8367 } 8368 8369 /* 8370 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8371 * things going on here: 8372 * 8373 * 1) We need to reserve space to update our inode. 8374 * 8375 * 2) We need to have something to cache all the space that is going to 8376 * be free'd up by the truncate operation, but also have some slack 8377 * space reserved in case it uses space during the truncate (thank you 8378 * very much snapshotting). 8379 * 8380 * And we need these to be separate. The fact is we can use a lot of 8381 * space doing the truncate, and we have no earthly idea how much space 8382 * we will use, so we need the truncate reservation to be separate so it 8383 * doesn't end up using space reserved for updating the inode. We also 8384 * need to be able to stop the transaction and start a new one, which 8385 * means we need to be able to update the inode several times, and we 8386 * have no idea of knowing how many times that will be, so we can't just 8387 * reserve 1 item for the entirety of the operation, so that has to be 8388 * done separately as well. 8389 * 8390 * So that leaves us with 8391 * 8392 * 1) rsv - for the truncate reservation, which we will steal from the 8393 * transaction reservation. 8394 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8395 * updating the inode. 8396 */ 8397 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8398 if (!rsv) 8399 return -ENOMEM; 8400 rsv->size = min_size; 8401 rsv->failfast = true; 8402 8403 /* 8404 * 1 for the truncate slack space 8405 * 1 for updating the inode. 8406 */ 8407 trans = btrfs_start_transaction(root, 2); 8408 if (IS_ERR(trans)) { 8409 ret = PTR_ERR(trans); 8410 goto out; 8411 } 8412 8413 /* Migrate the slack space for the truncate to our reserve */ 8414 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8415 min_size, false); 8416 /* 8417 * We have reserved 2 metadata units when we started the transaction and 8418 * min_size matches 1 unit, so this should never fail, but if it does, 8419 * it's not critical we just fail truncation. 8420 */ 8421 if (WARN_ON(ret)) { 8422 btrfs_end_transaction(trans); 8423 goto out; 8424 } 8425 8426 trans->block_rsv = rsv; 8427 8428 while (1) { 8429 struct extent_state *cached_state = NULL; 8430 const u64 new_size = inode->vfs_inode.i_size; 8431 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8432 8433 control.new_size = new_size; 8434 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8435 /* 8436 * We want to drop from the next block forward in case this new 8437 * size is not block aligned since we will be keeping the last 8438 * block of the extent just the way it is. 8439 */ 8440 btrfs_drop_extent_map_range(inode, 8441 ALIGN(new_size, fs_info->sectorsize), 8442 (u64)-1, false); 8443 8444 ret = btrfs_truncate_inode_items(trans, root, &control); 8445 8446 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8447 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8448 8449 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8450 8451 trans->block_rsv = &fs_info->trans_block_rsv; 8452 if (ret != -ENOSPC && ret != -EAGAIN) 8453 break; 8454 8455 ret = btrfs_update_inode(trans, inode); 8456 if (ret) 8457 break; 8458 8459 btrfs_end_transaction(trans); 8460 btrfs_btree_balance_dirty(fs_info); 8461 8462 trans = btrfs_start_transaction(root, 2); 8463 if (IS_ERR(trans)) { 8464 ret = PTR_ERR(trans); 8465 trans = NULL; 8466 break; 8467 } 8468 8469 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8470 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8471 rsv, min_size, false); 8472 /* 8473 * We have reserved 2 metadata units when we started the 8474 * transaction and min_size matches 1 unit, so this should never 8475 * fail, but if it does, it's not critical we just fail truncation. 8476 */ 8477 if (WARN_ON(ret)) 8478 break; 8479 8480 trans->block_rsv = rsv; 8481 } 8482 8483 /* 8484 * We can't call btrfs_truncate_block inside a trans handle as we could 8485 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8486 * know we've truncated everything except the last little bit, and can 8487 * do btrfs_truncate_block and then update the disk_i_size. 8488 */ 8489 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8490 btrfs_end_transaction(trans); 8491 btrfs_btree_balance_dirty(fs_info); 8492 8493 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8494 if (ret) 8495 goto out; 8496 trans = btrfs_start_transaction(root, 1); 8497 if (IS_ERR(trans)) { 8498 ret = PTR_ERR(trans); 8499 goto out; 8500 } 8501 btrfs_inode_safe_disk_i_size_write(inode, 0); 8502 } 8503 8504 if (trans) { 8505 int ret2; 8506 8507 trans->block_rsv = &fs_info->trans_block_rsv; 8508 ret2 = btrfs_update_inode(trans, inode); 8509 if (ret2 && !ret) 8510 ret = ret2; 8511 8512 ret2 = btrfs_end_transaction(trans); 8513 if (ret2 && !ret) 8514 ret = ret2; 8515 btrfs_btree_balance_dirty(fs_info); 8516 } 8517 out: 8518 btrfs_free_block_rsv(fs_info, rsv); 8519 /* 8520 * So if we truncate and then write and fsync we normally would just 8521 * write the extents that changed, which is a problem if we need to 8522 * first truncate that entire inode. So set this flag so we write out 8523 * all of the extents in the inode to the sync log so we're completely 8524 * safe. 8525 * 8526 * If no extents were dropped or trimmed we don't need to force the next 8527 * fsync to truncate all the inode's items from the log and re-log them 8528 * all. This means the truncate operation did not change the file size, 8529 * or changed it to a smaller size but there was only an implicit hole 8530 * between the old i_size and the new i_size, and there were no prealloc 8531 * extents beyond i_size to drop. 8532 */ 8533 if (control.extents_found > 0) 8534 btrfs_set_inode_full_sync(inode); 8535 8536 return ret; 8537 } 8538 8539 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8540 struct inode *dir) 8541 { 8542 struct inode *inode; 8543 8544 inode = new_inode(dir->i_sb); 8545 if (inode) { 8546 /* 8547 * Subvolumes don't inherit the sgid bit or the parent's gid if 8548 * the parent's sgid bit is set. This is probably a bug. 8549 */ 8550 inode_init_owner(idmap, inode, NULL, 8551 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8552 inode->i_op = &btrfs_dir_inode_operations; 8553 inode->i_fop = &btrfs_dir_file_operations; 8554 } 8555 return inode; 8556 } 8557 8558 struct inode *btrfs_alloc_inode(struct super_block *sb) 8559 { 8560 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8561 struct btrfs_inode *ei; 8562 struct inode *inode; 8563 struct extent_io_tree *file_extent_tree = NULL; 8564 8565 /* Self tests may pass a NULL fs_info. */ 8566 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) { 8567 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 8568 if (!file_extent_tree) 8569 return NULL; 8570 } 8571 8572 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8573 if (!ei) { 8574 kfree(file_extent_tree); 8575 return NULL; 8576 } 8577 8578 ei->root = NULL; 8579 ei->generation = 0; 8580 ei->last_trans = 0; 8581 ei->last_sub_trans = 0; 8582 ei->logged_trans = 0; 8583 ei->delalloc_bytes = 0; 8584 ei->new_delalloc_bytes = 0; 8585 ei->defrag_bytes = 0; 8586 ei->disk_i_size = 0; 8587 ei->flags = 0; 8588 ei->ro_flags = 0; 8589 ei->csum_bytes = 0; 8590 ei->index_cnt = (u64)-1; 8591 ei->dir_index = 0; 8592 ei->last_unlink_trans = 0; 8593 ei->last_reflink_trans = 0; 8594 ei->last_log_commit = 0; 8595 8596 spin_lock_init(&ei->lock); 8597 ei->outstanding_extents = 0; 8598 if (sb->s_magic != BTRFS_TEST_MAGIC) 8599 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8600 BTRFS_BLOCK_RSV_DELALLOC); 8601 ei->runtime_flags = 0; 8602 ei->prop_compress = BTRFS_COMPRESS_NONE; 8603 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8604 8605 ei->delayed_node = NULL; 8606 8607 ei->i_otime_sec = 0; 8608 ei->i_otime_nsec = 0; 8609 8610 inode = &ei->vfs_inode; 8611 extent_map_tree_init(&ei->extent_tree); 8612 8613 /* This io tree sets the valid inode. */ 8614 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8615 ei->io_tree.inode = ei; 8616 8617 ei->file_extent_tree = file_extent_tree; 8618 if (file_extent_tree) { 8619 extent_io_tree_init(fs_info, ei->file_extent_tree, 8620 IO_TREE_INODE_FILE_EXTENT); 8621 /* Lockdep class is set only for the file extent tree. */ 8622 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class); 8623 } 8624 mutex_init(&ei->log_mutex); 8625 spin_lock_init(&ei->ordered_tree_lock); 8626 ei->ordered_tree = RB_ROOT; 8627 ei->ordered_tree_last = NULL; 8628 INIT_LIST_HEAD(&ei->delalloc_inodes); 8629 INIT_LIST_HEAD(&ei->delayed_iput); 8630 RB_CLEAR_NODE(&ei->rb_node); 8631 init_rwsem(&ei->i_mmap_lock); 8632 8633 return inode; 8634 } 8635 8636 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8637 void btrfs_test_destroy_inode(struct inode *inode) 8638 { 8639 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8640 kfree(BTRFS_I(inode)->file_extent_tree); 8641 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8642 } 8643 #endif 8644 8645 void btrfs_free_inode(struct inode *inode) 8646 { 8647 kfree(BTRFS_I(inode)->file_extent_tree); 8648 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8649 } 8650 8651 void btrfs_destroy_inode(struct inode *vfs_inode) 8652 { 8653 struct btrfs_ordered_extent *ordered; 8654 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8655 struct btrfs_root *root = inode->root; 8656 bool freespace_inode; 8657 8658 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8659 WARN_ON(vfs_inode->i_data.nrpages); 8660 WARN_ON(inode->block_rsv.reserved); 8661 WARN_ON(inode->block_rsv.size); 8662 WARN_ON(inode->outstanding_extents); 8663 if (!S_ISDIR(vfs_inode->i_mode)) { 8664 WARN_ON(inode->delalloc_bytes); 8665 WARN_ON(inode->new_delalloc_bytes); 8666 } 8667 WARN_ON(inode->csum_bytes); 8668 WARN_ON(inode->defrag_bytes); 8669 8670 /* 8671 * This can happen where we create an inode, but somebody else also 8672 * created the same inode and we need to destroy the one we already 8673 * created. 8674 */ 8675 if (!root) 8676 return; 8677 8678 /* 8679 * If this is a free space inode do not take the ordered extents lockdep 8680 * map. 8681 */ 8682 freespace_inode = btrfs_is_free_space_inode(inode); 8683 8684 while (1) { 8685 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8686 if (!ordered) 8687 break; 8688 else { 8689 btrfs_err(root->fs_info, 8690 "found ordered extent %llu %llu on inode cleanup", 8691 ordered->file_offset, ordered->num_bytes); 8692 8693 if (!freespace_inode) 8694 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8695 8696 btrfs_remove_ordered_extent(inode, ordered); 8697 btrfs_put_ordered_extent(ordered); 8698 btrfs_put_ordered_extent(ordered); 8699 } 8700 } 8701 btrfs_qgroup_check_reserved_leak(inode); 8702 inode_tree_del(inode); 8703 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8704 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8705 btrfs_put_root(inode->root); 8706 } 8707 8708 int btrfs_drop_inode(struct inode *inode) 8709 { 8710 struct btrfs_root *root = BTRFS_I(inode)->root; 8711 8712 if (root == NULL) 8713 return 1; 8714 8715 /* the snap/subvol tree is on deleting */ 8716 if (btrfs_root_refs(&root->root_item) == 0) 8717 return 1; 8718 else 8719 return generic_drop_inode(inode); 8720 } 8721 8722 static void init_once(void *foo) 8723 { 8724 struct btrfs_inode *ei = foo; 8725 8726 inode_init_once(&ei->vfs_inode); 8727 } 8728 8729 void __cold btrfs_destroy_cachep(void) 8730 { 8731 /* 8732 * Make sure all delayed rcu free inodes are flushed before we 8733 * destroy cache. 8734 */ 8735 rcu_barrier(); 8736 bioset_exit(&btrfs_dio_bioset); 8737 kmem_cache_destroy(btrfs_inode_cachep); 8738 } 8739 8740 int __init btrfs_init_cachep(void) 8741 { 8742 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8743 sizeof(struct btrfs_inode), 0, 8744 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8745 init_once); 8746 if (!btrfs_inode_cachep) 8747 goto fail; 8748 8749 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8750 offsetof(struct btrfs_dio_private, bbio.bio), 8751 BIOSET_NEED_BVECS)) 8752 goto fail; 8753 8754 return 0; 8755 fail: 8756 btrfs_destroy_cachep(); 8757 return -ENOMEM; 8758 } 8759 8760 static int btrfs_getattr(struct mnt_idmap *idmap, 8761 const struct path *path, struct kstat *stat, 8762 u32 request_mask, unsigned int flags) 8763 { 8764 u64 delalloc_bytes; 8765 u64 inode_bytes; 8766 struct inode *inode = d_inode(path->dentry); 8767 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8768 u32 bi_flags = BTRFS_I(inode)->flags; 8769 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8770 8771 stat->result_mask |= STATX_BTIME; 8772 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8773 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8774 if (bi_flags & BTRFS_INODE_APPEND) 8775 stat->attributes |= STATX_ATTR_APPEND; 8776 if (bi_flags & BTRFS_INODE_COMPRESS) 8777 stat->attributes |= STATX_ATTR_COMPRESSED; 8778 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8779 stat->attributes |= STATX_ATTR_IMMUTABLE; 8780 if (bi_flags & BTRFS_INODE_NODUMP) 8781 stat->attributes |= STATX_ATTR_NODUMP; 8782 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8783 stat->attributes |= STATX_ATTR_VERITY; 8784 8785 stat->attributes_mask |= (STATX_ATTR_APPEND | 8786 STATX_ATTR_COMPRESSED | 8787 STATX_ATTR_IMMUTABLE | 8788 STATX_ATTR_NODUMP); 8789 8790 generic_fillattr(idmap, request_mask, inode, stat); 8791 stat->dev = BTRFS_I(inode)->root->anon_dev; 8792 8793 spin_lock(&BTRFS_I(inode)->lock); 8794 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8795 inode_bytes = inode_get_bytes(inode); 8796 spin_unlock(&BTRFS_I(inode)->lock); 8797 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8798 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8799 return 0; 8800 } 8801 8802 static int btrfs_rename_exchange(struct inode *old_dir, 8803 struct dentry *old_dentry, 8804 struct inode *new_dir, 8805 struct dentry *new_dentry) 8806 { 8807 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8808 struct btrfs_trans_handle *trans; 8809 unsigned int trans_num_items; 8810 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8811 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8812 struct inode *new_inode = new_dentry->d_inode; 8813 struct inode *old_inode = old_dentry->d_inode; 8814 struct btrfs_rename_ctx old_rename_ctx; 8815 struct btrfs_rename_ctx new_rename_ctx; 8816 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8817 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8818 u64 old_idx = 0; 8819 u64 new_idx = 0; 8820 int ret; 8821 int ret2; 8822 bool need_abort = false; 8823 struct fscrypt_name old_fname, new_fname; 8824 struct fscrypt_str *old_name, *new_name; 8825 8826 /* 8827 * For non-subvolumes allow exchange only within one subvolume, in the 8828 * same inode namespace. Two subvolumes (represented as directory) can 8829 * be exchanged as they're a logical link and have a fixed inode number. 8830 */ 8831 if (root != dest && 8832 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8833 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8834 return -EXDEV; 8835 8836 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8837 if (ret) 8838 return ret; 8839 8840 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8841 if (ret) { 8842 fscrypt_free_filename(&old_fname); 8843 return ret; 8844 } 8845 8846 old_name = &old_fname.disk_name; 8847 new_name = &new_fname.disk_name; 8848 8849 /* close the race window with snapshot create/destroy ioctl */ 8850 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8851 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8852 down_read(&fs_info->subvol_sem); 8853 8854 /* 8855 * For each inode: 8856 * 1 to remove old dir item 8857 * 1 to remove old dir index 8858 * 1 to add new dir item 8859 * 1 to add new dir index 8860 * 1 to update parent inode 8861 * 8862 * If the parents are the same, we only need to account for one 8863 */ 8864 trans_num_items = (old_dir == new_dir ? 9 : 10); 8865 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8866 /* 8867 * 1 to remove old root ref 8868 * 1 to remove old root backref 8869 * 1 to add new root ref 8870 * 1 to add new root backref 8871 */ 8872 trans_num_items += 4; 8873 } else { 8874 /* 8875 * 1 to update inode item 8876 * 1 to remove old inode ref 8877 * 1 to add new inode ref 8878 */ 8879 trans_num_items += 3; 8880 } 8881 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8882 trans_num_items += 4; 8883 else 8884 trans_num_items += 3; 8885 trans = btrfs_start_transaction(root, trans_num_items); 8886 if (IS_ERR(trans)) { 8887 ret = PTR_ERR(trans); 8888 goto out_notrans; 8889 } 8890 8891 if (dest != root) { 8892 ret = btrfs_record_root_in_trans(trans, dest); 8893 if (ret) 8894 goto out_fail; 8895 } 8896 8897 /* 8898 * We need to find a free sequence number both in the source and 8899 * in the destination directory for the exchange. 8900 */ 8901 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8902 if (ret) 8903 goto out_fail; 8904 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8905 if (ret) 8906 goto out_fail; 8907 8908 BTRFS_I(old_inode)->dir_index = 0ULL; 8909 BTRFS_I(new_inode)->dir_index = 0ULL; 8910 8911 /* Reference for the source. */ 8912 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8913 /* force full log commit if subvolume involved. */ 8914 btrfs_set_log_full_commit(trans); 8915 } else { 8916 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8917 btrfs_ino(BTRFS_I(new_dir)), 8918 old_idx); 8919 if (ret) 8920 goto out_fail; 8921 need_abort = true; 8922 } 8923 8924 /* And now for the dest. */ 8925 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8926 /* force full log commit if subvolume involved. */ 8927 btrfs_set_log_full_commit(trans); 8928 } else { 8929 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8930 btrfs_ino(BTRFS_I(old_dir)), 8931 new_idx); 8932 if (ret) { 8933 if (need_abort) 8934 btrfs_abort_transaction(trans, ret); 8935 goto out_fail; 8936 } 8937 } 8938 8939 /* Update inode version and ctime/mtime. */ 8940 inode_inc_iversion(old_dir); 8941 inode_inc_iversion(new_dir); 8942 inode_inc_iversion(old_inode); 8943 inode_inc_iversion(new_inode); 8944 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8945 8946 if (old_dentry->d_parent != new_dentry->d_parent) { 8947 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8948 BTRFS_I(old_inode), true); 8949 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8950 BTRFS_I(new_inode), true); 8951 } 8952 8953 /* src is a subvolume */ 8954 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8955 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8956 } else { /* src is an inode */ 8957 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8958 BTRFS_I(old_dentry->d_inode), 8959 old_name, &old_rename_ctx); 8960 if (!ret) 8961 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8962 } 8963 if (ret) { 8964 btrfs_abort_transaction(trans, ret); 8965 goto out_fail; 8966 } 8967 8968 /* dest is a subvolume */ 8969 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8970 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8971 } else { /* dest is an inode */ 8972 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8973 BTRFS_I(new_dentry->d_inode), 8974 new_name, &new_rename_ctx); 8975 if (!ret) 8976 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8977 } 8978 if (ret) { 8979 btrfs_abort_transaction(trans, ret); 8980 goto out_fail; 8981 } 8982 8983 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8984 new_name, 0, old_idx); 8985 if (ret) { 8986 btrfs_abort_transaction(trans, ret); 8987 goto out_fail; 8988 } 8989 8990 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8991 old_name, 0, new_idx); 8992 if (ret) { 8993 btrfs_abort_transaction(trans, ret); 8994 goto out_fail; 8995 } 8996 8997 if (old_inode->i_nlink == 1) 8998 BTRFS_I(old_inode)->dir_index = old_idx; 8999 if (new_inode->i_nlink == 1) 9000 BTRFS_I(new_inode)->dir_index = new_idx; 9001 9002 /* 9003 * Now pin the logs of the roots. We do it to ensure that no other task 9004 * can sync the logs while we are in progress with the rename, because 9005 * that could result in an inconsistency in case any of the inodes that 9006 * are part of this rename operation were logged before. 9007 */ 9008 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9009 btrfs_pin_log_trans(root); 9010 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9011 btrfs_pin_log_trans(dest); 9012 9013 /* Do the log updates for all inodes. */ 9014 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9015 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9016 old_rename_ctx.index, new_dentry->d_parent); 9017 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9018 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 9019 new_rename_ctx.index, old_dentry->d_parent); 9020 9021 /* Now unpin the logs. */ 9022 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9023 btrfs_end_log_trans(root); 9024 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9025 btrfs_end_log_trans(dest); 9026 out_fail: 9027 ret2 = btrfs_end_transaction(trans); 9028 ret = ret ? ret : ret2; 9029 out_notrans: 9030 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9031 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9032 up_read(&fs_info->subvol_sem); 9033 9034 fscrypt_free_filename(&new_fname); 9035 fscrypt_free_filename(&old_fname); 9036 return ret; 9037 } 9038 9039 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 9040 struct inode *dir) 9041 { 9042 struct inode *inode; 9043 9044 inode = new_inode(dir->i_sb); 9045 if (inode) { 9046 inode_init_owner(idmap, inode, dir, 9047 S_IFCHR | WHITEOUT_MODE); 9048 inode->i_op = &btrfs_special_inode_operations; 9049 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 9050 } 9051 return inode; 9052 } 9053 9054 static int btrfs_rename(struct mnt_idmap *idmap, 9055 struct inode *old_dir, struct dentry *old_dentry, 9056 struct inode *new_dir, struct dentry *new_dentry, 9057 unsigned int flags) 9058 { 9059 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 9060 struct btrfs_new_inode_args whiteout_args = { 9061 .dir = old_dir, 9062 .dentry = old_dentry, 9063 }; 9064 struct btrfs_trans_handle *trans; 9065 unsigned int trans_num_items; 9066 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9067 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9068 struct inode *new_inode = d_inode(new_dentry); 9069 struct inode *old_inode = d_inode(old_dentry); 9070 struct btrfs_rename_ctx rename_ctx; 9071 u64 index = 0; 9072 int ret; 9073 int ret2; 9074 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9075 struct fscrypt_name old_fname, new_fname; 9076 9077 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9078 return -EPERM; 9079 9080 /* we only allow rename subvolume link between subvolumes */ 9081 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9082 return -EXDEV; 9083 9084 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9085 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9086 return -ENOTEMPTY; 9087 9088 if (S_ISDIR(old_inode->i_mode) && new_inode && 9089 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9090 return -ENOTEMPTY; 9091 9092 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 9093 if (ret) 9094 return ret; 9095 9096 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 9097 if (ret) { 9098 fscrypt_free_filename(&old_fname); 9099 return ret; 9100 } 9101 9102 /* check for collisions, even if the name isn't there */ 9103 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 9104 if (ret) { 9105 if (ret == -EEXIST) { 9106 /* we shouldn't get 9107 * eexist without a new_inode */ 9108 if (WARN_ON(!new_inode)) { 9109 goto out_fscrypt_names; 9110 } 9111 } else { 9112 /* maybe -EOVERFLOW */ 9113 goto out_fscrypt_names; 9114 } 9115 } 9116 ret = 0; 9117 9118 /* 9119 * we're using rename to replace one file with another. Start IO on it 9120 * now so we don't add too much work to the end of the transaction 9121 */ 9122 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9123 filemap_flush(old_inode->i_mapping); 9124 9125 if (flags & RENAME_WHITEOUT) { 9126 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 9127 if (!whiteout_args.inode) { 9128 ret = -ENOMEM; 9129 goto out_fscrypt_names; 9130 } 9131 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9132 if (ret) 9133 goto out_whiteout_inode; 9134 } else { 9135 /* 1 to update the old parent inode. */ 9136 trans_num_items = 1; 9137 } 9138 9139 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9140 /* Close the race window with snapshot create/destroy ioctl */ 9141 down_read(&fs_info->subvol_sem); 9142 /* 9143 * 1 to remove old root ref 9144 * 1 to remove old root backref 9145 * 1 to add new root ref 9146 * 1 to add new root backref 9147 */ 9148 trans_num_items += 4; 9149 } else { 9150 /* 9151 * 1 to update inode 9152 * 1 to remove old inode ref 9153 * 1 to add new inode ref 9154 */ 9155 trans_num_items += 3; 9156 } 9157 /* 9158 * 1 to remove old dir item 9159 * 1 to remove old dir index 9160 * 1 to add new dir item 9161 * 1 to add new dir index 9162 */ 9163 trans_num_items += 4; 9164 /* 1 to update new parent inode if it's not the same as the old parent */ 9165 if (new_dir != old_dir) 9166 trans_num_items++; 9167 if (new_inode) { 9168 /* 9169 * 1 to update inode 9170 * 1 to remove inode ref 9171 * 1 to remove dir item 9172 * 1 to remove dir index 9173 * 1 to possibly add orphan item 9174 */ 9175 trans_num_items += 5; 9176 } 9177 trans = btrfs_start_transaction(root, trans_num_items); 9178 if (IS_ERR(trans)) { 9179 ret = PTR_ERR(trans); 9180 goto out_notrans; 9181 } 9182 9183 if (dest != root) { 9184 ret = btrfs_record_root_in_trans(trans, dest); 9185 if (ret) 9186 goto out_fail; 9187 } 9188 9189 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9190 if (ret) 9191 goto out_fail; 9192 9193 BTRFS_I(old_inode)->dir_index = 0ULL; 9194 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9195 /* force full log commit if subvolume involved. */ 9196 btrfs_set_log_full_commit(trans); 9197 } else { 9198 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9199 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9200 index); 9201 if (ret) 9202 goto out_fail; 9203 } 9204 9205 inode_inc_iversion(old_dir); 9206 inode_inc_iversion(new_dir); 9207 inode_inc_iversion(old_inode); 9208 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 9209 9210 if (old_dentry->d_parent != new_dentry->d_parent) 9211 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9212 BTRFS_I(old_inode), true); 9213 9214 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9215 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9216 } else { 9217 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9218 BTRFS_I(d_inode(old_dentry)), 9219 &old_fname.disk_name, &rename_ctx); 9220 if (!ret) 9221 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 9222 } 9223 if (ret) { 9224 btrfs_abort_transaction(trans, ret); 9225 goto out_fail; 9226 } 9227 9228 if (new_inode) { 9229 inode_inc_iversion(new_inode); 9230 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9231 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9232 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9233 BUG_ON(new_inode->i_nlink == 0); 9234 } else { 9235 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9236 BTRFS_I(d_inode(new_dentry)), 9237 &new_fname.disk_name); 9238 } 9239 if (!ret && new_inode->i_nlink == 0) 9240 ret = btrfs_orphan_add(trans, 9241 BTRFS_I(d_inode(new_dentry))); 9242 if (ret) { 9243 btrfs_abort_transaction(trans, ret); 9244 goto out_fail; 9245 } 9246 } 9247 9248 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9249 &new_fname.disk_name, 0, index); 9250 if (ret) { 9251 btrfs_abort_transaction(trans, ret); 9252 goto out_fail; 9253 } 9254 9255 if (old_inode->i_nlink == 1) 9256 BTRFS_I(old_inode)->dir_index = index; 9257 9258 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9259 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9260 rename_ctx.index, new_dentry->d_parent); 9261 9262 if (flags & RENAME_WHITEOUT) { 9263 ret = btrfs_create_new_inode(trans, &whiteout_args); 9264 if (ret) { 9265 btrfs_abort_transaction(trans, ret); 9266 goto out_fail; 9267 } else { 9268 unlock_new_inode(whiteout_args.inode); 9269 iput(whiteout_args.inode); 9270 whiteout_args.inode = NULL; 9271 } 9272 } 9273 out_fail: 9274 ret2 = btrfs_end_transaction(trans); 9275 ret = ret ? ret : ret2; 9276 out_notrans: 9277 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9278 up_read(&fs_info->subvol_sem); 9279 if (flags & RENAME_WHITEOUT) 9280 btrfs_new_inode_args_destroy(&whiteout_args); 9281 out_whiteout_inode: 9282 if (flags & RENAME_WHITEOUT) 9283 iput(whiteout_args.inode); 9284 out_fscrypt_names: 9285 fscrypt_free_filename(&old_fname); 9286 fscrypt_free_filename(&new_fname); 9287 return ret; 9288 } 9289 9290 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9291 struct dentry *old_dentry, struct inode *new_dir, 9292 struct dentry *new_dentry, unsigned int flags) 9293 { 9294 int ret; 9295 9296 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9297 return -EINVAL; 9298 9299 if (flags & RENAME_EXCHANGE) 9300 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9301 new_dentry); 9302 else 9303 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9304 new_dentry, flags); 9305 9306 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9307 9308 return ret; 9309 } 9310 9311 struct btrfs_delalloc_work { 9312 struct inode *inode; 9313 struct completion completion; 9314 struct list_head list; 9315 struct btrfs_work work; 9316 }; 9317 9318 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9319 { 9320 struct btrfs_delalloc_work *delalloc_work; 9321 struct inode *inode; 9322 9323 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9324 work); 9325 inode = delalloc_work->inode; 9326 filemap_flush(inode->i_mapping); 9327 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9328 &BTRFS_I(inode)->runtime_flags)) 9329 filemap_flush(inode->i_mapping); 9330 9331 iput(inode); 9332 complete(&delalloc_work->completion); 9333 } 9334 9335 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9336 { 9337 struct btrfs_delalloc_work *work; 9338 9339 work = kmalloc(sizeof(*work), GFP_NOFS); 9340 if (!work) 9341 return NULL; 9342 9343 init_completion(&work->completion); 9344 INIT_LIST_HEAD(&work->list); 9345 work->inode = inode; 9346 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 9347 9348 return work; 9349 } 9350 9351 /* 9352 * some fairly slow code that needs optimization. This walks the list 9353 * of all the inodes with pending delalloc and forces them to disk. 9354 */ 9355 static int start_delalloc_inodes(struct btrfs_root *root, 9356 struct writeback_control *wbc, bool snapshot, 9357 bool in_reclaim_context) 9358 { 9359 struct btrfs_inode *binode; 9360 struct inode *inode; 9361 struct btrfs_delalloc_work *work, *next; 9362 LIST_HEAD(works); 9363 LIST_HEAD(splice); 9364 int ret = 0; 9365 bool full_flush = wbc->nr_to_write == LONG_MAX; 9366 9367 mutex_lock(&root->delalloc_mutex); 9368 spin_lock(&root->delalloc_lock); 9369 list_splice_init(&root->delalloc_inodes, &splice); 9370 while (!list_empty(&splice)) { 9371 binode = list_entry(splice.next, struct btrfs_inode, 9372 delalloc_inodes); 9373 9374 list_move_tail(&binode->delalloc_inodes, 9375 &root->delalloc_inodes); 9376 9377 if (in_reclaim_context && 9378 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9379 continue; 9380 9381 inode = igrab(&binode->vfs_inode); 9382 if (!inode) { 9383 cond_resched_lock(&root->delalloc_lock); 9384 continue; 9385 } 9386 spin_unlock(&root->delalloc_lock); 9387 9388 if (snapshot) 9389 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9390 &binode->runtime_flags); 9391 if (full_flush) { 9392 work = btrfs_alloc_delalloc_work(inode); 9393 if (!work) { 9394 iput(inode); 9395 ret = -ENOMEM; 9396 goto out; 9397 } 9398 list_add_tail(&work->list, &works); 9399 btrfs_queue_work(root->fs_info->flush_workers, 9400 &work->work); 9401 } else { 9402 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9403 btrfs_add_delayed_iput(BTRFS_I(inode)); 9404 if (ret || wbc->nr_to_write <= 0) 9405 goto out; 9406 } 9407 cond_resched(); 9408 spin_lock(&root->delalloc_lock); 9409 } 9410 spin_unlock(&root->delalloc_lock); 9411 9412 out: 9413 list_for_each_entry_safe(work, next, &works, list) { 9414 list_del_init(&work->list); 9415 wait_for_completion(&work->completion); 9416 kfree(work); 9417 } 9418 9419 if (!list_empty(&splice)) { 9420 spin_lock(&root->delalloc_lock); 9421 list_splice_tail(&splice, &root->delalloc_inodes); 9422 spin_unlock(&root->delalloc_lock); 9423 } 9424 mutex_unlock(&root->delalloc_mutex); 9425 return ret; 9426 } 9427 9428 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9429 { 9430 struct writeback_control wbc = { 9431 .nr_to_write = LONG_MAX, 9432 .sync_mode = WB_SYNC_NONE, 9433 .range_start = 0, 9434 .range_end = LLONG_MAX, 9435 }; 9436 struct btrfs_fs_info *fs_info = root->fs_info; 9437 9438 if (BTRFS_FS_ERROR(fs_info)) 9439 return -EROFS; 9440 9441 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9442 } 9443 9444 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9445 bool in_reclaim_context) 9446 { 9447 struct writeback_control wbc = { 9448 .nr_to_write = nr, 9449 .sync_mode = WB_SYNC_NONE, 9450 .range_start = 0, 9451 .range_end = LLONG_MAX, 9452 }; 9453 struct btrfs_root *root; 9454 LIST_HEAD(splice); 9455 int ret; 9456 9457 if (BTRFS_FS_ERROR(fs_info)) 9458 return -EROFS; 9459 9460 mutex_lock(&fs_info->delalloc_root_mutex); 9461 spin_lock(&fs_info->delalloc_root_lock); 9462 list_splice_init(&fs_info->delalloc_roots, &splice); 9463 while (!list_empty(&splice)) { 9464 /* 9465 * Reset nr_to_write here so we know that we're doing a full 9466 * flush. 9467 */ 9468 if (nr == LONG_MAX) 9469 wbc.nr_to_write = LONG_MAX; 9470 9471 root = list_first_entry(&splice, struct btrfs_root, 9472 delalloc_root); 9473 root = btrfs_grab_root(root); 9474 BUG_ON(!root); 9475 list_move_tail(&root->delalloc_root, 9476 &fs_info->delalloc_roots); 9477 spin_unlock(&fs_info->delalloc_root_lock); 9478 9479 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9480 btrfs_put_root(root); 9481 if (ret < 0 || wbc.nr_to_write <= 0) 9482 goto out; 9483 spin_lock(&fs_info->delalloc_root_lock); 9484 } 9485 spin_unlock(&fs_info->delalloc_root_lock); 9486 9487 ret = 0; 9488 out: 9489 if (!list_empty(&splice)) { 9490 spin_lock(&fs_info->delalloc_root_lock); 9491 list_splice_tail(&splice, &fs_info->delalloc_roots); 9492 spin_unlock(&fs_info->delalloc_root_lock); 9493 } 9494 mutex_unlock(&fs_info->delalloc_root_mutex); 9495 return ret; 9496 } 9497 9498 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9499 struct dentry *dentry, const char *symname) 9500 { 9501 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9502 struct btrfs_trans_handle *trans; 9503 struct btrfs_root *root = BTRFS_I(dir)->root; 9504 struct btrfs_path *path; 9505 struct btrfs_key key; 9506 struct inode *inode; 9507 struct btrfs_new_inode_args new_inode_args = { 9508 .dir = dir, 9509 .dentry = dentry, 9510 }; 9511 unsigned int trans_num_items; 9512 int err; 9513 int name_len; 9514 int datasize; 9515 unsigned long ptr; 9516 struct btrfs_file_extent_item *ei; 9517 struct extent_buffer *leaf; 9518 9519 name_len = strlen(symname); 9520 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9521 return -ENAMETOOLONG; 9522 9523 inode = new_inode(dir->i_sb); 9524 if (!inode) 9525 return -ENOMEM; 9526 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9527 inode->i_op = &btrfs_symlink_inode_operations; 9528 inode_nohighmem(inode); 9529 inode->i_mapping->a_ops = &btrfs_aops; 9530 btrfs_i_size_write(BTRFS_I(inode), name_len); 9531 inode_set_bytes(inode, name_len); 9532 9533 new_inode_args.inode = inode; 9534 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9535 if (err) 9536 goto out_inode; 9537 /* 1 additional item for the inline extent */ 9538 trans_num_items++; 9539 9540 trans = btrfs_start_transaction(root, trans_num_items); 9541 if (IS_ERR(trans)) { 9542 err = PTR_ERR(trans); 9543 goto out_new_inode_args; 9544 } 9545 9546 err = btrfs_create_new_inode(trans, &new_inode_args); 9547 if (err) 9548 goto out; 9549 9550 path = btrfs_alloc_path(); 9551 if (!path) { 9552 err = -ENOMEM; 9553 btrfs_abort_transaction(trans, err); 9554 discard_new_inode(inode); 9555 inode = NULL; 9556 goto out; 9557 } 9558 key.objectid = btrfs_ino(BTRFS_I(inode)); 9559 key.offset = 0; 9560 key.type = BTRFS_EXTENT_DATA_KEY; 9561 datasize = btrfs_file_extent_calc_inline_size(name_len); 9562 err = btrfs_insert_empty_item(trans, root, path, &key, 9563 datasize); 9564 if (err) { 9565 btrfs_abort_transaction(trans, err); 9566 btrfs_free_path(path); 9567 discard_new_inode(inode); 9568 inode = NULL; 9569 goto out; 9570 } 9571 leaf = path->nodes[0]; 9572 ei = btrfs_item_ptr(leaf, path->slots[0], 9573 struct btrfs_file_extent_item); 9574 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9575 btrfs_set_file_extent_type(leaf, ei, 9576 BTRFS_FILE_EXTENT_INLINE); 9577 btrfs_set_file_extent_encryption(leaf, ei, 0); 9578 btrfs_set_file_extent_compression(leaf, ei, 0); 9579 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9580 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9581 9582 ptr = btrfs_file_extent_inline_start(ei); 9583 write_extent_buffer(leaf, symname, ptr, name_len); 9584 btrfs_mark_buffer_dirty(trans, leaf); 9585 btrfs_free_path(path); 9586 9587 d_instantiate_new(dentry, inode); 9588 err = 0; 9589 out: 9590 btrfs_end_transaction(trans); 9591 btrfs_btree_balance_dirty(fs_info); 9592 out_new_inode_args: 9593 btrfs_new_inode_args_destroy(&new_inode_args); 9594 out_inode: 9595 if (err) 9596 iput(inode); 9597 return err; 9598 } 9599 9600 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9601 struct btrfs_trans_handle *trans_in, 9602 struct btrfs_inode *inode, 9603 struct btrfs_key *ins, 9604 u64 file_offset) 9605 { 9606 struct btrfs_file_extent_item stack_fi; 9607 struct btrfs_replace_extent_info extent_info; 9608 struct btrfs_trans_handle *trans = trans_in; 9609 struct btrfs_path *path; 9610 u64 start = ins->objectid; 9611 u64 len = ins->offset; 9612 u64 qgroup_released = 0; 9613 int ret; 9614 9615 memset(&stack_fi, 0, sizeof(stack_fi)); 9616 9617 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9618 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9619 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9620 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9621 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9622 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9623 /* Encryption and other encoding is reserved and all 0 */ 9624 9625 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9626 if (ret < 0) 9627 return ERR_PTR(ret); 9628 9629 if (trans) { 9630 ret = insert_reserved_file_extent(trans, inode, 9631 file_offset, &stack_fi, 9632 true, qgroup_released); 9633 if (ret) 9634 goto free_qgroup; 9635 return trans; 9636 } 9637 9638 extent_info.disk_offset = start; 9639 extent_info.disk_len = len; 9640 extent_info.data_offset = 0; 9641 extent_info.data_len = len; 9642 extent_info.file_offset = file_offset; 9643 extent_info.extent_buf = (char *)&stack_fi; 9644 extent_info.is_new_extent = true; 9645 extent_info.update_times = true; 9646 extent_info.qgroup_reserved = qgroup_released; 9647 extent_info.insertions = 0; 9648 9649 path = btrfs_alloc_path(); 9650 if (!path) { 9651 ret = -ENOMEM; 9652 goto free_qgroup; 9653 } 9654 9655 ret = btrfs_replace_file_extents(inode, path, file_offset, 9656 file_offset + len - 1, &extent_info, 9657 &trans); 9658 btrfs_free_path(path); 9659 if (ret) 9660 goto free_qgroup; 9661 return trans; 9662 9663 free_qgroup: 9664 /* 9665 * We have released qgroup data range at the beginning of the function, 9666 * and normally qgroup_released bytes will be freed when committing 9667 * transaction. 9668 * But if we error out early, we have to free what we have released 9669 * or we leak qgroup data reservation. 9670 */ 9671 btrfs_qgroup_free_refroot(inode->root->fs_info, 9672 inode->root->root_key.objectid, qgroup_released, 9673 BTRFS_QGROUP_RSV_DATA); 9674 return ERR_PTR(ret); 9675 } 9676 9677 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9678 u64 start, u64 num_bytes, u64 min_size, 9679 loff_t actual_len, u64 *alloc_hint, 9680 struct btrfs_trans_handle *trans) 9681 { 9682 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9683 struct extent_map *em; 9684 struct btrfs_root *root = BTRFS_I(inode)->root; 9685 struct btrfs_key ins; 9686 u64 cur_offset = start; 9687 u64 clear_offset = start; 9688 u64 i_size; 9689 u64 cur_bytes; 9690 u64 last_alloc = (u64)-1; 9691 int ret = 0; 9692 bool own_trans = true; 9693 u64 end = start + num_bytes - 1; 9694 9695 if (trans) 9696 own_trans = false; 9697 while (num_bytes > 0) { 9698 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9699 cur_bytes = max(cur_bytes, min_size); 9700 /* 9701 * If we are severely fragmented we could end up with really 9702 * small allocations, so if the allocator is returning small 9703 * chunks lets make its job easier by only searching for those 9704 * sized chunks. 9705 */ 9706 cur_bytes = min(cur_bytes, last_alloc); 9707 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9708 min_size, 0, *alloc_hint, &ins, 1, 0); 9709 if (ret) 9710 break; 9711 9712 /* 9713 * We've reserved this space, and thus converted it from 9714 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9715 * from here on out we will only need to clear our reservation 9716 * for the remaining unreserved area, so advance our 9717 * clear_offset by our extent size. 9718 */ 9719 clear_offset += ins.offset; 9720 9721 last_alloc = ins.offset; 9722 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9723 &ins, cur_offset); 9724 /* 9725 * Now that we inserted the prealloc extent we can finally 9726 * decrement the number of reservations in the block group. 9727 * If we did it before, we could race with relocation and have 9728 * relocation miss the reserved extent, making it fail later. 9729 */ 9730 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9731 if (IS_ERR(trans)) { 9732 ret = PTR_ERR(trans); 9733 btrfs_free_reserved_extent(fs_info, ins.objectid, 9734 ins.offset, 0); 9735 break; 9736 } 9737 9738 em = alloc_extent_map(); 9739 if (!em) { 9740 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9741 cur_offset + ins.offset - 1, false); 9742 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9743 goto next; 9744 } 9745 9746 em->start = cur_offset; 9747 em->orig_start = cur_offset; 9748 em->len = ins.offset; 9749 em->block_start = ins.objectid; 9750 em->block_len = ins.offset; 9751 em->orig_block_len = ins.offset; 9752 em->ram_bytes = ins.offset; 9753 em->flags |= EXTENT_FLAG_PREALLOC; 9754 em->generation = trans->transid; 9755 9756 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9757 free_extent_map(em); 9758 next: 9759 num_bytes -= ins.offset; 9760 cur_offset += ins.offset; 9761 *alloc_hint = ins.objectid + ins.offset; 9762 9763 inode_inc_iversion(inode); 9764 inode_set_ctime_current(inode); 9765 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9766 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9767 (actual_len > inode->i_size) && 9768 (cur_offset > inode->i_size)) { 9769 if (cur_offset > actual_len) 9770 i_size = actual_len; 9771 else 9772 i_size = cur_offset; 9773 i_size_write(inode, i_size); 9774 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9775 } 9776 9777 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9778 9779 if (ret) { 9780 btrfs_abort_transaction(trans, ret); 9781 if (own_trans) 9782 btrfs_end_transaction(trans); 9783 break; 9784 } 9785 9786 if (own_trans) { 9787 btrfs_end_transaction(trans); 9788 trans = NULL; 9789 } 9790 } 9791 if (clear_offset < end) 9792 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9793 end - clear_offset + 1); 9794 return ret; 9795 } 9796 9797 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9798 u64 start, u64 num_bytes, u64 min_size, 9799 loff_t actual_len, u64 *alloc_hint) 9800 { 9801 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9802 min_size, actual_len, alloc_hint, 9803 NULL); 9804 } 9805 9806 int btrfs_prealloc_file_range_trans(struct inode *inode, 9807 struct btrfs_trans_handle *trans, int mode, 9808 u64 start, u64 num_bytes, u64 min_size, 9809 loff_t actual_len, u64 *alloc_hint) 9810 { 9811 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9812 min_size, actual_len, alloc_hint, trans); 9813 } 9814 9815 static int btrfs_permission(struct mnt_idmap *idmap, 9816 struct inode *inode, int mask) 9817 { 9818 struct btrfs_root *root = BTRFS_I(inode)->root; 9819 umode_t mode = inode->i_mode; 9820 9821 if (mask & MAY_WRITE && 9822 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9823 if (btrfs_root_readonly(root)) 9824 return -EROFS; 9825 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9826 return -EACCES; 9827 } 9828 return generic_permission(idmap, inode, mask); 9829 } 9830 9831 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9832 struct file *file, umode_t mode) 9833 { 9834 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9835 struct btrfs_trans_handle *trans; 9836 struct btrfs_root *root = BTRFS_I(dir)->root; 9837 struct inode *inode; 9838 struct btrfs_new_inode_args new_inode_args = { 9839 .dir = dir, 9840 .dentry = file->f_path.dentry, 9841 .orphan = true, 9842 }; 9843 unsigned int trans_num_items; 9844 int ret; 9845 9846 inode = new_inode(dir->i_sb); 9847 if (!inode) 9848 return -ENOMEM; 9849 inode_init_owner(idmap, inode, dir, mode); 9850 inode->i_fop = &btrfs_file_operations; 9851 inode->i_op = &btrfs_file_inode_operations; 9852 inode->i_mapping->a_ops = &btrfs_aops; 9853 9854 new_inode_args.inode = inode; 9855 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9856 if (ret) 9857 goto out_inode; 9858 9859 trans = btrfs_start_transaction(root, trans_num_items); 9860 if (IS_ERR(trans)) { 9861 ret = PTR_ERR(trans); 9862 goto out_new_inode_args; 9863 } 9864 9865 ret = btrfs_create_new_inode(trans, &new_inode_args); 9866 9867 /* 9868 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9869 * set it to 1 because d_tmpfile() will issue a warning if the count is 9870 * 0, through: 9871 * 9872 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9873 */ 9874 set_nlink(inode, 1); 9875 9876 if (!ret) { 9877 d_tmpfile(file, inode); 9878 unlock_new_inode(inode); 9879 mark_inode_dirty(inode); 9880 } 9881 9882 btrfs_end_transaction(trans); 9883 btrfs_btree_balance_dirty(fs_info); 9884 out_new_inode_args: 9885 btrfs_new_inode_args_destroy(&new_inode_args); 9886 out_inode: 9887 if (ret) 9888 iput(inode); 9889 return finish_open_simple(file, ret); 9890 } 9891 9892 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9893 { 9894 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9895 unsigned long index = start >> PAGE_SHIFT; 9896 unsigned long end_index = end >> PAGE_SHIFT; 9897 struct page *page; 9898 u32 len; 9899 9900 ASSERT(end + 1 - start <= U32_MAX); 9901 len = end + 1 - start; 9902 while (index <= end_index) { 9903 page = find_get_page(inode->vfs_inode.i_mapping, index); 9904 ASSERT(page); /* Pages should be in the extent_io_tree */ 9905 9906 /* This is for data, which doesn't yet support larger folio. */ 9907 ASSERT(folio_order(page_folio(page)) == 0); 9908 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len); 9909 put_page(page); 9910 index++; 9911 } 9912 } 9913 9914 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9915 int compress_type) 9916 { 9917 switch (compress_type) { 9918 case BTRFS_COMPRESS_NONE: 9919 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9920 case BTRFS_COMPRESS_ZLIB: 9921 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9922 case BTRFS_COMPRESS_LZO: 9923 /* 9924 * The LZO format depends on the sector size. 64K is the maximum 9925 * sector size that we support. 9926 */ 9927 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9928 return -EINVAL; 9929 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9930 (fs_info->sectorsize_bits - 12); 9931 case BTRFS_COMPRESS_ZSTD: 9932 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9933 default: 9934 return -EUCLEAN; 9935 } 9936 } 9937 9938 static ssize_t btrfs_encoded_read_inline( 9939 struct kiocb *iocb, 9940 struct iov_iter *iter, u64 start, 9941 u64 lockend, 9942 struct extent_state **cached_state, 9943 u64 extent_start, size_t count, 9944 struct btrfs_ioctl_encoded_io_args *encoded, 9945 bool *unlocked) 9946 { 9947 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9948 struct btrfs_root *root = inode->root; 9949 struct btrfs_fs_info *fs_info = root->fs_info; 9950 struct extent_io_tree *io_tree = &inode->io_tree; 9951 struct btrfs_path *path; 9952 struct extent_buffer *leaf; 9953 struct btrfs_file_extent_item *item; 9954 u64 ram_bytes; 9955 unsigned long ptr; 9956 void *tmp; 9957 ssize_t ret; 9958 9959 path = btrfs_alloc_path(); 9960 if (!path) { 9961 ret = -ENOMEM; 9962 goto out; 9963 } 9964 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9965 extent_start, 0); 9966 if (ret) { 9967 if (ret > 0) { 9968 /* The extent item disappeared? */ 9969 ret = -EIO; 9970 } 9971 goto out; 9972 } 9973 leaf = path->nodes[0]; 9974 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9975 9976 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9977 ptr = btrfs_file_extent_inline_start(item); 9978 9979 encoded->len = min_t(u64, extent_start + ram_bytes, 9980 inode->vfs_inode.i_size) - iocb->ki_pos; 9981 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9982 btrfs_file_extent_compression(leaf, item)); 9983 if (ret < 0) 9984 goto out; 9985 encoded->compression = ret; 9986 if (encoded->compression) { 9987 size_t inline_size; 9988 9989 inline_size = btrfs_file_extent_inline_item_len(leaf, 9990 path->slots[0]); 9991 if (inline_size > count) { 9992 ret = -ENOBUFS; 9993 goto out; 9994 } 9995 count = inline_size; 9996 encoded->unencoded_len = ram_bytes; 9997 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9998 } else { 9999 count = min_t(u64, count, encoded->len); 10000 encoded->len = count; 10001 encoded->unencoded_len = count; 10002 ptr += iocb->ki_pos - extent_start; 10003 } 10004 10005 tmp = kmalloc(count, GFP_NOFS); 10006 if (!tmp) { 10007 ret = -ENOMEM; 10008 goto out; 10009 } 10010 read_extent_buffer(leaf, tmp, ptr, count); 10011 btrfs_release_path(path); 10012 unlock_extent(io_tree, start, lockend, cached_state); 10013 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10014 *unlocked = true; 10015 10016 ret = copy_to_iter(tmp, count, iter); 10017 if (ret != count) 10018 ret = -EFAULT; 10019 kfree(tmp); 10020 out: 10021 btrfs_free_path(path); 10022 return ret; 10023 } 10024 10025 struct btrfs_encoded_read_private { 10026 wait_queue_head_t wait; 10027 atomic_t pending; 10028 blk_status_t status; 10029 }; 10030 10031 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 10032 { 10033 struct btrfs_encoded_read_private *priv = bbio->private; 10034 10035 if (bbio->bio.bi_status) { 10036 /* 10037 * The memory barrier implied by the atomic_dec_return() here 10038 * pairs with the memory barrier implied by the 10039 * atomic_dec_return() or io_wait_event() in 10040 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10041 * write is observed before the load of status in 10042 * btrfs_encoded_read_regular_fill_pages(). 10043 */ 10044 WRITE_ONCE(priv->status, bbio->bio.bi_status); 10045 } 10046 if (!atomic_dec_return(&priv->pending)) 10047 wake_up(&priv->wait); 10048 bio_put(&bbio->bio); 10049 } 10050 10051 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10052 u64 file_offset, u64 disk_bytenr, 10053 u64 disk_io_size, struct page **pages) 10054 { 10055 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10056 struct btrfs_encoded_read_private priv = { 10057 .pending = ATOMIC_INIT(1), 10058 }; 10059 unsigned long i = 0; 10060 struct btrfs_bio *bbio; 10061 10062 init_waitqueue_head(&priv.wait); 10063 10064 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 10065 btrfs_encoded_read_endio, &priv); 10066 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 10067 bbio->inode = inode; 10068 10069 do { 10070 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 10071 10072 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 10073 atomic_inc(&priv.pending); 10074 btrfs_submit_bio(bbio, 0); 10075 10076 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 10077 btrfs_encoded_read_endio, &priv); 10078 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 10079 bbio->inode = inode; 10080 continue; 10081 } 10082 10083 i++; 10084 disk_bytenr += bytes; 10085 disk_io_size -= bytes; 10086 } while (disk_io_size); 10087 10088 atomic_inc(&priv.pending); 10089 btrfs_submit_bio(bbio, 0); 10090 10091 if (atomic_dec_return(&priv.pending)) 10092 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10093 /* See btrfs_encoded_read_endio() for ordering. */ 10094 return blk_status_to_errno(READ_ONCE(priv.status)); 10095 } 10096 10097 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10098 struct iov_iter *iter, 10099 u64 start, u64 lockend, 10100 struct extent_state **cached_state, 10101 u64 disk_bytenr, u64 disk_io_size, 10102 size_t count, bool compressed, 10103 bool *unlocked) 10104 { 10105 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10106 struct extent_io_tree *io_tree = &inode->io_tree; 10107 struct page **pages; 10108 unsigned long nr_pages, i; 10109 u64 cur; 10110 size_t page_offset; 10111 ssize_t ret; 10112 10113 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10114 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10115 if (!pages) 10116 return -ENOMEM; 10117 ret = btrfs_alloc_page_array(nr_pages, pages, 0); 10118 if (ret) { 10119 ret = -ENOMEM; 10120 goto out; 10121 } 10122 10123 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10124 disk_io_size, pages); 10125 if (ret) 10126 goto out; 10127 10128 unlock_extent(io_tree, start, lockend, cached_state); 10129 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10130 *unlocked = true; 10131 10132 if (compressed) { 10133 i = 0; 10134 page_offset = 0; 10135 } else { 10136 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10137 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10138 } 10139 cur = 0; 10140 while (cur < count) { 10141 size_t bytes = min_t(size_t, count - cur, 10142 PAGE_SIZE - page_offset); 10143 10144 if (copy_page_to_iter(pages[i], page_offset, bytes, 10145 iter) != bytes) { 10146 ret = -EFAULT; 10147 goto out; 10148 } 10149 i++; 10150 cur += bytes; 10151 page_offset = 0; 10152 } 10153 ret = count; 10154 out: 10155 for (i = 0; i < nr_pages; i++) { 10156 if (pages[i]) 10157 __free_page(pages[i]); 10158 } 10159 kfree(pages); 10160 return ret; 10161 } 10162 10163 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10164 struct btrfs_ioctl_encoded_io_args *encoded) 10165 { 10166 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10167 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10168 struct extent_io_tree *io_tree = &inode->io_tree; 10169 ssize_t ret; 10170 size_t count = iov_iter_count(iter); 10171 u64 start, lockend, disk_bytenr, disk_io_size; 10172 struct extent_state *cached_state = NULL; 10173 struct extent_map *em; 10174 bool unlocked = false; 10175 10176 file_accessed(iocb->ki_filp); 10177 10178 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10179 10180 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10181 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10182 return 0; 10183 } 10184 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10185 /* 10186 * We don't know how long the extent containing iocb->ki_pos is, but if 10187 * it's compressed we know that it won't be longer than this. 10188 */ 10189 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10190 10191 for (;;) { 10192 struct btrfs_ordered_extent *ordered; 10193 10194 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10195 lockend - start + 1); 10196 if (ret) 10197 goto out_unlock_inode; 10198 lock_extent(io_tree, start, lockend, &cached_state); 10199 ordered = btrfs_lookup_ordered_range(inode, start, 10200 lockend - start + 1); 10201 if (!ordered) 10202 break; 10203 btrfs_put_ordered_extent(ordered); 10204 unlock_extent(io_tree, start, lockend, &cached_state); 10205 cond_resched(); 10206 } 10207 10208 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 10209 if (IS_ERR(em)) { 10210 ret = PTR_ERR(em); 10211 goto out_unlock_extent; 10212 } 10213 10214 if (em->block_start == EXTENT_MAP_INLINE) { 10215 u64 extent_start = em->start; 10216 10217 /* 10218 * For inline extents we get everything we need out of the 10219 * extent item. 10220 */ 10221 free_extent_map(em); 10222 em = NULL; 10223 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10224 &cached_state, extent_start, 10225 count, encoded, &unlocked); 10226 goto out; 10227 } 10228 10229 /* 10230 * We only want to return up to EOF even if the extent extends beyond 10231 * that. 10232 */ 10233 encoded->len = min_t(u64, extent_map_end(em), 10234 inode->vfs_inode.i_size) - iocb->ki_pos; 10235 if (em->block_start == EXTENT_MAP_HOLE || 10236 (em->flags & EXTENT_FLAG_PREALLOC)) { 10237 disk_bytenr = EXTENT_MAP_HOLE; 10238 count = min_t(u64, count, encoded->len); 10239 encoded->len = count; 10240 encoded->unencoded_len = count; 10241 } else if (extent_map_is_compressed(em)) { 10242 disk_bytenr = em->block_start; 10243 /* 10244 * Bail if the buffer isn't large enough to return the whole 10245 * compressed extent. 10246 */ 10247 if (em->block_len > count) { 10248 ret = -ENOBUFS; 10249 goto out_em; 10250 } 10251 disk_io_size = em->block_len; 10252 count = em->block_len; 10253 encoded->unencoded_len = em->ram_bytes; 10254 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10255 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10256 extent_map_compression(em)); 10257 if (ret < 0) 10258 goto out_em; 10259 encoded->compression = ret; 10260 } else { 10261 disk_bytenr = em->block_start + (start - em->start); 10262 if (encoded->len > count) 10263 encoded->len = count; 10264 /* 10265 * Don't read beyond what we locked. This also limits the page 10266 * allocations that we'll do. 10267 */ 10268 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10269 count = start + disk_io_size - iocb->ki_pos; 10270 encoded->len = count; 10271 encoded->unencoded_len = count; 10272 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10273 } 10274 free_extent_map(em); 10275 em = NULL; 10276 10277 if (disk_bytenr == EXTENT_MAP_HOLE) { 10278 unlock_extent(io_tree, start, lockend, &cached_state); 10279 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10280 unlocked = true; 10281 ret = iov_iter_zero(count, iter); 10282 if (ret != count) 10283 ret = -EFAULT; 10284 } else { 10285 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10286 &cached_state, disk_bytenr, 10287 disk_io_size, count, 10288 encoded->compression, 10289 &unlocked); 10290 } 10291 10292 out: 10293 if (ret >= 0) 10294 iocb->ki_pos += encoded->len; 10295 out_em: 10296 free_extent_map(em); 10297 out_unlock_extent: 10298 if (!unlocked) 10299 unlock_extent(io_tree, start, lockend, &cached_state); 10300 out_unlock_inode: 10301 if (!unlocked) 10302 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10303 return ret; 10304 } 10305 10306 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10307 const struct btrfs_ioctl_encoded_io_args *encoded) 10308 { 10309 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10310 struct btrfs_root *root = inode->root; 10311 struct btrfs_fs_info *fs_info = root->fs_info; 10312 struct extent_io_tree *io_tree = &inode->io_tree; 10313 struct extent_changeset *data_reserved = NULL; 10314 struct extent_state *cached_state = NULL; 10315 struct btrfs_ordered_extent *ordered; 10316 int compression; 10317 size_t orig_count; 10318 u64 start, end; 10319 u64 num_bytes, ram_bytes, disk_num_bytes; 10320 unsigned long nr_pages, i; 10321 struct page **pages; 10322 struct btrfs_key ins; 10323 bool extent_reserved = false; 10324 struct extent_map *em; 10325 ssize_t ret; 10326 10327 switch (encoded->compression) { 10328 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10329 compression = BTRFS_COMPRESS_ZLIB; 10330 break; 10331 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10332 compression = BTRFS_COMPRESS_ZSTD; 10333 break; 10334 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10335 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10336 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10337 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10338 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10339 /* The sector size must match for LZO. */ 10340 if (encoded->compression - 10341 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10342 fs_info->sectorsize_bits) 10343 return -EINVAL; 10344 compression = BTRFS_COMPRESS_LZO; 10345 break; 10346 default: 10347 return -EINVAL; 10348 } 10349 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10350 return -EINVAL; 10351 10352 /* 10353 * Compressed extents should always have checksums, so error out if we 10354 * have a NOCOW file or inode was created while mounted with NODATASUM. 10355 */ 10356 if (inode->flags & BTRFS_INODE_NODATASUM) 10357 return -EINVAL; 10358 10359 orig_count = iov_iter_count(from); 10360 10361 /* The extent size must be sane. */ 10362 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10363 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10364 return -EINVAL; 10365 10366 /* 10367 * The compressed data must be smaller than the decompressed data. 10368 * 10369 * It's of course possible for data to compress to larger or the same 10370 * size, but the buffered I/O path falls back to no compression for such 10371 * data, and we don't want to break any assumptions by creating these 10372 * extents. 10373 * 10374 * Note that this is less strict than the current check we have that the 10375 * compressed data must be at least one sector smaller than the 10376 * decompressed data. We only want to enforce the weaker requirement 10377 * from old kernels that it is at least one byte smaller. 10378 */ 10379 if (orig_count >= encoded->unencoded_len) 10380 return -EINVAL; 10381 10382 /* The extent must start on a sector boundary. */ 10383 start = iocb->ki_pos; 10384 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10385 return -EINVAL; 10386 10387 /* 10388 * The extent must end on a sector boundary. However, we allow a write 10389 * which ends at or extends i_size to have an unaligned length; we round 10390 * up the extent size and set i_size to the unaligned end. 10391 */ 10392 if (start + encoded->len < inode->vfs_inode.i_size && 10393 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10394 return -EINVAL; 10395 10396 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10397 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10398 return -EINVAL; 10399 10400 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10401 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10402 end = start + num_bytes - 1; 10403 10404 /* 10405 * If the extent cannot be inline, the compressed data on disk must be 10406 * sector-aligned. For convenience, we extend it with zeroes if it 10407 * isn't. 10408 */ 10409 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10410 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10411 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10412 if (!pages) 10413 return -ENOMEM; 10414 for (i = 0; i < nr_pages; i++) { 10415 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10416 char *kaddr; 10417 10418 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10419 if (!pages[i]) { 10420 ret = -ENOMEM; 10421 goto out_pages; 10422 } 10423 kaddr = kmap_local_page(pages[i]); 10424 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10425 kunmap_local(kaddr); 10426 ret = -EFAULT; 10427 goto out_pages; 10428 } 10429 if (bytes < PAGE_SIZE) 10430 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10431 kunmap_local(kaddr); 10432 } 10433 10434 for (;;) { 10435 struct btrfs_ordered_extent *ordered; 10436 10437 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10438 if (ret) 10439 goto out_pages; 10440 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10441 start >> PAGE_SHIFT, 10442 end >> PAGE_SHIFT); 10443 if (ret) 10444 goto out_pages; 10445 lock_extent(io_tree, start, end, &cached_state); 10446 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10447 if (!ordered && 10448 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10449 break; 10450 if (ordered) 10451 btrfs_put_ordered_extent(ordered); 10452 unlock_extent(io_tree, start, end, &cached_state); 10453 cond_resched(); 10454 } 10455 10456 /* 10457 * We don't use the higher-level delalloc space functions because our 10458 * num_bytes and disk_num_bytes are different. 10459 */ 10460 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10461 if (ret) 10462 goto out_unlock; 10463 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10464 if (ret) 10465 goto out_free_data_space; 10466 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10467 false); 10468 if (ret) 10469 goto out_qgroup_free_data; 10470 10471 /* Try an inline extent first. */ 10472 if (start == 0 && encoded->unencoded_len == encoded->len && 10473 encoded->unencoded_offset == 0) { 10474 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10475 compression, pages, true); 10476 if (ret <= 0) { 10477 if (ret == 0) 10478 ret = orig_count; 10479 goto out_delalloc_release; 10480 } 10481 } 10482 10483 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10484 disk_num_bytes, 0, 0, &ins, 1, 1); 10485 if (ret) 10486 goto out_delalloc_release; 10487 extent_reserved = true; 10488 10489 em = create_io_em(inode, start, num_bytes, 10490 start - encoded->unencoded_offset, ins.objectid, 10491 ins.offset, ins.offset, ram_bytes, compression, 10492 BTRFS_ORDERED_COMPRESSED); 10493 if (IS_ERR(em)) { 10494 ret = PTR_ERR(em); 10495 goto out_free_reserved; 10496 } 10497 free_extent_map(em); 10498 10499 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10500 ins.objectid, ins.offset, 10501 encoded->unencoded_offset, 10502 (1 << BTRFS_ORDERED_ENCODED) | 10503 (1 << BTRFS_ORDERED_COMPRESSED), 10504 compression); 10505 if (IS_ERR(ordered)) { 10506 btrfs_drop_extent_map_range(inode, start, end, false); 10507 ret = PTR_ERR(ordered); 10508 goto out_free_reserved; 10509 } 10510 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10511 10512 if (start + encoded->len > inode->vfs_inode.i_size) 10513 i_size_write(&inode->vfs_inode, start + encoded->len); 10514 10515 unlock_extent(io_tree, start, end, &cached_state); 10516 10517 btrfs_delalloc_release_extents(inode, num_bytes); 10518 10519 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10520 ret = orig_count; 10521 goto out; 10522 10523 out_free_reserved: 10524 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10525 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10526 out_delalloc_release: 10527 btrfs_delalloc_release_extents(inode, num_bytes); 10528 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10529 out_qgroup_free_data: 10530 if (ret < 0) 10531 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10532 out_free_data_space: 10533 /* 10534 * If btrfs_reserve_extent() succeeded, then we already decremented 10535 * bytes_may_use. 10536 */ 10537 if (!extent_reserved) 10538 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10539 out_unlock: 10540 unlock_extent(io_tree, start, end, &cached_state); 10541 out_pages: 10542 for (i = 0; i < nr_pages; i++) { 10543 if (pages[i]) 10544 __free_page(pages[i]); 10545 } 10546 kvfree(pages); 10547 out: 10548 if (ret >= 0) 10549 iocb->ki_pos += encoded->len; 10550 return ret; 10551 } 10552 10553 #ifdef CONFIG_SWAP 10554 /* 10555 * Add an entry indicating a block group or device which is pinned by a 10556 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10557 * negative errno on failure. 10558 */ 10559 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10560 bool is_block_group) 10561 { 10562 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10563 struct btrfs_swapfile_pin *sp, *entry; 10564 struct rb_node **p; 10565 struct rb_node *parent = NULL; 10566 10567 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10568 if (!sp) 10569 return -ENOMEM; 10570 sp->ptr = ptr; 10571 sp->inode = inode; 10572 sp->is_block_group = is_block_group; 10573 sp->bg_extent_count = 1; 10574 10575 spin_lock(&fs_info->swapfile_pins_lock); 10576 p = &fs_info->swapfile_pins.rb_node; 10577 while (*p) { 10578 parent = *p; 10579 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10580 if (sp->ptr < entry->ptr || 10581 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10582 p = &(*p)->rb_left; 10583 } else if (sp->ptr > entry->ptr || 10584 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10585 p = &(*p)->rb_right; 10586 } else { 10587 if (is_block_group) 10588 entry->bg_extent_count++; 10589 spin_unlock(&fs_info->swapfile_pins_lock); 10590 kfree(sp); 10591 return 1; 10592 } 10593 } 10594 rb_link_node(&sp->node, parent, p); 10595 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10596 spin_unlock(&fs_info->swapfile_pins_lock); 10597 return 0; 10598 } 10599 10600 /* Free all of the entries pinned by this swapfile. */ 10601 static void btrfs_free_swapfile_pins(struct inode *inode) 10602 { 10603 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10604 struct btrfs_swapfile_pin *sp; 10605 struct rb_node *node, *next; 10606 10607 spin_lock(&fs_info->swapfile_pins_lock); 10608 node = rb_first(&fs_info->swapfile_pins); 10609 while (node) { 10610 next = rb_next(node); 10611 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10612 if (sp->inode == inode) { 10613 rb_erase(&sp->node, &fs_info->swapfile_pins); 10614 if (sp->is_block_group) { 10615 btrfs_dec_block_group_swap_extents(sp->ptr, 10616 sp->bg_extent_count); 10617 btrfs_put_block_group(sp->ptr); 10618 } 10619 kfree(sp); 10620 } 10621 node = next; 10622 } 10623 spin_unlock(&fs_info->swapfile_pins_lock); 10624 } 10625 10626 struct btrfs_swap_info { 10627 u64 start; 10628 u64 block_start; 10629 u64 block_len; 10630 u64 lowest_ppage; 10631 u64 highest_ppage; 10632 unsigned long nr_pages; 10633 int nr_extents; 10634 }; 10635 10636 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10637 struct btrfs_swap_info *bsi) 10638 { 10639 unsigned long nr_pages; 10640 unsigned long max_pages; 10641 u64 first_ppage, first_ppage_reported, next_ppage; 10642 int ret; 10643 10644 /* 10645 * Our swapfile may have had its size extended after the swap header was 10646 * written. In that case activating the swapfile should not go beyond 10647 * the max size set in the swap header. 10648 */ 10649 if (bsi->nr_pages >= sis->max) 10650 return 0; 10651 10652 max_pages = sis->max - bsi->nr_pages; 10653 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10654 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10655 10656 if (first_ppage >= next_ppage) 10657 return 0; 10658 nr_pages = next_ppage - first_ppage; 10659 nr_pages = min(nr_pages, max_pages); 10660 10661 first_ppage_reported = first_ppage; 10662 if (bsi->start == 0) 10663 first_ppage_reported++; 10664 if (bsi->lowest_ppage > first_ppage_reported) 10665 bsi->lowest_ppage = first_ppage_reported; 10666 if (bsi->highest_ppage < (next_ppage - 1)) 10667 bsi->highest_ppage = next_ppage - 1; 10668 10669 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10670 if (ret < 0) 10671 return ret; 10672 bsi->nr_extents += ret; 10673 bsi->nr_pages += nr_pages; 10674 return 0; 10675 } 10676 10677 static void btrfs_swap_deactivate(struct file *file) 10678 { 10679 struct inode *inode = file_inode(file); 10680 10681 btrfs_free_swapfile_pins(inode); 10682 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10683 } 10684 10685 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10686 sector_t *span) 10687 { 10688 struct inode *inode = file_inode(file); 10689 struct btrfs_root *root = BTRFS_I(inode)->root; 10690 struct btrfs_fs_info *fs_info = root->fs_info; 10691 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10692 struct extent_state *cached_state = NULL; 10693 struct extent_map *em = NULL; 10694 struct btrfs_chunk_map *map = NULL; 10695 struct btrfs_device *device = NULL; 10696 struct btrfs_swap_info bsi = { 10697 .lowest_ppage = (sector_t)-1ULL, 10698 }; 10699 int ret = 0; 10700 u64 isize; 10701 u64 start; 10702 10703 /* 10704 * If the swap file was just created, make sure delalloc is done. If the 10705 * file changes again after this, the user is doing something stupid and 10706 * we don't really care. 10707 */ 10708 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10709 if (ret) 10710 return ret; 10711 10712 /* 10713 * The inode is locked, so these flags won't change after we check them. 10714 */ 10715 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10716 btrfs_warn(fs_info, "swapfile must not be compressed"); 10717 return -EINVAL; 10718 } 10719 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10720 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10721 return -EINVAL; 10722 } 10723 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10724 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10725 return -EINVAL; 10726 } 10727 10728 /* 10729 * Balance or device remove/replace/resize can move stuff around from 10730 * under us. The exclop protection makes sure they aren't running/won't 10731 * run concurrently while we are mapping the swap extents, and 10732 * fs_info->swapfile_pins prevents them from running while the swap 10733 * file is active and moving the extents. Note that this also prevents 10734 * a concurrent device add which isn't actually necessary, but it's not 10735 * really worth the trouble to allow it. 10736 */ 10737 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10738 btrfs_warn(fs_info, 10739 "cannot activate swapfile while exclusive operation is running"); 10740 return -EBUSY; 10741 } 10742 10743 /* 10744 * Prevent snapshot creation while we are activating the swap file. 10745 * We do not want to race with snapshot creation. If snapshot creation 10746 * already started before we bumped nr_swapfiles from 0 to 1 and 10747 * completes before the first write into the swap file after it is 10748 * activated, than that write would fallback to COW. 10749 */ 10750 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10751 btrfs_exclop_finish(fs_info); 10752 btrfs_warn(fs_info, 10753 "cannot activate swapfile because snapshot creation is in progress"); 10754 return -EINVAL; 10755 } 10756 /* 10757 * Snapshots can create extents which require COW even if NODATACOW is 10758 * set. We use this counter to prevent snapshots. We must increment it 10759 * before walking the extents because we don't want a concurrent 10760 * snapshot to run after we've already checked the extents. 10761 * 10762 * It is possible that subvolume is marked for deletion but still not 10763 * removed yet. To prevent this race, we check the root status before 10764 * activating the swapfile. 10765 */ 10766 spin_lock(&root->root_item_lock); 10767 if (btrfs_root_dead(root)) { 10768 spin_unlock(&root->root_item_lock); 10769 10770 btrfs_exclop_finish(fs_info); 10771 btrfs_warn(fs_info, 10772 "cannot activate swapfile because subvolume %llu is being deleted", 10773 root->root_key.objectid); 10774 return -EPERM; 10775 } 10776 atomic_inc(&root->nr_swapfiles); 10777 spin_unlock(&root->root_item_lock); 10778 10779 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10780 10781 lock_extent(io_tree, 0, isize - 1, &cached_state); 10782 start = 0; 10783 while (start < isize) { 10784 u64 logical_block_start, physical_block_start; 10785 struct btrfs_block_group *bg; 10786 u64 len = isize - start; 10787 10788 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 10789 if (IS_ERR(em)) { 10790 ret = PTR_ERR(em); 10791 goto out; 10792 } 10793 10794 if (em->block_start == EXTENT_MAP_HOLE) { 10795 btrfs_warn(fs_info, "swapfile must not have holes"); 10796 ret = -EINVAL; 10797 goto out; 10798 } 10799 if (em->block_start == EXTENT_MAP_INLINE) { 10800 /* 10801 * It's unlikely we'll ever actually find ourselves 10802 * here, as a file small enough to fit inline won't be 10803 * big enough to store more than the swap header, but in 10804 * case something changes in the future, let's catch it 10805 * here rather than later. 10806 */ 10807 btrfs_warn(fs_info, "swapfile must not be inline"); 10808 ret = -EINVAL; 10809 goto out; 10810 } 10811 if (extent_map_is_compressed(em)) { 10812 btrfs_warn(fs_info, "swapfile must not be compressed"); 10813 ret = -EINVAL; 10814 goto out; 10815 } 10816 10817 logical_block_start = em->block_start + (start - em->start); 10818 len = min(len, em->len - (start - em->start)); 10819 free_extent_map(em); 10820 em = NULL; 10821 10822 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10823 if (ret < 0) { 10824 goto out; 10825 } else if (ret) { 10826 ret = 0; 10827 } else { 10828 btrfs_warn(fs_info, 10829 "swapfile must not be copy-on-write"); 10830 ret = -EINVAL; 10831 goto out; 10832 } 10833 10834 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10835 if (IS_ERR(map)) { 10836 ret = PTR_ERR(map); 10837 goto out; 10838 } 10839 10840 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10841 btrfs_warn(fs_info, 10842 "swapfile must have single data profile"); 10843 ret = -EINVAL; 10844 goto out; 10845 } 10846 10847 if (device == NULL) { 10848 device = map->stripes[0].dev; 10849 ret = btrfs_add_swapfile_pin(inode, device, false); 10850 if (ret == 1) 10851 ret = 0; 10852 else if (ret) 10853 goto out; 10854 } else if (device != map->stripes[0].dev) { 10855 btrfs_warn(fs_info, "swapfile must be on one device"); 10856 ret = -EINVAL; 10857 goto out; 10858 } 10859 10860 physical_block_start = (map->stripes[0].physical + 10861 (logical_block_start - map->start)); 10862 len = min(len, map->chunk_len - (logical_block_start - map->start)); 10863 btrfs_free_chunk_map(map); 10864 map = NULL; 10865 10866 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10867 if (!bg) { 10868 btrfs_warn(fs_info, 10869 "could not find block group containing swapfile"); 10870 ret = -EINVAL; 10871 goto out; 10872 } 10873 10874 if (!btrfs_inc_block_group_swap_extents(bg)) { 10875 btrfs_warn(fs_info, 10876 "block group for swapfile at %llu is read-only%s", 10877 bg->start, 10878 atomic_read(&fs_info->scrubs_running) ? 10879 " (scrub running)" : ""); 10880 btrfs_put_block_group(bg); 10881 ret = -EINVAL; 10882 goto out; 10883 } 10884 10885 ret = btrfs_add_swapfile_pin(inode, bg, true); 10886 if (ret) { 10887 btrfs_put_block_group(bg); 10888 if (ret == 1) 10889 ret = 0; 10890 else 10891 goto out; 10892 } 10893 10894 if (bsi.block_len && 10895 bsi.block_start + bsi.block_len == physical_block_start) { 10896 bsi.block_len += len; 10897 } else { 10898 if (bsi.block_len) { 10899 ret = btrfs_add_swap_extent(sis, &bsi); 10900 if (ret) 10901 goto out; 10902 } 10903 bsi.start = start; 10904 bsi.block_start = physical_block_start; 10905 bsi.block_len = len; 10906 } 10907 10908 start += len; 10909 } 10910 10911 if (bsi.block_len) 10912 ret = btrfs_add_swap_extent(sis, &bsi); 10913 10914 out: 10915 if (!IS_ERR_OR_NULL(em)) 10916 free_extent_map(em); 10917 if (!IS_ERR_OR_NULL(map)) 10918 btrfs_free_chunk_map(map); 10919 10920 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10921 10922 if (ret) 10923 btrfs_swap_deactivate(file); 10924 10925 btrfs_drew_write_unlock(&root->snapshot_lock); 10926 10927 btrfs_exclop_finish(fs_info); 10928 10929 if (ret) 10930 return ret; 10931 10932 if (device) 10933 sis->bdev = device->bdev; 10934 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10935 sis->max = bsi.nr_pages; 10936 sis->pages = bsi.nr_pages - 1; 10937 sis->highest_bit = bsi.nr_pages - 1; 10938 return bsi.nr_extents; 10939 } 10940 #else 10941 static void btrfs_swap_deactivate(struct file *file) 10942 { 10943 } 10944 10945 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10946 sector_t *span) 10947 { 10948 return -EOPNOTSUPP; 10949 } 10950 #endif 10951 10952 /* 10953 * Update the number of bytes used in the VFS' inode. When we replace extents in 10954 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10955 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10956 * always get a correct value. 10957 */ 10958 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10959 const u64 add_bytes, 10960 const u64 del_bytes) 10961 { 10962 if (add_bytes == del_bytes) 10963 return; 10964 10965 spin_lock(&inode->lock); 10966 if (del_bytes > 0) 10967 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10968 if (add_bytes > 0) 10969 inode_add_bytes(&inode->vfs_inode, add_bytes); 10970 spin_unlock(&inode->lock); 10971 } 10972 10973 /* 10974 * Verify that there are no ordered extents for a given file range. 10975 * 10976 * @inode: The target inode. 10977 * @start: Start offset of the file range, should be sector size aligned. 10978 * @end: End offset (inclusive) of the file range, its value +1 should be 10979 * sector size aligned. 10980 * 10981 * This should typically be used for cases where we locked an inode's VFS lock in 10982 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10983 * we have flushed all delalloc in the range, we have waited for all ordered 10984 * extents in the range to complete and finally we have locked the file range in 10985 * the inode's io_tree. 10986 */ 10987 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10988 { 10989 struct btrfs_root *root = inode->root; 10990 struct btrfs_ordered_extent *ordered; 10991 10992 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10993 return; 10994 10995 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10996 if (ordered) { 10997 btrfs_err(root->fs_info, 10998 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10999 start, end, btrfs_ino(inode), root->root_key.objectid, 11000 ordered->file_offset, 11001 ordered->file_offset + ordered->num_bytes - 1); 11002 btrfs_put_ordered_extent(ordered); 11003 } 11004 11005 ASSERT(ordered == NULL); 11006 } 11007 11008 static const struct inode_operations btrfs_dir_inode_operations = { 11009 .getattr = btrfs_getattr, 11010 .lookup = btrfs_lookup, 11011 .create = btrfs_create, 11012 .unlink = btrfs_unlink, 11013 .link = btrfs_link, 11014 .mkdir = btrfs_mkdir, 11015 .rmdir = btrfs_rmdir, 11016 .rename = btrfs_rename2, 11017 .symlink = btrfs_symlink, 11018 .setattr = btrfs_setattr, 11019 .mknod = btrfs_mknod, 11020 .listxattr = btrfs_listxattr, 11021 .permission = btrfs_permission, 11022 .get_inode_acl = btrfs_get_acl, 11023 .set_acl = btrfs_set_acl, 11024 .update_time = btrfs_update_time, 11025 .tmpfile = btrfs_tmpfile, 11026 .fileattr_get = btrfs_fileattr_get, 11027 .fileattr_set = btrfs_fileattr_set, 11028 }; 11029 11030 static const struct file_operations btrfs_dir_file_operations = { 11031 .llseek = btrfs_dir_llseek, 11032 .read = generic_read_dir, 11033 .iterate_shared = btrfs_real_readdir, 11034 .open = btrfs_opendir, 11035 .unlocked_ioctl = btrfs_ioctl, 11036 #ifdef CONFIG_COMPAT 11037 .compat_ioctl = btrfs_compat_ioctl, 11038 #endif 11039 .release = btrfs_release_file, 11040 .fsync = btrfs_sync_file, 11041 }; 11042 11043 /* 11044 * btrfs doesn't support the bmap operation because swapfiles 11045 * use bmap to make a mapping of extents in the file. They assume 11046 * these extents won't change over the life of the file and they 11047 * use the bmap result to do IO directly to the drive. 11048 * 11049 * the btrfs bmap call would return logical addresses that aren't 11050 * suitable for IO and they also will change frequently as COW 11051 * operations happen. So, swapfile + btrfs == corruption. 11052 * 11053 * For now we're avoiding this by dropping bmap. 11054 */ 11055 static const struct address_space_operations btrfs_aops = { 11056 .read_folio = btrfs_read_folio, 11057 .writepages = btrfs_writepages, 11058 .readahead = btrfs_readahead, 11059 .invalidate_folio = btrfs_invalidate_folio, 11060 .release_folio = btrfs_release_folio, 11061 .migrate_folio = btrfs_migrate_folio, 11062 .dirty_folio = filemap_dirty_folio, 11063 .error_remove_folio = generic_error_remove_folio, 11064 .swap_activate = btrfs_swap_activate, 11065 .swap_deactivate = btrfs_swap_deactivate, 11066 }; 11067 11068 static const struct inode_operations btrfs_file_inode_operations = { 11069 .getattr = btrfs_getattr, 11070 .setattr = btrfs_setattr, 11071 .listxattr = btrfs_listxattr, 11072 .permission = btrfs_permission, 11073 .fiemap = btrfs_fiemap, 11074 .get_inode_acl = btrfs_get_acl, 11075 .set_acl = btrfs_set_acl, 11076 .update_time = btrfs_update_time, 11077 .fileattr_get = btrfs_fileattr_get, 11078 .fileattr_set = btrfs_fileattr_set, 11079 }; 11080 static const struct inode_operations btrfs_special_inode_operations = { 11081 .getattr = btrfs_getattr, 11082 .setattr = btrfs_setattr, 11083 .permission = btrfs_permission, 11084 .listxattr = btrfs_listxattr, 11085 .get_inode_acl = btrfs_get_acl, 11086 .set_acl = btrfs_set_acl, 11087 .update_time = btrfs_update_time, 11088 }; 11089 static const struct inode_operations btrfs_symlink_inode_operations = { 11090 .get_link = page_get_link, 11091 .getattr = btrfs_getattr, 11092 .setattr = btrfs_setattr, 11093 .permission = btrfs_permission, 11094 .listxattr = btrfs_listxattr, 11095 .update_time = btrfs_update_time, 11096 }; 11097 11098 const struct dentry_operations btrfs_dentry_operations = { 11099 .d_delete = btrfs_dentry_delete, 11100 }; 11101