1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 #include "fs.h" 59 #include "accessors.h" 60 #include "extent-tree.h" 61 #include "root-tree.h" 62 #include "defrag.h" 63 #include "dir-item.h" 64 #include "file-item.h" 65 #include "uuid-tree.h" 66 #include "ioctl.h" 67 #include "file.h" 68 #include "acl.h" 69 #include "relocation.h" 70 #include "verity.h" 71 #include "super.h" 72 #include "orphan.h" 73 #include "backref.h" 74 #include "raid-stripe-tree.h" 75 76 struct btrfs_iget_args { 77 u64 ino; 78 struct btrfs_root *root; 79 }; 80 81 struct btrfs_dio_data { 82 ssize_t submitted; 83 struct extent_changeset *data_reserved; 84 struct btrfs_ordered_extent *ordered; 85 bool data_space_reserved; 86 bool nocow_done; 87 }; 88 89 struct btrfs_dio_private { 90 /* Range of I/O */ 91 u64 file_offset; 92 u32 bytes; 93 94 /* This must be last */ 95 struct btrfs_bio bbio; 96 }; 97 98 static struct bio_set btrfs_dio_bioset; 99 100 struct btrfs_rename_ctx { 101 /* Output field. Stores the index number of the old directory entry. */ 102 u64 index; 103 }; 104 105 /* 106 * Used by data_reloc_print_warning_inode() to pass needed info for filename 107 * resolution and output of error message. 108 */ 109 struct data_reloc_warn { 110 struct btrfs_path path; 111 struct btrfs_fs_info *fs_info; 112 u64 extent_item_size; 113 u64 logical; 114 int mirror_num; 115 }; 116 117 static const struct inode_operations btrfs_dir_inode_operations; 118 static const struct inode_operations btrfs_symlink_inode_operations; 119 static const struct inode_operations btrfs_special_inode_operations; 120 static const struct inode_operations btrfs_file_inode_operations; 121 static const struct address_space_operations btrfs_aops; 122 static const struct file_operations btrfs_dir_file_operations; 123 124 static struct kmem_cache *btrfs_inode_cachep; 125 126 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 127 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 128 129 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 130 struct page *locked_page, u64 start, 131 u64 end, struct writeback_control *wbc, 132 bool pages_dirty); 133 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 134 u64 len, u64 orig_start, u64 block_start, 135 u64 block_len, u64 orig_block_len, 136 u64 ram_bytes, int compress_type, 137 int type); 138 139 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 140 u64 root, void *warn_ctx) 141 { 142 struct data_reloc_warn *warn = warn_ctx; 143 struct btrfs_fs_info *fs_info = warn->fs_info; 144 struct extent_buffer *eb; 145 struct btrfs_inode_item *inode_item; 146 struct inode_fs_paths *ipath = NULL; 147 struct btrfs_root *local_root; 148 struct btrfs_key key; 149 unsigned int nofs_flag; 150 u32 nlink; 151 int ret; 152 153 local_root = btrfs_get_fs_root(fs_info, root, true); 154 if (IS_ERR(local_root)) { 155 ret = PTR_ERR(local_root); 156 goto err; 157 } 158 159 /* This makes the path point to (inum INODE_ITEM ioff). */ 160 key.objectid = inum; 161 key.type = BTRFS_INODE_ITEM_KEY; 162 key.offset = 0; 163 164 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 165 if (ret) { 166 btrfs_put_root(local_root); 167 btrfs_release_path(&warn->path); 168 goto err; 169 } 170 171 eb = warn->path.nodes[0]; 172 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 173 nlink = btrfs_inode_nlink(eb, inode_item); 174 btrfs_release_path(&warn->path); 175 176 nofs_flag = memalloc_nofs_save(); 177 ipath = init_ipath(4096, local_root, &warn->path); 178 memalloc_nofs_restore(nofs_flag); 179 if (IS_ERR(ipath)) { 180 btrfs_put_root(local_root); 181 ret = PTR_ERR(ipath); 182 ipath = NULL; 183 /* 184 * -ENOMEM, not a critical error, just output an generic error 185 * without filename. 186 */ 187 btrfs_warn(fs_info, 188 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 189 warn->logical, warn->mirror_num, root, inum, offset); 190 return ret; 191 } 192 ret = paths_from_inode(inum, ipath); 193 if (ret < 0) 194 goto err; 195 196 /* 197 * We deliberately ignore the bit ipath might have been too small to 198 * hold all of the paths here 199 */ 200 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 201 btrfs_warn(fs_info, 202 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 203 warn->logical, warn->mirror_num, root, inum, offset, 204 fs_info->sectorsize, nlink, 205 (char *)(unsigned long)ipath->fspath->val[i]); 206 } 207 208 btrfs_put_root(local_root); 209 free_ipath(ipath); 210 return 0; 211 212 err: 213 btrfs_warn(fs_info, 214 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 215 warn->logical, warn->mirror_num, root, inum, offset, ret); 216 217 free_ipath(ipath); 218 return ret; 219 } 220 221 /* 222 * Do extra user-friendly error output (e.g. lookup all the affected files). 223 * 224 * Return true if we succeeded doing the backref lookup. 225 * Return false if such lookup failed, and has to fallback to the old error message. 226 */ 227 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 228 const u8 *csum, const u8 *csum_expected, 229 int mirror_num) 230 { 231 struct btrfs_fs_info *fs_info = inode->root->fs_info; 232 struct btrfs_path path = { 0 }; 233 struct btrfs_key found_key = { 0 }; 234 struct extent_buffer *eb; 235 struct btrfs_extent_item *ei; 236 const u32 csum_size = fs_info->csum_size; 237 u64 logical; 238 u64 flags; 239 u32 item_size; 240 int ret; 241 242 mutex_lock(&fs_info->reloc_mutex); 243 logical = btrfs_get_reloc_bg_bytenr(fs_info); 244 mutex_unlock(&fs_info->reloc_mutex); 245 246 if (logical == U64_MAX) { 247 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 248 btrfs_warn_rl(fs_info, 249 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 250 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 251 CSUM_FMT_VALUE(csum_size, csum), 252 CSUM_FMT_VALUE(csum_size, csum_expected), 253 mirror_num); 254 return; 255 } 256 257 logical += file_off; 258 btrfs_warn_rl(fs_info, 259 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 260 inode->root->root_key.objectid, 261 btrfs_ino(inode), file_off, logical, 262 CSUM_FMT_VALUE(csum_size, csum), 263 CSUM_FMT_VALUE(csum_size, csum_expected), 264 mirror_num); 265 266 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 267 if (ret < 0) { 268 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 269 logical, ret); 270 return; 271 } 272 eb = path.nodes[0]; 273 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 274 item_size = btrfs_item_size(eb, path.slots[0]); 275 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 276 unsigned long ptr = 0; 277 u64 ref_root; 278 u8 ref_level; 279 280 while (true) { 281 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 282 item_size, &ref_root, 283 &ref_level); 284 if (ret < 0) { 285 btrfs_warn_rl(fs_info, 286 "failed to resolve tree backref for logical %llu: %d", 287 logical, ret); 288 break; 289 } 290 if (ret > 0) 291 break; 292 293 btrfs_warn_rl(fs_info, 294 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 295 logical, mirror_num, 296 (ref_level ? "node" : "leaf"), 297 ref_level, ref_root); 298 } 299 btrfs_release_path(&path); 300 } else { 301 struct btrfs_backref_walk_ctx ctx = { 0 }; 302 struct data_reloc_warn reloc_warn = { 0 }; 303 304 btrfs_release_path(&path); 305 306 ctx.bytenr = found_key.objectid; 307 ctx.extent_item_pos = logical - found_key.objectid; 308 ctx.fs_info = fs_info; 309 310 reloc_warn.logical = logical; 311 reloc_warn.extent_item_size = found_key.offset; 312 reloc_warn.mirror_num = mirror_num; 313 reloc_warn.fs_info = fs_info; 314 315 iterate_extent_inodes(&ctx, true, 316 data_reloc_print_warning_inode, &reloc_warn); 317 } 318 } 319 320 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 321 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 322 { 323 struct btrfs_root *root = inode->root; 324 const u32 csum_size = root->fs_info->csum_size; 325 326 /* For data reloc tree, it's better to do a backref lookup instead. */ 327 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 328 return print_data_reloc_error(inode, logical_start, csum, 329 csum_expected, mirror_num); 330 331 /* Output without objectid, which is more meaningful */ 332 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 333 btrfs_warn_rl(root->fs_info, 334 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 335 root->root_key.objectid, btrfs_ino(inode), 336 logical_start, 337 CSUM_FMT_VALUE(csum_size, csum), 338 CSUM_FMT_VALUE(csum_size, csum_expected), 339 mirror_num); 340 } else { 341 btrfs_warn_rl(root->fs_info, 342 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 343 root->root_key.objectid, btrfs_ino(inode), 344 logical_start, 345 CSUM_FMT_VALUE(csum_size, csum), 346 CSUM_FMT_VALUE(csum_size, csum_expected), 347 mirror_num); 348 } 349 } 350 351 /* 352 * Lock inode i_rwsem based on arguments passed. 353 * 354 * ilock_flags can have the following bit set: 355 * 356 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 357 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 358 * return -EAGAIN 359 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 360 */ 361 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 362 { 363 if (ilock_flags & BTRFS_ILOCK_SHARED) { 364 if (ilock_flags & BTRFS_ILOCK_TRY) { 365 if (!inode_trylock_shared(&inode->vfs_inode)) 366 return -EAGAIN; 367 else 368 return 0; 369 } 370 inode_lock_shared(&inode->vfs_inode); 371 } else { 372 if (ilock_flags & BTRFS_ILOCK_TRY) { 373 if (!inode_trylock(&inode->vfs_inode)) 374 return -EAGAIN; 375 else 376 return 0; 377 } 378 inode_lock(&inode->vfs_inode); 379 } 380 if (ilock_flags & BTRFS_ILOCK_MMAP) 381 down_write(&inode->i_mmap_lock); 382 return 0; 383 } 384 385 /* 386 * Unock inode i_rwsem. 387 * 388 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 389 * to decide whether the lock acquired is shared or exclusive. 390 */ 391 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 392 { 393 if (ilock_flags & BTRFS_ILOCK_MMAP) 394 up_write(&inode->i_mmap_lock); 395 if (ilock_flags & BTRFS_ILOCK_SHARED) 396 inode_unlock_shared(&inode->vfs_inode); 397 else 398 inode_unlock(&inode->vfs_inode); 399 } 400 401 /* 402 * Cleanup all submitted ordered extents in specified range to handle errors 403 * from the btrfs_run_delalloc_range() callback. 404 * 405 * NOTE: caller must ensure that when an error happens, it can not call 406 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 407 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 408 * to be released, which we want to happen only when finishing the ordered 409 * extent (btrfs_finish_ordered_io()). 410 */ 411 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 412 struct page *locked_page, 413 u64 offset, u64 bytes) 414 { 415 unsigned long index = offset >> PAGE_SHIFT; 416 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 417 u64 page_start = 0, page_end = 0; 418 struct page *page; 419 420 if (locked_page) { 421 page_start = page_offset(locked_page); 422 page_end = page_start + PAGE_SIZE - 1; 423 } 424 425 while (index <= end_index) { 426 /* 427 * For locked page, we will call btrfs_mark_ordered_io_finished 428 * through btrfs_mark_ordered_io_finished() on it 429 * in run_delalloc_range() for the error handling, which will 430 * clear page Ordered and run the ordered extent accounting. 431 * 432 * Here we can't just clear the Ordered bit, or 433 * btrfs_mark_ordered_io_finished() would skip the accounting 434 * for the page range, and the ordered extent will never finish. 435 */ 436 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 437 index++; 438 continue; 439 } 440 page = find_get_page(inode->vfs_inode.i_mapping, index); 441 index++; 442 if (!page) 443 continue; 444 445 /* 446 * Here we just clear all Ordered bits for every page in the 447 * range, then btrfs_mark_ordered_io_finished() will handle 448 * the ordered extent accounting for the range. 449 */ 450 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 451 offset, bytes); 452 put_page(page); 453 } 454 455 if (locked_page) { 456 /* The locked page covers the full range, nothing needs to be done */ 457 if (bytes + offset <= page_start + PAGE_SIZE) 458 return; 459 /* 460 * In case this page belongs to the delalloc range being 461 * instantiated then skip it, since the first page of a range is 462 * going to be properly cleaned up by the caller of 463 * run_delalloc_range 464 */ 465 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 466 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 467 offset = page_offset(locked_page) + PAGE_SIZE; 468 } 469 } 470 471 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 472 } 473 474 static int btrfs_dirty_inode(struct btrfs_inode *inode); 475 476 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 477 struct btrfs_new_inode_args *args) 478 { 479 int err; 480 481 if (args->default_acl) { 482 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 483 ACL_TYPE_DEFAULT); 484 if (err) 485 return err; 486 } 487 if (args->acl) { 488 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 489 if (err) 490 return err; 491 } 492 if (!args->default_acl && !args->acl) 493 cache_no_acl(args->inode); 494 return btrfs_xattr_security_init(trans, args->inode, args->dir, 495 &args->dentry->d_name); 496 } 497 498 /* 499 * this does all the hard work for inserting an inline extent into 500 * the btree. The caller should have done a btrfs_drop_extents so that 501 * no overlapping inline items exist in the btree 502 */ 503 static int insert_inline_extent(struct btrfs_trans_handle *trans, 504 struct btrfs_path *path, 505 struct btrfs_inode *inode, bool extent_inserted, 506 size_t size, size_t compressed_size, 507 int compress_type, 508 struct page **compressed_pages, 509 bool update_i_size) 510 { 511 struct btrfs_root *root = inode->root; 512 struct extent_buffer *leaf; 513 struct page *page = NULL; 514 char *kaddr; 515 unsigned long ptr; 516 struct btrfs_file_extent_item *ei; 517 int ret; 518 size_t cur_size = size; 519 u64 i_size; 520 521 ASSERT((compressed_size > 0 && compressed_pages) || 522 (compressed_size == 0 && !compressed_pages)); 523 524 if (compressed_size && compressed_pages) 525 cur_size = compressed_size; 526 527 if (!extent_inserted) { 528 struct btrfs_key key; 529 size_t datasize; 530 531 key.objectid = btrfs_ino(inode); 532 key.offset = 0; 533 key.type = BTRFS_EXTENT_DATA_KEY; 534 535 datasize = btrfs_file_extent_calc_inline_size(cur_size); 536 ret = btrfs_insert_empty_item(trans, root, path, &key, 537 datasize); 538 if (ret) 539 goto fail; 540 } 541 leaf = path->nodes[0]; 542 ei = btrfs_item_ptr(leaf, path->slots[0], 543 struct btrfs_file_extent_item); 544 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 545 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 546 btrfs_set_file_extent_encryption(leaf, ei, 0); 547 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 548 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 549 ptr = btrfs_file_extent_inline_start(ei); 550 551 if (compress_type != BTRFS_COMPRESS_NONE) { 552 struct page *cpage; 553 int i = 0; 554 while (compressed_size > 0) { 555 cpage = compressed_pages[i]; 556 cur_size = min_t(unsigned long, compressed_size, 557 PAGE_SIZE); 558 559 kaddr = kmap_local_page(cpage); 560 write_extent_buffer(leaf, kaddr, ptr, cur_size); 561 kunmap_local(kaddr); 562 563 i++; 564 ptr += cur_size; 565 compressed_size -= cur_size; 566 } 567 btrfs_set_file_extent_compression(leaf, ei, 568 compress_type); 569 } else { 570 page = find_get_page(inode->vfs_inode.i_mapping, 0); 571 btrfs_set_file_extent_compression(leaf, ei, 0); 572 kaddr = kmap_local_page(page); 573 write_extent_buffer(leaf, kaddr, ptr, size); 574 kunmap_local(kaddr); 575 put_page(page); 576 } 577 btrfs_mark_buffer_dirty(trans, leaf); 578 btrfs_release_path(path); 579 580 /* 581 * We align size to sectorsize for inline extents just for simplicity 582 * sake. 583 */ 584 ret = btrfs_inode_set_file_extent_range(inode, 0, 585 ALIGN(size, root->fs_info->sectorsize)); 586 if (ret) 587 goto fail; 588 589 /* 590 * We're an inline extent, so nobody can extend the file past i_size 591 * without locking a page we already have locked. 592 * 593 * We must do any i_size and inode updates before we unlock the pages. 594 * Otherwise we could end up racing with unlink. 595 */ 596 i_size = i_size_read(&inode->vfs_inode); 597 if (update_i_size && size > i_size) { 598 i_size_write(&inode->vfs_inode, size); 599 i_size = size; 600 } 601 inode->disk_i_size = i_size; 602 603 fail: 604 return ret; 605 } 606 607 608 /* 609 * conditionally insert an inline extent into the file. This 610 * does the checks required to make sure the data is small enough 611 * to fit as an inline extent. 612 */ 613 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 614 size_t compressed_size, 615 int compress_type, 616 struct page **compressed_pages, 617 bool update_i_size) 618 { 619 struct btrfs_drop_extents_args drop_args = { 0 }; 620 struct btrfs_root *root = inode->root; 621 struct btrfs_fs_info *fs_info = root->fs_info; 622 struct btrfs_trans_handle *trans; 623 u64 data_len = (compressed_size ?: size); 624 int ret; 625 struct btrfs_path *path; 626 627 /* 628 * We can create an inline extent if it ends at or beyond the current 629 * i_size, is no larger than a sector (decompressed), and the (possibly 630 * compressed) data fits in a leaf and the configured maximum inline 631 * size. 632 */ 633 if (size < i_size_read(&inode->vfs_inode) || 634 size > fs_info->sectorsize || 635 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 636 data_len > fs_info->max_inline) 637 return 1; 638 639 path = btrfs_alloc_path(); 640 if (!path) 641 return -ENOMEM; 642 643 trans = btrfs_join_transaction(root); 644 if (IS_ERR(trans)) { 645 btrfs_free_path(path); 646 return PTR_ERR(trans); 647 } 648 trans->block_rsv = &inode->block_rsv; 649 650 drop_args.path = path; 651 drop_args.start = 0; 652 drop_args.end = fs_info->sectorsize; 653 drop_args.drop_cache = true; 654 drop_args.replace_extent = true; 655 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 656 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 657 if (ret) { 658 btrfs_abort_transaction(trans, ret); 659 goto out; 660 } 661 662 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 663 size, compressed_size, compress_type, 664 compressed_pages, update_i_size); 665 if (ret && ret != -ENOSPC) { 666 btrfs_abort_transaction(trans, ret); 667 goto out; 668 } else if (ret == -ENOSPC) { 669 ret = 1; 670 goto out; 671 } 672 673 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 674 ret = btrfs_update_inode(trans, inode); 675 if (ret && ret != -ENOSPC) { 676 btrfs_abort_transaction(trans, ret); 677 goto out; 678 } else if (ret == -ENOSPC) { 679 ret = 1; 680 goto out; 681 } 682 683 btrfs_set_inode_full_sync(inode); 684 out: 685 /* 686 * Don't forget to free the reserved space, as for inlined extent 687 * it won't count as data extent, free them directly here. 688 * And at reserve time, it's always aligned to page size, so 689 * just free one page here. 690 */ 691 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 692 btrfs_free_path(path); 693 btrfs_end_transaction(trans); 694 return ret; 695 } 696 697 struct async_extent { 698 u64 start; 699 u64 ram_size; 700 u64 compressed_size; 701 struct page **pages; 702 unsigned long nr_pages; 703 int compress_type; 704 struct list_head list; 705 }; 706 707 struct async_chunk { 708 struct btrfs_inode *inode; 709 struct page *locked_page; 710 u64 start; 711 u64 end; 712 blk_opf_t write_flags; 713 struct list_head extents; 714 struct cgroup_subsys_state *blkcg_css; 715 struct btrfs_work work; 716 struct async_cow *async_cow; 717 }; 718 719 struct async_cow { 720 atomic_t num_chunks; 721 struct async_chunk chunks[]; 722 }; 723 724 static noinline int add_async_extent(struct async_chunk *cow, 725 u64 start, u64 ram_size, 726 u64 compressed_size, 727 struct page **pages, 728 unsigned long nr_pages, 729 int compress_type) 730 { 731 struct async_extent *async_extent; 732 733 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 734 BUG_ON(!async_extent); /* -ENOMEM */ 735 async_extent->start = start; 736 async_extent->ram_size = ram_size; 737 async_extent->compressed_size = compressed_size; 738 async_extent->pages = pages; 739 async_extent->nr_pages = nr_pages; 740 async_extent->compress_type = compress_type; 741 list_add_tail(&async_extent->list, &cow->extents); 742 return 0; 743 } 744 745 /* 746 * Check if the inode needs to be submitted to compression, based on mount 747 * options, defragmentation, properties or heuristics. 748 */ 749 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 750 u64 end) 751 { 752 struct btrfs_fs_info *fs_info = inode->root->fs_info; 753 754 if (!btrfs_inode_can_compress(inode)) { 755 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 756 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 757 btrfs_ino(inode)); 758 return 0; 759 } 760 /* 761 * Special check for subpage. 762 * 763 * We lock the full page then run each delalloc range in the page, thus 764 * for the following case, we will hit some subpage specific corner case: 765 * 766 * 0 32K 64K 767 * | |///////| |///////| 768 * \- A \- B 769 * 770 * In above case, both range A and range B will try to unlock the full 771 * page [0, 64K), causing the one finished later will have page 772 * unlocked already, triggering various page lock requirement BUG_ON()s. 773 * 774 * So here we add an artificial limit that subpage compression can only 775 * if the range is fully page aligned. 776 * 777 * In theory we only need to ensure the first page is fully covered, but 778 * the tailing partial page will be locked until the full compression 779 * finishes, delaying the write of other range. 780 * 781 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 782 * first to prevent any submitted async extent to unlock the full page. 783 * By this, we can ensure for subpage case that only the last async_cow 784 * will unlock the full page. 785 */ 786 if (fs_info->sectorsize < PAGE_SIZE) { 787 if (!PAGE_ALIGNED(start) || 788 !PAGE_ALIGNED(end + 1)) 789 return 0; 790 } 791 792 /* force compress */ 793 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 794 return 1; 795 /* defrag ioctl */ 796 if (inode->defrag_compress) 797 return 1; 798 /* bad compression ratios */ 799 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 800 return 0; 801 if (btrfs_test_opt(fs_info, COMPRESS) || 802 inode->flags & BTRFS_INODE_COMPRESS || 803 inode->prop_compress) 804 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 805 return 0; 806 } 807 808 static inline void inode_should_defrag(struct btrfs_inode *inode, 809 u64 start, u64 end, u64 num_bytes, u32 small_write) 810 { 811 /* If this is a small write inside eof, kick off a defrag */ 812 if (num_bytes < small_write && 813 (start > 0 || end + 1 < inode->disk_i_size)) 814 btrfs_add_inode_defrag(NULL, inode, small_write); 815 } 816 817 /* 818 * Work queue call back to started compression on a file and pages. 819 * 820 * This is done inside an ordered work queue, and the compression is spread 821 * across many cpus. The actual IO submission is step two, and the ordered work 822 * queue takes care of making sure that happens in the same order things were 823 * put onto the queue by writepages and friends. 824 * 825 * If this code finds it can't get good compression, it puts an entry onto the 826 * work queue to write the uncompressed bytes. This makes sure that both 827 * compressed inodes and uncompressed inodes are written in the same order that 828 * the flusher thread sent them down. 829 */ 830 static void compress_file_range(struct btrfs_work *work) 831 { 832 struct async_chunk *async_chunk = 833 container_of(work, struct async_chunk, work); 834 struct btrfs_inode *inode = async_chunk->inode; 835 struct btrfs_fs_info *fs_info = inode->root->fs_info; 836 struct address_space *mapping = inode->vfs_inode.i_mapping; 837 u64 blocksize = fs_info->sectorsize; 838 u64 start = async_chunk->start; 839 u64 end = async_chunk->end; 840 u64 actual_end; 841 u64 i_size; 842 int ret = 0; 843 struct page **pages; 844 unsigned long nr_pages; 845 unsigned long total_compressed = 0; 846 unsigned long total_in = 0; 847 unsigned int poff; 848 int i; 849 int compress_type = fs_info->compress_type; 850 851 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 852 853 /* 854 * We need to call clear_page_dirty_for_io on each page in the range. 855 * Otherwise applications with the file mmap'd can wander in and change 856 * the page contents while we are compressing them. 857 */ 858 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 859 860 /* 861 * We need to save i_size before now because it could change in between 862 * us evaluating the size and assigning it. This is because we lock and 863 * unlock the page in truncate and fallocate, and then modify the i_size 864 * later on. 865 * 866 * The barriers are to emulate READ_ONCE, remove that once i_size_read 867 * does that for us. 868 */ 869 barrier(); 870 i_size = i_size_read(&inode->vfs_inode); 871 barrier(); 872 actual_end = min_t(u64, i_size, end + 1); 873 again: 874 pages = NULL; 875 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 876 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 877 878 /* 879 * we don't want to send crud past the end of i_size through 880 * compression, that's just a waste of CPU time. So, if the 881 * end of the file is before the start of our current 882 * requested range of bytes, we bail out to the uncompressed 883 * cleanup code that can deal with all of this. 884 * 885 * It isn't really the fastest way to fix things, but this is a 886 * very uncommon corner. 887 */ 888 if (actual_end <= start) 889 goto cleanup_and_bail_uncompressed; 890 891 total_compressed = actual_end - start; 892 893 /* 894 * Skip compression for a small file range(<=blocksize) that 895 * isn't an inline extent, since it doesn't save disk space at all. 896 */ 897 if (total_compressed <= blocksize && 898 (start > 0 || end + 1 < inode->disk_i_size)) 899 goto cleanup_and_bail_uncompressed; 900 901 /* 902 * For subpage case, we require full page alignment for the sector 903 * aligned range. 904 * Thus we must also check against @actual_end, not just @end. 905 */ 906 if (blocksize < PAGE_SIZE) { 907 if (!PAGE_ALIGNED(start) || 908 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 909 goto cleanup_and_bail_uncompressed; 910 } 911 912 total_compressed = min_t(unsigned long, total_compressed, 913 BTRFS_MAX_UNCOMPRESSED); 914 total_in = 0; 915 ret = 0; 916 917 /* 918 * We do compression for mount -o compress and when the inode has not 919 * been flagged as NOCOMPRESS. This flag can change at any time if we 920 * discover bad compression ratios. 921 */ 922 if (!inode_need_compress(inode, start, end)) 923 goto cleanup_and_bail_uncompressed; 924 925 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 926 if (!pages) { 927 /* 928 * Memory allocation failure is not a fatal error, we can fall 929 * back to uncompressed code. 930 */ 931 goto cleanup_and_bail_uncompressed; 932 } 933 934 if (inode->defrag_compress) 935 compress_type = inode->defrag_compress; 936 else if (inode->prop_compress) 937 compress_type = inode->prop_compress; 938 939 /* Compression level is applied here. */ 940 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4), 941 mapping, start, pages, &nr_pages, &total_in, 942 &total_compressed); 943 if (ret) 944 goto mark_incompressible; 945 946 /* 947 * Zero the tail end of the last page, as we might be sending it down 948 * to disk. 949 */ 950 poff = offset_in_page(total_compressed); 951 if (poff) 952 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff); 953 954 /* 955 * Try to create an inline extent. 956 * 957 * If we didn't compress the entire range, try to create an uncompressed 958 * inline extent, else a compressed one. 959 * 960 * Check cow_file_range() for why we don't even try to create inline 961 * extent for the subpage case. 962 */ 963 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 964 if (total_in < actual_end) { 965 ret = cow_file_range_inline(inode, actual_end, 0, 966 BTRFS_COMPRESS_NONE, NULL, 967 false); 968 } else { 969 ret = cow_file_range_inline(inode, actual_end, 970 total_compressed, 971 compress_type, pages, 972 false); 973 } 974 if (ret <= 0) { 975 unsigned long clear_flags = EXTENT_DELALLOC | 976 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 977 EXTENT_DO_ACCOUNTING; 978 979 if (ret < 0) 980 mapping_set_error(mapping, -EIO); 981 982 /* 983 * inline extent creation worked or returned error, 984 * we don't need to create any more async work items. 985 * Unlock and free up our temp pages. 986 * 987 * We use DO_ACCOUNTING here because we need the 988 * delalloc_release_metadata to be done _after_ we drop 989 * our outstanding extent for clearing delalloc for this 990 * range. 991 */ 992 extent_clear_unlock_delalloc(inode, start, end, 993 NULL, 994 clear_flags, 995 PAGE_UNLOCK | 996 PAGE_START_WRITEBACK | 997 PAGE_END_WRITEBACK); 998 goto free_pages; 999 } 1000 } 1001 1002 /* 1003 * We aren't doing an inline extent. Round the compressed size up to a 1004 * block size boundary so the allocator does sane things. 1005 */ 1006 total_compressed = ALIGN(total_compressed, blocksize); 1007 1008 /* 1009 * One last check to make sure the compression is really a win, compare 1010 * the page count read with the blocks on disk, compression must free at 1011 * least one sector. 1012 */ 1013 total_in = round_up(total_in, fs_info->sectorsize); 1014 if (total_compressed + blocksize > total_in) 1015 goto mark_incompressible; 1016 1017 /* 1018 * The async work queues will take care of doing actual allocation on 1019 * disk for these compressed pages, and will submit the bios. 1020 */ 1021 add_async_extent(async_chunk, start, total_in, total_compressed, pages, 1022 nr_pages, compress_type); 1023 if (start + total_in < end) { 1024 start += total_in; 1025 cond_resched(); 1026 goto again; 1027 } 1028 return; 1029 1030 mark_incompressible: 1031 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1032 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1033 cleanup_and_bail_uncompressed: 1034 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1035 BTRFS_COMPRESS_NONE); 1036 free_pages: 1037 if (pages) { 1038 for (i = 0; i < nr_pages; i++) { 1039 WARN_ON(pages[i]->mapping); 1040 put_page(pages[i]); 1041 } 1042 kfree(pages); 1043 } 1044 } 1045 1046 static void free_async_extent_pages(struct async_extent *async_extent) 1047 { 1048 int i; 1049 1050 if (!async_extent->pages) 1051 return; 1052 1053 for (i = 0; i < async_extent->nr_pages; i++) { 1054 WARN_ON(async_extent->pages[i]->mapping); 1055 put_page(async_extent->pages[i]); 1056 } 1057 kfree(async_extent->pages); 1058 async_extent->nr_pages = 0; 1059 async_extent->pages = NULL; 1060 } 1061 1062 static void submit_uncompressed_range(struct btrfs_inode *inode, 1063 struct async_extent *async_extent, 1064 struct page *locked_page) 1065 { 1066 u64 start = async_extent->start; 1067 u64 end = async_extent->start + async_extent->ram_size - 1; 1068 int ret; 1069 struct writeback_control wbc = { 1070 .sync_mode = WB_SYNC_ALL, 1071 .range_start = start, 1072 .range_end = end, 1073 .no_cgroup_owner = 1, 1074 }; 1075 1076 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1077 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1078 wbc_detach_inode(&wbc); 1079 if (ret < 0) { 1080 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1081 if (locked_page) { 1082 const u64 page_start = page_offset(locked_page); 1083 1084 set_page_writeback(locked_page); 1085 end_page_writeback(locked_page); 1086 btrfs_mark_ordered_io_finished(inode, locked_page, 1087 page_start, PAGE_SIZE, 1088 !ret); 1089 mapping_set_error(locked_page->mapping, ret); 1090 unlock_page(locked_page); 1091 } 1092 } 1093 } 1094 1095 static void submit_one_async_extent(struct async_chunk *async_chunk, 1096 struct async_extent *async_extent, 1097 u64 *alloc_hint) 1098 { 1099 struct btrfs_inode *inode = async_chunk->inode; 1100 struct extent_io_tree *io_tree = &inode->io_tree; 1101 struct btrfs_root *root = inode->root; 1102 struct btrfs_fs_info *fs_info = root->fs_info; 1103 struct btrfs_ordered_extent *ordered; 1104 struct btrfs_key ins; 1105 struct page *locked_page = NULL; 1106 struct extent_map *em; 1107 int ret = 0; 1108 u64 start = async_extent->start; 1109 u64 end = async_extent->start + async_extent->ram_size - 1; 1110 1111 if (async_chunk->blkcg_css) 1112 kthread_associate_blkcg(async_chunk->blkcg_css); 1113 1114 /* 1115 * If async_chunk->locked_page is in the async_extent range, we need to 1116 * handle it. 1117 */ 1118 if (async_chunk->locked_page) { 1119 u64 locked_page_start = page_offset(async_chunk->locked_page); 1120 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1121 1122 if (!(start >= locked_page_end || end <= locked_page_start)) 1123 locked_page = async_chunk->locked_page; 1124 } 1125 lock_extent(io_tree, start, end, NULL); 1126 1127 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1128 submit_uncompressed_range(inode, async_extent, locked_page); 1129 goto done; 1130 } 1131 1132 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1133 async_extent->compressed_size, 1134 async_extent->compressed_size, 1135 0, *alloc_hint, &ins, 1, 1); 1136 if (ret) { 1137 /* 1138 * Here we used to try again by going back to non-compressed 1139 * path for ENOSPC. But we can't reserve space even for 1140 * compressed size, how could it work for uncompressed size 1141 * which requires larger size? So here we directly go error 1142 * path. 1143 */ 1144 goto out_free; 1145 } 1146 1147 /* Here we're doing allocation and writeback of the compressed pages */ 1148 em = create_io_em(inode, start, 1149 async_extent->ram_size, /* len */ 1150 start, /* orig_start */ 1151 ins.objectid, /* block_start */ 1152 ins.offset, /* block_len */ 1153 ins.offset, /* orig_block_len */ 1154 async_extent->ram_size, /* ram_bytes */ 1155 async_extent->compress_type, 1156 BTRFS_ORDERED_COMPRESSED); 1157 if (IS_ERR(em)) { 1158 ret = PTR_ERR(em); 1159 goto out_free_reserve; 1160 } 1161 free_extent_map(em); 1162 1163 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1164 async_extent->ram_size, /* num_bytes */ 1165 async_extent->ram_size, /* ram_bytes */ 1166 ins.objectid, /* disk_bytenr */ 1167 ins.offset, /* disk_num_bytes */ 1168 0, /* offset */ 1169 1 << BTRFS_ORDERED_COMPRESSED, 1170 async_extent->compress_type); 1171 if (IS_ERR(ordered)) { 1172 btrfs_drop_extent_map_range(inode, start, end, false); 1173 ret = PTR_ERR(ordered); 1174 goto out_free_reserve; 1175 } 1176 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1177 1178 /* Clear dirty, set writeback and unlock the pages. */ 1179 extent_clear_unlock_delalloc(inode, start, end, 1180 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1181 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1182 btrfs_submit_compressed_write(ordered, 1183 async_extent->pages, /* compressed_pages */ 1184 async_extent->nr_pages, 1185 async_chunk->write_flags, true); 1186 *alloc_hint = ins.objectid + ins.offset; 1187 done: 1188 if (async_chunk->blkcg_css) 1189 kthread_associate_blkcg(NULL); 1190 kfree(async_extent); 1191 return; 1192 1193 out_free_reserve: 1194 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1195 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1196 out_free: 1197 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1198 extent_clear_unlock_delalloc(inode, start, end, 1199 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1200 EXTENT_DELALLOC_NEW | 1201 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1202 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1203 PAGE_END_WRITEBACK); 1204 free_async_extent_pages(async_extent); 1205 if (async_chunk->blkcg_css) 1206 kthread_associate_blkcg(NULL); 1207 btrfs_debug(fs_info, 1208 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1209 root->root_key.objectid, btrfs_ino(inode), start, 1210 async_extent->ram_size, ret); 1211 kfree(async_extent); 1212 } 1213 1214 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1215 u64 num_bytes) 1216 { 1217 struct extent_map_tree *em_tree = &inode->extent_tree; 1218 struct extent_map *em; 1219 u64 alloc_hint = 0; 1220 1221 read_lock(&em_tree->lock); 1222 em = search_extent_mapping(em_tree, start, num_bytes); 1223 if (em) { 1224 /* 1225 * if block start isn't an actual block number then find the 1226 * first block in this inode and use that as a hint. If that 1227 * block is also bogus then just don't worry about it. 1228 */ 1229 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1230 free_extent_map(em); 1231 em = search_extent_mapping(em_tree, 0, 0); 1232 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1233 alloc_hint = em->block_start; 1234 if (em) 1235 free_extent_map(em); 1236 } else { 1237 alloc_hint = em->block_start; 1238 free_extent_map(em); 1239 } 1240 } 1241 read_unlock(&em_tree->lock); 1242 1243 return alloc_hint; 1244 } 1245 1246 /* 1247 * when extent_io.c finds a delayed allocation range in the file, 1248 * the call backs end up in this code. The basic idea is to 1249 * allocate extents on disk for the range, and create ordered data structs 1250 * in ram to track those extents. 1251 * 1252 * locked_page is the page that writepage had locked already. We use 1253 * it to make sure we don't do extra locks or unlocks. 1254 * 1255 * When this function fails, it unlocks all pages except @locked_page. 1256 * 1257 * When this function successfully creates an inline extent, it returns 1 and 1258 * unlocks all pages including locked_page and starts I/O on them. 1259 * (In reality inline extents are limited to a single page, so locked_page is 1260 * the only page handled anyway). 1261 * 1262 * When this function succeed and creates a normal extent, the page locking 1263 * status depends on the passed in flags: 1264 * 1265 * - If @keep_locked is set, all pages are kept locked. 1266 * - Else all pages except for @locked_page are unlocked. 1267 * 1268 * When a failure happens in the second or later iteration of the 1269 * while-loop, the ordered extents created in previous iterations are kept 1270 * intact. So, the caller must clean them up by calling 1271 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1272 * example. 1273 */ 1274 static noinline int cow_file_range(struct btrfs_inode *inode, 1275 struct page *locked_page, u64 start, u64 end, 1276 u64 *done_offset, 1277 bool keep_locked, bool no_inline) 1278 { 1279 struct btrfs_root *root = inode->root; 1280 struct btrfs_fs_info *fs_info = root->fs_info; 1281 u64 alloc_hint = 0; 1282 u64 orig_start = start; 1283 u64 num_bytes; 1284 unsigned long ram_size; 1285 u64 cur_alloc_size = 0; 1286 u64 min_alloc_size; 1287 u64 blocksize = fs_info->sectorsize; 1288 struct btrfs_key ins; 1289 struct extent_map *em; 1290 unsigned clear_bits; 1291 unsigned long page_ops; 1292 bool extent_reserved = false; 1293 int ret = 0; 1294 1295 if (btrfs_is_free_space_inode(inode)) { 1296 ret = -EINVAL; 1297 goto out_unlock; 1298 } 1299 1300 num_bytes = ALIGN(end - start + 1, blocksize); 1301 num_bytes = max(blocksize, num_bytes); 1302 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1303 1304 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1305 1306 /* 1307 * Due to the page size limit, for subpage we can only trigger the 1308 * writeback for the dirty sectors of page, that means data writeback 1309 * is doing more writeback than what we want. 1310 * 1311 * This is especially unexpected for some call sites like fallocate, 1312 * where we only increase i_size after everything is done. 1313 * This means we can trigger inline extent even if we didn't want to. 1314 * So here we skip inline extent creation completely. 1315 */ 1316 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) { 1317 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1318 end + 1); 1319 1320 /* lets try to make an inline extent */ 1321 ret = cow_file_range_inline(inode, actual_end, 0, 1322 BTRFS_COMPRESS_NONE, NULL, false); 1323 if (ret == 0) { 1324 /* 1325 * We use DO_ACCOUNTING here because we need the 1326 * delalloc_release_metadata to be run _after_ we drop 1327 * our outstanding extent for clearing delalloc for this 1328 * range. 1329 */ 1330 extent_clear_unlock_delalloc(inode, start, end, 1331 locked_page, 1332 EXTENT_LOCKED | EXTENT_DELALLOC | 1333 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1334 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1335 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1336 /* 1337 * locked_page is locked by the caller of 1338 * writepage_delalloc(), not locked by 1339 * __process_pages_contig(). 1340 * 1341 * We can't let __process_pages_contig() to unlock it, 1342 * as it doesn't have any subpage::writers recorded. 1343 * 1344 * Here we manually unlock the page, since the caller 1345 * can't determine if it's an inline extent or a 1346 * compressed extent. 1347 */ 1348 unlock_page(locked_page); 1349 ret = 1; 1350 goto done; 1351 } else if (ret < 0) { 1352 goto out_unlock; 1353 } 1354 } 1355 1356 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1357 1358 /* 1359 * Relocation relies on the relocated extents to have exactly the same 1360 * size as the original extents. Normally writeback for relocation data 1361 * extents follows a NOCOW path because relocation preallocates the 1362 * extents. However, due to an operation such as scrub turning a block 1363 * group to RO mode, it may fallback to COW mode, so we must make sure 1364 * an extent allocated during COW has exactly the requested size and can 1365 * not be split into smaller extents, otherwise relocation breaks and 1366 * fails during the stage where it updates the bytenr of file extent 1367 * items. 1368 */ 1369 if (btrfs_is_data_reloc_root(root)) 1370 min_alloc_size = num_bytes; 1371 else 1372 min_alloc_size = fs_info->sectorsize; 1373 1374 while (num_bytes > 0) { 1375 struct btrfs_ordered_extent *ordered; 1376 1377 cur_alloc_size = num_bytes; 1378 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1379 min_alloc_size, 0, alloc_hint, 1380 &ins, 1, 1); 1381 if (ret == -EAGAIN) { 1382 /* 1383 * btrfs_reserve_extent only returns -EAGAIN for zoned 1384 * file systems, which is an indication that there are 1385 * no active zones to allocate from at the moment. 1386 * 1387 * If this is the first loop iteration, wait for at 1388 * least one zone to finish before retrying the 1389 * allocation. Otherwise ask the caller to write out 1390 * the already allocated blocks before coming back to 1391 * us, or return -ENOSPC if it can't handle retries. 1392 */ 1393 ASSERT(btrfs_is_zoned(fs_info)); 1394 if (start == orig_start) { 1395 wait_on_bit_io(&inode->root->fs_info->flags, 1396 BTRFS_FS_NEED_ZONE_FINISH, 1397 TASK_UNINTERRUPTIBLE); 1398 continue; 1399 } 1400 if (done_offset) { 1401 *done_offset = start - 1; 1402 return 0; 1403 } 1404 ret = -ENOSPC; 1405 } 1406 if (ret < 0) 1407 goto out_unlock; 1408 cur_alloc_size = ins.offset; 1409 extent_reserved = true; 1410 1411 ram_size = ins.offset; 1412 em = create_io_em(inode, start, ins.offset, /* len */ 1413 start, /* orig_start */ 1414 ins.objectid, /* block_start */ 1415 ins.offset, /* block_len */ 1416 ins.offset, /* orig_block_len */ 1417 ram_size, /* ram_bytes */ 1418 BTRFS_COMPRESS_NONE, /* compress_type */ 1419 BTRFS_ORDERED_REGULAR /* type */); 1420 if (IS_ERR(em)) { 1421 ret = PTR_ERR(em); 1422 goto out_reserve; 1423 } 1424 free_extent_map(em); 1425 1426 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1427 ram_size, ins.objectid, cur_alloc_size, 1428 0, 1 << BTRFS_ORDERED_REGULAR, 1429 BTRFS_COMPRESS_NONE); 1430 if (IS_ERR(ordered)) { 1431 ret = PTR_ERR(ordered); 1432 goto out_drop_extent_cache; 1433 } 1434 1435 if (btrfs_is_data_reloc_root(root)) { 1436 ret = btrfs_reloc_clone_csums(ordered); 1437 1438 /* 1439 * Only drop cache here, and process as normal. 1440 * 1441 * We must not allow extent_clear_unlock_delalloc() 1442 * at out_unlock label to free meta of this ordered 1443 * extent, as its meta should be freed by 1444 * btrfs_finish_ordered_io(). 1445 * 1446 * So we must continue until @start is increased to 1447 * skip current ordered extent. 1448 */ 1449 if (ret) 1450 btrfs_drop_extent_map_range(inode, start, 1451 start + ram_size - 1, 1452 false); 1453 } 1454 btrfs_put_ordered_extent(ordered); 1455 1456 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1457 1458 /* 1459 * We're not doing compressed IO, don't unlock the first page 1460 * (which the caller expects to stay locked), don't clear any 1461 * dirty bits and don't set any writeback bits 1462 * 1463 * Do set the Ordered (Private2) bit so we know this page was 1464 * properly setup for writepage. 1465 */ 1466 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1467 page_ops |= PAGE_SET_ORDERED; 1468 1469 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1470 locked_page, 1471 EXTENT_LOCKED | EXTENT_DELALLOC, 1472 page_ops); 1473 if (num_bytes < cur_alloc_size) 1474 num_bytes = 0; 1475 else 1476 num_bytes -= cur_alloc_size; 1477 alloc_hint = ins.objectid + ins.offset; 1478 start += cur_alloc_size; 1479 extent_reserved = false; 1480 1481 /* 1482 * btrfs_reloc_clone_csums() error, since start is increased 1483 * extent_clear_unlock_delalloc() at out_unlock label won't 1484 * free metadata of current ordered extent, we're OK to exit. 1485 */ 1486 if (ret) 1487 goto out_unlock; 1488 } 1489 done: 1490 if (done_offset) 1491 *done_offset = end; 1492 return ret; 1493 1494 out_drop_extent_cache: 1495 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1496 out_reserve: 1497 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1498 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1499 out_unlock: 1500 /* 1501 * Now, we have three regions to clean up: 1502 * 1503 * |-------(1)----|---(2)---|-------------(3)----------| 1504 * `- orig_start `- start `- start + cur_alloc_size `- end 1505 * 1506 * We process each region below. 1507 */ 1508 1509 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1510 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1511 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1512 1513 /* 1514 * For the range (1). We have already instantiated the ordered extents 1515 * for this region. They are cleaned up by 1516 * btrfs_cleanup_ordered_extents() in e.g, 1517 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1518 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1519 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1520 * function. 1521 * 1522 * However, in case of @keep_locked, we still need to unlock the pages 1523 * (except @locked_page) to ensure all the pages are unlocked. 1524 */ 1525 if (keep_locked && orig_start < start) { 1526 if (!locked_page) 1527 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1528 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1529 locked_page, 0, page_ops); 1530 } 1531 1532 /* 1533 * For the range (2). If we reserved an extent for our delalloc range 1534 * (or a subrange) and failed to create the respective ordered extent, 1535 * then it means that when we reserved the extent we decremented the 1536 * extent's size from the data space_info's bytes_may_use counter and 1537 * incremented the space_info's bytes_reserved counter by the same 1538 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1539 * to decrement again the data space_info's bytes_may_use counter, 1540 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1541 */ 1542 if (extent_reserved) { 1543 extent_clear_unlock_delalloc(inode, start, 1544 start + cur_alloc_size - 1, 1545 locked_page, 1546 clear_bits, 1547 page_ops); 1548 start += cur_alloc_size; 1549 } 1550 1551 /* 1552 * For the range (3). We never touched the region. In addition to the 1553 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1554 * space_info's bytes_may_use counter, reserved in 1555 * btrfs_check_data_free_space(). 1556 */ 1557 if (start < end) { 1558 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1559 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1560 clear_bits, page_ops); 1561 } 1562 return ret; 1563 } 1564 1565 /* 1566 * Phase two of compressed writeback. This is the ordered portion of the code, 1567 * which only gets called in the order the work was queued. We walk all the 1568 * async extents created by compress_file_range and send them down to the disk. 1569 * 1570 * If called with @do_free == true then it'll try to finish the work and free 1571 * the work struct eventually. 1572 */ 1573 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1574 { 1575 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1576 work); 1577 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1578 struct async_extent *async_extent; 1579 unsigned long nr_pages; 1580 u64 alloc_hint = 0; 1581 1582 if (do_free) { 1583 struct async_chunk *async_chunk; 1584 struct async_cow *async_cow; 1585 1586 async_chunk = container_of(work, struct async_chunk, work); 1587 btrfs_add_delayed_iput(async_chunk->inode); 1588 if (async_chunk->blkcg_css) 1589 css_put(async_chunk->blkcg_css); 1590 1591 async_cow = async_chunk->async_cow; 1592 if (atomic_dec_and_test(&async_cow->num_chunks)) 1593 kvfree(async_cow); 1594 return; 1595 } 1596 1597 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1598 PAGE_SHIFT; 1599 1600 while (!list_empty(&async_chunk->extents)) { 1601 async_extent = list_entry(async_chunk->extents.next, 1602 struct async_extent, list); 1603 list_del(&async_extent->list); 1604 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1605 } 1606 1607 /* atomic_sub_return implies a barrier */ 1608 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1609 5 * SZ_1M) 1610 cond_wake_up_nomb(&fs_info->async_submit_wait); 1611 } 1612 1613 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1614 struct page *locked_page, u64 start, 1615 u64 end, struct writeback_control *wbc) 1616 { 1617 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1618 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1619 struct async_cow *ctx; 1620 struct async_chunk *async_chunk; 1621 unsigned long nr_pages; 1622 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1623 int i; 1624 unsigned nofs_flag; 1625 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1626 1627 nofs_flag = memalloc_nofs_save(); 1628 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1629 memalloc_nofs_restore(nofs_flag); 1630 if (!ctx) 1631 return false; 1632 1633 unlock_extent(&inode->io_tree, start, end, NULL); 1634 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1635 1636 async_chunk = ctx->chunks; 1637 atomic_set(&ctx->num_chunks, num_chunks); 1638 1639 for (i = 0; i < num_chunks; i++) { 1640 u64 cur_end = min(end, start + SZ_512K - 1); 1641 1642 /* 1643 * igrab is called higher up in the call chain, take only the 1644 * lightweight reference for the callback lifetime 1645 */ 1646 ihold(&inode->vfs_inode); 1647 async_chunk[i].async_cow = ctx; 1648 async_chunk[i].inode = inode; 1649 async_chunk[i].start = start; 1650 async_chunk[i].end = cur_end; 1651 async_chunk[i].write_flags = write_flags; 1652 INIT_LIST_HEAD(&async_chunk[i].extents); 1653 1654 /* 1655 * The locked_page comes all the way from writepage and its 1656 * the original page we were actually given. As we spread 1657 * this large delalloc region across multiple async_chunk 1658 * structs, only the first struct needs a pointer to locked_page 1659 * 1660 * This way we don't need racey decisions about who is supposed 1661 * to unlock it. 1662 */ 1663 if (locked_page) { 1664 /* 1665 * Depending on the compressibility, the pages might or 1666 * might not go through async. We want all of them to 1667 * be accounted against wbc once. Let's do it here 1668 * before the paths diverge. wbc accounting is used 1669 * only for foreign writeback detection and doesn't 1670 * need full accuracy. Just account the whole thing 1671 * against the first page. 1672 */ 1673 wbc_account_cgroup_owner(wbc, locked_page, 1674 cur_end - start); 1675 async_chunk[i].locked_page = locked_page; 1676 locked_page = NULL; 1677 } else { 1678 async_chunk[i].locked_page = NULL; 1679 } 1680 1681 if (blkcg_css != blkcg_root_css) { 1682 css_get(blkcg_css); 1683 async_chunk[i].blkcg_css = blkcg_css; 1684 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1685 } else { 1686 async_chunk[i].blkcg_css = NULL; 1687 } 1688 1689 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1690 submit_compressed_extents); 1691 1692 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1693 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1694 1695 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1696 1697 start = cur_end + 1; 1698 } 1699 return true; 1700 } 1701 1702 /* 1703 * Run the delalloc range from start to end, and write back any dirty pages 1704 * covered by the range. 1705 */ 1706 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1707 struct page *locked_page, u64 start, 1708 u64 end, struct writeback_control *wbc, 1709 bool pages_dirty) 1710 { 1711 u64 done_offset = end; 1712 int ret; 1713 1714 while (start <= end) { 1715 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1716 true, false); 1717 if (ret) 1718 return ret; 1719 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1720 done_offset, wbc, pages_dirty); 1721 start = done_offset + 1; 1722 } 1723 1724 return 1; 1725 } 1726 1727 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1728 u64 bytenr, u64 num_bytes, bool nowait) 1729 { 1730 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1731 struct btrfs_ordered_sum *sums; 1732 int ret; 1733 LIST_HEAD(list); 1734 1735 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1736 &list, 0, nowait); 1737 if (ret == 0 && list_empty(&list)) 1738 return 0; 1739 1740 while (!list_empty(&list)) { 1741 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1742 list_del(&sums->list); 1743 kfree(sums); 1744 } 1745 if (ret < 0) 1746 return ret; 1747 return 1; 1748 } 1749 1750 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1751 const u64 start, const u64 end) 1752 { 1753 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1754 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1755 const u64 range_bytes = end + 1 - start; 1756 struct extent_io_tree *io_tree = &inode->io_tree; 1757 u64 range_start = start; 1758 u64 count; 1759 int ret; 1760 1761 /* 1762 * If EXTENT_NORESERVE is set it means that when the buffered write was 1763 * made we had not enough available data space and therefore we did not 1764 * reserve data space for it, since we though we could do NOCOW for the 1765 * respective file range (either there is prealloc extent or the inode 1766 * has the NOCOW bit set). 1767 * 1768 * However when we need to fallback to COW mode (because for example the 1769 * block group for the corresponding extent was turned to RO mode by a 1770 * scrub or relocation) we need to do the following: 1771 * 1772 * 1) We increment the bytes_may_use counter of the data space info. 1773 * If COW succeeds, it allocates a new data extent and after doing 1774 * that it decrements the space info's bytes_may_use counter and 1775 * increments its bytes_reserved counter by the same amount (we do 1776 * this at btrfs_add_reserved_bytes()). So we need to increment the 1777 * bytes_may_use counter to compensate (when space is reserved at 1778 * buffered write time, the bytes_may_use counter is incremented); 1779 * 1780 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1781 * that if the COW path fails for any reason, it decrements (through 1782 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1783 * data space info, which we incremented in the step above. 1784 * 1785 * If we need to fallback to cow and the inode corresponds to a free 1786 * space cache inode or an inode of the data relocation tree, we must 1787 * also increment bytes_may_use of the data space_info for the same 1788 * reason. Space caches and relocated data extents always get a prealloc 1789 * extent for them, however scrub or balance may have set the block 1790 * group that contains that extent to RO mode and therefore force COW 1791 * when starting writeback. 1792 */ 1793 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1794 EXTENT_NORESERVE, 0, NULL); 1795 if (count > 0 || is_space_ino || is_reloc_ino) { 1796 u64 bytes = count; 1797 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1798 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1799 1800 if (is_space_ino || is_reloc_ino) 1801 bytes = range_bytes; 1802 1803 spin_lock(&sinfo->lock); 1804 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1805 spin_unlock(&sinfo->lock); 1806 1807 if (count > 0) 1808 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1809 NULL); 1810 } 1811 1812 /* 1813 * Don't try to create inline extents, as a mix of inline extent that 1814 * is written out and unlocked directly and a normal NOCOW extent 1815 * doesn't work. 1816 */ 1817 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1818 ASSERT(ret != 1); 1819 return ret; 1820 } 1821 1822 struct can_nocow_file_extent_args { 1823 /* Input fields. */ 1824 1825 /* Start file offset of the range we want to NOCOW. */ 1826 u64 start; 1827 /* End file offset (inclusive) of the range we want to NOCOW. */ 1828 u64 end; 1829 bool writeback_path; 1830 bool strict; 1831 /* 1832 * Free the path passed to can_nocow_file_extent() once it's not needed 1833 * anymore. 1834 */ 1835 bool free_path; 1836 1837 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1838 1839 u64 disk_bytenr; 1840 u64 disk_num_bytes; 1841 u64 extent_offset; 1842 /* Number of bytes that can be written to in NOCOW mode. */ 1843 u64 num_bytes; 1844 }; 1845 1846 /* 1847 * Check if we can NOCOW the file extent that the path points to. 1848 * This function may return with the path released, so the caller should check 1849 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1850 * 1851 * Returns: < 0 on error 1852 * 0 if we can not NOCOW 1853 * 1 if we can NOCOW 1854 */ 1855 static int can_nocow_file_extent(struct btrfs_path *path, 1856 struct btrfs_key *key, 1857 struct btrfs_inode *inode, 1858 struct can_nocow_file_extent_args *args) 1859 { 1860 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1861 struct extent_buffer *leaf = path->nodes[0]; 1862 struct btrfs_root *root = inode->root; 1863 struct btrfs_file_extent_item *fi; 1864 u64 extent_end; 1865 u8 extent_type; 1866 int can_nocow = 0; 1867 int ret = 0; 1868 bool nowait = path->nowait; 1869 1870 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1871 extent_type = btrfs_file_extent_type(leaf, fi); 1872 1873 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1874 goto out; 1875 1876 /* Can't access these fields unless we know it's not an inline extent. */ 1877 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1878 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1879 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1880 1881 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1882 extent_type == BTRFS_FILE_EXTENT_REG) 1883 goto out; 1884 1885 /* 1886 * If the extent was created before the generation where the last snapshot 1887 * for its subvolume was created, then this implies the extent is shared, 1888 * hence we must COW. 1889 */ 1890 if (!args->strict && 1891 btrfs_file_extent_generation(leaf, fi) <= 1892 btrfs_root_last_snapshot(&root->root_item)) 1893 goto out; 1894 1895 /* An explicit hole, must COW. */ 1896 if (args->disk_bytenr == 0) 1897 goto out; 1898 1899 /* Compressed/encrypted/encoded extents must be COWed. */ 1900 if (btrfs_file_extent_compression(leaf, fi) || 1901 btrfs_file_extent_encryption(leaf, fi) || 1902 btrfs_file_extent_other_encoding(leaf, fi)) 1903 goto out; 1904 1905 extent_end = btrfs_file_extent_end(path); 1906 1907 /* 1908 * The following checks can be expensive, as they need to take other 1909 * locks and do btree or rbtree searches, so release the path to avoid 1910 * blocking other tasks for too long. 1911 */ 1912 btrfs_release_path(path); 1913 1914 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1915 key->offset - args->extent_offset, 1916 args->disk_bytenr, args->strict, path); 1917 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1918 if (ret != 0) 1919 goto out; 1920 1921 if (args->free_path) { 1922 /* 1923 * We don't need the path anymore, plus through the 1924 * csum_exist_in_range() call below we will end up allocating 1925 * another path. So free the path to avoid unnecessary extra 1926 * memory usage. 1927 */ 1928 btrfs_free_path(path); 1929 path = NULL; 1930 } 1931 1932 /* If there are pending snapshots for this root, we must COW. */ 1933 if (args->writeback_path && !is_freespace_inode && 1934 atomic_read(&root->snapshot_force_cow)) 1935 goto out; 1936 1937 args->disk_bytenr += args->extent_offset; 1938 args->disk_bytenr += args->start - key->offset; 1939 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1940 1941 /* 1942 * Force COW if csums exist in the range. This ensures that csums for a 1943 * given extent are either valid or do not exist. 1944 */ 1945 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1946 nowait); 1947 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1948 if (ret != 0) 1949 goto out; 1950 1951 can_nocow = 1; 1952 out: 1953 if (args->free_path && path) 1954 btrfs_free_path(path); 1955 1956 return ret < 0 ? ret : can_nocow; 1957 } 1958 1959 /* 1960 * when nowcow writeback call back. This checks for snapshots or COW copies 1961 * of the extents that exist in the file, and COWs the file as required. 1962 * 1963 * If no cow copies or snapshots exist, we write directly to the existing 1964 * blocks on disk 1965 */ 1966 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1967 struct page *locked_page, 1968 const u64 start, const u64 end) 1969 { 1970 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1971 struct btrfs_root *root = inode->root; 1972 struct btrfs_path *path; 1973 u64 cow_start = (u64)-1; 1974 u64 cur_offset = start; 1975 int ret; 1976 bool check_prev = true; 1977 u64 ino = btrfs_ino(inode); 1978 struct can_nocow_file_extent_args nocow_args = { 0 }; 1979 1980 /* 1981 * Normally on a zoned device we're only doing COW writes, but in case 1982 * of relocation on a zoned filesystem serializes I/O so that we're only 1983 * writing sequentially and can end up here as well. 1984 */ 1985 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 1986 1987 path = btrfs_alloc_path(); 1988 if (!path) { 1989 ret = -ENOMEM; 1990 goto error; 1991 } 1992 1993 nocow_args.end = end; 1994 nocow_args.writeback_path = true; 1995 1996 while (1) { 1997 struct btrfs_block_group *nocow_bg = NULL; 1998 struct btrfs_ordered_extent *ordered; 1999 struct btrfs_key found_key; 2000 struct btrfs_file_extent_item *fi; 2001 struct extent_buffer *leaf; 2002 u64 extent_end; 2003 u64 ram_bytes; 2004 u64 nocow_end; 2005 int extent_type; 2006 bool is_prealloc; 2007 2008 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2009 cur_offset, 0); 2010 if (ret < 0) 2011 goto error; 2012 2013 /* 2014 * If there is no extent for our range when doing the initial 2015 * search, then go back to the previous slot as it will be the 2016 * one containing the search offset 2017 */ 2018 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2019 leaf = path->nodes[0]; 2020 btrfs_item_key_to_cpu(leaf, &found_key, 2021 path->slots[0] - 1); 2022 if (found_key.objectid == ino && 2023 found_key.type == BTRFS_EXTENT_DATA_KEY) 2024 path->slots[0]--; 2025 } 2026 check_prev = false; 2027 next_slot: 2028 /* Go to next leaf if we have exhausted the current one */ 2029 leaf = path->nodes[0]; 2030 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2031 ret = btrfs_next_leaf(root, path); 2032 if (ret < 0) 2033 goto error; 2034 if (ret > 0) 2035 break; 2036 leaf = path->nodes[0]; 2037 } 2038 2039 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2040 2041 /* Didn't find anything for our INO */ 2042 if (found_key.objectid > ino) 2043 break; 2044 /* 2045 * Keep searching until we find an EXTENT_ITEM or there are no 2046 * more extents for this inode 2047 */ 2048 if (WARN_ON_ONCE(found_key.objectid < ino) || 2049 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2050 path->slots[0]++; 2051 goto next_slot; 2052 } 2053 2054 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2055 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2056 found_key.offset > end) 2057 break; 2058 2059 /* 2060 * If the found extent starts after requested offset, then 2061 * adjust extent_end to be right before this extent begins 2062 */ 2063 if (found_key.offset > cur_offset) { 2064 extent_end = found_key.offset; 2065 extent_type = 0; 2066 goto must_cow; 2067 } 2068 2069 /* 2070 * Found extent which begins before our range and potentially 2071 * intersect it 2072 */ 2073 fi = btrfs_item_ptr(leaf, path->slots[0], 2074 struct btrfs_file_extent_item); 2075 extent_type = btrfs_file_extent_type(leaf, fi); 2076 /* If this is triggered then we have a memory corruption. */ 2077 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2078 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2079 ret = -EUCLEAN; 2080 goto error; 2081 } 2082 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2083 extent_end = btrfs_file_extent_end(path); 2084 2085 /* 2086 * If the extent we got ends before our current offset, skip to 2087 * the next extent. 2088 */ 2089 if (extent_end <= cur_offset) { 2090 path->slots[0]++; 2091 goto next_slot; 2092 } 2093 2094 nocow_args.start = cur_offset; 2095 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2096 if (ret < 0) 2097 goto error; 2098 if (ret == 0) 2099 goto must_cow; 2100 2101 ret = 0; 2102 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2103 if (!nocow_bg) { 2104 must_cow: 2105 /* 2106 * If we can't perform NOCOW writeback for the range, 2107 * then record the beginning of the range that needs to 2108 * be COWed. It will be written out before the next 2109 * NOCOW range if we find one, or when exiting this 2110 * loop. 2111 */ 2112 if (cow_start == (u64)-1) 2113 cow_start = cur_offset; 2114 cur_offset = extent_end; 2115 if (cur_offset > end) 2116 break; 2117 if (!path->nodes[0]) 2118 continue; 2119 path->slots[0]++; 2120 goto next_slot; 2121 } 2122 2123 /* 2124 * COW range from cow_start to found_key.offset - 1. As the key 2125 * will contain the beginning of the first extent that can be 2126 * NOCOW, following one which needs to be COW'ed 2127 */ 2128 if (cow_start != (u64)-1) { 2129 ret = fallback_to_cow(inode, locked_page, 2130 cow_start, found_key.offset - 1); 2131 cow_start = (u64)-1; 2132 if (ret) { 2133 btrfs_dec_nocow_writers(nocow_bg); 2134 goto error; 2135 } 2136 } 2137 2138 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2139 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2140 if (is_prealloc) { 2141 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2142 struct extent_map *em; 2143 2144 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2145 orig_start, 2146 nocow_args.disk_bytenr, /* block_start */ 2147 nocow_args.num_bytes, /* block_len */ 2148 nocow_args.disk_num_bytes, /* orig_block_len */ 2149 ram_bytes, BTRFS_COMPRESS_NONE, 2150 BTRFS_ORDERED_PREALLOC); 2151 if (IS_ERR(em)) { 2152 btrfs_dec_nocow_writers(nocow_bg); 2153 ret = PTR_ERR(em); 2154 goto error; 2155 } 2156 free_extent_map(em); 2157 } 2158 2159 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2160 nocow_args.num_bytes, nocow_args.num_bytes, 2161 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2162 is_prealloc 2163 ? (1 << BTRFS_ORDERED_PREALLOC) 2164 : (1 << BTRFS_ORDERED_NOCOW), 2165 BTRFS_COMPRESS_NONE); 2166 btrfs_dec_nocow_writers(nocow_bg); 2167 if (IS_ERR(ordered)) { 2168 if (is_prealloc) { 2169 btrfs_drop_extent_map_range(inode, cur_offset, 2170 nocow_end, false); 2171 } 2172 ret = PTR_ERR(ordered); 2173 goto error; 2174 } 2175 2176 if (btrfs_is_data_reloc_root(root)) 2177 /* 2178 * Error handled later, as we must prevent 2179 * extent_clear_unlock_delalloc() in error handler 2180 * from freeing metadata of created ordered extent. 2181 */ 2182 ret = btrfs_reloc_clone_csums(ordered); 2183 btrfs_put_ordered_extent(ordered); 2184 2185 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2186 locked_page, EXTENT_LOCKED | 2187 EXTENT_DELALLOC | 2188 EXTENT_CLEAR_DATA_RESV, 2189 PAGE_UNLOCK | PAGE_SET_ORDERED); 2190 2191 cur_offset = extent_end; 2192 2193 /* 2194 * btrfs_reloc_clone_csums() error, now we're OK to call error 2195 * handler, as metadata for created ordered extent will only 2196 * be freed by btrfs_finish_ordered_io(). 2197 */ 2198 if (ret) 2199 goto error; 2200 if (cur_offset > end) 2201 break; 2202 } 2203 btrfs_release_path(path); 2204 2205 if (cur_offset <= end && cow_start == (u64)-1) 2206 cow_start = cur_offset; 2207 2208 if (cow_start != (u64)-1) { 2209 cur_offset = end; 2210 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2211 cow_start = (u64)-1; 2212 if (ret) 2213 goto error; 2214 } 2215 2216 btrfs_free_path(path); 2217 return 0; 2218 2219 error: 2220 /* 2221 * If an error happened while a COW region is outstanding, cur_offset 2222 * needs to be reset to cow_start to ensure the COW region is unlocked 2223 * as well. 2224 */ 2225 if (cow_start != (u64)-1) 2226 cur_offset = cow_start; 2227 if (cur_offset < end) 2228 extent_clear_unlock_delalloc(inode, cur_offset, end, 2229 locked_page, EXTENT_LOCKED | 2230 EXTENT_DELALLOC | EXTENT_DEFRAG | 2231 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2232 PAGE_START_WRITEBACK | 2233 PAGE_END_WRITEBACK); 2234 btrfs_free_path(path); 2235 return ret; 2236 } 2237 2238 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2239 { 2240 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2241 if (inode->defrag_bytes && 2242 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2243 return false; 2244 return true; 2245 } 2246 return false; 2247 } 2248 2249 /* 2250 * Function to process delayed allocation (create CoW) for ranges which are 2251 * being touched for the first time. 2252 */ 2253 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2254 u64 start, u64 end, struct writeback_control *wbc) 2255 { 2256 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2257 int ret; 2258 2259 /* 2260 * The range must cover part of the @locked_page, or a return of 1 2261 * can confuse the caller. 2262 */ 2263 ASSERT(!(end <= page_offset(locked_page) || 2264 start >= page_offset(locked_page) + PAGE_SIZE)); 2265 2266 if (should_nocow(inode, start, end)) { 2267 ret = run_delalloc_nocow(inode, locked_page, start, end); 2268 goto out; 2269 } 2270 2271 if (btrfs_inode_can_compress(inode) && 2272 inode_need_compress(inode, start, end) && 2273 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2274 return 1; 2275 2276 if (zoned) 2277 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2278 true); 2279 else 2280 ret = cow_file_range(inode, locked_page, start, end, NULL, 2281 false, false); 2282 2283 out: 2284 if (ret < 0) 2285 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2286 end - start + 1); 2287 return ret; 2288 } 2289 2290 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2291 struct extent_state *orig, u64 split) 2292 { 2293 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2294 u64 size; 2295 2296 /* not delalloc, ignore it */ 2297 if (!(orig->state & EXTENT_DELALLOC)) 2298 return; 2299 2300 size = orig->end - orig->start + 1; 2301 if (size > fs_info->max_extent_size) { 2302 u32 num_extents; 2303 u64 new_size; 2304 2305 /* 2306 * See the explanation in btrfs_merge_delalloc_extent, the same 2307 * applies here, just in reverse. 2308 */ 2309 new_size = orig->end - split + 1; 2310 num_extents = count_max_extents(fs_info, new_size); 2311 new_size = split - orig->start; 2312 num_extents += count_max_extents(fs_info, new_size); 2313 if (count_max_extents(fs_info, size) >= num_extents) 2314 return; 2315 } 2316 2317 spin_lock(&inode->lock); 2318 btrfs_mod_outstanding_extents(inode, 1); 2319 spin_unlock(&inode->lock); 2320 } 2321 2322 /* 2323 * Handle merged delayed allocation extents so we can keep track of new extents 2324 * that are just merged onto old extents, such as when we are doing sequential 2325 * writes, so we can properly account for the metadata space we'll need. 2326 */ 2327 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2328 struct extent_state *other) 2329 { 2330 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2331 u64 new_size, old_size; 2332 u32 num_extents; 2333 2334 /* not delalloc, ignore it */ 2335 if (!(other->state & EXTENT_DELALLOC)) 2336 return; 2337 2338 if (new->start > other->start) 2339 new_size = new->end - other->start + 1; 2340 else 2341 new_size = other->end - new->start + 1; 2342 2343 /* we're not bigger than the max, unreserve the space and go */ 2344 if (new_size <= fs_info->max_extent_size) { 2345 spin_lock(&inode->lock); 2346 btrfs_mod_outstanding_extents(inode, -1); 2347 spin_unlock(&inode->lock); 2348 return; 2349 } 2350 2351 /* 2352 * We have to add up either side to figure out how many extents were 2353 * accounted for before we merged into one big extent. If the number of 2354 * extents we accounted for is <= the amount we need for the new range 2355 * then we can return, otherwise drop. Think of it like this 2356 * 2357 * [ 4k][MAX_SIZE] 2358 * 2359 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2360 * need 2 outstanding extents, on one side we have 1 and the other side 2361 * we have 1 so they are == and we can return. But in this case 2362 * 2363 * [MAX_SIZE+4k][MAX_SIZE+4k] 2364 * 2365 * Each range on their own accounts for 2 extents, but merged together 2366 * they are only 3 extents worth of accounting, so we need to drop in 2367 * this case. 2368 */ 2369 old_size = other->end - other->start + 1; 2370 num_extents = count_max_extents(fs_info, old_size); 2371 old_size = new->end - new->start + 1; 2372 num_extents += count_max_extents(fs_info, old_size); 2373 if (count_max_extents(fs_info, new_size) >= num_extents) 2374 return; 2375 2376 spin_lock(&inode->lock); 2377 btrfs_mod_outstanding_extents(inode, -1); 2378 spin_unlock(&inode->lock); 2379 } 2380 2381 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2382 struct btrfs_inode *inode) 2383 { 2384 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2385 2386 spin_lock(&root->delalloc_lock); 2387 if (list_empty(&inode->delalloc_inodes)) { 2388 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2389 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); 2390 root->nr_delalloc_inodes++; 2391 if (root->nr_delalloc_inodes == 1) { 2392 spin_lock(&fs_info->delalloc_root_lock); 2393 BUG_ON(!list_empty(&root->delalloc_root)); 2394 list_add_tail(&root->delalloc_root, 2395 &fs_info->delalloc_roots); 2396 spin_unlock(&fs_info->delalloc_root_lock); 2397 } 2398 } 2399 spin_unlock(&root->delalloc_lock); 2400 } 2401 2402 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2403 struct btrfs_inode *inode) 2404 { 2405 struct btrfs_fs_info *fs_info = root->fs_info; 2406 2407 if (!list_empty(&inode->delalloc_inodes)) { 2408 list_del_init(&inode->delalloc_inodes); 2409 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2410 &inode->runtime_flags); 2411 root->nr_delalloc_inodes--; 2412 if (!root->nr_delalloc_inodes) { 2413 ASSERT(list_empty(&root->delalloc_inodes)); 2414 spin_lock(&fs_info->delalloc_root_lock); 2415 BUG_ON(list_empty(&root->delalloc_root)); 2416 list_del_init(&root->delalloc_root); 2417 spin_unlock(&fs_info->delalloc_root_lock); 2418 } 2419 } 2420 } 2421 2422 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2423 struct btrfs_inode *inode) 2424 { 2425 spin_lock(&root->delalloc_lock); 2426 __btrfs_del_delalloc_inode(root, inode); 2427 spin_unlock(&root->delalloc_lock); 2428 } 2429 2430 /* 2431 * Properly track delayed allocation bytes in the inode and to maintain the 2432 * list of inodes that have pending delalloc work to be done. 2433 */ 2434 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2435 u32 bits) 2436 { 2437 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2438 2439 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2440 WARN_ON(1); 2441 /* 2442 * set_bit and clear bit hooks normally require _irqsave/restore 2443 * but in this case, we are only testing for the DELALLOC 2444 * bit, which is only set or cleared with irqs on 2445 */ 2446 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2447 struct btrfs_root *root = inode->root; 2448 u64 len = state->end + 1 - state->start; 2449 u32 num_extents = count_max_extents(fs_info, len); 2450 bool do_list = !btrfs_is_free_space_inode(inode); 2451 2452 spin_lock(&inode->lock); 2453 btrfs_mod_outstanding_extents(inode, num_extents); 2454 spin_unlock(&inode->lock); 2455 2456 /* For sanity tests */ 2457 if (btrfs_is_testing(fs_info)) 2458 return; 2459 2460 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2461 fs_info->delalloc_batch); 2462 spin_lock(&inode->lock); 2463 inode->delalloc_bytes += len; 2464 if (bits & EXTENT_DEFRAG) 2465 inode->defrag_bytes += len; 2466 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2467 &inode->runtime_flags)) 2468 btrfs_add_delalloc_inodes(root, inode); 2469 spin_unlock(&inode->lock); 2470 } 2471 2472 if (!(state->state & EXTENT_DELALLOC_NEW) && 2473 (bits & EXTENT_DELALLOC_NEW)) { 2474 spin_lock(&inode->lock); 2475 inode->new_delalloc_bytes += state->end + 1 - state->start; 2476 spin_unlock(&inode->lock); 2477 } 2478 } 2479 2480 /* 2481 * Once a range is no longer delalloc this function ensures that proper 2482 * accounting happens. 2483 */ 2484 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2485 struct extent_state *state, u32 bits) 2486 { 2487 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2488 u64 len = state->end + 1 - state->start; 2489 u32 num_extents = count_max_extents(fs_info, len); 2490 2491 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2492 spin_lock(&inode->lock); 2493 inode->defrag_bytes -= len; 2494 spin_unlock(&inode->lock); 2495 } 2496 2497 /* 2498 * set_bit and clear bit hooks normally require _irqsave/restore 2499 * but in this case, we are only testing for the DELALLOC 2500 * bit, which is only set or cleared with irqs on 2501 */ 2502 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2503 struct btrfs_root *root = inode->root; 2504 bool do_list = !btrfs_is_free_space_inode(inode); 2505 2506 spin_lock(&inode->lock); 2507 btrfs_mod_outstanding_extents(inode, -num_extents); 2508 spin_unlock(&inode->lock); 2509 2510 /* 2511 * We don't reserve metadata space for space cache inodes so we 2512 * don't need to call delalloc_release_metadata if there is an 2513 * error. 2514 */ 2515 if (bits & EXTENT_CLEAR_META_RESV && 2516 root != fs_info->tree_root) 2517 btrfs_delalloc_release_metadata(inode, len, false); 2518 2519 /* For sanity tests. */ 2520 if (btrfs_is_testing(fs_info)) 2521 return; 2522 2523 if (!btrfs_is_data_reloc_root(root) && 2524 do_list && !(state->state & EXTENT_NORESERVE) && 2525 (bits & EXTENT_CLEAR_DATA_RESV)) 2526 btrfs_free_reserved_data_space_noquota(fs_info, len); 2527 2528 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2529 fs_info->delalloc_batch); 2530 spin_lock(&inode->lock); 2531 inode->delalloc_bytes -= len; 2532 if (do_list && inode->delalloc_bytes == 0 && 2533 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2534 &inode->runtime_flags)) 2535 btrfs_del_delalloc_inode(root, inode); 2536 spin_unlock(&inode->lock); 2537 } 2538 2539 if ((state->state & EXTENT_DELALLOC_NEW) && 2540 (bits & EXTENT_DELALLOC_NEW)) { 2541 spin_lock(&inode->lock); 2542 ASSERT(inode->new_delalloc_bytes >= len); 2543 inode->new_delalloc_bytes -= len; 2544 if (bits & EXTENT_ADD_INODE_BYTES) 2545 inode_add_bytes(&inode->vfs_inode, len); 2546 spin_unlock(&inode->lock); 2547 } 2548 } 2549 2550 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2551 struct btrfs_ordered_extent *ordered) 2552 { 2553 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2554 u64 len = bbio->bio.bi_iter.bi_size; 2555 struct btrfs_ordered_extent *new; 2556 int ret; 2557 2558 /* Must always be called for the beginning of an ordered extent. */ 2559 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2560 return -EINVAL; 2561 2562 /* No need to split if the ordered extent covers the entire bio. */ 2563 if (ordered->disk_num_bytes == len) { 2564 refcount_inc(&ordered->refs); 2565 bbio->ordered = ordered; 2566 return 0; 2567 } 2568 2569 /* 2570 * Don't split the extent_map for NOCOW extents, as we're writing into 2571 * a pre-existing one. 2572 */ 2573 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2574 ret = split_extent_map(bbio->inode, bbio->file_offset, 2575 ordered->num_bytes, len, 2576 ordered->disk_bytenr); 2577 if (ret) 2578 return ret; 2579 } 2580 2581 new = btrfs_split_ordered_extent(ordered, len); 2582 if (IS_ERR(new)) 2583 return PTR_ERR(new); 2584 bbio->ordered = new; 2585 return 0; 2586 } 2587 2588 /* 2589 * given a list of ordered sums record them in the inode. This happens 2590 * at IO completion time based on sums calculated at bio submission time. 2591 */ 2592 static int add_pending_csums(struct btrfs_trans_handle *trans, 2593 struct list_head *list) 2594 { 2595 struct btrfs_ordered_sum *sum; 2596 struct btrfs_root *csum_root = NULL; 2597 int ret; 2598 2599 list_for_each_entry(sum, list, list) { 2600 trans->adding_csums = true; 2601 if (!csum_root) 2602 csum_root = btrfs_csum_root(trans->fs_info, 2603 sum->logical); 2604 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2605 trans->adding_csums = false; 2606 if (ret) 2607 return ret; 2608 } 2609 return 0; 2610 } 2611 2612 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2613 const u64 start, 2614 const u64 len, 2615 struct extent_state **cached_state) 2616 { 2617 u64 search_start = start; 2618 const u64 end = start + len - 1; 2619 2620 while (search_start < end) { 2621 const u64 search_len = end - search_start + 1; 2622 struct extent_map *em; 2623 u64 em_len; 2624 int ret = 0; 2625 2626 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2627 if (IS_ERR(em)) 2628 return PTR_ERR(em); 2629 2630 if (em->block_start != EXTENT_MAP_HOLE) 2631 goto next; 2632 2633 em_len = em->len; 2634 if (em->start < search_start) 2635 em_len -= search_start - em->start; 2636 if (em_len > search_len) 2637 em_len = search_len; 2638 2639 ret = set_extent_bit(&inode->io_tree, search_start, 2640 search_start + em_len - 1, 2641 EXTENT_DELALLOC_NEW, cached_state); 2642 next: 2643 search_start = extent_map_end(em); 2644 free_extent_map(em); 2645 if (ret) 2646 return ret; 2647 } 2648 return 0; 2649 } 2650 2651 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2652 unsigned int extra_bits, 2653 struct extent_state **cached_state) 2654 { 2655 WARN_ON(PAGE_ALIGNED(end)); 2656 2657 if (start >= i_size_read(&inode->vfs_inode) && 2658 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2659 /* 2660 * There can't be any extents following eof in this case so just 2661 * set the delalloc new bit for the range directly. 2662 */ 2663 extra_bits |= EXTENT_DELALLOC_NEW; 2664 } else { 2665 int ret; 2666 2667 ret = btrfs_find_new_delalloc_bytes(inode, start, 2668 end + 1 - start, 2669 cached_state); 2670 if (ret) 2671 return ret; 2672 } 2673 2674 return set_extent_bit(&inode->io_tree, start, end, 2675 EXTENT_DELALLOC | extra_bits, cached_state); 2676 } 2677 2678 /* see btrfs_writepage_start_hook for details on why this is required */ 2679 struct btrfs_writepage_fixup { 2680 struct page *page; 2681 struct btrfs_inode *inode; 2682 struct btrfs_work work; 2683 }; 2684 2685 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2686 { 2687 struct btrfs_writepage_fixup *fixup = 2688 container_of(work, struct btrfs_writepage_fixup, work); 2689 struct btrfs_ordered_extent *ordered; 2690 struct extent_state *cached_state = NULL; 2691 struct extent_changeset *data_reserved = NULL; 2692 struct page *page = fixup->page; 2693 struct btrfs_inode *inode = fixup->inode; 2694 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2695 u64 page_start = page_offset(page); 2696 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2697 int ret = 0; 2698 bool free_delalloc_space = true; 2699 2700 /* 2701 * This is similar to page_mkwrite, we need to reserve the space before 2702 * we take the page lock. 2703 */ 2704 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2705 PAGE_SIZE); 2706 again: 2707 lock_page(page); 2708 2709 /* 2710 * Before we queued this fixup, we took a reference on the page. 2711 * page->mapping may go NULL, but it shouldn't be moved to a different 2712 * address space. 2713 */ 2714 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2715 /* 2716 * Unfortunately this is a little tricky, either 2717 * 2718 * 1) We got here and our page had already been dealt with and 2719 * we reserved our space, thus ret == 0, so we need to just 2720 * drop our space reservation and bail. This can happen the 2721 * first time we come into the fixup worker, or could happen 2722 * while waiting for the ordered extent. 2723 * 2) Our page was already dealt with, but we happened to get an 2724 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2725 * this case we obviously don't have anything to release, but 2726 * because the page was already dealt with we don't want to 2727 * mark the page with an error, so make sure we're resetting 2728 * ret to 0. This is why we have this check _before_ the ret 2729 * check, because we do not want to have a surprise ENOSPC 2730 * when the page was already properly dealt with. 2731 */ 2732 if (!ret) { 2733 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2734 btrfs_delalloc_release_space(inode, data_reserved, 2735 page_start, PAGE_SIZE, 2736 true); 2737 } 2738 ret = 0; 2739 goto out_page; 2740 } 2741 2742 /* 2743 * We can't mess with the page state unless it is locked, so now that 2744 * it is locked bail if we failed to make our space reservation. 2745 */ 2746 if (ret) 2747 goto out_page; 2748 2749 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2750 2751 /* already ordered? We're done */ 2752 if (PageOrdered(page)) 2753 goto out_reserved; 2754 2755 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2756 if (ordered) { 2757 unlock_extent(&inode->io_tree, page_start, page_end, 2758 &cached_state); 2759 unlock_page(page); 2760 btrfs_start_ordered_extent(ordered); 2761 btrfs_put_ordered_extent(ordered); 2762 goto again; 2763 } 2764 2765 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2766 &cached_state); 2767 if (ret) 2768 goto out_reserved; 2769 2770 /* 2771 * Everything went as planned, we're now the owner of a dirty page with 2772 * delayed allocation bits set and space reserved for our COW 2773 * destination. 2774 * 2775 * The page was dirty when we started, nothing should have cleaned it. 2776 */ 2777 BUG_ON(!PageDirty(page)); 2778 free_delalloc_space = false; 2779 out_reserved: 2780 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2781 if (free_delalloc_space) 2782 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2783 PAGE_SIZE, true); 2784 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2785 out_page: 2786 if (ret) { 2787 /* 2788 * We hit ENOSPC or other errors. Update the mapping and page 2789 * to reflect the errors and clean the page. 2790 */ 2791 mapping_set_error(page->mapping, ret); 2792 btrfs_mark_ordered_io_finished(inode, page, page_start, 2793 PAGE_SIZE, !ret); 2794 clear_page_dirty_for_io(page); 2795 } 2796 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 2797 unlock_page(page); 2798 put_page(page); 2799 kfree(fixup); 2800 extent_changeset_free(data_reserved); 2801 /* 2802 * As a precaution, do a delayed iput in case it would be the last iput 2803 * that could need flushing space. Recursing back to fixup worker would 2804 * deadlock. 2805 */ 2806 btrfs_add_delayed_iput(inode); 2807 } 2808 2809 /* 2810 * There are a few paths in the higher layers of the kernel that directly 2811 * set the page dirty bit without asking the filesystem if it is a 2812 * good idea. This causes problems because we want to make sure COW 2813 * properly happens and the data=ordered rules are followed. 2814 * 2815 * In our case any range that doesn't have the ORDERED bit set 2816 * hasn't been properly setup for IO. We kick off an async process 2817 * to fix it up. The async helper will wait for ordered extents, set 2818 * the delalloc bit and make it safe to write the page. 2819 */ 2820 int btrfs_writepage_cow_fixup(struct page *page) 2821 { 2822 struct inode *inode = page->mapping->host; 2823 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2824 struct btrfs_writepage_fixup *fixup; 2825 2826 /* This page has ordered extent covering it already */ 2827 if (PageOrdered(page)) 2828 return 0; 2829 2830 /* 2831 * PageChecked is set below when we create a fixup worker for this page, 2832 * don't try to create another one if we're already PageChecked() 2833 * 2834 * The extent_io writepage code will redirty the page if we send back 2835 * EAGAIN. 2836 */ 2837 if (PageChecked(page)) 2838 return -EAGAIN; 2839 2840 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2841 if (!fixup) 2842 return -EAGAIN; 2843 2844 /* 2845 * We are already holding a reference to this inode from 2846 * write_cache_pages. We need to hold it because the space reservation 2847 * takes place outside of the page lock, and we can't trust 2848 * page->mapping outside of the page lock. 2849 */ 2850 ihold(inode); 2851 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2852 get_page(page); 2853 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2854 fixup->page = page; 2855 fixup->inode = BTRFS_I(inode); 2856 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2857 2858 return -EAGAIN; 2859 } 2860 2861 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2862 struct btrfs_inode *inode, u64 file_pos, 2863 struct btrfs_file_extent_item *stack_fi, 2864 const bool update_inode_bytes, 2865 u64 qgroup_reserved) 2866 { 2867 struct btrfs_root *root = inode->root; 2868 const u64 sectorsize = root->fs_info->sectorsize; 2869 struct btrfs_path *path; 2870 struct extent_buffer *leaf; 2871 struct btrfs_key ins; 2872 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2873 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2874 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2875 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2876 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2877 struct btrfs_drop_extents_args drop_args = { 0 }; 2878 int ret; 2879 2880 path = btrfs_alloc_path(); 2881 if (!path) 2882 return -ENOMEM; 2883 2884 /* 2885 * we may be replacing one extent in the tree with another. 2886 * The new extent is pinned in the extent map, and we don't want 2887 * to drop it from the cache until it is completely in the btree. 2888 * 2889 * So, tell btrfs_drop_extents to leave this extent in the cache. 2890 * the caller is expected to unpin it and allow it to be merged 2891 * with the others. 2892 */ 2893 drop_args.path = path; 2894 drop_args.start = file_pos; 2895 drop_args.end = file_pos + num_bytes; 2896 drop_args.replace_extent = true; 2897 drop_args.extent_item_size = sizeof(*stack_fi); 2898 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2899 if (ret) 2900 goto out; 2901 2902 if (!drop_args.extent_inserted) { 2903 ins.objectid = btrfs_ino(inode); 2904 ins.offset = file_pos; 2905 ins.type = BTRFS_EXTENT_DATA_KEY; 2906 2907 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2908 sizeof(*stack_fi)); 2909 if (ret) 2910 goto out; 2911 } 2912 leaf = path->nodes[0]; 2913 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2914 write_extent_buffer(leaf, stack_fi, 2915 btrfs_item_ptr_offset(leaf, path->slots[0]), 2916 sizeof(struct btrfs_file_extent_item)); 2917 2918 btrfs_mark_buffer_dirty(trans, leaf); 2919 btrfs_release_path(path); 2920 2921 /* 2922 * If we dropped an inline extent here, we know the range where it is 2923 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2924 * number of bytes only for that range containing the inline extent. 2925 * The remaining of the range will be processed when clearning the 2926 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2927 */ 2928 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2929 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2930 2931 inline_size = drop_args.bytes_found - inline_size; 2932 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2933 drop_args.bytes_found -= inline_size; 2934 num_bytes -= sectorsize; 2935 } 2936 2937 if (update_inode_bytes) 2938 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2939 2940 ins.objectid = disk_bytenr; 2941 ins.offset = disk_num_bytes; 2942 ins.type = BTRFS_EXTENT_ITEM_KEY; 2943 2944 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2945 if (ret) 2946 goto out; 2947 2948 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2949 file_pos - offset, 2950 qgroup_reserved, &ins); 2951 out: 2952 btrfs_free_path(path); 2953 2954 return ret; 2955 } 2956 2957 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2958 u64 start, u64 len) 2959 { 2960 struct btrfs_block_group *cache; 2961 2962 cache = btrfs_lookup_block_group(fs_info, start); 2963 ASSERT(cache); 2964 2965 spin_lock(&cache->lock); 2966 cache->delalloc_bytes -= len; 2967 spin_unlock(&cache->lock); 2968 2969 btrfs_put_block_group(cache); 2970 } 2971 2972 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2973 struct btrfs_ordered_extent *oe) 2974 { 2975 struct btrfs_file_extent_item stack_fi; 2976 bool update_inode_bytes; 2977 u64 num_bytes = oe->num_bytes; 2978 u64 ram_bytes = oe->ram_bytes; 2979 2980 memset(&stack_fi, 0, sizeof(stack_fi)); 2981 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2982 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2983 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2984 oe->disk_num_bytes); 2985 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2986 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 2987 num_bytes = oe->truncated_len; 2988 ram_bytes = num_bytes; 2989 } 2990 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2991 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 2992 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2993 /* Encryption and other encoding is reserved and all 0 */ 2994 2995 /* 2996 * For delalloc, when completing an ordered extent we update the inode's 2997 * bytes when clearing the range in the inode's io tree, so pass false 2998 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 2999 * except if the ordered extent was truncated. 3000 */ 3001 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3002 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3003 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3004 3005 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3006 oe->file_offset, &stack_fi, 3007 update_inode_bytes, oe->qgroup_rsv); 3008 } 3009 3010 /* 3011 * As ordered data IO finishes, this gets called so we can finish 3012 * an ordered extent if the range of bytes in the file it covers are 3013 * fully written. 3014 */ 3015 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3016 { 3017 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3018 struct btrfs_root *root = inode->root; 3019 struct btrfs_fs_info *fs_info = root->fs_info; 3020 struct btrfs_trans_handle *trans = NULL; 3021 struct extent_io_tree *io_tree = &inode->io_tree; 3022 struct extent_state *cached_state = NULL; 3023 u64 start, end; 3024 int compress_type = 0; 3025 int ret = 0; 3026 u64 logical_len = ordered_extent->num_bytes; 3027 bool freespace_inode; 3028 bool truncated = false; 3029 bool clear_reserved_extent = true; 3030 unsigned int clear_bits = EXTENT_DEFRAG; 3031 3032 start = ordered_extent->file_offset; 3033 end = start + ordered_extent->num_bytes - 1; 3034 3035 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3036 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3037 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3038 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3039 clear_bits |= EXTENT_DELALLOC_NEW; 3040 3041 freespace_inode = btrfs_is_free_space_inode(inode); 3042 if (!freespace_inode) 3043 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3044 3045 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3046 ret = -EIO; 3047 goto out; 3048 } 3049 3050 if (btrfs_is_zoned(fs_info)) 3051 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3052 ordered_extent->disk_num_bytes); 3053 3054 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3055 truncated = true; 3056 logical_len = ordered_extent->truncated_len; 3057 /* Truncated the entire extent, don't bother adding */ 3058 if (!logical_len) 3059 goto out; 3060 } 3061 3062 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3063 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3064 3065 btrfs_inode_safe_disk_i_size_write(inode, 0); 3066 if (freespace_inode) 3067 trans = btrfs_join_transaction_spacecache(root); 3068 else 3069 trans = btrfs_join_transaction(root); 3070 if (IS_ERR(trans)) { 3071 ret = PTR_ERR(trans); 3072 trans = NULL; 3073 goto out; 3074 } 3075 trans->block_rsv = &inode->block_rsv; 3076 ret = btrfs_update_inode_fallback(trans, inode); 3077 if (ret) /* -ENOMEM or corruption */ 3078 btrfs_abort_transaction(trans, ret); 3079 goto out; 3080 } 3081 3082 clear_bits |= EXTENT_LOCKED; 3083 lock_extent(io_tree, start, end, &cached_state); 3084 3085 if (freespace_inode) 3086 trans = btrfs_join_transaction_spacecache(root); 3087 else 3088 trans = btrfs_join_transaction(root); 3089 if (IS_ERR(trans)) { 3090 ret = PTR_ERR(trans); 3091 trans = NULL; 3092 goto out; 3093 } 3094 3095 trans->block_rsv = &inode->block_rsv; 3096 3097 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3098 if (ret) 3099 goto out; 3100 3101 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3102 compress_type = ordered_extent->compress_type; 3103 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3104 BUG_ON(compress_type); 3105 ret = btrfs_mark_extent_written(trans, inode, 3106 ordered_extent->file_offset, 3107 ordered_extent->file_offset + 3108 logical_len); 3109 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3110 ordered_extent->disk_num_bytes); 3111 } else { 3112 BUG_ON(root == fs_info->tree_root); 3113 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3114 if (!ret) { 3115 clear_reserved_extent = false; 3116 btrfs_release_delalloc_bytes(fs_info, 3117 ordered_extent->disk_bytenr, 3118 ordered_extent->disk_num_bytes); 3119 } 3120 } 3121 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3122 ordered_extent->num_bytes, trans->transid); 3123 if (ret < 0) { 3124 btrfs_abort_transaction(trans, ret); 3125 goto out; 3126 } 3127 3128 ret = add_pending_csums(trans, &ordered_extent->list); 3129 if (ret) { 3130 btrfs_abort_transaction(trans, ret); 3131 goto out; 3132 } 3133 3134 /* 3135 * If this is a new delalloc range, clear its new delalloc flag to 3136 * update the inode's number of bytes. This needs to be done first 3137 * before updating the inode item. 3138 */ 3139 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3140 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3141 clear_extent_bit(&inode->io_tree, start, end, 3142 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3143 &cached_state); 3144 3145 btrfs_inode_safe_disk_i_size_write(inode, 0); 3146 ret = btrfs_update_inode_fallback(trans, inode); 3147 if (ret) { /* -ENOMEM or corruption */ 3148 btrfs_abort_transaction(trans, ret); 3149 goto out; 3150 } 3151 ret = 0; 3152 out: 3153 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3154 &cached_state); 3155 3156 if (trans) 3157 btrfs_end_transaction(trans); 3158 3159 if (ret || truncated) { 3160 u64 unwritten_start = start; 3161 3162 /* 3163 * If we failed to finish this ordered extent for any reason we 3164 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3165 * extent, and mark the inode with the error if it wasn't 3166 * already set. Any error during writeback would have already 3167 * set the mapping error, so we need to set it if we're the ones 3168 * marking this ordered extent as failed. 3169 */ 3170 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3171 &ordered_extent->flags)) 3172 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3173 3174 if (truncated) 3175 unwritten_start += logical_len; 3176 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3177 3178 /* Drop extent maps for the part of the extent we didn't write. */ 3179 btrfs_drop_extent_map_range(inode, unwritten_start, end, false); 3180 3181 /* 3182 * If the ordered extent had an IOERR or something else went 3183 * wrong we need to return the space for this ordered extent 3184 * back to the allocator. We only free the extent in the 3185 * truncated case if we didn't write out the extent at all. 3186 * 3187 * If we made it past insert_reserved_file_extent before we 3188 * errored out then we don't need to do this as the accounting 3189 * has already been done. 3190 */ 3191 if ((ret || !logical_len) && 3192 clear_reserved_extent && 3193 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3194 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3195 /* 3196 * Discard the range before returning it back to the 3197 * free space pool 3198 */ 3199 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3200 btrfs_discard_extent(fs_info, 3201 ordered_extent->disk_bytenr, 3202 ordered_extent->disk_num_bytes, 3203 NULL); 3204 btrfs_free_reserved_extent(fs_info, 3205 ordered_extent->disk_bytenr, 3206 ordered_extent->disk_num_bytes, 1); 3207 /* 3208 * Actually free the qgroup rsv which was released when 3209 * the ordered extent was created. 3210 */ 3211 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, 3212 ordered_extent->qgroup_rsv, 3213 BTRFS_QGROUP_RSV_DATA); 3214 } 3215 } 3216 3217 /* 3218 * This needs to be done to make sure anybody waiting knows we are done 3219 * updating everything for this ordered extent. 3220 */ 3221 btrfs_remove_ordered_extent(inode, ordered_extent); 3222 3223 /* once for us */ 3224 btrfs_put_ordered_extent(ordered_extent); 3225 /* once for the tree */ 3226 btrfs_put_ordered_extent(ordered_extent); 3227 3228 return ret; 3229 } 3230 3231 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3232 { 3233 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) && 3234 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3235 list_empty(&ordered->bioc_list)) 3236 btrfs_finish_ordered_zoned(ordered); 3237 return btrfs_finish_one_ordered(ordered); 3238 } 3239 3240 /* 3241 * Verify the checksum for a single sector without any extra action that depend 3242 * on the type of I/O. 3243 */ 3244 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3245 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3246 { 3247 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3248 char *kaddr; 3249 3250 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3251 3252 shash->tfm = fs_info->csum_shash; 3253 3254 kaddr = kmap_local_page(page) + pgoff; 3255 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3256 kunmap_local(kaddr); 3257 3258 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3259 return -EIO; 3260 return 0; 3261 } 3262 3263 /* 3264 * Verify the checksum of a single data sector. 3265 * 3266 * @bbio: btrfs_io_bio which contains the csum 3267 * @dev: device the sector is on 3268 * @bio_offset: offset to the beginning of the bio (in bytes) 3269 * @bv: bio_vec to check 3270 * 3271 * Check if the checksum on a data block is valid. When a checksum mismatch is 3272 * detected, report the error and fill the corrupted range with zero. 3273 * 3274 * Return %true if the sector is ok or had no checksum to start with, else %false. 3275 */ 3276 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3277 u32 bio_offset, struct bio_vec *bv) 3278 { 3279 struct btrfs_inode *inode = bbio->inode; 3280 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3281 u64 file_offset = bbio->file_offset + bio_offset; 3282 u64 end = file_offset + bv->bv_len - 1; 3283 u8 *csum_expected; 3284 u8 csum[BTRFS_CSUM_SIZE]; 3285 3286 ASSERT(bv->bv_len == fs_info->sectorsize); 3287 3288 if (!bbio->csum) 3289 return true; 3290 3291 if (btrfs_is_data_reloc_root(inode->root) && 3292 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3293 NULL)) { 3294 /* Skip the range without csum for data reloc inode */ 3295 clear_extent_bits(&inode->io_tree, file_offset, end, 3296 EXTENT_NODATASUM); 3297 return true; 3298 } 3299 3300 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3301 fs_info->csum_size; 3302 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3303 csum_expected)) 3304 goto zeroit; 3305 return true; 3306 3307 zeroit: 3308 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3309 bbio->mirror_num); 3310 if (dev) 3311 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3312 memzero_bvec(bv); 3313 return false; 3314 } 3315 3316 /* 3317 * Perform a delayed iput on @inode. 3318 * 3319 * @inode: The inode we want to perform iput on 3320 * 3321 * This function uses the generic vfs_inode::i_count to track whether we should 3322 * just decrement it (in case it's > 1) or if this is the last iput then link 3323 * the inode to the delayed iput machinery. Delayed iputs are processed at 3324 * transaction commit time/superblock commit/cleaner kthread. 3325 */ 3326 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3327 { 3328 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3329 unsigned long flags; 3330 3331 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3332 return; 3333 3334 atomic_inc(&fs_info->nr_delayed_iputs); 3335 /* 3336 * Need to be irq safe here because we can be called from either an irq 3337 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3338 * context. 3339 */ 3340 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3341 ASSERT(list_empty(&inode->delayed_iput)); 3342 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3343 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3344 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3345 wake_up_process(fs_info->cleaner_kthread); 3346 } 3347 3348 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3349 struct btrfs_inode *inode) 3350 { 3351 list_del_init(&inode->delayed_iput); 3352 spin_unlock_irq(&fs_info->delayed_iput_lock); 3353 iput(&inode->vfs_inode); 3354 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3355 wake_up(&fs_info->delayed_iputs_wait); 3356 spin_lock_irq(&fs_info->delayed_iput_lock); 3357 } 3358 3359 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3360 struct btrfs_inode *inode) 3361 { 3362 if (!list_empty(&inode->delayed_iput)) { 3363 spin_lock_irq(&fs_info->delayed_iput_lock); 3364 if (!list_empty(&inode->delayed_iput)) 3365 run_delayed_iput_locked(fs_info, inode); 3366 spin_unlock_irq(&fs_info->delayed_iput_lock); 3367 } 3368 } 3369 3370 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3371 { 3372 /* 3373 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3374 * calls btrfs_add_delayed_iput() and that needs to lock 3375 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3376 * prevent a deadlock. 3377 */ 3378 spin_lock_irq(&fs_info->delayed_iput_lock); 3379 while (!list_empty(&fs_info->delayed_iputs)) { 3380 struct btrfs_inode *inode; 3381 3382 inode = list_first_entry(&fs_info->delayed_iputs, 3383 struct btrfs_inode, delayed_iput); 3384 run_delayed_iput_locked(fs_info, inode); 3385 if (need_resched()) { 3386 spin_unlock_irq(&fs_info->delayed_iput_lock); 3387 cond_resched(); 3388 spin_lock_irq(&fs_info->delayed_iput_lock); 3389 } 3390 } 3391 spin_unlock_irq(&fs_info->delayed_iput_lock); 3392 } 3393 3394 /* 3395 * Wait for flushing all delayed iputs 3396 * 3397 * @fs_info: the filesystem 3398 * 3399 * This will wait on any delayed iputs that are currently running with KILLABLE 3400 * set. Once they are all done running we will return, unless we are killed in 3401 * which case we return EINTR. This helps in user operations like fallocate etc 3402 * that might get blocked on the iputs. 3403 * 3404 * Return EINTR if we were killed, 0 if nothing's pending 3405 */ 3406 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3407 { 3408 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3409 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3410 if (ret) 3411 return -EINTR; 3412 return 0; 3413 } 3414 3415 /* 3416 * This creates an orphan entry for the given inode in case something goes wrong 3417 * in the middle of an unlink. 3418 */ 3419 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3420 struct btrfs_inode *inode) 3421 { 3422 int ret; 3423 3424 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3425 if (ret && ret != -EEXIST) { 3426 btrfs_abort_transaction(trans, ret); 3427 return ret; 3428 } 3429 3430 return 0; 3431 } 3432 3433 /* 3434 * We have done the delete so we can go ahead and remove the orphan item for 3435 * this particular inode. 3436 */ 3437 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3438 struct btrfs_inode *inode) 3439 { 3440 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3441 } 3442 3443 /* 3444 * this cleans up any orphans that may be left on the list from the last use 3445 * of this root. 3446 */ 3447 int btrfs_orphan_cleanup(struct btrfs_root *root) 3448 { 3449 struct btrfs_fs_info *fs_info = root->fs_info; 3450 struct btrfs_path *path; 3451 struct extent_buffer *leaf; 3452 struct btrfs_key key, found_key; 3453 struct btrfs_trans_handle *trans; 3454 struct inode *inode; 3455 u64 last_objectid = 0; 3456 int ret = 0, nr_unlink = 0; 3457 3458 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3459 return 0; 3460 3461 path = btrfs_alloc_path(); 3462 if (!path) { 3463 ret = -ENOMEM; 3464 goto out; 3465 } 3466 path->reada = READA_BACK; 3467 3468 key.objectid = BTRFS_ORPHAN_OBJECTID; 3469 key.type = BTRFS_ORPHAN_ITEM_KEY; 3470 key.offset = (u64)-1; 3471 3472 while (1) { 3473 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3474 if (ret < 0) 3475 goto out; 3476 3477 /* 3478 * if ret == 0 means we found what we were searching for, which 3479 * is weird, but possible, so only screw with path if we didn't 3480 * find the key and see if we have stuff that matches 3481 */ 3482 if (ret > 0) { 3483 ret = 0; 3484 if (path->slots[0] == 0) 3485 break; 3486 path->slots[0]--; 3487 } 3488 3489 /* pull out the item */ 3490 leaf = path->nodes[0]; 3491 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3492 3493 /* make sure the item matches what we want */ 3494 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3495 break; 3496 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3497 break; 3498 3499 /* release the path since we're done with it */ 3500 btrfs_release_path(path); 3501 3502 /* 3503 * this is where we are basically btrfs_lookup, without the 3504 * crossing root thing. we store the inode number in the 3505 * offset of the orphan item. 3506 */ 3507 3508 if (found_key.offset == last_objectid) { 3509 /* 3510 * We found the same inode as before. This means we were 3511 * not able to remove its items via eviction triggered 3512 * by an iput(). A transaction abort may have happened, 3513 * due to -ENOSPC for example, so try to grab the error 3514 * that lead to a transaction abort, if any. 3515 */ 3516 btrfs_err(fs_info, 3517 "Error removing orphan entry, stopping orphan cleanup"); 3518 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3519 goto out; 3520 } 3521 3522 last_objectid = found_key.offset; 3523 3524 found_key.objectid = found_key.offset; 3525 found_key.type = BTRFS_INODE_ITEM_KEY; 3526 found_key.offset = 0; 3527 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3528 if (IS_ERR(inode)) { 3529 ret = PTR_ERR(inode); 3530 inode = NULL; 3531 if (ret != -ENOENT) 3532 goto out; 3533 } 3534 3535 if (!inode && root == fs_info->tree_root) { 3536 struct btrfs_root *dead_root; 3537 int is_dead_root = 0; 3538 3539 /* 3540 * This is an orphan in the tree root. Currently these 3541 * could come from 2 sources: 3542 * a) a root (snapshot/subvolume) deletion in progress 3543 * b) a free space cache inode 3544 * We need to distinguish those two, as the orphan item 3545 * for a root must not get deleted before the deletion 3546 * of the snapshot/subvolume's tree completes. 3547 * 3548 * btrfs_find_orphan_roots() ran before us, which has 3549 * found all deleted roots and loaded them into 3550 * fs_info->fs_roots_radix. So here we can find if an 3551 * orphan item corresponds to a deleted root by looking 3552 * up the root from that radix tree. 3553 */ 3554 3555 spin_lock(&fs_info->fs_roots_radix_lock); 3556 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3557 (unsigned long)found_key.objectid); 3558 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3559 is_dead_root = 1; 3560 spin_unlock(&fs_info->fs_roots_radix_lock); 3561 3562 if (is_dead_root) { 3563 /* prevent this orphan from being found again */ 3564 key.offset = found_key.objectid - 1; 3565 continue; 3566 } 3567 3568 } 3569 3570 /* 3571 * If we have an inode with links, there are a couple of 3572 * possibilities: 3573 * 3574 * 1. We were halfway through creating fsverity metadata for the 3575 * file. In that case, the orphan item represents incomplete 3576 * fsverity metadata which must be cleaned up with 3577 * btrfs_drop_verity_items and deleting the orphan item. 3578 3579 * 2. Old kernels (before v3.12) used to create an 3580 * orphan item for truncate indicating that there were possibly 3581 * extent items past i_size that needed to be deleted. In v3.12, 3582 * truncate was changed to update i_size in sync with the extent 3583 * items, but the (useless) orphan item was still created. Since 3584 * v4.18, we don't create the orphan item for truncate at all. 3585 * 3586 * So, this item could mean that we need to do a truncate, but 3587 * only if this filesystem was last used on a pre-v3.12 kernel 3588 * and was not cleanly unmounted. The odds of that are quite 3589 * slim, and it's a pain to do the truncate now, so just delete 3590 * the orphan item. 3591 * 3592 * It's also possible that this orphan item was supposed to be 3593 * deleted but wasn't. The inode number may have been reused, 3594 * but either way, we can delete the orphan item. 3595 */ 3596 if (!inode || inode->i_nlink) { 3597 if (inode) { 3598 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3599 iput(inode); 3600 inode = NULL; 3601 if (ret) 3602 goto out; 3603 } 3604 trans = btrfs_start_transaction(root, 1); 3605 if (IS_ERR(trans)) { 3606 ret = PTR_ERR(trans); 3607 goto out; 3608 } 3609 btrfs_debug(fs_info, "auto deleting %Lu", 3610 found_key.objectid); 3611 ret = btrfs_del_orphan_item(trans, root, 3612 found_key.objectid); 3613 btrfs_end_transaction(trans); 3614 if (ret) 3615 goto out; 3616 continue; 3617 } 3618 3619 nr_unlink++; 3620 3621 /* this will do delete_inode and everything for us */ 3622 iput(inode); 3623 } 3624 /* release the path since we're done with it */ 3625 btrfs_release_path(path); 3626 3627 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3628 trans = btrfs_join_transaction(root); 3629 if (!IS_ERR(trans)) 3630 btrfs_end_transaction(trans); 3631 } 3632 3633 if (nr_unlink) 3634 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3635 3636 out: 3637 if (ret) 3638 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3639 btrfs_free_path(path); 3640 return ret; 3641 } 3642 3643 /* 3644 * very simple check to peek ahead in the leaf looking for xattrs. If we 3645 * don't find any xattrs, we know there can't be any acls. 3646 * 3647 * slot is the slot the inode is in, objectid is the objectid of the inode 3648 */ 3649 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3650 int slot, u64 objectid, 3651 int *first_xattr_slot) 3652 { 3653 u32 nritems = btrfs_header_nritems(leaf); 3654 struct btrfs_key found_key; 3655 static u64 xattr_access = 0; 3656 static u64 xattr_default = 0; 3657 int scanned = 0; 3658 3659 if (!xattr_access) { 3660 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3661 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3662 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3663 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3664 } 3665 3666 slot++; 3667 *first_xattr_slot = -1; 3668 while (slot < nritems) { 3669 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3670 3671 /* we found a different objectid, there must not be acls */ 3672 if (found_key.objectid != objectid) 3673 return 0; 3674 3675 /* we found an xattr, assume we've got an acl */ 3676 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3677 if (*first_xattr_slot == -1) 3678 *first_xattr_slot = slot; 3679 if (found_key.offset == xattr_access || 3680 found_key.offset == xattr_default) 3681 return 1; 3682 } 3683 3684 /* 3685 * we found a key greater than an xattr key, there can't 3686 * be any acls later on 3687 */ 3688 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3689 return 0; 3690 3691 slot++; 3692 scanned++; 3693 3694 /* 3695 * it goes inode, inode backrefs, xattrs, extents, 3696 * so if there are a ton of hard links to an inode there can 3697 * be a lot of backrefs. Don't waste time searching too hard, 3698 * this is just an optimization 3699 */ 3700 if (scanned >= 8) 3701 break; 3702 } 3703 /* we hit the end of the leaf before we found an xattr or 3704 * something larger than an xattr. We have to assume the inode 3705 * has acls 3706 */ 3707 if (*first_xattr_slot == -1) 3708 *first_xattr_slot = slot; 3709 return 1; 3710 } 3711 3712 /* 3713 * read an inode from the btree into the in-memory inode 3714 */ 3715 static int btrfs_read_locked_inode(struct inode *inode, 3716 struct btrfs_path *in_path) 3717 { 3718 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3719 struct btrfs_path *path = in_path; 3720 struct extent_buffer *leaf; 3721 struct btrfs_inode_item *inode_item; 3722 struct btrfs_root *root = BTRFS_I(inode)->root; 3723 struct btrfs_key location; 3724 unsigned long ptr; 3725 int maybe_acls; 3726 u32 rdev; 3727 int ret; 3728 bool filled = false; 3729 int first_xattr_slot; 3730 3731 ret = btrfs_fill_inode(inode, &rdev); 3732 if (!ret) 3733 filled = true; 3734 3735 if (!path) { 3736 path = btrfs_alloc_path(); 3737 if (!path) 3738 return -ENOMEM; 3739 } 3740 3741 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3742 3743 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3744 if (ret) { 3745 if (path != in_path) 3746 btrfs_free_path(path); 3747 return ret; 3748 } 3749 3750 leaf = path->nodes[0]; 3751 3752 if (filled) 3753 goto cache_index; 3754 3755 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3756 struct btrfs_inode_item); 3757 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3758 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3759 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3760 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3761 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3762 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3763 round_up(i_size_read(inode), fs_info->sectorsize)); 3764 3765 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3766 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3767 3768 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3769 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3770 3771 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3772 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3773 3774 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3775 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3776 3777 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3778 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3779 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3780 3781 inode_set_iversion_queried(inode, 3782 btrfs_inode_sequence(leaf, inode_item)); 3783 inode->i_generation = BTRFS_I(inode)->generation; 3784 inode->i_rdev = 0; 3785 rdev = btrfs_inode_rdev(leaf, inode_item); 3786 3787 BTRFS_I(inode)->index_cnt = (u64)-1; 3788 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3789 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3790 3791 cache_index: 3792 /* 3793 * If we were modified in the current generation and evicted from memory 3794 * and then re-read we need to do a full sync since we don't have any 3795 * idea about which extents were modified before we were evicted from 3796 * cache. 3797 * 3798 * This is required for both inode re-read from disk and delayed inode 3799 * in delayed_nodes_tree. 3800 */ 3801 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3802 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3803 &BTRFS_I(inode)->runtime_flags); 3804 3805 /* 3806 * We don't persist the id of the transaction where an unlink operation 3807 * against the inode was last made. So here we assume the inode might 3808 * have been evicted, and therefore the exact value of last_unlink_trans 3809 * lost, and set it to last_trans to avoid metadata inconsistencies 3810 * between the inode and its parent if the inode is fsync'ed and the log 3811 * replayed. For example, in the scenario: 3812 * 3813 * touch mydir/foo 3814 * ln mydir/foo mydir/bar 3815 * sync 3816 * unlink mydir/bar 3817 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3818 * xfs_io -c fsync mydir/foo 3819 * <power failure> 3820 * mount fs, triggers fsync log replay 3821 * 3822 * We must make sure that when we fsync our inode foo we also log its 3823 * parent inode, otherwise after log replay the parent still has the 3824 * dentry with the "bar" name but our inode foo has a link count of 1 3825 * and doesn't have an inode ref with the name "bar" anymore. 3826 * 3827 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3828 * but it guarantees correctness at the expense of occasional full 3829 * transaction commits on fsync if our inode is a directory, or if our 3830 * inode is not a directory, logging its parent unnecessarily. 3831 */ 3832 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3833 3834 /* 3835 * Same logic as for last_unlink_trans. We don't persist the generation 3836 * of the last transaction where this inode was used for a reflink 3837 * operation, so after eviction and reloading the inode we must be 3838 * pessimistic and assume the last transaction that modified the inode. 3839 */ 3840 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3841 3842 path->slots[0]++; 3843 if (inode->i_nlink != 1 || 3844 path->slots[0] >= btrfs_header_nritems(leaf)) 3845 goto cache_acl; 3846 3847 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3848 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3849 goto cache_acl; 3850 3851 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3852 if (location.type == BTRFS_INODE_REF_KEY) { 3853 struct btrfs_inode_ref *ref; 3854 3855 ref = (struct btrfs_inode_ref *)ptr; 3856 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3857 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3858 struct btrfs_inode_extref *extref; 3859 3860 extref = (struct btrfs_inode_extref *)ptr; 3861 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3862 extref); 3863 } 3864 cache_acl: 3865 /* 3866 * try to precache a NULL acl entry for files that don't have 3867 * any xattrs or acls 3868 */ 3869 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3870 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3871 if (first_xattr_slot != -1) { 3872 path->slots[0] = first_xattr_slot; 3873 ret = btrfs_load_inode_props(inode, path); 3874 if (ret) 3875 btrfs_err(fs_info, 3876 "error loading props for ino %llu (root %llu): %d", 3877 btrfs_ino(BTRFS_I(inode)), 3878 root->root_key.objectid, ret); 3879 } 3880 if (path != in_path) 3881 btrfs_free_path(path); 3882 3883 if (!maybe_acls) 3884 cache_no_acl(inode); 3885 3886 switch (inode->i_mode & S_IFMT) { 3887 case S_IFREG: 3888 inode->i_mapping->a_ops = &btrfs_aops; 3889 inode->i_fop = &btrfs_file_operations; 3890 inode->i_op = &btrfs_file_inode_operations; 3891 break; 3892 case S_IFDIR: 3893 inode->i_fop = &btrfs_dir_file_operations; 3894 inode->i_op = &btrfs_dir_inode_operations; 3895 break; 3896 case S_IFLNK: 3897 inode->i_op = &btrfs_symlink_inode_operations; 3898 inode_nohighmem(inode); 3899 inode->i_mapping->a_ops = &btrfs_aops; 3900 break; 3901 default: 3902 inode->i_op = &btrfs_special_inode_operations; 3903 init_special_inode(inode, inode->i_mode, rdev); 3904 break; 3905 } 3906 3907 btrfs_sync_inode_flags_to_i_flags(inode); 3908 return 0; 3909 } 3910 3911 /* 3912 * given a leaf and an inode, copy the inode fields into the leaf 3913 */ 3914 static void fill_inode_item(struct btrfs_trans_handle *trans, 3915 struct extent_buffer *leaf, 3916 struct btrfs_inode_item *item, 3917 struct inode *inode) 3918 { 3919 struct btrfs_map_token token; 3920 u64 flags; 3921 3922 btrfs_init_map_token(&token, leaf); 3923 3924 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3925 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3926 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3927 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3928 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3929 3930 btrfs_set_token_timespec_sec(&token, &item->atime, 3931 inode_get_atime_sec(inode)); 3932 btrfs_set_token_timespec_nsec(&token, &item->atime, 3933 inode_get_atime_nsec(inode)); 3934 3935 btrfs_set_token_timespec_sec(&token, &item->mtime, 3936 inode_get_mtime_sec(inode)); 3937 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3938 inode_get_mtime_nsec(inode)); 3939 3940 btrfs_set_token_timespec_sec(&token, &item->ctime, 3941 inode_get_ctime_sec(inode)); 3942 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3943 inode_get_ctime_nsec(inode)); 3944 3945 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 3946 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 3947 3948 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3949 btrfs_set_token_inode_generation(&token, item, 3950 BTRFS_I(inode)->generation); 3951 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3952 btrfs_set_token_inode_transid(&token, item, trans->transid); 3953 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3954 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3955 BTRFS_I(inode)->ro_flags); 3956 btrfs_set_token_inode_flags(&token, item, flags); 3957 btrfs_set_token_inode_block_group(&token, item, 0); 3958 } 3959 3960 /* 3961 * copy everything in the in-memory inode into the btree. 3962 */ 3963 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3964 struct btrfs_inode *inode) 3965 { 3966 struct btrfs_inode_item *inode_item; 3967 struct btrfs_path *path; 3968 struct extent_buffer *leaf; 3969 int ret; 3970 3971 path = btrfs_alloc_path(); 3972 if (!path) 3973 return -ENOMEM; 3974 3975 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1); 3976 if (ret) { 3977 if (ret > 0) 3978 ret = -ENOENT; 3979 goto failed; 3980 } 3981 3982 leaf = path->nodes[0]; 3983 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3984 struct btrfs_inode_item); 3985 3986 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 3987 btrfs_mark_buffer_dirty(trans, leaf); 3988 btrfs_set_inode_last_trans(trans, inode); 3989 ret = 0; 3990 failed: 3991 btrfs_free_path(path); 3992 return ret; 3993 } 3994 3995 /* 3996 * copy everything in the in-memory inode into the btree. 3997 */ 3998 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3999 struct btrfs_inode *inode) 4000 { 4001 struct btrfs_root *root = inode->root; 4002 struct btrfs_fs_info *fs_info = root->fs_info; 4003 int ret; 4004 4005 /* 4006 * If the inode is a free space inode, we can deadlock during commit 4007 * if we put it into the delayed code. 4008 * 4009 * The data relocation inode should also be directly updated 4010 * without delay 4011 */ 4012 if (!btrfs_is_free_space_inode(inode) 4013 && !btrfs_is_data_reloc_root(root) 4014 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4015 btrfs_update_root_times(trans, root); 4016 4017 ret = btrfs_delayed_update_inode(trans, inode); 4018 if (!ret) 4019 btrfs_set_inode_last_trans(trans, inode); 4020 return ret; 4021 } 4022 4023 return btrfs_update_inode_item(trans, inode); 4024 } 4025 4026 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4027 struct btrfs_inode *inode) 4028 { 4029 int ret; 4030 4031 ret = btrfs_update_inode(trans, inode); 4032 if (ret == -ENOSPC) 4033 return btrfs_update_inode_item(trans, inode); 4034 return ret; 4035 } 4036 4037 /* 4038 * unlink helper that gets used here in inode.c and in the tree logging 4039 * recovery code. It remove a link in a directory with a given name, and 4040 * also drops the back refs in the inode to the directory 4041 */ 4042 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4043 struct btrfs_inode *dir, 4044 struct btrfs_inode *inode, 4045 const struct fscrypt_str *name, 4046 struct btrfs_rename_ctx *rename_ctx) 4047 { 4048 struct btrfs_root *root = dir->root; 4049 struct btrfs_fs_info *fs_info = root->fs_info; 4050 struct btrfs_path *path; 4051 int ret = 0; 4052 struct btrfs_dir_item *di; 4053 u64 index; 4054 u64 ino = btrfs_ino(inode); 4055 u64 dir_ino = btrfs_ino(dir); 4056 4057 path = btrfs_alloc_path(); 4058 if (!path) { 4059 ret = -ENOMEM; 4060 goto out; 4061 } 4062 4063 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4064 if (IS_ERR_OR_NULL(di)) { 4065 ret = di ? PTR_ERR(di) : -ENOENT; 4066 goto err; 4067 } 4068 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4069 if (ret) 4070 goto err; 4071 btrfs_release_path(path); 4072 4073 /* 4074 * If we don't have dir index, we have to get it by looking up 4075 * the inode ref, since we get the inode ref, remove it directly, 4076 * it is unnecessary to do delayed deletion. 4077 * 4078 * But if we have dir index, needn't search inode ref to get it. 4079 * Since the inode ref is close to the inode item, it is better 4080 * that we delay to delete it, and just do this deletion when 4081 * we update the inode item. 4082 */ 4083 if (inode->dir_index) { 4084 ret = btrfs_delayed_delete_inode_ref(inode); 4085 if (!ret) { 4086 index = inode->dir_index; 4087 goto skip_backref; 4088 } 4089 } 4090 4091 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4092 if (ret) { 4093 btrfs_info(fs_info, 4094 "failed to delete reference to %.*s, inode %llu parent %llu", 4095 name->len, name->name, ino, dir_ino); 4096 btrfs_abort_transaction(trans, ret); 4097 goto err; 4098 } 4099 skip_backref: 4100 if (rename_ctx) 4101 rename_ctx->index = index; 4102 4103 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4104 if (ret) { 4105 btrfs_abort_transaction(trans, ret); 4106 goto err; 4107 } 4108 4109 /* 4110 * If we are in a rename context, we don't need to update anything in the 4111 * log. That will be done later during the rename by btrfs_log_new_name(). 4112 * Besides that, doing it here would only cause extra unnecessary btree 4113 * operations on the log tree, increasing latency for applications. 4114 */ 4115 if (!rename_ctx) { 4116 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4117 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4118 } 4119 4120 /* 4121 * If we have a pending delayed iput we could end up with the final iput 4122 * being run in btrfs-cleaner context. If we have enough of these built 4123 * up we can end up burning a lot of time in btrfs-cleaner without any 4124 * way to throttle the unlinks. Since we're currently holding a ref on 4125 * the inode we can run the delayed iput here without any issues as the 4126 * final iput won't be done until after we drop the ref we're currently 4127 * holding. 4128 */ 4129 btrfs_run_delayed_iput(fs_info, inode); 4130 err: 4131 btrfs_free_path(path); 4132 if (ret) 4133 goto out; 4134 4135 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4136 inode_inc_iversion(&inode->vfs_inode); 4137 inode_inc_iversion(&dir->vfs_inode); 4138 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4139 ret = btrfs_update_inode(trans, dir); 4140 out: 4141 return ret; 4142 } 4143 4144 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4145 struct btrfs_inode *dir, struct btrfs_inode *inode, 4146 const struct fscrypt_str *name) 4147 { 4148 int ret; 4149 4150 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4151 if (!ret) { 4152 drop_nlink(&inode->vfs_inode); 4153 ret = btrfs_update_inode(trans, inode); 4154 } 4155 return ret; 4156 } 4157 4158 /* 4159 * helper to start transaction for unlink and rmdir. 4160 * 4161 * unlink and rmdir are special in btrfs, they do not always free space, so 4162 * if we cannot make our reservations the normal way try and see if there is 4163 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4164 * allow the unlink to occur. 4165 */ 4166 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4167 { 4168 struct btrfs_root *root = dir->root; 4169 4170 return btrfs_start_transaction_fallback_global_rsv(root, 4171 BTRFS_UNLINK_METADATA_UNITS); 4172 } 4173 4174 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4175 { 4176 struct btrfs_trans_handle *trans; 4177 struct inode *inode = d_inode(dentry); 4178 int ret; 4179 struct fscrypt_name fname; 4180 4181 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4182 if (ret) 4183 return ret; 4184 4185 /* This needs to handle no-key deletions later on */ 4186 4187 trans = __unlink_start_trans(BTRFS_I(dir)); 4188 if (IS_ERR(trans)) { 4189 ret = PTR_ERR(trans); 4190 goto fscrypt_free; 4191 } 4192 4193 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4194 false); 4195 4196 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4197 &fname.disk_name); 4198 if (ret) 4199 goto end_trans; 4200 4201 if (inode->i_nlink == 0) { 4202 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4203 if (ret) 4204 goto end_trans; 4205 } 4206 4207 end_trans: 4208 btrfs_end_transaction(trans); 4209 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4210 fscrypt_free: 4211 fscrypt_free_filename(&fname); 4212 return ret; 4213 } 4214 4215 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4216 struct btrfs_inode *dir, struct dentry *dentry) 4217 { 4218 struct btrfs_root *root = dir->root; 4219 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4220 struct btrfs_path *path; 4221 struct extent_buffer *leaf; 4222 struct btrfs_dir_item *di; 4223 struct btrfs_key key; 4224 u64 index; 4225 int ret; 4226 u64 objectid; 4227 u64 dir_ino = btrfs_ino(dir); 4228 struct fscrypt_name fname; 4229 4230 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4231 if (ret) 4232 return ret; 4233 4234 /* This needs to handle no-key deletions later on */ 4235 4236 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4237 objectid = inode->root->root_key.objectid; 4238 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4239 objectid = inode->location.objectid; 4240 } else { 4241 WARN_ON(1); 4242 fscrypt_free_filename(&fname); 4243 return -EINVAL; 4244 } 4245 4246 path = btrfs_alloc_path(); 4247 if (!path) { 4248 ret = -ENOMEM; 4249 goto out; 4250 } 4251 4252 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4253 &fname.disk_name, -1); 4254 if (IS_ERR_OR_NULL(di)) { 4255 ret = di ? PTR_ERR(di) : -ENOENT; 4256 goto out; 4257 } 4258 4259 leaf = path->nodes[0]; 4260 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4261 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4262 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4263 if (ret) { 4264 btrfs_abort_transaction(trans, ret); 4265 goto out; 4266 } 4267 btrfs_release_path(path); 4268 4269 /* 4270 * This is a placeholder inode for a subvolume we didn't have a 4271 * reference to at the time of the snapshot creation. In the meantime 4272 * we could have renamed the real subvol link into our snapshot, so 4273 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4274 * Instead simply lookup the dir_index_item for this entry so we can 4275 * remove it. Otherwise we know we have a ref to the root and we can 4276 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4277 */ 4278 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4279 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4280 if (IS_ERR_OR_NULL(di)) { 4281 if (!di) 4282 ret = -ENOENT; 4283 else 4284 ret = PTR_ERR(di); 4285 btrfs_abort_transaction(trans, ret); 4286 goto out; 4287 } 4288 4289 leaf = path->nodes[0]; 4290 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4291 index = key.offset; 4292 btrfs_release_path(path); 4293 } else { 4294 ret = btrfs_del_root_ref(trans, objectid, 4295 root->root_key.objectid, dir_ino, 4296 &index, &fname.disk_name); 4297 if (ret) { 4298 btrfs_abort_transaction(trans, ret); 4299 goto out; 4300 } 4301 } 4302 4303 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4304 if (ret) { 4305 btrfs_abort_transaction(trans, ret); 4306 goto out; 4307 } 4308 4309 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4310 inode_inc_iversion(&dir->vfs_inode); 4311 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4312 ret = btrfs_update_inode_fallback(trans, dir); 4313 if (ret) 4314 btrfs_abort_transaction(trans, ret); 4315 out: 4316 btrfs_free_path(path); 4317 fscrypt_free_filename(&fname); 4318 return ret; 4319 } 4320 4321 /* 4322 * Helper to check if the subvolume references other subvolumes or if it's 4323 * default. 4324 */ 4325 static noinline int may_destroy_subvol(struct btrfs_root *root) 4326 { 4327 struct btrfs_fs_info *fs_info = root->fs_info; 4328 struct btrfs_path *path; 4329 struct btrfs_dir_item *di; 4330 struct btrfs_key key; 4331 struct fscrypt_str name = FSTR_INIT("default", 7); 4332 u64 dir_id; 4333 int ret; 4334 4335 path = btrfs_alloc_path(); 4336 if (!path) 4337 return -ENOMEM; 4338 4339 /* Make sure this root isn't set as the default subvol */ 4340 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4341 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4342 dir_id, &name, 0); 4343 if (di && !IS_ERR(di)) { 4344 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4345 if (key.objectid == root->root_key.objectid) { 4346 ret = -EPERM; 4347 btrfs_err(fs_info, 4348 "deleting default subvolume %llu is not allowed", 4349 key.objectid); 4350 goto out; 4351 } 4352 btrfs_release_path(path); 4353 } 4354 4355 key.objectid = root->root_key.objectid; 4356 key.type = BTRFS_ROOT_REF_KEY; 4357 key.offset = (u64)-1; 4358 4359 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4360 if (ret < 0) 4361 goto out; 4362 BUG_ON(ret == 0); 4363 4364 ret = 0; 4365 if (path->slots[0] > 0) { 4366 path->slots[0]--; 4367 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4368 if (key.objectid == root->root_key.objectid && 4369 key.type == BTRFS_ROOT_REF_KEY) 4370 ret = -ENOTEMPTY; 4371 } 4372 out: 4373 btrfs_free_path(path); 4374 return ret; 4375 } 4376 4377 /* Delete all dentries for inodes belonging to the root */ 4378 static void btrfs_prune_dentries(struct btrfs_root *root) 4379 { 4380 struct btrfs_fs_info *fs_info = root->fs_info; 4381 struct rb_node *node; 4382 struct rb_node *prev; 4383 struct btrfs_inode *entry; 4384 struct inode *inode; 4385 u64 objectid = 0; 4386 4387 if (!BTRFS_FS_ERROR(fs_info)) 4388 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4389 4390 spin_lock(&root->inode_lock); 4391 again: 4392 node = root->inode_tree.rb_node; 4393 prev = NULL; 4394 while (node) { 4395 prev = node; 4396 entry = rb_entry(node, struct btrfs_inode, rb_node); 4397 4398 if (objectid < btrfs_ino(entry)) 4399 node = node->rb_left; 4400 else if (objectid > btrfs_ino(entry)) 4401 node = node->rb_right; 4402 else 4403 break; 4404 } 4405 if (!node) { 4406 while (prev) { 4407 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4408 if (objectid <= btrfs_ino(entry)) { 4409 node = prev; 4410 break; 4411 } 4412 prev = rb_next(prev); 4413 } 4414 } 4415 while (node) { 4416 entry = rb_entry(node, struct btrfs_inode, rb_node); 4417 objectid = btrfs_ino(entry) + 1; 4418 inode = igrab(&entry->vfs_inode); 4419 if (inode) { 4420 spin_unlock(&root->inode_lock); 4421 if (atomic_read(&inode->i_count) > 1) 4422 d_prune_aliases(inode); 4423 /* 4424 * btrfs_drop_inode will have it removed from the inode 4425 * cache when its usage count hits zero. 4426 */ 4427 iput(inode); 4428 cond_resched(); 4429 spin_lock(&root->inode_lock); 4430 goto again; 4431 } 4432 4433 if (cond_resched_lock(&root->inode_lock)) 4434 goto again; 4435 4436 node = rb_next(node); 4437 } 4438 spin_unlock(&root->inode_lock); 4439 } 4440 4441 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4442 { 4443 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4444 struct btrfs_root *root = dir->root; 4445 struct inode *inode = d_inode(dentry); 4446 struct btrfs_root *dest = BTRFS_I(inode)->root; 4447 struct btrfs_trans_handle *trans; 4448 struct btrfs_block_rsv block_rsv; 4449 u64 root_flags; 4450 int ret; 4451 4452 /* 4453 * Don't allow to delete a subvolume with send in progress. This is 4454 * inside the inode lock so the error handling that has to drop the bit 4455 * again is not run concurrently. 4456 */ 4457 spin_lock(&dest->root_item_lock); 4458 if (dest->send_in_progress) { 4459 spin_unlock(&dest->root_item_lock); 4460 btrfs_warn(fs_info, 4461 "attempt to delete subvolume %llu during send", 4462 dest->root_key.objectid); 4463 return -EPERM; 4464 } 4465 if (atomic_read(&dest->nr_swapfiles)) { 4466 spin_unlock(&dest->root_item_lock); 4467 btrfs_warn(fs_info, 4468 "attempt to delete subvolume %llu with active swapfile", 4469 root->root_key.objectid); 4470 return -EPERM; 4471 } 4472 root_flags = btrfs_root_flags(&dest->root_item); 4473 btrfs_set_root_flags(&dest->root_item, 4474 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4475 spin_unlock(&dest->root_item_lock); 4476 4477 down_write(&fs_info->subvol_sem); 4478 4479 ret = may_destroy_subvol(dest); 4480 if (ret) 4481 goto out_up_write; 4482 4483 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4484 /* 4485 * One for dir inode, 4486 * two for dir entries, 4487 * two for root ref/backref. 4488 */ 4489 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4490 if (ret) 4491 goto out_up_write; 4492 4493 trans = btrfs_start_transaction(root, 0); 4494 if (IS_ERR(trans)) { 4495 ret = PTR_ERR(trans); 4496 goto out_release; 4497 } 4498 trans->block_rsv = &block_rsv; 4499 trans->bytes_reserved = block_rsv.size; 4500 4501 btrfs_record_snapshot_destroy(trans, dir); 4502 4503 ret = btrfs_unlink_subvol(trans, dir, dentry); 4504 if (ret) { 4505 btrfs_abort_transaction(trans, ret); 4506 goto out_end_trans; 4507 } 4508 4509 ret = btrfs_record_root_in_trans(trans, dest); 4510 if (ret) { 4511 btrfs_abort_transaction(trans, ret); 4512 goto out_end_trans; 4513 } 4514 4515 memset(&dest->root_item.drop_progress, 0, 4516 sizeof(dest->root_item.drop_progress)); 4517 btrfs_set_root_drop_level(&dest->root_item, 0); 4518 btrfs_set_root_refs(&dest->root_item, 0); 4519 4520 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4521 ret = btrfs_insert_orphan_item(trans, 4522 fs_info->tree_root, 4523 dest->root_key.objectid); 4524 if (ret) { 4525 btrfs_abort_transaction(trans, ret); 4526 goto out_end_trans; 4527 } 4528 } 4529 4530 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4531 BTRFS_UUID_KEY_SUBVOL, 4532 dest->root_key.objectid); 4533 if (ret && ret != -ENOENT) { 4534 btrfs_abort_transaction(trans, ret); 4535 goto out_end_trans; 4536 } 4537 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4538 ret = btrfs_uuid_tree_remove(trans, 4539 dest->root_item.received_uuid, 4540 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4541 dest->root_key.objectid); 4542 if (ret && ret != -ENOENT) { 4543 btrfs_abort_transaction(trans, ret); 4544 goto out_end_trans; 4545 } 4546 } 4547 4548 free_anon_bdev(dest->anon_dev); 4549 dest->anon_dev = 0; 4550 out_end_trans: 4551 trans->block_rsv = NULL; 4552 trans->bytes_reserved = 0; 4553 ret = btrfs_end_transaction(trans); 4554 inode->i_flags |= S_DEAD; 4555 out_release: 4556 btrfs_subvolume_release_metadata(root, &block_rsv); 4557 out_up_write: 4558 up_write(&fs_info->subvol_sem); 4559 if (ret) { 4560 spin_lock(&dest->root_item_lock); 4561 root_flags = btrfs_root_flags(&dest->root_item); 4562 btrfs_set_root_flags(&dest->root_item, 4563 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4564 spin_unlock(&dest->root_item_lock); 4565 } else { 4566 d_invalidate(dentry); 4567 btrfs_prune_dentries(dest); 4568 ASSERT(dest->send_in_progress == 0); 4569 } 4570 4571 return ret; 4572 } 4573 4574 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4575 { 4576 struct inode *inode = d_inode(dentry); 4577 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4578 int err = 0; 4579 struct btrfs_trans_handle *trans; 4580 u64 last_unlink_trans; 4581 struct fscrypt_name fname; 4582 4583 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4584 return -ENOTEMPTY; 4585 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4586 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4587 btrfs_err(fs_info, 4588 "extent tree v2 doesn't support snapshot deletion yet"); 4589 return -EOPNOTSUPP; 4590 } 4591 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4592 } 4593 4594 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4595 if (err) 4596 return err; 4597 4598 /* This needs to handle no-key deletions later on */ 4599 4600 trans = __unlink_start_trans(BTRFS_I(dir)); 4601 if (IS_ERR(trans)) { 4602 err = PTR_ERR(trans); 4603 goto out_notrans; 4604 } 4605 4606 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4607 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4608 goto out; 4609 } 4610 4611 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4612 if (err) 4613 goto out; 4614 4615 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4616 4617 /* now the directory is empty */ 4618 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4619 &fname.disk_name); 4620 if (!err) { 4621 btrfs_i_size_write(BTRFS_I(inode), 0); 4622 /* 4623 * Propagate the last_unlink_trans value of the deleted dir to 4624 * its parent directory. This is to prevent an unrecoverable 4625 * log tree in the case we do something like this: 4626 * 1) create dir foo 4627 * 2) create snapshot under dir foo 4628 * 3) delete the snapshot 4629 * 4) rmdir foo 4630 * 5) mkdir foo 4631 * 6) fsync foo or some file inside foo 4632 */ 4633 if (last_unlink_trans >= trans->transid) 4634 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4635 } 4636 out: 4637 btrfs_end_transaction(trans); 4638 out_notrans: 4639 btrfs_btree_balance_dirty(fs_info); 4640 fscrypt_free_filename(&fname); 4641 4642 return err; 4643 } 4644 4645 /* 4646 * Read, zero a chunk and write a block. 4647 * 4648 * @inode - inode that we're zeroing 4649 * @from - the offset to start zeroing 4650 * @len - the length to zero, 0 to zero the entire range respective to the 4651 * offset 4652 * @front - zero up to the offset instead of from the offset on 4653 * 4654 * This will find the block for the "from" offset and cow the block and zero the 4655 * part we want to zero. This is used with truncate and hole punching. 4656 */ 4657 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4658 int front) 4659 { 4660 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4661 struct address_space *mapping = inode->vfs_inode.i_mapping; 4662 struct extent_io_tree *io_tree = &inode->io_tree; 4663 struct btrfs_ordered_extent *ordered; 4664 struct extent_state *cached_state = NULL; 4665 struct extent_changeset *data_reserved = NULL; 4666 bool only_release_metadata = false; 4667 u32 blocksize = fs_info->sectorsize; 4668 pgoff_t index = from >> PAGE_SHIFT; 4669 unsigned offset = from & (blocksize - 1); 4670 struct page *page; 4671 gfp_t mask = btrfs_alloc_write_mask(mapping); 4672 size_t write_bytes = blocksize; 4673 int ret = 0; 4674 u64 block_start; 4675 u64 block_end; 4676 4677 if (IS_ALIGNED(offset, blocksize) && 4678 (!len || IS_ALIGNED(len, blocksize))) 4679 goto out; 4680 4681 block_start = round_down(from, blocksize); 4682 block_end = block_start + blocksize - 1; 4683 4684 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4685 blocksize, false); 4686 if (ret < 0) { 4687 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4688 /* For nocow case, no need to reserve data space */ 4689 only_release_metadata = true; 4690 } else { 4691 goto out; 4692 } 4693 } 4694 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4695 if (ret < 0) { 4696 if (!only_release_metadata) 4697 btrfs_free_reserved_data_space(inode, data_reserved, 4698 block_start, blocksize); 4699 goto out; 4700 } 4701 again: 4702 page = find_or_create_page(mapping, index, mask); 4703 if (!page) { 4704 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4705 blocksize, true); 4706 btrfs_delalloc_release_extents(inode, blocksize); 4707 ret = -ENOMEM; 4708 goto out; 4709 } 4710 4711 if (!PageUptodate(page)) { 4712 ret = btrfs_read_folio(NULL, page_folio(page)); 4713 lock_page(page); 4714 if (page->mapping != mapping) { 4715 unlock_page(page); 4716 put_page(page); 4717 goto again; 4718 } 4719 if (!PageUptodate(page)) { 4720 ret = -EIO; 4721 goto out_unlock; 4722 } 4723 } 4724 4725 /* 4726 * We unlock the page after the io is completed and then re-lock it 4727 * above. release_folio() could have come in between that and cleared 4728 * PagePrivate(), but left the page in the mapping. Set the page mapped 4729 * here to make sure it's properly set for the subpage stuff. 4730 */ 4731 ret = set_page_extent_mapped(page); 4732 if (ret < 0) 4733 goto out_unlock; 4734 4735 wait_on_page_writeback(page); 4736 4737 lock_extent(io_tree, block_start, block_end, &cached_state); 4738 4739 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4740 if (ordered) { 4741 unlock_extent(io_tree, block_start, block_end, &cached_state); 4742 unlock_page(page); 4743 put_page(page); 4744 btrfs_start_ordered_extent(ordered); 4745 btrfs_put_ordered_extent(ordered); 4746 goto again; 4747 } 4748 4749 clear_extent_bit(&inode->io_tree, block_start, block_end, 4750 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4751 &cached_state); 4752 4753 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4754 &cached_state); 4755 if (ret) { 4756 unlock_extent(io_tree, block_start, block_end, &cached_state); 4757 goto out_unlock; 4758 } 4759 4760 if (offset != blocksize) { 4761 if (!len) 4762 len = blocksize - offset; 4763 if (front) 4764 memzero_page(page, (block_start - page_offset(page)), 4765 offset); 4766 else 4767 memzero_page(page, (block_start - page_offset(page)) + offset, 4768 len); 4769 } 4770 btrfs_page_clear_checked(fs_info, page, block_start, 4771 block_end + 1 - block_start); 4772 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4773 unlock_extent(io_tree, block_start, block_end, &cached_state); 4774 4775 if (only_release_metadata) 4776 set_extent_bit(&inode->io_tree, block_start, block_end, 4777 EXTENT_NORESERVE, NULL); 4778 4779 out_unlock: 4780 if (ret) { 4781 if (only_release_metadata) 4782 btrfs_delalloc_release_metadata(inode, blocksize, true); 4783 else 4784 btrfs_delalloc_release_space(inode, data_reserved, 4785 block_start, blocksize, true); 4786 } 4787 btrfs_delalloc_release_extents(inode, blocksize); 4788 unlock_page(page); 4789 put_page(page); 4790 out: 4791 if (only_release_metadata) 4792 btrfs_check_nocow_unlock(inode); 4793 extent_changeset_free(data_reserved); 4794 return ret; 4795 } 4796 4797 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4798 { 4799 struct btrfs_root *root = inode->root; 4800 struct btrfs_fs_info *fs_info = root->fs_info; 4801 struct btrfs_trans_handle *trans; 4802 struct btrfs_drop_extents_args drop_args = { 0 }; 4803 int ret; 4804 4805 /* 4806 * If NO_HOLES is enabled, we don't need to do anything. 4807 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4808 * or btrfs_update_inode() will be called, which guarantee that the next 4809 * fsync will know this inode was changed and needs to be logged. 4810 */ 4811 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4812 return 0; 4813 4814 /* 4815 * 1 - for the one we're dropping 4816 * 1 - for the one we're adding 4817 * 1 - for updating the inode. 4818 */ 4819 trans = btrfs_start_transaction(root, 3); 4820 if (IS_ERR(trans)) 4821 return PTR_ERR(trans); 4822 4823 drop_args.start = offset; 4824 drop_args.end = offset + len; 4825 drop_args.drop_cache = true; 4826 4827 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4828 if (ret) { 4829 btrfs_abort_transaction(trans, ret); 4830 btrfs_end_transaction(trans); 4831 return ret; 4832 } 4833 4834 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4835 if (ret) { 4836 btrfs_abort_transaction(trans, ret); 4837 } else { 4838 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4839 btrfs_update_inode(trans, inode); 4840 } 4841 btrfs_end_transaction(trans); 4842 return ret; 4843 } 4844 4845 /* 4846 * This function puts in dummy file extents for the area we're creating a hole 4847 * for. So if we are truncating this file to a larger size we need to insert 4848 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4849 * the range between oldsize and size 4850 */ 4851 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4852 { 4853 struct btrfs_root *root = inode->root; 4854 struct btrfs_fs_info *fs_info = root->fs_info; 4855 struct extent_io_tree *io_tree = &inode->io_tree; 4856 struct extent_map *em = NULL; 4857 struct extent_state *cached_state = NULL; 4858 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4859 u64 block_end = ALIGN(size, fs_info->sectorsize); 4860 u64 last_byte; 4861 u64 cur_offset; 4862 u64 hole_size; 4863 int err = 0; 4864 4865 /* 4866 * If our size started in the middle of a block we need to zero out the 4867 * rest of the block before we expand the i_size, otherwise we could 4868 * expose stale data. 4869 */ 4870 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4871 if (err) 4872 return err; 4873 4874 if (size <= hole_start) 4875 return 0; 4876 4877 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4878 &cached_state); 4879 cur_offset = hole_start; 4880 while (1) { 4881 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4882 block_end - cur_offset); 4883 if (IS_ERR(em)) { 4884 err = PTR_ERR(em); 4885 em = NULL; 4886 break; 4887 } 4888 last_byte = min(extent_map_end(em), block_end); 4889 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4890 hole_size = last_byte - cur_offset; 4891 4892 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4893 struct extent_map *hole_em; 4894 4895 err = maybe_insert_hole(inode, cur_offset, hole_size); 4896 if (err) 4897 break; 4898 4899 err = btrfs_inode_set_file_extent_range(inode, 4900 cur_offset, hole_size); 4901 if (err) 4902 break; 4903 4904 hole_em = alloc_extent_map(); 4905 if (!hole_em) { 4906 btrfs_drop_extent_map_range(inode, cur_offset, 4907 cur_offset + hole_size - 1, 4908 false); 4909 btrfs_set_inode_full_sync(inode); 4910 goto next; 4911 } 4912 hole_em->start = cur_offset; 4913 hole_em->len = hole_size; 4914 hole_em->orig_start = cur_offset; 4915 4916 hole_em->block_start = EXTENT_MAP_HOLE; 4917 hole_em->block_len = 0; 4918 hole_em->orig_block_len = 0; 4919 hole_em->ram_bytes = hole_size; 4920 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4921 hole_em->generation = btrfs_get_fs_generation(fs_info); 4922 4923 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4924 free_extent_map(hole_em); 4925 } else { 4926 err = btrfs_inode_set_file_extent_range(inode, 4927 cur_offset, hole_size); 4928 if (err) 4929 break; 4930 } 4931 next: 4932 free_extent_map(em); 4933 em = NULL; 4934 cur_offset = last_byte; 4935 if (cur_offset >= block_end) 4936 break; 4937 } 4938 free_extent_map(em); 4939 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4940 return err; 4941 } 4942 4943 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4944 { 4945 struct btrfs_root *root = BTRFS_I(inode)->root; 4946 struct btrfs_trans_handle *trans; 4947 loff_t oldsize = i_size_read(inode); 4948 loff_t newsize = attr->ia_size; 4949 int mask = attr->ia_valid; 4950 int ret; 4951 4952 /* 4953 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4954 * special case where we need to update the times despite not having 4955 * these flags set. For all other operations the VFS set these flags 4956 * explicitly if it wants a timestamp update. 4957 */ 4958 if (newsize != oldsize) { 4959 inode_inc_iversion(inode); 4960 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4961 inode_set_mtime_to_ts(inode, 4962 inode_set_ctime_current(inode)); 4963 } 4964 } 4965 4966 if (newsize > oldsize) { 4967 /* 4968 * Don't do an expanding truncate while snapshotting is ongoing. 4969 * This is to ensure the snapshot captures a fully consistent 4970 * state of this file - if the snapshot captures this expanding 4971 * truncation, it must capture all writes that happened before 4972 * this truncation. 4973 */ 4974 btrfs_drew_write_lock(&root->snapshot_lock); 4975 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 4976 if (ret) { 4977 btrfs_drew_write_unlock(&root->snapshot_lock); 4978 return ret; 4979 } 4980 4981 trans = btrfs_start_transaction(root, 1); 4982 if (IS_ERR(trans)) { 4983 btrfs_drew_write_unlock(&root->snapshot_lock); 4984 return PTR_ERR(trans); 4985 } 4986 4987 i_size_write(inode, newsize); 4988 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 4989 pagecache_isize_extended(inode, oldsize, newsize); 4990 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 4991 btrfs_drew_write_unlock(&root->snapshot_lock); 4992 btrfs_end_transaction(trans); 4993 } else { 4994 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4995 4996 if (btrfs_is_zoned(fs_info)) { 4997 ret = btrfs_wait_ordered_range(inode, 4998 ALIGN(newsize, fs_info->sectorsize), 4999 (u64)-1); 5000 if (ret) 5001 return ret; 5002 } 5003 5004 /* 5005 * We're truncating a file that used to have good data down to 5006 * zero. Make sure any new writes to the file get on disk 5007 * on close. 5008 */ 5009 if (newsize == 0) 5010 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5011 &BTRFS_I(inode)->runtime_flags); 5012 5013 truncate_setsize(inode, newsize); 5014 5015 inode_dio_wait(inode); 5016 5017 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5018 if (ret && inode->i_nlink) { 5019 int err; 5020 5021 /* 5022 * Truncate failed, so fix up the in-memory size. We 5023 * adjusted disk_i_size down as we removed extents, so 5024 * wait for disk_i_size to be stable and then update the 5025 * in-memory size to match. 5026 */ 5027 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5028 if (err) 5029 return err; 5030 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5031 } 5032 } 5033 5034 return ret; 5035 } 5036 5037 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5038 struct iattr *attr) 5039 { 5040 struct inode *inode = d_inode(dentry); 5041 struct btrfs_root *root = BTRFS_I(inode)->root; 5042 int err; 5043 5044 if (btrfs_root_readonly(root)) 5045 return -EROFS; 5046 5047 err = setattr_prepare(idmap, dentry, attr); 5048 if (err) 5049 return err; 5050 5051 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5052 err = btrfs_setsize(inode, attr); 5053 if (err) 5054 return err; 5055 } 5056 5057 if (attr->ia_valid) { 5058 setattr_copy(idmap, inode, attr); 5059 inode_inc_iversion(inode); 5060 err = btrfs_dirty_inode(BTRFS_I(inode)); 5061 5062 if (!err && attr->ia_valid & ATTR_MODE) 5063 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5064 } 5065 5066 return err; 5067 } 5068 5069 /* 5070 * While truncating the inode pages during eviction, we get the VFS 5071 * calling btrfs_invalidate_folio() against each folio of the inode. This 5072 * is slow because the calls to btrfs_invalidate_folio() result in a 5073 * huge amount of calls to lock_extent() and clear_extent_bit(), 5074 * which keep merging and splitting extent_state structures over and over, 5075 * wasting lots of time. 5076 * 5077 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5078 * skip all those expensive operations on a per folio basis and do only 5079 * the ordered io finishing, while we release here the extent_map and 5080 * extent_state structures, without the excessive merging and splitting. 5081 */ 5082 static void evict_inode_truncate_pages(struct inode *inode) 5083 { 5084 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5085 struct rb_node *node; 5086 5087 ASSERT(inode->i_state & I_FREEING); 5088 truncate_inode_pages_final(&inode->i_data); 5089 5090 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5091 5092 /* 5093 * Keep looping until we have no more ranges in the io tree. 5094 * We can have ongoing bios started by readahead that have 5095 * their endio callback (extent_io.c:end_bio_extent_readpage) 5096 * still in progress (unlocked the pages in the bio but did not yet 5097 * unlocked the ranges in the io tree). Therefore this means some 5098 * ranges can still be locked and eviction started because before 5099 * submitting those bios, which are executed by a separate task (work 5100 * queue kthread), inode references (inode->i_count) were not taken 5101 * (which would be dropped in the end io callback of each bio). 5102 * Therefore here we effectively end up waiting for those bios and 5103 * anyone else holding locked ranges without having bumped the inode's 5104 * reference count - if we don't do it, when they access the inode's 5105 * io_tree to unlock a range it may be too late, leading to an 5106 * use-after-free issue. 5107 */ 5108 spin_lock(&io_tree->lock); 5109 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5110 struct extent_state *state; 5111 struct extent_state *cached_state = NULL; 5112 u64 start; 5113 u64 end; 5114 unsigned state_flags; 5115 5116 node = rb_first(&io_tree->state); 5117 state = rb_entry(node, struct extent_state, rb_node); 5118 start = state->start; 5119 end = state->end; 5120 state_flags = state->state; 5121 spin_unlock(&io_tree->lock); 5122 5123 lock_extent(io_tree, start, end, &cached_state); 5124 5125 /* 5126 * If still has DELALLOC flag, the extent didn't reach disk, 5127 * and its reserved space won't be freed by delayed_ref. 5128 * So we need to free its reserved space here. 5129 * (Refer to comment in btrfs_invalidate_folio, case 2) 5130 * 5131 * Note, end is the bytenr of last byte, so we need + 1 here. 5132 */ 5133 if (state_flags & EXTENT_DELALLOC) 5134 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5135 end - start + 1); 5136 5137 clear_extent_bit(io_tree, start, end, 5138 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5139 &cached_state); 5140 5141 cond_resched(); 5142 spin_lock(&io_tree->lock); 5143 } 5144 spin_unlock(&io_tree->lock); 5145 } 5146 5147 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5148 struct btrfs_block_rsv *rsv) 5149 { 5150 struct btrfs_fs_info *fs_info = root->fs_info; 5151 struct btrfs_trans_handle *trans; 5152 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5153 int ret; 5154 5155 /* 5156 * Eviction should be taking place at some place safe because of our 5157 * delayed iputs. However the normal flushing code will run delayed 5158 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5159 * 5160 * We reserve the delayed_refs_extra here again because we can't use 5161 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5162 * above. We reserve our extra bit here because we generate a ton of 5163 * delayed refs activity by truncating. 5164 * 5165 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5166 * if we fail to make this reservation we can re-try without the 5167 * delayed_refs_extra so we can make some forward progress. 5168 */ 5169 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5170 BTRFS_RESERVE_FLUSH_EVICT); 5171 if (ret) { 5172 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5173 BTRFS_RESERVE_FLUSH_EVICT); 5174 if (ret) { 5175 btrfs_warn(fs_info, 5176 "could not allocate space for delete; will truncate on mount"); 5177 return ERR_PTR(-ENOSPC); 5178 } 5179 delayed_refs_extra = 0; 5180 } 5181 5182 trans = btrfs_join_transaction(root); 5183 if (IS_ERR(trans)) 5184 return trans; 5185 5186 if (delayed_refs_extra) { 5187 trans->block_rsv = &fs_info->trans_block_rsv; 5188 trans->bytes_reserved = delayed_refs_extra; 5189 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5190 delayed_refs_extra, true); 5191 } 5192 return trans; 5193 } 5194 5195 void btrfs_evict_inode(struct inode *inode) 5196 { 5197 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5198 struct btrfs_trans_handle *trans; 5199 struct btrfs_root *root = BTRFS_I(inode)->root; 5200 struct btrfs_block_rsv *rsv = NULL; 5201 int ret; 5202 5203 trace_btrfs_inode_evict(inode); 5204 5205 if (!root) { 5206 fsverity_cleanup_inode(inode); 5207 clear_inode(inode); 5208 return; 5209 } 5210 5211 evict_inode_truncate_pages(inode); 5212 5213 if (inode->i_nlink && 5214 ((btrfs_root_refs(&root->root_item) != 0 && 5215 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5216 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5217 goto out; 5218 5219 if (is_bad_inode(inode)) 5220 goto out; 5221 5222 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5223 goto out; 5224 5225 if (inode->i_nlink > 0) { 5226 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5227 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5228 goto out; 5229 } 5230 5231 /* 5232 * This makes sure the inode item in tree is uptodate and the space for 5233 * the inode update is released. 5234 */ 5235 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5236 if (ret) 5237 goto out; 5238 5239 /* 5240 * This drops any pending insert or delete operations we have for this 5241 * inode. We could have a delayed dir index deletion queued up, but 5242 * we're removing the inode completely so that'll be taken care of in 5243 * the truncate. 5244 */ 5245 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5246 5247 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5248 if (!rsv) 5249 goto out; 5250 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5251 rsv->failfast = true; 5252 5253 btrfs_i_size_write(BTRFS_I(inode), 0); 5254 5255 while (1) { 5256 struct btrfs_truncate_control control = { 5257 .inode = BTRFS_I(inode), 5258 .ino = btrfs_ino(BTRFS_I(inode)), 5259 .new_size = 0, 5260 .min_type = 0, 5261 }; 5262 5263 trans = evict_refill_and_join(root, rsv); 5264 if (IS_ERR(trans)) 5265 goto out; 5266 5267 trans->block_rsv = rsv; 5268 5269 ret = btrfs_truncate_inode_items(trans, root, &control); 5270 trans->block_rsv = &fs_info->trans_block_rsv; 5271 btrfs_end_transaction(trans); 5272 /* 5273 * We have not added new delayed items for our inode after we 5274 * have flushed its delayed items, so no need to throttle on 5275 * delayed items. However we have modified extent buffers. 5276 */ 5277 btrfs_btree_balance_dirty_nodelay(fs_info); 5278 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5279 goto out; 5280 else if (!ret) 5281 break; 5282 } 5283 5284 /* 5285 * Errors here aren't a big deal, it just means we leave orphan items in 5286 * the tree. They will be cleaned up on the next mount. If the inode 5287 * number gets reused, cleanup deletes the orphan item without doing 5288 * anything, and unlink reuses the existing orphan item. 5289 * 5290 * If it turns out that we are dropping too many of these, we might want 5291 * to add a mechanism for retrying these after a commit. 5292 */ 5293 trans = evict_refill_and_join(root, rsv); 5294 if (!IS_ERR(trans)) { 5295 trans->block_rsv = rsv; 5296 btrfs_orphan_del(trans, BTRFS_I(inode)); 5297 trans->block_rsv = &fs_info->trans_block_rsv; 5298 btrfs_end_transaction(trans); 5299 } 5300 5301 out: 5302 btrfs_free_block_rsv(fs_info, rsv); 5303 /* 5304 * If we didn't successfully delete, the orphan item will still be in 5305 * the tree and we'll retry on the next mount. Again, we might also want 5306 * to retry these periodically in the future. 5307 */ 5308 btrfs_remove_delayed_node(BTRFS_I(inode)); 5309 fsverity_cleanup_inode(inode); 5310 clear_inode(inode); 5311 } 5312 5313 /* 5314 * Return the key found in the dir entry in the location pointer, fill @type 5315 * with BTRFS_FT_*, and return 0. 5316 * 5317 * If no dir entries were found, returns -ENOENT. 5318 * If found a corrupted location in dir entry, returns -EUCLEAN. 5319 */ 5320 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5321 struct btrfs_key *location, u8 *type) 5322 { 5323 struct btrfs_dir_item *di; 5324 struct btrfs_path *path; 5325 struct btrfs_root *root = dir->root; 5326 int ret = 0; 5327 struct fscrypt_name fname; 5328 5329 path = btrfs_alloc_path(); 5330 if (!path) 5331 return -ENOMEM; 5332 5333 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5334 if (ret < 0) 5335 goto out; 5336 /* 5337 * fscrypt_setup_filename() should never return a positive value, but 5338 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5339 */ 5340 ASSERT(ret == 0); 5341 5342 /* This needs to handle no-key deletions later on */ 5343 5344 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5345 &fname.disk_name, 0); 5346 if (IS_ERR_OR_NULL(di)) { 5347 ret = di ? PTR_ERR(di) : -ENOENT; 5348 goto out; 5349 } 5350 5351 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5352 if (location->type != BTRFS_INODE_ITEM_KEY && 5353 location->type != BTRFS_ROOT_ITEM_KEY) { 5354 ret = -EUCLEAN; 5355 btrfs_warn(root->fs_info, 5356 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5357 __func__, fname.disk_name.name, btrfs_ino(dir), 5358 location->objectid, location->type, location->offset); 5359 } 5360 if (!ret) 5361 *type = btrfs_dir_ftype(path->nodes[0], di); 5362 out: 5363 fscrypt_free_filename(&fname); 5364 btrfs_free_path(path); 5365 return ret; 5366 } 5367 5368 /* 5369 * when we hit a tree root in a directory, the btrfs part of the inode 5370 * needs to be changed to reflect the root directory of the tree root. This 5371 * is kind of like crossing a mount point. 5372 */ 5373 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5374 struct btrfs_inode *dir, 5375 struct dentry *dentry, 5376 struct btrfs_key *location, 5377 struct btrfs_root **sub_root) 5378 { 5379 struct btrfs_path *path; 5380 struct btrfs_root *new_root; 5381 struct btrfs_root_ref *ref; 5382 struct extent_buffer *leaf; 5383 struct btrfs_key key; 5384 int ret; 5385 int err = 0; 5386 struct fscrypt_name fname; 5387 5388 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5389 if (ret) 5390 return ret; 5391 5392 path = btrfs_alloc_path(); 5393 if (!path) { 5394 err = -ENOMEM; 5395 goto out; 5396 } 5397 5398 err = -ENOENT; 5399 key.objectid = dir->root->root_key.objectid; 5400 key.type = BTRFS_ROOT_REF_KEY; 5401 key.offset = location->objectid; 5402 5403 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5404 if (ret) { 5405 if (ret < 0) 5406 err = ret; 5407 goto out; 5408 } 5409 5410 leaf = path->nodes[0]; 5411 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5412 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5413 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5414 goto out; 5415 5416 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5417 (unsigned long)(ref + 1), fname.disk_name.len); 5418 if (ret) 5419 goto out; 5420 5421 btrfs_release_path(path); 5422 5423 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5424 if (IS_ERR(new_root)) { 5425 err = PTR_ERR(new_root); 5426 goto out; 5427 } 5428 5429 *sub_root = new_root; 5430 location->objectid = btrfs_root_dirid(&new_root->root_item); 5431 location->type = BTRFS_INODE_ITEM_KEY; 5432 location->offset = 0; 5433 err = 0; 5434 out: 5435 btrfs_free_path(path); 5436 fscrypt_free_filename(&fname); 5437 return err; 5438 } 5439 5440 static void inode_tree_add(struct btrfs_inode *inode) 5441 { 5442 struct btrfs_root *root = inode->root; 5443 struct btrfs_inode *entry; 5444 struct rb_node **p; 5445 struct rb_node *parent; 5446 struct rb_node *new = &inode->rb_node; 5447 u64 ino = btrfs_ino(inode); 5448 5449 if (inode_unhashed(&inode->vfs_inode)) 5450 return; 5451 parent = NULL; 5452 spin_lock(&root->inode_lock); 5453 p = &root->inode_tree.rb_node; 5454 while (*p) { 5455 parent = *p; 5456 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5457 5458 if (ino < btrfs_ino(entry)) 5459 p = &parent->rb_left; 5460 else if (ino > btrfs_ino(entry)) 5461 p = &parent->rb_right; 5462 else { 5463 WARN_ON(!(entry->vfs_inode.i_state & 5464 (I_WILL_FREE | I_FREEING))); 5465 rb_replace_node(parent, new, &root->inode_tree); 5466 RB_CLEAR_NODE(parent); 5467 spin_unlock(&root->inode_lock); 5468 return; 5469 } 5470 } 5471 rb_link_node(new, parent, p); 5472 rb_insert_color(new, &root->inode_tree); 5473 spin_unlock(&root->inode_lock); 5474 } 5475 5476 static void inode_tree_del(struct btrfs_inode *inode) 5477 { 5478 struct btrfs_root *root = inode->root; 5479 int empty = 0; 5480 5481 spin_lock(&root->inode_lock); 5482 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5483 rb_erase(&inode->rb_node, &root->inode_tree); 5484 RB_CLEAR_NODE(&inode->rb_node); 5485 empty = RB_EMPTY_ROOT(&root->inode_tree); 5486 } 5487 spin_unlock(&root->inode_lock); 5488 5489 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5490 spin_lock(&root->inode_lock); 5491 empty = RB_EMPTY_ROOT(&root->inode_tree); 5492 spin_unlock(&root->inode_lock); 5493 if (empty) 5494 btrfs_add_dead_root(root); 5495 } 5496 } 5497 5498 5499 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5500 { 5501 struct btrfs_iget_args *args = p; 5502 5503 inode->i_ino = args->ino; 5504 BTRFS_I(inode)->location.objectid = args->ino; 5505 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5506 BTRFS_I(inode)->location.offset = 0; 5507 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5508 BUG_ON(args->root && !BTRFS_I(inode)->root); 5509 5510 if (args->root && args->root == args->root->fs_info->tree_root && 5511 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5512 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5513 &BTRFS_I(inode)->runtime_flags); 5514 return 0; 5515 } 5516 5517 static int btrfs_find_actor(struct inode *inode, void *opaque) 5518 { 5519 struct btrfs_iget_args *args = opaque; 5520 5521 return args->ino == BTRFS_I(inode)->location.objectid && 5522 args->root == BTRFS_I(inode)->root; 5523 } 5524 5525 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5526 struct btrfs_root *root) 5527 { 5528 struct inode *inode; 5529 struct btrfs_iget_args args; 5530 unsigned long hashval = btrfs_inode_hash(ino, root); 5531 5532 args.ino = ino; 5533 args.root = root; 5534 5535 inode = iget5_locked(s, hashval, btrfs_find_actor, 5536 btrfs_init_locked_inode, 5537 (void *)&args); 5538 return inode; 5539 } 5540 5541 /* 5542 * Get an inode object given its inode number and corresponding root. 5543 * Path can be preallocated to prevent recursing back to iget through 5544 * allocator. NULL is also valid but may require an additional allocation 5545 * later. 5546 */ 5547 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5548 struct btrfs_root *root, struct btrfs_path *path) 5549 { 5550 struct inode *inode; 5551 5552 inode = btrfs_iget_locked(s, ino, root); 5553 if (!inode) 5554 return ERR_PTR(-ENOMEM); 5555 5556 if (inode->i_state & I_NEW) { 5557 int ret; 5558 5559 ret = btrfs_read_locked_inode(inode, path); 5560 if (!ret) { 5561 inode_tree_add(BTRFS_I(inode)); 5562 unlock_new_inode(inode); 5563 } else { 5564 iget_failed(inode); 5565 /* 5566 * ret > 0 can come from btrfs_search_slot called by 5567 * btrfs_read_locked_inode, this means the inode item 5568 * was not found. 5569 */ 5570 if (ret > 0) 5571 ret = -ENOENT; 5572 inode = ERR_PTR(ret); 5573 } 5574 } 5575 5576 return inode; 5577 } 5578 5579 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5580 { 5581 return btrfs_iget_path(s, ino, root, NULL); 5582 } 5583 5584 static struct inode *new_simple_dir(struct inode *dir, 5585 struct btrfs_key *key, 5586 struct btrfs_root *root) 5587 { 5588 struct timespec64 ts; 5589 struct inode *inode = new_inode(dir->i_sb); 5590 5591 if (!inode) 5592 return ERR_PTR(-ENOMEM); 5593 5594 BTRFS_I(inode)->root = btrfs_grab_root(root); 5595 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5596 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5597 5598 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5599 /* 5600 * We only need lookup, the rest is read-only and there's no inode 5601 * associated with the dentry 5602 */ 5603 inode->i_op = &simple_dir_inode_operations; 5604 inode->i_opflags &= ~IOP_XATTR; 5605 inode->i_fop = &simple_dir_operations; 5606 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5607 5608 ts = inode_set_ctime_current(inode); 5609 inode_set_mtime_to_ts(inode, ts); 5610 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5611 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5612 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5613 5614 inode->i_uid = dir->i_uid; 5615 inode->i_gid = dir->i_gid; 5616 5617 return inode; 5618 } 5619 5620 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5621 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5622 static_assert(BTRFS_FT_DIR == FT_DIR); 5623 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5624 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5625 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5626 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5627 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5628 5629 static inline u8 btrfs_inode_type(struct inode *inode) 5630 { 5631 return fs_umode_to_ftype(inode->i_mode); 5632 } 5633 5634 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5635 { 5636 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5637 struct inode *inode; 5638 struct btrfs_root *root = BTRFS_I(dir)->root; 5639 struct btrfs_root *sub_root = root; 5640 struct btrfs_key location; 5641 u8 di_type = 0; 5642 int ret = 0; 5643 5644 if (dentry->d_name.len > BTRFS_NAME_LEN) 5645 return ERR_PTR(-ENAMETOOLONG); 5646 5647 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5648 if (ret < 0) 5649 return ERR_PTR(ret); 5650 5651 if (location.type == BTRFS_INODE_ITEM_KEY) { 5652 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5653 if (IS_ERR(inode)) 5654 return inode; 5655 5656 /* Do extra check against inode mode with di_type */ 5657 if (btrfs_inode_type(inode) != di_type) { 5658 btrfs_crit(fs_info, 5659 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5660 inode->i_mode, btrfs_inode_type(inode), 5661 di_type); 5662 iput(inode); 5663 return ERR_PTR(-EUCLEAN); 5664 } 5665 return inode; 5666 } 5667 5668 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5669 &location, &sub_root); 5670 if (ret < 0) { 5671 if (ret != -ENOENT) 5672 inode = ERR_PTR(ret); 5673 else 5674 inode = new_simple_dir(dir, &location, root); 5675 } else { 5676 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5677 btrfs_put_root(sub_root); 5678 5679 if (IS_ERR(inode)) 5680 return inode; 5681 5682 down_read(&fs_info->cleanup_work_sem); 5683 if (!sb_rdonly(inode->i_sb)) 5684 ret = btrfs_orphan_cleanup(sub_root); 5685 up_read(&fs_info->cleanup_work_sem); 5686 if (ret) { 5687 iput(inode); 5688 inode = ERR_PTR(ret); 5689 } 5690 } 5691 5692 return inode; 5693 } 5694 5695 static int btrfs_dentry_delete(const struct dentry *dentry) 5696 { 5697 struct btrfs_root *root; 5698 struct inode *inode = d_inode(dentry); 5699 5700 if (!inode && !IS_ROOT(dentry)) 5701 inode = d_inode(dentry->d_parent); 5702 5703 if (inode) { 5704 root = BTRFS_I(inode)->root; 5705 if (btrfs_root_refs(&root->root_item) == 0) 5706 return 1; 5707 5708 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5709 return 1; 5710 } 5711 return 0; 5712 } 5713 5714 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5715 unsigned int flags) 5716 { 5717 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5718 5719 if (inode == ERR_PTR(-ENOENT)) 5720 inode = NULL; 5721 return d_splice_alias(inode, dentry); 5722 } 5723 5724 /* 5725 * Find the highest existing sequence number in a directory and then set the 5726 * in-memory index_cnt variable to the first free sequence number. 5727 */ 5728 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5729 { 5730 struct btrfs_root *root = inode->root; 5731 struct btrfs_key key, found_key; 5732 struct btrfs_path *path; 5733 struct extent_buffer *leaf; 5734 int ret; 5735 5736 key.objectid = btrfs_ino(inode); 5737 key.type = BTRFS_DIR_INDEX_KEY; 5738 key.offset = (u64)-1; 5739 5740 path = btrfs_alloc_path(); 5741 if (!path) 5742 return -ENOMEM; 5743 5744 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5745 if (ret < 0) 5746 goto out; 5747 /* FIXME: we should be able to handle this */ 5748 if (ret == 0) 5749 goto out; 5750 ret = 0; 5751 5752 if (path->slots[0] == 0) { 5753 inode->index_cnt = BTRFS_DIR_START_INDEX; 5754 goto out; 5755 } 5756 5757 path->slots[0]--; 5758 5759 leaf = path->nodes[0]; 5760 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5761 5762 if (found_key.objectid != btrfs_ino(inode) || 5763 found_key.type != BTRFS_DIR_INDEX_KEY) { 5764 inode->index_cnt = BTRFS_DIR_START_INDEX; 5765 goto out; 5766 } 5767 5768 inode->index_cnt = found_key.offset + 1; 5769 out: 5770 btrfs_free_path(path); 5771 return ret; 5772 } 5773 5774 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5775 { 5776 int ret = 0; 5777 5778 btrfs_inode_lock(dir, 0); 5779 if (dir->index_cnt == (u64)-1) { 5780 ret = btrfs_inode_delayed_dir_index_count(dir); 5781 if (ret) { 5782 ret = btrfs_set_inode_index_count(dir); 5783 if (ret) 5784 goto out; 5785 } 5786 } 5787 5788 /* index_cnt is the index number of next new entry, so decrement it. */ 5789 *index = dir->index_cnt - 1; 5790 out: 5791 btrfs_inode_unlock(dir, 0); 5792 5793 return ret; 5794 } 5795 5796 /* 5797 * All this infrastructure exists because dir_emit can fault, and we are holding 5798 * the tree lock when doing readdir. For now just allocate a buffer and copy 5799 * our information into that, and then dir_emit from the buffer. This is 5800 * similar to what NFS does, only we don't keep the buffer around in pagecache 5801 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5802 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5803 * tree lock. 5804 */ 5805 static int btrfs_opendir(struct inode *inode, struct file *file) 5806 { 5807 struct btrfs_file_private *private; 5808 u64 last_index; 5809 int ret; 5810 5811 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5812 if (ret) 5813 return ret; 5814 5815 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5816 if (!private) 5817 return -ENOMEM; 5818 private->last_index = last_index; 5819 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5820 if (!private->filldir_buf) { 5821 kfree(private); 5822 return -ENOMEM; 5823 } 5824 file->private_data = private; 5825 return 0; 5826 } 5827 5828 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5829 { 5830 struct btrfs_file_private *private = file->private_data; 5831 int ret; 5832 5833 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5834 &private->last_index); 5835 if (ret) 5836 return ret; 5837 5838 return generic_file_llseek(file, offset, whence); 5839 } 5840 5841 struct dir_entry { 5842 u64 ino; 5843 u64 offset; 5844 unsigned type; 5845 int name_len; 5846 }; 5847 5848 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5849 { 5850 while (entries--) { 5851 struct dir_entry *entry = addr; 5852 char *name = (char *)(entry + 1); 5853 5854 ctx->pos = get_unaligned(&entry->offset); 5855 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5856 get_unaligned(&entry->ino), 5857 get_unaligned(&entry->type))) 5858 return 1; 5859 addr += sizeof(struct dir_entry) + 5860 get_unaligned(&entry->name_len); 5861 ctx->pos++; 5862 } 5863 return 0; 5864 } 5865 5866 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5867 { 5868 struct inode *inode = file_inode(file); 5869 struct btrfs_root *root = BTRFS_I(inode)->root; 5870 struct btrfs_file_private *private = file->private_data; 5871 struct btrfs_dir_item *di; 5872 struct btrfs_key key; 5873 struct btrfs_key found_key; 5874 struct btrfs_path *path; 5875 void *addr; 5876 LIST_HEAD(ins_list); 5877 LIST_HEAD(del_list); 5878 int ret; 5879 char *name_ptr; 5880 int name_len; 5881 int entries = 0; 5882 int total_len = 0; 5883 bool put = false; 5884 struct btrfs_key location; 5885 5886 if (!dir_emit_dots(file, ctx)) 5887 return 0; 5888 5889 path = btrfs_alloc_path(); 5890 if (!path) 5891 return -ENOMEM; 5892 5893 addr = private->filldir_buf; 5894 path->reada = READA_FORWARD; 5895 5896 put = btrfs_readdir_get_delayed_items(inode, private->last_index, 5897 &ins_list, &del_list); 5898 5899 again: 5900 key.type = BTRFS_DIR_INDEX_KEY; 5901 key.offset = ctx->pos; 5902 key.objectid = btrfs_ino(BTRFS_I(inode)); 5903 5904 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5905 struct dir_entry *entry; 5906 struct extent_buffer *leaf = path->nodes[0]; 5907 u8 ftype; 5908 5909 if (found_key.objectid != key.objectid) 5910 break; 5911 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5912 break; 5913 if (found_key.offset < ctx->pos) 5914 continue; 5915 if (found_key.offset > private->last_index) 5916 break; 5917 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5918 continue; 5919 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5920 name_len = btrfs_dir_name_len(leaf, di); 5921 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5922 PAGE_SIZE) { 5923 btrfs_release_path(path); 5924 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5925 if (ret) 5926 goto nopos; 5927 addr = private->filldir_buf; 5928 entries = 0; 5929 total_len = 0; 5930 goto again; 5931 } 5932 5933 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5934 entry = addr; 5935 name_ptr = (char *)(entry + 1); 5936 read_extent_buffer(leaf, name_ptr, 5937 (unsigned long)(di + 1), name_len); 5938 put_unaligned(name_len, &entry->name_len); 5939 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5940 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5941 put_unaligned(location.objectid, &entry->ino); 5942 put_unaligned(found_key.offset, &entry->offset); 5943 entries++; 5944 addr += sizeof(struct dir_entry) + name_len; 5945 total_len += sizeof(struct dir_entry) + name_len; 5946 } 5947 /* Catch error encountered during iteration */ 5948 if (ret < 0) 5949 goto err; 5950 5951 btrfs_release_path(path); 5952 5953 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5954 if (ret) 5955 goto nopos; 5956 5957 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5958 if (ret) 5959 goto nopos; 5960 5961 /* 5962 * Stop new entries from being returned after we return the last 5963 * entry. 5964 * 5965 * New directory entries are assigned a strictly increasing 5966 * offset. This means that new entries created during readdir 5967 * are *guaranteed* to be seen in the future by that readdir. 5968 * This has broken buggy programs which operate on names as 5969 * they're returned by readdir. Until we re-use freed offsets 5970 * we have this hack to stop new entries from being returned 5971 * under the assumption that they'll never reach this huge 5972 * offset. 5973 * 5974 * This is being careful not to overflow 32bit loff_t unless the 5975 * last entry requires it because doing so has broken 32bit apps 5976 * in the past. 5977 */ 5978 if (ctx->pos >= INT_MAX) 5979 ctx->pos = LLONG_MAX; 5980 else 5981 ctx->pos = INT_MAX; 5982 nopos: 5983 ret = 0; 5984 err: 5985 if (put) 5986 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5987 btrfs_free_path(path); 5988 return ret; 5989 } 5990 5991 /* 5992 * This is somewhat expensive, updating the tree every time the 5993 * inode changes. But, it is most likely to find the inode in cache. 5994 * FIXME, needs more benchmarking...there are no reasons other than performance 5995 * to keep or drop this code. 5996 */ 5997 static int btrfs_dirty_inode(struct btrfs_inode *inode) 5998 { 5999 struct btrfs_root *root = inode->root; 6000 struct btrfs_fs_info *fs_info = root->fs_info; 6001 struct btrfs_trans_handle *trans; 6002 int ret; 6003 6004 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6005 return 0; 6006 6007 trans = btrfs_join_transaction(root); 6008 if (IS_ERR(trans)) 6009 return PTR_ERR(trans); 6010 6011 ret = btrfs_update_inode(trans, inode); 6012 if (ret == -ENOSPC || ret == -EDQUOT) { 6013 /* whoops, lets try again with the full transaction */ 6014 btrfs_end_transaction(trans); 6015 trans = btrfs_start_transaction(root, 1); 6016 if (IS_ERR(trans)) 6017 return PTR_ERR(trans); 6018 6019 ret = btrfs_update_inode(trans, inode); 6020 } 6021 btrfs_end_transaction(trans); 6022 if (inode->delayed_node) 6023 btrfs_balance_delayed_items(fs_info); 6024 6025 return ret; 6026 } 6027 6028 /* 6029 * This is a copy of file_update_time. We need this so we can return error on 6030 * ENOSPC for updating the inode in the case of file write and mmap writes. 6031 */ 6032 static int btrfs_update_time(struct inode *inode, int flags) 6033 { 6034 struct btrfs_root *root = BTRFS_I(inode)->root; 6035 bool dirty; 6036 6037 if (btrfs_root_readonly(root)) 6038 return -EROFS; 6039 6040 dirty = inode_update_timestamps(inode, flags); 6041 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6042 } 6043 6044 /* 6045 * helper to find a free sequence number in a given directory. This current 6046 * code is very simple, later versions will do smarter things in the btree 6047 */ 6048 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6049 { 6050 int ret = 0; 6051 6052 if (dir->index_cnt == (u64)-1) { 6053 ret = btrfs_inode_delayed_dir_index_count(dir); 6054 if (ret) { 6055 ret = btrfs_set_inode_index_count(dir); 6056 if (ret) 6057 return ret; 6058 } 6059 } 6060 6061 *index = dir->index_cnt; 6062 dir->index_cnt++; 6063 6064 return ret; 6065 } 6066 6067 static int btrfs_insert_inode_locked(struct inode *inode) 6068 { 6069 struct btrfs_iget_args args; 6070 6071 args.ino = BTRFS_I(inode)->location.objectid; 6072 args.root = BTRFS_I(inode)->root; 6073 6074 return insert_inode_locked4(inode, 6075 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6076 btrfs_find_actor, &args); 6077 } 6078 6079 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6080 unsigned int *trans_num_items) 6081 { 6082 struct inode *dir = args->dir; 6083 struct inode *inode = args->inode; 6084 int ret; 6085 6086 if (!args->orphan) { 6087 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6088 &args->fname); 6089 if (ret) 6090 return ret; 6091 } 6092 6093 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6094 if (ret) { 6095 fscrypt_free_filename(&args->fname); 6096 return ret; 6097 } 6098 6099 /* 1 to add inode item */ 6100 *trans_num_items = 1; 6101 /* 1 to add compression property */ 6102 if (BTRFS_I(dir)->prop_compress) 6103 (*trans_num_items)++; 6104 /* 1 to add default ACL xattr */ 6105 if (args->default_acl) 6106 (*trans_num_items)++; 6107 /* 1 to add access ACL xattr */ 6108 if (args->acl) 6109 (*trans_num_items)++; 6110 #ifdef CONFIG_SECURITY 6111 /* 1 to add LSM xattr */ 6112 if (dir->i_security) 6113 (*trans_num_items)++; 6114 #endif 6115 if (args->orphan) { 6116 /* 1 to add orphan item */ 6117 (*trans_num_items)++; 6118 } else { 6119 /* 6120 * 1 to add dir item 6121 * 1 to add dir index 6122 * 1 to update parent inode item 6123 * 6124 * No need for 1 unit for the inode ref item because it is 6125 * inserted in a batch together with the inode item at 6126 * btrfs_create_new_inode(). 6127 */ 6128 *trans_num_items += 3; 6129 } 6130 return 0; 6131 } 6132 6133 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6134 { 6135 posix_acl_release(args->acl); 6136 posix_acl_release(args->default_acl); 6137 fscrypt_free_filename(&args->fname); 6138 } 6139 6140 /* 6141 * Inherit flags from the parent inode. 6142 * 6143 * Currently only the compression flags and the cow flags are inherited. 6144 */ 6145 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6146 { 6147 unsigned int flags; 6148 6149 flags = dir->flags; 6150 6151 if (flags & BTRFS_INODE_NOCOMPRESS) { 6152 inode->flags &= ~BTRFS_INODE_COMPRESS; 6153 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6154 } else if (flags & BTRFS_INODE_COMPRESS) { 6155 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6156 inode->flags |= BTRFS_INODE_COMPRESS; 6157 } 6158 6159 if (flags & BTRFS_INODE_NODATACOW) { 6160 inode->flags |= BTRFS_INODE_NODATACOW; 6161 if (S_ISREG(inode->vfs_inode.i_mode)) 6162 inode->flags |= BTRFS_INODE_NODATASUM; 6163 } 6164 6165 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6166 } 6167 6168 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6169 struct btrfs_new_inode_args *args) 6170 { 6171 struct timespec64 ts; 6172 struct inode *dir = args->dir; 6173 struct inode *inode = args->inode; 6174 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6175 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6176 struct btrfs_root *root; 6177 struct btrfs_inode_item *inode_item; 6178 struct btrfs_key *location; 6179 struct btrfs_path *path; 6180 u64 objectid; 6181 struct btrfs_inode_ref *ref; 6182 struct btrfs_key key[2]; 6183 u32 sizes[2]; 6184 struct btrfs_item_batch batch; 6185 unsigned long ptr; 6186 int ret; 6187 6188 path = btrfs_alloc_path(); 6189 if (!path) 6190 return -ENOMEM; 6191 6192 if (!args->subvol) 6193 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6194 root = BTRFS_I(inode)->root; 6195 6196 ret = btrfs_get_free_objectid(root, &objectid); 6197 if (ret) 6198 goto out; 6199 inode->i_ino = objectid; 6200 6201 if (args->orphan) { 6202 /* 6203 * O_TMPFILE, set link count to 0, so that after this point, we 6204 * fill in an inode item with the correct link count. 6205 */ 6206 set_nlink(inode, 0); 6207 } else { 6208 trace_btrfs_inode_request(dir); 6209 6210 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6211 if (ret) 6212 goto out; 6213 } 6214 /* index_cnt is ignored for everything but a dir. */ 6215 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6216 BTRFS_I(inode)->generation = trans->transid; 6217 inode->i_generation = BTRFS_I(inode)->generation; 6218 6219 /* 6220 * Subvolumes don't inherit flags from their parent directory. 6221 * Originally this was probably by accident, but we probably can't 6222 * change it now without compatibility issues. 6223 */ 6224 if (!args->subvol) 6225 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6226 6227 if (S_ISREG(inode->i_mode)) { 6228 if (btrfs_test_opt(fs_info, NODATASUM)) 6229 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6230 if (btrfs_test_opt(fs_info, NODATACOW)) 6231 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6232 BTRFS_INODE_NODATASUM; 6233 } 6234 6235 location = &BTRFS_I(inode)->location; 6236 location->objectid = objectid; 6237 location->offset = 0; 6238 location->type = BTRFS_INODE_ITEM_KEY; 6239 6240 ret = btrfs_insert_inode_locked(inode); 6241 if (ret < 0) { 6242 if (!args->orphan) 6243 BTRFS_I(dir)->index_cnt--; 6244 goto out; 6245 } 6246 6247 /* 6248 * We could have gotten an inode number from somebody who was fsynced 6249 * and then removed in this same transaction, so let's just set full 6250 * sync since it will be a full sync anyway and this will blow away the 6251 * old info in the log. 6252 */ 6253 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6254 6255 key[0].objectid = objectid; 6256 key[0].type = BTRFS_INODE_ITEM_KEY; 6257 key[0].offset = 0; 6258 6259 sizes[0] = sizeof(struct btrfs_inode_item); 6260 6261 if (!args->orphan) { 6262 /* 6263 * Start new inodes with an inode_ref. This is slightly more 6264 * efficient for small numbers of hard links since they will 6265 * be packed into one item. Extended refs will kick in if we 6266 * add more hard links than can fit in the ref item. 6267 */ 6268 key[1].objectid = objectid; 6269 key[1].type = BTRFS_INODE_REF_KEY; 6270 if (args->subvol) { 6271 key[1].offset = objectid; 6272 sizes[1] = 2 + sizeof(*ref); 6273 } else { 6274 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6275 sizes[1] = name->len + sizeof(*ref); 6276 } 6277 } 6278 6279 batch.keys = &key[0]; 6280 batch.data_sizes = &sizes[0]; 6281 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6282 batch.nr = args->orphan ? 1 : 2; 6283 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6284 if (ret != 0) { 6285 btrfs_abort_transaction(trans, ret); 6286 goto discard; 6287 } 6288 6289 ts = simple_inode_init_ts(inode); 6290 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6291 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6292 6293 /* 6294 * We're going to fill the inode item now, so at this point the inode 6295 * must be fully initialized. 6296 */ 6297 6298 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6299 struct btrfs_inode_item); 6300 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6301 sizeof(*inode_item)); 6302 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6303 6304 if (!args->orphan) { 6305 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6306 struct btrfs_inode_ref); 6307 ptr = (unsigned long)(ref + 1); 6308 if (args->subvol) { 6309 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6310 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6311 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6312 } else { 6313 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6314 name->len); 6315 btrfs_set_inode_ref_index(path->nodes[0], ref, 6316 BTRFS_I(inode)->dir_index); 6317 write_extent_buffer(path->nodes[0], name->name, ptr, 6318 name->len); 6319 } 6320 } 6321 6322 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6323 /* 6324 * We don't need the path anymore, plus inheriting properties, adding 6325 * ACLs, security xattrs, orphan item or adding the link, will result in 6326 * allocating yet another path. So just free our path. 6327 */ 6328 btrfs_free_path(path); 6329 path = NULL; 6330 6331 if (args->subvol) { 6332 struct inode *parent; 6333 6334 /* 6335 * Subvolumes inherit properties from their parent subvolume, 6336 * not the directory they were created in. 6337 */ 6338 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6339 BTRFS_I(dir)->root); 6340 if (IS_ERR(parent)) { 6341 ret = PTR_ERR(parent); 6342 } else { 6343 ret = btrfs_inode_inherit_props(trans, inode, parent); 6344 iput(parent); 6345 } 6346 } else { 6347 ret = btrfs_inode_inherit_props(trans, inode, dir); 6348 } 6349 if (ret) { 6350 btrfs_err(fs_info, 6351 "error inheriting props for ino %llu (root %llu): %d", 6352 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6353 ret); 6354 } 6355 6356 /* 6357 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6358 * probably a bug. 6359 */ 6360 if (!args->subvol) { 6361 ret = btrfs_init_inode_security(trans, args); 6362 if (ret) { 6363 btrfs_abort_transaction(trans, ret); 6364 goto discard; 6365 } 6366 } 6367 6368 inode_tree_add(BTRFS_I(inode)); 6369 6370 trace_btrfs_inode_new(inode); 6371 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6372 6373 btrfs_update_root_times(trans, root); 6374 6375 if (args->orphan) { 6376 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6377 } else { 6378 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6379 0, BTRFS_I(inode)->dir_index); 6380 } 6381 if (ret) { 6382 btrfs_abort_transaction(trans, ret); 6383 goto discard; 6384 } 6385 6386 return 0; 6387 6388 discard: 6389 /* 6390 * discard_new_inode() calls iput(), but the caller owns the reference 6391 * to the inode. 6392 */ 6393 ihold(inode); 6394 discard_new_inode(inode); 6395 out: 6396 btrfs_free_path(path); 6397 return ret; 6398 } 6399 6400 /* 6401 * utility function to add 'inode' into 'parent_inode' with 6402 * a give name and a given sequence number. 6403 * if 'add_backref' is true, also insert a backref from the 6404 * inode to the parent directory. 6405 */ 6406 int btrfs_add_link(struct btrfs_trans_handle *trans, 6407 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6408 const struct fscrypt_str *name, int add_backref, u64 index) 6409 { 6410 int ret = 0; 6411 struct btrfs_key key; 6412 struct btrfs_root *root = parent_inode->root; 6413 u64 ino = btrfs_ino(inode); 6414 u64 parent_ino = btrfs_ino(parent_inode); 6415 6416 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6417 memcpy(&key, &inode->root->root_key, sizeof(key)); 6418 } else { 6419 key.objectid = ino; 6420 key.type = BTRFS_INODE_ITEM_KEY; 6421 key.offset = 0; 6422 } 6423 6424 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6425 ret = btrfs_add_root_ref(trans, key.objectid, 6426 root->root_key.objectid, parent_ino, 6427 index, name); 6428 } else if (add_backref) { 6429 ret = btrfs_insert_inode_ref(trans, root, name, 6430 ino, parent_ino, index); 6431 } 6432 6433 /* Nothing to clean up yet */ 6434 if (ret) 6435 return ret; 6436 6437 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6438 btrfs_inode_type(&inode->vfs_inode), index); 6439 if (ret == -EEXIST || ret == -EOVERFLOW) 6440 goto fail_dir_item; 6441 else if (ret) { 6442 btrfs_abort_transaction(trans, ret); 6443 return ret; 6444 } 6445 6446 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6447 name->len * 2); 6448 inode_inc_iversion(&parent_inode->vfs_inode); 6449 /* 6450 * If we are replaying a log tree, we do not want to update the mtime 6451 * and ctime of the parent directory with the current time, since the 6452 * log replay procedure is responsible for setting them to their correct 6453 * values (the ones it had when the fsync was done). 6454 */ 6455 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6456 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6457 inode_set_ctime_current(&parent_inode->vfs_inode)); 6458 6459 ret = btrfs_update_inode(trans, parent_inode); 6460 if (ret) 6461 btrfs_abort_transaction(trans, ret); 6462 return ret; 6463 6464 fail_dir_item: 6465 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6466 u64 local_index; 6467 int err; 6468 err = btrfs_del_root_ref(trans, key.objectid, 6469 root->root_key.objectid, parent_ino, 6470 &local_index, name); 6471 if (err) 6472 btrfs_abort_transaction(trans, err); 6473 } else if (add_backref) { 6474 u64 local_index; 6475 int err; 6476 6477 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6478 &local_index); 6479 if (err) 6480 btrfs_abort_transaction(trans, err); 6481 } 6482 6483 /* Return the original error code */ 6484 return ret; 6485 } 6486 6487 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6488 struct inode *inode) 6489 { 6490 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6491 struct btrfs_root *root = BTRFS_I(dir)->root; 6492 struct btrfs_new_inode_args new_inode_args = { 6493 .dir = dir, 6494 .dentry = dentry, 6495 .inode = inode, 6496 }; 6497 unsigned int trans_num_items; 6498 struct btrfs_trans_handle *trans; 6499 int err; 6500 6501 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6502 if (err) 6503 goto out_inode; 6504 6505 trans = btrfs_start_transaction(root, trans_num_items); 6506 if (IS_ERR(trans)) { 6507 err = PTR_ERR(trans); 6508 goto out_new_inode_args; 6509 } 6510 6511 err = btrfs_create_new_inode(trans, &new_inode_args); 6512 if (!err) 6513 d_instantiate_new(dentry, inode); 6514 6515 btrfs_end_transaction(trans); 6516 btrfs_btree_balance_dirty(fs_info); 6517 out_new_inode_args: 6518 btrfs_new_inode_args_destroy(&new_inode_args); 6519 out_inode: 6520 if (err) 6521 iput(inode); 6522 return err; 6523 } 6524 6525 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6526 struct dentry *dentry, umode_t mode, dev_t rdev) 6527 { 6528 struct inode *inode; 6529 6530 inode = new_inode(dir->i_sb); 6531 if (!inode) 6532 return -ENOMEM; 6533 inode_init_owner(idmap, inode, dir, mode); 6534 inode->i_op = &btrfs_special_inode_operations; 6535 init_special_inode(inode, inode->i_mode, rdev); 6536 return btrfs_create_common(dir, dentry, inode); 6537 } 6538 6539 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6540 struct dentry *dentry, umode_t mode, bool excl) 6541 { 6542 struct inode *inode; 6543 6544 inode = new_inode(dir->i_sb); 6545 if (!inode) 6546 return -ENOMEM; 6547 inode_init_owner(idmap, inode, dir, mode); 6548 inode->i_fop = &btrfs_file_operations; 6549 inode->i_op = &btrfs_file_inode_operations; 6550 inode->i_mapping->a_ops = &btrfs_aops; 6551 return btrfs_create_common(dir, dentry, inode); 6552 } 6553 6554 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6555 struct dentry *dentry) 6556 { 6557 struct btrfs_trans_handle *trans = NULL; 6558 struct btrfs_root *root = BTRFS_I(dir)->root; 6559 struct inode *inode = d_inode(old_dentry); 6560 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6561 struct fscrypt_name fname; 6562 u64 index; 6563 int err; 6564 int drop_inode = 0; 6565 6566 /* do not allow sys_link's with other subvols of the same device */ 6567 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6568 return -EXDEV; 6569 6570 if (inode->i_nlink >= BTRFS_LINK_MAX) 6571 return -EMLINK; 6572 6573 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6574 if (err) 6575 goto fail; 6576 6577 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6578 if (err) 6579 goto fail; 6580 6581 /* 6582 * 2 items for inode and inode ref 6583 * 2 items for dir items 6584 * 1 item for parent inode 6585 * 1 item for orphan item deletion if O_TMPFILE 6586 */ 6587 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6588 if (IS_ERR(trans)) { 6589 err = PTR_ERR(trans); 6590 trans = NULL; 6591 goto fail; 6592 } 6593 6594 /* There are several dir indexes for this inode, clear the cache. */ 6595 BTRFS_I(inode)->dir_index = 0ULL; 6596 inc_nlink(inode); 6597 inode_inc_iversion(inode); 6598 inode_set_ctime_current(inode); 6599 ihold(inode); 6600 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6601 6602 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6603 &fname.disk_name, 1, index); 6604 6605 if (err) { 6606 drop_inode = 1; 6607 } else { 6608 struct dentry *parent = dentry->d_parent; 6609 6610 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6611 if (err) 6612 goto fail; 6613 if (inode->i_nlink == 1) { 6614 /* 6615 * If new hard link count is 1, it's a file created 6616 * with open(2) O_TMPFILE flag. 6617 */ 6618 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6619 if (err) 6620 goto fail; 6621 } 6622 d_instantiate(dentry, inode); 6623 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6624 } 6625 6626 fail: 6627 fscrypt_free_filename(&fname); 6628 if (trans) 6629 btrfs_end_transaction(trans); 6630 if (drop_inode) { 6631 inode_dec_link_count(inode); 6632 iput(inode); 6633 } 6634 btrfs_btree_balance_dirty(fs_info); 6635 return err; 6636 } 6637 6638 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6639 struct dentry *dentry, umode_t mode) 6640 { 6641 struct inode *inode; 6642 6643 inode = new_inode(dir->i_sb); 6644 if (!inode) 6645 return -ENOMEM; 6646 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6647 inode->i_op = &btrfs_dir_inode_operations; 6648 inode->i_fop = &btrfs_dir_file_operations; 6649 return btrfs_create_common(dir, dentry, inode); 6650 } 6651 6652 static noinline int uncompress_inline(struct btrfs_path *path, 6653 struct page *page, 6654 struct btrfs_file_extent_item *item) 6655 { 6656 int ret; 6657 struct extent_buffer *leaf = path->nodes[0]; 6658 char *tmp; 6659 size_t max_size; 6660 unsigned long inline_size; 6661 unsigned long ptr; 6662 int compress_type; 6663 6664 compress_type = btrfs_file_extent_compression(leaf, item); 6665 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6666 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6667 tmp = kmalloc(inline_size, GFP_NOFS); 6668 if (!tmp) 6669 return -ENOMEM; 6670 ptr = btrfs_file_extent_inline_start(item); 6671 6672 read_extent_buffer(leaf, tmp, ptr, inline_size); 6673 6674 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6675 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6676 6677 /* 6678 * decompression code contains a memset to fill in any space between the end 6679 * of the uncompressed data and the end of max_size in case the decompressed 6680 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6681 * the end of an inline extent and the beginning of the next block, so we 6682 * cover that region here. 6683 */ 6684 6685 if (max_size < PAGE_SIZE) 6686 memzero_page(page, max_size, PAGE_SIZE - max_size); 6687 kfree(tmp); 6688 return ret; 6689 } 6690 6691 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6692 struct page *page) 6693 { 6694 struct btrfs_file_extent_item *fi; 6695 void *kaddr; 6696 size_t copy_size; 6697 6698 if (!page || PageUptodate(page)) 6699 return 0; 6700 6701 ASSERT(page_offset(page) == 0); 6702 6703 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6704 struct btrfs_file_extent_item); 6705 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6706 return uncompress_inline(path, page, fi); 6707 6708 copy_size = min_t(u64, PAGE_SIZE, 6709 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6710 kaddr = kmap_local_page(page); 6711 read_extent_buffer(path->nodes[0], kaddr, 6712 btrfs_file_extent_inline_start(fi), copy_size); 6713 kunmap_local(kaddr); 6714 if (copy_size < PAGE_SIZE) 6715 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6716 return 0; 6717 } 6718 6719 /* 6720 * Lookup the first extent overlapping a range in a file. 6721 * 6722 * @inode: file to search in 6723 * @page: page to read extent data into if the extent is inline 6724 * @pg_offset: offset into @page to copy to 6725 * @start: file offset 6726 * @len: length of range starting at @start 6727 * 6728 * Return the first &struct extent_map which overlaps the given range, reading 6729 * it from the B-tree and caching it if necessary. Note that there may be more 6730 * extents which overlap the given range after the returned extent_map. 6731 * 6732 * If @page is not NULL and the extent is inline, this also reads the extent 6733 * data directly into the page and marks the extent up to date in the io_tree. 6734 * 6735 * Return: ERR_PTR on error, non-NULL extent_map on success. 6736 */ 6737 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6738 struct page *page, size_t pg_offset, 6739 u64 start, u64 len) 6740 { 6741 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6742 int ret = 0; 6743 u64 extent_start = 0; 6744 u64 extent_end = 0; 6745 u64 objectid = btrfs_ino(inode); 6746 int extent_type = -1; 6747 struct btrfs_path *path = NULL; 6748 struct btrfs_root *root = inode->root; 6749 struct btrfs_file_extent_item *item; 6750 struct extent_buffer *leaf; 6751 struct btrfs_key found_key; 6752 struct extent_map *em = NULL; 6753 struct extent_map_tree *em_tree = &inode->extent_tree; 6754 6755 read_lock(&em_tree->lock); 6756 em = lookup_extent_mapping(em_tree, start, len); 6757 read_unlock(&em_tree->lock); 6758 6759 if (em) { 6760 if (em->start > start || em->start + em->len <= start) 6761 free_extent_map(em); 6762 else if (em->block_start == EXTENT_MAP_INLINE && page) 6763 free_extent_map(em); 6764 else 6765 goto out; 6766 } 6767 em = alloc_extent_map(); 6768 if (!em) { 6769 ret = -ENOMEM; 6770 goto out; 6771 } 6772 em->start = EXTENT_MAP_HOLE; 6773 em->orig_start = EXTENT_MAP_HOLE; 6774 em->len = (u64)-1; 6775 em->block_len = (u64)-1; 6776 6777 path = btrfs_alloc_path(); 6778 if (!path) { 6779 ret = -ENOMEM; 6780 goto out; 6781 } 6782 6783 /* Chances are we'll be called again, so go ahead and do readahead */ 6784 path->reada = READA_FORWARD; 6785 6786 /* 6787 * The same explanation in load_free_space_cache applies here as well, 6788 * we only read when we're loading the free space cache, and at that 6789 * point the commit_root has everything we need. 6790 */ 6791 if (btrfs_is_free_space_inode(inode)) { 6792 path->search_commit_root = 1; 6793 path->skip_locking = 1; 6794 } 6795 6796 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6797 if (ret < 0) { 6798 goto out; 6799 } else if (ret > 0) { 6800 if (path->slots[0] == 0) 6801 goto not_found; 6802 path->slots[0]--; 6803 ret = 0; 6804 } 6805 6806 leaf = path->nodes[0]; 6807 item = btrfs_item_ptr(leaf, path->slots[0], 6808 struct btrfs_file_extent_item); 6809 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6810 if (found_key.objectid != objectid || 6811 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6812 /* 6813 * If we backup past the first extent we want to move forward 6814 * and see if there is an extent in front of us, otherwise we'll 6815 * say there is a hole for our whole search range which can 6816 * cause problems. 6817 */ 6818 extent_end = start; 6819 goto next; 6820 } 6821 6822 extent_type = btrfs_file_extent_type(leaf, item); 6823 extent_start = found_key.offset; 6824 extent_end = btrfs_file_extent_end(path); 6825 if (extent_type == BTRFS_FILE_EXTENT_REG || 6826 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6827 /* Only regular file could have regular/prealloc extent */ 6828 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6829 ret = -EUCLEAN; 6830 btrfs_crit(fs_info, 6831 "regular/prealloc extent found for non-regular inode %llu", 6832 btrfs_ino(inode)); 6833 goto out; 6834 } 6835 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6836 extent_start); 6837 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6838 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6839 path->slots[0], 6840 extent_start); 6841 } 6842 next: 6843 if (start >= extent_end) { 6844 path->slots[0]++; 6845 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6846 ret = btrfs_next_leaf(root, path); 6847 if (ret < 0) 6848 goto out; 6849 else if (ret > 0) 6850 goto not_found; 6851 6852 leaf = path->nodes[0]; 6853 } 6854 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6855 if (found_key.objectid != objectid || 6856 found_key.type != BTRFS_EXTENT_DATA_KEY) 6857 goto not_found; 6858 if (start + len <= found_key.offset) 6859 goto not_found; 6860 if (start > found_key.offset) 6861 goto next; 6862 6863 /* New extent overlaps with existing one */ 6864 em->start = start; 6865 em->orig_start = start; 6866 em->len = found_key.offset - start; 6867 em->block_start = EXTENT_MAP_HOLE; 6868 goto insert; 6869 } 6870 6871 btrfs_extent_item_to_extent_map(inode, path, item, em); 6872 6873 if (extent_type == BTRFS_FILE_EXTENT_REG || 6874 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6875 goto insert; 6876 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6877 /* 6878 * Inline extent can only exist at file offset 0. This is 6879 * ensured by tree-checker and inline extent creation path. 6880 * Thus all members representing file offsets should be zero. 6881 */ 6882 ASSERT(pg_offset == 0); 6883 ASSERT(extent_start == 0); 6884 ASSERT(em->start == 0); 6885 6886 /* 6887 * btrfs_extent_item_to_extent_map() should have properly 6888 * initialized em members already. 6889 * 6890 * Other members are not utilized for inline extents. 6891 */ 6892 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6893 ASSERT(em->len == fs_info->sectorsize); 6894 6895 ret = read_inline_extent(inode, path, page); 6896 if (ret < 0) 6897 goto out; 6898 goto insert; 6899 } 6900 not_found: 6901 em->start = start; 6902 em->orig_start = start; 6903 em->len = len; 6904 em->block_start = EXTENT_MAP_HOLE; 6905 insert: 6906 ret = 0; 6907 btrfs_release_path(path); 6908 if (em->start > start || extent_map_end(em) <= start) { 6909 btrfs_err(fs_info, 6910 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6911 em->start, em->len, start, len); 6912 ret = -EIO; 6913 goto out; 6914 } 6915 6916 write_lock(&em_tree->lock); 6917 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6918 write_unlock(&em_tree->lock); 6919 out: 6920 btrfs_free_path(path); 6921 6922 trace_btrfs_get_extent(root, inode, em); 6923 6924 if (ret) { 6925 free_extent_map(em); 6926 return ERR_PTR(ret); 6927 } 6928 return em; 6929 } 6930 6931 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6932 struct btrfs_dio_data *dio_data, 6933 const u64 start, 6934 const u64 len, 6935 const u64 orig_start, 6936 const u64 block_start, 6937 const u64 block_len, 6938 const u64 orig_block_len, 6939 const u64 ram_bytes, 6940 const int type) 6941 { 6942 struct extent_map *em = NULL; 6943 struct btrfs_ordered_extent *ordered; 6944 6945 if (type != BTRFS_ORDERED_NOCOW) { 6946 em = create_io_em(inode, start, len, orig_start, block_start, 6947 block_len, orig_block_len, ram_bytes, 6948 BTRFS_COMPRESS_NONE, /* compress_type */ 6949 type); 6950 if (IS_ERR(em)) 6951 goto out; 6952 } 6953 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 6954 block_start, block_len, 0, 6955 (1 << type) | 6956 (1 << BTRFS_ORDERED_DIRECT), 6957 BTRFS_COMPRESS_NONE); 6958 if (IS_ERR(ordered)) { 6959 if (em) { 6960 free_extent_map(em); 6961 btrfs_drop_extent_map_range(inode, start, 6962 start + len - 1, false); 6963 } 6964 em = ERR_CAST(ordered); 6965 } else { 6966 ASSERT(!dio_data->ordered); 6967 dio_data->ordered = ordered; 6968 } 6969 out: 6970 6971 return em; 6972 } 6973 6974 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6975 struct btrfs_dio_data *dio_data, 6976 u64 start, u64 len) 6977 { 6978 struct btrfs_root *root = inode->root; 6979 struct btrfs_fs_info *fs_info = root->fs_info; 6980 struct extent_map *em; 6981 struct btrfs_key ins; 6982 u64 alloc_hint; 6983 int ret; 6984 6985 alloc_hint = get_extent_allocation_hint(inode, start, len); 6986 again: 6987 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6988 0, alloc_hint, &ins, 1, 1); 6989 if (ret == -EAGAIN) { 6990 ASSERT(btrfs_is_zoned(fs_info)); 6991 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 6992 TASK_UNINTERRUPTIBLE); 6993 goto again; 6994 } 6995 if (ret) 6996 return ERR_PTR(ret); 6997 6998 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 6999 ins.objectid, ins.offset, ins.offset, 7000 ins.offset, BTRFS_ORDERED_REGULAR); 7001 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7002 if (IS_ERR(em)) 7003 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7004 1); 7005 7006 return em; 7007 } 7008 7009 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7010 { 7011 struct btrfs_block_group *block_group; 7012 bool readonly = false; 7013 7014 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7015 if (!block_group || block_group->ro) 7016 readonly = true; 7017 if (block_group) 7018 btrfs_put_block_group(block_group); 7019 return readonly; 7020 } 7021 7022 /* 7023 * Check if we can do nocow write into the range [@offset, @offset + @len) 7024 * 7025 * @offset: File offset 7026 * @len: The length to write, will be updated to the nocow writeable 7027 * range 7028 * @orig_start: (optional) Return the original file offset of the file extent 7029 * @orig_len: (optional) Return the original on-disk length of the file extent 7030 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7031 * @strict: if true, omit optimizations that might force us into unnecessary 7032 * cow. e.g., don't trust generation number. 7033 * 7034 * Return: 7035 * >0 and update @len if we can do nocow write 7036 * 0 if we can't do nocow write 7037 * <0 if error happened 7038 * 7039 * NOTE: This only checks the file extents, caller is responsible to wait for 7040 * any ordered extents. 7041 */ 7042 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7043 u64 *orig_start, u64 *orig_block_len, 7044 u64 *ram_bytes, bool nowait, bool strict) 7045 { 7046 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7047 struct can_nocow_file_extent_args nocow_args = { 0 }; 7048 struct btrfs_path *path; 7049 int ret; 7050 struct extent_buffer *leaf; 7051 struct btrfs_root *root = BTRFS_I(inode)->root; 7052 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7053 struct btrfs_file_extent_item *fi; 7054 struct btrfs_key key; 7055 int found_type; 7056 7057 path = btrfs_alloc_path(); 7058 if (!path) 7059 return -ENOMEM; 7060 path->nowait = nowait; 7061 7062 ret = btrfs_lookup_file_extent(NULL, root, path, 7063 btrfs_ino(BTRFS_I(inode)), offset, 0); 7064 if (ret < 0) 7065 goto out; 7066 7067 if (ret == 1) { 7068 if (path->slots[0] == 0) { 7069 /* can't find the item, must cow */ 7070 ret = 0; 7071 goto out; 7072 } 7073 path->slots[0]--; 7074 } 7075 ret = 0; 7076 leaf = path->nodes[0]; 7077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7078 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7079 key.type != BTRFS_EXTENT_DATA_KEY) { 7080 /* not our file or wrong item type, must cow */ 7081 goto out; 7082 } 7083 7084 if (key.offset > offset) { 7085 /* Wrong offset, must cow */ 7086 goto out; 7087 } 7088 7089 if (btrfs_file_extent_end(path) <= offset) 7090 goto out; 7091 7092 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7093 found_type = btrfs_file_extent_type(leaf, fi); 7094 if (ram_bytes) 7095 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7096 7097 nocow_args.start = offset; 7098 nocow_args.end = offset + *len - 1; 7099 nocow_args.strict = strict; 7100 nocow_args.free_path = true; 7101 7102 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7103 /* can_nocow_file_extent() has freed the path. */ 7104 path = NULL; 7105 7106 if (ret != 1) { 7107 /* Treat errors as not being able to NOCOW. */ 7108 ret = 0; 7109 goto out; 7110 } 7111 7112 ret = 0; 7113 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7114 goto out; 7115 7116 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7117 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7118 u64 range_end; 7119 7120 range_end = round_up(offset + nocow_args.num_bytes, 7121 root->fs_info->sectorsize) - 1; 7122 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7123 if (ret) { 7124 ret = -EAGAIN; 7125 goto out; 7126 } 7127 } 7128 7129 if (orig_start) 7130 *orig_start = key.offset - nocow_args.extent_offset; 7131 if (orig_block_len) 7132 *orig_block_len = nocow_args.disk_num_bytes; 7133 7134 *len = nocow_args.num_bytes; 7135 ret = 1; 7136 out: 7137 btrfs_free_path(path); 7138 return ret; 7139 } 7140 7141 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7142 struct extent_state **cached_state, 7143 unsigned int iomap_flags) 7144 { 7145 const bool writing = (iomap_flags & IOMAP_WRITE); 7146 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7147 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7148 struct btrfs_ordered_extent *ordered; 7149 int ret = 0; 7150 7151 while (1) { 7152 if (nowait) { 7153 if (!try_lock_extent(io_tree, lockstart, lockend, 7154 cached_state)) 7155 return -EAGAIN; 7156 } else { 7157 lock_extent(io_tree, lockstart, lockend, cached_state); 7158 } 7159 /* 7160 * We're concerned with the entire range that we're going to be 7161 * doing DIO to, so we need to make sure there's no ordered 7162 * extents in this range. 7163 */ 7164 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7165 lockend - lockstart + 1); 7166 7167 /* 7168 * We need to make sure there are no buffered pages in this 7169 * range either, we could have raced between the invalidate in 7170 * generic_file_direct_write and locking the extent. The 7171 * invalidate needs to happen so that reads after a write do not 7172 * get stale data. 7173 */ 7174 if (!ordered && 7175 (!writing || !filemap_range_has_page(inode->i_mapping, 7176 lockstart, lockend))) 7177 break; 7178 7179 unlock_extent(io_tree, lockstart, lockend, cached_state); 7180 7181 if (ordered) { 7182 if (nowait) { 7183 btrfs_put_ordered_extent(ordered); 7184 ret = -EAGAIN; 7185 break; 7186 } 7187 /* 7188 * If we are doing a DIO read and the ordered extent we 7189 * found is for a buffered write, we can not wait for it 7190 * to complete and retry, because if we do so we can 7191 * deadlock with concurrent buffered writes on page 7192 * locks. This happens only if our DIO read covers more 7193 * than one extent map, if at this point has already 7194 * created an ordered extent for a previous extent map 7195 * and locked its range in the inode's io tree, and a 7196 * concurrent write against that previous extent map's 7197 * range and this range started (we unlock the ranges 7198 * in the io tree only when the bios complete and 7199 * buffered writes always lock pages before attempting 7200 * to lock range in the io tree). 7201 */ 7202 if (writing || 7203 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7204 btrfs_start_ordered_extent(ordered); 7205 else 7206 ret = nowait ? -EAGAIN : -ENOTBLK; 7207 btrfs_put_ordered_extent(ordered); 7208 } else { 7209 /* 7210 * We could trigger writeback for this range (and wait 7211 * for it to complete) and then invalidate the pages for 7212 * this range (through invalidate_inode_pages2_range()), 7213 * but that can lead us to a deadlock with a concurrent 7214 * call to readahead (a buffered read or a defrag call 7215 * triggered a readahead) on a page lock due to an 7216 * ordered dio extent we created before but did not have 7217 * yet a corresponding bio submitted (whence it can not 7218 * complete), which makes readahead wait for that 7219 * ordered extent to complete while holding a lock on 7220 * that page. 7221 */ 7222 ret = nowait ? -EAGAIN : -ENOTBLK; 7223 } 7224 7225 if (ret) 7226 break; 7227 7228 cond_resched(); 7229 } 7230 7231 return ret; 7232 } 7233 7234 /* The callers of this must take lock_extent() */ 7235 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7236 u64 len, u64 orig_start, u64 block_start, 7237 u64 block_len, u64 orig_block_len, 7238 u64 ram_bytes, int compress_type, 7239 int type) 7240 { 7241 struct extent_map *em; 7242 int ret; 7243 7244 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7245 type == BTRFS_ORDERED_COMPRESSED || 7246 type == BTRFS_ORDERED_NOCOW || 7247 type == BTRFS_ORDERED_REGULAR); 7248 7249 em = alloc_extent_map(); 7250 if (!em) 7251 return ERR_PTR(-ENOMEM); 7252 7253 em->start = start; 7254 em->orig_start = orig_start; 7255 em->len = len; 7256 em->block_len = block_len; 7257 em->block_start = block_start; 7258 em->orig_block_len = orig_block_len; 7259 em->ram_bytes = ram_bytes; 7260 em->generation = -1; 7261 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7262 if (type == BTRFS_ORDERED_PREALLOC) { 7263 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7264 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7265 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7266 em->compress_type = compress_type; 7267 } 7268 7269 ret = btrfs_replace_extent_map_range(inode, em, true); 7270 if (ret) { 7271 free_extent_map(em); 7272 return ERR_PTR(ret); 7273 } 7274 7275 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7276 return em; 7277 } 7278 7279 7280 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7281 struct inode *inode, 7282 struct btrfs_dio_data *dio_data, 7283 u64 start, u64 *lenp, 7284 unsigned int iomap_flags) 7285 { 7286 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7287 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7288 struct extent_map *em = *map; 7289 int type; 7290 u64 block_start, orig_start, orig_block_len, ram_bytes; 7291 struct btrfs_block_group *bg; 7292 bool can_nocow = false; 7293 bool space_reserved = false; 7294 u64 len = *lenp; 7295 u64 prev_len; 7296 int ret = 0; 7297 7298 /* 7299 * We don't allocate a new extent in the following cases 7300 * 7301 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7302 * existing extent. 7303 * 2) The extent is marked as PREALLOC. We're good to go here and can 7304 * just use the extent. 7305 * 7306 */ 7307 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7308 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7309 em->block_start != EXTENT_MAP_HOLE)) { 7310 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7311 type = BTRFS_ORDERED_PREALLOC; 7312 else 7313 type = BTRFS_ORDERED_NOCOW; 7314 len = min(len, em->len - (start - em->start)); 7315 block_start = em->block_start + (start - em->start); 7316 7317 if (can_nocow_extent(inode, start, &len, &orig_start, 7318 &orig_block_len, &ram_bytes, false, false) == 1) { 7319 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7320 if (bg) 7321 can_nocow = true; 7322 } 7323 } 7324 7325 prev_len = len; 7326 if (can_nocow) { 7327 struct extent_map *em2; 7328 7329 /* We can NOCOW, so only need to reserve metadata space. */ 7330 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7331 nowait); 7332 if (ret < 0) { 7333 /* Our caller expects us to free the input extent map. */ 7334 free_extent_map(em); 7335 *map = NULL; 7336 btrfs_dec_nocow_writers(bg); 7337 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7338 ret = -EAGAIN; 7339 goto out; 7340 } 7341 space_reserved = true; 7342 7343 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7344 orig_start, block_start, 7345 len, orig_block_len, 7346 ram_bytes, type); 7347 btrfs_dec_nocow_writers(bg); 7348 if (type == BTRFS_ORDERED_PREALLOC) { 7349 free_extent_map(em); 7350 *map = em2; 7351 em = em2; 7352 } 7353 7354 if (IS_ERR(em2)) { 7355 ret = PTR_ERR(em2); 7356 goto out; 7357 } 7358 7359 dio_data->nocow_done = true; 7360 } else { 7361 /* Our caller expects us to free the input extent map. */ 7362 free_extent_map(em); 7363 *map = NULL; 7364 7365 if (nowait) { 7366 ret = -EAGAIN; 7367 goto out; 7368 } 7369 7370 /* 7371 * If we could not allocate data space before locking the file 7372 * range and we can't do a NOCOW write, then we have to fail. 7373 */ 7374 if (!dio_data->data_space_reserved) { 7375 ret = -ENOSPC; 7376 goto out; 7377 } 7378 7379 /* 7380 * We have to COW and we have already reserved data space before, 7381 * so now we reserve only metadata. 7382 */ 7383 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7384 false); 7385 if (ret < 0) 7386 goto out; 7387 space_reserved = true; 7388 7389 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7390 if (IS_ERR(em)) { 7391 ret = PTR_ERR(em); 7392 goto out; 7393 } 7394 *map = em; 7395 len = min(len, em->len - (start - em->start)); 7396 if (len < prev_len) 7397 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7398 prev_len - len, true); 7399 } 7400 7401 /* 7402 * We have created our ordered extent, so we can now release our reservation 7403 * for an outstanding extent. 7404 */ 7405 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7406 7407 /* 7408 * Need to update the i_size under the extent lock so buffered 7409 * readers will get the updated i_size when we unlock. 7410 */ 7411 if (start + len > i_size_read(inode)) 7412 i_size_write(inode, start + len); 7413 out: 7414 if (ret && space_reserved) { 7415 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7416 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7417 } 7418 *lenp = len; 7419 return ret; 7420 } 7421 7422 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7423 loff_t length, unsigned int flags, struct iomap *iomap, 7424 struct iomap *srcmap) 7425 { 7426 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7428 struct extent_map *em; 7429 struct extent_state *cached_state = NULL; 7430 struct btrfs_dio_data *dio_data = iter->private; 7431 u64 lockstart, lockend; 7432 const bool write = !!(flags & IOMAP_WRITE); 7433 int ret = 0; 7434 u64 len = length; 7435 const u64 data_alloc_len = length; 7436 bool unlock_extents = false; 7437 7438 /* 7439 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7440 * we're NOWAIT we may submit a bio for a partial range and return 7441 * EIOCBQUEUED, which would result in an errant short read. 7442 * 7443 * The best way to handle this would be to allow for partial completions 7444 * of iocb's, so we could submit the partial bio, return and fault in 7445 * the rest of the pages, and then submit the io for the rest of the 7446 * range. However we don't have that currently, so simply return 7447 * -EAGAIN at this point so that the normal path is used. 7448 */ 7449 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7450 return -EAGAIN; 7451 7452 /* 7453 * Cap the size of reads to that usually seen in buffered I/O as we need 7454 * to allocate a contiguous array for the checksums. 7455 */ 7456 if (!write) 7457 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7458 7459 lockstart = start; 7460 lockend = start + len - 1; 7461 7462 /* 7463 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7464 * enough if we've written compressed pages to this area, so we need to 7465 * flush the dirty pages again to make absolutely sure that any 7466 * outstanding dirty pages are on disk - the first flush only starts 7467 * compression on the data, while keeping the pages locked, so by the 7468 * time the second flush returns we know bios for the compressed pages 7469 * were submitted and finished, and the pages no longer under writeback. 7470 * 7471 * If we have a NOWAIT request and we have any pages in the range that 7472 * are locked, likely due to compression still in progress, we don't want 7473 * to block on page locks. We also don't want to block on pages marked as 7474 * dirty or under writeback (same as for the non-compression case). 7475 * iomap_dio_rw() did the same check, but after that and before we got 7476 * here, mmap'ed writes may have happened or buffered reads started 7477 * (readpage() and readahead(), which lock pages), as we haven't locked 7478 * the file range yet. 7479 */ 7480 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7481 &BTRFS_I(inode)->runtime_flags)) { 7482 if (flags & IOMAP_NOWAIT) { 7483 if (filemap_range_needs_writeback(inode->i_mapping, 7484 lockstart, lockend)) 7485 return -EAGAIN; 7486 } else { 7487 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7488 start + length - 1); 7489 if (ret) 7490 return ret; 7491 } 7492 } 7493 7494 memset(dio_data, 0, sizeof(*dio_data)); 7495 7496 /* 7497 * We always try to allocate data space and must do it before locking 7498 * the file range, to avoid deadlocks with concurrent writes to the same 7499 * range if the range has several extents and the writes don't expand the 7500 * current i_size (the inode lock is taken in shared mode). If we fail to 7501 * allocate data space here we continue and later, after locking the 7502 * file range, we fail with ENOSPC only if we figure out we can not do a 7503 * NOCOW write. 7504 */ 7505 if (write && !(flags & IOMAP_NOWAIT)) { 7506 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7507 &dio_data->data_reserved, 7508 start, data_alloc_len, false); 7509 if (!ret) 7510 dio_data->data_space_reserved = true; 7511 else if (ret && !(BTRFS_I(inode)->flags & 7512 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7513 goto err; 7514 } 7515 7516 /* 7517 * If this errors out it's because we couldn't invalidate pagecache for 7518 * this range and we need to fallback to buffered IO, or we are doing a 7519 * NOWAIT read/write and we need to block. 7520 */ 7521 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7522 if (ret < 0) 7523 goto err; 7524 7525 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7526 if (IS_ERR(em)) { 7527 ret = PTR_ERR(em); 7528 goto unlock_err; 7529 } 7530 7531 /* 7532 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7533 * io. INLINE is special, and we could probably kludge it in here, but 7534 * it's still buffered so for safety lets just fall back to the generic 7535 * buffered path. 7536 * 7537 * For COMPRESSED we _have_ to read the entire extent in so we can 7538 * decompress it, so there will be buffering required no matter what we 7539 * do, so go ahead and fallback to buffered. 7540 * 7541 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7542 * to buffered IO. Don't blame me, this is the price we pay for using 7543 * the generic code. 7544 */ 7545 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7546 em->block_start == EXTENT_MAP_INLINE) { 7547 free_extent_map(em); 7548 /* 7549 * If we are in a NOWAIT context, return -EAGAIN in order to 7550 * fallback to buffered IO. This is not only because we can 7551 * block with buffered IO (no support for NOWAIT semantics at 7552 * the moment) but also to avoid returning short reads to user 7553 * space - this happens if we were able to read some data from 7554 * previous non-compressed extents and then when we fallback to 7555 * buffered IO, at btrfs_file_read_iter() by calling 7556 * filemap_read(), we fail to fault in pages for the read buffer, 7557 * in which case filemap_read() returns a short read (the number 7558 * of bytes previously read is > 0, so it does not return -EFAULT). 7559 */ 7560 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7561 goto unlock_err; 7562 } 7563 7564 len = min(len, em->len - (start - em->start)); 7565 7566 /* 7567 * If we have a NOWAIT request and the range contains multiple extents 7568 * (or a mix of extents and holes), then we return -EAGAIN to make the 7569 * caller fallback to a context where it can do a blocking (without 7570 * NOWAIT) request. This way we avoid doing partial IO and returning 7571 * success to the caller, which is not optimal for writes and for reads 7572 * it can result in unexpected behaviour for an application. 7573 * 7574 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7575 * iomap_dio_rw(), we can end up returning less data then what the caller 7576 * asked for, resulting in an unexpected, and incorrect, short read. 7577 * That is, the caller asked to read N bytes and we return less than that, 7578 * which is wrong unless we are crossing EOF. This happens if we get a 7579 * page fault error when trying to fault in pages for the buffer that is 7580 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7581 * have previously submitted bios for other extents in the range, in 7582 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7583 * those bios have completed by the time we get the page fault error, 7584 * which we return back to our caller - we should only return EIOCBQUEUED 7585 * after we have submitted bios for all the extents in the range. 7586 */ 7587 if ((flags & IOMAP_NOWAIT) && len < length) { 7588 free_extent_map(em); 7589 ret = -EAGAIN; 7590 goto unlock_err; 7591 } 7592 7593 if (write) { 7594 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7595 start, &len, flags); 7596 if (ret < 0) 7597 goto unlock_err; 7598 unlock_extents = true; 7599 /* Recalc len in case the new em is smaller than requested */ 7600 len = min(len, em->len - (start - em->start)); 7601 if (dio_data->data_space_reserved) { 7602 u64 release_offset; 7603 u64 release_len = 0; 7604 7605 if (dio_data->nocow_done) { 7606 release_offset = start; 7607 release_len = data_alloc_len; 7608 } else if (len < data_alloc_len) { 7609 release_offset = start + len; 7610 release_len = data_alloc_len - len; 7611 } 7612 7613 if (release_len > 0) 7614 btrfs_free_reserved_data_space(BTRFS_I(inode), 7615 dio_data->data_reserved, 7616 release_offset, 7617 release_len); 7618 } 7619 } else { 7620 /* 7621 * We need to unlock only the end area that we aren't using. 7622 * The rest is going to be unlocked by the endio routine. 7623 */ 7624 lockstart = start + len; 7625 if (lockstart < lockend) 7626 unlock_extents = true; 7627 } 7628 7629 if (unlock_extents) 7630 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7631 &cached_state); 7632 else 7633 free_extent_state(cached_state); 7634 7635 /* 7636 * Translate extent map information to iomap. 7637 * We trim the extents (and move the addr) even though iomap code does 7638 * that, since we have locked only the parts we are performing I/O in. 7639 */ 7640 if ((em->block_start == EXTENT_MAP_HOLE) || 7641 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7642 iomap->addr = IOMAP_NULL_ADDR; 7643 iomap->type = IOMAP_HOLE; 7644 } else { 7645 iomap->addr = em->block_start + (start - em->start); 7646 iomap->type = IOMAP_MAPPED; 7647 } 7648 iomap->offset = start; 7649 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7650 iomap->length = len; 7651 free_extent_map(em); 7652 7653 return 0; 7654 7655 unlock_err: 7656 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7657 &cached_state); 7658 err: 7659 if (dio_data->data_space_reserved) { 7660 btrfs_free_reserved_data_space(BTRFS_I(inode), 7661 dio_data->data_reserved, 7662 start, data_alloc_len); 7663 extent_changeset_free(dio_data->data_reserved); 7664 } 7665 7666 return ret; 7667 } 7668 7669 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7670 ssize_t written, unsigned int flags, struct iomap *iomap) 7671 { 7672 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7673 struct btrfs_dio_data *dio_data = iter->private; 7674 size_t submitted = dio_data->submitted; 7675 const bool write = !!(flags & IOMAP_WRITE); 7676 int ret = 0; 7677 7678 if (!write && (iomap->type == IOMAP_HOLE)) { 7679 /* If reading from a hole, unlock and return */ 7680 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7681 NULL); 7682 return 0; 7683 } 7684 7685 if (submitted < length) { 7686 pos += submitted; 7687 length -= submitted; 7688 if (write) 7689 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7690 pos, length, false); 7691 else 7692 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7693 pos + length - 1, NULL); 7694 ret = -ENOTBLK; 7695 } 7696 if (write) { 7697 btrfs_put_ordered_extent(dio_data->ordered); 7698 dio_data->ordered = NULL; 7699 } 7700 7701 if (write) 7702 extent_changeset_free(dio_data->data_reserved); 7703 return ret; 7704 } 7705 7706 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7707 { 7708 struct btrfs_dio_private *dip = 7709 container_of(bbio, struct btrfs_dio_private, bbio); 7710 struct btrfs_inode *inode = bbio->inode; 7711 struct bio *bio = &bbio->bio; 7712 7713 if (bio->bi_status) { 7714 btrfs_warn(inode->root->fs_info, 7715 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7716 btrfs_ino(inode), bio->bi_opf, 7717 dip->file_offset, dip->bytes, bio->bi_status); 7718 } 7719 7720 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7721 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7722 dip->file_offset, dip->bytes, 7723 !bio->bi_status); 7724 } else { 7725 unlock_extent(&inode->io_tree, dip->file_offset, 7726 dip->file_offset + dip->bytes - 1, NULL); 7727 } 7728 7729 bbio->bio.bi_private = bbio->private; 7730 iomap_dio_bio_end_io(bio); 7731 } 7732 7733 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7734 loff_t file_offset) 7735 { 7736 struct btrfs_bio *bbio = btrfs_bio(bio); 7737 struct btrfs_dio_private *dip = 7738 container_of(bbio, struct btrfs_dio_private, bbio); 7739 struct btrfs_dio_data *dio_data = iter->private; 7740 7741 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7742 btrfs_dio_end_io, bio->bi_private); 7743 bbio->inode = BTRFS_I(iter->inode); 7744 bbio->file_offset = file_offset; 7745 7746 dip->file_offset = file_offset; 7747 dip->bytes = bio->bi_iter.bi_size; 7748 7749 dio_data->submitted += bio->bi_iter.bi_size; 7750 7751 /* 7752 * Check if we are doing a partial write. If we are, we need to split 7753 * the ordered extent to match the submitted bio. Hang on to the 7754 * remaining unfinishable ordered_extent in dio_data so that it can be 7755 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7756 * remaining pages is blocked on the outstanding ordered extent. 7757 */ 7758 if (iter->flags & IOMAP_WRITE) { 7759 int ret; 7760 7761 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7762 if (ret) { 7763 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7764 file_offset, dip->bytes, 7765 !ret); 7766 bio->bi_status = errno_to_blk_status(ret); 7767 iomap_dio_bio_end_io(bio); 7768 return; 7769 } 7770 } 7771 7772 btrfs_submit_bio(bbio, 0); 7773 } 7774 7775 static const struct iomap_ops btrfs_dio_iomap_ops = { 7776 .iomap_begin = btrfs_dio_iomap_begin, 7777 .iomap_end = btrfs_dio_iomap_end, 7778 }; 7779 7780 static const struct iomap_dio_ops btrfs_dio_ops = { 7781 .submit_io = btrfs_dio_submit_io, 7782 .bio_set = &btrfs_dio_bioset, 7783 }; 7784 7785 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7786 { 7787 struct btrfs_dio_data data = { 0 }; 7788 7789 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7790 IOMAP_DIO_PARTIAL, &data, done_before); 7791 } 7792 7793 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7794 size_t done_before) 7795 { 7796 struct btrfs_dio_data data = { 0 }; 7797 7798 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7799 IOMAP_DIO_PARTIAL, &data, done_before); 7800 } 7801 7802 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7803 u64 start, u64 len) 7804 { 7805 int ret; 7806 7807 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7808 if (ret) 7809 return ret; 7810 7811 /* 7812 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7813 * file range (0 to LLONG_MAX), but that is not enough if we have 7814 * compression enabled. The first filemap_fdatawrite_range() only kicks 7815 * in the compression of data (in an async thread) and will return 7816 * before the compression is done and writeback is started. A second 7817 * filemap_fdatawrite_range() is needed to wait for the compression to 7818 * complete and writeback to start. We also need to wait for ordered 7819 * extents to complete, because our fiemap implementation uses mainly 7820 * file extent items to list the extents, searching for extent maps 7821 * only for file ranges with holes or prealloc extents to figure out 7822 * if we have delalloc in those ranges. 7823 */ 7824 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7825 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7826 if (ret) 7827 return ret; 7828 } 7829 7830 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 7831 } 7832 7833 static int btrfs_writepages(struct address_space *mapping, 7834 struct writeback_control *wbc) 7835 { 7836 return extent_writepages(mapping, wbc); 7837 } 7838 7839 static void btrfs_readahead(struct readahead_control *rac) 7840 { 7841 extent_readahead(rac); 7842 } 7843 7844 /* 7845 * For release_folio() and invalidate_folio() we have a race window where 7846 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7847 * If we continue to release/invalidate the page, we could cause use-after-free 7848 * for subpage spinlock. So this function is to spin and wait for subpage 7849 * spinlock. 7850 */ 7851 static void wait_subpage_spinlock(struct page *page) 7852 { 7853 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7854 struct btrfs_subpage *subpage; 7855 7856 if (!btrfs_is_subpage(fs_info, page)) 7857 return; 7858 7859 ASSERT(PagePrivate(page) && page->private); 7860 subpage = (struct btrfs_subpage *)page->private; 7861 7862 /* 7863 * This may look insane as we just acquire the spinlock and release it, 7864 * without doing anything. But we just want to make sure no one is 7865 * still holding the subpage spinlock. 7866 * And since the page is not dirty nor writeback, and we have page 7867 * locked, the only possible way to hold a spinlock is from the endio 7868 * function to clear page writeback. 7869 * 7870 * Here we just acquire the spinlock so that all existing callers 7871 * should exit and we're safe to release/invalidate the page. 7872 */ 7873 spin_lock_irq(&subpage->lock); 7874 spin_unlock_irq(&subpage->lock); 7875 } 7876 7877 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7878 { 7879 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7880 7881 if (ret == 1) { 7882 wait_subpage_spinlock(&folio->page); 7883 clear_page_extent_mapped(&folio->page); 7884 } 7885 return ret; 7886 } 7887 7888 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7889 { 7890 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7891 return false; 7892 return __btrfs_release_folio(folio, gfp_flags); 7893 } 7894 7895 #ifdef CONFIG_MIGRATION 7896 static int btrfs_migrate_folio(struct address_space *mapping, 7897 struct folio *dst, struct folio *src, 7898 enum migrate_mode mode) 7899 { 7900 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7901 7902 if (ret != MIGRATEPAGE_SUCCESS) 7903 return ret; 7904 7905 if (folio_test_ordered(src)) { 7906 folio_clear_ordered(src); 7907 folio_set_ordered(dst); 7908 } 7909 7910 return MIGRATEPAGE_SUCCESS; 7911 } 7912 #else 7913 #define btrfs_migrate_folio NULL 7914 #endif 7915 7916 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7917 size_t length) 7918 { 7919 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 7920 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7921 struct extent_io_tree *tree = &inode->io_tree; 7922 struct extent_state *cached_state = NULL; 7923 u64 page_start = folio_pos(folio); 7924 u64 page_end = page_start + folio_size(folio) - 1; 7925 u64 cur; 7926 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7927 7928 /* 7929 * We have folio locked so no new ordered extent can be created on this 7930 * page, nor bio can be submitted for this folio. 7931 * 7932 * But already submitted bio can still be finished on this folio. 7933 * Furthermore, endio function won't skip folio which has Ordered 7934 * (Private2) already cleared, so it's possible for endio and 7935 * invalidate_folio to do the same ordered extent accounting twice 7936 * on one folio. 7937 * 7938 * So here we wait for any submitted bios to finish, so that we won't 7939 * do double ordered extent accounting on the same folio. 7940 */ 7941 folio_wait_writeback(folio); 7942 wait_subpage_spinlock(&folio->page); 7943 7944 /* 7945 * For subpage case, we have call sites like 7946 * btrfs_punch_hole_lock_range() which passes range not aligned to 7947 * sectorsize. 7948 * If the range doesn't cover the full folio, we don't need to and 7949 * shouldn't clear page extent mapped, as folio->private can still 7950 * record subpage dirty bits for other part of the range. 7951 * 7952 * For cases that invalidate the full folio even the range doesn't 7953 * cover the full folio, like invalidating the last folio, we're 7954 * still safe to wait for ordered extent to finish. 7955 */ 7956 if (!(offset == 0 && length == folio_size(folio))) { 7957 btrfs_release_folio(folio, GFP_NOFS); 7958 return; 7959 } 7960 7961 if (!inode_evicting) 7962 lock_extent(tree, page_start, page_end, &cached_state); 7963 7964 cur = page_start; 7965 while (cur < page_end) { 7966 struct btrfs_ordered_extent *ordered; 7967 u64 range_end; 7968 u32 range_len; 7969 u32 extra_flags = 0; 7970 7971 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7972 page_end + 1 - cur); 7973 if (!ordered) { 7974 range_end = page_end; 7975 /* 7976 * No ordered extent covering this range, we are safe 7977 * to delete all extent states in the range. 7978 */ 7979 extra_flags = EXTENT_CLEAR_ALL_BITS; 7980 goto next; 7981 } 7982 if (ordered->file_offset > cur) { 7983 /* 7984 * There is a range between [cur, oe->file_offset) not 7985 * covered by any ordered extent. 7986 * We are safe to delete all extent states, and handle 7987 * the ordered extent in the next iteration. 7988 */ 7989 range_end = ordered->file_offset - 1; 7990 extra_flags = EXTENT_CLEAR_ALL_BITS; 7991 goto next; 7992 } 7993 7994 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7995 page_end); 7996 ASSERT(range_end + 1 - cur < U32_MAX); 7997 range_len = range_end + 1 - cur; 7998 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 7999 /* 8000 * If Ordered (Private2) is cleared, it means endio has 8001 * already been executed for the range. 8002 * We can't delete the extent states as 8003 * btrfs_finish_ordered_io() may still use some of them. 8004 */ 8005 goto next; 8006 } 8007 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8008 8009 /* 8010 * IO on this page will never be started, so we need to account 8011 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8012 * here, must leave that up for the ordered extent completion. 8013 * 8014 * This will also unlock the range for incoming 8015 * btrfs_finish_ordered_io(). 8016 */ 8017 if (!inode_evicting) 8018 clear_extent_bit(tree, cur, range_end, 8019 EXTENT_DELALLOC | 8020 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8021 EXTENT_DEFRAG, &cached_state); 8022 8023 spin_lock_irq(&inode->ordered_tree_lock); 8024 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8025 ordered->truncated_len = min(ordered->truncated_len, 8026 cur - ordered->file_offset); 8027 spin_unlock_irq(&inode->ordered_tree_lock); 8028 8029 /* 8030 * If the ordered extent has finished, we're safe to delete all 8031 * the extent states of the range, otherwise 8032 * btrfs_finish_ordered_io() will get executed by endio for 8033 * other pages, so we can't delete extent states. 8034 */ 8035 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8036 cur, range_end + 1 - cur)) { 8037 btrfs_finish_ordered_io(ordered); 8038 /* 8039 * The ordered extent has finished, now we're again 8040 * safe to delete all extent states of the range. 8041 */ 8042 extra_flags = EXTENT_CLEAR_ALL_BITS; 8043 } 8044 next: 8045 if (ordered) 8046 btrfs_put_ordered_extent(ordered); 8047 /* 8048 * Qgroup reserved space handler 8049 * Sector(s) here will be either: 8050 * 8051 * 1) Already written to disk or bio already finished 8052 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8053 * Qgroup will be handled by its qgroup_record then. 8054 * btrfs_qgroup_free_data() call will do nothing here. 8055 * 8056 * 2) Not written to disk yet 8057 * Then btrfs_qgroup_free_data() call will clear the 8058 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8059 * reserved data space. 8060 * Since the IO will never happen for this page. 8061 */ 8062 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8063 if (!inode_evicting) { 8064 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8065 EXTENT_DELALLOC | EXTENT_UPTODATE | 8066 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8067 extra_flags, &cached_state); 8068 } 8069 cur = range_end + 1; 8070 } 8071 /* 8072 * We have iterated through all ordered extents of the page, the page 8073 * should not have Ordered (Private2) anymore, or the above iteration 8074 * did something wrong. 8075 */ 8076 ASSERT(!folio_test_ordered(folio)); 8077 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8078 if (!inode_evicting) 8079 __btrfs_release_folio(folio, GFP_NOFS); 8080 clear_page_extent_mapped(&folio->page); 8081 } 8082 8083 /* 8084 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8085 * called from a page fault handler when a page is first dirtied. Hence we must 8086 * be careful to check for EOF conditions here. We set the page up correctly 8087 * for a written page which means we get ENOSPC checking when writing into 8088 * holes and correct delalloc and unwritten extent mapping on filesystems that 8089 * support these features. 8090 * 8091 * We are not allowed to take the i_mutex here so we have to play games to 8092 * protect against truncate races as the page could now be beyond EOF. Because 8093 * truncate_setsize() writes the inode size before removing pages, once we have 8094 * the page lock we can determine safely if the page is beyond EOF. If it is not 8095 * beyond EOF, then the page is guaranteed safe against truncation until we 8096 * unlock the page. 8097 */ 8098 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8099 { 8100 struct page *page = vmf->page; 8101 struct inode *inode = file_inode(vmf->vma->vm_file); 8102 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8103 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8104 struct btrfs_ordered_extent *ordered; 8105 struct extent_state *cached_state = NULL; 8106 struct extent_changeset *data_reserved = NULL; 8107 unsigned long zero_start; 8108 loff_t size; 8109 vm_fault_t ret; 8110 int ret2; 8111 int reserved = 0; 8112 u64 reserved_space; 8113 u64 page_start; 8114 u64 page_end; 8115 u64 end; 8116 8117 reserved_space = PAGE_SIZE; 8118 8119 sb_start_pagefault(inode->i_sb); 8120 page_start = page_offset(page); 8121 page_end = page_start + PAGE_SIZE - 1; 8122 end = page_end; 8123 8124 /* 8125 * Reserving delalloc space after obtaining the page lock can lead to 8126 * deadlock. For example, if a dirty page is locked by this function 8127 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8128 * dirty page write out, then the btrfs_writepages() function could 8129 * end up waiting indefinitely to get a lock on the page currently 8130 * being processed by btrfs_page_mkwrite() function. 8131 */ 8132 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8133 page_start, reserved_space); 8134 if (!ret2) { 8135 ret2 = file_update_time(vmf->vma->vm_file); 8136 reserved = 1; 8137 } 8138 if (ret2) { 8139 ret = vmf_error(ret2); 8140 if (reserved) 8141 goto out; 8142 goto out_noreserve; 8143 } 8144 8145 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8146 again: 8147 down_read(&BTRFS_I(inode)->i_mmap_lock); 8148 lock_page(page); 8149 size = i_size_read(inode); 8150 8151 if ((page->mapping != inode->i_mapping) || 8152 (page_start >= size)) { 8153 /* page got truncated out from underneath us */ 8154 goto out_unlock; 8155 } 8156 wait_on_page_writeback(page); 8157 8158 lock_extent(io_tree, page_start, page_end, &cached_state); 8159 ret2 = set_page_extent_mapped(page); 8160 if (ret2 < 0) { 8161 ret = vmf_error(ret2); 8162 unlock_extent(io_tree, page_start, page_end, &cached_state); 8163 goto out_unlock; 8164 } 8165 8166 /* 8167 * we can't set the delalloc bits if there are pending ordered 8168 * extents. Drop our locks and wait for them to finish 8169 */ 8170 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8171 PAGE_SIZE); 8172 if (ordered) { 8173 unlock_extent(io_tree, page_start, page_end, &cached_state); 8174 unlock_page(page); 8175 up_read(&BTRFS_I(inode)->i_mmap_lock); 8176 btrfs_start_ordered_extent(ordered); 8177 btrfs_put_ordered_extent(ordered); 8178 goto again; 8179 } 8180 8181 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8182 reserved_space = round_up(size - page_start, 8183 fs_info->sectorsize); 8184 if (reserved_space < PAGE_SIZE) { 8185 end = page_start + reserved_space - 1; 8186 btrfs_delalloc_release_space(BTRFS_I(inode), 8187 data_reserved, page_start, 8188 PAGE_SIZE - reserved_space, true); 8189 } 8190 } 8191 8192 /* 8193 * page_mkwrite gets called when the page is firstly dirtied after it's 8194 * faulted in, but write(2) could also dirty a page and set delalloc 8195 * bits, thus in this case for space account reason, we still need to 8196 * clear any delalloc bits within this page range since we have to 8197 * reserve data&meta space before lock_page() (see above comments). 8198 */ 8199 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8200 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8201 EXTENT_DEFRAG, &cached_state); 8202 8203 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8204 &cached_state); 8205 if (ret2) { 8206 unlock_extent(io_tree, page_start, page_end, &cached_state); 8207 ret = VM_FAULT_SIGBUS; 8208 goto out_unlock; 8209 } 8210 8211 /* page is wholly or partially inside EOF */ 8212 if (page_start + PAGE_SIZE > size) 8213 zero_start = offset_in_page(size); 8214 else 8215 zero_start = PAGE_SIZE; 8216 8217 if (zero_start != PAGE_SIZE) 8218 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8219 8220 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8221 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8222 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8223 8224 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8225 8226 unlock_extent(io_tree, page_start, page_end, &cached_state); 8227 up_read(&BTRFS_I(inode)->i_mmap_lock); 8228 8229 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8230 sb_end_pagefault(inode->i_sb); 8231 extent_changeset_free(data_reserved); 8232 return VM_FAULT_LOCKED; 8233 8234 out_unlock: 8235 unlock_page(page); 8236 up_read(&BTRFS_I(inode)->i_mmap_lock); 8237 out: 8238 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8239 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8240 reserved_space, (ret != 0)); 8241 out_noreserve: 8242 sb_end_pagefault(inode->i_sb); 8243 extent_changeset_free(data_reserved); 8244 return ret; 8245 } 8246 8247 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8248 { 8249 struct btrfs_truncate_control control = { 8250 .inode = inode, 8251 .ino = btrfs_ino(inode), 8252 .min_type = BTRFS_EXTENT_DATA_KEY, 8253 .clear_extent_range = true, 8254 }; 8255 struct btrfs_root *root = inode->root; 8256 struct btrfs_fs_info *fs_info = root->fs_info; 8257 struct btrfs_block_rsv *rsv; 8258 int ret; 8259 struct btrfs_trans_handle *trans; 8260 u64 mask = fs_info->sectorsize - 1; 8261 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8262 8263 if (!skip_writeback) { 8264 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8265 inode->vfs_inode.i_size & (~mask), 8266 (u64)-1); 8267 if (ret) 8268 return ret; 8269 } 8270 8271 /* 8272 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8273 * things going on here: 8274 * 8275 * 1) We need to reserve space to update our inode. 8276 * 8277 * 2) We need to have something to cache all the space that is going to 8278 * be free'd up by the truncate operation, but also have some slack 8279 * space reserved in case it uses space during the truncate (thank you 8280 * very much snapshotting). 8281 * 8282 * And we need these to be separate. The fact is we can use a lot of 8283 * space doing the truncate, and we have no earthly idea how much space 8284 * we will use, so we need the truncate reservation to be separate so it 8285 * doesn't end up using space reserved for updating the inode. We also 8286 * need to be able to stop the transaction and start a new one, which 8287 * means we need to be able to update the inode several times, and we 8288 * have no idea of knowing how many times that will be, so we can't just 8289 * reserve 1 item for the entirety of the operation, so that has to be 8290 * done separately as well. 8291 * 8292 * So that leaves us with 8293 * 8294 * 1) rsv - for the truncate reservation, which we will steal from the 8295 * transaction reservation. 8296 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8297 * updating the inode. 8298 */ 8299 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8300 if (!rsv) 8301 return -ENOMEM; 8302 rsv->size = min_size; 8303 rsv->failfast = true; 8304 8305 /* 8306 * 1 for the truncate slack space 8307 * 1 for updating the inode. 8308 */ 8309 trans = btrfs_start_transaction(root, 2); 8310 if (IS_ERR(trans)) { 8311 ret = PTR_ERR(trans); 8312 goto out; 8313 } 8314 8315 /* Migrate the slack space for the truncate to our reserve */ 8316 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8317 min_size, false); 8318 /* 8319 * We have reserved 2 metadata units when we started the transaction and 8320 * min_size matches 1 unit, so this should never fail, but if it does, 8321 * it's not critical we just fail truncation. 8322 */ 8323 if (WARN_ON(ret)) { 8324 btrfs_end_transaction(trans); 8325 goto out; 8326 } 8327 8328 trans->block_rsv = rsv; 8329 8330 while (1) { 8331 struct extent_state *cached_state = NULL; 8332 const u64 new_size = inode->vfs_inode.i_size; 8333 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8334 8335 control.new_size = new_size; 8336 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8337 /* 8338 * We want to drop from the next block forward in case this new 8339 * size is not block aligned since we will be keeping the last 8340 * block of the extent just the way it is. 8341 */ 8342 btrfs_drop_extent_map_range(inode, 8343 ALIGN(new_size, fs_info->sectorsize), 8344 (u64)-1, false); 8345 8346 ret = btrfs_truncate_inode_items(trans, root, &control); 8347 8348 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8349 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8350 8351 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8352 8353 trans->block_rsv = &fs_info->trans_block_rsv; 8354 if (ret != -ENOSPC && ret != -EAGAIN) 8355 break; 8356 8357 ret = btrfs_update_inode(trans, inode); 8358 if (ret) 8359 break; 8360 8361 btrfs_end_transaction(trans); 8362 btrfs_btree_balance_dirty(fs_info); 8363 8364 trans = btrfs_start_transaction(root, 2); 8365 if (IS_ERR(trans)) { 8366 ret = PTR_ERR(trans); 8367 trans = NULL; 8368 break; 8369 } 8370 8371 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8372 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8373 rsv, min_size, false); 8374 /* 8375 * We have reserved 2 metadata units when we started the 8376 * transaction and min_size matches 1 unit, so this should never 8377 * fail, but if it does, it's not critical we just fail truncation. 8378 */ 8379 if (WARN_ON(ret)) 8380 break; 8381 8382 trans->block_rsv = rsv; 8383 } 8384 8385 /* 8386 * We can't call btrfs_truncate_block inside a trans handle as we could 8387 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8388 * know we've truncated everything except the last little bit, and can 8389 * do btrfs_truncate_block and then update the disk_i_size. 8390 */ 8391 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8392 btrfs_end_transaction(trans); 8393 btrfs_btree_balance_dirty(fs_info); 8394 8395 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8396 if (ret) 8397 goto out; 8398 trans = btrfs_start_transaction(root, 1); 8399 if (IS_ERR(trans)) { 8400 ret = PTR_ERR(trans); 8401 goto out; 8402 } 8403 btrfs_inode_safe_disk_i_size_write(inode, 0); 8404 } 8405 8406 if (trans) { 8407 int ret2; 8408 8409 trans->block_rsv = &fs_info->trans_block_rsv; 8410 ret2 = btrfs_update_inode(trans, inode); 8411 if (ret2 && !ret) 8412 ret = ret2; 8413 8414 ret2 = btrfs_end_transaction(trans); 8415 if (ret2 && !ret) 8416 ret = ret2; 8417 btrfs_btree_balance_dirty(fs_info); 8418 } 8419 out: 8420 btrfs_free_block_rsv(fs_info, rsv); 8421 /* 8422 * So if we truncate and then write and fsync we normally would just 8423 * write the extents that changed, which is a problem if we need to 8424 * first truncate that entire inode. So set this flag so we write out 8425 * all of the extents in the inode to the sync log so we're completely 8426 * safe. 8427 * 8428 * If no extents were dropped or trimmed we don't need to force the next 8429 * fsync to truncate all the inode's items from the log and re-log them 8430 * all. This means the truncate operation did not change the file size, 8431 * or changed it to a smaller size but there was only an implicit hole 8432 * between the old i_size and the new i_size, and there were no prealloc 8433 * extents beyond i_size to drop. 8434 */ 8435 if (control.extents_found > 0) 8436 btrfs_set_inode_full_sync(inode); 8437 8438 return ret; 8439 } 8440 8441 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8442 struct inode *dir) 8443 { 8444 struct inode *inode; 8445 8446 inode = new_inode(dir->i_sb); 8447 if (inode) { 8448 /* 8449 * Subvolumes don't inherit the sgid bit or the parent's gid if 8450 * the parent's sgid bit is set. This is probably a bug. 8451 */ 8452 inode_init_owner(idmap, inode, NULL, 8453 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8454 inode->i_op = &btrfs_dir_inode_operations; 8455 inode->i_fop = &btrfs_dir_file_operations; 8456 } 8457 return inode; 8458 } 8459 8460 struct inode *btrfs_alloc_inode(struct super_block *sb) 8461 { 8462 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8463 struct btrfs_inode *ei; 8464 struct inode *inode; 8465 8466 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8467 if (!ei) 8468 return NULL; 8469 8470 ei->root = NULL; 8471 ei->generation = 0; 8472 ei->last_trans = 0; 8473 ei->last_sub_trans = 0; 8474 ei->logged_trans = 0; 8475 ei->delalloc_bytes = 0; 8476 ei->new_delalloc_bytes = 0; 8477 ei->defrag_bytes = 0; 8478 ei->disk_i_size = 0; 8479 ei->flags = 0; 8480 ei->ro_flags = 0; 8481 ei->csum_bytes = 0; 8482 ei->index_cnt = (u64)-1; 8483 ei->dir_index = 0; 8484 ei->last_unlink_trans = 0; 8485 ei->last_reflink_trans = 0; 8486 ei->last_log_commit = 0; 8487 8488 spin_lock_init(&ei->lock); 8489 ei->outstanding_extents = 0; 8490 if (sb->s_magic != BTRFS_TEST_MAGIC) 8491 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8492 BTRFS_BLOCK_RSV_DELALLOC); 8493 ei->runtime_flags = 0; 8494 ei->prop_compress = BTRFS_COMPRESS_NONE; 8495 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8496 8497 ei->delayed_node = NULL; 8498 8499 ei->i_otime_sec = 0; 8500 ei->i_otime_nsec = 0; 8501 8502 inode = &ei->vfs_inode; 8503 extent_map_tree_init(&ei->extent_tree); 8504 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8505 ei->io_tree.inode = ei; 8506 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8507 IO_TREE_INODE_FILE_EXTENT); 8508 mutex_init(&ei->log_mutex); 8509 spin_lock_init(&ei->ordered_tree_lock); 8510 ei->ordered_tree = RB_ROOT; 8511 ei->ordered_tree_last = NULL; 8512 INIT_LIST_HEAD(&ei->delalloc_inodes); 8513 INIT_LIST_HEAD(&ei->delayed_iput); 8514 RB_CLEAR_NODE(&ei->rb_node); 8515 init_rwsem(&ei->i_mmap_lock); 8516 8517 return inode; 8518 } 8519 8520 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8521 void btrfs_test_destroy_inode(struct inode *inode) 8522 { 8523 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8524 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8525 } 8526 #endif 8527 8528 void btrfs_free_inode(struct inode *inode) 8529 { 8530 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8531 } 8532 8533 void btrfs_destroy_inode(struct inode *vfs_inode) 8534 { 8535 struct btrfs_ordered_extent *ordered; 8536 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8537 struct btrfs_root *root = inode->root; 8538 bool freespace_inode; 8539 8540 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8541 WARN_ON(vfs_inode->i_data.nrpages); 8542 WARN_ON(inode->block_rsv.reserved); 8543 WARN_ON(inode->block_rsv.size); 8544 WARN_ON(inode->outstanding_extents); 8545 if (!S_ISDIR(vfs_inode->i_mode)) { 8546 WARN_ON(inode->delalloc_bytes); 8547 WARN_ON(inode->new_delalloc_bytes); 8548 } 8549 WARN_ON(inode->csum_bytes); 8550 WARN_ON(inode->defrag_bytes); 8551 8552 /* 8553 * This can happen where we create an inode, but somebody else also 8554 * created the same inode and we need to destroy the one we already 8555 * created. 8556 */ 8557 if (!root) 8558 return; 8559 8560 /* 8561 * If this is a free space inode do not take the ordered extents lockdep 8562 * map. 8563 */ 8564 freespace_inode = btrfs_is_free_space_inode(inode); 8565 8566 while (1) { 8567 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8568 if (!ordered) 8569 break; 8570 else { 8571 btrfs_err(root->fs_info, 8572 "found ordered extent %llu %llu on inode cleanup", 8573 ordered->file_offset, ordered->num_bytes); 8574 8575 if (!freespace_inode) 8576 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8577 8578 btrfs_remove_ordered_extent(inode, ordered); 8579 btrfs_put_ordered_extent(ordered); 8580 btrfs_put_ordered_extent(ordered); 8581 } 8582 } 8583 btrfs_qgroup_check_reserved_leak(inode); 8584 inode_tree_del(inode); 8585 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8586 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8587 btrfs_put_root(inode->root); 8588 } 8589 8590 int btrfs_drop_inode(struct inode *inode) 8591 { 8592 struct btrfs_root *root = BTRFS_I(inode)->root; 8593 8594 if (root == NULL) 8595 return 1; 8596 8597 /* the snap/subvol tree is on deleting */ 8598 if (btrfs_root_refs(&root->root_item) == 0) 8599 return 1; 8600 else 8601 return generic_drop_inode(inode); 8602 } 8603 8604 static void init_once(void *foo) 8605 { 8606 struct btrfs_inode *ei = foo; 8607 8608 inode_init_once(&ei->vfs_inode); 8609 } 8610 8611 void __cold btrfs_destroy_cachep(void) 8612 { 8613 /* 8614 * Make sure all delayed rcu free inodes are flushed before we 8615 * destroy cache. 8616 */ 8617 rcu_barrier(); 8618 bioset_exit(&btrfs_dio_bioset); 8619 kmem_cache_destroy(btrfs_inode_cachep); 8620 } 8621 8622 int __init btrfs_init_cachep(void) 8623 { 8624 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8625 sizeof(struct btrfs_inode), 0, 8626 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8627 init_once); 8628 if (!btrfs_inode_cachep) 8629 goto fail; 8630 8631 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8632 offsetof(struct btrfs_dio_private, bbio.bio), 8633 BIOSET_NEED_BVECS)) 8634 goto fail; 8635 8636 return 0; 8637 fail: 8638 btrfs_destroy_cachep(); 8639 return -ENOMEM; 8640 } 8641 8642 static int btrfs_getattr(struct mnt_idmap *idmap, 8643 const struct path *path, struct kstat *stat, 8644 u32 request_mask, unsigned int flags) 8645 { 8646 u64 delalloc_bytes; 8647 u64 inode_bytes; 8648 struct inode *inode = d_inode(path->dentry); 8649 u32 blocksize = inode->i_sb->s_blocksize; 8650 u32 bi_flags = BTRFS_I(inode)->flags; 8651 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8652 8653 stat->result_mask |= STATX_BTIME; 8654 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8655 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8656 if (bi_flags & BTRFS_INODE_APPEND) 8657 stat->attributes |= STATX_ATTR_APPEND; 8658 if (bi_flags & BTRFS_INODE_COMPRESS) 8659 stat->attributes |= STATX_ATTR_COMPRESSED; 8660 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8661 stat->attributes |= STATX_ATTR_IMMUTABLE; 8662 if (bi_flags & BTRFS_INODE_NODUMP) 8663 stat->attributes |= STATX_ATTR_NODUMP; 8664 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8665 stat->attributes |= STATX_ATTR_VERITY; 8666 8667 stat->attributes_mask |= (STATX_ATTR_APPEND | 8668 STATX_ATTR_COMPRESSED | 8669 STATX_ATTR_IMMUTABLE | 8670 STATX_ATTR_NODUMP); 8671 8672 generic_fillattr(idmap, request_mask, inode, stat); 8673 stat->dev = BTRFS_I(inode)->root->anon_dev; 8674 8675 spin_lock(&BTRFS_I(inode)->lock); 8676 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8677 inode_bytes = inode_get_bytes(inode); 8678 spin_unlock(&BTRFS_I(inode)->lock); 8679 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8680 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8681 return 0; 8682 } 8683 8684 static int btrfs_rename_exchange(struct inode *old_dir, 8685 struct dentry *old_dentry, 8686 struct inode *new_dir, 8687 struct dentry *new_dentry) 8688 { 8689 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8690 struct btrfs_trans_handle *trans; 8691 unsigned int trans_num_items; 8692 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8693 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8694 struct inode *new_inode = new_dentry->d_inode; 8695 struct inode *old_inode = old_dentry->d_inode; 8696 struct btrfs_rename_ctx old_rename_ctx; 8697 struct btrfs_rename_ctx new_rename_ctx; 8698 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8699 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8700 u64 old_idx = 0; 8701 u64 new_idx = 0; 8702 int ret; 8703 int ret2; 8704 bool need_abort = false; 8705 struct fscrypt_name old_fname, new_fname; 8706 struct fscrypt_str *old_name, *new_name; 8707 8708 /* 8709 * For non-subvolumes allow exchange only within one subvolume, in the 8710 * same inode namespace. Two subvolumes (represented as directory) can 8711 * be exchanged as they're a logical link and have a fixed inode number. 8712 */ 8713 if (root != dest && 8714 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8715 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8716 return -EXDEV; 8717 8718 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8719 if (ret) 8720 return ret; 8721 8722 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8723 if (ret) { 8724 fscrypt_free_filename(&old_fname); 8725 return ret; 8726 } 8727 8728 old_name = &old_fname.disk_name; 8729 new_name = &new_fname.disk_name; 8730 8731 /* close the race window with snapshot create/destroy ioctl */ 8732 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8733 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8734 down_read(&fs_info->subvol_sem); 8735 8736 /* 8737 * For each inode: 8738 * 1 to remove old dir item 8739 * 1 to remove old dir index 8740 * 1 to add new dir item 8741 * 1 to add new dir index 8742 * 1 to update parent inode 8743 * 8744 * If the parents are the same, we only need to account for one 8745 */ 8746 trans_num_items = (old_dir == new_dir ? 9 : 10); 8747 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8748 /* 8749 * 1 to remove old root ref 8750 * 1 to remove old root backref 8751 * 1 to add new root ref 8752 * 1 to add new root backref 8753 */ 8754 trans_num_items += 4; 8755 } else { 8756 /* 8757 * 1 to update inode item 8758 * 1 to remove old inode ref 8759 * 1 to add new inode ref 8760 */ 8761 trans_num_items += 3; 8762 } 8763 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8764 trans_num_items += 4; 8765 else 8766 trans_num_items += 3; 8767 trans = btrfs_start_transaction(root, trans_num_items); 8768 if (IS_ERR(trans)) { 8769 ret = PTR_ERR(trans); 8770 goto out_notrans; 8771 } 8772 8773 if (dest != root) { 8774 ret = btrfs_record_root_in_trans(trans, dest); 8775 if (ret) 8776 goto out_fail; 8777 } 8778 8779 /* 8780 * We need to find a free sequence number both in the source and 8781 * in the destination directory for the exchange. 8782 */ 8783 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8784 if (ret) 8785 goto out_fail; 8786 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8787 if (ret) 8788 goto out_fail; 8789 8790 BTRFS_I(old_inode)->dir_index = 0ULL; 8791 BTRFS_I(new_inode)->dir_index = 0ULL; 8792 8793 /* Reference for the source. */ 8794 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8795 /* force full log commit if subvolume involved. */ 8796 btrfs_set_log_full_commit(trans); 8797 } else { 8798 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8799 btrfs_ino(BTRFS_I(new_dir)), 8800 old_idx); 8801 if (ret) 8802 goto out_fail; 8803 need_abort = true; 8804 } 8805 8806 /* And now for the dest. */ 8807 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8808 /* force full log commit if subvolume involved. */ 8809 btrfs_set_log_full_commit(trans); 8810 } else { 8811 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8812 btrfs_ino(BTRFS_I(old_dir)), 8813 new_idx); 8814 if (ret) { 8815 if (need_abort) 8816 btrfs_abort_transaction(trans, ret); 8817 goto out_fail; 8818 } 8819 } 8820 8821 /* Update inode version and ctime/mtime. */ 8822 inode_inc_iversion(old_dir); 8823 inode_inc_iversion(new_dir); 8824 inode_inc_iversion(old_inode); 8825 inode_inc_iversion(new_inode); 8826 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8827 8828 if (old_dentry->d_parent != new_dentry->d_parent) { 8829 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8830 BTRFS_I(old_inode), true); 8831 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8832 BTRFS_I(new_inode), true); 8833 } 8834 8835 /* src is a subvolume */ 8836 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8837 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8838 } else { /* src is an inode */ 8839 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8840 BTRFS_I(old_dentry->d_inode), 8841 old_name, &old_rename_ctx); 8842 if (!ret) 8843 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8844 } 8845 if (ret) { 8846 btrfs_abort_transaction(trans, ret); 8847 goto out_fail; 8848 } 8849 8850 /* dest is a subvolume */ 8851 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8852 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8853 } else { /* dest is an inode */ 8854 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8855 BTRFS_I(new_dentry->d_inode), 8856 new_name, &new_rename_ctx); 8857 if (!ret) 8858 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8859 } 8860 if (ret) { 8861 btrfs_abort_transaction(trans, ret); 8862 goto out_fail; 8863 } 8864 8865 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8866 new_name, 0, old_idx); 8867 if (ret) { 8868 btrfs_abort_transaction(trans, ret); 8869 goto out_fail; 8870 } 8871 8872 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8873 old_name, 0, new_idx); 8874 if (ret) { 8875 btrfs_abort_transaction(trans, ret); 8876 goto out_fail; 8877 } 8878 8879 if (old_inode->i_nlink == 1) 8880 BTRFS_I(old_inode)->dir_index = old_idx; 8881 if (new_inode->i_nlink == 1) 8882 BTRFS_I(new_inode)->dir_index = new_idx; 8883 8884 /* 8885 * Now pin the logs of the roots. We do it to ensure that no other task 8886 * can sync the logs while we are in progress with the rename, because 8887 * that could result in an inconsistency in case any of the inodes that 8888 * are part of this rename operation were logged before. 8889 */ 8890 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8891 btrfs_pin_log_trans(root); 8892 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8893 btrfs_pin_log_trans(dest); 8894 8895 /* Do the log updates for all inodes. */ 8896 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8897 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8898 old_rename_ctx.index, new_dentry->d_parent); 8899 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8900 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8901 new_rename_ctx.index, old_dentry->d_parent); 8902 8903 /* Now unpin the logs. */ 8904 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8905 btrfs_end_log_trans(root); 8906 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8907 btrfs_end_log_trans(dest); 8908 out_fail: 8909 ret2 = btrfs_end_transaction(trans); 8910 ret = ret ? ret : ret2; 8911 out_notrans: 8912 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8913 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8914 up_read(&fs_info->subvol_sem); 8915 8916 fscrypt_free_filename(&new_fname); 8917 fscrypt_free_filename(&old_fname); 8918 return ret; 8919 } 8920 8921 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8922 struct inode *dir) 8923 { 8924 struct inode *inode; 8925 8926 inode = new_inode(dir->i_sb); 8927 if (inode) { 8928 inode_init_owner(idmap, inode, dir, 8929 S_IFCHR | WHITEOUT_MODE); 8930 inode->i_op = &btrfs_special_inode_operations; 8931 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8932 } 8933 return inode; 8934 } 8935 8936 static int btrfs_rename(struct mnt_idmap *idmap, 8937 struct inode *old_dir, struct dentry *old_dentry, 8938 struct inode *new_dir, struct dentry *new_dentry, 8939 unsigned int flags) 8940 { 8941 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8942 struct btrfs_new_inode_args whiteout_args = { 8943 .dir = old_dir, 8944 .dentry = old_dentry, 8945 }; 8946 struct btrfs_trans_handle *trans; 8947 unsigned int trans_num_items; 8948 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8949 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8950 struct inode *new_inode = d_inode(new_dentry); 8951 struct inode *old_inode = d_inode(old_dentry); 8952 struct btrfs_rename_ctx rename_ctx; 8953 u64 index = 0; 8954 int ret; 8955 int ret2; 8956 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8957 struct fscrypt_name old_fname, new_fname; 8958 8959 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8960 return -EPERM; 8961 8962 /* we only allow rename subvolume link between subvolumes */ 8963 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8964 return -EXDEV; 8965 8966 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8967 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8968 return -ENOTEMPTY; 8969 8970 if (S_ISDIR(old_inode->i_mode) && new_inode && 8971 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8972 return -ENOTEMPTY; 8973 8974 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8975 if (ret) 8976 return ret; 8977 8978 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8979 if (ret) { 8980 fscrypt_free_filename(&old_fname); 8981 return ret; 8982 } 8983 8984 /* check for collisions, even if the name isn't there */ 8985 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8986 if (ret) { 8987 if (ret == -EEXIST) { 8988 /* we shouldn't get 8989 * eexist without a new_inode */ 8990 if (WARN_ON(!new_inode)) { 8991 goto out_fscrypt_names; 8992 } 8993 } else { 8994 /* maybe -EOVERFLOW */ 8995 goto out_fscrypt_names; 8996 } 8997 } 8998 ret = 0; 8999 9000 /* 9001 * we're using rename to replace one file with another. Start IO on it 9002 * now so we don't add too much work to the end of the transaction 9003 */ 9004 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9005 filemap_flush(old_inode->i_mapping); 9006 9007 if (flags & RENAME_WHITEOUT) { 9008 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 9009 if (!whiteout_args.inode) { 9010 ret = -ENOMEM; 9011 goto out_fscrypt_names; 9012 } 9013 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9014 if (ret) 9015 goto out_whiteout_inode; 9016 } else { 9017 /* 1 to update the old parent inode. */ 9018 trans_num_items = 1; 9019 } 9020 9021 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9022 /* Close the race window with snapshot create/destroy ioctl */ 9023 down_read(&fs_info->subvol_sem); 9024 /* 9025 * 1 to remove old root ref 9026 * 1 to remove old root backref 9027 * 1 to add new root ref 9028 * 1 to add new root backref 9029 */ 9030 trans_num_items += 4; 9031 } else { 9032 /* 9033 * 1 to update inode 9034 * 1 to remove old inode ref 9035 * 1 to add new inode ref 9036 */ 9037 trans_num_items += 3; 9038 } 9039 /* 9040 * 1 to remove old dir item 9041 * 1 to remove old dir index 9042 * 1 to add new dir item 9043 * 1 to add new dir index 9044 */ 9045 trans_num_items += 4; 9046 /* 1 to update new parent inode if it's not the same as the old parent */ 9047 if (new_dir != old_dir) 9048 trans_num_items++; 9049 if (new_inode) { 9050 /* 9051 * 1 to update inode 9052 * 1 to remove inode ref 9053 * 1 to remove dir item 9054 * 1 to remove dir index 9055 * 1 to possibly add orphan item 9056 */ 9057 trans_num_items += 5; 9058 } 9059 trans = btrfs_start_transaction(root, trans_num_items); 9060 if (IS_ERR(trans)) { 9061 ret = PTR_ERR(trans); 9062 goto out_notrans; 9063 } 9064 9065 if (dest != root) { 9066 ret = btrfs_record_root_in_trans(trans, dest); 9067 if (ret) 9068 goto out_fail; 9069 } 9070 9071 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9072 if (ret) 9073 goto out_fail; 9074 9075 BTRFS_I(old_inode)->dir_index = 0ULL; 9076 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9077 /* force full log commit if subvolume involved. */ 9078 btrfs_set_log_full_commit(trans); 9079 } else { 9080 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9081 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9082 index); 9083 if (ret) 9084 goto out_fail; 9085 } 9086 9087 inode_inc_iversion(old_dir); 9088 inode_inc_iversion(new_dir); 9089 inode_inc_iversion(old_inode); 9090 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 9091 9092 if (old_dentry->d_parent != new_dentry->d_parent) 9093 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9094 BTRFS_I(old_inode), true); 9095 9096 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9097 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9098 } else { 9099 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9100 BTRFS_I(d_inode(old_dentry)), 9101 &old_fname.disk_name, &rename_ctx); 9102 if (!ret) 9103 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 9104 } 9105 if (ret) { 9106 btrfs_abort_transaction(trans, ret); 9107 goto out_fail; 9108 } 9109 9110 if (new_inode) { 9111 inode_inc_iversion(new_inode); 9112 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9113 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9114 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9115 BUG_ON(new_inode->i_nlink == 0); 9116 } else { 9117 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9118 BTRFS_I(d_inode(new_dentry)), 9119 &new_fname.disk_name); 9120 } 9121 if (!ret && new_inode->i_nlink == 0) 9122 ret = btrfs_orphan_add(trans, 9123 BTRFS_I(d_inode(new_dentry))); 9124 if (ret) { 9125 btrfs_abort_transaction(trans, ret); 9126 goto out_fail; 9127 } 9128 } 9129 9130 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9131 &new_fname.disk_name, 0, index); 9132 if (ret) { 9133 btrfs_abort_transaction(trans, ret); 9134 goto out_fail; 9135 } 9136 9137 if (old_inode->i_nlink == 1) 9138 BTRFS_I(old_inode)->dir_index = index; 9139 9140 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9141 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9142 rename_ctx.index, new_dentry->d_parent); 9143 9144 if (flags & RENAME_WHITEOUT) { 9145 ret = btrfs_create_new_inode(trans, &whiteout_args); 9146 if (ret) { 9147 btrfs_abort_transaction(trans, ret); 9148 goto out_fail; 9149 } else { 9150 unlock_new_inode(whiteout_args.inode); 9151 iput(whiteout_args.inode); 9152 whiteout_args.inode = NULL; 9153 } 9154 } 9155 out_fail: 9156 ret2 = btrfs_end_transaction(trans); 9157 ret = ret ? ret : ret2; 9158 out_notrans: 9159 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9160 up_read(&fs_info->subvol_sem); 9161 if (flags & RENAME_WHITEOUT) 9162 btrfs_new_inode_args_destroy(&whiteout_args); 9163 out_whiteout_inode: 9164 if (flags & RENAME_WHITEOUT) 9165 iput(whiteout_args.inode); 9166 out_fscrypt_names: 9167 fscrypt_free_filename(&old_fname); 9168 fscrypt_free_filename(&new_fname); 9169 return ret; 9170 } 9171 9172 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9173 struct dentry *old_dentry, struct inode *new_dir, 9174 struct dentry *new_dentry, unsigned int flags) 9175 { 9176 int ret; 9177 9178 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9179 return -EINVAL; 9180 9181 if (flags & RENAME_EXCHANGE) 9182 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9183 new_dentry); 9184 else 9185 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9186 new_dentry, flags); 9187 9188 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9189 9190 return ret; 9191 } 9192 9193 struct btrfs_delalloc_work { 9194 struct inode *inode; 9195 struct completion completion; 9196 struct list_head list; 9197 struct btrfs_work work; 9198 }; 9199 9200 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9201 { 9202 struct btrfs_delalloc_work *delalloc_work; 9203 struct inode *inode; 9204 9205 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9206 work); 9207 inode = delalloc_work->inode; 9208 filemap_flush(inode->i_mapping); 9209 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9210 &BTRFS_I(inode)->runtime_flags)) 9211 filemap_flush(inode->i_mapping); 9212 9213 iput(inode); 9214 complete(&delalloc_work->completion); 9215 } 9216 9217 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9218 { 9219 struct btrfs_delalloc_work *work; 9220 9221 work = kmalloc(sizeof(*work), GFP_NOFS); 9222 if (!work) 9223 return NULL; 9224 9225 init_completion(&work->completion); 9226 INIT_LIST_HEAD(&work->list); 9227 work->inode = inode; 9228 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 9229 9230 return work; 9231 } 9232 9233 /* 9234 * some fairly slow code that needs optimization. This walks the list 9235 * of all the inodes with pending delalloc and forces them to disk. 9236 */ 9237 static int start_delalloc_inodes(struct btrfs_root *root, 9238 struct writeback_control *wbc, bool snapshot, 9239 bool in_reclaim_context) 9240 { 9241 struct btrfs_inode *binode; 9242 struct inode *inode; 9243 struct btrfs_delalloc_work *work, *next; 9244 LIST_HEAD(works); 9245 LIST_HEAD(splice); 9246 int ret = 0; 9247 bool full_flush = wbc->nr_to_write == LONG_MAX; 9248 9249 mutex_lock(&root->delalloc_mutex); 9250 spin_lock(&root->delalloc_lock); 9251 list_splice_init(&root->delalloc_inodes, &splice); 9252 while (!list_empty(&splice)) { 9253 binode = list_entry(splice.next, struct btrfs_inode, 9254 delalloc_inodes); 9255 9256 list_move_tail(&binode->delalloc_inodes, 9257 &root->delalloc_inodes); 9258 9259 if (in_reclaim_context && 9260 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9261 continue; 9262 9263 inode = igrab(&binode->vfs_inode); 9264 if (!inode) { 9265 cond_resched_lock(&root->delalloc_lock); 9266 continue; 9267 } 9268 spin_unlock(&root->delalloc_lock); 9269 9270 if (snapshot) 9271 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9272 &binode->runtime_flags); 9273 if (full_flush) { 9274 work = btrfs_alloc_delalloc_work(inode); 9275 if (!work) { 9276 iput(inode); 9277 ret = -ENOMEM; 9278 goto out; 9279 } 9280 list_add_tail(&work->list, &works); 9281 btrfs_queue_work(root->fs_info->flush_workers, 9282 &work->work); 9283 } else { 9284 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9285 btrfs_add_delayed_iput(BTRFS_I(inode)); 9286 if (ret || wbc->nr_to_write <= 0) 9287 goto out; 9288 } 9289 cond_resched(); 9290 spin_lock(&root->delalloc_lock); 9291 } 9292 spin_unlock(&root->delalloc_lock); 9293 9294 out: 9295 list_for_each_entry_safe(work, next, &works, list) { 9296 list_del_init(&work->list); 9297 wait_for_completion(&work->completion); 9298 kfree(work); 9299 } 9300 9301 if (!list_empty(&splice)) { 9302 spin_lock(&root->delalloc_lock); 9303 list_splice_tail(&splice, &root->delalloc_inodes); 9304 spin_unlock(&root->delalloc_lock); 9305 } 9306 mutex_unlock(&root->delalloc_mutex); 9307 return ret; 9308 } 9309 9310 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9311 { 9312 struct writeback_control wbc = { 9313 .nr_to_write = LONG_MAX, 9314 .sync_mode = WB_SYNC_NONE, 9315 .range_start = 0, 9316 .range_end = LLONG_MAX, 9317 }; 9318 struct btrfs_fs_info *fs_info = root->fs_info; 9319 9320 if (BTRFS_FS_ERROR(fs_info)) 9321 return -EROFS; 9322 9323 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9324 } 9325 9326 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9327 bool in_reclaim_context) 9328 { 9329 struct writeback_control wbc = { 9330 .nr_to_write = nr, 9331 .sync_mode = WB_SYNC_NONE, 9332 .range_start = 0, 9333 .range_end = LLONG_MAX, 9334 }; 9335 struct btrfs_root *root; 9336 LIST_HEAD(splice); 9337 int ret; 9338 9339 if (BTRFS_FS_ERROR(fs_info)) 9340 return -EROFS; 9341 9342 mutex_lock(&fs_info->delalloc_root_mutex); 9343 spin_lock(&fs_info->delalloc_root_lock); 9344 list_splice_init(&fs_info->delalloc_roots, &splice); 9345 while (!list_empty(&splice)) { 9346 /* 9347 * Reset nr_to_write here so we know that we're doing a full 9348 * flush. 9349 */ 9350 if (nr == LONG_MAX) 9351 wbc.nr_to_write = LONG_MAX; 9352 9353 root = list_first_entry(&splice, struct btrfs_root, 9354 delalloc_root); 9355 root = btrfs_grab_root(root); 9356 BUG_ON(!root); 9357 list_move_tail(&root->delalloc_root, 9358 &fs_info->delalloc_roots); 9359 spin_unlock(&fs_info->delalloc_root_lock); 9360 9361 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9362 btrfs_put_root(root); 9363 if (ret < 0 || wbc.nr_to_write <= 0) 9364 goto out; 9365 spin_lock(&fs_info->delalloc_root_lock); 9366 } 9367 spin_unlock(&fs_info->delalloc_root_lock); 9368 9369 ret = 0; 9370 out: 9371 if (!list_empty(&splice)) { 9372 spin_lock(&fs_info->delalloc_root_lock); 9373 list_splice_tail(&splice, &fs_info->delalloc_roots); 9374 spin_unlock(&fs_info->delalloc_root_lock); 9375 } 9376 mutex_unlock(&fs_info->delalloc_root_mutex); 9377 return ret; 9378 } 9379 9380 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9381 struct dentry *dentry, const char *symname) 9382 { 9383 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9384 struct btrfs_trans_handle *trans; 9385 struct btrfs_root *root = BTRFS_I(dir)->root; 9386 struct btrfs_path *path; 9387 struct btrfs_key key; 9388 struct inode *inode; 9389 struct btrfs_new_inode_args new_inode_args = { 9390 .dir = dir, 9391 .dentry = dentry, 9392 }; 9393 unsigned int trans_num_items; 9394 int err; 9395 int name_len; 9396 int datasize; 9397 unsigned long ptr; 9398 struct btrfs_file_extent_item *ei; 9399 struct extent_buffer *leaf; 9400 9401 name_len = strlen(symname); 9402 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9403 return -ENAMETOOLONG; 9404 9405 inode = new_inode(dir->i_sb); 9406 if (!inode) 9407 return -ENOMEM; 9408 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9409 inode->i_op = &btrfs_symlink_inode_operations; 9410 inode_nohighmem(inode); 9411 inode->i_mapping->a_ops = &btrfs_aops; 9412 btrfs_i_size_write(BTRFS_I(inode), name_len); 9413 inode_set_bytes(inode, name_len); 9414 9415 new_inode_args.inode = inode; 9416 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9417 if (err) 9418 goto out_inode; 9419 /* 1 additional item for the inline extent */ 9420 trans_num_items++; 9421 9422 trans = btrfs_start_transaction(root, trans_num_items); 9423 if (IS_ERR(trans)) { 9424 err = PTR_ERR(trans); 9425 goto out_new_inode_args; 9426 } 9427 9428 err = btrfs_create_new_inode(trans, &new_inode_args); 9429 if (err) 9430 goto out; 9431 9432 path = btrfs_alloc_path(); 9433 if (!path) { 9434 err = -ENOMEM; 9435 btrfs_abort_transaction(trans, err); 9436 discard_new_inode(inode); 9437 inode = NULL; 9438 goto out; 9439 } 9440 key.objectid = btrfs_ino(BTRFS_I(inode)); 9441 key.offset = 0; 9442 key.type = BTRFS_EXTENT_DATA_KEY; 9443 datasize = btrfs_file_extent_calc_inline_size(name_len); 9444 err = btrfs_insert_empty_item(trans, root, path, &key, 9445 datasize); 9446 if (err) { 9447 btrfs_abort_transaction(trans, err); 9448 btrfs_free_path(path); 9449 discard_new_inode(inode); 9450 inode = NULL; 9451 goto out; 9452 } 9453 leaf = path->nodes[0]; 9454 ei = btrfs_item_ptr(leaf, path->slots[0], 9455 struct btrfs_file_extent_item); 9456 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9457 btrfs_set_file_extent_type(leaf, ei, 9458 BTRFS_FILE_EXTENT_INLINE); 9459 btrfs_set_file_extent_encryption(leaf, ei, 0); 9460 btrfs_set_file_extent_compression(leaf, ei, 0); 9461 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9462 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9463 9464 ptr = btrfs_file_extent_inline_start(ei); 9465 write_extent_buffer(leaf, symname, ptr, name_len); 9466 btrfs_mark_buffer_dirty(trans, leaf); 9467 btrfs_free_path(path); 9468 9469 d_instantiate_new(dentry, inode); 9470 err = 0; 9471 out: 9472 btrfs_end_transaction(trans); 9473 btrfs_btree_balance_dirty(fs_info); 9474 out_new_inode_args: 9475 btrfs_new_inode_args_destroy(&new_inode_args); 9476 out_inode: 9477 if (err) 9478 iput(inode); 9479 return err; 9480 } 9481 9482 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9483 struct btrfs_trans_handle *trans_in, 9484 struct btrfs_inode *inode, 9485 struct btrfs_key *ins, 9486 u64 file_offset) 9487 { 9488 struct btrfs_file_extent_item stack_fi; 9489 struct btrfs_replace_extent_info extent_info; 9490 struct btrfs_trans_handle *trans = trans_in; 9491 struct btrfs_path *path; 9492 u64 start = ins->objectid; 9493 u64 len = ins->offset; 9494 int qgroup_released; 9495 int ret; 9496 9497 memset(&stack_fi, 0, sizeof(stack_fi)); 9498 9499 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9500 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9501 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9502 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9503 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9504 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9505 /* Encryption and other encoding is reserved and all 0 */ 9506 9507 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9508 if (qgroup_released < 0) 9509 return ERR_PTR(qgroup_released); 9510 9511 if (trans) { 9512 ret = insert_reserved_file_extent(trans, inode, 9513 file_offset, &stack_fi, 9514 true, qgroup_released); 9515 if (ret) 9516 goto free_qgroup; 9517 return trans; 9518 } 9519 9520 extent_info.disk_offset = start; 9521 extent_info.disk_len = len; 9522 extent_info.data_offset = 0; 9523 extent_info.data_len = len; 9524 extent_info.file_offset = file_offset; 9525 extent_info.extent_buf = (char *)&stack_fi; 9526 extent_info.is_new_extent = true; 9527 extent_info.update_times = true; 9528 extent_info.qgroup_reserved = qgroup_released; 9529 extent_info.insertions = 0; 9530 9531 path = btrfs_alloc_path(); 9532 if (!path) { 9533 ret = -ENOMEM; 9534 goto free_qgroup; 9535 } 9536 9537 ret = btrfs_replace_file_extents(inode, path, file_offset, 9538 file_offset + len - 1, &extent_info, 9539 &trans); 9540 btrfs_free_path(path); 9541 if (ret) 9542 goto free_qgroup; 9543 return trans; 9544 9545 free_qgroup: 9546 /* 9547 * We have released qgroup data range at the beginning of the function, 9548 * and normally qgroup_released bytes will be freed when committing 9549 * transaction. 9550 * But if we error out early, we have to free what we have released 9551 * or we leak qgroup data reservation. 9552 */ 9553 btrfs_qgroup_free_refroot(inode->root->fs_info, 9554 inode->root->root_key.objectid, qgroup_released, 9555 BTRFS_QGROUP_RSV_DATA); 9556 return ERR_PTR(ret); 9557 } 9558 9559 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9560 u64 start, u64 num_bytes, u64 min_size, 9561 loff_t actual_len, u64 *alloc_hint, 9562 struct btrfs_trans_handle *trans) 9563 { 9564 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9565 struct extent_map *em; 9566 struct btrfs_root *root = BTRFS_I(inode)->root; 9567 struct btrfs_key ins; 9568 u64 cur_offset = start; 9569 u64 clear_offset = start; 9570 u64 i_size; 9571 u64 cur_bytes; 9572 u64 last_alloc = (u64)-1; 9573 int ret = 0; 9574 bool own_trans = true; 9575 u64 end = start + num_bytes - 1; 9576 9577 if (trans) 9578 own_trans = false; 9579 while (num_bytes > 0) { 9580 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9581 cur_bytes = max(cur_bytes, min_size); 9582 /* 9583 * If we are severely fragmented we could end up with really 9584 * small allocations, so if the allocator is returning small 9585 * chunks lets make its job easier by only searching for those 9586 * sized chunks. 9587 */ 9588 cur_bytes = min(cur_bytes, last_alloc); 9589 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9590 min_size, 0, *alloc_hint, &ins, 1, 0); 9591 if (ret) 9592 break; 9593 9594 /* 9595 * We've reserved this space, and thus converted it from 9596 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9597 * from here on out we will only need to clear our reservation 9598 * for the remaining unreserved area, so advance our 9599 * clear_offset by our extent size. 9600 */ 9601 clear_offset += ins.offset; 9602 9603 last_alloc = ins.offset; 9604 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9605 &ins, cur_offset); 9606 /* 9607 * Now that we inserted the prealloc extent we can finally 9608 * decrement the number of reservations in the block group. 9609 * If we did it before, we could race with relocation and have 9610 * relocation miss the reserved extent, making it fail later. 9611 */ 9612 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9613 if (IS_ERR(trans)) { 9614 ret = PTR_ERR(trans); 9615 btrfs_free_reserved_extent(fs_info, ins.objectid, 9616 ins.offset, 0); 9617 break; 9618 } 9619 9620 em = alloc_extent_map(); 9621 if (!em) { 9622 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9623 cur_offset + ins.offset - 1, false); 9624 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9625 goto next; 9626 } 9627 9628 em->start = cur_offset; 9629 em->orig_start = cur_offset; 9630 em->len = ins.offset; 9631 em->block_start = ins.objectid; 9632 em->block_len = ins.offset; 9633 em->orig_block_len = ins.offset; 9634 em->ram_bytes = ins.offset; 9635 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9636 em->generation = trans->transid; 9637 9638 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9639 free_extent_map(em); 9640 next: 9641 num_bytes -= ins.offset; 9642 cur_offset += ins.offset; 9643 *alloc_hint = ins.objectid + ins.offset; 9644 9645 inode_inc_iversion(inode); 9646 inode_set_ctime_current(inode); 9647 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9648 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9649 (actual_len > inode->i_size) && 9650 (cur_offset > inode->i_size)) { 9651 if (cur_offset > actual_len) 9652 i_size = actual_len; 9653 else 9654 i_size = cur_offset; 9655 i_size_write(inode, i_size); 9656 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9657 } 9658 9659 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9660 9661 if (ret) { 9662 btrfs_abort_transaction(trans, ret); 9663 if (own_trans) 9664 btrfs_end_transaction(trans); 9665 break; 9666 } 9667 9668 if (own_trans) { 9669 btrfs_end_transaction(trans); 9670 trans = NULL; 9671 } 9672 } 9673 if (clear_offset < end) 9674 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9675 end - clear_offset + 1); 9676 return ret; 9677 } 9678 9679 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9680 u64 start, u64 num_bytes, u64 min_size, 9681 loff_t actual_len, u64 *alloc_hint) 9682 { 9683 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9684 min_size, actual_len, alloc_hint, 9685 NULL); 9686 } 9687 9688 int btrfs_prealloc_file_range_trans(struct inode *inode, 9689 struct btrfs_trans_handle *trans, int mode, 9690 u64 start, u64 num_bytes, u64 min_size, 9691 loff_t actual_len, u64 *alloc_hint) 9692 { 9693 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9694 min_size, actual_len, alloc_hint, trans); 9695 } 9696 9697 static int btrfs_permission(struct mnt_idmap *idmap, 9698 struct inode *inode, int mask) 9699 { 9700 struct btrfs_root *root = BTRFS_I(inode)->root; 9701 umode_t mode = inode->i_mode; 9702 9703 if (mask & MAY_WRITE && 9704 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9705 if (btrfs_root_readonly(root)) 9706 return -EROFS; 9707 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9708 return -EACCES; 9709 } 9710 return generic_permission(idmap, inode, mask); 9711 } 9712 9713 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9714 struct file *file, umode_t mode) 9715 { 9716 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9717 struct btrfs_trans_handle *trans; 9718 struct btrfs_root *root = BTRFS_I(dir)->root; 9719 struct inode *inode; 9720 struct btrfs_new_inode_args new_inode_args = { 9721 .dir = dir, 9722 .dentry = file->f_path.dentry, 9723 .orphan = true, 9724 }; 9725 unsigned int trans_num_items; 9726 int ret; 9727 9728 inode = new_inode(dir->i_sb); 9729 if (!inode) 9730 return -ENOMEM; 9731 inode_init_owner(idmap, inode, dir, mode); 9732 inode->i_fop = &btrfs_file_operations; 9733 inode->i_op = &btrfs_file_inode_operations; 9734 inode->i_mapping->a_ops = &btrfs_aops; 9735 9736 new_inode_args.inode = inode; 9737 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9738 if (ret) 9739 goto out_inode; 9740 9741 trans = btrfs_start_transaction(root, trans_num_items); 9742 if (IS_ERR(trans)) { 9743 ret = PTR_ERR(trans); 9744 goto out_new_inode_args; 9745 } 9746 9747 ret = btrfs_create_new_inode(trans, &new_inode_args); 9748 9749 /* 9750 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9751 * set it to 1 because d_tmpfile() will issue a warning if the count is 9752 * 0, through: 9753 * 9754 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9755 */ 9756 set_nlink(inode, 1); 9757 9758 if (!ret) { 9759 d_tmpfile(file, inode); 9760 unlock_new_inode(inode); 9761 mark_inode_dirty(inode); 9762 } 9763 9764 btrfs_end_transaction(trans); 9765 btrfs_btree_balance_dirty(fs_info); 9766 out_new_inode_args: 9767 btrfs_new_inode_args_destroy(&new_inode_args); 9768 out_inode: 9769 if (ret) 9770 iput(inode); 9771 return finish_open_simple(file, ret); 9772 } 9773 9774 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9775 { 9776 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9777 unsigned long index = start >> PAGE_SHIFT; 9778 unsigned long end_index = end >> PAGE_SHIFT; 9779 struct page *page; 9780 u32 len; 9781 9782 ASSERT(end + 1 - start <= U32_MAX); 9783 len = end + 1 - start; 9784 while (index <= end_index) { 9785 page = find_get_page(inode->vfs_inode.i_mapping, index); 9786 ASSERT(page); /* Pages should be in the extent_io_tree */ 9787 9788 btrfs_page_set_writeback(fs_info, page, start, len); 9789 put_page(page); 9790 index++; 9791 } 9792 } 9793 9794 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9795 int compress_type) 9796 { 9797 switch (compress_type) { 9798 case BTRFS_COMPRESS_NONE: 9799 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9800 case BTRFS_COMPRESS_ZLIB: 9801 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9802 case BTRFS_COMPRESS_LZO: 9803 /* 9804 * The LZO format depends on the sector size. 64K is the maximum 9805 * sector size that we support. 9806 */ 9807 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9808 return -EINVAL; 9809 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9810 (fs_info->sectorsize_bits - 12); 9811 case BTRFS_COMPRESS_ZSTD: 9812 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9813 default: 9814 return -EUCLEAN; 9815 } 9816 } 9817 9818 static ssize_t btrfs_encoded_read_inline( 9819 struct kiocb *iocb, 9820 struct iov_iter *iter, u64 start, 9821 u64 lockend, 9822 struct extent_state **cached_state, 9823 u64 extent_start, size_t count, 9824 struct btrfs_ioctl_encoded_io_args *encoded, 9825 bool *unlocked) 9826 { 9827 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9828 struct btrfs_root *root = inode->root; 9829 struct btrfs_fs_info *fs_info = root->fs_info; 9830 struct extent_io_tree *io_tree = &inode->io_tree; 9831 struct btrfs_path *path; 9832 struct extent_buffer *leaf; 9833 struct btrfs_file_extent_item *item; 9834 u64 ram_bytes; 9835 unsigned long ptr; 9836 void *tmp; 9837 ssize_t ret; 9838 9839 path = btrfs_alloc_path(); 9840 if (!path) { 9841 ret = -ENOMEM; 9842 goto out; 9843 } 9844 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9845 extent_start, 0); 9846 if (ret) { 9847 if (ret > 0) { 9848 /* The extent item disappeared? */ 9849 ret = -EIO; 9850 } 9851 goto out; 9852 } 9853 leaf = path->nodes[0]; 9854 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9855 9856 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9857 ptr = btrfs_file_extent_inline_start(item); 9858 9859 encoded->len = min_t(u64, extent_start + ram_bytes, 9860 inode->vfs_inode.i_size) - iocb->ki_pos; 9861 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9862 btrfs_file_extent_compression(leaf, item)); 9863 if (ret < 0) 9864 goto out; 9865 encoded->compression = ret; 9866 if (encoded->compression) { 9867 size_t inline_size; 9868 9869 inline_size = btrfs_file_extent_inline_item_len(leaf, 9870 path->slots[0]); 9871 if (inline_size > count) { 9872 ret = -ENOBUFS; 9873 goto out; 9874 } 9875 count = inline_size; 9876 encoded->unencoded_len = ram_bytes; 9877 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9878 } else { 9879 count = min_t(u64, count, encoded->len); 9880 encoded->len = count; 9881 encoded->unencoded_len = count; 9882 ptr += iocb->ki_pos - extent_start; 9883 } 9884 9885 tmp = kmalloc(count, GFP_NOFS); 9886 if (!tmp) { 9887 ret = -ENOMEM; 9888 goto out; 9889 } 9890 read_extent_buffer(leaf, tmp, ptr, count); 9891 btrfs_release_path(path); 9892 unlock_extent(io_tree, start, lockend, cached_state); 9893 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9894 *unlocked = true; 9895 9896 ret = copy_to_iter(tmp, count, iter); 9897 if (ret != count) 9898 ret = -EFAULT; 9899 kfree(tmp); 9900 out: 9901 btrfs_free_path(path); 9902 return ret; 9903 } 9904 9905 struct btrfs_encoded_read_private { 9906 wait_queue_head_t wait; 9907 atomic_t pending; 9908 blk_status_t status; 9909 }; 9910 9911 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9912 { 9913 struct btrfs_encoded_read_private *priv = bbio->private; 9914 9915 if (bbio->bio.bi_status) { 9916 /* 9917 * The memory barrier implied by the atomic_dec_return() here 9918 * pairs with the memory barrier implied by the 9919 * atomic_dec_return() or io_wait_event() in 9920 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9921 * write is observed before the load of status in 9922 * btrfs_encoded_read_regular_fill_pages(). 9923 */ 9924 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9925 } 9926 if (!atomic_dec_return(&priv->pending)) 9927 wake_up(&priv->wait); 9928 bio_put(&bbio->bio); 9929 } 9930 9931 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9932 u64 file_offset, u64 disk_bytenr, 9933 u64 disk_io_size, struct page **pages) 9934 { 9935 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9936 struct btrfs_encoded_read_private priv = { 9937 .pending = ATOMIC_INIT(1), 9938 }; 9939 unsigned long i = 0; 9940 struct btrfs_bio *bbio; 9941 9942 init_waitqueue_head(&priv.wait); 9943 9944 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9945 btrfs_encoded_read_endio, &priv); 9946 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9947 bbio->inode = inode; 9948 9949 do { 9950 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9951 9952 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9953 atomic_inc(&priv.pending); 9954 btrfs_submit_bio(bbio, 0); 9955 9956 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9957 btrfs_encoded_read_endio, &priv); 9958 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9959 bbio->inode = inode; 9960 continue; 9961 } 9962 9963 i++; 9964 disk_bytenr += bytes; 9965 disk_io_size -= bytes; 9966 } while (disk_io_size); 9967 9968 atomic_inc(&priv.pending); 9969 btrfs_submit_bio(bbio, 0); 9970 9971 if (atomic_dec_return(&priv.pending)) 9972 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 9973 /* See btrfs_encoded_read_endio() for ordering. */ 9974 return blk_status_to_errno(READ_ONCE(priv.status)); 9975 } 9976 9977 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 9978 struct iov_iter *iter, 9979 u64 start, u64 lockend, 9980 struct extent_state **cached_state, 9981 u64 disk_bytenr, u64 disk_io_size, 9982 size_t count, bool compressed, 9983 bool *unlocked) 9984 { 9985 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9986 struct extent_io_tree *io_tree = &inode->io_tree; 9987 struct page **pages; 9988 unsigned long nr_pages, i; 9989 u64 cur; 9990 size_t page_offset; 9991 ssize_t ret; 9992 9993 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9994 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9995 if (!pages) 9996 return -ENOMEM; 9997 ret = btrfs_alloc_page_array(nr_pages, pages); 9998 if (ret) { 9999 ret = -ENOMEM; 10000 goto out; 10001 } 10002 10003 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10004 disk_io_size, pages); 10005 if (ret) 10006 goto out; 10007 10008 unlock_extent(io_tree, start, lockend, cached_state); 10009 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10010 *unlocked = true; 10011 10012 if (compressed) { 10013 i = 0; 10014 page_offset = 0; 10015 } else { 10016 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10017 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10018 } 10019 cur = 0; 10020 while (cur < count) { 10021 size_t bytes = min_t(size_t, count - cur, 10022 PAGE_SIZE - page_offset); 10023 10024 if (copy_page_to_iter(pages[i], page_offset, bytes, 10025 iter) != bytes) { 10026 ret = -EFAULT; 10027 goto out; 10028 } 10029 i++; 10030 cur += bytes; 10031 page_offset = 0; 10032 } 10033 ret = count; 10034 out: 10035 for (i = 0; i < nr_pages; i++) { 10036 if (pages[i]) 10037 __free_page(pages[i]); 10038 } 10039 kfree(pages); 10040 return ret; 10041 } 10042 10043 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10044 struct btrfs_ioctl_encoded_io_args *encoded) 10045 { 10046 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10047 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10048 struct extent_io_tree *io_tree = &inode->io_tree; 10049 ssize_t ret; 10050 size_t count = iov_iter_count(iter); 10051 u64 start, lockend, disk_bytenr, disk_io_size; 10052 struct extent_state *cached_state = NULL; 10053 struct extent_map *em; 10054 bool unlocked = false; 10055 10056 file_accessed(iocb->ki_filp); 10057 10058 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10059 10060 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10061 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10062 return 0; 10063 } 10064 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10065 /* 10066 * We don't know how long the extent containing iocb->ki_pos is, but if 10067 * it's compressed we know that it won't be longer than this. 10068 */ 10069 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10070 10071 for (;;) { 10072 struct btrfs_ordered_extent *ordered; 10073 10074 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10075 lockend - start + 1); 10076 if (ret) 10077 goto out_unlock_inode; 10078 lock_extent(io_tree, start, lockend, &cached_state); 10079 ordered = btrfs_lookup_ordered_range(inode, start, 10080 lockend - start + 1); 10081 if (!ordered) 10082 break; 10083 btrfs_put_ordered_extent(ordered); 10084 unlock_extent(io_tree, start, lockend, &cached_state); 10085 cond_resched(); 10086 } 10087 10088 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10089 if (IS_ERR(em)) { 10090 ret = PTR_ERR(em); 10091 goto out_unlock_extent; 10092 } 10093 10094 if (em->block_start == EXTENT_MAP_INLINE) { 10095 u64 extent_start = em->start; 10096 10097 /* 10098 * For inline extents we get everything we need out of the 10099 * extent item. 10100 */ 10101 free_extent_map(em); 10102 em = NULL; 10103 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10104 &cached_state, extent_start, 10105 count, encoded, &unlocked); 10106 goto out; 10107 } 10108 10109 /* 10110 * We only want to return up to EOF even if the extent extends beyond 10111 * that. 10112 */ 10113 encoded->len = min_t(u64, extent_map_end(em), 10114 inode->vfs_inode.i_size) - iocb->ki_pos; 10115 if (em->block_start == EXTENT_MAP_HOLE || 10116 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10117 disk_bytenr = EXTENT_MAP_HOLE; 10118 count = min_t(u64, count, encoded->len); 10119 encoded->len = count; 10120 encoded->unencoded_len = count; 10121 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10122 disk_bytenr = em->block_start; 10123 /* 10124 * Bail if the buffer isn't large enough to return the whole 10125 * compressed extent. 10126 */ 10127 if (em->block_len > count) { 10128 ret = -ENOBUFS; 10129 goto out_em; 10130 } 10131 disk_io_size = em->block_len; 10132 count = em->block_len; 10133 encoded->unencoded_len = em->ram_bytes; 10134 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10135 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10136 em->compress_type); 10137 if (ret < 0) 10138 goto out_em; 10139 encoded->compression = ret; 10140 } else { 10141 disk_bytenr = em->block_start + (start - em->start); 10142 if (encoded->len > count) 10143 encoded->len = count; 10144 /* 10145 * Don't read beyond what we locked. This also limits the page 10146 * allocations that we'll do. 10147 */ 10148 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10149 count = start + disk_io_size - iocb->ki_pos; 10150 encoded->len = count; 10151 encoded->unencoded_len = count; 10152 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10153 } 10154 free_extent_map(em); 10155 em = NULL; 10156 10157 if (disk_bytenr == EXTENT_MAP_HOLE) { 10158 unlock_extent(io_tree, start, lockend, &cached_state); 10159 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10160 unlocked = true; 10161 ret = iov_iter_zero(count, iter); 10162 if (ret != count) 10163 ret = -EFAULT; 10164 } else { 10165 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10166 &cached_state, disk_bytenr, 10167 disk_io_size, count, 10168 encoded->compression, 10169 &unlocked); 10170 } 10171 10172 out: 10173 if (ret >= 0) 10174 iocb->ki_pos += encoded->len; 10175 out_em: 10176 free_extent_map(em); 10177 out_unlock_extent: 10178 if (!unlocked) 10179 unlock_extent(io_tree, start, lockend, &cached_state); 10180 out_unlock_inode: 10181 if (!unlocked) 10182 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10183 return ret; 10184 } 10185 10186 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10187 const struct btrfs_ioctl_encoded_io_args *encoded) 10188 { 10189 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10190 struct btrfs_root *root = inode->root; 10191 struct btrfs_fs_info *fs_info = root->fs_info; 10192 struct extent_io_tree *io_tree = &inode->io_tree; 10193 struct extent_changeset *data_reserved = NULL; 10194 struct extent_state *cached_state = NULL; 10195 struct btrfs_ordered_extent *ordered; 10196 int compression; 10197 size_t orig_count; 10198 u64 start, end; 10199 u64 num_bytes, ram_bytes, disk_num_bytes; 10200 unsigned long nr_pages, i; 10201 struct page **pages; 10202 struct btrfs_key ins; 10203 bool extent_reserved = false; 10204 struct extent_map *em; 10205 ssize_t ret; 10206 10207 switch (encoded->compression) { 10208 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10209 compression = BTRFS_COMPRESS_ZLIB; 10210 break; 10211 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10212 compression = BTRFS_COMPRESS_ZSTD; 10213 break; 10214 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10215 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10216 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10217 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10218 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10219 /* The sector size must match for LZO. */ 10220 if (encoded->compression - 10221 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10222 fs_info->sectorsize_bits) 10223 return -EINVAL; 10224 compression = BTRFS_COMPRESS_LZO; 10225 break; 10226 default: 10227 return -EINVAL; 10228 } 10229 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10230 return -EINVAL; 10231 10232 orig_count = iov_iter_count(from); 10233 10234 /* The extent size must be sane. */ 10235 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10236 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10237 return -EINVAL; 10238 10239 /* 10240 * The compressed data must be smaller than the decompressed data. 10241 * 10242 * It's of course possible for data to compress to larger or the same 10243 * size, but the buffered I/O path falls back to no compression for such 10244 * data, and we don't want to break any assumptions by creating these 10245 * extents. 10246 * 10247 * Note that this is less strict than the current check we have that the 10248 * compressed data must be at least one sector smaller than the 10249 * decompressed data. We only want to enforce the weaker requirement 10250 * from old kernels that it is at least one byte smaller. 10251 */ 10252 if (orig_count >= encoded->unencoded_len) 10253 return -EINVAL; 10254 10255 /* The extent must start on a sector boundary. */ 10256 start = iocb->ki_pos; 10257 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10258 return -EINVAL; 10259 10260 /* 10261 * The extent must end on a sector boundary. However, we allow a write 10262 * which ends at or extends i_size to have an unaligned length; we round 10263 * up the extent size and set i_size to the unaligned end. 10264 */ 10265 if (start + encoded->len < inode->vfs_inode.i_size && 10266 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10267 return -EINVAL; 10268 10269 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10270 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10271 return -EINVAL; 10272 10273 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10274 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10275 end = start + num_bytes - 1; 10276 10277 /* 10278 * If the extent cannot be inline, the compressed data on disk must be 10279 * sector-aligned. For convenience, we extend it with zeroes if it 10280 * isn't. 10281 */ 10282 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10283 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10284 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10285 if (!pages) 10286 return -ENOMEM; 10287 for (i = 0; i < nr_pages; i++) { 10288 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10289 char *kaddr; 10290 10291 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10292 if (!pages[i]) { 10293 ret = -ENOMEM; 10294 goto out_pages; 10295 } 10296 kaddr = kmap_local_page(pages[i]); 10297 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10298 kunmap_local(kaddr); 10299 ret = -EFAULT; 10300 goto out_pages; 10301 } 10302 if (bytes < PAGE_SIZE) 10303 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10304 kunmap_local(kaddr); 10305 } 10306 10307 for (;;) { 10308 struct btrfs_ordered_extent *ordered; 10309 10310 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10311 if (ret) 10312 goto out_pages; 10313 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10314 start >> PAGE_SHIFT, 10315 end >> PAGE_SHIFT); 10316 if (ret) 10317 goto out_pages; 10318 lock_extent(io_tree, start, end, &cached_state); 10319 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10320 if (!ordered && 10321 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10322 break; 10323 if (ordered) 10324 btrfs_put_ordered_extent(ordered); 10325 unlock_extent(io_tree, start, end, &cached_state); 10326 cond_resched(); 10327 } 10328 10329 /* 10330 * We don't use the higher-level delalloc space functions because our 10331 * num_bytes and disk_num_bytes are different. 10332 */ 10333 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10334 if (ret) 10335 goto out_unlock; 10336 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10337 if (ret) 10338 goto out_free_data_space; 10339 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10340 false); 10341 if (ret) 10342 goto out_qgroup_free_data; 10343 10344 /* Try an inline extent first. */ 10345 if (start == 0 && encoded->unencoded_len == encoded->len && 10346 encoded->unencoded_offset == 0) { 10347 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10348 compression, pages, true); 10349 if (ret <= 0) { 10350 if (ret == 0) 10351 ret = orig_count; 10352 goto out_delalloc_release; 10353 } 10354 } 10355 10356 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10357 disk_num_bytes, 0, 0, &ins, 1, 1); 10358 if (ret) 10359 goto out_delalloc_release; 10360 extent_reserved = true; 10361 10362 em = create_io_em(inode, start, num_bytes, 10363 start - encoded->unencoded_offset, ins.objectid, 10364 ins.offset, ins.offset, ram_bytes, compression, 10365 BTRFS_ORDERED_COMPRESSED); 10366 if (IS_ERR(em)) { 10367 ret = PTR_ERR(em); 10368 goto out_free_reserved; 10369 } 10370 free_extent_map(em); 10371 10372 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10373 ins.objectid, ins.offset, 10374 encoded->unencoded_offset, 10375 (1 << BTRFS_ORDERED_ENCODED) | 10376 (1 << BTRFS_ORDERED_COMPRESSED), 10377 compression); 10378 if (IS_ERR(ordered)) { 10379 btrfs_drop_extent_map_range(inode, start, end, false); 10380 ret = PTR_ERR(ordered); 10381 goto out_free_reserved; 10382 } 10383 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10384 10385 if (start + encoded->len > inode->vfs_inode.i_size) 10386 i_size_write(&inode->vfs_inode, start + encoded->len); 10387 10388 unlock_extent(io_tree, start, end, &cached_state); 10389 10390 btrfs_delalloc_release_extents(inode, num_bytes); 10391 10392 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10393 ret = orig_count; 10394 goto out; 10395 10396 out_free_reserved: 10397 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10398 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10399 out_delalloc_release: 10400 btrfs_delalloc_release_extents(inode, num_bytes); 10401 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10402 out_qgroup_free_data: 10403 if (ret < 0) 10404 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10405 out_free_data_space: 10406 /* 10407 * If btrfs_reserve_extent() succeeded, then we already decremented 10408 * bytes_may_use. 10409 */ 10410 if (!extent_reserved) 10411 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10412 out_unlock: 10413 unlock_extent(io_tree, start, end, &cached_state); 10414 out_pages: 10415 for (i = 0; i < nr_pages; i++) { 10416 if (pages[i]) 10417 __free_page(pages[i]); 10418 } 10419 kvfree(pages); 10420 out: 10421 if (ret >= 0) 10422 iocb->ki_pos += encoded->len; 10423 return ret; 10424 } 10425 10426 #ifdef CONFIG_SWAP 10427 /* 10428 * Add an entry indicating a block group or device which is pinned by a 10429 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10430 * negative errno on failure. 10431 */ 10432 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10433 bool is_block_group) 10434 { 10435 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10436 struct btrfs_swapfile_pin *sp, *entry; 10437 struct rb_node **p; 10438 struct rb_node *parent = NULL; 10439 10440 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10441 if (!sp) 10442 return -ENOMEM; 10443 sp->ptr = ptr; 10444 sp->inode = inode; 10445 sp->is_block_group = is_block_group; 10446 sp->bg_extent_count = 1; 10447 10448 spin_lock(&fs_info->swapfile_pins_lock); 10449 p = &fs_info->swapfile_pins.rb_node; 10450 while (*p) { 10451 parent = *p; 10452 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10453 if (sp->ptr < entry->ptr || 10454 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10455 p = &(*p)->rb_left; 10456 } else if (sp->ptr > entry->ptr || 10457 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10458 p = &(*p)->rb_right; 10459 } else { 10460 if (is_block_group) 10461 entry->bg_extent_count++; 10462 spin_unlock(&fs_info->swapfile_pins_lock); 10463 kfree(sp); 10464 return 1; 10465 } 10466 } 10467 rb_link_node(&sp->node, parent, p); 10468 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10469 spin_unlock(&fs_info->swapfile_pins_lock); 10470 return 0; 10471 } 10472 10473 /* Free all of the entries pinned by this swapfile. */ 10474 static void btrfs_free_swapfile_pins(struct inode *inode) 10475 { 10476 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10477 struct btrfs_swapfile_pin *sp; 10478 struct rb_node *node, *next; 10479 10480 spin_lock(&fs_info->swapfile_pins_lock); 10481 node = rb_first(&fs_info->swapfile_pins); 10482 while (node) { 10483 next = rb_next(node); 10484 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10485 if (sp->inode == inode) { 10486 rb_erase(&sp->node, &fs_info->swapfile_pins); 10487 if (sp->is_block_group) { 10488 btrfs_dec_block_group_swap_extents(sp->ptr, 10489 sp->bg_extent_count); 10490 btrfs_put_block_group(sp->ptr); 10491 } 10492 kfree(sp); 10493 } 10494 node = next; 10495 } 10496 spin_unlock(&fs_info->swapfile_pins_lock); 10497 } 10498 10499 struct btrfs_swap_info { 10500 u64 start; 10501 u64 block_start; 10502 u64 block_len; 10503 u64 lowest_ppage; 10504 u64 highest_ppage; 10505 unsigned long nr_pages; 10506 int nr_extents; 10507 }; 10508 10509 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10510 struct btrfs_swap_info *bsi) 10511 { 10512 unsigned long nr_pages; 10513 unsigned long max_pages; 10514 u64 first_ppage, first_ppage_reported, next_ppage; 10515 int ret; 10516 10517 /* 10518 * Our swapfile may have had its size extended after the swap header was 10519 * written. In that case activating the swapfile should not go beyond 10520 * the max size set in the swap header. 10521 */ 10522 if (bsi->nr_pages >= sis->max) 10523 return 0; 10524 10525 max_pages = sis->max - bsi->nr_pages; 10526 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10527 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10528 10529 if (first_ppage >= next_ppage) 10530 return 0; 10531 nr_pages = next_ppage - first_ppage; 10532 nr_pages = min(nr_pages, max_pages); 10533 10534 first_ppage_reported = first_ppage; 10535 if (bsi->start == 0) 10536 first_ppage_reported++; 10537 if (bsi->lowest_ppage > first_ppage_reported) 10538 bsi->lowest_ppage = first_ppage_reported; 10539 if (bsi->highest_ppage < (next_ppage - 1)) 10540 bsi->highest_ppage = next_ppage - 1; 10541 10542 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10543 if (ret < 0) 10544 return ret; 10545 bsi->nr_extents += ret; 10546 bsi->nr_pages += nr_pages; 10547 return 0; 10548 } 10549 10550 static void btrfs_swap_deactivate(struct file *file) 10551 { 10552 struct inode *inode = file_inode(file); 10553 10554 btrfs_free_swapfile_pins(inode); 10555 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10556 } 10557 10558 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10559 sector_t *span) 10560 { 10561 struct inode *inode = file_inode(file); 10562 struct btrfs_root *root = BTRFS_I(inode)->root; 10563 struct btrfs_fs_info *fs_info = root->fs_info; 10564 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10565 struct extent_state *cached_state = NULL; 10566 struct extent_map *em = NULL; 10567 struct btrfs_device *device = NULL; 10568 struct btrfs_swap_info bsi = { 10569 .lowest_ppage = (sector_t)-1ULL, 10570 }; 10571 int ret = 0; 10572 u64 isize; 10573 u64 start; 10574 10575 /* 10576 * If the swap file was just created, make sure delalloc is done. If the 10577 * file changes again after this, the user is doing something stupid and 10578 * we don't really care. 10579 */ 10580 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10581 if (ret) 10582 return ret; 10583 10584 /* 10585 * The inode is locked, so these flags won't change after we check them. 10586 */ 10587 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10588 btrfs_warn(fs_info, "swapfile must not be compressed"); 10589 return -EINVAL; 10590 } 10591 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10592 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10593 return -EINVAL; 10594 } 10595 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10596 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10597 return -EINVAL; 10598 } 10599 10600 /* 10601 * Balance or device remove/replace/resize can move stuff around from 10602 * under us. The exclop protection makes sure they aren't running/won't 10603 * run concurrently while we are mapping the swap extents, and 10604 * fs_info->swapfile_pins prevents them from running while the swap 10605 * file is active and moving the extents. Note that this also prevents 10606 * a concurrent device add which isn't actually necessary, but it's not 10607 * really worth the trouble to allow it. 10608 */ 10609 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10610 btrfs_warn(fs_info, 10611 "cannot activate swapfile while exclusive operation is running"); 10612 return -EBUSY; 10613 } 10614 10615 /* 10616 * Prevent snapshot creation while we are activating the swap file. 10617 * We do not want to race with snapshot creation. If snapshot creation 10618 * already started before we bumped nr_swapfiles from 0 to 1 and 10619 * completes before the first write into the swap file after it is 10620 * activated, than that write would fallback to COW. 10621 */ 10622 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10623 btrfs_exclop_finish(fs_info); 10624 btrfs_warn(fs_info, 10625 "cannot activate swapfile because snapshot creation is in progress"); 10626 return -EINVAL; 10627 } 10628 /* 10629 * Snapshots can create extents which require COW even if NODATACOW is 10630 * set. We use this counter to prevent snapshots. We must increment it 10631 * before walking the extents because we don't want a concurrent 10632 * snapshot to run after we've already checked the extents. 10633 * 10634 * It is possible that subvolume is marked for deletion but still not 10635 * removed yet. To prevent this race, we check the root status before 10636 * activating the swapfile. 10637 */ 10638 spin_lock(&root->root_item_lock); 10639 if (btrfs_root_dead(root)) { 10640 spin_unlock(&root->root_item_lock); 10641 10642 btrfs_exclop_finish(fs_info); 10643 btrfs_warn(fs_info, 10644 "cannot activate swapfile because subvolume %llu is being deleted", 10645 root->root_key.objectid); 10646 return -EPERM; 10647 } 10648 atomic_inc(&root->nr_swapfiles); 10649 spin_unlock(&root->root_item_lock); 10650 10651 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10652 10653 lock_extent(io_tree, 0, isize - 1, &cached_state); 10654 start = 0; 10655 while (start < isize) { 10656 u64 logical_block_start, physical_block_start; 10657 struct btrfs_block_group *bg; 10658 u64 len = isize - start; 10659 10660 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10661 if (IS_ERR(em)) { 10662 ret = PTR_ERR(em); 10663 goto out; 10664 } 10665 10666 if (em->block_start == EXTENT_MAP_HOLE) { 10667 btrfs_warn(fs_info, "swapfile must not have holes"); 10668 ret = -EINVAL; 10669 goto out; 10670 } 10671 if (em->block_start == EXTENT_MAP_INLINE) { 10672 /* 10673 * It's unlikely we'll ever actually find ourselves 10674 * here, as a file small enough to fit inline won't be 10675 * big enough to store more than the swap header, but in 10676 * case something changes in the future, let's catch it 10677 * here rather than later. 10678 */ 10679 btrfs_warn(fs_info, "swapfile must not be inline"); 10680 ret = -EINVAL; 10681 goto out; 10682 } 10683 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10684 btrfs_warn(fs_info, "swapfile must not be compressed"); 10685 ret = -EINVAL; 10686 goto out; 10687 } 10688 10689 logical_block_start = em->block_start + (start - em->start); 10690 len = min(len, em->len - (start - em->start)); 10691 free_extent_map(em); 10692 em = NULL; 10693 10694 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10695 if (ret < 0) { 10696 goto out; 10697 } else if (ret) { 10698 ret = 0; 10699 } else { 10700 btrfs_warn(fs_info, 10701 "swapfile must not be copy-on-write"); 10702 ret = -EINVAL; 10703 goto out; 10704 } 10705 10706 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10707 if (IS_ERR(em)) { 10708 ret = PTR_ERR(em); 10709 goto out; 10710 } 10711 10712 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10713 btrfs_warn(fs_info, 10714 "swapfile must have single data profile"); 10715 ret = -EINVAL; 10716 goto out; 10717 } 10718 10719 if (device == NULL) { 10720 device = em->map_lookup->stripes[0].dev; 10721 ret = btrfs_add_swapfile_pin(inode, device, false); 10722 if (ret == 1) 10723 ret = 0; 10724 else if (ret) 10725 goto out; 10726 } else if (device != em->map_lookup->stripes[0].dev) { 10727 btrfs_warn(fs_info, "swapfile must be on one device"); 10728 ret = -EINVAL; 10729 goto out; 10730 } 10731 10732 physical_block_start = (em->map_lookup->stripes[0].physical + 10733 (logical_block_start - em->start)); 10734 len = min(len, em->len - (logical_block_start - em->start)); 10735 free_extent_map(em); 10736 em = NULL; 10737 10738 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10739 if (!bg) { 10740 btrfs_warn(fs_info, 10741 "could not find block group containing swapfile"); 10742 ret = -EINVAL; 10743 goto out; 10744 } 10745 10746 if (!btrfs_inc_block_group_swap_extents(bg)) { 10747 btrfs_warn(fs_info, 10748 "block group for swapfile at %llu is read-only%s", 10749 bg->start, 10750 atomic_read(&fs_info->scrubs_running) ? 10751 " (scrub running)" : ""); 10752 btrfs_put_block_group(bg); 10753 ret = -EINVAL; 10754 goto out; 10755 } 10756 10757 ret = btrfs_add_swapfile_pin(inode, bg, true); 10758 if (ret) { 10759 btrfs_put_block_group(bg); 10760 if (ret == 1) 10761 ret = 0; 10762 else 10763 goto out; 10764 } 10765 10766 if (bsi.block_len && 10767 bsi.block_start + bsi.block_len == physical_block_start) { 10768 bsi.block_len += len; 10769 } else { 10770 if (bsi.block_len) { 10771 ret = btrfs_add_swap_extent(sis, &bsi); 10772 if (ret) 10773 goto out; 10774 } 10775 bsi.start = start; 10776 bsi.block_start = physical_block_start; 10777 bsi.block_len = len; 10778 } 10779 10780 start += len; 10781 } 10782 10783 if (bsi.block_len) 10784 ret = btrfs_add_swap_extent(sis, &bsi); 10785 10786 out: 10787 if (!IS_ERR_OR_NULL(em)) 10788 free_extent_map(em); 10789 10790 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10791 10792 if (ret) 10793 btrfs_swap_deactivate(file); 10794 10795 btrfs_drew_write_unlock(&root->snapshot_lock); 10796 10797 btrfs_exclop_finish(fs_info); 10798 10799 if (ret) 10800 return ret; 10801 10802 if (device) 10803 sis->bdev = device->bdev; 10804 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10805 sis->max = bsi.nr_pages; 10806 sis->pages = bsi.nr_pages - 1; 10807 sis->highest_bit = bsi.nr_pages - 1; 10808 return bsi.nr_extents; 10809 } 10810 #else 10811 static void btrfs_swap_deactivate(struct file *file) 10812 { 10813 } 10814 10815 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10816 sector_t *span) 10817 { 10818 return -EOPNOTSUPP; 10819 } 10820 #endif 10821 10822 /* 10823 * Update the number of bytes used in the VFS' inode. When we replace extents in 10824 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10825 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10826 * always get a correct value. 10827 */ 10828 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10829 const u64 add_bytes, 10830 const u64 del_bytes) 10831 { 10832 if (add_bytes == del_bytes) 10833 return; 10834 10835 spin_lock(&inode->lock); 10836 if (del_bytes > 0) 10837 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10838 if (add_bytes > 0) 10839 inode_add_bytes(&inode->vfs_inode, add_bytes); 10840 spin_unlock(&inode->lock); 10841 } 10842 10843 /* 10844 * Verify that there are no ordered extents for a given file range. 10845 * 10846 * @inode: The target inode. 10847 * @start: Start offset of the file range, should be sector size aligned. 10848 * @end: End offset (inclusive) of the file range, its value +1 should be 10849 * sector size aligned. 10850 * 10851 * This should typically be used for cases where we locked an inode's VFS lock in 10852 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10853 * we have flushed all delalloc in the range, we have waited for all ordered 10854 * extents in the range to complete and finally we have locked the file range in 10855 * the inode's io_tree. 10856 */ 10857 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10858 { 10859 struct btrfs_root *root = inode->root; 10860 struct btrfs_ordered_extent *ordered; 10861 10862 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10863 return; 10864 10865 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10866 if (ordered) { 10867 btrfs_err(root->fs_info, 10868 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10869 start, end, btrfs_ino(inode), root->root_key.objectid, 10870 ordered->file_offset, 10871 ordered->file_offset + ordered->num_bytes - 1); 10872 btrfs_put_ordered_extent(ordered); 10873 } 10874 10875 ASSERT(ordered == NULL); 10876 } 10877 10878 static const struct inode_operations btrfs_dir_inode_operations = { 10879 .getattr = btrfs_getattr, 10880 .lookup = btrfs_lookup, 10881 .create = btrfs_create, 10882 .unlink = btrfs_unlink, 10883 .link = btrfs_link, 10884 .mkdir = btrfs_mkdir, 10885 .rmdir = btrfs_rmdir, 10886 .rename = btrfs_rename2, 10887 .symlink = btrfs_symlink, 10888 .setattr = btrfs_setattr, 10889 .mknod = btrfs_mknod, 10890 .listxattr = btrfs_listxattr, 10891 .permission = btrfs_permission, 10892 .get_inode_acl = btrfs_get_acl, 10893 .set_acl = btrfs_set_acl, 10894 .update_time = btrfs_update_time, 10895 .tmpfile = btrfs_tmpfile, 10896 .fileattr_get = btrfs_fileattr_get, 10897 .fileattr_set = btrfs_fileattr_set, 10898 }; 10899 10900 static const struct file_operations btrfs_dir_file_operations = { 10901 .llseek = btrfs_dir_llseek, 10902 .read = generic_read_dir, 10903 .iterate_shared = btrfs_real_readdir, 10904 .open = btrfs_opendir, 10905 .unlocked_ioctl = btrfs_ioctl, 10906 #ifdef CONFIG_COMPAT 10907 .compat_ioctl = btrfs_compat_ioctl, 10908 #endif 10909 .release = btrfs_release_file, 10910 .fsync = btrfs_sync_file, 10911 }; 10912 10913 /* 10914 * btrfs doesn't support the bmap operation because swapfiles 10915 * use bmap to make a mapping of extents in the file. They assume 10916 * these extents won't change over the life of the file and they 10917 * use the bmap result to do IO directly to the drive. 10918 * 10919 * the btrfs bmap call would return logical addresses that aren't 10920 * suitable for IO and they also will change frequently as COW 10921 * operations happen. So, swapfile + btrfs == corruption. 10922 * 10923 * For now we're avoiding this by dropping bmap. 10924 */ 10925 static const struct address_space_operations btrfs_aops = { 10926 .read_folio = btrfs_read_folio, 10927 .writepages = btrfs_writepages, 10928 .readahead = btrfs_readahead, 10929 .invalidate_folio = btrfs_invalidate_folio, 10930 .release_folio = btrfs_release_folio, 10931 .migrate_folio = btrfs_migrate_folio, 10932 .dirty_folio = filemap_dirty_folio, 10933 .error_remove_page = generic_error_remove_page, 10934 .swap_activate = btrfs_swap_activate, 10935 .swap_deactivate = btrfs_swap_deactivate, 10936 }; 10937 10938 static const struct inode_operations btrfs_file_inode_operations = { 10939 .getattr = btrfs_getattr, 10940 .setattr = btrfs_setattr, 10941 .listxattr = btrfs_listxattr, 10942 .permission = btrfs_permission, 10943 .fiemap = btrfs_fiemap, 10944 .get_inode_acl = btrfs_get_acl, 10945 .set_acl = btrfs_set_acl, 10946 .update_time = btrfs_update_time, 10947 .fileattr_get = btrfs_fileattr_get, 10948 .fileattr_set = btrfs_fileattr_set, 10949 }; 10950 static const struct inode_operations btrfs_special_inode_operations = { 10951 .getattr = btrfs_getattr, 10952 .setattr = btrfs_setattr, 10953 .permission = btrfs_permission, 10954 .listxattr = btrfs_listxattr, 10955 .get_inode_acl = btrfs_get_acl, 10956 .set_acl = btrfs_set_acl, 10957 .update_time = btrfs_update_time, 10958 }; 10959 static const struct inode_operations btrfs_symlink_inode_operations = { 10960 .get_link = page_get_link, 10961 .getattr = btrfs_getattr, 10962 .setattr = btrfs_setattr, 10963 .permission = btrfs_permission, 10964 .listxattr = btrfs_listxattr, 10965 .update_time = btrfs_update_time, 10966 }; 10967 10968 const struct dentry_operations btrfs_dentry_operations = { 10969 .d_delete = btrfs_dentry_delete, 10970 }; 10971