1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include "compat.h" 40 #include "ctree.h" 41 #include "disk-io.h" 42 #include "transaction.h" 43 #include "btrfs_inode.h" 44 #include "ioctl.h" 45 #include "print-tree.h" 46 #include "volumes.h" 47 #include "ordered-data.h" 48 #include "xattr.h" 49 #include "tree-log.h" 50 #include "compression.h" 51 #include "locking.h" 52 53 struct btrfs_iget_args { 54 u64 ino; 55 struct btrfs_root *root; 56 }; 57 58 static const struct inode_operations btrfs_dir_inode_operations; 59 static const struct inode_operations btrfs_symlink_inode_operations; 60 static const struct inode_operations btrfs_dir_ro_inode_operations; 61 static const struct inode_operations btrfs_special_inode_operations; 62 static const struct inode_operations btrfs_file_inode_operations; 63 static const struct address_space_operations btrfs_aops; 64 static const struct address_space_operations btrfs_symlink_aops; 65 static const struct file_operations btrfs_dir_file_operations; 66 static struct extent_io_ops btrfs_extent_io_ops; 67 68 static struct kmem_cache *btrfs_inode_cachep; 69 struct kmem_cache *btrfs_trans_handle_cachep; 70 struct kmem_cache *btrfs_transaction_cachep; 71 struct kmem_cache *btrfs_path_cachep; 72 73 #define S_SHIFT 12 74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 82 }; 83 84 static void btrfs_truncate(struct inode *inode); 85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 86 static noinline int cow_file_range(struct inode *inode, 87 struct page *locked_page, 88 u64 start, u64 end, int *page_started, 89 unsigned long *nr_written, int unlock); 90 91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 92 struct inode *inode, struct inode *dir) 93 { 94 int err; 95 96 err = btrfs_init_acl(trans, inode, dir); 97 if (!err) 98 err = btrfs_xattr_security_init(trans, inode, dir); 99 return err; 100 } 101 102 /* 103 * this does all the hard work for inserting an inline extent into 104 * the btree. The caller should have done a btrfs_drop_extents so that 105 * no overlapping inline items exist in the btree 106 */ 107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 108 struct btrfs_root *root, struct inode *inode, 109 u64 start, size_t size, size_t compressed_size, 110 struct page **compressed_pages) 111 { 112 struct btrfs_key key; 113 struct btrfs_path *path; 114 struct extent_buffer *leaf; 115 struct page *page = NULL; 116 char *kaddr; 117 unsigned long ptr; 118 struct btrfs_file_extent_item *ei; 119 int err = 0; 120 int ret; 121 size_t cur_size = size; 122 size_t datasize; 123 unsigned long offset; 124 int use_compress = 0; 125 126 if (compressed_size && compressed_pages) { 127 use_compress = 1; 128 cur_size = compressed_size; 129 } 130 131 path = btrfs_alloc_path(); 132 if (!path) 133 return -ENOMEM; 134 135 path->leave_spinning = 1; 136 btrfs_set_trans_block_group(trans, inode); 137 138 key.objectid = inode->i_ino; 139 key.offset = start; 140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 141 datasize = btrfs_file_extent_calc_inline_size(cur_size); 142 143 inode_add_bytes(inode, size); 144 ret = btrfs_insert_empty_item(trans, root, path, &key, 145 datasize); 146 BUG_ON(ret); 147 if (ret) { 148 err = ret; 149 goto fail; 150 } 151 leaf = path->nodes[0]; 152 ei = btrfs_item_ptr(leaf, path->slots[0], 153 struct btrfs_file_extent_item); 154 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 156 btrfs_set_file_extent_encryption(leaf, ei, 0); 157 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 158 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 159 ptr = btrfs_file_extent_inline_start(ei); 160 161 if (use_compress) { 162 struct page *cpage; 163 int i = 0; 164 while (compressed_size > 0) { 165 cpage = compressed_pages[i]; 166 cur_size = min_t(unsigned long, compressed_size, 167 PAGE_CACHE_SIZE); 168 169 kaddr = kmap_atomic(cpage, KM_USER0); 170 write_extent_buffer(leaf, kaddr, ptr, cur_size); 171 kunmap_atomic(kaddr, KM_USER0); 172 173 i++; 174 ptr += cur_size; 175 compressed_size -= cur_size; 176 } 177 btrfs_set_file_extent_compression(leaf, ei, 178 BTRFS_COMPRESS_ZLIB); 179 } else { 180 page = find_get_page(inode->i_mapping, 181 start >> PAGE_CACHE_SHIFT); 182 btrfs_set_file_extent_compression(leaf, ei, 0); 183 kaddr = kmap_atomic(page, KM_USER0); 184 offset = start & (PAGE_CACHE_SIZE - 1); 185 write_extent_buffer(leaf, kaddr + offset, ptr, size); 186 kunmap_atomic(kaddr, KM_USER0); 187 page_cache_release(page); 188 } 189 btrfs_mark_buffer_dirty(leaf); 190 btrfs_free_path(path); 191 192 /* 193 * we're an inline extent, so nobody can 194 * extend the file past i_size without locking 195 * a page we already have locked. 196 * 197 * We must do any isize and inode updates 198 * before we unlock the pages. Otherwise we 199 * could end up racing with unlink. 200 */ 201 BTRFS_I(inode)->disk_i_size = inode->i_size; 202 btrfs_update_inode(trans, root, inode); 203 204 return 0; 205 fail: 206 btrfs_free_path(path); 207 return err; 208 } 209 210 211 /* 212 * conditionally insert an inline extent into the file. This 213 * does the checks required to make sure the data is small enough 214 * to fit as an inline extent. 215 */ 216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 217 struct btrfs_root *root, 218 struct inode *inode, u64 start, u64 end, 219 size_t compressed_size, 220 struct page **compressed_pages) 221 { 222 u64 isize = i_size_read(inode); 223 u64 actual_end = min(end + 1, isize); 224 u64 inline_len = actual_end - start; 225 u64 aligned_end = (end + root->sectorsize - 1) & 226 ~((u64)root->sectorsize - 1); 227 u64 hint_byte; 228 u64 data_len = inline_len; 229 int ret; 230 231 if (compressed_size) 232 data_len = compressed_size; 233 234 if (start > 0 || 235 actual_end >= PAGE_CACHE_SIZE || 236 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 237 (!compressed_size && 238 (actual_end & (root->sectorsize - 1)) == 0) || 239 end + 1 < isize || 240 data_len > root->fs_info->max_inline) { 241 return 1; 242 } 243 244 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 245 &hint_byte, 1); 246 BUG_ON(ret); 247 248 if (isize > actual_end) 249 inline_len = min_t(u64, isize, actual_end); 250 ret = insert_inline_extent(trans, root, inode, start, 251 inline_len, compressed_size, 252 compressed_pages); 253 BUG_ON(ret); 254 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 255 return 0; 256 } 257 258 struct async_extent { 259 u64 start; 260 u64 ram_size; 261 u64 compressed_size; 262 struct page **pages; 263 unsigned long nr_pages; 264 struct list_head list; 265 }; 266 267 struct async_cow { 268 struct inode *inode; 269 struct btrfs_root *root; 270 struct page *locked_page; 271 u64 start; 272 u64 end; 273 struct list_head extents; 274 struct btrfs_work work; 275 }; 276 277 static noinline int add_async_extent(struct async_cow *cow, 278 u64 start, u64 ram_size, 279 u64 compressed_size, 280 struct page **pages, 281 unsigned long nr_pages) 282 { 283 struct async_extent *async_extent; 284 285 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 286 async_extent->start = start; 287 async_extent->ram_size = ram_size; 288 async_extent->compressed_size = compressed_size; 289 async_extent->pages = pages; 290 async_extent->nr_pages = nr_pages; 291 list_add_tail(&async_extent->list, &cow->extents); 292 return 0; 293 } 294 295 /* 296 * we create compressed extents in two phases. The first 297 * phase compresses a range of pages that have already been 298 * locked (both pages and state bits are locked). 299 * 300 * This is done inside an ordered work queue, and the compression 301 * is spread across many cpus. The actual IO submission is step 302 * two, and the ordered work queue takes care of making sure that 303 * happens in the same order things were put onto the queue by 304 * writepages and friends. 305 * 306 * If this code finds it can't get good compression, it puts an 307 * entry onto the work queue to write the uncompressed bytes. This 308 * makes sure that both compressed inodes and uncompressed inodes 309 * are written in the same order that pdflush sent them down. 310 */ 311 static noinline int compress_file_range(struct inode *inode, 312 struct page *locked_page, 313 u64 start, u64 end, 314 struct async_cow *async_cow, 315 int *num_added) 316 { 317 struct btrfs_root *root = BTRFS_I(inode)->root; 318 struct btrfs_trans_handle *trans; 319 u64 num_bytes; 320 u64 orig_start; 321 u64 disk_num_bytes; 322 u64 blocksize = root->sectorsize; 323 u64 actual_end; 324 u64 isize = i_size_read(inode); 325 int ret = 0; 326 struct page **pages = NULL; 327 unsigned long nr_pages; 328 unsigned long nr_pages_ret = 0; 329 unsigned long total_compressed = 0; 330 unsigned long total_in = 0; 331 unsigned long max_compressed = 128 * 1024; 332 unsigned long max_uncompressed = 128 * 1024; 333 int i; 334 int will_compress; 335 336 orig_start = start; 337 338 actual_end = min_t(u64, isize, end + 1); 339 again: 340 will_compress = 0; 341 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 342 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 343 344 /* 345 * we don't want to send crud past the end of i_size through 346 * compression, that's just a waste of CPU time. So, if the 347 * end of the file is before the start of our current 348 * requested range of bytes, we bail out to the uncompressed 349 * cleanup code that can deal with all of this. 350 * 351 * It isn't really the fastest way to fix things, but this is a 352 * very uncommon corner. 353 */ 354 if (actual_end <= start) 355 goto cleanup_and_bail_uncompressed; 356 357 total_compressed = actual_end - start; 358 359 /* we want to make sure that amount of ram required to uncompress 360 * an extent is reasonable, so we limit the total size in ram 361 * of a compressed extent to 128k. This is a crucial number 362 * because it also controls how easily we can spread reads across 363 * cpus for decompression. 364 * 365 * We also want to make sure the amount of IO required to do 366 * a random read is reasonably small, so we limit the size of 367 * a compressed extent to 128k. 368 */ 369 total_compressed = min(total_compressed, max_uncompressed); 370 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 371 num_bytes = max(blocksize, num_bytes); 372 disk_num_bytes = num_bytes; 373 total_in = 0; 374 ret = 0; 375 376 /* 377 * we do compression for mount -o compress and when the 378 * inode has not been flagged as nocompress. This flag can 379 * change at any time if we discover bad compression ratios. 380 */ 381 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 382 btrfs_test_opt(root, COMPRESS)) { 383 WARN_ON(pages); 384 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 385 386 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 387 total_compressed, pages, 388 nr_pages, &nr_pages_ret, 389 &total_in, 390 &total_compressed, 391 max_compressed); 392 393 if (!ret) { 394 unsigned long offset = total_compressed & 395 (PAGE_CACHE_SIZE - 1); 396 struct page *page = pages[nr_pages_ret - 1]; 397 char *kaddr; 398 399 /* zero the tail end of the last page, we might be 400 * sending it down to disk 401 */ 402 if (offset) { 403 kaddr = kmap_atomic(page, KM_USER0); 404 memset(kaddr + offset, 0, 405 PAGE_CACHE_SIZE - offset); 406 kunmap_atomic(kaddr, KM_USER0); 407 } 408 will_compress = 1; 409 } 410 } 411 if (start == 0) { 412 trans = btrfs_join_transaction(root, 1); 413 BUG_ON(!trans); 414 btrfs_set_trans_block_group(trans, inode); 415 416 /* lets try to make an inline extent */ 417 if (ret || total_in < (actual_end - start)) { 418 /* we didn't compress the entire range, try 419 * to make an uncompressed inline extent. 420 */ 421 ret = cow_file_range_inline(trans, root, inode, 422 start, end, 0, NULL); 423 } else { 424 /* try making a compressed inline extent */ 425 ret = cow_file_range_inline(trans, root, inode, 426 start, end, 427 total_compressed, pages); 428 } 429 if (ret == 0) { 430 /* 431 * inline extent creation worked, we don't need 432 * to create any more async work items. Unlock 433 * and free up our temp pages. 434 */ 435 extent_clear_unlock_delalloc(inode, 436 &BTRFS_I(inode)->io_tree, 437 start, end, NULL, 438 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 439 EXTENT_CLEAR_DELALLOC | 440 EXTENT_CLEAR_ACCOUNTING | 441 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 442 443 btrfs_end_transaction(trans, root); 444 goto free_pages_out; 445 } 446 btrfs_end_transaction(trans, root); 447 } 448 449 if (will_compress) { 450 /* 451 * we aren't doing an inline extent round the compressed size 452 * up to a block size boundary so the allocator does sane 453 * things 454 */ 455 total_compressed = (total_compressed + blocksize - 1) & 456 ~(blocksize - 1); 457 458 /* 459 * one last check to make sure the compression is really a 460 * win, compare the page count read with the blocks on disk 461 */ 462 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 463 ~(PAGE_CACHE_SIZE - 1); 464 if (total_compressed >= total_in) { 465 will_compress = 0; 466 } else { 467 disk_num_bytes = total_compressed; 468 num_bytes = total_in; 469 } 470 } 471 if (!will_compress && pages) { 472 /* 473 * the compression code ran but failed to make things smaller, 474 * free any pages it allocated and our page pointer array 475 */ 476 for (i = 0; i < nr_pages_ret; i++) { 477 WARN_ON(pages[i]->mapping); 478 page_cache_release(pages[i]); 479 } 480 kfree(pages); 481 pages = NULL; 482 total_compressed = 0; 483 nr_pages_ret = 0; 484 485 /* flag the file so we don't compress in the future */ 486 if (!btrfs_test_opt(root, FORCE_COMPRESS)) 487 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 488 } 489 if (will_compress) { 490 *num_added += 1; 491 492 /* the async work queues will take care of doing actual 493 * allocation on disk for these compressed pages, 494 * and will submit them to the elevator. 495 */ 496 add_async_extent(async_cow, start, num_bytes, 497 total_compressed, pages, nr_pages_ret); 498 499 if (start + num_bytes < end && start + num_bytes < actual_end) { 500 start += num_bytes; 501 pages = NULL; 502 cond_resched(); 503 goto again; 504 } 505 } else { 506 cleanup_and_bail_uncompressed: 507 /* 508 * No compression, but we still need to write the pages in 509 * the file we've been given so far. redirty the locked 510 * page if it corresponds to our extent and set things up 511 * for the async work queue to run cow_file_range to do 512 * the normal delalloc dance 513 */ 514 if (page_offset(locked_page) >= start && 515 page_offset(locked_page) <= end) { 516 __set_page_dirty_nobuffers(locked_page); 517 /* unlocked later on in the async handlers */ 518 } 519 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 520 *num_added += 1; 521 } 522 523 out: 524 return 0; 525 526 free_pages_out: 527 for (i = 0; i < nr_pages_ret; i++) { 528 WARN_ON(pages[i]->mapping); 529 page_cache_release(pages[i]); 530 } 531 kfree(pages); 532 533 goto out; 534 } 535 536 /* 537 * phase two of compressed writeback. This is the ordered portion 538 * of the code, which only gets called in the order the work was 539 * queued. We walk all the async extents created by compress_file_range 540 * and send them down to the disk. 541 */ 542 static noinline int submit_compressed_extents(struct inode *inode, 543 struct async_cow *async_cow) 544 { 545 struct async_extent *async_extent; 546 u64 alloc_hint = 0; 547 struct btrfs_trans_handle *trans; 548 struct btrfs_key ins; 549 struct extent_map *em; 550 struct btrfs_root *root = BTRFS_I(inode)->root; 551 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 552 struct extent_io_tree *io_tree; 553 int ret = 0; 554 555 if (list_empty(&async_cow->extents)) 556 return 0; 557 558 559 while (!list_empty(&async_cow->extents)) { 560 async_extent = list_entry(async_cow->extents.next, 561 struct async_extent, list); 562 list_del(&async_extent->list); 563 564 io_tree = &BTRFS_I(inode)->io_tree; 565 566 retry: 567 /* did the compression code fall back to uncompressed IO? */ 568 if (!async_extent->pages) { 569 int page_started = 0; 570 unsigned long nr_written = 0; 571 572 lock_extent(io_tree, async_extent->start, 573 async_extent->start + 574 async_extent->ram_size - 1, GFP_NOFS); 575 576 /* allocate blocks */ 577 ret = cow_file_range(inode, async_cow->locked_page, 578 async_extent->start, 579 async_extent->start + 580 async_extent->ram_size - 1, 581 &page_started, &nr_written, 0); 582 583 /* 584 * if page_started, cow_file_range inserted an 585 * inline extent and took care of all the unlocking 586 * and IO for us. Otherwise, we need to submit 587 * all those pages down to the drive. 588 */ 589 if (!page_started && !ret) 590 extent_write_locked_range(io_tree, 591 inode, async_extent->start, 592 async_extent->start + 593 async_extent->ram_size - 1, 594 btrfs_get_extent, 595 WB_SYNC_ALL); 596 kfree(async_extent); 597 cond_resched(); 598 continue; 599 } 600 601 lock_extent(io_tree, async_extent->start, 602 async_extent->start + async_extent->ram_size - 1, 603 GFP_NOFS); 604 605 trans = btrfs_join_transaction(root, 1); 606 ret = btrfs_reserve_extent(trans, root, 607 async_extent->compressed_size, 608 async_extent->compressed_size, 609 0, alloc_hint, 610 (u64)-1, &ins, 1); 611 btrfs_end_transaction(trans, root); 612 613 if (ret) { 614 int i; 615 for (i = 0; i < async_extent->nr_pages; i++) { 616 WARN_ON(async_extent->pages[i]->mapping); 617 page_cache_release(async_extent->pages[i]); 618 } 619 kfree(async_extent->pages); 620 async_extent->nr_pages = 0; 621 async_extent->pages = NULL; 622 unlock_extent(io_tree, async_extent->start, 623 async_extent->start + 624 async_extent->ram_size - 1, GFP_NOFS); 625 goto retry; 626 } 627 628 /* 629 * here we're doing allocation and writeback of the 630 * compressed pages 631 */ 632 btrfs_drop_extent_cache(inode, async_extent->start, 633 async_extent->start + 634 async_extent->ram_size - 1, 0); 635 636 em = alloc_extent_map(GFP_NOFS); 637 em->start = async_extent->start; 638 em->len = async_extent->ram_size; 639 em->orig_start = em->start; 640 641 em->block_start = ins.objectid; 642 em->block_len = ins.offset; 643 em->bdev = root->fs_info->fs_devices->latest_bdev; 644 set_bit(EXTENT_FLAG_PINNED, &em->flags); 645 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 646 647 while (1) { 648 write_lock(&em_tree->lock); 649 ret = add_extent_mapping(em_tree, em); 650 write_unlock(&em_tree->lock); 651 if (ret != -EEXIST) { 652 free_extent_map(em); 653 break; 654 } 655 btrfs_drop_extent_cache(inode, async_extent->start, 656 async_extent->start + 657 async_extent->ram_size - 1, 0); 658 } 659 660 ret = btrfs_add_ordered_extent(inode, async_extent->start, 661 ins.objectid, 662 async_extent->ram_size, 663 ins.offset, 664 BTRFS_ORDERED_COMPRESSED); 665 BUG_ON(ret); 666 667 /* 668 * clear dirty, set writeback and unlock the pages. 669 */ 670 extent_clear_unlock_delalloc(inode, 671 &BTRFS_I(inode)->io_tree, 672 async_extent->start, 673 async_extent->start + 674 async_extent->ram_size - 1, 675 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 676 EXTENT_CLEAR_UNLOCK | 677 EXTENT_CLEAR_DELALLOC | 678 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 679 680 ret = btrfs_submit_compressed_write(inode, 681 async_extent->start, 682 async_extent->ram_size, 683 ins.objectid, 684 ins.offset, async_extent->pages, 685 async_extent->nr_pages); 686 687 BUG_ON(ret); 688 alloc_hint = ins.objectid + ins.offset; 689 kfree(async_extent); 690 cond_resched(); 691 } 692 693 return 0; 694 } 695 696 /* 697 * when extent_io.c finds a delayed allocation range in the file, 698 * the call backs end up in this code. The basic idea is to 699 * allocate extents on disk for the range, and create ordered data structs 700 * in ram to track those extents. 701 * 702 * locked_page is the page that writepage had locked already. We use 703 * it to make sure we don't do extra locks or unlocks. 704 * 705 * *page_started is set to one if we unlock locked_page and do everything 706 * required to start IO on it. It may be clean and already done with 707 * IO when we return. 708 */ 709 static noinline int cow_file_range(struct inode *inode, 710 struct page *locked_page, 711 u64 start, u64 end, int *page_started, 712 unsigned long *nr_written, 713 int unlock) 714 { 715 struct btrfs_root *root = BTRFS_I(inode)->root; 716 struct btrfs_trans_handle *trans; 717 u64 alloc_hint = 0; 718 u64 num_bytes; 719 unsigned long ram_size; 720 u64 disk_num_bytes; 721 u64 cur_alloc_size; 722 u64 blocksize = root->sectorsize; 723 u64 actual_end; 724 u64 isize = i_size_read(inode); 725 struct btrfs_key ins; 726 struct extent_map *em; 727 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 728 int ret = 0; 729 730 trans = btrfs_join_transaction(root, 1); 731 BUG_ON(!trans); 732 btrfs_set_trans_block_group(trans, inode); 733 734 actual_end = min_t(u64, isize, end + 1); 735 736 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 737 num_bytes = max(blocksize, num_bytes); 738 disk_num_bytes = num_bytes; 739 ret = 0; 740 741 if (start == 0) { 742 /* lets try to make an inline extent */ 743 ret = cow_file_range_inline(trans, root, inode, 744 start, end, 0, NULL); 745 if (ret == 0) { 746 extent_clear_unlock_delalloc(inode, 747 &BTRFS_I(inode)->io_tree, 748 start, end, NULL, 749 EXTENT_CLEAR_UNLOCK_PAGE | 750 EXTENT_CLEAR_UNLOCK | 751 EXTENT_CLEAR_DELALLOC | 752 EXTENT_CLEAR_ACCOUNTING | 753 EXTENT_CLEAR_DIRTY | 754 EXTENT_SET_WRITEBACK | 755 EXTENT_END_WRITEBACK); 756 757 *nr_written = *nr_written + 758 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 759 *page_started = 1; 760 ret = 0; 761 goto out; 762 } 763 } 764 765 BUG_ON(disk_num_bytes > 766 btrfs_super_total_bytes(&root->fs_info->super_copy)); 767 768 769 read_lock(&BTRFS_I(inode)->extent_tree.lock); 770 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree, 771 start, num_bytes); 772 if (em) { 773 /* 774 * if block start isn't an actual block number then find the 775 * first block in this inode and use that as a hint. If that 776 * block is also bogus then just don't worry about it. 777 */ 778 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 779 free_extent_map(em); 780 em = search_extent_mapping(em_tree, 0, 0); 781 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 782 alloc_hint = em->block_start; 783 if (em) 784 free_extent_map(em); 785 } else { 786 alloc_hint = em->block_start; 787 free_extent_map(em); 788 } 789 } 790 read_unlock(&BTRFS_I(inode)->extent_tree.lock); 791 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 792 793 while (disk_num_bytes > 0) { 794 unsigned long op; 795 796 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent); 797 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 798 root->sectorsize, 0, alloc_hint, 799 (u64)-1, &ins, 1); 800 BUG_ON(ret); 801 802 em = alloc_extent_map(GFP_NOFS); 803 em->start = start; 804 em->orig_start = em->start; 805 ram_size = ins.offset; 806 em->len = ins.offset; 807 808 em->block_start = ins.objectid; 809 em->block_len = ins.offset; 810 em->bdev = root->fs_info->fs_devices->latest_bdev; 811 set_bit(EXTENT_FLAG_PINNED, &em->flags); 812 813 while (1) { 814 write_lock(&em_tree->lock); 815 ret = add_extent_mapping(em_tree, em); 816 write_unlock(&em_tree->lock); 817 if (ret != -EEXIST) { 818 free_extent_map(em); 819 break; 820 } 821 btrfs_drop_extent_cache(inode, start, 822 start + ram_size - 1, 0); 823 } 824 825 cur_alloc_size = ins.offset; 826 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 827 ram_size, cur_alloc_size, 0); 828 BUG_ON(ret); 829 830 if (root->root_key.objectid == 831 BTRFS_DATA_RELOC_TREE_OBJECTID) { 832 ret = btrfs_reloc_clone_csums(inode, start, 833 cur_alloc_size); 834 BUG_ON(ret); 835 } 836 837 if (disk_num_bytes < cur_alloc_size) 838 break; 839 840 /* we're not doing compressed IO, don't unlock the first 841 * page (which the caller expects to stay locked), don't 842 * clear any dirty bits and don't set any writeback bits 843 * 844 * Do set the Private2 bit so we know this page was properly 845 * setup for writepage 846 */ 847 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 848 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 849 EXTENT_SET_PRIVATE2; 850 851 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 852 start, start + ram_size - 1, 853 locked_page, op); 854 disk_num_bytes -= cur_alloc_size; 855 num_bytes -= cur_alloc_size; 856 alloc_hint = ins.objectid + ins.offset; 857 start += cur_alloc_size; 858 } 859 out: 860 ret = 0; 861 btrfs_end_transaction(trans, root); 862 863 return ret; 864 } 865 866 /* 867 * work queue call back to started compression on a file and pages 868 */ 869 static noinline void async_cow_start(struct btrfs_work *work) 870 { 871 struct async_cow *async_cow; 872 int num_added = 0; 873 async_cow = container_of(work, struct async_cow, work); 874 875 compress_file_range(async_cow->inode, async_cow->locked_page, 876 async_cow->start, async_cow->end, async_cow, 877 &num_added); 878 if (num_added == 0) 879 async_cow->inode = NULL; 880 } 881 882 /* 883 * work queue call back to submit previously compressed pages 884 */ 885 static noinline void async_cow_submit(struct btrfs_work *work) 886 { 887 struct async_cow *async_cow; 888 struct btrfs_root *root; 889 unsigned long nr_pages; 890 891 async_cow = container_of(work, struct async_cow, work); 892 893 root = async_cow->root; 894 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 895 PAGE_CACHE_SHIFT; 896 897 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 898 899 if (atomic_read(&root->fs_info->async_delalloc_pages) < 900 5 * 1042 * 1024 && 901 waitqueue_active(&root->fs_info->async_submit_wait)) 902 wake_up(&root->fs_info->async_submit_wait); 903 904 if (async_cow->inode) 905 submit_compressed_extents(async_cow->inode, async_cow); 906 } 907 908 static noinline void async_cow_free(struct btrfs_work *work) 909 { 910 struct async_cow *async_cow; 911 async_cow = container_of(work, struct async_cow, work); 912 kfree(async_cow); 913 } 914 915 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 916 u64 start, u64 end, int *page_started, 917 unsigned long *nr_written) 918 { 919 struct async_cow *async_cow; 920 struct btrfs_root *root = BTRFS_I(inode)->root; 921 unsigned long nr_pages; 922 u64 cur_end; 923 int limit = 10 * 1024 * 1042; 924 925 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 926 1, 0, NULL, GFP_NOFS); 927 while (start < end) { 928 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 929 async_cow->inode = inode; 930 async_cow->root = root; 931 async_cow->locked_page = locked_page; 932 async_cow->start = start; 933 934 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 935 cur_end = end; 936 else 937 cur_end = min(end, start + 512 * 1024 - 1); 938 939 async_cow->end = cur_end; 940 INIT_LIST_HEAD(&async_cow->extents); 941 942 async_cow->work.func = async_cow_start; 943 async_cow->work.ordered_func = async_cow_submit; 944 async_cow->work.ordered_free = async_cow_free; 945 async_cow->work.flags = 0; 946 947 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 948 PAGE_CACHE_SHIFT; 949 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 950 951 btrfs_queue_worker(&root->fs_info->delalloc_workers, 952 &async_cow->work); 953 954 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 955 wait_event(root->fs_info->async_submit_wait, 956 (atomic_read(&root->fs_info->async_delalloc_pages) < 957 limit)); 958 } 959 960 while (atomic_read(&root->fs_info->async_submit_draining) && 961 atomic_read(&root->fs_info->async_delalloc_pages)) { 962 wait_event(root->fs_info->async_submit_wait, 963 (atomic_read(&root->fs_info->async_delalloc_pages) == 964 0)); 965 } 966 967 *nr_written += nr_pages; 968 start = cur_end + 1; 969 } 970 *page_started = 1; 971 return 0; 972 } 973 974 static noinline int csum_exist_in_range(struct btrfs_root *root, 975 u64 bytenr, u64 num_bytes) 976 { 977 int ret; 978 struct btrfs_ordered_sum *sums; 979 LIST_HEAD(list); 980 981 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 982 bytenr + num_bytes - 1, &list); 983 if (ret == 0 && list_empty(&list)) 984 return 0; 985 986 while (!list_empty(&list)) { 987 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 988 list_del(&sums->list); 989 kfree(sums); 990 } 991 return 1; 992 } 993 994 /* 995 * when nowcow writeback call back. This checks for snapshots or COW copies 996 * of the extents that exist in the file, and COWs the file as required. 997 * 998 * If no cow copies or snapshots exist, we write directly to the existing 999 * blocks on disk 1000 */ 1001 static noinline int run_delalloc_nocow(struct inode *inode, 1002 struct page *locked_page, 1003 u64 start, u64 end, int *page_started, int force, 1004 unsigned long *nr_written) 1005 { 1006 struct btrfs_root *root = BTRFS_I(inode)->root; 1007 struct btrfs_trans_handle *trans; 1008 struct extent_buffer *leaf; 1009 struct btrfs_path *path; 1010 struct btrfs_file_extent_item *fi; 1011 struct btrfs_key found_key; 1012 u64 cow_start; 1013 u64 cur_offset; 1014 u64 extent_end; 1015 u64 extent_offset; 1016 u64 disk_bytenr; 1017 u64 num_bytes; 1018 int extent_type; 1019 int ret; 1020 int type; 1021 int nocow; 1022 int check_prev = 1; 1023 1024 path = btrfs_alloc_path(); 1025 BUG_ON(!path); 1026 trans = btrfs_join_transaction(root, 1); 1027 BUG_ON(!trans); 1028 1029 cow_start = (u64)-1; 1030 cur_offset = start; 1031 while (1) { 1032 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 1033 cur_offset, 0); 1034 BUG_ON(ret < 0); 1035 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1036 leaf = path->nodes[0]; 1037 btrfs_item_key_to_cpu(leaf, &found_key, 1038 path->slots[0] - 1); 1039 if (found_key.objectid == inode->i_ino && 1040 found_key.type == BTRFS_EXTENT_DATA_KEY) 1041 path->slots[0]--; 1042 } 1043 check_prev = 0; 1044 next_slot: 1045 leaf = path->nodes[0]; 1046 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1047 ret = btrfs_next_leaf(root, path); 1048 if (ret < 0) 1049 BUG_ON(1); 1050 if (ret > 0) 1051 break; 1052 leaf = path->nodes[0]; 1053 } 1054 1055 nocow = 0; 1056 disk_bytenr = 0; 1057 num_bytes = 0; 1058 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1059 1060 if (found_key.objectid > inode->i_ino || 1061 found_key.type > BTRFS_EXTENT_DATA_KEY || 1062 found_key.offset > end) 1063 break; 1064 1065 if (found_key.offset > cur_offset) { 1066 extent_end = found_key.offset; 1067 extent_type = 0; 1068 goto out_check; 1069 } 1070 1071 fi = btrfs_item_ptr(leaf, path->slots[0], 1072 struct btrfs_file_extent_item); 1073 extent_type = btrfs_file_extent_type(leaf, fi); 1074 1075 if (extent_type == BTRFS_FILE_EXTENT_REG || 1076 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1077 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1078 extent_offset = btrfs_file_extent_offset(leaf, fi); 1079 extent_end = found_key.offset + 1080 btrfs_file_extent_num_bytes(leaf, fi); 1081 if (extent_end <= start) { 1082 path->slots[0]++; 1083 goto next_slot; 1084 } 1085 if (disk_bytenr == 0) 1086 goto out_check; 1087 if (btrfs_file_extent_compression(leaf, fi) || 1088 btrfs_file_extent_encryption(leaf, fi) || 1089 btrfs_file_extent_other_encoding(leaf, fi)) 1090 goto out_check; 1091 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1092 goto out_check; 1093 if (btrfs_extent_readonly(root, disk_bytenr)) 1094 goto out_check; 1095 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1096 found_key.offset - 1097 extent_offset, disk_bytenr)) 1098 goto out_check; 1099 disk_bytenr += extent_offset; 1100 disk_bytenr += cur_offset - found_key.offset; 1101 num_bytes = min(end + 1, extent_end) - cur_offset; 1102 /* 1103 * force cow if csum exists in the range. 1104 * this ensure that csum for a given extent are 1105 * either valid or do not exist. 1106 */ 1107 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1108 goto out_check; 1109 nocow = 1; 1110 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1111 extent_end = found_key.offset + 1112 btrfs_file_extent_inline_len(leaf, fi); 1113 extent_end = ALIGN(extent_end, root->sectorsize); 1114 } else { 1115 BUG_ON(1); 1116 } 1117 out_check: 1118 if (extent_end <= start) { 1119 path->slots[0]++; 1120 goto next_slot; 1121 } 1122 if (!nocow) { 1123 if (cow_start == (u64)-1) 1124 cow_start = cur_offset; 1125 cur_offset = extent_end; 1126 if (cur_offset > end) 1127 break; 1128 path->slots[0]++; 1129 goto next_slot; 1130 } 1131 1132 btrfs_release_path(root, path); 1133 if (cow_start != (u64)-1) { 1134 ret = cow_file_range(inode, locked_page, cow_start, 1135 found_key.offset - 1, page_started, 1136 nr_written, 1); 1137 BUG_ON(ret); 1138 cow_start = (u64)-1; 1139 } 1140 1141 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1142 struct extent_map *em; 1143 struct extent_map_tree *em_tree; 1144 em_tree = &BTRFS_I(inode)->extent_tree; 1145 em = alloc_extent_map(GFP_NOFS); 1146 em->start = cur_offset; 1147 em->orig_start = em->start; 1148 em->len = num_bytes; 1149 em->block_len = num_bytes; 1150 em->block_start = disk_bytenr; 1151 em->bdev = root->fs_info->fs_devices->latest_bdev; 1152 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1153 while (1) { 1154 write_lock(&em_tree->lock); 1155 ret = add_extent_mapping(em_tree, em); 1156 write_unlock(&em_tree->lock); 1157 if (ret != -EEXIST) { 1158 free_extent_map(em); 1159 break; 1160 } 1161 btrfs_drop_extent_cache(inode, em->start, 1162 em->start + em->len - 1, 0); 1163 } 1164 type = BTRFS_ORDERED_PREALLOC; 1165 } else { 1166 type = BTRFS_ORDERED_NOCOW; 1167 } 1168 1169 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1170 num_bytes, num_bytes, type); 1171 BUG_ON(ret); 1172 1173 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1174 cur_offset, cur_offset + num_bytes - 1, 1175 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1176 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1177 EXTENT_SET_PRIVATE2); 1178 cur_offset = extent_end; 1179 if (cur_offset > end) 1180 break; 1181 } 1182 btrfs_release_path(root, path); 1183 1184 if (cur_offset <= end && cow_start == (u64)-1) 1185 cow_start = cur_offset; 1186 if (cow_start != (u64)-1) { 1187 ret = cow_file_range(inode, locked_page, cow_start, end, 1188 page_started, nr_written, 1); 1189 BUG_ON(ret); 1190 } 1191 1192 ret = btrfs_end_transaction(trans, root); 1193 BUG_ON(ret); 1194 btrfs_free_path(path); 1195 return 0; 1196 } 1197 1198 /* 1199 * extent_io.c call back to do delayed allocation processing 1200 */ 1201 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1202 u64 start, u64 end, int *page_started, 1203 unsigned long *nr_written) 1204 { 1205 int ret; 1206 struct btrfs_root *root = BTRFS_I(inode)->root; 1207 1208 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1209 ret = run_delalloc_nocow(inode, locked_page, start, end, 1210 page_started, 1, nr_written); 1211 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1212 ret = run_delalloc_nocow(inode, locked_page, start, end, 1213 page_started, 0, nr_written); 1214 else if (!btrfs_test_opt(root, COMPRESS)) 1215 ret = cow_file_range(inode, locked_page, start, end, 1216 page_started, nr_written, 1); 1217 else 1218 ret = cow_file_range_async(inode, locked_page, start, end, 1219 page_started, nr_written); 1220 return ret; 1221 } 1222 1223 static int btrfs_split_extent_hook(struct inode *inode, 1224 struct extent_state *orig, u64 split) 1225 { 1226 struct btrfs_root *root = BTRFS_I(inode)->root; 1227 u64 size; 1228 1229 if (!(orig->state & EXTENT_DELALLOC)) 1230 return 0; 1231 1232 size = orig->end - orig->start + 1; 1233 if (size > root->fs_info->max_extent) { 1234 u64 num_extents; 1235 u64 new_size; 1236 1237 new_size = orig->end - split + 1; 1238 num_extents = div64_u64(size + root->fs_info->max_extent - 1, 1239 root->fs_info->max_extent); 1240 1241 /* 1242 * if we break a large extent up then leave oustanding_extents 1243 * be, since we've already accounted for the large extent. 1244 */ 1245 if (div64_u64(new_size + root->fs_info->max_extent - 1, 1246 root->fs_info->max_extent) < num_extents) 1247 return 0; 1248 } 1249 1250 spin_lock(&BTRFS_I(inode)->accounting_lock); 1251 BTRFS_I(inode)->outstanding_extents++; 1252 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1253 1254 return 0; 1255 } 1256 1257 /* 1258 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1259 * extents so we can keep track of new extents that are just merged onto old 1260 * extents, such as when we are doing sequential writes, so we can properly 1261 * account for the metadata space we'll need. 1262 */ 1263 static int btrfs_merge_extent_hook(struct inode *inode, 1264 struct extent_state *new, 1265 struct extent_state *other) 1266 { 1267 struct btrfs_root *root = BTRFS_I(inode)->root; 1268 u64 new_size, old_size; 1269 u64 num_extents; 1270 1271 /* not delalloc, ignore it */ 1272 if (!(other->state & EXTENT_DELALLOC)) 1273 return 0; 1274 1275 old_size = other->end - other->start + 1; 1276 if (new->start < other->start) 1277 new_size = other->end - new->start + 1; 1278 else 1279 new_size = new->end - other->start + 1; 1280 1281 /* we're not bigger than the max, unreserve the space and go */ 1282 if (new_size <= root->fs_info->max_extent) { 1283 spin_lock(&BTRFS_I(inode)->accounting_lock); 1284 BTRFS_I(inode)->outstanding_extents--; 1285 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1286 return 0; 1287 } 1288 1289 /* 1290 * If we grew by another max_extent, just return, we want to keep that 1291 * reserved amount. 1292 */ 1293 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1, 1294 root->fs_info->max_extent); 1295 if (div64_u64(new_size + root->fs_info->max_extent - 1, 1296 root->fs_info->max_extent) > num_extents) 1297 return 0; 1298 1299 spin_lock(&BTRFS_I(inode)->accounting_lock); 1300 BTRFS_I(inode)->outstanding_extents--; 1301 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1302 1303 return 0; 1304 } 1305 1306 /* 1307 * extent_io.c set_bit_hook, used to track delayed allocation 1308 * bytes in this file, and to maintain the list of inodes that 1309 * have pending delalloc work to be done. 1310 */ 1311 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end, 1312 unsigned long old, unsigned long bits) 1313 { 1314 1315 /* 1316 * set_bit and clear bit hooks normally require _irqsave/restore 1317 * but in this case, we are only testeing for the DELALLOC 1318 * bit, which is only set or cleared with irqs on 1319 */ 1320 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1321 struct btrfs_root *root = BTRFS_I(inode)->root; 1322 1323 spin_lock(&BTRFS_I(inode)->accounting_lock); 1324 BTRFS_I(inode)->outstanding_extents++; 1325 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1326 btrfs_delalloc_reserve_space(root, inode, end - start + 1); 1327 spin_lock(&root->fs_info->delalloc_lock); 1328 BTRFS_I(inode)->delalloc_bytes += end - start + 1; 1329 root->fs_info->delalloc_bytes += end - start + 1; 1330 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1331 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1332 &root->fs_info->delalloc_inodes); 1333 } 1334 spin_unlock(&root->fs_info->delalloc_lock); 1335 } 1336 return 0; 1337 } 1338 1339 /* 1340 * extent_io.c clear_bit_hook, see set_bit_hook for why 1341 */ 1342 static int btrfs_clear_bit_hook(struct inode *inode, 1343 struct extent_state *state, unsigned long bits) 1344 { 1345 /* 1346 * set_bit and clear bit hooks normally require _irqsave/restore 1347 * but in this case, we are only testeing for the DELALLOC 1348 * bit, which is only set or cleared with irqs on 1349 */ 1350 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 1351 struct btrfs_root *root = BTRFS_I(inode)->root; 1352 1353 if (bits & EXTENT_DO_ACCOUNTING) { 1354 spin_lock(&BTRFS_I(inode)->accounting_lock); 1355 BTRFS_I(inode)->outstanding_extents--; 1356 spin_unlock(&BTRFS_I(inode)->accounting_lock); 1357 btrfs_unreserve_metadata_for_delalloc(root, inode, 1); 1358 } 1359 1360 spin_lock(&root->fs_info->delalloc_lock); 1361 if (state->end - state->start + 1 > 1362 root->fs_info->delalloc_bytes) { 1363 printk(KERN_INFO "btrfs warning: delalloc account " 1364 "%llu %llu\n", 1365 (unsigned long long) 1366 state->end - state->start + 1, 1367 (unsigned long long) 1368 root->fs_info->delalloc_bytes); 1369 btrfs_delalloc_free_space(root, inode, (u64)-1); 1370 root->fs_info->delalloc_bytes = 0; 1371 BTRFS_I(inode)->delalloc_bytes = 0; 1372 } else { 1373 btrfs_delalloc_free_space(root, inode, 1374 state->end - 1375 state->start + 1); 1376 root->fs_info->delalloc_bytes -= state->end - 1377 state->start + 1; 1378 BTRFS_I(inode)->delalloc_bytes -= state->end - 1379 state->start + 1; 1380 } 1381 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1382 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1383 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1384 } 1385 spin_unlock(&root->fs_info->delalloc_lock); 1386 } 1387 return 0; 1388 } 1389 1390 /* 1391 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1392 * we don't create bios that span stripes or chunks 1393 */ 1394 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1395 size_t size, struct bio *bio, 1396 unsigned long bio_flags) 1397 { 1398 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1399 struct btrfs_mapping_tree *map_tree; 1400 u64 logical = (u64)bio->bi_sector << 9; 1401 u64 length = 0; 1402 u64 map_length; 1403 int ret; 1404 1405 if (bio_flags & EXTENT_BIO_COMPRESSED) 1406 return 0; 1407 1408 length = bio->bi_size; 1409 map_tree = &root->fs_info->mapping_tree; 1410 map_length = length; 1411 ret = btrfs_map_block(map_tree, READ, logical, 1412 &map_length, NULL, 0); 1413 1414 if (map_length < length + size) 1415 return 1; 1416 return 0; 1417 } 1418 1419 /* 1420 * in order to insert checksums into the metadata in large chunks, 1421 * we wait until bio submission time. All the pages in the bio are 1422 * checksummed and sums are attached onto the ordered extent record. 1423 * 1424 * At IO completion time the cums attached on the ordered extent record 1425 * are inserted into the btree 1426 */ 1427 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1428 struct bio *bio, int mirror_num, 1429 unsigned long bio_flags) 1430 { 1431 struct btrfs_root *root = BTRFS_I(inode)->root; 1432 int ret = 0; 1433 1434 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1435 BUG_ON(ret); 1436 return 0; 1437 } 1438 1439 /* 1440 * in order to insert checksums into the metadata in large chunks, 1441 * we wait until bio submission time. All the pages in the bio are 1442 * checksummed and sums are attached onto the ordered extent record. 1443 * 1444 * At IO completion time the cums attached on the ordered extent record 1445 * are inserted into the btree 1446 */ 1447 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1448 int mirror_num, unsigned long bio_flags) 1449 { 1450 struct btrfs_root *root = BTRFS_I(inode)->root; 1451 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1452 } 1453 1454 /* 1455 * extent_io.c submission hook. This does the right thing for csum calculation 1456 * on write, or reading the csums from the tree before a read 1457 */ 1458 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1459 int mirror_num, unsigned long bio_flags) 1460 { 1461 struct btrfs_root *root = BTRFS_I(inode)->root; 1462 int ret = 0; 1463 int skip_sum; 1464 1465 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1466 1467 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1468 BUG_ON(ret); 1469 1470 if (!(rw & (1 << BIO_RW))) { 1471 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1472 return btrfs_submit_compressed_read(inode, bio, 1473 mirror_num, bio_flags); 1474 } else if (!skip_sum) 1475 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1476 goto mapit; 1477 } else if (!skip_sum) { 1478 /* csum items have already been cloned */ 1479 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1480 goto mapit; 1481 /* we're doing a write, do the async checksumming */ 1482 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1483 inode, rw, bio, mirror_num, 1484 bio_flags, __btrfs_submit_bio_start, 1485 __btrfs_submit_bio_done); 1486 } 1487 1488 mapit: 1489 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1490 } 1491 1492 /* 1493 * given a list of ordered sums record them in the inode. This happens 1494 * at IO completion time based on sums calculated at bio submission time. 1495 */ 1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1497 struct inode *inode, u64 file_offset, 1498 struct list_head *list) 1499 { 1500 struct btrfs_ordered_sum *sum; 1501 1502 btrfs_set_trans_block_group(trans, inode); 1503 1504 list_for_each_entry(sum, list, list) { 1505 btrfs_csum_file_blocks(trans, 1506 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1507 } 1508 return 0; 1509 } 1510 1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end) 1512 { 1513 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1514 WARN_ON(1); 1515 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1516 GFP_NOFS); 1517 } 1518 1519 /* see btrfs_writepage_start_hook for details on why this is required */ 1520 struct btrfs_writepage_fixup { 1521 struct page *page; 1522 struct btrfs_work work; 1523 }; 1524 1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1526 { 1527 struct btrfs_writepage_fixup *fixup; 1528 struct btrfs_ordered_extent *ordered; 1529 struct page *page; 1530 struct inode *inode; 1531 u64 page_start; 1532 u64 page_end; 1533 1534 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1535 page = fixup->page; 1536 again: 1537 lock_page(page); 1538 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1539 ClearPageChecked(page); 1540 goto out_page; 1541 } 1542 1543 inode = page->mapping->host; 1544 page_start = page_offset(page); 1545 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1546 1547 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1548 1549 /* already ordered? We're done */ 1550 if (PagePrivate2(page)) 1551 goto out; 1552 1553 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1554 if (ordered) { 1555 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, 1556 page_end, GFP_NOFS); 1557 unlock_page(page); 1558 btrfs_start_ordered_extent(inode, ordered, 1); 1559 goto again; 1560 } 1561 1562 btrfs_set_extent_delalloc(inode, page_start, page_end); 1563 ClearPageChecked(page); 1564 out: 1565 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS); 1566 out_page: 1567 unlock_page(page); 1568 page_cache_release(page); 1569 } 1570 1571 /* 1572 * There are a few paths in the higher layers of the kernel that directly 1573 * set the page dirty bit without asking the filesystem if it is a 1574 * good idea. This causes problems because we want to make sure COW 1575 * properly happens and the data=ordered rules are followed. 1576 * 1577 * In our case any range that doesn't have the ORDERED bit set 1578 * hasn't been properly setup for IO. We kick off an async process 1579 * to fix it up. The async helper will wait for ordered extents, set 1580 * the delalloc bit and make it safe to write the page. 1581 */ 1582 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1583 { 1584 struct inode *inode = page->mapping->host; 1585 struct btrfs_writepage_fixup *fixup; 1586 struct btrfs_root *root = BTRFS_I(inode)->root; 1587 1588 /* this page is properly in the ordered list */ 1589 if (TestClearPagePrivate2(page)) 1590 return 0; 1591 1592 if (PageChecked(page)) 1593 return -EAGAIN; 1594 1595 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1596 if (!fixup) 1597 return -EAGAIN; 1598 1599 SetPageChecked(page); 1600 page_cache_get(page); 1601 fixup->work.func = btrfs_writepage_fixup_worker; 1602 fixup->page = page; 1603 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1604 return -EAGAIN; 1605 } 1606 1607 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1608 struct inode *inode, u64 file_pos, 1609 u64 disk_bytenr, u64 disk_num_bytes, 1610 u64 num_bytes, u64 ram_bytes, 1611 u8 compression, u8 encryption, 1612 u16 other_encoding, int extent_type) 1613 { 1614 struct btrfs_root *root = BTRFS_I(inode)->root; 1615 struct btrfs_file_extent_item *fi; 1616 struct btrfs_path *path; 1617 struct extent_buffer *leaf; 1618 struct btrfs_key ins; 1619 u64 hint; 1620 int ret; 1621 1622 path = btrfs_alloc_path(); 1623 BUG_ON(!path); 1624 1625 path->leave_spinning = 1; 1626 1627 /* 1628 * we may be replacing one extent in the tree with another. 1629 * The new extent is pinned in the extent map, and we don't want 1630 * to drop it from the cache until it is completely in the btree. 1631 * 1632 * So, tell btrfs_drop_extents to leave this extent in the cache. 1633 * the caller is expected to unpin it and allow it to be merged 1634 * with the others. 1635 */ 1636 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1637 &hint, 0); 1638 BUG_ON(ret); 1639 1640 ins.objectid = inode->i_ino; 1641 ins.offset = file_pos; 1642 ins.type = BTRFS_EXTENT_DATA_KEY; 1643 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1644 BUG_ON(ret); 1645 leaf = path->nodes[0]; 1646 fi = btrfs_item_ptr(leaf, path->slots[0], 1647 struct btrfs_file_extent_item); 1648 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1649 btrfs_set_file_extent_type(leaf, fi, extent_type); 1650 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1651 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1652 btrfs_set_file_extent_offset(leaf, fi, 0); 1653 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1654 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1655 btrfs_set_file_extent_compression(leaf, fi, compression); 1656 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1657 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1658 1659 btrfs_unlock_up_safe(path, 1); 1660 btrfs_set_lock_blocking(leaf); 1661 1662 btrfs_mark_buffer_dirty(leaf); 1663 1664 inode_add_bytes(inode, num_bytes); 1665 1666 ins.objectid = disk_bytenr; 1667 ins.offset = disk_num_bytes; 1668 ins.type = BTRFS_EXTENT_ITEM_KEY; 1669 ret = btrfs_alloc_reserved_file_extent(trans, root, 1670 root->root_key.objectid, 1671 inode->i_ino, file_pos, &ins); 1672 BUG_ON(ret); 1673 btrfs_free_path(path); 1674 1675 return 0; 1676 } 1677 1678 /* 1679 * helper function for btrfs_finish_ordered_io, this 1680 * just reads in some of the csum leaves to prime them into ram 1681 * before we start the transaction. It limits the amount of btree 1682 * reads required while inside the transaction. 1683 */ 1684 static noinline void reada_csum(struct btrfs_root *root, 1685 struct btrfs_path *path, 1686 struct btrfs_ordered_extent *ordered_extent) 1687 { 1688 struct btrfs_ordered_sum *sum; 1689 u64 bytenr; 1690 1691 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum, 1692 list); 1693 bytenr = sum->sums[0].bytenr; 1694 1695 /* 1696 * we don't care about the results, the point of this search is 1697 * just to get the btree leaves into ram 1698 */ 1699 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0); 1700 } 1701 1702 /* as ordered data IO finishes, this gets called so we can finish 1703 * an ordered extent if the range of bytes in the file it covers are 1704 * fully written. 1705 */ 1706 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1707 { 1708 struct btrfs_root *root = BTRFS_I(inode)->root; 1709 struct btrfs_trans_handle *trans; 1710 struct btrfs_ordered_extent *ordered_extent = NULL; 1711 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1712 struct btrfs_path *path; 1713 int compressed = 0; 1714 int ret; 1715 1716 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1); 1717 if (!ret) 1718 return 0; 1719 1720 /* 1721 * before we join the transaction, try to do some of our IO. 1722 * This will limit the amount of IO that we have to do with 1723 * the transaction running. We're unlikely to need to do any 1724 * IO if the file extents are new, the disk_i_size checks 1725 * covers the most common case. 1726 */ 1727 if (start < BTRFS_I(inode)->disk_i_size) { 1728 path = btrfs_alloc_path(); 1729 if (path) { 1730 ret = btrfs_lookup_file_extent(NULL, root, path, 1731 inode->i_ino, 1732 start, 0); 1733 ordered_extent = btrfs_lookup_ordered_extent(inode, 1734 start); 1735 if (!list_empty(&ordered_extent->list)) { 1736 btrfs_release_path(root, path); 1737 reada_csum(root, path, ordered_extent); 1738 } 1739 btrfs_free_path(path); 1740 } 1741 } 1742 1743 if (!ordered_extent) 1744 ordered_extent = btrfs_lookup_ordered_extent(inode, start); 1745 BUG_ON(!ordered_extent); 1746 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1747 BUG_ON(!list_empty(&ordered_extent->list)); 1748 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1749 if (!ret) { 1750 trans = btrfs_join_transaction(root, 1); 1751 ret = btrfs_update_inode(trans, root, inode); 1752 BUG_ON(ret); 1753 btrfs_end_transaction(trans, root); 1754 } 1755 goto out; 1756 } 1757 1758 lock_extent(io_tree, ordered_extent->file_offset, 1759 ordered_extent->file_offset + ordered_extent->len - 1, 1760 GFP_NOFS); 1761 1762 trans = btrfs_join_transaction(root, 1); 1763 1764 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1765 compressed = 1; 1766 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1767 BUG_ON(compressed); 1768 ret = btrfs_mark_extent_written(trans, inode, 1769 ordered_extent->file_offset, 1770 ordered_extent->file_offset + 1771 ordered_extent->len); 1772 BUG_ON(ret); 1773 } else { 1774 ret = insert_reserved_file_extent(trans, inode, 1775 ordered_extent->file_offset, 1776 ordered_extent->start, 1777 ordered_extent->disk_len, 1778 ordered_extent->len, 1779 ordered_extent->len, 1780 compressed, 0, 0, 1781 BTRFS_FILE_EXTENT_REG); 1782 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1783 ordered_extent->file_offset, 1784 ordered_extent->len); 1785 BUG_ON(ret); 1786 } 1787 unlock_extent(io_tree, ordered_extent->file_offset, 1788 ordered_extent->file_offset + ordered_extent->len - 1, 1789 GFP_NOFS); 1790 add_pending_csums(trans, inode, ordered_extent->file_offset, 1791 &ordered_extent->list); 1792 1793 /* this also removes the ordered extent from the tree */ 1794 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1795 ret = btrfs_update_inode(trans, root, inode); 1796 BUG_ON(ret); 1797 btrfs_end_transaction(trans, root); 1798 out: 1799 /* once for us */ 1800 btrfs_put_ordered_extent(ordered_extent); 1801 /* once for the tree */ 1802 btrfs_put_ordered_extent(ordered_extent); 1803 1804 return 0; 1805 } 1806 1807 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1808 struct extent_state *state, int uptodate) 1809 { 1810 ClearPagePrivate2(page); 1811 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1812 } 1813 1814 /* 1815 * When IO fails, either with EIO or csum verification fails, we 1816 * try other mirrors that might have a good copy of the data. This 1817 * io_failure_record is used to record state as we go through all the 1818 * mirrors. If another mirror has good data, the page is set up to date 1819 * and things continue. If a good mirror can't be found, the original 1820 * bio end_io callback is called to indicate things have failed. 1821 */ 1822 struct io_failure_record { 1823 struct page *page; 1824 u64 start; 1825 u64 len; 1826 u64 logical; 1827 unsigned long bio_flags; 1828 int last_mirror; 1829 }; 1830 1831 static int btrfs_io_failed_hook(struct bio *failed_bio, 1832 struct page *page, u64 start, u64 end, 1833 struct extent_state *state) 1834 { 1835 struct io_failure_record *failrec = NULL; 1836 u64 private; 1837 struct extent_map *em; 1838 struct inode *inode = page->mapping->host; 1839 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1840 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1841 struct bio *bio; 1842 int num_copies; 1843 int ret; 1844 int rw; 1845 u64 logical; 1846 1847 ret = get_state_private(failure_tree, start, &private); 1848 if (ret) { 1849 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1850 if (!failrec) 1851 return -ENOMEM; 1852 failrec->start = start; 1853 failrec->len = end - start + 1; 1854 failrec->last_mirror = 0; 1855 failrec->bio_flags = 0; 1856 1857 read_lock(&em_tree->lock); 1858 em = lookup_extent_mapping(em_tree, start, failrec->len); 1859 if (em->start > start || em->start + em->len < start) { 1860 free_extent_map(em); 1861 em = NULL; 1862 } 1863 read_unlock(&em_tree->lock); 1864 1865 if (!em || IS_ERR(em)) { 1866 kfree(failrec); 1867 return -EIO; 1868 } 1869 logical = start - em->start; 1870 logical = em->block_start + logical; 1871 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1872 logical = em->block_start; 1873 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1874 } 1875 failrec->logical = logical; 1876 free_extent_map(em); 1877 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1878 EXTENT_DIRTY, GFP_NOFS); 1879 set_state_private(failure_tree, start, 1880 (u64)(unsigned long)failrec); 1881 } else { 1882 failrec = (struct io_failure_record *)(unsigned long)private; 1883 } 1884 num_copies = btrfs_num_copies( 1885 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1886 failrec->logical, failrec->len); 1887 failrec->last_mirror++; 1888 if (!state) { 1889 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1890 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1891 failrec->start, 1892 EXTENT_LOCKED); 1893 if (state && state->start != failrec->start) 1894 state = NULL; 1895 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1896 } 1897 if (!state || failrec->last_mirror > num_copies) { 1898 set_state_private(failure_tree, failrec->start, 0); 1899 clear_extent_bits(failure_tree, failrec->start, 1900 failrec->start + failrec->len - 1, 1901 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1902 kfree(failrec); 1903 return -EIO; 1904 } 1905 bio = bio_alloc(GFP_NOFS, 1); 1906 bio->bi_private = state; 1907 bio->bi_end_io = failed_bio->bi_end_io; 1908 bio->bi_sector = failrec->logical >> 9; 1909 bio->bi_bdev = failed_bio->bi_bdev; 1910 bio->bi_size = 0; 1911 1912 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1913 if (failed_bio->bi_rw & (1 << BIO_RW)) 1914 rw = WRITE; 1915 else 1916 rw = READ; 1917 1918 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1919 failrec->last_mirror, 1920 failrec->bio_flags); 1921 return 0; 1922 } 1923 1924 /* 1925 * each time an IO finishes, we do a fast check in the IO failure tree 1926 * to see if we need to process or clean up an io_failure_record 1927 */ 1928 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1929 { 1930 u64 private; 1931 u64 private_failure; 1932 struct io_failure_record *failure; 1933 int ret; 1934 1935 private = 0; 1936 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1937 (u64)-1, 1, EXTENT_DIRTY)) { 1938 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1939 start, &private_failure); 1940 if (ret == 0) { 1941 failure = (struct io_failure_record *)(unsigned long) 1942 private_failure; 1943 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1944 failure->start, 0); 1945 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1946 failure->start, 1947 failure->start + failure->len - 1, 1948 EXTENT_DIRTY | EXTENT_LOCKED, 1949 GFP_NOFS); 1950 kfree(failure); 1951 } 1952 } 1953 return 0; 1954 } 1955 1956 /* 1957 * when reads are done, we need to check csums to verify the data is correct 1958 * if there's a match, we allow the bio to finish. If not, we go through 1959 * the io_failure_record routines to find good copies 1960 */ 1961 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1962 struct extent_state *state) 1963 { 1964 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1965 struct inode *inode = page->mapping->host; 1966 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1967 char *kaddr; 1968 u64 private = ~(u32)0; 1969 int ret; 1970 struct btrfs_root *root = BTRFS_I(inode)->root; 1971 u32 csum = ~(u32)0; 1972 1973 if (PageChecked(page)) { 1974 ClearPageChecked(page); 1975 goto good; 1976 } 1977 1978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1979 return 0; 1980 1981 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1982 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1983 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1984 GFP_NOFS); 1985 return 0; 1986 } 1987 1988 if (state && state->start == start) { 1989 private = state->private; 1990 ret = 0; 1991 } else { 1992 ret = get_state_private(io_tree, start, &private); 1993 } 1994 kaddr = kmap_atomic(page, KM_USER0); 1995 if (ret) 1996 goto zeroit; 1997 1998 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1999 btrfs_csum_final(csum, (char *)&csum); 2000 if (csum != private) 2001 goto zeroit; 2002 2003 kunmap_atomic(kaddr, KM_USER0); 2004 good: 2005 /* if the io failure tree for this inode is non-empty, 2006 * check to see if we've recovered from a failed IO 2007 */ 2008 btrfs_clean_io_failures(inode, start); 2009 return 0; 2010 2011 zeroit: 2012 if (printk_ratelimit()) { 2013 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 2014 "private %llu\n", page->mapping->host->i_ino, 2015 (unsigned long long)start, csum, 2016 (unsigned long long)private); 2017 } 2018 memset(kaddr + offset, 1, end - start + 1); 2019 flush_dcache_page(page); 2020 kunmap_atomic(kaddr, KM_USER0); 2021 if (private == 0) 2022 return 0; 2023 return -EIO; 2024 } 2025 2026 struct delayed_iput { 2027 struct list_head list; 2028 struct inode *inode; 2029 }; 2030 2031 void btrfs_add_delayed_iput(struct inode *inode) 2032 { 2033 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2034 struct delayed_iput *delayed; 2035 2036 if (atomic_add_unless(&inode->i_count, -1, 1)) 2037 return; 2038 2039 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2040 delayed->inode = inode; 2041 2042 spin_lock(&fs_info->delayed_iput_lock); 2043 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2044 spin_unlock(&fs_info->delayed_iput_lock); 2045 } 2046 2047 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2048 { 2049 LIST_HEAD(list); 2050 struct btrfs_fs_info *fs_info = root->fs_info; 2051 struct delayed_iput *delayed; 2052 int empty; 2053 2054 spin_lock(&fs_info->delayed_iput_lock); 2055 empty = list_empty(&fs_info->delayed_iputs); 2056 spin_unlock(&fs_info->delayed_iput_lock); 2057 if (empty) 2058 return; 2059 2060 down_read(&root->fs_info->cleanup_work_sem); 2061 spin_lock(&fs_info->delayed_iput_lock); 2062 list_splice_init(&fs_info->delayed_iputs, &list); 2063 spin_unlock(&fs_info->delayed_iput_lock); 2064 2065 while (!list_empty(&list)) { 2066 delayed = list_entry(list.next, struct delayed_iput, list); 2067 list_del(&delayed->list); 2068 iput(delayed->inode); 2069 kfree(delayed); 2070 } 2071 up_read(&root->fs_info->cleanup_work_sem); 2072 } 2073 2074 /* 2075 * This creates an orphan entry for the given inode in case something goes 2076 * wrong in the middle of an unlink/truncate. 2077 */ 2078 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2079 { 2080 struct btrfs_root *root = BTRFS_I(inode)->root; 2081 int ret = 0; 2082 2083 spin_lock(&root->list_lock); 2084 2085 /* already on the orphan list, we're good */ 2086 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2087 spin_unlock(&root->list_lock); 2088 return 0; 2089 } 2090 2091 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2092 2093 spin_unlock(&root->list_lock); 2094 2095 /* 2096 * insert an orphan item to track this unlinked/truncated file 2097 */ 2098 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 2099 2100 return ret; 2101 } 2102 2103 /* 2104 * We have done the truncate/delete so we can go ahead and remove the orphan 2105 * item for this particular inode. 2106 */ 2107 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2108 { 2109 struct btrfs_root *root = BTRFS_I(inode)->root; 2110 int ret = 0; 2111 2112 spin_lock(&root->list_lock); 2113 2114 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2115 spin_unlock(&root->list_lock); 2116 return 0; 2117 } 2118 2119 list_del_init(&BTRFS_I(inode)->i_orphan); 2120 if (!trans) { 2121 spin_unlock(&root->list_lock); 2122 return 0; 2123 } 2124 2125 spin_unlock(&root->list_lock); 2126 2127 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 2128 2129 return ret; 2130 } 2131 2132 /* 2133 * this cleans up any orphans that may be left on the list from the last use 2134 * of this root. 2135 */ 2136 void btrfs_orphan_cleanup(struct btrfs_root *root) 2137 { 2138 struct btrfs_path *path; 2139 struct extent_buffer *leaf; 2140 struct btrfs_item *item; 2141 struct btrfs_key key, found_key; 2142 struct btrfs_trans_handle *trans; 2143 struct inode *inode; 2144 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2145 2146 if (!xchg(&root->clean_orphans, 0)) 2147 return; 2148 2149 path = btrfs_alloc_path(); 2150 BUG_ON(!path); 2151 path->reada = -1; 2152 2153 key.objectid = BTRFS_ORPHAN_OBJECTID; 2154 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2155 key.offset = (u64)-1; 2156 2157 while (1) { 2158 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2159 if (ret < 0) { 2160 printk(KERN_ERR "Error searching slot for orphan: %d" 2161 "\n", ret); 2162 break; 2163 } 2164 2165 /* 2166 * if ret == 0 means we found what we were searching for, which 2167 * is weird, but possible, so only screw with path if we didnt 2168 * find the key and see if we have stuff that matches 2169 */ 2170 if (ret > 0) { 2171 if (path->slots[0] == 0) 2172 break; 2173 path->slots[0]--; 2174 } 2175 2176 /* pull out the item */ 2177 leaf = path->nodes[0]; 2178 item = btrfs_item_nr(leaf, path->slots[0]); 2179 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2180 2181 /* make sure the item matches what we want */ 2182 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2183 break; 2184 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2185 break; 2186 2187 /* release the path since we're done with it */ 2188 btrfs_release_path(root, path); 2189 2190 /* 2191 * this is where we are basically btrfs_lookup, without the 2192 * crossing root thing. we store the inode number in the 2193 * offset of the orphan item. 2194 */ 2195 found_key.objectid = found_key.offset; 2196 found_key.type = BTRFS_INODE_ITEM_KEY; 2197 found_key.offset = 0; 2198 inode = btrfs_iget(root->fs_info->sb, &found_key, root); 2199 if (IS_ERR(inode)) 2200 break; 2201 2202 /* 2203 * add this inode to the orphan list so btrfs_orphan_del does 2204 * the proper thing when we hit it 2205 */ 2206 spin_lock(&root->list_lock); 2207 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2208 spin_unlock(&root->list_lock); 2209 2210 /* 2211 * if this is a bad inode, means we actually succeeded in 2212 * removing the inode, but not the orphan record, which means 2213 * we need to manually delete the orphan since iput will just 2214 * do a destroy_inode 2215 */ 2216 if (is_bad_inode(inode)) { 2217 trans = btrfs_start_transaction(root, 1); 2218 btrfs_orphan_del(trans, inode); 2219 btrfs_end_transaction(trans, root); 2220 iput(inode); 2221 continue; 2222 } 2223 2224 /* if we have links, this was a truncate, lets do that */ 2225 if (inode->i_nlink) { 2226 nr_truncate++; 2227 btrfs_truncate(inode); 2228 } else { 2229 nr_unlink++; 2230 } 2231 2232 /* this will do delete_inode and everything for us */ 2233 iput(inode); 2234 } 2235 2236 if (nr_unlink) 2237 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2238 if (nr_truncate) 2239 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2240 2241 btrfs_free_path(path); 2242 } 2243 2244 /* 2245 * very simple check to peek ahead in the leaf looking for xattrs. If we 2246 * don't find any xattrs, we know there can't be any acls. 2247 * 2248 * slot is the slot the inode is in, objectid is the objectid of the inode 2249 */ 2250 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2251 int slot, u64 objectid) 2252 { 2253 u32 nritems = btrfs_header_nritems(leaf); 2254 struct btrfs_key found_key; 2255 int scanned = 0; 2256 2257 slot++; 2258 while (slot < nritems) { 2259 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2260 2261 /* we found a different objectid, there must not be acls */ 2262 if (found_key.objectid != objectid) 2263 return 0; 2264 2265 /* we found an xattr, assume we've got an acl */ 2266 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2267 return 1; 2268 2269 /* 2270 * we found a key greater than an xattr key, there can't 2271 * be any acls later on 2272 */ 2273 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2274 return 0; 2275 2276 slot++; 2277 scanned++; 2278 2279 /* 2280 * it goes inode, inode backrefs, xattrs, extents, 2281 * so if there are a ton of hard links to an inode there can 2282 * be a lot of backrefs. Don't waste time searching too hard, 2283 * this is just an optimization 2284 */ 2285 if (scanned >= 8) 2286 break; 2287 } 2288 /* we hit the end of the leaf before we found an xattr or 2289 * something larger than an xattr. We have to assume the inode 2290 * has acls 2291 */ 2292 return 1; 2293 } 2294 2295 /* 2296 * read an inode from the btree into the in-memory inode 2297 */ 2298 static void btrfs_read_locked_inode(struct inode *inode) 2299 { 2300 struct btrfs_path *path; 2301 struct extent_buffer *leaf; 2302 struct btrfs_inode_item *inode_item; 2303 struct btrfs_timespec *tspec; 2304 struct btrfs_root *root = BTRFS_I(inode)->root; 2305 struct btrfs_key location; 2306 int maybe_acls; 2307 u64 alloc_group_block; 2308 u32 rdev; 2309 int ret; 2310 2311 path = btrfs_alloc_path(); 2312 BUG_ON(!path); 2313 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2314 2315 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2316 if (ret) 2317 goto make_bad; 2318 2319 leaf = path->nodes[0]; 2320 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2321 struct btrfs_inode_item); 2322 2323 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2324 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2325 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2326 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2327 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2328 2329 tspec = btrfs_inode_atime(inode_item); 2330 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2331 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2332 2333 tspec = btrfs_inode_mtime(inode_item); 2334 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2335 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2336 2337 tspec = btrfs_inode_ctime(inode_item); 2338 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2339 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2340 2341 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2342 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2343 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2344 inode->i_generation = BTRFS_I(inode)->generation; 2345 inode->i_rdev = 0; 2346 rdev = btrfs_inode_rdev(leaf, inode_item); 2347 2348 BTRFS_I(inode)->index_cnt = (u64)-1; 2349 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2350 2351 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2352 2353 /* 2354 * try to precache a NULL acl entry for files that don't have 2355 * any xattrs or acls 2356 */ 2357 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2358 if (!maybe_acls) 2359 cache_no_acl(inode); 2360 2361 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2362 alloc_group_block, 0); 2363 btrfs_free_path(path); 2364 inode_item = NULL; 2365 2366 switch (inode->i_mode & S_IFMT) { 2367 case S_IFREG: 2368 inode->i_mapping->a_ops = &btrfs_aops; 2369 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2370 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2371 inode->i_fop = &btrfs_file_operations; 2372 inode->i_op = &btrfs_file_inode_operations; 2373 break; 2374 case S_IFDIR: 2375 inode->i_fop = &btrfs_dir_file_operations; 2376 if (root == root->fs_info->tree_root) 2377 inode->i_op = &btrfs_dir_ro_inode_operations; 2378 else 2379 inode->i_op = &btrfs_dir_inode_operations; 2380 break; 2381 case S_IFLNK: 2382 inode->i_op = &btrfs_symlink_inode_operations; 2383 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2384 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2385 break; 2386 default: 2387 inode->i_op = &btrfs_special_inode_operations; 2388 init_special_inode(inode, inode->i_mode, rdev); 2389 break; 2390 } 2391 2392 btrfs_update_iflags(inode); 2393 return; 2394 2395 make_bad: 2396 btrfs_free_path(path); 2397 make_bad_inode(inode); 2398 } 2399 2400 /* 2401 * given a leaf and an inode, copy the inode fields into the leaf 2402 */ 2403 static void fill_inode_item(struct btrfs_trans_handle *trans, 2404 struct extent_buffer *leaf, 2405 struct btrfs_inode_item *item, 2406 struct inode *inode) 2407 { 2408 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2409 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2410 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2411 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2412 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2413 2414 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2415 inode->i_atime.tv_sec); 2416 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2417 inode->i_atime.tv_nsec); 2418 2419 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2420 inode->i_mtime.tv_sec); 2421 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2422 inode->i_mtime.tv_nsec); 2423 2424 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2425 inode->i_ctime.tv_sec); 2426 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2427 inode->i_ctime.tv_nsec); 2428 2429 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2430 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2431 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2432 btrfs_set_inode_transid(leaf, item, trans->transid); 2433 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2434 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2435 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2436 } 2437 2438 /* 2439 * copy everything in the in-memory inode into the btree. 2440 */ 2441 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2442 struct btrfs_root *root, struct inode *inode) 2443 { 2444 struct btrfs_inode_item *inode_item; 2445 struct btrfs_path *path; 2446 struct extent_buffer *leaf; 2447 int ret; 2448 2449 path = btrfs_alloc_path(); 2450 BUG_ON(!path); 2451 path->leave_spinning = 1; 2452 ret = btrfs_lookup_inode(trans, root, path, 2453 &BTRFS_I(inode)->location, 1); 2454 if (ret) { 2455 if (ret > 0) 2456 ret = -ENOENT; 2457 goto failed; 2458 } 2459 2460 btrfs_unlock_up_safe(path, 1); 2461 leaf = path->nodes[0]; 2462 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2463 struct btrfs_inode_item); 2464 2465 fill_inode_item(trans, leaf, inode_item, inode); 2466 btrfs_mark_buffer_dirty(leaf); 2467 btrfs_set_inode_last_trans(trans, inode); 2468 ret = 0; 2469 failed: 2470 btrfs_free_path(path); 2471 return ret; 2472 } 2473 2474 2475 /* 2476 * unlink helper that gets used here in inode.c and in the tree logging 2477 * recovery code. It remove a link in a directory with a given name, and 2478 * also drops the back refs in the inode to the directory 2479 */ 2480 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2481 struct btrfs_root *root, 2482 struct inode *dir, struct inode *inode, 2483 const char *name, int name_len) 2484 { 2485 struct btrfs_path *path; 2486 int ret = 0; 2487 struct extent_buffer *leaf; 2488 struct btrfs_dir_item *di; 2489 struct btrfs_key key; 2490 u64 index; 2491 2492 path = btrfs_alloc_path(); 2493 if (!path) { 2494 ret = -ENOMEM; 2495 goto err; 2496 } 2497 2498 path->leave_spinning = 1; 2499 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2500 name, name_len, -1); 2501 if (IS_ERR(di)) { 2502 ret = PTR_ERR(di); 2503 goto err; 2504 } 2505 if (!di) { 2506 ret = -ENOENT; 2507 goto err; 2508 } 2509 leaf = path->nodes[0]; 2510 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2511 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2512 if (ret) 2513 goto err; 2514 btrfs_release_path(root, path); 2515 2516 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2517 inode->i_ino, 2518 dir->i_ino, &index); 2519 if (ret) { 2520 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2521 "inode %lu parent %lu\n", name_len, name, 2522 inode->i_ino, dir->i_ino); 2523 goto err; 2524 } 2525 2526 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2527 index, name, name_len, -1); 2528 if (IS_ERR(di)) { 2529 ret = PTR_ERR(di); 2530 goto err; 2531 } 2532 if (!di) { 2533 ret = -ENOENT; 2534 goto err; 2535 } 2536 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2537 btrfs_release_path(root, path); 2538 2539 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2540 inode, dir->i_ino); 2541 BUG_ON(ret != 0 && ret != -ENOENT); 2542 2543 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2544 dir, index); 2545 BUG_ON(ret); 2546 err: 2547 btrfs_free_path(path); 2548 if (ret) 2549 goto out; 2550 2551 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2552 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2553 btrfs_update_inode(trans, root, dir); 2554 btrfs_drop_nlink(inode); 2555 ret = btrfs_update_inode(trans, root, inode); 2556 out: 2557 return ret; 2558 } 2559 2560 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2561 { 2562 struct btrfs_root *root; 2563 struct btrfs_trans_handle *trans; 2564 struct inode *inode = dentry->d_inode; 2565 int ret; 2566 unsigned long nr = 0; 2567 2568 root = BTRFS_I(dir)->root; 2569 2570 /* 2571 * 5 items for unlink inode 2572 * 1 for orphan 2573 */ 2574 ret = btrfs_reserve_metadata_space(root, 6); 2575 if (ret) 2576 return ret; 2577 2578 trans = btrfs_start_transaction(root, 1); 2579 if (IS_ERR(trans)) { 2580 btrfs_unreserve_metadata_space(root, 6); 2581 return PTR_ERR(trans); 2582 } 2583 2584 btrfs_set_trans_block_group(trans, dir); 2585 2586 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2587 2588 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2589 dentry->d_name.name, dentry->d_name.len); 2590 2591 if (inode->i_nlink == 0) 2592 ret = btrfs_orphan_add(trans, inode); 2593 2594 nr = trans->blocks_used; 2595 2596 btrfs_end_transaction_throttle(trans, root); 2597 btrfs_unreserve_metadata_space(root, 6); 2598 btrfs_btree_balance_dirty(root, nr); 2599 return ret; 2600 } 2601 2602 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2603 struct btrfs_root *root, 2604 struct inode *dir, u64 objectid, 2605 const char *name, int name_len) 2606 { 2607 struct btrfs_path *path; 2608 struct extent_buffer *leaf; 2609 struct btrfs_dir_item *di; 2610 struct btrfs_key key; 2611 u64 index; 2612 int ret; 2613 2614 path = btrfs_alloc_path(); 2615 if (!path) 2616 return -ENOMEM; 2617 2618 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2619 name, name_len, -1); 2620 BUG_ON(!di || IS_ERR(di)); 2621 2622 leaf = path->nodes[0]; 2623 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2624 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2625 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2626 BUG_ON(ret); 2627 btrfs_release_path(root, path); 2628 2629 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2630 objectid, root->root_key.objectid, 2631 dir->i_ino, &index, name, name_len); 2632 if (ret < 0) { 2633 BUG_ON(ret != -ENOENT); 2634 di = btrfs_search_dir_index_item(root, path, dir->i_ino, 2635 name, name_len); 2636 BUG_ON(!di || IS_ERR(di)); 2637 2638 leaf = path->nodes[0]; 2639 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2640 btrfs_release_path(root, path); 2641 index = key.offset; 2642 } 2643 2644 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2645 index, name, name_len, -1); 2646 BUG_ON(!di || IS_ERR(di)); 2647 2648 leaf = path->nodes[0]; 2649 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2650 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2651 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2652 BUG_ON(ret); 2653 btrfs_release_path(root, path); 2654 2655 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2656 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2657 ret = btrfs_update_inode(trans, root, dir); 2658 BUG_ON(ret); 2659 dir->i_sb->s_dirt = 1; 2660 2661 btrfs_free_path(path); 2662 return 0; 2663 } 2664 2665 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2666 { 2667 struct inode *inode = dentry->d_inode; 2668 int err = 0; 2669 int ret; 2670 struct btrfs_root *root = BTRFS_I(dir)->root; 2671 struct btrfs_trans_handle *trans; 2672 unsigned long nr = 0; 2673 2674 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2675 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 2676 return -ENOTEMPTY; 2677 2678 ret = btrfs_reserve_metadata_space(root, 5); 2679 if (ret) 2680 return ret; 2681 2682 trans = btrfs_start_transaction(root, 1); 2683 if (IS_ERR(trans)) { 2684 btrfs_unreserve_metadata_space(root, 5); 2685 return PTR_ERR(trans); 2686 } 2687 2688 btrfs_set_trans_block_group(trans, dir); 2689 2690 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2691 err = btrfs_unlink_subvol(trans, root, dir, 2692 BTRFS_I(inode)->location.objectid, 2693 dentry->d_name.name, 2694 dentry->d_name.len); 2695 goto out; 2696 } 2697 2698 err = btrfs_orphan_add(trans, inode); 2699 if (err) 2700 goto out; 2701 2702 /* now the directory is empty */ 2703 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2704 dentry->d_name.name, dentry->d_name.len); 2705 if (!err) 2706 btrfs_i_size_write(inode, 0); 2707 out: 2708 nr = trans->blocks_used; 2709 ret = btrfs_end_transaction_throttle(trans, root); 2710 btrfs_unreserve_metadata_space(root, 5); 2711 btrfs_btree_balance_dirty(root, nr); 2712 2713 if (ret && !err) 2714 err = ret; 2715 return err; 2716 } 2717 2718 #if 0 2719 /* 2720 * when truncating bytes in a file, it is possible to avoid reading 2721 * the leaves that contain only checksum items. This can be the 2722 * majority of the IO required to delete a large file, but it must 2723 * be done carefully. 2724 * 2725 * The keys in the level just above the leaves are checked to make sure 2726 * the lowest key in a given leaf is a csum key, and starts at an offset 2727 * after the new size. 2728 * 2729 * Then the key for the next leaf is checked to make sure it also has 2730 * a checksum item for the same file. If it does, we know our target leaf 2731 * contains only checksum items, and it can be safely freed without reading 2732 * it. 2733 * 2734 * This is just an optimization targeted at large files. It may do 2735 * nothing. It will return 0 unless things went badly. 2736 */ 2737 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 2738 struct btrfs_root *root, 2739 struct btrfs_path *path, 2740 struct inode *inode, u64 new_size) 2741 { 2742 struct btrfs_key key; 2743 int ret; 2744 int nritems; 2745 struct btrfs_key found_key; 2746 struct btrfs_key other_key; 2747 struct btrfs_leaf_ref *ref; 2748 u64 leaf_gen; 2749 u64 leaf_start; 2750 2751 path->lowest_level = 1; 2752 key.objectid = inode->i_ino; 2753 key.type = BTRFS_CSUM_ITEM_KEY; 2754 key.offset = new_size; 2755 again: 2756 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2757 if (ret < 0) 2758 goto out; 2759 2760 if (path->nodes[1] == NULL) { 2761 ret = 0; 2762 goto out; 2763 } 2764 ret = 0; 2765 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 2766 nritems = btrfs_header_nritems(path->nodes[1]); 2767 2768 if (!nritems) 2769 goto out; 2770 2771 if (path->slots[1] >= nritems) 2772 goto next_node; 2773 2774 /* did we find a key greater than anything we want to delete? */ 2775 if (found_key.objectid > inode->i_ino || 2776 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 2777 goto out; 2778 2779 /* we check the next key in the node to make sure the leave contains 2780 * only checksum items. This comparison doesn't work if our 2781 * leaf is the last one in the node 2782 */ 2783 if (path->slots[1] + 1 >= nritems) { 2784 next_node: 2785 /* search forward from the last key in the node, this 2786 * will bring us into the next node in the tree 2787 */ 2788 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 2789 2790 /* unlikely, but we inc below, so check to be safe */ 2791 if (found_key.offset == (u64)-1) 2792 goto out; 2793 2794 /* search_forward needs a path with locks held, do the 2795 * search again for the original key. It is possible 2796 * this will race with a balance and return a path that 2797 * we could modify, but this drop is just an optimization 2798 * and is allowed to miss some leaves. 2799 */ 2800 btrfs_release_path(root, path); 2801 found_key.offset++; 2802 2803 /* setup a max key for search_forward */ 2804 other_key.offset = (u64)-1; 2805 other_key.type = key.type; 2806 other_key.objectid = key.objectid; 2807 2808 path->keep_locks = 1; 2809 ret = btrfs_search_forward(root, &found_key, &other_key, 2810 path, 0, 0); 2811 path->keep_locks = 0; 2812 if (ret || found_key.objectid != key.objectid || 2813 found_key.type != key.type) { 2814 ret = 0; 2815 goto out; 2816 } 2817 2818 key.offset = found_key.offset; 2819 btrfs_release_path(root, path); 2820 cond_resched(); 2821 goto again; 2822 } 2823 2824 /* we know there's one more slot after us in the tree, 2825 * read that key so we can verify it is also a checksum item 2826 */ 2827 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 2828 2829 if (found_key.objectid < inode->i_ino) 2830 goto next_key; 2831 2832 if (found_key.type != key.type || found_key.offset < new_size) 2833 goto next_key; 2834 2835 /* 2836 * if the key for the next leaf isn't a csum key from this objectid, 2837 * we can't be sure there aren't good items inside this leaf. 2838 * Bail out 2839 */ 2840 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 2841 goto out; 2842 2843 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 2844 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 2845 /* 2846 * it is safe to delete this leaf, it contains only 2847 * csum items from this inode at an offset >= new_size 2848 */ 2849 ret = btrfs_del_leaf(trans, root, path, leaf_start); 2850 BUG_ON(ret); 2851 2852 if (root->ref_cows && leaf_gen < trans->transid) { 2853 ref = btrfs_alloc_leaf_ref(root, 0); 2854 if (ref) { 2855 ref->root_gen = root->root_key.offset; 2856 ref->bytenr = leaf_start; 2857 ref->owner = 0; 2858 ref->generation = leaf_gen; 2859 ref->nritems = 0; 2860 2861 btrfs_sort_leaf_ref(ref); 2862 2863 ret = btrfs_add_leaf_ref(root, ref, 0); 2864 WARN_ON(ret); 2865 btrfs_free_leaf_ref(root, ref); 2866 } else { 2867 WARN_ON(1); 2868 } 2869 } 2870 next_key: 2871 btrfs_release_path(root, path); 2872 2873 if (other_key.objectid == inode->i_ino && 2874 other_key.type == key.type && other_key.offset > key.offset) { 2875 key.offset = other_key.offset; 2876 cond_resched(); 2877 goto again; 2878 } 2879 ret = 0; 2880 out: 2881 /* fixup any changes we've made to the path */ 2882 path->lowest_level = 0; 2883 path->keep_locks = 0; 2884 btrfs_release_path(root, path); 2885 return ret; 2886 } 2887 2888 #endif 2889 2890 /* 2891 * this can truncate away extent items, csum items and directory items. 2892 * It starts at a high offset and removes keys until it can't find 2893 * any higher than new_size 2894 * 2895 * csum items that cross the new i_size are truncated to the new size 2896 * as well. 2897 * 2898 * min_type is the minimum key type to truncate down to. If set to 0, this 2899 * will kill all the items on this inode, including the INODE_ITEM_KEY. 2900 */ 2901 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 2902 struct btrfs_root *root, 2903 struct inode *inode, 2904 u64 new_size, u32 min_type) 2905 { 2906 struct btrfs_path *path; 2907 struct extent_buffer *leaf; 2908 struct btrfs_file_extent_item *fi; 2909 struct btrfs_key key; 2910 struct btrfs_key found_key; 2911 u64 extent_start = 0; 2912 u64 extent_num_bytes = 0; 2913 u64 extent_offset = 0; 2914 u64 item_end = 0; 2915 u64 mask = root->sectorsize - 1; 2916 u32 found_type = (u8)-1; 2917 int found_extent; 2918 int del_item; 2919 int pending_del_nr = 0; 2920 int pending_del_slot = 0; 2921 int extent_type = -1; 2922 int encoding; 2923 int ret; 2924 int err = 0; 2925 2926 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 2927 2928 if (root->ref_cows) 2929 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 2930 2931 path = btrfs_alloc_path(); 2932 BUG_ON(!path); 2933 path->reada = -1; 2934 2935 key.objectid = inode->i_ino; 2936 key.offset = (u64)-1; 2937 key.type = (u8)-1; 2938 2939 search_again: 2940 path->leave_spinning = 1; 2941 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2942 if (ret < 0) { 2943 err = ret; 2944 goto out; 2945 } 2946 2947 if (ret > 0) { 2948 /* there are no items in the tree for us to truncate, we're 2949 * done 2950 */ 2951 if (path->slots[0] == 0) 2952 goto out; 2953 path->slots[0]--; 2954 } 2955 2956 while (1) { 2957 fi = NULL; 2958 leaf = path->nodes[0]; 2959 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2960 found_type = btrfs_key_type(&found_key); 2961 encoding = 0; 2962 2963 if (found_key.objectid != inode->i_ino) 2964 break; 2965 2966 if (found_type < min_type) 2967 break; 2968 2969 item_end = found_key.offset; 2970 if (found_type == BTRFS_EXTENT_DATA_KEY) { 2971 fi = btrfs_item_ptr(leaf, path->slots[0], 2972 struct btrfs_file_extent_item); 2973 extent_type = btrfs_file_extent_type(leaf, fi); 2974 encoding = btrfs_file_extent_compression(leaf, fi); 2975 encoding |= btrfs_file_extent_encryption(leaf, fi); 2976 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 2977 2978 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 2979 item_end += 2980 btrfs_file_extent_num_bytes(leaf, fi); 2981 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 2982 item_end += btrfs_file_extent_inline_len(leaf, 2983 fi); 2984 } 2985 item_end--; 2986 } 2987 if (found_type > min_type) { 2988 del_item = 1; 2989 } else { 2990 if (item_end < new_size) 2991 break; 2992 if (found_key.offset >= new_size) 2993 del_item = 1; 2994 else 2995 del_item = 0; 2996 } 2997 found_extent = 0; 2998 /* FIXME, shrink the extent if the ref count is only 1 */ 2999 if (found_type != BTRFS_EXTENT_DATA_KEY) 3000 goto delete; 3001 3002 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3003 u64 num_dec; 3004 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3005 if (!del_item && !encoding) { 3006 u64 orig_num_bytes = 3007 btrfs_file_extent_num_bytes(leaf, fi); 3008 extent_num_bytes = new_size - 3009 found_key.offset + root->sectorsize - 1; 3010 extent_num_bytes = extent_num_bytes & 3011 ~((u64)root->sectorsize - 1); 3012 btrfs_set_file_extent_num_bytes(leaf, fi, 3013 extent_num_bytes); 3014 num_dec = (orig_num_bytes - 3015 extent_num_bytes); 3016 if (root->ref_cows && extent_start != 0) 3017 inode_sub_bytes(inode, num_dec); 3018 btrfs_mark_buffer_dirty(leaf); 3019 } else { 3020 extent_num_bytes = 3021 btrfs_file_extent_disk_num_bytes(leaf, 3022 fi); 3023 extent_offset = found_key.offset - 3024 btrfs_file_extent_offset(leaf, fi); 3025 3026 /* FIXME blocksize != 4096 */ 3027 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3028 if (extent_start != 0) { 3029 found_extent = 1; 3030 if (root->ref_cows) 3031 inode_sub_bytes(inode, num_dec); 3032 } 3033 } 3034 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3035 /* 3036 * we can't truncate inline items that have had 3037 * special encodings 3038 */ 3039 if (!del_item && 3040 btrfs_file_extent_compression(leaf, fi) == 0 && 3041 btrfs_file_extent_encryption(leaf, fi) == 0 && 3042 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3043 u32 size = new_size - found_key.offset; 3044 3045 if (root->ref_cows) { 3046 inode_sub_bytes(inode, item_end + 1 - 3047 new_size); 3048 } 3049 size = 3050 btrfs_file_extent_calc_inline_size(size); 3051 ret = btrfs_truncate_item(trans, root, path, 3052 size, 1); 3053 BUG_ON(ret); 3054 } else if (root->ref_cows) { 3055 inode_sub_bytes(inode, item_end + 1 - 3056 found_key.offset); 3057 } 3058 } 3059 delete: 3060 if (del_item) { 3061 if (!pending_del_nr) { 3062 /* no pending yet, add ourselves */ 3063 pending_del_slot = path->slots[0]; 3064 pending_del_nr = 1; 3065 } else if (pending_del_nr && 3066 path->slots[0] + 1 == pending_del_slot) { 3067 /* hop on the pending chunk */ 3068 pending_del_nr++; 3069 pending_del_slot = path->slots[0]; 3070 } else { 3071 BUG(); 3072 } 3073 } else { 3074 break; 3075 } 3076 if (found_extent && root->ref_cows) { 3077 btrfs_set_path_blocking(path); 3078 ret = btrfs_free_extent(trans, root, extent_start, 3079 extent_num_bytes, 0, 3080 btrfs_header_owner(leaf), 3081 inode->i_ino, extent_offset); 3082 BUG_ON(ret); 3083 } 3084 3085 if (found_type == BTRFS_INODE_ITEM_KEY) 3086 break; 3087 3088 if (path->slots[0] == 0 || 3089 path->slots[0] != pending_del_slot) { 3090 if (root->ref_cows) { 3091 err = -EAGAIN; 3092 goto out; 3093 } 3094 if (pending_del_nr) { 3095 ret = btrfs_del_items(trans, root, path, 3096 pending_del_slot, 3097 pending_del_nr); 3098 BUG_ON(ret); 3099 pending_del_nr = 0; 3100 } 3101 btrfs_release_path(root, path); 3102 goto search_again; 3103 } else { 3104 path->slots[0]--; 3105 } 3106 } 3107 out: 3108 if (pending_del_nr) { 3109 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3110 pending_del_nr); 3111 } 3112 btrfs_free_path(path); 3113 return err; 3114 } 3115 3116 /* 3117 * taken from block_truncate_page, but does cow as it zeros out 3118 * any bytes left in the last page in the file. 3119 */ 3120 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3121 { 3122 struct inode *inode = mapping->host; 3123 struct btrfs_root *root = BTRFS_I(inode)->root; 3124 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3125 struct btrfs_ordered_extent *ordered; 3126 char *kaddr; 3127 u32 blocksize = root->sectorsize; 3128 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3129 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3130 struct page *page; 3131 int ret = 0; 3132 u64 page_start; 3133 u64 page_end; 3134 3135 if ((offset & (blocksize - 1)) == 0) 3136 goto out; 3137 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 3138 if (ret) 3139 goto out; 3140 3141 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1); 3142 if (ret) 3143 goto out; 3144 3145 ret = -ENOMEM; 3146 again: 3147 page = grab_cache_page(mapping, index); 3148 if (!page) { 3149 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 3150 btrfs_unreserve_metadata_for_delalloc(root, inode, 1); 3151 goto out; 3152 } 3153 3154 page_start = page_offset(page); 3155 page_end = page_start + PAGE_CACHE_SIZE - 1; 3156 3157 if (!PageUptodate(page)) { 3158 ret = btrfs_readpage(NULL, page); 3159 lock_page(page); 3160 if (page->mapping != mapping) { 3161 unlock_page(page); 3162 page_cache_release(page); 3163 goto again; 3164 } 3165 if (!PageUptodate(page)) { 3166 ret = -EIO; 3167 goto out_unlock; 3168 } 3169 } 3170 wait_on_page_writeback(page); 3171 3172 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 3173 set_page_extent_mapped(page); 3174 3175 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3176 if (ordered) { 3177 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 3178 unlock_page(page); 3179 page_cache_release(page); 3180 btrfs_start_ordered_extent(inode, ordered, 1); 3181 btrfs_put_ordered_extent(ordered); 3182 goto again; 3183 } 3184 3185 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 3186 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3187 GFP_NOFS); 3188 3189 ret = btrfs_set_extent_delalloc(inode, page_start, page_end); 3190 if (ret) { 3191 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 3192 goto out_unlock; 3193 } 3194 3195 ret = 0; 3196 if (offset != PAGE_CACHE_SIZE) { 3197 kaddr = kmap(page); 3198 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3199 flush_dcache_page(page); 3200 kunmap(page); 3201 } 3202 ClearPageChecked(page); 3203 set_page_dirty(page); 3204 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 3205 3206 out_unlock: 3207 if (ret) 3208 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 3209 btrfs_unreserve_metadata_for_delalloc(root, inode, 1); 3210 unlock_page(page); 3211 page_cache_release(page); 3212 out: 3213 return ret; 3214 } 3215 3216 int btrfs_cont_expand(struct inode *inode, loff_t size) 3217 { 3218 struct btrfs_trans_handle *trans; 3219 struct btrfs_root *root = BTRFS_I(inode)->root; 3220 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3221 struct extent_map *em; 3222 u64 mask = root->sectorsize - 1; 3223 u64 hole_start = (inode->i_size + mask) & ~mask; 3224 u64 block_end = (size + mask) & ~mask; 3225 u64 last_byte; 3226 u64 cur_offset; 3227 u64 hole_size; 3228 int err = 0; 3229 3230 if (size <= hole_start) 3231 return 0; 3232 3233 while (1) { 3234 struct btrfs_ordered_extent *ordered; 3235 btrfs_wait_ordered_range(inode, hole_start, 3236 block_end - hole_start); 3237 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 3238 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3239 if (!ordered) 3240 break; 3241 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 3242 btrfs_put_ordered_extent(ordered); 3243 } 3244 3245 cur_offset = hole_start; 3246 while (1) { 3247 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3248 block_end - cur_offset, 0); 3249 BUG_ON(IS_ERR(em) || !em); 3250 last_byte = min(extent_map_end(em), block_end); 3251 last_byte = (last_byte + mask) & ~mask; 3252 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3253 u64 hint_byte = 0; 3254 hole_size = last_byte - cur_offset; 3255 3256 err = btrfs_reserve_metadata_space(root, 2); 3257 if (err) 3258 break; 3259 3260 trans = btrfs_start_transaction(root, 1); 3261 btrfs_set_trans_block_group(trans, inode); 3262 3263 err = btrfs_drop_extents(trans, inode, cur_offset, 3264 cur_offset + hole_size, 3265 &hint_byte, 1); 3266 BUG_ON(err); 3267 3268 err = btrfs_insert_file_extent(trans, root, 3269 inode->i_ino, cur_offset, 0, 3270 0, hole_size, 0, hole_size, 3271 0, 0, 0); 3272 BUG_ON(err); 3273 3274 btrfs_drop_extent_cache(inode, hole_start, 3275 last_byte - 1, 0); 3276 3277 btrfs_end_transaction(trans, root); 3278 btrfs_unreserve_metadata_space(root, 2); 3279 } 3280 free_extent_map(em); 3281 cur_offset = last_byte; 3282 if (cur_offset >= block_end) 3283 break; 3284 } 3285 3286 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS); 3287 return err; 3288 } 3289 3290 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr) 3291 { 3292 struct btrfs_root *root = BTRFS_I(inode)->root; 3293 struct btrfs_trans_handle *trans; 3294 unsigned long nr; 3295 int ret; 3296 3297 if (attr->ia_size == inode->i_size) 3298 return 0; 3299 3300 if (attr->ia_size > inode->i_size) { 3301 unsigned long limit; 3302 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 3303 if (attr->ia_size > inode->i_sb->s_maxbytes) 3304 return -EFBIG; 3305 if (limit != RLIM_INFINITY && attr->ia_size > limit) { 3306 send_sig(SIGXFSZ, current, 0); 3307 return -EFBIG; 3308 } 3309 } 3310 3311 ret = btrfs_reserve_metadata_space(root, 1); 3312 if (ret) 3313 return ret; 3314 3315 trans = btrfs_start_transaction(root, 1); 3316 btrfs_set_trans_block_group(trans, inode); 3317 3318 ret = btrfs_orphan_add(trans, inode); 3319 BUG_ON(ret); 3320 3321 nr = trans->blocks_used; 3322 btrfs_end_transaction(trans, root); 3323 btrfs_unreserve_metadata_space(root, 1); 3324 btrfs_btree_balance_dirty(root, nr); 3325 3326 if (attr->ia_size > inode->i_size) { 3327 ret = btrfs_cont_expand(inode, attr->ia_size); 3328 if (ret) { 3329 btrfs_truncate(inode); 3330 return ret; 3331 } 3332 3333 i_size_write(inode, attr->ia_size); 3334 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 3335 3336 trans = btrfs_start_transaction(root, 1); 3337 btrfs_set_trans_block_group(trans, inode); 3338 3339 ret = btrfs_update_inode(trans, root, inode); 3340 BUG_ON(ret); 3341 if (inode->i_nlink > 0) { 3342 ret = btrfs_orphan_del(trans, inode); 3343 BUG_ON(ret); 3344 } 3345 nr = trans->blocks_used; 3346 btrfs_end_transaction(trans, root); 3347 btrfs_btree_balance_dirty(root, nr); 3348 return 0; 3349 } 3350 3351 /* 3352 * We're truncating a file that used to have good data down to 3353 * zero. Make sure it gets into the ordered flush list so that 3354 * any new writes get down to disk quickly. 3355 */ 3356 if (attr->ia_size == 0) 3357 BTRFS_I(inode)->ordered_data_close = 1; 3358 3359 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3360 ret = vmtruncate(inode, attr->ia_size); 3361 BUG_ON(ret); 3362 3363 return 0; 3364 } 3365 3366 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3367 { 3368 struct inode *inode = dentry->d_inode; 3369 int err; 3370 3371 err = inode_change_ok(inode, attr); 3372 if (err) 3373 return err; 3374 3375 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3376 err = btrfs_setattr_size(inode, attr); 3377 if (err) 3378 return err; 3379 } 3380 attr->ia_valid &= ~ATTR_SIZE; 3381 3382 if (attr->ia_valid) 3383 err = inode_setattr(inode, attr); 3384 3385 if (!err && ((attr->ia_valid & ATTR_MODE))) 3386 err = btrfs_acl_chmod(inode); 3387 return err; 3388 } 3389 3390 void btrfs_delete_inode(struct inode *inode) 3391 { 3392 struct btrfs_trans_handle *trans; 3393 struct btrfs_root *root = BTRFS_I(inode)->root; 3394 unsigned long nr; 3395 int ret; 3396 3397 truncate_inode_pages(&inode->i_data, 0); 3398 if (is_bad_inode(inode)) { 3399 btrfs_orphan_del(NULL, inode); 3400 goto no_delete; 3401 } 3402 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3403 3404 if (root->fs_info->log_root_recovering) { 3405 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3406 goto no_delete; 3407 } 3408 3409 if (inode->i_nlink > 0) { 3410 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3411 goto no_delete; 3412 } 3413 3414 btrfs_i_size_write(inode, 0); 3415 3416 while (1) { 3417 trans = btrfs_start_transaction(root, 1); 3418 btrfs_set_trans_block_group(trans, inode); 3419 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3420 3421 if (ret != -EAGAIN) 3422 break; 3423 3424 nr = trans->blocks_used; 3425 btrfs_end_transaction(trans, root); 3426 trans = NULL; 3427 btrfs_btree_balance_dirty(root, nr); 3428 } 3429 3430 if (ret == 0) { 3431 ret = btrfs_orphan_del(trans, inode); 3432 BUG_ON(ret); 3433 } 3434 3435 nr = trans->blocks_used; 3436 btrfs_end_transaction(trans, root); 3437 btrfs_btree_balance_dirty(root, nr); 3438 no_delete: 3439 clear_inode(inode); 3440 return; 3441 } 3442 3443 /* 3444 * this returns the key found in the dir entry in the location pointer. 3445 * If no dir entries were found, location->objectid is 0. 3446 */ 3447 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3448 struct btrfs_key *location) 3449 { 3450 const char *name = dentry->d_name.name; 3451 int namelen = dentry->d_name.len; 3452 struct btrfs_dir_item *di; 3453 struct btrfs_path *path; 3454 struct btrfs_root *root = BTRFS_I(dir)->root; 3455 int ret = 0; 3456 3457 path = btrfs_alloc_path(); 3458 BUG_ON(!path); 3459 3460 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3461 namelen, 0); 3462 if (IS_ERR(di)) 3463 ret = PTR_ERR(di); 3464 3465 if (!di || IS_ERR(di)) 3466 goto out_err; 3467 3468 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3469 out: 3470 btrfs_free_path(path); 3471 return ret; 3472 out_err: 3473 location->objectid = 0; 3474 goto out; 3475 } 3476 3477 /* 3478 * when we hit a tree root in a directory, the btrfs part of the inode 3479 * needs to be changed to reflect the root directory of the tree root. This 3480 * is kind of like crossing a mount point. 3481 */ 3482 static int fixup_tree_root_location(struct btrfs_root *root, 3483 struct inode *dir, 3484 struct dentry *dentry, 3485 struct btrfs_key *location, 3486 struct btrfs_root **sub_root) 3487 { 3488 struct btrfs_path *path; 3489 struct btrfs_root *new_root; 3490 struct btrfs_root_ref *ref; 3491 struct extent_buffer *leaf; 3492 int ret; 3493 int err = 0; 3494 3495 path = btrfs_alloc_path(); 3496 if (!path) { 3497 err = -ENOMEM; 3498 goto out; 3499 } 3500 3501 err = -ENOENT; 3502 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3503 BTRFS_I(dir)->root->root_key.objectid, 3504 location->objectid); 3505 if (ret) { 3506 if (ret < 0) 3507 err = ret; 3508 goto out; 3509 } 3510 3511 leaf = path->nodes[0]; 3512 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3513 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino || 3514 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3515 goto out; 3516 3517 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3518 (unsigned long)(ref + 1), 3519 dentry->d_name.len); 3520 if (ret) 3521 goto out; 3522 3523 btrfs_release_path(root->fs_info->tree_root, path); 3524 3525 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3526 if (IS_ERR(new_root)) { 3527 err = PTR_ERR(new_root); 3528 goto out; 3529 } 3530 3531 if (btrfs_root_refs(&new_root->root_item) == 0) { 3532 err = -ENOENT; 3533 goto out; 3534 } 3535 3536 *sub_root = new_root; 3537 location->objectid = btrfs_root_dirid(&new_root->root_item); 3538 location->type = BTRFS_INODE_ITEM_KEY; 3539 location->offset = 0; 3540 err = 0; 3541 out: 3542 btrfs_free_path(path); 3543 return err; 3544 } 3545 3546 static void inode_tree_add(struct inode *inode) 3547 { 3548 struct btrfs_root *root = BTRFS_I(inode)->root; 3549 struct btrfs_inode *entry; 3550 struct rb_node **p; 3551 struct rb_node *parent; 3552 again: 3553 p = &root->inode_tree.rb_node; 3554 parent = NULL; 3555 3556 if (hlist_unhashed(&inode->i_hash)) 3557 return; 3558 3559 spin_lock(&root->inode_lock); 3560 while (*p) { 3561 parent = *p; 3562 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3563 3564 if (inode->i_ino < entry->vfs_inode.i_ino) 3565 p = &parent->rb_left; 3566 else if (inode->i_ino > entry->vfs_inode.i_ino) 3567 p = &parent->rb_right; 3568 else { 3569 WARN_ON(!(entry->vfs_inode.i_state & 3570 (I_WILL_FREE | I_FREEING | I_CLEAR))); 3571 rb_erase(parent, &root->inode_tree); 3572 RB_CLEAR_NODE(parent); 3573 spin_unlock(&root->inode_lock); 3574 goto again; 3575 } 3576 } 3577 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3578 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3579 spin_unlock(&root->inode_lock); 3580 } 3581 3582 static void inode_tree_del(struct inode *inode) 3583 { 3584 struct btrfs_root *root = BTRFS_I(inode)->root; 3585 int empty = 0; 3586 3587 spin_lock(&root->inode_lock); 3588 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3589 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3590 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3591 empty = RB_EMPTY_ROOT(&root->inode_tree); 3592 } 3593 spin_unlock(&root->inode_lock); 3594 3595 if (empty && btrfs_root_refs(&root->root_item) == 0) { 3596 synchronize_srcu(&root->fs_info->subvol_srcu); 3597 spin_lock(&root->inode_lock); 3598 empty = RB_EMPTY_ROOT(&root->inode_tree); 3599 spin_unlock(&root->inode_lock); 3600 if (empty) 3601 btrfs_add_dead_root(root); 3602 } 3603 } 3604 3605 int btrfs_invalidate_inodes(struct btrfs_root *root) 3606 { 3607 struct rb_node *node; 3608 struct rb_node *prev; 3609 struct btrfs_inode *entry; 3610 struct inode *inode; 3611 u64 objectid = 0; 3612 3613 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3614 3615 spin_lock(&root->inode_lock); 3616 again: 3617 node = root->inode_tree.rb_node; 3618 prev = NULL; 3619 while (node) { 3620 prev = node; 3621 entry = rb_entry(node, struct btrfs_inode, rb_node); 3622 3623 if (objectid < entry->vfs_inode.i_ino) 3624 node = node->rb_left; 3625 else if (objectid > entry->vfs_inode.i_ino) 3626 node = node->rb_right; 3627 else 3628 break; 3629 } 3630 if (!node) { 3631 while (prev) { 3632 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3633 if (objectid <= entry->vfs_inode.i_ino) { 3634 node = prev; 3635 break; 3636 } 3637 prev = rb_next(prev); 3638 } 3639 } 3640 while (node) { 3641 entry = rb_entry(node, struct btrfs_inode, rb_node); 3642 objectid = entry->vfs_inode.i_ino + 1; 3643 inode = igrab(&entry->vfs_inode); 3644 if (inode) { 3645 spin_unlock(&root->inode_lock); 3646 if (atomic_read(&inode->i_count) > 1) 3647 d_prune_aliases(inode); 3648 /* 3649 * btrfs_drop_inode will remove it from 3650 * the inode cache when its usage count 3651 * hits zero. 3652 */ 3653 iput(inode); 3654 cond_resched(); 3655 spin_lock(&root->inode_lock); 3656 goto again; 3657 } 3658 3659 if (cond_resched_lock(&root->inode_lock)) 3660 goto again; 3661 3662 node = rb_next(node); 3663 } 3664 spin_unlock(&root->inode_lock); 3665 return 0; 3666 } 3667 3668 static noinline void init_btrfs_i(struct inode *inode) 3669 { 3670 struct btrfs_inode *bi = BTRFS_I(inode); 3671 3672 bi->generation = 0; 3673 bi->sequence = 0; 3674 bi->last_trans = 0; 3675 bi->last_sub_trans = 0; 3676 bi->logged_trans = 0; 3677 bi->delalloc_bytes = 0; 3678 bi->reserved_bytes = 0; 3679 bi->disk_i_size = 0; 3680 bi->flags = 0; 3681 bi->index_cnt = (u64)-1; 3682 bi->last_unlink_trans = 0; 3683 bi->ordered_data_close = 0; 3684 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS); 3685 extent_io_tree_init(&BTRFS_I(inode)->io_tree, 3686 inode->i_mapping, GFP_NOFS); 3687 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree, 3688 inode->i_mapping, GFP_NOFS); 3689 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes); 3690 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations); 3691 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3692 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree); 3693 mutex_init(&BTRFS_I(inode)->log_mutex); 3694 } 3695 3696 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3697 { 3698 struct btrfs_iget_args *args = p; 3699 inode->i_ino = args->ino; 3700 init_btrfs_i(inode); 3701 BTRFS_I(inode)->root = args->root; 3702 btrfs_set_inode_space_info(args->root, inode); 3703 return 0; 3704 } 3705 3706 static int btrfs_find_actor(struct inode *inode, void *opaque) 3707 { 3708 struct btrfs_iget_args *args = opaque; 3709 return args->ino == inode->i_ino && 3710 args->root == BTRFS_I(inode)->root; 3711 } 3712 3713 static struct inode *btrfs_iget_locked(struct super_block *s, 3714 u64 objectid, 3715 struct btrfs_root *root) 3716 { 3717 struct inode *inode; 3718 struct btrfs_iget_args args; 3719 args.ino = objectid; 3720 args.root = root; 3721 3722 inode = iget5_locked(s, objectid, btrfs_find_actor, 3723 btrfs_init_locked_inode, 3724 (void *)&args); 3725 return inode; 3726 } 3727 3728 /* Get an inode object given its location and corresponding root. 3729 * Returns in *is_new if the inode was read from disk 3730 */ 3731 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3732 struct btrfs_root *root) 3733 { 3734 struct inode *inode; 3735 3736 inode = btrfs_iget_locked(s, location->objectid, root); 3737 if (!inode) 3738 return ERR_PTR(-ENOMEM); 3739 3740 if (inode->i_state & I_NEW) { 3741 BTRFS_I(inode)->root = root; 3742 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3743 btrfs_read_locked_inode(inode); 3744 3745 inode_tree_add(inode); 3746 unlock_new_inode(inode); 3747 } 3748 3749 return inode; 3750 } 3751 3752 static struct inode *new_simple_dir(struct super_block *s, 3753 struct btrfs_key *key, 3754 struct btrfs_root *root) 3755 { 3756 struct inode *inode = new_inode(s); 3757 3758 if (!inode) 3759 return ERR_PTR(-ENOMEM); 3760 3761 init_btrfs_i(inode); 3762 3763 BTRFS_I(inode)->root = root; 3764 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3765 BTRFS_I(inode)->dummy_inode = 1; 3766 3767 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3768 inode->i_op = &simple_dir_inode_operations; 3769 inode->i_fop = &simple_dir_operations; 3770 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 3771 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 3772 3773 return inode; 3774 } 3775 3776 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 3777 { 3778 struct inode *inode; 3779 struct btrfs_root *root = BTRFS_I(dir)->root; 3780 struct btrfs_root *sub_root = root; 3781 struct btrfs_key location; 3782 int index; 3783 int ret; 3784 3785 dentry->d_op = &btrfs_dentry_operations; 3786 3787 if (dentry->d_name.len > BTRFS_NAME_LEN) 3788 return ERR_PTR(-ENAMETOOLONG); 3789 3790 ret = btrfs_inode_by_name(dir, dentry, &location); 3791 3792 if (ret < 0) 3793 return ERR_PTR(ret); 3794 3795 if (location.objectid == 0) 3796 return NULL; 3797 3798 if (location.type == BTRFS_INODE_ITEM_KEY) { 3799 inode = btrfs_iget(dir->i_sb, &location, root); 3800 return inode; 3801 } 3802 3803 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 3804 3805 index = srcu_read_lock(&root->fs_info->subvol_srcu); 3806 ret = fixup_tree_root_location(root, dir, dentry, 3807 &location, &sub_root); 3808 if (ret < 0) { 3809 if (ret != -ENOENT) 3810 inode = ERR_PTR(ret); 3811 else 3812 inode = new_simple_dir(dir->i_sb, &location, sub_root); 3813 } else { 3814 inode = btrfs_iget(dir->i_sb, &location, sub_root); 3815 } 3816 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 3817 3818 if (root != sub_root) { 3819 down_read(&root->fs_info->cleanup_work_sem); 3820 if (!(inode->i_sb->s_flags & MS_RDONLY)) 3821 btrfs_orphan_cleanup(sub_root); 3822 up_read(&root->fs_info->cleanup_work_sem); 3823 } 3824 3825 return inode; 3826 } 3827 3828 static int btrfs_dentry_delete(struct dentry *dentry) 3829 { 3830 struct btrfs_root *root; 3831 3832 if (!dentry->d_inode && !IS_ROOT(dentry)) 3833 dentry = dentry->d_parent; 3834 3835 if (dentry->d_inode) { 3836 root = BTRFS_I(dentry->d_inode)->root; 3837 if (btrfs_root_refs(&root->root_item) == 0) 3838 return 1; 3839 } 3840 return 0; 3841 } 3842 3843 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 3844 struct nameidata *nd) 3845 { 3846 struct inode *inode; 3847 3848 inode = btrfs_lookup_dentry(dir, dentry); 3849 if (IS_ERR(inode)) 3850 return ERR_CAST(inode); 3851 3852 return d_splice_alias(inode, dentry); 3853 } 3854 3855 static unsigned char btrfs_filetype_table[] = { 3856 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 3857 }; 3858 3859 static int btrfs_real_readdir(struct file *filp, void *dirent, 3860 filldir_t filldir) 3861 { 3862 struct inode *inode = filp->f_dentry->d_inode; 3863 struct btrfs_root *root = BTRFS_I(inode)->root; 3864 struct btrfs_item *item; 3865 struct btrfs_dir_item *di; 3866 struct btrfs_key key; 3867 struct btrfs_key found_key; 3868 struct btrfs_path *path; 3869 int ret; 3870 u32 nritems; 3871 struct extent_buffer *leaf; 3872 int slot; 3873 int advance; 3874 unsigned char d_type; 3875 int over = 0; 3876 u32 di_cur; 3877 u32 di_total; 3878 u32 di_len; 3879 int key_type = BTRFS_DIR_INDEX_KEY; 3880 char tmp_name[32]; 3881 char *name_ptr; 3882 int name_len; 3883 3884 /* FIXME, use a real flag for deciding about the key type */ 3885 if (root->fs_info->tree_root == root) 3886 key_type = BTRFS_DIR_ITEM_KEY; 3887 3888 /* special case for "." */ 3889 if (filp->f_pos == 0) { 3890 over = filldir(dirent, ".", 1, 3891 1, inode->i_ino, 3892 DT_DIR); 3893 if (over) 3894 return 0; 3895 filp->f_pos = 1; 3896 } 3897 /* special case for .., just use the back ref */ 3898 if (filp->f_pos == 1) { 3899 u64 pino = parent_ino(filp->f_path.dentry); 3900 over = filldir(dirent, "..", 2, 3901 2, pino, DT_DIR); 3902 if (over) 3903 return 0; 3904 filp->f_pos = 2; 3905 } 3906 path = btrfs_alloc_path(); 3907 path->reada = 2; 3908 3909 btrfs_set_key_type(&key, key_type); 3910 key.offset = filp->f_pos; 3911 key.objectid = inode->i_ino; 3912 3913 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3914 if (ret < 0) 3915 goto err; 3916 advance = 0; 3917 3918 while (1) { 3919 leaf = path->nodes[0]; 3920 nritems = btrfs_header_nritems(leaf); 3921 slot = path->slots[0]; 3922 if (advance || slot >= nritems) { 3923 if (slot >= nritems - 1) { 3924 ret = btrfs_next_leaf(root, path); 3925 if (ret) 3926 break; 3927 leaf = path->nodes[0]; 3928 nritems = btrfs_header_nritems(leaf); 3929 slot = path->slots[0]; 3930 } else { 3931 slot++; 3932 path->slots[0]++; 3933 } 3934 } 3935 3936 advance = 1; 3937 item = btrfs_item_nr(leaf, slot); 3938 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3939 3940 if (found_key.objectid != key.objectid) 3941 break; 3942 if (btrfs_key_type(&found_key) != key_type) 3943 break; 3944 if (found_key.offset < filp->f_pos) 3945 continue; 3946 3947 filp->f_pos = found_key.offset; 3948 3949 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 3950 di_cur = 0; 3951 di_total = btrfs_item_size(leaf, item); 3952 3953 while (di_cur < di_total) { 3954 struct btrfs_key location; 3955 3956 name_len = btrfs_dir_name_len(leaf, di); 3957 if (name_len <= sizeof(tmp_name)) { 3958 name_ptr = tmp_name; 3959 } else { 3960 name_ptr = kmalloc(name_len, GFP_NOFS); 3961 if (!name_ptr) { 3962 ret = -ENOMEM; 3963 goto err; 3964 } 3965 } 3966 read_extent_buffer(leaf, name_ptr, 3967 (unsigned long)(di + 1), name_len); 3968 3969 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 3970 btrfs_dir_item_key_to_cpu(leaf, di, &location); 3971 3972 /* is this a reference to our own snapshot? If so 3973 * skip it 3974 */ 3975 if (location.type == BTRFS_ROOT_ITEM_KEY && 3976 location.objectid == root->root_key.objectid) { 3977 over = 0; 3978 goto skip; 3979 } 3980 over = filldir(dirent, name_ptr, name_len, 3981 found_key.offset, location.objectid, 3982 d_type); 3983 3984 skip: 3985 if (name_ptr != tmp_name) 3986 kfree(name_ptr); 3987 3988 if (over) 3989 goto nopos; 3990 di_len = btrfs_dir_name_len(leaf, di) + 3991 btrfs_dir_data_len(leaf, di) + sizeof(*di); 3992 di_cur += di_len; 3993 di = (struct btrfs_dir_item *)((char *)di + di_len); 3994 } 3995 } 3996 3997 /* Reached end of directory/root. Bump pos past the last item. */ 3998 if (key_type == BTRFS_DIR_INDEX_KEY) 3999 /* 4000 * 32-bit glibc will use getdents64, but then strtol - 4001 * so the last number we can serve is this. 4002 */ 4003 filp->f_pos = 0x7fffffff; 4004 else 4005 filp->f_pos++; 4006 nopos: 4007 ret = 0; 4008 err: 4009 btrfs_free_path(path); 4010 return ret; 4011 } 4012 4013 int btrfs_write_inode(struct inode *inode, int wait) 4014 { 4015 struct btrfs_root *root = BTRFS_I(inode)->root; 4016 struct btrfs_trans_handle *trans; 4017 int ret = 0; 4018 4019 if (root->fs_info->btree_inode == inode) 4020 return 0; 4021 4022 if (wait) { 4023 trans = btrfs_join_transaction(root, 1); 4024 btrfs_set_trans_block_group(trans, inode); 4025 ret = btrfs_commit_transaction(trans, root); 4026 } 4027 return ret; 4028 } 4029 4030 /* 4031 * This is somewhat expensive, updating the tree every time the 4032 * inode changes. But, it is most likely to find the inode in cache. 4033 * FIXME, needs more benchmarking...there are no reasons other than performance 4034 * to keep or drop this code. 4035 */ 4036 void btrfs_dirty_inode(struct inode *inode) 4037 { 4038 struct btrfs_root *root = BTRFS_I(inode)->root; 4039 struct btrfs_trans_handle *trans; 4040 4041 trans = btrfs_join_transaction(root, 1); 4042 btrfs_set_trans_block_group(trans, inode); 4043 btrfs_update_inode(trans, root, inode); 4044 btrfs_end_transaction(trans, root); 4045 } 4046 4047 /* 4048 * find the highest existing sequence number in a directory 4049 * and then set the in-memory index_cnt variable to reflect 4050 * free sequence numbers 4051 */ 4052 static int btrfs_set_inode_index_count(struct inode *inode) 4053 { 4054 struct btrfs_root *root = BTRFS_I(inode)->root; 4055 struct btrfs_key key, found_key; 4056 struct btrfs_path *path; 4057 struct extent_buffer *leaf; 4058 int ret; 4059 4060 key.objectid = inode->i_ino; 4061 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4062 key.offset = (u64)-1; 4063 4064 path = btrfs_alloc_path(); 4065 if (!path) 4066 return -ENOMEM; 4067 4068 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4069 if (ret < 0) 4070 goto out; 4071 /* FIXME: we should be able to handle this */ 4072 if (ret == 0) 4073 goto out; 4074 ret = 0; 4075 4076 /* 4077 * MAGIC NUMBER EXPLANATION: 4078 * since we search a directory based on f_pos we have to start at 2 4079 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4080 * else has to start at 2 4081 */ 4082 if (path->slots[0] == 0) { 4083 BTRFS_I(inode)->index_cnt = 2; 4084 goto out; 4085 } 4086 4087 path->slots[0]--; 4088 4089 leaf = path->nodes[0]; 4090 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4091 4092 if (found_key.objectid != inode->i_ino || 4093 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4094 BTRFS_I(inode)->index_cnt = 2; 4095 goto out; 4096 } 4097 4098 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4099 out: 4100 btrfs_free_path(path); 4101 return ret; 4102 } 4103 4104 /* 4105 * helper to find a free sequence number in a given directory. This current 4106 * code is very simple, later versions will do smarter things in the btree 4107 */ 4108 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4109 { 4110 int ret = 0; 4111 4112 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4113 ret = btrfs_set_inode_index_count(dir); 4114 if (ret) 4115 return ret; 4116 } 4117 4118 *index = BTRFS_I(dir)->index_cnt; 4119 BTRFS_I(dir)->index_cnt++; 4120 4121 return ret; 4122 } 4123 4124 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4125 struct btrfs_root *root, 4126 struct inode *dir, 4127 const char *name, int name_len, 4128 u64 ref_objectid, u64 objectid, 4129 u64 alloc_hint, int mode, u64 *index) 4130 { 4131 struct inode *inode; 4132 struct btrfs_inode_item *inode_item; 4133 struct btrfs_key *location; 4134 struct btrfs_path *path; 4135 struct btrfs_inode_ref *ref; 4136 struct btrfs_key key[2]; 4137 u32 sizes[2]; 4138 unsigned long ptr; 4139 int ret; 4140 int owner; 4141 4142 path = btrfs_alloc_path(); 4143 BUG_ON(!path); 4144 4145 inode = new_inode(root->fs_info->sb); 4146 if (!inode) 4147 return ERR_PTR(-ENOMEM); 4148 4149 if (dir) { 4150 ret = btrfs_set_inode_index(dir, index); 4151 if (ret) { 4152 iput(inode); 4153 return ERR_PTR(ret); 4154 } 4155 } 4156 /* 4157 * index_cnt is ignored for everything but a dir, 4158 * btrfs_get_inode_index_count has an explanation for the magic 4159 * number 4160 */ 4161 init_btrfs_i(inode); 4162 BTRFS_I(inode)->index_cnt = 2; 4163 BTRFS_I(inode)->root = root; 4164 BTRFS_I(inode)->generation = trans->transid; 4165 btrfs_set_inode_space_info(root, inode); 4166 4167 if (mode & S_IFDIR) 4168 owner = 0; 4169 else 4170 owner = 1; 4171 BTRFS_I(inode)->block_group = 4172 btrfs_find_block_group(root, 0, alloc_hint, owner); 4173 4174 key[0].objectid = objectid; 4175 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4176 key[0].offset = 0; 4177 4178 key[1].objectid = objectid; 4179 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4180 key[1].offset = ref_objectid; 4181 4182 sizes[0] = sizeof(struct btrfs_inode_item); 4183 sizes[1] = name_len + sizeof(*ref); 4184 4185 path->leave_spinning = 1; 4186 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4187 if (ret != 0) 4188 goto fail; 4189 4190 inode->i_uid = current_fsuid(); 4191 4192 if (dir && (dir->i_mode & S_ISGID)) { 4193 inode->i_gid = dir->i_gid; 4194 if (S_ISDIR(mode)) 4195 mode |= S_ISGID; 4196 } else 4197 inode->i_gid = current_fsgid(); 4198 4199 inode->i_mode = mode; 4200 inode->i_ino = objectid; 4201 inode_set_bytes(inode, 0); 4202 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4203 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4204 struct btrfs_inode_item); 4205 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4206 4207 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4208 struct btrfs_inode_ref); 4209 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4210 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4211 ptr = (unsigned long)(ref + 1); 4212 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4213 4214 btrfs_mark_buffer_dirty(path->nodes[0]); 4215 btrfs_free_path(path); 4216 4217 location = &BTRFS_I(inode)->location; 4218 location->objectid = objectid; 4219 location->offset = 0; 4220 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4221 4222 btrfs_inherit_iflags(inode, dir); 4223 4224 if ((mode & S_IFREG)) { 4225 if (btrfs_test_opt(root, NODATASUM)) 4226 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4227 if (btrfs_test_opt(root, NODATACOW)) 4228 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4229 } 4230 4231 insert_inode_hash(inode); 4232 inode_tree_add(inode); 4233 return inode; 4234 fail: 4235 if (dir) 4236 BTRFS_I(dir)->index_cnt--; 4237 btrfs_free_path(path); 4238 iput(inode); 4239 return ERR_PTR(ret); 4240 } 4241 4242 static inline u8 btrfs_inode_type(struct inode *inode) 4243 { 4244 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4245 } 4246 4247 /* 4248 * utility function to add 'inode' into 'parent_inode' with 4249 * a give name and a given sequence number. 4250 * if 'add_backref' is true, also insert a backref from the 4251 * inode to the parent directory. 4252 */ 4253 int btrfs_add_link(struct btrfs_trans_handle *trans, 4254 struct inode *parent_inode, struct inode *inode, 4255 const char *name, int name_len, int add_backref, u64 index) 4256 { 4257 int ret = 0; 4258 struct btrfs_key key; 4259 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4260 4261 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4262 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4263 } else { 4264 key.objectid = inode->i_ino; 4265 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4266 key.offset = 0; 4267 } 4268 4269 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4270 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4271 key.objectid, root->root_key.objectid, 4272 parent_inode->i_ino, 4273 index, name, name_len); 4274 } else if (add_backref) { 4275 ret = btrfs_insert_inode_ref(trans, root, 4276 name, name_len, inode->i_ino, 4277 parent_inode->i_ino, index); 4278 } 4279 4280 if (ret == 0) { 4281 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4282 parent_inode->i_ino, &key, 4283 btrfs_inode_type(inode), index); 4284 BUG_ON(ret); 4285 4286 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4287 name_len * 2); 4288 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4289 ret = btrfs_update_inode(trans, root, parent_inode); 4290 } 4291 return ret; 4292 } 4293 4294 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4295 struct dentry *dentry, struct inode *inode, 4296 int backref, u64 index) 4297 { 4298 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 4299 inode, dentry->d_name.name, 4300 dentry->d_name.len, backref, index); 4301 if (!err) { 4302 d_instantiate(dentry, inode); 4303 return 0; 4304 } 4305 if (err > 0) 4306 err = -EEXIST; 4307 return err; 4308 } 4309 4310 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4311 int mode, dev_t rdev) 4312 { 4313 struct btrfs_trans_handle *trans; 4314 struct btrfs_root *root = BTRFS_I(dir)->root; 4315 struct inode *inode = NULL; 4316 int err; 4317 int drop_inode = 0; 4318 u64 objectid; 4319 unsigned long nr = 0; 4320 u64 index = 0; 4321 4322 if (!new_valid_dev(rdev)) 4323 return -EINVAL; 4324 4325 /* 4326 * 2 for inode item and ref 4327 * 2 for dir items 4328 * 1 for xattr if selinux is on 4329 */ 4330 err = btrfs_reserve_metadata_space(root, 5); 4331 if (err) 4332 return err; 4333 4334 trans = btrfs_start_transaction(root, 1); 4335 if (!trans) 4336 goto fail; 4337 btrfs_set_trans_block_group(trans, dir); 4338 4339 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4340 if (err) { 4341 err = -ENOSPC; 4342 goto out_unlock; 4343 } 4344 4345 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4346 dentry->d_name.len, 4347 dentry->d_parent->d_inode->i_ino, objectid, 4348 BTRFS_I(dir)->block_group, mode, &index); 4349 err = PTR_ERR(inode); 4350 if (IS_ERR(inode)) 4351 goto out_unlock; 4352 4353 err = btrfs_init_inode_security(trans, inode, dir); 4354 if (err) { 4355 drop_inode = 1; 4356 goto out_unlock; 4357 } 4358 4359 btrfs_set_trans_block_group(trans, inode); 4360 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4361 if (err) 4362 drop_inode = 1; 4363 else { 4364 inode->i_op = &btrfs_special_inode_operations; 4365 init_special_inode(inode, inode->i_mode, rdev); 4366 btrfs_update_inode(trans, root, inode); 4367 } 4368 btrfs_update_inode_block_group(trans, inode); 4369 btrfs_update_inode_block_group(trans, dir); 4370 out_unlock: 4371 nr = trans->blocks_used; 4372 btrfs_end_transaction_throttle(trans, root); 4373 fail: 4374 btrfs_unreserve_metadata_space(root, 5); 4375 if (drop_inode) { 4376 inode_dec_link_count(inode); 4377 iput(inode); 4378 } 4379 btrfs_btree_balance_dirty(root, nr); 4380 return err; 4381 } 4382 4383 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4384 int mode, struct nameidata *nd) 4385 { 4386 struct btrfs_trans_handle *trans; 4387 struct btrfs_root *root = BTRFS_I(dir)->root; 4388 struct inode *inode = NULL; 4389 int err; 4390 int drop_inode = 0; 4391 unsigned long nr = 0; 4392 u64 objectid; 4393 u64 index = 0; 4394 4395 /* 4396 * 2 for inode item and ref 4397 * 2 for dir items 4398 * 1 for xattr if selinux is on 4399 */ 4400 err = btrfs_reserve_metadata_space(root, 5); 4401 if (err) 4402 return err; 4403 4404 trans = btrfs_start_transaction(root, 1); 4405 if (!trans) 4406 goto fail; 4407 btrfs_set_trans_block_group(trans, dir); 4408 4409 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4410 if (err) { 4411 err = -ENOSPC; 4412 goto out_unlock; 4413 } 4414 4415 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4416 dentry->d_name.len, 4417 dentry->d_parent->d_inode->i_ino, 4418 objectid, BTRFS_I(dir)->block_group, mode, 4419 &index); 4420 err = PTR_ERR(inode); 4421 if (IS_ERR(inode)) 4422 goto out_unlock; 4423 4424 err = btrfs_init_inode_security(trans, inode, dir); 4425 if (err) { 4426 drop_inode = 1; 4427 goto out_unlock; 4428 } 4429 4430 btrfs_set_trans_block_group(trans, inode); 4431 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4432 if (err) 4433 drop_inode = 1; 4434 else { 4435 inode->i_mapping->a_ops = &btrfs_aops; 4436 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4437 inode->i_fop = &btrfs_file_operations; 4438 inode->i_op = &btrfs_file_inode_operations; 4439 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4440 } 4441 btrfs_update_inode_block_group(trans, inode); 4442 btrfs_update_inode_block_group(trans, dir); 4443 out_unlock: 4444 nr = trans->blocks_used; 4445 btrfs_end_transaction_throttle(trans, root); 4446 fail: 4447 btrfs_unreserve_metadata_space(root, 5); 4448 if (drop_inode) { 4449 inode_dec_link_count(inode); 4450 iput(inode); 4451 } 4452 btrfs_btree_balance_dirty(root, nr); 4453 return err; 4454 } 4455 4456 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4457 struct dentry *dentry) 4458 { 4459 struct btrfs_trans_handle *trans; 4460 struct btrfs_root *root = BTRFS_I(dir)->root; 4461 struct inode *inode = old_dentry->d_inode; 4462 u64 index; 4463 unsigned long nr = 0; 4464 int err; 4465 int drop_inode = 0; 4466 4467 if (inode->i_nlink == 0) 4468 return -ENOENT; 4469 4470 /* do not allow sys_link's with other subvols of the same device */ 4471 if (root->objectid != BTRFS_I(inode)->root->objectid) 4472 return -EPERM; 4473 4474 /* 4475 * 1 item for inode ref 4476 * 2 items for dir items 4477 */ 4478 err = btrfs_reserve_metadata_space(root, 3); 4479 if (err) 4480 return err; 4481 4482 btrfs_inc_nlink(inode); 4483 4484 err = btrfs_set_inode_index(dir, &index); 4485 if (err) 4486 goto fail; 4487 4488 trans = btrfs_start_transaction(root, 1); 4489 4490 btrfs_set_trans_block_group(trans, dir); 4491 atomic_inc(&inode->i_count); 4492 4493 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 4494 4495 if (err) { 4496 drop_inode = 1; 4497 } else { 4498 btrfs_update_inode_block_group(trans, dir); 4499 err = btrfs_update_inode(trans, root, inode); 4500 BUG_ON(err); 4501 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent); 4502 } 4503 4504 nr = trans->blocks_used; 4505 btrfs_end_transaction_throttle(trans, root); 4506 fail: 4507 btrfs_unreserve_metadata_space(root, 3); 4508 if (drop_inode) { 4509 inode_dec_link_count(inode); 4510 iput(inode); 4511 } 4512 btrfs_btree_balance_dirty(root, nr); 4513 return err; 4514 } 4515 4516 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4517 { 4518 struct inode *inode = NULL; 4519 struct btrfs_trans_handle *trans; 4520 struct btrfs_root *root = BTRFS_I(dir)->root; 4521 int err = 0; 4522 int drop_on_err = 0; 4523 u64 objectid = 0; 4524 u64 index = 0; 4525 unsigned long nr = 1; 4526 4527 /* 4528 * 2 items for inode and ref 4529 * 2 items for dir items 4530 * 1 for xattr if selinux is on 4531 */ 4532 err = btrfs_reserve_metadata_space(root, 5); 4533 if (err) 4534 return err; 4535 4536 trans = btrfs_start_transaction(root, 1); 4537 if (!trans) { 4538 err = -ENOMEM; 4539 goto out_unlock; 4540 } 4541 btrfs_set_trans_block_group(trans, dir); 4542 4543 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 4544 if (err) { 4545 err = -ENOSPC; 4546 goto out_unlock; 4547 } 4548 4549 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4550 dentry->d_name.len, 4551 dentry->d_parent->d_inode->i_ino, objectid, 4552 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4553 &index); 4554 if (IS_ERR(inode)) { 4555 err = PTR_ERR(inode); 4556 goto out_fail; 4557 } 4558 4559 drop_on_err = 1; 4560 4561 err = btrfs_init_inode_security(trans, inode, dir); 4562 if (err) 4563 goto out_fail; 4564 4565 inode->i_op = &btrfs_dir_inode_operations; 4566 inode->i_fop = &btrfs_dir_file_operations; 4567 btrfs_set_trans_block_group(trans, inode); 4568 4569 btrfs_i_size_write(inode, 0); 4570 err = btrfs_update_inode(trans, root, inode); 4571 if (err) 4572 goto out_fail; 4573 4574 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 4575 inode, dentry->d_name.name, 4576 dentry->d_name.len, 0, index); 4577 if (err) 4578 goto out_fail; 4579 4580 d_instantiate(dentry, inode); 4581 drop_on_err = 0; 4582 btrfs_update_inode_block_group(trans, inode); 4583 btrfs_update_inode_block_group(trans, dir); 4584 4585 out_fail: 4586 nr = trans->blocks_used; 4587 btrfs_end_transaction_throttle(trans, root); 4588 4589 out_unlock: 4590 btrfs_unreserve_metadata_space(root, 5); 4591 if (drop_on_err) 4592 iput(inode); 4593 btrfs_btree_balance_dirty(root, nr); 4594 return err; 4595 } 4596 4597 /* helper for btfs_get_extent. Given an existing extent in the tree, 4598 * and an extent that you want to insert, deal with overlap and insert 4599 * the new extent into the tree. 4600 */ 4601 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4602 struct extent_map *existing, 4603 struct extent_map *em, 4604 u64 map_start, u64 map_len) 4605 { 4606 u64 start_diff; 4607 4608 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4609 start_diff = map_start - em->start; 4610 em->start = map_start; 4611 em->len = map_len; 4612 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4613 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4614 em->block_start += start_diff; 4615 em->block_len -= start_diff; 4616 } 4617 return add_extent_mapping(em_tree, em); 4618 } 4619 4620 static noinline int uncompress_inline(struct btrfs_path *path, 4621 struct inode *inode, struct page *page, 4622 size_t pg_offset, u64 extent_offset, 4623 struct btrfs_file_extent_item *item) 4624 { 4625 int ret; 4626 struct extent_buffer *leaf = path->nodes[0]; 4627 char *tmp; 4628 size_t max_size; 4629 unsigned long inline_size; 4630 unsigned long ptr; 4631 4632 WARN_ON(pg_offset != 0); 4633 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4634 inline_size = btrfs_file_extent_inline_item_len(leaf, 4635 btrfs_item_nr(leaf, path->slots[0])); 4636 tmp = kmalloc(inline_size, GFP_NOFS); 4637 ptr = btrfs_file_extent_inline_start(item); 4638 4639 read_extent_buffer(leaf, tmp, ptr, inline_size); 4640 4641 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4642 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4643 inline_size, max_size); 4644 if (ret) { 4645 char *kaddr = kmap_atomic(page, KM_USER0); 4646 unsigned long copy_size = min_t(u64, 4647 PAGE_CACHE_SIZE - pg_offset, 4648 max_size - extent_offset); 4649 memset(kaddr + pg_offset, 0, copy_size); 4650 kunmap_atomic(kaddr, KM_USER0); 4651 } 4652 kfree(tmp); 4653 return 0; 4654 } 4655 4656 /* 4657 * a bit scary, this does extent mapping from logical file offset to the disk. 4658 * the ugly parts come from merging extents from the disk with the in-ram 4659 * representation. This gets more complex because of the data=ordered code, 4660 * where the in-ram extents might be locked pending data=ordered completion. 4661 * 4662 * This also copies inline extents directly into the page. 4663 */ 4664 4665 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4666 size_t pg_offset, u64 start, u64 len, 4667 int create) 4668 { 4669 int ret; 4670 int err = 0; 4671 u64 bytenr; 4672 u64 extent_start = 0; 4673 u64 extent_end = 0; 4674 u64 objectid = inode->i_ino; 4675 u32 found_type; 4676 struct btrfs_path *path = NULL; 4677 struct btrfs_root *root = BTRFS_I(inode)->root; 4678 struct btrfs_file_extent_item *item; 4679 struct extent_buffer *leaf; 4680 struct btrfs_key found_key; 4681 struct extent_map *em = NULL; 4682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4683 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4684 struct btrfs_trans_handle *trans = NULL; 4685 int compressed; 4686 4687 again: 4688 read_lock(&em_tree->lock); 4689 em = lookup_extent_mapping(em_tree, start, len); 4690 if (em) 4691 em->bdev = root->fs_info->fs_devices->latest_bdev; 4692 read_unlock(&em_tree->lock); 4693 4694 if (em) { 4695 if (em->start > start || em->start + em->len <= start) 4696 free_extent_map(em); 4697 else if (em->block_start == EXTENT_MAP_INLINE && page) 4698 free_extent_map(em); 4699 else 4700 goto out; 4701 } 4702 em = alloc_extent_map(GFP_NOFS); 4703 if (!em) { 4704 err = -ENOMEM; 4705 goto out; 4706 } 4707 em->bdev = root->fs_info->fs_devices->latest_bdev; 4708 em->start = EXTENT_MAP_HOLE; 4709 em->orig_start = EXTENT_MAP_HOLE; 4710 em->len = (u64)-1; 4711 em->block_len = (u64)-1; 4712 4713 if (!path) { 4714 path = btrfs_alloc_path(); 4715 BUG_ON(!path); 4716 } 4717 4718 ret = btrfs_lookup_file_extent(trans, root, path, 4719 objectid, start, trans != NULL); 4720 if (ret < 0) { 4721 err = ret; 4722 goto out; 4723 } 4724 4725 if (ret != 0) { 4726 if (path->slots[0] == 0) 4727 goto not_found; 4728 path->slots[0]--; 4729 } 4730 4731 leaf = path->nodes[0]; 4732 item = btrfs_item_ptr(leaf, path->slots[0], 4733 struct btrfs_file_extent_item); 4734 /* are we inside the extent that was found? */ 4735 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4736 found_type = btrfs_key_type(&found_key); 4737 if (found_key.objectid != objectid || 4738 found_type != BTRFS_EXTENT_DATA_KEY) { 4739 goto not_found; 4740 } 4741 4742 found_type = btrfs_file_extent_type(leaf, item); 4743 extent_start = found_key.offset; 4744 compressed = btrfs_file_extent_compression(leaf, item); 4745 if (found_type == BTRFS_FILE_EXTENT_REG || 4746 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4747 extent_end = extent_start + 4748 btrfs_file_extent_num_bytes(leaf, item); 4749 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4750 size_t size; 4751 size = btrfs_file_extent_inline_len(leaf, item); 4752 extent_end = (extent_start + size + root->sectorsize - 1) & 4753 ~((u64)root->sectorsize - 1); 4754 } 4755 4756 if (start >= extent_end) { 4757 path->slots[0]++; 4758 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 4759 ret = btrfs_next_leaf(root, path); 4760 if (ret < 0) { 4761 err = ret; 4762 goto out; 4763 } 4764 if (ret > 0) 4765 goto not_found; 4766 leaf = path->nodes[0]; 4767 } 4768 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4769 if (found_key.objectid != objectid || 4770 found_key.type != BTRFS_EXTENT_DATA_KEY) 4771 goto not_found; 4772 if (start + len <= found_key.offset) 4773 goto not_found; 4774 em->start = start; 4775 em->len = found_key.offset - start; 4776 goto not_found_em; 4777 } 4778 4779 if (found_type == BTRFS_FILE_EXTENT_REG || 4780 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 4781 em->start = extent_start; 4782 em->len = extent_end - extent_start; 4783 em->orig_start = extent_start - 4784 btrfs_file_extent_offset(leaf, item); 4785 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 4786 if (bytenr == 0) { 4787 em->block_start = EXTENT_MAP_HOLE; 4788 goto insert; 4789 } 4790 if (compressed) { 4791 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4792 em->block_start = bytenr; 4793 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 4794 item); 4795 } else { 4796 bytenr += btrfs_file_extent_offset(leaf, item); 4797 em->block_start = bytenr; 4798 em->block_len = em->len; 4799 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 4800 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 4801 } 4802 goto insert; 4803 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 4804 unsigned long ptr; 4805 char *map; 4806 size_t size; 4807 size_t extent_offset; 4808 size_t copy_size; 4809 4810 em->block_start = EXTENT_MAP_INLINE; 4811 if (!page || create) { 4812 em->start = extent_start; 4813 em->len = extent_end - extent_start; 4814 goto out; 4815 } 4816 4817 size = btrfs_file_extent_inline_len(leaf, item); 4818 extent_offset = page_offset(page) + pg_offset - extent_start; 4819 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 4820 size - extent_offset); 4821 em->start = extent_start + extent_offset; 4822 em->len = (copy_size + root->sectorsize - 1) & 4823 ~((u64)root->sectorsize - 1); 4824 em->orig_start = EXTENT_MAP_INLINE; 4825 if (compressed) 4826 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 4827 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 4828 if (create == 0 && !PageUptodate(page)) { 4829 if (btrfs_file_extent_compression(leaf, item) == 4830 BTRFS_COMPRESS_ZLIB) { 4831 ret = uncompress_inline(path, inode, page, 4832 pg_offset, 4833 extent_offset, item); 4834 BUG_ON(ret); 4835 } else { 4836 map = kmap(page); 4837 read_extent_buffer(leaf, map + pg_offset, ptr, 4838 copy_size); 4839 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 4840 memset(map + pg_offset + copy_size, 0, 4841 PAGE_CACHE_SIZE - pg_offset - 4842 copy_size); 4843 } 4844 kunmap(page); 4845 } 4846 flush_dcache_page(page); 4847 } else if (create && PageUptodate(page)) { 4848 if (!trans) { 4849 kunmap(page); 4850 free_extent_map(em); 4851 em = NULL; 4852 btrfs_release_path(root, path); 4853 trans = btrfs_join_transaction(root, 1); 4854 goto again; 4855 } 4856 map = kmap(page); 4857 write_extent_buffer(leaf, map + pg_offset, ptr, 4858 copy_size); 4859 kunmap(page); 4860 btrfs_mark_buffer_dirty(leaf); 4861 } 4862 set_extent_uptodate(io_tree, em->start, 4863 extent_map_end(em) - 1, GFP_NOFS); 4864 goto insert; 4865 } else { 4866 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 4867 WARN_ON(1); 4868 } 4869 not_found: 4870 em->start = start; 4871 em->len = len; 4872 not_found_em: 4873 em->block_start = EXTENT_MAP_HOLE; 4874 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 4875 insert: 4876 btrfs_release_path(root, path); 4877 if (em->start > start || extent_map_end(em) <= start) { 4878 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 4879 "[%llu %llu]\n", (unsigned long long)em->start, 4880 (unsigned long long)em->len, 4881 (unsigned long long)start, 4882 (unsigned long long)len); 4883 err = -EIO; 4884 goto out; 4885 } 4886 4887 err = 0; 4888 write_lock(&em_tree->lock); 4889 ret = add_extent_mapping(em_tree, em); 4890 /* it is possible that someone inserted the extent into the tree 4891 * while we had the lock dropped. It is also possible that 4892 * an overlapping map exists in the tree 4893 */ 4894 if (ret == -EEXIST) { 4895 struct extent_map *existing; 4896 4897 ret = 0; 4898 4899 existing = lookup_extent_mapping(em_tree, start, len); 4900 if (existing && (existing->start > start || 4901 existing->start + existing->len <= start)) { 4902 free_extent_map(existing); 4903 existing = NULL; 4904 } 4905 if (!existing) { 4906 existing = lookup_extent_mapping(em_tree, em->start, 4907 em->len); 4908 if (existing) { 4909 err = merge_extent_mapping(em_tree, existing, 4910 em, start, 4911 root->sectorsize); 4912 free_extent_map(existing); 4913 if (err) { 4914 free_extent_map(em); 4915 em = NULL; 4916 } 4917 } else { 4918 err = -EIO; 4919 free_extent_map(em); 4920 em = NULL; 4921 } 4922 } else { 4923 free_extent_map(em); 4924 em = existing; 4925 err = 0; 4926 } 4927 } 4928 write_unlock(&em_tree->lock); 4929 out: 4930 if (path) 4931 btrfs_free_path(path); 4932 if (trans) { 4933 ret = btrfs_end_transaction(trans, root); 4934 if (!err) 4935 err = ret; 4936 } 4937 if (err) { 4938 free_extent_map(em); 4939 return ERR_PTR(err); 4940 } 4941 return em; 4942 } 4943 4944 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 4945 const struct iovec *iov, loff_t offset, 4946 unsigned long nr_segs) 4947 { 4948 return -EINVAL; 4949 } 4950 4951 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4952 __u64 start, __u64 len) 4953 { 4954 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 4955 } 4956 4957 int btrfs_readpage(struct file *file, struct page *page) 4958 { 4959 struct extent_io_tree *tree; 4960 tree = &BTRFS_I(page->mapping->host)->io_tree; 4961 return extent_read_full_page(tree, page, btrfs_get_extent); 4962 } 4963 4964 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 4965 { 4966 struct extent_io_tree *tree; 4967 4968 4969 if (current->flags & PF_MEMALLOC) { 4970 redirty_page_for_writepage(wbc, page); 4971 unlock_page(page); 4972 return 0; 4973 } 4974 tree = &BTRFS_I(page->mapping->host)->io_tree; 4975 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 4976 } 4977 4978 int btrfs_writepages(struct address_space *mapping, 4979 struct writeback_control *wbc) 4980 { 4981 struct extent_io_tree *tree; 4982 4983 tree = &BTRFS_I(mapping->host)->io_tree; 4984 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 4985 } 4986 4987 static int 4988 btrfs_readpages(struct file *file, struct address_space *mapping, 4989 struct list_head *pages, unsigned nr_pages) 4990 { 4991 struct extent_io_tree *tree; 4992 tree = &BTRFS_I(mapping->host)->io_tree; 4993 return extent_readpages(tree, mapping, pages, nr_pages, 4994 btrfs_get_extent); 4995 } 4996 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 4997 { 4998 struct extent_io_tree *tree; 4999 struct extent_map_tree *map; 5000 int ret; 5001 5002 tree = &BTRFS_I(page->mapping->host)->io_tree; 5003 map = &BTRFS_I(page->mapping->host)->extent_tree; 5004 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 5005 if (ret == 1) { 5006 ClearPagePrivate(page); 5007 set_page_private(page, 0); 5008 page_cache_release(page); 5009 } 5010 return ret; 5011 } 5012 5013 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 5014 { 5015 if (PageWriteback(page) || PageDirty(page)) 5016 return 0; 5017 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 5018 } 5019 5020 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 5021 { 5022 struct extent_io_tree *tree; 5023 struct btrfs_ordered_extent *ordered; 5024 u64 page_start = page_offset(page); 5025 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 5026 5027 5028 /* 5029 * we have the page locked, so new writeback can't start, 5030 * and the dirty bit won't be cleared while we are here. 5031 * 5032 * Wait for IO on this page so that we can safely clear 5033 * the PagePrivate2 bit and do ordered accounting 5034 */ 5035 wait_on_page_writeback(page); 5036 5037 tree = &BTRFS_I(page->mapping->host)->io_tree; 5038 if (offset) { 5039 btrfs_releasepage(page, GFP_NOFS); 5040 return; 5041 } 5042 lock_extent(tree, page_start, page_end, GFP_NOFS); 5043 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 5044 page_offset(page)); 5045 if (ordered) { 5046 /* 5047 * IO on this page will never be started, so we need 5048 * to account for any ordered extents now 5049 */ 5050 clear_extent_bit(tree, page_start, page_end, 5051 EXTENT_DIRTY | EXTENT_DELALLOC | 5052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 5053 NULL, GFP_NOFS); 5054 /* 5055 * whoever cleared the private bit is responsible 5056 * for the finish_ordered_io 5057 */ 5058 if (TestClearPagePrivate2(page)) { 5059 btrfs_finish_ordered_io(page->mapping->host, 5060 page_start, page_end); 5061 } 5062 btrfs_put_ordered_extent(ordered); 5063 lock_extent(tree, page_start, page_end, GFP_NOFS); 5064 } 5065 clear_extent_bit(tree, page_start, page_end, 5066 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 5067 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS); 5068 __btrfs_releasepage(page, GFP_NOFS); 5069 5070 ClearPageChecked(page); 5071 if (PagePrivate(page)) { 5072 ClearPagePrivate(page); 5073 set_page_private(page, 0); 5074 page_cache_release(page); 5075 } 5076 } 5077 5078 /* 5079 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 5080 * called from a page fault handler when a page is first dirtied. Hence we must 5081 * be careful to check for EOF conditions here. We set the page up correctly 5082 * for a written page which means we get ENOSPC checking when writing into 5083 * holes and correct delalloc and unwritten extent mapping on filesystems that 5084 * support these features. 5085 * 5086 * We are not allowed to take the i_mutex here so we have to play games to 5087 * protect against truncate races as the page could now be beyond EOF. Because 5088 * vmtruncate() writes the inode size before removing pages, once we have the 5089 * page lock we can determine safely if the page is beyond EOF. If it is not 5090 * beyond EOF, then the page is guaranteed safe against truncation until we 5091 * unlock the page. 5092 */ 5093 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5094 { 5095 struct page *page = vmf->page; 5096 struct inode *inode = fdentry(vma->vm_file)->d_inode; 5097 struct btrfs_root *root = BTRFS_I(inode)->root; 5098 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5099 struct btrfs_ordered_extent *ordered; 5100 char *kaddr; 5101 unsigned long zero_start; 5102 loff_t size; 5103 int ret; 5104 u64 page_start; 5105 u64 page_end; 5106 5107 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE); 5108 if (ret) { 5109 if (ret == -ENOMEM) 5110 ret = VM_FAULT_OOM; 5111 else /* -ENOSPC, -EIO, etc */ 5112 ret = VM_FAULT_SIGBUS; 5113 goto out; 5114 } 5115 5116 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1); 5117 if (ret) { 5118 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 5119 ret = VM_FAULT_SIGBUS; 5120 goto out; 5121 } 5122 5123 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 5124 again: 5125 lock_page(page); 5126 size = i_size_read(inode); 5127 page_start = page_offset(page); 5128 page_end = page_start + PAGE_CACHE_SIZE - 1; 5129 5130 if ((page->mapping != inode->i_mapping) || 5131 (page_start >= size)) { 5132 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 5133 /* page got truncated out from underneath us */ 5134 goto out_unlock; 5135 } 5136 wait_on_page_writeback(page); 5137 5138 lock_extent(io_tree, page_start, page_end, GFP_NOFS); 5139 set_page_extent_mapped(page); 5140 5141 /* 5142 * we can't set the delalloc bits if there are pending ordered 5143 * extents. Drop our locks and wait for them to finish 5144 */ 5145 ordered = btrfs_lookup_ordered_extent(inode, page_start); 5146 if (ordered) { 5147 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 5148 unlock_page(page); 5149 btrfs_start_ordered_extent(inode, ordered, 1); 5150 btrfs_put_ordered_extent(ordered); 5151 goto again; 5152 } 5153 5154 /* 5155 * XXX - page_mkwrite gets called every time the page is dirtied, even 5156 * if it was already dirty, so for space accounting reasons we need to 5157 * clear any delalloc bits for the range we are fixing to save. There 5158 * is probably a better way to do this, but for now keep consistent with 5159 * prepare_pages in the normal write path. 5160 */ 5161 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 5162 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 5163 GFP_NOFS); 5164 5165 ret = btrfs_set_extent_delalloc(inode, page_start, page_end); 5166 if (ret) { 5167 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 5168 ret = VM_FAULT_SIGBUS; 5169 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE); 5170 goto out_unlock; 5171 } 5172 ret = 0; 5173 5174 /* page is wholly or partially inside EOF */ 5175 if (page_start + PAGE_CACHE_SIZE > size) 5176 zero_start = size & ~PAGE_CACHE_MASK; 5177 else 5178 zero_start = PAGE_CACHE_SIZE; 5179 5180 if (zero_start != PAGE_CACHE_SIZE) { 5181 kaddr = kmap(page); 5182 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 5183 flush_dcache_page(page); 5184 kunmap(page); 5185 } 5186 ClearPageChecked(page); 5187 set_page_dirty(page); 5188 SetPageUptodate(page); 5189 5190 BTRFS_I(inode)->last_trans = root->fs_info->generation; 5191 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 5192 5193 unlock_extent(io_tree, page_start, page_end, GFP_NOFS); 5194 5195 out_unlock: 5196 btrfs_unreserve_metadata_for_delalloc(root, inode, 1); 5197 if (!ret) 5198 return VM_FAULT_LOCKED; 5199 unlock_page(page); 5200 out: 5201 return ret; 5202 } 5203 5204 static void btrfs_truncate(struct inode *inode) 5205 { 5206 struct btrfs_root *root = BTRFS_I(inode)->root; 5207 int ret; 5208 struct btrfs_trans_handle *trans; 5209 unsigned long nr; 5210 u64 mask = root->sectorsize - 1; 5211 5212 if (!S_ISREG(inode->i_mode)) { 5213 WARN_ON(1); 5214 return; 5215 } 5216 5217 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 5218 if (ret) 5219 return; 5220 5221 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 5222 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 5223 5224 trans = btrfs_start_transaction(root, 1); 5225 btrfs_set_trans_block_group(trans, inode); 5226 5227 /* 5228 * setattr is responsible for setting the ordered_data_close flag, 5229 * but that is only tested during the last file release. That 5230 * could happen well after the next commit, leaving a great big 5231 * window where new writes may get lost if someone chooses to write 5232 * to this file after truncating to zero 5233 * 5234 * The inode doesn't have any dirty data here, and so if we commit 5235 * this is a noop. If someone immediately starts writing to the inode 5236 * it is very likely we'll catch some of their writes in this 5237 * transaction, and the commit will find this file on the ordered 5238 * data list with good things to send down. 5239 * 5240 * This is a best effort solution, there is still a window where 5241 * using truncate to replace the contents of the file will 5242 * end up with a zero length file after a crash. 5243 */ 5244 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 5245 btrfs_add_ordered_operation(trans, root, inode); 5246 5247 while (1) { 5248 ret = btrfs_truncate_inode_items(trans, root, inode, 5249 inode->i_size, 5250 BTRFS_EXTENT_DATA_KEY); 5251 if (ret != -EAGAIN) 5252 break; 5253 5254 ret = btrfs_update_inode(trans, root, inode); 5255 BUG_ON(ret); 5256 5257 nr = trans->blocks_used; 5258 btrfs_end_transaction(trans, root); 5259 btrfs_btree_balance_dirty(root, nr); 5260 5261 trans = btrfs_start_transaction(root, 1); 5262 btrfs_set_trans_block_group(trans, inode); 5263 } 5264 5265 if (ret == 0 && inode->i_nlink > 0) { 5266 ret = btrfs_orphan_del(trans, inode); 5267 BUG_ON(ret); 5268 } 5269 5270 ret = btrfs_update_inode(trans, root, inode); 5271 BUG_ON(ret); 5272 5273 nr = trans->blocks_used; 5274 ret = btrfs_end_transaction_throttle(trans, root); 5275 BUG_ON(ret); 5276 btrfs_btree_balance_dirty(root, nr); 5277 } 5278 5279 /* 5280 * create a new subvolume directory/inode (helper for the ioctl). 5281 */ 5282 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 5283 struct btrfs_root *new_root, 5284 u64 new_dirid, u64 alloc_hint) 5285 { 5286 struct inode *inode; 5287 int err; 5288 u64 index = 0; 5289 5290 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 5291 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 5292 if (IS_ERR(inode)) 5293 return PTR_ERR(inode); 5294 inode->i_op = &btrfs_dir_inode_operations; 5295 inode->i_fop = &btrfs_dir_file_operations; 5296 5297 inode->i_nlink = 1; 5298 btrfs_i_size_write(inode, 0); 5299 5300 err = btrfs_update_inode(trans, new_root, inode); 5301 BUG_ON(err); 5302 5303 iput(inode); 5304 return 0; 5305 } 5306 5307 /* helper function for file defrag and space balancing. This 5308 * forces readahead on a given range of bytes in an inode 5309 */ 5310 unsigned long btrfs_force_ra(struct address_space *mapping, 5311 struct file_ra_state *ra, struct file *file, 5312 pgoff_t offset, pgoff_t last_index) 5313 { 5314 pgoff_t req_size = last_index - offset + 1; 5315 5316 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 5317 return offset + req_size; 5318 } 5319 5320 struct inode *btrfs_alloc_inode(struct super_block *sb) 5321 { 5322 struct btrfs_inode *ei; 5323 5324 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 5325 if (!ei) 5326 return NULL; 5327 ei->last_trans = 0; 5328 ei->last_sub_trans = 0; 5329 ei->logged_trans = 0; 5330 ei->outstanding_extents = 0; 5331 ei->reserved_extents = 0; 5332 ei->root = NULL; 5333 spin_lock_init(&ei->accounting_lock); 5334 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 5335 INIT_LIST_HEAD(&ei->i_orphan); 5336 INIT_LIST_HEAD(&ei->ordered_operations); 5337 return &ei->vfs_inode; 5338 } 5339 5340 void btrfs_destroy_inode(struct inode *inode) 5341 { 5342 struct btrfs_ordered_extent *ordered; 5343 struct btrfs_root *root = BTRFS_I(inode)->root; 5344 5345 WARN_ON(!list_empty(&inode->i_dentry)); 5346 WARN_ON(inode->i_data.nrpages); 5347 5348 /* 5349 * This can happen where we create an inode, but somebody else also 5350 * created the same inode and we need to destroy the one we already 5351 * created. 5352 */ 5353 if (!root) 5354 goto free; 5355 5356 /* 5357 * Make sure we're properly removed from the ordered operation 5358 * lists. 5359 */ 5360 smp_mb(); 5361 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 5362 spin_lock(&root->fs_info->ordered_extent_lock); 5363 list_del_init(&BTRFS_I(inode)->ordered_operations); 5364 spin_unlock(&root->fs_info->ordered_extent_lock); 5365 } 5366 5367 spin_lock(&root->list_lock); 5368 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 5369 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n", 5370 inode->i_ino); 5371 list_del_init(&BTRFS_I(inode)->i_orphan); 5372 } 5373 spin_unlock(&root->list_lock); 5374 5375 while (1) { 5376 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 5377 if (!ordered) 5378 break; 5379 else { 5380 printk(KERN_ERR "btrfs found ordered " 5381 "extent %llu %llu on inode cleanup\n", 5382 (unsigned long long)ordered->file_offset, 5383 (unsigned long long)ordered->len); 5384 btrfs_remove_ordered_extent(inode, ordered); 5385 btrfs_put_ordered_extent(ordered); 5386 btrfs_put_ordered_extent(ordered); 5387 } 5388 } 5389 inode_tree_del(inode); 5390 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 5391 free: 5392 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 5393 } 5394 5395 void btrfs_drop_inode(struct inode *inode) 5396 { 5397 struct btrfs_root *root = BTRFS_I(inode)->root; 5398 5399 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0) 5400 generic_delete_inode(inode); 5401 else 5402 generic_drop_inode(inode); 5403 } 5404 5405 static void init_once(void *foo) 5406 { 5407 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 5408 5409 inode_init_once(&ei->vfs_inode); 5410 } 5411 5412 void btrfs_destroy_cachep(void) 5413 { 5414 if (btrfs_inode_cachep) 5415 kmem_cache_destroy(btrfs_inode_cachep); 5416 if (btrfs_trans_handle_cachep) 5417 kmem_cache_destroy(btrfs_trans_handle_cachep); 5418 if (btrfs_transaction_cachep) 5419 kmem_cache_destroy(btrfs_transaction_cachep); 5420 if (btrfs_path_cachep) 5421 kmem_cache_destroy(btrfs_path_cachep); 5422 } 5423 5424 int btrfs_init_cachep(void) 5425 { 5426 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 5427 sizeof(struct btrfs_inode), 0, 5428 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 5429 if (!btrfs_inode_cachep) 5430 goto fail; 5431 5432 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 5433 sizeof(struct btrfs_trans_handle), 0, 5434 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 5435 if (!btrfs_trans_handle_cachep) 5436 goto fail; 5437 5438 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 5439 sizeof(struct btrfs_transaction), 0, 5440 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 5441 if (!btrfs_transaction_cachep) 5442 goto fail; 5443 5444 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 5445 sizeof(struct btrfs_path), 0, 5446 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 5447 if (!btrfs_path_cachep) 5448 goto fail; 5449 5450 return 0; 5451 fail: 5452 btrfs_destroy_cachep(); 5453 return -ENOMEM; 5454 } 5455 5456 static int btrfs_getattr(struct vfsmount *mnt, 5457 struct dentry *dentry, struct kstat *stat) 5458 { 5459 struct inode *inode = dentry->d_inode; 5460 generic_fillattr(inode, stat); 5461 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 5462 stat->blksize = PAGE_CACHE_SIZE; 5463 stat->blocks = (inode_get_bytes(inode) + 5464 BTRFS_I(inode)->delalloc_bytes) >> 9; 5465 return 0; 5466 } 5467 5468 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 5469 struct inode *new_dir, struct dentry *new_dentry) 5470 { 5471 struct btrfs_trans_handle *trans; 5472 struct btrfs_root *root = BTRFS_I(old_dir)->root; 5473 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 5474 struct inode *new_inode = new_dentry->d_inode; 5475 struct inode *old_inode = old_dentry->d_inode; 5476 struct timespec ctime = CURRENT_TIME; 5477 u64 index = 0; 5478 u64 root_objectid; 5479 int ret; 5480 5481 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5482 return -EPERM; 5483 5484 /* we only allow rename subvolume link between subvolumes */ 5485 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 5486 return -EXDEV; 5487 5488 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 5489 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) 5490 return -ENOTEMPTY; 5491 5492 if (S_ISDIR(old_inode->i_mode) && new_inode && 5493 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 5494 return -ENOTEMPTY; 5495 5496 /* 5497 * We want to reserve the absolute worst case amount of items. So if 5498 * both inodes are subvols and we need to unlink them then that would 5499 * require 4 item modifications, but if they are both normal inodes it 5500 * would require 5 item modifications, so we'll assume their normal 5501 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 5502 * should cover the worst case number of items we'll modify. 5503 */ 5504 ret = btrfs_reserve_metadata_space(root, 11); 5505 if (ret) 5506 return ret; 5507 5508 /* 5509 * we're using rename to replace one file with another. 5510 * and the replacement file is large. Start IO on it now so 5511 * we don't add too much work to the end of the transaction 5512 */ 5513 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 5514 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 5515 filemap_flush(old_inode->i_mapping); 5516 5517 /* close the racy window with snapshot create/destroy ioctl */ 5518 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 5519 down_read(&root->fs_info->subvol_sem); 5520 5521 trans = btrfs_start_transaction(root, 1); 5522 btrfs_set_trans_block_group(trans, new_dir); 5523 5524 if (dest != root) 5525 btrfs_record_root_in_trans(trans, dest); 5526 5527 ret = btrfs_set_inode_index(new_dir, &index); 5528 if (ret) 5529 goto out_fail; 5530 5531 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 5532 /* force full log commit if subvolume involved. */ 5533 root->fs_info->last_trans_log_full_commit = trans->transid; 5534 } else { 5535 ret = btrfs_insert_inode_ref(trans, dest, 5536 new_dentry->d_name.name, 5537 new_dentry->d_name.len, 5538 old_inode->i_ino, 5539 new_dir->i_ino, index); 5540 if (ret) 5541 goto out_fail; 5542 /* 5543 * this is an ugly little race, but the rename is required 5544 * to make sure that if we crash, the inode is either at the 5545 * old name or the new one. pinning the log transaction lets 5546 * us make sure we don't allow a log commit to come in after 5547 * we unlink the name but before we add the new name back in. 5548 */ 5549 btrfs_pin_log_trans(root); 5550 } 5551 /* 5552 * make sure the inode gets flushed if it is replacing 5553 * something. 5554 */ 5555 if (new_inode && new_inode->i_size && 5556 old_inode && S_ISREG(old_inode->i_mode)) { 5557 btrfs_add_ordered_operation(trans, root, old_inode); 5558 } 5559 5560 old_dir->i_ctime = old_dir->i_mtime = ctime; 5561 new_dir->i_ctime = new_dir->i_mtime = ctime; 5562 old_inode->i_ctime = ctime; 5563 5564 if (old_dentry->d_parent != new_dentry->d_parent) 5565 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 5566 5567 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 5568 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 5569 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 5570 old_dentry->d_name.name, 5571 old_dentry->d_name.len); 5572 } else { 5573 btrfs_inc_nlink(old_dentry->d_inode); 5574 ret = btrfs_unlink_inode(trans, root, old_dir, 5575 old_dentry->d_inode, 5576 old_dentry->d_name.name, 5577 old_dentry->d_name.len); 5578 } 5579 BUG_ON(ret); 5580 5581 if (new_inode) { 5582 new_inode->i_ctime = CURRENT_TIME; 5583 if (unlikely(new_inode->i_ino == 5584 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 5585 root_objectid = BTRFS_I(new_inode)->location.objectid; 5586 ret = btrfs_unlink_subvol(trans, dest, new_dir, 5587 root_objectid, 5588 new_dentry->d_name.name, 5589 new_dentry->d_name.len); 5590 BUG_ON(new_inode->i_nlink == 0); 5591 } else { 5592 ret = btrfs_unlink_inode(trans, dest, new_dir, 5593 new_dentry->d_inode, 5594 new_dentry->d_name.name, 5595 new_dentry->d_name.len); 5596 } 5597 BUG_ON(ret); 5598 if (new_inode->i_nlink == 0) { 5599 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 5600 BUG_ON(ret); 5601 } 5602 } 5603 5604 ret = btrfs_add_link(trans, new_dir, old_inode, 5605 new_dentry->d_name.name, 5606 new_dentry->d_name.len, 0, index); 5607 BUG_ON(ret); 5608 5609 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 5610 btrfs_log_new_name(trans, old_inode, old_dir, 5611 new_dentry->d_parent); 5612 btrfs_end_log_trans(root); 5613 } 5614 out_fail: 5615 btrfs_end_transaction_throttle(trans, root); 5616 5617 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 5618 up_read(&root->fs_info->subvol_sem); 5619 5620 btrfs_unreserve_metadata_space(root, 11); 5621 return ret; 5622 } 5623 5624 /* 5625 * some fairly slow code that needs optimization. This walks the list 5626 * of all the inodes with pending delalloc and forces them to disk. 5627 */ 5628 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 5629 { 5630 struct list_head *head = &root->fs_info->delalloc_inodes; 5631 struct btrfs_inode *binode; 5632 struct inode *inode; 5633 5634 if (root->fs_info->sb->s_flags & MS_RDONLY) 5635 return -EROFS; 5636 5637 spin_lock(&root->fs_info->delalloc_lock); 5638 while (!list_empty(head)) { 5639 binode = list_entry(head->next, struct btrfs_inode, 5640 delalloc_inodes); 5641 inode = igrab(&binode->vfs_inode); 5642 if (!inode) 5643 list_del_init(&binode->delalloc_inodes); 5644 spin_unlock(&root->fs_info->delalloc_lock); 5645 if (inode) { 5646 filemap_flush(inode->i_mapping); 5647 if (delay_iput) 5648 btrfs_add_delayed_iput(inode); 5649 else 5650 iput(inode); 5651 } 5652 cond_resched(); 5653 spin_lock(&root->fs_info->delalloc_lock); 5654 } 5655 spin_unlock(&root->fs_info->delalloc_lock); 5656 5657 /* the filemap_flush will queue IO into the worker threads, but 5658 * we have to make sure the IO is actually started and that 5659 * ordered extents get created before we return 5660 */ 5661 atomic_inc(&root->fs_info->async_submit_draining); 5662 while (atomic_read(&root->fs_info->nr_async_submits) || 5663 atomic_read(&root->fs_info->async_delalloc_pages)) { 5664 wait_event(root->fs_info->async_submit_wait, 5665 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 5666 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 5667 } 5668 atomic_dec(&root->fs_info->async_submit_draining); 5669 return 0; 5670 } 5671 5672 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 5673 const char *symname) 5674 { 5675 struct btrfs_trans_handle *trans; 5676 struct btrfs_root *root = BTRFS_I(dir)->root; 5677 struct btrfs_path *path; 5678 struct btrfs_key key; 5679 struct inode *inode = NULL; 5680 int err; 5681 int drop_inode = 0; 5682 u64 objectid; 5683 u64 index = 0 ; 5684 int name_len; 5685 int datasize; 5686 unsigned long ptr; 5687 struct btrfs_file_extent_item *ei; 5688 struct extent_buffer *leaf; 5689 unsigned long nr = 0; 5690 5691 name_len = strlen(symname) + 1; 5692 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 5693 return -ENAMETOOLONG; 5694 5695 /* 5696 * 2 items for inode item and ref 5697 * 2 items for dir items 5698 * 1 item for xattr if selinux is on 5699 */ 5700 err = btrfs_reserve_metadata_space(root, 5); 5701 if (err) 5702 return err; 5703 5704 trans = btrfs_start_transaction(root, 1); 5705 if (!trans) 5706 goto out_fail; 5707 btrfs_set_trans_block_group(trans, dir); 5708 5709 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid); 5710 if (err) { 5711 err = -ENOSPC; 5712 goto out_unlock; 5713 } 5714 5715 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5716 dentry->d_name.len, 5717 dentry->d_parent->d_inode->i_ino, objectid, 5718 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 5719 &index); 5720 err = PTR_ERR(inode); 5721 if (IS_ERR(inode)) 5722 goto out_unlock; 5723 5724 err = btrfs_init_inode_security(trans, inode, dir); 5725 if (err) { 5726 drop_inode = 1; 5727 goto out_unlock; 5728 } 5729 5730 btrfs_set_trans_block_group(trans, inode); 5731 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 5732 if (err) 5733 drop_inode = 1; 5734 else { 5735 inode->i_mapping->a_ops = &btrfs_aops; 5736 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5737 inode->i_fop = &btrfs_file_operations; 5738 inode->i_op = &btrfs_file_inode_operations; 5739 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5740 } 5741 btrfs_update_inode_block_group(trans, inode); 5742 btrfs_update_inode_block_group(trans, dir); 5743 if (drop_inode) 5744 goto out_unlock; 5745 5746 path = btrfs_alloc_path(); 5747 BUG_ON(!path); 5748 key.objectid = inode->i_ino; 5749 key.offset = 0; 5750 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 5751 datasize = btrfs_file_extent_calc_inline_size(name_len); 5752 err = btrfs_insert_empty_item(trans, root, path, &key, 5753 datasize); 5754 if (err) { 5755 drop_inode = 1; 5756 goto out_unlock; 5757 } 5758 leaf = path->nodes[0]; 5759 ei = btrfs_item_ptr(leaf, path->slots[0], 5760 struct btrfs_file_extent_item); 5761 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 5762 btrfs_set_file_extent_type(leaf, ei, 5763 BTRFS_FILE_EXTENT_INLINE); 5764 btrfs_set_file_extent_encryption(leaf, ei, 0); 5765 btrfs_set_file_extent_compression(leaf, ei, 0); 5766 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 5767 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 5768 5769 ptr = btrfs_file_extent_inline_start(ei); 5770 write_extent_buffer(leaf, symname, ptr, name_len); 5771 btrfs_mark_buffer_dirty(leaf); 5772 btrfs_free_path(path); 5773 5774 inode->i_op = &btrfs_symlink_inode_operations; 5775 inode->i_mapping->a_ops = &btrfs_symlink_aops; 5776 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5777 inode_set_bytes(inode, name_len); 5778 btrfs_i_size_write(inode, name_len - 1); 5779 err = btrfs_update_inode(trans, root, inode); 5780 if (err) 5781 drop_inode = 1; 5782 5783 out_unlock: 5784 nr = trans->blocks_used; 5785 btrfs_end_transaction_throttle(trans, root); 5786 out_fail: 5787 btrfs_unreserve_metadata_space(root, 5); 5788 if (drop_inode) { 5789 inode_dec_link_count(inode); 5790 iput(inode); 5791 } 5792 btrfs_btree_balance_dirty(root, nr); 5793 return err; 5794 } 5795 5796 static int prealloc_file_range(struct inode *inode, u64 start, u64 end, 5797 u64 alloc_hint, int mode, loff_t actual_len) 5798 { 5799 struct btrfs_trans_handle *trans; 5800 struct btrfs_root *root = BTRFS_I(inode)->root; 5801 struct btrfs_key ins; 5802 u64 alloc_size; 5803 u64 cur_offset = start; 5804 u64 num_bytes = end - start; 5805 int ret = 0; 5806 u64 i_size; 5807 5808 while (num_bytes > 0) { 5809 alloc_size = min(num_bytes, root->fs_info->max_extent); 5810 5811 trans = btrfs_start_transaction(root, 1); 5812 5813 ret = btrfs_reserve_extent(trans, root, alloc_size, 5814 root->sectorsize, 0, alloc_hint, 5815 (u64)-1, &ins, 1); 5816 if (ret) { 5817 WARN_ON(1); 5818 goto stop_trans; 5819 } 5820 5821 ret = btrfs_reserve_metadata_space(root, 3); 5822 if (ret) { 5823 btrfs_free_reserved_extent(root, ins.objectid, 5824 ins.offset); 5825 goto stop_trans; 5826 } 5827 5828 ret = insert_reserved_file_extent(trans, inode, 5829 cur_offset, ins.objectid, 5830 ins.offset, ins.offset, 5831 ins.offset, 0, 0, 0, 5832 BTRFS_FILE_EXTENT_PREALLOC); 5833 BUG_ON(ret); 5834 btrfs_drop_extent_cache(inode, cur_offset, 5835 cur_offset + ins.offset -1, 0); 5836 5837 num_bytes -= ins.offset; 5838 cur_offset += ins.offset; 5839 alloc_hint = ins.objectid + ins.offset; 5840 5841 inode->i_ctime = CURRENT_TIME; 5842 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 5843 if (!(mode & FALLOC_FL_KEEP_SIZE) && 5844 cur_offset > inode->i_size) { 5845 if (cur_offset > actual_len) 5846 i_size = actual_len; 5847 else 5848 i_size = cur_offset; 5849 i_size_write(inode, i_size); 5850 btrfs_ordered_update_i_size(inode, i_size, NULL); 5851 } 5852 5853 ret = btrfs_update_inode(trans, root, inode); 5854 BUG_ON(ret); 5855 5856 btrfs_end_transaction(trans, root); 5857 btrfs_unreserve_metadata_space(root, 3); 5858 } 5859 return ret; 5860 5861 stop_trans: 5862 btrfs_end_transaction(trans, root); 5863 return ret; 5864 5865 } 5866 5867 static long btrfs_fallocate(struct inode *inode, int mode, 5868 loff_t offset, loff_t len) 5869 { 5870 u64 cur_offset; 5871 u64 last_byte; 5872 u64 alloc_start; 5873 u64 alloc_end; 5874 u64 alloc_hint = 0; 5875 u64 locked_end; 5876 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 5877 struct extent_map *em; 5878 int ret; 5879 5880 alloc_start = offset & ~mask; 5881 alloc_end = (offset + len + mask) & ~mask; 5882 5883 /* 5884 * wait for ordered IO before we have any locks. We'll loop again 5885 * below with the locks held. 5886 */ 5887 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 5888 5889 mutex_lock(&inode->i_mutex); 5890 if (alloc_start > inode->i_size) { 5891 ret = btrfs_cont_expand(inode, alloc_start); 5892 if (ret) 5893 goto out; 5894 } 5895 5896 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode, 5897 alloc_end - alloc_start); 5898 if (ret) 5899 goto out; 5900 5901 locked_end = alloc_end - 1; 5902 while (1) { 5903 struct btrfs_ordered_extent *ordered; 5904 5905 /* the extent lock is ordered inside the running 5906 * transaction 5907 */ 5908 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5909 GFP_NOFS); 5910 ordered = btrfs_lookup_first_ordered_extent(inode, 5911 alloc_end - 1); 5912 if (ordered && 5913 ordered->file_offset + ordered->len > alloc_start && 5914 ordered->file_offset < alloc_end) { 5915 btrfs_put_ordered_extent(ordered); 5916 unlock_extent(&BTRFS_I(inode)->io_tree, 5917 alloc_start, locked_end, GFP_NOFS); 5918 /* 5919 * we can't wait on the range with the transaction 5920 * running or with the extent lock held 5921 */ 5922 btrfs_wait_ordered_range(inode, alloc_start, 5923 alloc_end - alloc_start); 5924 } else { 5925 if (ordered) 5926 btrfs_put_ordered_extent(ordered); 5927 break; 5928 } 5929 } 5930 5931 cur_offset = alloc_start; 5932 while (1) { 5933 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 5934 alloc_end - cur_offset, 0); 5935 BUG_ON(IS_ERR(em) || !em); 5936 last_byte = min(extent_map_end(em), alloc_end); 5937 last_byte = (last_byte + mask) & ~mask; 5938 if (em->block_start == EXTENT_MAP_HOLE || 5939 (cur_offset >= inode->i_size && 5940 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5941 ret = prealloc_file_range(inode, 5942 cur_offset, last_byte, 5943 alloc_hint, mode, offset+len); 5944 if (ret < 0) { 5945 free_extent_map(em); 5946 break; 5947 } 5948 } 5949 if (em->block_start <= EXTENT_MAP_LAST_BYTE) 5950 alloc_hint = em->block_start; 5951 free_extent_map(em); 5952 5953 cur_offset = last_byte; 5954 if (cur_offset >= alloc_end) { 5955 ret = 0; 5956 break; 5957 } 5958 } 5959 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 5960 GFP_NOFS); 5961 5962 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode, 5963 alloc_end - alloc_start); 5964 out: 5965 mutex_unlock(&inode->i_mutex); 5966 return ret; 5967 } 5968 5969 static int btrfs_set_page_dirty(struct page *page) 5970 { 5971 return __set_page_dirty_nobuffers(page); 5972 } 5973 5974 static int btrfs_permission(struct inode *inode, int mask) 5975 { 5976 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 5977 return -EACCES; 5978 return generic_permission(inode, mask, btrfs_check_acl); 5979 } 5980 5981 static const struct inode_operations btrfs_dir_inode_operations = { 5982 .getattr = btrfs_getattr, 5983 .lookup = btrfs_lookup, 5984 .create = btrfs_create, 5985 .unlink = btrfs_unlink, 5986 .link = btrfs_link, 5987 .mkdir = btrfs_mkdir, 5988 .rmdir = btrfs_rmdir, 5989 .rename = btrfs_rename, 5990 .symlink = btrfs_symlink, 5991 .setattr = btrfs_setattr, 5992 .mknod = btrfs_mknod, 5993 .setxattr = btrfs_setxattr, 5994 .getxattr = btrfs_getxattr, 5995 .listxattr = btrfs_listxattr, 5996 .removexattr = btrfs_removexattr, 5997 .permission = btrfs_permission, 5998 }; 5999 static const struct inode_operations btrfs_dir_ro_inode_operations = { 6000 .lookup = btrfs_lookup, 6001 .permission = btrfs_permission, 6002 }; 6003 6004 static const struct file_operations btrfs_dir_file_operations = { 6005 .llseek = generic_file_llseek, 6006 .read = generic_read_dir, 6007 .readdir = btrfs_real_readdir, 6008 .unlocked_ioctl = btrfs_ioctl, 6009 #ifdef CONFIG_COMPAT 6010 .compat_ioctl = btrfs_ioctl, 6011 #endif 6012 .release = btrfs_release_file, 6013 .fsync = btrfs_sync_file, 6014 }; 6015 6016 static struct extent_io_ops btrfs_extent_io_ops = { 6017 .fill_delalloc = run_delalloc_range, 6018 .submit_bio_hook = btrfs_submit_bio_hook, 6019 .merge_bio_hook = btrfs_merge_bio_hook, 6020 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 6021 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 6022 .writepage_start_hook = btrfs_writepage_start_hook, 6023 .readpage_io_failed_hook = btrfs_io_failed_hook, 6024 .set_bit_hook = btrfs_set_bit_hook, 6025 .clear_bit_hook = btrfs_clear_bit_hook, 6026 .merge_extent_hook = btrfs_merge_extent_hook, 6027 .split_extent_hook = btrfs_split_extent_hook, 6028 }; 6029 6030 /* 6031 * btrfs doesn't support the bmap operation because swapfiles 6032 * use bmap to make a mapping of extents in the file. They assume 6033 * these extents won't change over the life of the file and they 6034 * use the bmap result to do IO directly to the drive. 6035 * 6036 * the btrfs bmap call would return logical addresses that aren't 6037 * suitable for IO and they also will change frequently as COW 6038 * operations happen. So, swapfile + btrfs == corruption. 6039 * 6040 * For now we're avoiding this by dropping bmap. 6041 */ 6042 static const struct address_space_operations btrfs_aops = { 6043 .readpage = btrfs_readpage, 6044 .writepage = btrfs_writepage, 6045 .writepages = btrfs_writepages, 6046 .readpages = btrfs_readpages, 6047 .sync_page = block_sync_page, 6048 .direct_IO = btrfs_direct_IO, 6049 .invalidatepage = btrfs_invalidatepage, 6050 .releasepage = btrfs_releasepage, 6051 .set_page_dirty = btrfs_set_page_dirty, 6052 .error_remove_page = generic_error_remove_page, 6053 }; 6054 6055 static const struct address_space_operations btrfs_symlink_aops = { 6056 .readpage = btrfs_readpage, 6057 .writepage = btrfs_writepage, 6058 .invalidatepage = btrfs_invalidatepage, 6059 .releasepage = btrfs_releasepage, 6060 }; 6061 6062 static const struct inode_operations btrfs_file_inode_operations = { 6063 .truncate = btrfs_truncate, 6064 .getattr = btrfs_getattr, 6065 .setattr = btrfs_setattr, 6066 .setxattr = btrfs_setxattr, 6067 .getxattr = btrfs_getxattr, 6068 .listxattr = btrfs_listxattr, 6069 .removexattr = btrfs_removexattr, 6070 .permission = btrfs_permission, 6071 .fallocate = btrfs_fallocate, 6072 .fiemap = btrfs_fiemap, 6073 }; 6074 static const struct inode_operations btrfs_special_inode_operations = { 6075 .getattr = btrfs_getattr, 6076 .setattr = btrfs_setattr, 6077 .permission = btrfs_permission, 6078 .setxattr = btrfs_setxattr, 6079 .getxattr = btrfs_getxattr, 6080 .listxattr = btrfs_listxattr, 6081 .removexattr = btrfs_removexattr, 6082 }; 6083 static const struct inode_operations btrfs_symlink_inode_operations = { 6084 .readlink = generic_readlink, 6085 .follow_link = page_follow_link_light, 6086 .put_link = page_put_link, 6087 .permission = btrfs_permission, 6088 .setxattr = btrfs_setxattr, 6089 .getxattr = btrfs_getxattr, 6090 .listxattr = btrfs_listxattr, 6091 .removexattr = btrfs_removexattr, 6092 }; 6093 6094 const struct dentry_operations btrfs_dentry_operations = { 6095 .d_delete = btrfs_dentry_delete, 6096 }; 6097