xref: /linux/fs/btrfs/inode.c (revision 6eb6f98396f7bd653d8fb15b06364c8c7d70e22c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52 
53 struct btrfs_iget_args {
54 	u64 ino;
55 	struct btrfs_root *root;
56 };
57 
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67 
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72 
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
76 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
77 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
78 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
79 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
80 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
81 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
82 };
83 
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 				   struct page *locked_page,
88 				   u64 start, u64 end, int *page_started,
89 				   unsigned long *nr_written, int unlock);
90 
91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92 				     struct inode *inode,  struct inode *dir)
93 {
94 	int err;
95 
96 	err = btrfs_init_acl(trans, inode, dir);
97 	if (!err)
98 		err = btrfs_xattr_security_init(trans, inode, dir);
99 	return err;
100 }
101 
102 /*
103  * this does all the hard work for inserting an inline extent into
104  * the btree.  The caller should have done a btrfs_drop_extents so that
105  * no overlapping inline items exist in the btree
106  */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108 				struct btrfs_root *root, struct inode *inode,
109 				u64 start, size_t size, size_t compressed_size,
110 				struct page **compressed_pages)
111 {
112 	struct btrfs_key key;
113 	struct btrfs_path *path;
114 	struct extent_buffer *leaf;
115 	struct page *page = NULL;
116 	char *kaddr;
117 	unsigned long ptr;
118 	struct btrfs_file_extent_item *ei;
119 	int err = 0;
120 	int ret;
121 	size_t cur_size = size;
122 	size_t datasize;
123 	unsigned long offset;
124 	int use_compress = 0;
125 
126 	if (compressed_size && compressed_pages) {
127 		use_compress = 1;
128 		cur_size = compressed_size;
129 	}
130 
131 	path = btrfs_alloc_path();
132 	if (!path)
133 		return -ENOMEM;
134 
135 	path->leave_spinning = 1;
136 	btrfs_set_trans_block_group(trans, inode);
137 
138 	key.objectid = inode->i_ino;
139 	key.offset = start;
140 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
142 
143 	inode_add_bytes(inode, size);
144 	ret = btrfs_insert_empty_item(trans, root, path, &key,
145 				      datasize);
146 	BUG_ON(ret);
147 	if (ret) {
148 		err = ret;
149 		goto fail;
150 	}
151 	leaf = path->nodes[0];
152 	ei = btrfs_item_ptr(leaf, path->slots[0],
153 			    struct btrfs_file_extent_item);
154 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 	btrfs_set_file_extent_encryption(leaf, ei, 0);
157 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 	ptr = btrfs_file_extent_inline_start(ei);
160 
161 	if (use_compress) {
162 		struct page *cpage;
163 		int i = 0;
164 		while (compressed_size > 0) {
165 			cpage = compressed_pages[i];
166 			cur_size = min_t(unsigned long, compressed_size,
167 				       PAGE_CACHE_SIZE);
168 
169 			kaddr = kmap_atomic(cpage, KM_USER0);
170 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
171 			kunmap_atomic(kaddr, KM_USER0);
172 
173 			i++;
174 			ptr += cur_size;
175 			compressed_size -= cur_size;
176 		}
177 		btrfs_set_file_extent_compression(leaf, ei,
178 						  BTRFS_COMPRESS_ZLIB);
179 	} else {
180 		page = find_get_page(inode->i_mapping,
181 				     start >> PAGE_CACHE_SHIFT);
182 		btrfs_set_file_extent_compression(leaf, ei, 0);
183 		kaddr = kmap_atomic(page, KM_USER0);
184 		offset = start & (PAGE_CACHE_SIZE - 1);
185 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 		kunmap_atomic(kaddr, KM_USER0);
187 		page_cache_release(page);
188 	}
189 	btrfs_mark_buffer_dirty(leaf);
190 	btrfs_free_path(path);
191 
192 	/*
193 	 * we're an inline extent, so nobody can
194 	 * extend the file past i_size without locking
195 	 * a page we already have locked.
196 	 *
197 	 * We must do any isize and inode updates
198 	 * before we unlock the pages.  Otherwise we
199 	 * could end up racing with unlink.
200 	 */
201 	BTRFS_I(inode)->disk_i_size = inode->i_size;
202 	btrfs_update_inode(trans, root, inode);
203 
204 	return 0;
205 fail:
206 	btrfs_free_path(path);
207 	return err;
208 }
209 
210 
211 /*
212  * conditionally insert an inline extent into the file.  This
213  * does the checks required to make sure the data is small enough
214  * to fit as an inline extent.
215  */
216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
217 				 struct btrfs_root *root,
218 				 struct inode *inode, u64 start, u64 end,
219 				 size_t compressed_size,
220 				 struct page **compressed_pages)
221 {
222 	u64 isize = i_size_read(inode);
223 	u64 actual_end = min(end + 1, isize);
224 	u64 inline_len = actual_end - start;
225 	u64 aligned_end = (end + root->sectorsize - 1) &
226 			~((u64)root->sectorsize - 1);
227 	u64 hint_byte;
228 	u64 data_len = inline_len;
229 	int ret;
230 
231 	if (compressed_size)
232 		data_len = compressed_size;
233 
234 	if (start > 0 ||
235 	    actual_end >= PAGE_CACHE_SIZE ||
236 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237 	    (!compressed_size &&
238 	    (actual_end & (root->sectorsize - 1)) == 0) ||
239 	    end + 1 < isize ||
240 	    data_len > root->fs_info->max_inline) {
241 		return 1;
242 	}
243 
244 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
245 				 &hint_byte, 1);
246 	BUG_ON(ret);
247 
248 	if (isize > actual_end)
249 		inline_len = min_t(u64, isize, actual_end);
250 	ret = insert_inline_extent(trans, root, inode, start,
251 				   inline_len, compressed_size,
252 				   compressed_pages);
253 	BUG_ON(ret);
254 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
255 	return 0;
256 }
257 
258 struct async_extent {
259 	u64 start;
260 	u64 ram_size;
261 	u64 compressed_size;
262 	struct page **pages;
263 	unsigned long nr_pages;
264 	struct list_head list;
265 };
266 
267 struct async_cow {
268 	struct inode *inode;
269 	struct btrfs_root *root;
270 	struct page *locked_page;
271 	u64 start;
272 	u64 end;
273 	struct list_head extents;
274 	struct btrfs_work work;
275 };
276 
277 static noinline int add_async_extent(struct async_cow *cow,
278 				     u64 start, u64 ram_size,
279 				     u64 compressed_size,
280 				     struct page **pages,
281 				     unsigned long nr_pages)
282 {
283 	struct async_extent *async_extent;
284 
285 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286 	async_extent->start = start;
287 	async_extent->ram_size = ram_size;
288 	async_extent->compressed_size = compressed_size;
289 	async_extent->pages = pages;
290 	async_extent->nr_pages = nr_pages;
291 	list_add_tail(&async_extent->list, &cow->extents);
292 	return 0;
293 }
294 
295 /*
296  * we create compressed extents in two phases.  The first
297  * phase compresses a range of pages that have already been
298  * locked (both pages and state bits are locked).
299  *
300  * This is done inside an ordered work queue, and the compression
301  * is spread across many cpus.  The actual IO submission is step
302  * two, and the ordered work queue takes care of making sure that
303  * happens in the same order things were put onto the queue by
304  * writepages and friends.
305  *
306  * If this code finds it can't get good compression, it puts an
307  * entry onto the work queue to write the uncompressed bytes.  This
308  * makes sure that both compressed inodes and uncompressed inodes
309  * are written in the same order that pdflush sent them down.
310  */
311 static noinline int compress_file_range(struct inode *inode,
312 					struct page *locked_page,
313 					u64 start, u64 end,
314 					struct async_cow *async_cow,
315 					int *num_added)
316 {
317 	struct btrfs_root *root = BTRFS_I(inode)->root;
318 	struct btrfs_trans_handle *trans;
319 	u64 num_bytes;
320 	u64 orig_start;
321 	u64 disk_num_bytes;
322 	u64 blocksize = root->sectorsize;
323 	u64 actual_end;
324 	u64 isize = i_size_read(inode);
325 	int ret = 0;
326 	struct page **pages = NULL;
327 	unsigned long nr_pages;
328 	unsigned long nr_pages_ret = 0;
329 	unsigned long total_compressed = 0;
330 	unsigned long total_in = 0;
331 	unsigned long max_compressed = 128 * 1024;
332 	unsigned long max_uncompressed = 128 * 1024;
333 	int i;
334 	int will_compress;
335 
336 	orig_start = start;
337 
338 	actual_end = min_t(u64, isize, end + 1);
339 again:
340 	will_compress = 0;
341 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343 
344 	/*
345 	 * we don't want to send crud past the end of i_size through
346 	 * compression, that's just a waste of CPU time.  So, if the
347 	 * end of the file is before the start of our current
348 	 * requested range of bytes, we bail out to the uncompressed
349 	 * cleanup code that can deal with all of this.
350 	 *
351 	 * It isn't really the fastest way to fix things, but this is a
352 	 * very uncommon corner.
353 	 */
354 	if (actual_end <= start)
355 		goto cleanup_and_bail_uncompressed;
356 
357 	total_compressed = actual_end - start;
358 
359 	/* we want to make sure that amount of ram required to uncompress
360 	 * an extent is reasonable, so we limit the total size in ram
361 	 * of a compressed extent to 128k.  This is a crucial number
362 	 * because it also controls how easily we can spread reads across
363 	 * cpus for decompression.
364 	 *
365 	 * We also want to make sure the amount of IO required to do
366 	 * a random read is reasonably small, so we limit the size of
367 	 * a compressed extent to 128k.
368 	 */
369 	total_compressed = min(total_compressed, max_uncompressed);
370 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
371 	num_bytes = max(blocksize,  num_bytes);
372 	disk_num_bytes = num_bytes;
373 	total_in = 0;
374 	ret = 0;
375 
376 	/*
377 	 * we do compression for mount -o compress and when the
378 	 * inode has not been flagged as nocompress.  This flag can
379 	 * change at any time if we discover bad compression ratios.
380 	 */
381 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
382 	    btrfs_test_opt(root, COMPRESS)) {
383 		WARN_ON(pages);
384 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
385 
386 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387 						total_compressed, pages,
388 						nr_pages, &nr_pages_ret,
389 						&total_in,
390 						&total_compressed,
391 						max_compressed);
392 
393 		if (!ret) {
394 			unsigned long offset = total_compressed &
395 				(PAGE_CACHE_SIZE - 1);
396 			struct page *page = pages[nr_pages_ret - 1];
397 			char *kaddr;
398 
399 			/* zero the tail end of the last page, we might be
400 			 * sending it down to disk
401 			 */
402 			if (offset) {
403 				kaddr = kmap_atomic(page, KM_USER0);
404 				memset(kaddr + offset, 0,
405 				       PAGE_CACHE_SIZE - offset);
406 				kunmap_atomic(kaddr, KM_USER0);
407 			}
408 			will_compress = 1;
409 		}
410 	}
411 	if (start == 0) {
412 		trans = btrfs_join_transaction(root, 1);
413 		BUG_ON(!trans);
414 		btrfs_set_trans_block_group(trans, inode);
415 
416 		/* lets try to make an inline extent */
417 		if (ret || total_in < (actual_end - start)) {
418 			/* we didn't compress the entire range, try
419 			 * to make an uncompressed inline extent.
420 			 */
421 			ret = cow_file_range_inline(trans, root, inode,
422 						    start, end, 0, NULL);
423 		} else {
424 			/* try making a compressed inline extent */
425 			ret = cow_file_range_inline(trans, root, inode,
426 						    start, end,
427 						    total_compressed, pages);
428 		}
429 		if (ret == 0) {
430 			/*
431 			 * inline extent creation worked, we don't need
432 			 * to create any more async work items.  Unlock
433 			 * and free up our temp pages.
434 			 */
435 			extent_clear_unlock_delalloc(inode,
436 			     &BTRFS_I(inode)->io_tree,
437 			     start, end, NULL,
438 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
439 			     EXTENT_CLEAR_DELALLOC |
440 			     EXTENT_CLEAR_ACCOUNTING |
441 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
442 
443 			btrfs_end_transaction(trans, root);
444 			goto free_pages_out;
445 		}
446 		btrfs_end_transaction(trans, root);
447 	}
448 
449 	if (will_compress) {
450 		/*
451 		 * we aren't doing an inline extent round the compressed size
452 		 * up to a block size boundary so the allocator does sane
453 		 * things
454 		 */
455 		total_compressed = (total_compressed + blocksize - 1) &
456 			~(blocksize - 1);
457 
458 		/*
459 		 * one last check to make sure the compression is really a
460 		 * win, compare the page count read with the blocks on disk
461 		 */
462 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463 			~(PAGE_CACHE_SIZE - 1);
464 		if (total_compressed >= total_in) {
465 			will_compress = 0;
466 		} else {
467 			disk_num_bytes = total_compressed;
468 			num_bytes = total_in;
469 		}
470 	}
471 	if (!will_compress && pages) {
472 		/*
473 		 * the compression code ran but failed to make things smaller,
474 		 * free any pages it allocated and our page pointer array
475 		 */
476 		for (i = 0; i < nr_pages_ret; i++) {
477 			WARN_ON(pages[i]->mapping);
478 			page_cache_release(pages[i]);
479 		}
480 		kfree(pages);
481 		pages = NULL;
482 		total_compressed = 0;
483 		nr_pages_ret = 0;
484 
485 		/* flag the file so we don't compress in the future */
486 		if (!btrfs_test_opt(root, FORCE_COMPRESS))
487 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
488 	}
489 	if (will_compress) {
490 		*num_added += 1;
491 
492 		/* the async work queues will take care of doing actual
493 		 * allocation on disk for these compressed pages,
494 		 * and will submit them to the elevator.
495 		 */
496 		add_async_extent(async_cow, start, num_bytes,
497 				 total_compressed, pages, nr_pages_ret);
498 
499 		if (start + num_bytes < end && start + num_bytes < actual_end) {
500 			start += num_bytes;
501 			pages = NULL;
502 			cond_resched();
503 			goto again;
504 		}
505 	} else {
506 cleanup_and_bail_uncompressed:
507 		/*
508 		 * No compression, but we still need to write the pages in
509 		 * the file we've been given so far.  redirty the locked
510 		 * page if it corresponds to our extent and set things up
511 		 * for the async work queue to run cow_file_range to do
512 		 * the normal delalloc dance
513 		 */
514 		if (page_offset(locked_page) >= start &&
515 		    page_offset(locked_page) <= end) {
516 			__set_page_dirty_nobuffers(locked_page);
517 			/* unlocked later on in the async handlers */
518 		}
519 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
520 		*num_added += 1;
521 	}
522 
523 out:
524 	return 0;
525 
526 free_pages_out:
527 	for (i = 0; i < nr_pages_ret; i++) {
528 		WARN_ON(pages[i]->mapping);
529 		page_cache_release(pages[i]);
530 	}
531 	kfree(pages);
532 
533 	goto out;
534 }
535 
536 /*
537  * phase two of compressed writeback.  This is the ordered portion
538  * of the code, which only gets called in the order the work was
539  * queued.  We walk all the async extents created by compress_file_range
540  * and send them down to the disk.
541  */
542 static noinline int submit_compressed_extents(struct inode *inode,
543 					      struct async_cow *async_cow)
544 {
545 	struct async_extent *async_extent;
546 	u64 alloc_hint = 0;
547 	struct btrfs_trans_handle *trans;
548 	struct btrfs_key ins;
549 	struct extent_map *em;
550 	struct btrfs_root *root = BTRFS_I(inode)->root;
551 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
552 	struct extent_io_tree *io_tree;
553 	int ret = 0;
554 
555 	if (list_empty(&async_cow->extents))
556 		return 0;
557 
558 
559 	while (!list_empty(&async_cow->extents)) {
560 		async_extent = list_entry(async_cow->extents.next,
561 					  struct async_extent, list);
562 		list_del(&async_extent->list);
563 
564 		io_tree = &BTRFS_I(inode)->io_tree;
565 
566 retry:
567 		/* did the compression code fall back to uncompressed IO? */
568 		if (!async_extent->pages) {
569 			int page_started = 0;
570 			unsigned long nr_written = 0;
571 
572 			lock_extent(io_tree, async_extent->start,
573 				    async_extent->start +
574 				    async_extent->ram_size - 1, GFP_NOFS);
575 
576 			/* allocate blocks */
577 			ret = cow_file_range(inode, async_cow->locked_page,
578 					     async_extent->start,
579 					     async_extent->start +
580 					     async_extent->ram_size - 1,
581 					     &page_started, &nr_written, 0);
582 
583 			/*
584 			 * if page_started, cow_file_range inserted an
585 			 * inline extent and took care of all the unlocking
586 			 * and IO for us.  Otherwise, we need to submit
587 			 * all those pages down to the drive.
588 			 */
589 			if (!page_started && !ret)
590 				extent_write_locked_range(io_tree,
591 						  inode, async_extent->start,
592 						  async_extent->start +
593 						  async_extent->ram_size - 1,
594 						  btrfs_get_extent,
595 						  WB_SYNC_ALL);
596 			kfree(async_extent);
597 			cond_resched();
598 			continue;
599 		}
600 
601 		lock_extent(io_tree, async_extent->start,
602 			    async_extent->start + async_extent->ram_size - 1,
603 			    GFP_NOFS);
604 
605 		trans = btrfs_join_transaction(root, 1);
606 		ret = btrfs_reserve_extent(trans, root,
607 					   async_extent->compressed_size,
608 					   async_extent->compressed_size,
609 					   0, alloc_hint,
610 					   (u64)-1, &ins, 1);
611 		btrfs_end_transaction(trans, root);
612 
613 		if (ret) {
614 			int i;
615 			for (i = 0; i < async_extent->nr_pages; i++) {
616 				WARN_ON(async_extent->pages[i]->mapping);
617 				page_cache_release(async_extent->pages[i]);
618 			}
619 			kfree(async_extent->pages);
620 			async_extent->nr_pages = 0;
621 			async_extent->pages = NULL;
622 			unlock_extent(io_tree, async_extent->start,
623 				      async_extent->start +
624 				      async_extent->ram_size - 1, GFP_NOFS);
625 			goto retry;
626 		}
627 
628 		/*
629 		 * here we're doing allocation and writeback of the
630 		 * compressed pages
631 		 */
632 		btrfs_drop_extent_cache(inode, async_extent->start,
633 					async_extent->start +
634 					async_extent->ram_size - 1, 0);
635 
636 		em = alloc_extent_map(GFP_NOFS);
637 		em->start = async_extent->start;
638 		em->len = async_extent->ram_size;
639 		em->orig_start = em->start;
640 
641 		em->block_start = ins.objectid;
642 		em->block_len = ins.offset;
643 		em->bdev = root->fs_info->fs_devices->latest_bdev;
644 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
645 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
646 
647 		while (1) {
648 			write_lock(&em_tree->lock);
649 			ret = add_extent_mapping(em_tree, em);
650 			write_unlock(&em_tree->lock);
651 			if (ret != -EEXIST) {
652 				free_extent_map(em);
653 				break;
654 			}
655 			btrfs_drop_extent_cache(inode, async_extent->start,
656 						async_extent->start +
657 						async_extent->ram_size - 1, 0);
658 		}
659 
660 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
661 					       ins.objectid,
662 					       async_extent->ram_size,
663 					       ins.offset,
664 					       BTRFS_ORDERED_COMPRESSED);
665 		BUG_ON(ret);
666 
667 		/*
668 		 * clear dirty, set writeback and unlock the pages.
669 		 */
670 		extent_clear_unlock_delalloc(inode,
671 				&BTRFS_I(inode)->io_tree,
672 				async_extent->start,
673 				async_extent->start +
674 				async_extent->ram_size - 1,
675 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
676 				EXTENT_CLEAR_UNLOCK |
677 				EXTENT_CLEAR_DELALLOC |
678 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
679 
680 		ret = btrfs_submit_compressed_write(inode,
681 				    async_extent->start,
682 				    async_extent->ram_size,
683 				    ins.objectid,
684 				    ins.offset, async_extent->pages,
685 				    async_extent->nr_pages);
686 
687 		BUG_ON(ret);
688 		alloc_hint = ins.objectid + ins.offset;
689 		kfree(async_extent);
690 		cond_resched();
691 	}
692 
693 	return 0;
694 }
695 
696 /*
697  * when extent_io.c finds a delayed allocation range in the file,
698  * the call backs end up in this code.  The basic idea is to
699  * allocate extents on disk for the range, and create ordered data structs
700  * in ram to track those extents.
701  *
702  * locked_page is the page that writepage had locked already.  We use
703  * it to make sure we don't do extra locks or unlocks.
704  *
705  * *page_started is set to one if we unlock locked_page and do everything
706  * required to start IO on it.  It may be clean and already done with
707  * IO when we return.
708  */
709 static noinline int cow_file_range(struct inode *inode,
710 				   struct page *locked_page,
711 				   u64 start, u64 end, int *page_started,
712 				   unsigned long *nr_written,
713 				   int unlock)
714 {
715 	struct btrfs_root *root = BTRFS_I(inode)->root;
716 	struct btrfs_trans_handle *trans;
717 	u64 alloc_hint = 0;
718 	u64 num_bytes;
719 	unsigned long ram_size;
720 	u64 disk_num_bytes;
721 	u64 cur_alloc_size;
722 	u64 blocksize = root->sectorsize;
723 	u64 actual_end;
724 	u64 isize = i_size_read(inode);
725 	struct btrfs_key ins;
726 	struct extent_map *em;
727 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
728 	int ret = 0;
729 
730 	trans = btrfs_join_transaction(root, 1);
731 	BUG_ON(!trans);
732 	btrfs_set_trans_block_group(trans, inode);
733 
734 	actual_end = min_t(u64, isize, end + 1);
735 
736 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
737 	num_bytes = max(blocksize,  num_bytes);
738 	disk_num_bytes = num_bytes;
739 	ret = 0;
740 
741 	if (start == 0) {
742 		/* lets try to make an inline extent */
743 		ret = cow_file_range_inline(trans, root, inode,
744 					    start, end, 0, NULL);
745 		if (ret == 0) {
746 			extent_clear_unlock_delalloc(inode,
747 				     &BTRFS_I(inode)->io_tree,
748 				     start, end, NULL,
749 				     EXTENT_CLEAR_UNLOCK_PAGE |
750 				     EXTENT_CLEAR_UNLOCK |
751 				     EXTENT_CLEAR_DELALLOC |
752 				     EXTENT_CLEAR_ACCOUNTING |
753 				     EXTENT_CLEAR_DIRTY |
754 				     EXTENT_SET_WRITEBACK |
755 				     EXTENT_END_WRITEBACK);
756 
757 			*nr_written = *nr_written +
758 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
759 			*page_started = 1;
760 			ret = 0;
761 			goto out;
762 		}
763 	}
764 
765 	BUG_ON(disk_num_bytes >
766 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
767 
768 
769 	read_lock(&BTRFS_I(inode)->extent_tree.lock);
770 	em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
771 				   start, num_bytes);
772 	if (em) {
773 		/*
774 		 * if block start isn't an actual block number then find the
775 		 * first block in this inode and use that as a hint.  If that
776 		 * block is also bogus then just don't worry about it.
777 		 */
778 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779 			free_extent_map(em);
780 			em = search_extent_mapping(em_tree, 0, 0);
781 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
782 				alloc_hint = em->block_start;
783 			if (em)
784 				free_extent_map(em);
785 		} else {
786 			alloc_hint = em->block_start;
787 			free_extent_map(em);
788 		}
789 	}
790 	read_unlock(&BTRFS_I(inode)->extent_tree.lock);
791 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
792 
793 	while (disk_num_bytes > 0) {
794 		unsigned long op;
795 
796 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
797 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
798 					   root->sectorsize, 0, alloc_hint,
799 					   (u64)-1, &ins, 1);
800 		BUG_ON(ret);
801 
802 		em = alloc_extent_map(GFP_NOFS);
803 		em->start = start;
804 		em->orig_start = em->start;
805 		ram_size = ins.offset;
806 		em->len = ins.offset;
807 
808 		em->block_start = ins.objectid;
809 		em->block_len = ins.offset;
810 		em->bdev = root->fs_info->fs_devices->latest_bdev;
811 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
812 
813 		while (1) {
814 			write_lock(&em_tree->lock);
815 			ret = add_extent_mapping(em_tree, em);
816 			write_unlock(&em_tree->lock);
817 			if (ret != -EEXIST) {
818 				free_extent_map(em);
819 				break;
820 			}
821 			btrfs_drop_extent_cache(inode, start,
822 						start + ram_size - 1, 0);
823 		}
824 
825 		cur_alloc_size = ins.offset;
826 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
827 					       ram_size, cur_alloc_size, 0);
828 		BUG_ON(ret);
829 
830 		if (root->root_key.objectid ==
831 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
832 			ret = btrfs_reloc_clone_csums(inode, start,
833 						      cur_alloc_size);
834 			BUG_ON(ret);
835 		}
836 
837 		if (disk_num_bytes < cur_alloc_size)
838 			break;
839 
840 		/* we're not doing compressed IO, don't unlock the first
841 		 * page (which the caller expects to stay locked), don't
842 		 * clear any dirty bits and don't set any writeback bits
843 		 *
844 		 * Do set the Private2 bit so we know this page was properly
845 		 * setup for writepage
846 		 */
847 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
848 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
849 			EXTENT_SET_PRIVATE2;
850 
851 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
852 					     start, start + ram_size - 1,
853 					     locked_page, op);
854 		disk_num_bytes -= cur_alloc_size;
855 		num_bytes -= cur_alloc_size;
856 		alloc_hint = ins.objectid + ins.offset;
857 		start += cur_alloc_size;
858 	}
859 out:
860 	ret = 0;
861 	btrfs_end_transaction(trans, root);
862 
863 	return ret;
864 }
865 
866 /*
867  * work queue call back to started compression on a file and pages
868  */
869 static noinline void async_cow_start(struct btrfs_work *work)
870 {
871 	struct async_cow *async_cow;
872 	int num_added = 0;
873 	async_cow = container_of(work, struct async_cow, work);
874 
875 	compress_file_range(async_cow->inode, async_cow->locked_page,
876 			    async_cow->start, async_cow->end, async_cow,
877 			    &num_added);
878 	if (num_added == 0)
879 		async_cow->inode = NULL;
880 }
881 
882 /*
883  * work queue call back to submit previously compressed pages
884  */
885 static noinline void async_cow_submit(struct btrfs_work *work)
886 {
887 	struct async_cow *async_cow;
888 	struct btrfs_root *root;
889 	unsigned long nr_pages;
890 
891 	async_cow = container_of(work, struct async_cow, work);
892 
893 	root = async_cow->root;
894 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
895 		PAGE_CACHE_SHIFT;
896 
897 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
898 
899 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
900 	    5 * 1042 * 1024 &&
901 	    waitqueue_active(&root->fs_info->async_submit_wait))
902 		wake_up(&root->fs_info->async_submit_wait);
903 
904 	if (async_cow->inode)
905 		submit_compressed_extents(async_cow->inode, async_cow);
906 }
907 
908 static noinline void async_cow_free(struct btrfs_work *work)
909 {
910 	struct async_cow *async_cow;
911 	async_cow = container_of(work, struct async_cow, work);
912 	kfree(async_cow);
913 }
914 
915 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
916 				u64 start, u64 end, int *page_started,
917 				unsigned long *nr_written)
918 {
919 	struct async_cow *async_cow;
920 	struct btrfs_root *root = BTRFS_I(inode)->root;
921 	unsigned long nr_pages;
922 	u64 cur_end;
923 	int limit = 10 * 1024 * 1042;
924 
925 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
926 			 1, 0, NULL, GFP_NOFS);
927 	while (start < end) {
928 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
929 		async_cow->inode = inode;
930 		async_cow->root = root;
931 		async_cow->locked_page = locked_page;
932 		async_cow->start = start;
933 
934 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
935 			cur_end = end;
936 		else
937 			cur_end = min(end, start + 512 * 1024 - 1);
938 
939 		async_cow->end = cur_end;
940 		INIT_LIST_HEAD(&async_cow->extents);
941 
942 		async_cow->work.func = async_cow_start;
943 		async_cow->work.ordered_func = async_cow_submit;
944 		async_cow->work.ordered_free = async_cow_free;
945 		async_cow->work.flags = 0;
946 
947 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
948 			PAGE_CACHE_SHIFT;
949 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
950 
951 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
952 				   &async_cow->work);
953 
954 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
955 			wait_event(root->fs_info->async_submit_wait,
956 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
957 			    limit));
958 		}
959 
960 		while (atomic_read(&root->fs_info->async_submit_draining) &&
961 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
962 			wait_event(root->fs_info->async_submit_wait,
963 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
964 			   0));
965 		}
966 
967 		*nr_written += nr_pages;
968 		start = cur_end + 1;
969 	}
970 	*page_started = 1;
971 	return 0;
972 }
973 
974 static noinline int csum_exist_in_range(struct btrfs_root *root,
975 					u64 bytenr, u64 num_bytes)
976 {
977 	int ret;
978 	struct btrfs_ordered_sum *sums;
979 	LIST_HEAD(list);
980 
981 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
982 				       bytenr + num_bytes - 1, &list);
983 	if (ret == 0 && list_empty(&list))
984 		return 0;
985 
986 	while (!list_empty(&list)) {
987 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
988 		list_del(&sums->list);
989 		kfree(sums);
990 	}
991 	return 1;
992 }
993 
994 /*
995  * when nowcow writeback call back.  This checks for snapshots or COW copies
996  * of the extents that exist in the file, and COWs the file as required.
997  *
998  * If no cow copies or snapshots exist, we write directly to the existing
999  * blocks on disk
1000  */
1001 static noinline int run_delalloc_nocow(struct inode *inode,
1002 				       struct page *locked_page,
1003 			      u64 start, u64 end, int *page_started, int force,
1004 			      unsigned long *nr_written)
1005 {
1006 	struct btrfs_root *root = BTRFS_I(inode)->root;
1007 	struct btrfs_trans_handle *trans;
1008 	struct extent_buffer *leaf;
1009 	struct btrfs_path *path;
1010 	struct btrfs_file_extent_item *fi;
1011 	struct btrfs_key found_key;
1012 	u64 cow_start;
1013 	u64 cur_offset;
1014 	u64 extent_end;
1015 	u64 extent_offset;
1016 	u64 disk_bytenr;
1017 	u64 num_bytes;
1018 	int extent_type;
1019 	int ret;
1020 	int type;
1021 	int nocow;
1022 	int check_prev = 1;
1023 
1024 	path = btrfs_alloc_path();
1025 	BUG_ON(!path);
1026 	trans = btrfs_join_transaction(root, 1);
1027 	BUG_ON(!trans);
1028 
1029 	cow_start = (u64)-1;
1030 	cur_offset = start;
1031 	while (1) {
1032 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1033 					       cur_offset, 0);
1034 		BUG_ON(ret < 0);
1035 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1036 			leaf = path->nodes[0];
1037 			btrfs_item_key_to_cpu(leaf, &found_key,
1038 					      path->slots[0] - 1);
1039 			if (found_key.objectid == inode->i_ino &&
1040 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1041 				path->slots[0]--;
1042 		}
1043 		check_prev = 0;
1044 next_slot:
1045 		leaf = path->nodes[0];
1046 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1047 			ret = btrfs_next_leaf(root, path);
1048 			if (ret < 0)
1049 				BUG_ON(1);
1050 			if (ret > 0)
1051 				break;
1052 			leaf = path->nodes[0];
1053 		}
1054 
1055 		nocow = 0;
1056 		disk_bytenr = 0;
1057 		num_bytes = 0;
1058 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1059 
1060 		if (found_key.objectid > inode->i_ino ||
1061 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1062 		    found_key.offset > end)
1063 			break;
1064 
1065 		if (found_key.offset > cur_offset) {
1066 			extent_end = found_key.offset;
1067 			extent_type = 0;
1068 			goto out_check;
1069 		}
1070 
1071 		fi = btrfs_item_ptr(leaf, path->slots[0],
1072 				    struct btrfs_file_extent_item);
1073 		extent_type = btrfs_file_extent_type(leaf, fi);
1074 
1075 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1076 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1077 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1078 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1079 			extent_end = found_key.offset +
1080 				btrfs_file_extent_num_bytes(leaf, fi);
1081 			if (extent_end <= start) {
1082 				path->slots[0]++;
1083 				goto next_slot;
1084 			}
1085 			if (disk_bytenr == 0)
1086 				goto out_check;
1087 			if (btrfs_file_extent_compression(leaf, fi) ||
1088 			    btrfs_file_extent_encryption(leaf, fi) ||
1089 			    btrfs_file_extent_other_encoding(leaf, fi))
1090 				goto out_check;
1091 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1092 				goto out_check;
1093 			if (btrfs_extent_readonly(root, disk_bytenr))
1094 				goto out_check;
1095 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1096 						  found_key.offset -
1097 						  extent_offset, disk_bytenr))
1098 				goto out_check;
1099 			disk_bytenr += extent_offset;
1100 			disk_bytenr += cur_offset - found_key.offset;
1101 			num_bytes = min(end + 1, extent_end) - cur_offset;
1102 			/*
1103 			 * force cow if csum exists in the range.
1104 			 * this ensure that csum for a given extent are
1105 			 * either valid or do not exist.
1106 			 */
1107 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1108 				goto out_check;
1109 			nocow = 1;
1110 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1111 			extent_end = found_key.offset +
1112 				btrfs_file_extent_inline_len(leaf, fi);
1113 			extent_end = ALIGN(extent_end, root->sectorsize);
1114 		} else {
1115 			BUG_ON(1);
1116 		}
1117 out_check:
1118 		if (extent_end <= start) {
1119 			path->slots[0]++;
1120 			goto next_slot;
1121 		}
1122 		if (!nocow) {
1123 			if (cow_start == (u64)-1)
1124 				cow_start = cur_offset;
1125 			cur_offset = extent_end;
1126 			if (cur_offset > end)
1127 				break;
1128 			path->slots[0]++;
1129 			goto next_slot;
1130 		}
1131 
1132 		btrfs_release_path(root, path);
1133 		if (cow_start != (u64)-1) {
1134 			ret = cow_file_range(inode, locked_page, cow_start,
1135 					found_key.offset - 1, page_started,
1136 					nr_written, 1);
1137 			BUG_ON(ret);
1138 			cow_start = (u64)-1;
1139 		}
1140 
1141 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1142 			struct extent_map *em;
1143 			struct extent_map_tree *em_tree;
1144 			em_tree = &BTRFS_I(inode)->extent_tree;
1145 			em = alloc_extent_map(GFP_NOFS);
1146 			em->start = cur_offset;
1147 			em->orig_start = em->start;
1148 			em->len = num_bytes;
1149 			em->block_len = num_bytes;
1150 			em->block_start = disk_bytenr;
1151 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1152 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1153 			while (1) {
1154 				write_lock(&em_tree->lock);
1155 				ret = add_extent_mapping(em_tree, em);
1156 				write_unlock(&em_tree->lock);
1157 				if (ret != -EEXIST) {
1158 					free_extent_map(em);
1159 					break;
1160 				}
1161 				btrfs_drop_extent_cache(inode, em->start,
1162 						em->start + em->len - 1, 0);
1163 			}
1164 			type = BTRFS_ORDERED_PREALLOC;
1165 		} else {
1166 			type = BTRFS_ORDERED_NOCOW;
1167 		}
1168 
1169 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1170 					       num_bytes, num_bytes, type);
1171 		BUG_ON(ret);
1172 
1173 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1174 				cur_offset, cur_offset + num_bytes - 1,
1175 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1176 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1177 				EXTENT_SET_PRIVATE2);
1178 		cur_offset = extent_end;
1179 		if (cur_offset > end)
1180 			break;
1181 	}
1182 	btrfs_release_path(root, path);
1183 
1184 	if (cur_offset <= end && cow_start == (u64)-1)
1185 		cow_start = cur_offset;
1186 	if (cow_start != (u64)-1) {
1187 		ret = cow_file_range(inode, locked_page, cow_start, end,
1188 				     page_started, nr_written, 1);
1189 		BUG_ON(ret);
1190 	}
1191 
1192 	ret = btrfs_end_transaction(trans, root);
1193 	BUG_ON(ret);
1194 	btrfs_free_path(path);
1195 	return 0;
1196 }
1197 
1198 /*
1199  * extent_io.c call back to do delayed allocation processing
1200  */
1201 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1202 			      u64 start, u64 end, int *page_started,
1203 			      unsigned long *nr_written)
1204 {
1205 	int ret;
1206 	struct btrfs_root *root = BTRFS_I(inode)->root;
1207 
1208 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1209 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1210 					 page_started, 1, nr_written);
1211 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1212 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1213 					 page_started, 0, nr_written);
1214 	else if (!btrfs_test_opt(root, COMPRESS))
1215 		ret = cow_file_range(inode, locked_page, start, end,
1216 				      page_started, nr_written, 1);
1217 	else
1218 		ret = cow_file_range_async(inode, locked_page, start, end,
1219 					   page_started, nr_written);
1220 	return ret;
1221 }
1222 
1223 static int btrfs_split_extent_hook(struct inode *inode,
1224 				    struct extent_state *orig, u64 split)
1225 {
1226 	struct btrfs_root *root = BTRFS_I(inode)->root;
1227 	u64 size;
1228 
1229 	if (!(orig->state & EXTENT_DELALLOC))
1230 		return 0;
1231 
1232 	size = orig->end - orig->start + 1;
1233 	if (size > root->fs_info->max_extent) {
1234 		u64 num_extents;
1235 		u64 new_size;
1236 
1237 		new_size = orig->end - split + 1;
1238 		num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1239 					root->fs_info->max_extent);
1240 
1241 		/*
1242 		 * if we break a large extent up then leave oustanding_extents
1243 		 * be, since we've already accounted for the large extent.
1244 		 */
1245 		if (div64_u64(new_size + root->fs_info->max_extent - 1,
1246 			      root->fs_info->max_extent) < num_extents)
1247 			return 0;
1248 	}
1249 
1250 	spin_lock(&BTRFS_I(inode)->accounting_lock);
1251 	BTRFS_I(inode)->outstanding_extents++;
1252 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
1253 
1254 	return 0;
1255 }
1256 
1257 /*
1258  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259  * extents so we can keep track of new extents that are just merged onto old
1260  * extents, such as when we are doing sequential writes, so we can properly
1261  * account for the metadata space we'll need.
1262  */
1263 static int btrfs_merge_extent_hook(struct inode *inode,
1264 				   struct extent_state *new,
1265 				   struct extent_state *other)
1266 {
1267 	struct btrfs_root *root = BTRFS_I(inode)->root;
1268 	u64 new_size, old_size;
1269 	u64 num_extents;
1270 
1271 	/* not delalloc, ignore it */
1272 	if (!(other->state & EXTENT_DELALLOC))
1273 		return 0;
1274 
1275 	old_size = other->end - other->start + 1;
1276 	if (new->start < other->start)
1277 		new_size = other->end - new->start + 1;
1278 	else
1279 		new_size = new->end - other->start + 1;
1280 
1281 	/* we're not bigger than the max, unreserve the space and go */
1282 	if (new_size <= root->fs_info->max_extent) {
1283 		spin_lock(&BTRFS_I(inode)->accounting_lock);
1284 		BTRFS_I(inode)->outstanding_extents--;
1285 		spin_unlock(&BTRFS_I(inode)->accounting_lock);
1286 		return 0;
1287 	}
1288 
1289 	/*
1290 	 * If we grew by another max_extent, just return, we want to keep that
1291 	 * reserved amount.
1292 	 */
1293 	num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1294 				root->fs_info->max_extent);
1295 	if (div64_u64(new_size + root->fs_info->max_extent - 1,
1296 		      root->fs_info->max_extent) > num_extents)
1297 		return 0;
1298 
1299 	spin_lock(&BTRFS_I(inode)->accounting_lock);
1300 	BTRFS_I(inode)->outstanding_extents--;
1301 	spin_unlock(&BTRFS_I(inode)->accounting_lock);
1302 
1303 	return 0;
1304 }
1305 
1306 /*
1307  * extent_io.c set_bit_hook, used to track delayed allocation
1308  * bytes in this file, and to maintain the list of inodes that
1309  * have pending delalloc work to be done.
1310  */
1311 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1312 		       unsigned long old, unsigned long bits)
1313 {
1314 
1315 	/*
1316 	 * set_bit and clear bit hooks normally require _irqsave/restore
1317 	 * but in this case, we are only testeing for the DELALLOC
1318 	 * bit, which is only set or cleared with irqs on
1319 	 */
1320 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1321 		struct btrfs_root *root = BTRFS_I(inode)->root;
1322 
1323 		spin_lock(&BTRFS_I(inode)->accounting_lock);
1324 		BTRFS_I(inode)->outstanding_extents++;
1325 		spin_unlock(&BTRFS_I(inode)->accounting_lock);
1326 		btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1327 		spin_lock(&root->fs_info->delalloc_lock);
1328 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1329 		root->fs_info->delalloc_bytes += end - start + 1;
1330 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1331 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1332 				      &root->fs_info->delalloc_inodes);
1333 		}
1334 		spin_unlock(&root->fs_info->delalloc_lock);
1335 	}
1336 	return 0;
1337 }
1338 
1339 /*
1340  * extent_io.c clear_bit_hook, see set_bit_hook for why
1341  */
1342 static int btrfs_clear_bit_hook(struct inode *inode,
1343 				struct extent_state *state, unsigned long bits)
1344 {
1345 	/*
1346 	 * set_bit and clear bit hooks normally require _irqsave/restore
1347 	 * but in this case, we are only testeing for the DELALLOC
1348 	 * bit, which is only set or cleared with irqs on
1349 	 */
1350 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1351 		struct btrfs_root *root = BTRFS_I(inode)->root;
1352 
1353 		if (bits & EXTENT_DO_ACCOUNTING) {
1354 			spin_lock(&BTRFS_I(inode)->accounting_lock);
1355 			BTRFS_I(inode)->outstanding_extents--;
1356 			spin_unlock(&BTRFS_I(inode)->accounting_lock);
1357 			btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1358 		}
1359 
1360 		spin_lock(&root->fs_info->delalloc_lock);
1361 		if (state->end - state->start + 1 >
1362 		    root->fs_info->delalloc_bytes) {
1363 			printk(KERN_INFO "btrfs warning: delalloc account "
1364 			       "%llu %llu\n",
1365 			       (unsigned long long)
1366 			       state->end - state->start + 1,
1367 			       (unsigned long long)
1368 			       root->fs_info->delalloc_bytes);
1369 			btrfs_delalloc_free_space(root, inode, (u64)-1);
1370 			root->fs_info->delalloc_bytes = 0;
1371 			BTRFS_I(inode)->delalloc_bytes = 0;
1372 		} else {
1373 			btrfs_delalloc_free_space(root, inode,
1374 						  state->end -
1375 						  state->start + 1);
1376 			root->fs_info->delalloc_bytes -= state->end -
1377 				state->start + 1;
1378 			BTRFS_I(inode)->delalloc_bytes -= state->end -
1379 				state->start + 1;
1380 		}
1381 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1382 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1383 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1384 		}
1385 		spin_unlock(&root->fs_info->delalloc_lock);
1386 	}
1387 	return 0;
1388 }
1389 
1390 /*
1391  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1392  * we don't create bios that span stripes or chunks
1393  */
1394 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1395 			 size_t size, struct bio *bio,
1396 			 unsigned long bio_flags)
1397 {
1398 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1399 	struct btrfs_mapping_tree *map_tree;
1400 	u64 logical = (u64)bio->bi_sector << 9;
1401 	u64 length = 0;
1402 	u64 map_length;
1403 	int ret;
1404 
1405 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1406 		return 0;
1407 
1408 	length = bio->bi_size;
1409 	map_tree = &root->fs_info->mapping_tree;
1410 	map_length = length;
1411 	ret = btrfs_map_block(map_tree, READ, logical,
1412 			      &map_length, NULL, 0);
1413 
1414 	if (map_length < length + size)
1415 		return 1;
1416 	return 0;
1417 }
1418 
1419 /*
1420  * in order to insert checksums into the metadata in large chunks,
1421  * we wait until bio submission time.   All the pages in the bio are
1422  * checksummed and sums are attached onto the ordered extent record.
1423  *
1424  * At IO completion time the cums attached on the ordered extent record
1425  * are inserted into the btree
1426  */
1427 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1428 				    struct bio *bio, int mirror_num,
1429 				    unsigned long bio_flags)
1430 {
1431 	struct btrfs_root *root = BTRFS_I(inode)->root;
1432 	int ret = 0;
1433 
1434 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1435 	BUG_ON(ret);
1436 	return 0;
1437 }
1438 
1439 /*
1440  * in order to insert checksums into the metadata in large chunks,
1441  * we wait until bio submission time.   All the pages in the bio are
1442  * checksummed and sums are attached onto the ordered extent record.
1443  *
1444  * At IO completion time the cums attached on the ordered extent record
1445  * are inserted into the btree
1446  */
1447 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1448 			  int mirror_num, unsigned long bio_flags)
1449 {
1450 	struct btrfs_root *root = BTRFS_I(inode)->root;
1451 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1452 }
1453 
1454 /*
1455  * extent_io.c submission hook. This does the right thing for csum calculation
1456  * on write, or reading the csums from the tree before a read
1457  */
1458 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1459 			  int mirror_num, unsigned long bio_flags)
1460 {
1461 	struct btrfs_root *root = BTRFS_I(inode)->root;
1462 	int ret = 0;
1463 	int skip_sum;
1464 
1465 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1466 
1467 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1468 	BUG_ON(ret);
1469 
1470 	if (!(rw & (1 << BIO_RW))) {
1471 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1472 			return btrfs_submit_compressed_read(inode, bio,
1473 						    mirror_num, bio_flags);
1474 		} else if (!skip_sum)
1475 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1476 		goto mapit;
1477 	} else if (!skip_sum) {
1478 		/* csum items have already been cloned */
1479 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1480 			goto mapit;
1481 		/* we're doing a write, do the async checksumming */
1482 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1483 				   inode, rw, bio, mirror_num,
1484 				   bio_flags, __btrfs_submit_bio_start,
1485 				   __btrfs_submit_bio_done);
1486 	}
1487 
1488 mapit:
1489 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491 
1492 /*
1493  * given a list of ordered sums record them in the inode.  This happens
1494  * at IO completion time based on sums calculated at bio submission time.
1495  */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497 			     struct inode *inode, u64 file_offset,
1498 			     struct list_head *list)
1499 {
1500 	struct btrfs_ordered_sum *sum;
1501 
1502 	btrfs_set_trans_block_group(trans, inode);
1503 
1504 	list_for_each_entry(sum, list, list) {
1505 		btrfs_csum_file_blocks(trans,
1506 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507 	}
1508 	return 0;
1509 }
1510 
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1512 {
1513 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514 		WARN_ON(1);
1515 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516 				   GFP_NOFS);
1517 }
1518 
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521 	struct page *page;
1522 	struct btrfs_work work;
1523 };
1524 
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1526 {
1527 	struct btrfs_writepage_fixup *fixup;
1528 	struct btrfs_ordered_extent *ordered;
1529 	struct page *page;
1530 	struct inode *inode;
1531 	u64 page_start;
1532 	u64 page_end;
1533 
1534 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1535 	page = fixup->page;
1536 again:
1537 	lock_page(page);
1538 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1539 		ClearPageChecked(page);
1540 		goto out_page;
1541 	}
1542 
1543 	inode = page->mapping->host;
1544 	page_start = page_offset(page);
1545 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1546 
1547 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1548 
1549 	/* already ordered? We're done */
1550 	if (PagePrivate2(page))
1551 		goto out;
1552 
1553 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1554 	if (ordered) {
1555 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1556 			      page_end, GFP_NOFS);
1557 		unlock_page(page);
1558 		btrfs_start_ordered_extent(inode, ordered, 1);
1559 		goto again;
1560 	}
1561 
1562 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1563 	ClearPageChecked(page);
1564 out:
1565 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1566 out_page:
1567 	unlock_page(page);
1568 	page_cache_release(page);
1569 }
1570 
1571 /*
1572  * There are a few paths in the higher layers of the kernel that directly
1573  * set the page dirty bit without asking the filesystem if it is a
1574  * good idea.  This causes problems because we want to make sure COW
1575  * properly happens and the data=ordered rules are followed.
1576  *
1577  * In our case any range that doesn't have the ORDERED bit set
1578  * hasn't been properly setup for IO.  We kick off an async process
1579  * to fix it up.  The async helper will wait for ordered extents, set
1580  * the delalloc bit and make it safe to write the page.
1581  */
1582 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1583 {
1584 	struct inode *inode = page->mapping->host;
1585 	struct btrfs_writepage_fixup *fixup;
1586 	struct btrfs_root *root = BTRFS_I(inode)->root;
1587 
1588 	/* this page is properly in the ordered list */
1589 	if (TestClearPagePrivate2(page))
1590 		return 0;
1591 
1592 	if (PageChecked(page))
1593 		return -EAGAIN;
1594 
1595 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1596 	if (!fixup)
1597 		return -EAGAIN;
1598 
1599 	SetPageChecked(page);
1600 	page_cache_get(page);
1601 	fixup->work.func = btrfs_writepage_fixup_worker;
1602 	fixup->page = page;
1603 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1604 	return -EAGAIN;
1605 }
1606 
1607 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1608 				       struct inode *inode, u64 file_pos,
1609 				       u64 disk_bytenr, u64 disk_num_bytes,
1610 				       u64 num_bytes, u64 ram_bytes,
1611 				       u8 compression, u8 encryption,
1612 				       u16 other_encoding, int extent_type)
1613 {
1614 	struct btrfs_root *root = BTRFS_I(inode)->root;
1615 	struct btrfs_file_extent_item *fi;
1616 	struct btrfs_path *path;
1617 	struct extent_buffer *leaf;
1618 	struct btrfs_key ins;
1619 	u64 hint;
1620 	int ret;
1621 
1622 	path = btrfs_alloc_path();
1623 	BUG_ON(!path);
1624 
1625 	path->leave_spinning = 1;
1626 
1627 	/*
1628 	 * we may be replacing one extent in the tree with another.
1629 	 * The new extent is pinned in the extent map, and we don't want
1630 	 * to drop it from the cache until it is completely in the btree.
1631 	 *
1632 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1633 	 * the caller is expected to unpin it and allow it to be merged
1634 	 * with the others.
1635 	 */
1636 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1637 				 &hint, 0);
1638 	BUG_ON(ret);
1639 
1640 	ins.objectid = inode->i_ino;
1641 	ins.offset = file_pos;
1642 	ins.type = BTRFS_EXTENT_DATA_KEY;
1643 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1644 	BUG_ON(ret);
1645 	leaf = path->nodes[0];
1646 	fi = btrfs_item_ptr(leaf, path->slots[0],
1647 			    struct btrfs_file_extent_item);
1648 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1649 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1650 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1651 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1652 	btrfs_set_file_extent_offset(leaf, fi, 0);
1653 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1654 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1655 	btrfs_set_file_extent_compression(leaf, fi, compression);
1656 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1657 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1658 
1659 	btrfs_unlock_up_safe(path, 1);
1660 	btrfs_set_lock_blocking(leaf);
1661 
1662 	btrfs_mark_buffer_dirty(leaf);
1663 
1664 	inode_add_bytes(inode, num_bytes);
1665 
1666 	ins.objectid = disk_bytenr;
1667 	ins.offset = disk_num_bytes;
1668 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1669 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1670 					root->root_key.objectid,
1671 					inode->i_ino, file_pos, &ins);
1672 	BUG_ON(ret);
1673 	btrfs_free_path(path);
1674 
1675 	return 0;
1676 }
1677 
1678 /*
1679  * helper function for btrfs_finish_ordered_io, this
1680  * just reads in some of the csum leaves to prime them into ram
1681  * before we start the transaction.  It limits the amount of btree
1682  * reads required while inside the transaction.
1683  */
1684 static noinline void reada_csum(struct btrfs_root *root,
1685 				struct btrfs_path *path,
1686 				struct btrfs_ordered_extent *ordered_extent)
1687 {
1688 	struct btrfs_ordered_sum *sum;
1689 	u64 bytenr;
1690 
1691 	sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1692 			 list);
1693 	bytenr = sum->sums[0].bytenr;
1694 
1695 	/*
1696 	 * we don't care about the results, the point of this search is
1697 	 * just to get the btree leaves into ram
1698 	 */
1699 	btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1700 }
1701 
1702 /* as ordered data IO finishes, this gets called so we can finish
1703  * an ordered extent if the range of bytes in the file it covers are
1704  * fully written.
1705  */
1706 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1707 {
1708 	struct btrfs_root *root = BTRFS_I(inode)->root;
1709 	struct btrfs_trans_handle *trans;
1710 	struct btrfs_ordered_extent *ordered_extent = NULL;
1711 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1712 	struct btrfs_path *path;
1713 	int compressed = 0;
1714 	int ret;
1715 
1716 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1717 	if (!ret)
1718 		return 0;
1719 
1720 	/*
1721 	 * before we join the transaction, try to do some of our IO.
1722 	 * This will limit the amount of IO that we have to do with
1723 	 * the transaction running.  We're unlikely to need to do any
1724 	 * IO if the file extents are new, the disk_i_size checks
1725 	 * covers the most common case.
1726 	 */
1727 	if (start < BTRFS_I(inode)->disk_i_size) {
1728 		path = btrfs_alloc_path();
1729 		if (path) {
1730 			ret = btrfs_lookup_file_extent(NULL, root, path,
1731 						       inode->i_ino,
1732 						       start, 0);
1733 			ordered_extent = btrfs_lookup_ordered_extent(inode,
1734 								     start);
1735 			if (!list_empty(&ordered_extent->list)) {
1736 				btrfs_release_path(root, path);
1737 				reada_csum(root, path, ordered_extent);
1738 			}
1739 			btrfs_free_path(path);
1740 		}
1741 	}
1742 
1743 	if (!ordered_extent)
1744 		ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1745 	BUG_ON(!ordered_extent);
1746 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1747 		BUG_ON(!list_empty(&ordered_extent->list));
1748 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1749 		if (!ret) {
1750 			trans = btrfs_join_transaction(root, 1);
1751 			ret = btrfs_update_inode(trans, root, inode);
1752 			BUG_ON(ret);
1753 			btrfs_end_transaction(trans, root);
1754 		}
1755 		goto out;
1756 	}
1757 
1758 	lock_extent(io_tree, ordered_extent->file_offset,
1759 		    ordered_extent->file_offset + ordered_extent->len - 1,
1760 		    GFP_NOFS);
1761 
1762 	trans = btrfs_join_transaction(root, 1);
1763 
1764 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1765 		compressed = 1;
1766 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1767 		BUG_ON(compressed);
1768 		ret = btrfs_mark_extent_written(trans, inode,
1769 						ordered_extent->file_offset,
1770 						ordered_extent->file_offset +
1771 						ordered_extent->len);
1772 		BUG_ON(ret);
1773 	} else {
1774 		ret = insert_reserved_file_extent(trans, inode,
1775 						ordered_extent->file_offset,
1776 						ordered_extent->start,
1777 						ordered_extent->disk_len,
1778 						ordered_extent->len,
1779 						ordered_extent->len,
1780 						compressed, 0, 0,
1781 						BTRFS_FILE_EXTENT_REG);
1782 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1783 				   ordered_extent->file_offset,
1784 				   ordered_extent->len);
1785 		BUG_ON(ret);
1786 	}
1787 	unlock_extent(io_tree, ordered_extent->file_offset,
1788 		    ordered_extent->file_offset + ordered_extent->len - 1,
1789 		    GFP_NOFS);
1790 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1791 			  &ordered_extent->list);
1792 
1793 	/* this also removes the ordered extent from the tree */
1794 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1795 	ret = btrfs_update_inode(trans, root, inode);
1796 	BUG_ON(ret);
1797 	btrfs_end_transaction(trans, root);
1798 out:
1799 	/* once for us */
1800 	btrfs_put_ordered_extent(ordered_extent);
1801 	/* once for the tree */
1802 	btrfs_put_ordered_extent(ordered_extent);
1803 
1804 	return 0;
1805 }
1806 
1807 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1808 				struct extent_state *state, int uptodate)
1809 {
1810 	ClearPagePrivate2(page);
1811 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1812 }
1813 
1814 /*
1815  * When IO fails, either with EIO or csum verification fails, we
1816  * try other mirrors that might have a good copy of the data.  This
1817  * io_failure_record is used to record state as we go through all the
1818  * mirrors.  If another mirror has good data, the page is set up to date
1819  * and things continue.  If a good mirror can't be found, the original
1820  * bio end_io callback is called to indicate things have failed.
1821  */
1822 struct io_failure_record {
1823 	struct page *page;
1824 	u64 start;
1825 	u64 len;
1826 	u64 logical;
1827 	unsigned long bio_flags;
1828 	int last_mirror;
1829 };
1830 
1831 static int btrfs_io_failed_hook(struct bio *failed_bio,
1832 			 struct page *page, u64 start, u64 end,
1833 			 struct extent_state *state)
1834 {
1835 	struct io_failure_record *failrec = NULL;
1836 	u64 private;
1837 	struct extent_map *em;
1838 	struct inode *inode = page->mapping->host;
1839 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1840 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1841 	struct bio *bio;
1842 	int num_copies;
1843 	int ret;
1844 	int rw;
1845 	u64 logical;
1846 
1847 	ret = get_state_private(failure_tree, start, &private);
1848 	if (ret) {
1849 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1850 		if (!failrec)
1851 			return -ENOMEM;
1852 		failrec->start = start;
1853 		failrec->len = end - start + 1;
1854 		failrec->last_mirror = 0;
1855 		failrec->bio_flags = 0;
1856 
1857 		read_lock(&em_tree->lock);
1858 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1859 		if (em->start > start || em->start + em->len < start) {
1860 			free_extent_map(em);
1861 			em = NULL;
1862 		}
1863 		read_unlock(&em_tree->lock);
1864 
1865 		if (!em || IS_ERR(em)) {
1866 			kfree(failrec);
1867 			return -EIO;
1868 		}
1869 		logical = start - em->start;
1870 		logical = em->block_start + logical;
1871 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1872 			logical = em->block_start;
1873 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1874 		}
1875 		failrec->logical = logical;
1876 		free_extent_map(em);
1877 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1878 				EXTENT_DIRTY, GFP_NOFS);
1879 		set_state_private(failure_tree, start,
1880 				 (u64)(unsigned long)failrec);
1881 	} else {
1882 		failrec = (struct io_failure_record *)(unsigned long)private;
1883 	}
1884 	num_copies = btrfs_num_copies(
1885 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1886 			      failrec->logical, failrec->len);
1887 	failrec->last_mirror++;
1888 	if (!state) {
1889 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1890 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1891 						    failrec->start,
1892 						    EXTENT_LOCKED);
1893 		if (state && state->start != failrec->start)
1894 			state = NULL;
1895 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1896 	}
1897 	if (!state || failrec->last_mirror > num_copies) {
1898 		set_state_private(failure_tree, failrec->start, 0);
1899 		clear_extent_bits(failure_tree, failrec->start,
1900 				  failrec->start + failrec->len - 1,
1901 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1902 		kfree(failrec);
1903 		return -EIO;
1904 	}
1905 	bio = bio_alloc(GFP_NOFS, 1);
1906 	bio->bi_private = state;
1907 	bio->bi_end_io = failed_bio->bi_end_io;
1908 	bio->bi_sector = failrec->logical >> 9;
1909 	bio->bi_bdev = failed_bio->bi_bdev;
1910 	bio->bi_size = 0;
1911 
1912 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1913 	if (failed_bio->bi_rw & (1 << BIO_RW))
1914 		rw = WRITE;
1915 	else
1916 		rw = READ;
1917 
1918 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1919 						      failrec->last_mirror,
1920 						      failrec->bio_flags);
1921 	return 0;
1922 }
1923 
1924 /*
1925  * each time an IO finishes, we do a fast check in the IO failure tree
1926  * to see if we need to process or clean up an io_failure_record
1927  */
1928 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1929 {
1930 	u64 private;
1931 	u64 private_failure;
1932 	struct io_failure_record *failure;
1933 	int ret;
1934 
1935 	private = 0;
1936 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1937 			     (u64)-1, 1, EXTENT_DIRTY)) {
1938 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1939 					start, &private_failure);
1940 		if (ret == 0) {
1941 			failure = (struct io_failure_record *)(unsigned long)
1942 				   private_failure;
1943 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1944 					  failure->start, 0);
1945 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1946 					  failure->start,
1947 					  failure->start + failure->len - 1,
1948 					  EXTENT_DIRTY | EXTENT_LOCKED,
1949 					  GFP_NOFS);
1950 			kfree(failure);
1951 		}
1952 	}
1953 	return 0;
1954 }
1955 
1956 /*
1957  * when reads are done, we need to check csums to verify the data is correct
1958  * if there's a match, we allow the bio to finish.  If not, we go through
1959  * the io_failure_record routines to find good copies
1960  */
1961 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1962 			       struct extent_state *state)
1963 {
1964 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1965 	struct inode *inode = page->mapping->host;
1966 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1967 	char *kaddr;
1968 	u64 private = ~(u32)0;
1969 	int ret;
1970 	struct btrfs_root *root = BTRFS_I(inode)->root;
1971 	u32 csum = ~(u32)0;
1972 
1973 	if (PageChecked(page)) {
1974 		ClearPageChecked(page);
1975 		goto good;
1976 	}
1977 
1978 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1979 		return 0;
1980 
1981 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1982 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1983 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1984 				  GFP_NOFS);
1985 		return 0;
1986 	}
1987 
1988 	if (state && state->start == start) {
1989 		private = state->private;
1990 		ret = 0;
1991 	} else {
1992 		ret = get_state_private(io_tree, start, &private);
1993 	}
1994 	kaddr = kmap_atomic(page, KM_USER0);
1995 	if (ret)
1996 		goto zeroit;
1997 
1998 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1999 	btrfs_csum_final(csum, (char *)&csum);
2000 	if (csum != private)
2001 		goto zeroit;
2002 
2003 	kunmap_atomic(kaddr, KM_USER0);
2004 good:
2005 	/* if the io failure tree for this inode is non-empty,
2006 	 * check to see if we've recovered from a failed IO
2007 	 */
2008 	btrfs_clean_io_failures(inode, start);
2009 	return 0;
2010 
2011 zeroit:
2012 	if (printk_ratelimit()) {
2013 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2014 		       "private %llu\n", page->mapping->host->i_ino,
2015 		       (unsigned long long)start, csum,
2016 		       (unsigned long long)private);
2017 	}
2018 	memset(kaddr + offset, 1, end - start + 1);
2019 	flush_dcache_page(page);
2020 	kunmap_atomic(kaddr, KM_USER0);
2021 	if (private == 0)
2022 		return 0;
2023 	return -EIO;
2024 }
2025 
2026 struct delayed_iput {
2027 	struct list_head list;
2028 	struct inode *inode;
2029 };
2030 
2031 void btrfs_add_delayed_iput(struct inode *inode)
2032 {
2033 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2034 	struct delayed_iput *delayed;
2035 
2036 	if (atomic_add_unless(&inode->i_count, -1, 1))
2037 		return;
2038 
2039 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2040 	delayed->inode = inode;
2041 
2042 	spin_lock(&fs_info->delayed_iput_lock);
2043 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2044 	spin_unlock(&fs_info->delayed_iput_lock);
2045 }
2046 
2047 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2048 {
2049 	LIST_HEAD(list);
2050 	struct btrfs_fs_info *fs_info = root->fs_info;
2051 	struct delayed_iput *delayed;
2052 	int empty;
2053 
2054 	spin_lock(&fs_info->delayed_iput_lock);
2055 	empty = list_empty(&fs_info->delayed_iputs);
2056 	spin_unlock(&fs_info->delayed_iput_lock);
2057 	if (empty)
2058 		return;
2059 
2060 	down_read(&root->fs_info->cleanup_work_sem);
2061 	spin_lock(&fs_info->delayed_iput_lock);
2062 	list_splice_init(&fs_info->delayed_iputs, &list);
2063 	spin_unlock(&fs_info->delayed_iput_lock);
2064 
2065 	while (!list_empty(&list)) {
2066 		delayed = list_entry(list.next, struct delayed_iput, list);
2067 		list_del(&delayed->list);
2068 		iput(delayed->inode);
2069 		kfree(delayed);
2070 	}
2071 	up_read(&root->fs_info->cleanup_work_sem);
2072 }
2073 
2074 /*
2075  * This creates an orphan entry for the given inode in case something goes
2076  * wrong in the middle of an unlink/truncate.
2077  */
2078 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2079 {
2080 	struct btrfs_root *root = BTRFS_I(inode)->root;
2081 	int ret = 0;
2082 
2083 	spin_lock(&root->list_lock);
2084 
2085 	/* already on the orphan list, we're good */
2086 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2087 		spin_unlock(&root->list_lock);
2088 		return 0;
2089 	}
2090 
2091 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2092 
2093 	spin_unlock(&root->list_lock);
2094 
2095 	/*
2096 	 * insert an orphan item to track this unlinked/truncated file
2097 	 */
2098 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2099 
2100 	return ret;
2101 }
2102 
2103 /*
2104  * We have done the truncate/delete so we can go ahead and remove the orphan
2105  * item for this particular inode.
2106  */
2107 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2108 {
2109 	struct btrfs_root *root = BTRFS_I(inode)->root;
2110 	int ret = 0;
2111 
2112 	spin_lock(&root->list_lock);
2113 
2114 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2115 		spin_unlock(&root->list_lock);
2116 		return 0;
2117 	}
2118 
2119 	list_del_init(&BTRFS_I(inode)->i_orphan);
2120 	if (!trans) {
2121 		spin_unlock(&root->list_lock);
2122 		return 0;
2123 	}
2124 
2125 	spin_unlock(&root->list_lock);
2126 
2127 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2128 
2129 	return ret;
2130 }
2131 
2132 /*
2133  * this cleans up any orphans that may be left on the list from the last use
2134  * of this root.
2135  */
2136 void btrfs_orphan_cleanup(struct btrfs_root *root)
2137 {
2138 	struct btrfs_path *path;
2139 	struct extent_buffer *leaf;
2140 	struct btrfs_item *item;
2141 	struct btrfs_key key, found_key;
2142 	struct btrfs_trans_handle *trans;
2143 	struct inode *inode;
2144 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2145 
2146 	if (!xchg(&root->clean_orphans, 0))
2147 		return;
2148 
2149 	path = btrfs_alloc_path();
2150 	BUG_ON(!path);
2151 	path->reada = -1;
2152 
2153 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2154 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2155 	key.offset = (u64)-1;
2156 
2157 	while (1) {
2158 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2159 		if (ret < 0) {
2160 			printk(KERN_ERR "Error searching slot for orphan: %d"
2161 			       "\n", ret);
2162 			break;
2163 		}
2164 
2165 		/*
2166 		 * if ret == 0 means we found what we were searching for, which
2167 		 * is weird, but possible, so only screw with path if we didnt
2168 		 * find the key and see if we have stuff that matches
2169 		 */
2170 		if (ret > 0) {
2171 			if (path->slots[0] == 0)
2172 				break;
2173 			path->slots[0]--;
2174 		}
2175 
2176 		/* pull out the item */
2177 		leaf = path->nodes[0];
2178 		item = btrfs_item_nr(leaf, path->slots[0]);
2179 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2180 
2181 		/* make sure the item matches what we want */
2182 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2183 			break;
2184 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2185 			break;
2186 
2187 		/* release the path since we're done with it */
2188 		btrfs_release_path(root, path);
2189 
2190 		/*
2191 		 * this is where we are basically btrfs_lookup, without the
2192 		 * crossing root thing.  we store the inode number in the
2193 		 * offset of the orphan item.
2194 		 */
2195 		found_key.objectid = found_key.offset;
2196 		found_key.type = BTRFS_INODE_ITEM_KEY;
2197 		found_key.offset = 0;
2198 		inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2199 		if (IS_ERR(inode))
2200 			break;
2201 
2202 		/*
2203 		 * add this inode to the orphan list so btrfs_orphan_del does
2204 		 * the proper thing when we hit it
2205 		 */
2206 		spin_lock(&root->list_lock);
2207 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2208 		spin_unlock(&root->list_lock);
2209 
2210 		/*
2211 		 * if this is a bad inode, means we actually succeeded in
2212 		 * removing the inode, but not the orphan record, which means
2213 		 * we need to manually delete the orphan since iput will just
2214 		 * do a destroy_inode
2215 		 */
2216 		if (is_bad_inode(inode)) {
2217 			trans = btrfs_start_transaction(root, 1);
2218 			btrfs_orphan_del(trans, inode);
2219 			btrfs_end_transaction(trans, root);
2220 			iput(inode);
2221 			continue;
2222 		}
2223 
2224 		/* if we have links, this was a truncate, lets do that */
2225 		if (inode->i_nlink) {
2226 			nr_truncate++;
2227 			btrfs_truncate(inode);
2228 		} else {
2229 			nr_unlink++;
2230 		}
2231 
2232 		/* this will do delete_inode and everything for us */
2233 		iput(inode);
2234 	}
2235 
2236 	if (nr_unlink)
2237 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2238 	if (nr_truncate)
2239 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2240 
2241 	btrfs_free_path(path);
2242 }
2243 
2244 /*
2245  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2246  * don't find any xattrs, we know there can't be any acls.
2247  *
2248  * slot is the slot the inode is in, objectid is the objectid of the inode
2249  */
2250 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2251 					  int slot, u64 objectid)
2252 {
2253 	u32 nritems = btrfs_header_nritems(leaf);
2254 	struct btrfs_key found_key;
2255 	int scanned = 0;
2256 
2257 	slot++;
2258 	while (slot < nritems) {
2259 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2260 
2261 		/* we found a different objectid, there must not be acls */
2262 		if (found_key.objectid != objectid)
2263 			return 0;
2264 
2265 		/* we found an xattr, assume we've got an acl */
2266 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2267 			return 1;
2268 
2269 		/*
2270 		 * we found a key greater than an xattr key, there can't
2271 		 * be any acls later on
2272 		 */
2273 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2274 			return 0;
2275 
2276 		slot++;
2277 		scanned++;
2278 
2279 		/*
2280 		 * it goes inode, inode backrefs, xattrs, extents,
2281 		 * so if there are a ton of hard links to an inode there can
2282 		 * be a lot of backrefs.  Don't waste time searching too hard,
2283 		 * this is just an optimization
2284 		 */
2285 		if (scanned >= 8)
2286 			break;
2287 	}
2288 	/* we hit the end of the leaf before we found an xattr or
2289 	 * something larger than an xattr.  We have to assume the inode
2290 	 * has acls
2291 	 */
2292 	return 1;
2293 }
2294 
2295 /*
2296  * read an inode from the btree into the in-memory inode
2297  */
2298 static void btrfs_read_locked_inode(struct inode *inode)
2299 {
2300 	struct btrfs_path *path;
2301 	struct extent_buffer *leaf;
2302 	struct btrfs_inode_item *inode_item;
2303 	struct btrfs_timespec *tspec;
2304 	struct btrfs_root *root = BTRFS_I(inode)->root;
2305 	struct btrfs_key location;
2306 	int maybe_acls;
2307 	u64 alloc_group_block;
2308 	u32 rdev;
2309 	int ret;
2310 
2311 	path = btrfs_alloc_path();
2312 	BUG_ON(!path);
2313 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2314 
2315 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2316 	if (ret)
2317 		goto make_bad;
2318 
2319 	leaf = path->nodes[0];
2320 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2321 				    struct btrfs_inode_item);
2322 
2323 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2324 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2325 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2326 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2327 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2328 
2329 	tspec = btrfs_inode_atime(inode_item);
2330 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2331 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2332 
2333 	tspec = btrfs_inode_mtime(inode_item);
2334 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2335 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2336 
2337 	tspec = btrfs_inode_ctime(inode_item);
2338 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2339 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2340 
2341 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2342 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2343 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2344 	inode->i_generation = BTRFS_I(inode)->generation;
2345 	inode->i_rdev = 0;
2346 	rdev = btrfs_inode_rdev(leaf, inode_item);
2347 
2348 	BTRFS_I(inode)->index_cnt = (u64)-1;
2349 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2350 
2351 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2352 
2353 	/*
2354 	 * try to precache a NULL acl entry for files that don't have
2355 	 * any xattrs or acls
2356 	 */
2357 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2358 	if (!maybe_acls)
2359 		cache_no_acl(inode);
2360 
2361 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2362 						alloc_group_block, 0);
2363 	btrfs_free_path(path);
2364 	inode_item = NULL;
2365 
2366 	switch (inode->i_mode & S_IFMT) {
2367 	case S_IFREG:
2368 		inode->i_mapping->a_ops = &btrfs_aops;
2369 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2370 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2371 		inode->i_fop = &btrfs_file_operations;
2372 		inode->i_op = &btrfs_file_inode_operations;
2373 		break;
2374 	case S_IFDIR:
2375 		inode->i_fop = &btrfs_dir_file_operations;
2376 		if (root == root->fs_info->tree_root)
2377 			inode->i_op = &btrfs_dir_ro_inode_operations;
2378 		else
2379 			inode->i_op = &btrfs_dir_inode_operations;
2380 		break;
2381 	case S_IFLNK:
2382 		inode->i_op = &btrfs_symlink_inode_operations;
2383 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2384 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2385 		break;
2386 	default:
2387 		inode->i_op = &btrfs_special_inode_operations;
2388 		init_special_inode(inode, inode->i_mode, rdev);
2389 		break;
2390 	}
2391 
2392 	btrfs_update_iflags(inode);
2393 	return;
2394 
2395 make_bad:
2396 	btrfs_free_path(path);
2397 	make_bad_inode(inode);
2398 }
2399 
2400 /*
2401  * given a leaf and an inode, copy the inode fields into the leaf
2402  */
2403 static void fill_inode_item(struct btrfs_trans_handle *trans,
2404 			    struct extent_buffer *leaf,
2405 			    struct btrfs_inode_item *item,
2406 			    struct inode *inode)
2407 {
2408 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2409 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2410 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2411 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2412 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2413 
2414 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2415 			       inode->i_atime.tv_sec);
2416 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2417 				inode->i_atime.tv_nsec);
2418 
2419 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2420 			       inode->i_mtime.tv_sec);
2421 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2422 				inode->i_mtime.tv_nsec);
2423 
2424 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2425 			       inode->i_ctime.tv_sec);
2426 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2427 				inode->i_ctime.tv_nsec);
2428 
2429 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2430 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2431 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2432 	btrfs_set_inode_transid(leaf, item, trans->transid);
2433 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2434 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2435 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2436 }
2437 
2438 /*
2439  * copy everything in the in-memory inode into the btree.
2440  */
2441 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2442 				struct btrfs_root *root, struct inode *inode)
2443 {
2444 	struct btrfs_inode_item *inode_item;
2445 	struct btrfs_path *path;
2446 	struct extent_buffer *leaf;
2447 	int ret;
2448 
2449 	path = btrfs_alloc_path();
2450 	BUG_ON(!path);
2451 	path->leave_spinning = 1;
2452 	ret = btrfs_lookup_inode(trans, root, path,
2453 				 &BTRFS_I(inode)->location, 1);
2454 	if (ret) {
2455 		if (ret > 0)
2456 			ret = -ENOENT;
2457 		goto failed;
2458 	}
2459 
2460 	btrfs_unlock_up_safe(path, 1);
2461 	leaf = path->nodes[0];
2462 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2463 				  struct btrfs_inode_item);
2464 
2465 	fill_inode_item(trans, leaf, inode_item, inode);
2466 	btrfs_mark_buffer_dirty(leaf);
2467 	btrfs_set_inode_last_trans(trans, inode);
2468 	ret = 0;
2469 failed:
2470 	btrfs_free_path(path);
2471 	return ret;
2472 }
2473 
2474 
2475 /*
2476  * unlink helper that gets used here in inode.c and in the tree logging
2477  * recovery code.  It remove a link in a directory with a given name, and
2478  * also drops the back refs in the inode to the directory
2479  */
2480 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2481 		       struct btrfs_root *root,
2482 		       struct inode *dir, struct inode *inode,
2483 		       const char *name, int name_len)
2484 {
2485 	struct btrfs_path *path;
2486 	int ret = 0;
2487 	struct extent_buffer *leaf;
2488 	struct btrfs_dir_item *di;
2489 	struct btrfs_key key;
2490 	u64 index;
2491 
2492 	path = btrfs_alloc_path();
2493 	if (!path) {
2494 		ret = -ENOMEM;
2495 		goto err;
2496 	}
2497 
2498 	path->leave_spinning = 1;
2499 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2500 				    name, name_len, -1);
2501 	if (IS_ERR(di)) {
2502 		ret = PTR_ERR(di);
2503 		goto err;
2504 	}
2505 	if (!di) {
2506 		ret = -ENOENT;
2507 		goto err;
2508 	}
2509 	leaf = path->nodes[0];
2510 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2511 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2512 	if (ret)
2513 		goto err;
2514 	btrfs_release_path(root, path);
2515 
2516 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2517 				  inode->i_ino,
2518 				  dir->i_ino, &index);
2519 	if (ret) {
2520 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2521 		       "inode %lu parent %lu\n", name_len, name,
2522 		       inode->i_ino, dir->i_ino);
2523 		goto err;
2524 	}
2525 
2526 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2527 					 index, name, name_len, -1);
2528 	if (IS_ERR(di)) {
2529 		ret = PTR_ERR(di);
2530 		goto err;
2531 	}
2532 	if (!di) {
2533 		ret = -ENOENT;
2534 		goto err;
2535 	}
2536 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2537 	btrfs_release_path(root, path);
2538 
2539 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2540 					 inode, dir->i_ino);
2541 	BUG_ON(ret != 0 && ret != -ENOENT);
2542 
2543 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2544 					   dir, index);
2545 	BUG_ON(ret);
2546 err:
2547 	btrfs_free_path(path);
2548 	if (ret)
2549 		goto out;
2550 
2551 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2552 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2553 	btrfs_update_inode(trans, root, dir);
2554 	btrfs_drop_nlink(inode);
2555 	ret = btrfs_update_inode(trans, root, inode);
2556 out:
2557 	return ret;
2558 }
2559 
2560 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2561 {
2562 	struct btrfs_root *root;
2563 	struct btrfs_trans_handle *trans;
2564 	struct inode *inode = dentry->d_inode;
2565 	int ret;
2566 	unsigned long nr = 0;
2567 
2568 	root = BTRFS_I(dir)->root;
2569 
2570 	/*
2571 	 * 5 items for unlink inode
2572 	 * 1 for orphan
2573 	 */
2574 	ret = btrfs_reserve_metadata_space(root, 6);
2575 	if (ret)
2576 		return ret;
2577 
2578 	trans = btrfs_start_transaction(root, 1);
2579 	if (IS_ERR(trans)) {
2580 		btrfs_unreserve_metadata_space(root, 6);
2581 		return PTR_ERR(trans);
2582 	}
2583 
2584 	btrfs_set_trans_block_group(trans, dir);
2585 
2586 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2587 
2588 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2589 				 dentry->d_name.name, dentry->d_name.len);
2590 
2591 	if (inode->i_nlink == 0)
2592 		ret = btrfs_orphan_add(trans, inode);
2593 
2594 	nr = trans->blocks_used;
2595 
2596 	btrfs_end_transaction_throttle(trans, root);
2597 	btrfs_unreserve_metadata_space(root, 6);
2598 	btrfs_btree_balance_dirty(root, nr);
2599 	return ret;
2600 }
2601 
2602 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2603 			struct btrfs_root *root,
2604 			struct inode *dir, u64 objectid,
2605 			const char *name, int name_len)
2606 {
2607 	struct btrfs_path *path;
2608 	struct extent_buffer *leaf;
2609 	struct btrfs_dir_item *di;
2610 	struct btrfs_key key;
2611 	u64 index;
2612 	int ret;
2613 
2614 	path = btrfs_alloc_path();
2615 	if (!path)
2616 		return -ENOMEM;
2617 
2618 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2619 				   name, name_len, -1);
2620 	BUG_ON(!di || IS_ERR(di));
2621 
2622 	leaf = path->nodes[0];
2623 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2624 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2625 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2626 	BUG_ON(ret);
2627 	btrfs_release_path(root, path);
2628 
2629 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2630 				 objectid, root->root_key.objectid,
2631 				 dir->i_ino, &index, name, name_len);
2632 	if (ret < 0) {
2633 		BUG_ON(ret != -ENOENT);
2634 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2635 						 name, name_len);
2636 		BUG_ON(!di || IS_ERR(di));
2637 
2638 		leaf = path->nodes[0];
2639 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2640 		btrfs_release_path(root, path);
2641 		index = key.offset;
2642 	}
2643 
2644 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2645 					 index, name, name_len, -1);
2646 	BUG_ON(!di || IS_ERR(di));
2647 
2648 	leaf = path->nodes[0];
2649 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2650 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2651 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2652 	BUG_ON(ret);
2653 	btrfs_release_path(root, path);
2654 
2655 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2656 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2657 	ret = btrfs_update_inode(trans, root, dir);
2658 	BUG_ON(ret);
2659 	dir->i_sb->s_dirt = 1;
2660 
2661 	btrfs_free_path(path);
2662 	return 0;
2663 }
2664 
2665 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2666 {
2667 	struct inode *inode = dentry->d_inode;
2668 	int err = 0;
2669 	int ret;
2670 	struct btrfs_root *root = BTRFS_I(dir)->root;
2671 	struct btrfs_trans_handle *trans;
2672 	unsigned long nr = 0;
2673 
2674 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2675 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2676 		return -ENOTEMPTY;
2677 
2678 	ret = btrfs_reserve_metadata_space(root, 5);
2679 	if (ret)
2680 		return ret;
2681 
2682 	trans = btrfs_start_transaction(root, 1);
2683 	if (IS_ERR(trans)) {
2684 		btrfs_unreserve_metadata_space(root, 5);
2685 		return PTR_ERR(trans);
2686 	}
2687 
2688 	btrfs_set_trans_block_group(trans, dir);
2689 
2690 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2691 		err = btrfs_unlink_subvol(trans, root, dir,
2692 					  BTRFS_I(inode)->location.objectid,
2693 					  dentry->d_name.name,
2694 					  dentry->d_name.len);
2695 		goto out;
2696 	}
2697 
2698 	err = btrfs_orphan_add(trans, inode);
2699 	if (err)
2700 		goto out;
2701 
2702 	/* now the directory is empty */
2703 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2704 				 dentry->d_name.name, dentry->d_name.len);
2705 	if (!err)
2706 		btrfs_i_size_write(inode, 0);
2707 out:
2708 	nr = trans->blocks_used;
2709 	ret = btrfs_end_transaction_throttle(trans, root);
2710 	btrfs_unreserve_metadata_space(root, 5);
2711 	btrfs_btree_balance_dirty(root, nr);
2712 
2713 	if (ret && !err)
2714 		err = ret;
2715 	return err;
2716 }
2717 
2718 #if 0
2719 /*
2720  * when truncating bytes in a file, it is possible to avoid reading
2721  * the leaves that contain only checksum items.  This can be the
2722  * majority of the IO required to delete a large file, but it must
2723  * be done carefully.
2724  *
2725  * The keys in the level just above the leaves are checked to make sure
2726  * the lowest key in a given leaf is a csum key, and starts at an offset
2727  * after the new  size.
2728  *
2729  * Then the key for the next leaf is checked to make sure it also has
2730  * a checksum item for the same file.  If it does, we know our target leaf
2731  * contains only checksum items, and it can be safely freed without reading
2732  * it.
2733  *
2734  * This is just an optimization targeted at large files.  It may do
2735  * nothing.  It will return 0 unless things went badly.
2736  */
2737 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2738 				     struct btrfs_root *root,
2739 				     struct btrfs_path *path,
2740 				     struct inode *inode, u64 new_size)
2741 {
2742 	struct btrfs_key key;
2743 	int ret;
2744 	int nritems;
2745 	struct btrfs_key found_key;
2746 	struct btrfs_key other_key;
2747 	struct btrfs_leaf_ref *ref;
2748 	u64 leaf_gen;
2749 	u64 leaf_start;
2750 
2751 	path->lowest_level = 1;
2752 	key.objectid = inode->i_ino;
2753 	key.type = BTRFS_CSUM_ITEM_KEY;
2754 	key.offset = new_size;
2755 again:
2756 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2757 	if (ret < 0)
2758 		goto out;
2759 
2760 	if (path->nodes[1] == NULL) {
2761 		ret = 0;
2762 		goto out;
2763 	}
2764 	ret = 0;
2765 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2766 	nritems = btrfs_header_nritems(path->nodes[1]);
2767 
2768 	if (!nritems)
2769 		goto out;
2770 
2771 	if (path->slots[1] >= nritems)
2772 		goto next_node;
2773 
2774 	/* did we find a key greater than anything we want to delete? */
2775 	if (found_key.objectid > inode->i_ino ||
2776 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2777 		goto out;
2778 
2779 	/* we check the next key in the node to make sure the leave contains
2780 	 * only checksum items.  This comparison doesn't work if our
2781 	 * leaf is the last one in the node
2782 	 */
2783 	if (path->slots[1] + 1 >= nritems) {
2784 next_node:
2785 		/* search forward from the last key in the node, this
2786 		 * will bring us into the next node in the tree
2787 		 */
2788 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2789 
2790 		/* unlikely, but we inc below, so check to be safe */
2791 		if (found_key.offset == (u64)-1)
2792 			goto out;
2793 
2794 		/* search_forward needs a path with locks held, do the
2795 		 * search again for the original key.  It is possible
2796 		 * this will race with a balance and return a path that
2797 		 * we could modify, but this drop is just an optimization
2798 		 * and is allowed to miss some leaves.
2799 		 */
2800 		btrfs_release_path(root, path);
2801 		found_key.offset++;
2802 
2803 		/* setup a max key for search_forward */
2804 		other_key.offset = (u64)-1;
2805 		other_key.type = key.type;
2806 		other_key.objectid = key.objectid;
2807 
2808 		path->keep_locks = 1;
2809 		ret = btrfs_search_forward(root, &found_key, &other_key,
2810 					   path, 0, 0);
2811 		path->keep_locks = 0;
2812 		if (ret || found_key.objectid != key.objectid ||
2813 		    found_key.type != key.type) {
2814 			ret = 0;
2815 			goto out;
2816 		}
2817 
2818 		key.offset = found_key.offset;
2819 		btrfs_release_path(root, path);
2820 		cond_resched();
2821 		goto again;
2822 	}
2823 
2824 	/* we know there's one more slot after us in the tree,
2825 	 * read that key so we can verify it is also a checksum item
2826 	 */
2827 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2828 
2829 	if (found_key.objectid < inode->i_ino)
2830 		goto next_key;
2831 
2832 	if (found_key.type != key.type || found_key.offset < new_size)
2833 		goto next_key;
2834 
2835 	/*
2836 	 * if the key for the next leaf isn't a csum key from this objectid,
2837 	 * we can't be sure there aren't good items inside this leaf.
2838 	 * Bail out
2839 	 */
2840 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2841 		goto out;
2842 
2843 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2844 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2845 	/*
2846 	 * it is safe to delete this leaf, it contains only
2847 	 * csum items from this inode at an offset >= new_size
2848 	 */
2849 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2850 	BUG_ON(ret);
2851 
2852 	if (root->ref_cows && leaf_gen < trans->transid) {
2853 		ref = btrfs_alloc_leaf_ref(root, 0);
2854 		if (ref) {
2855 			ref->root_gen = root->root_key.offset;
2856 			ref->bytenr = leaf_start;
2857 			ref->owner = 0;
2858 			ref->generation = leaf_gen;
2859 			ref->nritems = 0;
2860 
2861 			btrfs_sort_leaf_ref(ref);
2862 
2863 			ret = btrfs_add_leaf_ref(root, ref, 0);
2864 			WARN_ON(ret);
2865 			btrfs_free_leaf_ref(root, ref);
2866 		} else {
2867 			WARN_ON(1);
2868 		}
2869 	}
2870 next_key:
2871 	btrfs_release_path(root, path);
2872 
2873 	if (other_key.objectid == inode->i_ino &&
2874 	    other_key.type == key.type && other_key.offset > key.offset) {
2875 		key.offset = other_key.offset;
2876 		cond_resched();
2877 		goto again;
2878 	}
2879 	ret = 0;
2880 out:
2881 	/* fixup any changes we've made to the path */
2882 	path->lowest_level = 0;
2883 	path->keep_locks = 0;
2884 	btrfs_release_path(root, path);
2885 	return ret;
2886 }
2887 
2888 #endif
2889 
2890 /*
2891  * this can truncate away extent items, csum items and directory items.
2892  * It starts at a high offset and removes keys until it can't find
2893  * any higher than new_size
2894  *
2895  * csum items that cross the new i_size are truncated to the new size
2896  * as well.
2897  *
2898  * min_type is the minimum key type to truncate down to.  If set to 0, this
2899  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2900  */
2901 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2902 			       struct btrfs_root *root,
2903 			       struct inode *inode,
2904 			       u64 new_size, u32 min_type)
2905 {
2906 	struct btrfs_path *path;
2907 	struct extent_buffer *leaf;
2908 	struct btrfs_file_extent_item *fi;
2909 	struct btrfs_key key;
2910 	struct btrfs_key found_key;
2911 	u64 extent_start = 0;
2912 	u64 extent_num_bytes = 0;
2913 	u64 extent_offset = 0;
2914 	u64 item_end = 0;
2915 	u64 mask = root->sectorsize - 1;
2916 	u32 found_type = (u8)-1;
2917 	int found_extent;
2918 	int del_item;
2919 	int pending_del_nr = 0;
2920 	int pending_del_slot = 0;
2921 	int extent_type = -1;
2922 	int encoding;
2923 	int ret;
2924 	int err = 0;
2925 
2926 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2927 
2928 	if (root->ref_cows)
2929 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2930 
2931 	path = btrfs_alloc_path();
2932 	BUG_ON(!path);
2933 	path->reada = -1;
2934 
2935 	key.objectid = inode->i_ino;
2936 	key.offset = (u64)-1;
2937 	key.type = (u8)-1;
2938 
2939 search_again:
2940 	path->leave_spinning = 1;
2941 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2942 	if (ret < 0) {
2943 		err = ret;
2944 		goto out;
2945 	}
2946 
2947 	if (ret > 0) {
2948 		/* there are no items in the tree for us to truncate, we're
2949 		 * done
2950 		 */
2951 		if (path->slots[0] == 0)
2952 			goto out;
2953 		path->slots[0]--;
2954 	}
2955 
2956 	while (1) {
2957 		fi = NULL;
2958 		leaf = path->nodes[0];
2959 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2960 		found_type = btrfs_key_type(&found_key);
2961 		encoding = 0;
2962 
2963 		if (found_key.objectid != inode->i_ino)
2964 			break;
2965 
2966 		if (found_type < min_type)
2967 			break;
2968 
2969 		item_end = found_key.offset;
2970 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2971 			fi = btrfs_item_ptr(leaf, path->slots[0],
2972 					    struct btrfs_file_extent_item);
2973 			extent_type = btrfs_file_extent_type(leaf, fi);
2974 			encoding = btrfs_file_extent_compression(leaf, fi);
2975 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2976 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2977 
2978 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2979 				item_end +=
2980 				    btrfs_file_extent_num_bytes(leaf, fi);
2981 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2982 				item_end += btrfs_file_extent_inline_len(leaf,
2983 									 fi);
2984 			}
2985 			item_end--;
2986 		}
2987 		if (found_type > min_type) {
2988 			del_item = 1;
2989 		} else {
2990 			if (item_end < new_size)
2991 				break;
2992 			if (found_key.offset >= new_size)
2993 				del_item = 1;
2994 			else
2995 				del_item = 0;
2996 		}
2997 		found_extent = 0;
2998 		/* FIXME, shrink the extent if the ref count is only 1 */
2999 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3000 			goto delete;
3001 
3002 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3003 			u64 num_dec;
3004 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3005 			if (!del_item && !encoding) {
3006 				u64 orig_num_bytes =
3007 					btrfs_file_extent_num_bytes(leaf, fi);
3008 				extent_num_bytes = new_size -
3009 					found_key.offset + root->sectorsize - 1;
3010 				extent_num_bytes = extent_num_bytes &
3011 					~((u64)root->sectorsize - 1);
3012 				btrfs_set_file_extent_num_bytes(leaf, fi,
3013 							 extent_num_bytes);
3014 				num_dec = (orig_num_bytes -
3015 					   extent_num_bytes);
3016 				if (root->ref_cows && extent_start != 0)
3017 					inode_sub_bytes(inode, num_dec);
3018 				btrfs_mark_buffer_dirty(leaf);
3019 			} else {
3020 				extent_num_bytes =
3021 					btrfs_file_extent_disk_num_bytes(leaf,
3022 									 fi);
3023 				extent_offset = found_key.offset -
3024 					btrfs_file_extent_offset(leaf, fi);
3025 
3026 				/* FIXME blocksize != 4096 */
3027 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3028 				if (extent_start != 0) {
3029 					found_extent = 1;
3030 					if (root->ref_cows)
3031 						inode_sub_bytes(inode, num_dec);
3032 				}
3033 			}
3034 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3035 			/*
3036 			 * we can't truncate inline items that have had
3037 			 * special encodings
3038 			 */
3039 			if (!del_item &&
3040 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3041 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3042 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3043 				u32 size = new_size - found_key.offset;
3044 
3045 				if (root->ref_cows) {
3046 					inode_sub_bytes(inode, item_end + 1 -
3047 							new_size);
3048 				}
3049 				size =
3050 				    btrfs_file_extent_calc_inline_size(size);
3051 				ret = btrfs_truncate_item(trans, root, path,
3052 							  size, 1);
3053 				BUG_ON(ret);
3054 			} else if (root->ref_cows) {
3055 				inode_sub_bytes(inode, item_end + 1 -
3056 						found_key.offset);
3057 			}
3058 		}
3059 delete:
3060 		if (del_item) {
3061 			if (!pending_del_nr) {
3062 				/* no pending yet, add ourselves */
3063 				pending_del_slot = path->slots[0];
3064 				pending_del_nr = 1;
3065 			} else if (pending_del_nr &&
3066 				   path->slots[0] + 1 == pending_del_slot) {
3067 				/* hop on the pending chunk */
3068 				pending_del_nr++;
3069 				pending_del_slot = path->slots[0];
3070 			} else {
3071 				BUG();
3072 			}
3073 		} else {
3074 			break;
3075 		}
3076 		if (found_extent && root->ref_cows) {
3077 			btrfs_set_path_blocking(path);
3078 			ret = btrfs_free_extent(trans, root, extent_start,
3079 						extent_num_bytes, 0,
3080 						btrfs_header_owner(leaf),
3081 						inode->i_ino, extent_offset);
3082 			BUG_ON(ret);
3083 		}
3084 
3085 		if (found_type == BTRFS_INODE_ITEM_KEY)
3086 			break;
3087 
3088 		if (path->slots[0] == 0 ||
3089 		    path->slots[0] != pending_del_slot) {
3090 			if (root->ref_cows) {
3091 				err = -EAGAIN;
3092 				goto out;
3093 			}
3094 			if (pending_del_nr) {
3095 				ret = btrfs_del_items(trans, root, path,
3096 						pending_del_slot,
3097 						pending_del_nr);
3098 				BUG_ON(ret);
3099 				pending_del_nr = 0;
3100 			}
3101 			btrfs_release_path(root, path);
3102 			goto search_again;
3103 		} else {
3104 			path->slots[0]--;
3105 		}
3106 	}
3107 out:
3108 	if (pending_del_nr) {
3109 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3110 				      pending_del_nr);
3111 	}
3112 	btrfs_free_path(path);
3113 	return err;
3114 }
3115 
3116 /*
3117  * taken from block_truncate_page, but does cow as it zeros out
3118  * any bytes left in the last page in the file.
3119  */
3120 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3121 {
3122 	struct inode *inode = mapping->host;
3123 	struct btrfs_root *root = BTRFS_I(inode)->root;
3124 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3125 	struct btrfs_ordered_extent *ordered;
3126 	char *kaddr;
3127 	u32 blocksize = root->sectorsize;
3128 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3129 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3130 	struct page *page;
3131 	int ret = 0;
3132 	u64 page_start;
3133 	u64 page_end;
3134 
3135 	if ((offset & (blocksize - 1)) == 0)
3136 		goto out;
3137 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3138 	if (ret)
3139 		goto out;
3140 
3141 	ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3142 	if (ret)
3143 		goto out;
3144 
3145 	ret = -ENOMEM;
3146 again:
3147 	page = grab_cache_page(mapping, index);
3148 	if (!page) {
3149 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3150 		btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3151 		goto out;
3152 	}
3153 
3154 	page_start = page_offset(page);
3155 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3156 
3157 	if (!PageUptodate(page)) {
3158 		ret = btrfs_readpage(NULL, page);
3159 		lock_page(page);
3160 		if (page->mapping != mapping) {
3161 			unlock_page(page);
3162 			page_cache_release(page);
3163 			goto again;
3164 		}
3165 		if (!PageUptodate(page)) {
3166 			ret = -EIO;
3167 			goto out_unlock;
3168 		}
3169 	}
3170 	wait_on_page_writeback(page);
3171 
3172 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3173 	set_page_extent_mapped(page);
3174 
3175 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3176 	if (ordered) {
3177 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3178 		unlock_page(page);
3179 		page_cache_release(page);
3180 		btrfs_start_ordered_extent(inode, ordered, 1);
3181 		btrfs_put_ordered_extent(ordered);
3182 		goto again;
3183 	}
3184 
3185 	clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3186 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3187 			  GFP_NOFS);
3188 
3189 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3190 	if (ret) {
3191 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3192 		goto out_unlock;
3193 	}
3194 
3195 	ret = 0;
3196 	if (offset != PAGE_CACHE_SIZE) {
3197 		kaddr = kmap(page);
3198 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3199 		flush_dcache_page(page);
3200 		kunmap(page);
3201 	}
3202 	ClearPageChecked(page);
3203 	set_page_dirty(page);
3204 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3205 
3206 out_unlock:
3207 	if (ret)
3208 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3209 	btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3210 	unlock_page(page);
3211 	page_cache_release(page);
3212 out:
3213 	return ret;
3214 }
3215 
3216 int btrfs_cont_expand(struct inode *inode, loff_t size)
3217 {
3218 	struct btrfs_trans_handle *trans;
3219 	struct btrfs_root *root = BTRFS_I(inode)->root;
3220 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3221 	struct extent_map *em;
3222 	u64 mask = root->sectorsize - 1;
3223 	u64 hole_start = (inode->i_size + mask) & ~mask;
3224 	u64 block_end = (size + mask) & ~mask;
3225 	u64 last_byte;
3226 	u64 cur_offset;
3227 	u64 hole_size;
3228 	int err = 0;
3229 
3230 	if (size <= hole_start)
3231 		return 0;
3232 
3233 	while (1) {
3234 		struct btrfs_ordered_extent *ordered;
3235 		btrfs_wait_ordered_range(inode, hole_start,
3236 					 block_end - hole_start);
3237 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3238 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3239 		if (!ordered)
3240 			break;
3241 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3242 		btrfs_put_ordered_extent(ordered);
3243 	}
3244 
3245 	cur_offset = hole_start;
3246 	while (1) {
3247 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3248 				block_end - cur_offset, 0);
3249 		BUG_ON(IS_ERR(em) || !em);
3250 		last_byte = min(extent_map_end(em), block_end);
3251 		last_byte = (last_byte + mask) & ~mask;
3252 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3253 			u64 hint_byte = 0;
3254 			hole_size = last_byte - cur_offset;
3255 
3256 			err = btrfs_reserve_metadata_space(root, 2);
3257 			if (err)
3258 				break;
3259 
3260 			trans = btrfs_start_transaction(root, 1);
3261 			btrfs_set_trans_block_group(trans, inode);
3262 
3263 			err = btrfs_drop_extents(trans, inode, cur_offset,
3264 						 cur_offset + hole_size,
3265 						 &hint_byte, 1);
3266 			BUG_ON(err);
3267 
3268 			err = btrfs_insert_file_extent(trans, root,
3269 					inode->i_ino, cur_offset, 0,
3270 					0, hole_size, 0, hole_size,
3271 					0, 0, 0);
3272 			BUG_ON(err);
3273 
3274 			btrfs_drop_extent_cache(inode, hole_start,
3275 					last_byte - 1, 0);
3276 
3277 			btrfs_end_transaction(trans, root);
3278 			btrfs_unreserve_metadata_space(root, 2);
3279 		}
3280 		free_extent_map(em);
3281 		cur_offset = last_byte;
3282 		if (cur_offset >= block_end)
3283 			break;
3284 	}
3285 
3286 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3287 	return err;
3288 }
3289 
3290 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3291 {
3292 	struct btrfs_root *root = BTRFS_I(inode)->root;
3293 	struct btrfs_trans_handle *trans;
3294 	unsigned long nr;
3295 	int ret;
3296 
3297 	if (attr->ia_size == inode->i_size)
3298 		return 0;
3299 
3300 	if (attr->ia_size > inode->i_size) {
3301 		unsigned long limit;
3302 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3303 		if (attr->ia_size > inode->i_sb->s_maxbytes)
3304 			return -EFBIG;
3305 		if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3306 			send_sig(SIGXFSZ, current, 0);
3307 			return -EFBIG;
3308 		}
3309 	}
3310 
3311 	ret = btrfs_reserve_metadata_space(root, 1);
3312 	if (ret)
3313 		return ret;
3314 
3315 	trans = btrfs_start_transaction(root, 1);
3316 	btrfs_set_trans_block_group(trans, inode);
3317 
3318 	ret = btrfs_orphan_add(trans, inode);
3319 	BUG_ON(ret);
3320 
3321 	nr = trans->blocks_used;
3322 	btrfs_end_transaction(trans, root);
3323 	btrfs_unreserve_metadata_space(root, 1);
3324 	btrfs_btree_balance_dirty(root, nr);
3325 
3326 	if (attr->ia_size > inode->i_size) {
3327 		ret = btrfs_cont_expand(inode, attr->ia_size);
3328 		if (ret) {
3329 			btrfs_truncate(inode);
3330 			return ret;
3331 		}
3332 
3333 		i_size_write(inode, attr->ia_size);
3334 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3335 
3336 		trans = btrfs_start_transaction(root, 1);
3337 		btrfs_set_trans_block_group(trans, inode);
3338 
3339 		ret = btrfs_update_inode(trans, root, inode);
3340 		BUG_ON(ret);
3341 		if (inode->i_nlink > 0) {
3342 			ret = btrfs_orphan_del(trans, inode);
3343 			BUG_ON(ret);
3344 		}
3345 		nr = trans->blocks_used;
3346 		btrfs_end_transaction(trans, root);
3347 		btrfs_btree_balance_dirty(root, nr);
3348 		return 0;
3349 	}
3350 
3351 	/*
3352 	 * We're truncating a file that used to have good data down to
3353 	 * zero. Make sure it gets into the ordered flush list so that
3354 	 * any new writes get down to disk quickly.
3355 	 */
3356 	if (attr->ia_size == 0)
3357 		BTRFS_I(inode)->ordered_data_close = 1;
3358 
3359 	/* we don't support swapfiles, so vmtruncate shouldn't fail */
3360 	ret = vmtruncate(inode, attr->ia_size);
3361 	BUG_ON(ret);
3362 
3363 	return 0;
3364 }
3365 
3366 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3367 {
3368 	struct inode *inode = dentry->d_inode;
3369 	int err;
3370 
3371 	err = inode_change_ok(inode, attr);
3372 	if (err)
3373 		return err;
3374 
3375 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3376 		err = btrfs_setattr_size(inode, attr);
3377 		if (err)
3378 			return err;
3379 	}
3380 	attr->ia_valid &= ~ATTR_SIZE;
3381 
3382 	if (attr->ia_valid)
3383 		err = inode_setattr(inode, attr);
3384 
3385 	if (!err && ((attr->ia_valid & ATTR_MODE)))
3386 		err = btrfs_acl_chmod(inode);
3387 	return err;
3388 }
3389 
3390 void btrfs_delete_inode(struct inode *inode)
3391 {
3392 	struct btrfs_trans_handle *trans;
3393 	struct btrfs_root *root = BTRFS_I(inode)->root;
3394 	unsigned long nr;
3395 	int ret;
3396 
3397 	truncate_inode_pages(&inode->i_data, 0);
3398 	if (is_bad_inode(inode)) {
3399 		btrfs_orphan_del(NULL, inode);
3400 		goto no_delete;
3401 	}
3402 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3403 
3404 	if (root->fs_info->log_root_recovering) {
3405 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3406 		goto no_delete;
3407 	}
3408 
3409 	if (inode->i_nlink > 0) {
3410 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3411 		goto no_delete;
3412 	}
3413 
3414 	btrfs_i_size_write(inode, 0);
3415 
3416 	while (1) {
3417 		trans = btrfs_start_transaction(root, 1);
3418 		btrfs_set_trans_block_group(trans, inode);
3419 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3420 
3421 		if (ret != -EAGAIN)
3422 			break;
3423 
3424 		nr = trans->blocks_used;
3425 		btrfs_end_transaction(trans, root);
3426 		trans = NULL;
3427 		btrfs_btree_balance_dirty(root, nr);
3428 	}
3429 
3430 	if (ret == 0) {
3431 		ret = btrfs_orphan_del(trans, inode);
3432 		BUG_ON(ret);
3433 	}
3434 
3435 	nr = trans->blocks_used;
3436 	btrfs_end_transaction(trans, root);
3437 	btrfs_btree_balance_dirty(root, nr);
3438 no_delete:
3439 	clear_inode(inode);
3440 	return;
3441 }
3442 
3443 /*
3444  * this returns the key found in the dir entry in the location pointer.
3445  * If no dir entries were found, location->objectid is 0.
3446  */
3447 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3448 			       struct btrfs_key *location)
3449 {
3450 	const char *name = dentry->d_name.name;
3451 	int namelen = dentry->d_name.len;
3452 	struct btrfs_dir_item *di;
3453 	struct btrfs_path *path;
3454 	struct btrfs_root *root = BTRFS_I(dir)->root;
3455 	int ret = 0;
3456 
3457 	path = btrfs_alloc_path();
3458 	BUG_ON(!path);
3459 
3460 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3461 				    namelen, 0);
3462 	if (IS_ERR(di))
3463 		ret = PTR_ERR(di);
3464 
3465 	if (!di || IS_ERR(di))
3466 		goto out_err;
3467 
3468 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3469 out:
3470 	btrfs_free_path(path);
3471 	return ret;
3472 out_err:
3473 	location->objectid = 0;
3474 	goto out;
3475 }
3476 
3477 /*
3478  * when we hit a tree root in a directory, the btrfs part of the inode
3479  * needs to be changed to reflect the root directory of the tree root.  This
3480  * is kind of like crossing a mount point.
3481  */
3482 static int fixup_tree_root_location(struct btrfs_root *root,
3483 				    struct inode *dir,
3484 				    struct dentry *dentry,
3485 				    struct btrfs_key *location,
3486 				    struct btrfs_root **sub_root)
3487 {
3488 	struct btrfs_path *path;
3489 	struct btrfs_root *new_root;
3490 	struct btrfs_root_ref *ref;
3491 	struct extent_buffer *leaf;
3492 	int ret;
3493 	int err = 0;
3494 
3495 	path = btrfs_alloc_path();
3496 	if (!path) {
3497 		err = -ENOMEM;
3498 		goto out;
3499 	}
3500 
3501 	err = -ENOENT;
3502 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3503 				  BTRFS_I(dir)->root->root_key.objectid,
3504 				  location->objectid);
3505 	if (ret) {
3506 		if (ret < 0)
3507 			err = ret;
3508 		goto out;
3509 	}
3510 
3511 	leaf = path->nodes[0];
3512 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3513 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3514 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3515 		goto out;
3516 
3517 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3518 				   (unsigned long)(ref + 1),
3519 				   dentry->d_name.len);
3520 	if (ret)
3521 		goto out;
3522 
3523 	btrfs_release_path(root->fs_info->tree_root, path);
3524 
3525 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3526 	if (IS_ERR(new_root)) {
3527 		err = PTR_ERR(new_root);
3528 		goto out;
3529 	}
3530 
3531 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3532 		err = -ENOENT;
3533 		goto out;
3534 	}
3535 
3536 	*sub_root = new_root;
3537 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3538 	location->type = BTRFS_INODE_ITEM_KEY;
3539 	location->offset = 0;
3540 	err = 0;
3541 out:
3542 	btrfs_free_path(path);
3543 	return err;
3544 }
3545 
3546 static void inode_tree_add(struct inode *inode)
3547 {
3548 	struct btrfs_root *root = BTRFS_I(inode)->root;
3549 	struct btrfs_inode *entry;
3550 	struct rb_node **p;
3551 	struct rb_node *parent;
3552 again:
3553 	p = &root->inode_tree.rb_node;
3554 	parent = NULL;
3555 
3556 	if (hlist_unhashed(&inode->i_hash))
3557 		return;
3558 
3559 	spin_lock(&root->inode_lock);
3560 	while (*p) {
3561 		parent = *p;
3562 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3563 
3564 		if (inode->i_ino < entry->vfs_inode.i_ino)
3565 			p = &parent->rb_left;
3566 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3567 			p = &parent->rb_right;
3568 		else {
3569 			WARN_ON(!(entry->vfs_inode.i_state &
3570 				  (I_WILL_FREE | I_FREEING | I_CLEAR)));
3571 			rb_erase(parent, &root->inode_tree);
3572 			RB_CLEAR_NODE(parent);
3573 			spin_unlock(&root->inode_lock);
3574 			goto again;
3575 		}
3576 	}
3577 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3578 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3579 	spin_unlock(&root->inode_lock);
3580 }
3581 
3582 static void inode_tree_del(struct inode *inode)
3583 {
3584 	struct btrfs_root *root = BTRFS_I(inode)->root;
3585 	int empty = 0;
3586 
3587 	spin_lock(&root->inode_lock);
3588 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3589 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3590 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3591 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3592 	}
3593 	spin_unlock(&root->inode_lock);
3594 
3595 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
3596 		synchronize_srcu(&root->fs_info->subvol_srcu);
3597 		spin_lock(&root->inode_lock);
3598 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3599 		spin_unlock(&root->inode_lock);
3600 		if (empty)
3601 			btrfs_add_dead_root(root);
3602 	}
3603 }
3604 
3605 int btrfs_invalidate_inodes(struct btrfs_root *root)
3606 {
3607 	struct rb_node *node;
3608 	struct rb_node *prev;
3609 	struct btrfs_inode *entry;
3610 	struct inode *inode;
3611 	u64 objectid = 0;
3612 
3613 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3614 
3615 	spin_lock(&root->inode_lock);
3616 again:
3617 	node = root->inode_tree.rb_node;
3618 	prev = NULL;
3619 	while (node) {
3620 		prev = node;
3621 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3622 
3623 		if (objectid < entry->vfs_inode.i_ino)
3624 			node = node->rb_left;
3625 		else if (objectid > entry->vfs_inode.i_ino)
3626 			node = node->rb_right;
3627 		else
3628 			break;
3629 	}
3630 	if (!node) {
3631 		while (prev) {
3632 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3633 			if (objectid <= entry->vfs_inode.i_ino) {
3634 				node = prev;
3635 				break;
3636 			}
3637 			prev = rb_next(prev);
3638 		}
3639 	}
3640 	while (node) {
3641 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3642 		objectid = entry->vfs_inode.i_ino + 1;
3643 		inode = igrab(&entry->vfs_inode);
3644 		if (inode) {
3645 			spin_unlock(&root->inode_lock);
3646 			if (atomic_read(&inode->i_count) > 1)
3647 				d_prune_aliases(inode);
3648 			/*
3649 			 * btrfs_drop_inode will remove it from
3650 			 * the inode cache when its usage count
3651 			 * hits zero.
3652 			 */
3653 			iput(inode);
3654 			cond_resched();
3655 			spin_lock(&root->inode_lock);
3656 			goto again;
3657 		}
3658 
3659 		if (cond_resched_lock(&root->inode_lock))
3660 			goto again;
3661 
3662 		node = rb_next(node);
3663 	}
3664 	spin_unlock(&root->inode_lock);
3665 	return 0;
3666 }
3667 
3668 static noinline void init_btrfs_i(struct inode *inode)
3669 {
3670 	struct btrfs_inode *bi = BTRFS_I(inode);
3671 
3672 	bi->generation = 0;
3673 	bi->sequence = 0;
3674 	bi->last_trans = 0;
3675 	bi->last_sub_trans = 0;
3676 	bi->logged_trans = 0;
3677 	bi->delalloc_bytes = 0;
3678 	bi->reserved_bytes = 0;
3679 	bi->disk_i_size = 0;
3680 	bi->flags = 0;
3681 	bi->index_cnt = (u64)-1;
3682 	bi->last_unlink_trans = 0;
3683 	bi->ordered_data_close = 0;
3684 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3685 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3686 			     inode->i_mapping, GFP_NOFS);
3687 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3688 			     inode->i_mapping, GFP_NOFS);
3689 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3690 	INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3691 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3692 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3693 	mutex_init(&BTRFS_I(inode)->log_mutex);
3694 }
3695 
3696 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3697 {
3698 	struct btrfs_iget_args *args = p;
3699 	inode->i_ino = args->ino;
3700 	init_btrfs_i(inode);
3701 	BTRFS_I(inode)->root = args->root;
3702 	btrfs_set_inode_space_info(args->root, inode);
3703 	return 0;
3704 }
3705 
3706 static int btrfs_find_actor(struct inode *inode, void *opaque)
3707 {
3708 	struct btrfs_iget_args *args = opaque;
3709 	return args->ino == inode->i_ino &&
3710 		args->root == BTRFS_I(inode)->root;
3711 }
3712 
3713 static struct inode *btrfs_iget_locked(struct super_block *s,
3714 				       u64 objectid,
3715 				       struct btrfs_root *root)
3716 {
3717 	struct inode *inode;
3718 	struct btrfs_iget_args args;
3719 	args.ino = objectid;
3720 	args.root = root;
3721 
3722 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3723 			     btrfs_init_locked_inode,
3724 			     (void *)&args);
3725 	return inode;
3726 }
3727 
3728 /* Get an inode object given its location and corresponding root.
3729  * Returns in *is_new if the inode was read from disk
3730  */
3731 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3732 			 struct btrfs_root *root)
3733 {
3734 	struct inode *inode;
3735 
3736 	inode = btrfs_iget_locked(s, location->objectid, root);
3737 	if (!inode)
3738 		return ERR_PTR(-ENOMEM);
3739 
3740 	if (inode->i_state & I_NEW) {
3741 		BTRFS_I(inode)->root = root;
3742 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3743 		btrfs_read_locked_inode(inode);
3744 
3745 		inode_tree_add(inode);
3746 		unlock_new_inode(inode);
3747 	}
3748 
3749 	return inode;
3750 }
3751 
3752 static struct inode *new_simple_dir(struct super_block *s,
3753 				    struct btrfs_key *key,
3754 				    struct btrfs_root *root)
3755 {
3756 	struct inode *inode = new_inode(s);
3757 
3758 	if (!inode)
3759 		return ERR_PTR(-ENOMEM);
3760 
3761 	init_btrfs_i(inode);
3762 
3763 	BTRFS_I(inode)->root = root;
3764 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3765 	BTRFS_I(inode)->dummy_inode = 1;
3766 
3767 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3768 	inode->i_op = &simple_dir_inode_operations;
3769 	inode->i_fop = &simple_dir_operations;
3770 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3771 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3772 
3773 	return inode;
3774 }
3775 
3776 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3777 {
3778 	struct inode *inode;
3779 	struct btrfs_root *root = BTRFS_I(dir)->root;
3780 	struct btrfs_root *sub_root = root;
3781 	struct btrfs_key location;
3782 	int index;
3783 	int ret;
3784 
3785 	dentry->d_op = &btrfs_dentry_operations;
3786 
3787 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3788 		return ERR_PTR(-ENAMETOOLONG);
3789 
3790 	ret = btrfs_inode_by_name(dir, dentry, &location);
3791 
3792 	if (ret < 0)
3793 		return ERR_PTR(ret);
3794 
3795 	if (location.objectid == 0)
3796 		return NULL;
3797 
3798 	if (location.type == BTRFS_INODE_ITEM_KEY) {
3799 		inode = btrfs_iget(dir->i_sb, &location, root);
3800 		return inode;
3801 	}
3802 
3803 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3804 
3805 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
3806 	ret = fixup_tree_root_location(root, dir, dentry,
3807 				       &location, &sub_root);
3808 	if (ret < 0) {
3809 		if (ret != -ENOENT)
3810 			inode = ERR_PTR(ret);
3811 		else
3812 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
3813 	} else {
3814 		inode = btrfs_iget(dir->i_sb, &location, sub_root);
3815 	}
3816 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3817 
3818 	if (root != sub_root) {
3819 		down_read(&root->fs_info->cleanup_work_sem);
3820 		if (!(inode->i_sb->s_flags & MS_RDONLY))
3821 			btrfs_orphan_cleanup(sub_root);
3822 		up_read(&root->fs_info->cleanup_work_sem);
3823 	}
3824 
3825 	return inode;
3826 }
3827 
3828 static int btrfs_dentry_delete(struct dentry *dentry)
3829 {
3830 	struct btrfs_root *root;
3831 
3832 	if (!dentry->d_inode && !IS_ROOT(dentry))
3833 		dentry = dentry->d_parent;
3834 
3835 	if (dentry->d_inode) {
3836 		root = BTRFS_I(dentry->d_inode)->root;
3837 		if (btrfs_root_refs(&root->root_item) == 0)
3838 			return 1;
3839 	}
3840 	return 0;
3841 }
3842 
3843 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3844 				   struct nameidata *nd)
3845 {
3846 	struct inode *inode;
3847 
3848 	inode = btrfs_lookup_dentry(dir, dentry);
3849 	if (IS_ERR(inode))
3850 		return ERR_CAST(inode);
3851 
3852 	return d_splice_alias(inode, dentry);
3853 }
3854 
3855 static unsigned char btrfs_filetype_table[] = {
3856 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3857 };
3858 
3859 static int btrfs_real_readdir(struct file *filp, void *dirent,
3860 			      filldir_t filldir)
3861 {
3862 	struct inode *inode = filp->f_dentry->d_inode;
3863 	struct btrfs_root *root = BTRFS_I(inode)->root;
3864 	struct btrfs_item *item;
3865 	struct btrfs_dir_item *di;
3866 	struct btrfs_key key;
3867 	struct btrfs_key found_key;
3868 	struct btrfs_path *path;
3869 	int ret;
3870 	u32 nritems;
3871 	struct extent_buffer *leaf;
3872 	int slot;
3873 	int advance;
3874 	unsigned char d_type;
3875 	int over = 0;
3876 	u32 di_cur;
3877 	u32 di_total;
3878 	u32 di_len;
3879 	int key_type = BTRFS_DIR_INDEX_KEY;
3880 	char tmp_name[32];
3881 	char *name_ptr;
3882 	int name_len;
3883 
3884 	/* FIXME, use a real flag for deciding about the key type */
3885 	if (root->fs_info->tree_root == root)
3886 		key_type = BTRFS_DIR_ITEM_KEY;
3887 
3888 	/* special case for "." */
3889 	if (filp->f_pos == 0) {
3890 		over = filldir(dirent, ".", 1,
3891 			       1, inode->i_ino,
3892 			       DT_DIR);
3893 		if (over)
3894 			return 0;
3895 		filp->f_pos = 1;
3896 	}
3897 	/* special case for .., just use the back ref */
3898 	if (filp->f_pos == 1) {
3899 		u64 pino = parent_ino(filp->f_path.dentry);
3900 		over = filldir(dirent, "..", 2,
3901 			       2, pino, DT_DIR);
3902 		if (over)
3903 			return 0;
3904 		filp->f_pos = 2;
3905 	}
3906 	path = btrfs_alloc_path();
3907 	path->reada = 2;
3908 
3909 	btrfs_set_key_type(&key, key_type);
3910 	key.offset = filp->f_pos;
3911 	key.objectid = inode->i_ino;
3912 
3913 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3914 	if (ret < 0)
3915 		goto err;
3916 	advance = 0;
3917 
3918 	while (1) {
3919 		leaf = path->nodes[0];
3920 		nritems = btrfs_header_nritems(leaf);
3921 		slot = path->slots[0];
3922 		if (advance || slot >= nritems) {
3923 			if (slot >= nritems - 1) {
3924 				ret = btrfs_next_leaf(root, path);
3925 				if (ret)
3926 					break;
3927 				leaf = path->nodes[0];
3928 				nritems = btrfs_header_nritems(leaf);
3929 				slot = path->slots[0];
3930 			} else {
3931 				slot++;
3932 				path->slots[0]++;
3933 			}
3934 		}
3935 
3936 		advance = 1;
3937 		item = btrfs_item_nr(leaf, slot);
3938 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3939 
3940 		if (found_key.objectid != key.objectid)
3941 			break;
3942 		if (btrfs_key_type(&found_key) != key_type)
3943 			break;
3944 		if (found_key.offset < filp->f_pos)
3945 			continue;
3946 
3947 		filp->f_pos = found_key.offset;
3948 
3949 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3950 		di_cur = 0;
3951 		di_total = btrfs_item_size(leaf, item);
3952 
3953 		while (di_cur < di_total) {
3954 			struct btrfs_key location;
3955 
3956 			name_len = btrfs_dir_name_len(leaf, di);
3957 			if (name_len <= sizeof(tmp_name)) {
3958 				name_ptr = tmp_name;
3959 			} else {
3960 				name_ptr = kmalloc(name_len, GFP_NOFS);
3961 				if (!name_ptr) {
3962 					ret = -ENOMEM;
3963 					goto err;
3964 				}
3965 			}
3966 			read_extent_buffer(leaf, name_ptr,
3967 					   (unsigned long)(di + 1), name_len);
3968 
3969 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3970 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3971 
3972 			/* is this a reference to our own snapshot? If so
3973 			 * skip it
3974 			 */
3975 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3976 			    location.objectid == root->root_key.objectid) {
3977 				over = 0;
3978 				goto skip;
3979 			}
3980 			over = filldir(dirent, name_ptr, name_len,
3981 				       found_key.offset, location.objectid,
3982 				       d_type);
3983 
3984 skip:
3985 			if (name_ptr != tmp_name)
3986 				kfree(name_ptr);
3987 
3988 			if (over)
3989 				goto nopos;
3990 			di_len = btrfs_dir_name_len(leaf, di) +
3991 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3992 			di_cur += di_len;
3993 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3994 		}
3995 	}
3996 
3997 	/* Reached end of directory/root. Bump pos past the last item. */
3998 	if (key_type == BTRFS_DIR_INDEX_KEY)
3999 		/*
4000 		 * 32-bit glibc will use getdents64, but then strtol -
4001 		 * so the last number we can serve is this.
4002 		 */
4003 		filp->f_pos = 0x7fffffff;
4004 	else
4005 		filp->f_pos++;
4006 nopos:
4007 	ret = 0;
4008 err:
4009 	btrfs_free_path(path);
4010 	return ret;
4011 }
4012 
4013 int btrfs_write_inode(struct inode *inode, int wait)
4014 {
4015 	struct btrfs_root *root = BTRFS_I(inode)->root;
4016 	struct btrfs_trans_handle *trans;
4017 	int ret = 0;
4018 
4019 	if (root->fs_info->btree_inode == inode)
4020 		return 0;
4021 
4022 	if (wait) {
4023 		trans = btrfs_join_transaction(root, 1);
4024 		btrfs_set_trans_block_group(trans, inode);
4025 		ret = btrfs_commit_transaction(trans, root);
4026 	}
4027 	return ret;
4028 }
4029 
4030 /*
4031  * This is somewhat expensive, updating the tree every time the
4032  * inode changes.  But, it is most likely to find the inode in cache.
4033  * FIXME, needs more benchmarking...there are no reasons other than performance
4034  * to keep or drop this code.
4035  */
4036 void btrfs_dirty_inode(struct inode *inode)
4037 {
4038 	struct btrfs_root *root = BTRFS_I(inode)->root;
4039 	struct btrfs_trans_handle *trans;
4040 
4041 	trans = btrfs_join_transaction(root, 1);
4042 	btrfs_set_trans_block_group(trans, inode);
4043 	btrfs_update_inode(trans, root, inode);
4044 	btrfs_end_transaction(trans, root);
4045 }
4046 
4047 /*
4048  * find the highest existing sequence number in a directory
4049  * and then set the in-memory index_cnt variable to reflect
4050  * free sequence numbers
4051  */
4052 static int btrfs_set_inode_index_count(struct inode *inode)
4053 {
4054 	struct btrfs_root *root = BTRFS_I(inode)->root;
4055 	struct btrfs_key key, found_key;
4056 	struct btrfs_path *path;
4057 	struct extent_buffer *leaf;
4058 	int ret;
4059 
4060 	key.objectid = inode->i_ino;
4061 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4062 	key.offset = (u64)-1;
4063 
4064 	path = btrfs_alloc_path();
4065 	if (!path)
4066 		return -ENOMEM;
4067 
4068 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4069 	if (ret < 0)
4070 		goto out;
4071 	/* FIXME: we should be able to handle this */
4072 	if (ret == 0)
4073 		goto out;
4074 	ret = 0;
4075 
4076 	/*
4077 	 * MAGIC NUMBER EXPLANATION:
4078 	 * since we search a directory based on f_pos we have to start at 2
4079 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4080 	 * else has to start at 2
4081 	 */
4082 	if (path->slots[0] == 0) {
4083 		BTRFS_I(inode)->index_cnt = 2;
4084 		goto out;
4085 	}
4086 
4087 	path->slots[0]--;
4088 
4089 	leaf = path->nodes[0];
4090 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4091 
4092 	if (found_key.objectid != inode->i_ino ||
4093 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4094 		BTRFS_I(inode)->index_cnt = 2;
4095 		goto out;
4096 	}
4097 
4098 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4099 out:
4100 	btrfs_free_path(path);
4101 	return ret;
4102 }
4103 
4104 /*
4105  * helper to find a free sequence number in a given directory.  This current
4106  * code is very simple, later versions will do smarter things in the btree
4107  */
4108 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4109 {
4110 	int ret = 0;
4111 
4112 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4113 		ret = btrfs_set_inode_index_count(dir);
4114 		if (ret)
4115 			return ret;
4116 	}
4117 
4118 	*index = BTRFS_I(dir)->index_cnt;
4119 	BTRFS_I(dir)->index_cnt++;
4120 
4121 	return ret;
4122 }
4123 
4124 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4125 				     struct btrfs_root *root,
4126 				     struct inode *dir,
4127 				     const char *name, int name_len,
4128 				     u64 ref_objectid, u64 objectid,
4129 				     u64 alloc_hint, int mode, u64 *index)
4130 {
4131 	struct inode *inode;
4132 	struct btrfs_inode_item *inode_item;
4133 	struct btrfs_key *location;
4134 	struct btrfs_path *path;
4135 	struct btrfs_inode_ref *ref;
4136 	struct btrfs_key key[2];
4137 	u32 sizes[2];
4138 	unsigned long ptr;
4139 	int ret;
4140 	int owner;
4141 
4142 	path = btrfs_alloc_path();
4143 	BUG_ON(!path);
4144 
4145 	inode = new_inode(root->fs_info->sb);
4146 	if (!inode)
4147 		return ERR_PTR(-ENOMEM);
4148 
4149 	if (dir) {
4150 		ret = btrfs_set_inode_index(dir, index);
4151 		if (ret) {
4152 			iput(inode);
4153 			return ERR_PTR(ret);
4154 		}
4155 	}
4156 	/*
4157 	 * index_cnt is ignored for everything but a dir,
4158 	 * btrfs_get_inode_index_count has an explanation for the magic
4159 	 * number
4160 	 */
4161 	init_btrfs_i(inode);
4162 	BTRFS_I(inode)->index_cnt = 2;
4163 	BTRFS_I(inode)->root = root;
4164 	BTRFS_I(inode)->generation = trans->transid;
4165 	btrfs_set_inode_space_info(root, inode);
4166 
4167 	if (mode & S_IFDIR)
4168 		owner = 0;
4169 	else
4170 		owner = 1;
4171 	BTRFS_I(inode)->block_group =
4172 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4173 
4174 	key[0].objectid = objectid;
4175 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4176 	key[0].offset = 0;
4177 
4178 	key[1].objectid = objectid;
4179 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4180 	key[1].offset = ref_objectid;
4181 
4182 	sizes[0] = sizeof(struct btrfs_inode_item);
4183 	sizes[1] = name_len + sizeof(*ref);
4184 
4185 	path->leave_spinning = 1;
4186 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4187 	if (ret != 0)
4188 		goto fail;
4189 
4190 	inode->i_uid = current_fsuid();
4191 
4192 	if (dir && (dir->i_mode & S_ISGID)) {
4193 		inode->i_gid = dir->i_gid;
4194 		if (S_ISDIR(mode))
4195 			mode |= S_ISGID;
4196 	} else
4197 		inode->i_gid = current_fsgid();
4198 
4199 	inode->i_mode = mode;
4200 	inode->i_ino = objectid;
4201 	inode_set_bytes(inode, 0);
4202 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4203 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4204 				  struct btrfs_inode_item);
4205 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4206 
4207 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4208 			     struct btrfs_inode_ref);
4209 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4210 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4211 	ptr = (unsigned long)(ref + 1);
4212 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4213 
4214 	btrfs_mark_buffer_dirty(path->nodes[0]);
4215 	btrfs_free_path(path);
4216 
4217 	location = &BTRFS_I(inode)->location;
4218 	location->objectid = objectid;
4219 	location->offset = 0;
4220 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4221 
4222 	btrfs_inherit_iflags(inode, dir);
4223 
4224 	if ((mode & S_IFREG)) {
4225 		if (btrfs_test_opt(root, NODATASUM))
4226 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4227 		if (btrfs_test_opt(root, NODATACOW))
4228 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4229 	}
4230 
4231 	insert_inode_hash(inode);
4232 	inode_tree_add(inode);
4233 	return inode;
4234 fail:
4235 	if (dir)
4236 		BTRFS_I(dir)->index_cnt--;
4237 	btrfs_free_path(path);
4238 	iput(inode);
4239 	return ERR_PTR(ret);
4240 }
4241 
4242 static inline u8 btrfs_inode_type(struct inode *inode)
4243 {
4244 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4245 }
4246 
4247 /*
4248  * utility function to add 'inode' into 'parent_inode' with
4249  * a give name and a given sequence number.
4250  * if 'add_backref' is true, also insert a backref from the
4251  * inode to the parent directory.
4252  */
4253 int btrfs_add_link(struct btrfs_trans_handle *trans,
4254 		   struct inode *parent_inode, struct inode *inode,
4255 		   const char *name, int name_len, int add_backref, u64 index)
4256 {
4257 	int ret = 0;
4258 	struct btrfs_key key;
4259 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4260 
4261 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4262 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4263 	} else {
4264 		key.objectid = inode->i_ino;
4265 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4266 		key.offset = 0;
4267 	}
4268 
4269 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4270 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4271 					 key.objectid, root->root_key.objectid,
4272 					 parent_inode->i_ino,
4273 					 index, name, name_len);
4274 	} else if (add_backref) {
4275 		ret = btrfs_insert_inode_ref(trans, root,
4276 					     name, name_len, inode->i_ino,
4277 					     parent_inode->i_ino, index);
4278 	}
4279 
4280 	if (ret == 0) {
4281 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4282 					    parent_inode->i_ino, &key,
4283 					    btrfs_inode_type(inode), index);
4284 		BUG_ON(ret);
4285 
4286 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4287 				   name_len * 2);
4288 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4289 		ret = btrfs_update_inode(trans, root, parent_inode);
4290 	}
4291 	return ret;
4292 }
4293 
4294 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4295 			    struct dentry *dentry, struct inode *inode,
4296 			    int backref, u64 index)
4297 {
4298 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4299 				 inode, dentry->d_name.name,
4300 				 dentry->d_name.len, backref, index);
4301 	if (!err) {
4302 		d_instantiate(dentry, inode);
4303 		return 0;
4304 	}
4305 	if (err > 0)
4306 		err = -EEXIST;
4307 	return err;
4308 }
4309 
4310 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4311 			int mode, dev_t rdev)
4312 {
4313 	struct btrfs_trans_handle *trans;
4314 	struct btrfs_root *root = BTRFS_I(dir)->root;
4315 	struct inode *inode = NULL;
4316 	int err;
4317 	int drop_inode = 0;
4318 	u64 objectid;
4319 	unsigned long nr = 0;
4320 	u64 index = 0;
4321 
4322 	if (!new_valid_dev(rdev))
4323 		return -EINVAL;
4324 
4325 	/*
4326 	 * 2 for inode item and ref
4327 	 * 2 for dir items
4328 	 * 1 for xattr if selinux is on
4329 	 */
4330 	err = btrfs_reserve_metadata_space(root, 5);
4331 	if (err)
4332 		return err;
4333 
4334 	trans = btrfs_start_transaction(root, 1);
4335 	if (!trans)
4336 		goto fail;
4337 	btrfs_set_trans_block_group(trans, dir);
4338 
4339 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4340 	if (err) {
4341 		err = -ENOSPC;
4342 		goto out_unlock;
4343 	}
4344 
4345 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4346 				dentry->d_name.len,
4347 				dentry->d_parent->d_inode->i_ino, objectid,
4348 				BTRFS_I(dir)->block_group, mode, &index);
4349 	err = PTR_ERR(inode);
4350 	if (IS_ERR(inode))
4351 		goto out_unlock;
4352 
4353 	err = btrfs_init_inode_security(trans, inode, dir);
4354 	if (err) {
4355 		drop_inode = 1;
4356 		goto out_unlock;
4357 	}
4358 
4359 	btrfs_set_trans_block_group(trans, inode);
4360 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4361 	if (err)
4362 		drop_inode = 1;
4363 	else {
4364 		inode->i_op = &btrfs_special_inode_operations;
4365 		init_special_inode(inode, inode->i_mode, rdev);
4366 		btrfs_update_inode(trans, root, inode);
4367 	}
4368 	btrfs_update_inode_block_group(trans, inode);
4369 	btrfs_update_inode_block_group(trans, dir);
4370 out_unlock:
4371 	nr = trans->blocks_used;
4372 	btrfs_end_transaction_throttle(trans, root);
4373 fail:
4374 	btrfs_unreserve_metadata_space(root, 5);
4375 	if (drop_inode) {
4376 		inode_dec_link_count(inode);
4377 		iput(inode);
4378 	}
4379 	btrfs_btree_balance_dirty(root, nr);
4380 	return err;
4381 }
4382 
4383 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4384 			int mode, struct nameidata *nd)
4385 {
4386 	struct btrfs_trans_handle *trans;
4387 	struct btrfs_root *root = BTRFS_I(dir)->root;
4388 	struct inode *inode = NULL;
4389 	int err;
4390 	int drop_inode = 0;
4391 	unsigned long nr = 0;
4392 	u64 objectid;
4393 	u64 index = 0;
4394 
4395 	/*
4396 	 * 2 for inode item and ref
4397 	 * 2 for dir items
4398 	 * 1 for xattr if selinux is on
4399 	 */
4400 	err = btrfs_reserve_metadata_space(root, 5);
4401 	if (err)
4402 		return err;
4403 
4404 	trans = btrfs_start_transaction(root, 1);
4405 	if (!trans)
4406 		goto fail;
4407 	btrfs_set_trans_block_group(trans, dir);
4408 
4409 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4410 	if (err) {
4411 		err = -ENOSPC;
4412 		goto out_unlock;
4413 	}
4414 
4415 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4416 				dentry->d_name.len,
4417 				dentry->d_parent->d_inode->i_ino,
4418 				objectid, BTRFS_I(dir)->block_group, mode,
4419 				&index);
4420 	err = PTR_ERR(inode);
4421 	if (IS_ERR(inode))
4422 		goto out_unlock;
4423 
4424 	err = btrfs_init_inode_security(trans, inode, dir);
4425 	if (err) {
4426 		drop_inode = 1;
4427 		goto out_unlock;
4428 	}
4429 
4430 	btrfs_set_trans_block_group(trans, inode);
4431 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4432 	if (err)
4433 		drop_inode = 1;
4434 	else {
4435 		inode->i_mapping->a_ops = &btrfs_aops;
4436 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4437 		inode->i_fop = &btrfs_file_operations;
4438 		inode->i_op = &btrfs_file_inode_operations;
4439 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4440 	}
4441 	btrfs_update_inode_block_group(trans, inode);
4442 	btrfs_update_inode_block_group(trans, dir);
4443 out_unlock:
4444 	nr = trans->blocks_used;
4445 	btrfs_end_transaction_throttle(trans, root);
4446 fail:
4447 	btrfs_unreserve_metadata_space(root, 5);
4448 	if (drop_inode) {
4449 		inode_dec_link_count(inode);
4450 		iput(inode);
4451 	}
4452 	btrfs_btree_balance_dirty(root, nr);
4453 	return err;
4454 }
4455 
4456 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4457 		      struct dentry *dentry)
4458 {
4459 	struct btrfs_trans_handle *trans;
4460 	struct btrfs_root *root = BTRFS_I(dir)->root;
4461 	struct inode *inode = old_dentry->d_inode;
4462 	u64 index;
4463 	unsigned long nr = 0;
4464 	int err;
4465 	int drop_inode = 0;
4466 
4467 	if (inode->i_nlink == 0)
4468 		return -ENOENT;
4469 
4470 	/* do not allow sys_link's with other subvols of the same device */
4471 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4472 		return -EPERM;
4473 
4474 	/*
4475 	 * 1 item for inode ref
4476 	 * 2 items for dir items
4477 	 */
4478 	err = btrfs_reserve_metadata_space(root, 3);
4479 	if (err)
4480 		return err;
4481 
4482 	btrfs_inc_nlink(inode);
4483 
4484 	err = btrfs_set_inode_index(dir, &index);
4485 	if (err)
4486 		goto fail;
4487 
4488 	trans = btrfs_start_transaction(root, 1);
4489 
4490 	btrfs_set_trans_block_group(trans, dir);
4491 	atomic_inc(&inode->i_count);
4492 
4493 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4494 
4495 	if (err) {
4496 		drop_inode = 1;
4497 	} else {
4498 		btrfs_update_inode_block_group(trans, dir);
4499 		err = btrfs_update_inode(trans, root, inode);
4500 		BUG_ON(err);
4501 		btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4502 	}
4503 
4504 	nr = trans->blocks_used;
4505 	btrfs_end_transaction_throttle(trans, root);
4506 fail:
4507 	btrfs_unreserve_metadata_space(root, 3);
4508 	if (drop_inode) {
4509 		inode_dec_link_count(inode);
4510 		iput(inode);
4511 	}
4512 	btrfs_btree_balance_dirty(root, nr);
4513 	return err;
4514 }
4515 
4516 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4517 {
4518 	struct inode *inode = NULL;
4519 	struct btrfs_trans_handle *trans;
4520 	struct btrfs_root *root = BTRFS_I(dir)->root;
4521 	int err = 0;
4522 	int drop_on_err = 0;
4523 	u64 objectid = 0;
4524 	u64 index = 0;
4525 	unsigned long nr = 1;
4526 
4527 	/*
4528 	 * 2 items for inode and ref
4529 	 * 2 items for dir items
4530 	 * 1 for xattr if selinux is on
4531 	 */
4532 	err = btrfs_reserve_metadata_space(root, 5);
4533 	if (err)
4534 		return err;
4535 
4536 	trans = btrfs_start_transaction(root, 1);
4537 	if (!trans) {
4538 		err = -ENOMEM;
4539 		goto out_unlock;
4540 	}
4541 	btrfs_set_trans_block_group(trans, dir);
4542 
4543 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4544 	if (err) {
4545 		err = -ENOSPC;
4546 		goto out_unlock;
4547 	}
4548 
4549 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4550 				dentry->d_name.len,
4551 				dentry->d_parent->d_inode->i_ino, objectid,
4552 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4553 				&index);
4554 	if (IS_ERR(inode)) {
4555 		err = PTR_ERR(inode);
4556 		goto out_fail;
4557 	}
4558 
4559 	drop_on_err = 1;
4560 
4561 	err = btrfs_init_inode_security(trans, inode, dir);
4562 	if (err)
4563 		goto out_fail;
4564 
4565 	inode->i_op = &btrfs_dir_inode_operations;
4566 	inode->i_fop = &btrfs_dir_file_operations;
4567 	btrfs_set_trans_block_group(trans, inode);
4568 
4569 	btrfs_i_size_write(inode, 0);
4570 	err = btrfs_update_inode(trans, root, inode);
4571 	if (err)
4572 		goto out_fail;
4573 
4574 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4575 				 inode, dentry->d_name.name,
4576 				 dentry->d_name.len, 0, index);
4577 	if (err)
4578 		goto out_fail;
4579 
4580 	d_instantiate(dentry, inode);
4581 	drop_on_err = 0;
4582 	btrfs_update_inode_block_group(trans, inode);
4583 	btrfs_update_inode_block_group(trans, dir);
4584 
4585 out_fail:
4586 	nr = trans->blocks_used;
4587 	btrfs_end_transaction_throttle(trans, root);
4588 
4589 out_unlock:
4590 	btrfs_unreserve_metadata_space(root, 5);
4591 	if (drop_on_err)
4592 		iput(inode);
4593 	btrfs_btree_balance_dirty(root, nr);
4594 	return err;
4595 }
4596 
4597 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4598  * and an extent that you want to insert, deal with overlap and insert
4599  * the new extent into the tree.
4600  */
4601 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4602 				struct extent_map *existing,
4603 				struct extent_map *em,
4604 				u64 map_start, u64 map_len)
4605 {
4606 	u64 start_diff;
4607 
4608 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4609 	start_diff = map_start - em->start;
4610 	em->start = map_start;
4611 	em->len = map_len;
4612 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4613 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4614 		em->block_start += start_diff;
4615 		em->block_len -= start_diff;
4616 	}
4617 	return add_extent_mapping(em_tree, em);
4618 }
4619 
4620 static noinline int uncompress_inline(struct btrfs_path *path,
4621 				      struct inode *inode, struct page *page,
4622 				      size_t pg_offset, u64 extent_offset,
4623 				      struct btrfs_file_extent_item *item)
4624 {
4625 	int ret;
4626 	struct extent_buffer *leaf = path->nodes[0];
4627 	char *tmp;
4628 	size_t max_size;
4629 	unsigned long inline_size;
4630 	unsigned long ptr;
4631 
4632 	WARN_ON(pg_offset != 0);
4633 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4634 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4635 					btrfs_item_nr(leaf, path->slots[0]));
4636 	tmp = kmalloc(inline_size, GFP_NOFS);
4637 	ptr = btrfs_file_extent_inline_start(item);
4638 
4639 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4640 
4641 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4642 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4643 				    inline_size, max_size);
4644 	if (ret) {
4645 		char *kaddr = kmap_atomic(page, KM_USER0);
4646 		unsigned long copy_size = min_t(u64,
4647 				  PAGE_CACHE_SIZE - pg_offset,
4648 				  max_size - extent_offset);
4649 		memset(kaddr + pg_offset, 0, copy_size);
4650 		kunmap_atomic(kaddr, KM_USER0);
4651 	}
4652 	kfree(tmp);
4653 	return 0;
4654 }
4655 
4656 /*
4657  * a bit scary, this does extent mapping from logical file offset to the disk.
4658  * the ugly parts come from merging extents from the disk with the in-ram
4659  * representation.  This gets more complex because of the data=ordered code,
4660  * where the in-ram extents might be locked pending data=ordered completion.
4661  *
4662  * This also copies inline extents directly into the page.
4663  */
4664 
4665 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4666 				    size_t pg_offset, u64 start, u64 len,
4667 				    int create)
4668 {
4669 	int ret;
4670 	int err = 0;
4671 	u64 bytenr;
4672 	u64 extent_start = 0;
4673 	u64 extent_end = 0;
4674 	u64 objectid = inode->i_ino;
4675 	u32 found_type;
4676 	struct btrfs_path *path = NULL;
4677 	struct btrfs_root *root = BTRFS_I(inode)->root;
4678 	struct btrfs_file_extent_item *item;
4679 	struct extent_buffer *leaf;
4680 	struct btrfs_key found_key;
4681 	struct extent_map *em = NULL;
4682 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4683 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4684 	struct btrfs_trans_handle *trans = NULL;
4685 	int compressed;
4686 
4687 again:
4688 	read_lock(&em_tree->lock);
4689 	em = lookup_extent_mapping(em_tree, start, len);
4690 	if (em)
4691 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4692 	read_unlock(&em_tree->lock);
4693 
4694 	if (em) {
4695 		if (em->start > start || em->start + em->len <= start)
4696 			free_extent_map(em);
4697 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4698 			free_extent_map(em);
4699 		else
4700 			goto out;
4701 	}
4702 	em = alloc_extent_map(GFP_NOFS);
4703 	if (!em) {
4704 		err = -ENOMEM;
4705 		goto out;
4706 	}
4707 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4708 	em->start = EXTENT_MAP_HOLE;
4709 	em->orig_start = EXTENT_MAP_HOLE;
4710 	em->len = (u64)-1;
4711 	em->block_len = (u64)-1;
4712 
4713 	if (!path) {
4714 		path = btrfs_alloc_path();
4715 		BUG_ON(!path);
4716 	}
4717 
4718 	ret = btrfs_lookup_file_extent(trans, root, path,
4719 				       objectid, start, trans != NULL);
4720 	if (ret < 0) {
4721 		err = ret;
4722 		goto out;
4723 	}
4724 
4725 	if (ret != 0) {
4726 		if (path->slots[0] == 0)
4727 			goto not_found;
4728 		path->slots[0]--;
4729 	}
4730 
4731 	leaf = path->nodes[0];
4732 	item = btrfs_item_ptr(leaf, path->slots[0],
4733 			      struct btrfs_file_extent_item);
4734 	/* are we inside the extent that was found? */
4735 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4736 	found_type = btrfs_key_type(&found_key);
4737 	if (found_key.objectid != objectid ||
4738 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4739 		goto not_found;
4740 	}
4741 
4742 	found_type = btrfs_file_extent_type(leaf, item);
4743 	extent_start = found_key.offset;
4744 	compressed = btrfs_file_extent_compression(leaf, item);
4745 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4746 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4747 		extent_end = extent_start +
4748 		       btrfs_file_extent_num_bytes(leaf, item);
4749 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4750 		size_t size;
4751 		size = btrfs_file_extent_inline_len(leaf, item);
4752 		extent_end = (extent_start + size + root->sectorsize - 1) &
4753 			~((u64)root->sectorsize - 1);
4754 	}
4755 
4756 	if (start >= extent_end) {
4757 		path->slots[0]++;
4758 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4759 			ret = btrfs_next_leaf(root, path);
4760 			if (ret < 0) {
4761 				err = ret;
4762 				goto out;
4763 			}
4764 			if (ret > 0)
4765 				goto not_found;
4766 			leaf = path->nodes[0];
4767 		}
4768 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4769 		if (found_key.objectid != objectid ||
4770 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4771 			goto not_found;
4772 		if (start + len <= found_key.offset)
4773 			goto not_found;
4774 		em->start = start;
4775 		em->len = found_key.offset - start;
4776 		goto not_found_em;
4777 	}
4778 
4779 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4780 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4781 		em->start = extent_start;
4782 		em->len = extent_end - extent_start;
4783 		em->orig_start = extent_start -
4784 				 btrfs_file_extent_offset(leaf, item);
4785 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4786 		if (bytenr == 0) {
4787 			em->block_start = EXTENT_MAP_HOLE;
4788 			goto insert;
4789 		}
4790 		if (compressed) {
4791 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4792 			em->block_start = bytenr;
4793 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4794 									 item);
4795 		} else {
4796 			bytenr += btrfs_file_extent_offset(leaf, item);
4797 			em->block_start = bytenr;
4798 			em->block_len = em->len;
4799 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4800 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4801 		}
4802 		goto insert;
4803 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4804 		unsigned long ptr;
4805 		char *map;
4806 		size_t size;
4807 		size_t extent_offset;
4808 		size_t copy_size;
4809 
4810 		em->block_start = EXTENT_MAP_INLINE;
4811 		if (!page || create) {
4812 			em->start = extent_start;
4813 			em->len = extent_end - extent_start;
4814 			goto out;
4815 		}
4816 
4817 		size = btrfs_file_extent_inline_len(leaf, item);
4818 		extent_offset = page_offset(page) + pg_offset - extent_start;
4819 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4820 				size - extent_offset);
4821 		em->start = extent_start + extent_offset;
4822 		em->len = (copy_size + root->sectorsize - 1) &
4823 			~((u64)root->sectorsize - 1);
4824 		em->orig_start = EXTENT_MAP_INLINE;
4825 		if (compressed)
4826 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4827 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4828 		if (create == 0 && !PageUptodate(page)) {
4829 			if (btrfs_file_extent_compression(leaf, item) ==
4830 			    BTRFS_COMPRESS_ZLIB) {
4831 				ret = uncompress_inline(path, inode, page,
4832 							pg_offset,
4833 							extent_offset, item);
4834 				BUG_ON(ret);
4835 			} else {
4836 				map = kmap(page);
4837 				read_extent_buffer(leaf, map + pg_offset, ptr,
4838 						   copy_size);
4839 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4840 					memset(map + pg_offset + copy_size, 0,
4841 					       PAGE_CACHE_SIZE - pg_offset -
4842 					       copy_size);
4843 				}
4844 				kunmap(page);
4845 			}
4846 			flush_dcache_page(page);
4847 		} else if (create && PageUptodate(page)) {
4848 			if (!trans) {
4849 				kunmap(page);
4850 				free_extent_map(em);
4851 				em = NULL;
4852 				btrfs_release_path(root, path);
4853 				trans = btrfs_join_transaction(root, 1);
4854 				goto again;
4855 			}
4856 			map = kmap(page);
4857 			write_extent_buffer(leaf, map + pg_offset, ptr,
4858 					    copy_size);
4859 			kunmap(page);
4860 			btrfs_mark_buffer_dirty(leaf);
4861 		}
4862 		set_extent_uptodate(io_tree, em->start,
4863 				    extent_map_end(em) - 1, GFP_NOFS);
4864 		goto insert;
4865 	} else {
4866 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4867 		WARN_ON(1);
4868 	}
4869 not_found:
4870 	em->start = start;
4871 	em->len = len;
4872 not_found_em:
4873 	em->block_start = EXTENT_MAP_HOLE;
4874 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4875 insert:
4876 	btrfs_release_path(root, path);
4877 	if (em->start > start || extent_map_end(em) <= start) {
4878 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4879 		       "[%llu %llu]\n", (unsigned long long)em->start,
4880 		       (unsigned long long)em->len,
4881 		       (unsigned long long)start,
4882 		       (unsigned long long)len);
4883 		err = -EIO;
4884 		goto out;
4885 	}
4886 
4887 	err = 0;
4888 	write_lock(&em_tree->lock);
4889 	ret = add_extent_mapping(em_tree, em);
4890 	/* it is possible that someone inserted the extent into the tree
4891 	 * while we had the lock dropped.  It is also possible that
4892 	 * an overlapping map exists in the tree
4893 	 */
4894 	if (ret == -EEXIST) {
4895 		struct extent_map *existing;
4896 
4897 		ret = 0;
4898 
4899 		existing = lookup_extent_mapping(em_tree, start, len);
4900 		if (existing && (existing->start > start ||
4901 		    existing->start + existing->len <= start)) {
4902 			free_extent_map(existing);
4903 			existing = NULL;
4904 		}
4905 		if (!existing) {
4906 			existing = lookup_extent_mapping(em_tree, em->start,
4907 							 em->len);
4908 			if (existing) {
4909 				err = merge_extent_mapping(em_tree, existing,
4910 							   em, start,
4911 							   root->sectorsize);
4912 				free_extent_map(existing);
4913 				if (err) {
4914 					free_extent_map(em);
4915 					em = NULL;
4916 				}
4917 			} else {
4918 				err = -EIO;
4919 				free_extent_map(em);
4920 				em = NULL;
4921 			}
4922 		} else {
4923 			free_extent_map(em);
4924 			em = existing;
4925 			err = 0;
4926 		}
4927 	}
4928 	write_unlock(&em_tree->lock);
4929 out:
4930 	if (path)
4931 		btrfs_free_path(path);
4932 	if (trans) {
4933 		ret = btrfs_end_transaction(trans, root);
4934 		if (!err)
4935 			err = ret;
4936 	}
4937 	if (err) {
4938 		free_extent_map(em);
4939 		return ERR_PTR(err);
4940 	}
4941 	return em;
4942 }
4943 
4944 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4945 			const struct iovec *iov, loff_t offset,
4946 			unsigned long nr_segs)
4947 {
4948 	return -EINVAL;
4949 }
4950 
4951 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4952 		__u64 start, __u64 len)
4953 {
4954 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4955 }
4956 
4957 int btrfs_readpage(struct file *file, struct page *page)
4958 {
4959 	struct extent_io_tree *tree;
4960 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4961 	return extent_read_full_page(tree, page, btrfs_get_extent);
4962 }
4963 
4964 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4965 {
4966 	struct extent_io_tree *tree;
4967 
4968 
4969 	if (current->flags & PF_MEMALLOC) {
4970 		redirty_page_for_writepage(wbc, page);
4971 		unlock_page(page);
4972 		return 0;
4973 	}
4974 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4975 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4976 }
4977 
4978 int btrfs_writepages(struct address_space *mapping,
4979 		     struct writeback_control *wbc)
4980 {
4981 	struct extent_io_tree *tree;
4982 
4983 	tree = &BTRFS_I(mapping->host)->io_tree;
4984 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4985 }
4986 
4987 static int
4988 btrfs_readpages(struct file *file, struct address_space *mapping,
4989 		struct list_head *pages, unsigned nr_pages)
4990 {
4991 	struct extent_io_tree *tree;
4992 	tree = &BTRFS_I(mapping->host)->io_tree;
4993 	return extent_readpages(tree, mapping, pages, nr_pages,
4994 				btrfs_get_extent);
4995 }
4996 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4997 {
4998 	struct extent_io_tree *tree;
4999 	struct extent_map_tree *map;
5000 	int ret;
5001 
5002 	tree = &BTRFS_I(page->mapping->host)->io_tree;
5003 	map = &BTRFS_I(page->mapping->host)->extent_tree;
5004 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5005 	if (ret == 1) {
5006 		ClearPagePrivate(page);
5007 		set_page_private(page, 0);
5008 		page_cache_release(page);
5009 	}
5010 	return ret;
5011 }
5012 
5013 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5014 {
5015 	if (PageWriteback(page) || PageDirty(page))
5016 		return 0;
5017 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5018 }
5019 
5020 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5021 {
5022 	struct extent_io_tree *tree;
5023 	struct btrfs_ordered_extent *ordered;
5024 	u64 page_start = page_offset(page);
5025 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5026 
5027 
5028 	/*
5029 	 * we have the page locked, so new writeback can't start,
5030 	 * and the dirty bit won't be cleared while we are here.
5031 	 *
5032 	 * Wait for IO on this page so that we can safely clear
5033 	 * the PagePrivate2 bit and do ordered accounting
5034 	 */
5035 	wait_on_page_writeback(page);
5036 
5037 	tree = &BTRFS_I(page->mapping->host)->io_tree;
5038 	if (offset) {
5039 		btrfs_releasepage(page, GFP_NOFS);
5040 		return;
5041 	}
5042 	lock_extent(tree, page_start, page_end, GFP_NOFS);
5043 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5044 					   page_offset(page));
5045 	if (ordered) {
5046 		/*
5047 		 * IO on this page will never be started, so we need
5048 		 * to account for any ordered extents now
5049 		 */
5050 		clear_extent_bit(tree, page_start, page_end,
5051 				 EXTENT_DIRTY | EXTENT_DELALLOC |
5052 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5053 				 NULL, GFP_NOFS);
5054 		/*
5055 		 * whoever cleared the private bit is responsible
5056 		 * for the finish_ordered_io
5057 		 */
5058 		if (TestClearPagePrivate2(page)) {
5059 			btrfs_finish_ordered_io(page->mapping->host,
5060 						page_start, page_end);
5061 		}
5062 		btrfs_put_ordered_extent(ordered);
5063 		lock_extent(tree, page_start, page_end, GFP_NOFS);
5064 	}
5065 	clear_extent_bit(tree, page_start, page_end,
5066 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5067 		 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
5068 	__btrfs_releasepage(page, GFP_NOFS);
5069 
5070 	ClearPageChecked(page);
5071 	if (PagePrivate(page)) {
5072 		ClearPagePrivate(page);
5073 		set_page_private(page, 0);
5074 		page_cache_release(page);
5075 	}
5076 }
5077 
5078 /*
5079  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5080  * called from a page fault handler when a page is first dirtied. Hence we must
5081  * be careful to check for EOF conditions here. We set the page up correctly
5082  * for a written page which means we get ENOSPC checking when writing into
5083  * holes and correct delalloc and unwritten extent mapping on filesystems that
5084  * support these features.
5085  *
5086  * We are not allowed to take the i_mutex here so we have to play games to
5087  * protect against truncate races as the page could now be beyond EOF.  Because
5088  * vmtruncate() writes the inode size before removing pages, once we have the
5089  * page lock we can determine safely if the page is beyond EOF. If it is not
5090  * beyond EOF, then the page is guaranteed safe against truncation until we
5091  * unlock the page.
5092  */
5093 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5094 {
5095 	struct page *page = vmf->page;
5096 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
5097 	struct btrfs_root *root = BTRFS_I(inode)->root;
5098 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5099 	struct btrfs_ordered_extent *ordered;
5100 	char *kaddr;
5101 	unsigned long zero_start;
5102 	loff_t size;
5103 	int ret;
5104 	u64 page_start;
5105 	u64 page_end;
5106 
5107 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5108 	if (ret) {
5109 		if (ret == -ENOMEM)
5110 			ret = VM_FAULT_OOM;
5111 		else /* -ENOSPC, -EIO, etc */
5112 			ret = VM_FAULT_SIGBUS;
5113 		goto out;
5114 	}
5115 
5116 	ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5117 	if (ret) {
5118 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5119 		ret = VM_FAULT_SIGBUS;
5120 		goto out;
5121 	}
5122 
5123 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5124 again:
5125 	lock_page(page);
5126 	size = i_size_read(inode);
5127 	page_start = page_offset(page);
5128 	page_end = page_start + PAGE_CACHE_SIZE - 1;
5129 
5130 	if ((page->mapping != inode->i_mapping) ||
5131 	    (page_start >= size)) {
5132 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5133 		/* page got truncated out from underneath us */
5134 		goto out_unlock;
5135 	}
5136 	wait_on_page_writeback(page);
5137 
5138 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5139 	set_page_extent_mapped(page);
5140 
5141 	/*
5142 	 * we can't set the delalloc bits if there are pending ordered
5143 	 * extents.  Drop our locks and wait for them to finish
5144 	 */
5145 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
5146 	if (ordered) {
5147 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5148 		unlock_page(page);
5149 		btrfs_start_ordered_extent(inode, ordered, 1);
5150 		btrfs_put_ordered_extent(ordered);
5151 		goto again;
5152 	}
5153 
5154 	/*
5155 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
5156 	 * if it was already dirty, so for space accounting reasons we need to
5157 	 * clear any delalloc bits for the range we are fixing to save.  There
5158 	 * is probably a better way to do this, but for now keep consistent with
5159 	 * prepare_pages in the normal write path.
5160 	 */
5161 	clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5162 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5163 			  GFP_NOFS);
5164 
5165 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5166 	if (ret) {
5167 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5168 		ret = VM_FAULT_SIGBUS;
5169 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5170 		goto out_unlock;
5171 	}
5172 	ret = 0;
5173 
5174 	/* page is wholly or partially inside EOF */
5175 	if (page_start + PAGE_CACHE_SIZE > size)
5176 		zero_start = size & ~PAGE_CACHE_MASK;
5177 	else
5178 		zero_start = PAGE_CACHE_SIZE;
5179 
5180 	if (zero_start != PAGE_CACHE_SIZE) {
5181 		kaddr = kmap(page);
5182 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5183 		flush_dcache_page(page);
5184 		kunmap(page);
5185 	}
5186 	ClearPageChecked(page);
5187 	set_page_dirty(page);
5188 	SetPageUptodate(page);
5189 
5190 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
5191 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5192 
5193 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5194 
5195 out_unlock:
5196 	btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5197 	if (!ret)
5198 		return VM_FAULT_LOCKED;
5199 	unlock_page(page);
5200 out:
5201 	return ret;
5202 }
5203 
5204 static void btrfs_truncate(struct inode *inode)
5205 {
5206 	struct btrfs_root *root = BTRFS_I(inode)->root;
5207 	int ret;
5208 	struct btrfs_trans_handle *trans;
5209 	unsigned long nr;
5210 	u64 mask = root->sectorsize - 1;
5211 
5212 	if (!S_ISREG(inode->i_mode)) {
5213 		WARN_ON(1);
5214 		return;
5215 	}
5216 
5217 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5218 	if (ret)
5219 		return;
5220 
5221 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5222 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5223 
5224 	trans = btrfs_start_transaction(root, 1);
5225 	btrfs_set_trans_block_group(trans, inode);
5226 
5227 	/*
5228 	 * setattr is responsible for setting the ordered_data_close flag,
5229 	 * but that is only tested during the last file release.  That
5230 	 * could happen well after the next commit, leaving a great big
5231 	 * window where new writes may get lost if someone chooses to write
5232 	 * to this file after truncating to zero
5233 	 *
5234 	 * The inode doesn't have any dirty data here, and so if we commit
5235 	 * this is a noop.  If someone immediately starts writing to the inode
5236 	 * it is very likely we'll catch some of their writes in this
5237 	 * transaction, and the commit will find this file on the ordered
5238 	 * data list with good things to send down.
5239 	 *
5240 	 * This is a best effort solution, there is still a window where
5241 	 * using truncate to replace the contents of the file will
5242 	 * end up with a zero length file after a crash.
5243 	 */
5244 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5245 		btrfs_add_ordered_operation(trans, root, inode);
5246 
5247 	while (1) {
5248 		ret = btrfs_truncate_inode_items(trans, root, inode,
5249 						 inode->i_size,
5250 						 BTRFS_EXTENT_DATA_KEY);
5251 		if (ret != -EAGAIN)
5252 			break;
5253 
5254 		ret = btrfs_update_inode(trans, root, inode);
5255 		BUG_ON(ret);
5256 
5257 		nr = trans->blocks_used;
5258 		btrfs_end_transaction(trans, root);
5259 		btrfs_btree_balance_dirty(root, nr);
5260 
5261 		trans = btrfs_start_transaction(root, 1);
5262 		btrfs_set_trans_block_group(trans, inode);
5263 	}
5264 
5265 	if (ret == 0 && inode->i_nlink > 0) {
5266 		ret = btrfs_orphan_del(trans, inode);
5267 		BUG_ON(ret);
5268 	}
5269 
5270 	ret = btrfs_update_inode(trans, root, inode);
5271 	BUG_ON(ret);
5272 
5273 	nr = trans->blocks_used;
5274 	ret = btrfs_end_transaction_throttle(trans, root);
5275 	BUG_ON(ret);
5276 	btrfs_btree_balance_dirty(root, nr);
5277 }
5278 
5279 /*
5280  * create a new subvolume directory/inode (helper for the ioctl).
5281  */
5282 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5283 			     struct btrfs_root *new_root,
5284 			     u64 new_dirid, u64 alloc_hint)
5285 {
5286 	struct inode *inode;
5287 	int err;
5288 	u64 index = 0;
5289 
5290 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5291 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5292 	if (IS_ERR(inode))
5293 		return PTR_ERR(inode);
5294 	inode->i_op = &btrfs_dir_inode_operations;
5295 	inode->i_fop = &btrfs_dir_file_operations;
5296 
5297 	inode->i_nlink = 1;
5298 	btrfs_i_size_write(inode, 0);
5299 
5300 	err = btrfs_update_inode(trans, new_root, inode);
5301 	BUG_ON(err);
5302 
5303 	iput(inode);
5304 	return 0;
5305 }
5306 
5307 /* helper function for file defrag and space balancing.  This
5308  * forces readahead on a given range of bytes in an inode
5309  */
5310 unsigned long btrfs_force_ra(struct address_space *mapping,
5311 			      struct file_ra_state *ra, struct file *file,
5312 			      pgoff_t offset, pgoff_t last_index)
5313 {
5314 	pgoff_t req_size = last_index - offset + 1;
5315 
5316 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5317 	return offset + req_size;
5318 }
5319 
5320 struct inode *btrfs_alloc_inode(struct super_block *sb)
5321 {
5322 	struct btrfs_inode *ei;
5323 
5324 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5325 	if (!ei)
5326 		return NULL;
5327 	ei->last_trans = 0;
5328 	ei->last_sub_trans = 0;
5329 	ei->logged_trans = 0;
5330 	ei->outstanding_extents = 0;
5331 	ei->reserved_extents = 0;
5332 	ei->root = NULL;
5333 	spin_lock_init(&ei->accounting_lock);
5334 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5335 	INIT_LIST_HEAD(&ei->i_orphan);
5336 	INIT_LIST_HEAD(&ei->ordered_operations);
5337 	return &ei->vfs_inode;
5338 }
5339 
5340 void btrfs_destroy_inode(struct inode *inode)
5341 {
5342 	struct btrfs_ordered_extent *ordered;
5343 	struct btrfs_root *root = BTRFS_I(inode)->root;
5344 
5345 	WARN_ON(!list_empty(&inode->i_dentry));
5346 	WARN_ON(inode->i_data.nrpages);
5347 
5348 	/*
5349 	 * This can happen where we create an inode, but somebody else also
5350 	 * created the same inode and we need to destroy the one we already
5351 	 * created.
5352 	 */
5353 	if (!root)
5354 		goto free;
5355 
5356 	/*
5357 	 * Make sure we're properly removed from the ordered operation
5358 	 * lists.
5359 	 */
5360 	smp_mb();
5361 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5362 		spin_lock(&root->fs_info->ordered_extent_lock);
5363 		list_del_init(&BTRFS_I(inode)->ordered_operations);
5364 		spin_unlock(&root->fs_info->ordered_extent_lock);
5365 	}
5366 
5367 	spin_lock(&root->list_lock);
5368 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5369 		printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5370 		       inode->i_ino);
5371 		list_del_init(&BTRFS_I(inode)->i_orphan);
5372 	}
5373 	spin_unlock(&root->list_lock);
5374 
5375 	while (1) {
5376 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5377 		if (!ordered)
5378 			break;
5379 		else {
5380 			printk(KERN_ERR "btrfs found ordered "
5381 			       "extent %llu %llu on inode cleanup\n",
5382 			       (unsigned long long)ordered->file_offset,
5383 			       (unsigned long long)ordered->len);
5384 			btrfs_remove_ordered_extent(inode, ordered);
5385 			btrfs_put_ordered_extent(ordered);
5386 			btrfs_put_ordered_extent(ordered);
5387 		}
5388 	}
5389 	inode_tree_del(inode);
5390 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5391 free:
5392 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5393 }
5394 
5395 void btrfs_drop_inode(struct inode *inode)
5396 {
5397 	struct btrfs_root *root = BTRFS_I(inode)->root;
5398 
5399 	if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5400 		generic_delete_inode(inode);
5401 	else
5402 		generic_drop_inode(inode);
5403 }
5404 
5405 static void init_once(void *foo)
5406 {
5407 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5408 
5409 	inode_init_once(&ei->vfs_inode);
5410 }
5411 
5412 void btrfs_destroy_cachep(void)
5413 {
5414 	if (btrfs_inode_cachep)
5415 		kmem_cache_destroy(btrfs_inode_cachep);
5416 	if (btrfs_trans_handle_cachep)
5417 		kmem_cache_destroy(btrfs_trans_handle_cachep);
5418 	if (btrfs_transaction_cachep)
5419 		kmem_cache_destroy(btrfs_transaction_cachep);
5420 	if (btrfs_path_cachep)
5421 		kmem_cache_destroy(btrfs_path_cachep);
5422 }
5423 
5424 int btrfs_init_cachep(void)
5425 {
5426 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5427 			sizeof(struct btrfs_inode), 0,
5428 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5429 	if (!btrfs_inode_cachep)
5430 		goto fail;
5431 
5432 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5433 			sizeof(struct btrfs_trans_handle), 0,
5434 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5435 	if (!btrfs_trans_handle_cachep)
5436 		goto fail;
5437 
5438 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5439 			sizeof(struct btrfs_transaction), 0,
5440 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5441 	if (!btrfs_transaction_cachep)
5442 		goto fail;
5443 
5444 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5445 			sizeof(struct btrfs_path), 0,
5446 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5447 	if (!btrfs_path_cachep)
5448 		goto fail;
5449 
5450 	return 0;
5451 fail:
5452 	btrfs_destroy_cachep();
5453 	return -ENOMEM;
5454 }
5455 
5456 static int btrfs_getattr(struct vfsmount *mnt,
5457 			 struct dentry *dentry, struct kstat *stat)
5458 {
5459 	struct inode *inode = dentry->d_inode;
5460 	generic_fillattr(inode, stat);
5461 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5462 	stat->blksize = PAGE_CACHE_SIZE;
5463 	stat->blocks = (inode_get_bytes(inode) +
5464 			BTRFS_I(inode)->delalloc_bytes) >> 9;
5465 	return 0;
5466 }
5467 
5468 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5469 			   struct inode *new_dir, struct dentry *new_dentry)
5470 {
5471 	struct btrfs_trans_handle *trans;
5472 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
5473 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5474 	struct inode *new_inode = new_dentry->d_inode;
5475 	struct inode *old_inode = old_dentry->d_inode;
5476 	struct timespec ctime = CURRENT_TIME;
5477 	u64 index = 0;
5478 	u64 root_objectid;
5479 	int ret;
5480 
5481 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5482 		return -EPERM;
5483 
5484 	/* we only allow rename subvolume link between subvolumes */
5485 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5486 		return -EXDEV;
5487 
5488 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5489 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5490 		return -ENOTEMPTY;
5491 
5492 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
5493 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5494 		return -ENOTEMPTY;
5495 
5496 	/*
5497 	 * We want to reserve the absolute worst case amount of items.  So if
5498 	 * both inodes are subvols and we need to unlink them then that would
5499 	 * require 4 item modifications, but if they are both normal inodes it
5500 	 * would require 5 item modifications, so we'll assume their normal
5501 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5502 	 * should cover the worst case number of items we'll modify.
5503 	 */
5504 	ret = btrfs_reserve_metadata_space(root, 11);
5505 	if (ret)
5506 		return ret;
5507 
5508 	/*
5509 	 * we're using rename to replace one file with another.
5510 	 * and the replacement file is large.  Start IO on it now so
5511 	 * we don't add too much work to the end of the transaction
5512 	 */
5513 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5514 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5515 		filemap_flush(old_inode->i_mapping);
5516 
5517 	/* close the racy window with snapshot create/destroy ioctl */
5518 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5519 		down_read(&root->fs_info->subvol_sem);
5520 
5521 	trans = btrfs_start_transaction(root, 1);
5522 	btrfs_set_trans_block_group(trans, new_dir);
5523 
5524 	if (dest != root)
5525 		btrfs_record_root_in_trans(trans, dest);
5526 
5527 	ret = btrfs_set_inode_index(new_dir, &index);
5528 	if (ret)
5529 		goto out_fail;
5530 
5531 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5532 		/* force full log commit if subvolume involved. */
5533 		root->fs_info->last_trans_log_full_commit = trans->transid;
5534 	} else {
5535 		ret = btrfs_insert_inode_ref(trans, dest,
5536 					     new_dentry->d_name.name,
5537 					     new_dentry->d_name.len,
5538 					     old_inode->i_ino,
5539 					     new_dir->i_ino, index);
5540 		if (ret)
5541 			goto out_fail;
5542 		/*
5543 		 * this is an ugly little race, but the rename is required
5544 		 * to make sure that if we crash, the inode is either at the
5545 		 * old name or the new one.  pinning the log transaction lets
5546 		 * us make sure we don't allow a log commit to come in after
5547 		 * we unlink the name but before we add the new name back in.
5548 		 */
5549 		btrfs_pin_log_trans(root);
5550 	}
5551 	/*
5552 	 * make sure the inode gets flushed if it is replacing
5553 	 * something.
5554 	 */
5555 	if (new_inode && new_inode->i_size &&
5556 	    old_inode && S_ISREG(old_inode->i_mode)) {
5557 		btrfs_add_ordered_operation(trans, root, old_inode);
5558 	}
5559 
5560 	old_dir->i_ctime = old_dir->i_mtime = ctime;
5561 	new_dir->i_ctime = new_dir->i_mtime = ctime;
5562 	old_inode->i_ctime = ctime;
5563 
5564 	if (old_dentry->d_parent != new_dentry->d_parent)
5565 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5566 
5567 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5568 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5569 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5570 					old_dentry->d_name.name,
5571 					old_dentry->d_name.len);
5572 	} else {
5573 		btrfs_inc_nlink(old_dentry->d_inode);
5574 		ret = btrfs_unlink_inode(trans, root, old_dir,
5575 					 old_dentry->d_inode,
5576 					 old_dentry->d_name.name,
5577 					 old_dentry->d_name.len);
5578 	}
5579 	BUG_ON(ret);
5580 
5581 	if (new_inode) {
5582 		new_inode->i_ctime = CURRENT_TIME;
5583 		if (unlikely(new_inode->i_ino ==
5584 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5585 			root_objectid = BTRFS_I(new_inode)->location.objectid;
5586 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
5587 						root_objectid,
5588 						new_dentry->d_name.name,
5589 						new_dentry->d_name.len);
5590 			BUG_ON(new_inode->i_nlink == 0);
5591 		} else {
5592 			ret = btrfs_unlink_inode(trans, dest, new_dir,
5593 						 new_dentry->d_inode,
5594 						 new_dentry->d_name.name,
5595 						 new_dentry->d_name.len);
5596 		}
5597 		BUG_ON(ret);
5598 		if (new_inode->i_nlink == 0) {
5599 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5600 			BUG_ON(ret);
5601 		}
5602 	}
5603 
5604 	ret = btrfs_add_link(trans, new_dir, old_inode,
5605 			     new_dentry->d_name.name,
5606 			     new_dentry->d_name.len, 0, index);
5607 	BUG_ON(ret);
5608 
5609 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5610 		btrfs_log_new_name(trans, old_inode, old_dir,
5611 				   new_dentry->d_parent);
5612 		btrfs_end_log_trans(root);
5613 	}
5614 out_fail:
5615 	btrfs_end_transaction_throttle(trans, root);
5616 
5617 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5618 		up_read(&root->fs_info->subvol_sem);
5619 
5620 	btrfs_unreserve_metadata_space(root, 11);
5621 	return ret;
5622 }
5623 
5624 /*
5625  * some fairly slow code that needs optimization. This walks the list
5626  * of all the inodes with pending delalloc and forces them to disk.
5627  */
5628 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5629 {
5630 	struct list_head *head = &root->fs_info->delalloc_inodes;
5631 	struct btrfs_inode *binode;
5632 	struct inode *inode;
5633 
5634 	if (root->fs_info->sb->s_flags & MS_RDONLY)
5635 		return -EROFS;
5636 
5637 	spin_lock(&root->fs_info->delalloc_lock);
5638 	while (!list_empty(head)) {
5639 		binode = list_entry(head->next, struct btrfs_inode,
5640 				    delalloc_inodes);
5641 		inode = igrab(&binode->vfs_inode);
5642 		if (!inode)
5643 			list_del_init(&binode->delalloc_inodes);
5644 		spin_unlock(&root->fs_info->delalloc_lock);
5645 		if (inode) {
5646 			filemap_flush(inode->i_mapping);
5647 			if (delay_iput)
5648 				btrfs_add_delayed_iput(inode);
5649 			else
5650 				iput(inode);
5651 		}
5652 		cond_resched();
5653 		spin_lock(&root->fs_info->delalloc_lock);
5654 	}
5655 	spin_unlock(&root->fs_info->delalloc_lock);
5656 
5657 	/* the filemap_flush will queue IO into the worker threads, but
5658 	 * we have to make sure the IO is actually started and that
5659 	 * ordered extents get created before we return
5660 	 */
5661 	atomic_inc(&root->fs_info->async_submit_draining);
5662 	while (atomic_read(&root->fs_info->nr_async_submits) ||
5663 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
5664 		wait_event(root->fs_info->async_submit_wait,
5665 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5666 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5667 	}
5668 	atomic_dec(&root->fs_info->async_submit_draining);
5669 	return 0;
5670 }
5671 
5672 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5673 			 const char *symname)
5674 {
5675 	struct btrfs_trans_handle *trans;
5676 	struct btrfs_root *root = BTRFS_I(dir)->root;
5677 	struct btrfs_path *path;
5678 	struct btrfs_key key;
5679 	struct inode *inode = NULL;
5680 	int err;
5681 	int drop_inode = 0;
5682 	u64 objectid;
5683 	u64 index = 0 ;
5684 	int name_len;
5685 	int datasize;
5686 	unsigned long ptr;
5687 	struct btrfs_file_extent_item *ei;
5688 	struct extent_buffer *leaf;
5689 	unsigned long nr = 0;
5690 
5691 	name_len = strlen(symname) + 1;
5692 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5693 		return -ENAMETOOLONG;
5694 
5695 	/*
5696 	 * 2 items for inode item and ref
5697 	 * 2 items for dir items
5698 	 * 1 item for xattr if selinux is on
5699 	 */
5700 	err = btrfs_reserve_metadata_space(root, 5);
5701 	if (err)
5702 		return err;
5703 
5704 	trans = btrfs_start_transaction(root, 1);
5705 	if (!trans)
5706 		goto out_fail;
5707 	btrfs_set_trans_block_group(trans, dir);
5708 
5709 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5710 	if (err) {
5711 		err = -ENOSPC;
5712 		goto out_unlock;
5713 	}
5714 
5715 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5716 				dentry->d_name.len,
5717 				dentry->d_parent->d_inode->i_ino, objectid,
5718 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5719 				&index);
5720 	err = PTR_ERR(inode);
5721 	if (IS_ERR(inode))
5722 		goto out_unlock;
5723 
5724 	err = btrfs_init_inode_security(trans, inode, dir);
5725 	if (err) {
5726 		drop_inode = 1;
5727 		goto out_unlock;
5728 	}
5729 
5730 	btrfs_set_trans_block_group(trans, inode);
5731 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5732 	if (err)
5733 		drop_inode = 1;
5734 	else {
5735 		inode->i_mapping->a_ops = &btrfs_aops;
5736 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5737 		inode->i_fop = &btrfs_file_operations;
5738 		inode->i_op = &btrfs_file_inode_operations;
5739 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5740 	}
5741 	btrfs_update_inode_block_group(trans, inode);
5742 	btrfs_update_inode_block_group(trans, dir);
5743 	if (drop_inode)
5744 		goto out_unlock;
5745 
5746 	path = btrfs_alloc_path();
5747 	BUG_ON(!path);
5748 	key.objectid = inode->i_ino;
5749 	key.offset = 0;
5750 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5751 	datasize = btrfs_file_extent_calc_inline_size(name_len);
5752 	err = btrfs_insert_empty_item(trans, root, path, &key,
5753 				      datasize);
5754 	if (err) {
5755 		drop_inode = 1;
5756 		goto out_unlock;
5757 	}
5758 	leaf = path->nodes[0];
5759 	ei = btrfs_item_ptr(leaf, path->slots[0],
5760 			    struct btrfs_file_extent_item);
5761 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5762 	btrfs_set_file_extent_type(leaf, ei,
5763 				   BTRFS_FILE_EXTENT_INLINE);
5764 	btrfs_set_file_extent_encryption(leaf, ei, 0);
5765 	btrfs_set_file_extent_compression(leaf, ei, 0);
5766 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5767 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5768 
5769 	ptr = btrfs_file_extent_inline_start(ei);
5770 	write_extent_buffer(leaf, symname, ptr, name_len);
5771 	btrfs_mark_buffer_dirty(leaf);
5772 	btrfs_free_path(path);
5773 
5774 	inode->i_op = &btrfs_symlink_inode_operations;
5775 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
5776 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5777 	inode_set_bytes(inode, name_len);
5778 	btrfs_i_size_write(inode, name_len - 1);
5779 	err = btrfs_update_inode(trans, root, inode);
5780 	if (err)
5781 		drop_inode = 1;
5782 
5783 out_unlock:
5784 	nr = trans->blocks_used;
5785 	btrfs_end_transaction_throttle(trans, root);
5786 out_fail:
5787 	btrfs_unreserve_metadata_space(root, 5);
5788 	if (drop_inode) {
5789 		inode_dec_link_count(inode);
5790 		iput(inode);
5791 	}
5792 	btrfs_btree_balance_dirty(root, nr);
5793 	return err;
5794 }
5795 
5796 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5797 			u64 alloc_hint, int mode, loff_t actual_len)
5798 {
5799 	struct btrfs_trans_handle *trans;
5800 	struct btrfs_root *root = BTRFS_I(inode)->root;
5801 	struct btrfs_key ins;
5802 	u64 alloc_size;
5803 	u64 cur_offset = start;
5804 	u64 num_bytes = end - start;
5805 	int ret = 0;
5806 	u64 i_size;
5807 
5808 	while (num_bytes > 0) {
5809 		alloc_size = min(num_bytes, root->fs_info->max_extent);
5810 
5811 		trans = btrfs_start_transaction(root, 1);
5812 
5813 		ret = btrfs_reserve_extent(trans, root, alloc_size,
5814 					   root->sectorsize, 0, alloc_hint,
5815 					   (u64)-1, &ins, 1);
5816 		if (ret) {
5817 			WARN_ON(1);
5818 			goto stop_trans;
5819 		}
5820 
5821 		ret = btrfs_reserve_metadata_space(root, 3);
5822 		if (ret) {
5823 			btrfs_free_reserved_extent(root, ins.objectid,
5824 						   ins.offset);
5825 			goto stop_trans;
5826 		}
5827 
5828 		ret = insert_reserved_file_extent(trans, inode,
5829 						  cur_offset, ins.objectid,
5830 						  ins.offset, ins.offset,
5831 						  ins.offset, 0, 0, 0,
5832 						  BTRFS_FILE_EXTENT_PREALLOC);
5833 		BUG_ON(ret);
5834 		btrfs_drop_extent_cache(inode, cur_offset,
5835 					cur_offset + ins.offset -1, 0);
5836 
5837 		num_bytes -= ins.offset;
5838 		cur_offset += ins.offset;
5839 		alloc_hint = ins.objectid + ins.offset;
5840 
5841 		inode->i_ctime = CURRENT_TIME;
5842 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5843 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5844 		    cur_offset > inode->i_size) {
5845 			if (cur_offset > actual_len)
5846 				i_size  = actual_len;
5847 			else
5848 				i_size = cur_offset;
5849 			i_size_write(inode, i_size);
5850 			btrfs_ordered_update_i_size(inode, i_size, NULL);
5851 		}
5852 
5853 		ret = btrfs_update_inode(trans, root, inode);
5854 		BUG_ON(ret);
5855 
5856 		btrfs_end_transaction(trans, root);
5857 		btrfs_unreserve_metadata_space(root, 3);
5858 	}
5859 	return ret;
5860 
5861 stop_trans:
5862 	btrfs_end_transaction(trans, root);
5863 	return ret;
5864 
5865 }
5866 
5867 static long btrfs_fallocate(struct inode *inode, int mode,
5868 			    loff_t offset, loff_t len)
5869 {
5870 	u64 cur_offset;
5871 	u64 last_byte;
5872 	u64 alloc_start;
5873 	u64 alloc_end;
5874 	u64 alloc_hint = 0;
5875 	u64 locked_end;
5876 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5877 	struct extent_map *em;
5878 	int ret;
5879 
5880 	alloc_start = offset & ~mask;
5881 	alloc_end =  (offset + len + mask) & ~mask;
5882 
5883 	/*
5884 	 * wait for ordered IO before we have any locks.  We'll loop again
5885 	 * below with the locks held.
5886 	 */
5887 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5888 
5889 	mutex_lock(&inode->i_mutex);
5890 	if (alloc_start > inode->i_size) {
5891 		ret = btrfs_cont_expand(inode, alloc_start);
5892 		if (ret)
5893 			goto out;
5894 	}
5895 
5896 	ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5897 					  alloc_end - alloc_start);
5898 	if (ret)
5899 		goto out;
5900 
5901 	locked_end = alloc_end - 1;
5902 	while (1) {
5903 		struct btrfs_ordered_extent *ordered;
5904 
5905 		/* the extent lock is ordered inside the running
5906 		 * transaction
5907 		 */
5908 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5909 			    GFP_NOFS);
5910 		ordered = btrfs_lookup_first_ordered_extent(inode,
5911 							    alloc_end - 1);
5912 		if (ordered &&
5913 		    ordered->file_offset + ordered->len > alloc_start &&
5914 		    ordered->file_offset < alloc_end) {
5915 			btrfs_put_ordered_extent(ordered);
5916 			unlock_extent(&BTRFS_I(inode)->io_tree,
5917 				      alloc_start, locked_end, GFP_NOFS);
5918 			/*
5919 			 * we can't wait on the range with the transaction
5920 			 * running or with the extent lock held
5921 			 */
5922 			btrfs_wait_ordered_range(inode, alloc_start,
5923 						 alloc_end - alloc_start);
5924 		} else {
5925 			if (ordered)
5926 				btrfs_put_ordered_extent(ordered);
5927 			break;
5928 		}
5929 	}
5930 
5931 	cur_offset = alloc_start;
5932 	while (1) {
5933 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5934 				      alloc_end - cur_offset, 0);
5935 		BUG_ON(IS_ERR(em) || !em);
5936 		last_byte = min(extent_map_end(em), alloc_end);
5937 		last_byte = (last_byte + mask) & ~mask;
5938 		if (em->block_start == EXTENT_MAP_HOLE ||
5939 		    (cur_offset >= inode->i_size &&
5940 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5941 			ret = prealloc_file_range(inode,
5942 						  cur_offset, last_byte,
5943 						alloc_hint, mode, offset+len);
5944 			if (ret < 0) {
5945 				free_extent_map(em);
5946 				break;
5947 			}
5948 		}
5949 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5950 			alloc_hint = em->block_start;
5951 		free_extent_map(em);
5952 
5953 		cur_offset = last_byte;
5954 		if (cur_offset >= alloc_end) {
5955 			ret = 0;
5956 			break;
5957 		}
5958 	}
5959 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5960 		      GFP_NOFS);
5961 
5962 	btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5963 				       alloc_end - alloc_start);
5964 out:
5965 	mutex_unlock(&inode->i_mutex);
5966 	return ret;
5967 }
5968 
5969 static int btrfs_set_page_dirty(struct page *page)
5970 {
5971 	return __set_page_dirty_nobuffers(page);
5972 }
5973 
5974 static int btrfs_permission(struct inode *inode, int mask)
5975 {
5976 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5977 		return -EACCES;
5978 	return generic_permission(inode, mask, btrfs_check_acl);
5979 }
5980 
5981 static const struct inode_operations btrfs_dir_inode_operations = {
5982 	.getattr	= btrfs_getattr,
5983 	.lookup		= btrfs_lookup,
5984 	.create		= btrfs_create,
5985 	.unlink		= btrfs_unlink,
5986 	.link		= btrfs_link,
5987 	.mkdir		= btrfs_mkdir,
5988 	.rmdir		= btrfs_rmdir,
5989 	.rename		= btrfs_rename,
5990 	.symlink	= btrfs_symlink,
5991 	.setattr	= btrfs_setattr,
5992 	.mknod		= btrfs_mknod,
5993 	.setxattr	= btrfs_setxattr,
5994 	.getxattr	= btrfs_getxattr,
5995 	.listxattr	= btrfs_listxattr,
5996 	.removexattr	= btrfs_removexattr,
5997 	.permission	= btrfs_permission,
5998 };
5999 static const struct inode_operations btrfs_dir_ro_inode_operations = {
6000 	.lookup		= btrfs_lookup,
6001 	.permission	= btrfs_permission,
6002 };
6003 
6004 static const struct file_operations btrfs_dir_file_operations = {
6005 	.llseek		= generic_file_llseek,
6006 	.read		= generic_read_dir,
6007 	.readdir	= btrfs_real_readdir,
6008 	.unlocked_ioctl	= btrfs_ioctl,
6009 #ifdef CONFIG_COMPAT
6010 	.compat_ioctl	= btrfs_ioctl,
6011 #endif
6012 	.release        = btrfs_release_file,
6013 	.fsync		= btrfs_sync_file,
6014 };
6015 
6016 static struct extent_io_ops btrfs_extent_io_ops = {
6017 	.fill_delalloc = run_delalloc_range,
6018 	.submit_bio_hook = btrfs_submit_bio_hook,
6019 	.merge_bio_hook = btrfs_merge_bio_hook,
6020 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
6021 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
6022 	.writepage_start_hook = btrfs_writepage_start_hook,
6023 	.readpage_io_failed_hook = btrfs_io_failed_hook,
6024 	.set_bit_hook = btrfs_set_bit_hook,
6025 	.clear_bit_hook = btrfs_clear_bit_hook,
6026 	.merge_extent_hook = btrfs_merge_extent_hook,
6027 	.split_extent_hook = btrfs_split_extent_hook,
6028 };
6029 
6030 /*
6031  * btrfs doesn't support the bmap operation because swapfiles
6032  * use bmap to make a mapping of extents in the file.  They assume
6033  * these extents won't change over the life of the file and they
6034  * use the bmap result to do IO directly to the drive.
6035  *
6036  * the btrfs bmap call would return logical addresses that aren't
6037  * suitable for IO and they also will change frequently as COW
6038  * operations happen.  So, swapfile + btrfs == corruption.
6039  *
6040  * For now we're avoiding this by dropping bmap.
6041  */
6042 static const struct address_space_operations btrfs_aops = {
6043 	.readpage	= btrfs_readpage,
6044 	.writepage	= btrfs_writepage,
6045 	.writepages	= btrfs_writepages,
6046 	.readpages	= btrfs_readpages,
6047 	.sync_page	= block_sync_page,
6048 	.direct_IO	= btrfs_direct_IO,
6049 	.invalidatepage = btrfs_invalidatepage,
6050 	.releasepage	= btrfs_releasepage,
6051 	.set_page_dirty	= btrfs_set_page_dirty,
6052 	.error_remove_page = generic_error_remove_page,
6053 };
6054 
6055 static const struct address_space_operations btrfs_symlink_aops = {
6056 	.readpage	= btrfs_readpage,
6057 	.writepage	= btrfs_writepage,
6058 	.invalidatepage = btrfs_invalidatepage,
6059 	.releasepage	= btrfs_releasepage,
6060 };
6061 
6062 static const struct inode_operations btrfs_file_inode_operations = {
6063 	.truncate	= btrfs_truncate,
6064 	.getattr	= btrfs_getattr,
6065 	.setattr	= btrfs_setattr,
6066 	.setxattr	= btrfs_setxattr,
6067 	.getxattr	= btrfs_getxattr,
6068 	.listxattr      = btrfs_listxattr,
6069 	.removexattr	= btrfs_removexattr,
6070 	.permission	= btrfs_permission,
6071 	.fallocate	= btrfs_fallocate,
6072 	.fiemap		= btrfs_fiemap,
6073 };
6074 static const struct inode_operations btrfs_special_inode_operations = {
6075 	.getattr	= btrfs_getattr,
6076 	.setattr	= btrfs_setattr,
6077 	.permission	= btrfs_permission,
6078 	.setxattr	= btrfs_setxattr,
6079 	.getxattr	= btrfs_getxattr,
6080 	.listxattr	= btrfs_listxattr,
6081 	.removexattr	= btrfs_removexattr,
6082 };
6083 static const struct inode_operations btrfs_symlink_inode_operations = {
6084 	.readlink	= generic_readlink,
6085 	.follow_link	= page_follow_link_light,
6086 	.put_link	= page_put_link,
6087 	.permission	= btrfs_permission,
6088 	.setxattr	= btrfs_setxattr,
6089 	.getxattr	= btrfs_getxattr,
6090 	.listxattr	= btrfs_listxattr,
6091 	.removexattr	= btrfs_removexattr,
6092 };
6093 
6094 const struct dentry_operations btrfs_dentry_operations = {
6095 	.d_delete	= btrfs_dentry_delete,
6096 };
6097