1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct page *locked_page, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 struct page *locked_page, 397 u64 offset, u64 bytes) 398 { 399 unsigned long index = offset >> PAGE_SHIFT; 400 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 401 u64 page_start = 0, page_end = 0; 402 struct page *page; 403 404 if (locked_page) { 405 page_start = page_offset(locked_page); 406 page_end = page_start + PAGE_SIZE - 1; 407 } 408 409 while (index <= end_index) { 410 /* 411 * For locked page, we will call btrfs_mark_ordered_io_finished 412 * through btrfs_mark_ordered_io_finished() on it 413 * in run_delalloc_range() for the error handling, which will 414 * clear page Ordered and run the ordered extent accounting. 415 * 416 * Here we can't just clear the Ordered bit, or 417 * btrfs_mark_ordered_io_finished() would skip the accounting 418 * for the page range, and the ordered extent will never finish. 419 */ 420 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 421 index++; 422 continue; 423 } 424 page = find_get_page(inode->vfs_inode.i_mapping, index); 425 index++; 426 if (!page) 427 continue; 428 429 /* 430 * Here we just clear all Ordered bits for every page in the 431 * range, then btrfs_mark_ordered_io_finished() will handle 432 * the ordered extent accounting for the range. 433 */ 434 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, 435 page_folio(page), offset, bytes); 436 put_page(page); 437 } 438 439 if (locked_page) { 440 /* The locked page covers the full range, nothing needs to be done */ 441 if (bytes + offset <= page_start + PAGE_SIZE) 442 return; 443 /* 444 * In case this page belongs to the delalloc range being 445 * instantiated then skip it, since the first page of a range is 446 * going to be properly cleaned up by the caller of 447 * run_delalloc_range 448 */ 449 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 450 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 451 offset = page_offset(locked_page) + PAGE_SIZE; 452 } 453 } 454 455 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 456 } 457 458 static int btrfs_dirty_inode(struct btrfs_inode *inode); 459 460 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 461 struct btrfs_new_inode_args *args) 462 { 463 int err; 464 465 if (args->default_acl) { 466 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 467 ACL_TYPE_DEFAULT); 468 if (err) 469 return err; 470 } 471 if (args->acl) { 472 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 473 if (err) 474 return err; 475 } 476 if (!args->default_acl && !args->acl) 477 cache_no_acl(args->inode); 478 return btrfs_xattr_security_init(trans, args->inode, args->dir, 479 &args->dentry->d_name); 480 } 481 482 /* 483 * this does all the hard work for inserting an inline extent into 484 * the btree. The caller should have done a btrfs_drop_extents so that 485 * no overlapping inline items exist in the btree 486 */ 487 static int insert_inline_extent(struct btrfs_trans_handle *trans, 488 struct btrfs_path *path, 489 struct btrfs_inode *inode, bool extent_inserted, 490 size_t size, size_t compressed_size, 491 int compress_type, 492 struct folio *compressed_folio, 493 bool update_i_size) 494 { 495 struct btrfs_root *root = inode->root; 496 struct extent_buffer *leaf; 497 struct page *page = NULL; 498 const u32 sectorsize = trans->fs_info->sectorsize; 499 char *kaddr; 500 unsigned long ptr; 501 struct btrfs_file_extent_item *ei; 502 int ret; 503 size_t cur_size = size; 504 u64 i_size; 505 506 /* 507 * The decompressed size must still be no larger than a sector. Under 508 * heavy race, we can have size == 0 passed in, but that shouldn't be a 509 * big deal and we can continue the insertion. 510 */ 511 ASSERT(size <= sectorsize); 512 513 /* 514 * The compressed size also needs to be no larger than a sector. 515 * That's also why we only need one page as the parameter. 516 */ 517 if (compressed_folio) 518 ASSERT(compressed_size <= sectorsize); 519 else 520 ASSERT(compressed_size == 0); 521 522 if (compressed_size && compressed_folio) 523 cur_size = compressed_size; 524 525 if (!extent_inserted) { 526 struct btrfs_key key; 527 size_t datasize; 528 529 key.objectid = btrfs_ino(inode); 530 key.offset = 0; 531 key.type = BTRFS_EXTENT_DATA_KEY; 532 533 datasize = btrfs_file_extent_calc_inline_size(cur_size); 534 ret = btrfs_insert_empty_item(trans, root, path, &key, 535 datasize); 536 if (ret) 537 goto fail; 538 } 539 leaf = path->nodes[0]; 540 ei = btrfs_item_ptr(leaf, path->slots[0], 541 struct btrfs_file_extent_item); 542 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 543 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 544 btrfs_set_file_extent_encryption(leaf, ei, 0); 545 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 546 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 547 ptr = btrfs_file_extent_inline_start(ei); 548 549 if (compress_type != BTRFS_COMPRESS_NONE) { 550 kaddr = kmap_local_folio(compressed_folio, 0); 551 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 552 kunmap_local(kaddr); 553 554 btrfs_set_file_extent_compression(leaf, ei, 555 compress_type); 556 } else { 557 page = find_get_page(inode->vfs_inode.i_mapping, 0); 558 btrfs_set_file_extent_compression(leaf, ei, 0); 559 kaddr = kmap_local_page(page); 560 write_extent_buffer(leaf, kaddr, ptr, size); 561 kunmap_local(kaddr); 562 put_page(page); 563 } 564 btrfs_mark_buffer_dirty(trans, leaf); 565 btrfs_release_path(path); 566 567 /* 568 * We align size to sectorsize for inline extents just for simplicity 569 * sake. 570 */ 571 ret = btrfs_inode_set_file_extent_range(inode, 0, 572 ALIGN(size, root->fs_info->sectorsize)); 573 if (ret) 574 goto fail; 575 576 /* 577 * We're an inline extent, so nobody can extend the file past i_size 578 * without locking a page we already have locked. 579 * 580 * We must do any i_size and inode updates before we unlock the pages. 581 * Otherwise we could end up racing with unlink. 582 */ 583 i_size = i_size_read(&inode->vfs_inode); 584 if (update_i_size && size > i_size) { 585 i_size_write(&inode->vfs_inode, size); 586 i_size = size; 587 } 588 inode->disk_i_size = i_size; 589 590 fail: 591 return ret; 592 } 593 594 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 595 u64 offset, u64 size, 596 size_t compressed_size) 597 { 598 struct btrfs_fs_info *fs_info = inode->root->fs_info; 599 u64 data_len = (compressed_size ?: size); 600 601 /* Inline extents must start at offset 0. */ 602 if (offset != 0) 603 return false; 604 605 /* 606 * Due to the page size limit, for subpage we can only trigger the 607 * writeback for the dirty sectors of page, that means data writeback 608 * is doing more writeback than what we want. 609 * 610 * This is especially unexpected for some call sites like fallocate, 611 * where we only increase i_size after everything is done. 612 * This means we can trigger inline extent even if we didn't want to. 613 * So here we skip inline extent creation completely. 614 */ 615 if (fs_info->sectorsize != PAGE_SIZE) 616 return false; 617 618 /* Inline extents are limited to sectorsize. */ 619 if (size > fs_info->sectorsize) 620 return false; 621 622 /* We cannot exceed the maximum inline data size. */ 623 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 624 return false; 625 626 /* We cannot exceed the user specified max_inline size. */ 627 if (data_len > fs_info->max_inline) 628 return false; 629 630 /* Inline extents must be the entirety of the file. */ 631 if (size < i_size_read(&inode->vfs_inode)) 632 return false; 633 634 return true; 635 } 636 637 /* 638 * conditionally insert an inline extent into the file. This 639 * does the checks required to make sure the data is small enough 640 * to fit as an inline extent. 641 * 642 * If being used directly, you must have already checked we're allowed to cow 643 * the range by getting true from can_cow_file_range_inline(). 644 */ 645 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset, 646 u64 size, size_t compressed_size, 647 int compress_type, 648 struct folio *compressed_folio, 649 bool update_i_size) 650 { 651 struct btrfs_drop_extents_args drop_args = { 0 }; 652 struct btrfs_root *root = inode->root; 653 struct btrfs_fs_info *fs_info = root->fs_info; 654 struct btrfs_trans_handle *trans; 655 u64 data_len = (compressed_size ?: size); 656 int ret; 657 struct btrfs_path *path; 658 659 path = btrfs_alloc_path(); 660 if (!path) 661 return -ENOMEM; 662 663 trans = btrfs_join_transaction(root); 664 if (IS_ERR(trans)) { 665 btrfs_free_path(path); 666 return PTR_ERR(trans); 667 } 668 trans->block_rsv = &inode->block_rsv; 669 670 drop_args.path = path; 671 drop_args.start = 0; 672 drop_args.end = fs_info->sectorsize; 673 drop_args.drop_cache = true; 674 drop_args.replace_extent = true; 675 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 676 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 677 if (ret) { 678 btrfs_abort_transaction(trans, ret); 679 goto out; 680 } 681 682 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 683 size, compressed_size, compress_type, 684 compressed_folio, update_i_size); 685 if (ret && ret != -ENOSPC) { 686 btrfs_abort_transaction(trans, ret); 687 goto out; 688 } else if (ret == -ENOSPC) { 689 ret = 1; 690 goto out; 691 } 692 693 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 694 ret = btrfs_update_inode(trans, inode); 695 if (ret && ret != -ENOSPC) { 696 btrfs_abort_transaction(trans, ret); 697 goto out; 698 } else if (ret == -ENOSPC) { 699 ret = 1; 700 goto out; 701 } 702 703 btrfs_set_inode_full_sync(inode); 704 out: 705 /* 706 * Don't forget to free the reserved space, as for inlined extent 707 * it won't count as data extent, free them directly here. 708 * And at reserve time, it's always aligned to page size, so 709 * just free one page here. 710 */ 711 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 712 btrfs_free_path(path); 713 btrfs_end_transaction(trans); 714 return ret; 715 } 716 717 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 718 struct page *locked_page, 719 u64 offset, u64 end, 720 size_t compressed_size, 721 int compress_type, 722 struct folio *compressed_folio, 723 bool update_i_size) 724 { 725 struct extent_state *cached = NULL; 726 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 727 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 728 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 729 int ret; 730 731 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 732 return 1; 733 734 lock_extent(&inode->io_tree, offset, end, &cached); 735 ret = __cow_file_range_inline(inode, offset, size, compressed_size, 736 compress_type, compressed_folio, 737 update_i_size); 738 if (ret > 0) { 739 unlock_extent(&inode->io_tree, offset, end, &cached); 740 return ret; 741 } 742 743 if (ret == 0) 744 locked_page = NULL; 745 746 extent_clear_unlock_delalloc(inode, offset, end, locked_page, &cached, 747 clear_flags, 748 PAGE_UNLOCK | PAGE_START_WRITEBACK | 749 PAGE_END_WRITEBACK); 750 return ret; 751 } 752 753 struct async_extent { 754 u64 start; 755 u64 ram_size; 756 u64 compressed_size; 757 struct folio **folios; 758 unsigned long nr_folios; 759 int compress_type; 760 struct list_head list; 761 }; 762 763 struct async_chunk { 764 struct btrfs_inode *inode; 765 struct page *locked_page; 766 u64 start; 767 u64 end; 768 blk_opf_t write_flags; 769 struct list_head extents; 770 struct cgroup_subsys_state *blkcg_css; 771 struct btrfs_work work; 772 struct async_cow *async_cow; 773 }; 774 775 struct async_cow { 776 atomic_t num_chunks; 777 struct async_chunk chunks[]; 778 }; 779 780 static noinline int add_async_extent(struct async_chunk *cow, 781 u64 start, u64 ram_size, 782 u64 compressed_size, 783 struct folio **folios, 784 unsigned long nr_folios, 785 int compress_type) 786 { 787 struct async_extent *async_extent; 788 789 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 790 if (!async_extent) 791 return -ENOMEM; 792 async_extent->start = start; 793 async_extent->ram_size = ram_size; 794 async_extent->compressed_size = compressed_size; 795 async_extent->folios = folios; 796 async_extent->nr_folios = nr_folios; 797 async_extent->compress_type = compress_type; 798 list_add_tail(&async_extent->list, &cow->extents); 799 return 0; 800 } 801 802 /* 803 * Check if the inode needs to be submitted to compression, based on mount 804 * options, defragmentation, properties or heuristics. 805 */ 806 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 807 u64 end) 808 { 809 struct btrfs_fs_info *fs_info = inode->root->fs_info; 810 811 if (!btrfs_inode_can_compress(inode)) { 812 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 813 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 814 btrfs_ino(inode)); 815 return 0; 816 } 817 /* 818 * Special check for subpage. 819 * 820 * We lock the full page then run each delalloc range in the page, thus 821 * for the following case, we will hit some subpage specific corner case: 822 * 823 * 0 32K 64K 824 * | |///////| |///////| 825 * \- A \- B 826 * 827 * In above case, both range A and range B will try to unlock the full 828 * page [0, 64K), causing the one finished later will have page 829 * unlocked already, triggering various page lock requirement BUG_ON()s. 830 * 831 * So here we add an artificial limit that subpage compression can only 832 * if the range is fully page aligned. 833 * 834 * In theory we only need to ensure the first page is fully covered, but 835 * the tailing partial page will be locked until the full compression 836 * finishes, delaying the write of other range. 837 * 838 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 839 * first to prevent any submitted async extent to unlock the full page. 840 * By this, we can ensure for subpage case that only the last async_cow 841 * will unlock the full page. 842 */ 843 if (fs_info->sectorsize < PAGE_SIZE) { 844 if (!PAGE_ALIGNED(start) || 845 !PAGE_ALIGNED(end + 1)) 846 return 0; 847 } 848 849 /* force compress */ 850 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 851 return 1; 852 /* defrag ioctl */ 853 if (inode->defrag_compress) 854 return 1; 855 /* bad compression ratios */ 856 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 857 return 0; 858 if (btrfs_test_opt(fs_info, COMPRESS) || 859 inode->flags & BTRFS_INODE_COMPRESS || 860 inode->prop_compress) 861 return btrfs_compress_heuristic(inode, start, end); 862 return 0; 863 } 864 865 static inline void inode_should_defrag(struct btrfs_inode *inode, 866 u64 start, u64 end, u64 num_bytes, u32 small_write) 867 { 868 /* If this is a small write inside eof, kick off a defrag */ 869 if (num_bytes < small_write && 870 (start > 0 || end + 1 < inode->disk_i_size)) 871 btrfs_add_inode_defrag(NULL, inode, small_write); 872 } 873 874 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 875 { 876 unsigned long end_index = end >> PAGE_SHIFT; 877 struct page *page; 878 int ret = 0; 879 880 for (unsigned long index = start >> PAGE_SHIFT; 881 index <= end_index; index++) { 882 page = find_get_page(inode->i_mapping, index); 883 if (unlikely(!page)) { 884 if (!ret) 885 ret = -ENOENT; 886 continue; 887 } 888 clear_page_dirty_for_io(page); 889 put_page(page); 890 } 891 return ret; 892 } 893 894 /* 895 * Work queue call back to started compression on a file and pages. 896 * 897 * This is done inside an ordered work queue, and the compression is spread 898 * across many cpus. The actual IO submission is step two, and the ordered work 899 * queue takes care of making sure that happens in the same order things were 900 * put onto the queue by writepages and friends. 901 * 902 * If this code finds it can't get good compression, it puts an entry onto the 903 * work queue to write the uncompressed bytes. This makes sure that both 904 * compressed inodes and uncompressed inodes are written in the same order that 905 * the flusher thread sent them down. 906 */ 907 static void compress_file_range(struct btrfs_work *work) 908 { 909 struct async_chunk *async_chunk = 910 container_of(work, struct async_chunk, work); 911 struct btrfs_inode *inode = async_chunk->inode; 912 struct btrfs_fs_info *fs_info = inode->root->fs_info; 913 struct address_space *mapping = inode->vfs_inode.i_mapping; 914 u64 blocksize = fs_info->sectorsize; 915 u64 start = async_chunk->start; 916 u64 end = async_chunk->end; 917 u64 actual_end; 918 u64 i_size; 919 int ret = 0; 920 struct folio **folios; 921 unsigned long nr_folios; 922 unsigned long total_compressed = 0; 923 unsigned long total_in = 0; 924 unsigned int poff; 925 int i; 926 int compress_type = fs_info->compress_type; 927 928 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 929 930 /* 931 * We need to call clear_page_dirty_for_io on each page in the range. 932 * Otherwise applications with the file mmap'd can wander in and change 933 * the page contents while we are compressing them. 934 */ 935 ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 936 937 /* 938 * All the folios should have been locked thus no failure. 939 * 940 * And even if some folios are missing, btrfs_compress_folios() 941 * would handle them correctly, so here just do an ASSERT() check for 942 * early logic errors. 943 */ 944 ASSERT(ret == 0); 945 946 /* 947 * We need to save i_size before now because it could change in between 948 * us evaluating the size and assigning it. This is because we lock and 949 * unlock the page in truncate and fallocate, and then modify the i_size 950 * later on. 951 * 952 * The barriers are to emulate READ_ONCE, remove that once i_size_read 953 * does that for us. 954 */ 955 barrier(); 956 i_size = i_size_read(&inode->vfs_inode); 957 barrier(); 958 actual_end = min_t(u64, i_size, end + 1); 959 again: 960 folios = NULL; 961 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 962 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 963 964 /* 965 * we don't want to send crud past the end of i_size through 966 * compression, that's just a waste of CPU time. So, if the 967 * end of the file is before the start of our current 968 * requested range of bytes, we bail out to the uncompressed 969 * cleanup code that can deal with all of this. 970 * 971 * It isn't really the fastest way to fix things, but this is a 972 * very uncommon corner. 973 */ 974 if (actual_end <= start) 975 goto cleanup_and_bail_uncompressed; 976 977 total_compressed = actual_end - start; 978 979 /* 980 * Skip compression for a small file range(<=blocksize) that 981 * isn't an inline extent, since it doesn't save disk space at all. 982 */ 983 if (total_compressed <= blocksize && 984 (start > 0 || end + 1 < inode->disk_i_size)) 985 goto cleanup_and_bail_uncompressed; 986 987 /* 988 * For subpage case, we require full page alignment for the sector 989 * aligned range. 990 * Thus we must also check against @actual_end, not just @end. 991 */ 992 if (blocksize < PAGE_SIZE) { 993 if (!PAGE_ALIGNED(start) || 994 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 995 goto cleanup_and_bail_uncompressed; 996 } 997 998 total_compressed = min_t(unsigned long, total_compressed, 999 BTRFS_MAX_UNCOMPRESSED); 1000 total_in = 0; 1001 ret = 0; 1002 1003 /* 1004 * We do compression for mount -o compress and when the inode has not 1005 * been flagged as NOCOMPRESS. This flag can change at any time if we 1006 * discover bad compression ratios. 1007 */ 1008 if (!inode_need_compress(inode, start, end)) 1009 goto cleanup_and_bail_uncompressed; 1010 1011 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 1012 if (!folios) { 1013 /* 1014 * Memory allocation failure is not a fatal error, we can fall 1015 * back to uncompressed code. 1016 */ 1017 goto cleanup_and_bail_uncompressed; 1018 } 1019 1020 if (inode->defrag_compress) 1021 compress_type = inode->defrag_compress; 1022 else if (inode->prop_compress) 1023 compress_type = inode->prop_compress; 1024 1025 /* Compression level is applied here. */ 1026 ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4), 1027 mapping, start, folios, &nr_folios, &total_in, 1028 &total_compressed); 1029 if (ret) 1030 goto mark_incompressible; 1031 1032 /* 1033 * Zero the tail end of the last page, as we might be sending it down 1034 * to disk. 1035 */ 1036 poff = offset_in_page(total_compressed); 1037 if (poff) 1038 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 1039 1040 /* 1041 * Try to create an inline extent. 1042 * 1043 * If we didn't compress the entire range, try to create an uncompressed 1044 * inline extent, else a compressed one. 1045 * 1046 * Check cow_file_range() for why we don't even try to create inline 1047 * extent for the subpage case. 1048 */ 1049 if (total_in < actual_end) 1050 ret = cow_file_range_inline(inode, NULL, start, end, 0, 1051 BTRFS_COMPRESS_NONE, NULL, false); 1052 else 1053 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1054 compress_type, folios[0], false); 1055 if (ret <= 0) { 1056 if (ret < 0) 1057 mapping_set_error(mapping, -EIO); 1058 goto free_pages; 1059 } 1060 1061 /* 1062 * We aren't doing an inline extent. Round the compressed size up to a 1063 * block size boundary so the allocator does sane things. 1064 */ 1065 total_compressed = ALIGN(total_compressed, blocksize); 1066 1067 /* 1068 * One last check to make sure the compression is really a win, compare 1069 * the page count read with the blocks on disk, compression must free at 1070 * least one sector. 1071 */ 1072 total_in = round_up(total_in, fs_info->sectorsize); 1073 if (total_compressed + blocksize > total_in) 1074 goto mark_incompressible; 1075 1076 /* 1077 * The async work queues will take care of doing actual allocation on 1078 * disk for these compressed pages, and will submit the bios. 1079 */ 1080 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1081 nr_folios, compress_type); 1082 BUG_ON(ret); 1083 if (start + total_in < end) { 1084 start += total_in; 1085 cond_resched(); 1086 goto again; 1087 } 1088 return; 1089 1090 mark_incompressible: 1091 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1092 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1093 cleanup_and_bail_uncompressed: 1094 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1095 BTRFS_COMPRESS_NONE); 1096 BUG_ON(ret); 1097 free_pages: 1098 if (folios) { 1099 for (i = 0; i < nr_folios; i++) { 1100 WARN_ON(folios[i]->mapping); 1101 btrfs_free_compr_folio(folios[i]); 1102 } 1103 kfree(folios); 1104 } 1105 } 1106 1107 static void free_async_extent_pages(struct async_extent *async_extent) 1108 { 1109 int i; 1110 1111 if (!async_extent->folios) 1112 return; 1113 1114 for (i = 0; i < async_extent->nr_folios; i++) { 1115 WARN_ON(async_extent->folios[i]->mapping); 1116 btrfs_free_compr_folio(async_extent->folios[i]); 1117 } 1118 kfree(async_extent->folios); 1119 async_extent->nr_folios = 0; 1120 async_extent->folios = NULL; 1121 } 1122 1123 static void submit_uncompressed_range(struct btrfs_inode *inode, 1124 struct async_extent *async_extent, 1125 struct page *locked_page) 1126 { 1127 u64 start = async_extent->start; 1128 u64 end = async_extent->start + async_extent->ram_size - 1; 1129 int ret; 1130 struct writeback_control wbc = { 1131 .sync_mode = WB_SYNC_ALL, 1132 .range_start = start, 1133 .range_end = end, 1134 .no_cgroup_owner = 1, 1135 }; 1136 1137 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1138 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1139 wbc_detach_inode(&wbc); 1140 if (ret < 0) { 1141 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1142 if (locked_page) { 1143 const u64 page_start = page_offset(locked_page); 1144 1145 set_page_writeback(locked_page); 1146 end_page_writeback(locked_page); 1147 btrfs_mark_ordered_io_finished(inode, locked_page, 1148 page_start, PAGE_SIZE, 1149 !ret); 1150 mapping_set_error(locked_page->mapping, ret); 1151 unlock_page(locked_page); 1152 } 1153 } 1154 } 1155 1156 static void submit_one_async_extent(struct async_chunk *async_chunk, 1157 struct async_extent *async_extent, 1158 u64 *alloc_hint) 1159 { 1160 struct btrfs_inode *inode = async_chunk->inode; 1161 struct extent_io_tree *io_tree = &inode->io_tree; 1162 struct btrfs_root *root = inode->root; 1163 struct btrfs_fs_info *fs_info = root->fs_info; 1164 struct btrfs_ordered_extent *ordered; 1165 struct btrfs_file_extent file_extent; 1166 struct btrfs_key ins; 1167 struct page *locked_page = NULL; 1168 struct extent_state *cached = NULL; 1169 struct extent_map *em; 1170 int ret = 0; 1171 u64 start = async_extent->start; 1172 u64 end = async_extent->start + async_extent->ram_size - 1; 1173 1174 if (async_chunk->blkcg_css) 1175 kthread_associate_blkcg(async_chunk->blkcg_css); 1176 1177 /* 1178 * If async_chunk->locked_page is in the async_extent range, we need to 1179 * handle it. 1180 */ 1181 if (async_chunk->locked_page) { 1182 u64 locked_page_start = page_offset(async_chunk->locked_page); 1183 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1184 1185 if (!(start >= locked_page_end || end <= locked_page_start)) 1186 locked_page = async_chunk->locked_page; 1187 } 1188 1189 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1190 submit_uncompressed_range(inode, async_extent, locked_page); 1191 goto done; 1192 } 1193 1194 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1195 async_extent->compressed_size, 1196 async_extent->compressed_size, 1197 0, *alloc_hint, &ins, 1, 1); 1198 if (ret) { 1199 /* 1200 * We can't reserve contiguous space for the compressed size. 1201 * Unlikely, but it's possible that we could have enough 1202 * non-contiguous space for the uncompressed size instead. So 1203 * fall back to uncompressed. 1204 */ 1205 submit_uncompressed_range(inode, async_extent, locked_page); 1206 goto done; 1207 } 1208 1209 lock_extent(io_tree, start, end, &cached); 1210 1211 /* Here we're doing allocation and writeback of the compressed pages */ 1212 file_extent.disk_bytenr = ins.objectid; 1213 file_extent.disk_num_bytes = ins.offset; 1214 file_extent.ram_bytes = async_extent->ram_size; 1215 file_extent.num_bytes = async_extent->ram_size; 1216 file_extent.offset = 0; 1217 file_extent.compression = async_extent->compress_type; 1218 1219 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1220 if (IS_ERR(em)) { 1221 ret = PTR_ERR(em); 1222 goto out_free_reserve; 1223 } 1224 free_extent_map(em); 1225 1226 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1227 1 << BTRFS_ORDERED_COMPRESSED); 1228 if (IS_ERR(ordered)) { 1229 btrfs_drop_extent_map_range(inode, start, end, false); 1230 ret = PTR_ERR(ordered); 1231 goto out_free_reserve; 1232 } 1233 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1234 1235 /* Clear dirty, set writeback and unlock the pages. */ 1236 extent_clear_unlock_delalloc(inode, start, end, 1237 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1238 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1239 btrfs_submit_compressed_write(ordered, 1240 async_extent->folios, /* compressed_folios */ 1241 async_extent->nr_folios, 1242 async_chunk->write_flags, true); 1243 *alloc_hint = ins.objectid + ins.offset; 1244 done: 1245 if (async_chunk->blkcg_css) 1246 kthread_associate_blkcg(NULL); 1247 kfree(async_extent); 1248 return; 1249 1250 out_free_reserve: 1251 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1252 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1253 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1254 extent_clear_unlock_delalloc(inode, start, end, 1255 NULL, &cached, 1256 EXTENT_LOCKED | EXTENT_DELALLOC | 1257 EXTENT_DELALLOC_NEW | 1258 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1259 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1260 PAGE_END_WRITEBACK); 1261 free_async_extent_pages(async_extent); 1262 if (async_chunk->blkcg_css) 1263 kthread_associate_blkcg(NULL); 1264 btrfs_debug(fs_info, 1265 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1266 btrfs_root_id(root), btrfs_ino(inode), start, 1267 async_extent->ram_size, ret); 1268 kfree(async_extent); 1269 } 1270 1271 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1272 u64 num_bytes) 1273 { 1274 struct extent_map_tree *em_tree = &inode->extent_tree; 1275 struct extent_map *em; 1276 u64 alloc_hint = 0; 1277 1278 read_lock(&em_tree->lock); 1279 em = search_extent_mapping(em_tree, start, num_bytes); 1280 if (em) { 1281 /* 1282 * if block start isn't an actual block number then find the 1283 * first block in this inode and use that as a hint. If that 1284 * block is also bogus then just don't worry about it. 1285 */ 1286 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1287 free_extent_map(em); 1288 em = search_extent_mapping(em_tree, 0, 0); 1289 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1290 alloc_hint = extent_map_block_start(em); 1291 if (em) 1292 free_extent_map(em); 1293 } else { 1294 alloc_hint = extent_map_block_start(em); 1295 free_extent_map(em); 1296 } 1297 } 1298 read_unlock(&em_tree->lock); 1299 1300 return alloc_hint; 1301 } 1302 1303 /* 1304 * when extent_io.c finds a delayed allocation range in the file, 1305 * the call backs end up in this code. The basic idea is to 1306 * allocate extents on disk for the range, and create ordered data structs 1307 * in ram to track those extents. 1308 * 1309 * locked_page is the page that writepage had locked already. We use 1310 * it to make sure we don't do extra locks or unlocks. 1311 * 1312 * When this function fails, it unlocks all pages except @locked_page. 1313 * 1314 * When this function successfully creates an inline extent, it returns 1 and 1315 * unlocks all pages including locked_page and starts I/O on them. 1316 * (In reality inline extents are limited to a single page, so locked_page is 1317 * the only page handled anyway). 1318 * 1319 * When this function succeed and creates a normal extent, the page locking 1320 * status depends on the passed in flags: 1321 * 1322 * - If @keep_locked is set, all pages are kept locked. 1323 * - Else all pages except for @locked_page are unlocked. 1324 * 1325 * When a failure happens in the second or later iteration of the 1326 * while-loop, the ordered extents created in previous iterations are kept 1327 * intact. So, the caller must clean them up by calling 1328 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1329 * example. 1330 */ 1331 static noinline int cow_file_range(struct btrfs_inode *inode, 1332 struct page *locked_page, u64 start, u64 end, 1333 u64 *done_offset, 1334 bool keep_locked, bool no_inline) 1335 { 1336 struct btrfs_root *root = inode->root; 1337 struct btrfs_fs_info *fs_info = root->fs_info; 1338 struct extent_state *cached = NULL; 1339 u64 alloc_hint = 0; 1340 u64 orig_start = start; 1341 u64 num_bytes; 1342 unsigned long ram_size; 1343 u64 cur_alloc_size = 0; 1344 u64 min_alloc_size; 1345 u64 blocksize = fs_info->sectorsize; 1346 struct btrfs_key ins; 1347 struct extent_map *em; 1348 unsigned clear_bits; 1349 unsigned long page_ops; 1350 bool extent_reserved = false; 1351 int ret = 0; 1352 1353 if (btrfs_is_free_space_inode(inode)) { 1354 ret = -EINVAL; 1355 goto out_unlock; 1356 } 1357 1358 num_bytes = ALIGN(end - start + 1, blocksize); 1359 num_bytes = max(blocksize, num_bytes); 1360 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1361 1362 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1363 1364 if (!no_inline) { 1365 /* lets try to make an inline extent */ 1366 ret = cow_file_range_inline(inode, locked_page, start, end, 0, 1367 BTRFS_COMPRESS_NONE, NULL, false); 1368 if (ret <= 0) { 1369 /* 1370 * We succeeded, return 1 so the caller knows we're done 1371 * with this page and already handled the IO. 1372 * 1373 * If there was an error then cow_file_range_inline() has 1374 * already done the cleanup. 1375 */ 1376 if (ret == 0) 1377 ret = 1; 1378 goto done; 1379 } 1380 } 1381 1382 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1383 1384 /* 1385 * Relocation relies on the relocated extents to have exactly the same 1386 * size as the original extents. Normally writeback for relocation data 1387 * extents follows a NOCOW path because relocation preallocates the 1388 * extents. However, due to an operation such as scrub turning a block 1389 * group to RO mode, it may fallback to COW mode, so we must make sure 1390 * an extent allocated during COW has exactly the requested size and can 1391 * not be split into smaller extents, otherwise relocation breaks and 1392 * fails during the stage where it updates the bytenr of file extent 1393 * items. 1394 */ 1395 if (btrfs_is_data_reloc_root(root)) 1396 min_alloc_size = num_bytes; 1397 else 1398 min_alloc_size = fs_info->sectorsize; 1399 1400 while (num_bytes > 0) { 1401 struct btrfs_ordered_extent *ordered; 1402 struct btrfs_file_extent file_extent; 1403 1404 cur_alloc_size = num_bytes; 1405 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1406 min_alloc_size, 0, alloc_hint, 1407 &ins, 1, 1); 1408 if (ret == -EAGAIN) { 1409 /* 1410 * btrfs_reserve_extent only returns -EAGAIN for zoned 1411 * file systems, which is an indication that there are 1412 * no active zones to allocate from at the moment. 1413 * 1414 * If this is the first loop iteration, wait for at 1415 * least one zone to finish before retrying the 1416 * allocation. Otherwise ask the caller to write out 1417 * the already allocated blocks before coming back to 1418 * us, or return -ENOSPC if it can't handle retries. 1419 */ 1420 ASSERT(btrfs_is_zoned(fs_info)); 1421 if (start == orig_start) { 1422 wait_on_bit_io(&inode->root->fs_info->flags, 1423 BTRFS_FS_NEED_ZONE_FINISH, 1424 TASK_UNINTERRUPTIBLE); 1425 continue; 1426 } 1427 if (done_offset) { 1428 *done_offset = start - 1; 1429 return 0; 1430 } 1431 ret = -ENOSPC; 1432 } 1433 if (ret < 0) 1434 goto out_unlock; 1435 cur_alloc_size = ins.offset; 1436 extent_reserved = true; 1437 1438 ram_size = ins.offset; 1439 file_extent.disk_bytenr = ins.objectid; 1440 file_extent.disk_num_bytes = ins.offset; 1441 file_extent.num_bytes = ins.offset; 1442 file_extent.ram_bytes = ins.offset; 1443 file_extent.offset = 0; 1444 file_extent.compression = BTRFS_COMPRESS_NONE; 1445 1446 lock_extent(&inode->io_tree, start, start + ram_size - 1, 1447 &cached); 1448 1449 em = btrfs_create_io_em(inode, start, &file_extent, 1450 BTRFS_ORDERED_REGULAR); 1451 if (IS_ERR(em)) { 1452 unlock_extent(&inode->io_tree, start, 1453 start + ram_size - 1, &cached); 1454 ret = PTR_ERR(em); 1455 goto out_reserve; 1456 } 1457 free_extent_map(em); 1458 1459 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1460 1 << BTRFS_ORDERED_REGULAR); 1461 if (IS_ERR(ordered)) { 1462 unlock_extent(&inode->io_tree, start, 1463 start + ram_size - 1, &cached); 1464 ret = PTR_ERR(ordered); 1465 goto out_drop_extent_cache; 1466 } 1467 1468 if (btrfs_is_data_reloc_root(root)) { 1469 ret = btrfs_reloc_clone_csums(ordered); 1470 1471 /* 1472 * Only drop cache here, and process as normal. 1473 * 1474 * We must not allow extent_clear_unlock_delalloc() 1475 * at out_unlock label to free meta of this ordered 1476 * extent, as its meta should be freed by 1477 * btrfs_finish_ordered_io(). 1478 * 1479 * So we must continue until @start is increased to 1480 * skip current ordered extent. 1481 */ 1482 if (ret) 1483 btrfs_drop_extent_map_range(inode, start, 1484 start + ram_size - 1, 1485 false); 1486 } 1487 btrfs_put_ordered_extent(ordered); 1488 1489 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1490 1491 /* 1492 * We're not doing compressed IO, don't unlock the first page 1493 * (which the caller expects to stay locked), don't clear any 1494 * dirty bits and don't set any writeback bits 1495 * 1496 * Do set the Ordered (Private2) bit so we know this page was 1497 * properly setup for writepage. 1498 */ 1499 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1500 page_ops |= PAGE_SET_ORDERED; 1501 1502 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1503 locked_page, &cached, 1504 EXTENT_LOCKED | EXTENT_DELALLOC, 1505 page_ops); 1506 if (num_bytes < cur_alloc_size) 1507 num_bytes = 0; 1508 else 1509 num_bytes -= cur_alloc_size; 1510 alloc_hint = ins.objectid + ins.offset; 1511 start += cur_alloc_size; 1512 extent_reserved = false; 1513 1514 /* 1515 * btrfs_reloc_clone_csums() error, since start is increased 1516 * extent_clear_unlock_delalloc() at out_unlock label won't 1517 * free metadata of current ordered extent, we're OK to exit. 1518 */ 1519 if (ret) 1520 goto out_unlock; 1521 } 1522 done: 1523 if (done_offset) 1524 *done_offset = end; 1525 return ret; 1526 1527 out_drop_extent_cache: 1528 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1529 out_reserve: 1530 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1531 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1532 out_unlock: 1533 /* 1534 * Now, we have three regions to clean up: 1535 * 1536 * |-------(1)----|---(2)---|-------------(3)----------| 1537 * `- orig_start `- start `- start + cur_alloc_size `- end 1538 * 1539 * We process each region below. 1540 */ 1541 1542 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1543 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1544 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1545 1546 /* 1547 * For the range (1). We have already instantiated the ordered extents 1548 * for this region. They are cleaned up by 1549 * btrfs_cleanup_ordered_extents() in e.g, 1550 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1551 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1552 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1553 * function. 1554 * 1555 * However, in case of @keep_locked, we still need to unlock the pages 1556 * (except @locked_page) to ensure all the pages are unlocked. 1557 */ 1558 if (keep_locked && orig_start < start) { 1559 if (!locked_page) 1560 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1561 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1562 locked_page, NULL, 0, page_ops); 1563 } 1564 1565 /* 1566 * At this point we're unlocked, we want to make sure we're only 1567 * clearing these flags under the extent lock, so lock the rest of the 1568 * range and clear everything up. 1569 */ 1570 lock_extent(&inode->io_tree, start, end, NULL); 1571 1572 /* 1573 * For the range (2). If we reserved an extent for our delalloc range 1574 * (or a subrange) and failed to create the respective ordered extent, 1575 * then it means that when we reserved the extent we decremented the 1576 * extent's size from the data space_info's bytes_may_use counter and 1577 * incremented the space_info's bytes_reserved counter by the same 1578 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1579 * to decrement again the data space_info's bytes_may_use counter, 1580 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1581 */ 1582 if (extent_reserved) { 1583 extent_clear_unlock_delalloc(inode, start, 1584 start + cur_alloc_size - 1, 1585 locked_page, &cached, 1586 clear_bits, 1587 page_ops); 1588 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1589 start += cur_alloc_size; 1590 } 1591 1592 /* 1593 * For the range (3). We never touched the region. In addition to the 1594 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1595 * space_info's bytes_may_use counter, reserved in 1596 * btrfs_check_data_free_space(). 1597 */ 1598 if (start < end) { 1599 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1600 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1601 &cached, clear_bits, page_ops); 1602 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1603 } 1604 return ret; 1605 } 1606 1607 /* 1608 * Phase two of compressed writeback. This is the ordered portion of the code, 1609 * which only gets called in the order the work was queued. We walk all the 1610 * async extents created by compress_file_range and send them down to the disk. 1611 * 1612 * If called with @do_free == true then it'll try to finish the work and free 1613 * the work struct eventually. 1614 */ 1615 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1616 { 1617 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1618 work); 1619 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1620 struct async_extent *async_extent; 1621 unsigned long nr_pages; 1622 u64 alloc_hint = 0; 1623 1624 if (do_free) { 1625 struct async_cow *async_cow; 1626 1627 btrfs_add_delayed_iput(async_chunk->inode); 1628 if (async_chunk->blkcg_css) 1629 css_put(async_chunk->blkcg_css); 1630 1631 async_cow = async_chunk->async_cow; 1632 if (atomic_dec_and_test(&async_cow->num_chunks)) 1633 kvfree(async_cow); 1634 return; 1635 } 1636 1637 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1638 PAGE_SHIFT; 1639 1640 while (!list_empty(&async_chunk->extents)) { 1641 async_extent = list_entry(async_chunk->extents.next, 1642 struct async_extent, list); 1643 list_del(&async_extent->list); 1644 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1645 } 1646 1647 /* atomic_sub_return implies a barrier */ 1648 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1649 5 * SZ_1M) 1650 cond_wake_up_nomb(&fs_info->async_submit_wait); 1651 } 1652 1653 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1654 struct page *locked_page, u64 start, 1655 u64 end, struct writeback_control *wbc) 1656 { 1657 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1658 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1659 struct async_cow *ctx; 1660 struct async_chunk *async_chunk; 1661 unsigned long nr_pages; 1662 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1663 int i; 1664 unsigned nofs_flag; 1665 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1666 1667 nofs_flag = memalloc_nofs_save(); 1668 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1669 memalloc_nofs_restore(nofs_flag); 1670 if (!ctx) 1671 return false; 1672 1673 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1674 1675 async_chunk = ctx->chunks; 1676 atomic_set(&ctx->num_chunks, num_chunks); 1677 1678 for (i = 0; i < num_chunks; i++) { 1679 u64 cur_end = min(end, start + SZ_512K - 1); 1680 1681 /* 1682 * igrab is called higher up in the call chain, take only the 1683 * lightweight reference for the callback lifetime 1684 */ 1685 ihold(&inode->vfs_inode); 1686 async_chunk[i].async_cow = ctx; 1687 async_chunk[i].inode = inode; 1688 async_chunk[i].start = start; 1689 async_chunk[i].end = cur_end; 1690 async_chunk[i].write_flags = write_flags; 1691 INIT_LIST_HEAD(&async_chunk[i].extents); 1692 1693 /* 1694 * The locked_page comes all the way from writepage and its 1695 * the original page we were actually given. As we spread 1696 * this large delalloc region across multiple async_chunk 1697 * structs, only the first struct needs a pointer to locked_page 1698 * 1699 * This way we don't need racey decisions about who is supposed 1700 * to unlock it. 1701 */ 1702 if (locked_page) { 1703 /* 1704 * Depending on the compressibility, the pages might or 1705 * might not go through async. We want all of them to 1706 * be accounted against wbc once. Let's do it here 1707 * before the paths diverge. wbc accounting is used 1708 * only for foreign writeback detection and doesn't 1709 * need full accuracy. Just account the whole thing 1710 * against the first page. 1711 */ 1712 wbc_account_cgroup_owner(wbc, locked_page, 1713 cur_end - start); 1714 async_chunk[i].locked_page = locked_page; 1715 locked_page = NULL; 1716 } else { 1717 async_chunk[i].locked_page = NULL; 1718 } 1719 1720 if (blkcg_css != blkcg_root_css) { 1721 css_get(blkcg_css); 1722 async_chunk[i].blkcg_css = blkcg_css; 1723 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1724 } else { 1725 async_chunk[i].blkcg_css = NULL; 1726 } 1727 1728 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1729 submit_compressed_extents); 1730 1731 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1732 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1733 1734 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1735 1736 start = cur_end + 1; 1737 } 1738 return true; 1739 } 1740 1741 /* 1742 * Run the delalloc range from start to end, and write back any dirty pages 1743 * covered by the range. 1744 */ 1745 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1746 struct page *locked_page, u64 start, 1747 u64 end, struct writeback_control *wbc, 1748 bool pages_dirty) 1749 { 1750 u64 done_offset = end; 1751 int ret; 1752 1753 while (start <= end) { 1754 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1755 true, false); 1756 if (ret) 1757 return ret; 1758 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1759 done_offset, wbc, pages_dirty); 1760 start = done_offset + 1; 1761 } 1762 1763 return 1; 1764 } 1765 1766 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1767 const u64 start, const u64 end) 1768 { 1769 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1770 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1771 const u64 range_bytes = end + 1 - start; 1772 struct extent_io_tree *io_tree = &inode->io_tree; 1773 struct extent_state *cached_state = NULL; 1774 u64 range_start = start; 1775 u64 count; 1776 int ret; 1777 1778 /* 1779 * If EXTENT_NORESERVE is set it means that when the buffered write was 1780 * made we had not enough available data space and therefore we did not 1781 * reserve data space for it, since we though we could do NOCOW for the 1782 * respective file range (either there is prealloc extent or the inode 1783 * has the NOCOW bit set). 1784 * 1785 * However when we need to fallback to COW mode (because for example the 1786 * block group for the corresponding extent was turned to RO mode by a 1787 * scrub or relocation) we need to do the following: 1788 * 1789 * 1) We increment the bytes_may_use counter of the data space info. 1790 * If COW succeeds, it allocates a new data extent and after doing 1791 * that it decrements the space info's bytes_may_use counter and 1792 * increments its bytes_reserved counter by the same amount (we do 1793 * this at btrfs_add_reserved_bytes()). So we need to increment the 1794 * bytes_may_use counter to compensate (when space is reserved at 1795 * buffered write time, the bytes_may_use counter is incremented); 1796 * 1797 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1798 * that if the COW path fails for any reason, it decrements (through 1799 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1800 * data space info, which we incremented in the step above. 1801 * 1802 * If we need to fallback to cow and the inode corresponds to a free 1803 * space cache inode or an inode of the data relocation tree, we must 1804 * also increment bytes_may_use of the data space_info for the same 1805 * reason. Space caches and relocated data extents always get a prealloc 1806 * extent for them, however scrub or balance may have set the block 1807 * group that contains that extent to RO mode and therefore force COW 1808 * when starting writeback. 1809 */ 1810 lock_extent(io_tree, start, end, &cached_state); 1811 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1812 EXTENT_NORESERVE, 0, NULL); 1813 if (count > 0 || is_space_ino || is_reloc_ino) { 1814 u64 bytes = count; 1815 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1816 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1817 1818 if (is_space_ino || is_reloc_ino) 1819 bytes = range_bytes; 1820 1821 spin_lock(&sinfo->lock); 1822 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1823 spin_unlock(&sinfo->lock); 1824 1825 if (count > 0) 1826 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1827 NULL); 1828 } 1829 unlock_extent(io_tree, start, end, &cached_state); 1830 1831 /* 1832 * Don't try to create inline extents, as a mix of inline extent that 1833 * is written out and unlocked directly and a normal NOCOW extent 1834 * doesn't work. 1835 */ 1836 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1837 ASSERT(ret != 1); 1838 return ret; 1839 } 1840 1841 struct can_nocow_file_extent_args { 1842 /* Input fields. */ 1843 1844 /* Start file offset of the range we want to NOCOW. */ 1845 u64 start; 1846 /* End file offset (inclusive) of the range we want to NOCOW. */ 1847 u64 end; 1848 bool writeback_path; 1849 bool strict; 1850 /* 1851 * Free the path passed to can_nocow_file_extent() once it's not needed 1852 * anymore. 1853 */ 1854 bool free_path; 1855 1856 /* 1857 * Output fields. Only set when can_nocow_file_extent() returns 1. 1858 * The expected file extent for the NOCOW write. 1859 */ 1860 struct btrfs_file_extent file_extent; 1861 }; 1862 1863 /* 1864 * Check if we can NOCOW the file extent that the path points to. 1865 * This function may return with the path released, so the caller should check 1866 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1867 * 1868 * Returns: < 0 on error 1869 * 0 if we can not NOCOW 1870 * 1 if we can NOCOW 1871 */ 1872 static int can_nocow_file_extent(struct btrfs_path *path, 1873 struct btrfs_key *key, 1874 struct btrfs_inode *inode, 1875 struct can_nocow_file_extent_args *args) 1876 { 1877 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1878 struct extent_buffer *leaf = path->nodes[0]; 1879 struct btrfs_root *root = inode->root; 1880 struct btrfs_file_extent_item *fi; 1881 struct btrfs_root *csum_root; 1882 u64 io_start; 1883 u64 extent_end; 1884 u8 extent_type; 1885 int can_nocow = 0; 1886 int ret = 0; 1887 bool nowait = path->nowait; 1888 1889 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1890 extent_type = btrfs_file_extent_type(leaf, fi); 1891 1892 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1893 goto out; 1894 1895 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1896 extent_type == BTRFS_FILE_EXTENT_REG) 1897 goto out; 1898 1899 /* 1900 * If the extent was created before the generation where the last snapshot 1901 * for its subvolume was created, then this implies the extent is shared, 1902 * hence we must COW. 1903 */ 1904 if (!args->strict && 1905 btrfs_file_extent_generation(leaf, fi) <= 1906 btrfs_root_last_snapshot(&root->root_item)) 1907 goto out; 1908 1909 /* An explicit hole, must COW. */ 1910 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1911 goto out; 1912 1913 /* Compressed/encrypted/encoded extents must be COWed. */ 1914 if (btrfs_file_extent_compression(leaf, fi) || 1915 btrfs_file_extent_encryption(leaf, fi) || 1916 btrfs_file_extent_other_encoding(leaf, fi)) 1917 goto out; 1918 1919 extent_end = btrfs_file_extent_end(path); 1920 1921 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1922 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1923 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1924 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1925 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1926 1927 /* 1928 * The following checks can be expensive, as they need to take other 1929 * locks and do btree or rbtree searches, so release the path to avoid 1930 * blocking other tasks for too long. 1931 */ 1932 btrfs_release_path(path); 1933 1934 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1935 key->offset - args->file_extent.offset, 1936 args->file_extent.disk_bytenr, args->strict, path); 1937 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1938 if (ret != 0) 1939 goto out; 1940 1941 if (args->free_path) { 1942 /* 1943 * We don't need the path anymore, plus through the 1944 * btrfs_lookup_csums_list() call below we will end up allocating 1945 * another path. So free the path to avoid unnecessary extra 1946 * memory usage. 1947 */ 1948 btrfs_free_path(path); 1949 path = NULL; 1950 } 1951 1952 /* If there are pending snapshots for this root, we must COW. */ 1953 if (args->writeback_path && !is_freespace_inode && 1954 atomic_read(&root->snapshot_force_cow)) 1955 goto out; 1956 1957 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1958 args->file_extent.offset += args->start - key->offset; 1959 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1960 1961 /* 1962 * Force COW if csums exist in the range. This ensures that csums for a 1963 * given extent are either valid or do not exist. 1964 */ 1965 1966 csum_root = btrfs_csum_root(root->fs_info, io_start); 1967 ret = btrfs_lookup_csums_list(csum_root, io_start, 1968 io_start + args->file_extent.num_bytes - 1, 1969 NULL, nowait); 1970 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1971 if (ret != 0) 1972 goto out; 1973 1974 can_nocow = 1; 1975 out: 1976 if (args->free_path && path) 1977 btrfs_free_path(path); 1978 1979 return ret < 0 ? ret : can_nocow; 1980 } 1981 1982 /* 1983 * when nowcow writeback call back. This checks for snapshots or COW copies 1984 * of the extents that exist in the file, and COWs the file as required. 1985 * 1986 * If no cow copies or snapshots exist, we write directly to the existing 1987 * blocks on disk 1988 */ 1989 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1990 struct page *locked_page, 1991 const u64 start, const u64 end) 1992 { 1993 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1994 struct btrfs_root *root = inode->root; 1995 struct btrfs_path *path; 1996 u64 cow_start = (u64)-1; 1997 u64 cur_offset = start; 1998 int ret; 1999 bool check_prev = true; 2000 u64 ino = btrfs_ino(inode); 2001 struct can_nocow_file_extent_args nocow_args = { 0 }; 2002 2003 /* 2004 * Normally on a zoned device we're only doing COW writes, but in case 2005 * of relocation on a zoned filesystem serializes I/O so that we're only 2006 * writing sequentially and can end up here as well. 2007 */ 2008 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2009 2010 path = btrfs_alloc_path(); 2011 if (!path) { 2012 ret = -ENOMEM; 2013 goto error; 2014 } 2015 2016 nocow_args.end = end; 2017 nocow_args.writeback_path = true; 2018 2019 while (cur_offset <= end) { 2020 struct btrfs_block_group *nocow_bg = NULL; 2021 struct btrfs_ordered_extent *ordered; 2022 struct btrfs_key found_key; 2023 struct btrfs_file_extent_item *fi; 2024 struct extent_buffer *leaf; 2025 struct extent_state *cached_state = NULL; 2026 u64 extent_end; 2027 u64 nocow_end; 2028 int extent_type; 2029 bool is_prealloc; 2030 2031 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2032 cur_offset, 0); 2033 if (ret < 0) 2034 goto error; 2035 2036 /* 2037 * If there is no extent for our range when doing the initial 2038 * search, then go back to the previous slot as it will be the 2039 * one containing the search offset 2040 */ 2041 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2042 leaf = path->nodes[0]; 2043 btrfs_item_key_to_cpu(leaf, &found_key, 2044 path->slots[0] - 1); 2045 if (found_key.objectid == ino && 2046 found_key.type == BTRFS_EXTENT_DATA_KEY) 2047 path->slots[0]--; 2048 } 2049 check_prev = false; 2050 next_slot: 2051 /* Go to next leaf if we have exhausted the current one */ 2052 leaf = path->nodes[0]; 2053 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2054 ret = btrfs_next_leaf(root, path); 2055 if (ret < 0) 2056 goto error; 2057 if (ret > 0) 2058 break; 2059 leaf = path->nodes[0]; 2060 } 2061 2062 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2063 2064 /* Didn't find anything for our INO */ 2065 if (found_key.objectid > ino) 2066 break; 2067 /* 2068 * Keep searching until we find an EXTENT_ITEM or there are no 2069 * more extents for this inode 2070 */ 2071 if (WARN_ON_ONCE(found_key.objectid < ino) || 2072 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2073 path->slots[0]++; 2074 goto next_slot; 2075 } 2076 2077 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2078 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2079 found_key.offset > end) 2080 break; 2081 2082 /* 2083 * If the found extent starts after requested offset, then 2084 * adjust extent_end to be right before this extent begins 2085 */ 2086 if (found_key.offset > cur_offset) { 2087 extent_end = found_key.offset; 2088 extent_type = 0; 2089 goto must_cow; 2090 } 2091 2092 /* 2093 * Found extent which begins before our range and potentially 2094 * intersect it 2095 */ 2096 fi = btrfs_item_ptr(leaf, path->slots[0], 2097 struct btrfs_file_extent_item); 2098 extent_type = btrfs_file_extent_type(leaf, fi); 2099 /* If this is triggered then we have a memory corruption. */ 2100 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2101 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2102 ret = -EUCLEAN; 2103 goto error; 2104 } 2105 extent_end = btrfs_file_extent_end(path); 2106 2107 /* 2108 * If the extent we got ends before our current offset, skip to 2109 * the next extent. 2110 */ 2111 if (extent_end <= cur_offset) { 2112 path->slots[0]++; 2113 goto next_slot; 2114 } 2115 2116 nocow_args.start = cur_offset; 2117 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2118 if (ret < 0) 2119 goto error; 2120 if (ret == 0) 2121 goto must_cow; 2122 2123 ret = 0; 2124 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2125 nocow_args.file_extent.disk_bytenr + 2126 nocow_args.file_extent.offset); 2127 if (!nocow_bg) { 2128 must_cow: 2129 /* 2130 * If we can't perform NOCOW writeback for the range, 2131 * then record the beginning of the range that needs to 2132 * be COWed. It will be written out before the next 2133 * NOCOW range if we find one, or when exiting this 2134 * loop. 2135 */ 2136 if (cow_start == (u64)-1) 2137 cow_start = cur_offset; 2138 cur_offset = extent_end; 2139 if (cur_offset > end) 2140 break; 2141 if (!path->nodes[0]) 2142 continue; 2143 path->slots[0]++; 2144 goto next_slot; 2145 } 2146 2147 /* 2148 * COW range from cow_start to found_key.offset - 1. As the key 2149 * will contain the beginning of the first extent that can be 2150 * NOCOW, following one which needs to be COW'ed 2151 */ 2152 if (cow_start != (u64)-1) { 2153 ret = fallback_to_cow(inode, locked_page, 2154 cow_start, found_key.offset - 1); 2155 cow_start = (u64)-1; 2156 if (ret) { 2157 btrfs_dec_nocow_writers(nocow_bg); 2158 goto error; 2159 } 2160 } 2161 2162 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2163 lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state); 2164 2165 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2166 if (is_prealloc) { 2167 struct extent_map *em; 2168 2169 em = btrfs_create_io_em(inode, cur_offset, 2170 &nocow_args.file_extent, 2171 BTRFS_ORDERED_PREALLOC); 2172 if (IS_ERR(em)) { 2173 unlock_extent(&inode->io_tree, cur_offset, 2174 nocow_end, &cached_state); 2175 btrfs_dec_nocow_writers(nocow_bg); 2176 ret = PTR_ERR(em); 2177 goto error; 2178 } 2179 free_extent_map(em); 2180 } 2181 2182 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2183 &nocow_args.file_extent, 2184 is_prealloc 2185 ? (1 << BTRFS_ORDERED_PREALLOC) 2186 : (1 << BTRFS_ORDERED_NOCOW)); 2187 btrfs_dec_nocow_writers(nocow_bg); 2188 if (IS_ERR(ordered)) { 2189 if (is_prealloc) { 2190 btrfs_drop_extent_map_range(inode, cur_offset, 2191 nocow_end, false); 2192 } 2193 unlock_extent(&inode->io_tree, cur_offset, 2194 nocow_end, &cached_state); 2195 ret = PTR_ERR(ordered); 2196 goto error; 2197 } 2198 2199 if (btrfs_is_data_reloc_root(root)) 2200 /* 2201 * Error handled later, as we must prevent 2202 * extent_clear_unlock_delalloc() in error handler 2203 * from freeing metadata of created ordered extent. 2204 */ 2205 ret = btrfs_reloc_clone_csums(ordered); 2206 btrfs_put_ordered_extent(ordered); 2207 2208 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2209 locked_page, &cached_state, 2210 EXTENT_LOCKED | EXTENT_DELALLOC | 2211 EXTENT_CLEAR_DATA_RESV, 2212 PAGE_UNLOCK | PAGE_SET_ORDERED); 2213 2214 cur_offset = extent_end; 2215 2216 /* 2217 * btrfs_reloc_clone_csums() error, now we're OK to call error 2218 * handler, as metadata for created ordered extent will only 2219 * be freed by btrfs_finish_ordered_io(). 2220 */ 2221 if (ret) 2222 goto error; 2223 } 2224 btrfs_release_path(path); 2225 2226 if (cur_offset <= end && cow_start == (u64)-1) 2227 cow_start = cur_offset; 2228 2229 if (cow_start != (u64)-1) { 2230 cur_offset = end; 2231 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2232 cow_start = (u64)-1; 2233 if (ret) 2234 goto error; 2235 } 2236 2237 btrfs_free_path(path); 2238 return 0; 2239 2240 error: 2241 /* 2242 * If an error happened while a COW region is outstanding, cur_offset 2243 * needs to be reset to cow_start to ensure the COW region is unlocked 2244 * as well. 2245 */ 2246 if (cow_start != (u64)-1) 2247 cur_offset = cow_start; 2248 2249 /* 2250 * We need to lock the extent here because we're clearing DELALLOC and 2251 * we're not locked at this point. 2252 */ 2253 if (cur_offset < end) { 2254 struct extent_state *cached = NULL; 2255 2256 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2257 extent_clear_unlock_delalloc(inode, cur_offset, end, 2258 locked_page, &cached, 2259 EXTENT_LOCKED | EXTENT_DELALLOC | 2260 EXTENT_DEFRAG | 2261 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2262 PAGE_START_WRITEBACK | 2263 PAGE_END_WRITEBACK); 2264 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2265 } 2266 btrfs_free_path(path); 2267 return ret; 2268 } 2269 2270 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2271 { 2272 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2273 if (inode->defrag_bytes && 2274 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2275 return false; 2276 return true; 2277 } 2278 return false; 2279 } 2280 2281 /* 2282 * Function to process delayed allocation (create CoW) for ranges which are 2283 * being touched for the first time. 2284 */ 2285 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2286 u64 start, u64 end, struct writeback_control *wbc) 2287 { 2288 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2289 int ret; 2290 2291 /* 2292 * The range must cover part of the @locked_page, or a return of 1 2293 * can confuse the caller. 2294 */ 2295 ASSERT(!(end <= page_offset(locked_page) || 2296 start >= page_offset(locked_page) + PAGE_SIZE)); 2297 2298 if (should_nocow(inode, start, end)) { 2299 ret = run_delalloc_nocow(inode, locked_page, start, end); 2300 goto out; 2301 } 2302 2303 if (btrfs_inode_can_compress(inode) && 2304 inode_need_compress(inode, start, end) && 2305 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2306 return 1; 2307 2308 if (zoned) 2309 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2310 true); 2311 else 2312 ret = cow_file_range(inode, locked_page, start, end, NULL, 2313 false, false); 2314 2315 out: 2316 if (ret < 0) 2317 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2318 end - start + 1); 2319 return ret; 2320 } 2321 2322 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2323 struct extent_state *orig, u64 split) 2324 { 2325 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2326 u64 size; 2327 2328 lockdep_assert_held(&inode->io_tree.lock); 2329 2330 /* not delalloc, ignore it */ 2331 if (!(orig->state & EXTENT_DELALLOC)) 2332 return; 2333 2334 size = orig->end - orig->start + 1; 2335 if (size > fs_info->max_extent_size) { 2336 u32 num_extents; 2337 u64 new_size; 2338 2339 /* 2340 * See the explanation in btrfs_merge_delalloc_extent, the same 2341 * applies here, just in reverse. 2342 */ 2343 new_size = orig->end - split + 1; 2344 num_extents = count_max_extents(fs_info, new_size); 2345 new_size = split - orig->start; 2346 num_extents += count_max_extents(fs_info, new_size); 2347 if (count_max_extents(fs_info, size) >= num_extents) 2348 return; 2349 } 2350 2351 spin_lock(&inode->lock); 2352 btrfs_mod_outstanding_extents(inode, 1); 2353 spin_unlock(&inode->lock); 2354 } 2355 2356 /* 2357 * Handle merged delayed allocation extents so we can keep track of new extents 2358 * that are just merged onto old extents, such as when we are doing sequential 2359 * writes, so we can properly account for the metadata space we'll need. 2360 */ 2361 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2362 struct extent_state *other) 2363 { 2364 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2365 u64 new_size, old_size; 2366 u32 num_extents; 2367 2368 lockdep_assert_held(&inode->io_tree.lock); 2369 2370 /* not delalloc, ignore it */ 2371 if (!(other->state & EXTENT_DELALLOC)) 2372 return; 2373 2374 if (new->start > other->start) 2375 new_size = new->end - other->start + 1; 2376 else 2377 new_size = other->end - new->start + 1; 2378 2379 /* we're not bigger than the max, unreserve the space and go */ 2380 if (new_size <= fs_info->max_extent_size) { 2381 spin_lock(&inode->lock); 2382 btrfs_mod_outstanding_extents(inode, -1); 2383 spin_unlock(&inode->lock); 2384 return; 2385 } 2386 2387 /* 2388 * We have to add up either side to figure out how many extents were 2389 * accounted for before we merged into one big extent. If the number of 2390 * extents we accounted for is <= the amount we need for the new range 2391 * then we can return, otherwise drop. Think of it like this 2392 * 2393 * [ 4k][MAX_SIZE] 2394 * 2395 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2396 * need 2 outstanding extents, on one side we have 1 and the other side 2397 * we have 1 so they are == and we can return. But in this case 2398 * 2399 * [MAX_SIZE+4k][MAX_SIZE+4k] 2400 * 2401 * Each range on their own accounts for 2 extents, but merged together 2402 * they are only 3 extents worth of accounting, so we need to drop in 2403 * this case. 2404 */ 2405 old_size = other->end - other->start + 1; 2406 num_extents = count_max_extents(fs_info, old_size); 2407 old_size = new->end - new->start + 1; 2408 num_extents += count_max_extents(fs_info, old_size); 2409 if (count_max_extents(fs_info, new_size) >= num_extents) 2410 return; 2411 2412 spin_lock(&inode->lock); 2413 btrfs_mod_outstanding_extents(inode, -1); 2414 spin_unlock(&inode->lock); 2415 } 2416 2417 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2418 { 2419 struct btrfs_root *root = inode->root; 2420 struct btrfs_fs_info *fs_info = root->fs_info; 2421 2422 spin_lock(&root->delalloc_lock); 2423 ASSERT(list_empty(&inode->delalloc_inodes)); 2424 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2425 root->nr_delalloc_inodes++; 2426 if (root->nr_delalloc_inodes == 1) { 2427 spin_lock(&fs_info->delalloc_root_lock); 2428 ASSERT(list_empty(&root->delalloc_root)); 2429 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2430 spin_unlock(&fs_info->delalloc_root_lock); 2431 } 2432 spin_unlock(&root->delalloc_lock); 2433 } 2434 2435 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2436 { 2437 struct btrfs_root *root = inode->root; 2438 struct btrfs_fs_info *fs_info = root->fs_info; 2439 2440 lockdep_assert_held(&root->delalloc_lock); 2441 2442 /* 2443 * We may be called after the inode was already deleted from the list, 2444 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2445 * and then later through btrfs_clear_delalloc_extent() while the inode 2446 * still has ->delalloc_bytes > 0. 2447 */ 2448 if (!list_empty(&inode->delalloc_inodes)) { 2449 list_del_init(&inode->delalloc_inodes); 2450 root->nr_delalloc_inodes--; 2451 if (!root->nr_delalloc_inodes) { 2452 ASSERT(list_empty(&root->delalloc_inodes)); 2453 spin_lock(&fs_info->delalloc_root_lock); 2454 ASSERT(!list_empty(&root->delalloc_root)); 2455 list_del_init(&root->delalloc_root); 2456 spin_unlock(&fs_info->delalloc_root_lock); 2457 } 2458 } 2459 } 2460 2461 /* 2462 * Properly track delayed allocation bytes in the inode and to maintain the 2463 * list of inodes that have pending delalloc work to be done. 2464 */ 2465 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2466 u32 bits) 2467 { 2468 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2469 2470 lockdep_assert_held(&inode->io_tree.lock); 2471 2472 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2473 WARN_ON(1); 2474 /* 2475 * set_bit and clear bit hooks normally require _irqsave/restore 2476 * but in this case, we are only testing for the DELALLOC 2477 * bit, which is only set or cleared with irqs on 2478 */ 2479 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2480 u64 len = state->end + 1 - state->start; 2481 u64 prev_delalloc_bytes; 2482 u32 num_extents = count_max_extents(fs_info, len); 2483 2484 spin_lock(&inode->lock); 2485 btrfs_mod_outstanding_extents(inode, num_extents); 2486 spin_unlock(&inode->lock); 2487 2488 /* For sanity tests */ 2489 if (btrfs_is_testing(fs_info)) 2490 return; 2491 2492 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2493 fs_info->delalloc_batch); 2494 spin_lock(&inode->lock); 2495 prev_delalloc_bytes = inode->delalloc_bytes; 2496 inode->delalloc_bytes += len; 2497 if (bits & EXTENT_DEFRAG) 2498 inode->defrag_bytes += len; 2499 spin_unlock(&inode->lock); 2500 2501 /* 2502 * We don't need to be under the protection of the inode's lock, 2503 * because we are called while holding the inode's io_tree lock 2504 * and are therefore protected against concurrent calls of this 2505 * function and btrfs_clear_delalloc_extent(). 2506 */ 2507 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2508 btrfs_add_delalloc_inode(inode); 2509 } 2510 2511 if (!(state->state & EXTENT_DELALLOC_NEW) && 2512 (bits & EXTENT_DELALLOC_NEW)) { 2513 spin_lock(&inode->lock); 2514 inode->new_delalloc_bytes += state->end + 1 - state->start; 2515 spin_unlock(&inode->lock); 2516 } 2517 } 2518 2519 /* 2520 * Once a range is no longer delalloc this function ensures that proper 2521 * accounting happens. 2522 */ 2523 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2524 struct extent_state *state, u32 bits) 2525 { 2526 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2527 u64 len = state->end + 1 - state->start; 2528 u32 num_extents = count_max_extents(fs_info, len); 2529 2530 lockdep_assert_held(&inode->io_tree.lock); 2531 2532 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2533 spin_lock(&inode->lock); 2534 inode->defrag_bytes -= len; 2535 spin_unlock(&inode->lock); 2536 } 2537 2538 /* 2539 * set_bit and clear bit hooks normally require _irqsave/restore 2540 * but in this case, we are only testing for the DELALLOC 2541 * bit, which is only set or cleared with irqs on 2542 */ 2543 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2544 struct btrfs_root *root = inode->root; 2545 u64 new_delalloc_bytes; 2546 2547 spin_lock(&inode->lock); 2548 btrfs_mod_outstanding_extents(inode, -num_extents); 2549 spin_unlock(&inode->lock); 2550 2551 /* 2552 * We don't reserve metadata space for space cache inodes so we 2553 * don't need to call delalloc_release_metadata if there is an 2554 * error. 2555 */ 2556 if (bits & EXTENT_CLEAR_META_RESV && 2557 root != fs_info->tree_root) 2558 btrfs_delalloc_release_metadata(inode, len, true); 2559 2560 /* For sanity tests. */ 2561 if (btrfs_is_testing(fs_info)) 2562 return; 2563 2564 if (!btrfs_is_data_reloc_root(root) && 2565 !btrfs_is_free_space_inode(inode) && 2566 !(state->state & EXTENT_NORESERVE) && 2567 (bits & EXTENT_CLEAR_DATA_RESV)) 2568 btrfs_free_reserved_data_space_noquota(fs_info, len); 2569 2570 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2571 fs_info->delalloc_batch); 2572 spin_lock(&inode->lock); 2573 inode->delalloc_bytes -= len; 2574 new_delalloc_bytes = inode->delalloc_bytes; 2575 spin_unlock(&inode->lock); 2576 2577 /* 2578 * We don't need to be under the protection of the inode's lock, 2579 * because we are called while holding the inode's io_tree lock 2580 * and are therefore protected against concurrent calls of this 2581 * function and btrfs_set_delalloc_extent(). 2582 */ 2583 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2584 spin_lock(&root->delalloc_lock); 2585 btrfs_del_delalloc_inode(inode); 2586 spin_unlock(&root->delalloc_lock); 2587 } 2588 } 2589 2590 if ((state->state & EXTENT_DELALLOC_NEW) && 2591 (bits & EXTENT_DELALLOC_NEW)) { 2592 spin_lock(&inode->lock); 2593 ASSERT(inode->new_delalloc_bytes >= len); 2594 inode->new_delalloc_bytes -= len; 2595 if (bits & EXTENT_ADD_INODE_BYTES) 2596 inode_add_bytes(&inode->vfs_inode, len); 2597 spin_unlock(&inode->lock); 2598 } 2599 } 2600 2601 /* 2602 * given a list of ordered sums record them in the inode. This happens 2603 * at IO completion time based on sums calculated at bio submission time. 2604 */ 2605 static int add_pending_csums(struct btrfs_trans_handle *trans, 2606 struct list_head *list) 2607 { 2608 struct btrfs_ordered_sum *sum; 2609 struct btrfs_root *csum_root = NULL; 2610 int ret; 2611 2612 list_for_each_entry(sum, list, list) { 2613 trans->adding_csums = true; 2614 if (!csum_root) 2615 csum_root = btrfs_csum_root(trans->fs_info, 2616 sum->logical); 2617 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2618 trans->adding_csums = false; 2619 if (ret) 2620 return ret; 2621 } 2622 return 0; 2623 } 2624 2625 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2626 const u64 start, 2627 const u64 len, 2628 struct extent_state **cached_state) 2629 { 2630 u64 search_start = start; 2631 const u64 end = start + len - 1; 2632 2633 while (search_start < end) { 2634 const u64 search_len = end - search_start + 1; 2635 struct extent_map *em; 2636 u64 em_len; 2637 int ret = 0; 2638 2639 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2640 if (IS_ERR(em)) 2641 return PTR_ERR(em); 2642 2643 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2644 goto next; 2645 2646 em_len = em->len; 2647 if (em->start < search_start) 2648 em_len -= search_start - em->start; 2649 if (em_len > search_len) 2650 em_len = search_len; 2651 2652 ret = set_extent_bit(&inode->io_tree, search_start, 2653 search_start + em_len - 1, 2654 EXTENT_DELALLOC_NEW, cached_state); 2655 next: 2656 search_start = extent_map_end(em); 2657 free_extent_map(em); 2658 if (ret) 2659 return ret; 2660 } 2661 return 0; 2662 } 2663 2664 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2665 unsigned int extra_bits, 2666 struct extent_state **cached_state) 2667 { 2668 WARN_ON(PAGE_ALIGNED(end)); 2669 2670 if (start >= i_size_read(&inode->vfs_inode) && 2671 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2672 /* 2673 * There can't be any extents following eof in this case so just 2674 * set the delalloc new bit for the range directly. 2675 */ 2676 extra_bits |= EXTENT_DELALLOC_NEW; 2677 } else { 2678 int ret; 2679 2680 ret = btrfs_find_new_delalloc_bytes(inode, start, 2681 end + 1 - start, 2682 cached_state); 2683 if (ret) 2684 return ret; 2685 } 2686 2687 return set_extent_bit(&inode->io_tree, start, end, 2688 EXTENT_DELALLOC | extra_bits, cached_state); 2689 } 2690 2691 /* see btrfs_writepage_start_hook for details on why this is required */ 2692 struct btrfs_writepage_fixup { 2693 struct page *page; 2694 struct btrfs_inode *inode; 2695 struct btrfs_work work; 2696 }; 2697 2698 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2699 { 2700 struct btrfs_writepage_fixup *fixup = 2701 container_of(work, struct btrfs_writepage_fixup, work); 2702 struct btrfs_ordered_extent *ordered; 2703 struct extent_state *cached_state = NULL; 2704 struct extent_changeset *data_reserved = NULL; 2705 struct page *page = fixup->page; 2706 struct btrfs_inode *inode = fixup->inode; 2707 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2708 u64 page_start = page_offset(page); 2709 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2710 int ret = 0; 2711 bool free_delalloc_space = true; 2712 2713 /* 2714 * This is similar to page_mkwrite, we need to reserve the space before 2715 * we take the page lock. 2716 */ 2717 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2718 PAGE_SIZE); 2719 again: 2720 lock_page(page); 2721 2722 /* 2723 * Before we queued this fixup, we took a reference on the page. 2724 * page->mapping may go NULL, but it shouldn't be moved to a different 2725 * address space. 2726 */ 2727 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2728 /* 2729 * Unfortunately this is a little tricky, either 2730 * 2731 * 1) We got here and our page had already been dealt with and 2732 * we reserved our space, thus ret == 0, so we need to just 2733 * drop our space reservation and bail. This can happen the 2734 * first time we come into the fixup worker, or could happen 2735 * while waiting for the ordered extent. 2736 * 2) Our page was already dealt with, but we happened to get an 2737 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2738 * this case we obviously don't have anything to release, but 2739 * because the page was already dealt with we don't want to 2740 * mark the page with an error, so make sure we're resetting 2741 * ret to 0. This is why we have this check _before_ the ret 2742 * check, because we do not want to have a surprise ENOSPC 2743 * when the page was already properly dealt with. 2744 */ 2745 if (!ret) { 2746 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2747 btrfs_delalloc_release_space(inode, data_reserved, 2748 page_start, PAGE_SIZE, 2749 true); 2750 } 2751 ret = 0; 2752 goto out_page; 2753 } 2754 2755 /* 2756 * We can't mess with the page state unless it is locked, so now that 2757 * it is locked bail if we failed to make our space reservation. 2758 */ 2759 if (ret) 2760 goto out_page; 2761 2762 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2763 2764 /* already ordered? We're done */ 2765 if (PageOrdered(page)) 2766 goto out_reserved; 2767 2768 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2769 if (ordered) { 2770 unlock_extent(&inode->io_tree, page_start, page_end, 2771 &cached_state); 2772 unlock_page(page); 2773 btrfs_start_ordered_extent(ordered); 2774 btrfs_put_ordered_extent(ordered); 2775 goto again; 2776 } 2777 2778 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2779 &cached_state); 2780 if (ret) 2781 goto out_reserved; 2782 2783 /* 2784 * Everything went as planned, we're now the owner of a dirty page with 2785 * delayed allocation bits set and space reserved for our COW 2786 * destination. 2787 * 2788 * The page was dirty when we started, nothing should have cleaned it. 2789 */ 2790 BUG_ON(!PageDirty(page)); 2791 free_delalloc_space = false; 2792 out_reserved: 2793 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2794 if (free_delalloc_space) 2795 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2796 PAGE_SIZE, true); 2797 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2798 out_page: 2799 if (ret) { 2800 /* 2801 * We hit ENOSPC or other errors. Update the mapping and page 2802 * to reflect the errors and clean the page. 2803 */ 2804 mapping_set_error(page->mapping, ret); 2805 btrfs_mark_ordered_io_finished(inode, page, page_start, 2806 PAGE_SIZE, !ret); 2807 clear_page_dirty_for_io(page); 2808 } 2809 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE); 2810 unlock_page(page); 2811 put_page(page); 2812 kfree(fixup); 2813 extent_changeset_free(data_reserved); 2814 /* 2815 * As a precaution, do a delayed iput in case it would be the last iput 2816 * that could need flushing space. Recursing back to fixup worker would 2817 * deadlock. 2818 */ 2819 btrfs_add_delayed_iput(inode); 2820 } 2821 2822 /* 2823 * There are a few paths in the higher layers of the kernel that directly 2824 * set the page dirty bit without asking the filesystem if it is a 2825 * good idea. This causes problems because we want to make sure COW 2826 * properly happens and the data=ordered rules are followed. 2827 * 2828 * In our case any range that doesn't have the ORDERED bit set 2829 * hasn't been properly setup for IO. We kick off an async process 2830 * to fix it up. The async helper will wait for ordered extents, set 2831 * the delalloc bit and make it safe to write the page. 2832 */ 2833 int btrfs_writepage_cow_fixup(struct page *page) 2834 { 2835 struct inode *inode = page->mapping->host; 2836 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2837 struct btrfs_writepage_fixup *fixup; 2838 2839 /* This page has ordered extent covering it already */ 2840 if (PageOrdered(page)) 2841 return 0; 2842 2843 /* 2844 * PageChecked is set below when we create a fixup worker for this page, 2845 * don't try to create another one if we're already PageChecked() 2846 * 2847 * The extent_io writepage code will redirty the page if we send back 2848 * EAGAIN. 2849 */ 2850 if (PageChecked(page)) 2851 return -EAGAIN; 2852 2853 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2854 if (!fixup) 2855 return -EAGAIN; 2856 2857 /* 2858 * We are already holding a reference to this inode from 2859 * write_cache_pages. We need to hold it because the space reservation 2860 * takes place outside of the page lock, and we can't trust 2861 * page->mapping outside of the page lock. 2862 */ 2863 ihold(inode); 2864 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE); 2865 get_page(page); 2866 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2867 fixup->page = page; 2868 fixup->inode = BTRFS_I(inode); 2869 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2870 2871 return -EAGAIN; 2872 } 2873 2874 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2875 struct btrfs_inode *inode, u64 file_pos, 2876 struct btrfs_file_extent_item *stack_fi, 2877 const bool update_inode_bytes, 2878 u64 qgroup_reserved) 2879 { 2880 struct btrfs_root *root = inode->root; 2881 const u64 sectorsize = root->fs_info->sectorsize; 2882 struct btrfs_path *path; 2883 struct extent_buffer *leaf; 2884 struct btrfs_key ins; 2885 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2886 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2887 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2888 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2889 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2890 struct btrfs_drop_extents_args drop_args = { 0 }; 2891 int ret; 2892 2893 path = btrfs_alloc_path(); 2894 if (!path) 2895 return -ENOMEM; 2896 2897 /* 2898 * we may be replacing one extent in the tree with another. 2899 * The new extent is pinned in the extent map, and we don't want 2900 * to drop it from the cache until it is completely in the btree. 2901 * 2902 * So, tell btrfs_drop_extents to leave this extent in the cache. 2903 * the caller is expected to unpin it and allow it to be merged 2904 * with the others. 2905 */ 2906 drop_args.path = path; 2907 drop_args.start = file_pos; 2908 drop_args.end = file_pos + num_bytes; 2909 drop_args.replace_extent = true; 2910 drop_args.extent_item_size = sizeof(*stack_fi); 2911 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2912 if (ret) 2913 goto out; 2914 2915 if (!drop_args.extent_inserted) { 2916 ins.objectid = btrfs_ino(inode); 2917 ins.offset = file_pos; 2918 ins.type = BTRFS_EXTENT_DATA_KEY; 2919 2920 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2921 sizeof(*stack_fi)); 2922 if (ret) 2923 goto out; 2924 } 2925 leaf = path->nodes[0]; 2926 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2927 write_extent_buffer(leaf, stack_fi, 2928 btrfs_item_ptr_offset(leaf, path->slots[0]), 2929 sizeof(struct btrfs_file_extent_item)); 2930 2931 btrfs_mark_buffer_dirty(trans, leaf); 2932 btrfs_release_path(path); 2933 2934 /* 2935 * If we dropped an inline extent here, we know the range where it is 2936 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2937 * number of bytes only for that range containing the inline extent. 2938 * The remaining of the range will be processed when clearning the 2939 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2940 */ 2941 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2942 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2943 2944 inline_size = drop_args.bytes_found - inline_size; 2945 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2946 drop_args.bytes_found -= inline_size; 2947 num_bytes -= sectorsize; 2948 } 2949 2950 if (update_inode_bytes) 2951 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2952 2953 ins.objectid = disk_bytenr; 2954 ins.offset = disk_num_bytes; 2955 ins.type = BTRFS_EXTENT_ITEM_KEY; 2956 2957 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2958 if (ret) 2959 goto out; 2960 2961 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2962 file_pos - offset, 2963 qgroup_reserved, &ins); 2964 out: 2965 btrfs_free_path(path); 2966 2967 return ret; 2968 } 2969 2970 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2971 u64 start, u64 len) 2972 { 2973 struct btrfs_block_group *cache; 2974 2975 cache = btrfs_lookup_block_group(fs_info, start); 2976 ASSERT(cache); 2977 2978 spin_lock(&cache->lock); 2979 cache->delalloc_bytes -= len; 2980 spin_unlock(&cache->lock); 2981 2982 btrfs_put_block_group(cache); 2983 } 2984 2985 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2986 struct btrfs_ordered_extent *oe) 2987 { 2988 struct btrfs_file_extent_item stack_fi; 2989 bool update_inode_bytes; 2990 u64 num_bytes = oe->num_bytes; 2991 u64 ram_bytes = oe->ram_bytes; 2992 2993 memset(&stack_fi, 0, sizeof(stack_fi)); 2994 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2995 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2996 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2997 oe->disk_num_bytes); 2998 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2999 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3000 num_bytes = oe->truncated_len; 3001 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3002 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3003 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3004 /* Encryption and other encoding is reserved and all 0 */ 3005 3006 /* 3007 * For delalloc, when completing an ordered extent we update the inode's 3008 * bytes when clearing the range in the inode's io tree, so pass false 3009 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3010 * except if the ordered extent was truncated. 3011 */ 3012 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3013 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3014 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3015 3016 return insert_reserved_file_extent(trans, oe->inode, 3017 oe->file_offset, &stack_fi, 3018 update_inode_bytes, oe->qgroup_rsv); 3019 } 3020 3021 /* 3022 * As ordered data IO finishes, this gets called so we can finish 3023 * an ordered extent if the range of bytes in the file it covers are 3024 * fully written. 3025 */ 3026 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3027 { 3028 struct btrfs_inode *inode = ordered_extent->inode; 3029 struct btrfs_root *root = inode->root; 3030 struct btrfs_fs_info *fs_info = root->fs_info; 3031 struct btrfs_trans_handle *trans = NULL; 3032 struct extent_io_tree *io_tree = &inode->io_tree; 3033 struct extent_state *cached_state = NULL; 3034 u64 start, end; 3035 int compress_type = 0; 3036 int ret = 0; 3037 u64 logical_len = ordered_extent->num_bytes; 3038 bool freespace_inode; 3039 bool truncated = false; 3040 bool clear_reserved_extent = true; 3041 unsigned int clear_bits = EXTENT_DEFRAG; 3042 3043 start = ordered_extent->file_offset; 3044 end = start + ordered_extent->num_bytes - 1; 3045 3046 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3047 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3048 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3049 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3050 clear_bits |= EXTENT_DELALLOC_NEW; 3051 3052 freespace_inode = btrfs_is_free_space_inode(inode); 3053 if (!freespace_inode) 3054 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3055 3056 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3057 ret = -EIO; 3058 goto out; 3059 } 3060 3061 if (btrfs_is_zoned(fs_info)) 3062 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3063 ordered_extent->disk_num_bytes); 3064 3065 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3066 truncated = true; 3067 logical_len = ordered_extent->truncated_len; 3068 /* Truncated the entire extent, don't bother adding */ 3069 if (!logical_len) 3070 goto out; 3071 } 3072 3073 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3074 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3075 3076 btrfs_inode_safe_disk_i_size_write(inode, 0); 3077 if (freespace_inode) 3078 trans = btrfs_join_transaction_spacecache(root); 3079 else 3080 trans = btrfs_join_transaction(root); 3081 if (IS_ERR(trans)) { 3082 ret = PTR_ERR(trans); 3083 trans = NULL; 3084 goto out; 3085 } 3086 trans->block_rsv = &inode->block_rsv; 3087 ret = btrfs_update_inode_fallback(trans, inode); 3088 if (ret) /* -ENOMEM or corruption */ 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 3093 clear_bits |= EXTENT_LOCKED; 3094 lock_extent(io_tree, start, end, &cached_state); 3095 3096 if (freespace_inode) 3097 trans = btrfs_join_transaction_spacecache(root); 3098 else 3099 trans = btrfs_join_transaction(root); 3100 if (IS_ERR(trans)) { 3101 ret = PTR_ERR(trans); 3102 trans = NULL; 3103 goto out; 3104 } 3105 3106 trans->block_rsv = &inode->block_rsv; 3107 3108 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3109 if (ret) 3110 goto out; 3111 3112 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3113 compress_type = ordered_extent->compress_type; 3114 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3115 BUG_ON(compress_type); 3116 ret = btrfs_mark_extent_written(trans, inode, 3117 ordered_extent->file_offset, 3118 ordered_extent->file_offset + 3119 logical_len); 3120 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3121 ordered_extent->disk_num_bytes); 3122 } else { 3123 BUG_ON(root == fs_info->tree_root); 3124 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3125 if (!ret) { 3126 clear_reserved_extent = false; 3127 btrfs_release_delalloc_bytes(fs_info, 3128 ordered_extent->disk_bytenr, 3129 ordered_extent->disk_num_bytes); 3130 } 3131 } 3132 if (ret < 0) { 3133 btrfs_abort_transaction(trans, ret); 3134 goto out; 3135 } 3136 3137 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3138 ordered_extent->num_bytes, trans->transid); 3139 if (ret < 0) { 3140 btrfs_abort_transaction(trans, ret); 3141 goto out; 3142 } 3143 3144 ret = add_pending_csums(trans, &ordered_extent->list); 3145 if (ret) { 3146 btrfs_abort_transaction(trans, ret); 3147 goto out; 3148 } 3149 3150 /* 3151 * If this is a new delalloc range, clear its new delalloc flag to 3152 * update the inode's number of bytes. This needs to be done first 3153 * before updating the inode item. 3154 */ 3155 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3156 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3157 clear_extent_bit(&inode->io_tree, start, end, 3158 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3159 &cached_state); 3160 3161 btrfs_inode_safe_disk_i_size_write(inode, 0); 3162 ret = btrfs_update_inode_fallback(trans, inode); 3163 if (ret) { /* -ENOMEM or corruption */ 3164 btrfs_abort_transaction(trans, ret); 3165 goto out; 3166 } 3167 out: 3168 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3169 &cached_state); 3170 3171 if (trans) 3172 btrfs_end_transaction(trans); 3173 3174 if (ret || truncated) { 3175 u64 unwritten_start = start; 3176 3177 /* 3178 * If we failed to finish this ordered extent for any reason we 3179 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3180 * extent, and mark the inode with the error if it wasn't 3181 * already set. Any error during writeback would have already 3182 * set the mapping error, so we need to set it if we're the ones 3183 * marking this ordered extent as failed. 3184 */ 3185 if (ret) 3186 btrfs_mark_ordered_extent_error(ordered_extent); 3187 3188 if (truncated) 3189 unwritten_start += logical_len; 3190 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3191 3192 /* 3193 * Drop extent maps for the part of the extent we didn't write. 3194 * 3195 * We have an exception here for the free_space_inode, this is 3196 * because when we do btrfs_get_extent() on the free space inode 3197 * we will search the commit root. If this is a new block group 3198 * we won't find anything, and we will trip over the assert in 3199 * writepage where we do ASSERT(em->block_start != 3200 * EXTENT_MAP_HOLE). 3201 * 3202 * Theoretically we could also skip this for any NOCOW extent as 3203 * we don't mess with the extent map tree in the NOCOW case, but 3204 * for now simply skip this if we are the free space inode. 3205 */ 3206 if (!btrfs_is_free_space_inode(inode)) 3207 btrfs_drop_extent_map_range(inode, unwritten_start, 3208 end, false); 3209 3210 /* 3211 * If the ordered extent had an IOERR or something else went 3212 * wrong we need to return the space for this ordered extent 3213 * back to the allocator. We only free the extent in the 3214 * truncated case if we didn't write out the extent at all. 3215 * 3216 * If we made it past insert_reserved_file_extent before we 3217 * errored out then we don't need to do this as the accounting 3218 * has already been done. 3219 */ 3220 if ((ret || !logical_len) && 3221 clear_reserved_extent && 3222 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3223 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3224 /* 3225 * Discard the range before returning it back to the 3226 * free space pool 3227 */ 3228 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3229 btrfs_discard_extent(fs_info, 3230 ordered_extent->disk_bytenr, 3231 ordered_extent->disk_num_bytes, 3232 NULL); 3233 btrfs_free_reserved_extent(fs_info, 3234 ordered_extent->disk_bytenr, 3235 ordered_extent->disk_num_bytes, 1); 3236 /* 3237 * Actually free the qgroup rsv which was released when 3238 * the ordered extent was created. 3239 */ 3240 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3241 ordered_extent->qgroup_rsv, 3242 BTRFS_QGROUP_RSV_DATA); 3243 } 3244 } 3245 3246 /* 3247 * This needs to be done to make sure anybody waiting knows we are done 3248 * updating everything for this ordered extent. 3249 */ 3250 btrfs_remove_ordered_extent(inode, ordered_extent); 3251 3252 /* once for us */ 3253 btrfs_put_ordered_extent(ordered_extent); 3254 /* once for the tree */ 3255 btrfs_put_ordered_extent(ordered_extent); 3256 3257 return ret; 3258 } 3259 3260 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3261 { 3262 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3263 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3264 list_empty(&ordered->bioc_list)) 3265 btrfs_finish_ordered_zoned(ordered); 3266 return btrfs_finish_one_ordered(ordered); 3267 } 3268 3269 /* 3270 * Verify the checksum for a single sector without any extra action that depend 3271 * on the type of I/O. 3272 */ 3273 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3274 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3275 { 3276 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3277 char *kaddr; 3278 3279 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3280 3281 shash->tfm = fs_info->csum_shash; 3282 3283 kaddr = kmap_local_page(page) + pgoff; 3284 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3285 kunmap_local(kaddr); 3286 3287 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3288 return -EIO; 3289 return 0; 3290 } 3291 3292 /* 3293 * Verify the checksum of a single data sector. 3294 * 3295 * @bbio: btrfs_io_bio which contains the csum 3296 * @dev: device the sector is on 3297 * @bio_offset: offset to the beginning of the bio (in bytes) 3298 * @bv: bio_vec to check 3299 * 3300 * Check if the checksum on a data block is valid. When a checksum mismatch is 3301 * detected, report the error and fill the corrupted range with zero. 3302 * 3303 * Return %true if the sector is ok or had no checksum to start with, else %false. 3304 */ 3305 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3306 u32 bio_offset, struct bio_vec *bv) 3307 { 3308 struct btrfs_inode *inode = bbio->inode; 3309 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3310 u64 file_offset = bbio->file_offset + bio_offset; 3311 u64 end = file_offset + bv->bv_len - 1; 3312 u8 *csum_expected; 3313 u8 csum[BTRFS_CSUM_SIZE]; 3314 3315 ASSERT(bv->bv_len == fs_info->sectorsize); 3316 3317 if (!bbio->csum) 3318 return true; 3319 3320 if (btrfs_is_data_reloc_root(inode->root) && 3321 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3322 NULL)) { 3323 /* Skip the range without csum for data reloc inode */ 3324 clear_extent_bits(&inode->io_tree, file_offset, end, 3325 EXTENT_NODATASUM); 3326 return true; 3327 } 3328 3329 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3330 fs_info->csum_size; 3331 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3332 csum_expected)) 3333 goto zeroit; 3334 return true; 3335 3336 zeroit: 3337 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3338 bbio->mirror_num); 3339 if (dev) 3340 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3341 memzero_bvec(bv); 3342 return false; 3343 } 3344 3345 /* 3346 * Perform a delayed iput on @inode. 3347 * 3348 * @inode: The inode we want to perform iput on 3349 * 3350 * This function uses the generic vfs_inode::i_count to track whether we should 3351 * just decrement it (in case it's > 1) or if this is the last iput then link 3352 * the inode to the delayed iput machinery. Delayed iputs are processed at 3353 * transaction commit time/superblock commit/cleaner kthread. 3354 */ 3355 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3356 { 3357 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3358 unsigned long flags; 3359 3360 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3361 return; 3362 3363 atomic_inc(&fs_info->nr_delayed_iputs); 3364 /* 3365 * Need to be irq safe here because we can be called from either an irq 3366 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3367 * context. 3368 */ 3369 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3370 ASSERT(list_empty(&inode->delayed_iput)); 3371 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3372 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3373 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3374 wake_up_process(fs_info->cleaner_kthread); 3375 } 3376 3377 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3378 struct btrfs_inode *inode) 3379 { 3380 list_del_init(&inode->delayed_iput); 3381 spin_unlock_irq(&fs_info->delayed_iput_lock); 3382 iput(&inode->vfs_inode); 3383 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3384 wake_up(&fs_info->delayed_iputs_wait); 3385 spin_lock_irq(&fs_info->delayed_iput_lock); 3386 } 3387 3388 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3389 struct btrfs_inode *inode) 3390 { 3391 if (!list_empty(&inode->delayed_iput)) { 3392 spin_lock_irq(&fs_info->delayed_iput_lock); 3393 if (!list_empty(&inode->delayed_iput)) 3394 run_delayed_iput_locked(fs_info, inode); 3395 spin_unlock_irq(&fs_info->delayed_iput_lock); 3396 } 3397 } 3398 3399 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3400 { 3401 /* 3402 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3403 * calls btrfs_add_delayed_iput() and that needs to lock 3404 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3405 * prevent a deadlock. 3406 */ 3407 spin_lock_irq(&fs_info->delayed_iput_lock); 3408 while (!list_empty(&fs_info->delayed_iputs)) { 3409 struct btrfs_inode *inode; 3410 3411 inode = list_first_entry(&fs_info->delayed_iputs, 3412 struct btrfs_inode, delayed_iput); 3413 run_delayed_iput_locked(fs_info, inode); 3414 if (need_resched()) { 3415 spin_unlock_irq(&fs_info->delayed_iput_lock); 3416 cond_resched(); 3417 spin_lock_irq(&fs_info->delayed_iput_lock); 3418 } 3419 } 3420 spin_unlock_irq(&fs_info->delayed_iput_lock); 3421 } 3422 3423 /* 3424 * Wait for flushing all delayed iputs 3425 * 3426 * @fs_info: the filesystem 3427 * 3428 * This will wait on any delayed iputs that are currently running with KILLABLE 3429 * set. Once they are all done running we will return, unless we are killed in 3430 * which case we return EINTR. This helps in user operations like fallocate etc 3431 * that might get blocked on the iputs. 3432 * 3433 * Return EINTR if we were killed, 0 if nothing's pending 3434 */ 3435 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3436 { 3437 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3438 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3439 if (ret) 3440 return -EINTR; 3441 return 0; 3442 } 3443 3444 /* 3445 * This creates an orphan entry for the given inode in case something goes wrong 3446 * in the middle of an unlink. 3447 */ 3448 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3449 struct btrfs_inode *inode) 3450 { 3451 int ret; 3452 3453 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3454 if (ret && ret != -EEXIST) { 3455 btrfs_abort_transaction(trans, ret); 3456 return ret; 3457 } 3458 3459 return 0; 3460 } 3461 3462 /* 3463 * We have done the delete so we can go ahead and remove the orphan item for 3464 * this particular inode. 3465 */ 3466 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3467 struct btrfs_inode *inode) 3468 { 3469 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3470 } 3471 3472 /* 3473 * this cleans up any orphans that may be left on the list from the last use 3474 * of this root. 3475 */ 3476 int btrfs_orphan_cleanup(struct btrfs_root *root) 3477 { 3478 struct btrfs_fs_info *fs_info = root->fs_info; 3479 struct btrfs_path *path; 3480 struct extent_buffer *leaf; 3481 struct btrfs_key key, found_key; 3482 struct btrfs_trans_handle *trans; 3483 struct inode *inode; 3484 u64 last_objectid = 0; 3485 int ret = 0, nr_unlink = 0; 3486 3487 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3488 return 0; 3489 3490 path = btrfs_alloc_path(); 3491 if (!path) { 3492 ret = -ENOMEM; 3493 goto out; 3494 } 3495 path->reada = READA_BACK; 3496 3497 key.objectid = BTRFS_ORPHAN_OBJECTID; 3498 key.type = BTRFS_ORPHAN_ITEM_KEY; 3499 key.offset = (u64)-1; 3500 3501 while (1) { 3502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3503 if (ret < 0) 3504 goto out; 3505 3506 /* 3507 * if ret == 0 means we found what we were searching for, which 3508 * is weird, but possible, so only screw with path if we didn't 3509 * find the key and see if we have stuff that matches 3510 */ 3511 if (ret > 0) { 3512 ret = 0; 3513 if (path->slots[0] == 0) 3514 break; 3515 path->slots[0]--; 3516 } 3517 3518 /* pull out the item */ 3519 leaf = path->nodes[0]; 3520 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3521 3522 /* make sure the item matches what we want */ 3523 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3524 break; 3525 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3526 break; 3527 3528 /* release the path since we're done with it */ 3529 btrfs_release_path(path); 3530 3531 /* 3532 * this is where we are basically btrfs_lookup, without the 3533 * crossing root thing. we store the inode number in the 3534 * offset of the orphan item. 3535 */ 3536 3537 if (found_key.offset == last_objectid) { 3538 /* 3539 * We found the same inode as before. This means we were 3540 * not able to remove its items via eviction triggered 3541 * by an iput(). A transaction abort may have happened, 3542 * due to -ENOSPC for example, so try to grab the error 3543 * that lead to a transaction abort, if any. 3544 */ 3545 btrfs_err(fs_info, 3546 "Error removing orphan entry, stopping orphan cleanup"); 3547 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3548 goto out; 3549 } 3550 3551 last_objectid = found_key.offset; 3552 3553 found_key.objectid = found_key.offset; 3554 found_key.type = BTRFS_INODE_ITEM_KEY; 3555 found_key.offset = 0; 3556 inode = btrfs_iget(last_objectid, root); 3557 if (IS_ERR(inode)) { 3558 ret = PTR_ERR(inode); 3559 inode = NULL; 3560 if (ret != -ENOENT) 3561 goto out; 3562 } 3563 3564 if (!inode && root == fs_info->tree_root) { 3565 struct btrfs_root *dead_root; 3566 int is_dead_root = 0; 3567 3568 /* 3569 * This is an orphan in the tree root. Currently these 3570 * could come from 2 sources: 3571 * a) a root (snapshot/subvolume) deletion in progress 3572 * b) a free space cache inode 3573 * We need to distinguish those two, as the orphan item 3574 * for a root must not get deleted before the deletion 3575 * of the snapshot/subvolume's tree completes. 3576 * 3577 * btrfs_find_orphan_roots() ran before us, which has 3578 * found all deleted roots and loaded them into 3579 * fs_info->fs_roots_radix. So here we can find if an 3580 * orphan item corresponds to a deleted root by looking 3581 * up the root from that radix tree. 3582 */ 3583 3584 spin_lock(&fs_info->fs_roots_radix_lock); 3585 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3586 (unsigned long)found_key.objectid); 3587 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3588 is_dead_root = 1; 3589 spin_unlock(&fs_info->fs_roots_radix_lock); 3590 3591 if (is_dead_root) { 3592 /* prevent this orphan from being found again */ 3593 key.offset = found_key.objectid - 1; 3594 continue; 3595 } 3596 3597 } 3598 3599 /* 3600 * If we have an inode with links, there are a couple of 3601 * possibilities: 3602 * 3603 * 1. We were halfway through creating fsverity metadata for the 3604 * file. In that case, the orphan item represents incomplete 3605 * fsverity metadata which must be cleaned up with 3606 * btrfs_drop_verity_items and deleting the orphan item. 3607 3608 * 2. Old kernels (before v3.12) used to create an 3609 * orphan item for truncate indicating that there were possibly 3610 * extent items past i_size that needed to be deleted. In v3.12, 3611 * truncate was changed to update i_size in sync with the extent 3612 * items, but the (useless) orphan item was still created. Since 3613 * v4.18, we don't create the orphan item for truncate at all. 3614 * 3615 * So, this item could mean that we need to do a truncate, but 3616 * only if this filesystem was last used on a pre-v3.12 kernel 3617 * and was not cleanly unmounted. The odds of that are quite 3618 * slim, and it's a pain to do the truncate now, so just delete 3619 * the orphan item. 3620 * 3621 * It's also possible that this orphan item was supposed to be 3622 * deleted but wasn't. The inode number may have been reused, 3623 * but either way, we can delete the orphan item. 3624 */ 3625 if (!inode || inode->i_nlink) { 3626 if (inode) { 3627 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3628 iput(inode); 3629 inode = NULL; 3630 if (ret) 3631 goto out; 3632 } 3633 trans = btrfs_start_transaction(root, 1); 3634 if (IS_ERR(trans)) { 3635 ret = PTR_ERR(trans); 3636 goto out; 3637 } 3638 btrfs_debug(fs_info, "auto deleting %Lu", 3639 found_key.objectid); 3640 ret = btrfs_del_orphan_item(trans, root, 3641 found_key.objectid); 3642 btrfs_end_transaction(trans); 3643 if (ret) 3644 goto out; 3645 continue; 3646 } 3647 3648 nr_unlink++; 3649 3650 /* this will do delete_inode and everything for us */ 3651 iput(inode); 3652 } 3653 /* release the path since we're done with it */ 3654 btrfs_release_path(path); 3655 3656 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3657 trans = btrfs_join_transaction(root); 3658 if (!IS_ERR(trans)) 3659 btrfs_end_transaction(trans); 3660 } 3661 3662 if (nr_unlink) 3663 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3664 3665 out: 3666 if (ret) 3667 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3668 btrfs_free_path(path); 3669 return ret; 3670 } 3671 3672 /* 3673 * very simple check to peek ahead in the leaf looking for xattrs. If we 3674 * don't find any xattrs, we know there can't be any acls. 3675 * 3676 * slot is the slot the inode is in, objectid is the objectid of the inode 3677 */ 3678 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3679 int slot, u64 objectid, 3680 int *first_xattr_slot) 3681 { 3682 u32 nritems = btrfs_header_nritems(leaf); 3683 struct btrfs_key found_key; 3684 static u64 xattr_access = 0; 3685 static u64 xattr_default = 0; 3686 int scanned = 0; 3687 3688 if (!xattr_access) { 3689 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3690 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3691 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3692 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3693 } 3694 3695 slot++; 3696 *first_xattr_slot = -1; 3697 while (slot < nritems) { 3698 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3699 3700 /* we found a different objectid, there must not be acls */ 3701 if (found_key.objectid != objectid) 3702 return 0; 3703 3704 /* we found an xattr, assume we've got an acl */ 3705 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3706 if (*first_xattr_slot == -1) 3707 *first_xattr_slot = slot; 3708 if (found_key.offset == xattr_access || 3709 found_key.offset == xattr_default) 3710 return 1; 3711 } 3712 3713 /* 3714 * we found a key greater than an xattr key, there can't 3715 * be any acls later on 3716 */ 3717 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3718 return 0; 3719 3720 slot++; 3721 scanned++; 3722 3723 /* 3724 * it goes inode, inode backrefs, xattrs, extents, 3725 * so if there are a ton of hard links to an inode there can 3726 * be a lot of backrefs. Don't waste time searching too hard, 3727 * this is just an optimization 3728 */ 3729 if (scanned >= 8) 3730 break; 3731 } 3732 /* we hit the end of the leaf before we found an xattr or 3733 * something larger than an xattr. We have to assume the inode 3734 * has acls 3735 */ 3736 if (*first_xattr_slot == -1) 3737 *first_xattr_slot = slot; 3738 return 1; 3739 } 3740 3741 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3742 { 3743 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3744 3745 if (WARN_ON_ONCE(inode->file_extent_tree)) 3746 return 0; 3747 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3748 return 0; 3749 if (!S_ISREG(inode->vfs_inode.i_mode)) 3750 return 0; 3751 if (btrfs_is_free_space_inode(inode)) 3752 return 0; 3753 3754 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3755 if (!inode->file_extent_tree) 3756 return -ENOMEM; 3757 3758 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3759 /* Lockdep class is set only for the file extent tree. */ 3760 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3761 3762 return 0; 3763 } 3764 3765 /* 3766 * read an inode from the btree into the in-memory inode 3767 */ 3768 static int btrfs_read_locked_inode(struct inode *inode, 3769 struct btrfs_path *in_path) 3770 { 3771 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 3772 struct btrfs_path *path = in_path; 3773 struct extent_buffer *leaf; 3774 struct btrfs_inode_item *inode_item; 3775 struct btrfs_root *root = BTRFS_I(inode)->root; 3776 struct btrfs_key location; 3777 unsigned long ptr; 3778 int maybe_acls; 3779 u32 rdev; 3780 int ret; 3781 bool filled = false; 3782 int first_xattr_slot; 3783 3784 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 3785 if (ret) 3786 return ret; 3787 3788 ret = btrfs_fill_inode(inode, &rdev); 3789 if (!ret) 3790 filled = true; 3791 3792 if (!path) { 3793 path = btrfs_alloc_path(); 3794 if (!path) 3795 return -ENOMEM; 3796 } 3797 3798 btrfs_get_inode_key(BTRFS_I(inode), &location); 3799 3800 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3801 if (ret) { 3802 if (path != in_path) 3803 btrfs_free_path(path); 3804 return ret; 3805 } 3806 3807 leaf = path->nodes[0]; 3808 3809 if (filled) 3810 goto cache_index; 3811 3812 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3813 struct btrfs_inode_item); 3814 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3815 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3816 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3817 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3818 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3819 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3820 round_up(i_size_read(inode), fs_info->sectorsize)); 3821 3822 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3823 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3824 3825 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3826 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3827 3828 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3829 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3830 3831 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3832 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3833 3834 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3835 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3836 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3837 3838 inode_set_iversion_queried(inode, 3839 btrfs_inode_sequence(leaf, inode_item)); 3840 inode->i_generation = BTRFS_I(inode)->generation; 3841 inode->i_rdev = 0; 3842 rdev = btrfs_inode_rdev(leaf, inode_item); 3843 3844 if (S_ISDIR(inode->i_mode)) 3845 BTRFS_I(inode)->index_cnt = (u64)-1; 3846 3847 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3848 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3849 3850 cache_index: 3851 /* 3852 * If we were modified in the current generation and evicted from memory 3853 * and then re-read we need to do a full sync since we don't have any 3854 * idea about which extents were modified before we were evicted from 3855 * cache. 3856 * 3857 * This is required for both inode re-read from disk and delayed inode 3858 * in the delayed_nodes xarray. 3859 */ 3860 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3861 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3862 &BTRFS_I(inode)->runtime_flags); 3863 3864 /* 3865 * We don't persist the id of the transaction where an unlink operation 3866 * against the inode was last made. So here we assume the inode might 3867 * have been evicted, and therefore the exact value of last_unlink_trans 3868 * lost, and set it to last_trans to avoid metadata inconsistencies 3869 * between the inode and its parent if the inode is fsync'ed and the log 3870 * replayed. For example, in the scenario: 3871 * 3872 * touch mydir/foo 3873 * ln mydir/foo mydir/bar 3874 * sync 3875 * unlink mydir/bar 3876 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3877 * xfs_io -c fsync mydir/foo 3878 * <power failure> 3879 * mount fs, triggers fsync log replay 3880 * 3881 * We must make sure that when we fsync our inode foo we also log its 3882 * parent inode, otherwise after log replay the parent still has the 3883 * dentry with the "bar" name but our inode foo has a link count of 1 3884 * and doesn't have an inode ref with the name "bar" anymore. 3885 * 3886 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3887 * but it guarantees correctness at the expense of occasional full 3888 * transaction commits on fsync if our inode is a directory, or if our 3889 * inode is not a directory, logging its parent unnecessarily. 3890 */ 3891 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3892 3893 /* 3894 * Same logic as for last_unlink_trans. We don't persist the generation 3895 * of the last transaction where this inode was used for a reflink 3896 * operation, so after eviction and reloading the inode we must be 3897 * pessimistic and assume the last transaction that modified the inode. 3898 */ 3899 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3900 3901 path->slots[0]++; 3902 if (inode->i_nlink != 1 || 3903 path->slots[0] >= btrfs_header_nritems(leaf)) 3904 goto cache_acl; 3905 3906 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3907 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3908 goto cache_acl; 3909 3910 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3911 if (location.type == BTRFS_INODE_REF_KEY) { 3912 struct btrfs_inode_ref *ref; 3913 3914 ref = (struct btrfs_inode_ref *)ptr; 3915 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3916 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3917 struct btrfs_inode_extref *extref; 3918 3919 extref = (struct btrfs_inode_extref *)ptr; 3920 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3921 extref); 3922 } 3923 cache_acl: 3924 /* 3925 * try to precache a NULL acl entry for files that don't have 3926 * any xattrs or acls 3927 */ 3928 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3929 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3930 if (first_xattr_slot != -1) { 3931 path->slots[0] = first_xattr_slot; 3932 ret = btrfs_load_inode_props(inode, path); 3933 if (ret) 3934 btrfs_err(fs_info, 3935 "error loading props for ino %llu (root %llu): %d", 3936 btrfs_ino(BTRFS_I(inode)), 3937 btrfs_root_id(root), ret); 3938 } 3939 if (path != in_path) 3940 btrfs_free_path(path); 3941 3942 if (!maybe_acls) 3943 cache_no_acl(inode); 3944 3945 switch (inode->i_mode & S_IFMT) { 3946 case S_IFREG: 3947 inode->i_mapping->a_ops = &btrfs_aops; 3948 inode->i_fop = &btrfs_file_operations; 3949 inode->i_op = &btrfs_file_inode_operations; 3950 break; 3951 case S_IFDIR: 3952 inode->i_fop = &btrfs_dir_file_operations; 3953 inode->i_op = &btrfs_dir_inode_operations; 3954 break; 3955 case S_IFLNK: 3956 inode->i_op = &btrfs_symlink_inode_operations; 3957 inode_nohighmem(inode); 3958 inode->i_mapping->a_ops = &btrfs_aops; 3959 break; 3960 default: 3961 inode->i_op = &btrfs_special_inode_operations; 3962 init_special_inode(inode, inode->i_mode, rdev); 3963 break; 3964 } 3965 3966 btrfs_sync_inode_flags_to_i_flags(inode); 3967 return 0; 3968 } 3969 3970 /* 3971 * given a leaf and an inode, copy the inode fields into the leaf 3972 */ 3973 static void fill_inode_item(struct btrfs_trans_handle *trans, 3974 struct extent_buffer *leaf, 3975 struct btrfs_inode_item *item, 3976 struct inode *inode) 3977 { 3978 struct btrfs_map_token token; 3979 u64 flags; 3980 3981 btrfs_init_map_token(&token, leaf); 3982 3983 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3984 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3985 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3986 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3987 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3988 3989 btrfs_set_token_timespec_sec(&token, &item->atime, 3990 inode_get_atime_sec(inode)); 3991 btrfs_set_token_timespec_nsec(&token, &item->atime, 3992 inode_get_atime_nsec(inode)); 3993 3994 btrfs_set_token_timespec_sec(&token, &item->mtime, 3995 inode_get_mtime_sec(inode)); 3996 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3997 inode_get_mtime_nsec(inode)); 3998 3999 btrfs_set_token_timespec_sec(&token, &item->ctime, 4000 inode_get_ctime_sec(inode)); 4001 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4002 inode_get_ctime_nsec(inode)); 4003 4004 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4005 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4006 4007 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4008 btrfs_set_token_inode_generation(&token, item, 4009 BTRFS_I(inode)->generation); 4010 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4011 btrfs_set_token_inode_transid(&token, item, trans->transid); 4012 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4013 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4014 BTRFS_I(inode)->ro_flags); 4015 btrfs_set_token_inode_flags(&token, item, flags); 4016 btrfs_set_token_inode_block_group(&token, item, 0); 4017 } 4018 4019 /* 4020 * copy everything in the in-memory inode into the btree. 4021 */ 4022 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4023 struct btrfs_inode *inode) 4024 { 4025 struct btrfs_inode_item *inode_item; 4026 struct btrfs_path *path; 4027 struct extent_buffer *leaf; 4028 struct btrfs_key key; 4029 int ret; 4030 4031 path = btrfs_alloc_path(); 4032 if (!path) 4033 return -ENOMEM; 4034 4035 btrfs_get_inode_key(inode, &key); 4036 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4037 if (ret) { 4038 if (ret > 0) 4039 ret = -ENOENT; 4040 goto failed; 4041 } 4042 4043 leaf = path->nodes[0]; 4044 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4045 struct btrfs_inode_item); 4046 4047 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4048 btrfs_mark_buffer_dirty(trans, leaf); 4049 btrfs_set_inode_last_trans(trans, inode); 4050 ret = 0; 4051 failed: 4052 btrfs_free_path(path); 4053 return ret; 4054 } 4055 4056 /* 4057 * copy everything in the in-memory inode into the btree. 4058 */ 4059 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4060 struct btrfs_inode *inode) 4061 { 4062 struct btrfs_root *root = inode->root; 4063 struct btrfs_fs_info *fs_info = root->fs_info; 4064 int ret; 4065 4066 /* 4067 * If the inode is a free space inode, we can deadlock during commit 4068 * if we put it into the delayed code. 4069 * 4070 * The data relocation inode should also be directly updated 4071 * without delay 4072 */ 4073 if (!btrfs_is_free_space_inode(inode) 4074 && !btrfs_is_data_reloc_root(root) 4075 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4076 btrfs_update_root_times(trans, root); 4077 4078 ret = btrfs_delayed_update_inode(trans, inode); 4079 if (!ret) 4080 btrfs_set_inode_last_trans(trans, inode); 4081 return ret; 4082 } 4083 4084 return btrfs_update_inode_item(trans, inode); 4085 } 4086 4087 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4088 struct btrfs_inode *inode) 4089 { 4090 int ret; 4091 4092 ret = btrfs_update_inode(trans, inode); 4093 if (ret == -ENOSPC) 4094 return btrfs_update_inode_item(trans, inode); 4095 return ret; 4096 } 4097 4098 /* 4099 * unlink helper that gets used here in inode.c and in the tree logging 4100 * recovery code. It remove a link in a directory with a given name, and 4101 * also drops the back refs in the inode to the directory 4102 */ 4103 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4104 struct btrfs_inode *dir, 4105 struct btrfs_inode *inode, 4106 const struct fscrypt_str *name, 4107 struct btrfs_rename_ctx *rename_ctx) 4108 { 4109 struct btrfs_root *root = dir->root; 4110 struct btrfs_fs_info *fs_info = root->fs_info; 4111 struct btrfs_path *path; 4112 int ret = 0; 4113 struct btrfs_dir_item *di; 4114 u64 index; 4115 u64 ino = btrfs_ino(inode); 4116 u64 dir_ino = btrfs_ino(dir); 4117 4118 path = btrfs_alloc_path(); 4119 if (!path) { 4120 ret = -ENOMEM; 4121 goto out; 4122 } 4123 4124 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4125 if (IS_ERR_OR_NULL(di)) { 4126 ret = di ? PTR_ERR(di) : -ENOENT; 4127 goto err; 4128 } 4129 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4130 if (ret) 4131 goto err; 4132 btrfs_release_path(path); 4133 4134 /* 4135 * If we don't have dir index, we have to get it by looking up 4136 * the inode ref, since we get the inode ref, remove it directly, 4137 * it is unnecessary to do delayed deletion. 4138 * 4139 * But if we have dir index, needn't search inode ref to get it. 4140 * Since the inode ref is close to the inode item, it is better 4141 * that we delay to delete it, and just do this deletion when 4142 * we update the inode item. 4143 */ 4144 if (inode->dir_index) { 4145 ret = btrfs_delayed_delete_inode_ref(inode); 4146 if (!ret) { 4147 index = inode->dir_index; 4148 goto skip_backref; 4149 } 4150 } 4151 4152 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4153 if (ret) { 4154 btrfs_info(fs_info, 4155 "failed to delete reference to %.*s, inode %llu parent %llu", 4156 name->len, name->name, ino, dir_ino); 4157 btrfs_abort_transaction(trans, ret); 4158 goto err; 4159 } 4160 skip_backref: 4161 if (rename_ctx) 4162 rename_ctx->index = index; 4163 4164 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4165 if (ret) { 4166 btrfs_abort_transaction(trans, ret); 4167 goto err; 4168 } 4169 4170 /* 4171 * If we are in a rename context, we don't need to update anything in the 4172 * log. That will be done later during the rename by btrfs_log_new_name(). 4173 * Besides that, doing it here would only cause extra unnecessary btree 4174 * operations on the log tree, increasing latency for applications. 4175 */ 4176 if (!rename_ctx) { 4177 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4178 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4179 } 4180 4181 /* 4182 * If we have a pending delayed iput we could end up with the final iput 4183 * being run in btrfs-cleaner context. If we have enough of these built 4184 * up we can end up burning a lot of time in btrfs-cleaner without any 4185 * way to throttle the unlinks. Since we're currently holding a ref on 4186 * the inode we can run the delayed iput here without any issues as the 4187 * final iput won't be done until after we drop the ref we're currently 4188 * holding. 4189 */ 4190 btrfs_run_delayed_iput(fs_info, inode); 4191 err: 4192 btrfs_free_path(path); 4193 if (ret) 4194 goto out; 4195 4196 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4197 inode_inc_iversion(&inode->vfs_inode); 4198 inode_set_ctime_current(&inode->vfs_inode); 4199 inode_inc_iversion(&dir->vfs_inode); 4200 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4201 ret = btrfs_update_inode(trans, dir); 4202 out: 4203 return ret; 4204 } 4205 4206 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4207 struct btrfs_inode *dir, struct btrfs_inode *inode, 4208 const struct fscrypt_str *name) 4209 { 4210 int ret; 4211 4212 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4213 if (!ret) { 4214 drop_nlink(&inode->vfs_inode); 4215 ret = btrfs_update_inode(trans, inode); 4216 } 4217 return ret; 4218 } 4219 4220 /* 4221 * helper to start transaction for unlink and rmdir. 4222 * 4223 * unlink and rmdir are special in btrfs, they do not always free space, so 4224 * if we cannot make our reservations the normal way try and see if there is 4225 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4226 * allow the unlink to occur. 4227 */ 4228 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4229 { 4230 struct btrfs_root *root = dir->root; 4231 4232 return btrfs_start_transaction_fallback_global_rsv(root, 4233 BTRFS_UNLINK_METADATA_UNITS); 4234 } 4235 4236 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4237 { 4238 struct btrfs_trans_handle *trans; 4239 struct inode *inode = d_inode(dentry); 4240 int ret; 4241 struct fscrypt_name fname; 4242 4243 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4244 if (ret) 4245 return ret; 4246 4247 /* This needs to handle no-key deletions later on */ 4248 4249 trans = __unlink_start_trans(BTRFS_I(dir)); 4250 if (IS_ERR(trans)) { 4251 ret = PTR_ERR(trans); 4252 goto fscrypt_free; 4253 } 4254 4255 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4256 false); 4257 4258 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4259 &fname.disk_name); 4260 if (ret) 4261 goto end_trans; 4262 4263 if (inode->i_nlink == 0) { 4264 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4265 if (ret) 4266 goto end_trans; 4267 } 4268 4269 end_trans: 4270 btrfs_end_transaction(trans); 4271 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4272 fscrypt_free: 4273 fscrypt_free_filename(&fname); 4274 return ret; 4275 } 4276 4277 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4278 struct btrfs_inode *dir, struct dentry *dentry) 4279 { 4280 struct btrfs_root *root = dir->root; 4281 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4282 struct btrfs_path *path; 4283 struct extent_buffer *leaf; 4284 struct btrfs_dir_item *di; 4285 struct btrfs_key key; 4286 u64 index; 4287 int ret; 4288 u64 objectid; 4289 u64 dir_ino = btrfs_ino(dir); 4290 struct fscrypt_name fname; 4291 4292 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4293 if (ret) 4294 return ret; 4295 4296 /* This needs to handle no-key deletions later on */ 4297 4298 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4299 objectid = btrfs_root_id(inode->root); 4300 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4301 objectid = inode->ref_root_id; 4302 } else { 4303 WARN_ON(1); 4304 fscrypt_free_filename(&fname); 4305 return -EINVAL; 4306 } 4307 4308 path = btrfs_alloc_path(); 4309 if (!path) { 4310 ret = -ENOMEM; 4311 goto out; 4312 } 4313 4314 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4315 &fname.disk_name, -1); 4316 if (IS_ERR_OR_NULL(di)) { 4317 ret = di ? PTR_ERR(di) : -ENOENT; 4318 goto out; 4319 } 4320 4321 leaf = path->nodes[0]; 4322 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4323 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4324 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4325 if (ret) { 4326 btrfs_abort_transaction(trans, ret); 4327 goto out; 4328 } 4329 btrfs_release_path(path); 4330 4331 /* 4332 * This is a placeholder inode for a subvolume we didn't have a 4333 * reference to at the time of the snapshot creation. In the meantime 4334 * we could have renamed the real subvol link into our snapshot, so 4335 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4336 * Instead simply lookup the dir_index_item for this entry so we can 4337 * remove it. Otherwise we know we have a ref to the root and we can 4338 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4339 */ 4340 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4341 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4342 if (IS_ERR_OR_NULL(di)) { 4343 if (!di) 4344 ret = -ENOENT; 4345 else 4346 ret = PTR_ERR(di); 4347 btrfs_abort_transaction(trans, ret); 4348 goto out; 4349 } 4350 4351 leaf = path->nodes[0]; 4352 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4353 index = key.offset; 4354 btrfs_release_path(path); 4355 } else { 4356 ret = btrfs_del_root_ref(trans, objectid, 4357 btrfs_root_id(root), dir_ino, 4358 &index, &fname.disk_name); 4359 if (ret) { 4360 btrfs_abort_transaction(trans, ret); 4361 goto out; 4362 } 4363 } 4364 4365 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4366 if (ret) { 4367 btrfs_abort_transaction(trans, ret); 4368 goto out; 4369 } 4370 4371 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4372 inode_inc_iversion(&dir->vfs_inode); 4373 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4374 ret = btrfs_update_inode_fallback(trans, dir); 4375 if (ret) 4376 btrfs_abort_transaction(trans, ret); 4377 out: 4378 btrfs_free_path(path); 4379 fscrypt_free_filename(&fname); 4380 return ret; 4381 } 4382 4383 /* 4384 * Helper to check if the subvolume references other subvolumes or if it's 4385 * default. 4386 */ 4387 static noinline int may_destroy_subvol(struct btrfs_root *root) 4388 { 4389 struct btrfs_fs_info *fs_info = root->fs_info; 4390 struct btrfs_path *path; 4391 struct btrfs_dir_item *di; 4392 struct btrfs_key key; 4393 struct fscrypt_str name = FSTR_INIT("default", 7); 4394 u64 dir_id; 4395 int ret; 4396 4397 path = btrfs_alloc_path(); 4398 if (!path) 4399 return -ENOMEM; 4400 4401 /* Make sure this root isn't set as the default subvol */ 4402 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4403 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4404 dir_id, &name, 0); 4405 if (di && !IS_ERR(di)) { 4406 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4407 if (key.objectid == btrfs_root_id(root)) { 4408 ret = -EPERM; 4409 btrfs_err(fs_info, 4410 "deleting default subvolume %llu is not allowed", 4411 key.objectid); 4412 goto out; 4413 } 4414 btrfs_release_path(path); 4415 } 4416 4417 key.objectid = btrfs_root_id(root); 4418 key.type = BTRFS_ROOT_REF_KEY; 4419 key.offset = (u64)-1; 4420 4421 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4422 if (ret < 0) 4423 goto out; 4424 if (ret == 0) { 4425 /* 4426 * Key with offset -1 found, there would have to exist a root 4427 * with such id, but this is out of valid range. 4428 */ 4429 ret = -EUCLEAN; 4430 goto out; 4431 } 4432 4433 ret = 0; 4434 if (path->slots[0] > 0) { 4435 path->slots[0]--; 4436 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4437 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4438 ret = -ENOTEMPTY; 4439 } 4440 out: 4441 btrfs_free_path(path); 4442 return ret; 4443 } 4444 4445 /* Delete all dentries for inodes belonging to the root */ 4446 static void btrfs_prune_dentries(struct btrfs_root *root) 4447 { 4448 struct btrfs_fs_info *fs_info = root->fs_info; 4449 struct btrfs_inode *inode; 4450 u64 min_ino = 0; 4451 4452 if (!BTRFS_FS_ERROR(fs_info)) 4453 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4454 4455 inode = btrfs_find_first_inode(root, min_ino); 4456 while (inode) { 4457 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4458 d_prune_aliases(&inode->vfs_inode); 4459 4460 min_ino = btrfs_ino(inode) + 1; 4461 /* 4462 * btrfs_drop_inode() will have it removed from the inode 4463 * cache when its usage count hits zero. 4464 */ 4465 iput(&inode->vfs_inode); 4466 cond_resched(); 4467 inode = btrfs_find_first_inode(root, min_ino); 4468 } 4469 } 4470 4471 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4472 { 4473 struct btrfs_root *root = dir->root; 4474 struct btrfs_fs_info *fs_info = root->fs_info; 4475 struct inode *inode = d_inode(dentry); 4476 struct btrfs_root *dest = BTRFS_I(inode)->root; 4477 struct btrfs_trans_handle *trans; 4478 struct btrfs_block_rsv block_rsv; 4479 u64 root_flags; 4480 u64 qgroup_reserved = 0; 4481 int ret; 4482 4483 down_write(&fs_info->subvol_sem); 4484 4485 /* 4486 * Don't allow to delete a subvolume with send in progress. This is 4487 * inside the inode lock so the error handling that has to drop the bit 4488 * again is not run concurrently. 4489 */ 4490 spin_lock(&dest->root_item_lock); 4491 if (dest->send_in_progress) { 4492 spin_unlock(&dest->root_item_lock); 4493 btrfs_warn(fs_info, 4494 "attempt to delete subvolume %llu during send", 4495 btrfs_root_id(dest)); 4496 ret = -EPERM; 4497 goto out_up_write; 4498 } 4499 if (atomic_read(&dest->nr_swapfiles)) { 4500 spin_unlock(&dest->root_item_lock); 4501 btrfs_warn(fs_info, 4502 "attempt to delete subvolume %llu with active swapfile", 4503 btrfs_root_id(root)); 4504 ret = -EPERM; 4505 goto out_up_write; 4506 } 4507 root_flags = btrfs_root_flags(&dest->root_item); 4508 btrfs_set_root_flags(&dest->root_item, 4509 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4510 spin_unlock(&dest->root_item_lock); 4511 4512 ret = may_destroy_subvol(dest); 4513 if (ret) 4514 goto out_undead; 4515 4516 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4517 /* 4518 * One for dir inode, 4519 * two for dir entries, 4520 * two for root ref/backref. 4521 */ 4522 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4523 if (ret) 4524 goto out_undead; 4525 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4526 4527 trans = btrfs_start_transaction(root, 0); 4528 if (IS_ERR(trans)) { 4529 ret = PTR_ERR(trans); 4530 goto out_release; 4531 } 4532 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4533 qgroup_reserved = 0; 4534 trans->block_rsv = &block_rsv; 4535 trans->bytes_reserved = block_rsv.size; 4536 4537 btrfs_record_snapshot_destroy(trans, dir); 4538 4539 ret = btrfs_unlink_subvol(trans, dir, dentry); 4540 if (ret) { 4541 btrfs_abort_transaction(trans, ret); 4542 goto out_end_trans; 4543 } 4544 4545 ret = btrfs_record_root_in_trans(trans, dest); 4546 if (ret) { 4547 btrfs_abort_transaction(trans, ret); 4548 goto out_end_trans; 4549 } 4550 4551 memset(&dest->root_item.drop_progress, 0, 4552 sizeof(dest->root_item.drop_progress)); 4553 btrfs_set_root_drop_level(&dest->root_item, 0); 4554 btrfs_set_root_refs(&dest->root_item, 0); 4555 4556 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4557 ret = btrfs_insert_orphan_item(trans, 4558 fs_info->tree_root, 4559 btrfs_root_id(dest)); 4560 if (ret) { 4561 btrfs_abort_transaction(trans, ret); 4562 goto out_end_trans; 4563 } 4564 } 4565 4566 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4567 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4568 if (ret && ret != -ENOENT) { 4569 btrfs_abort_transaction(trans, ret); 4570 goto out_end_trans; 4571 } 4572 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4573 ret = btrfs_uuid_tree_remove(trans, 4574 dest->root_item.received_uuid, 4575 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4576 btrfs_root_id(dest)); 4577 if (ret && ret != -ENOENT) { 4578 btrfs_abort_transaction(trans, ret); 4579 goto out_end_trans; 4580 } 4581 } 4582 4583 free_anon_bdev(dest->anon_dev); 4584 dest->anon_dev = 0; 4585 out_end_trans: 4586 trans->block_rsv = NULL; 4587 trans->bytes_reserved = 0; 4588 ret = btrfs_end_transaction(trans); 4589 inode->i_flags |= S_DEAD; 4590 out_release: 4591 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4592 if (qgroup_reserved) 4593 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4594 out_undead: 4595 if (ret) { 4596 spin_lock(&dest->root_item_lock); 4597 root_flags = btrfs_root_flags(&dest->root_item); 4598 btrfs_set_root_flags(&dest->root_item, 4599 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4600 spin_unlock(&dest->root_item_lock); 4601 } 4602 out_up_write: 4603 up_write(&fs_info->subvol_sem); 4604 if (!ret) { 4605 d_invalidate(dentry); 4606 btrfs_prune_dentries(dest); 4607 ASSERT(dest->send_in_progress == 0); 4608 } 4609 4610 return ret; 4611 } 4612 4613 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4614 { 4615 struct inode *inode = d_inode(dentry); 4616 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4617 int ret = 0; 4618 struct btrfs_trans_handle *trans; 4619 u64 last_unlink_trans; 4620 struct fscrypt_name fname; 4621 4622 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4623 return -ENOTEMPTY; 4624 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4625 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4626 btrfs_err(fs_info, 4627 "extent tree v2 doesn't support snapshot deletion yet"); 4628 return -EOPNOTSUPP; 4629 } 4630 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4631 } 4632 4633 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4634 if (ret) 4635 return ret; 4636 4637 /* This needs to handle no-key deletions later on */ 4638 4639 trans = __unlink_start_trans(BTRFS_I(dir)); 4640 if (IS_ERR(trans)) { 4641 ret = PTR_ERR(trans); 4642 goto out_notrans; 4643 } 4644 4645 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4646 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4647 goto out; 4648 } 4649 4650 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4651 if (ret) 4652 goto out; 4653 4654 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4655 4656 /* now the directory is empty */ 4657 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4658 &fname.disk_name); 4659 if (!ret) { 4660 btrfs_i_size_write(BTRFS_I(inode), 0); 4661 /* 4662 * Propagate the last_unlink_trans value of the deleted dir to 4663 * its parent directory. This is to prevent an unrecoverable 4664 * log tree in the case we do something like this: 4665 * 1) create dir foo 4666 * 2) create snapshot under dir foo 4667 * 3) delete the snapshot 4668 * 4) rmdir foo 4669 * 5) mkdir foo 4670 * 6) fsync foo or some file inside foo 4671 */ 4672 if (last_unlink_trans >= trans->transid) 4673 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4674 } 4675 out: 4676 btrfs_end_transaction(trans); 4677 out_notrans: 4678 btrfs_btree_balance_dirty(fs_info); 4679 fscrypt_free_filename(&fname); 4680 4681 return ret; 4682 } 4683 4684 /* 4685 * Read, zero a chunk and write a block. 4686 * 4687 * @inode - inode that we're zeroing 4688 * @from - the offset to start zeroing 4689 * @len - the length to zero, 0 to zero the entire range respective to the 4690 * offset 4691 * @front - zero up to the offset instead of from the offset on 4692 * 4693 * This will find the block for the "from" offset and cow the block and zero the 4694 * part we want to zero. This is used with truncate and hole punching. 4695 */ 4696 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4697 int front) 4698 { 4699 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4700 struct address_space *mapping = inode->vfs_inode.i_mapping; 4701 struct extent_io_tree *io_tree = &inode->io_tree; 4702 struct btrfs_ordered_extent *ordered; 4703 struct extent_state *cached_state = NULL; 4704 struct extent_changeset *data_reserved = NULL; 4705 bool only_release_metadata = false; 4706 u32 blocksize = fs_info->sectorsize; 4707 pgoff_t index = from >> PAGE_SHIFT; 4708 unsigned offset = from & (blocksize - 1); 4709 struct folio *folio; 4710 gfp_t mask = btrfs_alloc_write_mask(mapping); 4711 size_t write_bytes = blocksize; 4712 int ret = 0; 4713 u64 block_start; 4714 u64 block_end; 4715 4716 if (IS_ALIGNED(offset, blocksize) && 4717 (!len || IS_ALIGNED(len, blocksize))) 4718 goto out; 4719 4720 block_start = round_down(from, blocksize); 4721 block_end = block_start + blocksize - 1; 4722 4723 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4724 blocksize, false); 4725 if (ret < 0) { 4726 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4727 /* For nocow case, no need to reserve data space */ 4728 only_release_metadata = true; 4729 } else { 4730 goto out; 4731 } 4732 } 4733 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4734 if (ret < 0) { 4735 if (!only_release_metadata) 4736 btrfs_free_reserved_data_space(inode, data_reserved, 4737 block_start, blocksize); 4738 goto out; 4739 } 4740 again: 4741 folio = __filemap_get_folio(mapping, index, 4742 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4743 if (IS_ERR(folio)) { 4744 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4745 blocksize, true); 4746 btrfs_delalloc_release_extents(inode, blocksize); 4747 ret = -ENOMEM; 4748 goto out; 4749 } 4750 4751 if (!folio_test_uptodate(folio)) { 4752 ret = btrfs_read_folio(NULL, folio); 4753 folio_lock(folio); 4754 if (folio->mapping != mapping) { 4755 folio_unlock(folio); 4756 folio_put(folio); 4757 goto again; 4758 } 4759 if (!folio_test_uptodate(folio)) { 4760 ret = -EIO; 4761 goto out_unlock; 4762 } 4763 } 4764 4765 /* 4766 * We unlock the page after the io is completed and then re-lock it 4767 * above. release_folio() could have come in between that and cleared 4768 * folio private, but left the page in the mapping. Set the page mapped 4769 * here to make sure it's properly set for the subpage stuff. 4770 */ 4771 ret = set_folio_extent_mapped(folio); 4772 if (ret < 0) 4773 goto out_unlock; 4774 4775 folio_wait_writeback(folio); 4776 4777 lock_extent(io_tree, block_start, block_end, &cached_state); 4778 4779 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4780 if (ordered) { 4781 unlock_extent(io_tree, block_start, block_end, &cached_state); 4782 folio_unlock(folio); 4783 folio_put(folio); 4784 btrfs_start_ordered_extent(ordered); 4785 btrfs_put_ordered_extent(ordered); 4786 goto again; 4787 } 4788 4789 clear_extent_bit(&inode->io_tree, block_start, block_end, 4790 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4791 &cached_state); 4792 4793 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4794 &cached_state); 4795 if (ret) { 4796 unlock_extent(io_tree, block_start, block_end, &cached_state); 4797 goto out_unlock; 4798 } 4799 4800 if (offset != blocksize) { 4801 if (!len) 4802 len = blocksize - offset; 4803 if (front) 4804 folio_zero_range(folio, block_start - folio_pos(folio), 4805 offset); 4806 else 4807 folio_zero_range(folio, 4808 (block_start - folio_pos(folio)) + offset, 4809 len); 4810 } 4811 btrfs_folio_clear_checked(fs_info, folio, block_start, 4812 block_end + 1 - block_start); 4813 btrfs_folio_set_dirty(fs_info, folio, block_start, 4814 block_end + 1 - block_start); 4815 unlock_extent(io_tree, block_start, block_end, &cached_state); 4816 4817 if (only_release_metadata) 4818 set_extent_bit(&inode->io_tree, block_start, block_end, 4819 EXTENT_NORESERVE, NULL); 4820 4821 out_unlock: 4822 if (ret) { 4823 if (only_release_metadata) 4824 btrfs_delalloc_release_metadata(inode, blocksize, true); 4825 else 4826 btrfs_delalloc_release_space(inode, data_reserved, 4827 block_start, blocksize, true); 4828 } 4829 btrfs_delalloc_release_extents(inode, blocksize); 4830 folio_unlock(folio); 4831 folio_put(folio); 4832 out: 4833 if (only_release_metadata) 4834 btrfs_check_nocow_unlock(inode); 4835 extent_changeset_free(data_reserved); 4836 return ret; 4837 } 4838 4839 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4840 { 4841 struct btrfs_root *root = inode->root; 4842 struct btrfs_fs_info *fs_info = root->fs_info; 4843 struct btrfs_trans_handle *trans; 4844 struct btrfs_drop_extents_args drop_args = { 0 }; 4845 int ret; 4846 4847 /* 4848 * If NO_HOLES is enabled, we don't need to do anything. 4849 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4850 * or btrfs_update_inode() will be called, which guarantee that the next 4851 * fsync will know this inode was changed and needs to be logged. 4852 */ 4853 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4854 return 0; 4855 4856 /* 4857 * 1 - for the one we're dropping 4858 * 1 - for the one we're adding 4859 * 1 - for updating the inode. 4860 */ 4861 trans = btrfs_start_transaction(root, 3); 4862 if (IS_ERR(trans)) 4863 return PTR_ERR(trans); 4864 4865 drop_args.start = offset; 4866 drop_args.end = offset + len; 4867 drop_args.drop_cache = true; 4868 4869 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4870 if (ret) { 4871 btrfs_abort_transaction(trans, ret); 4872 btrfs_end_transaction(trans); 4873 return ret; 4874 } 4875 4876 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4877 if (ret) { 4878 btrfs_abort_transaction(trans, ret); 4879 } else { 4880 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4881 btrfs_update_inode(trans, inode); 4882 } 4883 btrfs_end_transaction(trans); 4884 return ret; 4885 } 4886 4887 /* 4888 * This function puts in dummy file extents for the area we're creating a hole 4889 * for. So if we are truncating this file to a larger size we need to insert 4890 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4891 * the range between oldsize and size 4892 */ 4893 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4894 { 4895 struct btrfs_root *root = inode->root; 4896 struct btrfs_fs_info *fs_info = root->fs_info; 4897 struct extent_io_tree *io_tree = &inode->io_tree; 4898 struct extent_map *em = NULL; 4899 struct extent_state *cached_state = NULL; 4900 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4901 u64 block_end = ALIGN(size, fs_info->sectorsize); 4902 u64 last_byte; 4903 u64 cur_offset; 4904 u64 hole_size; 4905 int ret = 0; 4906 4907 /* 4908 * If our size started in the middle of a block we need to zero out the 4909 * rest of the block before we expand the i_size, otherwise we could 4910 * expose stale data. 4911 */ 4912 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 4913 if (ret) 4914 return ret; 4915 4916 if (size <= hole_start) 4917 return 0; 4918 4919 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4920 &cached_state); 4921 cur_offset = hole_start; 4922 while (1) { 4923 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 4924 if (IS_ERR(em)) { 4925 ret = PTR_ERR(em); 4926 em = NULL; 4927 break; 4928 } 4929 last_byte = min(extent_map_end(em), block_end); 4930 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4931 hole_size = last_byte - cur_offset; 4932 4933 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4934 struct extent_map *hole_em; 4935 4936 ret = maybe_insert_hole(inode, cur_offset, hole_size); 4937 if (ret) 4938 break; 4939 4940 ret = btrfs_inode_set_file_extent_range(inode, 4941 cur_offset, hole_size); 4942 if (ret) 4943 break; 4944 4945 hole_em = alloc_extent_map(); 4946 if (!hole_em) { 4947 btrfs_drop_extent_map_range(inode, cur_offset, 4948 cur_offset + hole_size - 1, 4949 false); 4950 btrfs_set_inode_full_sync(inode); 4951 goto next; 4952 } 4953 hole_em->start = cur_offset; 4954 hole_em->len = hole_size; 4955 4956 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 4957 hole_em->disk_num_bytes = 0; 4958 hole_em->ram_bytes = hole_size; 4959 hole_em->generation = btrfs_get_fs_generation(fs_info); 4960 4961 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 4962 free_extent_map(hole_em); 4963 } else { 4964 ret = btrfs_inode_set_file_extent_range(inode, 4965 cur_offset, hole_size); 4966 if (ret) 4967 break; 4968 } 4969 next: 4970 free_extent_map(em); 4971 em = NULL; 4972 cur_offset = last_byte; 4973 if (cur_offset >= block_end) 4974 break; 4975 } 4976 free_extent_map(em); 4977 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4978 return ret; 4979 } 4980 4981 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4982 { 4983 struct btrfs_root *root = BTRFS_I(inode)->root; 4984 struct btrfs_trans_handle *trans; 4985 loff_t oldsize = i_size_read(inode); 4986 loff_t newsize = attr->ia_size; 4987 int mask = attr->ia_valid; 4988 int ret; 4989 4990 /* 4991 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4992 * special case where we need to update the times despite not having 4993 * these flags set. For all other operations the VFS set these flags 4994 * explicitly if it wants a timestamp update. 4995 */ 4996 if (newsize != oldsize) { 4997 inode_inc_iversion(inode); 4998 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4999 inode_set_mtime_to_ts(inode, 5000 inode_set_ctime_current(inode)); 5001 } 5002 } 5003 5004 if (newsize > oldsize) { 5005 /* 5006 * Don't do an expanding truncate while snapshotting is ongoing. 5007 * This is to ensure the snapshot captures a fully consistent 5008 * state of this file - if the snapshot captures this expanding 5009 * truncation, it must capture all writes that happened before 5010 * this truncation. 5011 */ 5012 btrfs_drew_write_lock(&root->snapshot_lock); 5013 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5014 if (ret) { 5015 btrfs_drew_write_unlock(&root->snapshot_lock); 5016 return ret; 5017 } 5018 5019 trans = btrfs_start_transaction(root, 1); 5020 if (IS_ERR(trans)) { 5021 btrfs_drew_write_unlock(&root->snapshot_lock); 5022 return PTR_ERR(trans); 5023 } 5024 5025 i_size_write(inode, newsize); 5026 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5027 pagecache_isize_extended(inode, oldsize, newsize); 5028 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5029 btrfs_drew_write_unlock(&root->snapshot_lock); 5030 btrfs_end_transaction(trans); 5031 } else { 5032 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5033 5034 if (btrfs_is_zoned(fs_info)) { 5035 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5036 ALIGN(newsize, fs_info->sectorsize), 5037 (u64)-1); 5038 if (ret) 5039 return ret; 5040 } 5041 5042 /* 5043 * We're truncating a file that used to have good data down to 5044 * zero. Make sure any new writes to the file get on disk 5045 * on close. 5046 */ 5047 if (newsize == 0) 5048 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5049 &BTRFS_I(inode)->runtime_flags); 5050 5051 truncate_setsize(inode, newsize); 5052 5053 inode_dio_wait(inode); 5054 5055 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5056 if (ret && inode->i_nlink) { 5057 int err; 5058 5059 /* 5060 * Truncate failed, so fix up the in-memory size. We 5061 * adjusted disk_i_size down as we removed extents, so 5062 * wait for disk_i_size to be stable and then update the 5063 * in-memory size to match. 5064 */ 5065 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5066 if (err) 5067 return err; 5068 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5069 } 5070 } 5071 5072 return ret; 5073 } 5074 5075 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5076 struct iattr *attr) 5077 { 5078 struct inode *inode = d_inode(dentry); 5079 struct btrfs_root *root = BTRFS_I(inode)->root; 5080 int err; 5081 5082 if (btrfs_root_readonly(root)) 5083 return -EROFS; 5084 5085 err = setattr_prepare(idmap, dentry, attr); 5086 if (err) 5087 return err; 5088 5089 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5090 err = btrfs_setsize(inode, attr); 5091 if (err) 5092 return err; 5093 } 5094 5095 if (attr->ia_valid) { 5096 setattr_copy(idmap, inode, attr); 5097 inode_inc_iversion(inode); 5098 err = btrfs_dirty_inode(BTRFS_I(inode)); 5099 5100 if (!err && attr->ia_valid & ATTR_MODE) 5101 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5102 } 5103 5104 return err; 5105 } 5106 5107 /* 5108 * While truncating the inode pages during eviction, we get the VFS 5109 * calling btrfs_invalidate_folio() against each folio of the inode. This 5110 * is slow because the calls to btrfs_invalidate_folio() result in a 5111 * huge amount of calls to lock_extent() and clear_extent_bit(), 5112 * which keep merging and splitting extent_state structures over and over, 5113 * wasting lots of time. 5114 * 5115 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5116 * skip all those expensive operations on a per folio basis and do only 5117 * the ordered io finishing, while we release here the extent_map and 5118 * extent_state structures, without the excessive merging and splitting. 5119 */ 5120 static void evict_inode_truncate_pages(struct inode *inode) 5121 { 5122 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5123 struct rb_node *node; 5124 5125 ASSERT(inode->i_state & I_FREEING); 5126 truncate_inode_pages_final(&inode->i_data); 5127 5128 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5129 5130 /* 5131 * Keep looping until we have no more ranges in the io tree. 5132 * We can have ongoing bios started by readahead that have 5133 * their endio callback (extent_io.c:end_bio_extent_readpage) 5134 * still in progress (unlocked the pages in the bio but did not yet 5135 * unlocked the ranges in the io tree). Therefore this means some 5136 * ranges can still be locked and eviction started because before 5137 * submitting those bios, which are executed by a separate task (work 5138 * queue kthread), inode references (inode->i_count) were not taken 5139 * (which would be dropped in the end io callback of each bio). 5140 * Therefore here we effectively end up waiting for those bios and 5141 * anyone else holding locked ranges without having bumped the inode's 5142 * reference count - if we don't do it, when they access the inode's 5143 * io_tree to unlock a range it may be too late, leading to an 5144 * use-after-free issue. 5145 */ 5146 spin_lock(&io_tree->lock); 5147 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5148 struct extent_state *state; 5149 struct extent_state *cached_state = NULL; 5150 u64 start; 5151 u64 end; 5152 unsigned state_flags; 5153 5154 node = rb_first(&io_tree->state); 5155 state = rb_entry(node, struct extent_state, rb_node); 5156 start = state->start; 5157 end = state->end; 5158 state_flags = state->state; 5159 spin_unlock(&io_tree->lock); 5160 5161 lock_extent(io_tree, start, end, &cached_state); 5162 5163 /* 5164 * If still has DELALLOC flag, the extent didn't reach disk, 5165 * and its reserved space won't be freed by delayed_ref. 5166 * So we need to free its reserved space here. 5167 * (Refer to comment in btrfs_invalidate_folio, case 2) 5168 * 5169 * Note, end is the bytenr of last byte, so we need + 1 here. 5170 */ 5171 if (state_flags & EXTENT_DELALLOC) 5172 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5173 end - start + 1, NULL); 5174 5175 clear_extent_bit(io_tree, start, end, 5176 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5177 &cached_state); 5178 5179 cond_resched(); 5180 spin_lock(&io_tree->lock); 5181 } 5182 spin_unlock(&io_tree->lock); 5183 } 5184 5185 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5186 struct btrfs_block_rsv *rsv) 5187 { 5188 struct btrfs_fs_info *fs_info = root->fs_info; 5189 struct btrfs_trans_handle *trans; 5190 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5191 int ret; 5192 5193 /* 5194 * Eviction should be taking place at some place safe because of our 5195 * delayed iputs. However the normal flushing code will run delayed 5196 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5197 * 5198 * We reserve the delayed_refs_extra here again because we can't use 5199 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5200 * above. We reserve our extra bit here because we generate a ton of 5201 * delayed refs activity by truncating. 5202 * 5203 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5204 * if we fail to make this reservation we can re-try without the 5205 * delayed_refs_extra so we can make some forward progress. 5206 */ 5207 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5208 BTRFS_RESERVE_FLUSH_EVICT); 5209 if (ret) { 5210 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5211 BTRFS_RESERVE_FLUSH_EVICT); 5212 if (ret) { 5213 btrfs_warn(fs_info, 5214 "could not allocate space for delete; will truncate on mount"); 5215 return ERR_PTR(-ENOSPC); 5216 } 5217 delayed_refs_extra = 0; 5218 } 5219 5220 trans = btrfs_join_transaction(root); 5221 if (IS_ERR(trans)) 5222 return trans; 5223 5224 if (delayed_refs_extra) { 5225 trans->block_rsv = &fs_info->trans_block_rsv; 5226 trans->bytes_reserved = delayed_refs_extra; 5227 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5228 delayed_refs_extra, true); 5229 } 5230 return trans; 5231 } 5232 5233 void btrfs_evict_inode(struct inode *inode) 5234 { 5235 struct btrfs_fs_info *fs_info; 5236 struct btrfs_trans_handle *trans; 5237 struct btrfs_root *root = BTRFS_I(inode)->root; 5238 struct btrfs_block_rsv *rsv = NULL; 5239 int ret; 5240 5241 trace_btrfs_inode_evict(inode); 5242 5243 if (!root) { 5244 fsverity_cleanup_inode(inode); 5245 clear_inode(inode); 5246 return; 5247 } 5248 5249 fs_info = inode_to_fs_info(inode); 5250 evict_inode_truncate_pages(inode); 5251 5252 if (inode->i_nlink && 5253 ((btrfs_root_refs(&root->root_item) != 0 && 5254 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5255 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5256 goto out; 5257 5258 if (is_bad_inode(inode)) 5259 goto out; 5260 5261 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5262 goto out; 5263 5264 if (inode->i_nlink > 0) { 5265 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5266 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5267 goto out; 5268 } 5269 5270 /* 5271 * This makes sure the inode item in tree is uptodate and the space for 5272 * the inode update is released. 5273 */ 5274 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5275 if (ret) 5276 goto out; 5277 5278 /* 5279 * This drops any pending insert or delete operations we have for this 5280 * inode. We could have a delayed dir index deletion queued up, but 5281 * we're removing the inode completely so that'll be taken care of in 5282 * the truncate. 5283 */ 5284 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5285 5286 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5287 if (!rsv) 5288 goto out; 5289 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5290 rsv->failfast = true; 5291 5292 btrfs_i_size_write(BTRFS_I(inode), 0); 5293 5294 while (1) { 5295 struct btrfs_truncate_control control = { 5296 .inode = BTRFS_I(inode), 5297 .ino = btrfs_ino(BTRFS_I(inode)), 5298 .new_size = 0, 5299 .min_type = 0, 5300 }; 5301 5302 trans = evict_refill_and_join(root, rsv); 5303 if (IS_ERR(trans)) 5304 goto out; 5305 5306 trans->block_rsv = rsv; 5307 5308 ret = btrfs_truncate_inode_items(trans, root, &control); 5309 trans->block_rsv = &fs_info->trans_block_rsv; 5310 btrfs_end_transaction(trans); 5311 /* 5312 * We have not added new delayed items for our inode after we 5313 * have flushed its delayed items, so no need to throttle on 5314 * delayed items. However we have modified extent buffers. 5315 */ 5316 btrfs_btree_balance_dirty_nodelay(fs_info); 5317 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5318 goto out; 5319 else if (!ret) 5320 break; 5321 } 5322 5323 /* 5324 * Errors here aren't a big deal, it just means we leave orphan items in 5325 * the tree. They will be cleaned up on the next mount. If the inode 5326 * number gets reused, cleanup deletes the orphan item without doing 5327 * anything, and unlink reuses the existing orphan item. 5328 * 5329 * If it turns out that we are dropping too many of these, we might want 5330 * to add a mechanism for retrying these after a commit. 5331 */ 5332 trans = evict_refill_and_join(root, rsv); 5333 if (!IS_ERR(trans)) { 5334 trans->block_rsv = rsv; 5335 btrfs_orphan_del(trans, BTRFS_I(inode)); 5336 trans->block_rsv = &fs_info->trans_block_rsv; 5337 btrfs_end_transaction(trans); 5338 } 5339 5340 out: 5341 btrfs_free_block_rsv(fs_info, rsv); 5342 /* 5343 * If we didn't successfully delete, the orphan item will still be in 5344 * the tree and we'll retry on the next mount. Again, we might also want 5345 * to retry these periodically in the future. 5346 */ 5347 btrfs_remove_delayed_node(BTRFS_I(inode)); 5348 fsverity_cleanup_inode(inode); 5349 clear_inode(inode); 5350 } 5351 5352 /* 5353 * Return the key found in the dir entry in the location pointer, fill @type 5354 * with BTRFS_FT_*, and return 0. 5355 * 5356 * If no dir entries were found, returns -ENOENT. 5357 * If found a corrupted location in dir entry, returns -EUCLEAN. 5358 */ 5359 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5360 struct btrfs_key *location, u8 *type) 5361 { 5362 struct btrfs_dir_item *di; 5363 struct btrfs_path *path; 5364 struct btrfs_root *root = dir->root; 5365 int ret = 0; 5366 struct fscrypt_name fname; 5367 5368 path = btrfs_alloc_path(); 5369 if (!path) 5370 return -ENOMEM; 5371 5372 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5373 if (ret < 0) 5374 goto out; 5375 /* 5376 * fscrypt_setup_filename() should never return a positive value, but 5377 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5378 */ 5379 ASSERT(ret == 0); 5380 5381 /* This needs to handle no-key deletions later on */ 5382 5383 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5384 &fname.disk_name, 0); 5385 if (IS_ERR_OR_NULL(di)) { 5386 ret = di ? PTR_ERR(di) : -ENOENT; 5387 goto out; 5388 } 5389 5390 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5391 if (location->type != BTRFS_INODE_ITEM_KEY && 5392 location->type != BTRFS_ROOT_ITEM_KEY) { 5393 ret = -EUCLEAN; 5394 btrfs_warn(root->fs_info, 5395 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5396 __func__, fname.disk_name.name, btrfs_ino(dir), 5397 location->objectid, location->type, location->offset); 5398 } 5399 if (!ret) 5400 *type = btrfs_dir_ftype(path->nodes[0], di); 5401 out: 5402 fscrypt_free_filename(&fname); 5403 btrfs_free_path(path); 5404 return ret; 5405 } 5406 5407 /* 5408 * when we hit a tree root in a directory, the btrfs part of the inode 5409 * needs to be changed to reflect the root directory of the tree root. This 5410 * is kind of like crossing a mount point. 5411 */ 5412 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5413 struct btrfs_inode *dir, 5414 struct dentry *dentry, 5415 struct btrfs_key *location, 5416 struct btrfs_root **sub_root) 5417 { 5418 struct btrfs_path *path; 5419 struct btrfs_root *new_root; 5420 struct btrfs_root_ref *ref; 5421 struct extent_buffer *leaf; 5422 struct btrfs_key key; 5423 int ret; 5424 int err = 0; 5425 struct fscrypt_name fname; 5426 5427 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5428 if (ret) 5429 return ret; 5430 5431 path = btrfs_alloc_path(); 5432 if (!path) { 5433 err = -ENOMEM; 5434 goto out; 5435 } 5436 5437 err = -ENOENT; 5438 key.objectid = btrfs_root_id(dir->root); 5439 key.type = BTRFS_ROOT_REF_KEY; 5440 key.offset = location->objectid; 5441 5442 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5443 if (ret) { 5444 if (ret < 0) 5445 err = ret; 5446 goto out; 5447 } 5448 5449 leaf = path->nodes[0]; 5450 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5451 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5452 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5453 goto out; 5454 5455 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5456 (unsigned long)(ref + 1), fname.disk_name.len); 5457 if (ret) 5458 goto out; 5459 5460 btrfs_release_path(path); 5461 5462 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5463 if (IS_ERR(new_root)) { 5464 err = PTR_ERR(new_root); 5465 goto out; 5466 } 5467 5468 *sub_root = new_root; 5469 location->objectid = btrfs_root_dirid(&new_root->root_item); 5470 location->type = BTRFS_INODE_ITEM_KEY; 5471 location->offset = 0; 5472 err = 0; 5473 out: 5474 btrfs_free_path(path); 5475 fscrypt_free_filename(&fname); 5476 return err; 5477 } 5478 5479 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 5480 { 5481 struct btrfs_root *root = inode->root; 5482 struct btrfs_inode *existing; 5483 const u64 ino = btrfs_ino(inode); 5484 int ret; 5485 5486 if (inode_unhashed(&inode->vfs_inode)) 5487 return 0; 5488 5489 if (prealloc) { 5490 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 5491 if (ret) 5492 return ret; 5493 } 5494 5495 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 5496 5497 if (xa_is_err(existing)) { 5498 ret = xa_err(existing); 5499 ASSERT(ret != -EINVAL); 5500 ASSERT(ret != -ENOMEM); 5501 return ret; 5502 } else if (existing) { 5503 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 5504 } 5505 5506 return 0; 5507 } 5508 5509 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5510 { 5511 struct btrfs_root *root = inode->root; 5512 struct btrfs_inode *entry; 5513 bool empty = false; 5514 5515 xa_lock(&root->inodes); 5516 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5517 if (entry == inode) 5518 empty = xa_empty(&root->inodes); 5519 xa_unlock(&root->inodes); 5520 5521 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5522 xa_lock(&root->inodes); 5523 empty = xa_empty(&root->inodes); 5524 xa_unlock(&root->inodes); 5525 if (empty) 5526 btrfs_add_dead_root(root); 5527 } 5528 } 5529 5530 5531 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5532 { 5533 struct btrfs_iget_args *args = p; 5534 5535 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5536 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5537 5538 if (args->root && args->root == args->root->fs_info->tree_root && 5539 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5540 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5541 &BTRFS_I(inode)->runtime_flags); 5542 return 0; 5543 } 5544 5545 static int btrfs_find_actor(struct inode *inode, void *opaque) 5546 { 5547 struct btrfs_iget_args *args = opaque; 5548 5549 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5550 args->root == BTRFS_I(inode)->root; 5551 } 5552 5553 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5554 { 5555 struct inode *inode; 5556 struct btrfs_iget_args args; 5557 unsigned long hashval = btrfs_inode_hash(ino, root); 5558 5559 args.ino = ino; 5560 args.root = root; 5561 5562 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5563 btrfs_init_locked_inode, 5564 (void *)&args); 5565 return inode; 5566 } 5567 5568 /* 5569 * Get an inode object given its inode number and corresponding root. 5570 * Path can be preallocated to prevent recursing back to iget through 5571 * allocator. NULL is also valid but may require an additional allocation 5572 * later. 5573 */ 5574 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5575 struct btrfs_path *path) 5576 { 5577 struct inode *inode; 5578 int ret; 5579 5580 inode = btrfs_iget_locked(ino, root); 5581 if (!inode) 5582 return ERR_PTR(-ENOMEM); 5583 5584 if (!(inode->i_state & I_NEW)) 5585 return inode; 5586 5587 ret = btrfs_read_locked_inode(inode, path); 5588 /* 5589 * ret > 0 can come from btrfs_search_slot called by 5590 * btrfs_read_locked_inode(), this means the inode item was not found. 5591 */ 5592 if (ret > 0) 5593 ret = -ENOENT; 5594 if (ret < 0) 5595 goto error; 5596 5597 ret = btrfs_add_inode_to_root(BTRFS_I(inode), true); 5598 if (ret < 0) 5599 goto error; 5600 5601 unlock_new_inode(inode); 5602 5603 return inode; 5604 error: 5605 iget_failed(inode); 5606 return ERR_PTR(ret); 5607 } 5608 5609 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5610 { 5611 return btrfs_iget_path(ino, root, NULL); 5612 } 5613 5614 static struct inode *new_simple_dir(struct inode *dir, 5615 struct btrfs_key *key, 5616 struct btrfs_root *root) 5617 { 5618 struct timespec64 ts; 5619 struct inode *inode = new_inode(dir->i_sb); 5620 5621 if (!inode) 5622 return ERR_PTR(-ENOMEM); 5623 5624 BTRFS_I(inode)->root = btrfs_grab_root(root); 5625 BTRFS_I(inode)->ref_root_id = key->objectid; 5626 set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags); 5627 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5628 5629 btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5630 /* 5631 * We only need lookup, the rest is read-only and there's no inode 5632 * associated with the dentry 5633 */ 5634 inode->i_op = &simple_dir_inode_operations; 5635 inode->i_opflags &= ~IOP_XATTR; 5636 inode->i_fop = &simple_dir_operations; 5637 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5638 5639 ts = inode_set_ctime_current(inode); 5640 inode_set_mtime_to_ts(inode, ts); 5641 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5642 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5643 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5644 5645 inode->i_uid = dir->i_uid; 5646 inode->i_gid = dir->i_gid; 5647 5648 return inode; 5649 } 5650 5651 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5652 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5653 static_assert(BTRFS_FT_DIR == FT_DIR); 5654 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5655 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5656 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5657 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5658 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5659 5660 static inline u8 btrfs_inode_type(struct inode *inode) 5661 { 5662 return fs_umode_to_ftype(inode->i_mode); 5663 } 5664 5665 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5666 { 5667 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5668 struct inode *inode; 5669 struct btrfs_root *root = BTRFS_I(dir)->root; 5670 struct btrfs_root *sub_root = root; 5671 struct btrfs_key location = { 0 }; 5672 u8 di_type = 0; 5673 int ret = 0; 5674 5675 if (dentry->d_name.len > BTRFS_NAME_LEN) 5676 return ERR_PTR(-ENAMETOOLONG); 5677 5678 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5679 if (ret < 0) 5680 return ERR_PTR(ret); 5681 5682 if (location.type == BTRFS_INODE_ITEM_KEY) { 5683 inode = btrfs_iget(location.objectid, root); 5684 if (IS_ERR(inode)) 5685 return inode; 5686 5687 /* Do extra check against inode mode with di_type */ 5688 if (btrfs_inode_type(inode) != di_type) { 5689 btrfs_crit(fs_info, 5690 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5691 inode->i_mode, btrfs_inode_type(inode), 5692 di_type); 5693 iput(inode); 5694 return ERR_PTR(-EUCLEAN); 5695 } 5696 return inode; 5697 } 5698 5699 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5700 &location, &sub_root); 5701 if (ret < 0) { 5702 if (ret != -ENOENT) 5703 inode = ERR_PTR(ret); 5704 else 5705 inode = new_simple_dir(dir, &location, root); 5706 } else { 5707 inode = btrfs_iget(location.objectid, sub_root); 5708 btrfs_put_root(sub_root); 5709 5710 if (IS_ERR(inode)) 5711 return inode; 5712 5713 down_read(&fs_info->cleanup_work_sem); 5714 if (!sb_rdonly(inode->i_sb)) 5715 ret = btrfs_orphan_cleanup(sub_root); 5716 up_read(&fs_info->cleanup_work_sem); 5717 if (ret) { 5718 iput(inode); 5719 inode = ERR_PTR(ret); 5720 } 5721 } 5722 5723 return inode; 5724 } 5725 5726 static int btrfs_dentry_delete(const struct dentry *dentry) 5727 { 5728 struct btrfs_root *root; 5729 struct inode *inode = d_inode(dentry); 5730 5731 if (!inode && !IS_ROOT(dentry)) 5732 inode = d_inode(dentry->d_parent); 5733 5734 if (inode) { 5735 root = BTRFS_I(inode)->root; 5736 if (btrfs_root_refs(&root->root_item) == 0) 5737 return 1; 5738 5739 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5740 return 1; 5741 } 5742 return 0; 5743 } 5744 5745 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5746 unsigned int flags) 5747 { 5748 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5749 5750 if (inode == ERR_PTR(-ENOENT)) 5751 inode = NULL; 5752 return d_splice_alias(inode, dentry); 5753 } 5754 5755 /* 5756 * Find the highest existing sequence number in a directory and then set the 5757 * in-memory index_cnt variable to the first free sequence number. 5758 */ 5759 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5760 { 5761 struct btrfs_root *root = inode->root; 5762 struct btrfs_key key, found_key; 5763 struct btrfs_path *path; 5764 struct extent_buffer *leaf; 5765 int ret; 5766 5767 key.objectid = btrfs_ino(inode); 5768 key.type = BTRFS_DIR_INDEX_KEY; 5769 key.offset = (u64)-1; 5770 5771 path = btrfs_alloc_path(); 5772 if (!path) 5773 return -ENOMEM; 5774 5775 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5776 if (ret < 0) 5777 goto out; 5778 /* FIXME: we should be able to handle this */ 5779 if (ret == 0) 5780 goto out; 5781 ret = 0; 5782 5783 if (path->slots[0] == 0) { 5784 inode->index_cnt = BTRFS_DIR_START_INDEX; 5785 goto out; 5786 } 5787 5788 path->slots[0]--; 5789 5790 leaf = path->nodes[0]; 5791 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5792 5793 if (found_key.objectid != btrfs_ino(inode) || 5794 found_key.type != BTRFS_DIR_INDEX_KEY) { 5795 inode->index_cnt = BTRFS_DIR_START_INDEX; 5796 goto out; 5797 } 5798 5799 inode->index_cnt = found_key.offset + 1; 5800 out: 5801 btrfs_free_path(path); 5802 return ret; 5803 } 5804 5805 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5806 { 5807 int ret = 0; 5808 5809 btrfs_inode_lock(dir, 0); 5810 if (dir->index_cnt == (u64)-1) { 5811 ret = btrfs_inode_delayed_dir_index_count(dir); 5812 if (ret) { 5813 ret = btrfs_set_inode_index_count(dir); 5814 if (ret) 5815 goto out; 5816 } 5817 } 5818 5819 /* index_cnt is the index number of next new entry, so decrement it. */ 5820 *index = dir->index_cnt - 1; 5821 out: 5822 btrfs_inode_unlock(dir, 0); 5823 5824 return ret; 5825 } 5826 5827 /* 5828 * All this infrastructure exists because dir_emit can fault, and we are holding 5829 * the tree lock when doing readdir. For now just allocate a buffer and copy 5830 * our information into that, and then dir_emit from the buffer. This is 5831 * similar to what NFS does, only we don't keep the buffer around in pagecache 5832 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5833 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5834 * tree lock. 5835 */ 5836 static int btrfs_opendir(struct inode *inode, struct file *file) 5837 { 5838 struct btrfs_file_private *private; 5839 u64 last_index; 5840 int ret; 5841 5842 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5843 if (ret) 5844 return ret; 5845 5846 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5847 if (!private) 5848 return -ENOMEM; 5849 private->last_index = last_index; 5850 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5851 if (!private->filldir_buf) { 5852 kfree(private); 5853 return -ENOMEM; 5854 } 5855 file->private_data = private; 5856 return 0; 5857 } 5858 5859 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5860 { 5861 struct btrfs_file_private *private = file->private_data; 5862 int ret; 5863 5864 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5865 &private->last_index); 5866 if (ret) 5867 return ret; 5868 5869 return generic_file_llseek(file, offset, whence); 5870 } 5871 5872 struct dir_entry { 5873 u64 ino; 5874 u64 offset; 5875 unsigned type; 5876 int name_len; 5877 }; 5878 5879 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5880 { 5881 while (entries--) { 5882 struct dir_entry *entry = addr; 5883 char *name = (char *)(entry + 1); 5884 5885 ctx->pos = get_unaligned(&entry->offset); 5886 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5887 get_unaligned(&entry->ino), 5888 get_unaligned(&entry->type))) 5889 return 1; 5890 addr += sizeof(struct dir_entry) + 5891 get_unaligned(&entry->name_len); 5892 ctx->pos++; 5893 } 5894 return 0; 5895 } 5896 5897 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5898 { 5899 struct inode *inode = file_inode(file); 5900 struct btrfs_root *root = BTRFS_I(inode)->root; 5901 struct btrfs_file_private *private = file->private_data; 5902 struct btrfs_dir_item *di; 5903 struct btrfs_key key; 5904 struct btrfs_key found_key; 5905 struct btrfs_path *path; 5906 void *addr; 5907 LIST_HEAD(ins_list); 5908 LIST_HEAD(del_list); 5909 int ret; 5910 char *name_ptr; 5911 int name_len; 5912 int entries = 0; 5913 int total_len = 0; 5914 bool put = false; 5915 struct btrfs_key location; 5916 5917 if (!dir_emit_dots(file, ctx)) 5918 return 0; 5919 5920 path = btrfs_alloc_path(); 5921 if (!path) 5922 return -ENOMEM; 5923 5924 addr = private->filldir_buf; 5925 path->reada = READA_FORWARD; 5926 5927 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 5928 &ins_list, &del_list); 5929 5930 again: 5931 key.type = BTRFS_DIR_INDEX_KEY; 5932 key.offset = ctx->pos; 5933 key.objectid = btrfs_ino(BTRFS_I(inode)); 5934 5935 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5936 struct dir_entry *entry; 5937 struct extent_buffer *leaf = path->nodes[0]; 5938 u8 ftype; 5939 5940 if (found_key.objectid != key.objectid) 5941 break; 5942 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5943 break; 5944 if (found_key.offset < ctx->pos) 5945 continue; 5946 if (found_key.offset > private->last_index) 5947 break; 5948 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5949 continue; 5950 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5951 name_len = btrfs_dir_name_len(leaf, di); 5952 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5953 PAGE_SIZE) { 5954 btrfs_release_path(path); 5955 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5956 if (ret) 5957 goto nopos; 5958 addr = private->filldir_buf; 5959 entries = 0; 5960 total_len = 0; 5961 goto again; 5962 } 5963 5964 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5965 entry = addr; 5966 name_ptr = (char *)(entry + 1); 5967 read_extent_buffer(leaf, name_ptr, 5968 (unsigned long)(di + 1), name_len); 5969 put_unaligned(name_len, &entry->name_len); 5970 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5971 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5972 put_unaligned(location.objectid, &entry->ino); 5973 put_unaligned(found_key.offset, &entry->offset); 5974 entries++; 5975 addr += sizeof(struct dir_entry) + name_len; 5976 total_len += sizeof(struct dir_entry) + name_len; 5977 } 5978 /* Catch error encountered during iteration */ 5979 if (ret < 0) 5980 goto err; 5981 5982 btrfs_release_path(path); 5983 5984 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5985 if (ret) 5986 goto nopos; 5987 5988 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5989 if (ret) 5990 goto nopos; 5991 5992 /* 5993 * Stop new entries from being returned after we return the last 5994 * entry. 5995 * 5996 * New directory entries are assigned a strictly increasing 5997 * offset. This means that new entries created during readdir 5998 * are *guaranteed* to be seen in the future by that readdir. 5999 * This has broken buggy programs which operate on names as 6000 * they're returned by readdir. Until we re-use freed offsets 6001 * we have this hack to stop new entries from being returned 6002 * under the assumption that they'll never reach this huge 6003 * offset. 6004 * 6005 * This is being careful not to overflow 32bit loff_t unless the 6006 * last entry requires it because doing so has broken 32bit apps 6007 * in the past. 6008 */ 6009 if (ctx->pos >= INT_MAX) 6010 ctx->pos = LLONG_MAX; 6011 else 6012 ctx->pos = INT_MAX; 6013 nopos: 6014 ret = 0; 6015 err: 6016 if (put) 6017 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6018 btrfs_free_path(path); 6019 return ret; 6020 } 6021 6022 /* 6023 * This is somewhat expensive, updating the tree every time the 6024 * inode changes. But, it is most likely to find the inode in cache. 6025 * FIXME, needs more benchmarking...there are no reasons other than performance 6026 * to keep or drop this code. 6027 */ 6028 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6029 { 6030 struct btrfs_root *root = inode->root; 6031 struct btrfs_fs_info *fs_info = root->fs_info; 6032 struct btrfs_trans_handle *trans; 6033 int ret; 6034 6035 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6036 return 0; 6037 6038 trans = btrfs_join_transaction(root); 6039 if (IS_ERR(trans)) 6040 return PTR_ERR(trans); 6041 6042 ret = btrfs_update_inode(trans, inode); 6043 if (ret == -ENOSPC || ret == -EDQUOT) { 6044 /* whoops, lets try again with the full transaction */ 6045 btrfs_end_transaction(trans); 6046 trans = btrfs_start_transaction(root, 1); 6047 if (IS_ERR(trans)) 6048 return PTR_ERR(trans); 6049 6050 ret = btrfs_update_inode(trans, inode); 6051 } 6052 btrfs_end_transaction(trans); 6053 if (inode->delayed_node) 6054 btrfs_balance_delayed_items(fs_info); 6055 6056 return ret; 6057 } 6058 6059 /* 6060 * This is a copy of file_update_time. We need this so we can return error on 6061 * ENOSPC for updating the inode in the case of file write and mmap writes. 6062 */ 6063 static int btrfs_update_time(struct inode *inode, int flags) 6064 { 6065 struct btrfs_root *root = BTRFS_I(inode)->root; 6066 bool dirty; 6067 6068 if (btrfs_root_readonly(root)) 6069 return -EROFS; 6070 6071 dirty = inode_update_timestamps(inode, flags); 6072 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6073 } 6074 6075 /* 6076 * helper to find a free sequence number in a given directory. This current 6077 * code is very simple, later versions will do smarter things in the btree 6078 */ 6079 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6080 { 6081 int ret = 0; 6082 6083 if (dir->index_cnt == (u64)-1) { 6084 ret = btrfs_inode_delayed_dir_index_count(dir); 6085 if (ret) { 6086 ret = btrfs_set_inode_index_count(dir); 6087 if (ret) 6088 return ret; 6089 } 6090 } 6091 6092 *index = dir->index_cnt; 6093 dir->index_cnt++; 6094 6095 return ret; 6096 } 6097 6098 static int btrfs_insert_inode_locked(struct inode *inode) 6099 { 6100 struct btrfs_iget_args args; 6101 6102 args.ino = btrfs_ino(BTRFS_I(inode)); 6103 args.root = BTRFS_I(inode)->root; 6104 6105 return insert_inode_locked4(inode, 6106 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6107 btrfs_find_actor, &args); 6108 } 6109 6110 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6111 unsigned int *trans_num_items) 6112 { 6113 struct inode *dir = args->dir; 6114 struct inode *inode = args->inode; 6115 int ret; 6116 6117 if (!args->orphan) { 6118 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6119 &args->fname); 6120 if (ret) 6121 return ret; 6122 } 6123 6124 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6125 if (ret) { 6126 fscrypt_free_filename(&args->fname); 6127 return ret; 6128 } 6129 6130 /* 1 to add inode item */ 6131 *trans_num_items = 1; 6132 /* 1 to add compression property */ 6133 if (BTRFS_I(dir)->prop_compress) 6134 (*trans_num_items)++; 6135 /* 1 to add default ACL xattr */ 6136 if (args->default_acl) 6137 (*trans_num_items)++; 6138 /* 1 to add access ACL xattr */ 6139 if (args->acl) 6140 (*trans_num_items)++; 6141 #ifdef CONFIG_SECURITY 6142 /* 1 to add LSM xattr */ 6143 if (dir->i_security) 6144 (*trans_num_items)++; 6145 #endif 6146 if (args->orphan) { 6147 /* 1 to add orphan item */ 6148 (*trans_num_items)++; 6149 } else { 6150 /* 6151 * 1 to add dir item 6152 * 1 to add dir index 6153 * 1 to update parent inode item 6154 * 6155 * No need for 1 unit for the inode ref item because it is 6156 * inserted in a batch together with the inode item at 6157 * btrfs_create_new_inode(). 6158 */ 6159 *trans_num_items += 3; 6160 } 6161 return 0; 6162 } 6163 6164 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6165 { 6166 posix_acl_release(args->acl); 6167 posix_acl_release(args->default_acl); 6168 fscrypt_free_filename(&args->fname); 6169 } 6170 6171 /* 6172 * Inherit flags from the parent inode. 6173 * 6174 * Currently only the compression flags and the cow flags are inherited. 6175 */ 6176 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6177 { 6178 unsigned int flags; 6179 6180 flags = dir->flags; 6181 6182 if (flags & BTRFS_INODE_NOCOMPRESS) { 6183 inode->flags &= ~BTRFS_INODE_COMPRESS; 6184 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6185 } else if (flags & BTRFS_INODE_COMPRESS) { 6186 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6187 inode->flags |= BTRFS_INODE_COMPRESS; 6188 } 6189 6190 if (flags & BTRFS_INODE_NODATACOW) { 6191 inode->flags |= BTRFS_INODE_NODATACOW; 6192 if (S_ISREG(inode->vfs_inode.i_mode)) 6193 inode->flags |= BTRFS_INODE_NODATASUM; 6194 } 6195 6196 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6197 } 6198 6199 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6200 struct btrfs_new_inode_args *args) 6201 { 6202 struct timespec64 ts; 6203 struct inode *dir = args->dir; 6204 struct inode *inode = args->inode; 6205 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6206 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6207 struct btrfs_root *root; 6208 struct btrfs_inode_item *inode_item; 6209 struct btrfs_path *path; 6210 u64 objectid; 6211 struct btrfs_inode_ref *ref; 6212 struct btrfs_key key[2]; 6213 u32 sizes[2]; 6214 struct btrfs_item_batch batch; 6215 unsigned long ptr; 6216 int ret; 6217 bool xa_reserved = false; 6218 6219 path = btrfs_alloc_path(); 6220 if (!path) 6221 return -ENOMEM; 6222 6223 if (!args->subvol) 6224 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6225 root = BTRFS_I(inode)->root; 6226 6227 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6228 if (ret) 6229 goto out; 6230 6231 ret = btrfs_get_free_objectid(root, &objectid); 6232 if (ret) 6233 goto out; 6234 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6235 6236 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6237 if (ret) 6238 goto out; 6239 xa_reserved = true; 6240 6241 if (args->orphan) { 6242 /* 6243 * O_TMPFILE, set link count to 0, so that after this point, we 6244 * fill in an inode item with the correct link count. 6245 */ 6246 set_nlink(inode, 0); 6247 } else { 6248 trace_btrfs_inode_request(dir); 6249 6250 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6251 if (ret) 6252 goto out; 6253 } 6254 6255 if (S_ISDIR(inode->i_mode)) 6256 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6257 6258 BTRFS_I(inode)->generation = trans->transid; 6259 inode->i_generation = BTRFS_I(inode)->generation; 6260 6261 /* 6262 * We don't have any capability xattrs set here yet, shortcut any 6263 * queries for the xattrs here. If we add them later via the inode 6264 * security init path or any other path this flag will be cleared. 6265 */ 6266 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6267 6268 /* 6269 * Subvolumes don't inherit flags from their parent directory. 6270 * Originally this was probably by accident, but we probably can't 6271 * change it now without compatibility issues. 6272 */ 6273 if (!args->subvol) 6274 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6275 6276 if (S_ISREG(inode->i_mode)) { 6277 if (btrfs_test_opt(fs_info, NODATASUM)) 6278 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6279 if (btrfs_test_opt(fs_info, NODATACOW)) 6280 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6281 BTRFS_INODE_NODATASUM; 6282 } 6283 6284 ret = btrfs_insert_inode_locked(inode); 6285 if (ret < 0) { 6286 if (!args->orphan) 6287 BTRFS_I(dir)->index_cnt--; 6288 goto out; 6289 } 6290 6291 /* 6292 * We could have gotten an inode number from somebody who was fsynced 6293 * and then removed in this same transaction, so let's just set full 6294 * sync since it will be a full sync anyway and this will blow away the 6295 * old info in the log. 6296 */ 6297 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6298 6299 key[0].objectid = objectid; 6300 key[0].type = BTRFS_INODE_ITEM_KEY; 6301 key[0].offset = 0; 6302 6303 sizes[0] = sizeof(struct btrfs_inode_item); 6304 6305 if (!args->orphan) { 6306 /* 6307 * Start new inodes with an inode_ref. This is slightly more 6308 * efficient for small numbers of hard links since they will 6309 * be packed into one item. Extended refs will kick in if we 6310 * add more hard links than can fit in the ref item. 6311 */ 6312 key[1].objectid = objectid; 6313 key[1].type = BTRFS_INODE_REF_KEY; 6314 if (args->subvol) { 6315 key[1].offset = objectid; 6316 sizes[1] = 2 + sizeof(*ref); 6317 } else { 6318 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6319 sizes[1] = name->len + sizeof(*ref); 6320 } 6321 } 6322 6323 batch.keys = &key[0]; 6324 batch.data_sizes = &sizes[0]; 6325 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6326 batch.nr = args->orphan ? 1 : 2; 6327 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6328 if (ret != 0) { 6329 btrfs_abort_transaction(trans, ret); 6330 goto discard; 6331 } 6332 6333 ts = simple_inode_init_ts(inode); 6334 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6335 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6336 6337 /* 6338 * We're going to fill the inode item now, so at this point the inode 6339 * must be fully initialized. 6340 */ 6341 6342 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6343 struct btrfs_inode_item); 6344 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6345 sizeof(*inode_item)); 6346 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6347 6348 if (!args->orphan) { 6349 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6350 struct btrfs_inode_ref); 6351 ptr = (unsigned long)(ref + 1); 6352 if (args->subvol) { 6353 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6354 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6355 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6356 } else { 6357 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6358 name->len); 6359 btrfs_set_inode_ref_index(path->nodes[0], ref, 6360 BTRFS_I(inode)->dir_index); 6361 write_extent_buffer(path->nodes[0], name->name, ptr, 6362 name->len); 6363 } 6364 } 6365 6366 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6367 /* 6368 * We don't need the path anymore, plus inheriting properties, adding 6369 * ACLs, security xattrs, orphan item or adding the link, will result in 6370 * allocating yet another path. So just free our path. 6371 */ 6372 btrfs_free_path(path); 6373 path = NULL; 6374 6375 if (args->subvol) { 6376 struct inode *parent; 6377 6378 /* 6379 * Subvolumes inherit properties from their parent subvolume, 6380 * not the directory they were created in. 6381 */ 6382 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6383 if (IS_ERR(parent)) { 6384 ret = PTR_ERR(parent); 6385 } else { 6386 ret = btrfs_inode_inherit_props(trans, inode, parent); 6387 iput(parent); 6388 } 6389 } else { 6390 ret = btrfs_inode_inherit_props(trans, inode, dir); 6391 } 6392 if (ret) { 6393 btrfs_err(fs_info, 6394 "error inheriting props for ino %llu (root %llu): %d", 6395 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6396 } 6397 6398 /* 6399 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6400 * probably a bug. 6401 */ 6402 if (!args->subvol) { 6403 ret = btrfs_init_inode_security(trans, args); 6404 if (ret) { 6405 btrfs_abort_transaction(trans, ret); 6406 goto discard; 6407 } 6408 } 6409 6410 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6411 if (WARN_ON(ret)) { 6412 /* Shouldn't happen, we used xa_reserve() before. */ 6413 btrfs_abort_transaction(trans, ret); 6414 goto discard; 6415 } 6416 6417 trace_btrfs_inode_new(inode); 6418 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6419 6420 btrfs_update_root_times(trans, root); 6421 6422 if (args->orphan) { 6423 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6424 } else { 6425 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6426 0, BTRFS_I(inode)->dir_index); 6427 } 6428 if (ret) { 6429 btrfs_abort_transaction(trans, ret); 6430 goto discard; 6431 } 6432 6433 return 0; 6434 6435 discard: 6436 /* 6437 * discard_new_inode() calls iput(), but the caller owns the reference 6438 * to the inode. 6439 */ 6440 ihold(inode); 6441 discard_new_inode(inode); 6442 out: 6443 if (xa_reserved) 6444 xa_release(&root->inodes, objectid); 6445 6446 btrfs_free_path(path); 6447 return ret; 6448 } 6449 6450 /* 6451 * utility function to add 'inode' into 'parent_inode' with 6452 * a give name and a given sequence number. 6453 * if 'add_backref' is true, also insert a backref from the 6454 * inode to the parent directory. 6455 */ 6456 int btrfs_add_link(struct btrfs_trans_handle *trans, 6457 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6458 const struct fscrypt_str *name, int add_backref, u64 index) 6459 { 6460 int ret = 0; 6461 struct btrfs_key key; 6462 struct btrfs_root *root = parent_inode->root; 6463 u64 ino = btrfs_ino(inode); 6464 u64 parent_ino = btrfs_ino(parent_inode); 6465 6466 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6467 memcpy(&key, &inode->root->root_key, sizeof(key)); 6468 } else { 6469 key.objectid = ino; 6470 key.type = BTRFS_INODE_ITEM_KEY; 6471 key.offset = 0; 6472 } 6473 6474 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6475 ret = btrfs_add_root_ref(trans, key.objectid, 6476 btrfs_root_id(root), parent_ino, 6477 index, name); 6478 } else if (add_backref) { 6479 ret = btrfs_insert_inode_ref(trans, root, name, 6480 ino, parent_ino, index); 6481 } 6482 6483 /* Nothing to clean up yet */ 6484 if (ret) 6485 return ret; 6486 6487 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6488 btrfs_inode_type(&inode->vfs_inode), index); 6489 if (ret == -EEXIST || ret == -EOVERFLOW) 6490 goto fail_dir_item; 6491 else if (ret) { 6492 btrfs_abort_transaction(trans, ret); 6493 return ret; 6494 } 6495 6496 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6497 name->len * 2); 6498 inode_inc_iversion(&parent_inode->vfs_inode); 6499 /* 6500 * If we are replaying a log tree, we do not want to update the mtime 6501 * and ctime of the parent directory with the current time, since the 6502 * log replay procedure is responsible for setting them to their correct 6503 * values (the ones it had when the fsync was done). 6504 */ 6505 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6506 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6507 inode_set_ctime_current(&parent_inode->vfs_inode)); 6508 6509 ret = btrfs_update_inode(trans, parent_inode); 6510 if (ret) 6511 btrfs_abort_transaction(trans, ret); 6512 return ret; 6513 6514 fail_dir_item: 6515 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6516 u64 local_index; 6517 int err; 6518 err = btrfs_del_root_ref(trans, key.objectid, 6519 btrfs_root_id(root), parent_ino, 6520 &local_index, name); 6521 if (err) 6522 btrfs_abort_transaction(trans, err); 6523 } else if (add_backref) { 6524 u64 local_index; 6525 int err; 6526 6527 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6528 &local_index); 6529 if (err) 6530 btrfs_abort_transaction(trans, err); 6531 } 6532 6533 /* Return the original error code */ 6534 return ret; 6535 } 6536 6537 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6538 struct inode *inode) 6539 { 6540 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6541 struct btrfs_root *root = BTRFS_I(dir)->root; 6542 struct btrfs_new_inode_args new_inode_args = { 6543 .dir = dir, 6544 .dentry = dentry, 6545 .inode = inode, 6546 }; 6547 unsigned int trans_num_items; 6548 struct btrfs_trans_handle *trans; 6549 int err; 6550 6551 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6552 if (err) 6553 goto out_inode; 6554 6555 trans = btrfs_start_transaction(root, trans_num_items); 6556 if (IS_ERR(trans)) { 6557 err = PTR_ERR(trans); 6558 goto out_new_inode_args; 6559 } 6560 6561 err = btrfs_create_new_inode(trans, &new_inode_args); 6562 if (!err) 6563 d_instantiate_new(dentry, inode); 6564 6565 btrfs_end_transaction(trans); 6566 btrfs_btree_balance_dirty(fs_info); 6567 out_new_inode_args: 6568 btrfs_new_inode_args_destroy(&new_inode_args); 6569 out_inode: 6570 if (err) 6571 iput(inode); 6572 return err; 6573 } 6574 6575 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6576 struct dentry *dentry, umode_t mode, dev_t rdev) 6577 { 6578 struct inode *inode; 6579 6580 inode = new_inode(dir->i_sb); 6581 if (!inode) 6582 return -ENOMEM; 6583 inode_init_owner(idmap, inode, dir, mode); 6584 inode->i_op = &btrfs_special_inode_operations; 6585 init_special_inode(inode, inode->i_mode, rdev); 6586 return btrfs_create_common(dir, dentry, inode); 6587 } 6588 6589 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6590 struct dentry *dentry, umode_t mode, bool excl) 6591 { 6592 struct inode *inode; 6593 6594 inode = new_inode(dir->i_sb); 6595 if (!inode) 6596 return -ENOMEM; 6597 inode_init_owner(idmap, inode, dir, mode); 6598 inode->i_fop = &btrfs_file_operations; 6599 inode->i_op = &btrfs_file_inode_operations; 6600 inode->i_mapping->a_ops = &btrfs_aops; 6601 return btrfs_create_common(dir, dentry, inode); 6602 } 6603 6604 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6605 struct dentry *dentry) 6606 { 6607 struct btrfs_trans_handle *trans = NULL; 6608 struct btrfs_root *root = BTRFS_I(dir)->root; 6609 struct inode *inode = d_inode(old_dentry); 6610 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6611 struct fscrypt_name fname; 6612 u64 index; 6613 int err; 6614 int drop_inode = 0; 6615 6616 /* do not allow sys_link's with other subvols of the same device */ 6617 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6618 return -EXDEV; 6619 6620 if (inode->i_nlink >= BTRFS_LINK_MAX) 6621 return -EMLINK; 6622 6623 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6624 if (err) 6625 goto fail; 6626 6627 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6628 if (err) 6629 goto fail; 6630 6631 /* 6632 * 2 items for inode and inode ref 6633 * 2 items for dir items 6634 * 1 item for parent inode 6635 * 1 item for orphan item deletion if O_TMPFILE 6636 */ 6637 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6638 if (IS_ERR(trans)) { 6639 err = PTR_ERR(trans); 6640 trans = NULL; 6641 goto fail; 6642 } 6643 6644 /* There are several dir indexes for this inode, clear the cache. */ 6645 BTRFS_I(inode)->dir_index = 0ULL; 6646 inc_nlink(inode); 6647 inode_inc_iversion(inode); 6648 inode_set_ctime_current(inode); 6649 ihold(inode); 6650 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6651 6652 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6653 &fname.disk_name, 1, index); 6654 6655 if (err) { 6656 drop_inode = 1; 6657 } else { 6658 struct dentry *parent = dentry->d_parent; 6659 6660 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6661 if (err) 6662 goto fail; 6663 if (inode->i_nlink == 1) { 6664 /* 6665 * If new hard link count is 1, it's a file created 6666 * with open(2) O_TMPFILE flag. 6667 */ 6668 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6669 if (err) 6670 goto fail; 6671 } 6672 d_instantiate(dentry, inode); 6673 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6674 } 6675 6676 fail: 6677 fscrypt_free_filename(&fname); 6678 if (trans) 6679 btrfs_end_transaction(trans); 6680 if (drop_inode) { 6681 inode_dec_link_count(inode); 6682 iput(inode); 6683 } 6684 btrfs_btree_balance_dirty(fs_info); 6685 return err; 6686 } 6687 6688 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6689 struct dentry *dentry, umode_t mode) 6690 { 6691 struct inode *inode; 6692 6693 inode = new_inode(dir->i_sb); 6694 if (!inode) 6695 return -ENOMEM; 6696 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6697 inode->i_op = &btrfs_dir_inode_operations; 6698 inode->i_fop = &btrfs_dir_file_operations; 6699 return btrfs_create_common(dir, dentry, inode); 6700 } 6701 6702 static noinline int uncompress_inline(struct btrfs_path *path, 6703 struct page *page, 6704 struct btrfs_file_extent_item *item) 6705 { 6706 int ret; 6707 struct extent_buffer *leaf = path->nodes[0]; 6708 char *tmp; 6709 size_t max_size; 6710 unsigned long inline_size; 6711 unsigned long ptr; 6712 int compress_type; 6713 6714 compress_type = btrfs_file_extent_compression(leaf, item); 6715 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6716 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6717 tmp = kmalloc(inline_size, GFP_NOFS); 6718 if (!tmp) 6719 return -ENOMEM; 6720 ptr = btrfs_file_extent_inline_start(item); 6721 6722 read_extent_buffer(leaf, tmp, ptr, inline_size); 6723 6724 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6725 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6726 6727 /* 6728 * decompression code contains a memset to fill in any space between the end 6729 * of the uncompressed data and the end of max_size in case the decompressed 6730 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6731 * the end of an inline extent and the beginning of the next block, so we 6732 * cover that region here. 6733 */ 6734 6735 if (max_size < PAGE_SIZE) 6736 memzero_page(page, max_size, PAGE_SIZE - max_size); 6737 kfree(tmp); 6738 return ret; 6739 } 6740 6741 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6742 struct page *page) 6743 { 6744 struct btrfs_file_extent_item *fi; 6745 void *kaddr; 6746 size_t copy_size; 6747 6748 if (!page || PageUptodate(page)) 6749 return 0; 6750 6751 ASSERT(page_offset(page) == 0); 6752 6753 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6754 struct btrfs_file_extent_item); 6755 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6756 return uncompress_inline(path, page, fi); 6757 6758 copy_size = min_t(u64, PAGE_SIZE, 6759 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6760 kaddr = kmap_local_page(page); 6761 read_extent_buffer(path->nodes[0], kaddr, 6762 btrfs_file_extent_inline_start(fi), copy_size); 6763 kunmap_local(kaddr); 6764 if (copy_size < PAGE_SIZE) 6765 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6766 return 0; 6767 } 6768 6769 /* 6770 * Lookup the first extent overlapping a range in a file. 6771 * 6772 * @inode: file to search in 6773 * @page: page to read extent data into if the extent is inline 6774 * @start: file offset 6775 * @len: length of range starting at @start 6776 * 6777 * Return the first &struct extent_map which overlaps the given range, reading 6778 * it from the B-tree and caching it if necessary. Note that there may be more 6779 * extents which overlap the given range after the returned extent_map. 6780 * 6781 * If @page is not NULL and the extent is inline, this also reads the extent 6782 * data directly into the page and marks the extent up to date in the io_tree. 6783 * 6784 * Return: ERR_PTR on error, non-NULL extent_map on success. 6785 */ 6786 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6787 struct page *page, u64 start, u64 len) 6788 { 6789 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6790 int ret = 0; 6791 u64 extent_start = 0; 6792 u64 extent_end = 0; 6793 u64 objectid = btrfs_ino(inode); 6794 int extent_type = -1; 6795 struct btrfs_path *path = NULL; 6796 struct btrfs_root *root = inode->root; 6797 struct btrfs_file_extent_item *item; 6798 struct extent_buffer *leaf; 6799 struct btrfs_key found_key; 6800 struct extent_map *em = NULL; 6801 struct extent_map_tree *em_tree = &inode->extent_tree; 6802 6803 read_lock(&em_tree->lock); 6804 em = lookup_extent_mapping(em_tree, start, len); 6805 read_unlock(&em_tree->lock); 6806 6807 if (em) { 6808 if (em->start > start || em->start + em->len <= start) 6809 free_extent_map(em); 6810 else if (em->disk_bytenr == EXTENT_MAP_INLINE && page) 6811 free_extent_map(em); 6812 else 6813 goto out; 6814 } 6815 em = alloc_extent_map(); 6816 if (!em) { 6817 ret = -ENOMEM; 6818 goto out; 6819 } 6820 em->start = EXTENT_MAP_HOLE; 6821 em->disk_bytenr = EXTENT_MAP_HOLE; 6822 em->len = (u64)-1; 6823 6824 path = btrfs_alloc_path(); 6825 if (!path) { 6826 ret = -ENOMEM; 6827 goto out; 6828 } 6829 6830 /* Chances are we'll be called again, so go ahead and do readahead */ 6831 path->reada = READA_FORWARD; 6832 6833 /* 6834 * The same explanation in load_free_space_cache applies here as well, 6835 * we only read when we're loading the free space cache, and at that 6836 * point the commit_root has everything we need. 6837 */ 6838 if (btrfs_is_free_space_inode(inode)) { 6839 path->search_commit_root = 1; 6840 path->skip_locking = 1; 6841 } 6842 6843 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6844 if (ret < 0) { 6845 goto out; 6846 } else if (ret > 0) { 6847 if (path->slots[0] == 0) 6848 goto not_found; 6849 path->slots[0]--; 6850 ret = 0; 6851 } 6852 6853 leaf = path->nodes[0]; 6854 item = btrfs_item_ptr(leaf, path->slots[0], 6855 struct btrfs_file_extent_item); 6856 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6857 if (found_key.objectid != objectid || 6858 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6859 /* 6860 * If we backup past the first extent we want to move forward 6861 * and see if there is an extent in front of us, otherwise we'll 6862 * say there is a hole for our whole search range which can 6863 * cause problems. 6864 */ 6865 extent_end = start; 6866 goto next; 6867 } 6868 6869 extent_type = btrfs_file_extent_type(leaf, item); 6870 extent_start = found_key.offset; 6871 extent_end = btrfs_file_extent_end(path); 6872 if (extent_type == BTRFS_FILE_EXTENT_REG || 6873 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6874 /* Only regular file could have regular/prealloc extent */ 6875 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6876 ret = -EUCLEAN; 6877 btrfs_crit(fs_info, 6878 "regular/prealloc extent found for non-regular inode %llu", 6879 btrfs_ino(inode)); 6880 goto out; 6881 } 6882 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6883 extent_start); 6884 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6885 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6886 path->slots[0], 6887 extent_start); 6888 } 6889 next: 6890 if (start >= extent_end) { 6891 path->slots[0]++; 6892 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6893 ret = btrfs_next_leaf(root, path); 6894 if (ret < 0) 6895 goto out; 6896 else if (ret > 0) 6897 goto not_found; 6898 6899 leaf = path->nodes[0]; 6900 } 6901 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6902 if (found_key.objectid != objectid || 6903 found_key.type != BTRFS_EXTENT_DATA_KEY) 6904 goto not_found; 6905 if (start + len <= found_key.offset) 6906 goto not_found; 6907 if (start > found_key.offset) 6908 goto next; 6909 6910 /* New extent overlaps with existing one */ 6911 em->start = start; 6912 em->len = found_key.offset - start; 6913 em->disk_bytenr = EXTENT_MAP_HOLE; 6914 goto insert; 6915 } 6916 6917 btrfs_extent_item_to_extent_map(inode, path, item, em); 6918 6919 if (extent_type == BTRFS_FILE_EXTENT_REG || 6920 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6921 goto insert; 6922 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6923 /* 6924 * Inline extent can only exist at file offset 0. This is 6925 * ensured by tree-checker and inline extent creation path. 6926 * Thus all members representing file offsets should be zero. 6927 */ 6928 ASSERT(extent_start == 0); 6929 ASSERT(em->start == 0); 6930 6931 /* 6932 * btrfs_extent_item_to_extent_map() should have properly 6933 * initialized em members already. 6934 * 6935 * Other members are not utilized for inline extents. 6936 */ 6937 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 6938 ASSERT(em->len == fs_info->sectorsize); 6939 6940 ret = read_inline_extent(inode, path, page); 6941 if (ret < 0) 6942 goto out; 6943 goto insert; 6944 } 6945 not_found: 6946 em->start = start; 6947 em->len = len; 6948 em->disk_bytenr = EXTENT_MAP_HOLE; 6949 insert: 6950 ret = 0; 6951 btrfs_release_path(path); 6952 if (em->start > start || extent_map_end(em) <= start) { 6953 btrfs_err(fs_info, 6954 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6955 em->start, em->len, start, len); 6956 ret = -EIO; 6957 goto out; 6958 } 6959 6960 write_lock(&em_tree->lock); 6961 ret = btrfs_add_extent_mapping(inode, &em, start, len); 6962 write_unlock(&em_tree->lock); 6963 out: 6964 btrfs_free_path(path); 6965 6966 trace_btrfs_get_extent(root, inode, em); 6967 6968 if (ret) { 6969 free_extent_map(em); 6970 return ERR_PTR(ret); 6971 } 6972 return em; 6973 } 6974 6975 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 6976 { 6977 struct btrfs_block_group *block_group; 6978 bool readonly = false; 6979 6980 block_group = btrfs_lookup_block_group(fs_info, bytenr); 6981 if (!block_group || block_group->ro) 6982 readonly = true; 6983 if (block_group) 6984 btrfs_put_block_group(block_group); 6985 return readonly; 6986 } 6987 6988 /* 6989 * Check if we can do nocow write into the range [@offset, @offset + @len) 6990 * 6991 * @offset: File offset 6992 * @len: The length to write, will be updated to the nocow writeable 6993 * range 6994 * @orig_start: (optional) Return the original file offset of the file extent 6995 * @orig_len: (optional) Return the original on-disk length of the file extent 6996 * @ram_bytes: (optional) Return the ram_bytes of the file extent 6997 * @strict: if true, omit optimizations that might force us into unnecessary 6998 * cow. e.g., don't trust generation number. 6999 * 7000 * Return: 7001 * >0 and update @len if we can do nocow write 7002 * 0 if we can't do nocow write 7003 * <0 if error happened 7004 * 7005 * NOTE: This only checks the file extents, caller is responsible to wait for 7006 * any ordered extents. 7007 */ 7008 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7009 struct btrfs_file_extent *file_extent, 7010 bool nowait, bool strict) 7011 { 7012 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 7013 struct can_nocow_file_extent_args nocow_args = { 0 }; 7014 struct btrfs_path *path; 7015 int ret; 7016 struct extent_buffer *leaf; 7017 struct btrfs_root *root = BTRFS_I(inode)->root; 7018 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7019 struct btrfs_file_extent_item *fi; 7020 struct btrfs_key key; 7021 int found_type; 7022 7023 path = btrfs_alloc_path(); 7024 if (!path) 7025 return -ENOMEM; 7026 path->nowait = nowait; 7027 7028 ret = btrfs_lookup_file_extent(NULL, root, path, 7029 btrfs_ino(BTRFS_I(inode)), offset, 0); 7030 if (ret < 0) 7031 goto out; 7032 7033 if (ret == 1) { 7034 if (path->slots[0] == 0) { 7035 /* can't find the item, must cow */ 7036 ret = 0; 7037 goto out; 7038 } 7039 path->slots[0]--; 7040 } 7041 ret = 0; 7042 leaf = path->nodes[0]; 7043 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7044 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7045 key.type != BTRFS_EXTENT_DATA_KEY) { 7046 /* not our file or wrong item type, must cow */ 7047 goto out; 7048 } 7049 7050 if (key.offset > offset) { 7051 /* Wrong offset, must cow */ 7052 goto out; 7053 } 7054 7055 if (btrfs_file_extent_end(path) <= offset) 7056 goto out; 7057 7058 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7059 found_type = btrfs_file_extent_type(leaf, fi); 7060 7061 nocow_args.start = offset; 7062 nocow_args.end = offset + *len - 1; 7063 nocow_args.strict = strict; 7064 nocow_args.free_path = true; 7065 7066 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7067 /* can_nocow_file_extent() has freed the path. */ 7068 path = NULL; 7069 7070 if (ret != 1) { 7071 /* Treat errors as not being able to NOCOW. */ 7072 ret = 0; 7073 goto out; 7074 } 7075 7076 ret = 0; 7077 if (btrfs_extent_readonly(fs_info, 7078 nocow_args.file_extent.disk_bytenr + 7079 nocow_args.file_extent.offset)) 7080 goto out; 7081 7082 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7083 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7084 u64 range_end; 7085 7086 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7087 root->fs_info->sectorsize) - 1; 7088 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7089 if (ret) { 7090 ret = -EAGAIN; 7091 goto out; 7092 } 7093 } 7094 7095 if (file_extent) 7096 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7097 7098 *len = nocow_args.file_extent.num_bytes; 7099 ret = 1; 7100 out: 7101 btrfs_free_path(path); 7102 return ret; 7103 } 7104 7105 /* The callers of this must take lock_extent() */ 7106 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7107 const struct btrfs_file_extent *file_extent, 7108 int type) 7109 { 7110 struct extent_map *em; 7111 int ret; 7112 7113 /* 7114 * Note the missing NOCOW type. 7115 * 7116 * For pure NOCOW writes, we should not create an io extent map, but 7117 * just reusing the existing one. 7118 * Only PREALLOC writes (NOCOW write into preallocated range) can 7119 * create an io extent map. 7120 */ 7121 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7122 type == BTRFS_ORDERED_COMPRESSED || 7123 type == BTRFS_ORDERED_REGULAR); 7124 7125 switch (type) { 7126 case BTRFS_ORDERED_PREALLOC: 7127 /* We're only referring part of a larger preallocated extent. */ 7128 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7129 break; 7130 case BTRFS_ORDERED_REGULAR: 7131 /* COW results a new extent matching our file extent size. */ 7132 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7133 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7134 7135 /* Since it's a new extent, we should not have any offset. */ 7136 ASSERT(file_extent->offset == 0); 7137 break; 7138 case BTRFS_ORDERED_COMPRESSED: 7139 /* Must be compressed. */ 7140 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7141 7142 /* 7143 * Encoded write can make us to refer to part of the 7144 * uncompressed extent. 7145 */ 7146 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7147 break; 7148 } 7149 7150 em = alloc_extent_map(); 7151 if (!em) 7152 return ERR_PTR(-ENOMEM); 7153 7154 em->start = start; 7155 em->len = file_extent->num_bytes; 7156 em->disk_bytenr = file_extent->disk_bytenr; 7157 em->disk_num_bytes = file_extent->disk_num_bytes; 7158 em->ram_bytes = file_extent->ram_bytes; 7159 em->generation = -1; 7160 em->offset = file_extent->offset; 7161 em->flags |= EXTENT_FLAG_PINNED; 7162 if (type == BTRFS_ORDERED_COMPRESSED) 7163 extent_map_set_compression(em, file_extent->compression); 7164 7165 ret = btrfs_replace_extent_map_range(inode, em, true); 7166 if (ret) { 7167 free_extent_map(em); 7168 return ERR_PTR(ret); 7169 } 7170 7171 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7172 return em; 7173 } 7174 7175 /* 7176 * For release_folio() and invalidate_folio() we have a race window where 7177 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7178 * If we continue to release/invalidate the page, we could cause use-after-free 7179 * for subpage spinlock. So this function is to spin and wait for subpage 7180 * spinlock. 7181 */ 7182 static void wait_subpage_spinlock(struct page *page) 7183 { 7184 struct btrfs_fs_info *fs_info = page_to_fs_info(page); 7185 struct folio *folio = page_folio(page); 7186 struct btrfs_subpage *subpage; 7187 7188 if (!btrfs_is_subpage(fs_info, page->mapping)) 7189 return; 7190 7191 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7192 subpage = folio_get_private(folio); 7193 7194 /* 7195 * This may look insane as we just acquire the spinlock and release it, 7196 * without doing anything. But we just want to make sure no one is 7197 * still holding the subpage spinlock. 7198 * And since the page is not dirty nor writeback, and we have page 7199 * locked, the only possible way to hold a spinlock is from the endio 7200 * function to clear page writeback. 7201 * 7202 * Here we just acquire the spinlock so that all existing callers 7203 * should exit and we're safe to release/invalidate the page. 7204 */ 7205 spin_lock_irq(&subpage->lock); 7206 spin_unlock_irq(&subpage->lock); 7207 } 7208 7209 static int btrfs_launder_folio(struct folio *folio) 7210 { 7211 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7212 PAGE_SIZE, NULL); 7213 } 7214 7215 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7216 { 7217 if (try_release_extent_mapping(&folio->page, gfp_flags)) { 7218 wait_subpage_spinlock(&folio->page); 7219 clear_page_extent_mapped(&folio->page); 7220 return true; 7221 } 7222 return false; 7223 } 7224 7225 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7226 { 7227 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7228 return false; 7229 return __btrfs_release_folio(folio, gfp_flags); 7230 } 7231 7232 #ifdef CONFIG_MIGRATION 7233 static int btrfs_migrate_folio(struct address_space *mapping, 7234 struct folio *dst, struct folio *src, 7235 enum migrate_mode mode) 7236 { 7237 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7238 7239 if (ret != MIGRATEPAGE_SUCCESS) 7240 return ret; 7241 7242 if (folio_test_ordered(src)) { 7243 folio_clear_ordered(src); 7244 folio_set_ordered(dst); 7245 } 7246 7247 return MIGRATEPAGE_SUCCESS; 7248 } 7249 #else 7250 #define btrfs_migrate_folio NULL 7251 #endif 7252 7253 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7254 size_t length) 7255 { 7256 struct btrfs_inode *inode = folio_to_inode(folio); 7257 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7258 struct extent_io_tree *tree = &inode->io_tree; 7259 struct extent_state *cached_state = NULL; 7260 u64 page_start = folio_pos(folio); 7261 u64 page_end = page_start + folio_size(folio) - 1; 7262 u64 cur; 7263 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7264 7265 /* 7266 * We have folio locked so no new ordered extent can be created on this 7267 * page, nor bio can be submitted for this folio. 7268 * 7269 * But already submitted bio can still be finished on this folio. 7270 * Furthermore, endio function won't skip folio which has Ordered 7271 * (Private2) already cleared, so it's possible for endio and 7272 * invalidate_folio to do the same ordered extent accounting twice 7273 * on one folio. 7274 * 7275 * So here we wait for any submitted bios to finish, so that we won't 7276 * do double ordered extent accounting on the same folio. 7277 */ 7278 folio_wait_writeback(folio); 7279 wait_subpage_spinlock(&folio->page); 7280 7281 /* 7282 * For subpage case, we have call sites like 7283 * btrfs_punch_hole_lock_range() which passes range not aligned to 7284 * sectorsize. 7285 * If the range doesn't cover the full folio, we don't need to and 7286 * shouldn't clear page extent mapped, as folio->private can still 7287 * record subpage dirty bits for other part of the range. 7288 * 7289 * For cases that invalidate the full folio even the range doesn't 7290 * cover the full folio, like invalidating the last folio, we're 7291 * still safe to wait for ordered extent to finish. 7292 */ 7293 if (!(offset == 0 && length == folio_size(folio))) { 7294 btrfs_release_folio(folio, GFP_NOFS); 7295 return; 7296 } 7297 7298 if (!inode_evicting) 7299 lock_extent(tree, page_start, page_end, &cached_state); 7300 7301 cur = page_start; 7302 while (cur < page_end) { 7303 struct btrfs_ordered_extent *ordered; 7304 u64 range_end; 7305 u32 range_len; 7306 u32 extra_flags = 0; 7307 7308 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7309 page_end + 1 - cur); 7310 if (!ordered) { 7311 range_end = page_end; 7312 /* 7313 * No ordered extent covering this range, we are safe 7314 * to delete all extent states in the range. 7315 */ 7316 extra_flags = EXTENT_CLEAR_ALL_BITS; 7317 goto next; 7318 } 7319 if (ordered->file_offset > cur) { 7320 /* 7321 * There is a range between [cur, oe->file_offset) not 7322 * covered by any ordered extent. 7323 * We are safe to delete all extent states, and handle 7324 * the ordered extent in the next iteration. 7325 */ 7326 range_end = ordered->file_offset - 1; 7327 extra_flags = EXTENT_CLEAR_ALL_BITS; 7328 goto next; 7329 } 7330 7331 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7332 page_end); 7333 ASSERT(range_end + 1 - cur < U32_MAX); 7334 range_len = range_end + 1 - cur; 7335 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7336 /* 7337 * If Ordered (Private2) is cleared, it means endio has 7338 * already been executed for the range. 7339 * We can't delete the extent states as 7340 * btrfs_finish_ordered_io() may still use some of them. 7341 */ 7342 goto next; 7343 } 7344 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7345 7346 /* 7347 * IO on this page will never be started, so we need to account 7348 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7349 * here, must leave that up for the ordered extent completion. 7350 * 7351 * This will also unlock the range for incoming 7352 * btrfs_finish_ordered_io(). 7353 */ 7354 if (!inode_evicting) 7355 clear_extent_bit(tree, cur, range_end, 7356 EXTENT_DELALLOC | 7357 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7358 EXTENT_DEFRAG, &cached_state); 7359 7360 spin_lock_irq(&inode->ordered_tree_lock); 7361 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7362 ordered->truncated_len = min(ordered->truncated_len, 7363 cur - ordered->file_offset); 7364 spin_unlock_irq(&inode->ordered_tree_lock); 7365 7366 /* 7367 * If the ordered extent has finished, we're safe to delete all 7368 * the extent states of the range, otherwise 7369 * btrfs_finish_ordered_io() will get executed by endio for 7370 * other pages, so we can't delete extent states. 7371 */ 7372 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7373 cur, range_end + 1 - cur)) { 7374 btrfs_finish_ordered_io(ordered); 7375 /* 7376 * The ordered extent has finished, now we're again 7377 * safe to delete all extent states of the range. 7378 */ 7379 extra_flags = EXTENT_CLEAR_ALL_BITS; 7380 } 7381 next: 7382 if (ordered) 7383 btrfs_put_ordered_extent(ordered); 7384 /* 7385 * Qgroup reserved space handler 7386 * Sector(s) here will be either: 7387 * 7388 * 1) Already written to disk or bio already finished 7389 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7390 * Qgroup will be handled by its qgroup_record then. 7391 * btrfs_qgroup_free_data() call will do nothing here. 7392 * 7393 * 2) Not written to disk yet 7394 * Then btrfs_qgroup_free_data() call will clear the 7395 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7396 * reserved data space. 7397 * Since the IO will never happen for this page. 7398 */ 7399 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7400 if (!inode_evicting) { 7401 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7402 EXTENT_DELALLOC | EXTENT_UPTODATE | 7403 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7404 extra_flags, &cached_state); 7405 } 7406 cur = range_end + 1; 7407 } 7408 /* 7409 * We have iterated through all ordered extents of the page, the page 7410 * should not have Ordered (Private2) anymore, or the above iteration 7411 * did something wrong. 7412 */ 7413 ASSERT(!folio_test_ordered(folio)); 7414 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7415 if (!inode_evicting) 7416 __btrfs_release_folio(folio, GFP_NOFS); 7417 clear_page_extent_mapped(&folio->page); 7418 } 7419 7420 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7421 { 7422 struct btrfs_truncate_control control = { 7423 .inode = inode, 7424 .ino = btrfs_ino(inode), 7425 .min_type = BTRFS_EXTENT_DATA_KEY, 7426 .clear_extent_range = true, 7427 }; 7428 struct btrfs_root *root = inode->root; 7429 struct btrfs_fs_info *fs_info = root->fs_info; 7430 struct btrfs_block_rsv *rsv; 7431 int ret; 7432 struct btrfs_trans_handle *trans; 7433 u64 mask = fs_info->sectorsize - 1; 7434 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7435 7436 if (!skip_writeback) { 7437 ret = btrfs_wait_ordered_range(inode, 7438 inode->vfs_inode.i_size & (~mask), 7439 (u64)-1); 7440 if (ret) 7441 return ret; 7442 } 7443 7444 /* 7445 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7446 * things going on here: 7447 * 7448 * 1) We need to reserve space to update our inode. 7449 * 7450 * 2) We need to have something to cache all the space that is going to 7451 * be free'd up by the truncate operation, but also have some slack 7452 * space reserved in case it uses space during the truncate (thank you 7453 * very much snapshotting). 7454 * 7455 * And we need these to be separate. The fact is we can use a lot of 7456 * space doing the truncate, and we have no earthly idea how much space 7457 * we will use, so we need the truncate reservation to be separate so it 7458 * doesn't end up using space reserved for updating the inode. We also 7459 * need to be able to stop the transaction and start a new one, which 7460 * means we need to be able to update the inode several times, and we 7461 * have no idea of knowing how many times that will be, so we can't just 7462 * reserve 1 item for the entirety of the operation, so that has to be 7463 * done separately as well. 7464 * 7465 * So that leaves us with 7466 * 7467 * 1) rsv - for the truncate reservation, which we will steal from the 7468 * transaction reservation. 7469 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7470 * updating the inode. 7471 */ 7472 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7473 if (!rsv) 7474 return -ENOMEM; 7475 rsv->size = min_size; 7476 rsv->failfast = true; 7477 7478 /* 7479 * 1 for the truncate slack space 7480 * 1 for updating the inode. 7481 */ 7482 trans = btrfs_start_transaction(root, 2); 7483 if (IS_ERR(trans)) { 7484 ret = PTR_ERR(trans); 7485 goto out; 7486 } 7487 7488 /* Migrate the slack space for the truncate to our reserve */ 7489 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7490 min_size, false); 7491 /* 7492 * We have reserved 2 metadata units when we started the transaction and 7493 * min_size matches 1 unit, so this should never fail, but if it does, 7494 * it's not critical we just fail truncation. 7495 */ 7496 if (WARN_ON(ret)) { 7497 btrfs_end_transaction(trans); 7498 goto out; 7499 } 7500 7501 trans->block_rsv = rsv; 7502 7503 while (1) { 7504 struct extent_state *cached_state = NULL; 7505 const u64 new_size = inode->vfs_inode.i_size; 7506 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7507 7508 control.new_size = new_size; 7509 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7510 /* 7511 * We want to drop from the next block forward in case this new 7512 * size is not block aligned since we will be keeping the last 7513 * block of the extent just the way it is. 7514 */ 7515 btrfs_drop_extent_map_range(inode, 7516 ALIGN(new_size, fs_info->sectorsize), 7517 (u64)-1, false); 7518 7519 ret = btrfs_truncate_inode_items(trans, root, &control); 7520 7521 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7522 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7523 7524 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7525 7526 trans->block_rsv = &fs_info->trans_block_rsv; 7527 if (ret != -ENOSPC && ret != -EAGAIN) 7528 break; 7529 7530 ret = btrfs_update_inode(trans, inode); 7531 if (ret) 7532 break; 7533 7534 btrfs_end_transaction(trans); 7535 btrfs_btree_balance_dirty(fs_info); 7536 7537 trans = btrfs_start_transaction(root, 2); 7538 if (IS_ERR(trans)) { 7539 ret = PTR_ERR(trans); 7540 trans = NULL; 7541 break; 7542 } 7543 7544 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7545 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7546 rsv, min_size, false); 7547 /* 7548 * We have reserved 2 metadata units when we started the 7549 * transaction and min_size matches 1 unit, so this should never 7550 * fail, but if it does, it's not critical we just fail truncation. 7551 */ 7552 if (WARN_ON(ret)) 7553 break; 7554 7555 trans->block_rsv = rsv; 7556 } 7557 7558 /* 7559 * We can't call btrfs_truncate_block inside a trans handle as we could 7560 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7561 * know we've truncated everything except the last little bit, and can 7562 * do btrfs_truncate_block and then update the disk_i_size. 7563 */ 7564 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7565 btrfs_end_transaction(trans); 7566 btrfs_btree_balance_dirty(fs_info); 7567 7568 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7569 if (ret) 7570 goto out; 7571 trans = btrfs_start_transaction(root, 1); 7572 if (IS_ERR(trans)) { 7573 ret = PTR_ERR(trans); 7574 goto out; 7575 } 7576 btrfs_inode_safe_disk_i_size_write(inode, 0); 7577 } 7578 7579 if (trans) { 7580 int ret2; 7581 7582 trans->block_rsv = &fs_info->trans_block_rsv; 7583 ret2 = btrfs_update_inode(trans, inode); 7584 if (ret2 && !ret) 7585 ret = ret2; 7586 7587 ret2 = btrfs_end_transaction(trans); 7588 if (ret2 && !ret) 7589 ret = ret2; 7590 btrfs_btree_balance_dirty(fs_info); 7591 } 7592 out: 7593 btrfs_free_block_rsv(fs_info, rsv); 7594 /* 7595 * So if we truncate and then write and fsync we normally would just 7596 * write the extents that changed, which is a problem if we need to 7597 * first truncate that entire inode. So set this flag so we write out 7598 * all of the extents in the inode to the sync log so we're completely 7599 * safe. 7600 * 7601 * If no extents were dropped or trimmed we don't need to force the next 7602 * fsync to truncate all the inode's items from the log and re-log them 7603 * all. This means the truncate operation did not change the file size, 7604 * or changed it to a smaller size but there was only an implicit hole 7605 * between the old i_size and the new i_size, and there were no prealloc 7606 * extents beyond i_size to drop. 7607 */ 7608 if (control.extents_found > 0) 7609 btrfs_set_inode_full_sync(inode); 7610 7611 return ret; 7612 } 7613 7614 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7615 struct inode *dir) 7616 { 7617 struct inode *inode; 7618 7619 inode = new_inode(dir->i_sb); 7620 if (inode) { 7621 /* 7622 * Subvolumes don't inherit the sgid bit or the parent's gid if 7623 * the parent's sgid bit is set. This is probably a bug. 7624 */ 7625 inode_init_owner(idmap, inode, NULL, 7626 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7627 inode->i_op = &btrfs_dir_inode_operations; 7628 inode->i_fop = &btrfs_dir_file_operations; 7629 } 7630 return inode; 7631 } 7632 7633 struct inode *btrfs_alloc_inode(struct super_block *sb) 7634 { 7635 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7636 struct btrfs_inode *ei; 7637 struct inode *inode; 7638 7639 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7640 if (!ei) 7641 return NULL; 7642 7643 ei->root = NULL; 7644 ei->generation = 0; 7645 ei->last_trans = 0; 7646 ei->last_sub_trans = 0; 7647 ei->logged_trans = 0; 7648 ei->delalloc_bytes = 0; 7649 ei->new_delalloc_bytes = 0; 7650 ei->defrag_bytes = 0; 7651 ei->disk_i_size = 0; 7652 ei->flags = 0; 7653 ei->ro_flags = 0; 7654 /* 7655 * ->index_cnt will be properly initialized later when creating a new 7656 * inode (btrfs_create_new_inode()) or when reading an existing inode 7657 * from disk (btrfs_read_locked_inode()). 7658 */ 7659 ei->csum_bytes = 0; 7660 ei->dir_index = 0; 7661 ei->last_unlink_trans = 0; 7662 ei->last_reflink_trans = 0; 7663 ei->last_log_commit = 0; 7664 7665 spin_lock_init(&ei->lock); 7666 ei->outstanding_extents = 0; 7667 if (sb->s_magic != BTRFS_TEST_MAGIC) 7668 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7669 BTRFS_BLOCK_RSV_DELALLOC); 7670 ei->runtime_flags = 0; 7671 ei->prop_compress = BTRFS_COMPRESS_NONE; 7672 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7673 7674 ei->delayed_node = NULL; 7675 7676 ei->i_otime_sec = 0; 7677 ei->i_otime_nsec = 0; 7678 7679 inode = &ei->vfs_inode; 7680 extent_map_tree_init(&ei->extent_tree); 7681 7682 /* This io tree sets the valid inode. */ 7683 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7684 ei->io_tree.inode = ei; 7685 7686 ei->file_extent_tree = NULL; 7687 7688 mutex_init(&ei->log_mutex); 7689 spin_lock_init(&ei->ordered_tree_lock); 7690 ei->ordered_tree = RB_ROOT; 7691 ei->ordered_tree_last = NULL; 7692 INIT_LIST_HEAD(&ei->delalloc_inodes); 7693 INIT_LIST_HEAD(&ei->delayed_iput); 7694 init_rwsem(&ei->i_mmap_lock); 7695 7696 return inode; 7697 } 7698 7699 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7700 void btrfs_test_destroy_inode(struct inode *inode) 7701 { 7702 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7703 kfree(BTRFS_I(inode)->file_extent_tree); 7704 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7705 } 7706 #endif 7707 7708 void btrfs_free_inode(struct inode *inode) 7709 { 7710 kfree(BTRFS_I(inode)->file_extent_tree); 7711 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7712 } 7713 7714 void btrfs_destroy_inode(struct inode *vfs_inode) 7715 { 7716 struct btrfs_ordered_extent *ordered; 7717 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7718 struct btrfs_root *root = inode->root; 7719 bool freespace_inode; 7720 7721 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7722 WARN_ON(vfs_inode->i_data.nrpages); 7723 WARN_ON(inode->block_rsv.reserved); 7724 WARN_ON(inode->block_rsv.size); 7725 WARN_ON(inode->outstanding_extents); 7726 if (!S_ISDIR(vfs_inode->i_mode)) { 7727 WARN_ON(inode->delalloc_bytes); 7728 WARN_ON(inode->new_delalloc_bytes); 7729 WARN_ON(inode->csum_bytes); 7730 } 7731 if (!root || !btrfs_is_data_reloc_root(root)) 7732 WARN_ON(inode->defrag_bytes); 7733 7734 /* 7735 * This can happen where we create an inode, but somebody else also 7736 * created the same inode and we need to destroy the one we already 7737 * created. 7738 */ 7739 if (!root) 7740 return; 7741 7742 /* 7743 * If this is a free space inode do not take the ordered extents lockdep 7744 * map. 7745 */ 7746 freespace_inode = btrfs_is_free_space_inode(inode); 7747 7748 while (1) { 7749 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7750 if (!ordered) 7751 break; 7752 else { 7753 btrfs_err(root->fs_info, 7754 "found ordered extent %llu %llu on inode cleanup", 7755 ordered->file_offset, ordered->num_bytes); 7756 7757 if (!freespace_inode) 7758 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7759 7760 btrfs_remove_ordered_extent(inode, ordered); 7761 btrfs_put_ordered_extent(ordered); 7762 btrfs_put_ordered_extent(ordered); 7763 } 7764 } 7765 btrfs_qgroup_check_reserved_leak(inode); 7766 btrfs_del_inode_from_root(inode); 7767 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7768 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7769 btrfs_put_root(inode->root); 7770 } 7771 7772 int btrfs_drop_inode(struct inode *inode) 7773 { 7774 struct btrfs_root *root = BTRFS_I(inode)->root; 7775 7776 if (root == NULL) 7777 return 1; 7778 7779 /* the snap/subvol tree is on deleting */ 7780 if (btrfs_root_refs(&root->root_item) == 0) 7781 return 1; 7782 else 7783 return generic_drop_inode(inode); 7784 } 7785 7786 static void init_once(void *foo) 7787 { 7788 struct btrfs_inode *ei = foo; 7789 7790 inode_init_once(&ei->vfs_inode); 7791 } 7792 7793 void __cold btrfs_destroy_cachep(void) 7794 { 7795 /* 7796 * Make sure all delayed rcu free inodes are flushed before we 7797 * destroy cache. 7798 */ 7799 rcu_barrier(); 7800 kmem_cache_destroy(btrfs_inode_cachep); 7801 } 7802 7803 int __init btrfs_init_cachep(void) 7804 { 7805 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7806 sizeof(struct btrfs_inode), 0, 7807 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7808 init_once); 7809 if (!btrfs_inode_cachep) 7810 return -ENOMEM; 7811 7812 return 0; 7813 } 7814 7815 static int btrfs_getattr(struct mnt_idmap *idmap, 7816 const struct path *path, struct kstat *stat, 7817 u32 request_mask, unsigned int flags) 7818 { 7819 u64 delalloc_bytes; 7820 u64 inode_bytes; 7821 struct inode *inode = d_inode(path->dentry); 7822 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7823 u32 bi_flags = BTRFS_I(inode)->flags; 7824 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7825 7826 stat->result_mask |= STATX_BTIME; 7827 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7828 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7829 if (bi_flags & BTRFS_INODE_APPEND) 7830 stat->attributes |= STATX_ATTR_APPEND; 7831 if (bi_flags & BTRFS_INODE_COMPRESS) 7832 stat->attributes |= STATX_ATTR_COMPRESSED; 7833 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7834 stat->attributes |= STATX_ATTR_IMMUTABLE; 7835 if (bi_flags & BTRFS_INODE_NODUMP) 7836 stat->attributes |= STATX_ATTR_NODUMP; 7837 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7838 stat->attributes |= STATX_ATTR_VERITY; 7839 7840 stat->attributes_mask |= (STATX_ATTR_APPEND | 7841 STATX_ATTR_COMPRESSED | 7842 STATX_ATTR_IMMUTABLE | 7843 STATX_ATTR_NODUMP); 7844 7845 generic_fillattr(idmap, request_mask, inode, stat); 7846 stat->dev = BTRFS_I(inode)->root->anon_dev; 7847 7848 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7849 stat->result_mask |= STATX_SUBVOL; 7850 7851 spin_lock(&BTRFS_I(inode)->lock); 7852 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7853 inode_bytes = inode_get_bytes(inode); 7854 spin_unlock(&BTRFS_I(inode)->lock); 7855 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7856 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7857 return 0; 7858 } 7859 7860 static int btrfs_rename_exchange(struct inode *old_dir, 7861 struct dentry *old_dentry, 7862 struct inode *new_dir, 7863 struct dentry *new_dentry) 7864 { 7865 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7866 struct btrfs_trans_handle *trans; 7867 unsigned int trans_num_items; 7868 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7869 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7870 struct inode *new_inode = new_dentry->d_inode; 7871 struct inode *old_inode = old_dentry->d_inode; 7872 struct btrfs_rename_ctx old_rename_ctx; 7873 struct btrfs_rename_ctx new_rename_ctx; 7874 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7875 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7876 u64 old_idx = 0; 7877 u64 new_idx = 0; 7878 int ret; 7879 int ret2; 7880 bool need_abort = false; 7881 struct fscrypt_name old_fname, new_fname; 7882 struct fscrypt_str *old_name, *new_name; 7883 7884 /* 7885 * For non-subvolumes allow exchange only within one subvolume, in the 7886 * same inode namespace. Two subvolumes (represented as directory) can 7887 * be exchanged as they're a logical link and have a fixed inode number. 7888 */ 7889 if (root != dest && 7890 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7891 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7892 return -EXDEV; 7893 7894 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7895 if (ret) 7896 return ret; 7897 7898 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7899 if (ret) { 7900 fscrypt_free_filename(&old_fname); 7901 return ret; 7902 } 7903 7904 old_name = &old_fname.disk_name; 7905 new_name = &new_fname.disk_name; 7906 7907 /* close the race window with snapshot create/destroy ioctl */ 7908 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 7909 new_ino == BTRFS_FIRST_FREE_OBJECTID) 7910 down_read(&fs_info->subvol_sem); 7911 7912 /* 7913 * For each inode: 7914 * 1 to remove old dir item 7915 * 1 to remove old dir index 7916 * 1 to add new dir item 7917 * 1 to add new dir index 7918 * 1 to update parent inode 7919 * 7920 * If the parents are the same, we only need to account for one 7921 */ 7922 trans_num_items = (old_dir == new_dir ? 9 : 10); 7923 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7924 /* 7925 * 1 to remove old root ref 7926 * 1 to remove old root backref 7927 * 1 to add new root ref 7928 * 1 to add new root backref 7929 */ 7930 trans_num_items += 4; 7931 } else { 7932 /* 7933 * 1 to update inode item 7934 * 1 to remove old inode ref 7935 * 1 to add new inode ref 7936 */ 7937 trans_num_items += 3; 7938 } 7939 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 7940 trans_num_items += 4; 7941 else 7942 trans_num_items += 3; 7943 trans = btrfs_start_transaction(root, trans_num_items); 7944 if (IS_ERR(trans)) { 7945 ret = PTR_ERR(trans); 7946 goto out_notrans; 7947 } 7948 7949 if (dest != root) { 7950 ret = btrfs_record_root_in_trans(trans, dest); 7951 if (ret) 7952 goto out_fail; 7953 } 7954 7955 /* 7956 * We need to find a free sequence number both in the source and 7957 * in the destination directory for the exchange. 7958 */ 7959 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 7960 if (ret) 7961 goto out_fail; 7962 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 7963 if (ret) 7964 goto out_fail; 7965 7966 BTRFS_I(old_inode)->dir_index = 0ULL; 7967 BTRFS_I(new_inode)->dir_index = 0ULL; 7968 7969 /* Reference for the source. */ 7970 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 7971 /* force full log commit if subvolume involved. */ 7972 btrfs_set_log_full_commit(trans); 7973 } else { 7974 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 7975 btrfs_ino(BTRFS_I(new_dir)), 7976 old_idx); 7977 if (ret) 7978 goto out_fail; 7979 need_abort = true; 7980 } 7981 7982 /* And now for the dest. */ 7983 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 7984 /* force full log commit if subvolume involved. */ 7985 btrfs_set_log_full_commit(trans); 7986 } else { 7987 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 7988 btrfs_ino(BTRFS_I(old_dir)), 7989 new_idx); 7990 if (ret) { 7991 if (need_abort) 7992 btrfs_abort_transaction(trans, ret); 7993 goto out_fail; 7994 } 7995 } 7996 7997 /* Update inode version and ctime/mtime. */ 7998 inode_inc_iversion(old_dir); 7999 inode_inc_iversion(new_dir); 8000 inode_inc_iversion(old_inode); 8001 inode_inc_iversion(new_inode); 8002 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8003 8004 if (old_dentry->d_parent != new_dentry->d_parent) { 8005 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8006 BTRFS_I(old_inode), true); 8007 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8008 BTRFS_I(new_inode), true); 8009 } 8010 8011 /* src is a subvolume */ 8012 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8013 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8014 } else { /* src is an inode */ 8015 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8016 BTRFS_I(old_dentry->d_inode), 8017 old_name, &old_rename_ctx); 8018 if (!ret) 8019 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8020 } 8021 if (ret) { 8022 btrfs_abort_transaction(trans, ret); 8023 goto out_fail; 8024 } 8025 8026 /* dest is a subvolume */ 8027 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8028 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8029 } else { /* dest is an inode */ 8030 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8031 BTRFS_I(new_dentry->d_inode), 8032 new_name, &new_rename_ctx); 8033 if (!ret) 8034 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8035 } 8036 if (ret) { 8037 btrfs_abort_transaction(trans, ret); 8038 goto out_fail; 8039 } 8040 8041 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8042 new_name, 0, old_idx); 8043 if (ret) { 8044 btrfs_abort_transaction(trans, ret); 8045 goto out_fail; 8046 } 8047 8048 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8049 old_name, 0, new_idx); 8050 if (ret) { 8051 btrfs_abort_transaction(trans, ret); 8052 goto out_fail; 8053 } 8054 8055 if (old_inode->i_nlink == 1) 8056 BTRFS_I(old_inode)->dir_index = old_idx; 8057 if (new_inode->i_nlink == 1) 8058 BTRFS_I(new_inode)->dir_index = new_idx; 8059 8060 /* 8061 * Now pin the logs of the roots. We do it to ensure that no other task 8062 * can sync the logs while we are in progress with the rename, because 8063 * that could result in an inconsistency in case any of the inodes that 8064 * are part of this rename operation were logged before. 8065 */ 8066 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8067 btrfs_pin_log_trans(root); 8068 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8069 btrfs_pin_log_trans(dest); 8070 8071 /* Do the log updates for all inodes. */ 8072 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8073 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8074 old_rename_ctx.index, new_dentry->d_parent); 8075 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8076 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8077 new_rename_ctx.index, old_dentry->d_parent); 8078 8079 /* Now unpin the logs. */ 8080 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8081 btrfs_end_log_trans(root); 8082 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8083 btrfs_end_log_trans(dest); 8084 out_fail: 8085 ret2 = btrfs_end_transaction(trans); 8086 ret = ret ? ret : ret2; 8087 out_notrans: 8088 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8089 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8090 up_read(&fs_info->subvol_sem); 8091 8092 fscrypt_free_filename(&new_fname); 8093 fscrypt_free_filename(&old_fname); 8094 return ret; 8095 } 8096 8097 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8098 struct inode *dir) 8099 { 8100 struct inode *inode; 8101 8102 inode = new_inode(dir->i_sb); 8103 if (inode) { 8104 inode_init_owner(idmap, inode, dir, 8105 S_IFCHR | WHITEOUT_MODE); 8106 inode->i_op = &btrfs_special_inode_operations; 8107 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8108 } 8109 return inode; 8110 } 8111 8112 static int btrfs_rename(struct mnt_idmap *idmap, 8113 struct inode *old_dir, struct dentry *old_dentry, 8114 struct inode *new_dir, struct dentry *new_dentry, 8115 unsigned int flags) 8116 { 8117 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8118 struct btrfs_new_inode_args whiteout_args = { 8119 .dir = old_dir, 8120 .dentry = old_dentry, 8121 }; 8122 struct btrfs_trans_handle *trans; 8123 unsigned int trans_num_items; 8124 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8125 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8126 struct inode *new_inode = d_inode(new_dentry); 8127 struct inode *old_inode = d_inode(old_dentry); 8128 struct btrfs_rename_ctx rename_ctx; 8129 u64 index = 0; 8130 int ret; 8131 int ret2; 8132 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8133 struct fscrypt_name old_fname, new_fname; 8134 8135 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8136 return -EPERM; 8137 8138 /* we only allow rename subvolume link between subvolumes */ 8139 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8140 return -EXDEV; 8141 8142 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8143 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8144 return -ENOTEMPTY; 8145 8146 if (S_ISDIR(old_inode->i_mode) && new_inode && 8147 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8148 return -ENOTEMPTY; 8149 8150 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8151 if (ret) 8152 return ret; 8153 8154 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8155 if (ret) { 8156 fscrypt_free_filename(&old_fname); 8157 return ret; 8158 } 8159 8160 /* check for collisions, even if the name isn't there */ 8161 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8162 if (ret) { 8163 if (ret == -EEXIST) { 8164 /* we shouldn't get 8165 * eexist without a new_inode */ 8166 if (WARN_ON(!new_inode)) { 8167 goto out_fscrypt_names; 8168 } 8169 } else { 8170 /* maybe -EOVERFLOW */ 8171 goto out_fscrypt_names; 8172 } 8173 } 8174 ret = 0; 8175 8176 /* 8177 * we're using rename to replace one file with another. Start IO on it 8178 * now so we don't add too much work to the end of the transaction 8179 */ 8180 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8181 filemap_flush(old_inode->i_mapping); 8182 8183 if (flags & RENAME_WHITEOUT) { 8184 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8185 if (!whiteout_args.inode) { 8186 ret = -ENOMEM; 8187 goto out_fscrypt_names; 8188 } 8189 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8190 if (ret) 8191 goto out_whiteout_inode; 8192 } else { 8193 /* 1 to update the old parent inode. */ 8194 trans_num_items = 1; 8195 } 8196 8197 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8198 /* Close the race window with snapshot create/destroy ioctl */ 8199 down_read(&fs_info->subvol_sem); 8200 /* 8201 * 1 to remove old root ref 8202 * 1 to remove old root backref 8203 * 1 to add new root ref 8204 * 1 to add new root backref 8205 */ 8206 trans_num_items += 4; 8207 } else { 8208 /* 8209 * 1 to update inode 8210 * 1 to remove old inode ref 8211 * 1 to add new inode ref 8212 */ 8213 trans_num_items += 3; 8214 } 8215 /* 8216 * 1 to remove old dir item 8217 * 1 to remove old dir index 8218 * 1 to add new dir item 8219 * 1 to add new dir index 8220 */ 8221 trans_num_items += 4; 8222 /* 1 to update new parent inode if it's not the same as the old parent */ 8223 if (new_dir != old_dir) 8224 trans_num_items++; 8225 if (new_inode) { 8226 /* 8227 * 1 to update inode 8228 * 1 to remove inode ref 8229 * 1 to remove dir item 8230 * 1 to remove dir index 8231 * 1 to possibly add orphan item 8232 */ 8233 trans_num_items += 5; 8234 } 8235 trans = btrfs_start_transaction(root, trans_num_items); 8236 if (IS_ERR(trans)) { 8237 ret = PTR_ERR(trans); 8238 goto out_notrans; 8239 } 8240 8241 if (dest != root) { 8242 ret = btrfs_record_root_in_trans(trans, dest); 8243 if (ret) 8244 goto out_fail; 8245 } 8246 8247 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8248 if (ret) 8249 goto out_fail; 8250 8251 BTRFS_I(old_inode)->dir_index = 0ULL; 8252 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8253 /* force full log commit if subvolume involved. */ 8254 btrfs_set_log_full_commit(trans); 8255 } else { 8256 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8257 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8258 index); 8259 if (ret) 8260 goto out_fail; 8261 } 8262 8263 inode_inc_iversion(old_dir); 8264 inode_inc_iversion(new_dir); 8265 inode_inc_iversion(old_inode); 8266 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8267 8268 if (old_dentry->d_parent != new_dentry->d_parent) 8269 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8270 BTRFS_I(old_inode), true); 8271 8272 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8273 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8274 } else { 8275 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8276 BTRFS_I(d_inode(old_dentry)), 8277 &old_fname.disk_name, &rename_ctx); 8278 if (!ret) 8279 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8280 } 8281 if (ret) { 8282 btrfs_abort_transaction(trans, ret); 8283 goto out_fail; 8284 } 8285 8286 if (new_inode) { 8287 inode_inc_iversion(new_inode); 8288 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8289 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8290 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8291 BUG_ON(new_inode->i_nlink == 0); 8292 } else { 8293 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8294 BTRFS_I(d_inode(new_dentry)), 8295 &new_fname.disk_name); 8296 } 8297 if (!ret && new_inode->i_nlink == 0) 8298 ret = btrfs_orphan_add(trans, 8299 BTRFS_I(d_inode(new_dentry))); 8300 if (ret) { 8301 btrfs_abort_transaction(trans, ret); 8302 goto out_fail; 8303 } 8304 } 8305 8306 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8307 &new_fname.disk_name, 0, index); 8308 if (ret) { 8309 btrfs_abort_transaction(trans, ret); 8310 goto out_fail; 8311 } 8312 8313 if (old_inode->i_nlink == 1) 8314 BTRFS_I(old_inode)->dir_index = index; 8315 8316 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8317 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8318 rename_ctx.index, new_dentry->d_parent); 8319 8320 if (flags & RENAME_WHITEOUT) { 8321 ret = btrfs_create_new_inode(trans, &whiteout_args); 8322 if (ret) { 8323 btrfs_abort_transaction(trans, ret); 8324 goto out_fail; 8325 } else { 8326 unlock_new_inode(whiteout_args.inode); 8327 iput(whiteout_args.inode); 8328 whiteout_args.inode = NULL; 8329 } 8330 } 8331 out_fail: 8332 ret2 = btrfs_end_transaction(trans); 8333 ret = ret ? ret : ret2; 8334 out_notrans: 8335 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8336 up_read(&fs_info->subvol_sem); 8337 if (flags & RENAME_WHITEOUT) 8338 btrfs_new_inode_args_destroy(&whiteout_args); 8339 out_whiteout_inode: 8340 if (flags & RENAME_WHITEOUT) 8341 iput(whiteout_args.inode); 8342 out_fscrypt_names: 8343 fscrypt_free_filename(&old_fname); 8344 fscrypt_free_filename(&new_fname); 8345 return ret; 8346 } 8347 8348 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8349 struct dentry *old_dentry, struct inode *new_dir, 8350 struct dentry *new_dentry, unsigned int flags) 8351 { 8352 int ret; 8353 8354 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8355 return -EINVAL; 8356 8357 if (flags & RENAME_EXCHANGE) 8358 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8359 new_dentry); 8360 else 8361 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8362 new_dentry, flags); 8363 8364 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8365 8366 return ret; 8367 } 8368 8369 struct btrfs_delalloc_work { 8370 struct inode *inode; 8371 struct completion completion; 8372 struct list_head list; 8373 struct btrfs_work work; 8374 }; 8375 8376 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8377 { 8378 struct btrfs_delalloc_work *delalloc_work; 8379 struct inode *inode; 8380 8381 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8382 work); 8383 inode = delalloc_work->inode; 8384 filemap_flush(inode->i_mapping); 8385 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8386 &BTRFS_I(inode)->runtime_flags)) 8387 filemap_flush(inode->i_mapping); 8388 8389 iput(inode); 8390 complete(&delalloc_work->completion); 8391 } 8392 8393 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8394 { 8395 struct btrfs_delalloc_work *work; 8396 8397 work = kmalloc(sizeof(*work), GFP_NOFS); 8398 if (!work) 8399 return NULL; 8400 8401 init_completion(&work->completion); 8402 INIT_LIST_HEAD(&work->list); 8403 work->inode = inode; 8404 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8405 8406 return work; 8407 } 8408 8409 /* 8410 * some fairly slow code that needs optimization. This walks the list 8411 * of all the inodes with pending delalloc and forces them to disk. 8412 */ 8413 static int start_delalloc_inodes(struct btrfs_root *root, 8414 struct writeback_control *wbc, bool snapshot, 8415 bool in_reclaim_context) 8416 { 8417 struct btrfs_inode *binode; 8418 struct inode *inode; 8419 struct btrfs_delalloc_work *work, *next; 8420 LIST_HEAD(works); 8421 LIST_HEAD(splice); 8422 int ret = 0; 8423 bool full_flush = wbc->nr_to_write == LONG_MAX; 8424 8425 mutex_lock(&root->delalloc_mutex); 8426 spin_lock(&root->delalloc_lock); 8427 list_splice_init(&root->delalloc_inodes, &splice); 8428 while (!list_empty(&splice)) { 8429 binode = list_entry(splice.next, struct btrfs_inode, 8430 delalloc_inodes); 8431 8432 list_move_tail(&binode->delalloc_inodes, 8433 &root->delalloc_inodes); 8434 8435 if (in_reclaim_context && 8436 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 8437 continue; 8438 8439 inode = igrab(&binode->vfs_inode); 8440 if (!inode) { 8441 cond_resched_lock(&root->delalloc_lock); 8442 continue; 8443 } 8444 spin_unlock(&root->delalloc_lock); 8445 8446 if (snapshot) 8447 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 8448 &binode->runtime_flags); 8449 if (full_flush) { 8450 work = btrfs_alloc_delalloc_work(inode); 8451 if (!work) { 8452 iput(inode); 8453 ret = -ENOMEM; 8454 goto out; 8455 } 8456 list_add_tail(&work->list, &works); 8457 btrfs_queue_work(root->fs_info->flush_workers, 8458 &work->work); 8459 } else { 8460 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 8461 btrfs_add_delayed_iput(BTRFS_I(inode)); 8462 if (ret || wbc->nr_to_write <= 0) 8463 goto out; 8464 } 8465 cond_resched(); 8466 spin_lock(&root->delalloc_lock); 8467 } 8468 spin_unlock(&root->delalloc_lock); 8469 8470 out: 8471 list_for_each_entry_safe(work, next, &works, list) { 8472 list_del_init(&work->list); 8473 wait_for_completion(&work->completion); 8474 kfree(work); 8475 } 8476 8477 if (!list_empty(&splice)) { 8478 spin_lock(&root->delalloc_lock); 8479 list_splice_tail(&splice, &root->delalloc_inodes); 8480 spin_unlock(&root->delalloc_lock); 8481 } 8482 mutex_unlock(&root->delalloc_mutex); 8483 return ret; 8484 } 8485 8486 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8487 { 8488 struct writeback_control wbc = { 8489 .nr_to_write = LONG_MAX, 8490 .sync_mode = WB_SYNC_NONE, 8491 .range_start = 0, 8492 .range_end = LLONG_MAX, 8493 }; 8494 struct btrfs_fs_info *fs_info = root->fs_info; 8495 8496 if (BTRFS_FS_ERROR(fs_info)) 8497 return -EROFS; 8498 8499 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8500 } 8501 8502 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8503 bool in_reclaim_context) 8504 { 8505 struct writeback_control wbc = { 8506 .nr_to_write = nr, 8507 .sync_mode = WB_SYNC_NONE, 8508 .range_start = 0, 8509 .range_end = LLONG_MAX, 8510 }; 8511 struct btrfs_root *root; 8512 LIST_HEAD(splice); 8513 int ret; 8514 8515 if (BTRFS_FS_ERROR(fs_info)) 8516 return -EROFS; 8517 8518 mutex_lock(&fs_info->delalloc_root_mutex); 8519 spin_lock(&fs_info->delalloc_root_lock); 8520 list_splice_init(&fs_info->delalloc_roots, &splice); 8521 while (!list_empty(&splice)) { 8522 /* 8523 * Reset nr_to_write here so we know that we're doing a full 8524 * flush. 8525 */ 8526 if (nr == LONG_MAX) 8527 wbc.nr_to_write = LONG_MAX; 8528 8529 root = list_first_entry(&splice, struct btrfs_root, 8530 delalloc_root); 8531 root = btrfs_grab_root(root); 8532 BUG_ON(!root); 8533 list_move_tail(&root->delalloc_root, 8534 &fs_info->delalloc_roots); 8535 spin_unlock(&fs_info->delalloc_root_lock); 8536 8537 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8538 btrfs_put_root(root); 8539 if (ret < 0 || wbc.nr_to_write <= 0) 8540 goto out; 8541 spin_lock(&fs_info->delalloc_root_lock); 8542 } 8543 spin_unlock(&fs_info->delalloc_root_lock); 8544 8545 ret = 0; 8546 out: 8547 if (!list_empty(&splice)) { 8548 spin_lock(&fs_info->delalloc_root_lock); 8549 list_splice_tail(&splice, &fs_info->delalloc_roots); 8550 spin_unlock(&fs_info->delalloc_root_lock); 8551 } 8552 mutex_unlock(&fs_info->delalloc_root_mutex); 8553 return ret; 8554 } 8555 8556 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8557 struct dentry *dentry, const char *symname) 8558 { 8559 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8560 struct btrfs_trans_handle *trans; 8561 struct btrfs_root *root = BTRFS_I(dir)->root; 8562 struct btrfs_path *path; 8563 struct btrfs_key key; 8564 struct inode *inode; 8565 struct btrfs_new_inode_args new_inode_args = { 8566 .dir = dir, 8567 .dentry = dentry, 8568 }; 8569 unsigned int trans_num_items; 8570 int err; 8571 int name_len; 8572 int datasize; 8573 unsigned long ptr; 8574 struct btrfs_file_extent_item *ei; 8575 struct extent_buffer *leaf; 8576 8577 name_len = strlen(symname); 8578 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 8579 return -ENAMETOOLONG; 8580 8581 inode = new_inode(dir->i_sb); 8582 if (!inode) 8583 return -ENOMEM; 8584 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8585 inode->i_op = &btrfs_symlink_inode_operations; 8586 inode_nohighmem(inode); 8587 inode->i_mapping->a_ops = &btrfs_aops; 8588 btrfs_i_size_write(BTRFS_I(inode), name_len); 8589 inode_set_bytes(inode, name_len); 8590 8591 new_inode_args.inode = inode; 8592 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8593 if (err) 8594 goto out_inode; 8595 /* 1 additional item for the inline extent */ 8596 trans_num_items++; 8597 8598 trans = btrfs_start_transaction(root, trans_num_items); 8599 if (IS_ERR(trans)) { 8600 err = PTR_ERR(trans); 8601 goto out_new_inode_args; 8602 } 8603 8604 err = btrfs_create_new_inode(trans, &new_inode_args); 8605 if (err) 8606 goto out; 8607 8608 path = btrfs_alloc_path(); 8609 if (!path) { 8610 err = -ENOMEM; 8611 btrfs_abort_transaction(trans, err); 8612 discard_new_inode(inode); 8613 inode = NULL; 8614 goto out; 8615 } 8616 key.objectid = btrfs_ino(BTRFS_I(inode)); 8617 key.offset = 0; 8618 key.type = BTRFS_EXTENT_DATA_KEY; 8619 datasize = btrfs_file_extent_calc_inline_size(name_len); 8620 err = btrfs_insert_empty_item(trans, root, path, &key, 8621 datasize); 8622 if (err) { 8623 btrfs_abort_transaction(trans, err); 8624 btrfs_free_path(path); 8625 discard_new_inode(inode); 8626 inode = NULL; 8627 goto out; 8628 } 8629 leaf = path->nodes[0]; 8630 ei = btrfs_item_ptr(leaf, path->slots[0], 8631 struct btrfs_file_extent_item); 8632 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8633 btrfs_set_file_extent_type(leaf, ei, 8634 BTRFS_FILE_EXTENT_INLINE); 8635 btrfs_set_file_extent_encryption(leaf, ei, 0); 8636 btrfs_set_file_extent_compression(leaf, ei, 0); 8637 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8638 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8639 8640 ptr = btrfs_file_extent_inline_start(ei); 8641 write_extent_buffer(leaf, symname, ptr, name_len); 8642 btrfs_mark_buffer_dirty(trans, leaf); 8643 btrfs_free_path(path); 8644 8645 d_instantiate_new(dentry, inode); 8646 err = 0; 8647 out: 8648 btrfs_end_transaction(trans); 8649 btrfs_btree_balance_dirty(fs_info); 8650 out_new_inode_args: 8651 btrfs_new_inode_args_destroy(&new_inode_args); 8652 out_inode: 8653 if (err) 8654 iput(inode); 8655 return err; 8656 } 8657 8658 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8659 struct btrfs_trans_handle *trans_in, 8660 struct btrfs_inode *inode, 8661 struct btrfs_key *ins, 8662 u64 file_offset) 8663 { 8664 struct btrfs_file_extent_item stack_fi; 8665 struct btrfs_replace_extent_info extent_info; 8666 struct btrfs_trans_handle *trans = trans_in; 8667 struct btrfs_path *path; 8668 u64 start = ins->objectid; 8669 u64 len = ins->offset; 8670 u64 qgroup_released = 0; 8671 int ret; 8672 8673 memset(&stack_fi, 0, sizeof(stack_fi)); 8674 8675 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8676 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8677 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8678 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8679 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8680 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8681 /* Encryption and other encoding is reserved and all 0 */ 8682 8683 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8684 if (ret < 0) 8685 return ERR_PTR(ret); 8686 8687 if (trans) { 8688 ret = insert_reserved_file_extent(trans, inode, 8689 file_offset, &stack_fi, 8690 true, qgroup_released); 8691 if (ret) 8692 goto free_qgroup; 8693 return trans; 8694 } 8695 8696 extent_info.disk_offset = start; 8697 extent_info.disk_len = len; 8698 extent_info.data_offset = 0; 8699 extent_info.data_len = len; 8700 extent_info.file_offset = file_offset; 8701 extent_info.extent_buf = (char *)&stack_fi; 8702 extent_info.is_new_extent = true; 8703 extent_info.update_times = true; 8704 extent_info.qgroup_reserved = qgroup_released; 8705 extent_info.insertions = 0; 8706 8707 path = btrfs_alloc_path(); 8708 if (!path) { 8709 ret = -ENOMEM; 8710 goto free_qgroup; 8711 } 8712 8713 ret = btrfs_replace_file_extents(inode, path, file_offset, 8714 file_offset + len - 1, &extent_info, 8715 &trans); 8716 btrfs_free_path(path); 8717 if (ret) 8718 goto free_qgroup; 8719 return trans; 8720 8721 free_qgroup: 8722 /* 8723 * We have released qgroup data range at the beginning of the function, 8724 * and normally qgroup_released bytes will be freed when committing 8725 * transaction. 8726 * But if we error out early, we have to free what we have released 8727 * or we leak qgroup data reservation. 8728 */ 8729 btrfs_qgroup_free_refroot(inode->root->fs_info, 8730 btrfs_root_id(inode->root), qgroup_released, 8731 BTRFS_QGROUP_RSV_DATA); 8732 return ERR_PTR(ret); 8733 } 8734 8735 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8736 u64 start, u64 num_bytes, u64 min_size, 8737 loff_t actual_len, u64 *alloc_hint, 8738 struct btrfs_trans_handle *trans) 8739 { 8740 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8741 struct extent_map *em; 8742 struct btrfs_root *root = BTRFS_I(inode)->root; 8743 struct btrfs_key ins; 8744 u64 cur_offset = start; 8745 u64 clear_offset = start; 8746 u64 i_size; 8747 u64 cur_bytes; 8748 u64 last_alloc = (u64)-1; 8749 int ret = 0; 8750 bool own_trans = true; 8751 u64 end = start + num_bytes - 1; 8752 8753 if (trans) 8754 own_trans = false; 8755 while (num_bytes > 0) { 8756 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8757 cur_bytes = max(cur_bytes, min_size); 8758 /* 8759 * If we are severely fragmented we could end up with really 8760 * small allocations, so if the allocator is returning small 8761 * chunks lets make its job easier by only searching for those 8762 * sized chunks. 8763 */ 8764 cur_bytes = min(cur_bytes, last_alloc); 8765 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8766 min_size, 0, *alloc_hint, &ins, 1, 0); 8767 if (ret) 8768 break; 8769 8770 /* 8771 * We've reserved this space, and thus converted it from 8772 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8773 * from here on out we will only need to clear our reservation 8774 * for the remaining unreserved area, so advance our 8775 * clear_offset by our extent size. 8776 */ 8777 clear_offset += ins.offset; 8778 8779 last_alloc = ins.offset; 8780 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8781 &ins, cur_offset); 8782 /* 8783 * Now that we inserted the prealloc extent we can finally 8784 * decrement the number of reservations in the block group. 8785 * If we did it before, we could race with relocation and have 8786 * relocation miss the reserved extent, making it fail later. 8787 */ 8788 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8789 if (IS_ERR(trans)) { 8790 ret = PTR_ERR(trans); 8791 btrfs_free_reserved_extent(fs_info, ins.objectid, 8792 ins.offset, 0); 8793 break; 8794 } 8795 8796 em = alloc_extent_map(); 8797 if (!em) { 8798 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8799 cur_offset + ins.offset - 1, false); 8800 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8801 goto next; 8802 } 8803 8804 em->start = cur_offset; 8805 em->len = ins.offset; 8806 em->disk_bytenr = ins.objectid; 8807 em->offset = 0; 8808 em->disk_num_bytes = ins.offset; 8809 em->ram_bytes = ins.offset; 8810 em->flags |= EXTENT_FLAG_PREALLOC; 8811 em->generation = trans->transid; 8812 8813 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8814 free_extent_map(em); 8815 next: 8816 num_bytes -= ins.offset; 8817 cur_offset += ins.offset; 8818 *alloc_hint = ins.objectid + ins.offset; 8819 8820 inode_inc_iversion(inode); 8821 inode_set_ctime_current(inode); 8822 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8823 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8824 (actual_len > inode->i_size) && 8825 (cur_offset > inode->i_size)) { 8826 if (cur_offset > actual_len) 8827 i_size = actual_len; 8828 else 8829 i_size = cur_offset; 8830 i_size_write(inode, i_size); 8831 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8832 } 8833 8834 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8835 8836 if (ret) { 8837 btrfs_abort_transaction(trans, ret); 8838 if (own_trans) 8839 btrfs_end_transaction(trans); 8840 break; 8841 } 8842 8843 if (own_trans) { 8844 btrfs_end_transaction(trans); 8845 trans = NULL; 8846 } 8847 } 8848 if (clear_offset < end) 8849 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8850 end - clear_offset + 1); 8851 return ret; 8852 } 8853 8854 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8855 u64 start, u64 num_bytes, u64 min_size, 8856 loff_t actual_len, u64 *alloc_hint) 8857 { 8858 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8859 min_size, actual_len, alloc_hint, 8860 NULL); 8861 } 8862 8863 int btrfs_prealloc_file_range_trans(struct inode *inode, 8864 struct btrfs_trans_handle *trans, int mode, 8865 u64 start, u64 num_bytes, u64 min_size, 8866 loff_t actual_len, u64 *alloc_hint) 8867 { 8868 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8869 min_size, actual_len, alloc_hint, trans); 8870 } 8871 8872 static int btrfs_permission(struct mnt_idmap *idmap, 8873 struct inode *inode, int mask) 8874 { 8875 struct btrfs_root *root = BTRFS_I(inode)->root; 8876 umode_t mode = inode->i_mode; 8877 8878 if (mask & MAY_WRITE && 8879 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 8880 if (btrfs_root_readonly(root)) 8881 return -EROFS; 8882 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 8883 return -EACCES; 8884 } 8885 return generic_permission(idmap, inode, mask); 8886 } 8887 8888 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 8889 struct file *file, umode_t mode) 8890 { 8891 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8892 struct btrfs_trans_handle *trans; 8893 struct btrfs_root *root = BTRFS_I(dir)->root; 8894 struct inode *inode; 8895 struct btrfs_new_inode_args new_inode_args = { 8896 .dir = dir, 8897 .dentry = file->f_path.dentry, 8898 .orphan = true, 8899 }; 8900 unsigned int trans_num_items; 8901 int ret; 8902 8903 inode = new_inode(dir->i_sb); 8904 if (!inode) 8905 return -ENOMEM; 8906 inode_init_owner(idmap, inode, dir, mode); 8907 inode->i_fop = &btrfs_file_operations; 8908 inode->i_op = &btrfs_file_inode_operations; 8909 inode->i_mapping->a_ops = &btrfs_aops; 8910 8911 new_inode_args.inode = inode; 8912 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8913 if (ret) 8914 goto out_inode; 8915 8916 trans = btrfs_start_transaction(root, trans_num_items); 8917 if (IS_ERR(trans)) { 8918 ret = PTR_ERR(trans); 8919 goto out_new_inode_args; 8920 } 8921 8922 ret = btrfs_create_new_inode(trans, &new_inode_args); 8923 8924 /* 8925 * We set number of links to 0 in btrfs_create_new_inode(), and here we 8926 * set it to 1 because d_tmpfile() will issue a warning if the count is 8927 * 0, through: 8928 * 8929 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 8930 */ 8931 set_nlink(inode, 1); 8932 8933 if (!ret) { 8934 d_tmpfile(file, inode); 8935 unlock_new_inode(inode); 8936 mark_inode_dirty(inode); 8937 } 8938 8939 btrfs_end_transaction(trans); 8940 btrfs_btree_balance_dirty(fs_info); 8941 out_new_inode_args: 8942 btrfs_new_inode_args_destroy(&new_inode_args); 8943 out_inode: 8944 if (ret) 8945 iput(inode); 8946 return finish_open_simple(file, ret); 8947 } 8948 8949 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 8950 { 8951 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8952 unsigned long index = start >> PAGE_SHIFT; 8953 unsigned long end_index = end >> PAGE_SHIFT; 8954 struct page *page; 8955 u32 len; 8956 8957 ASSERT(end + 1 - start <= U32_MAX); 8958 len = end + 1 - start; 8959 while (index <= end_index) { 8960 page = find_get_page(inode->vfs_inode.i_mapping, index); 8961 ASSERT(page); /* Pages should be in the extent_io_tree */ 8962 8963 /* This is for data, which doesn't yet support larger folio. */ 8964 ASSERT(folio_order(page_folio(page)) == 0); 8965 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len); 8966 put_page(page); 8967 index++; 8968 } 8969 } 8970 8971 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 8972 int compress_type) 8973 { 8974 switch (compress_type) { 8975 case BTRFS_COMPRESS_NONE: 8976 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 8977 case BTRFS_COMPRESS_ZLIB: 8978 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 8979 case BTRFS_COMPRESS_LZO: 8980 /* 8981 * The LZO format depends on the sector size. 64K is the maximum 8982 * sector size that we support. 8983 */ 8984 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 8985 return -EINVAL; 8986 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 8987 (fs_info->sectorsize_bits - 12); 8988 case BTRFS_COMPRESS_ZSTD: 8989 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 8990 default: 8991 return -EUCLEAN; 8992 } 8993 } 8994 8995 static ssize_t btrfs_encoded_read_inline( 8996 struct kiocb *iocb, 8997 struct iov_iter *iter, u64 start, 8998 u64 lockend, 8999 struct extent_state **cached_state, 9000 u64 extent_start, size_t count, 9001 struct btrfs_ioctl_encoded_io_args *encoded, 9002 bool *unlocked) 9003 { 9004 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9005 struct btrfs_root *root = inode->root; 9006 struct btrfs_fs_info *fs_info = root->fs_info; 9007 struct extent_io_tree *io_tree = &inode->io_tree; 9008 struct btrfs_path *path; 9009 struct extent_buffer *leaf; 9010 struct btrfs_file_extent_item *item; 9011 u64 ram_bytes; 9012 unsigned long ptr; 9013 void *tmp; 9014 ssize_t ret; 9015 9016 path = btrfs_alloc_path(); 9017 if (!path) { 9018 ret = -ENOMEM; 9019 goto out; 9020 } 9021 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9022 extent_start, 0); 9023 if (ret) { 9024 if (ret > 0) { 9025 /* The extent item disappeared? */ 9026 ret = -EIO; 9027 } 9028 goto out; 9029 } 9030 leaf = path->nodes[0]; 9031 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9032 9033 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9034 ptr = btrfs_file_extent_inline_start(item); 9035 9036 encoded->len = min_t(u64, extent_start + ram_bytes, 9037 inode->vfs_inode.i_size) - iocb->ki_pos; 9038 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9039 btrfs_file_extent_compression(leaf, item)); 9040 if (ret < 0) 9041 goto out; 9042 encoded->compression = ret; 9043 if (encoded->compression) { 9044 size_t inline_size; 9045 9046 inline_size = btrfs_file_extent_inline_item_len(leaf, 9047 path->slots[0]); 9048 if (inline_size > count) { 9049 ret = -ENOBUFS; 9050 goto out; 9051 } 9052 count = inline_size; 9053 encoded->unencoded_len = ram_bytes; 9054 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9055 } else { 9056 count = min_t(u64, count, encoded->len); 9057 encoded->len = count; 9058 encoded->unencoded_len = count; 9059 ptr += iocb->ki_pos - extent_start; 9060 } 9061 9062 tmp = kmalloc(count, GFP_NOFS); 9063 if (!tmp) { 9064 ret = -ENOMEM; 9065 goto out; 9066 } 9067 read_extent_buffer(leaf, tmp, ptr, count); 9068 btrfs_release_path(path); 9069 unlock_extent(io_tree, start, lockend, cached_state); 9070 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9071 *unlocked = true; 9072 9073 ret = copy_to_iter(tmp, count, iter); 9074 if (ret != count) 9075 ret = -EFAULT; 9076 kfree(tmp); 9077 out: 9078 btrfs_free_path(path); 9079 return ret; 9080 } 9081 9082 struct btrfs_encoded_read_private { 9083 wait_queue_head_t wait; 9084 atomic_t pending; 9085 blk_status_t status; 9086 }; 9087 9088 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9089 { 9090 struct btrfs_encoded_read_private *priv = bbio->private; 9091 9092 if (bbio->bio.bi_status) { 9093 /* 9094 * The memory barrier implied by the atomic_dec_return() here 9095 * pairs with the memory barrier implied by the 9096 * atomic_dec_return() or io_wait_event() in 9097 * btrfs_encoded_read_regular_fill_pages() to ensure that this 9098 * write is observed before the load of status in 9099 * btrfs_encoded_read_regular_fill_pages(). 9100 */ 9101 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9102 } 9103 if (!atomic_dec_return(&priv->pending)) 9104 wake_up(&priv->wait); 9105 bio_put(&bbio->bio); 9106 } 9107 9108 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9109 u64 file_offset, u64 disk_bytenr, 9110 u64 disk_io_size, struct page **pages) 9111 { 9112 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9113 struct btrfs_encoded_read_private priv = { 9114 .pending = ATOMIC_INIT(1), 9115 }; 9116 unsigned long i = 0; 9117 struct btrfs_bio *bbio; 9118 9119 init_waitqueue_head(&priv.wait); 9120 9121 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9122 btrfs_encoded_read_endio, &priv); 9123 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9124 bbio->inode = inode; 9125 9126 do { 9127 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9128 9129 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9130 atomic_inc(&priv.pending); 9131 btrfs_submit_bio(bbio, 0); 9132 9133 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9134 btrfs_encoded_read_endio, &priv); 9135 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9136 bbio->inode = inode; 9137 continue; 9138 } 9139 9140 i++; 9141 disk_bytenr += bytes; 9142 disk_io_size -= bytes; 9143 } while (disk_io_size); 9144 9145 atomic_inc(&priv.pending); 9146 btrfs_submit_bio(bbio, 0); 9147 9148 if (atomic_dec_return(&priv.pending)) 9149 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 9150 /* See btrfs_encoded_read_endio() for ordering. */ 9151 return blk_status_to_errno(READ_ONCE(priv.status)); 9152 } 9153 9154 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 9155 struct iov_iter *iter, 9156 u64 start, u64 lockend, 9157 struct extent_state **cached_state, 9158 u64 disk_bytenr, u64 disk_io_size, 9159 size_t count, bool compressed, 9160 bool *unlocked) 9161 { 9162 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9163 struct extent_io_tree *io_tree = &inode->io_tree; 9164 struct page **pages; 9165 unsigned long nr_pages, i; 9166 u64 cur; 9167 size_t page_offset; 9168 ssize_t ret; 9169 9170 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9171 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9172 if (!pages) 9173 return -ENOMEM; 9174 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9175 if (ret) { 9176 ret = -ENOMEM; 9177 goto out; 9178 } 9179 9180 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 9181 disk_io_size, pages); 9182 if (ret) 9183 goto out; 9184 9185 unlock_extent(io_tree, start, lockend, cached_state); 9186 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9187 *unlocked = true; 9188 9189 if (compressed) { 9190 i = 0; 9191 page_offset = 0; 9192 } else { 9193 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9194 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9195 } 9196 cur = 0; 9197 while (cur < count) { 9198 size_t bytes = min_t(size_t, count - cur, 9199 PAGE_SIZE - page_offset); 9200 9201 if (copy_page_to_iter(pages[i], page_offset, bytes, 9202 iter) != bytes) { 9203 ret = -EFAULT; 9204 goto out; 9205 } 9206 i++; 9207 cur += bytes; 9208 page_offset = 0; 9209 } 9210 ret = count; 9211 out: 9212 for (i = 0; i < nr_pages; i++) { 9213 if (pages[i]) 9214 __free_page(pages[i]); 9215 } 9216 kfree(pages); 9217 return ret; 9218 } 9219 9220 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9221 struct btrfs_ioctl_encoded_io_args *encoded) 9222 { 9223 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9224 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9225 struct extent_io_tree *io_tree = &inode->io_tree; 9226 ssize_t ret; 9227 size_t count = iov_iter_count(iter); 9228 u64 start, lockend, disk_bytenr, disk_io_size; 9229 struct extent_state *cached_state = NULL; 9230 struct extent_map *em; 9231 bool unlocked = false; 9232 9233 file_accessed(iocb->ki_filp); 9234 9235 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 9236 9237 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9238 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9239 return 0; 9240 } 9241 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9242 /* 9243 * We don't know how long the extent containing iocb->ki_pos is, but if 9244 * it's compressed we know that it won't be longer than this. 9245 */ 9246 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9247 9248 for (;;) { 9249 struct btrfs_ordered_extent *ordered; 9250 9251 ret = btrfs_wait_ordered_range(inode, start, 9252 lockend - start + 1); 9253 if (ret) 9254 goto out_unlock_inode; 9255 lock_extent(io_tree, start, lockend, &cached_state); 9256 ordered = btrfs_lookup_ordered_range(inode, start, 9257 lockend - start + 1); 9258 if (!ordered) 9259 break; 9260 btrfs_put_ordered_extent(ordered); 9261 unlock_extent(io_tree, start, lockend, &cached_state); 9262 cond_resched(); 9263 } 9264 9265 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9266 if (IS_ERR(em)) { 9267 ret = PTR_ERR(em); 9268 goto out_unlock_extent; 9269 } 9270 9271 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9272 u64 extent_start = em->start; 9273 9274 /* 9275 * For inline extents we get everything we need out of the 9276 * extent item. 9277 */ 9278 free_extent_map(em); 9279 em = NULL; 9280 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9281 &cached_state, extent_start, 9282 count, encoded, &unlocked); 9283 goto out; 9284 } 9285 9286 /* 9287 * We only want to return up to EOF even if the extent extends beyond 9288 * that. 9289 */ 9290 encoded->len = min_t(u64, extent_map_end(em), 9291 inode->vfs_inode.i_size) - iocb->ki_pos; 9292 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9293 (em->flags & EXTENT_FLAG_PREALLOC)) { 9294 disk_bytenr = EXTENT_MAP_HOLE; 9295 count = min_t(u64, count, encoded->len); 9296 encoded->len = count; 9297 encoded->unencoded_len = count; 9298 } else if (extent_map_is_compressed(em)) { 9299 disk_bytenr = em->disk_bytenr; 9300 /* 9301 * Bail if the buffer isn't large enough to return the whole 9302 * compressed extent. 9303 */ 9304 if (em->disk_num_bytes > count) { 9305 ret = -ENOBUFS; 9306 goto out_em; 9307 } 9308 disk_io_size = em->disk_num_bytes; 9309 count = em->disk_num_bytes; 9310 encoded->unencoded_len = em->ram_bytes; 9311 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9312 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9313 extent_map_compression(em)); 9314 if (ret < 0) 9315 goto out_em; 9316 encoded->compression = ret; 9317 } else { 9318 disk_bytenr = extent_map_block_start(em) + (start - em->start); 9319 if (encoded->len > count) 9320 encoded->len = count; 9321 /* 9322 * Don't read beyond what we locked. This also limits the page 9323 * allocations that we'll do. 9324 */ 9325 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9326 count = start + disk_io_size - iocb->ki_pos; 9327 encoded->len = count; 9328 encoded->unencoded_len = count; 9329 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 9330 } 9331 free_extent_map(em); 9332 em = NULL; 9333 9334 if (disk_bytenr == EXTENT_MAP_HOLE) { 9335 unlock_extent(io_tree, start, lockend, &cached_state); 9336 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9337 unlocked = true; 9338 ret = iov_iter_zero(count, iter); 9339 if (ret != count) 9340 ret = -EFAULT; 9341 } else { 9342 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 9343 &cached_state, disk_bytenr, 9344 disk_io_size, count, 9345 encoded->compression, 9346 &unlocked); 9347 } 9348 9349 out: 9350 if (ret >= 0) 9351 iocb->ki_pos += encoded->len; 9352 out_em: 9353 free_extent_map(em); 9354 out_unlock_extent: 9355 if (!unlocked) 9356 unlock_extent(io_tree, start, lockend, &cached_state); 9357 out_unlock_inode: 9358 if (!unlocked) 9359 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9360 return ret; 9361 } 9362 9363 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9364 const struct btrfs_ioctl_encoded_io_args *encoded) 9365 { 9366 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9367 struct btrfs_root *root = inode->root; 9368 struct btrfs_fs_info *fs_info = root->fs_info; 9369 struct extent_io_tree *io_tree = &inode->io_tree; 9370 struct extent_changeset *data_reserved = NULL; 9371 struct extent_state *cached_state = NULL; 9372 struct btrfs_ordered_extent *ordered; 9373 struct btrfs_file_extent file_extent; 9374 int compression; 9375 size_t orig_count; 9376 u64 start, end; 9377 u64 num_bytes, ram_bytes, disk_num_bytes; 9378 unsigned long nr_folios, i; 9379 struct folio **folios; 9380 struct btrfs_key ins; 9381 bool extent_reserved = false; 9382 struct extent_map *em; 9383 ssize_t ret; 9384 9385 switch (encoded->compression) { 9386 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9387 compression = BTRFS_COMPRESS_ZLIB; 9388 break; 9389 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9390 compression = BTRFS_COMPRESS_ZSTD; 9391 break; 9392 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9393 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9394 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9395 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9396 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9397 /* The sector size must match for LZO. */ 9398 if (encoded->compression - 9399 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9400 fs_info->sectorsize_bits) 9401 return -EINVAL; 9402 compression = BTRFS_COMPRESS_LZO; 9403 break; 9404 default: 9405 return -EINVAL; 9406 } 9407 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9408 return -EINVAL; 9409 9410 /* 9411 * Compressed extents should always have checksums, so error out if we 9412 * have a NOCOW file or inode was created while mounted with NODATASUM. 9413 */ 9414 if (inode->flags & BTRFS_INODE_NODATASUM) 9415 return -EINVAL; 9416 9417 orig_count = iov_iter_count(from); 9418 9419 /* The extent size must be sane. */ 9420 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9421 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9422 return -EINVAL; 9423 9424 /* 9425 * The compressed data must be smaller than the decompressed data. 9426 * 9427 * It's of course possible for data to compress to larger or the same 9428 * size, but the buffered I/O path falls back to no compression for such 9429 * data, and we don't want to break any assumptions by creating these 9430 * extents. 9431 * 9432 * Note that this is less strict than the current check we have that the 9433 * compressed data must be at least one sector smaller than the 9434 * decompressed data. We only want to enforce the weaker requirement 9435 * from old kernels that it is at least one byte smaller. 9436 */ 9437 if (orig_count >= encoded->unencoded_len) 9438 return -EINVAL; 9439 9440 /* The extent must start on a sector boundary. */ 9441 start = iocb->ki_pos; 9442 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9443 return -EINVAL; 9444 9445 /* 9446 * The extent must end on a sector boundary. However, we allow a write 9447 * which ends at or extends i_size to have an unaligned length; we round 9448 * up the extent size and set i_size to the unaligned end. 9449 */ 9450 if (start + encoded->len < inode->vfs_inode.i_size && 9451 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9452 return -EINVAL; 9453 9454 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9455 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9456 return -EINVAL; 9457 9458 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9459 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9460 end = start + num_bytes - 1; 9461 9462 /* 9463 * If the extent cannot be inline, the compressed data on disk must be 9464 * sector-aligned. For convenience, we extend it with zeroes if it 9465 * isn't. 9466 */ 9467 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9468 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9469 folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 9470 if (!folios) 9471 return -ENOMEM; 9472 for (i = 0; i < nr_folios; i++) { 9473 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9474 char *kaddr; 9475 9476 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9477 if (!folios[i]) { 9478 ret = -ENOMEM; 9479 goto out_folios; 9480 } 9481 kaddr = kmap_local_folio(folios[i], 0); 9482 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9483 kunmap_local(kaddr); 9484 ret = -EFAULT; 9485 goto out_folios; 9486 } 9487 if (bytes < PAGE_SIZE) 9488 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9489 kunmap_local(kaddr); 9490 } 9491 9492 for (;;) { 9493 struct btrfs_ordered_extent *ordered; 9494 9495 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9496 if (ret) 9497 goto out_folios; 9498 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9499 start >> PAGE_SHIFT, 9500 end >> PAGE_SHIFT); 9501 if (ret) 9502 goto out_folios; 9503 lock_extent(io_tree, start, end, &cached_state); 9504 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9505 if (!ordered && 9506 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9507 break; 9508 if (ordered) 9509 btrfs_put_ordered_extent(ordered); 9510 unlock_extent(io_tree, start, end, &cached_state); 9511 cond_resched(); 9512 } 9513 9514 /* 9515 * We don't use the higher-level delalloc space functions because our 9516 * num_bytes and disk_num_bytes are different. 9517 */ 9518 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9519 if (ret) 9520 goto out_unlock; 9521 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9522 if (ret) 9523 goto out_free_data_space; 9524 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9525 false); 9526 if (ret) 9527 goto out_qgroup_free_data; 9528 9529 /* Try an inline extent first. */ 9530 if (encoded->unencoded_len == encoded->len && 9531 encoded->unencoded_offset == 0 && 9532 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9533 ret = __cow_file_range_inline(inode, start, encoded->len, 9534 orig_count, compression, folios[0], 9535 true); 9536 if (ret <= 0) { 9537 if (ret == 0) 9538 ret = orig_count; 9539 goto out_delalloc_release; 9540 } 9541 } 9542 9543 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9544 disk_num_bytes, 0, 0, &ins, 1, 1); 9545 if (ret) 9546 goto out_delalloc_release; 9547 extent_reserved = true; 9548 9549 file_extent.disk_bytenr = ins.objectid; 9550 file_extent.disk_num_bytes = ins.offset; 9551 file_extent.num_bytes = num_bytes; 9552 file_extent.ram_bytes = ram_bytes; 9553 file_extent.offset = encoded->unencoded_offset; 9554 file_extent.compression = compression; 9555 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9556 if (IS_ERR(em)) { 9557 ret = PTR_ERR(em); 9558 goto out_free_reserved; 9559 } 9560 free_extent_map(em); 9561 9562 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9563 (1 << BTRFS_ORDERED_ENCODED) | 9564 (1 << BTRFS_ORDERED_COMPRESSED)); 9565 if (IS_ERR(ordered)) { 9566 btrfs_drop_extent_map_range(inode, start, end, false); 9567 ret = PTR_ERR(ordered); 9568 goto out_free_reserved; 9569 } 9570 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9571 9572 if (start + encoded->len > inode->vfs_inode.i_size) 9573 i_size_write(&inode->vfs_inode, start + encoded->len); 9574 9575 unlock_extent(io_tree, start, end, &cached_state); 9576 9577 btrfs_delalloc_release_extents(inode, num_bytes); 9578 9579 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9580 ret = orig_count; 9581 goto out; 9582 9583 out_free_reserved: 9584 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9585 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9586 out_delalloc_release: 9587 btrfs_delalloc_release_extents(inode, num_bytes); 9588 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9589 out_qgroup_free_data: 9590 if (ret < 0) 9591 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9592 out_free_data_space: 9593 /* 9594 * If btrfs_reserve_extent() succeeded, then we already decremented 9595 * bytes_may_use. 9596 */ 9597 if (!extent_reserved) 9598 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9599 out_unlock: 9600 unlock_extent(io_tree, start, end, &cached_state); 9601 out_folios: 9602 for (i = 0; i < nr_folios; i++) { 9603 if (folios[i]) 9604 folio_put(folios[i]); 9605 } 9606 kvfree(folios); 9607 out: 9608 if (ret >= 0) 9609 iocb->ki_pos += encoded->len; 9610 return ret; 9611 } 9612 9613 #ifdef CONFIG_SWAP 9614 /* 9615 * Add an entry indicating a block group or device which is pinned by a 9616 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9617 * negative errno on failure. 9618 */ 9619 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9620 bool is_block_group) 9621 { 9622 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9623 struct btrfs_swapfile_pin *sp, *entry; 9624 struct rb_node **p; 9625 struct rb_node *parent = NULL; 9626 9627 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9628 if (!sp) 9629 return -ENOMEM; 9630 sp->ptr = ptr; 9631 sp->inode = inode; 9632 sp->is_block_group = is_block_group; 9633 sp->bg_extent_count = 1; 9634 9635 spin_lock(&fs_info->swapfile_pins_lock); 9636 p = &fs_info->swapfile_pins.rb_node; 9637 while (*p) { 9638 parent = *p; 9639 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9640 if (sp->ptr < entry->ptr || 9641 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9642 p = &(*p)->rb_left; 9643 } else if (sp->ptr > entry->ptr || 9644 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9645 p = &(*p)->rb_right; 9646 } else { 9647 if (is_block_group) 9648 entry->bg_extent_count++; 9649 spin_unlock(&fs_info->swapfile_pins_lock); 9650 kfree(sp); 9651 return 1; 9652 } 9653 } 9654 rb_link_node(&sp->node, parent, p); 9655 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9656 spin_unlock(&fs_info->swapfile_pins_lock); 9657 return 0; 9658 } 9659 9660 /* Free all of the entries pinned by this swapfile. */ 9661 static void btrfs_free_swapfile_pins(struct inode *inode) 9662 { 9663 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9664 struct btrfs_swapfile_pin *sp; 9665 struct rb_node *node, *next; 9666 9667 spin_lock(&fs_info->swapfile_pins_lock); 9668 node = rb_first(&fs_info->swapfile_pins); 9669 while (node) { 9670 next = rb_next(node); 9671 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9672 if (sp->inode == inode) { 9673 rb_erase(&sp->node, &fs_info->swapfile_pins); 9674 if (sp->is_block_group) { 9675 btrfs_dec_block_group_swap_extents(sp->ptr, 9676 sp->bg_extent_count); 9677 btrfs_put_block_group(sp->ptr); 9678 } 9679 kfree(sp); 9680 } 9681 node = next; 9682 } 9683 spin_unlock(&fs_info->swapfile_pins_lock); 9684 } 9685 9686 struct btrfs_swap_info { 9687 u64 start; 9688 u64 block_start; 9689 u64 block_len; 9690 u64 lowest_ppage; 9691 u64 highest_ppage; 9692 unsigned long nr_pages; 9693 int nr_extents; 9694 }; 9695 9696 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9697 struct btrfs_swap_info *bsi) 9698 { 9699 unsigned long nr_pages; 9700 unsigned long max_pages; 9701 u64 first_ppage, first_ppage_reported, next_ppage; 9702 int ret; 9703 9704 /* 9705 * Our swapfile may have had its size extended after the swap header was 9706 * written. In that case activating the swapfile should not go beyond 9707 * the max size set in the swap header. 9708 */ 9709 if (bsi->nr_pages >= sis->max) 9710 return 0; 9711 9712 max_pages = sis->max - bsi->nr_pages; 9713 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9714 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9715 9716 if (first_ppage >= next_ppage) 9717 return 0; 9718 nr_pages = next_ppage - first_ppage; 9719 nr_pages = min(nr_pages, max_pages); 9720 9721 first_ppage_reported = first_ppage; 9722 if (bsi->start == 0) 9723 first_ppage_reported++; 9724 if (bsi->lowest_ppage > first_ppage_reported) 9725 bsi->lowest_ppage = first_ppage_reported; 9726 if (bsi->highest_ppage < (next_ppage - 1)) 9727 bsi->highest_ppage = next_ppage - 1; 9728 9729 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9730 if (ret < 0) 9731 return ret; 9732 bsi->nr_extents += ret; 9733 bsi->nr_pages += nr_pages; 9734 return 0; 9735 } 9736 9737 static void btrfs_swap_deactivate(struct file *file) 9738 { 9739 struct inode *inode = file_inode(file); 9740 9741 btrfs_free_swapfile_pins(inode); 9742 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9743 } 9744 9745 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9746 sector_t *span) 9747 { 9748 struct inode *inode = file_inode(file); 9749 struct btrfs_root *root = BTRFS_I(inode)->root; 9750 struct btrfs_fs_info *fs_info = root->fs_info; 9751 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9752 struct extent_state *cached_state = NULL; 9753 struct extent_map *em = NULL; 9754 struct btrfs_chunk_map *map = NULL; 9755 struct btrfs_device *device = NULL; 9756 struct btrfs_swap_info bsi = { 9757 .lowest_ppage = (sector_t)-1ULL, 9758 }; 9759 int ret = 0; 9760 u64 isize; 9761 u64 start; 9762 9763 /* 9764 * If the swap file was just created, make sure delalloc is done. If the 9765 * file changes again after this, the user is doing something stupid and 9766 * we don't really care. 9767 */ 9768 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9769 if (ret) 9770 return ret; 9771 9772 /* 9773 * The inode is locked, so these flags won't change after we check them. 9774 */ 9775 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9776 btrfs_warn(fs_info, "swapfile must not be compressed"); 9777 return -EINVAL; 9778 } 9779 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9780 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9781 return -EINVAL; 9782 } 9783 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9784 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9785 return -EINVAL; 9786 } 9787 9788 /* 9789 * Balance or device remove/replace/resize can move stuff around from 9790 * under us. The exclop protection makes sure they aren't running/won't 9791 * run concurrently while we are mapping the swap extents, and 9792 * fs_info->swapfile_pins prevents them from running while the swap 9793 * file is active and moving the extents. Note that this also prevents 9794 * a concurrent device add which isn't actually necessary, but it's not 9795 * really worth the trouble to allow it. 9796 */ 9797 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9798 btrfs_warn(fs_info, 9799 "cannot activate swapfile while exclusive operation is running"); 9800 return -EBUSY; 9801 } 9802 9803 /* 9804 * Prevent snapshot creation while we are activating the swap file. 9805 * We do not want to race with snapshot creation. If snapshot creation 9806 * already started before we bumped nr_swapfiles from 0 to 1 and 9807 * completes before the first write into the swap file after it is 9808 * activated, than that write would fallback to COW. 9809 */ 9810 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 9811 btrfs_exclop_finish(fs_info); 9812 btrfs_warn(fs_info, 9813 "cannot activate swapfile because snapshot creation is in progress"); 9814 return -EINVAL; 9815 } 9816 /* 9817 * Snapshots can create extents which require COW even if NODATACOW is 9818 * set. We use this counter to prevent snapshots. We must increment it 9819 * before walking the extents because we don't want a concurrent 9820 * snapshot to run after we've already checked the extents. 9821 * 9822 * It is possible that subvolume is marked for deletion but still not 9823 * removed yet. To prevent this race, we check the root status before 9824 * activating the swapfile. 9825 */ 9826 spin_lock(&root->root_item_lock); 9827 if (btrfs_root_dead(root)) { 9828 spin_unlock(&root->root_item_lock); 9829 9830 btrfs_exclop_finish(fs_info); 9831 btrfs_warn(fs_info, 9832 "cannot activate swapfile because subvolume %llu is being deleted", 9833 btrfs_root_id(root)); 9834 return -EPERM; 9835 } 9836 atomic_inc(&root->nr_swapfiles); 9837 spin_unlock(&root->root_item_lock); 9838 9839 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 9840 9841 lock_extent(io_tree, 0, isize - 1, &cached_state); 9842 start = 0; 9843 while (start < isize) { 9844 u64 logical_block_start, physical_block_start; 9845 struct btrfs_block_group *bg; 9846 u64 len = isize - start; 9847 9848 em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len); 9849 if (IS_ERR(em)) { 9850 ret = PTR_ERR(em); 9851 goto out; 9852 } 9853 9854 if (em->disk_bytenr == EXTENT_MAP_HOLE) { 9855 btrfs_warn(fs_info, "swapfile must not have holes"); 9856 ret = -EINVAL; 9857 goto out; 9858 } 9859 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9860 /* 9861 * It's unlikely we'll ever actually find ourselves 9862 * here, as a file small enough to fit inline won't be 9863 * big enough to store more than the swap header, but in 9864 * case something changes in the future, let's catch it 9865 * here rather than later. 9866 */ 9867 btrfs_warn(fs_info, "swapfile must not be inline"); 9868 ret = -EINVAL; 9869 goto out; 9870 } 9871 if (extent_map_is_compressed(em)) { 9872 btrfs_warn(fs_info, "swapfile must not be compressed"); 9873 ret = -EINVAL; 9874 goto out; 9875 } 9876 9877 logical_block_start = extent_map_block_start(em) + (start - em->start); 9878 len = min(len, em->len - (start - em->start)); 9879 free_extent_map(em); 9880 em = NULL; 9881 9882 ret = can_nocow_extent(inode, start, &len, NULL, false, true); 9883 if (ret < 0) { 9884 goto out; 9885 } else if (ret) { 9886 ret = 0; 9887 } else { 9888 btrfs_warn(fs_info, 9889 "swapfile must not be copy-on-write"); 9890 ret = -EINVAL; 9891 goto out; 9892 } 9893 9894 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 9895 if (IS_ERR(map)) { 9896 ret = PTR_ERR(map); 9897 goto out; 9898 } 9899 9900 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 9901 btrfs_warn(fs_info, 9902 "swapfile must have single data profile"); 9903 ret = -EINVAL; 9904 goto out; 9905 } 9906 9907 if (device == NULL) { 9908 device = map->stripes[0].dev; 9909 ret = btrfs_add_swapfile_pin(inode, device, false); 9910 if (ret == 1) 9911 ret = 0; 9912 else if (ret) 9913 goto out; 9914 } else if (device != map->stripes[0].dev) { 9915 btrfs_warn(fs_info, "swapfile must be on one device"); 9916 ret = -EINVAL; 9917 goto out; 9918 } 9919 9920 physical_block_start = (map->stripes[0].physical + 9921 (logical_block_start - map->start)); 9922 len = min(len, map->chunk_len - (logical_block_start - map->start)); 9923 btrfs_free_chunk_map(map); 9924 map = NULL; 9925 9926 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 9927 if (!bg) { 9928 btrfs_warn(fs_info, 9929 "could not find block group containing swapfile"); 9930 ret = -EINVAL; 9931 goto out; 9932 } 9933 9934 if (!btrfs_inc_block_group_swap_extents(bg)) { 9935 btrfs_warn(fs_info, 9936 "block group for swapfile at %llu is read-only%s", 9937 bg->start, 9938 atomic_read(&fs_info->scrubs_running) ? 9939 " (scrub running)" : ""); 9940 btrfs_put_block_group(bg); 9941 ret = -EINVAL; 9942 goto out; 9943 } 9944 9945 ret = btrfs_add_swapfile_pin(inode, bg, true); 9946 if (ret) { 9947 btrfs_put_block_group(bg); 9948 if (ret == 1) 9949 ret = 0; 9950 else 9951 goto out; 9952 } 9953 9954 if (bsi.block_len && 9955 bsi.block_start + bsi.block_len == physical_block_start) { 9956 bsi.block_len += len; 9957 } else { 9958 if (bsi.block_len) { 9959 ret = btrfs_add_swap_extent(sis, &bsi); 9960 if (ret) 9961 goto out; 9962 } 9963 bsi.start = start; 9964 bsi.block_start = physical_block_start; 9965 bsi.block_len = len; 9966 } 9967 9968 start += len; 9969 } 9970 9971 if (bsi.block_len) 9972 ret = btrfs_add_swap_extent(sis, &bsi); 9973 9974 out: 9975 if (!IS_ERR_OR_NULL(em)) 9976 free_extent_map(em); 9977 if (!IS_ERR_OR_NULL(map)) 9978 btrfs_free_chunk_map(map); 9979 9980 unlock_extent(io_tree, 0, isize - 1, &cached_state); 9981 9982 if (ret) 9983 btrfs_swap_deactivate(file); 9984 9985 btrfs_drew_write_unlock(&root->snapshot_lock); 9986 9987 btrfs_exclop_finish(fs_info); 9988 9989 if (ret) 9990 return ret; 9991 9992 if (device) 9993 sis->bdev = device->bdev; 9994 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 9995 sis->max = bsi.nr_pages; 9996 sis->pages = bsi.nr_pages - 1; 9997 sis->highest_bit = bsi.nr_pages - 1; 9998 return bsi.nr_extents; 9999 } 10000 #else 10001 static void btrfs_swap_deactivate(struct file *file) 10002 { 10003 } 10004 10005 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10006 sector_t *span) 10007 { 10008 return -EOPNOTSUPP; 10009 } 10010 #endif 10011 10012 /* 10013 * Update the number of bytes used in the VFS' inode. When we replace extents in 10014 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10015 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10016 * always get a correct value. 10017 */ 10018 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10019 const u64 add_bytes, 10020 const u64 del_bytes) 10021 { 10022 if (add_bytes == del_bytes) 10023 return; 10024 10025 spin_lock(&inode->lock); 10026 if (del_bytes > 0) 10027 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10028 if (add_bytes > 0) 10029 inode_add_bytes(&inode->vfs_inode, add_bytes); 10030 spin_unlock(&inode->lock); 10031 } 10032 10033 /* 10034 * Verify that there are no ordered extents for a given file range. 10035 * 10036 * @inode: The target inode. 10037 * @start: Start offset of the file range, should be sector size aligned. 10038 * @end: End offset (inclusive) of the file range, its value +1 should be 10039 * sector size aligned. 10040 * 10041 * This should typically be used for cases where we locked an inode's VFS lock in 10042 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10043 * we have flushed all delalloc in the range, we have waited for all ordered 10044 * extents in the range to complete and finally we have locked the file range in 10045 * the inode's io_tree. 10046 */ 10047 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10048 { 10049 struct btrfs_root *root = inode->root; 10050 struct btrfs_ordered_extent *ordered; 10051 10052 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10053 return; 10054 10055 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10056 if (ordered) { 10057 btrfs_err(root->fs_info, 10058 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10059 start, end, btrfs_ino(inode), btrfs_root_id(root), 10060 ordered->file_offset, 10061 ordered->file_offset + ordered->num_bytes - 1); 10062 btrfs_put_ordered_extent(ordered); 10063 } 10064 10065 ASSERT(ordered == NULL); 10066 } 10067 10068 /* 10069 * Find the first inode with a minimum number. 10070 * 10071 * @root: The root to search for. 10072 * @min_ino: The minimum inode number. 10073 * 10074 * Find the first inode in the @root with a number >= @min_ino and return it. 10075 * Returns NULL if no such inode found. 10076 */ 10077 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10078 { 10079 struct btrfs_inode *inode; 10080 unsigned long from = min_ino; 10081 10082 xa_lock(&root->inodes); 10083 while (true) { 10084 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10085 if (!inode) 10086 break; 10087 if (igrab(&inode->vfs_inode)) 10088 break; 10089 10090 from = btrfs_ino(inode) + 1; 10091 cond_resched_lock(&root->inodes.xa_lock); 10092 } 10093 xa_unlock(&root->inodes); 10094 10095 return inode; 10096 } 10097 10098 static const struct inode_operations btrfs_dir_inode_operations = { 10099 .getattr = btrfs_getattr, 10100 .lookup = btrfs_lookup, 10101 .create = btrfs_create, 10102 .unlink = btrfs_unlink, 10103 .link = btrfs_link, 10104 .mkdir = btrfs_mkdir, 10105 .rmdir = btrfs_rmdir, 10106 .rename = btrfs_rename2, 10107 .symlink = btrfs_symlink, 10108 .setattr = btrfs_setattr, 10109 .mknod = btrfs_mknod, 10110 .listxattr = btrfs_listxattr, 10111 .permission = btrfs_permission, 10112 .get_inode_acl = btrfs_get_acl, 10113 .set_acl = btrfs_set_acl, 10114 .update_time = btrfs_update_time, 10115 .tmpfile = btrfs_tmpfile, 10116 .fileattr_get = btrfs_fileattr_get, 10117 .fileattr_set = btrfs_fileattr_set, 10118 }; 10119 10120 static const struct file_operations btrfs_dir_file_operations = { 10121 .llseek = btrfs_dir_llseek, 10122 .read = generic_read_dir, 10123 .iterate_shared = btrfs_real_readdir, 10124 .open = btrfs_opendir, 10125 .unlocked_ioctl = btrfs_ioctl, 10126 #ifdef CONFIG_COMPAT 10127 .compat_ioctl = btrfs_compat_ioctl, 10128 #endif 10129 .release = btrfs_release_file, 10130 .fsync = btrfs_sync_file, 10131 }; 10132 10133 /* 10134 * btrfs doesn't support the bmap operation because swapfiles 10135 * use bmap to make a mapping of extents in the file. They assume 10136 * these extents won't change over the life of the file and they 10137 * use the bmap result to do IO directly to the drive. 10138 * 10139 * the btrfs bmap call would return logical addresses that aren't 10140 * suitable for IO and they also will change frequently as COW 10141 * operations happen. So, swapfile + btrfs == corruption. 10142 * 10143 * For now we're avoiding this by dropping bmap. 10144 */ 10145 static const struct address_space_operations btrfs_aops = { 10146 .read_folio = btrfs_read_folio, 10147 .writepages = btrfs_writepages, 10148 .readahead = btrfs_readahead, 10149 .invalidate_folio = btrfs_invalidate_folio, 10150 .launder_folio = btrfs_launder_folio, 10151 .release_folio = btrfs_release_folio, 10152 .migrate_folio = btrfs_migrate_folio, 10153 .dirty_folio = filemap_dirty_folio, 10154 .error_remove_folio = generic_error_remove_folio, 10155 .swap_activate = btrfs_swap_activate, 10156 .swap_deactivate = btrfs_swap_deactivate, 10157 }; 10158 10159 static const struct inode_operations btrfs_file_inode_operations = { 10160 .getattr = btrfs_getattr, 10161 .setattr = btrfs_setattr, 10162 .listxattr = btrfs_listxattr, 10163 .permission = btrfs_permission, 10164 .fiemap = btrfs_fiemap, 10165 .get_inode_acl = btrfs_get_acl, 10166 .set_acl = btrfs_set_acl, 10167 .update_time = btrfs_update_time, 10168 .fileattr_get = btrfs_fileattr_get, 10169 .fileattr_set = btrfs_fileattr_set, 10170 }; 10171 static const struct inode_operations btrfs_special_inode_operations = { 10172 .getattr = btrfs_getattr, 10173 .setattr = btrfs_setattr, 10174 .permission = btrfs_permission, 10175 .listxattr = btrfs_listxattr, 10176 .get_inode_acl = btrfs_get_acl, 10177 .set_acl = btrfs_set_acl, 10178 .update_time = btrfs_update_time, 10179 }; 10180 static const struct inode_operations btrfs_symlink_inode_operations = { 10181 .get_link = page_get_link, 10182 .getattr = btrfs_getattr, 10183 .setattr = btrfs_setattr, 10184 .permission = btrfs_permission, 10185 .listxattr = btrfs_listxattr, 10186 .update_time = btrfs_update_time, 10187 }; 10188 10189 const struct dentry_operations btrfs_dentry_operations = { 10190 .d_delete = btrfs_dentry_delete, 10191 }; 10192