xref: /linux/fs/btrfs/inode.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "print-tree.h"
50 #include "ordered-data.h"
51 #include "xattr.h"
52 #include "tree-log.h"
53 #include "volumes.h"
54 #include "compression.h"
55 #include "locking.h"
56 #include "free-space-cache.h"
57 #include "inode-map.h"
58 #include "backref.h"
59 #include "hash.h"
60 #include "props.h"
61 #include "qgroup.h"
62 #include "dedupe.h"
63 
64 struct btrfs_iget_args {
65 	struct btrfs_key *location;
66 	struct btrfs_root *root;
67 };
68 
69 struct btrfs_dio_data {
70 	u64 outstanding_extents;
71 	u64 reserve;
72 	u64 unsubmitted_oe_range_start;
73 	u64 unsubmitted_oe_range_end;
74 	int overwrite;
75 };
76 
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
86 
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
92 
93 #define S_SHIFT 12
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
96 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
97 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
98 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
99 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
100 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
101 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
102 };
103 
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 				   struct page *locked_page,
109 				   u64 start, u64 end, u64 delalloc_end,
110 				   int *page_started, unsigned long *nr_written,
111 				   int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
113 				       u64 orig_start, u64 block_start,
114 				       u64 block_len, u64 orig_block_len,
115 				       u64 ram_bytes, int compress_type,
116 				       int type);
117 
118 static void __endio_write_update_ordered(struct inode *inode,
119 					 const u64 offset, const u64 bytes,
120 					 const bool uptodate);
121 
122 /*
123  * Cleanup all submitted ordered extents in specified range to handle errors
124  * from the fill_dellaloc() callback.
125  *
126  * NOTE: caller must ensure that when an error happens, it can not call
127  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
128  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
129  * to be released, which we want to happen only when finishing the ordered
130  * extent (btrfs_finish_ordered_io()). Also note that the caller of the
131  * fill_delalloc() callback already does proper cleanup for the first page of
132  * the range, that is, it invokes the callback writepage_end_io_hook() for the
133  * range of the first page.
134  */
135 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
136 						 const u64 offset,
137 						 const u64 bytes)
138 {
139 	return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
140 					    bytes - PAGE_SIZE, false);
141 }
142 
143 static int btrfs_dirty_inode(struct inode *inode);
144 
145 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
146 void btrfs_test_inode_set_ops(struct inode *inode)
147 {
148 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
149 }
150 #endif
151 
152 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
153 				     struct inode *inode,  struct inode *dir,
154 				     const struct qstr *qstr)
155 {
156 	int err;
157 
158 	err = btrfs_init_acl(trans, inode, dir);
159 	if (!err)
160 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
161 	return err;
162 }
163 
164 /*
165  * this does all the hard work for inserting an inline extent into
166  * the btree.  The caller should have done a btrfs_drop_extents so that
167  * no overlapping inline items exist in the btree
168  */
169 static int insert_inline_extent(struct btrfs_trans_handle *trans,
170 				struct btrfs_path *path, int extent_inserted,
171 				struct btrfs_root *root, struct inode *inode,
172 				u64 start, size_t size, size_t compressed_size,
173 				int compress_type,
174 				struct page **compressed_pages)
175 {
176 	struct extent_buffer *leaf;
177 	struct page *page = NULL;
178 	char *kaddr;
179 	unsigned long ptr;
180 	struct btrfs_file_extent_item *ei;
181 	int err = 0;
182 	int ret;
183 	size_t cur_size = size;
184 	unsigned long offset;
185 
186 	if (compressed_size && compressed_pages)
187 		cur_size = compressed_size;
188 
189 	inode_add_bytes(inode, size);
190 
191 	if (!extent_inserted) {
192 		struct btrfs_key key;
193 		size_t datasize;
194 
195 		key.objectid = btrfs_ino(BTRFS_I(inode));
196 		key.offset = start;
197 		key.type = BTRFS_EXTENT_DATA_KEY;
198 
199 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 		path->leave_spinning = 1;
201 		ret = btrfs_insert_empty_item(trans, root, path, &key,
202 					      datasize);
203 		if (ret) {
204 			err = ret;
205 			goto fail;
206 		}
207 	}
208 	leaf = path->nodes[0];
209 	ei = btrfs_item_ptr(leaf, path->slots[0],
210 			    struct btrfs_file_extent_item);
211 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
212 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
213 	btrfs_set_file_extent_encryption(leaf, ei, 0);
214 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
215 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
216 	ptr = btrfs_file_extent_inline_start(ei);
217 
218 	if (compress_type != BTRFS_COMPRESS_NONE) {
219 		struct page *cpage;
220 		int i = 0;
221 		while (compressed_size > 0) {
222 			cpage = compressed_pages[i];
223 			cur_size = min_t(unsigned long, compressed_size,
224 				       PAGE_SIZE);
225 
226 			kaddr = kmap_atomic(cpage);
227 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
228 			kunmap_atomic(kaddr);
229 
230 			i++;
231 			ptr += cur_size;
232 			compressed_size -= cur_size;
233 		}
234 		btrfs_set_file_extent_compression(leaf, ei,
235 						  compress_type);
236 	} else {
237 		page = find_get_page(inode->i_mapping,
238 				     start >> PAGE_SHIFT);
239 		btrfs_set_file_extent_compression(leaf, ei, 0);
240 		kaddr = kmap_atomic(page);
241 		offset = start & (PAGE_SIZE - 1);
242 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
243 		kunmap_atomic(kaddr);
244 		put_page(page);
245 	}
246 	btrfs_mark_buffer_dirty(leaf);
247 	btrfs_release_path(path);
248 
249 	/*
250 	 * we're an inline extent, so nobody can
251 	 * extend the file past i_size without locking
252 	 * a page we already have locked.
253 	 *
254 	 * We must do any isize and inode updates
255 	 * before we unlock the pages.  Otherwise we
256 	 * could end up racing with unlink.
257 	 */
258 	BTRFS_I(inode)->disk_i_size = inode->i_size;
259 	ret = btrfs_update_inode(trans, root, inode);
260 
261 	return ret;
262 fail:
263 	return err;
264 }
265 
266 
267 /*
268  * conditionally insert an inline extent into the file.  This
269  * does the checks required to make sure the data is small enough
270  * to fit as an inline extent.
271  */
272 static noinline int cow_file_range_inline(struct btrfs_root *root,
273 					  struct inode *inode, u64 start,
274 					  u64 end, size_t compressed_size,
275 					  int compress_type,
276 					  struct page **compressed_pages)
277 {
278 	struct btrfs_fs_info *fs_info = root->fs_info;
279 	struct btrfs_trans_handle *trans;
280 	u64 isize = i_size_read(inode);
281 	u64 actual_end = min(end + 1, isize);
282 	u64 inline_len = actual_end - start;
283 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
284 	u64 data_len = inline_len;
285 	int ret;
286 	struct btrfs_path *path;
287 	int extent_inserted = 0;
288 	u32 extent_item_size;
289 
290 	if (compressed_size)
291 		data_len = compressed_size;
292 
293 	if (start > 0 ||
294 	    actual_end > fs_info->sectorsize ||
295 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
296 	    (!compressed_size &&
297 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
298 	    end + 1 < isize ||
299 	    data_len > fs_info->max_inline) {
300 		return 1;
301 	}
302 
303 	path = btrfs_alloc_path();
304 	if (!path)
305 		return -ENOMEM;
306 
307 	trans = btrfs_join_transaction(root);
308 	if (IS_ERR(trans)) {
309 		btrfs_free_path(path);
310 		return PTR_ERR(trans);
311 	}
312 	trans->block_rsv = &fs_info->delalloc_block_rsv;
313 
314 	if (compressed_size && compressed_pages)
315 		extent_item_size = btrfs_file_extent_calc_inline_size(
316 		   compressed_size);
317 	else
318 		extent_item_size = btrfs_file_extent_calc_inline_size(
319 		    inline_len);
320 
321 	ret = __btrfs_drop_extents(trans, root, inode, path,
322 				   start, aligned_end, NULL,
323 				   1, 1, extent_item_size, &extent_inserted);
324 	if (ret) {
325 		btrfs_abort_transaction(trans, ret);
326 		goto out;
327 	}
328 
329 	if (isize > actual_end)
330 		inline_len = min_t(u64, isize, actual_end);
331 	ret = insert_inline_extent(trans, path, extent_inserted,
332 				   root, inode, start,
333 				   inline_len, compressed_size,
334 				   compress_type, compressed_pages);
335 	if (ret && ret != -ENOSPC) {
336 		btrfs_abort_transaction(trans, ret);
337 		goto out;
338 	} else if (ret == -ENOSPC) {
339 		ret = 1;
340 		goto out;
341 	}
342 
343 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
344 	btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
345 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
346 out:
347 	/*
348 	 * Don't forget to free the reserved space, as for inlined extent
349 	 * it won't count as data extent, free them directly here.
350 	 * And at reserve time, it's always aligned to page size, so
351 	 * just free one page here.
352 	 */
353 	btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
354 	btrfs_free_path(path);
355 	btrfs_end_transaction(trans);
356 	return ret;
357 }
358 
359 struct async_extent {
360 	u64 start;
361 	u64 ram_size;
362 	u64 compressed_size;
363 	struct page **pages;
364 	unsigned long nr_pages;
365 	int compress_type;
366 	struct list_head list;
367 };
368 
369 struct async_cow {
370 	struct inode *inode;
371 	struct btrfs_root *root;
372 	struct page *locked_page;
373 	u64 start;
374 	u64 end;
375 	struct list_head extents;
376 	struct btrfs_work work;
377 };
378 
379 static noinline int add_async_extent(struct async_cow *cow,
380 				     u64 start, u64 ram_size,
381 				     u64 compressed_size,
382 				     struct page **pages,
383 				     unsigned long nr_pages,
384 				     int compress_type)
385 {
386 	struct async_extent *async_extent;
387 
388 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
389 	BUG_ON(!async_extent); /* -ENOMEM */
390 	async_extent->start = start;
391 	async_extent->ram_size = ram_size;
392 	async_extent->compressed_size = compressed_size;
393 	async_extent->pages = pages;
394 	async_extent->nr_pages = nr_pages;
395 	async_extent->compress_type = compress_type;
396 	list_add_tail(&async_extent->list, &cow->extents);
397 	return 0;
398 }
399 
400 static inline int inode_need_compress(struct inode *inode)
401 {
402 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
403 
404 	/* force compress */
405 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
406 		return 1;
407 	/* bad compression ratios */
408 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
409 		return 0;
410 	if (btrfs_test_opt(fs_info, COMPRESS) ||
411 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
412 	    BTRFS_I(inode)->force_compress)
413 		return 1;
414 	return 0;
415 }
416 
417 static inline void inode_should_defrag(struct btrfs_inode *inode,
418 		u64 start, u64 end, u64 num_bytes, u64 small_write)
419 {
420 	/* If this is a small write inside eof, kick off a defrag */
421 	if (num_bytes < small_write &&
422 	    (start > 0 || end + 1 < inode->disk_i_size))
423 		btrfs_add_inode_defrag(NULL, inode);
424 }
425 
426 /*
427  * we create compressed extents in two phases.  The first
428  * phase compresses a range of pages that have already been
429  * locked (both pages and state bits are locked).
430  *
431  * This is done inside an ordered work queue, and the compression
432  * is spread across many cpus.  The actual IO submission is step
433  * two, and the ordered work queue takes care of making sure that
434  * happens in the same order things were put onto the queue by
435  * writepages and friends.
436  *
437  * If this code finds it can't get good compression, it puts an
438  * entry onto the work queue to write the uncompressed bytes.  This
439  * makes sure that both compressed inodes and uncompressed inodes
440  * are written in the same order that the flusher thread sent them
441  * down.
442  */
443 static noinline void compress_file_range(struct inode *inode,
444 					struct page *locked_page,
445 					u64 start, u64 end,
446 					struct async_cow *async_cow,
447 					int *num_added)
448 {
449 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
450 	struct btrfs_root *root = BTRFS_I(inode)->root;
451 	u64 num_bytes;
452 	u64 blocksize = fs_info->sectorsize;
453 	u64 actual_end;
454 	u64 isize = i_size_read(inode);
455 	int ret = 0;
456 	struct page **pages = NULL;
457 	unsigned long nr_pages;
458 	unsigned long total_compressed = 0;
459 	unsigned long total_in = 0;
460 	int i;
461 	int will_compress;
462 	int compress_type = fs_info->compress_type;
463 	int redirty = 0;
464 
465 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
466 			SZ_16K);
467 
468 	actual_end = min_t(u64, isize, end + 1);
469 again:
470 	will_compress = 0;
471 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
472 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
473 	nr_pages = min_t(unsigned long, nr_pages,
474 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
475 
476 	/*
477 	 * we don't want to send crud past the end of i_size through
478 	 * compression, that's just a waste of CPU time.  So, if the
479 	 * end of the file is before the start of our current
480 	 * requested range of bytes, we bail out to the uncompressed
481 	 * cleanup code that can deal with all of this.
482 	 *
483 	 * It isn't really the fastest way to fix things, but this is a
484 	 * very uncommon corner.
485 	 */
486 	if (actual_end <= start)
487 		goto cleanup_and_bail_uncompressed;
488 
489 	total_compressed = actual_end - start;
490 
491 	/*
492 	 * skip compression for a small file range(<=blocksize) that
493 	 * isn't an inline extent, since it doesn't save disk space at all.
494 	 */
495 	if (total_compressed <= blocksize &&
496 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
497 		goto cleanup_and_bail_uncompressed;
498 
499 	total_compressed = min_t(unsigned long, total_compressed,
500 			BTRFS_MAX_UNCOMPRESSED);
501 	num_bytes = ALIGN(end - start + 1, blocksize);
502 	num_bytes = max(blocksize,  num_bytes);
503 	total_in = 0;
504 	ret = 0;
505 
506 	/*
507 	 * we do compression for mount -o compress and when the
508 	 * inode has not been flagged as nocompress.  This flag can
509 	 * change at any time if we discover bad compression ratios.
510 	 */
511 	if (inode_need_compress(inode)) {
512 		WARN_ON(pages);
513 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
514 		if (!pages) {
515 			/* just bail out to the uncompressed code */
516 			goto cont;
517 		}
518 
519 		if (BTRFS_I(inode)->force_compress)
520 			compress_type = BTRFS_I(inode)->force_compress;
521 
522 		/*
523 		 * we need to call clear_page_dirty_for_io on each
524 		 * page in the range.  Otherwise applications with the file
525 		 * mmap'd can wander in and change the page contents while
526 		 * we are compressing them.
527 		 *
528 		 * If the compression fails for any reason, we set the pages
529 		 * dirty again later on.
530 		 */
531 		extent_range_clear_dirty_for_io(inode, start, end);
532 		redirty = 1;
533 		ret = btrfs_compress_pages(compress_type,
534 					   inode->i_mapping, start,
535 					   pages,
536 					   &nr_pages,
537 					   &total_in,
538 					   &total_compressed);
539 
540 		if (!ret) {
541 			unsigned long offset = total_compressed &
542 				(PAGE_SIZE - 1);
543 			struct page *page = pages[nr_pages - 1];
544 			char *kaddr;
545 
546 			/* zero the tail end of the last page, we might be
547 			 * sending it down to disk
548 			 */
549 			if (offset) {
550 				kaddr = kmap_atomic(page);
551 				memset(kaddr + offset, 0,
552 				       PAGE_SIZE - offset);
553 				kunmap_atomic(kaddr);
554 			}
555 			will_compress = 1;
556 		}
557 	}
558 cont:
559 	if (start == 0) {
560 		/* lets try to make an inline extent */
561 		if (ret || total_in < (actual_end - start)) {
562 			/* we didn't compress the entire range, try
563 			 * to make an uncompressed inline extent.
564 			 */
565 			ret = cow_file_range_inline(root, inode, start, end,
566 					    0, BTRFS_COMPRESS_NONE, NULL);
567 		} else {
568 			/* try making a compressed inline extent */
569 			ret = cow_file_range_inline(root, inode, start, end,
570 						    total_compressed,
571 						    compress_type, pages);
572 		}
573 		if (ret <= 0) {
574 			unsigned long clear_flags = EXTENT_DELALLOC |
575 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
576 			unsigned long page_error_op;
577 
578 			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
579 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
580 
581 			/*
582 			 * inline extent creation worked or returned error,
583 			 * we don't need to create any more async work items.
584 			 * Unlock and free up our temp pages.
585 			 */
586 			extent_clear_unlock_delalloc(inode, start, end, end,
587 						     NULL, clear_flags,
588 						     PAGE_UNLOCK |
589 						     PAGE_CLEAR_DIRTY |
590 						     PAGE_SET_WRITEBACK |
591 						     page_error_op |
592 						     PAGE_END_WRITEBACK);
593 			if (ret == 0)
594 				btrfs_free_reserved_data_space_noquota(inode,
595 							       start,
596 							       end - start + 1);
597 			goto free_pages_out;
598 		}
599 	}
600 
601 	if (will_compress) {
602 		/*
603 		 * we aren't doing an inline extent round the compressed size
604 		 * up to a block size boundary so the allocator does sane
605 		 * things
606 		 */
607 		total_compressed = ALIGN(total_compressed, blocksize);
608 
609 		/*
610 		 * one last check to make sure the compression is really a
611 		 * win, compare the page count read with the blocks on disk
612 		 */
613 		total_in = ALIGN(total_in, PAGE_SIZE);
614 		if (total_compressed >= total_in) {
615 			will_compress = 0;
616 		} else {
617 			num_bytes = total_in;
618 			*num_added += 1;
619 
620 			/*
621 			 * The async work queues will take care of doing actual
622 			 * allocation on disk for these compressed pages, and
623 			 * will submit them to the elevator.
624 			 */
625 			add_async_extent(async_cow, start, num_bytes,
626 					total_compressed, pages, nr_pages,
627 					compress_type);
628 
629 			if (start + num_bytes < end) {
630 				start += num_bytes;
631 				pages = NULL;
632 				cond_resched();
633 				goto again;
634 			}
635 			return;
636 		}
637 	}
638 	if (pages) {
639 		/*
640 		 * the compression code ran but failed to make things smaller,
641 		 * free any pages it allocated and our page pointer array
642 		 */
643 		for (i = 0; i < nr_pages; i++) {
644 			WARN_ON(pages[i]->mapping);
645 			put_page(pages[i]);
646 		}
647 		kfree(pages);
648 		pages = NULL;
649 		total_compressed = 0;
650 		nr_pages = 0;
651 
652 		/* flag the file so we don't compress in the future */
653 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
654 		    !(BTRFS_I(inode)->force_compress)) {
655 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
656 		}
657 	}
658 cleanup_and_bail_uncompressed:
659 	/*
660 	 * No compression, but we still need to write the pages in the file
661 	 * we've been given so far.  redirty the locked page if it corresponds
662 	 * to our extent and set things up for the async work queue to run
663 	 * cow_file_range to do the normal delalloc dance.
664 	 */
665 	if (page_offset(locked_page) >= start &&
666 	    page_offset(locked_page) <= end)
667 		__set_page_dirty_nobuffers(locked_page);
668 		/* unlocked later on in the async handlers */
669 
670 	if (redirty)
671 		extent_range_redirty_for_io(inode, start, end);
672 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
673 			 BTRFS_COMPRESS_NONE);
674 	*num_added += 1;
675 
676 	return;
677 
678 free_pages_out:
679 	for (i = 0; i < nr_pages; i++) {
680 		WARN_ON(pages[i]->mapping);
681 		put_page(pages[i]);
682 	}
683 	kfree(pages);
684 }
685 
686 static void free_async_extent_pages(struct async_extent *async_extent)
687 {
688 	int i;
689 
690 	if (!async_extent->pages)
691 		return;
692 
693 	for (i = 0; i < async_extent->nr_pages; i++) {
694 		WARN_ON(async_extent->pages[i]->mapping);
695 		put_page(async_extent->pages[i]);
696 	}
697 	kfree(async_extent->pages);
698 	async_extent->nr_pages = 0;
699 	async_extent->pages = NULL;
700 }
701 
702 /*
703  * phase two of compressed writeback.  This is the ordered portion
704  * of the code, which only gets called in the order the work was
705  * queued.  We walk all the async extents created by compress_file_range
706  * and send them down to the disk.
707  */
708 static noinline void submit_compressed_extents(struct inode *inode,
709 					      struct async_cow *async_cow)
710 {
711 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
712 	struct async_extent *async_extent;
713 	u64 alloc_hint = 0;
714 	struct btrfs_key ins;
715 	struct extent_map *em;
716 	struct btrfs_root *root = BTRFS_I(inode)->root;
717 	struct extent_io_tree *io_tree;
718 	int ret = 0;
719 
720 again:
721 	while (!list_empty(&async_cow->extents)) {
722 		async_extent = list_entry(async_cow->extents.next,
723 					  struct async_extent, list);
724 		list_del(&async_extent->list);
725 
726 		io_tree = &BTRFS_I(inode)->io_tree;
727 
728 retry:
729 		/* did the compression code fall back to uncompressed IO? */
730 		if (!async_extent->pages) {
731 			int page_started = 0;
732 			unsigned long nr_written = 0;
733 
734 			lock_extent(io_tree, async_extent->start,
735 					 async_extent->start +
736 					 async_extent->ram_size - 1);
737 
738 			/* allocate blocks */
739 			ret = cow_file_range(inode, async_cow->locked_page,
740 					     async_extent->start,
741 					     async_extent->start +
742 					     async_extent->ram_size - 1,
743 					     async_extent->start +
744 					     async_extent->ram_size - 1,
745 					     &page_started, &nr_written, 0,
746 					     NULL);
747 
748 			/* JDM XXX */
749 
750 			/*
751 			 * if page_started, cow_file_range inserted an
752 			 * inline extent and took care of all the unlocking
753 			 * and IO for us.  Otherwise, we need to submit
754 			 * all those pages down to the drive.
755 			 */
756 			if (!page_started && !ret)
757 				extent_write_locked_range(io_tree,
758 						  inode, async_extent->start,
759 						  async_extent->start +
760 						  async_extent->ram_size - 1,
761 						  btrfs_get_extent,
762 						  WB_SYNC_ALL);
763 			else if (ret)
764 				unlock_page(async_cow->locked_page);
765 			kfree(async_extent);
766 			cond_resched();
767 			continue;
768 		}
769 
770 		lock_extent(io_tree, async_extent->start,
771 			    async_extent->start + async_extent->ram_size - 1);
772 
773 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
774 					   async_extent->compressed_size,
775 					   async_extent->compressed_size,
776 					   0, alloc_hint, &ins, 1, 1);
777 		if (ret) {
778 			free_async_extent_pages(async_extent);
779 
780 			if (ret == -ENOSPC) {
781 				unlock_extent(io_tree, async_extent->start,
782 					      async_extent->start +
783 					      async_extent->ram_size - 1);
784 
785 				/*
786 				 * we need to redirty the pages if we decide to
787 				 * fallback to uncompressed IO, otherwise we
788 				 * will not submit these pages down to lower
789 				 * layers.
790 				 */
791 				extent_range_redirty_for_io(inode,
792 						async_extent->start,
793 						async_extent->start +
794 						async_extent->ram_size - 1);
795 
796 				goto retry;
797 			}
798 			goto out_free;
799 		}
800 		/*
801 		 * here we're doing allocation and writeback of the
802 		 * compressed pages
803 		 */
804 		em = create_io_em(inode, async_extent->start,
805 				  async_extent->ram_size, /* len */
806 				  async_extent->start, /* orig_start */
807 				  ins.objectid, /* block_start */
808 				  ins.offset, /* block_len */
809 				  ins.offset, /* orig_block_len */
810 				  async_extent->ram_size, /* ram_bytes */
811 				  async_extent->compress_type,
812 				  BTRFS_ORDERED_COMPRESSED);
813 		if (IS_ERR(em))
814 			/* ret value is not necessary due to void function */
815 			goto out_free_reserve;
816 		free_extent_map(em);
817 
818 		ret = btrfs_add_ordered_extent_compress(inode,
819 						async_extent->start,
820 						ins.objectid,
821 						async_extent->ram_size,
822 						ins.offset,
823 						BTRFS_ORDERED_COMPRESSED,
824 						async_extent->compress_type);
825 		if (ret) {
826 			btrfs_drop_extent_cache(BTRFS_I(inode),
827 						async_extent->start,
828 						async_extent->start +
829 						async_extent->ram_size - 1, 0);
830 			goto out_free_reserve;
831 		}
832 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
833 
834 		/*
835 		 * clear dirty, set writeback and unlock the pages.
836 		 */
837 		extent_clear_unlock_delalloc(inode, async_extent->start,
838 				async_extent->start +
839 				async_extent->ram_size - 1,
840 				async_extent->start +
841 				async_extent->ram_size - 1,
842 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
843 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
844 				PAGE_SET_WRITEBACK);
845 		if (btrfs_submit_compressed_write(inode,
846 				    async_extent->start,
847 				    async_extent->ram_size,
848 				    ins.objectid,
849 				    ins.offset, async_extent->pages,
850 				    async_extent->nr_pages)) {
851 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
852 			struct page *p = async_extent->pages[0];
853 			const u64 start = async_extent->start;
854 			const u64 end = start + async_extent->ram_size - 1;
855 
856 			p->mapping = inode->i_mapping;
857 			tree->ops->writepage_end_io_hook(p, start, end,
858 							 NULL, 0);
859 			p->mapping = NULL;
860 			extent_clear_unlock_delalloc(inode, start, end, end,
861 						     NULL, 0,
862 						     PAGE_END_WRITEBACK |
863 						     PAGE_SET_ERROR);
864 			free_async_extent_pages(async_extent);
865 		}
866 		alloc_hint = ins.objectid + ins.offset;
867 		kfree(async_extent);
868 		cond_resched();
869 	}
870 	return;
871 out_free_reserve:
872 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
873 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
874 out_free:
875 	extent_clear_unlock_delalloc(inode, async_extent->start,
876 				     async_extent->start +
877 				     async_extent->ram_size - 1,
878 				     async_extent->start +
879 				     async_extent->ram_size - 1,
880 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
881 				     EXTENT_DELALLOC_NEW |
882 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
883 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
884 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
885 				     PAGE_SET_ERROR);
886 	free_async_extent_pages(async_extent);
887 	kfree(async_extent);
888 	goto again;
889 }
890 
891 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
892 				      u64 num_bytes)
893 {
894 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
895 	struct extent_map *em;
896 	u64 alloc_hint = 0;
897 
898 	read_lock(&em_tree->lock);
899 	em = search_extent_mapping(em_tree, start, num_bytes);
900 	if (em) {
901 		/*
902 		 * if block start isn't an actual block number then find the
903 		 * first block in this inode and use that as a hint.  If that
904 		 * block is also bogus then just don't worry about it.
905 		 */
906 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
907 			free_extent_map(em);
908 			em = search_extent_mapping(em_tree, 0, 0);
909 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
910 				alloc_hint = em->block_start;
911 			if (em)
912 				free_extent_map(em);
913 		} else {
914 			alloc_hint = em->block_start;
915 			free_extent_map(em);
916 		}
917 	}
918 	read_unlock(&em_tree->lock);
919 
920 	return alloc_hint;
921 }
922 
923 /*
924  * when extent_io.c finds a delayed allocation range in the file,
925  * the call backs end up in this code.  The basic idea is to
926  * allocate extents on disk for the range, and create ordered data structs
927  * in ram to track those extents.
928  *
929  * locked_page is the page that writepage had locked already.  We use
930  * it to make sure we don't do extra locks or unlocks.
931  *
932  * *page_started is set to one if we unlock locked_page and do everything
933  * required to start IO on it.  It may be clean and already done with
934  * IO when we return.
935  */
936 static noinline int cow_file_range(struct inode *inode,
937 				   struct page *locked_page,
938 				   u64 start, u64 end, u64 delalloc_end,
939 				   int *page_started, unsigned long *nr_written,
940 				   int unlock, struct btrfs_dedupe_hash *hash)
941 {
942 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
943 	struct btrfs_root *root = BTRFS_I(inode)->root;
944 	u64 alloc_hint = 0;
945 	u64 num_bytes;
946 	unsigned long ram_size;
947 	u64 disk_num_bytes;
948 	u64 cur_alloc_size = 0;
949 	u64 blocksize = fs_info->sectorsize;
950 	struct btrfs_key ins;
951 	struct extent_map *em;
952 	unsigned clear_bits;
953 	unsigned long page_ops;
954 	bool extent_reserved = false;
955 	int ret = 0;
956 
957 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
958 		WARN_ON_ONCE(1);
959 		ret = -EINVAL;
960 		goto out_unlock;
961 	}
962 
963 	num_bytes = ALIGN(end - start + 1, blocksize);
964 	num_bytes = max(blocksize,  num_bytes);
965 	disk_num_bytes = num_bytes;
966 
967 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
968 
969 	if (start == 0) {
970 		/* lets try to make an inline extent */
971 		ret = cow_file_range_inline(root, inode, start, end, 0,
972 					BTRFS_COMPRESS_NONE, NULL);
973 		if (ret == 0) {
974 			extent_clear_unlock_delalloc(inode, start, end,
975 				     delalloc_end, NULL,
976 				     EXTENT_LOCKED | EXTENT_DELALLOC |
977 				     EXTENT_DELALLOC_NEW |
978 				     EXTENT_DEFRAG, PAGE_UNLOCK |
979 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
980 				     PAGE_END_WRITEBACK);
981 			btrfs_free_reserved_data_space_noquota(inode, start,
982 						end - start + 1);
983 			*nr_written = *nr_written +
984 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
985 			*page_started = 1;
986 			goto out;
987 		} else if (ret < 0) {
988 			goto out_unlock;
989 		}
990 	}
991 
992 	BUG_ON(disk_num_bytes >
993 	       btrfs_super_total_bytes(fs_info->super_copy));
994 
995 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
996 	btrfs_drop_extent_cache(BTRFS_I(inode), start,
997 			start + num_bytes - 1, 0);
998 
999 	while (disk_num_bytes > 0) {
1000 		cur_alloc_size = disk_num_bytes;
1001 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1002 					   fs_info->sectorsize, 0, alloc_hint,
1003 					   &ins, 1, 1);
1004 		if (ret < 0)
1005 			goto out_unlock;
1006 		cur_alloc_size = ins.offset;
1007 		extent_reserved = true;
1008 
1009 		ram_size = ins.offset;
1010 		em = create_io_em(inode, start, ins.offset, /* len */
1011 				  start, /* orig_start */
1012 				  ins.objectid, /* block_start */
1013 				  ins.offset, /* block_len */
1014 				  ins.offset, /* orig_block_len */
1015 				  ram_size, /* ram_bytes */
1016 				  BTRFS_COMPRESS_NONE, /* compress_type */
1017 				  BTRFS_ORDERED_REGULAR /* type */);
1018 		if (IS_ERR(em))
1019 			goto out_reserve;
1020 		free_extent_map(em);
1021 
1022 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1023 					       ram_size, cur_alloc_size, 0);
1024 		if (ret)
1025 			goto out_drop_extent_cache;
1026 
1027 		if (root->root_key.objectid ==
1028 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 			ret = btrfs_reloc_clone_csums(inode, start,
1030 						      cur_alloc_size);
1031 			/*
1032 			 * Only drop cache here, and process as normal.
1033 			 *
1034 			 * We must not allow extent_clear_unlock_delalloc()
1035 			 * at out_unlock label to free meta of this ordered
1036 			 * extent, as its meta should be freed by
1037 			 * btrfs_finish_ordered_io().
1038 			 *
1039 			 * So we must continue until @start is increased to
1040 			 * skip current ordered extent.
1041 			 */
1042 			if (ret)
1043 				btrfs_drop_extent_cache(BTRFS_I(inode), start,
1044 						start + ram_size - 1, 0);
1045 		}
1046 
1047 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1048 
1049 		/* we're not doing compressed IO, don't unlock the first
1050 		 * page (which the caller expects to stay locked), don't
1051 		 * clear any dirty bits and don't set any writeback bits
1052 		 *
1053 		 * Do set the Private2 bit so we know this page was properly
1054 		 * setup for writepage
1055 		 */
1056 		page_ops = unlock ? PAGE_UNLOCK : 0;
1057 		page_ops |= PAGE_SET_PRIVATE2;
1058 
1059 		extent_clear_unlock_delalloc(inode, start,
1060 					     start + ram_size - 1,
1061 					     delalloc_end, locked_page,
1062 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1063 					     page_ops);
1064 		if (disk_num_bytes < cur_alloc_size)
1065 			disk_num_bytes = 0;
1066 		else
1067 			disk_num_bytes -= cur_alloc_size;
1068 		num_bytes -= cur_alloc_size;
1069 		alloc_hint = ins.objectid + ins.offset;
1070 		start += cur_alloc_size;
1071 		extent_reserved = false;
1072 
1073 		/*
1074 		 * btrfs_reloc_clone_csums() error, since start is increased
1075 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 		 * free metadata of current ordered extent, we're OK to exit.
1077 		 */
1078 		if (ret)
1079 			goto out_unlock;
1080 	}
1081 out:
1082 	return ret;
1083 
1084 out_drop_extent_cache:
1085 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1086 out_reserve:
1087 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1088 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1089 out_unlock:
1090 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1091 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1092 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1093 		PAGE_END_WRITEBACK;
1094 	/*
1095 	 * If we reserved an extent for our delalloc range (or a subrange) and
1096 	 * failed to create the respective ordered extent, then it means that
1097 	 * when we reserved the extent we decremented the extent's size from
1098 	 * the data space_info's bytes_may_use counter and incremented the
1099 	 * space_info's bytes_reserved counter by the same amount. We must make
1100 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1103 	 */
1104 	if (extent_reserved) {
1105 		extent_clear_unlock_delalloc(inode, start,
1106 					     start + cur_alloc_size,
1107 					     start + cur_alloc_size,
1108 					     locked_page,
1109 					     clear_bits,
1110 					     page_ops);
1111 		start += cur_alloc_size;
1112 		if (start >= end)
1113 			goto out;
1114 	}
1115 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1116 				     locked_page,
1117 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1118 				     page_ops);
1119 	goto out;
1120 }
1121 
1122 /*
1123  * work queue call back to started compression on a file and pages
1124  */
1125 static noinline void async_cow_start(struct btrfs_work *work)
1126 {
1127 	struct async_cow *async_cow;
1128 	int num_added = 0;
1129 	async_cow = container_of(work, struct async_cow, work);
1130 
1131 	compress_file_range(async_cow->inode, async_cow->locked_page,
1132 			    async_cow->start, async_cow->end, async_cow,
1133 			    &num_added);
1134 	if (num_added == 0) {
1135 		btrfs_add_delayed_iput(async_cow->inode);
1136 		async_cow->inode = NULL;
1137 	}
1138 }
1139 
1140 /*
1141  * work queue call back to submit previously compressed pages
1142  */
1143 static noinline void async_cow_submit(struct btrfs_work *work)
1144 {
1145 	struct btrfs_fs_info *fs_info;
1146 	struct async_cow *async_cow;
1147 	struct btrfs_root *root;
1148 	unsigned long nr_pages;
1149 
1150 	async_cow = container_of(work, struct async_cow, work);
1151 
1152 	root = async_cow->root;
1153 	fs_info = root->fs_info;
1154 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1155 		PAGE_SHIFT;
1156 
1157 	/*
1158 	 * atomic_sub_return implies a barrier for waitqueue_active
1159 	 */
1160 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1161 	    5 * SZ_1M &&
1162 	    waitqueue_active(&fs_info->async_submit_wait))
1163 		wake_up(&fs_info->async_submit_wait);
1164 
1165 	if (async_cow->inode)
1166 		submit_compressed_extents(async_cow->inode, async_cow);
1167 }
1168 
1169 static noinline void async_cow_free(struct btrfs_work *work)
1170 {
1171 	struct async_cow *async_cow;
1172 	async_cow = container_of(work, struct async_cow, work);
1173 	if (async_cow->inode)
1174 		btrfs_add_delayed_iput(async_cow->inode);
1175 	kfree(async_cow);
1176 }
1177 
1178 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1179 				u64 start, u64 end, int *page_started,
1180 				unsigned long *nr_written)
1181 {
1182 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1183 	struct async_cow *async_cow;
1184 	struct btrfs_root *root = BTRFS_I(inode)->root;
1185 	unsigned long nr_pages;
1186 	u64 cur_end;
1187 
1188 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1189 			 1, 0, NULL, GFP_NOFS);
1190 	while (start < end) {
1191 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1192 		BUG_ON(!async_cow); /* -ENOMEM */
1193 		async_cow->inode = igrab(inode);
1194 		async_cow->root = root;
1195 		async_cow->locked_page = locked_page;
1196 		async_cow->start = start;
1197 
1198 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1199 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1200 			cur_end = end;
1201 		else
1202 			cur_end = min(end, start + SZ_512K - 1);
1203 
1204 		async_cow->end = cur_end;
1205 		INIT_LIST_HEAD(&async_cow->extents);
1206 
1207 		btrfs_init_work(&async_cow->work,
1208 				btrfs_delalloc_helper,
1209 				async_cow_start, async_cow_submit,
1210 				async_cow_free);
1211 
1212 		nr_pages = (cur_end - start + PAGE_SIZE) >>
1213 			PAGE_SHIFT;
1214 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1215 
1216 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1217 
1218 		while (atomic_read(&fs_info->async_submit_draining) &&
1219 		       atomic_read(&fs_info->async_delalloc_pages)) {
1220 			wait_event(fs_info->async_submit_wait,
1221 				   (atomic_read(&fs_info->async_delalloc_pages) ==
1222 				    0));
1223 		}
1224 
1225 		*nr_written += nr_pages;
1226 		start = cur_end + 1;
1227 	}
1228 	*page_started = 1;
1229 	return 0;
1230 }
1231 
1232 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1233 					u64 bytenr, u64 num_bytes)
1234 {
1235 	int ret;
1236 	struct btrfs_ordered_sum *sums;
1237 	LIST_HEAD(list);
1238 
1239 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1240 				       bytenr + num_bytes - 1, &list, 0);
1241 	if (ret == 0 && list_empty(&list))
1242 		return 0;
1243 
1244 	while (!list_empty(&list)) {
1245 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1246 		list_del(&sums->list);
1247 		kfree(sums);
1248 	}
1249 	return 1;
1250 }
1251 
1252 /*
1253  * when nowcow writeback call back.  This checks for snapshots or COW copies
1254  * of the extents that exist in the file, and COWs the file as required.
1255  *
1256  * If no cow copies or snapshots exist, we write directly to the existing
1257  * blocks on disk
1258  */
1259 static noinline int run_delalloc_nocow(struct inode *inode,
1260 				       struct page *locked_page,
1261 			      u64 start, u64 end, int *page_started, int force,
1262 			      unsigned long *nr_written)
1263 {
1264 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1265 	struct btrfs_root *root = BTRFS_I(inode)->root;
1266 	struct extent_buffer *leaf;
1267 	struct btrfs_path *path;
1268 	struct btrfs_file_extent_item *fi;
1269 	struct btrfs_key found_key;
1270 	struct extent_map *em;
1271 	u64 cow_start;
1272 	u64 cur_offset;
1273 	u64 extent_end;
1274 	u64 extent_offset;
1275 	u64 disk_bytenr;
1276 	u64 num_bytes;
1277 	u64 disk_num_bytes;
1278 	u64 ram_bytes;
1279 	int extent_type;
1280 	int ret, err;
1281 	int type;
1282 	int nocow;
1283 	int check_prev = 1;
1284 	bool nolock;
1285 	u64 ino = btrfs_ino(BTRFS_I(inode));
1286 
1287 	path = btrfs_alloc_path();
1288 	if (!path) {
1289 		extent_clear_unlock_delalloc(inode, start, end, end,
1290 					     locked_page,
1291 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1292 					     EXTENT_DO_ACCOUNTING |
1293 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1294 					     PAGE_CLEAR_DIRTY |
1295 					     PAGE_SET_WRITEBACK |
1296 					     PAGE_END_WRITEBACK);
1297 		return -ENOMEM;
1298 	}
1299 
1300 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1301 
1302 	cow_start = (u64)-1;
1303 	cur_offset = start;
1304 	while (1) {
1305 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1306 					       cur_offset, 0);
1307 		if (ret < 0)
1308 			goto error;
1309 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1310 			leaf = path->nodes[0];
1311 			btrfs_item_key_to_cpu(leaf, &found_key,
1312 					      path->slots[0] - 1);
1313 			if (found_key.objectid == ino &&
1314 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1315 				path->slots[0]--;
1316 		}
1317 		check_prev = 0;
1318 next_slot:
1319 		leaf = path->nodes[0];
1320 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1321 			ret = btrfs_next_leaf(root, path);
1322 			if (ret < 0)
1323 				goto error;
1324 			if (ret > 0)
1325 				break;
1326 			leaf = path->nodes[0];
1327 		}
1328 
1329 		nocow = 0;
1330 		disk_bytenr = 0;
1331 		num_bytes = 0;
1332 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1333 
1334 		if (found_key.objectid > ino)
1335 			break;
1336 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1337 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1338 			path->slots[0]++;
1339 			goto next_slot;
1340 		}
1341 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1342 		    found_key.offset > end)
1343 			break;
1344 
1345 		if (found_key.offset > cur_offset) {
1346 			extent_end = found_key.offset;
1347 			extent_type = 0;
1348 			goto out_check;
1349 		}
1350 
1351 		fi = btrfs_item_ptr(leaf, path->slots[0],
1352 				    struct btrfs_file_extent_item);
1353 		extent_type = btrfs_file_extent_type(leaf, fi);
1354 
1355 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1356 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1357 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1358 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1359 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1360 			extent_end = found_key.offset +
1361 				btrfs_file_extent_num_bytes(leaf, fi);
1362 			disk_num_bytes =
1363 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1364 			if (extent_end <= start) {
1365 				path->slots[0]++;
1366 				goto next_slot;
1367 			}
1368 			if (disk_bytenr == 0)
1369 				goto out_check;
1370 			if (btrfs_file_extent_compression(leaf, fi) ||
1371 			    btrfs_file_extent_encryption(leaf, fi) ||
1372 			    btrfs_file_extent_other_encoding(leaf, fi))
1373 				goto out_check;
1374 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1375 				goto out_check;
1376 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1377 				goto out_check;
1378 			if (btrfs_cross_ref_exist(root, ino,
1379 						  found_key.offset -
1380 						  extent_offset, disk_bytenr))
1381 				goto out_check;
1382 			disk_bytenr += extent_offset;
1383 			disk_bytenr += cur_offset - found_key.offset;
1384 			num_bytes = min(end + 1, extent_end) - cur_offset;
1385 			/*
1386 			 * if there are pending snapshots for this root,
1387 			 * we fall into common COW way.
1388 			 */
1389 			if (!nolock) {
1390 				err = btrfs_start_write_no_snapshoting(root);
1391 				if (!err)
1392 					goto out_check;
1393 			}
1394 			/*
1395 			 * force cow if csum exists in the range.
1396 			 * this ensure that csum for a given extent are
1397 			 * either valid or do not exist.
1398 			 */
1399 			if (csum_exist_in_range(fs_info, disk_bytenr,
1400 						num_bytes)) {
1401 				if (!nolock)
1402 					btrfs_end_write_no_snapshoting(root);
1403 				goto out_check;
1404 			}
1405 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1406 				if (!nolock)
1407 					btrfs_end_write_no_snapshoting(root);
1408 				goto out_check;
1409 			}
1410 			nocow = 1;
1411 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1412 			extent_end = found_key.offset +
1413 				btrfs_file_extent_inline_len(leaf,
1414 						     path->slots[0], fi);
1415 			extent_end = ALIGN(extent_end,
1416 					   fs_info->sectorsize);
1417 		} else {
1418 			BUG_ON(1);
1419 		}
1420 out_check:
1421 		if (extent_end <= start) {
1422 			path->slots[0]++;
1423 			if (!nolock && nocow)
1424 				btrfs_end_write_no_snapshoting(root);
1425 			if (nocow)
1426 				btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1427 			goto next_slot;
1428 		}
1429 		if (!nocow) {
1430 			if (cow_start == (u64)-1)
1431 				cow_start = cur_offset;
1432 			cur_offset = extent_end;
1433 			if (cur_offset > end)
1434 				break;
1435 			path->slots[0]++;
1436 			goto next_slot;
1437 		}
1438 
1439 		btrfs_release_path(path);
1440 		if (cow_start != (u64)-1) {
1441 			ret = cow_file_range(inode, locked_page,
1442 					     cow_start, found_key.offset - 1,
1443 					     end, page_started, nr_written, 1,
1444 					     NULL);
1445 			if (ret) {
1446 				if (!nolock && nocow)
1447 					btrfs_end_write_no_snapshoting(root);
1448 				if (nocow)
1449 					btrfs_dec_nocow_writers(fs_info,
1450 								disk_bytenr);
1451 				goto error;
1452 			}
1453 			cow_start = (u64)-1;
1454 		}
1455 
1456 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1457 			u64 orig_start = found_key.offset - extent_offset;
1458 
1459 			em = create_io_em(inode, cur_offset, num_bytes,
1460 					  orig_start,
1461 					  disk_bytenr, /* block_start */
1462 					  num_bytes, /* block_len */
1463 					  disk_num_bytes, /* orig_block_len */
1464 					  ram_bytes, BTRFS_COMPRESS_NONE,
1465 					  BTRFS_ORDERED_PREALLOC);
1466 			if (IS_ERR(em)) {
1467 				if (!nolock && nocow)
1468 					btrfs_end_write_no_snapshoting(root);
1469 				if (nocow)
1470 					btrfs_dec_nocow_writers(fs_info,
1471 								disk_bytenr);
1472 				ret = PTR_ERR(em);
1473 				goto error;
1474 			}
1475 			free_extent_map(em);
1476 		}
1477 
1478 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1479 			type = BTRFS_ORDERED_PREALLOC;
1480 		} else {
1481 			type = BTRFS_ORDERED_NOCOW;
1482 		}
1483 
1484 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1485 					       num_bytes, num_bytes, type);
1486 		if (nocow)
1487 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1488 		BUG_ON(ret); /* -ENOMEM */
1489 
1490 		if (root->root_key.objectid ==
1491 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1492 			/*
1493 			 * Error handled later, as we must prevent
1494 			 * extent_clear_unlock_delalloc() in error handler
1495 			 * from freeing metadata of created ordered extent.
1496 			 */
1497 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1498 						      num_bytes);
1499 
1500 		extent_clear_unlock_delalloc(inode, cur_offset,
1501 					     cur_offset + num_bytes - 1, end,
1502 					     locked_page, EXTENT_LOCKED |
1503 					     EXTENT_DELALLOC |
1504 					     EXTENT_CLEAR_DATA_RESV,
1505 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1506 
1507 		if (!nolock && nocow)
1508 			btrfs_end_write_no_snapshoting(root);
1509 		cur_offset = extent_end;
1510 
1511 		/*
1512 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1513 		 * handler, as metadata for created ordered extent will only
1514 		 * be freed by btrfs_finish_ordered_io().
1515 		 */
1516 		if (ret)
1517 			goto error;
1518 		if (cur_offset > end)
1519 			break;
1520 	}
1521 	btrfs_release_path(path);
1522 
1523 	if (cur_offset <= end && cow_start == (u64)-1) {
1524 		cow_start = cur_offset;
1525 		cur_offset = end;
1526 	}
1527 
1528 	if (cow_start != (u64)-1) {
1529 		ret = cow_file_range(inode, locked_page, cow_start, end, end,
1530 				     page_started, nr_written, 1, NULL);
1531 		if (ret)
1532 			goto error;
1533 	}
1534 
1535 error:
1536 	if (ret && cur_offset < end)
1537 		extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1538 					     locked_page, EXTENT_LOCKED |
1539 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1540 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1541 					     PAGE_CLEAR_DIRTY |
1542 					     PAGE_SET_WRITEBACK |
1543 					     PAGE_END_WRITEBACK);
1544 	btrfs_free_path(path);
1545 	return ret;
1546 }
1547 
1548 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1549 {
1550 
1551 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1552 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1553 		return 0;
1554 
1555 	/*
1556 	 * @defrag_bytes is a hint value, no spinlock held here,
1557 	 * if is not zero, it means the file is defragging.
1558 	 * Force cow if given extent needs to be defragged.
1559 	 */
1560 	if (BTRFS_I(inode)->defrag_bytes &&
1561 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1562 			   EXTENT_DEFRAG, 0, NULL))
1563 		return 1;
1564 
1565 	return 0;
1566 }
1567 
1568 /*
1569  * extent_io.c call back to do delayed allocation processing
1570  */
1571 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1572 			      u64 start, u64 end, int *page_started,
1573 			      unsigned long *nr_written)
1574 {
1575 	int ret;
1576 	int force_cow = need_force_cow(inode, start, end);
1577 
1578 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1579 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1580 					 page_started, 1, nr_written);
1581 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1582 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1583 					 page_started, 0, nr_written);
1584 	} else if (!inode_need_compress(inode)) {
1585 		ret = cow_file_range(inode, locked_page, start, end, end,
1586 				      page_started, nr_written, 1, NULL);
1587 	} else {
1588 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1589 			&BTRFS_I(inode)->runtime_flags);
1590 		ret = cow_file_range_async(inode, locked_page, start, end,
1591 					   page_started, nr_written);
1592 	}
1593 	if (ret)
1594 		btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1595 	return ret;
1596 }
1597 
1598 static void btrfs_split_extent_hook(struct inode *inode,
1599 				    struct extent_state *orig, u64 split)
1600 {
1601 	u64 size;
1602 
1603 	/* not delalloc, ignore it */
1604 	if (!(orig->state & EXTENT_DELALLOC))
1605 		return;
1606 
1607 	size = orig->end - orig->start + 1;
1608 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1609 		u32 num_extents;
1610 		u64 new_size;
1611 
1612 		/*
1613 		 * See the explanation in btrfs_merge_extent_hook, the same
1614 		 * applies here, just in reverse.
1615 		 */
1616 		new_size = orig->end - split + 1;
1617 		num_extents = count_max_extents(new_size);
1618 		new_size = split - orig->start;
1619 		num_extents += count_max_extents(new_size);
1620 		if (count_max_extents(size) >= num_extents)
1621 			return;
1622 	}
1623 
1624 	spin_lock(&BTRFS_I(inode)->lock);
1625 	BTRFS_I(inode)->outstanding_extents++;
1626 	spin_unlock(&BTRFS_I(inode)->lock);
1627 }
1628 
1629 /*
1630  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1631  * extents so we can keep track of new extents that are just merged onto old
1632  * extents, such as when we are doing sequential writes, so we can properly
1633  * account for the metadata space we'll need.
1634  */
1635 static void btrfs_merge_extent_hook(struct inode *inode,
1636 				    struct extent_state *new,
1637 				    struct extent_state *other)
1638 {
1639 	u64 new_size, old_size;
1640 	u32 num_extents;
1641 
1642 	/* not delalloc, ignore it */
1643 	if (!(other->state & EXTENT_DELALLOC))
1644 		return;
1645 
1646 	if (new->start > other->start)
1647 		new_size = new->end - other->start + 1;
1648 	else
1649 		new_size = other->end - new->start + 1;
1650 
1651 	/* we're not bigger than the max, unreserve the space and go */
1652 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1653 		spin_lock(&BTRFS_I(inode)->lock);
1654 		BTRFS_I(inode)->outstanding_extents--;
1655 		spin_unlock(&BTRFS_I(inode)->lock);
1656 		return;
1657 	}
1658 
1659 	/*
1660 	 * We have to add up either side to figure out how many extents were
1661 	 * accounted for before we merged into one big extent.  If the number of
1662 	 * extents we accounted for is <= the amount we need for the new range
1663 	 * then we can return, otherwise drop.  Think of it like this
1664 	 *
1665 	 * [ 4k][MAX_SIZE]
1666 	 *
1667 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1668 	 * need 2 outstanding extents, on one side we have 1 and the other side
1669 	 * we have 1 so they are == and we can return.  But in this case
1670 	 *
1671 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1672 	 *
1673 	 * Each range on their own accounts for 2 extents, but merged together
1674 	 * they are only 3 extents worth of accounting, so we need to drop in
1675 	 * this case.
1676 	 */
1677 	old_size = other->end - other->start + 1;
1678 	num_extents = count_max_extents(old_size);
1679 	old_size = new->end - new->start + 1;
1680 	num_extents += count_max_extents(old_size);
1681 	if (count_max_extents(new_size) >= num_extents)
1682 		return;
1683 
1684 	spin_lock(&BTRFS_I(inode)->lock);
1685 	BTRFS_I(inode)->outstanding_extents--;
1686 	spin_unlock(&BTRFS_I(inode)->lock);
1687 }
1688 
1689 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1690 				      struct inode *inode)
1691 {
1692 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1693 
1694 	spin_lock(&root->delalloc_lock);
1695 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1696 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1697 			      &root->delalloc_inodes);
1698 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1699 			&BTRFS_I(inode)->runtime_flags);
1700 		root->nr_delalloc_inodes++;
1701 		if (root->nr_delalloc_inodes == 1) {
1702 			spin_lock(&fs_info->delalloc_root_lock);
1703 			BUG_ON(!list_empty(&root->delalloc_root));
1704 			list_add_tail(&root->delalloc_root,
1705 				      &fs_info->delalloc_roots);
1706 			spin_unlock(&fs_info->delalloc_root_lock);
1707 		}
1708 	}
1709 	spin_unlock(&root->delalloc_lock);
1710 }
1711 
1712 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1713 				     struct btrfs_inode *inode)
1714 {
1715 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1716 
1717 	spin_lock(&root->delalloc_lock);
1718 	if (!list_empty(&inode->delalloc_inodes)) {
1719 		list_del_init(&inode->delalloc_inodes);
1720 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721 			  &inode->runtime_flags);
1722 		root->nr_delalloc_inodes--;
1723 		if (!root->nr_delalloc_inodes) {
1724 			spin_lock(&fs_info->delalloc_root_lock);
1725 			BUG_ON(list_empty(&root->delalloc_root));
1726 			list_del_init(&root->delalloc_root);
1727 			spin_unlock(&fs_info->delalloc_root_lock);
1728 		}
1729 	}
1730 	spin_unlock(&root->delalloc_lock);
1731 }
1732 
1733 /*
1734  * extent_io.c set_bit_hook, used to track delayed allocation
1735  * bytes in this file, and to maintain the list of inodes that
1736  * have pending delalloc work to be done.
1737  */
1738 static void btrfs_set_bit_hook(struct inode *inode,
1739 			       struct extent_state *state, unsigned *bits)
1740 {
1741 
1742 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1743 
1744 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1745 		WARN_ON(1);
1746 	/*
1747 	 * set_bit and clear bit hooks normally require _irqsave/restore
1748 	 * but in this case, we are only testing for the DELALLOC
1749 	 * bit, which is only set or cleared with irqs on
1750 	 */
1751 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1752 		struct btrfs_root *root = BTRFS_I(inode)->root;
1753 		u64 len = state->end + 1 - state->start;
1754 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1755 
1756 		if (*bits & EXTENT_FIRST_DELALLOC) {
1757 			*bits &= ~EXTENT_FIRST_DELALLOC;
1758 		} else {
1759 			spin_lock(&BTRFS_I(inode)->lock);
1760 			BTRFS_I(inode)->outstanding_extents++;
1761 			spin_unlock(&BTRFS_I(inode)->lock);
1762 		}
1763 
1764 		/* For sanity tests */
1765 		if (btrfs_is_testing(fs_info))
1766 			return;
1767 
1768 		__percpu_counter_add(&fs_info->delalloc_bytes, len,
1769 				     fs_info->delalloc_batch);
1770 		spin_lock(&BTRFS_I(inode)->lock);
1771 		BTRFS_I(inode)->delalloc_bytes += len;
1772 		if (*bits & EXTENT_DEFRAG)
1773 			BTRFS_I(inode)->defrag_bytes += len;
1774 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1775 					 &BTRFS_I(inode)->runtime_flags))
1776 			btrfs_add_delalloc_inodes(root, inode);
1777 		spin_unlock(&BTRFS_I(inode)->lock);
1778 	}
1779 
1780 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
1781 	    (*bits & EXTENT_DELALLOC_NEW)) {
1782 		spin_lock(&BTRFS_I(inode)->lock);
1783 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1784 			state->start;
1785 		spin_unlock(&BTRFS_I(inode)->lock);
1786 	}
1787 }
1788 
1789 /*
1790  * extent_io.c clear_bit_hook, see set_bit_hook for why
1791  */
1792 static void btrfs_clear_bit_hook(struct btrfs_inode *inode,
1793 				 struct extent_state *state,
1794 				 unsigned *bits)
1795 {
1796 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1797 	u64 len = state->end + 1 - state->start;
1798 	u32 num_extents = count_max_extents(len);
1799 
1800 	spin_lock(&inode->lock);
1801 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1802 		inode->defrag_bytes -= len;
1803 	spin_unlock(&inode->lock);
1804 
1805 	/*
1806 	 * set_bit and clear bit hooks normally require _irqsave/restore
1807 	 * but in this case, we are only testing for the DELALLOC
1808 	 * bit, which is only set or cleared with irqs on
1809 	 */
1810 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1811 		struct btrfs_root *root = inode->root;
1812 		bool do_list = !btrfs_is_free_space_inode(inode);
1813 
1814 		if (*bits & EXTENT_FIRST_DELALLOC) {
1815 			*bits &= ~EXTENT_FIRST_DELALLOC;
1816 		} else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
1817 			spin_lock(&inode->lock);
1818 			inode->outstanding_extents -= num_extents;
1819 			spin_unlock(&inode->lock);
1820 		}
1821 
1822 		/*
1823 		 * We don't reserve metadata space for space cache inodes so we
1824 		 * don't need to call dellalloc_release_metadata if there is an
1825 		 * error.
1826 		 */
1827 		if (*bits & EXTENT_CLEAR_META_RESV &&
1828 		    root != fs_info->tree_root)
1829 			btrfs_delalloc_release_metadata(inode, len);
1830 
1831 		/* For sanity tests. */
1832 		if (btrfs_is_testing(fs_info))
1833 			return;
1834 
1835 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1836 		    do_list && !(state->state & EXTENT_NORESERVE) &&
1837 		    (*bits & EXTENT_CLEAR_DATA_RESV))
1838 			btrfs_free_reserved_data_space_noquota(
1839 					&inode->vfs_inode,
1840 					state->start, len);
1841 
1842 		__percpu_counter_add(&fs_info->delalloc_bytes, -len,
1843 				     fs_info->delalloc_batch);
1844 		spin_lock(&inode->lock);
1845 		inode->delalloc_bytes -= len;
1846 		if (do_list && inode->delalloc_bytes == 0 &&
1847 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1848 					&inode->runtime_flags))
1849 			btrfs_del_delalloc_inode(root, inode);
1850 		spin_unlock(&inode->lock);
1851 	}
1852 
1853 	if ((state->state & EXTENT_DELALLOC_NEW) &&
1854 	    (*bits & EXTENT_DELALLOC_NEW)) {
1855 		spin_lock(&inode->lock);
1856 		ASSERT(inode->new_delalloc_bytes >= len);
1857 		inode->new_delalloc_bytes -= len;
1858 		spin_unlock(&inode->lock);
1859 	}
1860 }
1861 
1862 /*
1863  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1864  * we don't create bios that span stripes or chunks
1865  *
1866  * return 1 if page cannot be merged to bio
1867  * return 0 if page can be merged to bio
1868  * return error otherwise
1869  */
1870 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1871 			 size_t size, struct bio *bio,
1872 			 unsigned long bio_flags)
1873 {
1874 	struct inode *inode = page->mapping->host;
1875 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1876 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1877 	u64 length = 0;
1878 	u64 map_length;
1879 	int ret;
1880 
1881 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1882 		return 0;
1883 
1884 	length = bio->bi_iter.bi_size;
1885 	map_length = length;
1886 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1887 			      NULL, 0);
1888 	if (ret < 0)
1889 		return ret;
1890 	if (map_length < length + size)
1891 		return 1;
1892 	return 0;
1893 }
1894 
1895 /*
1896  * in order to insert checksums into the metadata in large chunks,
1897  * we wait until bio submission time.   All the pages in the bio are
1898  * checksummed and sums are attached onto the ordered extent record.
1899  *
1900  * At IO completion time the cums attached on the ordered extent record
1901  * are inserted into the btree
1902  */
1903 static blk_status_t __btrfs_submit_bio_start(struct inode *inode,
1904 		struct bio *bio, int mirror_num, unsigned long bio_flags,
1905 		u64 bio_offset)
1906 {
1907 	blk_status_t ret = 0;
1908 
1909 	ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1910 	BUG_ON(ret); /* -ENOMEM */
1911 	return 0;
1912 }
1913 
1914 /*
1915  * in order to insert checksums into the metadata in large chunks,
1916  * we wait until bio submission time.   All the pages in the bio are
1917  * checksummed and sums are attached onto the ordered extent record.
1918  *
1919  * At IO completion time the cums attached on the ordered extent record
1920  * are inserted into the btree
1921  */
1922 static blk_status_t __btrfs_submit_bio_done(struct inode *inode,
1923 		struct bio *bio, int mirror_num, unsigned long bio_flags,
1924 		u64 bio_offset)
1925 {
1926 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1927 	blk_status_t ret;
1928 
1929 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1930 	if (ret) {
1931 		bio->bi_status = ret;
1932 		bio_endio(bio);
1933 	}
1934 	return ret;
1935 }
1936 
1937 /*
1938  * extent_io.c submission hook. This does the right thing for csum calculation
1939  * on write, or reading the csums from the tree before a read
1940  */
1941 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1942 			  int mirror_num, unsigned long bio_flags,
1943 			  u64 bio_offset)
1944 {
1945 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1946 	struct btrfs_root *root = BTRFS_I(inode)->root;
1947 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1948 	blk_status_t ret = 0;
1949 	int skip_sum;
1950 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1951 
1952 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1953 
1954 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1955 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1956 
1957 	if (bio_op(bio) != REQ_OP_WRITE) {
1958 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1959 		if (ret)
1960 			goto out;
1961 
1962 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1963 			ret = btrfs_submit_compressed_read(inode, bio,
1964 							   mirror_num,
1965 							   bio_flags);
1966 			goto out;
1967 		} else if (!skip_sum) {
1968 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
1969 			if (ret)
1970 				goto out;
1971 		}
1972 		goto mapit;
1973 	} else if (async && !skip_sum) {
1974 		/* csum items have already been cloned */
1975 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1976 			goto mapit;
1977 		/* we're doing a write, do the async checksumming */
1978 		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num,
1979 					  bio_flags, bio_offset,
1980 					  __btrfs_submit_bio_start,
1981 					  __btrfs_submit_bio_done);
1982 		goto out;
1983 	} else if (!skip_sum) {
1984 		ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1985 		if (ret)
1986 			goto out;
1987 	}
1988 
1989 mapit:
1990 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1991 
1992 out:
1993 	if (ret) {
1994 		bio->bi_status = ret;
1995 		bio_endio(bio);
1996 	}
1997 	return ret;
1998 }
1999 
2000 /*
2001  * given a list of ordered sums record them in the inode.  This happens
2002  * at IO completion time based on sums calculated at bio submission time.
2003  */
2004 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2005 			     struct inode *inode, struct list_head *list)
2006 {
2007 	struct btrfs_ordered_sum *sum;
2008 
2009 	list_for_each_entry(sum, list, list) {
2010 		trans->adding_csums = 1;
2011 		btrfs_csum_file_blocks(trans,
2012 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2013 		trans->adding_csums = 0;
2014 	}
2015 	return 0;
2016 }
2017 
2018 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2019 			      struct extent_state **cached_state, int dedupe)
2020 {
2021 	WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2022 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2023 				   cached_state);
2024 }
2025 
2026 /* see btrfs_writepage_start_hook for details on why this is required */
2027 struct btrfs_writepage_fixup {
2028 	struct page *page;
2029 	struct btrfs_work work;
2030 };
2031 
2032 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2033 {
2034 	struct btrfs_writepage_fixup *fixup;
2035 	struct btrfs_ordered_extent *ordered;
2036 	struct extent_state *cached_state = NULL;
2037 	struct page *page;
2038 	struct inode *inode;
2039 	u64 page_start;
2040 	u64 page_end;
2041 	int ret;
2042 
2043 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2044 	page = fixup->page;
2045 again:
2046 	lock_page(page);
2047 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2048 		ClearPageChecked(page);
2049 		goto out_page;
2050 	}
2051 
2052 	inode = page->mapping->host;
2053 	page_start = page_offset(page);
2054 	page_end = page_offset(page) + PAGE_SIZE - 1;
2055 
2056 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2057 			 &cached_state);
2058 
2059 	/* already ordered? We're done */
2060 	if (PagePrivate2(page))
2061 		goto out;
2062 
2063 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2064 					PAGE_SIZE);
2065 	if (ordered) {
2066 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2067 				     page_end, &cached_state, GFP_NOFS);
2068 		unlock_page(page);
2069 		btrfs_start_ordered_extent(inode, ordered, 1);
2070 		btrfs_put_ordered_extent(ordered);
2071 		goto again;
2072 	}
2073 
2074 	ret = btrfs_delalloc_reserve_space(inode, page_start,
2075 					   PAGE_SIZE);
2076 	if (ret) {
2077 		mapping_set_error(page->mapping, ret);
2078 		end_extent_writepage(page, ret, page_start, page_end);
2079 		ClearPageChecked(page);
2080 		goto out;
2081 	 }
2082 
2083 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2084 				  0);
2085 	ClearPageChecked(page);
2086 	set_page_dirty(page);
2087 out:
2088 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2089 			     &cached_state, GFP_NOFS);
2090 out_page:
2091 	unlock_page(page);
2092 	put_page(page);
2093 	kfree(fixup);
2094 }
2095 
2096 /*
2097  * There are a few paths in the higher layers of the kernel that directly
2098  * set the page dirty bit without asking the filesystem if it is a
2099  * good idea.  This causes problems because we want to make sure COW
2100  * properly happens and the data=ordered rules are followed.
2101  *
2102  * In our case any range that doesn't have the ORDERED bit set
2103  * hasn't been properly setup for IO.  We kick off an async process
2104  * to fix it up.  The async helper will wait for ordered extents, set
2105  * the delalloc bit and make it safe to write the page.
2106  */
2107 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2108 {
2109 	struct inode *inode = page->mapping->host;
2110 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2111 	struct btrfs_writepage_fixup *fixup;
2112 
2113 	/* this page is properly in the ordered list */
2114 	if (TestClearPagePrivate2(page))
2115 		return 0;
2116 
2117 	if (PageChecked(page))
2118 		return -EAGAIN;
2119 
2120 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2121 	if (!fixup)
2122 		return -EAGAIN;
2123 
2124 	SetPageChecked(page);
2125 	get_page(page);
2126 	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2127 			btrfs_writepage_fixup_worker, NULL, NULL);
2128 	fixup->page = page;
2129 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2130 	return -EBUSY;
2131 }
2132 
2133 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2134 				       struct inode *inode, u64 file_pos,
2135 				       u64 disk_bytenr, u64 disk_num_bytes,
2136 				       u64 num_bytes, u64 ram_bytes,
2137 				       u8 compression, u8 encryption,
2138 				       u16 other_encoding, int extent_type)
2139 {
2140 	struct btrfs_root *root = BTRFS_I(inode)->root;
2141 	struct btrfs_file_extent_item *fi;
2142 	struct btrfs_path *path;
2143 	struct extent_buffer *leaf;
2144 	struct btrfs_key ins;
2145 	int extent_inserted = 0;
2146 	int ret;
2147 
2148 	path = btrfs_alloc_path();
2149 	if (!path)
2150 		return -ENOMEM;
2151 
2152 	/*
2153 	 * we may be replacing one extent in the tree with another.
2154 	 * The new extent is pinned in the extent map, and we don't want
2155 	 * to drop it from the cache until it is completely in the btree.
2156 	 *
2157 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2158 	 * the caller is expected to unpin it and allow it to be merged
2159 	 * with the others.
2160 	 */
2161 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2162 				   file_pos + num_bytes, NULL, 0,
2163 				   1, sizeof(*fi), &extent_inserted);
2164 	if (ret)
2165 		goto out;
2166 
2167 	if (!extent_inserted) {
2168 		ins.objectid = btrfs_ino(BTRFS_I(inode));
2169 		ins.offset = file_pos;
2170 		ins.type = BTRFS_EXTENT_DATA_KEY;
2171 
2172 		path->leave_spinning = 1;
2173 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2174 					      sizeof(*fi));
2175 		if (ret)
2176 			goto out;
2177 	}
2178 	leaf = path->nodes[0];
2179 	fi = btrfs_item_ptr(leaf, path->slots[0],
2180 			    struct btrfs_file_extent_item);
2181 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2182 	btrfs_set_file_extent_type(leaf, fi, extent_type);
2183 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2184 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2185 	btrfs_set_file_extent_offset(leaf, fi, 0);
2186 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2187 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2188 	btrfs_set_file_extent_compression(leaf, fi, compression);
2189 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2190 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2191 
2192 	btrfs_mark_buffer_dirty(leaf);
2193 	btrfs_release_path(path);
2194 
2195 	inode_add_bytes(inode, num_bytes);
2196 
2197 	ins.objectid = disk_bytenr;
2198 	ins.offset = disk_num_bytes;
2199 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2200 	ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2201 			btrfs_ino(BTRFS_I(inode)), file_pos, ram_bytes, &ins);
2202 	/*
2203 	 * Release the reserved range from inode dirty range map, as it is
2204 	 * already moved into delayed_ref_head
2205 	 */
2206 	btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2207 out:
2208 	btrfs_free_path(path);
2209 
2210 	return ret;
2211 }
2212 
2213 /* snapshot-aware defrag */
2214 struct sa_defrag_extent_backref {
2215 	struct rb_node node;
2216 	struct old_sa_defrag_extent *old;
2217 	u64 root_id;
2218 	u64 inum;
2219 	u64 file_pos;
2220 	u64 extent_offset;
2221 	u64 num_bytes;
2222 	u64 generation;
2223 };
2224 
2225 struct old_sa_defrag_extent {
2226 	struct list_head list;
2227 	struct new_sa_defrag_extent *new;
2228 
2229 	u64 extent_offset;
2230 	u64 bytenr;
2231 	u64 offset;
2232 	u64 len;
2233 	int count;
2234 };
2235 
2236 struct new_sa_defrag_extent {
2237 	struct rb_root root;
2238 	struct list_head head;
2239 	struct btrfs_path *path;
2240 	struct inode *inode;
2241 	u64 file_pos;
2242 	u64 len;
2243 	u64 bytenr;
2244 	u64 disk_len;
2245 	u8 compress_type;
2246 };
2247 
2248 static int backref_comp(struct sa_defrag_extent_backref *b1,
2249 			struct sa_defrag_extent_backref *b2)
2250 {
2251 	if (b1->root_id < b2->root_id)
2252 		return -1;
2253 	else if (b1->root_id > b2->root_id)
2254 		return 1;
2255 
2256 	if (b1->inum < b2->inum)
2257 		return -1;
2258 	else if (b1->inum > b2->inum)
2259 		return 1;
2260 
2261 	if (b1->file_pos < b2->file_pos)
2262 		return -1;
2263 	else if (b1->file_pos > b2->file_pos)
2264 		return 1;
2265 
2266 	/*
2267 	 * [------------------------------] ===> (a range of space)
2268 	 *     |<--->|   |<---->| =============> (fs/file tree A)
2269 	 * |<---------------------------->| ===> (fs/file tree B)
2270 	 *
2271 	 * A range of space can refer to two file extents in one tree while
2272 	 * refer to only one file extent in another tree.
2273 	 *
2274 	 * So we may process a disk offset more than one time(two extents in A)
2275 	 * and locate at the same extent(one extent in B), then insert two same
2276 	 * backrefs(both refer to the extent in B).
2277 	 */
2278 	return 0;
2279 }
2280 
2281 static void backref_insert(struct rb_root *root,
2282 			   struct sa_defrag_extent_backref *backref)
2283 {
2284 	struct rb_node **p = &root->rb_node;
2285 	struct rb_node *parent = NULL;
2286 	struct sa_defrag_extent_backref *entry;
2287 	int ret;
2288 
2289 	while (*p) {
2290 		parent = *p;
2291 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2292 
2293 		ret = backref_comp(backref, entry);
2294 		if (ret < 0)
2295 			p = &(*p)->rb_left;
2296 		else
2297 			p = &(*p)->rb_right;
2298 	}
2299 
2300 	rb_link_node(&backref->node, parent, p);
2301 	rb_insert_color(&backref->node, root);
2302 }
2303 
2304 /*
2305  * Note the backref might has changed, and in this case we just return 0.
2306  */
2307 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2308 				       void *ctx)
2309 {
2310 	struct btrfs_file_extent_item *extent;
2311 	struct old_sa_defrag_extent *old = ctx;
2312 	struct new_sa_defrag_extent *new = old->new;
2313 	struct btrfs_path *path = new->path;
2314 	struct btrfs_key key;
2315 	struct btrfs_root *root;
2316 	struct sa_defrag_extent_backref *backref;
2317 	struct extent_buffer *leaf;
2318 	struct inode *inode = new->inode;
2319 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2320 	int slot;
2321 	int ret;
2322 	u64 extent_offset;
2323 	u64 num_bytes;
2324 
2325 	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2326 	    inum == btrfs_ino(BTRFS_I(inode)))
2327 		return 0;
2328 
2329 	key.objectid = root_id;
2330 	key.type = BTRFS_ROOT_ITEM_KEY;
2331 	key.offset = (u64)-1;
2332 
2333 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2334 	if (IS_ERR(root)) {
2335 		if (PTR_ERR(root) == -ENOENT)
2336 			return 0;
2337 		WARN_ON(1);
2338 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2339 			 inum, offset, root_id);
2340 		return PTR_ERR(root);
2341 	}
2342 
2343 	key.objectid = inum;
2344 	key.type = BTRFS_EXTENT_DATA_KEY;
2345 	if (offset > (u64)-1 << 32)
2346 		key.offset = 0;
2347 	else
2348 		key.offset = offset;
2349 
2350 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2351 	if (WARN_ON(ret < 0))
2352 		return ret;
2353 	ret = 0;
2354 
2355 	while (1) {
2356 		cond_resched();
2357 
2358 		leaf = path->nodes[0];
2359 		slot = path->slots[0];
2360 
2361 		if (slot >= btrfs_header_nritems(leaf)) {
2362 			ret = btrfs_next_leaf(root, path);
2363 			if (ret < 0) {
2364 				goto out;
2365 			} else if (ret > 0) {
2366 				ret = 0;
2367 				goto out;
2368 			}
2369 			continue;
2370 		}
2371 
2372 		path->slots[0]++;
2373 
2374 		btrfs_item_key_to_cpu(leaf, &key, slot);
2375 
2376 		if (key.objectid > inum)
2377 			goto out;
2378 
2379 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2380 			continue;
2381 
2382 		extent = btrfs_item_ptr(leaf, slot,
2383 					struct btrfs_file_extent_item);
2384 
2385 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2386 			continue;
2387 
2388 		/*
2389 		 * 'offset' refers to the exact key.offset,
2390 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2391 		 * (key.offset - extent_offset).
2392 		 */
2393 		if (key.offset != offset)
2394 			continue;
2395 
2396 		extent_offset = btrfs_file_extent_offset(leaf, extent);
2397 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2398 
2399 		if (extent_offset >= old->extent_offset + old->offset +
2400 		    old->len || extent_offset + num_bytes <=
2401 		    old->extent_offset + old->offset)
2402 			continue;
2403 		break;
2404 	}
2405 
2406 	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2407 	if (!backref) {
2408 		ret = -ENOENT;
2409 		goto out;
2410 	}
2411 
2412 	backref->root_id = root_id;
2413 	backref->inum = inum;
2414 	backref->file_pos = offset;
2415 	backref->num_bytes = num_bytes;
2416 	backref->extent_offset = extent_offset;
2417 	backref->generation = btrfs_file_extent_generation(leaf, extent);
2418 	backref->old = old;
2419 	backref_insert(&new->root, backref);
2420 	old->count++;
2421 out:
2422 	btrfs_release_path(path);
2423 	WARN_ON(ret);
2424 	return ret;
2425 }
2426 
2427 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2428 				   struct new_sa_defrag_extent *new)
2429 {
2430 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2431 	struct old_sa_defrag_extent *old, *tmp;
2432 	int ret;
2433 
2434 	new->path = path;
2435 
2436 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2437 		ret = iterate_inodes_from_logical(old->bytenr +
2438 						  old->extent_offset, fs_info,
2439 						  path, record_one_backref,
2440 						  old);
2441 		if (ret < 0 && ret != -ENOENT)
2442 			return false;
2443 
2444 		/* no backref to be processed for this extent */
2445 		if (!old->count) {
2446 			list_del(&old->list);
2447 			kfree(old);
2448 		}
2449 	}
2450 
2451 	if (list_empty(&new->head))
2452 		return false;
2453 
2454 	return true;
2455 }
2456 
2457 static int relink_is_mergable(struct extent_buffer *leaf,
2458 			      struct btrfs_file_extent_item *fi,
2459 			      struct new_sa_defrag_extent *new)
2460 {
2461 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2462 		return 0;
2463 
2464 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2465 		return 0;
2466 
2467 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2468 		return 0;
2469 
2470 	if (btrfs_file_extent_encryption(leaf, fi) ||
2471 	    btrfs_file_extent_other_encoding(leaf, fi))
2472 		return 0;
2473 
2474 	return 1;
2475 }
2476 
2477 /*
2478  * Note the backref might has changed, and in this case we just return 0.
2479  */
2480 static noinline int relink_extent_backref(struct btrfs_path *path,
2481 				 struct sa_defrag_extent_backref *prev,
2482 				 struct sa_defrag_extent_backref *backref)
2483 {
2484 	struct btrfs_file_extent_item *extent;
2485 	struct btrfs_file_extent_item *item;
2486 	struct btrfs_ordered_extent *ordered;
2487 	struct btrfs_trans_handle *trans;
2488 	struct btrfs_root *root;
2489 	struct btrfs_key key;
2490 	struct extent_buffer *leaf;
2491 	struct old_sa_defrag_extent *old = backref->old;
2492 	struct new_sa_defrag_extent *new = old->new;
2493 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2494 	struct inode *inode;
2495 	struct extent_state *cached = NULL;
2496 	int ret = 0;
2497 	u64 start;
2498 	u64 len;
2499 	u64 lock_start;
2500 	u64 lock_end;
2501 	bool merge = false;
2502 	int index;
2503 
2504 	if (prev && prev->root_id == backref->root_id &&
2505 	    prev->inum == backref->inum &&
2506 	    prev->file_pos + prev->num_bytes == backref->file_pos)
2507 		merge = true;
2508 
2509 	/* step 1: get root */
2510 	key.objectid = backref->root_id;
2511 	key.type = BTRFS_ROOT_ITEM_KEY;
2512 	key.offset = (u64)-1;
2513 
2514 	index = srcu_read_lock(&fs_info->subvol_srcu);
2515 
2516 	root = btrfs_read_fs_root_no_name(fs_info, &key);
2517 	if (IS_ERR(root)) {
2518 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2519 		if (PTR_ERR(root) == -ENOENT)
2520 			return 0;
2521 		return PTR_ERR(root);
2522 	}
2523 
2524 	if (btrfs_root_readonly(root)) {
2525 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2526 		return 0;
2527 	}
2528 
2529 	/* step 2: get inode */
2530 	key.objectid = backref->inum;
2531 	key.type = BTRFS_INODE_ITEM_KEY;
2532 	key.offset = 0;
2533 
2534 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2535 	if (IS_ERR(inode)) {
2536 		srcu_read_unlock(&fs_info->subvol_srcu, index);
2537 		return 0;
2538 	}
2539 
2540 	srcu_read_unlock(&fs_info->subvol_srcu, index);
2541 
2542 	/* step 3: relink backref */
2543 	lock_start = backref->file_pos;
2544 	lock_end = backref->file_pos + backref->num_bytes - 1;
2545 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2546 			 &cached);
2547 
2548 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2549 	if (ordered) {
2550 		btrfs_put_ordered_extent(ordered);
2551 		goto out_unlock;
2552 	}
2553 
2554 	trans = btrfs_join_transaction(root);
2555 	if (IS_ERR(trans)) {
2556 		ret = PTR_ERR(trans);
2557 		goto out_unlock;
2558 	}
2559 
2560 	key.objectid = backref->inum;
2561 	key.type = BTRFS_EXTENT_DATA_KEY;
2562 	key.offset = backref->file_pos;
2563 
2564 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2565 	if (ret < 0) {
2566 		goto out_free_path;
2567 	} else if (ret > 0) {
2568 		ret = 0;
2569 		goto out_free_path;
2570 	}
2571 
2572 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2573 				struct btrfs_file_extent_item);
2574 
2575 	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2576 	    backref->generation)
2577 		goto out_free_path;
2578 
2579 	btrfs_release_path(path);
2580 
2581 	start = backref->file_pos;
2582 	if (backref->extent_offset < old->extent_offset + old->offset)
2583 		start += old->extent_offset + old->offset -
2584 			 backref->extent_offset;
2585 
2586 	len = min(backref->extent_offset + backref->num_bytes,
2587 		  old->extent_offset + old->offset + old->len);
2588 	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2589 
2590 	ret = btrfs_drop_extents(trans, root, inode, start,
2591 				 start + len, 1);
2592 	if (ret)
2593 		goto out_free_path;
2594 again:
2595 	key.objectid = btrfs_ino(BTRFS_I(inode));
2596 	key.type = BTRFS_EXTENT_DATA_KEY;
2597 	key.offset = start;
2598 
2599 	path->leave_spinning = 1;
2600 	if (merge) {
2601 		struct btrfs_file_extent_item *fi;
2602 		u64 extent_len;
2603 		struct btrfs_key found_key;
2604 
2605 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2606 		if (ret < 0)
2607 			goto out_free_path;
2608 
2609 		path->slots[0]--;
2610 		leaf = path->nodes[0];
2611 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2612 
2613 		fi = btrfs_item_ptr(leaf, path->slots[0],
2614 				    struct btrfs_file_extent_item);
2615 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2616 
2617 		if (extent_len + found_key.offset == start &&
2618 		    relink_is_mergable(leaf, fi, new)) {
2619 			btrfs_set_file_extent_num_bytes(leaf, fi,
2620 							extent_len + len);
2621 			btrfs_mark_buffer_dirty(leaf);
2622 			inode_add_bytes(inode, len);
2623 
2624 			ret = 1;
2625 			goto out_free_path;
2626 		} else {
2627 			merge = false;
2628 			btrfs_release_path(path);
2629 			goto again;
2630 		}
2631 	}
2632 
2633 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2634 					sizeof(*extent));
2635 	if (ret) {
2636 		btrfs_abort_transaction(trans, ret);
2637 		goto out_free_path;
2638 	}
2639 
2640 	leaf = path->nodes[0];
2641 	item = btrfs_item_ptr(leaf, path->slots[0],
2642 				struct btrfs_file_extent_item);
2643 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2644 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2645 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2646 	btrfs_set_file_extent_num_bytes(leaf, item, len);
2647 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2648 	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2649 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2650 	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2651 	btrfs_set_file_extent_encryption(leaf, item, 0);
2652 	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2653 
2654 	btrfs_mark_buffer_dirty(leaf);
2655 	inode_add_bytes(inode, len);
2656 	btrfs_release_path(path);
2657 
2658 	ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
2659 			new->disk_len, 0,
2660 			backref->root_id, backref->inum,
2661 			new->file_pos);	/* start - extent_offset */
2662 	if (ret) {
2663 		btrfs_abort_transaction(trans, ret);
2664 		goto out_free_path;
2665 	}
2666 
2667 	ret = 1;
2668 out_free_path:
2669 	btrfs_release_path(path);
2670 	path->leave_spinning = 0;
2671 	btrfs_end_transaction(trans);
2672 out_unlock:
2673 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2674 			     &cached, GFP_NOFS);
2675 	iput(inode);
2676 	return ret;
2677 }
2678 
2679 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2680 {
2681 	struct old_sa_defrag_extent *old, *tmp;
2682 
2683 	if (!new)
2684 		return;
2685 
2686 	list_for_each_entry_safe(old, tmp, &new->head, list) {
2687 		kfree(old);
2688 	}
2689 	kfree(new);
2690 }
2691 
2692 static void relink_file_extents(struct new_sa_defrag_extent *new)
2693 {
2694 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2695 	struct btrfs_path *path;
2696 	struct sa_defrag_extent_backref *backref;
2697 	struct sa_defrag_extent_backref *prev = NULL;
2698 	struct inode *inode;
2699 	struct btrfs_root *root;
2700 	struct rb_node *node;
2701 	int ret;
2702 
2703 	inode = new->inode;
2704 	root = BTRFS_I(inode)->root;
2705 
2706 	path = btrfs_alloc_path();
2707 	if (!path)
2708 		return;
2709 
2710 	if (!record_extent_backrefs(path, new)) {
2711 		btrfs_free_path(path);
2712 		goto out;
2713 	}
2714 	btrfs_release_path(path);
2715 
2716 	while (1) {
2717 		node = rb_first(&new->root);
2718 		if (!node)
2719 			break;
2720 		rb_erase(node, &new->root);
2721 
2722 		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2723 
2724 		ret = relink_extent_backref(path, prev, backref);
2725 		WARN_ON(ret < 0);
2726 
2727 		kfree(prev);
2728 
2729 		if (ret == 1)
2730 			prev = backref;
2731 		else
2732 			prev = NULL;
2733 		cond_resched();
2734 	}
2735 	kfree(prev);
2736 
2737 	btrfs_free_path(path);
2738 out:
2739 	free_sa_defrag_extent(new);
2740 
2741 	atomic_dec(&fs_info->defrag_running);
2742 	wake_up(&fs_info->transaction_wait);
2743 }
2744 
2745 static struct new_sa_defrag_extent *
2746 record_old_file_extents(struct inode *inode,
2747 			struct btrfs_ordered_extent *ordered)
2748 {
2749 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2750 	struct btrfs_root *root = BTRFS_I(inode)->root;
2751 	struct btrfs_path *path;
2752 	struct btrfs_key key;
2753 	struct old_sa_defrag_extent *old;
2754 	struct new_sa_defrag_extent *new;
2755 	int ret;
2756 
2757 	new = kmalloc(sizeof(*new), GFP_NOFS);
2758 	if (!new)
2759 		return NULL;
2760 
2761 	new->inode = inode;
2762 	new->file_pos = ordered->file_offset;
2763 	new->len = ordered->len;
2764 	new->bytenr = ordered->start;
2765 	new->disk_len = ordered->disk_len;
2766 	new->compress_type = ordered->compress_type;
2767 	new->root = RB_ROOT;
2768 	INIT_LIST_HEAD(&new->head);
2769 
2770 	path = btrfs_alloc_path();
2771 	if (!path)
2772 		goto out_kfree;
2773 
2774 	key.objectid = btrfs_ino(BTRFS_I(inode));
2775 	key.type = BTRFS_EXTENT_DATA_KEY;
2776 	key.offset = new->file_pos;
2777 
2778 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2779 	if (ret < 0)
2780 		goto out_free_path;
2781 	if (ret > 0 && path->slots[0] > 0)
2782 		path->slots[0]--;
2783 
2784 	/* find out all the old extents for the file range */
2785 	while (1) {
2786 		struct btrfs_file_extent_item *extent;
2787 		struct extent_buffer *l;
2788 		int slot;
2789 		u64 num_bytes;
2790 		u64 offset;
2791 		u64 end;
2792 		u64 disk_bytenr;
2793 		u64 extent_offset;
2794 
2795 		l = path->nodes[0];
2796 		slot = path->slots[0];
2797 
2798 		if (slot >= btrfs_header_nritems(l)) {
2799 			ret = btrfs_next_leaf(root, path);
2800 			if (ret < 0)
2801 				goto out_free_path;
2802 			else if (ret > 0)
2803 				break;
2804 			continue;
2805 		}
2806 
2807 		btrfs_item_key_to_cpu(l, &key, slot);
2808 
2809 		if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2810 			break;
2811 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2812 			break;
2813 		if (key.offset >= new->file_pos + new->len)
2814 			break;
2815 
2816 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2817 
2818 		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2819 		if (key.offset + num_bytes < new->file_pos)
2820 			goto next;
2821 
2822 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2823 		if (!disk_bytenr)
2824 			goto next;
2825 
2826 		extent_offset = btrfs_file_extent_offset(l, extent);
2827 
2828 		old = kmalloc(sizeof(*old), GFP_NOFS);
2829 		if (!old)
2830 			goto out_free_path;
2831 
2832 		offset = max(new->file_pos, key.offset);
2833 		end = min(new->file_pos + new->len, key.offset + num_bytes);
2834 
2835 		old->bytenr = disk_bytenr;
2836 		old->extent_offset = extent_offset;
2837 		old->offset = offset - key.offset;
2838 		old->len = end - offset;
2839 		old->new = new;
2840 		old->count = 0;
2841 		list_add_tail(&old->list, &new->head);
2842 next:
2843 		path->slots[0]++;
2844 		cond_resched();
2845 	}
2846 
2847 	btrfs_free_path(path);
2848 	atomic_inc(&fs_info->defrag_running);
2849 
2850 	return new;
2851 
2852 out_free_path:
2853 	btrfs_free_path(path);
2854 out_kfree:
2855 	free_sa_defrag_extent(new);
2856 	return NULL;
2857 }
2858 
2859 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2860 					 u64 start, u64 len)
2861 {
2862 	struct btrfs_block_group_cache *cache;
2863 
2864 	cache = btrfs_lookup_block_group(fs_info, start);
2865 	ASSERT(cache);
2866 
2867 	spin_lock(&cache->lock);
2868 	cache->delalloc_bytes -= len;
2869 	spin_unlock(&cache->lock);
2870 
2871 	btrfs_put_block_group(cache);
2872 }
2873 
2874 /* as ordered data IO finishes, this gets called so we can finish
2875  * an ordered extent if the range of bytes in the file it covers are
2876  * fully written.
2877  */
2878 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2879 {
2880 	struct inode *inode = ordered_extent->inode;
2881 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2882 	struct btrfs_root *root = BTRFS_I(inode)->root;
2883 	struct btrfs_trans_handle *trans = NULL;
2884 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2885 	struct extent_state *cached_state = NULL;
2886 	struct new_sa_defrag_extent *new = NULL;
2887 	int compress_type = 0;
2888 	int ret = 0;
2889 	u64 logical_len = ordered_extent->len;
2890 	bool nolock;
2891 	bool truncated = false;
2892 	bool range_locked = false;
2893 	bool clear_new_delalloc_bytes = false;
2894 
2895 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2896 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2897 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2898 		clear_new_delalloc_bytes = true;
2899 
2900 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2901 
2902 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2903 		ret = -EIO;
2904 		goto out;
2905 	}
2906 
2907 	btrfs_free_io_failure_record(BTRFS_I(inode),
2908 			ordered_extent->file_offset,
2909 			ordered_extent->file_offset +
2910 			ordered_extent->len - 1);
2911 
2912 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2913 		truncated = true;
2914 		logical_len = ordered_extent->truncated_len;
2915 		/* Truncated the entire extent, don't bother adding */
2916 		if (!logical_len)
2917 			goto out;
2918 	}
2919 
2920 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2921 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2922 
2923 		/*
2924 		 * For mwrite(mmap + memset to write) case, we still reserve
2925 		 * space for NOCOW range.
2926 		 * As NOCOW won't cause a new delayed ref, just free the space
2927 		 */
2928 		btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2929 				       ordered_extent->len);
2930 		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2931 		if (nolock)
2932 			trans = btrfs_join_transaction_nolock(root);
2933 		else
2934 			trans = btrfs_join_transaction(root);
2935 		if (IS_ERR(trans)) {
2936 			ret = PTR_ERR(trans);
2937 			trans = NULL;
2938 			goto out;
2939 		}
2940 		trans->block_rsv = &fs_info->delalloc_block_rsv;
2941 		ret = btrfs_update_inode_fallback(trans, root, inode);
2942 		if (ret) /* -ENOMEM or corruption */
2943 			btrfs_abort_transaction(trans, ret);
2944 		goto out;
2945 	}
2946 
2947 	range_locked = true;
2948 	lock_extent_bits(io_tree, ordered_extent->file_offset,
2949 			 ordered_extent->file_offset + ordered_extent->len - 1,
2950 			 &cached_state);
2951 
2952 	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2953 			ordered_extent->file_offset + ordered_extent->len - 1,
2954 			EXTENT_DEFRAG, 0, cached_state);
2955 	if (ret) {
2956 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2957 		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2958 			/* the inode is shared */
2959 			new = record_old_file_extents(inode, ordered_extent);
2960 
2961 		clear_extent_bit(io_tree, ordered_extent->file_offset,
2962 			ordered_extent->file_offset + ordered_extent->len - 1,
2963 			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2964 	}
2965 
2966 	if (nolock)
2967 		trans = btrfs_join_transaction_nolock(root);
2968 	else
2969 		trans = btrfs_join_transaction(root);
2970 	if (IS_ERR(trans)) {
2971 		ret = PTR_ERR(trans);
2972 		trans = NULL;
2973 		goto out;
2974 	}
2975 
2976 	trans->block_rsv = &fs_info->delalloc_block_rsv;
2977 
2978 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2979 		compress_type = ordered_extent->compress_type;
2980 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2981 		BUG_ON(compress_type);
2982 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2983 						ordered_extent->file_offset,
2984 						ordered_extent->file_offset +
2985 						logical_len);
2986 	} else {
2987 		BUG_ON(root == fs_info->tree_root);
2988 		ret = insert_reserved_file_extent(trans, inode,
2989 						ordered_extent->file_offset,
2990 						ordered_extent->start,
2991 						ordered_extent->disk_len,
2992 						logical_len, logical_len,
2993 						compress_type, 0, 0,
2994 						BTRFS_FILE_EXTENT_REG);
2995 		if (!ret)
2996 			btrfs_release_delalloc_bytes(fs_info,
2997 						     ordered_extent->start,
2998 						     ordered_extent->disk_len);
2999 	}
3000 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3001 			   ordered_extent->file_offset, ordered_extent->len,
3002 			   trans->transid);
3003 	if (ret < 0) {
3004 		btrfs_abort_transaction(trans, ret);
3005 		goto out;
3006 	}
3007 
3008 	add_pending_csums(trans, inode, &ordered_extent->list);
3009 
3010 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3011 	ret = btrfs_update_inode_fallback(trans, root, inode);
3012 	if (ret) { /* -ENOMEM or corruption */
3013 		btrfs_abort_transaction(trans, ret);
3014 		goto out;
3015 	}
3016 	ret = 0;
3017 out:
3018 	if (range_locked || clear_new_delalloc_bytes) {
3019 		unsigned int clear_bits = 0;
3020 
3021 		if (range_locked)
3022 			clear_bits |= EXTENT_LOCKED;
3023 		if (clear_new_delalloc_bytes)
3024 			clear_bits |= EXTENT_DELALLOC_NEW;
3025 		clear_extent_bit(&BTRFS_I(inode)->io_tree,
3026 				 ordered_extent->file_offset,
3027 				 ordered_extent->file_offset +
3028 				 ordered_extent->len - 1,
3029 				 clear_bits,
3030 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3031 				 0, &cached_state, GFP_NOFS);
3032 	}
3033 
3034 	if (root != fs_info->tree_root)
3035 		btrfs_delalloc_release_metadata(BTRFS_I(inode),
3036 				ordered_extent->len);
3037 	if (trans)
3038 		btrfs_end_transaction(trans);
3039 
3040 	if (ret || truncated) {
3041 		u64 start, end;
3042 
3043 		if (truncated)
3044 			start = ordered_extent->file_offset + logical_len;
3045 		else
3046 			start = ordered_extent->file_offset;
3047 		end = ordered_extent->file_offset + ordered_extent->len - 1;
3048 		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3049 
3050 		/* Drop the cache for the part of the extent we didn't write. */
3051 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3052 
3053 		/*
3054 		 * If the ordered extent had an IOERR or something else went
3055 		 * wrong we need to return the space for this ordered extent
3056 		 * back to the allocator.  We only free the extent in the
3057 		 * truncated case if we didn't write out the extent at all.
3058 		 */
3059 		if ((ret || !logical_len) &&
3060 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3061 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3062 			btrfs_free_reserved_extent(fs_info,
3063 						   ordered_extent->start,
3064 						   ordered_extent->disk_len, 1);
3065 	}
3066 
3067 
3068 	/*
3069 	 * This needs to be done to make sure anybody waiting knows we are done
3070 	 * updating everything for this ordered extent.
3071 	 */
3072 	btrfs_remove_ordered_extent(inode, ordered_extent);
3073 
3074 	/* for snapshot-aware defrag */
3075 	if (new) {
3076 		if (ret) {
3077 			free_sa_defrag_extent(new);
3078 			atomic_dec(&fs_info->defrag_running);
3079 		} else {
3080 			relink_file_extents(new);
3081 		}
3082 	}
3083 
3084 	/* once for us */
3085 	btrfs_put_ordered_extent(ordered_extent);
3086 	/* once for the tree */
3087 	btrfs_put_ordered_extent(ordered_extent);
3088 
3089 	return ret;
3090 }
3091 
3092 static void finish_ordered_fn(struct btrfs_work *work)
3093 {
3094 	struct btrfs_ordered_extent *ordered_extent;
3095 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3096 	btrfs_finish_ordered_io(ordered_extent);
3097 }
3098 
3099 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3100 				struct extent_state *state, int uptodate)
3101 {
3102 	struct inode *inode = page->mapping->host;
3103 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3104 	struct btrfs_ordered_extent *ordered_extent = NULL;
3105 	struct btrfs_workqueue *wq;
3106 	btrfs_work_func_t func;
3107 
3108 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3109 
3110 	ClearPagePrivate2(page);
3111 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3112 					    end - start + 1, uptodate))
3113 		return;
3114 
3115 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3116 		wq = fs_info->endio_freespace_worker;
3117 		func = btrfs_freespace_write_helper;
3118 	} else {
3119 		wq = fs_info->endio_write_workers;
3120 		func = btrfs_endio_write_helper;
3121 	}
3122 
3123 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3124 			NULL);
3125 	btrfs_queue_work(wq, &ordered_extent->work);
3126 }
3127 
3128 static int __readpage_endio_check(struct inode *inode,
3129 				  struct btrfs_io_bio *io_bio,
3130 				  int icsum, struct page *page,
3131 				  int pgoff, u64 start, size_t len)
3132 {
3133 	char *kaddr;
3134 	u32 csum_expected;
3135 	u32 csum = ~(u32)0;
3136 
3137 	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3138 
3139 	kaddr = kmap_atomic(page);
3140 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3141 	btrfs_csum_final(csum, (u8 *)&csum);
3142 	if (csum != csum_expected)
3143 		goto zeroit;
3144 
3145 	kunmap_atomic(kaddr);
3146 	return 0;
3147 zeroit:
3148 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3149 				    io_bio->mirror_num);
3150 	memset(kaddr + pgoff, 1, len);
3151 	flush_dcache_page(page);
3152 	kunmap_atomic(kaddr);
3153 	if (csum_expected == 0)
3154 		return 0;
3155 	return -EIO;
3156 }
3157 
3158 /*
3159  * when reads are done, we need to check csums to verify the data is correct
3160  * if there's a match, we allow the bio to finish.  If not, the code in
3161  * extent_io.c will try to find good copies for us.
3162  */
3163 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3164 				      u64 phy_offset, struct page *page,
3165 				      u64 start, u64 end, int mirror)
3166 {
3167 	size_t offset = start - page_offset(page);
3168 	struct inode *inode = page->mapping->host;
3169 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3170 	struct btrfs_root *root = BTRFS_I(inode)->root;
3171 
3172 	if (PageChecked(page)) {
3173 		ClearPageChecked(page);
3174 		return 0;
3175 	}
3176 
3177 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3178 		return 0;
3179 
3180 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3181 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3182 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3183 		return 0;
3184 	}
3185 
3186 	phy_offset >>= inode->i_sb->s_blocksize_bits;
3187 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3188 				      start, (size_t)(end - start + 1));
3189 }
3190 
3191 void btrfs_add_delayed_iput(struct inode *inode)
3192 {
3193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3194 	struct btrfs_inode *binode = BTRFS_I(inode);
3195 
3196 	if (atomic_add_unless(&inode->i_count, -1, 1))
3197 		return;
3198 
3199 	spin_lock(&fs_info->delayed_iput_lock);
3200 	if (binode->delayed_iput_count == 0) {
3201 		ASSERT(list_empty(&binode->delayed_iput));
3202 		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3203 	} else {
3204 		binode->delayed_iput_count++;
3205 	}
3206 	spin_unlock(&fs_info->delayed_iput_lock);
3207 }
3208 
3209 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3210 {
3211 
3212 	spin_lock(&fs_info->delayed_iput_lock);
3213 	while (!list_empty(&fs_info->delayed_iputs)) {
3214 		struct btrfs_inode *inode;
3215 
3216 		inode = list_first_entry(&fs_info->delayed_iputs,
3217 				struct btrfs_inode, delayed_iput);
3218 		if (inode->delayed_iput_count) {
3219 			inode->delayed_iput_count--;
3220 			list_move_tail(&inode->delayed_iput,
3221 					&fs_info->delayed_iputs);
3222 		} else {
3223 			list_del_init(&inode->delayed_iput);
3224 		}
3225 		spin_unlock(&fs_info->delayed_iput_lock);
3226 		iput(&inode->vfs_inode);
3227 		spin_lock(&fs_info->delayed_iput_lock);
3228 	}
3229 	spin_unlock(&fs_info->delayed_iput_lock);
3230 }
3231 
3232 /*
3233  * This is called in transaction commit time. If there are no orphan
3234  * files in the subvolume, it removes orphan item and frees block_rsv
3235  * structure.
3236  */
3237 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3238 			      struct btrfs_root *root)
3239 {
3240 	struct btrfs_fs_info *fs_info = root->fs_info;
3241 	struct btrfs_block_rsv *block_rsv;
3242 	int ret;
3243 
3244 	if (atomic_read(&root->orphan_inodes) ||
3245 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3246 		return;
3247 
3248 	spin_lock(&root->orphan_lock);
3249 	if (atomic_read(&root->orphan_inodes)) {
3250 		spin_unlock(&root->orphan_lock);
3251 		return;
3252 	}
3253 
3254 	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3255 		spin_unlock(&root->orphan_lock);
3256 		return;
3257 	}
3258 
3259 	block_rsv = root->orphan_block_rsv;
3260 	root->orphan_block_rsv = NULL;
3261 	spin_unlock(&root->orphan_lock);
3262 
3263 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3264 	    btrfs_root_refs(&root->root_item) > 0) {
3265 		ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
3266 					    root->root_key.objectid);
3267 		if (ret)
3268 			btrfs_abort_transaction(trans, ret);
3269 		else
3270 			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3271 				  &root->state);
3272 	}
3273 
3274 	if (block_rsv) {
3275 		WARN_ON(block_rsv->size > 0);
3276 		btrfs_free_block_rsv(fs_info, block_rsv);
3277 	}
3278 }
3279 
3280 /*
3281  * This creates an orphan entry for the given inode in case something goes
3282  * wrong in the middle of an unlink/truncate.
3283  *
3284  * NOTE: caller of this function should reserve 5 units of metadata for
3285  *	 this function.
3286  */
3287 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3288 		struct btrfs_inode *inode)
3289 {
3290 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3291 	struct btrfs_root *root = inode->root;
3292 	struct btrfs_block_rsv *block_rsv = NULL;
3293 	int reserve = 0;
3294 	int insert = 0;
3295 	int ret;
3296 
3297 	if (!root->orphan_block_rsv) {
3298 		block_rsv = btrfs_alloc_block_rsv(fs_info,
3299 						  BTRFS_BLOCK_RSV_TEMP);
3300 		if (!block_rsv)
3301 			return -ENOMEM;
3302 	}
3303 
3304 	spin_lock(&root->orphan_lock);
3305 	if (!root->orphan_block_rsv) {
3306 		root->orphan_block_rsv = block_rsv;
3307 	} else if (block_rsv) {
3308 		btrfs_free_block_rsv(fs_info, block_rsv);
3309 		block_rsv = NULL;
3310 	}
3311 
3312 	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3313 			      &inode->runtime_flags)) {
3314 #if 0
3315 		/*
3316 		 * For proper ENOSPC handling, we should do orphan
3317 		 * cleanup when mounting. But this introduces backward
3318 		 * compatibility issue.
3319 		 */
3320 		if (!xchg(&root->orphan_item_inserted, 1))
3321 			insert = 2;
3322 		else
3323 			insert = 1;
3324 #endif
3325 		insert = 1;
3326 		atomic_inc(&root->orphan_inodes);
3327 	}
3328 
3329 	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3330 			      &inode->runtime_flags))
3331 		reserve = 1;
3332 	spin_unlock(&root->orphan_lock);
3333 
3334 	/* grab metadata reservation from transaction handle */
3335 	if (reserve) {
3336 		ret = btrfs_orphan_reserve_metadata(trans, inode);
3337 		ASSERT(!ret);
3338 		if (ret) {
3339 			atomic_dec(&root->orphan_inodes);
3340 			clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3341 				  &inode->runtime_flags);
3342 			if (insert)
3343 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3344 					  &inode->runtime_flags);
3345 			return ret;
3346 		}
3347 	}
3348 
3349 	/* insert an orphan item to track this unlinked/truncated file */
3350 	if (insert >= 1) {
3351 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3352 		if (ret) {
3353 			atomic_dec(&root->orphan_inodes);
3354 			if (reserve) {
3355 				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3356 					  &inode->runtime_flags);
3357 				btrfs_orphan_release_metadata(inode);
3358 			}
3359 			if (ret != -EEXIST) {
3360 				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3361 					  &inode->runtime_flags);
3362 				btrfs_abort_transaction(trans, ret);
3363 				return ret;
3364 			}
3365 		}
3366 		ret = 0;
3367 	}
3368 
3369 	/* insert an orphan item to track subvolume contains orphan files */
3370 	if (insert >= 2) {
3371 		ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
3372 					       root->root_key.objectid);
3373 		if (ret && ret != -EEXIST) {
3374 			btrfs_abort_transaction(trans, ret);
3375 			return ret;
3376 		}
3377 	}
3378 	return 0;
3379 }
3380 
3381 /*
3382  * We have done the truncate/delete so we can go ahead and remove the orphan
3383  * item for this particular inode.
3384  */
3385 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3386 			    struct btrfs_inode *inode)
3387 {
3388 	struct btrfs_root *root = inode->root;
3389 	int delete_item = 0;
3390 	int release_rsv = 0;
3391 	int ret = 0;
3392 
3393 	spin_lock(&root->orphan_lock);
3394 	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3395 			       &inode->runtime_flags))
3396 		delete_item = 1;
3397 
3398 	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3399 			       &inode->runtime_flags))
3400 		release_rsv = 1;
3401 	spin_unlock(&root->orphan_lock);
3402 
3403 	if (delete_item) {
3404 		atomic_dec(&root->orphan_inodes);
3405 		if (trans)
3406 			ret = btrfs_del_orphan_item(trans, root,
3407 						    btrfs_ino(inode));
3408 	}
3409 
3410 	if (release_rsv)
3411 		btrfs_orphan_release_metadata(inode);
3412 
3413 	return ret;
3414 }
3415 
3416 /*
3417  * this cleans up any orphans that may be left on the list from the last use
3418  * of this root.
3419  */
3420 int btrfs_orphan_cleanup(struct btrfs_root *root)
3421 {
3422 	struct btrfs_fs_info *fs_info = root->fs_info;
3423 	struct btrfs_path *path;
3424 	struct extent_buffer *leaf;
3425 	struct btrfs_key key, found_key;
3426 	struct btrfs_trans_handle *trans;
3427 	struct inode *inode;
3428 	u64 last_objectid = 0;
3429 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3430 
3431 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3432 		return 0;
3433 
3434 	path = btrfs_alloc_path();
3435 	if (!path) {
3436 		ret = -ENOMEM;
3437 		goto out;
3438 	}
3439 	path->reada = READA_BACK;
3440 
3441 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3442 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3443 	key.offset = (u64)-1;
3444 
3445 	while (1) {
3446 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3447 		if (ret < 0)
3448 			goto out;
3449 
3450 		/*
3451 		 * if ret == 0 means we found what we were searching for, which
3452 		 * is weird, but possible, so only screw with path if we didn't
3453 		 * find the key and see if we have stuff that matches
3454 		 */
3455 		if (ret > 0) {
3456 			ret = 0;
3457 			if (path->slots[0] == 0)
3458 				break;
3459 			path->slots[0]--;
3460 		}
3461 
3462 		/* pull out the item */
3463 		leaf = path->nodes[0];
3464 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3465 
3466 		/* make sure the item matches what we want */
3467 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3468 			break;
3469 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3470 			break;
3471 
3472 		/* release the path since we're done with it */
3473 		btrfs_release_path(path);
3474 
3475 		/*
3476 		 * this is where we are basically btrfs_lookup, without the
3477 		 * crossing root thing.  we store the inode number in the
3478 		 * offset of the orphan item.
3479 		 */
3480 
3481 		if (found_key.offset == last_objectid) {
3482 			btrfs_err(fs_info,
3483 				  "Error removing orphan entry, stopping orphan cleanup");
3484 			ret = -EINVAL;
3485 			goto out;
3486 		}
3487 
3488 		last_objectid = found_key.offset;
3489 
3490 		found_key.objectid = found_key.offset;
3491 		found_key.type = BTRFS_INODE_ITEM_KEY;
3492 		found_key.offset = 0;
3493 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3494 		ret = PTR_ERR_OR_ZERO(inode);
3495 		if (ret && ret != -ENOENT)
3496 			goto out;
3497 
3498 		if (ret == -ENOENT && root == fs_info->tree_root) {
3499 			struct btrfs_root *dead_root;
3500 			struct btrfs_fs_info *fs_info = root->fs_info;
3501 			int is_dead_root = 0;
3502 
3503 			/*
3504 			 * this is an orphan in the tree root. Currently these
3505 			 * could come from 2 sources:
3506 			 *  a) a snapshot deletion in progress
3507 			 *  b) a free space cache inode
3508 			 * We need to distinguish those two, as the snapshot
3509 			 * orphan must not get deleted.
3510 			 * find_dead_roots already ran before us, so if this
3511 			 * is a snapshot deletion, we should find the root
3512 			 * in the dead_roots list
3513 			 */
3514 			spin_lock(&fs_info->trans_lock);
3515 			list_for_each_entry(dead_root, &fs_info->dead_roots,
3516 					    root_list) {
3517 				if (dead_root->root_key.objectid ==
3518 				    found_key.objectid) {
3519 					is_dead_root = 1;
3520 					break;
3521 				}
3522 			}
3523 			spin_unlock(&fs_info->trans_lock);
3524 			if (is_dead_root) {
3525 				/* prevent this orphan from being found again */
3526 				key.offset = found_key.objectid - 1;
3527 				continue;
3528 			}
3529 		}
3530 		/*
3531 		 * Inode is already gone but the orphan item is still there,
3532 		 * kill the orphan item.
3533 		 */
3534 		if (ret == -ENOENT) {
3535 			trans = btrfs_start_transaction(root, 1);
3536 			if (IS_ERR(trans)) {
3537 				ret = PTR_ERR(trans);
3538 				goto out;
3539 			}
3540 			btrfs_debug(fs_info, "auto deleting %Lu",
3541 				    found_key.objectid);
3542 			ret = btrfs_del_orphan_item(trans, root,
3543 						    found_key.objectid);
3544 			btrfs_end_transaction(trans);
3545 			if (ret)
3546 				goto out;
3547 			continue;
3548 		}
3549 
3550 		/*
3551 		 * add this inode to the orphan list so btrfs_orphan_del does
3552 		 * the proper thing when we hit it
3553 		 */
3554 		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3555 			&BTRFS_I(inode)->runtime_flags);
3556 		atomic_inc(&root->orphan_inodes);
3557 
3558 		/* if we have links, this was a truncate, lets do that */
3559 		if (inode->i_nlink) {
3560 			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3561 				iput(inode);
3562 				continue;
3563 			}
3564 			nr_truncate++;
3565 
3566 			/* 1 for the orphan item deletion. */
3567 			trans = btrfs_start_transaction(root, 1);
3568 			if (IS_ERR(trans)) {
3569 				iput(inode);
3570 				ret = PTR_ERR(trans);
3571 				goto out;
3572 			}
3573 			ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3574 			btrfs_end_transaction(trans);
3575 			if (ret) {
3576 				iput(inode);
3577 				goto out;
3578 			}
3579 
3580 			ret = btrfs_truncate(inode);
3581 			if (ret)
3582 				btrfs_orphan_del(NULL, BTRFS_I(inode));
3583 		} else {
3584 			nr_unlink++;
3585 		}
3586 
3587 		/* this will do delete_inode and everything for us */
3588 		iput(inode);
3589 		if (ret)
3590 			goto out;
3591 	}
3592 	/* release the path since we're done with it */
3593 	btrfs_release_path(path);
3594 
3595 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3596 
3597 	if (root->orphan_block_rsv)
3598 		btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
3599 					(u64)-1);
3600 
3601 	if (root->orphan_block_rsv ||
3602 	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3603 		trans = btrfs_join_transaction(root);
3604 		if (!IS_ERR(trans))
3605 			btrfs_end_transaction(trans);
3606 	}
3607 
3608 	if (nr_unlink)
3609 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3610 	if (nr_truncate)
3611 		btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
3612 
3613 out:
3614 	if (ret)
3615 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3616 	btrfs_free_path(path);
3617 	return ret;
3618 }
3619 
3620 /*
3621  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3622  * don't find any xattrs, we know there can't be any acls.
3623  *
3624  * slot is the slot the inode is in, objectid is the objectid of the inode
3625  */
3626 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3627 					  int slot, u64 objectid,
3628 					  int *first_xattr_slot)
3629 {
3630 	u32 nritems = btrfs_header_nritems(leaf);
3631 	struct btrfs_key found_key;
3632 	static u64 xattr_access = 0;
3633 	static u64 xattr_default = 0;
3634 	int scanned = 0;
3635 
3636 	if (!xattr_access) {
3637 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3638 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3639 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3640 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3641 	}
3642 
3643 	slot++;
3644 	*first_xattr_slot = -1;
3645 	while (slot < nritems) {
3646 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3647 
3648 		/* we found a different objectid, there must not be acls */
3649 		if (found_key.objectid != objectid)
3650 			return 0;
3651 
3652 		/* we found an xattr, assume we've got an acl */
3653 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3654 			if (*first_xattr_slot == -1)
3655 				*first_xattr_slot = slot;
3656 			if (found_key.offset == xattr_access ||
3657 			    found_key.offset == xattr_default)
3658 				return 1;
3659 		}
3660 
3661 		/*
3662 		 * we found a key greater than an xattr key, there can't
3663 		 * be any acls later on
3664 		 */
3665 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3666 			return 0;
3667 
3668 		slot++;
3669 		scanned++;
3670 
3671 		/*
3672 		 * it goes inode, inode backrefs, xattrs, extents,
3673 		 * so if there are a ton of hard links to an inode there can
3674 		 * be a lot of backrefs.  Don't waste time searching too hard,
3675 		 * this is just an optimization
3676 		 */
3677 		if (scanned >= 8)
3678 			break;
3679 	}
3680 	/* we hit the end of the leaf before we found an xattr or
3681 	 * something larger than an xattr.  We have to assume the inode
3682 	 * has acls
3683 	 */
3684 	if (*first_xattr_slot == -1)
3685 		*first_xattr_slot = slot;
3686 	return 1;
3687 }
3688 
3689 /*
3690  * read an inode from the btree into the in-memory inode
3691  */
3692 static int btrfs_read_locked_inode(struct inode *inode)
3693 {
3694 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3695 	struct btrfs_path *path;
3696 	struct extent_buffer *leaf;
3697 	struct btrfs_inode_item *inode_item;
3698 	struct btrfs_root *root = BTRFS_I(inode)->root;
3699 	struct btrfs_key location;
3700 	unsigned long ptr;
3701 	int maybe_acls;
3702 	u32 rdev;
3703 	int ret;
3704 	bool filled = false;
3705 	int first_xattr_slot;
3706 
3707 	ret = btrfs_fill_inode(inode, &rdev);
3708 	if (!ret)
3709 		filled = true;
3710 
3711 	path = btrfs_alloc_path();
3712 	if (!path) {
3713 		ret = -ENOMEM;
3714 		goto make_bad;
3715 	}
3716 
3717 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3718 
3719 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3720 	if (ret) {
3721 		if (ret > 0)
3722 			ret = -ENOENT;
3723 		goto make_bad;
3724 	}
3725 
3726 	leaf = path->nodes[0];
3727 
3728 	if (filled)
3729 		goto cache_index;
3730 
3731 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3732 				    struct btrfs_inode_item);
3733 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3734 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3735 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3736 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3737 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3738 
3739 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3740 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3741 
3742 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3743 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3744 
3745 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3746 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3747 
3748 	BTRFS_I(inode)->i_otime.tv_sec =
3749 		btrfs_timespec_sec(leaf, &inode_item->otime);
3750 	BTRFS_I(inode)->i_otime.tv_nsec =
3751 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3752 
3753 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3754 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3755 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3756 
3757 	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3758 	inode->i_generation = BTRFS_I(inode)->generation;
3759 	inode->i_rdev = 0;
3760 	rdev = btrfs_inode_rdev(leaf, inode_item);
3761 
3762 	BTRFS_I(inode)->index_cnt = (u64)-1;
3763 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3764 
3765 cache_index:
3766 	/*
3767 	 * If we were modified in the current generation and evicted from memory
3768 	 * and then re-read we need to do a full sync since we don't have any
3769 	 * idea about which extents were modified before we were evicted from
3770 	 * cache.
3771 	 *
3772 	 * This is required for both inode re-read from disk and delayed inode
3773 	 * in delayed_nodes_tree.
3774 	 */
3775 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3776 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3777 			&BTRFS_I(inode)->runtime_flags);
3778 
3779 	/*
3780 	 * We don't persist the id of the transaction where an unlink operation
3781 	 * against the inode was last made. So here we assume the inode might
3782 	 * have been evicted, and therefore the exact value of last_unlink_trans
3783 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3784 	 * between the inode and its parent if the inode is fsync'ed and the log
3785 	 * replayed. For example, in the scenario:
3786 	 *
3787 	 * touch mydir/foo
3788 	 * ln mydir/foo mydir/bar
3789 	 * sync
3790 	 * unlink mydir/bar
3791 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3792 	 * xfs_io -c fsync mydir/foo
3793 	 * <power failure>
3794 	 * mount fs, triggers fsync log replay
3795 	 *
3796 	 * We must make sure that when we fsync our inode foo we also log its
3797 	 * parent inode, otherwise after log replay the parent still has the
3798 	 * dentry with the "bar" name but our inode foo has a link count of 1
3799 	 * and doesn't have an inode ref with the name "bar" anymore.
3800 	 *
3801 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3802 	 * but it guarantees correctness at the expense of occasional full
3803 	 * transaction commits on fsync if our inode is a directory, or if our
3804 	 * inode is not a directory, logging its parent unnecessarily.
3805 	 */
3806 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3807 
3808 	path->slots[0]++;
3809 	if (inode->i_nlink != 1 ||
3810 	    path->slots[0] >= btrfs_header_nritems(leaf))
3811 		goto cache_acl;
3812 
3813 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3814 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3815 		goto cache_acl;
3816 
3817 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3818 	if (location.type == BTRFS_INODE_REF_KEY) {
3819 		struct btrfs_inode_ref *ref;
3820 
3821 		ref = (struct btrfs_inode_ref *)ptr;
3822 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3823 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3824 		struct btrfs_inode_extref *extref;
3825 
3826 		extref = (struct btrfs_inode_extref *)ptr;
3827 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3828 								     extref);
3829 	}
3830 cache_acl:
3831 	/*
3832 	 * try to precache a NULL acl entry for files that don't have
3833 	 * any xattrs or acls
3834 	 */
3835 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3836 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3837 	if (first_xattr_slot != -1) {
3838 		path->slots[0] = first_xattr_slot;
3839 		ret = btrfs_load_inode_props(inode, path);
3840 		if (ret)
3841 			btrfs_err(fs_info,
3842 				  "error loading props for ino %llu (root %llu): %d",
3843 				  btrfs_ino(BTRFS_I(inode)),
3844 				  root->root_key.objectid, ret);
3845 	}
3846 	btrfs_free_path(path);
3847 
3848 	if (!maybe_acls)
3849 		cache_no_acl(inode);
3850 
3851 	switch (inode->i_mode & S_IFMT) {
3852 	case S_IFREG:
3853 		inode->i_mapping->a_ops = &btrfs_aops;
3854 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3855 		inode->i_fop = &btrfs_file_operations;
3856 		inode->i_op = &btrfs_file_inode_operations;
3857 		break;
3858 	case S_IFDIR:
3859 		inode->i_fop = &btrfs_dir_file_operations;
3860 		inode->i_op = &btrfs_dir_inode_operations;
3861 		break;
3862 	case S_IFLNK:
3863 		inode->i_op = &btrfs_symlink_inode_operations;
3864 		inode_nohighmem(inode);
3865 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3866 		break;
3867 	default:
3868 		inode->i_op = &btrfs_special_inode_operations;
3869 		init_special_inode(inode, inode->i_mode, rdev);
3870 		break;
3871 	}
3872 
3873 	btrfs_update_iflags(inode);
3874 	return 0;
3875 
3876 make_bad:
3877 	btrfs_free_path(path);
3878 	make_bad_inode(inode);
3879 	return ret;
3880 }
3881 
3882 /*
3883  * given a leaf and an inode, copy the inode fields into the leaf
3884  */
3885 static void fill_inode_item(struct btrfs_trans_handle *trans,
3886 			    struct extent_buffer *leaf,
3887 			    struct btrfs_inode_item *item,
3888 			    struct inode *inode)
3889 {
3890 	struct btrfs_map_token token;
3891 
3892 	btrfs_init_map_token(&token);
3893 
3894 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3895 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3896 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3897 				   &token);
3898 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3899 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3900 
3901 	btrfs_set_token_timespec_sec(leaf, &item->atime,
3902 				     inode->i_atime.tv_sec, &token);
3903 	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3904 				      inode->i_atime.tv_nsec, &token);
3905 
3906 	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3907 				     inode->i_mtime.tv_sec, &token);
3908 	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3909 				      inode->i_mtime.tv_nsec, &token);
3910 
3911 	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3912 				     inode->i_ctime.tv_sec, &token);
3913 	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3914 				      inode->i_ctime.tv_nsec, &token);
3915 
3916 	btrfs_set_token_timespec_sec(leaf, &item->otime,
3917 				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3918 	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3919 				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3920 
3921 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3922 				     &token);
3923 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3924 					 &token);
3925 	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3926 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3927 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3928 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3929 	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3930 }
3931 
3932 /*
3933  * copy everything in the in-memory inode into the btree.
3934  */
3935 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3936 				struct btrfs_root *root, struct inode *inode)
3937 {
3938 	struct btrfs_inode_item *inode_item;
3939 	struct btrfs_path *path;
3940 	struct extent_buffer *leaf;
3941 	int ret;
3942 
3943 	path = btrfs_alloc_path();
3944 	if (!path)
3945 		return -ENOMEM;
3946 
3947 	path->leave_spinning = 1;
3948 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3949 				 1);
3950 	if (ret) {
3951 		if (ret > 0)
3952 			ret = -ENOENT;
3953 		goto failed;
3954 	}
3955 
3956 	leaf = path->nodes[0];
3957 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3958 				    struct btrfs_inode_item);
3959 
3960 	fill_inode_item(trans, leaf, inode_item, inode);
3961 	btrfs_mark_buffer_dirty(leaf);
3962 	btrfs_set_inode_last_trans(trans, inode);
3963 	ret = 0;
3964 failed:
3965 	btrfs_free_path(path);
3966 	return ret;
3967 }
3968 
3969 /*
3970  * copy everything in the in-memory inode into the btree.
3971  */
3972 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3973 				struct btrfs_root *root, struct inode *inode)
3974 {
3975 	struct btrfs_fs_info *fs_info = root->fs_info;
3976 	int ret;
3977 
3978 	/*
3979 	 * If the inode is a free space inode, we can deadlock during commit
3980 	 * if we put it into the delayed code.
3981 	 *
3982 	 * The data relocation inode should also be directly updated
3983 	 * without delay
3984 	 */
3985 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3986 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3987 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3988 		btrfs_update_root_times(trans, root);
3989 
3990 		ret = btrfs_delayed_update_inode(trans, root, inode);
3991 		if (!ret)
3992 			btrfs_set_inode_last_trans(trans, inode);
3993 		return ret;
3994 	}
3995 
3996 	return btrfs_update_inode_item(trans, root, inode);
3997 }
3998 
3999 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4000 					 struct btrfs_root *root,
4001 					 struct inode *inode)
4002 {
4003 	int ret;
4004 
4005 	ret = btrfs_update_inode(trans, root, inode);
4006 	if (ret == -ENOSPC)
4007 		return btrfs_update_inode_item(trans, root, inode);
4008 	return ret;
4009 }
4010 
4011 /*
4012  * unlink helper that gets used here in inode.c and in the tree logging
4013  * recovery code.  It remove a link in a directory with a given name, and
4014  * also drops the back refs in the inode to the directory
4015  */
4016 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4017 				struct btrfs_root *root,
4018 				struct btrfs_inode *dir,
4019 				struct btrfs_inode *inode,
4020 				const char *name, int name_len)
4021 {
4022 	struct btrfs_fs_info *fs_info = root->fs_info;
4023 	struct btrfs_path *path;
4024 	int ret = 0;
4025 	struct extent_buffer *leaf;
4026 	struct btrfs_dir_item *di;
4027 	struct btrfs_key key;
4028 	u64 index;
4029 	u64 ino = btrfs_ino(inode);
4030 	u64 dir_ino = btrfs_ino(dir);
4031 
4032 	path = btrfs_alloc_path();
4033 	if (!path) {
4034 		ret = -ENOMEM;
4035 		goto out;
4036 	}
4037 
4038 	path->leave_spinning = 1;
4039 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4040 				    name, name_len, -1);
4041 	if (IS_ERR(di)) {
4042 		ret = PTR_ERR(di);
4043 		goto err;
4044 	}
4045 	if (!di) {
4046 		ret = -ENOENT;
4047 		goto err;
4048 	}
4049 	leaf = path->nodes[0];
4050 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4051 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4052 	if (ret)
4053 		goto err;
4054 	btrfs_release_path(path);
4055 
4056 	/*
4057 	 * If we don't have dir index, we have to get it by looking up
4058 	 * the inode ref, since we get the inode ref, remove it directly,
4059 	 * it is unnecessary to do delayed deletion.
4060 	 *
4061 	 * But if we have dir index, needn't search inode ref to get it.
4062 	 * Since the inode ref is close to the inode item, it is better
4063 	 * that we delay to delete it, and just do this deletion when
4064 	 * we update the inode item.
4065 	 */
4066 	if (inode->dir_index) {
4067 		ret = btrfs_delayed_delete_inode_ref(inode);
4068 		if (!ret) {
4069 			index = inode->dir_index;
4070 			goto skip_backref;
4071 		}
4072 	}
4073 
4074 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4075 				  dir_ino, &index);
4076 	if (ret) {
4077 		btrfs_info(fs_info,
4078 			"failed to delete reference to %.*s, inode %llu parent %llu",
4079 			name_len, name, ino, dir_ino);
4080 		btrfs_abort_transaction(trans, ret);
4081 		goto err;
4082 	}
4083 skip_backref:
4084 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
4085 	if (ret) {
4086 		btrfs_abort_transaction(trans, ret);
4087 		goto err;
4088 	}
4089 
4090 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4091 			dir_ino);
4092 	if (ret != 0 && ret != -ENOENT) {
4093 		btrfs_abort_transaction(trans, ret);
4094 		goto err;
4095 	}
4096 
4097 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4098 			index);
4099 	if (ret == -ENOENT)
4100 		ret = 0;
4101 	else if (ret)
4102 		btrfs_abort_transaction(trans, ret);
4103 err:
4104 	btrfs_free_path(path);
4105 	if (ret)
4106 		goto out;
4107 
4108 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4109 	inode_inc_iversion(&inode->vfs_inode);
4110 	inode_inc_iversion(&dir->vfs_inode);
4111 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4112 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4113 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
4114 out:
4115 	return ret;
4116 }
4117 
4118 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4119 		       struct btrfs_root *root,
4120 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4121 		       const char *name, int name_len)
4122 {
4123 	int ret;
4124 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4125 	if (!ret) {
4126 		drop_nlink(&inode->vfs_inode);
4127 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4128 	}
4129 	return ret;
4130 }
4131 
4132 /*
4133  * helper to start transaction for unlink and rmdir.
4134  *
4135  * unlink and rmdir are special in btrfs, they do not always free space, so
4136  * if we cannot make our reservations the normal way try and see if there is
4137  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4138  * allow the unlink to occur.
4139  */
4140 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4141 {
4142 	struct btrfs_root *root = BTRFS_I(dir)->root;
4143 
4144 	/*
4145 	 * 1 for the possible orphan item
4146 	 * 1 for the dir item
4147 	 * 1 for the dir index
4148 	 * 1 for the inode ref
4149 	 * 1 for the inode
4150 	 */
4151 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4152 }
4153 
4154 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4155 {
4156 	struct btrfs_root *root = BTRFS_I(dir)->root;
4157 	struct btrfs_trans_handle *trans;
4158 	struct inode *inode = d_inode(dentry);
4159 	int ret;
4160 
4161 	trans = __unlink_start_trans(dir);
4162 	if (IS_ERR(trans))
4163 		return PTR_ERR(trans);
4164 
4165 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4166 			0);
4167 
4168 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4169 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4170 			dentry->d_name.len);
4171 	if (ret)
4172 		goto out;
4173 
4174 	if (inode->i_nlink == 0) {
4175 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4176 		if (ret)
4177 			goto out;
4178 	}
4179 
4180 out:
4181 	btrfs_end_transaction(trans);
4182 	btrfs_btree_balance_dirty(root->fs_info);
4183 	return ret;
4184 }
4185 
4186 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4187 			struct btrfs_root *root,
4188 			struct inode *dir, u64 objectid,
4189 			const char *name, int name_len)
4190 {
4191 	struct btrfs_fs_info *fs_info = root->fs_info;
4192 	struct btrfs_path *path;
4193 	struct extent_buffer *leaf;
4194 	struct btrfs_dir_item *di;
4195 	struct btrfs_key key;
4196 	u64 index;
4197 	int ret;
4198 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4199 
4200 	path = btrfs_alloc_path();
4201 	if (!path)
4202 		return -ENOMEM;
4203 
4204 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4205 				   name, name_len, -1);
4206 	if (IS_ERR_OR_NULL(di)) {
4207 		if (!di)
4208 			ret = -ENOENT;
4209 		else
4210 			ret = PTR_ERR(di);
4211 		goto out;
4212 	}
4213 
4214 	leaf = path->nodes[0];
4215 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4216 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4217 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4218 	if (ret) {
4219 		btrfs_abort_transaction(trans, ret);
4220 		goto out;
4221 	}
4222 	btrfs_release_path(path);
4223 
4224 	ret = btrfs_del_root_ref(trans, fs_info, objectid,
4225 				 root->root_key.objectid, dir_ino,
4226 				 &index, name, name_len);
4227 	if (ret < 0) {
4228 		if (ret != -ENOENT) {
4229 			btrfs_abort_transaction(trans, ret);
4230 			goto out;
4231 		}
4232 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4233 						 name, name_len);
4234 		if (IS_ERR_OR_NULL(di)) {
4235 			if (!di)
4236 				ret = -ENOENT;
4237 			else
4238 				ret = PTR_ERR(di);
4239 			btrfs_abort_transaction(trans, ret);
4240 			goto out;
4241 		}
4242 
4243 		leaf = path->nodes[0];
4244 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4245 		btrfs_release_path(path);
4246 		index = key.offset;
4247 	}
4248 	btrfs_release_path(path);
4249 
4250 	ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
4251 	if (ret) {
4252 		btrfs_abort_transaction(trans, ret);
4253 		goto out;
4254 	}
4255 
4256 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4257 	inode_inc_iversion(dir);
4258 	dir->i_mtime = dir->i_ctime = current_time(dir);
4259 	ret = btrfs_update_inode_fallback(trans, root, dir);
4260 	if (ret)
4261 		btrfs_abort_transaction(trans, ret);
4262 out:
4263 	btrfs_free_path(path);
4264 	return ret;
4265 }
4266 
4267 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4268 {
4269 	struct inode *inode = d_inode(dentry);
4270 	int err = 0;
4271 	struct btrfs_root *root = BTRFS_I(dir)->root;
4272 	struct btrfs_trans_handle *trans;
4273 	u64 last_unlink_trans;
4274 
4275 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4276 		return -ENOTEMPTY;
4277 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4278 		return -EPERM;
4279 
4280 	trans = __unlink_start_trans(dir);
4281 	if (IS_ERR(trans))
4282 		return PTR_ERR(trans);
4283 
4284 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4285 		err = btrfs_unlink_subvol(trans, root, dir,
4286 					  BTRFS_I(inode)->location.objectid,
4287 					  dentry->d_name.name,
4288 					  dentry->d_name.len);
4289 		goto out;
4290 	}
4291 
4292 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4293 	if (err)
4294 		goto out;
4295 
4296 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4297 
4298 	/* now the directory is empty */
4299 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4300 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4301 			dentry->d_name.len);
4302 	if (!err) {
4303 		btrfs_i_size_write(BTRFS_I(inode), 0);
4304 		/*
4305 		 * Propagate the last_unlink_trans value of the deleted dir to
4306 		 * its parent directory. This is to prevent an unrecoverable
4307 		 * log tree in the case we do something like this:
4308 		 * 1) create dir foo
4309 		 * 2) create snapshot under dir foo
4310 		 * 3) delete the snapshot
4311 		 * 4) rmdir foo
4312 		 * 5) mkdir foo
4313 		 * 6) fsync foo or some file inside foo
4314 		 */
4315 		if (last_unlink_trans >= trans->transid)
4316 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4317 	}
4318 out:
4319 	btrfs_end_transaction(trans);
4320 	btrfs_btree_balance_dirty(root->fs_info);
4321 
4322 	return err;
4323 }
4324 
4325 static int truncate_space_check(struct btrfs_trans_handle *trans,
4326 				struct btrfs_root *root,
4327 				u64 bytes_deleted)
4328 {
4329 	struct btrfs_fs_info *fs_info = root->fs_info;
4330 	int ret;
4331 
4332 	/*
4333 	 * This is only used to apply pressure to the enospc system, we don't
4334 	 * intend to use this reservation at all.
4335 	 */
4336 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4337 	bytes_deleted *= fs_info->nodesize;
4338 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4339 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4340 	if (!ret) {
4341 		trace_btrfs_space_reservation(fs_info, "transaction",
4342 					      trans->transid,
4343 					      bytes_deleted, 1);
4344 		trans->bytes_reserved += bytes_deleted;
4345 	}
4346 	return ret;
4347 
4348 }
4349 
4350 static int truncate_inline_extent(struct inode *inode,
4351 				  struct btrfs_path *path,
4352 				  struct btrfs_key *found_key,
4353 				  const u64 item_end,
4354 				  const u64 new_size)
4355 {
4356 	struct extent_buffer *leaf = path->nodes[0];
4357 	int slot = path->slots[0];
4358 	struct btrfs_file_extent_item *fi;
4359 	u32 size = (u32)(new_size - found_key->offset);
4360 	struct btrfs_root *root = BTRFS_I(inode)->root;
4361 
4362 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4363 
4364 	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4365 		loff_t offset = new_size;
4366 		loff_t page_end = ALIGN(offset, PAGE_SIZE);
4367 
4368 		/*
4369 		 * Zero out the remaining of the last page of our inline extent,
4370 		 * instead of directly truncating our inline extent here - that
4371 		 * would be much more complex (decompressing all the data, then
4372 		 * compressing the truncated data, which might be bigger than
4373 		 * the size of the inline extent, resize the extent, etc).
4374 		 * We release the path because to get the page we might need to
4375 		 * read the extent item from disk (data not in the page cache).
4376 		 */
4377 		btrfs_release_path(path);
4378 		return btrfs_truncate_block(inode, offset, page_end - offset,
4379 					0);
4380 	}
4381 
4382 	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4383 	size = btrfs_file_extent_calc_inline_size(size);
4384 	btrfs_truncate_item(root->fs_info, path, size, 1);
4385 
4386 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4387 		inode_sub_bytes(inode, item_end + 1 - new_size);
4388 
4389 	return 0;
4390 }
4391 
4392 /*
4393  * this can truncate away extent items, csum items and directory items.
4394  * It starts at a high offset and removes keys until it can't find
4395  * any higher than new_size
4396  *
4397  * csum items that cross the new i_size are truncated to the new size
4398  * as well.
4399  *
4400  * min_type is the minimum key type to truncate down to.  If set to 0, this
4401  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4402  */
4403 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4404 			       struct btrfs_root *root,
4405 			       struct inode *inode,
4406 			       u64 new_size, u32 min_type)
4407 {
4408 	struct btrfs_fs_info *fs_info = root->fs_info;
4409 	struct btrfs_path *path;
4410 	struct extent_buffer *leaf;
4411 	struct btrfs_file_extent_item *fi;
4412 	struct btrfs_key key;
4413 	struct btrfs_key found_key;
4414 	u64 extent_start = 0;
4415 	u64 extent_num_bytes = 0;
4416 	u64 extent_offset = 0;
4417 	u64 item_end = 0;
4418 	u64 last_size = new_size;
4419 	u32 found_type = (u8)-1;
4420 	int found_extent;
4421 	int del_item;
4422 	int pending_del_nr = 0;
4423 	int pending_del_slot = 0;
4424 	int extent_type = -1;
4425 	int ret;
4426 	int err = 0;
4427 	u64 ino = btrfs_ino(BTRFS_I(inode));
4428 	u64 bytes_deleted = 0;
4429 	bool be_nice = 0;
4430 	bool should_throttle = 0;
4431 	bool should_end = 0;
4432 
4433 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4434 
4435 	/*
4436 	 * for non-free space inodes and ref cows, we want to back off from
4437 	 * time to time
4438 	 */
4439 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4440 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4441 		be_nice = 1;
4442 
4443 	path = btrfs_alloc_path();
4444 	if (!path)
4445 		return -ENOMEM;
4446 	path->reada = READA_BACK;
4447 
4448 	/*
4449 	 * We want to drop from the next block forward in case this new size is
4450 	 * not block aligned since we will be keeping the last block of the
4451 	 * extent just the way it is.
4452 	 */
4453 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4454 	    root == fs_info->tree_root)
4455 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4456 					fs_info->sectorsize),
4457 					(u64)-1, 0);
4458 
4459 	/*
4460 	 * This function is also used to drop the items in the log tree before
4461 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4462 	 * it is used to drop the loged items. So we shouldn't kill the delayed
4463 	 * items.
4464 	 */
4465 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4466 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4467 
4468 	key.objectid = ino;
4469 	key.offset = (u64)-1;
4470 	key.type = (u8)-1;
4471 
4472 search_again:
4473 	/*
4474 	 * with a 16K leaf size and 128MB extents, you can actually queue
4475 	 * up a huge file in a single leaf.  Most of the time that
4476 	 * bytes_deleted is > 0, it will be huge by the time we get here
4477 	 */
4478 	if (be_nice && bytes_deleted > SZ_32M) {
4479 		if (btrfs_should_end_transaction(trans)) {
4480 			err = -EAGAIN;
4481 			goto error;
4482 		}
4483 	}
4484 
4485 
4486 	path->leave_spinning = 1;
4487 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4488 	if (ret < 0) {
4489 		err = ret;
4490 		goto out;
4491 	}
4492 
4493 	if (ret > 0) {
4494 		/* there are no items in the tree for us to truncate, we're
4495 		 * done
4496 		 */
4497 		if (path->slots[0] == 0)
4498 			goto out;
4499 		path->slots[0]--;
4500 	}
4501 
4502 	while (1) {
4503 		fi = NULL;
4504 		leaf = path->nodes[0];
4505 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4506 		found_type = found_key.type;
4507 
4508 		if (found_key.objectid != ino)
4509 			break;
4510 
4511 		if (found_type < min_type)
4512 			break;
4513 
4514 		item_end = found_key.offset;
4515 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4516 			fi = btrfs_item_ptr(leaf, path->slots[0],
4517 					    struct btrfs_file_extent_item);
4518 			extent_type = btrfs_file_extent_type(leaf, fi);
4519 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4520 				item_end +=
4521 				    btrfs_file_extent_num_bytes(leaf, fi);
4522 
4523 				trace_btrfs_truncate_show_fi_regular(
4524 					BTRFS_I(inode), leaf, fi,
4525 					found_key.offset);
4526 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4527 				item_end += btrfs_file_extent_inline_len(leaf,
4528 							 path->slots[0], fi);
4529 
4530 				trace_btrfs_truncate_show_fi_inline(
4531 					BTRFS_I(inode), leaf, fi, path->slots[0],
4532 					found_key.offset);
4533 			}
4534 			item_end--;
4535 		}
4536 		if (found_type > min_type) {
4537 			del_item = 1;
4538 		} else {
4539 			if (item_end < new_size)
4540 				break;
4541 			if (found_key.offset >= new_size)
4542 				del_item = 1;
4543 			else
4544 				del_item = 0;
4545 		}
4546 		found_extent = 0;
4547 		/* FIXME, shrink the extent if the ref count is only 1 */
4548 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4549 			goto delete;
4550 
4551 		if (del_item)
4552 			last_size = found_key.offset;
4553 		else
4554 			last_size = new_size;
4555 
4556 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4557 			u64 num_dec;
4558 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4559 			if (!del_item) {
4560 				u64 orig_num_bytes =
4561 					btrfs_file_extent_num_bytes(leaf, fi);
4562 				extent_num_bytes = ALIGN(new_size -
4563 						found_key.offset,
4564 						fs_info->sectorsize);
4565 				btrfs_set_file_extent_num_bytes(leaf, fi,
4566 							 extent_num_bytes);
4567 				num_dec = (orig_num_bytes -
4568 					   extent_num_bytes);
4569 				if (test_bit(BTRFS_ROOT_REF_COWS,
4570 					     &root->state) &&
4571 				    extent_start != 0)
4572 					inode_sub_bytes(inode, num_dec);
4573 				btrfs_mark_buffer_dirty(leaf);
4574 			} else {
4575 				extent_num_bytes =
4576 					btrfs_file_extent_disk_num_bytes(leaf,
4577 									 fi);
4578 				extent_offset = found_key.offset -
4579 					btrfs_file_extent_offset(leaf, fi);
4580 
4581 				/* FIXME blocksize != 4096 */
4582 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4583 				if (extent_start != 0) {
4584 					found_extent = 1;
4585 					if (test_bit(BTRFS_ROOT_REF_COWS,
4586 						     &root->state))
4587 						inode_sub_bytes(inode, num_dec);
4588 				}
4589 			}
4590 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4591 			/*
4592 			 * we can't truncate inline items that have had
4593 			 * special encodings
4594 			 */
4595 			if (!del_item &&
4596 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4597 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4598 
4599 				/*
4600 				 * Need to release path in order to truncate a
4601 				 * compressed extent. So delete any accumulated
4602 				 * extent items so far.
4603 				 */
4604 				if (btrfs_file_extent_compression(leaf, fi) !=
4605 				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4606 					err = btrfs_del_items(trans, root, path,
4607 							      pending_del_slot,
4608 							      pending_del_nr);
4609 					if (err) {
4610 						btrfs_abort_transaction(trans,
4611 									err);
4612 						goto error;
4613 					}
4614 					pending_del_nr = 0;
4615 				}
4616 
4617 				err = truncate_inline_extent(inode, path,
4618 							     &found_key,
4619 							     item_end,
4620 							     new_size);
4621 				if (err) {
4622 					btrfs_abort_transaction(trans, err);
4623 					goto error;
4624 				}
4625 			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4626 					    &root->state)) {
4627 				inode_sub_bytes(inode, item_end + 1 - new_size);
4628 			}
4629 		}
4630 delete:
4631 		if (del_item) {
4632 			if (!pending_del_nr) {
4633 				/* no pending yet, add ourselves */
4634 				pending_del_slot = path->slots[0];
4635 				pending_del_nr = 1;
4636 			} else if (pending_del_nr &&
4637 				   path->slots[0] + 1 == pending_del_slot) {
4638 				/* hop on the pending chunk */
4639 				pending_del_nr++;
4640 				pending_del_slot = path->slots[0];
4641 			} else {
4642 				BUG();
4643 			}
4644 		} else {
4645 			break;
4646 		}
4647 		should_throttle = 0;
4648 
4649 		if (found_extent &&
4650 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4651 		     root == fs_info->tree_root)) {
4652 			btrfs_set_path_blocking(path);
4653 			bytes_deleted += extent_num_bytes;
4654 			ret = btrfs_free_extent(trans, fs_info, extent_start,
4655 						extent_num_bytes, 0,
4656 						btrfs_header_owner(leaf),
4657 						ino, extent_offset);
4658 			BUG_ON(ret);
4659 			if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4660 				btrfs_async_run_delayed_refs(fs_info,
4661 					trans->delayed_ref_updates * 2,
4662 					trans->transid, 0);
4663 			if (be_nice) {
4664 				if (truncate_space_check(trans, root,
4665 							 extent_num_bytes)) {
4666 					should_end = 1;
4667 				}
4668 				if (btrfs_should_throttle_delayed_refs(trans,
4669 								       fs_info))
4670 					should_throttle = 1;
4671 			}
4672 		}
4673 
4674 		if (found_type == BTRFS_INODE_ITEM_KEY)
4675 			break;
4676 
4677 		if (path->slots[0] == 0 ||
4678 		    path->slots[0] != pending_del_slot ||
4679 		    should_throttle || should_end) {
4680 			if (pending_del_nr) {
4681 				ret = btrfs_del_items(trans, root, path,
4682 						pending_del_slot,
4683 						pending_del_nr);
4684 				if (ret) {
4685 					btrfs_abort_transaction(trans, ret);
4686 					goto error;
4687 				}
4688 				pending_del_nr = 0;
4689 			}
4690 			btrfs_release_path(path);
4691 			if (should_throttle) {
4692 				unsigned long updates = trans->delayed_ref_updates;
4693 				if (updates) {
4694 					trans->delayed_ref_updates = 0;
4695 					ret = btrfs_run_delayed_refs(trans,
4696 								   fs_info,
4697 								   updates * 2);
4698 					if (ret && !err)
4699 						err = ret;
4700 				}
4701 			}
4702 			/*
4703 			 * if we failed to refill our space rsv, bail out
4704 			 * and let the transaction restart
4705 			 */
4706 			if (should_end) {
4707 				err = -EAGAIN;
4708 				goto error;
4709 			}
4710 			goto search_again;
4711 		} else {
4712 			path->slots[0]--;
4713 		}
4714 	}
4715 out:
4716 	if (pending_del_nr) {
4717 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4718 				      pending_del_nr);
4719 		if (ret)
4720 			btrfs_abort_transaction(trans, ret);
4721 	}
4722 error:
4723 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4724 		ASSERT(last_size >= new_size);
4725 		if (!err && last_size > new_size)
4726 			last_size = new_size;
4727 		btrfs_ordered_update_i_size(inode, last_size, NULL);
4728 	}
4729 
4730 	btrfs_free_path(path);
4731 
4732 	if (be_nice && bytes_deleted > SZ_32M) {
4733 		unsigned long updates = trans->delayed_ref_updates;
4734 		if (updates) {
4735 			trans->delayed_ref_updates = 0;
4736 			ret = btrfs_run_delayed_refs(trans, fs_info,
4737 						     updates * 2);
4738 			if (ret && !err)
4739 				err = ret;
4740 		}
4741 	}
4742 	return err;
4743 }
4744 
4745 /*
4746  * btrfs_truncate_block - read, zero a chunk and write a block
4747  * @inode - inode that we're zeroing
4748  * @from - the offset to start zeroing
4749  * @len - the length to zero, 0 to zero the entire range respective to the
4750  *	offset
4751  * @front - zero up to the offset instead of from the offset on
4752  *
4753  * This will find the block for the "from" offset and cow the block and zero the
4754  * part we want to zero.  This is used with truncate and hole punching.
4755  */
4756 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4757 			int front)
4758 {
4759 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4760 	struct address_space *mapping = inode->i_mapping;
4761 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4762 	struct btrfs_ordered_extent *ordered;
4763 	struct extent_state *cached_state = NULL;
4764 	char *kaddr;
4765 	u32 blocksize = fs_info->sectorsize;
4766 	pgoff_t index = from >> PAGE_SHIFT;
4767 	unsigned offset = from & (blocksize - 1);
4768 	struct page *page;
4769 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4770 	int ret = 0;
4771 	u64 block_start;
4772 	u64 block_end;
4773 
4774 	if ((offset & (blocksize - 1)) == 0 &&
4775 	    (!len || ((len & (blocksize - 1)) == 0)))
4776 		goto out;
4777 
4778 	ret = btrfs_delalloc_reserve_space(inode,
4779 			round_down(from, blocksize), blocksize);
4780 	if (ret)
4781 		goto out;
4782 
4783 again:
4784 	page = find_or_create_page(mapping, index, mask);
4785 	if (!page) {
4786 		btrfs_delalloc_release_space(inode,
4787 				round_down(from, blocksize),
4788 				blocksize);
4789 		ret = -ENOMEM;
4790 		goto out;
4791 	}
4792 
4793 	block_start = round_down(from, blocksize);
4794 	block_end = block_start + blocksize - 1;
4795 
4796 	if (!PageUptodate(page)) {
4797 		ret = btrfs_readpage(NULL, page);
4798 		lock_page(page);
4799 		if (page->mapping != mapping) {
4800 			unlock_page(page);
4801 			put_page(page);
4802 			goto again;
4803 		}
4804 		if (!PageUptodate(page)) {
4805 			ret = -EIO;
4806 			goto out_unlock;
4807 		}
4808 	}
4809 	wait_on_page_writeback(page);
4810 
4811 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4812 	set_page_extent_mapped(page);
4813 
4814 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4815 	if (ordered) {
4816 		unlock_extent_cached(io_tree, block_start, block_end,
4817 				     &cached_state, GFP_NOFS);
4818 		unlock_page(page);
4819 		put_page(page);
4820 		btrfs_start_ordered_extent(inode, ordered, 1);
4821 		btrfs_put_ordered_extent(ordered);
4822 		goto again;
4823 	}
4824 
4825 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4826 			  EXTENT_DIRTY | EXTENT_DELALLOC |
4827 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4828 			  0, 0, &cached_state, GFP_NOFS);
4829 
4830 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4831 					&cached_state, 0);
4832 	if (ret) {
4833 		unlock_extent_cached(io_tree, block_start, block_end,
4834 				     &cached_state, GFP_NOFS);
4835 		goto out_unlock;
4836 	}
4837 
4838 	if (offset != blocksize) {
4839 		if (!len)
4840 			len = blocksize - offset;
4841 		kaddr = kmap(page);
4842 		if (front)
4843 			memset(kaddr + (block_start - page_offset(page)),
4844 				0, offset);
4845 		else
4846 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4847 				0, len);
4848 		flush_dcache_page(page);
4849 		kunmap(page);
4850 	}
4851 	ClearPageChecked(page);
4852 	set_page_dirty(page);
4853 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4854 			     GFP_NOFS);
4855 
4856 out_unlock:
4857 	if (ret)
4858 		btrfs_delalloc_release_space(inode, block_start,
4859 					     blocksize);
4860 	unlock_page(page);
4861 	put_page(page);
4862 out:
4863 	return ret;
4864 }
4865 
4866 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4867 			     u64 offset, u64 len)
4868 {
4869 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4870 	struct btrfs_trans_handle *trans;
4871 	int ret;
4872 
4873 	/*
4874 	 * Still need to make sure the inode looks like it's been updated so
4875 	 * that any holes get logged if we fsync.
4876 	 */
4877 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4878 		BTRFS_I(inode)->last_trans = fs_info->generation;
4879 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4880 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4881 		return 0;
4882 	}
4883 
4884 	/*
4885 	 * 1 - for the one we're dropping
4886 	 * 1 - for the one we're adding
4887 	 * 1 - for updating the inode.
4888 	 */
4889 	trans = btrfs_start_transaction(root, 3);
4890 	if (IS_ERR(trans))
4891 		return PTR_ERR(trans);
4892 
4893 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4894 	if (ret) {
4895 		btrfs_abort_transaction(trans, ret);
4896 		btrfs_end_transaction(trans);
4897 		return ret;
4898 	}
4899 
4900 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4901 			offset, 0, 0, len, 0, len, 0, 0, 0);
4902 	if (ret)
4903 		btrfs_abort_transaction(trans, ret);
4904 	else
4905 		btrfs_update_inode(trans, root, inode);
4906 	btrfs_end_transaction(trans);
4907 	return ret;
4908 }
4909 
4910 /*
4911  * This function puts in dummy file extents for the area we're creating a hole
4912  * for.  So if we are truncating this file to a larger size we need to insert
4913  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4914  * the range between oldsize and size
4915  */
4916 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4917 {
4918 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4919 	struct btrfs_root *root = BTRFS_I(inode)->root;
4920 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4921 	struct extent_map *em = NULL;
4922 	struct extent_state *cached_state = NULL;
4923 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4924 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4925 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4926 	u64 last_byte;
4927 	u64 cur_offset;
4928 	u64 hole_size;
4929 	int err = 0;
4930 
4931 	/*
4932 	 * If our size started in the middle of a block we need to zero out the
4933 	 * rest of the block before we expand the i_size, otherwise we could
4934 	 * expose stale data.
4935 	 */
4936 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4937 	if (err)
4938 		return err;
4939 
4940 	if (size <= hole_start)
4941 		return 0;
4942 
4943 	while (1) {
4944 		struct btrfs_ordered_extent *ordered;
4945 
4946 		lock_extent_bits(io_tree, hole_start, block_end - 1,
4947 				 &cached_state);
4948 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
4949 						     block_end - hole_start);
4950 		if (!ordered)
4951 			break;
4952 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4953 				     &cached_state, GFP_NOFS);
4954 		btrfs_start_ordered_extent(inode, ordered, 1);
4955 		btrfs_put_ordered_extent(ordered);
4956 	}
4957 
4958 	cur_offset = hole_start;
4959 	while (1) {
4960 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4961 				block_end - cur_offset, 0);
4962 		if (IS_ERR(em)) {
4963 			err = PTR_ERR(em);
4964 			em = NULL;
4965 			break;
4966 		}
4967 		last_byte = min(extent_map_end(em), block_end);
4968 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4969 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4970 			struct extent_map *hole_em;
4971 			hole_size = last_byte - cur_offset;
4972 
4973 			err = maybe_insert_hole(root, inode, cur_offset,
4974 						hole_size);
4975 			if (err)
4976 				break;
4977 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4978 						cur_offset + hole_size - 1, 0);
4979 			hole_em = alloc_extent_map();
4980 			if (!hole_em) {
4981 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4982 					&BTRFS_I(inode)->runtime_flags);
4983 				goto next;
4984 			}
4985 			hole_em->start = cur_offset;
4986 			hole_em->len = hole_size;
4987 			hole_em->orig_start = cur_offset;
4988 
4989 			hole_em->block_start = EXTENT_MAP_HOLE;
4990 			hole_em->block_len = 0;
4991 			hole_em->orig_block_len = 0;
4992 			hole_em->ram_bytes = hole_size;
4993 			hole_em->bdev = fs_info->fs_devices->latest_bdev;
4994 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4995 			hole_em->generation = fs_info->generation;
4996 
4997 			while (1) {
4998 				write_lock(&em_tree->lock);
4999 				err = add_extent_mapping(em_tree, hole_em, 1);
5000 				write_unlock(&em_tree->lock);
5001 				if (err != -EEXIST)
5002 					break;
5003 				btrfs_drop_extent_cache(BTRFS_I(inode),
5004 							cur_offset,
5005 							cur_offset +
5006 							hole_size - 1, 0);
5007 			}
5008 			free_extent_map(hole_em);
5009 		}
5010 next:
5011 		free_extent_map(em);
5012 		em = NULL;
5013 		cur_offset = last_byte;
5014 		if (cur_offset >= block_end)
5015 			break;
5016 	}
5017 	free_extent_map(em);
5018 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5019 			     GFP_NOFS);
5020 	return err;
5021 }
5022 
5023 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5024 {
5025 	struct btrfs_root *root = BTRFS_I(inode)->root;
5026 	struct btrfs_trans_handle *trans;
5027 	loff_t oldsize = i_size_read(inode);
5028 	loff_t newsize = attr->ia_size;
5029 	int mask = attr->ia_valid;
5030 	int ret;
5031 
5032 	/*
5033 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5034 	 * special case where we need to update the times despite not having
5035 	 * these flags set.  For all other operations the VFS set these flags
5036 	 * explicitly if it wants a timestamp update.
5037 	 */
5038 	if (newsize != oldsize) {
5039 		inode_inc_iversion(inode);
5040 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5041 			inode->i_ctime = inode->i_mtime =
5042 				current_time(inode);
5043 	}
5044 
5045 	if (newsize > oldsize) {
5046 		/*
5047 		 * Don't do an expanding truncate while snapshoting is ongoing.
5048 		 * This is to ensure the snapshot captures a fully consistent
5049 		 * state of this file - if the snapshot captures this expanding
5050 		 * truncation, it must capture all writes that happened before
5051 		 * this truncation.
5052 		 */
5053 		btrfs_wait_for_snapshot_creation(root);
5054 		ret = btrfs_cont_expand(inode, oldsize, newsize);
5055 		if (ret) {
5056 			btrfs_end_write_no_snapshoting(root);
5057 			return ret;
5058 		}
5059 
5060 		trans = btrfs_start_transaction(root, 1);
5061 		if (IS_ERR(trans)) {
5062 			btrfs_end_write_no_snapshoting(root);
5063 			return PTR_ERR(trans);
5064 		}
5065 
5066 		i_size_write(inode, newsize);
5067 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5068 		pagecache_isize_extended(inode, oldsize, newsize);
5069 		ret = btrfs_update_inode(trans, root, inode);
5070 		btrfs_end_write_no_snapshoting(root);
5071 		btrfs_end_transaction(trans);
5072 	} else {
5073 
5074 		/*
5075 		 * We're truncating a file that used to have good data down to
5076 		 * zero. Make sure it gets into the ordered flush list so that
5077 		 * any new writes get down to disk quickly.
5078 		 */
5079 		if (newsize == 0)
5080 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5081 				&BTRFS_I(inode)->runtime_flags);
5082 
5083 		/*
5084 		 * 1 for the orphan item we're going to add
5085 		 * 1 for the orphan item deletion.
5086 		 */
5087 		trans = btrfs_start_transaction(root, 2);
5088 		if (IS_ERR(trans))
5089 			return PTR_ERR(trans);
5090 
5091 		/*
5092 		 * We need to do this in case we fail at _any_ point during the
5093 		 * actual truncate.  Once we do the truncate_setsize we could
5094 		 * invalidate pages which forces any outstanding ordered io to
5095 		 * be instantly completed which will give us extents that need
5096 		 * to be truncated.  If we fail to get an orphan inode down we
5097 		 * could have left over extents that were never meant to live,
5098 		 * so we need to guarantee from this point on that everything
5099 		 * will be consistent.
5100 		 */
5101 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
5102 		btrfs_end_transaction(trans);
5103 		if (ret)
5104 			return ret;
5105 
5106 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
5107 		truncate_setsize(inode, newsize);
5108 
5109 		/* Disable nonlocked read DIO to avoid the end less truncate */
5110 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5111 		inode_dio_wait(inode);
5112 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5113 
5114 		ret = btrfs_truncate(inode);
5115 		if (ret && inode->i_nlink) {
5116 			int err;
5117 
5118 			/* To get a stable disk_i_size */
5119 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5120 			if (err) {
5121 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5122 				return err;
5123 			}
5124 
5125 			/*
5126 			 * failed to truncate, disk_i_size is only adjusted down
5127 			 * as we remove extents, so it should represent the true
5128 			 * size of the inode, so reset the in memory size and
5129 			 * delete our orphan entry.
5130 			 */
5131 			trans = btrfs_join_transaction(root);
5132 			if (IS_ERR(trans)) {
5133 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5134 				return ret;
5135 			}
5136 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5137 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
5138 			if (err)
5139 				btrfs_abort_transaction(trans, err);
5140 			btrfs_end_transaction(trans);
5141 		}
5142 	}
5143 
5144 	return ret;
5145 }
5146 
5147 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5148 {
5149 	struct inode *inode = d_inode(dentry);
5150 	struct btrfs_root *root = BTRFS_I(inode)->root;
5151 	int err;
5152 
5153 	if (btrfs_root_readonly(root))
5154 		return -EROFS;
5155 
5156 	err = setattr_prepare(dentry, attr);
5157 	if (err)
5158 		return err;
5159 
5160 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5161 		err = btrfs_setsize(inode, attr);
5162 		if (err)
5163 			return err;
5164 	}
5165 
5166 	if (attr->ia_valid) {
5167 		setattr_copy(inode, attr);
5168 		inode_inc_iversion(inode);
5169 		err = btrfs_dirty_inode(inode);
5170 
5171 		if (!err && attr->ia_valid & ATTR_MODE)
5172 			err = posix_acl_chmod(inode, inode->i_mode);
5173 	}
5174 
5175 	return err;
5176 }
5177 
5178 /*
5179  * While truncating the inode pages during eviction, we get the VFS calling
5180  * btrfs_invalidatepage() against each page of the inode. This is slow because
5181  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5182  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5183  * extent_state structures over and over, wasting lots of time.
5184  *
5185  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5186  * those expensive operations on a per page basis and do only the ordered io
5187  * finishing, while we release here the extent_map and extent_state structures,
5188  * without the excessive merging and splitting.
5189  */
5190 static void evict_inode_truncate_pages(struct inode *inode)
5191 {
5192 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5193 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5194 	struct rb_node *node;
5195 
5196 	ASSERT(inode->i_state & I_FREEING);
5197 	truncate_inode_pages_final(&inode->i_data);
5198 
5199 	write_lock(&map_tree->lock);
5200 	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5201 		struct extent_map *em;
5202 
5203 		node = rb_first(&map_tree->map);
5204 		em = rb_entry(node, struct extent_map, rb_node);
5205 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5206 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5207 		remove_extent_mapping(map_tree, em);
5208 		free_extent_map(em);
5209 		if (need_resched()) {
5210 			write_unlock(&map_tree->lock);
5211 			cond_resched();
5212 			write_lock(&map_tree->lock);
5213 		}
5214 	}
5215 	write_unlock(&map_tree->lock);
5216 
5217 	/*
5218 	 * Keep looping until we have no more ranges in the io tree.
5219 	 * We can have ongoing bios started by readpages (called from readahead)
5220 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5221 	 * still in progress (unlocked the pages in the bio but did not yet
5222 	 * unlocked the ranges in the io tree). Therefore this means some
5223 	 * ranges can still be locked and eviction started because before
5224 	 * submitting those bios, which are executed by a separate task (work
5225 	 * queue kthread), inode references (inode->i_count) were not taken
5226 	 * (which would be dropped in the end io callback of each bio).
5227 	 * Therefore here we effectively end up waiting for those bios and
5228 	 * anyone else holding locked ranges without having bumped the inode's
5229 	 * reference count - if we don't do it, when they access the inode's
5230 	 * io_tree to unlock a range it may be too late, leading to an
5231 	 * use-after-free issue.
5232 	 */
5233 	spin_lock(&io_tree->lock);
5234 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5235 		struct extent_state *state;
5236 		struct extent_state *cached_state = NULL;
5237 		u64 start;
5238 		u64 end;
5239 
5240 		node = rb_first(&io_tree->state);
5241 		state = rb_entry(node, struct extent_state, rb_node);
5242 		start = state->start;
5243 		end = state->end;
5244 		spin_unlock(&io_tree->lock);
5245 
5246 		lock_extent_bits(io_tree, start, end, &cached_state);
5247 
5248 		/*
5249 		 * If still has DELALLOC flag, the extent didn't reach disk,
5250 		 * and its reserved space won't be freed by delayed_ref.
5251 		 * So we need to free its reserved space here.
5252 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5253 		 *
5254 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5255 		 */
5256 		if (state->state & EXTENT_DELALLOC)
5257 			btrfs_qgroup_free_data(inode, start, end - start + 1);
5258 
5259 		clear_extent_bit(io_tree, start, end,
5260 				 EXTENT_LOCKED | EXTENT_DIRTY |
5261 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5262 				 EXTENT_DEFRAG, 1, 1,
5263 				 &cached_state, GFP_NOFS);
5264 
5265 		cond_resched();
5266 		spin_lock(&io_tree->lock);
5267 	}
5268 	spin_unlock(&io_tree->lock);
5269 }
5270 
5271 void btrfs_evict_inode(struct inode *inode)
5272 {
5273 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5274 	struct btrfs_trans_handle *trans;
5275 	struct btrfs_root *root = BTRFS_I(inode)->root;
5276 	struct btrfs_block_rsv *rsv, *global_rsv;
5277 	int steal_from_global = 0;
5278 	u64 min_size;
5279 	int ret;
5280 
5281 	trace_btrfs_inode_evict(inode);
5282 
5283 	if (!root) {
5284 		kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5285 		return;
5286 	}
5287 
5288 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5289 
5290 	evict_inode_truncate_pages(inode);
5291 
5292 	if (inode->i_nlink &&
5293 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5294 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5295 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5296 		goto no_delete;
5297 
5298 	if (is_bad_inode(inode)) {
5299 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5300 		goto no_delete;
5301 	}
5302 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5303 	if (!special_file(inode->i_mode))
5304 		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5305 
5306 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5307 
5308 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
5309 		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5310 				 &BTRFS_I(inode)->runtime_flags));
5311 		goto no_delete;
5312 	}
5313 
5314 	if (inode->i_nlink > 0) {
5315 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5316 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5317 		goto no_delete;
5318 	}
5319 
5320 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5321 	if (ret) {
5322 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5323 		goto no_delete;
5324 	}
5325 
5326 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5327 	if (!rsv) {
5328 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5329 		goto no_delete;
5330 	}
5331 	rsv->size = min_size;
5332 	rsv->failfast = 1;
5333 	global_rsv = &fs_info->global_block_rsv;
5334 
5335 	btrfs_i_size_write(BTRFS_I(inode), 0);
5336 
5337 	/*
5338 	 * This is a bit simpler than btrfs_truncate since we've already
5339 	 * reserved our space for our orphan item in the unlink, so we just
5340 	 * need to reserve some slack space in case we add bytes and update
5341 	 * inode item when doing the truncate.
5342 	 */
5343 	while (1) {
5344 		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5345 					     BTRFS_RESERVE_FLUSH_LIMIT);
5346 
5347 		/*
5348 		 * Try and steal from the global reserve since we will
5349 		 * likely not use this space anyway, we want to try as
5350 		 * hard as possible to get this to work.
5351 		 */
5352 		if (ret)
5353 			steal_from_global++;
5354 		else
5355 			steal_from_global = 0;
5356 		ret = 0;
5357 
5358 		/*
5359 		 * steal_from_global == 0: we reserved stuff, hooray!
5360 		 * steal_from_global == 1: we didn't reserve stuff, boo!
5361 		 * steal_from_global == 2: we've committed, still not a lot of
5362 		 * room but maybe we'll have room in the global reserve this
5363 		 * time.
5364 		 * steal_from_global == 3: abandon all hope!
5365 		 */
5366 		if (steal_from_global > 2) {
5367 			btrfs_warn(fs_info,
5368 				   "Could not get space for a delete, will truncate on mount %d",
5369 				   ret);
5370 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5371 			btrfs_free_block_rsv(fs_info, rsv);
5372 			goto no_delete;
5373 		}
5374 
5375 		trans = btrfs_join_transaction(root);
5376 		if (IS_ERR(trans)) {
5377 			btrfs_orphan_del(NULL, BTRFS_I(inode));
5378 			btrfs_free_block_rsv(fs_info, rsv);
5379 			goto no_delete;
5380 		}
5381 
5382 		/*
5383 		 * We can't just steal from the global reserve, we need to make
5384 		 * sure there is room to do it, if not we need to commit and try
5385 		 * again.
5386 		 */
5387 		if (steal_from_global) {
5388 			if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
5389 				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5390 							      min_size, 0);
5391 			else
5392 				ret = -ENOSPC;
5393 		}
5394 
5395 		/*
5396 		 * Couldn't steal from the global reserve, we have too much
5397 		 * pending stuff built up, commit the transaction and try it
5398 		 * again.
5399 		 */
5400 		if (ret) {
5401 			ret = btrfs_commit_transaction(trans);
5402 			if (ret) {
5403 				btrfs_orphan_del(NULL, BTRFS_I(inode));
5404 				btrfs_free_block_rsv(fs_info, rsv);
5405 				goto no_delete;
5406 			}
5407 			continue;
5408 		} else {
5409 			steal_from_global = 0;
5410 		}
5411 
5412 		trans->block_rsv = rsv;
5413 
5414 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5415 		if (ret != -ENOSPC && ret != -EAGAIN)
5416 			break;
5417 
5418 		trans->block_rsv = &fs_info->trans_block_rsv;
5419 		btrfs_end_transaction(trans);
5420 		trans = NULL;
5421 		btrfs_btree_balance_dirty(fs_info);
5422 	}
5423 
5424 	btrfs_free_block_rsv(fs_info, rsv);
5425 
5426 	/*
5427 	 * Errors here aren't a big deal, it just means we leave orphan items
5428 	 * in the tree.  They will be cleaned up on the next mount.
5429 	 */
5430 	if (ret == 0) {
5431 		trans->block_rsv = root->orphan_block_rsv;
5432 		btrfs_orphan_del(trans, BTRFS_I(inode));
5433 	} else {
5434 		btrfs_orphan_del(NULL, BTRFS_I(inode));
5435 	}
5436 
5437 	trans->block_rsv = &fs_info->trans_block_rsv;
5438 	if (!(root == fs_info->tree_root ||
5439 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5440 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5441 
5442 	btrfs_end_transaction(trans);
5443 	btrfs_btree_balance_dirty(fs_info);
5444 no_delete:
5445 	btrfs_remove_delayed_node(BTRFS_I(inode));
5446 	clear_inode(inode);
5447 }
5448 
5449 /*
5450  * this returns the key found in the dir entry in the location pointer.
5451  * If no dir entries were found, location->objectid is 0.
5452  */
5453 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5454 			       struct btrfs_key *location)
5455 {
5456 	const char *name = dentry->d_name.name;
5457 	int namelen = dentry->d_name.len;
5458 	struct btrfs_dir_item *di;
5459 	struct btrfs_path *path;
5460 	struct btrfs_root *root = BTRFS_I(dir)->root;
5461 	int ret = 0;
5462 
5463 	path = btrfs_alloc_path();
5464 	if (!path)
5465 		return -ENOMEM;
5466 
5467 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5468 			name, namelen, 0);
5469 	if (IS_ERR(di))
5470 		ret = PTR_ERR(di);
5471 
5472 	if (IS_ERR_OR_NULL(di))
5473 		goto out_err;
5474 
5475 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5476 out:
5477 	btrfs_free_path(path);
5478 	return ret;
5479 out_err:
5480 	location->objectid = 0;
5481 	goto out;
5482 }
5483 
5484 /*
5485  * when we hit a tree root in a directory, the btrfs part of the inode
5486  * needs to be changed to reflect the root directory of the tree root.  This
5487  * is kind of like crossing a mount point.
5488  */
5489 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5490 				    struct inode *dir,
5491 				    struct dentry *dentry,
5492 				    struct btrfs_key *location,
5493 				    struct btrfs_root **sub_root)
5494 {
5495 	struct btrfs_path *path;
5496 	struct btrfs_root *new_root;
5497 	struct btrfs_root_ref *ref;
5498 	struct extent_buffer *leaf;
5499 	struct btrfs_key key;
5500 	int ret;
5501 	int err = 0;
5502 
5503 	path = btrfs_alloc_path();
5504 	if (!path) {
5505 		err = -ENOMEM;
5506 		goto out;
5507 	}
5508 
5509 	err = -ENOENT;
5510 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5511 	key.type = BTRFS_ROOT_REF_KEY;
5512 	key.offset = location->objectid;
5513 
5514 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5515 	if (ret) {
5516 		if (ret < 0)
5517 			err = ret;
5518 		goto out;
5519 	}
5520 
5521 	leaf = path->nodes[0];
5522 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5523 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5524 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5525 		goto out;
5526 
5527 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5528 				   (unsigned long)(ref + 1),
5529 				   dentry->d_name.len);
5530 	if (ret)
5531 		goto out;
5532 
5533 	btrfs_release_path(path);
5534 
5535 	new_root = btrfs_read_fs_root_no_name(fs_info, location);
5536 	if (IS_ERR(new_root)) {
5537 		err = PTR_ERR(new_root);
5538 		goto out;
5539 	}
5540 
5541 	*sub_root = new_root;
5542 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5543 	location->type = BTRFS_INODE_ITEM_KEY;
5544 	location->offset = 0;
5545 	err = 0;
5546 out:
5547 	btrfs_free_path(path);
5548 	return err;
5549 }
5550 
5551 static void inode_tree_add(struct inode *inode)
5552 {
5553 	struct btrfs_root *root = BTRFS_I(inode)->root;
5554 	struct btrfs_inode *entry;
5555 	struct rb_node **p;
5556 	struct rb_node *parent;
5557 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5558 	u64 ino = btrfs_ino(BTRFS_I(inode));
5559 
5560 	if (inode_unhashed(inode))
5561 		return;
5562 	parent = NULL;
5563 	spin_lock(&root->inode_lock);
5564 	p = &root->inode_tree.rb_node;
5565 	while (*p) {
5566 		parent = *p;
5567 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5568 
5569 		if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5570 			p = &parent->rb_left;
5571 		else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5572 			p = &parent->rb_right;
5573 		else {
5574 			WARN_ON(!(entry->vfs_inode.i_state &
5575 				  (I_WILL_FREE | I_FREEING)));
5576 			rb_replace_node(parent, new, &root->inode_tree);
5577 			RB_CLEAR_NODE(parent);
5578 			spin_unlock(&root->inode_lock);
5579 			return;
5580 		}
5581 	}
5582 	rb_link_node(new, parent, p);
5583 	rb_insert_color(new, &root->inode_tree);
5584 	spin_unlock(&root->inode_lock);
5585 }
5586 
5587 static void inode_tree_del(struct inode *inode)
5588 {
5589 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5590 	struct btrfs_root *root = BTRFS_I(inode)->root;
5591 	int empty = 0;
5592 
5593 	spin_lock(&root->inode_lock);
5594 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5595 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5596 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5597 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5598 	}
5599 	spin_unlock(&root->inode_lock);
5600 
5601 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5602 		synchronize_srcu(&fs_info->subvol_srcu);
5603 		spin_lock(&root->inode_lock);
5604 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5605 		spin_unlock(&root->inode_lock);
5606 		if (empty)
5607 			btrfs_add_dead_root(root);
5608 	}
5609 }
5610 
5611 void btrfs_invalidate_inodes(struct btrfs_root *root)
5612 {
5613 	struct btrfs_fs_info *fs_info = root->fs_info;
5614 	struct rb_node *node;
5615 	struct rb_node *prev;
5616 	struct btrfs_inode *entry;
5617 	struct inode *inode;
5618 	u64 objectid = 0;
5619 
5620 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
5621 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5622 
5623 	spin_lock(&root->inode_lock);
5624 again:
5625 	node = root->inode_tree.rb_node;
5626 	prev = NULL;
5627 	while (node) {
5628 		prev = node;
5629 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5630 
5631 		if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5632 			node = node->rb_left;
5633 		else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
5634 			node = node->rb_right;
5635 		else
5636 			break;
5637 	}
5638 	if (!node) {
5639 		while (prev) {
5640 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5641 			if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
5642 				node = prev;
5643 				break;
5644 			}
5645 			prev = rb_next(prev);
5646 		}
5647 	}
5648 	while (node) {
5649 		entry = rb_entry(node, struct btrfs_inode, rb_node);
5650 		objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
5651 		inode = igrab(&entry->vfs_inode);
5652 		if (inode) {
5653 			spin_unlock(&root->inode_lock);
5654 			if (atomic_read(&inode->i_count) > 1)
5655 				d_prune_aliases(inode);
5656 			/*
5657 			 * btrfs_drop_inode will have it removed from
5658 			 * the inode cache when its usage count
5659 			 * hits zero.
5660 			 */
5661 			iput(inode);
5662 			cond_resched();
5663 			spin_lock(&root->inode_lock);
5664 			goto again;
5665 		}
5666 
5667 		if (cond_resched_lock(&root->inode_lock))
5668 			goto again;
5669 
5670 		node = rb_next(node);
5671 	}
5672 	spin_unlock(&root->inode_lock);
5673 }
5674 
5675 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5676 {
5677 	struct btrfs_iget_args *args = p;
5678 	inode->i_ino = args->location->objectid;
5679 	memcpy(&BTRFS_I(inode)->location, args->location,
5680 	       sizeof(*args->location));
5681 	BTRFS_I(inode)->root = args->root;
5682 	return 0;
5683 }
5684 
5685 static int btrfs_find_actor(struct inode *inode, void *opaque)
5686 {
5687 	struct btrfs_iget_args *args = opaque;
5688 	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5689 		args->root == BTRFS_I(inode)->root;
5690 }
5691 
5692 static struct inode *btrfs_iget_locked(struct super_block *s,
5693 				       struct btrfs_key *location,
5694 				       struct btrfs_root *root)
5695 {
5696 	struct inode *inode;
5697 	struct btrfs_iget_args args;
5698 	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5699 
5700 	args.location = location;
5701 	args.root = root;
5702 
5703 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5704 			     btrfs_init_locked_inode,
5705 			     (void *)&args);
5706 	return inode;
5707 }
5708 
5709 /* Get an inode object given its location and corresponding root.
5710  * Returns in *is_new if the inode was read from disk
5711  */
5712 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5713 			 struct btrfs_root *root, int *new)
5714 {
5715 	struct inode *inode;
5716 
5717 	inode = btrfs_iget_locked(s, location, root);
5718 	if (!inode)
5719 		return ERR_PTR(-ENOMEM);
5720 
5721 	if (inode->i_state & I_NEW) {
5722 		int ret;
5723 
5724 		ret = btrfs_read_locked_inode(inode);
5725 		if (!is_bad_inode(inode)) {
5726 			inode_tree_add(inode);
5727 			unlock_new_inode(inode);
5728 			if (new)
5729 				*new = 1;
5730 		} else {
5731 			unlock_new_inode(inode);
5732 			iput(inode);
5733 			ASSERT(ret < 0);
5734 			inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5735 		}
5736 	}
5737 
5738 	return inode;
5739 }
5740 
5741 static struct inode *new_simple_dir(struct super_block *s,
5742 				    struct btrfs_key *key,
5743 				    struct btrfs_root *root)
5744 {
5745 	struct inode *inode = new_inode(s);
5746 
5747 	if (!inode)
5748 		return ERR_PTR(-ENOMEM);
5749 
5750 	BTRFS_I(inode)->root = root;
5751 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5752 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5753 
5754 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5755 	inode->i_op = &btrfs_dir_ro_inode_operations;
5756 	inode->i_opflags &= ~IOP_XATTR;
5757 	inode->i_fop = &simple_dir_operations;
5758 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5759 	inode->i_mtime = current_time(inode);
5760 	inode->i_atime = inode->i_mtime;
5761 	inode->i_ctime = inode->i_mtime;
5762 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5763 
5764 	return inode;
5765 }
5766 
5767 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5768 {
5769 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5770 	struct inode *inode;
5771 	struct btrfs_root *root = BTRFS_I(dir)->root;
5772 	struct btrfs_root *sub_root = root;
5773 	struct btrfs_key location;
5774 	int index;
5775 	int ret = 0;
5776 
5777 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5778 		return ERR_PTR(-ENAMETOOLONG);
5779 
5780 	ret = btrfs_inode_by_name(dir, dentry, &location);
5781 	if (ret < 0)
5782 		return ERR_PTR(ret);
5783 
5784 	if (location.objectid == 0)
5785 		return ERR_PTR(-ENOENT);
5786 
5787 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5788 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5789 		return inode;
5790 	}
5791 
5792 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5793 
5794 	index = srcu_read_lock(&fs_info->subvol_srcu);
5795 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5796 				       &location, &sub_root);
5797 	if (ret < 0) {
5798 		if (ret != -ENOENT)
5799 			inode = ERR_PTR(ret);
5800 		else
5801 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5802 	} else {
5803 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5804 	}
5805 	srcu_read_unlock(&fs_info->subvol_srcu, index);
5806 
5807 	if (!IS_ERR(inode) && root != sub_root) {
5808 		down_read(&fs_info->cleanup_work_sem);
5809 		if (!(inode->i_sb->s_flags & MS_RDONLY))
5810 			ret = btrfs_orphan_cleanup(sub_root);
5811 		up_read(&fs_info->cleanup_work_sem);
5812 		if (ret) {
5813 			iput(inode);
5814 			inode = ERR_PTR(ret);
5815 		}
5816 	}
5817 
5818 	return inode;
5819 }
5820 
5821 static int btrfs_dentry_delete(const struct dentry *dentry)
5822 {
5823 	struct btrfs_root *root;
5824 	struct inode *inode = d_inode(dentry);
5825 
5826 	if (!inode && !IS_ROOT(dentry))
5827 		inode = d_inode(dentry->d_parent);
5828 
5829 	if (inode) {
5830 		root = BTRFS_I(inode)->root;
5831 		if (btrfs_root_refs(&root->root_item) == 0)
5832 			return 1;
5833 
5834 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5835 			return 1;
5836 	}
5837 	return 0;
5838 }
5839 
5840 static void btrfs_dentry_release(struct dentry *dentry)
5841 {
5842 	kfree(dentry->d_fsdata);
5843 }
5844 
5845 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5846 				   unsigned int flags)
5847 {
5848 	struct inode *inode;
5849 
5850 	inode = btrfs_lookup_dentry(dir, dentry);
5851 	if (IS_ERR(inode)) {
5852 		if (PTR_ERR(inode) == -ENOENT)
5853 			inode = NULL;
5854 		else
5855 			return ERR_CAST(inode);
5856 	}
5857 
5858 	return d_splice_alias(inode, dentry);
5859 }
5860 
5861 unsigned char btrfs_filetype_table[] = {
5862 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5863 };
5864 
5865 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5866 {
5867 	struct inode *inode = file_inode(file);
5868 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5869 	struct btrfs_root *root = BTRFS_I(inode)->root;
5870 	struct btrfs_item *item;
5871 	struct btrfs_dir_item *di;
5872 	struct btrfs_key key;
5873 	struct btrfs_key found_key;
5874 	struct btrfs_path *path;
5875 	struct list_head ins_list;
5876 	struct list_head del_list;
5877 	int ret;
5878 	struct extent_buffer *leaf;
5879 	int slot;
5880 	unsigned char d_type;
5881 	int over = 0;
5882 	char tmp_name[32];
5883 	char *name_ptr;
5884 	int name_len;
5885 	bool put = false;
5886 	struct btrfs_key location;
5887 
5888 	if (!dir_emit_dots(file, ctx))
5889 		return 0;
5890 
5891 	path = btrfs_alloc_path();
5892 	if (!path)
5893 		return -ENOMEM;
5894 
5895 	path->reada = READA_FORWARD;
5896 
5897 	INIT_LIST_HEAD(&ins_list);
5898 	INIT_LIST_HEAD(&del_list);
5899 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5900 
5901 	key.type = BTRFS_DIR_INDEX_KEY;
5902 	key.offset = ctx->pos;
5903 	key.objectid = btrfs_ino(BTRFS_I(inode));
5904 
5905 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5906 	if (ret < 0)
5907 		goto err;
5908 
5909 	while (1) {
5910 		leaf = path->nodes[0];
5911 		slot = path->slots[0];
5912 		if (slot >= btrfs_header_nritems(leaf)) {
5913 			ret = btrfs_next_leaf(root, path);
5914 			if (ret < 0)
5915 				goto err;
5916 			else if (ret > 0)
5917 				break;
5918 			continue;
5919 		}
5920 
5921 		item = btrfs_item_nr(slot);
5922 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5923 
5924 		if (found_key.objectid != key.objectid)
5925 			break;
5926 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5927 			break;
5928 		if (found_key.offset < ctx->pos)
5929 			goto next;
5930 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5931 			goto next;
5932 
5933 		ctx->pos = found_key.offset;
5934 
5935 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5936 		if (verify_dir_item(fs_info, leaf, di))
5937 			goto next;
5938 
5939 		name_len = btrfs_dir_name_len(leaf, di);
5940 		if (name_len <= sizeof(tmp_name)) {
5941 			name_ptr = tmp_name;
5942 		} else {
5943 			name_ptr = kmalloc(name_len, GFP_KERNEL);
5944 			if (!name_ptr) {
5945 				ret = -ENOMEM;
5946 				goto err;
5947 			}
5948 		}
5949 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5950 				   name_len);
5951 
5952 		d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5953 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5954 
5955 		over = !dir_emit(ctx, name_ptr, name_len, location.objectid,
5956 				 d_type);
5957 
5958 		if (name_ptr != tmp_name)
5959 			kfree(name_ptr);
5960 
5961 		if (over)
5962 			goto nopos;
5963 		ctx->pos++;
5964 next:
5965 		path->slots[0]++;
5966 	}
5967 
5968 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5969 	if (ret)
5970 		goto nopos;
5971 
5972 	/*
5973 	 * Stop new entries from being returned after we return the last
5974 	 * entry.
5975 	 *
5976 	 * New directory entries are assigned a strictly increasing
5977 	 * offset.  This means that new entries created during readdir
5978 	 * are *guaranteed* to be seen in the future by that readdir.
5979 	 * This has broken buggy programs which operate on names as
5980 	 * they're returned by readdir.  Until we re-use freed offsets
5981 	 * we have this hack to stop new entries from being returned
5982 	 * under the assumption that they'll never reach this huge
5983 	 * offset.
5984 	 *
5985 	 * This is being careful not to overflow 32bit loff_t unless the
5986 	 * last entry requires it because doing so has broken 32bit apps
5987 	 * in the past.
5988 	 */
5989 	if (ctx->pos >= INT_MAX)
5990 		ctx->pos = LLONG_MAX;
5991 	else
5992 		ctx->pos = INT_MAX;
5993 nopos:
5994 	ret = 0;
5995 err:
5996 	if (put)
5997 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5998 	btrfs_free_path(path);
5999 	return ret;
6000 }
6001 
6002 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
6003 {
6004 	struct btrfs_root *root = BTRFS_I(inode)->root;
6005 	struct btrfs_trans_handle *trans;
6006 	int ret = 0;
6007 	bool nolock = false;
6008 
6009 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6010 		return 0;
6011 
6012 	if (btrfs_fs_closing(root->fs_info) &&
6013 			btrfs_is_free_space_inode(BTRFS_I(inode)))
6014 		nolock = true;
6015 
6016 	if (wbc->sync_mode == WB_SYNC_ALL) {
6017 		if (nolock)
6018 			trans = btrfs_join_transaction_nolock(root);
6019 		else
6020 			trans = btrfs_join_transaction(root);
6021 		if (IS_ERR(trans))
6022 			return PTR_ERR(trans);
6023 		ret = btrfs_commit_transaction(trans);
6024 	}
6025 	return ret;
6026 }
6027 
6028 /*
6029  * This is somewhat expensive, updating the tree every time the
6030  * inode changes.  But, it is most likely to find the inode in cache.
6031  * FIXME, needs more benchmarking...there are no reasons other than performance
6032  * to keep or drop this code.
6033  */
6034 static int btrfs_dirty_inode(struct inode *inode)
6035 {
6036 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6037 	struct btrfs_root *root = BTRFS_I(inode)->root;
6038 	struct btrfs_trans_handle *trans;
6039 	int ret;
6040 
6041 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6042 		return 0;
6043 
6044 	trans = btrfs_join_transaction(root);
6045 	if (IS_ERR(trans))
6046 		return PTR_ERR(trans);
6047 
6048 	ret = btrfs_update_inode(trans, root, inode);
6049 	if (ret && ret == -ENOSPC) {
6050 		/* whoops, lets try again with the full transaction */
6051 		btrfs_end_transaction(trans);
6052 		trans = btrfs_start_transaction(root, 1);
6053 		if (IS_ERR(trans))
6054 			return PTR_ERR(trans);
6055 
6056 		ret = btrfs_update_inode(trans, root, inode);
6057 	}
6058 	btrfs_end_transaction(trans);
6059 	if (BTRFS_I(inode)->delayed_node)
6060 		btrfs_balance_delayed_items(fs_info);
6061 
6062 	return ret;
6063 }
6064 
6065 /*
6066  * This is a copy of file_update_time.  We need this so we can return error on
6067  * ENOSPC for updating the inode in the case of file write and mmap writes.
6068  */
6069 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6070 			     int flags)
6071 {
6072 	struct btrfs_root *root = BTRFS_I(inode)->root;
6073 
6074 	if (btrfs_root_readonly(root))
6075 		return -EROFS;
6076 
6077 	if (flags & S_VERSION)
6078 		inode_inc_iversion(inode);
6079 	if (flags & S_CTIME)
6080 		inode->i_ctime = *now;
6081 	if (flags & S_MTIME)
6082 		inode->i_mtime = *now;
6083 	if (flags & S_ATIME)
6084 		inode->i_atime = *now;
6085 	return btrfs_dirty_inode(inode);
6086 }
6087 
6088 /*
6089  * find the highest existing sequence number in a directory
6090  * and then set the in-memory index_cnt variable to reflect
6091  * free sequence numbers
6092  */
6093 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6094 {
6095 	struct btrfs_root *root = inode->root;
6096 	struct btrfs_key key, found_key;
6097 	struct btrfs_path *path;
6098 	struct extent_buffer *leaf;
6099 	int ret;
6100 
6101 	key.objectid = btrfs_ino(inode);
6102 	key.type = BTRFS_DIR_INDEX_KEY;
6103 	key.offset = (u64)-1;
6104 
6105 	path = btrfs_alloc_path();
6106 	if (!path)
6107 		return -ENOMEM;
6108 
6109 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6110 	if (ret < 0)
6111 		goto out;
6112 	/* FIXME: we should be able to handle this */
6113 	if (ret == 0)
6114 		goto out;
6115 	ret = 0;
6116 
6117 	/*
6118 	 * MAGIC NUMBER EXPLANATION:
6119 	 * since we search a directory based on f_pos we have to start at 2
6120 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6121 	 * else has to start at 2
6122 	 */
6123 	if (path->slots[0] == 0) {
6124 		inode->index_cnt = 2;
6125 		goto out;
6126 	}
6127 
6128 	path->slots[0]--;
6129 
6130 	leaf = path->nodes[0];
6131 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6132 
6133 	if (found_key.objectid != btrfs_ino(inode) ||
6134 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6135 		inode->index_cnt = 2;
6136 		goto out;
6137 	}
6138 
6139 	inode->index_cnt = found_key.offset + 1;
6140 out:
6141 	btrfs_free_path(path);
6142 	return ret;
6143 }
6144 
6145 /*
6146  * helper to find a free sequence number in a given directory.  This current
6147  * code is very simple, later versions will do smarter things in the btree
6148  */
6149 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6150 {
6151 	int ret = 0;
6152 
6153 	if (dir->index_cnt == (u64)-1) {
6154 		ret = btrfs_inode_delayed_dir_index_count(dir);
6155 		if (ret) {
6156 			ret = btrfs_set_inode_index_count(dir);
6157 			if (ret)
6158 				return ret;
6159 		}
6160 	}
6161 
6162 	*index = dir->index_cnt;
6163 	dir->index_cnt++;
6164 
6165 	return ret;
6166 }
6167 
6168 static int btrfs_insert_inode_locked(struct inode *inode)
6169 {
6170 	struct btrfs_iget_args args;
6171 	args.location = &BTRFS_I(inode)->location;
6172 	args.root = BTRFS_I(inode)->root;
6173 
6174 	return insert_inode_locked4(inode,
6175 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6176 		   btrfs_find_actor, &args);
6177 }
6178 
6179 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6180 				     struct btrfs_root *root,
6181 				     struct inode *dir,
6182 				     const char *name, int name_len,
6183 				     u64 ref_objectid, u64 objectid,
6184 				     umode_t mode, u64 *index)
6185 {
6186 	struct btrfs_fs_info *fs_info = root->fs_info;
6187 	struct inode *inode;
6188 	struct btrfs_inode_item *inode_item;
6189 	struct btrfs_key *location;
6190 	struct btrfs_path *path;
6191 	struct btrfs_inode_ref *ref;
6192 	struct btrfs_key key[2];
6193 	u32 sizes[2];
6194 	int nitems = name ? 2 : 1;
6195 	unsigned long ptr;
6196 	int ret;
6197 
6198 	path = btrfs_alloc_path();
6199 	if (!path)
6200 		return ERR_PTR(-ENOMEM);
6201 
6202 	inode = new_inode(fs_info->sb);
6203 	if (!inode) {
6204 		btrfs_free_path(path);
6205 		return ERR_PTR(-ENOMEM);
6206 	}
6207 
6208 	/*
6209 	 * O_TMPFILE, set link count to 0, so that after this point,
6210 	 * we fill in an inode item with the correct link count.
6211 	 */
6212 	if (!name)
6213 		set_nlink(inode, 0);
6214 
6215 	/*
6216 	 * we have to initialize this early, so we can reclaim the inode
6217 	 * number if we fail afterwards in this function.
6218 	 */
6219 	inode->i_ino = objectid;
6220 
6221 	if (dir && name) {
6222 		trace_btrfs_inode_request(dir);
6223 
6224 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6225 		if (ret) {
6226 			btrfs_free_path(path);
6227 			iput(inode);
6228 			return ERR_PTR(ret);
6229 		}
6230 	} else if (dir) {
6231 		*index = 0;
6232 	}
6233 	/*
6234 	 * index_cnt is ignored for everything but a dir,
6235 	 * btrfs_get_inode_index_count has an explanation for the magic
6236 	 * number
6237 	 */
6238 	BTRFS_I(inode)->index_cnt = 2;
6239 	BTRFS_I(inode)->dir_index = *index;
6240 	BTRFS_I(inode)->root = root;
6241 	BTRFS_I(inode)->generation = trans->transid;
6242 	inode->i_generation = BTRFS_I(inode)->generation;
6243 
6244 	/*
6245 	 * We could have gotten an inode number from somebody who was fsynced
6246 	 * and then removed in this same transaction, so let's just set full
6247 	 * sync since it will be a full sync anyway and this will blow away the
6248 	 * old info in the log.
6249 	 */
6250 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6251 
6252 	key[0].objectid = objectid;
6253 	key[0].type = BTRFS_INODE_ITEM_KEY;
6254 	key[0].offset = 0;
6255 
6256 	sizes[0] = sizeof(struct btrfs_inode_item);
6257 
6258 	if (name) {
6259 		/*
6260 		 * Start new inodes with an inode_ref. This is slightly more
6261 		 * efficient for small numbers of hard links since they will
6262 		 * be packed into one item. Extended refs will kick in if we
6263 		 * add more hard links than can fit in the ref item.
6264 		 */
6265 		key[1].objectid = objectid;
6266 		key[1].type = BTRFS_INODE_REF_KEY;
6267 		key[1].offset = ref_objectid;
6268 
6269 		sizes[1] = name_len + sizeof(*ref);
6270 	}
6271 
6272 	location = &BTRFS_I(inode)->location;
6273 	location->objectid = objectid;
6274 	location->offset = 0;
6275 	location->type = BTRFS_INODE_ITEM_KEY;
6276 
6277 	ret = btrfs_insert_inode_locked(inode);
6278 	if (ret < 0)
6279 		goto fail;
6280 
6281 	path->leave_spinning = 1;
6282 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6283 	if (ret != 0)
6284 		goto fail_unlock;
6285 
6286 	inode_init_owner(inode, dir, mode);
6287 	inode_set_bytes(inode, 0);
6288 
6289 	inode->i_mtime = current_time(inode);
6290 	inode->i_atime = inode->i_mtime;
6291 	inode->i_ctime = inode->i_mtime;
6292 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6293 
6294 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6295 				  struct btrfs_inode_item);
6296 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6297 			     sizeof(*inode_item));
6298 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6299 
6300 	if (name) {
6301 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6302 				     struct btrfs_inode_ref);
6303 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6304 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6305 		ptr = (unsigned long)(ref + 1);
6306 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6307 	}
6308 
6309 	btrfs_mark_buffer_dirty(path->nodes[0]);
6310 	btrfs_free_path(path);
6311 
6312 	btrfs_inherit_iflags(inode, dir);
6313 
6314 	if (S_ISREG(mode)) {
6315 		if (btrfs_test_opt(fs_info, NODATASUM))
6316 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6317 		if (btrfs_test_opt(fs_info, NODATACOW))
6318 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6319 				BTRFS_INODE_NODATASUM;
6320 	}
6321 
6322 	inode_tree_add(inode);
6323 
6324 	trace_btrfs_inode_new(inode);
6325 	btrfs_set_inode_last_trans(trans, inode);
6326 
6327 	btrfs_update_root_times(trans, root);
6328 
6329 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6330 	if (ret)
6331 		btrfs_err(fs_info,
6332 			  "error inheriting props for ino %llu (root %llu): %d",
6333 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6334 
6335 	return inode;
6336 
6337 fail_unlock:
6338 	unlock_new_inode(inode);
6339 fail:
6340 	if (dir && name)
6341 		BTRFS_I(dir)->index_cnt--;
6342 	btrfs_free_path(path);
6343 	iput(inode);
6344 	return ERR_PTR(ret);
6345 }
6346 
6347 static inline u8 btrfs_inode_type(struct inode *inode)
6348 {
6349 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6350 }
6351 
6352 /*
6353  * utility function to add 'inode' into 'parent_inode' with
6354  * a give name and a given sequence number.
6355  * if 'add_backref' is true, also insert a backref from the
6356  * inode to the parent directory.
6357  */
6358 int btrfs_add_link(struct btrfs_trans_handle *trans,
6359 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6360 		   const char *name, int name_len, int add_backref, u64 index)
6361 {
6362 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6363 	int ret = 0;
6364 	struct btrfs_key key;
6365 	struct btrfs_root *root = parent_inode->root;
6366 	u64 ino = btrfs_ino(inode);
6367 	u64 parent_ino = btrfs_ino(parent_inode);
6368 
6369 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6370 		memcpy(&key, &inode->root->root_key, sizeof(key));
6371 	} else {
6372 		key.objectid = ino;
6373 		key.type = BTRFS_INODE_ITEM_KEY;
6374 		key.offset = 0;
6375 	}
6376 
6377 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6378 		ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6379 					 root->root_key.objectid, parent_ino,
6380 					 index, name, name_len);
6381 	} else if (add_backref) {
6382 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6383 					     parent_ino, index);
6384 	}
6385 
6386 	/* Nothing to clean up yet */
6387 	if (ret)
6388 		return ret;
6389 
6390 	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6391 				    parent_inode, &key,
6392 				    btrfs_inode_type(&inode->vfs_inode), index);
6393 	if (ret == -EEXIST || ret == -EOVERFLOW)
6394 		goto fail_dir_item;
6395 	else if (ret) {
6396 		btrfs_abort_transaction(trans, ret);
6397 		return ret;
6398 	}
6399 
6400 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6401 			   name_len * 2);
6402 	inode_inc_iversion(&parent_inode->vfs_inode);
6403 	parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6404 		current_time(&parent_inode->vfs_inode);
6405 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6406 	if (ret)
6407 		btrfs_abort_transaction(trans, ret);
6408 	return ret;
6409 
6410 fail_dir_item:
6411 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6412 		u64 local_index;
6413 		int err;
6414 		err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6415 					 root->root_key.objectid, parent_ino,
6416 					 &local_index, name, name_len);
6417 
6418 	} else if (add_backref) {
6419 		u64 local_index;
6420 		int err;
6421 
6422 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6423 					  ino, parent_ino, &local_index);
6424 	}
6425 	return ret;
6426 }
6427 
6428 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6429 			    struct btrfs_inode *dir, struct dentry *dentry,
6430 			    struct btrfs_inode *inode, int backref, u64 index)
6431 {
6432 	int err = btrfs_add_link(trans, dir, inode,
6433 				 dentry->d_name.name, dentry->d_name.len,
6434 				 backref, index);
6435 	if (err > 0)
6436 		err = -EEXIST;
6437 	return err;
6438 }
6439 
6440 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6441 			umode_t mode, dev_t rdev)
6442 {
6443 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6444 	struct btrfs_trans_handle *trans;
6445 	struct btrfs_root *root = BTRFS_I(dir)->root;
6446 	struct inode *inode = NULL;
6447 	int err;
6448 	int drop_inode = 0;
6449 	u64 objectid;
6450 	u64 index = 0;
6451 
6452 	/*
6453 	 * 2 for inode item and ref
6454 	 * 2 for dir items
6455 	 * 1 for xattr if selinux is on
6456 	 */
6457 	trans = btrfs_start_transaction(root, 5);
6458 	if (IS_ERR(trans))
6459 		return PTR_ERR(trans);
6460 
6461 	err = btrfs_find_free_ino(root, &objectid);
6462 	if (err)
6463 		goto out_unlock;
6464 
6465 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6466 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6467 			mode, &index);
6468 	if (IS_ERR(inode)) {
6469 		err = PTR_ERR(inode);
6470 		goto out_unlock;
6471 	}
6472 
6473 	/*
6474 	* If the active LSM wants to access the inode during
6475 	* d_instantiate it needs these. Smack checks to see
6476 	* if the filesystem supports xattrs by looking at the
6477 	* ops vector.
6478 	*/
6479 	inode->i_op = &btrfs_special_inode_operations;
6480 	init_special_inode(inode, inode->i_mode, rdev);
6481 
6482 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6483 	if (err)
6484 		goto out_unlock_inode;
6485 
6486 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6487 			0, index);
6488 	if (err) {
6489 		goto out_unlock_inode;
6490 	} else {
6491 		btrfs_update_inode(trans, root, inode);
6492 		unlock_new_inode(inode);
6493 		d_instantiate(dentry, inode);
6494 	}
6495 
6496 out_unlock:
6497 	btrfs_end_transaction(trans);
6498 	btrfs_balance_delayed_items(fs_info);
6499 	btrfs_btree_balance_dirty(fs_info);
6500 	if (drop_inode) {
6501 		inode_dec_link_count(inode);
6502 		iput(inode);
6503 	}
6504 	return err;
6505 
6506 out_unlock_inode:
6507 	drop_inode = 1;
6508 	unlock_new_inode(inode);
6509 	goto out_unlock;
6510 
6511 }
6512 
6513 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6514 			umode_t mode, bool excl)
6515 {
6516 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6517 	struct btrfs_trans_handle *trans;
6518 	struct btrfs_root *root = BTRFS_I(dir)->root;
6519 	struct inode *inode = NULL;
6520 	int drop_inode_on_err = 0;
6521 	int err;
6522 	u64 objectid;
6523 	u64 index = 0;
6524 
6525 	/*
6526 	 * 2 for inode item and ref
6527 	 * 2 for dir items
6528 	 * 1 for xattr if selinux is on
6529 	 */
6530 	trans = btrfs_start_transaction(root, 5);
6531 	if (IS_ERR(trans))
6532 		return PTR_ERR(trans);
6533 
6534 	err = btrfs_find_free_ino(root, &objectid);
6535 	if (err)
6536 		goto out_unlock;
6537 
6538 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6539 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6540 			mode, &index);
6541 	if (IS_ERR(inode)) {
6542 		err = PTR_ERR(inode);
6543 		goto out_unlock;
6544 	}
6545 	drop_inode_on_err = 1;
6546 	/*
6547 	* If the active LSM wants to access the inode during
6548 	* d_instantiate it needs these. Smack checks to see
6549 	* if the filesystem supports xattrs by looking at the
6550 	* ops vector.
6551 	*/
6552 	inode->i_fop = &btrfs_file_operations;
6553 	inode->i_op = &btrfs_file_inode_operations;
6554 	inode->i_mapping->a_ops = &btrfs_aops;
6555 
6556 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6557 	if (err)
6558 		goto out_unlock_inode;
6559 
6560 	err = btrfs_update_inode(trans, root, inode);
6561 	if (err)
6562 		goto out_unlock_inode;
6563 
6564 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6565 			0, index);
6566 	if (err)
6567 		goto out_unlock_inode;
6568 
6569 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6570 	unlock_new_inode(inode);
6571 	d_instantiate(dentry, inode);
6572 
6573 out_unlock:
6574 	btrfs_end_transaction(trans);
6575 	if (err && drop_inode_on_err) {
6576 		inode_dec_link_count(inode);
6577 		iput(inode);
6578 	}
6579 	btrfs_balance_delayed_items(fs_info);
6580 	btrfs_btree_balance_dirty(fs_info);
6581 	return err;
6582 
6583 out_unlock_inode:
6584 	unlock_new_inode(inode);
6585 	goto out_unlock;
6586 
6587 }
6588 
6589 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6590 		      struct dentry *dentry)
6591 {
6592 	struct btrfs_trans_handle *trans = NULL;
6593 	struct btrfs_root *root = BTRFS_I(dir)->root;
6594 	struct inode *inode = d_inode(old_dentry);
6595 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6596 	u64 index;
6597 	int err;
6598 	int drop_inode = 0;
6599 
6600 	/* do not allow sys_link's with other subvols of the same device */
6601 	if (root->objectid != BTRFS_I(inode)->root->objectid)
6602 		return -EXDEV;
6603 
6604 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6605 		return -EMLINK;
6606 
6607 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6608 	if (err)
6609 		goto fail;
6610 
6611 	/*
6612 	 * 2 items for inode and inode ref
6613 	 * 2 items for dir items
6614 	 * 1 item for parent inode
6615 	 */
6616 	trans = btrfs_start_transaction(root, 5);
6617 	if (IS_ERR(trans)) {
6618 		err = PTR_ERR(trans);
6619 		trans = NULL;
6620 		goto fail;
6621 	}
6622 
6623 	/* There are several dir indexes for this inode, clear the cache. */
6624 	BTRFS_I(inode)->dir_index = 0ULL;
6625 	inc_nlink(inode);
6626 	inode_inc_iversion(inode);
6627 	inode->i_ctime = current_time(inode);
6628 	ihold(inode);
6629 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6630 
6631 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6632 			1, index);
6633 
6634 	if (err) {
6635 		drop_inode = 1;
6636 	} else {
6637 		struct dentry *parent = dentry->d_parent;
6638 		err = btrfs_update_inode(trans, root, inode);
6639 		if (err)
6640 			goto fail;
6641 		if (inode->i_nlink == 1) {
6642 			/*
6643 			 * If new hard link count is 1, it's a file created
6644 			 * with open(2) O_TMPFILE flag.
6645 			 */
6646 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6647 			if (err)
6648 				goto fail;
6649 		}
6650 		d_instantiate(dentry, inode);
6651 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6652 	}
6653 
6654 	btrfs_balance_delayed_items(fs_info);
6655 fail:
6656 	if (trans)
6657 		btrfs_end_transaction(trans);
6658 	if (drop_inode) {
6659 		inode_dec_link_count(inode);
6660 		iput(inode);
6661 	}
6662 	btrfs_btree_balance_dirty(fs_info);
6663 	return err;
6664 }
6665 
6666 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6667 {
6668 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6669 	struct inode *inode = NULL;
6670 	struct btrfs_trans_handle *trans;
6671 	struct btrfs_root *root = BTRFS_I(dir)->root;
6672 	int err = 0;
6673 	int drop_on_err = 0;
6674 	u64 objectid = 0;
6675 	u64 index = 0;
6676 
6677 	/*
6678 	 * 2 items for inode and ref
6679 	 * 2 items for dir items
6680 	 * 1 for xattr if selinux is on
6681 	 */
6682 	trans = btrfs_start_transaction(root, 5);
6683 	if (IS_ERR(trans))
6684 		return PTR_ERR(trans);
6685 
6686 	err = btrfs_find_free_ino(root, &objectid);
6687 	if (err)
6688 		goto out_fail;
6689 
6690 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6691 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6692 			S_IFDIR | mode, &index);
6693 	if (IS_ERR(inode)) {
6694 		err = PTR_ERR(inode);
6695 		goto out_fail;
6696 	}
6697 
6698 	drop_on_err = 1;
6699 	/* these must be set before we unlock the inode */
6700 	inode->i_op = &btrfs_dir_inode_operations;
6701 	inode->i_fop = &btrfs_dir_file_operations;
6702 
6703 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6704 	if (err)
6705 		goto out_fail_inode;
6706 
6707 	btrfs_i_size_write(BTRFS_I(inode), 0);
6708 	err = btrfs_update_inode(trans, root, inode);
6709 	if (err)
6710 		goto out_fail_inode;
6711 
6712 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6713 			dentry->d_name.name,
6714 			dentry->d_name.len, 0, index);
6715 	if (err)
6716 		goto out_fail_inode;
6717 
6718 	d_instantiate(dentry, inode);
6719 	/*
6720 	 * mkdir is special.  We're unlocking after we call d_instantiate
6721 	 * to avoid a race with nfsd calling d_instantiate.
6722 	 */
6723 	unlock_new_inode(inode);
6724 	drop_on_err = 0;
6725 
6726 out_fail:
6727 	btrfs_end_transaction(trans);
6728 	if (drop_on_err) {
6729 		inode_dec_link_count(inode);
6730 		iput(inode);
6731 	}
6732 	btrfs_balance_delayed_items(fs_info);
6733 	btrfs_btree_balance_dirty(fs_info);
6734 	return err;
6735 
6736 out_fail_inode:
6737 	unlock_new_inode(inode);
6738 	goto out_fail;
6739 }
6740 
6741 /* Find next extent map of a given extent map, caller needs to ensure locks */
6742 static struct extent_map *next_extent_map(struct extent_map *em)
6743 {
6744 	struct rb_node *next;
6745 
6746 	next = rb_next(&em->rb_node);
6747 	if (!next)
6748 		return NULL;
6749 	return container_of(next, struct extent_map, rb_node);
6750 }
6751 
6752 static struct extent_map *prev_extent_map(struct extent_map *em)
6753 {
6754 	struct rb_node *prev;
6755 
6756 	prev = rb_prev(&em->rb_node);
6757 	if (!prev)
6758 		return NULL;
6759 	return container_of(prev, struct extent_map, rb_node);
6760 }
6761 
6762 /* helper for btfs_get_extent.  Given an existing extent in the tree,
6763  * the existing extent is the nearest extent to map_start,
6764  * and an extent that you want to insert, deal with overlap and insert
6765  * the best fitted new extent into the tree.
6766  */
6767 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6768 				struct extent_map *existing,
6769 				struct extent_map *em,
6770 				u64 map_start)
6771 {
6772 	struct extent_map *prev;
6773 	struct extent_map *next;
6774 	u64 start;
6775 	u64 end;
6776 	u64 start_diff;
6777 
6778 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6779 
6780 	if (existing->start > map_start) {
6781 		next = existing;
6782 		prev = prev_extent_map(next);
6783 	} else {
6784 		prev = existing;
6785 		next = next_extent_map(prev);
6786 	}
6787 
6788 	start = prev ? extent_map_end(prev) : em->start;
6789 	start = max_t(u64, start, em->start);
6790 	end = next ? next->start : extent_map_end(em);
6791 	end = min_t(u64, end, extent_map_end(em));
6792 	start_diff = start - em->start;
6793 	em->start = start;
6794 	em->len = end - start;
6795 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6796 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6797 		em->block_start += start_diff;
6798 		em->block_len -= start_diff;
6799 	}
6800 	return add_extent_mapping(em_tree, em, 0);
6801 }
6802 
6803 static noinline int uncompress_inline(struct btrfs_path *path,
6804 				      struct page *page,
6805 				      size_t pg_offset, u64 extent_offset,
6806 				      struct btrfs_file_extent_item *item)
6807 {
6808 	int ret;
6809 	struct extent_buffer *leaf = path->nodes[0];
6810 	char *tmp;
6811 	size_t max_size;
6812 	unsigned long inline_size;
6813 	unsigned long ptr;
6814 	int compress_type;
6815 
6816 	WARN_ON(pg_offset != 0);
6817 	compress_type = btrfs_file_extent_compression(leaf, item);
6818 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6819 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6820 					btrfs_item_nr(path->slots[0]));
6821 	tmp = kmalloc(inline_size, GFP_NOFS);
6822 	if (!tmp)
6823 		return -ENOMEM;
6824 	ptr = btrfs_file_extent_inline_start(item);
6825 
6826 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6827 
6828 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6829 	ret = btrfs_decompress(compress_type, tmp, page,
6830 			       extent_offset, inline_size, max_size);
6831 
6832 	/*
6833 	 * decompression code contains a memset to fill in any space between the end
6834 	 * of the uncompressed data and the end of max_size in case the decompressed
6835 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6836 	 * the end of an inline extent and the beginning of the next block, so we
6837 	 * cover that region here.
6838 	 */
6839 
6840 	if (max_size + pg_offset < PAGE_SIZE) {
6841 		char *map = kmap(page);
6842 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6843 		kunmap(page);
6844 	}
6845 	kfree(tmp);
6846 	return ret;
6847 }
6848 
6849 /*
6850  * a bit scary, this does extent mapping from logical file offset to the disk.
6851  * the ugly parts come from merging extents from the disk with the in-ram
6852  * representation.  This gets more complex because of the data=ordered code,
6853  * where the in-ram extents might be locked pending data=ordered completion.
6854  *
6855  * This also copies inline extents directly into the page.
6856  */
6857 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6858 		struct page *page,
6859 	    size_t pg_offset, u64 start, u64 len,
6860 		int create)
6861 {
6862 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6863 	int ret;
6864 	int err = 0;
6865 	u64 extent_start = 0;
6866 	u64 extent_end = 0;
6867 	u64 objectid = btrfs_ino(inode);
6868 	u32 found_type;
6869 	struct btrfs_path *path = NULL;
6870 	struct btrfs_root *root = inode->root;
6871 	struct btrfs_file_extent_item *item;
6872 	struct extent_buffer *leaf;
6873 	struct btrfs_key found_key;
6874 	struct extent_map *em = NULL;
6875 	struct extent_map_tree *em_tree = &inode->extent_tree;
6876 	struct extent_io_tree *io_tree = &inode->io_tree;
6877 	struct btrfs_trans_handle *trans = NULL;
6878 	const bool new_inline = !page || create;
6879 
6880 again:
6881 	read_lock(&em_tree->lock);
6882 	em = lookup_extent_mapping(em_tree, start, len);
6883 	if (em)
6884 		em->bdev = fs_info->fs_devices->latest_bdev;
6885 	read_unlock(&em_tree->lock);
6886 
6887 	if (em) {
6888 		if (em->start > start || em->start + em->len <= start)
6889 			free_extent_map(em);
6890 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6891 			free_extent_map(em);
6892 		else
6893 			goto out;
6894 	}
6895 	em = alloc_extent_map();
6896 	if (!em) {
6897 		err = -ENOMEM;
6898 		goto out;
6899 	}
6900 	em->bdev = fs_info->fs_devices->latest_bdev;
6901 	em->start = EXTENT_MAP_HOLE;
6902 	em->orig_start = EXTENT_MAP_HOLE;
6903 	em->len = (u64)-1;
6904 	em->block_len = (u64)-1;
6905 
6906 	if (!path) {
6907 		path = btrfs_alloc_path();
6908 		if (!path) {
6909 			err = -ENOMEM;
6910 			goto out;
6911 		}
6912 		/*
6913 		 * Chances are we'll be called again, so go ahead and do
6914 		 * readahead
6915 		 */
6916 		path->reada = READA_FORWARD;
6917 	}
6918 
6919 	ret = btrfs_lookup_file_extent(trans, root, path,
6920 				       objectid, start, trans != NULL);
6921 	if (ret < 0) {
6922 		err = ret;
6923 		goto out;
6924 	}
6925 
6926 	if (ret != 0) {
6927 		if (path->slots[0] == 0)
6928 			goto not_found;
6929 		path->slots[0]--;
6930 	}
6931 
6932 	leaf = path->nodes[0];
6933 	item = btrfs_item_ptr(leaf, path->slots[0],
6934 			      struct btrfs_file_extent_item);
6935 	/* are we inside the extent that was found? */
6936 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6937 	found_type = found_key.type;
6938 	if (found_key.objectid != objectid ||
6939 	    found_type != BTRFS_EXTENT_DATA_KEY) {
6940 		/*
6941 		 * If we backup past the first extent we want to move forward
6942 		 * and see if there is an extent in front of us, otherwise we'll
6943 		 * say there is a hole for our whole search range which can
6944 		 * cause problems.
6945 		 */
6946 		extent_end = start;
6947 		goto next;
6948 	}
6949 
6950 	found_type = btrfs_file_extent_type(leaf, item);
6951 	extent_start = found_key.offset;
6952 	if (found_type == BTRFS_FILE_EXTENT_REG ||
6953 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6954 		extent_end = extent_start +
6955 		       btrfs_file_extent_num_bytes(leaf, item);
6956 
6957 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6958 						       extent_start);
6959 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6960 		size_t size;
6961 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6962 		extent_end = ALIGN(extent_start + size,
6963 				   fs_info->sectorsize);
6964 
6965 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6966 						      path->slots[0],
6967 						      extent_start);
6968 	}
6969 next:
6970 	if (start >= extent_end) {
6971 		path->slots[0]++;
6972 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6973 			ret = btrfs_next_leaf(root, path);
6974 			if (ret < 0) {
6975 				err = ret;
6976 				goto out;
6977 			}
6978 			if (ret > 0)
6979 				goto not_found;
6980 			leaf = path->nodes[0];
6981 		}
6982 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6983 		if (found_key.objectid != objectid ||
6984 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6985 			goto not_found;
6986 		if (start + len <= found_key.offset)
6987 			goto not_found;
6988 		if (start > found_key.offset)
6989 			goto next;
6990 		em->start = start;
6991 		em->orig_start = start;
6992 		em->len = found_key.offset - start;
6993 		goto not_found_em;
6994 	}
6995 
6996 	btrfs_extent_item_to_extent_map(inode, path, item,
6997 			new_inline, em);
6998 
6999 	if (found_type == BTRFS_FILE_EXTENT_REG ||
7000 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7001 		goto insert;
7002 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7003 		unsigned long ptr;
7004 		char *map;
7005 		size_t size;
7006 		size_t extent_offset;
7007 		size_t copy_size;
7008 
7009 		if (new_inline)
7010 			goto out;
7011 
7012 		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
7013 		extent_offset = page_offset(page) + pg_offset - extent_start;
7014 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7015 				  size - extent_offset);
7016 		em->start = extent_start + extent_offset;
7017 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7018 		em->orig_block_len = em->len;
7019 		em->orig_start = em->start;
7020 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7021 		if (create == 0 && !PageUptodate(page)) {
7022 			if (btrfs_file_extent_compression(leaf, item) !=
7023 			    BTRFS_COMPRESS_NONE) {
7024 				ret = uncompress_inline(path, page, pg_offset,
7025 							extent_offset, item);
7026 				if (ret) {
7027 					err = ret;
7028 					goto out;
7029 				}
7030 			} else {
7031 				map = kmap(page);
7032 				read_extent_buffer(leaf, map + pg_offset, ptr,
7033 						   copy_size);
7034 				if (pg_offset + copy_size < PAGE_SIZE) {
7035 					memset(map + pg_offset + copy_size, 0,
7036 					       PAGE_SIZE - pg_offset -
7037 					       copy_size);
7038 				}
7039 				kunmap(page);
7040 			}
7041 			flush_dcache_page(page);
7042 		} else if (create && PageUptodate(page)) {
7043 			BUG();
7044 			if (!trans) {
7045 				kunmap(page);
7046 				free_extent_map(em);
7047 				em = NULL;
7048 
7049 				btrfs_release_path(path);
7050 				trans = btrfs_join_transaction(root);
7051 
7052 				if (IS_ERR(trans))
7053 					return ERR_CAST(trans);
7054 				goto again;
7055 			}
7056 			map = kmap(page);
7057 			write_extent_buffer(leaf, map + pg_offset, ptr,
7058 					    copy_size);
7059 			kunmap(page);
7060 			btrfs_mark_buffer_dirty(leaf);
7061 		}
7062 		set_extent_uptodate(io_tree, em->start,
7063 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7064 		goto insert;
7065 	}
7066 not_found:
7067 	em->start = start;
7068 	em->orig_start = start;
7069 	em->len = len;
7070 not_found_em:
7071 	em->block_start = EXTENT_MAP_HOLE;
7072 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7073 insert:
7074 	btrfs_release_path(path);
7075 	if (em->start > start || extent_map_end(em) <= start) {
7076 		btrfs_err(fs_info,
7077 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7078 			  em->start, em->len, start, len);
7079 		err = -EIO;
7080 		goto out;
7081 	}
7082 
7083 	err = 0;
7084 	write_lock(&em_tree->lock);
7085 	ret = add_extent_mapping(em_tree, em, 0);
7086 	/* it is possible that someone inserted the extent into the tree
7087 	 * while we had the lock dropped.  It is also possible that
7088 	 * an overlapping map exists in the tree
7089 	 */
7090 	if (ret == -EEXIST) {
7091 		struct extent_map *existing;
7092 
7093 		ret = 0;
7094 
7095 		existing = search_extent_mapping(em_tree, start, len);
7096 		/*
7097 		 * existing will always be non-NULL, since there must be
7098 		 * extent causing the -EEXIST.
7099 		 */
7100 		if (existing->start == em->start &&
7101 		    extent_map_end(existing) >= extent_map_end(em) &&
7102 		    em->block_start == existing->block_start) {
7103 			/*
7104 			 * The existing extent map already encompasses the
7105 			 * entire extent map we tried to add.
7106 			 */
7107 			free_extent_map(em);
7108 			em = existing;
7109 			err = 0;
7110 
7111 		} else if (start >= extent_map_end(existing) ||
7112 		    start <= existing->start) {
7113 			/*
7114 			 * The existing extent map is the one nearest to
7115 			 * the [start, start + len) range which overlaps
7116 			 */
7117 			err = merge_extent_mapping(em_tree, existing,
7118 						   em, start);
7119 			free_extent_map(existing);
7120 			if (err) {
7121 				free_extent_map(em);
7122 				em = NULL;
7123 			}
7124 		} else {
7125 			free_extent_map(em);
7126 			em = existing;
7127 			err = 0;
7128 		}
7129 	}
7130 	write_unlock(&em_tree->lock);
7131 out:
7132 
7133 	trace_btrfs_get_extent(root, inode, em);
7134 
7135 	btrfs_free_path(path);
7136 	if (trans) {
7137 		ret = btrfs_end_transaction(trans);
7138 		if (!err)
7139 			err = ret;
7140 	}
7141 	if (err) {
7142 		free_extent_map(em);
7143 		return ERR_PTR(err);
7144 	}
7145 	BUG_ON(!em); /* Error is always set */
7146 	return em;
7147 }
7148 
7149 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7150 		struct page *page,
7151 		size_t pg_offset, u64 start, u64 len,
7152 		int create)
7153 {
7154 	struct extent_map *em;
7155 	struct extent_map *hole_em = NULL;
7156 	u64 range_start = start;
7157 	u64 end;
7158 	u64 found;
7159 	u64 found_end;
7160 	int err = 0;
7161 
7162 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7163 	if (IS_ERR(em))
7164 		return em;
7165 	/*
7166 	 * If our em maps to:
7167 	 * - a hole or
7168 	 * - a pre-alloc extent,
7169 	 * there might actually be delalloc bytes behind it.
7170 	 */
7171 	if (em->block_start != EXTENT_MAP_HOLE &&
7172 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7173 		return em;
7174 	else
7175 		hole_em = em;
7176 
7177 	/* check to see if we've wrapped (len == -1 or similar) */
7178 	end = start + len;
7179 	if (end < start)
7180 		end = (u64)-1;
7181 	else
7182 		end -= 1;
7183 
7184 	em = NULL;
7185 
7186 	/* ok, we didn't find anything, lets look for delalloc */
7187 	found = count_range_bits(&inode->io_tree, &range_start,
7188 				 end, len, EXTENT_DELALLOC, 1);
7189 	found_end = range_start + found;
7190 	if (found_end < range_start)
7191 		found_end = (u64)-1;
7192 
7193 	/*
7194 	 * we didn't find anything useful, return
7195 	 * the original results from get_extent()
7196 	 */
7197 	if (range_start > end || found_end <= start) {
7198 		em = hole_em;
7199 		hole_em = NULL;
7200 		goto out;
7201 	}
7202 
7203 	/* adjust the range_start to make sure it doesn't
7204 	 * go backwards from the start they passed in
7205 	 */
7206 	range_start = max(start, range_start);
7207 	found = found_end - range_start;
7208 
7209 	if (found > 0) {
7210 		u64 hole_start = start;
7211 		u64 hole_len = len;
7212 
7213 		em = alloc_extent_map();
7214 		if (!em) {
7215 			err = -ENOMEM;
7216 			goto out;
7217 		}
7218 		/*
7219 		 * when btrfs_get_extent can't find anything it
7220 		 * returns one huge hole
7221 		 *
7222 		 * make sure what it found really fits our range, and
7223 		 * adjust to make sure it is based on the start from
7224 		 * the caller
7225 		 */
7226 		if (hole_em) {
7227 			u64 calc_end = extent_map_end(hole_em);
7228 
7229 			if (calc_end <= start || (hole_em->start > end)) {
7230 				free_extent_map(hole_em);
7231 				hole_em = NULL;
7232 			} else {
7233 				hole_start = max(hole_em->start, start);
7234 				hole_len = calc_end - hole_start;
7235 			}
7236 		}
7237 		em->bdev = NULL;
7238 		if (hole_em && range_start > hole_start) {
7239 			/* our hole starts before our delalloc, so we
7240 			 * have to return just the parts of the hole
7241 			 * that go until  the delalloc starts
7242 			 */
7243 			em->len = min(hole_len,
7244 				      range_start - hole_start);
7245 			em->start = hole_start;
7246 			em->orig_start = hole_start;
7247 			/*
7248 			 * don't adjust block start at all,
7249 			 * it is fixed at EXTENT_MAP_HOLE
7250 			 */
7251 			em->block_start = hole_em->block_start;
7252 			em->block_len = hole_len;
7253 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7254 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7255 		} else {
7256 			em->start = range_start;
7257 			em->len = found;
7258 			em->orig_start = range_start;
7259 			em->block_start = EXTENT_MAP_DELALLOC;
7260 			em->block_len = found;
7261 		}
7262 	} else if (hole_em) {
7263 		return hole_em;
7264 	}
7265 out:
7266 
7267 	free_extent_map(hole_em);
7268 	if (err) {
7269 		free_extent_map(em);
7270 		return ERR_PTR(err);
7271 	}
7272 	return em;
7273 }
7274 
7275 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7276 						  const u64 start,
7277 						  const u64 len,
7278 						  const u64 orig_start,
7279 						  const u64 block_start,
7280 						  const u64 block_len,
7281 						  const u64 orig_block_len,
7282 						  const u64 ram_bytes,
7283 						  const int type)
7284 {
7285 	struct extent_map *em = NULL;
7286 	int ret;
7287 
7288 	if (type != BTRFS_ORDERED_NOCOW) {
7289 		em = create_io_em(inode, start, len, orig_start,
7290 				  block_start, block_len, orig_block_len,
7291 				  ram_bytes,
7292 				  BTRFS_COMPRESS_NONE, /* compress_type */
7293 				  type);
7294 		if (IS_ERR(em))
7295 			goto out;
7296 	}
7297 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7298 					   len, block_len, type);
7299 	if (ret) {
7300 		if (em) {
7301 			free_extent_map(em);
7302 			btrfs_drop_extent_cache(BTRFS_I(inode), start,
7303 						start + len - 1, 0);
7304 		}
7305 		em = ERR_PTR(ret);
7306 	}
7307  out:
7308 
7309 	return em;
7310 }
7311 
7312 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7313 						  u64 start, u64 len)
7314 {
7315 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7316 	struct btrfs_root *root = BTRFS_I(inode)->root;
7317 	struct extent_map *em;
7318 	struct btrfs_key ins;
7319 	u64 alloc_hint;
7320 	int ret;
7321 
7322 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7323 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7324 				   0, alloc_hint, &ins, 1, 1);
7325 	if (ret)
7326 		return ERR_PTR(ret);
7327 
7328 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7329 				     ins.objectid, ins.offset, ins.offset,
7330 				     ins.offset, BTRFS_ORDERED_REGULAR);
7331 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7332 	if (IS_ERR(em))
7333 		btrfs_free_reserved_extent(fs_info, ins.objectid,
7334 					   ins.offset, 1);
7335 
7336 	return em;
7337 }
7338 
7339 /*
7340  * returns 1 when the nocow is safe, < 1 on error, 0 if the
7341  * block must be cow'd
7342  */
7343 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7344 			      u64 *orig_start, u64 *orig_block_len,
7345 			      u64 *ram_bytes)
7346 {
7347 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7348 	struct btrfs_path *path;
7349 	int ret;
7350 	struct extent_buffer *leaf;
7351 	struct btrfs_root *root = BTRFS_I(inode)->root;
7352 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7353 	struct btrfs_file_extent_item *fi;
7354 	struct btrfs_key key;
7355 	u64 disk_bytenr;
7356 	u64 backref_offset;
7357 	u64 extent_end;
7358 	u64 num_bytes;
7359 	int slot;
7360 	int found_type;
7361 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7362 
7363 	path = btrfs_alloc_path();
7364 	if (!path)
7365 		return -ENOMEM;
7366 
7367 	ret = btrfs_lookup_file_extent(NULL, root, path,
7368 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7369 	if (ret < 0)
7370 		goto out;
7371 
7372 	slot = path->slots[0];
7373 	if (ret == 1) {
7374 		if (slot == 0) {
7375 			/* can't find the item, must cow */
7376 			ret = 0;
7377 			goto out;
7378 		}
7379 		slot--;
7380 	}
7381 	ret = 0;
7382 	leaf = path->nodes[0];
7383 	btrfs_item_key_to_cpu(leaf, &key, slot);
7384 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7385 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7386 		/* not our file or wrong item type, must cow */
7387 		goto out;
7388 	}
7389 
7390 	if (key.offset > offset) {
7391 		/* Wrong offset, must cow */
7392 		goto out;
7393 	}
7394 
7395 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7396 	found_type = btrfs_file_extent_type(leaf, fi);
7397 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7398 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7399 		/* not a regular extent, must cow */
7400 		goto out;
7401 	}
7402 
7403 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7404 		goto out;
7405 
7406 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7407 	if (extent_end <= offset)
7408 		goto out;
7409 
7410 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7411 	if (disk_bytenr == 0)
7412 		goto out;
7413 
7414 	if (btrfs_file_extent_compression(leaf, fi) ||
7415 	    btrfs_file_extent_encryption(leaf, fi) ||
7416 	    btrfs_file_extent_other_encoding(leaf, fi))
7417 		goto out;
7418 
7419 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7420 
7421 	if (orig_start) {
7422 		*orig_start = key.offset - backref_offset;
7423 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7424 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7425 	}
7426 
7427 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7428 		goto out;
7429 
7430 	num_bytes = min(offset + *len, extent_end) - offset;
7431 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7432 		u64 range_end;
7433 
7434 		range_end = round_up(offset + num_bytes,
7435 				     root->fs_info->sectorsize) - 1;
7436 		ret = test_range_bit(io_tree, offset, range_end,
7437 				     EXTENT_DELALLOC, 0, NULL);
7438 		if (ret) {
7439 			ret = -EAGAIN;
7440 			goto out;
7441 		}
7442 	}
7443 
7444 	btrfs_release_path(path);
7445 
7446 	/*
7447 	 * look for other files referencing this extent, if we
7448 	 * find any we must cow
7449 	 */
7450 
7451 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7452 				    key.offset - backref_offset, disk_bytenr);
7453 	if (ret) {
7454 		ret = 0;
7455 		goto out;
7456 	}
7457 
7458 	/*
7459 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7460 	 * in this extent we are about to write.  If there
7461 	 * are any csums in that range we have to cow in order
7462 	 * to keep the csums correct
7463 	 */
7464 	disk_bytenr += backref_offset;
7465 	disk_bytenr += offset - key.offset;
7466 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7467 		goto out;
7468 	/*
7469 	 * all of the above have passed, it is safe to overwrite this extent
7470 	 * without cow
7471 	 */
7472 	*len = num_bytes;
7473 	ret = 1;
7474 out:
7475 	btrfs_free_path(path);
7476 	return ret;
7477 }
7478 
7479 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7480 {
7481 	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7482 	int found = false;
7483 	void **pagep = NULL;
7484 	struct page *page = NULL;
7485 	unsigned long start_idx;
7486 	unsigned long end_idx;
7487 
7488 	start_idx = start >> PAGE_SHIFT;
7489 
7490 	/*
7491 	 * end is the last byte in the last page.  end == start is legal
7492 	 */
7493 	end_idx = end >> PAGE_SHIFT;
7494 
7495 	rcu_read_lock();
7496 
7497 	/* Most of the code in this while loop is lifted from
7498 	 * find_get_page.  It's been modified to begin searching from a
7499 	 * page and return just the first page found in that range.  If the
7500 	 * found idx is less than or equal to the end idx then we know that
7501 	 * a page exists.  If no pages are found or if those pages are
7502 	 * outside of the range then we're fine (yay!) */
7503 	while (page == NULL &&
7504 	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7505 		page = radix_tree_deref_slot(pagep);
7506 		if (unlikely(!page))
7507 			break;
7508 
7509 		if (radix_tree_exception(page)) {
7510 			if (radix_tree_deref_retry(page)) {
7511 				page = NULL;
7512 				continue;
7513 			}
7514 			/*
7515 			 * Otherwise, shmem/tmpfs must be storing a swap entry
7516 			 * here as an exceptional entry: so return it without
7517 			 * attempting to raise page count.
7518 			 */
7519 			page = NULL;
7520 			break; /* TODO: Is this relevant for this use case? */
7521 		}
7522 
7523 		if (!page_cache_get_speculative(page)) {
7524 			page = NULL;
7525 			continue;
7526 		}
7527 
7528 		/*
7529 		 * Has the page moved?
7530 		 * This is part of the lockless pagecache protocol. See
7531 		 * include/linux/pagemap.h for details.
7532 		 */
7533 		if (unlikely(page != *pagep)) {
7534 			put_page(page);
7535 			page = NULL;
7536 		}
7537 	}
7538 
7539 	if (page) {
7540 		if (page->index <= end_idx)
7541 			found = true;
7542 		put_page(page);
7543 	}
7544 
7545 	rcu_read_unlock();
7546 	return found;
7547 }
7548 
7549 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7550 			      struct extent_state **cached_state, int writing)
7551 {
7552 	struct btrfs_ordered_extent *ordered;
7553 	int ret = 0;
7554 
7555 	while (1) {
7556 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7557 				 cached_state);
7558 		/*
7559 		 * We're concerned with the entire range that we're going to be
7560 		 * doing DIO to, so we need to make sure there's no ordered
7561 		 * extents in this range.
7562 		 */
7563 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7564 						     lockend - lockstart + 1);
7565 
7566 		/*
7567 		 * We need to make sure there are no buffered pages in this
7568 		 * range either, we could have raced between the invalidate in
7569 		 * generic_file_direct_write and locking the extent.  The
7570 		 * invalidate needs to happen so that reads after a write do not
7571 		 * get stale data.
7572 		 */
7573 		if (!ordered &&
7574 		    (!writing ||
7575 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7576 			break;
7577 
7578 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7579 				     cached_state, GFP_NOFS);
7580 
7581 		if (ordered) {
7582 			/*
7583 			 * If we are doing a DIO read and the ordered extent we
7584 			 * found is for a buffered write, we can not wait for it
7585 			 * to complete and retry, because if we do so we can
7586 			 * deadlock with concurrent buffered writes on page
7587 			 * locks. This happens only if our DIO read covers more
7588 			 * than one extent map, if at this point has already
7589 			 * created an ordered extent for a previous extent map
7590 			 * and locked its range in the inode's io tree, and a
7591 			 * concurrent write against that previous extent map's
7592 			 * range and this range started (we unlock the ranges
7593 			 * in the io tree only when the bios complete and
7594 			 * buffered writes always lock pages before attempting
7595 			 * to lock range in the io tree).
7596 			 */
7597 			if (writing ||
7598 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7599 				btrfs_start_ordered_extent(inode, ordered, 1);
7600 			else
7601 				ret = -ENOTBLK;
7602 			btrfs_put_ordered_extent(ordered);
7603 		} else {
7604 			/*
7605 			 * We could trigger writeback for this range (and wait
7606 			 * for it to complete) and then invalidate the pages for
7607 			 * this range (through invalidate_inode_pages2_range()),
7608 			 * but that can lead us to a deadlock with a concurrent
7609 			 * call to readpages() (a buffered read or a defrag call
7610 			 * triggered a readahead) on a page lock due to an
7611 			 * ordered dio extent we created before but did not have
7612 			 * yet a corresponding bio submitted (whence it can not
7613 			 * complete), which makes readpages() wait for that
7614 			 * ordered extent to complete while holding a lock on
7615 			 * that page.
7616 			 */
7617 			ret = -ENOTBLK;
7618 		}
7619 
7620 		if (ret)
7621 			break;
7622 
7623 		cond_resched();
7624 	}
7625 
7626 	return ret;
7627 }
7628 
7629 /* The callers of this must take lock_extent() */
7630 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7631 				       u64 orig_start, u64 block_start,
7632 				       u64 block_len, u64 orig_block_len,
7633 				       u64 ram_bytes, int compress_type,
7634 				       int type)
7635 {
7636 	struct extent_map_tree *em_tree;
7637 	struct extent_map *em;
7638 	struct btrfs_root *root = BTRFS_I(inode)->root;
7639 	int ret;
7640 
7641 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7642 	       type == BTRFS_ORDERED_COMPRESSED ||
7643 	       type == BTRFS_ORDERED_NOCOW ||
7644 	       type == BTRFS_ORDERED_REGULAR);
7645 
7646 	em_tree = &BTRFS_I(inode)->extent_tree;
7647 	em = alloc_extent_map();
7648 	if (!em)
7649 		return ERR_PTR(-ENOMEM);
7650 
7651 	em->start = start;
7652 	em->orig_start = orig_start;
7653 	em->len = len;
7654 	em->block_len = block_len;
7655 	em->block_start = block_start;
7656 	em->bdev = root->fs_info->fs_devices->latest_bdev;
7657 	em->orig_block_len = orig_block_len;
7658 	em->ram_bytes = ram_bytes;
7659 	em->generation = -1;
7660 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7661 	if (type == BTRFS_ORDERED_PREALLOC) {
7662 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7663 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7664 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7665 		em->compress_type = compress_type;
7666 	}
7667 
7668 	do {
7669 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7670 				em->start + em->len - 1, 0);
7671 		write_lock(&em_tree->lock);
7672 		ret = add_extent_mapping(em_tree, em, 1);
7673 		write_unlock(&em_tree->lock);
7674 		/*
7675 		 * The caller has taken lock_extent(), who could race with us
7676 		 * to add em?
7677 		 */
7678 	} while (ret == -EEXIST);
7679 
7680 	if (ret) {
7681 		free_extent_map(em);
7682 		return ERR_PTR(ret);
7683 	}
7684 
7685 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7686 	return em;
7687 }
7688 
7689 static void adjust_dio_outstanding_extents(struct inode *inode,
7690 					   struct btrfs_dio_data *dio_data,
7691 					   const u64 len)
7692 {
7693 	unsigned num_extents = count_max_extents(len);
7694 
7695 	/*
7696 	 * If we have an outstanding_extents count still set then we're
7697 	 * within our reservation, otherwise we need to adjust our inode
7698 	 * counter appropriately.
7699 	 */
7700 	if (dio_data->outstanding_extents >= num_extents) {
7701 		dio_data->outstanding_extents -= num_extents;
7702 	} else {
7703 		/*
7704 		 * If dio write length has been split due to no large enough
7705 		 * contiguous space, we need to compensate our inode counter
7706 		 * appropriately.
7707 		 */
7708 		u64 num_needed = num_extents - dio_data->outstanding_extents;
7709 
7710 		spin_lock(&BTRFS_I(inode)->lock);
7711 		BTRFS_I(inode)->outstanding_extents += num_needed;
7712 		spin_unlock(&BTRFS_I(inode)->lock);
7713 	}
7714 }
7715 
7716 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7717 				   struct buffer_head *bh_result, int create)
7718 {
7719 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7720 	struct extent_map *em;
7721 	struct extent_state *cached_state = NULL;
7722 	struct btrfs_dio_data *dio_data = NULL;
7723 	u64 start = iblock << inode->i_blkbits;
7724 	u64 lockstart, lockend;
7725 	u64 len = bh_result->b_size;
7726 	int unlock_bits = EXTENT_LOCKED;
7727 	int ret = 0;
7728 
7729 	if (create)
7730 		unlock_bits |= EXTENT_DIRTY;
7731 	else
7732 		len = min_t(u64, len, fs_info->sectorsize);
7733 
7734 	lockstart = start;
7735 	lockend = start + len - 1;
7736 
7737 	if (current->journal_info) {
7738 		/*
7739 		 * Need to pull our outstanding extents and set journal_info to NULL so
7740 		 * that anything that needs to check if there's a transaction doesn't get
7741 		 * confused.
7742 		 */
7743 		dio_data = current->journal_info;
7744 		current->journal_info = NULL;
7745 	}
7746 
7747 	/*
7748 	 * If this errors out it's because we couldn't invalidate pagecache for
7749 	 * this range and we need to fallback to buffered.
7750 	 */
7751 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7752 			       create)) {
7753 		ret = -ENOTBLK;
7754 		goto err;
7755 	}
7756 
7757 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7758 	if (IS_ERR(em)) {
7759 		ret = PTR_ERR(em);
7760 		goto unlock_err;
7761 	}
7762 
7763 	/*
7764 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7765 	 * io.  INLINE is special, and we could probably kludge it in here, but
7766 	 * it's still buffered so for safety lets just fall back to the generic
7767 	 * buffered path.
7768 	 *
7769 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7770 	 * decompress it, so there will be buffering required no matter what we
7771 	 * do, so go ahead and fallback to buffered.
7772 	 *
7773 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7774 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7775 	 * the generic code.
7776 	 */
7777 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7778 	    em->block_start == EXTENT_MAP_INLINE) {
7779 		free_extent_map(em);
7780 		ret = -ENOTBLK;
7781 		goto unlock_err;
7782 	}
7783 
7784 	/* Just a good old fashioned hole, return */
7785 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7786 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7787 		free_extent_map(em);
7788 		goto unlock_err;
7789 	}
7790 
7791 	/*
7792 	 * We don't allocate a new extent in the following cases
7793 	 *
7794 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7795 	 * existing extent.
7796 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7797 	 * just use the extent.
7798 	 *
7799 	 */
7800 	if (!create) {
7801 		len = min(len, em->len - (start - em->start));
7802 		lockstart = start + len;
7803 		goto unlock;
7804 	}
7805 
7806 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7807 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7808 	     em->block_start != EXTENT_MAP_HOLE)) {
7809 		int type;
7810 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7811 
7812 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7813 			type = BTRFS_ORDERED_PREALLOC;
7814 		else
7815 			type = BTRFS_ORDERED_NOCOW;
7816 		len = min(len, em->len - (start - em->start));
7817 		block_start = em->block_start + (start - em->start);
7818 
7819 		if (can_nocow_extent(inode, start, &len, &orig_start,
7820 				     &orig_block_len, &ram_bytes) == 1 &&
7821 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7822 			struct extent_map *em2;
7823 
7824 			em2 = btrfs_create_dio_extent(inode, start, len,
7825 						      orig_start, block_start,
7826 						      len, orig_block_len,
7827 						      ram_bytes, type);
7828 			btrfs_dec_nocow_writers(fs_info, block_start);
7829 			if (type == BTRFS_ORDERED_PREALLOC) {
7830 				free_extent_map(em);
7831 				em = em2;
7832 			}
7833 			if (em2 && IS_ERR(em2)) {
7834 				ret = PTR_ERR(em2);
7835 				goto unlock_err;
7836 			}
7837 			/*
7838 			 * For inode marked NODATACOW or extent marked PREALLOC,
7839 			 * use the existing or preallocated extent, so does not
7840 			 * need to adjust btrfs_space_info's bytes_may_use.
7841 			 */
7842 			btrfs_free_reserved_data_space_noquota(inode,
7843 					start, len);
7844 			goto unlock;
7845 		}
7846 	}
7847 
7848 	/*
7849 	 * this will cow the extent, reset the len in case we changed
7850 	 * it above
7851 	 */
7852 	len = bh_result->b_size;
7853 	free_extent_map(em);
7854 	em = btrfs_new_extent_direct(inode, start, len);
7855 	if (IS_ERR(em)) {
7856 		ret = PTR_ERR(em);
7857 		goto unlock_err;
7858 	}
7859 	len = min(len, em->len - (start - em->start));
7860 unlock:
7861 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7862 		inode->i_blkbits;
7863 	bh_result->b_size = len;
7864 	bh_result->b_bdev = em->bdev;
7865 	set_buffer_mapped(bh_result);
7866 	if (create) {
7867 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7868 			set_buffer_new(bh_result);
7869 
7870 		/*
7871 		 * Need to update the i_size under the extent lock so buffered
7872 		 * readers will get the updated i_size when we unlock.
7873 		 */
7874 		if (!dio_data->overwrite && start + len > i_size_read(inode))
7875 			i_size_write(inode, start + len);
7876 
7877 		adjust_dio_outstanding_extents(inode, dio_data, len);
7878 		WARN_ON(dio_data->reserve < len);
7879 		dio_data->reserve -= len;
7880 		dio_data->unsubmitted_oe_range_end = start + len;
7881 		current->journal_info = dio_data;
7882 	}
7883 
7884 	/*
7885 	 * In the case of write we need to clear and unlock the entire range,
7886 	 * in the case of read we need to unlock only the end area that we
7887 	 * aren't using if there is any left over space.
7888 	 */
7889 	if (lockstart < lockend) {
7890 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7891 				 lockend, unlock_bits, 1, 0,
7892 				 &cached_state, GFP_NOFS);
7893 	} else {
7894 		free_extent_state(cached_state);
7895 	}
7896 
7897 	free_extent_map(em);
7898 
7899 	return 0;
7900 
7901 unlock_err:
7902 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7903 			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7904 err:
7905 	if (dio_data)
7906 		current->journal_info = dio_data;
7907 	/*
7908 	 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7909 	 * write less data then expected, so that we don't underflow our inode's
7910 	 * outstanding extents counter.
7911 	 */
7912 	if (create && dio_data)
7913 		adjust_dio_outstanding_extents(inode, dio_data, len);
7914 
7915 	return ret;
7916 }
7917 
7918 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7919 					int mirror_num)
7920 {
7921 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7922 	int ret;
7923 
7924 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7925 
7926 	bio_get(bio);
7927 
7928 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7929 	if (ret)
7930 		goto err;
7931 
7932 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7933 err:
7934 	bio_put(bio);
7935 	return ret;
7936 }
7937 
7938 static int btrfs_check_dio_repairable(struct inode *inode,
7939 				      struct bio *failed_bio,
7940 				      struct io_failure_record *failrec,
7941 				      int failed_mirror)
7942 {
7943 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7944 	int num_copies;
7945 
7946 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7947 	if (num_copies == 1) {
7948 		/*
7949 		 * we only have a single copy of the data, so don't bother with
7950 		 * all the retry and error correction code that follows. no
7951 		 * matter what the error is, it is very likely to persist.
7952 		 */
7953 		btrfs_debug(fs_info,
7954 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7955 			num_copies, failrec->this_mirror, failed_mirror);
7956 		return 0;
7957 	}
7958 
7959 	failrec->failed_mirror = failed_mirror;
7960 	failrec->this_mirror++;
7961 	if (failrec->this_mirror == failed_mirror)
7962 		failrec->this_mirror++;
7963 
7964 	if (failrec->this_mirror > num_copies) {
7965 		btrfs_debug(fs_info,
7966 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7967 			num_copies, failrec->this_mirror, failed_mirror);
7968 		return 0;
7969 	}
7970 
7971 	return 1;
7972 }
7973 
7974 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7975 			struct page *page, unsigned int pgoff,
7976 			u64 start, u64 end, int failed_mirror,
7977 			bio_end_io_t *repair_endio, void *repair_arg)
7978 {
7979 	struct io_failure_record *failrec;
7980 	struct bio *bio;
7981 	int isector;
7982 	int read_mode = 0;
7983 	int ret;
7984 
7985 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7986 
7987 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7988 	if (ret)
7989 		return ret;
7990 
7991 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7992 					 failed_mirror);
7993 	if (!ret) {
7994 		free_io_failure(BTRFS_I(inode), failrec);
7995 		return -EIO;
7996 	}
7997 
7998 	if ((failed_bio->bi_vcnt > 1)
7999 		|| (failed_bio->bi_io_vec->bv_len
8000 			> btrfs_inode_sectorsize(inode)))
8001 		read_mode |= REQ_FAILFAST_DEV;
8002 
8003 	isector = start - btrfs_io_bio(failed_bio)->logical;
8004 	isector >>= inode->i_sb->s_blocksize_bits;
8005 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
8006 				pgoff, isector, repair_endio, repair_arg);
8007 	if (!bio) {
8008 		free_io_failure(BTRFS_I(inode), failrec);
8009 		return -EIO;
8010 	}
8011 	bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8012 
8013 	btrfs_debug(BTRFS_I(inode)->root->fs_info,
8014 		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
8015 		    read_mode, failrec->this_mirror, failrec->in_validation);
8016 
8017 	ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8018 	if (ret) {
8019 		free_io_failure(BTRFS_I(inode), failrec);
8020 		bio_put(bio);
8021 	}
8022 
8023 	return ret;
8024 }
8025 
8026 struct btrfs_retry_complete {
8027 	struct completion done;
8028 	struct inode *inode;
8029 	u64 start;
8030 	int uptodate;
8031 };
8032 
8033 static void btrfs_retry_endio_nocsum(struct bio *bio)
8034 {
8035 	struct btrfs_retry_complete *done = bio->bi_private;
8036 	struct bio_vec *bvec;
8037 	int i;
8038 
8039 	if (bio->bi_status)
8040 		goto end;
8041 
8042 	ASSERT(bio->bi_vcnt == 1);
8043 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8044 
8045 	done->uptodate = 1;
8046 	bio_for_each_segment_all(bvec, bio, i)
8047 		clean_io_failure(BTRFS_I(done->inode), done->start,
8048 				 bvec->bv_page, 0);
8049 end:
8050 	complete(&done->done);
8051 	bio_put(bio);
8052 }
8053 
8054 static int __btrfs_correct_data_nocsum(struct inode *inode,
8055 				       struct btrfs_io_bio *io_bio)
8056 {
8057 	struct btrfs_fs_info *fs_info;
8058 	struct bio_vec *bvec;
8059 	struct btrfs_retry_complete done;
8060 	u64 start;
8061 	unsigned int pgoff;
8062 	u32 sectorsize;
8063 	int nr_sectors;
8064 	int i;
8065 	int ret;
8066 
8067 	fs_info = BTRFS_I(inode)->root->fs_info;
8068 	sectorsize = fs_info->sectorsize;
8069 
8070 	start = io_bio->logical;
8071 	done.inode = inode;
8072 
8073 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8074 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8075 		pgoff = bvec->bv_offset;
8076 
8077 next_block_or_try_again:
8078 		done.uptodate = 0;
8079 		done.start = start;
8080 		init_completion(&done.done);
8081 
8082 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8083 				pgoff, start, start + sectorsize - 1,
8084 				io_bio->mirror_num,
8085 				btrfs_retry_endio_nocsum, &done);
8086 		if (ret)
8087 			return ret;
8088 
8089 		wait_for_completion(&done.done);
8090 
8091 		if (!done.uptodate) {
8092 			/* We might have another mirror, so try again */
8093 			goto next_block_or_try_again;
8094 		}
8095 
8096 		start += sectorsize;
8097 
8098 		nr_sectors--;
8099 		if (nr_sectors) {
8100 			pgoff += sectorsize;
8101 			ASSERT(pgoff < PAGE_SIZE);
8102 			goto next_block_or_try_again;
8103 		}
8104 	}
8105 
8106 	return 0;
8107 }
8108 
8109 static void btrfs_retry_endio(struct bio *bio)
8110 {
8111 	struct btrfs_retry_complete *done = bio->bi_private;
8112 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8113 	struct bio_vec *bvec;
8114 	int uptodate;
8115 	int ret;
8116 	int i;
8117 
8118 	if (bio->bi_status)
8119 		goto end;
8120 
8121 	uptodate = 1;
8122 
8123 	ASSERT(bio->bi_vcnt == 1);
8124 	ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
8125 
8126 	bio_for_each_segment_all(bvec, bio, i) {
8127 		ret = __readpage_endio_check(done->inode, io_bio, i,
8128 					bvec->bv_page, bvec->bv_offset,
8129 					done->start, bvec->bv_len);
8130 		if (!ret)
8131 			clean_io_failure(BTRFS_I(done->inode), done->start,
8132 					bvec->bv_page, bvec->bv_offset);
8133 		else
8134 			uptodate = 0;
8135 	}
8136 
8137 	done->uptodate = uptodate;
8138 end:
8139 	complete(&done->done);
8140 	bio_put(bio);
8141 }
8142 
8143 static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8144 		struct btrfs_io_bio *io_bio, blk_status_t err)
8145 {
8146 	struct btrfs_fs_info *fs_info;
8147 	struct bio_vec *bvec;
8148 	struct btrfs_retry_complete done;
8149 	u64 start;
8150 	u64 offset = 0;
8151 	u32 sectorsize;
8152 	int nr_sectors;
8153 	unsigned int pgoff;
8154 	int csum_pos;
8155 	int i;
8156 	int ret;
8157 
8158 	fs_info = BTRFS_I(inode)->root->fs_info;
8159 	sectorsize = fs_info->sectorsize;
8160 
8161 	err = 0;
8162 	start = io_bio->logical;
8163 	done.inode = inode;
8164 
8165 	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8166 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8167 
8168 		pgoff = bvec->bv_offset;
8169 next_block:
8170 		csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8171 		ret = __readpage_endio_check(inode, io_bio, csum_pos,
8172 					bvec->bv_page, pgoff, start,
8173 					sectorsize);
8174 		if (likely(!ret))
8175 			goto next;
8176 try_again:
8177 		done.uptodate = 0;
8178 		done.start = start;
8179 		init_completion(&done.done);
8180 
8181 		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8182 				pgoff, start, start + sectorsize - 1,
8183 				io_bio->mirror_num,
8184 				btrfs_retry_endio, &done);
8185 		if (ret) {
8186 			err = errno_to_blk_status(ret);
8187 			goto next;
8188 		}
8189 
8190 		wait_for_completion(&done.done);
8191 
8192 		if (!done.uptodate) {
8193 			/* We might have another mirror, so try again */
8194 			goto try_again;
8195 		}
8196 next:
8197 		offset += sectorsize;
8198 		start += sectorsize;
8199 
8200 		ASSERT(nr_sectors);
8201 
8202 		nr_sectors--;
8203 		if (nr_sectors) {
8204 			pgoff += sectorsize;
8205 			ASSERT(pgoff < PAGE_SIZE);
8206 			goto next_block;
8207 		}
8208 	}
8209 
8210 	return err;
8211 }
8212 
8213 static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8214 		struct btrfs_io_bio *io_bio, blk_status_t err)
8215 {
8216 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8217 
8218 	if (skip_csum) {
8219 		if (unlikely(err))
8220 			return __btrfs_correct_data_nocsum(inode, io_bio);
8221 		else
8222 			return 0;
8223 	} else {
8224 		return __btrfs_subio_endio_read(inode, io_bio, err);
8225 	}
8226 }
8227 
8228 static void btrfs_endio_direct_read(struct bio *bio)
8229 {
8230 	struct btrfs_dio_private *dip = bio->bi_private;
8231 	struct inode *inode = dip->inode;
8232 	struct bio *dio_bio;
8233 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8234 	blk_status_t err = bio->bi_status;
8235 
8236 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8237 		err = btrfs_subio_endio_read(inode, io_bio, err);
8238 
8239 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8240 		      dip->logical_offset + dip->bytes - 1);
8241 	dio_bio = dip->dio_bio;
8242 
8243 	kfree(dip);
8244 
8245 	dio_bio->bi_status = bio->bi_status;
8246 	dio_end_io(dio_bio);
8247 
8248 	if (io_bio->end_io)
8249 		io_bio->end_io(io_bio, blk_status_to_errno(err));
8250 	bio_put(bio);
8251 }
8252 
8253 static void __endio_write_update_ordered(struct inode *inode,
8254 					 const u64 offset, const u64 bytes,
8255 					 const bool uptodate)
8256 {
8257 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8258 	struct btrfs_ordered_extent *ordered = NULL;
8259 	struct btrfs_workqueue *wq;
8260 	btrfs_work_func_t func;
8261 	u64 ordered_offset = offset;
8262 	u64 ordered_bytes = bytes;
8263 	int ret;
8264 
8265 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8266 		wq = fs_info->endio_freespace_worker;
8267 		func = btrfs_freespace_write_helper;
8268 	} else {
8269 		wq = fs_info->endio_write_workers;
8270 		func = btrfs_endio_write_helper;
8271 	}
8272 
8273 again:
8274 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8275 						   &ordered_offset,
8276 						   ordered_bytes,
8277 						   uptodate);
8278 	if (!ret)
8279 		goto out_test;
8280 
8281 	btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8282 	btrfs_queue_work(wq, &ordered->work);
8283 out_test:
8284 	/*
8285 	 * our bio might span multiple ordered extents.  If we haven't
8286 	 * completed the accounting for the whole dio, go back and try again
8287 	 */
8288 	if (ordered_offset < offset + bytes) {
8289 		ordered_bytes = offset + bytes - ordered_offset;
8290 		ordered = NULL;
8291 		goto again;
8292 	}
8293 }
8294 
8295 static void btrfs_endio_direct_write(struct bio *bio)
8296 {
8297 	struct btrfs_dio_private *dip = bio->bi_private;
8298 	struct bio *dio_bio = dip->dio_bio;
8299 
8300 	__endio_write_update_ordered(dip->inode, dip->logical_offset,
8301 				     dip->bytes, !bio->bi_status);
8302 
8303 	kfree(dip);
8304 
8305 	dio_bio->bi_status = bio->bi_status;
8306 	dio_end_io(dio_bio);
8307 	bio_put(bio);
8308 }
8309 
8310 static blk_status_t __btrfs_submit_bio_start_direct_io(struct inode *inode,
8311 				    struct bio *bio, int mirror_num,
8312 				    unsigned long bio_flags, u64 offset)
8313 {
8314 	blk_status_t ret;
8315 	ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8316 	BUG_ON(ret); /* -ENOMEM */
8317 	return 0;
8318 }
8319 
8320 static void btrfs_end_dio_bio(struct bio *bio)
8321 {
8322 	struct btrfs_dio_private *dip = bio->bi_private;
8323 	blk_status_t err = bio->bi_status;
8324 
8325 	if (err)
8326 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8327 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8328 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8329 			   bio->bi_opf,
8330 			   (unsigned long long)bio->bi_iter.bi_sector,
8331 			   bio->bi_iter.bi_size, err);
8332 
8333 	if (dip->subio_endio)
8334 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8335 
8336 	if (err) {
8337 		dip->errors = 1;
8338 
8339 		/*
8340 		 * before atomic variable goto zero, we must make sure
8341 		 * dip->errors is perceived to be set.
8342 		 */
8343 		smp_mb__before_atomic();
8344 	}
8345 
8346 	/* if there are more bios still pending for this dio, just exit */
8347 	if (!atomic_dec_and_test(&dip->pending_bios))
8348 		goto out;
8349 
8350 	if (dip->errors) {
8351 		bio_io_error(dip->orig_bio);
8352 	} else {
8353 		dip->dio_bio->bi_status = 0;
8354 		bio_endio(dip->orig_bio);
8355 	}
8356 out:
8357 	bio_put(bio);
8358 }
8359 
8360 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8361 				       u64 first_sector, gfp_t gfp_flags)
8362 {
8363 	struct bio *bio;
8364 	bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8365 	if (bio)
8366 		bio_associate_current(bio);
8367 	return bio;
8368 }
8369 
8370 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8371 						 struct btrfs_dio_private *dip,
8372 						 struct bio *bio,
8373 						 u64 file_offset)
8374 {
8375 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8376 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8377 	blk_status_t ret;
8378 
8379 	/*
8380 	 * We load all the csum data we need when we submit
8381 	 * the first bio to reduce the csum tree search and
8382 	 * contention.
8383 	 */
8384 	if (dip->logical_offset == file_offset) {
8385 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8386 						file_offset);
8387 		if (ret)
8388 			return ret;
8389 	}
8390 
8391 	if (bio == dip->orig_bio)
8392 		return 0;
8393 
8394 	file_offset -= dip->logical_offset;
8395 	file_offset >>= inode->i_sb->s_blocksize_bits;
8396 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8397 
8398 	return 0;
8399 }
8400 
8401 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8402 					 u64 file_offset, int skip_sum,
8403 					 int async_submit)
8404 {
8405 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8406 	struct btrfs_dio_private *dip = bio->bi_private;
8407 	bool write = bio_op(bio) == REQ_OP_WRITE;
8408 	blk_status_t ret;
8409 
8410 	if (async_submit)
8411 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8412 
8413 	bio_get(bio);
8414 
8415 	if (!write) {
8416 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8417 		if (ret)
8418 			goto err;
8419 	}
8420 
8421 	if (skip_sum)
8422 		goto map;
8423 
8424 	if (write && async_submit) {
8425 		ret = btrfs_wq_submit_bio(fs_info, inode, bio, 0, 0,
8426 					  file_offset,
8427 					  __btrfs_submit_bio_start_direct_io,
8428 					  __btrfs_submit_bio_done);
8429 		goto err;
8430 	} else if (write) {
8431 		/*
8432 		 * If we aren't doing async submit, calculate the csum of the
8433 		 * bio now.
8434 		 */
8435 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8436 		if (ret)
8437 			goto err;
8438 	} else {
8439 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8440 						     file_offset);
8441 		if (ret)
8442 			goto err;
8443 	}
8444 map:
8445 	ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
8446 err:
8447 	bio_put(bio);
8448 	return ret;
8449 }
8450 
8451 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8452 				    int skip_sum)
8453 {
8454 	struct inode *inode = dip->inode;
8455 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8456 	struct btrfs_root *root = BTRFS_I(inode)->root;
8457 	struct bio *bio;
8458 	struct bio *orig_bio = dip->orig_bio;
8459 	struct bio_vec *bvec;
8460 	u64 start_sector = orig_bio->bi_iter.bi_sector;
8461 	u64 file_offset = dip->logical_offset;
8462 	u64 submit_len = 0;
8463 	u64 map_length;
8464 	u32 blocksize = fs_info->sectorsize;
8465 	int async_submit = 0;
8466 	int nr_sectors;
8467 	int ret;
8468 	int i, j;
8469 
8470 	map_length = orig_bio->bi_iter.bi_size;
8471 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8472 			      &map_length, NULL, 0);
8473 	if (ret)
8474 		return -EIO;
8475 
8476 	if (map_length >= orig_bio->bi_iter.bi_size) {
8477 		bio = orig_bio;
8478 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8479 		goto submit;
8480 	}
8481 
8482 	/* async crcs make it difficult to collect full stripe writes. */
8483 	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8484 		async_submit = 0;
8485 	else
8486 		async_submit = 1;
8487 
8488 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8489 	if (!bio)
8490 		return -ENOMEM;
8491 
8492 	bio->bi_opf = orig_bio->bi_opf;
8493 	bio->bi_private = dip;
8494 	bio->bi_end_io = btrfs_end_dio_bio;
8495 	btrfs_io_bio(bio)->logical = file_offset;
8496 	atomic_inc(&dip->pending_bios);
8497 
8498 	bio_for_each_segment_all(bvec, orig_bio, j) {
8499 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8500 		i = 0;
8501 next_block:
8502 		if (unlikely(map_length < submit_len + blocksize ||
8503 		    bio_add_page(bio, bvec->bv_page, blocksize,
8504 			    bvec->bv_offset + (i * blocksize)) < blocksize)) {
8505 			/*
8506 			 * inc the count before we submit the bio so
8507 			 * we know the end IO handler won't happen before
8508 			 * we inc the count. Otherwise, the dip might get freed
8509 			 * before we're done setting it up
8510 			 */
8511 			atomic_inc(&dip->pending_bios);
8512 			ret = __btrfs_submit_dio_bio(bio, inode,
8513 						     file_offset, skip_sum,
8514 						     async_submit);
8515 			if (ret) {
8516 				bio_put(bio);
8517 				atomic_dec(&dip->pending_bios);
8518 				goto out_err;
8519 			}
8520 
8521 			start_sector += submit_len >> 9;
8522 			file_offset += submit_len;
8523 
8524 			submit_len = 0;
8525 
8526 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8527 						  start_sector, GFP_NOFS);
8528 			if (!bio)
8529 				goto out_err;
8530 			bio->bi_opf = orig_bio->bi_opf;
8531 			bio->bi_private = dip;
8532 			bio->bi_end_io = btrfs_end_dio_bio;
8533 			btrfs_io_bio(bio)->logical = file_offset;
8534 
8535 			map_length = orig_bio->bi_iter.bi_size;
8536 			ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8537 					      start_sector << 9,
8538 					      &map_length, NULL, 0);
8539 			if (ret) {
8540 				bio_put(bio);
8541 				goto out_err;
8542 			}
8543 
8544 			goto next_block;
8545 		} else {
8546 			submit_len += blocksize;
8547 			if (--nr_sectors) {
8548 				i++;
8549 				goto next_block;
8550 			}
8551 		}
8552 	}
8553 
8554 submit:
8555 	ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8556 				     async_submit);
8557 	if (!ret)
8558 		return 0;
8559 
8560 	bio_put(bio);
8561 out_err:
8562 	dip->errors = 1;
8563 	/*
8564 	 * before atomic variable goto zero, we must
8565 	 * make sure dip->errors is perceived to be set.
8566 	 */
8567 	smp_mb__before_atomic();
8568 	if (atomic_dec_and_test(&dip->pending_bios))
8569 		bio_io_error(dip->orig_bio);
8570 
8571 	/* bio_end_io() will handle error, so we needn't return it */
8572 	return 0;
8573 }
8574 
8575 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8576 				loff_t file_offset)
8577 {
8578 	struct btrfs_dio_private *dip = NULL;
8579 	struct bio *io_bio = NULL;
8580 	struct btrfs_io_bio *btrfs_bio;
8581 	int skip_sum;
8582 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8583 	int ret = 0;
8584 
8585 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8586 
8587 	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8588 	if (!io_bio) {
8589 		ret = -ENOMEM;
8590 		goto free_ordered;
8591 	}
8592 
8593 	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8594 	if (!dip) {
8595 		ret = -ENOMEM;
8596 		goto free_ordered;
8597 	}
8598 
8599 	dip->private = dio_bio->bi_private;
8600 	dip->inode = inode;
8601 	dip->logical_offset = file_offset;
8602 	dip->bytes = dio_bio->bi_iter.bi_size;
8603 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8604 	io_bio->bi_private = dip;
8605 	dip->orig_bio = io_bio;
8606 	dip->dio_bio = dio_bio;
8607 	atomic_set(&dip->pending_bios, 0);
8608 	btrfs_bio = btrfs_io_bio(io_bio);
8609 	btrfs_bio->logical = file_offset;
8610 
8611 	if (write) {
8612 		io_bio->bi_end_io = btrfs_endio_direct_write;
8613 	} else {
8614 		io_bio->bi_end_io = btrfs_endio_direct_read;
8615 		dip->subio_endio = btrfs_subio_endio_read;
8616 	}
8617 
8618 	/*
8619 	 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8620 	 * even if we fail to submit a bio, because in such case we do the
8621 	 * corresponding error handling below and it must not be done a second
8622 	 * time by btrfs_direct_IO().
8623 	 */
8624 	if (write) {
8625 		struct btrfs_dio_data *dio_data = current->journal_info;
8626 
8627 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8628 			dip->bytes;
8629 		dio_data->unsubmitted_oe_range_start =
8630 			dio_data->unsubmitted_oe_range_end;
8631 	}
8632 
8633 	ret = btrfs_submit_direct_hook(dip, skip_sum);
8634 	if (!ret)
8635 		return;
8636 
8637 	if (btrfs_bio->end_io)
8638 		btrfs_bio->end_io(btrfs_bio, ret);
8639 
8640 free_ordered:
8641 	/*
8642 	 * If we arrived here it means either we failed to submit the dip
8643 	 * or we either failed to clone the dio_bio or failed to allocate the
8644 	 * dip. If we cloned the dio_bio and allocated the dip, we can just
8645 	 * call bio_endio against our io_bio so that we get proper resource
8646 	 * cleanup if we fail to submit the dip, otherwise, we must do the
8647 	 * same as btrfs_endio_direct_[write|read] because we can't call these
8648 	 * callbacks - they require an allocated dip and a clone of dio_bio.
8649 	 */
8650 	if (io_bio && dip) {
8651 		io_bio->bi_status = BLK_STS_IOERR;
8652 		bio_endio(io_bio);
8653 		/*
8654 		 * The end io callbacks free our dip, do the final put on io_bio
8655 		 * and all the cleanup and final put for dio_bio (through
8656 		 * dio_end_io()).
8657 		 */
8658 		dip = NULL;
8659 		io_bio = NULL;
8660 	} else {
8661 		if (write)
8662 			__endio_write_update_ordered(inode,
8663 						file_offset,
8664 						dio_bio->bi_iter.bi_size,
8665 						false);
8666 		else
8667 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8668 			      file_offset + dio_bio->bi_iter.bi_size - 1);
8669 
8670 		dio_bio->bi_status = BLK_STS_IOERR;
8671 		/*
8672 		 * Releases and cleans up our dio_bio, no need to bio_put()
8673 		 * nor bio_endio()/bio_io_error() against dio_bio.
8674 		 */
8675 		dio_end_io(dio_bio);
8676 	}
8677 	if (io_bio)
8678 		bio_put(io_bio);
8679 	kfree(dip);
8680 }
8681 
8682 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8683 			       struct kiocb *iocb,
8684 			       const struct iov_iter *iter, loff_t offset)
8685 {
8686 	int seg;
8687 	int i;
8688 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
8689 	ssize_t retval = -EINVAL;
8690 
8691 	if (offset & blocksize_mask)
8692 		goto out;
8693 
8694 	if (iov_iter_alignment(iter) & blocksize_mask)
8695 		goto out;
8696 
8697 	/* If this is a write we don't need to check anymore */
8698 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8699 		return 0;
8700 	/*
8701 	 * Check to make sure we don't have duplicate iov_base's in this
8702 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8703 	 * when reading back.
8704 	 */
8705 	for (seg = 0; seg < iter->nr_segs; seg++) {
8706 		for (i = seg + 1; i < iter->nr_segs; i++) {
8707 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8708 				goto out;
8709 		}
8710 	}
8711 	retval = 0;
8712 out:
8713 	return retval;
8714 }
8715 
8716 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8717 {
8718 	struct file *file = iocb->ki_filp;
8719 	struct inode *inode = file->f_mapping->host;
8720 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8721 	struct btrfs_dio_data dio_data = { 0 };
8722 	loff_t offset = iocb->ki_pos;
8723 	size_t count = 0;
8724 	int flags = 0;
8725 	bool wakeup = true;
8726 	bool relock = false;
8727 	ssize_t ret;
8728 
8729 	if (check_direct_IO(fs_info, iocb, iter, offset))
8730 		return 0;
8731 
8732 	inode_dio_begin(inode);
8733 	smp_mb__after_atomic();
8734 
8735 	/*
8736 	 * The generic stuff only does filemap_write_and_wait_range, which
8737 	 * isn't enough if we've written compressed pages to this area, so
8738 	 * we need to flush the dirty pages again to make absolutely sure
8739 	 * that any outstanding dirty pages are on disk.
8740 	 */
8741 	count = iov_iter_count(iter);
8742 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8743 		     &BTRFS_I(inode)->runtime_flags))
8744 		filemap_fdatawrite_range(inode->i_mapping, offset,
8745 					 offset + count - 1);
8746 
8747 	if (iov_iter_rw(iter) == WRITE) {
8748 		/*
8749 		 * If the write DIO is beyond the EOF, we need update
8750 		 * the isize, but it is protected by i_mutex. So we can
8751 		 * not unlock the i_mutex at this case.
8752 		 */
8753 		if (offset + count <= inode->i_size) {
8754 			dio_data.overwrite = 1;
8755 			inode_unlock(inode);
8756 			relock = true;
8757 		} else if (iocb->ki_flags & IOCB_NOWAIT) {
8758 			ret = -EAGAIN;
8759 			goto out;
8760 		}
8761 		ret = btrfs_delalloc_reserve_space(inode, offset, count);
8762 		if (ret)
8763 			goto out;
8764 		dio_data.outstanding_extents = count_max_extents(count);
8765 
8766 		/*
8767 		 * We need to know how many extents we reserved so that we can
8768 		 * do the accounting properly if we go over the number we
8769 		 * originally calculated.  Abuse current->journal_info for this.
8770 		 */
8771 		dio_data.reserve = round_up(count,
8772 					    fs_info->sectorsize);
8773 		dio_data.unsubmitted_oe_range_start = (u64)offset;
8774 		dio_data.unsubmitted_oe_range_end = (u64)offset;
8775 		current->journal_info = &dio_data;
8776 		down_read(&BTRFS_I(inode)->dio_sem);
8777 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8778 				     &BTRFS_I(inode)->runtime_flags)) {
8779 		inode_dio_end(inode);
8780 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8781 		wakeup = false;
8782 	}
8783 
8784 	ret = __blockdev_direct_IO(iocb, inode,
8785 				   fs_info->fs_devices->latest_bdev,
8786 				   iter, btrfs_get_blocks_direct, NULL,
8787 				   btrfs_submit_direct, flags);
8788 	if (iov_iter_rw(iter) == WRITE) {
8789 		up_read(&BTRFS_I(inode)->dio_sem);
8790 		current->journal_info = NULL;
8791 		if (ret < 0 && ret != -EIOCBQUEUED) {
8792 			if (dio_data.reserve)
8793 				btrfs_delalloc_release_space(inode, offset,
8794 							     dio_data.reserve);
8795 			/*
8796 			 * On error we might have left some ordered extents
8797 			 * without submitting corresponding bios for them, so
8798 			 * cleanup them up to avoid other tasks getting them
8799 			 * and waiting for them to complete forever.
8800 			 */
8801 			if (dio_data.unsubmitted_oe_range_start <
8802 			    dio_data.unsubmitted_oe_range_end)
8803 				__endio_write_update_ordered(inode,
8804 					dio_data.unsubmitted_oe_range_start,
8805 					dio_data.unsubmitted_oe_range_end -
8806 					dio_data.unsubmitted_oe_range_start,
8807 					false);
8808 		} else if (ret >= 0 && (size_t)ret < count)
8809 			btrfs_delalloc_release_space(inode, offset,
8810 						     count - (size_t)ret);
8811 	}
8812 out:
8813 	if (wakeup)
8814 		inode_dio_end(inode);
8815 	if (relock)
8816 		inode_lock(inode);
8817 
8818 	return ret;
8819 }
8820 
8821 #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8822 
8823 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8824 		__u64 start, __u64 len)
8825 {
8826 	int	ret;
8827 
8828 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8829 	if (ret)
8830 		return ret;
8831 
8832 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8833 }
8834 
8835 int btrfs_readpage(struct file *file, struct page *page)
8836 {
8837 	struct extent_io_tree *tree;
8838 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8839 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8840 }
8841 
8842 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8843 {
8844 	struct extent_io_tree *tree;
8845 	struct inode *inode = page->mapping->host;
8846 	int ret;
8847 
8848 	if (current->flags & PF_MEMALLOC) {
8849 		redirty_page_for_writepage(wbc, page);
8850 		unlock_page(page);
8851 		return 0;
8852 	}
8853 
8854 	/*
8855 	 * If we are under memory pressure we will call this directly from the
8856 	 * VM, we need to make sure we have the inode referenced for the ordered
8857 	 * extent.  If not just return like we didn't do anything.
8858 	 */
8859 	if (!igrab(inode)) {
8860 		redirty_page_for_writepage(wbc, page);
8861 		return AOP_WRITEPAGE_ACTIVATE;
8862 	}
8863 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8864 	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8865 	btrfs_add_delayed_iput(inode);
8866 	return ret;
8867 }
8868 
8869 static int btrfs_writepages(struct address_space *mapping,
8870 			    struct writeback_control *wbc)
8871 {
8872 	struct extent_io_tree *tree;
8873 
8874 	tree = &BTRFS_I(mapping->host)->io_tree;
8875 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8876 }
8877 
8878 static int
8879 btrfs_readpages(struct file *file, struct address_space *mapping,
8880 		struct list_head *pages, unsigned nr_pages)
8881 {
8882 	struct extent_io_tree *tree;
8883 	tree = &BTRFS_I(mapping->host)->io_tree;
8884 	return extent_readpages(tree, mapping, pages, nr_pages,
8885 				btrfs_get_extent);
8886 }
8887 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8888 {
8889 	struct extent_io_tree *tree;
8890 	struct extent_map_tree *map;
8891 	int ret;
8892 
8893 	tree = &BTRFS_I(page->mapping->host)->io_tree;
8894 	map = &BTRFS_I(page->mapping->host)->extent_tree;
8895 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8896 	if (ret == 1) {
8897 		ClearPagePrivate(page);
8898 		set_page_private(page, 0);
8899 		put_page(page);
8900 	}
8901 	return ret;
8902 }
8903 
8904 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8905 {
8906 	if (PageWriteback(page) || PageDirty(page))
8907 		return 0;
8908 	return __btrfs_releasepage(page, gfp_flags);
8909 }
8910 
8911 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8912 				 unsigned int length)
8913 {
8914 	struct inode *inode = page->mapping->host;
8915 	struct extent_io_tree *tree;
8916 	struct btrfs_ordered_extent *ordered;
8917 	struct extent_state *cached_state = NULL;
8918 	u64 page_start = page_offset(page);
8919 	u64 page_end = page_start + PAGE_SIZE - 1;
8920 	u64 start;
8921 	u64 end;
8922 	int inode_evicting = inode->i_state & I_FREEING;
8923 
8924 	/*
8925 	 * we have the page locked, so new writeback can't start,
8926 	 * and the dirty bit won't be cleared while we are here.
8927 	 *
8928 	 * Wait for IO on this page so that we can safely clear
8929 	 * the PagePrivate2 bit and do ordered accounting
8930 	 */
8931 	wait_on_page_writeback(page);
8932 
8933 	tree = &BTRFS_I(inode)->io_tree;
8934 	if (offset) {
8935 		btrfs_releasepage(page, GFP_NOFS);
8936 		return;
8937 	}
8938 
8939 	if (!inode_evicting)
8940 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8941 again:
8942 	start = page_start;
8943 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8944 					page_end - start + 1);
8945 	if (ordered) {
8946 		end = min(page_end, ordered->file_offset + ordered->len - 1);
8947 		/*
8948 		 * IO on this page will never be started, so we need
8949 		 * to account for any ordered extents now
8950 		 */
8951 		if (!inode_evicting)
8952 			clear_extent_bit(tree, start, end,
8953 					 EXTENT_DIRTY | EXTENT_DELALLOC |
8954 					 EXTENT_DELALLOC_NEW |
8955 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8956 					 EXTENT_DEFRAG, 1, 0, &cached_state,
8957 					 GFP_NOFS);
8958 		/*
8959 		 * whoever cleared the private bit is responsible
8960 		 * for the finish_ordered_io
8961 		 */
8962 		if (TestClearPagePrivate2(page)) {
8963 			struct btrfs_ordered_inode_tree *tree;
8964 			u64 new_len;
8965 
8966 			tree = &BTRFS_I(inode)->ordered_tree;
8967 
8968 			spin_lock_irq(&tree->lock);
8969 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8970 			new_len = start - ordered->file_offset;
8971 			if (new_len < ordered->truncated_len)
8972 				ordered->truncated_len = new_len;
8973 			spin_unlock_irq(&tree->lock);
8974 
8975 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8976 							   start,
8977 							   end - start + 1, 1))
8978 				btrfs_finish_ordered_io(ordered);
8979 		}
8980 		btrfs_put_ordered_extent(ordered);
8981 		if (!inode_evicting) {
8982 			cached_state = NULL;
8983 			lock_extent_bits(tree, start, end,
8984 					 &cached_state);
8985 		}
8986 
8987 		start = end + 1;
8988 		if (start < page_end)
8989 			goto again;
8990 	}
8991 
8992 	/*
8993 	 * Qgroup reserved space handler
8994 	 * Page here will be either
8995 	 * 1) Already written to disk
8996 	 *    In this case, its reserved space is released from data rsv map
8997 	 *    and will be freed by delayed_ref handler finally.
8998 	 *    So even we call qgroup_free_data(), it won't decrease reserved
8999 	 *    space.
9000 	 * 2) Not written to disk
9001 	 *    This means the reserved space should be freed here. However,
9002 	 *    if a truncate invalidates the page (by clearing PageDirty)
9003 	 *    and the page is accounted for while allocating extent
9004 	 *    in btrfs_check_data_free_space() we let delayed_ref to
9005 	 *    free the entire extent.
9006 	 */
9007 	if (PageDirty(page))
9008 		btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
9009 	if (!inode_evicting) {
9010 		clear_extent_bit(tree, page_start, page_end,
9011 				 EXTENT_LOCKED | EXTENT_DIRTY |
9012 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9013 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
9014 				 &cached_state, GFP_NOFS);
9015 
9016 		__btrfs_releasepage(page, GFP_NOFS);
9017 	}
9018 
9019 	ClearPageChecked(page);
9020 	if (PagePrivate(page)) {
9021 		ClearPagePrivate(page);
9022 		set_page_private(page, 0);
9023 		put_page(page);
9024 	}
9025 }
9026 
9027 /*
9028  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9029  * called from a page fault handler when a page is first dirtied. Hence we must
9030  * be careful to check for EOF conditions here. We set the page up correctly
9031  * for a written page which means we get ENOSPC checking when writing into
9032  * holes and correct delalloc and unwritten extent mapping on filesystems that
9033  * support these features.
9034  *
9035  * We are not allowed to take the i_mutex here so we have to play games to
9036  * protect against truncate races as the page could now be beyond EOF.  Because
9037  * vmtruncate() writes the inode size before removing pages, once we have the
9038  * page lock we can determine safely if the page is beyond EOF. If it is not
9039  * beyond EOF, then the page is guaranteed safe against truncation until we
9040  * unlock the page.
9041  */
9042 int btrfs_page_mkwrite(struct vm_fault *vmf)
9043 {
9044 	struct page *page = vmf->page;
9045 	struct inode *inode = file_inode(vmf->vma->vm_file);
9046 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9047 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9048 	struct btrfs_ordered_extent *ordered;
9049 	struct extent_state *cached_state = NULL;
9050 	char *kaddr;
9051 	unsigned long zero_start;
9052 	loff_t size;
9053 	int ret;
9054 	int reserved = 0;
9055 	u64 reserved_space;
9056 	u64 page_start;
9057 	u64 page_end;
9058 	u64 end;
9059 
9060 	reserved_space = PAGE_SIZE;
9061 
9062 	sb_start_pagefault(inode->i_sb);
9063 	page_start = page_offset(page);
9064 	page_end = page_start + PAGE_SIZE - 1;
9065 	end = page_end;
9066 
9067 	/*
9068 	 * Reserving delalloc space after obtaining the page lock can lead to
9069 	 * deadlock. For example, if a dirty page is locked by this function
9070 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9071 	 * dirty page write out, then the btrfs_writepage() function could
9072 	 * end up waiting indefinitely to get a lock on the page currently
9073 	 * being processed by btrfs_page_mkwrite() function.
9074 	 */
9075 	ret = btrfs_delalloc_reserve_space(inode, page_start,
9076 					   reserved_space);
9077 	if (!ret) {
9078 		ret = file_update_time(vmf->vma->vm_file);
9079 		reserved = 1;
9080 	}
9081 	if (ret) {
9082 		if (ret == -ENOMEM)
9083 			ret = VM_FAULT_OOM;
9084 		else /* -ENOSPC, -EIO, etc */
9085 			ret = VM_FAULT_SIGBUS;
9086 		if (reserved)
9087 			goto out;
9088 		goto out_noreserve;
9089 	}
9090 
9091 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9092 again:
9093 	lock_page(page);
9094 	size = i_size_read(inode);
9095 
9096 	if ((page->mapping != inode->i_mapping) ||
9097 	    (page_start >= size)) {
9098 		/* page got truncated out from underneath us */
9099 		goto out_unlock;
9100 	}
9101 	wait_on_page_writeback(page);
9102 
9103 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9104 	set_page_extent_mapped(page);
9105 
9106 	/*
9107 	 * we can't set the delalloc bits if there are pending ordered
9108 	 * extents.  Drop our locks and wait for them to finish
9109 	 */
9110 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9111 			PAGE_SIZE);
9112 	if (ordered) {
9113 		unlock_extent_cached(io_tree, page_start, page_end,
9114 				     &cached_state, GFP_NOFS);
9115 		unlock_page(page);
9116 		btrfs_start_ordered_extent(inode, ordered, 1);
9117 		btrfs_put_ordered_extent(ordered);
9118 		goto again;
9119 	}
9120 
9121 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9122 		reserved_space = round_up(size - page_start,
9123 					  fs_info->sectorsize);
9124 		if (reserved_space < PAGE_SIZE) {
9125 			end = page_start + reserved_space - 1;
9126 			spin_lock(&BTRFS_I(inode)->lock);
9127 			BTRFS_I(inode)->outstanding_extents++;
9128 			spin_unlock(&BTRFS_I(inode)->lock);
9129 			btrfs_delalloc_release_space(inode, page_start,
9130 						PAGE_SIZE - reserved_space);
9131 		}
9132 	}
9133 
9134 	/*
9135 	 * page_mkwrite gets called when the page is firstly dirtied after it's
9136 	 * faulted in, but write(2) could also dirty a page and set delalloc
9137 	 * bits, thus in this case for space account reason, we still need to
9138 	 * clear any delalloc bits within this page range since we have to
9139 	 * reserve data&meta space before lock_page() (see above comments).
9140 	 */
9141 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9142 			  EXTENT_DIRTY | EXTENT_DELALLOC |
9143 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9144 			  0, 0, &cached_state, GFP_NOFS);
9145 
9146 	ret = btrfs_set_extent_delalloc(inode, page_start, end,
9147 					&cached_state, 0);
9148 	if (ret) {
9149 		unlock_extent_cached(io_tree, page_start, page_end,
9150 				     &cached_state, GFP_NOFS);
9151 		ret = VM_FAULT_SIGBUS;
9152 		goto out_unlock;
9153 	}
9154 	ret = 0;
9155 
9156 	/* page is wholly or partially inside EOF */
9157 	if (page_start + PAGE_SIZE > size)
9158 		zero_start = size & ~PAGE_MASK;
9159 	else
9160 		zero_start = PAGE_SIZE;
9161 
9162 	if (zero_start != PAGE_SIZE) {
9163 		kaddr = kmap(page);
9164 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9165 		flush_dcache_page(page);
9166 		kunmap(page);
9167 	}
9168 	ClearPageChecked(page);
9169 	set_page_dirty(page);
9170 	SetPageUptodate(page);
9171 
9172 	BTRFS_I(inode)->last_trans = fs_info->generation;
9173 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9174 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9175 
9176 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9177 
9178 out_unlock:
9179 	if (!ret) {
9180 		sb_end_pagefault(inode->i_sb);
9181 		return VM_FAULT_LOCKED;
9182 	}
9183 	unlock_page(page);
9184 out:
9185 	btrfs_delalloc_release_space(inode, page_start, reserved_space);
9186 out_noreserve:
9187 	sb_end_pagefault(inode->i_sb);
9188 	return ret;
9189 }
9190 
9191 static int btrfs_truncate(struct inode *inode)
9192 {
9193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9194 	struct btrfs_root *root = BTRFS_I(inode)->root;
9195 	struct btrfs_block_rsv *rsv;
9196 	int ret = 0;
9197 	int err = 0;
9198 	struct btrfs_trans_handle *trans;
9199 	u64 mask = fs_info->sectorsize - 1;
9200 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
9201 
9202 	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9203 				       (u64)-1);
9204 	if (ret)
9205 		return ret;
9206 
9207 	/*
9208 	 * Yes ladies and gentlemen, this is indeed ugly.  The fact is we have
9209 	 * 3 things going on here
9210 	 *
9211 	 * 1) We need to reserve space for our orphan item and the space to
9212 	 * delete our orphan item.  Lord knows we don't want to have a dangling
9213 	 * orphan item because we didn't reserve space to remove it.
9214 	 *
9215 	 * 2) We need to reserve space to update our inode.
9216 	 *
9217 	 * 3) We need to have something to cache all the space that is going to
9218 	 * be free'd up by the truncate operation, but also have some slack
9219 	 * space reserved in case it uses space during the truncate (thank you
9220 	 * very much snapshotting).
9221 	 *
9222 	 * And we need these to all be separate.  The fact is we can use a lot of
9223 	 * space doing the truncate, and we have no earthly idea how much space
9224 	 * we will use, so we need the truncate reservation to be separate so it
9225 	 * doesn't end up using space reserved for updating the inode or
9226 	 * removing the orphan item.  We also need to be able to stop the
9227 	 * transaction and start a new one, which means we need to be able to
9228 	 * update the inode several times, and we have no idea of knowing how
9229 	 * many times that will be, so we can't just reserve 1 item for the
9230 	 * entirety of the operation, so that has to be done separately as well.
9231 	 * Then there is the orphan item, which does indeed need to be held on
9232 	 * to for the whole operation, and we need nobody to touch this reserved
9233 	 * space except the orphan code.
9234 	 *
9235 	 * So that leaves us with
9236 	 *
9237 	 * 1) root->orphan_block_rsv - for the orphan deletion.
9238 	 * 2) rsv - for the truncate reservation, which we will steal from the
9239 	 * transaction reservation.
9240 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9241 	 * updating the inode.
9242 	 */
9243 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9244 	if (!rsv)
9245 		return -ENOMEM;
9246 	rsv->size = min_size;
9247 	rsv->failfast = 1;
9248 
9249 	/*
9250 	 * 1 for the truncate slack space
9251 	 * 1 for updating the inode.
9252 	 */
9253 	trans = btrfs_start_transaction(root, 2);
9254 	if (IS_ERR(trans)) {
9255 		err = PTR_ERR(trans);
9256 		goto out;
9257 	}
9258 
9259 	/* Migrate the slack space for the truncate to our reserve */
9260 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9261 				      min_size, 0);
9262 	BUG_ON(ret);
9263 
9264 	/*
9265 	 * So if we truncate and then write and fsync we normally would just
9266 	 * write the extents that changed, which is a problem if we need to
9267 	 * first truncate that entire inode.  So set this flag so we write out
9268 	 * all of the extents in the inode to the sync log so we're completely
9269 	 * safe.
9270 	 */
9271 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9272 	trans->block_rsv = rsv;
9273 
9274 	while (1) {
9275 		ret = btrfs_truncate_inode_items(trans, root, inode,
9276 						 inode->i_size,
9277 						 BTRFS_EXTENT_DATA_KEY);
9278 		if (ret != -ENOSPC && ret != -EAGAIN) {
9279 			err = ret;
9280 			break;
9281 		}
9282 
9283 		trans->block_rsv = &fs_info->trans_block_rsv;
9284 		ret = btrfs_update_inode(trans, root, inode);
9285 		if (ret) {
9286 			err = ret;
9287 			break;
9288 		}
9289 
9290 		btrfs_end_transaction(trans);
9291 		btrfs_btree_balance_dirty(fs_info);
9292 
9293 		trans = btrfs_start_transaction(root, 2);
9294 		if (IS_ERR(trans)) {
9295 			ret = err = PTR_ERR(trans);
9296 			trans = NULL;
9297 			break;
9298 		}
9299 
9300 		btrfs_block_rsv_release(fs_info, rsv, -1);
9301 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9302 					      rsv, min_size, 0);
9303 		BUG_ON(ret);	/* shouldn't happen */
9304 		trans->block_rsv = rsv;
9305 	}
9306 
9307 	if (ret == 0 && inode->i_nlink > 0) {
9308 		trans->block_rsv = root->orphan_block_rsv;
9309 		ret = btrfs_orphan_del(trans, BTRFS_I(inode));
9310 		if (ret)
9311 			err = ret;
9312 	}
9313 
9314 	if (trans) {
9315 		trans->block_rsv = &fs_info->trans_block_rsv;
9316 		ret = btrfs_update_inode(trans, root, inode);
9317 		if (ret && !err)
9318 			err = ret;
9319 
9320 		ret = btrfs_end_transaction(trans);
9321 		btrfs_btree_balance_dirty(fs_info);
9322 	}
9323 out:
9324 	btrfs_free_block_rsv(fs_info, rsv);
9325 
9326 	if (ret && !err)
9327 		err = ret;
9328 
9329 	return err;
9330 }
9331 
9332 /*
9333  * create a new subvolume directory/inode (helper for the ioctl).
9334  */
9335 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9336 			     struct btrfs_root *new_root,
9337 			     struct btrfs_root *parent_root,
9338 			     u64 new_dirid)
9339 {
9340 	struct inode *inode;
9341 	int err;
9342 	u64 index = 0;
9343 
9344 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9345 				new_dirid, new_dirid,
9346 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9347 				&index);
9348 	if (IS_ERR(inode))
9349 		return PTR_ERR(inode);
9350 	inode->i_op = &btrfs_dir_inode_operations;
9351 	inode->i_fop = &btrfs_dir_file_operations;
9352 
9353 	set_nlink(inode, 1);
9354 	btrfs_i_size_write(BTRFS_I(inode), 0);
9355 	unlock_new_inode(inode);
9356 
9357 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9358 	if (err)
9359 		btrfs_err(new_root->fs_info,
9360 			  "error inheriting subvolume %llu properties: %d",
9361 			  new_root->root_key.objectid, err);
9362 
9363 	err = btrfs_update_inode(trans, new_root, inode);
9364 
9365 	iput(inode);
9366 	return err;
9367 }
9368 
9369 struct inode *btrfs_alloc_inode(struct super_block *sb)
9370 {
9371 	struct btrfs_inode *ei;
9372 	struct inode *inode;
9373 
9374 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9375 	if (!ei)
9376 		return NULL;
9377 
9378 	ei->root = NULL;
9379 	ei->generation = 0;
9380 	ei->last_trans = 0;
9381 	ei->last_sub_trans = 0;
9382 	ei->logged_trans = 0;
9383 	ei->delalloc_bytes = 0;
9384 	ei->new_delalloc_bytes = 0;
9385 	ei->defrag_bytes = 0;
9386 	ei->disk_i_size = 0;
9387 	ei->flags = 0;
9388 	ei->csum_bytes = 0;
9389 	ei->index_cnt = (u64)-1;
9390 	ei->dir_index = 0;
9391 	ei->last_unlink_trans = 0;
9392 	ei->last_log_commit = 0;
9393 	ei->delayed_iput_count = 0;
9394 
9395 	spin_lock_init(&ei->lock);
9396 	ei->outstanding_extents = 0;
9397 	ei->reserved_extents = 0;
9398 
9399 	ei->runtime_flags = 0;
9400 	ei->force_compress = BTRFS_COMPRESS_NONE;
9401 
9402 	ei->delayed_node = NULL;
9403 
9404 	ei->i_otime.tv_sec = 0;
9405 	ei->i_otime.tv_nsec = 0;
9406 
9407 	inode = &ei->vfs_inode;
9408 	extent_map_tree_init(&ei->extent_tree);
9409 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
9410 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9411 	ei->io_tree.track_uptodate = 1;
9412 	ei->io_failure_tree.track_uptodate = 1;
9413 	atomic_set(&ei->sync_writers, 0);
9414 	mutex_init(&ei->log_mutex);
9415 	mutex_init(&ei->delalloc_mutex);
9416 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9417 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9418 	INIT_LIST_HEAD(&ei->delayed_iput);
9419 	RB_CLEAR_NODE(&ei->rb_node);
9420 	init_rwsem(&ei->dio_sem);
9421 
9422 	return inode;
9423 }
9424 
9425 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9426 void btrfs_test_destroy_inode(struct inode *inode)
9427 {
9428 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9429 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9430 }
9431 #endif
9432 
9433 static void btrfs_i_callback(struct rcu_head *head)
9434 {
9435 	struct inode *inode = container_of(head, struct inode, i_rcu);
9436 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9437 }
9438 
9439 void btrfs_destroy_inode(struct inode *inode)
9440 {
9441 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9442 	struct btrfs_ordered_extent *ordered;
9443 	struct btrfs_root *root = BTRFS_I(inode)->root;
9444 
9445 	WARN_ON(!hlist_empty(&inode->i_dentry));
9446 	WARN_ON(inode->i_data.nrpages);
9447 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
9448 	WARN_ON(BTRFS_I(inode)->reserved_extents);
9449 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9450 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9451 	WARN_ON(BTRFS_I(inode)->csum_bytes);
9452 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
9453 
9454 	/*
9455 	 * This can happen where we create an inode, but somebody else also
9456 	 * created the same inode and we need to destroy the one we already
9457 	 * created.
9458 	 */
9459 	if (!root)
9460 		goto free;
9461 
9462 	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9463 		     &BTRFS_I(inode)->runtime_flags)) {
9464 		btrfs_info(fs_info, "inode %llu still on the orphan list",
9465 			   btrfs_ino(BTRFS_I(inode)));
9466 		atomic_dec(&root->orphan_inodes);
9467 	}
9468 
9469 	while (1) {
9470 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9471 		if (!ordered)
9472 			break;
9473 		else {
9474 			btrfs_err(fs_info,
9475 				  "found ordered extent %llu %llu on inode cleanup",
9476 				  ordered->file_offset, ordered->len);
9477 			btrfs_remove_ordered_extent(inode, ordered);
9478 			btrfs_put_ordered_extent(ordered);
9479 			btrfs_put_ordered_extent(ordered);
9480 		}
9481 	}
9482 	btrfs_qgroup_check_reserved_leak(inode);
9483 	inode_tree_del(inode);
9484 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9485 free:
9486 	call_rcu(&inode->i_rcu, btrfs_i_callback);
9487 }
9488 
9489 int btrfs_drop_inode(struct inode *inode)
9490 {
9491 	struct btrfs_root *root = BTRFS_I(inode)->root;
9492 
9493 	if (root == NULL)
9494 		return 1;
9495 
9496 	/* the snap/subvol tree is on deleting */
9497 	if (btrfs_root_refs(&root->root_item) == 0)
9498 		return 1;
9499 	else
9500 		return generic_drop_inode(inode);
9501 }
9502 
9503 static void init_once(void *foo)
9504 {
9505 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9506 
9507 	inode_init_once(&ei->vfs_inode);
9508 }
9509 
9510 void btrfs_destroy_cachep(void)
9511 {
9512 	/*
9513 	 * Make sure all delayed rcu free inodes are flushed before we
9514 	 * destroy cache.
9515 	 */
9516 	rcu_barrier();
9517 	kmem_cache_destroy(btrfs_inode_cachep);
9518 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9519 	kmem_cache_destroy(btrfs_transaction_cachep);
9520 	kmem_cache_destroy(btrfs_path_cachep);
9521 	kmem_cache_destroy(btrfs_free_space_cachep);
9522 }
9523 
9524 int btrfs_init_cachep(void)
9525 {
9526 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9527 			sizeof(struct btrfs_inode), 0,
9528 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9529 			init_once);
9530 	if (!btrfs_inode_cachep)
9531 		goto fail;
9532 
9533 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9534 			sizeof(struct btrfs_trans_handle), 0,
9535 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9536 	if (!btrfs_trans_handle_cachep)
9537 		goto fail;
9538 
9539 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9540 			sizeof(struct btrfs_transaction), 0,
9541 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9542 	if (!btrfs_transaction_cachep)
9543 		goto fail;
9544 
9545 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9546 			sizeof(struct btrfs_path), 0,
9547 			SLAB_MEM_SPREAD, NULL);
9548 	if (!btrfs_path_cachep)
9549 		goto fail;
9550 
9551 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9552 			sizeof(struct btrfs_free_space), 0,
9553 			SLAB_MEM_SPREAD, NULL);
9554 	if (!btrfs_free_space_cachep)
9555 		goto fail;
9556 
9557 	return 0;
9558 fail:
9559 	btrfs_destroy_cachep();
9560 	return -ENOMEM;
9561 }
9562 
9563 static int btrfs_getattr(const struct path *path, struct kstat *stat,
9564 			 u32 request_mask, unsigned int flags)
9565 {
9566 	u64 delalloc_bytes;
9567 	struct inode *inode = d_inode(path->dentry);
9568 	u32 blocksize = inode->i_sb->s_blocksize;
9569 
9570 	generic_fillattr(inode, stat);
9571 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9572 
9573 	spin_lock(&BTRFS_I(inode)->lock);
9574 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9575 	spin_unlock(&BTRFS_I(inode)->lock);
9576 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9577 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9578 	return 0;
9579 }
9580 
9581 static int btrfs_rename_exchange(struct inode *old_dir,
9582 			      struct dentry *old_dentry,
9583 			      struct inode *new_dir,
9584 			      struct dentry *new_dentry)
9585 {
9586 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9587 	struct btrfs_trans_handle *trans;
9588 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9589 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9590 	struct inode *new_inode = new_dentry->d_inode;
9591 	struct inode *old_inode = old_dentry->d_inode;
9592 	struct timespec ctime = current_time(old_inode);
9593 	struct dentry *parent;
9594 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9595 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9596 	u64 old_idx = 0;
9597 	u64 new_idx = 0;
9598 	u64 root_objectid;
9599 	int ret;
9600 	bool root_log_pinned = false;
9601 	bool dest_log_pinned = false;
9602 
9603 	/* we only allow rename subvolume link between subvolumes */
9604 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9605 		return -EXDEV;
9606 
9607 	/* close the race window with snapshot create/destroy ioctl */
9608 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9609 		down_read(&fs_info->subvol_sem);
9610 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9611 		down_read(&fs_info->subvol_sem);
9612 
9613 	/*
9614 	 * We want to reserve the absolute worst case amount of items.  So if
9615 	 * both inodes are subvols and we need to unlink them then that would
9616 	 * require 4 item modifications, but if they are both normal inodes it
9617 	 * would require 5 item modifications, so we'll assume their normal
9618 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9619 	 * should cover the worst case number of items we'll modify.
9620 	 */
9621 	trans = btrfs_start_transaction(root, 12);
9622 	if (IS_ERR(trans)) {
9623 		ret = PTR_ERR(trans);
9624 		goto out_notrans;
9625 	}
9626 
9627 	/*
9628 	 * We need to find a free sequence number both in the source and
9629 	 * in the destination directory for the exchange.
9630 	 */
9631 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9632 	if (ret)
9633 		goto out_fail;
9634 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9635 	if (ret)
9636 		goto out_fail;
9637 
9638 	BTRFS_I(old_inode)->dir_index = 0ULL;
9639 	BTRFS_I(new_inode)->dir_index = 0ULL;
9640 
9641 	/* Reference for the source. */
9642 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9643 		/* force full log commit if subvolume involved. */
9644 		btrfs_set_log_full_commit(fs_info, trans);
9645 	} else {
9646 		btrfs_pin_log_trans(root);
9647 		root_log_pinned = true;
9648 		ret = btrfs_insert_inode_ref(trans, dest,
9649 					     new_dentry->d_name.name,
9650 					     new_dentry->d_name.len,
9651 					     old_ino,
9652 					     btrfs_ino(BTRFS_I(new_dir)),
9653 					     old_idx);
9654 		if (ret)
9655 			goto out_fail;
9656 	}
9657 
9658 	/* And now for the dest. */
9659 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9660 		/* force full log commit if subvolume involved. */
9661 		btrfs_set_log_full_commit(fs_info, trans);
9662 	} else {
9663 		btrfs_pin_log_trans(dest);
9664 		dest_log_pinned = true;
9665 		ret = btrfs_insert_inode_ref(trans, root,
9666 					     old_dentry->d_name.name,
9667 					     old_dentry->d_name.len,
9668 					     new_ino,
9669 					     btrfs_ino(BTRFS_I(old_dir)),
9670 					     new_idx);
9671 		if (ret)
9672 			goto out_fail;
9673 	}
9674 
9675 	/* Update inode version and ctime/mtime. */
9676 	inode_inc_iversion(old_dir);
9677 	inode_inc_iversion(new_dir);
9678 	inode_inc_iversion(old_inode);
9679 	inode_inc_iversion(new_inode);
9680 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9681 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9682 	old_inode->i_ctime = ctime;
9683 	new_inode->i_ctime = ctime;
9684 
9685 	if (old_dentry->d_parent != new_dentry->d_parent) {
9686 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9687 				BTRFS_I(old_inode), 1);
9688 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9689 				BTRFS_I(new_inode), 1);
9690 	}
9691 
9692 	/* src is a subvolume */
9693 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9694 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9695 		ret = btrfs_unlink_subvol(trans, root, old_dir,
9696 					  root_objectid,
9697 					  old_dentry->d_name.name,
9698 					  old_dentry->d_name.len);
9699 	} else { /* src is an inode */
9700 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9701 					   BTRFS_I(old_dentry->d_inode),
9702 					   old_dentry->d_name.name,
9703 					   old_dentry->d_name.len);
9704 		if (!ret)
9705 			ret = btrfs_update_inode(trans, root, old_inode);
9706 	}
9707 	if (ret) {
9708 		btrfs_abort_transaction(trans, ret);
9709 		goto out_fail;
9710 	}
9711 
9712 	/* dest is a subvolume */
9713 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9714 		root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9715 		ret = btrfs_unlink_subvol(trans, dest, new_dir,
9716 					  root_objectid,
9717 					  new_dentry->d_name.name,
9718 					  new_dentry->d_name.len);
9719 	} else { /* dest is an inode */
9720 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9721 					   BTRFS_I(new_dentry->d_inode),
9722 					   new_dentry->d_name.name,
9723 					   new_dentry->d_name.len);
9724 		if (!ret)
9725 			ret = btrfs_update_inode(trans, dest, new_inode);
9726 	}
9727 	if (ret) {
9728 		btrfs_abort_transaction(trans, ret);
9729 		goto out_fail;
9730 	}
9731 
9732 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9733 			     new_dentry->d_name.name,
9734 			     new_dentry->d_name.len, 0, old_idx);
9735 	if (ret) {
9736 		btrfs_abort_transaction(trans, ret);
9737 		goto out_fail;
9738 	}
9739 
9740 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9741 			     old_dentry->d_name.name,
9742 			     old_dentry->d_name.len, 0, new_idx);
9743 	if (ret) {
9744 		btrfs_abort_transaction(trans, ret);
9745 		goto out_fail;
9746 	}
9747 
9748 	if (old_inode->i_nlink == 1)
9749 		BTRFS_I(old_inode)->dir_index = old_idx;
9750 	if (new_inode->i_nlink == 1)
9751 		BTRFS_I(new_inode)->dir_index = new_idx;
9752 
9753 	if (root_log_pinned) {
9754 		parent = new_dentry->d_parent;
9755 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9756 				parent);
9757 		btrfs_end_log_trans(root);
9758 		root_log_pinned = false;
9759 	}
9760 	if (dest_log_pinned) {
9761 		parent = old_dentry->d_parent;
9762 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9763 				parent);
9764 		btrfs_end_log_trans(dest);
9765 		dest_log_pinned = false;
9766 	}
9767 out_fail:
9768 	/*
9769 	 * If we have pinned a log and an error happened, we unpin tasks
9770 	 * trying to sync the log and force them to fallback to a transaction
9771 	 * commit if the log currently contains any of the inodes involved in
9772 	 * this rename operation (to ensure we do not persist a log with an
9773 	 * inconsistent state for any of these inodes or leading to any
9774 	 * inconsistencies when replayed). If the transaction was aborted, the
9775 	 * abortion reason is propagated to userspace when attempting to commit
9776 	 * the transaction. If the log does not contain any of these inodes, we
9777 	 * allow the tasks to sync it.
9778 	 */
9779 	if (ret && (root_log_pinned || dest_log_pinned)) {
9780 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9781 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9782 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9783 		    (new_inode &&
9784 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9785 			btrfs_set_log_full_commit(fs_info, trans);
9786 
9787 		if (root_log_pinned) {
9788 			btrfs_end_log_trans(root);
9789 			root_log_pinned = false;
9790 		}
9791 		if (dest_log_pinned) {
9792 			btrfs_end_log_trans(dest);
9793 			dest_log_pinned = false;
9794 		}
9795 	}
9796 	ret = btrfs_end_transaction(trans);
9797 out_notrans:
9798 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9799 		up_read(&fs_info->subvol_sem);
9800 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9801 		up_read(&fs_info->subvol_sem);
9802 
9803 	return ret;
9804 }
9805 
9806 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9807 				     struct btrfs_root *root,
9808 				     struct inode *dir,
9809 				     struct dentry *dentry)
9810 {
9811 	int ret;
9812 	struct inode *inode;
9813 	u64 objectid;
9814 	u64 index;
9815 
9816 	ret = btrfs_find_free_ino(root, &objectid);
9817 	if (ret)
9818 		return ret;
9819 
9820 	inode = btrfs_new_inode(trans, root, dir,
9821 				dentry->d_name.name,
9822 				dentry->d_name.len,
9823 				btrfs_ino(BTRFS_I(dir)),
9824 				objectid,
9825 				S_IFCHR | WHITEOUT_MODE,
9826 				&index);
9827 
9828 	if (IS_ERR(inode)) {
9829 		ret = PTR_ERR(inode);
9830 		return ret;
9831 	}
9832 
9833 	inode->i_op = &btrfs_special_inode_operations;
9834 	init_special_inode(inode, inode->i_mode,
9835 		WHITEOUT_DEV);
9836 
9837 	ret = btrfs_init_inode_security(trans, inode, dir,
9838 				&dentry->d_name);
9839 	if (ret)
9840 		goto out;
9841 
9842 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9843 				BTRFS_I(inode), 0, index);
9844 	if (ret)
9845 		goto out;
9846 
9847 	ret = btrfs_update_inode(trans, root, inode);
9848 out:
9849 	unlock_new_inode(inode);
9850 	if (ret)
9851 		inode_dec_link_count(inode);
9852 	iput(inode);
9853 
9854 	return ret;
9855 }
9856 
9857 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9858 			   struct inode *new_dir, struct dentry *new_dentry,
9859 			   unsigned int flags)
9860 {
9861 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9862 	struct btrfs_trans_handle *trans;
9863 	unsigned int trans_num_items;
9864 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9865 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9866 	struct inode *new_inode = d_inode(new_dentry);
9867 	struct inode *old_inode = d_inode(old_dentry);
9868 	u64 index = 0;
9869 	u64 root_objectid;
9870 	int ret;
9871 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9872 	bool log_pinned = false;
9873 
9874 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9875 		return -EPERM;
9876 
9877 	/* we only allow rename subvolume link between subvolumes */
9878 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9879 		return -EXDEV;
9880 
9881 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9882 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9883 		return -ENOTEMPTY;
9884 
9885 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9886 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9887 		return -ENOTEMPTY;
9888 
9889 
9890 	/* check for collisions, even if the  name isn't there */
9891 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9892 			     new_dentry->d_name.name,
9893 			     new_dentry->d_name.len);
9894 
9895 	if (ret) {
9896 		if (ret == -EEXIST) {
9897 			/* we shouldn't get
9898 			 * eexist without a new_inode */
9899 			if (WARN_ON(!new_inode)) {
9900 				return ret;
9901 			}
9902 		} else {
9903 			/* maybe -EOVERFLOW */
9904 			return ret;
9905 		}
9906 	}
9907 	ret = 0;
9908 
9909 	/*
9910 	 * we're using rename to replace one file with another.  Start IO on it
9911 	 * now so  we don't add too much work to the end of the transaction
9912 	 */
9913 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9914 		filemap_flush(old_inode->i_mapping);
9915 
9916 	/* close the racy window with snapshot create/destroy ioctl */
9917 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9918 		down_read(&fs_info->subvol_sem);
9919 	/*
9920 	 * We want to reserve the absolute worst case amount of items.  So if
9921 	 * both inodes are subvols and we need to unlink them then that would
9922 	 * require 4 item modifications, but if they are both normal inodes it
9923 	 * would require 5 item modifications, so we'll assume they are normal
9924 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9925 	 * should cover the worst case number of items we'll modify.
9926 	 * If our rename has the whiteout flag, we need more 5 units for the
9927 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9928 	 * when selinux is enabled).
9929 	 */
9930 	trans_num_items = 11;
9931 	if (flags & RENAME_WHITEOUT)
9932 		trans_num_items += 5;
9933 	trans = btrfs_start_transaction(root, trans_num_items);
9934 	if (IS_ERR(trans)) {
9935 		ret = PTR_ERR(trans);
9936 		goto out_notrans;
9937 	}
9938 
9939 	if (dest != root)
9940 		btrfs_record_root_in_trans(trans, dest);
9941 
9942 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9943 	if (ret)
9944 		goto out_fail;
9945 
9946 	BTRFS_I(old_inode)->dir_index = 0ULL;
9947 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9948 		/* force full log commit if subvolume involved. */
9949 		btrfs_set_log_full_commit(fs_info, trans);
9950 	} else {
9951 		btrfs_pin_log_trans(root);
9952 		log_pinned = true;
9953 		ret = btrfs_insert_inode_ref(trans, dest,
9954 					     new_dentry->d_name.name,
9955 					     new_dentry->d_name.len,
9956 					     old_ino,
9957 					     btrfs_ino(BTRFS_I(new_dir)), index);
9958 		if (ret)
9959 			goto out_fail;
9960 	}
9961 
9962 	inode_inc_iversion(old_dir);
9963 	inode_inc_iversion(new_dir);
9964 	inode_inc_iversion(old_inode);
9965 	old_dir->i_ctime = old_dir->i_mtime =
9966 	new_dir->i_ctime = new_dir->i_mtime =
9967 	old_inode->i_ctime = current_time(old_dir);
9968 
9969 	if (old_dentry->d_parent != new_dentry->d_parent)
9970 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9971 				BTRFS_I(old_inode), 1);
9972 
9973 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9974 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9975 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9976 					old_dentry->d_name.name,
9977 					old_dentry->d_name.len);
9978 	} else {
9979 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9980 					BTRFS_I(d_inode(old_dentry)),
9981 					old_dentry->d_name.name,
9982 					old_dentry->d_name.len);
9983 		if (!ret)
9984 			ret = btrfs_update_inode(trans, root, old_inode);
9985 	}
9986 	if (ret) {
9987 		btrfs_abort_transaction(trans, ret);
9988 		goto out_fail;
9989 	}
9990 
9991 	if (new_inode) {
9992 		inode_inc_iversion(new_inode);
9993 		new_inode->i_ctime = current_time(new_inode);
9994 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9995 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9996 			root_objectid = BTRFS_I(new_inode)->location.objectid;
9997 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9998 						root_objectid,
9999 						new_dentry->d_name.name,
10000 						new_dentry->d_name.len);
10001 			BUG_ON(new_inode->i_nlink == 0);
10002 		} else {
10003 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10004 						 BTRFS_I(d_inode(new_dentry)),
10005 						 new_dentry->d_name.name,
10006 						 new_dentry->d_name.len);
10007 		}
10008 		if (!ret && new_inode->i_nlink == 0)
10009 			ret = btrfs_orphan_add(trans,
10010 					BTRFS_I(d_inode(new_dentry)));
10011 		if (ret) {
10012 			btrfs_abort_transaction(trans, ret);
10013 			goto out_fail;
10014 		}
10015 	}
10016 
10017 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
10018 			     new_dentry->d_name.name,
10019 			     new_dentry->d_name.len, 0, index);
10020 	if (ret) {
10021 		btrfs_abort_transaction(trans, ret);
10022 		goto out_fail;
10023 	}
10024 
10025 	if (old_inode->i_nlink == 1)
10026 		BTRFS_I(old_inode)->dir_index = index;
10027 
10028 	if (log_pinned) {
10029 		struct dentry *parent = new_dentry->d_parent;
10030 
10031 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10032 				parent);
10033 		btrfs_end_log_trans(root);
10034 		log_pinned = false;
10035 	}
10036 
10037 	if (flags & RENAME_WHITEOUT) {
10038 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10039 						old_dentry);
10040 
10041 		if (ret) {
10042 			btrfs_abort_transaction(trans, ret);
10043 			goto out_fail;
10044 		}
10045 	}
10046 out_fail:
10047 	/*
10048 	 * If we have pinned the log and an error happened, we unpin tasks
10049 	 * trying to sync the log and force them to fallback to a transaction
10050 	 * commit if the log currently contains any of the inodes involved in
10051 	 * this rename operation (to ensure we do not persist a log with an
10052 	 * inconsistent state for any of these inodes or leading to any
10053 	 * inconsistencies when replayed). If the transaction was aborted, the
10054 	 * abortion reason is propagated to userspace when attempting to commit
10055 	 * the transaction. If the log does not contain any of these inodes, we
10056 	 * allow the tasks to sync it.
10057 	 */
10058 	if (ret && log_pinned) {
10059 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10060 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10061 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
10062 		    (new_inode &&
10063 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
10064 			btrfs_set_log_full_commit(fs_info, trans);
10065 
10066 		btrfs_end_log_trans(root);
10067 		log_pinned = false;
10068 	}
10069 	btrfs_end_transaction(trans);
10070 out_notrans:
10071 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
10072 		up_read(&fs_info->subvol_sem);
10073 
10074 	return ret;
10075 }
10076 
10077 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10078 			 struct inode *new_dir, struct dentry *new_dentry,
10079 			 unsigned int flags)
10080 {
10081 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
10082 		return -EINVAL;
10083 
10084 	if (flags & RENAME_EXCHANGE)
10085 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10086 					  new_dentry);
10087 
10088 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10089 }
10090 
10091 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10092 {
10093 	struct btrfs_delalloc_work *delalloc_work;
10094 	struct inode *inode;
10095 
10096 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
10097 				     work);
10098 	inode = delalloc_work->inode;
10099 	filemap_flush(inode->i_mapping);
10100 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10101 				&BTRFS_I(inode)->runtime_flags))
10102 		filemap_flush(inode->i_mapping);
10103 
10104 	if (delalloc_work->delay_iput)
10105 		btrfs_add_delayed_iput(inode);
10106 	else
10107 		iput(inode);
10108 	complete(&delalloc_work->completion);
10109 }
10110 
10111 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10112 						    int delay_iput)
10113 {
10114 	struct btrfs_delalloc_work *work;
10115 
10116 	work = kmalloc(sizeof(*work), GFP_NOFS);
10117 	if (!work)
10118 		return NULL;
10119 
10120 	init_completion(&work->completion);
10121 	INIT_LIST_HEAD(&work->list);
10122 	work->inode = inode;
10123 	work->delay_iput = delay_iput;
10124 	WARN_ON_ONCE(!inode);
10125 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10126 			btrfs_run_delalloc_work, NULL, NULL);
10127 
10128 	return work;
10129 }
10130 
10131 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10132 {
10133 	wait_for_completion(&work->completion);
10134 	kfree(work);
10135 }
10136 
10137 /*
10138  * some fairly slow code that needs optimization. This walks the list
10139  * of all the inodes with pending delalloc and forces them to disk.
10140  */
10141 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10142 				   int nr)
10143 {
10144 	struct btrfs_inode *binode;
10145 	struct inode *inode;
10146 	struct btrfs_delalloc_work *work, *next;
10147 	struct list_head works;
10148 	struct list_head splice;
10149 	int ret = 0;
10150 
10151 	INIT_LIST_HEAD(&works);
10152 	INIT_LIST_HEAD(&splice);
10153 
10154 	mutex_lock(&root->delalloc_mutex);
10155 	spin_lock(&root->delalloc_lock);
10156 	list_splice_init(&root->delalloc_inodes, &splice);
10157 	while (!list_empty(&splice)) {
10158 		binode = list_entry(splice.next, struct btrfs_inode,
10159 				    delalloc_inodes);
10160 
10161 		list_move_tail(&binode->delalloc_inodes,
10162 			       &root->delalloc_inodes);
10163 		inode = igrab(&binode->vfs_inode);
10164 		if (!inode) {
10165 			cond_resched_lock(&root->delalloc_lock);
10166 			continue;
10167 		}
10168 		spin_unlock(&root->delalloc_lock);
10169 
10170 		work = btrfs_alloc_delalloc_work(inode, delay_iput);
10171 		if (!work) {
10172 			if (delay_iput)
10173 				btrfs_add_delayed_iput(inode);
10174 			else
10175 				iput(inode);
10176 			ret = -ENOMEM;
10177 			goto out;
10178 		}
10179 		list_add_tail(&work->list, &works);
10180 		btrfs_queue_work(root->fs_info->flush_workers,
10181 				 &work->work);
10182 		ret++;
10183 		if (nr != -1 && ret >= nr)
10184 			goto out;
10185 		cond_resched();
10186 		spin_lock(&root->delalloc_lock);
10187 	}
10188 	spin_unlock(&root->delalloc_lock);
10189 
10190 out:
10191 	list_for_each_entry_safe(work, next, &works, list) {
10192 		list_del_init(&work->list);
10193 		btrfs_wait_and_free_delalloc_work(work);
10194 	}
10195 
10196 	if (!list_empty_careful(&splice)) {
10197 		spin_lock(&root->delalloc_lock);
10198 		list_splice_tail(&splice, &root->delalloc_inodes);
10199 		spin_unlock(&root->delalloc_lock);
10200 	}
10201 	mutex_unlock(&root->delalloc_mutex);
10202 	return ret;
10203 }
10204 
10205 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10206 {
10207 	struct btrfs_fs_info *fs_info = root->fs_info;
10208 	int ret;
10209 
10210 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10211 		return -EROFS;
10212 
10213 	ret = __start_delalloc_inodes(root, delay_iput, -1);
10214 	if (ret > 0)
10215 		ret = 0;
10216 	/*
10217 	 * the filemap_flush will queue IO into the worker threads, but
10218 	 * we have to make sure the IO is actually started and that
10219 	 * ordered extents get created before we return
10220 	 */
10221 	atomic_inc(&fs_info->async_submit_draining);
10222 	while (atomic_read(&fs_info->nr_async_submits) ||
10223 	       atomic_read(&fs_info->async_delalloc_pages)) {
10224 		wait_event(fs_info->async_submit_wait,
10225 			   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10226 			    atomic_read(&fs_info->async_delalloc_pages) == 0));
10227 	}
10228 	atomic_dec(&fs_info->async_submit_draining);
10229 	return ret;
10230 }
10231 
10232 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10233 			       int nr)
10234 {
10235 	struct btrfs_root *root;
10236 	struct list_head splice;
10237 	int ret;
10238 
10239 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10240 		return -EROFS;
10241 
10242 	INIT_LIST_HEAD(&splice);
10243 
10244 	mutex_lock(&fs_info->delalloc_root_mutex);
10245 	spin_lock(&fs_info->delalloc_root_lock);
10246 	list_splice_init(&fs_info->delalloc_roots, &splice);
10247 	while (!list_empty(&splice) && nr) {
10248 		root = list_first_entry(&splice, struct btrfs_root,
10249 					delalloc_root);
10250 		root = btrfs_grab_fs_root(root);
10251 		BUG_ON(!root);
10252 		list_move_tail(&root->delalloc_root,
10253 			       &fs_info->delalloc_roots);
10254 		spin_unlock(&fs_info->delalloc_root_lock);
10255 
10256 		ret = __start_delalloc_inodes(root, delay_iput, nr);
10257 		btrfs_put_fs_root(root);
10258 		if (ret < 0)
10259 			goto out;
10260 
10261 		if (nr != -1) {
10262 			nr -= ret;
10263 			WARN_ON(nr < 0);
10264 		}
10265 		spin_lock(&fs_info->delalloc_root_lock);
10266 	}
10267 	spin_unlock(&fs_info->delalloc_root_lock);
10268 
10269 	ret = 0;
10270 	atomic_inc(&fs_info->async_submit_draining);
10271 	while (atomic_read(&fs_info->nr_async_submits) ||
10272 	      atomic_read(&fs_info->async_delalloc_pages)) {
10273 		wait_event(fs_info->async_submit_wait,
10274 		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
10275 		    atomic_read(&fs_info->async_delalloc_pages) == 0));
10276 	}
10277 	atomic_dec(&fs_info->async_submit_draining);
10278 out:
10279 	if (!list_empty_careful(&splice)) {
10280 		spin_lock(&fs_info->delalloc_root_lock);
10281 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10282 		spin_unlock(&fs_info->delalloc_root_lock);
10283 	}
10284 	mutex_unlock(&fs_info->delalloc_root_mutex);
10285 	return ret;
10286 }
10287 
10288 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10289 			 const char *symname)
10290 {
10291 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10292 	struct btrfs_trans_handle *trans;
10293 	struct btrfs_root *root = BTRFS_I(dir)->root;
10294 	struct btrfs_path *path;
10295 	struct btrfs_key key;
10296 	struct inode *inode = NULL;
10297 	int err;
10298 	int drop_inode = 0;
10299 	u64 objectid;
10300 	u64 index = 0;
10301 	int name_len;
10302 	int datasize;
10303 	unsigned long ptr;
10304 	struct btrfs_file_extent_item *ei;
10305 	struct extent_buffer *leaf;
10306 
10307 	name_len = strlen(symname);
10308 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10309 		return -ENAMETOOLONG;
10310 
10311 	/*
10312 	 * 2 items for inode item and ref
10313 	 * 2 items for dir items
10314 	 * 1 item for updating parent inode item
10315 	 * 1 item for the inline extent item
10316 	 * 1 item for xattr if selinux is on
10317 	 */
10318 	trans = btrfs_start_transaction(root, 7);
10319 	if (IS_ERR(trans))
10320 		return PTR_ERR(trans);
10321 
10322 	err = btrfs_find_free_ino(root, &objectid);
10323 	if (err)
10324 		goto out_unlock;
10325 
10326 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10327 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10328 				objectid, S_IFLNK|S_IRWXUGO, &index);
10329 	if (IS_ERR(inode)) {
10330 		err = PTR_ERR(inode);
10331 		goto out_unlock;
10332 	}
10333 
10334 	/*
10335 	* If the active LSM wants to access the inode during
10336 	* d_instantiate it needs these. Smack checks to see
10337 	* if the filesystem supports xattrs by looking at the
10338 	* ops vector.
10339 	*/
10340 	inode->i_fop = &btrfs_file_operations;
10341 	inode->i_op = &btrfs_file_inode_operations;
10342 	inode->i_mapping->a_ops = &btrfs_aops;
10343 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10344 
10345 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10346 	if (err)
10347 		goto out_unlock_inode;
10348 
10349 	path = btrfs_alloc_path();
10350 	if (!path) {
10351 		err = -ENOMEM;
10352 		goto out_unlock_inode;
10353 	}
10354 	key.objectid = btrfs_ino(BTRFS_I(inode));
10355 	key.offset = 0;
10356 	key.type = BTRFS_EXTENT_DATA_KEY;
10357 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10358 	err = btrfs_insert_empty_item(trans, root, path, &key,
10359 				      datasize);
10360 	if (err) {
10361 		btrfs_free_path(path);
10362 		goto out_unlock_inode;
10363 	}
10364 	leaf = path->nodes[0];
10365 	ei = btrfs_item_ptr(leaf, path->slots[0],
10366 			    struct btrfs_file_extent_item);
10367 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10368 	btrfs_set_file_extent_type(leaf, ei,
10369 				   BTRFS_FILE_EXTENT_INLINE);
10370 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10371 	btrfs_set_file_extent_compression(leaf, ei, 0);
10372 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10373 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10374 
10375 	ptr = btrfs_file_extent_inline_start(ei);
10376 	write_extent_buffer(leaf, symname, ptr, name_len);
10377 	btrfs_mark_buffer_dirty(leaf);
10378 	btrfs_free_path(path);
10379 
10380 	inode->i_op = &btrfs_symlink_inode_operations;
10381 	inode_nohighmem(inode);
10382 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
10383 	inode_set_bytes(inode, name_len);
10384 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10385 	err = btrfs_update_inode(trans, root, inode);
10386 	/*
10387 	 * Last step, add directory indexes for our symlink inode. This is the
10388 	 * last step to avoid extra cleanup of these indexes if an error happens
10389 	 * elsewhere above.
10390 	 */
10391 	if (!err)
10392 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10393 				BTRFS_I(inode), 0, index);
10394 	if (err) {
10395 		drop_inode = 1;
10396 		goto out_unlock_inode;
10397 	}
10398 
10399 	unlock_new_inode(inode);
10400 	d_instantiate(dentry, inode);
10401 
10402 out_unlock:
10403 	btrfs_end_transaction(trans);
10404 	if (drop_inode) {
10405 		inode_dec_link_count(inode);
10406 		iput(inode);
10407 	}
10408 	btrfs_btree_balance_dirty(fs_info);
10409 	return err;
10410 
10411 out_unlock_inode:
10412 	drop_inode = 1;
10413 	unlock_new_inode(inode);
10414 	goto out_unlock;
10415 }
10416 
10417 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10418 				       u64 start, u64 num_bytes, u64 min_size,
10419 				       loff_t actual_len, u64 *alloc_hint,
10420 				       struct btrfs_trans_handle *trans)
10421 {
10422 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10423 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10424 	struct extent_map *em;
10425 	struct btrfs_root *root = BTRFS_I(inode)->root;
10426 	struct btrfs_key ins;
10427 	u64 cur_offset = start;
10428 	u64 i_size;
10429 	u64 cur_bytes;
10430 	u64 last_alloc = (u64)-1;
10431 	int ret = 0;
10432 	bool own_trans = true;
10433 	u64 end = start + num_bytes - 1;
10434 
10435 	if (trans)
10436 		own_trans = false;
10437 	while (num_bytes > 0) {
10438 		if (own_trans) {
10439 			trans = btrfs_start_transaction(root, 3);
10440 			if (IS_ERR(trans)) {
10441 				ret = PTR_ERR(trans);
10442 				break;
10443 			}
10444 		}
10445 
10446 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10447 		cur_bytes = max(cur_bytes, min_size);
10448 		/*
10449 		 * If we are severely fragmented we could end up with really
10450 		 * small allocations, so if the allocator is returning small
10451 		 * chunks lets make its job easier by only searching for those
10452 		 * sized chunks.
10453 		 */
10454 		cur_bytes = min(cur_bytes, last_alloc);
10455 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10456 				min_size, 0, *alloc_hint, &ins, 1, 0);
10457 		if (ret) {
10458 			if (own_trans)
10459 				btrfs_end_transaction(trans);
10460 			break;
10461 		}
10462 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10463 
10464 		last_alloc = ins.offset;
10465 		ret = insert_reserved_file_extent(trans, inode,
10466 						  cur_offset, ins.objectid,
10467 						  ins.offset, ins.offset,
10468 						  ins.offset, 0, 0, 0,
10469 						  BTRFS_FILE_EXTENT_PREALLOC);
10470 		if (ret) {
10471 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10472 						   ins.offset, 0);
10473 			btrfs_abort_transaction(trans, ret);
10474 			if (own_trans)
10475 				btrfs_end_transaction(trans);
10476 			break;
10477 		}
10478 
10479 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10480 					cur_offset + ins.offset -1, 0);
10481 
10482 		em = alloc_extent_map();
10483 		if (!em) {
10484 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10485 				&BTRFS_I(inode)->runtime_flags);
10486 			goto next;
10487 		}
10488 
10489 		em->start = cur_offset;
10490 		em->orig_start = cur_offset;
10491 		em->len = ins.offset;
10492 		em->block_start = ins.objectid;
10493 		em->block_len = ins.offset;
10494 		em->orig_block_len = ins.offset;
10495 		em->ram_bytes = ins.offset;
10496 		em->bdev = fs_info->fs_devices->latest_bdev;
10497 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10498 		em->generation = trans->transid;
10499 
10500 		while (1) {
10501 			write_lock(&em_tree->lock);
10502 			ret = add_extent_mapping(em_tree, em, 1);
10503 			write_unlock(&em_tree->lock);
10504 			if (ret != -EEXIST)
10505 				break;
10506 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10507 						cur_offset + ins.offset - 1,
10508 						0);
10509 		}
10510 		free_extent_map(em);
10511 next:
10512 		num_bytes -= ins.offset;
10513 		cur_offset += ins.offset;
10514 		*alloc_hint = ins.objectid + ins.offset;
10515 
10516 		inode_inc_iversion(inode);
10517 		inode->i_ctime = current_time(inode);
10518 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10519 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10520 		    (actual_len > inode->i_size) &&
10521 		    (cur_offset > inode->i_size)) {
10522 			if (cur_offset > actual_len)
10523 				i_size = actual_len;
10524 			else
10525 				i_size = cur_offset;
10526 			i_size_write(inode, i_size);
10527 			btrfs_ordered_update_i_size(inode, i_size, NULL);
10528 		}
10529 
10530 		ret = btrfs_update_inode(trans, root, inode);
10531 
10532 		if (ret) {
10533 			btrfs_abort_transaction(trans, ret);
10534 			if (own_trans)
10535 				btrfs_end_transaction(trans);
10536 			break;
10537 		}
10538 
10539 		if (own_trans)
10540 			btrfs_end_transaction(trans);
10541 	}
10542 	if (cur_offset < end)
10543 		btrfs_free_reserved_data_space(inode, cur_offset,
10544 			end - cur_offset + 1);
10545 	return ret;
10546 }
10547 
10548 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10549 			      u64 start, u64 num_bytes, u64 min_size,
10550 			      loff_t actual_len, u64 *alloc_hint)
10551 {
10552 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10553 					   min_size, actual_len, alloc_hint,
10554 					   NULL);
10555 }
10556 
10557 int btrfs_prealloc_file_range_trans(struct inode *inode,
10558 				    struct btrfs_trans_handle *trans, int mode,
10559 				    u64 start, u64 num_bytes, u64 min_size,
10560 				    loff_t actual_len, u64 *alloc_hint)
10561 {
10562 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10563 					   min_size, actual_len, alloc_hint, trans);
10564 }
10565 
10566 static int btrfs_set_page_dirty(struct page *page)
10567 {
10568 	return __set_page_dirty_nobuffers(page);
10569 }
10570 
10571 static int btrfs_permission(struct inode *inode, int mask)
10572 {
10573 	struct btrfs_root *root = BTRFS_I(inode)->root;
10574 	umode_t mode = inode->i_mode;
10575 
10576 	if (mask & MAY_WRITE &&
10577 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10578 		if (btrfs_root_readonly(root))
10579 			return -EROFS;
10580 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10581 			return -EACCES;
10582 	}
10583 	return generic_permission(inode, mask);
10584 }
10585 
10586 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10587 {
10588 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10589 	struct btrfs_trans_handle *trans;
10590 	struct btrfs_root *root = BTRFS_I(dir)->root;
10591 	struct inode *inode = NULL;
10592 	u64 objectid;
10593 	u64 index;
10594 	int ret = 0;
10595 
10596 	/*
10597 	 * 5 units required for adding orphan entry
10598 	 */
10599 	trans = btrfs_start_transaction(root, 5);
10600 	if (IS_ERR(trans))
10601 		return PTR_ERR(trans);
10602 
10603 	ret = btrfs_find_free_ino(root, &objectid);
10604 	if (ret)
10605 		goto out;
10606 
10607 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10608 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10609 	if (IS_ERR(inode)) {
10610 		ret = PTR_ERR(inode);
10611 		inode = NULL;
10612 		goto out;
10613 	}
10614 
10615 	inode->i_fop = &btrfs_file_operations;
10616 	inode->i_op = &btrfs_file_inode_operations;
10617 
10618 	inode->i_mapping->a_ops = &btrfs_aops;
10619 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10620 
10621 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10622 	if (ret)
10623 		goto out_inode;
10624 
10625 	ret = btrfs_update_inode(trans, root, inode);
10626 	if (ret)
10627 		goto out_inode;
10628 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10629 	if (ret)
10630 		goto out_inode;
10631 
10632 	/*
10633 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10634 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10635 	 * through:
10636 	 *
10637 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10638 	 */
10639 	set_nlink(inode, 1);
10640 	unlock_new_inode(inode);
10641 	d_tmpfile(dentry, inode);
10642 	mark_inode_dirty(inode);
10643 
10644 out:
10645 	btrfs_end_transaction(trans);
10646 	if (ret)
10647 		iput(inode);
10648 	btrfs_balance_delayed_items(fs_info);
10649 	btrfs_btree_balance_dirty(fs_info);
10650 	return ret;
10651 
10652 out_inode:
10653 	unlock_new_inode(inode);
10654 	goto out;
10655 
10656 }
10657 
10658 __attribute__((const))
10659 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10660 {
10661 	return -EAGAIN;
10662 }
10663 
10664 static const struct inode_operations btrfs_dir_inode_operations = {
10665 	.getattr	= btrfs_getattr,
10666 	.lookup		= btrfs_lookup,
10667 	.create		= btrfs_create,
10668 	.unlink		= btrfs_unlink,
10669 	.link		= btrfs_link,
10670 	.mkdir		= btrfs_mkdir,
10671 	.rmdir		= btrfs_rmdir,
10672 	.rename		= btrfs_rename2,
10673 	.symlink	= btrfs_symlink,
10674 	.setattr	= btrfs_setattr,
10675 	.mknod		= btrfs_mknod,
10676 	.listxattr	= btrfs_listxattr,
10677 	.permission	= btrfs_permission,
10678 	.get_acl	= btrfs_get_acl,
10679 	.set_acl	= btrfs_set_acl,
10680 	.update_time	= btrfs_update_time,
10681 	.tmpfile        = btrfs_tmpfile,
10682 };
10683 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10684 	.lookup		= btrfs_lookup,
10685 	.permission	= btrfs_permission,
10686 	.update_time	= btrfs_update_time,
10687 };
10688 
10689 static const struct file_operations btrfs_dir_file_operations = {
10690 	.llseek		= generic_file_llseek,
10691 	.read		= generic_read_dir,
10692 	.iterate_shared	= btrfs_real_readdir,
10693 	.unlocked_ioctl	= btrfs_ioctl,
10694 #ifdef CONFIG_COMPAT
10695 	.compat_ioctl	= btrfs_compat_ioctl,
10696 #endif
10697 	.release        = btrfs_release_file,
10698 	.fsync		= btrfs_sync_file,
10699 };
10700 
10701 static const struct extent_io_ops btrfs_extent_io_ops = {
10702 	/* mandatory callbacks */
10703 	.submit_bio_hook = btrfs_submit_bio_hook,
10704 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10705 	.merge_bio_hook = btrfs_merge_bio_hook,
10706 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10707 
10708 	/* optional callbacks */
10709 	.fill_delalloc = run_delalloc_range,
10710 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
10711 	.writepage_start_hook = btrfs_writepage_start_hook,
10712 	.set_bit_hook = btrfs_set_bit_hook,
10713 	.clear_bit_hook = btrfs_clear_bit_hook,
10714 	.merge_extent_hook = btrfs_merge_extent_hook,
10715 	.split_extent_hook = btrfs_split_extent_hook,
10716 };
10717 
10718 /*
10719  * btrfs doesn't support the bmap operation because swapfiles
10720  * use bmap to make a mapping of extents in the file.  They assume
10721  * these extents won't change over the life of the file and they
10722  * use the bmap result to do IO directly to the drive.
10723  *
10724  * the btrfs bmap call would return logical addresses that aren't
10725  * suitable for IO and they also will change frequently as COW
10726  * operations happen.  So, swapfile + btrfs == corruption.
10727  *
10728  * For now we're avoiding this by dropping bmap.
10729  */
10730 static const struct address_space_operations btrfs_aops = {
10731 	.readpage	= btrfs_readpage,
10732 	.writepage	= btrfs_writepage,
10733 	.writepages	= btrfs_writepages,
10734 	.readpages	= btrfs_readpages,
10735 	.direct_IO	= btrfs_direct_IO,
10736 	.invalidatepage = btrfs_invalidatepage,
10737 	.releasepage	= btrfs_releasepage,
10738 	.set_page_dirty	= btrfs_set_page_dirty,
10739 	.error_remove_page = generic_error_remove_page,
10740 };
10741 
10742 static const struct address_space_operations btrfs_symlink_aops = {
10743 	.readpage	= btrfs_readpage,
10744 	.writepage	= btrfs_writepage,
10745 	.invalidatepage = btrfs_invalidatepage,
10746 	.releasepage	= btrfs_releasepage,
10747 };
10748 
10749 static const struct inode_operations btrfs_file_inode_operations = {
10750 	.getattr	= btrfs_getattr,
10751 	.setattr	= btrfs_setattr,
10752 	.listxattr      = btrfs_listxattr,
10753 	.permission	= btrfs_permission,
10754 	.fiemap		= btrfs_fiemap,
10755 	.get_acl	= btrfs_get_acl,
10756 	.set_acl	= btrfs_set_acl,
10757 	.update_time	= btrfs_update_time,
10758 };
10759 static const struct inode_operations btrfs_special_inode_operations = {
10760 	.getattr	= btrfs_getattr,
10761 	.setattr	= btrfs_setattr,
10762 	.permission	= btrfs_permission,
10763 	.listxattr	= btrfs_listxattr,
10764 	.get_acl	= btrfs_get_acl,
10765 	.set_acl	= btrfs_set_acl,
10766 	.update_time	= btrfs_update_time,
10767 };
10768 static const struct inode_operations btrfs_symlink_inode_operations = {
10769 	.get_link	= page_get_link,
10770 	.getattr	= btrfs_getattr,
10771 	.setattr	= btrfs_setattr,
10772 	.permission	= btrfs_permission,
10773 	.listxattr	= btrfs_listxattr,
10774 	.update_time	= btrfs_update_time,
10775 };
10776 
10777 const struct dentry_operations btrfs_dentry_operations = {
10778 	.d_delete	= btrfs_dentry_delete,
10779 	.d_release	= btrfs_dentry_release,
10780 };
10781