xref: /linux/fs/btrfs/inode.c (revision 68550cbc6129159b7a6434796b721e8b66ee12f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "volumes.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 
58 struct btrfs_iget_args {
59 	u64 ino;
60 	struct btrfs_root *root;
61 };
62 
63 struct btrfs_dio_data {
64 	u64 reserve;
65 	loff_t length;
66 	ssize_t submitted;
67 	struct extent_changeset *data_reserved;
68 };
69 
70 static const struct inode_operations btrfs_dir_inode_operations;
71 static const struct inode_operations btrfs_symlink_inode_operations;
72 static const struct inode_operations btrfs_special_inode_operations;
73 static const struct inode_operations btrfs_file_inode_operations;
74 static const struct address_space_operations btrfs_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 
77 static struct kmem_cache *btrfs_inode_cachep;
78 struct kmem_cache *btrfs_trans_handle_cachep;
79 struct kmem_cache *btrfs_path_cachep;
80 struct kmem_cache *btrfs_free_space_cachep;
81 struct kmem_cache *btrfs_free_space_bitmap_cachep;
82 
83 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
84 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
85 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
86 static noinline int cow_file_range(struct btrfs_inode *inode,
87 				   struct page *locked_page,
88 				   u64 start, u64 end, int *page_started,
89 				   unsigned long *nr_written, int unlock);
90 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
91 				       u64 len, u64 orig_start, u64 block_start,
92 				       u64 block_len, u64 orig_block_len,
93 				       u64 ram_bytes, int compress_type,
94 				       int type);
95 
96 static void __endio_write_update_ordered(struct btrfs_inode *inode,
97 					 const u64 offset, const u64 bytes,
98 					 const bool uptodate);
99 
100 /*
101  * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
102  *
103  * ilock_flags can have the following bit set:
104  *
105  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
106  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
107  *		     return -EAGAIN
108  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
109  */
110 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
111 {
112 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
113 		if (ilock_flags & BTRFS_ILOCK_TRY) {
114 			if (!inode_trylock_shared(inode))
115 				return -EAGAIN;
116 			else
117 				return 0;
118 		}
119 		inode_lock_shared(inode);
120 	} else {
121 		if (ilock_flags & BTRFS_ILOCK_TRY) {
122 			if (!inode_trylock(inode))
123 				return -EAGAIN;
124 			else
125 				return 0;
126 		}
127 		inode_lock(inode);
128 	}
129 	if (ilock_flags & BTRFS_ILOCK_MMAP)
130 		down_write(&BTRFS_I(inode)->i_mmap_lock);
131 	return 0;
132 }
133 
134 /*
135  * btrfs_inode_unlock - unock inode i_rwsem
136  *
137  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
138  * to decide whether the lock acquired is shared or exclusive.
139  */
140 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
141 {
142 	if (ilock_flags & BTRFS_ILOCK_MMAP)
143 		up_write(&BTRFS_I(inode)->i_mmap_lock);
144 	if (ilock_flags & BTRFS_ILOCK_SHARED)
145 		inode_unlock_shared(inode);
146 	else
147 		inode_unlock(inode);
148 }
149 
150 /*
151  * Cleanup all submitted ordered extents in specified range to handle errors
152  * from the btrfs_run_delalloc_range() callback.
153  *
154  * NOTE: caller must ensure that when an error happens, it can not call
155  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
156  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
157  * to be released, which we want to happen only when finishing the ordered
158  * extent (btrfs_finish_ordered_io()).
159  */
160 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
161 						 struct page *locked_page,
162 						 u64 offset, u64 bytes)
163 {
164 	unsigned long index = offset >> PAGE_SHIFT;
165 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
166 	u64 page_start = page_offset(locked_page);
167 	u64 page_end = page_start + PAGE_SIZE - 1;
168 
169 	struct page *page;
170 
171 	while (index <= end_index) {
172 		/*
173 		 * For locked page, we will call end_extent_writepage() on it
174 		 * in run_delalloc_range() for the error handling.  That
175 		 * end_extent_writepage() function will call
176 		 * btrfs_mark_ordered_io_finished() to clear page Ordered and
177 		 * run the ordered extent accounting.
178 		 *
179 		 * Here we can't just clear the Ordered bit, or
180 		 * btrfs_mark_ordered_io_finished() would skip the accounting
181 		 * for the page range, and the ordered extent will never finish.
182 		 */
183 		if (index == (page_offset(locked_page) >> PAGE_SHIFT)) {
184 			index++;
185 			continue;
186 		}
187 		page = find_get_page(inode->vfs_inode.i_mapping, index);
188 		index++;
189 		if (!page)
190 			continue;
191 
192 		/*
193 		 * Here we just clear all Ordered bits for every page in the
194 		 * range, then __endio_write_update_ordered() will handle
195 		 * the ordered extent accounting for the range.
196 		 */
197 		btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
198 					       offset, bytes);
199 		put_page(page);
200 	}
201 
202 	/* The locked page covers the full range, nothing needs to be done */
203 	if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE)
204 		return;
205 	/*
206 	 * In case this page belongs to the delalloc range being instantiated
207 	 * then skip it, since the first page of a range is going to be
208 	 * properly cleaned up by the caller of run_delalloc_range
209 	 */
210 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
211 		bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
212 		offset = page_offset(locked_page) + PAGE_SIZE;
213 	}
214 
215 	return __endio_write_update_ordered(inode, offset, bytes, false);
216 }
217 
218 static int btrfs_dirty_inode(struct inode *inode);
219 
220 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
221 				     struct inode *inode,  struct inode *dir,
222 				     const struct qstr *qstr)
223 {
224 	int err;
225 
226 	err = btrfs_init_acl(trans, inode, dir);
227 	if (!err)
228 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
229 	return err;
230 }
231 
232 /*
233  * this does all the hard work for inserting an inline extent into
234  * the btree.  The caller should have done a btrfs_drop_extents so that
235  * no overlapping inline items exist in the btree
236  */
237 static int insert_inline_extent(struct btrfs_trans_handle *trans,
238 				struct btrfs_path *path, bool extent_inserted,
239 				struct btrfs_root *root, struct inode *inode,
240 				u64 start, size_t size, size_t compressed_size,
241 				int compress_type,
242 				struct page **compressed_pages)
243 {
244 	struct extent_buffer *leaf;
245 	struct page *page = NULL;
246 	char *kaddr;
247 	unsigned long ptr;
248 	struct btrfs_file_extent_item *ei;
249 	int ret;
250 	size_t cur_size = size;
251 	unsigned long offset;
252 
253 	ASSERT((compressed_size > 0 && compressed_pages) ||
254 	       (compressed_size == 0 && !compressed_pages));
255 
256 	if (compressed_size && compressed_pages)
257 		cur_size = compressed_size;
258 
259 	if (!extent_inserted) {
260 		struct btrfs_key key;
261 		size_t datasize;
262 
263 		key.objectid = btrfs_ino(BTRFS_I(inode));
264 		key.offset = start;
265 		key.type = BTRFS_EXTENT_DATA_KEY;
266 
267 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
268 		ret = btrfs_insert_empty_item(trans, root, path, &key,
269 					      datasize);
270 		if (ret)
271 			goto fail;
272 	}
273 	leaf = path->nodes[0];
274 	ei = btrfs_item_ptr(leaf, path->slots[0],
275 			    struct btrfs_file_extent_item);
276 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
277 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
278 	btrfs_set_file_extent_encryption(leaf, ei, 0);
279 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
280 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
281 	ptr = btrfs_file_extent_inline_start(ei);
282 
283 	if (compress_type != BTRFS_COMPRESS_NONE) {
284 		struct page *cpage;
285 		int i = 0;
286 		while (compressed_size > 0) {
287 			cpage = compressed_pages[i];
288 			cur_size = min_t(unsigned long, compressed_size,
289 				       PAGE_SIZE);
290 
291 			kaddr = kmap_atomic(cpage);
292 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
293 			kunmap_atomic(kaddr);
294 
295 			i++;
296 			ptr += cur_size;
297 			compressed_size -= cur_size;
298 		}
299 		btrfs_set_file_extent_compression(leaf, ei,
300 						  compress_type);
301 	} else {
302 		page = find_get_page(inode->i_mapping,
303 				     start >> PAGE_SHIFT);
304 		btrfs_set_file_extent_compression(leaf, ei, 0);
305 		kaddr = kmap_atomic(page);
306 		offset = offset_in_page(start);
307 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
308 		kunmap_atomic(kaddr);
309 		put_page(page);
310 	}
311 	btrfs_mark_buffer_dirty(leaf);
312 	btrfs_release_path(path);
313 
314 	/*
315 	 * We align size to sectorsize for inline extents just for simplicity
316 	 * sake.
317 	 */
318 	size = ALIGN(size, root->fs_info->sectorsize);
319 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
320 	if (ret)
321 		goto fail;
322 
323 	/*
324 	 * we're an inline extent, so nobody can
325 	 * extend the file past i_size without locking
326 	 * a page we already have locked.
327 	 *
328 	 * We must do any isize and inode updates
329 	 * before we unlock the pages.  Otherwise we
330 	 * could end up racing with unlink.
331 	 */
332 	BTRFS_I(inode)->disk_i_size = inode->i_size;
333 fail:
334 	return ret;
335 }
336 
337 
338 /*
339  * conditionally insert an inline extent into the file.  This
340  * does the checks required to make sure the data is small enough
341  * to fit as an inline extent.
342  */
343 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
344 					  u64 end, size_t compressed_size,
345 					  int compress_type,
346 					  struct page **compressed_pages)
347 {
348 	struct btrfs_drop_extents_args drop_args = { 0 };
349 	struct btrfs_root *root = inode->root;
350 	struct btrfs_fs_info *fs_info = root->fs_info;
351 	struct btrfs_trans_handle *trans;
352 	u64 isize = i_size_read(&inode->vfs_inode);
353 	u64 actual_end = min(end + 1, isize);
354 	u64 inline_len = actual_end - start;
355 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
356 	u64 data_len = inline_len;
357 	int ret;
358 	struct btrfs_path *path;
359 
360 	if (compressed_size)
361 		data_len = compressed_size;
362 
363 	if (start > 0 ||
364 	    actual_end > fs_info->sectorsize ||
365 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
366 	    (!compressed_size &&
367 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
368 	    end + 1 < isize ||
369 	    data_len > fs_info->max_inline) {
370 		return 1;
371 	}
372 
373 	path = btrfs_alloc_path();
374 	if (!path)
375 		return -ENOMEM;
376 
377 	trans = btrfs_join_transaction(root);
378 	if (IS_ERR(trans)) {
379 		btrfs_free_path(path);
380 		return PTR_ERR(trans);
381 	}
382 	trans->block_rsv = &inode->block_rsv;
383 
384 	drop_args.path = path;
385 	drop_args.start = start;
386 	drop_args.end = aligned_end;
387 	drop_args.drop_cache = true;
388 	drop_args.replace_extent = true;
389 
390 	if (compressed_size && compressed_pages)
391 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
392 		   compressed_size);
393 	else
394 		drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(
395 		    inline_len);
396 
397 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
398 	if (ret) {
399 		btrfs_abort_transaction(trans, ret);
400 		goto out;
401 	}
402 
403 	if (isize > actual_end)
404 		inline_len = min_t(u64, isize, actual_end);
405 	ret = insert_inline_extent(trans, path, drop_args.extent_inserted,
406 				   root, &inode->vfs_inode, start,
407 				   inline_len, compressed_size,
408 				   compress_type, compressed_pages);
409 	if (ret && ret != -ENOSPC) {
410 		btrfs_abort_transaction(trans, ret);
411 		goto out;
412 	} else if (ret == -ENOSPC) {
413 		ret = 1;
414 		goto out;
415 	}
416 
417 	btrfs_update_inode_bytes(inode, inline_len, drop_args.bytes_found);
418 	ret = btrfs_update_inode(trans, root, inode);
419 	if (ret && ret != -ENOSPC) {
420 		btrfs_abort_transaction(trans, ret);
421 		goto out;
422 	} else if (ret == -ENOSPC) {
423 		ret = 1;
424 		goto out;
425 	}
426 
427 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
428 out:
429 	/*
430 	 * Don't forget to free the reserved space, as for inlined extent
431 	 * it won't count as data extent, free them directly here.
432 	 * And at reserve time, it's always aligned to page size, so
433 	 * just free one page here.
434 	 */
435 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
436 	btrfs_free_path(path);
437 	btrfs_end_transaction(trans);
438 	return ret;
439 }
440 
441 struct async_extent {
442 	u64 start;
443 	u64 ram_size;
444 	u64 compressed_size;
445 	struct page **pages;
446 	unsigned long nr_pages;
447 	int compress_type;
448 	struct list_head list;
449 };
450 
451 struct async_chunk {
452 	struct inode *inode;
453 	struct page *locked_page;
454 	u64 start;
455 	u64 end;
456 	unsigned int write_flags;
457 	struct list_head extents;
458 	struct cgroup_subsys_state *blkcg_css;
459 	struct btrfs_work work;
460 	struct async_cow *async_cow;
461 };
462 
463 struct async_cow {
464 	atomic_t num_chunks;
465 	struct async_chunk chunks[];
466 };
467 
468 static noinline int add_async_extent(struct async_chunk *cow,
469 				     u64 start, u64 ram_size,
470 				     u64 compressed_size,
471 				     struct page **pages,
472 				     unsigned long nr_pages,
473 				     int compress_type)
474 {
475 	struct async_extent *async_extent;
476 
477 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
478 	BUG_ON(!async_extent); /* -ENOMEM */
479 	async_extent->start = start;
480 	async_extent->ram_size = ram_size;
481 	async_extent->compressed_size = compressed_size;
482 	async_extent->pages = pages;
483 	async_extent->nr_pages = nr_pages;
484 	async_extent->compress_type = compress_type;
485 	list_add_tail(&async_extent->list, &cow->extents);
486 	return 0;
487 }
488 
489 /*
490  * Check if the inode has flags compatible with compression
491  */
492 static inline bool inode_can_compress(struct btrfs_inode *inode)
493 {
494 	if (inode->flags & BTRFS_INODE_NODATACOW ||
495 	    inode->flags & BTRFS_INODE_NODATASUM)
496 		return false;
497 	return true;
498 }
499 
500 /*
501  * Check if the inode needs to be submitted to compression, based on mount
502  * options, defragmentation, properties or heuristics.
503  */
504 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
505 				      u64 end)
506 {
507 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
508 
509 	if (!inode_can_compress(inode)) {
510 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
511 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
512 			btrfs_ino(inode));
513 		return 0;
514 	}
515 	/*
516 	 * Special check for subpage.
517 	 *
518 	 * We lock the full page then run each delalloc range in the page, thus
519 	 * for the following case, we will hit some subpage specific corner case:
520 	 *
521 	 * 0		32K		64K
522 	 * |	|///////|	|///////|
523 	 *		\- A		\- B
524 	 *
525 	 * In above case, both range A and range B will try to unlock the full
526 	 * page [0, 64K), causing the one finished later will have page
527 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
528 	 *
529 	 * So here we add an artificial limit that subpage compression can only
530 	 * if the range is fully page aligned.
531 	 *
532 	 * In theory we only need to ensure the first page is fully covered, but
533 	 * the tailing partial page will be locked until the full compression
534 	 * finishes, delaying the write of other range.
535 	 *
536 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
537 	 * first to prevent any submitted async extent to unlock the full page.
538 	 * By this, we can ensure for subpage case that only the last async_cow
539 	 * will unlock the full page.
540 	 */
541 	if (fs_info->sectorsize < PAGE_SIZE) {
542 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
543 		    !IS_ALIGNED(end + 1, PAGE_SIZE))
544 			return 0;
545 	}
546 
547 	/* force compress */
548 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
549 		return 1;
550 	/* defrag ioctl */
551 	if (inode->defrag_compress)
552 		return 1;
553 	/* bad compression ratios */
554 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
555 		return 0;
556 	if (btrfs_test_opt(fs_info, COMPRESS) ||
557 	    inode->flags & BTRFS_INODE_COMPRESS ||
558 	    inode->prop_compress)
559 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
560 	return 0;
561 }
562 
563 static inline void inode_should_defrag(struct btrfs_inode *inode,
564 		u64 start, u64 end, u64 num_bytes, u64 small_write)
565 {
566 	/* If this is a small write inside eof, kick off a defrag */
567 	if (num_bytes < small_write &&
568 	    (start > 0 || end + 1 < inode->disk_i_size))
569 		btrfs_add_inode_defrag(NULL, inode);
570 }
571 
572 /*
573  * we create compressed extents in two phases.  The first
574  * phase compresses a range of pages that have already been
575  * locked (both pages and state bits are locked).
576  *
577  * This is done inside an ordered work queue, and the compression
578  * is spread across many cpus.  The actual IO submission is step
579  * two, and the ordered work queue takes care of making sure that
580  * happens in the same order things were put onto the queue by
581  * writepages and friends.
582  *
583  * If this code finds it can't get good compression, it puts an
584  * entry onto the work queue to write the uncompressed bytes.  This
585  * makes sure that both compressed inodes and uncompressed inodes
586  * are written in the same order that the flusher thread sent them
587  * down.
588  */
589 static noinline int compress_file_range(struct async_chunk *async_chunk)
590 {
591 	struct inode *inode = async_chunk->inode;
592 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
593 	u64 blocksize = fs_info->sectorsize;
594 	u64 start = async_chunk->start;
595 	u64 end = async_chunk->end;
596 	u64 actual_end;
597 	u64 i_size;
598 	int ret = 0;
599 	struct page **pages = NULL;
600 	unsigned long nr_pages;
601 	unsigned long total_compressed = 0;
602 	unsigned long total_in = 0;
603 	int i;
604 	int will_compress;
605 	int compress_type = fs_info->compress_type;
606 	int compressed_extents = 0;
607 	int redirty = 0;
608 
609 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
610 			SZ_16K);
611 
612 	/*
613 	 * We need to save i_size before now because it could change in between
614 	 * us evaluating the size and assigning it.  This is because we lock and
615 	 * unlock the page in truncate and fallocate, and then modify the i_size
616 	 * later on.
617 	 *
618 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
619 	 * does that for us.
620 	 */
621 	barrier();
622 	i_size = i_size_read(inode);
623 	barrier();
624 	actual_end = min_t(u64, i_size, end + 1);
625 again:
626 	will_compress = 0;
627 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
628 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
629 	nr_pages = min_t(unsigned long, nr_pages,
630 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
631 
632 	/*
633 	 * we don't want to send crud past the end of i_size through
634 	 * compression, that's just a waste of CPU time.  So, if the
635 	 * end of the file is before the start of our current
636 	 * requested range of bytes, we bail out to the uncompressed
637 	 * cleanup code that can deal with all of this.
638 	 *
639 	 * It isn't really the fastest way to fix things, but this is a
640 	 * very uncommon corner.
641 	 */
642 	if (actual_end <= start)
643 		goto cleanup_and_bail_uncompressed;
644 
645 	total_compressed = actual_end - start;
646 
647 	/*
648 	 * Skip compression for a small file range(<=blocksize) that
649 	 * isn't an inline extent, since it doesn't save disk space at all.
650 	 */
651 	if (total_compressed <= blocksize &&
652 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
653 		goto cleanup_and_bail_uncompressed;
654 
655 	/*
656 	 * For subpage case, we require full page alignment for the sector
657 	 * aligned range.
658 	 * Thus we must also check against @actual_end, not just @end.
659 	 */
660 	if (blocksize < PAGE_SIZE) {
661 		if (!IS_ALIGNED(start, PAGE_SIZE) ||
662 		    !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE))
663 			goto cleanup_and_bail_uncompressed;
664 	}
665 
666 	total_compressed = min_t(unsigned long, total_compressed,
667 			BTRFS_MAX_UNCOMPRESSED);
668 	total_in = 0;
669 	ret = 0;
670 
671 	/*
672 	 * we do compression for mount -o compress and when the
673 	 * inode has not been flagged as nocompress.  This flag can
674 	 * change at any time if we discover bad compression ratios.
675 	 */
676 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
677 		WARN_ON(pages);
678 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
679 		if (!pages) {
680 			/* just bail out to the uncompressed code */
681 			nr_pages = 0;
682 			goto cont;
683 		}
684 
685 		if (BTRFS_I(inode)->defrag_compress)
686 			compress_type = BTRFS_I(inode)->defrag_compress;
687 		else if (BTRFS_I(inode)->prop_compress)
688 			compress_type = BTRFS_I(inode)->prop_compress;
689 
690 		/*
691 		 * we need to call clear_page_dirty_for_io on each
692 		 * page in the range.  Otherwise applications with the file
693 		 * mmap'd can wander in and change the page contents while
694 		 * we are compressing them.
695 		 *
696 		 * If the compression fails for any reason, we set the pages
697 		 * dirty again later on.
698 		 *
699 		 * Note that the remaining part is redirtied, the start pointer
700 		 * has moved, the end is the original one.
701 		 */
702 		if (!redirty) {
703 			extent_range_clear_dirty_for_io(inode, start, end);
704 			redirty = 1;
705 		}
706 
707 		/* Compression level is applied here and only here */
708 		ret = btrfs_compress_pages(
709 			compress_type | (fs_info->compress_level << 4),
710 					   inode->i_mapping, start,
711 					   pages,
712 					   &nr_pages,
713 					   &total_in,
714 					   &total_compressed);
715 
716 		if (!ret) {
717 			unsigned long offset = offset_in_page(total_compressed);
718 			struct page *page = pages[nr_pages - 1];
719 
720 			/* zero the tail end of the last page, we might be
721 			 * sending it down to disk
722 			 */
723 			if (offset)
724 				memzero_page(page, offset, PAGE_SIZE - offset);
725 			will_compress = 1;
726 		}
727 	}
728 cont:
729 	/*
730 	 * Check cow_file_range() for why we don't even try to create inline
731 	 * extent for subpage case.
732 	 */
733 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
734 		/* lets try to make an inline extent */
735 		if (ret || total_in < actual_end) {
736 			/* we didn't compress the entire range, try
737 			 * to make an uncompressed inline extent.
738 			 */
739 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
740 						    0, BTRFS_COMPRESS_NONE,
741 						    NULL);
742 		} else {
743 			/* try making a compressed inline extent */
744 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
745 						    total_compressed,
746 						    compress_type, pages);
747 		}
748 		if (ret <= 0) {
749 			unsigned long clear_flags = EXTENT_DELALLOC |
750 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
751 				EXTENT_DO_ACCOUNTING;
752 			unsigned long page_error_op;
753 
754 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
755 
756 			/*
757 			 * inline extent creation worked or returned error,
758 			 * we don't need to create any more async work items.
759 			 * Unlock and free up our temp pages.
760 			 *
761 			 * We use DO_ACCOUNTING here because we need the
762 			 * delalloc_release_metadata to be done _after_ we drop
763 			 * our outstanding extent for clearing delalloc for this
764 			 * range.
765 			 */
766 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
767 						     NULL,
768 						     clear_flags,
769 						     PAGE_UNLOCK |
770 						     PAGE_START_WRITEBACK |
771 						     page_error_op |
772 						     PAGE_END_WRITEBACK);
773 
774 			/*
775 			 * Ensure we only free the compressed pages if we have
776 			 * them allocated, as we can still reach here with
777 			 * inode_need_compress() == false.
778 			 */
779 			if (pages) {
780 				for (i = 0; i < nr_pages; i++) {
781 					WARN_ON(pages[i]->mapping);
782 					put_page(pages[i]);
783 				}
784 				kfree(pages);
785 			}
786 			return 0;
787 		}
788 	}
789 
790 	if (will_compress) {
791 		/*
792 		 * we aren't doing an inline extent round the compressed size
793 		 * up to a block size boundary so the allocator does sane
794 		 * things
795 		 */
796 		total_compressed = ALIGN(total_compressed, blocksize);
797 
798 		/*
799 		 * one last check to make sure the compression is really a
800 		 * win, compare the page count read with the blocks on disk,
801 		 * compression must free at least one sector size
802 		 */
803 		total_in = round_up(total_in, fs_info->sectorsize);
804 		if (total_compressed + blocksize <= total_in) {
805 			compressed_extents++;
806 
807 			/*
808 			 * The async work queues will take care of doing actual
809 			 * allocation on disk for these compressed pages, and
810 			 * will submit them to the elevator.
811 			 */
812 			add_async_extent(async_chunk, start, total_in,
813 					total_compressed, pages, nr_pages,
814 					compress_type);
815 
816 			if (start + total_in < end) {
817 				start += total_in;
818 				pages = NULL;
819 				cond_resched();
820 				goto again;
821 			}
822 			return compressed_extents;
823 		}
824 	}
825 	if (pages) {
826 		/*
827 		 * the compression code ran but failed to make things smaller,
828 		 * free any pages it allocated and our page pointer array
829 		 */
830 		for (i = 0; i < nr_pages; i++) {
831 			WARN_ON(pages[i]->mapping);
832 			put_page(pages[i]);
833 		}
834 		kfree(pages);
835 		pages = NULL;
836 		total_compressed = 0;
837 		nr_pages = 0;
838 
839 		/* flag the file so we don't compress in the future */
840 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
841 		    !(BTRFS_I(inode)->prop_compress)) {
842 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
843 		}
844 	}
845 cleanup_and_bail_uncompressed:
846 	/*
847 	 * No compression, but we still need to write the pages in the file
848 	 * we've been given so far.  redirty the locked page if it corresponds
849 	 * to our extent and set things up for the async work queue to run
850 	 * cow_file_range to do the normal delalloc dance.
851 	 */
852 	if (async_chunk->locked_page &&
853 	    (page_offset(async_chunk->locked_page) >= start &&
854 	     page_offset(async_chunk->locked_page)) <= end) {
855 		__set_page_dirty_nobuffers(async_chunk->locked_page);
856 		/* unlocked later on in the async handlers */
857 	}
858 
859 	if (redirty)
860 		extent_range_redirty_for_io(inode, start, end);
861 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
862 			 BTRFS_COMPRESS_NONE);
863 	compressed_extents++;
864 
865 	return compressed_extents;
866 }
867 
868 static void free_async_extent_pages(struct async_extent *async_extent)
869 {
870 	int i;
871 
872 	if (!async_extent->pages)
873 		return;
874 
875 	for (i = 0; i < async_extent->nr_pages; i++) {
876 		WARN_ON(async_extent->pages[i]->mapping);
877 		put_page(async_extent->pages[i]);
878 	}
879 	kfree(async_extent->pages);
880 	async_extent->nr_pages = 0;
881 	async_extent->pages = NULL;
882 }
883 
884 static int submit_uncompressed_range(struct btrfs_inode *inode,
885 				     struct async_extent *async_extent,
886 				     struct page *locked_page)
887 {
888 	u64 start = async_extent->start;
889 	u64 end = async_extent->start + async_extent->ram_size - 1;
890 	unsigned long nr_written = 0;
891 	int page_started = 0;
892 	int ret;
893 
894 	/*
895 	 * Call cow_file_range() to run the delalloc range directly, since we
896 	 * won't go to NOCOW or async path again.
897 	 *
898 	 * Also we call cow_file_range() with @unlock_page == 0, so that we
899 	 * can directly submit them without interruption.
900 	 */
901 	ret = cow_file_range(inode, locked_page, start, end, &page_started,
902 			     &nr_written, 0);
903 	/* Inline extent inserted, page gets unlocked and everything is done */
904 	if (page_started) {
905 		ret = 0;
906 		goto out;
907 	}
908 	if (ret < 0) {
909 		if (locked_page)
910 			unlock_page(locked_page);
911 		goto out;
912 	}
913 
914 	ret = extent_write_locked_range(&inode->vfs_inode, start, end);
915 	/* All pages will be unlocked, including @locked_page */
916 out:
917 	kfree(async_extent);
918 	return ret;
919 }
920 
921 static int submit_one_async_extent(struct btrfs_inode *inode,
922 				   struct async_chunk *async_chunk,
923 				   struct async_extent *async_extent,
924 				   u64 *alloc_hint)
925 {
926 	struct extent_io_tree *io_tree = &inode->io_tree;
927 	struct btrfs_root *root = inode->root;
928 	struct btrfs_fs_info *fs_info = root->fs_info;
929 	struct btrfs_key ins;
930 	struct page *locked_page = NULL;
931 	struct extent_map *em;
932 	int ret = 0;
933 	u64 start = async_extent->start;
934 	u64 end = async_extent->start + async_extent->ram_size - 1;
935 
936 	/*
937 	 * If async_chunk->locked_page is in the async_extent range, we need to
938 	 * handle it.
939 	 */
940 	if (async_chunk->locked_page) {
941 		u64 locked_page_start = page_offset(async_chunk->locked_page);
942 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
943 
944 		if (!(start >= locked_page_end || end <= locked_page_start))
945 			locked_page = async_chunk->locked_page;
946 	}
947 	lock_extent(io_tree, start, end);
948 
949 	/* We have fall back to uncompressed write */
950 	if (!async_extent->pages)
951 		return submit_uncompressed_range(inode, async_extent, locked_page);
952 
953 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
954 				   async_extent->compressed_size,
955 				   async_extent->compressed_size,
956 				   0, *alloc_hint, &ins, 1, 1);
957 	if (ret) {
958 		free_async_extent_pages(async_extent);
959 		/*
960 		 * Here we used to try again by going back to non-compressed
961 		 * path for ENOSPC.  But we can't reserve space even for
962 		 * compressed size, how could it work for uncompressed size
963 		 * which requires larger size?  So here we directly go error
964 		 * path.
965 		 */
966 		goto out_free;
967 	}
968 
969 	/* Here we're doing allocation and writeback of the compressed pages */
970 	em = create_io_em(inode, start,
971 			  async_extent->ram_size,	/* len */
972 			  start,			/* orig_start */
973 			  ins.objectid,			/* block_start */
974 			  ins.offset,			/* block_len */
975 			  ins.offset,			/* orig_block_len */
976 			  async_extent->ram_size,	/* ram_bytes */
977 			  async_extent->compress_type,
978 			  BTRFS_ORDERED_COMPRESSED);
979 	if (IS_ERR(em)) {
980 		ret = PTR_ERR(em);
981 		goto out_free_reserve;
982 	}
983 	free_extent_map(em);
984 
985 	ret = btrfs_add_ordered_extent_compress(inode, start,	/* file_offset */
986 					ins.objectid,		/* disk_bytenr */
987 					async_extent->ram_size, /* num_bytes */
988 					ins.offset,		/* disk_num_bytes */
989 					async_extent->compress_type);
990 	if (ret) {
991 		btrfs_drop_extent_cache(inode, start, end, 0);
992 		goto out_free_reserve;
993 	}
994 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
995 
996 	/* Clear dirty, set writeback and unlock the pages. */
997 	extent_clear_unlock_delalloc(inode, start, end,
998 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
999 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1000 	if (btrfs_submit_compressed_write(inode, start,	/* file_offset */
1001 			    async_extent->ram_size,	/* num_bytes */
1002 			    ins.objectid,		/* disk_bytenr */
1003 			    ins.offset,			/* compressed_len */
1004 			    async_extent->pages,	/* compressed_pages */
1005 			    async_extent->nr_pages,
1006 			    async_chunk->write_flags,
1007 			    async_chunk->blkcg_css)) {
1008 		const u64 start = async_extent->start;
1009 		const u64 end = start + async_extent->ram_size - 1;
1010 
1011 		btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1012 
1013 		extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1014 					     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1015 		free_async_extent_pages(async_extent);
1016 	}
1017 	*alloc_hint = ins.objectid + ins.offset;
1018 	kfree(async_extent);
1019 	return ret;
1020 
1021 out_free_reserve:
1022 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1023 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1024 out_free:
1025 	extent_clear_unlock_delalloc(inode, start, end,
1026 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1027 				     EXTENT_DELALLOC_NEW |
1028 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1029 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1030 				     PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1031 	free_async_extent_pages(async_extent);
1032 	kfree(async_extent);
1033 	return ret;
1034 }
1035 
1036 /*
1037  * Phase two of compressed writeback.  This is the ordered portion of the code,
1038  * which only gets called in the order the work was queued.  We walk all the
1039  * async extents created by compress_file_range and send them down to the disk.
1040  */
1041 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1042 {
1043 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1044 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1045 	struct async_extent *async_extent;
1046 	u64 alloc_hint = 0;
1047 	int ret = 0;
1048 
1049 	while (!list_empty(&async_chunk->extents)) {
1050 		u64 extent_start;
1051 		u64 ram_size;
1052 
1053 		async_extent = list_entry(async_chunk->extents.next,
1054 					  struct async_extent, list);
1055 		list_del(&async_extent->list);
1056 		extent_start = async_extent->start;
1057 		ram_size = async_extent->ram_size;
1058 
1059 		ret = submit_one_async_extent(inode, async_chunk, async_extent,
1060 					      &alloc_hint);
1061 		btrfs_debug(fs_info,
1062 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1063 			    inode->root->root_key.objectid,
1064 			    btrfs_ino(inode), extent_start, ram_size, ret);
1065 	}
1066 }
1067 
1068 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1069 				      u64 num_bytes)
1070 {
1071 	struct extent_map_tree *em_tree = &inode->extent_tree;
1072 	struct extent_map *em;
1073 	u64 alloc_hint = 0;
1074 
1075 	read_lock(&em_tree->lock);
1076 	em = search_extent_mapping(em_tree, start, num_bytes);
1077 	if (em) {
1078 		/*
1079 		 * if block start isn't an actual block number then find the
1080 		 * first block in this inode and use that as a hint.  If that
1081 		 * block is also bogus then just don't worry about it.
1082 		 */
1083 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1084 			free_extent_map(em);
1085 			em = search_extent_mapping(em_tree, 0, 0);
1086 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1087 				alloc_hint = em->block_start;
1088 			if (em)
1089 				free_extent_map(em);
1090 		} else {
1091 			alloc_hint = em->block_start;
1092 			free_extent_map(em);
1093 		}
1094 	}
1095 	read_unlock(&em_tree->lock);
1096 
1097 	return alloc_hint;
1098 }
1099 
1100 /*
1101  * when extent_io.c finds a delayed allocation range in the file,
1102  * the call backs end up in this code.  The basic idea is to
1103  * allocate extents on disk for the range, and create ordered data structs
1104  * in ram to track those extents.
1105  *
1106  * locked_page is the page that writepage had locked already.  We use
1107  * it to make sure we don't do extra locks or unlocks.
1108  *
1109  * *page_started is set to one if we unlock locked_page and do everything
1110  * required to start IO on it.  It may be clean and already done with
1111  * IO when we return.
1112  */
1113 static noinline int cow_file_range(struct btrfs_inode *inode,
1114 				   struct page *locked_page,
1115 				   u64 start, u64 end, int *page_started,
1116 				   unsigned long *nr_written, int unlock)
1117 {
1118 	struct btrfs_root *root = inode->root;
1119 	struct btrfs_fs_info *fs_info = root->fs_info;
1120 	u64 alloc_hint = 0;
1121 	u64 num_bytes;
1122 	unsigned long ram_size;
1123 	u64 cur_alloc_size = 0;
1124 	u64 min_alloc_size;
1125 	u64 blocksize = fs_info->sectorsize;
1126 	struct btrfs_key ins;
1127 	struct extent_map *em;
1128 	unsigned clear_bits;
1129 	unsigned long page_ops;
1130 	bool extent_reserved = false;
1131 	int ret = 0;
1132 
1133 	if (btrfs_is_free_space_inode(inode)) {
1134 		WARN_ON_ONCE(1);
1135 		ret = -EINVAL;
1136 		goto out_unlock;
1137 	}
1138 
1139 	num_bytes = ALIGN(end - start + 1, blocksize);
1140 	num_bytes = max(blocksize,  num_bytes);
1141 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1142 
1143 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1144 
1145 	/*
1146 	 * Due to the page size limit, for subpage we can only trigger the
1147 	 * writeback for the dirty sectors of page, that means data writeback
1148 	 * is doing more writeback than what we want.
1149 	 *
1150 	 * This is especially unexpected for some call sites like fallocate,
1151 	 * where we only increase i_size after everything is done.
1152 	 * This means we can trigger inline extent even if we didn't want to.
1153 	 * So here we skip inline extent creation completely.
1154 	 */
1155 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
1156 		/* lets try to make an inline extent */
1157 		ret = cow_file_range_inline(inode, start, end, 0,
1158 					    BTRFS_COMPRESS_NONE, NULL);
1159 		if (ret == 0) {
1160 			/*
1161 			 * We use DO_ACCOUNTING here because we need the
1162 			 * delalloc_release_metadata to be run _after_ we drop
1163 			 * our outstanding extent for clearing delalloc for this
1164 			 * range.
1165 			 */
1166 			extent_clear_unlock_delalloc(inode, start, end,
1167 				     locked_page,
1168 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1169 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1170 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1171 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1172 			*nr_written = *nr_written +
1173 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1174 			*page_started = 1;
1175 			/*
1176 			 * locked_page is locked by the caller of
1177 			 * writepage_delalloc(), not locked by
1178 			 * __process_pages_contig().
1179 			 *
1180 			 * We can't let __process_pages_contig() to unlock it,
1181 			 * as it doesn't have any subpage::writers recorded.
1182 			 *
1183 			 * Here we manually unlock the page, since the caller
1184 			 * can't use page_started to determine if it's an
1185 			 * inline extent or a compressed extent.
1186 			 */
1187 			unlock_page(locked_page);
1188 			goto out;
1189 		} else if (ret < 0) {
1190 			goto out_unlock;
1191 		}
1192 	}
1193 
1194 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1195 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1196 
1197 	/*
1198 	 * Relocation relies on the relocated extents to have exactly the same
1199 	 * size as the original extents. Normally writeback for relocation data
1200 	 * extents follows a NOCOW path because relocation preallocates the
1201 	 * extents. However, due to an operation such as scrub turning a block
1202 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1203 	 * an extent allocated during COW has exactly the requested size and can
1204 	 * not be split into smaller extents, otherwise relocation breaks and
1205 	 * fails during the stage where it updates the bytenr of file extent
1206 	 * items.
1207 	 */
1208 	if (btrfs_is_data_reloc_root(root))
1209 		min_alloc_size = num_bytes;
1210 	else
1211 		min_alloc_size = fs_info->sectorsize;
1212 
1213 	while (num_bytes > 0) {
1214 		cur_alloc_size = num_bytes;
1215 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1216 					   min_alloc_size, 0, alloc_hint,
1217 					   &ins, 1, 1);
1218 		if (ret < 0)
1219 			goto out_unlock;
1220 		cur_alloc_size = ins.offset;
1221 		extent_reserved = true;
1222 
1223 		ram_size = ins.offset;
1224 		em = create_io_em(inode, start, ins.offset, /* len */
1225 				  start, /* orig_start */
1226 				  ins.objectid, /* block_start */
1227 				  ins.offset, /* block_len */
1228 				  ins.offset, /* orig_block_len */
1229 				  ram_size, /* ram_bytes */
1230 				  BTRFS_COMPRESS_NONE, /* compress_type */
1231 				  BTRFS_ORDERED_REGULAR /* type */);
1232 		if (IS_ERR(em)) {
1233 			ret = PTR_ERR(em);
1234 			goto out_reserve;
1235 		}
1236 		free_extent_map(em);
1237 
1238 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1239 					       ram_size, cur_alloc_size,
1240 					       BTRFS_ORDERED_REGULAR);
1241 		if (ret)
1242 			goto out_drop_extent_cache;
1243 
1244 		if (btrfs_is_data_reloc_root(root)) {
1245 			ret = btrfs_reloc_clone_csums(inode, start,
1246 						      cur_alloc_size);
1247 			/*
1248 			 * Only drop cache here, and process as normal.
1249 			 *
1250 			 * We must not allow extent_clear_unlock_delalloc()
1251 			 * at out_unlock label to free meta of this ordered
1252 			 * extent, as its meta should be freed by
1253 			 * btrfs_finish_ordered_io().
1254 			 *
1255 			 * So we must continue until @start is increased to
1256 			 * skip current ordered extent.
1257 			 */
1258 			if (ret)
1259 				btrfs_drop_extent_cache(inode, start,
1260 						start + ram_size - 1, 0);
1261 		}
1262 
1263 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1264 
1265 		/*
1266 		 * We're not doing compressed IO, don't unlock the first page
1267 		 * (which the caller expects to stay locked), don't clear any
1268 		 * dirty bits and don't set any writeback bits
1269 		 *
1270 		 * Do set the Ordered (Private2) bit so we know this page was
1271 		 * properly setup for writepage.
1272 		 */
1273 		page_ops = unlock ? PAGE_UNLOCK : 0;
1274 		page_ops |= PAGE_SET_ORDERED;
1275 
1276 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1277 					     locked_page,
1278 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1279 					     page_ops);
1280 		if (num_bytes < cur_alloc_size)
1281 			num_bytes = 0;
1282 		else
1283 			num_bytes -= cur_alloc_size;
1284 		alloc_hint = ins.objectid + ins.offset;
1285 		start += cur_alloc_size;
1286 		extent_reserved = false;
1287 
1288 		/*
1289 		 * btrfs_reloc_clone_csums() error, since start is increased
1290 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1291 		 * free metadata of current ordered extent, we're OK to exit.
1292 		 */
1293 		if (ret)
1294 			goto out_unlock;
1295 	}
1296 out:
1297 	return ret;
1298 
1299 out_drop_extent_cache:
1300 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1301 out_reserve:
1302 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1303 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1304 out_unlock:
1305 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1306 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1307 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1308 	/*
1309 	 * If we reserved an extent for our delalloc range (or a subrange) and
1310 	 * failed to create the respective ordered extent, then it means that
1311 	 * when we reserved the extent we decremented the extent's size from
1312 	 * the data space_info's bytes_may_use counter and incremented the
1313 	 * space_info's bytes_reserved counter by the same amount. We must make
1314 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1315 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1316 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1317 	 */
1318 	if (extent_reserved) {
1319 		extent_clear_unlock_delalloc(inode, start,
1320 					     start + cur_alloc_size - 1,
1321 					     locked_page,
1322 					     clear_bits,
1323 					     page_ops);
1324 		start += cur_alloc_size;
1325 		if (start >= end)
1326 			goto out;
1327 	}
1328 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1329 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1330 				     page_ops);
1331 	goto out;
1332 }
1333 
1334 /*
1335  * work queue call back to started compression on a file and pages
1336  */
1337 static noinline void async_cow_start(struct btrfs_work *work)
1338 {
1339 	struct async_chunk *async_chunk;
1340 	int compressed_extents;
1341 
1342 	async_chunk = container_of(work, struct async_chunk, work);
1343 
1344 	compressed_extents = compress_file_range(async_chunk);
1345 	if (compressed_extents == 0) {
1346 		btrfs_add_delayed_iput(async_chunk->inode);
1347 		async_chunk->inode = NULL;
1348 	}
1349 }
1350 
1351 /*
1352  * work queue call back to submit previously compressed pages
1353  */
1354 static noinline void async_cow_submit(struct btrfs_work *work)
1355 {
1356 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1357 						     work);
1358 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1359 	unsigned long nr_pages;
1360 
1361 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1362 		PAGE_SHIFT;
1363 
1364 	/*
1365 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1366 	 * in which case we don't have anything to submit, yet we need to
1367 	 * always adjust ->async_delalloc_pages as its paired with the init
1368 	 * happening in cow_file_range_async
1369 	 */
1370 	if (async_chunk->inode)
1371 		submit_compressed_extents(async_chunk);
1372 
1373 	/* atomic_sub_return implies a barrier */
1374 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1375 	    5 * SZ_1M)
1376 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1377 }
1378 
1379 static noinline void async_cow_free(struct btrfs_work *work)
1380 {
1381 	struct async_chunk *async_chunk;
1382 	struct async_cow *async_cow;
1383 
1384 	async_chunk = container_of(work, struct async_chunk, work);
1385 	if (async_chunk->inode)
1386 		btrfs_add_delayed_iput(async_chunk->inode);
1387 	if (async_chunk->blkcg_css)
1388 		css_put(async_chunk->blkcg_css);
1389 
1390 	async_cow = async_chunk->async_cow;
1391 	if (atomic_dec_and_test(&async_cow->num_chunks))
1392 		kvfree(async_cow);
1393 }
1394 
1395 static int cow_file_range_async(struct btrfs_inode *inode,
1396 				struct writeback_control *wbc,
1397 				struct page *locked_page,
1398 				u64 start, u64 end, int *page_started,
1399 				unsigned long *nr_written)
1400 {
1401 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1402 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1403 	struct async_cow *ctx;
1404 	struct async_chunk *async_chunk;
1405 	unsigned long nr_pages;
1406 	u64 cur_end;
1407 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1408 	int i;
1409 	bool should_compress;
1410 	unsigned nofs_flag;
1411 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1412 
1413 	unlock_extent(&inode->io_tree, start, end);
1414 
1415 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1416 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1417 		num_chunks = 1;
1418 		should_compress = false;
1419 	} else {
1420 		should_compress = true;
1421 	}
1422 
1423 	nofs_flag = memalloc_nofs_save();
1424 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1425 	memalloc_nofs_restore(nofs_flag);
1426 
1427 	if (!ctx) {
1428 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1429 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1430 			EXTENT_DO_ACCOUNTING;
1431 		unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1432 					 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
1433 
1434 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1435 					     clear_bits, page_ops);
1436 		return -ENOMEM;
1437 	}
1438 
1439 	async_chunk = ctx->chunks;
1440 	atomic_set(&ctx->num_chunks, num_chunks);
1441 
1442 	for (i = 0; i < num_chunks; i++) {
1443 		if (should_compress)
1444 			cur_end = min(end, start + SZ_512K - 1);
1445 		else
1446 			cur_end = end;
1447 
1448 		/*
1449 		 * igrab is called higher up in the call chain, take only the
1450 		 * lightweight reference for the callback lifetime
1451 		 */
1452 		ihold(&inode->vfs_inode);
1453 		async_chunk[i].async_cow = ctx;
1454 		async_chunk[i].inode = &inode->vfs_inode;
1455 		async_chunk[i].start = start;
1456 		async_chunk[i].end = cur_end;
1457 		async_chunk[i].write_flags = write_flags;
1458 		INIT_LIST_HEAD(&async_chunk[i].extents);
1459 
1460 		/*
1461 		 * The locked_page comes all the way from writepage and its
1462 		 * the original page we were actually given.  As we spread
1463 		 * this large delalloc region across multiple async_chunk
1464 		 * structs, only the first struct needs a pointer to locked_page
1465 		 *
1466 		 * This way we don't need racey decisions about who is supposed
1467 		 * to unlock it.
1468 		 */
1469 		if (locked_page) {
1470 			/*
1471 			 * Depending on the compressibility, the pages might or
1472 			 * might not go through async.  We want all of them to
1473 			 * be accounted against wbc once.  Let's do it here
1474 			 * before the paths diverge.  wbc accounting is used
1475 			 * only for foreign writeback detection and doesn't
1476 			 * need full accuracy.  Just account the whole thing
1477 			 * against the first page.
1478 			 */
1479 			wbc_account_cgroup_owner(wbc, locked_page,
1480 						 cur_end - start);
1481 			async_chunk[i].locked_page = locked_page;
1482 			locked_page = NULL;
1483 		} else {
1484 			async_chunk[i].locked_page = NULL;
1485 		}
1486 
1487 		if (blkcg_css != blkcg_root_css) {
1488 			css_get(blkcg_css);
1489 			async_chunk[i].blkcg_css = blkcg_css;
1490 		} else {
1491 			async_chunk[i].blkcg_css = NULL;
1492 		}
1493 
1494 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1495 				async_cow_submit, async_cow_free);
1496 
1497 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1498 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1499 
1500 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1501 
1502 		*nr_written += nr_pages;
1503 		start = cur_end + 1;
1504 	}
1505 	*page_started = 1;
1506 	return 0;
1507 }
1508 
1509 static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1510 				       struct page *locked_page, u64 start,
1511 				       u64 end, int *page_started,
1512 				       unsigned long *nr_written)
1513 {
1514 	int ret;
1515 
1516 	ret = cow_file_range(inode, locked_page, start, end, page_started,
1517 			     nr_written, 0);
1518 	if (ret)
1519 		return ret;
1520 
1521 	if (*page_started)
1522 		return 0;
1523 
1524 	__set_page_dirty_nobuffers(locked_page);
1525 	account_page_redirty(locked_page);
1526 	extent_write_locked_range(&inode->vfs_inode, start, end);
1527 	*page_started = 1;
1528 
1529 	return 0;
1530 }
1531 
1532 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1533 					u64 bytenr, u64 num_bytes)
1534 {
1535 	int ret;
1536 	struct btrfs_ordered_sum *sums;
1537 	LIST_HEAD(list);
1538 
1539 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1540 				       bytenr + num_bytes - 1, &list, 0);
1541 	if (ret == 0 && list_empty(&list))
1542 		return 0;
1543 
1544 	while (!list_empty(&list)) {
1545 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1546 		list_del(&sums->list);
1547 		kfree(sums);
1548 	}
1549 	if (ret < 0)
1550 		return ret;
1551 	return 1;
1552 }
1553 
1554 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1555 			   const u64 start, const u64 end,
1556 			   int *page_started, unsigned long *nr_written)
1557 {
1558 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1559 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1560 	const u64 range_bytes = end + 1 - start;
1561 	struct extent_io_tree *io_tree = &inode->io_tree;
1562 	u64 range_start = start;
1563 	u64 count;
1564 
1565 	/*
1566 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1567 	 * made we had not enough available data space and therefore we did not
1568 	 * reserve data space for it, since we though we could do NOCOW for the
1569 	 * respective file range (either there is prealloc extent or the inode
1570 	 * has the NOCOW bit set).
1571 	 *
1572 	 * However when we need to fallback to COW mode (because for example the
1573 	 * block group for the corresponding extent was turned to RO mode by a
1574 	 * scrub or relocation) we need to do the following:
1575 	 *
1576 	 * 1) We increment the bytes_may_use counter of the data space info.
1577 	 *    If COW succeeds, it allocates a new data extent and after doing
1578 	 *    that it decrements the space info's bytes_may_use counter and
1579 	 *    increments its bytes_reserved counter by the same amount (we do
1580 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1581 	 *    bytes_may_use counter to compensate (when space is reserved at
1582 	 *    buffered write time, the bytes_may_use counter is incremented);
1583 	 *
1584 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1585 	 *    that if the COW path fails for any reason, it decrements (through
1586 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1587 	 *    data space info, which we incremented in the step above.
1588 	 *
1589 	 * If we need to fallback to cow and the inode corresponds to a free
1590 	 * space cache inode or an inode of the data relocation tree, we must
1591 	 * also increment bytes_may_use of the data space_info for the same
1592 	 * reason. Space caches and relocated data extents always get a prealloc
1593 	 * extent for them, however scrub or balance may have set the block
1594 	 * group that contains that extent to RO mode and therefore force COW
1595 	 * when starting writeback.
1596 	 */
1597 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1598 				 EXTENT_NORESERVE, 0);
1599 	if (count > 0 || is_space_ino || is_reloc_ino) {
1600 		u64 bytes = count;
1601 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1602 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1603 
1604 		if (is_space_ino || is_reloc_ino)
1605 			bytes = range_bytes;
1606 
1607 		spin_lock(&sinfo->lock);
1608 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1609 		spin_unlock(&sinfo->lock);
1610 
1611 		if (count > 0)
1612 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1613 					 0, 0, NULL);
1614 	}
1615 
1616 	return cow_file_range(inode, locked_page, start, end, page_started,
1617 			      nr_written, 1);
1618 }
1619 
1620 /*
1621  * when nowcow writeback call back.  This checks for snapshots or COW copies
1622  * of the extents that exist in the file, and COWs the file as required.
1623  *
1624  * If no cow copies or snapshots exist, we write directly to the existing
1625  * blocks on disk
1626  */
1627 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1628 				       struct page *locked_page,
1629 				       const u64 start, const u64 end,
1630 				       int *page_started,
1631 				       unsigned long *nr_written)
1632 {
1633 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1634 	struct btrfs_root *root = inode->root;
1635 	struct btrfs_path *path;
1636 	u64 cow_start = (u64)-1;
1637 	u64 cur_offset = start;
1638 	int ret;
1639 	bool check_prev = true;
1640 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1641 	u64 ino = btrfs_ino(inode);
1642 	bool nocow = false;
1643 	u64 disk_bytenr = 0;
1644 	const bool force = inode->flags & BTRFS_INODE_NODATACOW;
1645 
1646 	path = btrfs_alloc_path();
1647 	if (!path) {
1648 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1649 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1650 					     EXTENT_DO_ACCOUNTING |
1651 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1652 					     PAGE_START_WRITEBACK |
1653 					     PAGE_END_WRITEBACK);
1654 		return -ENOMEM;
1655 	}
1656 
1657 	while (1) {
1658 		struct btrfs_key found_key;
1659 		struct btrfs_file_extent_item *fi;
1660 		struct extent_buffer *leaf;
1661 		u64 extent_end;
1662 		u64 extent_offset;
1663 		u64 num_bytes = 0;
1664 		u64 disk_num_bytes;
1665 		u64 ram_bytes;
1666 		int extent_type;
1667 
1668 		nocow = false;
1669 
1670 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1671 					       cur_offset, 0);
1672 		if (ret < 0)
1673 			goto error;
1674 
1675 		/*
1676 		 * If there is no extent for our range when doing the initial
1677 		 * search, then go back to the previous slot as it will be the
1678 		 * one containing the search offset
1679 		 */
1680 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1681 			leaf = path->nodes[0];
1682 			btrfs_item_key_to_cpu(leaf, &found_key,
1683 					      path->slots[0] - 1);
1684 			if (found_key.objectid == ino &&
1685 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1686 				path->slots[0]--;
1687 		}
1688 		check_prev = false;
1689 next_slot:
1690 		/* Go to next leaf if we have exhausted the current one */
1691 		leaf = path->nodes[0];
1692 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1693 			ret = btrfs_next_leaf(root, path);
1694 			if (ret < 0) {
1695 				if (cow_start != (u64)-1)
1696 					cur_offset = cow_start;
1697 				goto error;
1698 			}
1699 			if (ret > 0)
1700 				break;
1701 			leaf = path->nodes[0];
1702 		}
1703 
1704 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1705 
1706 		/* Didn't find anything for our INO */
1707 		if (found_key.objectid > ino)
1708 			break;
1709 		/*
1710 		 * Keep searching until we find an EXTENT_ITEM or there are no
1711 		 * more extents for this inode
1712 		 */
1713 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1714 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1715 			path->slots[0]++;
1716 			goto next_slot;
1717 		}
1718 
1719 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1720 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1721 		    found_key.offset > end)
1722 			break;
1723 
1724 		/*
1725 		 * If the found extent starts after requested offset, then
1726 		 * adjust extent_end to be right before this extent begins
1727 		 */
1728 		if (found_key.offset > cur_offset) {
1729 			extent_end = found_key.offset;
1730 			extent_type = 0;
1731 			goto out_check;
1732 		}
1733 
1734 		/*
1735 		 * Found extent which begins before our range and potentially
1736 		 * intersect it
1737 		 */
1738 		fi = btrfs_item_ptr(leaf, path->slots[0],
1739 				    struct btrfs_file_extent_item);
1740 		extent_type = btrfs_file_extent_type(leaf, fi);
1741 
1742 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1743 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1744 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1745 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1746 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1747 			extent_end = found_key.offset +
1748 				btrfs_file_extent_num_bytes(leaf, fi);
1749 			disk_num_bytes =
1750 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1751 			/*
1752 			 * If the extent we got ends before our current offset,
1753 			 * skip to the next extent.
1754 			 */
1755 			if (extent_end <= cur_offset) {
1756 				path->slots[0]++;
1757 				goto next_slot;
1758 			}
1759 			/* Skip holes */
1760 			if (disk_bytenr == 0)
1761 				goto out_check;
1762 			/* Skip compressed/encrypted/encoded extents */
1763 			if (btrfs_file_extent_compression(leaf, fi) ||
1764 			    btrfs_file_extent_encryption(leaf, fi) ||
1765 			    btrfs_file_extent_other_encoding(leaf, fi))
1766 				goto out_check;
1767 			/*
1768 			 * If extent is created before the last volume's snapshot
1769 			 * this implies the extent is shared, hence we can't do
1770 			 * nocow. This is the same check as in
1771 			 * btrfs_cross_ref_exist but without calling
1772 			 * btrfs_search_slot.
1773 			 */
1774 			if (!freespace_inode &&
1775 			    btrfs_file_extent_generation(leaf, fi) <=
1776 			    btrfs_root_last_snapshot(&root->root_item))
1777 				goto out_check;
1778 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1779 				goto out_check;
1780 
1781 			/*
1782 			 * The following checks can be expensive, as they need to
1783 			 * take other locks and do btree or rbtree searches, so
1784 			 * release the path to avoid blocking other tasks for too
1785 			 * long.
1786 			 */
1787 			btrfs_release_path(path);
1788 
1789 			ret = btrfs_cross_ref_exist(root, ino,
1790 						    found_key.offset -
1791 						    extent_offset, disk_bytenr, false);
1792 			if (ret) {
1793 				/*
1794 				 * ret could be -EIO if the above fails to read
1795 				 * metadata.
1796 				 */
1797 				if (ret < 0) {
1798 					if (cow_start != (u64)-1)
1799 						cur_offset = cow_start;
1800 					goto error;
1801 				}
1802 
1803 				WARN_ON_ONCE(freespace_inode);
1804 				goto out_check;
1805 			}
1806 			disk_bytenr += extent_offset;
1807 			disk_bytenr += cur_offset - found_key.offset;
1808 			num_bytes = min(end + 1, extent_end) - cur_offset;
1809 			/*
1810 			 * If there are pending snapshots for this root, we
1811 			 * fall into common COW way
1812 			 */
1813 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1814 				goto out_check;
1815 			/*
1816 			 * force cow if csum exists in the range.
1817 			 * this ensure that csum for a given extent are
1818 			 * either valid or do not exist.
1819 			 */
1820 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1821 						  num_bytes);
1822 			if (ret) {
1823 				/*
1824 				 * ret could be -EIO if the above fails to read
1825 				 * metadata.
1826 				 */
1827 				if (ret < 0) {
1828 					if (cow_start != (u64)-1)
1829 						cur_offset = cow_start;
1830 					goto error;
1831 				}
1832 				WARN_ON_ONCE(freespace_inode);
1833 				goto out_check;
1834 			}
1835 			/* If the extent's block group is RO, we must COW */
1836 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1837 				goto out_check;
1838 			nocow = true;
1839 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1840 			extent_end = found_key.offset + ram_bytes;
1841 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1842 			/* Skip extents outside of our requested range */
1843 			if (extent_end <= start) {
1844 				path->slots[0]++;
1845 				goto next_slot;
1846 			}
1847 		} else {
1848 			/* If this triggers then we have a memory corruption */
1849 			BUG();
1850 		}
1851 out_check:
1852 		/*
1853 		 * If nocow is false then record the beginning of the range
1854 		 * that needs to be COWed
1855 		 */
1856 		if (!nocow) {
1857 			if (cow_start == (u64)-1)
1858 				cow_start = cur_offset;
1859 			cur_offset = extent_end;
1860 			if (cur_offset > end)
1861 				break;
1862 			if (!path->nodes[0])
1863 				continue;
1864 			path->slots[0]++;
1865 			goto next_slot;
1866 		}
1867 
1868 		/*
1869 		 * COW range from cow_start to found_key.offset - 1. As the key
1870 		 * will contain the beginning of the first extent that can be
1871 		 * NOCOW, following one which needs to be COW'ed
1872 		 */
1873 		if (cow_start != (u64)-1) {
1874 			ret = fallback_to_cow(inode, locked_page,
1875 					      cow_start, found_key.offset - 1,
1876 					      page_started, nr_written);
1877 			if (ret)
1878 				goto error;
1879 			cow_start = (u64)-1;
1880 		}
1881 
1882 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1883 			u64 orig_start = found_key.offset - extent_offset;
1884 			struct extent_map *em;
1885 
1886 			em = create_io_em(inode, cur_offset, num_bytes,
1887 					  orig_start,
1888 					  disk_bytenr, /* block_start */
1889 					  num_bytes, /* block_len */
1890 					  disk_num_bytes, /* orig_block_len */
1891 					  ram_bytes, BTRFS_COMPRESS_NONE,
1892 					  BTRFS_ORDERED_PREALLOC);
1893 			if (IS_ERR(em)) {
1894 				ret = PTR_ERR(em);
1895 				goto error;
1896 			}
1897 			free_extent_map(em);
1898 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1899 						       disk_bytenr, num_bytes,
1900 						       num_bytes,
1901 						       BTRFS_ORDERED_PREALLOC);
1902 			if (ret) {
1903 				btrfs_drop_extent_cache(inode, cur_offset,
1904 							cur_offset + num_bytes - 1,
1905 							0);
1906 				goto error;
1907 			}
1908 		} else {
1909 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1910 						       disk_bytenr, num_bytes,
1911 						       num_bytes,
1912 						       BTRFS_ORDERED_NOCOW);
1913 			if (ret)
1914 				goto error;
1915 		}
1916 
1917 		if (nocow)
1918 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1919 		nocow = false;
1920 
1921 		if (btrfs_is_data_reloc_root(root))
1922 			/*
1923 			 * Error handled later, as we must prevent
1924 			 * extent_clear_unlock_delalloc() in error handler
1925 			 * from freeing metadata of created ordered extent.
1926 			 */
1927 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1928 						      num_bytes);
1929 
1930 		extent_clear_unlock_delalloc(inode, cur_offset,
1931 					     cur_offset + num_bytes - 1,
1932 					     locked_page, EXTENT_LOCKED |
1933 					     EXTENT_DELALLOC |
1934 					     EXTENT_CLEAR_DATA_RESV,
1935 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
1936 
1937 		cur_offset = extent_end;
1938 
1939 		/*
1940 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1941 		 * handler, as metadata for created ordered extent will only
1942 		 * be freed by btrfs_finish_ordered_io().
1943 		 */
1944 		if (ret)
1945 			goto error;
1946 		if (cur_offset > end)
1947 			break;
1948 	}
1949 	btrfs_release_path(path);
1950 
1951 	if (cur_offset <= end && cow_start == (u64)-1)
1952 		cow_start = cur_offset;
1953 
1954 	if (cow_start != (u64)-1) {
1955 		cur_offset = end;
1956 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1957 				      page_started, nr_written);
1958 		if (ret)
1959 			goto error;
1960 	}
1961 
1962 error:
1963 	if (nocow)
1964 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1965 
1966 	if (ret && cur_offset < end)
1967 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1968 					     locked_page, EXTENT_LOCKED |
1969 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1970 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1971 					     PAGE_START_WRITEBACK |
1972 					     PAGE_END_WRITEBACK);
1973 	btrfs_free_path(path);
1974 	return ret;
1975 }
1976 
1977 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
1978 {
1979 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
1980 		if (inode->defrag_bytes &&
1981 		    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
1982 				   0, NULL))
1983 			return false;
1984 		return true;
1985 	}
1986 	return false;
1987 }
1988 
1989 /*
1990  * Function to process delayed allocation (create CoW) for ranges which are
1991  * being touched for the first time.
1992  */
1993 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1994 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1995 		struct writeback_control *wbc)
1996 {
1997 	int ret;
1998 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
1999 
2000 	/*
2001 	 * The range must cover part of the @locked_page, or the returned
2002 	 * @page_started can confuse the caller.
2003 	 */
2004 	ASSERT(!(end <= page_offset(locked_page) ||
2005 		 start >= page_offset(locked_page) + PAGE_SIZE));
2006 
2007 	if (should_nocow(inode, start, end)) {
2008 		/*
2009 		 * Normally on a zoned device we're only doing COW writes, but
2010 		 * in case of relocation on a zoned filesystem we have taken
2011 		 * precaution, that we're only writing sequentially. It's safe
2012 		 * to use run_delalloc_nocow() here, like for  regular
2013 		 * preallocated inodes.
2014 		 */
2015 		ASSERT(!zoned ||
2016 		       (zoned && btrfs_is_data_reloc_root(inode->root)));
2017 		ret = run_delalloc_nocow(inode, locked_page, start, end,
2018 					 page_started, nr_written);
2019 	} else if (!inode_can_compress(inode) ||
2020 		   !inode_need_compress(inode, start, end)) {
2021 		if (zoned)
2022 			ret = run_delalloc_zoned(inode, locked_page, start, end,
2023 						 page_started, nr_written);
2024 		else
2025 			ret = cow_file_range(inode, locked_page, start, end,
2026 					     page_started, nr_written, 1);
2027 	} else {
2028 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2029 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
2030 					   page_started, nr_written);
2031 	}
2032 	ASSERT(ret <= 0);
2033 	if (ret)
2034 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2035 					      end - start + 1);
2036 	return ret;
2037 }
2038 
2039 void btrfs_split_delalloc_extent(struct inode *inode,
2040 				 struct extent_state *orig, u64 split)
2041 {
2042 	u64 size;
2043 
2044 	/* not delalloc, ignore it */
2045 	if (!(orig->state & EXTENT_DELALLOC))
2046 		return;
2047 
2048 	size = orig->end - orig->start + 1;
2049 	if (size > BTRFS_MAX_EXTENT_SIZE) {
2050 		u32 num_extents;
2051 		u64 new_size;
2052 
2053 		/*
2054 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2055 		 * applies here, just in reverse.
2056 		 */
2057 		new_size = orig->end - split + 1;
2058 		num_extents = count_max_extents(new_size);
2059 		new_size = split - orig->start;
2060 		num_extents += count_max_extents(new_size);
2061 		if (count_max_extents(size) >= num_extents)
2062 			return;
2063 	}
2064 
2065 	spin_lock(&BTRFS_I(inode)->lock);
2066 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
2067 	spin_unlock(&BTRFS_I(inode)->lock);
2068 }
2069 
2070 /*
2071  * Handle merged delayed allocation extents so we can keep track of new extents
2072  * that are just merged onto old extents, such as when we are doing sequential
2073  * writes, so we can properly account for the metadata space we'll need.
2074  */
2075 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2076 				 struct extent_state *other)
2077 {
2078 	u64 new_size, old_size;
2079 	u32 num_extents;
2080 
2081 	/* not delalloc, ignore it */
2082 	if (!(other->state & EXTENT_DELALLOC))
2083 		return;
2084 
2085 	if (new->start > other->start)
2086 		new_size = new->end - other->start + 1;
2087 	else
2088 		new_size = other->end - new->start + 1;
2089 
2090 	/* we're not bigger than the max, unreserve the space and go */
2091 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
2092 		spin_lock(&BTRFS_I(inode)->lock);
2093 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2094 		spin_unlock(&BTRFS_I(inode)->lock);
2095 		return;
2096 	}
2097 
2098 	/*
2099 	 * We have to add up either side to figure out how many extents were
2100 	 * accounted for before we merged into one big extent.  If the number of
2101 	 * extents we accounted for is <= the amount we need for the new range
2102 	 * then we can return, otherwise drop.  Think of it like this
2103 	 *
2104 	 * [ 4k][MAX_SIZE]
2105 	 *
2106 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2107 	 * need 2 outstanding extents, on one side we have 1 and the other side
2108 	 * we have 1 so they are == and we can return.  But in this case
2109 	 *
2110 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2111 	 *
2112 	 * Each range on their own accounts for 2 extents, but merged together
2113 	 * they are only 3 extents worth of accounting, so we need to drop in
2114 	 * this case.
2115 	 */
2116 	old_size = other->end - other->start + 1;
2117 	num_extents = count_max_extents(old_size);
2118 	old_size = new->end - new->start + 1;
2119 	num_extents += count_max_extents(old_size);
2120 	if (count_max_extents(new_size) >= num_extents)
2121 		return;
2122 
2123 	spin_lock(&BTRFS_I(inode)->lock);
2124 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
2125 	spin_unlock(&BTRFS_I(inode)->lock);
2126 }
2127 
2128 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2129 				      struct inode *inode)
2130 {
2131 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2132 
2133 	spin_lock(&root->delalloc_lock);
2134 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2135 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2136 			      &root->delalloc_inodes);
2137 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2138 			&BTRFS_I(inode)->runtime_flags);
2139 		root->nr_delalloc_inodes++;
2140 		if (root->nr_delalloc_inodes == 1) {
2141 			spin_lock(&fs_info->delalloc_root_lock);
2142 			BUG_ON(!list_empty(&root->delalloc_root));
2143 			list_add_tail(&root->delalloc_root,
2144 				      &fs_info->delalloc_roots);
2145 			spin_unlock(&fs_info->delalloc_root_lock);
2146 		}
2147 	}
2148 	spin_unlock(&root->delalloc_lock);
2149 }
2150 
2151 
2152 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2153 				struct btrfs_inode *inode)
2154 {
2155 	struct btrfs_fs_info *fs_info = root->fs_info;
2156 
2157 	if (!list_empty(&inode->delalloc_inodes)) {
2158 		list_del_init(&inode->delalloc_inodes);
2159 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2160 			  &inode->runtime_flags);
2161 		root->nr_delalloc_inodes--;
2162 		if (!root->nr_delalloc_inodes) {
2163 			ASSERT(list_empty(&root->delalloc_inodes));
2164 			spin_lock(&fs_info->delalloc_root_lock);
2165 			BUG_ON(list_empty(&root->delalloc_root));
2166 			list_del_init(&root->delalloc_root);
2167 			spin_unlock(&fs_info->delalloc_root_lock);
2168 		}
2169 	}
2170 }
2171 
2172 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2173 				     struct btrfs_inode *inode)
2174 {
2175 	spin_lock(&root->delalloc_lock);
2176 	__btrfs_del_delalloc_inode(root, inode);
2177 	spin_unlock(&root->delalloc_lock);
2178 }
2179 
2180 /*
2181  * Properly track delayed allocation bytes in the inode and to maintain the
2182  * list of inodes that have pending delalloc work to be done.
2183  */
2184 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2185 			       unsigned *bits)
2186 {
2187 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2188 
2189 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2190 		WARN_ON(1);
2191 	/*
2192 	 * set_bit and clear bit hooks normally require _irqsave/restore
2193 	 * but in this case, we are only testing for the DELALLOC
2194 	 * bit, which is only set or cleared with irqs on
2195 	 */
2196 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2197 		struct btrfs_root *root = BTRFS_I(inode)->root;
2198 		u64 len = state->end + 1 - state->start;
2199 		u32 num_extents = count_max_extents(len);
2200 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2201 
2202 		spin_lock(&BTRFS_I(inode)->lock);
2203 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2204 		spin_unlock(&BTRFS_I(inode)->lock);
2205 
2206 		/* For sanity tests */
2207 		if (btrfs_is_testing(fs_info))
2208 			return;
2209 
2210 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2211 					 fs_info->delalloc_batch);
2212 		spin_lock(&BTRFS_I(inode)->lock);
2213 		BTRFS_I(inode)->delalloc_bytes += len;
2214 		if (*bits & EXTENT_DEFRAG)
2215 			BTRFS_I(inode)->defrag_bytes += len;
2216 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2217 					 &BTRFS_I(inode)->runtime_flags))
2218 			btrfs_add_delalloc_inodes(root, inode);
2219 		spin_unlock(&BTRFS_I(inode)->lock);
2220 	}
2221 
2222 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2223 	    (*bits & EXTENT_DELALLOC_NEW)) {
2224 		spin_lock(&BTRFS_I(inode)->lock);
2225 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2226 			state->start;
2227 		spin_unlock(&BTRFS_I(inode)->lock);
2228 	}
2229 }
2230 
2231 /*
2232  * Once a range is no longer delalloc this function ensures that proper
2233  * accounting happens.
2234  */
2235 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2236 				 struct extent_state *state, unsigned *bits)
2237 {
2238 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2239 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2240 	u64 len = state->end + 1 - state->start;
2241 	u32 num_extents = count_max_extents(len);
2242 
2243 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2244 		spin_lock(&inode->lock);
2245 		inode->defrag_bytes -= len;
2246 		spin_unlock(&inode->lock);
2247 	}
2248 
2249 	/*
2250 	 * set_bit and clear bit hooks normally require _irqsave/restore
2251 	 * but in this case, we are only testing for the DELALLOC
2252 	 * bit, which is only set or cleared with irqs on
2253 	 */
2254 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2255 		struct btrfs_root *root = inode->root;
2256 		bool do_list = !btrfs_is_free_space_inode(inode);
2257 
2258 		spin_lock(&inode->lock);
2259 		btrfs_mod_outstanding_extents(inode, -num_extents);
2260 		spin_unlock(&inode->lock);
2261 
2262 		/*
2263 		 * We don't reserve metadata space for space cache inodes so we
2264 		 * don't need to call delalloc_release_metadata if there is an
2265 		 * error.
2266 		 */
2267 		if (*bits & EXTENT_CLEAR_META_RESV &&
2268 		    root != fs_info->tree_root)
2269 			btrfs_delalloc_release_metadata(inode, len, false);
2270 
2271 		/* For sanity tests. */
2272 		if (btrfs_is_testing(fs_info))
2273 			return;
2274 
2275 		if (!btrfs_is_data_reloc_root(root) &&
2276 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2277 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2278 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2279 
2280 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2281 					 fs_info->delalloc_batch);
2282 		spin_lock(&inode->lock);
2283 		inode->delalloc_bytes -= len;
2284 		if (do_list && inode->delalloc_bytes == 0 &&
2285 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2286 					&inode->runtime_flags))
2287 			btrfs_del_delalloc_inode(root, inode);
2288 		spin_unlock(&inode->lock);
2289 	}
2290 
2291 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2292 	    (*bits & EXTENT_DELALLOC_NEW)) {
2293 		spin_lock(&inode->lock);
2294 		ASSERT(inode->new_delalloc_bytes >= len);
2295 		inode->new_delalloc_bytes -= len;
2296 		if (*bits & EXTENT_ADD_INODE_BYTES)
2297 			inode_add_bytes(&inode->vfs_inode, len);
2298 		spin_unlock(&inode->lock);
2299 	}
2300 }
2301 
2302 /*
2303  * in order to insert checksums into the metadata in large chunks,
2304  * we wait until bio submission time.   All the pages in the bio are
2305  * checksummed and sums are attached onto the ordered extent record.
2306  *
2307  * At IO completion time the cums attached on the ordered extent record
2308  * are inserted into the btree
2309  */
2310 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
2311 					   u64 dio_file_offset)
2312 {
2313 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2314 }
2315 
2316 /*
2317  * Split an extent_map at [start, start + len]
2318  *
2319  * This function is intended to be used only for extract_ordered_extent().
2320  */
2321 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2322 			  u64 pre, u64 post)
2323 {
2324 	struct extent_map_tree *em_tree = &inode->extent_tree;
2325 	struct extent_map *em;
2326 	struct extent_map *split_pre = NULL;
2327 	struct extent_map *split_mid = NULL;
2328 	struct extent_map *split_post = NULL;
2329 	int ret = 0;
2330 	unsigned long flags;
2331 
2332 	/* Sanity check */
2333 	if (pre == 0 && post == 0)
2334 		return 0;
2335 
2336 	split_pre = alloc_extent_map();
2337 	if (pre)
2338 		split_mid = alloc_extent_map();
2339 	if (post)
2340 		split_post = alloc_extent_map();
2341 	if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2342 		ret = -ENOMEM;
2343 		goto out;
2344 	}
2345 
2346 	ASSERT(pre + post < len);
2347 
2348 	lock_extent(&inode->io_tree, start, start + len - 1);
2349 	write_lock(&em_tree->lock);
2350 	em = lookup_extent_mapping(em_tree, start, len);
2351 	if (!em) {
2352 		ret = -EIO;
2353 		goto out_unlock;
2354 	}
2355 
2356 	ASSERT(em->len == len);
2357 	ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2358 	ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
2359 	ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2360 	ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2361 	ASSERT(!list_empty(&em->list));
2362 
2363 	flags = em->flags;
2364 	clear_bit(EXTENT_FLAG_PINNED, &em->flags);
2365 
2366 	/* First, replace the em with a new extent_map starting from * em->start */
2367 	split_pre->start = em->start;
2368 	split_pre->len = (pre ? pre : em->len - post);
2369 	split_pre->orig_start = split_pre->start;
2370 	split_pre->block_start = em->block_start;
2371 	split_pre->block_len = split_pre->len;
2372 	split_pre->orig_block_len = split_pre->block_len;
2373 	split_pre->ram_bytes = split_pre->len;
2374 	split_pre->flags = flags;
2375 	split_pre->compress_type = em->compress_type;
2376 	split_pre->generation = em->generation;
2377 
2378 	replace_extent_mapping(em_tree, em, split_pre, 1);
2379 
2380 	/*
2381 	 * Now we only have an extent_map at:
2382 	 *     [em->start, em->start + pre] if pre != 0
2383 	 *     [em->start, em->start + em->len - post] if pre == 0
2384 	 */
2385 
2386 	if (pre) {
2387 		/* Insert the middle extent_map */
2388 		split_mid->start = em->start + pre;
2389 		split_mid->len = em->len - pre - post;
2390 		split_mid->orig_start = split_mid->start;
2391 		split_mid->block_start = em->block_start + pre;
2392 		split_mid->block_len = split_mid->len;
2393 		split_mid->orig_block_len = split_mid->block_len;
2394 		split_mid->ram_bytes = split_mid->len;
2395 		split_mid->flags = flags;
2396 		split_mid->compress_type = em->compress_type;
2397 		split_mid->generation = em->generation;
2398 		add_extent_mapping(em_tree, split_mid, 1);
2399 	}
2400 
2401 	if (post) {
2402 		split_post->start = em->start + em->len - post;
2403 		split_post->len = post;
2404 		split_post->orig_start = split_post->start;
2405 		split_post->block_start = em->block_start + em->len - post;
2406 		split_post->block_len = split_post->len;
2407 		split_post->orig_block_len = split_post->block_len;
2408 		split_post->ram_bytes = split_post->len;
2409 		split_post->flags = flags;
2410 		split_post->compress_type = em->compress_type;
2411 		split_post->generation = em->generation;
2412 		add_extent_mapping(em_tree, split_post, 1);
2413 	}
2414 
2415 	/* Once for us */
2416 	free_extent_map(em);
2417 	/* Once for the tree */
2418 	free_extent_map(em);
2419 
2420 out_unlock:
2421 	write_unlock(&em_tree->lock);
2422 	unlock_extent(&inode->io_tree, start, start + len - 1);
2423 out:
2424 	free_extent_map(split_pre);
2425 	free_extent_map(split_mid);
2426 	free_extent_map(split_post);
2427 
2428 	return ret;
2429 }
2430 
2431 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2432 					   struct bio *bio, loff_t file_offset)
2433 {
2434 	struct btrfs_ordered_extent *ordered;
2435 	u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
2436 	u64 file_len;
2437 	u64 len = bio->bi_iter.bi_size;
2438 	u64 end = start + len;
2439 	u64 ordered_end;
2440 	u64 pre, post;
2441 	int ret = 0;
2442 
2443 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2444 	if (WARN_ON_ONCE(!ordered))
2445 		return BLK_STS_IOERR;
2446 
2447 	/* No need to split */
2448 	if (ordered->disk_num_bytes == len)
2449 		goto out;
2450 
2451 	/* We cannot split once end_bio'd ordered extent */
2452 	if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2453 		ret = -EINVAL;
2454 		goto out;
2455 	}
2456 
2457 	/* We cannot split a compressed ordered extent */
2458 	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2459 		ret = -EINVAL;
2460 		goto out;
2461 	}
2462 
2463 	ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2464 	/* bio must be in one ordered extent */
2465 	if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2466 		ret = -EINVAL;
2467 		goto out;
2468 	}
2469 
2470 	/* Checksum list should be empty */
2471 	if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2472 		ret = -EINVAL;
2473 		goto out;
2474 	}
2475 
2476 	file_len = ordered->num_bytes;
2477 	pre = start - ordered->disk_bytenr;
2478 	post = ordered_end - end;
2479 
2480 	ret = btrfs_split_ordered_extent(ordered, pre, post);
2481 	if (ret)
2482 		goto out;
2483 	ret = split_zoned_em(inode, file_offset, file_len, pre, post);
2484 
2485 out:
2486 	btrfs_put_ordered_extent(ordered);
2487 
2488 	return errno_to_blk_status(ret);
2489 }
2490 
2491 /*
2492  * extent_io.c submission hook. This does the right thing for csum calculation
2493  * on write, or reading the csums from the tree before a read.
2494  *
2495  * Rules about async/sync submit,
2496  * a) read:				sync submit
2497  *
2498  * b) write without checksum:		sync submit
2499  *
2500  * c) write with checksum:
2501  *    c-1) if bio is issued by fsync:	sync submit
2502  *         (sync_writers != 0)
2503  *
2504  *    c-2) if root is reloc root:	sync submit
2505  *         (only in case of buffered IO)
2506  *
2507  *    c-3) otherwise:			async submit
2508  */
2509 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
2510 				   int mirror_num, unsigned long bio_flags)
2511 
2512 {
2513 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2514 	struct btrfs_root *root = BTRFS_I(inode)->root;
2515 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2516 	blk_status_t ret = 0;
2517 	int skip_sum;
2518 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2519 
2520 	skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) ||
2521 		   !fs_info->csum_root;
2522 
2523 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2524 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2525 
2526 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
2527 		struct page *page = bio_first_bvec_all(bio)->bv_page;
2528 		loff_t file_offset = page_offset(page);
2529 
2530 		ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset);
2531 		if (ret)
2532 			goto out;
2533 	}
2534 
2535 	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
2536 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2537 		if (ret)
2538 			goto out;
2539 
2540 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2541 			ret = btrfs_submit_compressed_read(inode, bio,
2542 							   mirror_num,
2543 							   bio_flags);
2544 			goto out;
2545 		} else {
2546 			/*
2547 			 * Lookup bio sums does extra checks around whether we
2548 			 * need to csum or not, which is why we ignore skip_sum
2549 			 * here.
2550 			 */
2551 			ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2552 			if (ret)
2553 				goto out;
2554 		}
2555 		goto mapit;
2556 	} else if (async && !skip_sum) {
2557 		/* csum items have already been cloned */
2558 		if (btrfs_is_data_reloc_root(root))
2559 			goto mapit;
2560 		/* we're doing a write, do the async checksumming */
2561 		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags,
2562 					  0, btrfs_submit_bio_start);
2563 		goto out;
2564 	} else if (!skip_sum) {
2565 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2566 		if (ret)
2567 			goto out;
2568 	}
2569 
2570 mapit:
2571 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2572 
2573 out:
2574 	if (ret) {
2575 		bio->bi_status = ret;
2576 		bio_endio(bio);
2577 	}
2578 	return ret;
2579 }
2580 
2581 /*
2582  * given a list of ordered sums record them in the inode.  This happens
2583  * at IO completion time based on sums calculated at bio submission time.
2584  */
2585 static int add_pending_csums(struct btrfs_trans_handle *trans,
2586 			     struct list_head *list)
2587 {
2588 	struct btrfs_ordered_sum *sum;
2589 	int ret;
2590 
2591 	list_for_each_entry(sum, list, list) {
2592 		trans->adding_csums = true;
2593 		ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum);
2594 		trans->adding_csums = false;
2595 		if (ret)
2596 			return ret;
2597 	}
2598 	return 0;
2599 }
2600 
2601 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2602 					 const u64 start,
2603 					 const u64 len,
2604 					 struct extent_state **cached_state)
2605 {
2606 	u64 search_start = start;
2607 	const u64 end = start + len - 1;
2608 
2609 	while (search_start < end) {
2610 		const u64 search_len = end - search_start + 1;
2611 		struct extent_map *em;
2612 		u64 em_len;
2613 		int ret = 0;
2614 
2615 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2616 		if (IS_ERR(em))
2617 			return PTR_ERR(em);
2618 
2619 		if (em->block_start != EXTENT_MAP_HOLE)
2620 			goto next;
2621 
2622 		em_len = em->len;
2623 		if (em->start < search_start)
2624 			em_len -= search_start - em->start;
2625 		if (em_len > search_len)
2626 			em_len = search_len;
2627 
2628 		ret = set_extent_bit(&inode->io_tree, search_start,
2629 				     search_start + em_len - 1,
2630 				     EXTENT_DELALLOC_NEW, 0, NULL, cached_state,
2631 				     GFP_NOFS, NULL);
2632 next:
2633 		search_start = extent_map_end(em);
2634 		free_extent_map(em);
2635 		if (ret)
2636 			return ret;
2637 	}
2638 	return 0;
2639 }
2640 
2641 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2642 			      unsigned int extra_bits,
2643 			      struct extent_state **cached_state)
2644 {
2645 	WARN_ON(PAGE_ALIGNED(end));
2646 
2647 	if (start >= i_size_read(&inode->vfs_inode) &&
2648 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2649 		/*
2650 		 * There can't be any extents following eof in this case so just
2651 		 * set the delalloc new bit for the range directly.
2652 		 */
2653 		extra_bits |= EXTENT_DELALLOC_NEW;
2654 	} else {
2655 		int ret;
2656 
2657 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2658 						    end + 1 - start,
2659 						    cached_state);
2660 		if (ret)
2661 			return ret;
2662 	}
2663 
2664 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2665 				   cached_state);
2666 }
2667 
2668 /* see btrfs_writepage_start_hook for details on why this is required */
2669 struct btrfs_writepage_fixup {
2670 	struct page *page;
2671 	struct inode *inode;
2672 	struct btrfs_work work;
2673 };
2674 
2675 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2676 {
2677 	struct btrfs_writepage_fixup *fixup;
2678 	struct btrfs_ordered_extent *ordered;
2679 	struct extent_state *cached_state = NULL;
2680 	struct extent_changeset *data_reserved = NULL;
2681 	struct page *page;
2682 	struct btrfs_inode *inode;
2683 	u64 page_start;
2684 	u64 page_end;
2685 	int ret = 0;
2686 	bool free_delalloc_space = true;
2687 
2688 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2689 	page = fixup->page;
2690 	inode = BTRFS_I(fixup->inode);
2691 	page_start = page_offset(page);
2692 	page_end = page_offset(page) + PAGE_SIZE - 1;
2693 
2694 	/*
2695 	 * This is similar to page_mkwrite, we need to reserve the space before
2696 	 * we take the page lock.
2697 	 */
2698 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2699 					   PAGE_SIZE);
2700 again:
2701 	lock_page(page);
2702 
2703 	/*
2704 	 * Before we queued this fixup, we took a reference on the page.
2705 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2706 	 * address space.
2707 	 */
2708 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2709 		/*
2710 		 * Unfortunately this is a little tricky, either
2711 		 *
2712 		 * 1) We got here and our page had already been dealt with and
2713 		 *    we reserved our space, thus ret == 0, so we need to just
2714 		 *    drop our space reservation and bail.  This can happen the
2715 		 *    first time we come into the fixup worker, or could happen
2716 		 *    while waiting for the ordered extent.
2717 		 * 2) Our page was already dealt with, but we happened to get an
2718 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2719 		 *    this case we obviously don't have anything to release, but
2720 		 *    because the page was already dealt with we don't want to
2721 		 *    mark the page with an error, so make sure we're resetting
2722 		 *    ret to 0.  This is why we have this check _before_ the ret
2723 		 *    check, because we do not want to have a surprise ENOSPC
2724 		 *    when the page was already properly dealt with.
2725 		 */
2726 		if (!ret) {
2727 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2728 			btrfs_delalloc_release_space(inode, data_reserved,
2729 						     page_start, PAGE_SIZE,
2730 						     true);
2731 		}
2732 		ret = 0;
2733 		goto out_page;
2734 	}
2735 
2736 	/*
2737 	 * We can't mess with the page state unless it is locked, so now that
2738 	 * it is locked bail if we failed to make our space reservation.
2739 	 */
2740 	if (ret)
2741 		goto out_page;
2742 
2743 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2744 
2745 	/* already ordered? We're done */
2746 	if (PageOrdered(page))
2747 		goto out_reserved;
2748 
2749 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2750 	if (ordered) {
2751 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2752 				     &cached_state);
2753 		unlock_page(page);
2754 		btrfs_start_ordered_extent(ordered, 1);
2755 		btrfs_put_ordered_extent(ordered);
2756 		goto again;
2757 	}
2758 
2759 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2760 					&cached_state);
2761 	if (ret)
2762 		goto out_reserved;
2763 
2764 	/*
2765 	 * Everything went as planned, we're now the owner of a dirty page with
2766 	 * delayed allocation bits set and space reserved for our COW
2767 	 * destination.
2768 	 *
2769 	 * The page was dirty when we started, nothing should have cleaned it.
2770 	 */
2771 	BUG_ON(!PageDirty(page));
2772 	free_delalloc_space = false;
2773 out_reserved:
2774 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2775 	if (free_delalloc_space)
2776 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2777 					     PAGE_SIZE, true);
2778 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2779 			     &cached_state);
2780 out_page:
2781 	if (ret) {
2782 		/*
2783 		 * We hit ENOSPC or other errors.  Update the mapping and page
2784 		 * to reflect the errors and clean the page.
2785 		 */
2786 		mapping_set_error(page->mapping, ret);
2787 		end_extent_writepage(page, ret, page_start, page_end);
2788 		clear_page_dirty_for_io(page);
2789 		SetPageError(page);
2790 	}
2791 	btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
2792 	unlock_page(page);
2793 	put_page(page);
2794 	kfree(fixup);
2795 	extent_changeset_free(data_reserved);
2796 	/*
2797 	 * As a precaution, do a delayed iput in case it would be the last iput
2798 	 * that could need flushing space. Recursing back to fixup worker would
2799 	 * deadlock.
2800 	 */
2801 	btrfs_add_delayed_iput(&inode->vfs_inode);
2802 }
2803 
2804 /*
2805  * There are a few paths in the higher layers of the kernel that directly
2806  * set the page dirty bit without asking the filesystem if it is a
2807  * good idea.  This causes problems because we want to make sure COW
2808  * properly happens and the data=ordered rules are followed.
2809  *
2810  * In our case any range that doesn't have the ORDERED bit set
2811  * hasn't been properly setup for IO.  We kick off an async process
2812  * to fix it up.  The async helper will wait for ordered extents, set
2813  * the delalloc bit and make it safe to write the page.
2814  */
2815 int btrfs_writepage_cow_fixup(struct page *page)
2816 {
2817 	struct inode *inode = page->mapping->host;
2818 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2819 	struct btrfs_writepage_fixup *fixup;
2820 
2821 	/* This page has ordered extent covering it already */
2822 	if (PageOrdered(page))
2823 		return 0;
2824 
2825 	/*
2826 	 * PageChecked is set below when we create a fixup worker for this page,
2827 	 * don't try to create another one if we're already PageChecked()
2828 	 *
2829 	 * The extent_io writepage code will redirty the page if we send back
2830 	 * EAGAIN.
2831 	 */
2832 	if (PageChecked(page))
2833 		return -EAGAIN;
2834 
2835 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2836 	if (!fixup)
2837 		return -EAGAIN;
2838 
2839 	/*
2840 	 * We are already holding a reference to this inode from
2841 	 * write_cache_pages.  We need to hold it because the space reservation
2842 	 * takes place outside of the page lock, and we can't trust
2843 	 * page->mapping outside of the page lock.
2844 	 */
2845 	ihold(inode);
2846 	btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
2847 	get_page(page);
2848 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2849 	fixup->page = page;
2850 	fixup->inode = inode;
2851 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2852 
2853 	return -EAGAIN;
2854 }
2855 
2856 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2857 				       struct btrfs_inode *inode, u64 file_pos,
2858 				       struct btrfs_file_extent_item *stack_fi,
2859 				       const bool update_inode_bytes,
2860 				       u64 qgroup_reserved)
2861 {
2862 	struct btrfs_root *root = inode->root;
2863 	const u64 sectorsize = root->fs_info->sectorsize;
2864 	struct btrfs_path *path;
2865 	struct extent_buffer *leaf;
2866 	struct btrfs_key ins;
2867 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2868 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2869 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2870 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2871 	struct btrfs_drop_extents_args drop_args = { 0 };
2872 	int ret;
2873 
2874 	path = btrfs_alloc_path();
2875 	if (!path)
2876 		return -ENOMEM;
2877 
2878 	/*
2879 	 * we may be replacing one extent in the tree with another.
2880 	 * The new extent is pinned in the extent map, and we don't want
2881 	 * to drop it from the cache until it is completely in the btree.
2882 	 *
2883 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2884 	 * the caller is expected to unpin it and allow it to be merged
2885 	 * with the others.
2886 	 */
2887 	drop_args.path = path;
2888 	drop_args.start = file_pos;
2889 	drop_args.end = file_pos + num_bytes;
2890 	drop_args.replace_extent = true;
2891 	drop_args.extent_item_size = sizeof(*stack_fi);
2892 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2893 	if (ret)
2894 		goto out;
2895 
2896 	if (!drop_args.extent_inserted) {
2897 		ins.objectid = btrfs_ino(inode);
2898 		ins.offset = file_pos;
2899 		ins.type = BTRFS_EXTENT_DATA_KEY;
2900 
2901 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2902 					      sizeof(*stack_fi));
2903 		if (ret)
2904 			goto out;
2905 	}
2906 	leaf = path->nodes[0];
2907 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2908 	write_extent_buffer(leaf, stack_fi,
2909 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2910 			sizeof(struct btrfs_file_extent_item));
2911 
2912 	btrfs_mark_buffer_dirty(leaf);
2913 	btrfs_release_path(path);
2914 
2915 	/*
2916 	 * If we dropped an inline extent here, we know the range where it is
2917 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2918 	 * number of bytes only for that range containing the inline extent.
2919 	 * The remaining of the range will be processed when clearning the
2920 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2921 	 */
2922 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2923 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2924 
2925 		inline_size = drop_args.bytes_found - inline_size;
2926 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2927 		drop_args.bytes_found -= inline_size;
2928 		num_bytes -= sectorsize;
2929 	}
2930 
2931 	if (update_inode_bytes)
2932 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2933 
2934 	ins.objectid = disk_bytenr;
2935 	ins.offset = disk_num_bytes;
2936 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2937 
2938 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2939 	if (ret)
2940 		goto out;
2941 
2942 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2943 					       file_pos, qgroup_reserved, &ins);
2944 out:
2945 	btrfs_free_path(path);
2946 
2947 	return ret;
2948 }
2949 
2950 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2951 					 u64 start, u64 len)
2952 {
2953 	struct btrfs_block_group *cache;
2954 
2955 	cache = btrfs_lookup_block_group(fs_info, start);
2956 	ASSERT(cache);
2957 
2958 	spin_lock(&cache->lock);
2959 	cache->delalloc_bytes -= len;
2960 	spin_unlock(&cache->lock);
2961 
2962 	btrfs_put_block_group(cache);
2963 }
2964 
2965 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2966 					     struct btrfs_ordered_extent *oe)
2967 {
2968 	struct btrfs_file_extent_item stack_fi;
2969 	u64 logical_len;
2970 	bool update_inode_bytes;
2971 
2972 	memset(&stack_fi, 0, sizeof(stack_fi));
2973 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2974 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2975 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2976 						   oe->disk_num_bytes);
2977 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2978 		logical_len = oe->truncated_len;
2979 	else
2980 		logical_len = oe->num_bytes;
2981 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2982 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2983 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2984 	/* Encryption and other encoding is reserved and all 0 */
2985 
2986 	/*
2987 	 * For delalloc, when completing an ordered extent we update the inode's
2988 	 * bytes when clearing the range in the inode's io tree, so pass false
2989 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
2990 	 * except if the ordered extent was truncated.
2991 	 */
2992 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
2993 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
2994 
2995 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
2996 					   oe->file_offset, &stack_fi,
2997 					   update_inode_bytes, oe->qgroup_rsv);
2998 }
2999 
3000 /*
3001  * As ordered data IO finishes, this gets called so we can finish
3002  * an ordered extent if the range of bytes in the file it covers are
3003  * fully written.
3004  */
3005 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
3006 {
3007 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3008 	struct btrfs_root *root = inode->root;
3009 	struct btrfs_fs_info *fs_info = root->fs_info;
3010 	struct btrfs_trans_handle *trans = NULL;
3011 	struct extent_io_tree *io_tree = &inode->io_tree;
3012 	struct extent_state *cached_state = NULL;
3013 	u64 start, end;
3014 	int compress_type = 0;
3015 	int ret = 0;
3016 	u64 logical_len = ordered_extent->num_bytes;
3017 	bool freespace_inode;
3018 	bool truncated = false;
3019 	bool clear_reserved_extent = true;
3020 	unsigned int clear_bits = EXTENT_DEFRAG;
3021 
3022 	start = ordered_extent->file_offset;
3023 	end = start + ordered_extent->num_bytes - 1;
3024 
3025 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3026 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3027 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
3028 		clear_bits |= EXTENT_DELALLOC_NEW;
3029 
3030 	freespace_inode = btrfs_is_free_space_inode(inode);
3031 
3032 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3033 		ret = -EIO;
3034 		goto out;
3035 	}
3036 
3037 	/* A valid bdev implies a write on a sequential zone */
3038 	if (ordered_extent->bdev) {
3039 		btrfs_rewrite_logical_zoned(ordered_extent);
3040 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3041 					ordered_extent->disk_num_bytes);
3042 	}
3043 
3044 	btrfs_free_io_failure_record(inode, start, end);
3045 
3046 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3047 		truncated = true;
3048 		logical_len = ordered_extent->truncated_len;
3049 		/* Truncated the entire extent, don't bother adding */
3050 		if (!logical_len)
3051 			goto out;
3052 	}
3053 
3054 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3055 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3056 
3057 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3058 		if (freespace_inode)
3059 			trans = btrfs_join_transaction_spacecache(root);
3060 		else
3061 			trans = btrfs_join_transaction(root);
3062 		if (IS_ERR(trans)) {
3063 			ret = PTR_ERR(trans);
3064 			trans = NULL;
3065 			goto out;
3066 		}
3067 		trans->block_rsv = &inode->block_rsv;
3068 		ret = btrfs_update_inode_fallback(trans, root, inode);
3069 		if (ret) /* -ENOMEM or corruption */
3070 			btrfs_abort_transaction(trans, ret);
3071 		goto out;
3072 	}
3073 
3074 	clear_bits |= EXTENT_LOCKED;
3075 	lock_extent_bits(io_tree, start, end, &cached_state);
3076 
3077 	if (freespace_inode)
3078 		trans = btrfs_join_transaction_spacecache(root);
3079 	else
3080 		trans = btrfs_join_transaction(root);
3081 	if (IS_ERR(trans)) {
3082 		ret = PTR_ERR(trans);
3083 		trans = NULL;
3084 		goto out;
3085 	}
3086 
3087 	trans->block_rsv = &inode->block_rsv;
3088 
3089 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3090 		compress_type = ordered_extent->compress_type;
3091 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3092 		BUG_ON(compress_type);
3093 		ret = btrfs_mark_extent_written(trans, inode,
3094 						ordered_extent->file_offset,
3095 						ordered_extent->file_offset +
3096 						logical_len);
3097 	} else {
3098 		BUG_ON(root == fs_info->tree_root);
3099 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3100 		if (!ret) {
3101 			clear_reserved_extent = false;
3102 			btrfs_release_delalloc_bytes(fs_info,
3103 						ordered_extent->disk_bytenr,
3104 						ordered_extent->disk_num_bytes);
3105 		}
3106 	}
3107 	unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
3108 			   ordered_extent->num_bytes, trans->transid);
3109 	if (ret < 0) {
3110 		btrfs_abort_transaction(trans, ret);
3111 		goto out;
3112 	}
3113 
3114 	ret = add_pending_csums(trans, &ordered_extent->list);
3115 	if (ret) {
3116 		btrfs_abort_transaction(trans, ret);
3117 		goto out;
3118 	}
3119 
3120 	/*
3121 	 * If this is a new delalloc range, clear its new delalloc flag to
3122 	 * update the inode's number of bytes. This needs to be done first
3123 	 * before updating the inode item.
3124 	 */
3125 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3126 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3127 		clear_extent_bit(&inode->io_tree, start, end,
3128 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3129 				 0, 0, &cached_state);
3130 
3131 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3132 	ret = btrfs_update_inode_fallback(trans, root, inode);
3133 	if (ret) { /* -ENOMEM or corruption */
3134 		btrfs_abort_transaction(trans, ret);
3135 		goto out;
3136 	}
3137 	ret = 0;
3138 out:
3139 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3140 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
3141 			 &cached_state);
3142 
3143 	if (trans)
3144 		btrfs_end_transaction(trans);
3145 
3146 	if (ret || truncated) {
3147 		u64 unwritten_start = start;
3148 
3149 		/*
3150 		 * If we failed to finish this ordered extent for any reason we
3151 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3152 		 * extent, and mark the inode with the error if it wasn't
3153 		 * already set.  Any error during writeback would have already
3154 		 * set the mapping error, so we need to set it if we're the ones
3155 		 * marking this ordered extent as failed.
3156 		 */
3157 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3158 					     &ordered_extent->flags))
3159 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3160 
3161 		if (truncated)
3162 			unwritten_start += logical_len;
3163 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3164 
3165 		/* Drop the cache for the part of the extent we didn't write. */
3166 		btrfs_drop_extent_cache(inode, unwritten_start, end, 0);
3167 
3168 		/*
3169 		 * If the ordered extent had an IOERR or something else went
3170 		 * wrong we need to return the space for this ordered extent
3171 		 * back to the allocator.  We only free the extent in the
3172 		 * truncated case if we didn't write out the extent at all.
3173 		 *
3174 		 * If we made it past insert_reserved_file_extent before we
3175 		 * errored out then we don't need to do this as the accounting
3176 		 * has already been done.
3177 		 */
3178 		if ((ret || !logical_len) &&
3179 		    clear_reserved_extent &&
3180 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3181 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3182 			/*
3183 			 * Discard the range before returning it back to the
3184 			 * free space pool
3185 			 */
3186 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3187 				btrfs_discard_extent(fs_info,
3188 						ordered_extent->disk_bytenr,
3189 						ordered_extent->disk_num_bytes,
3190 						NULL);
3191 			btrfs_free_reserved_extent(fs_info,
3192 					ordered_extent->disk_bytenr,
3193 					ordered_extent->disk_num_bytes, 1);
3194 		}
3195 	}
3196 
3197 	/*
3198 	 * This needs to be done to make sure anybody waiting knows we are done
3199 	 * updating everything for this ordered extent.
3200 	 */
3201 	btrfs_remove_ordered_extent(inode, ordered_extent);
3202 
3203 	/* once for us */
3204 	btrfs_put_ordered_extent(ordered_extent);
3205 	/* once for the tree */
3206 	btrfs_put_ordered_extent(ordered_extent);
3207 
3208 	return ret;
3209 }
3210 
3211 static void finish_ordered_fn(struct btrfs_work *work)
3212 {
3213 	struct btrfs_ordered_extent *ordered_extent;
3214 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3215 	btrfs_finish_ordered_io(ordered_extent);
3216 }
3217 
3218 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3219 					  struct page *page, u64 start,
3220 					  u64 end, bool uptodate)
3221 {
3222 	trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
3223 
3224 	btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start,
3225 				       finish_ordered_fn, uptodate);
3226 }
3227 
3228 /*
3229  * check_data_csum - verify checksum of one sector of uncompressed data
3230  * @inode:	inode
3231  * @io_bio:	btrfs_io_bio which contains the csum
3232  * @bio_offset:	offset to the beginning of the bio (in bytes)
3233  * @page:	page where is the data to be verified
3234  * @pgoff:	offset inside the page
3235  * @start:	logical offset in the file
3236  *
3237  * The length of such check is always one sector size.
3238  */
3239 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3240 			   u32 bio_offset, struct page *page, u32 pgoff,
3241 			   u64 start)
3242 {
3243 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3244 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3245 	char *kaddr;
3246 	u32 len = fs_info->sectorsize;
3247 	const u32 csum_size = fs_info->csum_size;
3248 	unsigned int offset_sectors;
3249 	u8 *csum_expected;
3250 	u8 csum[BTRFS_CSUM_SIZE];
3251 
3252 	ASSERT(pgoff + len <= PAGE_SIZE);
3253 
3254 	offset_sectors = bio_offset >> fs_info->sectorsize_bits;
3255 	csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size;
3256 
3257 	kaddr = kmap_atomic(page);
3258 	shash->tfm = fs_info->csum_shash;
3259 
3260 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
3261 
3262 	if (memcmp(csum, csum_expected, csum_size))
3263 		goto zeroit;
3264 
3265 	kunmap_atomic(kaddr);
3266 	return 0;
3267 zeroit:
3268 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3269 				    bbio->mirror_num);
3270 	if (bbio->device)
3271 		btrfs_dev_stat_inc_and_print(bbio->device,
3272 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
3273 	memset(kaddr + pgoff, 1, len);
3274 	flush_dcache_page(page);
3275 	kunmap_atomic(kaddr);
3276 	return -EIO;
3277 }
3278 
3279 /*
3280  * When reads are done, we need to check csums to verify the data is correct.
3281  * if there's a match, we allow the bio to finish.  If not, the code in
3282  * extent_io.c will try to find good copies for us.
3283  *
3284  * @bio_offset:	offset to the beginning of the bio (in bytes)
3285  * @start:	file offset of the range start
3286  * @end:	file offset of the range end (inclusive)
3287  *
3288  * Return a bitmap where bit set means a csum mismatch, and bit not set means
3289  * csum match.
3290  */
3291 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3292 				    u32 bio_offset, struct page *page,
3293 				    u64 start, u64 end)
3294 {
3295 	struct inode *inode = page->mapping->host;
3296 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3297 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3298 	struct btrfs_root *root = BTRFS_I(inode)->root;
3299 	const u32 sectorsize = root->fs_info->sectorsize;
3300 	u32 pg_off;
3301 	unsigned int result = 0;
3302 
3303 	if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) {
3304 		btrfs_page_clear_checked(fs_info, page, start, end + 1 - start);
3305 		return 0;
3306 	}
3307 
3308 	/*
3309 	 * This only happens for NODATASUM or compressed read.
3310 	 * Normally this should be covered by above check for compressed read
3311 	 * or the next check for NODATASUM.  Just do a quicker exit here.
3312 	 */
3313 	if (bbio->csum == NULL)
3314 		return 0;
3315 
3316 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3317 		return 0;
3318 
3319 	if (!root->fs_info->csum_root)
3320 		return 0;
3321 
3322 	ASSERT(page_offset(page) <= start &&
3323 	       end <= page_offset(page) + PAGE_SIZE - 1);
3324 	for (pg_off = offset_in_page(start);
3325 	     pg_off < offset_in_page(end);
3326 	     pg_off += sectorsize, bio_offset += sectorsize) {
3327 		u64 file_offset = pg_off + page_offset(page);
3328 		int ret;
3329 
3330 		if (btrfs_is_data_reloc_root(root) &&
3331 		    test_range_bit(io_tree, file_offset,
3332 				   file_offset + sectorsize - 1,
3333 				   EXTENT_NODATASUM, 1, NULL)) {
3334 			/* Skip the range without csum for data reloc inode */
3335 			clear_extent_bits(io_tree, file_offset,
3336 					  file_offset + sectorsize - 1,
3337 					  EXTENT_NODATASUM);
3338 			continue;
3339 		}
3340 		ret = check_data_csum(inode, bbio, bio_offset, page, pg_off,
3341 				      page_offset(page) + pg_off);
3342 		if (ret < 0) {
3343 			const int nr_bit = (pg_off - offset_in_page(start)) >>
3344 				     root->fs_info->sectorsize_bits;
3345 
3346 			result |= (1U << nr_bit);
3347 		}
3348 	}
3349 	return result;
3350 }
3351 
3352 /*
3353  * btrfs_add_delayed_iput - perform a delayed iput on @inode
3354  *
3355  * @inode: The inode we want to perform iput on
3356  *
3357  * This function uses the generic vfs_inode::i_count to track whether we should
3358  * just decrement it (in case it's > 1) or if this is the last iput then link
3359  * the inode to the delayed iput machinery. Delayed iputs are processed at
3360  * transaction commit time/superblock commit/cleaner kthread.
3361  */
3362 void btrfs_add_delayed_iput(struct inode *inode)
3363 {
3364 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3365 	struct btrfs_inode *binode = BTRFS_I(inode);
3366 
3367 	if (atomic_add_unless(&inode->i_count, -1, 1))
3368 		return;
3369 
3370 	atomic_inc(&fs_info->nr_delayed_iputs);
3371 	spin_lock(&fs_info->delayed_iput_lock);
3372 	ASSERT(list_empty(&binode->delayed_iput));
3373 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3374 	spin_unlock(&fs_info->delayed_iput_lock);
3375 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3376 		wake_up_process(fs_info->cleaner_kthread);
3377 }
3378 
3379 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3380 				    struct btrfs_inode *inode)
3381 {
3382 	list_del_init(&inode->delayed_iput);
3383 	spin_unlock(&fs_info->delayed_iput_lock);
3384 	iput(&inode->vfs_inode);
3385 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3386 		wake_up(&fs_info->delayed_iputs_wait);
3387 	spin_lock(&fs_info->delayed_iput_lock);
3388 }
3389 
3390 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3391 				   struct btrfs_inode *inode)
3392 {
3393 	if (!list_empty(&inode->delayed_iput)) {
3394 		spin_lock(&fs_info->delayed_iput_lock);
3395 		if (!list_empty(&inode->delayed_iput))
3396 			run_delayed_iput_locked(fs_info, inode);
3397 		spin_unlock(&fs_info->delayed_iput_lock);
3398 	}
3399 }
3400 
3401 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3402 {
3403 
3404 	spin_lock(&fs_info->delayed_iput_lock);
3405 	while (!list_empty(&fs_info->delayed_iputs)) {
3406 		struct btrfs_inode *inode;
3407 
3408 		inode = list_first_entry(&fs_info->delayed_iputs,
3409 				struct btrfs_inode, delayed_iput);
3410 		run_delayed_iput_locked(fs_info, inode);
3411 		cond_resched_lock(&fs_info->delayed_iput_lock);
3412 	}
3413 	spin_unlock(&fs_info->delayed_iput_lock);
3414 }
3415 
3416 /**
3417  * Wait for flushing all delayed iputs
3418  *
3419  * @fs_info:  the filesystem
3420  *
3421  * This will wait on any delayed iputs that are currently running with KILLABLE
3422  * set.  Once they are all done running we will return, unless we are killed in
3423  * which case we return EINTR. This helps in user operations like fallocate etc
3424  * that might get blocked on the iputs.
3425  *
3426  * Return EINTR if we were killed, 0 if nothing's pending
3427  */
3428 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3429 {
3430 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3431 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3432 	if (ret)
3433 		return -EINTR;
3434 	return 0;
3435 }
3436 
3437 /*
3438  * This creates an orphan entry for the given inode in case something goes wrong
3439  * in the middle of an unlink.
3440  */
3441 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3442 		     struct btrfs_inode *inode)
3443 {
3444 	int ret;
3445 
3446 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3447 	if (ret && ret != -EEXIST) {
3448 		btrfs_abort_transaction(trans, ret);
3449 		return ret;
3450 	}
3451 
3452 	return 0;
3453 }
3454 
3455 /*
3456  * We have done the delete so we can go ahead and remove the orphan item for
3457  * this particular inode.
3458  */
3459 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3460 			    struct btrfs_inode *inode)
3461 {
3462 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3463 }
3464 
3465 /*
3466  * this cleans up any orphans that may be left on the list from the last use
3467  * of this root.
3468  */
3469 int btrfs_orphan_cleanup(struct btrfs_root *root)
3470 {
3471 	struct btrfs_fs_info *fs_info = root->fs_info;
3472 	struct btrfs_path *path;
3473 	struct extent_buffer *leaf;
3474 	struct btrfs_key key, found_key;
3475 	struct btrfs_trans_handle *trans;
3476 	struct inode *inode;
3477 	u64 last_objectid = 0;
3478 	int ret = 0, nr_unlink = 0;
3479 
3480 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3481 		return 0;
3482 
3483 	path = btrfs_alloc_path();
3484 	if (!path) {
3485 		ret = -ENOMEM;
3486 		goto out;
3487 	}
3488 	path->reada = READA_BACK;
3489 
3490 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3491 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3492 	key.offset = (u64)-1;
3493 
3494 	while (1) {
3495 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3496 		if (ret < 0)
3497 			goto out;
3498 
3499 		/*
3500 		 * if ret == 0 means we found what we were searching for, which
3501 		 * is weird, but possible, so only screw with path if we didn't
3502 		 * find the key and see if we have stuff that matches
3503 		 */
3504 		if (ret > 0) {
3505 			ret = 0;
3506 			if (path->slots[0] == 0)
3507 				break;
3508 			path->slots[0]--;
3509 		}
3510 
3511 		/* pull out the item */
3512 		leaf = path->nodes[0];
3513 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3514 
3515 		/* make sure the item matches what we want */
3516 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3517 			break;
3518 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3519 			break;
3520 
3521 		/* release the path since we're done with it */
3522 		btrfs_release_path(path);
3523 
3524 		/*
3525 		 * this is where we are basically btrfs_lookup, without the
3526 		 * crossing root thing.  we store the inode number in the
3527 		 * offset of the orphan item.
3528 		 */
3529 
3530 		if (found_key.offset == last_objectid) {
3531 			btrfs_err(fs_info,
3532 				  "Error removing orphan entry, stopping orphan cleanup");
3533 			ret = -EINVAL;
3534 			goto out;
3535 		}
3536 
3537 		last_objectid = found_key.offset;
3538 
3539 		found_key.objectid = found_key.offset;
3540 		found_key.type = BTRFS_INODE_ITEM_KEY;
3541 		found_key.offset = 0;
3542 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3543 		ret = PTR_ERR_OR_ZERO(inode);
3544 		if (ret && ret != -ENOENT)
3545 			goto out;
3546 
3547 		if (ret == -ENOENT && root == fs_info->tree_root) {
3548 			struct btrfs_root *dead_root;
3549 			int is_dead_root = 0;
3550 
3551 			/*
3552 			 * This is an orphan in the tree root. Currently these
3553 			 * could come from 2 sources:
3554 			 *  a) a root (snapshot/subvolume) deletion in progress
3555 			 *  b) a free space cache inode
3556 			 * We need to distinguish those two, as the orphan item
3557 			 * for a root must not get deleted before the deletion
3558 			 * of the snapshot/subvolume's tree completes.
3559 			 *
3560 			 * btrfs_find_orphan_roots() ran before us, which has
3561 			 * found all deleted roots and loaded them into
3562 			 * fs_info->fs_roots_radix. So here we can find if an
3563 			 * orphan item corresponds to a deleted root by looking
3564 			 * up the root from that radix tree.
3565 			 */
3566 
3567 			spin_lock(&fs_info->fs_roots_radix_lock);
3568 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3569 							 (unsigned long)found_key.objectid);
3570 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3571 				is_dead_root = 1;
3572 			spin_unlock(&fs_info->fs_roots_radix_lock);
3573 
3574 			if (is_dead_root) {
3575 				/* prevent this orphan from being found again */
3576 				key.offset = found_key.objectid - 1;
3577 				continue;
3578 			}
3579 
3580 		}
3581 
3582 		/*
3583 		 * If we have an inode with links, there are a couple of
3584 		 * possibilities:
3585 		 *
3586 		 * 1. We were halfway through creating fsverity metadata for the
3587 		 * file. In that case, the orphan item represents incomplete
3588 		 * fsverity metadata which must be cleaned up with
3589 		 * btrfs_drop_verity_items and deleting the orphan item.
3590 
3591 		 * 2. Old kernels (before v3.12) used to create an
3592 		 * orphan item for truncate indicating that there were possibly
3593 		 * extent items past i_size that needed to be deleted. In v3.12,
3594 		 * truncate was changed to update i_size in sync with the extent
3595 		 * items, but the (useless) orphan item was still created. Since
3596 		 * v4.18, we don't create the orphan item for truncate at all.
3597 		 *
3598 		 * So, this item could mean that we need to do a truncate, but
3599 		 * only if this filesystem was last used on a pre-v3.12 kernel
3600 		 * and was not cleanly unmounted. The odds of that are quite
3601 		 * slim, and it's a pain to do the truncate now, so just delete
3602 		 * the orphan item.
3603 		 *
3604 		 * It's also possible that this orphan item was supposed to be
3605 		 * deleted but wasn't. The inode number may have been reused,
3606 		 * but either way, we can delete the orphan item.
3607 		 */
3608 		if (ret == -ENOENT || inode->i_nlink) {
3609 			if (!ret) {
3610 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3611 				iput(inode);
3612 				if (ret)
3613 					goto out;
3614 			}
3615 			trans = btrfs_start_transaction(root, 1);
3616 			if (IS_ERR(trans)) {
3617 				ret = PTR_ERR(trans);
3618 				goto out;
3619 			}
3620 			btrfs_debug(fs_info, "auto deleting %Lu",
3621 				    found_key.objectid);
3622 			ret = btrfs_del_orphan_item(trans, root,
3623 						    found_key.objectid);
3624 			btrfs_end_transaction(trans);
3625 			if (ret)
3626 				goto out;
3627 			continue;
3628 		}
3629 
3630 		nr_unlink++;
3631 
3632 		/* this will do delete_inode and everything for us */
3633 		iput(inode);
3634 	}
3635 	/* release the path since we're done with it */
3636 	btrfs_release_path(path);
3637 
3638 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3639 
3640 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3641 		trans = btrfs_join_transaction(root);
3642 		if (!IS_ERR(trans))
3643 			btrfs_end_transaction(trans);
3644 	}
3645 
3646 	if (nr_unlink)
3647 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3648 
3649 out:
3650 	if (ret)
3651 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3652 	btrfs_free_path(path);
3653 	return ret;
3654 }
3655 
3656 /*
3657  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3658  * don't find any xattrs, we know there can't be any acls.
3659  *
3660  * slot is the slot the inode is in, objectid is the objectid of the inode
3661  */
3662 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3663 					  int slot, u64 objectid,
3664 					  int *first_xattr_slot)
3665 {
3666 	u32 nritems = btrfs_header_nritems(leaf);
3667 	struct btrfs_key found_key;
3668 	static u64 xattr_access = 0;
3669 	static u64 xattr_default = 0;
3670 	int scanned = 0;
3671 
3672 	if (!xattr_access) {
3673 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3674 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3675 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3676 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3677 	}
3678 
3679 	slot++;
3680 	*first_xattr_slot = -1;
3681 	while (slot < nritems) {
3682 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3683 
3684 		/* we found a different objectid, there must not be acls */
3685 		if (found_key.objectid != objectid)
3686 			return 0;
3687 
3688 		/* we found an xattr, assume we've got an acl */
3689 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3690 			if (*first_xattr_slot == -1)
3691 				*first_xattr_slot = slot;
3692 			if (found_key.offset == xattr_access ||
3693 			    found_key.offset == xattr_default)
3694 				return 1;
3695 		}
3696 
3697 		/*
3698 		 * we found a key greater than an xattr key, there can't
3699 		 * be any acls later on
3700 		 */
3701 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3702 			return 0;
3703 
3704 		slot++;
3705 		scanned++;
3706 
3707 		/*
3708 		 * it goes inode, inode backrefs, xattrs, extents,
3709 		 * so if there are a ton of hard links to an inode there can
3710 		 * be a lot of backrefs.  Don't waste time searching too hard,
3711 		 * this is just an optimization
3712 		 */
3713 		if (scanned >= 8)
3714 			break;
3715 	}
3716 	/* we hit the end of the leaf before we found an xattr or
3717 	 * something larger than an xattr.  We have to assume the inode
3718 	 * has acls
3719 	 */
3720 	if (*first_xattr_slot == -1)
3721 		*first_xattr_slot = slot;
3722 	return 1;
3723 }
3724 
3725 /*
3726  * read an inode from the btree into the in-memory inode
3727  */
3728 static int btrfs_read_locked_inode(struct inode *inode,
3729 				   struct btrfs_path *in_path)
3730 {
3731 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3732 	struct btrfs_path *path = in_path;
3733 	struct extent_buffer *leaf;
3734 	struct btrfs_inode_item *inode_item;
3735 	struct btrfs_root *root = BTRFS_I(inode)->root;
3736 	struct btrfs_key location;
3737 	unsigned long ptr;
3738 	int maybe_acls;
3739 	u32 rdev;
3740 	int ret;
3741 	bool filled = false;
3742 	int first_xattr_slot;
3743 
3744 	ret = btrfs_fill_inode(inode, &rdev);
3745 	if (!ret)
3746 		filled = true;
3747 
3748 	if (!path) {
3749 		path = btrfs_alloc_path();
3750 		if (!path)
3751 			return -ENOMEM;
3752 	}
3753 
3754 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3755 
3756 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3757 	if (ret) {
3758 		if (path != in_path)
3759 			btrfs_free_path(path);
3760 		return ret;
3761 	}
3762 
3763 	leaf = path->nodes[0];
3764 
3765 	if (filled)
3766 		goto cache_index;
3767 
3768 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3769 				    struct btrfs_inode_item);
3770 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3771 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3772 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3773 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3774 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3775 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3776 			round_up(i_size_read(inode), fs_info->sectorsize));
3777 
3778 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3779 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3780 
3781 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3782 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3783 
3784 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3785 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3786 
3787 	BTRFS_I(inode)->i_otime.tv_sec =
3788 		btrfs_timespec_sec(leaf, &inode_item->otime);
3789 	BTRFS_I(inode)->i_otime.tv_nsec =
3790 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3791 
3792 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3793 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3794 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3795 
3796 	inode_set_iversion_queried(inode,
3797 				   btrfs_inode_sequence(leaf, inode_item));
3798 	inode->i_generation = BTRFS_I(inode)->generation;
3799 	inode->i_rdev = 0;
3800 	rdev = btrfs_inode_rdev(leaf, inode_item);
3801 
3802 	BTRFS_I(inode)->index_cnt = (u64)-1;
3803 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3804 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3805 
3806 cache_index:
3807 	/*
3808 	 * If we were modified in the current generation and evicted from memory
3809 	 * and then re-read we need to do a full sync since we don't have any
3810 	 * idea about which extents were modified before we were evicted from
3811 	 * cache.
3812 	 *
3813 	 * This is required for both inode re-read from disk and delayed inode
3814 	 * in delayed_nodes_tree.
3815 	 */
3816 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3817 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3818 			&BTRFS_I(inode)->runtime_flags);
3819 
3820 	/*
3821 	 * We don't persist the id of the transaction where an unlink operation
3822 	 * against the inode was last made. So here we assume the inode might
3823 	 * have been evicted, and therefore the exact value of last_unlink_trans
3824 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3825 	 * between the inode and its parent if the inode is fsync'ed and the log
3826 	 * replayed. For example, in the scenario:
3827 	 *
3828 	 * touch mydir/foo
3829 	 * ln mydir/foo mydir/bar
3830 	 * sync
3831 	 * unlink mydir/bar
3832 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3833 	 * xfs_io -c fsync mydir/foo
3834 	 * <power failure>
3835 	 * mount fs, triggers fsync log replay
3836 	 *
3837 	 * We must make sure that when we fsync our inode foo we also log its
3838 	 * parent inode, otherwise after log replay the parent still has the
3839 	 * dentry with the "bar" name but our inode foo has a link count of 1
3840 	 * and doesn't have an inode ref with the name "bar" anymore.
3841 	 *
3842 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3843 	 * but it guarantees correctness at the expense of occasional full
3844 	 * transaction commits on fsync if our inode is a directory, or if our
3845 	 * inode is not a directory, logging its parent unnecessarily.
3846 	 */
3847 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3848 
3849 	/*
3850 	 * Same logic as for last_unlink_trans. We don't persist the generation
3851 	 * of the last transaction where this inode was used for a reflink
3852 	 * operation, so after eviction and reloading the inode we must be
3853 	 * pessimistic and assume the last transaction that modified the inode.
3854 	 */
3855 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3856 
3857 	path->slots[0]++;
3858 	if (inode->i_nlink != 1 ||
3859 	    path->slots[0] >= btrfs_header_nritems(leaf))
3860 		goto cache_acl;
3861 
3862 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3863 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3864 		goto cache_acl;
3865 
3866 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3867 	if (location.type == BTRFS_INODE_REF_KEY) {
3868 		struct btrfs_inode_ref *ref;
3869 
3870 		ref = (struct btrfs_inode_ref *)ptr;
3871 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3872 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3873 		struct btrfs_inode_extref *extref;
3874 
3875 		extref = (struct btrfs_inode_extref *)ptr;
3876 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3877 								     extref);
3878 	}
3879 cache_acl:
3880 	/*
3881 	 * try to precache a NULL acl entry for files that don't have
3882 	 * any xattrs or acls
3883 	 */
3884 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3885 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3886 	if (first_xattr_slot != -1) {
3887 		path->slots[0] = first_xattr_slot;
3888 		ret = btrfs_load_inode_props(inode, path);
3889 		if (ret)
3890 			btrfs_err(fs_info,
3891 				  "error loading props for ino %llu (root %llu): %d",
3892 				  btrfs_ino(BTRFS_I(inode)),
3893 				  root->root_key.objectid, ret);
3894 	}
3895 	if (path != in_path)
3896 		btrfs_free_path(path);
3897 
3898 	if (!maybe_acls)
3899 		cache_no_acl(inode);
3900 
3901 	switch (inode->i_mode & S_IFMT) {
3902 	case S_IFREG:
3903 		inode->i_mapping->a_ops = &btrfs_aops;
3904 		inode->i_fop = &btrfs_file_operations;
3905 		inode->i_op = &btrfs_file_inode_operations;
3906 		break;
3907 	case S_IFDIR:
3908 		inode->i_fop = &btrfs_dir_file_operations;
3909 		inode->i_op = &btrfs_dir_inode_operations;
3910 		break;
3911 	case S_IFLNK:
3912 		inode->i_op = &btrfs_symlink_inode_operations;
3913 		inode_nohighmem(inode);
3914 		inode->i_mapping->a_ops = &btrfs_aops;
3915 		break;
3916 	default:
3917 		inode->i_op = &btrfs_special_inode_operations;
3918 		init_special_inode(inode, inode->i_mode, rdev);
3919 		break;
3920 	}
3921 
3922 	btrfs_sync_inode_flags_to_i_flags(inode);
3923 	return 0;
3924 }
3925 
3926 /*
3927  * given a leaf and an inode, copy the inode fields into the leaf
3928  */
3929 static void fill_inode_item(struct btrfs_trans_handle *trans,
3930 			    struct extent_buffer *leaf,
3931 			    struct btrfs_inode_item *item,
3932 			    struct inode *inode)
3933 {
3934 	struct btrfs_map_token token;
3935 	u64 flags;
3936 
3937 	btrfs_init_map_token(&token, leaf);
3938 
3939 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3940 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3941 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3942 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3943 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3944 
3945 	btrfs_set_token_timespec_sec(&token, &item->atime,
3946 				     inode->i_atime.tv_sec);
3947 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3948 				      inode->i_atime.tv_nsec);
3949 
3950 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3951 				     inode->i_mtime.tv_sec);
3952 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3953 				      inode->i_mtime.tv_nsec);
3954 
3955 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3956 				     inode->i_ctime.tv_sec);
3957 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3958 				      inode->i_ctime.tv_nsec);
3959 
3960 	btrfs_set_token_timespec_sec(&token, &item->otime,
3961 				     BTRFS_I(inode)->i_otime.tv_sec);
3962 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3963 				      BTRFS_I(inode)->i_otime.tv_nsec);
3964 
3965 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3966 	btrfs_set_token_inode_generation(&token, item,
3967 					 BTRFS_I(inode)->generation);
3968 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3969 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3970 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3971 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3972 					  BTRFS_I(inode)->ro_flags);
3973 	btrfs_set_token_inode_flags(&token, item, flags);
3974 	btrfs_set_token_inode_block_group(&token, item, 0);
3975 }
3976 
3977 /*
3978  * copy everything in the in-memory inode into the btree.
3979  */
3980 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3981 				struct btrfs_root *root,
3982 				struct btrfs_inode *inode)
3983 {
3984 	struct btrfs_inode_item *inode_item;
3985 	struct btrfs_path *path;
3986 	struct extent_buffer *leaf;
3987 	int ret;
3988 
3989 	path = btrfs_alloc_path();
3990 	if (!path)
3991 		return -ENOMEM;
3992 
3993 	ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
3994 	if (ret) {
3995 		if (ret > 0)
3996 			ret = -ENOENT;
3997 		goto failed;
3998 	}
3999 
4000 	leaf = path->nodes[0];
4001 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4002 				    struct btrfs_inode_item);
4003 
4004 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4005 	btrfs_mark_buffer_dirty(leaf);
4006 	btrfs_set_inode_last_trans(trans, inode);
4007 	ret = 0;
4008 failed:
4009 	btrfs_free_path(path);
4010 	return ret;
4011 }
4012 
4013 /*
4014  * copy everything in the in-memory inode into the btree.
4015  */
4016 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4017 				struct btrfs_root *root,
4018 				struct btrfs_inode *inode)
4019 {
4020 	struct btrfs_fs_info *fs_info = root->fs_info;
4021 	int ret;
4022 
4023 	/*
4024 	 * If the inode is a free space inode, we can deadlock during commit
4025 	 * if we put it into the delayed code.
4026 	 *
4027 	 * The data relocation inode should also be directly updated
4028 	 * without delay
4029 	 */
4030 	if (!btrfs_is_free_space_inode(inode)
4031 	    && !btrfs_is_data_reloc_root(root)
4032 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4033 		btrfs_update_root_times(trans, root);
4034 
4035 		ret = btrfs_delayed_update_inode(trans, root, inode);
4036 		if (!ret)
4037 			btrfs_set_inode_last_trans(trans, inode);
4038 		return ret;
4039 	}
4040 
4041 	return btrfs_update_inode_item(trans, root, inode);
4042 }
4043 
4044 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4045 				struct btrfs_root *root, struct btrfs_inode *inode)
4046 {
4047 	int ret;
4048 
4049 	ret = btrfs_update_inode(trans, root, inode);
4050 	if (ret == -ENOSPC)
4051 		return btrfs_update_inode_item(trans, root, inode);
4052 	return ret;
4053 }
4054 
4055 /*
4056  * unlink helper that gets used here in inode.c and in the tree logging
4057  * recovery code.  It remove a link in a directory with a given name, and
4058  * also drops the back refs in the inode to the directory
4059  */
4060 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4061 				struct btrfs_inode *dir,
4062 				struct btrfs_inode *inode,
4063 				const char *name, int name_len)
4064 {
4065 	struct btrfs_root *root = dir->root;
4066 	struct btrfs_fs_info *fs_info = root->fs_info;
4067 	struct btrfs_path *path;
4068 	int ret = 0;
4069 	struct btrfs_dir_item *di;
4070 	u64 index;
4071 	u64 ino = btrfs_ino(inode);
4072 	u64 dir_ino = btrfs_ino(dir);
4073 
4074 	path = btrfs_alloc_path();
4075 	if (!path) {
4076 		ret = -ENOMEM;
4077 		goto out;
4078 	}
4079 
4080 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4081 				    name, name_len, -1);
4082 	if (IS_ERR_OR_NULL(di)) {
4083 		ret = di ? PTR_ERR(di) : -ENOENT;
4084 		goto err;
4085 	}
4086 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4087 	if (ret)
4088 		goto err;
4089 	btrfs_release_path(path);
4090 
4091 	/*
4092 	 * If we don't have dir index, we have to get it by looking up
4093 	 * the inode ref, since we get the inode ref, remove it directly,
4094 	 * it is unnecessary to do delayed deletion.
4095 	 *
4096 	 * But if we have dir index, needn't search inode ref to get it.
4097 	 * Since the inode ref is close to the inode item, it is better
4098 	 * that we delay to delete it, and just do this deletion when
4099 	 * we update the inode item.
4100 	 */
4101 	if (inode->dir_index) {
4102 		ret = btrfs_delayed_delete_inode_ref(inode);
4103 		if (!ret) {
4104 			index = inode->dir_index;
4105 			goto skip_backref;
4106 		}
4107 	}
4108 
4109 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4110 				  dir_ino, &index);
4111 	if (ret) {
4112 		btrfs_info(fs_info,
4113 			"failed to delete reference to %.*s, inode %llu parent %llu",
4114 			name_len, name, ino, dir_ino);
4115 		btrfs_abort_transaction(trans, ret);
4116 		goto err;
4117 	}
4118 skip_backref:
4119 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4120 	if (ret) {
4121 		btrfs_abort_transaction(trans, ret);
4122 		goto err;
4123 	}
4124 
4125 	btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4126 				   dir_ino);
4127 	btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, index);
4128 
4129 	/*
4130 	 * If we have a pending delayed iput we could end up with the final iput
4131 	 * being run in btrfs-cleaner context.  If we have enough of these built
4132 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4133 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4134 	 * the inode we can run the delayed iput here without any issues as the
4135 	 * final iput won't be done until after we drop the ref we're currently
4136 	 * holding.
4137 	 */
4138 	btrfs_run_delayed_iput(fs_info, inode);
4139 err:
4140 	btrfs_free_path(path);
4141 	if (ret)
4142 		goto out;
4143 
4144 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4145 	inode_inc_iversion(&inode->vfs_inode);
4146 	inode_inc_iversion(&dir->vfs_inode);
4147 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4148 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4149 	ret = btrfs_update_inode(trans, root, dir);
4150 out:
4151 	return ret;
4152 }
4153 
4154 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4155 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4156 		       const char *name, int name_len)
4157 {
4158 	int ret;
4159 	ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len);
4160 	if (!ret) {
4161 		drop_nlink(&inode->vfs_inode);
4162 		ret = btrfs_update_inode(trans, inode->root, inode);
4163 	}
4164 	return ret;
4165 }
4166 
4167 /*
4168  * helper to start transaction for unlink and rmdir.
4169  *
4170  * unlink and rmdir are special in btrfs, they do not always free space, so
4171  * if we cannot make our reservations the normal way try and see if there is
4172  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4173  * allow the unlink to occur.
4174  */
4175 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4176 {
4177 	struct btrfs_root *root = BTRFS_I(dir)->root;
4178 
4179 	/*
4180 	 * 1 for the possible orphan item
4181 	 * 1 for the dir item
4182 	 * 1 for the dir index
4183 	 * 1 for the inode ref
4184 	 * 1 for the inode
4185 	 */
4186 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
4187 }
4188 
4189 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4190 {
4191 	struct btrfs_trans_handle *trans;
4192 	struct inode *inode = d_inode(dentry);
4193 	int ret;
4194 
4195 	trans = __unlink_start_trans(dir);
4196 	if (IS_ERR(trans))
4197 		return PTR_ERR(trans);
4198 
4199 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4200 			0);
4201 
4202 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir),
4203 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4204 			dentry->d_name.len);
4205 	if (ret)
4206 		goto out;
4207 
4208 	if (inode->i_nlink == 0) {
4209 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4210 		if (ret)
4211 			goto out;
4212 	}
4213 
4214 out:
4215 	btrfs_end_transaction(trans);
4216 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4217 	return ret;
4218 }
4219 
4220 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4221 			       struct inode *dir, struct dentry *dentry)
4222 {
4223 	struct btrfs_root *root = BTRFS_I(dir)->root;
4224 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4225 	struct btrfs_path *path;
4226 	struct extent_buffer *leaf;
4227 	struct btrfs_dir_item *di;
4228 	struct btrfs_key key;
4229 	const char *name = dentry->d_name.name;
4230 	int name_len = dentry->d_name.len;
4231 	u64 index;
4232 	int ret;
4233 	u64 objectid;
4234 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4235 
4236 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4237 		objectid = inode->root->root_key.objectid;
4238 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4239 		objectid = inode->location.objectid;
4240 	} else {
4241 		WARN_ON(1);
4242 		return -EINVAL;
4243 	}
4244 
4245 	path = btrfs_alloc_path();
4246 	if (!path)
4247 		return -ENOMEM;
4248 
4249 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4250 				   name, name_len, -1);
4251 	if (IS_ERR_OR_NULL(di)) {
4252 		ret = di ? PTR_ERR(di) : -ENOENT;
4253 		goto out;
4254 	}
4255 
4256 	leaf = path->nodes[0];
4257 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4258 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4259 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4260 	if (ret) {
4261 		btrfs_abort_transaction(trans, ret);
4262 		goto out;
4263 	}
4264 	btrfs_release_path(path);
4265 
4266 	/*
4267 	 * This is a placeholder inode for a subvolume we didn't have a
4268 	 * reference to at the time of the snapshot creation.  In the meantime
4269 	 * we could have renamed the real subvol link into our snapshot, so
4270 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4271 	 * Instead simply lookup the dir_index_item for this entry so we can
4272 	 * remove it.  Otherwise we know we have a ref to the root and we can
4273 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4274 	 */
4275 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4276 		di = btrfs_search_dir_index_item(root, path, dir_ino,
4277 						 name, name_len);
4278 		if (IS_ERR_OR_NULL(di)) {
4279 			if (!di)
4280 				ret = -ENOENT;
4281 			else
4282 				ret = PTR_ERR(di);
4283 			btrfs_abort_transaction(trans, ret);
4284 			goto out;
4285 		}
4286 
4287 		leaf = path->nodes[0];
4288 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4289 		index = key.offset;
4290 		btrfs_release_path(path);
4291 	} else {
4292 		ret = btrfs_del_root_ref(trans, objectid,
4293 					 root->root_key.objectid, dir_ino,
4294 					 &index, name, name_len);
4295 		if (ret) {
4296 			btrfs_abort_transaction(trans, ret);
4297 			goto out;
4298 		}
4299 	}
4300 
4301 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4302 	if (ret) {
4303 		btrfs_abort_transaction(trans, ret);
4304 		goto out;
4305 	}
4306 
4307 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4308 	inode_inc_iversion(dir);
4309 	dir->i_mtime = dir->i_ctime = current_time(dir);
4310 	ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
4311 	if (ret)
4312 		btrfs_abort_transaction(trans, ret);
4313 out:
4314 	btrfs_free_path(path);
4315 	return ret;
4316 }
4317 
4318 /*
4319  * Helper to check if the subvolume references other subvolumes or if it's
4320  * default.
4321  */
4322 static noinline int may_destroy_subvol(struct btrfs_root *root)
4323 {
4324 	struct btrfs_fs_info *fs_info = root->fs_info;
4325 	struct btrfs_path *path;
4326 	struct btrfs_dir_item *di;
4327 	struct btrfs_key key;
4328 	u64 dir_id;
4329 	int ret;
4330 
4331 	path = btrfs_alloc_path();
4332 	if (!path)
4333 		return -ENOMEM;
4334 
4335 	/* Make sure this root isn't set as the default subvol */
4336 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4337 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4338 				   dir_id, "default", 7, 0);
4339 	if (di && !IS_ERR(di)) {
4340 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4341 		if (key.objectid == root->root_key.objectid) {
4342 			ret = -EPERM;
4343 			btrfs_err(fs_info,
4344 				  "deleting default subvolume %llu is not allowed",
4345 				  key.objectid);
4346 			goto out;
4347 		}
4348 		btrfs_release_path(path);
4349 	}
4350 
4351 	key.objectid = root->root_key.objectid;
4352 	key.type = BTRFS_ROOT_REF_KEY;
4353 	key.offset = (u64)-1;
4354 
4355 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4356 	if (ret < 0)
4357 		goto out;
4358 	BUG_ON(ret == 0);
4359 
4360 	ret = 0;
4361 	if (path->slots[0] > 0) {
4362 		path->slots[0]--;
4363 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4364 		if (key.objectid == root->root_key.objectid &&
4365 		    key.type == BTRFS_ROOT_REF_KEY)
4366 			ret = -ENOTEMPTY;
4367 	}
4368 out:
4369 	btrfs_free_path(path);
4370 	return ret;
4371 }
4372 
4373 /* Delete all dentries for inodes belonging to the root */
4374 static void btrfs_prune_dentries(struct btrfs_root *root)
4375 {
4376 	struct btrfs_fs_info *fs_info = root->fs_info;
4377 	struct rb_node *node;
4378 	struct rb_node *prev;
4379 	struct btrfs_inode *entry;
4380 	struct inode *inode;
4381 	u64 objectid = 0;
4382 
4383 	if (!BTRFS_FS_ERROR(fs_info))
4384 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4385 
4386 	spin_lock(&root->inode_lock);
4387 again:
4388 	node = root->inode_tree.rb_node;
4389 	prev = NULL;
4390 	while (node) {
4391 		prev = node;
4392 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4393 
4394 		if (objectid < btrfs_ino(entry))
4395 			node = node->rb_left;
4396 		else if (objectid > btrfs_ino(entry))
4397 			node = node->rb_right;
4398 		else
4399 			break;
4400 	}
4401 	if (!node) {
4402 		while (prev) {
4403 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4404 			if (objectid <= btrfs_ino(entry)) {
4405 				node = prev;
4406 				break;
4407 			}
4408 			prev = rb_next(prev);
4409 		}
4410 	}
4411 	while (node) {
4412 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4413 		objectid = btrfs_ino(entry) + 1;
4414 		inode = igrab(&entry->vfs_inode);
4415 		if (inode) {
4416 			spin_unlock(&root->inode_lock);
4417 			if (atomic_read(&inode->i_count) > 1)
4418 				d_prune_aliases(inode);
4419 			/*
4420 			 * btrfs_drop_inode will have it removed from the inode
4421 			 * cache when its usage count hits zero.
4422 			 */
4423 			iput(inode);
4424 			cond_resched();
4425 			spin_lock(&root->inode_lock);
4426 			goto again;
4427 		}
4428 
4429 		if (cond_resched_lock(&root->inode_lock))
4430 			goto again;
4431 
4432 		node = rb_next(node);
4433 	}
4434 	spin_unlock(&root->inode_lock);
4435 }
4436 
4437 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4438 {
4439 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4440 	struct btrfs_root *root = BTRFS_I(dir)->root;
4441 	struct inode *inode = d_inode(dentry);
4442 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4443 	struct btrfs_trans_handle *trans;
4444 	struct btrfs_block_rsv block_rsv;
4445 	u64 root_flags;
4446 	int ret;
4447 
4448 	/*
4449 	 * Don't allow to delete a subvolume with send in progress. This is
4450 	 * inside the inode lock so the error handling that has to drop the bit
4451 	 * again is not run concurrently.
4452 	 */
4453 	spin_lock(&dest->root_item_lock);
4454 	if (dest->send_in_progress) {
4455 		spin_unlock(&dest->root_item_lock);
4456 		btrfs_warn(fs_info,
4457 			   "attempt to delete subvolume %llu during send",
4458 			   dest->root_key.objectid);
4459 		return -EPERM;
4460 	}
4461 	root_flags = btrfs_root_flags(&dest->root_item);
4462 	btrfs_set_root_flags(&dest->root_item,
4463 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4464 	spin_unlock(&dest->root_item_lock);
4465 
4466 	down_write(&fs_info->subvol_sem);
4467 
4468 	ret = may_destroy_subvol(dest);
4469 	if (ret)
4470 		goto out_up_write;
4471 
4472 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4473 	/*
4474 	 * One for dir inode,
4475 	 * two for dir entries,
4476 	 * two for root ref/backref.
4477 	 */
4478 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4479 	if (ret)
4480 		goto out_up_write;
4481 
4482 	trans = btrfs_start_transaction(root, 0);
4483 	if (IS_ERR(trans)) {
4484 		ret = PTR_ERR(trans);
4485 		goto out_release;
4486 	}
4487 	trans->block_rsv = &block_rsv;
4488 	trans->bytes_reserved = block_rsv.size;
4489 
4490 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4491 
4492 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4493 	if (ret) {
4494 		btrfs_abort_transaction(trans, ret);
4495 		goto out_end_trans;
4496 	}
4497 
4498 	ret = btrfs_record_root_in_trans(trans, dest);
4499 	if (ret) {
4500 		btrfs_abort_transaction(trans, ret);
4501 		goto out_end_trans;
4502 	}
4503 
4504 	memset(&dest->root_item.drop_progress, 0,
4505 		sizeof(dest->root_item.drop_progress));
4506 	btrfs_set_root_drop_level(&dest->root_item, 0);
4507 	btrfs_set_root_refs(&dest->root_item, 0);
4508 
4509 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4510 		ret = btrfs_insert_orphan_item(trans,
4511 					fs_info->tree_root,
4512 					dest->root_key.objectid);
4513 		if (ret) {
4514 			btrfs_abort_transaction(trans, ret);
4515 			goto out_end_trans;
4516 		}
4517 	}
4518 
4519 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4520 				  BTRFS_UUID_KEY_SUBVOL,
4521 				  dest->root_key.objectid);
4522 	if (ret && ret != -ENOENT) {
4523 		btrfs_abort_transaction(trans, ret);
4524 		goto out_end_trans;
4525 	}
4526 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4527 		ret = btrfs_uuid_tree_remove(trans,
4528 					  dest->root_item.received_uuid,
4529 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4530 					  dest->root_key.objectid);
4531 		if (ret && ret != -ENOENT) {
4532 			btrfs_abort_transaction(trans, ret);
4533 			goto out_end_trans;
4534 		}
4535 	}
4536 
4537 	free_anon_bdev(dest->anon_dev);
4538 	dest->anon_dev = 0;
4539 out_end_trans:
4540 	trans->block_rsv = NULL;
4541 	trans->bytes_reserved = 0;
4542 	ret = btrfs_end_transaction(trans);
4543 	inode->i_flags |= S_DEAD;
4544 out_release:
4545 	btrfs_subvolume_release_metadata(root, &block_rsv);
4546 out_up_write:
4547 	up_write(&fs_info->subvol_sem);
4548 	if (ret) {
4549 		spin_lock(&dest->root_item_lock);
4550 		root_flags = btrfs_root_flags(&dest->root_item);
4551 		btrfs_set_root_flags(&dest->root_item,
4552 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4553 		spin_unlock(&dest->root_item_lock);
4554 	} else {
4555 		d_invalidate(dentry);
4556 		btrfs_prune_dentries(dest);
4557 		ASSERT(dest->send_in_progress == 0);
4558 	}
4559 
4560 	return ret;
4561 }
4562 
4563 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4564 {
4565 	struct inode *inode = d_inode(dentry);
4566 	int err = 0;
4567 	struct btrfs_trans_handle *trans;
4568 	u64 last_unlink_trans;
4569 
4570 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4571 		return -ENOTEMPTY;
4572 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4573 		return btrfs_delete_subvolume(dir, dentry);
4574 
4575 	trans = __unlink_start_trans(dir);
4576 	if (IS_ERR(trans))
4577 		return PTR_ERR(trans);
4578 
4579 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4580 		err = btrfs_unlink_subvol(trans, dir, dentry);
4581 		goto out;
4582 	}
4583 
4584 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4585 	if (err)
4586 		goto out;
4587 
4588 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4589 
4590 	/* now the directory is empty */
4591 	err = btrfs_unlink_inode(trans, BTRFS_I(dir),
4592 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4593 			dentry->d_name.len);
4594 	if (!err) {
4595 		btrfs_i_size_write(BTRFS_I(inode), 0);
4596 		/*
4597 		 * Propagate the last_unlink_trans value of the deleted dir to
4598 		 * its parent directory. This is to prevent an unrecoverable
4599 		 * log tree in the case we do something like this:
4600 		 * 1) create dir foo
4601 		 * 2) create snapshot under dir foo
4602 		 * 3) delete the snapshot
4603 		 * 4) rmdir foo
4604 		 * 5) mkdir foo
4605 		 * 6) fsync foo or some file inside foo
4606 		 */
4607 		if (last_unlink_trans >= trans->transid)
4608 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4609 	}
4610 out:
4611 	btrfs_end_transaction(trans);
4612 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4613 
4614 	return err;
4615 }
4616 
4617 /*
4618  * Return this if we need to call truncate_block for the last bit of the
4619  * truncate.
4620  */
4621 #define NEED_TRUNCATE_BLOCK 1
4622 
4623 /*
4624  * Remove inode items from a given root.
4625  *
4626  * @trans:		A transaction handle.
4627  * @root:		The root from which to remove items.
4628  * @inode:		The inode whose items we want to remove.
4629  * @new_size:		The new i_size for the inode. This is only applicable when
4630  *			@min_type is BTRFS_EXTENT_DATA_KEY, must be 0 otherwise.
4631  * @min_type:		The minimum key type to remove. All keys with a type
4632  *			greater than this value are removed and all keys with
4633  *			this type are removed only if their offset is >= @new_size.
4634  * @extents_found:	Output parameter that will contain the number of file
4635  *			extent items that were removed or adjusted to the new
4636  *			inode i_size. The caller is responsible for initializing
4637  *			the counter. Also, it can be NULL if the caller does not
4638  *			need this counter.
4639  *
4640  * Remove all keys associated with the inode from the given root that have a key
4641  * with a type greater than or equals to @min_type. When @min_type has a value of
4642  * BTRFS_EXTENT_DATA_KEY, only remove file extent items that have an offset value
4643  * greater than or equals to @new_size. If a file extent item that starts before
4644  * @new_size and ends after it is found, its length is adjusted.
4645  *
4646  * Returns: 0 on success, < 0 on error and NEED_TRUNCATE_BLOCK when @min_type is
4647  * BTRFS_EXTENT_DATA_KEY and the caller must truncate the last block.
4648  */
4649 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4650 			       struct btrfs_root *root,
4651 			       struct btrfs_inode *inode,
4652 			       u64 new_size, u32 min_type,
4653 			       u64 *extents_found)
4654 {
4655 	struct btrfs_fs_info *fs_info = root->fs_info;
4656 	struct btrfs_path *path;
4657 	struct extent_buffer *leaf;
4658 	struct btrfs_file_extent_item *fi;
4659 	struct btrfs_key key;
4660 	struct btrfs_key found_key;
4661 	u64 extent_start = 0;
4662 	u64 extent_num_bytes = 0;
4663 	u64 extent_offset = 0;
4664 	u64 item_end = 0;
4665 	u64 last_size = new_size;
4666 	u32 found_type = (u8)-1;
4667 	int found_extent;
4668 	int del_item;
4669 	int pending_del_nr = 0;
4670 	int pending_del_slot = 0;
4671 	int extent_type = -1;
4672 	int ret;
4673 	u64 ino = btrfs_ino(inode);
4674 	u64 bytes_deleted = 0;
4675 	bool be_nice = false;
4676 	bool should_throttle = false;
4677 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4678 	struct extent_state *cached_state = NULL;
4679 
4680 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4681 
4682 	/*
4683 	 * For non-free space inodes and non-shareable roots, we want to back
4684 	 * off from time to time.  This means all inodes in subvolume roots,
4685 	 * reloc roots, and data reloc roots.
4686 	 */
4687 	if (!btrfs_is_free_space_inode(inode) &&
4688 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4689 		be_nice = true;
4690 
4691 	path = btrfs_alloc_path();
4692 	if (!path)
4693 		return -ENOMEM;
4694 	path->reada = READA_BACK;
4695 
4696 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4697 		lock_extent_bits(&inode->io_tree, lock_start, (u64)-1,
4698 				 &cached_state);
4699 
4700 		/*
4701 		 * We want to drop from the next block forward in case this
4702 		 * new size is not block aligned since we will be keeping the
4703 		 * last block of the extent just the way it is.
4704 		 */
4705 		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4706 					fs_info->sectorsize),
4707 					(u64)-1, 0);
4708 	}
4709 
4710 	/*
4711 	 * This function is also used to drop the items in the log tree before
4712 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4713 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4714 	 * items.
4715 	 */
4716 	if (min_type == 0 && root == inode->root)
4717 		btrfs_kill_delayed_inode_items(inode);
4718 
4719 	key.objectid = ino;
4720 	key.offset = (u64)-1;
4721 	key.type = (u8)-1;
4722 
4723 search_again:
4724 	/*
4725 	 * with a 16K leaf size and 128MB extents, you can actually queue
4726 	 * up a huge file in a single leaf.  Most of the time that
4727 	 * bytes_deleted is > 0, it will be huge by the time we get here
4728 	 */
4729 	if (be_nice && bytes_deleted > SZ_32M &&
4730 	    btrfs_should_end_transaction(trans)) {
4731 		ret = -EAGAIN;
4732 		goto out;
4733 	}
4734 
4735 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4736 	if (ret < 0)
4737 		goto out;
4738 
4739 	if (ret > 0) {
4740 		ret = 0;
4741 		/* there are no items in the tree for us to truncate, we're
4742 		 * done
4743 		 */
4744 		if (path->slots[0] == 0)
4745 			goto out;
4746 		path->slots[0]--;
4747 	}
4748 
4749 	while (1) {
4750 		u64 clear_start = 0, clear_len = 0;
4751 
4752 		fi = NULL;
4753 		leaf = path->nodes[0];
4754 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4755 		found_type = found_key.type;
4756 
4757 		if (found_key.objectid != ino)
4758 			break;
4759 
4760 		if (found_type < min_type)
4761 			break;
4762 
4763 		item_end = found_key.offset;
4764 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4765 			fi = btrfs_item_ptr(leaf, path->slots[0],
4766 					    struct btrfs_file_extent_item);
4767 			extent_type = btrfs_file_extent_type(leaf, fi);
4768 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4769 				item_end +=
4770 				    btrfs_file_extent_num_bytes(leaf, fi);
4771 
4772 				trace_btrfs_truncate_show_fi_regular(
4773 					inode, leaf, fi, found_key.offset);
4774 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4775 				item_end += btrfs_file_extent_ram_bytes(leaf,
4776 									fi);
4777 
4778 				trace_btrfs_truncate_show_fi_inline(
4779 					inode, leaf, fi, path->slots[0],
4780 					found_key.offset);
4781 			}
4782 			item_end--;
4783 		}
4784 		if (found_type > min_type) {
4785 			del_item = 1;
4786 		} else {
4787 			if (item_end < new_size)
4788 				break;
4789 			if (found_key.offset >= new_size)
4790 				del_item = 1;
4791 			else
4792 				del_item = 0;
4793 		}
4794 		found_extent = 0;
4795 		/* FIXME, shrink the extent if the ref count is only 1 */
4796 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4797 			goto delete;
4798 
4799 		if (extents_found != NULL)
4800 			(*extents_found)++;
4801 
4802 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4803 			u64 num_dec;
4804 
4805 			clear_start = found_key.offset;
4806 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4807 			if (!del_item) {
4808 				u64 orig_num_bytes =
4809 					btrfs_file_extent_num_bytes(leaf, fi);
4810 				extent_num_bytes = ALIGN(new_size -
4811 						found_key.offset,
4812 						fs_info->sectorsize);
4813 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4814 				btrfs_set_file_extent_num_bytes(leaf, fi,
4815 							 extent_num_bytes);
4816 				num_dec = (orig_num_bytes -
4817 					   extent_num_bytes);
4818 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4819 					     &root->state) &&
4820 				    extent_start != 0)
4821 					inode_sub_bytes(&inode->vfs_inode,
4822 							num_dec);
4823 				btrfs_mark_buffer_dirty(leaf);
4824 			} else {
4825 				extent_num_bytes =
4826 					btrfs_file_extent_disk_num_bytes(leaf,
4827 									 fi);
4828 				extent_offset = found_key.offset -
4829 					btrfs_file_extent_offset(leaf, fi);
4830 
4831 				/* FIXME blocksize != 4096 */
4832 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4833 				if (extent_start != 0) {
4834 					found_extent = 1;
4835 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4836 						     &root->state))
4837 						inode_sub_bytes(&inode->vfs_inode,
4838 								num_dec);
4839 				}
4840 			}
4841 			clear_len = num_dec;
4842 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4843 			/*
4844 			 * we can't truncate inline items that have had
4845 			 * special encodings
4846 			 */
4847 			if (!del_item &&
4848 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4849 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4850 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4851 				u32 size = (u32)(new_size - found_key.offset);
4852 
4853 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4854 				size = btrfs_file_extent_calc_inline_size(size);
4855 				btrfs_truncate_item(path, size, 1);
4856 			} else if (!del_item) {
4857 				/*
4858 				 * We have to bail so the last_size is set to
4859 				 * just before this extent.
4860 				 */
4861 				ret = NEED_TRUNCATE_BLOCK;
4862 				break;
4863 			} else {
4864 				/*
4865 				 * Inline extents are special, we just treat
4866 				 * them as a full sector worth in the file
4867 				 * extent tree just for simplicity sake.
4868 				 */
4869 				clear_len = fs_info->sectorsize;
4870 			}
4871 
4872 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4873 				inode_sub_bytes(&inode->vfs_inode,
4874 						item_end + 1 - new_size);
4875 		}
4876 delete:
4877 		/*
4878 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4879 		 * multiple fsyncs, and in this case we don't want to clear the
4880 		 * file extent range because it's just the log.
4881 		 */
4882 		if (root == inode->root) {
4883 			ret = btrfs_inode_clear_file_extent_range(inode,
4884 						  clear_start, clear_len);
4885 			if (ret) {
4886 				btrfs_abort_transaction(trans, ret);
4887 				break;
4888 			}
4889 		}
4890 
4891 		if (del_item)
4892 			last_size = found_key.offset;
4893 		else
4894 			last_size = new_size;
4895 		if (del_item) {
4896 			if (!pending_del_nr) {
4897 				/* no pending yet, add ourselves */
4898 				pending_del_slot = path->slots[0];
4899 				pending_del_nr = 1;
4900 			} else if (pending_del_nr &&
4901 				   path->slots[0] + 1 == pending_del_slot) {
4902 				/* hop on the pending chunk */
4903 				pending_del_nr++;
4904 				pending_del_slot = path->slots[0];
4905 			} else {
4906 				BUG();
4907 			}
4908 		} else {
4909 			break;
4910 		}
4911 		should_throttle = false;
4912 
4913 		if (found_extent &&
4914 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4915 			struct btrfs_ref ref = { 0 };
4916 
4917 			bytes_deleted += extent_num_bytes;
4918 
4919 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4920 					extent_start, extent_num_bytes, 0);
4921 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4922 					ino, extent_offset,
4923 					root->root_key.objectid, false);
4924 			ret = btrfs_free_extent(trans, &ref);
4925 			if (ret) {
4926 				btrfs_abort_transaction(trans, ret);
4927 				break;
4928 			}
4929 			if (be_nice) {
4930 				if (btrfs_should_throttle_delayed_refs(trans))
4931 					should_throttle = true;
4932 			}
4933 		}
4934 
4935 		if (found_type == BTRFS_INODE_ITEM_KEY)
4936 			break;
4937 
4938 		if (path->slots[0] == 0 ||
4939 		    path->slots[0] != pending_del_slot ||
4940 		    should_throttle) {
4941 			if (pending_del_nr) {
4942 				ret = btrfs_del_items(trans, root, path,
4943 						pending_del_slot,
4944 						pending_del_nr);
4945 				if (ret) {
4946 					btrfs_abort_transaction(trans, ret);
4947 					break;
4948 				}
4949 				pending_del_nr = 0;
4950 			}
4951 			btrfs_release_path(path);
4952 
4953 			/*
4954 			 * We can generate a lot of delayed refs, so we need to
4955 			 * throttle every once and a while and make sure we're
4956 			 * adding enough space to keep up with the work we are
4957 			 * generating.  Since we hold a transaction here we
4958 			 * can't flush, and we don't want to FLUSH_LIMIT because
4959 			 * we could have generated too many delayed refs to
4960 			 * actually allocate, so just bail if we're short and
4961 			 * let the normal reservation dance happen higher up.
4962 			 */
4963 			if (should_throttle) {
4964 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4965 							BTRFS_RESERVE_NO_FLUSH);
4966 				if (ret) {
4967 					ret = -EAGAIN;
4968 					break;
4969 				}
4970 			}
4971 			goto search_again;
4972 		} else {
4973 			path->slots[0]--;
4974 		}
4975 	}
4976 out:
4977 	if (ret >= 0 && pending_del_nr) {
4978 		int err;
4979 
4980 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4981 				      pending_del_nr);
4982 		if (err) {
4983 			btrfs_abort_transaction(trans, err);
4984 			ret = err;
4985 		}
4986 	}
4987 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4988 		ASSERT(last_size >= new_size);
4989 		if (!ret && last_size > new_size)
4990 			last_size = new_size;
4991 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4992 		unlock_extent_cached(&inode->io_tree, lock_start, (u64)-1,
4993 				     &cached_state);
4994 	}
4995 
4996 	btrfs_free_path(path);
4997 	return ret;
4998 }
4999 
5000 /*
5001  * btrfs_truncate_block - read, zero a chunk and write a block
5002  * @inode - inode that we're zeroing
5003  * @from - the offset to start zeroing
5004  * @len - the length to zero, 0 to zero the entire range respective to the
5005  *	offset
5006  * @front - zero up to the offset instead of from the offset on
5007  *
5008  * This will find the block for the "from" offset and cow the block and zero the
5009  * part we want to zero.  This is used with truncate and hole punching.
5010  */
5011 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
5012 			 int front)
5013 {
5014 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
5015 	struct address_space *mapping = inode->vfs_inode.i_mapping;
5016 	struct extent_io_tree *io_tree = &inode->io_tree;
5017 	struct btrfs_ordered_extent *ordered;
5018 	struct extent_state *cached_state = NULL;
5019 	struct extent_changeset *data_reserved = NULL;
5020 	bool only_release_metadata = false;
5021 	u32 blocksize = fs_info->sectorsize;
5022 	pgoff_t index = from >> PAGE_SHIFT;
5023 	unsigned offset = from & (blocksize - 1);
5024 	struct page *page;
5025 	gfp_t mask = btrfs_alloc_write_mask(mapping);
5026 	size_t write_bytes = blocksize;
5027 	int ret = 0;
5028 	u64 block_start;
5029 	u64 block_end;
5030 
5031 	if (IS_ALIGNED(offset, blocksize) &&
5032 	    (!len || IS_ALIGNED(len, blocksize)))
5033 		goto out;
5034 
5035 	block_start = round_down(from, blocksize);
5036 	block_end = block_start + blocksize - 1;
5037 
5038 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
5039 					  blocksize);
5040 	if (ret < 0) {
5041 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) {
5042 			/* For nocow case, no need to reserve data space */
5043 			only_release_metadata = true;
5044 		} else {
5045 			goto out;
5046 		}
5047 	}
5048 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize);
5049 	if (ret < 0) {
5050 		if (!only_release_metadata)
5051 			btrfs_free_reserved_data_space(inode, data_reserved,
5052 						       block_start, blocksize);
5053 		goto out;
5054 	}
5055 again:
5056 	page = find_or_create_page(mapping, index, mask);
5057 	if (!page) {
5058 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
5059 					     blocksize, true);
5060 		btrfs_delalloc_release_extents(inode, blocksize);
5061 		ret = -ENOMEM;
5062 		goto out;
5063 	}
5064 	ret = set_page_extent_mapped(page);
5065 	if (ret < 0)
5066 		goto out_unlock;
5067 
5068 	if (!PageUptodate(page)) {
5069 		ret = btrfs_readpage(NULL, page);
5070 		lock_page(page);
5071 		if (page->mapping != mapping) {
5072 			unlock_page(page);
5073 			put_page(page);
5074 			goto again;
5075 		}
5076 		if (!PageUptodate(page)) {
5077 			ret = -EIO;
5078 			goto out_unlock;
5079 		}
5080 	}
5081 	wait_on_page_writeback(page);
5082 
5083 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
5084 
5085 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
5086 	if (ordered) {
5087 		unlock_extent_cached(io_tree, block_start, block_end,
5088 				     &cached_state);
5089 		unlock_page(page);
5090 		put_page(page);
5091 		btrfs_start_ordered_extent(ordered, 1);
5092 		btrfs_put_ordered_extent(ordered);
5093 		goto again;
5094 	}
5095 
5096 	clear_extent_bit(&inode->io_tree, block_start, block_end,
5097 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
5098 			 0, 0, &cached_state);
5099 
5100 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
5101 					&cached_state);
5102 	if (ret) {
5103 		unlock_extent_cached(io_tree, block_start, block_end,
5104 				     &cached_state);
5105 		goto out_unlock;
5106 	}
5107 
5108 	if (offset != blocksize) {
5109 		if (!len)
5110 			len = blocksize - offset;
5111 		if (front)
5112 			memzero_page(page, (block_start - page_offset(page)),
5113 				     offset);
5114 		else
5115 			memzero_page(page, (block_start - page_offset(page)) + offset,
5116 				     len);
5117 		flush_dcache_page(page);
5118 	}
5119 	btrfs_page_clear_checked(fs_info, page, block_start,
5120 				 block_end + 1 - block_start);
5121 	btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
5122 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
5123 
5124 	if (only_release_metadata)
5125 		set_extent_bit(&inode->io_tree, block_start, block_end,
5126 			       EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL);
5127 
5128 out_unlock:
5129 	if (ret) {
5130 		if (only_release_metadata)
5131 			btrfs_delalloc_release_metadata(inode, blocksize, true);
5132 		else
5133 			btrfs_delalloc_release_space(inode, data_reserved,
5134 					block_start, blocksize, true);
5135 	}
5136 	btrfs_delalloc_release_extents(inode, blocksize);
5137 	unlock_page(page);
5138 	put_page(page);
5139 out:
5140 	if (only_release_metadata)
5141 		btrfs_check_nocow_unlock(inode);
5142 	extent_changeset_free(data_reserved);
5143 	return ret;
5144 }
5145 
5146 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
5147 			     u64 offset, u64 len)
5148 {
5149 	struct btrfs_fs_info *fs_info = root->fs_info;
5150 	struct btrfs_trans_handle *trans;
5151 	struct btrfs_drop_extents_args drop_args = { 0 };
5152 	int ret;
5153 
5154 	/*
5155 	 * If NO_HOLES is enabled, we don't need to do anything.
5156 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5157 	 * or btrfs_update_inode() will be called, which guarantee that the next
5158 	 * fsync will know this inode was changed and needs to be logged.
5159 	 */
5160 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
5161 		return 0;
5162 
5163 	/*
5164 	 * 1 - for the one we're dropping
5165 	 * 1 - for the one we're adding
5166 	 * 1 - for updating the inode.
5167 	 */
5168 	trans = btrfs_start_transaction(root, 3);
5169 	if (IS_ERR(trans))
5170 		return PTR_ERR(trans);
5171 
5172 	drop_args.start = offset;
5173 	drop_args.end = offset + len;
5174 	drop_args.drop_cache = true;
5175 
5176 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
5177 	if (ret) {
5178 		btrfs_abort_transaction(trans, ret);
5179 		btrfs_end_transaction(trans);
5180 		return ret;
5181 	}
5182 
5183 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
5184 			offset, 0, 0, len, 0, len, 0, 0, 0);
5185 	if (ret) {
5186 		btrfs_abort_transaction(trans, ret);
5187 	} else {
5188 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5189 		btrfs_update_inode(trans, root, inode);
5190 	}
5191 	btrfs_end_transaction(trans);
5192 	return ret;
5193 }
5194 
5195 /*
5196  * This function puts in dummy file extents for the area we're creating a hole
5197  * for.  So if we are truncating this file to a larger size we need to insert
5198  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5199  * the range between oldsize and size
5200  */
5201 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
5202 {
5203 	struct btrfs_root *root = inode->root;
5204 	struct btrfs_fs_info *fs_info = root->fs_info;
5205 	struct extent_io_tree *io_tree = &inode->io_tree;
5206 	struct extent_map *em = NULL;
5207 	struct extent_state *cached_state = NULL;
5208 	struct extent_map_tree *em_tree = &inode->extent_tree;
5209 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5210 	u64 block_end = ALIGN(size, fs_info->sectorsize);
5211 	u64 last_byte;
5212 	u64 cur_offset;
5213 	u64 hole_size;
5214 	int err = 0;
5215 
5216 	/*
5217 	 * If our size started in the middle of a block we need to zero out the
5218 	 * rest of the block before we expand the i_size, otherwise we could
5219 	 * expose stale data.
5220 	 */
5221 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
5222 	if (err)
5223 		return err;
5224 
5225 	if (size <= hole_start)
5226 		return 0;
5227 
5228 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5229 					   &cached_state);
5230 	cur_offset = hole_start;
5231 	while (1) {
5232 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5233 				      block_end - cur_offset);
5234 		if (IS_ERR(em)) {
5235 			err = PTR_ERR(em);
5236 			em = NULL;
5237 			break;
5238 		}
5239 		last_byte = min(extent_map_end(em), block_end);
5240 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
5241 		hole_size = last_byte - cur_offset;
5242 
5243 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5244 			struct extent_map *hole_em;
5245 
5246 			err = maybe_insert_hole(root, inode, cur_offset,
5247 						hole_size);
5248 			if (err)
5249 				break;
5250 
5251 			err = btrfs_inode_set_file_extent_range(inode,
5252 							cur_offset, hole_size);
5253 			if (err)
5254 				break;
5255 
5256 			btrfs_drop_extent_cache(inode, cur_offset,
5257 						cur_offset + hole_size - 1, 0);
5258 			hole_em = alloc_extent_map();
5259 			if (!hole_em) {
5260 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5261 					&inode->runtime_flags);
5262 				goto next;
5263 			}
5264 			hole_em->start = cur_offset;
5265 			hole_em->len = hole_size;
5266 			hole_em->orig_start = cur_offset;
5267 
5268 			hole_em->block_start = EXTENT_MAP_HOLE;
5269 			hole_em->block_len = 0;
5270 			hole_em->orig_block_len = 0;
5271 			hole_em->ram_bytes = hole_size;
5272 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
5273 			hole_em->generation = fs_info->generation;
5274 
5275 			while (1) {
5276 				write_lock(&em_tree->lock);
5277 				err = add_extent_mapping(em_tree, hole_em, 1);
5278 				write_unlock(&em_tree->lock);
5279 				if (err != -EEXIST)
5280 					break;
5281 				btrfs_drop_extent_cache(inode, cur_offset,
5282 							cur_offset +
5283 							hole_size - 1, 0);
5284 			}
5285 			free_extent_map(hole_em);
5286 		} else {
5287 			err = btrfs_inode_set_file_extent_range(inode,
5288 							cur_offset, hole_size);
5289 			if (err)
5290 				break;
5291 		}
5292 next:
5293 		free_extent_map(em);
5294 		em = NULL;
5295 		cur_offset = last_byte;
5296 		if (cur_offset >= block_end)
5297 			break;
5298 	}
5299 	free_extent_map(em);
5300 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5301 	return err;
5302 }
5303 
5304 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5305 {
5306 	struct btrfs_root *root = BTRFS_I(inode)->root;
5307 	struct btrfs_trans_handle *trans;
5308 	loff_t oldsize = i_size_read(inode);
5309 	loff_t newsize = attr->ia_size;
5310 	int mask = attr->ia_valid;
5311 	int ret;
5312 
5313 	/*
5314 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5315 	 * special case where we need to update the times despite not having
5316 	 * these flags set.  For all other operations the VFS set these flags
5317 	 * explicitly if it wants a timestamp update.
5318 	 */
5319 	if (newsize != oldsize) {
5320 		inode_inc_iversion(inode);
5321 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5322 			inode->i_ctime = inode->i_mtime =
5323 				current_time(inode);
5324 	}
5325 
5326 	if (newsize > oldsize) {
5327 		/*
5328 		 * Don't do an expanding truncate while snapshotting is ongoing.
5329 		 * This is to ensure the snapshot captures a fully consistent
5330 		 * state of this file - if the snapshot captures this expanding
5331 		 * truncation, it must capture all writes that happened before
5332 		 * this truncation.
5333 		 */
5334 		btrfs_drew_write_lock(&root->snapshot_lock);
5335 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5336 		if (ret) {
5337 			btrfs_drew_write_unlock(&root->snapshot_lock);
5338 			return ret;
5339 		}
5340 
5341 		trans = btrfs_start_transaction(root, 1);
5342 		if (IS_ERR(trans)) {
5343 			btrfs_drew_write_unlock(&root->snapshot_lock);
5344 			return PTR_ERR(trans);
5345 		}
5346 
5347 		i_size_write(inode, newsize);
5348 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5349 		pagecache_isize_extended(inode, oldsize, newsize);
5350 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
5351 		btrfs_drew_write_unlock(&root->snapshot_lock);
5352 		btrfs_end_transaction(trans);
5353 	} else {
5354 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5355 
5356 		if (btrfs_is_zoned(fs_info)) {
5357 			ret = btrfs_wait_ordered_range(inode,
5358 					ALIGN(newsize, fs_info->sectorsize),
5359 					(u64)-1);
5360 			if (ret)
5361 				return ret;
5362 		}
5363 
5364 		/*
5365 		 * We're truncating a file that used to have good data down to
5366 		 * zero. Make sure any new writes to the file get on disk
5367 		 * on close.
5368 		 */
5369 		if (newsize == 0)
5370 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5371 				&BTRFS_I(inode)->runtime_flags);
5372 
5373 		truncate_setsize(inode, newsize);
5374 
5375 		inode_dio_wait(inode);
5376 
5377 		ret = btrfs_truncate(inode, newsize == oldsize);
5378 		if (ret && inode->i_nlink) {
5379 			int err;
5380 
5381 			/*
5382 			 * Truncate failed, so fix up the in-memory size. We
5383 			 * adjusted disk_i_size down as we removed extents, so
5384 			 * wait for disk_i_size to be stable and then update the
5385 			 * in-memory size to match.
5386 			 */
5387 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5388 			if (err)
5389 				return err;
5390 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5391 		}
5392 	}
5393 
5394 	return ret;
5395 }
5396 
5397 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5398 			 struct iattr *attr)
5399 {
5400 	struct inode *inode = d_inode(dentry);
5401 	struct btrfs_root *root = BTRFS_I(inode)->root;
5402 	int err;
5403 
5404 	if (btrfs_root_readonly(root))
5405 		return -EROFS;
5406 
5407 	err = setattr_prepare(mnt_userns, dentry, attr);
5408 	if (err)
5409 		return err;
5410 
5411 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5412 		err = btrfs_setsize(inode, attr);
5413 		if (err)
5414 			return err;
5415 	}
5416 
5417 	if (attr->ia_valid) {
5418 		setattr_copy(mnt_userns, inode, attr);
5419 		inode_inc_iversion(inode);
5420 		err = btrfs_dirty_inode(inode);
5421 
5422 		if (!err && attr->ia_valid & ATTR_MODE)
5423 			err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5424 	}
5425 
5426 	return err;
5427 }
5428 
5429 /*
5430  * While truncating the inode pages during eviction, we get the VFS calling
5431  * btrfs_invalidatepage() against each page of the inode. This is slow because
5432  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5433  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5434  * extent_state structures over and over, wasting lots of time.
5435  *
5436  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5437  * those expensive operations on a per page basis and do only the ordered io
5438  * finishing, while we release here the extent_map and extent_state structures,
5439  * without the excessive merging and splitting.
5440  */
5441 static void evict_inode_truncate_pages(struct inode *inode)
5442 {
5443 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5444 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5445 	struct rb_node *node;
5446 
5447 	ASSERT(inode->i_state & I_FREEING);
5448 	truncate_inode_pages_final(&inode->i_data);
5449 
5450 	write_lock(&map_tree->lock);
5451 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
5452 		struct extent_map *em;
5453 
5454 		node = rb_first_cached(&map_tree->map);
5455 		em = rb_entry(node, struct extent_map, rb_node);
5456 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5457 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5458 		remove_extent_mapping(map_tree, em);
5459 		free_extent_map(em);
5460 		if (need_resched()) {
5461 			write_unlock(&map_tree->lock);
5462 			cond_resched();
5463 			write_lock(&map_tree->lock);
5464 		}
5465 	}
5466 	write_unlock(&map_tree->lock);
5467 
5468 	/*
5469 	 * Keep looping until we have no more ranges in the io tree.
5470 	 * We can have ongoing bios started by readahead that have
5471 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5472 	 * still in progress (unlocked the pages in the bio but did not yet
5473 	 * unlocked the ranges in the io tree). Therefore this means some
5474 	 * ranges can still be locked and eviction started because before
5475 	 * submitting those bios, which are executed by a separate task (work
5476 	 * queue kthread), inode references (inode->i_count) were not taken
5477 	 * (which would be dropped in the end io callback of each bio).
5478 	 * Therefore here we effectively end up waiting for those bios and
5479 	 * anyone else holding locked ranges without having bumped the inode's
5480 	 * reference count - if we don't do it, when they access the inode's
5481 	 * io_tree to unlock a range it may be too late, leading to an
5482 	 * use-after-free issue.
5483 	 */
5484 	spin_lock(&io_tree->lock);
5485 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5486 		struct extent_state *state;
5487 		struct extent_state *cached_state = NULL;
5488 		u64 start;
5489 		u64 end;
5490 		unsigned state_flags;
5491 
5492 		node = rb_first(&io_tree->state);
5493 		state = rb_entry(node, struct extent_state, rb_node);
5494 		start = state->start;
5495 		end = state->end;
5496 		state_flags = state->state;
5497 		spin_unlock(&io_tree->lock);
5498 
5499 		lock_extent_bits(io_tree, start, end, &cached_state);
5500 
5501 		/*
5502 		 * If still has DELALLOC flag, the extent didn't reach disk,
5503 		 * and its reserved space won't be freed by delayed_ref.
5504 		 * So we need to free its reserved space here.
5505 		 * (Refer to comment in btrfs_invalidatepage, case 2)
5506 		 *
5507 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5508 		 */
5509 		if (state_flags & EXTENT_DELALLOC)
5510 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5511 					       end - start + 1);
5512 
5513 		clear_extent_bit(io_tree, start, end,
5514 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5515 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5516 				 &cached_state);
5517 
5518 		cond_resched();
5519 		spin_lock(&io_tree->lock);
5520 	}
5521 	spin_unlock(&io_tree->lock);
5522 }
5523 
5524 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5525 							struct btrfs_block_rsv *rsv)
5526 {
5527 	struct btrfs_fs_info *fs_info = root->fs_info;
5528 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5529 	struct btrfs_trans_handle *trans;
5530 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5531 	int ret;
5532 
5533 	/*
5534 	 * Eviction should be taking place at some place safe because of our
5535 	 * delayed iputs.  However the normal flushing code will run delayed
5536 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5537 	 *
5538 	 * We reserve the delayed_refs_extra here again because we can't use
5539 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5540 	 * above.  We reserve our extra bit here because we generate a ton of
5541 	 * delayed refs activity by truncating.
5542 	 *
5543 	 * If we cannot make our reservation we'll attempt to steal from the
5544 	 * global reserve, because we really want to be able to free up space.
5545 	 */
5546 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5547 				     BTRFS_RESERVE_FLUSH_EVICT);
5548 	if (ret) {
5549 		/*
5550 		 * Try to steal from the global reserve if there is space for
5551 		 * it.
5552 		 */
5553 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5554 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5555 			btrfs_warn(fs_info,
5556 				   "could not allocate space for delete; will truncate on mount");
5557 			return ERR_PTR(-ENOSPC);
5558 		}
5559 		delayed_refs_extra = 0;
5560 	}
5561 
5562 	trans = btrfs_join_transaction(root);
5563 	if (IS_ERR(trans))
5564 		return trans;
5565 
5566 	if (delayed_refs_extra) {
5567 		trans->block_rsv = &fs_info->trans_block_rsv;
5568 		trans->bytes_reserved = delayed_refs_extra;
5569 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5570 					delayed_refs_extra, 1);
5571 	}
5572 	return trans;
5573 }
5574 
5575 void btrfs_evict_inode(struct inode *inode)
5576 {
5577 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5578 	struct btrfs_trans_handle *trans;
5579 	struct btrfs_root *root = BTRFS_I(inode)->root;
5580 	struct btrfs_block_rsv *rsv;
5581 	int ret;
5582 
5583 	trace_btrfs_inode_evict(inode);
5584 
5585 	if (!root) {
5586 		fsverity_cleanup_inode(inode);
5587 		clear_inode(inode);
5588 		return;
5589 	}
5590 
5591 	evict_inode_truncate_pages(inode);
5592 
5593 	if (inode->i_nlink &&
5594 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5595 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5596 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5597 		goto no_delete;
5598 
5599 	if (is_bad_inode(inode))
5600 		goto no_delete;
5601 
5602 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5603 
5604 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5605 		goto no_delete;
5606 
5607 	if (inode->i_nlink > 0) {
5608 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5609 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5610 		goto no_delete;
5611 	}
5612 
5613 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5614 	if (ret)
5615 		goto no_delete;
5616 
5617 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5618 	if (!rsv)
5619 		goto no_delete;
5620 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5621 	rsv->failfast = 1;
5622 
5623 	btrfs_i_size_write(BTRFS_I(inode), 0);
5624 
5625 	while (1) {
5626 		trans = evict_refill_and_join(root, rsv);
5627 		if (IS_ERR(trans))
5628 			goto free_rsv;
5629 
5630 		trans->block_rsv = rsv;
5631 
5632 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
5633 						 0, 0, NULL);
5634 		trans->block_rsv = &fs_info->trans_block_rsv;
5635 		btrfs_end_transaction(trans);
5636 		btrfs_btree_balance_dirty(fs_info);
5637 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5638 			goto free_rsv;
5639 		else if (!ret)
5640 			break;
5641 	}
5642 
5643 	/*
5644 	 * Errors here aren't a big deal, it just means we leave orphan items in
5645 	 * the tree. They will be cleaned up on the next mount. If the inode
5646 	 * number gets reused, cleanup deletes the orphan item without doing
5647 	 * anything, and unlink reuses the existing orphan item.
5648 	 *
5649 	 * If it turns out that we are dropping too many of these, we might want
5650 	 * to add a mechanism for retrying these after a commit.
5651 	 */
5652 	trans = evict_refill_and_join(root, rsv);
5653 	if (!IS_ERR(trans)) {
5654 		trans->block_rsv = rsv;
5655 		btrfs_orphan_del(trans, BTRFS_I(inode));
5656 		trans->block_rsv = &fs_info->trans_block_rsv;
5657 		btrfs_end_transaction(trans);
5658 	}
5659 
5660 free_rsv:
5661 	btrfs_free_block_rsv(fs_info, rsv);
5662 no_delete:
5663 	/*
5664 	 * If we didn't successfully delete, the orphan item will still be in
5665 	 * the tree and we'll retry on the next mount. Again, we might also want
5666 	 * to retry these periodically in the future.
5667 	 */
5668 	btrfs_remove_delayed_node(BTRFS_I(inode));
5669 	fsverity_cleanup_inode(inode);
5670 	clear_inode(inode);
5671 }
5672 
5673 /*
5674  * Return the key found in the dir entry in the location pointer, fill @type
5675  * with BTRFS_FT_*, and return 0.
5676  *
5677  * If no dir entries were found, returns -ENOENT.
5678  * If found a corrupted location in dir entry, returns -EUCLEAN.
5679  */
5680 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5681 			       struct btrfs_key *location, u8 *type)
5682 {
5683 	const char *name = dentry->d_name.name;
5684 	int namelen = dentry->d_name.len;
5685 	struct btrfs_dir_item *di;
5686 	struct btrfs_path *path;
5687 	struct btrfs_root *root = BTRFS_I(dir)->root;
5688 	int ret = 0;
5689 
5690 	path = btrfs_alloc_path();
5691 	if (!path)
5692 		return -ENOMEM;
5693 
5694 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5695 			name, namelen, 0);
5696 	if (IS_ERR_OR_NULL(di)) {
5697 		ret = di ? PTR_ERR(di) : -ENOENT;
5698 		goto out;
5699 	}
5700 
5701 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5702 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5703 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5704 		ret = -EUCLEAN;
5705 		btrfs_warn(root->fs_info,
5706 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5707 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5708 			   location->objectid, location->type, location->offset);
5709 	}
5710 	if (!ret)
5711 		*type = btrfs_dir_type(path->nodes[0], di);
5712 out:
5713 	btrfs_free_path(path);
5714 	return ret;
5715 }
5716 
5717 /*
5718  * when we hit a tree root in a directory, the btrfs part of the inode
5719  * needs to be changed to reflect the root directory of the tree root.  This
5720  * is kind of like crossing a mount point.
5721  */
5722 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5723 				    struct inode *dir,
5724 				    struct dentry *dentry,
5725 				    struct btrfs_key *location,
5726 				    struct btrfs_root **sub_root)
5727 {
5728 	struct btrfs_path *path;
5729 	struct btrfs_root *new_root;
5730 	struct btrfs_root_ref *ref;
5731 	struct extent_buffer *leaf;
5732 	struct btrfs_key key;
5733 	int ret;
5734 	int err = 0;
5735 
5736 	path = btrfs_alloc_path();
5737 	if (!path) {
5738 		err = -ENOMEM;
5739 		goto out;
5740 	}
5741 
5742 	err = -ENOENT;
5743 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5744 	key.type = BTRFS_ROOT_REF_KEY;
5745 	key.offset = location->objectid;
5746 
5747 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5748 	if (ret) {
5749 		if (ret < 0)
5750 			err = ret;
5751 		goto out;
5752 	}
5753 
5754 	leaf = path->nodes[0];
5755 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5756 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5757 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5758 		goto out;
5759 
5760 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5761 				   (unsigned long)(ref + 1),
5762 				   dentry->d_name.len);
5763 	if (ret)
5764 		goto out;
5765 
5766 	btrfs_release_path(path);
5767 
5768 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5769 	if (IS_ERR(new_root)) {
5770 		err = PTR_ERR(new_root);
5771 		goto out;
5772 	}
5773 
5774 	*sub_root = new_root;
5775 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5776 	location->type = BTRFS_INODE_ITEM_KEY;
5777 	location->offset = 0;
5778 	err = 0;
5779 out:
5780 	btrfs_free_path(path);
5781 	return err;
5782 }
5783 
5784 static void inode_tree_add(struct inode *inode)
5785 {
5786 	struct btrfs_root *root = BTRFS_I(inode)->root;
5787 	struct btrfs_inode *entry;
5788 	struct rb_node **p;
5789 	struct rb_node *parent;
5790 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5791 	u64 ino = btrfs_ino(BTRFS_I(inode));
5792 
5793 	if (inode_unhashed(inode))
5794 		return;
5795 	parent = NULL;
5796 	spin_lock(&root->inode_lock);
5797 	p = &root->inode_tree.rb_node;
5798 	while (*p) {
5799 		parent = *p;
5800 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5801 
5802 		if (ino < btrfs_ino(entry))
5803 			p = &parent->rb_left;
5804 		else if (ino > btrfs_ino(entry))
5805 			p = &parent->rb_right;
5806 		else {
5807 			WARN_ON(!(entry->vfs_inode.i_state &
5808 				  (I_WILL_FREE | I_FREEING)));
5809 			rb_replace_node(parent, new, &root->inode_tree);
5810 			RB_CLEAR_NODE(parent);
5811 			spin_unlock(&root->inode_lock);
5812 			return;
5813 		}
5814 	}
5815 	rb_link_node(new, parent, p);
5816 	rb_insert_color(new, &root->inode_tree);
5817 	spin_unlock(&root->inode_lock);
5818 }
5819 
5820 static void inode_tree_del(struct btrfs_inode *inode)
5821 {
5822 	struct btrfs_root *root = inode->root;
5823 	int empty = 0;
5824 
5825 	spin_lock(&root->inode_lock);
5826 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5827 		rb_erase(&inode->rb_node, &root->inode_tree);
5828 		RB_CLEAR_NODE(&inode->rb_node);
5829 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5830 	}
5831 	spin_unlock(&root->inode_lock);
5832 
5833 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5834 		spin_lock(&root->inode_lock);
5835 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5836 		spin_unlock(&root->inode_lock);
5837 		if (empty)
5838 			btrfs_add_dead_root(root);
5839 	}
5840 }
5841 
5842 
5843 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5844 {
5845 	struct btrfs_iget_args *args = p;
5846 
5847 	inode->i_ino = args->ino;
5848 	BTRFS_I(inode)->location.objectid = args->ino;
5849 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5850 	BTRFS_I(inode)->location.offset = 0;
5851 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5852 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5853 	return 0;
5854 }
5855 
5856 static int btrfs_find_actor(struct inode *inode, void *opaque)
5857 {
5858 	struct btrfs_iget_args *args = opaque;
5859 
5860 	return args->ino == BTRFS_I(inode)->location.objectid &&
5861 		args->root == BTRFS_I(inode)->root;
5862 }
5863 
5864 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5865 				       struct btrfs_root *root)
5866 {
5867 	struct inode *inode;
5868 	struct btrfs_iget_args args;
5869 	unsigned long hashval = btrfs_inode_hash(ino, root);
5870 
5871 	args.ino = ino;
5872 	args.root = root;
5873 
5874 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5875 			     btrfs_init_locked_inode,
5876 			     (void *)&args);
5877 	return inode;
5878 }
5879 
5880 /*
5881  * Get an inode object given its inode number and corresponding root.
5882  * Path can be preallocated to prevent recursing back to iget through
5883  * allocator. NULL is also valid but may require an additional allocation
5884  * later.
5885  */
5886 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5887 			      struct btrfs_root *root, struct btrfs_path *path)
5888 {
5889 	struct inode *inode;
5890 
5891 	inode = btrfs_iget_locked(s, ino, root);
5892 	if (!inode)
5893 		return ERR_PTR(-ENOMEM);
5894 
5895 	if (inode->i_state & I_NEW) {
5896 		int ret;
5897 
5898 		ret = btrfs_read_locked_inode(inode, path);
5899 		if (!ret) {
5900 			inode_tree_add(inode);
5901 			unlock_new_inode(inode);
5902 		} else {
5903 			iget_failed(inode);
5904 			/*
5905 			 * ret > 0 can come from btrfs_search_slot called by
5906 			 * btrfs_read_locked_inode, this means the inode item
5907 			 * was not found.
5908 			 */
5909 			if (ret > 0)
5910 				ret = -ENOENT;
5911 			inode = ERR_PTR(ret);
5912 		}
5913 	}
5914 
5915 	return inode;
5916 }
5917 
5918 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5919 {
5920 	return btrfs_iget_path(s, ino, root, NULL);
5921 }
5922 
5923 static struct inode *new_simple_dir(struct super_block *s,
5924 				    struct btrfs_key *key,
5925 				    struct btrfs_root *root)
5926 {
5927 	struct inode *inode = new_inode(s);
5928 
5929 	if (!inode)
5930 		return ERR_PTR(-ENOMEM);
5931 
5932 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5933 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5934 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5935 
5936 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5937 	/*
5938 	 * We only need lookup, the rest is read-only and there's no inode
5939 	 * associated with the dentry
5940 	 */
5941 	inode->i_op = &simple_dir_inode_operations;
5942 	inode->i_opflags &= ~IOP_XATTR;
5943 	inode->i_fop = &simple_dir_operations;
5944 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5945 	inode->i_mtime = current_time(inode);
5946 	inode->i_atime = inode->i_mtime;
5947 	inode->i_ctime = inode->i_mtime;
5948 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5949 
5950 	return inode;
5951 }
5952 
5953 static inline u8 btrfs_inode_type(struct inode *inode)
5954 {
5955 	/*
5956 	 * Compile-time asserts that generic FT_* types still match
5957 	 * BTRFS_FT_* types
5958 	 */
5959 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5960 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5961 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5962 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5963 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5964 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5965 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5966 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5967 
5968 	return fs_umode_to_ftype(inode->i_mode);
5969 }
5970 
5971 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5972 {
5973 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5974 	struct inode *inode;
5975 	struct btrfs_root *root = BTRFS_I(dir)->root;
5976 	struct btrfs_root *sub_root = root;
5977 	struct btrfs_key location;
5978 	u8 di_type = 0;
5979 	int ret = 0;
5980 
5981 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5982 		return ERR_PTR(-ENAMETOOLONG);
5983 
5984 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5985 	if (ret < 0)
5986 		return ERR_PTR(ret);
5987 
5988 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5989 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5990 		if (IS_ERR(inode))
5991 			return inode;
5992 
5993 		/* Do extra check against inode mode with di_type */
5994 		if (btrfs_inode_type(inode) != di_type) {
5995 			btrfs_crit(fs_info,
5996 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5997 				  inode->i_mode, btrfs_inode_type(inode),
5998 				  di_type);
5999 			iput(inode);
6000 			return ERR_PTR(-EUCLEAN);
6001 		}
6002 		return inode;
6003 	}
6004 
6005 	ret = fixup_tree_root_location(fs_info, dir, dentry,
6006 				       &location, &sub_root);
6007 	if (ret < 0) {
6008 		if (ret != -ENOENT)
6009 			inode = ERR_PTR(ret);
6010 		else
6011 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
6012 	} else {
6013 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
6014 	}
6015 	if (root != sub_root)
6016 		btrfs_put_root(sub_root);
6017 
6018 	if (!IS_ERR(inode) && root != sub_root) {
6019 		down_read(&fs_info->cleanup_work_sem);
6020 		if (!sb_rdonly(inode->i_sb))
6021 			ret = btrfs_orphan_cleanup(sub_root);
6022 		up_read(&fs_info->cleanup_work_sem);
6023 		if (ret) {
6024 			iput(inode);
6025 			inode = ERR_PTR(ret);
6026 		}
6027 	}
6028 
6029 	return inode;
6030 }
6031 
6032 static int btrfs_dentry_delete(const struct dentry *dentry)
6033 {
6034 	struct btrfs_root *root;
6035 	struct inode *inode = d_inode(dentry);
6036 
6037 	if (!inode && !IS_ROOT(dentry))
6038 		inode = d_inode(dentry->d_parent);
6039 
6040 	if (inode) {
6041 		root = BTRFS_I(inode)->root;
6042 		if (btrfs_root_refs(&root->root_item) == 0)
6043 			return 1;
6044 
6045 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6046 			return 1;
6047 	}
6048 	return 0;
6049 }
6050 
6051 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
6052 				   unsigned int flags)
6053 {
6054 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
6055 
6056 	if (inode == ERR_PTR(-ENOENT))
6057 		inode = NULL;
6058 	return d_splice_alias(inode, dentry);
6059 }
6060 
6061 /*
6062  * All this infrastructure exists because dir_emit can fault, and we are holding
6063  * the tree lock when doing readdir.  For now just allocate a buffer and copy
6064  * our information into that, and then dir_emit from the buffer.  This is
6065  * similar to what NFS does, only we don't keep the buffer around in pagecache
6066  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
6067  * copy_to_user_inatomic so we don't have to worry about page faulting under the
6068  * tree lock.
6069  */
6070 static int btrfs_opendir(struct inode *inode, struct file *file)
6071 {
6072 	struct btrfs_file_private *private;
6073 
6074 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
6075 	if (!private)
6076 		return -ENOMEM;
6077 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
6078 	if (!private->filldir_buf) {
6079 		kfree(private);
6080 		return -ENOMEM;
6081 	}
6082 	file->private_data = private;
6083 	return 0;
6084 }
6085 
6086 struct dir_entry {
6087 	u64 ino;
6088 	u64 offset;
6089 	unsigned type;
6090 	int name_len;
6091 };
6092 
6093 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
6094 {
6095 	while (entries--) {
6096 		struct dir_entry *entry = addr;
6097 		char *name = (char *)(entry + 1);
6098 
6099 		ctx->pos = get_unaligned(&entry->offset);
6100 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6101 					 get_unaligned(&entry->ino),
6102 					 get_unaligned(&entry->type)))
6103 			return 1;
6104 		addr += sizeof(struct dir_entry) +
6105 			get_unaligned(&entry->name_len);
6106 		ctx->pos++;
6107 	}
6108 	return 0;
6109 }
6110 
6111 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
6112 {
6113 	struct inode *inode = file_inode(file);
6114 	struct btrfs_root *root = BTRFS_I(inode)->root;
6115 	struct btrfs_file_private *private = file->private_data;
6116 	struct btrfs_dir_item *di;
6117 	struct btrfs_key key;
6118 	struct btrfs_key found_key;
6119 	struct btrfs_path *path;
6120 	void *addr;
6121 	struct list_head ins_list;
6122 	struct list_head del_list;
6123 	int ret;
6124 	struct extent_buffer *leaf;
6125 	int slot;
6126 	char *name_ptr;
6127 	int name_len;
6128 	int entries = 0;
6129 	int total_len = 0;
6130 	bool put = false;
6131 	struct btrfs_key location;
6132 
6133 	if (!dir_emit_dots(file, ctx))
6134 		return 0;
6135 
6136 	path = btrfs_alloc_path();
6137 	if (!path)
6138 		return -ENOMEM;
6139 
6140 	addr = private->filldir_buf;
6141 	path->reada = READA_FORWARD;
6142 
6143 	INIT_LIST_HEAD(&ins_list);
6144 	INIT_LIST_HEAD(&del_list);
6145 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
6146 
6147 again:
6148 	key.type = BTRFS_DIR_INDEX_KEY;
6149 	key.offset = ctx->pos;
6150 	key.objectid = btrfs_ino(BTRFS_I(inode));
6151 
6152 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6153 	if (ret < 0)
6154 		goto err;
6155 
6156 	while (1) {
6157 		struct dir_entry *entry;
6158 
6159 		leaf = path->nodes[0];
6160 		slot = path->slots[0];
6161 		if (slot >= btrfs_header_nritems(leaf)) {
6162 			ret = btrfs_next_leaf(root, path);
6163 			if (ret < 0)
6164 				goto err;
6165 			else if (ret > 0)
6166 				break;
6167 			continue;
6168 		}
6169 
6170 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6171 
6172 		if (found_key.objectid != key.objectid)
6173 			break;
6174 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
6175 			break;
6176 		if (found_key.offset < ctx->pos)
6177 			goto next;
6178 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
6179 			goto next;
6180 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
6181 		name_len = btrfs_dir_name_len(leaf, di);
6182 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
6183 		    PAGE_SIZE) {
6184 			btrfs_release_path(path);
6185 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6186 			if (ret)
6187 				goto nopos;
6188 			addr = private->filldir_buf;
6189 			entries = 0;
6190 			total_len = 0;
6191 			goto again;
6192 		}
6193 
6194 		entry = addr;
6195 		put_unaligned(name_len, &entry->name_len);
6196 		name_ptr = (char *)(entry + 1);
6197 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6198 				   name_len);
6199 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
6200 				&entry->type);
6201 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6202 		put_unaligned(location.objectid, &entry->ino);
6203 		put_unaligned(found_key.offset, &entry->offset);
6204 		entries++;
6205 		addr += sizeof(struct dir_entry) + name_len;
6206 		total_len += sizeof(struct dir_entry) + name_len;
6207 next:
6208 		path->slots[0]++;
6209 	}
6210 	btrfs_release_path(path);
6211 
6212 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6213 	if (ret)
6214 		goto nopos;
6215 
6216 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6217 	if (ret)
6218 		goto nopos;
6219 
6220 	/*
6221 	 * Stop new entries from being returned after we return the last
6222 	 * entry.
6223 	 *
6224 	 * New directory entries are assigned a strictly increasing
6225 	 * offset.  This means that new entries created during readdir
6226 	 * are *guaranteed* to be seen in the future by that readdir.
6227 	 * This has broken buggy programs which operate on names as
6228 	 * they're returned by readdir.  Until we re-use freed offsets
6229 	 * we have this hack to stop new entries from being returned
6230 	 * under the assumption that they'll never reach this huge
6231 	 * offset.
6232 	 *
6233 	 * This is being careful not to overflow 32bit loff_t unless the
6234 	 * last entry requires it because doing so has broken 32bit apps
6235 	 * in the past.
6236 	 */
6237 	if (ctx->pos >= INT_MAX)
6238 		ctx->pos = LLONG_MAX;
6239 	else
6240 		ctx->pos = INT_MAX;
6241 nopos:
6242 	ret = 0;
6243 err:
6244 	if (put)
6245 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6246 	btrfs_free_path(path);
6247 	return ret;
6248 }
6249 
6250 /*
6251  * This is somewhat expensive, updating the tree every time the
6252  * inode changes.  But, it is most likely to find the inode in cache.
6253  * FIXME, needs more benchmarking...there are no reasons other than performance
6254  * to keep or drop this code.
6255  */
6256 static int btrfs_dirty_inode(struct inode *inode)
6257 {
6258 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6259 	struct btrfs_root *root = BTRFS_I(inode)->root;
6260 	struct btrfs_trans_handle *trans;
6261 	int ret;
6262 
6263 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6264 		return 0;
6265 
6266 	trans = btrfs_join_transaction(root);
6267 	if (IS_ERR(trans))
6268 		return PTR_ERR(trans);
6269 
6270 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6271 	if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
6272 		/* whoops, lets try again with the full transaction */
6273 		btrfs_end_transaction(trans);
6274 		trans = btrfs_start_transaction(root, 1);
6275 		if (IS_ERR(trans))
6276 			return PTR_ERR(trans);
6277 
6278 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
6279 	}
6280 	btrfs_end_transaction(trans);
6281 	if (BTRFS_I(inode)->delayed_node)
6282 		btrfs_balance_delayed_items(fs_info);
6283 
6284 	return ret;
6285 }
6286 
6287 /*
6288  * This is a copy of file_update_time.  We need this so we can return error on
6289  * ENOSPC for updating the inode in the case of file write and mmap writes.
6290  */
6291 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6292 			     int flags)
6293 {
6294 	struct btrfs_root *root = BTRFS_I(inode)->root;
6295 	bool dirty = flags & ~S_VERSION;
6296 
6297 	if (btrfs_root_readonly(root))
6298 		return -EROFS;
6299 
6300 	if (flags & S_VERSION)
6301 		dirty |= inode_maybe_inc_iversion(inode, dirty);
6302 	if (flags & S_CTIME)
6303 		inode->i_ctime = *now;
6304 	if (flags & S_MTIME)
6305 		inode->i_mtime = *now;
6306 	if (flags & S_ATIME)
6307 		inode->i_atime = *now;
6308 	return dirty ? btrfs_dirty_inode(inode) : 0;
6309 }
6310 
6311 /*
6312  * find the highest existing sequence number in a directory
6313  * and then set the in-memory index_cnt variable to reflect
6314  * free sequence numbers
6315  */
6316 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6317 {
6318 	struct btrfs_root *root = inode->root;
6319 	struct btrfs_key key, found_key;
6320 	struct btrfs_path *path;
6321 	struct extent_buffer *leaf;
6322 	int ret;
6323 
6324 	key.objectid = btrfs_ino(inode);
6325 	key.type = BTRFS_DIR_INDEX_KEY;
6326 	key.offset = (u64)-1;
6327 
6328 	path = btrfs_alloc_path();
6329 	if (!path)
6330 		return -ENOMEM;
6331 
6332 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6333 	if (ret < 0)
6334 		goto out;
6335 	/* FIXME: we should be able to handle this */
6336 	if (ret == 0)
6337 		goto out;
6338 	ret = 0;
6339 
6340 	/*
6341 	 * MAGIC NUMBER EXPLANATION:
6342 	 * since we search a directory based on f_pos we have to start at 2
6343 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6344 	 * else has to start at 2
6345 	 */
6346 	if (path->slots[0] == 0) {
6347 		inode->index_cnt = 2;
6348 		goto out;
6349 	}
6350 
6351 	path->slots[0]--;
6352 
6353 	leaf = path->nodes[0];
6354 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6355 
6356 	if (found_key.objectid != btrfs_ino(inode) ||
6357 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
6358 		inode->index_cnt = 2;
6359 		goto out;
6360 	}
6361 
6362 	inode->index_cnt = found_key.offset + 1;
6363 out:
6364 	btrfs_free_path(path);
6365 	return ret;
6366 }
6367 
6368 /*
6369  * helper to find a free sequence number in a given directory.  This current
6370  * code is very simple, later versions will do smarter things in the btree
6371  */
6372 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6373 {
6374 	int ret = 0;
6375 
6376 	if (dir->index_cnt == (u64)-1) {
6377 		ret = btrfs_inode_delayed_dir_index_count(dir);
6378 		if (ret) {
6379 			ret = btrfs_set_inode_index_count(dir);
6380 			if (ret)
6381 				return ret;
6382 		}
6383 	}
6384 
6385 	*index = dir->index_cnt;
6386 	dir->index_cnt++;
6387 
6388 	return ret;
6389 }
6390 
6391 static int btrfs_insert_inode_locked(struct inode *inode)
6392 {
6393 	struct btrfs_iget_args args;
6394 
6395 	args.ino = BTRFS_I(inode)->location.objectid;
6396 	args.root = BTRFS_I(inode)->root;
6397 
6398 	return insert_inode_locked4(inode,
6399 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6400 		   btrfs_find_actor, &args);
6401 }
6402 
6403 /*
6404  * Inherit flags from the parent inode.
6405  *
6406  * Currently only the compression flags and the cow flags are inherited.
6407  */
6408 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6409 {
6410 	unsigned int flags;
6411 
6412 	if (!dir)
6413 		return;
6414 
6415 	flags = BTRFS_I(dir)->flags;
6416 
6417 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6418 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6419 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6420 	} else if (flags & BTRFS_INODE_COMPRESS) {
6421 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6422 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6423 	}
6424 
6425 	if (flags & BTRFS_INODE_NODATACOW) {
6426 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6427 		if (S_ISREG(inode->i_mode))
6428 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6429 	}
6430 
6431 	btrfs_sync_inode_flags_to_i_flags(inode);
6432 }
6433 
6434 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6435 				     struct btrfs_root *root,
6436 				     struct user_namespace *mnt_userns,
6437 				     struct inode *dir,
6438 				     const char *name, int name_len,
6439 				     u64 ref_objectid, u64 objectid,
6440 				     umode_t mode, u64 *index)
6441 {
6442 	struct btrfs_fs_info *fs_info = root->fs_info;
6443 	struct inode *inode;
6444 	struct btrfs_inode_item *inode_item;
6445 	struct btrfs_key *location;
6446 	struct btrfs_path *path;
6447 	struct btrfs_inode_ref *ref;
6448 	struct btrfs_key key[2];
6449 	u32 sizes[2];
6450 	struct btrfs_item_batch batch;
6451 	unsigned long ptr;
6452 	unsigned int nofs_flag;
6453 	int ret;
6454 
6455 	path = btrfs_alloc_path();
6456 	if (!path)
6457 		return ERR_PTR(-ENOMEM);
6458 
6459 	nofs_flag = memalloc_nofs_save();
6460 	inode = new_inode(fs_info->sb);
6461 	memalloc_nofs_restore(nofs_flag);
6462 	if (!inode) {
6463 		btrfs_free_path(path);
6464 		return ERR_PTR(-ENOMEM);
6465 	}
6466 
6467 	/*
6468 	 * O_TMPFILE, set link count to 0, so that after this point,
6469 	 * we fill in an inode item with the correct link count.
6470 	 */
6471 	if (!name)
6472 		set_nlink(inode, 0);
6473 
6474 	/*
6475 	 * we have to initialize this early, so we can reclaim the inode
6476 	 * number if we fail afterwards in this function.
6477 	 */
6478 	inode->i_ino = objectid;
6479 
6480 	if (dir && name) {
6481 		trace_btrfs_inode_request(dir);
6482 
6483 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6484 		if (ret) {
6485 			btrfs_free_path(path);
6486 			iput(inode);
6487 			return ERR_PTR(ret);
6488 		}
6489 	} else if (dir) {
6490 		*index = 0;
6491 	}
6492 	/*
6493 	 * index_cnt is ignored for everything but a dir,
6494 	 * btrfs_set_inode_index_count has an explanation for the magic
6495 	 * number
6496 	 */
6497 	BTRFS_I(inode)->index_cnt = 2;
6498 	BTRFS_I(inode)->dir_index = *index;
6499 	BTRFS_I(inode)->root = btrfs_grab_root(root);
6500 	BTRFS_I(inode)->generation = trans->transid;
6501 	inode->i_generation = BTRFS_I(inode)->generation;
6502 
6503 	/*
6504 	 * We could have gotten an inode number from somebody who was fsynced
6505 	 * and then removed in this same transaction, so let's just set full
6506 	 * sync since it will be a full sync anyway and this will blow away the
6507 	 * old info in the log.
6508 	 */
6509 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6510 
6511 	key[0].objectid = objectid;
6512 	key[0].type = BTRFS_INODE_ITEM_KEY;
6513 	key[0].offset = 0;
6514 
6515 	sizes[0] = sizeof(struct btrfs_inode_item);
6516 
6517 	if (name) {
6518 		/*
6519 		 * Start new inodes with an inode_ref. This is slightly more
6520 		 * efficient for small numbers of hard links since they will
6521 		 * be packed into one item. Extended refs will kick in if we
6522 		 * add more hard links than can fit in the ref item.
6523 		 */
6524 		key[1].objectid = objectid;
6525 		key[1].type = BTRFS_INODE_REF_KEY;
6526 		key[1].offset = ref_objectid;
6527 
6528 		sizes[1] = name_len + sizeof(*ref);
6529 	}
6530 
6531 	location = &BTRFS_I(inode)->location;
6532 	location->objectid = objectid;
6533 	location->offset = 0;
6534 	location->type = BTRFS_INODE_ITEM_KEY;
6535 
6536 	ret = btrfs_insert_inode_locked(inode);
6537 	if (ret < 0) {
6538 		iput(inode);
6539 		goto fail;
6540 	}
6541 
6542 	batch.keys = &key[0];
6543 	batch.data_sizes = &sizes[0];
6544 	batch.total_data_size = sizes[0] + (name ? sizes[1] : 0);
6545 	batch.nr = name ? 2 : 1;
6546 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6547 	if (ret != 0)
6548 		goto fail_unlock;
6549 
6550 	inode_init_owner(mnt_userns, inode, dir, mode);
6551 	inode_set_bytes(inode, 0);
6552 
6553 	inode->i_mtime = current_time(inode);
6554 	inode->i_atime = inode->i_mtime;
6555 	inode->i_ctime = inode->i_mtime;
6556 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6557 
6558 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6559 				  struct btrfs_inode_item);
6560 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6561 			     sizeof(*inode_item));
6562 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6563 
6564 	if (name) {
6565 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6566 				     struct btrfs_inode_ref);
6567 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6568 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6569 		ptr = (unsigned long)(ref + 1);
6570 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6571 	}
6572 
6573 	btrfs_mark_buffer_dirty(path->nodes[0]);
6574 	btrfs_free_path(path);
6575 
6576 	btrfs_inherit_iflags(inode, dir);
6577 
6578 	if (S_ISREG(mode)) {
6579 		if (btrfs_test_opt(fs_info, NODATASUM))
6580 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6581 		if (btrfs_test_opt(fs_info, NODATACOW))
6582 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6583 				BTRFS_INODE_NODATASUM;
6584 	}
6585 
6586 	inode_tree_add(inode);
6587 
6588 	trace_btrfs_inode_new(inode);
6589 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6590 
6591 	btrfs_update_root_times(trans, root);
6592 
6593 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6594 	if (ret)
6595 		btrfs_err(fs_info,
6596 			  "error inheriting props for ino %llu (root %llu): %d",
6597 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6598 
6599 	return inode;
6600 
6601 fail_unlock:
6602 	discard_new_inode(inode);
6603 fail:
6604 	if (dir && name)
6605 		BTRFS_I(dir)->index_cnt--;
6606 	btrfs_free_path(path);
6607 	return ERR_PTR(ret);
6608 }
6609 
6610 /*
6611  * utility function to add 'inode' into 'parent_inode' with
6612  * a give name and a given sequence number.
6613  * if 'add_backref' is true, also insert a backref from the
6614  * inode to the parent directory.
6615  */
6616 int btrfs_add_link(struct btrfs_trans_handle *trans,
6617 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6618 		   const char *name, int name_len, int add_backref, u64 index)
6619 {
6620 	int ret = 0;
6621 	struct btrfs_key key;
6622 	struct btrfs_root *root = parent_inode->root;
6623 	u64 ino = btrfs_ino(inode);
6624 	u64 parent_ino = btrfs_ino(parent_inode);
6625 
6626 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6627 		memcpy(&key, &inode->root->root_key, sizeof(key));
6628 	} else {
6629 		key.objectid = ino;
6630 		key.type = BTRFS_INODE_ITEM_KEY;
6631 		key.offset = 0;
6632 	}
6633 
6634 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6635 		ret = btrfs_add_root_ref(trans, key.objectid,
6636 					 root->root_key.objectid, parent_ino,
6637 					 index, name, name_len);
6638 	} else if (add_backref) {
6639 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6640 					     parent_ino, index);
6641 	}
6642 
6643 	/* Nothing to clean up yet */
6644 	if (ret)
6645 		return ret;
6646 
6647 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6648 				    btrfs_inode_type(&inode->vfs_inode), index);
6649 	if (ret == -EEXIST || ret == -EOVERFLOW)
6650 		goto fail_dir_item;
6651 	else if (ret) {
6652 		btrfs_abort_transaction(trans, ret);
6653 		return ret;
6654 	}
6655 
6656 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6657 			   name_len * 2);
6658 	inode_inc_iversion(&parent_inode->vfs_inode);
6659 	/*
6660 	 * If we are replaying a log tree, we do not want to update the mtime
6661 	 * and ctime of the parent directory with the current time, since the
6662 	 * log replay procedure is responsible for setting them to their correct
6663 	 * values (the ones it had when the fsync was done).
6664 	 */
6665 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6666 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6667 
6668 		parent_inode->vfs_inode.i_mtime = now;
6669 		parent_inode->vfs_inode.i_ctime = now;
6670 	}
6671 	ret = btrfs_update_inode(trans, root, parent_inode);
6672 	if (ret)
6673 		btrfs_abort_transaction(trans, ret);
6674 	return ret;
6675 
6676 fail_dir_item:
6677 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6678 		u64 local_index;
6679 		int err;
6680 		err = btrfs_del_root_ref(trans, key.objectid,
6681 					 root->root_key.objectid, parent_ino,
6682 					 &local_index, name, name_len);
6683 		if (err)
6684 			btrfs_abort_transaction(trans, err);
6685 	} else if (add_backref) {
6686 		u64 local_index;
6687 		int err;
6688 
6689 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6690 					  ino, parent_ino, &local_index);
6691 		if (err)
6692 			btrfs_abort_transaction(trans, err);
6693 	}
6694 
6695 	/* Return the original error code */
6696 	return ret;
6697 }
6698 
6699 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6700 			    struct btrfs_inode *dir, struct dentry *dentry,
6701 			    struct btrfs_inode *inode, int backref, u64 index)
6702 {
6703 	int err = btrfs_add_link(trans, dir, inode,
6704 				 dentry->d_name.name, dentry->d_name.len,
6705 				 backref, index);
6706 	if (err > 0)
6707 		err = -EEXIST;
6708 	return err;
6709 }
6710 
6711 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6712 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6713 {
6714 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6715 	struct btrfs_trans_handle *trans;
6716 	struct btrfs_root *root = BTRFS_I(dir)->root;
6717 	struct inode *inode = NULL;
6718 	int err;
6719 	u64 objectid;
6720 	u64 index = 0;
6721 
6722 	/*
6723 	 * 2 for inode item and ref
6724 	 * 2 for dir items
6725 	 * 1 for xattr if selinux is on
6726 	 */
6727 	trans = btrfs_start_transaction(root, 5);
6728 	if (IS_ERR(trans))
6729 		return PTR_ERR(trans);
6730 
6731 	err = btrfs_get_free_objectid(root, &objectid);
6732 	if (err)
6733 		goto out_unlock;
6734 
6735 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6736 			dentry->d_name.name, dentry->d_name.len,
6737 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6738 	if (IS_ERR(inode)) {
6739 		err = PTR_ERR(inode);
6740 		inode = NULL;
6741 		goto out_unlock;
6742 	}
6743 
6744 	/*
6745 	* If the active LSM wants to access the inode during
6746 	* d_instantiate it needs these. Smack checks to see
6747 	* if the filesystem supports xattrs by looking at the
6748 	* ops vector.
6749 	*/
6750 	inode->i_op = &btrfs_special_inode_operations;
6751 	init_special_inode(inode, inode->i_mode, rdev);
6752 
6753 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6754 	if (err)
6755 		goto out_unlock;
6756 
6757 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6758 			0, index);
6759 	if (err)
6760 		goto out_unlock;
6761 
6762 	btrfs_update_inode(trans, root, BTRFS_I(inode));
6763 	d_instantiate_new(dentry, inode);
6764 
6765 out_unlock:
6766 	btrfs_end_transaction(trans);
6767 	btrfs_btree_balance_dirty(fs_info);
6768 	if (err && inode) {
6769 		inode_dec_link_count(inode);
6770 		discard_new_inode(inode);
6771 	}
6772 	return err;
6773 }
6774 
6775 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6776 			struct dentry *dentry, umode_t mode, bool excl)
6777 {
6778 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6779 	struct btrfs_trans_handle *trans;
6780 	struct btrfs_root *root = BTRFS_I(dir)->root;
6781 	struct inode *inode = NULL;
6782 	int err;
6783 	u64 objectid;
6784 	u64 index = 0;
6785 
6786 	/*
6787 	 * 2 for inode item and ref
6788 	 * 2 for dir items
6789 	 * 1 for xattr if selinux is on
6790 	 */
6791 	trans = btrfs_start_transaction(root, 5);
6792 	if (IS_ERR(trans))
6793 		return PTR_ERR(trans);
6794 
6795 	err = btrfs_get_free_objectid(root, &objectid);
6796 	if (err)
6797 		goto out_unlock;
6798 
6799 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6800 			dentry->d_name.name, dentry->d_name.len,
6801 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
6802 	if (IS_ERR(inode)) {
6803 		err = PTR_ERR(inode);
6804 		inode = NULL;
6805 		goto out_unlock;
6806 	}
6807 	/*
6808 	* If the active LSM wants to access the inode during
6809 	* d_instantiate it needs these. Smack checks to see
6810 	* if the filesystem supports xattrs by looking at the
6811 	* ops vector.
6812 	*/
6813 	inode->i_fop = &btrfs_file_operations;
6814 	inode->i_op = &btrfs_file_inode_operations;
6815 	inode->i_mapping->a_ops = &btrfs_aops;
6816 
6817 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6818 	if (err)
6819 		goto out_unlock;
6820 
6821 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6822 	if (err)
6823 		goto out_unlock;
6824 
6825 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6826 			0, index);
6827 	if (err)
6828 		goto out_unlock;
6829 
6830 	d_instantiate_new(dentry, inode);
6831 
6832 out_unlock:
6833 	btrfs_end_transaction(trans);
6834 	if (err && inode) {
6835 		inode_dec_link_count(inode);
6836 		discard_new_inode(inode);
6837 	}
6838 	btrfs_btree_balance_dirty(fs_info);
6839 	return err;
6840 }
6841 
6842 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6843 		      struct dentry *dentry)
6844 {
6845 	struct btrfs_trans_handle *trans = NULL;
6846 	struct btrfs_root *root = BTRFS_I(dir)->root;
6847 	struct inode *inode = d_inode(old_dentry);
6848 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6849 	u64 index;
6850 	int err;
6851 	int drop_inode = 0;
6852 
6853 	/* do not allow sys_link's with other subvols of the same device */
6854 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6855 		return -EXDEV;
6856 
6857 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6858 		return -EMLINK;
6859 
6860 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6861 	if (err)
6862 		goto fail;
6863 
6864 	/*
6865 	 * 2 items for inode and inode ref
6866 	 * 2 items for dir items
6867 	 * 1 item for parent inode
6868 	 * 1 item for orphan item deletion if O_TMPFILE
6869 	 */
6870 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6871 	if (IS_ERR(trans)) {
6872 		err = PTR_ERR(trans);
6873 		trans = NULL;
6874 		goto fail;
6875 	}
6876 
6877 	/* There are several dir indexes for this inode, clear the cache. */
6878 	BTRFS_I(inode)->dir_index = 0ULL;
6879 	inc_nlink(inode);
6880 	inode_inc_iversion(inode);
6881 	inode->i_ctime = current_time(inode);
6882 	ihold(inode);
6883 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6884 
6885 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6886 			1, index);
6887 
6888 	if (err) {
6889 		drop_inode = 1;
6890 	} else {
6891 		struct dentry *parent = dentry->d_parent;
6892 
6893 		err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6894 		if (err)
6895 			goto fail;
6896 		if (inode->i_nlink == 1) {
6897 			/*
6898 			 * If new hard link count is 1, it's a file created
6899 			 * with open(2) O_TMPFILE flag.
6900 			 */
6901 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6902 			if (err)
6903 				goto fail;
6904 		}
6905 		d_instantiate(dentry, inode);
6906 		btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
6907 	}
6908 
6909 fail:
6910 	if (trans)
6911 		btrfs_end_transaction(trans);
6912 	if (drop_inode) {
6913 		inode_dec_link_count(inode);
6914 		iput(inode);
6915 	}
6916 	btrfs_btree_balance_dirty(fs_info);
6917 	return err;
6918 }
6919 
6920 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6921 		       struct dentry *dentry, umode_t mode)
6922 {
6923 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6924 	struct inode *inode = NULL;
6925 	struct btrfs_trans_handle *trans;
6926 	struct btrfs_root *root = BTRFS_I(dir)->root;
6927 	int err = 0;
6928 	u64 objectid = 0;
6929 	u64 index = 0;
6930 
6931 	/*
6932 	 * 2 items for inode and ref
6933 	 * 2 items for dir items
6934 	 * 1 for xattr if selinux is on
6935 	 */
6936 	trans = btrfs_start_transaction(root, 5);
6937 	if (IS_ERR(trans))
6938 		return PTR_ERR(trans);
6939 
6940 	err = btrfs_get_free_objectid(root, &objectid);
6941 	if (err)
6942 		goto out_fail;
6943 
6944 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
6945 			dentry->d_name.name, dentry->d_name.len,
6946 			btrfs_ino(BTRFS_I(dir)), objectid,
6947 			S_IFDIR | mode, &index);
6948 	if (IS_ERR(inode)) {
6949 		err = PTR_ERR(inode);
6950 		inode = NULL;
6951 		goto out_fail;
6952 	}
6953 
6954 	/* these must be set before we unlock the inode */
6955 	inode->i_op = &btrfs_dir_inode_operations;
6956 	inode->i_fop = &btrfs_dir_file_operations;
6957 
6958 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6959 	if (err)
6960 		goto out_fail;
6961 
6962 	btrfs_i_size_write(BTRFS_I(inode), 0);
6963 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
6964 	if (err)
6965 		goto out_fail;
6966 
6967 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6968 			dentry->d_name.name,
6969 			dentry->d_name.len, 0, index);
6970 	if (err)
6971 		goto out_fail;
6972 
6973 	d_instantiate_new(dentry, inode);
6974 
6975 out_fail:
6976 	btrfs_end_transaction(trans);
6977 	if (err && inode) {
6978 		inode_dec_link_count(inode);
6979 		discard_new_inode(inode);
6980 	}
6981 	btrfs_btree_balance_dirty(fs_info);
6982 	return err;
6983 }
6984 
6985 static noinline int uncompress_inline(struct btrfs_path *path,
6986 				      struct page *page,
6987 				      size_t pg_offset, u64 extent_offset,
6988 				      struct btrfs_file_extent_item *item)
6989 {
6990 	int ret;
6991 	struct extent_buffer *leaf = path->nodes[0];
6992 	char *tmp;
6993 	size_t max_size;
6994 	unsigned long inline_size;
6995 	unsigned long ptr;
6996 	int compress_type;
6997 
6998 	WARN_ON(pg_offset != 0);
6999 	compress_type = btrfs_file_extent_compression(leaf, item);
7000 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
7001 	inline_size = btrfs_file_extent_inline_item_len(leaf,
7002 					btrfs_item_nr(path->slots[0]));
7003 	tmp = kmalloc(inline_size, GFP_NOFS);
7004 	if (!tmp)
7005 		return -ENOMEM;
7006 	ptr = btrfs_file_extent_inline_start(item);
7007 
7008 	read_extent_buffer(leaf, tmp, ptr, inline_size);
7009 
7010 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
7011 	ret = btrfs_decompress(compress_type, tmp, page,
7012 			       extent_offset, inline_size, max_size);
7013 
7014 	/*
7015 	 * decompression code contains a memset to fill in any space between the end
7016 	 * of the uncompressed data and the end of max_size in case the decompressed
7017 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
7018 	 * the end of an inline extent and the beginning of the next block, so we
7019 	 * cover that region here.
7020 	 */
7021 
7022 	if (max_size + pg_offset < PAGE_SIZE)
7023 		memzero_page(page,  pg_offset + max_size,
7024 			     PAGE_SIZE - max_size - pg_offset);
7025 	kfree(tmp);
7026 	return ret;
7027 }
7028 
7029 /**
7030  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
7031  * @inode:	file to search in
7032  * @page:	page to read extent data into if the extent is inline
7033  * @pg_offset:	offset into @page to copy to
7034  * @start:	file offset
7035  * @len:	length of range starting at @start
7036  *
7037  * This returns the first &struct extent_map which overlaps with the given
7038  * range, reading it from the B-tree and caching it if necessary. Note that
7039  * there may be more extents which overlap the given range after the returned
7040  * extent_map.
7041  *
7042  * If @page is not NULL and the extent is inline, this also reads the extent
7043  * data directly into the page and marks the extent up to date in the io_tree.
7044  *
7045  * Return: ERR_PTR on error, non-NULL extent_map on success.
7046  */
7047 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
7048 				    struct page *page, size_t pg_offset,
7049 				    u64 start, u64 len)
7050 {
7051 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7052 	int ret = 0;
7053 	u64 extent_start = 0;
7054 	u64 extent_end = 0;
7055 	u64 objectid = btrfs_ino(inode);
7056 	int extent_type = -1;
7057 	struct btrfs_path *path = NULL;
7058 	struct btrfs_root *root = inode->root;
7059 	struct btrfs_file_extent_item *item;
7060 	struct extent_buffer *leaf;
7061 	struct btrfs_key found_key;
7062 	struct extent_map *em = NULL;
7063 	struct extent_map_tree *em_tree = &inode->extent_tree;
7064 	struct extent_io_tree *io_tree = &inode->io_tree;
7065 
7066 	read_lock(&em_tree->lock);
7067 	em = lookup_extent_mapping(em_tree, start, len);
7068 	read_unlock(&em_tree->lock);
7069 
7070 	if (em) {
7071 		if (em->start > start || em->start + em->len <= start)
7072 			free_extent_map(em);
7073 		else if (em->block_start == EXTENT_MAP_INLINE && page)
7074 			free_extent_map(em);
7075 		else
7076 			goto out;
7077 	}
7078 	em = alloc_extent_map();
7079 	if (!em) {
7080 		ret = -ENOMEM;
7081 		goto out;
7082 	}
7083 	em->start = EXTENT_MAP_HOLE;
7084 	em->orig_start = EXTENT_MAP_HOLE;
7085 	em->len = (u64)-1;
7086 	em->block_len = (u64)-1;
7087 
7088 	path = btrfs_alloc_path();
7089 	if (!path) {
7090 		ret = -ENOMEM;
7091 		goto out;
7092 	}
7093 
7094 	/* Chances are we'll be called again, so go ahead and do readahead */
7095 	path->reada = READA_FORWARD;
7096 
7097 	/*
7098 	 * The same explanation in load_free_space_cache applies here as well,
7099 	 * we only read when we're loading the free space cache, and at that
7100 	 * point the commit_root has everything we need.
7101 	 */
7102 	if (btrfs_is_free_space_inode(inode)) {
7103 		path->search_commit_root = 1;
7104 		path->skip_locking = 1;
7105 	}
7106 
7107 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
7108 	if (ret < 0) {
7109 		goto out;
7110 	} else if (ret > 0) {
7111 		if (path->slots[0] == 0)
7112 			goto not_found;
7113 		path->slots[0]--;
7114 		ret = 0;
7115 	}
7116 
7117 	leaf = path->nodes[0];
7118 	item = btrfs_item_ptr(leaf, path->slots[0],
7119 			      struct btrfs_file_extent_item);
7120 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7121 	if (found_key.objectid != objectid ||
7122 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
7123 		/*
7124 		 * If we backup past the first extent we want to move forward
7125 		 * and see if there is an extent in front of us, otherwise we'll
7126 		 * say there is a hole for our whole search range which can
7127 		 * cause problems.
7128 		 */
7129 		extent_end = start;
7130 		goto next;
7131 	}
7132 
7133 	extent_type = btrfs_file_extent_type(leaf, item);
7134 	extent_start = found_key.offset;
7135 	extent_end = btrfs_file_extent_end(path);
7136 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7137 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7138 		/* Only regular file could have regular/prealloc extent */
7139 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
7140 			ret = -EUCLEAN;
7141 			btrfs_crit(fs_info,
7142 		"regular/prealloc extent found for non-regular inode %llu",
7143 				   btrfs_ino(inode));
7144 			goto out;
7145 		}
7146 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7147 						       extent_start);
7148 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7149 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7150 						      path->slots[0],
7151 						      extent_start);
7152 	}
7153 next:
7154 	if (start >= extent_end) {
7155 		path->slots[0]++;
7156 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7157 			ret = btrfs_next_leaf(root, path);
7158 			if (ret < 0)
7159 				goto out;
7160 			else if (ret > 0)
7161 				goto not_found;
7162 
7163 			leaf = path->nodes[0];
7164 		}
7165 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7166 		if (found_key.objectid != objectid ||
7167 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
7168 			goto not_found;
7169 		if (start + len <= found_key.offset)
7170 			goto not_found;
7171 		if (start > found_key.offset)
7172 			goto next;
7173 
7174 		/* New extent overlaps with existing one */
7175 		em->start = start;
7176 		em->orig_start = start;
7177 		em->len = found_key.offset - start;
7178 		em->block_start = EXTENT_MAP_HOLE;
7179 		goto insert;
7180 	}
7181 
7182 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7183 
7184 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
7185 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
7186 		goto insert;
7187 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
7188 		unsigned long ptr;
7189 		char *map;
7190 		size_t size;
7191 		size_t extent_offset;
7192 		size_t copy_size;
7193 
7194 		if (!page)
7195 			goto out;
7196 
7197 		size = btrfs_file_extent_ram_bytes(leaf, item);
7198 		extent_offset = page_offset(page) + pg_offset - extent_start;
7199 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7200 				  size - extent_offset);
7201 		em->start = extent_start + extent_offset;
7202 		em->len = ALIGN(copy_size, fs_info->sectorsize);
7203 		em->orig_block_len = em->len;
7204 		em->orig_start = em->start;
7205 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
7206 
7207 		if (!PageUptodate(page)) {
7208 			if (btrfs_file_extent_compression(leaf, item) !=
7209 			    BTRFS_COMPRESS_NONE) {
7210 				ret = uncompress_inline(path, page, pg_offset,
7211 							extent_offset, item);
7212 				if (ret)
7213 					goto out;
7214 			} else {
7215 				map = kmap_local_page(page);
7216 				read_extent_buffer(leaf, map + pg_offset, ptr,
7217 						   copy_size);
7218 				if (pg_offset + copy_size < PAGE_SIZE) {
7219 					memset(map + pg_offset + copy_size, 0,
7220 					       PAGE_SIZE - pg_offset -
7221 					       copy_size);
7222 				}
7223 				kunmap_local(map);
7224 			}
7225 			flush_dcache_page(page);
7226 		}
7227 		set_extent_uptodate(io_tree, em->start,
7228 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
7229 		goto insert;
7230 	}
7231 not_found:
7232 	em->start = start;
7233 	em->orig_start = start;
7234 	em->len = len;
7235 	em->block_start = EXTENT_MAP_HOLE;
7236 insert:
7237 	ret = 0;
7238 	btrfs_release_path(path);
7239 	if (em->start > start || extent_map_end(em) <= start) {
7240 		btrfs_err(fs_info,
7241 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
7242 			  em->start, em->len, start, len);
7243 		ret = -EIO;
7244 		goto out;
7245 	}
7246 
7247 	write_lock(&em_tree->lock);
7248 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
7249 	write_unlock(&em_tree->lock);
7250 out:
7251 	btrfs_free_path(path);
7252 
7253 	trace_btrfs_get_extent(root, inode, em);
7254 
7255 	if (ret) {
7256 		free_extent_map(em);
7257 		return ERR_PTR(ret);
7258 	}
7259 	return em;
7260 }
7261 
7262 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7263 					   u64 start, u64 len)
7264 {
7265 	struct extent_map *em;
7266 	struct extent_map *hole_em = NULL;
7267 	u64 delalloc_start = start;
7268 	u64 end;
7269 	u64 delalloc_len;
7270 	u64 delalloc_end;
7271 	int err = 0;
7272 
7273 	em = btrfs_get_extent(inode, NULL, 0, start, len);
7274 	if (IS_ERR(em))
7275 		return em;
7276 	/*
7277 	 * If our em maps to:
7278 	 * - a hole or
7279 	 * - a pre-alloc extent,
7280 	 * there might actually be delalloc bytes behind it.
7281 	 */
7282 	if (em->block_start != EXTENT_MAP_HOLE &&
7283 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7284 		return em;
7285 	else
7286 		hole_em = em;
7287 
7288 	/* check to see if we've wrapped (len == -1 or similar) */
7289 	end = start + len;
7290 	if (end < start)
7291 		end = (u64)-1;
7292 	else
7293 		end -= 1;
7294 
7295 	em = NULL;
7296 
7297 	/* ok, we didn't find anything, lets look for delalloc */
7298 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
7299 				 end, len, EXTENT_DELALLOC, 1);
7300 	delalloc_end = delalloc_start + delalloc_len;
7301 	if (delalloc_end < delalloc_start)
7302 		delalloc_end = (u64)-1;
7303 
7304 	/*
7305 	 * We didn't find anything useful, return the original results from
7306 	 * get_extent()
7307 	 */
7308 	if (delalloc_start > end || delalloc_end <= start) {
7309 		em = hole_em;
7310 		hole_em = NULL;
7311 		goto out;
7312 	}
7313 
7314 	/*
7315 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
7316 	 * the start they passed in
7317 	 */
7318 	delalloc_start = max(start, delalloc_start);
7319 	delalloc_len = delalloc_end - delalloc_start;
7320 
7321 	if (delalloc_len > 0) {
7322 		u64 hole_start;
7323 		u64 hole_len;
7324 		const u64 hole_end = extent_map_end(hole_em);
7325 
7326 		em = alloc_extent_map();
7327 		if (!em) {
7328 			err = -ENOMEM;
7329 			goto out;
7330 		}
7331 
7332 		ASSERT(hole_em);
7333 		/*
7334 		 * When btrfs_get_extent can't find anything it returns one
7335 		 * huge hole
7336 		 *
7337 		 * Make sure what it found really fits our range, and adjust to
7338 		 * make sure it is based on the start from the caller
7339 		 */
7340 		if (hole_end <= start || hole_em->start > end) {
7341 		       free_extent_map(hole_em);
7342 		       hole_em = NULL;
7343 		} else {
7344 		       hole_start = max(hole_em->start, start);
7345 		       hole_len = hole_end - hole_start;
7346 		}
7347 
7348 		if (hole_em && delalloc_start > hole_start) {
7349 			/*
7350 			 * Our hole starts before our delalloc, so we have to
7351 			 * return just the parts of the hole that go until the
7352 			 * delalloc starts
7353 			 */
7354 			em->len = min(hole_len, delalloc_start - hole_start);
7355 			em->start = hole_start;
7356 			em->orig_start = hole_start;
7357 			/*
7358 			 * Don't adjust block start at all, it is fixed at
7359 			 * EXTENT_MAP_HOLE
7360 			 */
7361 			em->block_start = hole_em->block_start;
7362 			em->block_len = hole_len;
7363 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7364 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7365 		} else {
7366 			/*
7367 			 * Hole is out of passed range or it starts after
7368 			 * delalloc range
7369 			 */
7370 			em->start = delalloc_start;
7371 			em->len = delalloc_len;
7372 			em->orig_start = delalloc_start;
7373 			em->block_start = EXTENT_MAP_DELALLOC;
7374 			em->block_len = delalloc_len;
7375 		}
7376 	} else {
7377 		return hole_em;
7378 	}
7379 out:
7380 
7381 	free_extent_map(hole_em);
7382 	if (err) {
7383 		free_extent_map(em);
7384 		return ERR_PTR(err);
7385 	}
7386 	return em;
7387 }
7388 
7389 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7390 						  const u64 start,
7391 						  const u64 len,
7392 						  const u64 orig_start,
7393 						  const u64 block_start,
7394 						  const u64 block_len,
7395 						  const u64 orig_block_len,
7396 						  const u64 ram_bytes,
7397 						  const int type)
7398 {
7399 	struct extent_map *em = NULL;
7400 	int ret;
7401 
7402 	if (type != BTRFS_ORDERED_NOCOW) {
7403 		em = create_io_em(inode, start, len, orig_start, block_start,
7404 				  block_len, orig_block_len, ram_bytes,
7405 				  BTRFS_COMPRESS_NONE, /* compress_type */
7406 				  type);
7407 		if (IS_ERR(em))
7408 			goto out;
7409 	}
7410 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
7411 					   block_len, type);
7412 	if (ret) {
7413 		if (em) {
7414 			free_extent_map(em);
7415 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
7416 		}
7417 		em = ERR_PTR(ret);
7418 	}
7419  out:
7420 
7421 	return em;
7422 }
7423 
7424 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7425 						  u64 start, u64 len)
7426 {
7427 	struct btrfs_root *root = inode->root;
7428 	struct btrfs_fs_info *fs_info = root->fs_info;
7429 	struct extent_map *em;
7430 	struct btrfs_key ins;
7431 	u64 alloc_hint;
7432 	int ret;
7433 
7434 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7435 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7436 				   0, alloc_hint, &ins, 1, 1);
7437 	if (ret)
7438 		return ERR_PTR(ret);
7439 
7440 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7441 				     ins.objectid, ins.offset, ins.offset,
7442 				     ins.offset, BTRFS_ORDERED_REGULAR);
7443 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7444 	if (IS_ERR(em))
7445 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7446 					   1);
7447 
7448 	return em;
7449 }
7450 
7451 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7452 {
7453 	struct btrfs_block_group *block_group;
7454 	bool readonly = false;
7455 
7456 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7457 	if (!block_group || block_group->ro)
7458 		readonly = true;
7459 	if (block_group)
7460 		btrfs_put_block_group(block_group);
7461 	return readonly;
7462 }
7463 
7464 /*
7465  * Check if we can do nocow write into the range [@offset, @offset + @len)
7466  *
7467  * @offset:	File offset
7468  * @len:	The length to write, will be updated to the nocow writeable
7469  *		range
7470  * @orig_start:	(optional) Return the original file offset of the file extent
7471  * @orig_len:	(optional) Return the original on-disk length of the file extent
7472  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7473  * @strict:	if true, omit optimizations that might force us into unnecessary
7474  *		cow. e.g., don't trust generation number.
7475  *
7476  * Return:
7477  * >0	and update @len if we can do nocow write
7478  *  0	if we can't do nocow write
7479  * <0	if error happened
7480  *
7481  * NOTE: This only checks the file extents, caller is responsible to wait for
7482  *	 any ordered extents.
7483  */
7484 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7485 			      u64 *orig_start, u64 *orig_block_len,
7486 			      u64 *ram_bytes, bool strict)
7487 {
7488 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7489 	struct btrfs_path *path;
7490 	int ret;
7491 	struct extent_buffer *leaf;
7492 	struct btrfs_root *root = BTRFS_I(inode)->root;
7493 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7494 	struct btrfs_file_extent_item *fi;
7495 	struct btrfs_key key;
7496 	u64 disk_bytenr;
7497 	u64 backref_offset;
7498 	u64 extent_end;
7499 	u64 num_bytes;
7500 	int slot;
7501 	int found_type;
7502 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7503 
7504 	path = btrfs_alloc_path();
7505 	if (!path)
7506 		return -ENOMEM;
7507 
7508 	ret = btrfs_lookup_file_extent(NULL, root, path,
7509 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7510 	if (ret < 0)
7511 		goto out;
7512 
7513 	slot = path->slots[0];
7514 	if (ret == 1) {
7515 		if (slot == 0) {
7516 			/* can't find the item, must cow */
7517 			ret = 0;
7518 			goto out;
7519 		}
7520 		slot--;
7521 	}
7522 	ret = 0;
7523 	leaf = path->nodes[0];
7524 	btrfs_item_key_to_cpu(leaf, &key, slot);
7525 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7526 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7527 		/* not our file or wrong item type, must cow */
7528 		goto out;
7529 	}
7530 
7531 	if (key.offset > offset) {
7532 		/* Wrong offset, must cow */
7533 		goto out;
7534 	}
7535 
7536 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7537 	found_type = btrfs_file_extent_type(leaf, fi);
7538 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7539 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7540 		/* not a regular extent, must cow */
7541 		goto out;
7542 	}
7543 
7544 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7545 		goto out;
7546 
7547 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7548 	if (extent_end <= offset)
7549 		goto out;
7550 
7551 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7552 	if (disk_bytenr == 0)
7553 		goto out;
7554 
7555 	if (btrfs_file_extent_compression(leaf, fi) ||
7556 	    btrfs_file_extent_encryption(leaf, fi) ||
7557 	    btrfs_file_extent_other_encoding(leaf, fi))
7558 		goto out;
7559 
7560 	/*
7561 	 * Do the same check as in btrfs_cross_ref_exist but without the
7562 	 * unnecessary search.
7563 	 */
7564 	if (!strict &&
7565 	    (btrfs_file_extent_generation(leaf, fi) <=
7566 	     btrfs_root_last_snapshot(&root->root_item)))
7567 		goto out;
7568 
7569 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7570 
7571 	if (orig_start) {
7572 		*orig_start = key.offset - backref_offset;
7573 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7574 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7575 	}
7576 
7577 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7578 		goto out;
7579 
7580 	num_bytes = min(offset + *len, extent_end) - offset;
7581 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7582 		u64 range_end;
7583 
7584 		range_end = round_up(offset + num_bytes,
7585 				     root->fs_info->sectorsize) - 1;
7586 		ret = test_range_bit(io_tree, offset, range_end,
7587 				     EXTENT_DELALLOC, 0, NULL);
7588 		if (ret) {
7589 			ret = -EAGAIN;
7590 			goto out;
7591 		}
7592 	}
7593 
7594 	btrfs_release_path(path);
7595 
7596 	/*
7597 	 * look for other files referencing this extent, if we
7598 	 * find any we must cow
7599 	 */
7600 
7601 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7602 				    key.offset - backref_offset, disk_bytenr,
7603 				    strict);
7604 	if (ret) {
7605 		ret = 0;
7606 		goto out;
7607 	}
7608 
7609 	/*
7610 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7611 	 * in this extent we are about to write.  If there
7612 	 * are any csums in that range we have to cow in order
7613 	 * to keep the csums correct
7614 	 */
7615 	disk_bytenr += backref_offset;
7616 	disk_bytenr += offset - key.offset;
7617 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7618 		goto out;
7619 	/*
7620 	 * all of the above have passed, it is safe to overwrite this extent
7621 	 * without cow
7622 	 */
7623 	*len = num_bytes;
7624 	ret = 1;
7625 out:
7626 	btrfs_free_path(path);
7627 	return ret;
7628 }
7629 
7630 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7631 			      struct extent_state **cached_state, bool writing)
7632 {
7633 	struct btrfs_ordered_extent *ordered;
7634 	int ret = 0;
7635 
7636 	while (1) {
7637 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7638 				 cached_state);
7639 		/*
7640 		 * We're concerned with the entire range that we're going to be
7641 		 * doing DIO to, so we need to make sure there's no ordered
7642 		 * extents in this range.
7643 		 */
7644 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7645 						     lockend - lockstart + 1);
7646 
7647 		/*
7648 		 * We need to make sure there are no buffered pages in this
7649 		 * range either, we could have raced between the invalidate in
7650 		 * generic_file_direct_write and locking the extent.  The
7651 		 * invalidate needs to happen so that reads after a write do not
7652 		 * get stale data.
7653 		 */
7654 		if (!ordered &&
7655 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7656 							 lockstart, lockend)))
7657 			break;
7658 
7659 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7660 				     cached_state);
7661 
7662 		if (ordered) {
7663 			/*
7664 			 * If we are doing a DIO read and the ordered extent we
7665 			 * found is for a buffered write, we can not wait for it
7666 			 * to complete and retry, because if we do so we can
7667 			 * deadlock with concurrent buffered writes on page
7668 			 * locks. This happens only if our DIO read covers more
7669 			 * than one extent map, if at this point has already
7670 			 * created an ordered extent for a previous extent map
7671 			 * and locked its range in the inode's io tree, and a
7672 			 * concurrent write against that previous extent map's
7673 			 * range and this range started (we unlock the ranges
7674 			 * in the io tree only when the bios complete and
7675 			 * buffered writes always lock pages before attempting
7676 			 * to lock range in the io tree).
7677 			 */
7678 			if (writing ||
7679 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7680 				btrfs_start_ordered_extent(ordered, 1);
7681 			else
7682 				ret = -ENOTBLK;
7683 			btrfs_put_ordered_extent(ordered);
7684 		} else {
7685 			/*
7686 			 * We could trigger writeback for this range (and wait
7687 			 * for it to complete) and then invalidate the pages for
7688 			 * this range (through invalidate_inode_pages2_range()),
7689 			 * but that can lead us to a deadlock with a concurrent
7690 			 * call to readahead (a buffered read or a defrag call
7691 			 * triggered a readahead) on a page lock due to an
7692 			 * ordered dio extent we created before but did not have
7693 			 * yet a corresponding bio submitted (whence it can not
7694 			 * complete), which makes readahead wait for that
7695 			 * ordered extent to complete while holding a lock on
7696 			 * that page.
7697 			 */
7698 			ret = -ENOTBLK;
7699 		}
7700 
7701 		if (ret)
7702 			break;
7703 
7704 		cond_resched();
7705 	}
7706 
7707 	return ret;
7708 }
7709 
7710 /* The callers of this must take lock_extent() */
7711 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7712 				       u64 len, u64 orig_start, u64 block_start,
7713 				       u64 block_len, u64 orig_block_len,
7714 				       u64 ram_bytes, int compress_type,
7715 				       int type)
7716 {
7717 	struct extent_map_tree *em_tree;
7718 	struct extent_map *em;
7719 	int ret;
7720 
7721 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7722 	       type == BTRFS_ORDERED_COMPRESSED ||
7723 	       type == BTRFS_ORDERED_NOCOW ||
7724 	       type == BTRFS_ORDERED_REGULAR);
7725 
7726 	em_tree = &inode->extent_tree;
7727 	em = alloc_extent_map();
7728 	if (!em)
7729 		return ERR_PTR(-ENOMEM);
7730 
7731 	em->start = start;
7732 	em->orig_start = orig_start;
7733 	em->len = len;
7734 	em->block_len = block_len;
7735 	em->block_start = block_start;
7736 	em->orig_block_len = orig_block_len;
7737 	em->ram_bytes = ram_bytes;
7738 	em->generation = -1;
7739 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7740 	if (type == BTRFS_ORDERED_PREALLOC) {
7741 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7742 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7743 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7744 		em->compress_type = compress_type;
7745 	}
7746 
7747 	do {
7748 		btrfs_drop_extent_cache(inode, em->start,
7749 					em->start + em->len - 1, 0);
7750 		write_lock(&em_tree->lock);
7751 		ret = add_extent_mapping(em_tree, em, 1);
7752 		write_unlock(&em_tree->lock);
7753 		/*
7754 		 * The caller has taken lock_extent(), who could race with us
7755 		 * to add em?
7756 		 */
7757 	} while (ret == -EEXIST);
7758 
7759 	if (ret) {
7760 		free_extent_map(em);
7761 		return ERR_PTR(ret);
7762 	}
7763 
7764 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7765 	return em;
7766 }
7767 
7768 
7769 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7770 					 struct inode *inode,
7771 					 struct btrfs_dio_data *dio_data,
7772 					 u64 start, u64 len)
7773 {
7774 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7775 	struct extent_map *em = *map;
7776 	int ret = 0;
7777 
7778 	/*
7779 	 * We don't allocate a new extent in the following cases
7780 	 *
7781 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7782 	 * existing extent.
7783 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7784 	 * just use the extent.
7785 	 *
7786 	 */
7787 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7788 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7789 	     em->block_start != EXTENT_MAP_HOLE)) {
7790 		int type;
7791 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7792 
7793 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7794 			type = BTRFS_ORDERED_PREALLOC;
7795 		else
7796 			type = BTRFS_ORDERED_NOCOW;
7797 		len = min(len, em->len - (start - em->start));
7798 		block_start = em->block_start + (start - em->start);
7799 
7800 		if (can_nocow_extent(inode, start, &len, &orig_start,
7801 				     &orig_block_len, &ram_bytes, false) == 1 &&
7802 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7803 			struct extent_map *em2;
7804 
7805 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7806 						      orig_start, block_start,
7807 						      len, orig_block_len,
7808 						      ram_bytes, type);
7809 			btrfs_dec_nocow_writers(fs_info, block_start);
7810 			if (type == BTRFS_ORDERED_PREALLOC) {
7811 				free_extent_map(em);
7812 				*map = em = em2;
7813 			}
7814 
7815 			if (em2 && IS_ERR(em2)) {
7816 				ret = PTR_ERR(em2);
7817 				goto out;
7818 			}
7819 			/*
7820 			 * For inode marked NODATACOW or extent marked PREALLOC,
7821 			 * use the existing or preallocated extent, so does not
7822 			 * need to adjust btrfs_space_info's bytes_may_use.
7823 			 */
7824 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7825 			goto skip_cow;
7826 		}
7827 	}
7828 
7829 	/* this will cow the extent */
7830 	free_extent_map(em);
7831 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7832 	if (IS_ERR(em)) {
7833 		ret = PTR_ERR(em);
7834 		goto out;
7835 	}
7836 
7837 	len = min(len, em->len - (start - em->start));
7838 
7839 skip_cow:
7840 	/*
7841 	 * Need to update the i_size under the extent lock so buffered
7842 	 * readers will get the updated i_size when we unlock.
7843 	 */
7844 	if (start + len > i_size_read(inode))
7845 		i_size_write(inode, start + len);
7846 
7847 	dio_data->reserve -= len;
7848 out:
7849 	return ret;
7850 }
7851 
7852 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7853 		loff_t length, unsigned int flags, struct iomap *iomap,
7854 		struct iomap *srcmap)
7855 {
7856 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7857 	struct extent_map *em;
7858 	struct extent_state *cached_state = NULL;
7859 	struct btrfs_dio_data *dio_data = NULL;
7860 	u64 lockstart, lockend;
7861 	const bool write = !!(flags & IOMAP_WRITE);
7862 	int ret = 0;
7863 	u64 len = length;
7864 	bool unlock_extents = false;
7865 
7866 	if (!write)
7867 		len = min_t(u64, len, fs_info->sectorsize);
7868 
7869 	lockstart = start;
7870 	lockend = start + len - 1;
7871 
7872 	/*
7873 	 * The generic stuff only does filemap_write_and_wait_range, which
7874 	 * isn't enough if we've written compressed pages to this area, so we
7875 	 * need to flush the dirty pages again to make absolutely sure that any
7876 	 * outstanding dirty pages are on disk.
7877 	 */
7878 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7879 		     &BTRFS_I(inode)->runtime_flags)) {
7880 		ret = filemap_fdatawrite_range(inode->i_mapping, start,
7881 					       start + length - 1);
7882 		if (ret)
7883 			return ret;
7884 	}
7885 
7886 	dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS);
7887 	if (!dio_data)
7888 		return -ENOMEM;
7889 
7890 	dio_data->length = length;
7891 	if (write) {
7892 		dio_data->reserve = round_up(length, fs_info->sectorsize);
7893 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode),
7894 				&dio_data->data_reserved,
7895 				start, dio_data->reserve);
7896 		if (ret) {
7897 			extent_changeset_free(dio_data->data_reserved);
7898 			kfree(dio_data);
7899 			return ret;
7900 		}
7901 	}
7902 	iomap->private = dio_data;
7903 
7904 
7905 	/*
7906 	 * If this errors out it's because we couldn't invalidate pagecache for
7907 	 * this range and we need to fallback to buffered.
7908 	 */
7909 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) {
7910 		ret = -ENOTBLK;
7911 		goto err;
7912 	}
7913 
7914 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7915 	if (IS_ERR(em)) {
7916 		ret = PTR_ERR(em);
7917 		goto unlock_err;
7918 	}
7919 
7920 	/*
7921 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7922 	 * io.  INLINE is special, and we could probably kludge it in here, but
7923 	 * it's still buffered so for safety lets just fall back to the generic
7924 	 * buffered path.
7925 	 *
7926 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7927 	 * decompress it, so there will be buffering required no matter what we
7928 	 * do, so go ahead and fallback to buffered.
7929 	 *
7930 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7931 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7932 	 * the generic code.
7933 	 */
7934 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7935 	    em->block_start == EXTENT_MAP_INLINE) {
7936 		free_extent_map(em);
7937 		ret = -ENOTBLK;
7938 		goto unlock_err;
7939 	}
7940 
7941 	len = min(len, em->len - (start - em->start));
7942 	if (write) {
7943 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7944 						    start, len);
7945 		if (ret < 0)
7946 			goto unlock_err;
7947 		unlock_extents = true;
7948 		/* Recalc len in case the new em is smaller than requested */
7949 		len = min(len, em->len - (start - em->start));
7950 	} else {
7951 		/*
7952 		 * We need to unlock only the end area that we aren't using.
7953 		 * The rest is going to be unlocked by the endio routine.
7954 		 */
7955 		lockstart = start + len;
7956 		if (lockstart < lockend)
7957 			unlock_extents = true;
7958 	}
7959 
7960 	if (unlock_extents)
7961 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7962 				     lockstart, lockend, &cached_state);
7963 	else
7964 		free_extent_state(cached_state);
7965 
7966 	/*
7967 	 * Translate extent map information to iomap.
7968 	 * We trim the extents (and move the addr) even though iomap code does
7969 	 * that, since we have locked only the parts we are performing I/O in.
7970 	 */
7971 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7972 	    (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7973 		iomap->addr = IOMAP_NULL_ADDR;
7974 		iomap->type = IOMAP_HOLE;
7975 	} else {
7976 		iomap->addr = em->block_start + (start - em->start);
7977 		iomap->type = IOMAP_MAPPED;
7978 	}
7979 	iomap->offset = start;
7980 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7981 	iomap->length = len;
7982 
7983 	if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
7984 		iomap->flags |= IOMAP_F_ZONE_APPEND;
7985 
7986 	free_extent_map(em);
7987 
7988 	return 0;
7989 
7990 unlock_err:
7991 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7992 			     &cached_state);
7993 err:
7994 	if (dio_data) {
7995 		btrfs_delalloc_release_space(BTRFS_I(inode),
7996 				dio_data->data_reserved, start,
7997 				dio_data->reserve, true);
7998 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve);
7999 		extent_changeset_free(dio_data->data_reserved);
8000 		kfree(dio_data);
8001 	}
8002 	return ret;
8003 }
8004 
8005 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
8006 		ssize_t written, unsigned int flags, struct iomap *iomap)
8007 {
8008 	int ret = 0;
8009 	struct btrfs_dio_data *dio_data = iomap->private;
8010 	size_t submitted = dio_data->submitted;
8011 	const bool write = !!(flags & IOMAP_WRITE);
8012 
8013 	if (!write && (iomap->type == IOMAP_HOLE)) {
8014 		/* If reading from a hole, unlock and return */
8015 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1);
8016 		goto out;
8017 	}
8018 
8019 	if (submitted < length) {
8020 		pos += submitted;
8021 		length -= submitted;
8022 		if (write)
8023 			__endio_write_update_ordered(BTRFS_I(inode), pos,
8024 					length, false);
8025 		else
8026 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
8027 				      pos + length - 1);
8028 		ret = -ENOTBLK;
8029 	}
8030 
8031 	if (write) {
8032 		if (dio_data->reserve)
8033 			btrfs_delalloc_release_space(BTRFS_I(inode),
8034 					dio_data->data_reserved, pos,
8035 					dio_data->reserve, true);
8036 		btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length);
8037 		extent_changeset_free(dio_data->data_reserved);
8038 	}
8039 out:
8040 	kfree(dio_data);
8041 	iomap->private = NULL;
8042 
8043 	return ret;
8044 }
8045 
8046 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8047 {
8048 	/*
8049 	 * This implies a barrier so that stores to dio_bio->bi_status before
8050 	 * this and loads of dio_bio->bi_status after this are fully ordered.
8051 	 */
8052 	if (!refcount_dec_and_test(&dip->refs))
8053 		return;
8054 
8055 	if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) {
8056 		__endio_write_update_ordered(BTRFS_I(dip->inode),
8057 					     dip->file_offset,
8058 					     dip->bytes,
8059 					     !dip->dio_bio->bi_status);
8060 	} else {
8061 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
8062 			      dip->file_offset,
8063 			      dip->file_offset + dip->bytes - 1);
8064 	}
8065 
8066 	bio_endio(dip->dio_bio);
8067 	kfree(dip);
8068 }
8069 
8070 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
8071 					  int mirror_num,
8072 					  unsigned long bio_flags)
8073 {
8074 	struct btrfs_dio_private *dip = bio->bi_private;
8075 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8076 	blk_status_t ret;
8077 
8078 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8079 
8080 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8081 	if (ret)
8082 		return ret;
8083 
8084 	refcount_inc(&dip->refs);
8085 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
8086 	if (ret)
8087 		refcount_dec(&dip->refs);
8088 	return ret;
8089 }
8090 
8091 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
8092 					     struct btrfs_bio *bbio,
8093 					     const bool uptodate)
8094 {
8095 	struct inode *inode = dip->inode;
8096 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8097 	const u32 sectorsize = fs_info->sectorsize;
8098 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8099 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8100 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8101 	struct bio_vec bvec;
8102 	struct bvec_iter iter;
8103 	const u64 orig_file_offset = dip->file_offset;
8104 	u64 start = orig_file_offset;
8105 	u32 bio_offset = 0;
8106 	blk_status_t err = BLK_STS_OK;
8107 
8108 	__bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) {
8109 		unsigned int i, nr_sectors, pgoff;
8110 
8111 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8112 		pgoff = bvec.bv_offset;
8113 		for (i = 0; i < nr_sectors; i++) {
8114 			ASSERT(pgoff < PAGE_SIZE);
8115 			if (uptodate &&
8116 			    (!csum || !check_data_csum(inode, bbio,
8117 						       bio_offset, bvec.bv_page,
8118 						       pgoff, start))) {
8119 				clean_io_failure(fs_info, failure_tree, io_tree,
8120 						 start, bvec.bv_page,
8121 						 btrfs_ino(BTRFS_I(inode)),
8122 						 pgoff);
8123 			} else {
8124 				int ret;
8125 
8126 				ASSERT((start - orig_file_offset) < UINT_MAX);
8127 				ret = btrfs_repair_one_sector(inode,
8128 						&bbio->bio,
8129 						start - orig_file_offset,
8130 						bvec.bv_page, pgoff,
8131 						start, bbio->mirror_num,
8132 						submit_dio_repair_bio);
8133 				if (ret)
8134 					err = errno_to_blk_status(ret);
8135 			}
8136 			start += sectorsize;
8137 			ASSERT(bio_offset + sectorsize > bio_offset);
8138 			bio_offset += sectorsize;
8139 			pgoff += sectorsize;
8140 		}
8141 	}
8142 	return err;
8143 }
8144 
8145 static void __endio_write_update_ordered(struct btrfs_inode *inode,
8146 					 const u64 offset, const u64 bytes,
8147 					 const bool uptodate)
8148 {
8149 	btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes,
8150 				       finish_ordered_fn, uptodate);
8151 }
8152 
8153 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
8154 						     struct bio *bio,
8155 						     u64 dio_file_offset)
8156 {
8157 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, 1);
8158 }
8159 
8160 static void btrfs_end_dio_bio(struct bio *bio)
8161 {
8162 	struct btrfs_dio_private *dip = bio->bi_private;
8163 	blk_status_t err = bio->bi_status;
8164 
8165 	if (err)
8166 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8167 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8168 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8169 			   bio->bi_opf, bio->bi_iter.bi_sector,
8170 			   bio->bi_iter.bi_size, err);
8171 
8172 	if (bio_op(bio) == REQ_OP_READ)
8173 		err = btrfs_check_read_dio_bio(dip, btrfs_bio(bio), !err);
8174 
8175 	if (err)
8176 		dip->dio_bio->bi_status = err;
8177 
8178 	btrfs_record_physical_zoned(dip->inode, dip->file_offset, bio);
8179 
8180 	bio_put(bio);
8181 	btrfs_dio_private_put(dip);
8182 }
8183 
8184 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8185 		struct inode *inode, u64 file_offset, int async_submit)
8186 {
8187 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8188 	struct btrfs_dio_private *dip = bio->bi_private;
8189 	bool write = btrfs_op(bio) == BTRFS_MAP_WRITE;
8190 	blk_status_t ret;
8191 
8192 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
8193 	if (async_submit)
8194 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8195 
8196 	if (!write) {
8197 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8198 		if (ret)
8199 			goto err;
8200 	}
8201 
8202 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8203 		goto map;
8204 
8205 	if (write && async_submit) {
8206 		ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset,
8207 					  btrfs_submit_bio_start_direct_io);
8208 		goto err;
8209 	} else if (write) {
8210 		/*
8211 		 * If we aren't doing async submit, calculate the csum of the
8212 		 * bio now.
8213 		 */
8214 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
8215 		if (ret)
8216 			goto err;
8217 	} else {
8218 		u64 csum_offset;
8219 
8220 		csum_offset = file_offset - dip->file_offset;
8221 		csum_offset >>= fs_info->sectorsize_bits;
8222 		csum_offset *= fs_info->csum_size;
8223 		btrfs_bio(bio)->csum = dip->csums + csum_offset;
8224 	}
8225 map:
8226 	ret = btrfs_map_bio(fs_info, bio, 0);
8227 err:
8228 	return ret;
8229 }
8230 
8231 /*
8232  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
8233  * or ordered extents whether or not we submit any bios.
8234  */
8235 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
8236 							  struct inode *inode,
8237 							  loff_t file_offset)
8238 {
8239 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8240 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
8241 	size_t dip_size;
8242 	struct btrfs_dio_private *dip;
8243 
8244 	dip_size = sizeof(*dip);
8245 	if (!write && csum) {
8246 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8247 		size_t nblocks;
8248 
8249 		nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits;
8250 		dip_size += fs_info->csum_size * nblocks;
8251 	}
8252 
8253 	dip = kzalloc(dip_size, GFP_NOFS);
8254 	if (!dip)
8255 		return NULL;
8256 
8257 	dip->inode = inode;
8258 	dip->file_offset = file_offset;
8259 	dip->bytes = dio_bio->bi_iter.bi_size;
8260 	dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9;
8261 	dip->dio_bio = dio_bio;
8262 	refcount_set(&dip->refs, 1);
8263 	return dip;
8264 }
8265 
8266 static void btrfs_submit_direct(const struct iomap_iter *iter,
8267 		struct bio *dio_bio, loff_t file_offset)
8268 {
8269 	struct inode *inode = iter->inode;
8270 	const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
8271 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8272 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8273 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
8274 	struct btrfs_dio_private *dip;
8275 	struct bio *bio;
8276 	u64 start_sector;
8277 	int async_submit = 0;
8278 	u64 submit_len;
8279 	u64 clone_offset = 0;
8280 	u64 clone_len;
8281 	u64 logical;
8282 	int ret;
8283 	blk_status_t status;
8284 	struct btrfs_io_geometry geom;
8285 	struct btrfs_dio_data *dio_data = iter->iomap.private;
8286 	struct extent_map *em = NULL;
8287 
8288 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
8289 	if (!dip) {
8290 		if (!write) {
8291 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8292 				file_offset + dio_bio->bi_iter.bi_size - 1);
8293 		}
8294 		dio_bio->bi_status = BLK_STS_RESOURCE;
8295 		bio_endio(dio_bio);
8296 		return;
8297 	}
8298 
8299 	if (!write) {
8300 		/*
8301 		 * Load the csums up front to reduce csum tree searches and
8302 		 * contention when submitting bios.
8303 		 *
8304 		 * If we have csums disabled this will do nothing.
8305 		 */
8306 		status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
8307 		if (status != BLK_STS_OK)
8308 			goto out_err;
8309 	}
8310 
8311 	start_sector = dio_bio->bi_iter.bi_sector;
8312 	submit_len = dio_bio->bi_iter.bi_size;
8313 
8314 	do {
8315 		logical = start_sector << 9;
8316 		em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8317 		if (IS_ERR(em)) {
8318 			status = errno_to_blk_status(PTR_ERR(em));
8319 			em = NULL;
8320 			goto out_err_em;
8321 		}
8322 		ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
8323 					    logical, &geom);
8324 		if (ret) {
8325 			status = errno_to_blk_status(ret);
8326 			goto out_err_em;
8327 		}
8328 
8329 		clone_len = min(submit_len, geom.len);
8330 		ASSERT(clone_len <= UINT_MAX);
8331 
8332 		/*
8333 		 * This will never fail as it's passing GPF_NOFS and
8334 		 * the allocation is backed by btrfs_bioset.
8335 		 */
8336 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
8337 		bio->bi_private = dip;
8338 		bio->bi_end_io = btrfs_end_dio_bio;
8339 
8340 		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8341 			status = extract_ordered_extent(BTRFS_I(inode), bio,
8342 							file_offset);
8343 			if (status) {
8344 				bio_put(bio);
8345 				goto out_err;
8346 			}
8347 		}
8348 
8349 		ASSERT(submit_len >= clone_len);
8350 		submit_len -= clone_len;
8351 
8352 		/*
8353 		 * Increase the count before we submit the bio so we know
8354 		 * the end IO handler won't happen before we increase the
8355 		 * count. Otherwise, the dip might get freed before we're
8356 		 * done setting it up.
8357 		 *
8358 		 * We transfer the initial reference to the last bio, so we
8359 		 * don't need to increment the reference count for the last one.
8360 		 */
8361 		if (submit_len > 0) {
8362 			refcount_inc(&dip->refs);
8363 			/*
8364 			 * If we are submitting more than one bio, submit them
8365 			 * all asynchronously. The exception is RAID 5 or 6, as
8366 			 * asynchronous checksums make it difficult to collect
8367 			 * full stripe writes.
8368 			 */
8369 			if (!raid56)
8370 				async_submit = 1;
8371 		}
8372 
8373 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
8374 						async_submit);
8375 		if (status) {
8376 			bio_put(bio);
8377 			if (submit_len > 0)
8378 				refcount_dec(&dip->refs);
8379 			goto out_err_em;
8380 		}
8381 
8382 		dio_data->submitted += clone_len;
8383 		clone_offset += clone_len;
8384 		start_sector += clone_len >> 9;
8385 		file_offset += clone_len;
8386 
8387 		free_extent_map(em);
8388 	} while (submit_len > 0);
8389 	return;
8390 
8391 out_err_em:
8392 	free_extent_map(em);
8393 out_err:
8394 	dip->dio_bio->bi_status = status;
8395 	btrfs_dio_private_put(dip);
8396 }
8397 
8398 const struct iomap_ops btrfs_dio_iomap_ops = {
8399 	.iomap_begin            = btrfs_dio_iomap_begin,
8400 	.iomap_end              = btrfs_dio_iomap_end,
8401 };
8402 
8403 const struct iomap_dio_ops btrfs_dio_ops = {
8404 	.submit_io		= btrfs_submit_direct,
8405 };
8406 
8407 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8408 			u64 start, u64 len)
8409 {
8410 	int	ret;
8411 
8412 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8413 	if (ret)
8414 		return ret;
8415 
8416 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
8417 }
8418 
8419 int btrfs_readpage(struct file *file, struct page *page)
8420 {
8421 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8422 	u64 start = page_offset(page);
8423 	u64 end = start + PAGE_SIZE - 1;
8424 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
8425 	int ret;
8426 
8427 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
8428 
8429 	ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
8430 	if (bio_ctrl.bio)
8431 		ret = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags);
8432 	return ret;
8433 }
8434 
8435 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8436 {
8437 	struct inode *inode = page->mapping->host;
8438 	int ret;
8439 
8440 	if (current->flags & PF_MEMALLOC) {
8441 		redirty_page_for_writepage(wbc, page);
8442 		unlock_page(page);
8443 		return 0;
8444 	}
8445 
8446 	/*
8447 	 * If we are under memory pressure we will call this directly from the
8448 	 * VM, we need to make sure we have the inode referenced for the ordered
8449 	 * extent.  If not just return like we didn't do anything.
8450 	 */
8451 	if (!igrab(inode)) {
8452 		redirty_page_for_writepage(wbc, page);
8453 		return AOP_WRITEPAGE_ACTIVATE;
8454 	}
8455 	ret = extent_write_full_page(page, wbc);
8456 	btrfs_add_delayed_iput(inode);
8457 	return ret;
8458 }
8459 
8460 static int btrfs_writepages(struct address_space *mapping,
8461 			    struct writeback_control *wbc)
8462 {
8463 	return extent_writepages(mapping, wbc);
8464 }
8465 
8466 static void btrfs_readahead(struct readahead_control *rac)
8467 {
8468 	extent_readahead(rac);
8469 }
8470 
8471 /*
8472  * For releasepage() and invalidatepage() we have a race window where
8473  * end_page_writeback() is called but the subpage spinlock is not yet released.
8474  * If we continue to release/invalidate the page, we could cause use-after-free
8475  * for subpage spinlock.  So this function is to spin and wait for subpage
8476  * spinlock.
8477  */
8478 static void wait_subpage_spinlock(struct page *page)
8479 {
8480 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8481 	struct btrfs_subpage *subpage;
8482 
8483 	if (fs_info->sectorsize == PAGE_SIZE)
8484 		return;
8485 
8486 	ASSERT(PagePrivate(page) && page->private);
8487 	subpage = (struct btrfs_subpage *)page->private;
8488 
8489 	/*
8490 	 * This may look insane as we just acquire the spinlock and release it,
8491 	 * without doing anything.  But we just want to make sure no one is
8492 	 * still holding the subpage spinlock.
8493 	 * And since the page is not dirty nor writeback, and we have page
8494 	 * locked, the only possible way to hold a spinlock is from the endio
8495 	 * function to clear page writeback.
8496 	 *
8497 	 * Here we just acquire the spinlock so that all existing callers
8498 	 * should exit and we're safe to release/invalidate the page.
8499 	 */
8500 	spin_lock_irq(&subpage->lock);
8501 	spin_unlock_irq(&subpage->lock);
8502 }
8503 
8504 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8505 {
8506 	int ret = try_release_extent_mapping(page, gfp_flags);
8507 
8508 	if (ret == 1) {
8509 		wait_subpage_spinlock(page);
8510 		clear_page_extent_mapped(page);
8511 	}
8512 	return ret;
8513 }
8514 
8515 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8516 {
8517 	if (PageWriteback(page) || PageDirty(page))
8518 		return 0;
8519 	return __btrfs_releasepage(page, gfp_flags);
8520 }
8521 
8522 #ifdef CONFIG_MIGRATION
8523 static int btrfs_migratepage(struct address_space *mapping,
8524 			     struct page *newpage, struct page *page,
8525 			     enum migrate_mode mode)
8526 {
8527 	int ret;
8528 
8529 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8530 	if (ret != MIGRATEPAGE_SUCCESS)
8531 		return ret;
8532 
8533 	if (page_has_private(page))
8534 		attach_page_private(newpage, detach_page_private(page));
8535 
8536 	if (PageOrdered(page)) {
8537 		ClearPageOrdered(page);
8538 		SetPageOrdered(newpage);
8539 	}
8540 
8541 	if (mode != MIGRATE_SYNC_NO_COPY)
8542 		migrate_page_copy(newpage, page);
8543 	else
8544 		migrate_page_states(newpage, page);
8545 	return MIGRATEPAGE_SUCCESS;
8546 }
8547 #endif
8548 
8549 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8550 				 unsigned int length)
8551 {
8552 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
8553 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8554 	struct extent_io_tree *tree = &inode->io_tree;
8555 	struct extent_state *cached_state = NULL;
8556 	u64 page_start = page_offset(page);
8557 	u64 page_end = page_start + PAGE_SIZE - 1;
8558 	u64 cur;
8559 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8560 
8561 	/*
8562 	 * We have page locked so no new ordered extent can be created on this
8563 	 * page, nor bio can be submitted for this page.
8564 	 *
8565 	 * But already submitted bio can still be finished on this page.
8566 	 * Furthermore, endio function won't skip page which has Ordered
8567 	 * (Private2) already cleared, so it's possible for endio and
8568 	 * invalidatepage to do the same ordered extent accounting twice
8569 	 * on one page.
8570 	 *
8571 	 * So here we wait for any submitted bios to finish, so that we won't
8572 	 * do double ordered extent accounting on the same page.
8573 	 */
8574 	wait_on_page_writeback(page);
8575 	wait_subpage_spinlock(page);
8576 
8577 	/*
8578 	 * For subpage case, we have call sites like
8579 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8580 	 * sectorsize.
8581 	 * If the range doesn't cover the full page, we don't need to and
8582 	 * shouldn't clear page extent mapped, as page->private can still
8583 	 * record subpage dirty bits for other part of the range.
8584 	 *
8585 	 * For cases that can invalidate the full even the range doesn't
8586 	 * cover the full page, like invalidating the last page, we're
8587 	 * still safe to wait for ordered extent to finish.
8588 	 */
8589 	if (!(offset == 0 && length == PAGE_SIZE)) {
8590 		btrfs_releasepage(page, GFP_NOFS);
8591 		return;
8592 	}
8593 
8594 	if (!inode_evicting)
8595 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8596 
8597 	cur = page_start;
8598 	while (cur < page_end) {
8599 		struct btrfs_ordered_extent *ordered;
8600 		bool delete_states;
8601 		u64 range_end;
8602 		u32 range_len;
8603 
8604 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8605 							   page_end + 1 - cur);
8606 		if (!ordered) {
8607 			range_end = page_end;
8608 			/*
8609 			 * No ordered extent covering this range, we are safe
8610 			 * to delete all extent states in the range.
8611 			 */
8612 			delete_states = true;
8613 			goto next;
8614 		}
8615 		if (ordered->file_offset > cur) {
8616 			/*
8617 			 * There is a range between [cur, oe->file_offset) not
8618 			 * covered by any ordered extent.
8619 			 * We are safe to delete all extent states, and handle
8620 			 * the ordered extent in the next iteration.
8621 			 */
8622 			range_end = ordered->file_offset - 1;
8623 			delete_states = true;
8624 			goto next;
8625 		}
8626 
8627 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8628 				page_end);
8629 		ASSERT(range_end + 1 - cur < U32_MAX);
8630 		range_len = range_end + 1 - cur;
8631 		if (!btrfs_page_test_ordered(fs_info, page, cur, range_len)) {
8632 			/*
8633 			 * If Ordered (Private2) is cleared, it means endio has
8634 			 * already been executed for the range.
8635 			 * We can't delete the extent states as
8636 			 * btrfs_finish_ordered_io() may still use some of them.
8637 			 */
8638 			delete_states = false;
8639 			goto next;
8640 		}
8641 		btrfs_page_clear_ordered(fs_info, page, cur, range_len);
8642 
8643 		/*
8644 		 * IO on this page will never be started, so we need to account
8645 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8646 		 * here, must leave that up for the ordered extent completion.
8647 		 *
8648 		 * This will also unlock the range for incoming
8649 		 * btrfs_finish_ordered_io().
8650 		 */
8651 		if (!inode_evicting)
8652 			clear_extent_bit(tree, cur, range_end,
8653 					 EXTENT_DELALLOC |
8654 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8655 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8656 
8657 		spin_lock_irq(&inode->ordered_tree.lock);
8658 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8659 		ordered->truncated_len = min(ordered->truncated_len,
8660 					     cur - ordered->file_offset);
8661 		spin_unlock_irq(&inode->ordered_tree.lock);
8662 
8663 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8664 						   cur, range_end + 1 - cur)) {
8665 			btrfs_finish_ordered_io(ordered);
8666 			/*
8667 			 * The ordered extent has finished, now we're again
8668 			 * safe to delete all extent states of the range.
8669 			 */
8670 			delete_states = true;
8671 		} else {
8672 			/*
8673 			 * btrfs_finish_ordered_io() will get executed by endio
8674 			 * of other pages, thus we can't delete extent states
8675 			 * anymore
8676 			 */
8677 			delete_states = false;
8678 		}
8679 next:
8680 		if (ordered)
8681 			btrfs_put_ordered_extent(ordered);
8682 		/*
8683 		 * Qgroup reserved space handler
8684 		 * Sector(s) here will be either:
8685 		 *
8686 		 * 1) Already written to disk or bio already finished
8687 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8688 		 *    Qgroup will be handled by its qgroup_record then.
8689 		 *    btrfs_qgroup_free_data() call will do nothing here.
8690 		 *
8691 		 * 2) Not written to disk yet
8692 		 *    Then btrfs_qgroup_free_data() call will clear the
8693 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8694 		 *    reserved data space.
8695 		 *    Since the IO will never happen for this page.
8696 		 */
8697 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
8698 		if (!inode_evicting) {
8699 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8700 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8701 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1,
8702 				 delete_states, &cached_state);
8703 		}
8704 		cur = range_end + 1;
8705 	}
8706 	/*
8707 	 * We have iterated through all ordered extents of the page, the page
8708 	 * should not have Ordered (Private2) anymore, or the above iteration
8709 	 * did something wrong.
8710 	 */
8711 	ASSERT(!PageOrdered(page));
8712 	btrfs_page_clear_checked(fs_info, page, page_offset(page), PAGE_SIZE);
8713 	if (!inode_evicting)
8714 		__btrfs_releasepage(page, GFP_NOFS);
8715 	clear_page_extent_mapped(page);
8716 }
8717 
8718 /*
8719  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8720  * called from a page fault handler when a page is first dirtied. Hence we must
8721  * be careful to check for EOF conditions here. We set the page up correctly
8722  * for a written page which means we get ENOSPC checking when writing into
8723  * holes and correct delalloc and unwritten extent mapping on filesystems that
8724  * support these features.
8725  *
8726  * We are not allowed to take the i_mutex here so we have to play games to
8727  * protect against truncate races as the page could now be beyond EOF.  Because
8728  * truncate_setsize() writes the inode size before removing pages, once we have
8729  * the page lock we can determine safely if the page is beyond EOF. If it is not
8730  * beyond EOF, then the page is guaranteed safe against truncation until we
8731  * unlock the page.
8732  */
8733 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8734 {
8735 	struct page *page = vmf->page;
8736 	struct inode *inode = file_inode(vmf->vma->vm_file);
8737 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8738 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8739 	struct btrfs_ordered_extent *ordered;
8740 	struct extent_state *cached_state = NULL;
8741 	struct extent_changeset *data_reserved = NULL;
8742 	unsigned long zero_start;
8743 	loff_t size;
8744 	vm_fault_t ret;
8745 	int ret2;
8746 	int reserved = 0;
8747 	u64 reserved_space;
8748 	u64 page_start;
8749 	u64 page_end;
8750 	u64 end;
8751 
8752 	reserved_space = PAGE_SIZE;
8753 
8754 	sb_start_pagefault(inode->i_sb);
8755 	page_start = page_offset(page);
8756 	page_end = page_start + PAGE_SIZE - 1;
8757 	end = page_end;
8758 
8759 	/*
8760 	 * Reserving delalloc space after obtaining the page lock can lead to
8761 	 * deadlock. For example, if a dirty page is locked by this function
8762 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8763 	 * dirty page write out, then the btrfs_writepage() function could
8764 	 * end up waiting indefinitely to get a lock on the page currently
8765 	 * being processed by btrfs_page_mkwrite() function.
8766 	 */
8767 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8768 					    page_start, reserved_space);
8769 	if (!ret2) {
8770 		ret2 = file_update_time(vmf->vma->vm_file);
8771 		reserved = 1;
8772 	}
8773 	if (ret2) {
8774 		ret = vmf_error(ret2);
8775 		if (reserved)
8776 			goto out;
8777 		goto out_noreserve;
8778 	}
8779 
8780 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8781 again:
8782 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8783 	lock_page(page);
8784 	size = i_size_read(inode);
8785 
8786 	if ((page->mapping != inode->i_mapping) ||
8787 	    (page_start >= size)) {
8788 		/* page got truncated out from underneath us */
8789 		goto out_unlock;
8790 	}
8791 	wait_on_page_writeback(page);
8792 
8793 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8794 	ret2 = set_page_extent_mapped(page);
8795 	if (ret2 < 0) {
8796 		ret = vmf_error(ret2);
8797 		unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8798 		goto out_unlock;
8799 	}
8800 
8801 	/*
8802 	 * we can't set the delalloc bits if there are pending ordered
8803 	 * extents.  Drop our locks and wait for them to finish
8804 	 */
8805 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8806 			PAGE_SIZE);
8807 	if (ordered) {
8808 		unlock_extent_cached(io_tree, page_start, page_end,
8809 				     &cached_state);
8810 		unlock_page(page);
8811 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8812 		btrfs_start_ordered_extent(ordered, 1);
8813 		btrfs_put_ordered_extent(ordered);
8814 		goto again;
8815 	}
8816 
8817 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8818 		reserved_space = round_up(size - page_start,
8819 					  fs_info->sectorsize);
8820 		if (reserved_space < PAGE_SIZE) {
8821 			end = page_start + reserved_space - 1;
8822 			btrfs_delalloc_release_space(BTRFS_I(inode),
8823 					data_reserved, page_start,
8824 					PAGE_SIZE - reserved_space, true);
8825 		}
8826 	}
8827 
8828 	/*
8829 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8830 	 * faulted in, but write(2) could also dirty a page and set delalloc
8831 	 * bits, thus in this case for space account reason, we still need to
8832 	 * clear any delalloc bits within this page range since we have to
8833 	 * reserve data&meta space before lock_page() (see above comments).
8834 	 */
8835 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8836 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8837 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8838 
8839 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8840 					&cached_state);
8841 	if (ret2) {
8842 		unlock_extent_cached(io_tree, page_start, page_end,
8843 				     &cached_state);
8844 		ret = VM_FAULT_SIGBUS;
8845 		goto out_unlock;
8846 	}
8847 
8848 	/* page is wholly or partially inside EOF */
8849 	if (page_start + PAGE_SIZE > size)
8850 		zero_start = offset_in_page(size);
8851 	else
8852 		zero_start = PAGE_SIZE;
8853 
8854 	if (zero_start != PAGE_SIZE) {
8855 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8856 		flush_dcache_page(page);
8857 	}
8858 	btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
8859 	btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8860 	btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
8861 
8862 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8863 
8864 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8865 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8866 
8867 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8868 	sb_end_pagefault(inode->i_sb);
8869 	extent_changeset_free(data_reserved);
8870 	return VM_FAULT_LOCKED;
8871 
8872 out_unlock:
8873 	unlock_page(page);
8874 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8875 out:
8876 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8877 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8878 				     reserved_space, (ret != 0));
8879 out_noreserve:
8880 	sb_end_pagefault(inode->i_sb);
8881 	extent_changeset_free(data_reserved);
8882 	return ret;
8883 }
8884 
8885 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8886 {
8887 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8888 	struct btrfs_root *root = BTRFS_I(inode)->root;
8889 	struct btrfs_block_rsv *rsv;
8890 	int ret;
8891 	struct btrfs_trans_handle *trans;
8892 	u64 mask = fs_info->sectorsize - 1;
8893 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8894 	u64 extents_found = 0;
8895 
8896 	if (!skip_writeback) {
8897 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8898 					       (u64)-1);
8899 		if (ret)
8900 			return ret;
8901 	}
8902 
8903 	/*
8904 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8905 	 * things going on here:
8906 	 *
8907 	 * 1) We need to reserve space to update our inode.
8908 	 *
8909 	 * 2) We need to have something to cache all the space that is going to
8910 	 * be free'd up by the truncate operation, but also have some slack
8911 	 * space reserved in case it uses space during the truncate (thank you
8912 	 * very much snapshotting).
8913 	 *
8914 	 * And we need these to be separate.  The fact is we can use a lot of
8915 	 * space doing the truncate, and we have no earthly idea how much space
8916 	 * we will use, so we need the truncate reservation to be separate so it
8917 	 * doesn't end up using space reserved for updating the inode.  We also
8918 	 * need to be able to stop the transaction and start a new one, which
8919 	 * means we need to be able to update the inode several times, and we
8920 	 * have no idea of knowing how many times that will be, so we can't just
8921 	 * reserve 1 item for the entirety of the operation, so that has to be
8922 	 * done separately as well.
8923 	 *
8924 	 * So that leaves us with
8925 	 *
8926 	 * 1) rsv - for the truncate reservation, which we will steal from the
8927 	 * transaction reservation.
8928 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8929 	 * updating the inode.
8930 	 */
8931 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8932 	if (!rsv)
8933 		return -ENOMEM;
8934 	rsv->size = min_size;
8935 	rsv->failfast = 1;
8936 
8937 	/*
8938 	 * 1 for the truncate slack space
8939 	 * 1 for updating the inode.
8940 	 */
8941 	trans = btrfs_start_transaction(root, 2);
8942 	if (IS_ERR(trans)) {
8943 		ret = PTR_ERR(trans);
8944 		goto out;
8945 	}
8946 
8947 	/* Migrate the slack space for the truncate to our reserve */
8948 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8949 				      min_size, false);
8950 	BUG_ON(ret);
8951 
8952 	trans->block_rsv = rsv;
8953 
8954 	while (1) {
8955 		ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
8956 						 inode->i_size,
8957 						 BTRFS_EXTENT_DATA_KEY,
8958 						 &extents_found);
8959 		trans->block_rsv = &fs_info->trans_block_rsv;
8960 		if (ret != -ENOSPC && ret != -EAGAIN)
8961 			break;
8962 
8963 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
8964 		if (ret)
8965 			break;
8966 
8967 		btrfs_end_transaction(trans);
8968 		btrfs_btree_balance_dirty(fs_info);
8969 
8970 		trans = btrfs_start_transaction(root, 2);
8971 		if (IS_ERR(trans)) {
8972 			ret = PTR_ERR(trans);
8973 			trans = NULL;
8974 			break;
8975 		}
8976 
8977 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8978 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8979 					      rsv, min_size, false);
8980 		BUG_ON(ret);	/* shouldn't happen */
8981 		trans->block_rsv = rsv;
8982 	}
8983 
8984 	/*
8985 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8986 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8987 	 * we've truncated everything except the last little bit, and can do
8988 	 * btrfs_truncate_block and then update the disk_i_size.
8989 	 */
8990 	if (ret == NEED_TRUNCATE_BLOCK) {
8991 		btrfs_end_transaction(trans);
8992 		btrfs_btree_balance_dirty(fs_info);
8993 
8994 		ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
8995 		if (ret)
8996 			goto out;
8997 		trans = btrfs_start_transaction(root, 1);
8998 		if (IS_ERR(trans)) {
8999 			ret = PTR_ERR(trans);
9000 			goto out;
9001 		}
9002 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9003 	}
9004 
9005 	if (trans) {
9006 		int ret2;
9007 
9008 		trans->block_rsv = &fs_info->trans_block_rsv;
9009 		ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
9010 		if (ret2 && !ret)
9011 			ret = ret2;
9012 
9013 		ret2 = btrfs_end_transaction(trans);
9014 		if (ret2 && !ret)
9015 			ret = ret2;
9016 		btrfs_btree_balance_dirty(fs_info);
9017 	}
9018 out:
9019 	btrfs_free_block_rsv(fs_info, rsv);
9020 	/*
9021 	 * So if we truncate and then write and fsync we normally would just
9022 	 * write the extents that changed, which is a problem if we need to
9023 	 * first truncate that entire inode.  So set this flag so we write out
9024 	 * all of the extents in the inode to the sync log so we're completely
9025 	 * safe.
9026 	 *
9027 	 * If no extents were dropped or trimmed we don't need to force the next
9028 	 * fsync to truncate all the inode's items from the log and re-log them
9029 	 * all. This means the truncate operation did not change the file size,
9030 	 * or changed it to a smaller size but there was only an implicit hole
9031 	 * between the old i_size and the new i_size, and there were no prealloc
9032 	 * extents beyond i_size to drop.
9033 	 */
9034 	if (extents_found > 0)
9035 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9036 
9037 	return ret;
9038 }
9039 
9040 /*
9041  * create a new subvolume directory/inode (helper for the ioctl).
9042  */
9043 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9044 			     struct btrfs_root *new_root,
9045 			     struct btrfs_root *parent_root,
9046 			     struct user_namespace *mnt_userns)
9047 {
9048 	struct inode *inode;
9049 	int err;
9050 	u64 index = 0;
9051 	u64 ino;
9052 
9053 	err = btrfs_get_free_objectid(new_root, &ino);
9054 	if (err < 0)
9055 		return err;
9056 
9057 	inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2,
9058 				ino, ino,
9059 				S_IFDIR | (~current_umask() & S_IRWXUGO),
9060 				&index);
9061 	if (IS_ERR(inode))
9062 		return PTR_ERR(inode);
9063 	inode->i_op = &btrfs_dir_inode_operations;
9064 	inode->i_fop = &btrfs_dir_file_operations;
9065 
9066 	set_nlink(inode, 1);
9067 	btrfs_i_size_write(BTRFS_I(inode), 0);
9068 	unlock_new_inode(inode);
9069 
9070 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9071 	if (err)
9072 		btrfs_err(new_root->fs_info,
9073 			  "error inheriting subvolume %llu properties: %d",
9074 			  new_root->root_key.objectid, err);
9075 
9076 	err = btrfs_update_inode(trans, new_root, BTRFS_I(inode));
9077 
9078 	iput(inode);
9079 	return err;
9080 }
9081 
9082 struct inode *btrfs_alloc_inode(struct super_block *sb)
9083 {
9084 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9085 	struct btrfs_inode *ei;
9086 	struct inode *inode;
9087 
9088 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9089 	if (!ei)
9090 		return NULL;
9091 
9092 	ei->root = NULL;
9093 	ei->generation = 0;
9094 	ei->last_trans = 0;
9095 	ei->last_sub_trans = 0;
9096 	ei->logged_trans = 0;
9097 	ei->delalloc_bytes = 0;
9098 	ei->new_delalloc_bytes = 0;
9099 	ei->defrag_bytes = 0;
9100 	ei->disk_i_size = 0;
9101 	ei->flags = 0;
9102 	ei->ro_flags = 0;
9103 	ei->csum_bytes = 0;
9104 	ei->index_cnt = (u64)-1;
9105 	ei->dir_index = 0;
9106 	ei->last_unlink_trans = 0;
9107 	ei->last_reflink_trans = 0;
9108 	ei->last_log_commit = 0;
9109 
9110 	spin_lock_init(&ei->lock);
9111 	ei->outstanding_extents = 0;
9112 	if (sb->s_magic != BTRFS_TEST_MAGIC)
9113 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9114 					      BTRFS_BLOCK_RSV_DELALLOC);
9115 	ei->runtime_flags = 0;
9116 	ei->prop_compress = BTRFS_COMPRESS_NONE;
9117 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
9118 
9119 	ei->delayed_node = NULL;
9120 
9121 	ei->i_otime.tv_sec = 0;
9122 	ei->i_otime.tv_nsec = 0;
9123 
9124 	inode = &ei->vfs_inode;
9125 	extent_map_tree_init(&ei->extent_tree);
9126 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
9127 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
9128 			    IO_TREE_INODE_IO_FAILURE, inode);
9129 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
9130 			    IO_TREE_INODE_FILE_EXTENT, inode);
9131 	ei->io_tree.track_uptodate = true;
9132 	ei->io_failure_tree.track_uptodate = true;
9133 	atomic_set(&ei->sync_writers, 0);
9134 	mutex_init(&ei->log_mutex);
9135 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9136 	INIT_LIST_HEAD(&ei->delalloc_inodes);
9137 	INIT_LIST_HEAD(&ei->delayed_iput);
9138 	RB_CLEAR_NODE(&ei->rb_node);
9139 	init_rwsem(&ei->i_mmap_lock);
9140 
9141 	return inode;
9142 }
9143 
9144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9145 void btrfs_test_destroy_inode(struct inode *inode)
9146 {
9147 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9148 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9149 }
9150 #endif
9151 
9152 void btrfs_free_inode(struct inode *inode)
9153 {
9154 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9155 }
9156 
9157 void btrfs_destroy_inode(struct inode *vfs_inode)
9158 {
9159 	struct btrfs_ordered_extent *ordered;
9160 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
9161 	struct btrfs_root *root = inode->root;
9162 
9163 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
9164 	WARN_ON(vfs_inode->i_data.nrpages);
9165 	WARN_ON(inode->block_rsv.reserved);
9166 	WARN_ON(inode->block_rsv.size);
9167 	WARN_ON(inode->outstanding_extents);
9168 	if (!S_ISDIR(vfs_inode->i_mode)) {
9169 		WARN_ON(inode->delalloc_bytes);
9170 		WARN_ON(inode->new_delalloc_bytes);
9171 	}
9172 	WARN_ON(inode->csum_bytes);
9173 	WARN_ON(inode->defrag_bytes);
9174 
9175 	/*
9176 	 * This can happen where we create an inode, but somebody else also
9177 	 * created the same inode and we need to destroy the one we already
9178 	 * created.
9179 	 */
9180 	if (!root)
9181 		return;
9182 
9183 	while (1) {
9184 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9185 		if (!ordered)
9186 			break;
9187 		else {
9188 			btrfs_err(root->fs_info,
9189 				  "found ordered extent %llu %llu on inode cleanup",
9190 				  ordered->file_offset, ordered->num_bytes);
9191 			btrfs_remove_ordered_extent(inode, ordered);
9192 			btrfs_put_ordered_extent(ordered);
9193 			btrfs_put_ordered_extent(ordered);
9194 		}
9195 	}
9196 	btrfs_qgroup_check_reserved_leak(inode);
9197 	inode_tree_del(inode);
9198 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9199 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
9200 	btrfs_put_root(inode->root);
9201 }
9202 
9203 int btrfs_drop_inode(struct inode *inode)
9204 {
9205 	struct btrfs_root *root = BTRFS_I(inode)->root;
9206 
9207 	if (root == NULL)
9208 		return 1;
9209 
9210 	/* the snap/subvol tree is on deleting */
9211 	if (btrfs_root_refs(&root->root_item) == 0)
9212 		return 1;
9213 	else
9214 		return generic_drop_inode(inode);
9215 }
9216 
9217 static void init_once(void *foo)
9218 {
9219 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9220 
9221 	inode_init_once(&ei->vfs_inode);
9222 }
9223 
9224 void __cold btrfs_destroy_cachep(void)
9225 {
9226 	/*
9227 	 * Make sure all delayed rcu free inodes are flushed before we
9228 	 * destroy cache.
9229 	 */
9230 	rcu_barrier();
9231 	kmem_cache_destroy(btrfs_inode_cachep);
9232 	kmem_cache_destroy(btrfs_trans_handle_cachep);
9233 	kmem_cache_destroy(btrfs_path_cachep);
9234 	kmem_cache_destroy(btrfs_free_space_cachep);
9235 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
9236 }
9237 
9238 int __init btrfs_init_cachep(void)
9239 {
9240 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9241 			sizeof(struct btrfs_inode), 0,
9242 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9243 			init_once);
9244 	if (!btrfs_inode_cachep)
9245 		goto fail;
9246 
9247 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9248 			sizeof(struct btrfs_trans_handle), 0,
9249 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9250 	if (!btrfs_trans_handle_cachep)
9251 		goto fail;
9252 
9253 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9254 			sizeof(struct btrfs_path), 0,
9255 			SLAB_MEM_SPREAD, NULL);
9256 	if (!btrfs_path_cachep)
9257 		goto fail;
9258 
9259 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9260 			sizeof(struct btrfs_free_space), 0,
9261 			SLAB_MEM_SPREAD, NULL);
9262 	if (!btrfs_free_space_cachep)
9263 		goto fail;
9264 
9265 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
9266 							PAGE_SIZE, PAGE_SIZE,
9267 							SLAB_MEM_SPREAD, NULL);
9268 	if (!btrfs_free_space_bitmap_cachep)
9269 		goto fail;
9270 
9271 	return 0;
9272 fail:
9273 	btrfs_destroy_cachep();
9274 	return -ENOMEM;
9275 }
9276 
9277 static int btrfs_getattr(struct user_namespace *mnt_userns,
9278 			 const struct path *path, struct kstat *stat,
9279 			 u32 request_mask, unsigned int flags)
9280 {
9281 	u64 delalloc_bytes;
9282 	u64 inode_bytes;
9283 	struct inode *inode = d_inode(path->dentry);
9284 	u32 blocksize = inode->i_sb->s_blocksize;
9285 	u32 bi_flags = BTRFS_I(inode)->flags;
9286 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
9287 
9288 	stat->result_mask |= STATX_BTIME;
9289 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9290 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9291 	if (bi_flags & BTRFS_INODE_APPEND)
9292 		stat->attributes |= STATX_ATTR_APPEND;
9293 	if (bi_flags & BTRFS_INODE_COMPRESS)
9294 		stat->attributes |= STATX_ATTR_COMPRESSED;
9295 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
9296 		stat->attributes |= STATX_ATTR_IMMUTABLE;
9297 	if (bi_flags & BTRFS_INODE_NODUMP)
9298 		stat->attributes |= STATX_ATTR_NODUMP;
9299 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9300 		stat->attributes |= STATX_ATTR_VERITY;
9301 
9302 	stat->attributes_mask |= (STATX_ATTR_APPEND |
9303 				  STATX_ATTR_COMPRESSED |
9304 				  STATX_ATTR_IMMUTABLE |
9305 				  STATX_ATTR_NODUMP);
9306 
9307 	generic_fillattr(mnt_userns, inode, stat);
9308 	stat->dev = BTRFS_I(inode)->root->anon_dev;
9309 
9310 	spin_lock(&BTRFS_I(inode)->lock);
9311 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9312 	inode_bytes = inode_get_bytes(inode);
9313 	spin_unlock(&BTRFS_I(inode)->lock);
9314 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
9315 			ALIGN(delalloc_bytes, blocksize)) >> 9;
9316 	return 0;
9317 }
9318 
9319 static int btrfs_rename_exchange(struct inode *old_dir,
9320 			      struct dentry *old_dentry,
9321 			      struct inode *new_dir,
9322 			      struct dentry *new_dentry)
9323 {
9324 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9325 	struct btrfs_trans_handle *trans;
9326 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9327 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9328 	struct inode *new_inode = new_dentry->d_inode;
9329 	struct inode *old_inode = old_dentry->d_inode;
9330 	struct timespec64 ctime = current_time(old_inode);
9331 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9332 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9333 	u64 old_idx = 0;
9334 	u64 new_idx = 0;
9335 	int ret;
9336 	int ret2;
9337 	bool root_log_pinned = false;
9338 	bool dest_log_pinned = false;
9339 	bool need_abort = false;
9340 
9341 	/*
9342 	 * For non-subvolumes allow exchange only within one subvolume, in the
9343 	 * same inode namespace. Two subvolumes (represented as directory) can
9344 	 * be exchanged as they're a logical link and have a fixed inode number.
9345 	 */
9346 	if (root != dest &&
9347 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9348 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
9349 		return -EXDEV;
9350 
9351 	/* close the race window with snapshot create/destroy ioctl */
9352 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9353 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
9354 		down_read(&fs_info->subvol_sem);
9355 
9356 	/*
9357 	 * We want to reserve the absolute worst case amount of items.  So if
9358 	 * both inodes are subvols and we need to unlink them then that would
9359 	 * require 4 item modifications, but if they are both normal inodes it
9360 	 * would require 5 item modifications, so we'll assume their normal
9361 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9362 	 * should cover the worst case number of items we'll modify.
9363 	 */
9364 	trans = btrfs_start_transaction(root, 12);
9365 	if (IS_ERR(trans)) {
9366 		ret = PTR_ERR(trans);
9367 		goto out_notrans;
9368 	}
9369 
9370 	if (dest != root) {
9371 		ret = btrfs_record_root_in_trans(trans, dest);
9372 		if (ret)
9373 			goto out_fail;
9374 	}
9375 
9376 	/*
9377 	 * We need to find a free sequence number both in the source and
9378 	 * in the destination directory for the exchange.
9379 	 */
9380 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9381 	if (ret)
9382 		goto out_fail;
9383 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9384 	if (ret)
9385 		goto out_fail;
9386 
9387 	BTRFS_I(old_inode)->dir_index = 0ULL;
9388 	BTRFS_I(new_inode)->dir_index = 0ULL;
9389 
9390 	/* Reference for the source. */
9391 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9392 		/* force full log commit if subvolume involved. */
9393 		btrfs_set_log_full_commit(trans);
9394 	} else {
9395 		ret = btrfs_insert_inode_ref(trans, dest,
9396 					     new_dentry->d_name.name,
9397 					     new_dentry->d_name.len,
9398 					     old_ino,
9399 					     btrfs_ino(BTRFS_I(new_dir)),
9400 					     old_idx);
9401 		if (ret)
9402 			goto out_fail;
9403 		need_abort = true;
9404 	}
9405 
9406 	/* And now for the dest. */
9407 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9408 		/* force full log commit if subvolume involved. */
9409 		btrfs_set_log_full_commit(trans);
9410 	} else {
9411 		ret = btrfs_insert_inode_ref(trans, root,
9412 					     old_dentry->d_name.name,
9413 					     old_dentry->d_name.len,
9414 					     new_ino,
9415 					     btrfs_ino(BTRFS_I(old_dir)),
9416 					     new_idx);
9417 		if (ret) {
9418 			if (need_abort)
9419 				btrfs_abort_transaction(trans, ret);
9420 			goto out_fail;
9421 		}
9422 	}
9423 
9424 	/* Update inode version and ctime/mtime. */
9425 	inode_inc_iversion(old_dir);
9426 	inode_inc_iversion(new_dir);
9427 	inode_inc_iversion(old_inode);
9428 	inode_inc_iversion(new_inode);
9429 	old_dir->i_ctime = old_dir->i_mtime = ctime;
9430 	new_dir->i_ctime = new_dir->i_mtime = ctime;
9431 	old_inode->i_ctime = ctime;
9432 	new_inode->i_ctime = ctime;
9433 
9434 	if (old_dentry->d_parent != new_dentry->d_parent) {
9435 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9436 				BTRFS_I(old_inode), 1);
9437 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9438 				BTRFS_I(new_inode), 1);
9439 	}
9440 
9441 	/*
9442 	 * Now pin the logs of the roots. We do it to ensure that no other task
9443 	 * can sync the logs while we are in progress with the rename, because
9444 	 * that could result in an inconsistency in case any of the inodes that
9445 	 * are part of this rename operation were logged before.
9446 	 *
9447 	 * We pin the logs even if at this precise moment none of the inodes was
9448 	 * logged before. This is because right after we checked for that, some
9449 	 * other task fsyncing some other inode not involved with this rename
9450 	 * operation could log that one of our inodes exists.
9451 	 *
9452 	 * We don't need to pin the logs before the above calls to
9453 	 * btrfs_insert_inode_ref(), since those don't ever need to change a log.
9454 	 */
9455 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9456 		btrfs_pin_log_trans(root);
9457 		root_log_pinned = true;
9458 	}
9459 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID) {
9460 		btrfs_pin_log_trans(dest);
9461 		dest_log_pinned = true;
9462 	}
9463 
9464 	/* src is a subvolume */
9465 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9466 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9467 	} else { /* src is an inode */
9468 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9469 					   BTRFS_I(old_dentry->d_inode),
9470 					   old_dentry->d_name.name,
9471 					   old_dentry->d_name.len);
9472 		if (!ret)
9473 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9474 	}
9475 	if (ret) {
9476 		btrfs_abort_transaction(trans, ret);
9477 		goto out_fail;
9478 	}
9479 
9480 	/* dest is a subvolume */
9481 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9482 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9483 	} else { /* dest is an inode */
9484 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9485 					   BTRFS_I(new_dentry->d_inode),
9486 					   new_dentry->d_name.name,
9487 					   new_dentry->d_name.len);
9488 		if (!ret)
9489 			ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
9490 	}
9491 	if (ret) {
9492 		btrfs_abort_transaction(trans, ret);
9493 		goto out_fail;
9494 	}
9495 
9496 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9497 			     new_dentry->d_name.name,
9498 			     new_dentry->d_name.len, 0, old_idx);
9499 	if (ret) {
9500 		btrfs_abort_transaction(trans, ret);
9501 		goto out_fail;
9502 	}
9503 
9504 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9505 			     old_dentry->d_name.name,
9506 			     old_dentry->d_name.len, 0, new_idx);
9507 	if (ret) {
9508 		btrfs_abort_transaction(trans, ret);
9509 		goto out_fail;
9510 	}
9511 
9512 	if (old_inode->i_nlink == 1)
9513 		BTRFS_I(old_inode)->dir_index = old_idx;
9514 	if (new_inode->i_nlink == 1)
9515 		BTRFS_I(new_inode)->dir_index = new_idx;
9516 
9517 	if (root_log_pinned) {
9518 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9519 				   new_dentry->d_parent);
9520 		btrfs_end_log_trans(root);
9521 		root_log_pinned = false;
9522 	}
9523 	if (dest_log_pinned) {
9524 		btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9525 				   old_dentry->d_parent);
9526 		btrfs_end_log_trans(dest);
9527 		dest_log_pinned = false;
9528 	}
9529 out_fail:
9530 	/*
9531 	 * If we have pinned a log and an error happened, we unpin tasks
9532 	 * trying to sync the log and force them to fallback to a transaction
9533 	 * commit if the log currently contains any of the inodes involved in
9534 	 * this rename operation (to ensure we do not persist a log with an
9535 	 * inconsistent state for any of these inodes or leading to any
9536 	 * inconsistencies when replayed). If the transaction was aborted, the
9537 	 * abortion reason is propagated to userspace when attempting to commit
9538 	 * the transaction. If the log does not contain any of these inodes, we
9539 	 * allow the tasks to sync it.
9540 	 */
9541 	if (ret && (root_log_pinned || dest_log_pinned)) {
9542 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9543 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9544 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9545 		    btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))
9546 			btrfs_set_log_full_commit(trans);
9547 
9548 		if (root_log_pinned) {
9549 			btrfs_end_log_trans(root);
9550 			root_log_pinned = false;
9551 		}
9552 		if (dest_log_pinned) {
9553 			btrfs_end_log_trans(dest);
9554 			dest_log_pinned = false;
9555 		}
9556 	}
9557 	ret2 = btrfs_end_transaction(trans);
9558 	ret = ret ? ret : ret2;
9559 out_notrans:
9560 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9561 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9562 		up_read(&fs_info->subvol_sem);
9563 
9564 	return ret;
9565 }
9566 
9567 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9568 				     struct btrfs_root *root,
9569 				     struct user_namespace *mnt_userns,
9570 				     struct inode *dir,
9571 				     struct dentry *dentry)
9572 {
9573 	int ret;
9574 	struct inode *inode;
9575 	u64 objectid;
9576 	u64 index;
9577 
9578 	ret = btrfs_get_free_objectid(root, &objectid);
9579 	if (ret)
9580 		return ret;
9581 
9582 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
9583 				dentry->d_name.name,
9584 				dentry->d_name.len,
9585 				btrfs_ino(BTRFS_I(dir)),
9586 				objectid,
9587 				S_IFCHR | WHITEOUT_MODE,
9588 				&index);
9589 
9590 	if (IS_ERR(inode)) {
9591 		ret = PTR_ERR(inode);
9592 		return ret;
9593 	}
9594 
9595 	inode->i_op = &btrfs_special_inode_operations;
9596 	init_special_inode(inode, inode->i_mode,
9597 		WHITEOUT_DEV);
9598 
9599 	ret = btrfs_init_inode_security(trans, inode, dir,
9600 				&dentry->d_name);
9601 	if (ret)
9602 		goto out;
9603 
9604 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9605 				BTRFS_I(inode), 0, index);
9606 	if (ret)
9607 		goto out;
9608 
9609 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
9610 out:
9611 	unlock_new_inode(inode);
9612 	if (ret)
9613 		inode_dec_link_count(inode);
9614 	iput(inode);
9615 
9616 	return ret;
9617 }
9618 
9619 static int btrfs_rename(struct user_namespace *mnt_userns,
9620 			struct inode *old_dir, struct dentry *old_dentry,
9621 			struct inode *new_dir, struct dentry *new_dentry,
9622 			unsigned int flags)
9623 {
9624 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9625 	struct btrfs_trans_handle *trans;
9626 	unsigned int trans_num_items;
9627 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9628 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9629 	struct inode *new_inode = d_inode(new_dentry);
9630 	struct inode *old_inode = d_inode(old_dentry);
9631 	u64 index = 0;
9632 	int ret;
9633 	int ret2;
9634 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9635 	bool log_pinned = false;
9636 
9637 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9638 		return -EPERM;
9639 
9640 	/* we only allow rename subvolume link between subvolumes */
9641 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9642 		return -EXDEV;
9643 
9644 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9645 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9646 		return -ENOTEMPTY;
9647 
9648 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9649 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9650 		return -ENOTEMPTY;
9651 
9652 
9653 	/* check for collisions, even if the  name isn't there */
9654 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9655 			     new_dentry->d_name.name,
9656 			     new_dentry->d_name.len);
9657 
9658 	if (ret) {
9659 		if (ret == -EEXIST) {
9660 			/* we shouldn't get
9661 			 * eexist without a new_inode */
9662 			if (WARN_ON(!new_inode)) {
9663 				return ret;
9664 			}
9665 		} else {
9666 			/* maybe -EOVERFLOW */
9667 			return ret;
9668 		}
9669 	}
9670 	ret = 0;
9671 
9672 	/*
9673 	 * we're using rename to replace one file with another.  Start IO on it
9674 	 * now so  we don't add too much work to the end of the transaction
9675 	 */
9676 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9677 		filemap_flush(old_inode->i_mapping);
9678 
9679 	/* close the racy window with snapshot create/destroy ioctl */
9680 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9681 		down_read(&fs_info->subvol_sem);
9682 	/*
9683 	 * We want to reserve the absolute worst case amount of items.  So if
9684 	 * both inodes are subvols and we need to unlink them then that would
9685 	 * require 4 item modifications, but if they are both normal inodes it
9686 	 * would require 5 item modifications, so we'll assume they are normal
9687 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9688 	 * should cover the worst case number of items we'll modify.
9689 	 * If our rename has the whiteout flag, we need more 5 units for the
9690 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9691 	 * when selinux is enabled).
9692 	 */
9693 	trans_num_items = 11;
9694 	if (flags & RENAME_WHITEOUT)
9695 		trans_num_items += 5;
9696 	trans = btrfs_start_transaction(root, trans_num_items);
9697 	if (IS_ERR(trans)) {
9698 		ret = PTR_ERR(trans);
9699 		goto out_notrans;
9700 	}
9701 
9702 	if (dest != root) {
9703 		ret = btrfs_record_root_in_trans(trans, dest);
9704 		if (ret)
9705 			goto out_fail;
9706 	}
9707 
9708 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9709 	if (ret)
9710 		goto out_fail;
9711 
9712 	BTRFS_I(old_inode)->dir_index = 0ULL;
9713 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9714 		/* force full log commit if subvolume involved. */
9715 		btrfs_set_log_full_commit(trans);
9716 	} else {
9717 		ret = btrfs_insert_inode_ref(trans, dest,
9718 					     new_dentry->d_name.name,
9719 					     new_dentry->d_name.len,
9720 					     old_ino,
9721 					     btrfs_ino(BTRFS_I(new_dir)), index);
9722 		if (ret)
9723 			goto out_fail;
9724 	}
9725 
9726 	inode_inc_iversion(old_dir);
9727 	inode_inc_iversion(new_dir);
9728 	inode_inc_iversion(old_inode);
9729 	old_dir->i_ctime = old_dir->i_mtime =
9730 	new_dir->i_ctime = new_dir->i_mtime =
9731 	old_inode->i_ctime = current_time(old_dir);
9732 
9733 	if (old_dentry->d_parent != new_dentry->d_parent)
9734 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9735 				BTRFS_I(old_inode), 1);
9736 
9737 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9738 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9739 	} else {
9740 		/*
9741 		 * Now pin the log. We do it to ensure that no other task can
9742 		 * sync the log while we are in progress with the rename, as
9743 		 * that could result in an inconsistency in case any of the
9744 		 * inodes that are part of this rename operation were logged
9745 		 * before.
9746 		 *
9747 		 * We pin the log even if at this precise moment none of the
9748 		 * inodes was logged before. This is because right after we
9749 		 * checked for that, some other task fsyncing some other inode
9750 		 * not involved with this rename operation could log that one of
9751 		 * our inodes exists.
9752 		 *
9753 		 * We don't need to pin the logs before the above call to
9754 		 * btrfs_insert_inode_ref(), since that does not need to change
9755 		 * a log.
9756 		 */
9757 		btrfs_pin_log_trans(root);
9758 		log_pinned = true;
9759 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9760 					BTRFS_I(d_inode(old_dentry)),
9761 					old_dentry->d_name.name,
9762 					old_dentry->d_name.len);
9763 		if (!ret)
9764 			ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
9765 	}
9766 	if (ret) {
9767 		btrfs_abort_transaction(trans, ret);
9768 		goto out_fail;
9769 	}
9770 
9771 	if (new_inode) {
9772 		inode_inc_iversion(new_inode);
9773 		new_inode->i_ctime = current_time(new_inode);
9774 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9775 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9776 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9777 			BUG_ON(new_inode->i_nlink == 0);
9778 		} else {
9779 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9780 						 BTRFS_I(d_inode(new_dentry)),
9781 						 new_dentry->d_name.name,
9782 						 new_dentry->d_name.len);
9783 		}
9784 		if (!ret && new_inode->i_nlink == 0)
9785 			ret = btrfs_orphan_add(trans,
9786 					BTRFS_I(d_inode(new_dentry)));
9787 		if (ret) {
9788 			btrfs_abort_transaction(trans, ret);
9789 			goto out_fail;
9790 		}
9791 	}
9792 
9793 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9794 			     new_dentry->d_name.name,
9795 			     new_dentry->d_name.len, 0, index);
9796 	if (ret) {
9797 		btrfs_abort_transaction(trans, ret);
9798 		goto out_fail;
9799 	}
9800 
9801 	if (old_inode->i_nlink == 1)
9802 		BTRFS_I(old_inode)->dir_index = index;
9803 
9804 	if (log_pinned) {
9805 		btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9806 				   new_dentry->d_parent);
9807 		btrfs_end_log_trans(root);
9808 		log_pinned = false;
9809 	}
9810 
9811 	if (flags & RENAME_WHITEOUT) {
9812 		ret = btrfs_whiteout_for_rename(trans, root, mnt_userns,
9813 						old_dir, old_dentry);
9814 
9815 		if (ret) {
9816 			btrfs_abort_transaction(trans, ret);
9817 			goto out_fail;
9818 		}
9819 	}
9820 out_fail:
9821 	/*
9822 	 * If we have pinned the log and an error happened, we unpin tasks
9823 	 * trying to sync the log and force them to fallback to a transaction
9824 	 * commit if the log currently contains any of the inodes involved in
9825 	 * this rename operation (to ensure we do not persist a log with an
9826 	 * inconsistent state for any of these inodes or leading to any
9827 	 * inconsistencies when replayed). If the transaction was aborted, the
9828 	 * abortion reason is propagated to userspace when attempting to commit
9829 	 * the transaction. If the log does not contain any of these inodes, we
9830 	 * allow the tasks to sync it.
9831 	 */
9832 	if (ret && log_pinned) {
9833 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9834 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9835 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9836 		    (new_inode &&
9837 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9838 			btrfs_set_log_full_commit(trans);
9839 
9840 		btrfs_end_log_trans(root);
9841 		log_pinned = false;
9842 	}
9843 	ret2 = btrfs_end_transaction(trans);
9844 	ret = ret ? ret : ret2;
9845 out_notrans:
9846 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9847 		up_read(&fs_info->subvol_sem);
9848 
9849 	return ret;
9850 }
9851 
9852 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9853 			 struct dentry *old_dentry, struct inode *new_dir,
9854 			 struct dentry *new_dentry, unsigned int flags)
9855 {
9856 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9857 		return -EINVAL;
9858 
9859 	if (flags & RENAME_EXCHANGE)
9860 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9861 					  new_dentry);
9862 
9863 	return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9864 			    new_dentry, flags);
9865 }
9866 
9867 struct btrfs_delalloc_work {
9868 	struct inode *inode;
9869 	struct completion completion;
9870 	struct list_head list;
9871 	struct btrfs_work work;
9872 };
9873 
9874 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9875 {
9876 	struct btrfs_delalloc_work *delalloc_work;
9877 	struct inode *inode;
9878 
9879 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9880 				     work);
9881 	inode = delalloc_work->inode;
9882 	filemap_flush(inode->i_mapping);
9883 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9884 				&BTRFS_I(inode)->runtime_flags))
9885 		filemap_flush(inode->i_mapping);
9886 
9887 	iput(inode);
9888 	complete(&delalloc_work->completion);
9889 }
9890 
9891 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9892 {
9893 	struct btrfs_delalloc_work *work;
9894 
9895 	work = kmalloc(sizeof(*work), GFP_NOFS);
9896 	if (!work)
9897 		return NULL;
9898 
9899 	init_completion(&work->completion);
9900 	INIT_LIST_HEAD(&work->list);
9901 	work->inode = inode;
9902 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9903 
9904 	return work;
9905 }
9906 
9907 /*
9908  * some fairly slow code that needs optimization. This walks the list
9909  * of all the inodes with pending delalloc and forces them to disk.
9910  */
9911 static int start_delalloc_inodes(struct btrfs_root *root,
9912 				 struct writeback_control *wbc, bool snapshot,
9913 				 bool in_reclaim_context)
9914 {
9915 	struct btrfs_inode *binode;
9916 	struct inode *inode;
9917 	struct btrfs_delalloc_work *work, *next;
9918 	struct list_head works;
9919 	struct list_head splice;
9920 	int ret = 0;
9921 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9922 
9923 	INIT_LIST_HEAD(&works);
9924 	INIT_LIST_HEAD(&splice);
9925 
9926 	mutex_lock(&root->delalloc_mutex);
9927 	spin_lock(&root->delalloc_lock);
9928 	list_splice_init(&root->delalloc_inodes, &splice);
9929 	while (!list_empty(&splice)) {
9930 		binode = list_entry(splice.next, struct btrfs_inode,
9931 				    delalloc_inodes);
9932 
9933 		list_move_tail(&binode->delalloc_inodes,
9934 			       &root->delalloc_inodes);
9935 
9936 		if (in_reclaim_context &&
9937 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9938 			continue;
9939 
9940 		inode = igrab(&binode->vfs_inode);
9941 		if (!inode) {
9942 			cond_resched_lock(&root->delalloc_lock);
9943 			continue;
9944 		}
9945 		spin_unlock(&root->delalloc_lock);
9946 
9947 		if (snapshot)
9948 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9949 				&binode->runtime_flags);
9950 		if (full_flush) {
9951 			work = btrfs_alloc_delalloc_work(inode);
9952 			if (!work) {
9953 				iput(inode);
9954 				ret = -ENOMEM;
9955 				goto out;
9956 			}
9957 			list_add_tail(&work->list, &works);
9958 			btrfs_queue_work(root->fs_info->flush_workers,
9959 					 &work->work);
9960 		} else {
9961 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9962 			btrfs_add_delayed_iput(inode);
9963 			if (ret || wbc->nr_to_write <= 0)
9964 				goto out;
9965 		}
9966 		cond_resched();
9967 		spin_lock(&root->delalloc_lock);
9968 	}
9969 	spin_unlock(&root->delalloc_lock);
9970 
9971 out:
9972 	list_for_each_entry_safe(work, next, &works, list) {
9973 		list_del_init(&work->list);
9974 		wait_for_completion(&work->completion);
9975 		kfree(work);
9976 	}
9977 
9978 	if (!list_empty(&splice)) {
9979 		spin_lock(&root->delalloc_lock);
9980 		list_splice_tail(&splice, &root->delalloc_inodes);
9981 		spin_unlock(&root->delalloc_lock);
9982 	}
9983 	mutex_unlock(&root->delalloc_mutex);
9984 	return ret;
9985 }
9986 
9987 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9988 {
9989 	struct writeback_control wbc = {
9990 		.nr_to_write = LONG_MAX,
9991 		.sync_mode = WB_SYNC_NONE,
9992 		.range_start = 0,
9993 		.range_end = LLONG_MAX,
9994 	};
9995 	struct btrfs_fs_info *fs_info = root->fs_info;
9996 
9997 	if (BTRFS_FS_ERROR(fs_info))
9998 		return -EROFS;
9999 
10000 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
10001 }
10002 
10003 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
10004 			       bool in_reclaim_context)
10005 {
10006 	struct writeback_control wbc = {
10007 		.nr_to_write = nr,
10008 		.sync_mode = WB_SYNC_NONE,
10009 		.range_start = 0,
10010 		.range_end = LLONG_MAX,
10011 	};
10012 	struct btrfs_root *root;
10013 	struct list_head splice;
10014 	int ret;
10015 
10016 	if (BTRFS_FS_ERROR(fs_info))
10017 		return -EROFS;
10018 
10019 	INIT_LIST_HEAD(&splice);
10020 
10021 	mutex_lock(&fs_info->delalloc_root_mutex);
10022 	spin_lock(&fs_info->delalloc_root_lock);
10023 	list_splice_init(&fs_info->delalloc_roots, &splice);
10024 	while (!list_empty(&splice)) {
10025 		/*
10026 		 * Reset nr_to_write here so we know that we're doing a full
10027 		 * flush.
10028 		 */
10029 		if (nr == LONG_MAX)
10030 			wbc.nr_to_write = LONG_MAX;
10031 
10032 		root = list_first_entry(&splice, struct btrfs_root,
10033 					delalloc_root);
10034 		root = btrfs_grab_root(root);
10035 		BUG_ON(!root);
10036 		list_move_tail(&root->delalloc_root,
10037 			       &fs_info->delalloc_roots);
10038 		spin_unlock(&fs_info->delalloc_root_lock);
10039 
10040 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
10041 		btrfs_put_root(root);
10042 		if (ret < 0 || wbc.nr_to_write <= 0)
10043 			goto out;
10044 		spin_lock(&fs_info->delalloc_root_lock);
10045 	}
10046 	spin_unlock(&fs_info->delalloc_root_lock);
10047 
10048 	ret = 0;
10049 out:
10050 	if (!list_empty(&splice)) {
10051 		spin_lock(&fs_info->delalloc_root_lock);
10052 		list_splice_tail(&splice, &fs_info->delalloc_roots);
10053 		spin_unlock(&fs_info->delalloc_root_lock);
10054 	}
10055 	mutex_unlock(&fs_info->delalloc_root_mutex);
10056 	return ret;
10057 }
10058 
10059 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
10060 			 struct dentry *dentry, const char *symname)
10061 {
10062 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10063 	struct btrfs_trans_handle *trans;
10064 	struct btrfs_root *root = BTRFS_I(dir)->root;
10065 	struct btrfs_path *path;
10066 	struct btrfs_key key;
10067 	struct inode *inode = NULL;
10068 	int err;
10069 	u64 objectid;
10070 	u64 index = 0;
10071 	int name_len;
10072 	int datasize;
10073 	unsigned long ptr;
10074 	struct btrfs_file_extent_item *ei;
10075 	struct extent_buffer *leaf;
10076 
10077 	name_len = strlen(symname);
10078 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10079 		return -ENAMETOOLONG;
10080 
10081 	/*
10082 	 * 2 items for inode item and ref
10083 	 * 2 items for dir items
10084 	 * 1 item for updating parent inode item
10085 	 * 1 item for the inline extent item
10086 	 * 1 item for xattr if selinux is on
10087 	 */
10088 	trans = btrfs_start_transaction(root, 7);
10089 	if (IS_ERR(trans))
10090 		return PTR_ERR(trans);
10091 
10092 	err = btrfs_get_free_objectid(root, &objectid);
10093 	if (err)
10094 		goto out_unlock;
10095 
10096 	inode = btrfs_new_inode(trans, root, mnt_userns, dir,
10097 				dentry->d_name.name, dentry->d_name.len,
10098 				btrfs_ino(BTRFS_I(dir)), objectid,
10099 				S_IFLNK | S_IRWXUGO, &index);
10100 	if (IS_ERR(inode)) {
10101 		err = PTR_ERR(inode);
10102 		inode = NULL;
10103 		goto out_unlock;
10104 	}
10105 
10106 	/*
10107 	* If the active LSM wants to access the inode during
10108 	* d_instantiate it needs these. Smack checks to see
10109 	* if the filesystem supports xattrs by looking at the
10110 	* ops vector.
10111 	*/
10112 	inode->i_fop = &btrfs_file_operations;
10113 	inode->i_op = &btrfs_file_inode_operations;
10114 	inode->i_mapping->a_ops = &btrfs_aops;
10115 
10116 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10117 	if (err)
10118 		goto out_unlock;
10119 
10120 	path = btrfs_alloc_path();
10121 	if (!path) {
10122 		err = -ENOMEM;
10123 		goto out_unlock;
10124 	}
10125 	key.objectid = btrfs_ino(BTRFS_I(inode));
10126 	key.offset = 0;
10127 	key.type = BTRFS_EXTENT_DATA_KEY;
10128 	datasize = btrfs_file_extent_calc_inline_size(name_len);
10129 	err = btrfs_insert_empty_item(trans, root, path, &key,
10130 				      datasize);
10131 	if (err) {
10132 		btrfs_free_path(path);
10133 		goto out_unlock;
10134 	}
10135 	leaf = path->nodes[0];
10136 	ei = btrfs_item_ptr(leaf, path->slots[0],
10137 			    struct btrfs_file_extent_item);
10138 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10139 	btrfs_set_file_extent_type(leaf, ei,
10140 				   BTRFS_FILE_EXTENT_INLINE);
10141 	btrfs_set_file_extent_encryption(leaf, ei, 0);
10142 	btrfs_set_file_extent_compression(leaf, ei, 0);
10143 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10144 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10145 
10146 	ptr = btrfs_file_extent_inline_start(ei);
10147 	write_extent_buffer(leaf, symname, ptr, name_len);
10148 	btrfs_mark_buffer_dirty(leaf);
10149 	btrfs_free_path(path);
10150 
10151 	inode->i_op = &btrfs_symlink_inode_operations;
10152 	inode_nohighmem(inode);
10153 	inode_set_bytes(inode, name_len);
10154 	btrfs_i_size_write(BTRFS_I(inode), name_len);
10155 	err = btrfs_update_inode(trans, root, BTRFS_I(inode));
10156 	/*
10157 	 * Last step, add directory indexes for our symlink inode. This is the
10158 	 * last step to avoid extra cleanup of these indexes if an error happens
10159 	 * elsewhere above.
10160 	 */
10161 	if (!err)
10162 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10163 				BTRFS_I(inode), 0, index);
10164 	if (err)
10165 		goto out_unlock;
10166 
10167 	d_instantiate_new(dentry, inode);
10168 
10169 out_unlock:
10170 	btrfs_end_transaction(trans);
10171 	if (err && inode) {
10172 		inode_dec_link_count(inode);
10173 		discard_new_inode(inode);
10174 	}
10175 	btrfs_btree_balance_dirty(fs_info);
10176 	return err;
10177 }
10178 
10179 static struct btrfs_trans_handle *insert_prealloc_file_extent(
10180 				       struct btrfs_trans_handle *trans_in,
10181 				       struct btrfs_inode *inode,
10182 				       struct btrfs_key *ins,
10183 				       u64 file_offset)
10184 {
10185 	struct btrfs_file_extent_item stack_fi;
10186 	struct btrfs_replace_extent_info extent_info;
10187 	struct btrfs_trans_handle *trans = trans_in;
10188 	struct btrfs_path *path;
10189 	u64 start = ins->objectid;
10190 	u64 len = ins->offset;
10191 	int qgroup_released;
10192 	int ret;
10193 
10194 	memset(&stack_fi, 0, sizeof(stack_fi));
10195 
10196 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
10197 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
10198 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
10199 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
10200 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
10201 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
10202 	/* Encryption and other encoding is reserved and all 0 */
10203 
10204 	qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
10205 	if (qgroup_released < 0)
10206 		return ERR_PTR(qgroup_released);
10207 
10208 	if (trans) {
10209 		ret = insert_reserved_file_extent(trans, inode,
10210 						  file_offset, &stack_fi,
10211 						  true, qgroup_released);
10212 		if (ret)
10213 			goto free_qgroup;
10214 		return trans;
10215 	}
10216 
10217 	extent_info.disk_offset = start;
10218 	extent_info.disk_len = len;
10219 	extent_info.data_offset = 0;
10220 	extent_info.data_len = len;
10221 	extent_info.file_offset = file_offset;
10222 	extent_info.extent_buf = (char *)&stack_fi;
10223 	extent_info.is_new_extent = true;
10224 	extent_info.qgroup_reserved = qgroup_released;
10225 	extent_info.insertions = 0;
10226 
10227 	path = btrfs_alloc_path();
10228 	if (!path) {
10229 		ret = -ENOMEM;
10230 		goto free_qgroup;
10231 	}
10232 
10233 	ret = btrfs_replace_file_extents(inode, path, file_offset,
10234 				     file_offset + len - 1, &extent_info,
10235 				     &trans);
10236 	btrfs_free_path(path);
10237 	if (ret)
10238 		goto free_qgroup;
10239 	return trans;
10240 
10241 free_qgroup:
10242 	/*
10243 	 * We have released qgroup data range at the beginning of the function,
10244 	 * and normally qgroup_released bytes will be freed when committing
10245 	 * transaction.
10246 	 * But if we error out early, we have to free what we have released
10247 	 * or we leak qgroup data reservation.
10248 	 */
10249 	btrfs_qgroup_free_refroot(inode->root->fs_info,
10250 			inode->root->root_key.objectid, qgroup_released,
10251 			BTRFS_QGROUP_RSV_DATA);
10252 	return ERR_PTR(ret);
10253 }
10254 
10255 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10256 				       u64 start, u64 num_bytes, u64 min_size,
10257 				       loff_t actual_len, u64 *alloc_hint,
10258 				       struct btrfs_trans_handle *trans)
10259 {
10260 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10261 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10262 	struct extent_map *em;
10263 	struct btrfs_root *root = BTRFS_I(inode)->root;
10264 	struct btrfs_key ins;
10265 	u64 cur_offset = start;
10266 	u64 clear_offset = start;
10267 	u64 i_size;
10268 	u64 cur_bytes;
10269 	u64 last_alloc = (u64)-1;
10270 	int ret = 0;
10271 	bool own_trans = true;
10272 	u64 end = start + num_bytes - 1;
10273 
10274 	if (trans)
10275 		own_trans = false;
10276 	while (num_bytes > 0) {
10277 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
10278 		cur_bytes = max(cur_bytes, min_size);
10279 		/*
10280 		 * If we are severely fragmented we could end up with really
10281 		 * small allocations, so if the allocator is returning small
10282 		 * chunks lets make its job easier by only searching for those
10283 		 * sized chunks.
10284 		 */
10285 		cur_bytes = min(cur_bytes, last_alloc);
10286 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10287 				min_size, 0, *alloc_hint, &ins, 1, 0);
10288 		if (ret)
10289 			break;
10290 
10291 		/*
10292 		 * We've reserved this space, and thus converted it from
10293 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
10294 		 * from here on out we will only need to clear our reservation
10295 		 * for the remaining unreserved area, so advance our
10296 		 * clear_offset by our extent size.
10297 		 */
10298 		clear_offset += ins.offset;
10299 
10300 		last_alloc = ins.offset;
10301 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
10302 						    &ins, cur_offset);
10303 		/*
10304 		 * Now that we inserted the prealloc extent we can finally
10305 		 * decrement the number of reservations in the block group.
10306 		 * If we did it before, we could race with relocation and have
10307 		 * relocation miss the reserved extent, making it fail later.
10308 		 */
10309 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10310 		if (IS_ERR(trans)) {
10311 			ret = PTR_ERR(trans);
10312 			btrfs_free_reserved_extent(fs_info, ins.objectid,
10313 						   ins.offset, 0);
10314 			break;
10315 		}
10316 
10317 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10318 					cur_offset + ins.offset -1, 0);
10319 
10320 		em = alloc_extent_map();
10321 		if (!em) {
10322 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10323 				&BTRFS_I(inode)->runtime_flags);
10324 			goto next;
10325 		}
10326 
10327 		em->start = cur_offset;
10328 		em->orig_start = cur_offset;
10329 		em->len = ins.offset;
10330 		em->block_start = ins.objectid;
10331 		em->block_len = ins.offset;
10332 		em->orig_block_len = ins.offset;
10333 		em->ram_bytes = ins.offset;
10334 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10335 		em->generation = trans->transid;
10336 
10337 		while (1) {
10338 			write_lock(&em_tree->lock);
10339 			ret = add_extent_mapping(em_tree, em, 1);
10340 			write_unlock(&em_tree->lock);
10341 			if (ret != -EEXIST)
10342 				break;
10343 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10344 						cur_offset + ins.offset - 1,
10345 						0);
10346 		}
10347 		free_extent_map(em);
10348 next:
10349 		num_bytes -= ins.offset;
10350 		cur_offset += ins.offset;
10351 		*alloc_hint = ins.objectid + ins.offset;
10352 
10353 		inode_inc_iversion(inode);
10354 		inode->i_ctime = current_time(inode);
10355 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10356 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10357 		    (actual_len > inode->i_size) &&
10358 		    (cur_offset > inode->i_size)) {
10359 			if (cur_offset > actual_len)
10360 				i_size = actual_len;
10361 			else
10362 				i_size = cur_offset;
10363 			i_size_write(inode, i_size);
10364 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
10365 		}
10366 
10367 		ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10368 
10369 		if (ret) {
10370 			btrfs_abort_transaction(trans, ret);
10371 			if (own_trans)
10372 				btrfs_end_transaction(trans);
10373 			break;
10374 		}
10375 
10376 		if (own_trans) {
10377 			btrfs_end_transaction(trans);
10378 			trans = NULL;
10379 		}
10380 	}
10381 	if (clear_offset < end)
10382 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
10383 			end - clear_offset + 1);
10384 	return ret;
10385 }
10386 
10387 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10388 			      u64 start, u64 num_bytes, u64 min_size,
10389 			      loff_t actual_len, u64 *alloc_hint)
10390 {
10391 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10392 					   min_size, actual_len, alloc_hint,
10393 					   NULL);
10394 }
10395 
10396 int btrfs_prealloc_file_range_trans(struct inode *inode,
10397 				    struct btrfs_trans_handle *trans, int mode,
10398 				    u64 start, u64 num_bytes, u64 min_size,
10399 				    loff_t actual_len, u64 *alloc_hint)
10400 {
10401 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10402 					   min_size, actual_len, alloc_hint, trans);
10403 }
10404 
10405 static int btrfs_set_page_dirty(struct page *page)
10406 {
10407 	return __set_page_dirty_nobuffers(page);
10408 }
10409 
10410 static int btrfs_permission(struct user_namespace *mnt_userns,
10411 			    struct inode *inode, int mask)
10412 {
10413 	struct btrfs_root *root = BTRFS_I(inode)->root;
10414 	umode_t mode = inode->i_mode;
10415 
10416 	if (mask & MAY_WRITE &&
10417 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10418 		if (btrfs_root_readonly(root))
10419 			return -EROFS;
10420 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10421 			return -EACCES;
10422 	}
10423 	return generic_permission(mnt_userns, inode, mask);
10424 }
10425 
10426 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
10427 			 struct dentry *dentry, umode_t mode)
10428 {
10429 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10430 	struct btrfs_trans_handle *trans;
10431 	struct btrfs_root *root = BTRFS_I(dir)->root;
10432 	struct inode *inode = NULL;
10433 	u64 objectid;
10434 	u64 index;
10435 	int ret = 0;
10436 
10437 	/*
10438 	 * 5 units required for adding orphan entry
10439 	 */
10440 	trans = btrfs_start_transaction(root, 5);
10441 	if (IS_ERR(trans))
10442 		return PTR_ERR(trans);
10443 
10444 	ret = btrfs_get_free_objectid(root, &objectid);
10445 	if (ret)
10446 		goto out;
10447 
10448 	inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0,
10449 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10450 	if (IS_ERR(inode)) {
10451 		ret = PTR_ERR(inode);
10452 		inode = NULL;
10453 		goto out;
10454 	}
10455 
10456 	inode->i_fop = &btrfs_file_operations;
10457 	inode->i_op = &btrfs_file_inode_operations;
10458 
10459 	inode->i_mapping->a_ops = &btrfs_aops;
10460 
10461 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10462 	if (ret)
10463 		goto out;
10464 
10465 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
10466 	if (ret)
10467 		goto out;
10468 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10469 	if (ret)
10470 		goto out;
10471 
10472 	/*
10473 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
10474 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10475 	 * through:
10476 	 *
10477 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10478 	 */
10479 	set_nlink(inode, 1);
10480 	d_tmpfile(dentry, inode);
10481 	unlock_new_inode(inode);
10482 	mark_inode_dirty(inode);
10483 out:
10484 	btrfs_end_transaction(trans);
10485 	if (ret && inode)
10486 		discard_new_inode(inode);
10487 	btrfs_btree_balance_dirty(fs_info);
10488 	return ret;
10489 }
10490 
10491 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
10492 {
10493 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10494 	unsigned long index = start >> PAGE_SHIFT;
10495 	unsigned long end_index = end >> PAGE_SHIFT;
10496 	struct page *page;
10497 	u32 len;
10498 
10499 	ASSERT(end + 1 - start <= U32_MAX);
10500 	len = end + 1 - start;
10501 	while (index <= end_index) {
10502 		page = find_get_page(inode->vfs_inode.i_mapping, index);
10503 		ASSERT(page); /* Pages should be in the extent_io_tree */
10504 
10505 		btrfs_page_set_writeback(fs_info, page, start, len);
10506 		put_page(page);
10507 		index++;
10508 	}
10509 }
10510 
10511 #ifdef CONFIG_SWAP
10512 /*
10513  * Add an entry indicating a block group or device which is pinned by a
10514  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10515  * negative errno on failure.
10516  */
10517 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10518 				  bool is_block_group)
10519 {
10520 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10521 	struct btrfs_swapfile_pin *sp, *entry;
10522 	struct rb_node **p;
10523 	struct rb_node *parent = NULL;
10524 
10525 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10526 	if (!sp)
10527 		return -ENOMEM;
10528 	sp->ptr = ptr;
10529 	sp->inode = inode;
10530 	sp->is_block_group = is_block_group;
10531 	sp->bg_extent_count = 1;
10532 
10533 	spin_lock(&fs_info->swapfile_pins_lock);
10534 	p = &fs_info->swapfile_pins.rb_node;
10535 	while (*p) {
10536 		parent = *p;
10537 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10538 		if (sp->ptr < entry->ptr ||
10539 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10540 			p = &(*p)->rb_left;
10541 		} else if (sp->ptr > entry->ptr ||
10542 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10543 			p = &(*p)->rb_right;
10544 		} else {
10545 			if (is_block_group)
10546 				entry->bg_extent_count++;
10547 			spin_unlock(&fs_info->swapfile_pins_lock);
10548 			kfree(sp);
10549 			return 1;
10550 		}
10551 	}
10552 	rb_link_node(&sp->node, parent, p);
10553 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10554 	spin_unlock(&fs_info->swapfile_pins_lock);
10555 	return 0;
10556 }
10557 
10558 /* Free all of the entries pinned by this swapfile. */
10559 static void btrfs_free_swapfile_pins(struct inode *inode)
10560 {
10561 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10562 	struct btrfs_swapfile_pin *sp;
10563 	struct rb_node *node, *next;
10564 
10565 	spin_lock(&fs_info->swapfile_pins_lock);
10566 	node = rb_first(&fs_info->swapfile_pins);
10567 	while (node) {
10568 		next = rb_next(node);
10569 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10570 		if (sp->inode == inode) {
10571 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10572 			if (sp->is_block_group) {
10573 				btrfs_dec_block_group_swap_extents(sp->ptr,
10574 							   sp->bg_extent_count);
10575 				btrfs_put_block_group(sp->ptr);
10576 			}
10577 			kfree(sp);
10578 		}
10579 		node = next;
10580 	}
10581 	spin_unlock(&fs_info->swapfile_pins_lock);
10582 }
10583 
10584 struct btrfs_swap_info {
10585 	u64 start;
10586 	u64 block_start;
10587 	u64 block_len;
10588 	u64 lowest_ppage;
10589 	u64 highest_ppage;
10590 	unsigned long nr_pages;
10591 	int nr_extents;
10592 };
10593 
10594 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10595 				 struct btrfs_swap_info *bsi)
10596 {
10597 	unsigned long nr_pages;
10598 	u64 first_ppage, first_ppage_reported, next_ppage;
10599 	int ret;
10600 
10601 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10602 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10603 				PAGE_SIZE) >> PAGE_SHIFT;
10604 
10605 	if (first_ppage >= next_ppage)
10606 		return 0;
10607 	nr_pages = next_ppage - first_ppage;
10608 
10609 	first_ppage_reported = first_ppage;
10610 	if (bsi->start == 0)
10611 		first_ppage_reported++;
10612 	if (bsi->lowest_ppage > first_ppage_reported)
10613 		bsi->lowest_ppage = first_ppage_reported;
10614 	if (bsi->highest_ppage < (next_ppage - 1))
10615 		bsi->highest_ppage = next_ppage - 1;
10616 
10617 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10618 	if (ret < 0)
10619 		return ret;
10620 	bsi->nr_extents += ret;
10621 	bsi->nr_pages += nr_pages;
10622 	return 0;
10623 }
10624 
10625 static void btrfs_swap_deactivate(struct file *file)
10626 {
10627 	struct inode *inode = file_inode(file);
10628 
10629 	btrfs_free_swapfile_pins(inode);
10630 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10631 }
10632 
10633 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10634 			       sector_t *span)
10635 {
10636 	struct inode *inode = file_inode(file);
10637 	struct btrfs_root *root = BTRFS_I(inode)->root;
10638 	struct btrfs_fs_info *fs_info = root->fs_info;
10639 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10640 	struct extent_state *cached_state = NULL;
10641 	struct extent_map *em = NULL;
10642 	struct btrfs_device *device = NULL;
10643 	struct btrfs_swap_info bsi = {
10644 		.lowest_ppage = (sector_t)-1ULL,
10645 	};
10646 	int ret = 0;
10647 	u64 isize;
10648 	u64 start;
10649 
10650 	/*
10651 	 * If the swap file was just created, make sure delalloc is done. If the
10652 	 * file changes again after this, the user is doing something stupid and
10653 	 * we don't really care.
10654 	 */
10655 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10656 	if (ret)
10657 		return ret;
10658 
10659 	/*
10660 	 * The inode is locked, so these flags won't change after we check them.
10661 	 */
10662 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10663 		btrfs_warn(fs_info, "swapfile must not be compressed");
10664 		return -EINVAL;
10665 	}
10666 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10667 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10668 		return -EINVAL;
10669 	}
10670 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10671 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10672 		return -EINVAL;
10673 	}
10674 
10675 	/*
10676 	 * Balance or device remove/replace/resize can move stuff around from
10677 	 * under us. The exclop protection makes sure they aren't running/won't
10678 	 * run concurrently while we are mapping the swap extents, and
10679 	 * fs_info->swapfile_pins prevents them from running while the swap
10680 	 * file is active and moving the extents. Note that this also prevents
10681 	 * a concurrent device add which isn't actually necessary, but it's not
10682 	 * really worth the trouble to allow it.
10683 	 */
10684 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10685 		btrfs_warn(fs_info,
10686 	   "cannot activate swapfile while exclusive operation is running");
10687 		return -EBUSY;
10688 	}
10689 
10690 	/*
10691 	 * Prevent snapshot creation while we are activating the swap file.
10692 	 * We do not want to race with snapshot creation. If snapshot creation
10693 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10694 	 * completes before the first write into the swap file after it is
10695 	 * activated, than that write would fallback to COW.
10696 	 */
10697 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10698 		btrfs_exclop_finish(fs_info);
10699 		btrfs_warn(fs_info,
10700 	   "cannot activate swapfile because snapshot creation is in progress");
10701 		return -EINVAL;
10702 	}
10703 	/*
10704 	 * Snapshots can create extents which require COW even if NODATACOW is
10705 	 * set. We use this counter to prevent snapshots. We must increment it
10706 	 * before walking the extents because we don't want a concurrent
10707 	 * snapshot to run after we've already checked the extents.
10708 	 */
10709 	atomic_inc(&root->nr_swapfiles);
10710 
10711 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10712 
10713 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10714 	start = 0;
10715 	while (start < isize) {
10716 		u64 logical_block_start, physical_block_start;
10717 		struct btrfs_block_group *bg;
10718 		u64 len = isize - start;
10719 
10720 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10721 		if (IS_ERR(em)) {
10722 			ret = PTR_ERR(em);
10723 			goto out;
10724 		}
10725 
10726 		if (em->block_start == EXTENT_MAP_HOLE) {
10727 			btrfs_warn(fs_info, "swapfile must not have holes");
10728 			ret = -EINVAL;
10729 			goto out;
10730 		}
10731 		if (em->block_start == EXTENT_MAP_INLINE) {
10732 			/*
10733 			 * It's unlikely we'll ever actually find ourselves
10734 			 * here, as a file small enough to fit inline won't be
10735 			 * big enough to store more than the swap header, but in
10736 			 * case something changes in the future, let's catch it
10737 			 * here rather than later.
10738 			 */
10739 			btrfs_warn(fs_info, "swapfile must not be inline");
10740 			ret = -EINVAL;
10741 			goto out;
10742 		}
10743 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10744 			btrfs_warn(fs_info, "swapfile must not be compressed");
10745 			ret = -EINVAL;
10746 			goto out;
10747 		}
10748 
10749 		logical_block_start = em->block_start + (start - em->start);
10750 		len = min(len, em->len - (start - em->start));
10751 		free_extent_map(em);
10752 		em = NULL;
10753 
10754 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10755 		if (ret < 0) {
10756 			goto out;
10757 		} else if (ret) {
10758 			ret = 0;
10759 		} else {
10760 			btrfs_warn(fs_info,
10761 				   "swapfile must not be copy-on-write");
10762 			ret = -EINVAL;
10763 			goto out;
10764 		}
10765 
10766 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10767 		if (IS_ERR(em)) {
10768 			ret = PTR_ERR(em);
10769 			goto out;
10770 		}
10771 
10772 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10773 			btrfs_warn(fs_info,
10774 				   "swapfile must have single data profile");
10775 			ret = -EINVAL;
10776 			goto out;
10777 		}
10778 
10779 		if (device == NULL) {
10780 			device = em->map_lookup->stripes[0].dev;
10781 			ret = btrfs_add_swapfile_pin(inode, device, false);
10782 			if (ret == 1)
10783 				ret = 0;
10784 			else if (ret)
10785 				goto out;
10786 		} else if (device != em->map_lookup->stripes[0].dev) {
10787 			btrfs_warn(fs_info, "swapfile must be on one device");
10788 			ret = -EINVAL;
10789 			goto out;
10790 		}
10791 
10792 		physical_block_start = (em->map_lookup->stripes[0].physical +
10793 					(logical_block_start - em->start));
10794 		len = min(len, em->len - (logical_block_start - em->start));
10795 		free_extent_map(em);
10796 		em = NULL;
10797 
10798 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10799 		if (!bg) {
10800 			btrfs_warn(fs_info,
10801 			   "could not find block group containing swapfile");
10802 			ret = -EINVAL;
10803 			goto out;
10804 		}
10805 
10806 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10807 			btrfs_warn(fs_info,
10808 			   "block group for swapfile at %llu is read-only%s",
10809 			   bg->start,
10810 			   atomic_read(&fs_info->scrubs_running) ?
10811 				       " (scrub running)" : "");
10812 			btrfs_put_block_group(bg);
10813 			ret = -EINVAL;
10814 			goto out;
10815 		}
10816 
10817 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10818 		if (ret) {
10819 			btrfs_put_block_group(bg);
10820 			if (ret == 1)
10821 				ret = 0;
10822 			else
10823 				goto out;
10824 		}
10825 
10826 		if (bsi.block_len &&
10827 		    bsi.block_start + bsi.block_len == physical_block_start) {
10828 			bsi.block_len += len;
10829 		} else {
10830 			if (bsi.block_len) {
10831 				ret = btrfs_add_swap_extent(sis, &bsi);
10832 				if (ret)
10833 					goto out;
10834 			}
10835 			bsi.start = start;
10836 			bsi.block_start = physical_block_start;
10837 			bsi.block_len = len;
10838 		}
10839 
10840 		start += len;
10841 	}
10842 
10843 	if (bsi.block_len)
10844 		ret = btrfs_add_swap_extent(sis, &bsi);
10845 
10846 out:
10847 	if (!IS_ERR_OR_NULL(em))
10848 		free_extent_map(em);
10849 
10850 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10851 
10852 	if (ret)
10853 		btrfs_swap_deactivate(file);
10854 
10855 	btrfs_drew_write_unlock(&root->snapshot_lock);
10856 
10857 	btrfs_exclop_finish(fs_info);
10858 
10859 	if (ret)
10860 		return ret;
10861 
10862 	if (device)
10863 		sis->bdev = device->bdev;
10864 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10865 	sis->max = bsi.nr_pages;
10866 	sis->pages = bsi.nr_pages - 1;
10867 	sis->highest_bit = bsi.nr_pages - 1;
10868 	return bsi.nr_extents;
10869 }
10870 #else
10871 static void btrfs_swap_deactivate(struct file *file)
10872 {
10873 }
10874 
10875 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10876 			       sector_t *span)
10877 {
10878 	return -EOPNOTSUPP;
10879 }
10880 #endif
10881 
10882 /*
10883  * Update the number of bytes used in the VFS' inode. When we replace extents in
10884  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10885  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10886  * always get a correct value.
10887  */
10888 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10889 			      const u64 add_bytes,
10890 			      const u64 del_bytes)
10891 {
10892 	if (add_bytes == del_bytes)
10893 		return;
10894 
10895 	spin_lock(&inode->lock);
10896 	if (del_bytes > 0)
10897 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10898 	if (add_bytes > 0)
10899 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10900 	spin_unlock(&inode->lock);
10901 }
10902 
10903 static const struct inode_operations btrfs_dir_inode_operations = {
10904 	.getattr	= btrfs_getattr,
10905 	.lookup		= btrfs_lookup,
10906 	.create		= btrfs_create,
10907 	.unlink		= btrfs_unlink,
10908 	.link		= btrfs_link,
10909 	.mkdir		= btrfs_mkdir,
10910 	.rmdir		= btrfs_rmdir,
10911 	.rename		= btrfs_rename2,
10912 	.symlink	= btrfs_symlink,
10913 	.setattr	= btrfs_setattr,
10914 	.mknod		= btrfs_mknod,
10915 	.listxattr	= btrfs_listxattr,
10916 	.permission	= btrfs_permission,
10917 	.get_acl	= btrfs_get_acl,
10918 	.set_acl	= btrfs_set_acl,
10919 	.update_time	= btrfs_update_time,
10920 	.tmpfile        = btrfs_tmpfile,
10921 	.fileattr_get	= btrfs_fileattr_get,
10922 	.fileattr_set	= btrfs_fileattr_set,
10923 };
10924 
10925 static const struct file_operations btrfs_dir_file_operations = {
10926 	.llseek		= generic_file_llseek,
10927 	.read		= generic_read_dir,
10928 	.iterate_shared	= btrfs_real_readdir,
10929 	.open		= btrfs_opendir,
10930 	.unlocked_ioctl	= btrfs_ioctl,
10931 #ifdef CONFIG_COMPAT
10932 	.compat_ioctl	= btrfs_compat_ioctl,
10933 #endif
10934 	.release        = btrfs_release_file,
10935 	.fsync		= btrfs_sync_file,
10936 };
10937 
10938 /*
10939  * btrfs doesn't support the bmap operation because swapfiles
10940  * use bmap to make a mapping of extents in the file.  They assume
10941  * these extents won't change over the life of the file and they
10942  * use the bmap result to do IO directly to the drive.
10943  *
10944  * the btrfs bmap call would return logical addresses that aren't
10945  * suitable for IO and they also will change frequently as COW
10946  * operations happen.  So, swapfile + btrfs == corruption.
10947  *
10948  * For now we're avoiding this by dropping bmap.
10949  */
10950 static const struct address_space_operations btrfs_aops = {
10951 	.readpage	= btrfs_readpage,
10952 	.writepage	= btrfs_writepage,
10953 	.writepages	= btrfs_writepages,
10954 	.readahead	= btrfs_readahead,
10955 	.direct_IO	= noop_direct_IO,
10956 	.invalidatepage = btrfs_invalidatepage,
10957 	.releasepage	= btrfs_releasepage,
10958 #ifdef CONFIG_MIGRATION
10959 	.migratepage	= btrfs_migratepage,
10960 #endif
10961 	.set_page_dirty	= btrfs_set_page_dirty,
10962 	.error_remove_page = generic_error_remove_page,
10963 	.swap_activate	= btrfs_swap_activate,
10964 	.swap_deactivate = btrfs_swap_deactivate,
10965 };
10966 
10967 static const struct inode_operations btrfs_file_inode_operations = {
10968 	.getattr	= btrfs_getattr,
10969 	.setattr	= btrfs_setattr,
10970 	.listxattr      = btrfs_listxattr,
10971 	.permission	= btrfs_permission,
10972 	.fiemap		= btrfs_fiemap,
10973 	.get_acl	= btrfs_get_acl,
10974 	.set_acl	= btrfs_set_acl,
10975 	.update_time	= btrfs_update_time,
10976 	.fileattr_get	= btrfs_fileattr_get,
10977 	.fileattr_set	= btrfs_fileattr_set,
10978 };
10979 static const struct inode_operations btrfs_special_inode_operations = {
10980 	.getattr	= btrfs_getattr,
10981 	.setattr	= btrfs_setattr,
10982 	.permission	= btrfs_permission,
10983 	.listxattr	= btrfs_listxattr,
10984 	.get_acl	= btrfs_get_acl,
10985 	.set_acl	= btrfs_set_acl,
10986 	.update_time	= btrfs_update_time,
10987 };
10988 static const struct inode_operations btrfs_symlink_inode_operations = {
10989 	.get_link	= page_get_link,
10990 	.getattr	= btrfs_getattr,
10991 	.setattr	= btrfs_setattr,
10992 	.permission	= btrfs_permission,
10993 	.listxattr	= btrfs_listxattr,
10994 	.update_time	= btrfs_update_time,
10995 };
10996 
10997 const struct dentry_operations btrfs_dentry_operations = {
10998 	.d_delete	= btrfs_dentry_delete,
10999 };
11000