xref: /linux/fs/btrfs/inode.c (revision 643e2e259c2b25a2af0ae4c23c6e16586d9fd19c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <linux/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_rename_ctx {
81 	/* Output field. Stores the index number of the old directory entry. */
82 	u64 index;
83 };
84 
85 /*
86  * Used by data_reloc_print_warning_inode() to pass needed info for filename
87  * resolution and output of error message.
88  */
89 struct data_reloc_warn {
90 	struct btrfs_path path;
91 	struct btrfs_fs_info *fs_info;
92 	u64 extent_item_size;
93 	u64 logical;
94 	int mirror_num;
95 };
96 
97 /*
98  * For the file_extent_tree, we want to hold the inode lock when we lookup and
99  * update the disk_i_size, but lockdep will complain because our io_tree we hold
100  * the tree lock and get the inode lock when setting delalloc. These two things
101  * are unrelated, so make a class for the file_extent_tree so we don't get the
102  * two locking patterns mixed up.
103  */
104 static struct lock_class_key file_extent_tree_class;
105 
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112 
113 static struct kmem_cache *btrfs_inode_cachep;
114 
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117 
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 				     struct folio *locked_folio, u64 start,
120 				     u64 end, struct writeback_control *wbc,
121 				     bool pages_dirty);
122 
123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 					  u64 root, void *warn_ctx)
125 {
126 	struct data_reloc_warn *warn = warn_ctx;
127 	struct btrfs_fs_info *fs_info = warn->fs_info;
128 	struct extent_buffer *eb;
129 	struct btrfs_inode_item *inode_item;
130 	struct inode_fs_paths *ipath = NULL;
131 	struct btrfs_root *local_root;
132 	struct btrfs_key key;
133 	unsigned int nofs_flag;
134 	u32 nlink;
135 	int ret;
136 
137 	local_root = btrfs_get_fs_root(fs_info, root, true);
138 	if (IS_ERR(local_root)) {
139 		ret = PTR_ERR(local_root);
140 		goto err;
141 	}
142 
143 	/* This makes the path point to (inum INODE_ITEM ioff). */
144 	key.objectid = inum;
145 	key.type = BTRFS_INODE_ITEM_KEY;
146 	key.offset = 0;
147 
148 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 	if (ret) {
150 		btrfs_put_root(local_root);
151 		btrfs_release_path(&warn->path);
152 		goto err;
153 	}
154 
155 	eb = warn->path.nodes[0];
156 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 	nlink = btrfs_inode_nlink(eb, inode_item);
158 	btrfs_release_path(&warn->path);
159 
160 	nofs_flag = memalloc_nofs_save();
161 	ipath = init_ipath(4096, local_root, &warn->path);
162 	memalloc_nofs_restore(nofs_flag);
163 	if (IS_ERR(ipath)) {
164 		btrfs_put_root(local_root);
165 		ret = PTR_ERR(ipath);
166 		ipath = NULL;
167 		/*
168 		 * -ENOMEM, not a critical error, just output an generic error
169 		 * without filename.
170 		 */
171 		btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 			   warn->logical, warn->mirror_num, root, inum, offset);
174 		return ret;
175 	}
176 	ret = paths_from_inode(inum, ipath);
177 	if (ret < 0)
178 		goto err;
179 
180 	/*
181 	 * We deliberately ignore the bit ipath might have been too small to
182 	 * hold all of the paths here
183 	 */
184 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 		btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 			   warn->logical, warn->mirror_num, root, inum, offset,
188 			   fs_info->sectorsize, nlink,
189 			   (char *)(unsigned long)ipath->fspath->val[i]);
190 	}
191 
192 	btrfs_put_root(local_root);
193 	free_ipath(ipath);
194 	return 0;
195 
196 err:
197 	btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
200 
201 	free_ipath(ipath);
202 	return ret;
203 }
204 
205 /*
206  * Do extra user-friendly error output (e.g. lookup all the affected files).
207  *
208  * Return true if we succeeded doing the backref lookup.
209  * Return false if such lookup failed, and has to fallback to the old error message.
210  */
211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 				   const u8 *csum, const u8 *csum_expected,
213 				   int mirror_num)
214 {
215 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 	struct btrfs_path path = { 0 };
217 	struct btrfs_key found_key = { 0 };
218 	struct extent_buffer *eb;
219 	struct btrfs_extent_item *ei;
220 	const u32 csum_size = fs_info->csum_size;
221 	u64 logical;
222 	u64 flags;
223 	u32 item_size;
224 	int ret;
225 
226 	mutex_lock(&fs_info->reloc_mutex);
227 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 	mutex_unlock(&fs_info->reloc_mutex);
229 
230 	if (logical == U64_MAX) {
231 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 		btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 			btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 			CSUM_FMT_VALUE(csum_size, csum),
236 			CSUM_FMT_VALUE(csum_size, csum_expected),
237 			mirror_num);
238 		return;
239 	}
240 
241 	logical += file_off;
242 	btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 			btrfs_root_id(inode->root),
245 			btrfs_ino(inode), file_off, logical,
246 			CSUM_FMT_VALUE(csum_size, csum),
247 			CSUM_FMT_VALUE(csum_size, csum_expected),
248 			mirror_num);
249 
250 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 	if (ret < 0) {
252 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 			     logical, ret);
254 		return;
255 	}
256 	eb = path.nodes[0];
257 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 	item_size = btrfs_item_size(eb, path.slots[0]);
259 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 		unsigned long ptr = 0;
261 		u64 ref_root;
262 		u8 ref_level;
263 
264 		while (true) {
265 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 						      item_size, &ref_root,
267 						      &ref_level);
268 			if (ret < 0) {
269 				btrfs_warn_rl(fs_info,
270 				"failed to resolve tree backref for logical %llu: %d",
271 					      logical, ret);
272 				break;
273 			}
274 			if (ret > 0)
275 				break;
276 
277 			btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 				logical, mirror_num,
280 				(ref_level ? "node" : "leaf"),
281 				ref_level, ref_root);
282 		}
283 		btrfs_release_path(&path);
284 	} else {
285 		struct btrfs_backref_walk_ctx ctx = { 0 };
286 		struct data_reloc_warn reloc_warn = { 0 };
287 
288 		btrfs_release_path(&path);
289 
290 		ctx.bytenr = found_key.objectid;
291 		ctx.extent_item_pos = logical - found_key.objectid;
292 		ctx.fs_info = fs_info;
293 
294 		reloc_warn.logical = logical;
295 		reloc_warn.extent_item_size = found_key.offset;
296 		reloc_warn.mirror_num = mirror_num;
297 		reloc_warn.fs_info = fs_info;
298 
299 		iterate_extent_inodes(&ctx, true,
300 				      data_reloc_print_warning_inode, &reloc_warn);
301 	}
302 }
303 
304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 	struct btrfs_root *root = inode->root;
308 	const u32 csum_size = root->fs_info->csum_size;
309 
310 	/* For data reloc tree, it's better to do a backref lookup instead. */
311 	if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 		return print_data_reloc_error(inode, logical_start, csum,
313 					      csum_expected, mirror_num);
314 
315 	/* Output without objectid, which is more meaningful */
316 	if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 		btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 			btrfs_root_id(root), btrfs_ino(inode),
320 			logical_start,
321 			CSUM_FMT_VALUE(csum_size, csum),
322 			CSUM_FMT_VALUE(csum_size, csum_expected),
323 			mirror_num);
324 	} else {
325 		btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 			btrfs_root_id(root), btrfs_ino(inode),
328 			logical_start,
329 			CSUM_FMT_VALUE(csum_size, csum),
330 			CSUM_FMT_VALUE(csum_size, csum_expected),
331 			mirror_num);
332 	}
333 }
334 
335 /*
336  * Lock inode i_rwsem based on arguments passed.
337  *
338  * ilock_flags can have the following bit set:
339  *
340  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342  *		     return -EAGAIN
343  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344  */
345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 		if (ilock_flags & BTRFS_ILOCK_TRY) {
349 			if (!inode_trylock_shared(&inode->vfs_inode))
350 				return -EAGAIN;
351 			else
352 				return 0;
353 		}
354 		inode_lock_shared(&inode->vfs_inode);
355 	} else {
356 		if (ilock_flags & BTRFS_ILOCK_TRY) {
357 			if (!inode_trylock(&inode->vfs_inode))
358 				return -EAGAIN;
359 			else
360 				return 0;
361 		}
362 		inode_lock(&inode->vfs_inode);
363 	}
364 	if (ilock_flags & BTRFS_ILOCK_MMAP)
365 		down_write(&inode->i_mmap_lock);
366 	return 0;
367 }
368 
369 /*
370  * Unock inode i_rwsem.
371  *
372  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373  * to decide whether the lock acquired is shared or exclusive.
374  */
375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 	if (ilock_flags & BTRFS_ILOCK_MMAP)
378 		up_write(&inode->i_mmap_lock);
379 	if (ilock_flags & BTRFS_ILOCK_SHARED)
380 		inode_unlock_shared(&inode->vfs_inode);
381 	else
382 		inode_unlock(&inode->vfs_inode);
383 }
384 
385 /*
386  * Cleanup all submitted ordered extents in specified range to handle errors
387  * from the btrfs_run_delalloc_range() callback.
388  *
389  * NOTE: caller must ensure that when an error happens, it can not call
390  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392  * to be released, which we want to happen only when finishing the ordered
393  * extent (btrfs_finish_ordered_io()).
394  */
395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 						 struct folio *locked_folio,
397 						 u64 offset, u64 bytes)
398 {
399 	unsigned long index = offset >> PAGE_SHIFT;
400 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 	u64 page_start = 0, page_end = 0;
402 	struct folio *folio;
403 
404 	if (locked_folio) {
405 		page_start = folio_pos(locked_folio);
406 		page_end = page_start + folio_size(locked_folio) - 1;
407 	}
408 
409 	while (index <= end_index) {
410 		/*
411 		 * For locked page, we will call btrfs_mark_ordered_io_finished
412 		 * through btrfs_mark_ordered_io_finished() on it
413 		 * in run_delalloc_range() for the error handling, which will
414 		 * clear page Ordered and run the ordered extent accounting.
415 		 *
416 		 * Here we can't just clear the Ordered bit, or
417 		 * btrfs_mark_ordered_io_finished() would skip the accounting
418 		 * for the page range, and the ordered extent will never finish.
419 		 */
420 		if (locked_folio && index == (page_start >> PAGE_SHIFT)) {
421 			index++;
422 			continue;
423 		}
424 		folio = filemap_get_folio(inode->vfs_inode.i_mapping, index);
425 		index++;
426 		if (IS_ERR(folio))
427 			continue;
428 
429 		/*
430 		 * Here we just clear all Ordered bits for every page in the
431 		 * range, then btrfs_mark_ordered_io_finished() will handle
432 		 * the ordered extent accounting for the range.
433 		 */
434 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio,
435 						offset, bytes);
436 		folio_put(folio);
437 	}
438 
439 	if (locked_folio) {
440 		/* The locked page covers the full range, nothing needs to be done */
441 		if (bytes + offset <= page_start + folio_size(locked_folio))
442 			return;
443 		/*
444 		 * In case this page belongs to the delalloc range being
445 		 * instantiated then skip it, since the first page of a range is
446 		 * going to be properly cleaned up by the caller of
447 		 * run_delalloc_range
448 		 */
449 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 			bytes = offset + bytes - folio_pos(locked_folio) -
451 				folio_size(locked_folio);
452 			offset = folio_pos(locked_folio) + folio_size(locked_folio);
453 		}
454 	}
455 
456 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
457 }
458 
459 static int btrfs_dirty_inode(struct btrfs_inode *inode);
460 
461 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
462 				     struct btrfs_new_inode_args *args)
463 {
464 	int err;
465 
466 	if (args->default_acl) {
467 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
468 				      ACL_TYPE_DEFAULT);
469 		if (err)
470 			return err;
471 	}
472 	if (args->acl) {
473 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
474 		if (err)
475 			return err;
476 	}
477 	if (!args->default_acl && !args->acl)
478 		cache_no_acl(args->inode);
479 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
480 					 &args->dentry->d_name);
481 }
482 
483 /*
484  * this does all the hard work for inserting an inline extent into
485  * the btree.  The caller should have done a btrfs_drop_extents so that
486  * no overlapping inline items exist in the btree
487  */
488 static int insert_inline_extent(struct btrfs_trans_handle *trans,
489 				struct btrfs_path *path,
490 				struct btrfs_inode *inode, bool extent_inserted,
491 				size_t size, size_t compressed_size,
492 				int compress_type,
493 				struct folio *compressed_folio,
494 				bool update_i_size)
495 {
496 	struct btrfs_root *root = inode->root;
497 	struct extent_buffer *leaf;
498 	const u32 sectorsize = trans->fs_info->sectorsize;
499 	char *kaddr;
500 	unsigned long ptr;
501 	struct btrfs_file_extent_item *ei;
502 	int ret;
503 	size_t cur_size = size;
504 	u64 i_size;
505 
506 	/*
507 	 * The decompressed size must still be no larger than a sector.  Under
508 	 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 	 * big deal and we can continue the insertion.
510 	 */
511 	ASSERT(size <= sectorsize);
512 
513 	/*
514 	 * The compressed size also needs to be no larger than a sector.
515 	 * That's also why we only need one page as the parameter.
516 	 */
517 	if (compressed_folio)
518 		ASSERT(compressed_size <= sectorsize);
519 	else
520 		ASSERT(compressed_size == 0);
521 
522 	if (compressed_size && compressed_folio)
523 		cur_size = compressed_size;
524 
525 	if (!extent_inserted) {
526 		struct btrfs_key key;
527 		size_t datasize;
528 
529 		key.objectid = btrfs_ino(inode);
530 		key.offset = 0;
531 		key.type = BTRFS_EXTENT_DATA_KEY;
532 
533 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 		ret = btrfs_insert_empty_item(trans, root, path, &key,
535 					      datasize);
536 		if (ret)
537 			goto fail;
538 	}
539 	leaf = path->nodes[0];
540 	ei = btrfs_item_ptr(leaf, path->slots[0],
541 			    struct btrfs_file_extent_item);
542 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 	btrfs_set_file_extent_encryption(leaf, ei, 0);
545 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 	ptr = btrfs_file_extent_inline_start(ei);
548 
549 	if (compress_type != BTRFS_COMPRESS_NONE) {
550 		kaddr = kmap_local_folio(compressed_folio, 0);
551 		write_extent_buffer(leaf, kaddr, ptr, compressed_size);
552 		kunmap_local(kaddr);
553 
554 		btrfs_set_file_extent_compression(leaf, ei,
555 						  compress_type);
556 	} else {
557 		struct folio *folio;
558 
559 		folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0);
560 		ASSERT(!IS_ERR(folio));
561 		btrfs_set_file_extent_compression(leaf, ei, 0);
562 		kaddr = kmap_local_folio(folio, 0);
563 		write_extent_buffer(leaf, kaddr, ptr, size);
564 		kunmap_local(kaddr);
565 		folio_put(folio);
566 	}
567 	btrfs_mark_buffer_dirty(trans, leaf);
568 	btrfs_release_path(path);
569 
570 	/*
571 	 * We align size to sectorsize for inline extents just for simplicity
572 	 * sake.
573 	 */
574 	ret = btrfs_inode_set_file_extent_range(inode, 0,
575 					ALIGN(size, root->fs_info->sectorsize));
576 	if (ret)
577 		goto fail;
578 
579 	/*
580 	 * We're an inline extent, so nobody can extend the file past i_size
581 	 * without locking a page we already have locked.
582 	 *
583 	 * We must do any i_size and inode updates before we unlock the pages.
584 	 * Otherwise we could end up racing with unlink.
585 	 */
586 	i_size = i_size_read(&inode->vfs_inode);
587 	if (update_i_size && size > i_size) {
588 		i_size_write(&inode->vfs_inode, size);
589 		i_size = size;
590 	}
591 	inode->disk_i_size = i_size;
592 
593 fail:
594 	return ret;
595 }
596 
597 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
598 				      u64 offset, u64 size,
599 				      size_t compressed_size)
600 {
601 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
602 	u64 data_len = (compressed_size ?: size);
603 
604 	/* Inline extents must start at offset 0. */
605 	if (offset != 0)
606 		return false;
607 
608 	/*
609 	 * Due to the page size limit, for subpage we can only trigger the
610 	 * writeback for the dirty sectors of page, that means data writeback
611 	 * is doing more writeback than what we want.
612 	 *
613 	 * This is especially unexpected for some call sites like fallocate,
614 	 * where we only increase i_size after everything is done.
615 	 * This means we can trigger inline extent even if we didn't want to.
616 	 * So here we skip inline extent creation completely.
617 	 */
618 	if (fs_info->sectorsize != PAGE_SIZE)
619 		return false;
620 
621 	/* Inline extents are limited to sectorsize. */
622 	if (size > fs_info->sectorsize)
623 		return false;
624 
625 	/* We cannot exceed the maximum inline data size. */
626 	if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
627 		return false;
628 
629 	/* We cannot exceed the user specified max_inline size. */
630 	if (data_len > fs_info->max_inline)
631 		return false;
632 
633 	/* Inline extents must be the entirety of the file. */
634 	if (size < i_size_read(&inode->vfs_inode))
635 		return false;
636 
637 	return true;
638 }
639 
640 /*
641  * conditionally insert an inline extent into the file.  This
642  * does the checks required to make sure the data is small enough
643  * to fit as an inline extent.
644  *
645  * If being used directly, you must have already checked we're allowed to cow
646  * the range by getting true from can_cow_file_range_inline().
647  */
648 static noinline int __cow_file_range_inline(struct btrfs_inode *inode,
649 					    u64 size, size_t compressed_size,
650 					    int compress_type,
651 					    struct folio *compressed_folio,
652 					    bool update_i_size)
653 {
654 	struct btrfs_drop_extents_args drop_args = { 0 };
655 	struct btrfs_root *root = inode->root;
656 	struct btrfs_fs_info *fs_info = root->fs_info;
657 	struct btrfs_trans_handle *trans;
658 	u64 data_len = (compressed_size ?: size);
659 	int ret;
660 	struct btrfs_path *path;
661 
662 	path = btrfs_alloc_path();
663 	if (!path)
664 		return -ENOMEM;
665 
666 	trans = btrfs_join_transaction(root);
667 	if (IS_ERR(trans)) {
668 		btrfs_free_path(path);
669 		return PTR_ERR(trans);
670 	}
671 	trans->block_rsv = &inode->block_rsv;
672 
673 	drop_args.path = path;
674 	drop_args.start = 0;
675 	drop_args.end = fs_info->sectorsize;
676 	drop_args.drop_cache = true;
677 	drop_args.replace_extent = true;
678 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
679 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
680 	if (ret) {
681 		btrfs_abort_transaction(trans, ret);
682 		goto out;
683 	}
684 
685 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
686 				   size, compressed_size, compress_type,
687 				   compressed_folio, update_i_size);
688 	if (ret && ret != -ENOSPC) {
689 		btrfs_abort_transaction(trans, ret);
690 		goto out;
691 	} else if (ret == -ENOSPC) {
692 		ret = 1;
693 		goto out;
694 	}
695 
696 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
697 	ret = btrfs_update_inode(trans, inode);
698 	if (ret && ret != -ENOSPC) {
699 		btrfs_abort_transaction(trans, ret);
700 		goto out;
701 	} else if (ret == -ENOSPC) {
702 		ret = 1;
703 		goto out;
704 	}
705 
706 	btrfs_set_inode_full_sync(inode);
707 out:
708 	/*
709 	 * Don't forget to free the reserved space, as for inlined extent
710 	 * it won't count as data extent, free them directly here.
711 	 * And at reserve time, it's always aligned to page size, so
712 	 * just free one page here.
713 	 */
714 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
715 	btrfs_free_path(path);
716 	btrfs_end_transaction(trans);
717 	return ret;
718 }
719 
720 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
721 					  struct folio *locked_folio,
722 					  u64 offset, u64 end,
723 					  size_t compressed_size,
724 					  int compress_type,
725 					  struct folio *compressed_folio,
726 					  bool update_i_size)
727 {
728 	struct extent_state *cached = NULL;
729 	unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
730 		EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
731 	u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
732 	int ret;
733 
734 	if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
735 		return 1;
736 
737 	lock_extent(&inode->io_tree, offset, end, &cached);
738 	ret = __cow_file_range_inline(inode, size, compressed_size,
739 				      compress_type, compressed_folio,
740 				      update_i_size);
741 	if (ret > 0) {
742 		unlock_extent(&inode->io_tree, offset, end, &cached);
743 		return ret;
744 	}
745 
746 	/*
747 	 * In the successful case (ret == 0 here), cow_file_range will return 1.
748 	 *
749 	 * Quite a bit further up the callstack in extent_writepage(), ret == 1
750 	 * is treated as a short circuited success and does not unlock the folio,
751 	 * so we must do it here.
752 	 *
753 	 * In the failure case, the locked_folio does get unlocked by
754 	 * btrfs_folio_end_all_writers, which asserts that it is still locked
755 	 * at that point, so we must *not* unlock it here.
756 	 *
757 	 * The other two callsites in compress_file_range do not have a
758 	 * locked_folio, so they are not relevant to this logic.
759 	 */
760 	if (ret == 0)
761 		locked_folio = NULL;
762 
763 	extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached,
764 				     clear_flags, PAGE_UNLOCK |
765 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
766 	return ret;
767 }
768 
769 struct async_extent {
770 	u64 start;
771 	u64 ram_size;
772 	u64 compressed_size;
773 	struct folio **folios;
774 	unsigned long nr_folios;
775 	int compress_type;
776 	struct list_head list;
777 };
778 
779 struct async_chunk {
780 	struct btrfs_inode *inode;
781 	struct folio *locked_folio;
782 	u64 start;
783 	u64 end;
784 	blk_opf_t write_flags;
785 	struct list_head extents;
786 	struct cgroup_subsys_state *blkcg_css;
787 	struct btrfs_work work;
788 	struct async_cow *async_cow;
789 };
790 
791 struct async_cow {
792 	atomic_t num_chunks;
793 	struct async_chunk chunks[];
794 };
795 
796 static noinline int add_async_extent(struct async_chunk *cow,
797 				     u64 start, u64 ram_size,
798 				     u64 compressed_size,
799 				     struct folio **folios,
800 				     unsigned long nr_folios,
801 				     int compress_type)
802 {
803 	struct async_extent *async_extent;
804 
805 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
806 	if (!async_extent)
807 		return -ENOMEM;
808 	async_extent->start = start;
809 	async_extent->ram_size = ram_size;
810 	async_extent->compressed_size = compressed_size;
811 	async_extent->folios = folios;
812 	async_extent->nr_folios = nr_folios;
813 	async_extent->compress_type = compress_type;
814 	list_add_tail(&async_extent->list, &cow->extents);
815 	return 0;
816 }
817 
818 /*
819  * Check if the inode needs to be submitted to compression, based on mount
820  * options, defragmentation, properties or heuristics.
821  */
822 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
823 				      u64 end)
824 {
825 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
826 
827 	if (!btrfs_inode_can_compress(inode)) {
828 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
829 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
830 			btrfs_ino(inode));
831 		return 0;
832 	}
833 	/*
834 	 * Only enable sector perfect compression for experimental builds.
835 	 *
836 	 * This is a big feature change for subpage cases, and can hit
837 	 * different corner cases, so only limit this feature for
838 	 * experimental build for now.
839 	 *
840 	 * ETA for moving this out of experimental builds is 6.15.
841 	 */
842 	if (fs_info->sectorsize < PAGE_SIZE &&
843 	    !IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) {
844 		if (!PAGE_ALIGNED(start) ||
845 		    !PAGE_ALIGNED(end + 1))
846 			return 0;
847 	}
848 
849 	/* force compress */
850 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
851 		return 1;
852 	/* defrag ioctl */
853 	if (inode->defrag_compress)
854 		return 1;
855 	/* bad compression ratios */
856 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
857 		return 0;
858 	if (btrfs_test_opt(fs_info, COMPRESS) ||
859 	    inode->flags & BTRFS_INODE_COMPRESS ||
860 	    inode->prop_compress)
861 		return btrfs_compress_heuristic(inode, start, end);
862 	return 0;
863 }
864 
865 static inline void inode_should_defrag(struct btrfs_inode *inode,
866 		u64 start, u64 end, u64 num_bytes, u32 small_write)
867 {
868 	/* If this is a small write inside eof, kick off a defrag */
869 	if (num_bytes < small_write &&
870 	    (start > 0 || end + 1 < inode->disk_i_size))
871 		btrfs_add_inode_defrag(inode, small_write);
872 }
873 
874 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
875 {
876 	unsigned long end_index = end >> PAGE_SHIFT;
877 	struct folio *folio;
878 	int ret = 0;
879 
880 	for (unsigned long index = start >> PAGE_SHIFT;
881 	     index <= end_index; index++) {
882 		folio = filemap_get_folio(inode->i_mapping, index);
883 		if (IS_ERR(folio)) {
884 			if (!ret)
885 				ret = PTR_ERR(folio);
886 			continue;
887 		}
888 		btrfs_folio_clamp_clear_dirty(inode_to_fs_info(inode), folio, start,
889 					      end + 1 - start);
890 		folio_put(folio);
891 	}
892 	return ret;
893 }
894 
895 /*
896  * Work queue call back to started compression on a file and pages.
897  *
898  * This is done inside an ordered work queue, and the compression is spread
899  * across many cpus.  The actual IO submission is step two, and the ordered work
900  * queue takes care of making sure that happens in the same order things were
901  * put onto the queue by writepages and friends.
902  *
903  * If this code finds it can't get good compression, it puts an entry onto the
904  * work queue to write the uncompressed bytes.  This makes sure that both
905  * compressed inodes and uncompressed inodes are written in the same order that
906  * the flusher thread sent them down.
907  */
908 static void compress_file_range(struct btrfs_work *work)
909 {
910 	struct async_chunk *async_chunk =
911 		container_of(work, struct async_chunk, work);
912 	struct btrfs_inode *inode = async_chunk->inode;
913 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
914 	struct address_space *mapping = inode->vfs_inode.i_mapping;
915 	u64 blocksize = fs_info->sectorsize;
916 	u64 start = async_chunk->start;
917 	u64 end = async_chunk->end;
918 	u64 actual_end;
919 	u64 i_size;
920 	int ret = 0;
921 	struct folio **folios;
922 	unsigned long nr_folios;
923 	unsigned long total_compressed = 0;
924 	unsigned long total_in = 0;
925 	unsigned int poff;
926 	int i;
927 	int compress_type = fs_info->compress_type;
928 
929 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
930 
931 	/*
932 	 * We need to call clear_page_dirty_for_io on each page in the range.
933 	 * Otherwise applications with the file mmap'd can wander in and change
934 	 * the page contents while we are compressing them.
935 	 */
936 	ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
937 
938 	/*
939 	 * All the folios should have been locked thus no failure.
940 	 *
941 	 * And even if some folios are missing, btrfs_compress_folios()
942 	 * would handle them correctly, so here just do an ASSERT() check for
943 	 * early logic errors.
944 	 */
945 	ASSERT(ret == 0);
946 
947 	/*
948 	 * We need to save i_size before now because it could change in between
949 	 * us evaluating the size and assigning it.  This is because we lock and
950 	 * unlock the page in truncate and fallocate, and then modify the i_size
951 	 * later on.
952 	 *
953 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
954 	 * does that for us.
955 	 */
956 	barrier();
957 	i_size = i_size_read(&inode->vfs_inode);
958 	barrier();
959 	actual_end = min_t(u64, i_size, end + 1);
960 again:
961 	folios = NULL;
962 	nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
963 	nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
964 
965 	/*
966 	 * we don't want to send crud past the end of i_size through
967 	 * compression, that's just a waste of CPU time.  So, if the
968 	 * end of the file is before the start of our current
969 	 * requested range of bytes, we bail out to the uncompressed
970 	 * cleanup code that can deal with all of this.
971 	 *
972 	 * It isn't really the fastest way to fix things, but this is a
973 	 * very uncommon corner.
974 	 */
975 	if (actual_end <= start)
976 		goto cleanup_and_bail_uncompressed;
977 
978 	total_compressed = actual_end - start;
979 
980 	/*
981 	 * Skip compression for a small file range(<=blocksize) that
982 	 * isn't an inline extent, since it doesn't save disk space at all.
983 	 */
984 	if (total_compressed <= blocksize &&
985 	   (start > 0 || end + 1 < inode->disk_i_size))
986 		goto cleanup_and_bail_uncompressed;
987 
988 	total_compressed = min_t(unsigned long, total_compressed,
989 			BTRFS_MAX_UNCOMPRESSED);
990 	total_in = 0;
991 	ret = 0;
992 
993 	/*
994 	 * We do compression for mount -o compress and when the inode has not
995 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
996 	 * discover bad compression ratios.
997 	 */
998 	if (!inode_need_compress(inode, start, end))
999 		goto cleanup_and_bail_uncompressed;
1000 
1001 	folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1002 	if (!folios) {
1003 		/*
1004 		 * Memory allocation failure is not a fatal error, we can fall
1005 		 * back to uncompressed code.
1006 		 */
1007 		goto cleanup_and_bail_uncompressed;
1008 	}
1009 
1010 	if (inode->defrag_compress)
1011 		compress_type = inode->defrag_compress;
1012 	else if (inode->prop_compress)
1013 		compress_type = inode->prop_compress;
1014 
1015 	/* Compression level is applied here. */
1016 	ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1017 				    mapping, start, folios, &nr_folios, &total_in,
1018 				    &total_compressed);
1019 	if (ret)
1020 		goto mark_incompressible;
1021 
1022 	/*
1023 	 * Zero the tail end of the last page, as we might be sending it down
1024 	 * to disk.
1025 	 */
1026 	poff = offset_in_page(total_compressed);
1027 	if (poff)
1028 		folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1029 
1030 	/*
1031 	 * Try to create an inline extent.
1032 	 *
1033 	 * If we didn't compress the entire range, try to create an uncompressed
1034 	 * inline extent, else a compressed one.
1035 	 *
1036 	 * Check cow_file_range() for why we don't even try to create inline
1037 	 * extent for the subpage case.
1038 	 */
1039 	if (total_in < actual_end)
1040 		ret = cow_file_range_inline(inode, NULL, start, end, 0,
1041 					    BTRFS_COMPRESS_NONE, NULL, false);
1042 	else
1043 		ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1044 					    compress_type, folios[0], false);
1045 	if (ret <= 0) {
1046 		if (ret < 0)
1047 			mapping_set_error(mapping, -EIO);
1048 		goto free_pages;
1049 	}
1050 
1051 	/*
1052 	 * We aren't doing an inline extent. Round the compressed size up to a
1053 	 * block size boundary so the allocator does sane things.
1054 	 */
1055 	total_compressed = ALIGN(total_compressed, blocksize);
1056 
1057 	/*
1058 	 * One last check to make sure the compression is really a win, compare
1059 	 * the page count read with the blocks on disk, compression must free at
1060 	 * least one sector.
1061 	 */
1062 	total_in = round_up(total_in, fs_info->sectorsize);
1063 	if (total_compressed + blocksize > total_in)
1064 		goto mark_incompressible;
1065 
1066 	/*
1067 	 * The async work queues will take care of doing actual allocation on
1068 	 * disk for these compressed pages, and will submit the bios.
1069 	 */
1070 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1071 			       nr_folios, compress_type);
1072 	BUG_ON(ret);
1073 	if (start + total_in < end) {
1074 		start += total_in;
1075 		cond_resched();
1076 		goto again;
1077 	}
1078 	return;
1079 
1080 mark_incompressible:
1081 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1082 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1083 cleanup_and_bail_uncompressed:
1084 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1085 			       BTRFS_COMPRESS_NONE);
1086 	BUG_ON(ret);
1087 free_pages:
1088 	if (folios) {
1089 		for (i = 0; i < nr_folios; i++) {
1090 			WARN_ON(folios[i]->mapping);
1091 			btrfs_free_compr_folio(folios[i]);
1092 		}
1093 		kfree(folios);
1094 	}
1095 }
1096 
1097 static void free_async_extent_pages(struct async_extent *async_extent)
1098 {
1099 	int i;
1100 
1101 	if (!async_extent->folios)
1102 		return;
1103 
1104 	for (i = 0; i < async_extent->nr_folios; i++) {
1105 		WARN_ON(async_extent->folios[i]->mapping);
1106 		btrfs_free_compr_folio(async_extent->folios[i]);
1107 	}
1108 	kfree(async_extent->folios);
1109 	async_extent->nr_folios = 0;
1110 	async_extent->folios = NULL;
1111 }
1112 
1113 static void submit_uncompressed_range(struct btrfs_inode *inode,
1114 				      struct async_extent *async_extent,
1115 				      struct folio *locked_folio)
1116 {
1117 	u64 start = async_extent->start;
1118 	u64 end = async_extent->start + async_extent->ram_size - 1;
1119 	int ret;
1120 	struct writeback_control wbc = {
1121 		.sync_mode		= WB_SYNC_ALL,
1122 		.range_start		= start,
1123 		.range_end		= end,
1124 		.no_cgroup_owner	= 1,
1125 	};
1126 
1127 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1128 	ret = run_delalloc_cow(inode, locked_folio, start, end,
1129 			       &wbc, false);
1130 	wbc_detach_inode(&wbc);
1131 	if (ret < 0) {
1132 		btrfs_cleanup_ordered_extents(inode, locked_folio,
1133 					      start, end - start + 1);
1134 		if (locked_folio) {
1135 			const u64 page_start = folio_pos(locked_folio);
1136 
1137 			folio_start_writeback(locked_folio);
1138 			folio_end_writeback(locked_folio);
1139 			btrfs_mark_ordered_io_finished(inode, locked_folio,
1140 						       page_start, PAGE_SIZE,
1141 						       !ret);
1142 			mapping_set_error(locked_folio->mapping, ret);
1143 			folio_unlock(locked_folio);
1144 		}
1145 	}
1146 }
1147 
1148 static void submit_one_async_extent(struct async_chunk *async_chunk,
1149 				    struct async_extent *async_extent,
1150 				    u64 *alloc_hint)
1151 {
1152 	struct btrfs_inode *inode = async_chunk->inode;
1153 	struct extent_io_tree *io_tree = &inode->io_tree;
1154 	struct btrfs_root *root = inode->root;
1155 	struct btrfs_fs_info *fs_info = root->fs_info;
1156 	struct btrfs_ordered_extent *ordered;
1157 	struct btrfs_file_extent file_extent;
1158 	struct btrfs_key ins;
1159 	struct folio *locked_folio = NULL;
1160 	struct extent_state *cached = NULL;
1161 	struct extent_map *em;
1162 	int ret = 0;
1163 	u64 start = async_extent->start;
1164 	u64 end = async_extent->start + async_extent->ram_size - 1;
1165 
1166 	if (async_chunk->blkcg_css)
1167 		kthread_associate_blkcg(async_chunk->blkcg_css);
1168 
1169 	/*
1170 	 * If async_chunk->locked_folio is in the async_extent range, we need to
1171 	 * handle it.
1172 	 */
1173 	if (async_chunk->locked_folio) {
1174 		u64 locked_folio_start = folio_pos(async_chunk->locked_folio);
1175 		u64 locked_folio_end = locked_folio_start +
1176 			folio_size(async_chunk->locked_folio) - 1;
1177 
1178 		if (!(start >= locked_folio_end || end <= locked_folio_start))
1179 			locked_folio = async_chunk->locked_folio;
1180 	}
1181 
1182 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1183 		submit_uncompressed_range(inode, async_extent, locked_folio);
1184 		goto done;
1185 	}
1186 
1187 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1188 				   async_extent->compressed_size,
1189 				   async_extent->compressed_size,
1190 				   0, *alloc_hint, &ins, 1, 1);
1191 	if (ret) {
1192 		/*
1193 		 * We can't reserve contiguous space for the compressed size.
1194 		 * Unlikely, but it's possible that we could have enough
1195 		 * non-contiguous space for the uncompressed size instead.  So
1196 		 * fall back to uncompressed.
1197 		 */
1198 		submit_uncompressed_range(inode, async_extent, locked_folio);
1199 		goto done;
1200 	}
1201 
1202 	lock_extent(io_tree, start, end, &cached);
1203 
1204 	/* Here we're doing allocation and writeback of the compressed pages */
1205 	file_extent.disk_bytenr = ins.objectid;
1206 	file_extent.disk_num_bytes = ins.offset;
1207 	file_extent.ram_bytes = async_extent->ram_size;
1208 	file_extent.num_bytes = async_extent->ram_size;
1209 	file_extent.offset = 0;
1210 	file_extent.compression = async_extent->compress_type;
1211 
1212 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1213 	if (IS_ERR(em)) {
1214 		ret = PTR_ERR(em);
1215 		goto out_free_reserve;
1216 	}
1217 	free_extent_map(em);
1218 
1219 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1220 					     1 << BTRFS_ORDERED_COMPRESSED);
1221 	if (IS_ERR(ordered)) {
1222 		btrfs_drop_extent_map_range(inode, start, end, false);
1223 		ret = PTR_ERR(ordered);
1224 		goto out_free_reserve;
1225 	}
1226 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1227 
1228 	/* Clear dirty, set writeback and unlock the pages. */
1229 	extent_clear_unlock_delalloc(inode, start, end,
1230 			NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1231 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1232 	btrfs_submit_compressed_write(ordered,
1233 			    async_extent->folios,	/* compressed_folios */
1234 			    async_extent->nr_folios,
1235 			    async_chunk->write_flags, true);
1236 	*alloc_hint = ins.objectid + ins.offset;
1237 done:
1238 	if (async_chunk->blkcg_css)
1239 		kthread_associate_blkcg(NULL);
1240 	kfree(async_extent);
1241 	return;
1242 
1243 out_free_reserve:
1244 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1245 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1246 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1247 	extent_clear_unlock_delalloc(inode, start, end,
1248 				     NULL, &cached,
1249 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1250 				     EXTENT_DELALLOC_NEW |
1251 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1252 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1253 				     PAGE_END_WRITEBACK);
1254 	free_async_extent_pages(async_extent);
1255 	if (async_chunk->blkcg_css)
1256 		kthread_associate_blkcg(NULL);
1257 	btrfs_debug(fs_info,
1258 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1259 		    btrfs_root_id(root), btrfs_ino(inode), start,
1260 		    async_extent->ram_size, ret);
1261 	kfree(async_extent);
1262 }
1263 
1264 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1265 				     u64 num_bytes)
1266 {
1267 	struct extent_map_tree *em_tree = &inode->extent_tree;
1268 	struct extent_map *em;
1269 	u64 alloc_hint = 0;
1270 
1271 	read_lock(&em_tree->lock);
1272 	em = search_extent_mapping(em_tree, start, num_bytes);
1273 	if (em) {
1274 		/*
1275 		 * if block start isn't an actual block number then find the
1276 		 * first block in this inode and use that as a hint.  If that
1277 		 * block is also bogus then just don't worry about it.
1278 		 */
1279 		if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1280 			free_extent_map(em);
1281 			em = search_extent_mapping(em_tree, 0, 0);
1282 			if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1283 				alloc_hint = extent_map_block_start(em);
1284 			if (em)
1285 				free_extent_map(em);
1286 		} else {
1287 			alloc_hint = extent_map_block_start(em);
1288 			free_extent_map(em);
1289 		}
1290 	}
1291 	read_unlock(&em_tree->lock);
1292 
1293 	return alloc_hint;
1294 }
1295 
1296 /*
1297  * when extent_io.c finds a delayed allocation range in the file,
1298  * the call backs end up in this code.  The basic idea is to
1299  * allocate extents on disk for the range, and create ordered data structs
1300  * in ram to track those extents.
1301  *
1302  * locked_folio is the folio that writepage had locked already.  We use
1303  * it to make sure we don't do extra locks or unlocks.
1304  *
1305  * When this function fails, it unlocks all pages except @locked_folio.
1306  *
1307  * When this function successfully creates an inline extent, it returns 1 and
1308  * unlocks all pages including locked_folio and starts I/O on them.
1309  * (In reality inline extents are limited to a single page, so locked_folio is
1310  * the only page handled anyway).
1311  *
1312  * When this function succeed and creates a normal extent, the page locking
1313  * status depends on the passed in flags:
1314  *
1315  * - If @keep_locked is set, all pages are kept locked.
1316  * - Else all pages except for @locked_folio are unlocked.
1317  *
1318  * When a failure happens in the second or later iteration of the
1319  * while-loop, the ordered extents created in previous iterations are kept
1320  * intact. So, the caller must clean them up by calling
1321  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1322  * example.
1323  */
1324 static noinline int cow_file_range(struct btrfs_inode *inode,
1325 				   struct folio *locked_folio, u64 start,
1326 				   u64 end, u64 *done_offset,
1327 				   bool keep_locked, bool no_inline)
1328 {
1329 	struct btrfs_root *root = inode->root;
1330 	struct btrfs_fs_info *fs_info = root->fs_info;
1331 	struct extent_state *cached = NULL;
1332 	u64 alloc_hint = 0;
1333 	u64 orig_start = start;
1334 	u64 num_bytes;
1335 	u64 cur_alloc_size = 0;
1336 	u64 min_alloc_size;
1337 	u64 blocksize = fs_info->sectorsize;
1338 	struct btrfs_key ins;
1339 	struct extent_map *em;
1340 	unsigned clear_bits;
1341 	unsigned long page_ops;
1342 	int ret = 0;
1343 
1344 	if (btrfs_is_free_space_inode(inode)) {
1345 		ret = -EINVAL;
1346 		goto out_unlock;
1347 	}
1348 
1349 	num_bytes = ALIGN(end - start + 1, blocksize);
1350 	num_bytes = max(blocksize,  num_bytes);
1351 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1352 
1353 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1354 
1355 	if (!no_inline) {
1356 		/* lets try to make an inline extent */
1357 		ret = cow_file_range_inline(inode, locked_folio, start, end, 0,
1358 					    BTRFS_COMPRESS_NONE, NULL, false);
1359 		if (ret <= 0) {
1360 			/*
1361 			 * We succeeded, return 1 so the caller knows we're done
1362 			 * with this page and already handled the IO.
1363 			 *
1364 			 * If there was an error then cow_file_range_inline() has
1365 			 * already done the cleanup.
1366 			 */
1367 			if (ret == 0)
1368 				ret = 1;
1369 			goto done;
1370 		}
1371 	}
1372 
1373 	alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1374 
1375 	/*
1376 	 * Relocation relies on the relocated extents to have exactly the same
1377 	 * size as the original extents. Normally writeback for relocation data
1378 	 * extents follows a NOCOW path because relocation preallocates the
1379 	 * extents. However, due to an operation such as scrub turning a block
1380 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1381 	 * an extent allocated during COW has exactly the requested size and can
1382 	 * not be split into smaller extents, otherwise relocation breaks and
1383 	 * fails during the stage where it updates the bytenr of file extent
1384 	 * items.
1385 	 */
1386 	if (btrfs_is_data_reloc_root(root))
1387 		min_alloc_size = num_bytes;
1388 	else
1389 		min_alloc_size = fs_info->sectorsize;
1390 
1391 	while (num_bytes > 0) {
1392 		struct btrfs_ordered_extent *ordered;
1393 		struct btrfs_file_extent file_extent;
1394 
1395 		ret = btrfs_reserve_extent(root, num_bytes, num_bytes,
1396 					   min_alloc_size, 0, alloc_hint,
1397 					   &ins, 1, 1);
1398 		if (ret == -EAGAIN) {
1399 			/*
1400 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1401 			 * file systems, which is an indication that there are
1402 			 * no active zones to allocate from at the moment.
1403 			 *
1404 			 * If this is the first loop iteration, wait for at
1405 			 * least one zone to finish before retrying the
1406 			 * allocation.  Otherwise ask the caller to write out
1407 			 * the already allocated blocks before coming back to
1408 			 * us, or return -ENOSPC if it can't handle retries.
1409 			 */
1410 			ASSERT(btrfs_is_zoned(fs_info));
1411 			if (start == orig_start) {
1412 				wait_on_bit_io(&inode->root->fs_info->flags,
1413 					       BTRFS_FS_NEED_ZONE_FINISH,
1414 					       TASK_UNINTERRUPTIBLE);
1415 				continue;
1416 			}
1417 			if (done_offset) {
1418 				*done_offset = start - 1;
1419 				return 0;
1420 			}
1421 			ret = -ENOSPC;
1422 		}
1423 		if (ret < 0)
1424 			goto out_unlock;
1425 		cur_alloc_size = ins.offset;
1426 
1427 		file_extent.disk_bytenr = ins.objectid;
1428 		file_extent.disk_num_bytes = ins.offset;
1429 		file_extent.num_bytes = ins.offset;
1430 		file_extent.ram_bytes = ins.offset;
1431 		file_extent.offset = 0;
1432 		file_extent.compression = BTRFS_COMPRESS_NONE;
1433 
1434 		lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1,
1435 			    &cached);
1436 
1437 		em = btrfs_create_io_em(inode, start, &file_extent,
1438 					BTRFS_ORDERED_REGULAR);
1439 		if (IS_ERR(em)) {
1440 			unlock_extent(&inode->io_tree, start,
1441 				      start + cur_alloc_size - 1, &cached);
1442 			ret = PTR_ERR(em);
1443 			goto out_reserve;
1444 		}
1445 		free_extent_map(em);
1446 
1447 		ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1448 						     1 << BTRFS_ORDERED_REGULAR);
1449 		if (IS_ERR(ordered)) {
1450 			unlock_extent(&inode->io_tree, start,
1451 				      start + cur_alloc_size - 1, &cached);
1452 			ret = PTR_ERR(ordered);
1453 			goto out_drop_extent_cache;
1454 		}
1455 
1456 		if (btrfs_is_data_reloc_root(root)) {
1457 			ret = btrfs_reloc_clone_csums(ordered);
1458 
1459 			/*
1460 			 * Only drop cache here, and process as normal.
1461 			 *
1462 			 * We must not allow extent_clear_unlock_delalloc()
1463 			 * at out_unlock label to free meta of this ordered
1464 			 * extent, as its meta should be freed by
1465 			 * btrfs_finish_ordered_io().
1466 			 *
1467 			 * So we must continue until @start is increased to
1468 			 * skip current ordered extent.
1469 			 */
1470 			if (ret)
1471 				btrfs_drop_extent_map_range(inode, start,
1472 							    start + cur_alloc_size - 1,
1473 							    false);
1474 		}
1475 		btrfs_put_ordered_extent(ordered);
1476 
1477 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1478 
1479 		/*
1480 		 * We're not doing compressed IO, don't unlock the first page
1481 		 * (which the caller expects to stay locked), don't clear any
1482 		 * dirty bits and don't set any writeback bits
1483 		 *
1484 		 * Do set the Ordered flag so we know this page was
1485 		 * properly setup for writepage.
1486 		 */
1487 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1488 		page_ops |= PAGE_SET_ORDERED;
1489 
1490 		extent_clear_unlock_delalloc(inode, start, start + cur_alloc_size - 1,
1491 					     locked_folio, &cached,
1492 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1493 					     page_ops);
1494 		if (num_bytes < cur_alloc_size)
1495 			num_bytes = 0;
1496 		else
1497 			num_bytes -= cur_alloc_size;
1498 		alloc_hint = ins.objectid + ins.offset;
1499 		start += cur_alloc_size;
1500 		cur_alloc_size = 0;
1501 
1502 		/*
1503 		 * btrfs_reloc_clone_csums() error, since start is increased
1504 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1505 		 * free metadata of current ordered extent, we're OK to exit.
1506 		 */
1507 		if (ret)
1508 			goto out_unlock;
1509 	}
1510 done:
1511 	if (done_offset)
1512 		*done_offset = end;
1513 	return ret;
1514 
1515 out_drop_extent_cache:
1516 	btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false);
1517 out_reserve:
1518 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1519 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1520 out_unlock:
1521 	/*
1522 	 * Now, we have three regions to clean up:
1523 	 *
1524 	 * |-------(1)----|---(2)---|-------------(3)----------|
1525 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1526 	 *
1527 	 * We process each region below.
1528 	 */
1529 
1530 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1531 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1532 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1533 
1534 	/*
1535 	 * For the range (1). We have already instantiated the ordered extents
1536 	 * for this region. They are cleaned up by
1537 	 * btrfs_cleanup_ordered_extents() in e.g,
1538 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1539 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1540 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1541 	 * function.
1542 	 *
1543 	 * However, in case of @keep_locked, we still need to unlock the pages
1544 	 * (except @locked_folio) to ensure all the pages are unlocked.
1545 	 */
1546 	if (keep_locked && orig_start < start) {
1547 		if (!locked_folio)
1548 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1549 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1550 					     locked_folio, NULL, 0, page_ops);
1551 	}
1552 
1553 	/*
1554 	 * At this point we're unlocked, we want to make sure we're only
1555 	 * clearing these flags under the extent lock, so lock the rest of the
1556 	 * range and clear everything up.
1557 	 */
1558 	lock_extent(&inode->io_tree, start, end, NULL);
1559 
1560 	/*
1561 	 * For the range (2). If we reserved an extent for our delalloc range
1562 	 * (or a subrange) and failed to create the respective ordered extent,
1563 	 * then it means that when we reserved the extent we decremented the
1564 	 * extent's size from the data space_info's bytes_may_use counter and
1565 	 * incremented the space_info's bytes_reserved counter by the same
1566 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1567 	 * to decrement again the data space_info's bytes_may_use counter,
1568 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1569 	 */
1570 	if (cur_alloc_size) {
1571 		extent_clear_unlock_delalloc(inode, start,
1572 					     start + cur_alloc_size - 1,
1573 					     locked_folio, &cached, clear_bits,
1574 					     page_ops);
1575 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1576 	}
1577 
1578 	/*
1579 	 * For the range (3). We never touched the region. In addition to the
1580 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1581 	 * space_info's bytes_may_use counter, reserved in
1582 	 * btrfs_check_data_free_space().
1583 	 */
1584 	if (start + cur_alloc_size < end) {
1585 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1586 		extent_clear_unlock_delalloc(inode, start + cur_alloc_size,
1587 					     end, locked_folio,
1588 					     &cached, clear_bits, page_ops);
1589 		btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size,
1590 				       end - start - cur_alloc_size + 1, NULL);
1591 	}
1592 	return ret;
1593 }
1594 
1595 /*
1596  * Phase two of compressed writeback.  This is the ordered portion of the code,
1597  * which only gets called in the order the work was queued.  We walk all the
1598  * async extents created by compress_file_range and send them down to the disk.
1599  *
1600  * If called with @do_free == true then it'll try to finish the work and free
1601  * the work struct eventually.
1602  */
1603 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1604 {
1605 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1606 						     work);
1607 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1608 	struct async_extent *async_extent;
1609 	unsigned long nr_pages;
1610 	u64 alloc_hint = 0;
1611 
1612 	if (do_free) {
1613 		struct async_cow *async_cow;
1614 
1615 		btrfs_add_delayed_iput(async_chunk->inode);
1616 		if (async_chunk->blkcg_css)
1617 			css_put(async_chunk->blkcg_css);
1618 
1619 		async_cow = async_chunk->async_cow;
1620 		if (atomic_dec_and_test(&async_cow->num_chunks))
1621 			kvfree(async_cow);
1622 		return;
1623 	}
1624 
1625 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1626 		PAGE_SHIFT;
1627 
1628 	while (!list_empty(&async_chunk->extents)) {
1629 		async_extent = list_entry(async_chunk->extents.next,
1630 					  struct async_extent, list);
1631 		list_del(&async_extent->list);
1632 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1633 	}
1634 
1635 	/* atomic_sub_return implies a barrier */
1636 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1637 	    5 * SZ_1M)
1638 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1639 }
1640 
1641 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1642 				    struct folio *locked_folio, u64 start,
1643 				    u64 end, struct writeback_control *wbc)
1644 {
1645 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1646 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1647 	struct async_cow *ctx;
1648 	struct async_chunk *async_chunk;
1649 	unsigned long nr_pages;
1650 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1651 	int i;
1652 	unsigned nofs_flag;
1653 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1654 
1655 	nofs_flag = memalloc_nofs_save();
1656 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1657 	memalloc_nofs_restore(nofs_flag);
1658 	if (!ctx)
1659 		return false;
1660 
1661 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1662 
1663 	async_chunk = ctx->chunks;
1664 	atomic_set(&ctx->num_chunks, num_chunks);
1665 
1666 	for (i = 0; i < num_chunks; i++) {
1667 		u64 cur_end = min(end, start + SZ_512K - 1);
1668 
1669 		/*
1670 		 * igrab is called higher up in the call chain, take only the
1671 		 * lightweight reference for the callback lifetime
1672 		 */
1673 		ihold(&inode->vfs_inode);
1674 		async_chunk[i].async_cow = ctx;
1675 		async_chunk[i].inode = inode;
1676 		async_chunk[i].start = start;
1677 		async_chunk[i].end = cur_end;
1678 		async_chunk[i].write_flags = write_flags;
1679 		INIT_LIST_HEAD(&async_chunk[i].extents);
1680 
1681 		/*
1682 		 * The locked_folio comes all the way from writepage and its
1683 		 * the original folio we were actually given.  As we spread
1684 		 * this large delalloc region across multiple async_chunk
1685 		 * structs, only the first struct needs a pointer to
1686 		 * locked_folio.
1687 		 *
1688 		 * This way we don't need racey decisions about who is supposed
1689 		 * to unlock it.
1690 		 */
1691 		if (locked_folio) {
1692 			/*
1693 			 * Depending on the compressibility, the pages might or
1694 			 * might not go through async.  We want all of them to
1695 			 * be accounted against wbc once.  Let's do it here
1696 			 * before the paths diverge.  wbc accounting is used
1697 			 * only for foreign writeback detection and doesn't
1698 			 * need full accuracy.  Just account the whole thing
1699 			 * against the first page.
1700 			 */
1701 			wbc_account_cgroup_owner(wbc, locked_folio,
1702 						 cur_end - start);
1703 			async_chunk[i].locked_folio = locked_folio;
1704 			locked_folio = NULL;
1705 		} else {
1706 			async_chunk[i].locked_folio = NULL;
1707 		}
1708 
1709 		if (blkcg_css != blkcg_root_css) {
1710 			css_get(blkcg_css);
1711 			async_chunk[i].blkcg_css = blkcg_css;
1712 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1713 		} else {
1714 			async_chunk[i].blkcg_css = NULL;
1715 		}
1716 
1717 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1718 				submit_compressed_extents);
1719 
1720 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1721 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1722 
1723 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1724 
1725 		start = cur_end + 1;
1726 	}
1727 	return true;
1728 }
1729 
1730 /*
1731  * Run the delalloc range from start to end, and write back any dirty pages
1732  * covered by the range.
1733  */
1734 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1735 				     struct folio *locked_folio, u64 start,
1736 				     u64 end, struct writeback_control *wbc,
1737 				     bool pages_dirty)
1738 {
1739 	u64 done_offset = end;
1740 	int ret;
1741 
1742 	while (start <= end) {
1743 		ret = cow_file_range(inode, locked_folio, start, end,
1744 				     &done_offset, true, false);
1745 		if (ret)
1746 			return ret;
1747 		extent_write_locked_range(&inode->vfs_inode, locked_folio,
1748 					  start, done_offset, wbc, pages_dirty);
1749 		start = done_offset + 1;
1750 	}
1751 
1752 	return 1;
1753 }
1754 
1755 static int fallback_to_cow(struct btrfs_inode *inode,
1756 			   struct folio *locked_folio, const u64 start,
1757 			   const u64 end)
1758 {
1759 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1760 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1761 	const u64 range_bytes = end + 1 - start;
1762 	struct extent_io_tree *io_tree = &inode->io_tree;
1763 	struct extent_state *cached_state = NULL;
1764 	u64 range_start = start;
1765 	u64 count;
1766 	int ret;
1767 
1768 	/*
1769 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1770 	 * made we had not enough available data space and therefore we did not
1771 	 * reserve data space for it, since we though we could do NOCOW for the
1772 	 * respective file range (either there is prealloc extent or the inode
1773 	 * has the NOCOW bit set).
1774 	 *
1775 	 * However when we need to fallback to COW mode (because for example the
1776 	 * block group for the corresponding extent was turned to RO mode by a
1777 	 * scrub or relocation) we need to do the following:
1778 	 *
1779 	 * 1) We increment the bytes_may_use counter of the data space info.
1780 	 *    If COW succeeds, it allocates a new data extent and after doing
1781 	 *    that it decrements the space info's bytes_may_use counter and
1782 	 *    increments its bytes_reserved counter by the same amount (we do
1783 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1784 	 *    bytes_may_use counter to compensate (when space is reserved at
1785 	 *    buffered write time, the bytes_may_use counter is incremented);
1786 	 *
1787 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1788 	 *    that if the COW path fails for any reason, it decrements (through
1789 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1790 	 *    data space info, which we incremented in the step above.
1791 	 *
1792 	 * If we need to fallback to cow and the inode corresponds to a free
1793 	 * space cache inode or an inode of the data relocation tree, we must
1794 	 * also increment bytes_may_use of the data space_info for the same
1795 	 * reason. Space caches and relocated data extents always get a prealloc
1796 	 * extent for them, however scrub or balance may have set the block
1797 	 * group that contains that extent to RO mode and therefore force COW
1798 	 * when starting writeback.
1799 	 */
1800 	lock_extent(io_tree, start, end, &cached_state);
1801 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1802 				 EXTENT_NORESERVE, 0, NULL);
1803 	if (count > 0 || is_space_ino || is_reloc_ino) {
1804 		u64 bytes = count;
1805 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1806 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1807 
1808 		if (is_space_ino || is_reloc_ino)
1809 			bytes = range_bytes;
1810 
1811 		spin_lock(&sinfo->lock);
1812 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1813 		spin_unlock(&sinfo->lock);
1814 
1815 		if (count > 0)
1816 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1817 					 NULL);
1818 	}
1819 	unlock_extent(io_tree, start, end, &cached_state);
1820 
1821 	/*
1822 	 * Don't try to create inline extents, as a mix of inline extent that
1823 	 * is written out and unlocked directly and a normal NOCOW extent
1824 	 * doesn't work.
1825 	 */
1826 	ret = cow_file_range(inode, locked_folio, start, end, NULL, false,
1827 			     true);
1828 	ASSERT(ret != 1);
1829 	return ret;
1830 }
1831 
1832 struct can_nocow_file_extent_args {
1833 	/* Input fields. */
1834 
1835 	/* Start file offset of the range we want to NOCOW. */
1836 	u64 start;
1837 	/* End file offset (inclusive) of the range we want to NOCOW. */
1838 	u64 end;
1839 	bool writeback_path;
1840 	bool strict;
1841 	/*
1842 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1843 	 * anymore.
1844 	 */
1845 	bool free_path;
1846 
1847 	/*
1848 	 * Output fields. Only set when can_nocow_file_extent() returns 1.
1849 	 * The expected file extent for the NOCOW write.
1850 	 */
1851 	struct btrfs_file_extent file_extent;
1852 };
1853 
1854 /*
1855  * Check if we can NOCOW the file extent that the path points to.
1856  * This function may return with the path released, so the caller should check
1857  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1858  *
1859  * Returns: < 0 on error
1860  *            0 if we can not NOCOW
1861  *            1 if we can NOCOW
1862  */
1863 static int can_nocow_file_extent(struct btrfs_path *path,
1864 				 struct btrfs_key *key,
1865 				 struct btrfs_inode *inode,
1866 				 struct can_nocow_file_extent_args *args)
1867 {
1868 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1869 	struct extent_buffer *leaf = path->nodes[0];
1870 	struct btrfs_root *root = inode->root;
1871 	struct btrfs_file_extent_item *fi;
1872 	struct btrfs_root *csum_root;
1873 	u64 io_start;
1874 	u64 extent_end;
1875 	u8 extent_type;
1876 	int can_nocow = 0;
1877 	int ret = 0;
1878 	bool nowait = path->nowait;
1879 
1880 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1881 	extent_type = btrfs_file_extent_type(leaf, fi);
1882 
1883 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1884 		goto out;
1885 
1886 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1887 	    extent_type == BTRFS_FILE_EXTENT_REG)
1888 		goto out;
1889 
1890 	/*
1891 	 * If the extent was created before the generation where the last snapshot
1892 	 * for its subvolume was created, then this implies the extent is shared,
1893 	 * hence we must COW.
1894 	 */
1895 	if (!args->strict &&
1896 	    btrfs_file_extent_generation(leaf, fi) <=
1897 	    btrfs_root_last_snapshot(&root->root_item))
1898 		goto out;
1899 
1900 	/* An explicit hole, must COW. */
1901 	if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1902 		goto out;
1903 
1904 	/* Compressed/encrypted/encoded extents must be COWed. */
1905 	if (btrfs_file_extent_compression(leaf, fi) ||
1906 	    btrfs_file_extent_encryption(leaf, fi) ||
1907 	    btrfs_file_extent_other_encoding(leaf, fi))
1908 		goto out;
1909 
1910 	extent_end = btrfs_file_extent_end(path);
1911 
1912 	args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1913 	args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1914 	args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1915 	args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1916 	args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1917 
1918 	/*
1919 	 * The following checks can be expensive, as they need to take other
1920 	 * locks and do btree or rbtree searches, so release the path to avoid
1921 	 * blocking other tasks for too long.
1922 	 */
1923 	btrfs_release_path(path);
1924 
1925 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1926 				    key->offset - args->file_extent.offset,
1927 				    args->file_extent.disk_bytenr, args->strict, path);
1928 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1929 	if (ret != 0)
1930 		goto out;
1931 
1932 	if (args->free_path) {
1933 		/*
1934 		 * We don't need the path anymore, plus through the
1935 		 * btrfs_lookup_csums_list() call below we will end up allocating
1936 		 * another path. So free the path to avoid unnecessary extra
1937 		 * memory usage.
1938 		 */
1939 		btrfs_free_path(path);
1940 		path = NULL;
1941 	}
1942 
1943 	/* If there are pending snapshots for this root, we must COW. */
1944 	if (args->writeback_path && !is_freespace_inode &&
1945 	    atomic_read(&root->snapshot_force_cow))
1946 		goto out;
1947 
1948 	args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1949 	args->file_extent.offset += args->start - key->offset;
1950 	io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1951 
1952 	/*
1953 	 * Force COW if csums exist in the range. This ensures that csums for a
1954 	 * given extent are either valid or do not exist.
1955 	 */
1956 
1957 	csum_root = btrfs_csum_root(root->fs_info, io_start);
1958 	ret = btrfs_lookup_csums_list(csum_root, io_start,
1959 				      io_start + args->file_extent.num_bytes - 1,
1960 				      NULL, nowait);
1961 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1962 	if (ret != 0)
1963 		goto out;
1964 
1965 	can_nocow = 1;
1966  out:
1967 	if (args->free_path && path)
1968 		btrfs_free_path(path);
1969 
1970 	return ret < 0 ? ret : can_nocow;
1971 }
1972 
1973 /*
1974  * when nowcow writeback call back.  This checks for snapshots or COW copies
1975  * of the extents that exist in the file, and COWs the file as required.
1976  *
1977  * If no cow copies or snapshots exist, we write directly to the existing
1978  * blocks on disk
1979  */
1980 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1981 				       struct folio *locked_folio,
1982 				       const u64 start, const u64 end)
1983 {
1984 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1985 	struct btrfs_root *root = inode->root;
1986 	struct btrfs_path *path;
1987 	u64 cow_start = (u64)-1;
1988 	u64 cur_offset = start;
1989 	int ret;
1990 	bool check_prev = true;
1991 	u64 ino = btrfs_ino(inode);
1992 	struct can_nocow_file_extent_args nocow_args = { 0 };
1993 
1994 	/*
1995 	 * Normally on a zoned device we're only doing COW writes, but in case
1996 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1997 	 * writing sequentially and can end up here as well.
1998 	 */
1999 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2000 
2001 	path = btrfs_alloc_path();
2002 	if (!path) {
2003 		ret = -ENOMEM;
2004 		goto error;
2005 	}
2006 
2007 	nocow_args.end = end;
2008 	nocow_args.writeback_path = true;
2009 
2010 	while (cur_offset <= end) {
2011 		struct btrfs_block_group *nocow_bg = NULL;
2012 		struct btrfs_ordered_extent *ordered;
2013 		struct btrfs_key found_key;
2014 		struct btrfs_file_extent_item *fi;
2015 		struct extent_buffer *leaf;
2016 		struct extent_state *cached_state = NULL;
2017 		u64 extent_end;
2018 		u64 nocow_end;
2019 		int extent_type;
2020 		bool is_prealloc;
2021 
2022 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2023 					       cur_offset, 0);
2024 		if (ret < 0)
2025 			goto error;
2026 
2027 		/*
2028 		 * If there is no extent for our range when doing the initial
2029 		 * search, then go back to the previous slot as it will be the
2030 		 * one containing the search offset
2031 		 */
2032 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2033 			leaf = path->nodes[0];
2034 			btrfs_item_key_to_cpu(leaf, &found_key,
2035 					      path->slots[0] - 1);
2036 			if (found_key.objectid == ino &&
2037 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2038 				path->slots[0]--;
2039 		}
2040 		check_prev = false;
2041 next_slot:
2042 		/* Go to next leaf if we have exhausted the current one */
2043 		leaf = path->nodes[0];
2044 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2045 			ret = btrfs_next_leaf(root, path);
2046 			if (ret < 0)
2047 				goto error;
2048 			if (ret > 0)
2049 				break;
2050 			leaf = path->nodes[0];
2051 		}
2052 
2053 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2054 
2055 		/* Didn't find anything for our INO */
2056 		if (found_key.objectid > ino)
2057 			break;
2058 		/*
2059 		 * Keep searching until we find an EXTENT_ITEM or there are no
2060 		 * more extents for this inode
2061 		 */
2062 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2063 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2064 			path->slots[0]++;
2065 			goto next_slot;
2066 		}
2067 
2068 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2069 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2070 		    found_key.offset > end)
2071 			break;
2072 
2073 		/*
2074 		 * If the found extent starts after requested offset, then
2075 		 * adjust extent_end to be right before this extent begins
2076 		 */
2077 		if (found_key.offset > cur_offset) {
2078 			extent_end = found_key.offset;
2079 			extent_type = 0;
2080 			goto must_cow;
2081 		}
2082 
2083 		/*
2084 		 * Found extent which begins before our range and potentially
2085 		 * intersect it
2086 		 */
2087 		fi = btrfs_item_ptr(leaf, path->slots[0],
2088 				    struct btrfs_file_extent_item);
2089 		extent_type = btrfs_file_extent_type(leaf, fi);
2090 		/* If this is triggered then we have a memory corruption. */
2091 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2092 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2093 			ret = -EUCLEAN;
2094 			goto error;
2095 		}
2096 		extent_end = btrfs_file_extent_end(path);
2097 
2098 		/*
2099 		 * If the extent we got ends before our current offset, skip to
2100 		 * the next extent.
2101 		 */
2102 		if (extent_end <= cur_offset) {
2103 			path->slots[0]++;
2104 			goto next_slot;
2105 		}
2106 
2107 		nocow_args.start = cur_offset;
2108 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2109 		if (ret < 0)
2110 			goto error;
2111 		if (ret == 0)
2112 			goto must_cow;
2113 
2114 		ret = 0;
2115 		nocow_bg = btrfs_inc_nocow_writers(fs_info,
2116 				nocow_args.file_extent.disk_bytenr +
2117 				nocow_args.file_extent.offset);
2118 		if (!nocow_bg) {
2119 must_cow:
2120 			/*
2121 			 * If we can't perform NOCOW writeback for the range,
2122 			 * then record the beginning of the range that needs to
2123 			 * be COWed.  It will be written out before the next
2124 			 * NOCOW range if we find one, or when exiting this
2125 			 * loop.
2126 			 */
2127 			if (cow_start == (u64)-1)
2128 				cow_start = cur_offset;
2129 			cur_offset = extent_end;
2130 			if (cur_offset > end)
2131 				break;
2132 			if (!path->nodes[0])
2133 				continue;
2134 			path->slots[0]++;
2135 			goto next_slot;
2136 		}
2137 
2138 		/*
2139 		 * COW range from cow_start to found_key.offset - 1. As the key
2140 		 * will contain the beginning of the first extent that can be
2141 		 * NOCOW, following one which needs to be COW'ed
2142 		 */
2143 		if (cow_start != (u64)-1) {
2144 			ret = fallback_to_cow(inode, locked_folio, cow_start,
2145 					      found_key.offset - 1);
2146 			cow_start = (u64)-1;
2147 			if (ret) {
2148 				btrfs_dec_nocow_writers(nocow_bg);
2149 				goto error;
2150 			}
2151 		}
2152 
2153 		nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2154 		lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2155 
2156 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2157 		if (is_prealloc) {
2158 			struct extent_map *em;
2159 
2160 			em = btrfs_create_io_em(inode, cur_offset,
2161 						&nocow_args.file_extent,
2162 						BTRFS_ORDERED_PREALLOC);
2163 			if (IS_ERR(em)) {
2164 				unlock_extent(&inode->io_tree, cur_offset,
2165 					      nocow_end, &cached_state);
2166 				btrfs_dec_nocow_writers(nocow_bg);
2167 				ret = PTR_ERR(em);
2168 				goto error;
2169 			}
2170 			free_extent_map(em);
2171 		}
2172 
2173 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2174 				&nocow_args.file_extent,
2175 				is_prealloc
2176 				? (1 << BTRFS_ORDERED_PREALLOC)
2177 				: (1 << BTRFS_ORDERED_NOCOW));
2178 		btrfs_dec_nocow_writers(nocow_bg);
2179 		if (IS_ERR(ordered)) {
2180 			if (is_prealloc) {
2181 				btrfs_drop_extent_map_range(inode, cur_offset,
2182 							    nocow_end, false);
2183 			}
2184 			unlock_extent(&inode->io_tree, cur_offset,
2185 				      nocow_end, &cached_state);
2186 			ret = PTR_ERR(ordered);
2187 			goto error;
2188 		}
2189 
2190 		if (btrfs_is_data_reloc_root(root))
2191 			/*
2192 			 * Error handled later, as we must prevent
2193 			 * extent_clear_unlock_delalloc() in error handler
2194 			 * from freeing metadata of created ordered extent.
2195 			 */
2196 			ret = btrfs_reloc_clone_csums(ordered);
2197 		btrfs_put_ordered_extent(ordered);
2198 
2199 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2200 					     locked_folio, &cached_state,
2201 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2202 					     EXTENT_CLEAR_DATA_RESV,
2203 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2204 
2205 		cur_offset = extent_end;
2206 
2207 		/*
2208 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2209 		 * handler, as metadata for created ordered extent will only
2210 		 * be freed by btrfs_finish_ordered_io().
2211 		 */
2212 		if (ret)
2213 			goto error;
2214 	}
2215 	btrfs_release_path(path);
2216 
2217 	if (cur_offset <= end && cow_start == (u64)-1)
2218 		cow_start = cur_offset;
2219 
2220 	if (cow_start != (u64)-1) {
2221 		cur_offset = end;
2222 		ret = fallback_to_cow(inode, locked_folio, cow_start, end);
2223 		cow_start = (u64)-1;
2224 		if (ret)
2225 			goto error;
2226 	}
2227 
2228 	btrfs_free_path(path);
2229 	return 0;
2230 
2231 error:
2232 	/*
2233 	 * If an error happened while a COW region is outstanding, cur_offset
2234 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2235 	 * as well.
2236 	 */
2237 	if (cow_start != (u64)-1)
2238 		cur_offset = cow_start;
2239 
2240 	/*
2241 	 * We need to lock the extent here because we're clearing DELALLOC and
2242 	 * we're not locked at this point.
2243 	 */
2244 	if (cur_offset < end) {
2245 		struct extent_state *cached = NULL;
2246 
2247 		lock_extent(&inode->io_tree, cur_offset, end, &cached);
2248 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2249 					     locked_folio, &cached,
2250 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2251 					     EXTENT_DEFRAG |
2252 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2253 					     PAGE_START_WRITEBACK |
2254 					     PAGE_END_WRITEBACK);
2255 		btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2256 	}
2257 	btrfs_free_path(path);
2258 	return ret;
2259 }
2260 
2261 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2262 {
2263 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2264 		if (inode->defrag_bytes &&
2265 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2266 			return false;
2267 		return true;
2268 	}
2269 	return false;
2270 }
2271 
2272 /*
2273  * Function to process delayed allocation (create CoW) for ranges which are
2274  * being touched for the first time.
2275  */
2276 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio,
2277 			     u64 start, u64 end, struct writeback_control *wbc)
2278 {
2279 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2280 	int ret;
2281 
2282 	/*
2283 	 * The range must cover part of the @locked_folio, or a return of 1
2284 	 * can confuse the caller.
2285 	 */
2286 	ASSERT(!(end <= folio_pos(locked_folio) ||
2287 		 start >= folio_pos(locked_folio) + folio_size(locked_folio)));
2288 
2289 	if (should_nocow(inode, start, end)) {
2290 		ret = run_delalloc_nocow(inode, locked_folio, start, end);
2291 		goto out;
2292 	}
2293 
2294 	if (btrfs_inode_can_compress(inode) &&
2295 	    inode_need_compress(inode, start, end) &&
2296 	    run_delalloc_compressed(inode, locked_folio, start, end, wbc))
2297 		return 1;
2298 
2299 	if (zoned)
2300 		ret = run_delalloc_cow(inode, locked_folio, start, end, wbc,
2301 				       true);
2302 	else
2303 		ret = cow_file_range(inode, locked_folio, start, end, NULL,
2304 				     false, false);
2305 
2306 out:
2307 	if (ret < 0)
2308 		btrfs_cleanup_ordered_extents(inode, locked_folio, start,
2309 					      end - start + 1);
2310 	return ret;
2311 }
2312 
2313 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2314 				 struct extent_state *orig, u64 split)
2315 {
2316 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2317 	u64 size;
2318 
2319 	lockdep_assert_held(&inode->io_tree.lock);
2320 
2321 	/* not delalloc, ignore it */
2322 	if (!(orig->state & EXTENT_DELALLOC))
2323 		return;
2324 
2325 	size = orig->end - orig->start + 1;
2326 	if (size > fs_info->max_extent_size) {
2327 		u32 num_extents;
2328 		u64 new_size;
2329 
2330 		/*
2331 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2332 		 * applies here, just in reverse.
2333 		 */
2334 		new_size = orig->end - split + 1;
2335 		num_extents = count_max_extents(fs_info, new_size);
2336 		new_size = split - orig->start;
2337 		num_extents += count_max_extents(fs_info, new_size);
2338 		if (count_max_extents(fs_info, size) >= num_extents)
2339 			return;
2340 	}
2341 
2342 	spin_lock(&inode->lock);
2343 	btrfs_mod_outstanding_extents(inode, 1);
2344 	spin_unlock(&inode->lock);
2345 }
2346 
2347 /*
2348  * Handle merged delayed allocation extents so we can keep track of new extents
2349  * that are just merged onto old extents, such as when we are doing sequential
2350  * writes, so we can properly account for the metadata space we'll need.
2351  */
2352 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2353 				 struct extent_state *other)
2354 {
2355 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2356 	u64 new_size, old_size;
2357 	u32 num_extents;
2358 
2359 	lockdep_assert_held(&inode->io_tree.lock);
2360 
2361 	/* not delalloc, ignore it */
2362 	if (!(other->state & EXTENT_DELALLOC))
2363 		return;
2364 
2365 	if (new->start > other->start)
2366 		new_size = new->end - other->start + 1;
2367 	else
2368 		new_size = other->end - new->start + 1;
2369 
2370 	/* we're not bigger than the max, unreserve the space and go */
2371 	if (new_size <= fs_info->max_extent_size) {
2372 		spin_lock(&inode->lock);
2373 		btrfs_mod_outstanding_extents(inode, -1);
2374 		spin_unlock(&inode->lock);
2375 		return;
2376 	}
2377 
2378 	/*
2379 	 * We have to add up either side to figure out how many extents were
2380 	 * accounted for before we merged into one big extent.  If the number of
2381 	 * extents we accounted for is <= the amount we need for the new range
2382 	 * then we can return, otherwise drop.  Think of it like this
2383 	 *
2384 	 * [ 4k][MAX_SIZE]
2385 	 *
2386 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2387 	 * need 2 outstanding extents, on one side we have 1 and the other side
2388 	 * we have 1 so they are == and we can return.  But in this case
2389 	 *
2390 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2391 	 *
2392 	 * Each range on their own accounts for 2 extents, but merged together
2393 	 * they are only 3 extents worth of accounting, so we need to drop in
2394 	 * this case.
2395 	 */
2396 	old_size = other->end - other->start + 1;
2397 	num_extents = count_max_extents(fs_info, old_size);
2398 	old_size = new->end - new->start + 1;
2399 	num_extents += count_max_extents(fs_info, old_size);
2400 	if (count_max_extents(fs_info, new_size) >= num_extents)
2401 		return;
2402 
2403 	spin_lock(&inode->lock);
2404 	btrfs_mod_outstanding_extents(inode, -1);
2405 	spin_unlock(&inode->lock);
2406 }
2407 
2408 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2409 {
2410 	struct btrfs_root *root = inode->root;
2411 	struct btrfs_fs_info *fs_info = root->fs_info;
2412 
2413 	spin_lock(&root->delalloc_lock);
2414 	ASSERT(list_empty(&inode->delalloc_inodes));
2415 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2416 	root->nr_delalloc_inodes++;
2417 	if (root->nr_delalloc_inodes == 1) {
2418 		spin_lock(&fs_info->delalloc_root_lock);
2419 		ASSERT(list_empty(&root->delalloc_root));
2420 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2421 		spin_unlock(&fs_info->delalloc_root_lock);
2422 	}
2423 	spin_unlock(&root->delalloc_lock);
2424 }
2425 
2426 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2427 {
2428 	struct btrfs_root *root = inode->root;
2429 	struct btrfs_fs_info *fs_info = root->fs_info;
2430 
2431 	lockdep_assert_held(&root->delalloc_lock);
2432 
2433 	/*
2434 	 * We may be called after the inode was already deleted from the list,
2435 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2436 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2437 	 * still has ->delalloc_bytes > 0.
2438 	 */
2439 	if (!list_empty(&inode->delalloc_inodes)) {
2440 		list_del_init(&inode->delalloc_inodes);
2441 		root->nr_delalloc_inodes--;
2442 		if (!root->nr_delalloc_inodes) {
2443 			ASSERT(list_empty(&root->delalloc_inodes));
2444 			spin_lock(&fs_info->delalloc_root_lock);
2445 			ASSERT(!list_empty(&root->delalloc_root));
2446 			list_del_init(&root->delalloc_root);
2447 			spin_unlock(&fs_info->delalloc_root_lock);
2448 		}
2449 	}
2450 }
2451 
2452 /*
2453  * Properly track delayed allocation bytes in the inode and to maintain the
2454  * list of inodes that have pending delalloc work to be done.
2455  */
2456 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2457 			       u32 bits)
2458 {
2459 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2460 
2461 	lockdep_assert_held(&inode->io_tree.lock);
2462 
2463 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2464 		WARN_ON(1);
2465 	/*
2466 	 * set_bit and clear bit hooks normally require _irqsave/restore
2467 	 * but in this case, we are only testing for the DELALLOC
2468 	 * bit, which is only set or cleared with irqs on
2469 	 */
2470 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2471 		u64 len = state->end + 1 - state->start;
2472 		u64 prev_delalloc_bytes;
2473 		u32 num_extents = count_max_extents(fs_info, len);
2474 
2475 		spin_lock(&inode->lock);
2476 		btrfs_mod_outstanding_extents(inode, num_extents);
2477 		spin_unlock(&inode->lock);
2478 
2479 		/* For sanity tests */
2480 		if (btrfs_is_testing(fs_info))
2481 			return;
2482 
2483 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2484 					 fs_info->delalloc_batch);
2485 		spin_lock(&inode->lock);
2486 		prev_delalloc_bytes = inode->delalloc_bytes;
2487 		inode->delalloc_bytes += len;
2488 		if (bits & EXTENT_DEFRAG)
2489 			inode->defrag_bytes += len;
2490 		spin_unlock(&inode->lock);
2491 
2492 		/*
2493 		 * We don't need to be under the protection of the inode's lock,
2494 		 * because we are called while holding the inode's io_tree lock
2495 		 * and are therefore protected against concurrent calls of this
2496 		 * function and btrfs_clear_delalloc_extent().
2497 		 */
2498 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2499 			btrfs_add_delalloc_inode(inode);
2500 	}
2501 
2502 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2503 	    (bits & EXTENT_DELALLOC_NEW)) {
2504 		spin_lock(&inode->lock);
2505 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2506 		spin_unlock(&inode->lock);
2507 	}
2508 }
2509 
2510 /*
2511  * Once a range is no longer delalloc this function ensures that proper
2512  * accounting happens.
2513  */
2514 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2515 				 struct extent_state *state, u32 bits)
2516 {
2517 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2518 	u64 len = state->end + 1 - state->start;
2519 	u32 num_extents = count_max_extents(fs_info, len);
2520 
2521 	lockdep_assert_held(&inode->io_tree.lock);
2522 
2523 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2524 		spin_lock(&inode->lock);
2525 		inode->defrag_bytes -= len;
2526 		spin_unlock(&inode->lock);
2527 	}
2528 
2529 	/*
2530 	 * set_bit and clear bit hooks normally require _irqsave/restore
2531 	 * but in this case, we are only testing for the DELALLOC
2532 	 * bit, which is only set or cleared with irqs on
2533 	 */
2534 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2535 		struct btrfs_root *root = inode->root;
2536 		u64 new_delalloc_bytes;
2537 
2538 		spin_lock(&inode->lock);
2539 		btrfs_mod_outstanding_extents(inode, -num_extents);
2540 		spin_unlock(&inode->lock);
2541 
2542 		/*
2543 		 * We don't reserve metadata space for space cache inodes so we
2544 		 * don't need to call delalloc_release_metadata if there is an
2545 		 * error.
2546 		 */
2547 		if (bits & EXTENT_CLEAR_META_RESV &&
2548 		    root != fs_info->tree_root)
2549 			btrfs_delalloc_release_metadata(inode, len, true);
2550 
2551 		/* For sanity tests. */
2552 		if (btrfs_is_testing(fs_info))
2553 			return;
2554 
2555 		if (!btrfs_is_data_reloc_root(root) &&
2556 		    !btrfs_is_free_space_inode(inode) &&
2557 		    !(state->state & EXTENT_NORESERVE) &&
2558 		    (bits & EXTENT_CLEAR_DATA_RESV))
2559 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2560 
2561 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2562 					 fs_info->delalloc_batch);
2563 		spin_lock(&inode->lock);
2564 		inode->delalloc_bytes -= len;
2565 		new_delalloc_bytes = inode->delalloc_bytes;
2566 		spin_unlock(&inode->lock);
2567 
2568 		/*
2569 		 * We don't need to be under the protection of the inode's lock,
2570 		 * because we are called while holding the inode's io_tree lock
2571 		 * and are therefore protected against concurrent calls of this
2572 		 * function and btrfs_set_delalloc_extent().
2573 		 */
2574 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2575 			spin_lock(&root->delalloc_lock);
2576 			btrfs_del_delalloc_inode(inode);
2577 			spin_unlock(&root->delalloc_lock);
2578 		}
2579 	}
2580 
2581 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2582 	    (bits & EXTENT_DELALLOC_NEW)) {
2583 		spin_lock(&inode->lock);
2584 		ASSERT(inode->new_delalloc_bytes >= len);
2585 		inode->new_delalloc_bytes -= len;
2586 		if (bits & EXTENT_ADD_INODE_BYTES)
2587 			inode_add_bytes(&inode->vfs_inode, len);
2588 		spin_unlock(&inode->lock);
2589 	}
2590 }
2591 
2592 /*
2593  * given a list of ordered sums record them in the inode.  This happens
2594  * at IO completion time based on sums calculated at bio submission time.
2595  */
2596 static int add_pending_csums(struct btrfs_trans_handle *trans,
2597 			     struct list_head *list)
2598 {
2599 	struct btrfs_ordered_sum *sum;
2600 	struct btrfs_root *csum_root = NULL;
2601 	int ret;
2602 
2603 	list_for_each_entry(sum, list, list) {
2604 		trans->adding_csums = true;
2605 		if (!csum_root)
2606 			csum_root = btrfs_csum_root(trans->fs_info,
2607 						    sum->logical);
2608 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2609 		trans->adding_csums = false;
2610 		if (ret)
2611 			return ret;
2612 	}
2613 	return 0;
2614 }
2615 
2616 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2617 					 const u64 start,
2618 					 const u64 len,
2619 					 struct extent_state **cached_state)
2620 {
2621 	u64 search_start = start;
2622 	const u64 end = start + len - 1;
2623 
2624 	while (search_start < end) {
2625 		const u64 search_len = end - search_start + 1;
2626 		struct extent_map *em;
2627 		u64 em_len;
2628 		int ret = 0;
2629 
2630 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2631 		if (IS_ERR(em))
2632 			return PTR_ERR(em);
2633 
2634 		if (em->disk_bytenr != EXTENT_MAP_HOLE)
2635 			goto next;
2636 
2637 		em_len = em->len;
2638 		if (em->start < search_start)
2639 			em_len -= search_start - em->start;
2640 		if (em_len > search_len)
2641 			em_len = search_len;
2642 
2643 		ret = set_extent_bit(&inode->io_tree, search_start,
2644 				     search_start + em_len - 1,
2645 				     EXTENT_DELALLOC_NEW, cached_state);
2646 next:
2647 		search_start = extent_map_end(em);
2648 		free_extent_map(em);
2649 		if (ret)
2650 			return ret;
2651 	}
2652 	return 0;
2653 }
2654 
2655 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2656 			      unsigned int extra_bits,
2657 			      struct extent_state **cached_state)
2658 {
2659 	WARN_ON(PAGE_ALIGNED(end));
2660 
2661 	if (start >= i_size_read(&inode->vfs_inode) &&
2662 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2663 		/*
2664 		 * There can't be any extents following eof in this case so just
2665 		 * set the delalloc new bit for the range directly.
2666 		 */
2667 		extra_bits |= EXTENT_DELALLOC_NEW;
2668 	} else {
2669 		int ret;
2670 
2671 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2672 						    end + 1 - start,
2673 						    cached_state);
2674 		if (ret)
2675 			return ret;
2676 	}
2677 
2678 	return set_extent_bit(&inode->io_tree, start, end,
2679 			      EXTENT_DELALLOC | extra_bits, cached_state);
2680 }
2681 
2682 /* see btrfs_writepage_start_hook for details on why this is required */
2683 struct btrfs_writepage_fixup {
2684 	struct folio *folio;
2685 	struct btrfs_inode *inode;
2686 	struct btrfs_work work;
2687 };
2688 
2689 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2690 {
2691 	struct btrfs_writepage_fixup *fixup =
2692 		container_of(work, struct btrfs_writepage_fixup, work);
2693 	struct btrfs_ordered_extent *ordered;
2694 	struct extent_state *cached_state = NULL;
2695 	struct extent_changeset *data_reserved = NULL;
2696 	struct folio *folio = fixup->folio;
2697 	struct btrfs_inode *inode = fixup->inode;
2698 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2699 	u64 page_start = folio_pos(folio);
2700 	u64 page_end = folio_pos(folio) + folio_size(folio) - 1;
2701 	int ret = 0;
2702 	bool free_delalloc_space = true;
2703 
2704 	/*
2705 	 * This is similar to page_mkwrite, we need to reserve the space before
2706 	 * we take the folio lock.
2707 	 */
2708 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2709 					   folio_size(folio));
2710 again:
2711 	folio_lock(folio);
2712 
2713 	/*
2714 	 * Before we queued this fixup, we took a reference on the folio.
2715 	 * folio->mapping may go NULL, but it shouldn't be moved to a different
2716 	 * address space.
2717 	 */
2718 	if (!folio->mapping || !folio_test_dirty(folio) ||
2719 	    !folio_test_checked(folio)) {
2720 		/*
2721 		 * Unfortunately this is a little tricky, either
2722 		 *
2723 		 * 1) We got here and our folio had already been dealt with and
2724 		 *    we reserved our space, thus ret == 0, so we need to just
2725 		 *    drop our space reservation and bail.  This can happen the
2726 		 *    first time we come into the fixup worker, or could happen
2727 		 *    while waiting for the ordered extent.
2728 		 * 2) Our folio was already dealt with, but we happened to get an
2729 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2730 		 *    this case we obviously don't have anything to release, but
2731 		 *    because the folio was already dealt with we don't want to
2732 		 *    mark the folio with an error, so make sure we're resetting
2733 		 *    ret to 0.  This is why we have this check _before_ the ret
2734 		 *    check, because we do not want to have a surprise ENOSPC
2735 		 *    when the folio was already properly dealt with.
2736 		 */
2737 		if (!ret) {
2738 			btrfs_delalloc_release_extents(inode, folio_size(folio));
2739 			btrfs_delalloc_release_space(inode, data_reserved,
2740 						     page_start, folio_size(folio),
2741 						     true);
2742 		}
2743 		ret = 0;
2744 		goto out_page;
2745 	}
2746 
2747 	/*
2748 	 * We can't mess with the folio state unless it is locked, so now that
2749 	 * it is locked bail if we failed to make our space reservation.
2750 	 */
2751 	if (ret)
2752 		goto out_page;
2753 
2754 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2755 
2756 	/* already ordered? We're done */
2757 	if (folio_test_ordered(folio))
2758 		goto out_reserved;
2759 
2760 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2761 	if (ordered) {
2762 		unlock_extent(&inode->io_tree, page_start, page_end,
2763 			      &cached_state);
2764 		folio_unlock(folio);
2765 		btrfs_start_ordered_extent(ordered);
2766 		btrfs_put_ordered_extent(ordered);
2767 		goto again;
2768 	}
2769 
2770 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2771 					&cached_state);
2772 	if (ret)
2773 		goto out_reserved;
2774 
2775 	/*
2776 	 * Everything went as planned, we're now the owner of a dirty page with
2777 	 * delayed allocation bits set and space reserved for our COW
2778 	 * destination.
2779 	 *
2780 	 * The page was dirty when we started, nothing should have cleaned it.
2781 	 */
2782 	BUG_ON(!folio_test_dirty(folio));
2783 	free_delalloc_space = false;
2784 out_reserved:
2785 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2786 	if (free_delalloc_space)
2787 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2788 					     PAGE_SIZE, true);
2789 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2790 out_page:
2791 	if (ret) {
2792 		/*
2793 		 * We hit ENOSPC or other errors.  Update the mapping and page
2794 		 * to reflect the errors and clean the page.
2795 		 */
2796 		mapping_set_error(folio->mapping, ret);
2797 		btrfs_mark_ordered_io_finished(inode, folio, page_start,
2798 					       folio_size(folio), !ret);
2799 		folio_clear_dirty_for_io(folio);
2800 	}
2801 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
2802 	folio_unlock(folio);
2803 	folio_put(folio);
2804 	kfree(fixup);
2805 	extent_changeset_free(data_reserved);
2806 	/*
2807 	 * As a precaution, do a delayed iput in case it would be the last iput
2808 	 * that could need flushing space. Recursing back to fixup worker would
2809 	 * deadlock.
2810 	 */
2811 	btrfs_add_delayed_iput(inode);
2812 }
2813 
2814 /*
2815  * There are a few paths in the higher layers of the kernel that directly
2816  * set the folio dirty bit without asking the filesystem if it is a
2817  * good idea.  This causes problems because we want to make sure COW
2818  * properly happens and the data=ordered rules are followed.
2819  *
2820  * In our case any range that doesn't have the ORDERED bit set
2821  * hasn't been properly setup for IO.  We kick off an async process
2822  * to fix it up.  The async helper will wait for ordered extents, set
2823  * the delalloc bit and make it safe to write the folio.
2824  */
2825 int btrfs_writepage_cow_fixup(struct folio *folio)
2826 {
2827 	struct inode *inode = folio->mapping->host;
2828 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2829 	struct btrfs_writepage_fixup *fixup;
2830 
2831 	/* This folio has ordered extent covering it already */
2832 	if (folio_test_ordered(folio))
2833 		return 0;
2834 
2835 	/*
2836 	 * folio_checked is set below when we create a fixup worker for this
2837 	 * folio, don't try to create another one if we're already
2838 	 * folio_test_checked.
2839 	 *
2840 	 * The extent_io writepage code will redirty the foio if we send back
2841 	 * EAGAIN.
2842 	 */
2843 	if (folio_test_checked(folio))
2844 		return -EAGAIN;
2845 
2846 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2847 	if (!fixup)
2848 		return -EAGAIN;
2849 
2850 	/*
2851 	 * We are already holding a reference to this inode from
2852 	 * write_cache_pages.  We need to hold it because the space reservation
2853 	 * takes place outside of the folio lock, and we can't trust
2854 	 * page->mapping outside of the folio lock.
2855 	 */
2856 	ihold(inode);
2857 	btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
2858 	folio_get(folio);
2859 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2860 	fixup->folio = folio;
2861 	fixup->inode = BTRFS_I(inode);
2862 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2863 
2864 	return -EAGAIN;
2865 }
2866 
2867 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2868 				       struct btrfs_inode *inode, u64 file_pos,
2869 				       struct btrfs_file_extent_item *stack_fi,
2870 				       const bool update_inode_bytes,
2871 				       u64 qgroup_reserved)
2872 {
2873 	struct btrfs_root *root = inode->root;
2874 	const u64 sectorsize = root->fs_info->sectorsize;
2875 	struct btrfs_path *path;
2876 	struct extent_buffer *leaf;
2877 	struct btrfs_key ins;
2878 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2879 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2880 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2881 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2882 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2883 	struct btrfs_drop_extents_args drop_args = { 0 };
2884 	int ret;
2885 
2886 	path = btrfs_alloc_path();
2887 	if (!path)
2888 		return -ENOMEM;
2889 
2890 	/*
2891 	 * we may be replacing one extent in the tree with another.
2892 	 * The new extent is pinned in the extent map, and we don't want
2893 	 * to drop it from the cache until it is completely in the btree.
2894 	 *
2895 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2896 	 * the caller is expected to unpin it and allow it to be merged
2897 	 * with the others.
2898 	 */
2899 	drop_args.path = path;
2900 	drop_args.start = file_pos;
2901 	drop_args.end = file_pos + num_bytes;
2902 	drop_args.replace_extent = true;
2903 	drop_args.extent_item_size = sizeof(*stack_fi);
2904 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2905 	if (ret)
2906 		goto out;
2907 
2908 	if (!drop_args.extent_inserted) {
2909 		ins.objectid = btrfs_ino(inode);
2910 		ins.offset = file_pos;
2911 		ins.type = BTRFS_EXTENT_DATA_KEY;
2912 
2913 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2914 					      sizeof(*stack_fi));
2915 		if (ret)
2916 			goto out;
2917 	}
2918 	leaf = path->nodes[0];
2919 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2920 	write_extent_buffer(leaf, stack_fi,
2921 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2922 			sizeof(struct btrfs_file_extent_item));
2923 
2924 	btrfs_mark_buffer_dirty(trans, leaf);
2925 	btrfs_release_path(path);
2926 
2927 	/*
2928 	 * If we dropped an inline extent here, we know the range where it is
2929 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2930 	 * number of bytes only for that range containing the inline extent.
2931 	 * The remaining of the range will be processed when clearning the
2932 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2933 	 */
2934 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2935 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2936 
2937 		inline_size = drop_args.bytes_found - inline_size;
2938 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2939 		drop_args.bytes_found -= inline_size;
2940 		num_bytes -= sectorsize;
2941 	}
2942 
2943 	if (update_inode_bytes)
2944 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2945 
2946 	ins.objectid = disk_bytenr;
2947 	ins.offset = disk_num_bytes;
2948 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2949 
2950 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2951 	if (ret)
2952 		goto out;
2953 
2954 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2955 					       file_pos - offset,
2956 					       qgroup_reserved, &ins);
2957 out:
2958 	btrfs_free_path(path);
2959 
2960 	return ret;
2961 }
2962 
2963 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2964 					 u64 start, u64 len)
2965 {
2966 	struct btrfs_block_group *cache;
2967 
2968 	cache = btrfs_lookup_block_group(fs_info, start);
2969 	ASSERT(cache);
2970 
2971 	spin_lock(&cache->lock);
2972 	cache->delalloc_bytes -= len;
2973 	spin_unlock(&cache->lock);
2974 
2975 	btrfs_put_block_group(cache);
2976 }
2977 
2978 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2979 					     struct btrfs_ordered_extent *oe)
2980 {
2981 	struct btrfs_file_extent_item stack_fi;
2982 	bool update_inode_bytes;
2983 	u64 num_bytes = oe->num_bytes;
2984 	u64 ram_bytes = oe->ram_bytes;
2985 
2986 	memset(&stack_fi, 0, sizeof(stack_fi));
2987 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2988 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2989 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2990 						   oe->disk_num_bytes);
2991 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2992 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2993 		num_bytes = oe->truncated_len;
2994 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
2995 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
2996 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2997 	/* Encryption and other encoding is reserved and all 0 */
2998 
2999 	/*
3000 	 * For delalloc, when completing an ordered extent we update the inode's
3001 	 * bytes when clearing the range in the inode's io tree, so pass false
3002 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3003 	 * except if the ordered extent was truncated.
3004 	 */
3005 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3006 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3007 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3008 
3009 	return insert_reserved_file_extent(trans, oe->inode,
3010 					   oe->file_offset, &stack_fi,
3011 					   update_inode_bytes, oe->qgroup_rsv);
3012 }
3013 
3014 /*
3015  * As ordered data IO finishes, this gets called so we can finish
3016  * an ordered extent if the range of bytes in the file it covers are
3017  * fully written.
3018  */
3019 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3020 {
3021 	struct btrfs_inode *inode = ordered_extent->inode;
3022 	struct btrfs_root *root = inode->root;
3023 	struct btrfs_fs_info *fs_info = root->fs_info;
3024 	struct btrfs_trans_handle *trans = NULL;
3025 	struct extent_io_tree *io_tree = &inode->io_tree;
3026 	struct extent_state *cached_state = NULL;
3027 	u64 start, end;
3028 	int compress_type = 0;
3029 	int ret = 0;
3030 	u64 logical_len = ordered_extent->num_bytes;
3031 	bool freespace_inode;
3032 	bool truncated = false;
3033 	bool clear_reserved_extent = true;
3034 	unsigned int clear_bits = EXTENT_DEFRAG;
3035 
3036 	start = ordered_extent->file_offset;
3037 	end = start + ordered_extent->num_bytes - 1;
3038 
3039 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3040 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3041 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3042 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3043 		clear_bits |= EXTENT_DELALLOC_NEW;
3044 
3045 	freespace_inode = btrfs_is_free_space_inode(inode);
3046 	if (!freespace_inode)
3047 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3048 
3049 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3050 		ret = -EIO;
3051 		goto out;
3052 	}
3053 
3054 	if (btrfs_is_zoned(fs_info))
3055 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3056 					ordered_extent->disk_num_bytes);
3057 
3058 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3059 		truncated = true;
3060 		logical_len = ordered_extent->truncated_len;
3061 		/* Truncated the entire extent, don't bother adding */
3062 		if (!logical_len)
3063 			goto out;
3064 	}
3065 
3066 	/*
3067 	 * If it's a COW write we need to lock the extent range as we will be
3068 	 * inserting/replacing file extent items and unpinning an extent map.
3069 	 * This must be taken before joining a transaction, as it's a higher
3070 	 * level lock (like the inode's VFS lock), otherwise we can run into an
3071 	 * ABBA deadlock with other tasks (transactions work like a lock,
3072 	 * depending on their current state).
3073 	 */
3074 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3075 		clear_bits |= EXTENT_LOCKED;
3076 		lock_extent(io_tree, start, end, &cached_state);
3077 	}
3078 
3079 	if (freespace_inode)
3080 		trans = btrfs_join_transaction_spacecache(root);
3081 	else
3082 		trans = btrfs_join_transaction(root);
3083 	if (IS_ERR(trans)) {
3084 		ret = PTR_ERR(trans);
3085 		trans = NULL;
3086 		goto out;
3087 	}
3088 
3089 	trans->block_rsv = &inode->block_rsv;
3090 
3091 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3092 	if (ret) {
3093 		btrfs_abort_transaction(trans, ret);
3094 		goto out;
3095 	}
3096 
3097 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3098 		/* Logic error */
3099 		ASSERT(list_empty(&ordered_extent->list));
3100 		if (!list_empty(&ordered_extent->list)) {
3101 			ret = -EINVAL;
3102 			btrfs_abort_transaction(trans, ret);
3103 			goto out;
3104 		}
3105 
3106 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3107 		ret = btrfs_update_inode_fallback(trans, inode);
3108 		if (ret) {
3109 			/* -ENOMEM or corruption */
3110 			btrfs_abort_transaction(trans, ret);
3111 		}
3112 		goto out;
3113 	}
3114 
3115 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3116 		compress_type = ordered_extent->compress_type;
3117 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3118 		BUG_ON(compress_type);
3119 		ret = btrfs_mark_extent_written(trans, inode,
3120 						ordered_extent->file_offset,
3121 						ordered_extent->file_offset +
3122 						logical_len);
3123 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3124 						  ordered_extent->disk_num_bytes);
3125 	} else {
3126 		BUG_ON(root == fs_info->tree_root);
3127 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3128 		if (!ret) {
3129 			clear_reserved_extent = false;
3130 			btrfs_release_delalloc_bytes(fs_info,
3131 						ordered_extent->disk_bytenr,
3132 						ordered_extent->disk_num_bytes);
3133 		}
3134 	}
3135 	if (ret < 0) {
3136 		btrfs_abort_transaction(trans, ret);
3137 		goto out;
3138 	}
3139 
3140 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3141 				 ordered_extent->num_bytes, trans->transid);
3142 	if (ret < 0) {
3143 		btrfs_abort_transaction(trans, ret);
3144 		goto out;
3145 	}
3146 
3147 	ret = add_pending_csums(trans, &ordered_extent->list);
3148 	if (ret) {
3149 		btrfs_abort_transaction(trans, ret);
3150 		goto out;
3151 	}
3152 
3153 	/*
3154 	 * If this is a new delalloc range, clear its new delalloc flag to
3155 	 * update the inode's number of bytes. This needs to be done first
3156 	 * before updating the inode item.
3157 	 */
3158 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3159 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3160 		clear_extent_bit(&inode->io_tree, start, end,
3161 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3162 				 &cached_state);
3163 
3164 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3165 	ret = btrfs_update_inode_fallback(trans, inode);
3166 	if (ret) { /* -ENOMEM or corruption */
3167 		btrfs_abort_transaction(trans, ret);
3168 		goto out;
3169 	}
3170 out:
3171 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3172 			 &cached_state);
3173 
3174 	if (trans)
3175 		btrfs_end_transaction(trans);
3176 
3177 	if (ret || truncated) {
3178 		u64 unwritten_start = start;
3179 
3180 		/*
3181 		 * If we failed to finish this ordered extent for any reason we
3182 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3183 		 * extent, and mark the inode with the error if it wasn't
3184 		 * already set.  Any error during writeback would have already
3185 		 * set the mapping error, so we need to set it if we're the ones
3186 		 * marking this ordered extent as failed.
3187 		 */
3188 		if (ret)
3189 			btrfs_mark_ordered_extent_error(ordered_extent);
3190 
3191 		if (truncated)
3192 			unwritten_start += logical_len;
3193 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3194 
3195 		/*
3196 		 * Drop extent maps for the part of the extent we didn't write.
3197 		 *
3198 		 * We have an exception here for the free_space_inode, this is
3199 		 * because when we do btrfs_get_extent() on the free space inode
3200 		 * we will search the commit root.  If this is a new block group
3201 		 * we won't find anything, and we will trip over the assert in
3202 		 * writepage where we do ASSERT(em->block_start !=
3203 		 * EXTENT_MAP_HOLE).
3204 		 *
3205 		 * Theoretically we could also skip this for any NOCOW extent as
3206 		 * we don't mess with the extent map tree in the NOCOW case, but
3207 		 * for now simply skip this if we are the free space inode.
3208 		 */
3209 		if (!btrfs_is_free_space_inode(inode))
3210 			btrfs_drop_extent_map_range(inode, unwritten_start,
3211 						    end, false);
3212 
3213 		/*
3214 		 * If the ordered extent had an IOERR or something else went
3215 		 * wrong we need to return the space for this ordered extent
3216 		 * back to the allocator.  We only free the extent in the
3217 		 * truncated case if we didn't write out the extent at all.
3218 		 *
3219 		 * If we made it past insert_reserved_file_extent before we
3220 		 * errored out then we don't need to do this as the accounting
3221 		 * has already been done.
3222 		 */
3223 		if ((ret || !logical_len) &&
3224 		    clear_reserved_extent &&
3225 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3226 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3227 			/*
3228 			 * Discard the range before returning it back to the
3229 			 * free space pool
3230 			 */
3231 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3232 				btrfs_discard_extent(fs_info,
3233 						ordered_extent->disk_bytenr,
3234 						ordered_extent->disk_num_bytes,
3235 						NULL);
3236 			btrfs_free_reserved_extent(fs_info,
3237 					ordered_extent->disk_bytenr,
3238 					ordered_extent->disk_num_bytes, 1);
3239 			/*
3240 			 * Actually free the qgroup rsv which was released when
3241 			 * the ordered extent was created.
3242 			 */
3243 			btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3244 						  ordered_extent->qgroup_rsv,
3245 						  BTRFS_QGROUP_RSV_DATA);
3246 		}
3247 	}
3248 
3249 	/*
3250 	 * This needs to be done to make sure anybody waiting knows we are done
3251 	 * updating everything for this ordered extent.
3252 	 */
3253 	btrfs_remove_ordered_extent(inode, ordered_extent);
3254 
3255 	/* once for us */
3256 	btrfs_put_ordered_extent(ordered_extent);
3257 	/* once for the tree */
3258 	btrfs_put_ordered_extent(ordered_extent);
3259 
3260 	return ret;
3261 }
3262 
3263 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3264 {
3265 	if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3266 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3267 	    list_empty(&ordered->bioc_list))
3268 		btrfs_finish_ordered_zoned(ordered);
3269 	return btrfs_finish_one_ordered(ordered);
3270 }
3271 
3272 /*
3273  * Verify the checksum for a single sector without any extra action that depend
3274  * on the type of I/O.
3275  */
3276 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3277 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3278 {
3279 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3280 	char *kaddr;
3281 
3282 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3283 
3284 	shash->tfm = fs_info->csum_shash;
3285 
3286 	kaddr = kmap_local_page(page) + pgoff;
3287 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3288 	kunmap_local(kaddr);
3289 
3290 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3291 		return -EIO;
3292 	return 0;
3293 }
3294 
3295 /*
3296  * Verify the checksum of a single data sector.
3297  *
3298  * @bbio:	btrfs_io_bio which contains the csum
3299  * @dev:	device the sector is on
3300  * @bio_offset:	offset to the beginning of the bio (in bytes)
3301  * @bv:		bio_vec to check
3302  *
3303  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3304  * detected, report the error and fill the corrupted range with zero.
3305  *
3306  * Return %true if the sector is ok or had no checksum to start with, else %false.
3307  */
3308 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3309 			u32 bio_offset, struct bio_vec *bv)
3310 {
3311 	struct btrfs_inode *inode = bbio->inode;
3312 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313 	u64 file_offset = bbio->file_offset + bio_offset;
3314 	u64 end = file_offset + bv->bv_len - 1;
3315 	u8 *csum_expected;
3316 	u8 csum[BTRFS_CSUM_SIZE];
3317 
3318 	ASSERT(bv->bv_len == fs_info->sectorsize);
3319 
3320 	if (!bbio->csum)
3321 		return true;
3322 
3323 	if (btrfs_is_data_reloc_root(inode->root) &&
3324 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3325 			   NULL)) {
3326 		/* Skip the range without csum for data reloc inode */
3327 		clear_extent_bits(&inode->io_tree, file_offset, end,
3328 				  EXTENT_NODATASUM);
3329 		return true;
3330 	}
3331 
3332 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3333 				fs_info->csum_size;
3334 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3335 				    csum_expected))
3336 		goto zeroit;
3337 	return true;
3338 
3339 zeroit:
3340 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3341 				    bbio->mirror_num);
3342 	if (dev)
3343 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3344 	memzero_bvec(bv);
3345 	return false;
3346 }
3347 
3348 /*
3349  * Perform a delayed iput on @inode.
3350  *
3351  * @inode: The inode we want to perform iput on
3352  *
3353  * This function uses the generic vfs_inode::i_count to track whether we should
3354  * just decrement it (in case it's > 1) or if this is the last iput then link
3355  * the inode to the delayed iput machinery. Delayed iputs are processed at
3356  * transaction commit time/superblock commit/cleaner kthread.
3357  */
3358 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3359 {
3360 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3361 	unsigned long flags;
3362 
3363 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3364 		return;
3365 
3366 	atomic_inc(&fs_info->nr_delayed_iputs);
3367 	/*
3368 	 * Need to be irq safe here because we can be called from either an irq
3369 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3370 	 * context.
3371 	 */
3372 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3373 	ASSERT(list_empty(&inode->delayed_iput));
3374 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3375 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3376 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3377 		wake_up_process(fs_info->cleaner_kthread);
3378 }
3379 
3380 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3381 				    struct btrfs_inode *inode)
3382 {
3383 	list_del_init(&inode->delayed_iput);
3384 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3385 	iput(&inode->vfs_inode);
3386 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3387 		wake_up(&fs_info->delayed_iputs_wait);
3388 	spin_lock_irq(&fs_info->delayed_iput_lock);
3389 }
3390 
3391 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3392 				   struct btrfs_inode *inode)
3393 {
3394 	if (!list_empty(&inode->delayed_iput)) {
3395 		spin_lock_irq(&fs_info->delayed_iput_lock);
3396 		if (!list_empty(&inode->delayed_iput))
3397 			run_delayed_iput_locked(fs_info, inode);
3398 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3399 	}
3400 }
3401 
3402 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3403 {
3404 	/*
3405 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3406 	 * calls btrfs_add_delayed_iput() and that needs to lock
3407 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3408 	 * prevent a deadlock.
3409 	 */
3410 	spin_lock_irq(&fs_info->delayed_iput_lock);
3411 	while (!list_empty(&fs_info->delayed_iputs)) {
3412 		struct btrfs_inode *inode;
3413 
3414 		inode = list_first_entry(&fs_info->delayed_iputs,
3415 				struct btrfs_inode, delayed_iput);
3416 		run_delayed_iput_locked(fs_info, inode);
3417 		if (need_resched()) {
3418 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3419 			cond_resched();
3420 			spin_lock_irq(&fs_info->delayed_iput_lock);
3421 		}
3422 	}
3423 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3424 }
3425 
3426 /*
3427  * Wait for flushing all delayed iputs
3428  *
3429  * @fs_info:  the filesystem
3430  *
3431  * This will wait on any delayed iputs that are currently running with KILLABLE
3432  * set.  Once they are all done running we will return, unless we are killed in
3433  * which case we return EINTR. This helps in user operations like fallocate etc
3434  * that might get blocked on the iputs.
3435  *
3436  * Return EINTR if we were killed, 0 if nothing's pending
3437  */
3438 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3439 {
3440 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3441 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3442 	if (ret)
3443 		return -EINTR;
3444 	return 0;
3445 }
3446 
3447 /*
3448  * This creates an orphan entry for the given inode in case something goes wrong
3449  * in the middle of an unlink.
3450  */
3451 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3452 		     struct btrfs_inode *inode)
3453 {
3454 	int ret;
3455 
3456 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3457 	if (ret && ret != -EEXIST) {
3458 		btrfs_abort_transaction(trans, ret);
3459 		return ret;
3460 	}
3461 
3462 	return 0;
3463 }
3464 
3465 /*
3466  * We have done the delete so we can go ahead and remove the orphan item for
3467  * this particular inode.
3468  */
3469 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3470 			    struct btrfs_inode *inode)
3471 {
3472 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3473 }
3474 
3475 /*
3476  * this cleans up any orphans that may be left on the list from the last use
3477  * of this root.
3478  */
3479 int btrfs_orphan_cleanup(struct btrfs_root *root)
3480 {
3481 	struct btrfs_fs_info *fs_info = root->fs_info;
3482 	struct btrfs_path *path;
3483 	struct extent_buffer *leaf;
3484 	struct btrfs_key key, found_key;
3485 	struct btrfs_trans_handle *trans;
3486 	struct inode *inode;
3487 	u64 last_objectid = 0;
3488 	int ret = 0, nr_unlink = 0;
3489 
3490 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3491 		return 0;
3492 
3493 	path = btrfs_alloc_path();
3494 	if (!path) {
3495 		ret = -ENOMEM;
3496 		goto out;
3497 	}
3498 	path->reada = READA_BACK;
3499 
3500 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3501 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3502 	key.offset = (u64)-1;
3503 
3504 	while (1) {
3505 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3506 		if (ret < 0)
3507 			goto out;
3508 
3509 		/*
3510 		 * if ret == 0 means we found what we were searching for, which
3511 		 * is weird, but possible, so only screw with path if we didn't
3512 		 * find the key and see if we have stuff that matches
3513 		 */
3514 		if (ret > 0) {
3515 			ret = 0;
3516 			if (path->slots[0] == 0)
3517 				break;
3518 			path->slots[0]--;
3519 		}
3520 
3521 		/* pull out the item */
3522 		leaf = path->nodes[0];
3523 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3524 
3525 		/* make sure the item matches what we want */
3526 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3527 			break;
3528 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3529 			break;
3530 
3531 		/* release the path since we're done with it */
3532 		btrfs_release_path(path);
3533 
3534 		/*
3535 		 * this is where we are basically btrfs_lookup, without the
3536 		 * crossing root thing.  we store the inode number in the
3537 		 * offset of the orphan item.
3538 		 */
3539 
3540 		if (found_key.offset == last_objectid) {
3541 			/*
3542 			 * We found the same inode as before. This means we were
3543 			 * not able to remove its items via eviction triggered
3544 			 * by an iput(). A transaction abort may have happened,
3545 			 * due to -ENOSPC for example, so try to grab the error
3546 			 * that lead to a transaction abort, if any.
3547 			 */
3548 			btrfs_err(fs_info,
3549 				  "Error removing orphan entry, stopping orphan cleanup");
3550 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3551 			goto out;
3552 		}
3553 
3554 		last_objectid = found_key.offset;
3555 
3556 		found_key.objectid = found_key.offset;
3557 		found_key.type = BTRFS_INODE_ITEM_KEY;
3558 		found_key.offset = 0;
3559 		inode = btrfs_iget(last_objectid, root);
3560 		if (IS_ERR(inode)) {
3561 			ret = PTR_ERR(inode);
3562 			inode = NULL;
3563 			if (ret != -ENOENT)
3564 				goto out;
3565 		}
3566 
3567 		if (!inode && root == fs_info->tree_root) {
3568 			struct btrfs_root *dead_root;
3569 			int is_dead_root = 0;
3570 
3571 			/*
3572 			 * This is an orphan in the tree root. Currently these
3573 			 * could come from 2 sources:
3574 			 *  a) a root (snapshot/subvolume) deletion in progress
3575 			 *  b) a free space cache inode
3576 			 * We need to distinguish those two, as the orphan item
3577 			 * for a root must not get deleted before the deletion
3578 			 * of the snapshot/subvolume's tree completes.
3579 			 *
3580 			 * btrfs_find_orphan_roots() ran before us, which has
3581 			 * found all deleted roots and loaded them into
3582 			 * fs_info->fs_roots_radix. So here we can find if an
3583 			 * orphan item corresponds to a deleted root by looking
3584 			 * up the root from that radix tree.
3585 			 */
3586 
3587 			spin_lock(&fs_info->fs_roots_radix_lock);
3588 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3589 							 (unsigned long)found_key.objectid);
3590 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3591 				is_dead_root = 1;
3592 			spin_unlock(&fs_info->fs_roots_radix_lock);
3593 
3594 			if (is_dead_root) {
3595 				/* prevent this orphan from being found again */
3596 				key.offset = found_key.objectid - 1;
3597 				continue;
3598 			}
3599 
3600 		}
3601 
3602 		/*
3603 		 * If we have an inode with links, there are a couple of
3604 		 * possibilities:
3605 		 *
3606 		 * 1. We were halfway through creating fsverity metadata for the
3607 		 * file. In that case, the orphan item represents incomplete
3608 		 * fsverity metadata which must be cleaned up with
3609 		 * btrfs_drop_verity_items and deleting the orphan item.
3610 
3611 		 * 2. Old kernels (before v3.12) used to create an
3612 		 * orphan item for truncate indicating that there were possibly
3613 		 * extent items past i_size that needed to be deleted. In v3.12,
3614 		 * truncate was changed to update i_size in sync with the extent
3615 		 * items, but the (useless) orphan item was still created. Since
3616 		 * v4.18, we don't create the orphan item for truncate at all.
3617 		 *
3618 		 * So, this item could mean that we need to do a truncate, but
3619 		 * only if this filesystem was last used on a pre-v3.12 kernel
3620 		 * and was not cleanly unmounted. The odds of that are quite
3621 		 * slim, and it's a pain to do the truncate now, so just delete
3622 		 * the orphan item.
3623 		 *
3624 		 * It's also possible that this orphan item was supposed to be
3625 		 * deleted but wasn't. The inode number may have been reused,
3626 		 * but either way, we can delete the orphan item.
3627 		 */
3628 		if (!inode || inode->i_nlink) {
3629 			if (inode) {
3630 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3631 				iput(inode);
3632 				inode = NULL;
3633 				if (ret)
3634 					goto out;
3635 			}
3636 			trans = btrfs_start_transaction(root, 1);
3637 			if (IS_ERR(trans)) {
3638 				ret = PTR_ERR(trans);
3639 				goto out;
3640 			}
3641 			btrfs_debug(fs_info, "auto deleting %Lu",
3642 				    found_key.objectid);
3643 			ret = btrfs_del_orphan_item(trans, root,
3644 						    found_key.objectid);
3645 			btrfs_end_transaction(trans);
3646 			if (ret)
3647 				goto out;
3648 			continue;
3649 		}
3650 
3651 		nr_unlink++;
3652 
3653 		/* this will do delete_inode and everything for us */
3654 		iput(inode);
3655 	}
3656 	/* release the path since we're done with it */
3657 	btrfs_release_path(path);
3658 
3659 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3660 		trans = btrfs_join_transaction(root);
3661 		if (!IS_ERR(trans))
3662 			btrfs_end_transaction(trans);
3663 	}
3664 
3665 	if (nr_unlink)
3666 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3667 
3668 out:
3669 	if (ret)
3670 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3671 	btrfs_free_path(path);
3672 	return ret;
3673 }
3674 
3675 /*
3676  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3677  * don't find any xattrs, we know there can't be any acls.
3678  *
3679  * slot is the slot the inode is in, objectid is the objectid of the inode
3680  */
3681 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3682 					  int slot, u64 objectid,
3683 					  int *first_xattr_slot)
3684 {
3685 	u32 nritems = btrfs_header_nritems(leaf);
3686 	struct btrfs_key found_key;
3687 	static u64 xattr_access = 0;
3688 	static u64 xattr_default = 0;
3689 	int scanned = 0;
3690 
3691 	if (!xattr_access) {
3692 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3693 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3694 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3695 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3696 	}
3697 
3698 	slot++;
3699 	*first_xattr_slot = -1;
3700 	while (slot < nritems) {
3701 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3702 
3703 		/* we found a different objectid, there must not be acls */
3704 		if (found_key.objectid != objectid)
3705 			return 0;
3706 
3707 		/* we found an xattr, assume we've got an acl */
3708 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3709 			if (*first_xattr_slot == -1)
3710 				*first_xattr_slot = slot;
3711 			if (found_key.offset == xattr_access ||
3712 			    found_key.offset == xattr_default)
3713 				return 1;
3714 		}
3715 
3716 		/*
3717 		 * we found a key greater than an xattr key, there can't
3718 		 * be any acls later on
3719 		 */
3720 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3721 			return 0;
3722 
3723 		slot++;
3724 		scanned++;
3725 
3726 		/*
3727 		 * it goes inode, inode backrefs, xattrs, extents,
3728 		 * so if there are a ton of hard links to an inode there can
3729 		 * be a lot of backrefs.  Don't waste time searching too hard,
3730 		 * this is just an optimization
3731 		 */
3732 		if (scanned >= 8)
3733 			break;
3734 	}
3735 	/* we hit the end of the leaf before we found an xattr or
3736 	 * something larger than an xattr.  We have to assume the inode
3737 	 * has acls
3738 	 */
3739 	if (*first_xattr_slot == -1)
3740 		*first_xattr_slot = slot;
3741 	return 1;
3742 }
3743 
3744 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3745 {
3746 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3747 
3748 	if (WARN_ON_ONCE(inode->file_extent_tree))
3749 		return 0;
3750 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
3751 		return 0;
3752 	if (!S_ISREG(inode->vfs_inode.i_mode))
3753 		return 0;
3754 	if (btrfs_is_free_space_inode(inode))
3755 		return 0;
3756 
3757 	inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3758 	if (!inode->file_extent_tree)
3759 		return -ENOMEM;
3760 
3761 	extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3762 	/* Lockdep class is set only for the file extent tree. */
3763 	lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3764 
3765 	return 0;
3766 }
3767 
3768 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
3769 {
3770 	struct btrfs_root *root = inode->root;
3771 	struct btrfs_inode *existing;
3772 	const u64 ino = btrfs_ino(inode);
3773 	int ret;
3774 
3775 	if (inode_unhashed(&inode->vfs_inode))
3776 		return 0;
3777 
3778 	if (prealloc) {
3779 		ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
3780 		if (ret)
3781 			return ret;
3782 	}
3783 
3784 	existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
3785 
3786 	if (xa_is_err(existing)) {
3787 		ret = xa_err(existing);
3788 		ASSERT(ret != -EINVAL);
3789 		ASSERT(ret != -ENOMEM);
3790 		return ret;
3791 	} else if (existing) {
3792 		WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
3793 	}
3794 
3795 	return 0;
3796 }
3797 
3798 /*
3799  * Read a locked inode from the btree into the in-memory inode and add it to
3800  * its root list/tree.
3801  *
3802  * On failure clean up the inode.
3803  */
3804 static int btrfs_read_locked_inode(struct inode *inode, struct btrfs_path *path)
3805 {
3806 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3807 	struct extent_buffer *leaf;
3808 	struct btrfs_inode_item *inode_item;
3809 	struct btrfs_root *root = BTRFS_I(inode)->root;
3810 	struct btrfs_key location;
3811 	unsigned long ptr;
3812 	int maybe_acls;
3813 	u32 rdev;
3814 	int ret;
3815 	bool filled = false;
3816 	int first_xattr_slot;
3817 
3818 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3819 	if (ret)
3820 		goto out;
3821 
3822 	ret = btrfs_fill_inode(inode, &rdev);
3823 	if (!ret)
3824 		filled = true;
3825 
3826 	ASSERT(path);
3827 
3828 	btrfs_get_inode_key(BTRFS_I(inode), &location);
3829 
3830 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3831 	if (ret) {
3832 		/*
3833 		 * ret > 0 can come from btrfs_search_slot called by
3834 		 * btrfs_lookup_inode(), this means the inode was not found.
3835 		 */
3836 		if (ret > 0)
3837 			ret = -ENOENT;
3838 		goto out;
3839 	}
3840 
3841 	leaf = path->nodes[0];
3842 
3843 	if (filled)
3844 		goto cache_index;
3845 
3846 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3847 				    struct btrfs_inode_item);
3848 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3849 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3850 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3851 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3852 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3853 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3854 			round_up(i_size_read(inode), fs_info->sectorsize));
3855 
3856 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3857 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3858 
3859 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3860 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3861 
3862 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3863 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3864 
3865 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3866 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3867 
3868 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3869 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3870 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3871 
3872 	inode_set_iversion_queried(inode,
3873 				   btrfs_inode_sequence(leaf, inode_item));
3874 	inode->i_generation = BTRFS_I(inode)->generation;
3875 	inode->i_rdev = 0;
3876 	rdev = btrfs_inode_rdev(leaf, inode_item);
3877 
3878 	if (S_ISDIR(inode->i_mode))
3879 		BTRFS_I(inode)->index_cnt = (u64)-1;
3880 
3881 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3882 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3883 
3884 cache_index:
3885 	/*
3886 	 * If we were modified in the current generation and evicted from memory
3887 	 * and then re-read we need to do a full sync since we don't have any
3888 	 * idea about which extents were modified before we were evicted from
3889 	 * cache.
3890 	 *
3891 	 * This is required for both inode re-read from disk and delayed inode
3892 	 * in the delayed_nodes xarray.
3893 	 */
3894 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3895 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3896 			&BTRFS_I(inode)->runtime_flags);
3897 
3898 	/*
3899 	 * We don't persist the id of the transaction where an unlink operation
3900 	 * against the inode was last made. So here we assume the inode might
3901 	 * have been evicted, and therefore the exact value of last_unlink_trans
3902 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3903 	 * between the inode and its parent if the inode is fsync'ed and the log
3904 	 * replayed. For example, in the scenario:
3905 	 *
3906 	 * touch mydir/foo
3907 	 * ln mydir/foo mydir/bar
3908 	 * sync
3909 	 * unlink mydir/bar
3910 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3911 	 * xfs_io -c fsync mydir/foo
3912 	 * <power failure>
3913 	 * mount fs, triggers fsync log replay
3914 	 *
3915 	 * We must make sure that when we fsync our inode foo we also log its
3916 	 * parent inode, otherwise after log replay the parent still has the
3917 	 * dentry with the "bar" name but our inode foo has a link count of 1
3918 	 * and doesn't have an inode ref with the name "bar" anymore.
3919 	 *
3920 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3921 	 * but it guarantees correctness at the expense of occasional full
3922 	 * transaction commits on fsync if our inode is a directory, or if our
3923 	 * inode is not a directory, logging its parent unnecessarily.
3924 	 */
3925 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3926 
3927 	/*
3928 	 * Same logic as for last_unlink_trans. We don't persist the generation
3929 	 * of the last transaction where this inode was used for a reflink
3930 	 * operation, so after eviction and reloading the inode we must be
3931 	 * pessimistic and assume the last transaction that modified the inode.
3932 	 */
3933 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3934 
3935 	path->slots[0]++;
3936 	if (inode->i_nlink != 1 ||
3937 	    path->slots[0] >= btrfs_header_nritems(leaf))
3938 		goto cache_acl;
3939 
3940 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3941 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3942 		goto cache_acl;
3943 
3944 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3945 	if (location.type == BTRFS_INODE_REF_KEY) {
3946 		struct btrfs_inode_ref *ref;
3947 
3948 		ref = (struct btrfs_inode_ref *)ptr;
3949 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3950 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3951 		struct btrfs_inode_extref *extref;
3952 
3953 		extref = (struct btrfs_inode_extref *)ptr;
3954 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3955 								     extref);
3956 	}
3957 cache_acl:
3958 	/*
3959 	 * try to precache a NULL acl entry for files that don't have
3960 	 * any xattrs or acls
3961 	 */
3962 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3963 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3964 	if (first_xattr_slot != -1) {
3965 		path->slots[0] = first_xattr_slot;
3966 		ret = btrfs_load_inode_props(inode, path);
3967 		if (ret)
3968 			btrfs_err(fs_info,
3969 				  "error loading props for ino %llu (root %llu): %d",
3970 				  btrfs_ino(BTRFS_I(inode)),
3971 				  btrfs_root_id(root), ret);
3972 	}
3973 
3974 	if (!maybe_acls)
3975 		cache_no_acl(inode);
3976 
3977 	switch (inode->i_mode & S_IFMT) {
3978 	case S_IFREG:
3979 		inode->i_mapping->a_ops = &btrfs_aops;
3980 		inode->i_fop = &btrfs_file_operations;
3981 		inode->i_op = &btrfs_file_inode_operations;
3982 		break;
3983 	case S_IFDIR:
3984 		inode->i_fop = &btrfs_dir_file_operations;
3985 		inode->i_op = &btrfs_dir_inode_operations;
3986 		break;
3987 	case S_IFLNK:
3988 		inode->i_op = &btrfs_symlink_inode_operations;
3989 		inode_nohighmem(inode);
3990 		inode->i_mapping->a_ops = &btrfs_aops;
3991 		break;
3992 	default:
3993 		inode->i_op = &btrfs_special_inode_operations;
3994 		init_special_inode(inode, inode->i_mode, rdev);
3995 		break;
3996 	}
3997 
3998 	btrfs_sync_inode_flags_to_i_flags(inode);
3999 
4000 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
4001 	if (ret)
4002 		goto out;
4003 
4004 	return 0;
4005 out:
4006 	iget_failed(inode);
4007 	return ret;
4008 }
4009 
4010 /*
4011  * given a leaf and an inode, copy the inode fields into the leaf
4012  */
4013 static void fill_inode_item(struct btrfs_trans_handle *trans,
4014 			    struct extent_buffer *leaf,
4015 			    struct btrfs_inode_item *item,
4016 			    struct inode *inode)
4017 {
4018 	struct btrfs_map_token token;
4019 	u64 flags;
4020 
4021 	btrfs_init_map_token(&token, leaf);
4022 
4023 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4024 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4025 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4026 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4027 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4028 
4029 	btrfs_set_token_timespec_sec(&token, &item->atime,
4030 				     inode_get_atime_sec(inode));
4031 	btrfs_set_token_timespec_nsec(&token, &item->atime,
4032 				      inode_get_atime_nsec(inode));
4033 
4034 	btrfs_set_token_timespec_sec(&token, &item->mtime,
4035 				     inode_get_mtime_sec(inode));
4036 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
4037 				      inode_get_mtime_nsec(inode));
4038 
4039 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4040 				     inode_get_ctime_sec(inode));
4041 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4042 				      inode_get_ctime_nsec(inode));
4043 
4044 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4045 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4046 
4047 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4048 	btrfs_set_token_inode_generation(&token, item,
4049 					 BTRFS_I(inode)->generation);
4050 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4051 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4052 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4053 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4054 					  BTRFS_I(inode)->ro_flags);
4055 	btrfs_set_token_inode_flags(&token, item, flags);
4056 	btrfs_set_token_inode_block_group(&token, item, 0);
4057 }
4058 
4059 /*
4060  * copy everything in the in-memory inode into the btree.
4061  */
4062 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4063 					    struct btrfs_inode *inode)
4064 {
4065 	struct btrfs_inode_item *inode_item;
4066 	struct btrfs_path *path;
4067 	struct extent_buffer *leaf;
4068 	struct btrfs_key key;
4069 	int ret;
4070 
4071 	path = btrfs_alloc_path();
4072 	if (!path)
4073 		return -ENOMEM;
4074 
4075 	btrfs_get_inode_key(inode, &key);
4076 	ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4077 	if (ret) {
4078 		if (ret > 0)
4079 			ret = -ENOENT;
4080 		goto failed;
4081 	}
4082 
4083 	leaf = path->nodes[0];
4084 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4085 				    struct btrfs_inode_item);
4086 
4087 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4088 	btrfs_mark_buffer_dirty(trans, leaf);
4089 	btrfs_set_inode_last_trans(trans, inode);
4090 	ret = 0;
4091 failed:
4092 	btrfs_free_path(path);
4093 	return ret;
4094 }
4095 
4096 /*
4097  * copy everything in the in-memory inode into the btree.
4098  */
4099 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4100 		       struct btrfs_inode *inode)
4101 {
4102 	struct btrfs_root *root = inode->root;
4103 	struct btrfs_fs_info *fs_info = root->fs_info;
4104 	int ret;
4105 
4106 	/*
4107 	 * If the inode is a free space inode, we can deadlock during commit
4108 	 * if we put it into the delayed code.
4109 	 *
4110 	 * The data relocation inode should also be directly updated
4111 	 * without delay
4112 	 */
4113 	if (!btrfs_is_free_space_inode(inode)
4114 	    && !btrfs_is_data_reloc_root(root)
4115 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4116 		btrfs_update_root_times(trans, root);
4117 
4118 		ret = btrfs_delayed_update_inode(trans, inode);
4119 		if (!ret)
4120 			btrfs_set_inode_last_trans(trans, inode);
4121 		return ret;
4122 	}
4123 
4124 	return btrfs_update_inode_item(trans, inode);
4125 }
4126 
4127 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4128 				struct btrfs_inode *inode)
4129 {
4130 	int ret;
4131 
4132 	ret = btrfs_update_inode(trans, inode);
4133 	if (ret == -ENOSPC)
4134 		return btrfs_update_inode_item(trans, inode);
4135 	return ret;
4136 }
4137 
4138 /*
4139  * unlink helper that gets used here in inode.c and in the tree logging
4140  * recovery code.  It remove a link in a directory with a given name, and
4141  * also drops the back refs in the inode to the directory
4142  */
4143 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4144 				struct btrfs_inode *dir,
4145 				struct btrfs_inode *inode,
4146 				const struct fscrypt_str *name,
4147 				struct btrfs_rename_ctx *rename_ctx)
4148 {
4149 	struct btrfs_root *root = dir->root;
4150 	struct btrfs_fs_info *fs_info = root->fs_info;
4151 	struct btrfs_path *path;
4152 	int ret = 0;
4153 	struct btrfs_dir_item *di;
4154 	u64 index;
4155 	u64 ino = btrfs_ino(inode);
4156 	u64 dir_ino = btrfs_ino(dir);
4157 
4158 	path = btrfs_alloc_path();
4159 	if (!path) {
4160 		ret = -ENOMEM;
4161 		goto out;
4162 	}
4163 
4164 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4165 	if (IS_ERR_OR_NULL(di)) {
4166 		ret = di ? PTR_ERR(di) : -ENOENT;
4167 		goto err;
4168 	}
4169 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4170 	if (ret)
4171 		goto err;
4172 	btrfs_release_path(path);
4173 
4174 	/*
4175 	 * If we don't have dir index, we have to get it by looking up
4176 	 * the inode ref, since we get the inode ref, remove it directly,
4177 	 * it is unnecessary to do delayed deletion.
4178 	 *
4179 	 * But if we have dir index, needn't search inode ref to get it.
4180 	 * Since the inode ref is close to the inode item, it is better
4181 	 * that we delay to delete it, and just do this deletion when
4182 	 * we update the inode item.
4183 	 */
4184 	if (inode->dir_index) {
4185 		ret = btrfs_delayed_delete_inode_ref(inode);
4186 		if (!ret) {
4187 			index = inode->dir_index;
4188 			goto skip_backref;
4189 		}
4190 	}
4191 
4192 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4193 	if (ret) {
4194 		btrfs_info(fs_info,
4195 			"failed to delete reference to %.*s, inode %llu parent %llu",
4196 			name->len, name->name, ino, dir_ino);
4197 		btrfs_abort_transaction(trans, ret);
4198 		goto err;
4199 	}
4200 skip_backref:
4201 	if (rename_ctx)
4202 		rename_ctx->index = index;
4203 
4204 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4205 	if (ret) {
4206 		btrfs_abort_transaction(trans, ret);
4207 		goto err;
4208 	}
4209 
4210 	/*
4211 	 * If we are in a rename context, we don't need to update anything in the
4212 	 * log. That will be done later during the rename by btrfs_log_new_name().
4213 	 * Besides that, doing it here would only cause extra unnecessary btree
4214 	 * operations on the log tree, increasing latency for applications.
4215 	 */
4216 	if (!rename_ctx) {
4217 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4218 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4219 	}
4220 
4221 	/*
4222 	 * If we have a pending delayed iput we could end up with the final iput
4223 	 * being run in btrfs-cleaner context.  If we have enough of these built
4224 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4225 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4226 	 * the inode we can run the delayed iput here without any issues as the
4227 	 * final iput won't be done until after we drop the ref we're currently
4228 	 * holding.
4229 	 */
4230 	btrfs_run_delayed_iput(fs_info, inode);
4231 err:
4232 	btrfs_free_path(path);
4233 	if (ret)
4234 		goto out;
4235 
4236 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4237 	inode_inc_iversion(&inode->vfs_inode);
4238 	inode_set_ctime_current(&inode->vfs_inode);
4239 	inode_inc_iversion(&dir->vfs_inode);
4240  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4241 	ret = btrfs_update_inode(trans, dir);
4242 out:
4243 	return ret;
4244 }
4245 
4246 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4247 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4248 		       const struct fscrypt_str *name)
4249 {
4250 	int ret;
4251 
4252 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4253 	if (!ret) {
4254 		drop_nlink(&inode->vfs_inode);
4255 		ret = btrfs_update_inode(trans, inode);
4256 	}
4257 	return ret;
4258 }
4259 
4260 /*
4261  * helper to start transaction for unlink and rmdir.
4262  *
4263  * unlink and rmdir are special in btrfs, they do not always free space, so
4264  * if we cannot make our reservations the normal way try and see if there is
4265  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4266  * allow the unlink to occur.
4267  */
4268 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4269 {
4270 	struct btrfs_root *root = dir->root;
4271 
4272 	return btrfs_start_transaction_fallback_global_rsv(root,
4273 						   BTRFS_UNLINK_METADATA_UNITS);
4274 }
4275 
4276 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4277 {
4278 	struct btrfs_trans_handle *trans;
4279 	struct inode *inode = d_inode(dentry);
4280 	int ret;
4281 	struct fscrypt_name fname;
4282 
4283 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4284 	if (ret)
4285 		return ret;
4286 
4287 	/* This needs to handle no-key deletions later on */
4288 
4289 	trans = __unlink_start_trans(BTRFS_I(dir));
4290 	if (IS_ERR(trans)) {
4291 		ret = PTR_ERR(trans);
4292 		goto fscrypt_free;
4293 	}
4294 
4295 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4296 				false);
4297 
4298 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4299 				 &fname.disk_name);
4300 	if (ret)
4301 		goto end_trans;
4302 
4303 	if (inode->i_nlink == 0) {
4304 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4305 		if (ret)
4306 			goto end_trans;
4307 	}
4308 
4309 end_trans:
4310 	btrfs_end_transaction(trans);
4311 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4312 fscrypt_free:
4313 	fscrypt_free_filename(&fname);
4314 	return ret;
4315 }
4316 
4317 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4318 			       struct btrfs_inode *dir, struct dentry *dentry)
4319 {
4320 	struct btrfs_root *root = dir->root;
4321 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4322 	struct btrfs_path *path;
4323 	struct extent_buffer *leaf;
4324 	struct btrfs_dir_item *di;
4325 	struct btrfs_key key;
4326 	u64 index;
4327 	int ret;
4328 	u64 objectid;
4329 	u64 dir_ino = btrfs_ino(dir);
4330 	struct fscrypt_name fname;
4331 
4332 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4333 	if (ret)
4334 		return ret;
4335 
4336 	/* This needs to handle no-key deletions later on */
4337 
4338 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4339 		objectid = btrfs_root_id(inode->root);
4340 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4341 		objectid = inode->ref_root_id;
4342 	} else {
4343 		WARN_ON(1);
4344 		fscrypt_free_filename(&fname);
4345 		return -EINVAL;
4346 	}
4347 
4348 	path = btrfs_alloc_path();
4349 	if (!path) {
4350 		ret = -ENOMEM;
4351 		goto out;
4352 	}
4353 
4354 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4355 				   &fname.disk_name, -1);
4356 	if (IS_ERR_OR_NULL(di)) {
4357 		ret = di ? PTR_ERR(di) : -ENOENT;
4358 		goto out;
4359 	}
4360 
4361 	leaf = path->nodes[0];
4362 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4363 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4364 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4365 	if (ret) {
4366 		btrfs_abort_transaction(trans, ret);
4367 		goto out;
4368 	}
4369 	btrfs_release_path(path);
4370 
4371 	/*
4372 	 * This is a placeholder inode for a subvolume we didn't have a
4373 	 * reference to at the time of the snapshot creation.  In the meantime
4374 	 * we could have renamed the real subvol link into our snapshot, so
4375 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4376 	 * Instead simply lookup the dir_index_item for this entry so we can
4377 	 * remove it.  Otherwise we know we have a ref to the root and we can
4378 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4379 	 */
4380 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4381 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4382 		if (IS_ERR(di)) {
4383 			ret = PTR_ERR(di);
4384 			btrfs_abort_transaction(trans, ret);
4385 			goto out;
4386 		}
4387 
4388 		leaf = path->nodes[0];
4389 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4390 		index = key.offset;
4391 		btrfs_release_path(path);
4392 	} else {
4393 		ret = btrfs_del_root_ref(trans, objectid,
4394 					 btrfs_root_id(root), dir_ino,
4395 					 &index, &fname.disk_name);
4396 		if (ret) {
4397 			btrfs_abort_transaction(trans, ret);
4398 			goto out;
4399 		}
4400 	}
4401 
4402 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4403 	if (ret) {
4404 		btrfs_abort_transaction(trans, ret);
4405 		goto out;
4406 	}
4407 
4408 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4409 	inode_inc_iversion(&dir->vfs_inode);
4410 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4411 	ret = btrfs_update_inode_fallback(trans, dir);
4412 	if (ret)
4413 		btrfs_abort_transaction(trans, ret);
4414 out:
4415 	btrfs_free_path(path);
4416 	fscrypt_free_filename(&fname);
4417 	return ret;
4418 }
4419 
4420 /*
4421  * Helper to check if the subvolume references other subvolumes or if it's
4422  * default.
4423  */
4424 static noinline int may_destroy_subvol(struct btrfs_root *root)
4425 {
4426 	struct btrfs_fs_info *fs_info = root->fs_info;
4427 	struct btrfs_path *path;
4428 	struct btrfs_dir_item *di;
4429 	struct btrfs_key key;
4430 	struct fscrypt_str name = FSTR_INIT("default", 7);
4431 	u64 dir_id;
4432 	int ret;
4433 
4434 	path = btrfs_alloc_path();
4435 	if (!path)
4436 		return -ENOMEM;
4437 
4438 	/* Make sure this root isn't set as the default subvol */
4439 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4440 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4441 				   dir_id, &name, 0);
4442 	if (di && !IS_ERR(di)) {
4443 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4444 		if (key.objectid == btrfs_root_id(root)) {
4445 			ret = -EPERM;
4446 			btrfs_err(fs_info,
4447 				  "deleting default subvolume %llu is not allowed",
4448 				  key.objectid);
4449 			goto out;
4450 		}
4451 		btrfs_release_path(path);
4452 	}
4453 
4454 	key.objectid = btrfs_root_id(root);
4455 	key.type = BTRFS_ROOT_REF_KEY;
4456 	key.offset = (u64)-1;
4457 
4458 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4459 	if (ret < 0)
4460 		goto out;
4461 	if (ret == 0) {
4462 		/*
4463 		 * Key with offset -1 found, there would have to exist a root
4464 		 * with such id, but this is out of valid range.
4465 		 */
4466 		ret = -EUCLEAN;
4467 		goto out;
4468 	}
4469 
4470 	ret = 0;
4471 	if (path->slots[0] > 0) {
4472 		path->slots[0]--;
4473 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4474 		if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4475 			ret = -ENOTEMPTY;
4476 	}
4477 out:
4478 	btrfs_free_path(path);
4479 	return ret;
4480 }
4481 
4482 /* Delete all dentries for inodes belonging to the root */
4483 static void btrfs_prune_dentries(struct btrfs_root *root)
4484 {
4485 	struct btrfs_fs_info *fs_info = root->fs_info;
4486 	struct btrfs_inode *inode;
4487 	u64 min_ino = 0;
4488 
4489 	if (!BTRFS_FS_ERROR(fs_info))
4490 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4491 
4492 	inode = btrfs_find_first_inode(root, min_ino);
4493 	while (inode) {
4494 		if (atomic_read(&inode->vfs_inode.i_count) > 1)
4495 			d_prune_aliases(&inode->vfs_inode);
4496 
4497 		min_ino = btrfs_ino(inode) + 1;
4498 		/*
4499 		 * btrfs_drop_inode() will have it removed from the inode
4500 		 * cache when its usage count hits zero.
4501 		 */
4502 		iput(&inode->vfs_inode);
4503 		cond_resched();
4504 		inode = btrfs_find_first_inode(root, min_ino);
4505 	}
4506 }
4507 
4508 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4509 {
4510 	struct btrfs_root *root = dir->root;
4511 	struct btrfs_fs_info *fs_info = root->fs_info;
4512 	struct inode *inode = d_inode(dentry);
4513 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4514 	struct btrfs_trans_handle *trans;
4515 	struct btrfs_block_rsv block_rsv;
4516 	u64 root_flags;
4517 	u64 qgroup_reserved = 0;
4518 	int ret;
4519 
4520 	down_write(&fs_info->subvol_sem);
4521 
4522 	/*
4523 	 * Don't allow to delete a subvolume with send in progress. This is
4524 	 * inside the inode lock so the error handling that has to drop the bit
4525 	 * again is not run concurrently.
4526 	 */
4527 	spin_lock(&dest->root_item_lock);
4528 	if (dest->send_in_progress) {
4529 		spin_unlock(&dest->root_item_lock);
4530 		btrfs_warn(fs_info,
4531 			   "attempt to delete subvolume %llu during send",
4532 			   btrfs_root_id(dest));
4533 		ret = -EPERM;
4534 		goto out_up_write;
4535 	}
4536 	if (atomic_read(&dest->nr_swapfiles)) {
4537 		spin_unlock(&dest->root_item_lock);
4538 		btrfs_warn(fs_info,
4539 			   "attempt to delete subvolume %llu with active swapfile",
4540 			   btrfs_root_id(root));
4541 		ret = -EPERM;
4542 		goto out_up_write;
4543 	}
4544 	root_flags = btrfs_root_flags(&dest->root_item);
4545 	btrfs_set_root_flags(&dest->root_item,
4546 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4547 	spin_unlock(&dest->root_item_lock);
4548 
4549 	ret = may_destroy_subvol(dest);
4550 	if (ret)
4551 		goto out_undead;
4552 
4553 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4554 	/*
4555 	 * One for dir inode,
4556 	 * two for dir entries,
4557 	 * two for root ref/backref.
4558 	 */
4559 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4560 	if (ret)
4561 		goto out_undead;
4562 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4563 
4564 	trans = btrfs_start_transaction(root, 0);
4565 	if (IS_ERR(trans)) {
4566 		ret = PTR_ERR(trans);
4567 		goto out_release;
4568 	}
4569 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4570 	qgroup_reserved = 0;
4571 	trans->block_rsv = &block_rsv;
4572 	trans->bytes_reserved = block_rsv.size;
4573 
4574 	btrfs_record_snapshot_destroy(trans, dir);
4575 
4576 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4577 	if (ret) {
4578 		btrfs_abort_transaction(trans, ret);
4579 		goto out_end_trans;
4580 	}
4581 
4582 	ret = btrfs_record_root_in_trans(trans, dest);
4583 	if (ret) {
4584 		btrfs_abort_transaction(trans, ret);
4585 		goto out_end_trans;
4586 	}
4587 
4588 	memset(&dest->root_item.drop_progress, 0,
4589 		sizeof(dest->root_item.drop_progress));
4590 	btrfs_set_root_drop_level(&dest->root_item, 0);
4591 	btrfs_set_root_refs(&dest->root_item, 0);
4592 
4593 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4594 		ret = btrfs_insert_orphan_item(trans,
4595 					fs_info->tree_root,
4596 					btrfs_root_id(dest));
4597 		if (ret) {
4598 			btrfs_abort_transaction(trans, ret);
4599 			goto out_end_trans;
4600 		}
4601 	}
4602 
4603 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4604 				     BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4605 	if (ret && ret != -ENOENT) {
4606 		btrfs_abort_transaction(trans, ret);
4607 		goto out_end_trans;
4608 	}
4609 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4610 		ret = btrfs_uuid_tree_remove(trans,
4611 					  dest->root_item.received_uuid,
4612 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4613 					  btrfs_root_id(dest));
4614 		if (ret && ret != -ENOENT) {
4615 			btrfs_abort_transaction(trans, ret);
4616 			goto out_end_trans;
4617 		}
4618 	}
4619 
4620 	free_anon_bdev(dest->anon_dev);
4621 	dest->anon_dev = 0;
4622 out_end_trans:
4623 	trans->block_rsv = NULL;
4624 	trans->bytes_reserved = 0;
4625 	ret = btrfs_end_transaction(trans);
4626 	inode->i_flags |= S_DEAD;
4627 out_release:
4628 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4629 	if (qgroup_reserved)
4630 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4631 out_undead:
4632 	if (ret) {
4633 		spin_lock(&dest->root_item_lock);
4634 		root_flags = btrfs_root_flags(&dest->root_item);
4635 		btrfs_set_root_flags(&dest->root_item,
4636 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4637 		spin_unlock(&dest->root_item_lock);
4638 	}
4639 out_up_write:
4640 	up_write(&fs_info->subvol_sem);
4641 	if (!ret) {
4642 		d_invalidate(dentry);
4643 		btrfs_prune_dentries(dest);
4644 		ASSERT(dest->send_in_progress == 0);
4645 	}
4646 
4647 	return ret;
4648 }
4649 
4650 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4651 {
4652 	struct inode *inode = d_inode(dentry);
4653 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4654 	int ret = 0;
4655 	struct btrfs_trans_handle *trans;
4656 	u64 last_unlink_trans;
4657 	struct fscrypt_name fname;
4658 
4659 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4660 		return -ENOTEMPTY;
4661 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4662 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4663 			btrfs_err(fs_info,
4664 			"extent tree v2 doesn't support snapshot deletion yet");
4665 			return -EOPNOTSUPP;
4666 		}
4667 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4668 	}
4669 
4670 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4671 	if (ret)
4672 		return ret;
4673 
4674 	/* This needs to handle no-key deletions later on */
4675 
4676 	trans = __unlink_start_trans(BTRFS_I(dir));
4677 	if (IS_ERR(trans)) {
4678 		ret = PTR_ERR(trans);
4679 		goto out_notrans;
4680 	}
4681 
4682 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4683 		ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4684 		goto out;
4685 	}
4686 
4687 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4688 	if (ret)
4689 		goto out;
4690 
4691 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4692 
4693 	/* now the directory is empty */
4694 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4695 				 &fname.disk_name);
4696 	if (!ret) {
4697 		btrfs_i_size_write(BTRFS_I(inode), 0);
4698 		/*
4699 		 * Propagate the last_unlink_trans value of the deleted dir to
4700 		 * its parent directory. This is to prevent an unrecoverable
4701 		 * log tree in the case we do something like this:
4702 		 * 1) create dir foo
4703 		 * 2) create snapshot under dir foo
4704 		 * 3) delete the snapshot
4705 		 * 4) rmdir foo
4706 		 * 5) mkdir foo
4707 		 * 6) fsync foo or some file inside foo
4708 		 */
4709 		if (last_unlink_trans >= trans->transid)
4710 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4711 	}
4712 out:
4713 	btrfs_end_transaction(trans);
4714 out_notrans:
4715 	btrfs_btree_balance_dirty(fs_info);
4716 	fscrypt_free_filename(&fname);
4717 
4718 	return ret;
4719 }
4720 
4721 /*
4722  * Read, zero a chunk and write a block.
4723  *
4724  * @inode - inode that we're zeroing
4725  * @from - the offset to start zeroing
4726  * @len - the length to zero, 0 to zero the entire range respective to the
4727  *	offset
4728  * @front - zero up to the offset instead of from the offset on
4729  *
4730  * This will find the block for the "from" offset and cow the block and zero the
4731  * part we want to zero.  This is used with truncate and hole punching.
4732  */
4733 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4734 			 int front)
4735 {
4736 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4737 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4738 	struct extent_io_tree *io_tree = &inode->io_tree;
4739 	struct btrfs_ordered_extent *ordered;
4740 	struct extent_state *cached_state = NULL;
4741 	struct extent_changeset *data_reserved = NULL;
4742 	bool only_release_metadata = false;
4743 	u32 blocksize = fs_info->sectorsize;
4744 	pgoff_t index = from >> PAGE_SHIFT;
4745 	unsigned offset = from & (blocksize - 1);
4746 	struct folio *folio;
4747 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4748 	size_t write_bytes = blocksize;
4749 	int ret = 0;
4750 	u64 block_start;
4751 	u64 block_end;
4752 
4753 	if (IS_ALIGNED(offset, blocksize) &&
4754 	    (!len || IS_ALIGNED(len, blocksize)))
4755 		goto out;
4756 
4757 	block_start = round_down(from, blocksize);
4758 	block_end = block_start + blocksize - 1;
4759 
4760 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4761 					  blocksize, false);
4762 	if (ret < 0) {
4763 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4764 			/* For nocow case, no need to reserve data space */
4765 			only_release_metadata = true;
4766 		} else {
4767 			goto out;
4768 		}
4769 	}
4770 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4771 	if (ret < 0) {
4772 		if (!only_release_metadata)
4773 			btrfs_free_reserved_data_space(inode, data_reserved,
4774 						       block_start, blocksize);
4775 		goto out;
4776 	}
4777 again:
4778 	folio = __filemap_get_folio(mapping, index,
4779 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4780 	if (IS_ERR(folio)) {
4781 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4782 					     blocksize, true);
4783 		btrfs_delalloc_release_extents(inode, blocksize);
4784 		ret = -ENOMEM;
4785 		goto out;
4786 	}
4787 
4788 	if (!folio_test_uptodate(folio)) {
4789 		ret = btrfs_read_folio(NULL, folio);
4790 		folio_lock(folio);
4791 		if (folio->mapping != mapping) {
4792 			folio_unlock(folio);
4793 			folio_put(folio);
4794 			goto again;
4795 		}
4796 		if (!folio_test_uptodate(folio)) {
4797 			ret = -EIO;
4798 			goto out_unlock;
4799 		}
4800 	}
4801 
4802 	/*
4803 	 * We unlock the page after the io is completed and then re-lock it
4804 	 * above.  release_folio() could have come in between that and cleared
4805 	 * folio private, but left the page in the mapping.  Set the page mapped
4806 	 * here to make sure it's properly set for the subpage stuff.
4807 	 */
4808 	ret = set_folio_extent_mapped(folio);
4809 	if (ret < 0)
4810 		goto out_unlock;
4811 
4812 	folio_wait_writeback(folio);
4813 
4814 	lock_extent(io_tree, block_start, block_end, &cached_state);
4815 
4816 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4817 	if (ordered) {
4818 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4819 		folio_unlock(folio);
4820 		folio_put(folio);
4821 		btrfs_start_ordered_extent(ordered);
4822 		btrfs_put_ordered_extent(ordered);
4823 		goto again;
4824 	}
4825 
4826 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4827 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4828 			 &cached_state);
4829 
4830 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4831 					&cached_state);
4832 	if (ret) {
4833 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4834 		goto out_unlock;
4835 	}
4836 
4837 	if (offset != blocksize) {
4838 		if (!len)
4839 			len = blocksize - offset;
4840 		if (front)
4841 			folio_zero_range(folio, block_start - folio_pos(folio),
4842 					 offset);
4843 		else
4844 			folio_zero_range(folio,
4845 					 (block_start - folio_pos(folio)) + offset,
4846 					 len);
4847 	}
4848 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4849 				  block_end + 1 - block_start);
4850 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4851 			      block_end + 1 - block_start);
4852 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4853 
4854 	if (only_release_metadata)
4855 		set_extent_bit(&inode->io_tree, block_start, block_end,
4856 			       EXTENT_NORESERVE, NULL);
4857 
4858 out_unlock:
4859 	if (ret) {
4860 		if (only_release_metadata)
4861 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4862 		else
4863 			btrfs_delalloc_release_space(inode, data_reserved,
4864 					block_start, blocksize, true);
4865 	}
4866 	btrfs_delalloc_release_extents(inode, blocksize);
4867 	folio_unlock(folio);
4868 	folio_put(folio);
4869 out:
4870 	if (only_release_metadata)
4871 		btrfs_check_nocow_unlock(inode);
4872 	extent_changeset_free(data_reserved);
4873 	return ret;
4874 }
4875 
4876 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4877 {
4878 	struct btrfs_root *root = inode->root;
4879 	struct btrfs_fs_info *fs_info = root->fs_info;
4880 	struct btrfs_trans_handle *trans;
4881 	struct btrfs_drop_extents_args drop_args = { 0 };
4882 	int ret;
4883 
4884 	/*
4885 	 * If NO_HOLES is enabled, we don't need to do anything.
4886 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4887 	 * or btrfs_update_inode() will be called, which guarantee that the next
4888 	 * fsync will know this inode was changed and needs to be logged.
4889 	 */
4890 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4891 		return 0;
4892 
4893 	/*
4894 	 * 1 - for the one we're dropping
4895 	 * 1 - for the one we're adding
4896 	 * 1 - for updating the inode.
4897 	 */
4898 	trans = btrfs_start_transaction(root, 3);
4899 	if (IS_ERR(trans))
4900 		return PTR_ERR(trans);
4901 
4902 	drop_args.start = offset;
4903 	drop_args.end = offset + len;
4904 	drop_args.drop_cache = true;
4905 
4906 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4907 	if (ret) {
4908 		btrfs_abort_transaction(trans, ret);
4909 		btrfs_end_transaction(trans);
4910 		return ret;
4911 	}
4912 
4913 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4914 	if (ret) {
4915 		btrfs_abort_transaction(trans, ret);
4916 	} else {
4917 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4918 		btrfs_update_inode(trans, inode);
4919 	}
4920 	btrfs_end_transaction(trans);
4921 	return ret;
4922 }
4923 
4924 /*
4925  * This function puts in dummy file extents for the area we're creating a hole
4926  * for.  So if we are truncating this file to a larger size we need to insert
4927  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4928  * the range between oldsize and size
4929  */
4930 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4931 {
4932 	struct btrfs_root *root = inode->root;
4933 	struct btrfs_fs_info *fs_info = root->fs_info;
4934 	struct extent_io_tree *io_tree = &inode->io_tree;
4935 	struct extent_map *em = NULL;
4936 	struct extent_state *cached_state = NULL;
4937 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4938 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4939 	u64 last_byte;
4940 	u64 cur_offset;
4941 	u64 hole_size;
4942 	int ret = 0;
4943 
4944 	/*
4945 	 * If our size started in the middle of a block we need to zero out the
4946 	 * rest of the block before we expand the i_size, otherwise we could
4947 	 * expose stale data.
4948 	 */
4949 	ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4950 	if (ret)
4951 		return ret;
4952 
4953 	if (size <= hole_start)
4954 		return 0;
4955 
4956 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4957 					   &cached_state);
4958 	cur_offset = hole_start;
4959 	while (1) {
4960 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4961 		if (IS_ERR(em)) {
4962 			ret = PTR_ERR(em);
4963 			em = NULL;
4964 			break;
4965 		}
4966 		last_byte = min(extent_map_end(em), block_end);
4967 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4968 		hole_size = last_byte - cur_offset;
4969 
4970 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4971 			struct extent_map *hole_em;
4972 
4973 			ret = maybe_insert_hole(inode, cur_offset, hole_size);
4974 			if (ret)
4975 				break;
4976 
4977 			ret = btrfs_inode_set_file_extent_range(inode,
4978 							cur_offset, hole_size);
4979 			if (ret)
4980 				break;
4981 
4982 			hole_em = alloc_extent_map();
4983 			if (!hole_em) {
4984 				btrfs_drop_extent_map_range(inode, cur_offset,
4985 						    cur_offset + hole_size - 1,
4986 						    false);
4987 				btrfs_set_inode_full_sync(inode);
4988 				goto next;
4989 			}
4990 			hole_em->start = cur_offset;
4991 			hole_em->len = hole_size;
4992 
4993 			hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4994 			hole_em->disk_num_bytes = 0;
4995 			hole_em->ram_bytes = hole_size;
4996 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4997 
4998 			ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4999 			free_extent_map(hole_em);
5000 		} else {
5001 			ret = btrfs_inode_set_file_extent_range(inode,
5002 							cur_offset, hole_size);
5003 			if (ret)
5004 				break;
5005 		}
5006 next:
5007 		free_extent_map(em);
5008 		em = NULL;
5009 		cur_offset = last_byte;
5010 		if (cur_offset >= block_end)
5011 			break;
5012 	}
5013 	free_extent_map(em);
5014 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5015 	return ret;
5016 }
5017 
5018 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5019 {
5020 	struct btrfs_root *root = BTRFS_I(inode)->root;
5021 	struct btrfs_trans_handle *trans;
5022 	loff_t oldsize = i_size_read(inode);
5023 	loff_t newsize = attr->ia_size;
5024 	int mask = attr->ia_valid;
5025 	int ret;
5026 
5027 	/*
5028 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5029 	 * special case where we need to update the times despite not having
5030 	 * these flags set.  For all other operations the VFS set these flags
5031 	 * explicitly if it wants a timestamp update.
5032 	 */
5033 	if (newsize != oldsize) {
5034 		inode_inc_iversion(inode);
5035 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5036 			inode_set_mtime_to_ts(inode,
5037 					      inode_set_ctime_current(inode));
5038 		}
5039 	}
5040 
5041 	if (newsize > oldsize) {
5042 		/*
5043 		 * Don't do an expanding truncate while snapshotting is ongoing.
5044 		 * This is to ensure the snapshot captures a fully consistent
5045 		 * state of this file - if the snapshot captures this expanding
5046 		 * truncation, it must capture all writes that happened before
5047 		 * this truncation.
5048 		 */
5049 		btrfs_drew_write_lock(&root->snapshot_lock);
5050 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5051 		if (ret) {
5052 			btrfs_drew_write_unlock(&root->snapshot_lock);
5053 			return ret;
5054 		}
5055 
5056 		trans = btrfs_start_transaction(root, 1);
5057 		if (IS_ERR(trans)) {
5058 			btrfs_drew_write_unlock(&root->snapshot_lock);
5059 			return PTR_ERR(trans);
5060 		}
5061 
5062 		i_size_write(inode, newsize);
5063 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5064 		pagecache_isize_extended(inode, oldsize, newsize);
5065 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5066 		btrfs_drew_write_unlock(&root->snapshot_lock);
5067 		btrfs_end_transaction(trans);
5068 	} else {
5069 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5070 
5071 		if (btrfs_is_zoned(fs_info)) {
5072 			ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5073 					ALIGN(newsize, fs_info->sectorsize),
5074 					(u64)-1);
5075 			if (ret)
5076 				return ret;
5077 		}
5078 
5079 		/*
5080 		 * We're truncating a file that used to have good data down to
5081 		 * zero. Make sure any new writes to the file get on disk
5082 		 * on close.
5083 		 */
5084 		if (newsize == 0)
5085 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5086 				&BTRFS_I(inode)->runtime_flags);
5087 
5088 		truncate_setsize(inode, newsize);
5089 
5090 		inode_dio_wait(inode);
5091 
5092 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5093 		if (ret && inode->i_nlink) {
5094 			int err;
5095 
5096 			/*
5097 			 * Truncate failed, so fix up the in-memory size. We
5098 			 * adjusted disk_i_size down as we removed extents, so
5099 			 * wait for disk_i_size to be stable and then update the
5100 			 * in-memory size to match.
5101 			 */
5102 			err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5103 			if (err)
5104 				return err;
5105 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5106 		}
5107 	}
5108 
5109 	return ret;
5110 }
5111 
5112 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5113 			 struct iattr *attr)
5114 {
5115 	struct inode *inode = d_inode(dentry);
5116 	struct btrfs_root *root = BTRFS_I(inode)->root;
5117 	int err;
5118 
5119 	if (btrfs_root_readonly(root))
5120 		return -EROFS;
5121 
5122 	err = setattr_prepare(idmap, dentry, attr);
5123 	if (err)
5124 		return err;
5125 
5126 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5127 		err = btrfs_setsize(inode, attr);
5128 		if (err)
5129 			return err;
5130 	}
5131 
5132 	if (attr->ia_valid) {
5133 		setattr_copy(idmap, inode, attr);
5134 		inode_inc_iversion(inode);
5135 		err = btrfs_dirty_inode(BTRFS_I(inode));
5136 
5137 		if (!err && attr->ia_valid & ATTR_MODE)
5138 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5139 	}
5140 
5141 	return err;
5142 }
5143 
5144 /*
5145  * While truncating the inode pages during eviction, we get the VFS
5146  * calling btrfs_invalidate_folio() against each folio of the inode. This
5147  * is slow because the calls to btrfs_invalidate_folio() result in a
5148  * huge amount of calls to lock_extent() and clear_extent_bit(),
5149  * which keep merging and splitting extent_state structures over and over,
5150  * wasting lots of time.
5151  *
5152  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5153  * skip all those expensive operations on a per folio basis and do only
5154  * the ordered io finishing, while we release here the extent_map and
5155  * extent_state structures, without the excessive merging and splitting.
5156  */
5157 static void evict_inode_truncate_pages(struct inode *inode)
5158 {
5159 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5160 	struct rb_node *node;
5161 
5162 	ASSERT(inode->i_state & I_FREEING);
5163 	truncate_inode_pages_final(&inode->i_data);
5164 
5165 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5166 
5167 	/*
5168 	 * Keep looping until we have no more ranges in the io tree.
5169 	 * We can have ongoing bios started by readahead that have
5170 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5171 	 * still in progress (unlocked the pages in the bio but did not yet
5172 	 * unlocked the ranges in the io tree). Therefore this means some
5173 	 * ranges can still be locked and eviction started because before
5174 	 * submitting those bios, which are executed by a separate task (work
5175 	 * queue kthread), inode references (inode->i_count) were not taken
5176 	 * (which would be dropped in the end io callback of each bio).
5177 	 * Therefore here we effectively end up waiting for those bios and
5178 	 * anyone else holding locked ranges without having bumped the inode's
5179 	 * reference count - if we don't do it, when they access the inode's
5180 	 * io_tree to unlock a range it may be too late, leading to an
5181 	 * use-after-free issue.
5182 	 */
5183 	spin_lock(&io_tree->lock);
5184 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5185 		struct extent_state *state;
5186 		struct extent_state *cached_state = NULL;
5187 		u64 start;
5188 		u64 end;
5189 		unsigned state_flags;
5190 
5191 		node = rb_first(&io_tree->state);
5192 		state = rb_entry(node, struct extent_state, rb_node);
5193 		start = state->start;
5194 		end = state->end;
5195 		state_flags = state->state;
5196 		spin_unlock(&io_tree->lock);
5197 
5198 		lock_extent(io_tree, start, end, &cached_state);
5199 
5200 		/*
5201 		 * If still has DELALLOC flag, the extent didn't reach disk,
5202 		 * and its reserved space won't be freed by delayed_ref.
5203 		 * So we need to free its reserved space here.
5204 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5205 		 *
5206 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5207 		 */
5208 		if (state_flags & EXTENT_DELALLOC)
5209 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5210 					       end - start + 1, NULL);
5211 
5212 		clear_extent_bit(io_tree, start, end,
5213 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5214 				 &cached_state);
5215 
5216 		cond_resched();
5217 		spin_lock(&io_tree->lock);
5218 	}
5219 	spin_unlock(&io_tree->lock);
5220 }
5221 
5222 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5223 							struct btrfs_block_rsv *rsv)
5224 {
5225 	struct btrfs_fs_info *fs_info = root->fs_info;
5226 	struct btrfs_trans_handle *trans;
5227 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5228 	int ret;
5229 
5230 	/*
5231 	 * Eviction should be taking place at some place safe because of our
5232 	 * delayed iputs.  However the normal flushing code will run delayed
5233 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5234 	 *
5235 	 * We reserve the delayed_refs_extra here again because we can't use
5236 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5237 	 * above.  We reserve our extra bit here because we generate a ton of
5238 	 * delayed refs activity by truncating.
5239 	 *
5240 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5241 	 * if we fail to make this reservation we can re-try without the
5242 	 * delayed_refs_extra so we can make some forward progress.
5243 	 */
5244 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5245 				     BTRFS_RESERVE_FLUSH_EVICT);
5246 	if (ret) {
5247 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5248 					     BTRFS_RESERVE_FLUSH_EVICT);
5249 		if (ret) {
5250 			btrfs_warn(fs_info,
5251 				   "could not allocate space for delete; will truncate on mount");
5252 			return ERR_PTR(-ENOSPC);
5253 		}
5254 		delayed_refs_extra = 0;
5255 	}
5256 
5257 	trans = btrfs_join_transaction(root);
5258 	if (IS_ERR(trans))
5259 		return trans;
5260 
5261 	if (delayed_refs_extra) {
5262 		trans->block_rsv = &fs_info->trans_block_rsv;
5263 		trans->bytes_reserved = delayed_refs_extra;
5264 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5265 					delayed_refs_extra, true);
5266 	}
5267 	return trans;
5268 }
5269 
5270 void btrfs_evict_inode(struct inode *inode)
5271 {
5272 	struct btrfs_fs_info *fs_info;
5273 	struct btrfs_trans_handle *trans;
5274 	struct btrfs_root *root = BTRFS_I(inode)->root;
5275 	struct btrfs_block_rsv *rsv = NULL;
5276 	int ret;
5277 
5278 	trace_btrfs_inode_evict(inode);
5279 
5280 	if (!root) {
5281 		fsverity_cleanup_inode(inode);
5282 		clear_inode(inode);
5283 		return;
5284 	}
5285 
5286 	fs_info = inode_to_fs_info(inode);
5287 	evict_inode_truncate_pages(inode);
5288 
5289 	if (inode->i_nlink &&
5290 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5291 	      btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5292 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5293 		goto out;
5294 
5295 	if (is_bad_inode(inode))
5296 		goto out;
5297 
5298 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5299 		goto out;
5300 
5301 	if (inode->i_nlink > 0) {
5302 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5303 		       btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5304 		goto out;
5305 	}
5306 
5307 	/*
5308 	 * This makes sure the inode item in tree is uptodate and the space for
5309 	 * the inode update is released.
5310 	 */
5311 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5312 	if (ret)
5313 		goto out;
5314 
5315 	/*
5316 	 * This drops any pending insert or delete operations we have for this
5317 	 * inode.  We could have a delayed dir index deletion queued up, but
5318 	 * we're removing the inode completely so that'll be taken care of in
5319 	 * the truncate.
5320 	 */
5321 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5322 
5323 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5324 	if (!rsv)
5325 		goto out;
5326 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5327 	rsv->failfast = true;
5328 
5329 	btrfs_i_size_write(BTRFS_I(inode), 0);
5330 
5331 	while (1) {
5332 		struct btrfs_truncate_control control = {
5333 			.inode = BTRFS_I(inode),
5334 			.ino = btrfs_ino(BTRFS_I(inode)),
5335 			.new_size = 0,
5336 			.min_type = 0,
5337 		};
5338 
5339 		trans = evict_refill_and_join(root, rsv);
5340 		if (IS_ERR(trans))
5341 			goto out;
5342 
5343 		trans->block_rsv = rsv;
5344 
5345 		ret = btrfs_truncate_inode_items(trans, root, &control);
5346 		trans->block_rsv = &fs_info->trans_block_rsv;
5347 		btrfs_end_transaction(trans);
5348 		/*
5349 		 * We have not added new delayed items for our inode after we
5350 		 * have flushed its delayed items, so no need to throttle on
5351 		 * delayed items. However we have modified extent buffers.
5352 		 */
5353 		btrfs_btree_balance_dirty_nodelay(fs_info);
5354 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5355 			goto out;
5356 		else if (!ret)
5357 			break;
5358 	}
5359 
5360 	/*
5361 	 * Errors here aren't a big deal, it just means we leave orphan items in
5362 	 * the tree. They will be cleaned up on the next mount. If the inode
5363 	 * number gets reused, cleanup deletes the orphan item without doing
5364 	 * anything, and unlink reuses the existing orphan item.
5365 	 *
5366 	 * If it turns out that we are dropping too many of these, we might want
5367 	 * to add a mechanism for retrying these after a commit.
5368 	 */
5369 	trans = evict_refill_and_join(root, rsv);
5370 	if (!IS_ERR(trans)) {
5371 		trans->block_rsv = rsv;
5372 		btrfs_orphan_del(trans, BTRFS_I(inode));
5373 		trans->block_rsv = &fs_info->trans_block_rsv;
5374 		btrfs_end_transaction(trans);
5375 	}
5376 
5377 out:
5378 	btrfs_free_block_rsv(fs_info, rsv);
5379 	/*
5380 	 * If we didn't successfully delete, the orphan item will still be in
5381 	 * the tree and we'll retry on the next mount. Again, we might also want
5382 	 * to retry these periodically in the future.
5383 	 */
5384 	btrfs_remove_delayed_node(BTRFS_I(inode));
5385 	fsverity_cleanup_inode(inode);
5386 	clear_inode(inode);
5387 }
5388 
5389 /*
5390  * Return the key found in the dir entry in the location pointer, fill @type
5391  * with BTRFS_FT_*, and return 0.
5392  *
5393  * If no dir entries were found, returns -ENOENT.
5394  * If found a corrupted location in dir entry, returns -EUCLEAN.
5395  */
5396 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5397 			       struct btrfs_key *location, u8 *type)
5398 {
5399 	struct btrfs_dir_item *di;
5400 	struct btrfs_path *path;
5401 	struct btrfs_root *root = dir->root;
5402 	int ret = 0;
5403 	struct fscrypt_name fname;
5404 
5405 	path = btrfs_alloc_path();
5406 	if (!path)
5407 		return -ENOMEM;
5408 
5409 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5410 	if (ret < 0)
5411 		goto out;
5412 	/*
5413 	 * fscrypt_setup_filename() should never return a positive value, but
5414 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5415 	 */
5416 	ASSERT(ret == 0);
5417 
5418 	/* This needs to handle no-key deletions later on */
5419 
5420 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5421 				   &fname.disk_name, 0);
5422 	if (IS_ERR_OR_NULL(di)) {
5423 		ret = di ? PTR_ERR(di) : -ENOENT;
5424 		goto out;
5425 	}
5426 
5427 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5428 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5429 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5430 		ret = -EUCLEAN;
5431 		btrfs_warn(root->fs_info,
5432 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5433 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5434 			   location->objectid, location->type, location->offset);
5435 	}
5436 	if (!ret)
5437 		*type = btrfs_dir_ftype(path->nodes[0], di);
5438 out:
5439 	fscrypt_free_filename(&fname);
5440 	btrfs_free_path(path);
5441 	return ret;
5442 }
5443 
5444 /*
5445  * when we hit a tree root in a directory, the btrfs part of the inode
5446  * needs to be changed to reflect the root directory of the tree root.  This
5447  * is kind of like crossing a mount point.
5448  */
5449 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5450 				    struct btrfs_inode *dir,
5451 				    struct dentry *dentry,
5452 				    struct btrfs_key *location,
5453 				    struct btrfs_root **sub_root)
5454 {
5455 	struct btrfs_path *path;
5456 	struct btrfs_root *new_root;
5457 	struct btrfs_root_ref *ref;
5458 	struct extent_buffer *leaf;
5459 	struct btrfs_key key;
5460 	int ret;
5461 	int err = 0;
5462 	struct fscrypt_name fname;
5463 
5464 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5465 	if (ret)
5466 		return ret;
5467 
5468 	path = btrfs_alloc_path();
5469 	if (!path) {
5470 		err = -ENOMEM;
5471 		goto out;
5472 	}
5473 
5474 	err = -ENOENT;
5475 	key.objectid = btrfs_root_id(dir->root);
5476 	key.type = BTRFS_ROOT_REF_KEY;
5477 	key.offset = location->objectid;
5478 
5479 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5480 	if (ret) {
5481 		if (ret < 0)
5482 			err = ret;
5483 		goto out;
5484 	}
5485 
5486 	leaf = path->nodes[0];
5487 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5488 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5489 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5490 		goto out;
5491 
5492 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5493 				   (unsigned long)(ref + 1), fname.disk_name.len);
5494 	if (ret)
5495 		goto out;
5496 
5497 	btrfs_release_path(path);
5498 
5499 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5500 	if (IS_ERR(new_root)) {
5501 		err = PTR_ERR(new_root);
5502 		goto out;
5503 	}
5504 
5505 	*sub_root = new_root;
5506 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5507 	location->type = BTRFS_INODE_ITEM_KEY;
5508 	location->offset = 0;
5509 	err = 0;
5510 out:
5511 	btrfs_free_path(path);
5512 	fscrypt_free_filename(&fname);
5513 	return err;
5514 }
5515 
5516 
5517 
5518 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5519 {
5520 	struct btrfs_root *root = inode->root;
5521 	struct btrfs_inode *entry;
5522 	bool empty = false;
5523 
5524 	xa_lock(&root->inodes);
5525 	entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5526 	if (entry == inode)
5527 		empty = xa_empty(&root->inodes);
5528 	xa_unlock(&root->inodes);
5529 
5530 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5531 		xa_lock(&root->inodes);
5532 		empty = xa_empty(&root->inodes);
5533 		xa_unlock(&root->inodes);
5534 		if (empty)
5535 			btrfs_add_dead_root(root);
5536 	}
5537 }
5538 
5539 
5540 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5541 {
5542 	struct btrfs_iget_args *args = p;
5543 
5544 	btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5545 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5546 
5547 	if (args->root && args->root == args->root->fs_info->tree_root &&
5548 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5549 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5550 			&BTRFS_I(inode)->runtime_flags);
5551 	return 0;
5552 }
5553 
5554 static int btrfs_find_actor(struct inode *inode, void *opaque)
5555 {
5556 	struct btrfs_iget_args *args = opaque;
5557 
5558 	return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5559 		args->root == BTRFS_I(inode)->root;
5560 }
5561 
5562 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5563 {
5564 	struct inode *inode;
5565 	struct btrfs_iget_args args;
5566 	unsigned long hashval = btrfs_inode_hash(ino, root);
5567 
5568 	args.ino = ino;
5569 	args.root = root;
5570 
5571 	inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5572 			     btrfs_init_locked_inode,
5573 			     (void *)&args);
5574 	return inode;
5575 }
5576 
5577 /*
5578  * Get an inode object given its inode number and corresponding root.  Path is
5579  * preallocated to prevent recursing back to iget through allocator.
5580  */
5581 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5582 			      struct btrfs_path *path)
5583 {
5584 	struct inode *inode;
5585 	int ret;
5586 
5587 	inode = btrfs_iget_locked(ino, root);
5588 	if (!inode)
5589 		return ERR_PTR(-ENOMEM);
5590 
5591 	if (!(inode->i_state & I_NEW))
5592 		return inode;
5593 
5594 	ret = btrfs_read_locked_inode(inode, path);
5595 	if (ret)
5596 		return ERR_PTR(ret);
5597 
5598 	unlock_new_inode(inode);
5599 	return inode;
5600 }
5601 
5602 /*
5603  * Get an inode object given its inode number and corresponding root.
5604  */
5605 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5606 {
5607 	struct inode *inode;
5608 	struct btrfs_path *path;
5609 	int ret;
5610 
5611 	inode = btrfs_iget_locked(ino, root);
5612 	if (!inode)
5613 		return ERR_PTR(-ENOMEM);
5614 
5615 	if (!(inode->i_state & I_NEW))
5616 		return inode;
5617 
5618 	path = btrfs_alloc_path();
5619 	if (!path)
5620 		return ERR_PTR(-ENOMEM);
5621 
5622 	ret = btrfs_read_locked_inode(inode, path);
5623 	btrfs_free_path(path);
5624 	if (ret)
5625 		return ERR_PTR(ret);
5626 
5627 	unlock_new_inode(inode);
5628 	return inode;
5629 }
5630 
5631 static struct inode *new_simple_dir(struct inode *dir,
5632 				    struct btrfs_key *key,
5633 				    struct btrfs_root *root)
5634 {
5635 	struct timespec64 ts;
5636 	struct inode *inode = new_inode(dir->i_sb);
5637 
5638 	if (!inode)
5639 		return ERR_PTR(-ENOMEM);
5640 
5641 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5642 	BTRFS_I(inode)->ref_root_id = key->objectid;
5643 	set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5644 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5645 
5646 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5647 	/*
5648 	 * We only need lookup, the rest is read-only and there's no inode
5649 	 * associated with the dentry
5650 	 */
5651 	inode->i_op = &simple_dir_inode_operations;
5652 	inode->i_opflags &= ~IOP_XATTR;
5653 	inode->i_fop = &simple_dir_operations;
5654 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5655 
5656 	ts = inode_set_ctime_current(inode);
5657 	inode_set_mtime_to_ts(inode, ts);
5658 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5659 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5660 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5661 
5662 	inode->i_uid = dir->i_uid;
5663 	inode->i_gid = dir->i_gid;
5664 
5665 	return inode;
5666 }
5667 
5668 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5669 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5670 static_assert(BTRFS_FT_DIR == FT_DIR);
5671 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5672 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5673 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5674 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5675 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5676 
5677 static inline u8 btrfs_inode_type(struct inode *inode)
5678 {
5679 	return fs_umode_to_ftype(inode->i_mode);
5680 }
5681 
5682 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5683 {
5684 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5685 	struct inode *inode;
5686 	struct btrfs_root *root = BTRFS_I(dir)->root;
5687 	struct btrfs_root *sub_root = root;
5688 	struct btrfs_key location = { 0 };
5689 	u8 di_type = 0;
5690 	int ret = 0;
5691 
5692 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5693 		return ERR_PTR(-ENAMETOOLONG);
5694 
5695 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5696 	if (ret < 0)
5697 		return ERR_PTR(ret);
5698 
5699 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5700 		inode = btrfs_iget(location.objectid, root);
5701 		if (IS_ERR(inode))
5702 			return inode;
5703 
5704 		/* Do extra check against inode mode with di_type */
5705 		if (btrfs_inode_type(inode) != di_type) {
5706 			btrfs_crit(fs_info,
5707 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5708 				  inode->i_mode, btrfs_inode_type(inode),
5709 				  di_type);
5710 			iput(inode);
5711 			return ERR_PTR(-EUCLEAN);
5712 		}
5713 		return inode;
5714 	}
5715 
5716 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5717 				       &location, &sub_root);
5718 	if (ret < 0) {
5719 		if (ret != -ENOENT)
5720 			inode = ERR_PTR(ret);
5721 		else
5722 			inode = new_simple_dir(dir, &location, root);
5723 	} else {
5724 		inode = btrfs_iget(location.objectid, sub_root);
5725 		btrfs_put_root(sub_root);
5726 
5727 		if (IS_ERR(inode))
5728 			return inode;
5729 
5730 		down_read(&fs_info->cleanup_work_sem);
5731 		if (!sb_rdonly(inode->i_sb))
5732 			ret = btrfs_orphan_cleanup(sub_root);
5733 		up_read(&fs_info->cleanup_work_sem);
5734 		if (ret) {
5735 			iput(inode);
5736 			inode = ERR_PTR(ret);
5737 		}
5738 	}
5739 
5740 	return inode;
5741 }
5742 
5743 static int btrfs_dentry_delete(const struct dentry *dentry)
5744 {
5745 	struct btrfs_root *root;
5746 	struct inode *inode = d_inode(dentry);
5747 
5748 	if (!inode && !IS_ROOT(dentry))
5749 		inode = d_inode(dentry->d_parent);
5750 
5751 	if (inode) {
5752 		root = BTRFS_I(inode)->root;
5753 		if (btrfs_root_refs(&root->root_item) == 0)
5754 			return 1;
5755 
5756 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5757 			return 1;
5758 	}
5759 	return 0;
5760 }
5761 
5762 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5763 				   unsigned int flags)
5764 {
5765 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5766 
5767 	if (inode == ERR_PTR(-ENOENT))
5768 		inode = NULL;
5769 	return d_splice_alias(inode, dentry);
5770 }
5771 
5772 /*
5773  * Find the highest existing sequence number in a directory and then set the
5774  * in-memory index_cnt variable to the first free sequence number.
5775  */
5776 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5777 {
5778 	struct btrfs_root *root = inode->root;
5779 	struct btrfs_key key, found_key;
5780 	struct btrfs_path *path;
5781 	struct extent_buffer *leaf;
5782 	int ret;
5783 
5784 	key.objectid = btrfs_ino(inode);
5785 	key.type = BTRFS_DIR_INDEX_KEY;
5786 	key.offset = (u64)-1;
5787 
5788 	path = btrfs_alloc_path();
5789 	if (!path)
5790 		return -ENOMEM;
5791 
5792 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5793 	if (ret < 0)
5794 		goto out;
5795 	/* FIXME: we should be able to handle this */
5796 	if (ret == 0)
5797 		goto out;
5798 	ret = 0;
5799 
5800 	if (path->slots[0] == 0) {
5801 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5802 		goto out;
5803 	}
5804 
5805 	path->slots[0]--;
5806 
5807 	leaf = path->nodes[0];
5808 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5809 
5810 	if (found_key.objectid != btrfs_ino(inode) ||
5811 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5812 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5813 		goto out;
5814 	}
5815 
5816 	inode->index_cnt = found_key.offset + 1;
5817 out:
5818 	btrfs_free_path(path);
5819 	return ret;
5820 }
5821 
5822 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5823 {
5824 	int ret = 0;
5825 
5826 	btrfs_inode_lock(dir, 0);
5827 	if (dir->index_cnt == (u64)-1) {
5828 		ret = btrfs_inode_delayed_dir_index_count(dir);
5829 		if (ret) {
5830 			ret = btrfs_set_inode_index_count(dir);
5831 			if (ret)
5832 				goto out;
5833 		}
5834 	}
5835 
5836 	/* index_cnt is the index number of next new entry, so decrement it. */
5837 	*index = dir->index_cnt - 1;
5838 out:
5839 	btrfs_inode_unlock(dir, 0);
5840 
5841 	return ret;
5842 }
5843 
5844 /*
5845  * All this infrastructure exists because dir_emit can fault, and we are holding
5846  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5847  * our information into that, and then dir_emit from the buffer.  This is
5848  * similar to what NFS does, only we don't keep the buffer around in pagecache
5849  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5850  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5851  * tree lock.
5852  */
5853 static int btrfs_opendir(struct inode *inode, struct file *file)
5854 {
5855 	struct btrfs_file_private *private;
5856 	u64 last_index;
5857 	int ret;
5858 
5859 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5860 	if (ret)
5861 		return ret;
5862 
5863 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5864 	if (!private)
5865 		return -ENOMEM;
5866 	private->last_index = last_index;
5867 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5868 	if (!private->filldir_buf) {
5869 		kfree(private);
5870 		return -ENOMEM;
5871 	}
5872 	file->private_data = private;
5873 	return 0;
5874 }
5875 
5876 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5877 {
5878 	struct btrfs_file_private *private = file->private_data;
5879 	int ret;
5880 
5881 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5882 				       &private->last_index);
5883 	if (ret)
5884 		return ret;
5885 
5886 	return generic_file_llseek(file, offset, whence);
5887 }
5888 
5889 struct dir_entry {
5890 	u64 ino;
5891 	u64 offset;
5892 	unsigned type;
5893 	int name_len;
5894 };
5895 
5896 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5897 {
5898 	while (entries--) {
5899 		struct dir_entry *entry = addr;
5900 		char *name = (char *)(entry + 1);
5901 
5902 		ctx->pos = get_unaligned(&entry->offset);
5903 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5904 					 get_unaligned(&entry->ino),
5905 					 get_unaligned(&entry->type)))
5906 			return 1;
5907 		addr += sizeof(struct dir_entry) +
5908 			get_unaligned(&entry->name_len);
5909 		ctx->pos++;
5910 	}
5911 	return 0;
5912 }
5913 
5914 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5915 {
5916 	struct inode *inode = file_inode(file);
5917 	struct btrfs_root *root = BTRFS_I(inode)->root;
5918 	struct btrfs_file_private *private = file->private_data;
5919 	struct btrfs_dir_item *di;
5920 	struct btrfs_key key;
5921 	struct btrfs_key found_key;
5922 	struct btrfs_path *path;
5923 	void *addr;
5924 	LIST_HEAD(ins_list);
5925 	LIST_HEAD(del_list);
5926 	int ret;
5927 	char *name_ptr;
5928 	int name_len;
5929 	int entries = 0;
5930 	int total_len = 0;
5931 	bool put = false;
5932 	struct btrfs_key location;
5933 
5934 	if (!dir_emit_dots(file, ctx))
5935 		return 0;
5936 
5937 	path = btrfs_alloc_path();
5938 	if (!path)
5939 		return -ENOMEM;
5940 
5941 	addr = private->filldir_buf;
5942 	path->reada = READA_FORWARD;
5943 
5944 	put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5945 					      &ins_list, &del_list);
5946 
5947 again:
5948 	key.type = BTRFS_DIR_INDEX_KEY;
5949 	key.offset = ctx->pos;
5950 	key.objectid = btrfs_ino(BTRFS_I(inode));
5951 
5952 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5953 		struct dir_entry *entry;
5954 		struct extent_buffer *leaf = path->nodes[0];
5955 		u8 ftype;
5956 
5957 		if (found_key.objectid != key.objectid)
5958 			break;
5959 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5960 			break;
5961 		if (found_key.offset < ctx->pos)
5962 			continue;
5963 		if (found_key.offset > private->last_index)
5964 			break;
5965 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5966 			continue;
5967 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5968 		name_len = btrfs_dir_name_len(leaf, di);
5969 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5970 		    PAGE_SIZE) {
5971 			btrfs_release_path(path);
5972 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5973 			if (ret)
5974 				goto nopos;
5975 			addr = private->filldir_buf;
5976 			entries = 0;
5977 			total_len = 0;
5978 			goto again;
5979 		}
5980 
5981 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5982 		entry = addr;
5983 		name_ptr = (char *)(entry + 1);
5984 		read_extent_buffer(leaf, name_ptr,
5985 				   (unsigned long)(di + 1), name_len);
5986 		put_unaligned(name_len, &entry->name_len);
5987 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5988 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5989 		put_unaligned(location.objectid, &entry->ino);
5990 		put_unaligned(found_key.offset, &entry->offset);
5991 		entries++;
5992 		addr += sizeof(struct dir_entry) + name_len;
5993 		total_len += sizeof(struct dir_entry) + name_len;
5994 	}
5995 	/* Catch error encountered during iteration */
5996 	if (ret < 0)
5997 		goto err;
5998 
5999 	btrfs_release_path(path);
6000 
6001 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6002 	if (ret)
6003 		goto nopos;
6004 
6005 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6006 	if (ret)
6007 		goto nopos;
6008 
6009 	/*
6010 	 * Stop new entries from being returned after we return the last
6011 	 * entry.
6012 	 *
6013 	 * New directory entries are assigned a strictly increasing
6014 	 * offset.  This means that new entries created during readdir
6015 	 * are *guaranteed* to be seen in the future by that readdir.
6016 	 * This has broken buggy programs which operate on names as
6017 	 * they're returned by readdir.  Until we reuse freed offsets
6018 	 * we have this hack to stop new entries from being returned
6019 	 * under the assumption that they'll never reach this huge
6020 	 * offset.
6021 	 *
6022 	 * This is being careful not to overflow 32bit loff_t unless the
6023 	 * last entry requires it because doing so has broken 32bit apps
6024 	 * in the past.
6025 	 */
6026 	if (ctx->pos >= INT_MAX)
6027 		ctx->pos = LLONG_MAX;
6028 	else
6029 		ctx->pos = INT_MAX;
6030 nopos:
6031 	ret = 0;
6032 err:
6033 	if (put)
6034 		btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6035 	btrfs_free_path(path);
6036 	return ret;
6037 }
6038 
6039 /*
6040  * This is somewhat expensive, updating the tree every time the
6041  * inode changes.  But, it is most likely to find the inode in cache.
6042  * FIXME, needs more benchmarking...there are no reasons other than performance
6043  * to keep or drop this code.
6044  */
6045 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6046 {
6047 	struct btrfs_root *root = inode->root;
6048 	struct btrfs_fs_info *fs_info = root->fs_info;
6049 	struct btrfs_trans_handle *trans;
6050 	int ret;
6051 
6052 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6053 		return 0;
6054 
6055 	trans = btrfs_join_transaction(root);
6056 	if (IS_ERR(trans))
6057 		return PTR_ERR(trans);
6058 
6059 	ret = btrfs_update_inode(trans, inode);
6060 	if (ret == -ENOSPC || ret == -EDQUOT) {
6061 		/* whoops, lets try again with the full transaction */
6062 		btrfs_end_transaction(trans);
6063 		trans = btrfs_start_transaction(root, 1);
6064 		if (IS_ERR(trans))
6065 			return PTR_ERR(trans);
6066 
6067 		ret = btrfs_update_inode(trans, inode);
6068 	}
6069 	btrfs_end_transaction(trans);
6070 	if (inode->delayed_node)
6071 		btrfs_balance_delayed_items(fs_info);
6072 
6073 	return ret;
6074 }
6075 
6076 /*
6077  * This is a copy of file_update_time.  We need this so we can return error on
6078  * ENOSPC for updating the inode in the case of file write and mmap writes.
6079  */
6080 static int btrfs_update_time(struct inode *inode, int flags)
6081 {
6082 	struct btrfs_root *root = BTRFS_I(inode)->root;
6083 	bool dirty;
6084 
6085 	if (btrfs_root_readonly(root))
6086 		return -EROFS;
6087 
6088 	dirty = inode_update_timestamps(inode, flags);
6089 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6090 }
6091 
6092 /*
6093  * helper to find a free sequence number in a given directory.  This current
6094  * code is very simple, later versions will do smarter things in the btree
6095  */
6096 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6097 {
6098 	int ret = 0;
6099 
6100 	if (dir->index_cnt == (u64)-1) {
6101 		ret = btrfs_inode_delayed_dir_index_count(dir);
6102 		if (ret) {
6103 			ret = btrfs_set_inode_index_count(dir);
6104 			if (ret)
6105 				return ret;
6106 		}
6107 	}
6108 
6109 	*index = dir->index_cnt;
6110 	dir->index_cnt++;
6111 
6112 	return ret;
6113 }
6114 
6115 static int btrfs_insert_inode_locked(struct inode *inode)
6116 {
6117 	struct btrfs_iget_args args;
6118 
6119 	args.ino = btrfs_ino(BTRFS_I(inode));
6120 	args.root = BTRFS_I(inode)->root;
6121 
6122 	return insert_inode_locked4(inode,
6123 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6124 		   btrfs_find_actor, &args);
6125 }
6126 
6127 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6128 			    unsigned int *trans_num_items)
6129 {
6130 	struct inode *dir = args->dir;
6131 	struct inode *inode = args->inode;
6132 	int ret;
6133 
6134 	if (!args->orphan) {
6135 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6136 					     &args->fname);
6137 		if (ret)
6138 			return ret;
6139 	}
6140 
6141 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6142 	if (ret) {
6143 		fscrypt_free_filename(&args->fname);
6144 		return ret;
6145 	}
6146 
6147 	/* 1 to add inode item */
6148 	*trans_num_items = 1;
6149 	/* 1 to add compression property */
6150 	if (BTRFS_I(dir)->prop_compress)
6151 		(*trans_num_items)++;
6152 	/* 1 to add default ACL xattr */
6153 	if (args->default_acl)
6154 		(*trans_num_items)++;
6155 	/* 1 to add access ACL xattr */
6156 	if (args->acl)
6157 		(*trans_num_items)++;
6158 #ifdef CONFIG_SECURITY
6159 	/* 1 to add LSM xattr */
6160 	if (dir->i_security)
6161 		(*trans_num_items)++;
6162 #endif
6163 	if (args->orphan) {
6164 		/* 1 to add orphan item */
6165 		(*trans_num_items)++;
6166 	} else {
6167 		/*
6168 		 * 1 to add dir item
6169 		 * 1 to add dir index
6170 		 * 1 to update parent inode item
6171 		 *
6172 		 * No need for 1 unit for the inode ref item because it is
6173 		 * inserted in a batch together with the inode item at
6174 		 * btrfs_create_new_inode().
6175 		 */
6176 		*trans_num_items += 3;
6177 	}
6178 	return 0;
6179 }
6180 
6181 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6182 {
6183 	posix_acl_release(args->acl);
6184 	posix_acl_release(args->default_acl);
6185 	fscrypt_free_filename(&args->fname);
6186 }
6187 
6188 /*
6189  * Inherit flags from the parent inode.
6190  *
6191  * Currently only the compression flags and the cow flags are inherited.
6192  */
6193 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6194 {
6195 	unsigned int flags;
6196 
6197 	flags = dir->flags;
6198 
6199 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6200 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6201 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6202 	} else if (flags & BTRFS_INODE_COMPRESS) {
6203 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6204 		inode->flags |= BTRFS_INODE_COMPRESS;
6205 	}
6206 
6207 	if (flags & BTRFS_INODE_NODATACOW) {
6208 		inode->flags |= BTRFS_INODE_NODATACOW;
6209 		if (S_ISREG(inode->vfs_inode.i_mode))
6210 			inode->flags |= BTRFS_INODE_NODATASUM;
6211 	}
6212 
6213 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6214 }
6215 
6216 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6217 			   struct btrfs_new_inode_args *args)
6218 {
6219 	struct timespec64 ts;
6220 	struct inode *dir = args->dir;
6221 	struct inode *inode = args->inode;
6222 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6223 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6224 	struct btrfs_root *root;
6225 	struct btrfs_inode_item *inode_item;
6226 	struct btrfs_path *path;
6227 	u64 objectid;
6228 	struct btrfs_inode_ref *ref;
6229 	struct btrfs_key key[2];
6230 	u32 sizes[2];
6231 	struct btrfs_item_batch batch;
6232 	unsigned long ptr;
6233 	int ret;
6234 	bool xa_reserved = false;
6235 
6236 	path = btrfs_alloc_path();
6237 	if (!path)
6238 		return -ENOMEM;
6239 
6240 	if (!args->subvol)
6241 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6242 	root = BTRFS_I(inode)->root;
6243 
6244 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6245 	if (ret)
6246 		goto out;
6247 
6248 	ret = btrfs_get_free_objectid(root, &objectid);
6249 	if (ret)
6250 		goto out;
6251 	btrfs_set_inode_number(BTRFS_I(inode), objectid);
6252 
6253 	ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6254 	if (ret)
6255 		goto out;
6256 	xa_reserved = true;
6257 
6258 	if (args->orphan) {
6259 		/*
6260 		 * O_TMPFILE, set link count to 0, so that after this point, we
6261 		 * fill in an inode item with the correct link count.
6262 		 */
6263 		set_nlink(inode, 0);
6264 	} else {
6265 		trace_btrfs_inode_request(dir);
6266 
6267 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6268 		if (ret)
6269 			goto out;
6270 	}
6271 
6272 	if (S_ISDIR(inode->i_mode))
6273 		BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6274 
6275 	BTRFS_I(inode)->generation = trans->transid;
6276 	inode->i_generation = BTRFS_I(inode)->generation;
6277 
6278 	/*
6279 	 * We don't have any capability xattrs set here yet, shortcut any
6280 	 * queries for the xattrs here.  If we add them later via the inode
6281 	 * security init path or any other path this flag will be cleared.
6282 	 */
6283 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6284 
6285 	/*
6286 	 * Subvolumes don't inherit flags from their parent directory.
6287 	 * Originally this was probably by accident, but we probably can't
6288 	 * change it now without compatibility issues.
6289 	 */
6290 	if (!args->subvol)
6291 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6292 
6293 	if (S_ISREG(inode->i_mode)) {
6294 		if (btrfs_test_opt(fs_info, NODATASUM))
6295 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6296 		if (btrfs_test_opt(fs_info, NODATACOW))
6297 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6298 				BTRFS_INODE_NODATASUM;
6299 	}
6300 
6301 	ret = btrfs_insert_inode_locked(inode);
6302 	if (ret < 0) {
6303 		if (!args->orphan)
6304 			BTRFS_I(dir)->index_cnt--;
6305 		goto out;
6306 	}
6307 
6308 	/*
6309 	 * We could have gotten an inode number from somebody who was fsynced
6310 	 * and then removed in this same transaction, so let's just set full
6311 	 * sync since it will be a full sync anyway and this will blow away the
6312 	 * old info in the log.
6313 	 */
6314 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6315 
6316 	key[0].objectid = objectid;
6317 	key[0].type = BTRFS_INODE_ITEM_KEY;
6318 	key[0].offset = 0;
6319 
6320 	sizes[0] = sizeof(struct btrfs_inode_item);
6321 
6322 	if (!args->orphan) {
6323 		/*
6324 		 * Start new inodes with an inode_ref. This is slightly more
6325 		 * efficient for small numbers of hard links since they will
6326 		 * be packed into one item. Extended refs will kick in if we
6327 		 * add more hard links than can fit in the ref item.
6328 		 */
6329 		key[1].objectid = objectid;
6330 		key[1].type = BTRFS_INODE_REF_KEY;
6331 		if (args->subvol) {
6332 			key[1].offset = objectid;
6333 			sizes[1] = 2 + sizeof(*ref);
6334 		} else {
6335 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6336 			sizes[1] = name->len + sizeof(*ref);
6337 		}
6338 	}
6339 
6340 	batch.keys = &key[0];
6341 	batch.data_sizes = &sizes[0];
6342 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6343 	batch.nr = args->orphan ? 1 : 2;
6344 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6345 	if (ret != 0) {
6346 		btrfs_abort_transaction(trans, ret);
6347 		goto discard;
6348 	}
6349 
6350 	ts = simple_inode_init_ts(inode);
6351 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6352 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6353 
6354 	/*
6355 	 * We're going to fill the inode item now, so at this point the inode
6356 	 * must be fully initialized.
6357 	 */
6358 
6359 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6360 				  struct btrfs_inode_item);
6361 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6362 			     sizeof(*inode_item));
6363 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6364 
6365 	if (!args->orphan) {
6366 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6367 				     struct btrfs_inode_ref);
6368 		ptr = (unsigned long)(ref + 1);
6369 		if (args->subvol) {
6370 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6371 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6372 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6373 		} else {
6374 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6375 						     name->len);
6376 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6377 						  BTRFS_I(inode)->dir_index);
6378 			write_extent_buffer(path->nodes[0], name->name, ptr,
6379 					    name->len);
6380 		}
6381 	}
6382 
6383 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6384 	/*
6385 	 * We don't need the path anymore, plus inheriting properties, adding
6386 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6387 	 * allocating yet another path. So just free our path.
6388 	 */
6389 	btrfs_free_path(path);
6390 	path = NULL;
6391 
6392 	if (args->subvol) {
6393 		struct inode *parent;
6394 
6395 		/*
6396 		 * Subvolumes inherit properties from their parent subvolume,
6397 		 * not the directory they were created in.
6398 		 */
6399 		parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6400 		if (IS_ERR(parent)) {
6401 			ret = PTR_ERR(parent);
6402 		} else {
6403 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6404 			iput(parent);
6405 		}
6406 	} else {
6407 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6408 	}
6409 	if (ret) {
6410 		btrfs_err(fs_info,
6411 			  "error inheriting props for ino %llu (root %llu): %d",
6412 			  btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6413 	}
6414 
6415 	/*
6416 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6417 	 * probably a bug.
6418 	 */
6419 	if (!args->subvol) {
6420 		ret = btrfs_init_inode_security(trans, args);
6421 		if (ret) {
6422 			btrfs_abort_transaction(trans, ret);
6423 			goto discard;
6424 		}
6425 	}
6426 
6427 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6428 	if (WARN_ON(ret)) {
6429 		/* Shouldn't happen, we used xa_reserve() before. */
6430 		btrfs_abort_transaction(trans, ret);
6431 		goto discard;
6432 	}
6433 
6434 	trace_btrfs_inode_new(inode);
6435 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6436 
6437 	btrfs_update_root_times(trans, root);
6438 
6439 	if (args->orphan) {
6440 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6441 	} else {
6442 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6443 				     0, BTRFS_I(inode)->dir_index);
6444 	}
6445 	if (ret) {
6446 		btrfs_abort_transaction(trans, ret);
6447 		goto discard;
6448 	}
6449 
6450 	return 0;
6451 
6452 discard:
6453 	/*
6454 	 * discard_new_inode() calls iput(), but the caller owns the reference
6455 	 * to the inode.
6456 	 */
6457 	ihold(inode);
6458 	discard_new_inode(inode);
6459 out:
6460 	if (xa_reserved)
6461 		xa_release(&root->inodes, objectid);
6462 
6463 	btrfs_free_path(path);
6464 	return ret;
6465 }
6466 
6467 /*
6468  * utility function to add 'inode' into 'parent_inode' with
6469  * a give name and a given sequence number.
6470  * if 'add_backref' is true, also insert a backref from the
6471  * inode to the parent directory.
6472  */
6473 int btrfs_add_link(struct btrfs_trans_handle *trans,
6474 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6475 		   const struct fscrypt_str *name, int add_backref, u64 index)
6476 {
6477 	int ret = 0;
6478 	struct btrfs_key key;
6479 	struct btrfs_root *root = parent_inode->root;
6480 	u64 ino = btrfs_ino(inode);
6481 	u64 parent_ino = btrfs_ino(parent_inode);
6482 
6483 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6484 		memcpy(&key, &inode->root->root_key, sizeof(key));
6485 	} else {
6486 		key.objectid = ino;
6487 		key.type = BTRFS_INODE_ITEM_KEY;
6488 		key.offset = 0;
6489 	}
6490 
6491 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6492 		ret = btrfs_add_root_ref(trans, key.objectid,
6493 					 btrfs_root_id(root), parent_ino,
6494 					 index, name);
6495 	} else if (add_backref) {
6496 		ret = btrfs_insert_inode_ref(trans, root, name,
6497 					     ino, parent_ino, index);
6498 	}
6499 
6500 	/* Nothing to clean up yet */
6501 	if (ret)
6502 		return ret;
6503 
6504 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6505 				    btrfs_inode_type(&inode->vfs_inode), index);
6506 	if (ret == -EEXIST || ret == -EOVERFLOW)
6507 		goto fail_dir_item;
6508 	else if (ret) {
6509 		btrfs_abort_transaction(trans, ret);
6510 		return ret;
6511 	}
6512 
6513 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6514 			   name->len * 2);
6515 	inode_inc_iversion(&parent_inode->vfs_inode);
6516 	/*
6517 	 * If we are replaying a log tree, we do not want to update the mtime
6518 	 * and ctime of the parent directory with the current time, since the
6519 	 * log replay procedure is responsible for setting them to their correct
6520 	 * values (the ones it had when the fsync was done).
6521 	 */
6522 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6523 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6524 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6525 
6526 	ret = btrfs_update_inode(trans, parent_inode);
6527 	if (ret)
6528 		btrfs_abort_transaction(trans, ret);
6529 	return ret;
6530 
6531 fail_dir_item:
6532 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6533 		u64 local_index;
6534 		int err;
6535 		err = btrfs_del_root_ref(trans, key.objectid,
6536 					 btrfs_root_id(root), parent_ino,
6537 					 &local_index, name);
6538 		if (err)
6539 			btrfs_abort_transaction(trans, err);
6540 	} else if (add_backref) {
6541 		u64 local_index;
6542 		int err;
6543 
6544 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6545 					  &local_index);
6546 		if (err)
6547 			btrfs_abort_transaction(trans, err);
6548 	}
6549 
6550 	/* Return the original error code */
6551 	return ret;
6552 }
6553 
6554 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6555 			       struct inode *inode)
6556 {
6557 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6558 	struct btrfs_root *root = BTRFS_I(dir)->root;
6559 	struct btrfs_new_inode_args new_inode_args = {
6560 		.dir = dir,
6561 		.dentry = dentry,
6562 		.inode = inode,
6563 	};
6564 	unsigned int trans_num_items;
6565 	struct btrfs_trans_handle *trans;
6566 	int err;
6567 
6568 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6569 	if (err)
6570 		goto out_inode;
6571 
6572 	trans = btrfs_start_transaction(root, trans_num_items);
6573 	if (IS_ERR(trans)) {
6574 		err = PTR_ERR(trans);
6575 		goto out_new_inode_args;
6576 	}
6577 
6578 	err = btrfs_create_new_inode(trans, &new_inode_args);
6579 	if (!err)
6580 		d_instantiate_new(dentry, inode);
6581 
6582 	btrfs_end_transaction(trans);
6583 	btrfs_btree_balance_dirty(fs_info);
6584 out_new_inode_args:
6585 	btrfs_new_inode_args_destroy(&new_inode_args);
6586 out_inode:
6587 	if (err)
6588 		iput(inode);
6589 	return err;
6590 }
6591 
6592 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6593 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6594 {
6595 	struct inode *inode;
6596 
6597 	inode = new_inode(dir->i_sb);
6598 	if (!inode)
6599 		return -ENOMEM;
6600 	inode_init_owner(idmap, inode, dir, mode);
6601 	inode->i_op = &btrfs_special_inode_operations;
6602 	init_special_inode(inode, inode->i_mode, rdev);
6603 	return btrfs_create_common(dir, dentry, inode);
6604 }
6605 
6606 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6607 			struct dentry *dentry, umode_t mode, bool excl)
6608 {
6609 	struct inode *inode;
6610 
6611 	inode = new_inode(dir->i_sb);
6612 	if (!inode)
6613 		return -ENOMEM;
6614 	inode_init_owner(idmap, inode, dir, mode);
6615 	inode->i_fop = &btrfs_file_operations;
6616 	inode->i_op = &btrfs_file_inode_operations;
6617 	inode->i_mapping->a_ops = &btrfs_aops;
6618 	return btrfs_create_common(dir, dentry, inode);
6619 }
6620 
6621 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6622 		      struct dentry *dentry)
6623 {
6624 	struct btrfs_trans_handle *trans = NULL;
6625 	struct btrfs_root *root = BTRFS_I(dir)->root;
6626 	struct inode *inode = d_inode(old_dentry);
6627 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6628 	struct fscrypt_name fname;
6629 	u64 index;
6630 	int err;
6631 	int drop_inode = 0;
6632 
6633 	/* do not allow sys_link's with other subvols of the same device */
6634 	if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6635 		return -EXDEV;
6636 
6637 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6638 		return -EMLINK;
6639 
6640 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6641 	if (err)
6642 		goto fail;
6643 
6644 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6645 	if (err)
6646 		goto fail;
6647 
6648 	/*
6649 	 * 2 items for inode and inode ref
6650 	 * 2 items for dir items
6651 	 * 1 item for parent inode
6652 	 * 1 item for orphan item deletion if O_TMPFILE
6653 	 */
6654 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6655 	if (IS_ERR(trans)) {
6656 		err = PTR_ERR(trans);
6657 		trans = NULL;
6658 		goto fail;
6659 	}
6660 
6661 	/* There are several dir indexes for this inode, clear the cache. */
6662 	BTRFS_I(inode)->dir_index = 0ULL;
6663 	inc_nlink(inode);
6664 	inode_inc_iversion(inode);
6665 	inode_set_ctime_current(inode);
6666 	ihold(inode);
6667 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6668 
6669 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6670 			     &fname.disk_name, 1, index);
6671 
6672 	if (err) {
6673 		drop_inode = 1;
6674 	} else {
6675 		struct dentry *parent = dentry->d_parent;
6676 
6677 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6678 		if (err)
6679 			goto fail;
6680 		if (inode->i_nlink == 1) {
6681 			/*
6682 			 * If new hard link count is 1, it's a file created
6683 			 * with open(2) O_TMPFILE flag.
6684 			 */
6685 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6686 			if (err)
6687 				goto fail;
6688 		}
6689 		d_instantiate(dentry, inode);
6690 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6691 	}
6692 
6693 fail:
6694 	fscrypt_free_filename(&fname);
6695 	if (trans)
6696 		btrfs_end_transaction(trans);
6697 	if (drop_inode) {
6698 		inode_dec_link_count(inode);
6699 		iput(inode);
6700 	}
6701 	btrfs_btree_balance_dirty(fs_info);
6702 	return err;
6703 }
6704 
6705 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6706 		       struct dentry *dentry, umode_t mode)
6707 {
6708 	struct inode *inode;
6709 
6710 	inode = new_inode(dir->i_sb);
6711 	if (!inode)
6712 		return -ENOMEM;
6713 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6714 	inode->i_op = &btrfs_dir_inode_operations;
6715 	inode->i_fop = &btrfs_dir_file_operations;
6716 	return btrfs_create_common(dir, dentry, inode);
6717 }
6718 
6719 static noinline int uncompress_inline(struct btrfs_path *path,
6720 				      struct folio *folio,
6721 				      struct btrfs_file_extent_item *item)
6722 {
6723 	int ret;
6724 	struct extent_buffer *leaf = path->nodes[0];
6725 	char *tmp;
6726 	size_t max_size;
6727 	unsigned long inline_size;
6728 	unsigned long ptr;
6729 	int compress_type;
6730 
6731 	compress_type = btrfs_file_extent_compression(leaf, item);
6732 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6733 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6734 	tmp = kmalloc(inline_size, GFP_NOFS);
6735 	if (!tmp)
6736 		return -ENOMEM;
6737 	ptr = btrfs_file_extent_inline_start(item);
6738 
6739 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6740 
6741 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6742 	ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size,
6743 			       max_size);
6744 
6745 	/*
6746 	 * decompression code contains a memset to fill in any space between the end
6747 	 * of the uncompressed data and the end of max_size in case the decompressed
6748 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6749 	 * the end of an inline extent and the beginning of the next block, so we
6750 	 * cover that region here.
6751 	 */
6752 
6753 	if (max_size < PAGE_SIZE)
6754 		folio_zero_range(folio, max_size, PAGE_SIZE - max_size);
6755 	kfree(tmp);
6756 	return ret;
6757 }
6758 
6759 static int read_inline_extent(struct btrfs_path *path, struct folio *folio)
6760 {
6761 	struct btrfs_file_extent_item *fi;
6762 	void *kaddr;
6763 	size_t copy_size;
6764 
6765 	if (!folio || folio_test_uptodate(folio))
6766 		return 0;
6767 
6768 	ASSERT(folio_pos(folio) == 0);
6769 
6770 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6771 			    struct btrfs_file_extent_item);
6772 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6773 		return uncompress_inline(path, folio, fi);
6774 
6775 	copy_size = min_t(u64, PAGE_SIZE,
6776 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6777 	kaddr = kmap_local_folio(folio, 0);
6778 	read_extent_buffer(path->nodes[0], kaddr,
6779 			   btrfs_file_extent_inline_start(fi), copy_size);
6780 	kunmap_local(kaddr);
6781 	if (copy_size < PAGE_SIZE)
6782 		folio_zero_range(folio, copy_size, PAGE_SIZE - copy_size);
6783 	return 0;
6784 }
6785 
6786 /*
6787  * Lookup the first extent overlapping a range in a file.
6788  *
6789  * @inode:	file to search in
6790  * @page:	page to read extent data into if the extent is inline
6791  * @start:	file offset
6792  * @len:	length of range starting at @start
6793  *
6794  * Return the first &struct extent_map which overlaps the given range, reading
6795  * it from the B-tree and caching it if necessary. Note that there may be more
6796  * extents which overlap the given range after the returned extent_map.
6797  *
6798  * If @page is not NULL and the extent is inline, this also reads the extent
6799  * data directly into the page and marks the extent up to date in the io_tree.
6800  *
6801  * Return: ERR_PTR on error, non-NULL extent_map on success.
6802  */
6803 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6804 				    struct folio *folio, u64 start, u64 len)
6805 {
6806 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6807 	int ret = 0;
6808 	u64 extent_start = 0;
6809 	u64 extent_end = 0;
6810 	u64 objectid = btrfs_ino(inode);
6811 	int extent_type = -1;
6812 	struct btrfs_path *path = NULL;
6813 	struct btrfs_root *root = inode->root;
6814 	struct btrfs_file_extent_item *item;
6815 	struct extent_buffer *leaf;
6816 	struct btrfs_key found_key;
6817 	struct extent_map *em = NULL;
6818 	struct extent_map_tree *em_tree = &inode->extent_tree;
6819 
6820 	read_lock(&em_tree->lock);
6821 	em = lookup_extent_mapping(em_tree, start, len);
6822 	read_unlock(&em_tree->lock);
6823 
6824 	if (em) {
6825 		if (em->start > start || em->start + em->len <= start)
6826 			free_extent_map(em);
6827 		else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio)
6828 			free_extent_map(em);
6829 		else
6830 			goto out;
6831 	}
6832 	em = alloc_extent_map();
6833 	if (!em) {
6834 		ret = -ENOMEM;
6835 		goto out;
6836 	}
6837 	em->start = EXTENT_MAP_HOLE;
6838 	em->disk_bytenr = EXTENT_MAP_HOLE;
6839 	em->len = (u64)-1;
6840 
6841 	path = btrfs_alloc_path();
6842 	if (!path) {
6843 		ret = -ENOMEM;
6844 		goto out;
6845 	}
6846 
6847 	/* Chances are we'll be called again, so go ahead and do readahead */
6848 	path->reada = READA_FORWARD;
6849 
6850 	/*
6851 	 * The same explanation in load_free_space_cache applies here as well,
6852 	 * we only read when we're loading the free space cache, and at that
6853 	 * point the commit_root has everything we need.
6854 	 */
6855 	if (btrfs_is_free_space_inode(inode)) {
6856 		path->search_commit_root = 1;
6857 		path->skip_locking = 1;
6858 	}
6859 
6860 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6861 	if (ret < 0) {
6862 		goto out;
6863 	} else if (ret > 0) {
6864 		if (path->slots[0] == 0)
6865 			goto not_found;
6866 		path->slots[0]--;
6867 		ret = 0;
6868 	}
6869 
6870 	leaf = path->nodes[0];
6871 	item = btrfs_item_ptr(leaf, path->slots[0],
6872 			      struct btrfs_file_extent_item);
6873 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6874 	if (found_key.objectid != objectid ||
6875 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6876 		/*
6877 		 * If we backup past the first extent we want to move forward
6878 		 * and see if there is an extent in front of us, otherwise we'll
6879 		 * say there is a hole for our whole search range which can
6880 		 * cause problems.
6881 		 */
6882 		extent_end = start;
6883 		goto next;
6884 	}
6885 
6886 	extent_type = btrfs_file_extent_type(leaf, item);
6887 	extent_start = found_key.offset;
6888 	extent_end = btrfs_file_extent_end(path);
6889 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6890 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6891 		/* Only regular file could have regular/prealloc extent */
6892 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6893 			ret = -EUCLEAN;
6894 			btrfs_crit(fs_info,
6895 		"regular/prealloc extent found for non-regular inode %llu",
6896 				   btrfs_ino(inode));
6897 			goto out;
6898 		}
6899 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6900 						       extent_start);
6901 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6902 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6903 						      path->slots[0],
6904 						      extent_start);
6905 	}
6906 next:
6907 	if (start >= extent_end) {
6908 		path->slots[0]++;
6909 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6910 			ret = btrfs_next_leaf(root, path);
6911 			if (ret < 0)
6912 				goto out;
6913 			else if (ret > 0)
6914 				goto not_found;
6915 
6916 			leaf = path->nodes[0];
6917 		}
6918 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6919 		if (found_key.objectid != objectid ||
6920 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6921 			goto not_found;
6922 		if (start + len <= found_key.offset)
6923 			goto not_found;
6924 		if (start > found_key.offset)
6925 			goto next;
6926 
6927 		/* New extent overlaps with existing one */
6928 		em->start = start;
6929 		em->len = found_key.offset - start;
6930 		em->disk_bytenr = EXTENT_MAP_HOLE;
6931 		goto insert;
6932 	}
6933 
6934 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6935 
6936 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6937 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6938 		goto insert;
6939 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6940 		/*
6941 		 * Inline extent can only exist at file offset 0. This is
6942 		 * ensured by tree-checker and inline extent creation path.
6943 		 * Thus all members representing file offsets should be zero.
6944 		 */
6945 		ASSERT(extent_start == 0);
6946 		ASSERT(em->start == 0);
6947 
6948 		/*
6949 		 * btrfs_extent_item_to_extent_map() should have properly
6950 		 * initialized em members already.
6951 		 *
6952 		 * Other members are not utilized for inline extents.
6953 		 */
6954 		ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6955 		ASSERT(em->len == fs_info->sectorsize);
6956 
6957 		ret = read_inline_extent(path, folio);
6958 		if (ret < 0)
6959 			goto out;
6960 		goto insert;
6961 	}
6962 not_found:
6963 	em->start = start;
6964 	em->len = len;
6965 	em->disk_bytenr = EXTENT_MAP_HOLE;
6966 insert:
6967 	ret = 0;
6968 	btrfs_release_path(path);
6969 	if (em->start > start || extent_map_end(em) <= start) {
6970 		btrfs_err(fs_info,
6971 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6972 			  em->start, em->len, start, len);
6973 		ret = -EIO;
6974 		goto out;
6975 	}
6976 
6977 	write_lock(&em_tree->lock);
6978 	ret = btrfs_add_extent_mapping(inode, &em, start, len);
6979 	write_unlock(&em_tree->lock);
6980 out:
6981 	btrfs_free_path(path);
6982 
6983 	trace_btrfs_get_extent(root, inode, em);
6984 
6985 	if (ret) {
6986 		free_extent_map(em);
6987 		return ERR_PTR(ret);
6988 	}
6989 	return em;
6990 }
6991 
6992 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6993 {
6994 	struct btrfs_block_group *block_group;
6995 	bool readonly = false;
6996 
6997 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
6998 	if (!block_group || block_group->ro)
6999 		readonly = true;
7000 	if (block_group)
7001 		btrfs_put_block_group(block_group);
7002 	return readonly;
7003 }
7004 
7005 /*
7006  * Check if we can do nocow write into the range [@offset, @offset + @len)
7007  *
7008  * @offset:	File offset
7009  * @len:	The length to write, will be updated to the nocow writeable
7010  *		range
7011  * @orig_start:	(optional) Return the original file offset of the file extent
7012  * @orig_len:	(optional) Return the original on-disk length of the file extent
7013  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7014  * @strict:	if true, omit optimizations that might force us into unnecessary
7015  *		cow. e.g., don't trust generation number.
7016  *
7017  * Return:
7018  * >0	and update @len if we can do nocow write
7019  *  0	if we can't do nocow write
7020  * <0	if error happened
7021  *
7022  * NOTE: This only checks the file extents, caller is responsible to wait for
7023  *	 any ordered extents.
7024  */
7025 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7026 			      struct btrfs_file_extent *file_extent,
7027 			      bool nowait, bool strict)
7028 {
7029 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7030 	struct can_nocow_file_extent_args nocow_args = { 0 };
7031 	struct btrfs_path *path;
7032 	int ret;
7033 	struct extent_buffer *leaf;
7034 	struct btrfs_root *root = BTRFS_I(inode)->root;
7035 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7036 	struct btrfs_file_extent_item *fi;
7037 	struct btrfs_key key;
7038 	int found_type;
7039 
7040 	path = btrfs_alloc_path();
7041 	if (!path)
7042 		return -ENOMEM;
7043 	path->nowait = nowait;
7044 
7045 	ret = btrfs_lookup_file_extent(NULL, root, path,
7046 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7047 	if (ret < 0)
7048 		goto out;
7049 
7050 	if (ret == 1) {
7051 		if (path->slots[0] == 0) {
7052 			/* can't find the item, must cow */
7053 			ret = 0;
7054 			goto out;
7055 		}
7056 		path->slots[0]--;
7057 	}
7058 	ret = 0;
7059 	leaf = path->nodes[0];
7060 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7061 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7062 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7063 		/* not our file or wrong item type, must cow */
7064 		goto out;
7065 	}
7066 
7067 	if (key.offset > offset) {
7068 		/* Wrong offset, must cow */
7069 		goto out;
7070 	}
7071 
7072 	if (btrfs_file_extent_end(path) <= offset)
7073 		goto out;
7074 
7075 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7076 	found_type = btrfs_file_extent_type(leaf, fi);
7077 
7078 	nocow_args.start = offset;
7079 	nocow_args.end = offset + *len - 1;
7080 	nocow_args.strict = strict;
7081 	nocow_args.free_path = true;
7082 
7083 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7084 	/* can_nocow_file_extent() has freed the path. */
7085 	path = NULL;
7086 
7087 	if (ret != 1) {
7088 		/* Treat errors as not being able to NOCOW. */
7089 		ret = 0;
7090 		goto out;
7091 	}
7092 
7093 	ret = 0;
7094 	if (btrfs_extent_readonly(fs_info,
7095 				  nocow_args.file_extent.disk_bytenr +
7096 				  nocow_args.file_extent.offset))
7097 		goto out;
7098 
7099 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7100 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7101 		u64 range_end;
7102 
7103 		range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7104 				     root->fs_info->sectorsize) - 1;
7105 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7106 		if (ret) {
7107 			ret = -EAGAIN;
7108 			goto out;
7109 		}
7110 	}
7111 
7112 	if (file_extent)
7113 		memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7114 
7115 	*len = nocow_args.file_extent.num_bytes;
7116 	ret = 1;
7117 out:
7118 	btrfs_free_path(path);
7119 	return ret;
7120 }
7121 
7122 /* The callers of this must take lock_extent() */
7123 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7124 				      const struct btrfs_file_extent *file_extent,
7125 				      int type)
7126 {
7127 	struct extent_map *em;
7128 	int ret;
7129 
7130 	/*
7131 	 * Note the missing NOCOW type.
7132 	 *
7133 	 * For pure NOCOW writes, we should not create an io extent map, but
7134 	 * just reusing the existing one.
7135 	 * Only PREALLOC writes (NOCOW write into preallocated range) can
7136 	 * create an io extent map.
7137 	 */
7138 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7139 	       type == BTRFS_ORDERED_COMPRESSED ||
7140 	       type == BTRFS_ORDERED_REGULAR);
7141 
7142 	switch (type) {
7143 	case BTRFS_ORDERED_PREALLOC:
7144 		/* We're only referring part of a larger preallocated extent. */
7145 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7146 		break;
7147 	case BTRFS_ORDERED_REGULAR:
7148 		/* COW results a new extent matching our file extent size. */
7149 		ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7150 		ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7151 
7152 		/* Since it's a new extent, we should not have any offset. */
7153 		ASSERT(file_extent->offset == 0);
7154 		break;
7155 	case BTRFS_ORDERED_COMPRESSED:
7156 		/* Must be compressed. */
7157 		ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7158 
7159 		/*
7160 		 * Encoded write can make us to refer to part of the
7161 		 * uncompressed extent.
7162 		 */
7163 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7164 		break;
7165 	}
7166 
7167 	em = alloc_extent_map();
7168 	if (!em)
7169 		return ERR_PTR(-ENOMEM);
7170 
7171 	em->start = start;
7172 	em->len = file_extent->num_bytes;
7173 	em->disk_bytenr = file_extent->disk_bytenr;
7174 	em->disk_num_bytes = file_extent->disk_num_bytes;
7175 	em->ram_bytes = file_extent->ram_bytes;
7176 	em->generation = -1;
7177 	em->offset = file_extent->offset;
7178 	em->flags |= EXTENT_FLAG_PINNED;
7179 	if (type == BTRFS_ORDERED_COMPRESSED)
7180 		extent_map_set_compression(em, file_extent->compression);
7181 
7182 	ret = btrfs_replace_extent_map_range(inode, em, true);
7183 	if (ret) {
7184 		free_extent_map(em);
7185 		return ERR_PTR(ret);
7186 	}
7187 
7188 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7189 	return em;
7190 }
7191 
7192 /*
7193  * For release_folio() and invalidate_folio() we have a race window where
7194  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7195  * If we continue to release/invalidate the page, we could cause use-after-free
7196  * for subpage spinlock.  So this function is to spin and wait for subpage
7197  * spinlock.
7198  */
7199 static void wait_subpage_spinlock(struct folio *folio)
7200 {
7201 	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
7202 	struct btrfs_subpage *subpage;
7203 
7204 	if (!btrfs_is_subpage(fs_info, folio->mapping))
7205 		return;
7206 
7207 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7208 	subpage = folio_get_private(folio);
7209 
7210 	/*
7211 	 * This may look insane as we just acquire the spinlock and release it,
7212 	 * without doing anything.  But we just want to make sure no one is
7213 	 * still holding the subpage spinlock.
7214 	 * And since the page is not dirty nor writeback, and we have page
7215 	 * locked, the only possible way to hold a spinlock is from the endio
7216 	 * function to clear page writeback.
7217 	 *
7218 	 * Here we just acquire the spinlock so that all existing callers
7219 	 * should exit and we're safe to release/invalidate the page.
7220 	 */
7221 	spin_lock_irq(&subpage->lock);
7222 	spin_unlock_irq(&subpage->lock);
7223 }
7224 
7225 static int btrfs_launder_folio(struct folio *folio)
7226 {
7227 	return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7228 				      PAGE_SIZE, NULL);
7229 }
7230 
7231 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7232 {
7233 	if (try_release_extent_mapping(folio, gfp_flags)) {
7234 		wait_subpage_spinlock(folio);
7235 		clear_folio_extent_mapped(folio);
7236 		return true;
7237 	}
7238 	return false;
7239 }
7240 
7241 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7242 {
7243 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7244 		return false;
7245 	return __btrfs_release_folio(folio, gfp_flags);
7246 }
7247 
7248 #ifdef CONFIG_MIGRATION
7249 static int btrfs_migrate_folio(struct address_space *mapping,
7250 			     struct folio *dst, struct folio *src,
7251 			     enum migrate_mode mode)
7252 {
7253 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7254 
7255 	if (ret != MIGRATEPAGE_SUCCESS)
7256 		return ret;
7257 
7258 	if (folio_test_ordered(src)) {
7259 		folio_clear_ordered(src);
7260 		folio_set_ordered(dst);
7261 	}
7262 
7263 	return MIGRATEPAGE_SUCCESS;
7264 }
7265 #else
7266 #define btrfs_migrate_folio NULL
7267 #endif
7268 
7269 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7270 				 size_t length)
7271 {
7272 	struct btrfs_inode *inode = folio_to_inode(folio);
7273 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7274 	struct extent_io_tree *tree = &inode->io_tree;
7275 	struct extent_state *cached_state = NULL;
7276 	u64 page_start = folio_pos(folio);
7277 	u64 page_end = page_start + folio_size(folio) - 1;
7278 	u64 cur;
7279 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7280 
7281 	/*
7282 	 * We have folio locked so no new ordered extent can be created on this
7283 	 * page, nor bio can be submitted for this folio.
7284 	 *
7285 	 * But already submitted bio can still be finished on this folio.
7286 	 * Furthermore, endio function won't skip folio which has Ordered
7287 	 * already cleared, so it's possible for endio and
7288 	 * invalidate_folio to do the same ordered extent accounting twice
7289 	 * on one folio.
7290 	 *
7291 	 * So here we wait for any submitted bios to finish, so that we won't
7292 	 * do double ordered extent accounting on the same folio.
7293 	 */
7294 	folio_wait_writeback(folio);
7295 	wait_subpage_spinlock(folio);
7296 
7297 	/*
7298 	 * For subpage case, we have call sites like
7299 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7300 	 * sectorsize.
7301 	 * If the range doesn't cover the full folio, we don't need to and
7302 	 * shouldn't clear page extent mapped, as folio->private can still
7303 	 * record subpage dirty bits for other part of the range.
7304 	 *
7305 	 * For cases that invalidate the full folio even the range doesn't
7306 	 * cover the full folio, like invalidating the last folio, we're
7307 	 * still safe to wait for ordered extent to finish.
7308 	 */
7309 	if (!(offset == 0 && length == folio_size(folio))) {
7310 		btrfs_release_folio(folio, GFP_NOFS);
7311 		return;
7312 	}
7313 
7314 	if (!inode_evicting)
7315 		lock_extent(tree, page_start, page_end, &cached_state);
7316 
7317 	cur = page_start;
7318 	while (cur < page_end) {
7319 		struct btrfs_ordered_extent *ordered;
7320 		u64 range_end;
7321 		u32 range_len;
7322 		u32 extra_flags = 0;
7323 
7324 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7325 							   page_end + 1 - cur);
7326 		if (!ordered) {
7327 			range_end = page_end;
7328 			/*
7329 			 * No ordered extent covering this range, we are safe
7330 			 * to delete all extent states in the range.
7331 			 */
7332 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7333 			goto next;
7334 		}
7335 		if (ordered->file_offset > cur) {
7336 			/*
7337 			 * There is a range between [cur, oe->file_offset) not
7338 			 * covered by any ordered extent.
7339 			 * We are safe to delete all extent states, and handle
7340 			 * the ordered extent in the next iteration.
7341 			 */
7342 			range_end = ordered->file_offset - 1;
7343 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7344 			goto next;
7345 		}
7346 
7347 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7348 				page_end);
7349 		ASSERT(range_end + 1 - cur < U32_MAX);
7350 		range_len = range_end + 1 - cur;
7351 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7352 			/*
7353 			 * If Ordered is cleared, it means endio has
7354 			 * already been executed for the range.
7355 			 * We can't delete the extent states as
7356 			 * btrfs_finish_ordered_io() may still use some of them.
7357 			 */
7358 			goto next;
7359 		}
7360 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7361 
7362 		/*
7363 		 * IO on this page will never be started, so we need to account
7364 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7365 		 * here, must leave that up for the ordered extent completion.
7366 		 *
7367 		 * This will also unlock the range for incoming
7368 		 * btrfs_finish_ordered_io().
7369 		 */
7370 		if (!inode_evicting)
7371 			clear_extent_bit(tree, cur, range_end,
7372 					 EXTENT_DELALLOC |
7373 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7374 					 EXTENT_DEFRAG, &cached_state);
7375 
7376 		spin_lock_irq(&inode->ordered_tree_lock);
7377 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7378 		ordered->truncated_len = min(ordered->truncated_len,
7379 					     cur - ordered->file_offset);
7380 		spin_unlock_irq(&inode->ordered_tree_lock);
7381 
7382 		/*
7383 		 * If the ordered extent has finished, we're safe to delete all
7384 		 * the extent states of the range, otherwise
7385 		 * btrfs_finish_ordered_io() will get executed by endio for
7386 		 * other pages, so we can't delete extent states.
7387 		 */
7388 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
7389 						   cur, range_end + 1 - cur)) {
7390 			btrfs_finish_ordered_io(ordered);
7391 			/*
7392 			 * The ordered extent has finished, now we're again
7393 			 * safe to delete all extent states of the range.
7394 			 */
7395 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7396 		}
7397 next:
7398 		if (ordered)
7399 			btrfs_put_ordered_extent(ordered);
7400 		/*
7401 		 * Qgroup reserved space handler
7402 		 * Sector(s) here will be either:
7403 		 *
7404 		 * 1) Already written to disk or bio already finished
7405 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
7406 		 *    Qgroup will be handled by its qgroup_record then.
7407 		 *    btrfs_qgroup_free_data() call will do nothing here.
7408 		 *
7409 		 * 2) Not written to disk yet
7410 		 *    Then btrfs_qgroup_free_data() call will clear the
7411 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
7412 		 *    reserved data space.
7413 		 *    Since the IO will never happen for this page.
7414 		 */
7415 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7416 		if (!inode_evicting) {
7417 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7418 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
7419 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7420 				 extra_flags, &cached_state);
7421 		}
7422 		cur = range_end + 1;
7423 	}
7424 	/*
7425 	 * We have iterated through all ordered extents of the page, the page
7426 	 * should not have Ordered anymore, or the above iteration
7427 	 * did something wrong.
7428 	 */
7429 	ASSERT(!folio_test_ordered(folio));
7430 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7431 	if (!inode_evicting)
7432 		__btrfs_release_folio(folio, GFP_NOFS);
7433 	clear_folio_extent_mapped(folio);
7434 }
7435 
7436 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7437 {
7438 	struct btrfs_truncate_control control = {
7439 		.inode = inode,
7440 		.ino = btrfs_ino(inode),
7441 		.min_type = BTRFS_EXTENT_DATA_KEY,
7442 		.clear_extent_range = true,
7443 	};
7444 	struct btrfs_root *root = inode->root;
7445 	struct btrfs_fs_info *fs_info = root->fs_info;
7446 	struct btrfs_block_rsv *rsv;
7447 	int ret;
7448 	struct btrfs_trans_handle *trans;
7449 	u64 mask = fs_info->sectorsize - 1;
7450 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7451 
7452 	if (!skip_writeback) {
7453 		ret = btrfs_wait_ordered_range(inode,
7454 					       inode->vfs_inode.i_size & (~mask),
7455 					       (u64)-1);
7456 		if (ret)
7457 			return ret;
7458 	}
7459 
7460 	/*
7461 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
7462 	 * things going on here:
7463 	 *
7464 	 * 1) We need to reserve space to update our inode.
7465 	 *
7466 	 * 2) We need to have something to cache all the space that is going to
7467 	 * be free'd up by the truncate operation, but also have some slack
7468 	 * space reserved in case it uses space during the truncate (thank you
7469 	 * very much snapshotting).
7470 	 *
7471 	 * And we need these to be separate.  The fact is we can use a lot of
7472 	 * space doing the truncate, and we have no earthly idea how much space
7473 	 * we will use, so we need the truncate reservation to be separate so it
7474 	 * doesn't end up using space reserved for updating the inode.  We also
7475 	 * need to be able to stop the transaction and start a new one, which
7476 	 * means we need to be able to update the inode several times, and we
7477 	 * have no idea of knowing how many times that will be, so we can't just
7478 	 * reserve 1 item for the entirety of the operation, so that has to be
7479 	 * done separately as well.
7480 	 *
7481 	 * So that leaves us with
7482 	 *
7483 	 * 1) rsv - for the truncate reservation, which we will steal from the
7484 	 * transaction reservation.
7485 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7486 	 * updating the inode.
7487 	 */
7488 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7489 	if (!rsv)
7490 		return -ENOMEM;
7491 	rsv->size = min_size;
7492 	rsv->failfast = true;
7493 
7494 	/*
7495 	 * 1 for the truncate slack space
7496 	 * 1 for updating the inode.
7497 	 */
7498 	trans = btrfs_start_transaction(root, 2);
7499 	if (IS_ERR(trans)) {
7500 		ret = PTR_ERR(trans);
7501 		goto out;
7502 	}
7503 
7504 	/* Migrate the slack space for the truncate to our reserve */
7505 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7506 				      min_size, false);
7507 	/*
7508 	 * We have reserved 2 metadata units when we started the transaction and
7509 	 * min_size matches 1 unit, so this should never fail, but if it does,
7510 	 * it's not critical we just fail truncation.
7511 	 */
7512 	if (WARN_ON(ret)) {
7513 		btrfs_end_transaction(trans);
7514 		goto out;
7515 	}
7516 
7517 	trans->block_rsv = rsv;
7518 
7519 	while (1) {
7520 		struct extent_state *cached_state = NULL;
7521 		const u64 new_size = inode->vfs_inode.i_size;
7522 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7523 
7524 		control.new_size = new_size;
7525 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7526 		/*
7527 		 * We want to drop from the next block forward in case this new
7528 		 * size is not block aligned since we will be keeping the last
7529 		 * block of the extent just the way it is.
7530 		 */
7531 		btrfs_drop_extent_map_range(inode,
7532 					    ALIGN(new_size, fs_info->sectorsize),
7533 					    (u64)-1, false);
7534 
7535 		ret = btrfs_truncate_inode_items(trans, root, &control);
7536 
7537 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7538 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7539 
7540 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7541 
7542 		trans->block_rsv = &fs_info->trans_block_rsv;
7543 		if (ret != -ENOSPC && ret != -EAGAIN)
7544 			break;
7545 
7546 		ret = btrfs_update_inode(trans, inode);
7547 		if (ret)
7548 			break;
7549 
7550 		btrfs_end_transaction(trans);
7551 		btrfs_btree_balance_dirty(fs_info);
7552 
7553 		trans = btrfs_start_transaction(root, 2);
7554 		if (IS_ERR(trans)) {
7555 			ret = PTR_ERR(trans);
7556 			trans = NULL;
7557 			break;
7558 		}
7559 
7560 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7561 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7562 					      rsv, min_size, false);
7563 		/*
7564 		 * We have reserved 2 metadata units when we started the
7565 		 * transaction and min_size matches 1 unit, so this should never
7566 		 * fail, but if it does, it's not critical we just fail truncation.
7567 		 */
7568 		if (WARN_ON(ret))
7569 			break;
7570 
7571 		trans->block_rsv = rsv;
7572 	}
7573 
7574 	/*
7575 	 * We can't call btrfs_truncate_block inside a trans handle as we could
7576 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7577 	 * know we've truncated everything except the last little bit, and can
7578 	 * do btrfs_truncate_block and then update the disk_i_size.
7579 	 */
7580 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7581 		btrfs_end_transaction(trans);
7582 		btrfs_btree_balance_dirty(fs_info);
7583 
7584 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7585 		if (ret)
7586 			goto out;
7587 		trans = btrfs_start_transaction(root, 1);
7588 		if (IS_ERR(trans)) {
7589 			ret = PTR_ERR(trans);
7590 			goto out;
7591 		}
7592 		btrfs_inode_safe_disk_i_size_write(inode, 0);
7593 	}
7594 
7595 	if (trans) {
7596 		int ret2;
7597 
7598 		trans->block_rsv = &fs_info->trans_block_rsv;
7599 		ret2 = btrfs_update_inode(trans, inode);
7600 		if (ret2 && !ret)
7601 			ret = ret2;
7602 
7603 		ret2 = btrfs_end_transaction(trans);
7604 		if (ret2 && !ret)
7605 			ret = ret2;
7606 		btrfs_btree_balance_dirty(fs_info);
7607 	}
7608 out:
7609 	btrfs_free_block_rsv(fs_info, rsv);
7610 	/*
7611 	 * So if we truncate and then write and fsync we normally would just
7612 	 * write the extents that changed, which is a problem if we need to
7613 	 * first truncate that entire inode.  So set this flag so we write out
7614 	 * all of the extents in the inode to the sync log so we're completely
7615 	 * safe.
7616 	 *
7617 	 * If no extents were dropped or trimmed we don't need to force the next
7618 	 * fsync to truncate all the inode's items from the log and re-log them
7619 	 * all. This means the truncate operation did not change the file size,
7620 	 * or changed it to a smaller size but there was only an implicit hole
7621 	 * between the old i_size and the new i_size, and there were no prealloc
7622 	 * extents beyond i_size to drop.
7623 	 */
7624 	if (control.extents_found > 0)
7625 		btrfs_set_inode_full_sync(inode);
7626 
7627 	return ret;
7628 }
7629 
7630 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7631 				     struct inode *dir)
7632 {
7633 	struct inode *inode;
7634 
7635 	inode = new_inode(dir->i_sb);
7636 	if (inode) {
7637 		/*
7638 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
7639 		 * the parent's sgid bit is set. This is probably a bug.
7640 		 */
7641 		inode_init_owner(idmap, inode, NULL,
7642 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
7643 		inode->i_op = &btrfs_dir_inode_operations;
7644 		inode->i_fop = &btrfs_dir_file_operations;
7645 	}
7646 	return inode;
7647 }
7648 
7649 struct inode *btrfs_alloc_inode(struct super_block *sb)
7650 {
7651 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7652 	struct btrfs_inode *ei;
7653 	struct inode *inode;
7654 
7655 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7656 	if (!ei)
7657 		return NULL;
7658 
7659 	ei->root = NULL;
7660 	ei->generation = 0;
7661 	ei->last_trans = 0;
7662 	ei->last_sub_trans = 0;
7663 	ei->logged_trans = 0;
7664 	ei->delalloc_bytes = 0;
7665 	ei->new_delalloc_bytes = 0;
7666 	ei->defrag_bytes = 0;
7667 	ei->disk_i_size = 0;
7668 	ei->flags = 0;
7669 	ei->ro_flags = 0;
7670 	/*
7671 	 * ->index_cnt will be properly initialized later when creating a new
7672 	 * inode (btrfs_create_new_inode()) or when reading an existing inode
7673 	 * from disk (btrfs_read_locked_inode()).
7674 	 */
7675 	ei->csum_bytes = 0;
7676 	ei->dir_index = 0;
7677 	ei->last_unlink_trans = 0;
7678 	ei->last_reflink_trans = 0;
7679 	ei->last_log_commit = 0;
7680 
7681 	spin_lock_init(&ei->lock);
7682 	ei->outstanding_extents = 0;
7683 	if (sb->s_magic != BTRFS_TEST_MAGIC)
7684 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7685 					      BTRFS_BLOCK_RSV_DELALLOC);
7686 	ei->runtime_flags = 0;
7687 	ei->prop_compress = BTRFS_COMPRESS_NONE;
7688 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
7689 
7690 	ei->delayed_node = NULL;
7691 
7692 	ei->i_otime_sec = 0;
7693 	ei->i_otime_nsec = 0;
7694 
7695 	inode = &ei->vfs_inode;
7696 	extent_map_tree_init(&ei->extent_tree);
7697 
7698 	/* This io tree sets the valid inode. */
7699 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7700 	ei->io_tree.inode = ei;
7701 
7702 	ei->file_extent_tree = NULL;
7703 
7704 	mutex_init(&ei->log_mutex);
7705 	spin_lock_init(&ei->ordered_tree_lock);
7706 	ei->ordered_tree = RB_ROOT;
7707 	ei->ordered_tree_last = NULL;
7708 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7709 	INIT_LIST_HEAD(&ei->delayed_iput);
7710 	init_rwsem(&ei->i_mmap_lock);
7711 
7712 	return inode;
7713 }
7714 
7715 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7716 void btrfs_test_destroy_inode(struct inode *inode)
7717 {
7718 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7719 	kfree(BTRFS_I(inode)->file_extent_tree);
7720 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7721 }
7722 #endif
7723 
7724 void btrfs_free_inode(struct inode *inode)
7725 {
7726 	kfree(BTRFS_I(inode)->file_extent_tree);
7727 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7728 }
7729 
7730 void btrfs_destroy_inode(struct inode *vfs_inode)
7731 {
7732 	struct btrfs_ordered_extent *ordered;
7733 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7734 	struct btrfs_root *root = inode->root;
7735 	bool freespace_inode;
7736 
7737 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7738 	WARN_ON(vfs_inode->i_data.nrpages);
7739 	WARN_ON(inode->block_rsv.reserved);
7740 	WARN_ON(inode->block_rsv.size);
7741 	WARN_ON(inode->outstanding_extents);
7742 	if (!S_ISDIR(vfs_inode->i_mode)) {
7743 		WARN_ON(inode->delalloc_bytes);
7744 		WARN_ON(inode->new_delalloc_bytes);
7745 		WARN_ON(inode->csum_bytes);
7746 	}
7747 	if (!root || !btrfs_is_data_reloc_root(root))
7748 		WARN_ON(inode->defrag_bytes);
7749 
7750 	/*
7751 	 * This can happen where we create an inode, but somebody else also
7752 	 * created the same inode and we need to destroy the one we already
7753 	 * created.
7754 	 */
7755 	if (!root)
7756 		return;
7757 
7758 	/*
7759 	 * If this is a free space inode do not take the ordered extents lockdep
7760 	 * map.
7761 	 */
7762 	freespace_inode = btrfs_is_free_space_inode(inode);
7763 
7764 	while (1) {
7765 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7766 		if (!ordered)
7767 			break;
7768 		else {
7769 			btrfs_err(root->fs_info,
7770 				  "found ordered extent %llu %llu on inode cleanup",
7771 				  ordered->file_offset, ordered->num_bytes);
7772 
7773 			if (!freespace_inode)
7774 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7775 
7776 			btrfs_remove_ordered_extent(inode, ordered);
7777 			btrfs_put_ordered_extent(ordered);
7778 			btrfs_put_ordered_extent(ordered);
7779 		}
7780 	}
7781 	btrfs_qgroup_check_reserved_leak(inode);
7782 	btrfs_del_inode_from_root(inode);
7783 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7784 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7785 	btrfs_put_root(inode->root);
7786 }
7787 
7788 int btrfs_drop_inode(struct inode *inode)
7789 {
7790 	struct btrfs_root *root = BTRFS_I(inode)->root;
7791 
7792 	if (root == NULL)
7793 		return 1;
7794 
7795 	/* the snap/subvol tree is on deleting */
7796 	if (btrfs_root_refs(&root->root_item) == 0)
7797 		return 1;
7798 	else
7799 		return generic_drop_inode(inode);
7800 }
7801 
7802 static void init_once(void *foo)
7803 {
7804 	struct btrfs_inode *ei = foo;
7805 
7806 	inode_init_once(&ei->vfs_inode);
7807 }
7808 
7809 void __cold btrfs_destroy_cachep(void)
7810 {
7811 	/*
7812 	 * Make sure all delayed rcu free inodes are flushed before we
7813 	 * destroy cache.
7814 	 */
7815 	rcu_barrier();
7816 	kmem_cache_destroy(btrfs_inode_cachep);
7817 }
7818 
7819 int __init btrfs_init_cachep(void)
7820 {
7821 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7822 			sizeof(struct btrfs_inode), 0,
7823 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7824 			init_once);
7825 	if (!btrfs_inode_cachep)
7826 		return -ENOMEM;
7827 
7828 	return 0;
7829 }
7830 
7831 static int btrfs_getattr(struct mnt_idmap *idmap,
7832 			 const struct path *path, struct kstat *stat,
7833 			 u32 request_mask, unsigned int flags)
7834 {
7835 	u64 delalloc_bytes;
7836 	u64 inode_bytes;
7837 	struct inode *inode = d_inode(path->dentry);
7838 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7839 	u32 bi_flags = BTRFS_I(inode)->flags;
7840 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7841 
7842 	stat->result_mask |= STATX_BTIME;
7843 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7844 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7845 	if (bi_flags & BTRFS_INODE_APPEND)
7846 		stat->attributes |= STATX_ATTR_APPEND;
7847 	if (bi_flags & BTRFS_INODE_COMPRESS)
7848 		stat->attributes |= STATX_ATTR_COMPRESSED;
7849 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
7850 		stat->attributes |= STATX_ATTR_IMMUTABLE;
7851 	if (bi_flags & BTRFS_INODE_NODUMP)
7852 		stat->attributes |= STATX_ATTR_NODUMP;
7853 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7854 		stat->attributes |= STATX_ATTR_VERITY;
7855 
7856 	stat->attributes_mask |= (STATX_ATTR_APPEND |
7857 				  STATX_ATTR_COMPRESSED |
7858 				  STATX_ATTR_IMMUTABLE |
7859 				  STATX_ATTR_NODUMP);
7860 
7861 	generic_fillattr(idmap, request_mask, inode, stat);
7862 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7863 
7864 	stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7865 	stat->result_mask |= STATX_SUBVOL;
7866 
7867 	spin_lock(&BTRFS_I(inode)->lock);
7868 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7869 	inode_bytes = inode_get_bytes(inode);
7870 	spin_unlock(&BTRFS_I(inode)->lock);
7871 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
7872 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7873 	return 0;
7874 }
7875 
7876 static int btrfs_rename_exchange(struct inode *old_dir,
7877 			      struct dentry *old_dentry,
7878 			      struct inode *new_dir,
7879 			      struct dentry *new_dentry)
7880 {
7881 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7882 	struct btrfs_trans_handle *trans;
7883 	unsigned int trans_num_items;
7884 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7885 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7886 	struct inode *new_inode = new_dentry->d_inode;
7887 	struct inode *old_inode = old_dentry->d_inode;
7888 	struct btrfs_rename_ctx old_rename_ctx;
7889 	struct btrfs_rename_ctx new_rename_ctx;
7890 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7891 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7892 	u64 old_idx = 0;
7893 	u64 new_idx = 0;
7894 	int ret;
7895 	int ret2;
7896 	bool need_abort = false;
7897 	struct fscrypt_name old_fname, new_fname;
7898 	struct fscrypt_str *old_name, *new_name;
7899 
7900 	/*
7901 	 * For non-subvolumes allow exchange only within one subvolume, in the
7902 	 * same inode namespace. Two subvolumes (represented as directory) can
7903 	 * be exchanged as they're a logical link and have a fixed inode number.
7904 	 */
7905 	if (root != dest &&
7906 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7907 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
7908 		return -EXDEV;
7909 
7910 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7911 	if (ret)
7912 		return ret;
7913 
7914 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7915 	if (ret) {
7916 		fscrypt_free_filename(&old_fname);
7917 		return ret;
7918 	}
7919 
7920 	old_name = &old_fname.disk_name;
7921 	new_name = &new_fname.disk_name;
7922 
7923 	/* close the race window with snapshot create/destroy ioctl */
7924 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7925 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
7926 		down_read(&fs_info->subvol_sem);
7927 
7928 	/*
7929 	 * For each inode:
7930 	 * 1 to remove old dir item
7931 	 * 1 to remove old dir index
7932 	 * 1 to add new dir item
7933 	 * 1 to add new dir index
7934 	 * 1 to update parent inode
7935 	 *
7936 	 * If the parents are the same, we only need to account for one
7937 	 */
7938 	trans_num_items = (old_dir == new_dir ? 9 : 10);
7939 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7940 		/*
7941 		 * 1 to remove old root ref
7942 		 * 1 to remove old root backref
7943 		 * 1 to add new root ref
7944 		 * 1 to add new root backref
7945 		 */
7946 		trans_num_items += 4;
7947 	} else {
7948 		/*
7949 		 * 1 to update inode item
7950 		 * 1 to remove old inode ref
7951 		 * 1 to add new inode ref
7952 		 */
7953 		trans_num_items += 3;
7954 	}
7955 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7956 		trans_num_items += 4;
7957 	else
7958 		trans_num_items += 3;
7959 	trans = btrfs_start_transaction(root, trans_num_items);
7960 	if (IS_ERR(trans)) {
7961 		ret = PTR_ERR(trans);
7962 		goto out_notrans;
7963 	}
7964 
7965 	if (dest != root) {
7966 		ret = btrfs_record_root_in_trans(trans, dest);
7967 		if (ret)
7968 			goto out_fail;
7969 	}
7970 
7971 	/*
7972 	 * We need to find a free sequence number both in the source and
7973 	 * in the destination directory for the exchange.
7974 	 */
7975 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7976 	if (ret)
7977 		goto out_fail;
7978 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7979 	if (ret)
7980 		goto out_fail;
7981 
7982 	BTRFS_I(old_inode)->dir_index = 0ULL;
7983 	BTRFS_I(new_inode)->dir_index = 0ULL;
7984 
7985 	/* Reference for the source. */
7986 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7987 		/* force full log commit if subvolume involved. */
7988 		btrfs_set_log_full_commit(trans);
7989 	} else {
7990 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
7991 					     btrfs_ino(BTRFS_I(new_dir)),
7992 					     old_idx);
7993 		if (ret)
7994 			goto out_fail;
7995 		need_abort = true;
7996 	}
7997 
7998 	/* And now for the dest. */
7999 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8000 		/* force full log commit if subvolume involved. */
8001 		btrfs_set_log_full_commit(trans);
8002 	} else {
8003 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8004 					     btrfs_ino(BTRFS_I(old_dir)),
8005 					     new_idx);
8006 		if (ret) {
8007 			if (need_abort)
8008 				btrfs_abort_transaction(trans, ret);
8009 			goto out_fail;
8010 		}
8011 	}
8012 
8013 	/* Update inode version and ctime/mtime. */
8014 	inode_inc_iversion(old_dir);
8015 	inode_inc_iversion(new_dir);
8016 	inode_inc_iversion(old_inode);
8017 	inode_inc_iversion(new_inode);
8018 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8019 
8020 	if (old_dentry->d_parent != new_dentry->d_parent) {
8021 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8022 					BTRFS_I(old_inode), true);
8023 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8024 					BTRFS_I(new_inode), true);
8025 	}
8026 
8027 	/* src is a subvolume */
8028 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8029 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8030 	} else { /* src is an inode */
8031 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8032 					   BTRFS_I(old_dentry->d_inode),
8033 					   old_name, &old_rename_ctx);
8034 		if (!ret)
8035 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8036 	}
8037 	if (ret) {
8038 		btrfs_abort_transaction(trans, ret);
8039 		goto out_fail;
8040 	}
8041 
8042 	/* dest is a subvolume */
8043 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8044 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8045 	} else { /* dest is an inode */
8046 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8047 					   BTRFS_I(new_dentry->d_inode),
8048 					   new_name, &new_rename_ctx);
8049 		if (!ret)
8050 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8051 	}
8052 	if (ret) {
8053 		btrfs_abort_transaction(trans, ret);
8054 		goto out_fail;
8055 	}
8056 
8057 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8058 			     new_name, 0, old_idx);
8059 	if (ret) {
8060 		btrfs_abort_transaction(trans, ret);
8061 		goto out_fail;
8062 	}
8063 
8064 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8065 			     old_name, 0, new_idx);
8066 	if (ret) {
8067 		btrfs_abort_transaction(trans, ret);
8068 		goto out_fail;
8069 	}
8070 
8071 	if (old_inode->i_nlink == 1)
8072 		BTRFS_I(old_inode)->dir_index = old_idx;
8073 	if (new_inode->i_nlink == 1)
8074 		BTRFS_I(new_inode)->dir_index = new_idx;
8075 
8076 	/*
8077 	 * Now pin the logs of the roots. We do it to ensure that no other task
8078 	 * can sync the logs while we are in progress with the rename, because
8079 	 * that could result in an inconsistency in case any of the inodes that
8080 	 * are part of this rename operation were logged before.
8081 	 */
8082 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8083 		btrfs_pin_log_trans(root);
8084 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8085 		btrfs_pin_log_trans(dest);
8086 
8087 	/* Do the log updates for all inodes. */
8088 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8089 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8090 				   old_rename_ctx.index, new_dentry->d_parent);
8091 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8092 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8093 				   new_rename_ctx.index, old_dentry->d_parent);
8094 
8095 	/* Now unpin the logs. */
8096 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8097 		btrfs_end_log_trans(root);
8098 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8099 		btrfs_end_log_trans(dest);
8100 out_fail:
8101 	ret2 = btrfs_end_transaction(trans);
8102 	ret = ret ? ret : ret2;
8103 out_notrans:
8104 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8105 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8106 		up_read(&fs_info->subvol_sem);
8107 
8108 	fscrypt_free_filename(&new_fname);
8109 	fscrypt_free_filename(&old_fname);
8110 	return ret;
8111 }
8112 
8113 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8114 					struct inode *dir)
8115 {
8116 	struct inode *inode;
8117 
8118 	inode = new_inode(dir->i_sb);
8119 	if (inode) {
8120 		inode_init_owner(idmap, inode, dir,
8121 				 S_IFCHR | WHITEOUT_MODE);
8122 		inode->i_op = &btrfs_special_inode_operations;
8123 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8124 	}
8125 	return inode;
8126 }
8127 
8128 static int btrfs_rename(struct mnt_idmap *idmap,
8129 			struct inode *old_dir, struct dentry *old_dentry,
8130 			struct inode *new_dir, struct dentry *new_dentry,
8131 			unsigned int flags)
8132 {
8133 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8134 	struct btrfs_new_inode_args whiteout_args = {
8135 		.dir = old_dir,
8136 		.dentry = old_dentry,
8137 	};
8138 	struct btrfs_trans_handle *trans;
8139 	unsigned int trans_num_items;
8140 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8141 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8142 	struct inode *new_inode = d_inode(new_dentry);
8143 	struct inode *old_inode = d_inode(old_dentry);
8144 	struct btrfs_rename_ctx rename_ctx;
8145 	u64 index = 0;
8146 	int ret;
8147 	int ret2;
8148 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8149 	struct fscrypt_name old_fname, new_fname;
8150 
8151 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8152 		return -EPERM;
8153 
8154 	/* we only allow rename subvolume link between subvolumes */
8155 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8156 		return -EXDEV;
8157 
8158 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8159 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8160 		return -ENOTEMPTY;
8161 
8162 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8163 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8164 		return -ENOTEMPTY;
8165 
8166 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8167 	if (ret)
8168 		return ret;
8169 
8170 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8171 	if (ret) {
8172 		fscrypt_free_filename(&old_fname);
8173 		return ret;
8174 	}
8175 
8176 	/* check for collisions, even if the  name isn't there */
8177 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8178 	if (ret) {
8179 		if (ret == -EEXIST) {
8180 			/* we shouldn't get
8181 			 * eexist without a new_inode */
8182 			if (WARN_ON(!new_inode)) {
8183 				goto out_fscrypt_names;
8184 			}
8185 		} else {
8186 			/* maybe -EOVERFLOW */
8187 			goto out_fscrypt_names;
8188 		}
8189 	}
8190 	ret = 0;
8191 
8192 	/*
8193 	 * we're using rename to replace one file with another.  Start IO on it
8194 	 * now so  we don't add too much work to the end of the transaction
8195 	 */
8196 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8197 		filemap_flush(old_inode->i_mapping);
8198 
8199 	if (flags & RENAME_WHITEOUT) {
8200 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8201 		if (!whiteout_args.inode) {
8202 			ret = -ENOMEM;
8203 			goto out_fscrypt_names;
8204 		}
8205 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8206 		if (ret)
8207 			goto out_whiteout_inode;
8208 	} else {
8209 		/* 1 to update the old parent inode. */
8210 		trans_num_items = 1;
8211 	}
8212 
8213 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8214 		/* Close the race window with snapshot create/destroy ioctl */
8215 		down_read(&fs_info->subvol_sem);
8216 		/*
8217 		 * 1 to remove old root ref
8218 		 * 1 to remove old root backref
8219 		 * 1 to add new root ref
8220 		 * 1 to add new root backref
8221 		 */
8222 		trans_num_items += 4;
8223 	} else {
8224 		/*
8225 		 * 1 to update inode
8226 		 * 1 to remove old inode ref
8227 		 * 1 to add new inode ref
8228 		 */
8229 		trans_num_items += 3;
8230 	}
8231 	/*
8232 	 * 1 to remove old dir item
8233 	 * 1 to remove old dir index
8234 	 * 1 to add new dir item
8235 	 * 1 to add new dir index
8236 	 */
8237 	trans_num_items += 4;
8238 	/* 1 to update new parent inode if it's not the same as the old parent */
8239 	if (new_dir != old_dir)
8240 		trans_num_items++;
8241 	if (new_inode) {
8242 		/*
8243 		 * 1 to update inode
8244 		 * 1 to remove inode ref
8245 		 * 1 to remove dir item
8246 		 * 1 to remove dir index
8247 		 * 1 to possibly add orphan item
8248 		 */
8249 		trans_num_items += 5;
8250 	}
8251 	trans = btrfs_start_transaction(root, trans_num_items);
8252 	if (IS_ERR(trans)) {
8253 		ret = PTR_ERR(trans);
8254 		goto out_notrans;
8255 	}
8256 
8257 	if (dest != root) {
8258 		ret = btrfs_record_root_in_trans(trans, dest);
8259 		if (ret)
8260 			goto out_fail;
8261 	}
8262 
8263 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8264 	if (ret)
8265 		goto out_fail;
8266 
8267 	BTRFS_I(old_inode)->dir_index = 0ULL;
8268 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8269 		/* force full log commit if subvolume involved. */
8270 		btrfs_set_log_full_commit(trans);
8271 	} else {
8272 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8273 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
8274 					     index);
8275 		if (ret)
8276 			goto out_fail;
8277 	}
8278 
8279 	inode_inc_iversion(old_dir);
8280 	inode_inc_iversion(new_dir);
8281 	inode_inc_iversion(old_inode);
8282 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8283 
8284 	if (old_dentry->d_parent != new_dentry->d_parent)
8285 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8286 					BTRFS_I(old_inode), true);
8287 
8288 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8289 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8290 	} else {
8291 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8292 					   BTRFS_I(d_inode(old_dentry)),
8293 					   &old_fname.disk_name, &rename_ctx);
8294 		if (!ret)
8295 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8296 	}
8297 	if (ret) {
8298 		btrfs_abort_transaction(trans, ret);
8299 		goto out_fail;
8300 	}
8301 
8302 	if (new_inode) {
8303 		inode_inc_iversion(new_inode);
8304 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8305 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8306 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8307 			BUG_ON(new_inode->i_nlink == 0);
8308 		} else {
8309 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8310 						 BTRFS_I(d_inode(new_dentry)),
8311 						 &new_fname.disk_name);
8312 		}
8313 		if (!ret && new_inode->i_nlink == 0)
8314 			ret = btrfs_orphan_add(trans,
8315 					BTRFS_I(d_inode(new_dentry)));
8316 		if (ret) {
8317 			btrfs_abort_transaction(trans, ret);
8318 			goto out_fail;
8319 		}
8320 	}
8321 
8322 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8323 			     &new_fname.disk_name, 0, index);
8324 	if (ret) {
8325 		btrfs_abort_transaction(trans, ret);
8326 		goto out_fail;
8327 	}
8328 
8329 	if (old_inode->i_nlink == 1)
8330 		BTRFS_I(old_inode)->dir_index = index;
8331 
8332 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8333 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8334 				   rename_ctx.index, new_dentry->d_parent);
8335 
8336 	if (flags & RENAME_WHITEOUT) {
8337 		ret = btrfs_create_new_inode(trans, &whiteout_args);
8338 		if (ret) {
8339 			btrfs_abort_transaction(trans, ret);
8340 			goto out_fail;
8341 		} else {
8342 			unlock_new_inode(whiteout_args.inode);
8343 			iput(whiteout_args.inode);
8344 			whiteout_args.inode = NULL;
8345 		}
8346 	}
8347 out_fail:
8348 	ret2 = btrfs_end_transaction(trans);
8349 	ret = ret ? ret : ret2;
8350 out_notrans:
8351 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8352 		up_read(&fs_info->subvol_sem);
8353 	if (flags & RENAME_WHITEOUT)
8354 		btrfs_new_inode_args_destroy(&whiteout_args);
8355 out_whiteout_inode:
8356 	if (flags & RENAME_WHITEOUT)
8357 		iput(whiteout_args.inode);
8358 out_fscrypt_names:
8359 	fscrypt_free_filename(&old_fname);
8360 	fscrypt_free_filename(&new_fname);
8361 	return ret;
8362 }
8363 
8364 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8365 			 struct dentry *old_dentry, struct inode *new_dir,
8366 			 struct dentry *new_dentry, unsigned int flags)
8367 {
8368 	int ret;
8369 
8370 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8371 		return -EINVAL;
8372 
8373 	if (flags & RENAME_EXCHANGE)
8374 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8375 					    new_dentry);
8376 	else
8377 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8378 				   new_dentry, flags);
8379 
8380 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8381 
8382 	return ret;
8383 }
8384 
8385 struct btrfs_delalloc_work {
8386 	struct inode *inode;
8387 	struct completion completion;
8388 	struct list_head list;
8389 	struct btrfs_work work;
8390 };
8391 
8392 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8393 {
8394 	struct btrfs_delalloc_work *delalloc_work;
8395 	struct inode *inode;
8396 
8397 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8398 				     work);
8399 	inode = delalloc_work->inode;
8400 	filemap_flush(inode->i_mapping);
8401 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8402 				&BTRFS_I(inode)->runtime_flags))
8403 		filemap_flush(inode->i_mapping);
8404 
8405 	iput(inode);
8406 	complete(&delalloc_work->completion);
8407 }
8408 
8409 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8410 {
8411 	struct btrfs_delalloc_work *work;
8412 
8413 	work = kmalloc(sizeof(*work), GFP_NOFS);
8414 	if (!work)
8415 		return NULL;
8416 
8417 	init_completion(&work->completion);
8418 	INIT_LIST_HEAD(&work->list);
8419 	work->inode = inode;
8420 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8421 
8422 	return work;
8423 }
8424 
8425 /*
8426  * some fairly slow code that needs optimization. This walks the list
8427  * of all the inodes with pending delalloc and forces them to disk.
8428  */
8429 static int start_delalloc_inodes(struct btrfs_root *root,
8430 				 struct writeback_control *wbc, bool snapshot,
8431 				 bool in_reclaim_context)
8432 {
8433 	struct btrfs_inode *binode;
8434 	struct inode *inode;
8435 	struct btrfs_delalloc_work *work, *next;
8436 	LIST_HEAD(works);
8437 	LIST_HEAD(splice);
8438 	int ret = 0;
8439 	bool full_flush = wbc->nr_to_write == LONG_MAX;
8440 
8441 	mutex_lock(&root->delalloc_mutex);
8442 	spin_lock(&root->delalloc_lock);
8443 	list_splice_init(&root->delalloc_inodes, &splice);
8444 	while (!list_empty(&splice)) {
8445 		binode = list_entry(splice.next, struct btrfs_inode,
8446 				    delalloc_inodes);
8447 
8448 		list_move_tail(&binode->delalloc_inodes,
8449 			       &root->delalloc_inodes);
8450 
8451 		if (in_reclaim_context &&
8452 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8453 			continue;
8454 
8455 		inode = igrab(&binode->vfs_inode);
8456 		if (!inode) {
8457 			cond_resched_lock(&root->delalloc_lock);
8458 			continue;
8459 		}
8460 		spin_unlock(&root->delalloc_lock);
8461 
8462 		if (snapshot)
8463 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8464 				&binode->runtime_flags);
8465 		if (full_flush) {
8466 			work = btrfs_alloc_delalloc_work(inode);
8467 			if (!work) {
8468 				iput(inode);
8469 				ret = -ENOMEM;
8470 				goto out;
8471 			}
8472 			list_add_tail(&work->list, &works);
8473 			btrfs_queue_work(root->fs_info->flush_workers,
8474 					 &work->work);
8475 		} else {
8476 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8477 			btrfs_add_delayed_iput(BTRFS_I(inode));
8478 			if (ret || wbc->nr_to_write <= 0)
8479 				goto out;
8480 		}
8481 		cond_resched();
8482 		spin_lock(&root->delalloc_lock);
8483 	}
8484 	spin_unlock(&root->delalloc_lock);
8485 
8486 out:
8487 	list_for_each_entry_safe(work, next, &works, list) {
8488 		list_del_init(&work->list);
8489 		wait_for_completion(&work->completion);
8490 		kfree(work);
8491 	}
8492 
8493 	if (!list_empty(&splice)) {
8494 		spin_lock(&root->delalloc_lock);
8495 		list_splice_tail(&splice, &root->delalloc_inodes);
8496 		spin_unlock(&root->delalloc_lock);
8497 	}
8498 	mutex_unlock(&root->delalloc_mutex);
8499 	return ret;
8500 }
8501 
8502 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8503 {
8504 	struct writeback_control wbc = {
8505 		.nr_to_write = LONG_MAX,
8506 		.sync_mode = WB_SYNC_NONE,
8507 		.range_start = 0,
8508 		.range_end = LLONG_MAX,
8509 	};
8510 	struct btrfs_fs_info *fs_info = root->fs_info;
8511 
8512 	if (BTRFS_FS_ERROR(fs_info))
8513 		return -EROFS;
8514 
8515 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8516 }
8517 
8518 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8519 			       bool in_reclaim_context)
8520 {
8521 	struct writeback_control wbc = {
8522 		.nr_to_write = nr,
8523 		.sync_mode = WB_SYNC_NONE,
8524 		.range_start = 0,
8525 		.range_end = LLONG_MAX,
8526 	};
8527 	struct btrfs_root *root;
8528 	LIST_HEAD(splice);
8529 	int ret;
8530 
8531 	if (BTRFS_FS_ERROR(fs_info))
8532 		return -EROFS;
8533 
8534 	mutex_lock(&fs_info->delalloc_root_mutex);
8535 	spin_lock(&fs_info->delalloc_root_lock);
8536 	list_splice_init(&fs_info->delalloc_roots, &splice);
8537 	while (!list_empty(&splice)) {
8538 		/*
8539 		 * Reset nr_to_write here so we know that we're doing a full
8540 		 * flush.
8541 		 */
8542 		if (nr == LONG_MAX)
8543 			wbc.nr_to_write = LONG_MAX;
8544 
8545 		root = list_first_entry(&splice, struct btrfs_root,
8546 					delalloc_root);
8547 		root = btrfs_grab_root(root);
8548 		BUG_ON(!root);
8549 		list_move_tail(&root->delalloc_root,
8550 			       &fs_info->delalloc_roots);
8551 		spin_unlock(&fs_info->delalloc_root_lock);
8552 
8553 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8554 		btrfs_put_root(root);
8555 		if (ret < 0 || wbc.nr_to_write <= 0)
8556 			goto out;
8557 		spin_lock(&fs_info->delalloc_root_lock);
8558 	}
8559 	spin_unlock(&fs_info->delalloc_root_lock);
8560 
8561 	ret = 0;
8562 out:
8563 	if (!list_empty(&splice)) {
8564 		spin_lock(&fs_info->delalloc_root_lock);
8565 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8566 		spin_unlock(&fs_info->delalloc_root_lock);
8567 	}
8568 	mutex_unlock(&fs_info->delalloc_root_mutex);
8569 	return ret;
8570 }
8571 
8572 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8573 			 struct dentry *dentry, const char *symname)
8574 {
8575 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8576 	struct btrfs_trans_handle *trans;
8577 	struct btrfs_root *root = BTRFS_I(dir)->root;
8578 	struct btrfs_path *path;
8579 	struct btrfs_key key;
8580 	struct inode *inode;
8581 	struct btrfs_new_inode_args new_inode_args = {
8582 		.dir = dir,
8583 		.dentry = dentry,
8584 	};
8585 	unsigned int trans_num_items;
8586 	int err;
8587 	int name_len;
8588 	int datasize;
8589 	unsigned long ptr;
8590 	struct btrfs_file_extent_item *ei;
8591 	struct extent_buffer *leaf;
8592 
8593 	name_len = strlen(symname);
8594 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8595 		return -ENAMETOOLONG;
8596 
8597 	inode = new_inode(dir->i_sb);
8598 	if (!inode)
8599 		return -ENOMEM;
8600 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8601 	inode->i_op = &btrfs_symlink_inode_operations;
8602 	inode_nohighmem(inode);
8603 	inode->i_mapping->a_ops = &btrfs_aops;
8604 	btrfs_i_size_write(BTRFS_I(inode), name_len);
8605 	inode_set_bytes(inode, name_len);
8606 
8607 	new_inode_args.inode = inode;
8608 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8609 	if (err)
8610 		goto out_inode;
8611 	/* 1 additional item for the inline extent */
8612 	trans_num_items++;
8613 
8614 	trans = btrfs_start_transaction(root, trans_num_items);
8615 	if (IS_ERR(trans)) {
8616 		err = PTR_ERR(trans);
8617 		goto out_new_inode_args;
8618 	}
8619 
8620 	err = btrfs_create_new_inode(trans, &new_inode_args);
8621 	if (err)
8622 		goto out;
8623 
8624 	path = btrfs_alloc_path();
8625 	if (!path) {
8626 		err = -ENOMEM;
8627 		btrfs_abort_transaction(trans, err);
8628 		discard_new_inode(inode);
8629 		inode = NULL;
8630 		goto out;
8631 	}
8632 	key.objectid = btrfs_ino(BTRFS_I(inode));
8633 	key.offset = 0;
8634 	key.type = BTRFS_EXTENT_DATA_KEY;
8635 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8636 	err = btrfs_insert_empty_item(trans, root, path, &key,
8637 				      datasize);
8638 	if (err) {
8639 		btrfs_abort_transaction(trans, err);
8640 		btrfs_free_path(path);
8641 		discard_new_inode(inode);
8642 		inode = NULL;
8643 		goto out;
8644 	}
8645 	leaf = path->nodes[0];
8646 	ei = btrfs_item_ptr(leaf, path->slots[0],
8647 			    struct btrfs_file_extent_item);
8648 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8649 	btrfs_set_file_extent_type(leaf, ei,
8650 				   BTRFS_FILE_EXTENT_INLINE);
8651 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8652 	btrfs_set_file_extent_compression(leaf, ei, 0);
8653 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8654 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8655 
8656 	ptr = btrfs_file_extent_inline_start(ei);
8657 	write_extent_buffer(leaf, symname, ptr, name_len);
8658 	btrfs_mark_buffer_dirty(trans, leaf);
8659 	btrfs_free_path(path);
8660 
8661 	d_instantiate_new(dentry, inode);
8662 	err = 0;
8663 out:
8664 	btrfs_end_transaction(trans);
8665 	btrfs_btree_balance_dirty(fs_info);
8666 out_new_inode_args:
8667 	btrfs_new_inode_args_destroy(&new_inode_args);
8668 out_inode:
8669 	if (err)
8670 		iput(inode);
8671 	return err;
8672 }
8673 
8674 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8675 				       struct btrfs_trans_handle *trans_in,
8676 				       struct btrfs_inode *inode,
8677 				       struct btrfs_key *ins,
8678 				       u64 file_offset)
8679 {
8680 	struct btrfs_file_extent_item stack_fi;
8681 	struct btrfs_replace_extent_info extent_info;
8682 	struct btrfs_trans_handle *trans = trans_in;
8683 	struct btrfs_path *path;
8684 	u64 start = ins->objectid;
8685 	u64 len = ins->offset;
8686 	u64 qgroup_released = 0;
8687 	int ret;
8688 
8689 	memset(&stack_fi, 0, sizeof(stack_fi));
8690 
8691 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8692 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8693 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8694 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8695 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8696 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8697 	/* Encryption and other encoding is reserved and all 0 */
8698 
8699 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8700 	if (ret < 0)
8701 		return ERR_PTR(ret);
8702 
8703 	if (trans) {
8704 		ret = insert_reserved_file_extent(trans, inode,
8705 						  file_offset, &stack_fi,
8706 						  true, qgroup_released);
8707 		if (ret)
8708 			goto free_qgroup;
8709 		return trans;
8710 	}
8711 
8712 	extent_info.disk_offset = start;
8713 	extent_info.disk_len = len;
8714 	extent_info.data_offset = 0;
8715 	extent_info.data_len = len;
8716 	extent_info.file_offset = file_offset;
8717 	extent_info.extent_buf = (char *)&stack_fi;
8718 	extent_info.is_new_extent = true;
8719 	extent_info.update_times = true;
8720 	extent_info.qgroup_reserved = qgroup_released;
8721 	extent_info.insertions = 0;
8722 
8723 	path = btrfs_alloc_path();
8724 	if (!path) {
8725 		ret = -ENOMEM;
8726 		goto free_qgroup;
8727 	}
8728 
8729 	ret = btrfs_replace_file_extents(inode, path, file_offset,
8730 				     file_offset + len - 1, &extent_info,
8731 				     &trans);
8732 	btrfs_free_path(path);
8733 	if (ret)
8734 		goto free_qgroup;
8735 	return trans;
8736 
8737 free_qgroup:
8738 	/*
8739 	 * We have released qgroup data range at the beginning of the function,
8740 	 * and normally qgroup_released bytes will be freed when committing
8741 	 * transaction.
8742 	 * But if we error out early, we have to free what we have released
8743 	 * or we leak qgroup data reservation.
8744 	 */
8745 	btrfs_qgroup_free_refroot(inode->root->fs_info,
8746 			btrfs_root_id(inode->root), qgroup_released,
8747 			BTRFS_QGROUP_RSV_DATA);
8748 	return ERR_PTR(ret);
8749 }
8750 
8751 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8752 				       u64 start, u64 num_bytes, u64 min_size,
8753 				       loff_t actual_len, u64 *alloc_hint,
8754 				       struct btrfs_trans_handle *trans)
8755 {
8756 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8757 	struct extent_map *em;
8758 	struct btrfs_root *root = BTRFS_I(inode)->root;
8759 	struct btrfs_key ins;
8760 	u64 cur_offset = start;
8761 	u64 clear_offset = start;
8762 	u64 i_size;
8763 	u64 cur_bytes;
8764 	u64 last_alloc = (u64)-1;
8765 	int ret = 0;
8766 	bool own_trans = true;
8767 	u64 end = start + num_bytes - 1;
8768 
8769 	if (trans)
8770 		own_trans = false;
8771 	while (num_bytes > 0) {
8772 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
8773 		cur_bytes = max(cur_bytes, min_size);
8774 		/*
8775 		 * If we are severely fragmented we could end up with really
8776 		 * small allocations, so if the allocator is returning small
8777 		 * chunks lets make its job easier by only searching for those
8778 		 * sized chunks.
8779 		 */
8780 		cur_bytes = min(cur_bytes, last_alloc);
8781 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8782 				min_size, 0, *alloc_hint, &ins, 1, 0);
8783 		if (ret)
8784 			break;
8785 
8786 		/*
8787 		 * We've reserved this space, and thus converted it from
8788 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
8789 		 * from here on out we will only need to clear our reservation
8790 		 * for the remaining unreserved area, so advance our
8791 		 * clear_offset by our extent size.
8792 		 */
8793 		clear_offset += ins.offset;
8794 
8795 		last_alloc = ins.offset;
8796 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8797 						    &ins, cur_offset);
8798 		/*
8799 		 * Now that we inserted the prealloc extent we can finally
8800 		 * decrement the number of reservations in the block group.
8801 		 * If we did it before, we could race with relocation and have
8802 		 * relocation miss the reserved extent, making it fail later.
8803 		 */
8804 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8805 		if (IS_ERR(trans)) {
8806 			ret = PTR_ERR(trans);
8807 			btrfs_free_reserved_extent(fs_info, ins.objectid,
8808 						   ins.offset, 0);
8809 			break;
8810 		}
8811 
8812 		em = alloc_extent_map();
8813 		if (!em) {
8814 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8815 					    cur_offset + ins.offset - 1, false);
8816 			btrfs_set_inode_full_sync(BTRFS_I(inode));
8817 			goto next;
8818 		}
8819 
8820 		em->start = cur_offset;
8821 		em->len = ins.offset;
8822 		em->disk_bytenr = ins.objectid;
8823 		em->offset = 0;
8824 		em->disk_num_bytes = ins.offset;
8825 		em->ram_bytes = ins.offset;
8826 		em->flags |= EXTENT_FLAG_PREALLOC;
8827 		em->generation = trans->transid;
8828 
8829 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8830 		free_extent_map(em);
8831 next:
8832 		num_bytes -= ins.offset;
8833 		cur_offset += ins.offset;
8834 		*alloc_hint = ins.objectid + ins.offset;
8835 
8836 		inode_inc_iversion(inode);
8837 		inode_set_ctime_current(inode);
8838 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8839 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8840 		    (actual_len > inode->i_size) &&
8841 		    (cur_offset > inode->i_size)) {
8842 			if (cur_offset > actual_len)
8843 				i_size = actual_len;
8844 			else
8845 				i_size = cur_offset;
8846 			i_size_write(inode, i_size);
8847 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8848 		}
8849 
8850 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
8851 
8852 		if (ret) {
8853 			btrfs_abort_transaction(trans, ret);
8854 			if (own_trans)
8855 				btrfs_end_transaction(trans);
8856 			break;
8857 		}
8858 
8859 		if (own_trans) {
8860 			btrfs_end_transaction(trans);
8861 			trans = NULL;
8862 		}
8863 	}
8864 	if (clear_offset < end)
8865 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8866 			end - clear_offset + 1);
8867 	return ret;
8868 }
8869 
8870 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8871 			      u64 start, u64 num_bytes, u64 min_size,
8872 			      loff_t actual_len, u64 *alloc_hint)
8873 {
8874 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8875 					   min_size, actual_len, alloc_hint,
8876 					   NULL);
8877 }
8878 
8879 int btrfs_prealloc_file_range_trans(struct inode *inode,
8880 				    struct btrfs_trans_handle *trans, int mode,
8881 				    u64 start, u64 num_bytes, u64 min_size,
8882 				    loff_t actual_len, u64 *alloc_hint)
8883 {
8884 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8885 					   min_size, actual_len, alloc_hint, trans);
8886 }
8887 
8888 static int btrfs_permission(struct mnt_idmap *idmap,
8889 			    struct inode *inode, int mask)
8890 {
8891 	struct btrfs_root *root = BTRFS_I(inode)->root;
8892 	umode_t mode = inode->i_mode;
8893 
8894 	if (mask & MAY_WRITE &&
8895 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8896 		if (btrfs_root_readonly(root))
8897 			return -EROFS;
8898 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8899 			return -EACCES;
8900 	}
8901 	return generic_permission(idmap, inode, mask);
8902 }
8903 
8904 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8905 			 struct file *file, umode_t mode)
8906 {
8907 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8908 	struct btrfs_trans_handle *trans;
8909 	struct btrfs_root *root = BTRFS_I(dir)->root;
8910 	struct inode *inode;
8911 	struct btrfs_new_inode_args new_inode_args = {
8912 		.dir = dir,
8913 		.dentry = file->f_path.dentry,
8914 		.orphan = true,
8915 	};
8916 	unsigned int trans_num_items;
8917 	int ret;
8918 
8919 	inode = new_inode(dir->i_sb);
8920 	if (!inode)
8921 		return -ENOMEM;
8922 	inode_init_owner(idmap, inode, dir, mode);
8923 	inode->i_fop = &btrfs_file_operations;
8924 	inode->i_op = &btrfs_file_inode_operations;
8925 	inode->i_mapping->a_ops = &btrfs_aops;
8926 
8927 	new_inode_args.inode = inode;
8928 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8929 	if (ret)
8930 		goto out_inode;
8931 
8932 	trans = btrfs_start_transaction(root, trans_num_items);
8933 	if (IS_ERR(trans)) {
8934 		ret = PTR_ERR(trans);
8935 		goto out_new_inode_args;
8936 	}
8937 
8938 	ret = btrfs_create_new_inode(trans, &new_inode_args);
8939 
8940 	/*
8941 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8942 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
8943 	 * 0, through:
8944 	 *
8945 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8946 	 */
8947 	set_nlink(inode, 1);
8948 
8949 	if (!ret) {
8950 		d_tmpfile(file, inode);
8951 		unlock_new_inode(inode);
8952 		mark_inode_dirty(inode);
8953 	}
8954 
8955 	btrfs_end_transaction(trans);
8956 	btrfs_btree_balance_dirty(fs_info);
8957 out_new_inode_args:
8958 	btrfs_new_inode_args_destroy(&new_inode_args);
8959 out_inode:
8960 	if (ret)
8961 		iput(inode);
8962 	return finish_open_simple(file, ret);
8963 }
8964 
8965 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
8966 					     int compress_type)
8967 {
8968 	switch (compress_type) {
8969 	case BTRFS_COMPRESS_NONE:
8970 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
8971 	case BTRFS_COMPRESS_ZLIB:
8972 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
8973 	case BTRFS_COMPRESS_LZO:
8974 		/*
8975 		 * The LZO format depends on the sector size. 64K is the maximum
8976 		 * sector size that we support.
8977 		 */
8978 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
8979 			return -EINVAL;
8980 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
8981 		       (fs_info->sectorsize_bits - 12);
8982 	case BTRFS_COMPRESS_ZSTD:
8983 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
8984 	default:
8985 		return -EUCLEAN;
8986 	}
8987 }
8988 
8989 static ssize_t btrfs_encoded_read_inline(
8990 				struct kiocb *iocb,
8991 				struct iov_iter *iter, u64 start,
8992 				u64 lockend,
8993 				struct extent_state **cached_state,
8994 				u64 extent_start, size_t count,
8995 				struct btrfs_ioctl_encoded_io_args *encoded,
8996 				bool *unlocked)
8997 {
8998 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
8999 	struct btrfs_root *root = inode->root;
9000 	struct btrfs_fs_info *fs_info = root->fs_info;
9001 	struct extent_io_tree *io_tree = &inode->io_tree;
9002 	struct btrfs_path *path;
9003 	struct extent_buffer *leaf;
9004 	struct btrfs_file_extent_item *item;
9005 	u64 ram_bytes;
9006 	unsigned long ptr;
9007 	void *tmp;
9008 	ssize_t ret;
9009 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9010 
9011 	path = btrfs_alloc_path();
9012 	if (!path) {
9013 		ret = -ENOMEM;
9014 		goto out;
9015 	}
9016 
9017 	path->nowait = nowait;
9018 
9019 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9020 				       extent_start, 0);
9021 	if (ret) {
9022 		if (ret > 0) {
9023 			/* The extent item disappeared? */
9024 			ret = -EIO;
9025 		}
9026 		goto out;
9027 	}
9028 	leaf = path->nodes[0];
9029 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9030 
9031 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9032 	ptr = btrfs_file_extent_inline_start(item);
9033 
9034 	encoded->len = min_t(u64, extent_start + ram_bytes,
9035 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9036 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9037 				 btrfs_file_extent_compression(leaf, item));
9038 	if (ret < 0)
9039 		goto out;
9040 	encoded->compression = ret;
9041 	if (encoded->compression) {
9042 		size_t inline_size;
9043 
9044 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9045 								path->slots[0]);
9046 		if (inline_size > count) {
9047 			ret = -ENOBUFS;
9048 			goto out;
9049 		}
9050 		count = inline_size;
9051 		encoded->unencoded_len = ram_bytes;
9052 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9053 	} else {
9054 		count = min_t(u64, count, encoded->len);
9055 		encoded->len = count;
9056 		encoded->unencoded_len = count;
9057 		ptr += iocb->ki_pos - extent_start;
9058 	}
9059 
9060 	tmp = kmalloc(count, GFP_NOFS);
9061 	if (!tmp) {
9062 		ret = -ENOMEM;
9063 		goto out;
9064 	}
9065 	read_extent_buffer(leaf, tmp, ptr, count);
9066 	btrfs_release_path(path);
9067 	unlock_extent(io_tree, start, lockend, cached_state);
9068 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9069 	*unlocked = true;
9070 
9071 	ret = copy_to_iter(tmp, count, iter);
9072 	if (ret != count)
9073 		ret = -EFAULT;
9074 	kfree(tmp);
9075 out:
9076 	btrfs_free_path(path);
9077 	return ret;
9078 }
9079 
9080 struct btrfs_encoded_read_private {
9081 	struct completion done;
9082 	void *uring_ctx;
9083 	refcount_t pending_refs;
9084 	blk_status_t status;
9085 };
9086 
9087 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9088 {
9089 	struct btrfs_encoded_read_private *priv = bbio->private;
9090 
9091 	if (bbio->bio.bi_status) {
9092 		/*
9093 		 * The memory barrier implied by the atomic_dec_return() here
9094 		 * pairs with the memory barrier implied by the
9095 		 * atomic_dec_return() or io_wait_event() in
9096 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9097 		 * write is observed before the load of status in
9098 		 * btrfs_encoded_read_regular_fill_pages().
9099 		 */
9100 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9101 	}
9102 	if (refcount_dec_and_test(&priv->pending_refs)) {
9103 		int err = blk_status_to_errno(READ_ONCE(priv->status));
9104 
9105 		if (priv->uring_ctx) {
9106 			btrfs_uring_read_extent_endio(priv->uring_ctx, err);
9107 			kfree(priv);
9108 		} else {
9109 			complete(&priv->done);
9110 		}
9111 	}
9112 	bio_put(&bbio->bio);
9113 }
9114 
9115 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9116 					  u64 disk_bytenr, u64 disk_io_size,
9117 					  struct page **pages, void *uring_ctx)
9118 {
9119 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9120 	struct btrfs_encoded_read_private *priv;
9121 	unsigned long i = 0;
9122 	struct btrfs_bio *bbio;
9123 	int ret;
9124 
9125 	priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS);
9126 	if (!priv)
9127 		return -ENOMEM;
9128 
9129 	init_completion(&priv->done);
9130 	refcount_set(&priv->pending_refs, 1);
9131 	priv->status = 0;
9132 	priv->uring_ctx = uring_ctx;
9133 
9134 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9135 			       btrfs_encoded_read_endio, priv);
9136 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9137 	bbio->inode = inode;
9138 
9139 	do {
9140 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9141 
9142 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9143 			refcount_inc(&priv->pending_refs);
9144 			btrfs_submit_bbio(bbio, 0);
9145 
9146 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9147 					       btrfs_encoded_read_endio, priv);
9148 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9149 			bbio->inode = inode;
9150 			continue;
9151 		}
9152 
9153 		i++;
9154 		disk_bytenr += bytes;
9155 		disk_io_size -= bytes;
9156 	} while (disk_io_size);
9157 
9158 	refcount_inc(&priv->pending_refs);
9159 	btrfs_submit_bbio(bbio, 0);
9160 
9161 	if (uring_ctx) {
9162 		if (refcount_dec_and_test(&priv->pending_refs)) {
9163 			ret = blk_status_to_errno(READ_ONCE(priv->status));
9164 			btrfs_uring_read_extent_endio(uring_ctx, ret);
9165 			kfree(priv);
9166 			return ret;
9167 		}
9168 
9169 		return -EIOCBQUEUED;
9170 	} else {
9171 		if (!refcount_dec_and_test(&priv->pending_refs))
9172 			wait_for_completion_io(&priv->done);
9173 		/* See btrfs_encoded_read_endio() for ordering. */
9174 		ret = blk_status_to_errno(READ_ONCE(priv->status));
9175 		kfree(priv);
9176 		return ret;
9177 	}
9178 }
9179 
9180 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter,
9181 				   u64 start, u64 lockend,
9182 				   struct extent_state **cached_state,
9183 				   u64 disk_bytenr, u64 disk_io_size,
9184 				   size_t count, bool compressed, bool *unlocked)
9185 {
9186 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9187 	struct extent_io_tree *io_tree = &inode->io_tree;
9188 	struct page **pages;
9189 	unsigned long nr_pages, i;
9190 	u64 cur;
9191 	size_t page_offset;
9192 	ssize_t ret;
9193 
9194 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9195 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9196 	if (!pages)
9197 		return -ENOMEM;
9198 	ret = btrfs_alloc_page_array(nr_pages, pages, false);
9199 	if (ret) {
9200 		ret = -ENOMEM;
9201 		goto out;
9202 		}
9203 
9204 	ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr,
9205 						    disk_io_size, pages, NULL);
9206 	if (ret)
9207 		goto out;
9208 
9209 	unlock_extent(io_tree, start, lockend, cached_state);
9210 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9211 	*unlocked = true;
9212 
9213 	if (compressed) {
9214 		i = 0;
9215 		page_offset = 0;
9216 	} else {
9217 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9218 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9219 	}
9220 	cur = 0;
9221 	while (cur < count) {
9222 		size_t bytes = min_t(size_t, count - cur,
9223 				     PAGE_SIZE - page_offset);
9224 
9225 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9226 				      iter) != bytes) {
9227 			ret = -EFAULT;
9228 			goto out;
9229 		}
9230 		i++;
9231 		cur += bytes;
9232 		page_offset = 0;
9233 	}
9234 	ret = count;
9235 out:
9236 	for (i = 0; i < nr_pages; i++) {
9237 		if (pages[i])
9238 			__free_page(pages[i]);
9239 	}
9240 	kfree(pages);
9241 	return ret;
9242 }
9243 
9244 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9245 			   struct btrfs_ioctl_encoded_io_args *encoded,
9246 			   struct extent_state **cached_state,
9247 			   u64 *disk_bytenr, u64 *disk_io_size)
9248 {
9249 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9250 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9251 	struct extent_io_tree *io_tree = &inode->io_tree;
9252 	ssize_t ret;
9253 	size_t count = iov_iter_count(iter);
9254 	u64 start, lockend;
9255 	struct extent_map *em;
9256 	const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
9257 	bool unlocked = false;
9258 
9259 	file_accessed(iocb->ki_filp);
9260 
9261 	ret = btrfs_inode_lock(inode,
9262 			       BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0));
9263 	if (ret)
9264 		return ret;
9265 
9266 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9267 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9268 		return 0;
9269 	}
9270 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9271 	/*
9272 	 * We don't know how long the extent containing iocb->ki_pos is, but if
9273 	 * it's compressed we know that it won't be longer than this.
9274 	 */
9275 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9276 
9277 	if (nowait) {
9278 		struct btrfs_ordered_extent *ordered;
9279 
9280 		if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping,
9281 						  start, lockend)) {
9282 			ret = -EAGAIN;
9283 			goto out_unlock_inode;
9284 		}
9285 
9286 		if (!try_lock_extent(io_tree, start, lockend, cached_state)) {
9287 			ret = -EAGAIN;
9288 			goto out_unlock_inode;
9289 		}
9290 
9291 		ordered = btrfs_lookup_ordered_range(inode, start,
9292 						     lockend - start + 1);
9293 		if (ordered) {
9294 			btrfs_put_ordered_extent(ordered);
9295 			unlock_extent(io_tree, start, lockend, cached_state);
9296 			ret = -EAGAIN;
9297 			goto out_unlock_inode;
9298 		}
9299 	} else {
9300 		for (;;) {
9301 			struct btrfs_ordered_extent *ordered;
9302 
9303 			ret = btrfs_wait_ordered_range(inode, start,
9304 						       lockend - start + 1);
9305 			if (ret)
9306 				goto out_unlock_inode;
9307 
9308 			lock_extent(io_tree, start, lockend, cached_state);
9309 			ordered = btrfs_lookup_ordered_range(inode, start,
9310 							     lockend - start + 1);
9311 			if (!ordered)
9312 				break;
9313 			btrfs_put_ordered_extent(ordered);
9314 			unlock_extent(io_tree, start, lockend, cached_state);
9315 			cond_resched();
9316 		}
9317 	}
9318 
9319 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9320 	if (IS_ERR(em)) {
9321 		ret = PTR_ERR(em);
9322 		goto out_unlock_extent;
9323 	}
9324 
9325 	if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9326 		u64 extent_start = em->start;
9327 
9328 		/*
9329 		 * For inline extents we get everything we need out of the
9330 		 * extent item.
9331 		 */
9332 		free_extent_map(em);
9333 		em = NULL;
9334 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9335 						cached_state, extent_start,
9336 						count, encoded, &unlocked);
9337 		goto out_unlock_extent;
9338 	}
9339 
9340 	/*
9341 	 * We only want to return up to EOF even if the extent extends beyond
9342 	 * that.
9343 	 */
9344 	encoded->len = min_t(u64, extent_map_end(em),
9345 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9346 	if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9347 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
9348 		*disk_bytenr = EXTENT_MAP_HOLE;
9349 		count = min_t(u64, count, encoded->len);
9350 		encoded->len = count;
9351 		encoded->unencoded_len = count;
9352 	} else if (extent_map_is_compressed(em)) {
9353 		*disk_bytenr = em->disk_bytenr;
9354 		/*
9355 		 * Bail if the buffer isn't large enough to return the whole
9356 		 * compressed extent.
9357 		 */
9358 		if (em->disk_num_bytes > count) {
9359 			ret = -ENOBUFS;
9360 			goto out_em;
9361 		}
9362 		*disk_io_size = em->disk_num_bytes;
9363 		count = em->disk_num_bytes;
9364 		encoded->unencoded_len = em->ram_bytes;
9365 		encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9366 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
9367 							       extent_map_compression(em));
9368 		if (ret < 0)
9369 			goto out_em;
9370 		encoded->compression = ret;
9371 	} else {
9372 		*disk_bytenr = extent_map_block_start(em) + (start - em->start);
9373 		if (encoded->len > count)
9374 			encoded->len = count;
9375 		/*
9376 		 * Don't read beyond what we locked. This also limits the page
9377 		 * allocations that we'll do.
9378 		 */
9379 		*disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9380 		count = start + *disk_io_size - iocb->ki_pos;
9381 		encoded->len = count;
9382 		encoded->unencoded_len = count;
9383 		*disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize);
9384 	}
9385 	free_extent_map(em);
9386 	em = NULL;
9387 
9388 	if (*disk_bytenr == EXTENT_MAP_HOLE) {
9389 		unlock_extent(io_tree, start, lockend, cached_state);
9390 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9391 		unlocked = true;
9392 		ret = iov_iter_zero(count, iter);
9393 		if (ret != count)
9394 			ret = -EFAULT;
9395 	} else {
9396 		ret = -EIOCBQUEUED;
9397 		goto out_unlock_extent;
9398 	}
9399 
9400 out_em:
9401 	free_extent_map(em);
9402 out_unlock_extent:
9403 	/* Leave inode and extent locked if we need to do a read. */
9404 	if (!unlocked && ret != -EIOCBQUEUED)
9405 		unlock_extent(io_tree, start, lockend, cached_state);
9406 out_unlock_inode:
9407 	if (!unlocked && ret != -EIOCBQUEUED)
9408 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9409 	return ret;
9410 }
9411 
9412 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9413 			       const struct btrfs_ioctl_encoded_io_args *encoded)
9414 {
9415 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9416 	struct btrfs_root *root = inode->root;
9417 	struct btrfs_fs_info *fs_info = root->fs_info;
9418 	struct extent_io_tree *io_tree = &inode->io_tree;
9419 	struct extent_changeset *data_reserved = NULL;
9420 	struct extent_state *cached_state = NULL;
9421 	struct btrfs_ordered_extent *ordered;
9422 	struct btrfs_file_extent file_extent;
9423 	int compression;
9424 	size_t orig_count;
9425 	u64 start, end;
9426 	u64 num_bytes, ram_bytes, disk_num_bytes;
9427 	unsigned long nr_folios, i;
9428 	struct folio **folios;
9429 	struct btrfs_key ins;
9430 	bool extent_reserved = false;
9431 	struct extent_map *em;
9432 	ssize_t ret;
9433 
9434 	switch (encoded->compression) {
9435 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9436 		compression = BTRFS_COMPRESS_ZLIB;
9437 		break;
9438 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9439 		compression = BTRFS_COMPRESS_ZSTD;
9440 		break;
9441 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9442 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9443 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9444 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9445 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9446 		/* The sector size must match for LZO. */
9447 		if (encoded->compression -
9448 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9449 		    fs_info->sectorsize_bits)
9450 			return -EINVAL;
9451 		compression = BTRFS_COMPRESS_LZO;
9452 		break;
9453 	default:
9454 		return -EINVAL;
9455 	}
9456 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9457 		return -EINVAL;
9458 
9459 	/*
9460 	 * Compressed extents should always have checksums, so error out if we
9461 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
9462 	 */
9463 	if (inode->flags & BTRFS_INODE_NODATASUM)
9464 		return -EINVAL;
9465 
9466 	orig_count = iov_iter_count(from);
9467 
9468 	/* The extent size must be sane. */
9469 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9470 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9471 		return -EINVAL;
9472 
9473 	/*
9474 	 * The compressed data must be smaller than the decompressed data.
9475 	 *
9476 	 * It's of course possible for data to compress to larger or the same
9477 	 * size, but the buffered I/O path falls back to no compression for such
9478 	 * data, and we don't want to break any assumptions by creating these
9479 	 * extents.
9480 	 *
9481 	 * Note that this is less strict than the current check we have that the
9482 	 * compressed data must be at least one sector smaller than the
9483 	 * decompressed data. We only want to enforce the weaker requirement
9484 	 * from old kernels that it is at least one byte smaller.
9485 	 */
9486 	if (orig_count >= encoded->unencoded_len)
9487 		return -EINVAL;
9488 
9489 	/* The extent must start on a sector boundary. */
9490 	start = iocb->ki_pos;
9491 	if (!IS_ALIGNED(start, fs_info->sectorsize))
9492 		return -EINVAL;
9493 
9494 	/*
9495 	 * The extent must end on a sector boundary. However, we allow a write
9496 	 * which ends at or extends i_size to have an unaligned length; we round
9497 	 * up the extent size and set i_size to the unaligned end.
9498 	 */
9499 	if (start + encoded->len < inode->vfs_inode.i_size &&
9500 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9501 		return -EINVAL;
9502 
9503 	/* Finally, the offset in the unencoded data must be sector-aligned. */
9504 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9505 		return -EINVAL;
9506 
9507 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9508 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9509 	end = start + num_bytes - 1;
9510 
9511 	/*
9512 	 * If the extent cannot be inline, the compressed data on disk must be
9513 	 * sector-aligned. For convenience, we extend it with zeroes if it
9514 	 * isn't.
9515 	 */
9516 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9517 	nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9518 	folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT);
9519 	if (!folios)
9520 		return -ENOMEM;
9521 	for (i = 0; i < nr_folios; i++) {
9522 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9523 		char *kaddr;
9524 
9525 		folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9526 		if (!folios[i]) {
9527 			ret = -ENOMEM;
9528 			goto out_folios;
9529 		}
9530 		kaddr = kmap_local_folio(folios[i], 0);
9531 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
9532 			kunmap_local(kaddr);
9533 			ret = -EFAULT;
9534 			goto out_folios;
9535 		}
9536 		if (bytes < PAGE_SIZE)
9537 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9538 		kunmap_local(kaddr);
9539 	}
9540 
9541 	for (;;) {
9542 		struct btrfs_ordered_extent *ordered;
9543 
9544 		ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9545 		if (ret)
9546 			goto out_folios;
9547 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9548 						    start >> PAGE_SHIFT,
9549 						    end >> PAGE_SHIFT);
9550 		if (ret)
9551 			goto out_folios;
9552 		lock_extent(io_tree, start, end, &cached_state);
9553 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9554 		if (!ordered &&
9555 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9556 			break;
9557 		if (ordered)
9558 			btrfs_put_ordered_extent(ordered);
9559 		unlock_extent(io_tree, start, end, &cached_state);
9560 		cond_resched();
9561 	}
9562 
9563 	/*
9564 	 * We don't use the higher-level delalloc space functions because our
9565 	 * num_bytes and disk_num_bytes are different.
9566 	 */
9567 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9568 	if (ret)
9569 		goto out_unlock;
9570 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9571 	if (ret)
9572 		goto out_free_data_space;
9573 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9574 					      false);
9575 	if (ret)
9576 		goto out_qgroup_free_data;
9577 
9578 	/* Try an inline extent first. */
9579 	if (encoded->unencoded_len == encoded->len &&
9580 	    encoded->unencoded_offset == 0 &&
9581 	    can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9582 		ret = __cow_file_range_inline(inode, encoded->len,
9583 					      orig_count, compression, folios[0],
9584 					      true);
9585 		if (ret <= 0) {
9586 			if (ret == 0)
9587 				ret = orig_count;
9588 			goto out_delalloc_release;
9589 		}
9590 	}
9591 
9592 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9593 				   disk_num_bytes, 0, 0, &ins, 1, 1);
9594 	if (ret)
9595 		goto out_delalloc_release;
9596 	extent_reserved = true;
9597 
9598 	file_extent.disk_bytenr = ins.objectid;
9599 	file_extent.disk_num_bytes = ins.offset;
9600 	file_extent.num_bytes = num_bytes;
9601 	file_extent.ram_bytes = ram_bytes;
9602 	file_extent.offset = encoded->unencoded_offset;
9603 	file_extent.compression = compression;
9604 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9605 	if (IS_ERR(em)) {
9606 		ret = PTR_ERR(em);
9607 		goto out_free_reserved;
9608 	}
9609 	free_extent_map(em);
9610 
9611 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9612 				       (1 << BTRFS_ORDERED_ENCODED) |
9613 				       (1 << BTRFS_ORDERED_COMPRESSED));
9614 	if (IS_ERR(ordered)) {
9615 		btrfs_drop_extent_map_range(inode, start, end, false);
9616 		ret = PTR_ERR(ordered);
9617 		goto out_free_reserved;
9618 	}
9619 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9620 
9621 	if (start + encoded->len > inode->vfs_inode.i_size)
9622 		i_size_write(&inode->vfs_inode, start + encoded->len);
9623 
9624 	unlock_extent(io_tree, start, end, &cached_state);
9625 
9626 	btrfs_delalloc_release_extents(inode, num_bytes);
9627 
9628 	btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9629 	ret = orig_count;
9630 	goto out;
9631 
9632 out_free_reserved:
9633 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9634 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9635 out_delalloc_release:
9636 	btrfs_delalloc_release_extents(inode, num_bytes);
9637 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9638 out_qgroup_free_data:
9639 	if (ret < 0)
9640 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9641 out_free_data_space:
9642 	/*
9643 	 * If btrfs_reserve_extent() succeeded, then we already decremented
9644 	 * bytes_may_use.
9645 	 */
9646 	if (!extent_reserved)
9647 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9648 out_unlock:
9649 	unlock_extent(io_tree, start, end, &cached_state);
9650 out_folios:
9651 	for (i = 0; i < nr_folios; i++) {
9652 		if (folios[i])
9653 			folio_put(folios[i]);
9654 	}
9655 	kvfree(folios);
9656 out:
9657 	if (ret >= 0)
9658 		iocb->ki_pos += encoded->len;
9659 	return ret;
9660 }
9661 
9662 #ifdef CONFIG_SWAP
9663 /*
9664  * Add an entry indicating a block group or device which is pinned by a
9665  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9666  * negative errno on failure.
9667  */
9668 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9669 				  bool is_block_group)
9670 {
9671 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9672 	struct btrfs_swapfile_pin *sp, *entry;
9673 	struct rb_node **p;
9674 	struct rb_node *parent = NULL;
9675 
9676 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9677 	if (!sp)
9678 		return -ENOMEM;
9679 	sp->ptr = ptr;
9680 	sp->inode = inode;
9681 	sp->is_block_group = is_block_group;
9682 	sp->bg_extent_count = 1;
9683 
9684 	spin_lock(&fs_info->swapfile_pins_lock);
9685 	p = &fs_info->swapfile_pins.rb_node;
9686 	while (*p) {
9687 		parent = *p;
9688 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9689 		if (sp->ptr < entry->ptr ||
9690 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9691 			p = &(*p)->rb_left;
9692 		} else if (sp->ptr > entry->ptr ||
9693 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9694 			p = &(*p)->rb_right;
9695 		} else {
9696 			if (is_block_group)
9697 				entry->bg_extent_count++;
9698 			spin_unlock(&fs_info->swapfile_pins_lock);
9699 			kfree(sp);
9700 			return 1;
9701 		}
9702 	}
9703 	rb_link_node(&sp->node, parent, p);
9704 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9705 	spin_unlock(&fs_info->swapfile_pins_lock);
9706 	return 0;
9707 }
9708 
9709 /* Free all of the entries pinned by this swapfile. */
9710 static void btrfs_free_swapfile_pins(struct inode *inode)
9711 {
9712 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9713 	struct btrfs_swapfile_pin *sp;
9714 	struct rb_node *node, *next;
9715 
9716 	spin_lock(&fs_info->swapfile_pins_lock);
9717 	node = rb_first(&fs_info->swapfile_pins);
9718 	while (node) {
9719 		next = rb_next(node);
9720 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9721 		if (sp->inode == inode) {
9722 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9723 			if (sp->is_block_group) {
9724 				btrfs_dec_block_group_swap_extents(sp->ptr,
9725 							   sp->bg_extent_count);
9726 				btrfs_put_block_group(sp->ptr);
9727 			}
9728 			kfree(sp);
9729 		}
9730 		node = next;
9731 	}
9732 	spin_unlock(&fs_info->swapfile_pins_lock);
9733 }
9734 
9735 struct btrfs_swap_info {
9736 	u64 start;
9737 	u64 block_start;
9738 	u64 block_len;
9739 	u64 lowest_ppage;
9740 	u64 highest_ppage;
9741 	unsigned long nr_pages;
9742 	int nr_extents;
9743 };
9744 
9745 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9746 				 struct btrfs_swap_info *bsi)
9747 {
9748 	unsigned long nr_pages;
9749 	unsigned long max_pages;
9750 	u64 first_ppage, first_ppage_reported, next_ppage;
9751 	int ret;
9752 
9753 	/*
9754 	 * Our swapfile may have had its size extended after the swap header was
9755 	 * written. In that case activating the swapfile should not go beyond
9756 	 * the max size set in the swap header.
9757 	 */
9758 	if (bsi->nr_pages >= sis->max)
9759 		return 0;
9760 
9761 	max_pages = sis->max - bsi->nr_pages;
9762 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9763 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9764 
9765 	if (first_ppage >= next_ppage)
9766 		return 0;
9767 	nr_pages = next_ppage - first_ppage;
9768 	nr_pages = min(nr_pages, max_pages);
9769 
9770 	first_ppage_reported = first_ppage;
9771 	if (bsi->start == 0)
9772 		first_ppage_reported++;
9773 	if (bsi->lowest_ppage > first_ppage_reported)
9774 		bsi->lowest_ppage = first_ppage_reported;
9775 	if (bsi->highest_ppage < (next_ppage - 1))
9776 		bsi->highest_ppage = next_ppage - 1;
9777 
9778 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9779 	if (ret < 0)
9780 		return ret;
9781 	bsi->nr_extents += ret;
9782 	bsi->nr_pages += nr_pages;
9783 	return 0;
9784 }
9785 
9786 static void btrfs_swap_deactivate(struct file *file)
9787 {
9788 	struct inode *inode = file_inode(file);
9789 
9790 	btrfs_free_swapfile_pins(inode);
9791 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9792 }
9793 
9794 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9795 			       sector_t *span)
9796 {
9797 	struct inode *inode = file_inode(file);
9798 	struct btrfs_root *root = BTRFS_I(inode)->root;
9799 	struct btrfs_fs_info *fs_info = root->fs_info;
9800 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9801 	struct extent_state *cached_state = NULL;
9802 	struct btrfs_chunk_map *map = NULL;
9803 	struct btrfs_device *device = NULL;
9804 	struct btrfs_swap_info bsi = {
9805 		.lowest_ppage = (sector_t)-1ULL,
9806 	};
9807 	struct btrfs_backref_share_check_ctx *backref_ctx = NULL;
9808 	struct btrfs_path *path = NULL;
9809 	int ret = 0;
9810 	u64 isize;
9811 	u64 prev_extent_end = 0;
9812 
9813 	/*
9814 	 * Acquire the inode's mmap lock to prevent races with memory mapped
9815 	 * writes, as they could happen after we flush delalloc below and before
9816 	 * we lock the extent range further below. The inode was already locked
9817 	 * up in the call chain.
9818 	 */
9819 	btrfs_assert_inode_locked(BTRFS_I(inode));
9820 	down_write(&BTRFS_I(inode)->i_mmap_lock);
9821 
9822 	/*
9823 	 * If the swap file was just created, make sure delalloc is done. If the
9824 	 * file changes again after this, the user is doing something stupid and
9825 	 * we don't really care.
9826 	 */
9827 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9828 	if (ret)
9829 		goto out_unlock_mmap;
9830 
9831 	/*
9832 	 * The inode is locked, so these flags won't change after we check them.
9833 	 */
9834 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9835 		btrfs_warn(fs_info, "swapfile must not be compressed");
9836 		ret = -EINVAL;
9837 		goto out_unlock_mmap;
9838 	}
9839 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9840 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9841 		ret = -EINVAL;
9842 		goto out_unlock_mmap;
9843 	}
9844 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9845 		btrfs_warn(fs_info, "swapfile must not be checksummed");
9846 		ret = -EINVAL;
9847 		goto out_unlock_mmap;
9848 	}
9849 
9850 	path = btrfs_alloc_path();
9851 	backref_ctx = btrfs_alloc_backref_share_check_ctx();
9852 	if (!path || !backref_ctx) {
9853 		ret = -ENOMEM;
9854 		goto out_unlock_mmap;
9855 	}
9856 
9857 	/*
9858 	 * Balance or device remove/replace/resize can move stuff around from
9859 	 * under us. The exclop protection makes sure they aren't running/won't
9860 	 * run concurrently while we are mapping the swap extents, and
9861 	 * fs_info->swapfile_pins prevents them from running while the swap
9862 	 * file is active and moving the extents. Note that this also prevents
9863 	 * a concurrent device add which isn't actually necessary, but it's not
9864 	 * really worth the trouble to allow it.
9865 	 */
9866 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9867 		btrfs_warn(fs_info,
9868 	   "cannot activate swapfile while exclusive operation is running");
9869 		ret = -EBUSY;
9870 		goto out_unlock_mmap;
9871 	}
9872 
9873 	/*
9874 	 * Prevent snapshot creation while we are activating the swap file.
9875 	 * We do not want to race with snapshot creation. If snapshot creation
9876 	 * already started before we bumped nr_swapfiles from 0 to 1 and
9877 	 * completes before the first write into the swap file after it is
9878 	 * activated, than that write would fallback to COW.
9879 	 */
9880 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9881 		btrfs_exclop_finish(fs_info);
9882 		btrfs_warn(fs_info,
9883 	   "cannot activate swapfile because snapshot creation is in progress");
9884 		ret = -EINVAL;
9885 		goto out_unlock_mmap;
9886 	}
9887 	/*
9888 	 * Snapshots can create extents which require COW even if NODATACOW is
9889 	 * set. We use this counter to prevent snapshots. We must increment it
9890 	 * before walking the extents because we don't want a concurrent
9891 	 * snapshot to run after we've already checked the extents.
9892 	 *
9893 	 * It is possible that subvolume is marked for deletion but still not
9894 	 * removed yet. To prevent this race, we check the root status before
9895 	 * activating the swapfile.
9896 	 */
9897 	spin_lock(&root->root_item_lock);
9898 	if (btrfs_root_dead(root)) {
9899 		spin_unlock(&root->root_item_lock);
9900 
9901 		btrfs_drew_write_unlock(&root->snapshot_lock);
9902 		btrfs_exclop_finish(fs_info);
9903 		btrfs_warn(fs_info,
9904 		"cannot activate swapfile because subvolume %llu is being deleted",
9905 			btrfs_root_id(root));
9906 		ret = -EPERM;
9907 		goto out_unlock_mmap;
9908 	}
9909 	atomic_inc(&root->nr_swapfiles);
9910 	spin_unlock(&root->root_item_lock);
9911 
9912 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9913 
9914 	lock_extent(io_tree, 0, isize - 1, &cached_state);
9915 	while (prev_extent_end < isize) {
9916 		struct btrfs_key key;
9917 		struct extent_buffer *leaf;
9918 		struct btrfs_file_extent_item *ei;
9919 		struct btrfs_block_group *bg;
9920 		u64 logical_block_start;
9921 		u64 physical_block_start;
9922 		u64 extent_gen;
9923 		u64 disk_bytenr;
9924 		u64 len;
9925 
9926 		key.objectid = btrfs_ino(BTRFS_I(inode));
9927 		key.type = BTRFS_EXTENT_DATA_KEY;
9928 		key.offset = prev_extent_end;
9929 
9930 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9931 		if (ret < 0)
9932 			goto out;
9933 
9934 		/*
9935 		 * If key not found it means we have an implicit hole (NO_HOLES
9936 		 * is enabled).
9937 		 */
9938 		if (ret > 0) {
9939 			btrfs_warn(fs_info, "swapfile must not have holes");
9940 			ret = -EINVAL;
9941 			goto out;
9942 		}
9943 
9944 		leaf = path->nodes[0];
9945 		ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9946 
9947 		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
9948 			/*
9949 			 * It's unlikely we'll ever actually find ourselves
9950 			 * here, as a file small enough to fit inline won't be
9951 			 * big enough to store more than the swap header, but in
9952 			 * case something changes in the future, let's catch it
9953 			 * here rather than later.
9954 			 */
9955 			btrfs_warn(fs_info, "swapfile must not be inline");
9956 			ret = -EINVAL;
9957 			goto out;
9958 		}
9959 
9960 		if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
9961 			btrfs_warn(fs_info, "swapfile must not be compressed");
9962 			ret = -EINVAL;
9963 			goto out;
9964 		}
9965 
9966 		disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
9967 		if (disk_bytenr == 0) {
9968 			btrfs_warn(fs_info, "swapfile must not have holes");
9969 			ret = -EINVAL;
9970 			goto out;
9971 		}
9972 
9973 		logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei);
9974 		extent_gen = btrfs_file_extent_generation(leaf, ei);
9975 		prev_extent_end = btrfs_file_extent_end(path);
9976 
9977 		if (prev_extent_end > isize)
9978 			len = isize - key.offset;
9979 		else
9980 			len = btrfs_file_extent_num_bytes(leaf, ei);
9981 
9982 		backref_ctx->curr_leaf_bytenr = leaf->start;
9983 
9984 		/*
9985 		 * Don't need the path anymore, release to avoid deadlocks when
9986 		 * calling btrfs_is_data_extent_shared() because when joining a
9987 		 * transaction it can block waiting for the current one's commit
9988 		 * which in turn may be trying to lock the same leaf to flush
9989 		 * delayed items for example.
9990 		 */
9991 		btrfs_release_path(path);
9992 
9993 		ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr,
9994 						  extent_gen, backref_ctx);
9995 		if (ret < 0) {
9996 			goto out;
9997 		} else if (ret > 0) {
9998 			btrfs_warn(fs_info,
9999 				   "swapfile must not be copy-on-write");
10000 			ret = -EINVAL;
10001 			goto out;
10002 		}
10003 
10004 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10005 		if (IS_ERR(map)) {
10006 			ret = PTR_ERR(map);
10007 			goto out;
10008 		}
10009 
10010 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10011 			btrfs_warn(fs_info,
10012 				   "swapfile must have single data profile");
10013 			ret = -EINVAL;
10014 			goto out;
10015 		}
10016 
10017 		if (device == NULL) {
10018 			device = map->stripes[0].dev;
10019 			ret = btrfs_add_swapfile_pin(inode, device, false);
10020 			if (ret == 1)
10021 				ret = 0;
10022 			else if (ret)
10023 				goto out;
10024 		} else if (device != map->stripes[0].dev) {
10025 			btrfs_warn(fs_info, "swapfile must be on one device");
10026 			ret = -EINVAL;
10027 			goto out;
10028 		}
10029 
10030 		physical_block_start = (map->stripes[0].physical +
10031 					(logical_block_start - map->start));
10032 		btrfs_free_chunk_map(map);
10033 		map = NULL;
10034 
10035 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10036 		if (!bg) {
10037 			btrfs_warn(fs_info,
10038 			   "could not find block group containing swapfile");
10039 			ret = -EINVAL;
10040 			goto out;
10041 		}
10042 
10043 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10044 			btrfs_warn(fs_info,
10045 			   "block group for swapfile at %llu is read-only%s",
10046 			   bg->start,
10047 			   atomic_read(&fs_info->scrubs_running) ?
10048 				       " (scrub running)" : "");
10049 			btrfs_put_block_group(bg);
10050 			ret = -EINVAL;
10051 			goto out;
10052 		}
10053 
10054 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10055 		if (ret) {
10056 			btrfs_put_block_group(bg);
10057 			if (ret == 1)
10058 				ret = 0;
10059 			else
10060 				goto out;
10061 		}
10062 
10063 		if (bsi.block_len &&
10064 		    bsi.block_start + bsi.block_len == physical_block_start) {
10065 			bsi.block_len += len;
10066 		} else {
10067 			if (bsi.block_len) {
10068 				ret = btrfs_add_swap_extent(sis, &bsi);
10069 				if (ret)
10070 					goto out;
10071 			}
10072 			bsi.start = key.offset;
10073 			bsi.block_start = physical_block_start;
10074 			bsi.block_len = len;
10075 		}
10076 
10077 		if (fatal_signal_pending(current)) {
10078 			ret = -EINTR;
10079 			goto out;
10080 		}
10081 
10082 		cond_resched();
10083 	}
10084 
10085 	if (bsi.block_len)
10086 		ret = btrfs_add_swap_extent(sis, &bsi);
10087 
10088 out:
10089 	if (!IS_ERR_OR_NULL(map))
10090 		btrfs_free_chunk_map(map);
10091 
10092 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10093 
10094 	if (ret)
10095 		btrfs_swap_deactivate(file);
10096 
10097 	btrfs_drew_write_unlock(&root->snapshot_lock);
10098 
10099 	btrfs_exclop_finish(fs_info);
10100 
10101 out_unlock_mmap:
10102 	up_write(&BTRFS_I(inode)->i_mmap_lock);
10103 	btrfs_free_backref_share_ctx(backref_ctx);
10104 	btrfs_free_path(path);
10105 	if (ret)
10106 		return ret;
10107 
10108 	if (device)
10109 		sis->bdev = device->bdev;
10110 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10111 	sis->max = bsi.nr_pages;
10112 	sis->pages = bsi.nr_pages - 1;
10113 	sis->highest_bit = bsi.nr_pages - 1;
10114 	return bsi.nr_extents;
10115 }
10116 #else
10117 static void btrfs_swap_deactivate(struct file *file)
10118 {
10119 }
10120 
10121 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10122 			       sector_t *span)
10123 {
10124 	return -EOPNOTSUPP;
10125 }
10126 #endif
10127 
10128 /*
10129  * Update the number of bytes used in the VFS' inode. When we replace extents in
10130  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10131  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10132  * always get a correct value.
10133  */
10134 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10135 			      const u64 add_bytes,
10136 			      const u64 del_bytes)
10137 {
10138 	if (add_bytes == del_bytes)
10139 		return;
10140 
10141 	spin_lock(&inode->lock);
10142 	if (del_bytes > 0)
10143 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10144 	if (add_bytes > 0)
10145 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10146 	spin_unlock(&inode->lock);
10147 }
10148 
10149 /*
10150  * Verify that there are no ordered extents for a given file range.
10151  *
10152  * @inode:   The target inode.
10153  * @start:   Start offset of the file range, should be sector size aligned.
10154  * @end:     End offset (inclusive) of the file range, its value +1 should be
10155  *           sector size aligned.
10156  *
10157  * This should typically be used for cases where we locked an inode's VFS lock in
10158  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10159  * we have flushed all delalloc in the range, we have waited for all ordered
10160  * extents in the range to complete and finally we have locked the file range in
10161  * the inode's io_tree.
10162  */
10163 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10164 {
10165 	struct btrfs_root *root = inode->root;
10166 	struct btrfs_ordered_extent *ordered;
10167 
10168 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10169 		return;
10170 
10171 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10172 	if (ordered) {
10173 		btrfs_err(root->fs_info,
10174 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10175 			  start, end, btrfs_ino(inode), btrfs_root_id(root),
10176 			  ordered->file_offset,
10177 			  ordered->file_offset + ordered->num_bytes - 1);
10178 		btrfs_put_ordered_extent(ordered);
10179 	}
10180 
10181 	ASSERT(ordered == NULL);
10182 }
10183 
10184 /*
10185  * Find the first inode with a minimum number.
10186  *
10187  * @root:	The root to search for.
10188  * @min_ino:	The minimum inode number.
10189  *
10190  * Find the first inode in the @root with a number >= @min_ino and return it.
10191  * Returns NULL if no such inode found.
10192  */
10193 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10194 {
10195 	struct btrfs_inode *inode;
10196 	unsigned long from = min_ino;
10197 
10198 	xa_lock(&root->inodes);
10199 	while (true) {
10200 		inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10201 		if (!inode)
10202 			break;
10203 		if (igrab(&inode->vfs_inode))
10204 			break;
10205 
10206 		from = btrfs_ino(inode) + 1;
10207 		cond_resched_lock(&root->inodes.xa_lock);
10208 	}
10209 	xa_unlock(&root->inodes);
10210 
10211 	return inode;
10212 }
10213 
10214 static const struct inode_operations btrfs_dir_inode_operations = {
10215 	.getattr	= btrfs_getattr,
10216 	.lookup		= btrfs_lookup,
10217 	.create		= btrfs_create,
10218 	.unlink		= btrfs_unlink,
10219 	.link		= btrfs_link,
10220 	.mkdir		= btrfs_mkdir,
10221 	.rmdir		= btrfs_rmdir,
10222 	.rename		= btrfs_rename2,
10223 	.symlink	= btrfs_symlink,
10224 	.setattr	= btrfs_setattr,
10225 	.mknod		= btrfs_mknod,
10226 	.listxattr	= btrfs_listxattr,
10227 	.permission	= btrfs_permission,
10228 	.get_inode_acl	= btrfs_get_acl,
10229 	.set_acl	= btrfs_set_acl,
10230 	.update_time	= btrfs_update_time,
10231 	.tmpfile        = btrfs_tmpfile,
10232 	.fileattr_get	= btrfs_fileattr_get,
10233 	.fileattr_set	= btrfs_fileattr_set,
10234 };
10235 
10236 static const struct file_operations btrfs_dir_file_operations = {
10237 	.llseek		= btrfs_dir_llseek,
10238 	.read		= generic_read_dir,
10239 	.iterate_shared	= btrfs_real_readdir,
10240 	.open		= btrfs_opendir,
10241 	.unlocked_ioctl	= btrfs_ioctl,
10242 #ifdef CONFIG_COMPAT
10243 	.compat_ioctl	= btrfs_compat_ioctl,
10244 #endif
10245 	.release        = btrfs_release_file,
10246 	.fsync		= btrfs_sync_file,
10247 };
10248 
10249 /*
10250  * btrfs doesn't support the bmap operation because swapfiles
10251  * use bmap to make a mapping of extents in the file.  They assume
10252  * these extents won't change over the life of the file and they
10253  * use the bmap result to do IO directly to the drive.
10254  *
10255  * the btrfs bmap call would return logical addresses that aren't
10256  * suitable for IO and they also will change frequently as COW
10257  * operations happen.  So, swapfile + btrfs == corruption.
10258  *
10259  * For now we're avoiding this by dropping bmap.
10260  */
10261 static const struct address_space_operations btrfs_aops = {
10262 	.read_folio	= btrfs_read_folio,
10263 	.writepages	= btrfs_writepages,
10264 	.readahead	= btrfs_readahead,
10265 	.invalidate_folio = btrfs_invalidate_folio,
10266 	.launder_folio	= btrfs_launder_folio,
10267 	.release_folio	= btrfs_release_folio,
10268 	.migrate_folio	= btrfs_migrate_folio,
10269 	.dirty_folio	= filemap_dirty_folio,
10270 	.error_remove_folio = generic_error_remove_folio,
10271 	.swap_activate	= btrfs_swap_activate,
10272 	.swap_deactivate = btrfs_swap_deactivate,
10273 };
10274 
10275 static const struct inode_operations btrfs_file_inode_operations = {
10276 	.getattr	= btrfs_getattr,
10277 	.setattr	= btrfs_setattr,
10278 	.listxattr      = btrfs_listxattr,
10279 	.permission	= btrfs_permission,
10280 	.fiemap		= btrfs_fiemap,
10281 	.get_inode_acl	= btrfs_get_acl,
10282 	.set_acl	= btrfs_set_acl,
10283 	.update_time	= btrfs_update_time,
10284 	.fileattr_get	= btrfs_fileattr_get,
10285 	.fileattr_set	= btrfs_fileattr_set,
10286 };
10287 static const struct inode_operations btrfs_special_inode_operations = {
10288 	.getattr	= btrfs_getattr,
10289 	.setattr	= btrfs_setattr,
10290 	.permission	= btrfs_permission,
10291 	.listxattr	= btrfs_listxattr,
10292 	.get_inode_acl	= btrfs_get_acl,
10293 	.set_acl	= btrfs_set_acl,
10294 	.update_time	= btrfs_update_time,
10295 };
10296 static const struct inode_operations btrfs_symlink_inode_operations = {
10297 	.get_link	= page_get_link,
10298 	.getattr	= btrfs_getattr,
10299 	.setattr	= btrfs_setattr,
10300 	.permission	= btrfs_permission,
10301 	.listxattr	= btrfs_listxattr,
10302 	.update_time	= btrfs_update_time,
10303 };
10304 
10305 const struct dentry_operations btrfs_dentry_operations = {
10306 	.d_delete	= btrfs_dentry_delete,
10307 };
10308