1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/buffer_head.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/mpage.h> 18 #include <linux/swap.h> 19 #include <linux/writeback.h> 20 #include <linux/compat.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/xattr.h> 23 #include <linux/posix_acl.h> 24 #include <linux/falloc.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/mount.h> 28 #include <linux/btrfs.h> 29 #include <linux/blkdev.h> 30 #include <linux/posix_acl_xattr.h> 31 #include <linux/uio.h> 32 #include <linux/magic.h> 33 #include <linux/iversion.h> 34 #include <asm/unaligned.h> 35 #include "ctree.h" 36 #include "disk-io.h" 37 #include "transaction.h" 38 #include "btrfs_inode.h" 39 #include "print-tree.h" 40 #include "ordered-data.h" 41 #include "xattr.h" 42 #include "tree-log.h" 43 #include "volumes.h" 44 #include "compression.h" 45 #include "locking.h" 46 #include "free-space-cache.h" 47 #include "inode-map.h" 48 #include "backref.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "dedupe.h" 52 53 struct btrfs_iget_args { 54 struct btrfs_key *location; 55 struct btrfs_root *root; 56 }; 57 58 struct btrfs_dio_data { 59 u64 reserve; 60 u64 unsubmitted_oe_range_start; 61 u64 unsubmitted_oe_range_end; 62 int overwrite; 63 }; 64 65 static const struct inode_operations btrfs_dir_inode_operations; 66 static const struct inode_operations btrfs_symlink_inode_operations; 67 static const struct inode_operations btrfs_dir_ro_inode_operations; 68 static const struct inode_operations btrfs_special_inode_operations; 69 static const struct inode_operations btrfs_file_inode_operations; 70 static const struct address_space_operations btrfs_aops; 71 static const struct address_space_operations btrfs_symlink_aops; 72 static const struct file_operations btrfs_dir_file_operations; 73 static const struct extent_io_ops btrfs_extent_io_ops; 74 75 static struct kmem_cache *btrfs_inode_cachep; 76 struct kmem_cache *btrfs_trans_handle_cachep; 77 struct kmem_cache *btrfs_path_cachep; 78 struct kmem_cache *btrfs_free_space_cachep; 79 80 #define S_SHIFT 12 81 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 89 }; 90 91 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 92 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 94 static noinline int cow_file_range(struct inode *inode, 95 struct page *locked_page, 96 u64 start, u64 end, u64 delalloc_end, 97 int *page_started, unsigned long *nr_written, 98 int unlock, struct btrfs_dedupe_hash *hash); 99 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 100 u64 orig_start, u64 block_start, 101 u64 block_len, u64 orig_block_len, 102 u64 ram_bytes, int compress_type, 103 int type); 104 105 static void __endio_write_update_ordered(struct inode *inode, 106 const u64 offset, const u64 bytes, 107 const bool uptodate); 108 109 /* 110 * Cleanup all submitted ordered extents in specified range to handle errors 111 * from the fill_dellaloc() callback. 112 * 113 * NOTE: caller must ensure that when an error happens, it can not call 114 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 115 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 116 * to be released, which we want to happen only when finishing the ordered 117 * extent (btrfs_finish_ordered_io()). Also note that the caller of the 118 * fill_delalloc() callback already does proper cleanup for the first page of 119 * the range, that is, it invokes the callback writepage_end_io_hook() for the 120 * range of the first page. 121 */ 122 static inline void btrfs_cleanup_ordered_extents(struct inode *inode, 123 const u64 offset, 124 const u64 bytes) 125 { 126 unsigned long index = offset >> PAGE_SHIFT; 127 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 128 struct page *page; 129 130 while (index <= end_index) { 131 page = find_get_page(inode->i_mapping, index); 132 index++; 133 if (!page) 134 continue; 135 ClearPagePrivate2(page); 136 put_page(page); 137 } 138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE, 139 bytes - PAGE_SIZE, false); 140 } 141 142 static int btrfs_dirty_inode(struct inode *inode); 143 144 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 145 void btrfs_test_inode_set_ops(struct inode *inode) 146 { 147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 148 } 149 #endif 150 151 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 152 struct inode *inode, struct inode *dir, 153 const struct qstr *qstr) 154 { 155 int err; 156 157 err = btrfs_init_acl(trans, inode, dir); 158 if (!err) 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 160 return err; 161 } 162 163 /* 164 * this does all the hard work for inserting an inline extent into 165 * the btree. The caller should have done a btrfs_drop_extents so that 166 * no overlapping inline items exist in the btree 167 */ 168 static int insert_inline_extent(struct btrfs_trans_handle *trans, 169 struct btrfs_path *path, int extent_inserted, 170 struct btrfs_root *root, struct inode *inode, 171 u64 start, size_t size, size_t compressed_size, 172 int compress_type, 173 struct page **compressed_pages) 174 { 175 struct extent_buffer *leaf; 176 struct page *page = NULL; 177 char *kaddr; 178 unsigned long ptr; 179 struct btrfs_file_extent_item *ei; 180 int ret; 181 size_t cur_size = size; 182 unsigned long offset; 183 184 if (compressed_size && compressed_pages) 185 cur_size = compressed_size; 186 187 inode_add_bytes(inode, size); 188 189 if (!extent_inserted) { 190 struct btrfs_key key; 191 size_t datasize; 192 193 key.objectid = btrfs_ino(BTRFS_I(inode)); 194 key.offset = start; 195 key.type = BTRFS_EXTENT_DATA_KEY; 196 197 datasize = btrfs_file_extent_calc_inline_size(cur_size); 198 path->leave_spinning = 1; 199 ret = btrfs_insert_empty_item(trans, root, path, &key, 200 datasize); 201 if (ret) 202 goto fail; 203 } 204 leaf = path->nodes[0]; 205 ei = btrfs_item_ptr(leaf, path->slots[0], 206 struct btrfs_file_extent_item); 207 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 209 btrfs_set_file_extent_encryption(leaf, ei, 0); 210 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 211 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 212 ptr = btrfs_file_extent_inline_start(ei); 213 214 if (compress_type != BTRFS_COMPRESS_NONE) { 215 struct page *cpage; 216 int i = 0; 217 while (compressed_size > 0) { 218 cpage = compressed_pages[i]; 219 cur_size = min_t(unsigned long, compressed_size, 220 PAGE_SIZE); 221 222 kaddr = kmap_atomic(cpage); 223 write_extent_buffer(leaf, kaddr, ptr, cur_size); 224 kunmap_atomic(kaddr); 225 226 i++; 227 ptr += cur_size; 228 compressed_size -= cur_size; 229 } 230 btrfs_set_file_extent_compression(leaf, ei, 231 compress_type); 232 } else { 233 page = find_get_page(inode->i_mapping, 234 start >> PAGE_SHIFT); 235 btrfs_set_file_extent_compression(leaf, ei, 0); 236 kaddr = kmap_atomic(page); 237 offset = start & (PAGE_SIZE - 1); 238 write_extent_buffer(leaf, kaddr + offset, ptr, size); 239 kunmap_atomic(kaddr); 240 put_page(page); 241 } 242 btrfs_mark_buffer_dirty(leaf); 243 btrfs_release_path(path); 244 245 /* 246 * we're an inline extent, so nobody can 247 * extend the file past i_size without locking 248 * a page we already have locked. 249 * 250 * We must do any isize and inode updates 251 * before we unlock the pages. Otherwise we 252 * could end up racing with unlink. 253 */ 254 BTRFS_I(inode)->disk_i_size = inode->i_size; 255 ret = btrfs_update_inode(trans, root, inode); 256 257 fail: 258 return ret; 259 } 260 261 262 /* 263 * conditionally insert an inline extent into the file. This 264 * does the checks required to make sure the data is small enough 265 * to fit as an inline extent. 266 */ 267 static noinline int cow_file_range_inline(struct inode *inode, u64 start, 268 u64 end, size_t compressed_size, 269 int compress_type, 270 struct page **compressed_pages) 271 { 272 struct btrfs_root *root = BTRFS_I(inode)->root; 273 struct btrfs_fs_info *fs_info = root->fs_info; 274 struct btrfs_trans_handle *trans; 275 u64 isize = i_size_read(inode); 276 u64 actual_end = min(end + 1, isize); 277 u64 inline_len = actual_end - start; 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 279 u64 data_len = inline_len; 280 int ret; 281 struct btrfs_path *path; 282 int extent_inserted = 0; 283 u32 extent_item_size; 284 285 if (compressed_size) 286 data_len = compressed_size; 287 288 if (start > 0 || 289 actual_end > fs_info->sectorsize || 290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 291 (!compressed_size && 292 (actual_end & (fs_info->sectorsize - 1)) == 0) || 293 end + 1 < isize || 294 data_len > fs_info->max_inline) { 295 return 1; 296 } 297 298 path = btrfs_alloc_path(); 299 if (!path) 300 return -ENOMEM; 301 302 trans = btrfs_join_transaction(root); 303 if (IS_ERR(trans)) { 304 btrfs_free_path(path); 305 return PTR_ERR(trans); 306 } 307 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 308 309 if (compressed_size && compressed_pages) 310 extent_item_size = btrfs_file_extent_calc_inline_size( 311 compressed_size); 312 else 313 extent_item_size = btrfs_file_extent_calc_inline_size( 314 inline_len); 315 316 ret = __btrfs_drop_extents(trans, root, inode, path, 317 start, aligned_end, NULL, 318 1, 1, extent_item_size, &extent_inserted); 319 if (ret) { 320 btrfs_abort_transaction(trans, ret); 321 goto out; 322 } 323 324 if (isize > actual_end) 325 inline_len = min_t(u64, isize, actual_end); 326 ret = insert_inline_extent(trans, path, extent_inserted, 327 root, inode, start, 328 inline_len, compressed_size, 329 compress_type, compressed_pages); 330 if (ret && ret != -ENOSPC) { 331 btrfs_abort_transaction(trans, ret); 332 goto out; 333 } else if (ret == -ENOSPC) { 334 ret = 1; 335 goto out; 336 } 337 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 339 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); 340 out: 341 /* 342 * Don't forget to free the reserved space, as for inlined extent 343 * it won't count as data extent, free them directly here. 344 * And at reserve time, it's always aligned to page size, so 345 * just free one page here. 346 */ 347 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 348 btrfs_free_path(path); 349 btrfs_end_transaction(trans); 350 return ret; 351 } 352 353 struct async_extent { 354 u64 start; 355 u64 ram_size; 356 u64 compressed_size; 357 struct page **pages; 358 unsigned long nr_pages; 359 int compress_type; 360 struct list_head list; 361 }; 362 363 struct async_cow { 364 struct inode *inode; 365 struct btrfs_root *root; 366 struct page *locked_page; 367 u64 start; 368 u64 end; 369 unsigned int write_flags; 370 struct list_head extents; 371 struct btrfs_work work; 372 }; 373 374 static noinline int add_async_extent(struct async_cow *cow, 375 u64 start, u64 ram_size, 376 u64 compressed_size, 377 struct page **pages, 378 unsigned long nr_pages, 379 int compress_type) 380 { 381 struct async_extent *async_extent; 382 383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 384 BUG_ON(!async_extent); /* -ENOMEM */ 385 async_extent->start = start; 386 async_extent->ram_size = ram_size; 387 async_extent->compressed_size = compressed_size; 388 async_extent->pages = pages; 389 async_extent->nr_pages = nr_pages; 390 async_extent->compress_type = compress_type; 391 list_add_tail(&async_extent->list, &cow->extents); 392 return 0; 393 } 394 395 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) 396 { 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 398 399 /* force compress */ 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 401 return 1; 402 /* defrag ioctl */ 403 if (BTRFS_I(inode)->defrag_compress) 404 return 1; 405 /* bad compression ratios */ 406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 407 return 0; 408 if (btrfs_test_opt(fs_info, COMPRESS) || 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || 410 BTRFS_I(inode)->prop_compress) 411 return btrfs_compress_heuristic(inode, start, end); 412 return 0; 413 } 414 415 static inline void inode_should_defrag(struct btrfs_inode *inode, 416 u64 start, u64 end, u64 num_bytes, u64 small_write) 417 { 418 /* If this is a small write inside eof, kick off a defrag */ 419 if (num_bytes < small_write && 420 (start > 0 || end + 1 < inode->disk_i_size)) 421 btrfs_add_inode_defrag(NULL, inode); 422 } 423 424 /* 425 * we create compressed extents in two phases. The first 426 * phase compresses a range of pages that have already been 427 * locked (both pages and state bits are locked). 428 * 429 * This is done inside an ordered work queue, and the compression 430 * is spread across many cpus. The actual IO submission is step 431 * two, and the ordered work queue takes care of making sure that 432 * happens in the same order things were put onto the queue by 433 * writepages and friends. 434 * 435 * If this code finds it can't get good compression, it puts an 436 * entry onto the work queue to write the uncompressed bytes. This 437 * makes sure that both compressed inodes and uncompressed inodes 438 * are written in the same order that the flusher thread sent them 439 * down. 440 */ 441 static noinline void compress_file_range(struct inode *inode, 442 struct page *locked_page, 443 u64 start, u64 end, 444 struct async_cow *async_cow, 445 int *num_added) 446 { 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 448 u64 blocksize = fs_info->sectorsize; 449 u64 actual_end; 450 u64 isize = i_size_read(inode); 451 int ret = 0; 452 struct page **pages = NULL; 453 unsigned long nr_pages; 454 unsigned long total_compressed = 0; 455 unsigned long total_in = 0; 456 int i; 457 int will_compress; 458 int compress_type = fs_info->compress_type; 459 int redirty = 0; 460 461 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 462 SZ_16K); 463 464 actual_end = min_t(u64, isize, end + 1); 465 again: 466 will_compress = 0; 467 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 468 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 469 nr_pages = min_t(unsigned long, nr_pages, 470 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 471 472 /* 473 * we don't want to send crud past the end of i_size through 474 * compression, that's just a waste of CPU time. So, if the 475 * end of the file is before the start of our current 476 * requested range of bytes, we bail out to the uncompressed 477 * cleanup code that can deal with all of this. 478 * 479 * It isn't really the fastest way to fix things, but this is a 480 * very uncommon corner. 481 */ 482 if (actual_end <= start) 483 goto cleanup_and_bail_uncompressed; 484 485 total_compressed = actual_end - start; 486 487 /* 488 * skip compression for a small file range(<=blocksize) that 489 * isn't an inline extent, since it doesn't save disk space at all. 490 */ 491 if (total_compressed <= blocksize && 492 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 493 goto cleanup_and_bail_uncompressed; 494 495 total_compressed = min_t(unsigned long, total_compressed, 496 BTRFS_MAX_UNCOMPRESSED); 497 total_in = 0; 498 ret = 0; 499 500 /* 501 * we do compression for mount -o compress and when the 502 * inode has not been flagged as nocompress. This flag can 503 * change at any time if we discover bad compression ratios. 504 */ 505 if (inode_need_compress(inode, start, end)) { 506 WARN_ON(pages); 507 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 508 if (!pages) { 509 /* just bail out to the uncompressed code */ 510 goto cont; 511 } 512 513 if (BTRFS_I(inode)->defrag_compress) 514 compress_type = BTRFS_I(inode)->defrag_compress; 515 else if (BTRFS_I(inode)->prop_compress) 516 compress_type = BTRFS_I(inode)->prop_compress; 517 518 /* 519 * we need to call clear_page_dirty_for_io on each 520 * page in the range. Otherwise applications with the file 521 * mmap'd can wander in and change the page contents while 522 * we are compressing them. 523 * 524 * If the compression fails for any reason, we set the pages 525 * dirty again later on. 526 * 527 * Note that the remaining part is redirtied, the start pointer 528 * has moved, the end is the original one. 529 */ 530 if (!redirty) { 531 extent_range_clear_dirty_for_io(inode, start, end); 532 redirty = 1; 533 } 534 535 /* Compression level is applied here and only here */ 536 ret = btrfs_compress_pages( 537 compress_type | (fs_info->compress_level << 4), 538 inode->i_mapping, start, 539 pages, 540 &nr_pages, 541 &total_in, 542 &total_compressed); 543 544 if (!ret) { 545 unsigned long offset = total_compressed & 546 (PAGE_SIZE - 1); 547 struct page *page = pages[nr_pages - 1]; 548 char *kaddr; 549 550 /* zero the tail end of the last page, we might be 551 * sending it down to disk 552 */ 553 if (offset) { 554 kaddr = kmap_atomic(page); 555 memset(kaddr + offset, 0, 556 PAGE_SIZE - offset); 557 kunmap_atomic(kaddr); 558 } 559 will_compress = 1; 560 } 561 } 562 cont: 563 if (start == 0) { 564 /* lets try to make an inline extent */ 565 if (ret || total_in < actual_end) { 566 /* we didn't compress the entire range, try 567 * to make an uncompressed inline extent. 568 */ 569 ret = cow_file_range_inline(inode, start, end, 0, 570 BTRFS_COMPRESS_NONE, NULL); 571 } else { 572 /* try making a compressed inline extent */ 573 ret = cow_file_range_inline(inode, start, end, 574 total_compressed, 575 compress_type, pages); 576 } 577 if (ret <= 0) { 578 unsigned long clear_flags = EXTENT_DELALLOC | 579 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 580 EXTENT_DO_ACCOUNTING; 581 unsigned long page_error_op; 582 583 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 584 585 /* 586 * inline extent creation worked or returned error, 587 * we don't need to create any more async work items. 588 * Unlock and free up our temp pages. 589 * 590 * We use DO_ACCOUNTING here because we need the 591 * delalloc_release_metadata to be done _after_ we drop 592 * our outstanding extent for clearing delalloc for this 593 * range. 594 */ 595 extent_clear_unlock_delalloc(inode, start, end, end, 596 NULL, clear_flags, 597 PAGE_UNLOCK | 598 PAGE_CLEAR_DIRTY | 599 PAGE_SET_WRITEBACK | 600 page_error_op | 601 PAGE_END_WRITEBACK); 602 goto free_pages_out; 603 } 604 } 605 606 if (will_compress) { 607 /* 608 * we aren't doing an inline extent round the compressed size 609 * up to a block size boundary so the allocator does sane 610 * things 611 */ 612 total_compressed = ALIGN(total_compressed, blocksize); 613 614 /* 615 * one last check to make sure the compression is really a 616 * win, compare the page count read with the blocks on disk, 617 * compression must free at least one sector size 618 */ 619 total_in = ALIGN(total_in, PAGE_SIZE); 620 if (total_compressed + blocksize <= total_in) { 621 *num_added += 1; 622 623 /* 624 * The async work queues will take care of doing actual 625 * allocation on disk for these compressed pages, and 626 * will submit them to the elevator. 627 */ 628 add_async_extent(async_cow, start, total_in, 629 total_compressed, pages, nr_pages, 630 compress_type); 631 632 if (start + total_in < end) { 633 start += total_in; 634 pages = NULL; 635 cond_resched(); 636 goto again; 637 } 638 return; 639 } 640 } 641 if (pages) { 642 /* 643 * the compression code ran but failed to make things smaller, 644 * free any pages it allocated and our page pointer array 645 */ 646 for (i = 0; i < nr_pages; i++) { 647 WARN_ON(pages[i]->mapping); 648 put_page(pages[i]); 649 } 650 kfree(pages); 651 pages = NULL; 652 total_compressed = 0; 653 nr_pages = 0; 654 655 /* flag the file so we don't compress in the future */ 656 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 657 !(BTRFS_I(inode)->prop_compress)) { 658 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 659 } 660 } 661 cleanup_and_bail_uncompressed: 662 /* 663 * No compression, but we still need to write the pages in the file 664 * we've been given so far. redirty the locked page if it corresponds 665 * to our extent and set things up for the async work queue to run 666 * cow_file_range to do the normal delalloc dance. 667 */ 668 if (page_offset(locked_page) >= start && 669 page_offset(locked_page) <= end) 670 __set_page_dirty_nobuffers(locked_page); 671 /* unlocked later on in the async handlers */ 672 673 if (redirty) 674 extent_range_redirty_for_io(inode, start, end); 675 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, 676 BTRFS_COMPRESS_NONE); 677 *num_added += 1; 678 679 return; 680 681 free_pages_out: 682 for (i = 0; i < nr_pages; i++) { 683 WARN_ON(pages[i]->mapping); 684 put_page(pages[i]); 685 } 686 kfree(pages); 687 } 688 689 static void free_async_extent_pages(struct async_extent *async_extent) 690 { 691 int i; 692 693 if (!async_extent->pages) 694 return; 695 696 for (i = 0; i < async_extent->nr_pages; i++) { 697 WARN_ON(async_extent->pages[i]->mapping); 698 put_page(async_extent->pages[i]); 699 } 700 kfree(async_extent->pages); 701 async_extent->nr_pages = 0; 702 async_extent->pages = NULL; 703 } 704 705 /* 706 * phase two of compressed writeback. This is the ordered portion 707 * of the code, which only gets called in the order the work was 708 * queued. We walk all the async extents created by compress_file_range 709 * and send them down to the disk. 710 */ 711 static noinline void submit_compressed_extents(struct inode *inode, 712 struct async_cow *async_cow) 713 { 714 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 715 struct async_extent *async_extent; 716 u64 alloc_hint = 0; 717 struct btrfs_key ins; 718 struct extent_map *em; 719 struct btrfs_root *root = BTRFS_I(inode)->root; 720 struct extent_io_tree *io_tree; 721 int ret = 0; 722 723 again: 724 while (!list_empty(&async_cow->extents)) { 725 async_extent = list_entry(async_cow->extents.next, 726 struct async_extent, list); 727 list_del(&async_extent->list); 728 729 io_tree = &BTRFS_I(inode)->io_tree; 730 731 retry: 732 /* did the compression code fall back to uncompressed IO? */ 733 if (!async_extent->pages) { 734 int page_started = 0; 735 unsigned long nr_written = 0; 736 737 lock_extent(io_tree, async_extent->start, 738 async_extent->start + 739 async_extent->ram_size - 1); 740 741 /* allocate blocks */ 742 ret = cow_file_range(inode, async_cow->locked_page, 743 async_extent->start, 744 async_extent->start + 745 async_extent->ram_size - 1, 746 async_extent->start + 747 async_extent->ram_size - 1, 748 &page_started, &nr_written, 0, 749 NULL); 750 751 /* JDM XXX */ 752 753 /* 754 * if page_started, cow_file_range inserted an 755 * inline extent and took care of all the unlocking 756 * and IO for us. Otherwise, we need to submit 757 * all those pages down to the drive. 758 */ 759 if (!page_started && !ret) 760 extent_write_locked_range(inode, 761 async_extent->start, 762 async_extent->start + 763 async_extent->ram_size - 1, 764 WB_SYNC_ALL); 765 else if (ret) 766 unlock_page(async_cow->locked_page); 767 kfree(async_extent); 768 cond_resched(); 769 continue; 770 } 771 772 lock_extent(io_tree, async_extent->start, 773 async_extent->start + async_extent->ram_size - 1); 774 775 ret = btrfs_reserve_extent(root, async_extent->ram_size, 776 async_extent->compressed_size, 777 async_extent->compressed_size, 778 0, alloc_hint, &ins, 1, 1); 779 if (ret) { 780 free_async_extent_pages(async_extent); 781 782 if (ret == -ENOSPC) { 783 unlock_extent(io_tree, async_extent->start, 784 async_extent->start + 785 async_extent->ram_size - 1); 786 787 /* 788 * we need to redirty the pages if we decide to 789 * fallback to uncompressed IO, otherwise we 790 * will not submit these pages down to lower 791 * layers. 792 */ 793 extent_range_redirty_for_io(inode, 794 async_extent->start, 795 async_extent->start + 796 async_extent->ram_size - 1); 797 798 goto retry; 799 } 800 goto out_free; 801 } 802 /* 803 * here we're doing allocation and writeback of the 804 * compressed pages 805 */ 806 em = create_io_em(inode, async_extent->start, 807 async_extent->ram_size, /* len */ 808 async_extent->start, /* orig_start */ 809 ins.objectid, /* block_start */ 810 ins.offset, /* block_len */ 811 ins.offset, /* orig_block_len */ 812 async_extent->ram_size, /* ram_bytes */ 813 async_extent->compress_type, 814 BTRFS_ORDERED_COMPRESSED); 815 if (IS_ERR(em)) 816 /* ret value is not necessary due to void function */ 817 goto out_free_reserve; 818 free_extent_map(em); 819 820 ret = btrfs_add_ordered_extent_compress(inode, 821 async_extent->start, 822 ins.objectid, 823 async_extent->ram_size, 824 ins.offset, 825 BTRFS_ORDERED_COMPRESSED, 826 async_extent->compress_type); 827 if (ret) { 828 btrfs_drop_extent_cache(BTRFS_I(inode), 829 async_extent->start, 830 async_extent->start + 831 async_extent->ram_size - 1, 0); 832 goto out_free_reserve; 833 } 834 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 835 836 /* 837 * clear dirty, set writeback and unlock the pages. 838 */ 839 extent_clear_unlock_delalloc(inode, async_extent->start, 840 async_extent->start + 841 async_extent->ram_size - 1, 842 async_extent->start + 843 async_extent->ram_size - 1, 844 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 845 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 846 PAGE_SET_WRITEBACK); 847 if (btrfs_submit_compressed_write(inode, 848 async_extent->start, 849 async_extent->ram_size, 850 ins.objectid, 851 ins.offset, async_extent->pages, 852 async_extent->nr_pages, 853 async_cow->write_flags)) { 854 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 855 struct page *p = async_extent->pages[0]; 856 const u64 start = async_extent->start; 857 const u64 end = start + async_extent->ram_size - 1; 858 859 p->mapping = inode->i_mapping; 860 tree->ops->writepage_end_io_hook(p, start, end, 861 NULL, 0); 862 p->mapping = NULL; 863 extent_clear_unlock_delalloc(inode, start, end, end, 864 NULL, 0, 865 PAGE_END_WRITEBACK | 866 PAGE_SET_ERROR); 867 free_async_extent_pages(async_extent); 868 } 869 alloc_hint = ins.objectid + ins.offset; 870 kfree(async_extent); 871 cond_resched(); 872 } 873 return; 874 out_free_reserve: 875 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 876 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 877 out_free: 878 extent_clear_unlock_delalloc(inode, async_extent->start, 879 async_extent->start + 880 async_extent->ram_size - 1, 881 async_extent->start + 882 async_extent->ram_size - 1, 883 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 884 EXTENT_DELALLOC_NEW | 885 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 886 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 887 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 888 PAGE_SET_ERROR); 889 free_async_extent_pages(async_extent); 890 kfree(async_extent); 891 goto again; 892 } 893 894 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 895 u64 num_bytes) 896 { 897 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 898 struct extent_map *em; 899 u64 alloc_hint = 0; 900 901 read_lock(&em_tree->lock); 902 em = search_extent_mapping(em_tree, start, num_bytes); 903 if (em) { 904 /* 905 * if block start isn't an actual block number then find the 906 * first block in this inode and use that as a hint. If that 907 * block is also bogus then just don't worry about it. 908 */ 909 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 910 free_extent_map(em); 911 em = search_extent_mapping(em_tree, 0, 0); 912 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 913 alloc_hint = em->block_start; 914 if (em) 915 free_extent_map(em); 916 } else { 917 alloc_hint = em->block_start; 918 free_extent_map(em); 919 } 920 } 921 read_unlock(&em_tree->lock); 922 923 return alloc_hint; 924 } 925 926 /* 927 * when extent_io.c finds a delayed allocation range in the file, 928 * the call backs end up in this code. The basic idea is to 929 * allocate extents on disk for the range, and create ordered data structs 930 * in ram to track those extents. 931 * 932 * locked_page is the page that writepage had locked already. We use 933 * it to make sure we don't do extra locks or unlocks. 934 * 935 * *page_started is set to one if we unlock locked_page and do everything 936 * required to start IO on it. It may be clean and already done with 937 * IO when we return. 938 */ 939 static noinline int cow_file_range(struct inode *inode, 940 struct page *locked_page, 941 u64 start, u64 end, u64 delalloc_end, 942 int *page_started, unsigned long *nr_written, 943 int unlock, struct btrfs_dedupe_hash *hash) 944 { 945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 946 struct btrfs_root *root = BTRFS_I(inode)->root; 947 u64 alloc_hint = 0; 948 u64 num_bytes; 949 unsigned long ram_size; 950 u64 cur_alloc_size = 0; 951 u64 blocksize = fs_info->sectorsize; 952 struct btrfs_key ins; 953 struct extent_map *em; 954 unsigned clear_bits; 955 unsigned long page_ops; 956 bool extent_reserved = false; 957 int ret = 0; 958 959 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 960 WARN_ON_ONCE(1); 961 ret = -EINVAL; 962 goto out_unlock; 963 } 964 965 num_bytes = ALIGN(end - start + 1, blocksize); 966 num_bytes = max(blocksize, num_bytes); 967 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 968 969 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); 970 971 if (start == 0) { 972 /* lets try to make an inline extent */ 973 ret = cow_file_range_inline(inode, start, end, 0, 974 BTRFS_COMPRESS_NONE, NULL); 975 if (ret == 0) { 976 /* 977 * We use DO_ACCOUNTING here because we need the 978 * delalloc_release_metadata to be run _after_ we drop 979 * our outstanding extent for clearing delalloc for this 980 * range. 981 */ 982 extent_clear_unlock_delalloc(inode, start, end, 983 delalloc_end, NULL, 984 EXTENT_LOCKED | EXTENT_DELALLOC | 985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 986 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 987 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 988 PAGE_END_WRITEBACK); 989 *nr_written = *nr_written + 990 (end - start + PAGE_SIZE) / PAGE_SIZE; 991 *page_started = 1; 992 goto out; 993 } else if (ret < 0) { 994 goto out_unlock; 995 } 996 } 997 998 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 999 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1000 start + num_bytes - 1, 0); 1001 1002 while (num_bytes > 0) { 1003 cur_alloc_size = num_bytes; 1004 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1005 fs_info->sectorsize, 0, alloc_hint, 1006 &ins, 1, 1); 1007 if (ret < 0) 1008 goto out_unlock; 1009 cur_alloc_size = ins.offset; 1010 extent_reserved = true; 1011 1012 ram_size = ins.offset; 1013 em = create_io_em(inode, start, ins.offset, /* len */ 1014 start, /* orig_start */ 1015 ins.objectid, /* block_start */ 1016 ins.offset, /* block_len */ 1017 ins.offset, /* orig_block_len */ 1018 ram_size, /* ram_bytes */ 1019 BTRFS_COMPRESS_NONE, /* compress_type */ 1020 BTRFS_ORDERED_REGULAR /* type */); 1021 if (IS_ERR(em)) { 1022 ret = PTR_ERR(em); 1023 goto out_reserve; 1024 } 1025 free_extent_map(em); 1026 1027 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1028 ram_size, cur_alloc_size, 0); 1029 if (ret) 1030 goto out_drop_extent_cache; 1031 1032 if (root->root_key.objectid == 1033 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1034 ret = btrfs_reloc_clone_csums(inode, start, 1035 cur_alloc_size); 1036 /* 1037 * Only drop cache here, and process as normal. 1038 * 1039 * We must not allow extent_clear_unlock_delalloc() 1040 * at out_unlock label to free meta of this ordered 1041 * extent, as its meta should be freed by 1042 * btrfs_finish_ordered_io(). 1043 * 1044 * So we must continue until @start is increased to 1045 * skip current ordered extent. 1046 */ 1047 if (ret) 1048 btrfs_drop_extent_cache(BTRFS_I(inode), start, 1049 start + ram_size - 1, 0); 1050 } 1051 1052 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1053 1054 /* we're not doing compressed IO, don't unlock the first 1055 * page (which the caller expects to stay locked), don't 1056 * clear any dirty bits and don't set any writeback bits 1057 * 1058 * Do set the Private2 bit so we know this page was properly 1059 * setup for writepage 1060 */ 1061 page_ops = unlock ? PAGE_UNLOCK : 0; 1062 page_ops |= PAGE_SET_PRIVATE2; 1063 1064 extent_clear_unlock_delalloc(inode, start, 1065 start + ram_size - 1, 1066 delalloc_end, locked_page, 1067 EXTENT_LOCKED | EXTENT_DELALLOC, 1068 page_ops); 1069 if (num_bytes < cur_alloc_size) 1070 num_bytes = 0; 1071 else 1072 num_bytes -= cur_alloc_size; 1073 alloc_hint = ins.objectid + ins.offset; 1074 start += cur_alloc_size; 1075 extent_reserved = false; 1076 1077 /* 1078 * btrfs_reloc_clone_csums() error, since start is increased 1079 * extent_clear_unlock_delalloc() at out_unlock label won't 1080 * free metadata of current ordered extent, we're OK to exit. 1081 */ 1082 if (ret) 1083 goto out_unlock; 1084 } 1085 out: 1086 return ret; 1087 1088 out_drop_extent_cache: 1089 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); 1090 out_reserve: 1091 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1092 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1093 out_unlock: 1094 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1095 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1096 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1097 PAGE_END_WRITEBACK; 1098 /* 1099 * If we reserved an extent for our delalloc range (or a subrange) and 1100 * failed to create the respective ordered extent, then it means that 1101 * when we reserved the extent we decremented the extent's size from 1102 * the data space_info's bytes_may_use counter and incremented the 1103 * space_info's bytes_reserved counter by the same amount. We must make 1104 * sure extent_clear_unlock_delalloc() does not try to decrement again 1105 * the data space_info's bytes_may_use counter, therefore we do not pass 1106 * it the flag EXTENT_CLEAR_DATA_RESV. 1107 */ 1108 if (extent_reserved) { 1109 extent_clear_unlock_delalloc(inode, start, 1110 start + cur_alloc_size, 1111 start + cur_alloc_size, 1112 locked_page, 1113 clear_bits, 1114 page_ops); 1115 start += cur_alloc_size; 1116 if (start >= end) 1117 goto out; 1118 } 1119 extent_clear_unlock_delalloc(inode, start, end, delalloc_end, 1120 locked_page, 1121 clear_bits | EXTENT_CLEAR_DATA_RESV, 1122 page_ops); 1123 goto out; 1124 } 1125 1126 /* 1127 * work queue call back to started compression on a file and pages 1128 */ 1129 static noinline void async_cow_start(struct btrfs_work *work) 1130 { 1131 struct async_cow *async_cow; 1132 int num_added = 0; 1133 async_cow = container_of(work, struct async_cow, work); 1134 1135 compress_file_range(async_cow->inode, async_cow->locked_page, 1136 async_cow->start, async_cow->end, async_cow, 1137 &num_added); 1138 if (num_added == 0) { 1139 btrfs_add_delayed_iput(async_cow->inode); 1140 async_cow->inode = NULL; 1141 } 1142 } 1143 1144 /* 1145 * work queue call back to submit previously compressed pages 1146 */ 1147 static noinline void async_cow_submit(struct btrfs_work *work) 1148 { 1149 struct btrfs_fs_info *fs_info; 1150 struct async_cow *async_cow; 1151 struct btrfs_root *root; 1152 unsigned long nr_pages; 1153 1154 async_cow = container_of(work, struct async_cow, work); 1155 1156 root = async_cow->root; 1157 fs_info = root->fs_info; 1158 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> 1159 PAGE_SHIFT; 1160 1161 /* atomic_sub_return implies a barrier */ 1162 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1163 5 * SZ_1M) 1164 cond_wake_up_nomb(&fs_info->async_submit_wait); 1165 1166 if (async_cow->inode) 1167 submit_compressed_extents(async_cow->inode, async_cow); 1168 } 1169 1170 static noinline void async_cow_free(struct btrfs_work *work) 1171 { 1172 struct async_cow *async_cow; 1173 async_cow = container_of(work, struct async_cow, work); 1174 if (async_cow->inode) 1175 btrfs_add_delayed_iput(async_cow->inode); 1176 kfree(async_cow); 1177 } 1178 1179 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1180 u64 start, u64 end, int *page_started, 1181 unsigned long *nr_written, 1182 unsigned int write_flags) 1183 { 1184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1185 struct async_cow *async_cow; 1186 struct btrfs_root *root = BTRFS_I(inode)->root; 1187 unsigned long nr_pages; 1188 u64 cur_end; 1189 1190 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1191 1, 0, NULL); 1192 while (start < end) { 1193 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1194 BUG_ON(!async_cow); /* -ENOMEM */ 1195 async_cow->inode = igrab(inode); 1196 async_cow->root = root; 1197 async_cow->locked_page = locked_page; 1198 async_cow->start = start; 1199 async_cow->write_flags = write_flags; 1200 1201 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && 1202 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) 1203 cur_end = end; 1204 else 1205 cur_end = min(end, start + SZ_512K - 1); 1206 1207 async_cow->end = cur_end; 1208 INIT_LIST_HEAD(&async_cow->extents); 1209 1210 btrfs_init_work(&async_cow->work, 1211 btrfs_delalloc_helper, 1212 async_cow_start, async_cow_submit, 1213 async_cow_free); 1214 1215 nr_pages = (cur_end - start + PAGE_SIZE) >> 1216 PAGE_SHIFT; 1217 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1218 1219 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); 1220 1221 *nr_written += nr_pages; 1222 start = cur_end + 1; 1223 } 1224 *page_started = 1; 1225 return 0; 1226 } 1227 1228 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1229 u64 bytenr, u64 num_bytes) 1230 { 1231 int ret; 1232 struct btrfs_ordered_sum *sums; 1233 LIST_HEAD(list); 1234 1235 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1236 bytenr + num_bytes - 1, &list, 0); 1237 if (ret == 0 && list_empty(&list)) 1238 return 0; 1239 1240 while (!list_empty(&list)) { 1241 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1242 list_del(&sums->list); 1243 kfree(sums); 1244 } 1245 if (ret < 0) 1246 return ret; 1247 return 1; 1248 } 1249 1250 /* 1251 * when nowcow writeback call back. This checks for snapshots or COW copies 1252 * of the extents that exist in the file, and COWs the file as required. 1253 * 1254 * If no cow copies or snapshots exist, we write directly to the existing 1255 * blocks on disk 1256 */ 1257 static noinline int run_delalloc_nocow(struct inode *inode, 1258 struct page *locked_page, 1259 u64 start, u64 end, int *page_started, int force, 1260 unsigned long *nr_written) 1261 { 1262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1263 struct btrfs_root *root = BTRFS_I(inode)->root; 1264 struct extent_buffer *leaf; 1265 struct btrfs_path *path; 1266 struct btrfs_file_extent_item *fi; 1267 struct btrfs_key found_key; 1268 struct extent_map *em; 1269 u64 cow_start; 1270 u64 cur_offset; 1271 u64 extent_end; 1272 u64 extent_offset; 1273 u64 disk_bytenr; 1274 u64 num_bytes; 1275 u64 disk_num_bytes; 1276 u64 ram_bytes; 1277 int extent_type; 1278 int ret, err; 1279 int type; 1280 int nocow; 1281 int check_prev = 1; 1282 bool nolock; 1283 u64 ino = btrfs_ino(BTRFS_I(inode)); 1284 1285 path = btrfs_alloc_path(); 1286 if (!path) { 1287 extent_clear_unlock_delalloc(inode, start, end, end, 1288 locked_page, 1289 EXTENT_LOCKED | EXTENT_DELALLOC | 1290 EXTENT_DO_ACCOUNTING | 1291 EXTENT_DEFRAG, PAGE_UNLOCK | 1292 PAGE_CLEAR_DIRTY | 1293 PAGE_SET_WRITEBACK | 1294 PAGE_END_WRITEBACK); 1295 return -ENOMEM; 1296 } 1297 1298 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 1299 1300 cow_start = (u64)-1; 1301 cur_offset = start; 1302 while (1) { 1303 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1304 cur_offset, 0); 1305 if (ret < 0) 1306 goto error; 1307 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1308 leaf = path->nodes[0]; 1309 btrfs_item_key_to_cpu(leaf, &found_key, 1310 path->slots[0] - 1); 1311 if (found_key.objectid == ino && 1312 found_key.type == BTRFS_EXTENT_DATA_KEY) 1313 path->slots[0]--; 1314 } 1315 check_prev = 0; 1316 next_slot: 1317 leaf = path->nodes[0]; 1318 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1319 ret = btrfs_next_leaf(root, path); 1320 if (ret < 0) { 1321 if (cow_start != (u64)-1) 1322 cur_offset = cow_start; 1323 goto error; 1324 } 1325 if (ret > 0) 1326 break; 1327 leaf = path->nodes[0]; 1328 } 1329 1330 nocow = 0; 1331 disk_bytenr = 0; 1332 num_bytes = 0; 1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1334 1335 if (found_key.objectid > ino) 1336 break; 1337 if (WARN_ON_ONCE(found_key.objectid < ino) || 1338 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1339 path->slots[0]++; 1340 goto next_slot; 1341 } 1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1343 found_key.offset > end) 1344 break; 1345 1346 if (found_key.offset > cur_offset) { 1347 extent_end = found_key.offset; 1348 extent_type = 0; 1349 goto out_check; 1350 } 1351 1352 fi = btrfs_item_ptr(leaf, path->slots[0], 1353 struct btrfs_file_extent_item); 1354 extent_type = btrfs_file_extent_type(leaf, fi); 1355 1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1357 if (extent_type == BTRFS_FILE_EXTENT_REG || 1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1360 extent_offset = btrfs_file_extent_offset(leaf, fi); 1361 extent_end = found_key.offset + 1362 btrfs_file_extent_num_bytes(leaf, fi); 1363 disk_num_bytes = 1364 btrfs_file_extent_disk_num_bytes(leaf, fi); 1365 if (extent_end <= start) { 1366 path->slots[0]++; 1367 goto next_slot; 1368 } 1369 if (disk_bytenr == 0) 1370 goto out_check; 1371 if (btrfs_file_extent_compression(leaf, fi) || 1372 btrfs_file_extent_encryption(leaf, fi) || 1373 btrfs_file_extent_other_encoding(leaf, fi)) 1374 goto out_check; 1375 /* 1376 * Do the same check as in btrfs_cross_ref_exist but 1377 * without the unnecessary search. 1378 */ 1379 if (btrfs_file_extent_generation(leaf, fi) <= 1380 btrfs_root_last_snapshot(&root->root_item)) 1381 goto out_check; 1382 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1383 goto out_check; 1384 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1385 goto out_check; 1386 ret = btrfs_cross_ref_exist(root, ino, 1387 found_key.offset - 1388 extent_offset, disk_bytenr); 1389 if (ret) { 1390 /* 1391 * ret could be -EIO if the above fails to read 1392 * metadata. 1393 */ 1394 if (ret < 0) { 1395 if (cow_start != (u64)-1) 1396 cur_offset = cow_start; 1397 goto error; 1398 } 1399 1400 WARN_ON_ONCE(nolock); 1401 goto out_check; 1402 } 1403 disk_bytenr += extent_offset; 1404 disk_bytenr += cur_offset - found_key.offset; 1405 num_bytes = min(end + 1, extent_end) - cur_offset; 1406 /* 1407 * if there are pending snapshots for this root, 1408 * we fall into common COW way. 1409 */ 1410 if (!nolock) { 1411 err = btrfs_start_write_no_snapshotting(root); 1412 if (!err) 1413 goto out_check; 1414 } 1415 /* 1416 * force cow if csum exists in the range. 1417 * this ensure that csum for a given extent are 1418 * either valid or do not exist. 1419 */ 1420 ret = csum_exist_in_range(fs_info, disk_bytenr, 1421 num_bytes); 1422 if (ret) { 1423 if (!nolock) 1424 btrfs_end_write_no_snapshotting(root); 1425 1426 /* 1427 * ret could be -EIO if the above fails to read 1428 * metadata. 1429 */ 1430 if (ret < 0) { 1431 if (cow_start != (u64)-1) 1432 cur_offset = cow_start; 1433 goto error; 1434 } 1435 WARN_ON_ONCE(nolock); 1436 goto out_check; 1437 } 1438 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) { 1439 if (!nolock) 1440 btrfs_end_write_no_snapshotting(root); 1441 goto out_check; 1442 } 1443 nocow = 1; 1444 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1445 extent_end = found_key.offset + 1446 btrfs_file_extent_inline_len(leaf, 1447 path->slots[0], fi); 1448 extent_end = ALIGN(extent_end, 1449 fs_info->sectorsize); 1450 } else { 1451 BUG_ON(1); 1452 } 1453 out_check: 1454 if (extent_end <= start) { 1455 path->slots[0]++; 1456 if (!nolock && nocow) 1457 btrfs_end_write_no_snapshotting(root); 1458 if (nocow) 1459 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1460 goto next_slot; 1461 } 1462 if (!nocow) { 1463 if (cow_start == (u64)-1) 1464 cow_start = cur_offset; 1465 cur_offset = extent_end; 1466 if (cur_offset > end) 1467 break; 1468 path->slots[0]++; 1469 goto next_slot; 1470 } 1471 1472 btrfs_release_path(path); 1473 if (cow_start != (u64)-1) { 1474 ret = cow_file_range(inode, locked_page, 1475 cow_start, found_key.offset - 1, 1476 end, page_started, nr_written, 1, 1477 NULL); 1478 if (ret) { 1479 if (!nolock && nocow) 1480 btrfs_end_write_no_snapshotting(root); 1481 if (nocow) 1482 btrfs_dec_nocow_writers(fs_info, 1483 disk_bytenr); 1484 goto error; 1485 } 1486 cow_start = (u64)-1; 1487 } 1488 1489 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1490 u64 orig_start = found_key.offset - extent_offset; 1491 1492 em = create_io_em(inode, cur_offset, num_bytes, 1493 orig_start, 1494 disk_bytenr, /* block_start */ 1495 num_bytes, /* block_len */ 1496 disk_num_bytes, /* orig_block_len */ 1497 ram_bytes, BTRFS_COMPRESS_NONE, 1498 BTRFS_ORDERED_PREALLOC); 1499 if (IS_ERR(em)) { 1500 if (!nolock && nocow) 1501 btrfs_end_write_no_snapshotting(root); 1502 if (nocow) 1503 btrfs_dec_nocow_writers(fs_info, 1504 disk_bytenr); 1505 ret = PTR_ERR(em); 1506 goto error; 1507 } 1508 free_extent_map(em); 1509 } 1510 1511 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1512 type = BTRFS_ORDERED_PREALLOC; 1513 } else { 1514 type = BTRFS_ORDERED_NOCOW; 1515 } 1516 1517 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1518 num_bytes, num_bytes, type); 1519 if (nocow) 1520 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1521 BUG_ON(ret); /* -ENOMEM */ 1522 1523 if (root->root_key.objectid == 1524 BTRFS_DATA_RELOC_TREE_OBJECTID) 1525 /* 1526 * Error handled later, as we must prevent 1527 * extent_clear_unlock_delalloc() in error handler 1528 * from freeing metadata of created ordered extent. 1529 */ 1530 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1531 num_bytes); 1532 1533 extent_clear_unlock_delalloc(inode, cur_offset, 1534 cur_offset + num_bytes - 1, end, 1535 locked_page, EXTENT_LOCKED | 1536 EXTENT_DELALLOC | 1537 EXTENT_CLEAR_DATA_RESV, 1538 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1539 1540 if (!nolock && nocow) 1541 btrfs_end_write_no_snapshotting(root); 1542 cur_offset = extent_end; 1543 1544 /* 1545 * btrfs_reloc_clone_csums() error, now we're OK to call error 1546 * handler, as metadata for created ordered extent will only 1547 * be freed by btrfs_finish_ordered_io(). 1548 */ 1549 if (ret) 1550 goto error; 1551 if (cur_offset > end) 1552 break; 1553 } 1554 btrfs_release_path(path); 1555 1556 if (cur_offset <= end && cow_start == (u64)-1) { 1557 cow_start = cur_offset; 1558 cur_offset = end; 1559 } 1560 1561 if (cow_start != (u64)-1) { 1562 ret = cow_file_range(inode, locked_page, cow_start, end, end, 1563 page_started, nr_written, 1, NULL); 1564 if (ret) 1565 goto error; 1566 } 1567 1568 error: 1569 if (ret && cur_offset < end) 1570 extent_clear_unlock_delalloc(inode, cur_offset, end, end, 1571 locked_page, EXTENT_LOCKED | 1572 EXTENT_DELALLOC | EXTENT_DEFRAG | 1573 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1574 PAGE_CLEAR_DIRTY | 1575 PAGE_SET_WRITEBACK | 1576 PAGE_END_WRITEBACK); 1577 btrfs_free_path(path); 1578 return ret; 1579 } 1580 1581 static inline int need_force_cow(struct inode *inode, u64 start, u64 end) 1582 { 1583 1584 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 1585 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) 1586 return 0; 1587 1588 /* 1589 * @defrag_bytes is a hint value, no spinlock held here, 1590 * if is not zero, it means the file is defragging. 1591 * Force cow if given extent needs to be defragged. 1592 */ 1593 if (BTRFS_I(inode)->defrag_bytes && 1594 test_range_bit(&BTRFS_I(inode)->io_tree, start, end, 1595 EXTENT_DEFRAG, 0, NULL)) 1596 return 1; 1597 1598 return 0; 1599 } 1600 1601 /* 1602 * extent_io.c call back to do delayed allocation processing 1603 */ 1604 static int run_delalloc_range(void *private_data, struct page *locked_page, 1605 u64 start, u64 end, int *page_started, 1606 unsigned long *nr_written, 1607 struct writeback_control *wbc) 1608 { 1609 struct inode *inode = private_data; 1610 int ret; 1611 int force_cow = need_force_cow(inode, start, end); 1612 unsigned int write_flags = wbc_to_write_flags(wbc); 1613 1614 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1615 ret = run_delalloc_nocow(inode, locked_page, start, end, 1616 page_started, 1, nr_written); 1617 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1618 ret = run_delalloc_nocow(inode, locked_page, start, end, 1619 page_started, 0, nr_written); 1620 } else if (!inode_need_compress(inode, start, end)) { 1621 ret = cow_file_range(inode, locked_page, start, end, end, 1622 page_started, nr_written, 1, NULL); 1623 } else { 1624 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1625 &BTRFS_I(inode)->runtime_flags); 1626 ret = cow_file_range_async(inode, locked_page, start, end, 1627 page_started, nr_written, 1628 write_flags); 1629 } 1630 if (ret) 1631 btrfs_cleanup_ordered_extents(inode, start, end - start + 1); 1632 return ret; 1633 } 1634 1635 static void btrfs_split_extent_hook(void *private_data, 1636 struct extent_state *orig, u64 split) 1637 { 1638 struct inode *inode = private_data; 1639 u64 size; 1640 1641 /* not delalloc, ignore it */ 1642 if (!(orig->state & EXTENT_DELALLOC)) 1643 return; 1644 1645 size = orig->end - orig->start + 1; 1646 if (size > BTRFS_MAX_EXTENT_SIZE) { 1647 u32 num_extents; 1648 u64 new_size; 1649 1650 /* 1651 * See the explanation in btrfs_merge_extent_hook, the same 1652 * applies here, just in reverse. 1653 */ 1654 new_size = orig->end - split + 1; 1655 num_extents = count_max_extents(new_size); 1656 new_size = split - orig->start; 1657 num_extents += count_max_extents(new_size); 1658 if (count_max_extents(size) >= num_extents) 1659 return; 1660 } 1661 1662 spin_lock(&BTRFS_I(inode)->lock); 1663 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1664 spin_unlock(&BTRFS_I(inode)->lock); 1665 } 1666 1667 /* 1668 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1669 * extents so we can keep track of new extents that are just merged onto old 1670 * extents, such as when we are doing sequential writes, so we can properly 1671 * account for the metadata space we'll need. 1672 */ 1673 static void btrfs_merge_extent_hook(void *private_data, 1674 struct extent_state *new, 1675 struct extent_state *other) 1676 { 1677 struct inode *inode = private_data; 1678 u64 new_size, old_size; 1679 u32 num_extents; 1680 1681 /* not delalloc, ignore it */ 1682 if (!(other->state & EXTENT_DELALLOC)) 1683 return; 1684 1685 if (new->start > other->start) 1686 new_size = new->end - other->start + 1; 1687 else 1688 new_size = other->end - new->start + 1; 1689 1690 /* we're not bigger than the max, unreserve the space and go */ 1691 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1692 spin_lock(&BTRFS_I(inode)->lock); 1693 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1694 spin_unlock(&BTRFS_I(inode)->lock); 1695 return; 1696 } 1697 1698 /* 1699 * We have to add up either side to figure out how many extents were 1700 * accounted for before we merged into one big extent. If the number of 1701 * extents we accounted for is <= the amount we need for the new range 1702 * then we can return, otherwise drop. Think of it like this 1703 * 1704 * [ 4k][MAX_SIZE] 1705 * 1706 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1707 * need 2 outstanding extents, on one side we have 1 and the other side 1708 * we have 1 so they are == and we can return. But in this case 1709 * 1710 * [MAX_SIZE+4k][MAX_SIZE+4k] 1711 * 1712 * Each range on their own accounts for 2 extents, but merged together 1713 * they are only 3 extents worth of accounting, so we need to drop in 1714 * this case. 1715 */ 1716 old_size = other->end - other->start + 1; 1717 num_extents = count_max_extents(old_size); 1718 old_size = new->end - new->start + 1; 1719 num_extents += count_max_extents(old_size); 1720 if (count_max_extents(new_size) >= num_extents) 1721 return; 1722 1723 spin_lock(&BTRFS_I(inode)->lock); 1724 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1725 spin_unlock(&BTRFS_I(inode)->lock); 1726 } 1727 1728 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1729 struct inode *inode) 1730 { 1731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1732 1733 spin_lock(&root->delalloc_lock); 1734 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1735 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1736 &root->delalloc_inodes); 1737 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1738 &BTRFS_I(inode)->runtime_flags); 1739 root->nr_delalloc_inodes++; 1740 if (root->nr_delalloc_inodes == 1) { 1741 spin_lock(&fs_info->delalloc_root_lock); 1742 BUG_ON(!list_empty(&root->delalloc_root)); 1743 list_add_tail(&root->delalloc_root, 1744 &fs_info->delalloc_roots); 1745 spin_unlock(&fs_info->delalloc_root_lock); 1746 } 1747 } 1748 spin_unlock(&root->delalloc_lock); 1749 } 1750 1751 1752 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1753 struct btrfs_inode *inode) 1754 { 1755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1756 1757 if (!list_empty(&inode->delalloc_inodes)) { 1758 list_del_init(&inode->delalloc_inodes); 1759 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1760 &inode->runtime_flags); 1761 root->nr_delalloc_inodes--; 1762 if (!root->nr_delalloc_inodes) { 1763 ASSERT(list_empty(&root->delalloc_inodes)); 1764 spin_lock(&fs_info->delalloc_root_lock); 1765 BUG_ON(list_empty(&root->delalloc_root)); 1766 list_del_init(&root->delalloc_root); 1767 spin_unlock(&fs_info->delalloc_root_lock); 1768 } 1769 } 1770 } 1771 1772 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1773 struct btrfs_inode *inode) 1774 { 1775 spin_lock(&root->delalloc_lock); 1776 __btrfs_del_delalloc_inode(root, inode); 1777 spin_unlock(&root->delalloc_lock); 1778 } 1779 1780 /* 1781 * extent_io.c set_bit_hook, used to track delayed allocation 1782 * bytes in this file, and to maintain the list of inodes that 1783 * have pending delalloc work to be done. 1784 */ 1785 static void btrfs_set_bit_hook(void *private_data, 1786 struct extent_state *state, unsigned *bits) 1787 { 1788 struct inode *inode = private_data; 1789 1790 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1791 1792 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1793 WARN_ON(1); 1794 /* 1795 * set_bit and clear bit hooks normally require _irqsave/restore 1796 * but in this case, we are only testing for the DELALLOC 1797 * bit, which is only set or cleared with irqs on 1798 */ 1799 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1800 struct btrfs_root *root = BTRFS_I(inode)->root; 1801 u64 len = state->end + 1 - state->start; 1802 u32 num_extents = count_max_extents(len); 1803 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 1804 1805 spin_lock(&BTRFS_I(inode)->lock); 1806 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 1807 spin_unlock(&BTRFS_I(inode)->lock); 1808 1809 /* For sanity tests */ 1810 if (btrfs_is_testing(fs_info)) 1811 return; 1812 1813 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 1814 fs_info->delalloc_batch); 1815 spin_lock(&BTRFS_I(inode)->lock); 1816 BTRFS_I(inode)->delalloc_bytes += len; 1817 if (*bits & EXTENT_DEFRAG) 1818 BTRFS_I(inode)->defrag_bytes += len; 1819 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1820 &BTRFS_I(inode)->runtime_flags)) 1821 btrfs_add_delalloc_inodes(root, inode); 1822 spin_unlock(&BTRFS_I(inode)->lock); 1823 } 1824 1825 if (!(state->state & EXTENT_DELALLOC_NEW) && 1826 (*bits & EXTENT_DELALLOC_NEW)) { 1827 spin_lock(&BTRFS_I(inode)->lock); 1828 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 1829 state->start; 1830 spin_unlock(&BTRFS_I(inode)->lock); 1831 } 1832 } 1833 1834 /* 1835 * extent_io.c clear_bit_hook, see set_bit_hook for why 1836 */ 1837 static void btrfs_clear_bit_hook(void *private_data, 1838 struct extent_state *state, 1839 unsigned *bits) 1840 { 1841 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); 1842 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1843 u64 len = state->end + 1 - state->start; 1844 u32 num_extents = count_max_extents(len); 1845 1846 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 1847 spin_lock(&inode->lock); 1848 inode->defrag_bytes -= len; 1849 spin_unlock(&inode->lock); 1850 } 1851 1852 /* 1853 * set_bit and clear bit hooks normally require _irqsave/restore 1854 * but in this case, we are only testing for the DELALLOC 1855 * bit, which is only set or cleared with irqs on 1856 */ 1857 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1858 struct btrfs_root *root = inode->root; 1859 bool do_list = !btrfs_is_free_space_inode(inode); 1860 1861 spin_lock(&inode->lock); 1862 btrfs_mod_outstanding_extents(inode, -num_extents); 1863 spin_unlock(&inode->lock); 1864 1865 /* 1866 * We don't reserve metadata space for space cache inodes so we 1867 * don't need to call dellalloc_release_metadata if there is an 1868 * error. 1869 */ 1870 if (*bits & EXTENT_CLEAR_META_RESV && 1871 root != fs_info->tree_root) 1872 btrfs_delalloc_release_metadata(inode, len, false); 1873 1874 /* For sanity tests. */ 1875 if (btrfs_is_testing(fs_info)) 1876 return; 1877 1878 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 1879 do_list && !(state->state & EXTENT_NORESERVE) && 1880 (*bits & EXTENT_CLEAR_DATA_RESV)) 1881 btrfs_free_reserved_data_space_noquota( 1882 &inode->vfs_inode, 1883 state->start, len); 1884 1885 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 1886 fs_info->delalloc_batch); 1887 spin_lock(&inode->lock); 1888 inode->delalloc_bytes -= len; 1889 if (do_list && inode->delalloc_bytes == 0 && 1890 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1891 &inode->runtime_flags)) 1892 btrfs_del_delalloc_inode(root, inode); 1893 spin_unlock(&inode->lock); 1894 } 1895 1896 if ((state->state & EXTENT_DELALLOC_NEW) && 1897 (*bits & EXTENT_DELALLOC_NEW)) { 1898 spin_lock(&inode->lock); 1899 ASSERT(inode->new_delalloc_bytes >= len); 1900 inode->new_delalloc_bytes -= len; 1901 spin_unlock(&inode->lock); 1902 } 1903 } 1904 1905 /* 1906 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1907 * we don't create bios that span stripes or chunks 1908 * 1909 * return 1 if page cannot be merged to bio 1910 * return 0 if page can be merged to bio 1911 * return error otherwise 1912 */ 1913 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1914 size_t size, struct bio *bio, 1915 unsigned long bio_flags) 1916 { 1917 struct inode *inode = page->mapping->host; 1918 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1919 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 1920 u64 length = 0; 1921 u64 map_length; 1922 int ret; 1923 1924 if (bio_flags & EXTENT_BIO_COMPRESSED) 1925 return 0; 1926 1927 length = bio->bi_iter.bi_size; 1928 map_length = length; 1929 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 1930 NULL, 0); 1931 if (ret < 0) 1932 return ret; 1933 if (map_length < length + size) 1934 return 1; 1935 return 0; 1936 } 1937 1938 /* 1939 * in order to insert checksums into the metadata in large chunks, 1940 * we wait until bio submission time. All the pages in the bio are 1941 * checksummed and sums are attached onto the ordered extent record. 1942 * 1943 * At IO completion time the cums attached on the ordered extent record 1944 * are inserted into the btree 1945 */ 1946 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 1947 u64 bio_offset) 1948 { 1949 struct inode *inode = private_data; 1950 blk_status_t ret = 0; 1951 1952 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 1953 BUG_ON(ret); /* -ENOMEM */ 1954 return 0; 1955 } 1956 1957 /* 1958 * in order to insert checksums into the metadata in large chunks, 1959 * we wait until bio submission time. All the pages in the bio are 1960 * checksummed and sums are attached onto the ordered extent record. 1961 * 1962 * At IO completion time the cums attached on the ordered extent record 1963 * are inserted into the btree 1964 */ 1965 static blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio, 1966 int mirror_num) 1967 { 1968 struct inode *inode = private_data; 1969 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1970 blk_status_t ret; 1971 1972 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); 1973 if (ret) { 1974 bio->bi_status = ret; 1975 bio_endio(bio); 1976 } 1977 return ret; 1978 } 1979 1980 /* 1981 * extent_io.c submission hook. This does the right thing for csum calculation 1982 * on write, or reading the csums from the tree before a read. 1983 * 1984 * Rules about async/sync submit, 1985 * a) read: sync submit 1986 * 1987 * b) write without checksum: sync submit 1988 * 1989 * c) write with checksum: 1990 * c-1) if bio is issued by fsync: sync submit 1991 * (sync_writers != 0) 1992 * 1993 * c-2) if root is reloc root: sync submit 1994 * (only in case of buffered IO) 1995 * 1996 * c-3) otherwise: async submit 1997 */ 1998 static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, 1999 int mirror_num, unsigned long bio_flags, 2000 u64 bio_offset) 2001 { 2002 struct inode *inode = private_data; 2003 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2004 struct btrfs_root *root = BTRFS_I(inode)->root; 2005 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2006 blk_status_t ret = 0; 2007 int skip_sum; 2008 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2009 2010 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2011 2012 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2013 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2014 2015 if (bio_op(bio) != REQ_OP_WRITE) { 2016 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2017 if (ret) 2018 goto out; 2019 2020 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2021 ret = btrfs_submit_compressed_read(inode, bio, 2022 mirror_num, 2023 bio_flags); 2024 goto out; 2025 } else if (!skip_sum) { 2026 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2027 if (ret) 2028 goto out; 2029 } 2030 goto mapit; 2031 } else if (async && !skip_sum) { 2032 /* csum items have already been cloned */ 2033 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2034 goto mapit; 2035 /* we're doing a write, do the async checksumming */ 2036 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2037 bio_offset, inode, 2038 btrfs_submit_bio_start, 2039 btrfs_submit_bio_done); 2040 goto out; 2041 } else if (!skip_sum) { 2042 ret = btrfs_csum_one_bio(inode, bio, 0, 0); 2043 if (ret) 2044 goto out; 2045 } 2046 2047 mapit: 2048 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 2049 2050 out: 2051 if (ret) { 2052 bio->bi_status = ret; 2053 bio_endio(bio); 2054 } 2055 return ret; 2056 } 2057 2058 /* 2059 * given a list of ordered sums record them in the inode. This happens 2060 * at IO completion time based on sums calculated at bio submission time. 2061 */ 2062 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 2063 struct inode *inode, struct list_head *list) 2064 { 2065 struct btrfs_ordered_sum *sum; 2066 int ret; 2067 2068 list_for_each_entry(sum, list, list) { 2069 trans->adding_csums = true; 2070 ret = btrfs_csum_file_blocks(trans, 2071 BTRFS_I(inode)->root->fs_info->csum_root, sum); 2072 trans->adding_csums = false; 2073 if (ret) 2074 return ret; 2075 } 2076 return 0; 2077 } 2078 2079 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 2080 unsigned int extra_bits, 2081 struct extent_state **cached_state, int dedupe) 2082 { 2083 WARN_ON((end & (PAGE_SIZE - 1)) == 0); 2084 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 2085 extra_bits, cached_state); 2086 } 2087 2088 /* see btrfs_writepage_start_hook for details on why this is required */ 2089 struct btrfs_writepage_fixup { 2090 struct page *page; 2091 struct btrfs_work work; 2092 }; 2093 2094 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2095 { 2096 struct btrfs_writepage_fixup *fixup; 2097 struct btrfs_ordered_extent *ordered; 2098 struct extent_state *cached_state = NULL; 2099 struct extent_changeset *data_reserved = NULL; 2100 struct page *page; 2101 struct inode *inode; 2102 u64 page_start; 2103 u64 page_end; 2104 int ret; 2105 2106 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2107 page = fixup->page; 2108 again: 2109 lock_page(page); 2110 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2111 ClearPageChecked(page); 2112 goto out_page; 2113 } 2114 2115 inode = page->mapping->host; 2116 page_start = page_offset(page); 2117 page_end = page_offset(page) + PAGE_SIZE - 1; 2118 2119 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 2120 &cached_state); 2121 2122 /* already ordered? We're done */ 2123 if (PagePrivate2(page)) 2124 goto out; 2125 2126 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 2127 PAGE_SIZE); 2128 if (ordered) { 2129 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 2130 page_end, &cached_state); 2131 unlock_page(page); 2132 btrfs_start_ordered_extent(inode, ordered, 1); 2133 btrfs_put_ordered_extent(ordered); 2134 goto again; 2135 } 2136 2137 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2138 PAGE_SIZE); 2139 if (ret) { 2140 mapping_set_error(page->mapping, ret); 2141 end_extent_writepage(page, ret, page_start, page_end); 2142 ClearPageChecked(page); 2143 goto out; 2144 } 2145 2146 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2147 &cached_state, 0); 2148 if (ret) { 2149 mapping_set_error(page->mapping, ret); 2150 end_extent_writepage(page, ret, page_start, page_end); 2151 ClearPageChecked(page); 2152 goto out; 2153 } 2154 2155 ClearPageChecked(page); 2156 set_page_dirty(page); 2157 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false); 2158 out: 2159 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 2160 &cached_state); 2161 out_page: 2162 unlock_page(page); 2163 put_page(page); 2164 kfree(fixup); 2165 extent_changeset_free(data_reserved); 2166 } 2167 2168 /* 2169 * There are a few paths in the higher layers of the kernel that directly 2170 * set the page dirty bit without asking the filesystem if it is a 2171 * good idea. This causes problems because we want to make sure COW 2172 * properly happens and the data=ordered rules are followed. 2173 * 2174 * In our case any range that doesn't have the ORDERED bit set 2175 * hasn't been properly setup for IO. We kick off an async process 2176 * to fix it up. The async helper will wait for ordered extents, set 2177 * the delalloc bit and make it safe to write the page. 2178 */ 2179 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 2180 { 2181 struct inode *inode = page->mapping->host; 2182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2183 struct btrfs_writepage_fixup *fixup; 2184 2185 /* this page is properly in the ordered list */ 2186 if (TestClearPagePrivate2(page)) 2187 return 0; 2188 2189 if (PageChecked(page)) 2190 return -EAGAIN; 2191 2192 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2193 if (!fixup) 2194 return -EAGAIN; 2195 2196 SetPageChecked(page); 2197 get_page(page); 2198 btrfs_init_work(&fixup->work, btrfs_fixup_helper, 2199 btrfs_writepage_fixup_worker, NULL, NULL); 2200 fixup->page = page; 2201 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2202 return -EBUSY; 2203 } 2204 2205 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2206 struct inode *inode, u64 file_pos, 2207 u64 disk_bytenr, u64 disk_num_bytes, 2208 u64 num_bytes, u64 ram_bytes, 2209 u8 compression, u8 encryption, 2210 u16 other_encoding, int extent_type) 2211 { 2212 struct btrfs_root *root = BTRFS_I(inode)->root; 2213 struct btrfs_file_extent_item *fi; 2214 struct btrfs_path *path; 2215 struct extent_buffer *leaf; 2216 struct btrfs_key ins; 2217 u64 qg_released; 2218 int extent_inserted = 0; 2219 int ret; 2220 2221 path = btrfs_alloc_path(); 2222 if (!path) 2223 return -ENOMEM; 2224 2225 /* 2226 * we may be replacing one extent in the tree with another. 2227 * The new extent is pinned in the extent map, and we don't want 2228 * to drop it from the cache until it is completely in the btree. 2229 * 2230 * So, tell btrfs_drop_extents to leave this extent in the cache. 2231 * the caller is expected to unpin it and allow it to be merged 2232 * with the others. 2233 */ 2234 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2235 file_pos + num_bytes, NULL, 0, 2236 1, sizeof(*fi), &extent_inserted); 2237 if (ret) 2238 goto out; 2239 2240 if (!extent_inserted) { 2241 ins.objectid = btrfs_ino(BTRFS_I(inode)); 2242 ins.offset = file_pos; 2243 ins.type = BTRFS_EXTENT_DATA_KEY; 2244 2245 path->leave_spinning = 1; 2246 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2247 sizeof(*fi)); 2248 if (ret) 2249 goto out; 2250 } 2251 leaf = path->nodes[0]; 2252 fi = btrfs_item_ptr(leaf, path->slots[0], 2253 struct btrfs_file_extent_item); 2254 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 2255 btrfs_set_file_extent_type(leaf, fi, extent_type); 2256 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 2257 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 2258 btrfs_set_file_extent_offset(leaf, fi, 0); 2259 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 2260 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 2261 btrfs_set_file_extent_compression(leaf, fi, compression); 2262 btrfs_set_file_extent_encryption(leaf, fi, encryption); 2263 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 2264 2265 btrfs_mark_buffer_dirty(leaf); 2266 btrfs_release_path(path); 2267 2268 inode_add_bytes(inode, num_bytes); 2269 2270 ins.objectid = disk_bytenr; 2271 ins.offset = disk_num_bytes; 2272 ins.type = BTRFS_EXTENT_ITEM_KEY; 2273 2274 /* 2275 * Release the reserved range from inode dirty range map, as it is 2276 * already moved into delayed_ref_head 2277 */ 2278 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); 2279 if (ret < 0) 2280 goto out; 2281 qg_released = ret; 2282 ret = btrfs_alloc_reserved_file_extent(trans, root, 2283 btrfs_ino(BTRFS_I(inode)), 2284 file_pos, qg_released, &ins); 2285 out: 2286 btrfs_free_path(path); 2287 2288 return ret; 2289 } 2290 2291 /* snapshot-aware defrag */ 2292 struct sa_defrag_extent_backref { 2293 struct rb_node node; 2294 struct old_sa_defrag_extent *old; 2295 u64 root_id; 2296 u64 inum; 2297 u64 file_pos; 2298 u64 extent_offset; 2299 u64 num_bytes; 2300 u64 generation; 2301 }; 2302 2303 struct old_sa_defrag_extent { 2304 struct list_head list; 2305 struct new_sa_defrag_extent *new; 2306 2307 u64 extent_offset; 2308 u64 bytenr; 2309 u64 offset; 2310 u64 len; 2311 int count; 2312 }; 2313 2314 struct new_sa_defrag_extent { 2315 struct rb_root root; 2316 struct list_head head; 2317 struct btrfs_path *path; 2318 struct inode *inode; 2319 u64 file_pos; 2320 u64 len; 2321 u64 bytenr; 2322 u64 disk_len; 2323 u8 compress_type; 2324 }; 2325 2326 static int backref_comp(struct sa_defrag_extent_backref *b1, 2327 struct sa_defrag_extent_backref *b2) 2328 { 2329 if (b1->root_id < b2->root_id) 2330 return -1; 2331 else if (b1->root_id > b2->root_id) 2332 return 1; 2333 2334 if (b1->inum < b2->inum) 2335 return -1; 2336 else if (b1->inum > b2->inum) 2337 return 1; 2338 2339 if (b1->file_pos < b2->file_pos) 2340 return -1; 2341 else if (b1->file_pos > b2->file_pos) 2342 return 1; 2343 2344 /* 2345 * [------------------------------] ===> (a range of space) 2346 * |<--->| |<---->| =============> (fs/file tree A) 2347 * |<---------------------------->| ===> (fs/file tree B) 2348 * 2349 * A range of space can refer to two file extents in one tree while 2350 * refer to only one file extent in another tree. 2351 * 2352 * So we may process a disk offset more than one time(two extents in A) 2353 * and locate at the same extent(one extent in B), then insert two same 2354 * backrefs(both refer to the extent in B). 2355 */ 2356 return 0; 2357 } 2358 2359 static void backref_insert(struct rb_root *root, 2360 struct sa_defrag_extent_backref *backref) 2361 { 2362 struct rb_node **p = &root->rb_node; 2363 struct rb_node *parent = NULL; 2364 struct sa_defrag_extent_backref *entry; 2365 int ret; 2366 2367 while (*p) { 2368 parent = *p; 2369 entry = rb_entry(parent, struct sa_defrag_extent_backref, node); 2370 2371 ret = backref_comp(backref, entry); 2372 if (ret < 0) 2373 p = &(*p)->rb_left; 2374 else 2375 p = &(*p)->rb_right; 2376 } 2377 2378 rb_link_node(&backref->node, parent, p); 2379 rb_insert_color(&backref->node, root); 2380 } 2381 2382 /* 2383 * Note the backref might has changed, and in this case we just return 0. 2384 */ 2385 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, 2386 void *ctx) 2387 { 2388 struct btrfs_file_extent_item *extent; 2389 struct old_sa_defrag_extent *old = ctx; 2390 struct new_sa_defrag_extent *new = old->new; 2391 struct btrfs_path *path = new->path; 2392 struct btrfs_key key; 2393 struct btrfs_root *root; 2394 struct sa_defrag_extent_backref *backref; 2395 struct extent_buffer *leaf; 2396 struct inode *inode = new->inode; 2397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2398 int slot; 2399 int ret; 2400 u64 extent_offset; 2401 u64 num_bytes; 2402 2403 if (BTRFS_I(inode)->root->root_key.objectid == root_id && 2404 inum == btrfs_ino(BTRFS_I(inode))) 2405 return 0; 2406 2407 key.objectid = root_id; 2408 key.type = BTRFS_ROOT_ITEM_KEY; 2409 key.offset = (u64)-1; 2410 2411 root = btrfs_read_fs_root_no_name(fs_info, &key); 2412 if (IS_ERR(root)) { 2413 if (PTR_ERR(root) == -ENOENT) 2414 return 0; 2415 WARN_ON(1); 2416 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", 2417 inum, offset, root_id); 2418 return PTR_ERR(root); 2419 } 2420 2421 key.objectid = inum; 2422 key.type = BTRFS_EXTENT_DATA_KEY; 2423 if (offset > (u64)-1 << 32) 2424 key.offset = 0; 2425 else 2426 key.offset = offset; 2427 2428 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2429 if (WARN_ON(ret < 0)) 2430 return ret; 2431 ret = 0; 2432 2433 while (1) { 2434 cond_resched(); 2435 2436 leaf = path->nodes[0]; 2437 slot = path->slots[0]; 2438 2439 if (slot >= btrfs_header_nritems(leaf)) { 2440 ret = btrfs_next_leaf(root, path); 2441 if (ret < 0) { 2442 goto out; 2443 } else if (ret > 0) { 2444 ret = 0; 2445 goto out; 2446 } 2447 continue; 2448 } 2449 2450 path->slots[0]++; 2451 2452 btrfs_item_key_to_cpu(leaf, &key, slot); 2453 2454 if (key.objectid > inum) 2455 goto out; 2456 2457 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) 2458 continue; 2459 2460 extent = btrfs_item_ptr(leaf, slot, 2461 struct btrfs_file_extent_item); 2462 2463 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) 2464 continue; 2465 2466 /* 2467 * 'offset' refers to the exact key.offset, 2468 * NOT the 'offset' field in btrfs_extent_data_ref, ie. 2469 * (key.offset - extent_offset). 2470 */ 2471 if (key.offset != offset) 2472 continue; 2473 2474 extent_offset = btrfs_file_extent_offset(leaf, extent); 2475 num_bytes = btrfs_file_extent_num_bytes(leaf, extent); 2476 2477 if (extent_offset >= old->extent_offset + old->offset + 2478 old->len || extent_offset + num_bytes <= 2479 old->extent_offset + old->offset) 2480 continue; 2481 break; 2482 } 2483 2484 backref = kmalloc(sizeof(*backref), GFP_NOFS); 2485 if (!backref) { 2486 ret = -ENOENT; 2487 goto out; 2488 } 2489 2490 backref->root_id = root_id; 2491 backref->inum = inum; 2492 backref->file_pos = offset; 2493 backref->num_bytes = num_bytes; 2494 backref->extent_offset = extent_offset; 2495 backref->generation = btrfs_file_extent_generation(leaf, extent); 2496 backref->old = old; 2497 backref_insert(&new->root, backref); 2498 old->count++; 2499 out: 2500 btrfs_release_path(path); 2501 WARN_ON(ret); 2502 return ret; 2503 } 2504 2505 static noinline bool record_extent_backrefs(struct btrfs_path *path, 2506 struct new_sa_defrag_extent *new) 2507 { 2508 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2509 struct old_sa_defrag_extent *old, *tmp; 2510 int ret; 2511 2512 new->path = path; 2513 2514 list_for_each_entry_safe(old, tmp, &new->head, list) { 2515 ret = iterate_inodes_from_logical(old->bytenr + 2516 old->extent_offset, fs_info, 2517 path, record_one_backref, 2518 old, false); 2519 if (ret < 0 && ret != -ENOENT) 2520 return false; 2521 2522 /* no backref to be processed for this extent */ 2523 if (!old->count) { 2524 list_del(&old->list); 2525 kfree(old); 2526 } 2527 } 2528 2529 if (list_empty(&new->head)) 2530 return false; 2531 2532 return true; 2533 } 2534 2535 static int relink_is_mergable(struct extent_buffer *leaf, 2536 struct btrfs_file_extent_item *fi, 2537 struct new_sa_defrag_extent *new) 2538 { 2539 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) 2540 return 0; 2541 2542 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) 2543 return 0; 2544 2545 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) 2546 return 0; 2547 2548 if (btrfs_file_extent_encryption(leaf, fi) || 2549 btrfs_file_extent_other_encoding(leaf, fi)) 2550 return 0; 2551 2552 return 1; 2553 } 2554 2555 /* 2556 * Note the backref might has changed, and in this case we just return 0. 2557 */ 2558 static noinline int relink_extent_backref(struct btrfs_path *path, 2559 struct sa_defrag_extent_backref *prev, 2560 struct sa_defrag_extent_backref *backref) 2561 { 2562 struct btrfs_file_extent_item *extent; 2563 struct btrfs_file_extent_item *item; 2564 struct btrfs_ordered_extent *ordered; 2565 struct btrfs_trans_handle *trans; 2566 struct btrfs_root *root; 2567 struct btrfs_key key; 2568 struct extent_buffer *leaf; 2569 struct old_sa_defrag_extent *old = backref->old; 2570 struct new_sa_defrag_extent *new = old->new; 2571 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2572 struct inode *inode; 2573 struct extent_state *cached = NULL; 2574 int ret = 0; 2575 u64 start; 2576 u64 len; 2577 u64 lock_start; 2578 u64 lock_end; 2579 bool merge = false; 2580 int index; 2581 2582 if (prev && prev->root_id == backref->root_id && 2583 prev->inum == backref->inum && 2584 prev->file_pos + prev->num_bytes == backref->file_pos) 2585 merge = true; 2586 2587 /* step 1: get root */ 2588 key.objectid = backref->root_id; 2589 key.type = BTRFS_ROOT_ITEM_KEY; 2590 key.offset = (u64)-1; 2591 2592 index = srcu_read_lock(&fs_info->subvol_srcu); 2593 2594 root = btrfs_read_fs_root_no_name(fs_info, &key); 2595 if (IS_ERR(root)) { 2596 srcu_read_unlock(&fs_info->subvol_srcu, index); 2597 if (PTR_ERR(root) == -ENOENT) 2598 return 0; 2599 return PTR_ERR(root); 2600 } 2601 2602 if (btrfs_root_readonly(root)) { 2603 srcu_read_unlock(&fs_info->subvol_srcu, index); 2604 return 0; 2605 } 2606 2607 /* step 2: get inode */ 2608 key.objectid = backref->inum; 2609 key.type = BTRFS_INODE_ITEM_KEY; 2610 key.offset = 0; 2611 2612 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 2613 if (IS_ERR(inode)) { 2614 srcu_read_unlock(&fs_info->subvol_srcu, index); 2615 return 0; 2616 } 2617 2618 srcu_read_unlock(&fs_info->subvol_srcu, index); 2619 2620 /* step 3: relink backref */ 2621 lock_start = backref->file_pos; 2622 lock_end = backref->file_pos + backref->num_bytes - 1; 2623 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2624 &cached); 2625 2626 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); 2627 if (ordered) { 2628 btrfs_put_ordered_extent(ordered); 2629 goto out_unlock; 2630 } 2631 2632 trans = btrfs_join_transaction(root); 2633 if (IS_ERR(trans)) { 2634 ret = PTR_ERR(trans); 2635 goto out_unlock; 2636 } 2637 2638 key.objectid = backref->inum; 2639 key.type = BTRFS_EXTENT_DATA_KEY; 2640 key.offset = backref->file_pos; 2641 2642 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2643 if (ret < 0) { 2644 goto out_free_path; 2645 } else if (ret > 0) { 2646 ret = 0; 2647 goto out_free_path; 2648 } 2649 2650 extent = btrfs_item_ptr(path->nodes[0], path->slots[0], 2651 struct btrfs_file_extent_item); 2652 2653 if (btrfs_file_extent_generation(path->nodes[0], extent) != 2654 backref->generation) 2655 goto out_free_path; 2656 2657 btrfs_release_path(path); 2658 2659 start = backref->file_pos; 2660 if (backref->extent_offset < old->extent_offset + old->offset) 2661 start += old->extent_offset + old->offset - 2662 backref->extent_offset; 2663 2664 len = min(backref->extent_offset + backref->num_bytes, 2665 old->extent_offset + old->offset + old->len); 2666 len -= max(backref->extent_offset, old->extent_offset + old->offset); 2667 2668 ret = btrfs_drop_extents(trans, root, inode, start, 2669 start + len, 1); 2670 if (ret) 2671 goto out_free_path; 2672 again: 2673 key.objectid = btrfs_ino(BTRFS_I(inode)); 2674 key.type = BTRFS_EXTENT_DATA_KEY; 2675 key.offset = start; 2676 2677 path->leave_spinning = 1; 2678 if (merge) { 2679 struct btrfs_file_extent_item *fi; 2680 u64 extent_len; 2681 struct btrfs_key found_key; 2682 2683 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2684 if (ret < 0) 2685 goto out_free_path; 2686 2687 path->slots[0]--; 2688 leaf = path->nodes[0]; 2689 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2690 2691 fi = btrfs_item_ptr(leaf, path->slots[0], 2692 struct btrfs_file_extent_item); 2693 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 2694 2695 if (extent_len + found_key.offset == start && 2696 relink_is_mergable(leaf, fi, new)) { 2697 btrfs_set_file_extent_num_bytes(leaf, fi, 2698 extent_len + len); 2699 btrfs_mark_buffer_dirty(leaf); 2700 inode_add_bytes(inode, len); 2701 2702 ret = 1; 2703 goto out_free_path; 2704 } else { 2705 merge = false; 2706 btrfs_release_path(path); 2707 goto again; 2708 } 2709 } 2710 2711 ret = btrfs_insert_empty_item(trans, root, path, &key, 2712 sizeof(*extent)); 2713 if (ret) { 2714 btrfs_abort_transaction(trans, ret); 2715 goto out_free_path; 2716 } 2717 2718 leaf = path->nodes[0]; 2719 item = btrfs_item_ptr(leaf, path->slots[0], 2720 struct btrfs_file_extent_item); 2721 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); 2722 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); 2723 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); 2724 btrfs_set_file_extent_num_bytes(leaf, item, len); 2725 btrfs_set_file_extent_ram_bytes(leaf, item, new->len); 2726 btrfs_set_file_extent_generation(leaf, item, trans->transid); 2727 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); 2728 btrfs_set_file_extent_compression(leaf, item, new->compress_type); 2729 btrfs_set_file_extent_encryption(leaf, item, 0); 2730 btrfs_set_file_extent_other_encoding(leaf, item, 0); 2731 2732 btrfs_mark_buffer_dirty(leaf); 2733 inode_add_bytes(inode, len); 2734 btrfs_release_path(path); 2735 2736 ret = btrfs_inc_extent_ref(trans, root, new->bytenr, 2737 new->disk_len, 0, 2738 backref->root_id, backref->inum, 2739 new->file_pos); /* start - extent_offset */ 2740 if (ret) { 2741 btrfs_abort_transaction(trans, ret); 2742 goto out_free_path; 2743 } 2744 2745 ret = 1; 2746 out_free_path: 2747 btrfs_release_path(path); 2748 path->leave_spinning = 0; 2749 btrfs_end_transaction(trans); 2750 out_unlock: 2751 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, 2752 &cached); 2753 iput(inode); 2754 return ret; 2755 } 2756 2757 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) 2758 { 2759 struct old_sa_defrag_extent *old, *tmp; 2760 2761 if (!new) 2762 return; 2763 2764 list_for_each_entry_safe(old, tmp, &new->head, list) { 2765 kfree(old); 2766 } 2767 kfree(new); 2768 } 2769 2770 static void relink_file_extents(struct new_sa_defrag_extent *new) 2771 { 2772 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); 2773 struct btrfs_path *path; 2774 struct sa_defrag_extent_backref *backref; 2775 struct sa_defrag_extent_backref *prev = NULL; 2776 struct inode *inode; 2777 struct rb_node *node; 2778 int ret; 2779 2780 inode = new->inode; 2781 2782 path = btrfs_alloc_path(); 2783 if (!path) 2784 return; 2785 2786 if (!record_extent_backrefs(path, new)) { 2787 btrfs_free_path(path); 2788 goto out; 2789 } 2790 btrfs_release_path(path); 2791 2792 while (1) { 2793 node = rb_first(&new->root); 2794 if (!node) 2795 break; 2796 rb_erase(node, &new->root); 2797 2798 backref = rb_entry(node, struct sa_defrag_extent_backref, node); 2799 2800 ret = relink_extent_backref(path, prev, backref); 2801 WARN_ON(ret < 0); 2802 2803 kfree(prev); 2804 2805 if (ret == 1) 2806 prev = backref; 2807 else 2808 prev = NULL; 2809 cond_resched(); 2810 } 2811 kfree(prev); 2812 2813 btrfs_free_path(path); 2814 out: 2815 free_sa_defrag_extent(new); 2816 2817 atomic_dec(&fs_info->defrag_running); 2818 wake_up(&fs_info->transaction_wait); 2819 } 2820 2821 static struct new_sa_defrag_extent * 2822 record_old_file_extents(struct inode *inode, 2823 struct btrfs_ordered_extent *ordered) 2824 { 2825 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2826 struct btrfs_root *root = BTRFS_I(inode)->root; 2827 struct btrfs_path *path; 2828 struct btrfs_key key; 2829 struct old_sa_defrag_extent *old; 2830 struct new_sa_defrag_extent *new; 2831 int ret; 2832 2833 new = kmalloc(sizeof(*new), GFP_NOFS); 2834 if (!new) 2835 return NULL; 2836 2837 new->inode = inode; 2838 new->file_pos = ordered->file_offset; 2839 new->len = ordered->len; 2840 new->bytenr = ordered->start; 2841 new->disk_len = ordered->disk_len; 2842 new->compress_type = ordered->compress_type; 2843 new->root = RB_ROOT; 2844 INIT_LIST_HEAD(&new->head); 2845 2846 path = btrfs_alloc_path(); 2847 if (!path) 2848 goto out_kfree; 2849 2850 key.objectid = btrfs_ino(BTRFS_I(inode)); 2851 key.type = BTRFS_EXTENT_DATA_KEY; 2852 key.offset = new->file_pos; 2853 2854 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2855 if (ret < 0) 2856 goto out_free_path; 2857 if (ret > 0 && path->slots[0] > 0) 2858 path->slots[0]--; 2859 2860 /* find out all the old extents for the file range */ 2861 while (1) { 2862 struct btrfs_file_extent_item *extent; 2863 struct extent_buffer *l; 2864 int slot; 2865 u64 num_bytes; 2866 u64 offset; 2867 u64 end; 2868 u64 disk_bytenr; 2869 u64 extent_offset; 2870 2871 l = path->nodes[0]; 2872 slot = path->slots[0]; 2873 2874 if (slot >= btrfs_header_nritems(l)) { 2875 ret = btrfs_next_leaf(root, path); 2876 if (ret < 0) 2877 goto out_free_path; 2878 else if (ret > 0) 2879 break; 2880 continue; 2881 } 2882 2883 btrfs_item_key_to_cpu(l, &key, slot); 2884 2885 if (key.objectid != btrfs_ino(BTRFS_I(inode))) 2886 break; 2887 if (key.type != BTRFS_EXTENT_DATA_KEY) 2888 break; 2889 if (key.offset >= new->file_pos + new->len) 2890 break; 2891 2892 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); 2893 2894 num_bytes = btrfs_file_extent_num_bytes(l, extent); 2895 if (key.offset + num_bytes < new->file_pos) 2896 goto next; 2897 2898 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); 2899 if (!disk_bytenr) 2900 goto next; 2901 2902 extent_offset = btrfs_file_extent_offset(l, extent); 2903 2904 old = kmalloc(sizeof(*old), GFP_NOFS); 2905 if (!old) 2906 goto out_free_path; 2907 2908 offset = max(new->file_pos, key.offset); 2909 end = min(new->file_pos + new->len, key.offset + num_bytes); 2910 2911 old->bytenr = disk_bytenr; 2912 old->extent_offset = extent_offset; 2913 old->offset = offset - key.offset; 2914 old->len = end - offset; 2915 old->new = new; 2916 old->count = 0; 2917 list_add_tail(&old->list, &new->head); 2918 next: 2919 path->slots[0]++; 2920 cond_resched(); 2921 } 2922 2923 btrfs_free_path(path); 2924 atomic_inc(&fs_info->defrag_running); 2925 2926 return new; 2927 2928 out_free_path: 2929 btrfs_free_path(path); 2930 out_kfree: 2931 free_sa_defrag_extent(new); 2932 return NULL; 2933 } 2934 2935 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2936 u64 start, u64 len) 2937 { 2938 struct btrfs_block_group_cache *cache; 2939 2940 cache = btrfs_lookup_block_group(fs_info, start); 2941 ASSERT(cache); 2942 2943 spin_lock(&cache->lock); 2944 cache->delalloc_bytes -= len; 2945 spin_unlock(&cache->lock); 2946 2947 btrfs_put_block_group(cache); 2948 } 2949 2950 /* as ordered data IO finishes, this gets called so we can finish 2951 * an ordered extent if the range of bytes in the file it covers are 2952 * fully written. 2953 */ 2954 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2955 { 2956 struct inode *inode = ordered_extent->inode; 2957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2958 struct btrfs_root *root = BTRFS_I(inode)->root; 2959 struct btrfs_trans_handle *trans = NULL; 2960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2961 struct extent_state *cached_state = NULL; 2962 struct new_sa_defrag_extent *new = NULL; 2963 int compress_type = 0; 2964 int ret = 0; 2965 u64 logical_len = ordered_extent->len; 2966 bool nolock; 2967 bool truncated = false; 2968 bool range_locked = false; 2969 bool clear_new_delalloc_bytes = false; 2970 2971 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2972 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2973 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2974 clear_new_delalloc_bytes = true; 2975 2976 nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); 2977 2978 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2979 ret = -EIO; 2980 goto out; 2981 } 2982 2983 btrfs_free_io_failure_record(BTRFS_I(inode), 2984 ordered_extent->file_offset, 2985 ordered_extent->file_offset + 2986 ordered_extent->len - 1); 2987 2988 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2989 truncated = true; 2990 logical_len = ordered_extent->truncated_len; 2991 /* Truncated the entire extent, don't bother adding */ 2992 if (!logical_len) 2993 goto out; 2994 } 2995 2996 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2997 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2998 2999 /* 3000 * For mwrite(mmap + memset to write) case, we still reserve 3001 * space for NOCOW range. 3002 * As NOCOW won't cause a new delayed ref, just free the space 3003 */ 3004 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3005 ordered_extent->len); 3006 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3007 if (nolock) 3008 trans = btrfs_join_transaction_nolock(root); 3009 else 3010 trans = btrfs_join_transaction(root); 3011 if (IS_ERR(trans)) { 3012 ret = PTR_ERR(trans); 3013 trans = NULL; 3014 goto out; 3015 } 3016 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3017 ret = btrfs_update_inode_fallback(trans, root, inode); 3018 if (ret) /* -ENOMEM or corruption */ 3019 btrfs_abort_transaction(trans, ret); 3020 goto out; 3021 } 3022 3023 range_locked = true; 3024 lock_extent_bits(io_tree, ordered_extent->file_offset, 3025 ordered_extent->file_offset + ordered_extent->len - 1, 3026 &cached_state); 3027 3028 ret = test_range_bit(io_tree, ordered_extent->file_offset, 3029 ordered_extent->file_offset + ordered_extent->len - 1, 3030 EXTENT_DEFRAG, 0, cached_state); 3031 if (ret) { 3032 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 3033 if (0 && last_snapshot >= BTRFS_I(inode)->generation) 3034 /* the inode is shared */ 3035 new = record_old_file_extents(inode, ordered_extent); 3036 3037 clear_extent_bit(io_tree, ordered_extent->file_offset, 3038 ordered_extent->file_offset + ordered_extent->len - 1, 3039 EXTENT_DEFRAG, 0, 0, &cached_state); 3040 } 3041 3042 if (nolock) 3043 trans = btrfs_join_transaction_nolock(root); 3044 else 3045 trans = btrfs_join_transaction(root); 3046 if (IS_ERR(trans)) { 3047 ret = PTR_ERR(trans); 3048 trans = NULL; 3049 goto out; 3050 } 3051 3052 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 3053 3054 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3055 compress_type = ordered_extent->compress_type; 3056 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3057 BUG_ON(compress_type); 3058 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, 3059 ordered_extent->len); 3060 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 3061 ordered_extent->file_offset, 3062 ordered_extent->file_offset + 3063 logical_len); 3064 } else { 3065 BUG_ON(root == fs_info->tree_root); 3066 ret = insert_reserved_file_extent(trans, inode, 3067 ordered_extent->file_offset, 3068 ordered_extent->start, 3069 ordered_extent->disk_len, 3070 logical_len, logical_len, 3071 compress_type, 0, 0, 3072 BTRFS_FILE_EXTENT_REG); 3073 if (!ret) 3074 btrfs_release_delalloc_bytes(fs_info, 3075 ordered_extent->start, 3076 ordered_extent->disk_len); 3077 } 3078 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 3079 ordered_extent->file_offset, ordered_extent->len, 3080 trans->transid); 3081 if (ret < 0) { 3082 btrfs_abort_transaction(trans, ret); 3083 goto out; 3084 } 3085 3086 ret = add_pending_csums(trans, inode, &ordered_extent->list); 3087 if (ret) { 3088 btrfs_abort_transaction(trans, ret); 3089 goto out; 3090 } 3091 3092 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 3093 ret = btrfs_update_inode_fallback(trans, root, inode); 3094 if (ret) { /* -ENOMEM or corruption */ 3095 btrfs_abort_transaction(trans, ret); 3096 goto out; 3097 } 3098 ret = 0; 3099 out: 3100 if (range_locked || clear_new_delalloc_bytes) { 3101 unsigned int clear_bits = 0; 3102 3103 if (range_locked) 3104 clear_bits |= EXTENT_LOCKED; 3105 if (clear_new_delalloc_bytes) 3106 clear_bits |= EXTENT_DELALLOC_NEW; 3107 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3108 ordered_extent->file_offset, 3109 ordered_extent->file_offset + 3110 ordered_extent->len - 1, 3111 clear_bits, 3112 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 3113 0, &cached_state); 3114 } 3115 3116 if (trans) 3117 btrfs_end_transaction(trans); 3118 3119 if (ret || truncated) { 3120 u64 start, end; 3121 3122 if (truncated) 3123 start = ordered_extent->file_offset + logical_len; 3124 else 3125 start = ordered_extent->file_offset; 3126 end = ordered_extent->file_offset + ordered_extent->len - 1; 3127 clear_extent_uptodate(io_tree, start, end, NULL); 3128 3129 /* Drop the cache for the part of the extent we didn't write. */ 3130 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3131 3132 /* 3133 * If the ordered extent had an IOERR or something else went 3134 * wrong we need to return the space for this ordered extent 3135 * back to the allocator. We only free the extent in the 3136 * truncated case if we didn't write out the extent at all. 3137 */ 3138 if ((ret || !logical_len) && 3139 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3140 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) 3141 btrfs_free_reserved_extent(fs_info, 3142 ordered_extent->start, 3143 ordered_extent->disk_len, 1); 3144 } 3145 3146 3147 /* 3148 * This needs to be done to make sure anybody waiting knows we are done 3149 * updating everything for this ordered extent. 3150 */ 3151 btrfs_remove_ordered_extent(inode, ordered_extent); 3152 3153 /* for snapshot-aware defrag */ 3154 if (new) { 3155 if (ret) { 3156 free_sa_defrag_extent(new); 3157 atomic_dec(&fs_info->defrag_running); 3158 } else { 3159 relink_file_extents(new); 3160 } 3161 } 3162 3163 /* once for us */ 3164 btrfs_put_ordered_extent(ordered_extent); 3165 /* once for the tree */ 3166 btrfs_put_ordered_extent(ordered_extent); 3167 3168 /* Try to release some metadata so we don't get an OOM but don't wait */ 3169 btrfs_btree_balance_dirty_nodelay(fs_info); 3170 3171 return ret; 3172 } 3173 3174 static void finish_ordered_fn(struct btrfs_work *work) 3175 { 3176 struct btrfs_ordered_extent *ordered_extent; 3177 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3178 btrfs_finish_ordered_io(ordered_extent); 3179 } 3180 3181 static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 3182 struct extent_state *state, int uptodate) 3183 { 3184 struct inode *inode = page->mapping->host; 3185 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3186 struct btrfs_ordered_extent *ordered_extent = NULL; 3187 struct btrfs_workqueue *wq; 3188 btrfs_work_func_t func; 3189 3190 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 3191 3192 ClearPagePrivate2(page); 3193 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 3194 end - start + 1, uptodate)) 3195 return; 3196 3197 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 3198 wq = fs_info->endio_freespace_worker; 3199 func = btrfs_freespace_write_helper; 3200 } else { 3201 wq = fs_info->endio_write_workers; 3202 func = btrfs_endio_write_helper; 3203 } 3204 3205 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, 3206 NULL); 3207 btrfs_queue_work(wq, &ordered_extent->work); 3208 } 3209 3210 static int __readpage_endio_check(struct inode *inode, 3211 struct btrfs_io_bio *io_bio, 3212 int icsum, struct page *page, 3213 int pgoff, u64 start, size_t len) 3214 { 3215 char *kaddr; 3216 u32 csum_expected; 3217 u32 csum = ~(u32)0; 3218 3219 csum_expected = *(((u32 *)io_bio->csum) + icsum); 3220 3221 kaddr = kmap_atomic(page); 3222 csum = btrfs_csum_data(kaddr + pgoff, csum, len); 3223 btrfs_csum_final(csum, (u8 *)&csum); 3224 if (csum != csum_expected) 3225 goto zeroit; 3226 3227 kunmap_atomic(kaddr); 3228 return 0; 3229 zeroit: 3230 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3231 io_bio->mirror_num); 3232 memset(kaddr + pgoff, 1, len); 3233 flush_dcache_page(page); 3234 kunmap_atomic(kaddr); 3235 return -EIO; 3236 } 3237 3238 /* 3239 * when reads are done, we need to check csums to verify the data is correct 3240 * if there's a match, we allow the bio to finish. If not, the code in 3241 * extent_io.c will try to find good copies for us. 3242 */ 3243 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, 3244 u64 phy_offset, struct page *page, 3245 u64 start, u64 end, int mirror) 3246 { 3247 size_t offset = start - page_offset(page); 3248 struct inode *inode = page->mapping->host; 3249 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3250 struct btrfs_root *root = BTRFS_I(inode)->root; 3251 3252 if (PageChecked(page)) { 3253 ClearPageChecked(page); 3254 return 0; 3255 } 3256 3257 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3258 return 0; 3259 3260 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 3261 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 3262 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 3263 return 0; 3264 } 3265 3266 phy_offset >>= inode->i_sb->s_blocksize_bits; 3267 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, 3268 start, (size_t)(end - start + 1)); 3269 } 3270 3271 /* 3272 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3273 * 3274 * @inode: The inode we want to perform iput on 3275 * 3276 * This function uses the generic vfs_inode::i_count to track whether we should 3277 * just decrement it (in case it's > 1) or if this is the last iput then link 3278 * the inode to the delayed iput machinery. Delayed iputs are processed at 3279 * transaction commit time/superblock commit/cleaner kthread. 3280 */ 3281 void btrfs_add_delayed_iput(struct inode *inode) 3282 { 3283 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3284 struct btrfs_inode *binode = BTRFS_I(inode); 3285 3286 if (atomic_add_unless(&inode->i_count, -1, 1)) 3287 return; 3288 3289 spin_lock(&fs_info->delayed_iput_lock); 3290 ASSERT(list_empty(&binode->delayed_iput)); 3291 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3292 spin_unlock(&fs_info->delayed_iput_lock); 3293 } 3294 3295 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3296 { 3297 3298 spin_lock(&fs_info->delayed_iput_lock); 3299 while (!list_empty(&fs_info->delayed_iputs)) { 3300 struct btrfs_inode *inode; 3301 3302 inode = list_first_entry(&fs_info->delayed_iputs, 3303 struct btrfs_inode, delayed_iput); 3304 list_del_init(&inode->delayed_iput); 3305 spin_unlock(&fs_info->delayed_iput_lock); 3306 iput(&inode->vfs_inode); 3307 spin_lock(&fs_info->delayed_iput_lock); 3308 } 3309 spin_unlock(&fs_info->delayed_iput_lock); 3310 } 3311 3312 /* 3313 * This creates an orphan entry for the given inode in case something goes wrong 3314 * in the middle of an unlink. 3315 */ 3316 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3317 struct btrfs_inode *inode) 3318 { 3319 int ret; 3320 3321 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3322 if (ret && ret != -EEXIST) { 3323 btrfs_abort_transaction(trans, ret); 3324 return ret; 3325 } 3326 3327 return 0; 3328 } 3329 3330 /* 3331 * We have done the delete so we can go ahead and remove the orphan item for 3332 * this particular inode. 3333 */ 3334 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3335 struct btrfs_inode *inode) 3336 { 3337 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3338 } 3339 3340 /* 3341 * this cleans up any orphans that may be left on the list from the last use 3342 * of this root. 3343 */ 3344 int btrfs_orphan_cleanup(struct btrfs_root *root) 3345 { 3346 struct btrfs_fs_info *fs_info = root->fs_info; 3347 struct btrfs_path *path; 3348 struct extent_buffer *leaf; 3349 struct btrfs_key key, found_key; 3350 struct btrfs_trans_handle *trans; 3351 struct inode *inode; 3352 u64 last_objectid = 0; 3353 int ret = 0, nr_unlink = 0; 3354 3355 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 3356 return 0; 3357 3358 path = btrfs_alloc_path(); 3359 if (!path) { 3360 ret = -ENOMEM; 3361 goto out; 3362 } 3363 path->reada = READA_BACK; 3364 3365 key.objectid = BTRFS_ORPHAN_OBJECTID; 3366 key.type = BTRFS_ORPHAN_ITEM_KEY; 3367 key.offset = (u64)-1; 3368 3369 while (1) { 3370 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3371 if (ret < 0) 3372 goto out; 3373 3374 /* 3375 * if ret == 0 means we found what we were searching for, which 3376 * is weird, but possible, so only screw with path if we didn't 3377 * find the key and see if we have stuff that matches 3378 */ 3379 if (ret > 0) { 3380 ret = 0; 3381 if (path->slots[0] == 0) 3382 break; 3383 path->slots[0]--; 3384 } 3385 3386 /* pull out the item */ 3387 leaf = path->nodes[0]; 3388 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3389 3390 /* make sure the item matches what we want */ 3391 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3392 break; 3393 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3394 break; 3395 3396 /* release the path since we're done with it */ 3397 btrfs_release_path(path); 3398 3399 /* 3400 * this is where we are basically btrfs_lookup, without the 3401 * crossing root thing. we store the inode number in the 3402 * offset of the orphan item. 3403 */ 3404 3405 if (found_key.offset == last_objectid) { 3406 btrfs_err(fs_info, 3407 "Error removing orphan entry, stopping orphan cleanup"); 3408 ret = -EINVAL; 3409 goto out; 3410 } 3411 3412 last_objectid = found_key.offset; 3413 3414 found_key.objectid = found_key.offset; 3415 found_key.type = BTRFS_INODE_ITEM_KEY; 3416 found_key.offset = 0; 3417 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); 3418 ret = PTR_ERR_OR_ZERO(inode); 3419 if (ret && ret != -ENOENT) 3420 goto out; 3421 3422 if (ret == -ENOENT && root == fs_info->tree_root) { 3423 struct btrfs_root *dead_root; 3424 struct btrfs_fs_info *fs_info = root->fs_info; 3425 int is_dead_root = 0; 3426 3427 /* 3428 * this is an orphan in the tree root. Currently these 3429 * could come from 2 sources: 3430 * a) a snapshot deletion in progress 3431 * b) a free space cache inode 3432 * We need to distinguish those two, as the snapshot 3433 * orphan must not get deleted. 3434 * find_dead_roots already ran before us, so if this 3435 * is a snapshot deletion, we should find the root 3436 * in the dead_roots list 3437 */ 3438 spin_lock(&fs_info->trans_lock); 3439 list_for_each_entry(dead_root, &fs_info->dead_roots, 3440 root_list) { 3441 if (dead_root->root_key.objectid == 3442 found_key.objectid) { 3443 is_dead_root = 1; 3444 break; 3445 } 3446 } 3447 spin_unlock(&fs_info->trans_lock); 3448 if (is_dead_root) { 3449 /* prevent this orphan from being found again */ 3450 key.offset = found_key.objectid - 1; 3451 continue; 3452 } 3453 3454 } 3455 3456 /* 3457 * If we have an inode with links, there are a couple of 3458 * possibilities. Old kernels (before v3.12) used to create an 3459 * orphan item for truncate indicating that there were possibly 3460 * extent items past i_size that needed to be deleted. In v3.12, 3461 * truncate was changed to update i_size in sync with the extent 3462 * items, but the (useless) orphan item was still created. Since 3463 * v4.18, we don't create the orphan item for truncate at all. 3464 * 3465 * So, this item could mean that we need to do a truncate, but 3466 * only if this filesystem was last used on a pre-v3.12 kernel 3467 * and was not cleanly unmounted. The odds of that are quite 3468 * slim, and it's a pain to do the truncate now, so just delete 3469 * the orphan item. 3470 * 3471 * It's also possible that this orphan item was supposed to be 3472 * deleted but wasn't. The inode number may have been reused, 3473 * but either way, we can delete the orphan item. 3474 */ 3475 if (ret == -ENOENT || inode->i_nlink) { 3476 if (!ret) 3477 iput(inode); 3478 trans = btrfs_start_transaction(root, 1); 3479 if (IS_ERR(trans)) { 3480 ret = PTR_ERR(trans); 3481 goto out; 3482 } 3483 btrfs_debug(fs_info, "auto deleting %Lu", 3484 found_key.objectid); 3485 ret = btrfs_del_orphan_item(trans, root, 3486 found_key.objectid); 3487 btrfs_end_transaction(trans); 3488 if (ret) 3489 goto out; 3490 continue; 3491 } 3492 3493 nr_unlink++; 3494 3495 /* this will do delete_inode and everything for us */ 3496 iput(inode); 3497 if (ret) 3498 goto out; 3499 } 3500 /* release the path since we're done with it */ 3501 btrfs_release_path(path); 3502 3503 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3504 3505 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3506 trans = btrfs_join_transaction(root); 3507 if (!IS_ERR(trans)) 3508 btrfs_end_transaction(trans); 3509 } 3510 3511 if (nr_unlink) 3512 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3513 3514 out: 3515 if (ret) 3516 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3517 btrfs_free_path(path); 3518 return ret; 3519 } 3520 3521 /* 3522 * very simple check to peek ahead in the leaf looking for xattrs. If we 3523 * don't find any xattrs, we know there can't be any acls. 3524 * 3525 * slot is the slot the inode is in, objectid is the objectid of the inode 3526 */ 3527 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3528 int slot, u64 objectid, 3529 int *first_xattr_slot) 3530 { 3531 u32 nritems = btrfs_header_nritems(leaf); 3532 struct btrfs_key found_key; 3533 static u64 xattr_access = 0; 3534 static u64 xattr_default = 0; 3535 int scanned = 0; 3536 3537 if (!xattr_access) { 3538 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3539 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3540 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3541 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3542 } 3543 3544 slot++; 3545 *first_xattr_slot = -1; 3546 while (slot < nritems) { 3547 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3548 3549 /* we found a different objectid, there must not be acls */ 3550 if (found_key.objectid != objectid) 3551 return 0; 3552 3553 /* we found an xattr, assume we've got an acl */ 3554 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3555 if (*first_xattr_slot == -1) 3556 *first_xattr_slot = slot; 3557 if (found_key.offset == xattr_access || 3558 found_key.offset == xattr_default) 3559 return 1; 3560 } 3561 3562 /* 3563 * we found a key greater than an xattr key, there can't 3564 * be any acls later on 3565 */ 3566 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3567 return 0; 3568 3569 slot++; 3570 scanned++; 3571 3572 /* 3573 * it goes inode, inode backrefs, xattrs, extents, 3574 * so if there are a ton of hard links to an inode there can 3575 * be a lot of backrefs. Don't waste time searching too hard, 3576 * this is just an optimization 3577 */ 3578 if (scanned >= 8) 3579 break; 3580 } 3581 /* we hit the end of the leaf before we found an xattr or 3582 * something larger than an xattr. We have to assume the inode 3583 * has acls 3584 */ 3585 if (*first_xattr_slot == -1) 3586 *first_xattr_slot = slot; 3587 return 1; 3588 } 3589 3590 /* 3591 * read an inode from the btree into the in-memory inode 3592 */ 3593 static int btrfs_read_locked_inode(struct inode *inode) 3594 { 3595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3596 struct btrfs_path *path; 3597 struct extent_buffer *leaf; 3598 struct btrfs_inode_item *inode_item; 3599 struct btrfs_root *root = BTRFS_I(inode)->root; 3600 struct btrfs_key location; 3601 unsigned long ptr; 3602 int maybe_acls; 3603 u32 rdev; 3604 int ret; 3605 bool filled = false; 3606 int first_xattr_slot; 3607 3608 ret = btrfs_fill_inode(inode, &rdev); 3609 if (!ret) 3610 filled = true; 3611 3612 path = btrfs_alloc_path(); 3613 if (!path) { 3614 ret = -ENOMEM; 3615 goto make_bad; 3616 } 3617 3618 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3619 3620 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3621 if (ret) { 3622 if (ret > 0) 3623 ret = -ENOENT; 3624 goto make_bad; 3625 } 3626 3627 leaf = path->nodes[0]; 3628 3629 if (filled) 3630 goto cache_index; 3631 3632 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3633 struct btrfs_inode_item); 3634 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3635 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3636 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3637 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3638 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3639 3640 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3641 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3642 3643 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3644 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3645 3646 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3647 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3648 3649 BTRFS_I(inode)->i_otime.tv_sec = 3650 btrfs_timespec_sec(leaf, &inode_item->otime); 3651 BTRFS_I(inode)->i_otime.tv_nsec = 3652 btrfs_timespec_nsec(leaf, &inode_item->otime); 3653 3654 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3655 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3656 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3657 3658 inode_set_iversion_queried(inode, 3659 btrfs_inode_sequence(leaf, inode_item)); 3660 inode->i_generation = BTRFS_I(inode)->generation; 3661 inode->i_rdev = 0; 3662 rdev = btrfs_inode_rdev(leaf, inode_item); 3663 3664 BTRFS_I(inode)->index_cnt = (u64)-1; 3665 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3666 3667 cache_index: 3668 /* 3669 * If we were modified in the current generation and evicted from memory 3670 * and then re-read we need to do a full sync since we don't have any 3671 * idea about which extents were modified before we were evicted from 3672 * cache. 3673 * 3674 * This is required for both inode re-read from disk and delayed inode 3675 * in delayed_nodes_tree. 3676 */ 3677 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3678 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3679 &BTRFS_I(inode)->runtime_flags); 3680 3681 /* 3682 * We don't persist the id of the transaction where an unlink operation 3683 * against the inode was last made. So here we assume the inode might 3684 * have been evicted, and therefore the exact value of last_unlink_trans 3685 * lost, and set it to last_trans to avoid metadata inconsistencies 3686 * between the inode and its parent if the inode is fsync'ed and the log 3687 * replayed. For example, in the scenario: 3688 * 3689 * touch mydir/foo 3690 * ln mydir/foo mydir/bar 3691 * sync 3692 * unlink mydir/bar 3693 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3694 * xfs_io -c fsync mydir/foo 3695 * <power failure> 3696 * mount fs, triggers fsync log replay 3697 * 3698 * We must make sure that when we fsync our inode foo we also log its 3699 * parent inode, otherwise after log replay the parent still has the 3700 * dentry with the "bar" name but our inode foo has a link count of 1 3701 * and doesn't have an inode ref with the name "bar" anymore. 3702 * 3703 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3704 * but it guarantees correctness at the expense of occasional full 3705 * transaction commits on fsync if our inode is a directory, or if our 3706 * inode is not a directory, logging its parent unnecessarily. 3707 */ 3708 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3709 3710 path->slots[0]++; 3711 if (inode->i_nlink != 1 || 3712 path->slots[0] >= btrfs_header_nritems(leaf)) 3713 goto cache_acl; 3714 3715 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3716 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3717 goto cache_acl; 3718 3719 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3720 if (location.type == BTRFS_INODE_REF_KEY) { 3721 struct btrfs_inode_ref *ref; 3722 3723 ref = (struct btrfs_inode_ref *)ptr; 3724 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3725 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3726 struct btrfs_inode_extref *extref; 3727 3728 extref = (struct btrfs_inode_extref *)ptr; 3729 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3730 extref); 3731 } 3732 cache_acl: 3733 /* 3734 * try to precache a NULL acl entry for files that don't have 3735 * any xattrs or acls 3736 */ 3737 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3738 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3739 if (first_xattr_slot != -1) { 3740 path->slots[0] = first_xattr_slot; 3741 ret = btrfs_load_inode_props(inode, path); 3742 if (ret) 3743 btrfs_err(fs_info, 3744 "error loading props for ino %llu (root %llu): %d", 3745 btrfs_ino(BTRFS_I(inode)), 3746 root->root_key.objectid, ret); 3747 } 3748 btrfs_free_path(path); 3749 3750 if (!maybe_acls) 3751 cache_no_acl(inode); 3752 3753 switch (inode->i_mode & S_IFMT) { 3754 case S_IFREG: 3755 inode->i_mapping->a_ops = &btrfs_aops; 3756 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 3757 inode->i_fop = &btrfs_file_operations; 3758 inode->i_op = &btrfs_file_inode_operations; 3759 break; 3760 case S_IFDIR: 3761 inode->i_fop = &btrfs_dir_file_operations; 3762 inode->i_op = &btrfs_dir_inode_operations; 3763 break; 3764 case S_IFLNK: 3765 inode->i_op = &btrfs_symlink_inode_operations; 3766 inode_nohighmem(inode); 3767 inode->i_mapping->a_ops = &btrfs_symlink_aops; 3768 break; 3769 default: 3770 inode->i_op = &btrfs_special_inode_operations; 3771 init_special_inode(inode, inode->i_mode, rdev); 3772 break; 3773 } 3774 3775 btrfs_sync_inode_flags_to_i_flags(inode); 3776 return 0; 3777 3778 make_bad: 3779 btrfs_free_path(path); 3780 make_bad_inode(inode); 3781 return ret; 3782 } 3783 3784 /* 3785 * given a leaf and an inode, copy the inode fields into the leaf 3786 */ 3787 static void fill_inode_item(struct btrfs_trans_handle *trans, 3788 struct extent_buffer *leaf, 3789 struct btrfs_inode_item *item, 3790 struct inode *inode) 3791 { 3792 struct btrfs_map_token token; 3793 3794 btrfs_init_map_token(&token); 3795 3796 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); 3797 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); 3798 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, 3799 &token); 3800 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); 3801 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); 3802 3803 btrfs_set_token_timespec_sec(leaf, &item->atime, 3804 inode->i_atime.tv_sec, &token); 3805 btrfs_set_token_timespec_nsec(leaf, &item->atime, 3806 inode->i_atime.tv_nsec, &token); 3807 3808 btrfs_set_token_timespec_sec(leaf, &item->mtime, 3809 inode->i_mtime.tv_sec, &token); 3810 btrfs_set_token_timespec_nsec(leaf, &item->mtime, 3811 inode->i_mtime.tv_nsec, &token); 3812 3813 btrfs_set_token_timespec_sec(leaf, &item->ctime, 3814 inode->i_ctime.tv_sec, &token); 3815 btrfs_set_token_timespec_nsec(leaf, &item->ctime, 3816 inode->i_ctime.tv_nsec, &token); 3817 3818 btrfs_set_token_timespec_sec(leaf, &item->otime, 3819 BTRFS_I(inode)->i_otime.tv_sec, &token); 3820 btrfs_set_token_timespec_nsec(leaf, &item->otime, 3821 BTRFS_I(inode)->i_otime.tv_nsec, &token); 3822 3823 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), 3824 &token); 3825 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, 3826 &token); 3827 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), 3828 &token); 3829 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); 3830 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); 3831 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); 3832 btrfs_set_token_inode_block_group(leaf, item, 0, &token); 3833 } 3834 3835 /* 3836 * copy everything in the in-memory inode into the btree. 3837 */ 3838 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3839 struct btrfs_root *root, struct inode *inode) 3840 { 3841 struct btrfs_inode_item *inode_item; 3842 struct btrfs_path *path; 3843 struct extent_buffer *leaf; 3844 int ret; 3845 3846 path = btrfs_alloc_path(); 3847 if (!path) 3848 return -ENOMEM; 3849 3850 path->leave_spinning = 1; 3851 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3852 1); 3853 if (ret) { 3854 if (ret > 0) 3855 ret = -ENOENT; 3856 goto failed; 3857 } 3858 3859 leaf = path->nodes[0]; 3860 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3861 struct btrfs_inode_item); 3862 3863 fill_inode_item(trans, leaf, inode_item, inode); 3864 btrfs_mark_buffer_dirty(leaf); 3865 btrfs_set_inode_last_trans(trans, inode); 3866 ret = 0; 3867 failed: 3868 btrfs_free_path(path); 3869 return ret; 3870 } 3871 3872 /* 3873 * copy everything in the in-memory inode into the btree. 3874 */ 3875 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3876 struct btrfs_root *root, struct inode *inode) 3877 { 3878 struct btrfs_fs_info *fs_info = root->fs_info; 3879 int ret; 3880 3881 /* 3882 * If the inode is a free space inode, we can deadlock during commit 3883 * if we put it into the delayed code. 3884 * 3885 * The data relocation inode should also be directly updated 3886 * without delay 3887 */ 3888 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3889 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3890 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3891 btrfs_update_root_times(trans, root); 3892 3893 ret = btrfs_delayed_update_inode(trans, root, inode); 3894 if (!ret) 3895 btrfs_set_inode_last_trans(trans, inode); 3896 return ret; 3897 } 3898 3899 return btrfs_update_inode_item(trans, root, inode); 3900 } 3901 3902 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3903 struct btrfs_root *root, 3904 struct inode *inode) 3905 { 3906 int ret; 3907 3908 ret = btrfs_update_inode(trans, root, inode); 3909 if (ret == -ENOSPC) 3910 return btrfs_update_inode_item(trans, root, inode); 3911 return ret; 3912 } 3913 3914 /* 3915 * unlink helper that gets used here in inode.c and in the tree logging 3916 * recovery code. It remove a link in a directory with a given name, and 3917 * also drops the back refs in the inode to the directory 3918 */ 3919 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3920 struct btrfs_root *root, 3921 struct btrfs_inode *dir, 3922 struct btrfs_inode *inode, 3923 const char *name, int name_len) 3924 { 3925 struct btrfs_fs_info *fs_info = root->fs_info; 3926 struct btrfs_path *path; 3927 int ret = 0; 3928 struct extent_buffer *leaf; 3929 struct btrfs_dir_item *di; 3930 struct btrfs_key key; 3931 u64 index; 3932 u64 ino = btrfs_ino(inode); 3933 u64 dir_ino = btrfs_ino(dir); 3934 3935 path = btrfs_alloc_path(); 3936 if (!path) { 3937 ret = -ENOMEM; 3938 goto out; 3939 } 3940 3941 path->leave_spinning = 1; 3942 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3943 name, name_len, -1); 3944 if (IS_ERR(di)) { 3945 ret = PTR_ERR(di); 3946 goto err; 3947 } 3948 if (!di) { 3949 ret = -ENOENT; 3950 goto err; 3951 } 3952 leaf = path->nodes[0]; 3953 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3954 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3955 if (ret) 3956 goto err; 3957 btrfs_release_path(path); 3958 3959 /* 3960 * If we don't have dir index, we have to get it by looking up 3961 * the inode ref, since we get the inode ref, remove it directly, 3962 * it is unnecessary to do delayed deletion. 3963 * 3964 * But if we have dir index, needn't search inode ref to get it. 3965 * Since the inode ref is close to the inode item, it is better 3966 * that we delay to delete it, and just do this deletion when 3967 * we update the inode item. 3968 */ 3969 if (inode->dir_index) { 3970 ret = btrfs_delayed_delete_inode_ref(inode); 3971 if (!ret) { 3972 index = inode->dir_index; 3973 goto skip_backref; 3974 } 3975 } 3976 3977 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3978 dir_ino, &index); 3979 if (ret) { 3980 btrfs_info(fs_info, 3981 "failed to delete reference to %.*s, inode %llu parent %llu", 3982 name_len, name, ino, dir_ino); 3983 btrfs_abort_transaction(trans, ret); 3984 goto err; 3985 } 3986 skip_backref: 3987 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index); 3988 if (ret) { 3989 btrfs_abort_transaction(trans, ret); 3990 goto err; 3991 } 3992 3993 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3994 dir_ino); 3995 if (ret != 0 && ret != -ENOENT) { 3996 btrfs_abort_transaction(trans, ret); 3997 goto err; 3998 } 3999 4000 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4001 index); 4002 if (ret == -ENOENT) 4003 ret = 0; 4004 else if (ret) 4005 btrfs_abort_transaction(trans, ret); 4006 err: 4007 btrfs_free_path(path); 4008 if (ret) 4009 goto out; 4010 4011 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4012 inode_inc_iversion(&inode->vfs_inode); 4013 inode_inc_iversion(&dir->vfs_inode); 4014 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4015 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4016 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 4017 out: 4018 return ret; 4019 } 4020 4021 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4022 struct btrfs_root *root, 4023 struct btrfs_inode *dir, struct btrfs_inode *inode, 4024 const char *name, int name_len) 4025 { 4026 int ret; 4027 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 4028 if (!ret) { 4029 drop_nlink(&inode->vfs_inode); 4030 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 4031 } 4032 return ret; 4033 } 4034 4035 /* 4036 * helper to start transaction for unlink and rmdir. 4037 * 4038 * unlink and rmdir are special in btrfs, they do not always free space, so 4039 * if we cannot make our reservations the normal way try and see if there is 4040 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4041 * allow the unlink to occur. 4042 */ 4043 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4044 { 4045 struct btrfs_root *root = BTRFS_I(dir)->root; 4046 4047 /* 4048 * 1 for the possible orphan item 4049 * 1 for the dir item 4050 * 1 for the dir index 4051 * 1 for the inode ref 4052 * 1 for the inode 4053 */ 4054 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); 4055 } 4056 4057 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4058 { 4059 struct btrfs_root *root = BTRFS_I(dir)->root; 4060 struct btrfs_trans_handle *trans; 4061 struct inode *inode = d_inode(dentry); 4062 int ret; 4063 4064 trans = __unlink_start_trans(dir); 4065 if (IS_ERR(trans)) 4066 return PTR_ERR(trans); 4067 4068 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4069 0); 4070 4071 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4072 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4073 dentry->d_name.len); 4074 if (ret) 4075 goto out; 4076 4077 if (inode->i_nlink == 0) { 4078 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4079 if (ret) 4080 goto out; 4081 } 4082 4083 out: 4084 btrfs_end_transaction(trans); 4085 btrfs_btree_balance_dirty(root->fs_info); 4086 return ret; 4087 } 4088 4089 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4090 struct btrfs_root *root, 4091 struct inode *dir, u64 objectid, 4092 const char *name, int name_len) 4093 { 4094 struct btrfs_fs_info *fs_info = root->fs_info; 4095 struct btrfs_path *path; 4096 struct extent_buffer *leaf; 4097 struct btrfs_dir_item *di; 4098 struct btrfs_key key; 4099 u64 index; 4100 int ret; 4101 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4102 4103 path = btrfs_alloc_path(); 4104 if (!path) 4105 return -ENOMEM; 4106 4107 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4108 name, name_len, -1); 4109 if (IS_ERR_OR_NULL(di)) { 4110 if (!di) 4111 ret = -ENOENT; 4112 else 4113 ret = PTR_ERR(di); 4114 goto out; 4115 } 4116 4117 leaf = path->nodes[0]; 4118 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4119 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4120 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4121 if (ret) { 4122 btrfs_abort_transaction(trans, ret); 4123 goto out; 4124 } 4125 btrfs_release_path(path); 4126 4127 ret = btrfs_del_root_ref(trans, fs_info, objectid, 4128 root->root_key.objectid, dir_ino, 4129 &index, name, name_len); 4130 if (ret < 0) { 4131 if (ret != -ENOENT) { 4132 btrfs_abort_transaction(trans, ret); 4133 goto out; 4134 } 4135 di = btrfs_search_dir_index_item(root, path, dir_ino, 4136 name, name_len); 4137 if (IS_ERR_OR_NULL(di)) { 4138 if (!di) 4139 ret = -ENOENT; 4140 else 4141 ret = PTR_ERR(di); 4142 btrfs_abort_transaction(trans, ret); 4143 goto out; 4144 } 4145 4146 leaf = path->nodes[0]; 4147 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4148 btrfs_release_path(path); 4149 index = key.offset; 4150 } 4151 btrfs_release_path(path); 4152 4153 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index); 4154 if (ret) { 4155 btrfs_abort_transaction(trans, ret); 4156 goto out; 4157 } 4158 4159 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4160 inode_inc_iversion(dir); 4161 dir->i_mtime = dir->i_ctime = current_time(dir); 4162 ret = btrfs_update_inode_fallback(trans, root, dir); 4163 if (ret) 4164 btrfs_abort_transaction(trans, ret); 4165 out: 4166 btrfs_free_path(path); 4167 return ret; 4168 } 4169 4170 /* 4171 * Helper to check if the subvolume references other subvolumes or if it's 4172 * default. 4173 */ 4174 static noinline int may_destroy_subvol(struct btrfs_root *root) 4175 { 4176 struct btrfs_fs_info *fs_info = root->fs_info; 4177 struct btrfs_path *path; 4178 struct btrfs_dir_item *di; 4179 struct btrfs_key key; 4180 u64 dir_id; 4181 int ret; 4182 4183 path = btrfs_alloc_path(); 4184 if (!path) 4185 return -ENOMEM; 4186 4187 /* Make sure this root isn't set as the default subvol */ 4188 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4189 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4190 dir_id, "default", 7, 0); 4191 if (di && !IS_ERR(di)) { 4192 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4193 if (key.objectid == root->root_key.objectid) { 4194 ret = -EPERM; 4195 btrfs_err(fs_info, 4196 "deleting default subvolume %llu is not allowed", 4197 key.objectid); 4198 goto out; 4199 } 4200 btrfs_release_path(path); 4201 } 4202 4203 key.objectid = root->root_key.objectid; 4204 key.type = BTRFS_ROOT_REF_KEY; 4205 key.offset = (u64)-1; 4206 4207 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4208 if (ret < 0) 4209 goto out; 4210 BUG_ON(ret == 0); 4211 4212 ret = 0; 4213 if (path->slots[0] > 0) { 4214 path->slots[0]--; 4215 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4216 if (key.objectid == root->root_key.objectid && 4217 key.type == BTRFS_ROOT_REF_KEY) 4218 ret = -ENOTEMPTY; 4219 } 4220 out: 4221 btrfs_free_path(path); 4222 return ret; 4223 } 4224 4225 /* Delete all dentries for inodes belonging to the root */ 4226 static void btrfs_prune_dentries(struct btrfs_root *root) 4227 { 4228 struct btrfs_fs_info *fs_info = root->fs_info; 4229 struct rb_node *node; 4230 struct rb_node *prev; 4231 struct btrfs_inode *entry; 4232 struct inode *inode; 4233 u64 objectid = 0; 4234 4235 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 4236 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4237 4238 spin_lock(&root->inode_lock); 4239 again: 4240 node = root->inode_tree.rb_node; 4241 prev = NULL; 4242 while (node) { 4243 prev = node; 4244 entry = rb_entry(node, struct btrfs_inode, rb_node); 4245 4246 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 4247 node = node->rb_left; 4248 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 4249 node = node->rb_right; 4250 else 4251 break; 4252 } 4253 if (!node) { 4254 while (prev) { 4255 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4256 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) { 4257 node = prev; 4258 break; 4259 } 4260 prev = rb_next(prev); 4261 } 4262 } 4263 while (node) { 4264 entry = rb_entry(node, struct btrfs_inode, rb_node); 4265 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1; 4266 inode = igrab(&entry->vfs_inode); 4267 if (inode) { 4268 spin_unlock(&root->inode_lock); 4269 if (atomic_read(&inode->i_count) > 1) 4270 d_prune_aliases(inode); 4271 /* 4272 * btrfs_drop_inode will have it removed from the inode 4273 * cache when its usage count hits zero. 4274 */ 4275 iput(inode); 4276 cond_resched(); 4277 spin_lock(&root->inode_lock); 4278 goto again; 4279 } 4280 4281 if (cond_resched_lock(&root->inode_lock)) 4282 goto again; 4283 4284 node = rb_next(node); 4285 } 4286 spin_unlock(&root->inode_lock); 4287 } 4288 4289 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4290 { 4291 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4292 struct btrfs_root *root = BTRFS_I(dir)->root; 4293 struct inode *inode = d_inode(dentry); 4294 struct btrfs_root *dest = BTRFS_I(inode)->root; 4295 struct btrfs_trans_handle *trans; 4296 struct btrfs_block_rsv block_rsv; 4297 u64 root_flags; 4298 int ret; 4299 int err; 4300 4301 /* 4302 * Don't allow to delete a subvolume with send in progress. This is 4303 * inside the inode lock so the error handling that has to drop the bit 4304 * again is not run concurrently. 4305 */ 4306 spin_lock(&dest->root_item_lock); 4307 root_flags = btrfs_root_flags(&dest->root_item); 4308 if (dest->send_in_progress == 0) { 4309 btrfs_set_root_flags(&dest->root_item, 4310 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4311 spin_unlock(&dest->root_item_lock); 4312 } else { 4313 spin_unlock(&dest->root_item_lock); 4314 btrfs_warn(fs_info, 4315 "attempt to delete subvolume %llu during send", 4316 dest->root_key.objectid); 4317 return -EPERM; 4318 } 4319 4320 down_write(&fs_info->subvol_sem); 4321 4322 err = may_destroy_subvol(dest); 4323 if (err) 4324 goto out_up_write; 4325 4326 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4327 /* 4328 * One for dir inode, 4329 * two for dir entries, 4330 * two for root ref/backref. 4331 */ 4332 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4333 if (err) 4334 goto out_up_write; 4335 4336 trans = btrfs_start_transaction(root, 0); 4337 if (IS_ERR(trans)) { 4338 err = PTR_ERR(trans); 4339 goto out_release; 4340 } 4341 trans->block_rsv = &block_rsv; 4342 trans->bytes_reserved = block_rsv.size; 4343 4344 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4345 4346 ret = btrfs_unlink_subvol(trans, root, dir, 4347 dest->root_key.objectid, 4348 dentry->d_name.name, 4349 dentry->d_name.len); 4350 if (ret) { 4351 err = ret; 4352 btrfs_abort_transaction(trans, ret); 4353 goto out_end_trans; 4354 } 4355 4356 btrfs_record_root_in_trans(trans, dest); 4357 4358 memset(&dest->root_item.drop_progress, 0, 4359 sizeof(dest->root_item.drop_progress)); 4360 dest->root_item.drop_level = 0; 4361 btrfs_set_root_refs(&dest->root_item, 0); 4362 4363 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4364 ret = btrfs_insert_orphan_item(trans, 4365 fs_info->tree_root, 4366 dest->root_key.objectid); 4367 if (ret) { 4368 btrfs_abort_transaction(trans, ret); 4369 err = ret; 4370 goto out_end_trans; 4371 } 4372 } 4373 4374 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4375 BTRFS_UUID_KEY_SUBVOL, 4376 dest->root_key.objectid); 4377 if (ret && ret != -ENOENT) { 4378 btrfs_abort_transaction(trans, ret); 4379 err = ret; 4380 goto out_end_trans; 4381 } 4382 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4383 ret = btrfs_uuid_tree_remove(trans, 4384 dest->root_item.received_uuid, 4385 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4386 dest->root_key.objectid); 4387 if (ret && ret != -ENOENT) { 4388 btrfs_abort_transaction(trans, ret); 4389 err = ret; 4390 goto out_end_trans; 4391 } 4392 } 4393 4394 out_end_trans: 4395 trans->block_rsv = NULL; 4396 trans->bytes_reserved = 0; 4397 ret = btrfs_end_transaction(trans); 4398 if (ret && !err) 4399 err = ret; 4400 inode->i_flags |= S_DEAD; 4401 out_release: 4402 btrfs_subvolume_release_metadata(fs_info, &block_rsv); 4403 out_up_write: 4404 up_write(&fs_info->subvol_sem); 4405 if (err) { 4406 spin_lock(&dest->root_item_lock); 4407 root_flags = btrfs_root_flags(&dest->root_item); 4408 btrfs_set_root_flags(&dest->root_item, 4409 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4410 spin_unlock(&dest->root_item_lock); 4411 } else { 4412 d_invalidate(dentry); 4413 btrfs_prune_dentries(dest); 4414 ASSERT(dest->send_in_progress == 0); 4415 4416 /* the last ref */ 4417 if (dest->ino_cache_inode) { 4418 iput(dest->ino_cache_inode); 4419 dest->ino_cache_inode = NULL; 4420 } 4421 } 4422 4423 return err; 4424 } 4425 4426 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4427 { 4428 struct inode *inode = d_inode(dentry); 4429 int err = 0; 4430 struct btrfs_root *root = BTRFS_I(dir)->root; 4431 struct btrfs_trans_handle *trans; 4432 u64 last_unlink_trans; 4433 4434 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4435 return -ENOTEMPTY; 4436 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4437 return btrfs_delete_subvolume(dir, dentry); 4438 4439 trans = __unlink_start_trans(dir); 4440 if (IS_ERR(trans)) 4441 return PTR_ERR(trans); 4442 4443 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4444 err = btrfs_unlink_subvol(trans, root, dir, 4445 BTRFS_I(inode)->location.objectid, 4446 dentry->d_name.name, 4447 dentry->d_name.len); 4448 goto out; 4449 } 4450 4451 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4452 if (err) 4453 goto out; 4454 4455 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4456 4457 /* now the directory is empty */ 4458 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4459 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4460 dentry->d_name.len); 4461 if (!err) { 4462 btrfs_i_size_write(BTRFS_I(inode), 0); 4463 /* 4464 * Propagate the last_unlink_trans value of the deleted dir to 4465 * its parent directory. This is to prevent an unrecoverable 4466 * log tree in the case we do something like this: 4467 * 1) create dir foo 4468 * 2) create snapshot under dir foo 4469 * 3) delete the snapshot 4470 * 4) rmdir foo 4471 * 5) mkdir foo 4472 * 6) fsync foo or some file inside foo 4473 */ 4474 if (last_unlink_trans >= trans->transid) 4475 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4476 } 4477 out: 4478 btrfs_end_transaction(trans); 4479 btrfs_btree_balance_dirty(root->fs_info); 4480 4481 return err; 4482 } 4483 4484 static int truncate_space_check(struct btrfs_trans_handle *trans, 4485 struct btrfs_root *root, 4486 u64 bytes_deleted) 4487 { 4488 struct btrfs_fs_info *fs_info = root->fs_info; 4489 int ret; 4490 4491 /* 4492 * This is only used to apply pressure to the enospc system, we don't 4493 * intend to use this reservation at all. 4494 */ 4495 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); 4496 bytes_deleted *= fs_info->nodesize; 4497 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 4498 bytes_deleted, BTRFS_RESERVE_NO_FLUSH); 4499 if (!ret) { 4500 trace_btrfs_space_reservation(fs_info, "transaction", 4501 trans->transid, 4502 bytes_deleted, 1); 4503 trans->bytes_reserved += bytes_deleted; 4504 } 4505 return ret; 4506 4507 } 4508 4509 /* 4510 * Return this if we need to call truncate_block for the last bit of the 4511 * truncate. 4512 */ 4513 #define NEED_TRUNCATE_BLOCK 1 4514 4515 /* 4516 * this can truncate away extent items, csum items and directory items. 4517 * It starts at a high offset and removes keys until it can't find 4518 * any higher than new_size 4519 * 4520 * csum items that cross the new i_size are truncated to the new size 4521 * as well. 4522 * 4523 * min_type is the minimum key type to truncate down to. If set to 0, this 4524 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4525 */ 4526 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4527 struct btrfs_root *root, 4528 struct inode *inode, 4529 u64 new_size, u32 min_type) 4530 { 4531 struct btrfs_fs_info *fs_info = root->fs_info; 4532 struct btrfs_path *path; 4533 struct extent_buffer *leaf; 4534 struct btrfs_file_extent_item *fi; 4535 struct btrfs_key key; 4536 struct btrfs_key found_key; 4537 u64 extent_start = 0; 4538 u64 extent_num_bytes = 0; 4539 u64 extent_offset = 0; 4540 u64 item_end = 0; 4541 u64 last_size = new_size; 4542 u32 found_type = (u8)-1; 4543 int found_extent; 4544 int del_item; 4545 int pending_del_nr = 0; 4546 int pending_del_slot = 0; 4547 int extent_type = -1; 4548 int ret; 4549 u64 ino = btrfs_ino(BTRFS_I(inode)); 4550 u64 bytes_deleted = 0; 4551 bool be_nice = false; 4552 bool should_throttle = false; 4553 bool should_end = false; 4554 4555 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4556 4557 /* 4558 * for non-free space inodes and ref cows, we want to back off from 4559 * time to time 4560 */ 4561 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4562 test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4563 be_nice = true; 4564 4565 path = btrfs_alloc_path(); 4566 if (!path) 4567 return -ENOMEM; 4568 path->reada = READA_BACK; 4569 4570 /* 4571 * We want to drop from the next block forward in case this new size is 4572 * not block aligned since we will be keeping the last block of the 4573 * extent just the way it is. 4574 */ 4575 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4576 root == fs_info->tree_root) 4577 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4578 fs_info->sectorsize), 4579 (u64)-1, 0); 4580 4581 /* 4582 * This function is also used to drop the items in the log tree before 4583 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4584 * it is used to drop the loged items. So we shouldn't kill the delayed 4585 * items. 4586 */ 4587 if (min_type == 0 && root == BTRFS_I(inode)->root) 4588 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4589 4590 key.objectid = ino; 4591 key.offset = (u64)-1; 4592 key.type = (u8)-1; 4593 4594 search_again: 4595 /* 4596 * with a 16K leaf size and 128MB extents, you can actually queue 4597 * up a huge file in a single leaf. Most of the time that 4598 * bytes_deleted is > 0, it will be huge by the time we get here 4599 */ 4600 if (be_nice && bytes_deleted > SZ_32M && 4601 btrfs_should_end_transaction(trans)) { 4602 ret = -EAGAIN; 4603 goto out; 4604 } 4605 4606 path->leave_spinning = 1; 4607 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4608 if (ret < 0) 4609 goto out; 4610 4611 if (ret > 0) { 4612 ret = 0; 4613 /* there are no items in the tree for us to truncate, we're 4614 * done 4615 */ 4616 if (path->slots[0] == 0) 4617 goto out; 4618 path->slots[0]--; 4619 } 4620 4621 while (1) { 4622 fi = NULL; 4623 leaf = path->nodes[0]; 4624 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4625 found_type = found_key.type; 4626 4627 if (found_key.objectid != ino) 4628 break; 4629 4630 if (found_type < min_type) 4631 break; 4632 4633 item_end = found_key.offset; 4634 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4635 fi = btrfs_item_ptr(leaf, path->slots[0], 4636 struct btrfs_file_extent_item); 4637 extent_type = btrfs_file_extent_type(leaf, fi); 4638 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4639 item_end += 4640 btrfs_file_extent_num_bytes(leaf, fi); 4641 4642 trace_btrfs_truncate_show_fi_regular( 4643 BTRFS_I(inode), leaf, fi, 4644 found_key.offset); 4645 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4646 item_end += btrfs_file_extent_inline_len(leaf, 4647 path->slots[0], fi); 4648 4649 trace_btrfs_truncate_show_fi_inline( 4650 BTRFS_I(inode), leaf, fi, path->slots[0], 4651 found_key.offset); 4652 } 4653 item_end--; 4654 } 4655 if (found_type > min_type) { 4656 del_item = 1; 4657 } else { 4658 if (item_end < new_size) 4659 break; 4660 if (found_key.offset >= new_size) 4661 del_item = 1; 4662 else 4663 del_item = 0; 4664 } 4665 found_extent = 0; 4666 /* FIXME, shrink the extent if the ref count is only 1 */ 4667 if (found_type != BTRFS_EXTENT_DATA_KEY) 4668 goto delete; 4669 4670 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4671 u64 num_dec; 4672 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4673 if (!del_item) { 4674 u64 orig_num_bytes = 4675 btrfs_file_extent_num_bytes(leaf, fi); 4676 extent_num_bytes = ALIGN(new_size - 4677 found_key.offset, 4678 fs_info->sectorsize); 4679 btrfs_set_file_extent_num_bytes(leaf, fi, 4680 extent_num_bytes); 4681 num_dec = (orig_num_bytes - 4682 extent_num_bytes); 4683 if (test_bit(BTRFS_ROOT_REF_COWS, 4684 &root->state) && 4685 extent_start != 0) 4686 inode_sub_bytes(inode, num_dec); 4687 btrfs_mark_buffer_dirty(leaf); 4688 } else { 4689 extent_num_bytes = 4690 btrfs_file_extent_disk_num_bytes(leaf, 4691 fi); 4692 extent_offset = found_key.offset - 4693 btrfs_file_extent_offset(leaf, fi); 4694 4695 /* FIXME blocksize != 4096 */ 4696 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4697 if (extent_start != 0) { 4698 found_extent = 1; 4699 if (test_bit(BTRFS_ROOT_REF_COWS, 4700 &root->state)) 4701 inode_sub_bytes(inode, num_dec); 4702 } 4703 } 4704 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4705 /* 4706 * we can't truncate inline items that have had 4707 * special encodings 4708 */ 4709 if (!del_item && 4710 btrfs_file_extent_encryption(leaf, fi) == 0 && 4711 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4712 btrfs_file_extent_compression(leaf, fi) == 0) { 4713 u32 size = (u32)(new_size - found_key.offset); 4714 4715 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4716 size = btrfs_file_extent_calc_inline_size(size); 4717 btrfs_truncate_item(root->fs_info, path, size, 1); 4718 } else if (!del_item) { 4719 /* 4720 * We have to bail so the last_size is set to 4721 * just before this extent. 4722 */ 4723 ret = NEED_TRUNCATE_BLOCK; 4724 break; 4725 } 4726 4727 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 4728 inode_sub_bytes(inode, item_end + 1 - new_size); 4729 } 4730 delete: 4731 if (del_item) 4732 last_size = found_key.offset; 4733 else 4734 last_size = new_size; 4735 if (del_item) { 4736 if (!pending_del_nr) { 4737 /* no pending yet, add ourselves */ 4738 pending_del_slot = path->slots[0]; 4739 pending_del_nr = 1; 4740 } else if (pending_del_nr && 4741 path->slots[0] + 1 == pending_del_slot) { 4742 /* hop on the pending chunk */ 4743 pending_del_nr++; 4744 pending_del_slot = path->slots[0]; 4745 } else { 4746 BUG(); 4747 } 4748 } else { 4749 break; 4750 } 4751 should_throttle = false; 4752 4753 if (found_extent && 4754 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 4755 root == fs_info->tree_root)) { 4756 btrfs_set_path_blocking(path); 4757 bytes_deleted += extent_num_bytes; 4758 ret = btrfs_free_extent(trans, root, extent_start, 4759 extent_num_bytes, 0, 4760 btrfs_header_owner(leaf), 4761 ino, extent_offset); 4762 if (ret) { 4763 btrfs_abort_transaction(trans, ret); 4764 break; 4765 } 4766 if (btrfs_should_throttle_delayed_refs(trans, fs_info)) 4767 btrfs_async_run_delayed_refs(fs_info, 4768 trans->delayed_ref_updates * 2, 4769 trans->transid, 0); 4770 if (be_nice) { 4771 if (truncate_space_check(trans, root, 4772 extent_num_bytes)) { 4773 should_end = true; 4774 } 4775 if (btrfs_should_throttle_delayed_refs(trans, 4776 fs_info)) 4777 should_throttle = true; 4778 } 4779 } 4780 4781 if (found_type == BTRFS_INODE_ITEM_KEY) 4782 break; 4783 4784 if (path->slots[0] == 0 || 4785 path->slots[0] != pending_del_slot || 4786 should_throttle || should_end) { 4787 if (pending_del_nr) { 4788 ret = btrfs_del_items(trans, root, path, 4789 pending_del_slot, 4790 pending_del_nr); 4791 if (ret) { 4792 btrfs_abort_transaction(trans, ret); 4793 break; 4794 } 4795 pending_del_nr = 0; 4796 } 4797 btrfs_release_path(path); 4798 if (should_throttle) { 4799 unsigned long updates = trans->delayed_ref_updates; 4800 if (updates) { 4801 trans->delayed_ref_updates = 0; 4802 ret = btrfs_run_delayed_refs(trans, 4803 updates * 2); 4804 if (ret) 4805 break; 4806 } 4807 } 4808 /* 4809 * if we failed to refill our space rsv, bail out 4810 * and let the transaction restart 4811 */ 4812 if (should_end) { 4813 ret = -EAGAIN; 4814 break; 4815 } 4816 goto search_again; 4817 } else { 4818 path->slots[0]--; 4819 } 4820 } 4821 out: 4822 if (ret >= 0 && pending_del_nr) { 4823 int err; 4824 4825 err = btrfs_del_items(trans, root, path, pending_del_slot, 4826 pending_del_nr); 4827 if (err) { 4828 btrfs_abort_transaction(trans, err); 4829 ret = err; 4830 } 4831 } 4832 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4833 ASSERT(last_size >= new_size); 4834 if (!ret && last_size > new_size) 4835 last_size = new_size; 4836 btrfs_ordered_update_i_size(inode, last_size, NULL); 4837 } 4838 4839 btrfs_free_path(path); 4840 4841 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) { 4842 unsigned long updates = trans->delayed_ref_updates; 4843 int err; 4844 4845 if (updates) { 4846 trans->delayed_ref_updates = 0; 4847 err = btrfs_run_delayed_refs(trans, updates * 2); 4848 if (err) 4849 ret = err; 4850 } 4851 } 4852 return ret; 4853 } 4854 4855 /* 4856 * btrfs_truncate_block - read, zero a chunk and write a block 4857 * @inode - inode that we're zeroing 4858 * @from - the offset to start zeroing 4859 * @len - the length to zero, 0 to zero the entire range respective to the 4860 * offset 4861 * @front - zero up to the offset instead of from the offset on 4862 * 4863 * This will find the block for the "from" offset and cow the block and zero the 4864 * part we want to zero. This is used with truncate and hole punching. 4865 */ 4866 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4867 int front) 4868 { 4869 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4870 struct address_space *mapping = inode->i_mapping; 4871 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4872 struct btrfs_ordered_extent *ordered; 4873 struct extent_state *cached_state = NULL; 4874 struct extent_changeset *data_reserved = NULL; 4875 char *kaddr; 4876 u32 blocksize = fs_info->sectorsize; 4877 pgoff_t index = from >> PAGE_SHIFT; 4878 unsigned offset = from & (blocksize - 1); 4879 struct page *page; 4880 gfp_t mask = btrfs_alloc_write_mask(mapping); 4881 int ret = 0; 4882 u64 block_start; 4883 u64 block_end; 4884 4885 if (IS_ALIGNED(offset, blocksize) && 4886 (!len || IS_ALIGNED(len, blocksize))) 4887 goto out; 4888 4889 block_start = round_down(from, blocksize); 4890 block_end = block_start + blocksize - 1; 4891 4892 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 4893 block_start, blocksize); 4894 if (ret) 4895 goto out; 4896 4897 again: 4898 page = find_or_create_page(mapping, index, mask); 4899 if (!page) { 4900 btrfs_delalloc_release_space(inode, data_reserved, 4901 block_start, blocksize, true); 4902 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true); 4903 ret = -ENOMEM; 4904 goto out; 4905 } 4906 4907 if (!PageUptodate(page)) { 4908 ret = btrfs_readpage(NULL, page); 4909 lock_page(page); 4910 if (page->mapping != mapping) { 4911 unlock_page(page); 4912 put_page(page); 4913 goto again; 4914 } 4915 if (!PageUptodate(page)) { 4916 ret = -EIO; 4917 goto out_unlock; 4918 } 4919 } 4920 wait_on_page_writeback(page); 4921 4922 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4923 set_page_extent_mapped(page); 4924 4925 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4926 if (ordered) { 4927 unlock_extent_cached(io_tree, block_start, block_end, 4928 &cached_state); 4929 unlock_page(page); 4930 put_page(page); 4931 btrfs_start_ordered_extent(inode, ordered, 1); 4932 btrfs_put_ordered_extent(ordered); 4933 goto again; 4934 } 4935 4936 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4937 EXTENT_DIRTY | EXTENT_DELALLOC | 4938 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4939 0, 0, &cached_state); 4940 4941 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4942 &cached_state, 0); 4943 if (ret) { 4944 unlock_extent_cached(io_tree, block_start, block_end, 4945 &cached_state); 4946 goto out_unlock; 4947 } 4948 4949 if (offset != blocksize) { 4950 if (!len) 4951 len = blocksize - offset; 4952 kaddr = kmap(page); 4953 if (front) 4954 memset(kaddr + (block_start - page_offset(page)), 4955 0, offset); 4956 else 4957 memset(kaddr + (block_start - page_offset(page)) + offset, 4958 0, len); 4959 flush_dcache_page(page); 4960 kunmap(page); 4961 } 4962 ClearPageChecked(page); 4963 set_page_dirty(page); 4964 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4965 4966 out_unlock: 4967 if (ret) 4968 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4969 blocksize, true); 4970 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0)); 4971 unlock_page(page); 4972 put_page(page); 4973 out: 4974 extent_changeset_free(data_reserved); 4975 return ret; 4976 } 4977 4978 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4979 u64 offset, u64 len) 4980 { 4981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4982 struct btrfs_trans_handle *trans; 4983 int ret; 4984 4985 /* 4986 * Still need to make sure the inode looks like it's been updated so 4987 * that any holes get logged if we fsync. 4988 */ 4989 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4990 BTRFS_I(inode)->last_trans = fs_info->generation; 4991 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4992 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4993 return 0; 4994 } 4995 4996 /* 4997 * 1 - for the one we're dropping 4998 * 1 - for the one we're adding 4999 * 1 - for updating the inode. 5000 */ 5001 trans = btrfs_start_transaction(root, 3); 5002 if (IS_ERR(trans)) 5003 return PTR_ERR(trans); 5004 5005 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 5006 if (ret) { 5007 btrfs_abort_transaction(trans, ret); 5008 btrfs_end_transaction(trans); 5009 return ret; 5010 } 5011 5012 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 5013 offset, 0, 0, len, 0, len, 0, 0, 0); 5014 if (ret) 5015 btrfs_abort_transaction(trans, ret); 5016 else 5017 btrfs_update_inode(trans, root, inode); 5018 btrfs_end_transaction(trans); 5019 return ret; 5020 } 5021 5022 /* 5023 * This function puts in dummy file extents for the area we're creating a hole 5024 * for. So if we are truncating this file to a larger size we need to insert 5025 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5026 * the range between oldsize and size 5027 */ 5028 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 5029 { 5030 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5031 struct btrfs_root *root = BTRFS_I(inode)->root; 5032 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5033 struct extent_map *em = NULL; 5034 struct extent_state *cached_state = NULL; 5035 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5036 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5037 u64 block_end = ALIGN(size, fs_info->sectorsize); 5038 u64 last_byte; 5039 u64 cur_offset; 5040 u64 hole_size; 5041 int err = 0; 5042 5043 /* 5044 * If our size started in the middle of a block we need to zero out the 5045 * rest of the block before we expand the i_size, otherwise we could 5046 * expose stale data. 5047 */ 5048 err = btrfs_truncate_block(inode, oldsize, 0, 0); 5049 if (err) 5050 return err; 5051 5052 if (size <= hole_start) 5053 return 0; 5054 5055 while (1) { 5056 struct btrfs_ordered_extent *ordered; 5057 5058 lock_extent_bits(io_tree, hole_start, block_end - 1, 5059 &cached_state); 5060 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, 5061 block_end - hole_start); 5062 if (!ordered) 5063 break; 5064 unlock_extent_cached(io_tree, hole_start, block_end - 1, 5065 &cached_state); 5066 btrfs_start_ordered_extent(inode, ordered, 1); 5067 btrfs_put_ordered_extent(ordered); 5068 } 5069 5070 cur_offset = hole_start; 5071 while (1) { 5072 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 5073 block_end - cur_offset, 0); 5074 if (IS_ERR(em)) { 5075 err = PTR_ERR(em); 5076 em = NULL; 5077 break; 5078 } 5079 last_byte = min(extent_map_end(em), block_end); 5080 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5081 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 5082 struct extent_map *hole_em; 5083 hole_size = last_byte - cur_offset; 5084 5085 err = maybe_insert_hole(root, inode, cur_offset, 5086 hole_size); 5087 if (err) 5088 break; 5089 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 5090 cur_offset + hole_size - 1, 0); 5091 hole_em = alloc_extent_map(); 5092 if (!hole_em) { 5093 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 5094 &BTRFS_I(inode)->runtime_flags); 5095 goto next; 5096 } 5097 hole_em->start = cur_offset; 5098 hole_em->len = hole_size; 5099 hole_em->orig_start = cur_offset; 5100 5101 hole_em->block_start = EXTENT_MAP_HOLE; 5102 hole_em->block_len = 0; 5103 hole_em->orig_block_len = 0; 5104 hole_em->ram_bytes = hole_size; 5105 hole_em->bdev = fs_info->fs_devices->latest_bdev; 5106 hole_em->compress_type = BTRFS_COMPRESS_NONE; 5107 hole_em->generation = fs_info->generation; 5108 5109 while (1) { 5110 write_lock(&em_tree->lock); 5111 err = add_extent_mapping(em_tree, hole_em, 1); 5112 write_unlock(&em_tree->lock); 5113 if (err != -EEXIST) 5114 break; 5115 btrfs_drop_extent_cache(BTRFS_I(inode), 5116 cur_offset, 5117 cur_offset + 5118 hole_size - 1, 0); 5119 } 5120 free_extent_map(hole_em); 5121 } 5122 next: 5123 free_extent_map(em); 5124 em = NULL; 5125 cur_offset = last_byte; 5126 if (cur_offset >= block_end) 5127 break; 5128 } 5129 free_extent_map(em); 5130 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 5131 return err; 5132 } 5133 5134 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5135 { 5136 struct btrfs_root *root = BTRFS_I(inode)->root; 5137 struct btrfs_trans_handle *trans; 5138 loff_t oldsize = i_size_read(inode); 5139 loff_t newsize = attr->ia_size; 5140 int mask = attr->ia_valid; 5141 int ret; 5142 5143 /* 5144 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5145 * special case where we need to update the times despite not having 5146 * these flags set. For all other operations the VFS set these flags 5147 * explicitly if it wants a timestamp update. 5148 */ 5149 if (newsize != oldsize) { 5150 inode_inc_iversion(inode); 5151 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 5152 inode->i_ctime = inode->i_mtime = 5153 current_time(inode); 5154 } 5155 5156 if (newsize > oldsize) { 5157 /* 5158 * Don't do an expanding truncate while snapshotting is ongoing. 5159 * This is to ensure the snapshot captures a fully consistent 5160 * state of this file - if the snapshot captures this expanding 5161 * truncation, it must capture all writes that happened before 5162 * this truncation. 5163 */ 5164 btrfs_wait_for_snapshot_creation(root); 5165 ret = btrfs_cont_expand(inode, oldsize, newsize); 5166 if (ret) { 5167 btrfs_end_write_no_snapshotting(root); 5168 return ret; 5169 } 5170 5171 trans = btrfs_start_transaction(root, 1); 5172 if (IS_ERR(trans)) { 5173 btrfs_end_write_no_snapshotting(root); 5174 return PTR_ERR(trans); 5175 } 5176 5177 i_size_write(inode, newsize); 5178 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 5179 pagecache_isize_extended(inode, oldsize, newsize); 5180 ret = btrfs_update_inode(trans, root, inode); 5181 btrfs_end_write_no_snapshotting(root); 5182 btrfs_end_transaction(trans); 5183 } else { 5184 5185 /* 5186 * We're truncating a file that used to have good data down to 5187 * zero. Make sure it gets into the ordered flush list so that 5188 * any new writes get down to disk quickly. 5189 */ 5190 if (newsize == 0) 5191 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 5192 &BTRFS_I(inode)->runtime_flags); 5193 5194 truncate_setsize(inode, newsize); 5195 5196 /* Disable nonlocked read DIO to avoid the end less truncate */ 5197 btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); 5198 inode_dio_wait(inode); 5199 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); 5200 5201 ret = btrfs_truncate(inode, newsize == oldsize); 5202 if (ret && inode->i_nlink) { 5203 int err; 5204 5205 /* 5206 * Truncate failed, so fix up the in-memory size. We 5207 * adjusted disk_i_size down as we removed extents, so 5208 * wait for disk_i_size to be stable and then update the 5209 * in-memory size to match. 5210 */ 5211 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5212 if (err) 5213 return err; 5214 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5215 } 5216 } 5217 5218 return ret; 5219 } 5220 5221 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 5222 { 5223 struct inode *inode = d_inode(dentry); 5224 struct btrfs_root *root = BTRFS_I(inode)->root; 5225 int err; 5226 5227 if (btrfs_root_readonly(root)) 5228 return -EROFS; 5229 5230 err = setattr_prepare(dentry, attr); 5231 if (err) 5232 return err; 5233 5234 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5235 err = btrfs_setsize(inode, attr); 5236 if (err) 5237 return err; 5238 } 5239 5240 if (attr->ia_valid) { 5241 setattr_copy(inode, attr); 5242 inode_inc_iversion(inode); 5243 err = btrfs_dirty_inode(inode); 5244 5245 if (!err && attr->ia_valid & ATTR_MODE) 5246 err = posix_acl_chmod(inode, inode->i_mode); 5247 } 5248 5249 return err; 5250 } 5251 5252 /* 5253 * While truncating the inode pages during eviction, we get the VFS calling 5254 * btrfs_invalidatepage() against each page of the inode. This is slow because 5255 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 5256 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 5257 * extent_state structures over and over, wasting lots of time. 5258 * 5259 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 5260 * those expensive operations on a per page basis and do only the ordered io 5261 * finishing, while we release here the extent_map and extent_state structures, 5262 * without the excessive merging and splitting. 5263 */ 5264 static void evict_inode_truncate_pages(struct inode *inode) 5265 { 5266 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5267 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5268 struct rb_node *node; 5269 5270 ASSERT(inode->i_state & I_FREEING); 5271 truncate_inode_pages_final(&inode->i_data); 5272 5273 write_lock(&map_tree->lock); 5274 while (!RB_EMPTY_ROOT(&map_tree->map)) { 5275 struct extent_map *em; 5276 5277 node = rb_first(&map_tree->map); 5278 em = rb_entry(node, struct extent_map, rb_node); 5279 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5280 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5281 remove_extent_mapping(map_tree, em); 5282 free_extent_map(em); 5283 if (need_resched()) { 5284 write_unlock(&map_tree->lock); 5285 cond_resched(); 5286 write_lock(&map_tree->lock); 5287 } 5288 } 5289 write_unlock(&map_tree->lock); 5290 5291 /* 5292 * Keep looping until we have no more ranges in the io tree. 5293 * We can have ongoing bios started by readpages (called from readahead) 5294 * that have their endio callback (extent_io.c:end_bio_extent_readpage) 5295 * still in progress (unlocked the pages in the bio but did not yet 5296 * unlocked the ranges in the io tree). Therefore this means some 5297 * ranges can still be locked and eviction started because before 5298 * submitting those bios, which are executed by a separate task (work 5299 * queue kthread), inode references (inode->i_count) were not taken 5300 * (which would be dropped in the end io callback of each bio). 5301 * Therefore here we effectively end up waiting for those bios and 5302 * anyone else holding locked ranges without having bumped the inode's 5303 * reference count - if we don't do it, when they access the inode's 5304 * io_tree to unlock a range it may be too late, leading to an 5305 * use-after-free issue. 5306 */ 5307 spin_lock(&io_tree->lock); 5308 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5309 struct extent_state *state; 5310 struct extent_state *cached_state = NULL; 5311 u64 start; 5312 u64 end; 5313 5314 node = rb_first(&io_tree->state); 5315 state = rb_entry(node, struct extent_state, rb_node); 5316 start = state->start; 5317 end = state->end; 5318 spin_unlock(&io_tree->lock); 5319 5320 lock_extent_bits(io_tree, start, end, &cached_state); 5321 5322 /* 5323 * If still has DELALLOC flag, the extent didn't reach disk, 5324 * and its reserved space won't be freed by delayed_ref. 5325 * So we need to free its reserved space here. 5326 * (Refer to comment in btrfs_invalidatepage, case 2) 5327 * 5328 * Note, end is the bytenr of last byte, so we need + 1 here. 5329 */ 5330 if (state->state & EXTENT_DELALLOC) 5331 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); 5332 5333 clear_extent_bit(io_tree, start, end, 5334 EXTENT_LOCKED | EXTENT_DIRTY | 5335 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 5336 EXTENT_DEFRAG, 1, 1, &cached_state); 5337 5338 cond_resched(); 5339 spin_lock(&io_tree->lock); 5340 } 5341 spin_unlock(&io_tree->lock); 5342 } 5343 5344 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5345 struct btrfs_block_rsv *rsv, 5346 u64 min_size) 5347 { 5348 struct btrfs_fs_info *fs_info = root->fs_info; 5349 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5350 int failures = 0; 5351 5352 for (;;) { 5353 struct btrfs_trans_handle *trans; 5354 int ret; 5355 5356 ret = btrfs_block_rsv_refill(root, rsv, min_size, 5357 BTRFS_RESERVE_FLUSH_LIMIT); 5358 5359 if (ret && ++failures > 2) { 5360 btrfs_warn(fs_info, 5361 "could not allocate space for a delete; will truncate on mount"); 5362 return ERR_PTR(-ENOSPC); 5363 } 5364 5365 trans = btrfs_join_transaction(root); 5366 if (IS_ERR(trans) || !ret) 5367 return trans; 5368 5369 /* 5370 * Try to steal from the global reserve if there is space for 5371 * it. 5372 */ 5373 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) && 5374 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0)) 5375 return trans; 5376 5377 /* If not, commit and try again. */ 5378 ret = btrfs_commit_transaction(trans); 5379 if (ret) 5380 return ERR_PTR(ret); 5381 } 5382 } 5383 5384 void btrfs_evict_inode(struct inode *inode) 5385 { 5386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5387 struct btrfs_trans_handle *trans; 5388 struct btrfs_root *root = BTRFS_I(inode)->root; 5389 struct btrfs_block_rsv *rsv; 5390 u64 min_size; 5391 int ret; 5392 5393 trace_btrfs_inode_evict(inode); 5394 5395 if (!root) { 5396 clear_inode(inode); 5397 return; 5398 } 5399 5400 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 5401 5402 evict_inode_truncate_pages(inode); 5403 5404 if (inode->i_nlink && 5405 ((btrfs_root_refs(&root->root_item) != 0 && 5406 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5407 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5408 goto no_delete; 5409 5410 if (is_bad_inode(inode)) 5411 goto no_delete; 5412 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 5413 if (!special_file(inode->i_mode)) 5414 btrfs_wait_ordered_range(inode, 0, (u64)-1); 5415 5416 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5417 5418 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5419 goto no_delete; 5420 5421 if (inode->i_nlink > 0) { 5422 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5423 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5424 goto no_delete; 5425 } 5426 5427 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5428 if (ret) 5429 goto no_delete; 5430 5431 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5432 if (!rsv) 5433 goto no_delete; 5434 rsv->size = min_size; 5435 rsv->failfast = 1; 5436 5437 btrfs_i_size_write(BTRFS_I(inode), 0); 5438 5439 while (1) { 5440 trans = evict_refill_and_join(root, rsv, min_size); 5441 if (IS_ERR(trans)) 5442 goto free_rsv; 5443 5444 trans->block_rsv = rsv; 5445 5446 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5447 trans->block_rsv = &fs_info->trans_block_rsv; 5448 btrfs_end_transaction(trans); 5449 btrfs_btree_balance_dirty(fs_info); 5450 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5451 goto free_rsv; 5452 else if (!ret) 5453 break; 5454 } 5455 5456 /* 5457 * Errors here aren't a big deal, it just means we leave orphan items in 5458 * the tree. They will be cleaned up on the next mount. If the inode 5459 * number gets reused, cleanup deletes the orphan item without doing 5460 * anything, and unlink reuses the existing orphan item. 5461 * 5462 * If it turns out that we are dropping too many of these, we might want 5463 * to add a mechanism for retrying these after a commit. 5464 */ 5465 trans = evict_refill_and_join(root, rsv, min_size); 5466 if (!IS_ERR(trans)) { 5467 trans->block_rsv = rsv; 5468 btrfs_orphan_del(trans, BTRFS_I(inode)); 5469 trans->block_rsv = &fs_info->trans_block_rsv; 5470 btrfs_end_transaction(trans); 5471 } 5472 5473 if (!(root == fs_info->tree_root || 5474 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5475 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5476 5477 free_rsv: 5478 btrfs_free_block_rsv(fs_info, rsv); 5479 no_delete: 5480 /* 5481 * If we didn't successfully delete, the orphan item will still be in 5482 * the tree and we'll retry on the next mount. Again, we might also want 5483 * to retry these periodically in the future. 5484 */ 5485 btrfs_remove_delayed_node(BTRFS_I(inode)); 5486 clear_inode(inode); 5487 } 5488 5489 /* 5490 * this returns the key found in the dir entry in the location pointer. 5491 * If no dir entries were found, returns -ENOENT. 5492 * If found a corrupted location in dir entry, returns -EUCLEAN. 5493 */ 5494 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5495 struct btrfs_key *location) 5496 { 5497 const char *name = dentry->d_name.name; 5498 int namelen = dentry->d_name.len; 5499 struct btrfs_dir_item *di; 5500 struct btrfs_path *path; 5501 struct btrfs_root *root = BTRFS_I(dir)->root; 5502 int ret = 0; 5503 5504 path = btrfs_alloc_path(); 5505 if (!path) 5506 return -ENOMEM; 5507 5508 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5509 name, namelen, 0); 5510 if (!di) { 5511 ret = -ENOENT; 5512 goto out; 5513 } 5514 if (IS_ERR(di)) { 5515 ret = PTR_ERR(di); 5516 goto out; 5517 } 5518 5519 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5520 if (location->type != BTRFS_INODE_ITEM_KEY && 5521 location->type != BTRFS_ROOT_ITEM_KEY) { 5522 ret = -EUCLEAN; 5523 btrfs_warn(root->fs_info, 5524 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5525 __func__, name, btrfs_ino(BTRFS_I(dir)), 5526 location->objectid, location->type, location->offset); 5527 } 5528 out: 5529 btrfs_free_path(path); 5530 return ret; 5531 } 5532 5533 /* 5534 * when we hit a tree root in a directory, the btrfs part of the inode 5535 * needs to be changed to reflect the root directory of the tree root. This 5536 * is kind of like crossing a mount point. 5537 */ 5538 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5539 struct inode *dir, 5540 struct dentry *dentry, 5541 struct btrfs_key *location, 5542 struct btrfs_root **sub_root) 5543 { 5544 struct btrfs_path *path; 5545 struct btrfs_root *new_root; 5546 struct btrfs_root_ref *ref; 5547 struct extent_buffer *leaf; 5548 struct btrfs_key key; 5549 int ret; 5550 int err = 0; 5551 5552 path = btrfs_alloc_path(); 5553 if (!path) { 5554 err = -ENOMEM; 5555 goto out; 5556 } 5557 5558 err = -ENOENT; 5559 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5560 key.type = BTRFS_ROOT_REF_KEY; 5561 key.offset = location->objectid; 5562 5563 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5564 if (ret) { 5565 if (ret < 0) 5566 err = ret; 5567 goto out; 5568 } 5569 5570 leaf = path->nodes[0]; 5571 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5572 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5573 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5574 goto out; 5575 5576 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5577 (unsigned long)(ref + 1), 5578 dentry->d_name.len); 5579 if (ret) 5580 goto out; 5581 5582 btrfs_release_path(path); 5583 5584 new_root = btrfs_read_fs_root_no_name(fs_info, location); 5585 if (IS_ERR(new_root)) { 5586 err = PTR_ERR(new_root); 5587 goto out; 5588 } 5589 5590 *sub_root = new_root; 5591 location->objectid = btrfs_root_dirid(&new_root->root_item); 5592 location->type = BTRFS_INODE_ITEM_KEY; 5593 location->offset = 0; 5594 err = 0; 5595 out: 5596 btrfs_free_path(path); 5597 return err; 5598 } 5599 5600 static void inode_tree_add(struct inode *inode) 5601 { 5602 struct btrfs_root *root = BTRFS_I(inode)->root; 5603 struct btrfs_inode *entry; 5604 struct rb_node **p; 5605 struct rb_node *parent; 5606 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5607 u64 ino = btrfs_ino(BTRFS_I(inode)); 5608 5609 if (inode_unhashed(inode)) 5610 return; 5611 parent = NULL; 5612 spin_lock(&root->inode_lock); 5613 p = &root->inode_tree.rb_node; 5614 while (*p) { 5615 parent = *p; 5616 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5617 5618 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5619 p = &parent->rb_left; 5620 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode))) 5621 p = &parent->rb_right; 5622 else { 5623 WARN_ON(!(entry->vfs_inode.i_state & 5624 (I_WILL_FREE | I_FREEING))); 5625 rb_replace_node(parent, new, &root->inode_tree); 5626 RB_CLEAR_NODE(parent); 5627 spin_unlock(&root->inode_lock); 5628 return; 5629 } 5630 } 5631 rb_link_node(new, parent, p); 5632 rb_insert_color(new, &root->inode_tree); 5633 spin_unlock(&root->inode_lock); 5634 } 5635 5636 static void inode_tree_del(struct inode *inode) 5637 { 5638 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5639 struct btrfs_root *root = BTRFS_I(inode)->root; 5640 int empty = 0; 5641 5642 spin_lock(&root->inode_lock); 5643 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 5644 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 5645 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 5646 empty = RB_EMPTY_ROOT(&root->inode_tree); 5647 } 5648 spin_unlock(&root->inode_lock); 5649 5650 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5651 synchronize_srcu(&fs_info->subvol_srcu); 5652 spin_lock(&root->inode_lock); 5653 empty = RB_EMPTY_ROOT(&root->inode_tree); 5654 spin_unlock(&root->inode_lock); 5655 if (empty) 5656 btrfs_add_dead_root(root); 5657 } 5658 } 5659 5660 5661 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5662 { 5663 struct btrfs_iget_args *args = p; 5664 inode->i_ino = args->location->objectid; 5665 memcpy(&BTRFS_I(inode)->location, args->location, 5666 sizeof(*args->location)); 5667 BTRFS_I(inode)->root = args->root; 5668 return 0; 5669 } 5670 5671 static int btrfs_find_actor(struct inode *inode, void *opaque) 5672 { 5673 struct btrfs_iget_args *args = opaque; 5674 return args->location->objectid == BTRFS_I(inode)->location.objectid && 5675 args->root == BTRFS_I(inode)->root; 5676 } 5677 5678 static struct inode *btrfs_iget_locked(struct super_block *s, 5679 struct btrfs_key *location, 5680 struct btrfs_root *root) 5681 { 5682 struct inode *inode; 5683 struct btrfs_iget_args args; 5684 unsigned long hashval = btrfs_inode_hash(location->objectid, root); 5685 5686 args.location = location; 5687 args.root = root; 5688 5689 inode = iget5_locked(s, hashval, btrfs_find_actor, 5690 btrfs_init_locked_inode, 5691 (void *)&args); 5692 return inode; 5693 } 5694 5695 /* Get an inode object given its location and corresponding root. 5696 * Returns in *is_new if the inode was read from disk 5697 */ 5698 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 5699 struct btrfs_root *root, int *new) 5700 { 5701 struct inode *inode; 5702 5703 inode = btrfs_iget_locked(s, location, root); 5704 if (!inode) 5705 return ERR_PTR(-ENOMEM); 5706 5707 if (inode->i_state & I_NEW) { 5708 int ret; 5709 5710 ret = btrfs_read_locked_inode(inode); 5711 if (!is_bad_inode(inode)) { 5712 inode_tree_add(inode); 5713 unlock_new_inode(inode); 5714 if (new) 5715 *new = 1; 5716 } else { 5717 unlock_new_inode(inode); 5718 iput(inode); 5719 ASSERT(ret < 0); 5720 inode = ERR_PTR(ret < 0 ? ret : -ESTALE); 5721 } 5722 } 5723 5724 return inode; 5725 } 5726 5727 static struct inode *new_simple_dir(struct super_block *s, 5728 struct btrfs_key *key, 5729 struct btrfs_root *root) 5730 { 5731 struct inode *inode = new_inode(s); 5732 5733 if (!inode) 5734 return ERR_PTR(-ENOMEM); 5735 5736 BTRFS_I(inode)->root = root; 5737 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5738 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5739 5740 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5741 inode->i_op = &btrfs_dir_ro_inode_operations; 5742 inode->i_opflags &= ~IOP_XATTR; 5743 inode->i_fop = &simple_dir_operations; 5744 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5745 inode->i_mtime = current_time(inode); 5746 inode->i_atime = inode->i_mtime; 5747 inode->i_ctime = inode->i_mtime; 5748 BTRFS_I(inode)->i_otime = timespec64_to_timespec(inode->i_mtime); 5749 5750 return inode; 5751 } 5752 5753 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5754 { 5755 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5756 struct inode *inode; 5757 struct btrfs_root *root = BTRFS_I(dir)->root; 5758 struct btrfs_root *sub_root = root; 5759 struct btrfs_key location; 5760 int index; 5761 int ret = 0; 5762 5763 if (dentry->d_name.len > BTRFS_NAME_LEN) 5764 return ERR_PTR(-ENAMETOOLONG); 5765 5766 ret = btrfs_inode_by_name(dir, dentry, &location); 5767 if (ret < 0) 5768 return ERR_PTR(ret); 5769 5770 if (location.type == BTRFS_INODE_ITEM_KEY) { 5771 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 5772 return inode; 5773 } 5774 5775 index = srcu_read_lock(&fs_info->subvol_srcu); 5776 ret = fixup_tree_root_location(fs_info, dir, dentry, 5777 &location, &sub_root); 5778 if (ret < 0) { 5779 if (ret != -ENOENT) 5780 inode = ERR_PTR(ret); 5781 else 5782 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5783 } else { 5784 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 5785 } 5786 srcu_read_unlock(&fs_info->subvol_srcu, index); 5787 5788 if (!IS_ERR(inode) && root != sub_root) { 5789 down_read(&fs_info->cleanup_work_sem); 5790 if (!sb_rdonly(inode->i_sb)) 5791 ret = btrfs_orphan_cleanup(sub_root); 5792 up_read(&fs_info->cleanup_work_sem); 5793 if (ret) { 5794 iput(inode); 5795 inode = ERR_PTR(ret); 5796 } 5797 } 5798 5799 return inode; 5800 } 5801 5802 static int btrfs_dentry_delete(const struct dentry *dentry) 5803 { 5804 struct btrfs_root *root; 5805 struct inode *inode = d_inode(dentry); 5806 5807 if (!inode && !IS_ROOT(dentry)) 5808 inode = d_inode(dentry->d_parent); 5809 5810 if (inode) { 5811 root = BTRFS_I(inode)->root; 5812 if (btrfs_root_refs(&root->root_item) == 0) 5813 return 1; 5814 5815 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5816 return 1; 5817 } 5818 return 0; 5819 } 5820 5821 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5822 unsigned int flags) 5823 { 5824 struct inode *inode; 5825 5826 inode = btrfs_lookup_dentry(dir, dentry); 5827 if (IS_ERR(inode)) { 5828 if (PTR_ERR(inode) == -ENOENT) 5829 inode = NULL; 5830 else 5831 return ERR_CAST(inode); 5832 } 5833 5834 return d_splice_alias(inode, dentry); 5835 } 5836 5837 unsigned char btrfs_filetype_table[] = { 5838 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 5839 }; 5840 5841 /* 5842 * All this infrastructure exists because dir_emit can fault, and we are holding 5843 * the tree lock when doing readdir. For now just allocate a buffer and copy 5844 * our information into that, and then dir_emit from the buffer. This is 5845 * similar to what NFS does, only we don't keep the buffer around in pagecache 5846 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5847 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5848 * tree lock. 5849 */ 5850 static int btrfs_opendir(struct inode *inode, struct file *file) 5851 { 5852 struct btrfs_file_private *private; 5853 5854 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5855 if (!private) 5856 return -ENOMEM; 5857 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5858 if (!private->filldir_buf) { 5859 kfree(private); 5860 return -ENOMEM; 5861 } 5862 file->private_data = private; 5863 return 0; 5864 } 5865 5866 struct dir_entry { 5867 u64 ino; 5868 u64 offset; 5869 unsigned type; 5870 int name_len; 5871 }; 5872 5873 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5874 { 5875 while (entries--) { 5876 struct dir_entry *entry = addr; 5877 char *name = (char *)(entry + 1); 5878 5879 ctx->pos = get_unaligned(&entry->offset); 5880 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5881 get_unaligned(&entry->ino), 5882 get_unaligned(&entry->type))) 5883 return 1; 5884 addr += sizeof(struct dir_entry) + 5885 get_unaligned(&entry->name_len); 5886 ctx->pos++; 5887 } 5888 return 0; 5889 } 5890 5891 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5892 { 5893 struct inode *inode = file_inode(file); 5894 struct btrfs_root *root = BTRFS_I(inode)->root; 5895 struct btrfs_file_private *private = file->private_data; 5896 struct btrfs_dir_item *di; 5897 struct btrfs_key key; 5898 struct btrfs_key found_key; 5899 struct btrfs_path *path; 5900 void *addr; 5901 struct list_head ins_list; 5902 struct list_head del_list; 5903 int ret; 5904 struct extent_buffer *leaf; 5905 int slot; 5906 char *name_ptr; 5907 int name_len; 5908 int entries = 0; 5909 int total_len = 0; 5910 bool put = false; 5911 struct btrfs_key location; 5912 5913 if (!dir_emit_dots(file, ctx)) 5914 return 0; 5915 5916 path = btrfs_alloc_path(); 5917 if (!path) 5918 return -ENOMEM; 5919 5920 addr = private->filldir_buf; 5921 path->reada = READA_FORWARD; 5922 5923 INIT_LIST_HEAD(&ins_list); 5924 INIT_LIST_HEAD(&del_list); 5925 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5926 5927 again: 5928 key.type = BTRFS_DIR_INDEX_KEY; 5929 key.offset = ctx->pos; 5930 key.objectid = btrfs_ino(BTRFS_I(inode)); 5931 5932 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5933 if (ret < 0) 5934 goto err; 5935 5936 while (1) { 5937 struct dir_entry *entry; 5938 5939 leaf = path->nodes[0]; 5940 slot = path->slots[0]; 5941 if (slot >= btrfs_header_nritems(leaf)) { 5942 ret = btrfs_next_leaf(root, path); 5943 if (ret < 0) 5944 goto err; 5945 else if (ret > 0) 5946 break; 5947 continue; 5948 } 5949 5950 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5951 5952 if (found_key.objectid != key.objectid) 5953 break; 5954 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5955 break; 5956 if (found_key.offset < ctx->pos) 5957 goto next; 5958 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5959 goto next; 5960 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5961 name_len = btrfs_dir_name_len(leaf, di); 5962 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5963 PAGE_SIZE) { 5964 btrfs_release_path(path); 5965 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5966 if (ret) 5967 goto nopos; 5968 addr = private->filldir_buf; 5969 entries = 0; 5970 total_len = 0; 5971 goto again; 5972 } 5973 5974 entry = addr; 5975 put_unaligned(name_len, &entry->name_len); 5976 name_ptr = (char *)(entry + 1); 5977 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5978 name_len); 5979 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], 5980 &entry->type); 5981 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5982 put_unaligned(location.objectid, &entry->ino); 5983 put_unaligned(found_key.offset, &entry->offset); 5984 entries++; 5985 addr += sizeof(struct dir_entry) + name_len; 5986 total_len += sizeof(struct dir_entry) + name_len; 5987 next: 5988 path->slots[0]++; 5989 } 5990 btrfs_release_path(path); 5991 5992 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5993 if (ret) 5994 goto nopos; 5995 5996 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5997 if (ret) 5998 goto nopos; 5999 6000 /* 6001 * Stop new entries from being returned after we return the last 6002 * entry. 6003 * 6004 * New directory entries are assigned a strictly increasing 6005 * offset. This means that new entries created during readdir 6006 * are *guaranteed* to be seen in the future by that readdir. 6007 * This has broken buggy programs which operate on names as 6008 * they're returned by readdir. Until we re-use freed offsets 6009 * we have this hack to stop new entries from being returned 6010 * under the assumption that they'll never reach this huge 6011 * offset. 6012 * 6013 * This is being careful not to overflow 32bit loff_t unless the 6014 * last entry requires it because doing so has broken 32bit apps 6015 * in the past. 6016 */ 6017 if (ctx->pos >= INT_MAX) 6018 ctx->pos = LLONG_MAX; 6019 else 6020 ctx->pos = INT_MAX; 6021 nopos: 6022 ret = 0; 6023 err: 6024 if (put) 6025 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6026 btrfs_free_path(path); 6027 return ret; 6028 } 6029 6030 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 6031 { 6032 struct btrfs_root *root = BTRFS_I(inode)->root; 6033 struct btrfs_trans_handle *trans; 6034 int ret = 0; 6035 bool nolock = false; 6036 6037 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6038 return 0; 6039 6040 if (btrfs_fs_closing(root->fs_info) && 6041 btrfs_is_free_space_inode(BTRFS_I(inode))) 6042 nolock = true; 6043 6044 if (wbc->sync_mode == WB_SYNC_ALL) { 6045 if (nolock) 6046 trans = btrfs_join_transaction_nolock(root); 6047 else 6048 trans = btrfs_join_transaction(root); 6049 if (IS_ERR(trans)) 6050 return PTR_ERR(trans); 6051 ret = btrfs_commit_transaction(trans); 6052 } 6053 return ret; 6054 } 6055 6056 /* 6057 * This is somewhat expensive, updating the tree every time the 6058 * inode changes. But, it is most likely to find the inode in cache. 6059 * FIXME, needs more benchmarking...there are no reasons other than performance 6060 * to keep or drop this code. 6061 */ 6062 static int btrfs_dirty_inode(struct inode *inode) 6063 { 6064 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6065 struct btrfs_root *root = BTRFS_I(inode)->root; 6066 struct btrfs_trans_handle *trans; 6067 int ret; 6068 6069 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 6070 return 0; 6071 6072 trans = btrfs_join_transaction(root); 6073 if (IS_ERR(trans)) 6074 return PTR_ERR(trans); 6075 6076 ret = btrfs_update_inode(trans, root, inode); 6077 if (ret && ret == -ENOSPC) { 6078 /* whoops, lets try again with the full transaction */ 6079 btrfs_end_transaction(trans); 6080 trans = btrfs_start_transaction(root, 1); 6081 if (IS_ERR(trans)) 6082 return PTR_ERR(trans); 6083 6084 ret = btrfs_update_inode(trans, root, inode); 6085 } 6086 btrfs_end_transaction(trans); 6087 if (BTRFS_I(inode)->delayed_node) 6088 btrfs_balance_delayed_items(fs_info); 6089 6090 return ret; 6091 } 6092 6093 /* 6094 * This is a copy of file_update_time. We need this so we can return error on 6095 * ENOSPC for updating the inode in the case of file write and mmap writes. 6096 */ 6097 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 6098 int flags) 6099 { 6100 struct btrfs_root *root = BTRFS_I(inode)->root; 6101 bool dirty = flags & ~S_VERSION; 6102 6103 if (btrfs_root_readonly(root)) 6104 return -EROFS; 6105 6106 if (flags & S_VERSION) 6107 dirty |= inode_maybe_inc_iversion(inode, dirty); 6108 if (flags & S_CTIME) 6109 inode->i_ctime = *now; 6110 if (flags & S_MTIME) 6111 inode->i_mtime = *now; 6112 if (flags & S_ATIME) 6113 inode->i_atime = *now; 6114 return dirty ? btrfs_dirty_inode(inode) : 0; 6115 } 6116 6117 /* 6118 * find the highest existing sequence number in a directory 6119 * and then set the in-memory index_cnt variable to reflect 6120 * free sequence numbers 6121 */ 6122 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6123 { 6124 struct btrfs_root *root = inode->root; 6125 struct btrfs_key key, found_key; 6126 struct btrfs_path *path; 6127 struct extent_buffer *leaf; 6128 int ret; 6129 6130 key.objectid = btrfs_ino(inode); 6131 key.type = BTRFS_DIR_INDEX_KEY; 6132 key.offset = (u64)-1; 6133 6134 path = btrfs_alloc_path(); 6135 if (!path) 6136 return -ENOMEM; 6137 6138 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6139 if (ret < 0) 6140 goto out; 6141 /* FIXME: we should be able to handle this */ 6142 if (ret == 0) 6143 goto out; 6144 ret = 0; 6145 6146 /* 6147 * MAGIC NUMBER EXPLANATION: 6148 * since we search a directory based on f_pos we have to start at 2 6149 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 6150 * else has to start at 2 6151 */ 6152 if (path->slots[0] == 0) { 6153 inode->index_cnt = 2; 6154 goto out; 6155 } 6156 6157 path->slots[0]--; 6158 6159 leaf = path->nodes[0]; 6160 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6161 6162 if (found_key.objectid != btrfs_ino(inode) || 6163 found_key.type != BTRFS_DIR_INDEX_KEY) { 6164 inode->index_cnt = 2; 6165 goto out; 6166 } 6167 6168 inode->index_cnt = found_key.offset + 1; 6169 out: 6170 btrfs_free_path(path); 6171 return ret; 6172 } 6173 6174 /* 6175 * helper to find a free sequence number in a given directory. This current 6176 * code is very simple, later versions will do smarter things in the btree 6177 */ 6178 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6179 { 6180 int ret = 0; 6181 6182 if (dir->index_cnt == (u64)-1) { 6183 ret = btrfs_inode_delayed_dir_index_count(dir); 6184 if (ret) { 6185 ret = btrfs_set_inode_index_count(dir); 6186 if (ret) 6187 return ret; 6188 } 6189 } 6190 6191 *index = dir->index_cnt; 6192 dir->index_cnt++; 6193 6194 return ret; 6195 } 6196 6197 static int btrfs_insert_inode_locked(struct inode *inode) 6198 { 6199 struct btrfs_iget_args args; 6200 args.location = &BTRFS_I(inode)->location; 6201 args.root = BTRFS_I(inode)->root; 6202 6203 return insert_inode_locked4(inode, 6204 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6205 btrfs_find_actor, &args); 6206 } 6207 6208 /* 6209 * Inherit flags from the parent inode. 6210 * 6211 * Currently only the compression flags and the cow flags are inherited. 6212 */ 6213 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6214 { 6215 unsigned int flags; 6216 6217 if (!dir) 6218 return; 6219 6220 flags = BTRFS_I(dir)->flags; 6221 6222 if (flags & BTRFS_INODE_NOCOMPRESS) { 6223 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6224 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6225 } else if (flags & BTRFS_INODE_COMPRESS) { 6226 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6227 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6228 } 6229 6230 if (flags & BTRFS_INODE_NODATACOW) { 6231 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6232 if (S_ISREG(inode->i_mode)) 6233 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6234 } 6235 6236 btrfs_sync_inode_flags_to_i_flags(inode); 6237 } 6238 6239 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6240 struct btrfs_root *root, 6241 struct inode *dir, 6242 const char *name, int name_len, 6243 u64 ref_objectid, u64 objectid, 6244 umode_t mode, u64 *index) 6245 { 6246 struct btrfs_fs_info *fs_info = root->fs_info; 6247 struct inode *inode; 6248 struct btrfs_inode_item *inode_item; 6249 struct btrfs_key *location; 6250 struct btrfs_path *path; 6251 struct btrfs_inode_ref *ref; 6252 struct btrfs_key key[2]; 6253 u32 sizes[2]; 6254 int nitems = name ? 2 : 1; 6255 unsigned long ptr; 6256 int ret; 6257 6258 path = btrfs_alloc_path(); 6259 if (!path) 6260 return ERR_PTR(-ENOMEM); 6261 6262 inode = new_inode(fs_info->sb); 6263 if (!inode) { 6264 btrfs_free_path(path); 6265 return ERR_PTR(-ENOMEM); 6266 } 6267 6268 /* 6269 * O_TMPFILE, set link count to 0, so that after this point, 6270 * we fill in an inode item with the correct link count. 6271 */ 6272 if (!name) 6273 set_nlink(inode, 0); 6274 6275 /* 6276 * we have to initialize this early, so we can reclaim the inode 6277 * number if we fail afterwards in this function. 6278 */ 6279 inode->i_ino = objectid; 6280 6281 if (dir && name) { 6282 trace_btrfs_inode_request(dir); 6283 6284 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6285 if (ret) { 6286 btrfs_free_path(path); 6287 iput(inode); 6288 return ERR_PTR(ret); 6289 } 6290 } else if (dir) { 6291 *index = 0; 6292 } 6293 /* 6294 * index_cnt is ignored for everything but a dir, 6295 * btrfs_set_inode_index_count has an explanation for the magic 6296 * number 6297 */ 6298 BTRFS_I(inode)->index_cnt = 2; 6299 BTRFS_I(inode)->dir_index = *index; 6300 BTRFS_I(inode)->root = root; 6301 BTRFS_I(inode)->generation = trans->transid; 6302 inode->i_generation = BTRFS_I(inode)->generation; 6303 6304 /* 6305 * We could have gotten an inode number from somebody who was fsynced 6306 * and then removed in this same transaction, so let's just set full 6307 * sync since it will be a full sync anyway and this will blow away the 6308 * old info in the log. 6309 */ 6310 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6311 6312 key[0].objectid = objectid; 6313 key[0].type = BTRFS_INODE_ITEM_KEY; 6314 key[0].offset = 0; 6315 6316 sizes[0] = sizeof(struct btrfs_inode_item); 6317 6318 if (name) { 6319 /* 6320 * Start new inodes with an inode_ref. This is slightly more 6321 * efficient for small numbers of hard links since they will 6322 * be packed into one item. Extended refs will kick in if we 6323 * add more hard links than can fit in the ref item. 6324 */ 6325 key[1].objectid = objectid; 6326 key[1].type = BTRFS_INODE_REF_KEY; 6327 key[1].offset = ref_objectid; 6328 6329 sizes[1] = name_len + sizeof(*ref); 6330 } 6331 6332 location = &BTRFS_I(inode)->location; 6333 location->objectid = objectid; 6334 location->offset = 0; 6335 location->type = BTRFS_INODE_ITEM_KEY; 6336 6337 ret = btrfs_insert_inode_locked(inode); 6338 if (ret < 0) 6339 goto fail; 6340 6341 path->leave_spinning = 1; 6342 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6343 if (ret != 0) 6344 goto fail_unlock; 6345 6346 inode_init_owner(inode, dir, mode); 6347 inode_set_bytes(inode, 0); 6348 6349 inode->i_mtime = current_time(inode); 6350 inode->i_atime = inode->i_mtime; 6351 inode->i_ctime = inode->i_mtime; 6352 BTRFS_I(inode)->i_otime = timespec64_to_timespec(inode->i_mtime); 6353 6354 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6355 struct btrfs_inode_item); 6356 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6357 sizeof(*inode_item)); 6358 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6359 6360 if (name) { 6361 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6362 struct btrfs_inode_ref); 6363 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6364 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6365 ptr = (unsigned long)(ref + 1); 6366 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6367 } 6368 6369 btrfs_mark_buffer_dirty(path->nodes[0]); 6370 btrfs_free_path(path); 6371 6372 btrfs_inherit_iflags(inode, dir); 6373 6374 if (S_ISREG(mode)) { 6375 if (btrfs_test_opt(fs_info, NODATASUM)) 6376 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6377 if (btrfs_test_opt(fs_info, NODATACOW)) 6378 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6379 BTRFS_INODE_NODATASUM; 6380 } 6381 6382 inode_tree_add(inode); 6383 6384 trace_btrfs_inode_new(inode); 6385 btrfs_set_inode_last_trans(trans, inode); 6386 6387 btrfs_update_root_times(trans, root); 6388 6389 ret = btrfs_inode_inherit_props(trans, inode, dir); 6390 if (ret) 6391 btrfs_err(fs_info, 6392 "error inheriting props for ino %llu (root %llu): %d", 6393 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6394 6395 return inode; 6396 6397 fail_unlock: 6398 unlock_new_inode(inode); 6399 fail: 6400 if (dir && name) 6401 BTRFS_I(dir)->index_cnt--; 6402 btrfs_free_path(path); 6403 iput(inode); 6404 return ERR_PTR(ret); 6405 } 6406 6407 static inline u8 btrfs_inode_type(struct inode *inode) 6408 { 6409 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 6410 } 6411 6412 /* 6413 * utility function to add 'inode' into 'parent_inode' with 6414 * a give name and a given sequence number. 6415 * if 'add_backref' is true, also insert a backref from the 6416 * inode to the parent directory. 6417 */ 6418 int btrfs_add_link(struct btrfs_trans_handle *trans, 6419 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6420 const char *name, int name_len, int add_backref, u64 index) 6421 { 6422 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6423 int ret = 0; 6424 struct btrfs_key key; 6425 struct btrfs_root *root = parent_inode->root; 6426 u64 ino = btrfs_ino(inode); 6427 u64 parent_ino = btrfs_ino(parent_inode); 6428 6429 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6430 memcpy(&key, &inode->root->root_key, sizeof(key)); 6431 } else { 6432 key.objectid = ino; 6433 key.type = BTRFS_INODE_ITEM_KEY; 6434 key.offset = 0; 6435 } 6436 6437 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6438 ret = btrfs_add_root_ref(trans, fs_info, key.objectid, 6439 root->root_key.objectid, parent_ino, 6440 index, name, name_len); 6441 } else if (add_backref) { 6442 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6443 parent_ino, index); 6444 } 6445 6446 /* Nothing to clean up yet */ 6447 if (ret) 6448 return ret; 6449 6450 ret = btrfs_insert_dir_item(trans, root, name, name_len, 6451 parent_inode, &key, 6452 btrfs_inode_type(&inode->vfs_inode), index); 6453 if (ret == -EEXIST || ret == -EOVERFLOW) 6454 goto fail_dir_item; 6455 else if (ret) { 6456 btrfs_abort_transaction(trans, ret); 6457 return ret; 6458 } 6459 6460 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6461 name_len * 2); 6462 inode_inc_iversion(&parent_inode->vfs_inode); 6463 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime = 6464 current_time(&parent_inode->vfs_inode); 6465 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6466 if (ret) 6467 btrfs_abort_transaction(trans, ret); 6468 return ret; 6469 6470 fail_dir_item: 6471 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6472 u64 local_index; 6473 int err; 6474 err = btrfs_del_root_ref(trans, fs_info, key.objectid, 6475 root->root_key.objectid, parent_ino, 6476 &local_index, name, name_len); 6477 6478 } else if (add_backref) { 6479 u64 local_index; 6480 int err; 6481 6482 err = btrfs_del_inode_ref(trans, root, name, name_len, 6483 ino, parent_ino, &local_index); 6484 } 6485 return ret; 6486 } 6487 6488 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6489 struct btrfs_inode *dir, struct dentry *dentry, 6490 struct btrfs_inode *inode, int backref, u64 index) 6491 { 6492 int err = btrfs_add_link(trans, dir, inode, 6493 dentry->d_name.name, dentry->d_name.len, 6494 backref, index); 6495 if (err > 0) 6496 err = -EEXIST; 6497 return err; 6498 } 6499 6500 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6501 umode_t mode, dev_t rdev) 6502 { 6503 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6504 struct btrfs_trans_handle *trans; 6505 struct btrfs_root *root = BTRFS_I(dir)->root; 6506 struct inode *inode = NULL; 6507 int err; 6508 int drop_inode = 0; 6509 u64 objectid; 6510 u64 index = 0; 6511 6512 /* 6513 * 2 for inode item and ref 6514 * 2 for dir items 6515 * 1 for xattr if selinux is on 6516 */ 6517 trans = btrfs_start_transaction(root, 5); 6518 if (IS_ERR(trans)) 6519 return PTR_ERR(trans); 6520 6521 err = btrfs_find_free_ino(root, &objectid); 6522 if (err) 6523 goto out_unlock; 6524 6525 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6526 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6527 mode, &index); 6528 if (IS_ERR(inode)) { 6529 err = PTR_ERR(inode); 6530 goto out_unlock; 6531 } 6532 6533 /* 6534 * If the active LSM wants to access the inode during 6535 * d_instantiate it needs these. Smack checks to see 6536 * if the filesystem supports xattrs by looking at the 6537 * ops vector. 6538 */ 6539 inode->i_op = &btrfs_special_inode_operations; 6540 init_special_inode(inode, inode->i_mode, rdev); 6541 6542 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6543 if (err) 6544 goto out_unlock_inode; 6545 6546 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6547 0, index); 6548 if (err) { 6549 goto out_unlock_inode; 6550 } else { 6551 btrfs_update_inode(trans, root, inode); 6552 d_instantiate_new(dentry, inode); 6553 } 6554 6555 out_unlock: 6556 btrfs_end_transaction(trans); 6557 btrfs_btree_balance_dirty(fs_info); 6558 if (drop_inode) { 6559 inode_dec_link_count(inode); 6560 iput(inode); 6561 } 6562 return err; 6563 6564 out_unlock_inode: 6565 drop_inode = 1; 6566 unlock_new_inode(inode); 6567 goto out_unlock; 6568 6569 } 6570 6571 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6572 umode_t mode, bool excl) 6573 { 6574 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6575 struct btrfs_trans_handle *trans; 6576 struct btrfs_root *root = BTRFS_I(dir)->root; 6577 struct inode *inode = NULL; 6578 int drop_inode_on_err = 0; 6579 int err; 6580 u64 objectid; 6581 u64 index = 0; 6582 6583 /* 6584 * 2 for inode item and ref 6585 * 2 for dir items 6586 * 1 for xattr if selinux is on 6587 */ 6588 trans = btrfs_start_transaction(root, 5); 6589 if (IS_ERR(trans)) 6590 return PTR_ERR(trans); 6591 6592 err = btrfs_find_free_ino(root, &objectid); 6593 if (err) 6594 goto out_unlock; 6595 6596 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6597 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6598 mode, &index); 6599 if (IS_ERR(inode)) { 6600 err = PTR_ERR(inode); 6601 goto out_unlock; 6602 } 6603 drop_inode_on_err = 1; 6604 /* 6605 * If the active LSM wants to access the inode during 6606 * d_instantiate it needs these. Smack checks to see 6607 * if the filesystem supports xattrs by looking at the 6608 * ops vector. 6609 */ 6610 inode->i_fop = &btrfs_file_operations; 6611 inode->i_op = &btrfs_file_inode_operations; 6612 inode->i_mapping->a_ops = &btrfs_aops; 6613 6614 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6615 if (err) 6616 goto out_unlock_inode; 6617 6618 err = btrfs_update_inode(trans, root, inode); 6619 if (err) 6620 goto out_unlock_inode; 6621 6622 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6623 0, index); 6624 if (err) 6625 goto out_unlock_inode; 6626 6627 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6628 d_instantiate_new(dentry, inode); 6629 6630 out_unlock: 6631 btrfs_end_transaction(trans); 6632 if (err && drop_inode_on_err) { 6633 inode_dec_link_count(inode); 6634 iput(inode); 6635 } 6636 btrfs_btree_balance_dirty(fs_info); 6637 return err; 6638 6639 out_unlock_inode: 6640 unlock_new_inode(inode); 6641 goto out_unlock; 6642 6643 } 6644 6645 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6646 struct dentry *dentry) 6647 { 6648 struct btrfs_trans_handle *trans = NULL; 6649 struct btrfs_root *root = BTRFS_I(dir)->root; 6650 struct inode *inode = d_inode(old_dentry); 6651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6652 u64 index; 6653 int err; 6654 int drop_inode = 0; 6655 6656 /* do not allow sys_link's with other subvols of the same device */ 6657 if (root->objectid != BTRFS_I(inode)->root->objectid) 6658 return -EXDEV; 6659 6660 if (inode->i_nlink >= BTRFS_LINK_MAX) 6661 return -EMLINK; 6662 6663 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6664 if (err) 6665 goto fail; 6666 6667 /* 6668 * 2 items for inode and inode ref 6669 * 2 items for dir items 6670 * 1 item for parent inode 6671 * 1 item for orphan item deletion if O_TMPFILE 6672 */ 6673 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6674 if (IS_ERR(trans)) { 6675 err = PTR_ERR(trans); 6676 trans = NULL; 6677 goto fail; 6678 } 6679 6680 /* There are several dir indexes for this inode, clear the cache. */ 6681 BTRFS_I(inode)->dir_index = 0ULL; 6682 inc_nlink(inode); 6683 inode_inc_iversion(inode); 6684 inode->i_ctime = current_time(inode); 6685 ihold(inode); 6686 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6687 6688 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6689 1, index); 6690 6691 if (err) { 6692 drop_inode = 1; 6693 } else { 6694 struct dentry *parent = dentry->d_parent; 6695 err = btrfs_update_inode(trans, root, inode); 6696 if (err) 6697 goto fail; 6698 if (inode->i_nlink == 1) { 6699 /* 6700 * If new hard link count is 1, it's a file created 6701 * with open(2) O_TMPFILE flag. 6702 */ 6703 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6704 if (err) 6705 goto fail; 6706 } 6707 d_instantiate(dentry, inode); 6708 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6709 } 6710 6711 fail: 6712 if (trans) 6713 btrfs_end_transaction(trans); 6714 if (drop_inode) { 6715 inode_dec_link_count(inode); 6716 iput(inode); 6717 } 6718 btrfs_btree_balance_dirty(fs_info); 6719 return err; 6720 } 6721 6722 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6723 { 6724 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6725 struct inode *inode = NULL; 6726 struct btrfs_trans_handle *trans; 6727 struct btrfs_root *root = BTRFS_I(dir)->root; 6728 int err = 0; 6729 int drop_on_err = 0; 6730 u64 objectid = 0; 6731 u64 index = 0; 6732 6733 /* 6734 * 2 items for inode and ref 6735 * 2 items for dir items 6736 * 1 for xattr if selinux is on 6737 */ 6738 trans = btrfs_start_transaction(root, 5); 6739 if (IS_ERR(trans)) 6740 return PTR_ERR(trans); 6741 6742 err = btrfs_find_free_ino(root, &objectid); 6743 if (err) 6744 goto out_fail; 6745 6746 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6747 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6748 S_IFDIR | mode, &index); 6749 if (IS_ERR(inode)) { 6750 err = PTR_ERR(inode); 6751 goto out_fail; 6752 } 6753 6754 drop_on_err = 1; 6755 /* these must be set before we unlock the inode */ 6756 inode->i_op = &btrfs_dir_inode_operations; 6757 inode->i_fop = &btrfs_dir_file_operations; 6758 6759 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6760 if (err) 6761 goto out_fail_inode; 6762 6763 btrfs_i_size_write(BTRFS_I(inode), 0); 6764 err = btrfs_update_inode(trans, root, inode); 6765 if (err) 6766 goto out_fail_inode; 6767 6768 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6769 dentry->d_name.name, 6770 dentry->d_name.len, 0, index); 6771 if (err) 6772 goto out_fail_inode; 6773 6774 d_instantiate_new(dentry, inode); 6775 drop_on_err = 0; 6776 6777 out_fail: 6778 btrfs_end_transaction(trans); 6779 if (drop_on_err) { 6780 inode_dec_link_count(inode); 6781 iput(inode); 6782 } 6783 btrfs_btree_balance_dirty(fs_info); 6784 return err; 6785 6786 out_fail_inode: 6787 unlock_new_inode(inode); 6788 goto out_fail; 6789 } 6790 6791 static noinline int uncompress_inline(struct btrfs_path *path, 6792 struct page *page, 6793 size_t pg_offset, u64 extent_offset, 6794 struct btrfs_file_extent_item *item) 6795 { 6796 int ret; 6797 struct extent_buffer *leaf = path->nodes[0]; 6798 char *tmp; 6799 size_t max_size; 6800 unsigned long inline_size; 6801 unsigned long ptr; 6802 int compress_type; 6803 6804 WARN_ON(pg_offset != 0); 6805 compress_type = btrfs_file_extent_compression(leaf, item); 6806 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6807 inline_size = btrfs_file_extent_inline_item_len(leaf, 6808 btrfs_item_nr(path->slots[0])); 6809 tmp = kmalloc(inline_size, GFP_NOFS); 6810 if (!tmp) 6811 return -ENOMEM; 6812 ptr = btrfs_file_extent_inline_start(item); 6813 6814 read_extent_buffer(leaf, tmp, ptr, inline_size); 6815 6816 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6817 ret = btrfs_decompress(compress_type, tmp, page, 6818 extent_offset, inline_size, max_size); 6819 6820 /* 6821 * decompression code contains a memset to fill in any space between the end 6822 * of the uncompressed data and the end of max_size in case the decompressed 6823 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6824 * the end of an inline extent and the beginning of the next block, so we 6825 * cover that region here. 6826 */ 6827 6828 if (max_size + pg_offset < PAGE_SIZE) { 6829 char *map = kmap(page); 6830 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6831 kunmap(page); 6832 } 6833 kfree(tmp); 6834 return ret; 6835 } 6836 6837 /* 6838 * a bit scary, this does extent mapping from logical file offset to the disk. 6839 * the ugly parts come from merging extents from the disk with the in-ram 6840 * representation. This gets more complex because of the data=ordered code, 6841 * where the in-ram extents might be locked pending data=ordered completion. 6842 * 6843 * This also copies inline extents directly into the page. 6844 */ 6845 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6846 struct page *page, 6847 size_t pg_offset, u64 start, u64 len, 6848 int create) 6849 { 6850 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 6851 int ret; 6852 int err = 0; 6853 u64 extent_start = 0; 6854 u64 extent_end = 0; 6855 u64 objectid = btrfs_ino(inode); 6856 u32 found_type; 6857 struct btrfs_path *path = NULL; 6858 struct btrfs_root *root = inode->root; 6859 struct btrfs_file_extent_item *item; 6860 struct extent_buffer *leaf; 6861 struct btrfs_key found_key; 6862 struct extent_map *em = NULL; 6863 struct extent_map_tree *em_tree = &inode->extent_tree; 6864 struct extent_io_tree *io_tree = &inode->io_tree; 6865 const bool new_inline = !page || create; 6866 6867 read_lock(&em_tree->lock); 6868 em = lookup_extent_mapping(em_tree, start, len); 6869 if (em) 6870 em->bdev = fs_info->fs_devices->latest_bdev; 6871 read_unlock(&em_tree->lock); 6872 6873 if (em) { 6874 if (em->start > start || em->start + em->len <= start) 6875 free_extent_map(em); 6876 else if (em->block_start == EXTENT_MAP_INLINE && page) 6877 free_extent_map(em); 6878 else 6879 goto out; 6880 } 6881 em = alloc_extent_map(); 6882 if (!em) { 6883 err = -ENOMEM; 6884 goto out; 6885 } 6886 em->bdev = fs_info->fs_devices->latest_bdev; 6887 em->start = EXTENT_MAP_HOLE; 6888 em->orig_start = EXTENT_MAP_HOLE; 6889 em->len = (u64)-1; 6890 em->block_len = (u64)-1; 6891 6892 if (!path) { 6893 path = btrfs_alloc_path(); 6894 if (!path) { 6895 err = -ENOMEM; 6896 goto out; 6897 } 6898 /* 6899 * Chances are we'll be called again, so go ahead and do 6900 * readahead 6901 */ 6902 path->reada = READA_FORWARD; 6903 } 6904 6905 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6906 if (ret < 0) { 6907 err = ret; 6908 goto out; 6909 } 6910 6911 if (ret != 0) { 6912 if (path->slots[0] == 0) 6913 goto not_found; 6914 path->slots[0]--; 6915 } 6916 6917 leaf = path->nodes[0]; 6918 item = btrfs_item_ptr(leaf, path->slots[0], 6919 struct btrfs_file_extent_item); 6920 /* are we inside the extent that was found? */ 6921 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6922 found_type = found_key.type; 6923 if (found_key.objectid != objectid || 6924 found_type != BTRFS_EXTENT_DATA_KEY) { 6925 /* 6926 * If we backup past the first extent we want to move forward 6927 * and see if there is an extent in front of us, otherwise we'll 6928 * say there is a hole for our whole search range which can 6929 * cause problems. 6930 */ 6931 extent_end = start; 6932 goto next; 6933 } 6934 6935 found_type = btrfs_file_extent_type(leaf, item); 6936 extent_start = found_key.offset; 6937 if (found_type == BTRFS_FILE_EXTENT_REG || 6938 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6939 extent_end = extent_start + 6940 btrfs_file_extent_num_bytes(leaf, item); 6941 6942 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6943 extent_start); 6944 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6945 size_t size; 6946 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6947 extent_end = ALIGN(extent_start + size, 6948 fs_info->sectorsize); 6949 6950 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6951 path->slots[0], 6952 extent_start); 6953 } 6954 next: 6955 if (start >= extent_end) { 6956 path->slots[0]++; 6957 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6958 ret = btrfs_next_leaf(root, path); 6959 if (ret < 0) { 6960 err = ret; 6961 goto out; 6962 } 6963 if (ret > 0) 6964 goto not_found; 6965 leaf = path->nodes[0]; 6966 } 6967 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6968 if (found_key.objectid != objectid || 6969 found_key.type != BTRFS_EXTENT_DATA_KEY) 6970 goto not_found; 6971 if (start + len <= found_key.offset) 6972 goto not_found; 6973 if (start > found_key.offset) 6974 goto next; 6975 em->start = start; 6976 em->orig_start = start; 6977 em->len = found_key.offset - start; 6978 goto not_found_em; 6979 } 6980 6981 btrfs_extent_item_to_extent_map(inode, path, item, 6982 new_inline, em); 6983 6984 if (found_type == BTRFS_FILE_EXTENT_REG || 6985 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 6986 goto insert; 6987 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 6988 unsigned long ptr; 6989 char *map; 6990 size_t size; 6991 size_t extent_offset; 6992 size_t copy_size; 6993 6994 if (new_inline) 6995 goto out; 6996 6997 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item); 6998 extent_offset = page_offset(page) + pg_offset - extent_start; 6999 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 7000 size - extent_offset); 7001 em->start = extent_start + extent_offset; 7002 em->len = ALIGN(copy_size, fs_info->sectorsize); 7003 em->orig_block_len = em->len; 7004 em->orig_start = em->start; 7005 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 7006 if (!PageUptodate(page)) { 7007 if (btrfs_file_extent_compression(leaf, item) != 7008 BTRFS_COMPRESS_NONE) { 7009 ret = uncompress_inline(path, page, pg_offset, 7010 extent_offset, item); 7011 if (ret) { 7012 err = ret; 7013 goto out; 7014 } 7015 } else { 7016 map = kmap(page); 7017 read_extent_buffer(leaf, map + pg_offset, ptr, 7018 copy_size); 7019 if (pg_offset + copy_size < PAGE_SIZE) { 7020 memset(map + pg_offset + copy_size, 0, 7021 PAGE_SIZE - pg_offset - 7022 copy_size); 7023 } 7024 kunmap(page); 7025 } 7026 flush_dcache_page(page); 7027 } 7028 set_extent_uptodate(io_tree, em->start, 7029 extent_map_end(em) - 1, NULL, GFP_NOFS); 7030 goto insert; 7031 } 7032 not_found: 7033 em->start = start; 7034 em->orig_start = start; 7035 em->len = len; 7036 not_found_em: 7037 em->block_start = EXTENT_MAP_HOLE; 7038 insert: 7039 btrfs_release_path(path); 7040 if (em->start > start || extent_map_end(em) <= start) { 7041 btrfs_err(fs_info, 7042 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7043 em->start, em->len, start, len); 7044 err = -EIO; 7045 goto out; 7046 } 7047 7048 err = 0; 7049 write_lock(&em_tree->lock); 7050 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 7051 write_unlock(&em_tree->lock); 7052 out: 7053 7054 trace_btrfs_get_extent(root, inode, em); 7055 7056 btrfs_free_path(path); 7057 if (err) { 7058 free_extent_map(em); 7059 return ERR_PTR(err); 7060 } 7061 BUG_ON(!em); /* Error is always set */ 7062 return em; 7063 } 7064 7065 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 7066 struct page *page, 7067 size_t pg_offset, u64 start, u64 len, 7068 int create) 7069 { 7070 struct extent_map *em; 7071 struct extent_map *hole_em = NULL; 7072 u64 range_start = start; 7073 u64 end; 7074 u64 found; 7075 u64 found_end; 7076 int err = 0; 7077 7078 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 7079 if (IS_ERR(em)) 7080 return em; 7081 /* 7082 * If our em maps to: 7083 * - a hole or 7084 * - a pre-alloc extent, 7085 * there might actually be delalloc bytes behind it. 7086 */ 7087 if (em->block_start != EXTENT_MAP_HOLE && 7088 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7089 return em; 7090 else 7091 hole_em = em; 7092 7093 /* check to see if we've wrapped (len == -1 or similar) */ 7094 end = start + len; 7095 if (end < start) 7096 end = (u64)-1; 7097 else 7098 end -= 1; 7099 7100 em = NULL; 7101 7102 /* ok, we didn't find anything, lets look for delalloc */ 7103 found = count_range_bits(&inode->io_tree, &range_start, 7104 end, len, EXTENT_DELALLOC, 1); 7105 found_end = range_start + found; 7106 if (found_end < range_start) 7107 found_end = (u64)-1; 7108 7109 /* 7110 * we didn't find anything useful, return 7111 * the original results from get_extent() 7112 */ 7113 if (range_start > end || found_end <= start) { 7114 em = hole_em; 7115 hole_em = NULL; 7116 goto out; 7117 } 7118 7119 /* adjust the range_start to make sure it doesn't 7120 * go backwards from the start they passed in 7121 */ 7122 range_start = max(start, range_start); 7123 found = found_end - range_start; 7124 7125 if (found > 0) { 7126 u64 hole_start = start; 7127 u64 hole_len = len; 7128 7129 em = alloc_extent_map(); 7130 if (!em) { 7131 err = -ENOMEM; 7132 goto out; 7133 } 7134 /* 7135 * when btrfs_get_extent can't find anything it 7136 * returns one huge hole 7137 * 7138 * make sure what it found really fits our range, and 7139 * adjust to make sure it is based on the start from 7140 * the caller 7141 */ 7142 if (hole_em) { 7143 u64 calc_end = extent_map_end(hole_em); 7144 7145 if (calc_end <= start || (hole_em->start > end)) { 7146 free_extent_map(hole_em); 7147 hole_em = NULL; 7148 } else { 7149 hole_start = max(hole_em->start, start); 7150 hole_len = calc_end - hole_start; 7151 } 7152 } 7153 em->bdev = NULL; 7154 if (hole_em && range_start > hole_start) { 7155 /* our hole starts before our delalloc, so we 7156 * have to return just the parts of the hole 7157 * that go until the delalloc starts 7158 */ 7159 em->len = min(hole_len, 7160 range_start - hole_start); 7161 em->start = hole_start; 7162 em->orig_start = hole_start; 7163 /* 7164 * don't adjust block start at all, 7165 * it is fixed at EXTENT_MAP_HOLE 7166 */ 7167 em->block_start = hole_em->block_start; 7168 em->block_len = hole_len; 7169 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7170 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7171 } else { 7172 em->start = range_start; 7173 em->len = found; 7174 em->orig_start = range_start; 7175 em->block_start = EXTENT_MAP_DELALLOC; 7176 em->block_len = found; 7177 } 7178 } else { 7179 return hole_em; 7180 } 7181 out: 7182 7183 free_extent_map(hole_em); 7184 if (err) { 7185 free_extent_map(em); 7186 return ERR_PTR(err); 7187 } 7188 return em; 7189 } 7190 7191 static struct extent_map *btrfs_create_dio_extent(struct inode *inode, 7192 const u64 start, 7193 const u64 len, 7194 const u64 orig_start, 7195 const u64 block_start, 7196 const u64 block_len, 7197 const u64 orig_block_len, 7198 const u64 ram_bytes, 7199 const int type) 7200 { 7201 struct extent_map *em = NULL; 7202 int ret; 7203 7204 if (type != BTRFS_ORDERED_NOCOW) { 7205 em = create_io_em(inode, start, len, orig_start, 7206 block_start, block_len, orig_block_len, 7207 ram_bytes, 7208 BTRFS_COMPRESS_NONE, /* compress_type */ 7209 type); 7210 if (IS_ERR(em)) 7211 goto out; 7212 } 7213 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, 7214 len, block_len, type); 7215 if (ret) { 7216 if (em) { 7217 free_extent_map(em); 7218 btrfs_drop_extent_cache(BTRFS_I(inode), start, 7219 start + len - 1, 0); 7220 } 7221 em = ERR_PTR(ret); 7222 } 7223 out: 7224 7225 return em; 7226 } 7227 7228 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 7229 u64 start, u64 len) 7230 { 7231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7232 struct btrfs_root *root = BTRFS_I(inode)->root; 7233 struct extent_map *em; 7234 struct btrfs_key ins; 7235 u64 alloc_hint; 7236 int ret; 7237 7238 alloc_hint = get_extent_allocation_hint(inode, start, len); 7239 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7240 0, alloc_hint, &ins, 1, 1); 7241 if (ret) 7242 return ERR_PTR(ret); 7243 7244 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7245 ins.objectid, ins.offset, ins.offset, 7246 ins.offset, BTRFS_ORDERED_REGULAR); 7247 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7248 if (IS_ERR(em)) 7249 btrfs_free_reserved_extent(fs_info, ins.objectid, 7250 ins.offset, 1); 7251 7252 return em; 7253 } 7254 7255 /* 7256 * returns 1 when the nocow is safe, < 1 on error, 0 if the 7257 * block must be cow'd 7258 */ 7259 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7260 u64 *orig_start, u64 *orig_block_len, 7261 u64 *ram_bytes) 7262 { 7263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7264 struct btrfs_path *path; 7265 int ret; 7266 struct extent_buffer *leaf; 7267 struct btrfs_root *root = BTRFS_I(inode)->root; 7268 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7269 struct btrfs_file_extent_item *fi; 7270 struct btrfs_key key; 7271 u64 disk_bytenr; 7272 u64 backref_offset; 7273 u64 extent_end; 7274 u64 num_bytes; 7275 int slot; 7276 int found_type; 7277 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7278 7279 path = btrfs_alloc_path(); 7280 if (!path) 7281 return -ENOMEM; 7282 7283 ret = btrfs_lookup_file_extent(NULL, root, path, 7284 btrfs_ino(BTRFS_I(inode)), offset, 0); 7285 if (ret < 0) 7286 goto out; 7287 7288 slot = path->slots[0]; 7289 if (ret == 1) { 7290 if (slot == 0) { 7291 /* can't find the item, must cow */ 7292 ret = 0; 7293 goto out; 7294 } 7295 slot--; 7296 } 7297 ret = 0; 7298 leaf = path->nodes[0]; 7299 btrfs_item_key_to_cpu(leaf, &key, slot); 7300 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7301 key.type != BTRFS_EXTENT_DATA_KEY) { 7302 /* not our file or wrong item type, must cow */ 7303 goto out; 7304 } 7305 7306 if (key.offset > offset) { 7307 /* Wrong offset, must cow */ 7308 goto out; 7309 } 7310 7311 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7312 found_type = btrfs_file_extent_type(leaf, fi); 7313 if (found_type != BTRFS_FILE_EXTENT_REG && 7314 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7315 /* not a regular extent, must cow */ 7316 goto out; 7317 } 7318 7319 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7320 goto out; 7321 7322 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7323 if (extent_end <= offset) 7324 goto out; 7325 7326 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7327 if (disk_bytenr == 0) 7328 goto out; 7329 7330 if (btrfs_file_extent_compression(leaf, fi) || 7331 btrfs_file_extent_encryption(leaf, fi) || 7332 btrfs_file_extent_other_encoding(leaf, fi)) 7333 goto out; 7334 7335 /* 7336 * Do the same check as in btrfs_cross_ref_exist but without the 7337 * unnecessary search. 7338 */ 7339 if (btrfs_file_extent_generation(leaf, fi) <= 7340 btrfs_root_last_snapshot(&root->root_item)) 7341 goto out; 7342 7343 backref_offset = btrfs_file_extent_offset(leaf, fi); 7344 7345 if (orig_start) { 7346 *orig_start = key.offset - backref_offset; 7347 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7348 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7349 } 7350 7351 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7352 goto out; 7353 7354 num_bytes = min(offset + *len, extent_end) - offset; 7355 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7356 u64 range_end; 7357 7358 range_end = round_up(offset + num_bytes, 7359 root->fs_info->sectorsize) - 1; 7360 ret = test_range_bit(io_tree, offset, range_end, 7361 EXTENT_DELALLOC, 0, NULL); 7362 if (ret) { 7363 ret = -EAGAIN; 7364 goto out; 7365 } 7366 } 7367 7368 btrfs_release_path(path); 7369 7370 /* 7371 * look for other files referencing this extent, if we 7372 * find any we must cow 7373 */ 7374 7375 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7376 key.offset - backref_offset, disk_bytenr); 7377 if (ret) { 7378 ret = 0; 7379 goto out; 7380 } 7381 7382 /* 7383 * adjust disk_bytenr and num_bytes to cover just the bytes 7384 * in this extent we are about to write. If there 7385 * are any csums in that range we have to cow in order 7386 * to keep the csums correct 7387 */ 7388 disk_bytenr += backref_offset; 7389 disk_bytenr += offset - key.offset; 7390 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7391 goto out; 7392 /* 7393 * all of the above have passed, it is safe to overwrite this extent 7394 * without cow 7395 */ 7396 *len = num_bytes; 7397 ret = 1; 7398 out: 7399 btrfs_free_path(path); 7400 return ret; 7401 } 7402 7403 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7404 struct extent_state **cached_state, int writing) 7405 { 7406 struct btrfs_ordered_extent *ordered; 7407 int ret = 0; 7408 7409 while (1) { 7410 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7411 cached_state); 7412 /* 7413 * We're concerned with the entire range that we're going to be 7414 * doing DIO to, so we need to make sure there's no ordered 7415 * extents in this range. 7416 */ 7417 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7418 lockend - lockstart + 1); 7419 7420 /* 7421 * We need to make sure there are no buffered pages in this 7422 * range either, we could have raced between the invalidate in 7423 * generic_file_direct_write and locking the extent. The 7424 * invalidate needs to happen so that reads after a write do not 7425 * get stale data. 7426 */ 7427 if (!ordered && 7428 (!writing || !filemap_range_has_page(inode->i_mapping, 7429 lockstart, lockend))) 7430 break; 7431 7432 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7433 cached_state); 7434 7435 if (ordered) { 7436 /* 7437 * If we are doing a DIO read and the ordered extent we 7438 * found is for a buffered write, we can not wait for it 7439 * to complete and retry, because if we do so we can 7440 * deadlock with concurrent buffered writes on page 7441 * locks. This happens only if our DIO read covers more 7442 * than one extent map, if at this point has already 7443 * created an ordered extent for a previous extent map 7444 * and locked its range in the inode's io tree, and a 7445 * concurrent write against that previous extent map's 7446 * range and this range started (we unlock the ranges 7447 * in the io tree only when the bios complete and 7448 * buffered writes always lock pages before attempting 7449 * to lock range in the io tree). 7450 */ 7451 if (writing || 7452 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7453 btrfs_start_ordered_extent(inode, ordered, 1); 7454 else 7455 ret = -ENOTBLK; 7456 btrfs_put_ordered_extent(ordered); 7457 } else { 7458 /* 7459 * We could trigger writeback for this range (and wait 7460 * for it to complete) and then invalidate the pages for 7461 * this range (through invalidate_inode_pages2_range()), 7462 * but that can lead us to a deadlock with a concurrent 7463 * call to readpages() (a buffered read or a defrag call 7464 * triggered a readahead) on a page lock due to an 7465 * ordered dio extent we created before but did not have 7466 * yet a corresponding bio submitted (whence it can not 7467 * complete), which makes readpages() wait for that 7468 * ordered extent to complete while holding a lock on 7469 * that page. 7470 */ 7471 ret = -ENOTBLK; 7472 } 7473 7474 if (ret) 7475 break; 7476 7477 cond_resched(); 7478 } 7479 7480 return ret; 7481 } 7482 7483 /* The callers of this must take lock_extent() */ 7484 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, 7485 u64 orig_start, u64 block_start, 7486 u64 block_len, u64 orig_block_len, 7487 u64 ram_bytes, int compress_type, 7488 int type) 7489 { 7490 struct extent_map_tree *em_tree; 7491 struct extent_map *em; 7492 struct btrfs_root *root = BTRFS_I(inode)->root; 7493 int ret; 7494 7495 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7496 type == BTRFS_ORDERED_COMPRESSED || 7497 type == BTRFS_ORDERED_NOCOW || 7498 type == BTRFS_ORDERED_REGULAR); 7499 7500 em_tree = &BTRFS_I(inode)->extent_tree; 7501 em = alloc_extent_map(); 7502 if (!em) 7503 return ERR_PTR(-ENOMEM); 7504 7505 em->start = start; 7506 em->orig_start = orig_start; 7507 em->len = len; 7508 em->block_len = block_len; 7509 em->block_start = block_start; 7510 em->bdev = root->fs_info->fs_devices->latest_bdev; 7511 em->orig_block_len = orig_block_len; 7512 em->ram_bytes = ram_bytes; 7513 em->generation = -1; 7514 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7515 if (type == BTRFS_ORDERED_PREALLOC) { 7516 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7517 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7518 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7519 em->compress_type = compress_type; 7520 } 7521 7522 do { 7523 btrfs_drop_extent_cache(BTRFS_I(inode), em->start, 7524 em->start + em->len - 1, 0); 7525 write_lock(&em_tree->lock); 7526 ret = add_extent_mapping(em_tree, em, 1); 7527 write_unlock(&em_tree->lock); 7528 /* 7529 * The caller has taken lock_extent(), who could race with us 7530 * to add em? 7531 */ 7532 } while (ret == -EEXIST); 7533 7534 if (ret) { 7535 free_extent_map(em); 7536 return ERR_PTR(ret); 7537 } 7538 7539 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7540 return em; 7541 } 7542 7543 7544 static int btrfs_get_blocks_direct_read(struct extent_map *em, 7545 struct buffer_head *bh_result, 7546 struct inode *inode, 7547 u64 start, u64 len) 7548 { 7549 if (em->block_start == EXTENT_MAP_HOLE || 7550 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7551 return -ENOENT; 7552 7553 len = min(len, em->len - (start - em->start)); 7554 7555 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7556 inode->i_blkbits; 7557 bh_result->b_size = len; 7558 bh_result->b_bdev = em->bdev; 7559 set_buffer_mapped(bh_result); 7560 7561 return 0; 7562 } 7563 7564 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7565 struct buffer_head *bh_result, 7566 struct inode *inode, 7567 struct btrfs_dio_data *dio_data, 7568 u64 start, u64 len) 7569 { 7570 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7571 struct extent_map *em = *map; 7572 int ret = 0; 7573 7574 /* 7575 * We don't allocate a new extent in the following cases 7576 * 7577 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7578 * existing extent. 7579 * 2) The extent is marked as PREALLOC. We're good to go here and can 7580 * just use the extent. 7581 * 7582 */ 7583 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7584 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7585 em->block_start != EXTENT_MAP_HOLE)) { 7586 int type; 7587 u64 block_start, orig_start, orig_block_len, ram_bytes; 7588 7589 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7590 type = BTRFS_ORDERED_PREALLOC; 7591 else 7592 type = BTRFS_ORDERED_NOCOW; 7593 len = min(len, em->len - (start - em->start)); 7594 block_start = em->block_start + (start - em->start); 7595 7596 if (can_nocow_extent(inode, start, &len, &orig_start, 7597 &orig_block_len, &ram_bytes) == 1 && 7598 btrfs_inc_nocow_writers(fs_info, block_start)) { 7599 struct extent_map *em2; 7600 7601 em2 = btrfs_create_dio_extent(inode, start, len, 7602 orig_start, block_start, 7603 len, orig_block_len, 7604 ram_bytes, type); 7605 btrfs_dec_nocow_writers(fs_info, block_start); 7606 if (type == BTRFS_ORDERED_PREALLOC) { 7607 free_extent_map(em); 7608 *map = em = em2; 7609 } 7610 7611 if (em2 && IS_ERR(em2)) { 7612 ret = PTR_ERR(em2); 7613 goto out; 7614 } 7615 /* 7616 * For inode marked NODATACOW or extent marked PREALLOC, 7617 * use the existing or preallocated extent, so does not 7618 * need to adjust btrfs_space_info's bytes_may_use. 7619 */ 7620 btrfs_free_reserved_data_space_noquota(inode, start, 7621 len); 7622 goto skip_cow; 7623 } 7624 } 7625 7626 /* this will cow the extent */ 7627 len = bh_result->b_size; 7628 free_extent_map(em); 7629 *map = em = btrfs_new_extent_direct(inode, start, len); 7630 if (IS_ERR(em)) { 7631 ret = PTR_ERR(em); 7632 goto out; 7633 } 7634 7635 len = min(len, em->len - (start - em->start)); 7636 7637 skip_cow: 7638 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 7639 inode->i_blkbits; 7640 bh_result->b_size = len; 7641 bh_result->b_bdev = em->bdev; 7642 set_buffer_mapped(bh_result); 7643 7644 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7645 set_buffer_new(bh_result); 7646 7647 /* 7648 * Need to update the i_size under the extent lock so buffered 7649 * readers will get the updated i_size when we unlock. 7650 */ 7651 if (!dio_data->overwrite && start + len > i_size_read(inode)) 7652 i_size_write(inode, start + len); 7653 7654 WARN_ON(dio_data->reserve < len); 7655 dio_data->reserve -= len; 7656 dio_data->unsubmitted_oe_range_end = start + len; 7657 current->journal_info = dio_data; 7658 out: 7659 return ret; 7660 } 7661 7662 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 7663 struct buffer_head *bh_result, int create) 7664 { 7665 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7666 struct extent_map *em; 7667 struct extent_state *cached_state = NULL; 7668 struct btrfs_dio_data *dio_data = NULL; 7669 u64 start = iblock << inode->i_blkbits; 7670 u64 lockstart, lockend; 7671 u64 len = bh_result->b_size; 7672 int unlock_bits = EXTENT_LOCKED; 7673 int ret = 0; 7674 7675 if (create) 7676 unlock_bits |= EXTENT_DIRTY; 7677 else 7678 len = min_t(u64, len, fs_info->sectorsize); 7679 7680 lockstart = start; 7681 lockend = start + len - 1; 7682 7683 if (current->journal_info) { 7684 /* 7685 * Need to pull our outstanding extents and set journal_info to NULL so 7686 * that anything that needs to check if there's a transaction doesn't get 7687 * confused. 7688 */ 7689 dio_data = current->journal_info; 7690 current->journal_info = NULL; 7691 } 7692 7693 /* 7694 * If this errors out it's because we couldn't invalidate pagecache for 7695 * this range and we need to fallback to buffered. 7696 */ 7697 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, 7698 create)) { 7699 ret = -ENOTBLK; 7700 goto err; 7701 } 7702 7703 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); 7704 if (IS_ERR(em)) { 7705 ret = PTR_ERR(em); 7706 goto unlock_err; 7707 } 7708 7709 /* 7710 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7711 * io. INLINE is special, and we could probably kludge it in here, but 7712 * it's still buffered so for safety lets just fall back to the generic 7713 * buffered path. 7714 * 7715 * For COMPRESSED we _have_ to read the entire extent in so we can 7716 * decompress it, so there will be buffering required no matter what we 7717 * do, so go ahead and fallback to buffered. 7718 * 7719 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7720 * to buffered IO. Don't blame me, this is the price we pay for using 7721 * the generic code. 7722 */ 7723 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7724 em->block_start == EXTENT_MAP_INLINE) { 7725 free_extent_map(em); 7726 ret = -ENOTBLK; 7727 goto unlock_err; 7728 } 7729 7730 if (create) { 7731 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, 7732 dio_data, start, len); 7733 if (ret < 0) 7734 goto unlock_err; 7735 7736 /* clear and unlock the entire range */ 7737 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7738 unlock_bits, 1, 0, &cached_state); 7739 } else { 7740 ret = btrfs_get_blocks_direct_read(em, bh_result, inode, 7741 start, len); 7742 /* Can be negative only if we read from a hole */ 7743 if (ret < 0) { 7744 ret = 0; 7745 free_extent_map(em); 7746 goto unlock_err; 7747 } 7748 /* 7749 * We need to unlock only the end area that we aren't using. 7750 * The rest is going to be unlocked by the endio routine. 7751 */ 7752 lockstart = start + bh_result->b_size; 7753 if (lockstart < lockend) { 7754 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 7755 lockend, unlock_bits, 1, 0, 7756 &cached_state); 7757 } else { 7758 free_extent_state(cached_state); 7759 } 7760 } 7761 7762 free_extent_map(em); 7763 7764 return 0; 7765 7766 unlock_err: 7767 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7768 unlock_bits, 1, 0, &cached_state); 7769 err: 7770 if (dio_data) 7771 current->journal_info = dio_data; 7772 return ret; 7773 } 7774 7775 static inline blk_status_t submit_dio_repair_bio(struct inode *inode, 7776 struct bio *bio, 7777 int mirror_num) 7778 { 7779 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7780 blk_status_t ret; 7781 7782 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7783 7784 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); 7785 if (ret) 7786 return ret; 7787 7788 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); 7789 7790 return ret; 7791 } 7792 7793 static int btrfs_check_dio_repairable(struct inode *inode, 7794 struct bio *failed_bio, 7795 struct io_failure_record *failrec, 7796 int failed_mirror) 7797 { 7798 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7799 int num_copies; 7800 7801 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); 7802 if (num_copies == 1) { 7803 /* 7804 * we only have a single copy of the data, so don't bother with 7805 * all the retry and error correction code that follows. no 7806 * matter what the error is, it is very likely to persist. 7807 */ 7808 btrfs_debug(fs_info, 7809 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", 7810 num_copies, failrec->this_mirror, failed_mirror); 7811 return 0; 7812 } 7813 7814 failrec->failed_mirror = failed_mirror; 7815 failrec->this_mirror++; 7816 if (failrec->this_mirror == failed_mirror) 7817 failrec->this_mirror++; 7818 7819 if (failrec->this_mirror > num_copies) { 7820 btrfs_debug(fs_info, 7821 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", 7822 num_copies, failrec->this_mirror, failed_mirror); 7823 return 0; 7824 } 7825 7826 return 1; 7827 } 7828 7829 static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, 7830 struct page *page, unsigned int pgoff, 7831 u64 start, u64 end, int failed_mirror, 7832 bio_end_io_t *repair_endio, void *repair_arg) 7833 { 7834 struct io_failure_record *failrec; 7835 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7836 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7837 struct bio *bio; 7838 int isector; 7839 unsigned int read_mode = 0; 7840 int segs; 7841 int ret; 7842 blk_status_t status; 7843 struct bio_vec bvec; 7844 7845 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); 7846 7847 ret = btrfs_get_io_failure_record(inode, start, end, &failrec); 7848 if (ret) 7849 return errno_to_blk_status(ret); 7850 7851 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, 7852 failed_mirror); 7853 if (!ret) { 7854 free_io_failure(failure_tree, io_tree, failrec); 7855 return BLK_STS_IOERR; 7856 } 7857 7858 segs = bio_segments(failed_bio); 7859 bio_get_first_bvec(failed_bio, &bvec); 7860 if (segs > 1 || 7861 (bvec.bv_len > btrfs_inode_sectorsize(inode))) 7862 read_mode |= REQ_FAILFAST_DEV; 7863 7864 isector = start - btrfs_io_bio(failed_bio)->logical; 7865 isector >>= inode->i_sb->s_blocksize_bits; 7866 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, 7867 pgoff, isector, repair_endio, repair_arg); 7868 bio_set_op_attrs(bio, REQ_OP_READ, read_mode); 7869 7870 btrfs_debug(BTRFS_I(inode)->root->fs_info, 7871 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", 7872 read_mode, failrec->this_mirror, failrec->in_validation); 7873 7874 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); 7875 if (status) { 7876 free_io_failure(failure_tree, io_tree, failrec); 7877 bio_put(bio); 7878 } 7879 7880 return status; 7881 } 7882 7883 struct btrfs_retry_complete { 7884 struct completion done; 7885 struct inode *inode; 7886 u64 start; 7887 int uptodate; 7888 }; 7889 7890 static void btrfs_retry_endio_nocsum(struct bio *bio) 7891 { 7892 struct btrfs_retry_complete *done = bio->bi_private; 7893 struct inode *inode = done->inode; 7894 struct bio_vec *bvec; 7895 struct extent_io_tree *io_tree, *failure_tree; 7896 int i; 7897 7898 if (bio->bi_status) 7899 goto end; 7900 7901 ASSERT(bio->bi_vcnt == 1); 7902 io_tree = &BTRFS_I(inode)->io_tree; 7903 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7904 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); 7905 7906 done->uptodate = 1; 7907 ASSERT(!bio_flagged(bio, BIO_CLONED)); 7908 bio_for_each_segment_all(bvec, bio, i) 7909 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, 7910 io_tree, done->start, bvec->bv_page, 7911 btrfs_ino(BTRFS_I(inode)), 0); 7912 end: 7913 complete(&done->done); 7914 bio_put(bio); 7915 } 7916 7917 static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, 7918 struct btrfs_io_bio *io_bio) 7919 { 7920 struct btrfs_fs_info *fs_info; 7921 struct bio_vec bvec; 7922 struct bvec_iter iter; 7923 struct btrfs_retry_complete done; 7924 u64 start; 7925 unsigned int pgoff; 7926 u32 sectorsize; 7927 int nr_sectors; 7928 blk_status_t ret; 7929 blk_status_t err = BLK_STS_OK; 7930 7931 fs_info = BTRFS_I(inode)->root->fs_info; 7932 sectorsize = fs_info->sectorsize; 7933 7934 start = io_bio->logical; 7935 done.inode = inode; 7936 io_bio->bio.bi_iter = io_bio->iter; 7937 7938 bio_for_each_segment(bvec, &io_bio->bio, iter) { 7939 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7940 pgoff = bvec.bv_offset; 7941 7942 next_block_or_try_again: 7943 done.uptodate = 0; 7944 done.start = start; 7945 init_completion(&done.done); 7946 7947 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 7948 pgoff, start, start + sectorsize - 1, 7949 io_bio->mirror_num, 7950 btrfs_retry_endio_nocsum, &done); 7951 if (ret) { 7952 err = ret; 7953 goto next; 7954 } 7955 7956 wait_for_completion_io(&done.done); 7957 7958 if (!done.uptodate) { 7959 /* We might have another mirror, so try again */ 7960 goto next_block_or_try_again; 7961 } 7962 7963 next: 7964 start += sectorsize; 7965 7966 nr_sectors--; 7967 if (nr_sectors) { 7968 pgoff += sectorsize; 7969 ASSERT(pgoff < PAGE_SIZE); 7970 goto next_block_or_try_again; 7971 } 7972 } 7973 7974 return err; 7975 } 7976 7977 static void btrfs_retry_endio(struct bio *bio) 7978 { 7979 struct btrfs_retry_complete *done = bio->bi_private; 7980 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 7981 struct extent_io_tree *io_tree, *failure_tree; 7982 struct inode *inode = done->inode; 7983 struct bio_vec *bvec; 7984 int uptodate; 7985 int ret; 7986 int i; 7987 7988 if (bio->bi_status) 7989 goto end; 7990 7991 uptodate = 1; 7992 7993 ASSERT(bio->bi_vcnt == 1); 7994 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); 7995 7996 io_tree = &BTRFS_I(inode)->io_tree; 7997 failure_tree = &BTRFS_I(inode)->io_failure_tree; 7998 7999 ASSERT(!bio_flagged(bio, BIO_CLONED)); 8000 bio_for_each_segment_all(bvec, bio, i) { 8001 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, 8002 bvec->bv_offset, done->start, 8003 bvec->bv_len); 8004 if (!ret) 8005 clean_io_failure(BTRFS_I(inode)->root->fs_info, 8006 failure_tree, io_tree, done->start, 8007 bvec->bv_page, 8008 btrfs_ino(BTRFS_I(inode)), 8009 bvec->bv_offset); 8010 else 8011 uptodate = 0; 8012 } 8013 8014 done->uptodate = uptodate; 8015 end: 8016 complete(&done->done); 8017 bio_put(bio); 8018 } 8019 8020 static blk_status_t __btrfs_subio_endio_read(struct inode *inode, 8021 struct btrfs_io_bio *io_bio, blk_status_t err) 8022 { 8023 struct btrfs_fs_info *fs_info; 8024 struct bio_vec bvec; 8025 struct bvec_iter iter; 8026 struct btrfs_retry_complete done; 8027 u64 start; 8028 u64 offset = 0; 8029 u32 sectorsize; 8030 int nr_sectors; 8031 unsigned int pgoff; 8032 int csum_pos; 8033 bool uptodate = (err == 0); 8034 int ret; 8035 blk_status_t status; 8036 8037 fs_info = BTRFS_I(inode)->root->fs_info; 8038 sectorsize = fs_info->sectorsize; 8039 8040 err = BLK_STS_OK; 8041 start = io_bio->logical; 8042 done.inode = inode; 8043 io_bio->bio.bi_iter = io_bio->iter; 8044 8045 bio_for_each_segment(bvec, &io_bio->bio, iter) { 8046 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 8047 8048 pgoff = bvec.bv_offset; 8049 next_block: 8050 if (uptodate) { 8051 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); 8052 ret = __readpage_endio_check(inode, io_bio, csum_pos, 8053 bvec.bv_page, pgoff, start, sectorsize); 8054 if (likely(!ret)) 8055 goto next; 8056 } 8057 try_again: 8058 done.uptodate = 0; 8059 done.start = start; 8060 init_completion(&done.done); 8061 8062 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, 8063 pgoff, start, start + sectorsize - 1, 8064 io_bio->mirror_num, btrfs_retry_endio, 8065 &done); 8066 if (status) { 8067 err = status; 8068 goto next; 8069 } 8070 8071 wait_for_completion_io(&done.done); 8072 8073 if (!done.uptodate) { 8074 /* We might have another mirror, so try again */ 8075 goto try_again; 8076 } 8077 next: 8078 offset += sectorsize; 8079 start += sectorsize; 8080 8081 ASSERT(nr_sectors); 8082 8083 nr_sectors--; 8084 if (nr_sectors) { 8085 pgoff += sectorsize; 8086 ASSERT(pgoff < PAGE_SIZE); 8087 goto next_block; 8088 } 8089 } 8090 8091 return err; 8092 } 8093 8094 static blk_status_t btrfs_subio_endio_read(struct inode *inode, 8095 struct btrfs_io_bio *io_bio, blk_status_t err) 8096 { 8097 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 8098 8099 if (skip_csum) { 8100 if (unlikely(err)) 8101 return __btrfs_correct_data_nocsum(inode, io_bio); 8102 else 8103 return BLK_STS_OK; 8104 } else { 8105 return __btrfs_subio_endio_read(inode, io_bio, err); 8106 } 8107 } 8108 8109 static void btrfs_endio_direct_read(struct bio *bio) 8110 { 8111 struct btrfs_dio_private *dip = bio->bi_private; 8112 struct inode *inode = dip->inode; 8113 struct bio *dio_bio; 8114 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8115 blk_status_t err = bio->bi_status; 8116 8117 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) 8118 err = btrfs_subio_endio_read(inode, io_bio, err); 8119 8120 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 8121 dip->logical_offset + dip->bytes - 1); 8122 dio_bio = dip->dio_bio; 8123 8124 kfree(dip); 8125 8126 dio_bio->bi_status = err; 8127 dio_end_io(dio_bio); 8128 8129 if (io_bio->end_io) 8130 io_bio->end_io(io_bio, blk_status_to_errno(err)); 8131 bio_put(bio); 8132 } 8133 8134 static void __endio_write_update_ordered(struct inode *inode, 8135 const u64 offset, const u64 bytes, 8136 const bool uptodate) 8137 { 8138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8139 struct btrfs_ordered_extent *ordered = NULL; 8140 struct btrfs_workqueue *wq; 8141 btrfs_work_func_t func; 8142 u64 ordered_offset = offset; 8143 u64 ordered_bytes = bytes; 8144 u64 last_offset; 8145 8146 if (btrfs_is_free_space_inode(BTRFS_I(inode))) { 8147 wq = fs_info->endio_freespace_worker; 8148 func = btrfs_freespace_write_helper; 8149 } else { 8150 wq = fs_info->endio_write_workers; 8151 func = btrfs_endio_write_helper; 8152 } 8153 8154 while (ordered_offset < offset + bytes) { 8155 last_offset = ordered_offset; 8156 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 8157 &ordered_offset, 8158 ordered_bytes, 8159 uptodate)) { 8160 btrfs_init_work(&ordered->work, func, 8161 finish_ordered_fn, 8162 NULL, NULL); 8163 btrfs_queue_work(wq, &ordered->work); 8164 } 8165 /* 8166 * If btrfs_dec_test_ordered_pending does not find any ordered 8167 * extent in the range, we can exit. 8168 */ 8169 if (ordered_offset == last_offset) 8170 return; 8171 /* 8172 * Our bio might span multiple ordered extents. In this case 8173 * we keep goin until we have accounted the whole dio. 8174 */ 8175 if (ordered_offset < offset + bytes) { 8176 ordered_bytes = offset + bytes - ordered_offset; 8177 ordered = NULL; 8178 } 8179 } 8180 } 8181 8182 static void btrfs_endio_direct_write(struct bio *bio) 8183 { 8184 struct btrfs_dio_private *dip = bio->bi_private; 8185 struct bio *dio_bio = dip->dio_bio; 8186 8187 __endio_write_update_ordered(dip->inode, dip->logical_offset, 8188 dip->bytes, !bio->bi_status); 8189 8190 kfree(dip); 8191 8192 dio_bio->bi_status = bio->bi_status; 8193 dio_end_io(dio_bio); 8194 bio_put(bio); 8195 } 8196 8197 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 8198 struct bio *bio, u64 offset) 8199 { 8200 struct inode *inode = private_data; 8201 blk_status_t ret; 8202 ret = btrfs_csum_one_bio(inode, bio, offset, 1); 8203 BUG_ON(ret); /* -ENOMEM */ 8204 return 0; 8205 } 8206 8207 static void btrfs_end_dio_bio(struct bio *bio) 8208 { 8209 struct btrfs_dio_private *dip = bio->bi_private; 8210 blk_status_t err = bio->bi_status; 8211 8212 if (err) 8213 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 8214 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 8215 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 8216 bio->bi_opf, 8217 (unsigned long long)bio->bi_iter.bi_sector, 8218 bio->bi_iter.bi_size, err); 8219 8220 if (dip->subio_endio) 8221 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); 8222 8223 if (err) { 8224 /* 8225 * We want to perceive the errors flag being set before 8226 * decrementing the reference count. We don't need a barrier 8227 * since atomic operations with a return value are fully 8228 * ordered as per atomic_t.txt 8229 */ 8230 dip->errors = 1; 8231 } 8232 8233 /* if there are more bios still pending for this dio, just exit */ 8234 if (!atomic_dec_and_test(&dip->pending_bios)) 8235 goto out; 8236 8237 if (dip->errors) { 8238 bio_io_error(dip->orig_bio); 8239 } else { 8240 dip->dio_bio->bi_status = BLK_STS_OK; 8241 bio_endio(dip->orig_bio); 8242 } 8243 out: 8244 bio_put(bio); 8245 } 8246 8247 static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, 8248 struct btrfs_dio_private *dip, 8249 struct bio *bio, 8250 u64 file_offset) 8251 { 8252 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 8253 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); 8254 blk_status_t ret; 8255 8256 /* 8257 * We load all the csum data we need when we submit 8258 * the first bio to reduce the csum tree search and 8259 * contention. 8260 */ 8261 if (dip->logical_offset == file_offset) { 8262 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, 8263 file_offset); 8264 if (ret) 8265 return ret; 8266 } 8267 8268 if (bio == dip->orig_bio) 8269 return 0; 8270 8271 file_offset -= dip->logical_offset; 8272 file_offset >>= inode->i_sb->s_blocksize_bits; 8273 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); 8274 8275 return 0; 8276 } 8277 8278 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 8279 struct inode *inode, u64 file_offset, int async_submit) 8280 { 8281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8282 struct btrfs_dio_private *dip = bio->bi_private; 8283 bool write = bio_op(bio) == REQ_OP_WRITE; 8284 blk_status_t ret; 8285 8286 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 8287 if (async_submit) 8288 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 8289 8290 if (!write) { 8291 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 8292 if (ret) 8293 goto err; 8294 } 8295 8296 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 8297 goto map; 8298 8299 if (write && async_submit) { 8300 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 8301 file_offset, inode, 8302 btrfs_submit_bio_start_direct_io, 8303 btrfs_submit_bio_done); 8304 goto err; 8305 } else if (write) { 8306 /* 8307 * If we aren't doing async submit, calculate the csum of the 8308 * bio now. 8309 */ 8310 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); 8311 if (ret) 8312 goto err; 8313 } else { 8314 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, 8315 file_offset); 8316 if (ret) 8317 goto err; 8318 } 8319 map: 8320 ret = btrfs_map_bio(fs_info, bio, 0, 0); 8321 err: 8322 return ret; 8323 } 8324 8325 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) 8326 { 8327 struct inode *inode = dip->inode; 8328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8329 struct bio *bio; 8330 struct bio *orig_bio = dip->orig_bio; 8331 u64 start_sector = orig_bio->bi_iter.bi_sector; 8332 u64 file_offset = dip->logical_offset; 8333 u64 map_length; 8334 int async_submit = 0; 8335 u64 submit_len; 8336 int clone_offset = 0; 8337 int clone_len; 8338 int ret; 8339 blk_status_t status; 8340 8341 map_length = orig_bio->bi_iter.bi_size; 8342 submit_len = map_length; 8343 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, 8344 &map_length, NULL, 0); 8345 if (ret) 8346 return -EIO; 8347 8348 if (map_length >= submit_len) { 8349 bio = orig_bio; 8350 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; 8351 goto submit; 8352 } 8353 8354 /* async crcs make it difficult to collect full stripe writes. */ 8355 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) 8356 async_submit = 0; 8357 else 8358 async_submit = 1; 8359 8360 /* bio split */ 8361 ASSERT(map_length <= INT_MAX); 8362 atomic_inc(&dip->pending_bios); 8363 do { 8364 clone_len = min_t(int, submit_len, map_length); 8365 8366 /* 8367 * This will never fail as it's passing GPF_NOFS and 8368 * the allocation is backed by btrfs_bioset. 8369 */ 8370 bio = btrfs_bio_clone_partial(orig_bio, clone_offset, 8371 clone_len); 8372 bio->bi_private = dip; 8373 bio->bi_end_io = btrfs_end_dio_bio; 8374 btrfs_io_bio(bio)->logical = file_offset; 8375 8376 ASSERT(submit_len >= clone_len); 8377 submit_len -= clone_len; 8378 if (submit_len == 0) 8379 break; 8380 8381 /* 8382 * Increase the count before we submit the bio so we know 8383 * the end IO handler won't happen before we increase the 8384 * count. Otherwise, the dip might get freed before we're 8385 * done setting it up. 8386 */ 8387 atomic_inc(&dip->pending_bios); 8388 8389 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8390 async_submit); 8391 if (status) { 8392 bio_put(bio); 8393 atomic_dec(&dip->pending_bios); 8394 goto out_err; 8395 } 8396 8397 clone_offset += clone_len; 8398 start_sector += clone_len >> 9; 8399 file_offset += clone_len; 8400 8401 map_length = submit_len; 8402 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), 8403 start_sector << 9, &map_length, NULL, 0); 8404 if (ret) 8405 goto out_err; 8406 } while (submit_len > 0); 8407 8408 submit: 8409 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); 8410 if (!status) 8411 return 0; 8412 8413 bio_put(bio); 8414 out_err: 8415 dip->errors = 1; 8416 /* 8417 * Before atomic variable goto zero, we must make sure dip->errors is 8418 * perceived to be set. This ordering is ensured by the fact that an 8419 * atomic operations with a return value are fully ordered as per 8420 * atomic_t.txt 8421 */ 8422 if (atomic_dec_and_test(&dip->pending_bios)) 8423 bio_io_error(dip->orig_bio); 8424 8425 /* bio_end_io() will handle error, so we needn't return it */ 8426 return 0; 8427 } 8428 8429 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, 8430 loff_t file_offset) 8431 { 8432 struct btrfs_dio_private *dip = NULL; 8433 struct bio *bio = NULL; 8434 struct btrfs_io_bio *io_bio; 8435 bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 8436 int ret = 0; 8437 8438 bio = btrfs_bio_clone(dio_bio); 8439 8440 dip = kzalloc(sizeof(*dip), GFP_NOFS); 8441 if (!dip) { 8442 ret = -ENOMEM; 8443 goto free_ordered; 8444 } 8445 8446 dip->private = dio_bio->bi_private; 8447 dip->inode = inode; 8448 dip->logical_offset = file_offset; 8449 dip->bytes = dio_bio->bi_iter.bi_size; 8450 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 8451 bio->bi_private = dip; 8452 dip->orig_bio = bio; 8453 dip->dio_bio = dio_bio; 8454 atomic_set(&dip->pending_bios, 0); 8455 io_bio = btrfs_io_bio(bio); 8456 io_bio->logical = file_offset; 8457 8458 if (write) { 8459 bio->bi_end_io = btrfs_endio_direct_write; 8460 } else { 8461 bio->bi_end_io = btrfs_endio_direct_read; 8462 dip->subio_endio = btrfs_subio_endio_read; 8463 } 8464 8465 /* 8466 * Reset the range for unsubmitted ordered extents (to a 0 length range) 8467 * even if we fail to submit a bio, because in such case we do the 8468 * corresponding error handling below and it must not be done a second 8469 * time by btrfs_direct_IO(). 8470 */ 8471 if (write) { 8472 struct btrfs_dio_data *dio_data = current->journal_info; 8473 8474 dio_data->unsubmitted_oe_range_end = dip->logical_offset + 8475 dip->bytes; 8476 dio_data->unsubmitted_oe_range_start = 8477 dio_data->unsubmitted_oe_range_end; 8478 } 8479 8480 ret = btrfs_submit_direct_hook(dip); 8481 if (!ret) 8482 return; 8483 8484 if (io_bio->end_io) 8485 io_bio->end_io(io_bio, ret); 8486 8487 free_ordered: 8488 /* 8489 * If we arrived here it means either we failed to submit the dip 8490 * or we either failed to clone the dio_bio or failed to allocate the 8491 * dip. If we cloned the dio_bio and allocated the dip, we can just 8492 * call bio_endio against our io_bio so that we get proper resource 8493 * cleanup if we fail to submit the dip, otherwise, we must do the 8494 * same as btrfs_endio_direct_[write|read] because we can't call these 8495 * callbacks - they require an allocated dip and a clone of dio_bio. 8496 */ 8497 if (bio && dip) { 8498 bio_io_error(bio); 8499 /* 8500 * The end io callbacks free our dip, do the final put on bio 8501 * and all the cleanup and final put for dio_bio (through 8502 * dio_end_io()). 8503 */ 8504 dip = NULL; 8505 bio = NULL; 8506 } else { 8507 if (write) 8508 __endio_write_update_ordered(inode, 8509 file_offset, 8510 dio_bio->bi_iter.bi_size, 8511 false); 8512 else 8513 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 8514 file_offset + dio_bio->bi_iter.bi_size - 1); 8515 8516 dio_bio->bi_status = BLK_STS_IOERR; 8517 /* 8518 * Releases and cleans up our dio_bio, no need to bio_put() 8519 * nor bio_endio()/bio_io_error() against dio_bio. 8520 */ 8521 dio_end_io(dio_bio); 8522 } 8523 if (bio) 8524 bio_put(bio); 8525 kfree(dip); 8526 } 8527 8528 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 8529 const struct iov_iter *iter, loff_t offset) 8530 { 8531 int seg; 8532 int i; 8533 unsigned int blocksize_mask = fs_info->sectorsize - 1; 8534 ssize_t retval = -EINVAL; 8535 8536 if (offset & blocksize_mask) 8537 goto out; 8538 8539 if (iov_iter_alignment(iter) & blocksize_mask) 8540 goto out; 8541 8542 /* If this is a write we don't need to check anymore */ 8543 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 8544 return 0; 8545 /* 8546 * Check to make sure we don't have duplicate iov_base's in this 8547 * iovec, if so return EINVAL, otherwise we'll get csum errors 8548 * when reading back. 8549 */ 8550 for (seg = 0; seg < iter->nr_segs; seg++) { 8551 for (i = seg + 1; i < iter->nr_segs; i++) { 8552 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 8553 goto out; 8554 } 8555 } 8556 retval = 0; 8557 out: 8558 return retval; 8559 } 8560 8561 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 8562 { 8563 struct file *file = iocb->ki_filp; 8564 struct inode *inode = file->f_mapping->host; 8565 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8566 struct btrfs_dio_data dio_data = { 0 }; 8567 struct extent_changeset *data_reserved = NULL; 8568 loff_t offset = iocb->ki_pos; 8569 size_t count = 0; 8570 int flags = 0; 8571 bool wakeup = true; 8572 bool relock = false; 8573 ssize_t ret; 8574 8575 if (check_direct_IO(fs_info, iter, offset)) 8576 return 0; 8577 8578 inode_dio_begin(inode); 8579 8580 /* 8581 * The generic stuff only does filemap_write_and_wait_range, which 8582 * isn't enough if we've written compressed pages to this area, so 8583 * we need to flush the dirty pages again to make absolutely sure 8584 * that any outstanding dirty pages are on disk. 8585 */ 8586 count = iov_iter_count(iter); 8587 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8588 &BTRFS_I(inode)->runtime_flags)) 8589 filemap_fdatawrite_range(inode->i_mapping, offset, 8590 offset + count - 1); 8591 8592 if (iov_iter_rw(iter) == WRITE) { 8593 /* 8594 * If the write DIO is beyond the EOF, we need update 8595 * the isize, but it is protected by i_mutex. So we can 8596 * not unlock the i_mutex at this case. 8597 */ 8598 if (offset + count <= inode->i_size) { 8599 dio_data.overwrite = 1; 8600 inode_unlock(inode); 8601 relock = true; 8602 } else if (iocb->ki_flags & IOCB_NOWAIT) { 8603 ret = -EAGAIN; 8604 goto out; 8605 } 8606 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 8607 offset, count); 8608 if (ret) 8609 goto out; 8610 8611 /* 8612 * We need to know how many extents we reserved so that we can 8613 * do the accounting properly if we go over the number we 8614 * originally calculated. Abuse current->journal_info for this. 8615 */ 8616 dio_data.reserve = round_up(count, 8617 fs_info->sectorsize); 8618 dio_data.unsubmitted_oe_range_start = (u64)offset; 8619 dio_data.unsubmitted_oe_range_end = (u64)offset; 8620 current->journal_info = &dio_data; 8621 down_read(&BTRFS_I(inode)->dio_sem); 8622 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, 8623 &BTRFS_I(inode)->runtime_flags)) { 8624 inode_dio_end(inode); 8625 flags = DIO_LOCKING | DIO_SKIP_HOLES; 8626 wakeup = false; 8627 } 8628 8629 ret = __blockdev_direct_IO(iocb, inode, 8630 fs_info->fs_devices->latest_bdev, 8631 iter, btrfs_get_blocks_direct, NULL, 8632 btrfs_submit_direct, flags); 8633 if (iov_iter_rw(iter) == WRITE) { 8634 up_read(&BTRFS_I(inode)->dio_sem); 8635 current->journal_info = NULL; 8636 if (ret < 0 && ret != -EIOCBQUEUED) { 8637 if (dio_data.reserve) 8638 btrfs_delalloc_release_space(inode, data_reserved, 8639 offset, dio_data.reserve, true); 8640 /* 8641 * On error we might have left some ordered extents 8642 * without submitting corresponding bios for them, so 8643 * cleanup them up to avoid other tasks getting them 8644 * and waiting for them to complete forever. 8645 */ 8646 if (dio_data.unsubmitted_oe_range_start < 8647 dio_data.unsubmitted_oe_range_end) 8648 __endio_write_update_ordered(inode, 8649 dio_data.unsubmitted_oe_range_start, 8650 dio_data.unsubmitted_oe_range_end - 8651 dio_data.unsubmitted_oe_range_start, 8652 false); 8653 } else if (ret >= 0 && (size_t)ret < count) 8654 btrfs_delalloc_release_space(inode, data_reserved, 8655 offset, count - (size_t)ret, true); 8656 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false); 8657 } 8658 out: 8659 if (wakeup) 8660 inode_dio_end(inode); 8661 if (relock) 8662 inode_lock(inode); 8663 8664 extent_changeset_free(data_reserved); 8665 return ret; 8666 } 8667 8668 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 8669 8670 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8671 __u64 start, __u64 len) 8672 { 8673 int ret; 8674 8675 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 8676 if (ret) 8677 return ret; 8678 8679 return extent_fiemap(inode, fieinfo, start, len); 8680 } 8681 8682 int btrfs_readpage(struct file *file, struct page *page) 8683 { 8684 struct extent_io_tree *tree; 8685 tree = &BTRFS_I(page->mapping->host)->io_tree; 8686 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 8687 } 8688 8689 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8690 { 8691 struct inode *inode = page->mapping->host; 8692 int ret; 8693 8694 if (current->flags & PF_MEMALLOC) { 8695 redirty_page_for_writepage(wbc, page); 8696 unlock_page(page); 8697 return 0; 8698 } 8699 8700 /* 8701 * If we are under memory pressure we will call this directly from the 8702 * VM, we need to make sure we have the inode referenced for the ordered 8703 * extent. If not just return like we didn't do anything. 8704 */ 8705 if (!igrab(inode)) { 8706 redirty_page_for_writepage(wbc, page); 8707 return AOP_WRITEPAGE_ACTIVATE; 8708 } 8709 ret = extent_write_full_page(page, wbc); 8710 btrfs_add_delayed_iput(inode); 8711 return ret; 8712 } 8713 8714 static int btrfs_writepages(struct address_space *mapping, 8715 struct writeback_control *wbc) 8716 { 8717 return extent_writepages(mapping, wbc); 8718 } 8719 8720 static int 8721 btrfs_readpages(struct file *file, struct address_space *mapping, 8722 struct list_head *pages, unsigned nr_pages) 8723 { 8724 return extent_readpages(mapping, pages, nr_pages); 8725 } 8726 8727 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8728 { 8729 int ret = try_release_extent_mapping(page, gfp_flags); 8730 if (ret == 1) { 8731 ClearPagePrivate(page); 8732 set_page_private(page, 0); 8733 put_page(page); 8734 } 8735 return ret; 8736 } 8737 8738 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8739 { 8740 if (PageWriteback(page) || PageDirty(page)) 8741 return 0; 8742 return __btrfs_releasepage(page, gfp_flags); 8743 } 8744 8745 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8746 unsigned int length) 8747 { 8748 struct inode *inode = page->mapping->host; 8749 struct extent_io_tree *tree; 8750 struct btrfs_ordered_extent *ordered; 8751 struct extent_state *cached_state = NULL; 8752 u64 page_start = page_offset(page); 8753 u64 page_end = page_start + PAGE_SIZE - 1; 8754 u64 start; 8755 u64 end; 8756 int inode_evicting = inode->i_state & I_FREEING; 8757 8758 /* 8759 * we have the page locked, so new writeback can't start, 8760 * and the dirty bit won't be cleared while we are here. 8761 * 8762 * Wait for IO on this page so that we can safely clear 8763 * the PagePrivate2 bit and do ordered accounting 8764 */ 8765 wait_on_page_writeback(page); 8766 8767 tree = &BTRFS_I(inode)->io_tree; 8768 if (offset) { 8769 btrfs_releasepage(page, GFP_NOFS); 8770 return; 8771 } 8772 8773 if (!inode_evicting) 8774 lock_extent_bits(tree, page_start, page_end, &cached_state); 8775 again: 8776 start = page_start; 8777 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, 8778 page_end - start + 1); 8779 if (ordered) { 8780 end = min(page_end, ordered->file_offset + ordered->len - 1); 8781 /* 8782 * IO on this page will never be started, so we need 8783 * to account for any ordered extents now 8784 */ 8785 if (!inode_evicting) 8786 clear_extent_bit(tree, start, end, 8787 EXTENT_DIRTY | EXTENT_DELALLOC | 8788 EXTENT_DELALLOC_NEW | 8789 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8790 EXTENT_DEFRAG, 1, 0, &cached_state); 8791 /* 8792 * whoever cleared the private bit is responsible 8793 * for the finish_ordered_io 8794 */ 8795 if (TestClearPagePrivate2(page)) { 8796 struct btrfs_ordered_inode_tree *tree; 8797 u64 new_len; 8798 8799 tree = &BTRFS_I(inode)->ordered_tree; 8800 8801 spin_lock_irq(&tree->lock); 8802 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8803 new_len = start - ordered->file_offset; 8804 if (new_len < ordered->truncated_len) 8805 ordered->truncated_len = new_len; 8806 spin_unlock_irq(&tree->lock); 8807 8808 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8809 start, 8810 end - start + 1, 1)) 8811 btrfs_finish_ordered_io(ordered); 8812 } 8813 btrfs_put_ordered_extent(ordered); 8814 if (!inode_evicting) { 8815 cached_state = NULL; 8816 lock_extent_bits(tree, start, end, 8817 &cached_state); 8818 } 8819 8820 start = end + 1; 8821 if (start < page_end) 8822 goto again; 8823 } 8824 8825 /* 8826 * Qgroup reserved space handler 8827 * Page here will be either 8828 * 1) Already written to disk 8829 * In this case, its reserved space is released from data rsv map 8830 * and will be freed by delayed_ref handler finally. 8831 * So even we call qgroup_free_data(), it won't decrease reserved 8832 * space. 8833 * 2) Not written to disk 8834 * This means the reserved space should be freed here. However, 8835 * if a truncate invalidates the page (by clearing PageDirty) 8836 * and the page is accounted for while allocating extent 8837 * in btrfs_check_data_free_space() we let delayed_ref to 8838 * free the entire extent. 8839 */ 8840 if (PageDirty(page)) 8841 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8842 if (!inode_evicting) { 8843 clear_extent_bit(tree, page_start, page_end, 8844 EXTENT_LOCKED | EXTENT_DIRTY | 8845 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8846 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8847 &cached_state); 8848 8849 __btrfs_releasepage(page, GFP_NOFS); 8850 } 8851 8852 ClearPageChecked(page); 8853 if (PagePrivate(page)) { 8854 ClearPagePrivate(page); 8855 set_page_private(page, 0); 8856 put_page(page); 8857 } 8858 } 8859 8860 /* 8861 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8862 * called from a page fault handler when a page is first dirtied. Hence we must 8863 * be careful to check for EOF conditions here. We set the page up correctly 8864 * for a written page which means we get ENOSPC checking when writing into 8865 * holes and correct delalloc and unwritten extent mapping on filesystems that 8866 * support these features. 8867 * 8868 * We are not allowed to take the i_mutex here so we have to play games to 8869 * protect against truncate races as the page could now be beyond EOF. Because 8870 * truncate_setsize() writes the inode size before removing pages, once we have 8871 * the page lock we can determine safely if the page is beyond EOF. If it is not 8872 * beyond EOF, then the page is guaranteed safe against truncation until we 8873 * unlock the page. 8874 */ 8875 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8876 { 8877 struct page *page = vmf->page; 8878 struct inode *inode = file_inode(vmf->vma->vm_file); 8879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8880 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8881 struct btrfs_ordered_extent *ordered; 8882 struct extent_state *cached_state = NULL; 8883 struct extent_changeset *data_reserved = NULL; 8884 char *kaddr; 8885 unsigned long zero_start; 8886 loff_t size; 8887 vm_fault_t ret; 8888 int ret2; 8889 int reserved = 0; 8890 u64 reserved_space; 8891 u64 page_start; 8892 u64 page_end; 8893 u64 end; 8894 8895 reserved_space = PAGE_SIZE; 8896 8897 sb_start_pagefault(inode->i_sb); 8898 page_start = page_offset(page); 8899 page_end = page_start + PAGE_SIZE - 1; 8900 end = page_end; 8901 8902 /* 8903 * Reserving delalloc space after obtaining the page lock can lead to 8904 * deadlock. For example, if a dirty page is locked by this function 8905 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8906 * dirty page write out, then the btrfs_writepage() function could 8907 * end up waiting indefinitely to get a lock on the page currently 8908 * being processed by btrfs_page_mkwrite() function. 8909 */ 8910 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 8911 reserved_space); 8912 if (!ret2) { 8913 ret2 = file_update_time(vmf->vma->vm_file); 8914 reserved = 1; 8915 } 8916 if (ret2) { 8917 ret = vmf_error(ret2); 8918 if (reserved) 8919 goto out; 8920 goto out_noreserve; 8921 } 8922 8923 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8924 again: 8925 lock_page(page); 8926 size = i_size_read(inode); 8927 8928 if ((page->mapping != inode->i_mapping) || 8929 (page_start >= size)) { 8930 /* page got truncated out from underneath us */ 8931 goto out_unlock; 8932 } 8933 wait_on_page_writeback(page); 8934 8935 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8936 set_page_extent_mapped(page); 8937 8938 /* 8939 * we can't set the delalloc bits if there are pending ordered 8940 * extents. Drop our locks and wait for them to finish 8941 */ 8942 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8943 PAGE_SIZE); 8944 if (ordered) { 8945 unlock_extent_cached(io_tree, page_start, page_end, 8946 &cached_state); 8947 unlock_page(page); 8948 btrfs_start_ordered_extent(inode, ordered, 1); 8949 btrfs_put_ordered_extent(ordered); 8950 goto again; 8951 } 8952 8953 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8954 reserved_space = round_up(size - page_start, 8955 fs_info->sectorsize); 8956 if (reserved_space < PAGE_SIZE) { 8957 end = page_start + reserved_space - 1; 8958 btrfs_delalloc_release_space(inode, data_reserved, 8959 page_start, PAGE_SIZE - reserved_space, 8960 true); 8961 } 8962 } 8963 8964 /* 8965 * page_mkwrite gets called when the page is firstly dirtied after it's 8966 * faulted in, but write(2) could also dirty a page and set delalloc 8967 * bits, thus in this case for space account reason, we still need to 8968 * clear any delalloc bits within this page range since we have to 8969 * reserve data&meta space before lock_page() (see above comments). 8970 */ 8971 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8972 EXTENT_DIRTY | EXTENT_DELALLOC | 8973 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 8974 0, 0, &cached_state); 8975 8976 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, 8977 &cached_state, 0); 8978 if (ret2) { 8979 unlock_extent_cached(io_tree, page_start, page_end, 8980 &cached_state); 8981 ret = VM_FAULT_SIGBUS; 8982 goto out_unlock; 8983 } 8984 ret2 = 0; 8985 8986 /* page is wholly or partially inside EOF */ 8987 if (page_start + PAGE_SIZE > size) 8988 zero_start = size & ~PAGE_MASK; 8989 else 8990 zero_start = PAGE_SIZE; 8991 8992 if (zero_start != PAGE_SIZE) { 8993 kaddr = kmap(page); 8994 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8995 flush_dcache_page(page); 8996 kunmap(page); 8997 } 8998 ClearPageChecked(page); 8999 set_page_dirty(page); 9000 SetPageUptodate(page); 9001 9002 BTRFS_I(inode)->last_trans = fs_info->generation; 9003 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 9004 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 9005 9006 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 9007 9008 out_unlock: 9009 if (!ret2) { 9010 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true); 9011 sb_end_pagefault(inode->i_sb); 9012 extent_changeset_free(data_reserved); 9013 return VM_FAULT_LOCKED; 9014 } 9015 unlock_page(page); 9016 out: 9017 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0)); 9018 btrfs_delalloc_release_space(inode, data_reserved, page_start, 9019 reserved_space, (ret != 0)); 9020 out_noreserve: 9021 sb_end_pagefault(inode->i_sb); 9022 extent_changeset_free(data_reserved); 9023 return ret; 9024 } 9025 9026 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 9027 { 9028 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9029 struct btrfs_root *root = BTRFS_I(inode)->root; 9030 struct btrfs_block_rsv *rsv; 9031 int ret; 9032 struct btrfs_trans_handle *trans; 9033 u64 mask = fs_info->sectorsize - 1; 9034 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); 9035 9036 if (!skip_writeback) { 9037 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 9038 (u64)-1); 9039 if (ret) 9040 return ret; 9041 } 9042 9043 /* 9044 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 9045 * things going on here: 9046 * 9047 * 1) We need to reserve space to update our inode. 9048 * 9049 * 2) We need to have something to cache all the space that is going to 9050 * be free'd up by the truncate operation, but also have some slack 9051 * space reserved in case it uses space during the truncate (thank you 9052 * very much snapshotting). 9053 * 9054 * And we need these to be separate. The fact is we can use a lot of 9055 * space doing the truncate, and we have no earthly idea how much space 9056 * we will use, so we need the truncate reservation to be separate so it 9057 * doesn't end up using space reserved for updating the inode. We also 9058 * need to be able to stop the transaction and start a new one, which 9059 * means we need to be able to update the inode several times, and we 9060 * have no idea of knowing how many times that will be, so we can't just 9061 * reserve 1 item for the entirety of the operation, so that has to be 9062 * done separately as well. 9063 * 9064 * So that leaves us with 9065 * 9066 * 1) rsv - for the truncate reservation, which we will steal from the 9067 * transaction reservation. 9068 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 9069 * updating the inode. 9070 */ 9071 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 9072 if (!rsv) 9073 return -ENOMEM; 9074 rsv->size = min_size; 9075 rsv->failfast = 1; 9076 9077 /* 9078 * 1 for the truncate slack space 9079 * 1 for updating the inode. 9080 */ 9081 trans = btrfs_start_transaction(root, 2); 9082 if (IS_ERR(trans)) { 9083 ret = PTR_ERR(trans); 9084 goto out; 9085 } 9086 9087 /* Migrate the slack space for the truncate to our reserve */ 9088 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 9089 min_size, 0); 9090 BUG_ON(ret); 9091 9092 /* 9093 * So if we truncate and then write and fsync we normally would just 9094 * write the extents that changed, which is a problem if we need to 9095 * first truncate that entire inode. So set this flag so we write out 9096 * all of the extents in the inode to the sync log so we're completely 9097 * safe. 9098 */ 9099 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 9100 trans->block_rsv = rsv; 9101 9102 while (1) { 9103 ret = btrfs_truncate_inode_items(trans, root, inode, 9104 inode->i_size, 9105 BTRFS_EXTENT_DATA_KEY); 9106 trans->block_rsv = &fs_info->trans_block_rsv; 9107 if (ret != -ENOSPC && ret != -EAGAIN) 9108 break; 9109 9110 ret = btrfs_update_inode(trans, root, inode); 9111 if (ret) 9112 break; 9113 9114 btrfs_end_transaction(trans); 9115 btrfs_btree_balance_dirty(fs_info); 9116 9117 trans = btrfs_start_transaction(root, 2); 9118 if (IS_ERR(trans)) { 9119 ret = PTR_ERR(trans); 9120 trans = NULL; 9121 break; 9122 } 9123 9124 btrfs_block_rsv_release(fs_info, rsv, -1); 9125 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 9126 rsv, min_size, 0); 9127 BUG_ON(ret); /* shouldn't happen */ 9128 trans->block_rsv = rsv; 9129 } 9130 9131 /* 9132 * We can't call btrfs_truncate_block inside a trans handle as we could 9133 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 9134 * we've truncated everything except the last little bit, and can do 9135 * btrfs_truncate_block and then update the disk_i_size. 9136 */ 9137 if (ret == NEED_TRUNCATE_BLOCK) { 9138 btrfs_end_transaction(trans); 9139 btrfs_btree_balance_dirty(fs_info); 9140 9141 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 9142 if (ret) 9143 goto out; 9144 trans = btrfs_start_transaction(root, 1); 9145 if (IS_ERR(trans)) { 9146 ret = PTR_ERR(trans); 9147 goto out; 9148 } 9149 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 9150 } 9151 9152 if (trans) { 9153 int ret2; 9154 9155 trans->block_rsv = &fs_info->trans_block_rsv; 9156 ret2 = btrfs_update_inode(trans, root, inode); 9157 if (ret2 && !ret) 9158 ret = ret2; 9159 9160 ret2 = btrfs_end_transaction(trans); 9161 if (ret2 && !ret) 9162 ret = ret2; 9163 btrfs_btree_balance_dirty(fs_info); 9164 } 9165 out: 9166 btrfs_free_block_rsv(fs_info, rsv); 9167 9168 return ret; 9169 } 9170 9171 /* 9172 * create a new subvolume directory/inode (helper for the ioctl). 9173 */ 9174 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 9175 struct btrfs_root *new_root, 9176 struct btrfs_root *parent_root, 9177 u64 new_dirid) 9178 { 9179 struct inode *inode; 9180 int err; 9181 u64 index = 0; 9182 9183 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 9184 new_dirid, new_dirid, 9185 S_IFDIR | (~current_umask() & S_IRWXUGO), 9186 &index); 9187 if (IS_ERR(inode)) 9188 return PTR_ERR(inode); 9189 inode->i_op = &btrfs_dir_inode_operations; 9190 inode->i_fop = &btrfs_dir_file_operations; 9191 9192 set_nlink(inode, 1); 9193 btrfs_i_size_write(BTRFS_I(inode), 0); 9194 unlock_new_inode(inode); 9195 9196 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 9197 if (err) 9198 btrfs_err(new_root->fs_info, 9199 "error inheriting subvolume %llu properties: %d", 9200 new_root->root_key.objectid, err); 9201 9202 err = btrfs_update_inode(trans, new_root, inode); 9203 9204 iput(inode); 9205 return err; 9206 } 9207 9208 struct inode *btrfs_alloc_inode(struct super_block *sb) 9209 { 9210 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 9211 struct btrfs_inode *ei; 9212 struct inode *inode; 9213 9214 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 9215 if (!ei) 9216 return NULL; 9217 9218 ei->root = NULL; 9219 ei->generation = 0; 9220 ei->last_trans = 0; 9221 ei->last_sub_trans = 0; 9222 ei->logged_trans = 0; 9223 ei->delalloc_bytes = 0; 9224 ei->new_delalloc_bytes = 0; 9225 ei->defrag_bytes = 0; 9226 ei->disk_i_size = 0; 9227 ei->flags = 0; 9228 ei->csum_bytes = 0; 9229 ei->index_cnt = (u64)-1; 9230 ei->dir_index = 0; 9231 ei->last_unlink_trans = 0; 9232 ei->last_log_commit = 0; 9233 9234 spin_lock_init(&ei->lock); 9235 ei->outstanding_extents = 0; 9236 if (sb->s_magic != BTRFS_TEST_MAGIC) 9237 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 9238 BTRFS_BLOCK_RSV_DELALLOC); 9239 ei->runtime_flags = 0; 9240 ei->prop_compress = BTRFS_COMPRESS_NONE; 9241 ei->defrag_compress = BTRFS_COMPRESS_NONE; 9242 9243 ei->delayed_node = NULL; 9244 9245 ei->i_otime.tv_sec = 0; 9246 ei->i_otime.tv_nsec = 0; 9247 9248 inode = &ei->vfs_inode; 9249 extent_map_tree_init(&ei->extent_tree); 9250 extent_io_tree_init(&ei->io_tree, inode); 9251 extent_io_tree_init(&ei->io_failure_tree, inode); 9252 ei->io_tree.track_uptodate = 1; 9253 ei->io_failure_tree.track_uptodate = 1; 9254 atomic_set(&ei->sync_writers, 0); 9255 mutex_init(&ei->log_mutex); 9256 mutex_init(&ei->delalloc_mutex); 9257 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 9258 INIT_LIST_HEAD(&ei->delalloc_inodes); 9259 INIT_LIST_HEAD(&ei->delayed_iput); 9260 RB_CLEAR_NODE(&ei->rb_node); 9261 init_rwsem(&ei->dio_sem); 9262 9263 return inode; 9264 } 9265 9266 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 9267 void btrfs_test_destroy_inode(struct inode *inode) 9268 { 9269 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9270 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9271 } 9272 #endif 9273 9274 static void btrfs_i_callback(struct rcu_head *head) 9275 { 9276 struct inode *inode = container_of(head, struct inode, i_rcu); 9277 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 9278 } 9279 9280 void btrfs_destroy_inode(struct inode *inode) 9281 { 9282 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9283 struct btrfs_ordered_extent *ordered; 9284 struct btrfs_root *root = BTRFS_I(inode)->root; 9285 9286 WARN_ON(!hlist_empty(&inode->i_dentry)); 9287 WARN_ON(inode->i_data.nrpages); 9288 WARN_ON(BTRFS_I(inode)->block_rsv.reserved); 9289 WARN_ON(BTRFS_I(inode)->block_rsv.size); 9290 WARN_ON(BTRFS_I(inode)->outstanding_extents); 9291 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 9292 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); 9293 WARN_ON(BTRFS_I(inode)->csum_bytes); 9294 WARN_ON(BTRFS_I(inode)->defrag_bytes); 9295 9296 /* 9297 * This can happen where we create an inode, but somebody else also 9298 * created the same inode and we need to destroy the one we already 9299 * created. 9300 */ 9301 if (!root) 9302 goto free; 9303 9304 while (1) { 9305 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 9306 if (!ordered) 9307 break; 9308 else { 9309 btrfs_err(fs_info, 9310 "found ordered extent %llu %llu on inode cleanup", 9311 ordered->file_offset, ordered->len); 9312 btrfs_remove_ordered_extent(inode, ordered); 9313 btrfs_put_ordered_extent(ordered); 9314 btrfs_put_ordered_extent(ordered); 9315 } 9316 } 9317 btrfs_qgroup_check_reserved_leak(inode); 9318 inode_tree_del(inode); 9319 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 9320 free: 9321 call_rcu(&inode->i_rcu, btrfs_i_callback); 9322 } 9323 9324 int btrfs_drop_inode(struct inode *inode) 9325 { 9326 struct btrfs_root *root = BTRFS_I(inode)->root; 9327 9328 if (root == NULL) 9329 return 1; 9330 9331 /* the snap/subvol tree is on deleting */ 9332 if (btrfs_root_refs(&root->root_item) == 0) 9333 return 1; 9334 else 9335 return generic_drop_inode(inode); 9336 } 9337 9338 static void init_once(void *foo) 9339 { 9340 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 9341 9342 inode_init_once(&ei->vfs_inode); 9343 } 9344 9345 void __cold btrfs_destroy_cachep(void) 9346 { 9347 /* 9348 * Make sure all delayed rcu free inodes are flushed before we 9349 * destroy cache. 9350 */ 9351 rcu_barrier(); 9352 kmem_cache_destroy(btrfs_inode_cachep); 9353 kmem_cache_destroy(btrfs_trans_handle_cachep); 9354 kmem_cache_destroy(btrfs_path_cachep); 9355 kmem_cache_destroy(btrfs_free_space_cachep); 9356 } 9357 9358 int __init btrfs_init_cachep(void) 9359 { 9360 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 9361 sizeof(struct btrfs_inode), 0, 9362 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 9363 init_once); 9364 if (!btrfs_inode_cachep) 9365 goto fail; 9366 9367 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 9368 sizeof(struct btrfs_trans_handle), 0, 9369 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 9370 if (!btrfs_trans_handle_cachep) 9371 goto fail; 9372 9373 btrfs_path_cachep = kmem_cache_create("btrfs_path", 9374 sizeof(struct btrfs_path), 0, 9375 SLAB_MEM_SPREAD, NULL); 9376 if (!btrfs_path_cachep) 9377 goto fail; 9378 9379 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 9380 sizeof(struct btrfs_free_space), 0, 9381 SLAB_MEM_SPREAD, NULL); 9382 if (!btrfs_free_space_cachep) 9383 goto fail; 9384 9385 return 0; 9386 fail: 9387 btrfs_destroy_cachep(); 9388 return -ENOMEM; 9389 } 9390 9391 static int btrfs_getattr(const struct path *path, struct kstat *stat, 9392 u32 request_mask, unsigned int flags) 9393 { 9394 u64 delalloc_bytes; 9395 struct inode *inode = d_inode(path->dentry); 9396 u32 blocksize = inode->i_sb->s_blocksize; 9397 u32 bi_flags = BTRFS_I(inode)->flags; 9398 9399 stat->result_mask |= STATX_BTIME; 9400 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9401 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9402 if (bi_flags & BTRFS_INODE_APPEND) 9403 stat->attributes |= STATX_ATTR_APPEND; 9404 if (bi_flags & BTRFS_INODE_COMPRESS) 9405 stat->attributes |= STATX_ATTR_COMPRESSED; 9406 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9407 stat->attributes |= STATX_ATTR_IMMUTABLE; 9408 if (bi_flags & BTRFS_INODE_NODUMP) 9409 stat->attributes |= STATX_ATTR_NODUMP; 9410 9411 stat->attributes_mask |= (STATX_ATTR_APPEND | 9412 STATX_ATTR_COMPRESSED | 9413 STATX_ATTR_IMMUTABLE | 9414 STATX_ATTR_NODUMP); 9415 9416 generic_fillattr(inode, stat); 9417 stat->dev = BTRFS_I(inode)->root->anon_dev; 9418 9419 spin_lock(&BTRFS_I(inode)->lock); 9420 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9421 spin_unlock(&BTRFS_I(inode)->lock); 9422 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 9423 ALIGN(delalloc_bytes, blocksize)) >> 9; 9424 return 0; 9425 } 9426 9427 static int btrfs_rename_exchange(struct inode *old_dir, 9428 struct dentry *old_dentry, 9429 struct inode *new_dir, 9430 struct dentry *new_dentry) 9431 { 9432 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9433 struct btrfs_trans_handle *trans; 9434 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9435 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9436 struct inode *new_inode = new_dentry->d_inode; 9437 struct inode *old_inode = old_dentry->d_inode; 9438 struct timespec64 ctime = current_time(old_inode); 9439 struct dentry *parent; 9440 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9441 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9442 u64 old_idx = 0; 9443 u64 new_idx = 0; 9444 u64 root_objectid; 9445 int ret; 9446 bool root_log_pinned = false; 9447 bool dest_log_pinned = false; 9448 9449 /* we only allow rename subvolume link between subvolumes */ 9450 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9451 return -EXDEV; 9452 9453 /* close the race window with snapshot create/destroy ioctl */ 9454 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9455 down_read(&fs_info->subvol_sem); 9456 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9457 down_read(&fs_info->subvol_sem); 9458 9459 /* 9460 * We want to reserve the absolute worst case amount of items. So if 9461 * both inodes are subvols and we need to unlink them then that would 9462 * require 4 item modifications, but if they are both normal inodes it 9463 * would require 5 item modifications, so we'll assume their normal 9464 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9465 * should cover the worst case number of items we'll modify. 9466 */ 9467 trans = btrfs_start_transaction(root, 12); 9468 if (IS_ERR(trans)) { 9469 ret = PTR_ERR(trans); 9470 goto out_notrans; 9471 } 9472 9473 /* 9474 * We need to find a free sequence number both in the source and 9475 * in the destination directory for the exchange. 9476 */ 9477 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9478 if (ret) 9479 goto out_fail; 9480 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9481 if (ret) 9482 goto out_fail; 9483 9484 BTRFS_I(old_inode)->dir_index = 0ULL; 9485 BTRFS_I(new_inode)->dir_index = 0ULL; 9486 9487 /* Reference for the source. */ 9488 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9489 /* force full log commit if subvolume involved. */ 9490 btrfs_set_log_full_commit(fs_info, trans); 9491 } else { 9492 btrfs_pin_log_trans(root); 9493 root_log_pinned = true; 9494 ret = btrfs_insert_inode_ref(trans, dest, 9495 new_dentry->d_name.name, 9496 new_dentry->d_name.len, 9497 old_ino, 9498 btrfs_ino(BTRFS_I(new_dir)), 9499 old_idx); 9500 if (ret) 9501 goto out_fail; 9502 } 9503 9504 /* And now for the dest. */ 9505 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9506 /* force full log commit if subvolume involved. */ 9507 btrfs_set_log_full_commit(fs_info, trans); 9508 } else { 9509 btrfs_pin_log_trans(dest); 9510 dest_log_pinned = true; 9511 ret = btrfs_insert_inode_ref(trans, root, 9512 old_dentry->d_name.name, 9513 old_dentry->d_name.len, 9514 new_ino, 9515 btrfs_ino(BTRFS_I(old_dir)), 9516 new_idx); 9517 if (ret) 9518 goto out_fail; 9519 } 9520 9521 /* Update inode version and ctime/mtime. */ 9522 inode_inc_iversion(old_dir); 9523 inode_inc_iversion(new_dir); 9524 inode_inc_iversion(old_inode); 9525 inode_inc_iversion(new_inode); 9526 old_dir->i_ctime = old_dir->i_mtime = ctime; 9527 new_dir->i_ctime = new_dir->i_mtime = ctime; 9528 old_inode->i_ctime = ctime; 9529 new_inode->i_ctime = ctime; 9530 9531 if (old_dentry->d_parent != new_dentry->d_parent) { 9532 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9533 BTRFS_I(old_inode), 1); 9534 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9535 BTRFS_I(new_inode), 1); 9536 } 9537 9538 /* src is a subvolume */ 9539 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9540 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9541 ret = btrfs_unlink_subvol(trans, root, old_dir, 9542 root_objectid, 9543 old_dentry->d_name.name, 9544 old_dentry->d_name.len); 9545 } else { /* src is an inode */ 9546 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9547 BTRFS_I(old_dentry->d_inode), 9548 old_dentry->d_name.name, 9549 old_dentry->d_name.len); 9550 if (!ret) 9551 ret = btrfs_update_inode(trans, root, old_inode); 9552 } 9553 if (ret) { 9554 btrfs_abort_transaction(trans, ret); 9555 goto out_fail; 9556 } 9557 9558 /* dest is a subvolume */ 9559 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9560 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid; 9561 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9562 root_objectid, 9563 new_dentry->d_name.name, 9564 new_dentry->d_name.len); 9565 } else { /* dest is an inode */ 9566 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9567 BTRFS_I(new_dentry->d_inode), 9568 new_dentry->d_name.name, 9569 new_dentry->d_name.len); 9570 if (!ret) 9571 ret = btrfs_update_inode(trans, dest, new_inode); 9572 } 9573 if (ret) { 9574 btrfs_abort_transaction(trans, ret); 9575 goto out_fail; 9576 } 9577 9578 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9579 new_dentry->d_name.name, 9580 new_dentry->d_name.len, 0, old_idx); 9581 if (ret) { 9582 btrfs_abort_transaction(trans, ret); 9583 goto out_fail; 9584 } 9585 9586 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9587 old_dentry->d_name.name, 9588 old_dentry->d_name.len, 0, new_idx); 9589 if (ret) { 9590 btrfs_abort_transaction(trans, ret); 9591 goto out_fail; 9592 } 9593 9594 if (old_inode->i_nlink == 1) 9595 BTRFS_I(old_inode)->dir_index = old_idx; 9596 if (new_inode->i_nlink == 1) 9597 BTRFS_I(new_inode)->dir_index = new_idx; 9598 9599 if (root_log_pinned) { 9600 parent = new_dentry->d_parent; 9601 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9602 parent); 9603 btrfs_end_log_trans(root); 9604 root_log_pinned = false; 9605 } 9606 if (dest_log_pinned) { 9607 parent = old_dentry->d_parent; 9608 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 9609 parent); 9610 btrfs_end_log_trans(dest); 9611 dest_log_pinned = false; 9612 } 9613 out_fail: 9614 /* 9615 * If we have pinned a log and an error happened, we unpin tasks 9616 * trying to sync the log and force them to fallback to a transaction 9617 * commit if the log currently contains any of the inodes involved in 9618 * this rename operation (to ensure we do not persist a log with an 9619 * inconsistent state for any of these inodes or leading to any 9620 * inconsistencies when replayed). If the transaction was aborted, the 9621 * abortion reason is propagated to userspace when attempting to commit 9622 * the transaction. If the log does not contain any of these inodes, we 9623 * allow the tasks to sync it. 9624 */ 9625 if (ret && (root_log_pinned || dest_log_pinned)) { 9626 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9627 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9628 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9629 (new_inode && 9630 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9631 btrfs_set_log_full_commit(fs_info, trans); 9632 9633 if (root_log_pinned) { 9634 btrfs_end_log_trans(root); 9635 root_log_pinned = false; 9636 } 9637 if (dest_log_pinned) { 9638 btrfs_end_log_trans(dest); 9639 dest_log_pinned = false; 9640 } 9641 } 9642 ret = btrfs_end_transaction(trans); 9643 out_notrans: 9644 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 9645 up_read(&fs_info->subvol_sem); 9646 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9647 up_read(&fs_info->subvol_sem); 9648 9649 return ret; 9650 } 9651 9652 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9653 struct btrfs_root *root, 9654 struct inode *dir, 9655 struct dentry *dentry) 9656 { 9657 int ret; 9658 struct inode *inode; 9659 u64 objectid; 9660 u64 index; 9661 9662 ret = btrfs_find_free_ino(root, &objectid); 9663 if (ret) 9664 return ret; 9665 9666 inode = btrfs_new_inode(trans, root, dir, 9667 dentry->d_name.name, 9668 dentry->d_name.len, 9669 btrfs_ino(BTRFS_I(dir)), 9670 objectid, 9671 S_IFCHR | WHITEOUT_MODE, 9672 &index); 9673 9674 if (IS_ERR(inode)) { 9675 ret = PTR_ERR(inode); 9676 return ret; 9677 } 9678 9679 inode->i_op = &btrfs_special_inode_operations; 9680 init_special_inode(inode, inode->i_mode, 9681 WHITEOUT_DEV); 9682 9683 ret = btrfs_init_inode_security(trans, inode, dir, 9684 &dentry->d_name); 9685 if (ret) 9686 goto out; 9687 9688 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9689 BTRFS_I(inode), 0, index); 9690 if (ret) 9691 goto out; 9692 9693 ret = btrfs_update_inode(trans, root, inode); 9694 out: 9695 unlock_new_inode(inode); 9696 if (ret) 9697 inode_dec_link_count(inode); 9698 iput(inode); 9699 9700 return ret; 9701 } 9702 9703 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9704 struct inode *new_dir, struct dentry *new_dentry, 9705 unsigned int flags) 9706 { 9707 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9708 struct btrfs_trans_handle *trans; 9709 unsigned int trans_num_items; 9710 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9711 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9712 struct inode *new_inode = d_inode(new_dentry); 9713 struct inode *old_inode = d_inode(old_dentry); 9714 u64 index = 0; 9715 u64 root_objectid; 9716 int ret; 9717 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9718 bool log_pinned = false; 9719 9720 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9721 return -EPERM; 9722 9723 /* we only allow rename subvolume link between subvolumes */ 9724 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9725 return -EXDEV; 9726 9727 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9728 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9729 return -ENOTEMPTY; 9730 9731 if (S_ISDIR(old_inode->i_mode) && new_inode && 9732 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9733 return -ENOTEMPTY; 9734 9735 9736 /* check for collisions, even if the name isn't there */ 9737 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9738 new_dentry->d_name.name, 9739 new_dentry->d_name.len); 9740 9741 if (ret) { 9742 if (ret == -EEXIST) { 9743 /* we shouldn't get 9744 * eexist without a new_inode */ 9745 if (WARN_ON(!new_inode)) { 9746 return ret; 9747 } 9748 } else { 9749 /* maybe -EOVERFLOW */ 9750 return ret; 9751 } 9752 } 9753 ret = 0; 9754 9755 /* 9756 * we're using rename to replace one file with another. Start IO on it 9757 * now so we don't add too much work to the end of the transaction 9758 */ 9759 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9760 filemap_flush(old_inode->i_mapping); 9761 9762 /* close the racy window with snapshot create/destroy ioctl */ 9763 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9764 down_read(&fs_info->subvol_sem); 9765 /* 9766 * We want to reserve the absolute worst case amount of items. So if 9767 * both inodes are subvols and we need to unlink them then that would 9768 * require 4 item modifications, but if they are both normal inodes it 9769 * would require 5 item modifications, so we'll assume they are normal 9770 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9771 * should cover the worst case number of items we'll modify. 9772 * If our rename has the whiteout flag, we need more 5 units for the 9773 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9774 * when selinux is enabled). 9775 */ 9776 trans_num_items = 11; 9777 if (flags & RENAME_WHITEOUT) 9778 trans_num_items += 5; 9779 trans = btrfs_start_transaction(root, trans_num_items); 9780 if (IS_ERR(trans)) { 9781 ret = PTR_ERR(trans); 9782 goto out_notrans; 9783 } 9784 9785 if (dest != root) 9786 btrfs_record_root_in_trans(trans, dest); 9787 9788 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9789 if (ret) 9790 goto out_fail; 9791 9792 BTRFS_I(old_inode)->dir_index = 0ULL; 9793 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9794 /* force full log commit if subvolume involved. */ 9795 btrfs_set_log_full_commit(fs_info, trans); 9796 } else { 9797 btrfs_pin_log_trans(root); 9798 log_pinned = true; 9799 ret = btrfs_insert_inode_ref(trans, dest, 9800 new_dentry->d_name.name, 9801 new_dentry->d_name.len, 9802 old_ino, 9803 btrfs_ino(BTRFS_I(new_dir)), index); 9804 if (ret) 9805 goto out_fail; 9806 } 9807 9808 inode_inc_iversion(old_dir); 9809 inode_inc_iversion(new_dir); 9810 inode_inc_iversion(old_inode); 9811 old_dir->i_ctime = old_dir->i_mtime = 9812 new_dir->i_ctime = new_dir->i_mtime = 9813 old_inode->i_ctime = current_time(old_dir); 9814 9815 if (old_dentry->d_parent != new_dentry->d_parent) 9816 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9817 BTRFS_I(old_inode), 1); 9818 9819 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9820 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 9821 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 9822 old_dentry->d_name.name, 9823 old_dentry->d_name.len); 9824 } else { 9825 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9826 BTRFS_I(d_inode(old_dentry)), 9827 old_dentry->d_name.name, 9828 old_dentry->d_name.len); 9829 if (!ret) 9830 ret = btrfs_update_inode(trans, root, old_inode); 9831 } 9832 if (ret) { 9833 btrfs_abort_transaction(trans, ret); 9834 goto out_fail; 9835 } 9836 9837 if (new_inode) { 9838 inode_inc_iversion(new_inode); 9839 new_inode->i_ctime = current_time(new_inode); 9840 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9841 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9842 root_objectid = BTRFS_I(new_inode)->location.objectid; 9843 ret = btrfs_unlink_subvol(trans, dest, new_dir, 9844 root_objectid, 9845 new_dentry->d_name.name, 9846 new_dentry->d_name.len); 9847 BUG_ON(new_inode->i_nlink == 0); 9848 } else { 9849 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9850 BTRFS_I(d_inode(new_dentry)), 9851 new_dentry->d_name.name, 9852 new_dentry->d_name.len); 9853 } 9854 if (!ret && new_inode->i_nlink == 0) 9855 ret = btrfs_orphan_add(trans, 9856 BTRFS_I(d_inode(new_dentry))); 9857 if (ret) { 9858 btrfs_abort_transaction(trans, ret); 9859 goto out_fail; 9860 } 9861 } 9862 9863 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9864 new_dentry->d_name.name, 9865 new_dentry->d_name.len, 0, index); 9866 if (ret) { 9867 btrfs_abort_transaction(trans, ret); 9868 goto out_fail; 9869 } 9870 9871 if (old_inode->i_nlink == 1) 9872 BTRFS_I(old_inode)->dir_index = index; 9873 9874 if (log_pinned) { 9875 struct dentry *parent = new_dentry->d_parent; 9876 9877 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9878 parent); 9879 btrfs_end_log_trans(root); 9880 log_pinned = false; 9881 } 9882 9883 if (flags & RENAME_WHITEOUT) { 9884 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9885 old_dentry); 9886 9887 if (ret) { 9888 btrfs_abort_transaction(trans, ret); 9889 goto out_fail; 9890 } 9891 } 9892 out_fail: 9893 /* 9894 * If we have pinned the log and an error happened, we unpin tasks 9895 * trying to sync the log and force them to fallback to a transaction 9896 * commit if the log currently contains any of the inodes involved in 9897 * this rename operation (to ensure we do not persist a log with an 9898 * inconsistent state for any of these inodes or leading to any 9899 * inconsistencies when replayed). If the transaction was aborted, the 9900 * abortion reason is propagated to userspace when attempting to commit 9901 * the transaction. If the log does not contain any of these inodes, we 9902 * allow the tasks to sync it. 9903 */ 9904 if (ret && log_pinned) { 9905 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9906 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9907 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9908 (new_inode && 9909 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9910 btrfs_set_log_full_commit(fs_info, trans); 9911 9912 btrfs_end_log_trans(root); 9913 log_pinned = false; 9914 } 9915 btrfs_end_transaction(trans); 9916 out_notrans: 9917 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9918 up_read(&fs_info->subvol_sem); 9919 9920 return ret; 9921 } 9922 9923 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9924 struct inode *new_dir, struct dentry *new_dentry, 9925 unsigned int flags) 9926 { 9927 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9928 return -EINVAL; 9929 9930 if (flags & RENAME_EXCHANGE) 9931 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9932 new_dentry); 9933 9934 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9935 } 9936 9937 struct btrfs_delalloc_work { 9938 struct inode *inode; 9939 struct completion completion; 9940 struct list_head list; 9941 struct btrfs_work work; 9942 }; 9943 9944 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9945 { 9946 struct btrfs_delalloc_work *delalloc_work; 9947 struct inode *inode; 9948 9949 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9950 work); 9951 inode = delalloc_work->inode; 9952 filemap_flush(inode->i_mapping); 9953 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9954 &BTRFS_I(inode)->runtime_flags)) 9955 filemap_flush(inode->i_mapping); 9956 9957 iput(inode); 9958 complete(&delalloc_work->completion); 9959 } 9960 9961 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9962 { 9963 struct btrfs_delalloc_work *work; 9964 9965 work = kmalloc(sizeof(*work), GFP_NOFS); 9966 if (!work) 9967 return NULL; 9968 9969 init_completion(&work->completion); 9970 INIT_LIST_HEAD(&work->list); 9971 work->inode = inode; 9972 WARN_ON_ONCE(!inode); 9973 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, 9974 btrfs_run_delalloc_work, NULL, NULL); 9975 9976 return work; 9977 } 9978 9979 /* 9980 * some fairly slow code that needs optimization. This walks the list 9981 * of all the inodes with pending delalloc and forces them to disk. 9982 */ 9983 static int start_delalloc_inodes(struct btrfs_root *root, int nr) 9984 { 9985 struct btrfs_inode *binode; 9986 struct inode *inode; 9987 struct btrfs_delalloc_work *work, *next; 9988 struct list_head works; 9989 struct list_head splice; 9990 int ret = 0; 9991 9992 INIT_LIST_HEAD(&works); 9993 INIT_LIST_HEAD(&splice); 9994 9995 mutex_lock(&root->delalloc_mutex); 9996 spin_lock(&root->delalloc_lock); 9997 list_splice_init(&root->delalloc_inodes, &splice); 9998 while (!list_empty(&splice)) { 9999 binode = list_entry(splice.next, struct btrfs_inode, 10000 delalloc_inodes); 10001 10002 list_move_tail(&binode->delalloc_inodes, 10003 &root->delalloc_inodes); 10004 inode = igrab(&binode->vfs_inode); 10005 if (!inode) { 10006 cond_resched_lock(&root->delalloc_lock); 10007 continue; 10008 } 10009 spin_unlock(&root->delalloc_lock); 10010 10011 work = btrfs_alloc_delalloc_work(inode); 10012 if (!work) { 10013 iput(inode); 10014 ret = -ENOMEM; 10015 goto out; 10016 } 10017 list_add_tail(&work->list, &works); 10018 btrfs_queue_work(root->fs_info->flush_workers, 10019 &work->work); 10020 ret++; 10021 if (nr != -1 && ret >= nr) 10022 goto out; 10023 cond_resched(); 10024 spin_lock(&root->delalloc_lock); 10025 } 10026 spin_unlock(&root->delalloc_lock); 10027 10028 out: 10029 list_for_each_entry_safe(work, next, &works, list) { 10030 list_del_init(&work->list); 10031 wait_for_completion(&work->completion); 10032 kfree(work); 10033 } 10034 10035 if (!list_empty(&splice)) { 10036 spin_lock(&root->delalloc_lock); 10037 list_splice_tail(&splice, &root->delalloc_inodes); 10038 spin_unlock(&root->delalloc_lock); 10039 } 10040 mutex_unlock(&root->delalloc_mutex); 10041 return ret; 10042 } 10043 10044 int btrfs_start_delalloc_inodes(struct btrfs_root *root) 10045 { 10046 struct btrfs_fs_info *fs_info = root->fs_info; 10047 int ret; 10048 10049 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10050 return -EROFS; 10051 10052 ret = start_delalloc_inodes(root, -1); 10053 if (ret > 0) 10054 ret = 0; 10055 return ret; 10056 } 10057 10058 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) 10059 { 10060 struct btrfs_root *root; 10061 struct list_head splice; 10062 int ret; 10063 10064 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 10065 return -EROFS; 10066 10067 INIT_LIST_HEAD(&splice); 10068 10069 mutex_lock(&fs_info->delalloc_root_mutex); 10070 spin_lock(&fs_info->delalloc_root_lock); 10071 list_splice_init(&fs_info->delalloc_roots, &splice); 10072 while (!list_empty(&splice) && nr) { 10073 root = list_first_entry(&splice, struct btrfs_root, 10074 delalloc_root); 10075 root = btrfs_grab_fs_root(root); 10076 BUG_ON(!root); 10077 list_move_tail(&root->delalloc_root, 10078 &fs_info->delalloc_roots); 10079 spin_unlock(&fs_info->delalloc_root_lock); 10080 10081 ret = start_delalloc_inodes(root, nr); 10082 btrfs_put_fs_root(root); 10083 if (ret < 0) 10084 goto out; 10085 10086 if (nr != -1) { 10087 nr -= ret; 10088 WARN_ON(nr < 0); 10089 } 10090 spin_lock(&fs_info->delalloc_root_lock); 10091 } 10092 spin_unlock(&fs_info->delalloc_root_lock); 10093 10094 ret = 0; 10095 out: 10096 if (!list_empty(&splice)) { 10097 spin_lock(&fs_info->delalloc_root_lock); 10098 list_splice_tail(&splice, &fs_info->delalloc_roots); 10099 spin_unlock(&fs_info->delalloc_root_lock); 10100 } 10101 mutex_unlock(&fs_info->delalloc_root_mutex); 10102 return ret; 10103 } 10104 10105 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 10106 const char *symname) 10107 { 10108 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10109 struct btrfs_trans_handle *trans; 10110 struct btrfs_root *root = BTRFS_I(dir)->root; 10111 struct btrfs_path *path; 10112 struct btrfs_key key; 10113 struct inode *inode = NULL; 10114 int err; 10115 int drop_inode = 0; 10116 u64 objectid; 10117 u64 index = 0; 10118 int name_len; 10119 int datasize; 10120 unsigned long ptr; 10121 struct btrfs_file_extent_item *ei; 10122 struct extent_buffer *leaf; 10123 10124 name_len = strlen(symname); 10125 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 10126 return -ENAMETOOLONG; 10127 10128 /* 10129 * 2 items for inode item and ref 10130 * 2 items for dir items 10131 * 1 item for updating parent inode item 10132 * 1 item for the inline extent item 10133 * 1 item for xattr if selinux is on 10134 */ 10135 trans = btrfs_start_transaction(root, 7); 10136 if (IS_ERR(trans)) 10137 return PTR_ERR(trans); 10138 10139 err = btrfs_find_free_ino(root, &objectid); 10140 if (err) 10141 goto out_unlock; 10142 10143 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 10144 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 10145 objectid, S_IFLNK|S_IRWXUGO, &index); 10146 if (IS_ERR(inode)) { 10147 err = PTR_ERR(inode); 10148 goto out_unlock; 10149 } 10150 10151 /* 10152 * If the active LSM wants to access the inode during 10153 * d_instantiate it needs these. Smack checks to see 10154 * if the filesystem supports xattrs by looking at the 10155 * ops vector. 10156 */ 10157 inode->i_fop = &btrfs_file_operations; 10158 inode->i_op = &btrfs_file_inode_operations; 10159 inode->i_mapping->a_ops = &btrfs_aops; 10160 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10161 10162 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 10163 if (err) 10164 goto out_unlock_inode; 10165 10166 path = btrfs_alloc_path(); 10167 if (!path) { 10168 err = -ENOMEM; 10169 goto out_unlock_inode; 10170 } 10171 key.objectid = btrfs_ino(BTRFS_I(inode)); 10172 key.offset = 0; 10173 key.type = BTRFS_EXTENT_DATA_KEY; 10174 datasize = btrfs_file_extent_calc_inline_size(name_len); 10175 err = btrfs_insert_empty_item(trans, root, path, &key, 10176 datasize); 10177 if (err) { 10178 btrfs_free_path(path); 10179 goto out_unlock_inode; 10180 } 10181 leaf = path->nodes[0]; 10182 ei = btrfs_item_ptr(leaf, path->slots[0], 10183 struct btrfs_file_extent_item); 10184 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 10185 btrfs_set_file_extent_type(leaf, ei, 10186 BTRFS_FILE_EXTENT_INLINE); 10187 btrfs_set_file_extent_encryption(leaf, ei, 0); 10188 btrfs_set_file_extent_compression(leaf, ei, 0); 10189 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 10190 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 10191 10192 ptr = btrfs_file_extent_inline_start(ei); 10193 write_extent_buffer(leaf, symname, ptr, name_len); 10194 btrfs_mark_buffer_dirty(leaf); 10195 btrfs_free_path(path); 10196 10197 inode->i_op = &btrfs_symlink_inode_operations; 10198 inode_nohighmem(inode); 10199 inode->i_mapping->a_ops = &btrfs_symlink_aops; 10200 inode_set_bytes(inode, name_len); 10201 btrfs_i_size_write(BTRFS_I(inode), name_len); 10202 err = btrfs_update_inode(trans, root, inode); 10203 /* 10204 * Last step, add directory indexes for our symlink inode. This is the 10205 * last step to avoid extra cleanup of these indexes if an error happens 10206 * elsewhere above. 10207 */ 10208 if (!err) 10209 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 10210 BTRFS_I(inode), 0, index); 10211 if (err) { 10212 drop_inode = 1; 10213 goto out_unlock_inode; 10214 } 10215 10216 d_instantiate_new(dentry, inode); 10217 10218 out_unlock: 10219 btrfs_end_transaction(trans); 10220 if (drop_inode) { 10221 inode_dec_link_count(inode); 10222 iput(inode); 10223 } 10224 btrfs_btree_balance_dirty(fs_info); 10225 return err; 10226 10227 out_unlock_inode: 10228 drop_inode = 1; 10229 unlock_new_inode(inode); 10230 goto out_unlock; 10231 } 10232 10233 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 10234 u64 start, u64 num_bytes, u64 min_size, 10235 loff_t actual_len, u64 *alloc_hint, 10236 struct btrfs_trans_handle *trans) 10237 { 10238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 10239 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 10240 struct extent_map *em; 10241 struct btrfs_root *root = BTRFS_I(inode)->root; 10242 struct btrfs_key ins; 10243 u64 cur_offset = start; 10244 u64 i_size; 10245 u64 cur_bytes; 10246 u64 last_alloc = (u64)-1; 10247 int ret = 0; 10248 bool own_trans = true; 10249 u64 end = start + num_bytes - 1; 10250 10251 if (trans) 10252 own_trans = false; 10253 while (num_bytes > 0) { 10254 if (own_trans) { 10255 trans = btrfs_start_transaction(root, 3); 10256 if (IS_ERR(trans)) { 10257 ret = PTR_ERR(trans); 10258 break; 10259 } 10260 } 10261 10262 cur_bytes = min_t(u64, num_bytes, SZ_256M); 10263 cur_bytes = max(cur_bytes, min_size); 10264 /* 10265 * If we are severely fragmented we could end up with really 10266 * small allocations, so if the allocator is returning small 10267 * chunks lets make its job easier by only searching for those 10268 * sized chunks. 10269 */ 10270 cur_bytes = min(cur_bytes, last_alloc); 10271 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 10272 min_size, 0, *alloc_hint, &ins, 1, 0); 10273 if (ret) { 10274 if (own_trans) 10275 btrfs_end_transaction(trans); 10276 break; 10277 } 10278 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10279 10280 last_alloc = ins.offset; 10281 ret = insert_reserved_file_extent(trans, inode, 10282 cur_offset, ins.objectid, 10283 ins.offset, ins.offset, 10284 ins.offset, 0, 0, 0, 10285 BTRFS_FILE_EXTENT_PREALLOC); 10286 if (ret) { 10287 btrfs_free_reserved_extent(fs_info, ins.objectid, 10288 ins.offset, 0); 10289 btrfs_abort_transaction(trans, ret); 10290 if (own_trans) 10291 btrfs_end_transaction(trans); 10292 break; 10293 } 10294 10295 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10296 cur_offset + ins.offset -1, 0); 10297 10298 em = alloc_extent_map(); 10299 if (!em) { 10300 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 10301 &BTRFS_I(inode)->runtime_flags); 10302 goto next; 10303 } 10304 10305 em->start = cur_offset; 10306 em->orig_start = cur_offset; 10307 em->len = ins.offset; 10308 em->block_start = ins.objectid; 10309 em->block_len = ins.offset; 10310 em->orig_block_len = ins.offset; 10311 em->ram_bytes = ins.offset; 10312 em->bdev = fs_info->fs_devices->latest_bdev; 10313 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 10314 em->generation = trans->transid; 10315 10316 while (1) { 10317 write_lock(&em_tree->lock); 10318 ret = add_extent_mapping(em_tree, em, 1); 10319 write_unlock(&em_tree->lock); 10320 if (ret != -EEXIST) 10321 break; 10322 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 10323 cur_offset + ins.offset - 1, 10324 0); 10325 } 10326 free_extent_map(em); 10327 next: 10328 num_bytes -= ins.offset; 10329 cur_offset += ins.offset; 10330 *alloc_hint = ins.objectid + ins.offset; 10331 10332 inode_inc_iversion(inode); 10333 inode->i_ctime = current_time(inode); 10334 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10335 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10336 (actual_len > inode->i_size) && 10337 (cur_offset > inode->i_size)) { 10338 if (cur_offset > actual_len) 10339 i_size = actual_len; 10340 else 10341 i_size = cur_offset; 10342 i_size_write(inode, i_size); 10343 btrfs_ordered_update_i_size(inode, i_size, NULL); 10344 } 10345 10346 ret = btrfs_update_inode(trans, root, inode); 10347 10348 if (ret) { 10349 btrfs_abort_transaction(trans, ret); 10350 if (own_trans) 10351 btrfs_end_transaction(trans); 10352 break; 10353 } 10354 10355 if (own_trans) 10356 btrfs_end_transaction(trans); 10357 } 10358 if (cur_offset < end) 10359 btrfs_free_reserved_data_space(inode, NULL, cur_offset, 10360 end - cur_offset + 1); 10361 return ret; 10362 } 10363 10364 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10365 u64 start, u64 num_bytes, u64 min_size, 10366 loff_t actual_len, u64 *alloc_hint) 10367 { 10368 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10369 min_size, actual_len, alloc_hint, 10370 NULL); 10371 } 10372 10373 int btrfs_prealloc_file_range_trans(struct inode *inode, 10374 struct btrfs_trans_handle *trans, int mode, 10375 u64 start, u64 num_bytes, u64 min_size, 10376 loff_t actual_len, u64 *alloc_hint) 10377 { 10378 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10379 min_size, actual_len, alloc_hint, trans); 10380 } 10381 10382 static int btrfs_set_page_dirty(struct page *page) 10383 { 10384 return __set_page_dirty_nobuffers(page); 10385 } 10386 10387 static int btrfs_permission(struct inode *inode, int mask) 10388 { 10389 struct btrfs_root *root = BTRFS_I(inode)->root; 10390 umode_t mode = inode->i_mode; 10391 10392 if (mask & MAY_WRITE && 10393 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10394 if (btrfs_root_readonly(root)) 10395 return -EROFS; 10396 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10397 return -EACCES; 10398 } 10399 return generic_permission(inode, mask); 10400 } 10401 10402 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 10403 { 10404 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10405 struct btrfs_trans_handle *trans; 10406 struct btrfs_root *root = BTRFS_I(dir)->root; 10407 struct inode *inode = NULL; 10408 u64 objectid; 10409 u64 index; 10410 int ret = 0; 10411 10412 /* 10413 * 5 units required for adding orphan entry 10414 */ 10415 trans = btrfs_start_transaction(root, 5); 10416 if (IS_ERR(trans)) 10417 return PTR_ERR(trans); 10418 10419 ret = btrfs_find_free_ino(root, &objectid); 10420 if (ret) 10421 goto out; 10422 10423 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 10424 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10425 if (IS_ERR(inode)) { 10426 ret = PTR_ERR(inode); 10427 inode = NULL; 10428 goto out; 10429 } 10430 10431 inode->i_fop = &btrfs_file_operations; 10432 inode->i_op = &btrfs_file_inode_operations; 10433 10434 inode->i_mapping->a_ops = &btrfs_aops; 10435 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 10436 10437 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10438 if (ret) 10439 goto out_inode; 10440 10441 ret = btrfs_update_inode(trans, root, inode); 10442 if (ret) 10443 goto out_inode; 10444 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10445 if (ret) 10446 goto out_inode; 10447 10448 /* 10449 * We set number of links to 0 in btrfs_new_inode(), and here we set 10450 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10451 * through: 10452 * 10453 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10454 */ 10455 set_nlink(inode, 1); 10456 unlock_new_inode(inode); 10457 d_tmpfile(dentry, inode); 10458 mark_inode_dirty(inode); 10459 10460 out: 10461 btrfs_end_transaction(trans); 10462 if (ret) 10463 iput(inode); 10464 btrfs_btree_balance_dirty(fs_info); 10465 return ret; 10466 10467 out_inode: 10468 unlock_new_inode(inode); 10469 goto out; 10470 10471 } 10472 10473 __attribute__((const)) 10474 static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) 10475 { 10476 return -EAGAIN; 10477 } 10478 10479 static struct btrfs_fs_info *iotree_fs_info(void *private_data) 10480 { 10481 struct inode *inode = private_data; 10482 return btrfs_sb(inode->i_sb); 10483 } 10484 10485 static void btrfs_check_extent_io_range(void *private_data, const char *caller, 10486 u64 start, u64 end) 10487 { 10488 struct inode *inode = private_data; 10489 u64 isize; 10490 10491 isize = i_size_read(inode); 10492 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 10493 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, 10494 "%s: ino %llu isize %llu odd range [%llu,%llu]", 10495 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); 10496 } 10497 } 10498 10499 void btrfs_set_range_writeback(void *private_data, u64 start, u64 end) 10500 { 10501 struct inode *inode = private_data; 10502 unsigned long index = start >> PAGE_SHIFT; 10503 unsigned long end_index = end >> PAGE_SHIFT; 10504 struct page *page; 10505 10506 while (index <= end_index) { 10507 page = find_get_page(inode->i_mapping, index); 10508 ASSERT(page); /* Pages should be in the extent_io_tree */ 10509 set_page_writeback(page); 10510 put_page(page); 10511 index++; 10512 } 10513 } 10514 10515 static const struct inode_operations btrfs_dir_inode_operations = { 10516 .getattr = btrfs_getattr, 10517 .lookup = btrfs_lookup, 10518 .create = btrfs_create, 10519 .unlink = btrfs_unlink, 10520 .link = btrfs_link, 10521 .mkdir = btrfs_mkdir, 10522 .rmdir = btrfs_rmdir, 10523 .rename = btrfs_rename2, 10524 .symlink = btrfs_symlink, 10525 .setattr = btrfs_setattr, 10526 .mknod = btrfs_mknod, 10527 .listxattr = btrfs_listxattr, 10528 .permission = btrfs_permission, 10529 .get_acl = btrfs_get_acl, 10530 .set_acl = btrfs_set_acl, 10531 .update_time = btrfs_update_time, 10532 .tmpfile = btrfs_tmpfile, 10533 }; 10534 static const struct inode_operations btrfs_dir_ro_inode_operations = { 10535 .lookup = btrfs_lookup, 10536 .permission = btrfs_permission, 10537 .update_time = btrfs_update_time, 10538 }; 10539 10540 static const struct file_operations btrfs_dir_file_operations = { 10541 .llseek = generic_file_llseek, 10542 .read = generic_read_dir, 10543 .iterate_shared = btrfs_real_readdir, 10544 .open = btrfs_opendir, 10545 .unlocked_ioctl = btrfs_ioctl, 10546 #ifdef CONFIG_COMPAT 10547 .compat_ioctl = btrfs_compat_ioctl, 10548 #endif 10549 .release = btrfs_release_file, 10550 .fsync = btrfs_sync_file, 10551 }; 10552 10553 static const struct extent_io_ops btrfs_extent_io_ops = { 10554 /* mandatory callbacks */ 10555 .submit_bio_hook = btrfs_submit_bio_hook, 10556 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 10557 .merge_bio_hook = btrfs_merge_bio_hook, 10558 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook, 10559 .tree_fs_info = iotree_fs_info, 10560 .set_range_writeback = btrfs_set_range_writeback, 10561 10562 /* optional callbacks */ 10563 .fill_delalloc = run_delalloc_range, 10564 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 10565 .writepage_start_hook = btrfs_writepage_start_hook, 10566 .set_bit_hook = btrfs_set_bit_hook, 10567 .clear_bit_hook = btrfs_clear_bit_hook, 10568 .merge_extent_hook = btrfs_merge_extent_hook, 10569 .split_extent_hook = btrfs_split_extent_hook, 10570 .check_extent_io_range = btrfs_check_extent_io_range, 10571 }; 10572 10573 /* 10574 * btrfs doesn't support the bmap operation because swapfiles 10575 * use bmap to make a mapping of extents in the file. They assume 10576 * these extents won't change over the life of the file and they 10577 * use the bmap result to do IO directly to the drive. 10578 * 10579 * the btrfs bmap call would return logical addresses that aren't 10580 * suitable for IO and they also will change frequently as COW 10581 * operations happen. So, swapfile + btrfs == corruption. 10582 * 10583 * For now we're avoiding this by dropping bmap. 10584 */ 10585 static const struct address_space_operations btrfs_aops = { 10586 .readpage = btrfs_readpage, 10587 .writepage = btrfs_writepage, 10588 .writepages = btrfs_writepages, 10589 .readpages = btrfs_readpages, 10590 .direct_IO = btrfs_direct_IO, 10591 .invalidatepage = btrfs_invalidatepage, 10592 .releasepage = btrfs_releasepage, 10593 .set_page_dirty = btrfs_set_page_dirty, 10594 .error_remove_page = generic_error_remove_page, 10595 }; 10596 10597 static const struct address_space_operations btrfs_symlink_aops = { 10598 .readpage = btrfs_readpage, 10599 .writepage = btrfs_writepage, 10600 .invalidatepage = btrfs_invalidatepage, 10601 .releasepage = btrfs_releasepage, 10602 }; 10603 10604 static const struct inode_operations btrfs_file_inode_operations = { 10605 .getattr = btrfs_getattr, 10606 .setattr = btrfs_setattr, 10607 .listxattr = btrfs_listxattr, 10608 .permission = btrfs_permission, 10609 .fiemap = btrfs_fiemap, 10610 .get_acl = btrfs_get_acl, 10611 .set_acl = btrfs_set_acl, 10612 .update_time = btrfs_update_time, 10613 }; 10614 static const struct inode_operations btrfs_special_inode_operations = { 10615 .getattr = btrfs_getattr, 10616 .setattr = btrfs_setattr, 10617 .permission = btrfs_permission, 10618 .listxattr = btrfs_listxattr, 10619 .get_acl = btrfs_get_acl, 10620 .set_acl = btrfs_set_acl, 10621 .update_time = btrfs_update_time, 10622 }; 10623 static const struct inode_operations btrfs_symlink_inode_operations = { 10624 .get_link = page_get_link, 10625 .getattr = btrfs_getattr, 10626 .setattr = btrfs_setattr, 10627 .permission = btrfs_permission, 10628 .listxattr = btrfs_listxattr, 10629 .update_time = btrfs_update_time, 10630 }; 10631 10632 const struct dentry_operations btrfs_dentry_operations = { 10633 .d_delete = btrfs_dentry_delete, 10634 }; 10635