xref: /linux/fs/btrfs/inode.c (revision 5294bac97e12bdabbb97e9adf44d388612a700b8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/buffer_head.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <asm/unaligned.h>
35 #include "misc.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "print-tree.h"
41 #include "ordered-data.h"
42 #include "xattr.h"
43 #include "tree-log.h"
44 #include "volumes.h"
45 #include "compression.h"
46 #include "locking.h"
47 #include "free-space-cache.h"
48 #include "inode-map.h"
49 #include "props.h"
50 #include "qgroup.h"
51 #include "delalloc-space.h"
52 #include "block-group.h"
53 #include "space-info.h"
54 
55 struct btrfs_iget_args {
56 	u64 ino;
57 	struct btrfs_root *root;
58 };
59 
60 struct btrfs_dio_data {
61 	u64 reserve;
62 	u64 unsubmitted_oe_range_start;
63 	u64 unsubmitted_oe_range_end;
64 	int overwrite;
65 };
66 
67 static const struct inode_operations btrfs_dir_inode_operations;
68 static const struct inode_operations btrfs_symlink_inode_operations;
69 static const struct inode_operations btrfs_special_inode_operations;
70 static const struct inode_operations btrfs_file_inode_operations;
71 static const struct address_space_operations btrfs_aops;
72 static const struct file_operations btrfs_dir_file_operations;
73 static const struct extent_io_ops btrfs_extent_io_ops;
74 
75 static struct kmem_cache *btrfs_inode_cachep;
76 struct kmem_cache *btrfs_trans_handle_cachep;
77 struct kmem_cache *btrfs_path_cachep;
78 struct kmem_cache *btrfs_free_space_cachep;
79 struct kmem_cache *btrfs_free_space_bitmap_cachep;
80 
81 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
82 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
84 static noinline int cow_file_range(struct btrfs_inode *inode,
85 				   struct page *locked_page,
86 				   u64 start, u64 end, int *page_started,
87 				   unsigned long *nr_written, int unlock);
88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
89 				       u64 len, u64 orig_start, u64 block_start,
90 				       u64 block_len, u64 orig_block_len,
91 				       u64 ram_bytes, int compress_type,
92 				       int type);
93 
94 static void __endio_write_update_ordered(struct btrfs_inode *inode,
95 					 const u64 offset, const u64 bytes,
96 					 const bool uptodate);
97 
98 /*
99  * Cleanup all submitted ordered extents in specified range to handle errors
100  * from the btrfs_run_delalloc_range() callback.
101  *
102  * NOTE: caller must ensure that when an error happens, it can not call
103  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
104  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
105  * to be released, which we want to happen only when finishing the ordered
106  * extent (btrfs_finish_ordered_io()).
107  */
108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
109 						 struct page *locked_page,
110 						 u64 offset, u64 bytes)
111 {
112 	unsigned long index = offset >> PAGE_SHIFT;
113 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
114 	u64 page_start = page_offset(locked_page);
115 	u64 page_end = page_start + PAGE_SIZE - 1;
116 
117 	struct page *page;
118 
119 	while (index <= end_index) {
120 		page = find_get_page(inode->vfs_inode.i_mapping, index);
121 		index++;
122 		if (!page)
123 			continue;
124 		ClearPagePrivate2(page);
125 		put_page(page);
126 	}
127 
128 	/*
129 	 * In case this page belongs to the delalloc range being instantiated
130 	 * then skip it, since the first page of a range is going to be
131 	 * properly cleaned up by the caller of run_delalloc_range
132 	 */
133 	if (page_start >= offset && page_end <= (offset + bytes - 1)) {
134 		offset += PAGE_SIZE;
135 		bytes -= PAGE_SIZE;
136 	}
137 
138 	return __endio_write_update_ordered(inode, offset, bytes, false);
139 }
140 
141 static int btrfs_dirty_inode(struct inode *inode);
142 
143 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
144 void btrfs_test_inode_set_ops(struct inode *inode)
145 {
146 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
147 }
148 #endif
149 
150 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
151 				     struct inode *inode,  struct inode *dir,
152 				     const struct qstr *qstr)
153 {
154 	int err;
155 
156 	err = btrfs_init_acl(trans, inode, dir);
157 	if (!err)
158 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
159 	return err;
160 }
161 
162 /*
163  * this does all the hard work for inserting an inline extent into
164  * the btree.  The caller should have done a btrfs_drop_extents so that
165  * no overlapping inline items exist in the btree
166  */
167 static int insert_inline_extent(struct btrfs_trans_handle *trans,
168 				struct btrfs_path *path, int extent_inserted,
169 				struct btrfs_root *root, struct inode *inode,
170 				u64 start, size_t size, size_t compressed_size,
171 				int compress_type,
172 				struct page **compressed_pages)
173 {
174 	struct extent_buffer *leaf;
175 	struct page *page = NULL;
176 	char *kaddr;
177 	unsigned long ptr;
178 	struct btrfs_file_extent_item *ei;
179 	int ret;
180 	size_t cur_size = size;
181 	unsigned long offset;
182 
183 	ASSERT((compressed_size > 0 && compressed_pages) ||
184 	       (compressed_size == 0 && !compressed_pages));
185 
186 	if (compressed_size && compressed_pages)
187 		cur_size = compressed_size;
188 
189 	inode_add_bytes(inode, size);
190 
191 	if (!extent_inserted) {
192 		struct btrfs_key key;
193 		size_t datasize;
194 
195 		key.objectid = btrfs_ino(BTRFS_I(inode));
196 		key.offset = start;
197 		key.type = BTRFS_EXTENT_DATA_KEY;
198 
199 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
200 		path->leave_spinning = 1;
201 		ret = btrfs_insert_empty_item(trans, root, path, &key,
202 					      datasize);
203 		if (ret)
204 			goto fail;
205 	}
206 	leaf = path->nodes[0];
207 	ei = btrfs_item_ptr(leaf, path->slots[0],
208 			    struct btrfs_file_extent_item);
209 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
210 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
211 	btrfs_set_file_extent_encryption(leaf, ei, 0);
212 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
213 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
214 	ptr = btrfs_file_extent_inline_start(ei);
215 
216 	if (compress_type != BTRFS_COMPRESS_NONE) {
217 		struct page *cpage;
218 		int i = 0;
219 		while (compressed_size > 0) {
220 			cpage = compressed_pages[i];
221 			cur_size = min_t(unsigned long, compressed_size,
222 				       PAGE_SIZE);
223 
224 			kaddr = kmap_atomic(cpage);
225 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
226 			kunmap_atomic(kaddr);
227 
228 			i++;
229 			ptr += cur_size;
230 			compressed_size -= cur_size;
231 		}
232 		btrfs_set_file_extent_compression(leaf, ei,
233 						  compress_type);
234 	} else {
235 		page = find_get_page(inode->i_mapping,
236 				     start >> PAGE_SHIFT);
237 		btrfs_set_file_extent_compression(leaf, ei, 0);
238 		kaddr = kmap_atomic(page);
239 		offset = offset_in_page(start);
240 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
241 		kunmap_atomic(kaddr);
242 		put_page(page);
243 	}
244 	btrfs_mark_buffer_dirty(leaf);
245 	btrfs_release_path(path);
246 
247 	/*
248 	 * We align size to sectorsize for inline extents just for simplicity
249 	 * sake.
250 	 */
251 	size = ALIGN(size, root->fs_info->sectorsize);
252 	ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
253 	if (ret)
254 		goto fail;
255 
256 	/*
257 	 * we're an inline extent, so nobody can
258 	 * extend the file past i_size without locking
259 	 * a page we already have locked.
260 	 *
261 	 * We must do any isize and inode updates
262 	 * before we unlock the pages.  Otherwise we
263 	 * could end up racing with unlink.
264 	 */
265 	BTRFS_I(inode)->disk_i_size = inode->i_size;
266 	ret = btrfs_update_inode(trans, root, inode);
267 
268 fail:
269 	return ret;
270 }
271 
272 
273 /*
274  * conditionally insert an inline extent into the file.  This
275  * does the checks required to make sure the data is small enough
276  * to fit as an inline extent.
277  */
278 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start,
279 					  u64 end, size_t compressed_size,
280 					  int compress_type,
281 					  struct page **compressed_pages)
282 {
283 	struct btrfs_root *root = inode->root;
284 	struct btrfs_fs_info *fs_info = root->fs_info;
285 	struct btrfs_trans_handle *trans;
286 	u64 isize = i_size_read(&inode->vfs_inode);
287 	u64 actual_end = min(end + 1, isize);
288 	u64 inline_len = actual_end - start;
289 	u64 aligned_end = ALIGN(end, fs_info->sectorsize);
290 	u64 data_len = inline_len;
291 	int ret;
292 	struct btrfs_path *path;
293 	int extent_inserted = 0;
294 	u32 extent_item_size;
295 
296 	if (compressed_size)
297 		data_len = compressed_size;
298 
299 	if (start > 0 ||
300 	    actual_end > fs_info->sectorsize ||
301 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
302 	    (!compressed_size &&
303 	    (actual_end & (fs_info->sectorsize - 1)) == 0) ||
304 	    end + 1 < isize ||
305 	    data_len > fs_info->max_inline) {
306 		return 1;
307 	}
308 
309 	path = btrfs_alloc_path();
310 	if (!path)
311 		return -ENOMEM;
312 
313 	trans = btrfs_join_transaction(root);
314 	if (IS_ERR(trans)) {
315 		btrfs_free_path(path);
316 		return PTR_ERR(trans);
317 	}
318 	trans->block_rsv = &inode->block_rsv;
319 
320 	if (compressed_size && compressed_pages)
321 		extent_item_size = btrfs_file_extent_calc_inline_size(
322 		   compressed_size);
323 	else
324 		extent_item_size = btrfs_file_extent_calc_inline_size(
325 		    inline_len);
326 
327 	ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end,
328 				   NULL, 1, 1, extent_item_size,
329 				   &extent_inserted);
330 	if (ret) {
331 		btrfs_abort_transaction(trans, ret);
332 		goto out;
333 	}
334 
335 	if (isize > actual_end)
336 		inline_len = min_t(u64, isize, actual_end);
337 	ret = insert_inline_extent(trans, path, extent_inserted,
338 				   root, &inode->vfs_inode, start,
339 				   inline_len, compressed_size,
340 				   compress_type, compressed_pages);
341 	if (ret && ret != -ENOSPC) {
342 		btrfs_abort_transaction(trans, ret);
343 		goto out;
344 	} else if (ret == -ENOSPC) {
345 		ret = 1;
346 		goto out;
347 	}
348 
349 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
350 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
351 out:
352 	/*
353 	 * Don't forget to free the reserved space, as for inlined extent
354 	 * it won't count as data extent, free them directly here.
355 	 * And at reserve time, it's always aligned to page size, so
356 	 * just free one page here.
357 	 */
358 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
359 	btrfs_free_path(path);
360 	btrfs_end_transaction(trans);
361 	return ret;
362 }
363 
364 struct async_extent {
365 	u64 start;
366 	u64 ram_size;
367 	u64 compressed_size;
368 	struct page **pages;
369 	unsigned long nr_pages;
370 	int compress_type;
371 	struct list_head list;
372 };
373 
374 struct async_chunk {
375 	struct inode *inode;
376 	struct page *locked_page;
377 	u64 start;
378 	u64 end;
379 	unsigned int write_flags;
380 	struct list_head extents;
381 	struct cgroup_subsys_state *blkcg_css;
382 	struct btrfs_work work;
383 	atomic_t *pending;
384 };
385 
386 struct async_cow {
387 	/* Number of chunks in flight; must be first in the structure */
388 	atomic_t num_chunks;
389 	struct async_chunk chunks[];
390 };
391 
392 static noinline int add_async_extent(struct async_chunk *cow,
393 				     u64 start, u64 ram_size,
394 				     u64 compressed_size,
395 				     struct page **pages,
396 				     unsigned long nr_pages,
397 				     int compress_type)
398 {
399 	struct async_extent *async_extent;
400 
401 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
402 	BUG_ON(!async_extent); /* -ENOMEM */
403 	async_extent->start = start;
404 	async_extent->ram_size = ram_size;
405 	async_extent->compressed_size = compressed_size;
406 	async_extent->pages = pages;
407 	async_extent->nr_pages = nr_pages;
408 	async_extent->compress_type = compress_type;
409 	list_add_tail(&async_extent->list, &cow->extents);
410 	return 0;
411 }
412 
413 /*
414  * Check if the inode has flags compatible with compression
415  */
416 static inline bool inode_can_compress(struct btrfs_inode *inode)
417 {
418 	if (inode->flags & BTRFS_INODE_NODATACOW ||
419 	    inode->flags & BTRFS_INODE_NODATASUM)
420 		return false;
421 	return true;
422 }
423 
424 /*
425  * Check if the inode needs to be submitted to compression, based on mount
426  * options, defragmentation, properties or heuristics.
427  */
428 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
429 				      u64 end)
430 {
431 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
432 
433 	if (!inode_can_compress(inode)) {
434 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
435 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
436 			btrfs_ino(inode));
437 		return 0;
438 	}
439 	/* force compress */
440 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
441 		return 1;
442 	/* defrag ioctl */
443 	if (inode->defrag_compress)
444 		return 1;
445 	/* bad compression ratios */
446 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
447 		return 0;
448 	if (btrfs_test_opt(fs_info, COMPRESS) ||
449 	    inode->flags & BTRFS_INODE_COMPRESS ||
450 	    inode->prop_compress)
451 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
452 	return 0;
453 }
454 
455 static inline void inode_should_defrag(struct btrfs_inode *inode,
456 		u64 start, u64 end, u64 num_bytes, u64 small_write)
457 {
458 	/* If this is a small write inside eof, kick off a defrag */
459 	if (num_bytes < small_write &&
460 	    (start > 0 || end + 1 < inode->disk_i_size))
461 		btrfs_add_inode_defrag(NULL, inode);
462 }
463 
464 /*
465  * we create compressed extents in two phases.  The first
466  * phase compresses a range of pages that have already been
467  * locked (both pages and state bits are locked).
468  *
469  * This is done inside an ordered work queue, and the compression
470  * is spread across many cpus.  The actual IO submission is step
471  * two, and the ordered work queue takes care of making sure that
472  * happens in the same order things were put onto the queue by
473  * writepages and friends.
474  *
475  * If this code finds it can't get good compression, it puts an
476  * entry onto the work queue to write the uncompressed bytes.  This
477  * makes sure that both compressed inodes and uncompressed inodes
478  * are written in the same order that the flusher thread sent them
479  * down.
480  */
481 static noinline int compress_file_range(struct async_chunk *async_chunk)
482 {
483 	struct inode *inode = async_chunk->inode;
484 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
485 	u64 blocksize = fs_info->sectorsize;
486 	u64 start = async_chunk->start;
487 	u64 end = async_chunk->end;
488 	u64 actual_end;
489 	u64 i_size;
490 	int ret = 0;
491 	struct page **pages = NULL;
492 	unsigned long nr_pages;
493 	unsigned long total_compressed = 0;
494 	unsigned long total_in = 0;
495 	int i;
496 	int will_compress;
497 	int compress_type = fs_info->compress_type;
498 	int compressed_extents = 0;
499 	int redirty = 0;
500 
501 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
502 			SZ_16K);
503 
504 	/*
505 	 * We need to save i_size before now because it could change in between
506 	 * us evaluating the size and assigning it.  This is because we lock and
507 	 * unlock the page in truncate and fallocate, and then modify the i_size
508 	 * later on.
509 	 *
510 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
511 	 * does that for us.
512 	 */
513 	barrier();
514 	i_size = i_size_read(inode);
515 	barrier();
516 	actual_end = min_t(u64, i_size, end + 1);
517 again:
518 	will_compress = 0;
519 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
520 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
521 	nr_pages = min_t(unsigned long, nr_pages,
522 			BTRFS_MAX_COMPRESSED / PAGE_SIZE);
523 
524 	/*
525 	 * we don't want to send crud past the end of i_size through
526 	 * compression, that's just a waste of CPU time.  So, if the
527 	 * end of the file is before the start of our current
528 	 * requested range of bytes, we bail out to the uncompressed
529 	 * cleanup code that can deal with all of this.
530 	 *
531 	 * It isn't really the fastest way to fix things, but this is a
532 	 * very uncommon corner.
533 	 */
534 	if (actual_end <= start)
535 		goto cleanup_and_bail_uncompressed;
536 
537 	total_compressed = actual_end - start;
538 
539 	/*
540 	 * skip compression for a small file range(<=blocksize) that
541 	 * isn't an inline extent, since it doesn't save disk space at all.
542 	 */
543 	if (total_compressed <= blocksize &&
544 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
545 		goto cleanup_and_bail_uncompressed;
546 
547 	total_compressed = min_t(unsigned long, total_compressed,
548 			BTRFS_MAX_UNCOMPRESSED);
549 	total_in = 0;
550 	ret = 0;
551 
552 	/*
553 	 * we do compression for mount -o compress and when the
554 	 * inode has not been flagged as nocompress.  This flag can
555 	 * change at any time if we discover bad compression ratios.
556 	 */
557 	if (inode_need_compress(BTRFS_I(inode), start, end)) {
558 		WARN_ON(pages);
559 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560 		if (!pages) {
561 			/* just bail out to the uncompressed code */
562 			nr_pages = 0;
563 			goto cont;
564 		}
565 
566 		if (BTRFS_I(inode)->defrag_compress)
567 			compress_type = BTRFS_I(inode)->defrag_compress;
568 		else if (BTRFS_I(inode)->prop_compress)
569 			compress_type = BTRFS_I(inode)->prop_compress;
570 
571 		/*
572 		 * we need to call clear_page_dirty_for_io on each
573 		 * page in the range.  Otherwise applications with the file
574 		 * mmap'd can wander in and change the page contents while
575 		 * we are compressing them.
576 		 *
577 		 * If the compression fails for any reason, we set the pages
578 		 * dirty again later on.
579 		 *
580 		 * Note that the remaining part is redirtied, the start pointer
581 		 * has moved, the end is the original one.
582 		 */
583 		if (!redirty) {
584 			extent_range_clear_dirty_for_io(inode, start, end);
585 			redirty = 1;
586 		}
587 
588 		/* Compression level is applied here and only here */
589 		ret = btrfs_compress_pages(
590 			compress_type | (fs_info->compress_level << 4),
591 					   inode->i_mapping, start,
592 					   pages,
593 					   &nr_pages,
594 					   &total_in,
595 					   &total_compressed);
596 
597 		if (!ret) {
598 			unsigned long offset = offset_in_page(total_compressed);
599 			struct page *page = pages[nr_pages - 1];
600 			char *kaddr;
601 
602 			/* zero the tail end of the last page, we might be
603 			 * sending it down to disk
604 			 */
605 			if (offset) {
606 				kaddr = kmap_atomic(page);
607 				memset(kaddr + offset, 0,
608 				       PAGE_SIZE - offset);
609 				kunmap_atomic(kaddr);
610 			}
611 			will_compress = 1;
612 		}
613 	}
614 cont:
615 	if (start == 0) {
616 		/* lets try to make an inline extent */
617 		if (ret || total_in < actual_end) {
618 			/* we didn't compress the entire range, try
619 			 * to make an uncompressed inline extent.
620 			 */
621 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
622 						    0, BTRFS_COMPRESS_NONE,
623 						    NULL);
624 		} else {
625 			/* try making a compressed inline extent */
626 			ret = cow_file_range_inline(BTRFS_I(inode), start, end,
627 						    total_compressed,
628 						    compress_type, pages);
629 		}
630 		if (ret <= 0) {
631 			unsigned long clear_flags = EXTENT_DELALLOC |
632 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
633 				EXTENT_DO_ACCOUNTING;
634 			unsigned long page_error_op;
635 
636 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
637 
638 			/*
639 			 * inline extent creation worked or returned error,
640 			 * we don't need to create any more async work items.
641 			 * Unlock and free up our temp pages.
642 			 *
643 			 * We use DO_ACCOUNTING here because we need the
644 			 * delalloc_release_metadata to be done _after_ we drop
645 			 * our outstanding extent for clearing delalloc for this
646 			 * range.
647 			 */
648 			extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
649 						     NULL,
650 						     clear_flags,
651 						     PAGE_UNLOCK |
652 						     PAGE_CLEAR_DIRTY |
653 						     PAGE_SET_WRITEBACK |
654 						     page_error_op |
655 						     PAGE_END_WRITEBACK);
656 
657 			/*
658 			 * Ensure we only free the compressed pages if we have
659 			 * them allocated, as we can still reach here with
660 			 * inode_need_compress() == false.
661 			 */
662 			if (pages) {
663 				for (i = 0; i < nr_pages; i++) {
664 					WARN_ON(pages[i]->mapping);
665 					put_page(pages[i]);
666 				}
667 				kfree(pages);
668 			}
669 			return 0;
670 		}
671 	}
672 
673 	if (will_compress) {
674 		/*
675 		 * we aren't doing an inline extent round the compressed size
676 		 * up to a block size boundary so the allocator does sane
677 		 * things
678 		 */
679 		total_compressed = ALIGN(total_compressed, blocksize);
680 
681 		/*
682 		 * one last check to make sure the compression is really a
683 		 * win, compare the page count read with the blocks on disk,
684 		 * compression must free at least one sector size
685 		 */
686 		total_in = ALIGN(total_in, PAGE_SIZE);
687 		if (total_compressed + blocksize <= total_in) {
688 			compressed_extents++;
689 
690 			/*
691 			 * The async work queues will take care of doing actual
692 			 * allocation on disk for these compressed pages, and
693 			 * will submit them to the elevator.
694 			 */
695 			add_async_extent(async_chunk, start, total_in,
696 					total_compressed, pages, nr_pages,
697 					compress_type);
698 
699 			if (start + total_in < end) {
700 				start += total_in;
701 				pages = NULL;
702 				cond_resched();
703 				goto again;
704 			}
705 			return compressed_extents;
706 		}
707 	}
708 	if (pages) {
709 		/*
710 		 * the compression code ran but failed to make things smaller,
711 		 * free any pages it allocated and our page pointer array
712 		 */
713 		for (i = 0; i < nr_pages; i++) {
714 			WARN_ON(pages[i]->mapping);
715 			put_page(pages[i]);
716 		}
717 		kfree(pages);
718 		pages = NULL;
719 		total_compressed = 0;
720 		nr_pages = 0;
721 
722 		/* flag the file so we don't compress in the future */
723 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
724 		    !(BTRFS_I(inode)->prop_compress)) {
725 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
726 		}
727 	}
728 cleanup_and_bail_uncompressed:
729 	/*
730 	 * No compression, but we still need to write the pages in the file
731 	 * we've been given so far.  redirty the locked page if it corresponds
732 	 * to our extent and set things up for the async work queue to run
733 	 * cow_file_range to do the normal delalloc dance.
734 	 */
735 	if (async_chunk->locked_page &&
736 	    (page_offset(async_chunk->locked_page) >= start &&
737 	     page_offset(async_chunk->locked_page)) <= end) {
738 		__set_page_dirty_nobuffers(async_chunk->locked_page);
739 		/* unlocked later on in the async handlers */
740 	}
741 
742 	if (redirty)
743 		extent_range_redirty_for_io(inode, start, end);
744 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
745 			 BTRFS_COMPRESS_NONE);
746 	compressed_extents++;
747 
748 	return compressed_extents;
749 }
750 
751 static void free_async_extent_pages(struct async_extent *async_extent)
752 {
753 	int i;
754 
755 	if (!async_extent->pages)
756 		return;
757 
758 	for (i = 0; i < async_extent->nr_pages; i++) {
759 		WARN_ON(async_extent->pages[i]->mapping);
760 		put_page(async_extent->pages[i]);
761 	}
762 	kfree(async_extent->pages);
763 	async_extent->nr_pages = 0;
764 	async_extent->pages = NULL;
765 }
766 
767 /*
768  * phase two of compressed writeback.  This is the ordered portion
769  * of the code, which only gets called in the order the work was
770  * queued.  We walk all the async extents created by compress_file_range
771  * and send them down to the disk.
772  */
773 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
774 {
775 	struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
776 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
777 	struct async_extent *async_extent;
778 	u64 alloc_hint = 0;
779 	struct btrfs_key ins;
780 	struct extent_map *em;
781 	struct btrfs_root *root = inode->root;
782 	struct extent_io_tree *io_tree = &inode->io_tree;
783 	int ret = 0;
784 
785 again:
786 	while (!list_empty(&async_chunk->extents)) {
787 		async_extent = list_entry(async_chunk->extents.next,
788 					  struct async_extent, list);
789 		list_del(&async_extent->list);
790 
791 retry:
792 		lock_extent(io_tree, async_extent->start,
793 			    async_extent->start + async_extent->ram_size - 1);
794 		/* did the compression code fall back to uncompressed IO? */
795 		if (!async_extent->pages) {
796 			int page_started = 0;
797 			unsigned long nr_written = 0;
798 
799 			/* allocate blocks */
800 			ret = cow_file_range(inode, async_chunk->locked_page,
801 					     async_extent->start,
802 					     async_extent->start +
803 					     async_extent->ram_size - 1,
804 					     &page_started, &nr_written, 0);
805 
806 			/* JDM XXX */
807 
808 			/*
809 			 * if page_started, cow_file_range inserted an
810 			 * inline extent and took care of all the unlocking
811 			 * and IO for us.  Otherwise, we need to submit
812 			 * all those pages down to the drive.
813 			 */
814 			if (!page_started && !ret)
815 				extent_write_locked_range(&inode->vfs_inode,
816 						  async_extent->start,
817 						  async_extent->start +
818 						  async_extent->ram_size - 1,
819 						  WB_SYNC_ALL);
820 			else if (ret && async_chunk->locked_page)
821 				unlock_page(async_chunk->locked_page);
822 			kfree(async_extent);
823 			cond_resched();
824 			continue;
825 		}
826 
827 		ret = btrfs_reserve_extent(root, async_extent->ram_size,
828 					   async_extent->compressed_size,
829 					   async_extent->compressed_size,
830 					   0, alloc_hint, &ins, 1, 1);
831 		if (ret) {
832 			free_async_extent_pages(async_extent);
833 
834 			if (ret == -ENOSPC) {
835 				unlock_extent(io_tree, async_extent->start,
836 					      async_extent->start +
837 					      async_extent->ram_size - 1);
838 
839 				/*
840 				 * we need to redirty the pages if we decide to
841 				 * fallback to uncompressed IO, otherwise we
842 				 * will not submit these pages down to lower
843 				 * layers.
844 				 */
845 				extent_range_redirty_for_io(&inode->vfs_inode,
846 						async_extent->start,
847 						async_extent->start +
848 						async_extent->ram_size - 1);
849 
850 				goto retry;
851 			}
852 			goto out_free;
853 		}
854 		/*
855 		 * here we're doing allocation and writeback of the
856 		 * compressed pages
857 		 */
858 		em = create_io_em(inode, async_extent->start,
859 				  async_extent->ram_size, /* len */
860 				  async_extent->start, /* orig_start */
861 				  ins.objectid, /* block_start */
862 				  ins.offset, /* block_len */
863 				  ins.offset, /* orig_block_len */
864 				  async_extent->ram_size, /* ram_bytes */
865 				  async_extent->compress_type,
866 				  BTRFS_ORDERED_COMPRESSED);
867 		if (IS_ERR(em))
868 			/* ret value is not necessary due to void function */
869 			goto out_free_reserve;
870 		free_extent_map(em);
871 
872 		ret = btrfs_add_ordered_extent_compress(inode,
873 						async_extent->start,
874 						ins.objectid,
875 						async_extent->ram_size,
876 						ins.offset,
877 						BTRFS_ORDERED_COMPRESSED,
878 						async_extent->compress_type);
879 		if (ret) {
880 			btrfs_drop_extent_cache(inode, async_extent->start,
881 						async_extent->start +
882 						async_extent->ram_size - 1, 0);
883 			goto out_free_reserve;
884 		}
885 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
886 
887 		/*
888 		 * clear dirty, set writeback and unlock the pages.
889 		 */
890 		extent_clear_unlock_delalloc(inode, async_extent->start,
891 				async_extent->start +
892 				async_extent->ram_size - 1,
893 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
894 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
895 				PAGE_SET_WRITEBACK);
896 		if (btrfs_submit_compressed_write(inode, async_extent->start,
897 				    async_extent->ram_size,
898 				    ins.objectid,
899 				    ins.offset, async_extent->pages,
900 				    async_extent->nr_pages,
901 				    async_chunk->write_flags,
902 				    async_chunk->blkcg_css)) {
903 			struct page *p = async_extent->pages[0];
904 			const u64 start = async_extent->start;
905 			const u64 end = start + async_extent->ram_size - 1;
906 
907 			p->mapping = inode->vfs_inode.i_mapping;
908 			btrfs_writepage_endio_finish_ordered(p, start, end, 0);
909 
910 			p->mapping = NULL;
911 			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
912 						     PAGE_END_WRITEBACK |
913 						     PAGE_SET_ERROR);
914 			free_async_extent_pages(async_extent);
915 		}
916 		alloc_hint = ins.objectid + ins.offset;
917 		kfree(async_extent);
918 		cond_resched();
919 	}
920 	return;
921 out_free_reserve:
922 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
923 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
924 out_free:
925 	extent_clear_unlock_delalloc(inode, async_extent->start,
926 				     async_extent->start +
927 				     async_extent->ram_size - 1,
928 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
929 				     EXTENT_DELALLOC_NEW |
930 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
931 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
932 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
933 				     PAGE_SET_ERROR);
934 	free_async_extent_pages(async_extent);
935 	kfree(async_extent);
936 	goto again;
937 }
938 
939 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
940 				      u64 num_bytes)
941 {
942 	struct extent_map_tree *em_tree = &inode->extent_tree;
943 	struct extent_map *em;
944 	u64 alloc_hint = 0;
945 
946 	read_lock(&em_tree->lock);
947 	em = search_extent_mapping(em_tree, start, num_bytes);
948 	if (em) {
949 		/*
950 		 * if block start isn't an actual block number then find the
951 		 * first block in this inode and use that as a hint.  If that
952 		 * block is also bogus then just don't worry about it.
953 		 */
954 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
955 			free_extent_map(em);
956 			em = search_extent_mapping(em_tree, 0, 0);
957 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
958 				alloc_hint = em->block_start;
959 			if (em)
960 				free_extent_map(em);
961 		} else {
962 			alloc_hint = em->block_start;
963 			free_extent_map(em);
964 		}
965 	}
966 	read_unlock(&em_tree->lock);
967 
968 	return alloc_hint;
969 }
970 
971 /*
972  * when extent_io.c finds a delayed allocation range in the file,
973  * the call backs end up in this code.  The basic idea is to
974  * allocate extents on disk for the range, and create ordered data structs
975  * in ram to track those extents.
976  *
977  * locked_page is the page that writepage had locked already.  We use
978  * it to make sure we don't do extra locks or unlocks.
979  *
980  * *page_started is set to one if we unlock locked_page and do everything
981  * required to start IO on it.  It may be clean and already done with
982  * IO when we return.
983  */
984 static noinline int cow_file_range(struct btrfs_inode *inode,
985 				   struct page *locked_page,
986 				   u64 start, u64 end, int *page_started,
987 				   unsigned long *nr_written, int unlock)
988 {
989 	struct btrfs_root *root = inode->root;
990 	struct btrfs_fs_info *fs_info = root->fs_info;
991 	u64 alloc_hint = 0;
992 	u64 num_bytes;
993 	unsigned long ram_size;
994 	u64 cur_alloc_size = 0;
995 	u64 min_alloc_size;
996 	u64 blocksize = fs_info->sectorsize;
997 	struct btrfs_key ins;
998 	struct extent_map *em;
999 	unsigned clear_bits;
1000 	unsigned long page_ops;
1001 	bool extent_reserved = false;
1002 	int ret = 0;
1003 
1004 	if (btrfs_is_free_space_inode(inode)) {
1005 		WARN_ON_ONCE(1);
1006 		ret = -EINVAL;
1007 		goto out_unlock;
1008 	}
1009 
1010 	num_bytes = ALIGN(end - start + 1, blocksize);
1011 	num_bytes = max(blocksize,  num_bytes);
1012 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1013 
1014 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1015 
1016 	if (start == 0) {
1017 		/* lets try to make an inline extent */
1018 		ret = cow_file_range_inline(inode, start, end, 0,
1019 					    BTRFS_COMPRESS_NONE, NULL);
1020 		if (ret == 0) {
1021 			/*
1022 			 * We use DO_ACCOUNTING here because we need the
1023 			 * delalloc_release_metadata to be run _after_ we drop
1024 			 * our outstanding extent for clearing delalloc for this
1025 			 * range.
1026 			 */
1027 			extent_clear_unlock_delalloc(inode, start, end, NULL,
1028 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1029 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1030 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1031 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1032 				     PAGE_END_WRITEBACK);
1033 			*nr_written = *nr_written +
1034 			     (end - start + PAGE_SIZE) / PAGE_SIZE;
1035 			*page_started = 1;
1036 			goto out;
1037 		} else if (ret < 0) {
1038 			goto out_unlock;
1039 		}
1040 	}
1041 
1042 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1043 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
1044 
1045 	/*
1046 	 * Relocation relies on the relocated extents to have exactly the same
1047 	 * size as the original extents. Normally writeback for relocation data
1048 	 * extents follows a NOCOW path because relocation preallocates the
1049 	 * extents. However, due to an operation such as scrub turning a block
1050 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1051 	 * an extent allocated during COW has exactly the requested size and can
1052 	 * not be split into smaller extents, otherwise relocation breaks and
1053 	 * fails during the stage where it updates the bytenr of file extent
1054 	 * items.
1055 	 */
1056 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1057 		min_alloc_size = num_bytes;
1058 	else
1059 		min_alloc_size = fs_info->sectorsize;
1060 
1061 	while (num_bytes > 0) {
1062 		cur_alloc_size = num_bytes;
1063 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1064 					   min_alloc_size, 0, alloc_hint,
1065 					   &ins, 1, 1);
1066 		if (ret < 0)
1067 			goto out_unlock;
1068 		cur_alloc_size = ins.offset;
1069 		extent_reserved = true;
1070 
1071 		ram_size = ins.offset;
1072 		em = create_io_em(inode, start, ins.offset, /* len */
1073 				  start, /* orig_start */
1074 				  ins.objectid, /* block_start */
1075 				  ins.offset, /* block_len */
1076 				  ins.offset, /* orig_block_len */
1077 				  ram_size, /* ram_bytes */
1078 				  BTRFS_COMPRESS_NONE, /* compress_type */
1079 				  BTRFS_ORDERED_REGULAR /* type */);
1080 		if (IS_ERR(em)) {
1081 			ret = PTR_ERR(em);
1082 			goto out_reserve;
1083 		}
1084 		free_extent_map(em);
1085 
1086 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1087 					       ram_size, cur_alloc_size, 0);
1088 		if (ret)
1089 			goto out_drop_extent_cache;
1090 
1091 		if (root->root_key.objectid ==
1092 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1093 			ret = btrfs_reloc_clone_csums(inode, start,
1094 						      cur_alloc_size);
1095 			/*
1096 			 * Only drop cache here, and process as normal.
1097 			 *
1098 			 * We must not allow extent_clear_unlock_delalloc()
1099 			 * at out_unlock label to free meta of this ordered
1100 			 * extent, as its meta should be freed by
1101 			 * btrfs_finish_ordered_io().
1102 			 *
1103 			 * So we must continue until @start is increased to
1104 			 * skip current ordered extent.
1105 			 */
1106 			if (ret)
1107 				btrfs_drop_extent_cache(inode, start,
1108 						start + ram_size - 1, 0);
1109 		}
1110 
1111 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1112 
1113 		/* we're not doing compressed IO, don't unlock the first
1114 		 * page (which the caller expects to stay locked), don't
1115 		 * clear any dirty bits and don't set any writeback bits
1116 		 *
1117 		 * Do set the Private2 bit so we know this page was properly
1118 		 * setup for writepage
1119 		 */
1120 		page_ops = unlock ? PAGE_UNLOCK : 0;
1121 		page_ops |= PAGE_SET_PRIVATE2;
1122 
1123 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1124 					     locked_page,
1125 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1126 					     page_ops);
1127 		if (num_bytes < cur_alloc_size)
1128 			num_bytes = 0;
1129 		else
1130 			num_bytes -= cur_alloc_size;
1131 		alloc_hint = ins.objectid + ins.offset;
1132 		start += cur_alloc_size;
1133 		extent_reserved = false;
1134 
1135 		/*
1136 		 * btrfs_reloc_clone_csums() error, since start is increased
1137 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1138 		 * free metadata of current ordered extent, we're OK to exit.
1139 		 */
1140 		if (ret)
1141 			goto out_unlock;
1142 	}
1143 out:
1144 	return ret;
1145 
1146 out_drop_extent_cache:
1147 	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1148 out_reserve:
1149 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1150 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1151 out_unlock:
1152 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1153 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1154 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1155 		PAGE_END_WRITEBACK;
1156 	/*
1157 	 * If we reserved an extent for our delalloc range (or a subrange) and
1158 	 * failed to create the respective ordered extent, then it means that
1159 	 * when we reserved the extent we decremented the extent's size from
1160 	 * the data space_info's bytes_may_use counter and incremented the
1161 	 * space_info's bytes_reserved counter by the same amount. We must make
1162 	 * sure extent_clear_unlock_delalloc() does not try to decrement again
1163 	 * the data space_info's bytes_may_use counter, therefore we do not pass
1164 	 * it the flag EXTENT_CLEAR_DATA_RESV.
1165 	 */
1166 	if (extent_reserved) {
1167 		extent_clear_unlock_delalloc(inode, start,
1168 					     start + cur_alloc_size - 1,
1169 					     locked_page,
1170 					     clear_bits,
1171 					     page_ops);
1172 		start += cur_alloc_size;
1173 		if (start >= end)
1174 			goto out;
1175 	}
1176 	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1177 				     clear_bits | EXTENT_CLEAR_DATA_RESV,
1178 				     page_ops);
1179 	goto out;
1180 }
1181 
1182 /*
1183  * work queue call back to started compression on a file and pages
1184  */
1185 static noinline void async_cow_start(struct btrfs_work *work)
1186 {
1187 	struct async_chunk *async_chunk;
1188 	int compressed_extents;
1189 
1190 	async_chunk = container_of(work, struct async_chunk, work);
1191 
1192 	compressed_extents = compress_file_range(async_chunk);
1193 	if (compressed_extents == 0) {
1194 		btrfs_add_delayed_iput(async_chunk->inode);
1195 		async_chunk->inode = NULL;
1196 	}
1197 }
1198 
1199 /*
1200  * work queue call back to submit previously compressed pages
1201  */
1202 static noinline void async_cow_submit(struct btrfs_work *work)
1203 {
1204 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1205 						     work);
1206 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1207 	unsigned long nr_pages;
1208 
1209 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1210 		PAGE_SHIFT;
1211 
1212 	/* atomic_sub_return implies a barrier */
1213 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1214 	    5 * SZ_1M)
1215 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1216 
1217 	/*
1218 	 * ->inode could be NULL if async_chunk_start has failed to compress,
1219 	 * in which case we don't have anything to submit, yet we need to
1220 	 * always adjust ->async_delalloc_pages as its paired with the init
1221 	 * happening in cow_file_range_async
1222 	 */
1223 	if (async_chunk->inode)
1224 		submit_compressed_extents(async_chunk);
1225 }
1226 
1227 static noinline void async_cow_free(struct btrfs_work *work)
1228 {
1229 	struct async_chunk *async_chunk;
1230 
1231 	async_chunk = container_of(work, struct async_chunk, work);
1232 	if (async_chunk->inode)
1233 		btrfs_add_delayed_iput(async_chunk->inode);
1234 	if (async_chunk->blkcg_css)
1235 		css_put(async_chunk->blkcg_css);
1236 	/*
1237 	 * Since the pointer to 'pending' is at the beginning of the array of
1238 	 * async_chunk's, freeing it ensures the whole array has been freed.
1239 	 */
1240 	if (atomic_dec_and_test(async_chunk->pending))
1241 		kvfree(async_chunk->pending);
1242 }
1243 
1244 static int cow_file_range_async(struct btrfs_inode *inode,
1245 				struct writeback_control *wbc,
1246 				struct page *locked_page,
1247 				u64 start, u64 end, int *page_started,
1248 				unsigned long *nr_written)
1249 {
1250 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1251 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1252 	struct async_cow *ctx;
1253 	struct async_chunk *async_chunk;
1254 	unsigned long nr_pages;
1255 	u64 cur_end;
1256 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1257 	int i;
1258 	bool should_compress;
1259 	unsigned nofs_flag;
1260 	const unsigned int write_flags = wbc_to_write_flags(wbc);
1261 
1262 	unlock_extent(&inode->io_tree, start, end);
1263 
1264 	if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
1265 	    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1266 		num_chunks = 1;
1267 		should_compress = false;
1268 	} else {
1269 		should_compress = true;
1270 	}
1271 
1272 	nofs_flag = memalloc_nofs_save();
1273 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1274 	memalloc_nofs_restore(nofs_flag);
1275 
1276 	if (!ctx) {
1277 		unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1278 			EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1279 			EXTENT_DO_ACCOUNTING;
1280 		unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1281 			PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1282 			PAGE_SET_ERROR;
1283 
1284 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1285 					     clear_bits, page_ops);
1286 		return -ENOMEM;
1287 	}
1288 
1289 	async_chunk = ctx->chunks;
1290 	atomic_set(&ctx->num_chunks, num_chunks);
1291 
1292 	for (i = 0; i < num_chunks; i++) {
1293 		if (should_compress)
1294 			cur_end = min(end, start + SZ_512K - 1);
1295 		else
1296 			cur_end = end;
1297 
1298 		/*
1299 		 * igrab is called higher up in the call chain, take only the
1300 		 * lightweight reference for the callback lifetime
1301 		 */
1302 		ihold(&inode->vfs_inode);
1303 		async_chunk[i].pending = &ctx->num_chunks;
1304 		async_chunk[i].inode = &inode->vfs_inode;
1305 		async_chunk[i].start = start;
1306 		async_chunk[i].end = cur_end;
1307 		async_chunk[i].write_flags = write_flags;
1308 		INIT_LIST_HEAD(&async_chunk[i].extents);
1309 
1310 		/*
1311 		 * The locked_page comes all the way from writepage and its
1312 		 * the original page we were actually given.  As we spread
1313 		 * this large delalloc region across multiple async_chunk
1314 		 * structs, only the first struct needs a pointer to locked_page
1315 		 *
1316 		 * This way we don't need racey decisions about who is supposed
1317 		 * to unlock it.
1318 		 */
1319 		if (locked_page) {
1320 			/*
1321 			 * Depending on the compressibility, the pages might or
1322 			 * might not go through async.  We want all of them to
1323 			 * be accounted against wbc once.  Let's do it here
1324 			 * before the paths diverge.  wbc accounting is used
1325 			 * only for foreign writeback detection and doesn't
1326 			 * need full accuracy.  Just account the whole thing
1327 			 * against the first page.
1328 			 */
1329 			wbc_account_cgroup_owner(wbc, locked_page,
1330 						 cur_end - start);
1331 			async_chunk[i].locked_page = locked_page;
1332 			locked_page = NULL;
1333 		} else {
1334 			async_chunk[i].locked_page = NULL;
1335 		}
1336 
1337 		if (blkcg_css != blkcg_root_css) {
1338 			css_get(blkcg_css);
1339 			async_chunk[i].blkcg_css = blkcg_css;
1340 		} else {
1341 			async_chunk[i].blkcg_css = NULL;
1342 		}
1343 
1344 		btrfs_init_work(&async_chunk[i].work, async_cow_start,
1345 				async_cow_submit, async_cow_free);
1346 
1347 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1348 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1349 
1350 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1351 
1352 		*nr_written += nr_pages;
1353 		start = cur_end + 1;
1354 	}
1355 	*page_started = 1;
1356 	return 0;
1357 }
1358 
1359 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1360 					u64 bytenr, u64 num_bytes)
1361 {
1362 	int ret;
1363 	struct btrfs_ordered_sum *sums;
1364 	LIST_HEAD(list);
1365 
1366 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1367 				       bytenr + num_bytes - 1, &list, 0);
1368 	if (ret == 0 && list_empty(&list))
1369 		return 0;
1370 
1371 	while (!list_empty(&list)) {
1372 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1373 		list_del(&sums->list);
1374 		kfree(sums);
1375 	}
1376 	if (ret < 0)
1377 		return ret;
1378 	return 1;
1379 }
1380 
1381 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1382 			   const u64 start, const u64 end,
1383 			   int *page_started, unsigned long *nr_written)
1384 {
1385 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1386 	const bool is_reloc_ino = (inode->root->root_key.objectid ==
1387 				   BTRFS_DATA_RELOC_TREE_OBJECTID);
1388 	const u64 range_bytes = end + 1 - start;
1389 	struct extent_io_tree *io_tree = &inode->io_tree;
1390 	u64 range_start = start;
1391 	u64 count;
1392 
1393 	/*
1394 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1395 	 * made we had not enough available data space and therefore we did not
1396 	 * reserve data space for it, since we though we could do NOCOW for the
1397 	 * respective file range (either there is prealloc extent or the inode
1398 	 * has the NOCOW bit set).
1399 	 *
1400 	 * However when we need to fallback to COW mode (because for example the
1401 	 * block group for the corresponding extent was turned to RO mode by a
1402 	 * scrub or relocation) we need to do the following:
1403 	 *
1404 	 * 1) We increment the bytes_may_use counter of the data space info.
1405 	 *    If COW succeeds, it allocates a new data extent and after doing
1406 	 *    that it decrements the space info's bytes_may_use counter and
1407 	 *    increments its bytes_reserved counter by the same amount (we do
1408 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1409 	 *    bytes_may_use counter to compensate (when space is reserved at
1410 	 *    buffered write time, the bytes_may_use counter is incremented);
1411 	 *
1412 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1413 	 *    that if the COW path fails for any reason, it decrements (through
1414 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1415 	 *    data space info, which we incremented in the step above.
1416 	 *
1417 	 * If we need to fallback to cow and the inode corresponds to a free
1418 	 * space cache inode or an inode of the data relocation tree, we must
1419 	 * also increment bytes_may_use of the data space_info for the same
1420 	 * reason. Space caches and relocated data extents always get a prealloc
1421 	 * extent for them, however scrub or balance may have set the block
1422 	 * group that contains that extent to RO mode and therefore force COW
1423 	 * when starting writeback.
1424 	 */
1425 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1426 				 EXTENT_NORESERVE, 0);
1427 	if (count > 0 || is_space_ino || is_reloc_ino) {
1428 		u64 bytes = count;
1429 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1430 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1431 
1432 		if (is_space_ino || is_reloc_ino)
1433 			bytes = range_bytes;
1434 
1435 		spin_lock(&sinfo->lock);
1436 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1437 		spin_unlock(&sinfo->lock);
1438 
1439 		if (count > 0)
1440 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1441 					 0, 0, NULL);
1442 	}
1443 
1444 	return cow_file_range(inode, locked_page, start, end, page_started,
1445 			      nr_written, 1);
1446 }
1447 
1448 /*
1449  * when nowcow writeback call back.  This checks for snapshots or COW copies
1450  * of the extents that exist in the file, and COWs the file as required.
1451  *
1452  * If no cow copies or snapshots exist, we write directly to the existing
1453  * blocks on disk
1454  */
1455 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1456 				       struct page *locked_page,
1457 				       const u64 start, const u64 end,
1458 				       int *page_started, int force,
1459 				       unsigned long *nr_written)
1460 {
1461 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1462 	struct btrfs_root *root = inode->root;
1463 	struct btrfs_path *path;
1464 	u64 cow_start = (u64)-1;
1465 	u64 cur_offset = start;
1466 	int ret;
1467 	bool check_prev = true;
1468 	const bool freespace_inode = btrfs_is_free_space_inode(inode);
1469 	u64 ino = btrfs_ino(inode);
1470 	bool nocow = false;
1471 	u64 disk_bytenr = 0;
1472 
1473 	path = btrfs_alloc_path();
1474 	if (!path) {
1475 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1476 					     EXTENT_LOCKED | EXTENT_DELALLOC |
1477 					     EXTENT_DO_ACCOUNTING |
1478 					     EXTENT_DEFRAG, PAGE_UNLOCK |
1479 					     PAGE_CLEAR_DIRTY |
1480 					     PAGE_SET_WRITEBACK |
1481 					     PAGE_END_WRITEBACK);
1482 		return -ENOMEM;
1483 	}
1484 
1485 	while (1) {
1486 		struct btrfs_key found_key;
1487 		struct btrfs_file_extent_item *fi;
1488 		struct extent_buffer *leaf;
1489 		u64 extent_end;
1490 		u64 extent_offset;
1491 		u64 num_bytes = 0;
1492 		u64 disk_num_bytes;
1493 		u64 ram_bytes;
1494 		int extent_type;
1495 
1496 		nocow = false;
1497 
1498 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1499 					       cur_offset, 0);
1500 		if (ret < 0)
1501 			goto error;
1502 
1503 		/*
1504 		 * If there is no extent for our range when doing the initial
1505 		 * search, then go back to the previous slot as it will be the
1506 		 * one containing the search offset
1507 		 */
1508 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1509 			leaf = path->nodes[0];
1510 			btrfs_item_key_to_cpu(leaf, &found_key,
1511 					      path->slots[0] - 1);
1512 			if (found_key.objectid == ino &&
1513 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1514 				path->slots[0]--;
1515 		}
1516 		check_prev = false;
1517 next_slot:
1518 		/* Go to next leaf if we have exhausted the current one */
1519 		leaf = path->nodes[0];
1520 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1521 			ret = btrfs_next_leaf(root, path);
1522 			if (ret < 0) {
1523 				if (cow_start != (u64)-1)
1524 					cur_offset = cow_start;
1525 				goto error;
1526 			}
1527 			if (ret > 0)
1528 				break;
1529 			leaf = path->nodes[0];
1530 		}
1531 
1532 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1533 
1534 		/* Didn't find anything for our INO */
1535 		if (found_key.objectid > ino)
1536 			break;
1537 		/*
1538 		 * Keep searching until we find an EXTENT_ITEM or there are no
1539 		 * more extents for this inode
1540 		 */
1541 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1542 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1543 			path->slots[0]++;
1544 			goto next_slot;
1545 		}
1546 
1547 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
1548 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1549 		    found_key.offset > end)
1550 			break;
1551 
1552 		/*
1553 		 * If the found extent starts after requested offset, then
1554 		 * adjust extent_end to be right before this extent begins
1555 		 */
1556 		if (found_key.offset > cur_offset) {
1557 			extent_end = found_key.offset;
1558 			extent_type = 0;
1559 			goto out_check;
1560 		}
1561 
1562 		/*
1563 		 * Found extent which begins before our range and potentially
1564 		 * intersect it
1565 		 */
1566 		fi = btrfs_item_ptr(leaf, path->slots[0],
1567 				    struct btrfs_file_extent_item);
1568 		extent_type = btrfs_file_extent_type(leaf, fi);
1569 
1570 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1571 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1572 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1573 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1574 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1575 			extent_end = found_key.offset +
1576 				btrfs_file_extent_num_bytes(leaf, fi);
1577 			disk_num_bytes =
1578 				btrfs_file_extent_disk_num_bytes(leaf, fi);
1579 			/*
1580 			 * If the extent we got ends before our current offset,
1581 			 * skip to the next extent.
1582 			 */
1583 			if (extent_end <= cur_offset) {
1584 				path->slots[0]++;
1585 				goto next_slot;
1586 			}
1587 			/* Skip holes */
1588 			if (disk_bytenr == 0)
1589 				goto out_check;
1590 			/* Skip compressed/encrypted/encoded extents */
1591 			if (btrfs_file_extent_compression(leaf, fi) ||
1592 			    btrfs_file_extent_encryption(leaf, fi) ||
1593 			    btrfs_file_extent_other_encoding(leaf, fi))
1594 				goto out_check;
1595 			/*
1596 			 * If extent is created before the last volume's snapshot
1597 			 * this implies the extent is shared, hence we can't do
1598 			 * nocow. This is the same check as in
1599 			 * btrfs_cross_ref_exist but without calling
1600 			 * btrfs_search_slot.
1601 			 */
1602 			if (!freespace_inode &&
1603 			    btrfs_file_extent_generation(leaf, fi) <=
1604 			    btrfs_root_last_snapshot(&root->root_item))
1605 				goto out_check;
1606 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1607 				goto out_check;
1608 			/* If extent is RO, we must COW it */
1609 			if (btrfs_extent_readonly(fs_info, disk_bytenr))
1610 				goto out_check;
1611 			ret = btrfs_cross_ref_exist(root, ino,
1612 						    found_key.offset -
1613 						    extent_offset, disk_bytenr, false);
1614 			if (ret) {
1615 				/*
1616 				 * ret could be -EIO if the above fails to read
1617 				 * metadata.
1618 				 */
1619 				if (ret < 0) {
1620 					if (cow_start != (u64)-1)
1621 						cur_offset = cow_start;
1622 					goto error;
1623 				}
1624 
1625 				WARN_ON_ONCE(freespace_inode);
1626 				goto out_check;
1627 			}
1628 			disk_bytenr += extent_offset;
1629 			disk_bytenr += cur_offset - found_key.offset;
1630 			num_bytes = min(end + 1, extent_end) - cur_offset;
1631 			/*
1632 			 * If there are pending snapshots for this root, we
1633 			 * fall into common COW way
1634 			 */
1635 			if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1636 				goto out_check;
1637 			/*
1638 			 * force cow if csum exists in the range.
1639 			 * this ensure that csum for a given extent are
1640 			 * either valid or do not exist.
1641 			 */
1642 			ret = csum_exist_in_range(fs_info, disk_bytenr,
1643 						  num_bytes);
1644 			if (ret) {
1645 				/*
1646 				 * ret could be -EIO if the above fails to read
1647 				 * metadata.
1648 				 */
1649 				if (ret < 0) {
1650 					if (cow_start != (u64)-1)
1651 						cur_offset = cow_start;
1652 					goto error;
1653 				}
1654 				WARN_ON_ONCE(freespace_inode);
1655 				goto out_check;
1656 			}
1657 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1658 				goto out_check;
1659 			nocow = true;
1660 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1661 			extent_end = found_key.offset + ram_bytes;
1662 			extent_end = ALIGN(extent_end, fs_info->sectorsize);
1663 			/* Skip extents outside of our requested range */
1664 			if (extent_end <= start) {
1665 				path->slots[0]++;
1666 				goto next_slot;
1667 			}
1668 		} else {
1669 			/* If this triggers then we have a memory corruption */
1670 			BUG();
1671 		}
1672 out_check:
1673 		/*
1674 		 * If nocow is false then record the beginning of the range
1675 		 * that needs to be COWed
1676 		 */
1677 		if (!nocow) {
1678 			if (cow_start == (u64)-1)
1679 				cow_start = cur_offset;
1680 			cur_offset = extent_end;
1681 			if (cur_offset > end)
1682 				break;
1683 			path->slots[0]++;
1684 			goto next_slot;
1685 		}
1686 
1687 		btrfs_release_path(path);
1688 
1689 		/*
1690 		 * COW range from cow_start to found_key.offset - 1. As the key
1691 		 * will contain the beginning of the first extent that can be
1692 		 * NOCOW, following one which needs to be COW'ed
1693 		 */
1694 		if (cow_start != (u64)-1) {
1695 			ret = fallback_to_cow(inode, locked_page,
1696 					      cow_start, found_key.offset - 1,
1697 					      page_started, nr_written);
1698 			if (ret)
1699 				goto error;
1700 			cow_start = (u64)-1;
1701 		}
1702 
1703 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1704 			u64 orig_start = found_key.offset - extent_offset;
1705 			struct extent_map *em;
1706 
1707 			em = create_io_em(inode, cur_offset, num_bytes,
1708 					  orig_start,
1709 					  disk_bytenr, /* block_start */
1710 					  num_bytes, /* block_len */
1711 					  disk_num_bytes, /* orig_block_len */
1712 					  ram_bytes, BTRFS_COMPRESS_NONE,
1713 					  BTRFS_ORDERED_PREALLOC);
1714 			if (IS_ERR(em)) {
1715 				ret = PTR_ERR(em);
1716 				goto error;
1717 			}
1718 			free_extent_map(em);
1719 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1720 						       disk_bytenr, num_bytes,
1721 						       num_bytes,
1722 						       BTRFS_ORDERED_PREALLOC);
1723 			if (ret) {
1724 				btrfs_drop_extent_cache(inode, cur_offset,
1725 							cur_offset + num_bytes - 1,
1726 							0);
1727 				goto error;
1728 			}
1729 		} else {
1730 			ret = btrfs_add_ordered_extent(inode, cur_offset,
1731 						       disk_bytenr, num_bytes,
1732 						       num_bytes,
1733 						       BTRFS_ORDERED_NOCOW);
1734 			if (ret)
1735 				goto error;
1736 		}
1737 
1738 		if (nocow)
1739 			btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1740 		nocow = false;
1741 
1742 		if (root->root_key.objectid ==
1743 		    BTRFS_DATA_RELOC_TREE_OBJECTID)
1744 			/*
1745 			 * Error handled later, as we must prevent
1746 			 * extent_clear_unlock_delalloc() in error handler
1747 			 * from freeing metadata of created ordered extent.
1748 			 */
1749 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1750 						      num_bytes);
1751 
1752 		extent_clear_unlock_delalloc(inode, cur_offset,
1753 					     cur_offset + num_bytes - 1,
1754 					     locked_page, EXTENT_LOCKED |
1755 					     EXTENT_DELALLOC |
1756 					     EXTENT_CLEAR_DATA_RESV,
1757 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1758 
1759 		cur_offset = extent_end;
1760 
1761 		/*
1762 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
1763 		 * handler, as metadata for created ordered extent will only
1764 		 * be freed by btrfs_finish_ordered_io().
1765 		 */
1766 		if (ret)
1767 			goto error;
1768 		if (cur_offset > end)
1769 			break;
1770 	}
1771 	btrfs_release_path(path);
1772 
1773 	if (cur_offset <= end && cow_start == (u64)-1)
1774 		cow_start = cur_offset;
1775 
1776 	if (cow_start != (u64)-1) {
1777 		cur_offset = end;
1778 		ret = fallback_to_cow(inode, locked_page, cow_start, end,
1779 				      page_started, nr_written);
1780 		if (ret)
1781 			goto error;
1782 	}
1783 
1784 error:
1785 	if (nocow)
1786 		btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1787 
1788 	if (ret && cur_offset < end)
1789 		extent_clear_unlock_delalloc(inode, cur_offset, end,
1790 					     locked_page, EXTENT_LOCKED |
1791 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1792 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1793 					     PAGE_CLEAR_DIRTY |
1794 					     PAGE_SET_WRITEBACK |
1795 					     PAGE_END_WRITEBACK);
1796 	btrfs_free_path(path);
1797 	return ret;
1798 }
1799 
1800 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end)
1801 {
1802 
1803 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1804 	    !(inode->flags & BTRFS_INODE_PREALLOC))
1805 		return 0;
1806 
1807 	/*
1808 	 * @defrag_bytes is a hint value, no spinlock held here,
1809 	 * if is not zero, it means the file is defragging.
1810 	 * Force cow if given extent needs to be defragged.
1811 	 */
1812 	if (inode->defrag_bytes &&
1813 	    test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL))
1814 		return 1;
1815 
1816 	return 0;
1817 }
1818 
1819 /*
1820  * Function to process delayed allocation (create CoW) for ranges which are
1821  * being touched for the first time.
1822  */
1823 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
1824 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
1825 		struct writeback_control *wbc)
1826 {
1827 	int ret;
1828 	int force_cow = need_force_cow(inode, start, end);
1829 
1830 	if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1831 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1832 					 page_started, 1, nr_written);
1833 	} else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1834 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1835 					 page_started, 0, nr_written);
1836 	} else if (!inode_can_compress(inode) ||
1837 		   !inode_need_compress(inode, start, end)) {
1838 		ret = cow_file_range(inode, locked_page, start, end,
1839 				     page_started, nr_written, 1);
1840 	} else {
1841 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1842 		ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1843 					   page_started, nr_written);
1844 	}
1845 	if (ret)
1846 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
1847 					      end - start + 1);
1848 	return ret;
1849 }
1850 
1851 void btrfs_split_delalloc_extent(struct inode *inode,
1852 				 struct extent_state *orig, u64 split)
1853 {
1854 	u64 size;
1855 
1856 	/* not delalloc, ignore it */
1857 	if (!(orig->state & EXTENT_DELALLOC))
1858 		return;
1859 
1860 	size = orig->end - orig->start + 1;
1861 	if (size > BTRFS_MAX_EXTENT_SIZE) {
1862 		u32 num_extents;
1863 		u64 new_size;
1864 
1865 		/*
1866 		 * See the explanation in btrfs_merge_delalloc_extent, the same
1867 		 * applies here, just in reverse.
1868 		 */
1869 		new_size = orig->end - split + 1;
1870 		num_extents = count_max_extents(new_size);
1871 		new_size = split - orig->start;
1872 		num_extents += count_max_extents(new_size);
1873 		if (count_max_extents(size) >= num_extents)
1874 			return;
1875 	}
1876 
1877 	spin_lock(&BTRFS_I(inode)->lock);
1878 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1879 	spin_unlock(&BTRFS_I(inode)->lock);
1880 }
1881 
1882 /*
1883  * Handle merged delayed allocation extents so we can keep track of new extents
1884  * that are just merged onto old extents, such as when we are doing sequential
1885  * writes, so we can properly account for the metadata space we'll need.
1886  */
1887 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1888 				 struct extent_state *other)
1889 {
1890 	u64 new_size, old_size;
1891 	u32 num_extents;
1892 
1893 	/* not delalloc, ignore it */
1894 	if (!(other->state & EXTENT_DELALLOC))
1895 		return;
1896 
1897 	if (new->start > other->start)
1898 		new_size = new->end - other->start + 1;
1899 	else
1900 		new_size = other->end - new->start + 1;
1901 
1902 	/* we're not bigger than the max, unreserve the space and go */
1903 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1904 		spin_lock(&BTRFS_I(inode)->lock);
1905 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1906 		spin_unlock(&BTRFS_I(inode)->lock);
1907 		return;
1908 	}
1909 
1910 	/*
1911 	 * We have to add up either side to figure out how many extents were
1912 	 * accounted for before we merged into one big extent.  If the number of
1913 	 * extents we accounted for is <= the amount we need for the new range
1914 	 * then we can return, otherwise drop.  Think of it like this
1915 	 *
1916 	 * [ 4k][MAX_SIZE]
1917 	 *
1918 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1919 	 * need 2 outstanding extents, on one side we have 1 and the other side
1920 	 * we have 1 so they are == and we can return.  But in this case
1921 	 *
1922 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1923 	 *
1924 	 * Each range on their own accounts for 2 extents, but merged together
1925 	 * they are only 3 extents worth of accounting, so we need to drop in
1926 	 * this case.
1927 	 */
1928 	old_size = other->end - other->start + 1;
1929 	num_extents = count_max_extents(old_size);
1930 	old_size = new->end - new->start + 1;
1931 	num_extents += count_max_extents(old_size);
1932 	if (count_max_extents(new_size) >= num_extents)
1933 		return;
1934 
1935 	spin_lock(&BTRFS_I(inode)->lock);
1936 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1937 	spin_unlock(&BTRFS_I(inode)->lock);
1938 }
1939 
1940 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1941 				      struct inode *inode)
1942 {
1943 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1944 
1945 	spin_lock(&root->delalloc_lock);
1946 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1947 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1948 			      &root->delalloc_inodes);
1949 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1950 			&BTRFS_I(inode)->runtime_flags);
1951 		root->nr_delalloc_inodes++;
1952 		if (root->nr_delalloc_inodes == 1) {
1953 			spin_lock(&fs_info->delalloc_root_lock);
1954 			BUG_ON(!list_empty(&root->delalloc_root));
1955 			list_add_tail(&root->delalloc_root,
1956 				      &fs_info->delalloc_roots);
1957 			spin_unlock(&fs_info->delalloc_root_lock);
1958 		}
1959 	}
1960 	spin_unlock(&root->delalloc_lock);
1961 }
1962 
1963 
1964 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1965 				struct btrfs_inode *inode)
1966 {
1967 	struct btrfs_fs_info *fs_info = root->fs_info;
1968 
1969 	if (!list_empty(&inode->delalloc_inodes)) {
1970 		list_del_init(&inode->delalloc_inodes);
1971 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1972 			  &inode->runtime_flags);
1973 		root->nr_delalloc_inodes--;
1974 		if (!root->nr_delalloc_inodes) {
1975 			ASSERT(list_empty(&root->delalloc_inodes));
1976 			spin_lock(&fs_info->delalloc_root_lock);
1977 			BUG_ON(list_empty(&root->delalloc_root));
1978 			list_del_init(&root->delalloc_root);
1979 			spin_unlock(&fs_info->delalloc_root_lock);
1980 		}
1981 	}
1982 }
1983 
1984 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1985 				     struct btrfs_inode *inode)
1986 {
1987 	spin_lock(&root->delalloc_lock);
1988 	__btrfs_del_delalloc_inode(root, inode);
1989 	spin_unlock(&root->delalloc_lock);
1990 }
1991 
1992 /*
1993  * Properly track delayed allocation bytes in the inode and to maintain the
1994  * list of inodes that have pending delalloc work to be done.
1995  */
1996 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1997 			       unsigned *bits)
1998 {
1999 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2000 
2001 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2002 		WARN_ON(1);
2003 	/*
2004 	 * set_bit and clear bit hooks normally require _irqsave/restore
2005 	 * but in this case, we are only testing for the DELALLOC
2006 	 * bit, which is only set or cleared with irqs on
2007 	 */
2008 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2009 		struct btrfs_root *root = BTRFS_I(inode)->root;
2010 		u64 len = state->end + 1 - state->start;
2011 		u32 num_extents = count_max_extents(len);
2012 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2013 
2014 		spin_lock(&BTRFS_I(inode)->lock);
2015 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2016 		spin_unlock(&BTRFS_I(inode)->lock);
2017 
2018 		/* For sanity tests */
2019 		if (btrfs_is_testing(fs_info))
2020 			return;
2021 
2022 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2023 					 fs_info->delalloc_batch);
2024 		spin_lock(&BTRFS_I(inode)->lock);
2025 		BTRFS_I(inode)->delalloc_bytes += len;
2026 		if (*bits & EXTENT_DEFRAG)
2027 			BTRFS_I(inode)->defrag_bytes += len;
2028 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2029 					 &BTRFS_I(inode)->runtime_flags))
2030 			btrfs_add_delalloc_inodes(root, inode);
2031 		spin_unlock(&BTRFS_I(inode)->lock);
2032 	}
2033 
2034 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2035 	    (*bits & EXTENT_DELALLOC_NEW)) {
2036 		spin_lock(&BTRFS_I(inode)->lock);
2037 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2038 			state->start;
2039 		spin_unlock(&BTRFS_I(inode)->lock);
2040 	}
2041 }
2042 
2043 /*
2044  * Once a range is no longer delalloc this function ensures that proper
2045  * accounting happens.
2046  */
2047 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2048 				 struct extent_state *state, unsigned *bits)
2049 {
2050 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2051 	struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2052 	u64 len = state->end + 1 - state->start;
2053 	u32 num_extents = count_max_extents(len);
2054 
2055 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2056 		spin_lock(&inode->lock);
2057 		inode->defrag_bytes -= len;
2058 		spin_unlock(&inode->lock);
2059 	}
2060 
2061 	/*
2062 	 * set_bit and clear bit hooks normally require _irqsave/restore
2063 	 * but in this case, we are only testing for the DELALLOC
2064 	 * bit, which is only set or cleared with irqs on
2065 	 */
2066 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2067 		struct btrfs_root *root = inode->root;
2068 		bool do_list = !btrfs_is_free_space_inode(inode);
2069 
2070 		spin_lock(&inode->lock);
2071 		btrfs_mod_outstanding_extents(inode, -num_extents);
2072 		spin_unlock(&inode->lock);
2073 
2074 		/*
2075 		 * We don't reserve metadata space for space cache inodes so we
2076 		 * don't need to call delalloc_release_metadata if there is an
2077 		 * error.
2078 		 */
2079 		if (*bits & EXTENT_CLEAR_META_RESV &&
2080 		    root != fs_info->tree_root)
2081 			btrfs_delalloc_release_metadata(inode, len, false);
2082 
2083 		/* For sanity tests. */
2084 		if (btrfs_is_testing(fs_info))
2085 			return;
2086 
2087 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2088 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2089 		    (*bits & EXTENT_CLEAR_DATA_RESV))
2090 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2091 
2092 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2093 					 fs_info->delalloc_batch);
2094 		spin_lock(&inode->lock);
2095 		inode->delalloc_bytes -= len;
2096 		if (do_list && inode->delalloc_bytes == 0 &&
2097 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2098 					&inode->runtime_flags))
2099 			btrfs_del_delalloc_inode(root, inode);
2100 		spin_unlock(&inode->lock);
2101 	}
2102 
2103 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2104 	    (*bits & EXTENT_DELALLOC_NEW)) {
2105 		spin_lock(&inode->lock);
2106 		ASSERT(inode->new_delalloc_bytes >= len);
2107 		inode->new_delalloc_bytes -= len;
2108 		spin_unlock(&inode->lock);
2109 	}
2110 }
2111 
2112 /*
2113  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2114  * in a chunk's stripe. This function ensures that bios do not span a
2115  * stripe/chunk
2116  *
2117  * @page - The page we are about to add to the bio
2118  * @size - size we want to add to the bio
2119  * @bio - bio we want to ensure is smaller than a stripe
2120  * @bio_flags - flags of the bio
2121  *
2122  * return 1 if page cannot be added to the bio
2123  * return 0 if page can be added to the bio
2124  * return error otherwise
2125  */
2126 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2127 			     unsigned long bio_flags)
2128 {
2129 	struct inode *inode = page->mapping->host;
2130 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2131 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2132 	u64 length = 0;
2133 	u64 map_length;
2134 	int ret;
2135 	struct btrfs_io_geometry geom;
2136 
2137 	if (bio_flags & EXTENT_BIO_COMPRESSED)
2138 		return 0;
2139 
2140 	length = bio->bi_iter.bi_size;
2141 	map_length = length;
2142 	ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2143 				    &geom);
2144 	if (ret < 0)
2145 		return ret;
2146 
2147 	if (geom.len < length + size)
2148 		return 1;
2149 	return 0;
2150 }
2151 
2152 /*
2153  * in order to insert checksums into the metadata in large chunks,
2154  * we wait until bio submission time.   All the pages in the bio are
2155  * checksummed and sums are attached onto the ordered extent record.
2156  *
2157  * At IO completion time the cums attached on the ordered extent record
2158  * are inserted into the btree
2159  */
2160 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2161 				    u64 bio_offset)
2162 {
2163 	struct inode *inode = private_data;
2164 
2165 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2166 }
2167 
2168 /*
2169  * extent_io.c submission hook. This does the right thing for csum calculation
2170  * on write, or reading the csums from the tree before a read.
2171  *
2172  * Rules about async/sync submit,
2173  * a) read:				sync submit
2174  *
2175  * b) write without checksum:		sync submit
2176  *
2177  * c) write with checksum:
2178  *    c-1) if bio is issued by fsync:	sync submit
2179  *         (sync_writers != 0)
2180  *
2181  *    c-2) if root is reloc root:	sync submit
2182  *         (only in case of buffered IO)
2183  *
2184  *    c-3) otherwise:			async submit
2185  */
2186 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2187 					  int mirror_num,
2188 					  unsigned long bio_flags)
2189 
2190 {
2191 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192 	struct btrfs_root *root = BTRFS_I(inode)->root;
2193 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2194 	blk_status_t ret = 0;
2195 	int skip_sum;
2196 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2197 
2198 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2199 
2200 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2201 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2202 
2203 	if (bio_op(bio) != REQ_OP_WRITE) {
2204 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2205 		if (ret)
2206 			goto out;
2207 
2208 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
2209 			ret = btrfs_submit_compressed_read(inode, bio,
2210 							   mirror_num,
2211 							   bio_flags);
2212 			goto out;
2213 		} else if (!skip_sum) {
2214 			ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2215 			if (ret)
2216 				goto out;
2217 		}
2218 		goto mapit;
2219 	} else if (async && !skip_sum) {
2220 		/* csum items have already been cloned */
2221 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2222 			goto mapit;
2223 		/* we're doing a write, do the async checksumming */
2224 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2225 					  0, inode, btrfs_submit_bio_start);
2226 		goto out;
2227 	} else if (!skip_sum) {
2228 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0);
2229 		if (ret)
2230 			goto out;
2231 	}
2232 
2233 mapit:
2234 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
2235 
2236 out:
2237 	if (ret) {
2238 		bio->bi_status = ret;
2239 		bio_endio(bio);
2240 	}
2241 	return ret;
2242 }
2243 
2244 /*
2245  * given a list of ordered sums record them in the inode.  This happens
2246  * at IO completion time based on sums calculated at bio submission time.
2247  */
2248 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2249 			     struct inode *inode, struct list_head *list)
2250 {
2251 	struct btrfs_ordered_sum *sum;
2252 	int ret;
2253 
2254 	list_for_each_entry(sum, list, list) {
2255 		trans->adding_csums = true;
2256 		ret = btrfs_csum_file_blocks(trans,
2257 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
2258 		trans->adding_csums = false;
2259 		if (ret)
2260 			return ret;
2261 	}
2262 	return 0;
2263 }
2264 
2265 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2266 			      unsigned int extra_bits,
2267 			      struct extent_state **cached_state)
2268 {
2269 	WARN_ON(PAGE_ALIGNED(end));
2270 	return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2271 				   cached_state);
2272 }
2273 
2274 /* see btrfs_writepage_start_hook for details on why this is required */
2275 struct btrfs_writepage_fixup {
2276 	struct page *page;
2277 	struct inode *inode;
2278 	struct btrfs_work work;
2279 };
2280 
2281 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2282 {
2283 	struct btrfs_writepage_fixup *fixup;
2284 	struct btrfs_ordered_extent *ordered;
2285 	struct extent_state *cached_state = NULL;
2286 	struct extent_changeset *data_reserved = NULL;
2287 	struct page *page;
2288 	struct btrfs_inode *inode;
2289 	u64 page_start;
2290 	u64 page_end;
2291 	int ret = 0;
2292 	bool free_delalloc_space = true;
2293 
2294 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
2295 	page = fixup->page;
2296 	inode = BTRFS_I(fixup->inode);
2297 	page_start = page_offset(page);
2298 	page_end = page_offset(page) + PAGE_SIZE - 1;
2299 
2300 	/*
2301 	 * This is similar to page_mkwrite, we need to reserve the space before
2302 	 * we take the page lock.
2303 	 */
2304 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2305 					   PAGE_SIZE);
2306 again:
2307 	lock_page(page);
2308 
2309 	/*
2310 	 * Before we queued this fixup, we took a reference on the page.
2311 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2312 	 * address space.
2313 	 */
2314 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2315 		/*
2316 		 * Unfortunately this is a little tricky, either
2317 		 *
2318 		 * 1) We got here and our page had already been dealt with and
2319 		 *    we reserved our space, thus ret == 0, so we need to just
2320 		 *    drop our space reservation and bail.  This can happen the
2321 		 *    first time we come into the fixup worker, or could happen
2322 		 *    while waiting for the ordered extent.
2323 		 * 2) Our page was already dealt with, but we happened to get an
2324 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2325 		 *    this case we obviously don't have anything to release, but
2326 		 *    because the page was already dealt with we don't want to
2327 		 *    mark the page with an error, so make sure we're resetting
2328 		 *    ret to 0.  This is why we have this check _before_ the ret
2329 		 *    check, because we do not want to have a surprise ENOSPC
2330 		 *    when the page was already properly dealt with.
2331 		 */
2332 		if (!ret) {
2333 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2334 			btrfs_delalloc_release_space(inode, data_reserved,
2335 						     page_start, PAGE_SIZE,
2336 						     true);
2337 		}
2338 		ret = 0;
2339 		goto out_page;
2340 	}
2341 
2342 	/*
2343 	 * We can't mess with the page state unless it is locked, so now that
2344 	 * it is locked bail if we failed to make our space reservation.
2345 	 */
2346 	if (ret)
2347 		goto out_page;
2348 
2349 	lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
2350 
2351 	/* already ordered? We're done */
2352 	if (PagePrivate2(page))
2353 		goto out_reserved;
2354 
2355 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2356 	if (ordered) {
2357 		unlock_extent_cached(&inode->io_tree, page_start, page_end,
2358 				     &cached_state);
2359 		unlock_page(page);
2360 		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
2361 		btrfs_put_ordered_extent(ordered);
2362 		goto again;
2363 	}
2364 
2365 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2366 					&cached_state);
2367 	if (ret)
2368 		goto out_reserved;
2369 
2370 	/*
2371 	 * Everything went as planned, we're now the owner of a dirty page with
2372 	 * delayed allocation bits set and space reserved for our COW
2373 	 * destination.
2374 	 *
2375 	 * The page was dirty when we started, nothing should have cleaned it.
2376 	 */
2377 	BUG_ON(!PageDirty(page));
2378 	free_delalloc_space = false;
2379 out_reserved:
2380 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2381 	if (free_delalloc_space)
2382 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2383 					     PAGE_SIZE, true);
2384 	unlock_extent_cached(&inode->io_tree, page_start, page_end,
2385 			     &cached_state);
2386 out_page:
2387 	if (ret) {
2388 		/*
2389 		 * We hit ENOSPC or other errors.  Update the mapping and page
2390 		 * to reflect the errors and clean the page.
2391 		 */
2392 		mapping_set_error(page->mapping, ret);
2393 		end_extent_writepage(page, ret, page_start, page_end);
2394 		clear_page_dirty_for_io(page);
2395 		SetPageError(page);
2396 	}
2397 	ClearPageChecked(page);
2398 	unlock_page(page);
2399 	put_page(page);
2400 	kfree(fixup);
2401 	extent_changeset_free(data_reserved);
2402 	/*
2403 	 * As a precaution, do a delayed iput in case it would be the last iput
2404 	 * that could need flushing space. Recursing back to fixup worker would
2405 	 * deadlock.
2406 	 */
2407 	btrfs_add_delayed_iput(&inode->vfs_inode);
2408 }
2409 
2410 /*
2411  * There are a few paths in the higher layers of the kernel that directly
2412  * set the page dirty bit without asking the filesystem if it is a
2413  * good idea.  This causes problems because we want to make sure COW
2414  * properly happens and the data=ordered rules are followed.
2415  *
2416  * In our case any range that doesn't have the ORDERED bit set
2417  * hasn't been properly setup for IO.  We kick off an async process
2418  * to fix it up.  The async helper will wait for ordered extents, set
2419  * the delalloc bit and make it safe to write the page.
2420  */
2421 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2422 {
2423 	struct inode *inode = page->mapping->host;
2424 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2425 	struct btrfs_writepage_fixup *fixup;
2426 
2427 	/* this page is properly in the ordered list */
2428 	if (TestClearPagePrivate2(page))
2429 		return 0;
2430 
2431 	/*
2432 	 * PageChecked is set below when we create a fixup worker for this page,
2433 	 * don't try to create another one if we're already PageChecked()
2434 	 *
2435 	 * The extent_io writepage code will redirty the page if we send back
2436 	 * EAGAIN.
2437 	 */
2438 	if (PageChecked(page))
2439 		return -EAGAIN;
2440 
2441 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2442 	if (!fixup)
2443 		return -EAGAIN;
2444 
2445 	/*
2446 	 * We are already holding a reference to this inode from
2447 	 * write_cache_pages.  We need to hold it because the space reservation
2448 	 * takes place outside of the page lock, and we can't trust
2449 	 * page->mapping outside of the page lock.
2450 	 */
2451 	ihold(inode);
2452 	SetPageChecked(page);
2453 	get_page(page);
2454 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2455 	fixup->page = page;
2456 	fixup->inode = inode;
2457 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2458 
2459 	return -EAGAIN;
2460 }
2461 
2462 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2463 				       struct btrfs_inode *inode, u64 file_pos,
2464 				       struct btrfs_file_extent_item *stack_fi,
2465 				       u64 qgroup_reserved)
2466 {
2467 	struct btrfs_root *root = inode->root;
2468 	struct btrfs_path *path;
2469 	struct extent_buffer *leaf;
2470 	struct btrfs_key ins;
2471 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2472 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2473 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2474 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2475 	int extent_inserted = 0;
2476 	int ret;
2477 
2478 	path = btrfs_alloc_path();
2479 	if (!path)
2480 		return -ENOMEM;
2481 
2482 	/*
2483 	 * we may be replacing one extent in the tree with another.
2484 	 * The new extent is pinned in the extent map, and we don't want
2485 	 * to drop it from the cache until it is completely in the btree.
2486 	 *
2487 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2488 	 * the caller is expected to unpin it and allow it to be merged
2489 	 * with the others.
2490 	 */
2491 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2492 				   file_pos + num_bytes, NULL, 0,
2493 				   1, sizeof(*stack_fi), &extent_inserted);
2494 	if (ret)
2495 		goto out;
2496 
2497 	if (!extent_inserted) {
2498 		ins.objectid = btrfs_ino(inode);
2499 		ins.offset = file_pos;
2500 		ins.type = BTRFS_EXTENT_DATA_KEY;
2501 
2502 		path->leave_spinning = 1;
2503 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2504 					      sizeof(*stack_fi));
2505 		if (ret)
2506 			goto out;
2507 	}
2508 	leaf = path->nodes[0];
2509 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2510 	write_extent_buffer(leaf, stack_fi,
2511 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2512 			sizeof(struct btrfs_file_extent_item));
2513 
2514 	btrfs_mark_buffer_dirty(leaf);
2515 	btrfs_release_path(path);
2516 
2517 	inode_add_bytes(&inode->vfs_inode, num_bytes);
2518 
2519 	ins.objectid = disk_bytenr;
2520 	ins.offset = disk_num_bytes;
2521 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2522 
2523 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2524 	if (ret)
2525 		goto out;
2526 
2527 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2528 					       file_pos, qgroup_reserved, &ins);
2529 out:
2530 	btrfs_free_path(path);
2531 
2532 	return ret;
2533 }
2534 
2535 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2536 					 u64 start, u64 len)
2537 {
2538 	struct btrfs_block_group *cache;
2539 
2540 	cache = btrfs_lookup_block_group(fs_info, start);
2541 	ASSERT(cache);
2542 
2543 	spin_lock(&cache->lock);
2544 	cache->delalloc_bytes -= len;
2545 	spin_unlock(&cache->lock);
2546 
2547 	btrfs_put_block_group(cache);
2548 }
2549 
2550 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2551 					     struct inode *inode,
2552 					     struct btrfs_ordered_extent *oe)
2553 {
2554 	struct btrfs_file_extent_item stack_fi;
2555 	u64 logical_len;
2556 
2557 	memset(&stack_fi, 0, sizeof(stack_fi));
2558 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2559 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2560 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2561 						   oe->disk_num_bytes);
2562 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
2563 		logical_len = oe->truncated_len;
2564 	else
2565 		logical_len = oe->num_bytes;
2566 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len);
2567 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len);
2568 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
2569 	/* Encryption and other encoding is reserved and all 0 */
2570 
2571 	return insert_reserved_file_extent(trans, BTRFS_I(inode), oe->file_offset,
2572 					   &stack_fi, oe->qgroup_rsv);
2573 }
2574 
2575 /*
2576  * As ordered data IO finishes, this gets called so we can finish
2577  * an ordered extent if the range of bytes in the file it covers are
2578  * fully written.
2579  */
2580 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2581 {
2582 	struct inode *inode = ordered_extent->inode;
2583 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2584 	struct btrfs_root *root = BTRFS_I(inode)->root;
2585 	struct btrfs_trans_handle *trans = NULL;
2586 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2587 	struct extent_state *cached_state = NULL;
2588 	u64 start, end;
2589 	int compress_type = 0;
2590 	int ret = 0;
2591 	u64 logical_len = ordered_extent->num_bytes;
2592 	bool freespace_inode;
2593 	bool truncated = false;
2594 	bool range_locked = false;
2595 	bool clear_new_delalloc_bytes = false;
2596 	bool clear_reserved_extent = true;
2597 	unsigned int clear_bits;
2598 
2599 	start = ordered_extent->file_offset;
2600 	end = start + ordered_extent->num_bytes - 1;
2601 
2602 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2603 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2604 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2605 		clear_new_delalloc_bytes = true;
2606 
2607 	freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2608 
2609 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2610 		ret = -EIO;
2611 		goto out;
2612 	}
2613 
2614 	btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2615 
2616 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2617 		truncated = true;
2618 		logical_len = ordered_extent->truncated_len;
2619 		/* Truncated the entire extent, don't bother adding */
2620 		if (!logical_len)
2621 			goto out;
2622 	}
2623 
2624 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2625 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2626 
2627 		btrfs_inode_safe_disk_i_size_write(inode, 0);
2628 		if (freespace_inode)
2629 			trans = btrfs_join_transaction_spacecache(root);
2630 		else
2631 			trans = btrfs_join_transaction(root);
2632 		if (IS_ERR(trans)) {
2633 			ret = PTR_ERR(trans);
2634 			trans = NULL;
2635 			goto out;
2636 		}
2637 		trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2638 		ret = btrfs_update_inode_fallback(trans, root, inode);
2639 		if (ret) /* -ENOMEM or corruption */
2640 			btrfs_abort_transaction(trans, ret);
2641 		goto out;
2642 	}
2643 
2644 	range_locked = true;
2645 	lock_extent_bits(io_tree, start, end, &cached_state);
2646 
2647 	if (freespace_inode)
2648 		trans = btrfs_join_transaction_spacecache(root);
2649 	else
2650 		trans = btrfs_join_transaction(root);
2651 	if (IS_ERR(trans)) {
2652 		ret = PTR_ERR(trans);
2653 		trans = NULL;
2654 		goto out;
2655 	}
2656 
2657 	trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2658 
2659 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2660 		compress_type = ordered_extent->compress_type;
2661 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2662 		BUG_ON(compress_type);
2663 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2664 						ordered_extent->file_offset,
2665 						ordered_extent->file_offset +
2666 						logical_len);
2667 	} else {
2668 		BUG_ON(root == fs_info->tree_root);
2669 		ret = insert_ordered_extent_file_extent(trans, inode,
2670 							ordered_extent);
2671 		if (!ret) {
2672 			clear_reserved_extent = false;
2673 			btrfs_release_delalloc_bytes(fs_info,
2674 						ordered_extent->disk_bytenr,
2675 						ordered_extent->disk_num_bytes);
2676 		}
2677 	}
2678 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2679 			   ordered_extent->file_offset,
2680 			   ordered_extent->num_bytes, trans->transid);
2681 	if (ret < 0) {
2682 		btrfs_abort_transaction(trans, ret);
2683 		goto out;
2684 	}
2685 
2686 	ret = add_pending_csums(trans, inode, &ordered_extent->list);
2687 	if (ret) {
2688 		btrfs_abort_transaction(trans, ret);
2689 		goto out;
2690 	}
2691 
2692 	btrfs_inode_safe_disk_i_size_write(inode, 0);
2693 	ret = btrfs_update_inode_fallback(trans, root, inode);
2694 	if (ret) { /* -ENOMEM or corruption */
2695 		btrfs_abort_transaction(trans, ret);
2696 		goto out;
2697 	}
2698 	ret = 0;
2699 out:
2700 	clear_bits = EXTENT_DEFRAG;
2701 	if (range_locked)
2702 		clear_bits |= EXTENT_LOCKED;
2703 	if (clear_new_delalloc_bytes)
2704 		clear_bits |= EXTENT_DELALLOC_NEW;
2705 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2706 			 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2707 			 &cached_state);
2708 
2709 	if (trans)
2710 		btrfs_end_transaction(trans);
2711 
2712 	if (ret || truncated) {
2713 		u64 unwritten_start = start;
2714 
2715 		if (truncated)
2716 			unwritten_start += logical_len;
2717 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2718 
2719 		/* Drop the cache for the part of the extent we didn't write. */
2720 		btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2721 
2722 		/*
2723 		 * If the ordered extent had an IOERR or something else went
2724 		 * wrong we need to return the space for this ordered extent
2725 		 * back to the allocator.  We only free the extent in the
2726 		 * truncated case if we didn't write out the extent at all.
2727 		 *
2728 		 * If we made it past insert_reserved_file_extent before we
2729 		 * errored out then we don't need to do this as the accounting
2730 		 * has already been done.
2731 		 */
2732 		if ((ret || !logical_len) &&
2733 		    clear_reserved_extent &&
2734 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2735 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2736 			/*
2737 			 * Discard the range before returning it back to the
2738 			 * free space pool
2739 			 */
2740 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2741 				btrfs_discard_extent(fs_info,
2742 						ordered_extent->disk_bytenr,
2743 						ordered_extent->disk_num_bytes,
2744 						NULL);
2745 			btrfs_free_reserved_extent(fs_info,
2746 					ordered_extent->disk_bytenr,
2747 					ordered_extent->disk_num_bytes, 1);
2748 		}
2749 	}
2750 
2751 	/*
2752 	 * This needs to be done to make sure anybody waiting knows we are done
2753 	 * updating everything for this ordered extent.
2754 	 */
2755 	btrfs_remove_ordered_extent(inode, ordered_extent);
2756 
2757 	/* once for us */
2758 	btrfs_put_ordered_extent(ordered_extent);
2759 	/* once for the tree */
2760 	btrfs_put_ordered_extent(ordered_extent);
2761 
2762 	return ret;
2763 }
2764 
2765 static void finish_ordered_fn(struct btrfs_work *work)
2766 {
2767 	struct btrfs_ordered_extent *ordered_extent;
2768 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2769 	btrfs_finish_ordered_io(ordered_extent);
2770 }
2771 
2772 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2773 					  u64 end, int uptodate)
2774 {
2775 	struct inode *inode = page->mapping->host;
2776 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2777 	struct btrfs_ordered_extent *ordered_extent = NULL;
2778 	struct btrfs_workqueue *wq;
2779 
2780 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2781 
2782 	ClearPagePrivate2(page);
2783 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2784 					    end - start + 1, uptodate))
2785 		return;
2786 
2787 	if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2788 		wq = fs_info->endio_freespace_worker;
2789 	else
2790 		wq = fs_info->endio_write_workers;
2791 
2792 	btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2793 	btrfs_queue_work(wq, &ordered_extent->work);
2794 }
2795 
2796 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2797 			   int icsum, struct page *page, int pgoff, u64 start,
2798 			   size_t len)
2799 {
2800 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2801 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2802 	char *kaddr;
2803 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2804 	u8 *csum_expected;
2805 	u8 csum[BTRFS_CSUM_SIZE];
2806 
2807 	csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2808 
2809 	kaddr = kmap_atomic(page);
2810 	shash->tfm = fs_info->csum_shash;
2811 
2812 	crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2813 
2814 	if (memcmp(csum, csum_expected, csum_size))
2815 		goto zeroit;
2816 
2817 	kunmap_atomic(kaddr);
2818 	return 0;
2819 zeroit:
2820 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2821 				    io_bio->mirror_num);
2822 	if (io_bio->device)
2823 		btrfs_dev_stat_inc_and_print(io_bio->device,
2824 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
2825 	memset(kaddr + pgoff, 1, len);
2826 	flush_dcache_page(page);
2827 	kunmap_atomic(kaddr);
2828 	return -EIO;
2829 }
2830 
2831 /*
2832  * when reads are done, we need to check csums to verify the data is correct
2833  * if there's a match, we allow the bio to finish.  If not, the code in
2834  * extent_io.c will try to find good copies for us.
2835  */
2836 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2837 				      u64 phy_offset, struct page *page,
2838 				      u64 start, u64 end, int mirror)
2839 {
2840 	size_t offset = start - page_offset(page);
2841 	struct inode *inode = page->mapping->host;
2842 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2843 	struct btrfs_root *root = BTRFS_I(inode)->root;
2844 
2845 	if (PageChecked(page)) {
2846 		ClearPageChecked(page);
2847 		return 0;
2848 	}
2849 
2850 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2851 		return 0;
2852 
2853 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2854 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2855 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2856 		return 0;
2857 	}
2858 
2859 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2860 	return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2861 			       (size_t)(end - start + 1));
2862 }
2863 
2864 /*
2865  * btrfs_add_delayed_iput - perform a delayed iput on @inode
2866  *
2867  * @inode: The inode we want to perform iput on
2868  *
2869  * This function uses the generic vfs_inode::i_count to track whether we should
2870  * just decrement it (in case it's > 1) or if this is the last iput then link
2871  * the inode to the delayed iput machinery. Delayed iputs are processed at
2872  * transaction commit time/superblock commit/cleaner kthread.
2873  */
2874 void btrfs_add_delayed_iput(struct inode *inode)
2875 {
2876 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2877 	struct btrfs_inode *binode = BTRFS_I(inode);
2878 
2879 	if (atomic_add_unless(&inode->i_count, -1, 1))
2880 		return;
2881 
2882 	atomic_inc(&fs_info->nr_delayed_iputs);
2883 	spin_lock(&fs_info->delayed_iput_lock);
2884 	ASSERT(list_empty(&binode->delayed_iput));
2885 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2886 	spin_unlock(&fs_info->delayed_iput_lock);
2887 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2888 		wake_up_process(fs_info->cleaner_kthread);
2889 }
2890 
2891 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2892 				    struct btrfs_inode *inode)
2893 {
2894 	list_del_init(&inode->delayed_iput);
2895 	spin_unlock(&fs_info->delayed_iput_lock);
2896 	iput(&inode->vfs_inode);
2897 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2898 		wake_up(&fs_info->delayed_iputs_wait);
2899 	spin_lock(&fs_info->delayed_iput_lock);
2900 }
2901 
2902 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2903 				   struct btrfs_inode *inode)
2904 {
2905 	if (!list_empty(&inode->delayed_iput)) {
2906 		spin_lock(&fs_info->delayed_iput_lock);
2907 		if (!list_empty(&inode->delayed_iput))
2908 			run_delayed_iput_locked(fs_info, inode);
2909 		spin_unlock(&fs_info->delayed_iput_lock);
2910 	}
2911 }
2912 
2913 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2914 {
2915 
2916 	spin_lock(&fs_info->delayed_iput_lock);
2917 	while (!list_empty(&fs_info->delayed_iputs)) {
2918 		struct btrfs_inode *inode;
2919 
2920 		inode = list_first_entry(&fs_info->delayed_iputs,
2921 				struct btrfs_inode, delayed_iput);
2922 		run_delayed_iput_locked(fs_info, inode);
2923 	}
2924 	spin_unlock(&fs_info->delayed_iput_lock);
2925 }
2926 
2927 /**
2928  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2929  * @fs_info - the fs_info for this fs
2930  * @return - EINTR if we were killed, 0 if nothing's pending
2931  *
2932  * This will wait on any delayed iputs that are currently running with KILLABLE
2933  * set.  Once they are all done running we will return, unless we are killed in
2934  * which case we return EINTR. This helps in user operations like fallocate etc
2935  * that might get blocked on the iputs.
2936  */
2937 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2938 {
2939 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2940 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
2941 	if (ret)
2942 		return -EINTR;
2943 	return 0;
2944 }
2945 
2946 /*
2947  * This creates an orphan entry for the given inode in case something goes wrong
2948  * in the middle of an unlink.
2949  */
2950 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2951 		     struct btrfs_inode *inode)
2952 {
2953 	int ret;
2954 
2955 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2956 	if (ret && ret != -EEXIST) {
2957 		btrfs_abort_transaction(trans, ret);
2958 		return ret;
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 /*
2965  * We have done the delete so we can go ahead and remove the orphan item for
2966  * this particular inode.
2967  */
2968 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2969 			    struct btrfs_inode *inode)
2970 {
2971 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
2972 }
2973 
2974 /*
2975  * this cleans up any orphans that may be left on the list from the last use
2976  * of this root.
2977  */
2978 int btrfs_orphan_cleanup(struct btrfs_root *root)
2979 {
2980 	struct btrfs_fs_info *fs_info = root->fs_info;
2981 	struct btrfs_path *path;
2982 	struct extent_buffer *leaf;
2983 	struct btrfs_key key, found_key;
2984 	struct btrfs_trans_handle *trans;
2985 	struct inode *inode;
2986 	u64 last_objectid = 0;
2987 	int ret = 0, nr_unlink = 0;
2988 
2989 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2990 		return 0;
2991 
2992 	path = btrfs_alloc_path();
2993 	if (!path) {
2994 		ret = -ENOMEM;
2995 		goto out;
2996 	}
2997 	path->reada = READA_BACK;
2998 
2999 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3000 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3001 	key.offset = (u64)-1;
3002 
3003 	while (1) {
3004 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3005 		if (ret < 0)
3006 			goto out;
3007 
3008 		/*
3009 		 * if ret == 0 means we found what we were searching for, which
3010 		 * is weird, but possible, so only screw with path if we didn't
3011 		 * find the key and see if we have stuff that matches
3012 		 */
3013 		if (ret > 0) {
3014 			ret = 0;
3015 			if (path->slots[0] == 0)
3016 				break;
3017 			path->slots[0]--;
3018 		}
3019 
3020 		/* pull out the item */
3021 		leaf = path->nodes[0];
3022 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3023 
3024 		/* make sure the item matches what we want */
3025 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3026 			break;
3027 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3028 			break;
3029 
3030 		/* release the path since we're done with it */
3031 		btrfs_release_path(path);
3032 
3033 		/*
3034 		 * this is where we are basically btrfs_lookup, without the
3035 		 * crossing root thing.  we store the inode number in the
3036 		 * offset of the orphan item.
3037 		 */
3038 
3039 		if (found_key.offset == last_objectid) {
3040 			btrfs_err(fs_info,
3041 				  "Error removing orphan entry, stopping orphan cleanup");
3042 			ret = -EINVAL;
3043 			goto out;
3044 		}
3045 
3046 		last_objectid = found_key.offset;
3047 
3048 		found_key.objectid = found_key.offset;
3049 		found_key.type = BTRFS_INODE_ITEM_KEY;
3050 		found_key.offset = 0;
3051 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3052 		ret = PTR_ERR_OR_ZERO(inode);
3053 		if (ret && ret != -ENOENT)
3054 			goto out;
3055 
3056 		if (ret == -ENOENT && root == fs_info->tree_root) {
3057 			struct btrfs_root *dead_root;
3058 			struct btrfs_fs_info *fs_info = root->fs_info;
3059 			int is_dead_root = 0;
3060 
3061 			/*
3062 			 * this is an orphan in the tree root. Currently these
3063 			 * could come from 2 sources:
3064 			 *  a) a snapshot deletion in progress
3065 			 *  b) a free space cache inode
3066 			 * We need to distinguish those two, as the snapshot
3067 			 * orphan must not get deleted.
3068 			 * find_dead_roots already ran before us, so if this
3069 			 * is a snapshot deletion, we should find the root
3070 			 * in the fs_roots radix tree.
3071 			 */
3072 
3073 			spin_lock(&fs_info->fs_roots_radix_lock);
3074 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3075 							 (unsigned long)found_key.objectid);
3076 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3077 				is_dead_root = 1;
3078 			spin_unlock(&fs_info->fs_roots_radix_lock);
3079 
3080 			if (is_dead_root) {
3081 				/* prevent this orphan from being found again */
3082 				key.offset = found_key.objectid - 1;
3083 				continue;
3084 			}
3085 
3086 		}
3087 
3088 		/*
3089 		 * If we have an inode with links, there are a couple of
3090 		 * possibilities. Old kernels (before v3.12) used to create an
3091 		 * orphan item for truncate indicating that there were possibly
3092 		 * extent items past i_size that needed to be deleted. In v3.12,
3093 		 * truncate was changed to update i_size in sync with the extent
3094 		 * items, but the (useless) orphan item was still created. Since
3095 		 * v4.18, we don't create the orphan item for truncate at all.
3096 		 *
3097 		 * So, this item could mean that we need to do a truncate, but
3098 		 * only if this filesystem was last used on a pre-v3.12 kernel
3099 		 * and was not cleanly unmounted. The odds of that are quite
3100 		 * slim, and it's a pain to do the truncate now, so just delete
3101 		 * the orphan item.
3102 		 *
3103 		 * It's also possible that this orphan item was supposed to be
3104 		 * deleted but wasn't. The inode number may have been reused,
3105 		 * but either way, we can delete the orphan item.
3106 		 */
3107 		if (ret == -ENOENT || inode->i_nlink) {
3108 			if (!ret)
3109 				iput(inode);
3110 			trans = btrfs_start_transaction(root, 1);
3111 			if (IS_ERR(trans)) {
3112 				ret = PTR_ERR(trans);
3113 				goto out;
3114 			}
3115 			btrfs_debug(fs_info, "auto deleting %Lu",
3116 				    found_key.objectid);
3117 			ret = btrfs_del_orphan_item(trans, root,
3118 						    found_key.objectid);
3119 			btrfs_end_transaction(trans);
3120 			if (ret)
3121 				goto out;
3122 			continue;
3123 		}
3124 
3125 		nr_unlink++;
3126 
3127 		/* this will do delete_inode and everything for us */
3128 		iput(inode);
3129 	}
3130 	/* release the path since we're done with it */
3131 	btrfs_release_path(path);
3132 
3133 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3134 
3135 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3136 		trans = btrfs_join_transaction(root);
3137 		if (!IS_ERR(trans))
3138 			btrfs_end_transaction(trans);
3139 	}
3140 
3141 	if (nr_unlink)
3142 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3143 
3144 out:
3145 	if (ret)
3146 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3147 	btrfs_free_path(path);
3148 	return ret;
3149 }
3150 
3151 /*
3152  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3153  * don't find any xattrs, we know there can't be any acls.
3154  *
3155  * slot is the slot the inode is in, objectid is the objectid of the inode
3156  */
3157 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3158 					  int slot, u64 objectid,
3159 					  int *first_xattr_slot)
3160 {
3161 	u32 nritems = btrfs_header_nritems(leaf);
3162 	struct btrfs_key found_key;
3163 	static u64 xattr_access = 0;
3164 	static u64 xattr_default = 0;
3165 	int scanned = 0;
3166 
3167 	if (!xattr_access) {
3168 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3169 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3170 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3171 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3172 	}
3173 
3174 	slot++;
3175 	*first_xattr_slot = -1;
3176 	while (slot < nritems) {
3177 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3178 
3179 		/* we found a different objectid, there must not be acls */
3180 		if (found_key.objectid != objectid)
3181 			return 0;
3182 
3183 		/* we found an xattr, assume we've got an acl */
3184 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3185 			if (*first_xattr_slot == -1)
3186 				*first_xattr_slot = slot;
3187 			if (found_key.offset == xattr_access ||
3188 			    found_key.offset == xattr_default)
3189 				return 1;
3190 		}
3191 
3192 		/*
3193 		 * we found a key greater than an xattr key, there can't
3194 		 * be any acls later on
3195 		 */
3196 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3197 			return 0;
3198 
3199 		slot++;
3200 		scanned++;
3201 
3202 		/*
3203 		 * it goes inode, inode backrefs, xattrs, extents,
3204 		 * so if there are a ton of hard links to an inode there can
3205 		 * be a lot of backrefs.  Don't waste time searching too hard,
3206 		 * this is just an optimization
3207 		 */
3208 		if (scanned >= 8)
3209 			break;
3210 	}
3211 	/* we hit the end of the leaf before we found an xattr or
3212 	 * something larger than an xattr.  We have to assume the inode
3213 	 * has acls
3214 	 */
3215 	if (*first_xattr_slot == -1)
3216 		*first_xattr_slot = slot;
3217 	return 1;
3218 }
3219 
3220 /*
3221  * read an inode from the btree into the in-memory inode
3222  */
3223 static int btrfs_read_locked_inode(struct inode *inode,
3224 				   struct btrfs_path *in_path)
3225 {
3226 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3227 	struct btrfs_path *path = in_path;
3228 	struct extent_buffer *leaf;
3229 	struct btrfs_inode_item *inode_item;
3230 	struct btrfs_root *root = BTRFS_I(inode)->root;
3231 	struct btrfs_key location;
3232 	unsigned long ptr;
3233 	int maybe_acls;
3234 	u32 rdev;
3235 	int ret;
3236 	bool filled = false;
3237 	int first_xattr_slot;
3238 
3239 	ret = btrfs_fill_inode(inode, &rdev);
3240 	if (!ret)
3241 		filled = true;
3242 
3243 	if (!path) {
3244 		path = btrfs_alloc_path();
3245 		if (!path)
3246 			return -ENOMEM;
3247 	}
3248 
3249 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3250 
3251 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3252 	if (ret) {
3253 		if (path != in_path)
3254 			btrfs_free_path(path);
3255 		return ret;
3256 	}
3257 
3258 	leaf = path->nodes[0];
3259 
3260 	if (filled)
3261 		goto cache_index;
3262 
3263 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3264 				    struct btrfs_inode_item);
3265 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3266 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3267 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3268 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3269 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3270 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3271 			round_up(i_size_read(inode), fs_info->sectorsize));
3272 
3273 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3274 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3275 
3276 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3277 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3278 
3279 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3280 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3281 
3282 	BTRFS_I(inode)->i_otime.tv_sec =
3283 		btrfs_timespec_sec(leaf, &inode_item->otime);
3284 	BTRFS_I(inode)->i_otime.tv_nsec =
3285 		btrfs_timespec_nsec(leaf, &inode_item->otime);
3286 
3287 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3288 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3289 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3290 
3291 	inode_set_iversion_queried(inode,
3292 				   btrfs_inode_sequence(leaf, inode_item));
3293 	inode->i_generation = BTRFS_I(inode)->generation;
3294 	inode->i_rdev = 0;
3295 	rdev = btrfs_inode_rdev(leaf, inode_item);
3296 
3297 	BTRFS_I(inode)->index_cnt = (u64)-1;
3298 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3299 
3300 cache_index:
3301 	/*
3302 	 * If we were modified in the current generation and evicted from memory
3303 	 * and then re-read we need to do a full sync since we don't have any
3304 	 * idea about which extents were modified before we were evicted from
3305 	 * cache.
3306 	 *
3307 	 * This is required for both inode re-read from disk and delayed inode
3308 	 * in delayed_nodes_tree.
3309 	 */
3310 	if (BTRFS_I(inode)->last_trans == fs_info->generation)
3311 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3312 			&BTRFS_I(inode)->runtime_flags);
3313 
3314 	/*
3315 	 * We don't persist the id of the transaction where an unlink operation
3316 	 * against the inode was last made. So here we assume the inode might
3317 	 * have been evicted, and therefore the exact value of last_unlink_trans
3318 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3319 	 * between the inode and its parent if the inode is fsync'ed and the log
3320 	 * replayed. For example, in the scenario:
3321 	 *
3322 	 * touch mydir/foo
3323 	 * ln mydir/foo mydir/bar
3324 	 * sync
3325 	 * unlink mydir/bar
3326 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3327 	 * xfs_io -c fsync mydir/foo
3328 	 * <power failure>
3329 	 * mount fs, triggers fsync log replay
3330 	 *
3331 	 * We must make sure that when we fsync our inode foo we also log its
3332 	 * parent inode, otherwise after log replay the parent still has the
3333 	 * dentry with the "bar" name but our inode foo has a link count of 1
3334 	 * and doesn't have an inode ref with the name "bar" anymore.
3335 	 *
3336 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3337 	 * but it guarantees correctness at the expense of occasional full
3338 	 * transaction commits on fsync if our inode is a directory, or if our
3339 	 * inode is not a directory, logging its parent unnecessarily.
3340 	 */
3341 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3342 
3343 	/*
3344 	 * Same logic as for last_unlink_trans. We don't persist the generation
3345 	 * of the last transaction where this inode was used for a reflink
3346 	 * operation, so after eviction and reloading the inode we must be
3347 	 * pessimistic and assume the last transaction that modified the inode.
3348 	 */
3349 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3350 
3351 	path->slots[0]++;
3352 	if (inode->i_nlink != 1 ||
3353 	    path->slots[0] >= btrfs_header_nritems(leaf))
3354 		goto cache_acl;
3355 
3356 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3357 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3358 		goto cache_acl;
3359 
3360 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3361 	if (location.type == BTRFS_INODE_REF_KEY) {
3362 		struct btrfs_inode_ref *ref;
3363 
3364 		ref = (struct btrfs_inode_ref *)ptr;
3365 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3366 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3367 		struct btrfs_inode_extref *extref;
3368 
3369 		extref = (struct btrfs_inode_extref *)ptr;
3370 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3371 								     extref);
3372 	}
3373 cache_acl:
3374 	/*
3375 	 * try to precache a NULL acl entry for files that don't have
3376 	 * any xattrs or acls
3377 	 */
3378 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3379 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3380 	if (first_xattr_slot != -1) {
3381 		path->slots[0] = first_xattr_slot;
3382 		ret = btrfs_load_inode_props(inode, path);
3383 		if (ret)
3384 			btrfs_err(fs_info,
3385 				  "error loading props for ino %llu (root %llu): %d",
3386 				  btrfs_ino(BTRFS_I(inode)),
3387 				  root->root_key.objectid, ret);
3388 	}
3389 	if (path != in_path)
3390 		btrfs_free_path(path);
3391 
3392 	if (!maybe_acls)
3393 		cache_no_acl(inode);
3394 
3395 	switch (inode->i_mode & S_IFMT) {
3396 	case S_IFREG:
3397 		inode->i_mapping->a_ops = &btrfs_aops;
3398 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3399 		inode->i_fop = &btrfs_file_operations;
3400 		inode->i_op = &btrfs_file_inode_operations;
3401 		break;
3402 	case S_IFDIR:
3403 		inode->i_fop = &btrfs_dir_file_operations;
3404 		inode->i_op = &btrfs_dir_inode_operations;
3405 		break;
3406 	case S_IFLNK:
3407 		inode->i_op = &btrfs_symlink_inode_operations;
3408 		inode_nohighmem(inode);
3409 		inode->i_mapping->a_ops = &btrfs_aops;
3410 		break;
3411 	default:
3412 		inode->i_op = &btrfs_special_inode_operations;
3413 		init_special_inode(inode, inode->i_mode, rdev);
3414 		break;
3415 	}
3416 
3417 	btrfs_sync_inode_flags_to_i_flags(inode);
3418 	return 0;
3419 }
3420 
3421 /*
3422  * given a leaf and an inode, copy the inode fields into the leaf
3423  */
3424 static void fill_inode_item(struct btrfs_trans_handle *trans,
3425 			    struct extent_buffer *leaf,
3426 			    struct btrfs_inode_item *item,
3427 			    struct inode *inode)
3428 {
3429 	struct btrfs_map_token token;
3430 
3431 	btrfs_init_map_token(&token, leaf);
3432 
3433 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3434 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3435 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3436 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3437 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3438 
3439 	btrfs_set_token_timespec_sec(&token, &item->atime,
3440 				     inode->i_atime.tv_sec);
3441 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3442 				      inode->i_atime.tv_nsec);
3443 
3444 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3445 				     inode->i_mtime.tv_sec);
3446 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3447 				      inode->i_mtime.tv_nsec);
3448 
3449 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3450 				     inode->i_ctime.tv_sec);
3451 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3452 				      inode->i_ctime.tv_nsec);
3453 
3454 	btrfs_set_token_timespec_sec(&token, &item->otime,
3455 				     BTRFS_I(inode)->i_otime.tv_sec);
3456 	btrfs_set_token_timespec_nsec(&token, &item->otime,
3457 				      BTRFS_I(inode)->i_otime.tv_nsec);
3458 
3459 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3460 	btrfs_set_token_inode_generation(&token, item,
3461 					 BTRFS_I(inode)->generation);
3462 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3463 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3464 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3465 	btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3466 	btrfs_set_token_inode_block_group(&token, item, 0);
3467 }
3468 
3469 /*
3470  * copy everything in the in-memory inode into the btree.
3471  */
3472 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3473 				struct btrfs_root *root, struct inode *inode)
3474 {
3475 	struct btrfs_inode_item *inode_item;
3476 	struct btrfs_path *path;
3477 	struct extent_buffer *leaf;
3478 	int ret;
3479 
3480 	path = btrfs_alloc_path();
3481 	if (!path)
3482 		return -ENOMEM;
3483 
3484 	path->leave_spinning = 1;
3485 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3486 				 1);
3487 	if (ret) {
3488 		if (ret > 0)
3489 			ret = -ENOENT;
3490 		goto failed;
3491 	}
3492 
3493 	leaf = path->nodes[0];
3494 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3495 				    struct btrfs_inode_item);
3496 
3497 	fill_inode_item(trans, leaf, inode_item, inode);
3498 	btrfs_mark_buffer_dirty(leaf);
3499 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3500 	ret = 0;
3501 failed:
3502 	btrfs_free_path(path);
3503 	return ret;
3504 }
3505 
3506 /*
3507  * copy everything in the in-memory inode into the btree.
3508  */
3509 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3510 				struct btrfs_root *root, struct inode *inode)
3511 {
3512 	struct btrfs_fs_info *fs_info = root->fs_info;
3513 	int ret;
3514 
3515 	/*
3516 	 * If the inode is a free space inode, we can deadlock during commit
3517 	 * if we put it into the delayed code.
3518 	 *
3519 	 * The data relocation inode should also be directly updated
3520 	 * without delay
3521 	 */
3522 	if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3523 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3524 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3525 		btrfs_update_root_times(trans, root);
3526 
3527 		ret = btrfs_delayed_update_inode(trans, root, inode);
3528 		if (!ret)
3529 			btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
3530 		return ret;
3531 	}
3532 
3533 	return btrfs_update_inode_item(trans, root, inode);
3534 }
3535 
3536 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3537 					 struct btrfs_root *root,
3538 					 struct inode *inode)
3539 {
3540 	int ret;
3541 
3542 	ret = btrfs_update_inode(trans, root, inode);
3543 	if (ret == -ENOSPC)
3544 		return btrfs_update_inode_item(trans, root, inode);
3545 	return ret;
3546 }
3547 
3548 /*
3549  * unlink helper that gets used here in inode.c and in the tree logging
3550  * recovery code.  It remove a link in a directory with a given name, and
3551  * also drops the back refs in the inode to the directory
3552  */
3553 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3554 				struct btrfs_root *root,
3555 				struct btrfs_inode *dir,
3556 				struct btrfs_inode *inode,
3557 				const char *name, int name_len)
3558 {
3559 	struct btrfs_fs_info *fs_info = root->fs_info;
3560 	struct btrfs_path *path;
3561 	int ret = 0;
3562 	struct btrfs_dir_item *di;
3563 	u64 index;
3564 	u64 ino = btrfs_ino(inode);
3565 	u64 dir_ino = btrfs_ino(dir);
3566 
3567 	path = btrfs_alloc_path();
3568 	if (!path) {
3569 		ret = -ENOMEM;
3570 		goto out;
3571 	}
3572 
3573 	path->leave_spinning = 1;
3574 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3575 				    name, name_len, -1);
3576 	if (IS_ERR_OR_NULL(di)) {
3577 		ret = di ? PTR_ERR(di) : -ENOENT;
3578 		goto err;
3579 	}
3580 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3581 	if (ret)
3582 		goto err;
3583 	btrfs_release_path(path);
3584 
3585 	/*
3586 	 * If we don't have dir index, we have to get it by looking up
3587 	 * the inode ref, since we get the inode ref, remove it directly,
3588 	 * it is unnecessary to do delayed deletion.
3589 	 *
3590 	 * But if we have dir index, needn't search inode ref to get it.
3591 	 * Since the inode ref is close to the inode item, it is better
3592 	 * that we delay to delete it, and just do this deletion when
3593 	 * we update the inode item.
3594 	 */
3595 	if (inode->dir_index) {
3596 		ret = btrfs_delayed_delete_inode_ref(inode);
3597 		if (!ret) {
3598 			index = inode->dir_index;
3599 			goto skip_backref;
3600 		}
3601 	}
3602 
3603 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3604 				  dir_ino, &index);
3605 	if (ret) {
3606 		btrfs_info(fs_info,
3607 			"failed to delete reference to %.*s, inode %llu parent %llu",
3608 			name_len, name, ino, dir_ino);
3609 		btrfs_abort_transaction(trans, ret);
3610 		goto err;
3611 	}
3612 skip_backref:
3613 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3614 	if (ret) {
3615 		btrfs_abort_transaction(trans, ret);
3616 		goto err;
3617 	}
3618 
3619 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3620 			dir_ino);
3621 	if (ret != 0 && ret != -ENOENT) {
3622 		btrfs_abort_transaction(trans, ret);
3623 		goto err;
3624 	}
3625 
3626 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3627 			index);
3628 	if (ret == -ENOENT)
3629 		ret = 0;
3630 	else if (ret)
3631 		btrfs_abort_transaction(trans, ret);
3632 
3633 	/*
3634 	 * If we have a pending delayed iput we could end up with the final iput
3635 	 * being run in btrfs-cleaner context.  If we have enough of these built
3636 	 * up we can end up burning a lot of time in btrfs-cleaner without any
3637 	 * way to throttle the unlinks.  Since we're currently holding a ref on
3638 	 * the inode we can run the delayed iput here without any issues as the
3639 	 * final iput won't be done until after we drop the ref we're currently
3640 	 * holding.
3641 	 */
3642 	btrfs_run_delayed_iput(fs_info, inode);
3643 err:
3644 	btrfs_free_path(path);
3645 	if (ret)
3646 		goto out;
3647 
3648 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3649 	inode_inc_iversion(&inode->vfs_inode);
3650 	inode_inc_iversion(&dir->vfs_inode);
3651 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3652 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3653 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3654 out:
3655 	return ret;
3656 }
3657 
3658 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3659 		       struct btrfs_root *root,
3660 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3661 		       const char *name, int name_len)
3662 {
3663 	int ret;
3664 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3665 	if (!ret) {
3666 		drop_nlink(&inode->vfs_inode);
3667 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3668 	}
3669 	return ret;
3670 }
3671 
3672 /*
3673  * helper to start transaction for unlink and rmdir.
3674  *
3675  * unlink and rmdir are special in btrfs, they do not always free space, so
3676  * if we cannot make our reservations the normal way try and see if there is
3677  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3678  * allow the unlink to occur.
3679  */
3680 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3681 {
3682 	struct btrfs_root *root = BTRFS_I(dir)->root;
3683 
3684 	/*
3685 	 * 1 for the possible orphan item
3686 	 * 1 for the dir item
3687 	 * 1 for the dir index
3688 	 * 1 for the inode ref
3689 	 * 1 for the inode
3690 	 */
3691 	return btrfs_start_transaction_fallback_global_rsv(root, 5);
3692 }
3693 
3694 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3695 {
3696 	struct btrfs_root *root = BTRFS_I(dir)->root;
3697 	struct btrfs_trans_handle *trans;
3698 	struct inode *inode = d_inode(dentry);
3699 	int ret;
3700 
3701 	trans = __unlink_start_trans(dir);
3702 	if (IS_ERR(trans))
3703 		return PTR_ERR(trans);
3704 
3705 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3706 			0);
3707 
3708 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3709 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3710 			dentry->d_name.len);
3711 	if (ret)
3712 		goto out;
3713 
3714 	if (inode->i_nlink == 0) {
3715 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3716 		if (ret)
3717 			goto out;
3718 	}
3719 
3720 out:
3721 	btrfs_end_transaction(trans);
3722 	btrfs_btree_balance_dirty(root->fs_info);
3723 	return ret;
3724 }
3725 
3726 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3727 			       struct inode *dir, struct dentry *dentry)
3728 {
3729 	struct btrfs_root *root = BTRFS_I(dir)->root;
3730 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3731 	struct btrfs_path *path;
3732 	struct extent_buffer *leaf;
3733 	struct btrfs_dir_item *di;
3734 	struct btrfs_key key;
3735 	const char *name = dentry->d_name.name;
3736 	int name_len = dentry->d_name.len;
3737 	u64 index;
3738 	int ret;
3739 	u64 objectid;
3740 	u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3741 
3742 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3743 		objectid = inode->root->root_key.objectid;
3744 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3745 		objectid = inode->location.objectid;
3746 	} else {
3747 		WARN_ON(1);
3748 		return -EINVAL;
3749 	}
3750 
3751 	path = btrfs_alloc_path();
3752 	if (!path)
3753 		return -ENOMEM;
3754 
3755 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3756 				   name, name_len, -1);
3757 	if (IS_ERR_OR_NULL(di)) {
3758 		ret = di ? PTR_ERR(di) : -ENOENT;
3759 		goto out;
3760 	}
3761 
3762 	leaf = path->nodes[0];
3763 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3764 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3765 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3766 	if (ret) {
3767 		btrfs_abort_transaction(trans, ret);
3768 		goto out;
3769 	}
3770 	btrfs_release_path(path);
3771 
3772 	/*
3773 	 * This is a placeholder inode for a subvolume we didn't have a
3774 	 * reference to at the time of the snapshot creation.  In the meantime
3775 	 * we could have renamed the real subvol link into our snapshot, so
3776 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3777 	 * Instead simply lookup the dir_index_item for this entry so we can
3778 	 * remove it.  Otherwise we know we have a ref to the root and we can
3779 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
3780 	 */
3781 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3782 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3783 						 name, name_len);
3784 		if (IS_ERR_OR_NULL(di)) {
3785 			if (!di)
3786 				ret = -ENOENT;
3787 			else
3788 				ret = PTR_ERR(di);
3789 			btrfs_abort_transaction(trans, ret);
3790 			goto out;
3791 		}
3792 
3793 		leaf = path->nodes[0];
3794 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3795 		index = key.offset;
3796 		btrfs_release_path(path);
3797 	} else {
3798 		ret = btrfs_del_root_ref(trans, objectid,
3799 					 root->root_key.objectid, dir_ino,
3800 					 &index, name, name_len);
3801 		if (ret) {
3802 			btrfs_abort_transaction(trans, ret);
3803 			goto out;
3804 		}
3805 	}
3806 
3807 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3808 	if (ret) {
3809 		btrfs_abort_transaction(trans, ret);
3810 		goto out;
3811 	}
3812 
3813 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3814 	inode_inc_iversion(dir);
3815 	dir->i_mtime = dir->i_ctime = current_time(dir);
3816 	ret = btrfs_update_inode_fallback(trans, root, dir);
3817 	if (ret)
3818 		btrfs_abort_transaction(trans, ret);
3819 out:
3820 	btrfs_free_path(path);
3821 	return ret;
3822 }
3823 
3824 /*
3825  * Helper to check if the subvolume references other subvolumes or if it's
3826  * default.
3827  */
3828 static noinline int may_destroy_subvol(struct btrfs_root *root)
3829 {
3830 	struct btrfs_fs_info *fs_info = root->fs_info;
3831 	struct btrfs_path *path;
3832 	struct btrfs_dir_item *di;
3833 	struct btrfs_key key;
3834 	u64 dir_id;
3835 	int ret;
3836 
3837 	path = btrfs_alloc_path();
3838 	if (!path)
3839 		return -ENOMEM;
3840 
3841 	/* Make sure this root isn't set as the default subvol */
3842 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3843 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3844 				   dir_id, "default", 7, 0);
3845 	if (di && !IS_ERR(di)) {
3846 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3847 		if (key.objectid == root->root_key.objectid) {
3848 			ret = -EPERM;
3849 			btrfs_err(fs_info,
3850 				  "deleting default subvolume %llu is not allowed",
3851 				  key.objectid);
3852 			goto out;
3853 		}
3854 		btrfs_release_path(path);
3855 	}
3856 
3857 	key.objectid = root->root_key.objectid;
3858 	key.type = BTRFS_ROOT_REF_KEY;
3859 	key.offset = (u64)-1;
3860 
3861 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3862 	if (ret < 0)
3863 		goto out;
3864 	BUG_ON(ret == 0);
3865 
3866 	ret = 0;
3867 	if (path->slots[0] > 0) {
3868 		path->slots[0]--;
3869 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3870 		if (key.objectid == root->root_key.objectid &&
3871 		    key.type == BTRFS_ROOT_REF_KEY)
3872 			ret = -ENOTEMPTY;
3873 	}
3874 out:
3875 	btrfs_free_path(path);
3876 	return ret;
3877 }
3878 
3879 /* Delete all dentries for inodes belonging to the root */
3880 static void btrfs_prune_dentries(struct btrfs_root *root)
3881 {
3882 	struct btrfs_fs_info *fs_info = root->fs_info;
3883 	struct rb_node *node;
3884 	struct rb_node *prev;
3885 	struct btrfs_inode *entry;
3886 	struct inode *inode;
3887 	u64 objectid = 0;
3888 
3889 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3890 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3891 
3892 	spin_lock(&root->inode_lock);
3893 again:
3894 	node = root->inode_tree.rb_node;
3895 	prev = NULL;
3896 	while (node) {
3897 		prev = node;
3898 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3899 
3900 		if (objectid < btrfs_ino(entry))
3901 			node = node->rb_left;
3902 		else if (objectid > btrfs_ino(entry))
3903 			node = node->rb_right;
3904 		else
3905 			break;
3906 	}
3907 	if (!node) {
3908 		while (prev) {
3909 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3910 			if (objectid <= btrfs_ino(entry)) {
3911 				node = prev;
3912 				break;
3913 			}
3914 			prev = rb_next(prev);
3915 		}
3916 	}
3917 	while (node) {
3918 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3919 		objectid = btrfs_ino(entry) + 1;
3920 		inode = igrab(&entry->vfs_inode);
3921 		if (inode) {
3922 			spin_unlock(&root->inode_lock);
3923 			if (atomic_read(&inode->i_count) > 1)
3924 				d_prune_aliases(inode);
3925 			/*
3926 			 * btrfs_drop_inode will have it removed from the inode
3927 			 * cache when its usage count hits zero.
3928 			 */
3929 			iput(inode);
3930 			cond_resched();
3931 			spin_lock(&root->inode_lock);
3932 			goto again;
3933 		}
3934 
3935 		if (cond_resched_lock(&root->inode_lock))
3936 			goto again;
3937 
3938 		node = rb_next(node);
3939 	}
3940 	spin_unlock(&root->inode_lock);
3941 }
3942 
3943 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3944 {
3945 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3946 	struct btrfs_root *root = BTRFS_I(dir)->root;
3947 	struct inode *inode = d_inode(dentry);
3948 	struct btrfs_root *dest = BTRFS_I(inode)->root;
3949 	struct btrfs_trans_handle *trans;
3950 	struct btrfs_block_rsv block_rsv;
3951 	u64 root_flags;
3952 	int ret;
3953 	int err;
3954 
3955 	/*
3956 	 * Don't allow to delete a subvolume with send in progress. This is
3957 	 * inside the inode lock so the error handling that has to drop the bit
3958 	 * again is not run concurrently.
3959 	 */
3960 	spin_lock(&dest->root_item_lock);
3961 	if (dest->send_in_progress) {
3962 		spin_unlock(&dest->root_item_lock);
3963 		btrfs_warn(fs_info,
3964 			   "attempt to delete subvolume %llu during send",
3965 			   dest->root_key.objectid);
3966 		return -EPERM;
3967 	}
3968 	root_flags = btrfs_root_flags(&dest->root_item);
3969 	btrfs_set_root_flags(&dest->root_item,
3970 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3971 	spin_unlock(&dest->root_item_lock);
3972 
3973 	down_write(&fs_info->subvol_sem);
3974 
3975 	err = may_destroy_subvol(dest);
3976 	if (err)
3977 		goto out_up_write;
3978 
3979 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3980 	/*
3981 	 * One for dir inode,
3982 	 * two for dir entries,
3983 	 * two for root ref/backref.
3984 	 */
3985 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
3986 	if (err)
3987 		goto out_up_write;
3988 
3989 	trans = btrfs_start_transaction(root, 0);
3990 	if (IS_ERR(trans)) {
3991 		err = PTR_ERR(trans);
3992 		goto out_release;
3993 	}
3994 	trans->block_rsv = &block_rsv;
3995 	trans->bytes_reserved = block_rsv.size;
3996 
3997 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
3998 
3999 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4000 	if (ret) {
4001 		err = ret;
4002 		btrfs_abort_transaction(trans, ret);
4003 		goto out_end_trans;
4004 	}
4005 
4006 	btrfs_record_root_in_trans(trans, dest);
4007 
4008 	memset(&dest->root_item.drop_progress, 0,
4009 		sizeof(dest->root_item.drop_progress));
4010 	dest->root_item.drop_level = 0;
4011 	btrfs_set_root_refs(&dest->root_item, 0);
4012 
4013 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4014 		ret = btrfs_insert_orphan_item(trans,
4015 					fs_info->tree_root,
4016 					dest->root_key.objectid);
4017 		if (ret) {
4018 			btrfs_abort_transaction(trans, ret);
4019 			err = ret;
4020 			goto out_end_trans;
4021 		}
4022 	}
4023 
4024 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4025 				  BTRFS_UUID_KEY_SUBVOL,
4026 				  dest->root_key.objectid);
4027 	if (ret && ret != -ENOENT) {
4028 		btrfs_abort_transaction(trans, ret);
4029 		err = ret;
4030 		goto out_end_trans;
4031 	}
4032 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4033 		ret = btrfs_uuid_tree_remove(trans,
4034 					  dest->root_item.received_uuid,
4035 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4036 					  dest->root_key.objectid);
4037 		if (ret && ret != -ENOENT) {
4038 			btrfs_abort_transaction(trans, ret);
4039 			err = ret;
4040 			goto out_end_trans;
4041 		}
4042 	}
4043 
4044 	free_anon_bdev(dest->anon_dev);
4045 	dest->anon_dev = 0;
4046 out_end_trans:
4047 	trans->block_rsv = NULL;
4048 	trans->bytes_reserved = 0;
4049 	ret = btrfs_end_transaction(trans);
4050 	if (ret && !err)
4051 		err = ret;
4052 	inode->i_flags |= S_DEAD;
4053 out_release:
4054 	btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4055 out_up_write:
4056 	up_write(&fs_info->subvol_sem);
4057 	if (err) {
4058 		spin_lock(&dest->root_item_lock);
4059 		root_flags = btrfs_root_flags(&dest->root_item);
4060 		btrfs_set_root_flags(&dest->root_item,
4061 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4062 		spin_unlock(&dest->root_item_lock);
4063 	} else {
4064 		d_invalidate(dentry);
4065 		btrfs_prune_dentries(dest);
4066 		ASSERT(dest->send_in_progress == 0);
4067 
4068 		/* the last ref */
4069 		if (dest->ino_cache_inode) {
4070 			iput(dest->ino_cache_inode);
4071 			dest->ino_cache_inode = NULL;
4072 		}
4073 	}
4074 
4075 	return err;
4076 }
4077 
4078 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4079 {
4080 	struct inode *inode = d_inode(dentry);
4081 	int err = 0;
4082 	struct btrfs_root *root = BTRFS_I(dir)->root;
4083 	struct btrfs_trans_handle *trans;
4084 	u64 last_unlink_trans;
4085 
4086 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4087 		return -ENOTEMPTY;
4088 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4089 		return btrfs_delete_subvolume(dir, dentry);
4090 
4091 	trans = __unlink_start_trans(dir);
4092 	if (IS_ERR(trans))
4093 		return PTR_ERR(trans);
4094 
4095 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4096 		err = btrfs_unlink_subvol(trans, dir, dentry);
4097 		goto out;
4098 	}
4099 
4100 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4101 	if (err)
4102 		goto out;
4103 
4104 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4105 
4106 	/* now the directory is empty */
4107 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4108 			BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4109 			dentry->d_name.len);
4110 	if (!err) {
4111 		btrfs_i_size_write(BTRFS_I(inode), 0);
4112 		/*
4113 		 * Propagate the last_unlink_trans value of the deleted dir to
4114 		 * its parent directory. This is to prevent an unrecoverable
4115 		 * log tree in the case we do something like this:
4116 		 * 1) create dir foo
4117 		 * 2) create snapshot under dir foo
4118 		 * 3) delete the snapshot
4119 		 * 4) rmdir foo
4120 		 * 5) mkdir foo
4121 		 * 6) fsync foo or some file inside foo
4122 		 */
4123 		if (last_unlink_trans >= trans->transid)
4124 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4125 	}
4126 out:
4127 	btrfs_end_transaction(trans);
4128 	btrfs_btree_balance_dirty(root->fs_info);
4129 
4130 	return err;
4131 }
4132 
4133 /*
4134  * Return this if we need to call truncate_block for the last bit of the
4135  * truncate.
4136  */
4137 #define NEED_TRUNCATE_BLOCK 1
4138 
4139 /*
4140  * this can truncate away extent items, csum items and directory items.
4141  * It starts at a high offset and removes keys until it can't find
4142  * any higher than new_size
4143  *
4144  * csum items that cross the new i_size are truncated to the new size
4145  * as well.
4146  *
4147  * min_type is the minimum key type to truncate down to.  If set to 0, this
4148  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4149  */
4150 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4151 			       struct btrfs_root *root,
4152 			       struct inode *inode,
4153 			       u64 new_size, u32 min_type)
4154 {
4155 	struct btrfs_fs_info *fs_info = root->fs_info;
4156 	struct btrfs_path *path;
4157 	struct extent_buffer *leaf;
4158 	struct btrfs_file_extent_item *fi;
4159 	struct btrfs_key key;
4160 	struct btrfs_key found_key;
4161 	u64 extent_start = 0;
4162 	u64 extent_num_bytes = 0;
4163 	u64 extent_offset = 0;
4164 	u64 item_end = 0;
4165 	u64 last_size = new_size;
4166 	u32 found_type = (u8)-1;
4167 	int found_extent;
4168 	int del_item;
4169 	int pending_del_nr = 0;
4170 	int pending_del_slot = 0;
4171 	int extent_type = -1;
4172 	int ret;
4173 	u64 ino = btrfs_ino(BTRFS_I(inode));
4174 	u64 bytes_deleted = 0;
4175 	bool be_nice = false;
4176 	bool should_throttle = false;
4177 	const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4178 	struct extent_state *cached_state = NULL;
4179 
4180 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4181 
4182 	/*
4183 	 * For non-free space inodes and non-shareable roots, we want to back
4184 	 * off from time to time.  This means all inodes in subvolume roots,
4185 	 * reloc roots, and data reloc roots.
4186 	 */
4187 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4188 	    test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4189 		be_nice = true;
4190 
4191 	path = btrfs_alloc_path();
4192 	if (!path)
4193 		return -ENOMEM;
4194 	path->reada = READA_BACK;
4195 
4196 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4197 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4198 				 &cached_state);
4199 
4200 		/*
4201 		 * We want to drop from the next block forward in case this
4202 		 * new size is not block aligned since we will be keeping the
4203 		 * last block of the extent just the way it is.
4204 		 */
4205 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4206 					fs_info->sectorsize),
4207 					(u64)-1, 0);
4208 	}
4209 
4210 	/*
4211 	 * This function is also used to drop the items in the log tree before
4212 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4213 	 * it is used to drop the logged items. So we shouldn't kill the delayed
4214 	 * items.
4215 	 */
4216 	if (min_type == 0 && root == BTRFS_I(inode)->root)
4217 		btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4218 
4219 	key.objectid = ino;
4220 	key.offset = (u64)-1;
4221 	key.type = (u8)-1;
4222 
4223 search_again:
4224 	/*
4225 	 * with a 16K leaf size and 128MB extents, you can actually queue
4226 	 * up a huge file in a single leaf.  Most of the time that
4227 	 * bytes_deleted is > 0, it will be huge by the time we get here
4228 	 */
4229 	if (be_nice && bytes_deleted > SZ_32M &&
4230 	    btrfs_should_end_transaction(trans)) {
4231 		ret = -EAGAIN;
4232 		goto out;
4233 	}
4234 
4235 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4236 	if (ret < 0)
4237 		goto out;
4238 
4239 	if (ret > 0) {
4240 		ret = 0;
4241 		/* there are no items in the tree for us to truncate, we're
4242 		 * done
4243 		 */
4244 		if (path->slots[0] == 0)
4245 			goto out;
4246 		path->slots[0]--;
4247 	}
4248 
4249 	while (1) {
4250 		u64 clear_start = 0, clear_len = 0;
4251 
4252 		fi = NULL;
4253 		leaf = path->nodes[0];
4254 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4255 		found_type = found_key.type;
4256 
4257 		if (found_key.objectid != ino)
4258 			break;
4259 
4260 		if (found_type < min_type)
4261 			break;
4262 
4263 		item_end = found_key.offset;
4264 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4265 			fi = btrfs_item_ptr(leaf, path->slots[0],
4266 					    struct btrfs_file_extent_item);
4267 			extent_type = btrfs_file_extent_type(leaf, fi);
4268 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4269 				item_end +=
4270 				    btrfs_file_extent_num_bytes(leaf, fi);
4271 
4272 				trace_btrfs_truncate_show_fi_regular(
4273 					BTRFS_I(inode), leaf, fi,
4274 					found_key.offset);
4275 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4276 				item_end += btrfs_file_extent_ram_bytes(leaf,
4277 									fi);
4278 
4279 				trace_btrfs_truncate_show_fi_inline(
4280 					BTRFS_I(inode), leaf, fi, path->slots[0],
4281 					found_key.offset);
4282 			}
4283 			item_end--;
4284 		}
4285 		if (found_type > min_type) {
4286 			del_item = 1;
4287 		} else {
4288 			if (item_end < new_size)
4289 				break;
4290 			if (found_key.offset >= new_size)
4291 				del_item = 1;
4292 			else
4293 				del_item = 0;
4294 		}
4295 		found_extent = 0;
4296 		/* FIXME, shrink the extent if the ref count is only 1 */
4297 		if (found_type != BTRFS_EXTENT_DATA_KEY)
4298 			goto delete;
4299 
4300 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4301 			u64 num_dec;
4302 
4303 			clear_start = found_key.offset;
4304 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4305 			if (!del_item) {
4306 				u64 orig_num_bytes =
4307 					btrfs_file_extent_num_bytes(leaf, fi);
4308 				extent_num_bytes = ALIGN(new_size -
4309 						found_key.offset,
4310 						fs_info->sectorsize);
4311 				clear_start = ALIGN(new_size, fs_info->sectorsize);
4312 				btrfs_set_file_extent_num_bytes(leaf, fi,
4313 							 extent_num_bytes);
4314 				num_dec = (orig_num_bytes -
4315 					   extent_num_bytes);
4316 				if (test_bit(BTRFS_ROOT_SHAREABLE,
4317 					     &root->state) &&
4318 				    extent_start != 0)
4319 					inode_sub_bytes(inode, num_dec);
4320 				btrfs_mark_buffer_dirty(leaf);
4321 			} else {
4322 				extent_num_bytes =
4323 					btrfs_file_extent_disk_num_bytes(leaf,
4324 									 fi);
4325 				extent_offset = found_key.offset -
4326 					btrfs_file_extent_offset(leaf, fi);
4327 
4328 				/* FIXME blocksize != 4096 */
4329 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4330 				if (extent_start != 0) {
4331 					found_extent = 1;
4332 					if (test_bit(BTRFS_ROOT_SHAREABLE,
4333 						     &root->state))
4334 						inode_sub_bytes(inode, num_dec);
4335 				}
4336 			}
4337 			clear_len = num_dec;
4338 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4339 			/*
4340 			 * we can't truncate inline items that have had
4341 			 * special encodings
4342 			 */
4343 			if (!del_item &&
4344 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4345 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4346 			    btrfs_file_extent_compression(leaf, fi) == 0) {
4347 				u32 size = (u32)(new_size - found_key.offset);
4348 
4349 				btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4350 				size = btrfs_file_extent_calc_inline_size(size);
4351 				btrfs_truncate_item(path, size, 1);
4352 			} else if (!del_item) {
4353 				/*
4354 				 * We have to bail so the last_size is set to
4355 				 * just before this extent.
4356 				 */
4357 				ret = NEED_TRUNCATE_BLOCK;
4358 				break;
4359 			} else {
4360 				/*
4361 				 * Inline extents are special, we just treat
4362 				 * them as a full sector worth in the file
4363 				 * extent tree just for simplicity sake.
4364 				 */
4365 				clear_len = fs_info->sectorsize;
4366 			}
4367 
4368 			if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4369 				inode_sub_bytes(inode, item_end + 1 - new_size);
4370 		}
4371 delete:
4372 		/*
4373 		 * We use btrfs_truncate_inode_items() to clean up log trees for
4374 		 * multiple fsyncs, and in this case we don't want to clear the
4375 		 * file extent range because it's just the log.
4376 		 */
4377 		if (root == BTRFS_I(inode)->root) {
4378 			ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4379 						  clear_start, clear_len);
4380 			if (ret) {
4381 				btrfs_abort_transaction(trans, ret);
4382 				break;
4383 			}
4384 		}
4385 
4386 		if (del_item)
4387 			last_size = found_key.offset;
4388 		else
4389 			last_size = new_size;
4390 		if (del_item) {
4391 			if (!pending_del_nr) {
4392 				/* no pending yet, add ourselves */
4393 				pending_del_slot = path->slots[0];
4394 				pending_del_nr = 1;
4395 			} else if (pending_del_nr &&
4396 				   path->slots[0] + 1 == pending_del_slot) {
4397 				/* hop on the pending chunk */
4398 				pending_del_nr++;
4399 				pending_del_slot = path->slots[0];
4400 			} else {
4401 				BUG();
4402 			}
4403 		} else {
4404 			break;
4405 		}
4406 		should_throttle = false;
4407 
4408 		if (found_extent &&
4409 		    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4410 			struct btrfs_ref ref = { 0 };
4411 
4412 			bytes_deleted += extent_num_bytes;
4413 
4414 			btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4415 					extent_start, extent_num_bytes, 0);
4416 			ref.real_root = root->root_key.objectid;
4417 			btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4418 					ino, extent_offset);
4419 			ret = btrfs_free_extent(trans, &ref);
4420 			if (ret) {
4421 				btrfs_abort_transaction(trans, ret);
4422 				break;
4423 			}
4424 			if (be_nice) {
4425 				if (btrfs_should_throttle_delayed_refs(trans))
4426 					should_throttle = true;
4427 			}
4428 		}
4429 
4430 		if (found_type == BTRFS_INODE_ITEM_KEY)
4431 			break;
4432 
4433 		if (path->slots[0] == 0 ||
4434 		    path->slots[0] != pending_del_slot ||
4435 		    should_throttle) {
4436 			if (pending_del_nr) {
4437 				ret = btrfs_del_items(trans, root, path,
4438 						pending_del_slot,
4439 						pending_del_nr);
4440 				if (ret) {
4441 					btrfs_abort_transaction(trans, ret);
4442 					break;
4443 				}
4444 				pending_del_nr = 0;
4445 			}
4446 			btrfs_release_path(path);
4447 
4448 			/*
4449 			 * We can generate a lot of delayed refs, so we need to
4450 			 * throttle every once and a while and make sure we're
4451 			 * adding enough space to keep up with the work we are
4452 			 * generating.  Since we hold a transaction here we
4453 			 * can't flush, and we don't want to FLUSH_LIMIT because
4454 			 * we could have generated too many delayed refs to
4455 			 * actually allocate, so just bail if we're short and
4456 			 * let the normal reservation dance happen higher up.
4457 			 */
4458 			if (should_throttle) {
4459 				ret = btrfs_delayed_refs_rsv_refill(fs_info,
4460 							BTRFS_RESERVE_NO_FLUSH);
4461 				if (ret) {
4462 					ret = -EAGAIN;
4463 					break;
4464 				}
4465 			}
4466 			goto search_again;
4467 		} else {
4468 			path->slots[0]--;
4469 		}
4470 	}
4471 out:
4472 	if (ret >= 0 && pending_del_nr) {
4473 		int err;
4474 
4475 		err = btrfs_del_items(trans, root, path, pending_del_slot,
4476 				      pending_del_nr);
4477 		if (err) {
4478 			btrfs_abort_transaction(trans, err);
4479 			ret = err;
4480 		}
4481 	}
4482 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4483 		ASSERT(last_size >= new_size);
4484 		if (!ret && last_size > new_size)
4485 			last_size = new_size;
4486 		btrfs_inode_safe_disk_i_size_write(inode, last_size);
4487 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4488 				     (u64)-1, &cached_state);
4489 	}
4490 
4491 	btrfs_free_path(path);
4492 	return ret;
4493 }
4494 
4495 /*
4496  * btrfs_truncate_block - read, zero a chunk and write a block
4497  * @inode - inode that we're zeroing
4498  * @from - the offset to start zeroing
4499  * @len - the length to zero, 0 to zero the entire range respective to the
4500  *	offset
4501  * @front - zero up to the offset instead of from the offset on
4502  *
4503  * This will find the block for the "from" offset and cow the block and zero the
4504  * part we want to zero.  This is used with truncate and hole punching.
4505  */
4506 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4507 			int front)
4508 {
4509 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4510 	struct address_space *mapping = inode->i_mapping;
4511 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4512 	struct btrfs_ordered_extent *ordered;
4513 	struct extent_state *cached_state = NULL;
4514 	struct extent_changeset *data_reserved = NULL;
4515 	char *kaddr;
4516 	bool only_release_metadata = false;
4517 	u32 blocksize = fs_info->sectorsize;
4518 	pgoff_t index = from >> PAGE_SHIFT;
4519 	unsigned offset = from & (blocksize - 1);
4520 	struct page *page;
4521 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4522 	size_t write_bytes = blocksize;
4523 	int ret = 0;
4524 	u64 block_start;
4525 	u64 block_end;
4526 
4527 	if (IS_ALIGNED(offset, blocksize) &&
4528 	    (!len || IS_ALIGNED(len, blocksize)))
4529 		goto out;
4530 
4531 	block_start = round_down(from, blocksize);
4532 	block_end = block_start + blocksize - 1;
4533 
4534 	ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved,
4535 					  block_start, blocksize);
4536 	if (ret < 0) {
4537 		if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start,
4538 					   &write_bytes) > 0) {
4539 			/* For nocow case, no need to reserve data space */
4540 			only_release_metadata = true;
4541 		} else {
4542 			goto out;
4543 		}
4544 	}
4545 	ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize);
4546 	if (ret < 0) {
4547 		if (!only_release_metadata)
4548 			btrfs_free_reserved_data_space(BTRFS_I(inode),
4549 					data_reserved, block_start, blocksize);
4550 		goto out;
4551 	}
4552 again:
4553 	page = find_or_create_page(mapping, index, mask);
4554 	if (!page) {
4555 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4556 					     block_start, blocksize, true);
4557 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4558 		ret = -ENOMEM;
4559 		goto out;
4560 	}
4561 
4562 	if (!PageUptodate(page)) {
4563 		ret = btrfs_readpage(NULL, page);
4564 		lock_page(page);
4565 		if (page->mapping != mapping) {
4566 			unlock_page(page);
4567 			put_page(page);
4568 			goto again;
4569 		}
4570 		if (!PageUptodate(page)) {
4571 			ret = -EIO;
4572 			goto out_unlock;
4573 		}
4574 	}
4575 	wait_on_page_writeback(page);
4576 
4577 	lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4578 	set_page_extent_mapped(page);
4579 
4580 	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start);
4581 	if (ordered) {
4582 		unlock_extent_cached(io_tree, block_start, block_end,
4583 				     &cached_state);
4584 		unlock_page(page);
4585 		put_page(page);
4586 		btrfs_start_ordered_extent(inode, ordered, 1);
4587 		btrfs_put_ordered_extent(ordered);
4588 		goto again;
4589 	}
4590 
4591 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4592 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4593 			 0, 0, &cached_state);
4594 
4595 	ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0,
4596 					&cached_state);
4597 	if (ret) {
4598 		unlock_extent_cached(io_tree, block_start, block_end,
4599 				     &cached_state);
4600 		goto out_unlock;
4601 	}
4602 
4603 	if (offset != blocksize) {
4604 		if (!len)
4605 			len = blocksize - offset;
4606 		kaddr = kmap(page);
4607 		if (front)
4608 			memset(kaddr + (block_start - page_offset(page)),
4609 				0, offset);
4610 		else
4611 			memset(kaddr + (block_start - page_offset(page)) +  offset,
4612 				0, len);
4613 		flush_dcache_page(page);
4614 		kunmap(page);
4615 	}
4616 	ClearPageChecked(page);
4617 	set_page_dirty(page);
4618 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4619 
4620 	if (only_release_metadata)
4621 		set_extent_bit(&BTRFS_I(inode)->io_tree, block_start,
4622 				block_end, EXTENT_NORESERVE, NULL, NULL,
4623 				GFP_NOFS);
4624 
4625 out_unlock:
4626 	if (ret) {
4627 		if (only_release_metadata)
4628 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
4629 					blocksize, true);
4630 		else
4631 			btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
4632 					block_start, blocksize, true);
4633 	}
4634 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4635 	unlock_page(page);
4636 	put_page(page);
4637 out:
4638 	if (only_release_metadata)
4639 		btrfs_check_nocow_unlock(BTRFS_I(inode));
4640 	extent_changeset_free(data_reserved);
4641 	return ret;
4642 }
4643 
4644 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4645 			     u64 offset, u64 len)
4646 {
4647 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4648 	struct btrfs_trans_handle *trans;
4649 	int ret;
4650 
4651 	/*
4652 	 * Still need to make sure the inode looks like it's been updated so
4653 	 * that any holes get logged if we fsync.
4654 	 */
4655 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4656 		BTRFS_I(inode)->last_trans = fs_info->generation;
4657 		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4658 		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4659 		return 0;
4660 	}
4661 
4662 	/*
4663 	 * 1 - for the one we're dropping
4664 	 * 1 - for the one we're adding
4665 	 * 1 - for updating the inode.
4666 	 */
4667 	trans = btrfs_start_transaction(root, 3);
4668 	if (IS_ERR(trans))
4669 		return PTR_ERR(trans);
4670 
4671 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4672 	if (ret) {
4673 		btrfs_abort_transaction(trans, ret);
4674 		btrfs_end_transaction(trans);
4675 		return ret;
4676 	}
4677 
4678 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4679 			offset, 0, 0, len, 0, len, 0, 0, 0);
4680 	if (ret)
4681 		btrfs_abort_transaction(trans, ret);
4682 	else
4683 		btrfs_update_inode(trans, root, inode);
4684 	btrfs_end_transaction(trans);
4685 	return ret;
4686 }
4687 
4688 /*
4689  * This function puts in dummy file extents for the area we're creating a hole
4690  * for.  So if we are truncating this file to a larger size we need to insert
4691  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4692  * the range between oldsize and size
4693  */
4694 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4695 {
4696 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4697 	struct btrfs_root *root = BTRFS_I(inode)->root;
4698 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4699 	struct extent_map *em = NULL;
4700 	struct extent_state *cached_state = NULL;
4701 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4702 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4703 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4704 	u64 last_byte;
4705 	u64 cur_offset;
4706 	u64 hole_size;
4707 	int err = 0;
4708 
4709 	/*
4710 	 * If our size started in the middle of a block we need to zero out the
4711 	 * rest of the block before we expand the i_size, otherwise we could
4712 	 * expose stale data.
4713 	 */
4714 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4715 	if (err)
4716 		return err;
4717 
4718 	if (size <= hole_start)
4719 		return 0;
4720 
4721 	btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4722 					   block_end - 1, &cached_state);
4723 	cur_offset = hole_start;
4724 	while (1) {
4725 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4726 				      block_end - cur_offset);
4727 		if (IS_ERR(em)) {
4728 			err = PTR_ERR(em);
4729 			em = NULL;
4730 			break;
4731 		}
4732 		last_byte = min(extent_map_end(em), block_end);
4733 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4734 		hole_size = last_byte - cur_offset;
4735 
4736 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4737 			struct extent_map *hole_em;
4738 
4739 			err = maybe_insert_hole(root, inode, cur_offset,
4740 						hole_size);
4741 			if (err)
4742 				break;
4743 
4744 			err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4745 							cur_offset, hole_size);
4746 			if (err)
4747 				break;
4748 
4749 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4750 						cur_offset + hole_size - 1, 0);
4751 			hole_em = alloc_extent_map();
4752 			if (!hole_em) {
4753 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4754 					&BTRFS_I(inode)->runtime_flags);
4755 				goto next;
4756 			}
4757 			hole_em->start = cur_offset;
4758 			hole_em->len = hole_size;
4759 			hole_em->orig_start = cur_offset;
4760 
4761 			hole_em->block_start = EXTENT_MAP_HOLE;
4762 			hole_em->block_len = 0;
4763 			hole_em->orig_block_len = 0;
4764 			hole_em->ram_bytes = hole_size;
4765 			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4766 			hole_em->generation = fs_info->generation;
4767 
4768 			while (1) {
4769 				write_lock(&em_tree->lock);
4770 				err = add_extent_mapping(em_tree, hole_em, 1);
4771 				write_unlock(&em_tree->lock);
4772 				if (err != -EEXIST)
4773 					break;
4774 				btrfs_drop_extent_cache(BTRFS_I(inode),
4775 							cur_offset,
4776 							cur_offset +
4777 							hole_size - 1, 0);
4778 			}
4779 			free_extent_map(hole_em);
4780 		} else {
4781 			err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4782 							cur_offset, hole_size);
4783 			if (err)
4784 				break;
4785 		}
4786 next:
4787 		free_extent_map(em);
4788 		em = NULL;
4789 		cur_offset = last_byte;
4790 		if (cur_offset >= block_end)
4791 			break;
4792 	}
4793 	free_extent_map(em);
4794 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4795 	return err;
4796 }
4797 
4798 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4799 {
4800 	struct btrfs_root *root = BTRFS_I(inode)->root;
4801 	struct btrfs_trans_handle *trans;
4802 	loff_t oldsize = i_size_read(inode);
4803 	loff_t newsize = attr->ia_size;
4804 	int mask = attr->ia_valid;
4805 	int ret;
4806 
4807 	/*
4808 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4809 	 * special case where we need to update the times despite not having
4810 	 * these flags set.  For all other operations the VFS set these flags
4811 	 * explicitly if it wants a timestamp update.
4812 	 */
4813 	if (newsize != oldsize) {
4814 		inode_inc_iversion(inode);
4815 		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4816 			inode->i_ctime = inode->i_mtime =
4817 				current_time(inode);
4818 	}
4819 
4820 	if (newsize > oldsize) {
4821 		/*
4822 		 * Don't do an expanding truncate while snapshotting is ongoing.
4823 		 * This is to ensure the snapshot captures a fully consistent
4824 		 * state of this file - if the snapshot captures this expanding
4825 		 * truncation, it must capture all writes that happened before
4826 		 * this truncation.
4827 		 */
4828 		btrfs_drew_write_lock(&root->snapshot_lock);
4829 		ret = btrfs_cont_expand(inode, oldsize, newsize);
4830 		if (ret) {
4831 			btrfs_drew_write_unlock(&root->snapshot_lock);
4832 			return ret;
4833 		}
4834 
4835 		trans = btrfs_start_transaction(root, 1);
4836 		if (IS_ERR(trans)) {
4837 			btrfs_drew_write_unlock(&root->snapshot_lock);
4838 			return PTR_ERR(trans);
4839 		}
4840 
4841 		i_size_write(inode, newsize);
4842 		btrfs_inode_safe_disk_i_size_write(inode, 0);
4843 		pagecache_isize_extended(inode, oldsize, newsize);
4844 		ret = btrfs_update_inode(trans, root, inode);
4845 		btrfs_drew_write_unlock(&root->snapshot_lock);
4846 		btrfs_end_transaction(trans);
4847 	} else {
4848 
4849 		/*
4850 		 * We're truncating a file that used to have good data down to
4851 		 * zero. Make sure it gets into the ordered flush list so that
4852 		 * any new writes get down to disk quickly.
4853 		 */
4854 		if (newsize == 0)
4855 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4856 				&BTRFS_I(inode)->runtime_flags);
4857 
4858 		truncate_setsize(inode, newsize);
4859 
4860 		/* Disable nonlocked read DIO to avoid the endless truncate */
4861 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
4862 		inode_dio_wait(inode);
4863 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
4864 
4865 		ret = btrfs_truncate(inode, newsize == oldsize);
4866 		if (ret && inode->i_nlink) {
4867 			int err;
4868 
4869 			/*
4870 			 * Truncate failed, so fix up the in-memory size. We
4871 			 * adjusted disk_i_size down as we removed extents, so
4872 			 * wait for disk_i_size to be stable and then update the
4873 			 * in-memory size to match.
4874 			 */
4875 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4876 			if (err)
4877 				return err;
4878 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4879 		}
4880 	}
4881 
4882 	return ret;
4883 }
4884 
4885 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4886 {
4887 	struct inode *inode = d_inode(dentry);
4888 	struct btrfs_root *root = BTRFS_I(inode)->root;
4889 	int err;
4890 
4891 	if (btrfs_root_readonly(root))
4892 		return -EROFS;
4893 
4894 	err = setattr_prepare(dentry, attr);
4895 	if (err)
4896 		return err;
4897 
4898 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4899 		err = btrfs_setsize(inode, attr);
4900 		if (err)
4901 			return err;
4902 	}
4903 
4904 	if (attr->ia_valid) {
4905 		setattr_copy(inode, attr);
4906 		inode_inc_iversion(inode);
4907 		err = btrfs_dirty_inode(inode);
4908 
4909 		if (!err && attr->ia_valid & ATTR_MODE)
4910 			err = posix_acl_chmod(inode, inode->i_mode);
4911 	}
4912 
4913 	return err;
4914 }
4915 
4916 /*
4917  * While truncating the inode pages during eviction, we get the VFS calling
4918  * btrfs_invalidatepage() against each page of the inode. This is slow because
4919  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4920  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4921  * extent_state structures over and over, wasting lots of time.
4922  *
4923  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4924  * those expensive operations on a per page basis and do only the ordered io
4925  * finishing, while we release here the extent_map and extent_state structures,
4926  * without the excessive merging and splitting.
4927  */
4928 static void evict_inode_truncate_pages(struct inode *inode)
4929 {
4930 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4931 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4932 	struct rb_node *node;
4933 
4934 	ASSERT(inode->i_state & I_FREEING);
4935 	truncate_inode_pages_final(&inode->i_data);
4936 
4937 	write_lock(&map_tree->lock);
4938 	while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4939 		struct extent_map *em;
4940 
4941 		node = rb_first_cached(&map_tree->map);
4942 		em = rb_entry(node, struct extent_map, rb_node);
4943 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4944 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4945 		remove_extent_mapping(map_tree, em);
4946 		free_extent_map(em);
4947 		if (need_resched()) {
4948 			write_unlock(&map_tree->lock);
4949 			cond_resched();
4950 			write_lock(&map_tree->lock);
4951 		}
4952 	}
4953 	write_unlock(&map_tree->lock);
4954 
4955 	/*
4956 	 * Keep looping until we have no more ranges in the io tree.
4957 	 * We can have ongoing bios started by readahead that have
4958 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
4959 	 * still in progress (unlocked the pages in the bio but did not yet
4960 	 * unlocked the ranges in the io tree). Therefore this means some
4961 	 * ranges can still be locked and eviction started because before
4962 	 * submitting those bios, which are executed by a separate task (work
4963 	 * queue kthread), inode references (inode->i_count) were not taken
4964 	 * (which would be dropped in the end io callback of each bio).
4965 	 * Therefore here we effectively end up waiting for those bios and
4966 	 * anyone else holding locked ranges without having bumped the inode's
4967 	 * reference count - if we don't do it, when they access the inode's
4968 	 * io_tree to unlock a range it may be too late, leading to an
4969 	 * use-after-free issue.
4970 	 */
4971 	spin_lock(&io_tree->lock);
4972 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
4973 		struct extent_state *state;
4974 		struct extent_state *cached_state = NULL;
4975 		u64 start;
4976 		u64 end;
4977 		unsigned state_flags;
4978 
4979 		node = rb_first(&io_tree->state);
4980 		state = rb_entry(node, struct extent_state, rb_node);
4981 		start = state->start;
4982 		end = state->end;
4983 		state_flags = state->state;
4984 		spin_unlock(&io_tree->lock);
4985 
4986 		lock_extent_bits(io_tree, start, end, &cached_state);
4987 
4988 		/*
4989 		 * If still has DELALLOC flag, the extent didn't reach disk,
4990 		 * and its reserved space won't be freed by delayed_ref.
4991 		 * So we need to free its reserved space here.
4992 		 * (Refer to comment in btrfs_invalidatepage, case 2)
4993 		 *
4994 		 * Note, end is the bytenr of last byte, so we need + 1 here.
4995 		 */
4996 		if (state_flags & EXTENT_DELALLOC)
4997 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
4998 					       end - start + 1);
4999 
5000 		clear_extent_bit(io_tree, start, end,
5001 				 EXTENT_LOCKED | EXTENT_DELALLOC |
5002 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
5003 				 &cached_state);
5004 
5005 		cond_resched();
5006 		spin_lock(&io_tree->lock);
5007 	}
5008 	spin_unlock(&io_tree->lock);
5009 }
5010 
5011 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5012 							struct btrfs_block_rsv *rsv)
5013 {
5014 	struct btrfs_fs_info *fs_info = root->fs_info;
5015 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5016 	struct btrfs_trans_handle *trans;
5017 	u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
5018 	int ret;
5019 
5020 	/*
5021 	 * Eviction should be taking place at some place safe because of our
5022 	 * delayed iputs.  However the normal flushing code will run delayed
5023 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5024 	 *
5025 	 * We reserve the delayed_refs_extra here again because we can't use
5026 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5027 	 * above.  We reserve our extra bit here because we generate a ton of
5028 	 * delayed refs activity by truncating.
5029 	 *
5030 	 * If we cannot make our reservation we'll attempt to steal from the
5031 	 * global reserve, because we really want to be able to free up space.
5032 	 */
5033 	ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5034 				     BTRFS_RESERVE_FLUSH_EVICT);
5035 	if (ret) {
5036 		/*
5037 		 * Try to steal from the global reserve if there is space for
5038 		 * it.
5039 		 */
5040 		if (btrfs_check_space_for_delayed_refs(fs_info) ||
5041 		    btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5042 			btrfs_warn(fs_info,
5043 				   "could not allocate space for delete; will truncate on mount");
5044 			return ERR_PTR(-ENOSPC);
5045 		}
5046 		delayed_refs_extra = 0;
5047 	}
5048 
5049 	trans = btrfs_join_transaction(root);
5050 	if (IS_ERR(trans))
5051 		return trans;
5052 
5053 	if (delayed_refs_extra) {
5054 		trans->block_rsv = &fs_info->trans_block_rsv;
5055 		trans->bytes_reserved = delayed_refs_extra;
5056 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5057 					delayed_refs_extra, 1);
5058 	}
5059 	return trans;
5060 }
5061 
5062 void btrfs_evict_inode(struct inode *inode)
5063 {
5064 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5065 	struct btrfs_trans_handle *trans;
5066 	struct btrfs_root *root = BTRFS_I(inode)->root;
5067 	struct btrfs_block_rsv *rsv;
5068 	int ret;
5069 
5070 	trace_btrfs_inode_evict(inode);
5071 
5072 	if (!root) {
5073 		clear_inode(inode);
5074 		return;
5075 	}
5076 
5077 	evict_inode_truncate_pages(inode);
5078 
5079 	if (inode->i_nlink &&
5080 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5081 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5082 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5083 		goto no_delete;
5084 
5085 	if (is_bad_inode(inode))
5086 		goto no_delete;
5087 
5088 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5089 
5090 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5091 		goto no_delete;
5092 
5093 	if (inode->i_nlink > 0) {
5094 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5095 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5096 		goto no_delete;
5097 	}
5098 
5099 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5100 	if (ret)
5101 		goto no_delete;
5102 
5103 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5104 	if (!rsv)
5105 		goto no_delete;
5106 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5107 	rsv->failfast = 1;
5108 
5109 	btrfs_i_size_write(BTRFS_I(inode), 0);
5110 
5111 	while (1) {
5112 		trans = evict_refill_and_join(root, rsv);
5113 		if (IS_ERR(trans))
5114 			goto free_rsv;
5115 
5116 		trans->block_rsv = rsv;
5117 
5118 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5119 		trans->block_rsv = &fs_info->trans_block_rsv;
5120 		btrfs_end_transaction(trans);
5121 		btrfs_btree_balance_dirty(fs_info);
5122 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5123 			goto free_rsv;
5124 		else if (!ret)
5125 			break;
5126 	}
5127 
5128 	/*
5129 	 * Errors here aren't a big deal, it just means we leave orphan items in
5130 	 * the tree. They will be cleaned up on the next mount. If the inode
5131 	 * number gets reused, cleanup deletes the orphan item without doing
5132 	 * anything, and unlink reuses the existing orphan item.
5133 	 *
5134 	 * If it turns out that we are dropping too many of these, we might want
5135 	 * to add a mechanism for retrying these after a commit.
5136 	 */
5137 	trans = evict_refill_and_join(root, rsv);
5138 	if (!IS_ERR(trans)) {
5139 		trans->block_rsv = rsv;
5140 		btrfs_orphan_del(trans, BTRFS_I(inode));
5141 		trans->block_rsv = &fs_info->trans_block_rsv;
5142 		btrfs_end_transaction(trans);
5143 	}
5144 
5145 	if (!(root == fs_info->tree_root ||
5146 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5147 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5148 
5149 free_rsv:
5150 	btrfs_free_block_rsv(fs_info, rsv);
5151 no_delete:
5152 	/*
5153 	 * If we didn't successfully delete, the orphan item will still be in
5154 	 * the tree and we'll retry on the next mount. Again, we might also want
5155 	 * to retry these periodically in the future.
5156 	 */
5157 	btrfs_remove_delayed_node(BTRFS_I(inode));
5158 	clear_inode(inode);
5159 }
5160 
5161 /*
5162  * Return the key found in the dir entry in the location pointer, fill @type
5163  * with BTRFS_FT_*, and return 0.
5164  *
5165  * If no dir entries were found, returns -ENOENT.
5166  * If found a corrupted location in dir entry, returns -EUCLEAN.
5167  */
5168 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5169 			       struct btrfs_key *location, u8 *type)
5170 {
5171 	const char *name = dentry->d_name.name;
5172 	int namelen = dentry->d_name.len;
5173 	struct btrfs_dir_item *di;
5174 	struct btrfs_path *path;
5175 	struct btrfs_root *root = BTRFS_I(dir)->root;
5176 	int ret = 0;
5177 
5178 	path = btrfs_alloc_path();
5179 	if (!path)
5180 		return -ENOMEM;
5181 
5182 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5183 			name, namelen, 0);
5184 	if (IS_ERR_OR_NULL(di)) {
5185 		ret = di ? PTR_ERR(di) : -ENOENT;
5186 		goto out;
5187 	}
5188 
5189 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5190 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5191 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5192 		ret = -EUCLEAN;
5193 		btrfs_warn(root->fs_info,
5194 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5195 			   __func__, name, btrfs_ino(BTRFS_I(dir)),
5196 			   location->objectid, location->type, location->offset);
5197 	}
5198 	if (!ret)
5199 		*type = btrfs_dir_type(path->nodes[0], di);
5200 out:
5201 	btrfs_free_path(path);
5202 	return ret;
5203 }
5204 
5205 /*
5206  * when we hit a tree root in a directory, the btrfs part of the inode
5207  * needs to be changed to reflect the root directory of the tree root.  This
5208  * is kind of like crossing a mount point.
5209  */
5210 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5211 				    struct inode *dir,
5212 				    struct dentry *dentry,
5213 				    struct btrfs_key *location,
5214 				    struct btrfs_root **sub_root)
5215 {
5216 	struct btrfs_path *path;
5217 	struct btrfs_root *new_root;
5218 	struct btrfs_root_ref *ref;
5219 	struct extent_buffer *leaf;
5220 	struct btrfs_key key;
5221 	int ret;
5222 	int err = 0;
5223 
5224 	path = btrfs_alloc_path();
5225 	if (!path) {
5226 		err = -ENOMEM;
5227 		goto out;
5228 	}
5229 
5230 	err = -ENOENT;
5231 	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5232 	key.type = BTRFS_ROOT_REF_KEY;
5233 	key.offset = location->objectid;
5234 
5235 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5236 	if (ret) {
5237 		if (ret < 0)
5238 			err = ret;
5239 		goto out;
5240 	}
5241 
5242 	leaf = path->nodes[0];
5243 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5244 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5245 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5246 		goto out;
5247 
5248 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5249 				   (unsigned long)(ref + 1),
5250 				   dentry->d_name.len);
5251 	if (ret)
5252 		goto out;
5253 
5254 	btrfs_release_path(path);
5255 
5256 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5257 	if (IS_ERR(new_root)) {
5258 		err = PTR_ERR(new_root);
5259 		goto out;
5260 	}
5261 
5262 	*sub_root = new_root;
5263 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5264 	location->type = BTRFS_INODE_ITEM_KEY;
5265 	location->offset = 0;
5266 	err = 0;
5267 out:
5268 	btrfs_free_path(path);
5269 	return err;
5270 }
5271 
5272 static void inode_tree_add(struct inode *inode)
5273 {
5274 	struct btrfs_root *root = BTRFS_I(inode)->root;
5275 	struct btrfs_inode *entry;
5276 	struct rb_node **p;
5277 	struct rb_node *parent;
5278 	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5279 	u64 ino = btrfs_ino(BTRFS_I(inode));
5280 
5281 	if (inode_unhashed(inode))
5282 		return;
5283 	parent = NULL;
5284 	spin_lock(&root->inode_lock);
5285 	p = &root->inode_tree.rb_node;
5286 	while (*p) {
5287 		parent = *p;
5288 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5289 
5290 		if (ino < btrfs_ino(entry))
5291 			p = &parent->rb_left;
5292 		else if (ino > btrfs_ino(entry))
5293 			p = &parent->rb_right;
5294 		else {
5295 			WARN_ON(!(entry->vfs_inode.i_state &
5296 				  (I_WILL_FREE | I_FREEING)));
5297 			rb_replace_node(parent, new, &root->inode_tree);
5298 			RB_CLEAR_NODE(parent);
5299 			spin_unlock(&root->inode_lock);
5300 			return;
5301 		}
5302 	}
5303 	rb_link_node(new, parent, p);
5304 	rb_insert_color(new, &root->inode_tree);
5305 	spin_unlock(&root->inode_lock);
5306 }
5307 
5308 static void inode_tree_del(struct inode *inode)
5309 {
5310 	struct btrfs_root *root = BTRFS_I(inode)->root;
5311 	int empty = 0;
5312 
5313 	spin_lock(&root->inode_lock);
5314 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5315 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5316 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5317 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5318 	}
5319 	spin_unlock(&root->inode_lock);
5320 
5321 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5322 		spin_lock(&root->inode_lock);
5323 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5324 		spin_unlock(&root->inode_lock);
5325 		if (empty)
5326 			btrfs_add_dead_root(root);
5327 	}
5328 }
5329 
5330 
5331 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5332 {
5333 	struct btrfs_iget_args *args = p;
5334 
5335 	inode->i_ino = args->ino;
5336 	BTRFS_I(inode)->location.objectid = args->ino;
5337 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5338 	BTRFS_I(inode)->location.offset = 0;
5339 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5340 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5341 	return 0;
5342 }
5343 
5344 static int btrfs_find_actor(struct inode *inode, void *opaque)
5345 {
5346 	struct btrfs_iget_args *args = opaque;
5347 
5348 	return args->ino == BTRFS_I(inode)->location.objectid &&
5349 		args->root == BTRFS_I(inode)->root;
5350 }
5351 
5352 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5353 				       struct btrfs_root *root)
5354 {
5355 	struct inode *inode;
5356 	struct btrfs_iget_args args;
5357 	unsigned long hashval = btrfs_inode_hash(ino, root);
5358 
5359 	args.ino = ino;
5360 	args.root = root;
5361 
5362 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5363 			     btrfs_init_locked_inode,
5364 			     (void *)&args);
5365 	return inode;
5366 }
5367 
5368 /*
5369  * Get an inode object given its inode number and corresponding root.
5370  * Path can be preallocated to prevent recursing back to iget through
5371  * allocator. NULL is also valid but may require an additional allocation
5372  * later.
5373  */
5374 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5375 			      struct btrfs_root *root, struct btrfs_path *path)
5376 {
5377 	struct inode *inode;
5378 
5379 	inode = btrfs_iget_locked(s, ino, root);
5380 	if (!inode)
5381 		return ERR_PTR(-ENOMEM);
5382 
5383 	if (inode->i_state & I_NEW) {
5384 		int ret;
5385 
5386 		ret = btrfs_read_locked_inode(inode, path);
5387 		if (!ret) {
5388 			inode_tree_add(inode);
5389 			unlock_new_inode(inode);
5390 		} else {
5391 			iget_failed(inode);
5392 			/*
5393 			 * ret > 0 can come from btrfs_search_slot called by
5394 			 * btrfs_read_locked_inode, this means the inode item
5395 			 * was not found.
5396 			 */
5397 			if (ret > 0)
5398 				ret = -ENOENT;
5399 			inode = ERR_PTR(ret);
5400 		}
5401 	}
5402 
5403 	return inode;
5404 }
5405 
5406 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5407 {
5408 	return btrfs_iget_path(s, ino, root, NULL);
5409 }
5410 
5411 static struct inode *new_simple_dir(struct super_block *s,
5412 				    struct btrfs_key *key,
5413 				    struct btrfs_root *root)
5414 {
5415 	struct inode *inode = new_inode(s);
5416 
5417 	if (!inode)
5418 		return ERR_PTR(-ENOMEM);
5419 
5420 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5421 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5422 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5423 
5424 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5425 	/*
5426 	 * We only need lookup, the rest is read-only and there's no inode
5427 	 * associated with the dentry
5428 	 */
5429 	inode->i_op = &simple_dir_inode_operations;
5430 	inode->i_opflags &= ~IOP_XATTR;
5431 	inode->i_fop = &simple_dir_operations;
5432 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5433 	inode->i_mtime = current_time(inode);
5434 	inode->i_atime = inode->i_mtime;
5435 	inode->i_ctime = inode->i_mtime;
5436 	BTRFS_I(inode)->i_otime = inode->i_mtime;
5437 
5438 	return inode;
5439 }
5440 
5441 static inline u8 btrfs_inode_type(struct inode *inode)
5442 {
5443 	/*
5444 	 * Compile-time asserts that generic FT_* types still match
5445 	 * BTRFS_FT_* types
5446 	 */
5447 	BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5448 	BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5449 	BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5450 	BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5451 	BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5452 	BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5453 	BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5454 	BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5455 
5456 	return fs_umode_to_ftype(inode->i_mode);
5457 }
5458 
5459 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5460 {
5461 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5462 	struct inode *inode;
5463 	struct btrfs_root *root = BTRFS_I(dir)->root;
5464 	struct btrfs_root *sub_root = root;
5465 	struct btrfs_key location;
5466 	u8 di_type = 0;
5467 	int ret = 0;
5468 
5469 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5470 		return ERR_PTR(-ENAMETOOLONG);
5471 
5472 	ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5473 	if (ret < 0)
5474 		return ERR_PTR(ret);
5475 
5476 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5477 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5478 		if (IS_ERR(inode))
5479 			return inode;
5480 
5481 		/* Do extra check against inode mode with di_type */
5482 		if (btrfs_inode_type(inode) != di_type) {
5483 			btrfs_crit(fs_info,
5484 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5485 				  inode->i_mode, btrfs_inode_type(inode),
5486 				  di_type);
5487 			iput(inode);
5488 			return ERR_PTR(-EUCLEAN);
5489 		}
5490 		return inode;
5491 	}
5492 
5493 	ret = fixup_tree_root_location(fs_info, dir, dentry,
5494 				       &location, &sub_root);
5495 	if (ret < 0) {
5496 		if (ret != -ENOENT)
5497 			inode = ERR_PTR(ret);
5498 		else
5499 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5500 	} else {
5501 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5502 	}
5503 	if (root != sub_root)
5504 		btrfs_put_root(sub_root);
5505 
5506 	if (!IS_ERR(inode) && root != sub_root) {
5507 		down_read(&fs_info->cleanup_work_sem);
5508 		if (!sb_rdonly(inode->i_sb))
5509 			ret = btrfs_orphan_cleanup(sub_root);
5510 		up_read(&fs_info->cleanup_work_sem);
5511 		if (ret) {
5512 			iput(inode);
5513 			inode = ERR_PTR(ret);
5514 		}
5515 	}
5516 
5517 	return inode;
5518 }
5519 
5520 static int btrfs_dentry_delete(const struct dentry *dentry)
5521 {
5522 	struct btrfs_root *root;
5523 	struct inode *inode = d_inode(dentry);
5524 
5525 	if (!inode && !IS_ROOT(dentry))
5526 		inode = d_inode(dentry->d_parent);
5527 
5528 	if (inode) {
5529 		root = BTRFS_I(inode)->root;
5530 		if (btrfs_root_refs(&root->root_item) == 0)
5531 			return 1;
5532 
5533 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5534 			return 1;
5535 	}
5536 	return 0;
5537 }
5538 
5539 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5540 				   unsigned int flags)
5541 {
5542 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5543 
5544 	if (inode == ERR_PTR(-ENOENT))
5545 		inode = NULL;
5546 	return d_splice_alias(inode, dentry);
5547 }
5548 
5549 /*
5550  * All this infrastructure exists because dir_emit can fault, and we are holding
5551  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5552  * our information into that, and then dir_emit from the buffer.  This is
5553  * similar to what NFS does, only we don't keep the buffer around in pagecache
5554  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5555  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5556  * tree lock.
5557  */
5558 static int btrfs_opendir(struct inode *inode, struct file *file)
5559 {
5560 	struct btrfs_file_private *private;
5561 
5562 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5563 	if (!private)
5564 		return -ENOMEM;
5565 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5566 	if (!private->filldir_buf) {
5567 		kfree(private);
5568 		return -ENOMEM;
5569 	}
5570 	file->private_data = private;
5571 	return 0;
5572 }
5573 
5574 struct dir_entry {
5575 	u64 ino;
5576 	u64 offset;
5577 	unsigned type;
5578 	int name_len;
5579 };
5580 
5581 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5582 {
5583 	while (entries--) {
5584 		struct dir_entry *entry = addr;
5585 		char *name = (char *)(entry + 1);
5586 
5587 		ctx->pos = get_unaligned(&entry->offset);
5588 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5589 					 get_unaligned(&entry->ino),
5590 					 get_unaligned(&entry->type)))
5591 			return 1;
5592 		addr += sizeof(struct dir_entry) +
5593 			get_unaligned(&entry->name_len);
5594 		ctx->pos++;
5595 	}
5596 	return 0;
5597 }
5598 
5599 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5600 {
5601 	struct inode *inode = file_inode(file);
5602 	struct btrfs_root *root = BTRFS_I(inode)->root;
5603 	struct btrfs_file_private *private = file->private_data;
5604 	struct btrfs_dir_item *di;
5605 	struct btrfs_key key;
5606 	struct btrfs_key found_key;
5607 	struct btrfs_path *path;
5608 	void *addr;
5609 	struct list_head ins_list;
5610 	struct list_head del_list;
5611 	int ret;
5612 	struct extent_buffer *leaf;
5613 	int slot;
5614 	char *name_ptr;
5615 	int name_len;
5616 	int entries = 0;
5617 	int total_len = 0;
5618 	bool put = false;
5619 	struct btrfs_key location;
5620 
5621 	if (!dir_emit_dots(file, ctx))
5622 		return 0;
5623 
5624 	path = btrfs_alloc_path();
5625 	if (!path)
5626 		return -ENOMEM;
5627 
5628 	addr = private->filldir_buf;
5629 	path->reada = READA_FORWARD;
5630 
5631 	INIT_LIST_HEAD(&ins_list);
5632 	INIT_LIST_HEAD(&del_list);
5633 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5634 
5635 again:
5636 	key.type = BTRFS_DIR_INDEX_KEY;
5637 	key.offset = ctx->pos;
5638 	key.objectid = btrfs_ino(BTRFS_I(inode));
5639 
5640 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5641 	if (ret < 0)
5642 		goto err;
5643 
5644 	while (1) {
5645 		struct dir_entry *entry;
5646 
5647 		leaf = path->nodes[0];
5648 		slot = path->slots[0];
5649 		if (slot >= btrfs_header_nritems(leaf)) {
5650 			ret = btrfs_next_leaf(root, path);
5651 			if (ret < 0)
5652 				goto err;
5653 			else if (ret > 0)
5654 				break;
5655 			continue;
5656 		}
5657 
5658 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5659 
5660 		if (found_key.objectid != key.objectid)
5661 			break;
5662 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5663 			break;
5664 		if (found_key.offset < ctx->pos)
5665 			goto next;
5666 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5667 			goto next;
5668 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5669 		name_len = btrfs_dir_name_len(leaf, di);
5670 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5671 		    PAGE_SIZE) {
5672 			btrfs_release_path(path);
5673 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5674 			if (ret)
5675 				goto nopos;
5676 			addr = private->filldir_buf;
5677 			entries = 0;
5678 			total_len = 0;
5679 			goto again;
5680 		}
5681 
5682 		entry = addr;
5683 		put_unaligned(name_len, &entry->name_len);
5684 		name_ptr = (char *)(entry + 1);
5685 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5686 				   name_len);
5687 		put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5688 				&entry->type);
5689 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5690 		put_unaligned(location.objectid, &entry->ino);
5691 		put_unaligned(found_key.offset, &entry->offset);
5692 		entries++;
5693 		addr += sizeof(struct dir_entry) + name_len;
5694 		total_len += sizeof(struct dir_entry) + name_len;
5695 next:
5696 		path->slots[0]++;
5697 	}
5698 	btrfs_release_path(path);
5699 
5700 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5701 	if (ret)
5702 		goto nopos;
5703 
5704 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5705 	if (ret)
5706 		goto nopos;
5707 
5708 	/*
5709 	 * Stop new entries from being returned after we return the last
5710 	 * entry.
5711 	 *
5712 	 * New directory entries are assigned a strictly increasing
5713 	 * offset.  This means that new entries created during readdir
5714 	 * are *guaranteed* to be seen in the future by that readdir.
5715 	 * This has broken buggy programs which operate on names as
5716 	 * they're returned by readdir.  Until we re-use freed offsets
5717 	 * we have this hack to stop new entries from being returned
5718 	 * under the assumption that they'll never reach this huge
5719 	 * offset.
5720 	 *
5721 	 * This is being careful not to overflow 32bit loff_t unless the
5722 	 * last entry requires it because doing so has broken 32bit apps
5723 	 * in the past.
5724 	 */
5725 	if (ctx->pos >= INT_MAX)
5726 		ctx->pos = LLONG_MAX;
5727 	else
5728 		ctx->pos = INT_MAX;
5729 nopos:
5730 	ret = 0;
5731 err:
5732 	if (put)
5733 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5734 	btrfs_free_path(path);
5735 	return ret;
5736 }
5737 
5738 /*
5739  * This is somewhat expensive, updating the tree every time the
5740  * inode changes.  But, it is most likely to find the inode in cache.
5741  * FIXME, needs more benchmarking...there are no reasons other than performance
5742  * to keep or drop this code.
5743  */
5744 static int btrfs_dirty_inode(struct inode *inode)
5745 {
5746 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5747 	struct btrfs_root *root = BTRFS_I(inode)->root;
5748 	struct btrfs_trans_handle *trans;
5749 	int ret;
5750 
5751 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5752 		return 0;
5753 
5754 	trans = btrfs_join_transaction(root);
5755 	if (IS_ERR(trans))
5756 		return PTR_ERR(trans);
5757 
5758 	ret = btrfs_update_inode(trans, root, inode);
5759 	if (ret && ret == -ENOSPC) {
5760 		/* whoops, lets try again with the full transaction */
5761 		btrfs_end_transaction(trans);
5762 		trans = btrfs_start_transaction(root, 1);
5763 		if (IS_ERR(trans))
5764 			return PTR_ERR(trans);
5765 
5766 		ret = btrfs_update_inode(trans, root, inode);
5767 	}
5768 	btrfs_end_transaction(trans);
5769 	if (BTRFS_I(inode)->delayed_node)
5770 		btrfs_balance_delayed_items(fs_info);
5771 
5772 	return ret;
5773 }
5774 
5775 /*
5776  * This is a copy of file_update_time.  We need this so we can return error on
5777  * ENOSPC for updating the inode in the case of file write and mmap writes.
5778  */
5779 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5780 			     int flags)
5781 {
5782 	struct btrfs_root *root = BTRFS_I(inode)->root;
5783 	bool dirty = flags & ~S_VERSION;
5784 
5785 	if (btrfs_root_readonly(root))
5786 		return -EROFS;
5787 
5788 	if (flags & S_VERSION)
5789 		dirty |= inode_maybe_inc_iversion(inode, dirty);
5790 	if (flags & S_CTIME)
5791 		inode->i_ctime = *now;
5792 	if (flags & S_MTIME)
5793 		inode->i_mtime = *now;
5794 	if (flags & S_ATIME)
5795 		inode->i_atime = *now;
5796 	return dirty ? btrfs_dirty_inode(inode) : 0;
5797 }
5798 
5799 /*
5800  * find the highest existing sequence number in a directory
5801  * and then set the in-memory index_cnt variable to reflect
5802  * free sequence numbers
5803  */
5804 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5805 {
5806 	struct btrfs_root *root = inode->root;
5807 	struct btrfs_key key, found_key;
5808 	struct btrfs_path *path;
5809 	struct extent_buffer *leaf;
5810 	int ret;
5811 
5812 	key.objectid = btrfs_ino(inode);
5813 	key.type = BTRFS_DIR_INDEX_KEY;
5814 	key.offset = (u64)-1;
5815 
5816 	path = btrfs_alloc_path();
5817 	if (!path)
5818 		return -ENOMEM;
5819 
5820 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5821 	if (ret < 0)
5822 		goto out;
5823 	/* FIXME: we should be able to handle this */
5824 	if (ret == 0)
5825 		goto out;
5826 	ret = 0;
5827 
5828 	/*
5829 	 * MAGIC NUMBER EXPLANATION:
5830 	 * since we search a directory based on f_pos we have to start at 2
5831 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5832 	 * else has to start at 2
5833 	 */
5834 	if (path->slots[0] == 0) {
5835 		inode->index_cnt = 2;
5836 		goto out;
5837 	}
5838 
5839 	path->slots[0]--;
5840 
5841 	leaf = path->nodes[0];
5842 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5843 
5844 	if (found_key.objectid != btrfs_ino(inode) ||
5845 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5846 		inode->index_cnt = 2;
5847 		goto out;
5848 	}
5849 
5850 	inode->index_cnt = found_key.offset + 1;
5851 out:
5852 	btrfs_free_path(path);
5853 	return ret;
5854 }
5855 
5856 /*
5857  * helper to find a free sequence number in a given directory.  This current
5858  * code is very simple, later versions will do smarter things in the btree
5859  */
5860 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5861 {
5862 	int ret = 0;
5863 
5864 	if (dir->index_cnt == (u64)-1) {
5865 		ret = btrfs_inode_delayed_dir_index_count(dir);
5866 		if (ret) {
5867 			ret = btrfs_set_inode_index_count(dir);
5868 			if (ret)
5869 				return ret;
5870 		}
5871 	}
5872 
5873 	*index = dir->index_cnt;
5874 	dir->index_cnt++;
5875 
5876 	return ret;
5877 }
5878 
5879 static int btrfs_insert_inode_locked(struct inode *inode)
5880 {
5881 	struct btrfs_iget_args args;
5882 
5883 	args.ino = BTRFS_I(inode)->location.objectid;
5884 	args.root = BTRFS_I(inode)->root;
5885 
5886 	return insert_inode_locked4(inode,
5887 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5888 		   btrfs_find_actor, &args);
5889 }
5890 
5891 /*
5892  * Inherit flags from the parent inode.
5893  *
5894  * Currently only the compression flags and the cow flags are inherited.
5895  */
5896 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5897 {
5898 	unsigned int flags;
5899 
5900 	if (!dir)
5901 		return;
5902 
5903 	flags = BTRFS_I(dir)->flags;
5904 
5905 	if (flags & BTRFS_INODE_NOCOMPRESS) {
5906 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5907 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5908 	} else if (flags & BTRFS_INODE_COMPRESS) {
5909 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5910 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5911 	}
5912 
5913 	if (flags & BTRFS_INODE_NODATACOW) {
5914 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5915 		if (S_ISREG(inode->i_mode))
5916 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5917 	}
5918 
5919 	btrfs_sync_inode_flags_to_i_flags(inode);
5920 }
5921 
5922 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5923 				     struct btrfs_root *root,
5924 				     struct inode *dir,
5925 				     const char *name, int name_len,
5926 				     u64 ref_objectid, u64 objectid,
5927 				     umode_t mode, u64 *index)
5928 {
5929 	struct btrfs_fs_info *fs_info = root->fs_info;
5930 	struct inode *inode;
5931 	struct btrfs_inode_item *inode_item;
5932 	struct btrfs_key *location;
5933 	struct btrfs_path *path;
5934 	struct btrfs_inode_ref *ref;
5935 	struct btrfs_key key[2];
5936 	u32 sizes[2];
5937 	int nitems = name ? 2 : 1;
5938 	unsigned long ptr;
5939 	unsigned int nofs_flag;
5940 	int ret;
5941 
5942 	path = btrfs_alloc_path();
5943 	if (!path)
5944 		return ERR_PTR(-ENOMEM);
5945 
5946 	nofs_flag = memalloc_nofs_save();
5947 	inode = new_inode(fs_info->sb);
5948 	memalloc_nofs_restore(nofs_flag);
5949 	if (!inode) {
5950 		btrfs_free_path(path);
5951 		return ERR_PTR(-ENOMEM);
5952 	}
5953 
5954 	/*
5955 	 * O_TMPFILE, set link count to 0, so that after this point,
5956 	 * we fill in an inode item with the correct link count.
5957 	 */
5958 	if (!name)
5959 		set_nlink(inode, 0);
5960 
5961 	/*
5962 	 * we have to initialize this early, so we can reclaim the inode
5963 	 * number if we fail afterwards in this function.
5964 	 */
5965 	inode->i_ino = objectid;
5966 
5967 	if (dir && name) {
5968 		trace_btrfs_inode_request(dir);
5969 
5970 		ret = btrfs_set_inode_index(BTRFS_I(dir), index);
5971 		if (ret) {
5972 			btrfs_free_path(path);
5973 			iput(inode);
5974 			return ERR_PTR(ret);
5975 		}
5976 	} else if (dir) {
5977 		*index = 0;
5978 	}
5979 	/*
5980 	 * index_cnt is ignored for everything but a dir,
5981 	 * btrfs_set_inode_index_count has an explanation for the magic
5982 	 * number
5983 	 */
5984 	BTRFS_I(inode)->index_cnt = 2;
5985 	BTRFS_I(inode)->dir_index = *index;
5986 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5987 	BTRFS_I(inode)->generation = trans->transid;
5988 	inode->i_generation = BTRFS_I(inode)->generation;
5989 
5990 	/*
5991 	 * We could have gotten an inode number from somebody who was fsynced
5992 	 * and then removed in this same transaction, so let's just set full
5993 	 * sync since it will be a full sync anyway and this will blow away the
5994 	 * old info in the log.
5995 	 */
5996 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5997 
5998 	key[0].objectid = objectid;
5999 	key[0].type = BTRFS_INODE_ITEM_KEY;
6000 	key[0].offset = 0;
6001 
6002 	sizes[0] = sizeof(struct btrfs_inode_item);
6003 
6004 	if (name) {
6005 		/*
6006 		 * Start new inodes with an inode_ref. This is slightly more
6007 		 * efficient for small numbers of hard links since they will
6008 		 * be packed into one item. Extended refs will kick in if we
6009 		 * add more hard links than can fit in the ref item.
6010 		 */
6011 		key[1].objectid = objectid;
6012 		key[1].type = BTRFS_INODE_REF_KEY;
6013 		key[1].offset = ref_objectid;
6014 
6015 		sizes[1] = name_len + sizeof(*ref);
6016 	}
6017 
6018 	location = &BTRFS_I(inode)->location;
6019 	location->objectid = objectid;
6020 	location->offset = 0;
6021 	location->type = BTRFS_INODE_ITEM_KEY;
6022 
6023 	ret = btrfs_insert_inode_locked(inode);
6024 	if (ret < 0) {
6025 		iput(inode);
6026 		goto fail;
6027 	}
6028 
6029 	path->leave_spinning = 1;
6030 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6031 	if (ret != 0)
6032 		goto fail_unlock;
6033 
6034 	inode_init_owner(inode, dir, mode);
6035 	inode_set_bytes(inode, 0);
6036 
6037 	inode->i_mtime = current_time(inode);
6038 	inode->i_atime = inode->i_mtime;
6039 	inode->i_ctime = inode->i_mtime;
6040 	BTRFS_I(inode)->i_otime = inode->i_mtime;
6041 
6042 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6043 				  struct btrfs_inode_item);
6044 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6045 			     sizeof(*inode_item));
6046 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6047 
6048 	if (name) {
6049 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6050 				     struct btrfs_inode_ref);
6051 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6052 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6053 		ptr = (unsigned long)(ref + 1);
6054 		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6055 	}
6056 
6057 	btrfs_mark_buffer_dirty(path->nodes[0]);
6058 	btrfs_free_path(path);
6059 
6060 	btrfs_inherit_iflags(inode, dir);
6061 
6062 	if (S_ISREG(mode)) {
6063 		if (btrfs_test_opt(fs_info, NODATASUM))
6064 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6065 		if (btrfs_test_opt(fs_info, NODATACOW))
6066 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6067 				BTRFS_INODE_NODATASUM;
6068 	}
6069 
6070 	inode_tree_add(inode);
6071 
6072 	trace_btrfs_inode_new(inode);
6073 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6074 
6075 	btrfs_update_root_times(trans, root);
6076 
6077 	ret = btrfs_inode_inherit_props(trans, inode, dir);
6078 	if (ret)
6079 		btrfs_err(fs_info,
6080 			  "error inheriting props for ino %llu (root %llu): %d",
6081 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6082 
6083 	return inode;
6084 
6085 fail_unlock:
6086 	discard_new_inode(inode);
6087 fail:
6088 	if (dir && name)
6089 		BTRFS_I(dir)->index_cnt--;
6090 	btrfs_free_path(path);
6091 	return ERR_PTR(ret);
6092 }
6093 
6094 /*
6095  * utility function to add 'inode' into 'parent_inode' with
6096  * a give name and a given sequence number.
6097  * if 'add_backref' is true, also insert a backref from the
6098  * inode to the parent directory.
6099  */
6100 int btrfs_add_link(struct btrfs_trans_handle *trans,
6101 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6102 		   const char *name, int name_len, int add_backref, u64 index)
6103 {
6104 	int ret = 0;
6105 	struct btrfs_key key;
6106 	struct btrfs_root *root = parent_inode->root;
6107 	u64 ino = btrfs_ino(inode);
6108 	u64 parent_ino = btrfs_ino(parent_inode);
6109 
6110 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6111 		memcpy(&key, &inode->root->root_key, sizeof(key));
6112 	} else {
6113 		key.objectid = ino;
6114 		key.type = BTRFS_INODE_ITEM_KEY;
6115 		key.offset = 0;
6116 	}
6117 
6118 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6119 		ret = btrfs_add_root_ref(trans, key.objectid,
6120 					 root->root_key.objectid, parent_ino,
6121 					 index, name, name_len);
6122 	} else if (add_backref) {
6123 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6124 					     parent_ino, index);
6125 	}
6126 
6127 	/* Nothing to clean up yet */
6128 	if (ret)
6129 		return ret;
6130 
6131 	ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6132 				    btrfs_inode_type(&inode->vfs_inode), index);
6133 	if (ret == -EEXIST || ret == -EOVERFLOW)
6134 		goto fail_dir_item;
6135 	else if (ret) {
6136 		btrfs_abort_transaction(trans, ret);
6137 		return ret;
6138 	}
6139 
6140 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6141 			   name_len * 2);
6142 	inode_inc_iversion(&parent_inode->vfs_inode);
6143 	/*
6144 	 * If we are replaying a log tree, we do not want to update the mtime
6145 	 * and ctime of the parent directory with the current time, since the
6146 	 * log replay procedure is responsible for setting them to their correct
6147 	 * values (the ones it had when the fsync was done).
6148 	 */
6149 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6150 		struct timespec64 now = current_time(&parent_inode->vfs_inode);
6151 
6152 		parent_inode->vfs_inode.i_mtime = now;
6153 		parent_inode->vfs_inode.i_ctime = now;
6154 	}
6155 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6156 	if (ret)
6157 		btrfs_abort_transaction(trans, ret);
6158 	return ret;
6159 
6160 fail_dir_item:
6161 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6162 		u64 local_index;
6163 		int err;
6164 		err = btrfs_del_root_ref(trans, key.objectid,
6165 					 root->root_key.objectid, parent_ino,
6166 					 &local_index, name, name_len);
6167 		if (err)
6168 			btrfs_abort_transaction(trans, err);
6169 	} else if (add_backref) {
6170 		u64 local_index;
6171 		int err;
6172 
6173 		err = btrfs_del_inode_ref(trans, root, name, name_len,
6174 					  ino, parent_ino, &local_index);
6175 		if (err)
6176 			btrfs_abort_transaction(trans, err);
6177 	}
6178 
6179 	/* Return the original error code */
6180 	return ret;
6181 }
6182 
6183 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6184 			    struct btrfs_inode *dir, struct dentry *dentry,
6185 			    struct btrfs_inode *inode, int backref, u64 index)
6186 {
6187 	int err = btrfs_add_link(trans, dir, inode,
6188 				 dentry->d_name.name, dentry->d_name.len,
6189 				 backref, index);
6190 	if (err > 0)
6191 		err = -EEXIST;
6192 	return err;
6193 }
6194 
6195 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6196 			umode_t mode, dev_t rdev)
6197 {
6198 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6199 	struct btrfs_trans_handle *trans;
6200 	struct btrfs_root *root = BTRFS_I(dir)->root;
6201 	struct inode *inode = NULL;
6202 	int err;
6203 	u64 objectid;
6204 	u64 index = 0;
6205 
6206 	/*
6207 	 * 2 for inode item and ref
6208 	 * 2 for dir items
6209 	 * 1 for xattr if selinux is on
6210 	 */
6211 	trans = btrfs_start_transaction(root, 5);
6212 	if (IS_ERR(trans))
6213 		return PTR_ERR(trans);
6214 
6215 	err = btrfs_find_free_ino(root, &objectid);
6216 	if (err)
6217 		goto out_unlock;
6218 
6219 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6220 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6221 			mode, &index);
6222 	if (IS_ERR(inode)) {
6223 		err = PTR_ERR(inode);
6224 		inode = NULL;
6225 		goto out_unlock;
6226 	}
6227 
6228 	/*
6229 	* If the active LSM wants to access the inode during
6230 	* d_instantiate it needs these. Smack checks to see
6231 	* if the filesystem supports xattrs by looking at the
6232 	* ops vector.
6233 	*/
6234 	inode->i_op = &btrfs_special_inode_operations;
6235 	init_special_inode(inode, inode->i_mode, rdev);
6236 
6237 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6238 	if (err)
6239 		goto out_unlock;
6240 
6241 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6242 			0, index);
6243 	if (err)
6244 		goto out_unlock;
6245 
6246 	btrfs_update_inode(trans, root, inode);
6247 	d_instantiate_new(dentry, inode);
6248 
6249 out_unlock:
6250 	btrfs_end_transaction(trans);
6251 	btrfs_btree_balance_dirty(fs_info);
6252 	if (err && inode) {
6253 		inode_dec_link_count(inode);
6254 		discard_new_inode(inode);
6255 	}
6256 	return err;
6257 }
6258 
6259 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6260 			umode_t mode, bool excl)
6261 {
6262 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6263 	struct btrfs_trans_handle *trans;
6264 	struct btrfs_root *root = BTRFS_I(dir)->root;
6265 	struct inode *inode = NULL;
6266 	int err;
6267 	u64 objectid;
6268 	u64 index = 0;
6269 
6270 	/*
6271 	 * 2 for inode item and ref
6272 	 * 2 for dir items
6273 	 * 1 for xattr if selinux is on
6274 	 */
6275 	trans = btrfs_start_transaction(root, 5);
6276 	if (IS_ERR(trans))
6277 		return PTR_ERR(trans);
6278 
6279 	err = btrfs_find_free_ino(root, &objectid);
6280 	if (err)
6281 		goto out_unlock;
6282 
6283 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6284 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6285 			mode, &index);
6286 	if (IS_ERR(inode)) {
6287 		err = PTR_ERR(inode);
6288 		inode = NULL;
6289 		goto out_unlock;
6290 	}
6291 	/*
6292 	* If the active LSM wants to access the inode during
6293 	* d_instantiate it needs these. Smack checks to see
6294 	* if the filesystem supports xattrs by looking at the
6295 	* ops vector.
6296 	*/
6297 	inode->i_fop = &btrfs_file_operations;
6298 	inode->i_op = &btrfs_file_inode_operations;
6299 	inode->i_mapping->a_ops = &btrfs_aops;
6300 
6301 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6302 	if (err)
6303 		goto out_unlock;
6304 
6305 	err = btrfs_update_inode(trans, root, inode);
6306 	if (err)
6307 		goto out_unlock;
6308 
6309 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6310 			0, index);
6311 	if (err)
6312 		goto out_unlock;
6313 
6314 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6315 	d_instantiate_new(dentry, inode);
6316 
6317 out_unlock:
6318 	btrfs_end_transaction(trans);
6319 	if (err && inode) {
6320 		inode_dec_link_count(inode);
6321 		discard_new_inode(inode);
6322 	}
6323 	btrfs_btree_balance_dirty(fs_info);
6324 	return err;
6325 }
6326 
6327 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6328 		      struct dentry *dentry)
6329 {
6330 	struct btrfs_trans_handle *trans = NULL;
6331 	struct btrfs_root *root = BTRFS_I(dir)->root;
6332 	struct inode *inode = d_inode(old_dentry);
6333 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6334 	u64 index;
6335 	int err;
6336 	int drop_inode = 0;
6337 
6338 	/* do not allow sys_link's with other subvols of the same device */
6339 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6340 		return -EXDEV;
6341 
6342 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6343 		return -EMLINK;
6344 
6345 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6346 	if (err)
6347 		goto fail;
6348 
6349 	/*
6350 	 * 2 items for inode and inode ref
6351 	 * 2 items for dir items
6352 	 * 1 item for parent inode
6353 	 * 1 item for orphan item deletion if O_TMPFILE
6354 	 */
6355 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6356 	if (IS_ERR(trans)) {
6357 		err = PTR_ERR(trans);
6358 		trans = NULL;
6359 		goto fail;
6360 	}
6361 
6362 	/* There are several dir indexes for this inode, clear the cache. */
6363 	BTRFS_I(inode)->dir_index = 0ULL;
6364 	inc_nlink(inode);
6365 	inode_inc_iversion(inode);
6366 	inode->i_ctime = current_time(inode);
6367 	ihold(inode);
6368 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6369 
6370 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6371 			1, index);
6372 
6373 	if (err) {
6374 		drop_inode = 1;
6375 	} else {
6376 		struct dentry *parent = dentry->d_parent;
6377 		int ret;
6378 
6379 		err = btrfs_update_inode(trans, root, inode);
6380 		if (err)
6381 			goto fail;
6382 		if (inode->i_nlink == 1) {
6383 			/*
6384 			 * If new hard link count is 1, it's a file created
6385 			 * with open(2) O_TMPFILE flag.
6386 			 */
6387 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6388 			if (err)
6389 				goto fail;
6390 		}
6391 		d_instantiate(dentry, inode);
6392 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6393 					 true, NULL);
6394 		if (ret == BTRFS_NEED_TRANS_COMMIT) {
6395 			err = btrfs_commit_transaction(trans);
6396 			trans = NULL;
6397 		}
6398 	}
6399 
6400 fail:
6401 	if (trans)
6402 		btrfs_end_transaction(trans);
6403 	if (drop_inode) {
6404 		inode_dec_link_count(inode);
6405 		iput(inode);
6406 	}
6407 	btrfs_btree_balance_dirty(fs_info);
6408 	return err;
6409 }
6410 
6411 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6412 {
6413 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6414 	struct inode *inode = NULL;
6415 	struct btrfs_trans_handle *trans;
6416 	struct btrfs_root *root = BTRFS_I(dir)->root;
6417 	int err = 0;
6418 	u64 objectid = 0;
6419 	u64 index = 0;
6420 
6421 	/*
6422 	 * 2 items for inode and ref
6423 	 * 2 items for dir items
6424 	 * 1 for xattr if selinux is on
6425 	 */
6426 	trans = btrfs_start_transaction(root, 5);
6427 	if (IS_ERR(trans))
6428 		return PTR_ERR(trans);
6429 
6430 	err = btrfs_find_free_ino(root, &objectid);
6431 	if (err)
6432 		goto out_fail;
6433 
6434 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6435 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6436 			S_IFDIR | mode, &index);
6437 	if (IS_ERR(inode)) {
6438 		err = PTR_ERR(inode);
6439 		inode = NULL;
6440 		goto out_fail;
6441 	}
6442 
6443 	/* these must be set before we unlock the inode */
6444 	inode->i_op = &btrfs_dir_inode_operations;
6445 	inode->i_fop = &btrfs_dir_file_operations;
6446 
6447 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6448 	if (err)
6449 		goto out_fail;
6450 
6451 	btrfs_i_size_write(BTRFS_I(inode), 0);
6452 	err = btrfs_update_inode(trans, root, inode);
6453 	if (err)
6454 		goto out_fail;
6455 
6456 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6457 			dentry->d_name.name,
6458 			dentry->d_name.len, 0, index);
6459 	if (err)
6460 		goto out_fail;
6461 
6462 	d_instantiate_new(dentry, inode);
6463 
6464 out_fail:
6465 	btrfs_end_transaction(trans);
6466 	if (err && inode) {
6467 		inode_dec_link_count(inode);
6468 		discard_new_inode(inode);
6469 	}
6470 	btrfs_btree_balance_dirty(fs_info);
6471 	return err;
6472 }
6473 
6474 static noinline int uncompress_inline(struct btrfs_path *path,
6475 				      struct page *page,
6476 				      size_t pg_offset, u64 extent_offset,
6477 				      struct btrfs_file_extent_item *item)
6478 {
6479 	int ret;
6480 	struct extent_buffer *leaf = path->nodes[0];
6481 	char *tmp;
6482 	size_t max_size;
6483 	unsigned long inline_size;
6484 	unsigned long ptr;
6485 	int compress_type;
6486 
6487 	WARN_ON(pg_offset != 0);
6488 	compress_type = btrfs_file_extent_compression(leaf, item);
6489 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6490 	inline_size = btrfs_file_extent_inline_item_len(leaf,
6491 					btrfs_item_nr(path->slots[0]));
6492 	tmp = kmalloc(inline_size, GFP_NOFS);
6493 	if (!tmp)
6494 		return -ENOMEM;
6495 	ptr = btrfs_file_extent_inline_start(item);
6496 
6497 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6498 
6499 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6500 	ret = btrfs_decompress(compress_type, tmp, page,
6501 			       extent_offset, inline_size, max_size);
6502 
6503 	/*
6504 	 * decompression code contains a memset to fill in any space between the end
6505 	 * of the uncompressed data and the end of max_size in case the decompressed
6506 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6507 	 * the end of an inline extent and the beginning of the next block, so we
6508 	 * cover that region here.
6509 	 */
6510 
6511 	if (max_size + pg_offset < PAGE_SIZE) {
6512 		char *map = kmap(page);
6513 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6514 		kunmap(page);
6515 	}
6516 	kfree(tmp);
6517 	return ret;
6518 }
6519 
6520 /**
6521  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6522  * @inode:	file to search in
6523  * @page:	page to read extent data into if the extent is inline
6524  * @pg_offset:	offset into @page to copy to
6525  * @start:	file offset
6526  * @len:	length of range starting at @start
6527  *
6528  * This returns the first &struct extent_map which overlaps with the given
6529  * range, reading it from the B-tree and caching it if necessary. Note that
6530  * there may be more extents which overlap the given range after the returned
6531  * extent_map.
6532  *
6533  * If @page is not NULL and the extent is inline, this also reads the extent
6534  * data directly into the page and marks the extent up to date in the io_tree.
6535  *
6536  * Return: ERR_PTR on error, non-NULL extent_map on success.
6537  */
6538 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6539 				    struct page *page, size_t pg_offset,
6540 				    u64 start, u64 len)
6541 {
6542 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6543 	int ret;
6544 	int err = 0;
6545 	u64 extent_start = 0;
6546 	u64 extent_end = 0;
6547 	u64 objectid = btrfs_ino(inode);
6548 	int extent_type = -1;
6549 	struct btrfs_path *path = NULL;
6550 	struct btrfs_root *root = inode->root;
6551 	struct btrfs_file_extent_item *item;
6552 	struct extent_buffer *leaf;
6553 	struct btrfs_key found_key;
6554 	struct extent_map *em = NULL;
6555 	struct extent_map_tree *em_tree = &inode->extent_tree;
6556 	struct extent_io_tree *io_tree = &inode->io_tree;
6557 
6558 	read_lock(&em_tree->lock);
6559 	em = lookup_extent_mapping(em_tree, start, len);
6560 	read_unlock(&em_tree->lock);
6561 
6562 	if (em) {
6563 		if (em->start > start || em->start + em->len <= start)
6564 			free_extent_map(em);
6565 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6566 			free_extent_map(em);
6567 		else
6568 			goto out;
6569 	}
6570 	em = alloc_extent_map();
6571 	if (!em) {
6572 		err = -ENOMEM;
6573 		goto out;
6574 	}
6575 	em->start = EXTENT_MAP_HOLE;
6576 	em->orig_start = EXTENT_MAP_HOLE;
6577 	em->len = (u64)-1;
6578 	em->block_len = (u64)-1;
6579 
6580 	path = btrfs_alloc_path();
6581 	if (!path) {
6582 		err = -ENOMEM;
6583 		goto out;
6584 	}
6585 
6586 	/* Chances are we'll be called again, so go ahead and do readahead */
6587 	path->reada = READA_FORWARD;
6588 
6589 	/*
6590 	 * Unless we're going to uncompress the inline extent, no sleep would
6591 	 * happen.
6592 	 */
6593 	path->leave_spinning = 1;
6594 
6595 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6596 	if (ret < 0) {
6597 		err = ret;
6598 		goto out;
6599 	} else if (ret > 0) {
6600 		if (path->slots[0] == 0)
6601 			goto not_found;
6602 		path->slots[0]--;
6603 	}
6604 
6605 	leaf = path->nodes[0];
6606 	item = btrfs_item_ptr(leaf, path->slots[0],
6607 			      struct btrfs_file_extent_item);
6608 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6609 	if (found_key.objectid != objectid ||
6610 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6611 		/*
6612 		 * If we backup past the first extent we want to move forward
6613 		 * and see if there is an extent in front of us, otherwise we'll
6614 		 * say there is a hole for our whole search range which can
6615 		 * cause problems.
6616 		 */
6617 		extent_end = start;
6618 		goto next;
6619 	}
6620 
6621 	extent_type = btrfs_file_extent_type(leaf, item);
6622 	extent_start = found_key.offset;
6623 	extent_end = btrfs_file_extent_end(path);
6624 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6625 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6626 		/* Only regular file could have regular/prealloc extent */
6627 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6628 			err = -EUCLEAN;
6629 			btrfs_crit(fs_info,
6630 		"regular/prealloc extent found for non-regular inode %llu",
6631 				   btrfs_ino(inode));
6632 			goto out;
6633 		}
6634 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6635 						       extent_start);
6636 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6637 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6638 						      path->slots[0],
6639 						      extent_start);
6640 	}
6641 next:
6642 	if (start >= extent_end) {
6643 		path->slots[0]++;
6644 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6645 			ret = btrfs_next_leaf(root, path);
6646 			if (ret < 0) {
6647 				err = ret;
6648 				goto out;
6649 			} else if (ret > 0) {
6650 				goto not_found;
6651 			}
6652 			leaf = path->nodes[0];
6653 		}
6654 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6655 		if (found_key.objectid != objectid ||
6656 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6657 			goto not_found;
6658 		if (start + len <= found_key.offset)
6659 			goto not_found;
6660 		if (start > found_key.offset)
6661 			goto next;
6662 
6663 		/* New extent overlaps with existing one */
6664 		em->start = start;
6665 		em->orig_start = start;
6666 		em->len = found_key.offset - start;
6667 		em->block_start = EXTENT_MAP_HOLE;
6668 		goto insert;
6669 	}
6670 
6671 	btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6672 
6673 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6674 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6675 		goto insert;
6676 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6677 		unsigned long ptr;
6678 		char *map;
6679 		size_t size;
6680 		size_t extent_offset;
6681 		size_t copy_size;
6682 
6683 		if (!page)
6684 			goto out;
6685 
6686 		size = btrfs_file_extent_ram_bytes(leaf, item);
6687 		extent_offset = page_offset(page) + pg_offset - extent_start;
6688 		copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6689 				  size - extent_offset);
6690 		em->start = extent_start + extent_offset;
6691 		em->len = ALIGN(copy_size, fs_info->sectorsize);
6692 		em->orig_block_len = em->len;
6693 		em->orig_start = em->start;
6694 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6695 
6696 		btrfs_set_path_blocking(path);
6697 		if (!PageUptodate(page)) {
6698 			if (btrfs_file_extent_compression(leaf, item) !=
6699 			    BTRFS_COMPRESS_NONE) {
6700 				ret = uncompress_inline(path, page, pg_offset,
6701 							extent_offset, item);
6702 				if (ret) {
6703 					err = ret;
6704 					goto out;
6705 				}
6706 			} else {
6707 				map = kmap(page);
6708 				read_extent_buffer(leaf, map + pg_offset, ptr,
6709 						   copy_size);
6710 				if (pg_offset + copy_size < PAGE_SIZE) {
6711 					memset(map + pg_offset + copy_size, 0,
6712 					       PAGE_SIZE - pg_offset -
6713 					       copy_size);
6714 				}
6715 				kunmap(page);
6716 			}
6717 			flush_dcache_page(page);
6718 		}
6719 		set_extent_uptodate(io_tree, em->start,
6720 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6721 		goto insert;
6722 	}
6723 not_found:
6724 	em->start = start;
6725 	em->orig_start = start;
6726 	em->len = len;
6727 	em->block_start = EXTENT_MAP_HOLE;
6728 insert:
6729 	btrfs_release_path(path);
6730 	if (em->start > start || extent_map_end(em) <= start) {
6731 		btrfs_err(fs_info,
6732 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6733 			  em->start, em->len, start, len);
6734 		err = -EIO;
6735 		goto out;
6736 	}
6737 
6738 	err = 0;
6739 	write_lock(&em_tree->lock);
6740 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6741 	write_unlock(&em_tree->lock);
6742 out:
6743 	btrfs_free_path(path);
6744 
6745 	trace_btrfs_get_extent(root, inode, em);
6746 
6747 	if (err) {
6748 		free_extent_map(em);
6749 		return ERR_PTR(err);
6750 	}
6751 	BUG_ON(!em); /* Error is always set */
6752 	return em;
6753 }
6754 
6755 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6756 					   u64 start, u64 len)
6757 {
6758 	struct extent_map *em;
6759 	struct extent_map *hole_em = NULL;
6760 	u64 delalloc_start = start;
6761 	u64 end;
6762 	u64 delalloc_len;
6763 	u64 delalloc_end;
6764 	int err = 0;
6765 
6766 	em = btrfs_get_extent(inode, NULL, 0, start, len);
6767 	if (IS_ERR(em))
6768 		return em;
6769 	/*
6770 	 * If our em maps to:
6771 	 * - a hole or
6772 	 * - a pre-alloc extent,
6773 	 * there might actually be delalloc bytes behind it.
6774 	 */
6775 	if (em->block_start != EXTENT_MAP_HOLE &&
6776 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6777 		return em;
6778 	else
6779 		hole_em = em;
6780 
6781 	/* check to see if we've wrapped (len == -1 or similar) */
6782 	end = start + len;
6783 	if (end < start)
6784 		end = (u64)-1;
6785 	else
6786 		end -= 1;
6787 
6788 	em = NULL;
6789 
6790 	/* ok, we didn't find anything, lets look for delalloc */
6791 	delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6792 				 end, len, EXTENT_DELALLOC, 1);
6793 	delalloc_end = delalloc_start + delalloc_len;
6794 	if (delalloc_end < delalloc_start)
6795 		delalloc_end = (u64)-1;
6796 
6797 	/*
6798 	 * We didn't find anything useful, return the original results from
6799 	 * get_extent()
6800 	 */
6801 	if (delalloc_start > end || delalloc_end <= start) {
6802 		em = hole_em;
6803 		hole_em = NULL;
6804 		goto out;
6805 	}
6806 
6807 	/*
6808 	 * Adjust the delalloc_start to make sure it doesn't go backwards from
6809 	 * the start they passed in
6810 	 */
6811 	delalloc_start = max(start, delalloc_start);
6812 	delalloc_len = delalloc_end - delalloc_start;
6813 
6814 	if (delalloc_len > 0) {
6815 		u64 hole_start;
6816 		u64 hole_len;
6817 		const u64 hole_end = extent_map_end(hole_em);
6818 
6819 		em = alloc_extent_map();
6820 		if (!em) {
6821 			err = -ENOMEM;
6822 			goto out;
6823 		}
6824 
6825 		ASSERT(hole_em);
6826 		/*
6827 		 * When btrfs_get_extent can't find anything it returns one
6828 		 * huge hole
6829 		 *
6830 		 * Make sure what it found really fits our range, and adjust to
6831 		 * make sure it is based on the start from the caller
6832 		 */
6833 		if (hole_end <= start || hole_em->start > end) {
6834 		       free_extent_map(hole_em);
6835 		       hole_em = NULL;
6836 		} else {
6837 		       hole_start = max(hole_em->start, start);
6838 		       hole_len = hole_end - hole_start;
6839 		}
6840 
6841 		if (hole_em && delalloc_start > hole_start) {
6842 			/*
6843 			 * Our hole starts before our delalloc, so we have to
6844 			 * return just the parts of the hole that go until the
6845 			 * delalloc starts
6846 			 */
6847 			em->len = min(hole_len, delalloc_start - hole_start);
6848 			em->start = hole_start;
6849 			em->orig_start = hole_start;
6850 			/*
6851 			 * Don't adjust block start at all, it is fixed at
6852 			 * EXTENT_MAP_HOLE
6853 			 */
6854 			em->block_start = hole_em->block_start;
6855 			em->block_len = hole_len;
6856 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6857 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6858 		} else {
6859 			/*
6860 			 * Hole is out of passed range or it starts after
6861 			 * delalloc range
6862 			 */
6863 			em->start = delalloc_start;
6864 			em->len = delalloc_len;
6865 			em->orig_start = delalloc_start;
6866 			em->block_start = EXTENT_MAP_DELALLOC;
6867 			em->block_len = delalloc_len;
6868 		}
6869 	} else {
6870 		return hole_em;
6871 	}
6872 out:
6873 
6874 	free_extent_map(hole_em);
6875 	if (err) {
6876 		free_extent_map(em);
6877 		return ERR_PTR(err);
6878 	}
6879 	return em;
6880 }
6881 
6882 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6883 						  const u64 start,
6884 						  const u64 len,
6885 						  const u64 orig_start,
6886 						  const u64 block_start,
6887 						  const u64 block_len,
6888 						  const u64 orig_block_len,
6889 						  const u64 ram_bytes,
6890 						  const int type)
6891 {
6892 	struct extent_map *em = NULL;
6893 	int ret;
6894 
6895 	if (type != BTRFS_ORDERED_NOCOW) {
6896 		em = create_io_em(inode, start, len, orig_start, block_start,
6897 				  block_len, orig_block_len, ram_bytes,
6898 				  BTRFS_COMPRESS_NONE, /* compress_type */
6899 				  type);
6900 		if (IS_ERR(em))
6901 			goto out;
6902 	}
6903 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len,
6904 					   block_len, type);
6905 	if (ret) {
6906 		if (em) {
6907 			free_extent_map(em);
6908 			btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
6909 		}
6910 		em = ERR_PTR(ret);
6911 	}
6912  out:
6913 
6914 	return em;
6915 }
6916 
6917 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
6918 						  u64 start, u64 len)
6919 {
6920 	struct btrfs_root *root = inode->root;
6921 	struct btrfs_fs_info *fs_info = root->fs_info;
6922 	struct extent_map *em;
6923 	struct btrfs_key ins;
6924 	u64 alloc_hint;
6925 	int ret;
6926 
6927 	alloc_hint = get_extent_allocation_hint(inode, start, len);
6928 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6929 				   0, alloc_hint, &ins, 1, 1);
6930 	if (ret)
6931 		return ERR_PTR(ret);
6932 
6933 	em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6934 				     ins.objectid, ins.offset, ins.offset,
6935 				     ins.offset, BTRFS_ORDERED_REGULAR);
6936 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6937 	if (IS_ERR(em))
6938 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
6939 					   1);
6940 
6941 	return em;
6942 }
6943 
6944 /*
6945  * Check if we can do nocow write into the range [@offset, @offset + @len)
6946  *
6947  * @offset:	File offset
6948  * @len:	The length to write, will be updated to the nocow writeable
6949  *		range
6950  * @orig_start:	(optional) Return the original file offset of the file extent
6951  * @orig_len:	(optional) Return the original on-disk length of the file extent
6952  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
6953  * @strict:	if true, omit optimizations that might force us into unnecessary
6954  *		cow. e.g., don't trust generation number.
6955  *
6956  * This function will flush ordered extents in the range to ensure proper
6957  * nocow checks for (nowait == false) case.
6958  *
6959  * Return:
6960  * >0	and update @len if we can do nocow write
6961  *  0	if we can't do nocow write
6962  * <0	if error happened
6963  *
6964  * NOTE: This only checks the file extents, caller is responsible to wait for
6965  *	 any ordered extents.
6966  */
6967 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6968 			      u64 *orig_start, u64 *orig_block_len,
6969 			      u64 *ram_bytes, bool strict)
6970 {
6971 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6972 	struct btrfs_path *path;
6973 	int ret;
6974 	struct extent_buffer *leaf;
6975 	struct btrfs_root *root = BTRFS_I(inode)->root;
6976 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6977 	struct btrfs_file_extent_item *fi;
6978 	struct btrfs_key key;
6979 	u64 disk_bytenr;
6980 	u64 backref_offset;
6981 	u64 extent_end;
6982 	u64 num_bytes;
6983 	int slot;
6984 	int found_type;
6985 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6986 
6987 	path = btrfs_alloc_path();
6988 	if (!path)
6989 		return -ENOMEM;
6990 
6991 	ret = btrfs_lookup_file_extent(NULL, root, path,
6992 			btrfs_ino(BTRFS_I(inode)), offset, 0);
6993 	if (ret < 0)
6994 		goto out;
6995 
6996 	slot = path->slots[0];
6997 	if (ret == 1) {
6998 		if (slot == 0) {
6999 			/* can't find the item, must cow */
7000 			ret = 0;
7001 			goto out;
7002 		}
7003 		slot--;
7004 	}
7005 	ret = 0;
7006 	leaf = path->nodes[0];
7007 	btrfs_item_key_to_cpu(leaf, &key, slot);
7008 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7009 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7010 		/* not our file or wrong item type, must cow */
7011 		goto out;
7012 	}
7013 
7014 	if (key.offset > offset) {
7015 		/* Wrong offset, must cow */
7016 		goto out;
7017 	}
7018 
7019 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7020 	found_type = btrfs_file_extent_type(leaf, fi);
7021 	if (found_type != BTRFS_FILE_EXTENT_REG &&
7022 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7023 		/* not a regular extent, must cow */
7024 		goto out;
7025 	}
7026 
7027 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7028 		goto out;
7029 
7030 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7031 	if (extent_end <= offset)
7032 		goto out;
7033 
7034 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7035 	if (disk_bytenr == 0)
7036 		goto out;
7037 
7038 	if (btrfs_file_extent_compression(leaf, fi) ||
7039 	    btrfs_file_extent_encryption(leaf, fi) ||
7040 	    btrfs_file_extent_other_encoding(leaf, fi))
7041 		goto out;
7042 
7043 	/*
7044 	 * Do the same check as in btrfs_cross_ref_exist but without the
7045 	 * unnecessary search.
7046 	 */
7047 	if (!strict &&
7048 	    (btrfs_file_extent_generation(leaf, fi) <=
7049 	     btrfs_root_last_snapshot(&root->root_item)))
7050 		goto out;
7051 
7052 	backref_offset = btrfs_file_extent_offset(leaf, fi);
7053 
7054 	if (orig_start) {
7055 		*orig_start = key.offset - backref_offset;
7056 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7057 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7058 	}
7059 
7060 	if (btrfs_extent_readonly(fs_info, disk_bytenr))
7061 		goto out;
7062 
7063 	num_bytes = min(offset + *len, extent_end) - offset;
7064 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7065 		u64 range_end;
7066 
7067 		range_end = round_up(offset + num_bytes,
7068 				     root->fs_info->sectorsize) - 1;
7069 		ret = test_range_bit(io_tree, offset, range_end,
7070 				     EXTENT_DELALLOC, 0, NULL);
7071 		if (ret) {
7072 			ret = -EAGAIN;
7073 			goto out;
7074 		}
7075 	}
7076 
7077 	btrfs_release_path(path);
7078 
7079 	/*
7080 	 * look for other files referencing this extent, if we
7081 	 * find any we must cow
7082 	 */
7083 
7084 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7085 				    key.offset - backref_offset, disk_bytenr,
7086 				    strict);
7087 	if (ret) {
7088 		ret = 0;
7089 		goto out;
7090 	}
7091 
7092 	/*
7093 	 * adjust disk_bytenr and num_bytes to cover just the bytes
7094 	 * in this extent we are about to write.  If there
7095 	 * are any csums in that range we have to cow in order
7096 	 * to keep the csums correct
7097 	 */
7098 	disk_bytenr += backref_offset;
7099 	disk_bytenr += offset - key.offset;
7100 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7101 		goto out;
7102 	/*
7103 	 * all of the above have passed, it is safe to overwrite this extent
7104 	 * without cow
7105 	 */
7106 	*len = num_bytes;
7107 	ret = 1;
7108 out:
7109 	btrfs_free_path(path);
7110 	return ret;
7111 }
7112 
7113 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7114 			      struct extent_state **cached_state, int writing)
7115 {
7116 	struct btrfs_ordered_extent *ordered;
7117 	int ret = 0;
7118 
7119 	while (1) {
7120 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7121 				 cached_state);
7122 		/*
7123 		 * We're concerned with the entire range that we're going to be
7124 		 * doing DIO to, so we need to make sure there's no ordered
7125 		 * extents in this range.
7126 		 */
7127 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7128 						     lockend - lockstart + 1);
7129 
7130 		/*
7131 		 * We need to make sure there are no buffered pages in this
7132 		 * range either, we could have raced between the invalidate in
7133 		 * generic_file_direct_write and locking the extent.  The
7134 		 * invalidate needs to happen so that reads after a write do not
7135 		 * get stale data.
7136 		 */
7137 		if (!ordered &&
7138 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7139 							 lockstart, lockend)))
7140 			break;
7141 
7142 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7143 				     cached_state);
7144 
7145 		if (ordered) {
7146 			/*
7147 			 * If we are doing a DIO read and the ordered extent we
7148 			 * found is for a buffered write, we can not wait for it
7149 			 * to complete and retry, because if we do so we can
7150 			 * deadlock with concurrent buffered writes on page
7151 			 * locks. This happens only if our DIO read covers more
7152 			 * than one extent map, if at this point has already
7153 			 * created an ordered extent for a previous extent map
7154 			 * and locked its range in the inode's io tree, and a
7155 			 * concurrent write against that previous extent map's
7156 			 * range and this range started (we unlock the ranges
7157 			 * in the io tree only when the bios complete and
7158 			 * buffered writes always lock pages before attempting
7159 			 * to lock range in the io tree).
7160 			 */
7161 			if (writing ||
7162 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7163 				btrfs_start_ordered_extent(inode, ordered, 1);
7164 			else
7165 				ret = -ENOTBLK;
7166 			btrfs_put_ordered_extent(ordered);
7167 		} else {
7168 			/*
7169 			 * We could trigger writeback for this range (and wait
7170 			 * for it to complete) and then invalidate the pages for
7171 			 * this range (through invalidate_inode_pages2_range()),
7172 			 * but that can lead us to a deadlock with a concurrent
7173 			 * call to readahead (a buffered read or a defrag call
7174 			 * triggered a readahead) on a page lock due to an
7175 			 * ordered dio extent we created before but did not have
7176 			 * yet a corresponding bio submitted (whence it can not
7177 			 * complete), which makes readahead wait for that
7178 			 * ordered extent to complete while holding a lock on
7179 			 * that page.
7180 			 */
7181 			ret = -ENOTBLK;
7182 		}
7183 
7184 		if (ret)
7185 			break;
7186 
7187 		cond_resched();
7188 	}
7189 
7190 	return ret;
7191 }
7192 
7193 /* The callers of this must take lock_extent() */
7194 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7195 				       u64 len, u64 orig_start, u64 block_start,
7196 				       u64 block_len, u64 orig_block_len,
7197 				       u64 ram_bytes, int compress_type,
7198 				       int type)
7199 {
7200 	struct extent_map_tree *em_tree;
7201 	struct extent_map *em;
7202 	int ret;
7203 
7204 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7205 	       type == BTRFS_ORDERED_COMPRESSED ||
7206 	       type == BTRFS_ORDERED_NOCOW ||
7207 	       type == BTRFS_ORDERED_REGULAR);
7208 
7209 	em_tree = &inode->extent_tree;
7210 	em = alloc_extent_map();
7211 	if (!em)
7212 		return ERR_PTR(-ENOMEM);
7213 
7214 	em->start = start;
7215 	em->orig_start = orig_start;
7216 	em->len = len;
7217 	em->block_len = block_len;
7218 	em->block_start = block_start;
7219 	em->orig_block_len = orig_block_len;
7220 	em->ram_bytes = ram_bytes;
7221 	em->generation = -1;
7222 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7223 	if (type == BTRFS_ORDERED_PREALLOC) {
7224 		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7225 	} else if (type == BTRFS_ORDERED_COMPRESSED) {
7226 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7227 		em->compress_type = compress_type;
7228 	}
7229 
7230 	do {
7231 		btrfs_drop_extent_cache(inode, em->start,
7232 					em->start + em->len - 1, 0);
7233 		write_lock(&em_tree->lock);
7234 		ret = add_extent_mapping(em_tree, em, 1);
7235 		write_unlock(&em_tree->lock);
7236 		/*
7237 		 * The caller has taken lock_extent(), who could race with us
7238 		 * to add em?
7239 		 */
7240 	} while (ret == -EEXIST);
7241 
7242 	if (ret) {
7243 		free_extent_map(em);
7244 		return ERR_PTR(ret);
7245 	}
7246 
7247 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7248 	return em;
7249 }
7250 
7251 
7252 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7253 					struct buffer_head *bh_result,
7254 					struct inode *inode,
7255 					u64 start, u64 len)
7256 {
7257 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7258 
7259 	if (em->block_start == EXTENT_MAP_HOLE ||
7260 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7261 		return -ENOENT;
7262 
7263 	len = min(len, em->len - (start - em->start));
7264 
7265 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7266 		inode->i_blkbits;
7267 	bh_result->b_size = len;
7268 	bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7269 	set_buffer_mapped(bh_result);
7270 
7271 	return 0;
7272 }
7273 
7274 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7275 					 struct buffer_head *bh_result,
7276 					 struct inode *inode,
7277 					 struct btrfs_dio_data *dio_data,
7278 					 u64 start, u64 len)
7279 {
7280 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7281 	struct extent_map *em = *map;
7282 	int ret = 0;
7283 
7284 	/*
7285 	 * We don't allocate a new extent in the following cases
7286 	 *
7287 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7288 	 * existing extent.
7289 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7290 	 * just use the extent.
7291 	 *
7292 	 */
7293 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7294 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7295 	     em->block_start != EXTENT_MAP_HOLE)) {
7296 		int type;
7297 		u64 block_start, orig_start, orig_block_len, ram_bytes;
7298 
7299 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7300 			type = BTRFS_ORDERED_PREALLOC;
7301 		else
7302 			type = BTRFS_ORDERED_NOCOW;
7303 		len = min(len, em->len - (start - em->start));
7304 		block_start = em->block_start + (start - em->start);
7305 
7306 		if (can_nocow_extent(inode, start, &len, &orig_start,
7307 				     &orig_block_len, &ram_bytes, false) == 1 &&
7308 		    btrfs_inc_nocow_writers(fs_info, block_start)) {
7309 			struct extent_map *em2;
7310 
7311 			em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7312 						      orig_start, block_start,
7313 						      len, orig_block_len,
7314 						      ram_bytes, type);
7315 			btrfs_dec_nocow_writers(fs_info, block_start);
7316 			if (type == BTRFS_ORDERED_PREALLOC) {
7317 				free_extent_map(em);
7318 				*map = em = em2;
7319 			}
7320 
7321 			if (em2 && IS_ERR(em2)) {
7322 				ret = PTR_ERR(em2);
7323 				goto out;
7324 			}
7325 			/*
7326 			 * For inode marked NODATACOW or extent marked PREALLOC,
7327 			 * use the existing or preallocated extent, so does not
7328 			 * need to adjust btrfs_space_info's bytes_may_use.
7329 			 */
7330 			btrfs_free_reserved_data_space_noquota(fs_info, len);
7331 			goto skip_cow;
7332 		}
7333 	}
7334 
7335 	/* this will cow the extent */
7336 	len = bh_result->b_size;
7337 	free_extent_map(em);
7338 	*map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7339 	if (IS_ERR(em)) {
7340 		ret = PTR_ERR(em);
7341 		goto out;
7342 	}
7343 
7344 	len = min(len, em->len - (start - em->start));
7345 
7346 skip_cow:
7347 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7348 		inode->i_blkbits;
7349 	bh_result->b_size = len;
7350 	bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7351 	set_buffer_mapped(bh_result);
7352 
7353 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7354 		set_buffer_new(bh_result);
7355 
7356 	/*
7357 	 * Need to update the i_size under the extent lock so buffered
7358 	 * readers will get the updated i_size when we unlock.
7359 	 */
7360 	if (!dio_data->overwrite && start + len > i_size_read(inode))
7361 		i_size_write(inode, start + len);
7362 
7363 	WARN_ON(dio_data->reserve < len);
7364 	dio_data->reserve -= len;
7365 	dio_data->unsubmitted_oe_range_end = start + len;
7366 	current->journal_info = dio_data;
7367 out:
7368 	return ret;
7369 }
7370 
7371 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7372 				   struct buffer_head *bh_result, int create)
7373 {
7374 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7375 	struct extent_map *em;
7376 	struct extent_state *cached_state = NULL;
7377 	struct btrfs_dio_data *dio_data = NULL;
7378 	u64 start = iblock << inode->i_blkbits;
7379 	u64 lockstart, lockend;
7380 	u64 len = bh_result->b_size;
7381 	int ret = 0;
7382 
7383 	if (!create)
7384 		len = min_t(u64, len, fs_info->sectorsize);
7385 
7386 	lockstart = start;
7387 	lockend = start + len - 1;
7388 
7389 	if (current->journal_info) {
7390 		/*
7391 		 * Need to pull our outstanding extents and set journal_info to NULL so
7392 		 * that anything that needs to check if there's a transaction doesn't get
7393 		 * confused.
7394 		 */
7395 		dio_data = current->journal_info;
7396 		current->journal_info = NULL;
7397 	}
7398 
7399 	/*
7400 	 * If this errors out it's because we couldn't invalidate pagecache for
7401 	 * this range and we need to fallback to buffered.
7402 	 */
7403 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7404 			       create)) {
7405 		ret = -ENOTBLK;
7406 		goto err;
7407 	}
7408 
7409 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7410 	if (IS_ERR(em)) {
7411 		ret = PTR_ERR(em);
7412 		goto unlock_err;
7413 	}
7414 
7415 	/*
7416 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7417 	 * io.  INLINE is special, and we could probably kludge it in here, but
7418 	 * it's still buffered so for safety lets just fall back to the generic
7419 	 * buffered path.
7420 	 *
7421 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7422 	 * decompress it, so there will be buffering required no matter what we
7423 	 * do, so go ahead and fallback to buffered.
7424 	 *
7425 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7426 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7427 	 * the generic code.
7428 	 */
7429 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7430 	    em->block_start == EXTENT_MAP_INLINE) {
7431 		free_extent_map(em);
7432 		ret = -ENOTBLK;
7433 		goto unlock_err;
7434 	}
7435 
7436 	if (create) {
7437 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7438 						    dio_data, start, len);
7439 		if (ret < 0)
7440 			goto unlock_err;
7441 
7442 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7443 				     lockend, &cached_state);
7444 	} else {
7445 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7446 						   start, len);
7447 		/* Can be negative only if we read from a hole */
7448 		if (ret < 0) {
7449 			ret = 0;
7450 			free_extent_map(em);
7451 			goto unlock_err;
7452 		}
7453 		/*
7454 		 * We need to unlock only the end area that we aren't using.
7455 		 * The rest is going to be unlocked by the endio routine.
7456 		 */
7457 		lockstart = start + bh_result->b_size;
7458 		if (lockstart < lockend) {
7459 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7460 					     lockstart, lockend, &cached_state);
7461 		} else {
7462 			free_extent_state(cached_state);
7463 		}
7464 	}
7465 
7466 	free_extent_map(em);
7467 
7468 	return 0;
7469 
7470 unlock_err:
7471 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7472 			     &cached_state);
7473 err:
7474 	if (dio_data)
7475 		current->journal_info = dio_data;
7476 	return ret;
7477 }
7478 
7479 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7480 {
7481 	/*
7482 	 * This implies a barrier so that stores to dio_bio->bi_status before
7483 	 * this and loads of dio_bio->bi_status after this are fully ordered.
7484 	 */
7485 	if (!refcount_dec_and_test(&dip->refs))
7486 		return;
7487 
7488 	if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7489 		__endio_write_update_ordered(BTRFS_I(dip->inode),
7490 					     dip->logical_offset,
7491 					     dip->bytes,
7492 					     !dip->dio_bio->bi_status);
7493 	} else {
7494 		unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7495 			      dip->logical_offset,
7496 			      dip->logical_offset + dip->bytes - 1);
7497 	}
7498 
7499 	dio_end_io(dip->dio_bio);
7500 	kfree(dip);
7501 }
7502 
7503 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7504 					  int mirror_num,
7505 					  unsigned long bio_flags)
7506 {
7507 	struct btrfs_dio_private *dip = bio->bi_private;
7508 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7509 	blk_status_t ret;
7510 
7511 	BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7512 
7513 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7514 	if (ret)
7515 		return ret;
7516 
7517 	refcount_inc(&dip->refs);
7518 	ret = btrfs_map_bio(fs_info, bio, mirror_num);
7519 	if (ret)
7520 		refcount_dec(&dip->refs);
7521 	return ret;
7522 }
7523 
7524 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7525 					     struct btrfs_io_bio *io_bio,
7526 					     const bool uptodate)
7527 {
7528 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7529 	const u32 sectorsize = fs_info->sectorsize;
7530 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7531 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7532 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7533 	struct bio_vec bvec;
7534 	struct bvec_iter iter;
7535 	u64 start = io_bio->logical;
7536 	int icsum = 0;
7537 	blk_status_t err = BLK_STS_OK;
7538 
7539 	__bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7540 		unsigned int i, nr_sectors, pgoff;
7541 
7542 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7543 		pgoff = bvec.bv_offset;
7544 		for (i = 0; i < nr_sectors; i++) {
7545 			ASSERT(pgoff < PAGE_SIZE);
7546 			if (uptodate &&
7547 			    (!csum || !check_data_csum(inode, io_bio, icsum,
7548 						       bvec.bv_page, pgoff,
7549 						       start, sectorsize))) {
7550 				clean_io_failure(fs_info, failure_tree, io_tree,
7551 						 start, bvec.bv_page,
7552 						 btrfs_ino(BTRFS_I(inode)),
7553 						 pgoff);
7554 			} else {
7555 				blk_status_t status;
7556 
7557 				status = btrfs_submit_read_repair(inode,
7558 							&io_bio->bio,
7559 							start - io_bio->logical,
7560 							bvec.bv_page, pgoff,
7561 							start,
7562 							start + sectorsize - 1,
7563 							io_bio->mirror_num,
7564 							submit_dio_repair_bio);
7565 				if (status)
7566 					err = status;
7567 			}
7568 			start += sectorsize;
7569 			icsum++;
7570 			pgoff += sectorsize;
7571 		}
7572 	}
7573 	return err;
7574 }
7575 
7576 static void __endio_write_update_ordered(struct btrfs_inode *inode,
7577 					 const u64 offset, const u64 bytes,
7578 					 const bool uptodate)
7579 {
7580 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7581 	struct btrfs_ordered_extent *ordered = NULL;
7582 	struct btrfs_workqueue *wq;
7583 	u64 ordered_offset = offset;
7584 	u64 ordered_bytes = bytes;
7585 	u64 last_offset;
7586 
7587 	if (btrfs_is_free_space_inode(inode))
7588 		wq = fs_info->endio_freespace_worker;
7589 	else
7590 		wq = fs_info->endio_write_workers;
7591 
7592 	while (ordered_offset < offset + bytes) {
7593 		last_offset = ordered_offset;
7594 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7595 							 &ordered_offset,
7596 							 ordered_bytes,
7597 							 uptodate)) {
7598 			btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7599 					NULL);
7600 			btrfs_queue_work(wq, &ordered->work);
7601 		}
7602 		/*
7603 		 * If btrfs_dec_test_ordered_pending does not find any ordered
7604 		 * extent in the range, we can exit.
7605 		 */
7606 		if (ordered_offset == last_offset)
7607 			return;
7608 		/*
7609 		 * Our bio might span multiple ordered extents. In this case
7610 		 * we keep going until we have accounted the whole dio.
7611 		 */
7612 		if (ordered_offset < offset + bytes) {
7613 			ordered_bytes = offset + bytes - ordered_offset;
7614 			ordered = NULL;
7615 		}
7616 	}
7617 }
7618 
7619 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7620 				    struct bio *bio, u64 offset)
7621 {
7622 	struct inode *inode = private_data;
7623 
7624 	return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1);
7625 }
7626 
7627 static void btrfs_end_dio_bio(struct bio *bio)
7628 {
7629 	struct btrfs_dio_private *dip = bio->bi_private;
7630 	blk_status_t err = bio->bi_status;
7631 
7632 	if (err)
7633 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7634 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7635 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7636 			   bio->bi_opf,
7637 			   (unsigned long long)bio->bi_iter.bi_sector,
7638 			   bio->bi_iter.bi_size, err);
7639 
7640 	if (bio_op(bio) == REQ_OP_READ) {
7641 		err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7642 					       !err);
7643 	}
7644 
7645 	if (err)
7646 		dip->dio_bio->bi_status = err;
7647 
7648 	bio_put(bio);
7649 	btrfs_dio_private_put(dip);
7650 }
7651 
7652 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7653 		struct inode *inode, u64 file_offset, int async_submit)
7654 {
7655 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7656 	struct btrfs_dio_private *dip = bio->bi_private;
7657 	bool write = bio_op(bio) == REQ_OP_WRITE;
7658 	blk_status_t ret;
7659 
7660 	/* Check btrfs_submit_bio_hook() for rules about async submit. */
7661 	if (async_submit)
7662 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7663 
7664 	if (!write) {
7665 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7666 		if (ret)
7667 			goto err;
7668 	}
7669 
7670 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7671 		goto map;
7672 
7673 	if (write && async_submit) {
7674 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7675 					  file_offset, inode,
7676 					  btrfs_submit_bio_start_direct_io);
7677 		goto err;
7678 	} else if (write) {
7679 		/*
7680 		 * If we aren't doing async submit, calculate the csum of the
7681 		 * bio now.
7682 		 */
7683 		ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1);
7684 		if (ret)
7685 			goto err;
7686 	} else {
7687 		u64 csum_offset;
7688 
7689 		csum_offset = file_offset - dip->logical_offset;
7690 		csum_offset >>= inode->i_sb->s_blocksize_bits;
7691 		csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7692 		btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7693 	}
7694 map:
7695 	ret = btrfs_map_bio(fs_info, bio, 0);
7696 err:
7697 	return ret;
7698 }
7699 
7700 /*
7701  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7702  * or ordered extents whether or not we submit any bios.
7703  */
7704 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7705 							  struct inode *inode,
7706 							  loff_t file_offset)
7707 {
7708 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7709 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7710 	size_t dip_size;
7711 	struct btrfs_dio_private *dip;
7712 
7713 	dip_size = sizeof(*dip);
7714 	if (!write && csum) {
7715 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7716 		const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7717 		size_t nblocks;
7718 
7719 		nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7720 		dip_size += csum_size * nblocks;
7721 	}
7722 
7723 	dip = kzalloc(dip_size, GFP_NOFS);
7724 	if (!dip)
7725 		return NULL;
7726 
7727 	dip->inode = inode;
7728 	dip->logical_offset = file_offset;
7729 	dip->bytes = dio_bio->bi_iter.bi_size;
7730 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7731 	dip->dio_bio = dio_bio;
7732 	refcount_set(&dip->refs, 1);
7733 
7734 	if (write) {
7735 		struct btrfs_dio_data *dio_data = current->journal_info;
7736 
7737 		/*
7738 		 * Setting range start and end to the same value means that
7739 		 * no cleanup will happen in btrfs_direct_IO
7740 		 */
7741 		dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7742 			dip->bytes;
7743 		dio_data->unsubmitted_oe_range_start =
7744 			dio_data->unsubmitted_oe_range_end;
7745 	}
7746 	return dip;
7747 }
7748 
7749 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7750 				loff_t file_offset)
7751 {
7752 	const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7753 	const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7754 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7755 	const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7756 			     BTRFS_BLOCK_GROUP_RAID56_MASK);
7757 	struct btrfs_dio_private *dip;
7758 	struct bio *bio;
7759 	u64 start_sector;
7760 	int async_submit = 0;
7761 	u64 submit_len;
7762 	int clone_offset = 0;
7763 	int clone_len;
7764 	int ret;
7765 	blk_status_t status;
7766 	struct btrfs_io_geometry geom;
7767 
7768 	dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7769 	if (!dip) {
7770 		if (!write) {
7771 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7772 				file_offset + dio_bio->bi_iter.bi_size - 1);
7773 		}
7774 		dio_bio->bi_status = BLK_STS_RESOURCE;
7775 		dio_end_io(dio_bio);
7776 		return;
7777 	}
7778 
7779 	if (!write && csum) {
7780 		/*
7781 		 * Load the csums up front to reduce csum tree searches and
7782 		 * contention when submitting bios.
7783 		 */
7784 		status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7785 					       dip->csums);
7786 		if (status != BLK_STS_OK)
7787 			goto out_err;
7788 	}
7789 
7790 	start_sector = dio_bio->bi_iter.bi_sector;
7791 	submit_len = dio_bio->bi_iter.bi_size;
7792 
7793 	do {
7794 		ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7795 					    start_sector << 9, submit_len,
7796 					    &geom);
7797 		if (ret) {
7798 			status = errno_to_blk_status(ret);
7799 			goto out_err;
7800 		}
7801 		ASSERT(geom.len <= INT_MAX);
7802 
7803 		clone_len = min_t(int, submit_len, geom.len);
7804 
7805 		/*
7806 		 * This will never fail as it's passing GPF_NOFS and
7807 		 * the allocation is backed by btrfs_bioset.
7808 		 */
7809 		bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7810 		bio->bi_private = dip;
7811 		bio->bi_end_io = btrfs_end_dio_bio;
7812 		btrfs_io_bio(bio)->logical = file_offset;
7813 
7814 		ASSERT(submit_len >= clone_len);
7815 		submit_len -= clone_len;
7816 
7817 		/*
7818 		 * Increase the count before we submit the bio so we know
7819 		 * the end IO handler won't happen before we increase the
7820 		 * count. Otherwise, the dip might get freed before we're
7821 		 * done setting it up.
7822 		 *
7823 		 * We transfer the initial reference to the last bio, so we
7824 		 * don't need to increment the reference count for the last one.
7825 		 */
7826 		if (submit_len > 0) {
7827 			refcount_inc(&dip->refs);
7828 			/*
7829 			 * If we are submitting more than one bio, submit them
7830 			 * all asynchronously. The exception is RAID 5 or 6, as
7831 			 * asynchronous checksums make it difficult to collect
7832 			 * full stripe writes.
7833 			 */
7834 			if (!raid56)
7835 				async_submit = 1;
7836 		}
7837 
7838 		status = btrfs_submit_dio_bio(bio, inode, file_offset,
7839 						async_submit);
7840 		if (status) {
7841 			bio_put(bio);
7842 			if (submit_len > 0)
7843 				refcount_dec(&dip->refs);
7844 			goto out_err;
7845 		}
7846 
7847 		clone_offset += clone_len;
7848 		start_sector += clone_len >> 9;
7849 		file_offset += clone_len;
7850 	} while (submit_len > 0);
7851 	return;
7852 
7853 out_err:
7854 	dip->dio_bio->bi_status = status;
7855 	btrfs_dio_private_put(dip);
7856 }
7857 
7858 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7859 			       const struct iov_iter *iter, loff_t offset)
7860 {
7861 	int seg;
7862 	int i;
7863 	unsigned int blocksize_mask = fs_info->sectorsize - 1;
7864 	ssize_t retval = -EINVAL;
7865 
7866 	if (offset & blocksize_mask)
7867 		goto out;
7868 
7869 	if (iov_iter_alignment(iter) & blocksize_mask)
7870 		goto out;
7871 
7872 	/* If this is a write we don't need to check anymore */
7873 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7874 		return 0;
7875 	/*
7876 	 * Check to make sure we don't have duplicate iov_base's in this
7877 	 * iovec, if so return EINVAL, otherwise we'll get csum errors
7878 	 * when reading back.
7879 	 */
7880 	for (seg = 0; seg < iter->nr_segs; seg++) {
7881 		for (i = seg + 1; i < iter->nr_segs; i++) {
7882 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7883 				goto out;
7884 		}
7885 	}
7886 	retval = 0;
7887 out:
7888 	return retval;
7889 }
7890 
7891 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
7892 {
7893 	struct file *file = iocb->ki_filp;
7894 	struct inode *inode = file->f_mapping->host;
7895 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7896 	struct btrfs_dio_data dio_data = { 0 };
7897 	struct extent_changeset *data_reserved = NULL;
7898 	loff_t offset = iocb->ki_pos;
7899 	size_t count = 0;
7900 	int flags = 0;
7901 	bool wakeup = true;
7902 	bool relock = false;
7903 	ssize_t ret;
7904 
7905 	if (check_direct_IO(fs_info, iter, offset))
7906 		return 0;
7907 
7908 	inode_dio_begin(inode);
7909 
7910 	/*
7911 	 * The generic stuff only does filemap_write_and_wait_range, which
7912 	 * isn't enough if we've written compressed pages to this area, so
7913 	 * we need to flush the dirty pages again to make absolutely sure
7914 	 * that any outstanding dirty pages are on disk.
7915 	 */
7916 	count = iov_iter_count(iter);
7917 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7918 		     &BTRFS_I(inode)->runtime_flags))
7919 		filemap_fdatawrite_range(inode->i_mapping, offset,
7920 					 offset + count - 1);
7921 
7922 	if (iov_iter_rw(iter) == WRITE) {
7923 		/*
7924 		 * If the write DIO is beyond the EOF, we need update
7925 		 * the isize, but it is protected by i_mutex. So we can
7926 		 * not unlock the i_mutex at this case.
7927 		 */
7928 		if (offset + count <= inode->i_size) {
7929 			dio_data.overwrite = 1;
7930 			inode_unlock(inode);
7931 			relock = true;
7932 		}
7933 		ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
7934 						   offset, count);
7935 		if (ret)
7936 			goto out;
7937 
7938 		/*
7939 		 * We need to know how many extents we reserved so that we can
7940 		 * do the accounting properly if we go over the number we
7941 		 * originally calculated.  Abuse current->journal_info for this.
7942 		 */
7943 		dio_data.reserve = round_up(count,
7944 					    fs_info->sectorsize);
7945 		dio_data.unsubmitted_oe_range_start = (u64)offset;
7946 		dio_data.unsubmitted_oe_range_end = (u64)offset;
7947 		current->journal_info = &dio_data;
7948 		down_read(&BTRFS_I(inode)->dio_sem);
7949 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7950 				     &BTRFS_I(inode)->runtime_flags)) {
7951 		inode_dio_end(inode);
7952 		flags = DIO_LOCKING | DIO_SKIP_HOLES;
7953 		wakeup = false;
7954 	}
7955 
7956 	ret = __blockdev_direct_IO(iocb, inode,
7957 				   fs_info->fs_devices->latest_bdev,
7958 				   iter, btrfs_get_blocks_direct, NULL,
7959 				   btrfs_submit_direct, flags);
7960 	if (iov_iter_rw(iter) == WRITE) {
7961 		up_read(&BTRFS_I(inode)->dio_sem);
7962 		current->journal_info = NULL;
7963 		if (ret < 0 && ret != -EIOCBQUEUED) {
7964 			if (dio_data.reserve)
7965 				btrfs_delalloc_release_space(BTRFS_I(inode),
7966 					data_reserved, offset, dio_data.reserve,
7967 					true);
7968 			/*
7969 			 * On error we might have left some ordered extents
7970 			 * without submitting corresponding bios for them, so
7971 			 * cleanup them up to avoid other tasks getting them
7972 			 * and waiting for them to complete forever.
7973 			 */
7974 			if (dio_data.unsubmitted_oe_range_start <
7975 			    dio_data.unsubmitted_oe_range_end)
7976 				__endio_write_update_ordered(BTRFS_I(inode),
7977 					dio_data.unsubmitted_oe_range_start,
7978 					dio_data.unsubmitted_oe_range_end -
7979 					dio_data.unsubmitted_oe_range_start,
7980 					false);
7981 		} else if (ret >= 0 && (size_t)ret < count)
7982 			btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
7983 					offset, count - (size_t)ret, true);
7984 		btrfs_delalloc_release_extents(BTRFS_I(inode), count);
7985 	}
7986 out:
7987 	if (wakeup)
7988 		inode_dio_end(inode);
7989 	if (relock)
7990 		inode_lock(inode);
7991 
7992 	extent_changeset_free(data_reserved);
7993 	return ret;
7994 }
7995 
7996 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7997 			u64 start, u64 len)
7998 {
7999 	int	ret;
8000 
8001 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
8002 	if (ret)
8003 		return ret;
8004 
8005 	return extent_fiemap(inode, fieinfo, start, len);
8006 }
8007 
8008 int btrfs_readpage(struct file *file, struct page *page)
8009 {
8010 	return extent_read_full_page(page, btrfs_get_extent, 0);
8011 }
8012 
8013 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8014 {
8015 	struct inode *inode = page->mapping->host;
8016 	int ret;
8017 
8018 	if (current->flags & PF_MEMALLOC) {
8019 		redirty_page_for_writepage(wbc, page);
8020 		unlock_page(page);
8021 		return 0;
8022 	}
8023 
8024 	/*
8025 	 * If we are under memory pressure we will call this directly from the
8026 	 * VM, we need to make sure we have the inode referenced for the ordered
8027 	 * extent.  If not just return like we didn't do anything.
8028 	 */
8029 	if (!igrab(inode)) {
8030 		redirty_page_for_writepage(wbc, page);
8031 		return AOP_WRITEPAGE_ACTIVATE;
8032 	}
8033 	ret = extent_write_full_page(page, wbc);
8034 	btrfs_add_delayed_iput(inode);
8035 	return ret;
8036 }
8037 
8038 static int btrfs_writepages(struct address_space *mapping,
8039 			    struct writeback_control *wbc)
8040 {
8041 	return extent_writepages(mapping, wbc);
8042 }
8043 
8044 static void btrfs_readahead(struct readahead_control *rac)
8045 {
8046 	extent_readahead(rac);
8047 }
8048 
8049 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8050 {
8051 	int ret = try_release_extent_mapping(page, gfp_flags);
8052 	if (ret == 1)
8053 		detach_page_private(page);
8054 	return ret;
8055 }
8056 
8057 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8058 {
8059 	if (PageWriteback(page) || PageDirty(page))
8060 		return 0;
8061 	return __btrfs_releasepage(page, gfp_flags);
8062 }
8063 
8064 #ifdef CONFIG_MIGRATION
8065 static int btrfs_migratepage(struct address_space *mapping,
8066 			     struct page *newpage, struct page *page,
8067 			     enum migrate_mode mode)
8068 {
8069 	int ret;
8070 
8071 	ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8072 	if (ret != MIGRATEPAGE_SUCCESS)
8073 		return ret;
8074 
8075 	if (page_has_private(page))
8076 		attach_page_private(newpage, detach_page_private(page));
8077 
8078 	if (PagePrivate2(page)) {
8079 		ClearPagePrivate2(page);
8080 		SetPagePrivate2(newpage);
8081 	}
8082 
8083 	if (mode != MIGRATE_SYNC_NO_COPY)
8084 		migrate_page_copy(newpage, page);
8085 	else
8086 		migrate_page_states(newpage, page);
8087 	return MIGRATEPAGE_SUCCESS;
8088 }
8089 #endif
8090 
8091 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8092 				 unsigned int length)
8093 {
8094 	struct inode *inode = page->mapping->host;
8095 	struct extent_io_tree *tree;
8096 	struct btrfs_ordered_extent *ordered;
8097 	struct extent_state *cached_state = NULL;
8098 	u64 page_start = page_offset(page);
8099 	u64 page_end = page_start + PAGE_SIZE - 1;
8100 	u64 start;
8101 	u64 end;
8102 	int inode_evicting = inode->i_state & I_FREEING;
8103 
8104 	/*
8105 	 * we have the page locked, so new writeback can't start,
8106 	 * and the dirty bit won't be cleared while we are here.
8107 	 *
8108 	 * Wait for IO on this page so that we can safely clear
8109 	 * the PagePrivate2 bit and do ordered accounting
8110 	 */
8111 	wait_on_page_writeback(page);
8112 
8113 	tree = &BTRFS_I(inode)->io_tree;
8114 	if (offset) {
8115 		btrfs_releasepage(page, GFP_NOFS);
8116 		return;
8117 	}
8118 
8119 	if (!inode_evicting)
8120 		lock_extent_bits(tree, page_start, page_end, &cached_state);
8121 again:
8122 	start = page_start;
8123 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8124 					page_end - start + 1);
8125 	if (ordered) {
8126 		end = min(page_end,
8127 			  ordered->file_offset + ordered->num_bytes - 1);
8128 		/*
8129 		 * IO on this page will never be started, so we need
8130 		 * to account for any ordered extents now
8131 		 */
8132 		if (!inode_evicting)
8133 			clear_extent_bit(tree, start, end,
8134 					 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8135 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8136 					 EXTENT_DEFRAG, 1, 0, &cached_state);
8137 		/*
8138 		 * whoever cleared the private bit is responsible
8139 		 * for the finish_ordered_io
8140 		 */
8141 		if (TestClearPagePrivate2(page)) {
8142 			struct btrfs_ordered_inode_tree *tree;
8143 			u64 new_len;
8144 
8145 			tree = &BTRFS_I(inode)->ordered_tree;
8146 
8147 			spin_lock_irq(&tree->lock);
8148 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8149 			new_len = start - ordered->file_offset;
8150 			if (new_len < ordered->truncated_len)
8151 				ordered->truncated_len = new_len;
8152 			spin_unlock_irq(&tree->lock);
8153 
8154 			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8155 							   start,
8156 							   end - start + 1, 1))
8157 				btrfs_finish_ordered_io(ordered);
8158 		}
8159 		btrfs_put_ordered_extent(ordered);
8160 		if (!inode_evicting) {
8161 			cached_state = NULL;
8162 			lock_extent_bits(tree, start, end,
8163 					 &cached_state);
8164 		}
8165 
8166 		start = end + 1;
8167 		if (start < page_end)
8168 			goto again;
8169 	}
8170 
8171 	/*
8172 	 * Qgroup reserved space handler
8173 	 * Page here will be either
8174 	 * 1) Already written to disk or ordered extent already submitted
8175 	 *    Then its QGROUP_RESERVED bit in io_tree is already cleaned.
8176 	 *    Qgroup will be handled by its qgroup_record then.
8177 	 *    btrfs_qgroup_free_data() call will do nothing here.
8178 	 *
8179 	 * 2) Not written to disk yet
8180 	 *    Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED
8181 	 *    bit of its io_tree, and free the qgroup reserved data space.
8182 	 *    Since the IO will never happen for this page.
8183 	 */
8184 	btrfs_qgroup_free_data(BTRFS_I(inode), NULL, page_start, PAGE_SIZE);
8185 	if (!inode_evicting) {
8186 		clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8187 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8188 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8189 				 &cached_state);
8190 
8191 		__btrfs_releasepage(page, GFP_NOFS);
8192 	}
8193 
8194 	ClearPageChecked(page);
8195 	detach_page_private(page);
8196 }
8197 
8198 /*
8199  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8200  * called from a page fault handler when a page is first dirtied. Hence we must
8201  * be careful to check for EOF conditions here. We set the page up correctly
8202  * for a written page which means we get ENOSPC checking when writing into
8203  * holes and correct delalloc and unwritten extent mapping on filesystems that
8204  * support these features.
8205  *
8206  * We are not allowed to take the i_mutex here so we have to play games to
8207  * protect against truncate races as the page could now be beyond EOF.  Because
8208  * truncate_setsize() writes the inode size before removing pages, once we have
8209  * the page lock we can determine safely if the page is beyond EOF. If it is not
8210  * beyond EOF, then the page is guaranteed safe against truncation until we
8211  * unlock the page.
8212  */
8213 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8214 {
8215 	struct page *page = vmf->page;
8216 	struct inode *inode = file_inode(vmf->vma->vm_file);
8217 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8218 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8219 	struct btrfs_ordered_extent *ordered;
8220 	struct extent_state *cached_state = NULL;
8221 	struct extent_changeset *data_reserved = NULL;
8222 	char *kaddr;
8223 	unsigned long zero_start;
8224 	loff_t size;
8225 	vm_fault_t ret;
8226 	int ret2;
8227 	int reserved = 0;
8228 	u64 reserved_space;
8229 	u64 page_start;
8230 	u64 page_end;
8231 	u64 end;
8232 
8233 	reserved_space = PAGE_SIZE;
8234 
8235 	sb_start_pagefault(inode->i_sb);
8236 	page_start = page_offset(page);
8237 	page_end = page_start + PAGE_SIZE - 1;
8238 	end = page_end;
8239 
8240 	/*
8241 	 * Reserving delalloc space after obtaining the page lock can lead to
8242 	 * deadlock. For example, if a dirty page is locked by this function
8243 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8244 	 * dirty page write out, then the btrfs_writepage() function could
8245 	 * end up waiting indefinitely to get a lock on the page currently
8246 	 * being processed by btrfs_page_mkwrite() function.
8247 	 */
8248 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8249 					    page_start, reserved_space);
8250 	if (!ret2) {
8251 		ret2 = file_update_time(vmf->vma->vm_file);
8252 		reserved = 1;
8253 	}
8254 	if (ret2) {
8255 		ret = vmf_error(ret2);
8256 		if (reserved)
8257 			goto out;
8258 		goto out_noreserve;
8259 	}
8260 
8261 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8262 again:
8263 	lock_page(page);
8264 	size = i_size_read(inode);
8265 
8266 	if ((page->mapping != inode->i_mapping) ||
8267 	    (page_start >= size)) {
8268 		/* page got truncated out from underneath us */
8269 		goto out_unlock;
8270 	}
8271 	wait_on_page_writeback(page);
8272 
8273 	lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8274 	set_page_extent_mapped(page);
8275 
8276 	/*
8277 	 * we can't set the delalloc bits if there are pending ordered
8278 	 * extents.  Drop our locks and wait for them to finish
8279 	 */
8280 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8281 			PAGE_SIZE);
8282 	if (ordered) {
8283 		unlock_extent_cached(io_tree, page_start, page_end,
8284 				     &cached_state);
8285 		unlock_page(page);
8286 		btrfs_start_ordered_extent(inode, ordered, 1);
8287 		btrfs_put_ordered_extent(ordered);
8288 		goto again;
8289 	}
8290 
8291 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8292 		reserved_space = round_up(size - page_start,
8293 					  fs_info->sectorsize);
8294 		if (reserved_space < PAGE_SIZE) {
8295 			end = page_start + reserved_space - 1;
8296 			btrfs_delalloc_release_space(BTRFS_I(inode),
8297 					data_reserved, page_start,
8298 					PAGE_SIZE - reserved_space, true);
8299 		}
8300 	}
8301 
8302 	/*
8303 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8304 	 * faulted in, but write(2) could also dirty a page and set delalloc
8305 	 * bits, thus in this case for space account reason, we still need to
8306 	 * clear any delalloc bits within this page range since we have to
8307 	 * reserve data&meta space before lock_page() (see above comments).
8308 	 */
8309 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8310 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8311 			  EXTENT_DEFRAG, 0, 0, &cached_state);
8312 
8313 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8314 					&cached_state);
8315 	if (ret2) {
8316 		unlock_extent_cached(io_tree, page_start, page_end,
8317 				     &cached_state);
8318 		ret = VM_FAULT_SIGBUS;
8319 		goto out_unlock;
8320 	}
8321 
8322 	/* page is wholly or partially inside EOF */
8323 	if (page_start + PAGE_SIZE > size)
8324 		zero_start = offset_in_page(size);
8325 	else
8326 		zero_start = PAGE_SIZE;
8327 
8328 	if (zero_start != PAGE_SIZE) {
8329 		kaddr = kmap(page);
8330 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8331 		flush_dcache_page(page);
8332 		kunmap(page);
8333 	}
8334 	ClearPageChecked(page);
8335 	set_page_dirty(page);
8336 	SetPageUptodate(page);
8337 
8338 	BTRFS_I(inode)->last_trans = fs_info->generation;
8339 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8340 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8341 
8342 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8343 
8344 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8345 	sb_end_pagefault(inode->i_sb);
8346 	extent_changeset_free(data_reserved);
8347 	return VM_FAULT_LOCKED;
8348 
8349 out_unlock:
8350 	unlock_page(page);
8351 out:
8352 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8353 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8354 				     reserved_space, (ret != 0));
8355 out_noreserve:
8356 	sb_end_pagefault(inode->i_sb);
8357 	extent_changeset_free(data_reserved);
8358 	return ret;
8359 }
8360 
8361 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8362 {
8363 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8364 	struct btrfs_root *root = BTRFS_I(inode)->root;
8365 	struct btrfs_block_rsv *rsv;
8366 	int ret;
8367 	struct btrfs_trans_handle *trans;
8368 	u64 mask = fs_info->sectorsize - 1;
8369 	u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8370 
8371 	if (!skip_writeback) {
8372 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8373 					       (u64)-1);
8374 		if (ret)
8375 			return ret;
8376 	}
8377 
8378 	/*
8379 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8380 	 * things going on here:
8381 	 *
8382 	 * 1) We need to reserve space to update our inode.
8383 	 *
8384 	 * 2) We need to have something to cache all the space that is going to
8385 	 * be free'd up by the truncate operation, but also have some slack
8386 	 * space reserved in case it uses space during the truncate (thank you
8387 	 * very much snapshotting).
8388 	 *
8389 	 * And we need these to be separate.  The fact is we can use a lot of
8390 	 * space doing the truncate, and we have no earthly idea how much space
8391 	 * we will use, so we need the truncate reservation to be separate so it
8392 	 * doesn't end up using space reserved for updating the inode.  We also
8393 	 * need to be able to stop the transaction and start a new one, which
8394 	 * means we need to be able to update the inode several times, and we
8395 	 * have no idea of knowing how many times that will be, so we can't just
8396 	 * reserve 1 item for the entirety of the operation, so that has to be
8397 	 * done separately as well.
8398 	 *
8399 	 * So that leaves us with
8400 	 *
8401 	 * 1) rsv - for the truncate reservation, which we will steal from the
8402 	 * transaction reservation.
8403 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8404 	 * updating the inode.
8405 	 */
8406 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8407 	if (!rsv)
8408 		return -ENOMEM;
8409 	rsv->size = min_size;
8410 	rsv->failfast = 1;
8411 
8412 	/*
8413 	 * 1 for the truncate slack space
8414 	 * 1 for updating the inode.
8415 	 */
8416 	trans = btrfs_start_transaction(root, 2);
8417 	if (IS_ERR(trans)) {
8418 		ret = PTR_ERR(trans);
8419 		goto out;
8420 	}
8421 
8422 	/* Migrate the slack space for the truncate to our reserve */
8423 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8424 				      min_size, false);
8425 	BUG_ON(ret);
8426 
8427 	/*
8428 	 * So if we truncate and then write and fsync we normally would just
8429 	 * write the extents that changed, which is a problem if we need to
8430 	 * first truncate that entire inode.  So set this flag so we write out
8431 	 * all of the extents in the inode to the sync log so we're completely
8432 	 * safe.
8433 	 */
8434 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8435 	trans->block_rsv = rsv;
8436 
8437 	while (1) {
8438 		ret = btrfs_truncate_inode_items(trans, root, inode,
8439 						 inode->i_size,
8440 						 BTRFS_EXTENT_DATA_KEY);
8441 		trans->block_rsv = &fs_info->trans_block_rsv;
8442 		if (ret != -ENOSPC && ret != -EAGAIN)
8443 			break;
8444 
8445 		ret = btrfs_update_inode(trans, root, inode);
8446 		if (ret)
8447 			break;
8448 
8449 		btrfs_end_transaction(trans);
8450 		btrfs_btree_balance_dirty(fs_info);
8451 
8452 		trans = btrfs_start_transaction(root, 2);
8453 		if (IS_ERR(trans)) {
8454 			ret = PTR_ERR(trans);
8455 			trans = NULL;
8456 			break;
8457 		}
8458 
8459 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8460 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8461 					      rsv, min_size, false);
8462 		BUG_ON(ret);	/* shouldn't happen */
8463 		trans->block_rsv = rsv;
8464 	}
8465 
8466 	/*
8467 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8468 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8469 	 * we've truncated everything except the last little bit, and can do
8470 	 * btrfs_truncate_block and then update the disk_i_size.
8471 	 */
8472 	if (ret == NEED_TRUNCATE_BLOCK) {
8473 		btrfs_end_transaction(trans);
8474 		btrfs_btree_balance_dirty(fs_info);
8475 
8476 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8477 		if (ret)
8478 			goto out;
8479 		trans = btrfs_start_transaction(root, 1);
8480 		if (IS_ERR(trans)) {
8481 			ret = PTR_ERR(trans);
8482 			goto out;
8483 		}
8484 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8485 	}
8486 
8487 	if (trans) {
8488 		int ret2;
8489 
8490 		trans->block_rsv = &fs_info->trans_block_rsv;
8491 		ret2 = btrfs_update_inode(trans, root, inode);
8492 		if (ret2 && !ret)
8493 			ret = ret2;
8494 
8495 		ret2 = btrfs_end_transaction(trans);
8496 		if (ret2 && !ret)
8497 			ret = ret2;
8498 		btrfs_btree_balance_dirty(fs_info);
8499 	}
8500 out:
8501 	btrfs_free_block_rsv(fs_info, rsv);
8502 
8503 	return ret;
8504 }
8505 
8506 /*
8507  * create a new subvolume directory/inode (helper for the ioctl).
8508  */
8509 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8510 			     struct btrfs_root *new_root,
8511 			     struct btrfs_root *parent_root,
8512 			     u64 new_dirid)
8513 {
8514 	struct inode *inode;
8515 	int err;
8516 	u64 index = 0;
8517 
8518 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8519 				new_dirid, new_dirid,
8520 				S_IFDIR | (~current_umask() & S_IRWXUGO),
8521 				&index);
8522 	if (IS_ERR(inode))
8523 		return PTR_ERR(inode);
8524 	inode->i_op = &btrfs_dir_inode_operations;
8525 	inode->i_fop = &btrfs_dir_file_operations;
8526 
8527 	set_nlink(inode, 1);
8528 	btrfs_i_size_write(BTRFS_I(inode), 0);
8529 	unlock_new_inode(inode);
8530 
8531 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8532 	if (err)
8533 		btrfs_err(new_root->fs_info,
8534 			  "error inheriting subvolume %llu properties: %d",
8535 			  new_root->root_key.objectid, err);
8536 
8537 	err = btrfs_update_inode(trans, new_root, inode);
8538 
8539 	iput(inode);
8540 	return err;
8541 }
8542 
8543 struct inode *btrfs_alloc_inode(struct super_block *sb)
8544 {
8545 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8546 	struct btrfs_inode *ei;
8547 	struct inode *inode;
8548 
8549 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8550 	if (!ei)
8551 		return NULL;
8552 
8553 	ei->root = NULL;
8554 	ei->generation = 0;
8555 	ei->last_trans = 0;
8556 	ei->last_sub_trans = 0;
8557 	ei->logged_trans = 0;
8558 	ei->delalloc_bytes = 0;
8559 	ei->new_delalloc_bytes = 0;
8560 	ei->defrag_bytes = 0;
8561 	ei->disk_i_size = 0;
8562 	ei->flags = 0;
8563 	ei->csum_bytes = 0;
8564 	ei->index_cnt = (u64)-1;
8565 	ei->dir_index = 0;
8566 	ei->last_unlink_trans = 0;
8567 	ei->last_reflink_trans = 0;
8568 	ei->last_log_commit = 0;
8569 
8570 	spin_lock_init(&ei->lock);
8571 	ei->outstanding_extents = 0;
8572 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8573 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8574 					      BTRFS_BLOCK_RSV_DELALLOC);
8575 	ei->runtime_flags = 0;
8576 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8577 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8578 
8579 	ei->delayed_node = NULL;
8580 
8581 	ei->i_otime.tv_sec = 0;
8582 	ei->i_otime.tv_nsec = 0;
8583 
8584 	inode = &ei->vfs_inode;
8585 	extent_map_tree_init(&ei->extent_tree);
8586 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8587 	extent_io_tree_init(fs_info, &ei->io_failure_tree,
8588 			    IO_TREE_INODE_IO_FAILURE, inode);
8589 	extent_io_tree_init(fs_info, &ei->file_extent_tree,
8590 			    IO_TREE_INODE_FILE_EXTENT, inode);
8591 	ei->io_tree.track_uptodate = true;
8592 	ei->io_failure_tree.track_uptodate = true;
8593 	atomic_set(&ei->sync_writers, 0);
8594 	mutex_init(&ei->log_mutex);
8595 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8596 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8597 	INIT_LIST_HEAD(&ei->delayed_iput);
8598 	RB_CLEAR_NODE(&ei->rb_node);
8599 	init_rwsem(&ei->dio_sem);
8600 
8601 	return inode;
8602 }
8603 
8604 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8605 void btrfs_test_destroy_inode(struct inode *inode)
8606 {
8607 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8608 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8609 }
8610 #endif
8611 
8612 void btrfs_free_inode(struct inode *inode)
8613 {
8614 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8615 }
8616 
8617 void btrfs_destroy_inode(struct inode *inode)
8618 {
8619 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8620 	struct btrfs_ordered_extent *ordered;
8621 	struct btrfs_root *root = BTRFS_I(inode)->root;
8622 
8623 	WARN_ON(!hlist_empty(&inode->i_dentry));
8624 	WARN_ON(inode->i_data.nrpages);
8625 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8626 	WARN_ON(BTRFS_I(inode)->block_rsv.size);
8627 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8628 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8629 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
8630 	WARN_ON(BTRFS_I(inode)->csum_bytes);
8631 	WARN_ON(BTRFS_I(inode)->defrag_bytes);
8632 
8633 	/*
8634 	 * This can happen where we create an inode, but somebody else also
8635 	 * created the same inode and we need to destroy the one we already
8636 	 * created.
8637 	 */
8638 	if (!root)
8639 		return;
8640 
8641 	while (1) {
8642 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8643 		if (!ordered)
8644 			break;
8645 		else {
8646 			btrfs_err(fs_info,
8647 				  "found ordered extent %llu %llu on inode cleanup",
8648 				  ordered->file_offset, ordered->num_bytes);
8649 			btrfs_remove_ordered_extent(inode, ordered);
8650 			btrfs_put_ordered_extent(ordered);
8651 			btrfs_put_ordered_extent(ordered);
8652 		}
8653 	}
8654 	btrfs_qgroup_check_reserved_leak(BTRFS_I(inode));
8655 	inode_tree_del(inode);
8656 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8657 	btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
8658 	btrfs_put_root(BTRFS_I(inode)->root);
8659 }
8660 
8661 int btrfs_drop_inode(struct inode *inode)
8662 {
8663 	struct btrfs_root *root = BTRFS_I(inode)->root;
8664 
8665 	if (root == NULL)
8666 		return 1;
8667 
8668 	/* the snap/subvol tree is on deleting */
8669 	if (btrfs_root_refs(&root->root_item) == 0)
8670 		return 1;
8671 	else
8672 		return generic_drop_inode(inode);
8673 }
8674 
8675 static void init_once(void *foo)
8676 {
8677 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8678 
8679 	inode_init_once(&ei->vfs_inode);
8680 }
8681 
8682 void __cold btrfs_destroy_cachep(void)
8683 {
8684 	/*
8685 	 * Make sure all delayed rcu free inodes are flushed before we
8686 	 * destroy cache.
8687 	 */
8688 	rcu_barrier();
8689 	kmem_cache_destroy(btrfs_inode_cachep);
8690 	kmem_cache_destroy(btrfs_trans_handle_cachep);
8691 	kmem_cache_destroy(btrfs_path_cachep);
8692 	kmem_cache_destroy(btrfs_free_space_cachep);
8693 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8694 }
8695 
8696 int __init btrfs_init_cachep(void)
8697 {
8698 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8699 			sizeof(struct btrfs_inode), 0,
8700 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8701 			init_once);
8702 	if (!btrfs_inode_cachep)
8703 		goto fail;
8704 
8705 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8706 			sizeof(struct btrfs_trans_handle), 0,
8707 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8708 	if (!btrfs_trans_handle_cachep)
8709 		goto fail;
8710 
8711 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
8712 			sizeof(struct btrfs_path), 0,
8713 			SLAB_MEM_SPREAD, NULL);
8714 	if (!btrfs_path_cachep)
8715 		goto fail;
8716 
8717 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8718 			sizeof(struct btrfs_free_space), 0,
8719 			SLAB_MEM_SPREAD, NULL);
8720 	if (!btrfs_free_space_cachep)
8721 		goto fail;
8722 
8723 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8724 							PAGE_SIZE, PAGE_SIZE,
8725 							SLAB_RED_ZONE, NULL);
8726 	if (!btrfs_free_space_bitmap_cachep)
8727 		goto fail;
8728 
8729 	return 0;
8730 fail:
8731 	btrfs_destroy_cachep();
8732 	return -ENOMEM;
8733 }
8734 
8735 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8736 			 u32 request_mask, unsigned int flags)
8737 {
8738 	u64 delalloc_bytes;
8739 	struct inode *inode = d_inode(path->dentry);
8740 	u32 blocksize = inode->i_sb->s_blocksize;
8741 	u32 bi_flags = BTRFS_I(inode)->flags;
8742 
8743 	stat->result_mask |= STATX_BTIME;
8744 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8745 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8746 	if (bi_flags & BTRFS_INODE_APPEND)
8747 		stat->attributes |= STATX_ATTR_APPEND;
8748 	if (bi_flags & BTRFS_INODE_COMPRESS)
8749 		stat->attributes |= STATX_ATTR_COMPRESSED;
8750 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8751 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8752 	if (bi_flags & BTRFS_INODE_NODUMP)
8753 		stat->attributes |= STATX_ATTR_NODUMP;
8754 
8755 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8756 				  STATX_ATTR_COMPRESSED |
8757 				  STATX_ATTR_IMMUTABLE |
8758 				  STATX_ATTR_NODUMP);
8759 
8760 	generic_fillattr(inode, stat);
8761 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8762 
8763 	spin_lock(&BTRFS_I(inode)->lock);
8764 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8765 	spin_unlock(&BTRFS_I(inode)->lock);
8766 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8767 			ALIGN(delalloc_bytes, blocksize)) >> 9;
8768 	return 0;
8769 }
8770 
8771 static int btrfs_rename_exchange(struct inode *old_dir,
8772 			      struct dentry *old_dentry,
8773 			      struct inode *new_dir,
8774 			      struct dentry *new_dentry)
8775 {
8776 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8777 	struct btrfs_trans_handle *trans;
8778 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8779 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8780 	struct inode *new_inode = new_dentry->d_inode;
8781 	struct inode *old_inode = old_dentry->d_inode;
8782 	struct timespec64 ctime = current_time(old_inode);
8783 	struct dentry *parent;
8784 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8785 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8786 	u64 old_idx = 0;
8787 	u64 new_idx = 0;
8788 	int ret;
8789 	bool root_log_pinned = false;
8790 	bool dest_log_pinned = false;
8791 	struct btrfs_log_ctx ctx_root;
8792 	struct btrfs_log_ctx ctx_dest;
8793 	bool sync_log_root = false;
8794 	bool sync_log_dest = false;
8795 	bool commit_transaction = false;
8796 
8797 	/* we only allow rename subvolume link between subvolumes */
8798 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8799 		return -EXDEV;
8800 
8801 	btrfs_init_log_ctx(&ctx_root, old_inode);
8802 	btrfs_init_log_ctx(&ctx_dest, new_inode);
8803 
8804 	/* close the race window with snapshot create/destroy ioctl */
8805 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8806 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8807 		down_read(&fs_info->subvol_sem);
8808 
8809 	/*
8810 	 * We want to reserve the absolute worst case amount of items.  So if
8811 	 * both inodes are subvols and we need to unlink them then that would
8812 	 * require 4 item modifications, but if they are both normal inodes it
8813 	 * would require 5 item modifications, so we'll assume their normal
8814 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8815 	 * should cover the worst case number of items we'll modify.
8816 	 */
8817 	trans = btrfs_start_transaction(root, 12);
8818 	if (IS_ERR(trans)) {
8819 		ret = PTR_ERR(trans);
8820 		goto out_notrans;
8821 	}
8822 
8823 	if (dest != root)
8824 		btrfs_record_root_in_trans(trans, dest);
8825 
8826 	/*
8827 	 * We need to find a free sequence number both in the source and
8828 	 * in the destination directory for the exchange.
8829 	 */
8830 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8831 	if (ret)
8832 		goto out_fail;
8833 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8834 	if (ret)
8835 		goto out_fail;
8836 
8837 	BTRFS_I(old_inode)->dir_index = 0ULL;
8838 	BTRFS_I(new_inode)->dir_index = 0ULL;
8839 
8840 	/* Reference for the source. */
8841 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8842 		/* force full log commit if subvolume involved. */
8843 		btrfs_set_log_full_commit(trans);
8844 	} else {
8845 		btrfs_pin_log_trans(root);
8846 		root_log_pinned = true;
8847 		ret = btrfs_insert_inode_ref(trans, dest,
8848 					     new_dentry->d_name.name,
8849 					     new_dentry->d_name.len,
8850 					     old_ino,
8851 					     btrfs_ino(BTRFS_I(new_dir)),
8852 					     old_idx);
8853 		if (ret)
8854 			goto out_fail;
8855 	}
8856 
8857 	/* And now for the dest. */
8858 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8859 		/* force full log commit if subvolume involved. */
8860 		btrfs_set_log_full_commit(trans);
8861 	} else {
8862 		btrfs_pin_log_trans(dest);
8863 		dest_log_pinned = true;
8864 		ret = btrfs_insert_inode_ref(trans, root,
8865 					     old_dentry->d_name.name,
8866 					     old_dentry->d_name.len,
8867 					     new_ino,
8868 					     btrfs_ino(BTRFS_I(old_dir)),
8869 					     new_idx);
8870 		if (ret)
8871 			goto out_fail;
8872 	}
8873 
8874 	/* Update inode version and ctime/mtime. */
8875 	inode_inc_iversion(old_dir);
8876 	inode_inc_iversion(new_dir);
8877 	inode_inc_iversion(old_inode);
8878 	inode_inc_iversion(new_inode);
8879 	old_dir->i_ctime = old_dir->i_mtime = ctime;
8880 	new_dir->i_ctime = new_dir->i_mtime = ctime;
8881 	old_inode->i_ctime = ctime;
8882 	new_inode->i_ctime = ctime;
8883 
8884 	if (old_dentry->d_parent != new_dentry->d_parent) {
8885 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8886 				BTRFS_I(old_inode), 1);
8887 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8888 				BTRFS_I(new_inode), 1);
8889 	}
8890 
8891 	/* src is a subvolume */
8892 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8893 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
8894 	} else { /* src is an inode */
8895 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8896 					   BTRFS_I(old_dentry->d_inode),
8897 					   old_dentry->d_name.name,
8898 					   old_dentry->d_name.len);
8899 		if (!ret)
8900 			ret = btrfs_update_inode(trans, root, old_inode);
8901 	}
8902 	if (ret) {
8903 		btrfs_abort_transaction(trans, ret);
8904 		goto out_fail;
8905 	}
8906 
8907 	/* dest is a subvolume */
8908 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8909 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
8910 	} else { /* dest is an inode */
8911 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8912 					   BTRFS_I(new_dentry->d_inode),
8913 					   new_dentry->d_name.name,
8914 					   new_dentry->d_name.len);
8915 		if (!ret)
8916 			ret = btrfs_update_inode(trans, dest, new_inode);
8917 	}
8918 	if (ret) {
8919 		btrfs_abort_transaction(trans, ret);
8920 		goto out_fail;
8921 	}
8922 
8923 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8924 			     new_dentry->d_name.name,
8925 			     new_dentry->d_name.len, 0, old_idx);
8926 	if (ret) {
8927 		btrfs_abort_transaction(trans, ret);
8928 		goto out_fail;
8929 	}
8930 
8931 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8932 			     old_dentry->d_name.name,
8933 			     old_dentry->d_name.len, 0, new_idx);
8934 	if (ret) {
8935 		btrfs_abort_transaction(trans, ret);
8936 		goto out_fail;
8937 	}
8938 
8939 	if (old_inode->i_nlink == 1)
8940 		BTRFS_I(old_inode)->dir_index = old_idx;
8941 	if (new_inode->i_nlink == 1)
8942 		BTRFS_I(new_inode)->dir_index = new_idx;
8943 
8944 	if (root_log_pinned) {
8945 		parent = new_dentry->d_parent;
8946 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8947 					 BTRFS_I(old_dir), parent,
8948 					 false, &ctx_root);
8949 		if (ret == BTRFS_NEED_LOG_SYNC)
8950 			sync_log_root = true;
8951 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
8952 			commit_transaction = true;
8953 		ret = 0;
8954 		btrfs_end_log_trans(root);
8955 		root_log_pinned = false;
8956 	}
8957 	if (dest_log_pinned) {
8958 		if (!commit_transaction) {
8959 			parent = old_dentry->d_parent;
8960 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8961 						 BTRFS_I(new_dir), parent,
8962 						 false, &ctx_dest);
8963 			if (ret == BTRFS_NEED_LOG_SYNC)
8964 				sync_log_dest = true;
8965 			else if (ret == BTRFS_NEED_TRANS_COMMIT)
8966 				commit_transaction = true;
8967 			ret = 0;
8968 		}
8969 		btrfs_end_log_trans(dest);
8970 		dest_log_pinned = false;
8971 	}
8972 out_fail:
8973 	/*
8974 	 * If we have pinned a log and an error happened, we unpin tasks
8975 	 * trying to sync the log and force them to fallback to a transaction
8976 	 * commit if the log currently contains any of the inodes involved in
8977 	 * this rename operation (to ensure we do not persist a log with an
8978 	 * inconsistent state for any of these inodes or leading to any
8979 	 * inconsistencies when replayed). If the transaction was aborted, the
8980 	 * abortion reason is propagated to userspace when attempting to commit
8981 	 * the transaction. If the log does not contain any of these inodes, we
8982 	 * allow the tasks to sync it.
8983 	 */
8984 	if (ret && (root_log_pinned || dest_log_pinned)) {
8985 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8986 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8987 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
8988 		    (new_inode &&
8989 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
8990 			btrfs_set_log_full_commit(trans);
8991 
8992 		if (root_log_pinned) {
8993 			btrfs_end_log_trans(root);
8994 			root_log_pinned = false;
8995 		}
8996 		if (dest_log_pinned) {
8997 			btrfs_end_log_trans(dest);
8998 			dest_log_pinned = false;
8999 		}
9000 	}
9001 	if (!ret && sync_log_root && !commit_transaction) {
9002 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9003 				     &ctx_root);
9004 		if (ret)
9005 			commit_transaction = true;
9006 	}
9007 	if (!ret && sync_log_dest && !commit_transaction) {
9008 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9009 				     &ctx_dest);
9010 		if (ret)
9011 			commit_transaction = true;
9012 	}
9013 	if (commit_transaction) {
9014 		/*
9015 		 * We may have set commit_transaction when logging the new name
9016 		 * in the destination root, in which case we left the source
9017 		 * root context in the list of log contextes. So make sure we
9018 		 * remove it to avoid invalid memory accesses, since the context
9019 		 * was allocated in our stack frame.
9020 		 */
9021 		if (sync_log_root) {
9022 			mutex_lock(&root->log_mutex);
9023 			list_del_init(&ctx_root.list);
9024 			mutex_unlock(&root->log_mutex);
9025 		}
9026 		ret = btrfs_commit_transaction(trans);
9027 	} else {
9028 		int ret2;
9029 
9030 		ret2 = btrfs_end_transaction(trans);
9031 		ret = ret ? ret : ret2;
9032 	}
9033 out_notrans:
9034 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9035 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9036 		up_read(&fs_info->subvol_sem);
9037 
9038 	ASSERT(list_empty(&ctx_root.list));
9039 	ASSERT(list_empty(&ctx_dest.list));
9040 
9041 	return ret;
9042 }
9043 
9044 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9045 				     struct btrfs_root *root,
9046 				     struct inode *dir,
9047 				     struct dentry *dentry)
9048 {
9049 	int ret;
9050 	struct inode *inode;
9051 	u64 objectid;
9052 	u64 index;
9053 
9054 	ret = btrfs_find_free_ino(root, &objectid);
9055 	if (ret)
9056 		return ret;
9057 
9058 	inode = btrfs_new_inode(trans, root, dir,
9059 				dentry->d_name.name,
9060 				dentry->d_name.len,
9061 				btrfs_ino(BTRFS_I(dir)),
9062 				objectid,
9063 				S_IFCHR | WHITEOUT_MODE,
9064 				&index);
9065 
9066 	if (IS_ERR(inode)) {
9067 		ret = PTR_ERR(inode);
9068 		return ret;
9069 	}
9070 
9071 	inode->i_op = &btrfs_special_inode_operations;
9072 	init_special_inode(inode, inode->i_mode,
9073 		WHITEOUT_DEV);
9074 
9075 	ret = btrfs_init_inode_security(trans, inode, dir,
9076 				&dentry->d_name);
9077 	if (ret)
9078 		goto out;
9079 
9080 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9081 				BTRFS_I(inode), 0, index);
9082 	if (ret)
9083 		goto out;
9084 
9085 	ret = btrfs_update_inode(trans, root, inode);
9086 out:
9087 	unlock_new_inode(inode);
9088 	if (ret)
9089 		inode_dec_link_count(inode);
9090 	iput(inode);
9091 
9092 	return ret;
9093 }
9094 
9095 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9096 			   struct inode *new_dir, struct dentry *new_dentry,
9097 			   unsigned int flags)
9098 {
9099 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9100 	struct btrfs_trans_handle *trans;
9101 	unsigned int trans_num_items;
9102 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9103 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9104 	struct inode *new_inode = d_inode(new_dentry);
9105 	struct inode *old_inode = d_inode(old_dentry);
9106 	u64 index = 0;
9107 	int ret;
9108 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9109 	bool log_pinned = false;
9110 	struct btrfs_log_ctx ctx;
9111 	bool sync_log = false;
9112 	bool commit_transaction = false;
9113 
9114 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9115 		return -EPERM;
9116 
9117 	/* we only allow rename subvolume link between subvolumes */
9118 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9119 		return -EXDEV;
9120 
9121 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9122 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9123 		return -ENOTEMPTY;
9124 
9125 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9126 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9127 		return -ENOTEMPTY;
9128 
9129 
9130 	/* check for collisions, even if the  name isn't there */
9131 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9132 			     new_dentry->d_name.name,
9133 			     new_dentry->d_name.len);
9134 
9135 	if (ret) {
9136 		if (ret == -EEXIST) {
9137 			/* we shouldn't get
9138 			 * eexist without a new_inode */
9139 			if (WARN_ON(!new_inode)) {
9140 				return ret;
9141 			}
9142 		} else {
9143 			/* maybe -EOVERFLOW */
9144 			return ret;
9145 		}
9146 	}
9147 	ret = 0;
9148 
9149 	/*
9150 	 * we're using rename to replace one file with another.  Start IO on it
9151 	 * now so  we don't add too much work to the end of the transaction
9152 	 */
9153 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9154 		filemap_flush(old_inode->i_mapping);
9155 
9156 	/* close the racy window with snapshot create/destroy ioctl */
9157 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9158 		down_read(&fs_info->subvol_sem);
9159 	/*
9160 	 * We want to reserve the absolute worst case amount of items.  So if
9161 	 * both inodes are subvols and we need to unlink them then that would
9162 	 * require 4 item modifications, but if they are both normal inodes it
9163 	 * would require 5 item modifications, so we'll assume they are normal
9164 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9165 	 * should cover the worst case number of items we'll modify.
9166 	 * If our rename has the whiteout flag, we need more 5 units for the
9167 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9168 	 * when selinux is enabled).
9169 	 */
9170 	trans_num_items = 11;
9171 	if (flags & RENAME_WHITEOUT)
9172 		trans_num_items += 5;
9173 	trans = btrfs_start_transaction(root, trans_num_items);
9174 	if (IS_ERR(trans)) {
9175 		ret = PTR_ERR(trans);
9176 		goto out_notrans;
9177 	}
9178 
9179 	if (dest != root)
9180 		btrfs_record_root_in_trans(trans, dest);
9181 
9182 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9183 	if (ret)
9184 		goto out_fail;
9185 
9186 	BTRFS_I(old_inode)->dir_index = 0ULL;
9187 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9188 		/* force full log commit if subvolume involved. */
9189 		btrfs_set_log_full_commit(trans);
9190 	} else {
9191 		btrfs_pin_log_trans(root);
9192 		log_pinned = true;
9193 		ret = btrfs_insert_inode_ref(trans, dest,
9194 					     new_dentry->d_name.name,
9195 					     new_dentry->d_name.len,
9196 					     old_ino,
9197 					     btrfs_ino(BTRFS_I(new_dir)), index);
9198 		if (ret)
9199 			goto out_fail;
9200 	}
9201 
9202 	inode_inc_iversion(old_dir);
9203 	inode_inc_iversion(new_dir);
9204 	inode_inc_iversion(old_inode);
9205 	old_dir->i_ctime = old_dir->i_mtime =
9206 	new_dir->i_ctime = new_dir->i_mtime =
9207 	old_inode->i_ctime = current_time(old_dir);
9208 
9209 	if (old_dentry->d_parent != new_dentry->d_parent)
9210 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9211 				BTRFS_I(old_inode), 1);
9212 
9213 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9214 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9215 	} else {
9216 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9217 					BTRFS_I(d_inode(old_dentry)),
9218 					old_dentry->d_name.name,
9219 					old_dentry->d_name.len);
9220 		if (!ret)
9221 			ret = btrfs_update_inode(trans, root, old_inode);
9222 	}
9223 	if (ret) {
9224 		btrfs_abort_transaction(trans, ret);
9225 		goto out_fail;
9226 	}
9227 
9228 	if (new_inode) {
9229 		inode_inc_iversion(new_inode);
9230 		new_inode->i_ctime = current_time(new_inode);
9231 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9232 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9233 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9234 			BUG_ON(new_inode->i_nlink == 0);
9235 		} else {
9236 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9237 						 BTRFS_I(d_inode(new_dentry)),
9238 						 new_dentry->d_name.name,
9239 						 new_dentry->d_name.len);
9240 		}
9241 		if (!ret && new_inode->i_nlink == 0)
9242 			ret = btrfs_orphan_add(trans,
9243 					BTRFS_I(d_inode(new_dentry)));
9244 		if (ret) {
9245 			btrfs_abort_transaction(trans, ret);
9246 			goto out_fail;
9247 		}
9248 	}
9249 
9250 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9251 			     new_dentry->d_name.name,
9252 			     new_dentry->d_name.len, 0, index);
9253 	if (ret) {
9254 		btrfs_abort_transaction(trans, ret);
9255 		goto out_fail;
9256 	}
9257 
9258 	if (old_inode->i_nlink == 1)
9259 		BTRFS_I(old_inode)->dir_index = index;
9260 
9261 	if (log_pinned) {
9262 		struct dentry *parent = new_dentry->d_parent;
9263 
9264 		btrfs_init_log_ctx(&ctx, old_inode);
9265 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9266 					 BTRFS_I(old_dir), parent,
9267 					 false, &ctx);
9268 		if (ret == BTRFS_NEED_LOG_SYNC)
9269 			sync_log = true;
9270 		else if (ret == BTRFS_NEED_TRANS_COMMIT)
9271 			commit_transaction = true;
9272 		ret = 0;
9273 		btrfs_end_log_trans(root);
9274 		log_pinned = false;
9275 	}
9276 
9277 	if (flags & RENAME_WHITEOUT) {
9278 		ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9279 						old_dentry);
9280 
9281 		if (ret) {
9282 			btrfs_abort_transaction(trans, ret);
9283 			goto out_fail;
9284 		}
9285 	}
9286 out_fail:
9287 	/*
9288 	 * If we have pinned the log and an error happened, we unpin tasks
9289 	 * trying to sync the log and force them to fallback to a transaction
9290 	 * commit if the log currently contains any of the inodes involved in
9291 	 * this rename operation (to ensure we do not persist a log with an
9292 	 * inconsistent state for any of these inodes or leading to any
9293 	 * inconsistencies when replayed). If the transaction was aborted, the
9294 	 * abortion reason is propagated to userspace when attempting to commit
9295 	 * the transaction. If the log does not contain any of these inodes, we
9296 	 * allow the tasks to sync it.
9297 	 */
9298 	if (ret && log_pinned) {
9299 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9300 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9301 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9302 		    (new_inode &&
9303 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9304 			btrfs_set_log_full_commit(trans);
9305 
9306 		btrfs_end_log_trans(root);
9307 		log_pinned = false;
9308 	}
9309 	if (!ret && sync_log) {
9310 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9311 		if (ret)
9312 			commit_transaction = true;
9313 	} else if (sync_log) {
9314 		mutex_lock(&root->log_mutex);
9315 		list_del(&ctx.list);
9316 		mutex_unlock(&root->log_mutex);
9317 	}
9318 	if (commit_transaction) {
9319 		ret = btrfs_commit_transaction(trans);
9320 	} else {
9321 		int ret2;
9322 
9323 		ret2 = btrfs_end_transaction(trans);
9324 		ret = ret ? ret : ret2;
9325 	}
9326 out_notrans:
9327 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9328 		up_read(&fs_info->subvol_sem);
9329 
9330 	return ret;
9331 }
9332 
9333 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9334 			 struct inode *new_dir, struct dentry *new_dentry,
9335 			 unsigned int flags)
9336 {
9337 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9338 		return -EINVAL;
9339 
9340 	if (flags & RENAME_EXCHANGE)
9341 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9342 					  new_dentry);
9343 
9344 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9345 }
9346 
9347 struct btrfs_delalloc_work {
9348 	struct inode *inode;
9349 	struct completion completion;
9350 	struct list_head list;
9351 	struct btrfs_work work;
9352 };
9353 
9354 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9355 {
9356 	struct btrfs_delalloc_work *delalloc_work;
9357 	struct inode *inode;
9358 
9359 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9360 				     work);
9361 	inode = delalloc_work->inode;
9362 	filemap_flush(inode->i_mapping);
9363 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9364 				&BTRFS_I(inode)->runtime_flags))
9365 		filemap_flush(inode->i_mapping);
9366 
9367 	iput(inode);
9368 	complete(&delalloc_work->completion);
9369 }
9370 
9371 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9372 {
9373 	struct btrfs_delalloc_work *work;
9374 
9375 	work = kmalloc(sizeof(*work), GFP_NOFS);
9376 	if (!work)
9377 		return NULL;
9378 
9379 	init_completion(&work->completion);
9380 	INIT_LIST_HEAD(&work->list);
9381 	work->inode = inode;
9382 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9383 
9384 	return work;
9385 }
9386 
9387 /*
9388  * some fairly slow code that needs optimization. This walks the list
9389  * of all the inodes with pending delalloc and forces them to disk.
9390  */
9391 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9392 {
9393 	struct btrfs_inode *binode;
9394 	struct inode *inode;
9395 	struct btrfs_delalloc_work *work, *next;
9396 	struct list_head works;
9397 	struct list_head splice;
9398 	int ret = 0;
9399 
9400 	INIT_LIST_HEAD(&works);
9401 	INIT_LIST_HEAD(&splice);
9402 
9403 	mutex_lock(&root->delalloc_mutex);
9404 	spin_lock(&root->delalloc_lock);
9405 	list_splice_init(&root->delalloc_inodes, &splice);
9406 	while (!list_empty(&splice)) {
9407 		binode = list_entry(splice.next, struct btrfs_inode,
9408 				    delalloc_inodes);
9409 
9410 		list_move_tail(&binode->delalloc_inodes,
9411 			       &root->delalloc_inodes);
9412 		inode = igrab(&binode->vfs_inode);
9413 		if (!inode) {
9414 			cond_resched_lock(&root->delalloc_lock);
9415 			continue;
9416 		}
9417 		spin_unlock(&root->delalloc_lock);
9418 
9419 		if (snapshot)
9420 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9421 				&binode->runtime_flags);
9422 		work = btrfs_alloc_delalloc_work(inode);
9423 		if (!work) {
9424 			iput(inode);
9425 			ret = -ENOMEM;
9426 			goto out;
9427 		}
9428 		list_add_tail(&work->list, &works);
9429 		btrfs_queue_work(root->fs_info->flush_workers,
9430 				 &work->work);
9431 		ret++;
9432 		if (nr != -1 && ret >= nr)
9433 			goto out;
9434 		cond_resched();
9435 		spin_lock(&root->delalloc_lock);
9436 	}
9437 	spin_unlock(&root->delalloc_lock);
9438 
9439 out:
9440 	list_for_each_entry_safe(work, next, &works, list) {
9441 		list_del_init(&work->list);
9442 		wait_for_completion(&work->completion);
9443 		kfree(work);
9444 	}
9445 
9446 	if (!list_empty(&splice)) {
9447 		spin_lock(&root->delalloc_lock);
9448 		list_splice_tail(&splice, &root->delalloc_inodes);
9449 		spin_unlock(&root->delalloc_lock);
9450 	}
9451 	mutex_unlock(&root->delalloc_mutex);
9452 	return ret;
9453 }
9454 
9455 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9456 {
9457 	struct btrfs_fs_info *fs_info = root->fs_info;
9458 	int ret;
9459 
9460 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9461 		return -EROFS;
9462 
9463 	ret = start_delalloc_inodes(root, -1, true);
9464 	if (ret > 0)
9465 		ret = 0;
9466 	return ret;
9467 }
9468 
9469 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
9470 {
9471 	struct btrfs_root *root;
9472 	struct list_head splice;
9473 	int ret;
9474 
9475 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9476 		return -EROFS;
9477 
9478 	INIT_LIST_HEAD(&splice);
9479 
9480 	mutex_lock(&fs_info->delalloc_root_mutex);
9481 	spin_lock(&fs_info->delalloc_root_lock);
9482 	list_splice_init(&fs_info->delalloc_roots, &splice);
9483 	while (!list_empty(&splice) && nr) {
9484 		root = list_first_entry(&splice, struct btrfs_root,
9485 					delalloc_root);
9486 		root = btrfs_grab_root(root);
9487 		BUG_ON(!root);
9488 		list_move_tail(&root->delalloc_root,
9489 			       &fs_info->delalloc_roots);
9490 		spin_unlock(&fs_info->delalloc_root_lock);
9491 
9492 		ret = start_delalloc_inodes(root, nr, false);
9493 		btrfs_put_root(root);
9494 		if (ret < 0)
9495 			goto out;
9496 
9497 		if (nr != -1) {
9498 			nr -= ret;
9499 			WARN_ON(nr < 0);
9500 		}
9501 		spin_lock(&fs_info->delalloc_root_lock);
9502 	}
9503 	spin_unlock(&fs_info->delalloc_root_lock);
9504 
9505 	ret = 0;
9506 out:
9507 	if (!list_empty(&splice)) {
9508 		spin_lock(&fs_info->delalloc_root_lock);
9509 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9510 		spin_unlock(&fs_info->delalloc_root_lock);
9511 	}
9512 	mutex_unlock(&fs_info->delalloc_root_mutex);
9513 	return ret;
9514 }
9515 
9516 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9517 			 const char *symname)
9518 {
9519 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9520 	struct btrfs_trans_handle *trans;
9521 	struct btrfs_root *root = BTRFS_I(dir)->root;
9522 	struct btrfs_path *path;
9523 	struct btrfs_key key;
9524 	struct inode *inode = NULL;
9525 	int err;
9526 	u64 objectid;
9527 	u64 index = 0;
9528 	int name_len;
9529 	int datasize;
9530 	unsigned long ptr;
9531 	struct btrfs_file_extent_item *ei;
9532 	struct extent_buffer *leaf;
9533 
9534 	name_len = strlen(symname);
9535 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9536 		return -ENAMETOOLONG;
9537 
9538 	/*
9539 	 * 2 items for inode item and ref
9540 	 * 2 items for dir items
9541 	 * 1 item for updating parent inode item
9542 	 * 1 item for the inline extent item
9543 	 * 1 item for xattr if selinux is on
9544 	 */
9545 	trans = btrfs_start_transaction(root, 7);
9546 	if (IS_ERR(trans))
9547 		return PTR_ERR(trans);
9548 
9549 	err = btrfs_find_free_ino(root, &objectid);
9550 	if (err)
9551 		goto out_unlock;
9552 
9553 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9554 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9555 				objectid, S_IFLNK|S_IRWXUGO, &index);
9556 	if (IS_ERR(inode)) {
9557 		err = PTR_ERR(inode);
9558 		inode = NULL;
9559 		goto out_unlock;
9560 	}
9561 
9562 	/*
9563 	* If the active LSM wants to access the inode during
9564 	* d_instantiate it needs these. Smack checks to see
9565 	* if the filesystem supports xattrs by looking at the
9566 	* ops vector.
9567 	*/
9568 	inode->i_fop = &btrfs_file_operations;
9569 	inode->i_op = &btrfs_file_inode_operations;
9570 	inode->i_mapping->a_ops = &btrfs_aops;
9571 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9572 
9573 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9574 	if (err)
9575 		goto out_unlock;
9576 
9577 	path = btrfs_alloc_path();
9578 	if (!path) {
9579 		err = -ENOMEM;
9580 		goto out_unlock;
9581 	}
9582 	key.objectid = btrfs_ino(BTRFS_I(inode));
9583 	key.offset = 0;
9584 	key.type = BTRFS_EXTENT_DATA_KEY;
9585 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9586 	err = btrfs_insert_empty_item(trans, root, path, &key,
9587 				      datasize);
9588 	if (err) {
9589 		btrfs_free_path(path);
9590 		goto out_unlock;
9591 	}
9592 	leaf = path->nodes[0];
9593 	ei = btrfs_item_ptr(leaf, path->slots[0],
9594 			    struct btrfs_file_extent_item);
9595 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9596 	btrfs_set_file_extent_type(leaf, ei,
9597 				   BTRFS_FILE_EXTENT_INLINE);
9598 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9599 	btrfs_set_file_extent_compression(leaf, ei, 0);
9600 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9601 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9602 
9603 	ptr = btrfs_file_extent_inline_start(ei);
9604 	write_extent_buffer(leaf, symname, ptr, name_len);
9605 	btrfs_mark_buffer_dirty(leaf);
9606 	btrfs_free_path(path);
9607 
9608 	inode->i_op = &btrfs_symlink_inode_operations;
9609 	inode_nohighmem(inode);
9610 	inode_set_bytes(inode, name_len);
9611 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9612 	err = btrfs_update_inode(trans, root, inode);
9613 	/*
9614 	 * Last step, add directory indexes for our symlink inode. This is the
9615 	 * last step to avoid extra cleanup of these indexes if an error happens
9616 	 * elsewhere above.
9617 	 */
9618 	if (!err)
9619 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9620 				BTRFS_I(inode), 0, index);
9621 	if (err)
9622 		goto out_unlock;
9623 
9624 	d_instantiate_new(dentry, inode);
9625 
9626 out_unlock:
9627 	btrfs_end_transaction(trans);
9628 	if (err && inode) {
9629 		inode_dec_link_count(inode);
9630 		discard_new_inode(inode);
9631 	}
9632 	btrfs_btree_balance_dirty(fs_info);
9633 	return err;
9634 }
9635 
9636 static int insert_prealloc_file_extent(struct btrfs_trans_handle *trans,
9637 				       struct inode *inode, struct btrfs_key *ins,
9638 				       u64 file_offset)
9639 {
9640 	struct btrfs_file_extent_item stack_fi;
9641 	u64 start = ins->objectid;
9642 	u64 len = ins->offset;
9643 	int ret;
9644 
9645 	memset(&stack_fi, 0, sizeof(stack_fi));
9646 
9647 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9648 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9649 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9650 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9651 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9652 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9653 	/* Encryption and other encoding is reserved and all 0 */
9654 
9655 	ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len);
9656 	if (ret < 0)
9657 		return ret;
9658 	return insert_reserved_file_extent(trans, BTRFS_I(inode), file_offset,
9659 					   &stack_fi, ret);
9660 }
9661 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9662 				       u64 start, u64 num_bytes, u64 min_size,
9663 				       loff_t actual_len, u64 *alloc_hint,
9664 				       struct btrfs_trans_handle *trans)
9665 {
9666 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9667 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9668 	struct extent_map *em;
9669 	struct btrfs_root *root = BTRFS_I(inode)->root;
9670 	struct btrfs_key ins;
9671 	u64 cur_offset = start;
9672 	u64 clear_offset = start;
9673 	u64 i_size;
9674 	u64 cur_bytes;
9675 	u64 last_alloc = (u64)-1;
9676 	int ret = 0;
9677 	bool own_trans = true;
9678 	u64 end = start + num_bytes - 1;
9679 
9680 	if (trans)
9681 		own_trans = false;
9682 	while (num_bytes > 0) {
9683 		if (own_trans) {
9684 			trans = btrfs_start_transaction(root, 3);
9685 			if (IS_ERR(trans)) {
9686 				ret = PTR_ERR(trans);
9687 				break;
9688 			}
9689 		}
9690 
9691 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9692 		cur_bytes = max(cur_bytes, min_size);
9693 		/*
9694 		 * If we are severely fragmented we could end up with really
9695 		 * small allocations, so if the allocator is returning small
9696 		 * chunks lets make its job easier by only searching for those
9697 		 * sized chunks.
9698 		 */
9699 		cur_bytes = min(cur_bytes, last_alloc);
9700 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9701 				min_size, 0, *alloc_hint, &ins, 1, 0);
9702 		if (ret) {
9703 			if (own_trans)
9704 				btrfs_end_transaction(trans);
9705 			break;
9706 		}
9707 
9708 		/*
9709 		 * We've reserved this space, and thus converted it from
9710 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9711 		 * from here on out we will only need to clear our reservation
9712 		 * for the remaining unreserved area, so advance our
9713 		 * clear_offset by our extent size.
9714 		 */
9715 		clear_offset += ins.offset;
9716 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9717 
9718 		last_alloc = ins.offset;
9719 		ret = insert_prealloc_file_extent(trans, inode, &ins, cur_offset);
9720 		if (ret) {
9721 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9722 						   ins.offset, 0);
9723 			btrfs_abort_transaction(trans, ret);
9724 			if (own_trans)
9725 				btrfs_end_transaction(trans);
9726 			break;
9727 		}
9728 
9729 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9730 					cur_offset + ins.offset -1, 0);
9731 
9732 		em = alloc_extent_map();
9733 		if (!em) {
9734 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9735 				&BTRFS_I(inode)->runtime_flags);
9736 			goto next;
9737 		}
9738 
9739 		em->start = cur_offset;
9740 		em->orig_start = cur_offset;
9741 		em->len = ins.offset;
9742 		em->block_start = ins.objectid;
9743 		em->block_len = ins.offset;
9744 		em->orig_block_len = ins.offset;
9745 		em->ram_bytes = ins.offset;
9746 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9747 		em->generation = trans->transid;
9748 
9749 		while (1) {
9750 			write_lock(&em_tree->lock);
9751 			ret = add_extent_mapping(em_tree, em, 1);
9752 			write_unlock(&em_tree->lock);
9753 			if (ret != -EEXIST)
9754 				break;
9755 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9756 						cur_offset + ins.offset - 1,
9757 						0);
9758 		}
9759 		free_extent_map(em);
9760 next:
9761 		num_bytes -= ins.offset;
9762 		cur_offset += ins.offset;
9763 		*alloc_hint = ins.objectid + ins.offset;
9764 
9765 		inode_inc_iversion(inode);
9766 		inode->i_ctime = current_time(inode);
9767 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9768 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9769 		    (actual_len > inode->i_size) &&
9770 		    (cur_offset > inode->i_size)) {
9771 			if (cur_offset > actual_len)
9772 				i_size = actual_len;
9773 			else
9774 				i_size = cur_offset;
9775 			i_size_write(inode, i_size);
9776 			btrfs_inode_safe_disk_i_size_write(inode, 0);
9777 		}
9778 
9779 		ret = btrfs_update_inode(trans, root, inode);
9780 
9781 		if (ret) {
9782 			btrfs_abort_transaction(trans, ret);
9783 			if (own_trans)
9784 				btrfs_end_transaction(trans);
9785 			break;
9786 		}
9787 
9788 		if (own_trans)
9789 			btrfs_end_transaction(trans);
9790 	}
9791 	if (clear_offset < end)
9792 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9793 			end - clear_offset + 1);
9794 	return ret;
9795 }
9796 
9797 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9798 			      u64 start, u64 num_bytes, u64 min_size,
9799 			      loff_t actual_len, u64 *alloc_hint)
9800 {
9801 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9802 					   min_size, actual_len, alloc_hint,
9803 					   NULL);
9804 }
9805 
9806 int btrfs_prealloc_file_range_trans(struct inode *inode,
9807 				    struct btrfs_trans_handle *trans, int mode,
9808 				    u64 start, u64 num_bytes, u64 min_size,
9809 				    loff_t actual_len, u64 *alloc_hint)
9810 {
9811 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9812 					   min_size, actual_len, alloc_hint, trans);
9813 }
9814 
9815 static int btrfs_set_page_dirty(struct page *page)
9816 {
9817 	return __set_page_dirty_nobuffers(page);
9818 }
9819 
9820 static int btrfs_permission(struct inode *inode, int mask)
9821 {
9822 	struct btrfs_root *root = BTRFS_I(inode)->root;
9823 	umode_t mode = inode->i_mode;
9824 
9825 	if (mask & MAY_WRITE &&
9826 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9827 		if (btrfs_root_readonly(root))
9828 			return -EROFS;
9829 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9830 			return -EACCES;
9831 	}
9832 	return generic_permission(inode, mask);
9833 }
9834 
9835 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9836 {
9837 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9838 	struct btrfs_trans_handle *trans;
9839 	struct btrfs_root *root = BTRFS_I(dir)->root;
9840 	struct inode *inode = NULL;
9841 	u64 objectid;
9842 	u64 index;
9843 	int ret = 0;
9844 
9845 	/*
9846 	 * 5 units required for adding orphan entry
9847 	 */
9848 	trans = btrfs_start_transaction(root, 5);
9849 	if (IS_ERR(trans))
9850 		return PTR_ERR(trans);
9851 
9852 	ret = btrfs_find_free_ino(root, &objectid);
9853 	if (ret)
9854 		goto out;
9855 
9856 	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9857 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9858 	if (IS_ERR(inode)) {
9859 		ret = PTR_ERR(inode);
9860 		inode = NULL;
9861 		goto out;
9862 	}
9863 
9864 	inode->i_fop = &btrfs_file_operations;
9865 	inode->i_op = &btrfs_file_inode_operations;
9866 
9867 	inode->i_mapping->a_ops = &btrfs_aops;
9868 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9869 
9870 	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9871 	if (ret)
9872 		goto out;
9873 
9874 	ret = btrfs_update_inode(trans, root, inode);
9875 	if (ret)
9876 		goto out;
9877 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9878 	if (ret)
9879 		goto out;
9880 
9881 	/*
9882 	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9883 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9884 	 * through:
9885 	 *
9886 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9887 	 */
9888 	set_nlink(inode, 1);
9889 	d_tmpfile(dentry, inode);
9890 	unlock_new_inode(inode);
9891 	mark_inode_dirty(inode);
9892 out:
9893 	btrfs_end_transaction(trans);
9894 	if (ret && inode)
9895 		discard_new_inode(inode);
9896 	btrfs_btree_balance_dirty(fs_info);
9897 	return ret;
9898 }
9899 
9900 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9901 {
9902 	struct inode *inode = tree->private_data;
9903 	unsigned long index = start >> PAGE_SHIFT;
9904 	unsigned long end_index = end >> PAGE_SHIFT;
9905 	struct page *page;
9906 
9907 	while (index <= end_index) {
9908 		page = find_get_page(inode->i_mapping, index);
9909 		ASSERT(page); /* Pages should be in the extent_io_tree */
9910 		set_page_writeback(page);
9911 		put_page(page);
9912 		index++;
9913 	}
9914 }
9915 
9916 #ifdef CONFIG_SWAP
9917 /*
9918  * Add an entry indicating a block group or device which is pinned by a
9919  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9920  * negative errno on failure.
9921  */
9922 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9923 				  bool is_block_group)
9924 {
9925 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9926 	struct btrfs_swapfile_pin *sp, *entry;
9927 	struct rb_node **p;
9928 	struct rb_node *parent = NULL;
9929 
9930 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9931 	if (!sp)
9932 		return -ENOMEM;
9933 	sp->ptr = ptr;
9934 	sp->inode = inode;
9935 	sp->is_block_group = is_block_group;
9936 
9937 	spin_lock(&fs_info->swapfile_pins_lock);
9938 	p = &fs_info->swapfile_pins.rb_node;
9939 	while (*p) {
9940 		parent = *p;
9941 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9942 		if (sp->ptr < entry->ptr ||
9943 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9944 			p = &(*p)->rb_left;
9945 		} else if (sp->ptr > entry->ptr ||
9946 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9947 			p = &(*p)->rb_right;
9948 		} else {
9949 			spin_unlock(&fs_info->swapfile_pins_lock);
9950 			kfree(sp);
9951 			return 1;
9952 		}
9953 	}
9954 	rb_link_node(&sp->node, parent, p);
9955 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9956 	spin_unlock(&fs_info->swapfile_pins_lock);
9957 	return 0;
9958 }
9959 
9960 /* Free all of the entries pinned by this swapfile. */
9961 static void btrfs_free_swapfile_pins(struct inode *inode)
9962 {
9963 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9964 	struct btrfs_swapfile_pin *sp;
9965 	struct rb_node *node, *next;
9966 
9967 	spin_lock(&fs_info->swapfile_pins_lock);
9968 	node = rb_first(&fs_info->swapfile_pins);
9969 	while (node) {
9970 		next = rb_next(node);
9971 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9972 		if (sp->inode == inode) {
9973 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9974 			if (sp->is_block_group)
9975 				btrfs_put_block_group(sp->ptr);
9976 			kfree(sp);
9977 		}
9978 		node = next;
9979 	}
9980 	spin_unlock(&fs_info->swapfile_pins_lock);
9981 }
9982 
9983 struct btrfs_swap_info {
9984 	u64 start;
9985 	u64 block_start;
9986 	u64 block_len;
9987 	u64 lowest_ppage;
9988 	u64 highest_ppage;
9989 	unsigned long nr_pages;
9990 	int nr_extents;
9991 };
9992 
9993 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9994 				 struct btrfs_swap_info *bsi)
9995 {
9996 	unsigned long nr_pages;
9997 	u64 first_ppage, first_ppage_reported, next_ppage;
9998 	int ret;
9999 
10000 	first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10001 	next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10002 				PAGE_SIZE) >> PAGE_SHIFT;
10003 
10004 	if (first_ppage >= next_ppage)
10005 		return 0;
10006 	nr_pages = next_ppage - first_ppage;
10007 
10008 	first_ppage_reported = first_ppage;
10009 	if (bsi->start == 0)
10010 		first_ppage_reported++;
10011 	if (bsi->lowest_ppage > first_ppage_reported)
10012 		bsi->lowest_ppage = first_ppage_reported;
10013 	if (bsi->highest_ppage < (next_ppage - 1))
10014 		bsi->highest_ppage = next_ppage - 1;
10015 
10016 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10017 	if (ret < 0)
10018 		return ret;
10019 	bsi->nr_extents += ret;
10020 	bsi->nr_pages += nr_pages;
10021 	return 0;
10022 }
10023 
10024 static void btrfs_swap_deactivate(struct file *file)
10025 {
10026 	struct inode *inode = file_inode(file);
10027 
10028 	btrfs_free_swapfile_pins(inode);
10029 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10030 }
10031 
10032 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10033 			       sector_t *span)
10034 {
10035 	struct inode *inode = file_inode(file);
10036 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10037 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10038 	struct extent_state *cached_state = NULL;
10039 	struct extent_map *em = NULL;
10040 	struct btrfs_device *device = NULL;
10041 	struct btrfs_swap_info bsi = {
10042 		.lowest_ppage = (sector_t)-1ULL,
10043 	};
10044 	int ret = 0;
10045 	u64 isize;
10046 	u64 start;
10047 
10048 	/*
10049 	 * If the swap file was just created, make sure delalloc is done. If the
10050 	 * file changes again after this, the user is doing something stupid and
10051 	 * we don't really care.
10052 	 */
10053 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10054 	if (ret)
10055 		return ret;
10056 
10057 	/*
10058 	 * The inode is locked, so these flags won't change after we check them.
10059 	 */
10060 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10061 		btrfs_warn(fs_info, "swapfile must not be compressed");
10062 		return -EINVAL;
10063 	}
10064 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10065 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10066 		return -EINVAL;
10067 	}
10068 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10069 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10070 		return -EINVAL;
10071 	}
10072 
10073 	/*
10074 	 * Balance or device remove/replace/resize can move stuff around from
10075 	 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10076 	 * concurrently while we are mapping the swap extents, and
10077 	 * fs_info->swapfile_pins prevents them from running while the swap file
10078 	 * is active and moving the extents. Note that this also prevents a
10079 	 * concurrent device add which isn't actually necessary, but it's not
10080 	 * really worth the trouble to allow it.
10081 	 */
10082 	if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10083 		btrfs_warn(fs_info,
10084 	   "cannot activate swapfile while exclusive operation is running");
10085 		return -EBUSY;
10086 	}
10087 	/*
10088 	 * Snapshots can create extents which require COW even if NODATACOW is
10089 	 * set. We use this counter to prevent snapshots. We must increment it
10090 	 * before walking the extents because we don't want a concurrent
10091 	 * snapshot to run after we've already checked the extents.
10092 	 */
10093 	atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10094 
10095 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10096 
10097 	lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10098 	start = 0;
10099 	while (start < isize) {
10100 		u64 logical_block_start, physical_block_start;
10101 		struct btrfs_block_group *bg;
10102 		u64 len = isize - start;
10103 
10104 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10105 		if (IS_ERR(em)) {
10106 			ret = PTR_ERR(em);
10107 			goto out;
10108 		}
10109 
10110 		if (em->block_start == EXTENT_MAP_HOLE) {
10111 			btrfs_warn(fs_info, "swapfile must not have holes");
10112 			ret = -EINVAL;
10113 			goto out;
10114 		}
10115 		if (em->block_start == EXTENT_MAP_INLINE) {
10116 			/*
10117 			 * It's unlikely we'll ever actually find ourselves
10118 			 * here, as a file small enough to fit inline won't be
10119 			 * big enough to store more than the swap header, but in
10120 			 * case something changes in the future, let's catch it
10121 			 * here rather than later.
10122 			 */
10123 			btrfs_warn(fs_info, "swapfile must not be inline");
10124 			ret = -EINVAL;
10125 			goto out;
10126 		}
10127 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10128 			btrfs_warn(fs_info, "swapfile must not be compressed");
10129 			ret = -EINVAL;
10130 			goto out;
10131 		}
10132 
10133 		logical_block_start = em->block_start + (start - em->start);
10134 		len = min(len, em->len - (start - em->start));
10135 		free_extent_map(em);
10136 		em = NULL;
10137 
10138 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true);
10139 		if (ret < 0) {
10140 			goto out;
10141 		} else if (ret) {
10142 			ret = 0;
10143 		} else {
10144 			btrfs_warn(fs_info,
10145 				   "swapfile must not be copy-on-write");
10146 			ret = -EINVAL;
10147 			goto out;
10148 		}
10149 
10150 		em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10151 		if (IS_ERR(em)) {
10152 			ret = PTR_ERR(em);
10153 			goto out;
10154 		}
10155 
10156 		if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10157 			btrfs_warn(fs_info,
10158 				   "swapfile must have single data profile");
10159 			ret = -EINVAL;
10160 			goto out;
10161 		}
10162 
10163 		if (device == NULL) {
10164 			device = em->map_lookup->stripes[0].dev;
10165 			ret = btrfs_add_swapfile_pin(inode, device, false);
10166 			if (ret == 1)
10167 				ret = 0;
10168 			else if (ret)
10169 				goto out;
10170 		} else if (device != em->map_lookup->stripes[0].dev) {
10171 			btrfs_warn(fs_info, "swapfile must be on one device");
10172 			ret = -EINVAL;
10173 			goto out;
10174 		}
10175 
10176 		physical_block_start = (em->map_lookup->stripes[0].physical +
10177 					(logical_block_start - em->start));
10178 		len = min(len, em->len - (logical_block_start - em->start));
10179 		free_extent_map(em);
10180 		em = NULL;
10181 
10182 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10183 		if (!bg) {
10184 			btrfs_warn(fs_info,
10185 			   "could not find block group containing swapfile");
10186 			ret = -EINVAL;
10187 			goto out;
10188 		}
10189 
10190 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10191 		if (ret) {
10192 			btrfs_put_block_group(bg);
10193 			if (ret == 1)
10194 				ret = 0;
10195 			else
10196 				goto out;
10197 		}
10198 
10199 		if (bsi.block_len &&
10200 		    bsi.block_start + bsi.block_len == physical_block_start) {
10201 			bsi.block_len += len;
10202 		} else {
10203 			if (bsi.block_len) {
10204 				ret = btrfs_add_swap_extent(sis, &bsi);
10205 				if (ret)
10206 					goto out;
10207 			}
10208 			bsi.start = start;
10209 			bsi.block_start = physical_block_start;
10210 			bsi.block_len = len;
10211 		}
10212 
10213 		start += len;
10214 	}
10215 
10216 	if (bsi.block_len)
10217 		ret = btrfs_add_swap_extent(sis, &bsi);
10218 
10219 out:
10220 	if (!IS_ERR_OR_NULL(em))
10221 		free_extent_map(em);
10222 
10223 	unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10224 
10225 	if (ret)
10226 		btrfs_swap_deactivate(file);
10227 
10228 	clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10229 
10230 	if (ret)
10231 		return ret;
10232 
10233 	if (device)
10234 		sis->bdev = device->bdev;
10235 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10236 	sis->max = bsi.nr_pages;
10237 	sis->pages = bsi.nr_pages - 1;
10238 	sis->highest_bit = bsi.nr_pages - 1;
10239 	return bsi.nr_extents;
10240 }
10241 #else
10242 static void btrfs_swap_deactivate(struct file *file)
10243 {
10244 }
10245 
10246 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10247 			       sector_t *span)
10248 {
10249 	return -EOPNOTSUPP;
10250 }
10251 #endif
10252 
10253 static const struct inode_operations btrfs_dir_inode_operations = {
10254 	.getattr	= btrfs_getattr,
10255 	.lookup		= btrfs_lookup,
10256 	.create		= btrfs_create,
10257 	.unlink		= btrfs_unlink,
10258 	.link		= btrfs_link,
10259 	.mkdir		= btrfs_mkdir,
10260 	.rmdir		= btrfs_rmdir,
10261 	.rename		= btrfs_rename2,
10262 	.symlink	= btrfs_symlink,
10263 	.setattr	= btrfs_setattr,
10264 	.mknod		= btrfs_mknod,
10265 	.listxattr	= btrfs_listxattr,
10266 	.permission	= btrfs_permission,
10267 	.get_acl	= btrfs_get_acl,
10268 	.set_acl	= btrfs_set_acl,
10269 	.update_time	= btrfs_update_time,
10270 	.tmpfile        = btrfs_tmpfile,
10271 };
10272 
10273 static const struct file_operations btrfs_dir_file_operations = {
10274 	.llseek		= generic_file_llseek,
10275 	.read		= generic_read_dir,
10276 	.iterate_shared	= btrfs_real_readdir,
10277 	.open		= btrfs_opendir,
10278 	.unlocked_ioctl	= btrfs_ioctl,
10279 #ifdef CONFIG_COMPAT
10280 	.compat_ioctl	= btrfs_compat_ioctl,
10281 #endif
10282 	.release        = btrfs_release_file,
10283 	.fsync		= btrfs_sync_file,
10284 };
10285 
10286 static const struct extent_io_ops btrfs_extent_io_ops = {
10287 	/* mandatory callbacks */
10288 	.submit_bio_hook = btrfs_submit_bio_hook,
10289 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
10290 };
10291 
10292 /*
10293  * btrfs doesn't support the bmap operation because swapfiles
10294  * use bmap to make a mapping of extents in the file.  They assume
10295  * these extents won't change over the life of the file and they
10296  * use the bmap result to do IO directly to the drive.
10297  *
10298  * the btrfs bmap call would return logical addresses that aren't
10299  * suitable for IO and they also will change frequently as COW
10300  * operations happen.  So, swapfile + btrfs == corruption.
10301  *
10302  * For now we're avoiding this by dropping bmap.
10303  */
10304 static const struct address_space_operations btrfs_aops = {
10305 	.readpage	= btrfs_readpage,
10306 	.writepage	= btrfs_writepage,
10307 	.writepages	= btrfs_writepages,
10308 	.readahead	= btrfs_readahead,
10309 	.direct_IO	= btrfs_direct_IO,
10310 	.invalidatepage = btrfs_invalidatepage,
10311 	.releasepage	= btrfs_releasepage,
10312 #ifdef CONFIG_MIGRATION
10313 	.migratepage	= btrfs_migratepage,
10314 #endif
10315 	.set_page_dirty	= btrfs_set_page_dirty,
10316 	.error_remove_page = generic_error_remove_page,
10317 	.swap_activate	= btrfs_swap_activate,
10318 	.swap_deactivate = btrfs_swap_deactivate,
10319 };
10320 
10321 static const struct inode_operations btrfs_file_inode_operations = {
10322 	.getattr	= btrfs_getattr,
10323 	.setattr	= btrfs_setattr,
10324 	.listxattr      = btrfs_listxattr,
10325 	.permission	= btrfs_permission,
10326 	.fiemap		= btrfs_fiemap,
10327 	.get_acl	= btrfs_get_acl,
10328 	.set_acl	= btrfs_set_acl,
10329 	.update_time	= btrfs_update_time,
10330 };
10331 static const struct inode_operations btrfs_special_inode_operations = {
10332 	.getattr	= btrfs_getattr,
10333 	.setattr	= btrfs_setattr,
10334 	.permission	= btrfs_permission,
10335 	.listxattr	= btrfs_listxattr,
10336 	.get_acl	= btrfs_get_acl,
10337 	.set_acl	= btrfs_set_acl,
10338 	.update_time	= btrfs_update_time,
10339 };
10340 static const struct inode_operations btrfs_symlink_inode_operations = {
10341 	.get_link	= page_get_link,
10342 	.getattr	= btrfs_getattr,
10343 	.setattr	= btrfs_setattr,
10344 	.permission	= btrfs_permission,
10345 	.listxattr	= btrfs_listxattr,
10346 	.update_time	= btrfs_update_time,
10347 };
10348 
10349 const struct dentry_operations btrfs_dentry_operations = {
10350 	.d_delete	= btrfs_dentry_delete,
10351 };
10352