xref: /linux/fs/btrfs/inode.c (revision 527a0f2bdcfe77fce22f006b97e42e4da3137c86)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 #include "fiemap.h"
74 
75 struct btrfs_iget_args {
76 	u64 ino;
77 	struct btrfs_root *root;
78 };
79 
80 struct btrfs_rename_ctx {
81 	/* Output field. Stores the index number of the old directory entry. */
82 	u64 index;
83 };
84 
85 /*
86  * Used by data_reloc_print_warning_inode() to pass needed info for filename
87  * resolution and output of error message.
88  */
89 struct data_reloc_warn {
90 	struct btrfs_path path;
91 	struct btrfs_fs_info *fs_info;
92 	u64 extent_item_size;
93 	u64 logical;
94 	int mirror_num;
95 };
96 
97 /*
98  * For the file_extent_tree, we want to hold the inode lock when we lookup and
99  * update the disk_i_size, but lockdep will complain because our io_tree we hold
100  * the tree lock and get the inode lock when setting delalloc. These two things
101  * are unrelated, so make a class for the file_extent_tree so we don't get the
102  * two locking patterns mixed up.
103  */
104 static struct lock_class_key file_extent_tree_class;
105 
106 static const struct inode_operations btrfs_dir_inode_operations;
107 static const struct inode_operations btrfs_symlink_inode_operations;
108 static const struct inode_operations btrfs_special_inode_operations;
109 static const struct inode_operations btrfs_file_inode_operations;
110 static const struct address_space_operations btrfs_aops;
111 static const struct file_operations btrfs_dir_file_operations;
112 
113 static struct kmem_cache *btrfs_inode_cachep;
114 
115 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
117 
118 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
119 				     struct page *locked_page, u64 start,
120 				     u64 end, struct writeback_control *wbc,
121 				     bool pages_dirty);
122 
123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
124 					  u64 root, void *warn_ctx)
125 {
126 	struct data_reloc_warn *warn = warn_ctx;
127 	struct btrfs_fs_info *fs_info = warn->fs_info;
128 	struct extent_buffer *eb;
129 	struct btrfs_inode_item *inode_item;
130 	struct inode_fs_paths *ipath = NULL;
131 	struct btrfs_root *local_root;
132 	struct btrfs_key key;
133 	unsigned int nofs_flag;
134 	u32 nlink;
135 	int ret;
136 
137 	local_root = btrfs_get_fs_root(fs_info, root, true);
138 	if (IS_ERR(local_root)) {
139 		ret = PTR_ERR(local_root);
140 		goto err;
141 	}
142 
143 	/* This makes the path point to (inum INODE_ITEM ioff). */
144 	key.objectid = inum;
145 	key.type = BTRFS_INODE_ITEM_KEY;
146 	key.offset = 0;
147 
148 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
149 	if (ret) {
150 		btrfs_put_root(local_root);
151 		btrfs_release_path(&warn->path);
152 		goto err;
153 	}
154 
155 	eb = warn->path.nodes[0];
156 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
157 	nlink = btrfs_inode_nlink(eb, inode_item);
158 	btrfs_release_path(&warn->path);
159 
160 	nofs_flag = memalloc_nofs_save();
161 	ipath = init_ipath(4096, local_root, &warn->path);
162 	memalloc_nofs_restore(nofs_flag);
163 	if (IS_ERR(ipath)) {
164 		btrfs_put_root(local_root);
165 		ret = PTR_ERR(ipath);
166 		ipath = NULL;
167 		/*
168 		 * -ENOMEM, not a critical error, just output an generic error
169 		 * without filename.
170 		 */
171 		btrfs_warn(fs_info,
172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
173 			   warn->logical, warn->mirror_num, root, inum, offset);
174 		return ret;
175 	}
176 	ret = paths_from_inode(inum, ipath);
177 	if (ret < 0)
178 		goto err;
179 
180 	/*
181 	 * We deliberately ignore the bit ipath might have been too small to
182 	 * hold all of the paths here
183 	 */
184 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
185 		btrfs_warn(fs_info,
186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
187 			   warn->logical, warn->mirror_num, root, inum, offset,
188 			   fs_info->sectorsize, nlink,
189 			   (char *)(unsigned long)ipath->fspath->val[i]);
190 	}
191 
192 	btrfs_put_root(local_root);
193 	free_ipath(ipath);
194 	return 0;
195 
196 err:
197 	btrfs_warn(fs_info,
198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
199 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
200 
201 	free_ipath(ipath);
202 	return ret;
203 }
204 
205 /*
206  * Do extra user-friendly error output (e.g. lookup all the affected files).
207  *
208  * Return true if we succeeded doing the backref lookup.
209  * Return false if such lookup failed, and has to fallback to the old error message.
210  */
211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
212 				   const u8 *csum, const u8 *csum_expected,
213 				   int mirror_num)
214 {
215 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
216 	struct btrfs_path path = { 0 };
217 	struct btrfs_key found_key = { 0 };
218 	struct extent_buffer *eb;
219 	struct btrfs_extent_item *ei;
220 	const u32 csum_size = fs_info->csum_size;
221 	u64 logical;
222 	u64 flags;
223 	u32 item_size;
224 	int ret;
225 
226 	mutex_lock(&fs_info->reloc_mutex);
227 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
228 	mutex_unlock(&fs_info->reloc_mutex);
229 
230 	if (logical == U64_MAX) {
231 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
232 		btrfs_warn_rl(fs_info,
233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
234 			btrfs_root_id(inode->root), btrfs_ino(inode), file_off,
235 			CSUM_FMT_VALUE(csum_size, csum),
236 			CSUM_FMT_VALUE(csum_size, csum_expected),
237 			mirror_num);
238 		return;
239 	}
240 
241 	logical += file_off;
242 	btrfs_warn_rl(fs_info,
243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
244 			btrfs_root_id(inode->root),
245 			btrfs_ino(inode), file_off, logical,
246 			CSUM_FMT_VALUE(csum_size, csum),
247 			CSUM_FMT_VALUE(csum_size, csum_expected),
248 			mirror_num);
249 
250 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
251 	if (ret < 0) {
252 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
253 			     logical, ret);
254 		return;
255 	}
256 	eb = path.nodes[0];
257 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
258 	item_size = btrfs_item_size(eb, path.slots[0]);
259 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
260 		unsigned long ptr = 0;
261 		u64 ref_root;
262 		u8 ref_level;
263 
264 		while (true) {
265 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
266 						      item_size, &ref_root,
267 						      &ref_level);
268 			if (ret < 0) {
269 				btrfs_warn_rl(fs_info,
270 				"failed to resolve tree backref for logical %llu: %d",
271 					      logical, ret);
272 				break;
273 			}
274 			if (ret > 0)
275 				break;
276 
277 			btrfs_warn_rl(fs_info,
278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
279 				logical, mirror_num,
280 				(ref_level ? "node" : "leaf"),
281 				ref_level, ref_root);
282 		}
283 		btrfs_release_path(&path);
284 	} else {
285 		struct btrfs_backref_walk_ctx ctx = { 0 };
286 		struct data_reloc_warn reloc_warn = { 0 };
287 
288 		btrfs_release_path(&path);
289 
290 		ctx.bytenr = found_key.objectid;
291 		ctx.extent_item_pos = logical - found_key.objectid;
292 		ctx.fs_info = fs_info;
293 
294 		reloc_warn.logical = logical;
295 		reloc_warn.extent_item_size = found_key.offset;
296 		reloc_warn.mirror_num = mirror_num;
297 		reloc_warn.fs_info = fs_info;
298 
299 		iterate_extent_inodes(&ctx, true,
300 				      data_reloc_print_warning_inode, &reloc_warn);
301 	}
302 }
303 
304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
305 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
306 {
307 	struct btrfs_root *root = inode->root;
308 	const u32 csum_size = root->fs_info->csum_size;
309 
310 	/* For data reloc tree, it's better to do a backref lookup instead. */
311 	if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID)
312 		return print_data_reloc_error(inode, logical_start, csum,
313 					      csum_expected, mirror_num);
314 
315 	/* Output without objectid, which is more meaningful */
316 	if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) {
317 		btrfs_warn_rl(root->fs_info,
318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
319 			btrfs_root_id(root), btrfs_ino(inode),
320 			logical_start,
321 			CSUM_FMT_VALUE(csum_size, csum),
322 			CSUM_FMT_VALUE(csum_size, csum_expected),
323 			mirror_num);
324 	} else {
325 		btrfs_warn_rl(root->fs_info,
326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
327 			btrfs_root_id(root), btrfs_ino(inode),
328 			logical_start,
329 			CSUM_FMT_VALUE(csum_size, csum),
330 			CSUM_FMT_VALUE(csum_size, csum_expected),
331 			mirror_num);
332 	}
333 }
334 
335 /*
336  * Lock inode i_rwsem based on arguments passed.
337  *
338  * ilock_flags can have the following bit set:
339  *
340  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
341  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
342  *		     return -EAGAIN
343  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
344  */
345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
346 {
347 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
348 		if (ilock_flags & BTRFS_ILOCK_TRY) {
349 			if (!inode_trylock_shared(&inode->vfs_inode))
350 				return -EAGAIN;
351 			else
352 				return 0;
353 		}
354 		inode_lock_shared(&inode->vfs_inode);
355 	} else {
356 		if (ilock_flags & BTRFS_ILOCK_TRY) {
357 			if (!inode_trylock(&inode->vfs_inode))
358 				return -EAGAIN;
359 			else
360 				return 0;
361 		}
362 		inode_lock(&inode->vfs_inode);
363 	}
364 	if (ilock_flags & BTRFS_ILOCK_MMAP)
365 		down_write(&inode->i_mmap_lock);
366 	return 0;
367 }
368 
369 /*
370  * Unock inode i_rwsem.
371  *
372  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
373  * to decide whether the lock acquired is shared or exclusive.
374  */
375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
376 {
377 	if (ilock_flags & BTRFS_ILOCK_MMAP)
378 		up_write(&inode->i_mmap_lock);
379 	if (ilock_flags & BTRFS_ILOCK_SHARED)
380 		inode_unlock_shared(&inode->vfs_inode);
381 	else
382 		inode_unlock(&inode->vfs_inode);
383 }
384 
385 /*
386  * Cleanup all submitted ordered extents in specified range to handle errors
387  * from the btrfs_run_delalloc_range() callback.
388  *
389  * NOTE: caller must ensure that when an error happens, it can not call
390  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
391  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
392  * to be released, which we want to happen only when finishing the ordered
393  * extent (btrfs_finish_ordered_io()).
394  */
395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
396 						 struct page *locked_page,
397 						 u64 offset, u64 bytes)
398 {
399 	unsigned long index = offset >> PAGE_SHIFT;
400 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
401 	u64 page_start = 0, page_end = 0;
402 	struct page *page;
403 
404 	if (locked_page) {
405 		page_start = page_offset(locked_page);
406 		page_end = page_start + PAGE_SIZE - 1;
407 	}
408 
409 	while (index <= end_index) {
410 		/*
411 		 * For locked page, we will call btrfs_mark_ordered_io_finished
412 		 * through btrfs_mark_ordered_io_finished() on it
413 		 * in run_delalloc_range() for the error handling, which will
414 		 * clear page Ordered and run the ordered extent accounting.
415 		 *
416 		 * Here we can't just clear the Ordered bit, or
417 		 * btrfs_mark_ordered_io_finished() would skip the accounting
418 		 * for the page range, and the ordered extent will never finish.
419 		 */
420 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
421 			index++;
422 			continue;
423 		}
424 		page = find_get_page(inode->vfs_inode.i_mapping, index);
425 		index++;
426 		if (!page)
427 			continue;
428 
429 		/*
430 		 * Here we just clear all Ordered bits for every page in the
431 		 * range, then btrfs_mark_ordered_io_finished() will handle
432 		 * the ordered extent accounting for the range.
433 		 */
434 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
435 						page_folio(page), offset, bytes);
436 		put_page(page);
437 	}
438 
439 	if (locked_page) {
440 		/* The locked page covers the full range, nothing needs to be done */
441 		if (bytes + offset <= page_start + PAGE_SIZE)
442 			return;
443 		/*
444 		 * In case this page belongs to the delalloc range being
445 		 * instantiated then skip it, since the first page of a range is
446 		 * going to be properly cleaned up by the caller of
447 		 * run_delalloc_range
448 		 */
449 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
450 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
451 			offset = page_offset(locked_page) + PAGE_SIZE;
452 		}
453 	}
454 
455 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
456 }
457 
458 static int btrfs_dirty_inode(struct btrfs_inode *inode);
459 
460 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
461 				     struct btrfs_new_inode_args *args)
462 {
463 	int err;
464 
465 	if (args->default_acl) {
466 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
467 				      ACL_TYPE_DEFAULT);
468 		if (err)
469 			return err;
470 	}
471 	if (args->acl) {
472 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
473 		if (err)
474 			return err;
475 	}
476 	if (!args->default_acl && !args->acl)
477 		cache_no_acl(args->inode);
478 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
479 					 &args->dentry->d_name);
480 }
481 
482 /*
483  * this does all the hard work for inserting an inline extent into
484  * the btree.  The caller should have done a btrfs_drop_extents so that
485  * no overlapping inline items exist in the btree
486  */
487 static int insert_inline_extent(struct btrfs_trans_handle *trans,
488 				struct btrfs_path *path,
489 				struct btrfs_inode *inode, bool extent_inserted,
490 				size_t size, size_t compressed_size,
491 				int compress_type,
492 				struct folio *compressed_folio,
493 				bool update_i_size)
494 {
495 	struct btrfs_root *root = inode->root;
496 	struct extent_buffer *leaf;
497 	struct page *page = NULL;
498 	const u32 sectorsize = trans->fs_info->sectorsize;
499 	char *kaddr;
500 	unsigned long ptr;
501 	struct btrfs_file_extent_item *ei;
502 	int ret;
503 	size_t cur_size = size;
504 	u64 i_size;
505 
506 	/*
507 	 * The decompressed size must still be no larger than a sector.  Under
508 	 * heavy race, we can have size == 0 passed in, but that shouldn't be a
509 	 * big deal and we can continue the insertion.
510 	 */
511 	ASSERT(size <= sectorsize);
512 
513 	/*
514 	 * The compressed size also needs to be no larger than a sector.
515 	 * That's also why we only need one page as the parameter.
516 	 */
517 	if (compressed_folio)
518 		ASSERT(compressed_size <= sectorsize);
519 	else
520 		ASSERT(compressed_size == 0);
521 
522 	if (compressed_size && compressed_folio)
523 		cur_size = compressed_size;
524 
525 	if (!extent_inserted) {
526 		struct btrfs_key key;
527 		size_t datasize;
528 
529 		key.objectid = btrfs_ino(inode);
530 		key.offset = 0;
531 		key.type = BTRFS_EXTENT_DATA_KEY;
532 
533 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
534 		ret = btrfs_insert_empty_item(trans, root, path, &key,
535 					      datasize);
536 		if (ret)
537 			goto fail;
538 	}
539 	leaf = path->nodes[0];
540 	ei = btrfs_item_ptr(leaf, path->slots[0],
541 			    struct btrfs_file_extent_item);
542 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
543 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
544 	btrfs_set_file_extent_encryption(leaf, ei, 0);
545 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
546 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
547 	ptr = btrfs_file_extent_inline_start(ei);
548 
549 	if (compress_type != BTRFS_COMPRESS_NONE) {
550 		kaddr = kmap_local_folio(compressed_folio, 0);
551 		write_extent_buffer(leaf, kaddr, ptr, compressed_size);
552 		kunmap_local(kaddr);
553 
554 		btrfs_set_file_extent_compression(leaf, ei,
555 						  compress_type);
556 	} else {
557 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
558 		btrfs_set_file_extent_compression(leaf, ei, 0);
559 		kaddr = kmap_local_page(page);
560 		write_extent_buffer(leaf, kaddr, ptr, size);
561 		kunmap_local(kaddr);
562 		put_page(page);
563 	}
564 	btrfs_mark_buffer_dirty(trans, leaf);
565 	btrfs_release_path(path);
566 
567 	/*
568 	 * We align size to sectorsize for inline extents just for simplicity
569 	 * sake.
570 	 */
571 	ret = btrfs_inode_set_file_extent_range(inode, 0,
572 					ALIGN(size, root->fs_info->sectorsize));
573 	if (ret)
574 		goto fail;
575 
576 	/*
577 	 * We're an inline extent, so nobody can extend the file past i_size
578 	 * without locking a page we already have locked.
579 	 *
580 	 * We must do any i_size and inode updates before we unlock the pages.
581 	 * Otherwise we could end up racing with unlink.
582 	 */
583 	i_size = i_size_read(&inode->vfs_inode);
584 	if (update_i_size && size > i_size) {
585 		i_size_write(&inode->vfs_inode, size);
586 		i_size = size;
587 	}
588 	inode->disk_i_size = i_size;
589 
590 fail:
591 	return ret;
592 }
593 
594 static bool can_cow_file_range_inline(struct btrfs_inode *inode,
595 				      u64 offset, u64 size,
596 				      size_t compressed_size)
597 {
598 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
599 	u64 data_len = (compressed_size ?: size);
600 
601 	/* Inline extents must start at offset 0. */
602 	if (offset != 0)
603 		return false;
604 
605 	/*
606 	 * Due to the page size limit, for subpage we can only trigger the
607 	 * writeback for the dirty sectors of page, that means data writeback
608 	 * is doing more writeback than what we want.
609 	 *
610 	 * This is especially unexpected for some call sites like fallocate,
611 	 * where we only increase i_size after everything is done.
612 	 * This means we can trigger inline extent even if we didn't want to.
613 	 * So here we skip inline extent creation completely.
614 	 */
615 	if (fs_info->sectorsize != PAGE_SIZE)
616 		return false;
617 
618 	/* Inline extents are limited to sectorsize. */
619 	if (size > fs_info->sectorsize)
620 		return false;
621 
622 	/* We cannot exceed the maximum inline data size. */
623 	if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
624 		return false;
625 
626 	/* We cannot exceed the user specified max_inline size. */
627 	if (data_len > fs_info->max_inline)
628 		return false;
629 
630 	/* Inline extents must be the entirety of the file. */
631 	if (size < i_size_read(&inode->vfs_inode))
632 		return false;
633 
634 	return true;
635 }
636 
637 /*
638  * conditionally insert an inline extent into the file.  This
639  * does the checks required to make sure the data is small enough
640  * to fit as an inline extent.
641  *
642  * If being used directly, you must have already checked we're allowed to cow
643  * the range by getting true from can_cow_file_range_inline().
644  */
645 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, u64 offset,
646 					    u64 size, size_t compressed_size,
647 					    int compress_type,
648 					    struct folio *compressed_folio,
649 					    bool update_i_size)
650 {
651 	struct btrfs_drop_extents_args drop_args = { 0 };
652 	struct btrfs_root *root = inode->root;
653 	struct btrfs_fs_info *fs_info = root->fs_info;
654 	struct btrfs_trans_handle *trans;
655 	u64 data_len = (compressed_size ?: size);
656 	int ret;
657 	struct btrfs_path *path;
658 
659 	path = btrfs_alloc_path();
660 	if (!path)
661 		return -ENOMEM;
662 
663 	trans = btrfs_join_transaction(root);
664 	if (IS_ERR(trans)) {
665 		btrfs_free_path(path);
666 		return PTR_ERR(trans);
667 	}
668 	trans->block_rsv = &inode->block_rsv;
669 
670 	drop_args.path = path;
671 	drop_args.start = 0;
672 	drop_args.end = fs_info->sectorsize;
673 	drop_args.drop_cache = true;
674 	drop_args.replace_extent = true;
675 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
676 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
677 	if (ret) {
678 		btrfs_abort_transaction(trans, ret);
679 		goto out;
680 	}
681 
682 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
683 				   size, compressed_size, compress_type,
684 				   compressed_folio, update_i_size);
685 	if (ret && ret != -ENOSPC) {
686 		btrfs_abort_transaction(trans, ret);
687 		goto out;
688 	} else if (ret == -ENOSPC) {
689 		ret = 1;
690 		goto out;
691 	}
692 
693 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
694 	ret = btrfs_update_inode(trans, inode);
695 	if (ret && ret != -ENOSPC) {
696 		btrfs_abort_transaction(trans, ret);
697 		goto out;
698 	} else if (ret == -ENOSPC) {
699 		ret = 1;
700 		goto out;
701 	}
702 
703 	btrfs_set_inode_full_sync(inode);
704 out:
705 	/*
706 	 * Don't forget to free the reserved space, as for inlined extent
707 	 * it won't count as data extent, free them directly here.
708 	 * And at reserve time, it's always aligned to page size, so
709 	 * just free one page here.
710 	 */
711 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
712 	btrfs_free_path(path);
713 	btrfs_end_transaction(trans);
714 	return ret;
715 }
716 
717 static noinline int cow_file_range_inline(struct btrfs_inode *inode,
718 					  struct page *locked_page,
719 					  u64 offset, u64 end,
720 					  size_t compressed_size,
721 					  int compress_type,
722 					  struct folio *compressed_folio,
723 					  bool update_i_size)
724 {
725 	struct extent_state *cached = NULL;
726 	unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
727 		EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED;
728 	u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1);
729 	int ret;
730 
731 	if (!can_cow_file_range_inline(inode, offset, size, compressed_size))
732 		return 1;
733 
734 	lock_extent(&inode->io_tree, offset, end, &cached);
735 	ret = __cow_file_range_inline(inode, offset, size, compressed_size,
736 				      compress_type, compressed_folio,
737 				      update_i_size);
738 	if (ret > 0) {
739 		unlock_extent(&inode->io_tree, offset, end, &cached);
740 		return ret;
741 	}
742 
743 	if (ret == 0)
744 		locked_page = NULL;
745 
746 	extent_clear_unlock_delalloc(inode, offset, end, locked_page, &cached,
747 				     clear_flags,
748 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
749 				     PAGE_END_WRITEBACK);
750 	return ret;
751 }
752 
753 struct async_extent {
754 	u64 start;
755 	u64 ram_size;
756 	u64 compressed_size;
757 	struct folio **folios;
758 	unsigned long nr_folios;
759 	int compress_type;
760 	struct list_head list;
761 };
762 
763 struct async_chunk {
764 	struct btrfs_inode *inode;
765 	struct page *locked_page;
766 	u64 start;
767 	u64 end;
768 	blk_opf_t write_flags;
769 	struct list_head extents;
770 	struct cgroup_subsys_state *blkcg_css;
771 	struct btrfs_work work;
772 	struct async_cow *async_cow;
773 };
774 
775 struct async_cow {
776 	atomic_t num_chunks;
777 	struct async_chunk chunks[];
778 };
779 
780 static noinline int add_async_extent(struct async_chunk *cow,
781 				     u64 start, u64 ram_size,
782 				     u64 compressed_size,
783 				     struct folio **folios,
784 				     unsigned long nr_folios,
785 				     int compress_type)
786 {
787 	struct async_extent *async_extent;
788 
789 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
790 	if (!async_extent)
791 		return -ENOMEM;
792 	async_extent->start = start;
793 	async_extent->ram_size = ram_size;
794 	async_extent->compressed_size = compressed_size;
795 	async_extent->folios = folios;
796 	async_extent->nr_folios = nr_folios;
797 	async_extent->compress_type = compress_type;
798 	list_add_tail(&async_extent->list, &cow->extents);
799 	return 0;
800 }
801 
802 /*
803  * Check if the inode needs to be submitted to compression, based on mount
804  * options, defragmentation, properties or heuristics.
805  */
806 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
807 				      u64 end)
808 {
809 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
810 
811 	if (!btrfs_inode_can_compress(inode)) {
812 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
813 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
814 			btrfs_ino(inode));
815 		return 0;
816 	}
817 	/*
818 	 * Special check for subpage.
819 	 *
820 	 * We lock the full page then run each delalloc range in the page, thus
821 	 * for the following case, we will hit some subpage specific corner case:
822 	 *
823 	 * 0		32K		64K
824 	 * |	|///////|	|///////|
825 	 *		\- A		\- B
826 	 *
827 	 * In above case, both range A and range B will try to unlock the full
828 	 * page [0, 64K), causing the one finished later will have page
829 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
830 	 *
831 	 * So here we add an artificial limit that subpage compression can only
832 	 * if the range is fully page aligned.
833 	 *
834 	 * In theory we only need to ensure the first page is fully covered, but
835 	 * the tailing partial page will be locked until the full compression
836 	 * finishes, delaying the write of other range.
837 	 *
838 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
839 	 * first to prevent any submitted async extent to unlock the full page.
840 	 * By this, we can ensure for subpage case that only the last async_cow
841 	 * will unlock the full page.
842 	 */
843 	if (fs_info->sectorsize < PAGE_SIZE) {
844 		if (!PAGE_ALIGNED(start) ||
845 		    !PAGE_ALIGNED(end + 1))
846 			return 0;
847 	}
848 
849 	/* force compress */
850 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
851 		return 1;
852 	/* defrag ioctl */
853 	if (inode->defrag_compress)
854 		return 1;
855 	/* bad compression ratios */
856 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
857 		return 0;
858 	if (btrfs_test_opt(fs_info, COMPRESS) ||
859 	    inode->flags & BTRFS_INODE_COMPRESS ||
860 	    inode->prop_compress)
861 		return btrfs_compress_heuristic(inode, start, end);
862 	return 0;
863 }
864 
865 static inline void inode_should_defrag(struct btrfs_inode *inode,
866 		u64 start, u64 end, u64 num_bytes, u32 small_write)
867 {
868 	/* If this is a small write inside eof, kick off a defrag */
869 	if (num_bytes < small_write &&
870 	    (start > 0 || end + 1 < inode->disk_i_size))
871 		btrfs_add_inode_defrag(NULL, inode, small_write);
872 }
873 
874 static int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
875 {
876 	unsigned long end_index = end >> PAGE_SHIFT;
877 	struct page *page;
878 	int ret = 0;
879 
880 	for (unsigned long index = start >> PAGE_SHIFT;
881 	     index <= end_index; index++) {
882 		page = find_get_page(inode->i_mapping, index);
883 		if (unlikely(!page)) {
884 			if (!ret)
885 				ret = -ENOENT;
886 			continue;
887 		}
888 		clear_page_dirty_for_io(page);
889 		put_page(page);
890 	}
891 	return ret;
892 }
893 
894 /*
895  * Work queue call back to started compression on a file and pages.
896  *
897  * This is done inside an ordered work queue, and the compression is spread
898  * across many cpus.  The actual IO submission is step two, and the ordered work
899  * queue takes care of making sure that happens in the same order things were
900  * put onto the queue by writepages and friends.
901  *
902  * If this code finds it can't get good compression, it puts an entry onto the
903  * work queue to write the uncompressed bytes.  This makes sure that both
904  * compressed inodes and uncompressed inodes are written in the same order that
905  * the flusher thread sent them down.
906  */
907 static void compress_file_range(struct btrfs_work *work)
908 {
909 	struct async_chunk *async_chunk =
910 		container_of(work, struct async_chunk, work);
911 	struct btrfs_inode *inode = async_chunk->inode;
912 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
913 	struct address_space *mapping = inode->vfs_inode.i_mapping;
914 	u64 blocksize = fs_info->sectorsize;
915 	u64 start = async_chunk->start;
916 	u64 end = async_chunk->end;
917 	u64 actual_end;
918 	u64 i_size;
919 	int ret = 0;
920 	struct folio **folios;
921 	unsigned long nr_folios;
922 	unsigned long total_compressed = 0;
923 	unsigned long total_in = 0;
924 	unsigned int poff;
925 	int i;
926 	int compress_type = fs_info->compress_type;
927 
928 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
929 
930 	/*
931 	 * We need to call clear_page_dirty_for_io on each page in the range.
932 	 * Otherwise applications with the file mmap'd can wander in and change
933 	 * the page contents while we are compressing them.
934 	 */
935 	ret = extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
936 
937 	/*
938 	 * All the folios should have been locked thus no failure.
939 	 *
940 	 * And even if some folios are missing, btrfs_compress_folios()
941 	 * would handle them correctly, so here just do an ASSERT() check for
942 	 * early logic errors.
943 	 */
944 	ASSERT(ret == 0);
945 
946 	/*
947 	 * We need to save i_size before now because it could change in between
948 	 * us evaluating the size and assigning it.  This is because we lock and
949 	 * unlock the page in truncate and fallocate, and then modify the i_size
950 	 * later on.
951 	 *
952 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
953 	 * does that for us.
954 	 */
955 	barrier();
956 	i_size = i_size_read(&inode->vfs_inode);
957 	barrier();
958 	actual_end = min_t(u64, i_size, end + 1);
959 again:
960 	folios = NULL;
961 	nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
962 	nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES);
963 
964 	/*
965 	 * we don't want to send crud past the end of i_size through
966 	 * compression, that's just a waste of CPU time.  So, if the
967 	 * end of the file is before the start of our current
968 	 * requested range of bytes, we bail out to the uncompressed
969 	 * cleanup code that can deal with all of this.
970 	 *
971 	 * It isn't really the fastest way to fix things, but this is a
972 	 * very uncommon corner.
973 	 */
974 	if (actual_end <= start)
975 		goto cleanup_and_bail_uncompressed;
976 
977 	total_compressed = actual_end - start;
978 
979 	/*
980 	 * Skip compression for a small file range(<=blocksize) that
981 	 * isn't an inline extent, since it doesn't save disk space at all.
982 	 */
983 	if (total_compressed <= blocksize &&
984 	   (start > 0 || end + 1 < inode->disk_i_size))
985 		goto cleanup_and_bail_uncompressed;
986 
987 	/*
988 	 * For subpage case, we require full page alignment for the sector
989 	 * aligned range.
990 	 * Thus we must also check against @actual_end, not just @end.
991 	 */
992 	if (blocksize < PAGE_SIZE) {
993 		if (!PAGE_ALIGNED(start) ||
994 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
995 			goto cleanup_and_bail_uncompressed;
996 	}
997 
998 	total_compressed = min_t(unsigned long, total_compressed,
999 			BTRFS_MAX_UNCOMPRESSED);
1000 	total_in = 0;
1001 	ret = 0;
1002 
1003 	/*
1004 	 * We do compression for mount -o compress and when the inode has not
1005 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
1006 	 * discover bad compression ratios.
1007 	 */
1008 	if (!inode_need_compress(inode, start, end))
1009 		goto cleanup_and_bail_uncompressed;
1010 
1011 	folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS);
1012 	if (!folios) {
1013 		/*
1014 		 * Memory allocation failure is not a fatal error, we can fall
1015 		 * back to uncompressed code.
1016 		 */
1017 		goto cleanup_and_bail_uncompressed;
1018 	}
1019 
1020 	if (inode->defrag_compress)
1021 		compress_type = inode->defrag_compress;
1022 	else if (inode->prop_compress)
1023 		compress_type = inode->prop_compress;
1024 
1025 	/* Compression level is applied here. */
1026 	ret = btrfs_compress_folios(compress_type | (fs_info->compress_level << 4),
1027 				    mapping, start, folios, &nr_folios, &total_in,
1028 				    &total_compressed);
1029 	if (ret)
1030 		goto mark_incompressible;
1031 
1032 	/*
1033 	 * Zero the tail end of the last page, as we might be sending it down
1034 	 * to disk.
1035 	 */
1036 	poff = offset_in_page(total_compressed);
1037 	if (poff)
1038 		folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff);
1039 
1040 	/*
1041 	 * Try to create an inline extent.
1042 	 *
1043 	 * If we didn't compress the entire range, try to create an uncompressed
1044 	 * inline extent, else a compressed one.
1045 	 *
1046 	 * Check cow_file_range() for why we don't even try to create inline
1047 	 * extent for the subpage case.
1048 	 */
1049 	if (total_in < actual_end)
1050 		ret = cow_file_range_inline(inode, NULL, start, end, 0,
1051 					    BTRFS_COMPRESS_NONE, NULL, false);
1052 	else
1053 		ret = cow_file_range_inline(inode, NULL, start, end, total_compressed,
1054 					    compress_type, folios[0], false);
1055 	if (ret <= 0) {
1056 		if (ret < 0)
1057 			mapping_set_error(mapping, -EIO);
1058 		goto free_pages;
1059 	}
1060 
1061 	/*
1062 	 * We aren't doing an inline extent. Round the compressed size up to a
1063 	 * block size boundary so the allocator does sane things.
1064 	 */
1065 	total_compressed = ALIGN(total_compressed, blocksize);
1066 
1067 	/*
1068 	 * One last check to make sure the compression is really a win, compare
1069 	 * the page count read with the blocks on disk, compression must free at
1070 	 * least one sector.
1071 	 */
1072 	total_in = round_up(total_in, fs_info->sectorsize);
1073 	if (total_compressed + blocksize > total_in)
1074 		goto mark_incompressible;
1075 
1076 	/*
1077 	 * The async work queues will take care of doing actual allocation on
1078 	 * disk for these compressed pages, and will submit the bios.
1079 	 */
1080 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios,
1081 			       nr_folios, compress_type);
1082 	BUG_ON(ret);
1083 	if (start + total_in < end) {
1084 		start += total_in;
1085 		cond_resched();
1086 		goto again;
1087 	}
1088 	return;
1089 
1090 mark_incompressible:
1091 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1092 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1093 cleanup_and_bail_uncompressed:
1094 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1095 			       BTRFS_COMPRESS_NONE);
1096 	BUG_ON(ret);
1097 free_pages:
1098 	if (folios) {
1099 		for (i = 0; i < nr_folios; i++) {
1100 			WARN_ON(folios[i]->mapping);
1101 			btrfs_free_compr_folio(folios[i]);
1102 		}
1103 		kfree(folios);
1104 	}
1105 }
1106 
1107 static void free_async_extent_pages(struct async_extent *async_extent)
1108 {
1109 	int i;
1110 
1111 	if (!async_extent->folios)
1112 		return;
1113 
1114 	for (i = 0; i < async_extent->nr_folios; i++) {
1115 		WARN_ON(async_extent->folios[i]->mapping);
1116 		btrfs_free_compr_folio(async_extent->folios[i]);
1117 	}
1118 	kfree(async_extent->folios);
1119 	async_extent->nr_folios = 0;
1120 	async_extent->folios = NULL;
1121 }
1122 
1123 static void submit_uncompressed_range(struct btrfs_inode *inode,
1124 				      struct async_extent *async_extent,
1125 				      struct page *locked_page)
1126 {
1127 	u64 start = async_extent->start;
1128 	u64 end = async_extent->start + async_extent->ram_size - 1;
1129 	int ret;
1130 	struct writeback_control wbc = {
1131 		.sync_mode		= WB_SYNC_ALL,
1132 		.range_start		= start,
1133 		.range_end		= end,
1134 		.no_cgroup_owner	= 1,
1135 	};
1136 
1137 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1138 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1139 	wbc_detach_inode(&wbc);
1140 	if (ret < 0) {
1141 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1142 		if (locked_page) {
1143 			const u64 page_start = page_offset(locked_page);
1144 
1145 			set_page_writeback(locked_page);
1146 			end_page_writeback(locked_page);
1147 			btrfs_mark_ordered_io_finished(inode, locked_page,
1148 						       page_start, PAGE_SIZE,
1149 						       !ret);
1150 			mapping_set_error(locked_page->mapping, ret);
1151 			unlock_page(locked_page);
1152 		}
1153 	}
1154 }
1155 
1156 static void submit_one_async_extent(struct async_chunk *async_chunk,
1157 				    struct async_extent *async_extent,
1158 				    u64 *alloc_hint)
1159 {
1160 	struct btrfs_inode *inode = async_chunk->inode;
1161 	struct extent_io_tree *io_tree = &inode->io_tree;
1162 	struct btrfs_root *root = inode->root;
1163 	struct btrfs_fs_info *fs_info = root->fs_info;
1164 	struct btrfs_ordered_extent *ordered;
1165 	struct btrfs_file_extent file_extent;
1166 	struct btrfs_key ins;
1167 	struct page *locked_page = NULL;
1168 	struct extent_state *cached = NULL;
1169 	struct extent_map *em;
1170 	int ret = 0;
1171 	u64 start = async_extent->start;
1172 	u64 end = async_extent->start + async_extent->ram_size - 1;
1173 
1174 	if (async_chunk->blkcg_css)
1175 		kthread_associate_blkcg(async_chunk->blkcg_css);
1176 
1177 	/*
1178 	 * If async_chunk->locked_page is in the async_extent range, we need to
1179 	 * handle it.
1180 	 */
1181 	if (async_chunk->locked_page) {
1182 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1183 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1184 
1185 		if (!(start >= locked_page_end || end <= locked_page_start))
1186 			locked_page = async_chunk->locked_page;
1187 	}
1188 
1189 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1190 		submit_uncompressed_range(inode, async_extent, locked_page);
1191 		goto done;
1192 	}
1193 
1194 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1195 				   async_extent->compressed_size,
1196 				   async_extent->compressed_size,
1197 				   0, *alloc_hint, &ins, 1, 1);
1198 	if (ret) {
1199 		/*
1200 		 * We can't reserve contiguous space for the compressed size.
1201 		 * Unlikely, but it's possible that we could have enough
1202 		 * non-contiguous space for the uncompressed size instead.  So
1203 		 * fall back to uncompressed.
1204 		 */
1205 		submit_uncompressed_range(inode, async_extent, locked_page);
1206 		goto done;
1207 	}
1208 
1209 	lock_extent(io_tree, start, end, &cached);
1210 
1211 	/* Here we're doing allocation and writeback of the compressed pages */
1212 	file_extent.disk_bytenr = ins.objectid;
1213 	file_extent.disk_num_bytes = ins.offset;
1214 	file_extent.ram_bytes = async_extent->ram_size;
1215 	file_extent.num_bytes = async_extent->ram_size;
1216 	file_extent.offset = 0;
1217 	file_extent.compression = async_extent->compress_type;
1218 
1219 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
1220 	if (IS_ERR(em)) {
1221 		ret = PTR_ERR(em);
1222 		goto out_free_reserve;
1223 	}
1224 	free_extent_map(em);
1225 
1226 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1227 					     1 << BTRFS_ORDERED_COMPRESSED);
1228 	if (IS_ERR(ordered)) {
1229 		btrfs_drop_extent_map_range(inode, start, end, false);
1230 		ret = PTR_ERR(ordered);
1231 		goto out_free_reserve;
1232 	}
1233 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1234 
1235 	/* Clear dirty, set writeback and unlock the pages. */
1236 	extent_clear_unlock_delalloc(inode, start, end,
1237 			NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC,
1238 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1239 	btrfs_submit_compressed_write(ordered,
1240 			    async_extent->folios,	/* compressed_folios */
1241 			    async_extent->nr_folios,
1242 			    async_chunk->write_flags, true);
1243 	*alloc_hint = ins.objectid + ins.offset;
1244 done:
1245 	if (async_chunk->blkcg_css)
1246 		kthread_associate_blkcg(NULL);
1247 	kfree(async_extent);
1248 	return;
1249 
1250 out_free_reserve:
1251 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1252 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1253 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1254 	extent_clear_unlock_delalloc(inode, start, end,
1255 				     NULL, &cached,
1256 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1257 				     EXTENT_DELALLOC_NEW |
1258 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1259 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1260 				     PAGE_END_WRITEBACK);
1261 	free_async_extent_pages(async_extent);
1262 	if (async_chunk->blkcg_css)
1263 		kthread_associate_blkcg(NULL);
1264 	btrfs_debug(fs_info,
1265 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1266 		    btrfs_root_id(root), btrfs_ino(inode), start,
1267 		    async_extent->ram_size, ret);
1268 	kfree(async_extent);
1269 }
1270 
1271 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1272 				     u64 num_bytes)
1273 {
1274 	struct extent_map_tree *em_tree = &inode->extent_tree;
1275 	struct extent_map *em;
1276 	u64 alloc_hint = 0;
1277 
1278 	read_lock(&em_tree->lock);
1279 	em = search_extent_mapping(em_tree, start, num_bytes);
1280 	if (em) {
1281 		/*
1282 		 * if block start isn't an actual block number then find the
1283 		 * first block in this inode and use that as a hint.  If that
1284 		 * block is also bogus then just don't worry about it.
1285 		 */
1286 		if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) {
1287 			free_extent_map(em);
1288 			em = search_extent_mapping(em_tree, 0, 0);
1289 			if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE)
1290 				alloc_hint = extent_map_block_start(em);
1291 			if (em)
1292 				free_extent_map(em);
1293 		} else {
1294 			alloc_hint = extent_map_block_start(em);
1295 			free_extent_map(em);
1296 		}
1297 	}
1298 	read_unlock(&em_tree->lock);
1299 
1300 	return alloc_hint;
1301 }
1302 
1303 /*
1304  * when extent_io.c finds a delayed allocation range in the file,
1305  * the call backs end up in this code.  The basic idea is to
1306  * allocate extents on disk for the range, and create ordered data structs
1307  * in ram to track those extents.
1308  *
1309  * locked_page is the page that writepage had locked already.  We use
1310  * it to make sure we don't do extra locks or unlocks.
1311  *
1312  * When this function fails, it unlocks all pages except @locked_page.
1313  *
1314  * When this function successfully creates an inline extent, it returns 1 and
1315  * unlocks all pages including locked_page and starts I/O on them.
1316  * (In reality inline extents are limited to a single page, so locked_page is
1317  * the only page handled anyway).
1318  *
1319  * When this function succeed and creates a normal extent, the page locking
1320  * status depends on the passed in flags:
1321  *
1322  * - If @keep_locked is set, all pages are kept locked.
1323  * - Else all pages except for @locked_page are unlocked.
1324  *
1325  * When a failure happens in the second or later iteration of the
1326  * while-loop, the ordered extents created in previous iterations are kept
1327  * intact. So, the caller must clean them up by calling
1328  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1329  * example.
1330  */
1331 static noinline int cow_file_range(struct btrfs_inode *inode,
1332 				   struct page *locked_page, u64 start, u64 end,
1333 				   u64 *done_offset,
1334 				   bool keep_locked, bool no_inline)
1335 {
1336 	struct btrfs_root *root = inode->root;
1337 	struct btrfs_fs_info *fs_info = root->fs_info;
1338 	struct extent_state *cached = NULL;
1339 	u64 alloc_hint = 0;
1340 	u64 orig_start = start;
1341 	u64 num_bytes;
1342 	unsigned long ram_size;
1343 	u64 cur_alloc_size = 0;
1344 	u64 min_alloc_size;
1345 	u64 blocksize = fs_info->sectorsize;
1346 	struct btrfs_key ins;
1347 	struct extent_map *em;
1348 	unsigned clear_bits;
1349 	unsigned long page_ops;
1350 	bool extent_reserved = false;
1351 	int ret = 0;
1352 
1353 	if (btrfs_is_free_space_inode(inode)) {
1354 		ret = -EINVAL;
1355 		goto out_unlock;
1356 	}
1357 
1358 	num_bytes = ALIGN(end - start + 1, blocksize);
1359 	num_bytes = max(blocksize,  num_bytes);
1360 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1361 
1362 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1363 
1364 	if (!no_inline) {
1365 		/* lets try to make an inline extent */
1366 		ret = cow_file_range_inline(inode, locked_page, start, end, 0,
1367 					    BTRFS_COMPRESS_NONE, NULL, false);
1368 		if (ret <= 0) {
1369 			/*
1370 			 * We succeeded, return 1 so the caller knows we're done
1371 			 * with this page and already handled the IO.
1372 			 *
1373 			 * If there was an error then cow_file_range_inline() has
1374 			 * already done the cleanup.
1375 			 */
1376 			if (ret == 0)
1377 				ret = 1;
1378 			goto done;
1379 		}
1380 	}
1381 
1382 	alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes);
1383 
1384 	/*
1385 	 * Relocation relies on the relocated extents to have exactly the same
1386 	 * size as the original extents. Normally writeback for relocation data
1387 	 * extents follows a NOCOW path because relocation preallocates the
1388 	 * extents. However, due to an operation such as scrub turning a block
1389 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1390 	 * an extent allocated during COW has exactly the requested size and can
1391 	 * not be split into smaller extents, otherwise relocation breaks and
1392 	 * fails during the stage where it updates the bytenr of file extent
1393 	 * items.
1394 	 */
1395 	if (btrfs_is_data_reloc_root(root))
1396 		min_alloc_size = num_bytes;
1397 	else
1398 		min_alloc_size = fs_info->sectorsize;
1399 
1400 	while (num_bytes > 0) {
1401 		struct btrfs_ordered_extent *ordered;
1402 		struct btrfs_file_extent file_extent;
1403 
1404 		cur_alloc_size = num_bytes;
1405 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1406 					   min_alloc_size, 0, alloc_hint,
1407 					   &ins, 1, 1);
1408 		if (ret == -EAGAIN) {
1409 			/*
1410 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1411 			 * file systems, which is an indication that there are
1412 			 * no active zones to allocate from at the moment.
1413 			 *
1414 			 * If this is the first loop iteration, wait for at
1415 			 * least one zone to finish before retrying the
1416 			 * allocation.  Otherwise ask the caller to write out
1417 			 * the already allocated blocks before coming back to
1418 			 * us, or return -ENOSPC if it can't handle retries.
1419 			 */
1420 			ASSERT(btrfs_is_zoned(fs_info));
1421 			if (start == orig_start) {
1422 				wait_on_bit_io(&inode->root->fs_info->flags,
1423 					       BTRFS_FS_NEED_ZONE_FINISH,
1424 					       TASK_UNINTERRUPTIBLE);
1425 				continue;
1426 			}
1427 			if (done_offset) {
1428 				*done_offset = start - 1;
1429 				return 0;
1430 			}
1431 			ret = -ENOSPC;
1432 		}
1433 		if (ret < 0)
1434 			goto out_unlock;
1435 		cur_alloc_size = ins.offset;
1436 		extent_reserved = true;
1437 
1438 		ram_size = ins.offset;
1439 		file_extent.disk_bytenr = ins.objectid;
1440 		file_extent.disk_num_bytes = ins.offset;
1441 		file_extent.num_bytes = ins.offset;
1442 		file_extent.ram_bytes = ins.offset;
1443 		file_extent.offset = 0;
1444 		file_extent.compression = BTRFS_COMPRESS_NONE;
1445 
1446 		lock_extent(&inode->io_tree, start, start + ram_size - 1,
1447 			    &cached);
1448 
1449 		em = btrfs_create_io_em(inode, start, &file_extent,
1450 					BTRFS_ORDERED_REGULAR);
1451 		if (IS_ERR(em)) {
1452 			unlock_extent(&inode->io_tree, start,
1453 				      start + ram_size - 1, &cached);
1454 			ret = PTR_ERR(em);
1455 			goto out_reserve;
1456 		}
1457 		free_extent_map(em);
1458 
1459 		ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
1460 						     1 << BTRFS_ORDERED_REGULAR);
1461 		if (IS_ERR(ordered)) {
1462 			unlock_extent(&inode->io_tree, start,
1463 				      start + ram_size - 1, &cached);
1464 			ret = PTR_ERR(ordered);
1465 			goto out_drop_extent_cache;
1466 		}
1467 
1468 		if (btrfs_is_data_reloc_root(root)) {
1469 			ret = btrfs_reloc_clone_csums(ordered);
1470 
1471 			/*
1472 			 * Only drop cache here, and process as normal.
1473 			 *
1474 			 * We must not allow extent_clear_unlock_delalloc()
1475 			 * at out_unlock label to free meta of this ordered
1476 			 * extent, as its meta should be freed by
1477 			 * btrfs_finish_ordered_io().
1478 			 *
1479 			 * So we must continue until @start is increased to
1480 			 * skip current ordered extent.
1481 			 */
1482 			if (ret)
1483 				btrfs_drop_extent_map_range(inode, start,
1484 							    start + ram_size - 1,
1485 							    false);
1486 		}
1487 		btrfs_put_ordered_extent(ordered);
1488 
1489 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1490 
1491 		/*
1492 		 * We're not doing compressed IO, don't unlock the first page
1493 		 * (which the caller expects to stay locked), don't clear any
1494 		 * dirty bits and don't set any writeback bits
1495 		 *
1496 		 * Do set the Ordered (Private2) bit so we know this page was
1497 		 * properly setup for writepage.
1498 		 */
1499 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1500 		page_ops |= PAGE_SET_ORDERED;
1501 
1502 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1503 					     locked_page, &cached,
1504 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1505 					     page_ops);
1506 		if (num_bytes < cur_alloc_size)
1507 			num_bytes = 0;
1508 		else
1509 			num_bytes -= cur_alloc_size;
1510 		alloc_hint = ins.objectid + ins.offset;
1511 		start += cur_alloc_size;
1512 		extent_reserved = false;
1513 
1514 		/*
1515 		 * btrfs_reloc_clone_csums() error, since start is increased
1516 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1517 		 * free metadata of current ordered extent, we're OK to exit.
1518 		 */
1519 		if (ret)
1520 			goto out_unlock;
1521 	}
1522 done:
1523 	if (done_offset)
1524 		*done_offset = end;
1525 	return ret;
1526 
1527 out_drop_extent_cache:
1528 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1529 out_reserve:
1530 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1531 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1532 out_unlock:
1533 	/*
1534 	 * Now, we have three regions to clean up:
1535 	 *
1536 	 * |-------(1)----|---(2)---|-------------(3)----------|
1537 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1538 	 *
1539 	 * We process each region below.
1540 	 */
1541 
1542 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1543 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1544 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1545 
1546 	/*
1547 	 * For the range (1). We have already instantiated the ordered extents
1548 	 * for this region. They are cleaned up by
1549 	 * btrfs_cleanup_ordered_extents() in e.g,
1550 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1551 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1552 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1553 	 * function.
1554 	 *
1555 	 * However, in case of @keep_locked, we still need to unlock the pages
1556 	 * (except @locked_page) to ensure all the pages are unlocked.
1557 	 */
1558 	if (keep_locked && orig_start < start) {
1559 		if (!locked_page)
1560 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1561 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1562 					     locked_page, NULL, 0, page_ops);
1563 	}
1564 
1565 	/*
1566 	 * At this point we're unlocked, we want to make sure we're only
1567 	 * clearing these flags under the extent lock, so lock the rest of the
1568 	 * range and clear everything up.
1569 	 */
1570 	lock_extent(&inode->io_tree, start, end, NULL);
1571 
1572 	/*
1573 	 * For the range (2). If we reserved an extent for our delalloc range
1574 	 * (or a subrange) and failed to create the respective ordered extent,
1575 	 * then it means that when we reserved the extent we decremented the
1576 	 * extent's size from the data space_info's bytes_may_use counter and
1577 	 * incremented the space_info's bytes_reserved counter by the same
1578 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1579 	 * to decrement again the data space_info's bytes_may_use counter,
1580 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1581 	 */
1582 	if (extent_reserved) {
1583 		extent_clear_unlock_delalloc(inode, start,
1584 					     start + cur_alloc_size - 1,
1585 					     locked_page, &cached,
1586 					     clear_bits,
1587 					     page_ops);
1588 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1589 		start += cur_alloc_size;
1590 	}
1591 
1592 	/*
1593 	 * For the range (3). We never touched the region. In addition to the
1594 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1595 	 * space_info's bytes_may_use counter, reserved in
1596 	 * btrfs_check_data_free_space().
1597 	 */
1598 	if (start < end) {
1599 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1600 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1601 					     &cached, clear_bits, page_ops);
1602 		btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL);
1603 	}
1604 	return ret;
1605 }
1606 
1607 /*
1608  * Phase two of compressed writeback.  This is the ordered portion of the code,
1609  * which only gets called in the order the work was queued.  We walk all the
1610  * async extents created by compress_file_range and send them down to the disk.
1611  *
1612  * If called with @do_free == true then it'll try to finish the work and free
1613  * the work struct eventually.
1614  */
1615 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1616 {
1617 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1618 						     work);
1619 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1620 	struct async_extent *async_extent;
1621 	unsigned long nr_pages;
1622 	u64 alloc_hint = 0;
1623 
1624 	if (do_free) {
1625 		struct async_cow *async_cow;
1626 
1627 		btrfs_add_delayed_iput(async_chunk->inode);
1628 		if (async_chunk->blkcg_css)
1629 			css_put(async_chunk->blkcg_css);
1630 
1631 		async_cow = async_chunk->async_cow;
1632 		if (atomic_dec_and_test(&async_cow->num_chunks))
1633 			kvfree(async_cow);
1634 		return;
1635 	}
1636 
1637 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1638 		PAGE_SHIFT;
1639 
1640 	while (!list_empty(&async_chunk->extents)) {
1641 		async_extent = list_entry(async_chunk->extents.next,
1642 					  struct async_extent, list);
1643 		list_del(&async_extent->list);
1644 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1645 	}
1646 
1647 	/* atomic_sub_return implies a barrier */
1648 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1649 	    5 * SZ_1M)
1650 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1651 }
1652 
1653 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1654 				    struct page *locked_page, u64 start,
1655 				    u64 end, struct writeback_control *wbc)
1656 {
1657 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1658 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1659 	struct async_cow *ctx;
1660 	struct async_chunk *async_chunk;
1661 	unsigned long nr_pages;
1662 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1663 	int i;
1664 	unsigned nofs_flag;
1665 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1666 
1667 	nofs_flag = memalloc_nofs_save();
1668 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1669 	memalloc_nofs_restore(nofs_flag);
1670 	if (!ctx)
1671 		return false;
1672 
1673 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1674 
1675 	async_chunk = ctx->chunks;
1676 	atomic_set(&ctx->num_chunks, num_chunks);
1677 
1678 	for (i = 0; i < num_chunks; i++) {
1679 		u64 cur_end = min(end, start + SZ_512K - 1);
1680 
1681 		/*
1682 		 * igrab is called higher up in the call chain, take only the
1683 		 * lightweight reference for the callback lifetime
1684 		 */
1685 		ihold(&inode->vfs_inode);
1686 		async_chunk[i].async_cow = ctx;
1687 		async_chunk[i].inode = inode;
1688 		async_chunk[i].start = start;
1689 		async_chunk[i].end = cur_end;
1690 		async_chunk[i].write_flags = write_flags;
1691 		INIT_LIST_HEAD(&async_chunk[i].extents);
1692 
1693 		/*
1694 		 * The locked_page comes all the way from writepage and its
1695 		 * the original page we were actually given.  As we spread
1696 		 * this large delalloc region across multiple async_chunk
1697 		 * structs, only the first struct needs a pointer to locked_page
1698 		 *
1699 		 * This way we don't need racey decisions about who is supposed
1700 		 * to unlock it.
1701 		 */
1702 		if (locked_page) {
1703 			/*
1704 			 * Depending on the compressibility, the pages might or
1705 			 * might not go through async.  We want all of them to
1706 			 * be accounted against wbc once.  Let's do it here
1707 			 * before the paths diverge.  wbc accounting is used
1708 			 * only for foreign writeback detection and doesn't
1709 			 * need full accuracy.  Just account the whole thing
1710 			 * against the first page.
1711 			 */
1712 			wbc_account_cgroup_owner(wbc, locked_page,
1713 						 cur_end - start);
1714 			async_chunk[i].locked_page = locked_page;
1715 			locked_page = NULL;
1716 		} else {
1717 			async_chunk[i].locked_page = NULL;
1718 		}
1719 
1720 		if (blkcg_css != blkcg_root_css) {
1721 			css_get(blkcg_css);
1722 			async_chunk[i].blkcg_css = blkcg_css;
1723 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1724 		} else {
1725 			async_chunk[i].blkcg_css = NULL;
1726 		}
1727 
1728 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1729 				submit_compressed_extents);
1730 
1731 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1732 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1733 
1734 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1735 
1736 		start = cur_end + 1;
1737 	}
1738 	return true;
1739 }
1740 
1741 /*
1742  * Run the delalloc range from start to end, and write back any dirty pages
1743  * covered by the range.
1744  */
1745 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1746 				     struct page *locked_page, u64 start,
1747 				     u64 end, struct writeback_control *wbc,
1748 				     bool pages_dirty)
1749 {
1750 	u64 done_offset = end;
1751 	int ret;
1752 
1753 	while (start <= end) {
1754 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1755 				     true, false);
1756 		if (ret)
1757 			return ret;
1758 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1759 					  done_offset, wbc, pages_dirty);
1760 		start = done_offset + 1;
1761 	}
1762 
1763 	return 1;
1764 }
1765 
1766 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1767 			   const u64 start, const u64 end)
1768 {
1769 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1770 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1771 	const u64 range_bytes = end + 1 - start;
1772 	struct extent_io_tree *io_tree = &inode->io_tree;
1773 	struct extent_state *cached_state = NULL;
1774 	u64 range_start = start;
1775 	u64 count;
1776 	int ret;
1777 
1778 	/*
1779 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1780 	 * made we had not enough available data space and therefore we did not
1781 	 * reserve data space for it, since we though we could do NOCOW for the
1782 	 * respective file range (either there is prealloc extent or the inode
1783 	 * has the NOCOW bit set).
1784 	 *
1785 	 * However when we need to fallback to COW mode (because for example the
1786 	 * block group for the corresponding extent was turned to RO mode by a
1787 	 * scrub or relocation) we need to do the following:
1788 	 *
1789 	 * 1) We increment the bytes_may_use counter of the data space info.
1790 	 *    If COW succeeds, it allocates a new data extent and after doing
1791 	 *    that it decrements the space info's bytes_may_use counter and
1792 	 *    increments its bytes_reserved counter by the same amount (we do
1793 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1794 	 *    bytes_may_use counter to compensate (when space is reserved at
1795 	 *    buffered write time, the bytes_may_use counter is incremented);
1796 	 *
1797 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1798 	 *    that if the COW path fails for any reason, it decrements (through
1799 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1800 	 *    data space info, which we incremented in the step above.
1801 	 *
1802 	 * If we need to fallback to cow and the inode corresponds to a free
1803 	 * space cache inode or an inode of the data relocation tree, we must
1804 	 * also increment bytes_may_use of the data space_info for the same
1805 	 * reason. Space caches and relocated data extents always get a prealloc
1806 	 * extent for them, however scrub or balance may have set the block
1807 	 * group that contains that extent to RO mode and therefore force COW
1808 	 * when starting writeback.
1809 	 */
1810 	lock_extent(io_tree, start, end, &cached_state);
1811 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1812 				 EXTENT_NORESERVE, 0, NULL);
1813 	if (count > 0 || is_space_ino || is_reloc_ino) {
1814 		u64 bytes = count;
1815 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1816 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1817 
1818 		if (is_space_ino || is_reloc_ino)
1819 			bytes = range_bytes;
1820 
1821 		spin_lock(&sinfo->lock);
1822 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1823 		spin_unlock(&sinfo->lock);
1824 
1825 		if (count > 0)
1826 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1827 					 NULL);
1828 	}
1829 	unlock_extent(io_tree, start, end, &cached_state);
1830 
1831 	/*
1832 	 * Don't try to create inline extents, as a mix of inline extent that
1833 	 * is written out and unlocked directly and a normal NOCOW extent
1834 	 * doesn't work.
1835 	 */
1836 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1837 	ASSERT(ret != 1);
1838 	return ret;
1839 }
1840 
1841 struct can_nocow_file_extent_args {
1842 	/* Input fields. */
1843 
1844 	/* Start file offset of the range we want to NOCOW. */
1845 	u64 start;
1846 	/* End file offset (inclusive) of the range we want to NOCOW. */
1847 	u64 end;
1848 	bool writeback_path;
1849 	bool strict;
1850 	/*
1851 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1852 	 * anymore.
1853 	 */
1854 	bool free_path;
1855 
1856 	/*
1857 	 * Output fields. Only set when can_nocow_file_extent() returns 1.
1858 	 * The expected file extent for the NOCOW write.
1859 	 */
1860 	struct btrfs_file_extent file_extent;
1861 };
1862 
1863 /*
1864  * Check if we can NOCOW the file extent that the path points to.
1865  * This function may return with the path released, so the caller should check
1866  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1867  *
1868  * Returns: < 0 on error
1869  *            0 if we can not NOCOW
1870  *            1 if we can NOCOW
1871  */
1872 static int can_nocow_file_extent(struct btrfs_path *path,
1873 				 struct btrfs_key *key,
1874 				 struct btrfs_inode *inode,
1875 				 struct can_nocow_file_extent_args *args)
1876 {
1877 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1878 	struct extent_buffer *leaf = path->nodes[0];
1879 	struct btrfs_root *root = inode->root;
1880 	struct btrfs_file_extent_item *fi;
1881 	struct btrfs_root *csum_root;
1882 	u64 io_start;
1883 	u64 extent_end;
1884 	u8 extent_type;
1885 	int can_nocow = 0;
1886 	int ret = 0;
1887 	bool nowait = path->nowait;
1888 
1889 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1890 	extent_type = btrfs_file_extent_type(leaf, fi);
1891 
1892 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1893 		goto out;
1894 
1895 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1896 	    extent_type == BTRFS_FILE_EXTENT_REG)
1897 		goto out;
1898 
1899 	/*
1900 	 * If the extent was created before the generation where the last snapshot
1901 	 * for its subvolume was created, then this implies the extent is shared,
1902 	 * hence we must COW.
1903 	 */
1904 	if (!args->strict &&
1905 	    btrfs_file_extent_generation(leaf, fi) <=
1906 	    btrfs_root_last_snapshot(&root->root_item))
1907 		goto out;
1908 
1909 	/* An explicit hole, must COW. */
1910 	if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0)
1911 		goto out;
1912 
1913 	/* Compressed/encrypted/encoded extents must be COWed. */
1914 	if (btrfs_file_extent_compression(leaf, fi) ||
1915 	    btrfs_file_extent_encryption(leaf, fi) ||
1916 	    btrfs_file_extent_other_encoding(leaf, fi))
1917 		goto out;
1918 
1919 	extent_end = btrfs_file_extent_end(path);
1920 
1921 	args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1922 	args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1923 	args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1924 	args->file_extent.offset = btrfs_file_extent_offset(leaf, fi);
1925 	args->file_extent.compression = btrfs_file_extent_compression(leaf, fi);
1926 
1927 	/*
1928 	 * The following checks can be expensive, as they need to take other
1929 	 * locks and do btree or rbtree searches, so release the path to avoid
1930 	 * blocking other tasks for too long.
1931 	 */
1932 	btrfs_release_path(path);
1933 
1934 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1935 				    key->offset - args->file_extent.offset,
1936 				    args->file_extent.disk_bytenr, args->strict, path);
1937 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1938 	if (ret != 0)
1939 		goto out;
1940 
1941 	if (args->free_path) {
1942 		/*
1943 		 * We don't need the path anymore, plus through the
1944 		 * btrfs_lookup_csums_list() call below we will end up allocating
1945 		 * another path. So free the path to avoid unnecessary extra
1946 		 * memory usage.
1947 		 */
1948 		btrfs_free_path(path);
1949 		path = NULL;
1950 	}
1951 
1952 	/* If there are pending snapshots for this root, we must COW. */
1953 	if (args->writeback_path && !is_freespace_inode &&
1954 	    atomic_read(&root->snapshot_force_cow))
1955 		goto out;
1956 
1957 	args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start;
1958 	args->file_extent.offset += args->start - key->offset;
1959 	io_start = args->file_extent.disk_bytenr + args->file_extent.offset;
1960 
1961 	/*
1962 	 * Force COW if csums exist in the range. This ensures that csums for a
1963 	 * given extent are either valid or do not exist.
1964 	 */
1965 
1966 	csum_root = btrfs_csum_root(root->fs_info, io_start);
1967 	ret = btrfs_lookup_csums_list(csum_root, io_start,
1968 				      io_start + args->file_extent.num_bytes - 1,
1969 				      NULL, nowait);
1970 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1971 	if (ret != 0)
1972 		goto out;
1973 
1974 	can_nocow = 1;
1975  out:
1976 	if (args->free_path && path)
1977 		btrfs_free_path(path);
1978 
1979 	return ret < 0 ? ret : can_nocow;
1980 }
1981 
1982 /*
1983  * when nowcow writeback call back.  This checks for snapshots or COW copies
1984  * of the extents that exist in the file, and COWs the file as required.
1985  *
1986  * If no cow copies or snapshots exist, we write directly to the existing
1987  * blocks on disk
1988  */
1989 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1990 				       struct page *locked_page,
1991 				       const u64 start, const u64 end)
1992 {
1993 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1994 	struct btrfs_root *root = inode->root;
1995 	struct btrfs_path *path;
1996 	u64 cow_start = (u64)-1;
1997 	u64 cur_offset = start;
1998 	int ret;
1999 	bool check_prev = true;
2000 	u64 ino = btrfs_ino(inode);
2001 	struct can_nocow_file_extent_args nocow_args = { 0 };
2002 
2003 	/*
2004 	 * Normally on a zoned device we're only doing COW writes, but in case
2005 	 * of relocation on a zoned filesystem serializes I/O so that we're only
2006 	 * writing sequentially and can end up here as well.
2007 	 */
2008 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
2009 
2010 	path = btrfs_alloc_path();
2011 	if (!path) {
2012 		ret = -ENOMEM;
2013 		goto error;
2014 	}
2015 
2016 	nocow_args.end = end;
2017 	nocow_args.writeback_path = true;
2018 
2019 	while (cur_offset <= end) {
2020 		struct btrfs_block_group *nocow_bg = NULL;
2021 		struct btrfs_ordered_extent *ordered;
2022 		struct btrfs_key found_key;
2023 		struct btrfs_file_extent_item *fi;
2024 		struct extent_buffer *leaf;
2025 		struct extent_state *cached_state = NULL;
2026 		u64 extent_end;
2027 		u64 nocow_end;
2028 		int extent_type;
2029 		bool is_prealloc;
2030 
2031 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2032 					       cur_offset, 0);
2033 		if (ret < 0)
2034 			goto error;
2035 
2036 		/*
2037 		 * If there is no extent for our range when doing the initial
2038 		 * search, then go back to the previous slot as it will be the
2039 		 * one containing the search offset
2040 		 */
2041 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2042 			leaf = path->nodes[0];
2043 			btrfs_item_key_to_cpu(leaf, &found_key,
2044 					      path->slots[0] - 1);
2045 			if (found_key.objectid == ino &&
2046 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2047 				path->slots[0]--;
2048 		}
2049 		check_prev = false;
2050 next_slot:
2051 		/* Go to next leaf if we have exhausted the current one */
2052 		leaf = path->nodes[0];
2053 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2054 			ret = btrfs_next_leaf(root, path);
2055 			if (ret < 0)
2056 				goto error;
2057 			if (ret > 0)
2058 				break;
2059 			leaf = path->nodes[0];
2060 		}
2061 
2062 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2063 
2064 		/* Didn't find anything for our INO */
2065 		if (found_key.objectid > ino)
2066 			break;
2067 		/*
2068 		 * Keep searching until we find an EXTENT_ITEM or there are no
2069 		 * more extents for this inode
2070 		 */
2071 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2072 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2073 			path->slots[0]++;
2074 			goto next_slot;
2075 		}
2076 
2077 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2078 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2079 		    found_key.offset > end)
2080 			break;
2081 
2082 		/*
2083 		 * If the found extent starts after requested offset, then
2084 		 * adjust extent_end to be right before this extent begins
2085 		 */
2086 		if (found_key.offset > cur_offset) {
2087 			extent_end = found_key.offset;
2088 			extent_type = 0;
2089 			goto must_cow;
2090 		}
2091 
2092 		/*
2093 		 * Found extent which begins before our range and potentially
2094 		 * intersect it
2095 		 */
2096 		fi = btrfs_item_ptr(leaf, path->slots[0],
2097 				    struct btrfs_file_extent_item);
2098 		extent_type = btrfs_file_extent_type(leaf, fi);
2099 		/* If this is triggered then we have a memory corruption. */
2100 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2101 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2102 			ret = -EUCLEAN;
2103 			goto error;
2104 		}
2105 		extent_end = btrfs_file_extent_end(path);
2106 
2107 		/*
2108 		 * If the extent we got ends before our current offset, skip to
2109 		 * the next extent.
2110 		 */
2111 		if (extent_end <= cur_offset) {
2112 			path->slots[0]++;
2113 			goto next_slot;
2114 		}
2115 
2116 		nocow_args.start = cur_offset;
2117 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2118 		if (ret < 0)
2119 			goto error;
2120 		if (ret == 0)
2121 			goto must_cow;
2122 
2123 		ret = 0;
2124 		nocow_bg = btrfs_inc_nocow_writers(fs_info,
2125 				nocow_args.file_extent.disk_bytenr +
2126 				nocow_args.file_extent.offset);
2127 		if (!nocow_bg) {
2128 must_cow:
2129 			/*
2130 			 * If we can't perform NOCOW writeback for the range,
2131 			 * then record the beginning of the range that needs to
2132 			 * be COWed.  It will be written out before the next
2133 			 * NOCOW range if we find one, or when exiting this
2134 			 * loop.
2135 			 */
2136 			if (cow_start == (u64)-1)
2137 				cow_start = cur_offset;
2138 			cur_offset = extent_end;
2139 			if (cur_offset > end)
2140 				break;
2141 			if (!path->nodes[0])
2142 				continue;
2143 			path->slots[0]++;
2144 			goto next_slot;
2145 		}
2146 
2147 		/*
2148 		 * COW range from cow_start to found_key.offset - 1. As the key
2149 		 * will contain the beginning of the first extent that can be
2150 		 * NOCOW, following one which needs to be COW'ed
2151 		 */
2152 		if (cow_start != (u64)-1) {
2153 			ret = fallback_to_cow(inode, locked_page,
2154 					      cow_start, found_key.offset - 1);
2155 			cow_start = (u64)-1;
2156 			if (ret) {
2157 				btrfs_dec_nocow_writers(nocow_bg);
2158 				goto error;
2159 			}
2160 		}
2161 
2162 		nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1;
2163 		lock_extent(&inode->io_tree, cur_offset, nocow_end, &cached_state);
2164 
2165 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2166 		if (is_prealloc) {
2167 			struct extent_map *em;
2168 
2169 			em = btrfs_create_io_em(inode, cur_offset,
2170 						&nocow_args.file_extent,
2171 						BTRFS_ORDERED_PREALLOC);
2172 			if (IS_ERR(em)) {
2173 				unlock_extent(&inode->io_tree, cur_offset,
2174 					      nocow_end, &cached_state);
2175 				btrfs_dec_nocow_writers(nocow_bg);
2176 				ret = PTR_ERR(em);
2177 				goto error;
2178 			}
2179 			free_extent_map(em);
2180 		}
2181 
2182 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2183 				&nocow_args.file_extent,
2184 				is_prealloc
2185 				? (1 << BTRFS_ORDERED_PREALLOC)
2186 				: (1 << BTRFS_ORDERED_NOCOW));
2187 		btrfs_dec_nocow_writers(nocow_bg);
2188 		if (IS_ERR(ordered)) {
2189 			if (is_prealloc) {
2190 				btrfs_drop_extent_map_range(inode, cur_offset,
2191 							    nocow_end, false);
2192 			}
2193 			unlock_extent(&inode->io_tree, cur_offset,
2194 				      nocow_end, &cached_state);
2195 			ret = PTR_ERR(ordered);
2196 			goto error;
2197 		}
2198 
2199 		if (btrfs_is_data_reloc_root(root))
2200 			/*
2201 			 * Error handled later, as we must prevent
2202 			 * extent_clear_unlock_delalloc() in error handler
2203 			 * from freeing metadata of created ordered extent.
2204 			 */
2205 			ret = btrfs_reloc_clone_csums(ordered);
2206 		btrfs_put_ordered_extent(ordered);
2207 
2208 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2209 					     locked_page, &cached_state,
2210 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2211 					     EXTENT_CLEAR_DATA_RESV,
2212 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2213 
2214 		cur_offset = extent_end;
2215 
2216 		/*
2217 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2218 		 * handler, as metadata for created ordered extent will only
2219 		 * be freed by btrfs_finish_ordered_io().
2220 		 */
2221 		if (ret)
2222 			goto error;
2223 	}
2224 	btrfs_release_path(path);
2225 
2226 	if (cur_offset <= end && cow_start == (u64)-1)
2227 		cow_start = cur_offset;
2228 
2229 	if (cow_start != (u64)-1) {
2230 		cur_offset = end;
2231 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2232 		cow_start = (u64)-1;
2233 		if (ret)
2234 			goto error;
2235 	}
2236 
2237 	btrfs_free_path(path);
2238 	return 0;
2239 
2240 error:
2241 	/*
2242 	 * If an error happened while a COW region is outstanding, cur_offset
2243 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2244 	 * as well.
2245 	 */
2246 	if (cow_start != (u64)-1)
2247 		cur_offset = cow_start;
2248 
2249 	/*
2250 	 * We need to lock the extent here because we're clearing DELALLOC and
2251 	 * we're not locked at this point.
2252 	 */
2253 	if (cur_offset < end) {
2254 		struct extent_state *cached = NULL;
2255 
2256 		lock_extent(&inode->io_tree, cur_offset, end, &cached);
2257 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2258 					     locked_page, &cached,
2259 					     EXTENT_LOCKED | EXTENT_DELALLOC |
2260 					     EXTENT_DEFRAG |
2261 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2262 					     PAGE_START_WRITEBACK |
2263 					     PAGE_END_WRITEBACK);
2264 		btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL);
2265 	}
2266 	btrfs_free_path(path);
2267 	return ret;
2268 }
2269 
2270 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2271 {
2272 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2273 		if (inode->defrag_bytes &&
2274 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2275 			return false;
2276 		return true;
2277 	}
2278 	return false;
2279 }
2280 
2281 /*
2282  * Function to process delayed allocation (create CoW) for ranges which are
2283  * being touched for the first time.
2284  */
2285 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2286 			     u64 start, u64 end, struct writeback_control *wbc)
2287 {
2288 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2289 	int ret;
2290 
2291 	/*
2292 	 * The range must cover part of the @locked_page, or a return of 1
2293 	 * can confuse the caller.
2294 	 */
2295 	ASSERT(!(end <= page_offset(locked_page) ||
2296 		 start >= page_offset(locked_page) + PAGE_SIZE));
2297 
2298 	if (should_nocow(inode, start, end)) {
2299 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2300 		goto out;
2301 	}
2302 
2303 	if (btrfs_inode_can_compress(inode) &&
2304 	    inode_need_compress(inode, start, end) &&
2305 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2306 		return 1;
2307 
2308 	if (zoned)
2309 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2310 				       true);
2311 	else
2312 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2313 				     false, false);
2314 
2315 out:
2316 	if (ret < 0)
2317 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2318 					      end - start + 1);
2319 	return ret;
2320 }
2321 
2322 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2323 				 struct extent_state *orig, u64 split)
2324 {
2325 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2326 	u64 size;
2327 
2328 	lockdep_assert_held(&inode->io_tree.lock);
2329 
2330 	/* not delalloc, ignore it */
2331 	if (!(orig->state & EXTENT_DELALLOC))
2332 		return;
2333 
2334 	size = orig->end - orig->start + 1;
2335 	if (size > fs_info->max_extent_size) {
2336 		u32 num_extents;
2337 		u64 new_size;
2338 
2339 		/*
2340 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2341 		 * applies here, just in reverse.
2342 		 */
2343 		new_size = orig->end - split + 1;
2344 		num_extents = count_max_extents(fs_info, new_size);
2345 		new_size = split - orig->start;
2346 		num_extents += count_max_extents(fs_info, new_size);
2347 		if (count_max_extents(fs_info, size) >= num_extents)
2348 			return;
2349 	}
2350 
2351 	spin_lock(&inode->lock);
2352 	btrfs_mod_outstanding_extents(inode, 1);
2353 	spin_unlock(&inode->lock);
2354 }
2355 
2356 /*
2357  * Handle merged delayed allocation extents so we can keep track of new extents
2358  * that are just merged onto old extents, such as when we are doing sequential
2359  * writes, so we can properly account for the metadata space we'll need.
2360  */
2361 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2362 				 struct extent_state *other)
2363 {
2364 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2365 	u64 new_size, old_size;
2366 	u32 num_extents;
2367 
2368 	lockdep_assert_held(&inode->io_tree.lock);
2369 
2370 	/* not delalloc, ignore it */
2371 	if (!(other->state & EXTENT_DELALLOC))
2372 		return;
2373 
2374 	if (new->start > other->start)
2375 		new_size = new->end - other->start + 1;
2376 	else
2377 		new_size = other->end - new->start + 1;
2378 
2379 	/* we're not bigger than the max, unreserve the space and go */
2380 	if (new_size <= fs_info->max_extent_size) {
2381 		spin_lock(&inode->lock);
2382 		btrfs_mod_outstanding_extents(inode, -1);
2383 		spin_unlock(&inode->lock);
2384 		return;
2385 	}
2386 
2387 	/*
2388 	 * We have to add up either side to figure out how many extents were
2389 	 * accounted for before we merged into one big extent.  If the number of
2390 	 * extents we accounted for is <= the amount we need for the new range
2391 	 * then we can return, otherwise drop.  Think of it like this
2392 	 *
2393 	 * [ 4k][MAX_SIZE]
2394 	 *
2395 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2396 	 * need 2 outstanding extents, on one side we have 1 and the other side
2397 	 * we have 1 so they are == and we can return.  But in this case
2398 	 *
2399 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2400 	 *
2401 	 * Each range on their own accounts for 2 extents, but merged together
2402 	 * they are only 3 extents worth of accounting, so we need to drop in
2403 	 * this case.
2404 	 */
2405 	old_size = other->end - other->start + 1;
2406 	num_extents = count_max_extents(fs_info, old_size);
2407 	old_size = new->end - new->start + 1;
2408 	num_extents += count_max_extents(fs_info, old_size);
2409 	if (count_max_extents(fs_info, new_size) >= num_extents)
2410 		return;
2411 
2412 	spin_lock(&inode->lock);
2413 	btrfs_mod_outstanding_extents(inode, -1);
2414 	spin_unlock(&inode->lock);
2415 }
2416 
2417 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2418 {
2419 	struct btrfs_root *root = inode->root;
2420 	struct btrfs_fs_info *fs_info = root->fs_info;
2421 
2422 	spin_lock(&root->delalloc_lock);
2423 	ASSERT(list_empty(&inode->delalloc_inodes));
2424 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2425 	root->nr_delalloc_inodes++;
2426 	if (root->nr_delalloc_inodes == 1) {
2427 		spin_lock(&fs_info->delalloc_root_lock);
2428 		ASSERT(list_empty(&root->delalloc_root));
2429 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2430 		spin_unlock(&fs_info->delalloc_root_lock);
2431 	}
2432 	spin_unlock(&root->delalloc_lock);
2433 }
2434 
2435 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2436 {
2437 	struct btrfs_root *root = inode->root;
2438 	struct btrfs_fs_info *fs_info = root->fs_info;
2439 
2440 	lockdep_assert_held(&root->delalloc_lock);
2441 
2442 	/*
2443 	 * We may be called after the inode was already deleted from the list,
2444 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2445 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2446 	 * still has ->delalloc_bytes > 0.
2447 	 */
2448 	if (!list_empty(&inode->delalloc_inodes)) {
2449 		list_del_init(&inode->delalloc_inodes);
2450 		root->nr_delalloc_inodes--;
2451 		if (!root->nr_delalloc_inodes) {
2452 			ASSERT(list_empty(&root->delalloc_inodes));
2453 			spin_lock(&fs_info->delalloc_root_lock);
2454 			ASSERT(!list_empty(&root->delalloc_root));
2455 			list_del_init(&root->delalloc_root);
2456 			spin_unlock(&fs_info->delalloc_root_lock);
2457 		}
2458 	}
2459 }
2460 
2461 /*
2462  * Properly track delayed allocation bytes in the inode and to maintain the
2463  * list of inodes that have pending delalloc work to be done.
2464  */
2465 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2466 			       u32 bits)
2467 {
2468 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2469 
2470 	lockdep_assert_held(&inode->io_tree.lock);
2471 
2472 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2473 		WARN_ON(1);
2474 	/*
2475 	 * set_bit and clear bit hooks normally require _irqsave/restore
2476 	 * but in this case, we are only testing for the DELALLOC
2477 	 * bit, which is only set or cleared with irqs on
2478 	 */
2479 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2480 		u64 len = state->end + 1 - state->start;
2481 		u64 prev_delalloc_bytes;
2482 		u32 num_extents = count_max_extents(fs_info, len);
2483 
2484 		spin_lock(&inode->lock);
2485 		btrfs_mod_outstanding_extents(inode, num_extents);
2486 		spin_unlock(&inode->lock);
2487 
2488 		/* For sanity tests */
2489 		if (btrfs_is_testing(fs_info))
2490 			return;
2491 
2492 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2493 					 fs_info->delalloc_batch);
2494 		spin_lock(&inode->lock);
2495 		prev_delalloc_bytes = inode->delalloc_bytes;
2496 		inode->delalloc_bytes += len;
2497 		if (bits & EXTENT_DEFRAG)
2498 			inode->defrag_bytes += len;
2499 		spin_unlock(&inode->lock);
2500 
2501 		/*
2502 		 * We don't need to be under the protection of the inode's lock,
2503 		 * because we are called while holding the inode's io_tree lock
2504 		 * and are therefore protected against concurrent calls of this
2505 		 * function and btrfs_clear_delalloc_extent().
2506 		 */
2507 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2508 			btrfs_add_delalloc_inode(inode);
2509 	}
2510 
2511 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2512 	    (bits & EXTENT_DELALLOC_NEW)) {
2513 		spin_lock(&inode->lock);
2514 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2515 		spin_unlock(&inode->lock);
2516 	}
2517 }
2518 
2519 /*
2520  * Once a range is no longer delalloc this function ensures that proper
2521  * accounting happens.
2522  */
2523 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2524 				 struct extent_state *state, u32 bits)
2525 {
2526 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2527 	u64 len = state->end + 1 - state->start;
2528 	u32 num_extents = count_max_extents(fs_info, len);
2529 
2530 	lockdep_assert_held(&inode->io_tree.lock);
2531 
2532 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2533 		spin_lock(&inode->lock);
2534 		inode->defrag_bytes -= len;
2535 		spin_unlock(&inode->lock);
2536 	}
2537 
2538 	/*
2539 	 * set_bit and clear bit hooks normally require _irqsave/restore
2540 	 * but in this case, we are only testing for the DELALLOC
2541 	 * bit, which is only set or cleared with irqs on
2542 	 */
2543 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2544 		struct btrfs_root *root = inode->root;
2545 		u64 new_delalloc_bytes;
2546 
2547 		spin_lock(&inode->lock);
2548 		btrfs_mod_outstanding_extents(inode, -num_extents);
2549 		spin_unlock(&inode->lock);
2550 
2551 		/*
2552 		 * We don't reserve metadata space for space cache inodes so we
2553 		 * don't need to call delalloc_release_metadata if there is an
2554 		 * error.
2555 		 */
2556 		if (bits & EXTENT_CLEAR_META_RESV &&
2557 		    root != fs_info->tree_root)
2558 			btrfs_delalloc_release_metadata(inode, len, true);
2559 
2560 		/* For sanity tests. */
2561 		if (btrfs_is_testing(fs_info))
2562 			return;
2563 
2564 		if (!btrfs_is_data_reloc_root(root) &&
2565 		    !btrfs_is_free_space_inode(inode) &&
2566 		    !(state->state & EXTENT_NORESERVE) &&
2567 		    (bits & EXTENT_CLEAR_DATA_RESV))
2568 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2569 
2570 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2571 					 fs_info->delalloc_batch);
2572 		spin_lock(&inode->lock);
2573 		inode->delalloc_bytes -= len;
2574 		new_delalloc_bytes = inode->delalloc_bytes;
2575 		spin_unlock(&inode->lock);
2576 
2577 		/*
2578 		 * We don't need to be under the protection of the inode's lock,
2579 		 * because we are called while holding the inode's io_tree lock
2580 		 * and are therefore protected against concurrent calls of this
2581 		 * function and btrfs_set_delalloc_extent().
2582 		 */
2583 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2584 			spin_lock(&root->delalloc_lock);
2585 			btrfs_del_delalloc_inode(inode);
2586 			spin_unlock(&root->delalloc_lock);
2587 		}
2588 	}
2589 
2590 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2591 	    (bits & EXTENT_DELALLOC_NEW)) {
2592 		spin_lock(&inode->lock);
2593 		ASSERT(inode->new_delalloc_bytes >= len);
2594 		inode->new_delalloc_bytes -= len;
2595 		if (bits & EXTENT_ADD_INODE_BYTES)
2596 			inode_add_bytes(&inode->vfs_inode, len);
2597 		spin_unlock(&inode->lock);
2598 	}
2599 }
2600 
2601 /*
2602  * given a list of ordered sums record them in the inode.  This happens
2603  * at IO completion time based on sums calculated at bio submission time.
2604  */
2605 static int add_pending_csums(struct btrfs_trans_handle *trans,
2606 			     struct list_head *list)
2607 {
2608 	struct btrfs_ordered_sum *sum;
2609 	struct btrfs_root *csum_root = NULL;
2610 	int ret;
2611 
2612 	list_for_each_entry(sum, list, list) {
2613 		trans->adding_csums = true;
2614 		if (!csum_root)
2615 			csum_root = btrfs_csum_root(trans->fs_info,
2616 						    sum->logical);
2617 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2618 		trans->adding_csums = false;
2619 		if (ret)
2620 			return ret;
2621 	}
2622 	return 0;
2623 }
2624 
2625 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2626 					 const u64 start,
2627 					 const u64 len,
2628 					 struct extent_state **cached_state)
2629 {
2630 	u64 search_start = start;
2631 	const u64 end = start + len - 1;
2632 
2633 	while (search_start < end) {
2634 		const u64 search_len = end - search_start + 1;
2635 		struct extent_map *em;
2636 		u64 em_len;
2637 		int ret = 0;
2638 
2639 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2640 		if (IS_ERR(em))
2641 			return PTR_ERR(em);
2642 
2643 		if (em->disk_bytenr != EXTENT_MAP_HOLE)
2644 			goto next;
2645 
2646 		em_len = em->len;
2647 		if (em->start < search_start)
2648 			em_len -= search_start - em->start;
2649 		if (em_len > search_len)
2650 			em_len = search_len;
2651 
2652 		ret = set_extent_bit(&inode->io_tree, search_start,
2653 				     search_start + em_len - 1,
2654 				     EXTENT_DELALLOC_NEW, cached_state);
2655 next:
2656 		search_start = extent_map_end(em);
2657 		free_extent_map(em);
2658 		if (ret)
2659 			return ret;
2660 	}
2661 	return 0;
2662 }
2663 
2664 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2665 			      unsigned int extra_bits,
2666 			      struct extent_state **cached_state)
2667 {
2668 	WARN_ON(PAGE_ALIGNED(end));
2669 
2670 	if (start >= i_size_read(&inode->vfs_inode) &&
2671 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2672 		/*
2673 		 * There can't be any extents following eof in this case so just
2674 		 * set the delalloc new bit for the range directly.
2675 		 */
2676 		extra_bits |= EXTENT_DELALLOC_NEW;
2677 	} else {
2678 		int ret;
2679 
2680 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2681 						    end + 1 - start,
2682 						    cached_state);
2683 		if (ret)
2684 			return ret;
2685 	}
2686 
2687 	return set_extent_bit(&inode->io_tree, start, end,
2688 			      EXTENT_DELALLOC | extra_bits, cached_state);
2689 }
2690 
2691 /* see btrfs_writepage_start_hook for details on why this is required */
2692 struct btrfs_writepage_fixup {
2693 	struct page *page;
2694 	struct btrfs_inode *inode;
2695 	struct btrfs_work work;
2696 };
2697 
2698 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2699 {
2700 	struct btrfs_writepage_fixup *fixup =
2701 		container_of(work, struct btrfs_writepage_fixup, work);
2702 	struct btrfs_ordered_extent *ordered;
2703 	struct extent_state *cached_state = NULL;
2704 	struct extent_changeset *data_reserved = NULL;
2705 	struct page *page = fixup->page;
2706 	struct btrfs_inode *inode = fixup->inode;
2707 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2708 	u64 page_start = page_offset(page);
2709 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2710 	int ret = 0;
2711 	bool free_delalloc_space = true;
2712 
2713 	/*
2714 	 * This is similar to page_mkwrite, we need to reserve the space before
2715 	 * we take the page lock.
2716 	 */
2717 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2718 					   PAGE_SIZE);
2719 again:
2720 	lock_page(page);
2721 
2722 	/*
2723 	 * Before we queued this fixup, we took a reference on the page.
2724 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2725 	 * address space.
2726 	 */
2727 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2728 		/*
2729 		 * Unfortunately this is a little tricky, either
2730 		 *
2731 		 * 1) We got here and our page had already been dealt with and
2732 		 *    we reserved our space, thus ret == 0, so we need to just
2733 		 *    drop our space reservation and bail.  This can happen the
2734 		 *    first time we come into the fixup worker, or could happen
2735 		 *    while waiting for the ordered extent.
2736 		 * 2) Our page was already dealt with, but we happened to get an
2737 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2738 		 *    this case we obviously don't have anything to release, but
2739 		 *    because the page was already dealt with we don't want to
2740 		 *    mark the page with an error, so make sure we're resetting
2741 		 *    ret to 0.  This is why we have this check _before_ the ret
2742 		 *    check, because we do not want to have a surprise ENOSPC
2743 		 *    when the page was already properly dealt with.
2744 		 */
2745 		if (!ret) {
2746 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2747 			btrfs_delalloc_release_space(inode, data_reserved,
2748 						     page_start, PAGE_SIZE,
2749 						     true);
2750 		}
2751 		ret = 0;
2752 		goto out_page;
2753 	}
2754 
2755 	/*
2756 	 * We can't mess with the page state unless it is locked, so now that
2757 	 * it is locked bail if we failed to make our space reservation.
2758 	 */
2759 	if (ret)
2760 		goto out_page;
2761 
2762 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2763 
2764 	/* already ordered? We're done */
2765 	if (PageOrdered(page))
2766 		goto out_reserved;
2767 
2768 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2769 	if (ordered) {
2770 		unlock_extent(&inode->io_tree, page_start, page_end,
2771 			      &cached_state);
2772 		unlock_page(page);
2773 		btrfs_start_ordered_extent(ordered);
2774 		btrfs_put_ordered_extent(ordered);
2775 		goto again;
2776 	}
2777 
2778 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2779 					&cached_state);
2780 	if (ret)
2781 		goto out_reserved;
2782 
2783 	/*
2784 	 * Everything went as planned, we're now the owner of a dirty page with
2785 	 * delayed allocation bits set and space reserved for our COW
2786 	 * destination.
2787 	 *
2788 	 * The page was dirty when we started, nothing should have cleaned it.
2789 	 */
2790 	BUG_ON(!PageDirty(page));
2791 	free_delalloc_space = false;
2792 out_reserved:
2793 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2794 	if (free_delalloc_space)
2795 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2796 					     PAGE_SIZE, true);
2797 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2798 out_page:
2799 	if (ret) {
2800 		/*
2801 		 * We hit ENOSPC or other errors.  Update the mapping and page
2802 		 * to reflect the errors and clean the page.
2803 		 */
2804 		mapping_set_error(page->mapping, ret);
2805 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2806 					       PAGE_SIZE, !ret);
2807 		clear_page_dirty_for_io(page);
2808 	}
2809 	btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2810 	unlock_page(page);
2811 	put_page(page);
2812 	kfree(fixup);
2813 	extent_changeset_free(data_reserved);
2814 	/*
2815 	 * As a precaution, do a delayed iput in case it would be the last iput
2816 	 * that could need flushing space. Recursing back to fixup worker would
2817 	 * deadlock.
2818 	 */
2819 	btrfs_add_delayed_iput(inode);
2820 }
2821 
2822 /*
2823  * There are a few paths in the higher layers of the kernel that directly
2824  * set the page dirty bit without asking the filesystem if it is a
2825  * good idea.  This causes problems because we want to make sure COW
2826  * properly happens and the data=ordered rules are followed.
2827  *
2828  * In our case any range that doesn't have the ORDERED bit set
2829  * hasn't been properly setup for IO.  We kick off an async process
2830  * to fix it up.  The async helper will wait for ordered extents, set
2831  * the delalloc bit and make it safe to write the page.
2832  */
2833 int btrfs_writepage_cow_fixup(struct page *page)
2834 {
2835 	struct inode *inode = page->mapping->host;
2836 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2837 	struct btrfs_writepage_fixup *fixup;
2838 
2839 	/* This page has ordered extent covering it already */
2840 	if (PageOrdered(page))
2841 		return 0;
2842 
2843 	/*
2844 	 * PageChecked is set below when we create a fixup worker for this page,
2845 	 * don't try to create another one if we're already PageChecked()
2846 	 *
2847 	 * The extent_io writepage code will redirty the page if we send back
2848 	 * EAGAIN.
2849 	 */
2850 	if (PageChecked(page))
2851 		return -EAGAIN;
2852 
2853 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2854 	if (!fixup)
2855 		return -EAGAIN;
2856 
2857 	/*
2858 	 * We are already holding a reference to this inode from
2859 	 * write_cache_pages.  We need to hold it because the space reservation
2860 	 * takes place outside of the page lock, and we can't trust
2861 	 * page->mapping outside of the page lock.
2862 	 */
2863 	ihold(inode);
2864 	btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2865 	get_page(page);
2866 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2867 	fixup->page = page;
2868 	fixup->inode = BTRFS_I(inode);
2869 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2870 
2871 	return -EAGAIN;
2872 }
2873 
2874 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2875 				       struct btrfs_inode *inode, u64 file_pos,
2876 				       struct btrfs_file_extent_item *stack_fi,
2877 				       const bool update_inode_bytes,
2878 				       u64 qgroup_reserved)
2879 {
2880 	struct btrfs_root *root = inode->root;
2881 	const u64 sectorsize = root->fs_info->sectorsize;
2882 	struct btrfs_path *path;
2883 	struct extent_buffer *leaf;
2884 	struct btrfs_key ins;
2885 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2886 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2887 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2888 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2889 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2890 	struct btrfs_drop_extents_args drop_args = { 0 };
2891 	int ret;
2892 
2893 	path = btrfs_alloc_path();
2894 	if (!path)
2895 		return -ENOMEM;
2896 
2897 	/*
2898 	 * we may be replacing one extent in the tree with another.
2899 	 * The new extent is pinned in the extent map, and we don't want
2900 	 * to drop it from the cache until it is completely in the btree.
2901 	 *
2902 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2903 	 * the caller is expected to unpin it and allow it to be merged
2904 	 * with the others.
2905 	 */
2906 	drop_args.path = path;
2907 	drop_args.start = file_pos;
2908 	drop_args.end = file_pos + num_bytes;
2909 	drop_args.replace_extent = true;
2910 	drop_args.extent_item_size = sizeof(*stack_fi);
2911 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2912 	if (ret)
2913 		goto out;
2914 
2915 	if (!drop_args.extent_inserted) {
2916 		ins.objectid = btrfs_ino(inode);
2917 		ins.offset = file_pos;
2918 		ins.type = BTRFS_EXTENT_DATA_KEY;
2919 
2920 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2921 					      sizeof(*stack_fi));
2922 		if (ret)
2923 			goto out;
2924 	}
2925 	leaf = path->nodes[0];
2926 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2927 	write_extent_buffer(leaf, stack_fi,
2928 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2929 			sizeof(struct btrfs_file_extent_item));
2930 
2931 	btrfs_mark_buffer_dirty(trans, leaf);
2932 	btrfs_release_path(path);
2933 
2934 	/*
2935 	 * If we dropped an inline extent here, we know the range where it is
2936 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2937 	 * number of bytes only for that range containing the inline extent.
2938 	 * The remaining of the range will be processed when clearning the
2939 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2940 	 */
2941 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2942 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2943 
2944 		inline_size = drop_args.bytes_found - inline_size;
2945 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2946 		drop_args.bytes_found -= inline_size;
2947 		num_bytes -= sectorsize;
2948 	}
2949 
2950 	if (update_inode_bytes)
2951 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2952 
2953 	ins.objectid = disk_bytenr;
2954 	ins.offset = disk_num_bytes;
2955 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2956 
2957 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2958 	if (ret)
2959 		goto out;
2960 
2961 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2962 					       file_pos - offset,
2963 					       qgroup_reserved, &ins);
2964 out:
2965 	btrfs_free_path(path);
2966 
2967 	return ret;
2968 }
2969 
2970 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2971 					 u64 start, u64 len)
2972 {
2973 	struct btrfs_block_group *cache;
2974 
2975 	cache = btrfs_lookup_block_group(fs_info, start);
2976 	ASSERT(cache);
2977 
2978 	spin_lock(&cache->lock);
2979 	cache->delalloc_bytes -= len;
2980 	spin_unlock(&cache->lock);
2981 
2982 	btrfs_put_block_group(cache);
2983 }
2984 
2985 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2986 					     struct btrfs_ordered_extent *oe)
2987 {
2988 	struct btrfs_file_extent_item stack_fi;
2989 	bool update_inode_bytes;
2990 	u64 num_bytes = oe->num_bytes;
2991 	u64 ram_bytes = oe->ram_bytes;
2992 
2993 	memset(&stack_fi, 0, sizeof(stack_fi));
2994 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2995 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2996 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2997 						   oe->disk_num_bytes);
2998 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2999 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags))
3000 		num_bytes = oe->truncated_len;
3001 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3002 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3003 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3004 	/* Encryption and other encoding is reserved and all 0 */
3005 
3006 	/*
3007 	 * For delalloc, when completing an ordered extent we update the inode's
3008 	 * bytes when clearing the range in the inode's io tree, so pass false
3009 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3010 	 * except if the ordered extent was truncated.
3011 	 */
3012 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3013 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3014 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3015 
3016 	return insert_reserved_file_extent(trans, oe->inode,
3017 					   oe->file_offset, &stack_fi,
3018 					   update_inode_bytes, oe->qgroup_rsv);
3019 }
3020 
3021 /*
3022  * As ordered data IO finishes, this gets called so we can finish
3023  * an ordered extent if the range of bytes in the file it covers are
3024  * fully written.
3025  */
3026 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3027 {
3028 	struct btrfs_inode *inode = ordered_extent->inode;
3029 	struct btrfs_root *root = inode->root;
3030 	struct btrfs_fs_info *fs_info = root->fs_info;
3031 	struct btrfs_trans_handle *trans = NULL;
3032 	struct extent_io_tree *io_tree = &inode->io_tree;
3033 	struct extent_state *cached_state = NULL;
3034 	u64 start, end;
3035 	int compress_type = 0;
3036 	int ret = 0;
3037 	u64 logical_len = ordered_extent->num_bytes;
3038 	bool freespace_inode;
3039 	bool truncated = false;
3040 	bool clear_reserved_extent = true;
3041 	unsigned int clear_bits = EXTENT_DEFRAG;
3042 
3043 	start = ordered_extent->file_offset;
3044 	end = start + ordered_extent->num_bytes - 1;
3045 
3046 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3047 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3048 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3049 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3050 		clear_bits |= EXTENT_DELALLOC_NEW;
3051 
3052 	freespace_inode = btrfs_is_free_space_inode(inode);
3053 	if (!freespace_inode)
3054 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3055 
3056 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3057 		ret = -EIO;
3058 		goto out;
3059 	}
3060 
3061 	if (btrfs_is_zoned(fs_info))
3062 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3063 					ordered_extent->disk_num_bytes);
3064 
3065 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3066 		truncated = true;
3067 		logical_len = ordered_extent->truncated_len;
3068 		/* Truncated the entire extent, don't bother adding */
3069 		if (!logical_len)
3070 			goto out;
3071 	}
3072 
3073 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3074 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3075 
3076 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3077 		if (freespace_inode)
3078 			trans = btrfs_join_transaction_spacecache(root);
3079 		else
3080 			trans = btrfs_join_transaction(root);
3081 		if (IS_ERR(trans)) {
3082 			ret = PTR_ERR(trans);
3083 			trans = NULL;
3084 			goto out;
3085 		}
3086 		trans->block_rsv = &inode->block_rsv;
3087 		ret = btrfs_update_inode_fallback(trans, inode);
3088 		if (ret) /* -ENOMEM or corruption */
3089 			btrfs_abort_transaction(trans, ret);
3090 		goto out;
3091 	}
3092 
3093 	clear_bits |= EXTENT_LOCKED;
3094 	lock_extent(io_tree, start, end, &cached_state);
3095 
3096 	if (freespace_inode)
3097 		trans = btrfs_join_transaction_spacecache(root);
3098 	else
3099 		trans = btrfs_join_transaction(root);
3100 	if (IS_ERR(trans)) {
3101 		ret = PTR_ERR(trans);
3102 		trans = NULL;
3103 		goto out;
3104 	}
3105 
3106 	trans->block_rsv = &inode->block_rsv;
3107 
3108 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3109 	if (ret)
3110 		goto out;
3111 
3112 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3113 		compress_type = ordered_extent->compress_type;
3114 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3115 		BUG_ON(compress_type);
3116 		ret = btrfs_mark_extent_written(trans, inode,
3117 						ordered_extent->file_offset,
3118 						ordered_extent->file_offset +
3119 						logical_len);
3120 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3121 						  ordered_extent->disk_num_bytes);
3122 	} else {
3123 		BUG_ON(root == fs_info->tree_root);
3124 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3125 		if (!ret) {
3126 			clear_reserved_extent = false;
3127 			btrfs_release_delalloc_bytes(fs_info,
3128 						ordered_extent->disk_bytenr,
3129 						ordered_extent->disk_num_bytes);
3130 		}
3131 	}
3132 	if (ret < 0) {
3133 		btrfs_abort_transaction(trans, ret);
3134 		goto out;
3135 	}
3136 
3137 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3138 				 ordered_extent->num_bytes, trans->transid);
3139 	if (ret < 0) {
3140 		btrfs_abort_transaction(trans, ret);
3141 		goto out;
3142 	}
3143 
3144 	ret = add_pending_csums(trans, &ordered_extent->list);
3145 	if (ret) {
3146 		btrfs_abort_transaction(trans, ret);
3147 		goto out;
3148 	}
3149 
3150 	/*
3151 	 * If this is a new delalloc range, clear its new delalloc flag to
3152 	 * update the inode's number of bytes. This needs to be done first
3153 	 * before updating the inode item.
3154 	 */
3155 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3156 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3157 		clear_extent_bit(&inode->io_tree, start, end,
3158 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3159 				 &cached_state);
3160 
3161 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3162 	ret = btrfs_update_inode_fallback(trans, inode);
3163 	if (ret) { /* -ENOMEM or corruption */
3164 		btrfs_abort_transaction(trans, ret);
3165 		goto out;
3166 	}
3167 out:
3168 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3169 			 &cached_state);
3170 
3171 	if (trans)
3172 		btrfs_end_transaction(trans);
3173 
3174 	if (ret || truncated) {
3175 		u64 unwritten_start = start;
3176 
3177 		/*
3178 		 * If we failed to finish this ordered extent for any reason we
3179 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3180 		 * extent, and mark the inode with the error if it wasn't
3181 		 * already set.  Any error during writeback would have already
3182 		 * set the mapping error, so we need to set it if we're the ones
3183 		 * marking this ordered extent as failed.
3184 		 */
3185 		if (ret)
3186 			btrfs_mark_ordered_extent_error(ordered_extent);
3187 
3188 		if (truncated)
3189 			unwritten_start += logical_len;
3190 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3191 
3192 		/*
3193 		 * Drop extent maps for the part of the extent we didn't write.
3194 		 *
3195 		 * We have an exception here for the free_space_inode, this is
3196 		 * because when we do btrfs_get_extent() on the free space inode
3197 		 * we will search the commit root.  If this is a new block group
3198 		 * we won't find anything, and we will trip over the assert in
3199 		 * writepage where we do ASSERT(em->block_start !=
3200 		 * EXTENT_MAP_HOLE).
3201 		 *
3202 		 * Theoretically we could also skip this for any NOCOW extent as
3203 		 * we don't mess with the extent map tree in the NOCOW case, but
3204 		 * for now simply skip this if we are the free space inode.
3205 		 */
3206 		if (!btrfs_is_free_space_inode(inode))
3207 			btrfs_drop_extent_map_range(inode, unwritten_start,
3208 						    end, false);
3209 
3210 		/*
3211 		 * If the ordered extent had an IOERR or something else went
3212 		 * wrong we need to return the space for this ordered extent
3213 		 * back to the allocator.  We only free the extent in the
3214 		 * truncated case if we didn't write out the extent at all.
3215 		 *
3216 		 * If we made it past insert_reserved_file_extent before we
3217 		 * errored out then we don't need to do this as the accounting
3218 		 * has already been done.
3219 		 */
3220 		if ((ret || !logical_len) &&
3221 		    clear_reserved_extent &&
3222 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3223 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3224 			/*
3225 			 * Discard the range before returning it back to the
3226 			 * free space pool
3227 			 */
3228 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3229 				btrfs_discard_extent(fs_info,
3230 						ordered_extent->disk_bytenr,
3231 						ordered_extent->disk_num_bytes,
3232 						NULL);
3233 			btrfs_free_reserved_extent(fs_info,
3234 					ordered_extent->disk_bytenr,
3235 					ordered_extent->disk_num_bytes, 1);
3236 			/*
3237 			 * Actually free the qgroup rsv which was released when
3238 			 * the ordered extent was created.
3239 			 */
3240 			btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root),
3241 						  ordered_extent->qgroup_rsv,
3242 						  BTRFS_QGROUP_RSV_DATA);
3243 		}
3244 	}
3245 
3246 	/*
3247 	 * This needs to be done to make sure anybody waiting knows we are done
3248 	 * updating everything for this ordered extent.
3249 	 */
3250 	btrfs_remove_ordered_extent(inode, ordered_extent);
3251 
3252 	/* once for us */
3253 	btrfs_put_ordered_extent(ordered_extent);
3254 	/* once for the tree */
3255 	btrfs_put_ordered_extent(ordered_extent);
3256 
3257 	return ret;
3258 }
3259 
3260 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3261 {
3262 	if (btrfs_is_zoned(ordered->inode->root->fs_info) &&
3263 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3264 	    list_empty(&ordered->bioc_list))
3265 		btrfs_finish_ordered_zoned(ordered);
3266 	return btrfs_finish_one_ordered(ordered);
3267 }
3268 
3269 /*
3270  * Verify the checksum for a single sector without any extra action that depend
3271  * on the type of I/O.
3272  */
3273 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3274 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3275 {
3276 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3277 	char *kaddr;
3278 
3279 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3280 
3281 	shash->tfm = fs_info->csum_shash;
3282 
3283 	kaddr = kmap_local_page(page) + pgoff;
3284 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3285 	kunmap_local(kaddr);
3286 
3287 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3288 		return -EIO;
3289 	return 0;
3290 }
3291 
3292 /*
3293  * Verify the checksum of a single data sector.
3294  *
3295  * @bbio:	btrfs_io_bio which contains the csum
3296  * @dev:	device the sector is on
3297  * @bio_offset:	offset to the beginning of the bio (in bytes)
3298  * @bv:		bio_vec to check
3299  *
3300  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3301  * detected, report the error and fill the corrupted range with zero.
3302  *
3303  * Return %true if the sector is ok or had no checksum to start with, else %false.
3304  */
3305 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3306 			u32 bio_offset, struct bio_vec *bv)
3307 {
3308 	struct btrfs_inode *inode = bbio->inode;
3309 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3310 	u64 file_offset = bbio->file_offset + bio_offset;
3311 	u64 end = file_offset + bv->bv_len - 1;
3312 	u8 *csum_expected;
3313 	u8 csum[BTRFS_CSUM_SIZE];
3314 
3315 	ASSERT(bv->bv_len == fs_info->sectorsize);
3316 
3317 	if (!bbio->csum)
3318 		return true;
3319 
3320 	if (btrfs_is_data_reloc_root(inode->root) &&
3321 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3322 			   NULL)) {
3323 		/* Skip the range without csum for data reloc inode */
3324 		clear_extent_bits(&inode->io_tree, file_offset, end,
3325 				  EXTENT_NODATASUM);
3326 		return true;
3327 	}
3328 
3329 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3330 				fs_info->csum_size;
3331 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3332 				    csum_expected))
3333 		goto zeroit;
3334 	return true;
3335 
3336 zeroit:
3337 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3338 				    bbio->mirror_num);
3339 	if (dev)
3340 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3341 	memzero_bvec(bv);
3342 	return false;
3343 }
3344 
3345 /*
3346  * Perform a delayed iput on @inode.
3347  *
3348  * @inode: The inode we want to perform iput on
3349  *
3350  * This function uses the generic vfs_inode::i_count to track whether we should
3351  * just decrement it (in case it's > 1) or if this is the last iput then link
3352  * the inode to the delayed iput machinery. Delayed iputs are processed at
3353  * transaction commit time/superblock commit/cleaner kthread.
3354  */
3355 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3356 {
3357 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3358 	unsigned long flags;
3359 
3360 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3361 		return;
3362 
3363 	atomic_inc(&fs_info->nr_delayed_iputs);
3364 	/*
3365 	 * Need to be irq safe here because we can be called from either an irq
3366 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3367 	 * context.
3368 	 */
3369 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3370 	ASSERT(list_empty(&inode->delayed_iput));
3371 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3372 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3373 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3374 		wake_up_process(fs_info->cleaner_kthread);
3375 }
3376 
3377 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3378 				    struct btrfs_inode *inode)
3379 {
3380 	list_del_init(&inode->delayed_iput);
3381 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3382 	iput(&inode->vfs_inode);
3383 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3384 		wake_up(&fs_info->delayed_iputs_wait);
3385 	spin_lock_irq(&fs_info->delayed_iput_lock);
3386 }
3387 
3388 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3389 				   struct btrfs_inode *inode)
3390 {
3391 	if (!list_empty(&inode->delayed_iput)) {
3392 		spin_lock_irq(&fs_info->delayed_iput_lock);
3393 		if (!list_empty(&inode->delayed_iput))
3394 			run_delayed_iput_locked(fs_info, inode);
3395 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3396 	}
3397 }
3398 
3399 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3400 {
3401 	/*
3402 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3403 	 * calls btrfs_add_delayed_iput() and that needs to lock
3404 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3405 	 * prevent a deadlock.
3406 	 */
3407 	spin_lock_irq(&fs_info->delayed_iput_lock);
3408 	while (!list_empty(&fs_info->delayed_iputs)) {
3409 		struct btrfs_inode *inode;
3410 
3411 		inode = list_first_entry(&fs_info->delayed_iputs,
3412 				struct btrfs_inode, delayed_iput);
3413 		run_delayed_iput_locked(fs_info, inode);
3414 		if (need_resched()) {
3415 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3416 			cond_resched();
3417 			spin_lock_irq(&fs_info->delayed_iput_lock);
3418 		}
3419 	}
3420 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3421 }
3422 
3423 /*
3424  * Wait for flushing all delayed iputs
3425  *
3426  * @fs_info:  the filesystem
3427  *
3428  * This will wait on any delayed iputs that are currently running with KILLABLE
3429  * set.  Once they are all done running we will return, unless we are killed in
3430  * which case we return EINTR. This helps in user operations like fallocate etc
3431  * that might get blocked on the iputs.
3432  *
3433  * Return EINTR if we were killed, 0 if nothing's pending
3434  */
3435 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3436 {
3437 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3438 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3439 	if (ret)
3440 		return -EINTR;
3441 	return 0;
3442 }
3443 
3444 /*
3445  * This creates an orphan entry for the given inode in case something goes wrong
3446  * in the middle of an unlink.
3447  */
3448 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3449 		     struct btrfs_inode *inode)
3450 {
3451 	int ret;
3452 
3453 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3454 	if (ret && ret != -EEXIST) {
3455 		btrfs_abort_transaction(trans, ret);
3456 		return ret;
3457 	}
3458 
3459 	return 0;
3460 }
3461 
3462 /*
3463  * We have done the delete so we can go ahead and remove the orphan item for
3464  * this particular inode.
3465  */
3466 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3467 			    struct btrfs_inode *inode)
3468 {
3469 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3470 }
3471 
3472 /*
3473  * this cleans up any orphans that may be left on the list from the last use
3474  * of this root.
3475  */
3476 int btrfs_orphan_cleanup(struct btrfs_root *root)
3477 {
3478 	struct btrfs_fs_info *fs_info = root->fs_info;
3479 	struct btrfs_path *path;
3480 	struct extent_buffer *leaf;
3481 	struct btrfs_key key, found_key;
3482 	struct btrfs_trans_handle *trans;
3483 	struct inode *inode;
3484 	u64 last_objectid = 0;
3485 	int ret = 0, nr_unlink = 0;
3486 
3487 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3488 		return 0;
3489 
3490 	path = btrfs_alloc_path();
3491 	if (!path) {
3492 		ret = -ENOMEM;
3493 		goto out;
3494 	}
3495 	path->reada = READA_BACK;
3496 
3497 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3498 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3499 	key.offset = (u64)-1;
3500 
3501 	while (1) {
3502 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3503 		if (ret < 0)
3504 			goto out;
3505 
3506 		/*
3507 		 * if ret == 0 means we found what we were searching for, which
3508 		 * is weird, but possible, so only screw with path if we didn't
3509 		 * find the key and see if we have stuff that matches
3510 		 */
3511 		if (ret > 0) {
3512 			ret = 0;
3513 			if (path->slots[0] == 0)
3514 				break;
3515 			path->slots[0]--;
3516 		}
3517 
3518 		/* pull out the item */
3519 		leaf = path->nodes[0];
3520 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3521 
3522 		/* make sure the item matches what we want */
3523 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3524 			break;
3525 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3526 			break;
3527 
3528 		/* release the path since we're done with it */
3529 		btrfs_release_path(path);
3530 
3531 		/*
3532 		 * this is where we are basically btrfs_lookup, without the
3533 		 * crossing root thing.  we store the inode number in the
3534 		 * offset of the orphan item.
3535 		 */
3536 
3537 		if (found_key.offset == last_objectid) {
3538 			/*
3539 			 * We found the same inode as before. This means we were
3540 			 * not able to remove its items via eviction triggered
3541 			 * by an iput(). A transaction abort may have happened,
3542 			 * due to -ENOSPC for example, so try to grab the error
3543 			 * that lead to a transaction abort, if any.
3544 			 */
3545 			btrfs_err(fs_info,
3546 				  "Error removing orphan entry, stopping orphan cleanup");
3547 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3548 			goto out;
3549 		}
3550 
3551 		last_objectid = found_key.offset;
3552 
3553 		found_key.objectid = found_key.offset;
3554 		found_key.type = BTRFS_INODE_ITEM_KEY;
3555 		found_key.offset = 0;
3556 		inode = btrfs_iget(last_objectid, root);
3557 		if (IS_ERR(inode)) {
3558 			ret = PTR_ERR(inode);
3559 			inode = NULL;
3560 			if (ret != -ENOENT)
3561 				goto out;
3562 		}
3563 
3564 		if (!inode && root == fs_info->tree_root) {
3565 			struct btrfs_root *dead_root;
3566 			int is_dead_root = 0;
3567 
3568 			/*
3569 			 * This is an orphan in the tree root. Currently these
3570 			 * could come from 2 sources:
3571 			 *  a) a root (snapshot/subvolume) deletion in progress
3572 			 *  b) a free space cache inode
3573 			 * We need to distinguish those two, as the orphan item
3574 			 * for a root must not get deleted before the deletion
3575 			 * of the snapshot/subvolume's tree completes.
3576 			 *
3577 			 * btrfs_find_orphan_roots() ran before us, which has
3578 			 * found all deleted roots and loaded them into
3579 			 * fs_info->fs_roots_radix. So here we can find if an
3580 			 * orphan item corresponds to a deleted root by looking
3581 			 * up the root from that radix tree.
3582 			 */
3583 
3584 			spin_lock(&fs_info->fs_roots_radix_lock);
3585 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3586 							 (unsigned long)found_key.objectid);
3587 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3588 				is_dead_root = 1;
3589 			spin_unlock(&fs_info->fs_roots_radix_lock);
3590 
3591 			if (is_dead_root) {
3592 				/* prevent this orphan from being found again */
3593 				key.offset = found_key.objectid - 1;
3594 				continue;
3595 			}
3596 
3597 		}
3598 
3599 		/*
3600 		 * If we have an inode with links, there are a couple of
3601 		 * possibilities:
3602 		 *
3603 		 * 1. We were halfway through creating fsverity metadata for the
3604 		 * file. In that case, the orphan item represents incomplete
3605 		 * fsverity metadata which must be cleaned up with
3606 		 * btrfs_drop_verity_items and deleting the orphan item.
3607 
3608 		 * 2. Old kernels (before v3.12) used to create an
3609 		 * orphan item for truncate indicating that there were possibly
3610 		 * extent items past i_size that needed to be deleted. In v3.12,
3611 		 * truncate was changed to update i_size in sync with the extent
3612 		 * items, but the (useless) orphan item was still created. Since
3613 		 * v4.18, we don't create the orphan item for truncate at all.
3614 		 *
3615 		 * So, this item could mean that we need to do a truncate, but
3616 		 * only if this filesystem was last used on a pre-v3.12 kernel
3617 		 * and was not cleanly unmounted. The odds of that are quite
3618 		 * slim, and it's a pain to do the truncate now, so just delete
3619 		 * the orphan item.
3620 		 *
3621 		 * It's also possible that this orphan item was supposed to be
3622 		 * deleted but wasn't. The inode number may have been reused,
3623 		 * but either way, we can delete the orphan item.
3624 		 */
3625 		if (!inode || inode->i_nlink) {
3626 			if (inode) {
3627 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3628 				iput(inode);
3629 				inode = NULL;
3630 				if (ret)
3631 					goto out;
3632 			}
3633 			trans = btrfs_start_transaction(root, 1);
3634 			if (IS_ERR(trans)) {
3635 				ret = PTR_ERR(trans);
3636 				goto out;
3637 			}
3638 			btrfs_debug(fs_info, "auto deleting %Lu",
3639 				    found_key.objectid);
3640 			ret = btrfs_del_orphan_item(trans, root,
3641 						    found_key.objectid);
3642 			btrfs_end_transaction(trans);
3643 			if (ret)
3644 				goto out;
3645 			continue;
3646 		}
3647 
3648 		nr_unlink++;
3649 
3650 		/* this will do delete_inode and everything for us */
3651 		iput(inode);
3652 	}
3653 	/* release the path since we're done with it */
3654 	btrfs_release_path(path);
3655 
3656 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3657 		trans = btrfs_join_transaction(root);
3658 		if (!IS_ERR(trans))
3659 			btrfs_end_transaction(trans);
3660 	}
3661 
3662 	if (nr_unlink)
3663 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3664 
3665 out:
3666 	if (ret)
3667 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3668 	btrfs_free_path(path);
3669 	return ret;
3670 }
3671 
3672 /*
3673  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3674  * don't find any xattrs, we know there can't be any acls.
3675  *
3676  * slot is the slot the inode is in, objectid is the objectid of the inode
3677  */
3678 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3679 					  int slot, u64 objectid,
3680 					  int *first_xattr_slot)
3681 {
3682 	u32 nritems = btrfs_header_nritems(leaf);
3683 	struct btrfs_key found_key;
3684 	static u64 xattr_access = 0;
3685 	static u64 xattr_default = 0;
3686 	int scanned = 0;
3687 
3688 	if (!xattr_access) {
3689 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3690 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3691 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3692 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3693 	}
3694 
3695 	slot++;
3696 	*first_xattr_slot = -1;
3697 	while (slot < nritems) {
3698 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3699 
3700 		/* we found a different objectid, there must not be acls */
3701 		if (found_key.objectid != objectid)
3702 			return 0;
3703 
3704 		/* we found an xattr, assume we've got an acl */
3705 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3706 			if (*first_xattr_slot == -1)
3707 				*first_xattr_slot = slot;
3708 			if (found_key.offset == xattr_access ||
3709 			    found_key.offset == xattr_default)
3710 				return 1;
3711 		}
3712 
3713 		/*
3714 		 * we found a key greater than an xattr key, there can't
3715 		 * be any acls later on
3716 		 */
3717 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3718 			return 0;
3719 
3720 		slot++;
3721 		scanned++;
3722 
3723 		/*
3724 		 * it goes inode, inode backrefs, xattrs, extents,
3725 		 * so if there are a ton of hard links to an inode there can
3726 		 * be a lot of backrefs.  Don't waste time searching too hard,
3727 		 * this is just an optimization
3728 		 */
3729 		if (scanned >= 8)
3730 			break;
3731 	}
3732 	/* we hit the end of the leaf before we found an xattr or
3733 	 * something larger than an xattr.  We have to assume the inode
3734 	 * has acls
3735 	 */
3736 	if (*first_xattr_slot == -1)
3737 		*first_xattr_slot = slot;
3738 	return 1;
3739 }
3740 
3741 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode)
3742 {
3743 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3744 
3745 	if (WARN_ON_ONCE(inode->file_extent_tree))
3746 		return 0;
3747 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
3748 		return 0;
3749 	if (!S_ISREG(inode->vfs_inode.i_mode))
3750 		return 0;
3751 	if (btrfs_is_free_space_inode(inode))
3752 		return 0;
3753 
3754 	inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
3755 	if (!inode->file_extent_tree)
3756 		return -ENOMEM;
3757 
3758 	extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT);
3759 	/* Lockdep class is set only for the file extent tree. */
3760 	lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class);
3761 
3762 	return 0;
3763 }
3764 
3765 /*
3766  * read an inode from the btree into the in-memory inode
3767  */
3768 static int btrfs_read_locked_inode(struct inode *inode,
3769 				   struct btrfs_path *in_path)
3770 {
3771 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3772 	struct btrfs_path *path = in_path;
3773 	struct extent_buffer *leaf;
3774 	struct btrfs_inode_item *inode_item;
3775 	struct btrfs_root *root = BTRFS_I(inode)->root;
3776 	struct btrfs_key location;
3777 	unsigned long ptr;
3778 	int maybe_acls;
3779 	u32 rdev;
3780 	int ret;
3781 	bool filled = false;
3782 	int first_xattr_slot;
3783 
3784 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
3785 	if (ret)
3786 		return ret;
3787 
3788 	ret = btrfs_fill_inode(inode, &rdev);
3789 	if (!ret)
3790 		filled = true;
3791 
3792 	if (!path) {
3793 		path = btrfs_alloc_path();
3794 		if (!path)
3795 			return -ENOMEM;
3796 	}
3797 
3798 	btrfs_get_inode_key(BTRFS_I(inode), &location);
3799 
3800 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3801 	if (ret) {
3802 		if (path != in_path)
3803 			btrfs_free_path(path);
3804 		return ret;
3805 	}
3806 
3807 	leaf = path->nodes[0];
3808 
3809 	if (filled)
3810 		goto cache_index;
3811 
3812 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3813 				    struct btrfs_inode_item);
3814 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3815 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3816 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3817 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3818 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3819 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3820 			round_up(i_size_read(inode), fs_info->sectorsize));
3821 
3822 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3823 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3824 
3825 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3826 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3827 
3828 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3829 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3830 
3831 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3832 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3833 
3834 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3835 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3836 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3837 
3838 	inode_set_iversion_queried(inode,
3839 				   btrfs_inode_sequence(leaf, inode_item));
3840 	inode->i_generation = BTRFS_I(inode)->generation;
3841 	inode->i_rdev = 0;
3842 	rdev = btrfs_inode_rdev(leaf, inode_item);
3843 
3844 	if (S_ISDIR(inode->i_mode))
3845 		BTRFS_I(inode)->index_cnt = (u64)-1;
3846 
3847 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3848 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3849 
3850 cache_index:
3851 	/*
3852 	 * If we were modified in the current generation and evicted from memory
3853 	 * and then re-read we need to do a full sync since we don't have any
3854 	 * idea about which extents were modified before we were evicted from
3855 	 * cache.
3856 	 *
3857 	 * This is required for both inode re-read from disk and delayed inode
3858 	 * in the delayed_nodes xarray.
3859 	 */
3860 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3861 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3862 			&BTRFS_I(inode)->runtime_flags);
3863 
3864 	/*
3865 	 * We don't persist the id of the transaction where an unlink operation
3866 	 * against the inode was last made. So here we assume the inode might
3867 	 * have been evicted, and therefore the exact value of last_unlink_trans
3868 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3869 	 * between the inode and its parent if the inode is fsync'ed and the log
3870 	 * replayed. For example, in the scenario:
3871 	 *
3872 	 * touch mydir/foo
3873 	 * ln mydir/foo mydir/bar
3874 	 * sync
3875 	 * unlink mydir/bar
3876 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3877 	 * xfs_io -c fsync mydir/foo
3878 	 * <power failure>
3879 	 * mount fs, triggers fsync log replay
3880 	 *
3881 	 * We must make sure that when we fsync our inode foo we also log its
3882 	 * parent inode, otherwise after log replay the parent still has the
3883 	 * dentry with the "bar" name but our inode foo has a link count of 1
3884 	 * and doesn't have an inode ref with the name "bar" anymore.
3885 	 *
3886 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3887 	 * but it guarantees correctness at the expense of occasional full
3888 	 * transaction commits on fsync if our inode is a directory, or if our
3889 	 * inode is not a directory, logging its parent unnecessarily.
3890 	 */
3891 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3892 
3893 	/*
3894 	 * Same logic as for last_unlink_trans. We don't persist the generation
3895 	 * of the last transaction where this inode was used for a reflink
3896 	 * operation, so after eviction and reloading the inode we must be
3897 	 * pessimistic and assume the last transaction that modified the inode.
3898 	 */
3899 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3900 
3901 	path->slots[0]++;
3902 	if (inode->i_nlink != 1 ||
3903 	    path->slots[0] >= btrfs_header_nritems(leaf))
3904 		goto cache_acl;
3905 
3906 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3907 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3908 		goto cache_acl;
3909 
3910 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3911 	if (location.type == BTRFS_INODE_REF_KEY) {
3912 		struct btrfs_inode_ref *ref;
3913 
3914 		ref = (struct btrfs_inode_ref *)ptr;
3915 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3916 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3917 		struct btrfs_inode_extref *extref;
3918 
3919 		extref = (struct btrfs_inode_extref *)ptr;
3920 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3921 								     extref);
3922 	}
3923 cache_acl:
3924 	/*
3925 	 * try to precache a NULL acl entry for files that don't have
3926 	 * any xattrs or acls
3927 	 */
3928 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3929 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3930 	if (first_xattr_slot != -1) {
3931 		path->slots[0] = first_xattr_slot;
3932 		ret = btrfs_load_inode_props(inode, path);
3933 		if (ret)
3934 			btrfs_err(fs_info,
3935 				  "error loading props for ino %llu (root %llu): %d",
3936 				  btrfs_ino(BTRFS_I(inode)),
3937 				  btrfs_root_id(root), ret);
3938 	}
3939 	if (path != in_path)
3940 		btrfs_free_path(path);
3941 
3942 	if (!maybe_acls)
3943 		cache_no_acl(inode);
3944 
3945 	switch (inode->i_mode & S_IFMT) {
3946 	case S_IFREG:
3947 		inode->i_mapping->a_ops = &btrfs_aops;
3948 		inode->i_fop = &btrfs_file_operations;
3949 		inode->i_op = &btrfs_file_inode_operations;
3950 		break;
3951 	case S_IFDIR:
3952 		inode->i_fop = &btrfs_dir_file_operations;
3953 		inode->i_op = &btrfs_dir_inode_operations;
3954 		break;
3955 	case S_IFLNK:
3956 		inode->i_op = &btrfs_symlink_inode_operations;
3957 		inode_nohighmem(inode);
3958 		inode->i_mapping->a_ops = &btrfs_aops;
3959 		break;
3960 	default:
3961 		inode->i_op = &btrfs_special_inode_operations;
3962 		init_special_inode(inode, inode->i_mode, rdev);
3963 		break;
3964 	}
3965 
3966 	btrfs_sync_inode_flags_to_i_flags(inode);
3967 	return 0;
3968 }
3969 
3970 /*
3971  * given a leaf and an inode, copy the inode fields into the leaf
3972  */
3973 static void fill_inode_item(struct btrfs_trans_handle *trans,
3974 			    struct extent_buffer *leaf,
3975 			    struct btrfs_inode_item *item,
3976 			    struct inode *inode)
3977 {
3978 	struct btrfs_map_token token;
3979 	u64 flags;
3980 
3981 	btrfs_init_map_token(&token, leaf);
3982 
3983 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3984 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3985 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3986 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3987 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3988 
3989 	btrfs_set_token_timespec_sec(&token, &item->atime,
3990 				     inode_get_atime_sec(inode));
3991 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3992 				      inode_get_atime_nsec(inode));
3993 
3994 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3995 				     inode_get_mtime_sec(inode));
3996 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3997 				      inode_get_mtime_nsec(inode));
3998 
3999 	btrfs_set_token_timespec_sec(&token, &item->ctime,
4000 				     inode_get_ctime_sec(inode));
4001 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
4002 				      inode_get_ctime_nsec(inode));
4003 
4004 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
4005 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
4006 
4007 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4008 	btrfs_set_token_inode_generation(&token, item,
4009 					 BTRFS_I(inode)->generation);
4010 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4011 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4012 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4013 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4014 					  BTRFS_I(inode)->ro_flags);
4015 	btrfs_set_token_inode_flags(&token, item, flags);
4016 	btrfs_set_token_inode_block_group(&token, item, 0);
4017 }
4018 
4019 /*
4020  * copy everything in the in-memory inode into the btree.
4021  */
4022 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4023 					    struct btrfs_inode *inode)
4024 {
4025 	struct btrfs_inode_item *inode_item;
4026 	struct btrfs_path *path;
4027 	struct extent_buffer *leaf;
4028 	struct btrfs_key key;
4029 	int ret;
4030 
4031 	path = btrfs_alloc_path();
4032 	if (!path)
4033 		return -ENOMEM;
4034 
4035 	btrfs_get_inode_key(inode, &key);
4036 	ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1);
4037 	if (ret) {
4038 		if (ret > 0)
4039 			ret = -ENOENT;
4040 		goto failed;
4041 	}
4042 
4043 	leaf = path->nodes[0];
4044 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4045 				    struct btrfs_inode_item);
4046 
4047 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4048 	btrfs_mark_buffer_dirty(trans, leaf);
4049 	btrfs_set_inode_last_trans(trans, inode);
4050 	ret = 0;
4051 failed:
4052 	btrfs_free_path(path);
4053 	return ret;
4054 }
4055 
4056 /*
4057  * copy everything in the in-memory inode into the btree.
4058  */
4059 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4060 		       struct btrfs_inode *inode)
4061 {
4062 	struct btrfs_root *root = inode->root;
4063 	struct btrfs_fs_info *fs_info = root->fs_info;
4064 	int ret;
4065 
4066 	/*
4067 	 * If the inode is a free space inode, we can deadlock during commit
4068 	 * if we put it into the delayed code.
4069 	 *
4070 	 * The data relocation inode should also be directly updated
4071 	 * without delay
4072 	 */
4073 	if (!btrfs_is_free_space_inode(inode)
4074 	    && !btrfs_is_data_reloc_root(root)
4075 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4076 		btrfs_update_root_times(trans, root);
4077 
4078 		ret = btrfs_delayed_update_inode(trans, inode);
4079 		if (!ret)
4080 			btrfs_set_inode_last_trans(trans, inode);
4081 		return ret;
4082 	}
4083 
4084 	return btrfs_update_inode_item(trans, inode);
4085 }
4086 
4087 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4088 				struct btrfs_inode *inode)
4089 {
4090 	int ret;
4091 
4092 	ret = btrfs_update_inode(trans, inode);
4093 	if (ret == -ENOSPC)
4094 		return btrfs_update_inode_item(trans, inode);
4095 	return ret;
4096 }
4097 
4098 /*
4099  * unlink helper that gets used here in inode.c and in the tree logging
4100  * recovery code.  It remove a link in a directory with a given name, and
4101  * also drops the back refs in the inode to the directory
4102  */
4103 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4104 				struct btrfs_inode *dir,
4105 				struct btrfs_inode *inode,
4106 				const struct fscrypt_str *name,
4107 				struct btrfs_rename_ctx *rename_ctx)
4108 {
4109 	struct btrfs_root *root = dir->root;
4110 	struct btrfs_fs_info *fs_info = root->fs_info;
4111 	struct btrfs_path *path;
4112 	int ret = 0;
4113 	struct btrfs_dir_item *di;
4114 	u64 index;
4115 	u64 ino = btrfs_ino(inode);
4116 	u64 dir_ino = btrfs_ino(dir);
4117 
4118 	path = btrfs_alloc_path();
4119 	if (!path) {
4120 		ret = -ENOMEM;
4121 		goto out;
4122 	}
4123 
4124 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4125 	if (IS_ERR_OR_NULL(di)) {
4126 		ret = di ? PTR_ERR(di) : -ENOENT;
4127 		goto err;
4128 	}
4129 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4130 	if (ret)
4131 		goto err;
4132 	btrfs_release_path(path);
4133 
4134 	/*
4135 	 * If we don't have dir index, we have to get it by looking up
4136 	 * the inode ref, since we get the inode ref, remove it directly,
4137 	 * it is unnecessary to do delayed deletion.
4138 	 *
4139 	 * But if we have dir index, needn't search inode ref to get it.
4140 	 * Since the inode ref is close to the inode item, it is better
4141 	 * that we delay to delete it, and just do this deletion when
4142 	 * we update the inode item.
4143 	 */
4144 	if (inode->dir_index) {
4145 		ret = btrfs_delayed_delete_inode_ref(inode);
4146 		if (!ret) {
4147 			index = inode->dir_index;
4148 			goto skip_backref;
4149 		}
4150 	}
4151 
4152 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4153 	if (ret) {
4154 		btrfs_info(fs_info,
4155 			"failed to delete reference to %.*s, inode %llu parent %llu",
4156 			name->len, name->name, ino, dir_ino);
4157 		btrfs_abort_transaction(trans, ret);
4158 		goto err;
4159 	}
4160 skip_backref:
4161 	if (rename_ctx)
4162 		rename_ctx->index = index;
4163 
4164 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4165 	if (ret) {
4166 		btrfs_abort_transaction(trans, ret);
4167 		goto err;
4168 	}
4169 
4170 	/*
4171 	 * If we are in a rename context, we don't need to update anything in the
4172 	 * log. That will be done later during the rename by btrfs_log_new_name().
4173 	 * Besides that, doing it here would only cause extra unnecessary btree
4174 	 * operations on the log tree, increasing latency for applications.
4175 	 */
4176 	if (!rename_ctx) {
4177 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4178 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4179 	}
4180 
4181 	/*
4182 	 * If we have a pending delayed iput we could end up with the final iput
4183 	 * being run in btrfs-cleaner context.  If we have enough of these built
4184 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4185 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4186 	 * the inode we can run the delayed iput here without any issues as the
4187 	 * final iput won't be done until after we drop the ref we're currently
4188 	 * holding.
4189 	 */
4190 	btrfs_run_delayed_iput(fs_info, inode);
4191 err:
4192 	btrfs_free_path(path);
4193 	if (ret)
4194 		goto out;
4195 
4196 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4197 	inode_inc_iversion(&inode->vfs_inode);
4198 	inode_set_ctime_current(&inode->vfs_inode);
4199 	inode_inc_iversion(&dir->vfs_inode);
4200  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4201 	ret = btrfs_update_inode(trans, dir);
4202 out:
4203 	return ret;
4204 }
4205 
4206 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4207 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4208 		       const struct fscrypt_str *name)
4209 {
4210 	int ret;
4211 
4212 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4213 	if (!ret) {
4214 		drop_nlink(&inode->vfs_inode);
4215 		ret = btrfs_update_inode(trans, inode);
4216 	}
4217 	return ret;
4218 }
4219 
4220 /*
4221  * helper to start transaction for unlink and rmdir.
4222  *
4223  * unlink and rmdir are special in btrfs, they do not always free space, so
4224  * if we cannot make our reservations the normal way try and see if there is
4225  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4226  * allow the unlink to occur.
4227  */
4228 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4229 {
4230 	struct btrfs_root *root = dir->root;
4231 
4232 	return btrfs_start_transaction_fallback_global_rsv(root,
4233 						   BTRFS_UNLINK_METADATA_UNITS);
4234 }
4235 
4236 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4237 {
4238 	struct btrfs_trans_handle *trans;
4239 	struct inode *inode = d_inode(dentry);
4240 	int ret;
4241 	struct fscrypt_name fname;
4242 
4243 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4244 	if (ret)
4245 		return ret;
4246 
4247 	/* This needs to handle no-key deletions later on */
4248 
4249 	trans = __unlink_start_trans(BTRFS_I(dir));
4250 	if (IS_ERR(trans)) {
4251 		ret = PTR_ERR(trans);
4252 		goto fscrypt_free;
4253 	}
4254 
4255 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4256 				false);
4257 
4258 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4259 				 &fname.disk_name);
4260 	if (ret)
4261 		goto end_trans;
4262 
4263 	if (inode->i_nlink == 0) {
4264 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4265 		if (ret)
4266 			goto end_trans;
4267 	}
4268 
4269 end_trans:
4270 	btrfs_end_transaction(trans);
4271 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4272 fscrypt_free:
4273 	fscrypt_free_filename(&fname);
4274 	return ret;
4275 }
4276 
4277 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4278 			       struct btrfs_inode *dir, struct dentry *dentry)
4279 {
4280 	struct btrfs_root *root = dir->root;
4281 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4282 	struct btrfs_path *path;
4283 	struct extent_buffer *leaf;
4284 	struct btrfs_dir_item *di;
4285 	struct btrfs_key key;
4286 	u64 index;
4287 	int ret;
4288 	u64 objectid;
4289 	u64 dir_ino = btrfs_ino(dir);
4290 	struct fscrypt_name fname;
4291 
4292 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4293 	if (ret)
4294 		return ret;
4295 
4296 	/* This needs to handle no-key deletions later on */
4297 
4298 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4299 		objectid = btrfs_root_id(inode->root);
4300 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4301 		objectid = inode->ref_root_id;
4302 	} else {
4303 		WARN_ON(1);
4304 		fscrypt_free_filename(&fname);
4305 		return -EINVAL;
4306 	}
4307 
4308 	path = btrfs_alloc_path();
4309 	if (!path) {
4310 		ret = -ENOMEM;
4311 		goto out;
4312 	}
4313 
4314 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4315 				   &fname.disk_name, -1);
4316 	if (IS_ERR_OR_NULL(di)) {
4317 		ret = di ? PTR_ERR(di) : -ENOENT;
4318 		goto out;
4319 	}
4320 
4321 	leaf = path->nodes[0];
4322 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4323 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4324 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4325 	if (ret) {
4326 		btrfs_abort_transaction(trans, ret);
4327 		goto out;
4328 	}
4329 	btrfs_release_path(path);
4330 
4331 	/*
4332 	 * This is a placeholder inode for a subvolume we didn't have a
4333 	 * reference to at the time of the snapshot creation.  In the meantime
4334 	 * we could have renamed the real subvol link into our snapshot, so
4335 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4336 	 * Instead simply lookup the dir_index_item for this entry so we can
4337 	 * remove it.  Otherwise we know we have a ref to the root and we can
4338 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4339 	 */
4340 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4341 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4342 		if (IS_ERR_OR_NULL(di)) {
4343 			if (!di)
4344 				ret = -ENOENT;
4345 			else
4346 				ret = PTR_ERR(di);
4347 			btrfs_abort_transaction(trans, ret);
4348 			goto out;
4349 		}
4350 
4351 		leaf = path->nodes[0];
4352 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4353 		index = key.offset;
4354 		btrfs_release_path(path);
4355 	} else {
4356 		ret = btrfs_del_root_ref(trans, objectid,
4357 					 btrfs_root_id(root), dir_ino,
4358 					 &index, &fname.disk_name);
4359 		if (ret) {
4360 			btrfs_abort_transaction(trans, ret);
4361 			goto out;
4362 		}
4363 	}
4364 
4365 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4366 	if (ret) {
4367 		btrfs_abort_transaction(trans, ret);
4368 		goto out;
4369 	}
4370 
4371 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4372 	inode_inc_iversion(&dir->vfs_inode);
4373 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4374 	ret = btrfs_update_inode_fallback(trans, dir);
4375 	if (ret)
4376 		btrfs_abort_transaction(trans, ret);
4377 out:
4378 	btrfs_free_path(path);
4379 	fscrypt_free_filename(&fname);
4380 	return ret;
4381 }
4382 
4383 /*
4384  * Helper to check if the subvolume references other subvolumes or if it's
4385  * default.
4386  */
4387 static noinline int may_destroy_subvol(struct btrfs_root *root)
4388 {
4389 	struct btrfs_fs_info *fs_info = root->fs_info;
4390 	struct btrfs_path *path;
4391 	struct btrfs_dir_item *di;
4392 	struct btrfs_key key;
4393 	struct fscrypt_str name = FSTR_INIT("default", 7);
4394 	u64 dir_id;
4395 	int ret;
4396 
4397 	path = btrfs_alloc_path();
4398 	if (!path)
4399 		return -ENOMEM;
4400 
4401 	/* Make sure this root isn't set as the default subvol */
4402 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4403 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4404 				   dir_id, &name, 0);
4405 	if (di && !IS_ERR(di)) {
4406 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4407 		if (key.objectid == btrfs_root_id(root)) {
4408 			ret = -EPERM;
4409 			btrfs_err(fs_info,
4410 				  "deleting default subvolume %llu is not allowed",
4411 				  key.objectid);
4412 			goto out;
4413 		}
4414 		btrfs_release_path(path);
4415 	}
4416 
4417 	key.objectid = btrfs_root_id(root);
4418 	key.type = BTRFS_ROOT_REF_KEY;
4419 	key.offset = (u64)-1;
4420 
4421 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4422 	if (ret < 0)
4423 		goto out;
4424 	if (ret == 0) {
4425 		/*
4426 		 * Key with offset -1 found, there would have to exist a root
4427 		 * with such id, but this is out of valid range.
4428 		 */
4429 		ret = -EUCLEAN;
4430 		goto out;
4431 	}
4432 
4433 	ret = 0;
4434 	if (path->slots[0] > 0) {
4435 		path->slots[0]--;
4436 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4437 		if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY)
4438 			ret = -ENOTEMPTY;
4439 	}
4440 out:
4441 	btrfs_free_path(path);
4442 	return ret;
4443 }
4444 
4445 /* Delete all dentries for inodes belonging to the root */
4446 static void btrfs_prune_dentries(struct btrfs_root *root)
4447 {
4448 	struct btrfs_fs_info *fs_info = root->fs_info;
4449 	struct btrfs_inode *inode;
4450 	u64 min_ino = 0;
4451 
4452 	if (!BTRFS_FS_ERROR(fs_info))
4453 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4454 
4455 	inode = btrfs_find_first_inode(root, min_ino);
4456 	while (inode) {
4457 		if (atomic_read(&inode->vfs_inode.i_count) > 1)
4458 			d_prune_aliases(&inode->vfs_inode);
4459 
4460 		min_ino = btrfs_ino(inode) + 1;
4461 		/*
4462 		 * btrfs_drop_inode() will have it removed from the inode
4463 		 * cache when its usage count hits zero.
4464 		 */
4465 		iput(&inode->vfs_inode);
4466 		cond_resched();
4467 		inode = btrfs_find_first_inode(root, min_ino);
4468 	}
4469 }
4470 
4471 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4472 {
4473 	struct btrfs_root *root = dir->root;
4474 	struct btrfs_fs_info *fs_info = root->fs_info;
4475 	struct inode *inode = d_inode(dentry);
4476 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4477 	struct btrfs_trans_handle *trans;
4478 	struct btrfs_block_rsv block_rsv;
4479 	u64 root_flags;
4480 	u64 qgroup_reserved = 0;
4481 	int ret;
4482 
4483 	down_write(&fs_info->subvol_sem);
4484 
4485 	/*
4486 	 * Don't allow to delete a subvolume with send in progress. This is
4487 	 * inside the inode lock so the error handling that has to drop the bit
4488 	 * again is not run concurrently.
4489 	 */
4490 	spin_lock(&dest->root_item_lock);
4491 	if (dest->send_in_progress) {
4492 		spin_unlock(&dest->root_item_lock);
4493 		btrfs_warn(fs_info,
4494 			   "attempt to delete subvolume %llu during send",
4495 			   btrfs_root_id(dest));
4496 		ret = -EPERM;
4497 		goto out_up_write;
4498 	}
4499 	if (atomic_read(&dest->nr_swapfiles)) {
4500 		spin_unlock(&dest->root_item_lock);
4501 		btrfs_warn(fs_info,
4502 			   "attempt to delete subvolume %llu with active swapfile",
4503 			   btrfs_root_id(root));
4504 		ret = -EPERM;
4505 		goto out_up_write;
4506 	}
4507 	root_flags = btrfs_root_flags(&dest->root_item);
4508 	btrfs_set_root_flags(&dest->root_item,
4509 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4510 	spin_unlock(&dest->root_item_lock);
4511 
4512 	ret = may_destroy_subvol(dest);
4513 	if (ret)
4514 		goto out_undead;
4515 
4516 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4517 	/*
4518 	 * One for dir inode,
4519 	 * two for dir entries,
4520 	 * two for root ref/backref.
4521 	 */
4522 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4523 	if (ret)
4524 		goto out_undead;
4525 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4526 
4527 	trans = btrfs_start_transaction(root, 0);
4528 	if (IS_ERR(trans)) {
4529 		ret = PTR_ERR(trans);
4530 		goto out_release;
4531 	}
4532 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4533 	qgroup_reserved = 0;
4534 	trans->block_rsv = &block_rsv;
4535 	trans->bytes_reserved = block_rsv.size;
4536 
4537 	btrfs_record_snapshot_destroy(trans, dir);
4538 
4539 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4540 	if (ret) {
4541 		btrfs_abort_transaction(trans, ret);
4542 		goto out_end_trans;
4543 	}
4544 
4545 	ret = btrfs_record_root_in_trans(trans, dest);
4546 	if (ret) {
4547 		btrfs_abort_transaction(trans, ret);
4548 		goto out_end_trans;
4549 	}
4550 
4551 	memset(&dest->root_item.drop_progress, 0,
4552 		sizeof(dest->root_item.drop_progress));
4553 	btrfs_set_root_drop_level(&dest->root_item, 0);
4554 	btrfs_set_root_refs(&dest->root_item, 0);
4555 
4556 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4557 		ret = btrfs_insert_orphan_item(trans,
4558 					fs_info->tree_root,
4559 					btrfs_root_id(dest));
4560 		if (ret) {
4561 			btrfs_abort_transaction(trans, ret);
4562 			goto out_end_trans;
4563 		}
4564 	}
4565 
4566 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4567 				     BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest));
4568 	if (ret && ret != -ENOENT) {
4569 		btrfs_abort_transaction(trans, ret);
4570 		goto out_end_trans;
4571 	}
4572 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4573 		ret = btrfs_uuid_tree_remove(trans,
4574 					  dest->root_item.received_uuid,
4575 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4576 					  btrfs_root_id(dest));
4577 		if (ret && ret != -ENOENT) {
4578 			btrfs_abort_transaction(trans, ret);
4579 			goto out_end_trans;
4580 		}
4581 	}
4582 
4583 	free_anon_bdev(dest->anon_dev);
4584 	dest->anon_dev = 0;
4585 out_end_trans:
4586 	trans->block_rsv = NULL;
4587 	trans->bytes_reserved = 0;
4588 	ret = btrfs_end_transaction(trans);
4589 	inode->i_flags |= S_DEAD;
4590 out_release:
4591 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4592 	if (qgroup_reserved)
4593 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4594 out_undead:
4595 	if (ret) {
4596 		spin_lock(&dest->root_item_lock);
4597 		root_flags = btrfs_root_flags(&dest->root_item);
4598 		btrfs_set_root_flags(&dest->root_item,
4599 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4600 		spin_unlock(&dest->root_item_lock);
4601 	}
4602 out_up_write:
4603 	up_write(&fs_info->subvol_sem);
4604 	if (!ret) {
4605 		d_invalidate(dentry);
4606 		btrfs_prune_dentries(dest);
4607 		ASSERT(dest->send_in_progress == 0);
4608 	}
4609 
4610 	return ret;
4611 }
4612 
4613 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4614 {
4615 	struct inode *inode = d_inode(dentry);
4616 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4617 	int ret = 0;
4618 	struct btrfs_trans_handle *trans;
4619 	u64 last_unlink_trans;
4620 	struct fscrypt_name fname;
4621 
4622 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4623 		return -ENOTEMPTY;
4624 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4625 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4626 			btrfs_err(fs_info,
4627 			"extent tree v2 doesn't support snapshot deletion yet");
4628 			return -EOPNOTSUPP;
4629 		}
4630 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4631 	}
4632 
4633 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4634 	if (ret)
4635 		return ret;
4636 
4637 	/* This needs to handle no-key deletions later on */
4638 
4639 	trans = __unlink_start_trans(BTRFS_I(dir));
4640 	if (IS_ERR(trans)) {
4641 		ret = PTR_ERR(trans);
4642 		goto out_notrans;
4643 	}
4644 
4645 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4646 		ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4647 		goto out;
4648 	}
4649 
4650 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4651 	if (ret)
4652 		goto out;
4653 
4654 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4655 
4656 	/* now the directory is empty */
4657 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4658 				 &fname.disk_name);
4659 	if (!ret) {
4660 		btrfs_i_size_write(BTRFS_I(inode), 0);
4661 		/*
4662 		 * Propagate the last_unlink_trans value of the deleted dir to
4663 		 * its parent directory. This is to prevent an unrecoverable
4664 		 * log tree in the case we do something like this:
4665 		 * 1) create dir foo
4666 		 * 2) create snapshot under dir foo
4667 		 * 3) delete the snapshot
4668 		 * 4) rmdir foo
4669 		 * 5) mkdir foo
4670 		 * 6) fsync foo or some file inside foo
4671 		 */
4672 		if (last_unlink_trans >= trans->transid)
4673 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4674 	}
4675 out:
4676 	btrfs_end_transaction(trans);
4677 out_notrans:
4678 	btrfs_btree_balance_dirty(fs_info);
4679 	fscrypt_free_filename(&fname);
4680 
4681 	return ret;
4682 }
4683 
4684 /*
4685  * Read, zero a chunk and write a block.
4686  *
4687  * @inode - inode that we're zeroing
4688  * @from - the offset to start zeroing
4689  * @len - the length to zero, 0 to zero the entire range respective to the
4690  *	offset
4691  * @front - zero up to the offset instead of from the offset on
4692  *
4693  * This will find the block for the "from" offset and cow the block and zero the
4694  * part we want to zero.  This is used with truncate and hole punching.
4695  */
4696 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4697 			 int front)
4698 {
4699 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4700 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4701 	struct extent_io_tree *io_tree = &inode->io_tree;
4702 	struct btrfs_ordered_extent *ordered;
4703 	struct extent_state *cached_state = NULL;
4704 	struct extent_changeset *data_reserved = NULL;
4705 	bool only_release_metadata = false;
4706 	u32 blocksize = fs_info->sectorsize;
4707 	pgoff_t index = from >> PAGE_SHIFT;
4708 	unsigned offset = from & (blocksize - 1);
4709 	struct folio *folio;
4710 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4711 	size_t write_bytes = blocksize;
4712 	int ret = 0;
4713 	u64 block_start;
4714 	u64 block_end;
4715 
4716 	if (IS_ALIGNED(offset, blocksize) &&
4717 	    (!len || IS_ALIGNED(len, blocksize)))
4718 		goto out;
4719 
4720 	block_start = round_down(from, blocksize);
4721 	block_end = block_start + blocksize - 1;
4722 
4723 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4724 					  blocksize, false);
4725 	if (ret < 0) {
4726 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4727 			/* For nocow case, no need to reserve data space */
4728 			only_release_metadata = true;
4729 		} else {
4730 			goto out;
4731 		}
4732 	}
4733 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4734 	if (ret < 0) {
4735 		if (!only_release_metadata)
4736 			btrfs_free_reserved_data_space(inode, data_reserved,
4737 						       block_start, blocksize);
4738 		goto out;
4739 	}
4740 again:
4741 	folio = __filemap_get_folio(mapping, index,
4742 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4743 	if (IS_ERR(folio)) {
4744 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4745 					     blocksize, true);
4746 		btrfs_delalloc_release_extents(inode, blocksize);
4747 		ret = -ENOMEM;
4748 		goto out;
4749 	}
4750 
4751 	if (!folio_test_uptodate(folio)) {
4752 		ret = btrfs_read_folio(NULL, folio);
4753 		folio_lock(folio);
4754 		if (folio->mapping != mapping) {
4755 			folio_unlock(folio);
4756 			folio_put(folio);
4757 			goto again;
4758 		}
4759 		if (!folio_test_uptodate(folio)) {
4760 			ret = -EIO;
4761 			goto out_unlock;
4762 		}
4763 	}
4764 
4765 	/*
4766 	 * We unlock the page after the io is completed and then re-lock it
4767 	 * above.  release_folio() could have come in between that and cleared
4768 	 * folio private, but left the page in the mapping.  Set the page mapped
4769 	 * here to make sure it's properly set for the subpage stuff.
4770 	 */
4771 	ret = set_folio_extent_mapped(folio);
4772 	if (ret < 0)
4773 		goto out_unlock;
4774 
4775 	folio_wait_writeback(folio);
4776 
4777 	lock_extent(io_tree, block_start, block_end, &cached_state);
4778 
4779 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4780 	if (ordered) {
4781 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4782 		folio_unlock(folio);
4783 		folio_put(folio);
4784 		btrfs_start_ordered_extent(ordered);
4785 		btrfs_put_ordered_extent(ordered);
4786 		goto again;
4787 	}
4788 
4789 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4790 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4791 			 &cached_state);
4792 
4793 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4794 					&cached_state);
4795 	if (ret) {
4796 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4797 		goto out_unlock;
4798 	}
4799 
4800 	if (offset != blocksize) {
4801 		if (!len)
4802 			len = blocksize - offset;
4803 		if (front)
4804 			folio_zero_range(folio, block_start - folio_pos(folio),
4805 					 offset);
4806 		else
4807 			folio_zero_range(folio,
4808 					 (block_start - folio_pos(folio)) + offset,
4809 					 len);
4810 	}
4811 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4812 				  block_end + 1 - block_start);
4813 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4814 			      block_end + 1 - block_start);
4815 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4816 
4817 	if (only_release_metadata)
4818 		set_extent_bit(&inode->io_tree, block_start, block_end,
4819 			       EXTENT_NORESERVE, NULL);
4820 
4821 out_unlock:
4822 	if (ret) {
4823 		if (only_release_metadata)
4824 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4825 		else
4826 			btrfs_delalloc_release_space(inode, data_reserved,
4827 					block_start, blocksize, true);
4828 	}
4829 	btrfs_delalloc_release_extents(inode, blocksize);
4830 	folio_unlock(folio);
4831 	folio_put(folio);
4832 out:
4833 	if (only_release_metadata)
4834 		btrfs_check_nocow_unlock(inode);
4835 	extent_changeset_free(data_reserved);
4836 	return ret;
4837 }
4838 
4839 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4840 {
4841 	struct btrfs_root *root = inode->root;
4842 	struct btrfs_fs_info *fs_info = root->fs_info;
4843 	struct btrfs_trans_handle *trans;
4844 	struct btrfs_drop_extents_args drop_args = { 0 };
4845 	int ret;
4846 
4847 	/*
4848 	 * If NO_HOLES is enabled, we don't need to do anything.
4849 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4850 	 * or btrfs_update_inode() will be called, which guarantee that the next
4851 	 * fsync will know this inode was changed and needs to be logged.
4852 	 */
4853 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4854 		return 0;
4855 
4856 	/*
4857 	 * 1 - for the one we're dropping
4858 	 * 1 - for the one we're adding
4859 	 * 1 - for updating the inode.
4860 	 */
4861 	trans = btrfs_start_transaction(root, 3);
4862 	if (IS_ERR(trans))
4863 		return PTR_ERR(trans);
4864 
4865 	drop_args.start = offset;
4866 	drop_args.end = offset + len;
4867 	drop_args.drop_cache = true;
4868 
4869 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4870 	if (ret) {
4871 		btrfs_abort_transaction(trans, ret);
4872 		btrfs_end_transaction(trans);
4873 		return ret;
4874 	}
4875 
4876 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4877 	if (ret) {
4878 		btrfs_abort_transaction(trans, ret);
4879 	} else {
4880 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4881 		btrfs_update_inode(trans, inode);
4882 	}
4883 	btrfs_end_transaction(trans);
4884 	return ret;
4885 }
4886 
4887 /*
4888  * This function puts in dummy file extents for the area we're creating a hole
4889  * for.  So if we are truncating this file to a larger size we need to insert
4890  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4891  * the range between oldsize and size
4892  */
4893 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4894 {
4895 	struct btrfs_root *root = inode->root;
4896 	struct btrfs_fs_info *fs_info = root->fs_info;
4897 	struct extent_io_tree *io_tree = &inode->io_tree;
4898 	struct extent_map *em = NULL;
4899 	struct extent_state *cached_state = NULL;
4900 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4901 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4902 	u64 last_byte;
4903 	u64 cur_offset;
4904 	u64 hole_size;
4905 	int ret = 0;
4906 
4907 	/*
4908 	 * If our size started in the middle of a block we need to zero out the
4909 	 * rest of the block before we expand the i_size, otherwise we could
4910 	 * expose stale data.
4911 	 */
4912 	ret = btrfs_truncate_block(inode, oldsize, 0, 0);
4913 	if (ret)
4914 		return ret;
4915 
4916 	if (size <= hole_start)
4917 		return 0;
4918 
4919 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4920 					   &cached_state);
4921 	cur_offset = hole_start;
4922 	while (1) {
4923 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4924 		if (IS_ERR(em)) {
4925 			ret = PTR_ERR(em);
4926 			em = NULL;
4927 			break;
4928 		}
4929 		last_byte = min(extent_map_end(em), block_end);
4930 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4931 		hole_size = last_byte - cur_offset;
4932 
4933 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4934 			struct extent_map *hole_em;
4935 
4936 			ret = maybe_insert_hole(inode, cur_offset, hole_size);
4937 			if (ret)
4938 				break;
4939 
4940 			ret = btrfs_inode_set_file_extent_range(inode,
4941 							cur_offset, hole_size);
4942 			if (ret)
4943 				break;
4944 
4945 			hole_em = alloc_extent_map();
4946 			if (!hole_em) {
4947 				btrfs_drop_extent_map_range(inode, cur_offset,
4948 						    cur_offset + hole_size - 1,
4949 						    false);
4950 				btrfs_set_inode_full_sync(inode);
4951 				goto next;
4952 			}
4953 			hole_em->start = cur_offset;
4954 			hole_em->len = hole_size;
4955 
4956 			hole_em->disk_bytenr = EXTENT_MAP_HOLE;
4957 			hole_em->disk_num_bytes = 0;
4958 			hole_em->ram_bytes = hole_size;
4959 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4960 
4961 			ret = btrfs_replace_extent_map_range(inode, hole_em, true);
4962 			free_extent_map(hole_em);
4963 		} else {
4964 			ret = btrfs_inode_set_file_extent_range(inode,
4965 							cur_offset, hole_size);
4966 			if (ret)
4967 				break;
4968 		}
4969 next:
4970 		free_extent_map(em);
4971 		em = NULL;
4972 		cur_offset = last_byte;
4973 		if (cur_offset >= block_end)
4974 			break;
4975 	}
4976 	free_extent_map(em);
4977 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4978 	return ret;
4979 }
4980 
4981 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4982 {
4983 	struct btrfs_root *root = BTRFS_I(inode)->root;
4984 	struct btrfs_trans_handle *trans;
4985 	loff_t oldsize = i_size_read(inode);
4986 	loff_t newsize = attr->ia_size;
4987 	int mask = attr->ia_valid;
4988 	int ret;
4989 
4990 	/*
4991 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4992 	 * special case where we need to update the times despite not having
4993 	 * these flags set.  For all other operations the VFS set these flags
4994 	 * explicitly if it wants a timestamp update.
4995 	 */
4996 	if (newsize != oldsize) {
4997 		inode_inc_iversion(inode);
4998 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4999 			inode_set_mtime_to_ts(inode,
5000 					      inode_set_ctime_current(inode));
5001 		}
5002 	}
5003 
5004 	if (newsize > oldsize) {
5005 		/*
5006 		 * Don't do an expanding truncate while snapshotting is ongoing.
5007 		 * This is to ensure the snapshot captures a fully consistent
5008 		 * state of this file - if the snapshot captures this expanding
5009 		 * truncation, it must capture all writes that happened before
5010 		 * this truncation.
5011 		 */
5012 		btrfs_drew_write_lock(&root->snapshot_lock);
5013 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5014 		if (ret) {
5015 			btrfs_drew_write_unlock(&root->snapshot_lock);
5016 			return ret;
5017 		}
5018 
5019 		trans = btrfs_start_transaction(root, 1);
5020 		if (IS_ERR(trans)) {
5021 			btrfs_drew_write_unlock(&root->snapshot_lock);
5022 			return PTR_ERR(trans);
5023 		}
5024 
5025 		i_size_write(inode, newsize);
5026 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5027 		pagecache_isize_extended(inode, oldsize, newsize);
5028 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5029 		btrfs_drew_write_unlock(&root->snapshot_lock);
5030 		btrfs_end_transaction(trans);
5031 	} else {
5032 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5033 
5034 		if (btrfs_is_zoned(fs_info)) {
5035 			ret = btrfs_wait_ordered_range(BTRFS_I(inode),
5036 					ALIGN(newsize, fs_info->sectorsize),
5037 					(u64)-1);
5038 			if (ret)
5039 				return ret;
5040 		}
5041 
5042 		/*
5043 		 * We're truncating a file that used to have good data down to
5044 		 * zero. Make sure any new writes to the file get on disk
5045 		 * on close.
5046 		 */
5047 		if (newsize == 0)
5048 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5049 				&BTRFS_I(inode)->runtime_flags);
5050 
5051 		truncate_setsize(inode, newsize);
5052 
5053 		inode_dio_wait(inode);
5054 
5055 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5056 		if (ret && inode->i_nlink) {
5057 			int err;
5058 
5059 			/*
5060 			 * Truncate failed, so fix up the in-memory size. We
5061 			 * adjusted disk_i_size down as we removed extents, so
5062 			 * wait for disk_i_size to be stable and then update the
5063 			 * in-memory size to match.
5064 			 */
5065 			err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
5066 			if (err)
5067 				return err;
5068 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5069 		}
5070 	}
5071 
5072 	return ret;
5073 }
5074 
5075 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5076 			 struct iattr *attr)
5077 {
5078 	struct inode *inode = d_inode(dentry);
5079 	struct btrfs_root *root = BTRFS_I(inode)->root;
5080 	int err;
5081 
5082 	if (btrfs_root_readonly(root))
5083 		return -EROFS;
5084 
5085 	err = setattr_prepare(idmap, dentry, attr);
5086 	if (err)
5087 		return err;
5088 
5089 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5090 		err = btrfs_setsize(inode, attr);
5091 		if (err)
5092 			return err;
5093 	}
5094 
5095 	if (attr->ia_valid) {
5096 		setattr_copy(idmap, inode, attr);
5097 		inode_inc_iversion(inode);
5098 		err = btrfs_dirty_inode(BTRFS_I(inode));
5099 
5100 		if (!err && attr->ia_valid & ATTR_MODE)
5101 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5102 	}
5103 
5104 	return err;
5105 }
5106 
5107 /*
5108  * While truncating the inode pages during eviction, we get the VFS
5109  * calling btrfs_invalidate_folio() against each folio of the inode. This
5110  * is slow because the calls to btrfs_invalidate_folio() result in a
5111  * huge amount of calls to lock_extent() and clear_extent_bit(),
5112  * which keep merging and splitting extent_state structures over and over,
5113  * wasting lots of time.
5114  *
5115  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5116  * skip all those expensive operations on a per folio basis and do only
5117  * the ordered io finishing, while we release here the extent_map and
5118  * extent_state structures, without the excessive merging and splitting.
5119  */
5120 static void evict_inode_truncate_pages(struct inode *inode)
5121 {
5122 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5123 	struct rb_node *node;
5124 
5125 	ASSERT(inode->i_state & I_FREEING);
5126 	truncate_inode_pages_final(&inode->i_data);
5127 
5128 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5129 
5130 	/*
5131 	 * Keep looping until we have no more ranges in the io tree.
5132 	 * We can have ongoing bios started by readahead that have
5133 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5134 	 * still in progress (unlocked the pages in the bio but did not yet
5135 	 * unlocked the ranges in the io tree). Therefore this means some
5136 	 * ranges can still be locked and eviction started because before
5137 	 * submitting those bios, which are executed by a separate task (work
5138 	 * queue kthread), inode references (inode->i_count) were not taken
5139 	 * (which would be dropped in the end io callback of each bio).
5140 	 * Therefore here we effectively end up waiting for those bios and
5141 	 * anyone else holding locked ranges without having bumped the inode's
5142 	 * reference count - if we don't do it, when they access the inode's
5143 	 * io_tree to unlock a range it may be too late, leading to an
5144 	 * use-after-free issue.
5145 	 */
5146 	spin_lock(&io_tree->lock);
5147 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5148 		struct extent_state *state;
5149 		struct extent_state *cached_state = NULL;
5150 		u64 start;
5151 		u64 end;
5152 		unsigned state_flags;
5153 
5154 		node = rb_first(&io_tree->state);
5155 		state = rb_entry(node, struct extent_state, rb_node);
5156 		start = state->start;
5157 		end = state->end;
5158 		state_flags = state->state;
5159 		spin_unlock(&io_tree->lock);
5160 
5161 		lock_extent(io_tree, start, end, &cached_state);
5162 
5163 		/*
5164 		 * If still has DELALLOC flag, the extent didn't reach disk,
5165 		 * and its reserved space won't be freed by delayed_ref.
5166 		 * So we need to free its reserved space here.
5167 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5168 		 *
5169 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5170 		 */
5171 		if (state_flags & EXTENT_DELALLOC)
5172 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5173 					       end - start + 1, NULL);
5174 
5175 		clear_extent_bit(io_tree, start, end,
5176 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5177 				 &cached_state);
5178 
5179 		cond_resched();
5180 		spin_lock(&io_tree->lock);
5181 	}
5182 	spin_unlock(&io_tree->lock);
5183 }
5184 
5185 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5186 							struct btrfs_block_rsv *rsv)
5187 {
5188 	struct btrfs_fs_info *fs_info = root->fs_info;
5189 	struct btrfs_trans_handle *trans;
5190 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5191 	int ret;
5192 
5193 	/*
5194 	 * Eviction should be taking place at some place safe because of our
5195 	 * delayed iputs.  However the normal flushing code will run delayed
5196 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5197 	 *
5198 	 * We reserve the delayed_refs_extra here again because we can't use
5199 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5200 	 * above.  We reserve our extra bit here because we generate a ton of
5201 	 * delayed refs activity by truncating.
5202 	 *
5203 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5204 	 * if we fail to make this reservation we can re-try without the
5205 	 * delayed_refs_extra so we can make some forward progress.
5206 	 */
5207 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5208 				     BTRFS_RESERVE_FLUSH_EVICT);
5209 	if (ret) {
5210 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5211 					     BTRFS_RESERVE_FLUSH_EVICT);
5212 		if (ret) {
5213 			btrfs_warn(fs_info,
5214 				   "could not allocate space for delete; will truncate on mount");
5215 			return ERR_PTR(-ENOSPC);
5216 		}
5217 		delayed_refs_extra = 0;
5218 	}
5219 
5220 	trans = btrfs_join_transaction(root);
5221 	if (IS_ERR(trans))
5222 		return trans;
5223 
5224 	if (delayed_refs_extra) {
5225 		trans->block_rsv = &fs_info->trans_block_rsv;
5226 		trans->bytes_reserved = delayed_refs_extra;
5227 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5228 					delayed_refs_extra, true);
5229 	}
5230 	return trans;
5231 }
5232 
5233 void btrfs_evict_inode(struct inode *inode)
5234 {
5235 	struct btrfs_fs_info *fs_info;
5236 	struct btrfs_trans_handle *trans;
5237 	struct btrfs_root *root = BTRFS_I(inode)->root;
5238 	struct btrfs_block_rsv *rsv = NULL;
5239 	int ret;
5240 
5241 	trace_btrfs_inode_evict(inode);
5242 
5243 	if (!root) {
5244 		fsverity_cleanup_inode(inode);
5245 		clear_inode(inode);
5246 		return;
5247 	}
5248 
5249 	fs_info = inode_to_fs_info(inode);
5250 	evict_inode_truncate_pages(inode);
5251 
5252 	if (inode->i_nlink &&
5253 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5254 	      btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) ||
5255 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5256 		goto out;
5257 
5258 	if (is_bad_inode(inode))
5259 		goto out;
5260 
5261 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5262 		goto out;
5263 
5264 	if (inode->i_nlink > 0) {
5265 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5266 		       btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID);
5267 		goto out;
5268 	}
5269 
5270 	/*
5271 	 * This makes sure the inode item in tree is uptodate and the space for
5272 	 * the inode update is released.
5273 	 */
5274 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5275 	if (ret)
5276 		goto out;
5277 
5278 	/*
5279 	 * This drops any pending insert or delete operations we have for this
5280 	 * inode.  We could have a delayed dir index deletion queued up, but
5281 	 * we're removing the inode completely so that'll be taken care of in
5282 	 * the truncate.
5283 	 */
5284 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5285 
5286 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5287 	if (!rsv)
5288 		goto out;
5289 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5290 	rsv->failfast = true;
5291 
5292 	btrfs_i_size_write(BTRFS_I(inode), 0);
5293 
5294 	while (1) {
5295 		struct btrfs_truncate_control control = {
5296 			.inode = BTRFS_I(inode),
5297 			.ino = btrfs_ino(BTRFS_I(inode)),
5298 			.new_size = 0,
5299 			.min_type = 0,
5300 		};
5301 
5302 		trans = evict_refill_and_join(root, rsv);
5303 		if (IS_ERR(trans))
5304 			goto out;
5305 
5306 		trans->block_rsv = rsv;
5307 
5308 		ret = btrfs_truncate_inode_items(trans, root, &control);
5309 		trans->block_rsv = &fs_info->trans_block_rsv;
5310 		btrfs_end_transaction(trans);
5311 		/*
5312 		 * We have not added new delayed items for our inode after we
5313 		 * have flushed its delayed items, so no need to throttle on
5314 		 * delayed items. However we have modified extent buffers.
5315 		 */
5316 		btrfs_btree_balance_dirty_nodelay(fs_info);
5317 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5318 			goto out;
5319 		else if (!ret)
5320 			break;
5321 	}
5322 
5323 	/*
5324 	 * Errors here aren't a big deal, it just means we leave orphan items in
5325 	 * the tree. They will be cleaned up on the next mount. If the inode
5326 	 * number gets reused, cleanup deletes the orphan item without doing
5327 	 * anything, and unlink reuses the existing orphan item.
5328 	 *
5329 	 * If it turns out that we are dropping too many of these, we might want
5330 	 * to add a mechanism for retrying these after a commit.
5331 	 */
5332 	trans = evict_refill_and_join(root, rsv);
5333 	if (!IS_ERR(trans)) {
5334 		trans->block_rsv = rsv;
5335 		btrfs_orphan_del(trans, BTRFS_I(inode));
5336 		trans->block_rsv = &fs_info->trans_block_rsv;
5337 		btrfs_end_transaction(trans);
5338 	}
5339 
5340 out:
5341 	btrfs_free_block_rsv(fs_info, rsv);
5342 	/*
5343 	 * If we didn't successfully delete, the orphan item will still be in
5344 	 * the tree and we'll retry on the next mount. Again, we might also want
5345 	 * to retry these periodically in the future.
5346 	 */
5347 	btrfs_remove_delayed_node(BTRFS_I(inode));
5348 	fsverity_cleanup_inode(inode);
5349 	clear_inode(inode);
5350 }
5351 
5352 /*
5353  * Return the key found in the dir entry in the location pointer, fill @type
5354  * with BTRFS_FT_*, and return 0.
5355  *
5356  * If no dir entries were found, returns -ENOENT.
5357  * If found a corrupted location in dir entry, returns -EUCLEAN.
5358  */
5359 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5360 			       struct btrfs_key *location, u8 *type)
5361 {
5362 	struct btrfs_dir_item *di;
5363 	struct btrfs_path *path;
5364 	struct btrfs_root *root = dir->root;
5365 	int ret = 0;
5366 	struct fscrypt_name fname;
5367 
5368 	path = btrfs_alloc_path();
5369 	if (!path)
5370 		return -ENOMEM;
5371 
5372 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5373 	if (ret < 0)
5374 		goto out;
5375 	/*
5376 	 * fscrypt_setup_filename() should never return a positive value, but
5377 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5378 	 */
5379 	ASSERT(ret == 0);
5380 
5381 	/* This needs to handle no-key deletions later on */
5382 
5383 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5384 				   &fname.disk_name, 0);
5385 	if (IS_ERR_OR_NULL(di)) {
5386 		ret = di ? PTR_ERR(di) : -ENOENT;
5387 		goto out;
5388 	}
5389 
5390 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5391 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5392 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5393 		ret = -EUCLEAN;
5394 		btrfs_warn(root->fs_info,
5395 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5396 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5397 			   location->objectid, location->type, location->offset);
5398 	}
5399 	if (!ret)
5400 		*type = btrfs_dir_ftype(path->nodes[0], di);
5401 out:
5402 	fscrypt_free_filename(&fname);
5403 	btrfs_free_path(path);
5404 	return ret;
5405 }
5406 
5407 /*
5408  * when we hit a tree root in a directory, the btrfs part of the inode
5409  * needs to be changed to reflect the root directory of the tree root.  This
5410  * is kind of like crossing a mount point.
5411  */
5412 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5413 				    struct btrfs_inode *dir,
5414 				    struct dentry *dentry,
5415 				    struct btrfs_key *location,
5416 				    struct btrfs_root **sub_root)
5417 {
5418 	struct btrfs_path *path;
5419 	struct btrfs_root *new_root;
5420 	struct btrfs_root_ref *ref;
5421 	struct extent_buffer *leaf;
5422 	struct btrfs_key key;
5423 	int ret;
5424 	int err = 0;
5425 	struct fscrypt_name fname;
5426 
5427 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5428 	if (ret)
5429 		return ret;
5430 
5431 	path = btrfs_alloc_path();
5432 	if (!path) {
5433 		err = -ENOMEM;
5434 		goto out;
5435 	}
5436 
5437 	err = -ENOENT;
5438 	key.objectid = btrfs_root_id(dir->root);
5439 	key.type = BTRFS_ROOT_REF_KEY;
5440 	key.offset = location->objectid;
5441 
5442 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5443 	if (ret) {
5444 		if (ret < 0)
5445 			err = ret;
5446 		goto out;
5447 	}
5448 
5449 	leaf = path->nodes[0];
5450 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5451 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5452 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5453 		goto out;
5454 
5455 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5456 				   (unsigned long)(ref + 1), fname.disk_name.len);
5457 	if (ret)
5458 		goto out;
5459 
5460 	btrfs_release_path(path);
5461 
5462 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5463 	if (IS_ERR(new_root)) {
5464 		err = PTR_ERR(new_root);
5465 		goto out;
5466 	}
5467 
5468 	*sub_root = new_root;
5469 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5470 	location->type = BTRFS_INODE_ITEM_KEY;
5471 	location->offset = 0;
5472 	err = 0;
5473 out:
5474 	btrfs_free_path(path);
5475 	fscrypt_free_filename(&fname);
5476 	return err;
5477 }
5478 
5479 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc)
5480 {
5481 	struct btrfs_root *root = inode->root;
5482 	struct btrfs_inode *existing;
5483 	const u64 ino = btrfs_ino(inode);
5484 	int ret;
5485 
5486 	if (inode_unhashed(&inode->vfs_inode))
5487 		return 0;
5488 
5489 	if (prealloc) {
5490 		ret = xa_reserve(&root->inodes, ino, GFP_NOFS);
5491 		if (ret)
5492 			return ret;
5493 	}
5494 
5495 	existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC);
5496 
5497 	if (xa_is_err(existing)) {
5498 		ret = xa_err(existing);
5499 		ASSERT(ret != -EINVAL);
5500 		ASSERT(ret != -ENOMEM);
5501 		return ret;
5502 	} else if (existing) {
5503 		WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING)));
5504 	}
5505 
5506 	return 0;
5507 }
5508 
5509 static void btrfs_del_inode_from_root(struct btrfs_inode *inode)
5510 {
5511 	struct btrfs_root *root = inode->root;
5512 	struct btrfs_inode *entry;
5513 	bool empty = false;
5514 
5515 	xa_lock(&root->inodes);
5516 	entry = __xa_erase(&root->inodes, btrfs_ino(inode));
5517 	if (entry == inode)
5518 		empty = xa_empty(&root->inodes);
5519 	xa_unlock(&root->inodes);
5520 
5521 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5522 		xa_lock(&root->inodes);
5523 		empty = xa_empty(&root->inodes);
5524 		xa_unlock(&root->inodes);
5525 		if (empty)
5526 			btrfs_add_dead_root(root);
5527 	}
5528 }
5529 
5530 
5531 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5532 {
5533 	struct btrfs_iget_args *args = p;
5534 
5535 	btrfs_set_inode_number(BTRFS_I(inode), args->ino);
5536 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5537 
5538 	if (args->root && args->root == args->root->fs_info->tree_root &&
5539 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5540 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5541 			&BTRFS_I(inode)->runtime_flags);
5542 	return 0;
5543 }
5544 
5545 static int btrfs_find_actor(struct inode *inode, void *opaque)
5546 {
5547 	struct btrfs_iget_args *args = opaque;
5548 
5549 	return args->ino == btrfs_ino(BTRFS_I(inode)) &&
5550 		args->root == BTRFS_I(inode)->root;
5551 }
5552 
5553 static struct inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root)
5554 {
5555 	struct inode *inode;
5556 	struct btrfs_iget_args args;
5557 	unsigned long hashval = btrfs_inode_hash(ino, root);
5558 
5559 	args.ino = ino;
5560 	args.root = root;
5561 
5562 	inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor,
5563 			     btrfs_init_locked_inode,
5564 			     (void *)&args);
5565 	return inode;
5566 }
5567 
5568 /*
5569  * Get an inode object given its inode number and corresponding root.
5570  * Path can be preallocated to prevent recursing back to iget through
5571  * allocator. NULL is also valid but may require an additional allocation
5572  * later.
5573  */
5574 struct inode *btrfs_iget_path(u64 ino, struct btrfs_root *root,
5575 			      struct btrfs_path *path)
5576 {
5577 	struct inode *inode;
5578 	int ret;
5579 
5580 	inode = btrfs_iget_locked(ino, root);
5581 	if (!inode)
5582 		return ERR_PTR(-ENOMEM);
5583 
5584 	if (!(inode->i_state & I_NEW))
5585 		return inode;
5586 
5587 	ret = btrfs_read_locked_inode(inode, path);
5588 	/*
5589 	 * ret > 0 can come from btrfs_search_slot called by
5590 	 * btrfs_read_locked_inode(), this means the inode item was not found.
5591 	 */
5592 	if (ret > 0)
5593 		ret = -ENOENT;
5594 	if (ret < 0)
5595 		goto error;
5596 
5597 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), true);
5598 	if (ret < 0)
5599 		goto error;
5600 
5601 	unlock_new_inode(inode);
5602 
5603 	return inode;
5604 error:
5605 	iget_failed(inode);
5606 	return ERR_PTR(ret);
5607 }
5608 
5609 struct inode *btrfs_iget(u64 ino, struct btrfs_root *root)
5610 {
5611 	return btrfs_iget_path(ino, root, NULL);
5612 }
5613 
5614 static struct inode *new_simple_dir(struct inode *dir,
5615 				    struct btrfs_key *key,
5616 				    struct btrfs_root *root)
5617 {
5618 	struct timespec64 ts;
5619 	struct inode *inode = new_inode(dir->i_sb);
5620 
5621 	if (!inode)
5622 		return ERR_PTR(-ENOMEM);
5623 
5624 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5625 	BTRFS_I(inode)->ref_root_id = key->objectid;
5626 	set_bit(BTRFS_INODE_ROOT_STUB, &BTRFS_I(inode)->runtime_flags);
5627 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5628 
5629 	btrfs_set_inode_number(BTRFS_I(inode), BTRFS_EMPTY_SUBVOL_DIR_OBJECTID);
5630 	/*
5631 	 * We only need lookup, the rest is read-only and there's no inode
5632 	 * associated with the dentry
5633 	 */
5634 	inode->i_op = &simple_dir_inode_operations;
5635 	inode->i_opflags &= ~IOP_XATTR;
5636 	inode->i_fop = &simple_dir_operations;
5637 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5638 
5639 	ts = inode_set_ctime_current(inode);
5640 	inode_set_mtime_to_ts(inode, ts);
5641 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5642 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5643 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5644 
5645 	inode->i_uid = dir->i_uid;
5646 	inode->i_gid = dir->i_gid;
5647 
5648 	return inode;
5649 }
5650 
5651 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5652 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5653 static_assert(BTRFS_FT_DIR == FT_DIR);
5654 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5655 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5656 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5657 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5658 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5659 
5660 static inline u8 btrfs_inode_type(struct inode *inode)
5661 {
5662 	return fs_umode_to_ftype(inode->i_mode);
5663 }
5664 
5665 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5666 {
5667 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5668 	struct inode *inode;
5669 	struct btrfs_root *root = BTRFS_I(dir)->root;
5670 	struct btrfs_root *sub_root = root;
5671 	struct btrfs_key location = { 0 };
5672 	u8 di_type = 0;
5673 	int ret = 0;
5674 
5675 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5676 		return ERR_PTR(-ENAMETOOLONG);
5677 
5678 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5679 	if (ret < 0)
5680 		return ERR_PTR(ret);
5681 
5682 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5683 		inode = btrfs_iget(location.objectid, root);
5684 		if (IS_ERR(inode))
5685 			return inode;
5686 
5687 		/* Do extra check against inode mode with di_type */
5688 		if (btrfs_inode_type(inode) != di_type) {
5689 			btrfs_crit(fs_info,
5690 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5691 				  inode->i_mode, btrfs_inode_type(inode),
5692 				  di_type);
5693 			iput(inode);
5694 			return ERR_PTR(-EUCLEAN);
5695 		}
5696 		return inode;
5697 	}
5698 
5699 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5700 				       &location, &sub_root);
5701 	if (ret < 0) {
5702 		if (ret != -ENOENT)
5703 			inode = ERR_PTR(ret);
5704 		else
5705 			inode = new_simple_dir(dir, &location, root);
5706 	} else {
5707 		inode = btrfs_iget(location.objectid, sub_root);
5708 		btrfs_put_root(sub_root);
5709 
5710 		if (IS_ERR(inode))
5711 			return inode;
5712 
5713 		down_read(&fs_info->cleanup_work_sem);
5714 		if (!sb_rdonly(inode->i_sb))
5715 			ret = btrfs_orphan_cleanup(sub_root);
5716 		up_read(&fs_info->cleanup_work_sem);
5717 		if (ret) {
5718 			iput(inode);
5719 			inode = ERR_PTR(ret);
5720 		}
5721 	}
5722 
5723 	return inode;
5724 }
5725 
5726 static int btrfs_dentry_delete(const struct dentry *dentry)
5727 {
5728 	struct btrfs_root *root;
5729 	struct inode *inode = d_inode(dentry);
5730 
5731 	if (!inode && !IS_ROOT(dentry))
5732 		inode = d_inode(dentry->d_parent);
5733 
5734 	if (inode) {
5735 		root = BTRFS_I(inode)->root;
5736 		if (btrfs_root_refs(&root->root_item) == 0)
5737 			return 1;
5738 
5739 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5740 			return 1;
5741 	}
5742 	return 0;
5743 }
5744 
5745 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5746 				   unsigned int flags)
5747 {
5748 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5749 
5750 	if (inode == ERR_PTR(-ENOENT))
5751 		inode = NULL;
5752 	return d_splice_alias(inode, dentry);
5753 }
5754 
5755 /*
5756  * Find the highest existing sequence number in a directory and then set the
5757  * in-memory index_cnt variable to the first free sequence number.
5758  */
5759 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5760 {
5761 	struct btrfs_root *root = inode->root;
5762 	struct btrfs_key key, found_key;
5763 	struct btrfs_path *path;
5764 	struct extent_buffer *leaf;
5765 	int ret;
5766 
5767 	key.objectid = btrfs_ino(inode);
5768 	key.type = BTRFS_DIR_INDEX_KEY;
5769 	key.offset = (u64)-1;
5770 
5771 	path = btrfs_alloc_path();
5772 	if (!path)
5773 		return -ENOMEM;
5774 
5775 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5776 	if (ret < 0)
5777 		goto out;
5778 	/* FIXME: we should be able to handle this */
5779 	if (ret == 0)
5780 		goto out;
5781 	ret = 0;
5782 
5783 	if (path->slots[0] == 0) {
5784 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5785 		goto out;
5786 	}
5787 
5788 	path->slots[0]--;
5789 
5790 	leaf = path->nodes[0];
5791 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5792 
5793 	if (found_key.objectid != btrfs_ino(inode) ||
5794 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5795 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5796 		goto out;
5797 	}
5798 
5799 	inode->index_cnt = found_key.offset + 1;
5800 out:
5801 	btrfs_free_path(path);
5802 	return ret;
5803 }
5804 
5805 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5806 {
5807 	int ret = 0;
5808 
5809 	btrfs_inode_lock(dir, 0);
5810 	if (dir->index_cnt == (u64)-1) {
5811 		ret = btrfs_inode_delayed_dir_index_count(dir);
5812 		if (ret) {
5813 			ret = btrfs_set_inode_index_count(dir);
5814 			if (ret)
5815 				goto out;
5816 		}
5817 	}
5818 
5819 	/* index_cnt is the index number of next new entry, so decrement it. */
5820 	*index = dir->index_cnt - 1;
5821 out:
5822 	btrfs_inode_unlock(dir, 0);
5823 
5824 	return ret;
5825 }
5826 
5827 /*
5828  * All this infrastructure exists because dir_emit can fault, and we are holding
5829  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5830  * our information into that, and then dir_emit from the buffer.  This is
5831  * similar to what NFS does, only we don't keep the buffer around in pagecache
5832  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5833  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5834  * tree lock.
5835  */
5836 static int btrfs_opendir(struct inode *inode, struct file *file)
5837 {
5838 	struct btrfs_file_private *private;
5839 	u64 last_index;
5840 	int ret;
5841 
5842 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5843 	if (ret)
5844 		return ret;
5845 
5846 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5847 	if (!private)
5848 		return -ENOMEM;
5849 	private->last_index = last_index;
5850 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5851 	if (!private->filldir_buf) {
5852 		kfree(private);
5853 		return -ENOMEM;
5854 	}
5855 	file->private_data = private;
5856 	return 0;
5857 }
5858 
5859 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5860 {
5861 	struct btrfs_file_private *private = file->private_data;
5862 	int ret;
5863 
5864 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5865 				       &private->last_index);
5866 	if (ret)
5867 		return ret;
5868 
5869 	return generic_file_llseek(file, offset, whence);
5870 }
5871 
5872 struct dir_entry {
5873 	u64 ino;
5874 	u64 offset;
5875 	unsigned type;
5876 	int name_len;
5877 };
5878 
5879 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5880 {
5881 	while (entries--) {
5882 		struct dir_entry *entry = addr;
5883 		char *name = (char *)(entry + 1);
5884 
5885 		ctx->pos = get_unaligned(&entry->offset);
5886 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5887 					 get_unaligned(&entry->ino),
5888 					 get_unaligned(&entry->type)))
5889 			return 1;
5890 		addr += sizeof(struct dir_entry) +
5891 			get_unaligned(&entry->name_len);
5892 		ctx->pos++;
5893 	}
5894 	return 0;
5895 }
5896 
5897 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5898 {
5899 	struct inode *inode = file_inode(file);
5900 	struct btrfs_root *root = BTRFS_I(inode)->root;
5901 	struct btrfs_file_private *private = file->private_data;
5902 	struct btrfs_dir_item *di;
5903 	struct btrfs_key key;
5904 	struct btrfs_key found_key;
5905 	struct btrfs_path *path;
5906 	void *addr;
5907 	LIST_HEAD(ins_list);
5908 	LIST_HEAD(del_list);
5909 	int ret;
5910 	char *name_ptr;
5911 	int name_len;
5912 	int entries = 0;
5913 	int total_len = 0;
5914 	bool put = false;
5915 	struct btrfs_key location;
5916 
5917 	if (!dir_emit_dots(file, ctx))
5918 		return 0;
5919 
5920 	path = btrfs_alloc_path();
5921 	if (!path)
5922 		return -ENOMEM;
5923 
5924 	addr = private->filldir_buf;
5925 	path->reada = READA_FORWARD;
5926 
5927 	put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index,
5928 					      &ins_list, &del_list);
5929 
5930 again:
5931 	key.type = BTRFS_DIR_INDEX_KEY;
5932 	key.offset = ctx->pos;
5933 	key.objectid = btrfs_ino(BTRFS_I(inode));
5934 
5935 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5936 		struct dir_entry *entry;
5937 		struct extent_buffer *leaf = path->nodes[0];
5938 		u8 ftype;
5939 
5940 		if (found_key.objectid != key.objectid)
5941 			break;
5942 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5943 			break;
5944 		if (found_key.offset < ctx->pos)
5945 			continue;
5946 		if (found_key.offset > private->last_index)
5947 			break;
5948 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5949 			continue;
5950 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5951 		name_len = btrfs_dir_name_len(leaf, di);
5952 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5953 		    PAGE_SIZE) {
5954 			btrfs_release_path(path);
5955 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5956 			if (ret)
5957 				goto nopos;
5958 			addr = private->filldir_buf;
5959 			entries = 0;
5960 			total_len = 0;
5961 			goto again;
5962 		}
5963 
5964 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5965 		entry = addr;
5966 		name_ptr = (char *)(entry + 1);
5967 		read_extent_buffer(leaf, name_ptr,
5968 				   (unsigned long)(di + 1), name_len);
5969 		put_unaligned(name_len, &entry->name_len);
5970 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5971 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5972 		put_unaligned(location.objectid, &entry->ino);
5973 		put_unaligned(found_key.offset, &entry->offset);
5974 		entries++;
5975 		addr += sizeof(struct dir_entry) + name_len;
5976 		total_len += sizeof(struct dir_entry) + name_len;
5977 	}
5978 	/* Catch error encountered during iteration */
5979 	if (ret < 0)
5980 		goto err;
5981 
5982 	btrfs_release_path(path);
5983 
5984 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5985 	if (ret)
5986 		goto nopos;
5987 
5988 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5989 	if (ret)
5990 		goto nopos;
5991 
5992 	/*
5993 	 * Stop new entries from being returned after we return the last
5994 	 * entry.
5995 	 *
5996 	 * New directory entries are assigned a strictly increasing
5997 	 * offset.  This means that new entries created during readdir
5998 	 * are *guaranteed* to be seen in the future by that readdir.
5999 	 * This has broken buggy programs which operate on names as
6000 	 * they're returned by readdir.  Until we re-use freed offsets
6001 	 * we have this hack to stop new entries from being returned
6002 	 * under the assumption that they'll never reach this huge
6003 	 * offset.
6004 	 *
6005 	 * This is being careful not to overflow 32bit loff_t unless the
6006 	 * last entry requires it because doing so has broken 32bit apps
6007 	 * in the past.
6008 	 */
6009 	if (ctx->pos >= INT_MAX)
6010 		ctx->pos = LLONG_MAX;
6011 	else
6012 		ctx->pos = INT_MAX;
6013 nopos:
6014 	ret = 0;
6015 err:
6016 	if (put)
6017 		btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list);
6018 	btrfs_free_path(path);
6019 	return ret;
6020 }
6021 
6022 /*
6023  * This is somewhat expensive, updating the tree every time the
6024  * inode changes.  But, it is most likely to find the inode in cache.
6025  * FIXME, needs more benchmarking...there are no reasons other than performance
6026  * to keep or drop this code.
6027  */
6028 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6029 {
6030 	struct btrfs_root *root = inode->root;
6031 	struct btrfs_fs_info *fs_info = root->fs_info;
6032 	struct btrfs_trans_handle *trans;
6033 	int ret;
6034 
6035 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6036 		return 0;
6037 
6038 	trans = btrfs_join_transaction(root);
6039 	if (IS_ERR(trans))
6040 		return PTR_ERR(trans);
6041 
6042 	ret = btrfs_update_inode(trans, inode);
6043 	if (ret == -ENOSPC || ret == -EDQUOT) {
6044 		/* whoops, lets try again with the full transaction */
6045 		btrfs_end_transaction(trans);
6046 		trans = btrfs_start_transaction(root, 1);
6047 		if (IS_ERR(trans))
6048 			return PTR_ERR(trans);
6049 
6050 		ret = btrfs_update_inode(trans, inode);
6051 	}
6052 	btrfs_end_transaction(trans);
6053 	if (inode->delayed_node)
6054 		btrfs_balance_delayed_items(fs_info);
6055 
6056 	return ret;
6057 }
6058 
6059 /*
6060  * This is a copy of file_update_time.  We need this so we can return error on
6061  * ENOSPC for updating the inode in the case of file write and mmap writes.
6062  */
6063 static int btrfs_update_time(struct inode *inode, int flags)
6064 {
6065 	struct btrfs_root *root = BTRFS_I(inode)->root;
6066 	bool dirty;
6067 
6068 	if (btrfs_root_readonly(root))
6069 		return -EROFS;
6070 
6071 	dirty = inode_update_timestamps(inode, flags);
6072 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6073 }
6074 
6075 /*
6076  * helper to find a free sequence number in a given directory.  This current
6077  * code is very simple, later versions will do smarter things in the btree
6078  */
6079 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6080 {
6081 	int ret = 0;
6082 
6083 	if (dir->index_cnt == (u64)-1) {
6084 		ret = btrfs_inode_delayed_dir_index_count(dir);
6085 		if (ret) {
6086 			ret = btrfs_set_inode_index_count(dir);
6087 			if (ret)
6088 				return ret;
6089 		}
6090 	}
6091 
6092 	*index = dir->index_cnt;
6093 	dir->index_cnt++;
6094 
6095 	return ret;
6096 }
6097 
6098 static int btrfs_insert_inode_locked(struct inode *inode)
6099 {
6100 	struct btrfs_iget_args args;
6101 
6102 	args.ino = btrfs_ino(BTRFS_I(inode));
6103 	args.root = BTRFS_I(inode)->root;
6104 
6105 	return insert_inode_locked4(inode,
6106 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6107 		   btrfs_find_actor, &args);
6108 }
6109 
6110 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6111 			    unsigned int *trans_num_items)
6112 {
6113 	struct inode *dir = args->dir;
6114 	struct inode *inode = args->inode;
6115 	int ret;
6116 
6117 	if (!args->orphan) {
6118 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6119 					     &args->fname);
6120 		if (ret)
6121 			return ret;
6122 	}
6123 
6124 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6125 	if (ret) {
6126 		fscrypt_free_filename(&args->fname);
6127 		return ret;
6128 	}
6129 
6130 	/* 1 to add inode item */
6131 	*trans_num_items = 1;
6132 	/* 1 to add compression property */
6133 	if (BTRFS_I(dir)->prop_compress)
6134 		(*trans_num_items)++;
6135 	/* 1 to add default ACL xattr */
6136 	if (args->default_acl)
6137 		(*trans_num_items)++;
6138 	/* 1 to add access ACL xattr */
6139 	if (args->acl)
6140 		(*trans_num_items)++;
6141 #ifdef CONFIG_SECURITY
6142 	/* 1 to add LSM xattr */
6143 	if (dir->i_security)
6144 		(*trans_num_items)++;
6145 #endif
6146 	if (args->orphan) {
6147 		/* 1 to add orphan item */
6148 		(*trans_num_items)++;
6149 	} else {
6150 		/*
6151 		 * 1 to add dir item
6152 		 * 1 to add dir index
6153 		 * 1 to update parent inode item
6154 		 *
6155 		 * No need for 1 unit for the inode ref item because it is
6156 		 * inserted in a batch together with the inode item at
6157 		 * btrfs_create_new_inode().
6158 		 */
6159 		*trans_num_items += 3;
6160 	}
6161 	return 0;
6162 }
6163 
6164 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6165 {
6166 	posix_acl_release(args->acl);
6167 	posix_acl_release(args->default_acl);
6168 	fscrypt_free_filename(&args->fname);
6169 }
6170 
6171 /*
6172  * Inherit flags from the parent inode.
6173  *
6174  * Currently only the compression flags and the cow flags are inherited.
6175  */
6176 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6177 {
6178 	unsigned int flags;
6179 
6180 	flags = dir->flags;
6181 
6182 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6183 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6184 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6185 	} else if (flags & BTRFS_INODE_COMPRESS) {
6186 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6187 		inode->flags |= BTRFS_INODE_COMPRESS;
6188 	}
6189 
6190 	if (flags & BTRFS_INODE_NODATACOW) {
6191 		inode->flags |= BTRFS_INODE_NODATACOW;
6192 		if (S_ISREG(inode->vfs_inode.i_mode))
6193 			inode->flags |= BTRFS_INODE_NODATASUM;
6194 	}
6195 
6196 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6197 }
6198 
6199 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6200 			   struct btrfs_new_inode_args *args)
6201 {
6202 	struct timespec64 ts;
6203 	struct inode *dir = args->dir;
6204 	struct inode *inode = args->inode;
6205 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6206 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6207 	struct btrfs_root *root;
6208 	struct btrfs_inode_item *inode_item;
6209 	struct btrfs_path *path;
6210 	u64 objectid;
6211 	struct btrfs_inode_ref *ref;
6212 	struct btrfs_key key[2];
6213 	u32 sizes[2];
6214 	struct btrfs_item_batch batch;
6215 	unsigned long ptr;
6216 	int ret;
6217 	bool xa_reserved = false;
6218 
6219 	path = btrfs_alloc_path();
6220 	if (!path)
6221 		return -ENOMEM;
6222 
6223 	if (!args->subvol)
6224 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6225 	root = BTRFS_I(inode)->root;
6226 
6227 	ret = btrfs_init_file_extent_tree(BTRFS_I(inode));
6228 	if (ret)
6229 		goto out;
6230 
6231 	ret = btrfs_get_free_objectid(root, &objectid);
6232 	if (ret)
6233 		goto out;
6234 	btrfs_set_inode_number(BTRFS_I(inode), objectid);
6235 
6236 	ret = xa_reserve(&root->inodes, objectid, GFP_NOFS);
6237 	if (ret)
6238 		goto out;
6239 	xa_reserved = true;
6240 
6241 	if (args->orphan) {
6242 		/*
6243 		 * O_TMPFILE, set link count to 0, so that after this point, we
6244 		 * fill in an inode item with the correct link count.
6245 		 */
6246 		set_nlink(inode, 0);
6247 	} else {
6248 		trace_btrfs_inode_request(dir);
6249 
6250 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6251 		if (ret)
6252 			goto out;
6253 	}
6254 
6255 	if (S_ISDIR(inode->i_mode))
6256 		BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6257 
6258 	BTRFS_I(inode)->generation = trans->transid;
6259 	inode->i_generation = BTRFS_I(inode)->generation;
6260 
6261 	/*
6262 	 * We don't have any capability xattrs set here yet, shortcut any
6263 	 * queries for the xattrs here.  If we add them later via the inode
6264 	 * security init path or any other path this flag will be cleared.
6265 	 */
6266 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6267 
6268 	/*
6269 	 * Subvolumes don't inherit flags from their parent directory.
6270 	 * Originally this was probably by accident, but we probably can't
6271 	 * change it now without compatibility issues.
6272 	 */
6273 	if (!args->subvol)
6274 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6275 
6276 	if (S_ISREG(inode->i_mode)) {
6277 		if (btrfs_test_opt(fs_info, NODATASUM))
6278 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6279 		if (btrfs_test_opt(fs_info, NODATACOW))
6280 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6281 				BTRFS_INODE_NODATASUM;
6282 	}
6283 
6284 	ret = btrfs_insert_inode_locked(inode);
6285 	if (ret < 0) {
6286 		if (!args->orphan)
6287 			BTRFS_I(dir)->index_cnt--;
6288 		goto out;
6289 	}
6290 
6291 	/*
6292 	 * We could have gotten an inode number from somebody who was fsynced
6293 	 * and then removed in this same transaction, so let's just set full
6294 	 * sync since it will be a full sync anyway and this will blow away the
6295 	 * old info in the log.
6296 	 */
6297 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6298 
6299 	key[0].objectid = objectid;
6300 	key[0].type = BTRFS_INODE_ITEM_KEY;
6301 	key[0].offset = 0;
6302 
6303 	sizes[0] = sizeof(struct btrfs_inode_item);
6304 
6305 	if (!args->orphan) {
6306 		/*
6307 		 * Start new inodes with an inode_ref. This is slightly more
6308 		 * efficient for small numbers of hard links since they will
6309 		 * be packed into one item. Extended refs will kick in if we
6310 		 * add more hard links than can fit in the ref item.
6311 		 */
6312 		key[1].objectid = objectid;
6313 		key[1].type = BTRFS_INODE_REF_KEY;
6314 		if (args->subvol) {
6315 			key[1].offset = objectid;
6316 			sizes[1] = 2 + sizeof(*ref);
6317 		} else {
6318 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6319 			sizes[1] = name->len + sizeof(*ref);
6320 		}
6321 	}
6322 
6323 	batch.keys = &key[0];
6324 	batch.data_sizes = &sizes[0];
6325 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6326 	batch.nr = args->orphan ? 1 : 2;
6327 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6328 	if (ret != 0) {
6329 		btrfs_abort_transaction(trans, ret);
6330 		goto discard;
6331 	}
6332 
6333 	ts = simple_inode_init_ts(inode);
6334 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6335 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6336 
6337 	/*
6338 	 * We're going to fill the inode item now, so at this point the inode
6339 	 * must be fully initialized.
6340 	 */
6341 
6342 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6343 				  struct btrfs_inode_item);
6344 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6345 			     sizeof(*inode_item));
6346 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6347 
6348 	if (!args->orphan) {
6349 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6350 				     struct btrfs_inode_ref);
6351 		ptr = (unsigned long)(ref + 1);
6352 		if (args->subvol) {
6353 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6354 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6355 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6356 		} else {
6357 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6358 						     name->len);
6359 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6360 						  BTRFS_I(inode)->dir_index);
6361 			write_extent_buffer(path->nodes[0], name->name, ptr,
6362 					    name->len);
6363 		}
6364 	}
6365 
6366 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6367 	/*
6368 	 * We don't need the path anymore, plus inheriting properties, adding
6369 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6370 	 * allocating yet another path. So just free our path.
6371 	 */
6372 	btrfs_free_path(path);
6373 	path = NULL;
6374 
6375 	if (args->subvol) {
6376 		struct inode *parent;
6377 
6378 		/*
6379 		 * Subvolumes inherit properties from their parent subvolume,
6380 		 * not the directory they were created in.
6381 		 */
6382 		parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root);
6383 		if (IS_ERR(parent)) {
6384 			ret = PTR_ERR(parent);
6385 		} else {
6386 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6387 			iput(parent);
6388 		}
6389 	} else {
6390 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6391 	}
6392 	if (ret) {
6393 		btrfs_err(fs_info,
6394 			  "error inheriting props for ino %llu (root %llu): %d",
6395 			  btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret);
6396 	}
6397 
6398 	/*
6399 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6400 	 * probably a bug.
6401 	 */
6402 	if (!args->subvol) {
6403 		ret = btrfs_init_inode_security(trans, args);
6404 		if (ret) {
6405 			btrfs_abort_transaction(trans, ret);
6406 			goto discard;
6407 		}
6408 	}
6409 
6410 	ret = btrfs_add_inode_to_root(BTRFS_I(inode), false);
6411 	if (WARN_ON(ret)) {
6412 		/* Shouldn't happen, we used xa_reserve() before. */
6413 		btrfs_abort_transaction(trans, ret);
6414 		goto discard;
6415 	}
6416 
6417 	trace_btrfs_inode_new(inode);
6418 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6419 
6420 	btrfs_update_root_times(trans, root);
6421 
6422 	if (args->orphan) {
6423 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6424 	} else {
6425 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6426 				     0, BTRFS_I(inode)->dir_index);
6427 	}
6428 	if (ret) {
6429 		btrfs_abort_transaction(trans, ret);
6430 		goto discard;
6431 	}
6432 
6433 	return 0;
6434 
6435 discard:
6436 	/*
6437 	 * discard_new_inode() calls iput(), but the caller owns the reference
6438 	 * to the inode.
6439 	 */
6440 	ihold(inode);
6441 	discard_new_inode(inode);
6442 out:
6443 	if (xa_reserved)
6444 		xa_release(&root->inodes, objectid);
6445 
6446 	btrfs_free_path(path);
6447 	return ret;
6448 }
6449 
6450 /*
6451  * utility function to add 'inode' into 'parent_inode' with
6452  * a give name and a given sequence number.
6453  * if 'add_backref' is true, also insert a backref from the
6454  * inode to the parent directory.
6455  */
6456 int btrfs_add_link(struct btrfs_trans_handle *trans,
6457 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6458 		   const struct fscrypt_str *name, int add_backref, u64 index)
6459 {
6460 	int ret = 0;
6461 	struct btrfs_key key;
6462 	struct btrfs_root *root = parent_inode->root;
6463 	u64 ino = btrfs_ino(inode);
6464 	u64 parent_ino = btrfs_ino(parent_inode);
6465 
6466 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6467 		memcpy(&key, &inode->root->root_key, sizeof(key));
6468 	} else {
6469 		key.objectid = ino;
6470 		key.type = BTRFS_INODE_ITEM_KEY;
6471 		key.offset = 0;
6472 	}
6473 
6474 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6475 		ret = btrfs_add_root_ref(trans, key.objectid,
6476 					 btrfs_root_id(root), parent_ino,
6477 					 index, name);
6478 	} else if (add_backref) {
6479 		ret = btrfs_insert_inode_ref(trans, root, name,
6480 					     ino, parent_ino, index);
6481 	}
6482 
6483 	/* Nothing to clean up yet */
6484 	if (ret)
6485 		return ret;
6486 
6487 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6488 				    btrfs_inode_type(&inode->vfs_inode), index);
6489 	if (ret == -EEXIST || ret == -EOVERFLOW)
6490 		goto fail_dir_item;
6491 	else if (ret) {
6492 		btrfs_abort_transaction(trans, ret);
6493 		return ret;
6494 	}
6495 
6496 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6497 			   name->len * 2);
6498 	inode_inc_iversion(&parent_inode->vfs_inode);
6499 	/*
6500 	 * If we are replaying a log tree, we do not want to update the mtime
6501 	 * and ctime of the parent directory with the current time, since the
6502 	 * log replay procedure is responsible for setting them to their correct
6503 	 * values (the ones it had when the fsync was done).
6504 	 */
6505 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6506 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6507 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6508 
6509 	ret = btrfs_update_inode(trans, parent_inode);
6510 	if (ret)
6511 		btrfs_abort_transaction(trans, ret);
6512 	return ret;
6513 
6514 fail_dir_item:
6515 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6516 		u64 local_index;
6517 		int err;
6518 		err = btrfs_del_root_ref(trans, key.objectid,
6519 					 btrfs_root_id(root), parent_ino,
6520 					 &local_index, name);
6521 		if (err)
6522 			btrfs_abort_transaction(trans, err);
6523 	} else if (add_backref) {
6524 		u64 local_index;
6525 		int err;
6526 
6527 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6528 					  &local_index);
6529 		if (err)
6530 			btrfs_abort_transaction(trans, err);
6531 	}
6532 
6533 	/* Return the original error code */
6534 	return ret;
6535 }
6536 
6537 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6538 			       struct inode *inode)
6539 {
6540 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6541 	struct btrfs_root *root = BTRFS_I(dir)->root;
6542 	struct btrfs_new_inode_args new_inode_args = {
6543 		.dir = dir,
6544 		.dentry = dentry,
6545 		.inode = inode,
6546 	};
6547 	unsigned int trans_num_items;
6548 	struct btrfs_trans_handle *trans;
6549 	int err;
6550 
6551 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6552 	if (err)
6553 		goto out_inode;
6554 
6555 	trans = btrfs_start_transaction(root, trans_num_items);
6556 	if (IS_ERR(trans)) {
6557 		err = PTR_ERR(trans);
6558 		goto out_new_inode_args;
6559 	}
6560 
6561 	err = btrfs_create_new_inode(trans, &new_inode_args);
6562 	if (!err)
6563 		d_instantiate_new(dentry, inode);
6564 
6565 	btrfs_end_transaction(trans);
6566 	btrfs_btree_balance_dirty(fs_info);
6567 out_new_inode_args:
6568 	btrfs_new_inode_args_destroy(&new_inode_args);
6569 out_inode:
6570 	if (err)
6571 		iput(inode);
6572 	return err;
6573 }
6574 
6575 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6576 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6577 {
6578 	struct inode *inode;
6579 
6580 	inode = new_inode(dir->i_sb);
6581 	if (!inode)
6582 		return -ENOMEM;
6583 	inode_init_owner(idmap, inode, dir, mode);
6584 	inode->i_op = &btrfs_special_inode_operations;
6585 	init_special_inode(inode, inode->i_mode, rdev);
6586 	return btrfs_create_common(dir, dentry, inode);
6587 }
6588 
6589 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6590 			struct dentry *dentry, umode_t mode, bool excl)
6591 {
6592 	struct inode *inode;
6593 
6594 	inode = new_inode(dir->i_sb);
6595 	if (!inode)
6596 		return -ENOMEM;
6597 	inode_init_owner(idmap, inode, dir, mode);
6598 	inode->i_fop = &btrfs_file_operations;
6599 	inode->i_op = &btrfs_file_inode_operations;
6600 	inode->i_mapping->a_ops = &btrfs_aops;
6601 	return btrfs_create_common(dir, dentry, inode);
6602 }
6603 
6604 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6605 		      struct dentry *dentry)
6606 {
6607 	struct btrfs_trans_handle *trans = NULL;
6608 	struct btrfs_root *root = BTRFS_I(dir)->root;
6609 	struct inode *inode = d_inode(old_dentry);
6610 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6611 	struct fscrypt_name fname;
6612 	u64 index;
6613 	int err;
6614 	int drop_inode = 0;
6615 
6616 	/* do not allow sys_link's with other subvols of the same device */
6617 	if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root))
6618 		return -EXDEV;
6619 
6620 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6621 		return -EMLINK;
6622 
6623 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6624 	if (err)
6625 		goto fail;
6626 
6627 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6628 	if (err)
6629 		goto fail;
6630 
6631 	/*
6632 	 * 2 items for inode and inode ref
6633 	 * 2 items for dir items
6634 	 * 1 item for parent inode
6635 	 * 1 item for orphan item deletion if O_TMPFILE
6636 	 */
6637 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6638 	if (IS_ERR(trans)) {
6639 		err = PTR_ERR(trans);
6640 		trans = NULL;
6641 		goto fail;
6642 	}
6643 
6644 	/* There are several dir indexes for this inode, clear the cache. */
6645 	BTRFS_I(inode)->dir_index = 0ULL;
6646 	inc_nlink(inode);
6647 	inode_inc_iversion(inode);
6648 	inode_set_ctime_current(inode);
6649 	ihold(inode);
6650 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6651 
6652 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6653 			     &fname.disk_name, 1, index);
6654 
6655 	if (err) {
6656 		drop_inode = 1;
6657 	} else {
6658 		struct dentry *parent = dentry->d_parent;
6659 
6660 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6661 		if (err)
6662 			goto fail;
6663 		if (inode->i_nlink == 1) {
6664 			/*
6665 			 * If new hard link count is 1, it's a file created
6666 			 * with open(2) O_TMPFILE flag.
6667 			 */
6668 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6669 			if (err)
6670 				goto fail;
6671 		}
6672 		d_instantiate(dentry, inode);
6673 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6674 	}
6675 
6676 fail:
6677 	fscrypt_free_filename(&fname);
6678 	if (trans)
6679 		btrfs_end_transaction(trans);
6680 	if (drop_inode) {
6681 		inode_dec_link_count(inode);
6682 		iput(inode);
6683 	}
6684 	btrfs_btree_balance_dirty(fs_info);
6685 	return err;
6686 }
6687 
6688 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6689 		       struct dentry *dentry, umode_t mode)
6690 {
6691 	struct inode *inode;
6692 
6693 	inode = new_inode(dir->i_sb);
6694 	if (!inode)
6695 		return -ENOMEM;
6696 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6697 	inode->i_op = &btrfs_dir_inode_operations;
6698 	inode->i_fop = &btrfs_dir_file_operations;
6699 	return btrfs_create_common(dir, dentry, inode);
6700 }
6701 
6702 static noinline int uncompress_inline(struct btrfs_path *path,
6703 				      struct page *page,
6704 				      struct btrfs_file_extent_item *item)
6705 {
6706 	int ret;
6707 	struct extent_buffer *leaf = path->nodes[0];
6708 	char *tmp;
6709 	size_t max_size;
6710 	unsigned long inline_size;
6711 	unsigned long ptr;
6712 	int compress_type;
6713 
6714 	compress_type = btrfs_file_extent_compression(leaf, item);
6715 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6716 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6717 	tmp = kmalloc(inline_size, GFP_NOFS);
6718 	if (!tmp)
6719 		return -ENOMEM;
6720 	ptr = btrfs_file_extent_inline_start(item);
6721 
6722 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6723 
6724 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6725 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6726 
6727 	/*
6728 	 * decompression code contains a memset to fill in any space between the end
6729 	 * of the uncompressed data and the end of max_size in case the decompressed
6730 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6731 	 * the end of an inline extent and the beginning of the next block, so we
6732 	 * cover that region here.
6733 	 */
6734 
6735 	if (max_size < PAGE_SIZE)
6736 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6737 	kfree(tmp);
6738 	return ret;
6739 }
6740 
6741 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6742 			      struct page *page)
6743 {
6744 	struct btrfs_file_extent_item *fi;
6745 	void *kaddr;
6746 	size_t copy_size;
6747 
6748 	if (!page || PageUptodate(page))
6749 		return 0;
6750 
6751 	ASSERT(page_offset(page) == 0);
6752 
6753 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6754 			    struct btrfs_file_extent_item);
6755 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6756 		return uncompress_inline(path, page, fi);
6757 
6758 	copy_size = min_t(u64, PAGE_SIZE,
6759 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6760 	kaddr = kmap_local_page(page);
6761 	read_extent_buffer(path->nodes[0], kaddr,
6762 			   btrfs_file_extent_inline_start(fi), copy_size);
6763 	kunmap_local(kaddr);
6764 	if (copy_size < PAGE_SIZE)
6765 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6766 	return 0;
6767 }
6768 
6769 /*
6770  * Lookup the first extent overlapping a range in a file.
6771  *
6772  * @inode:	file to search in
6773  * @page:	page to read extent data into if the extent is inline
6774  * @start:	file offset
6775  * @len:	length of range starting at @start
6776  *
6777  * Return the first &struct extent_map which overlaps the given range, reading
6778  * it from the B-tree and caching it if necessary. Note that there may be more
6779  * extents which overlap the given range after the returned extent_map.
6780  *
6781  * If @page is not NULL and the extent is inline, this also reads the extent
6782  * data directly into the page and marks the extent up to date in the io_tree.
6783  *
6784  * Return: ERR_PTR on error, non-NULL extent_map on success.
6785  */
6786 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6787 				    struct page *page, u64 start, u64 len)
6788 {
6789 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6790 	int ret = 0;
6791 	u64 extent_start = 0;
6792 	u64 extent_end = 0;
6793 	u64 objectid = btrfs_ino(inode);
6794 	int extent_type = -1;
6795 	struct btrfs_path *path = NULL;
6796 	struct btrfs_root *root = inode->root;
6797 	struct btrfs_file_extent_item *item;
6798 	struct extent_buffer *leaf;
6799 	struct btrfs_key found_key;
6800 	struct extent_map *em = NULL;
6801 	struct extent_map_tree *em_tree = &inode->extent_tree;
6802 
6803 	read_lock(&em_tree->lock);
6804 	em = lookup_extent_mapping(em_tree, start, len);
6805 	read_unlock(&em_tree->lock);
6806 
6807 	if (em) {
6808 		if (em->start > start || em->start + em->len <= start)
6809 			free_extent_map(em);
6810 		else if (em->disk_bytenr == EXTENT_MAP_INLINE && page)
6811 			free_extent_map(em);
6812 		else
6813 			goto out;
6814 	}
6815 	em = alloc_extent_map();
6816 	if (!em) {
6817 		ret = -ENOMEM;
6818 		goto out;
6819 	}
6820 	em->start = EXTENT_MAP_HOLE;
6821 	em->disk_bytenr = EXTENT_MAP_HOLE;
6822 	em->len = (u64)-1;
6823 
6824 	path = btrfs_alloc_path();
6825 	if (!path) {
6826 		ret = -ENOMEM;
6827 		goto out;
6828 	}
6829 
6830 	/* Chances are we'll be called again, so go ahead and do readahead */
6831 	path->reada = READA_FORWARD;
6832 
6833 	/*
6834 	 * The same explanation in load_free_space_cache applies here as well,
6835 	 * we only read when we're loading the free space cache, and at that
6836 	 * point the commit_root has everything we need.
6837 	 */
6838 	if (btrfs_is_free_space_inode(inode)) {
6839 		path->search_commit_root = 1;
6840 		path->skip_locking = 1;
6841 	}
6842 
6843 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6844 	if (ret < 0) {
6845 		goto out;
6846 	} else if (ret > 0) {
6847 		if (path->slots[0] == 0)
6848 			goto not_found;
6849 		path->slots[0]--;
6850 		ret = 0;
6851 	}
6852 
6853 	leaf = path->nodes[0];
6854 	item = btrfs_item_ptr(leaf, path->slots[0],
6855 			      struct btrfs_file_extent_item);
6856 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6857 	if (found_key.objectid != objectid ||
6858 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6859 		/*
6860 		 * If we backup past the first extent we want to move forward
6861 		 * and see if there is an extent in front of us, otherwise we'll
6862 		 * say there is a hole for our whole search range which can
6863 		 * cause problems.
6864 		 */
6865 		extent_end = start;
6866 		goto next;
6867 	}
6868 
6869 	extent_type = btrfs_file_extent_type(leaf, item);
6870 	extent_start = found_key.offset;
6871 	extent_end = btrfs_file_extent_end(path);
6872 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6873 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6874 		/* Only regular file could have regular/prealloc extent */
6875 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6876 			ret = -EUCLEAN;
6877 			btrfs_crit(fs_info,
6878 		"regular/prealloc extent found for non-regular inode %llu",
6879 				   btrfs_ino(inode));
6880 			goto out;
6881 		}
6882 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6883 						       extent_start);
6884 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6885 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6886 						      path->slots[0],
6887 						      extent_start);
6888 	}
6889 next:
6890 	if (start >= extent_end) {
6891 		path->slots[0]++;
6892 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6893 			ret = btrfs_next_leaf(root, path);
6894 			if (ret < 0)
6895 				goto out;
6896 			else if (ret > 0)
6897 				goto not_found;
6898 
6899 			leaf = path->nodes[0];
6900 		}
6901 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6902 		if (found_key.objectid != objectid ||
6903 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6904 			goto not_found;
6905 		if (start + len <= found_key.offset)
6906 			goto not_found;
6907 		if (start > found_key.offset)
6908 			goto next;
6909 
6910 		/* New extent overlaps with existing one */
6911 		em->start = start;
6912 		em->len = found_key.offset - start;
6913 		em->disk_bytenr = EXTENT_MAP_HOLE;
6914 		goto insert;
6915 	}
6916 
6917 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6918 
6919 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6920 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6921 		goto insert;
6922 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6923 		/*
6924 		 * Inline extent can only exist at file offset 0. This is
6925 		 * ensured by tree-checker and inline extent creation path.
6926 		 * Thus all members representing file offsets should be zero.
6927 		 */
6928 		ASSERT(extent_start == 0);
6929 		ASSERT(em->start == 0);
6930 
6931 		/*
6932 		 * btrfs_extent_item_to_extent_map() should have properly
6933 		 * initialized em members already.
6934 		 *
6935 		 * Other members are not utilized for inline extents.
6936 		 */
6937 		ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE);
6938 		ASSERT(em->len == fs_info->sectorsize);
6939 
6940 		ret = read_inline_extent(inode, path, page);
6941 		if (ret < 0)
6942 			goto out;
6943 		goto insert;
6944 	}
6945 not_found:
6946 	em->start = start;
6947 	em->len = len;
6948 	em->disk_bytenr = EXTENT_MAP_HOLE;
6949 insert:
6950 	ret = 0;
6951 	btrfs_release_path(path);
6952 	if (em->start > start || extent_map_end(em) <= start) {
6953 		btrfs_err(fs_info,
6954 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6955 			  em->start, em->len, start, len);
6956 		ret = -EIO;
6957 		goto out;
6958 	}
6959 
6960 	write_lock(&em_tree->lock);
6961 	ret = btrfs_add_extent_mapping(inode, &em, start, len);
6962 	write_unlock(&em_tree->lock);
6963 out:
6964 	btrfs_free_path(path);
6965 
6966 	trace_btrfs_get_extent(root, inode, em);
6967 
6968 	if (ret) {
6969 		free_extent_map(em);
6970 		return ERR_PTR(ret);
6971 	}
6972 	return em;
6973 }
6974 
6975 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
6976 {
6977 	struct btrfs_block_group *block_group;
6978 	bool readonly = false;
6979 
6980 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
6981 	if (!block_group || block_group->ro)
6982 		readonly = true;
6983 	if (block_group)
6984 		btrfs_put_block_group(block_group);
6985 	return readonly;
6986 }
6987 
6988 /*
6989  * Check if we can do nocow write into the range [@offset, @offset + @len)
6990  *
6991  * @offset:	File offset
6992  * @len:	The length to write, will be updated to the nocow writeable
6993  *		range
6994  * @orig_start:	(optional) Return the original file offset of the file extent
6995  * @orig_len:	(optional) Return the original on-disk length of the file extent
6996  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
6997  * @strict:	if true, omit optimizations that might force us into unnecessary
6998  *		cow. e.g., don't trust generation number.
6999  *
7000  * Return:
7001  * >0	and update @len if we can do nocow write
7002  *  0	if we can't do nocow write
7003  * <0	if error happened
7004  *
7005  * NOTE: This only checks the file extents, caller is responsible to wait for
7006  *	 any ordered extents.
7007  */
7008 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7009 			      struct btrfs_file_extent *file_extent,
7010 			      bool nowait, bool strict)
7011 {
7012 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7013 	struct can_nocow_file_extent_args nocow_args = { 0 };
7014 	struct btrfs_path *path;
7015 	int ret;
7016 	struct extent_buffer *leaf;
7017 	struct btrfs_root *root = BTRFS_I(inode)->root;
7018 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7019 	struct btrfs_file_extent_item *fi;
7020 	struct btrfs_key key;
7021 	int found_type;
7022 
7023 	path = btrfs_alloc_path();
7024 	if (!path)
7025 		return -ENOMEM;
7026 	path->nowait = nowait;
7027 
7028 	ret = btrfs_lookup_file_extent(NULL, root, path,
7029 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7030 	if (ret < 0)
7031 		goto out;
7032 
7033 	if (ret == 1) {
7034 		if (path->slots[0] == 0) {
7035 			/* can't find the item, must cow */
7036 			ret = 0;
7037 			goto out;
7038 		}
7039 		path->slots[0]--;
7040 	}
7041 	ret = 0;
7042 	leaf = path->nodes[0];
7043 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7044 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7045 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7046 		/* not our file or wrong item type, must cow */
7047 		goto out;
7048 	}
7049 
7050 	if (key.offset > offset) {
7051 		/* Wrong offset, must cow */
7052 		goto out;
7053 	}
7054 
7055 	if (btrfs_file_extent_end(path) <= offset)
7056 		goto out;
7057 
7058 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7059 	found_type = btrfs_file_extent_type(leaf, fi);
7060 
7061 	nocow_args.start = offset;
7062 	nocow_args.end = offset + *len - 1;
7063 	nocow_args.strict = strict;
7064 	nocow_args.free_path = true;
7065 
7066 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7067 	/* can_nocow_file_extent() has freed the path. */
7068 	path = NULL;
7069 
7070 	if (ret != 1) {
7071 		/* Treat errors as not being able to NOCOW. */
7072 		ret = 0;
7073 		goto out;
7074 	}
7075 
7076 	ret = 0;
7077 	if (btrfs_extent_readonly(fs_info,
7078 				  nocow_args.file_extent.disk_bytenr +
7079 				  nocow_args.file_extent.offset))
7080 		goto out;
7081 
7082 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7083 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7084 		u64 range_end;
7085 
7086 		range_end = round_up(offset + nocow_args.file_extent.num_bytes,
7087 				     root->fs_info->sectorsize) - 1;
7088 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7089 		if (ret) {
7090 			ret = -EAGAIN;
7091 			goto out;
7092 		}
7093 	}
7094 
7095 	if (file_extent)
7096 		memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent));
7097 
7098 	*len = nocow_args.file_extent.num_bytes;
7099 	ret = 1;
7100 out:
7101 	btrfs_free_path(path);
7102 	return ret;
7103 }
7104 
7105 /* The callers of this must take lock_extent() */
7106 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start,
7107 				      const struct btrfs_file_extent *file_extent,
7108 				      int type)
7109 {
7110 	struct extent_map *em;
7111 	int ret;
7112 
7113 	/*
7114 	 * Note the missing NOCOW type.
7115 	 *
7116 	 * For pure NOCOW writes, we should not create an io extent map, but
7117 	 * just reusing the existing one.
7118 	 * Only PREALLOC writes (NOCOW write into preallocated range) can
7119 	 * create an io extent map.
7120 	 */
7121 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7122 	       type == BTRFS_ORDERED_COMPRESSED ||
7123 	       type == BTRFS_ORDERED_REGULAR);
7124 
7125 	switch (type) {
7126 	case BTRFS_ORDERED_PREALLOC:
7127 		/* We're only referring part of a larger preallocated extent. */
7128 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7129 		break;
7130 	case BTRFS_ORDERED_REGULAR:
7131 		/* COW results a new extent matching our file extent size. */
7132 		ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes);
7133 		ASSERT(file_extent->ram_bytes == file_extent->num_bytes);
7134 
7135 		/* Since it's a new extent, we should not have any offset. */
7136 		ASSERT(file_extent->offset == 0);
7137 		break;
7138 	case BTRFS_ORDERED_COMPRESSED:
7139 		/* Must be compressed. */
7140 		ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE);
7141 
7142 		/*
7143 		 * Encoded write can make us to refer to part of the
7144 		 * uncompressed extent.
7145 		 */
7146 		ASSERT(file_extent->num_bytes <= file_extent->ram_bytes);
7147 		break;
7148 	}
7149 
7150 	em = alloc_extent_map();
7151 	if (!em)
7152 		return ERR_PTR(-ENOMEM);
7153 
7154 	em->start = start;
7155 	em->len = file_extent->num_bytes;
7156 	em->disk_bytenr = file_extent->disk_bytenr;
7157 	em->disk_num_bytes = file_extent->disk_num_bytes;
7158 	em->ram_bytes = file_extent->ram_bytes;
7159 	em->generation = -1;
7160 	em->offset = file_extent->offset;
7161 	em->flags |= EXTENT_FLAG_PINNED;
7162 	if (type == BTRFS_ORDERED_COMPRESSED)
7163 		extent_map_set_compression(em, file_extent->compression);
7164 
7165 	ret = btrfs_replace_extent_map_range(inode, em, true);
7166 	if (ret) {
7167 		free_extent_map(em);
7168 		return ERR_PTR(ret);
7169 	}
7170 
7171 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7172 	return em;
7173 }
7174 
7175 /*
7176  * For release_folio() and invalidate_folio() we have a race window where
7177  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7178  * If we continue to release/invalidate the page, we could cause use-after-free
7179  * for subpage spinlock.  So this function is to spin and wait for subpage
7180  * spinlock.
7181  */
7182 static void wait_subpage_spinlock(struct page *page)
7183 {
7184 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
7185 	struct folio *folio = page_folio(page);
7186 	struct btrfs_subpage *subpage;
7187 
7188 	if (!btrfs_is_subpage(fs_info, page->mapping))
7189 		return;
7190 
7191 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7192 	subpage = folio_get_private(folio);
7193 
7194 	/*
7195 	 * This may look insane as we just acquire the spinlock and release it,
7196 	 * without doing anything.  But we just want to make sure no one is
7197 	 * still holding the subpage spinlock.
7198 	 * And since the page is not dirty nor writeback, and we have page
7199 	 * locked, the only possible way to hold a spinlock is from the endio
7200 	 * function to clear page writeback.
7201 	 *
7202 	 * Here we just acquire the spinlock so that all existing callers
7203 	 * should exit and we're safe to release/invalidate the page.
7204 	 */
7205 	spin_lock_irq(&subpage->lock);
7206 	spin_unlock_irq(&subpage->lock);
7207 }
7208 
7209 static int btrfs_launder_folio(struct folio *folio)
7210 {
7211 	return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio),
7212 				      PAGE_SIZE, NULL);
7213 }
7214 
7215 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7216 {
7217 	if (try_release_extent_mapping(&folio->page, gfp_flags)) {
7218 		wait_subpage_spinlock(&folio->page);
7219 		clear_page_extent_mapped(&folio->page);
7220 		return true;
7221 	}
7222 	return false;
7223 }
7224 
7225 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7226 {
7227 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7228 		return false;
7229 	return __btrfs_release_folio(folio, gfp_flags);
7230 }
7231 
7232 #ifdef CONFIG_MIGRATION
7233 static int btrfs_migrate_folio(struct address_space *mapping,
7234 			     struct folio *dst, struct folio *src,
7235 			     enum migrate_mode mode)
7236 {
7237 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7238 
7239 	if (ret != MIGRATEPAGE_SUCCESS)
7240 		return ret;
7241 
7242 	if (folio_test_ordered(src)) {
7243 		folio_clear_ordered(src);
7244 		folio_set_ordered(dst);
7245 	}
7246 
7247 	return MIGRATEPAGE_SUCCESS;
7248 }
7249 #else
7250 #define btrfs_migrate_folio NULL
7251 #endif
7252 
7253 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7254 				 size_t length)
7255 {
7256 	struct btrfs_inode *inode = folio_to_inode(folio);
7257 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7258 	struct extent_io_tree *tree = &inode->io_tree;
7259 	struct extent_state *cached_state = NULL;
7260 	u64 page_start = folio_pos(folio);
7261 	u64 page_end = page_start + folio_size(folio) - 1;
7262 	u64 cur;
7263 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7264 
7265 	/*
7266 	 * We have folio locked so no new ordered extent can be created on this
7267 	 * page, nor bio can be submitted for this folio.
7268 	 *
7269 	 * But already submitted bio can still be finished on this folio.
7270 	 * Furthermore, endio function won't skip folio which has Ordered
7271 	 * (Private2) already cleared, so it's possible for endio and
7272 	 * invalidate_folio to do the same ordered extent accounting twice
7273 	 * on one folio.
7274 	 *
7275 	 * So here we wait for any submitted bios to finish, so that we won't
7276 	 * do double ordered extent accounting on the same folio.
7277 	 */
7278 	folio_wait_writeback(folio);
7279 	wait_subpage_spinlock(&folio->page);
7280 
7281 	/*
7282 	 * For subpage case, we have call sites like
7283 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7284 	 * sectorsize.
7285 	 * If the range doesn't cover the full folio, we don't need to and
7286 	 * shouldn't clear page extent mapped, as folio->private can still
7287 	 * record subpage dirty bits for other part of the range.
7288 	 *
7289 	 * For cases that invalidate the full folio even the range doesn't
7290 	 * cover the full folio, like invalidating the last folio, we're
7291 	 * still safe to wait for ordered extent to finish.
7292 	 */
7293 	if (!(offset == 0 && length == folio_size(folio))) {
7294 		btrfs_release_folio(folio, GFP_NOFS);
7295 		return;
7296 	}
7297 
7298 	if (!inode_evicting)
7299 		lock_extent(tree, page_start, page_end, &cached_state);
7300 
7301 	cur = page_start;
7302 	while (cur < page_end) {
7303 		struct btrfs_ordered_extent *ordered;
7304 		u64 range_end;
7305 		u32 range_len;
7306 		u32 extra_flags = 0;
7307 
7308 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
7309 							   page_end + 1 - cur);
7310 		if (!ordered) {
7311 			range_end = page_end;
7312 			/*
7313 			 * No ordered extent covering this range, we are safe
7314 			 * to delete all extent states in the range.
7315 			 */
7316 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7317 			goto next;
7318 		}
7319 		if (ordered->file_offset > cur) {
7320 			/*
7321 			 * There is a range between [cur, oe->file_offset) not
7322 			 * covered by any ordered extent.
7323 			 * We are safe to delete all extent states, and handle
7324 			 * the ordered extent in the next iteration.
7325 			 */
7326 			range_end = ordered->file_offset - 1;
7327 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7328 			goto next;
7329 		}
7330 
7331 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
7332 				page_end);
7333 		ASSERT(range_end + 1 - cur < U32_MAX);
7334 		range_len = range_end + 1 - cur;
7335 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
7336 			/*
7337 			 * If Ordered (Private2) is cleared, it means endio has
7338 			 * already been executed for the range.
7339 			 * We can't delete the extent states as
7340 			 * btrfs_finish_ordered_io() may still use some of them.
7341 			 */
7342 			goto next;
7343 		}
7344 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
7345 
7346 		/*
7347 		 * IO on this page will never be started, so we need to account
7348 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
7349 		 * here, must leave that up for the ordered extent completion.
7350 		 *
7351 		 * This will also unlock the range for incoming
7352 		 * btrfs_finish_ordered_io().
7353 		 */
7354 		if (!inode_evicting)
7355 			clear_extent_bit(tree, cur, range_end,
7356 					 EXTENT_DELALLOC |
7357 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7358 					 EXTENT_DEFRAG, &cached_state);
7359 
7360 		spin_lock_irq(&inode->ordered_tree_lock);
7361 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7362 		ordered->truncated_len = min(ordered->truncated_len,
7363 					     cur - ordered->file_offset);
7364 		spin_unlock_irq(&inode->ordered_tree_lock);
7365 
7366 		/*
7367 		 * If the ordered extent has finished, we're safe to delete all
7368 		 * the extent states of the range, otherwise
7369 		 * btrfs_finish_ordered_io() will get executed by endio for
7370 		 * other pages, so we can't delete extent states.
7371 		 */
7372 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
7373 						   cur, range_end + 1 - cur)) {
7374 			btrfs_finish_ordered_io(ordered);
7375 			/*
7376 			 * The ordered extent has finished, now we're again
7377 			 * safe to delete all extent states of the range.
7378 			 */
7379 			extra_flags = EXTENT_CLEAR_ALL_BITS;
7380 		}
7381 next:
7382 		if (ordered)
7383 			btrfs_put_ordered_extent(ordered);
7384 		/*
7385 		 * Qgroup reserved space handler
7386 		 * Sector(s) here will be either:
7387 		 *
7388 		 * 1) Already written to disk or bio already finished
7389 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
7390 		 *    Qgroup will be handled by its qgroup_record then.
7391 		 *    btrfs_qgroup_free_data() call will do nothing here.
7392 		 *
7393 		 * 2) Not written to disk yet
7394 		 *    Then btrfs_qgroup_free_data() call will clear the
7395 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
7396 		 *    reserved data space.
7397 		 *    Since the IO will never happen for this page.
7398 		 */
7399 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
7400 		if (!inode_evicting) {
7401 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
7402 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
7403 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
7404 				 extra_flags, &cached_state);
7405 		}
7406 		cur = range_end + 1;
7407 	}
7408 	/*
7409 	 * We have iterated through all ordered extents of the page, the page
7410 	 * should not have Ordered (Private2) anymore, or the above iteration
7411 	 * did something wrong.
7412 	 */
7413 	ASSERT(!folio_test_ordered(folio));
7414 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
7415 	if (!inode_evicting)
7416 		__btrfs_release_folio(folio, GFP_NOFS);
7417 	clear_page_extent_mapped(&folio->page);
7418 }
7419 
7420 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
7421 {
7422 	struct btrfs_truncate_control control = {
7423 		.inode = inode,
7424 		.ino = btrfs_ino(inode),
7425 		.min_type = BTRFS_EXTENT_DATA_KEY,
7426 		.clear_extent_range = true,
7427 	};
7428 	struct btrfs_root *root = inode->root;
7429 	struct btrfs_fs_info *fs_info = root->fs_info;
7430 	struct btrfs_block_rsv *rsv;
7431 	int ret;
7432 	struct btrfs_trans_handle *trans;
7433 	u64 mask = fs_info->sectorsize - 1;
7434 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
7435 
7436 	if (!skip_writeback) {
7437 		ret = btrfs_wait_ordered_range(inode,
7438 					       inode->vfs_inode.i_size & (~mask),
7439 					       (u64)-1);
7440 		if (ret)
7441 			return ret;
7442 	}
7443 
7444 	/*
7445 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
7446 	 * things going on here:
7447 	 *
7448 	 * 1) We need to reserve space to update our inode.
7449 	 *
7450 	 * 2) We need to have something to cache all the space that is going to
7451 	 * be free'd up by the truncate operation, but also have some slack
7452 	 * space reserved in case it uses space during the truncate (thank you
7453 	 * very much snapshotting).
7454 	 *
7455 	 * And we need these to be separate.  The fact is we can use a lot of
7456 	 * space doing the truncate, and we have no earthly idea how much space
7457 	 * we will use, so we need the truncate reservation to be separate so it
7458 	 * doesn't end up using space reserved for updating the inode.  We also
7459 	 * need to be able to stop the transaction and start a new one, which
7460 	 * means we need to be able to update the inode several times, and we
7461 	 * have no idea of knowing how many times that will be, so we can't just
7462 	 * reserve 1 item for the entirety of the operation, so that has to be
7463 	 * done separately as well.
7464 	 *
7465 	 * So that leaves us with
7466 	 *
7467 	 * 1) rsv - for the truncate reservation, which we will steal from the
7468 	 * transaction reservation.
7469 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
7470 	 * updating the inode.
7471 	 */
7472 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
7473 	if (!rsv)
7474 		return -ENOMEM;
7475 	rsv->size = min_size;
7476 	rsv->failfast = true;
7477 
7478 	/*
7479 	 * 1 for the truncate slack space
7480 	 * 1 for updating the inode.
7481 	 */
7482 	trans = btrfs_start_transaction(root, 2);
7483 	if (IS_ERR(trans)) {
7484 		ret = PTR_ERR(trans);
7485 		goto out;
7486 	}
7487 
7488 	/* Migrate the slack space for the truncate to our reserve */
7489 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
7490 				      min_size, false);
7491 	/*
7492 	 * We have reserved 2 metadata units when we started the transaction and
7493 	 * min_size matches 1 unit, so this should never fail, but if it does,
7494 	 * it's not critical we just fail truncation.
7495 	 */
7496 	if (WARN_ON(ret)) {
7497 		btrfs_end_transaction(trans);
7498 		goto out;
7499 	}
7500 
7501 	trans->block_rsv = rsv;
7502 
7503 	while (1) {
7504 		struct extent_state *cached_state = NULL;
7505 		const u64 new_size = inode->vfs_inode.i_size;
7506 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
7507 
7508 		control.new_size = new_size;
7509 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7510 		/*
7511 		 * We want to drop from the next block forward in case this new
7512 		 * size is not block aligned since we will be keeping the last
7513 		 * block of the extent just the way it is.
7514 		 */
7515 		btrfs_drop_extent_map_range(inode,
7516 					    ALIGN(new_size, fs_info->sectorsize),
7517 					    (u64)-1, false);
7518 
7519 		ret = btrfs_truncate_inode_items(trans, root, &control);
7520 
7521 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
7522 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
7523 
7524 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
7525 
7526 		trans->block_rsv = &fs_info->trans_block_rsv;
7527 		if (ret != -ENOSPC && ret != -EAGAIN)
7528 			break;
7529 
7530 		ret = btrfs_update_inode(trans, inode);
7531 		if (ret)
7532 			break;
7533 
7534 		btrfs_end_transaction(trans);
7535 		btrfs_btree_balance_dirty(fs_info);
7536 
7537 		trans = btrfs_start_transaction(root, 2);
7538 		if (IS_ERR(trans)) {
7539 			ret = PTR_ERR(trans);
7540 			trans = NULL;
7541 			break;
7542 		}
7543 
7544 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
7545 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
7546 					      rsv, min_size, false);
7547 		/*
7548 		 * We have reserved 2 metadata units when we started the
7549 		 * transaction and min_size matches 1 unit, so this should never
7550 		 * fail, but if it does, it's not critical we just fail truncation.
7551 		 */
7552 		if (WARN_ON(ret))
7553 			break;
7554 
7555 		trans->block_rsv = rsv;
7556 	}
7557 
7558 	/*
7559 	 * We can't call btrfs_truncate_block inside a trans handle as we could
7560 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
7561 	 * know we've truncated everything except the last little bit, and can
7562 	 * do btrfs_truncate_block and then update the disk_i_size.
7563 	 */
7564 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
7565 		btrfs_end_transaction(trans);
7566 		btrfs_btree_balance_dirty(fs_info);
7567 
7568 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
7569 		if (ret)
7570 			goto out;
7571 		trans = btrfs_start_transaction(root, 1);
7572 		if (IS_ERR(trans)) {
7573 			ret = PTR_ERR(trans);
7574 			goto out;
7575 		}
7576 		btrfs_inode_safe_disk_i_size_write(inode, 0);
7577 	}
7578 
7579 	if (trans) {
7580 		int ret2;
7581 
7582 		trans->block_rsv = &fs_info->trans_block_rsv;
7583 		ret2 = btrfs_update_inode(trans, inode);
7584 		if (ret2 && !ret)
7585 			ret = ret2;
7586 
7587 		ret2 = btrfs_end_transaction(trans);
7588 		if (ret2 && !ret)
7589 			ret = ret2;
7590 		btrfs_btree_balance_dirty(fs_info);
7591 	}
7592 out:
7593 	btrfs_free_block_rsv(fs_info, rsv);
7594 	/*
7595 	 * So if we truncate and then write and fsync we normally would just
7596 	 * write the extents that changed, which is a problem if we need to
7597 	 * first truncate that entire inode.  So set this flag so we write out
7598 	 * all of the extents in the inode to the sync log so we're completely
7599 	 * safe.
7600 	 *
7601 	 * If no extents were dropped or trimmed we don't need to force the next
7602 	 * fsync to truncate all the inode's items from the log and re-log them
7603 	 * all. This means the truncate operation did not change the file size,
7604 	 * or changed it to a smaller size but there was only an implicit hole
7605 	 * between the old i_size and the new i_size, and there were no prealloc
7606 	 * extents beyond i_size to drop.
7607 	 */
7608 	if (control.extents_found > 0)
7609 		btrfs_set_inode_full_sync(inode);
7610 
7611 	return ret;
7612 }
7613 
7614 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
7615 				     struct inode *dir)
7616 {
7617 	struct inode *inode;
7618 
7619 	inode = new_inode(dir->i_sb);
7620 	if (inode) {
7621 		/*
7622 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
7623 		 * the parent's sgid bit is set. This is probably a bug.
7624 		 */
7625 		inode_init_owner(idmap, inode, NULL,
7626 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
7627 		inode->i_op = &btrfs_dir_inode_operations;
7628 		inode->i_fop = &btrfs_dir_file_operations;
7629 	}
7630 	return inode;
7631 }
7632 
7633 struct inode *btrfs_alloc_inode(struct super_block *sb)
7634 {
7635 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
7636 	struct btrfs_inode *ei;
7637 	struct inode *inode;
7638 
7639 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
7640 	if (!ei)
7641 		return NULL;
7642 
7643 	ei->root = NULL;
7644 	ei->generation = 0;
7645 	ei->last_trans = 0;
7646 	ei->last_sub_trans = 0;
7647 	ei->logged_trans = 0;
7648 	ei->delalloc_bytes = 0;
7649 	ei->new_delalloc_bytes = 0;
7650 	ei->defrag_bytes = 0;
7651 	ei->disk_i_size = 0;
7652 	ei->flags = 0;
7653 	ei->ro_flags = 0;
7654 	/*
7655 	 * ->index_cnt will be properly initialized later when creating a new
7656 	 * inode (btrfs_create_new_inode()) or when reading an existing inode
7657 	 * from disk (btrfs_read_locked_inode()).
7658 	 */
7659 	ei->csum_bytes = 0;
7660 	ei->dir_index = 0;
7661 	ei->last_unlink_trans = 0;
7662 	ei->last_reflink_trans = 0;
7663 	ei->last_log_commit = 0;
7664 
7665 	spin_lock_init(&ei->lock);
7666 	ei->outstanding_extents = 0;
7667 	if (sb->s_magic != BTRFS_TEST_MAGIC)
7668 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
7669 					      BTRFS_BLOCK_RSV_DELALLOC);
7670 	ei->runtime_flags = 0;
7671 	ei->prop_compress = BTRFS_COMPRESS_NONE;
7672 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
7673 
7674 	ei->delayed_node = NULL;
7675 
7676 	ei->i_otime_sec = 0;
7677 	ei->i_otime_nsec = 0;
7678 
7679 	inode = &ei->vfs_inode;
7680 	extent_map_tree_init(&ei->extent_tree);
7681 
7682 	/* This io tree sets the valid inode. */
7683 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
7684 	ei->io_tree.inode = ei;
7685 
7686 	ei->file_extent_tree = NULL;
7687 
7688 	mutex_init(&ei->log_mutex);
7689 	spin_lock_init(&ei->ordered_tree_lock);
7690 	ei->ordered_tree = RB_ROOT;
7691 	ei->ordered_tree_last = NULL;
7692 	INIT_LIST_HEAD(&ei->delalloc_inodes);
7693 	INIT_LIST_HEAD(&ei->delayed_iput);
7694 	init_rwsem(&ei->i_mmap_lock);
7695 
7696 	return inode;
7697 }
7698 
7699 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7700 void btrfs_test_destroy_inode(struct inode *inode)
7701 {
7702 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
7703 	kfree(BTRFS_I(inode)->file_extent_tree);
7704 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7705 }
7706 #endif
7707 
7708 void btrfs_free_inode(struct inode *inode)
7709 {
7710 	kfree(BTRFS_I(inode)->file_extent_tree);
7711 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7712 }
7713 
7714 void btrfs_destroy_inode(struct inode *vfs_inode)
7715 {
7716 	struct btrfs_ordered_extent *ordered;
7717 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
7718 	struct btrfs_root *root = inode->root;
7719 	bool freespace_inode;
7720 
7721 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
7722 	WARN_ON(vfs_inode->i_data.nrpages);
7723 	WARN_ON(inode->block_rsv.reserved);
7724 	WARN_ON(inode->block_rsv.size);
7725 	WARN_ON(inode->outstanding_extents);
7726 	if (!S_ISDIR(vfs_inode->i_mode)) {
7727 		WARN_ON(inode->delalloc_bytes);
7728 		WARN_ON(inode->new_delalloc_bytes);
7729 		WARN_ON(inode->csum_bytes);
7730 	}
7731 	if (!root || !btrfs_is_data_reloc_root(root))
7732 		WARN_ON(inode->defrag_bytes);
7733 
7734 	/*
7735 	 * This can happen where we create an inode, but somebody else also
7736 	 * created the same inode and we need to destroy the one we already
7737 	 * created.
7738 	 */
7739 	if (!root)
7740 		return;
7741 
7742 	/*
7743 	 * If this is a free space inode do not take the ordered extents lockdep
7744 	 * map.
7745 	 */
7746 	freespace_inode = btrfs_is_free_space_inode(inode);
7747 
7748 	while (1) {
7749 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7750 		if (!ordered)
7751 			break;
7752 		else {
7753 			btrfs_err(root->fs_info,
7754 				  "found ordered extent %llu %llu on inode cleanup",
7755 				  ordered->file_offset, ordered->num_bytes);
7756 
7757 			if (!freespace_inode)
7758 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
7759 
7760 			btrfs_remove_ordered_extent(inode, ordered);
7761 			btrfs_put_ordered_extent(ordered);
7762 			btrfs_put_ordered_extent(ordered);
7763 		}
7764 	}
7765 	btrfs_qgroup_check_reserved_leak(inode);
7766 	btrfs_del_inode_from_root(inode);
7767 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
7768 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
7769 	btrfs_put_root(inode->root);
7770 }
7771 
7772 int btrfs_drop_inode(struct inode *inode)
7773 {
7774 	struct btrfs_root *root = BTRFS_I(inode)->root;
7775 
7776 	if (root == NULL)
7777 		return 1;
7778 
7779 	/* the snap/subvol tree is on deleting */
7780 	if (btrfs_root_refs(&root->root_item) == 0)
7781 		return 1;
7782 	else
7783 		return generic_drop_inode(inode);
7784 }
7785 
7786 static void init_once(void *foo)
7787 {
7788 	struct btrfs_inode *ei = foo;
7789 
7790 	inode_init_once(&ei->vfs_inode);
7791 }
7792 
7793 void __cold btrfs_destroy_cachep(void)
7794 {
7795 	/*
7796 	 * Make sure all delayed rcu free inodes are flushed before we
7797 	 * destroy cache.
7798 	 */
7799 	rcu_barrier();
7800 	kmem_cache_destroy(btrfs_inode_cachep);
7801 }
7802 
7803 int __init btrfs_init_cachep(void)
7804 {
7805 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
7806 			sizeof(struct btrfs_inode), 0,
7807 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
7808 			init_once);
7809 	if (!btrfs_inode_cachep)
7810 		return -ENOMEM;
7811 
7812 	return 0;
7813 }
7814 
7815 static int btrfs_getattr(struct mnt_idmap *idmap,
7816 			 const struct path *path, struct kstat *stat,
7817 			 u32 request_mask, unsigned int flags)
7818 {
7819 	u64 delalloc_bytes;
7820 	u64 inode_bytes;
7821 	struct inode *inode = d_inode(path->dentry);
7822 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
7823 	u32 bi_flags = BTRFS_I(inode)->flags;
7824 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
7825 
7826 	stat->result_mask |= STATX_BTIME;
7827 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
7828 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
7829 	if (bi_flags & BTRFS_INODE_APPEND)
7830 		stat->attributes |= STATX_ATTR_APPEND;
7831 	if (bi_flags & BTRFS_INODE_COMPRESS)
7832 		stat->attributes |= STATX_ATTR_COMPRESSED;
7833 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
7834 		stat->attributes |= STATX_ATTR_IMMUTABLE;
7835 	if (bi_flags & BTRFS_INODE_NODUMP)
7836 		stat->attributes |= STATX_ATTR_NODUMP;
7837 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
7838 		stat->attributes |= STATX_ATTR_VERITY;
7839 
7840 	stat->attributes_mask |= (STATX_ATTR_APPEND |
7841 				  STATX_ATTR_COMPRESSED |
7842 				  STATX_ATTR_IMMUTABLE |
7843 				  STATX_ATTR_NODUMP);
7844 
7845 	generic_fillattr(idmap, request_mask, inode, stat);
7846 	stat->dev = BTRFS_I(inode)->root->anon_dev;
7847 
7848 	stat->subvol = BTRFS_I(inode)->root->root_key.objectid;
7849 	stat->result_mask |= STATX_SUBVOL;
7850 
7851 	spin_lock(&BTRFS_I(inode)->lock);
7852 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
7853 	inode_bytes = inode_get_bytes(inode);
7854 	spin_unlock(&BTRFS_I(inode)->lock);
7855 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
7856 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
7857 	return 0;
7858 }
7859 
7860 static int btrfs_rename_exchange(struct inode *old_dir,
7861 			      struct dentry *old_dentry,
7862 			      struct inode *new_dir,
7863 			      struct dentry *new_dentry)
7864 {
7865 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
7866 	struct btrfs_trans_handle *trans;
7867 	unsigned int trans_num_items;
7868 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
7869 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7870 	struct inode *new_inode = new_dentry->d_inode;
7871 	struct inode *old_inode = old_dentry->d_inode;
7872 	struct btrfs_rename_ctx old_rename_ctx;
7873 	struct btrfs_rename_ctx new_rename_ctx;
7874 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
7875 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
7876 	u64 old_idx = 0;
7877 	u64 new_idx = 0;
7878 	int ret;
7879 	int ret2;
7880 	bool need_abort = false;
7881 	struct fscrypt_name old_fname, new_fname;
7882 	struct fscrypt_str *old_name, *new_name;
7883 
7884 	/*
7885 	 * For non-subvolumes allow exchange only within one subvolume, in the
7886 	 * same inode namespace. Two subvolumes (represented as directory) can
7887 	 * be exchanged as they're a logical link and have a fixed inode number.
7888 	 */
7889 	if (root != dest &&
7890 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
7891 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
7892 		return -EXDEV;
7893 
7894 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
7895 	if (ret)
7896 		return ret;
7897 
7898 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
7899 	if (ret) {
7900 		fscrypt_free_filename(&old_fname);
7901 		return ret;
7902 	}
7903 
7904 	old_name = &old_fname.disk_name;
7905 	new_name = &new_fname.disk_name;
7906 
7907 	/* close the race window with snapshot create/destroy ioctl */
7908 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
7909 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
7910 		down_read(&fs_info->subvol_sem);
7911 
7912 	/*
7913 	 * For each inode:
7914 	 * 1 to remove old dir item
7915 	 * 1 to remove old dir index
7916 	 * 1 to add new dir item
7917 	 * 1 to add new dir index
7918 	 * 1 to update parent inode
7919 	 *
7920 	 * If the parents are the same, we only need to account for one
7921 	 */
7922 	trans_num_items = (old_dir == new_dir ? 9 : 10);
7923 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7924 		/*
7925 		 * 1 to remove old root ref
7926 		 * 1 to remove old root backref
7927 		 * 1 to add new root ref
7928 		 * 1 to add new root backref
7929 		 */
7930 		trans_num_items += 4;
7931 	} else {
7932 		/*
7933 		 * 1 to update inode item
7934 		 * 1 to remove old inode ref
7935 		 * 1 to add new inode ref
7936 		 */
7937 		trans_num_items += 3;
7938 	}
7939 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
7940 		trans_num_items += 4;
7941 	else
7942 		trans_num_items += 3;
7943 	trans = btrfs_start_transaction(root, trans_num_items);
7944 	if (IS_ERR(trans)) {
7945 		ret = PTR_ERR(trans);
7946 		goto out_notrans;
7947 	}
7948 
7949 	if (dest != root) {
7950 		ret = btrfs_record_root_in_trans(trans, dest);
7951 		if (ret)
7952 			goto out_fail;
7953 	}
7954 
7955 	/*
7956 	 * We need to find a free sequence number both in the source and
7957 	 * in the destination directory for the exchange.
7958 	 */
7959 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
7960 	if (ret)
7961 		goto out_fail;
7962 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
7963 	if (ret)
7964 		goto out_fail;
7965 
7966 	BTRFS_I(old_inode)->dir_index = 0ULL;
7967 	BTRFS_I(new_inode)->dir_index = 0ULL;
7968 
7969 	/* Reference for the source. */
7970 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
7971 		/* force full log commit if subvolume involved. */
7972 		btrfs_set_log_full_commit(trans);
7973 	} else {
7974 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
7975 					     btrfs_ino(BTRFS_I(new_dir)),
7976 					     old_idx);
7977 		if (ret)
7978 			goto out_fail;
7979 		need_abort = true;
7980 	}
7981 
7982 	/* And now for the dest. */
7983 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
7984 		/* force full log commit if subvolume involved. */
7985 		btrfs_set_log_full_commit(trans);
7986 	} else {
7987 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
7988 					     btrfs_ino(BTRFS_I(old_dir)),
7989 					     new_idx);
7990 		if (ret) {
7991 			if (need_abort)
7992 				btrfs_abort_transaction(trans, ret);
7993 			goto out_fail;
7994 		}
7995 	}
7996 
7997 	/* Update inode version and ctime/mtime. */
7998 	inode_inc_iversion(old_dir);
7999 	inode_inc_iversion(new_dir);
8000 	inode_inc_iversion(old_inode);
8001 	inode_inc_iversion(new_inode);
8002 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8003 
8004 	if (old_dentry->d_parent != new_dentry->d_parent) {
8005 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8006 					BTRFS_I(old_inode), true);
8007 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8008 					BTRFS_I(new_inode), true);
8009 	}
8010 
8011 	/* src is a subvolume */
8012 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8013 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8014 	} else { /* src is an inode */
8015 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8016 					   BTRFS_I(old_dentry->d_inode),
8017 					   old_name, &old_rename_ctx);
8018 		if (!ret)
8019 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8020 	}
8021 	if (ret) {
8022 		btrfs_abort_transaction(trans, ret);
8023 		goto out_fail;
8024 	}
8025 
8026 	/* dest is a subvolume */
8027 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8028 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8029 	} else { /* dest is an inode */
8030 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8031 					   BTRFS_I(new_dentry->d_inode),
8032 					   new_name, &new_rename_ctx);
8033 		if (!ret)
8034 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8035 	}
8036 	if (ret) {
8037 		btrfs_abort_transaction(trans, ret);
8038 		goto out_fail;
8039 	}
8040 
8041 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8042 			     new_name, 0, old_idx);
8043 	if (ret) {
8044 		btrfs_abort_transaction(trans, ret);
8045 		goto out_fail;
8046 	}
8047 
8048 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8049 			     old_name, 0, new_idx);
8050 	if (ret) {
8051 		btrfs_abort_transaction(trans, ret);
8052 		goto out_fail;
8053 	}
8054 
8055 	if (old_inode->i_nlink == 1)
8056 		BTRFS_I(old_inode)->dir_index = old_idx;
8057 	if (new_inode->i_nlink == 1)
8058 		BTRFS_I(new_inode)->dir_index = new_idx;
8059 
8060 	/*
8061 	 * Now pin the logs of the roots. We do it to ensure that no other task
8062 	 * can sync the logs while we are in progress with the rename, because
8063 	 * that could result in an inconsistency in case any of the inodes that
8064 	 * are part of this rename operation were logged before.
8065 	 */
8066 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8067 		btrfs_pin_log_trans(root);
8068 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8069 		btrfs_pin_log_trans(dest);
8070 
8071 	/* Do the log updates for all inodes. */
8072 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8073 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8074 				   old_rename_ctx.index, new_dentry->d_parent);
8075 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8076 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8077 				   new_rename_ctx.index, old_dentry->d_parent);
8078 
8079 	/* Now unpin the logs. */
8080 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8081 		btrfs_end_log_trans(root);
8082 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8083 		btrfs_end_log_trans(dest);
8084 out_fail:
8085 	ret2 = btrfs_end_transaction(trans);
8086 	ret = ret ? ret : ret2;
8087 out_notrans:
8088 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8089 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8090 		up_read(&fs_info->subvol_sem);
8091 
8092 	fscrypt_free_filename(&new_fname);
8093 	fscrypt_free_filename(&old_fname);
8094 	return ret;
8095 }
8096 
8097 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8098 					struct inode *dir)
8099 {
8100 	struct inode *inode;
8101 
8102 	inode = new_inode(dir->i_sb);
8103 	if (inode) {
8104 		inode_init_owner(idmap, inode, dir,
8105 				 S_IFCHR | WHITEOUT_MODE);
8106 		inode->i_op = &btrfs_special_inode_operations;
8107 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8108 	}
8109 	return inode;
8110 }
8111 
8112 static int btrfs_rename(struct mnt_idmap *idmap,
8113 			struct inode *old_dir, struct dentry *old_dentry,
8114 			struct inode *new_dir, struct dentry *new_dentry,
8115 			unsigned int flags)
8116 {
8117 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8118 	struct btrfs_new_inode_args whiteout_args = {
8119 		.dir = old_dir,
8120 		.dentry = old_dentry,
8121 	};
8122 	struct btrfs_trans_handle *trans;
8123 	unsigned int trans_num_items;
8124 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8125 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8126 	struct inode *new_inode = d_inode(new_dentry);
8127 	struct inode *old_inode = d_inode(old_dentry);
8128 	struct btrfs_rename_ctx rename_ctx;
8129 	u64 index = 0;
8130 	int ret;
8131 	int ret2;
8132 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8133 	struct fscrypt_name old_fname, new_fname;
8134 
8135 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8136 		return -EPERM;
8137 
8138 	/* we only allow rename subvolume link between subvolumes */
8139 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8140 		return -EXDEV;
8141 
8142 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8143 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
8144 		return -ENOTEMPTY;
8145 
8146 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
8147 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8148 		return -ENOTEMPTY;
8149 
8150 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8151 	if (ret)
8152 		return ret;
8153 
8154 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8155 	if (ret) {
8156 		fscrypt_free_filename(&old_fname);
8157 		return ret;
8158 	}
8159 
8160 	/* check for collisions, even if the  name isn't there */
8161 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
8162 	if (ret) {
8163 		if (ret == -EEXIST) {
8164 			/* we shouldn't get
8165 			 * eexist without a new_inode */
8166 			if (WARN_ON(!new_inode)) {
8167 				goto out_fscrypt_names;
8168 			}
8169 		} else {
8170 			/* maybe -EOVERFLOW */
8171 			goto out_fscrypt_names;
8172 		}
8173 	}
8174 	ret = 0;
8175 
8176 	/*
8177 	 * we're using rename to replace one file with another.  Start IO on it
8178 	 * now so  we don't add too much work to the end of the transaction
8179 	 */
8180 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
8181 		filemap_flush(old_inode->i_mapping);
8182 
8183 	if (flags & RENAME_WHITEOUT) {
8184 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
8185 		if (!whiteout_args.inode) {
8186 			ret = -ENOMEM;
8187 			goto out_fscrypt_names;
8188 		}
8189 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
8190 		if (ret)
8191 			goto out_whiteout_inode;
8192 	} else {
8193 		/* 1 to update the old parent inode. */
8194 		trans_num_items = 1;
8195 	}
8196 
8197 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8198 		/* Close the race window with snapshot create/destroy ioctl */
8199 		down_read(&fs_info->subvol_sem);
8200 		/*
8201 		 * 1 to remove old root ref
8202 		 * 1 to remove old root backref
8203 		 * 1 to add new root ref
8204 		 * 1 to add new root backref
8205 		 */
8206 		trans_num_items += 4;
8207 	} else {
8208 		/*
8209 		 * 1 to update inode
8210 		 * 1 to remove old inode ref
8211 		 * 1 to add new inode ref
8212 		 */
8213 		trans_num_items += 3;
8214 	}
8215 	/*
8216 	 * 1 to remove old dir item
8217 	 * 1 to remove old dir index
8218 	 * 1 to add new dir item
8219 	 * 1 to add new dir index
8220 	 */
8221 	trans_num_items += 4;
8222 	/* 1 to update new parent inode if it's not the same as the old parent */
8223 	if (new_dir != old_dir)
8224 		trans_num_items++;
8225 	if (new_inode) {
8226 		/*
8227 		 * 1 to update inode
8228 		 * 1 to remove inode ref
8229 		 * 1 to remove dir item
8230 		 * 1 to remove dir index
8231 		 * 1 to possibly add orphan item
8232 		 */
8233 		trans_num_items += 5;
8234 	}
8235 	trans = btrfs_start_transaction(root, trans_num_items);
8236 	if (IS_ERR(trans)) {
8237 		ret = PTR_ERR(trans);
8238 		goto out_notrans;
8239 	}
8240 
8241 	if (dest != root) {
8242 		ret = btrfs_record_root_in_trans(trans, dest);
8243 		if (ret)
8244 			goto out_fail;
8245 	}
8246 
8247 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
8248 	if (ret)
8249 		goto out_fail;
8250 
8251 	BTRFS_I(old_inode)->dir_index = 0ULL;
8252 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8253 		/* force full log commit if subvolume involved. */
8254 		btrfs_set_log_full_commit(trans);
8255 	} else {
8256 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
8257 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
8258 					     index);
8259 		if (ret)
8260 			goto out_fail;
8261 	}
8262 
8263 	inode_inc_iversion(old_dir);
8264 	inode_inc_iversion(new_dir);
8265 	inode_inc_iversion(old_inode);
8266 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8267 
8268 	if (old_dentry->d_parent != new_dentry->d_parent)
8269 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8270 					BTRFS_I(old_inode), true);
8271 
8272 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8273 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8274 	} else {
8275 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8276 					   BTRFS_I(d_inode(old_dentry)),
8277 					   &old_fname.disk_name, &rename_ctx);
8278 		if (!ret)
8279 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8280 	}
8281 	if (ret) {
8282 		btrfs_abort_transaction(trans, ret);
8283 		goto out_fail;
8284 	}
8285 
8286 	if (new_inode) {
8287 		inode_inc_iversion(new_inode);
8288 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
8289 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8290 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8291 			BUG_ON(new_inode->i_nlink == 0);
8292 		} else {
8293 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8294 						 BTRFS_I(d_inode(new_dentry)),
8295 						 &new_fname.disk_name);
8296 		}
8297 		if (!ret && new_inode->i_nlink == 0)
8298 			ret = btrfs_orphan_add(trans,
8299 					BTRFS_I(d_inode(new_dentry)));
8300 		if (ret) {
8301 			btrfs_abort_transaction(trans, ret);
8302 			goto out_fail;
8303 		}
8304 	}
8305 
8306 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8307 			     &new_fname.disk_name, 0, index);
8308 	if (ret) {
8309 		btrfs_abort_transaction(trans, ret);
8310 		goto out_fail;
8311 	}
8312 
8313 	if (old_inode->i_nlink == 1)
8314 		BTRFS_I(old_inode)->dir_index = index;
8315 
8316 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8317 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8318 				   rename_ctx.index, new_dentry->d_parent);
8319 
8320 	if (flags & RENAME_WHITEOUT) {
8321 		ret = btrfs_create_new_inode(trans, &whiteout_args);
8322 		if (ret) {
8323 			btrfs_abort_transaction(trans, ret);
8324 			goto out_fail;
8325 		} else {
8326 			unlock_new_inode(whiteout_args.inode);
8327 			iput(whiteout_args.inode);
8328 			whiteout_args.inode = NULL;
8329 		}
8330 	}
8331 out_fail:
8332 	ret2 = btrfs_end_transaction(trans);
8333 	ret = ret ? ret : ret2;
8334 out_notrans:
8335 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8336 		up_read(&fs_info->subvol_sem);
8337 	if (flags & RENAME_WHITEOUT)
8338 		btrfs_new_inode_args_destroy(&whiteout_args);
8339 out_whiteout_inode:
8340 	if (flags & RENAME_WHITEOUT)
8341 		iput(whiteout_args.inode);
8342 out_fscrypt_names:
8343 	fscrypt_free_filename(&old_fname);
8344 	fscrypt_free_filename(&new_fname);
8345 	return ret;
8346 }
8347 
8348 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
8349 			 struct dentry *old_dentry, struct inode *new_dir,
8350 			 struct dentry *new_dentry, unsigned int flags)
8351 {
8352 	int ret;
8353 
8354 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
8355 		return -EINVAL;
8356 
8357 	if (flags & RENAME_EXCHANGE)
8358 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
8359 					    new_dentry);
8360 	else
8361 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
8362 				   new_dentry, flags);
8363 
8364 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
8365 
8366 	return ret;
8367 }
8368 
8369 struct btrfs_delalloc_work {
8370 	struct inode *inode;
8371 	struct completion completion;
8372 	struct list_head list;
8373 	struct btrfs_work work;
8374 };
8375 
8376 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8377 {
8378 	struct btrfs_delalloc_work *delalloc_work;
8379 	struct inode *inode;
8380 
8381 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
8382 				     work);
8383 	inode = delalloc_work->inode;
8384 	filemap_flush(inode->i_mapping);
8385 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8386 				&BTRFS_I(inode)->runtime_flags))
8387 		filemap_flush(inode->i_mapping);
8388 
8389 	iput(inode);
8390 	complete(&delalloc_work->completion);
8391 }
8392 
8393 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8394 {
8395 	struct btrfs_delalloc_work *work;
8396 
8397 	work = kmalloc(sizeof(*work), GFP_NOFS);
8398 	if (!work)
8399 		return NULL;
8400 
8401 	init_completion(&work->completion);
8402 	INIT_LIST_HEAD(&work->list);
8403 	work->inode = inode;
8404 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
8405 
8406 	return work;
8407 }
8408 
8409 /*
8410  * some fairly slow code that needs optimization. This walks the list
8411  * of all the inodes with pending delalloc and forces them to disk.
8412  */
8413 static int start_delalloc_inodes(struct btrfs_root *root,
8414 				 struct writeback_control *wbc, bool snapshot,
8415 				 bool in_reclaim_context)
8416 {
8417 	struct btrfs_inode *binode;
8418 	struct inode *inode;
8419 	struct btrfs_delalloc_work *work, *next;
8420 	LIST_HEAD(works);
8421 	LIST_HEAD(splice);
8422 	int ret = 0;
8423 	bool full_flush = wbc->nr_to_write == LONG_MAX;
8424 
8425 	mutex_lock(&root->delalloc_mutex);
8426 	spin_lock(&root->delalloc_lock);
8427 	list_splice_init(&root->delalloc_inodes, &splice);
8428 	while (!list_empty(&splice)) {
8429 		binode = list_entry(splice.next, struct btrfs_inode,
8430 				    delalloc_inodes);
8431 
8432 		list_move_tail(&binode->delalloc_inodes,
8433 			       &root->delalloc_inodes);
8434 
8435 		if (in_reclaim_context &&
8436 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
8437 			continue;
8438 
8439 		inode = igrab(&binode->vfs_inode);
8440 		if (!inode) {
8441 			cond_resched_lock(&root->delalloc_lock);
8442 			continue;
8443 		}
8444 		spin_unlock(&root->delalloc_lock);
8445 
8446 		if (snapshot)
8447 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
8448 				&binode->runtime_flags);
8449 		if (full_flush) {
8450 			work = btrfs_alloc_delalloc_work(inode);
8451 			if (!work) {
8452 				iput(inode);
8453 				ret = -ENOMEM;
8454 				goto out;
8455 			}
8456 			list_add_tail(&work->list, &works);
8457 			btrfs_queue_work(root->fs_info->flush_workers,
8458 					 &work->work);
8459 		} else {
8460 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
8461 			btrfs_add_delayed_iput(BTRFS_I(inode));
8462 			if (ret || wbc->nr_to_write <= 0)
8463 				goto out;
8464 		}
8465 		cond_resched();
8466 		spin_lock(&root->delalloc_lock);
8467 	}
8468 	spin_unlock(&root->delalloc_lock);
8469 
8470 out:
8471 	list_for_each_entry_safe(work, next, &works, list) {
8472 		list_del_init(&work->list);
8473 		wait_for_completion(&work->completion);
8474 		kfree(work);
8475 	}
8476 
8477 	if (!list_empty(&splice)) {
8478 		spin_lock(&root->delalloc_lock);
8479 		list_splice_tail(&splice, &root->delalloc_inodes);
8480 		spin_unlock(&root->delalloc_lock);
8481 	}
8482 	mutex_unlock(&root->delalloc_mutex);
8483 	return ret;
8484 }
8485 
8486 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
8487 {
8488 	struct writeback_control wbc = {
8489 		.nr_to_write = LONG_MAX,
8490 		.sync_mode = WB_SYNC_NONE,
8491 		.range_start = 0,
8492 		.range_end = LLONG_MAX,
8493 	};
8494 	struct btrfs_fs_info *fs_info = root->fs_info;
8495 
8496 	if (BTRFS_FS_ERROR(fs_info))
8497 		return -EROFS;
8498 
8499 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
8500 }
8501 
8502 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
8503 			       bool in_reclaim_context)
8504 {
8505 	struct writeback_control wbc = {
8506 		.nr_to_write = nr,
8507 		.sync_mode = WB_SYNC_NONE,
8508 		.range_start = 0,
8509 		.range_end = LLONG_MAX,
8510 	};
8511 	struct btrfs_root *root;
8512 	LIST_HEAD(splice);
8513 	int ret;
8514 
8515 	if (BTRFS_FS_ERROR(fs_info))
8516 		return -EROFS;
8517 
8518 	mutex_lock(&fs_info->delalloc_root_mutex);
8519 	spin_lock(&fs_info->delalloc_root_lock);
8520 	list_splice_init(&fs_info->delalloc_roots, &splice);
8521 	while (!list_empty(&splice)) {
8522 		/*
8523 		 * Reset nr_to_write here so we know that we're doing a full
8524 		 * flush.
8525 		 */
8526 		if (nr == LONG_MAX)
8527 			wbc.nr_to_write = LONG_MAX;
8528 
8529 		root = list_first_entry(&splice, struct btrfs_root,
8530 					delalloc_root);
8531 		root = btrfs_grab_root(root);
8532 		BUG_ON(!root);
8533 		list_move_tail(&root->delalloc_root,
8534 			       &fs_info->delalloc_roots);
8535 		spin_unlock(&fs_info->delalloc_root_lock);
8536 
8537 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
8538 		btrfs_put_root(root);
8539 		if (ret < 0 || wbc.nr_to_write <= 0)
8540 			goto out;
8541 		spin_lock(&fs_info->delalloc_root_lock);
8542 	}
8543 	spin_unlock(&fs_info->delalloc_root_lock);
8544 
8545 	ret = 0;
8546 out:
8547 	if (!list_empty(&splice)) {
8548 		spin_lock(&fs_info->delalloc_root_lock);
8549 		list_splice_tail(&splice, &fs_info->delalloc_roots);
8550 		spin_unlock(&fs_info->delalloc_root_lock);
8551 	}
8552 	mutex_unlock(&fs_info->delalloc_root_mutex);
8553 	return ret;
8554 }
8555 
8556 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
8557 			 struct dentry *dentry, const char *symname)
8558 {
8559 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8560 	struct btrfs_trans_handle *trans;
8561 	struct btrfs_root *root = BTRFS_I(dir)->root;
8562 	struct btrfs_path *path;
8563 	struct btrfs_key key;
8564 	struct inode *inode;
8565 	struct btrfs_new_inode_args new_inode_args = {
8566 		.dir = dir,
8567 		.dentry = dentry,
8568 	};
8569 	unsigned int trans_num_items;
8570 	int err;
8571 	int name_len;
8572 	int datasize;
8573 	unsigned long ptr;
8574 	struct btrfs_file_extent_item *ei;
8575 	struct extent_buffer *leaf;
8576 
8577 	name_len = strlen(symname);
8578 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
8579 		return -ENAMETOOLONG;
8580 
8581 	inode = new_inode(dir->i_sb);
8582 	if (!inode)
8583 		return -ENOMEM;
8584 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
8585 	inode->i_op = &btrfs_symlink_inode_operations;
8586 	inode_nohighmem(inode);
8587 	inode->i_mapping->a_ops = &btrfs_aops;
8588 	btrfs_i_size_write(BTRFS_I(inode), name_len);
8589 	inode_set_bytes(inode, name_len);
8590 
8591 	new_inode_args.inode = inode;
8592 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8593 	if (err)
8594 		goto out_inode;
8595 	/* 1 additional item for the inline extent */
8596 	trans_num_items++;
8597 
8598 	trans = btrfs_start_transaction(root, trans_num_items);
8599 	if (IS_ERR(trans)) {
8600 		err = PTR_ERR(trans);
8601 		goto out_new_inode_args;
8602 	}
8603 
8604 	err = btrfs_create_new_inode(trans, &new_inode_args);
8605 	if (err)
8606 		goto out;
8607 
8608 	path = btrfs_alloc_path();
8609 	if (!path) {
8610 		err = -ENOMEM;
8611 		btrfs_abort_transaction(trans, err);
8612 		discard_new_inode(inode);
8613 		inode = NULL;
8614 		goto out;
8615 	}
8616 	key.objectid = btrfs_ino(BTRFS_I(inode));
8617 	key.offset = 0;
8618 	key.type = BTRFS_EXTENT_DATA_KEY;
8619 	datasize = btrfs_file_extent_calc_inline_size(name_len);
8620 	err = btrfs_insert_empty_item(trans, root, path, &key,
8621 				      datasize);
8622 	if (err) {
8623 		btrfs_abort_transaction(trans, err);
8624 		btrfs_free_path(path);
8625 		discard_new_inode(inode);
8626 		inode = NULL;
8627 		goto out;
8628 	}
8629 	leaf = path->nodes[0];
8630 	ei = btrfs_item_ptr(leaf, path->slots[0],
8631 			    struct btrfs_file_extent_item);
8632 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8633 	btrfs_set_file_extent_type(leaf, ei,
8634 				   BTRFS_FILE_EXTENT_INLINE);
8635 	btrfs_set_file_extent_encryption(leaf, ei, 0);
8636 	btrfs_set_file_extent_compression(leaf, ei, 0);
8637 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8638 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8639 
8640 	ptr = btrfs_file_extent_inline_start(ei);
8641 	write_extent_buffer(leaf, symname, ptr, name_len);
8642 	btrfs_mark_buffer_dirty(trans, leaf);
8643 	btrfs_free_path(path);
8644 
8645 	d_instantiate_new(dentry, inode);
8646 	err = 0;
8647 out:
8648 	btrfs_end_transaction(trans);
8649 	btrfs_btree_balance_dirty(fs_info);
8650 out_new_inode_args:
8651 	btrfs_new_inode_args_destroy(&new_inode_args);
8652 out_inode:
8653 	if (err)
8654 		iput(inode);
8655 	return err;
8656 }
8657 
8658 static struct btrfs_trans_handle *insert_prealloc_file_extent(
8659 				       struct btrfs_trans_handle *trans_in,
8660 				       struct btrfs_inode *inode,
8661 				       struct btrfs_key *ins,
8662 				       u64 file_offset)
8663 {
8664 	struct btrfs_file_extent_item stack_fi;
8665 	struct btrfs_replace_extent_info extent_info;
8666 	struct btrfs_trans_handle *trans = trans_in;
8667 	struct btrfs_path *path;
8668 	u64 start = ins->objectid;
8669 	u64 len = ins->offset;
8670 	u64 qgroup_released = 0;
8671 	int ret;
8672 
8673 	memset(&stack_fi, 0, sizeof(stack_fi));
8674 
8675 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
8676 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
8677 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
8678 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
8679 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
8680 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
8681 	/* Encryption and other encoding is reserved and all 0 */
8682 
8683 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
8684 	if (ret < 0)
8685 		return ERR_PTR(ret);
8686 
8687 	if (trans) {
8688 		ret = insert_reserved_file_extent(trans, inode,
8689 						  file_offset, &stack_fi,
8690 						  true, qgroup_released);
8691 		if (ret)
8692 			goto free_qgroup;
8693 		return trans;
8694 	}
8695 
8696 	extent_info.disk_offset = start;
8697 	extent_info.disk_len = len;
8698 	extent_info.data_offset = 0;
8699 	extent_info.data_len = len;
8700 	extent_info.file_offset = file_offset;
8701 	extent_info.extent_buf = (char *)&stack_fi;
8702 	extent_info.is_new_extent = true;
8703 	extent_info.update_times = true;
8704 	extent_info.qgroup_reserved = qgroup_released;
8705 	extent_info.insertions = 0;
8706 
8707 	path = btrfs_alloc_path();
8708 	if (!path) {
8709 		ret = -ENOMEM;
8710 		goto free_qgroup;
8711 	}
8712 
8713 	ret = btrfs_replace_file_extents(inode, path, file_offset,
8714 				     file_offset + len - 1, &extent_info,
8715 				     &trans);
8716 	btrfs_free_path(path);
8717 	if (ret)
8718 		goto free_qgroup;
8719 	return trans;
8720 
8721 free_qgroup:
8722 	/*
8723 	 * We have released qgroup data range at the beginning of the function,
8724 	 * and normally qgroup_released bytes will be freed when committing
8725 	 * transaction.
8726 	 * But if we error out early, we have to free what we have released
8727 	 * or we leak qgroup data reservation.
8728 	 */
8729 	btrfs_qgroup_free_refroot(inode->root->fs_info,
8730 			btrfs_root_id(inode->root), qgroup_released,
8731 			BTRFS_QGROUP_RSV_DATA);
8732 	return ERR_PTR(ret);
8733 }
8734 
8735 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8736 				       u64 start, u64 num_bytes, u64 min_size,
8737 				       loff_t actual_len, u64 *alloc_hint,
8738 				       struct btrfs_trans_handle *trans)
8739 {
8740 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8741 	struct extent_map *em;
8742 	struct btrfs_root *root = BTRFS_I(inode)->root;
8743 	struct btrfs_key ins;
8744 	u64 cur_offset = start;
8745 	u64 clear_offset = start;
8746 	u64 i_size;
8747 	u64 cur_bytes;
8748 	u64 last_alloc = (u64)-1;
8749 	int ret = 0;
8750 	bool own_trans = true;
8751 	u64 end = start + num_bytes - 1;
8752 
8753 	if (trans)
8754 		own_trans = false;
8755 	while (num_bytes > 0) {
8756 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
8757 		cur_bytes = max(cur_bytes, min_size);
8758 		/*
8759 		 * If we are severely fragmented we could end up with really
8760 		 * small allocations, so if the allocator is returning small
8761 		 * chunks lets make its job easier by only searching for those
8762 		 * sized chunks.
8763 		 */
8764 		cur_bytes = min(cur_bytes, last_alloc);
8765 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
8766 				min_size, 0, *alloc_hint, &ins, 1, 0);
8767 		if (ret)
8768 			break;
8769 
8770 		/*
8771 		 * We've reserved this space, and thus converted it from
8772 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
8773 		 * from here on out we will only need to clear our reservation
8774 		 * for the remaining unreserved area, so advance our
8775 		 * clear_offset by our extent size.
8776 		 */
8777 		clear_offset += ins.offset;
8778 
8779 		last_alloc = ins.offset;
8780 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
8781 						    &ins, cur_offset);
8782 		/*
8783 		 * Now that we inserted the prealloc extent we can finally
8784 		 * decrement the number of reservations in the block group.
8785 		 * If we did it before, we could race with relocation and have
8786 		 * relocation miss the reserved extent, making it fail later.
8787 		 */
8788 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8789 		if (IS_ERR(trans)) {
8790 			ret = PTR_ERR(trans);
8791 			btrfs_free_reserved_extent(fs_info, ins.objectid,
8792 						   ins.offset, 0);
8793 			break;
8794 		}
8795 
8796 		em = alloc_extent_map();
8797 		if (!em) {
8798 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
8799 					    cur_offset + ins.offset - 1, false);
8800 			btrfs_set_inode_full_sync(BTRFS_I(inode));
8801 			goto next;
8802 		}
8803 
8804 		em->start = cur_offset;
8805 		em->len = ins.offset;
8806 		em->disk_bytenr = ins.objectid;
8807 		em->offset = 0;
8808 		em->disk_num_bytes = ins.offset;
8809 		em->ram_bytes = ins.offset;
8810 		em->flags |= EXTENT_FLAG_PREALLOC;
8811 		em->generation = trans->transid;
8812 
8813 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
8814 		free_extent_map(em);
8815 next:
8816 		num_bytes -= ins.offset;
8817 		cur_offset += ins.offset;
8818 		*alloc_hint = ins.objectid + ins.offset;
8819 
8820 		inode_inc_iversion(inode);
8821 		inode_set_ctime_current(inode);
8822 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8823 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8824 		    (actual_len > inode->i_size) &&
8825 		    (cur_offset > inode->i_size)) {
8826 			if (cur_offset > actual_len)
8827 				i_size = actual_len;
8828 			else
8829 				i_size = cur_offset;
8830 			i_size_write(inode, i_size);
8831 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
8832 		}
8833 
8834 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
8835 
8836 		if (ret) {
8837 			btrfs_abort_transaction(trans, ret);
8838 			if (own_trans)
8839 				btrfs_end_transaction(trans);
8840 			break;
8841 		}
8842 
8843 		if (own_trans) {
8844 			btrfs_end_transaction(trans);
8845 			trans = NULL;
8846 		}
8847 	}
8848 	if (clear_offset < end)
8849 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
8850 			end - clear_offset + 1);
8851 	return ret;
8852 }
8853 
8854 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8855 			      u64 start, u64 num_bytes, u64 min_size,
8856 			      loff_t actual_len, u64 *alloc_hint)
8857 {
8858 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8859 					   min_size, actual_len, alloc_hint,
8860 					   NULL);
8861 }
8862 
8863 int btrfs_prealloc_file_range_trans(struct inode *inode,
8864 				    struct btrfs_trans_handle *trans, int mode,
8865 				    u64 start, u64 num_bytes, u64 min_size,
8866 				    loff_t actual_len, u64 *alloc_hint)
8867 {
8868 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8869 					   min_size, actual_len, alloc_hint, trans);
8870 }
8871 
8872 static int btrfs_permission(struct mnt_idmap *idmap,
8873 			    struct inode *inode, int mask)
8874 {
8875 	struct btrfs_root *root = BTRFS_I(inode)->root;
8876 	umode_t mode = inode->i_mode;
8877 
8878 	if (mask & MAY_WRITE &&
8879 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8880 		if (btrfs_root_readonly(root))
8881 			return -EROFS;
8882 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8883 			return -EACCES;
8884 	}
8885 	return generic_permission(idmap, inode, mask);
8886 }
8887 
8888 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
8889 			 struct file *file, umode_t mode)
8890 {
8891 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
8892 	struct btrfs_trans_handle *trans;
8893 	struct btrfs_root *root = BTRFS_I(dir)->root;
8894 	struct inode *inode;
8895 	struct btrfs_new_inode_args new_inode_args = {
8896 		.dir = dir,
8897 		.dentry = file->f_path.dentry,
8898 		.orphan = true,
8899 	};
8900 	unsigned int trans_num_items;
8901 	int ret;
8902 
8903 	inode = new_inode(dir->i_sb);
8904 	if (!inode)
8905 		return -ENOMEM;
8906 	inode_init_owner(idmap, inode, dir, mode);
8907 	inode->i_fop = &btrfs_file_operations;
8908 	inode->i_op = &btrfs_file_inode_operations;
8909 	inode->i_mapping->a_ops = &btrfs_aops;
8910 
8911 	new_inode_args.inode = inode;
8912 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
8913 	if (ret)
8914 		goto out_inode;
8915 
8916 	trans = btrfs_start_transaction(root, trans_num_items);
8917 	if (IS_ERR(trans)) {
8918 		ret = PTR_ERR(trans);
8919 		goto out_new_inode_args;
8920 	}
8921 
8922 	ret = btrfs_create_new_inode(trans, &new_inode_args);
8923 
8924 	/*
8925 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
8926 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
8927 	 * 0, through:
8928 	 *
8929 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
8930 	 */
8931 	set_nlink(inode, 1);
8932 
8933 	if (!ret) {
8934 		d_tmpfile(file, inode);
8935 		unlock_new_inode(inode);
8936 		mark_inode_dirty(inode);
8937 	}
8938 
8939 	btrfs_end_transaction(trans);
8940 	btrfs_btree_balance_dirty(fs_info);
8941 out_new_inode_args:
8942 	btrfs_new_inode_args_destroy(&new_inode_args);
8943 out_inode:
8944 	if (ret)
8945 		iput(inode);
8946 	return finish_open_simple(file, ret);
8947 }
8948 
8949 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
8950 {
8951 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8952 	unsigned long index = start >> PAGE_SHIFT;
8953 	unsigned long end_index = end >> PAGE_SHIFT;
8954 	struct page *page;
8955 	u32 len;
8956 
8957 	ASSERT(end + 1 - start <= U32_MAX);
8958 	len = end + 1 - start;
8959 	while (index <= end_index) {
8960 		page = find_get_page(inode->vfs_inode.i_mapping, index);
8961 		ASSERT(page); /* Pages should be in the extent_io_tree */
8962 
8963 		/* This is for data, which doesn't yet support larger folio. */
8964 		ASSERT(folio_order(page_folio(page)) == 0);
8965 		btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
8966 		put_page(page);
8967 		index++;
8968 	}
8969 }
8970 
8971 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
8972 					     int compress_type)
8973 {
8974 	switch (compress_type) {
8975 	case BTRFS_COMPRESS_NONE:
8976 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
8977 	case BTRFS_COMPRESS_ZLIB:
8978 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
8979 	case BTRFS_COMPRESS_LZO:
8980 		/*
8981 		 * The LZO format depends on the sector size. 64K is the maximum
8982 		 * sector size that we support.
8983 		 */
8984 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
8985 			return -EINVAL;
8986 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
8987 		       (fs_info->sectorsize_bits - 12);
8988 	case BTRFS_COMPRESS_ZSTD:
8989 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
8990 	default:
8991 		return -EUCLEAN;
8992 	}
8993 }
8994 
8995 static ssize_t btrfs_encoded_read_inline(
8996 				struct kiocb *iocb,
8997 				struct iov_iter *iter, u64 start,
8998 				u64 lockend,
8999 				struct extent_state **cached_state,
9000 				u64 extent_start, size_t count,
9001 				struct btrfs_ioctl_encoded_io_args *encoded,
9002 				bool *unlocked)
9003 {
9004 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9005 	struct btrfs_root *root = inode->root;
9006 	struct btrfs_fs_info *fs_info = root->fs_info;
9007 	struct extent_io_tree *io_tree = &inode->io_tree;
9008 	struct btrfs_path *path;
9009 	struct extent_buffer *leaf;
9010 	struct btrfs_file_extent_item *item;
9011 	u64 ram_bytes;
9012 	unsigned long ptr;
9013 	void *tmp;
9014 	ssize_t ret;
9015 
9016 	path = btrfs_alloc_path();
9017 	if (!path) {
9018 		ret = -ENOMEM;
9019 		goto out;
9020 	}
9021 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9022 				       extent_start, 0);
9023 	if (ret) {
9024 		if (ret > 0) {
9025 			/* The extent item disappeared? */
9026 			ret = -EIO;
9027 		}
9028 		goto out;
9029 	}
9030 	leaf = path->nodes[0];
9031 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9032 
9033 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9034 	ptr = btrfs_file_extent_inline_start(item);
9035 
9036 	encoded->len = min_t(u64, extent_start + ram_bytes,
9037 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9038 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9039 				 btrfs_file_extent_compression(leaf, item));
9040 	if (ret < 0)
9041 		goto out;
9042 	encoded->compression = ret;
9043 	if (encoded->compression) {
9044 		size_t inline_size;
9045 
9046 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9047 								path->slots[0]);
9048 		if (inline_size > count) {
9049 			ret = -ENOBUFS;
9050 			goto out;
9051 		}
9052 		count = inline_size;
9053 		encoded->unencoded_len = ram_bytes;
9054 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9055 	} else {
9056 		count = min_t(u64, count, encoded->len);
9057 		encoded->len = count;
9058 		encoded->unencoded_len = count;
9059 		ptr += iocb->ki_pos - extent_start;
9060 	}
9061 
9062 	tmp = kmalloc(count, GFP_NOFS);
9063 	if (!tmp) {
9064 		ret = -ENOMEM;
9065 		goto out;
9066 	}
9067 	read_extent_buffer(leaf, tmp, ptr, count);
9068 	btrfs_release_path(path);
9069 	unlock_extent(io_tree, start, lockend, cached_state);
9070 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9071 	*unlocked = true;
9072 
9073 	ret = copy_to_iter(tmp, count, iter);
9074 	if (ret != count)
9075 		ret = -EFAULT;
9076 	kfree(tmp);
9077 out:
9078 	btrfs_free_path(path);
9079 	return ret;
9080 }
9081 
9082 struct btrfs_encoded_read_private {
9083 	wait_queue_head_t wait;
9084 	atomic_t pending;
9085 	blk_status_t status;
9086 };
9087 
9088 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9089 {
9090 	struct btrfs_encoded_read_private *priv = bbio->private;
9091 
9092 	if (bbio->bio.bi_status) {
9093 		/*
9094 		 * The memory barrier implied by the atomic_dec_return() here
9095 		 * pairs with the memory barrier implied by the
9096 		 * atomic_dec_return() or io_wait_event() in
9097 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9098 		 * write is observed before the load of status in
9099 		 * btrfs_encoded_read_regular_fill_pages().
9100 		 */
9101 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9102 	}
9103 	if (!atomic_dec_return(&priv->pending))
9104 		wake_up(&priv->wait);
9105 	bio_put(&bbio->bio);
9106 }
9107 
9108 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9109 					  u64 file_offset, u64 disk_bytenr,
9110 					  u64 disk_io_size, struct page **pages)
9111 {
9112 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9113 	struct btrfs_encoded_read_private priv = {
9114 		.pending = ATOMIC_INIT(1),
9115 	};
9116 	unsigned long i = 0;
9117 	struct btrfs_bio *bbio;
9118 
9119 	init_waitqueue_head(&priv.wait);
9120 
9121 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9122 			       btrfs_encoded_read_endio, &priv);
9123 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9124 	bbio->inode = inode;
9125 
9126 	do {
9127 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
9128 
9129 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
9130 			atomic_inc(&priv.pending);
9131 			btrfs_submit_bio(bbio, 0);
9132 
9133 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
9134 					       btrfs_encoded_read_endio, &priv);
9135 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
9136 			bbio->inode = inode;
9137 			continue;
9138 		}
9139 
9140 		i++;
9141 		disk_bytenr += bytes;
9142 		disk_io_size -= bytes;
9143 	} while (disk_io_size);
9144 
9145 	atomic_inc(&priv.pending);
9146 	btrfs_submit_bio(bbio, 0);
9147 
9148 	if (atomic_dec_return(&priv.pending))
9149 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
9150 	/* See btrfs_encoded_read_endio() for ordering. */
9151 	return blk_status_to_errno(READ_ONCE(priv.status));
9152 }
9153 
9154 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
9155 					  struct iov_iter *iter,
9156 					  u64 start, u64 lockend,
9157 					  struct extent_state **cached_state,
9158 					  u64 disk_bytenr, u64 disk_io_size,
9159 					  size_t count, bool compressed,
9160 					  bool *unlocked)
9161 {
9162 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9163 	struct extent_io_tree *io_tree = &inode->io_tree;
9164 	struct page **pages;
9165 	unsigned long nr_pages, i;
9166 	u64 cur;
9167 	size_t page_offset;
9168 	ssize_t ret;
9169 
9170 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
9171 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
9172 	if (!pages)
9173 		return -ENOMEM;
9174 	ret = btrfs_alloc_page_array(nr_pages, pages, false);
9175 	if (ret) {
9176 		ret = -ENOMEM;
9177 		goto out;
9178 		}
9179 
9180 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
9181 						    disk_io_size, pages);
9182 	if (ret)
9183 		goto out;
9184 
9185 	unlock_extent(io_tree, start, lockend, cached_state);
9186 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9187 	*unlocked = true;
9188 
9189 	if (compressed) {
9190 		i = 0;
9191 		page_offset = 0;
9192 	} else {
9193 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
9194 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
9195 	}
9196 	cur = 0;
9197 	while (cur < count) {
9198 		size_t bytes = min_t(size_t, count - cur,
9199 				     PAGE_SIZE - page_offset);
9200 
9201 		if (copy_page_to_iter(pages[i], page_offset, bytes,
9202 				      iter) != bytes) {
9203 			ret = -EFAULT;
9204 			goto out;
9205 		}
9206 		i++;
9207 		cur += bytes;
9208 		page_offset = 0;
9209 	}
9210 	ret = count;
9211 out:
9212 	for (i = 0; i < nr_pages; i++) {
9213 		if (pages[i])
9214 			__free_page(pages[i]);
9215 	}
9216 	kfree(pages);
9217 	return ret;
9218 }
9219 
9220 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
9221 			   struct btrfs_ioctl_encoded_io_args *encoded)
9222 {
9223 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9224 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9225 	struct extent_io_tree *io_tree = &inode->io_tree;
9226 	ssize_t ret;
9227 	size_t count = iov_iter_count(iter);
9228 	u64 start, lockend, disk_bytenr, disk_io_size;
9229 	struct extent_state *cached_state = NULL;
9230 	struct extent_map *em;
9231 	bool unlocked = false;
9232 
9233 	file_accessed(iocb->ki_filp);
9234 
9235 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
9236 
9237 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
9238 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9239 		return 0;
9240 	}
9241 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
9242 	/*
9243 	 * We don't know how long the extent containing iocb->ki_pos is, but if
9244 	 * it's compressed we know that it won't be longer than this.
9245 	 */
9246 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
9247 
9248 	for (;;) {
9249 		struct btrfs_ordered_extent *ordered;
9250 
9251 		ret = btrfs_wait_ordered_range(inode, start,
9252 					       lockend - start + 1);
9253 		if (ret)
9254 			goto out_unlock_inode;
9255 		lock_extent(io_tree, start, lockend, &cached_state);
9256 		ordered = btrfs_lookup_ordered_range(inode, start,
9257 						     lockend - start + 1);
9258 		if (!ordered)
9259 			break;
9260 		btrfs_put_ordered_extent(ordered);
9261 		unlock_extent(io_tree, start, lockend, &cached_state);
9262 		cond_resched();
9263 	}
9264 
9265 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
9266 	if (IS_ERR(em)) {
9267 		ret = PTR_ERR(em);
9268 		goto out_unlock_extent;
9269 	}
9270 
9271 	if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9272 		u64 extent_start = em->start;
9273 
9274 		/*
9275 		 * For inline extents we get everything we need out of the
9276 		 * extent item.
9277 		 */
9278 		free_extent_map(em);
9279 		em = NULL;
9280 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
9281 						&cached_state, extent_start,
9282 						count, encoded, &unlocked);
9283 		goto out;
9284 	}
9285 
9286 	/*
9287 	 * We only want to return up to EOF even if the extent extends beyond
9288 	 * that.
9289 	 */
9290 	encoded->len = min_t(u64, extent_map_end(em),
9291 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9292 	if (em->disk_bytenr == EXTENT_MAP_HOLE ||
9293 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
9294 		disk_bytenr = EXTENT_MAP_HOLE;
9295 		count = min_t(u64, count, encoded->len);
9296 		encoded->len = count;
9297 		encoded->unencoded_len = count;
9298 	} else if (extent_map_is_compressed(em)) {
9299 		disk_bytenr = em->disk_bytenr;
9300 		/*
9301 		 * Bail if the buffer isn't large enough to return the whole
9302 		 * compressed extent.
9303 		 */
9304 		if (em->disk_num_bytes > count) {
9305 			ret = -ENOBUFS;
9306 			goto out_em;
9307 		}
9308 		disk_io_size = em->disk_num_bytes;
9309 		count = em->disk_num_bytes;
9310 		encoded->unencoded_len = em->ram_bytes;
9311 		encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset);
9312 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
9313 							       extent_map_compression(em));
9314 		if (ret < 0)
9315 			goto out_em;
9316 		encoded->compression = ret;
9317 	} else {
9318 		disk_bytenr = extent_map_block_start(em) + (start - em->start);
9319 		if (encoded->len > count)
9320 			encoded->len = count;
9321 		/*
9322 		 * Don't read beyond what we locked. This also limits the page
9323 		 * allocations that we'll do.
9324 		 */
9325 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
9326 		count = start + disk_io_size - iocb->ki_pos;
9327 		encoded->len = count;
9328 		encoded->unencoded_len = count;
9329 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
9330 	}
9331 	free_extent_map(em);
9332 	em = NULL;
9333 
9334 	if (disk_bytenr == EXTENT_MAP_HOLE) {
9335 		unlock_extent(io_tree, start, lockend, &cached_state);
9336 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9337 		unlocked = true;
9338 		ret = iov_iter_zero(count, iter);
9339 		if (ret != count)
9340 			ret = -EFAULT;
9341 	} else {
9342 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
9343 						 &cached_state, disk_bytenr,
9344 						 disk_io_size, count,
9345 						 encoded->compression,
9346 						 &unlocked);
9347 	}
9348 
9349 out:
9350 	if (ret >= 0)
9351 		iocb->ki_pos += encoded->len;
9352 out_em:
9353 	free_extent_map(em);
9354 out_unlock_extent:
9355 	if (!unlocked)
9356 		unlock_extent(io_tree, start, lockend, &cached_state);
9357 out_unlock_inode:
9358 	if (!unlocked)
9359 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9360 	return ret;
9361 }
9362 
9363 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
9364 			       const struct btrfs_ioctl_encoded_io_args *encoded)
9365 {
9366 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9367 	struct btrfs_root *root = inode->root;
9368 	struct btrfs_fs_info *fs_info = root->fs_info;
9369 	struct extent_io_tree *io_tree = &inode->io_tree;
9370 	struct extent_changeset *data_reserved = NULL;
9371 	struct extent_state *cached_state = NULL;
9372 	struct btrfs_ordered_extent *ordered;
9373 	struct btrfs_file_extent file_extent;
9374 	int compression;
9375 	size_t orig_count;
9376 	u64 start, end;
9377 	u64 num_bytes, ram_bytes, disk_num_bytes;
9378 	unsigned long nr_folios, i;
9379 	struct folio **folios;
9380 	struct btrfs_key ins;
9381 	bool extent_reserved = false;
9382 	struct extent_map *em;
9383 	ssize_t ret;
9384 
9385 	switch (encoded->compression) {
9386 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
9387 		compression = BTRFS_COMPRESS_ZLIB;
9388 		break;
9389 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
9390 		compression = BTRFS_COMPRESS_ZSTD;
9391 		break;
9392 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
9393 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
9394 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
9395 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
9396 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
9397 		/* The sector size must match for LZO. */
9398 		if (encoded->compression -
9399 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
9400 		    fs_info->sectorsize_bits)
9401 			return -EINVAL;
9402 		compression = BTRFS_COMPRESS_LZO;
9403 		break;
9404 	default:
9405 		return -EINVAL;
9406 	}
9407 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
9408 		return -EINVAL;
9409 
9410 	/*
9411 	 * Compressed extents should always have checksums, so error out if we
9412 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
9413 	 */
9414 	if (inode->flags & BTRFS_INODE_NODATASUM)
9415 		return -EINVAL;
9416 
9417 	orig_count = iov_iter_count(from);
9418 
9419 	/* The extent size must be sane. */
9420 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
9421 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
9422 		return -EINVAL;
9423 
9424 	/*
9425 	 * The compressed data must be smaller than the decompressed data.
9426 	 *
9427 	 * It's of course possible for data to compress to larger or the same
9428 	 * size, but the buffered I/O path falls back to no compression for such
9429 	 * data, and we don't want to break any assumptions by creating these
9430 	 * extents.
9431 	 *
9432 	 * Note that this is less strict than the current check we have that the
9433 	 * compressed data must be at least one sector smaller than the
9434 	 * decompressed data. We only want to enforce the weaker requirement
9435 	 * from old kernels that it is at least one byte smaller.
9436 	 */
9437 	if (orig_count >= encoded->unencoded_len)
9438 		return -EINVAL;
9439 
9440 	/* The extent must start on a sector boundary. */
9441 	start = iocb->ki_pos;
9442 	if (!IS_ALIGNED(start, fs_info->sectorsize))
9443 		return -EINVAL;
9444 
9445 	/*
9446 	 * The extent must end on a sector boundary. However, we allow a write
9447 	 * which ends at or extends i_size to have an unaligned length; we round
9448 	 * up the extent size and set i_size to the unaligned end.
9449 	 */
9450 	if (start + encoded->len < inode->vfs_inode.i_size &&
9451 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
9452 		return -EINVAL;
9453 
9454 	/* Finally, the offset in the unencoded data must be sector-aligned. */
9455 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
9456 		return -EINVAL;
9457 
9458 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
9459 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
9460 	end = start + num_bytes - 1;
9461 
9462 	/*
9463 	 * If the extent cannot be inline, the compressed data on disk must be
9464 	 * sector-aligned. For convenience, we extend it with zeroes if it
9465 	 * isn't.
9466 	 */
9467 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
9468 	nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
9469 	folios = kvcalloc(nr_folios, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
9470 	if (!folios)
9471 		return -ENOMEM;
9472 	for (i = 0; i < nr_folios; i++) {
9473 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
9474 		char *kaddr;
9475 
9476 		folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0);
9477 		if (!folios[i]) {
9478 			ret = -ENOMEM;
9479 			goto out_folios;
9480 		}
9481 		kaddr = kmap_local_folio(folios[i], 0);
9482 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
9483 			kunmap_local(kaddr);
9484 			ret = -EFAULT;
9485 			goto out_folios;
9486 		}
9487 		if (bytes < PAGE_SIZE)
9488 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
9489 		kunmap_local(kaddr);
9490 	}
9491 
9492 	for (;;) {
9493 		struct btrfs_ordered_extent *ordered;
9494 
9495 		ret = btrfs_wait_ordered_range(inode, start, num_bytes);
9496 		if (ret)
9497 			goto out_folios;
9498 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
9499 						    start >> PAGE_SHIFT,
9500 						    end >> PAGE_SHIFT);
9501 		if (ret)
9502 			goto out_folios;
9503 		lock_extent(io_tree, start, end, &cached_state);
9504 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
9505 		if (!ordered &&
9506 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
9507 			break;
9508 		if (ordered)
9509 			btrfs_put_ordered_extent(ordered);
9510 		unlock_extent(io_tree, start, end, &cached_state);
9511 		cond_resched();
9512 	}
9513 
9514 	/*
9515 	 * We don't use the higher-level delalloc space functions because our
9516 	 * num_bytes and disk_num_bytes are different.
9517 	 */
9518 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
9519 	if (ret)
9520 		goto out_unlock;
9521 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
9522 	if (ret)
9523 		goto out_free_data_space;
9524 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
9525 					      false);
9526 	if (ret)
9527 		goto out_qgroup_free_data;
9528 
9529 	/* Try an inline extent first. */
9530 	if (encoded->unencoded_len == encoded->len &&
9531 	    encoded->unencoded_offset == 0 &&
9532 	    can_cow_file_range_inline(inode, start, encoded->len, orig_count)) {
9533 		ret = __cow_file_range_inline(inode, start, encoded->len,
9534 					      orig_count, compression, folios[0],
9535 					      true);
9536 		if (ret <= 0) {
9537 			if (ret == 0)
9538 				ret = orig_count;
9539 			goto out_delalloc_release;
9540 		}
9541 	}
9542 
9543 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
9544 				   disk_num_bytes, 0, 0, &ins, 1, 1);
9545 	if (ret)
9546 		goto out_delalloc_release;
9547 	extent_reserved = true;
9548 
9549 	file_extent.disk_bytenr = ins.objectid;
9550 	file_extent.disk_num_bytes = ins.offset;
9551 	file_extent.num_bytes = num_bytes;
9552 	file_extent.ram_bytes = ram_bytes;
9553 	file_extent.offset = encoded->unencoded_offset;
9554 	file_extent.compression = compression;
9555 	em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED);
9556 	if (IS_ERR(em)) {
9557 		ret = PTR_ERR(em);
9558 		goto out_free_reserved;
9559 	}
9560 	free_extent_map(em);
9561 
9562 	ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent,
9563 				       (1 << BTRFS_ORDERED_ENCODED) |
9564 				       (1 << BTRFS_ORDERED_COMPRESSED));
9565 	if (IS_ERR(ordered)) {
9566 		btrfs_drop_extent_map_range(inode, start, end, false);
9567 		ret = PTR_ERR(ordered);
9568 		goto out_free_reserved;
9569 	}
9570 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9571 
9572 	if (start + encoded->len > inode->vfs_inode.i_size)
9573 		i_size_write(&inode->vfs_inode, start + encoded->len);
9574 
9575 	unlock_extent(io_tree, start, end, &cached_state);
9576 
9577 	btrfs_delalloc_release_extents(inode, num_bytes);
9578 
9579 	btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false);
9580 	ret = orig_count;
9581 	goto out;
9582 
9583 out_free_reserved:
9584 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9585 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
9586 out_delalloc_release:
9587 	btrfs_delalloc_release_extents(inode, num_bytes);
9588 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
9589 out_qgroup_free_data:
9590 	if (ret < 0)
9591 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
9592 out_free_data_space:
9593 	/*
9594 	 * If btrfs_reserve_extent() succeeded, then we already decremented
9595 	 * bytes_may_use.
9596 	 */
9597 	if (!extent_reserved)
9598 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
9599 out_unlock:
9600 	unlock_extent(io_tree, start, end, &cached_state);
9601 out_folios:
9602 	for (i = 0; i < nr_folios; i++) {
9603 		if (folios[i])
9604 			folio_put(folios[i]);
9605 	}
9606 	kvfree(folios);
9607 out:
9608 	if (ret >= 0)
9609 		iocb->ki_pos += encoded->len;
9610 	return ret;
9611 }
9612 
9613 #ifdef CONFIG_SWAP
9614 /*
9615  * Add an entry indicating a block group or device which is pinned by a
9616  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9617  * negative errno on failure.
9618  */
9619 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9620 				  bool is_block_group)
9621 {
9622 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9623 	struct btrfs_swapfile_pin *sp, *entry;
9624 	struct rb_node **p;
9625 	struct rb_node *parent = NULL;
9626 
9627 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
9628 	if (!sp)
9629 		return -ENOMEM;
9630 	sp->ptr = ptr;
9631 	sp->inode = inode;
9632 	sp->is_block_group = is_block_group;
9633 	sp->bg_extent_count = 1;
9634 
9635 	spin_lock(&fs_info->swapfile_pins_lock);
9636 	p = &fs_info->swapfile_pins.rb_node;
9637 	while (*p) {
9638 		parent = *p;
9639 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9640 		if (sp->ptr < entry->ptr ||
9641 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9642 			p = &(*p)->rb_left;
9643 		} else if (sp->ptr > entry->ptr ||
9644 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9645 			p = &(*p)->rb_right;
9646 		} else {
9647 			if (is_block_group)
9648 				entry->bg_extent_count++;
9649 			spin_unlock(&fs_info->swapfile_pins_lock);
9650 			kfree(sp);
9651 			return 1;
9652 		}
9653 	}
9654 	rb_link_node(&sp->node, parent, p);
9655 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9656 	spin_unlock(&fs_info->swapfile_pins_lock);
9657 	return 0;
9658 }
9659 
9660 /* Free all of the entries pinned by this swapfile. */
9661 static void btrfs_free_swapfile_pins(struct inode *inode)
9662 {
9663 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9664 	struct btrfs_swapfile_pin *sp;
9665 	struct rb_node *node, *next;
9666 
9667 	spin_lock(&fs_info->swapfile_pins_lock);
9668 	node = rb_first(&fs_info->swapfile_pins);
9669 	while (node) {
9670 		next = rb_next(node);
9671 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9672 		if (sp->inode == inode) {
9673 			rb_erase(&sp->node, &fs_info->swapfile_pins);
9674 			if (sp->is_block_group) {
9675 				btrfs_dec_block_group_swap_extents(sp->ptr,
9676 							   sp->bg_extent_count);
9677 				btrfs_put_block_group(sp->ptr);
9678 			}
9679 			kfree(sp);
9680 		}
9681 		node = next;
9682 	}
9683 	spin_unlock(&fs_info->swapfile_pins_lock);
9684 }
9685 
9686 struct btrfs_swap_info {
9687 	u64 start;
9688 	u64 block_start;
9689 	u64 block_len;
9690 	u64 lowest_ppage;
9691 	u64 highest_ppage;
9692 	unsigned long nr_pages;
9693 	int nr_extents;
9694 };
9695 
9696 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9697 				 struct btrfs_swap_info *bsi)
9698 {
9699 	unsigned long nr_pages;
9700 	unsigned long max_pages;
9701 	u64 first_ppage, first_ppage_reported, next_ppage;
9702 	int ret;
9703 
9704 	/*
9705 	 * Our swapfile may have had its size extended after the swap header was
9706 	 * written. In that case activating the swapfile should not go beyond
9707 	 * the max size set in the swap header.
9708 	 */
9709 	if (bsi->nr_pages >= sis->max)
9710 		return 0;
9711 
9712 	max_pages = sis->max - bsi->nr_pages;
9713 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
9714 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
9715 
9716 	if (first_ppage >= next_ppage)
9717 		return 0;
9718 	nr_pages = next_ppage - first_ppage;
9719 	nr_pages = min(nr_pages, max_pages);
9720 
9721 	first_ppage_reported = first_ppage;
9722 	if (bsi->start == 0)
9723 		first_ppage_reported++;
9724 	if (bsi->lowest_ppage > first_ppage_reported)
9725 		bsi->lowest_ppage = first_ppage_reported;
9726 	if (bsi->highest_ppage < (next_ppage - 1))
9727 		bsi->highest_ppage = next_ppage - 1;
9728 
9729 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9730 	if (ret < 0)
9731 		return ret;
9732 	bsi->nr_extents += ret;
9733 	bsi->nr_pages += nr_pages;
9734 	return 0;
9735 }
9736 
9737 static void btrfs_swap_deactivate(struct file *file)
9738 {
9739 	struct inode *inode = file_inode(file);
9740 
9741 	btrfs_free_swapfile_pins(inode);
9742 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9743 }
9744 
9745 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9746 			       sector_t *span)
9747 {
9748 	struct inode *inode = file_inode(file);
9749 	struct btrfs_root *root = BTRFS_I(inode)->root;
9750 	struct btrfs_fs_info *fs_info = root->fs_info;
9751 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9752 	struct extent_state *cached_state = NULL;
9753 	struct extent_map *em = NULL;
9754 	struct btrfs_chunk_map *map = NULL;
9755 	struct btrfs_device *device = NULL;
9756 	struct btrfs_swap_info bsi = {
9757 		.lowest_ppage = (sector_t)-1ULL,
9758 	};
9759 	int ret = 0;
9760 	u64 isize;
9761 	u64 start;
9762 
9763 	/*
9764 	 * If the swap file was just created, make sure delalloc is done. If the
9765 	 * file changes again after this, the user is doing something stupid and
9766 	 * we don't really care.
9767 	 */
9768 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
9769 	if (ret)
9770 		return ret;
9771 
9772 	/*
9773 	 * The inode is locked, so these flags won't change after we check them.
9774 	 */
9775 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
9776 		btrfs_warn(fs_info, "swapfile must not be compressed");
9777 		return -EINVAL;
9778 	}
9779 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
9780 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
9781 		return -EINVAL;
9782 	}
9783 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
9784 		btrfs_warn(fs_info, "swapfile must not be checksummed");
9785 		return -EINVAL;
9786 	}
9787 
9788 	/*
9789 	 * Balance or device remove/replace/resize can move stuff around from
9790 	 * under us. The exclop protection makes sure they aren't running/won't
9791 	 * run concurrently while we are mapping the swap extents, and
9792 	 * fs_info->swapfile_pins prevents them from running while the swap
9793 	 * file is active and moving the extents. Note that this also prevents
9794 	 * a concurrent device add which isn't actually necessary, but it's not
9795 	 * really worth the trouble to allow it.
9796 	 */
9797 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
9798 		btrfs_warn(fs_info,
9799 	   "cannot activate swapfile while exclusive operation is running");
9800 		return -EBUSY;
9801 	}
9802 
9803 	/*
9804 	 * Prevent snapshot creation while we are activating the swap file.
9805 	 * We do not want to race with snapshot creation. If snapshot creation
9806 	 * already started before we bumped nr_swapfiles from 0 to 1 and
9807 	 * completes before the first write into the swap file after it is
9808 	 * activated, than that write would fallback to COW.
9809 	 */
9810 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
9811 		btrfs_exclop_finish(fs_info);
9812 		btrfs_warn(fs_info,
9813 	   "cannot activate swapfile because snapshot creation is in progress");
9814 		return -EINVAL;
9815 	}
9816 	/*
9817 	 * Snapshots can create extents which require COW even if NODATACOW is
9818 	 * set. We use this counter to prevent snapshots. We must increment it
9819 	 * before walking the extents because we don't want a concurrent
9820 	 * snapshot to run after we've already checked the extents.
9821 	 *
9822 	 * It is possible that subvolume is marked for deletion but still not
9823 	 * removed yet. To prevent this race, we check the root status before
9824 	 * activating the swapfile.
9825 	 */
9826 	spin_lock(&root->root_item_lock);
9827 	if (btrfs_root_dead(root)) {
9828 		spin_unlock(&root->root_item_lock);
9829 
9830 		btrfs_exclop_finish(fs_info);
9831 		btrfs_warn(fs_info,
9832 		"cannot activate swapfile because subvolume %llu is being deleted",
9833 			btrfs_root_id(root));
9834 		return -EPERM;
9835 	}
9836 	atomic_inc(&root->nr_swapfiles);
9837 	spin_unlock(&root->root_item_lock);
9838 
9839 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
9840 
9841 	lock_extent(io_tree, 0, isize - 1, &cached_state);
9842 	start = 0;
9843 	while (start < isize) {
9844 		u64 logical_block_start, physical_block_start;
9845 		struct btrfs_block_group *bg;
9846 		u64 len = isize - start;
9847 
9848 		em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
9849 		if (IS_ERR(em)) {
9850 			ret = PTR_ERR(em);
9851 			goto out;
9852 		}
9853 
9854 		if (em->disk_bytenr == EXTENT_MAP_HOLE) {
9855 			btrfs_warn(fs_info, "swapfile must not have holes");
9856 			ret = -EINVAL;
9857 			goto out;
9858 		}
9859 		if (em->disk_bytenr == EXTENT_MAP_INLINE) {
9860 			/*
9861 			 * It's unlikely we'll ever actually find ourselves
9862 			 * here, as a file small enough to fit inline won't be
9863 			 * big enough to store more than the swap header, but in
9864 			 * case something changes in the future, let's catch it
9865 			 * here rather than later.
9866 			 */
9867 			btrfs_warn(fs_info, "swapfile must not be inline");
9868 			ret = -EINVAL;
9869 			goto out;
9870 		}
9871 		if (extent_map_is_compressed(em)) {
9872 			btrfs_warn(fs_info, "swapfile must not be compressed");
9873 			ret = -EINVAL;
9874 			goto out;
9875 		}
9876 
9877 		logical_block_start = extent_map_block_start(em) + (start - em->start);
9878 		len = min(len, em->len - (start - em->start));
9879 		free_extent_map(em);
9880 		em = NULL;
9881 
9882 		ret = can_nocow_extent(inode, start, &len, NULL, false, true);
9883 		if (ret < 0) {
9884 			goto out;
9885 		} else if (ret) {
9886 			ret = 0;
9887 		} else {
9888 			btrfs_warn(fs_info,
9889 				   "swapfile must not be copy-on-write");
9890 			ret = -EINVAL;
9891 			goto out;
9892 		}
9893 
9894 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
9895 		if (IS_ERR(map)) {
9896 			ret = PTR_ERR(map);
9897 			goto out;
9898 		}
9899 
9900 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
9901 			btrfs_warn(fs_info,
9902 				   "swapfile must have single data profile");
9903 			ret = -EINVAL;
9904 			goto out;
9905 		}
9906 
9907 		if (device == NULL) {
9908 			device = map->stripes[0].dev;
9909 			ret = btrfs_add_swapfile_pin(inode, device, false);
9910 			if (ret == 1)
9911 				ret = 0;
9912 			else if (ret)
9913 				goto out;
9914 		} else if (device != map->stripes[0].dev) {
9915 			btrfs_warn(fs_info, "swapfile must be on one device");
9916 			ret = -EINVAL;
9917 			goto out;
9918 		}
9919 
9920 		physical_block_start = (map->stripes[0].physical +
9921 					(logical_block_start - map->start));
9922 		len = min(len, map->chunk_len - (logical_block_start - map->start));
9923 		btrfs_free_chunk_map(map);
9924 		map = NULL;
9925 
9926 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
9927 		if (!bg) {
9928 			btrfs_warn(fs_info,
9929 			   "could not find block group containing swapfile");
9930 			ret = -EINVAL;
9931 			goto out;
9932 		}
9933 
9934 		if (!btrfs_inc_block_group_swap_extents(bg)) {
9935 			btrfs_warn(fs_info,
9936 			   "block group for swapfile at %llu is read-only%s",
9937 			   bg->start,
9938 			   atomic_read(&fs_info->scrubs_running) ?
9939 				       " (scrub running)" : "");
9940 			btrfs_put_block_group(bg);
9941 			ret = -EINVAL;
9942 			goto out;
9943 		}
9944 
9945 		ret = btrfs_add_swapfile_pin(inode, bg, true);
9946 		if (ret) {
9947 			btrfs_put_block_group(bg);
9948 			if (ret == 1)
9949 				ret = 0;
9950 			else
9951 				goto out;
9952 		}
9953 
9954 		if (bsi.block_len &&
9955 		    bsi.block_start + bsi.block_len == physical_block_start) {
9956 			bsi.block_len += len;
9957 		} else {
9958 			if (bsi.block_len) {
9959 				ret = btrfs_add_swap_extent(sis, &bsi);
9960 				if (ret)
9961 					goto out;
9962 			}
9963 			bsi.start = start;
9964 			bsi.block_start = physical_block_start;
9965 			bsi.block_len = len;
9966 		}
9967 
9968 		start += len;
9969 	}
9970 
9971 	if (bsi.block_len)
9972 		ret = btrfs_add_swap_extent(sis, &bsi);
9973 
9974 out:
9975 	if (!IS_ERR_OR_NULL(em))
9976 		free_extent_map(em);
9977 	if (!IS_ERR_OR_NULL(map))
9978 		btrfs_free_chunk_map(map);
9979 
9980 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
9981 
9982 	if (ret)
9983 		btrfs_swap_deactivate(file);
9984 
9985 	btrfs_drew_write_unlock(&root->snapshot_lock);
9986 
9987 	btrfs_exclop_finish(fs_info);
9988 
9989 	if (ret)
9990 		return ret;
9991 
9992 	if (device)
9993 		sis->bdev = device->bdev;
9994 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
9995 	sis->max = bsi.nr_pages;
9996 	sis->pages = bsi.nr_pages - 1;
9997 	sis->highest_bit = bsi.nr_pages - 1;
9998 	return bsi.nr_extents;
9999 }
10000 #else
10001 static void btrfs_swap_deactivate(struct file *file)
10002 {
10003 }
10004 
10005 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10006 			       sector_t *span)
10007 {
10008 	return -EOPNOTSUPP;
10009 }
10010 #endif
10011 
10012 /*
10013  * Update the number of bytes used in the VFS' inode. When we replace extents in
10014  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10015  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10016  * always get a correct value.
10017  */
10018 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10019 			      const u64 add_bytes,
10020 			      const u64 del_bytes)
10021 {
10022 	if (add_bytes == del_bytes)
10023 		return;
10024 
10025 	spin_lock(&inode->lock);
10026 	if (del_bytes > 0)
10027 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10028 	if (add_bytes > 0)
10029 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10030 	spin_unlock(&inode->lock);
10031 }
10032 
10033 /*
10034  * Verify that there are no ordered extents for a given file range.
10035  *
10036  * @inode:   The target inode.
10037  * @start:   Start offset of the file range, should be sector size aligned.
10038  * @end:     End offset (inclusive) of the file range, its value +1 should be
10039  *           sector size aligned.
10040  *
10041  * This should typically be used for cases where we locked an inode's VFS lock in
10042  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10043  * we have flushed all delalloc in the range, we have waited for all ordered
10044  * extents in the range to complete and finally we have locked the file range in
10045  * the inode's io_tree.
10046  */
10047 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10048 {
10049 	struct btrfs_root *root = inode->root;
10050 	struct btrfs_ordered_extent *ordered;
10051 
10052 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10053 		return;
10054 
10055 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10056 	if (ordered) {
10057 		btrfs_err(root->fs_info,
10058 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10059 			  start, end, btrfs_ino(inode), btrfs_root_id(root),
10060 			  ordered->file_offset,
10061 			  ordered->file_offset + ordered->num_bytes - 1);
10062 		btrfs_put_ordered_extent(ordered);
10063 	}
10064 
10065 	ASSERT(ordered == NULL);
10066 }
10067 
10068 /*
10069  * Find the first inode with a minimum number.
10070  *
10071  * @root:	The root to search for.
10072  * @min_ino:	The minimum inode number.
10073  *
10074  * Find the first inode in the @root with a number >= @min_ino and return it.
10075  * Returns NULL if no such inode found.
10076  */
10077 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino)
10078 {
10079 	struct btrfs_inode *inode;
10080 	unsigned long from = min_ino;
10081 
10082 	xa_lock(&root->inodes);
10083 	while (true) {
10084 		inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT);
10085 		if (!inode)
10086 			break;
10087 		if (igrab(&inode->vfs_inode))
10088 			break;
10089 
10090 		from = btrfs_ino(inode) + 1;
10091 		cond_resched_lock(&root->inodes.xa_lock);
10092 	}
10093 	xa_unlock(&root->inodes);
10094 
10095 	return inode;
10096 }
10097 
10098 static const struct inode_operations btrfs_dir_inode_operations = {
10099 	.getattr	= btrfs_getattr,
10100 	.lookup		= btrfs_lookup,
10101 	.create		= btrfs_create,
10102 	.unlink		= btrfs_unlink,
10103 	.link		= btrfs_link,
10104 	.mkdir		= btrfs_mkdir,
10105 	.rmdir		= btrfs_rmdir,
10106 	.rename		= btrfs_rename2,
10107 	.symlink	= btrfs_symlink,
10108 	.setattr	= btrfs_setattr,
10109 	.mknod		= btrfs_mknod,
10110 	.listxattr	= btrfs_listxattr,
10111 	.permission	= btrfs_permission,
10112 	.get_inode_acl	= btrfs_get_acl,
10113 	.set_acl	= btrfs_set_acl,
10114 	.update_time	= btrfs_update_time,
10115 	.tmpfile        = btrfs_tmpfile,
10116 	.fileattr_get	= btrfs_fileattr_get,
10117 	.fileattr_set	= btrfs_fileattr_set,
10118 };
10119 
10120 static const struct file_operations btrfs_dir_file_operations = {
10121 	.llseek		= btrfs_dir_llseek,
10122 	.read		= generic_read_dir,
10123 	.iterate_shared	= btrfs_real_readdir,
10124 	.open		= btrfs_opendir,
10125 	.unlocked_ioctl	= btrfs_ioctl,
10126 #ifdef CONFIG_COMPAT
10127 	.compat_ioctl	= btrfs_compat_ioctl,
10128 #endif
10129 	.release        = btrfs_release_file,
10130 	.fsync		= btrfs_sync_file,
10131 };
10132 
10133 /*
10134  * btrfs doesn't support the bmap operation because swapfiles
10135  * use bmap to make a mapping of extents in the file.  They assume
10136  * these extents won't change over the life of the file and they
10137  * use the bmap result to do IO directly to the drive.
10138  *
10139  * the btrfs bmap call would return logical addresses that aren't
10140  * suitable for IO and they also will change frequently as COW
10141  * operations happen.  So, swapfile + btrfs == corruption.
10142  *
10143  * For now we're avoiding this by dropping bmap.
10144  */
10145 static const struct address_space_operations btrfs_aops = {
10146 	.read_folio	= btrfs_read_folio,
10147 	.writepages	= btrfs_writepages,
10148 	.readahead	= btrfs_readahead,
10149 	.invalidate_folio = btrfs_invalidate_folio,
10150 	.launder_folio	= btrfs_launder_folio,
10151 	.release_folio	= btrfs_release_folio,
10152 	.migrate_folio	= btrfs_migrate_folio,
10153 	.dirty_folio	= filemap_dirty_folio,
10154 	.error_remove_folio = generic_error_remove_folio,
10155 	.swap_activate	= btrfs_swap_activate,
10156 	.swap_deactivate = btrfs_swap_deactivate,
10157 };
10158 
10159 static const struct inode_operations btrfs_file_inode_operations = {
10160 	.getattr	= btrfs_getattr,
10161 	.setattr	= btrfs_setattr,
10162 	.listxattr      = btrfs_listxattr,
10163 	.permission	= btrfs_permission,
10164 	.fiemap		= btrfs_fiemap,
10165 	.get_inode_acl	= btrfs_get_acl,
10166 	.set_acl	= btrfs_set_acl,
10167 	.update_time	= btrfs_update_time,
10168 	.fileattr_get	= btrfs_fileattr_get,
10169 	.fileattr_set	= btrfs_fileattr_set,
10170 };
10171 static const struct inode_operations btrfs_special_inode_operations = {
10172 	.getattr	= btrfs_getattr,
10173 	.setattr	= btrfs_setattr,
10174 	.permission	= btrfs_permission,
10175 	.listxattr	= btrfs_listxattr,
10176 	.get_inode_acl	= btrfs_get_acl,
10177 	.set_acl	= btrfs_set_acl,
10178 	.update_time	= btrfs_update_time,
10179 };
10180 static const struct inode_operations btrfs_symlink_inode_operations = {
10181 	.get_link	= page_get_link,
10182 	.getattr	= btrfs_getattr,
10183 	.setattr	= btrfs_setattr,
10184 	.permission	= btrfs_permission,
10185 	.listxattr	= btrfs_listxattr,
10186 	.update_time	= btrfs_update_time,
10187 };
10188 
10189 const struct dentry_operations btrfs_dentry_operations = {
10190 	.d_delete	= btrfs_dentry_delete,
10191 };
10192