1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/fs_struct.h> 13 #include <linux/pagemap.h> 14 #include <linux/highmem.h> 15 #include <linux/time.h> 16 #include <linux/init.h> 17 #include <linux/string.h> 18 #include <linux/backing-dev.h> 19 #include <linux/writeback.h> 20 #include <linux/compat.h> 21 #include <linux/xattr.h> 22 #include <linux/posix_acl.h> 23 #include <linux/falloc.h> 24 #include <linux/slab.h> 25 #include <linux/ratelimit.h> 26 #include <linux/btrfs.h> 27 #include <linux/blkdev.h> 28 #include <linux/posix_acl_xattr.h> 29 #include <linux/uio.h> 30 #include <linux/magic.h> 31 #include <linux/iversion.h> 32 #include <linux/swap.h> 33 #include <linux/migrate.h> 34 #include <linux/sched/mm.h> 35 #include <linux/iomap.h> 36 #include <linux/unaligned.h> 37 #include <linux/fsverity.h> 38 #include "misc.h" 39 #include "ctree.h" 40 #include "disk-io.h" 41 #include "transaction.h" 42 #include "btrfs_inode.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "delalloc-space.h" 52 #include "block-group.h" 53 #include "space-info.h" 54 #include "zoned.h" 55 #include "subpage.h" 56 #include "inode-item.h" 57 #include "fs.h" 58 #include "accessors.h" 59 #include "extent-tree.h" 60 #include "root-tree.h" 61 #include "defrag.h" 62 #include "dir-item.h" 63 #include "file-item.h" 64 #include "uuid-tree.h" 65 #include "ioctl.h" 66 #include "file.h" 67 #include "acl.h" 68 #include "relocation.h" 69 #include "verity.h" 70 #include "super.h" 71 #include "orphan.h" 72 #include "backref.h" 73 #include "raid-stripe-tree.h" 74 #include "fiemap.h" 75 #include "delayed-inode.h" 76 77 #define COW_FILE_RANGE_KEEP_LOCKED (1UL << 0) 78 #define COW_FILE_RANGE_NO_INLINE (1UL << 1) 79 80 struct btrfs_iget_args { 81 u64 ino; 82 struct btrfs_root *root; 83 }; 84 85 struct btrfs_rename_ctx { 86 /* Output field. Stores the index number of the old directory entry. */ 87 u64 index; 88 }; 89 90 /* 91 * Used by data_reloc_print_warning_inode() to pass needed info for filename 92 * resolution and output of error message. 93 */ 94 struct data_reloc_warn { 95 struct btrfs_path path; 96 struct btrfs_fs_info *fs_info; 97 u64 extent_item_size; 98 u64 logical; 99 int mirror_num; 100 }; 101 102 /* 103 * For the file_extent_tree, we want to hold the inode lock when we lookup and 104 * update the disk_i_size, but lockdep will complain because our io_tree we hold 105 * the tree lock and get the inode lock when setting delalloc. These two things 106 * are unrelated, so make a class for the file_extent_tree so we don't get the 107 * two locking patterns mixed up. 108 */ 109 static struct lock_class_key file_extent_tree_class; 110 111 static const struct inode_operations btrfs_dir_inode_operations; 112 static const struct inode_operations btrfs_symlink_inode_operations; 113 static const struct inode_operations btrfs_special_inode_operations; 114 static const struct inode_operations btrfs_file_inode_operations; 115 static const struct address_space_operations btrfs_aops; 116 static const struct file_operations btrfs_dir_file_operations; 117 118 static struct kmem_cache *btrfs_inode_cachep; 119 120 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 121 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 122 123 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 124 struct folio *locked_folio, u64 start, 125 u64 end, struct writeback_control *wbc, 126 bool pages_dirty); 127 128 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 129 u64 root, void *warn_ctx) 130 { 131 struct data_reloc_warn *warn = warn_ctx; 132 struct btrfs_fs_info *fs_info = warn->fs_info; 133 struct extent_buffer *eb; 134 struct btrfs_inode_item *inode_item; 135 struct inode_fs_paths *ipath __free(inode_fs_paths) = NULL; 136 struct btrfs_root *local_root; 137 struct btrfs_key key; 138 unsigned int nofs_flag; 139 u32 nlink; 140 int ret; 141 142 local_root = btrfs_get_fs_root(fs_info, root, true); 143 if (IS_ERR(local_root)) { 144 ret = PTR_ERR(local_root); 145 goto err; 146 } 147 148 /* This makes the path point to (inum INODE_ITEM ioff). */ 149 key.objectid = inum; 150 key.type = BTRFS_INODE_ITEM_KEY; 151 key.offset = 0; 152 153 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 154 if (ret) { 155 btrfs_put_root(local_root); 156 btrfs_release_path(&warn->path); 157 goto err; 158 } 159 160 eb = warn->path.nodes[0]; 161 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 162 nlink = btrfs_inode_nlink(eb, inode_item); 163 btrfs_release_path(&warn->path); 164 165 nofs_flag = memalloc_nofs_save(); 166 ipath = init_ipath(4096, local_root, &warn->path); 167 memalloc_nofs_restore(nofs_flag); 168 if (IS_ERR(ipath)) { 169 btrfs_put_root(local_root); 170 ret = PTR_ERR(ipath); 171 ipath = NULL; 172 /* 173 * -ENOMEM, not a critical error, just output an generic error 174 * without filename. 175 */ 176 btrfs_warn(fs_info, 177 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 178 warn->logical, warn->mirror_num, root, inum, offset); 179 return ret; 180 } 181 ret = paths_from_inode(inum, ipath); 182 if (ret < 0) { 183 btrfs_put_root(local_root); 184 goto err; 185 } 186 187 /* 188 * We deliberately ignore the bit ipath might have been too small to 189 * hold all of the paths here 190 */ 191 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 192 btrfs_warn(fs_info, 193 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 194 warn->logical, warn->mirror_num, root, inum, offset, 195 fs_info->sectorsize, nlink, 196 (char *)(unsigned long)ipath->fspath->val[i]); 197 } 198 199 btrfs_put_root(local_root); 200 return 0; 201 202 err: 203 btrfs_warn(fs_info, 204 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 205 warn->logical, warn->mirror_num, root, inum, offset, ret); 206 207 return ret; 208 } 209 210 /* 211 * Do extra user-friendly error output (e.g. lookup all the affected files). 212 * 213 * Return true if we succeeded doing the backref lookup. 214 * Return false if such lookup failed, and has to fallback to the old error message. 215 */ 216 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 217 const u8 *csum, const u8 *csum_expected, 218 int mirror_num) 219 { 220 struct btrfs_fs_info *fs_info = inode->root->fs_info; 221 struct btrfs_path path = { 0 }; 222 struct btrfs_key found_key = { 0 }; 223 struct extent_buffer *eb; 224 struct btrfs_extent_item *ei; 225 const u32 csum_size = fs_info->csum_size; 226 u64 logical; 227 u64 flags; 228 u32 item_size; 229 int ret; 230 231 mutex_lock(&fs_info->reloc_mutex); 232 logical = btrfs_get_reloc_bg_bytenr(fs_info); 233 mutex_unlock(&fs_info->reloc_mutex); 234 235 if (logical == U64_MAX) { 236 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 237 btrfs_warn_rl(fs_info, 238 "csum failed root %lld ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 239 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 240 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 241 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 242 mirror_num); 243 return; 244 } 245 246 logical += file_off; 247 btrfs_warn_rl(fs_info, 248 "csum failed root %lld ino %llu off %llu logical %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 249 btrfs_root_id(inode->root), 250 btrfs_ino(inode), file_off, logical, 251 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 252 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 253 mirror_num); 254 255 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 256 if (ret < 0) { 257 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 258 logical, ret); 259 return; 260 } 261 eb = path.nodes[0]; 262 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 263 item_size = btrfs_item_size(eb, path.slots[0]); 264 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 265 unsigned long ptr = 0; 266 u64 ref_root; 267 u8 ref_level; 268 269 while (true) { 270 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 271 item_size, &ref_root, 272 &ref_level); 273 if (ret < 0) { 274 btrfs_warn_rl(fs_info, 275 "failed to resolve tree backref for logical %llu: %d", 276 logical, ret); 277 break; 278 } 279 if (ret > 0) 280 break; 281 282 btrfs_warn_rl(fs_info, 283 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 284 logical, mirror_num, 285 (ref_level ? "node" : "leaf"), 286 ref_level, ref_root); 287 } 288 btrfs_release_path(&path); 289 } else { 290 struct btrfs_backref_walk_ctx ctx = { 0 }; 291 struct data_reloc_warn reloc_warn = { 0 }; 292 293 btrfs_release_path(&path); 294 295 ctx.bytenr = found_key.objectid; 296 ctx.extent_item_pos = logical - found_key.objectid; 297 ctx.fs_info = fs_info; 298 299 reloc_warn.logical = logical; 300 reloc_warn.extent_item_size = found_key.offset; 301 reloc_warn.mirror_num = mirror_num; 302 reloc_warn.fs_info = fs_info; 303 304 iterate_extent_inodes(&ctx, true, 305 data_reloc_print_warning_inode, &reloc_warn); 306 } 307 } 308 309 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 310 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 311 { 312 struct btrfs_root *root = inode->root; 313 const u32 csum_size = root->fs_info->csum_size; 314 315 /* For data reloc tree, it's better to do a backref lookup instead. */ 316 if (btrfs_is_data_reloc_root(root)) 317 return print_data_reloc_error(inode, logical_start, csum, 318 csum_expected, mirror_num); 319 320 /* Output without objectid, which is more meaningful */ 321 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 322 btrfs_warn_rl(root->fs_info, 323 "csum failed root %lld ino %lld off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 324 btrfs_root_id(root), btrfs_ino(inode), 325 logical_start, 326 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 327 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 328 mirror_num); 329 } else { 330 btrfs_warn_rl(root->fs_info, 331 "csum failed root %llu ino %llu off %llu csum " BTRFS_CSUM_FMT " expected csum " BTRFS_CSUM_FMT " mirror %d", 332 btrfs_root_id(root), btrfs_ino(inode), 333 logical_start, 334 BTRFS_CSUM_FMT_VALUE(csum_size, csum), 335 BTRFS_CSUM_FMT_VALUE(csum_size, csum_expected), 336 mirror_num); 337 } 338 } 339 340 /* 341 * Lock inode i_rwsem based on arguments passed. 342 * 343 * ilock_flags can have the following bit set: 344 * 345 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 346 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 347 * return -EAGAIN 348 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 349 */ 350 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 351 { 352 if (ilock_flags & BTRFS_ILOCK_SHARED) { 353 if (ilock_flags & BTRFS_ILOCK_TRY) { 354 if (!inode_trylock_shared(&inode->vfs_inode)) 355 return -EAGAIN; 356 else 357 return 0; 358 } 359 inode_lock_shared(&inode->vfs_inode); 360 } else { 361 if (ilock_flags & BTRFS_ILOCK_TRY) { 362 if (!inode_trylock(&inode->vfs_inode)) 363 return -EAGAIN; 364 else 365 return 0; 366 } 367 inode_lock(&inode->vfs_inode); 368 } 369 if (ilock_flags & BTRFS_ILOCK_MMAP) 370 down_write(&inode->i_mmap_lock); 371 return 0; 372 } 373 374 /* 375 * Unlock inode i_rwsem. 376 * 377 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 378 * to decide whether the lock acquired is shared or exclusive. 379 */ 380 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 381 { 382 if (ilock_flags & BTRFS_ILOCK_MMAP) 383 up_write(&inode->i_mmap_lock); 384 if (ilock_flags & BTRFS_ILOCK_SHARED) 385 inode_unlock_shared(&inode->vfs_inode); 386 else 387 inode_unlock(&inode->vfs_inode); 388 } 389 390 /* 391 * Cleanup all submitted ordered extents in specified range to handle errors 392 * from the btrfs_run_delalloc_range() callback. 393 * 394 * NOTE: caller must ensure that when an error happens, it can not call 395 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 396 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 397 * to be released, which we want to happen only when finishing the ordered 398 * extent (btrfs_finish_ordered_io()). 399 */ 400 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 401 u64 offset, u64 bytes) 402 { 403 pgoff_t index = offset >> PAGE_SHIFT; 404 const pgoff_t end_index = (offset + bytes - 1) >> PAGE_SHIFT; 405 struct folio *folio; 406 407 while (index <= end_index) { 408 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 409 if (IS_ERR(folio)) { 410 index++; 411 continue; 412 } 413 414 index = folio_next_index(folio); 415 /* 416 * Here we just clear all Ordered bits for every page in the 417 * range, then btrfs_mark_ordered_io_finished() will handle 418 * the ordered extent accounting for the range. 419 */ 420 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 421 offset, bytes); 422 folio_put(folio); 423 } 424 425 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 426 } 427 428 static int btrfs_dirty_inode(struct btrfs_inode *inode); 429 430 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 431 struct btrfs_new_inode_args *args) 432 { 433 int ret; 434 435 if (args->default_acl) { 436 ret = __btrfs_set_acl(trans, args->inode, args->default_acl, 437 ACL_TYPE_DEFAULT); 438 if (ret) 439 return ret; 440 } 441 if (args->acl) { 442 ret = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 443 if (ret) 444 return ret; 445 } 446 if (!args->default_acl && !args->acl) 447 cache_no_acl(args->inode); 448 return btrfs_xattr_security_init(trans, args->inode, args->dir, 449 &args->dentry->d_name); 450 } 451 452 /* 453 * this does all the hard work for inserting an inline extent into 454 * the btree. The caller should have done a btrfs_drop_extents so that 455 * no overlapping inline items exist in the btree 456 */ 457 static int insert_inline_extent(struct btrfs_trans_handle *trans, 458 struct btrfs_path *path, 459 struct btrfs_inode *inode, bool extent_inserted, 460 size_t size, size_t compressed_size, 461 int compress_type, 462 struct folio *compressed_folio, 463 bool update_i_size) 464 { 465 struct btrfs_root *root = inode->root; 466 struct extent_buffer *leaf; 467 const u32 sectorsize = trans->fs_info->sectorsize; 468 char *kaddr; 469 unsigned long ptr; 470 struct btrfs_file_extent_item *ei; 471 int ret; 472 size_t cur_size = size; 473 u64 i_size; 474 475 /* 476 * The decompressed size must still be no larger than a sector. Under 477 * heavy race, we can have size == 0 passed in, but that shouldn't be a 478 * big deal and we can continue the insertion. 479 */ 480 ASSERT(size <= sectorsize); 481 482 /* 483 * The compressed size also needs to be no larger than a sector. 484 * That's also why we only need one page as the parameter. 485 */ 486 if (compressed_folio) 487 ASSERT(compressed_size <= sectorsize); 488 else 489 ASSERT(compressed_size == 0); 490 491 if (compressed_size && compressed_folio) 492 cur_size = compressed_size; 493 494 if (!extent_inserted) { 495 struct btrfs_key key; 496 size_t datasize; 497 498 key.objectid = btrfs_ino(inode); 499 key.type = BTRFS_EXTENT_DATA_KEY; 500 key.offset = 0; 501 502 datasize = btrfs_file_extent_calc_inline_size(cur_size); 503 ret = btrfs_insert_empty_item(trans, root, path, &key, 504 datasize); 505 if (ret) 506 goto fail; 507 } 508 leaf = path->nodes[0]; 509 ei = btrfs_item_ptr(leaf, path->slots[0], 510 struct btrfs_file_extent_item); 511 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 512 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 513 btrfs_set_file_extent_encryption(leaf, ei, 0); 514 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 515 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 516 ptr = btrfs_file_extent_inline_start(ei); 517 518 if (compress_type != BTRFS_COMPRESS_NONE) { 519 kaddr = kmap_local_folio(compressed_folio, 0); 520 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 521 kunmap_local(kaddr); 522 523 btrfs_set_file_extent_compression(leaf, ei, 524 compress_type); 525 } else { 526 struct folio *folio; 527 528 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 529 ASSERT(!IS_ERR(folio)); 530 btrfs_set_file_extent_compression(leaf, ei, 0); 531 kaddr = kmap_local_folio(folio, 0); 532 write_extent_buffer(leaf, kaddr, ptr, size); 533 kunmap_local(kaddr); 534 folio_put(folio); 535 } 536 btrfs_release_path(path); 537 538 /* 539 * We align size to sectorsize for inline extents just for simplicity 540 * sake. 541 */ 542 ret = btrfs_inode_set_file_extent_range(inode, 0, 543 ALIGN(size, root->fs_info->sectorsize)); 544 if (ret) 545 goto fail; 546 547 /* 548 * We're an inline extent, so nobody can extend the file past i_size 549 * without locking a page we already have locked. 550 * 551 * We must do any i_size and inode updates before we unlock the pages. 552 * Otherwise we could end up racing with unlink. 553 */ 554 i_size = i_size_read(&inode->vfs_inode); 555 if (update_i_size && size > i_size) { 556 i_size_write(&inode->vfs_inode, size); 557 i_size = size; 558 } 559 inode->disk_i_size = i_size; 560 561 fail: 562 return ret; 563 } 564 565 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 566 u64 offset, u64 size, 567 size_t compressed_size) 568 { 569 struct btrfs_fs_info *fs_info = inode->root->fs_info; 570 u64 data_len = (compressed_size ?: size); 571 572 /* Inline extents must start at offset 0. */ 573 if (offset != 0) 574 return false; 575 576 /* Inline extents are limited to sectorsize. */ 577 if (size > fs_info->sectorsize) 578 return false; 579 580 /* We do not allow a non-compressed extent to be as large as block size. */ 581 if (data_len >= fs_info->sectorsize) 582 return false; 583 584 /* We cannot exceed the maximum inline data size. */ 585 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 586 return false; 587 588 /* We cannot exceed the user specified max_inline size. */ 589 if (data_len > fs_info->max_inline) 590 return false; 591 592 /* Inline extents must be the entirety of the file. */ 593 if (size < i_size_read(&inode->vfs_inode)) 594 return false; 595 596 /* Encrypted file cannot be inlined. */ 597 if (IS_ENCRYPTED(&inode->vfs_inode)) 598 return false; 599 600 return true; 601 } 602 603 /* 604 * conditionally insert an inline extent into the file. This 605 * does the checks required to make sure the data is small enough 606 * to fit as an inline extent. 607 * 608 * If being used directly, you must have already checked we're allowed to cow 609 * the range by getting true from can_cow_file_range_inline(). 610 */ 611 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 612 u64 size, size_t compressed_size, 613 int compress_type, 614 struct folio *compressed_folio, 615 bool update_i_size) 616 { 617 struct btrfs_drop_extents_args drop_args = { 0 }; 618 struct btrfs_root *root = inode->root; 619 struct btrfs_fs_info *fs_info = root->fs_info; 620 struct btrfs_trans_handle *trans; 621 u64 data_len = (compressed_size ?: size); 622 int ret; 623 struct btrfs_path *path; 624 625 path = btrfs_alloc_path(); 626 if (!path) 627 return -ENOMEM; 628 629 trans = btrfs_join_transaction(root); 630 if (IS_ERR(trans)) { 631 btrfs_free_path(path); 632 return PTR_ERR(trans); 633 } 634 trans->block_rsv = &inode->block_rsv; 635 636 drop_args.path = path; 637 drop_args.start = 0; 638 drop_args.end = fs_info->sectorsize; 639 drop_args.drop_cache = true; 640 drop_args.replace_extent = true; 641 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 642 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 643 if (unlikely(ret)) { 644 btrfs_abort_transaction(trans, ret); 645 goto out; 646 } 647 648 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 649 size, compressed_size, compress_type, 650 compressed_folio, update_i_size); 651 if (unlikely(ret && ret != -ENOSPC)) { 652 btrfs_abort_transaction(trans, ret); 653 goto out; 654 } else if (ret == -ENOSPC) { 655 ret = 1; 656 goto out; 657 } 658 659 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 660 ret = btrfs_update_inode(trans, inode); 661 if (unlikely(ret && ret != -ENOSPC)) { 662 btrfs_abort_transaction(trans, ret); 663 goto out; 664 } else if (ret == -ENOSPC) { 665 ret = 1; 666 goto out; 667 } 668 669 btrfs_set_inode_full_sync(inode); 670 out: 671 /* 672 * Don't forget to free the reserved space, as for inlined extent 673 * it won't count as data extent, free them directly here. 674 * And at reserve time, it's always aligned to page size, so 675 * just free one page here. 676 */ 677 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 678 btrfs_free_path(path); 679 btrfs_end_transaction(trans); 680 return ret; 681 } 682 683 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 684 struct folio *locked_folio, 685 u64 offset, u64 end, 686 size_t compressed_size, 687 int compress_type, 688 struct folio *compressed_folio, 689 bool update_i_size) 690 { 691 struct extent_state *cached = NULL; 692 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 693 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 694 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 695 int ret; 696 697 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 698 return 1; 699 700 btrfs_lock_extent(&inode->io_tree, offset, end, &cached); 701 ret = __cow_file_range_inline(inode, size, compressed_size, 702 compress_type, compressed_folio, 703 update_i_size); 704 if (ret > 0) { 705 btrfs_unlock_extent(&inode->io_tree, offset, end, &cached); 706 return ret; 707 } 708 709 /* 710 * In the successful case (ret == 0 here), cow_file_range will return 1. 711 * 712 * Quite a bit further up the callstack in extent_writepage(), ret == 1 713 * is treated as a short circuited success and does not unlock the folio, 714 * so we must do it here. 715 * 716 * In the failure case, the locked_folio does get unlocked by 717 * btrfs_folio_end_all_writers, which asserts that it is still locked 718 * at that point, so we must *not* unlock it here. 719 * 720 * The other two callsites in compress_file_range do not have a 721 * locked_folio, so they are not relevant to this logic. 722 */ 723 if (ret == 0) 724 locked_folio = NULL; 725 726 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 727 clear_flags, PAGE_UNLOCK | 728 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 729 return ret; 730 } 731 732 struct async_extent { 733 u64 start; 734 u64 ram_size; 735 u64 compressed_size; 736 struct folio **folios; 737 unsigned long nr_folios; 738 int compress_type; 739 struct list_head list; 740 }; 741 742 struct async_chunk { 743 struct btrfs_inode *inode; 744 struct folio *locked_folio; 745 u64 start; 746 u64 end; 747 blk_opf_t write_flags; 748 struct list_head extents; 749 struct cgroup_subsys_state *blkcg_css; 750 struct btrfs_work work; 751 struct async_cow *async_cow; 752 }; 753 754 struct async_cow { 755 atomic_t num_chunks; 756 struct async_chunk chunks[]; 757 }; 758 759 static noinline int add_async_extent(struct async_chunk *cow, 760 u64 start, u64 ram_size, 761 u64 compressed_size, 762 struct folio **folios, 763 unsigned long nr_folios, 764 int compress_type) 765 { 766 struct async_extent *async_extent; 767 768 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 769 if (!async_extent) 770 return -ENOMEM; 771 async_extent->start = start; 772 async_extent->ram_size = ram_size; 773 async_extent->compressed_size = compressed_size; 774 async_extent->folios = folios; 775 async_extent->nr_folios = nr_folios; 776 async_extent->compress_type = compress_type; 777 list_add_tail(&async_extent->list, &cow->extents); 778 return 0; 779 } 780 781 /* 782 * Check if the inode needs to be submitted to compression, based on mount 783 * options, defragmentation, properties or heuristics. 784 */ 785 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 786 u64 end) 787 { 788 struct btrfs_fs_info *fs_info = inode->root->fs_info; 789 790 if (!btrfs_inode_can_compress(inode)) { 791 DEBUG_WARN("BTRFS: unexpected compression for ino %llu", btrfs_ino(inode)); 792 return 0; 793 } 794 795 /* Defrag ioctl takes precedence over mount options and properties. */ 796 if (inode->defrag_compress == BTRFS_DEFRAG_DONT_COMPRESS) 797 return 0; 798 if (BTRFS_COMPRESS_NONE < inode->defrag_compress && 799 inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) 800 return 1; 801 /* force compress */ 802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 803 return 1; 804 /* bad compression ratios */ 805 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 806 return 0; 807 if (btrfs_test_opt(fs_info, COMPRESS) || 808 inode->flags & BTRFS_INODE_COMPRESS || 809 inode->prop_compress) 810 return btrfs_compress_heuristic(inode, start, end); 811 return 0; 812 } 813 814 static inline void inode_should_defrag(struct btrfs_inode *inode, 815 u64 start, u64 end, u64 num_bytes, u32 small_write) 816 { 817 /* If this is a small write inside eof, kick off a defrag */ 818 if (num_bytes < small_write && 819 (start > 0 || end + 1 < inode->disk_i_size)) 820 btrfs_add_inode_defrag(inode, small_write); 821 } 822 823 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 824 { 825 const pgoff_t end_index = end >> PAGE_SHIFT; 826 struct folio *folio; 827 int ret = 0; 828 829 for (pgoff_t index = start >> PAGE_SHIFT; index <= end_index; index++) { 830 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 831 if (IS_ERR(folio)) { 832 if (!ret) 833 ret = PTR_ERR(folio); 834 continue; 835 } 836 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 837 end + 1 - start); 838 folio_put(folio); 839 } 840 return ret; 841 } 842 843 /* 844 * Work queue call back to started compression on a file and pages. 845 * 846 * This is done inside an ordered work queue, and the compression is spread 847 * across many cpus. The actual IO submission is step two, and the ordered work 848 * queue takes care of making sure that happens in the same order things were 849 * put onto the queue by writepages and friends. 850 * 851 * If this code finds it can't get good compression, it puts an entry onto the 852 * work queue to write the uncompressed bytes. This makes sure that both 853 * compressed inodes and uncompressed inodes are written in the same order that 854 * the flusher thread sent them down. 855 */ 856 static void compress_file_range(struct btrfs_work *work) 857 { 858 struct async_chunk *async_chunk = 859 container_of(work, struct async_chunk, work); 860 struct btrfs_inode *inode = async_chunk->inode; 861 struct btrfs_fs_info *fs_info = inode->root->fs_info; 862 struct address_space *mapping = inode->vfs_inode.i_mapping; 863 const u32 min_folio_shift = PAGE_SHIFT + fs_info->block_min_order; 864 const u32 min_folio_size = btrfs_min_folio_size(fs_info); 865 u64 blocksize = fs_info->sectorsize; 866 u64 start = async_chunk->start; 867 u64 end = async_chunk->end; 868 u64 actual_end; 869 u64 i_size; 870 int ret = 0; 871 struct folio **folios = NULL; 872 unsigned long nr_folios; 873 unsigned long total_compressed = 0; 874 unsigned long total_in = 0; 875 unsigned int loff; 876 int i; 877 int compress_type = fs_info->compress_type; 878 int compress_level = fs_info->compress_level; 879 880 if (unlikely(btrfs_is_shutdown(fs_info))) 881 goto cleanup_and_bail_uncompressed; 882 883 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 884 885 /* 886 * We need to call clear_page_dirty_for_io on each page in the range. 887 * Otherwise applications with the file mmap'd can wander in and change 888 * the page contents while we are compressing them. 889 */ 890 ret = extent_range_clear_dirty_for_io(inode, start, end); 891 892 /* 893 * All the folios should have been locked thus no failure. 894 * 895 * And even if some folios are missing, btrfs_compress_folios() 896 * would handle them correctly, so here just do an ASSERT() check for 897 * early logic errors. 898 */ 899 ASSERT(ret == 0); 900 901 /* 902 * We need to save i_size before now because it could change in between 903 * us evaluating the size and assigning it. This is because we lock and 904 * unlock the page in truncate and fallocate, and then modify the i_size 905 * later on. 906 * 907 * The barriers are to emulate READ_ONCE, remove that once i_size_read 908 * does that for us. 909 */ 910 barrier(); 911 i_size = i_size_read(&inode->vfs_inode); 912 barrier(); 913 actual_end = min_t(u64, i_size, end + 1); 914 again: 915 folios = NULL; 916 nr_folios = (end >> min_folio_shift) - (start >> min_folio_shift) + 1; 917 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED >> min_folio_shift); 918 919 /* 920 * we don't want to send crud past the end of i_size through 921 * compression, that's just a waste of CPU time. So, if the 922 * end of the file is before the start of our current 923 * requested range of bytes, we bail out to the uncompressed 924 * cleanup code that can deal with all of this. 925 * 926 * It isn't really the fastest way to fix things, but this is a 927 * very uncommon corner. 928 */ 929 if (actual_end <= start) 930 goto cleanup_and_bail_uncompressed; 931 932 total_compressed = actual_end - start; 933 934 /* 935 * Skip compression for a small file range(<=blocksize) that 936 * isn't an inline extent, since it doesn't save disk space at all. 937 */ 938 if (total_compressed <= blocksize && 939 (start > 0 || end + 1 < inode->disk_i_size)) 940 goto cleanup_and_bail_uncompressed; 941 942 total_compressed = min_t(unsigned long, total_compressed, 943 BTRFS_MAX_UNCOMPRESSED); 944 total_in = 0; 945 ret = 0; 946 947 /* 948 * We do compression for mount -o compress and when the inode has not 949 * been flagged as NOCOMPRESS. This flag can change at any time if we 950 * discover bad compression ratios. 951 */ 952 if (!inode_need_compress(inode, start, end)) 953 goto cleanup_and_bail_uncompressed; 954 955 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 956 if (!folios) { 957 /* 958 * Memory allocation failure is not a fatal error, we can fall 959 * back to uncompressed code. 960 */ 961 goto cleanup_and_bail_uncompressed; 962 } 963 964 if (0 < inode->defrag_compress && inode->defrag_compress < BTRFS_NR_COMPRESS_TYPES) { 965 compress_type = inode->defrag_compress; 966 compress_level = inode->defrag_compress_level; 967 } else if (inode->prop_compress) { 968 compress_type = inode->prop_compress; 969 } 970 971 /* Compression level is applied here. */ 972 ret = btrfs_compress_folios(compress_type, compress_level, 973 inode, start, folios, &nr_folios, &total_in, 974 &total_compressed); 975 if (ret) 976 goto mark_incompressible; 977 978 /* 979 * Zero the tail end of the last folio, as we might be sending it down 980 * to disk. 981 */ 982 loff = (total_compressed & (min_folio_size - 1)); 983 if (loff) 984 folio_zero_range(folios[nr_folios - 1], loff, min_folio_size - loff); 985 986 /* 987 * Try to create an inline extent. 988 * 989 * If we didn't compress the entire range, try to create an uncompressed 990 * inline extent, else a compressed one. 991 * 992 * Check cow_file_range() for why we don't even try to create inline 993 * extent for the subpage case. 994 */ 995 if (total_in < actual_end) 996 ret = cow_file_range_inline(inode, NULL, start, end, 0, 997 BTRFS_COMPRESS_NONE, NULL, false); 998 else 999 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 1000 compress_type, folios[0], false); 1001 if (ret <= 0) { 1002 if (ret < 0) 1003 mapping_set_error(mapping, -EIO); 1004 goto free_pages; 1005 } 1006 1007 /* 1008 * We aren't doing an inline extent. Round the compressed size up to a 1009 * block size boundary so the allocator does sane things. 1010 */ 1011 total_compressed = ALIGN(total_compressed, blocksize); 1012 1013 /* 1014 * One last check to make sure the compression is really a win, compare 1015 * the page count read with the blocks on disk, compression must free at 1016 * least one sector. 1017 */ 1018 total_in = round_up(total_in, fs_info->sectorsize); 1019 if (total_compressed + blocksize > total_in) 1020 goto mark_incompressible; 1021 1022 /* 1023 * The async work queues will take care of doing actual allocation on 1024 * disk for these compressed pages, and will submit the bios. 1025 */ 1026 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1027 nr_folios, compress_type); 1028 BUG_ON(ret); 1029 if (start + total_in < end) { 1030 start += total_in; 1031 cond_resched(); 1032 goto again; 1033 } 1034 return; 1035 1036 mark_incompressible: 1037 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1038 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1039 cleanup_and_bail_uncompressed: 1040 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1041 BTRFS_COMPRESS_NONE); 1042 BUG_ON(ret); 1043 free_pages: 1044 if (folios) { 1045 for (i = 0; i < nr_folios; i++) { 1046 WARN_ON(folios[i]->mapping); 1047 btrfs_free_compr_folio(folios[i]); 1048 } 1049 kfree(folios); 1050 } 1051 } 1052 1053 static void free_async_extent_pages(struct async_extent *async_extent) 1054 { 1055 int i; 1056 1057 if (!async_extent->folios) 1058 return; 1059 1060 for (i = 0; i < async_extent->nr_folios; i++) { 1061 WARN_ON(async_extent->folios[i]->mapping); 1062 btrfs_free_compr_folio(async_extent->folios[i]); 1063 } 1064 kfree(async_extent->folios); 1065 async_extent->nr_folios = 0; 1066 async_extent->folios = NULL; 1067 } 1068 1069 static void submit_uncompressed_range(struct btrfs_inode *inode, 1070 struct async_extent *async_extent, 1071 struct folio *locked_folio) 1072 { 1073 u64 start = async_extent->start; 1074 u64 end = async_extent->start + async_extent->ram_size - 1; 1075 int ret; 1076 struct writeback_control wbc = { 1077 .sync_mode = WB_SYNC_ALL, 1078 .range_start = start, 1079 .range_end = end, 1080 .no_cgroup_owner = 1, 1081 }; 1082 1083 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1084 ret = run_delalloc_cow(inode, locked_folio, start, end, 1085 &wbc, false); 1086 wbc_detach_inode(&wbc); 1087 if (ret < 0) { 1088 if (locked_folio) 1089 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1090 start, async_extent->ram_size); 1091 btrfs_err_rl(inode->root->fs_info, 1092 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1093 __func__, btrfs_root_id(inode->root), 1094 btrfs_ino(inode), start, async_extent->ram_size, ret); 1095 } 1096 } 1097 1098 static void submit_one_async_extent(struct async_chunk *async_chunk, 1099 struct async_extent *async_extent, 1100 u64 *alloc_hint) 1101 { 1102 struct btrfs_inode *inode = async_chunk->inode; 1103 struct extent_io_tree *io_tree = &inode->io_tree; 1104 struct btrfs_root *root = inode->root; 1105 struct btrfs_fs_info *fs_info = root->fs_info; 1106 struct btrfs_ordered_extent *ordered; 1107 struct btrfs_file_extent file_extent; 1108 struct btrfs_key ins; 1109 struct folio *locked_folio = NULL; 1110 struct extent_state *cached = NULL; 1111 struct extent_map *em; 1112 int ret = 0; 1113 bool free_pages = false; 1114 u64 start = async_extent->start; 1115 u64 end = async_extent->start + async_extent->ram_size - 1; 1116 1117 if (async_chunk->blkcg_css) 1118 kthread_associate_blkcg(async_chunk->blkcg_css); 1119 1120 /* 1121 * If async_chunk->locked_folio is in the async_extent range, we need to 1122 * handle it. 1123 */ 1124 if (async_chunk->locked_folio) { 1125 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1126 u64 locked_folio_end = locked_folio_start + 1127 folio_size(async_chunk->locked_folio) - 1; 1128 1129 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1130 locked_folio = async_chunk->locked_folio; 1131 } 1132 1133 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1134 ASSERT(!async_extent->folios); 1135 ASSERT(async_extent->nr_folios == 0); 1136 submit_uncompressed_range(inode, async_extent, locked_folio); 1137 free_pages = true; 1138 goto done; 1139 } 1140 1141 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1142 async_extent->compressed_size, 1143 async_extent->compressed_size, 1144 0, *alloc_hint, &ins, true, true); 1145 if (ret) { 1146 /* 1147 * We can't reserve contiguous space for the compressed size. 1148 * Unlikely, but it's possible that we could have enough 1149 * non-contiguous space for the uncompressed size instead. So 1150 * fall back to uncompressed. 1151 */ 1152 submit_uncompressed_range(inode, async_extent, locked_folio); 1153 free_pages = true; 1154 goto done; 1155 } 1156 1157 btrfs_lock_extent(io_tree, start, end, &cached); 1158 1159 /* Here we're doing allocation and writeback of the compressed pages */ 1160 file_extent.disk_bytenr = ins.objectid; 1161 file_extent.disk_num_bytes = ins.offset; 1162 file_extent.ram_bytes = async_extent->ram_size; 1163 file_extent.num_bytes = async_extent->ram_size; 1164 file_extent.offset = 0; 1165 file_extent.compression = async_extent->compress_type; 1166 1167 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1168 if (IS_ERR(em)) { 1169 ret = PTR_ERR(em); 1170 goto out_free_reserve; 1171 } 1172 btrfs_free_extent_map(em); 1173 1174 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1175 1U << BTRFS_ORDERED_COMPRESSED); 1176 if (IS_ERR(ordered)) { 1177 btrfs_drop_extent_map_range(inode, start, end, false); 1178 ret = PTR_ERR(ordered); 1179 goto out_free_reserve; 1180 } 1181 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1182 1183 /* Clear dirty, set writeback and unlock the pages. */ 1184 extent_clear_unlock_delalloc(inode, start, end, 1185 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1186 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1187 btrfs_submit_compressed_write(ordered, 1188 async_extent->folios, /* compressed_folios */ 1189 async_extent->nr_folios, 1190 async_chunk->write_flags, true); 1191 *alloc_hint = ins.objectid + ins.offset; 1192 done: 1193 if (async_chunk->blkcg_css) 1194 kthread_associate_blkcg(NULL); 1195 if (free_pages) 1196 free_async_extent_pages(async_extent); 1197 kfree(async_extent); 1198 return; 1199 1200 out_free_reserve: 1201 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1202 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1203 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1204 extent_clear_unlock_delalloc(inode, start, end, 1205 NULL, &cached, 1206 EXTENT_LOCKED | EXTENT_DELALLOC | 1207 EXTENT_DELALLOC_NEW | 1208 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1209 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1210 PAGE_END_WRITEBACK); 1211 free_async_extent_pages(async_extent); 1212 if (async_chunk->blkcg_css) 1213 kthread_associate_blkcg(NULL); 1214 btrfs_debug(fs_info, 1215 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1216 btrfs_root_id(root), btrfs_ino(inode), start, 1217 async_extent->ram_size, ret); 1218 kfree(async_extent); 1219 } 1220 1221 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1222 u64 num_bytes) 1223 { 1224 struct extent_map_tree *em_tree = &inode->extent_tree; 1225 struct extent_map *em; 1226 u64 alloc_hint = 0; 1227 1228 read_lock(&em_tree->lock); 1229 em = btrfs_search_extent_mapping(em_tree, start, num_bytes); 1230 if (em) { 1231 /* 1232 * if block start isn't an actual block number then find the 1233 * first block in this inode and use that as a hint. If that 1234 * block is also bogus then just don't worry about it. 1235 */ 1236 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1237 btrfs_free_extent_map(em); 1238 em = btrfs_search_extent_mapping(em_tree, 0, 0); 1239 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1240 alloc_hint = btrfs_extent_map_block_start(em); 1241 if (em) 1242 btrfs_free_extent_map(em); 1243 } else { 1244 alloc_hint = btrfs_extent_map_block_start(em); 1245 btrfs_free_extent_map(em); 1246 } 1247 } 1248 read_unlock(&em_tree->lock); 1249 1250 return alloc_hint; 1251 } 1252 1253 /* 1254 * when extent_io.c finds a delayed allocation range in the file, 1255 * the call backs end up in this code. The basic idea is to 1256 * allocate extents on disk for the range, and create ordered data structs 1257 * in ram to track those extents. 1258 * 1259 * locked_folio is the folio that writepage had locked already. We use 1260 * it to make sure we don't do extra locks or unlocks. 1261 * 1262 * When this function fails, it unlocks all folios except @locked_folio. 1263 * 1264 * When this function successfully creates an inline extent, it returns 1 and 1265 * unlocks all folios including locked_folio and starts I/O on them. 1266 * (In reality inline extents are limited to a single block, so locked_folio is 1267 * the only folio handled anyway). 1268 * 1269 * When this function succeed and creates a normal extent, the folio locking 1270 * status depends on the passed in flags: 1271 * 1272 * - If COW_FILE_RANGE_KEEP_LOCKED flag is set, all folios are kept locked. 1273 * - Else all folios except for @locked_folio are unlocked. 1274 * 1275 * When a failure happens in the second or later iteration of the 1276 * while-loop, the ordered extents created in previous iterations are cleaned up. 1277 */ 1278 static noinline int cow_file_range(struct btrfs_inode *inode, 1279 struct folio *locked_folio, u64 start, 1280 u64 end, u64 *done_offset, 1281 unsigned long flags) 1282 { 1283 struct btrfs_root *root = inode->root; 1284 struct btrfs_fs_info *fs_info = root->fs_info; 1285 struct extent_state *cached = NULL; 1286 u64 alloc_hint = 0; 1287 u64 orig_start = start; 1288 u64 num_bytes; 1289 u64 cur_alloc_size = 0; 1290 u64 min_alloc_size; 1291 u64 blocksize = fs_info->sectorsize; 1292 struct btrfs_key ins; 1293 struct extent_map *em; 1294 unsigned clear_bits; 1295 unsigned long page_ops; 1296 int ret = 0; 1297 1298 if (unlikely(btrfs_is_shutdown(fs_info))) { 1299 ret = -EIO; 1300 goto out_unlock; 1301 } 1302 1303 if (btrfs_is_free_space_inode(inode)) { 1304 ret = -EINVAL; 1305 goto out_unlock; 1306 } 1307 1308 num_bytes = ALIGN(end - start + 1, blocksize); 1309 num_bytes = max(blocksize, num_bytes); 1310 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1311 1312 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1313 1314 if (!(flags & COW_FILE_RANGE_NO_INLINE)) { 1315 /* lets try to make an inline extent */ 1316 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1317 BTRFS_COMPRESS_NONE, NULL, false); 1318 if (ret <= 0) { 1319 /* 1320 * We succeeded, return 1 so the caller knows we're done 1321 * with this page and already handled the IO. 1322 * 1323 * If there was an error then cow_file_range_inline() has 1324 * already done the cleanup. 1325 */ 1326 if (ret == 0) 1327 ret = 1; 1328 goto done; 1329 } 1330 } 1331 1332 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1333 1334 /* 1335 * We're not doing compressed IO, don't unlock the first page (which 1336 * the caller expects to stay locked), don't clear any dirty bits and 1337 * don't set any writeback bits. 1338 * 1339 * Do set the Ordered (Private2) bit so we know this page was properly 1340 * setup for writepage. 1341 */ 1342 page_ops = ((flags & COW_FILE_RANGE_KEEP_LOCKED) ? 0 : PAGE_UNLOCK); 1343 page_ops |= PAGE_SET_ORDERED; 1344 1345 /* 1346 * Relocation relies on the relocated extents to have exactly the same 1347 * size as the original extents. Normally writeback for relocation data 1348 * extents follows a NOCOW path because relocation preallocates the 1349 * extents. However, due to an operation such as scrub turning a block 1350 * group to RO mode, it may fallback to COW mode, so we must make sure 1351 * an extent allocated during COW has exactly the requested size and can 1352 * not be split into smaller extents, otherwise relocation breaks and 1353 * fails during the stage where it updates the bytenr of file extent 1354 * items. 1355 */ 1356 if (btrfs_is_data_reloc_root(root)) 1357 min_alloc_size = num_bytes; 1358 else 1359 min_alloc_size = fs_info->sectorsize; 1360 1361 while (num_bytes > 0) { 1362 struct btrfs_ordered_extent *ordered; 1363 struct btrfs_file_extent file_extent; 1364 1365 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1366 min_alloc_size, 0, alloc_hint, 1367 &ins, true, true); 1368 if (ret == -EAGAIN) { 1369 /* 1370 * btrfs_reserve_extent only returns -EAGAIN for zoned 1371 * file systems, which is an indication that there are 1372 * no active zones to allocate from at the moment. 1373 * 1374 * If this is the first loop iteration, wait for at 1375 * least one zone to finish before retrying the 1376 * allocation. Otherwise ask the caller to write out 1377 * the already allocated blocks before coming back to 1378 * us, or return -ENOSPC if it can't handle retries. 1379 */ 1380 ASSERT(btrfs_is_zoned(fs_info)); 1381 if (start == orig_start) { 1382 wait_on_bit_io(&inode->root->fs_info->flags, 1383 BTRFS_FS_NEED_ZONE_FINISH, 1384 TASK_UNINTERRUPTIBLE); 1385 continue; 1386 } 1387 if (done_offset) { 1388 /* 1389 * Move @end to the end of the processed range, 1390 * and exit the loop to unlock the processed extents. 1391 */ 1392 end = start - 1; 1393 ret = 0; 1394 break; 1395 } 1396 ret = -ENOSPC; 1397 } 1398 if (ret < 0) 1399 goto out_unlock; 1400 cur_alloc_size = ins.offset; 1401 1402 file_extent.disk_bytenr = ins.objectid; 1403 file_extent.disk_num_bytes = ins.offset; 1404 file_extent.num_bytes = ins.offset; 1405 file_extent.ram_bytes = ins.offset; 1406 file_extent.offset = 0; 1407 file_extent.compression = BTRFS_COMPRESS_NONE; 1408 1409 /* 1410 * Locked range will be released either during error clean up or 1411 * after the whole range is finished. 1412 */ 1413 btrfs_lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1414 &cached); 1415 1416 em = btrfs_create_io_em(inode, start, &file_extent, 1417 BTRFS_ORDERED_REGULAR); 1418 if (IS_ERR(em)) { 1419 btrfs_unlock_extent(&inode->io_tree, start, 1420 start + cur_alloc_size - 1, &cached); 1421 ret = PTR_ERR(em); 1422 goto out_reserve; 1423 } 1424 btrfs_free_extent_map(em); 1425 1426 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1427 1U << BTRFS_ORDERED_REGULAR); 1428 if (IS_ERR(ordered)) { 1429 btrfs_unlock_extent(&inode->io_tree, start, 1430 start + cur_alloc_size - 1, &cached); 1431 ret = PTR_ERR(ordered); 1432 goto out_drop_extent_cache; 1433 } 1434 1435 if (btrfs_is_data_reloc_root(root)) { 1436 ret = btrfs_reloc_clone_csums(ordered); 1437 1438 /* 1439 * Only drop cache here, and process as normal. 1440 * 1441 * We must not allow extent_clear_unlock_delalloc() 1442 * at out_unlock label to free meta of this ordered 1443 * extent, as its meta should be freed by 1444 * btrfs_finish_ordered_io(). 1445 * 1446 * So we must continue until @start is increased to 1447 * skip current ordered extent. 1448 */ 1449 if (ret) 1450 btrfs_drop_extent_map_range(inode, start, 1451 start + cur_alloc_size - 1, 1452 false); 1453 } 1454 btrfs_put_ordered_extent(ordered); 1455 1456 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1457 1458 if (num_bytes < cur_alloc_size) 1459 num_bytes = 0; 1460 else 1461 num_bytes -= cur_alloc_size; 1462 alloc_hint = ins.objectid + ins.offset; 1463 start += cur_alloc_size; 1464 cur_alloc_size = 0; 1465 1466 /* 1467 * btrfs_reloc_clone_csums() error, since start is increased 1468 * extent_clear_unlock_delalloc() at out_unlock label won't 1469 * free metadata of current ordered extent, we're OK to exit. 1470 */ 1471 if (ret) 1472 goto out_unlock; 1473 } 1474 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1475 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1476 done: 1477 if (done_offset) 1478 *done_offset = end; 1479 return ret; 1480 1481 out_drop_extent_cache: 1482 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1483 out_reserve: 1484 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1485 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 1486 out_unlock: 1487 /* 1488 * Now, we have three regions to clean up: 1489 * 1490 * |-------(1)----|---(2)---|-------------(3)----------| 1491 * `- orig_start `- start `- start + cur_alloc_size `- end 1492 * 1493 * We process each region below. 1494 */ 1495 1496 /* 1497 * For the range (1). We have already instantiated the ordered extents 1498 * for this region, thus we need to cleanup those ordered extents. 1499 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1500 * are also handled by the ordered extents cleanup. 1501 * 1502 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1503 * finish the writeback of the involved folios, which will be never submitted. 1504 */ 1505 if (orig_start < start) { 1506 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1507 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1508 1509 if (!locked_folio) 1510 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1511 1512 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1513 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1514 locked_folio, NULL, clear_bits, page_ops); 1515 } 1516 1517 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1518 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1519 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1520 1521 /* 1522 * For the range (2). If we reserved an extent for our delalloc range 1523 * (or a subrange) and failed to create the respective ordered extent, 1524 * then it means that when we reserved the extent we decremented the 1525 * extent's size from the data space_info's bytes_may_use counter and 1526 * incremented the space_info's bytes_reserved counter by the same 1527 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1528 * to decrement again the data space_info's bytes_may_use counter, 1529 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1530 */ 1531 if (cur_alloc_size) { 1532 extent_clear_unlock_delalloc(inode, start, 1533 start + cur_alloc_size - 1, 1534 locked_folio, &cached, clear_bits, 1535 page_ops); 1536 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1537 } 1538 1539 /* 1540 * For the range (3). We never touched the region. In addition to the 1541 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1542 * space_info's bytes_may_use counter, reserved in 1543 * btrfs_check_data_free_space(). 1544 */ 1545 if (start + cur_alloc_size < end) { 1546 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1547 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1548 end, locked_folio, 1549 &cached, clear_bits, page_ops); 1550 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1551 end - start - cur_alloc_size + 1, NULL); 1552 } 1553 btrfs_err(fs_info, 1554 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu cur_alloc_size=%llu: %d", 1555 __func__, btrfs_root_id(inode->root), 1556 btrfs_ino(inode), orig_start, end + 1 - orig_start, 1557 start, cur_alloc_size, ret); 1558 return ret; 1559 } 1560 1561 /* 1562 * Phase two of compressed writeback. This is the ordered portion of the code, 1563 * which only gets called in the order the work was queued. We walk all the 1564 * async extents created by compress_file_range and send them down to the disk. 1565 * 1566 * If called with @do_free == true then it'll try to finish the work and free 1567 * the work struct eventually. 1568 */ 1569 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1570 { 1571 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1572 work); 1573 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1574 struct async_extent *async_extent; 1575 unsigned long nr_pages; 1576 u64 alloc_hint = 0; 1577 1578 if (do_free) { 1579 struct async_cow *async_cow; 1580 1581 btrfs_add_delayed_iput(async_chunk->inode); 1582 if (async_chunk->blkcg_css) 1583 css_put(async_chunk->blkcg_css); 1584 1585 async_cow = async_chunk->async_cow; 1586 if (atomic_dec_and_test(&async_cow->num_chunks)) 1587 kvfree(async_cow); 1588 return; 1589 } 1590 1591 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1592 PAGE_SHIFT; 1593 1594 while (!list_empty(&async_chunk->extents)) { 1595 async_extent = list_first_entry(&async_chunk->extents, 1596 struct async_extent, list); 1597 list_del(&async_extent->list); 1598 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1599 } 1600 1601 /* atomic_sub_return implies a barrier */ 1602 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1603 5 * SZ_1M) 1604 cond_wake_up_nomb(&fs_info->async_submit_wait); 1605 } 1606 1607 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1608 struct folio *locked_folio, u64 start, 1609 u64 end, struct writeback_control *wbc) 1610 { 1611 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1612 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1613 struct async_cow *ctx; 1614 struct async_chunk *async_chunk; 1615 unsigned long nr_pages; 1616 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1617 int i; 1618 unsigned nofs_flag; 1619 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1620 1621 nofs_flag = memalloc_nofs_save(); 1622 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1623 memalloc_nofs_restore(nofs_flag); 1624 if (!ctx) 1625 return false; 1626 1627 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1628 1629 async_chunk = ctx->chunks; 1630 atomic_set(&ctx->num_chunks, num_chunks); 1631 1632 for (i = 0; i < num_chunks; i++) { 1633 u64 cur_end = min(end, start + SZ_512K - 1); 1634 1635 /* 1636 * igrab is called higher up in the call chain, take only the 1637 * lightweight reference for the callback lifetime 1638 */ 1639 ihold(&inode->vfs_inode); 1640 async_chunk[i].async_cow = ctx; 1641 async_chunk[i].inode = inode; 1642 async_chunk[i].start = start; 1643 async_chunk[i].end = cur_end; 1644 async_chunk[i].write_flags = write_flags; 1645 INIT_LIST_HEAD(&async_chunk[i].extents); 1646 1647 /* 1648 * The locked_folio comes all the way from writepage and its 1649 * the original folio we were actually given. As we spread 1650 * this large delalloc region across multiple async_chunk 1651 * structs, only the first struct needs a pointer to 1652 * locked_folio. 1653 * 1654 * This way we don't need racey decisions about who is supposed 1655 * to unlock it. 1656 */ 1657 if (locked_folio) { 1658 /* 1659 * Depending on the compressibility, the pages might or 1660 * might not go through async. We want all of them to 1661 * be accounted against wbc once. Let's do it here 1662 * before the paths diverge. wbc accounting is used 1663 * only for foreign writeback detection and doesn't 1664 * need full accuracy. Just account the whole thing 1665 * against the first page. 1666 */ 1667 wbc_account_cgroup_owner(wbc, locked_folio, 1668 cur_end - start); 1669 async_chunk[i].locked_folio = locked_folio; 1670 locked_folio = NULL; 1671 } else { 1672 async_chunk[i].locked_folio = NULL; 1673 } 1674 1675 if (blkcg_css != blkcg_root_css) { 1676 css_get(blkcg_css); 1677 async_chunk[i].blkcg_css = blkcg_css; 1678 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1679 } else { 1680 async_chunk[i].blkcg_css = NULL; 1681 } 1682 1683 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1684 submit_compressed_extents); 1685 1686 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1687 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1688 1689 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1690 1691 start = cur_end + 1; 1692 } 1693 return true; 1694 } 1695 1696 /* 1697 * Run the delalloc range from start to end, and write back any dirty pages 1698 * covered by the range. 1699 */ 1700 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1701 struct folio *locked_folio, u64 start, 1702 u64 end, struct writeback_control *wbc, 1703 bool pages_dirty) 1704 { 1705 u64 done_offset = end; 1706 int ret; 1707 1708 while (start <= end) { 1709 ret = cow_file_range(inode, locked_folio, start, end, 1710 &done_offset, COW_FILE_RANGE_KEEP_LOCKED); 1711 if (ret) 1712 return ret; 1713 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1714 start, done_offset, wbc, pages_dirty); 1715 start = done_offset + 1; 1716 } 1717 1718 return 1; 1719 } 1720 1721 static int fallback_to_cow(struct btrfs_inode *inode, 1722 struct folio *locked_folio, const u64 start, 1723 const u64 end) 1724 { 1725 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1726 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1727 const u64 range_bytes = end + 1 - start; 1728 struct extent_io_tree *io_tree = &inode->io_tree; 1729 struct extent_state *cached_state = NULL; 1730 u64 range_start = start; 1731 u64 count; 1732 int ret; 1733 1734 /* 1735 * If EXTENT_NORESERVE is set it means that when the buffered write was 1736 * made we had not enough available data space and therefore we did not 1737 * reserve data space for it, since we though we could do NOCOW for the 1738 * respective file range (either there is prealloc extent or the inode 1739 * has the NOCOW bit set). 1740 * 1741 * However when we need to fallback to COW mode (because for example the 1742 * block group for the corresponding extent was turned to RO mode by a 1743 * scrub or relocation) we need to do the following: 1744 * 1745 * 1) We increment the bytes_may_use counter of the data space info. 1746 * If COW succeeds, it allocates a new data extent and after doing 1747 * that it decrements the space info's bytes_may_use counter and 1748 * increments its bytes_reserved counter by the same amount (we do 1749 * this at btrfs_add_reserved_bytes()). So we need to increment the 1750 * bytes_may_use counter to compensate (when space is reserved at 1751 * buffered write time, the bytes_may_use counter is incremented); 1752 * 1753 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1754 * that if the COW path fails for any reason, it decrements (through 1755 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1756 * data space info, which we incremented in the step above. 1757 * 1758 * If we need to fallback to cow and the inode corresponds to a free 1759 * space cache inode or an inode of the data relocation tree, we must 1760 * also increment bytes_may_use of the data space_info for the same 1761 * reason. Space caches and relocated data extents always get a prealloc 1762 * extent for them, however scrub or balance may have set the block 1763 * group that contains that extent to RO mode and therefore force COW 1764 * when starting writeback. 1765 */ 1766 btrfs_lock_extent(io_tree, start, end, &cached_state); 1767 count = btrfs_count_range_bits(io_tree, &range_start, end, range_bytes, 1768 EXTENT_NORESERVE, 0, NULL); 1769 if (count > 0 || is_space_ino || is_reloc_ino) { 1770 u64 bytes = count; 1771 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1772 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1773 1774 if (is_space_ino || is_reloc_ino) 1775 bytes = range_bytes; 1776 1777 spin_lock(&sinfo->lock); 1778 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1779 spin_unlock(&sinfo->lock); 1780 1781 if (count > 0) 1782 btrfs_clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1783 &cached_state); 1784 } 1785 btrfs_unlock_extent(io_tree, start, end, &cached_state); 1786 1787 /* 1788 * Don't try to create inline extents, as a mix of inline extent that 1789 * is written out and unlocked directly and a normal NOCOW extent 1790 * doesn't work. 1791 * 1792 * And here we do not unlock the folio after a successful run. 1793 * The folios will be unlocked after everything is finished, or by error handling. 1794 * 1795 * This is to ensure error handling won't need to clear dirty/ordered flags without 1796 * a locked folio, which can race with writeback. 1797 */ 1798 ret = cow_file_range(inode, locked_folio, start, end, NULL, 1799 COW_FILE_RANGE_NO_INLINE | COW_FILE_RANGE_KEEP_LOCKED); 1800 ASSERT(ret != 1); 1801 return ret; 1802 } 1803 1804 struct can_nocow_file_extent_args { 1805 /* Input fields. */ 1806 1807 /* Start file offset of the range we want to NOCOW. */ 1808 u64 start; 1809 /* End file offset (inclusive) of the range we want to NOCOW. */ 1810 u64 end; 1811 bool writeback_path; 1812 /* 1813 * Free the path passed to can_nocow_file_extent() once it's not needed 1814 * anymore. 1815 */ 1816 bool free_path; 1817 1818 /* 1819 * Output fields. Only set when can_nocow_file_extent() returns 1. 1820 * The expected file extent for the NOCOW write. 1821 */ 1822 struct btrfs_file_extent file_extent; 1823 }; 1824 1825 /* 1826 * Check if we can NOCOW the file extent that the path points to. 1827 * This function may return with the path released, so the caller should check 1828 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1829 * 1830 * Returns: < 0 on error 1831 * 0 if we can not NOCOW 1832 * 1 if we can NOCOW 1833 */ 1834 static int can_nocow_file_extent(struct btrfs_path *path, 1835 struct btrfs_key *key, 1836 struct btrfs_inode *inode, 1837 struct can_nocow_file_extent_args *args) 1838 { 1839 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1840 struct extent_buffer *leaf = path->nodes[0]; 1841 struct btrfs_root *root = inode->root; 1842 struct btrfs_file_extent_item *fi; 1843 struct btrfs_root *csum_root; 1844 u64 io_start; 1845 u64 extent_end; 1846 u8 extent_type; 1847 int can_nocow = 0; 1848 int ret = 0; 1849 bool nowait = path->nowait; 1850 1851 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1852 extent_type = btrfs_file_extent_type(leaf, fi); 1853 1854 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1855 goto out; 1856 1857 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1858 extent_type == BTRFS_FILE_EXTENT_REG) 1859 goto out; 1860 1861 /* 1862 * If the extent was created before the generation where the last snapshot 1863 * for its subvolume was created, then this implies the extent is shared, 1864 * hence we must COW. 1865 */ 1866 if (btrfs_file_extent_generation(leaf, fi) <= 1867 btrfs_root_last_snapshot(&root->root_item)) 1868 goto out; 1869 1870 /* An explicit hole, must COW. */ 1871 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1872 goto out; 1873 1874 /* Compressed/encrypted/encoded extents must be COWed. */ 1875 if (btrfs_file_extent_compression(leaf, fi) || 1876 btrfs_file_extent_encryption(leaf, fi) || 1877 btrfs_file_extent_other_encoding(leaf, fi)) 1878 goto out; 1879 1880 extent_end = btrfs_file_extent_end(path); 1881 1882 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1883 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1884 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1885 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1886 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1887 1888 /* 1889 * The following checks can be expensive, as they need to take other 1890 * locks and do btree or rbtree searches, so release the path to avoid 1891 * blocking other tasks for too long. 1892 */ 1893 btrfs_release_path(path); 1894 1895 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1896 args->file_extent.disk_bytenr, path); 1897 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1898 if (ret != 0) 1899 goto out; 1900 1901 if (args->free_path) { 1902 /* 1903 * We don't need the path anymore, plus through the 1904 * btrfs_lookup_csums_list() call below we will end up allocating 1905 * another path. So free the path to avoid unnecessary extra 1906 * memory usage. 1907 */ 1908 btrfs_free_path(path); 1909 path = NULL; 1910 } 1911 1912 /* If there are pending snapshots for this root, we must COW. */ 1913 if (args->writeback_path && !is_freespace_inode && 1914 atomic_read(&root->snapshot_force_cow)) 1915 goto out; 1916 1917 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1918 args->file_extent.offset += args->start - key->offset; 1919 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1920 1921 /* 1922 * Force COW if csums exist in the range. This ensures that csums for a 1923 * given extent are either valid or do not exist. 1924 */ 1925 1926 csum_root = btrfs_csum_root(root->fs_info, io_start); 1927 ret = btrfs_lookup_csums_list(csum_root, io_start, 1928 io_start + args->file_extent.num_bytes - 1, 1929 NULL, nowait); 1930 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1931 if (ret != 0) 1932 goto out; 1933 1934 can_nocow = 1; 1935 out: 1936 if (args->free_path && path) 1937 btrfs_free_path(path); 1938 1939 return ret < 0 ? ret : can_nocow; 1940 } 1941 1942 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1943 struct extent_state **cached, 1944 struct can_nocow_file_extent_args *nocow_args, 1945 u64 file_pos, bool is_prealloc) 1946 { 1947 struct btrfs_ordered_extent *ordered; 1948 const u64 len = nocow_args->file_extent.num_bytes; 1949 const u64 end = file_pos + len - 1; 1950 int ret = 0; 1951 1952 btrfs_lock_extent(&inode->io_tree, file_pos, end, cached); 1953 1954 if (is_prealloc) { 1955 struct extent_map *em; 1956 1957 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1958 BTRFS_ORDERED_PREALLOC); 1959 if (IS_ERR(em)) { 1960 ret = PTR_ERR(em); 1961 goto error; 1962 } 1963 btrfs_free_extent_map(em); 1964 } 1965 1966 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 1967 is_prealloc 1968 ? (1U << BTRFS_ORDERED_PREALLOC) 1969 : (1U << BTRFS_ORDERED_NOCOW)); 1970 if (IS_ERR(ordered)) { 1971 if (is_prealloc) 1972 btrfs_drop_extent_map_range(inode, file_pos, end, false); 1973 ret = PTR_ERR(ordered); 1974 goto error; 1975 } 1976 1977 if (btrfs_is_data_reloc_root(inode->root)) 1978 /* 1979 * Errors are handled later, as we must prevent 1980 * extent_clear_unlock_delalloc() in error handler from freeing 1981 * metadata of the created ordered extent. 1982 */ 1983 ret = btrfs_reloc_clone_csums(ordered); 1984 btrfs_put_ordered_extent(ordered); 1985 1986 if (ret < 0) 1987 goto error; 1988 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 1989 EXTENT_LOCKED | EXTENT_DELALLOC | 1990 EXTENT_CLEAR_DATA_RESV, 1991 PAGE_SET_ORDERED); 1992 return ret; 1993 1994 error: 1995 btrfs_cleanup_ordered_extents(inode, file_pos, len); 1996 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 1997 EXTENT_LOCKED | EXTENT_DELALLOC | 1998 EXTENT_CLEAR_DATA_RESV, 1999 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2000 PAGE_END_WRITEBACK); 2001 btrfs_err(inode->root->fs_info, 2002 "%s failed, root=%lld inode=%llu start=%llu len=%llu: %d", 2003 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2004 file_pos, len, ret); 2005 return ret; 2006 } 2007 2008 /* 2009 * When nocow writeback calls back. This checks for snapshots or COW copies 2010 * of the extents that exist in the file, and COWs the file as required. 2011 * 2012 * If no cow copies or snapshots exist, we write directly to the existing 2013 * blocks on disk 2014 */ 2015 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2016 struct folio *locked_folio, 2017 const u64 start, const u64 end) 2018 { 2019 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2020 struct btrfs_root *root = inode->root; 2021 struct btrfs_path *path = NULL; 2022 u64 cow_start = (u64)-1; 2023 /* 2024 * If not 0, represents the inclusive end of the last fallback_to_cow() 2025 * range. Only for error handling. 2026 * 2027 * The same for nocow_end, it's to avoid double cleaning up the range 2028 * already cleaned by nocow_one_range(). 2029 */ 2030 u64 cow_end = 0; 2031 u64 nocow_end = 0; 2032 u64 cur_offset = start; 2033 int ret; 2034 bool check_prev = true; 2035 u64 ino = btrfs_ino(inode); 2036 struct can_nocow_file_extent_args nocow_args = { 0 }; 2037 /* The range that has ordered extent(s). */ 2038 u64 oe_cleanup_start; 2039 u64 oe_cleanup_len = 0; 2040 /* The range that is untouched. */ 2041 u64 untouched_start; 2042 u64 untouched_len = 0; 2043 2044 /* 2045 * Normally on a zoned device we're only doing COW writes, but in case 2046 * of relocation on a zoned filesystem serializes I/O so that we're only 2047 * writing sequentially and can end up here as well. 2048 */ 2049 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2050 2051 if (unlikely(btrfs_is_shutdown(fs_info))) { 2052 ret = -EIO; 2053 goto error; 2054 } 2055 path = btrfs_alloc_path(); 2056 if (!path) { 2057 ret = -ENOMEM; 2058 goto error; 2059 } 2060 2061 nocow_args.end = end; 2062 nocow_args.writeback_path = true; 2063 2064 while (cur_offset <= end) { 2065 struct btrfs_block_group *nocow_bg = NULL; 2066 struct btrfs_key found_key; 2067 struct btrfs_file_extent_item *fi; 2068 struct extent_buffer *leaf; 2069 struct extent_state *cached_state = NULL; 2070 u64 extent_end; 2071 int extent_type; 2072 2073 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2074 cur_offset, 0); 2075 if (ret < 0) 2076 goto error; 2077 2078 /* 2079 * If there is no extent for our range when doing the initial 2080 * search, then go back to the previous slot as it will be the 2081 * one containing the search offset 2082 */ 2083 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2084 leaf = path->nodes[0]; 2085 btrfs_item_key_to_cpu(leaf, &found_key, 2086 path->slots[0] - 1); 2087 if (found_key.objectid == ino && 2088 found_key.type == BTRFS_EXTENT_DATA_KEY) 2089 path->slots[0]--; 2090 } 2091 check_prev = false; 2092 next_slot: 2093 /* Go to next leaf if we have exhausted the current one */ 2094 leaf = path->nodes[0]; 2095 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2096 ret = btrfs_next_leaf(root, path); 2097 if (ret < 0) 2098 goto error; 2099 if (ret > 0) 2100 break; 2101 leaf = path->nodes[0]; 2102 } 2103 2104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2105 2106 /* Didn't find anything for our INO */ 2107 if (found_key.objectid > ino) 2108 break; 2109 /* 2110 * Keep searching until we find an EXTENT_ITEM or there are no 2111 * more extents for this inode 2112 */ 2113 if (WARN_ON_ONCE(found_key.objectid < ino) || 2114 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2115 path->slots[0]++; 2116 goto next_slot; 2117 } 2118 2119 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2120 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2121 found_key.offset > end) 2122 break; 2123 2124 /* 2125 * If the found extent starts after requested offset, then 2126 * adjust cur_offset to be right before this extent begins. 2127 */ 2128 if (found_key.offset > cur_offset) { 2129 if (cow_start == (u64)-1) 2130 cow_start = cur_offset; 2131 cur_offset = found_key.offset; 2132 goto next_slot; 2133 } 2134 2135 /* 2136 * Found extent which begins before our range and potentially 2137 * intersect it 2138 */ 2139 fi = btrfs_item_ptr(leaf, path->slots[0], 2140 struct btrfs_file_extent_item); 2141 extent_type = btrfs_file_extent_type(leaf, fi); 2142 /* If this is triggered then we have a memory corruption. */ 2143 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2144 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2145 ret = -EUCLEAN; 2146 goto error; 2147 } 2148 extent_end = btrfs_file_extent_end(path); 2149 2150 /* 2151 * If the extent we got ends before our current offset, skip to 2152 * the next extent. 2153 */ 2154 if (extent_end <= cur_offset) { 2155 path->slots[0]++; 2156 goto next_slot; 2157 } 2158 2159 nocow_args.start = cur_offset; 2160 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2161 if (ret < 0) 2162 goto error; 2163 if (ret == 0) 2164 goto must_cow; 2165 2166 ret = 0; 2167 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2168 nocow_args.file_extent.disk_bytenr + 2169 nocow_args.file_extent.offset); 2170 if (!nocow_bg) { 2171 must_cow: 2172 /* 2173 * If we can't perform NOCOW writeback for the range, 2174 * then record the beginning of the range that needs to 2175 * be COWed. It will be written out before the next 2176 * NOCOW range if we find one, or when exiting this 2177 * loop. 2178 */ 2179 if (cow_start == (u64)-1) 2180 cow_start = cur_offset; 2181 cur_offset = extent_end; 2182 if (cur_offset > end) 2183 break; 2184 if (!path->nodes[0]) 2185 continue; 2186 path->slots[0]++; 2187 goto next_slot; 2188 } 2189 2190 /* 2191 * COW range from cow_start to found_key.offset - 1. As the key 2192 * will contain the beginning of the first extent that can be 2193 * NOCOW, following one which needs to be COW'ed 2194 */ 2195 if (cow_start != (u64)-1) { 2196 ret = fallback_to_cow(inode, locked_folio, cow_start, 2197 found_key.offset - 1); 2198 if (ret) { 2199 cow_end = found_key.offset - 1; 2200 btrfs_dec_nocow_writers(nocow_bg); 2201 goto error; 2202 } 2203 cow_start = (u64)-1; 2204 } 2205 2206 ret = nocow_one_range(inode, locked_folio, &cached_state, 2207 &nocow_args, cur_offset, 2208 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2209 btrfs_dec_nocow_writers(nocow_bg); 2210 if (ret < 0) { 2211 nocow_end = cur_offset + nocow_args.file_extent.num_bytes - 1; 2212 goto error; 2213 } 2214 cur_offset = extent_end; 2215 } 2216 btrfs_release_path(path); 2217 2218 if (cur_offset <= end && cow_start == (u64)-1) 2219 cow_start = cur_offset; 2220 2221 if (cow_start != (u64)-1) { 2222 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2223 if (ret) { 2224 cow_end = end; 2225 goto error; 2226 } 2227 cow_start = (u64)-1; 2228 } 2229 2230 /* 2231 * Everything is finished without an error, can unlock the folios now. 2232 * 2233 * No need to touch the io tree range nor set folio ordered flag, as 2234 * fallback_to_cow() and nocow_one_range() have already handled them. 2235 */ 2236 extent_clear_unlock_delalloc(inode, start, end, locked_folio, NULL, 0, PAGE_UNLOCK); 2237 2238 btrfs_free_path(path); 2239 return 0; 2240 2241 error: 2242 if (cow_start == (u64)-1) { 2243 /* 2244 * case a) 2245 * start cur_offset end 2246 * | OE cleanup | Untouched | 2247 * 2248 * We finished a fallback_to_cow() or nocow_one_range() call, 2249 * but failed to check the next range. 2250 * 2251 * or 2252 * start cur_offset nocow_end end 2253 * | OE cleanup | Skip | Untouched | 2254 * 2255 * nocow_one_range() failed, the range [cur_offset, nocow_end] is 2256 * already cleaned up. 2257 */ 2258 oe_cleanup_start = start; 2259 oe_cleanup_len = cur_offset - start; 2260 if (nocow_end) 2261 untouched_start = nocow_end + 1; 2262 else 2263 untouched_start = cur_offset; 2264 untouched_len = end + 1 - untouched_start; 2265 } else if (cow_start != (u64)-1 && cow_end == 0) { 2266 /* 2267 * case b) 2268 * start cow_start cur_offset end 2269 * | OE cleanup | Untouched | 2270 * 2271 * We got a range that needs COW, but before we hit the next NOCOW range, 2272 * thus [cow_start, cur_offset) doesn't yet have any OE. 2273 */ 2274 oe_cleanup_start = start; 2275 oe_cleanup_len = cow_start - start; 2276 untouched_start = cow_start; 2277 untouched_len = end + 1 - untouched_start; 2278 } else { 2279 /* 2280 * case c) 2281 * start cow_start cow_end end 2282 * | OE cleanup | Skip | Untouched | 2283 * 2284 * fallback_to_cow() failed, and fallback_to_cow() will do the 2285 * cleanup for its range, we shouldn't touch the range 2286 * [cow_start, cow_end]. 2287 */ 2288 ASSERT(cow_start != (u64)-1 && cow_end != 0); 2289 oe_cleanup_start = start; 2290 oe_cleanup_len = cow_start - start; 2291 untouched_start = cow_end + 1; 2292 untouched_len = end + 1 - untouched_start; 2293 } 2294 2295 if (oe_cleanup_len) { 2296 const u64 oe_cleanup_end = oe_cleanup_start + oe_cleanup_len - 1; 2297 btrfs_cleanup_ordered_extents(inode, oe_cleanup_start, oe_cleanup_len); 2298 extent_clear_unlock_delalloc(inode, oe_cleanup_start, oe_cleanup_end, 2299 locked_folio, NULL, 2300 EXTENT_LOCKED | EXTENT_DELALLOC, 2301 PAGE_UNLOCK | PAGE_START_WRITEBACK | 2302 PAGE_END_WRITEBACK); 2303 } 2304 2305 if (untouched_len) { 2306 struct extent_state *cached = NULL; 2307 const u64 untouched_end = untouched_start + untouched_len - 1; 2308 2309 /* 2310 * We need to lock the extent here because we're clearing DELALLOC and 2311 * we're not locked at this point. 2312 */ 2313 btrfs_lock_extent(&inode->io_tree, untouched_start, untouched_end, &cached); 2314 extent_clear_unlock_delalloc(inode, untouched_start, untouched_end, 2315 locked_folio, &cached, 2316 EXTENT_LOCKED | EXTENT_DELALLOC | 2317 EXTENT_DEFRAG | 2318 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2319 PAGE_START_WRITEBACK | 2320 PAGE_END_WRITEBACK); 2321 btrfs_qgroup_free_data(inode, NULL, untouched_start, untouched_len, NULL); 2322 } 2323 btrfs_free_path(path); 2324 btrfs_err(fs_info, 2325 "%s failed, root=%llu inode=%llu start=%llu len=%llu cur_offset=%llu oe_cleanup=%llu oe_cleanup_len=%llu untouched_start=%llu untouched_len=%llu: %d", 2326 __func__, btrfs_root_id(inode->root), btrfs_ino(inode), 2327 start, end + 1 - start, cur_offset, oe_cleanup_start, oe_cleanup_len, 2328 untouched_start, untouched_len, ret); 2329 return ret; 2330 } 2331 2332 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2333 { 2334 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2335 if (inode->defrag_bytes && 2336 btrfs_test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2337 return false; 2338 return true; 2339 } 2340 return false; 2341 } 2342 2343 /* 2344 * Function to process delayed allocation (create CoW) for ranges which are 2345 * being touched for the first time. 2346 */ 2347 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2348 u64 start, u64 end, struct writeback_control *wbc) 2349 { 2350 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2351 int ret; 2352 2353 /* 2354 * The range must cover part of the @locked_folio, or a return of 1 2355 * can confuse the caller. 2356 */ 2357 ASSERT(!(end <= folio_pos(locked_folio) || 2358 start >= folio_next_pos(locked_folio))); 2359 2360 if (should_nocow(inode, start, end)) { 2361 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2362 return ret; 2363 } 2364 2365 if (btrfs_inode_can_compress(inode) && 2366 inode_need_compress(inode, start, end) && 2367 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2368 return 1; 2369 2370 if (zoned) 2371 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2372 true); 2373 else 2374 ret = cow_file_range(inode, locked_folio, start, end, NULL, 0); 2375 return ret; 2376 } 2377 2378 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2379 struct extent_state *orig, u64 split) 2380 { 2381 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2382 u64 size; 2383 2384 lockdep_assert_held(&inode->io_tree.lock); 2385 2386 /* not delalloc, ignore it */ 2387 if (!(orig->state & EXTENT_DELALLOC)) 2388 return; 2389 2390 size = orig->end - orig->start + 1; 2391 if (size > fs_info->max_extent_size) { 2392 u32 num_extents; 2393 u64 new_size; 2394 2395 /* 2396 * See the explanation in btrfs_merge_delalloc_extent, the same 2397 * applies here, just in reverse. 2398 */ 2399 new_size = orig->end - split + 1; 2400 num_extents = count_max_extents(fs_info, new_size); 2401 new_size = split - orig->start; 2402 num_extents += count_max_extents(fs_info, new_size); 2403 if (count_max_extents(fs_info, size) >= num_extents) 2404 return; 2405 } 2406 2407 spin_lock(&inode->lock); 2408 btrfs_mod_outstanding_extents(inode, 1); 2409 spin_unlock(&inode->lock); 2410 } 2411 2412 /* 2413 * Handle merged delayed allocation extents so we can keep track of new extents 2414 * that are just merged onto old extents, such as when we are doing sequential 2415 * writes, so we can properly account for the metadata space we'll need. 2416 */ 2417 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2418 struct extent_state *other) 2419 { 2420 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2421 u64 new_size, old_size; 2422 u32 num_extents; 2423 2424 lockdep_assert_held(&inode->io_tree.lock); 2425 2426 /* not delalloc, ignore it */ 2427 if (!(other->state & EXTENT_DELALLOC)) 2428 return; 2429 2430 if (new->start > other->start) 2431 new_size = new->end - other->start + 1; 2432 else 2433 new_size = other->end - new->start + 1; 2434 2435 /* we're not bigger than the max, unreserve the space and go */ 2436 if (new_size <= fs_info->max_extent_size) { 2437 spin_lock(&inode->lock); 2438 btrfs_mod_outstanding_extents(inode, -1); 2439 spin_unlock(&inode->lock); 2440 return; 2441 } 2442 2443 /* 2444 * We have to add up either side to figure out how many extents were 2445 * accounted for before we merged into one big extent. If the number of 2446 * extents we accounted for is <= the amount we need for the new range 2447 * then we can return, otherwise drop. Think of it like this 2448 * 2449 * [ 4k][MAX_SIZE] 2450 * 2451 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2452 * need 2 outstanding extents, on one side we have 1 and the other side 2453 * we have 1 so they are == and we can return. But in this case 2454 * 2455 * [MAX_SIZE+4k][MAX_SIZE+4k] 2456 * 2457 * Each range on their own accounts for 2 extents, but merged together 2458 * they are only 3 extents worth of accounting, so we need to drop in 2459 * this case. 2460 */ 2461 old_size = other->end - other->start + 1; 2462 num_extents = count_max_extents(fs_info, old_size); 2463 old_size = new->end - new->start + 1; 2464 num_extents += count_max_extents(fs_info, old_size); 2465 if (count_max_extents(fs_info, new_size) >= num_extents) 2466 return; 2467 2468 spin_lock(&inode->lock); 2469 btrfs_mod_outstanding_extents(inode, -1); 2470 spin_unlock(&inode->lock); 2471 } 2472 2473 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2474 { 2475 struct btrfs_root *root = inode->root; 2476 struct btrfs_fs_info *fs_info = root->fs_info; 2477 2478 spin_lock(&root->delalloc_lock); 2479 ASSERT(list_empty(&inode->delalloc_inodes)); 2480 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2481 root->nr_delalloc_inodes++; 2482 if (root->nr_delalloc_inodes == 1) { 2483 spin_lock(&fs_info->delalloc_root_lock); 2484 ASSERT(list_empty(&root->delalloc_root)); 2485 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2486 spin_unlock(&fs_info->delalloc_root_lock); 2487 } 2488 spin_unlock(&root->delalloc_lock); 2489 } 2490 2491 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2492 { 2493 struct btrfs_root *root = inode->root; 2494 struct btrfs_fs_info *fs_info = root->fs_info; 2495 2496 lockdep_assert_held(&root->delalloc_lock); 2497 2498 /* 2499 * We may be called after the inode was already deleted from the list, 2500 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2501 * and then later through btrfs_clear_delalloc_extent() while the inode 2502 * still has ->delalloc_bytes > 0. 2503 */ 2504 if (!list_empty(&inode->delalloc_inodes)) { 2505 list_del_init(&inode->delalloc_inodes); 2506 root->nr_delalloc_inodes--; 2507 if (!root->nr_delalloc_inodes) { 2508 ASSERT(list_empty(&root->delalloc_inodes)); 2509 spin_lock(&fs_info->delalloc_root_lock); 2510 ASSERT(!list_empty(&root->delalloc_root)); 2511 list_del_init(&root->delalloc_root); 2512 spin_unlock(&fs_info->delalloc_root_lock); 2513 } 2514 } 2515 } 2516 2517 /* 2518 * Properly track delayed allocation bytes in the inode and to maintain the 2519 * list of inodes that have pending delalloc work to be done. 2520 */ 2521 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2522 u32 bits) 2523 { 2524 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2525 2526 lockdep_assert_held(&inode->io_tree.lock); 2527 2528 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2529 WARN_ON(1); 2530 /* 2531 * set_bit and clear bit hooks normally require _irqsave/restore 2532 * but in this case, we are only testing for the DELALLOC 2533 * bit, which is only set or cleared with irqs on 2534 */ 2535 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2536 u64 len = state->end + 1 - state->start; 2537 u64 prev_delalloc_bytes; 2538 u32 num_extents = count_max_extents(fs_info, len); 2539 2540 spin_lock(&inode->lock); 2541 btrfs_mod_outstanding_extents(inode, num_extents); 2542 spin_unlock(&inode->lock); 2543 2544 /* For sanity tests */ 2545 if (btrfs_is_testing(fs_info)) 2546 return; 2547 2548 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2549 fs_info->delalloc_batch); 2550 spin_lock(&inode->lock); 2551 prev_delalloc_bytes = inode->delalloc_bytes; 2552 inode->delalloc_bytes += len; 2553 if (bits & EXTENT_DEFRAG) 2554 inode->defrag_bytes += len; 2555 spin_unlock(&inode->lock); 2556 2557 /* 2558 * We don't need to be under the protection of the inode's lock, 2559 * because we are called while holding the inode's io_tree lock 2560 * and are therefore protected against concurrent calls of this 2561 * function and btrfs_clear_delalloc_extent(). 2562 */ 2563 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2564 btrfs_add_delalloc_inode(inode); 2565 } 2566 2567 if (!(state->state & EXTENT_DELALLOC_NEW) && 2568 (bits & EXTENT_DELALLOC_NEW)) { 2569 spin_lock(&inode->lock); 2570 inode->new_delalloc_bytes += state->end + 1 - state->start; 2571 spin_unlock(&inode->lock); 2572 } 2573 } 2574 2575 /* 2576 * Once a range is no longer delalloc this function ensures that proper 2577 * accounting happens. 2578 */ 2579 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2580 struct extent_state *state, u32 bits) 2581 { 2582 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2583 u64 len = state->end + 1 - state->start; 2584 u32 num_extents = count_max_extents(fs_info, len); 2585 2586 lockdep_assert_held(&inode->io_tree.lock); 2587 2588 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2589 spin_lock(&inode->lock); 2590 inode->defrag_bytes -= len; 2591 spin_unlock(&inode->lock); 2592 } 2593 2594 /* 2595 * set_bit and clear bit hooks normally require _irqsave/restore 2596 * but in this case, we are only testing for the DELALLOC 2597 * bit, which is only set or cleared with irqs on 2598 */ 2599 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2600 struct btrfs_root *root = inode->root; 2601 u64 new_delalloc_bytes; 2602 2603 spin_lock(&inode->lock); 2604 btrfs_mod_outstanding_extents(inode, -num_extents); 2605 spin_unlock(&inode->lock); 2606 2607 /* 2608 * We don't reserve metadata space for space cache inodes so we 2609 * don't need to call delalloc_release_metadata if there is an 2610 * error. 2611 */ 2612 if (bits & EXTENT_CLEAR_META_RESV && 2613 root != fs_info->tree_root) 2614 btrfs_delalloc_release_metadata(inode, len, true); 2615 2616 /* For sanity tests. */ 2617 if (btrfs_is_testing(fs_info)) 2618 return; 2619 2620 if (!btrfs_is_data_reloc_root(root) && 2621 !btrfs_is_free_space_inode(inode) && 2622 !(state->state & EXTENT_NORESERVE) && 2623 (bits & EXTENT_CLEAR_DATA_RESV)) 2624 btrfs_free_reserved_data_space_noquota(inode, len); 2625 2626 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2627 fs_info->delalloc_batch); 2628 spin_lock(&inode->lock); 2629 inode->delalloc_bytes -= len; 2630 new_delalloc_bytes = inode->delalloc_bytes; 2631 spin_unlock(&inode->lock); 2632 2633 /* 2634 * We don't need to be under the protection of the inode's lock, 2635 * because we are called while holding the inode's io_tree lock 2636 * and are therefore protected against concurrent calls of this 2637 * function and btrfs_set_delalloc_extent(). 2638 */ 2639 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2640 spin_lock(&root->delalloc_lock); 2641 btrfs_del_delalloc_inode(inode); 2642 spin_unlock(&root->delalloc_lock); 2643 } 2644 } 2645 2646 if ((state->state & EXTENT_DELALLOC_NEW) && 2647 (bits & EXTENT_DELALLOC_NEW)) { 2648 spin_lock(&inode->lock); 2649 ASSERT(inode->new_delalloc_bytes >= len); 2650 inode->new_delalloc_bytes -= len; 2651 if (bits & EXTENT_ADD_INODE_BYTES) 2652 inode_add_bytes(&inode->vfs_inode, len); 2653 spin_unlock(&inode->lock); 2654 } 2655 } 2656 2657 /* 2658 * given a list of ordered sums record them in the inode. This happens 2659 * at IO completion time based on sums calculated at bio submission time. 2660 */ 2661 static int add_pending_csums(struct btrfs_trans_handle *trans, 2662 struct list_head *list) 2663 { 2664 struct btrfs_ordered_sum *sum; 2665 struct btrfs_root *csum_root = NULL; 2666 int ret; 2667 2668 list_for_each_entry(sum, list, list) { 2669 trans->adding_csums = true; 2670 if (!csum_root) 2671 csum_root = btrfs_csum_root(trans->fs_info, 2672 sum->logical); 2673 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2674 trans->adding_csums = false; 2675 if (ret) 2676 return ret; 2677 } 2678 return 0; 2679 } 2680 2681 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2682 const u64 start, 2683 const u64 len, 2684 struct extent_state **cached_state) 2685 { 2686 u64 search_start = start; 2687 const u64 end = start + len - 1; 2688 2689 while (search_start < end) { 2690 const u64 search_len = end - search_start + 1; 2691 struct extent_map *em; 2692 u64 em_len; 2693 int ret = 0; 2694 2695 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2696 if (IS_ERR(em)) 2697 return PTR_ERR(em); 2698 2699 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2700 goto next; 2701 2702 em_len = em->len; 2703 if (em->start < search_start) 2704 em_len -= search_start - em->start; 2705 if (em_len > search_len) 2706 em_len = search_len; 2707 2708 ret = btrfs_set_extent_bit(&inode->io_tree, search_start, 2709 search_start + em_len - 1, 2710 EXTENT_DELALLOC_NEW, cached_state); 2711 next: 2712 search_start = btrfs_extent_map_end(em); 2713 btrfs_free_extent_map(em); 2714 if (ret) 2715 return ret; 2716 } 2717 return 0; 2718 } 2719 2720 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2721 unsigned int extra_bits, 2722 struct extent_state **cached_state) 2723 { 2724 WARN_ON(PAGE_ALIGNED(end)); 2725 2726 if (start >= i_size_read(&inode->vfs_inode) && 2727 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2728 /* 2729 * There can't be any extents following eof in this case so just 2730 * set the delalloc new bit for the range directly. 2731 */ 2732 extra_bits |= EXTENT_DELALLOC_NEW; 2733 } else { 2734 int ret; 2735 2736 ret = btrfs_find_new_delalloc_bytes(inode, start, 2737 end + 1 - start, 2738 cached_state); 2739 if (ret) 2740 return ret; 2741 } 2742 2743 return btrfs_set_extent_bit(&inode->io_tree, start, end, 2744 EXTENT_DELALLOC | extra_bits, cached_state); 2745 } 2746 2747 /* see btrfs_writepage_start_hook for details on why this is required */ 2748 struct btrfs_writepage_fixup { 2749 struct folio *folio; 2750 struct btrfs_inode *inode; 2751 struct btrfs_work work; 2752 }; 2753 2754 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2755 { 2756 struct btrfs_writepage_fixup *fixup = 2757 container_of(work, struct btrfs_writepage_fixup, work); 2758 struct btrfs_ordered_extent *ordered; 2759 struct extent_state *cached_state = NULL; 2760 struct extent_changeset *data_reserved = NULL; 2761 struct folio *folio = fixup->folio; 2762 struct btrfs_inode *inode = fixup->inode; 2763 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2764 u64 page_start = folio_pos(folio); 2765 u64 page_end = folio_next_pos(folio) - 1; 2766 int ret = 0; 2767 bool free_delalloc_space = true; 2768 2769 /* 2770 * This is similar to page_mkwrite, we need to reserve the space before 2771 * we take the folio lock. 2772 */ 2773 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2774 folio_size(folio)); 2775 again: 2776 folio_lock(folio); 2777 2778 /* 2779 * Before we queued this fixup, we took a reference on the folio. 2780 * folio->mapping may go NULL, but it shouldn't be moved to a different 2781 * address space. 2782 */ 2783 if (!folio->mapping || !folio_test_dirty(folio) || 2784 !folio_test_checked(folio)) { 2785 /* 2786 * Unfortunately this is a little tricky, either 2787 * 2788 * 1) We got here and our folio had already been dealt with and 2789 * we reserved our space, thus ret == 0, so we need to just 2790 * drop our space reservation and bail. This can happen the 2791 * first time we come into the fixup worker, or could happen 2792 * while waiting for the ordered extent. 2793 * 2) Our folio was already dealt with, but we happened to get an 2794 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2795 * this case we obviously don't have anything to release, but 2796 * because the folio was already dealt with we don't want to 2797 * mark the folio with an error, so make sure we're resetting 2798 * ret to 0. This is why we have this check _before_ the ret 2799 * check, because we do not want to have a surprise ENOSPC 2800 * when the folio was already properly dealt with. 2801 */ 2802 if (!ret) { 2803 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2804 btrfs_delalloc_release_space(inode, data_reserved, 2805 page_start, folio_size(folio), 2806 true); 2807 } 2808 ret = 0; 2809 goto out_page; 2810 } 2811 2812 /* 2813 * We can't mess with the folio state unless it is locked, so now that 2814 * it is locked bail if we failed to make our space reservation. 2815 */ 2816 if (ret) 2817 goto out_page; 2818 2819 btrfs_lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2820 2821 /* already ordered? We're done */ 2822 if (folio_test_ordered(folio)) 2823 goto out_reserved; 2824 2825 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2826 if (ordered) { 2827 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, 2828 &cached_state); 2829 folio_unlock(folio); 2830 btrfs_start_ordered_extent(ordered); 2831 btrfs_put_ordered_extent(ordered); 2832 goto again; 2833 } 2834 2835 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2836 &cached_state); 2837 if (ret) 2838 goto out_reserved; 2839 2840 /* 2841 * Everything went as planned, we're now the owner of a dirty page with 2842 * delayed allocation bits set and space reserved for our COW 2843 * destination. 2844 * 2845 * The page was dirty when we started, nothing should have cleaned it. 2846 */ 2847 BUG_ON(!folio_test_dirty(folio)); 2848 free_delalloc_space = false; 2849 out_reserved: 2850 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2851 if (free_delalloc_space) 2852 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2853 PAGE_SIZE, true); 2854 btrfs_unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2855 out_page: 2856 if (ret) { 2857 /* 2858 * We hit ENOSPC or other errors. Update the mapping and page 2859 * to reflect the errors and clean the page. 2860 */ 2861 mapping_set_error(folio->mapping, ret); 2862 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2863 folio_size(folio), !ret); 2864 folio_clear_dirty_for_io(folio); 2865 } 2866 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2867 folio_unlock(folio); 2868 folio_put(folio); 2869 kfree(fixup); 2870 extent_changeset_free(data_reserved); 2871 /* 2872 * As a precaution, do a delayed iput in case it would be the last iput 2873 * that could need flushing space. Recursing back to fixup worker would 2874 * deadlock. 2875 */ 2876 btrfs_add_delayed_iput(inode); 2877 } 2878 2879 /* 2880 * There are a few paths in the higher layers of the kernel that directly 2881 * set the folio dirty bit without asking the filesystem if it is a 2882 * good idea. This causes problems because we want to make sure COW 2883 * properly happens and the data=ordered rules are followed. 2884 * 2885 * In our case any range that doesn't have the ORDERED bit set 2886 * hasn't been properly setup for IO. We kick off an async process 2887 * to fix it up. The async helper will wait for ordered extents, set 2888 * the delalloc bit and make it safe to write the folio. 2889 */ 2890 int btrfs_writepage_cow_fixup(struct folio *folio) 2891 { 2892 struct inode *inode = folio->mapping->host; 2893 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2894 struct btrfs_writepage_fixup *fixup; 2895 2896 /* This folio has ordered extent covering it already */ 2897 if (folio_test_ordered(folio)) 2898 return 0; 2899 2900 /* 2901 * For experimental build, we error out instead of EAGAIN. 2902 * 2903 * We should not hit such out-of-band dirty folios anymore. 2904 */ 2905 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2906 DEBUG_WARN(); 2907 btrfs_err_rl(fs_info, 2908 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2909 btrfs_root_id(BTRFS_I(inode)->root), 2910 btrfs_ino(BTRFS_I(inode)), 2911 folio_pos(folio)); 2912 return -EUCLEAN; 2913 } 2914 2915 /* 2916 * folio_checked is set below when we create a fixup worker for this 2917 * folio, don't try to create another one if we're already 2918 * folio_test_checked. 2919 * 2920 * The extent_io writepage code will redirty the foio if we send back 2921 * EAGAIN. 2922 */ 2923 if (folio_test_checked(folio)) 2924 return -EAGAIN; 2925 2926 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2927 if (!fixup) 2928 return -EAGAIN; 2929 2930 /* 2931 * We are already holding a reference to this inode from 2932 * write_cache_pages. We need to hold it because the space reservation 2933 * takes place outside of the folio lock, and we can't trust 2934 * folio->mapping outside of the folio lock. 2935 */ 2936 ihold(inode); 2937 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2938 folio_get(folio); 2939 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2940 fixup->folio = folio; 2941 fixup->inode = BTRFS_I(inode); 2942 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2943 2944 return -EAGAIN; 2945 } 2946 2947 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2948 struct btrfs_inode *inode, u64 file_pos, 2949 struct btrfs_file_extent_item *stack_fi, 2950 const bool update_inode_bytes, 2951 u64 qgroup_reserved) 2952 { 2953 struct btrfs_root *root = inode->root; 2954 const u64 sectorsize = root->fs_info->sectorsize; 2955 BTRFS_PATH_AUTO_FREE(path); 2956 struct extent_buffer *leaf; 2957 struct btrfs_key ins; 2958 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2959 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2960 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2961 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2962 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2963 struct btrfs_drop_extents_args drop_args = { 0 }; 2964 int ret; 2965 2966 path = btrfs_alloc_path(); 2967 if (!path) 2968 return -ENOMEM; 2969 2970 /* 2971 * we may be replacing one extent in the tree with another. 2972 * The new extent is pinned in the extent map, and we don't want 2973 * to drop it from the cache until it is completely in the btree. 2974 * 2975 * So, tell btrfs_drop_extents to leave this extent in the cache. 2976 * the caller is expected to unpin it and allow it to be merged 2977 * with the others. 2978 */ 2979 drop_args.path = path; 2980 drop_args.start = file_pos; 2981 drop_args.end = file_pos + num_bytes; 2982 drop_args.replace_extent = true; 2983 drop_args.extent_item_size = sizeof(*stack_fi); 2984 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2985 if (ret) 2986 goto out; 2987 2988 if (!drop_args.extent_inserted) { 2989 ins.objectid = btrfs_ino(inode); 2990 ins.type = BTRFS_EXTENT_DATA_KEY; 2991 ins.offset = file_pos; 2992 2993 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2994 sizeof(*stack_fi)); 2995 if (ret) 2996 goto out; 2997 } 2998 leaf = path->nodes[0]; 2999 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 3000 write_extent_buffer(leaf, stack_fi, 3001 btrfs_item_ptr_offset(leaf, path->slots[0]), 3002 sizeof(struct btrfs_file_extent_item)); 3003 3004 btrfs_release_path(path); 3005 3006 /* 3007 * If we dropped an inline extent here, we know the range where it is 3008 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3009 * number of bytes only for that range containing the inline extent. 3010 * The remaining of the range will be processed when clearing the 3011 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3012 */ 3013 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3014 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3015 3016 inline_size = drop_args.bytes_found - inline_size; 3017 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3018 drop_args.bytes_found -= inline_size; 3019 num_bytes -= sectorsize; 3020 } 3021 3022 if (update_inode_bytes) 3023 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3024 3025 ins.objectid = disk_bytenr; 3026 ins.type = BTRFS_EXTENT_ITEM_KEY; 3027 ins.offset = disk_num_bytes; 3028 3029 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3030 if (ret) 3031 goto out; 3032 3033 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3034 file_pos - offset, 3035 qgroup_reserved, &ins); 3036 out: 3037 return ret; 3038 } 3039 3040 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3041 u64 start, u64 len) 3042 { 3043 struct btrfs_block_group *cache; 3044 3045 cache = btrfs_lookup_block_group(fs_info, start); 3046 ASSERT(cache); 3047 3048 spin_lock(&cache->lock); 3049 cache->delalloc_bytes -= len; 3050 spin_unlock(&cache->lock); 3051 3052 btrfs_put_block_group(cache); 3053 } 3054 3055 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3056 struct btrfs_ordered_extent *oe) 3057 { 3058 struct btrfs_file_extent_item stack_fi; 3059 bool update_inode_bytes; 3060 u64 num_bytes = oe->num_bytes; 3061 u64 ram_bytes = oe->ram_bytes; 3062 3063 memset(&stack_fi, 0, sizeof(stack_fi)); 3064 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3065 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3066 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3067 oe->disk_num_bytes); 3068 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3069 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3070 num_bytes = oe->truncated_len; 3071 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3072 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3073 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3074 /* Encryption and other encoding is reserved and all 0 */ 3075 3076 /* 3077 * For delalloc, when completing an ordered extent we update the inode's 3078 * bytes when clearing the range in the inode's io tree, so pass false 3079 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3080 * except if the ordered extent was truncated. 3081 */ 3082 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3083 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3084 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3085 3086 return insert_reserved_file_extent(trans, oe->inode, 3087 oe->file_offset, &stack_fi, 3088 update_inode_bytes, oe->qgroup_rsv); 3089 } 3090 3091 /* 3092 * As ordered data IO finishes, this gets called so we can finish 3093 * an ordered extent if the range of bytes in the file it covers are 3094 * fully written. 3095 */ 3096 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3097 { 3098 struct btrfs_inode *inode = ordered_extent->inode; 3099 struct btrfs_root *root = inode->root; 3100 struct btrfs_fs_info *fs_info = root->fs_info; 3101 struct btrfs_trans_handle *trans = NULL; 3102 struct extent_io_tree *io_tree = &inode->io_tree; 3103 struct extent_state *cached_state = NULL; 3104 u64 start, end; 3105 int compress_type = 0; 3106 int ret = 0; 3107 u64 logical_len = ordered_extent->num_bytes; 3108 bool freespace_inode; 3109 bool truncated = false; 3110 bool clear_reserved_extent = true; 3111 unsigned int clear_bits = EXTENT_DEFRAG; 3112 3113 start = ordered_extent->file_offset; 3114 end = start + ordered_extent->num_bytes - 1; 3115 3116 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3117 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3118 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3119 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3120 clear_bits |= EXTENT_DELALLOC_NEW; 3121 3122 freespace_inode = btrfs_is_free_space_inode(inode); 3123 if (!freespace_inode) 3124 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3125 3126 if (unlikely(test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags))) { 3127 ret = -EIO; 3128 goto out; 3129 } 3130 3131 ret = btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3132 ordered_extent->disk_num_bytes); 3133 if (ret) 3134 goto out; 3135 3136 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3137 truncated = true; 3138 logical_len = ordered_extent->truncated_len; 3139 /* Truncated the entire extent, don't bother adding */ 3140 if (!logical_len) 3141 goto out; 3142 } 3143 3144 /* 3145 * If it's a COW write we need to lock the extent range as we will be 3146 * inserting/replacing file extent items and unpinning an extent map. 3147 * This must be taken before joining a transaction, as it's a higher 3148 * level lock (like the inode's VFS lock), otherwise we can run into an 3149 * ABBA deadlock with other tasks (transactions work like a lock, 3150 * depending on their current state). 3151 */ 3152 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3153 clear_bits |= EXTENT_LOCKED | EXTENT_FINISHING_ORDERED; 3154 btrfs_lock_extent_bits(io_tree, start, end, 3155 EXTENT_LOCKED | EXTENT_FINISHING_ORDERED, 3156 &cached_state); 3157 } 3158 3159 if (freespace_inode) 3160 trans = btrfs_join_transaction_spacecache(root); 3161 else 3162 trans = btrfs_join_transaction(root); 3163 if (IS_ERR(trans)) { 3164 ret = PTR_ERR(trans); 3165 trans = NULL; 3166 goto out; 3167 } 3168 3169 trans->block_rsv = &inode->block_rsv; 3170 3171 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3172 if (unlikely(ret)) { 3173 btrfs_abort_transaction(trans, ret); 3174 goto out; 3175 } 3176 3177 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3178 /* Logic error */ 3179 ASSERT(list_empty(&ordered_extent->list)); 3180 if (unlikely(!list_empty(&ordered_extent->list))) { 3181 ret = -EINVAL; 3182 btrfs_abort_transaction(trans, ret); 3183 goto out; 3184 } 3185 3186 btrfs_inode_safe_disk_i_size_write(inode, 0); 3187 ret = btrfs_update_inode_fallback(trans, inode); 3188 if (unlikely(ret)) { 3189 /* -ENOMEM or corruption */ 3190 btrfs_abort_transaction(trans, ret); 3191 } 3192 goto out; 3193 } 3194 3195 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3196 compress_type = ordered_extent->compress_type; 3197 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3198 BUG_ON(compress_type); 3199 ret = btrfs_mark_extent_written(trans, inode, 3200 ordered_extent->file_offset, 3201 ordered_extent->file_offset + 3202 logical_len); 3203 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3204 ordered_extent->disk_num_bytes); 3205 } else { 3206 BUG_ON(root == fs_info->tree_root); 3207 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3208 if (!ret) { 3209 clear_reserved_extent = false; 3210 btrfs_release_delalloc_bytes(fs_info, 3211 ordered_extent->disk_bytenr, 3212 ordered_extent->disk_num_bytes); 3213 } 3214 } 3215 if (unlikely(ret < 0)) { 3216 btrfs_abort_transaction(trans, ret); 3217 goto out; 3218 } 3219 3220 ret = btrfs_unpin_extent_cache(inode, ordered_extent->file_offset, 3221 ordered_extent->num_bytes, trans->transid); 3222 if (unlikely(ret < 0)) { 3223 btrfs_abort_transaction(trans, ret); 3224 goto out; 3225 } 3226 3227 ret = add_pending_csums(trans, &ordered_extent->list); 3228 if (unlikely(ret)) { 3229 btrfs_abort_transaction(trans, ret); 3230 goto out; 3231 } 3232 3233 /* 3234 * If this is a new delalloc range, clear its new delalloc flag to 3235 * update the inode's number of bytes. This needs to be done first 3236 * before updating the inode item. 3237 */ 3238 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3239 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3240 btrfs_clear_extent_bit(&inode->io_tree, start, end, 3241 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3242 &cached_state); 3243 3244 btrfs_inode_safe_disk_i_size_write(inode, 0); 3245 ret = btrfs_update_inode_fallback(trans, inode); 3246 if (unlikely(ret)) { /* -ENOMEM or corruption */ 3247 btrfs_abort_transaction(trans, ret); 3248 goto out; 3249 } 3250 out: 3251 btrfs_clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3252 &cached_state); 3253 3254 if (trans) 3255 btrfs_end_transaction(trans); 3256 3257 if (ret || truncated) { 3258 /* 3259 * If we failed to finish this ordered extent for any reason we 3260 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3261 * extent, and mark the inode with the error if it wasn't 3262 * already set. Any error during writeback would have already 3263 * set the mapping error, so we need to set it if we're the ones 3264 * marking this ordered extent as failed. 3265 */ 3266 if (ret) 3267 btrfs_mark_ordered_extent_error(ordered_extent); 3268 3269 /* 3270 * Drop extent maps for the part of the extent we didn't write. 3271 * 3272 * We have an exception here for the free_space_inode, this is 3273 * because when we do btrfs_get_extent() on the free space inode 3274 * we will search the commit root. If this is a new block group 3275 * we won't find anything, and we will trip over the assert in 3276 * writepage where we do ASSERT(em->block_start != 3277 * EXTENT_MAP_HOLE). 3278 * 3279 * Theoretically we could also skip this for any NOCOW extent as 3280 * we don't mess with the extent map tree in the NOCOW case, but 3281 * for now simply skip this if we are the free space inode. 3282 */ 3283 if (!btrfs_is_free_space_inode(inode)) { 3284 u64 unwritten_start = start; 3285 3286 if (truncated) 3287 unwritten_start += logical_len; 3288 3289 btrfs_drop_extent_map_range(inode, unwritten_start, 3290 end, false); 3291 } 3292 3293 /* 3294 * If the ordered extent had an IOERR or something else went 3295 * wrong we need to return the space for this ordered extent 3296 * back to the allocator. We only free the extent in the 3297 * truncated case if we didn't write out the extent at all. 3298 * 3299 * If we made it past insert_reserved_file_extent before we 3300 * errored out then we don't need to do this as the accounting 3301 * has already been done. 3302 */ 3303 if ((ret || !logical_len) && 3304 clear_reserved_extent && 3305 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3306 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3307 /* 3308 * Discard the range before returning it back to the 3309 * free space pool 3310 */ 3311 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3312 btrfs_discard_extent(fs_info, 3313 ordered_extent->disk_bytenr, 3314 ordered_extent->disk_num_bytes, 3315 NULL); 3316 btrfs_free_reserved_extent(fs_info, 3317 ordered_extent->disk_bytenr, 3318 ordered_extent->disk_num_bytes, true); 3319 /* 3320 * Actually free the qgroup rsv which was released when 3321 * the ordered extent was created. 3322 */ 3323 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3324 ordered_extent->qgroup_rsv, 3325 BTRFS_QGROUP_RSV_DATA); 3326 } 3327 } 3328 3329 /* 3330 * This needs to be done to make sure anybody waiting knows we are done 3331 * updating everything for this ordered extent. 3332 */ 3333 btrfs_remove_ordered_extent(inode, ordered_extent); 3334 3335 /* once for us */ 3336 btrfs_put_ordered_extent(ordered_extent); 3337 /* once for the tree */ 3338 btrfs_put_ordered_extent(ordered_extent); 3339 3340 return ret; 3341 } 3342 3343 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3344 { 3345 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3346 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3347 list_empty(&ordered->bioc_list)) 3348 btrfs_finish_ordered_zoned(ordered); 3349 return btrfs_finish_one_ordered(ordered); 3350 } 3351 3352 /* 3353 * Calculate the checksum of an fs block at physical memory address @paddr, 3354 * and save the result to @dest. 3355 * 3356 * The folio containing @paddr must be large enough to contain a full fs block. 3357 */ 3358 void btrfs_calculate_block_csum_folio(struct btrfs_fs_info *fs_info, 3359 const phys_addr_t paddr, u8 *dest) 3360 { 3361 struct folio *folio = page_folio(phys_to_page(paddr)); 3362 const u32 blocksize = fs_info->sectorsize; 3363 const u32 step = min(blocksize, PAGE_SIZE); 3364 const u32 nr_steps = blocksize / step; 3365 phys_addr_t paddrs[BTRFS_MAX_BLOCKSIZE / PAGE_SIZE]; 3366 3367 /* The full block must be inside the folio. */ 3368 ASSERT(offset_in_folio(folio, paddr) + blocksize <= folio_size(folio)); 3369 3370 for (int i = 0; i < nr_steps; i++) { 3371 u32 pindex = offset_in_folio(folio, paddr + i * step) >> PAGE_SHIFT; 3372 3373 /* 3374 * For bs <= ps cases, we will only run the loop once, so the offset 3375 * inside the page will only added to paddrs[0]. 3376 * 3377 * For bs > ps cases, the block must be page aligned, thus offset 3378 * inside the page will always be 0. 3379 */ 3380 paddrs[i] = page_to_phys(folio_page(folio, pindex)) + offset_in_page(paddr); 3381 } 3382 return btrfs_calculate_block_csum_pages(fs_info, paddrs, dest); 3383 } 3384 3385 /* 3386 * Calculate the checksum of a fs block backed by multiple noncontiguous pages 3387 * at @paddrs[] and save the result to @dest. 3388 * 3389 * The folio containing @paddr must be large enough to contain a full fs block. 3390 */ 3391 void btrfs_calculate_block_csum_pages(struct btrfs_fs_info *fs_info, 3392 const phys_addr_t paddrs[], u8 *dest) 3393 { 3394 const u32 blocksize = fs_info->sectorsize; 3395 const u32 step = min(blocksize, PAGE_SIZE); 3396 const u32 nr_steps = blocksize / step; 3397 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3398 3399 shash->tfm = fs_info->csum_shash; 3400 crypto_shash_init(shash); 3401 for (int i = 0; i < nr_steps; i++) { 3402 const phys_addr_t paddr = paddrs[i]; 3403 void *kaddr; 3404 3405 ASSERT(offset_in_page(paddr) + step <= PAGE_SIZE); 3406 kaddr = kmap_local_page(phys_to_page(paddr)) + offset_in_page(paddr); 3407 crypto_shash_update(shash, kaddr, step); 3408 kunmap_local(kaddr); 3409 } 3410 crypto_shash_final(shash, dest); 3411 } 3412 3413 /* 3414 * Verify the checksum for a single sector without any extra action that depend 3415 * on the type of I/O. 3416 * 3417 * @kaddr must be a properly kmapped address. 3418 */ 3419 int btrfs_check_block_csum(struct btrfs_fs_info *fs_info, phys_addr_t paddr, u8 *csum, 3420 const u8 * const csum_expected) 3421 { 3422 btrfs_calculate_block_csum_folio(fs_info, paddr, csum); 3423 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3424 return -EIO; 3425 return 0; 3426 } 3427 3428 /* 3429 * Verify the checksum of a single data sector, which can be scattered at 3430 * different noncontiguous pages. 3431 * 3432 * @bbio: btrfs_io_bio which contains the csum 3433 * @dev: device the sector is on 3434 * @bio_offset: offset to the beginning of the bio (in bytes) 3435 * @paddrs: physical addresses which back the fs block 3436 * 3437 * Check if the checksum on a data block is valid. When a checksum mismatch is 3438 * detected, report the error and fill the corrupted range with zero. 3439 * 3440 * Return %true if the sector is ok or had no checksum to start with, else %false. 3441 */ 3442 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3443 u32 bio_offset, const phys_addr_t paddrs[]) 3444 { 3445 struct btrfs_inode *inode = bbio->inode; 3446 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3447 const u32 blocksize = fs_info->sectorsize; 3448 const u32 step = min(blocksize, PAGE_SIZE); 3449 const u32 nr_steps = blocksize / step; 3450 u64 file_offset = bbio->file_offset + bio_offset; 3451 u64 end = file_offset + blocksize - 1; 3452 u8 *csum_expected; 3453 u8 csum[BTRFS_CSUM_SIZE]; 3454 3455 if (!bbio->csum) 3456 return true; 3457 3458 if (btrfs_is_data_reloc_root(inode->root) && 3459 btrfs_test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3460 NULL)) { 3461 /* Skip the range without csum for data reloc inode */ 3462 btrfs_clear_extent_bit(&inode->io_tree, file_offset, end, 3463 EXTENT_NODATASUM, NULL); 3464 return true; 3465 } 3466 3467 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3468 fs_info->csum_size; 3469 btrfs_calculate_block_csum_pages(fs_info, paddrs, csum); 3470 if (unlikely(memcmp(csum, csum_expected, fs_info->csum_size) != 0)) 3471 goto zeroit; 3472 return true; 3473 3474 zeroit: 3475 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3476 bbio->mirror_num); 3477 if (dev) 3478 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3479 for (int i = 0; i < nr_steps; i++) 3480 memzero_page(phys_to_page(paddrs[i]), offset_in_page(paddrs[i]), step); 3481 return false; 3482 } 3483 3484 /* 3485 * Perform a delayed iput on @inode. 3486 * 3487 * @inode: The inode we want to perform iput on 3488 * 3489 * This function uses the generic vfs_inode::i_count to track whether we should 3490 * just decrement it (in case it's > 1) or if this is the last iput then link 3491 * the inode to the delayed iput machinery. Delayed iputs are processed at 3492 * transaction commit time/superblock commit/cleaner kthread. 3493 */ 3494 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3495 { 3496 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3497 unsigned long flags; 3498 3499 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3500 return; 3501 3502 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3503 atomic_inc(&fs_info->nr_delayed_iputs); 3504 /* 3505 * Need to be irq safe here because we can be called from either an irq 3506 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3507 * context. 3508 */ 3509 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3510 ASSERT(list_empty(&inode->delayed_iput)); 3511 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3512 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3513 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3514 wake_up_process(fs_info->cleaner_kthread); 3515 } 3516 3517 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3518 struct btrfs_inode *inode) 3519 { 3520 list_del_init(&inode->delayed_iput); 3521 spin_unlock_irq(&fs_info->delayed_iput_lock); 3522 iput(&inode->vfs_inode); 3523 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3524 wake_up(&fs_info->delayed_iputs_wait); 3525 spin_lock_irq(&fs_info->delayed_iput_lock); 3526 } 3527 3528 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3529 struct btrfs_inode *inode) 3530 { 3531 if (!list_empty(&inode->delayed_iput)) { 3532 spin_lock_irq(&fs_info->delayed_iput_lock); 3533 if (!list_empty(&inode->delayed_iput)) 3534 run_delayed_iput_locked(fs_info, inode); 3535 spin_unlock_irq(&fs_info->delayed_iput_lock); 3536 } 3537 } 3538 3539 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3540 { 3541 /* 3542 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3543 * calls btrfs_add_delayed_iput() and that needs to lock 3544 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3545 * prevent a deadlock. 3546 */ 3547 spin_lock_irq(&fs_info->delayed_iput_lock); 3548 while (!list_empty(&fs_info->delayed_iputs)) { 3549 struct btrfs_inode *inode; 3550 3551 inode = list_first_entry(&fs_info->delayed_iputs, 3552 struct btrfs_inode, delayed_iput); 3553 run_delayed_iput_locked(fs_info, inode); 3554 if (need_resched()) { 3555 spin_unlock_irq(&fs_info->delayed_iput_lock); 3556 cond_resched(); 3557 spin_lock_irq(&fs_info->delayed_iput_lock); 3558 } 3559 } 3560 spin_unlock_irq(&fs_info->delayed_iput_lock); 3561 } 3562 3563 /* 3564 * Wait for flushing all delayed iputs 3565 * 3566 * @fs_info: the filesystem 3567 * 3568 * This will wait on any delayed iputs that are currently running with KILLABLE 3569 * set. Once they are all done running we will return, unless we are killed in 3570 * which case we return EINTR. This helps in user operations like fallocate etc 3571 * that might get blocked on the iputs. 3572 * 3573 * Return EINTR if we were killed, 0 if nothing's pending 3574 */ 3575 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3576 { 3577 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3578 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3579 if (ret) 3580 return -EINTR; 3581 return 0; 3582 } 3583 3584 /* 3585 * This creates an orphan entry for the given inode in case something goes wrong 3586 * in the middle of an unlink. 3587 */ 3588 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3589 struct btrfs_inode *inode) 3590 { 3591 int ret; 3592 3593 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3594 if (unlikely(ret && ret != -EEXIST)) { 3595 btrfs_abort_transaction(trans, ret); 3596 return ret; 3597 } 3598 3599 return 0; 3600 } 3601 3602 /* 3603 * We have done the delete so we can go ahead and remove the orphan item for 3604 * this particular inode. 3605 */ 3606 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3607 struct btrfs_inode *inode) 3608 { 3609 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3610 } 3611 3612 /* 3613 * this cleans up any orphans that may be left on the list from the last use 3614 * of this root. 3615 */ 3616 int btrfs_orphan_cleanup(struct btrfs_root *root) 3617 { 3618 struct btrfs_fs_info *fs_info = root->fs_info; 3619 BTRFS_PATH_AUTO_FREE(path); 3620 struct extent_buffer *leaf; 3621 struct btrfs_key key, found_key; 3622 struct btrfs_trans_handle *trans; 3623 u64 last_objectid = 0; 3624 int ret = 0, nr_unlink = 0; 3625 3626 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3627 return 0; 3628 3629 path = btrfs_alloc_path(); 3630 if (!path) { 3631 ret = -ENOMEM; 3632 goto out; 3633 } 3634 path->reada = READA_BACK; 3635 3636 key.objectid = BTRFS_ORPHAN_OBJECTID; 3637 key.type = BTRFS_ORPHAN_ITEM_KEY; 3638 key.offset = (u64)-1; 3639 3640 while (1) { 3641 struct btrfs_inode *inode; 3642 3643 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3644 if (ret < 0) 3645 goto out; 3646 3647 /* 3648 * if ret == 0 means we found what we were searching for, which 3649 * is weird, but possible, so only screw with path if we didn't 3650 * find the key and see if we have stuff that matches 3651 */ 3652 if (ret > 0) { 3653 ret = 0; 3654 if (path->slots[0] == 0) 3655 break; 3656 path->slots[0]--; 3657 } 3658 3659 /* pull out the item */ 3660 leaf = path->nodes[0]; 3661 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3662 3663 /* make sure the item matches what we want */ 3664 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3665 break; 3666 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3667 break; 3668 3669 /* release the path since we're done with it */ 3670 btrfs_release_path(path); 3671 3672 /* 3673 * this is where we are basically btrfs_lookup, without the 3674 * crossing root thing. we store the inode number in the 3675 * offset of the orphan item. 3676 */ 3677 3678 if (found_key.offset == last_objectid) { 3679 /* 3680 * We found the same inode as before. This means we were 3681 * not able to remove its items via eviction triggered 3682 * by an iput(). A transaction abort may have happened, 3683 * due to -ENOSPC for example, so try to grab the error 3684 * that lead to a transaction abort, if any. 3685 */ 3686 btrfs_err(fs_info, 3687 "Error removing orphan entry, stopping orphan cleanup"); 3688 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3689 goto out; 3690 } 3691 3692 last_objectid = found_key.offset; 3693 3694 found_key.objectid = found_key.offset; 3695 found_key.type = BTRFS_INODE_ITEM_KEY; 3696 found_key.offset = 0; 3697 inode = btrfs_iget(last_objectid, root); 3698 if (IS_ERR(inode)) { 3699 ret = PTR_ERR(inode); 3700 inode = NULL; 3701 if (ret != -ENOENT) 3702 goto out; 3703 } 3704 3705 if (!inode && root == fs_info->tree_root) { 3706 struct btrfs_root *dead_root; 3707 int is_dead_root = 0; 3708 3709 /* 3710 * This is an orphan in the tree root. Currently these 3711 * could come from 2 sources: 3712 * a) a root (snapshot/subvolume) deletion in progress 3713 * b) a free space cache inode 3714 * We need to distinguish those two, as the orphan item 3715 * for a root must not get deleted before the deletion 3716 * of the snapshot/subvolume's tree completes. 3717 * 3718 * btrfs_find_orphan_roots() ran before us, which has 3719 * found all deleted roots and loaded them into 3720 * fs_info->fs_roots_radix. So here we can find if an 3721 * orphan item corresponds to a deleted root by looking 3722 * up the root from that radix tree. 3723 */ 3724 3725 spin_lock(&fs_info->fs_roots_radix_lock); 3726 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3727 (unsigned long)found_key.objectid); 3728 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3729 is_dead_root = 1; 3730 spin_unlock(&fs_info->fs_roots_radix_lock); 3731 3732 if (is_dead_root) { 3733 /* prevent this orphan from being found again */ 3734 key.offset = found_key.objectid - 1; 3735 continue; 3736 } 3737 3738 } 3739 3740 /* 3741 * If we have an inode with links, there are a couple of 3742 * possibilities: 3743 * 3744 * 1. We were halfway through creating fsverity metadata for the 3745 * file. In that case, the orphan item represents incomplete 3746 * fsverity metadata which must be cleaned up with 3747 * btrfs_drop_verity_items and deleting the orphan item. 3748 3749 * 2. Old kernels (before v3.12) used to create an 3750 * orphan item for truncate indicating that there were possibly 3751 * extent items past i_size that needed to be deleted. In v3.12, 3752 * truncate was changed to update i_size in sync with the extent 3753 * items, but the (useless) orphan item was still created. Since 3754 * v4.18, we don't create the orphan item for truncate at all. 3755 * 3756 * So, this item could mean that we need to do a truncate, but 3757 * only if this filesystem was last used on a pre-v3.12 kernel 3758 * and was not cleanly unmounted. The odds of that are quite 3759 * slim, and it's a pain to do the truncate now, so just delete 3760 * the orphan item. 3761 * 3762 * It's also possible that this orphan item was supposed to be 3763 * deleted but wasn't. The inode number may have been reused, 3764 * but either way, we can delete the orphan item. 3765 */ 3766 if (!inode || inode->vfs_inode.i_nlink) { 3767 if (inode) { 3768 ret = btrfs_drop_verity_items(inode); 3769 iput(&inode->vfs_inode); 3770 inode = NULL; 3771 if (ret) 3772 goto out; 3773 } 3774 trans = btrfs_start_transaction(root, 1); 3775 if (IS_ERR(trans)) { 3776 ret = PTR_ERR(trans); 3777 goto out; 3778 } 3779 btrfs_debug(fs_info, "auto deleting %Lu", 3780 found_key.objectid); 3781 ret = btrfs_del_orphan_item(trans, root, 3782 found_key.objectid); 3783 btrfs_end_transaction(trans); 3784 if (ret) 3785 goto out; 3786 continue; 3787 } 3788 3789 nr_unlink++; 3790 3791 /* this will do delete_inode and everything for us */ 3792 iput(&inode->vfs_inode); 3793 } 3794 /* release the path since we're done with it */ 3795 btrfs_release_path(path); 3796 3797 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3798 trans = btrfs_join_transaction(root); 3799 if (!IS_ERR(trans)) 3800 btrfs_end_transaction(trans); 3801 } 3802 3803 if (nr_unlink) 3804 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3805 3806 out: 3807 if (ret) 3808 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3809 return ret; 3810 } 3811 3812 /* 3813 * Look ahead in the leaf for xattrs. If we don't find any then we know there 3814 * can't be any ACLs. 3815 * 3816 * @leaf: the eb leaf where to search 3817 * @slot: the slot the inode is in 3818 * @objectid: the objectid of the inode 3819 * 3820 * Return true if there is xattr/ACL, false otherwise. 3821 */ 3822 static noinline bool acls_after_inode_item(struct extent_buffer *leaf, 3823 int slot, u64 objectid, 3824 int *first_xattr_slot) 3825 { 3826 u32 nritems = btrfs_header_nritems(leaf); 3827 struct btrfs_key found_key; 3828 static u64 xattr_access = 0; 3829 static u64 xattr_default = 0; 3830 int scanned = 0; 3831 3832 if (!xattr_access) { 3833 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3834 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3835 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3836 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3837 } 3838 3839 slot++; 3840 *first_xattr_slot = -1; 3841 while (slot < nritems) { 3842 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3843 3844 /* We found a different objectid, there must be no ACLs. */ 3845 if (found_key.objectid != objectid) 3846 return false; 3847 3848 /* We found an xattr, assume we've got an ACL. */ 3849 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3850 if (*first_xattr_slot == -1) 3851 *first_xattr_slot = slot; 3852 if (found_key.offset == xattr_access || 3853 found_key.offset == xattr_default) 3854 return true; 3855 } 3856 3857 /* 3858 * We found a key greater than an xattr key, there can't be any 3859 * ACLs later on. 3860 */ 3861 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3862 return false; 3863 3864 slot++; 3865 scanned++; 3866 3867 /* 3868 * The item order goes like: 3869 * - inode 3870 * - inode backrefs 3871 * - xattrs 3872 * - extents, 3873 * 3874 * so if there are lots of hard links to an inode there can be 3875 * a lot of backrefs. Don't waste time searching too hard, 3876 * this is just an optimization. 3877 */ 3878 if (scanned >= 8) 3879 break; 3880 } 3881 /* 3882 * We hit the end of the leaf before we found an xattr or something 3883 * larger than an xattr. We have to assume the inode has ACLs. 3884 */ 3885 if (*first_xattr_slot == -1) 3886 *first_xattr_slot = slot; 3887 return true; 3888 } 3889 3890 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3891 { 3892 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3893 3894 if (WARN_ON_ONCE(inode->file_extent_tree)) 3895 return 0; 3896 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3897 return 0; 3898 if (!S_ISREG(inode->vfs_inode.i_mode)) 3899 return 0; 3900 if (btrfs_is_free_space_inode(inode)) 3901 return 0; 3902 3903 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3904 if (!inode->file_extent_tree) 3905 return -ENOMEM; 3906 3907 btrfs_extent_io_tree_init(fs_info, inode->file_extent_tree, 3908 IO_TREE_INODE_FILE_EXTENT); 3909 /* Lockdep class is set only for the file extent tree. */ 3910 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3911 3912 return 0; 3913 } 3914 3915 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3916 { 3917 struct btrfs_root *root = inode->root; 3918 struct btrfs_inode *existing; 3919 const u64 ino = btrfs_ino(inode); 3920 int ret; 3921 3922 if (inode_unhashed(&inode->vfs_inode)) 3923 return 0; 3924 3925 if (prealloc) { 3926 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3927 if (ret) 3928 return ret; 3929 } 3930 3931 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3932 3933 if (xa_is_err(existing)) { 3934 ret = xa_err(existing); 3935 ASSERT(ret != -EINVAL); 3936 ASSERT(ret != -ENOMEM); 3937 return ret; 3938 } else if (existing) { 3939 WARN_ON(!(inode_state_read_once(&existing->vfs_inode) & (I_WILL_FREE | I_FREEING))); 3940 } 3941 3942 return 0; 3943 } 3944 3945 /* 3946 * Read a locked inode from the btree into the in-memory inode and add it to 3947 * its root list/tree. 3948 * 3949 * On failure clean up the inode. 3950 */ 3951 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3952 { 3953 struct btrfs_root *root = inode->root; 3954 struct btrfs_fs_info *fs_info = root->fs_info; 3955 struct extent_buffer *leaf; 3956 struct btrfs_inode_item *inode_item; 3957 struct inode *vfs_inode = &inode->vfs_inode; 3958 struct btrfs_key location; 3959 unsigned long ptr; 3960 int maybe_acls; 3961 u32 rdev; 3962 int ret; 3963 bool filled = false; 3964 int first_xattr_slot; 3965 3966 ret = btrfs_fill_inode(inode, &rdev); 3967 if (!ret) 3968 filled = true; 3969 3970 ASSERT(path); 3971 3972 btrfs_get_inode_key(inode, &location); 3973 3974 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3975 if (ret) { 3976 /* 3977 * ret > 0 can come from btrfs_search_slot called by 3978 * btrfs_lookup_inode(), this means the inode was not found. 3979 */ 3980 if (ret > 0) 3981 ret = -ENOENT; 3982 goto out; 3983 } 3984 3985 leaf = path->nodes[0]; 3986 3987 if (filled) 3988 goto cache_index; 3989 3990 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3991 struct btrfs_inode_item); 3992 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3993 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3994 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3995 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3996 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3997 3998 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3999 btrfs_timespec_nsec(leaf, &inode_item->atime)); 4000 4001 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 4002 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 4003 4004 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 4005 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 4006 4007 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 4008 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 4009 4010 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 4011 inode->generation = btrfs_inode_generation(leaf, inode_item); 4012 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 4013 4014 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 4015 vfs_inode->i_generation = inode->generation; 4016 vfs_inode->i_rdev = 0; 4017 rdev = btrfs_inode_rdev(leaf, inode_item); 4018 4019 if (S_ISDIR(vfs_inode->i_mode)) 4020 inode->index_cnt = (u64)-1; 4021 4022 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 4023 &inode->flags, &inode->ro_flags); 4024 btrfs_update_inode_mapping_flags(inode); 4025 btrfs_set_inode_mapping_order(inode); 4026 4027 cache_index: 4028 ret = btrfs_init_file_extent_tree(inode); 4029 if (ret) 4030 goto out; 4031 btrfs_inode_set_file_extent_range(inode, 0, 4032 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 4033 /* 4034 * If we were modified in the current generation and evicted from memory 4035 * and then re-read we need to do a full sync since we don't have any 4036 * idea about which extents were modified before we were evicted from 4037 * cache. 4038 * 4039 * This is required for both inode re-read from disk and delayed inode 4040 * in the delayed_nodes xarray. 4041 */ 4042 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 4043 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 4044 4045 /* 4046 * We don't persist the id of the transaction where an unlink operation 4047 * against the inode was last made. So here we assume the inode might 4048 * have been evicted, and therefore the exact value of last_unlink_trans 4049 * lost, and set it to last_trans to avoid metadata inconsistencies 4050 * between the inode and its parent if the inode is fsync'ed and the log 4051 * replayed. For example, in the scenario: 4052 * 4053 * touch mydir/foo 4054 * ln mydir/foo mydir/bar 4055 * sync 4056 * unlink mydir/bar 4057 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 4058 * xfs_io -c fsync mydir/foo 4059 * <power failure> 4060 * mount fs, triggers fsync log replay 4061 * 4062 * We must make sure that when we fsync our inode foo we also log its 4063 * parent inode, otherwise after log replay the parent still has the 4064 * dentry with the "bar" name but our inode foo has a link count of 1 4065 * and doesn't have an inode ref with the name "bar" anymore. 4066 * 4067 * Setting last_unlink_trans to last_trans is a pessimistic approach, 4068 * but it guarantees correctness at the expense of occasional full 4069 * transaction commits on fsync if our inode is a directory, or if our 4070 * inode is not a directory, logging its parent unnecessarily. 4071 */ 4072 inode->last_unlink_trans = inode->last_trans; 4073 4074 /* 4075 * Same logic as for last_unlink_trans. We don't persist the generation 4076 * of the last transaction where this inode was used for a reflink 4077 * operation, so after eviction and reloading the inode we must be 4078 * pessimistic and assume the last transaction that modified the inode. 4079 */ 4080 inode->last_reflink_trans = inode->last_trans; 4081 4082 path->slots[0]++; 4083 if (vfs_inode->i_nlink != 1 || 4084 path->slots[0] >= btrfs_header_nritems(leaf)) 4085 goto cache_acl; 4086 4087 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4088 if (location.objectid != btrfs_ino(inode)) 4089 goto cache_acl; 4090 4091 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4092 if (location.type == BTRFS_INODE_REF_KEY) { 4093 struct btrfs_inode_ref *ref; 4094 4095 ref = (struct btrfs_inode_ref *)ptr; 4096 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4097 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4098 struct btrfs_inode_extref *extref; 4099 4100 extref = (struct btrfs_inode_extref *)ptr; 4101 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4102 } 4103 cache_acl: 4104 /* 4105 * try to precache a NULL acl entry for files that don't have 4106 * any xattrs or acls 4107 */ 4108 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4109 btrfs_ino(inode), &first_xattr_slot); 4110 if (first_xattr_slot != -1) { 4111 path->slots[0] = first_xattr_slot; 4112 ret = btrfs_load_inode_props(inode, path); 4113 if (ret) 4114 btrfs_err(fs_info, 4115 "error loading props for ino %llu (root %llu): %d", 4116 btrfs_ino(inode), btrfs_root_id(root), ret); 4117 } 4118 4119 if (!maybe_acls) 4120 cache_no_acl(vfs_inode); 4121 4122 switch (vfs_inode->i_mode & S_IFMT) { 4123 case S_IFREG: 4124 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4125 vfs_inode->i_fop = &btrfs_file_operations; 4126 vfs_inode->i_op = &btrfs_file_inode_operations; 4127 break; 4128 case S_IFDIR: 4129 vfs_inode->i_fop = &btrfs_dir_file_operations; 4130 vfs_inode->i_op = &btrfs_dir_inode_operations; 4131 break; 4132 case S_IFLNK: 4133 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4134 inode_nohighmem(vfs_inode); 4135 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4136 break; 4137 default: 4138 vfs_inode->i_op = &btrfs_special_inode_operations; 4139 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4140 break; 4141 } 4142 4143 btrfs_sync_inode_flags_to_i_flags(inode); 4144 4145 ret = btrfs_add_inode_to_root(inode, true); 4146 if (ret) 4147 goto out; 4148 4149 return 0; 4150 out: 4151 iget_failed(vfs_inode); 4152 return ret; 4153 } 4154 4155 /* 4156 * given a leaf and an inode, copy the inode fields into the leaf 4157 */ 4158 static void fill_inode_item(struct btrfs_trans_handle *trans, 4159 struct extent_buffer *leaf, 4160 struct btrfs_inode_item *item, 4161 struct inode *inode) 4162 { 4163 u64 flags; 4164 4165 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 4166 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 4167 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 4168 btrfs_set_inode_mode(leaf, item, inode->i_mode); 4169 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 4170 4171 btrfs_set_timespec_sec(leaf, &item->atime, inode_get_atime_sec(inode)); 4172 btrfs_set_timespec_nsec(leaf, &item->atime, inode_get_atime_nsec(inode)); 4173 4174 btrfs_set_timespec_sec(leaf, &item->mtime, inode_get_mtime_sec(inode)); 4175 btrfs_set_timespec_nsec(leaf, &item->mtime, inode_get_mtime_nsec(inode)); 4176 4177 btrfs_set_timespec_sec(leaf, &item->ctime, inode_get_ctime_sec(inode)); 4178 btrfs_set_timespec_nsec(leaf, &item->ctime, inode_get_ctime_nsec(inode)); 4179 4180 btrfs_set_timespec_sec(leaf, &item->otime, BTRFS_I(inode)->i_otime_sec); 4181 btrfs_set_timespec_nsec(leaf, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4182 4183 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 4184 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 4185 btrfs_set_inode_sequence(leaf, item, inode_peek_iversion(inode)); 4186 btrfs_set_inode_transid(leaf, item, trans->transid); 4187 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 4188 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4189 BTRFS_I(inode)->ro_flags); 4190 btrfs_set_inode_flags(leaf, item, flags); 4191 btrfs_set_inode_block_group(leaf, item, 0); 4192 } 4193 4194 /* 4195 * copy everything in the in-memory inode into the btree. 4196 */ 4197 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4198 struct btrfs_inode *inode) 4199 { 4200 struct btrfs_inode_item *inode_item; 4201 BTRFS_PATH_AUTO_FREE(path); 4202 struct extent_buffer *leaf; 4203 struct btrfs_key key; 4204 int ret; 4205 4206 path = btrfs_alloc_path(); 4207 if (!path) 4208 return -ENOMEM; 4209 4210 btrfs_get_inode_key(inode, &key); 4211 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4212 if (ret) { 4213 if (ret > 0) 4214 ret = -ENOENT; 4215 return ret; 4216 } 4217 4218 leaf = path->nodes[0]; 4219 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4220 struct btrfs_inode_item); 4221 4222 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4223 btrfs_set_inode_last_trans(trans, inode); 4224 return 0; 4225 } 4226 4227 /* 4228 * copy everything in the in-memory inode into the btree. 4229 */ 4230 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4231 struct btrfs_inode *inode) 4232 { 4233 struct btrfs_root *root = inode->root; 4234 struct btrfs_fs_info *fs_info = root->fs_info; 4235 int ret; 4236 4237 /* 4238 * If the inode is a free space inode, we can deadlock during commit 4239 * if we put it into the delayed code. 4240 * 4241 * The data relocation inode should also be directly updated 4242 * without delay 4243 */ 4244 if (!btrfs_is_free_space_inode(inode) 4245 && !btrfs_is_data_reloc_root(root) 4246 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4247 btrfs_update_root_times(trans, root); 4248 4249 ret = btrfs_delayed_update_inode(trans, inode); 4250 if (!ret) 4251 btrfs_set_inode_last_trans(trans, inode); 4252 return ret; 4253 } 4254 4255 return btrfs_update_inode_item(trans, inode); 4256 } 4257 4258 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4259 struct btrfs_inode *inode) 4260 { 4261 int ret; 4262 4263 ret = btrfs_update_inode(trans, inode); 4264 if (ret == -ENOSPC) 4265 return btrfs_update_inode_item(trans, inode); 4266 return ret; 4267 } 4268 4269 static void update_time_after_link_or_unlink(struct btrfs_inode *dir) 4270 { 4271 struct timespec64 now; 4272 4273 /* 4274 * If we are replaying a log tree, we do not want to update the mtime 4275 * and ctime of the parent directory with the current time, since the 4276 * log replay procedure is responsible for setting them to their correct 4277 * values (the ones it had when the fsync was done). 4278 */ 4279 if (test_bit(BTRFS_FS_LOG_RECOVERING, &dir->root->fs_info->flags)) 4280 return; 4281 4282 now = inode_set_ctime_current(&dir->vfs_inode); 4283 inode_set_mtime_to_ts(&dir->vfs_inode, now); 4284 } 4285 4286 /* 4287 * unlink helper that gets used here in inode.c and in the tree logging 4288 * recovery code. It remove a link in a directory with a given name, and 4289 * also drops the back refs in the inode to the directory 4290 */ 4291 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4292 struct btrfs_inode *dir, 4293 struct btrfs_inode *inode, 4294 const struct fscrypt_str *name, 4295 struct btrfs_rename_ctx *rename_ctx) 4296 { 4297 struct btrfs_root *root = dir->root; 4298 struct btrfs_fs_info *fs_info = root->fs_info; 4299 struct btrfs_path *path; 4300 int ret = 0; 4301 struct btrfs_dir_item *di; 4302 u64 index; 4303 u64 ino = btrfs_ino(inode); 4304 u64 dir_ino = btrfs_ino(dir); 4305 4306 path = btrfs_alloc_path(); 4307 if (!path) 4308 return -ENOMEM; 4309 4310 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4311 if (IS_ERR_OR_NULL(di)) { 4312 btrfs_free_path(path); 4313 return di ? PTR_ERR(di) : -ENOENT; 4314 } 4315 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4316 /* 4317 * Down the call chains below we'll also need to allocate a path, so no 4318 * need to hold on to this one for longer than necessary. 4319 */ 4320 btrfs_free_path(path); 4321 if (ret) 4322 return ret; 4323 4324 /* 4325 * If we don't have dir index, we have to get it by looking up 4326 * the inode ref, since we get the inode ref, remove it directly, 4327 * it is unnecessary to do delayed deletion. 4328 * 4329 * But if we have dir index, needn't search inode ref to get it. 4330 * Since the inode ref is close to the inode item, it is better 4331 * that we delay to delete it, and just do this deletion when 4332 * we update the inode item. 4333 */ 4334 if (inode->dir_index) { 4335 ret = btrfs_delayed_delete_inode_ref(inode); 4336 if (!ret) { 4337 index = inode->dir_index; 4338 goto skip_backref; 4339 } 4340 } 4341 4342 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4343 if (unlikely(ret)) { 4344 btrfs_crit(fs_info, 4345 "failed to delete reference to %.*s, root %llu inode %llu parent %llu", 4346 name->len, name->name, btrfs_root_id(root), ino, dir_ino); 4347 btrfs_abort_transaction(trans, ret); 4348 return ret; 4349 } 4350 skip_backref: 4351 if (rename_ctx) 4352 rename_ctx->index = index; 4353 4354 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4355 if (unlikely(ret)) { 4356 btrfs_abort_transaction(trans, ret); 4357 return ret; 4358 } 4359 4360 /* 4361 * If we are in a rename context, we don't need to update anything in the 4362 * log. That will be done later during the rename by btrfs_log_new_name(). 4363 * Besides that, doing it here would only cause extra unnecessary btree 4364 * operations on the log tree, increasing latency for applications. 4365 */ 4366 if (!rename_ctx) { 4367 btrfs_del_inode_ref_in_log(trans, name, inode, dir); 4368 btrfs_del_dir_entries_in_log(trans, name, dir, index); 4369 } 4370 4371 /* 4372 * If we have a pending delayed iput we could end up with the final iput 4373 * being run in btrfs-cleaner context. If we have enough of these built 4374 * up we can end up burning a lot of time in btrfs-cleaner without any 4375 * way to throttle the unlinks. Since we're currently holding a ref on 4376 * the inode we can run the delayed iput here without any issues as the 4377 * final iput won't be done until after we drop the ref we're currently 4378 * holding. 4379 */ 4380 btrfs_run_delayed_iput(fs_info, inode); 4381 4382 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4383 inode_inc_iversion(&inode->vfs_inode); 4384 inode_set_ctime_current(&inode->vfs_inode); 4385 inode_inc_iversion(&dir->vfs_inode); 4386 update_time_after_link_or_unlink(dir); 4387 4388 return btrfs_update_inode(trans, dir); 4389 } 4390 4391 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4392 struct btrfs_inode *dir, struct btrfs_inode *inode, 4393 const struct fscrypt_str *name) 4394 { 4395 int ret; 4396 4397 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4398 if (!ret) { 4399 drop_nlink(&inode->vfs_inode); 4400 ret = btrfs_update_inode(trans, inode); 4401 } 4402 return ret; 4403 } 4404 4405 /* 4406 * helper to start transaction for unlink and rmdir. 4407 * 4408 * unlink and rmdir are special in btrfs, they do not always free space, so 4409 * if we cannot make our reservations the normal way try and see if there is 4410 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4411 * allow the unlink to occur. 4412 */ 4413 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4414 { 4415 struct btrfs_root *root = dir->root; 4416 4417 return btrfs_start_transaction_fallback_global_rsv(root, 4418 BTRFS_UNLINK_METADATA_UNITS); 4419 } 4420 4421 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4422 { 4423 struct btrfs_trans_handle *trans; 4424 struct inode *inode = d_inode(dentry); 4425 int ret; 4426 struct fscrypt_name fname; 4427 4428 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4429 if (ret) 4430 return ret; 4431 4432 /* This needs to handle no-key deletions later on */ 4433 4434 trans = __unlink_start_trans(BTRFS_I(dir)); 4435 if (IS_ERR(trans)) { 4436 ret = PTR_ERR(trans); 4437 goto fscrypt_free; 4438 } 4439 4440 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4441 false); 4442 4443 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4444 &fname.disk_name); 4445 if (ret) 4446 goto end_trans; 4447 4448 if (inode->i_nlink == 0) { 4449 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4450 if (ret) 4451 goto end_trans; 4452 } 4453 4454 end_trans: 4455 btrfs_end_transaction(trans); 4456 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4457 fscrypt_free: 4458 fscrypt_free_filename(&fname); 4459 return ret; 4460 } 4461 4462 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4463 struct btrfs_inode *dir, struct dentry *dentry) 4464 { 4465 struct btrfs_root *root = dir->root; 4466 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4467 BTRFS_PATH_AUTO_FREE(path); 4468 struct extent_buffer *leaf; 4469 struct btrfs_dir_item *di; 4470 struct btrfs_key key; 4471 u64 index; 4472 int ret; 4473 u64 objectid; 4474 u64 dir_ino = btrfs_ino(dir); 4475 struct fscrypt_name fname; 4476 4477 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4478 if (ret) 4479 return ret; 4480 4481 /* This needs to handle no-key deletions later on */ 4482 4483 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4484 objectid = btrfs_root_id(inode->root); 4485 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4486 objectid = inode->ref_root_id; 4487 } else { 4488 WARN_ON(1); 4489 fscrypt_free_filename(&fname); 4490 return -EINVAL; 4491 } 4492 4493 path = btrfs_alloc_path(); 4494 if (!path) { 4495 ret = -ENOMEM; 4496 goto out; 4497 } 4498 4499 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4500 &fname.disk_name, -1); 4501 if (IS_ERR_OR_NULL(di)) { 4502 ret = di ? PTR_ERR(di) : -ENOENT; 4503 goto out; 4504 } 4505 4506 leaf = path->nodes[0]; 4507 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4508 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4509 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4510 if (unlikely(ret)) { 4511 btrfs_abort_transaction(trans, ret); 4512 goto out; 4513 } 4514 btrfs_release_path(path); 4515 4516 /* 4517 * This is a placeholder inode for a subvolume we didn't have a 4518 * reference to at the time of the snapshot creation. In the meantime 4519 * we could have renamed the real subvol link into our snapshot, so 4520 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4521 * Instead simply lookup the dir_index_item for this entry so we can 4522 * remove it. Otherwise we know we have a ref to the root and we can 4523 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4524 */ 4525 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4526 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4527 if (IS_ERR(di)) { 4528 ret = PTR_ERR(di); 4529 btrfs_abort_transaction(trans, ret); 4530 goto out; 4531 } 4532 4533 leaf = path->nodes[0]; 4534 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4535 index = key.offset; 4536 btrfs_release_path(path); 4537 } else { 4538 ret = btrfs_del_root_ref(trans, objectid, 4539 btrfs_root_id(root), dir_ino, 4540 &index, &fname.disk_name); 4541 if (unlikely(ret)) { 4542 btrfs_abort_transaction(trans, ret); 4543 goto out; 4544 } 4545 } 4546 4547 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4548 if (unlikely(ret)) { 4549 btrfs_abort_transaction(trans, ret); 4550 goto out; 4551 } 4552 4553 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4554 inode_inc_iversion(&dir->vfs_inode); 4555 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4556 ret = btrfs_update_inode_fallback(trans, dir); 4557 if (ret) 4558 btrfs_abort_transaction(trans, ret); 4559 out: 4560 fscrypt_free_filename(&fname); 4561 return ret; 4562 } 4563 4564 /* 4565 * Helper to check if the subvolume references other subvolumes or if it's 4566 * default. 4567 */ 4568 static noinline int may_destroy_subvol(struct btrfs_root *root) 4569 { 4570 struct btrfs_fs_info *fs_info = root->fs_info; 4571 BTRFS_PATH_AUTO_FREE(path); 4572 struct btrfs_dir_item *di; 4573 struct btrfs_key key; 4574 struct fscrypt_str name = FSTR_INIT("default", 7); 4575 u64 dir_id; 4576 int ret; 4577 4578 path = btrfs_alloc_path(); 4579 if (!path) 4580 return -ENOMEM; 4581 4582 /* Make sure this root isn't set as the default subvol */ 4583 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4584 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4585 dir_id, &name, 0); 4586 if (di && !IS_ERR(di)) { 4587 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4588 if (key.objectid == btrfs_root_id(root)) { 4589 ret = -EPERM; 4590 btrfs_err(fs_info, 4591 "deleting default subvolume %llu is not allowed", 4592 key.objectid); 4593 return ret; 4594 } 4595 btrfs_release_path(path); 4596 } 4597 4598 key.objectid = btrfs_root_id(root); 4599 key.type = BTRFS_ROOT_REF_KEY; 4600 key.offset = (u64)-1; 4601 4602 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4603 if (ret < 0) 4604 return ret; 4605 if (unlikely(ret == 0)) { 4606 /* 4607 * Key with offset -1 found, there would have to exist a root 4608 * with such id, but this is out of valid range. 4609 */ 4610 return -EUCLEAN; 4611 } 4612 4613 ret = 0; 4614 if (path->slots[0] > 0) { 4615 path->slots[0]--; 4616 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4617 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4618 ret = -ENOTEMPTY; 4619 } 4620 4621 return ret; 4622 } 4623 4624 /* Delete all dentries for inodes belonging to the root */ 4625 static void btrfs_prune_dentries(struct btrfs_root *root) 4626 { 4627 struct btrfs_fs_info *fs_info = root->fs_info; 4628 struct btrfs_inode *inode; 4629 u64 min_ino = 0; 4630 4631 if (!BTRFS_FS_ERROR(fs_info)) 4632 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4633 4634 inode = btrfs_find_first_inode(root, min_ino); 4635 while (inode) { 4636 if (icount_read(&inode->vfs_inode) > 1) 4637 d_prune_aliases(&inode->vfs_inode); 4638 4639 min_ino = btrfs_ino(inode) + 1; 4640 /* 4641 * btrfs_drop_inode() will have it removed from the inode 4642 * cache when its usage count hits zero. 4643 */ 4644 iput(&inode->vfs_inode); 4645 cond_resched(); 4646 inode = btrfs_find_first_inode(root, min_ino); 4647 } 4648 } 4649 4650 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4651 { 4652 struct btrfs_root *root = dir->root; 4653 struct btrfs_fs_info *fs_info = root->fs_info; 4654 struct inode *inode = d_inode(dentry); 4655 struct btrfs_root *dest = BTRFS_I(inode)->root; 4656 struct btrfs_trans_handle *trans; 4657 struct btrfs_block_rsv block_rsv; 4658 u64 root_flags; 4659 u64 qgroup_reserved = 0; 4660 int ret; 4661 4662 down_write(&fs_info->subvol_sem); 4663 4664 /* 4665 * Don't allow to delete a subvolume with send in progress. This is 4666 * inside the inode lock so the error handling that has to drop the bit 4667 * again is not run concurrently. 4668 */ 4669 spin_lock(&dest->root_item_lock); 4670 if (dest->send_in_progress) { 4671 spin_unlock(&dest->root_item_lock); 4672 btrfs_warn(fs_info, 4673 "attempt to delete subvolume %llu during send", 4674 btrfs_root_id(dest)); 4675 ret = -EPERM; 4676 goto out_up_write; 4677 } 4678 if (atomic_read(&dest->nr_swapfiles)) { 4679 spin_unlock(&dest->root_item_lock); 4680 btrfs_warn(fs_info, 4681 "attempt to delete subvolume %llu with active swapfile", 4682 btrfs_root_id(root)); 4683 ret = -EPERM; 4684 goto out_up_write; 4685 } 4686 root_flags = btrfs_root_flags(&dest->root_item); 4687 btrfs_set_root_flags(&dest->root_item, 4688 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4689 spin_unlock(&dest->root_item_lock); 4690 4691 ret = may_destroy_subvol(dest); 4692 if (ret) 4693 goto out_undead; 4694 4695 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4696 /* 4697 * One for dir inode, 4698 * two for dir entries, 4699 * two for root ref/backref. 4700 */ 4701 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4702 if (ret) 4703 goto out_undead; 4704 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4705 4706 trans = btrfs_start_transaction(root, 0); 4707 if (IS_ERR(trans)) { 4708 ret = PTR_ERR(trans); 4709 goto out_release; 4710 } 4711 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4712 qgroup_reserved = 0; 4713 trans->block_rsv = &block_rsv; 4714 trans->bytes_reserved = block_rsv.size; 4715 4716 btrfs_record_snapshot_destroy(trans, dir); 4717 4718 ret = btrfs_unlink_subvol(trans, dir, dentry); 4719 if (unlikely(ret)) { 4720 btrfs_abort_transaction(trans, ret); 4721 goto out_end_trans; 4722 } 4723 4724 ret = btrfs_record_root_in_trans(trans, dest); 4725 if (unlikely(ret)) { 4726 btrfs_abort_transaction(trans, ret); 4727 goto out_end_trans; 4728 } 4729 4730 memset(&dest->root_item.drop_progress, 0, 4731 sizeof(dest->root_item.drop_progress)); 4732 btrfs_set_root_drop_level(&dest->root_item, 0); 4733 btrfs_set_root_refs(&dest->root_item, 0); 4734 4735 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4736 ret = btrfs_insert_orphan_item(trans, 4737 fs_info->tree_root, 4738 btrfs_root_id(dest)); 4739 if (unlikely(ret)) { 4740 btrfs_abort_transaction(trans, ret); 4741 goto out_end_trans; 4742 } 4743 } 4744 4745 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4746 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4747 if (unlikely(ret && ret != -ENOENT)) { 4748 btrfs_abort_transaction(trans, ret); 4749 goto out_end_trans; 4750 } 4751 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4752 ret = btrfs_uuid_tree_remove(trans, 4753 dest->root_item.received_uuid, 4754 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4755 btrfs_root_id(dest)); 4756 if (unlikely(ret && ret != -ENOENT)) { 4757 btrfs_abort_transaction(trans, ret); 4758 goto out_end_trans; 4759 } 4760 } 4761 4762 free_anon_bdev(dest->anon_dev); 4763 dest->anon_dev = 0; 4764 out_end_trans: 4765 trans->block_rsv = NULL; 4766 trans->bytes_reserved = 0; 4767 ret = btrfs_end_transaction(trans); 4768 inode->i_flags |= S_DEAD; 4769 out_release: 4770 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4771 if (qgroup_reserved) 4772 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4773 out_undead: 4774 if (ret) { 4775 spin_lock(&dest->root_item_lock); 4776 root_flags = btrfs_root_flags(&dest->root_item); 4777 btrfs_set_root_flags(&dest->root_item, 4778 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4779 spin_unlock(&dest->root_item_lock); 4780 } 4781 out_up_write: 4782 up_write(&fs_info->subvol_sem); 4783 if (!ret) { 4784 d_invalidate(dentry); 4785 btrfs_prune_dentries(dest); 4786 ASSERT(dest->send_in_progress == 0); 4787 } 4788 4789 return ret; 4790 } 4791 4792 static int btrfs_rmdir(struct inode *vfs_dir, struct dentry *dentry) 4793 { 4794 struct btrfs_inode *dir = BTRFS_I(vfs_dir); 4795 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4796 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4797 int ret = 0; 4798 struct btrfs_trans_handle *trans; 4799 struct fscrypt_name fname; 4800 4801 if (inode->vfs_inode.i_size > BTRFS_EMPTY_DIR_SIZE) 4802 return -ENOTEMPTY; 4803 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4804 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4805 btrfs_err(fs_info, 4806 "extent tree v2 doesn't support snapshot deletion yet"); 4807 return -EOPNOTSUPP; 4808 } 4809 return btrfs_delete_subvolume(dir, dentry); 4810 } 4811 4812 ret = fscrypt_setup_filename(vfs_dir, &dentry->d_name, 1, &fname); 4813 if (ret) 4814 return ret; 4815 4816 /* This needs to handle no-key deletions later on */ 4817 4818 trans = __unlink_start_trans(dir); 4819 if (IS_ERR(trans)) { 4820 ret = PTR_ERR(trans); 4821 goto out_notrans; 4822 } 4823 4824 /* 4825 * Propagate the last_unlink_trans value of the deleted dir to its 4826 * parent directory. This is to prevent an unrecoverable log tree in the 4827 * case we do something like this: 4828 * 1) create dir foo 4829 * 2) create snapshot under dir foo 4830 * 3) delete the snapshot 4831 * 4) rmdir foo 4832 * 5) mkdir foo 4833 * 6) fsync foo or some file inside foo 4834 * 4835 * This is because we can't unlink other roots when replaying the dir 4836 * deletes for directory foo. 4837 */ 4838 if (inode->last_unlink_trans >= trans->transid) 4839 btrfs_record_snapshot_destroy(trans, dir); 4840 4841 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4842 ret = btrfs_unlink_subvol(trans, dir, dentry); 4843 goto out; 4844 } 4845 4846 ret = btrfs_orphan_add(trans, inode); 4847 if (ret) 4848 goto out; 4849 4850 /* now the directory is empty */ 4851 ret = btrfs_unlink_inode(trans, dir, inode, &fname.disk_name); 4852 if (!ret) 4853 btrfs_i_size_write(inode, 0); 4854 out: 4855 btrfs_end_transaction(trans); 4856 out_notrans: 4857 btrfs_btree_balance_dirty(fs_info); 4858 fscrypt_free_filename(&fname); 4859 4860 return ret; 4861 } 4862 4863 static bool is_inside_block(u64 bytenr, u64 blockstart, u32 blocksize) 4864 { 4865 ASSERT(IS_ALIGNED(blockstart, blocksize), "blockstart=%llu blocksize=%u", 4866 blockstart, blocksize); 4867 4868 if (blockstart <= bytenr && bytenr <= blockstart + blocksize - 1) 4869 return true; 4870 return false; 4871 } 4872 4873 static int truncate_block_zero_beyond_eof(struct btrfs_inode *inode, u64 start) 4874 { 4875 const pgoff_t index = (start >> PAGE_SHIFT); 4876 struct address_space *mapping = inode->vfs_inode.i_mapping; 4877 struct folio *folio; 4878 u64 zero_start; 4879 u64 zero_end; 4880 int ret = 0; 4881 4882 again: 4883 folio = filemap_lock_folio(mapping, index); 4884 /* No folio present. */ 4885 if (IS_ERR(folio)) 4886 return 0; 4887 4888 if (!folio_test_uptodate(folio)) { 4889 ret = btrfs_read_folio(NULL, folio); 4890 folio_lock(folio); 4891 if (folio->mapping != mapping) { 4892 folio_unlock(folio); 4893 folio_put(folio); 4894 goto again; 4895 } 4896 if (unlikely(!folio_test_uptodate(folio))) { 4897 ret = -EIO; 4898 goto out_unlock; 4899 } 4900 } 4901 folio_wait_writeback(folio); 4902 4903 /* 4904 * We do not need to lock extents nor wait for OE, as it's already 4905 * beyond EOF. 4906 */ 4907 4908 zero_start = max_t(u64, folio_pos(folio), start); 4909 zero_end = folio_next_pos(folio); 4910 folio_zero_range(folio, zero_start - folio_pos(folio), 4911 zero_end - zero_start); 4912 4913 out_unlock: 4914 folio_unlock(folio); 4915 folio_put(folio); 4916 return ret; 4917 } 4918 4919 /* 4920 * Handle the truncation of a fs block. 4921 * 4922 * @inode - inode that we're zeroing 4923 * @offset - the file offset of the block to truncate 4924 * The value must be inside [@start, @end], and the function will do 4925 * extra checks if the block that covers @offset needs to be zeroed. 4926 * @start - the start file offset of the range we want to zero 4927 * @end - the end (inclusive) file offset of the range we want to zero. 4928 * 4929 * If the range is not block aligned, read out the folio that covers @offset, 4930 * and if needed zero blocks that are inside the folio and covered by [@start, @end). 4931 * If @start or @end + 1 lands inside a block, that block will be marked dirty 4932 * for writeback. 4933 * 4934 * This is utilized by hole punch, zero range, file expansion. 4935 */ 4936 int btrfs_truncate_block(struct btrfs_inode *inode, u64 offset, u64 start, u64 end) 4937 { 4938 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4939 struct address_space *mapping = inode->vfs_inode.i_mapping; 4940 struct extent_io_tree *io_tree = &inode->io_tree; 4941 struct btrfs_ordered_extent *ordered; 4942 struct extent_state *cached_state = NULL; 4943 struct extent_changeset *data_reserved = NULL; 4944 bool only_release_metadata = false; 4945 u32 blocksize = fs_info->sectorsize; 4946 pgoff_t index = (offset >> PAGE_SHIFT); 4947 struct folio *folio; 4948 gfp_t mask = btrfs_alloc_write_mask(mapping); 4949 int ret = 0; 4950 const bool in_head_block = is_inside_block(offset, round_down(start, blocksize), 4951 blocksize); 4952 const bool in_tail_block = is_inside_block(offset, round_down(end, blocksize), 4953 blocksize); 4954 bool need_truncate_head = false; 4955 bool need_truncate_tail = false; 4956 u64 zero_start; 4957 u64 zero_end; 4958 u64 block_start; 4959 u64 block_end; 4960 4961 /* @offset should be inside the range. */ 4962 ASSERT(start <= offset && offset <= end, "offset=%llu start=%llu end=%llu", 4963 offset, start, end); 4964 4965 /* The range is aligned at both ends. */ 4966 if (IS_ALIGNED(start, blocksize) && IS_ALIGNED(end + 1, blocksize)) { 4967 /* 4968 * For block size < page size case, we may have polluted blocks 4969 * beyond EOF. So we also need to zero them out. 4970 */ 4971 if (end == (u64)-1 && blocksize < PAGE_SIZE) 4972 ret = truncate_block_zero_beyond_eof(inode, start); 4973 goto out; 4974 } 4975 4976 /* 4977 * @offset may not be inside the head nor tail block. In that case we 4978 * don't need to do anything. 4979 */ 4980 if (!in_head_block && !in_tail_block) 4981 goto out; 4982 4983 /* 4984 * Skip the truncation if the range in the target block is already aligned. 4985 * The seemingly complex check will also handle the same block case. 4986 */ 4987 if (in_head_block && !IS_ALIGNED(start, blocksize)) 4988 need_truncate_head = true; 4989 if (in_tail_block && !IS_ALIGNED(end + 1, blocksize)) 4990 need_truncate_tail = true; 4991 if (!need_truncate_head && !need_truncate_tail) 4992 goto out; 4993 4994 block_start = round_down(offset, blocksize); 4995 block_end = block_start + blocksize - 1; 4996 4997 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4998 blocksize, false); 4999 if (ret < 0) { 5000 size_t write_bytes = blocksize; 5001 5002 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 5003 /* For nocow case, no need to reserve data space. */ 5004 ASSERT(write_bytes == blocksize, "write_bytes=%zu blocksize=%u", 5005 write_bytes, blocksize); 5006 only_release_metadata = true; 5007 } else { 5008 goto out; 5009 } 5010 } 5011 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 5012 if (ret < 0) { 5013 if (!only_release_metadata) 5014 btrfs_free_reserved_data_space(inode, data_reserved, 5015 block_start, blocksize); 5016 goto out; 5017 } 5018 again: 5019 folio = __filemap_get_folio(mapping, index, 5020 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 5021 if (IS_ERR(folio)) { 5022 if (only_release_metadata) 5023 btrfs_delalloc_release_metadata(inode, blocksize, true); 5024 else 5025 btrfs_delalloc_release_space(inode, data_reserved, 5026 block_start, blocksize, true); 5027 btrfs_delalloc_release_extents(inode, blocksize); 5028 ret = PTR_ERR(folio); 5029 goto out; 5030 } 5031 5032 if (!folio_test_uptodate(folio)) { 5033 ret = btrfs_read_folio(NULL, folio); 5034 folio_lock(folio); 5035 if (folio->mapping != mapping) { 5036 folio_unlock(folio); 5037 folio_put(folio); 5038 goto again; 5039 } 5040 if (unlikely(!folio_test_uptodate(folio))) { 5041 ret = -EIO; 5042 goto out_unlock; 5043 } 5044 } 5045 5046 /* 5047 * We unlock the page after the io is completed and then re-lock it 5048 * above. release_folio() could have come in between that and cleared 5049 * folio private, but left the page in the mapping. Set the page mapped 5050 * here to make sure it's properly set for the subpage stuff. 5051 */ 5052 ret = set_folio_extent_mapped(folio); 5053 if (ret < 0) 5054 goto out_unlock; 5055 5056 folio_wait_writeback(folio); 5057 5058 btrfs_lock_extent(io_tree, block_start, block_end, &cached_state); 5059 5060 ordered = btrfs_lookup_ordered_extent(inode, block_start); 5061 if (ordered) { 5062 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5063 folio_unlock(folio); 5064 folio_put(folio); 5065 btrfs_start_ordered_extent(ordered); 5066 btrfs_put_ordered_extent(ordered); 5067 goto again; 5068 } 5069 5070 btrfs_clear_extent_bit(&inode->io_tree, block_start, block_end, 5071 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 5072 &cached_state); 5073 5074 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 5075 &cached_state); 5076 if (ret) { 5077 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5078 goto out_unlock; 5079 } 5080 5081 if (end == (u64)-1) { 5082 /* 5083 * We're truncating beyond EOF, the remaining blocks normally are 5084 * already holes thus no need to zero again, but it's possible for 5085 * fs block size < page size cases to have memory mapped writes 5086 * to pollute ranges beyond EOF. 5087 * 5088 * In that case although such polluted blocks beyond EOF will 5089 * not reach disk, it still affects our page caches. 5090 */ 5091 zero_start = max_t(u64, folio_pos(folio), start); 5092 zero_end = min_t(u64, folio_next_pos(folio) - 1, end); 5093 } else { 5094 zero_start = max_t(u64, block_start, start); 5095 zero_end = min_t(u64, block_end, end); 5096 } 5097 folio_zero_range(folio, zero_start - folio_pos(folio), 5098 zero_end - zero_start + 1); 5099 5100 btrfs_folio_clear_checked(fs_info, folio, block_start, 5101 block_end + 1 - block_start); 5102 btrfs_folio_set_dirty(fs_info, folio, block_start, 5103 block_end + 1 - block_start); 5104 5105 if (only_release_metadata) 5106 btrfs_set_extent_bit(&inode->io_tree, block_start, block_end, 5107 EXTENT_NORESERVE, &cached_state); 5108 5109 btrfs_unlock_extent(io_tree, block_start, block_end, &cached_state); 5110 5111 out_unlock: 5112 if (ret) { 5113 if (only_release_metadata) 5114 btrfs_delalloc_release_metadata(inode, blocksize, true); 5115 else 5116 btrfs_delalloc_release_space(inode, data_reserved, 5117 block_start, blocksize, true); 5118 } 5119 btrfs_delalloc_release_extents(inode, blocksize); 5120 folio_unlock(folio); 5121 folio_put(folio); 5122 out: 5123 if (only_release_metadata) 5124 btrfs_check_nocow_unlock(inode); 5125 extent_changeset_free(data_reserved); 5126 return ret; 5127 } 5128 5129 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 5130 { 5131 struct btrfs_root *root = inode->root; 5132 struct btrfs_fs_info *fs_info = root->fs_info; 5133 struct btrfs_trans_handle *trans; 5134 struct btrfs_drop_extents_args drop_args = { 0 }; 5135 int ret; 5136 5137 /* 5138 * If NO_HOLES is enabled, we don't need to do anything. 5139 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 5140 * or btrfs_update_inode() will be called, which guarantee that the next 5141 * fsync will know this inode was changed and needs to be logged. 5142 */ 5143 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 5144 return 0; 5145 5146 /* 5147 * 1 - for the one we're dropping 5148 * 1 - for the one we're adding 5149 * 1 - for updating the inode. 5150 */ 5151 trans = btrfs_start_transaction(root, 3); 5152 if (IS_ERR(trans)) 5153 return PTR_ERR(trans); 5154 5155 drop_args.start = offset; 5156 drop_args.end = offset + len; 5157 drop_args.drop_cache = true; 5158 5159 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 5160 if (unlikely(ret)) { 5161 btrfs_abort_transaction(trans, ret); 5162 btrfs_end_transaction(trans); 5163 return ret; 5164 } 5165 5166 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 5167 if (ret) { 5168 btrfs_abort_transaction(trans, ret); 5169 } else { 5170 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 5171 btrfs_update_inode(trans, inode); 5172 } 5173 btrfs_end_transaction(trans); 5174 return ret; 5175 } 5176 5177 /* 5178 * This function puts in dummy file extents for the area we're creating a hole 5179 * for. So if we are truncating this file to a larger size we need to insert 5180 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 5181 * the range between oldsize and size 5182 */ 5183 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5184 { 5185 struct btrfs_root *root = inode->root; 5186 struct btrfs_fs_info *fs_info = root->fs_info; 5187 struct extent_io_tree *io_tree = &inode->io_tree; 5188 struct extent_map *em = NULL; 5189 struct extent_state *cached_state = NULL; 5190 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5191 u64 block_end = ALIGN(size, fs_info->sectorsize); 5192 u64 last_byte; 5193 u64 cur_offset; 5194 u64 hole_size; 5195 int ret = 0; 5196 5197 /* 5198 * If our size started in the middle of a block we need to zero out the 5199 * rest of the block before we expand the i_size, otherwise we could 5200 * expose stale data. 5201 */ 5202 ret = btrfs_truncate_block(inode, oldsize, oldsize, -1); 5203 if (ret) 5204 return ret; 5205 5206 if (size <= hole_start) 5207 return 0; 5208 5209 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5210 &cached_state); 5211 cur_offset = hole_start; 5212 while (1) { 5213 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5214 if (IS_ERR(em)) { 5215 ret = PTR_ERR(em); 5216 em = NULL; 5217 break; 5218 } 5219 last_byte = min(btrfs_extent_map_end(em), block_end); 5220 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5221 hole_size = last_byte - cur_offset; 5222 5223 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5224 struct extent_map *hole_em; 5225 5226 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5227 if (ret) 5228 break; 5229 5230 ret = btrfs_inode_set_file_extent_range(inode, 5231 cur_offset, hole_size); 5232 if (ret) 5233 break; 5234 5235 hole_em = btrfs_alloc_extent_map(); 5236 if (!hole_em) { 5237 btrfs_drop_extent_map_range(inode, cur_offset, 5238 cur_offset + hole_size - 1, 5239 false); 5240 btrfs_set_inode_full_sync(inode); 5241 goto next; 5242 } 5243 hole_em->start = cur_offset; 5244 hole_em->len = hole_size; 5245 5246 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5247 hole_em->disk_num_bytes = 0; 5248 hole_em->ram_bytes = hole_size; 5249 hole_em->generation = btrfs_get_fs_generation(fs_info); 5250 5251 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5252 btrfs_free_extent_map(hole_em); 5253 } else { 5254 ret = btrfs_inode_set_file_extent_range(inode, 5255 cur_offset, hole_size); 5256 if (ret) 5257 break; 5258 } 5259 next: 5260 btrfs_free_extent_map(em); 5261 em = NULL; 5262 cur_offset = last_byte; 5263 if (cur_offset >= block_end) 5264 break; 5265 } 5266 btrfs_free_extent_map(em); 5267 btrfs_unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5268 return ret; 5269 } 5270 5271 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5272 { 5273 struct btrfs_root *root = BTRFS_I(inode)->root; 5274 struct btrfs_trans_handle *trans; 5275 loff_t oldsize = i_size_read(inode); 5276 loff_t newsize = attr->ia_size; 5277 int mask = attr->ia_valid; 5278 int ret; 5279 5280 /* 5281 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5282 * special case where we need to update the times despite not having 5283 * these flags set. For all other operations the VFS set these flags 5284 * explicitly if it wants a timestamp update. 5285 */ 5286 if (newsize != oldsize) { 5287 inode_inc_iversion(inode); 5288 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5289 inode_set_mtime_to_ts(inode, 5290 inode_set_ctime_current(inode)); 5291 } 5292 } 5293 5294 if (newsize > oldsize) { 5295 /* 5296 * Don't do an expanding truncate while snapshotting is ongoing. 5297 * This is to ensure the snapshot captures a fully consistent 5298 * state of this file - if the snapshot captures this expanding 5299 * truncation, it must capture all writes that happened before 5300 * this truncation. 5301 */ 5302 btrfs_drew_write_lock(&root->snapshot_lock); 5303 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5304 if (ret) { 5305 btrfs_drew_write_unlock(&root->snapshot_lock); 5306 return ret; 5307 } 5308 5309 trans = btrfs_start_transaction(root, 1); 5310 if (IS_ERR(trans)) { 5311 btrfs_drew_write_unlock(&root->snapshot_lock); 5312 return PTR_ERR(trans); 5313 } 5314 5315 i_size_write(inode, newsize); 5316 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5317 pagecache_isize_extended(inode, oldsize, newsize); 5318 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5319 btrfs_drew_write_unlock(&root->snapshot_lock); 5320 btrfs_end_transaction(trans); 5321 } else { 5322 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5323 5324 if (btrfs_is_zoned(fs_info)) { 5325 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5326 ALIGN(newsize, fs_info->sectorsize), 5327 (u64)-1); 5328 if (ret) 5329 return ret; 5330 } 5331 5332 /* 5333 * We're truncating a file that used to have good data down to 5334 * zero. Make sure any new writes to the file get on disk 5335 * on close. 5336 */ 5337 if (newsize == 0) 5338 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5339 &BTRFS_I(inode)->runtime_flags); 5340 5341 truncate_setsize(inode, newsize); 5342 5343 inode_dio_wait(inode); 5344 5345 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5346 if (ret && inode->i_nlink) { 5347 int ret2; 5348 5349 /* 5350 * Truncate failed, so fix up the in-memory size. We 5351 * adjusted disk_i_size down as we removed extents, so 5352 * wait for disk_i_size to be stable and then update the 5353 * in-memory size to match. 5354 */ 5355 ret2 = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5356 if (ret2) 5357 return ret2; 5358 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5359 } 5360 } 5361 5362 return ret; 5363 } 5364 5365 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5366 struct iattr *attr) 5367 { 5368 struct inode *inode = d_inode(dentry); 5369 struct btrfs_root *root = BTRFS_I(inode)->root; 5370 int ret; 5371 5372 if (btrfs_root_readonly(root)) 5373 return -EROFS; 5374 5375 ret = setattr_prepare(idmap, dentry, attr); 5376 if (ret) 5377 return ret; 5378 5379 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5380 ret = btrfs_setsize(inode, attr); 5381 if (ret) 5382 return ret; 5383 } 5384 5385 if (attr->ia_valid) { 5386 setattr_copy(idmap, inode, attr); 5387 inode_inc_iversion(inode); 5388 ret = btrfs_dirty_inode(BTRFS_I(inode)); 5389 5390 if (!ret && attr->ia_valid & ATTR_MODE) 5391 ret = posix_acl_chmod(idmap, dentry, inode->i_mode); 5392 } 5393 5394 return ret; 5395 } 5396 5397 /* 5398 * While truncating the inode pages during eviction, we get the VFS 5399 * calling btrfs_invalidate_folio() against each folio of the inode. This 5400 * is slow because the calls to btrfs_invalidate_folio() result in a 5401 * huge amount of calls to lock_extent() and clear_extent_bit(), 5402 * which keep merging and splitting extent_state structures over and over, 5403 * wasting lots of time. 5404 * 5405 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5406 * skip all those expensive operations on a per folio basis and do only 5407 * the ordered io finishing, while we release here the extent_map and 5408 * extent_state structures, without the excessive merging and splitting. 5409 */ 5410 static void evict_inode_truncate_pages(struct inode *inode) 5411 { 5412 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5413 struct rb_node *node; 5414 5415 ASSERT(inode_state_read_once(inode) & I_FREEING); 5416 truncate_inode_pages_final(&inode->i_data); 5417 5418 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5419 5420 /* 5421 * Keep looping until we have no more ranges in the io tree. 5422 * We can have ongoing bios started by readahead that have 5423 * their endio callback (extent_io.c:end_bio_extent_readpage) 5424 * still in progress (unlocked the pages in the bio but did not yet 5425 * unlocked the ranges in the io tree). Therefore this means some 5426 * ranges can still be locked and eviction started because before 5427 * submitting those bios, which are executed by a separate task (work 5428 * queue kthread), inode references (inode->i_count) were not taken 5429 * (which would be dropped in the end io callback of each bio). 5430 * Therefore here we effectively end up waiting for those bios and 5431 * anyone else holding locked ranges without having bumped the inode's 5432 * reference count - if we don't do it, when they access the inode's 5433 * io_tree to unlock a range it may be too late, leading to an 5434 * use-after-free issue. 5435 */ 5436 spin_lock(&io_tree->lock); 5437 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5438 struct extent_state *state; 5439 struct extent_state *cached_state = NULL; 5440 u64 start; 5441 u64 end; 5442 unsigned state_flags; 5443 5444 node = rb_first(&io_tree->state); 5445 state = rb_entry(node, struct extent_state, rb_node); 5446 start = state->start; 5447 end = state->end; 5448 state_flags = state->state; 5449 spin_unlock(&io_tree->lock); 5450 5451 btrfs_lock_extent(io_tree, start, end, &cached_state); 5452 5453 /* 5454 * If still has DELALLOC flag, the extent didn't reach disk, 5455 * and its reserved space won't be freed by delayed_ref. 5456 * So we need to free its reserved space here. 5457 * (Refer to comment in btrfs_invalidate_folio, case 2) 5458 * 5459 * Note, end is the bytenr of last byte, so we need + 1 here. 5460 */ 5461 if (state_flags & EXTENT_DELALLOC) 5462 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5463 end - start + 1, NULL); 5464 5465 btrfs_clear_extent_bit(io_tree, start, end, 5466 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5467 &cached_state); 5468 5469 cond_resched(); 5470 spin_lock(&io_tree->lock); 5471 } 5472 spin_unlock(&io_tree->lock); 5473 } 5474 5475 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5476 struct btrfs_block_rsv *rsv) 5477 { 5478 struct btrfs_fs_info *fs_info = root->fs_info; 5479 struct btrfs_trans_handle *trans; 5480 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5481 int ret; 5482 5483 /* 5484 * Eviction should be taking place at some place safe because of our 5485 * delayed iputs. However the normal flushing code will run delayed 5486 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5487 * 5488 * We reserve the delayed_refs_extra here again because we can't use 5489 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5490 * above. We reserve our extra bit here because we generate a ton of 5491 * delayed refs activity by truncating. 5492 * 5493 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5494 * if we fail to make this reservation we can re-try without the 5495 * delayed_refs_extra so we can make some forward progress. 5496 */ 5497 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5498 BTRFS_RESERVE_FLUSH_EVICT); 5499 if (ret) { 5500 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5501 BTRFS_RESERVE_FLUSH_EVICT); 5502 if (ret) { 5503 btrfs_warn(fs_info, 5504 "could not allocate space for delete; will truncate on mount"); 5505 return ERR_PTR(-ENOSPC); 5506 } 5507 delayed_refs_extra = 0; 5508 } 5509 5510 trans = btrfs_join_transaction(root); 5511 if (IS_ERR(trans)) 5512 return trans; 5513 5514 if (delayed_refs_extra) { 5515 trans->block_rsv = &fs_info->trans_block_rsv; 5516 trans->bytes_reserved = delayed_refs_extra; 5517 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5518 delayed_refs_extra, true); 5519 } 5520 return trans; 5521 } 5522 5523 void btrfs_evict_inode(struct inode *inode) 5524 { 5525 struct btrfs_fs_info *fs_info; 5526 struct btrfs_trans_handle *trans; 5527 struct btrfs_root *root = BTRFS_I(inode)->root; 5528 struct btrfs_block_rsv rsv; 5529 int ret; 5530 5531 trace_btrfs_inode_evict(inode); 5532 5533 if (!root) { 5534 fsverity_cleanup_inode(inode); 5535 clear_inode(inode); 5536 return; 5537 } 5538 5539 fs_info = inode_to_fs_info(inode); 5540 evict_inode_truncate_pages(inode); 5541 5542 if (inode->i_nlink && 5543 ((btrfs_root_refs(&root->root_item) != 0 && 5544 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5545 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5546 goto out; 5547 5548 if (is_bad_inode(inode)) 5549 goto out; 5550 5551 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5552 goto out; 5553 5554 if (inode->i_nlink > 0) { 5555 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5556 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5557 goto out; 5558 } 5559 5560 /* 5561 * This makes sure the inode item in tree is uptodate and the space for 5562 * the inode update is released. 5563 */ 5564 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5565 if (ret) 5566 goto out; 5567 5568 /* 5569 * This drops any pending insert or delete operations we have for this 5570 * inode. We could have a delayed dir index deletion queued up, but 5571 * we're removing the inode completely so that'll be taken care of in 5572 * the truncate. 5573 */ 5574 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5575 5576 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 5577 rsv.size = btrfs_calc_metadata_size(fs_info, 1); 5578 rsv.failfast = true; 5579 5580 btrfs_i_size_write(BTRFS_I(inode), 0); 5581 5582 while (1) { 5583 struct btrfs_truncate_control control = { 5584 .inode = BTRFS_I(inode), 5585 .ino = btrfs_ino(BTRFS_I(inode)), 5586 .new_size = 0, 5587 .min_type = 0, 5588 }; 5589 5590 trans = evict_refill_and_join(root, &rsv); 5591 if (IS_ERR(trans)) 5592 goto out_release; 5593 5594 trans->block_rsv = &rsv; 5595 5596 ret = btrfs_truncate_inode_items(trans, root, &control); 5597 trans->block_rsv = &fs_info->trans_block_rsv; 5598 btrfs_end_transaction(trans); 5599 /* 5600 * We have not added new delayed items for our inode after we 5601 * have flushed its delayed items, so no need to throttle on 5602 * delayed items. However we have modified extent buffers. 5603 */ 5604 btrfs_btree_balance_dirty_nodelay(fs_info); 5605 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5606 goto out_release; 5607 else if (!ret) 5608 break; 5609 } 5610 5611 /* 5612 * Errors here aren't a big deal, it just means we leave orphan items in 5613 * the tree. They will be cleaned up on the next mount. If the inode 5614 * number gets reused, cleanup deletes the orphan item without doing 5615 * anything, and unlink reuses the existing orphan item. 5616 * 5617 * If it turns out that we are dropping too many of these, we might want 5618 * to add a mechanism for retrying these after a commit. 5619 */ 5620 trans = evict_refill_and_join(root, &rsv); 5621 if (!IS_ERR(trans)) { 5622 trans->block_rsv = &rsv; 5623 btrfs_orphan_del(trans, BTRFS_I(inode)); 5624 trans->block_rsv = &fs_info->trans_block_rsv; 5625 btrfs_end_transaction(trans); 5626 } 5627 5628 out_release: 5629 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 5630 out: 5631 /* 5632 * If we didn't successfully delete, the orphan item will still be in 5633 * the tree and we'll retry on the next mount. Again, we might also want 5634 * to retry these periodically in the future. 5635 */ 5636 btrfs_remove_delayed_node(BTRFS_I(inode)); 5637 fsverity_cleanup_inode(inode); 5638 clear_inode(inode); 5639 } 5640 5641 /* 5642 * Return the key found in the dir entry in the location pointer, fill @type 5643 * with BTRFS_FT_*, and return 0. 5644 * 5645 * If no dir entries were found, returns -ENOENT. 5646 * If found a corrupted location in dir entry, returns -EUCLEAN. 5647 */ 5648 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5649 struct btrfs_key *location, u8 *type) 5650 { 5651 struct btrfs_dir_item *di; 5652 BTRFS_PATH_AUTO_FREE(path); 5653 struct btrfs_root *root = dir->root; 5654 int ret = 0; 5655 struct fscrypt_name fname; 5656 5657 path = btrfs_alloc_path(); 5658 if (!path) 5659 return -ENOMEM; 5660 5661 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5662 if (ret < 0) 5663 return ret; 5664 /* 5665 * fscrypt_setup_filename() should never return a positive value, but 5666 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5667 */ 5668 ASSERT(ret == 0); 5669 5670 /* This needs to handle no-key deletions later on */ 5671 5672 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5673 &fname.disk_name, 0); 5674 if (IS_ERR_OR_NULL(di)) { 5675 ret = di ? PTR_ERR(di) : -ENOENT; 5676 goto out; 5677 } 5678 5679 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5680 if (unlikely(location->type != BTRFS_INODE_ITEM_KEY && 5681 location->type != BTRFS_ROOT_ITEM_KEY)) { 5682 ret = -EUCLEAN; 5683 btrfs_warn(root->fs_info, 5684 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location " BTRFS_KEY_FMT ")", 5685 __func__, fname.disk_name.name, btrfs_ino(dir), 5686 BTRFS_KEY_FMT_VALUE(location)); 5687 } 5688 if (!ret) 5689 *type = btrfs_dir_ftype(path->nodes[0], di); 5690 out: 5691 fscrypt_free_filename(&fname); 5692 return ret; 5693 } 5694 5695 /* 5696 * when we hit a tree root in a directory, the btrfs part of the inode 5697 * needs to be changed to reflect the root directory of the tree root. This 5698 * is kind of like crossing a mount point. 5699 */ 5700 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5701 struct btrfs_inode *dir, 5702 struct dentry *dentry, 5703 struct btrfs_key *location, 5704 struct btrfs_root **sub_root) 5705 { 5706 BTRFS_PATH_AUTO_FREE(path); 5707 struct btrfs_root *new_root; 5708 struct btrfs_root_ref *ref; 5709 struct extent_buffer *leaf; 5710 struct btrfs_key key; 5711 int ret; 5712 int err = 0; 5713 struct fscrypt_name fname; 5714 5715 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5716 if (ret) 5717 return ret; 5718 5719 path = btrfs_alloc_path(); 5720 if (!path) { 5721 err = -ENOMEM; 5722 goto out; 5723 } 5724 5725 err = -ENOENT; 5726 key.objectid = btrfs_root_id(dir->root); 5727 key.type = BTRFS_ROOT_REF_KEY; 5728 key.offset = location->objectid; 5729 5730 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5731 if (ret) { 5732 if (ret < 0) 5733 err = ret; 5734 goto out; 5735 } 5736 5737 leaf = path->nodes[0]; 5738 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5739 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5740 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5741 goto out; 5742 5743 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5744 (unsigned long)(ref + 1), fname.disk_name.len); 5745 if (ret) 5746 goto out; 5747 5748 btrfs_release_path(path); 5749 5750 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5751 if (IS_ERR(new_root)) { 5752 err = PTR_ERR(new_root); 5753 goto out; 5754 } 5755 5756 *sub_root = new_root; 5757 location->objectid = btrfs_root_dirid(&new_root->root_item); 5758 location->type = BTRFS_INODE_ITEM_KEY; 5759 location->offset = 0; 5760 err = 0; 5761 out: 5762 fscrypt_free_filename(&fname); 5763 return err; 5764 } 5765 5766 5767 5768 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5769 { 5770 struct btrfs_root *root = inode->root; 5771 struct btrfs_inode *entry; 5772 bool empty = false; 5773 5774 xa_lock(&root->inodes); 5775 /* 5776 * This btrfs_inode is being freed and has already been unhashed at this 5777 * point. It's possible that another btrfs_inode has already been 5778 * allocated for the same inode and inserted itself into the root, so 5779 * don't delete it in that case. 5780 * 5781 * Note that this shouldn't need to allocate memory, so the gfp flags 5782 * don't really matter. 5783 */ 5784 entry = __xa_cmpxchg(&root->inodes, btrfs_ino(inode), inode, NULL, 5785 GFP_ATOMIC); 5786 if (entry == inode) 5787 empty = xa_empty(&root->inodes); 5788 xa_unlock(&root->inodes); 5789 5790 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5791 xa_lock(&root->inodes); 5792 empty = xa_empty(&root->inodes); 5793 xa_unlock(&root->inodes); 5794 if (empty) 5795 btrfs_add_dead_root(root); 5796 } 5797 } 5798 5799 5800 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5801 { 5802 struct btrfs_iget_args *args = p; 5803 5804 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5805 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5806 5807 if (args->root && args->root == args->root->fs_info->tree_root && 5808 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5809 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5810 &BTRFS_I(inode)->runtime_flags); 5811 return 0; 5812 } 5813 5814 static int btrfs_find_actor(struct inode *inode, void *opaque) 5815 { 5816 struct btrfs_iget_args *args = opaque; 5817 5818 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5819 args->root == BTRFS_I(inode)->root; 5820 } 5821 5822 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5823 { 5824 struct inode *inode; 5825 struct btrfs_iget_args args; 5826 unsigned long hashval = btrfs_inode_hash(ino, root); 5827 5828 args.ino = ino; 5829 args.root = root; 5830 5831 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5832 btrfs_init_locked_inode, 5833 (void *)&args); 5834 if (!inode) 5835 return NULL; 5836 return BTRFS_I(inode); 5837 } 5838 5839 /* 5840 * Get an inode object given its inode number and corresponding root. Path is 5841 * preallocated to prevent recursing back to iget through allocator. 5842 */ 5843 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5844 struct btrfs_path *path) 5845 { 5846 struct btrfs_inode *inode; 5847 int ret; 5848 5849 inode = btrfs_iget_locked(ino, root); 5850 if (!inode) 5851 return ERR_PTR(-ENOMEM); 5852 5853 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5854 return inode; 5855 5856 ret = btrfs_read_locked_inode(inode, path); 5857 if (ret) 5858 return ERR_PTR(ret); 5859 5860 unlock_new_inode(&inode->vfs_inode); 5861 return inode; 5862 } 5863 5864 /* 5865 * Get an inode object given its inode number and corresponding root. 5866 */ 5867 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5868 { 5869 struct btrfs_inode *inode; 5870 struct btrfs_path *path; 5871 int ret; 5872 5873 inode = btrfs_iget_locked(ino, root); 5874 if (!inode) 5875 return ERR_PTR(-ENOMEM); 5876 5877 if (!(inode_state_read_once(&inode->vfs_inode) & I_NEW)) 5878 return inode; 5879 5880 path = btrfs_alloc_path(); 5881 if (!path) { 5882 iget_failed(&inode->vfs_inode); 5883 return ERR_PTR(-ENOMEM); 5884 } 5885 5886 ret = btrfs_read_locked_inode(inode, path); 5887 btrfs_free_path(path); 5888 if (ret) 5889 return ERR_PTR(ret); 5890 5891 if (S_ISDIR(inode->vfs_inode.i_mode)) 5892 inode->vfs_inode.i_opflags |= IOP_FASTPERM_MAY_EXEC; 5893 unlock_new_inode(&inode->vfs_inode); 5894 return inode; 5895 } 5896 5897 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5898 struct btrfs_key *key, 5899 struct btrfs_root *root) 5900 { 5901 struct timespec64 ts; 5902 struct inode *vfs_inode; 5903 struct btrfs_inode *inode; 5904 5905 vfs_inode = new_inode(dir->i_sb); 5906 if (!vfs_inode) 5907 return ERR_PTR(-ENOMEM); 5908 5909 inode = BTRFS_I(vfs_inode); 5910 inode->root = btrfs_grab_root(root); 5911 inode->ref_root_id = key->objectid; 5912 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5913 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5914 5915 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5916 /* 5917 * We only need lookup, the rest is read-only and there's no inode 5918 * associated with the dentry 5919 */ 5920 vfs_inode->i_op = &simple_dir_inode_operations; 5921 vfs_inode->i_opflags &= ~IOP_XATTR; 5922 vfs_inode->i_fop = &simple_dir_operations; 5923 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5924 5925 ts = inode_set_ctime_current(vfs_inode); 5926 inode_set_mtime_to_ts(vfs_inode, ts); 5927 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5928 inode->i_otime_sec = ts.tv_sec; 5929 inode->i_otime_nsec = ts.tv_nsec; 5930 5931 vfs_inode->i_uid = dir->i_uid; 5932 vfs_inode->i_gid = dir->i_gid; 5933 5934 return inode; 5935 } 5936 5937 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5938 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5939 static_assert(BTRFS_FT_DIR == FT_DIR); 5940 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5941 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5942 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5943 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5944 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5945 5946 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5947 { 5948 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5949 } 5950 5951 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5952 { 5953 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5954 struct btrfs_inode *inode; 5955 struct btrfs_root *root = BTRFS_I(dir)->root; 5956 struct btrfs_root *sub_root = root; 5957 struct btrfs_key location = { 0 }; 5958 u8 di_type = 0; 5959 int ret = 0; 5960 5961 if (dentry->d_name.len > BTRFS_NAME_LEN) 5962 return ERR_PTR(-ENAMETOOLONG); 5963 5964 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5965 if (ret < 0) 5966 return ERR_PTR(ret); 5967 5968 if (location.type == BTRFS_INODE_ITEM_KEY) { 5969 inode = btrfs_iget(location.objectid, root); 5970 if (IS_ERR(inode)) 5971 return ERR_CAST(inode); 5972 5973 /* Do extra check against inode mode with di_type */ 5974 if (unlikely(btrfs_inode_type(inode) != di_type)) { 5975 btrfs_crit(fs_info, 5976 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5977 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5978 di_type); 5979 iput(&inode->vfs_inode); 5980 return ERR_PTR(-EUCLEAN); 5981 } 5982 return &inode->vfs_inode; 5983 } 5984 5985 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5986 &location, &sub_root); 5987 if (ret < 0) { 5988 if (ret != -ENOENT) 5989 inode = ERR_PTR(ret); 5990 else 5991 inode = new_simple_dir(dir, &location, root); 5992 } else { 5993 inode = btrfs_iget(location.objectid, sub_root); 5994 btrfs_put_root(sub_root); 5995 5996 if (IS_ERR(inode)) 5997 return ERR_CAST(inode); 5998 5999 down_read(&fs_info->cleanup_work_sem); 6000 if (!sb_rdonly(inode->vfs_inode.i_sb)) 6001 ret = btrfs_orphan_cleanup(sub_root); 6002 up_read(&fs_info->cleanup_work_sem); 6003 if (ret) { 6004 iput(&inode->vfs_inode); 6005 inode = ERR_PTR(ret); 6006 } 6007 } 6008 6009 if (IS_ERR(inode)) 6010 return ERR_CAST(inode); 6011 6012 return &inode->vfs_inode; 6013 } 6014 6015 static int btrfs_dentry_delete(const struct dentry *dentry) 6016 { 6017 struct btrfs_root *root; 6018 struct inode *inode = d_inode(dentry); 6019 6020 if (!inode && !IS_ROOT(dentry)) 6021 inode = d_inode(dentry->d_parent); 6022 6023 if (inode) { 6024 root = BTRFS_I(inode)->root; 6025 if (btrfs_root_refs(&root->root_item) == 0) 6026 return 1; 6027 6028 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6029 return 1; 6030 } 6031 return 0; 6032 } 6033 6034 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 6035 unsigned int flags) 6036 { 6037 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 6038 6039 if (inode == ERR_PTR(-ENOENT)) 6040 inode = NULL; 6041 return d_splice_alias(inode, dentry); 6042 } 6043 6044 /* 6045 * Find the highest existing sequence number in a directory and then set the 6046 * in-memory index_cnt variable to the first free sequence number. 6047 */ 6048 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 6049 { 6050 struct btrfs_root *root = inode->root; 6051 struct btrfs_key key, found_key; 6052 BTRFS_PATH_AUTO_FREE(path); 6053 struct extent_buffer *leaf; 6054 int ret; 6055 6056 key.objectid = btrfs_ino(inode); 6057 key.type = BTRFS_DIR_INDEX_KEY; 6058 key.offset = (u64)-1; 6059 6060 path = btrfs_alloc_path(); 6061 if (!path) 6062 return -ENOMEM; 6063 6064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6065 if (ret < 0) 6066 return ret; 6067 /* FIXME: we should be able to handle this */ 6068 if (ret == 0) 6069 return ret; 6070 6071 if (path->slots[0] == 0) { 6072 inode->index_cnt = BTRFS_DIR_START_INDEX; 6073 return 0; 6074 } 6075 6076 path->slots[0]--; 6077 6078 leaf = path->nodes[0]; 6079 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6080 6081 if (found_key.objectid != btrfs_ino(inode) || 6082 found_key.type != BTRFS_DIR_INDEX_KEY) { 6083 inode->index_cnt = BTRFS_DIR_START_INDEX; 6084 return 0; 6085 } 6086 6087 inode->index_cnt = found_key.offset + 1; 6088 6089 return 0; 6090 } 6091 6092 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 6093 { 6094 int ret = 0; 6095 6096 btrfs_inode_lock(dir, 0); 6097 if (dir->index_cnt == (u64)-1) { 6098 ret = btrfs_inode_delayed_dir_index_count(dir); 6099 if (ret) { 6100 ret = btrfs_set_inode_index_count(dir); 6101 if (ret) 6102 goto out; 6103 } 6104 } 6105 6106 /* index_cnt is the index number of next new entry, so decrement it. */ 6107 *index = dir->index_cnt - 1; 6108 out: 6109 btrfs_inode_unlock(dir, 0); 6110 6111 return ret; 6112 } 6113 6114 /* 6115 * All this infrastructure exists because dir_emit can fault, and we are holding 6116 * the tree lock when doing readdir. For now just allocate a buffer and copy 6117 * our information into that, and then dir_emit from the buffer. This is 6118 * similar to what NFS does, only we don't keep the buffer around in pagecache 6119 * because I'm afraid I'll mess that up. Long term we need to make filldir do 6120 * copy_to_user_inatomic so we don't have to worry about page faulting under the 6121 * tree lock. 6122 */ 6123 static int btrfs_opendir(struct inode *inode, struct file *file) 6124 { 6125 struct btrfs_file_private *private; 6126 u64 last_index; 6127 int ret; 6128 6129 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 6130 if (ret) 6131 return ret; 6132 6133 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 6134 if (!private) 6135 return -ENOMEM; 6136 private->last_index = last_index; 6137 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 6138 if (!private->filldir_buf) { 6139 kfree(private); 6140 return -ENOMEM; 6141 } 6142 file->private_data = private; 6143 return 0; 6144 } 6145 6146 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 6147 { 6148 struct btrfs_file_private *private = file->private_data; 6149 int ret; 6150 6151 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 6152 &private->last_index); 6153 if (ret) 6154 return ret; 6155 6156 return generic_file_llseek(file, offset, whence); 6157 } 6158 6159 struct dir_entry { 6160 u64 ino; 6161 u64 offset; 6162 unsigned type; 6163 int name_len; 6164 }; 6165 6166 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 6167 { 6168 while (entries--) { 6169 struct dir_entry *entry = addr; 6170 char *name = (char *)(entry + 1); 6171 6172 ctx->pos = get_unaligned(&entry->offset); 6173 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 6174 get_unaligned(&entry->ino), 6175 get_unaligned(&entry->type))) 6176 return 1; 6177 addr += sizeof(struct dir_entry) + 6178 get_unaligned(&entry->name_len); 6179 ctx->pos++; 6180 } 6181 return 0; 6182 } 6183 6184 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 6185 { 6186 struct inode *inode = file_inode(file); 6187 struct btrfs_root *root = BTRFS_I(inode)->root; 6188 struct btrfs_file_private *private = file->private_data; 6189 struct btrfs_dir_item *di; 6190 struct btrfs_key key; 6191 struct btrfs_key found_key; 6192 BTRFS_PATH_AUTO_FREE(path); 6193 void *addr; 6194 LIST_HEAD(ins_list); 6195 LIST_HEAD(del_list); 6196 int ret; 6197 char *name_ptr; 6198 int name_len; 6199 int entries = 0; 6200 int total_len = 0; 6201 bool put = false; 6202 struct btrfs_key location; 6203 6204 if (!dir_emit_dots(file, ctx)) 6205 return 0; 6206 6207 path = btrfs_alloc_path(); 6208 if (!path) 6209 return -ENOMEM; 6210 6211 addr = private->filldir_buf; 6212 path->reada = READA_FORWARD; 6213 6214 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6215 &ins_list, &del_list); 6216 6217 again: 6218 key.type = BTRFS_DIR_INDEX_KEY; 6219 key.offset = ctx->pos; 6220 key.objectid = btrfs_ino(BTRFS_I(inode)); 6221 6222 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6223 struct dir_entry *entry; 6224 struct extent_buffer *leaf = path->nodes[0]; 6225 u8 ftype; 6226 6227 if (found_key.objectid != key.objectid) 6228 break; 6229 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6230 break; 6231 if (found_key.offset < ctx->pos) 6232 continue; 6233 if (found_key.offset > private->last_index) 6234 break; 6235 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6236 continue; 6237 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6238 name_len = btrfs_dir_name_len(leaf, di); 6239 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6240 PAGE_SIZE) { 6241 btrfs_release_path(path); 6242 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6243 if (ret) 6244 goto nopos; 6245 addr = private->filldir_buf; 6246 entries = 0; 6247 total_len = 0; 6248 goto again; 6249 } 6250 6251 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6252 entry = addr; 6253 name_ptr = (char *)(entry + 1); 6254 read_extent_buffer(leaf, name_ptr, 6255 (unsigned long)(di + 1), name_len); 6256 put_unaligned(name_len, &entry->name_len); 6257 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6258 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6259 put_unaligned(location.objectid, &entry->ino); 6260 put_unaligned(found_key.offset, &entry->offset); 6261 entries++; 6262 addr += sizeof(struct dir_entry) + name_len; 6263 total_len += sizeof(struct dir_entry) + name_len; 6264 } 6265 /* Catch error encountered during iteration */ 6266 if (ret < 0) 6267 goto err; 6268 6269 btrfs_release_path(path); 6270 6271 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6272 if (ret) 6273 goto nopos; 6274 6275 if (btrfs_readdir_delayed_dir_index(ctx, &ins_list)) 6276 goto nopos; 6277 6278 /* 6279 * Stop new entries from being returned after we return the last 6280 * entry. 6281 * 6282 * New directory entries are assigned a strictly increasing 6283 * offset. This means that new entries created during readdir 6284 * are *guaranteed* to be seen in the future by that readdir. 6285 * This has broken buggy programs which operate on names as 6286 * they're returned by readdir. Until we reuse freed offsets 6287 * we have this hack to stop new entries from being returned 6288 * under the assumption that they'll never reach this huge 6289 * offset. 6290 * 6291 * This is being careful not to overflow 32bit loff_t unless the 6292 * last entry requires it because doing so has broken 32bit apps 6293 * in the past. 6294 */ 6295 if (ctx->pos >= INT_MAX) 6296 ctx->pos = LLONG_MAX; 6297 else 6298 ctx->pos = INT_MAX; 6299 nopos: 6300 ret = 0; 6301 err: 6302 if (put) 6303 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6304 return ret; 6305 } 6306 6307 /* 6308 * This is somewhat expensive, updating the tree every time the 6309 * inode changes. But, it is most likely to find the inode in cache. 6310 * FIXME, needs more benchmarking...there are no reasons other than performance 6311 * to keep or drop this code. 6312 */ 6313 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6314 { 6315 struct btrfs_root *root = inode->root; 6316 struct btrfs_fs_info *fs_info = root->fs_info; 6317 struct btrfs_trans_handle *trans; 6318 int ret; 6319 6320 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6321 return 0; 6322 6323 trans = btrfs_join_transaction(root); 6324 if (IS_ERR(trans)) 6325 return PTR_ERR(trans); 6326 6327 ret = btrfs_update_inode(trans, inode); 6328 if (ret == -ENOSPC || ret == -EDQUOT) { 6329 /* whoops, lets try again with the full transaction */ 6330 btrfs_end_transaction(trans); 6331 trans = btrfs_start_transaction(root, 1); 6332 if (IS_ERR(trans)) 6333 return PTR_ERR(trans); 6334 6335 ret = btrfs_update_inode(trans, inode); 6336 } 6337 btrfs_end_transaction(trans); 6338 if (inode->delayed_node) 6339 btrfs_balance_delayed_items(fs_info); 6340 6341 return ret; 6342 } 6343 6344 /* 6345 * We need our own ->update_time so that we can return error on ENOSPC for 6346 * updating the inode in the case of file write and mmap writes. 6347 */ 6348 static int btrfs_update_time(struct inode *inode, int flags) 6349 { 6350 struct btrfs_root *root = BTRFS_I(inode)->root; 6351 bool dirty; 6352 6353 if (btrfs_root_readonly(root)) 6354 return -EROFS; 6355 6356 dirty = inode_update_timestamps(inode, flags); 6357 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6358 } 6359 6360 /* 6361 * helper to find a free sequence number in a given directory. This current 6362 * code is very simple, later versions will do smarter things in the btree 6363 */ 6364 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6365 { 6366 int ret = 0; 6367 6368 if (dir->index_cnt == (u64)-1) { 6369 ret = btrfs_inode_delayed_dir_index_count(dir); 6370 if (ret) { 6371 ret = btrfs_set_inode_index_count(dir); 6372 if (ret) 6373 return ret; 6374 } 6375 } 6376 6377 *index = dir->index_cnt; 6378 dir->index_cnt++; 6379 6380 return ret; 6381 } 6382 6383 static int btrfs_insert_inode_locked(struct inode *inode) 6384 { 6385 struct btrfs_iget_args args; 6386 6387 args.ino = btrfs_ino(BTRFS_I(inode)); 6388 args.root = BTRFS_I(inode)->root; 6389 6390 return insert_inode_locked4(inode, 6391 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6392 btrfs_find_actor, &args); 6393 } 6394 6395 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6396 unsigned int *trans_num_items) 6397 { 6398 struct inode *dir = args->dir; 6399 struct inode *inode = args->inode; 6400 int ret; 6401 6402 if (!args->orphan) { 6403 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6404 &args->fname); 6405 if (ret) 6406 return ret; 6407 } 6408 6409 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6410 if (ret) { 6411 fscrypt_free_filename(&args->fname); 6412 return ret; 6413 } 6414 6415 /* 1 to add inode item */ 6416 *trans_num_items = 1; 6417 /* 1 to add compression property */ 6418 if (BTRFS_I(dir)->prop_compress) 6419 (*trans_num_items)++; 6420 /* 1 to add default ACL xattr */ 6421 if (args->default_acl) 6422 (*trans_num_items)++; 6423 /* 1 to add access ACL xattr */ 6424 if (args->acl) 6425 (*trans_num_items)++; 6426 #ifdef CONFIG_SECURITY 6427 /* 1 to add LSM xattr */ 6428 if (dir->i_security) 6429 (*trans_num_items)++; 6430 #endif 6431 if (args->orphan) { 6432 /* 1 to add orphan item */ 6433 (*trans_num_items)++; 6434 } else { 6435 /* 6436 * 1 to add dir item 6437 * 1 to add dir index 6438 * 1 to update parent inode item 6439 * 6440 * No need for 1 unit for the inode ref item because it is 6441 * inserted in a batch together with the inode item at 6442 * btrfs_create_new_inode(). 6443 */ 6444 *trans_num_items += 3; 6445 } 6446 return 0; 6447 } 6448 6449 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6450 { 6451 posix_acl_release(args->acl); 6452 posix_acl_release(args->default_acl); 6453 fscrypt_free_filename(&args->fname); 6454 } 6455 6456 /* 6457 * Inherit flags from the parent inode. 6458 * 6459 * Currently only the compression flags and the cow flags are inherited. 6460 */ 6461 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6462 { 6463 unsigned int flags; 6464 6465 flags = dir->flags; 6466 6467 if (flags & BTRFS_INODE_NOCOMPRESS) { 6468 inode->flags &= ~BTRFS_INODE_COMPRESS; 6469 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6470 } else if (flags & BTRFS_INODE_COMPRESS) { 6471 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6472 inode->flags |= BTRFS_INODE_COMPRESS; 6473 } 6474 6475 if (flags & BTRFS_INODE_NODATACOW) { 6476 inode->flags |= BTRFS_INODE_NODATACOW; 6477 if (S_ISREG(inode->vfs_inode.i_mode)) 6478 inode->flags |= BTRFS_INODE_NODATASUM; 6479 } 6480 6481 btrfs_sync_inode_flags_to_i_flags(inode); 6482 } 6483 6484 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6485 struct btrfs_new_inode_args *args) 6486 { 6487 struct timespec64 ts; 6488 struct inode *dir = args->dir; 6489 struct inode *inode = args->inode; 6490 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6491 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6492 struct btrfs_root *root; 6493 struct btrfs_inode_item *inode_item; 6494 struct btrfs_path *path; 6495 u64 objectid; 6496 struct btrfs_inode_ref *ref; 6497 struct btrfs_key key[2]; 6498 u32 sizes[2]; 6499 struct btrfs_item_batch batch; 6500 unsigned long ptr; 6501 int ret; 6502 bool xa_reserved = false; 6503 6504 path = btrfs_alloc_path(); 6505 if (!path) 6506 return -ENOMEM; 6507 6508 if (!args->subvol) 6509 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6510 root = BTRFS_I(inode)->root; 6511 6512 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6513 if (ret) 6514 goto out; 6515 6516 ret = btrfs_get_free_objectid(root, &objectid); 6517 if (ret) 6518 goto out; 6519 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6520 6521 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6522 if (ret) 6523 goto out; 6524 xa_reserved = true; 6525 6526 if (args->orphan) { 6527 /* 6528 * O_TMPFILE, set link count to 0, so that after this point, we 6529 * fill in an inode item with the correct link count. 6530 */ 6531 set_nlink(inode, 0); 6532 } else { 6533 trace_btrfs_inode_request(dir); 6534 6535 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6536 if (ret) 6537 goto out; 6538 } 6539 6540 if (S_ISDIR(inode->i_mode)) 6541 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6542 6543 BTRFS_I(inode)->generation = trans->transid; 6544 inode->i_generation = BTRFS_I(inode)->generation; 6545 6546 /* 6547 * We don't have any capability xattrs set here yet, shortcut any 6548 * queries for the xattrs here. If we add them later via the inode 6549 * security init path or any other path this flag will be cleared. 6550 */ 6551 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6552 6553 /* 6554 * Subvolumes don't inherit flags from their parent directory. 6555 * Originally this was probably by accident, but we probably can't 6556 * change it now without compatibility issues. 6557 */ 6558 if (!args->subvol) 6559 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6560 6561 btrfs_set_inode_mapping_order(BTRFS_I(inode)); 6562 if (S_ISREG(inode->i_mode)) { 6563 if (btrfs_test_opt(fs_info, NODATASUM)) 6564 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6565 if (btrfs_test_opt(fs_info, NODATACOW)) 6566 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6567 BTRFS_INODE_NODATASUM; 6568 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6569 } 6570 6571 ret = btrfs_insert_inode_locked(inode); 6572 if (ret < 0) { 6573 if (!args->orphan) 6574 BTRFS_I(dir)->index_cnt--; 6575 goto out; 6576 } 6577 6578 /* 6579 * We could have gotten an inode number from somebody who was fsynced 6580 * and then removed in this same transaction, so let's just set full 6581 * sync since it will be a full sync anyway and this will blow away the 6582 * old info in the log. 6583 */ 6584 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6585 6586 key[0].objectid = objectid; 6587 key[0].type = BTRFS_INODE_ITEM_KEY; 6588 key[0].offset = 0; 6589 6590 sizes[0] = sizeof(struct btrfs_inode_item); 6591 6592 if (!args->orphan) { 6593 /* 6594 * Start new inodes with an inode_ref. This is slightly more 6595 * efficient for small numbers of hard links since they will 6596 * be packed into one item. Extended refs will kick in if we 6597 * add more hard links than can fit in the ref item. 6598 */ 6599 key[1].objectid = objectid; 6600 key[1].type = BTRFS_INODE_REF_KEY; 6601 if (args->subvol) { 6602 key[1].offset = objectid; 6603 sizes[1] = 2 + sizeof(*ref); 6604 } else { 6605 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6606 sizes[1] = name->len + sizeof(*ref); 6607 } 6608 } 6609 6610 batch.keys = &key[0]; 6611 batch.data_sizes = &sizes[0]; 6612 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6613 batch.nr = args->orphan ? 1 : 2; 6614 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6615 if (unlikely(ret != 0)) { 6616 btrfs_abort_transaction(trans, ret); 6617 goto discard; 6618 } 6619 6620 ts = simple_inode_init_ts(inode); 6621 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6622 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6623 6624 /* 6625 * We're going to fill the inode item now, so at this point the inode 6626 * must be fully initialized. 6627 */ 6628 6629 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6630 struct btrfs_inode_item); 6631 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6632 sizeof(*inode_item)); 6633 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6634 6635 if (!args->orphan) { 6636 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6637 struct btrfs_inode_ref); 6638 ptr = (unsigned long)(ref + 1); 6639 if (args->subvol) { 6640 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6641 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6642 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6643 } else { 6644 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6645 name->len); 6646 btrfs_set_inode_ref_index(path->nodes[0], ref, 6647 BTRFS_I(inode)->dir_index); 6648 write_extent_buffer(path->nodes[0], name->name, ptr, 6649 name->len); 6650 } 6651 } 6652 6653 /* 6654 * We don't need the path anymore, plus inheriting properties, adding 6655 * ACLs, security xattrs, orphan item or adding the link, will result in 6656 * allocating yet another path. So just free our path. 6657 */ 6658 btrfs_free_path(path); 6659 path = NULL; 6660 6661 if (args->subvol) { 6662 struct btrfs_inode *parent; 6663 6664 /* 6665 * Subvolumes inherit properties from their parent subvolume, 6666 * not the directory they were created in. 6667 */ 6668 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6669 if (IS_ERR(parent)) { 6670 ret = PTR_ERR(parent); 6671 } else { 6672 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6673 parent); 6674 iput(&parent->vfs_inode); 6675 } 6676 } else { 6677 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6678 BTRFS_I(dir)); 6679 } 6680 if (ret) { 6681 btrfs_err(fs_info, 6682 "error inheriting props for ino %llu (root %llu): %d", 6683 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6684 } 6685 6686 /* 6687 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6688 * probably a bug. 6689 */ 6690 if (!args->subvol) { 6691 ret = btrfs_init_inode_security(trans, args); 6692 if (unlikely(ret)) { 6693 btrfs_abort_transaction(trans, ret); 6694 goto discard; 6695 } 6696 } 6697 6698 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6699 if (WARN_ON(ret)) { 6700 /* Shouldn't happen, we used xa_reserve() before. */ 6701 btrfs_abort_transaction(trans, ret); 6702 goto discard; 6703 } 6704 6705 trace_btrfs_inode_new(inode); 6706 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6707 6708 btrfs_update_root_times(trans, root); 6709 6710 if (args->orphan) { 6711 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6712 if (unlikely(ret)) { 6713 btrfs_abort_transaction(trans, ret); 6714 goto discard; 6715 } 6716 } else { 6717 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6718 0, BTRFS_I(inode)->dir_index); 6719 if (unlikely(ret)) { 6720 btrfs_abort_transaction(trans, ret); 6721 goto discard; 6722 } 6723 } 6724 6725 return 0; 6726 6727 discard: 6728 /* 6729 * discard_new_inode() calls iput(), but the caller owns the reference 6730 * to the inode. 6731 */ 6732 ihold(inode); 6733 discard_new_inode(inode); 6734 out: 6735 if (xa_reserved) 6736 xa_release(&root->inodes, objectid); 6737 6738 btrfs_free_path(path); 6739 return ret; 6740 } 6741 6742 /* 6743 * utility function to add 'inode' into 'parent_inode' with 6744 * a give name and a given sequence number. 6745 * if 'add_backref' is true, also insert a backref from the 6746 * inode to the parent directory. 6747 */ 6748 int btrfs_add_link(struct btrfs_trans_handle *trans, 6749 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6750 const struct fscrypt_str *name, bool add_backref, u64 index) 6751 { 6752 int ret = 0; 6753 struct btrfs_key key; 6754 struct btrfs_root *root = parent_inode->root; 6755 u64 ino = btrfs_ino(inode); 6756 u64 parent_ino = btrfs_ino(parent_inode); 6757 6758 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6759 memcpy(&key, &inode->root->root_key, sizeof(key)); 6760 } else { 6761 key.objectid = ino; 6762 key.type = BTRFS_INODE_ITEM_KEY; 6763 key.offset = 0; 6764 } 6765 6766 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6767 ret = btrfs_add_root_ref(trans, key.objectid, 6768 btrfs_root_id(root), parent_ino, 6769 index, name); 6770 } else if (add_backref) { 6771 ret = btrfs_insert_inode_ref(trans, root, name, 6772 ino, parent_ino, index); 6773 } 6774 6775 /* Nothing to clean up yet */ 6776 if (ret) 6777 return ret; 6778 6779 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6780 btrfs_inode_type(inode), index); 6781 if (ret == -EEXIST || ret == -EOVERFLOW) 6782 goto fail_dir_item; 6783 else if (unlikely(ret)) { 6784 btrfs_abort_transaction(trans, ret); 6785 return ret; 6786 } 6787 6788 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6789 name->len * 2); 6790 inode_inc_iversion(&parent_inode->vfs_inode); 6791 update_time_after_link_or_unlink(parent_inode); 6792 6793 ret = btrfs_update_inode(trans, parent_inode); 6794 if (ret) 6795 btrfs_abort_transaction(trans, ret); 6796 return ret; 6797 6798 fail_dir_item: 6799 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6800 u64 local_index; 6801 int ret2; 6802 6803 ret2 = btrfs_del_root_ref(trans, key.objectid, btrfs_root_id(root), 6804 parent_ino, &local_index, name); 6805 if (ret2) 6806 btrfs_abort_transaction(trans, ret2); 6807 } else if (add_backref) { 6808 int ret2; 6809 6810 ret2 = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, NULL); 6811 if (ret2) 6812 btrfs_abort_transaction(trans, ret2); 6813 } 6814 6815 /* Return the original error code */ 6816 return ret; 6817 } 6818 6819 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6820 struct inode *inode) 6821 { 6822 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6823 struct btrfs_root *root = BTRFS_I(dir)->root; 6824 struct btrfs_new_inode_args new_inode_args = { 6825 .dir = dir, 6826 .dentry = dentry, 6827 .inode = inode, 6828 }; 6829 unsigned int trans_num_items; 6830 struct btrfs_trans_handle *trans; 6831 int ret; 6832 6833 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6834 if (ret) 6835 goto out_inode; 6836 6837 trans = btrfs_start_transaction(root, trans_num_items); 6838 if (IS_ERR(trans)) { 6839 ret = PTR_ERR(trans); 6840 goto out_new_inode_args; 6841 } 6842 6843 ret = btrfs_create_new_inode(trans, &new_inode_args); 6844 if (!ret) { 6845 if (S_ISDIR(inode->i_mode)) 6846 inode->i_opflags |= IOP_FASTPERM_MAY_EXEC; 6847 d_instantiate_new(dentry, inode); 6848 } 6849 6850 btrfs_end_transaction(trans); 6851 btrfs_btree_balance_dirty(fs_info); 6852 out_new_inode_args: 6853 btrfs_new_inode_args_destroy(&new_inode_args); 6854 out_inode: 6855 if (ret) 6856 iput(inode); 6857 return ret; 6858 } 6859 6860 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6861 struct dentry *dentry, umode_t mode, dev_t rdev) 6862 { 6863 struct inode *inode; 6864 6865 inode = new_inode(dir->i_sb); 6866 if (!inode) 6867 return -ENOMEM; 6868 inode_init_owner(idmap, inode, dir, mode); 6869 inode->i_op = &btrfs_special_inode_operations; 6870 init_special_inode(inode, inode->i_mode, rdev); 6871 return btrfs_create_common(dir, dentry, inode); 6872 } 6873 6874 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6875 struct dentry *dentry, umode_t mode, bool excl) 6876 { 6877 struct inode *inode; 6878 6879 inode = new_inode(dir->i_sb); 6880 if (!inode) 6881 return -ENOMEM; 6882 inode_init_owner(idmap, inode, dir, mode); 6883 inode->i_fop = &btrfs_file_operations; 6884 inode->i_op = &btrfs_file_inode_operations; 6885 inode->i_mapping->a_ops = &btrfs_aops; 6886 return btrfs_create_common(dir, dentry, inode); 6887 } 6888 6889 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6890 struct dentry *dentry) 6891 { 6892 struct btrfs_trans_handle *trans = NULL; 6893 struct btrfs_root *root = BTRFS_I(dir)->root; 6894 struct inode *inode = d_inode(old_dentry); 6895 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6896 struct fscrypt_name fname; 6897 u64 index; 6898 int ret; 6899 6900 /* do not allow sys_link's with other subvols of the same device */ 6901 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6902 return -EXDEV; 6903 6904 if (inode->i_nlink >= BTRFS_LINK_MAX) 6905 return -EMLINK; 6906 6907 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6908 if (ret) 6909 goto fail; 6910 6911 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 6912 if (ret) 6913 goto fail; 6914 6915 /* 6916 * 2 items for inode and inode ref 6917 * 2 items for dir items 6918 * 1 item for parent inode 6919 * 1 item for orphan item deletion if O_TMPFILE 6920 */ 6921 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6922 if (IS_ERR(trans)) { 6923 ret = PTR_ERR(trans); 6924 trans = NULL; 6925 goto fail; 6926 } 6927 6928 /* There are several dir indexes for this inode, clear the cache. */ 6929 BTRFS_I(inode)->dir_index = 0ULL; 6930 inode_inc_iversion(inode); 6931 inode_set_ctime_current(inode); 6932 6933 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6934 &fname.disk_name, 1, index); 6935 if (ret) 6936 goto fail; 6937 6938 /* Link added now we update the inode item with the new link count. */ 6939 inc_nlink(inode); 6940 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 6941 if (unlikely(ret)) { 6942 btrfs_abort_transaction(trans, ret); 6943 goto fail; 6944 } 6945 6946 if (inode->i_nlink == 1) { 6947 /* 6948 * If the new hard link count is 1, it's a file created with the 6949 * open(2) O_TMPFILE flag. 6950 */ 6951 ret = btrfs_orphan_del(trans, BTRFS_I(inode)); 6952 if (unlikely(ret)) { 6953 btrfs_abort_transaction(trans, ret); 6954 goto fail; 6955 } 6956 } 6957 6958 /* Grab reference for the new dentry passed to d_instantiate(). */ 6959 ihold(inode); 6960 d_instantiate(dentry, inode); 6961 btrfs_log_new_name(trans, old_dentry, NULL, 0, dentry->d_parent); 6962 6963 fail: 6964 fscrypt_free_filename(&fname); 6965 if (trans) 6966 btrfs_end_transaction(trans); 6967 btrfs_btree_balance_dirty(fs_info); 6968 return ret; 6969 } 6970 6971 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6972 struct dentry *dentry, umode_t mode) 6973 { 6974 struct inode *inode; 6975 6976 inode = new_inode(dir->i_sb); 6977 if (!inode) 6978 return ERR_PTR(-ENOMEM); 6979 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6980 inode->i_op = &btrfs_dir_inode_operations; 6981 inode->i_fop = &btrfs_dir_file_operations; 6982 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6983 } 6984 6985 static noinline int uncompress_inline(struct btrfs_path *path, 6986 struct folio *folio, 6987 struct btrfs_file_extent_item *item) 6988 { 6989 int ret; 6990 struct extent_buffer *leaf = path->nodes[0]; 6991 const u32 blocksize = leaf->fs_info->sectorsize; 6992 char *tmp; 6993 size_t max_size; 6994 unsigned long inline_size; 6995 unsigned long ptr; 6996 int compress_type; 6997 6998 compress_type = btrfs_file_extent_compression(leaf, item); 6999 max_size = btrfs_file_extent_ram_bytes(leaf, item); 7000 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 7001 tmp = kmalloc(inline_size, GFP_NOFS); 7002 if (!tmp) 7003 return -ENOMEM; 7004 ptr = btrfs_file_extent_inline_start(item); 7005 7006 read_extent_buffer(leaf, tmp, ptr, inline_size); 7007 7008 max_size = min_t(unsigned long, blocksize, max_size); 7009 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 7010 max_size); 7011 7012 /* 7013 * decompression code contains a memset to fill in any space between the end 7014 * of the uncompressed data and the end of max_size in case the decompressed 7015 * data ends up shorter than ram_bytes. That doesn't cover the hole between 7016 * the end of an inline extent and the beginning of the next block, so we 7017 * cover that region here. 7018 */ 7019 7020 if (max_size < blocksize) 7021 folio_zero_range(folio, max_size, blocksize - max_size); 7022 kfree(tmp); 7023 return ret; 7024 } 7025 7026 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 7027 { 7028 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 7029 struct btrfs_file_extent_item *fi; 7030 void *kaddr; 7031 size_t copy_size; 7032 7033 if (!folio || folio_test_uptodate(folio)) 7034 return 0; 7035 7036 ASSERT(folio_pos(folio) == 0); 7037 7038 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 7039 struct btrfs_file_extent_item); 7040 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 7041 return uncompress_inline(path, folio, fi); 7042 7043 copy_size = min_t(u64, blocksize, 7044 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 7045 kaddr = kmap_local_folio(folio, 0); 7046 read_extent_buffer(path->nodes[0], kaddr, 7047 btrfs_file_extent_inline_start(fi), copy_size); 7048 kunmap_local(kaddr); 7049 if (copy_size < blocksize) 7050 folio_zero_range(folio, copy_size, blocksize - copy_size); 7051 return 0; 7052 } 7053 7054 /* 7055 * Lookup the first extent overlapping a range in a file. 7056 * 7057 * @inode: file to search in 7058 * @page: page to read extent data into if the extent is inline 7059 * @start: file offset 7060 * @len: length of range starting at @start 7061 * 7062 * Return the first &struct extent_map which overlaps the given range, reading 7063 * it from the B-tree and caching it if necessary. Note that there may be more 7064 * extents which overlap the given range after the returned extent_map. 7065 * 7066 * If @page is not NULL and the extent is inline, this also reads the extent 7067 * data directly into the page and marks the extent up to date in the io_tree. 7068 * 7069 * Return: ERR_PTR on error, non-NULL extent_map on success. 7070 */ 7071 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 7072 struct folio *folio, u64 start, u64 len) 7073 { 7074 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7075 int ret = 0; 7076 u64 extent_start = 0; 7077 u64 extent_end = 0; 7078 u64 objectid = btrfs_ino(inode); 7079 int extent_type = -1; 7080 struct btrfs_path *path = NULL; 7081 struct btrfs_root *root = inode->root; 7082 struct btrfs_file_extent_item *item; 7083 struct extent_buffer *leaf; 7084 struct btrfs_key found_key; 7085 struct extent_map *em = NULL; 7086 struct extent_map_tree *em_tree = &inode->extent_tree; 7087 7088 read_lock(&em_tree->lock); 7089 em = btrfs_lookup_extent_mapping(em_tree, start, len); 7090 read_unlock(&em_tree->lock); 7091 7092 if (em) { 7093 if (em->start > start || em->start + em->len <= start) 7094 btrfs_free_extent_map(em); 7095 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 7096 btrfs_free_extent_map(em); 7097 else 7098 goto out; 7099 } 7100 em = btrfs_alloc_extent_map(); 7101 if (!em) { 7102 ret = -ENOMEM; 7103 goto out; 7104 } 7105 em->start = EXTENT_MAP_HOLE; 7106 em->disk_bytenr = EXTENT_MAP_HOLE; 7107 em->len = (u64)-1; 7108 7109 path = btrfs_alloc_path(); 7110 if (!path) { 7111 ret = -ENOMEM; 7112 goto out; 7113 } 7114 7115 /* Chances are we'll be called again, so go ahead and do readahead */ 7116 path->reada = READA_FORWARD; 7117 7118 /* 7119 * The same explanation in load_free_space_cache applies here as well, 7120 * we only read when we're loading the free space cache, and at that 7121 * point the commit_root has everything we need. 7122 */ 7123 if (btrfs_is_free_space_inode(inode)) { 7124 path->search_commit_root = true; 7125 path->skip_locking = true; 7126 } 7127 7128 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 7129 if (ret < 0) { 7130 goto out; 7131 } else if (ret > 0) { 7132 if (path->slots[0] == 0) 7133 goto not_found; 7134 path->slots[0]--; 7135 ret = 0; 7136 } 7137 7138 leaf = path->nodes[0]; 7139 item = btrfs_item_ptr(leaf, path->slots[0], 7140 struct btrfs_file_extent_item); 7141 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7142 if (found_key.objectid != objectid || 7143 found_key.type != BTRFS_EXTENT_DATA_KEY) { 7144 /* 7145 * If we backup past the first extent we want to move forward 7146 * and see if there is an extent in front of us, otherwise we'll 7147 * say there is a hole for our whole search range which can 7148 * cause problems. 7149 */ 7150 extent_end = start; 7151 goto next; 7152 } 7153 7154 extent_type = btrfs_file_extent_type(leaf, item); 7155 extent_start = found_key.offset; 7156 extent_end = btrfs_file_extent_end(path); 7157 if (extent_type == BTRFS_FILE_EXTENT_REG || 7158 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7159 /* Only regular file could have regular/prealloc extent */ 7160 if (unlikely(!S_ISREG(inode->vfs_inode.i_mode))) { 7161 ret = -EUCLEAN; 7162 btrfs_crit(fs_info, 7163 "regular/prealloc extent found for non-regular inode %llu", 7164 btrfs_ino(inode)); 7165 goto out; 7166 } 7167 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 7168 extent_start); 7169 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7170 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 7171 path->slots[0], 7172 extent_start); 7173 } 7174 next: 7175 if (start >= extent_end) { 7176 path->slots[0]++; 7177 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 7178 ret = btrfs_next_leaf(root, path); 7179 if (ret < 0) 7180 goto out; 7181 else if (ret > 0) 7182 goto not_found; 7183 7184 leaf = path->nodes[0]; 7185 } 7186 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7187 if (found_key.objectid != objectid || 7188 found_key.type != BTRFS_EXTENT_DATA_KEY) 7189 goto not_found; 7190 if (start + len <= found_key.offset) 7191 goto not_found; 7192 if (start > found_key.offset) 7193 goto next; 7194 7195 /* New extent overlaps with existing one */ 7196 em->start = start; 7197 em->len = found_key.offset - start; 7198 em->disk_bytenr = EXTENT_MAP_HOLE; 7199 goto insert; 7200 } 7201 7202 btrfs_extent_item_to_extent_map(inode, path, item, em); 7203 7204 if (extent_type == BTRFS_FILE_EXTENT_REG || 7205 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7206 goto insert; 7207 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7208 /* 7209 * Inline extent can only exist at file offset 0. This is 7210 * ensured by tree-checker and inline extent creation path. 7211 * Thus all members representing file offsets should be zero. 7212 */ 7213 ASSERT(extent_start == 0); 7214 ASSERT(em->start == 0); 7215 7216 /* 7217 * btrfs_extent_item_to_extent_map() should have properly 7218 * initialized em members already. 7219 * 7220 * Other members are not utilized for inline extents. 7221 */ 7222 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7223 ASSERT(em->len == fs_info->sectorsize); 7224 7225 ret = read_inline_extent(path, folio); 7226 if (ret < 0) 7227 goto out; 7228 goto insert; 7229 } 7230 not_found: 7231 em->start = start; 7232 em->len = len; 7233 em->disk_bytenr = EXTENT_MAP_HOLE; 7234 insert: 7235 ret = 0; 7236 btrfs_release_path(path); 7237 if (unlikely(em->start > start || btrfs_extent_map_end(em) <= start)) { 7238 btrfs_err(fs_info, 7239 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7240 em->start, em->len, start, len); 7241 ret = -EIO; 7242 goto out; 7243 } 7244 7245 write_lock(&em_tree->lock); 7246 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7247 write_unlock(&em_tree->lock); 7248 out: 7249 btrfs_free_path(path); 7250 7251 trace_btrfs_get_extent(root, inode, em); 7252 7253 if (ret) { 7254 btrfs_free_extent_map(em); 7255 return ERR_PTR(ret); 7256 } 7257 return em; 7258 } 7259 7260 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7261 { 7262 struct btrfs_block_group *block_group; 7263 bool readonly = false; 7264 7265 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7266 if (!block_group || block_group->ro) 7267 readonly = true; 7268 if (block_group) 7269 btrfs_put_block_group(block_group); 7270 return readonly; 7271 } 7272 7273 /* 7274 * Check if we can do nocow write into the range [@offset, @offset + @len) 7275 * 7276 * @offset: File offset 7277 * @len: The length to write, will be updated to the nocow writeable 7278 * range 7279 * @orig_start: (optional) Return the original file offset of the file extent 7280 * @orig_len: (optional) Return the original on-disk length of the file extent 7281 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7282 * 7283 * Return: 7284 * >0 and update @len if we can do nocow write 7285 * 0 if we can't do nocow write 7286 * <0 if error happened 7287 * 7288 * NOTE: This only checks the file extents, caller is responsible to wait for 7289 * any ordered extents. 7290 */ 7291 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7292 struct btrfs_file_extent *file_extent, 7293 bool nowait) 7294 { 7295 struct btrfs_root *root = inode->root; 7296 struct btrfs_fs_info *fs_info = root->fs_info; 7297 struct can_nocow_file_extent_args nocow_args = { 0 }; 7298 BTRFS_PATH_AUTO_FREE(path); 7299 int ret; 7300 struct extent_buffer *leaf; 7301 struct extent_io_tree *io_tree = &inode->io_tree; 7302 struct btrfs_file_extent_item *fi; 7303 struct btrfs_key key; 7304 int found_type; 7305 7306 path = btrfs_alloc_path(); 7307 if (!path) 7308 return -ENOMEM; 7309 path->nowait = nowait; 7310 7311 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7312 offset, 0); 7313 if (ret < 0) 7314 return ret; 7315 7316 if (ret == 1) { 7317 if (path->slots[0] == 0) { 7318 /* Can't find the item, must COW. */ 7319 return 0; 7320 } 7321 path->slots[0]--; 7322 } 7323 ret = 0; 7324 leaf = path->nodes[0]; 7325 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7326 if (key.objectid != btrfs_ino(inode) || 7327 key.type != BTRFS_EXTENT_DATA_KEY) { 7328 /* Not our file or wrong item type, must COW. */ 7329 return 0; 7330 } 7331 7332 if (key.offset > offset) { 7333 /* Wrong offset, must COW. */ 7334 return 0; 7335 } 7336 7337 if (btrfs_file_extent_end(path) <= offset) 7338 return 0; 7339 7340 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7341 found_type = btrfs_file_extent_type(leaf, fi); 7342 7343 nocow_args.start = offset; 7344 nocow_args.end = offset + *len - 1; 7345 nocow_args.free_path = true; 7346 7347 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7348 /* can_nocow_file_extent() has freed the path. */ 7349 path = NULL; 7350 7351 if (ret != 1) { 7352 /* Treat errors as not being able to NOCOW. */ 7353 return 0; 7354 } 7355 7356 if (btrfs_extent_readonly(fs_info, 7357 nocow_args.file_extent.disk_bytenr + 7358 nocow_args.file_extent.offset)) 7359 return 0; 7360 7361 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7362 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7363 u64 range_end; 7364 7365 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7366 root->fs_info->sectorsize) - 1; 7367 ret = btrfs_test_range_bit_exists(io_tree, offset, range_end, 7368 EXTENT_DELALLOC); 7369 if (ret) 7370 return -EAGAIN; 7371 } 7372 7373 if (file_extent) 7374 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7375 7376 *len = nocow_args.file_extent.num_bytes; 7377 7378 return 1; 7379 } 7380 7381 /* The callers of this must take lock_extent() */ 7382 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7383 const struct btrfs_file_extent *file_extent, 7384 int type) 7385 { 7386 struct extent_map *em; 7387 int ret; 7388 7389 /* 7390 * Note the missing NOCOW type. 7391 * 7392 * For pure NOCOW writes, we should not create an io extent map, but 7393 * just reusing the existing one. 7394 * Only PREALLOC writes (NOCOW write into preallocated range) can 7395 * create an io extent map. 7396 */ 7397 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7398 type == BTRFS_ORDERED_COMPRESSED || 7399 type == BTRFS_ORDERED_REGULAR); 7400 7401 switch (type) { 7402 case BTRFS_ORDERED_PREALLOC: 7403 /* We're only referring part of a larger preallocated extent. */ 7404 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7405 break; 7406 case BTRFS_ORDERED_REGULAR: 7407 /* COW results a new extent matching our file extent size. */ 7408 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7409 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7410 7411 /* Since it's a new extent, we should not have any offset. */ 7412 ASSERT(file_extent->offset == 0); 7413 break; 7414 case BTRFS_ORDERED_COMPRESSED: 7415 /* Must be compressed. */ 7416 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7417 7418 /* 7419 * Encoded write can make us to refer to part of the 7420 * uncompressed extent. 7421 */ 7422 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7423 break; 7424 } 7425 7426 em = btrfs_alloc_extent_map(); 7427 if (!em) 7428 return ERR_PTR(-ENOMEM); 7429 7430 em->start = start; 7431 em->len = file_extent->num_bytes; 7432 em->disk_bytenr = file_extent->disk_bytenr; 7433 em->disk_num_bytes = file_extent->disk_num_bytes; 7434 em->ram_bytes = file_extent->ram_bytes; 7435 em->generation = -1; 7436 em->offset = file_extent->offset; 7437 em->flags |= EXTENT_FLAG_PINNED; 7438 if (type == BTRFS_ORDERED_COMPRESSED) 7439 btrfs_extent_map_set_compression(em, file_extent->compression); 7440 7441 ret = btrfs_replace_extent_map_range(inode, em, true); 7442 if (ret) { 7443 btrfs_free_extent_map(em); 7444 return ERR_PTR(ret); 7445 } 7446 7447 /* em got 2 refs now, callers needs to do btrfs_free_extent_map once. */ 7448 return em; 7449 } 7450 7451 /* 7452 * For release_folio() and invalidate_folio() we have a race window where 7453 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7454 * If we continue to release/invalidate the page, we could cause use-after-free 7455 * for subpage spinlock. So this function is to spin and wait for subpage 7456 * spinlock. 7457 */ 7458 static void wait_subpage_spinlock(struct folio *folio) 7459 { 7460 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7461 struct btrfs_folio_state *bfs; 7462 7463 if (!btrfs_is_subpage(fs_info, folio)) 7464 return; 7465 7466 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7467 bfs = folio_get_private(folio); 7468 7469 /* 7470 * This may look insane as we just acquire the spinlock and release it, 7471 * without doing anything. But we just want to make sure no one is 7472 * still holding the subpage spinlock. 7473 * And since the page is not dirty nor writeback, and we have page 7474 * locked, the only possible way to hold a spinlock is from the endio 7475 * function to clear page writeback. 7476 * 7477 * Here we just acquire the spinlock so that all existing callers 7478 * should exit and we're safe to release/invalidate the page. 7479 */ 7480 spin_lock_irq(&bfs->lock); 7481 spin_unlock_irq(&bfs->lock); 7482 } 7483 7484 static int btrfs_launder_folio(struct folio *folio) 7485 { 7486 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7487 folio_size(folio), NULL); 7488 } 7489 7490 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7491 { 7492 if (try_release_extent_mapping(folio, gfp_flags)) { 7493 wait_subpage_spinlock(folio); 7494 clear_folio_extent_mapped(folio); 7495 return true; 7496 } 7497 return false; 7498 } 7499 7500 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7501 { 7502 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7503 return false; 7504 return __btrfs_release_folio(folio, gfp_flags); 7505 } 7506 7507 #ifdef CONFIG_MIGRATION 7508 static int btrfs_migrate_folio(struct address_space *mapping, 7509 struct folio *dst, struct folio *src, 7510 enum migrate_mode mode) 7511 { 7512 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7513 7514 if (ret) 7515 return ret; 7516 7517 if (folio_test_ordered(src)) { 7518 folio_clear_ordered(src); 7519 folio_set_ordered(dst); 7520 } 7521 7522 return 0; 7523 } 7524 #else 7525 #define btrfs_migrate_folio NULL 7526 #endif 7527 7528 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7529 size_t length) 7530 { 7531 struct btrfs_inode *inode = folio_to_inode(folio); 7532 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7533 struct extent_io_tree *tree = &inode->io_tree; 7534 struct extent_state *cached_state = NULL; 7535 u64 page_start = folio_pos(folio); 7536 u64 page_end = page_start + folio_size(folio) - 1; 7537 u64 cur; 7538 int inode_evicting = inode_state_read_once(&inode->vfs_inode) & I_FREEING; 7539 7540 /* 7541 * We have folio locked so no new ordered extent can be created on this 7542 * page, nor bio can be submitted for this folio. 7543 * 7544 * But already submitted bio can still be finished on this folio. 7545 * Furthermore, endio function won't skip folio which has Ordered 7546 * already cleared, so it's possible for endio and 7547 * invalidate_folio to do the same ordered extent accounting twice 7548 * on one folio. 7549 * 7550 * So here we wait for any submitted bios to finish, so that we won't 7551 * do double ordered extent accounting on the same folio. 7552 */ 7553 folio_wait_writeback(folio); 7554 wait_subpage_spinlock(folio); 7555 7556 /* 7557 * For subpage case, we have call sites like 7558 * btrfs_punch_hole_lock_range() which passes range not aligned to 7559 * sectorsize. 7560 * If the range doesn't cover the full folio, we don't need to and 7561 * shouldn't clear page extent mapped, as folio->private can still 7562 * record subpage dirty bits for other part of the range. 7563 * 7564 * For cases that invalidate the full folio even the range doesn't 7565 * cover the full folio, like invalidating the last folio, we're 7566 * still safe to wait for ordered extent to finish. 7567 */ 7568 if (!(offset == 0 && length == folio_size(folio))) { 7569 btrfs_release_folio(folio, GFP_NOFS); 7570 return; 7571 } 7572 7573 if (!inode_evicting) 7574 btrfs_lock_extent(tree, page_start, page_end, &cached_state); 7575 7576 cur = page_start; 7577 while (cur < page_end) { 7578 struct btrfs_ordered_extent *ordered; 7579 u64 range_end; 7580 u32 range_len; 7581 u32 extra_flags = 0; 7582 7583 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7584 page_end + 1 - cur); 7585 if (!ordered) { 7586 range_end = page_end; 7587 /* 7588 * No ordered extent covering this range, we are safe 7589 * to delete all extent states in the range. 7590 */ 7591 extra_flags = EXTENT_CLEAR_ALL_BITS; 7592 goto next; 7593 } 7594 if (ordered->file_offset > cur) { 7595 /* 7596 * There is a range between [cur, oe->file_offset) not 7597 * covered by any ordered extent. 7598 * We are safe to delete all extent states, and handle 7599 * the ordered extent in the next iteration. 7600 */ 7601 range_end = ordered->file_offset - 1; 7602 extra_flags = EXTENT_CLEAR_ALL_BITS; 7603 goto next; 7604 } 7605 7606 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7607 page_end); 7608 ASSERT(range_end + 1 - cur < U32_MAX); 7609 range_len = range_end + 1 - cur; 7610 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7611 /* 7612 * If Ordered is cleared, it means endio has 7613 * already been executed for the range. 7614 * We can't delete the extent states as 7615 * btrfs_finish_ordered_io() may still use some of them. 7616 */ 7617 goto next; 7618 } 7619 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7620 7621 /* 7622 * IO on this page will never be started, so we need to account 7623 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7624 * here, must leave that up for the ordered extent completion. 7625 * 7626 * This will also unlock the range for incoming 7627 * btrfs_finish_ordered_io(). 7628 */ 7629 if (!inode_evicting) 7630 btrfs_clear_extent_bit(tree, cur, range_end, 7631 EXTENT_DELALLOC | 7632 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7633 EXTENT_DEFRAG, &cached_state); 7634 7635 spin_lock(&inode->ordered_tree_lock); 7636 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7637 ordered->truncated_len = min(ordered->truncated_len, 7638 cur - ordered->file_offset); 7639 spin_unlock(&inode->ordered_tree_lock); 7640 7641 /* 7642 * If the ordered extent has finished, we're safe to delete all 7643 * the extent states of the range, otherwise 7644 * btrfs_finish_ordered_io() will get executed by endio for 7645 * other pages, so we can't delete extent states. 7646 */ 7647 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7648 cur, range_end + 1 - cur)) { 7649 btrfs_finish_ordered_io(ordered); 7650 /* 7651 * The ordered extent has finished, now we're again 7652 * safe to delete all extent states of the range. 7653 */ 7654 extra_flags = EXTENT_CLEAR_ALL_BITS; 7655 } 7656 next: 7657 if (ordered) 7658 btrfs_put_ordered_extent(ordered); 7659 /* 7660 * Qgroup reserved space handler 7661 * Sector(s) here will be either: 7662 * 7663 * 1) Already written to disk or bio already finished 7664 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7665 * Qgroup will be handled by its qgroup_record then. 7666 * btrfs_qgroup_free_data() call will do nothing here. 7667 * 7668 * 2) Not written to disk yet 7669 * Then btrfs_qgroup_free_data() call will clear the 7670 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7671 * reserved data space. 7672 * Since the IO will never happen for this page. 7673 */ 7674 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7675 if (!inode_evicting) 7676 btrfs_clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7677 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 7678 EXTENT_DEFRAG | extra_flags, 7679 &cached_state); 7680 cur = range_end + 1; 7681 } 7682 /* 7683 * We have iterated through all ordered extents of the page, the page 7684 * should not have Ordered anymore, or the above iteration 7685 * did something wrong. 7686 */ 7687 ASSERT(!folio_test_ordered(folio)); 7688 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7689 if (!inode_evicting) 7690 __btrfs_release_folio(folio, GFP_NOFS); 7691 clear_folio_extent_mapped(folio); 7692 } 7693 7694 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7695 { 7696 struct btrfs_truncate_control control = { 7697 .inode = inode, 7698 .ino = btrfs_ino(inode), 7699 .min_type = BTRFS_EXTENT_DATA_KEY, 7700 .clear_extent_range = true, 7701 .new_size = inode->vfs_inode.i_size, 7702 }; 7703 struct btrfs_root *root = inode->root; 7704 struct btrfs_fs_info *fs_info = root->fs_info; 7705 struct btrfs_block_rsv rsv; 7706 int ret; 7707 struct btrfs_trans_handle *trans; 7708 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7709 const u64 lock_start = round_down(inode->vfs_inode.i_size, fs_info->sectorsize); 7710 const u64 i_size_up = round_up(inode->vfs_inode.i_size, fs_info->sectorsize); 7711 7712 /* Our inode is locked and the i_size can't be changed concurrently. */ 7713 btrfs_assert_inode_locked(inode); 7714 7715 if (!skip_writeback) { 7716 ret = btrfs_wait_ordered_range(inode, lock_start, (u64)-1); 7717 if (ret) 7718 return ret; 7719 } 7720 7721 /* 7722 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7723 * things going on here: 7724 * 7725 * 1) We need to reserve space to update our inode. 7726 * 7727 * 2) We need to have something to cache all the space that is going to 7728 * be free'd up by the truncate operation, but also have some slack 7729 * space reserved in case it uses space during the truncate (thank you 7730 * very much snapshotting). 7731 * 7732 * And we need these to be separate. The fact is we can use a lot of 7733 * space doing the truncate, and we have no earthly idea how much space 7734 * we will use, so we need the truncate reservation to be separate so it 7735 * doesn't end up using space reserved for updating the inode. We also 7736 * need to be able to stop the transaction and start a new one, which 7737 * means we need to be able to update the inode several times, and we 7738 * have no idea of knowing how many times that will be, so we can't just 7739 * reserve 1 item for the entirety of the operation, so that has to be 7740 * done separately as well. 7741 * 7742 * So that leaves us with 7743 * 7744 * 1) rsv - for the truncate reservation, which we will steal from the 7745 * transaction reservation. 7746 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7747 * updating the inode. 7748 */ 7749 btrfs_init_metadata_block_rsv(fs_info, &rsv, BTRFS_BLOCK_RSV_TEMP); 7750 rsv.size = min_size; 7751 rsv.failfast = true; 7752 7753 /* 7754 * 1 for the truncate slack space 7755 * 1 for updating the inode. 7756 */ 7757 trans = btrfs_start_transaction(root, 2); 7758 if (IS_ERR(trans)) { 7759 ret = PTR_ERR(trans); 7760 goto out; 7761 } 7762 7763 /* Migrate the slack space for the truncate to our reserve */ 7764 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, &rsv, 7765 min_size, false); 7766 /* 7767 * We have reserved 2 metadata units when we started the transaction and 7768 * min_size matches 1 unit, so this should never fail, but if it does, 7769 * it's not critical we just fail truncation. 7770 */ 7771 if (WARN_ON(ret)) { 7772 btrfs_end_transaction(trans); 7773 goto out; 7774 } 7775 7776 trans->block_rsv = &rsv; 7777 7778 while (1) { 7779 struct extent_state *cached_state = NULL; 7780 7781 btrfs_lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7782 /* 7783 * We want to drop from the next block forward in case this new 7784 * size is not block aligned since we will be keeping the last 7785 * block of the extent just the way it is. 7786 */ 7787 btrfs_drop_extent_map_range(inode, i_size_up, (u64)-1, false); 7788 7789 ret = btrfs_truncate_inode_items(trans, root, &control); 7790 7791 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7792 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7793 7794 btrfs_unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7795 7796 trans->block_rsv = &fs_info->trans_block_rsv; 7797 if (ret != -ENOSPC && ret != -EAGAIN) 7798 break; 7799 7800 ret = btrfs_update_inode(trans, inode); 7801 if (ret) 7802 break; 7803 7804 btrfs_end_transaction(trans); 7805 btrfs_btree_balance_dirty(fs_info); 7806 7807 trans = btrfs_start_transaction(root, 2); 7808 if (IS_ERR(trans)) { 7809 ret = PTR_ERR(trans); 7810 trans = NULL; 7811 break; 7812 } 7813 7814 btrfs_block_rsv_release(fs_info, &rsv, -1, NULL); 7815 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7816 &rsv, min_size, false); 7817 /* 7818 * We have reserved 2 metadata units when we started the 7819 * transaction and min_size matches 1 unit, so this should never 7820 * fail, but if it does, it's not critical we just fail truncation. 7821 */ 7822 if (WARN_ON(ret)) 7823 break; 7824 7825 trans->block_rsv = &rsv; 7826 } 7827 7828 /* 7829 * We can't call btrfs_truncate_block inside a trans handle as we could 7830 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7831 * know we've truncated everything except the last little bit, and can 7832 * do btrfs_truncate_block and then update the disk_i_size. 7833 */ 7834 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7835 btrfs_end_transaction(trans); 7836 btrfs_btree_balance_dirty(fs_info); 7837 7838 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 7839 inode->vfs_inode.i_size, (u64)-1); 7840 if (ret) 7841 goto out; 7842 trans = btrfs_start_transaction(root, 1); 7843 if (IS_ERR(trans)) { 7844 ret = PTR_ERR(trans); 7845 goto out; 7846 } 7847 btrfs_inode_safe_disk_i_size_write(inode, 0); 7848 } 7849 7850 if (trans) { 7851 int ret2; 7852 7853 trans->block_rsv = &fs_info->trans_block_rsv; 7854 ret2 = btrfs_update_inode(trans, inode); 7855 if (ret2 && !ret) 7856 ret = ret2; 7857 7858 ret2 = btrfs_end_transaction(trans); 7859 if (ret2 && !ret) 7860 ret = ret2; 7861 btrfs_btree_balance_dirty(fs_info); 7862 } 7863 out: 7864 btrfs_block_rsv_release(fs_info, &rsv, (u64)-1, NULL); 7865 /* 7866 * So if we truncate and then write and fsync we normally would just 7867 * write the extents that changed, which is a problem if we need to 7868 * first truncate that entire inode. So set this flag so we write out 7869 * all of the extents in the inode to the sync log so we're completely 7870 * safe. 7871 * 7872 * If no extents were dropped or trimmed we don't need to force the next 7873 * fsync to truncate all the inode's items from the log and re-log them 7874 * all. This means the truncate operation did not change the file size, 7875 * or changed it to a smaller size but there was only an implicit hole 7876 * between the old i_size and the new i_size, and there were no prealloc 7877 * extents beyond i_size to drop. 7878 */ 7879 if (control.extents_found > 0) 7880 btrfs_set_inode_full_sync(inode); 7881 7882 return ret; 7883 } 7884 7885 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7886 struct inode *dir) 7887 { 7888 struct inode *inode; 7889 7890 inode = new_inode(dir->i_sb); 7891 if (inode) { 7892 /* 7893 * Subvolumes don't inherit the sgid bit or the parent's gid if 7894 * the parent's sgid bit is set. This is probably a bug. 7895 */ 7896 inode_init_owner(idmap, inode, NULL, 7897 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7898 inode->i_op = &btrfs_dir_inode_operations; 7899 inode->i_fop = &btrfs_dir_file_operations; 7900 } 7901 return inode; 7902 } 7903 7904 struct inode *btrfs_alloc_inode(struct super_block *sb) 7905 { 7906 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7907 struct btrfs_inode *ei; 7908 struct inode *inode; 7909 7910 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7911 if (!ei) 7912 return NULL; 7913 7914 ei->root = NULL; 7915 ei->generation = 0; 7916 ei->last_trans = 0; 7917 ei->last_sub_trans = 0; 7918 ei->logged_trans = 0; 7919 ei->delalloc_bytes = 0; 7920 /* new_delalloc_bytes and last_dir_index_offset are in a union. */ 7921 ei->new_delalloc_bytes = 0; 7922 ei->defrag_bytes = 0; 7923 ei->disk_i_size = 0; 7924 ei->flags = 0; 7925 ei->ro_flags = 0; 7926 /* 7927 * ->index_cnt will be properly initialized later when creating a new 7928 * inode (btrfs_create_new_inode()) or when reading an existing inode 7929 * from disk (btrfs_read_locked_inode()). 7930 */ 7931 ei->csum_bytes = 0; 7932 ei->dir_index = 0; 7933 ei->last_unlink_trans = 0; 7934 ei->last_reflink_trans = 0; 7935 ei->last_log_commit = 0; 7936 7937 spin_lock_init(&ei->lock); 7938 ei->outstanding_extents = 0; 7939 if (sb->s_magic != BTRFS_TEST_MAGIC) 7940 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7941 BTRFS_BLOCK_RSV_DELALLOC); 7942 ei->runtime_flags = 0; 7943 ei->prop_compress = BTRFS_COMPRESS_NONE; 7944 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7945 7946 ei->delayed_node = NULL; 7947 7948 ei->i_otime_sec = 0; 7949 ei->i_otime_nsec = 0; 7950 7951 inode = &ei->vfs_inode; 7952 btrfs_extent_map_tree_init(&ei->extent_tree); 7953 7954 /* This io tree sets the valid inode. */ 7955 btrfs_extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7956 ei->io_tree.inode = ei; 7957 7958 ei->file_extent_tree = NULL; 7959 7960 mutex_init(&ei->log_mutex); 7961 spin_lock_init(&ei->ordered_tree_lock); 7962 ei->ordered_tree = RB_ROOT; 7963 ei->ordered_tree_last = NULL; 7964 INIT_LIST_HEAD(&ei->delalloc_inodes); 7965 INIT_LIST_HEAD(&ei->delayed_iput); 7966 init_rwsem(&ei->i_mmap_lock); 7967 7968 return inode; 7969 } 7970 7971 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7972 void btrfs_test_destroy_inode(struct inode *inode) 7973 { 7974 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7975 kfree(BTRFS_I(inode)->file_extent_tree); 7976 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7977 } 7978 #endif 7979 7980 void btrfs_free_inode(struct inode *inode) 7981 { 7982 kfree(BTRFS_I(inode)->file_extent_tree); 7983 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7984 } 7985 7986 void btrfs_destroy_inode(struct inode *vfs_inode) 7987 { 7988 struct btrfs_ordered_extent *ordered; 7989 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7990 struct btrfs_root *root = inode->root; 7991 bool freespace_inode; 7992 7993 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7994 WARN_ON(vfs_inode->i_data.nrpages); 7995 WARN_ON(inode->block_rsv.reserved); 7996 WARN_ON(inode->block_rsv.size); 7997 WARN_ON(inode->outstanding_extents); 7998 if (!S_ISDIR(vfs_inode->i_mode)) { 7999 WARN_ON(inode->delalloc_bytes); 8000 WARN_ON(inode->new_delalloc_bytes); 8001 WARN_ON(inode->csum_bytes); 8002 } 8003 if (!root || !btrfs_is_data_reloc_root(root)) 8004 WARN_ON(inode->defrag_bytes); 8005 8006 /* 8007 * This can happen where we create an inode, but somebody else also 8008 * created the same inode and we need to destroy the one we already 8009 * created. 8010 */ 8011 if (!root) 8012 return; 8013 8014 /* 8015 * If this is a free space inode do not take the ordered extents lockdep 8016 * map. 8017 */ 8018 freespace_inode = btrfs_is_free_space_inode(inode); 8019 8020 while (1) { 8021 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8022 if (!ordered) 8023 break; 8024 else { 8025 btrfs_err(root->fs_info, 8026 "found ordered extent %llu %llu on inode cleanup", 8027 ordered->file_offset, ordered->num_bytes); 8028 8029 if (!freespace_inode) 8030 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8031 8032 btrfs_remove_ordered_extent(inode, ordered); 8033 btrfs_put_ordered_extent(ordered); 8034 btrfs_put_ordered_extent(ordered); 8035 } 8036 } 8037 btrfs_qgroup_check_reserved_leak(inode); 8038 btrfs_del_inode_from_root(inode); 8039 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8040 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8041 btrfs_put_root(inode->root); 8042 } 8043 8044 int btrfs_drop_inode(struct inode *inode) 8045 { 8046 struct btrfs_root *root = BTRFS_I(inode)->root; 8047 8048 if (root == NULL) 8049 return 1; 8050 8051 /* the snap/subvol tree is on deleting */ 8052 if (btrfs_root_refs(&root->root_item) == 0) 8053 return 1; 8054 else 8055 return inode_generic_drop(inode); 8056 } 8057 8058 static void init_once(void *foo) 8059 { 8060 struct btrfs_inode *ei = foo; 8061 8062 inode_init_once(&ei->vfs_inode); 8063 #ifdef CONFIG_FS_VERITY 8064 ei->i_verity_info = NULL; 8065 #endif 8066 } 8067 8068 void __cold btrfs_destroy_cachep(void) 8069 { 8070 /* 8071 * Make sure all delayed rcu free inodes are flushed before we 8072 * destroy cache. 8073 */ 8074 rcu_barrier(); 8075 kmem_cache_destroy(btrfs_inode_cachep); 8076 } 8077 8078 int __init btrfs_init_cachep(void) 8079 { 8080 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8081 sizeof(struct btrfs_inode), 0, 8082 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 8083 init_once); 8084 if (!btrfs_inode_cachep) 8085 return -ENOMEM; 8086 8087 return 0; 8088 } 8089 8090 static int btrfs_getattr(struct mnt_idmap *idmap, 8091 const struct path *path, struct kstat *stat, 8092 u32 request_mask, unsigned int flags) 8093 { 8094 u64 delalloc_bytes; 8095 u64 inode_bytes; 8096 struct inode *inode = d_inode(path->dentry); 8097 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 8098 u32 bi_flags = BTRFS_I(inode)->flags; 8099 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8100 8101 stat->result_mask |= STATX_BTIME; 8102 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8103 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8104 if (bi_flags & BTRFS_INODE_APPEND) 8105 stat->attributes |= STATX_ATTR_APPEND; 8106 if (bi_flags & BTRFS_INODE_COMPRESS) 8107 stat->attributes |= STATX_ATTR_COMPRESSED; 8108 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8109 stat->attributes |= STATX_ATTR_IMMUTABLE; 8110 if (bi_flags & BTRFS_INODE_NODUMP) 8111 stat->attributes |= STATX_ATTR_NODUMP; 8112 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8113 stat->attributes |= STATX_ATTR_VERITY; 8114 8115 stat->attributes_mask |= (STATX_ATTR_APPEND | 8116 STATX_ATTR_COMPRESSED | 8117 STATX_ATTR_IMMUTABLE | 8118 STATX_ATTR_NODUMP); 8119 8120 generic_fillattr(idmap, request_mask, inode, stat); 8121 stat->dev = BTRFS_I(inode)->root->anon_dev; 8122 8123 stat->subvol = btrfs_root_id(BTRFS_I(inode)->root); 8124 stat->result_mask |= STATX_SUBVOL; 8125 8126 spin_lock(&BTRFS_I(inode)->lock); 8127 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8128 inode_bytes = inode_get_bytes(inode); 8129 spin_unlock(&BTRFS_I(inode)->lock); 8130 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8131 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8132 return 0; 8133 } 8134 8135 static int btrfs_rename_exchange(struct inode *old_dir, 8136 struct dentry *old_dentry, 8137 struct inode *new_dir, 8138 struct dentry *new_dentry) 8139 { 8140 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8141 struct btrfs_trans_handle *trans; 8142 unsigned int trans_num_items; 8143 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8144 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8145 struct inode *new_inode = new_dentry->d_inode; 8146 struct inode *old_inode = old_dentry->d_inode; 8147 struct btrfs_rename_ctx old_rename_ctx; 8148 struct btrfs_rename_ctx new_rename_ctx; 8149 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8150 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8151 u64 old_idx = 0; 8152 u64 new_idx = 0; 8153 int ret; 8154 int ret2; 8155 bool need_abort = false; 8156 bool logs_pinned = false; 8157 struct fscrypt_name old_fname, new_fname; 8158 struct fscrypt_str *old_name, *new_name; 8159 8160 /* 8161 * For non-subvolumes allow exchange only within one subvolume, in the 8162 * same inode namespace. Two subvolumes (represented as directory) can 8163 * be exchanged as they're a logical link and have a fixed inode number. 8164 */ 8165 if (root != dest && 8166 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8167 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8168 return -EXDEV; 8169 8170 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8171 if (ret) 8172 return ret; 8173 8174 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8175 if (ret) { 8176 fscrypt_free_filename(&old_fname); 8177 return ret; 8178 } 8179 8180 old_name = &old_fname.disk_name; 8181 new_name = &new_fname.disk_name; 8182 8183 /* close the race window with snapshot create/destroy ioctl */ 8184 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8185 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8186 down_read(&fs_info->subvol_sem); 8187 8188 /* 8189 * For each inode: 8190 * 1 to remove old dir item 8191 * 1 to remove old dir index 8192 * 1 to add new dir item 8193 * 1 to add new dir index 8194 * 1 to update parent inode 8195 * 8196 * If the parents are the same, we only need to account for one 8197 */ 8198 trans_num_items = (old_dir == new_dir ? 9 : 10); 8199 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8200 /* 8201 * 1 to remove old root ref 8202 * 1 to remove old root backref 8203 * 1 to add new root ref 8204 * 1 to add new root backref 8205 */ 8206 trans_num_items += 4; 8207 } else { 8208 /* 8209 * 1 to update inode item 8210 * 1 to remove old inode ref 8211 * 1 to add new inode ref 8212 */ 8213 trans_num_items += 3; 8214 } 8215 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8216 trans_num_items += 4; 8217 else 8218 trans_num_items += 3; 8219 trans = btrfs_start_transaction(root, trans_num_items); 8220 if (IS_ERR(trans)) { 8221 ret = PTR_ERR(trans); 8222 goto out_notrans; 8223 } 8224 8225 if (dest != root) { 8226 ret = btrfs_record_root_in_trans(trans, dest); 8227 if (ret) 8228 goto out_fail; 8229 } 8230 8231 /* 8232 * We need to find a free sequence number both in the source and 8233 * in the destination directory for the exchange. 8234 */ 8235 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8236 if (ret) 8237 goto out_fail; 8238 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8239 if (ret) 8240 goto out_fail; 8241 8242 BTRFS_I(old_inode)->dir_index = 0ULL; 8243 BTRFS_I(new_inode)->dir_index = 0ULL; 8244 8245 /* Reference for the source. */ 8246 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8247 /* force full log commit if subvolume involved. */ 8248 btrfs_set_log_full_commit(trans); 8249 } else { 8250 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8251 btrfs_ino(BTRFS_I(new_dir)), 8252 old_idx); 8253 if (ret) 8254 goto out_fail; 8255 need_abort = true; 8256 } 8257 8258 /* And now for the dest. */ 8259 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8260 /* force full log commit if subvolume involved. */ 8261 btrfs_set_log_full_commit(trans); 8262 } else { 8263 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8264 btrfs_ino(BTRFS_I(old_dir)), 8265 new_idx); 8266 if (ret) { 8267 if (unlikely(need_abort)) 8268 btrfs_abort_transaction(trans, ret); 8269 goto out_fail; 8270 } 8271 } 8272 8273 /* Update inode version and ctime/mtime. */ 8274 inode_inc_iversion(old_dir); 8275 inode_inc_iversion(new_dir); 8276 inode_inc_iversion(old_inode); 8277 inode_inc_iversion(new_inode); 8278 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8279 8280 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && 8281 new_ino != BTRFS_FIRST_FREE_OBJECTID) { 8282 /* 8283 * If we are renaming in the same directory (and it's not for 8284 * root entries) pin the log early to prevent any concurrent 8285 * task from logging the directory after we removed the old 8286 * entries and before we add the new entries, otherwise that 8287 * task can sync a log without any entry for the inodes we are 8288 * renaming and therefore replaying that log, if a power failure 8289 * happens after syncing the log, would result in deleting the 8290 * inodes. 8291 * 8292 * If the rename affects two different directories, we want to 8293 * make sure the that there's no log commit that contains 8294 * updates for only one of the directories but not for the 8295 * other. 8296 * 8297 * If we are renaming an entry for a root, we don't care about 8298 * log updates since we called btrfs_set_log_full_commit(). 8299 */ 8300 btrfs_pin_log_trans(root); 8301 btrfs_pin_log_trans(dest); 8302 logs_pinned = true; 8303 } 8304 8305 if (old_dentry->d_parent != new_dentry->d_parent) { 8306 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8307 BTRFS_I(old_inode), true); 8308 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8309 BTRFS_I(new_inode), true); 8310 } 8311 8312 /* src is a subvolume */ 8313 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8314 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8315 if (unlikely(ret)) { 8316 btrfs_abort_transaction(trans, ret); 8317 goto out_fail; 8318 } 8319 } else { /* src is an inode */ 8320 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8321 BTRFS_I(old_dentry->d_inode), 8322 old_name, &old_rename_ctx); 8323 if (unlikely(ret)) { 8324 btrfs_abort_transaction(trans, ret); 8325 goto out_fail; 8326 } 8327 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8328 if (unlikely(ret)) { 8329 btrfs_abort_transaction(trans, ret); 8330 goto out_fail; 8331 } 8332 } 8333 8334 /* dest is a subvolume */ 8335 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8336 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8337 if (unlikely(ret)) { 8338 btrfs_abort_transaction(trans, ret); 8339 goto out_fail; 8340 } 8341 } else { /* dest is an inode */ 8342 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8343 BTRFS_I(new_dentry->d_inode), 8344 new_name, &new_rename_ctx); 8345 if (unlikely(ret)) { 8346 btrfs_abort_transaction(trans, ret); 8347 goto out_fail; 8348 } 8349 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8350 if (unlikely(ret)) { 8351 btrfs_abort_transaction(trans, ret); 8352 goto out_fail; 8353 } 8354 } 8355 8356 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8357 new_name, 0, old_idx); 8358 if (unlikely(ret)) { 8359 btrfs_abort_transaction(trans, ret); 8360 goto out_fail; 8361 } 8362 8363 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8364 old_name, 0, new_idx); 8365 if (unlikely(ret)) { 8366 btrfs_abort_transaction(trans, ret); 8367 goto out_fail; 8368 } 8369 8370 if (old_inode->i_nlink == 1) 8371 BTRFS_I(old_inode)->dir_index = old_idx; 8372 if (new_inode->i_nlink == 1) 8373 BTRFS_I(new_inode)->dir_index = new_idx; 8374 8375 /* 8376 * Do the log updates for all inodes. 8377 * 8378 * If either entry is for a root we don't need to update the logs since 8379 * we've called btrfs_set_log_full_commit() before. 8380 */ 8381 if (logs_pinned) { 8382 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8383 old_rename_ctx.index, new_dentry->d_parent); 8384 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8385 new_rename_ctx.index, old_dentry->d_parent); 8386 } 8387 8388 out_fail: 8389 if (logs_pinned) { 8390 btrfs_end_log_trans(root); 8391 btrfs_end_log_trans(dest); 8392 } 8393 ret2 = btrfs_end_transaction(trans); 8394 ret = ret ? ret : ret2; 8395 out_notrans: 8396 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8397 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8398 up_read(&fs_info->subvol_sem); 8399 8400 fscrypt_free_filename(&new_fname); 8401 fscrypt_free_filename(&old_fname); 8402 return ret; 8403 } 8404 8405 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8406 struct inode *dir) 8407 { 8408 struct inode *inode; 8409 8410 inode = new_inode(dir->i_sb); 8411 if (inode) { 8412 inode_init_owner(idmap, inode, dir, 8413 S_IFCHR | WHITEOUT_MODE); 8414 inode->i_op = &btrfs_special_inode_operations; 8415 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8416 } 8417 return inode; 8418 } 8419 8420 static int btrfs_rename(struct mnt_idmap *idmap, 8421 struct inode *old_dir, struct dentry *old_dentry, 8422 struct inode *new_dir, struct dentry *new_dentry, 8423 unsigned int flags) 8424 { 8425 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8426 struct btrfs_new_inode_args whiteout_args = { 8427 .dir = old_dir, 8428 .dentry = old_dentry, 8429 }; 8430 struct btrfs_trans_handle *trans; 8431 unsigned int trans_num_items; 8432 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8433 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8434 struct inode *new_inode = d_inode(new_dentry); 8435 struct inode *old_inode = d_inode(old_dentry); 8436 struct btrfs_rename_ctx rename_ctx; 8437 u64 index = 0; 8438 int ret; 8439 int ret2; 8440 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8441 struct fscrypt_name old_fname, new_fname; 8442 bool logs_pinned = false; 8443 8444 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8445 return -EPERM; 8446 8447 /* we only allow rename subvolume link between subvolumes */ 8448 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8449 return -EXDEV; 8450 8451 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8452 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8453 return -ENOTEMPTY; 8454 8455 if (S_ISDIR(old_inode->i_mode) && new_inode && 8456 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8457 return -ENOTEMPTY; 8458 8459 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8460 if (ret) 8461 return ret; 8462 8463 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8464 if (ret) { 8465 fscrypt_free_filename(&old_fname); 8466 return ret; 8467 } 8468 8469 /* check for collisions, even if the name isn't there */ 8470 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8471 if (ret) { 8472 if (ret == -EEXIST) { 8473 /* we shouldn't get 8474 * eexist without a new_inode */ 8475 if (WARN_ON(!new_inode)) { 8476 goto out_fscrypt_names; 8477 } 8478 } else { 8479 /* maybe -EOVERFLOW */ 8480 goto out_fscrypt_names; 8481 } 8482 } 8483 ret = 0; 8484 8485 /* 8486 * we're using rename to replace one file with another. Start IO on it 8487 * now so we don't add too much work to the end of the transaction 8488 */ 8489 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8490 filemap_flush(old_inode->i_mapping); 8491 8492 if (flags & RENAME_WHITEOUT) { 8493 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8494 if (!whiteout_args.inode) { 8495 ret = -ENOMEM; 8496 goto out_fscrypt_names; 8497 } 8498 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8499 if (ret) 8500 goto out_whiteout_inode; 8501 } else { 8502 /* 1 to update the old parent inode. */ 8503 trans_num_items = 1; 8504 } 8505 8506 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8507 /* Close the race window with snapshot create/destroy ioctl */ 8508 down_read(&fs_info->subvol_sem); 8509 /* 8510 * 1 to remove old root ref 8511 * 1 to remove old root backref 8512 * 1 to add new root ref 8513 * 1 to add new root backref 8514 */ 8515 trans_num_items += 4; 8516 } else { 8517 /* 8518 * 1 to update inode 8519 * 1 to remove old inode ref 8520 * 1 to add new inode ref 8521 */ 8522 trans_num_items += 3; 8523 } 8524 /* 8525 * 1 to remove old dir item 8526 * 1 to remove old dir index 8527 * 1 to add new dir item 8528 * 1 to add new dir index 8529 */ 8530 trans_num_items += 4; 8531 /* 1 to update new parent inode if it's not the same as the old parent */ 8532 if (new_dir != old_dir) 8533 trans_num_items++; 8534 if (new_inode) { 8535 /* 8536 * 1 to update inode 8537 * 1 to remove inode ref 8538 * 1 to remove dir item 8539 * 1 to remove dir index 8540 * 1 to possibly add orphan item 8541 */ 8542 trans_num_items += 5; 8543 } 8544 trans = btrfs_start_transaction(root, trans_num_items); 8545 if (IS_ERR(trans)) { 8546 ret = PTR_ERR(trans); 8547 goto out_notrans; 8548 } 8549 8550 if (dest != root) { 8551 ret = btrfs_record_root_in_trans(trans, dest); 8552 if (ret) 8553 goto out_fail; 8554 } 8555 8556 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8557 if (ret) 8558 goto out_fail; 8559 8560 BTRFS_I(old_inode)->dir_index = 0ULL; 8561 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8562 /* force full log commit if subvolume involved. */ 8563 btrfs_set_log_full_commit(trans); 8564 } else { 8565 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8566 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8567 index); 8568 if (ret) 8569 goto out_fail; 8570 } 8571 8572 inode_inc_iversion(old_dir); 8573 inode_inc_iversion(new_dir); 8574 inode_inc_iversion(old_inode); 8575 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8576 8577 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 8578 /* 8579 * If we are renaming in the same directory (and it's not a 8580 * root entry) pin the log to prevent any concurrent task from 8581 * logging the directory after we removed the old entry and 8582 * before we add the new entry, otherwise that task can sync 8583 * a log without any entry for the inode we are renaming and 8584 * therefore replaying that log, if a power failure happens 8585 * after syncing the log, would result in deleting the inode. 8586 * 8587 * If the rename affects two different directories, we want to 8588 * make sure the that there's no log commit that contains 8589 * updates for only one of the directories but not for the 8590 * other. 8591 * 8592 * If we are renaming an entry for a root, we don't care about 8593 * log updates since we called btrfs_set_log_full_commit(). 8594 */ 8595 btrfs_pin_log_trans(root); 8596 btrfs_pin_log_trans(dest); 8597 logs_pinned = true; 8598 } 8599 8600 if (old_dentry->d_parent != new_dentry->d_parent) 8601 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8602 BTRFS_I(old_inode), true); 8603 8604 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8605 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8606 if (unlikely(ret)) { 8607 btrfs_abort_transaction(trans, ret); 8608 goto out_fail; 8609 } 8610 } else { 8611 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8612 BTRFS_I(d_inode(old_dentry)), 8613 &old_fname.disk_name, &rename_ctx); 8614 if (unlikely(ret)) { 8615 btrfs_abort_transaction(trans, ret); 8616 goto out_fail; 8617 } 8618 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8619 if (unlikely(ret)) { 8620 btrfs_abort_transaction(trans, ret); 8621 goto out_fail; 8622 } 8623 } 8624 8625 if (new_inode) { 8626 inode_inc_iversion(new_inode); 8627 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8628 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8629 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8630 if (unlikely(ret)) { 8631 btrfs_abort_transaction(trans, ret); 8632 goto out_fail; 8633 } 8634 BUG_ON(new_inode->i_nlink == 0); 8635 } else { 8636 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8637 BTRFS_I(d_inode(new_dentry)), 8638 &new_fname.disk_name); 8639 if (unlikely(ret)) { 8640 btrfs_abort_transaction(trans, ret); 8641 goto out_fail; 8642 } 8643 } 8644 if (new_inode->i_nlink == 0) { 8645 ret = btrfs_orphan_add(trans, 8646 BTRFS_I(d_inode(new_dentry))); 8647 if (unlikely(ret)) { 8648 btrfs_abort_transaction(trans, ret); 8649 goto out_fail; 8650 } 8651 } 8652 } 8653 8654 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8655 &new_fname.disk_name, 0, index); 8656 if (unlikely(ret)) { 8657 btrfs_abort_transaction(trans, ret); 8658 goto out_fail; 8659 } 8660 8661 if (old_inode->i_nlink == 1) 8662 BTRFS_I(old_inode)->dir_index = index; 8663 8664 if (logs_pinned) 8665 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8666 rename_ctx.index, new_dentry->d_parent); 8667 8668 if (flags & RENAME_WHITEOUT) { 8669 ret = btrfs_create_new_inode(trans, &whiteout_args); 8670 if (unlikely(ret)) { 8671 btrfs_abort_transaction(trans, ret); 8672 goto out_fail; 8673 } else { 8674 unlock_new_inode(whiteout_args.inode); 8675 iput(whiteout_args.inode); 8676 whiteout_args.inode = NULL; 8677 } 8678 } 8679 out_fail: 8680 if (logs_pinned) { 8681 btrfs_end_log_trans(root); 8682 btrfs_end_log_trans(dest); 8683 } 8684 ret2 = btrfs_end_transaction(trans); 8685 ret = ret ? ret : ret2; 8686 out_notrans: 8687 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8688 up_read(&fs_info->subvol_sem); 8689 if (flags & RENAME_WHITEOUT) 8690 btrfs_new_inode_args_destroy(&whiteout_args); 8691 out_whiteout_inode: 8692 if (flags & RENAME_WHITEOUT) 8693 iput(whiteout_args.inode); 8694 out_fscrypt_names: 8695 fscrypt_free_filename(&old_fname); 8696 fscrypt_free_filename(&new_fname); 8697 return ret; 8698 } 8699 8700 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8701 struct dentry *old_dentry, struct inode *new_dir, 8702 struct dentry *new_dentry, unsigned int flags) 8703 { 8704 int ret; 8705 8706 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8707 return -EINVAL; 8708 8709 if (flags & RENAME_EXCHANGE) 8710 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8711 new_dentry); 8712 else 8713 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8714 new_dentry, flags); 8715 8716 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8717 8718 return ret; 8719 } 8720 8721 struct btrfs_delalloc_work { 8722 struct inode *inode; 8723 struct completion completion; 8724 struct list_head list; 8725 struct btrfs_work work; 8726 }; 8727 8728 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8729 { 8730 struct btrfs_delalloc_work *delalloc_work; 8731 struct inode *inode; 8732 8733 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8734 work); 8735 inode = delalloc_work->inode; 8736 filemap_flush(inode->i_mapping); 8737 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8738 &BTRFS_I(inode)->runtime_flags)) 8739 filemap_flush(inode->i_mapping); 8740 8741 iput(inode); 8742 complete(&delalloc_work->completion); 8743 } 8744 8745 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8746 { 8747 struct btrfs_delalloc_work *work; 8748 8749 work = kmalloc(sizeof(*work), GFP_NOFS); 8750 if (!work) 8751 return NULL; 8752 8753 init_completion(&work->completion); 8754 INIT_LIST_HEAD(&work->list); 8755 work->inode = inode; 8756 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8757 8758 return work; 8759 } 8760 8761 /* 8762 * some fairly slow code that needs optimization. This walks the list 8763 * of all the inodes with pending delalloc and forces them to disk. 8764 */ 8765 static int start_delalloc_inodes(struct btrfs_root *root, long *nr_to_write, 8766 bool snapshot, bool in_reclaim_context) 8767 { 8768 struct btrfs_delalloc_work *work, *next; 8769 LIST_HEAD(works); 8770 LIST_HEAD(splice); 8771 int ret = 0; 8772 8773 mutex_lock(&root->delalloc_mutex); 8774 spin_lock(&root->delalloc_lock); 8775 list_splice_init(&root->delalloc_inodes, &splice); 8776 while (!list_empty(&splice)) { 8777 struct btrfs_inode *inode; 8778 struct inode *tmp_inode; 8779 8780 inode = list_first_entry(&splice, struct btrfs_inode, delalloc_inodes); 8781 8782 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8783 8784 if (in_reclaim_context && 8785 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8786 continue; 8787 8788 tmp_inode = igrab(&inode->vfs_inode); 8789 if (!tmp_inode) { 8790 cond_resched_lock(&root->delalloc_lock); 8791 continue; 8792 } 8793 spin_unlock(&root->delalloc_lock); 8794 8795 if (snapshot) 8796 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8797 if (nr_to_write == NULL) { 8798 work = btrfs_alloc_delalloc_work(tmp_inode); 8799 if (!work) { 8800 iput(tmp_inode); 8801 ret = -ENOMEM; 8802 goto out; 8803 } 8804 list_add_tail(&work->list, &works); 8805 btrfs_queue_work(root->fs_info->flush_workers, 8806 &work->work); 8807 } else { 8808 ret = filemap_flush_nr(tmp_inode->i_mapping, 8809 nr_to_write); 8810 btrfs_add_delayed_iput(inode); 8811 8812 if (ret || *nr_to_write <= 0) 8813 goto out; 8814 } 8815 cond_resched(); 8816 spin_lock(&root->delalloc_lock); 8817 } 8818 spin_unlock(&root->delalloc_lock); 8819 8820 out: 8821 list_for_each_entry_safe(work, next, &works, list) { 8822 list_del_init(&work->list); 8823 wait_for_completion(&work->completion); 8824 kfree(work); 8825 } 8826 8827 if (!list_empty(&splice)) { 8828 spin_lock(&root->delalloc_lock); 8829 list_splice_tail(&splice, &root->delalloc_inodes); 8830 spin_unlock(&root->delalloc_lock); 8831 } 8832 mutex_unlock(&root->delalloc_mutex); 8833 return ret; 8834 } 8835 8836 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8837 { 8838 struct btrfs_fs_info *fs_info = root->fs_info; 8839 8840 if (BTRFS_FS_ERROR(fs_info)) 8841 return -EROFS; 8842 return start_delalloc_inodes(root, NULL, true, in_reclaim_context); 8843 } 8844 8845 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8846 bool in_reclaim_context) 8847 { 8848 long *nr_to_write = nr == LONG_MAX ? NULL : &nr; 8849 struct btrfs_root *root; 8850 LIST_HEAD(splice); 8851 int ret; 8852 8853 if (BTRFS_FS_ERROR(fs_info)) 8854 return -EROFS; 8855 8856 mutex_lock(&fs_info->delalloc_root_mutex); 8857 spin_lock(&fs_info->delalloc_root_lock); 8858 list_splice_init(&fs_info->delalloc_roots, &splice); 8859 while (!list_empty(&splice)) { 8860 root = list_first_entry(&splice, struct btrfs_root, 8861 delalloc_root); 8862 root = btrfs_grab_root(root); 8863 BUG_ON(!root); 8864 list_move_tail(&root->delalloc_root, 8865 &fs_info->delalloc_roots); 8866 spin_unlock(&fs_info->delalloc_root_lock); 8867 8868 ret = start_delalloc_inodes(root, nr_to_write, false, 8869 in_reclaim_context); 8870 btrfs_put_root(root); 8871 if (ret < 0 || nr <= 0) 8872 goto out; 8873 spin_lock(&fs_info->delalloc_root_lock); 8874 } 8875 spin_unlock(&fs_info->delalloc_root_lock); 8876 8877 ret = 0; 8878 out: 8879 if (!list_empty(&splice)) { 8880 spin_lock(&fs_info->delalloc_root_lock); 8881 list_splice_tail(&splice, &fs_info->delalloc_roots); 8882 spin_unlock(&fs_info->delalloc_root_lock); 8883 } 8884 mutex_unlock(&fs_info->delalloc_root_mutex); 8885 return ret; 8886 } 8887 8888 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8889 struct dentry *dentry, const char *symname) 8890 { 8891 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8892 struct btrfs_trans_handle *trans; 8893 struct btrfs_root *root = BTRFS_I(dir)->root; 8894 struct btrfs_path *path; 8895 struct btrfs_key key; 8896 struct inode *inode; 8897 struct btrfs_new_inode_args new_inode_args = { 8898 .dir = dir, 8899 .dentry = dentry, 8900 }; 8901 unsigned int trans_num_items; 8902 int ret; 8903 int name_len; 8904 int datasize; 8905 unsigned long ptr; 8906 struct btrfs_file_extent_item *ei; 8907 struct extent_buffer *leaf; 8908 8909 name_len = strlen(symname); 8910 /* 8911 * Symlinks utilize uncompressed inline extent data, which should not 8912 * reach block size. 8913 */ 8914 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8915 name_len >= fs_info->sectorsize) 8916 return -ENAMETOOLONG; 8917 8918 inode = new_inode(dir->i_sb); 8919 if (!inode) 8920 return -ENOMEM; 8921 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8922 inode->i_op = &btrfs_symlink_inode_operations; 8923 inode_nohighmem(inode); 8924 inode->i_mapping->a_ops = &btrfs_aops; 8925 btrfs_i_size_write(BTRFS_I(inode), name_len); 8926 inode_set_bytes(inode, name_len); 8927 8928 new_inode_args.inode = inode; 8929 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8930 if (ret) 8931 goto out_inode; 8932 /* 1 additional item for the inline extent */ 8933 trans_num_items++; 8934 8935 trans = btrfs_start_transaction(root, trans_num_items); 8936 if (IS_ERR(trans)) { 8937 ret = PTR_ERR(trans); 8938 goto out_new_inode_args; 8939 } 8940 8941 ret = btrfs_create_new_inode(trans, &new_inode_args); 8942 if (ret) 8943 goto out; 8944 8945 path = btrfs_alloc_path(); 8946 if (unlikely(!path)) { 8947 ret = -ENOMEM; 8948 btrfs_abort_transaction(trans, ret); 8949 discard_new_inode(inode); 8950 inode = NULL; 8951 goto out; 8952 } 8953 key.objectid = btrfs_ino(BTRFS_I(inode)); 8954 key.type = BTRFS_EXTENT_DATA_KEY; 8955 key.offset = 0; 8956 datasize = btrfs_file_extent_calc_inline_size(name_len); 8957 ret = btrfs_insert_empty_item(trans, root, path, &key, datasize); 8958 if (unlikely(ret)) { 8959 btrfs_abort_transaction(trans, ret); 8960 btrfs_free_path(path); 8961 discard_new_inode(inode); 8962 inode = NULL; 8963 goto out; 8964 } 8965 leaf = path->nodes[0]; 8966 ei = btrfs_item_ptr(leaf, path->slots[0], 8967 struct btrfs_file_extent_item); 8968 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8969 btrfs_set_file_extent_type(leaf, ei, 8970 BTRFS_FILE_EXTENT_INLINE); 8971 btrfs_set_file_extent_encryption(leaf, ei, 0); 8972 btrfs_set_file_extent_compression(leaf, ei, 0); 8973 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8974 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8975 8976 ptr = btrfs_file_extent_inline_start(ei); 8977 write_extent_buffer(leaf, symname, ptr, name_len); 8978 btrfs_free_path(path); 8979 8980 d_instantiate_new(dentry, inode); 8981 ret = 0; 8982 out: 8983 btrfs_end_transaction(trans); 8984 btrfs_btree_balance_dirty(fs_info); 8985 out_new_inode_args: 8986 btrfs_new_inode_args_destroy(&new_inode_args); 8987 out_inode: 8988 if (ret) 8989 iput(inode); 8990 return ret; 8991 } 8992 8993 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8994 struct btrfs_trans_handle *trans_in, 8995 struct btrfs_inode *inode, 8996 struct btrfs_key *ins, 8997 u64 file_offset) 8998 { 8999 struct btrfs_file_extent_item stack_fi; 9000 struct btrfs_replace_extent_info extent_info; 9001 struct btrfs_trans_handle *trans = trans_in; 9002 struct btrfs_path *path; 9003 u64 start = ins->objectid; 9004 u64 len = ins->offset; 9005 u64 qgroup_released = 0; 9006 int ret; 9007 9008 memset(&stack_fi, 0, sizeof(stack_fi)); 9009 9010 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9011 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9012 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9013 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9014 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9015 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9016 /* Encryption and other encoding is reserved and all 0 */ 9017 9018 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9019 if (ret < 0) 9020 return ERR_PTR(ret); 9021 9022 if (trans) { 9023 ret = insert_reserved_file_extent(trans, inode, 9024 file_offset, &stack_fi, 9025 true, qgroup_released); 9026 if (ret) 9027 goto free_qgroup; 9028 return trans; 9029 } 9030 9031 extent_info.disk_offset = start; 9032 extent_info.disk_len = len; 9033 extent_info.data_offset = 0; 9034 extent_info.data_len = len; 9035 extent_info.file_offset = file_offset; 9036 extent_info.extent_buf = (char *)&stack_fi; 9037 extent_info.is_new_extent = true; 9038 extent_info.update_times = true; 9039 extent_info.qgroup_reserved = qgroup_released; 9040 extent_info.insertions = 0; 9041 9042 path = btrfs_alloc_path(); 9043 if (!path) { 9044 ret = -ENOMEM; 9045 goto free_qgroup; 9046 } 9047 9048 ret = btrfs_replace_file_extents(inode, path, file_offset, 9049 file_offset + len - 1, &extent_info, 9050 &trans); 9051 btrfs_free_path(path); 9052 if (ret) 9053 goto free_qgroup; 9054 return trans; 9055 9056 free_qgroup: 9057 /* 9058 * We have released qgroup data range at the beginning of the function, 9059 * and normally qgroup_released bytes will be freed when committing 9060 * transaction. 9061 * But if we error out early, we have to free what we have released 9062 * or we leak qgroup data reservation. 9063 */ 9064 btrfs_qgroup_free_refroot(inode->root->fs_info, 9065 btrfs_root_id(inode->root), qgroup_released, 9066 BTRFS_QGROUP_RSV_DATA); 9067 return ERR_PTR(ret); 9068 } 9069 9070 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9071 u64 start, u64 num_bytes, u64 min_size, 9072 loff_t actual_len, u64 *alloc_hint, 9073 struct btrfs_trans_handle *trans) 9074 { 9075 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 9076 struct extent_map *em; 9077 struct btrfs_root *root = BTRFS_I(inode)->root; 9078 struct btrfs_key ins; 9079 u64 cur_offset = start; 9080 u64 clear_offset = start; 9081 u64 i_size; 9082 u64 cur_bytes; 9083 u64 last_alloc = (u64)-1; 9084 int ret = 0; 9085 bool own_trans = true; 9086 u64 end = start + num_bytes - 1; 9087 9088 if (trans) 9089 own_trans = false; 9090 while (num_bytes > 0) { 9091 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9092 cur_bytes = max(cur_bytes, min_size); 9093 /* 9094 * If we are severely fragmented we could end up with really 9095 * small allocations, so if the allocator is returning small 9096 * chunks lets make its job easier by only searching for those 9097 * sized chunks. 9098 */ 9099 cur_bytes = min(cur_bytes, last_alloc); 9100 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9101 min_size, 0, *alloc_hint, &ins, true, false); 9102 if (ret) 9103 break; 9104 9105 /* 9106 * We've reserved this space, and thus converted it from 9107 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9108 * from here on out we will only need to clear our reservation 9109 * for the remaining unreserved area, so advance our 9110 * clear_offset by our extent size. 9111 */ 9112 clear_offset += ins.offset; 9113 9114 last_alloc = ins.offset; 9115 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9116 &ins, cur_offset); 9117 /* 9118 * Now that we inserted the prealloc extent we can finally 9119 * decrement the number of reservations in the block group. 9120 * If we did it before, we could race with relocation and have 9121 * relocation miss the reserved extent, making it fail later. 9122 */ 9123 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9124 if (IS_ERR(trans)) { 9125 ret = PTR_ERR(trans); 9126 btrfs_free_reserved_extent(fs_info, ins.objectid, 9127 ins.offset, false); 9128 break; 9129 } 9130 9131 em = btrfs_alloc_extent_map(); 9132 if (!em) { 9133 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9134 cur_offset + ins.offset - 1, false); 9135 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9136 goto next; 9137 } 9138 9139 em->start = cur_offset; 9140 em->len = ins.offset; 9141 em->disk_bytenr = ins.objectid; 9142 em->offset = 0; 9143 em->disk_num_bytes = ins.offset; 9144 em->ram_bytes = ins.offset; 9145 em->flags |= EXTENT_FLAG_PREALLOC; 9146 em->generation = trans->transid; 9147 9148 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9149 btrfs_free_extent_map(em); 9150 next: 9151 num_bytes -= ins.offset; 9152 cur_offset += ins.offset; 9153 *alloc_hint = ins.objectid + ins.offset; 9154 9155 inode_inc_iversion(inode); 9156 inode_set_ctime_current(inode); 9157 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9158 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9159 (actual_len > inode->i_size) && 9160 (cur_offset > inode->i_size)) { 9161 if (cur_offset > actual_len) 9162 i_size = actual_len; 9163 else 9164 i_size = cur_offset; 9165 i_size_write(inode, i_size); 9166 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9167 } 9168 9169 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9170 9171 if (unlikely(ret)) { 9172 btrfs_abort_transaction(trans, ret); 9173 if (own_trans) 9174 btrfs_end_transaction(trans); 9175 break; 9176 } 9177 9178 if (own_trans) { 9179 btrfs_end_transaction(trans); 9180 trans = NULL; 9181 } 9182 } 9183 if (clear_offset < end) 9184 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9185 end - clear_offset + 1); 9186 return ret; 9187 } 9188 9189 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9190 u64 start, u64 num_bytes, u64 min_size, 9191 loff_t actual_len, u64 *alloc_hint) 9192 { 9193 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9194 min_size, actual_len, alloc_hint, 9195 NULL); 9196 } 9197 9198 int btrfs_prealloc_file_range_trans(struct inode *inode, 9199 struct btrfs_trans_handle *trans, int mode, 9200 u64 start, u64 num_bytes, u64 min_size, 9201 loff_t actual_len, u64 *alloc_hint) 9202 { 9203 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9204 min_size, actual_len, alloc_hint, trans); 9205 } 9206 9207 /* 9208 * NOTE: in case you are adding MAY_EXEC check for directories: 9209 * we are marking them with IOP_FASTPERM_MAY_EXEC, allowing path lookup to 9210 * elide calls here. 9211 */ 9212 static int btrfs_permission(struct mnt_idmap *idmap, 9213 struct inode *inode, int mask) 9214 { 9215 struct btrfs_root *root = BTRFS_I(inode)->root; 9216 umode_t mode = inode->i_mode; 9217 9218 if (mask & MAY_WRITE && 9219 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9220 if (btrfs_root_readonly(root)) 9221 return -EROFS; 9222 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9223 return -EACCES; 9224 } 9225 return generic_permission(idmap, inode, mask); 9226 } 9227 9228 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9229 struct file *file, umode_t mode) 9230 { 9231 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9232 struct btrfs_trans_handle *trans; 9233 struct btrfs_root *root = BTRFS_I(dir)->root; 9234 struct inode *inode; 9235 struct btrfs_new_inode_args new_inode_args = { 9236 .dir = dir, 9237 .dentry = file->f_path.dentry, 9238 .orphan = true, 9239 }; 9240 unsigned int trans_num_items; 9241 int ret; 9242 9243 inode = new_inode(dir->i_sb); 9244 if (!inode) 9245 return -ENOMEM; 9246 inode_init_owner(idmap, inode, dir, mode); 9247 inode->i_fop = &btrfs_file_operations; 9248 inode->i_op = &btrfs_file_inode_operations; 9249 inode->i_mapping->a_ops = &btrfs_aops; 9250 9251 new_inode_args.inode = inode; 9252 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9253 if (ret) 9254 goto out_inode; 9255 9256 trans = btrfs_start_transaction(root, trans_num_items); 9257 if (IS_ERR(trans)) { 9258 ret = PTR_ERR(trans); 9259 goto out_new_inode_args; 9260 } 9261 9262 ret = btrfs_create_new_inode(trans, &new_inode_args); 9263 9264 /* 9265 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9266 * set it to 1 because d_tmpfile() will issue a warning if the count is 9267 * 0, through: 9268 * 9269 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9270 */ 9271 set_nlink(inode, 1); 9272 9273 if (!ret) { 9274 d_tmpfile(file, inode); 9275 unlock_new_inode(inode); 9276 mark_inode_dirty(inode); 9277 } 9278 9279 btrfs_end_transaction(trans); 9280 btrfs_btree_balance_dirty(fs_info); 9281 out_new_inode_args: 9282 btrfs_new_inode_args_destroy(&new_inode_args); 9283 out_inode: 9284 if (ret) 9285 iput(inode); 9286 return finish_open_simple(file, ret); 9287 } 9288 9289 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9290 int compress_type) 9291 { 9292 switch (compress_type) { 9293 case BTRFS_COMPRESS_NONE: 9294 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9295 case BTRFS_COMPRESS_ZLIB: 9296 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9297 case BTRFS_COMPRESS_LZO: 9298 /* 9299 * The LZO format depends on the sector size. 64K is the maximum 9300 * sector size that we support. 9301 */ 9302 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9303 return -EINVAL; 9304 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9305 (fs_info->sectorsize_bits - 12); 9306 case BTRFS_COMPRESS_ZSTD: 9307 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9308 default: 9309 return -EUCLEAN; 9310 } 9311 } 9312 9313 static ssize_t btrfs_encoded_read_inline( 9314 struct kiocb *iocb, 9315 struct iov_iter *iter, u64 start, 9316 u64 lockend, 9317 struct extent_state **cached_state, 9318 u64 extent_start, size_t count, 9319 struct btrfs_ioctl_encoded_io_args *encoded, 9320 bool *unlocked) 9321 { 9322 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9323 struct btrfs_root *root = inode->root; 9324 struct btrfs_fs_info *fs_info = root->fs_info; 9325 struct extent_io_tree *io_tree = &inode->io_tree; 9326 BTRFS_PATH_AUTO_FREE(path); 9327 struct extent_buffer *leaf; 9328 struct btrfs_file_extent_item *item; 9329 u64 ram_bytes; 9330 unsigned long ptr; 9331 void *tmp; 9332 ssize_t ret; 9333 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9334 9335 path = btrfs_alloc_path(); 9336 if (!path) 9337 return -ENOMEM; 9338 9339 path->nowait = nowait; 9340 9341 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9342 extent_start, 0); 9343 if (ret) { 9344 if (unlikely(ret > 0)) { 9345 /* The extent item disappeared? */ 9346 return -EIO; 9347 } 9348 return ret; 9349 } 9350 leaf = path->nodes[0]; 9351 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9352 9353 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9354 ptr = btrfs_file_extent_inline_start(item); 9355 9356 encoded->len = min_t(u64, extent_start + ram_bytes, 9357 inode->vfs_inode.i_size) - iocb->ki_pos; 9358 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9359 btrfs_file_extent_compression(leaf, item)); 9360 if (ret < 0) 9361 return ret; 9362 encoded->compression = ret; 9363 if (encoded->compression) { 9364 size_t inline_size; 9365 9366 inline_size = btrfs_file_extent_inline_item_len(leaf, 9367 path->slots[0]); 9368 if (inline_size > count) 9369 return -ENOBUFS; 9370 9371 count = inline_size; 9372 encoded->unencoded_len = ram_bytes; 9373 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9374 } else { 9375 count = min_t(u64, count, encoded->len); 9376 encoded->len = count; 9377 encoded->unencoded_len = count; 9378 ptr += iocb->ki_pos - extent_start; 9379 } 9380 9381 tmp = kmalloc(count, GFP_NOFS); 9382 if (!tmp) 9383 return -ENOMEM; 9384 9385 read_extent_buffer(leaf, tmp, ptr, count); 9386 btrfs_release_path(path); 9387 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9388 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9389 *unlocked = true; 9390 9391 ret = copy_to_iter(tmp, count, iter); 9392 if (ret != count) 9393 ret = -EFAULT; 9394 kfree(tmp); 9395 9396 return ret; 9397 } 9398 9399 struct btrfs_encoded_read_private { 9400 struct completion *sync_reads; 9401 void *uring_ctx; 9402 refcount_t pending_refs; 9403 blk_status_t status; 9404 }; 9405 9406 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9407 { 9408 struct btrfs_encoded_read_private *priv = bbio->private; 9409 9410 if (bbio->bio.bi_status) { 9411 /* 9412 * The memory barrier implied by the refcount_dec_and_test() here 9413 * pairs with the memory barrier implied by the refcount_dec_and_test() 9414 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9415 * this write is observed before the load of status in 9416 * btrfs_encoded_read_regular_fill_pages(). 9417 */ 9418 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9419 } 9420 if (refcount_dec_and_test(&priv->pending_refs)) { 9421 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9422 9423 if (priv->uring_ctx) { 9424 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9425 kfree(priv); 9426 } else { 9427 complete(priv->sync_reads); 9428 } 9429 } 9430 bio_put(&bbio->bio); 9431 } 9432 9433 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9434 u64 disk_bytenr, u64 disk_io_size, 9435 struct page **pages, void *uring_ctx) 9436 { 9437 struct btrfs_encoded_read_private *priv, sync_priv; 9438 struct completion sync_reads; 9439 unsigned long i = 0; 9440 struct btrfs_bio *bbio; 9441 int ret; 9442 9443 /* 9444 * Fast path for synchronous reads which completes in this call, io_uring 9445 * needs longer time span. 9446 */ 9447 if (uring_ctx) { 9448 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9449 if (!priv) 9450 return -ENOMEM; 9451 } else { 9452 priv = &sync_priv; 9453 init_completion(&sync_reads); 9454 priv->sync_reads = &sync_reads; 9455 } 9456 9457 refcount_set(&priv->pending_refs, 1); 9458 priv->status = 0; 9459 priv->uring_ctx = uring_ctx; 9460 9461 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9462 btrfs_encoded_read_endio, priv); 9463 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9464 9465 do { 9466 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9467 9468 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9469 refcount_inc(&priv->pending_refs); 9470 btrfs_submit_bbio(bbio, 0); 9471 9472 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, inode, 0, 9473 btrfs_encoded_read_endio, priv); 9474 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9475 continue; 9476 } 9477 9478 i++; 9479 disk_bytenr += bytes; 9480 disk_io_size -= bytes; 9481 } while (disk_io_size); 9482 9483 refcount_inc(&priv->pending_refs); 9484 btrfs_submit_bbio(bbio, 0); 9485 9486 if (uring_ctx) { 9487 if (refcount_dec_and_test(&priv->pending_refs)) { 9488 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9489 btrfs_uring_read_extent_endio(uring_ctx, ret); 9490 kfree(priv); 9491 return ret; 9492 } 9493 9494 return -EIOCBQUEUED; 9495 } else { 9496 if (!refcount_dec_and_test(&priv->pending_refs)) 9497 wait_for_completion_io(&sync_reads); 9498 /* See btrfs_encoded_read_endio() for ordering. */ 9499 return blk_status_to_errno(READ_ONCE(priv->status)); 9500 } 9501 } 9502 9503 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9504 u64 start, u64 lockend, 9505 struct extent_state **cached_state, 9506 u64 disk_bytenr, u64 disk_io_size, 9507 size_t count, bool compressed, bool *unlocked) 9508 { 9509 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9510 struct extent_io_tree *io_tree = &inode->io_tree; 9511 struct page **pages; 9512 unsigned long nr_pages, i; 9513 u64 cur; 9514 size_t page_offset; 9515 ssize_t ret; 9516 9517 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9518 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9519 if (!pages) 9520 return -ENOMEM; 9521 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9522 if (ret) { 9523 ret = -ENOMEM; 9524 goto out; 9525 } 9526 9527 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9528 disk_io_size, pages, NULL); 9529 if (ret) 9530 goto out; 9531 9532 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9533 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9534 *unlocked = true; 9535 9536 if (compressed) { 9537 i = 0; 9538 page_offset = 0; 9539 } else { 9540 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9541 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9542 } 9543 cur = 0; 9544 while (cur < count) { 9545 size_t bytes = min_t(size_t, count - cur, 9546 PAGE_SIZE - page_offset); 9547 9548 if (copy_page_to_iter(pages[i], page_offset, bytes, 9549 iter) != bytes) { 9550 ret = -EFAULT; 9551 goto out; 9552 } 9553 i++; 9554 cur += bytes; 9555 page_offset = 0; 9556 } 9557 ret = count; 9558 out: 9559 for (i = 0; i < nr_pages; i++) { 9560 if (pages[i]) 9561 __free_page(pages[i]); 9562 } 9563 kfree(pages); 9564 return ret; 9565 } 9566 9567 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9568 struct btrfs_ioctl_encoded_io_args *encoded, 9569 struct extent_state **cached_state, 9570 u64 *disk_bytenr, u64 *disk_io_size) 9571 { 9572 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9573 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9574 struct extent_io_tree *io_tree = &inode->io_tree; 9575 ssize_t ret; 9576 size_t count = iov_iter_count(iter); 9577 u64 start, lockend; 9578 struct extent_map *em; 9579 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9580 bool unlocked = false; 9581 9582 file_accessed(iocb->ki_filp); 9583 9584 ret = btrfs_inode_lock(inode, 9585 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9586 if (ret) 9587 return ret; 9588 9589 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9590 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9591 return 0; 9592 } 9593 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9594 /* 9595 * We don't know how long the extent containing iocb->ki_pos is, but if 9596 * it's compressed we know that it won't be longer than this. 9597 */ 9598 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9599 9600 if (nowait) { 9601 struct btrfs_ordered_extent *ordered; 9602 9603 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9604 start, lockend)) { 9605 ret = -EAGAIN; 9606 goto out_unlock_inode; 9607 } 9608 9609 if (!btrfs_try_lock_extent(io_tree, start, lockend, cached_state)) { 9610 ret = -EAGAIN; 9611 goto out_unlock_inode; 9612 } 9613 9614 ordered = btrfs_lookup_ordered_range(inode, start, 9615 lockend - start + 1); 9616 if (ordered) { 9617 btrfs_put_ordered_extent(ordered); 9618 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9619 ret = -EAGAIN; 9620 goto out_unlock_inode; 9621 } 9622 } else { 9623 for (;;) { 9624 struct btrfs_ordered_extent *ordered; 9625 9626 ret = btrfs_wait_ordered_range(inode, start, 9627 lockend - start + 1); 9628 if (ret) 9629 goto out_unlock_inode; 9630 9631 btrfs_lock_extent(io_tree, start, lockend, cached_state); 9632 ordered = btrfs_lookup_ordered_range(inode, start, 9633 lockend - start + 1); 9634 if (!ordered) 9635 break; 9636 btrfs_put_ordered_extent(ordered); 9637 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9638 cond_resched(); 9639 } 9640 } 9641 9642 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9643 if (IS_ERR(em)) { 9644 ret = PTR_ERR(em); 9645 goto out_unlock_extent; 9646 } 9647 9648 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9649 u64 extent_start = em->start; 9650 9651 /* 9652 * For inline extents we get everything we need out of the 9653 * extent item. 9654 */ 9655 btrfs_free_extent_map(em); 9656 em = NULL; 9657 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9658 cached_state, extent_start, 9659 count, encoded, &unlocked); 9660 goto out_unlock_extent; 9661 } 9662 9663 /* 9664 * We only want to return up to EOF even if the extent extends beyond 9665 * that. 9666 */ 9667 encoded->len = min_t(u64, btrfs_extent_map_end(em), 9668 inode->vfs_inode.i_size) - iocb->ki_pos; 9669 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9670 (em->flags & EXTENT_FLAG_PREALLOC)) { 9671 *disk_bytenr = EXTENT_MAP_HOLE; 9672 count = min_t(u64, count, encoded->len); 9673 encoded->len = count; 9674 encoded->unencoded_len = count; 9675 } else if (btrfs_extent_map_is_compressed(em)) { 9676 *disk_bytenr = em->disk_bytenr; 9677 /* 9678 * Bail if the buffer isn't large enough to return the whole 9679 * compressed extent. 9680 */ 9681 if (em->disk_num_bytes > count) { 9682 ret = -ENOBUFS; 9683 goto out_em; 9684 } 9685 *disk_io_size = em->disk_num_bytes; 9686 count = em->disk_num_bytes; 9687 encoded->unencoded_len = em->ram_bytes; 9688 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9689 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9690 btrfs_extent_map_compression(em)); 9691 if (ret < 0) 9692 goto out_em; 9693 encoded->compression = ret; 9694 } else { 9695 *disk_bytenr = btrfs_extent_map_block_start(em) + (start - em->start); 9696 if (encoded->len > count) 9697 encoded->len = count; 9698 /* 9699 * Don't read beyond what we locked. This also limits the page 9700 * allocations that we'll do. 9701 */ 9702 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9703 count = start + *disk_io_size - iocb->ki_pos; 9704 encoded->len = count; 9705 encoded->unencoded_len = count; 9706 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9707 } 9708 btrfs_free_extent_map(em); 9709 em = NULL; 9710 9711 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9712 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9713 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9714 unlocked = true; 9715 ret = iov_iter_zero(count, iter); 9716 if (ret != count) 9717 ret = -EFAULT; 9718 } else { 9719 ret = -EIOCBQUEUED; 9720 goto out_unlock_extent; 9721 } 9722 9723 out_em: 9724 btrfs_free_extent_map(em); 9725 out_unlock_extent: 9726 /* Leave inode and extent locked if we need to do a read. */ 9727 if (!unlocked && ret != -EIOCBQUEUED) 9728 btrfs_unlock_extent(io_tree, start, lockend, cached_state); 9729 out_unlock_inode: 9730 if (!unlocked && ret != -EIOCBQUEUED) 9731 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9732 return ret; 9733 } 9734 9735 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9736 const struct btrfs_ioctl_encoded_io_args *encoded) 9737 { 9738 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9739 struct btrfs_root *root = inode->root; 9740 struct btrfs_fs_info *fs_info = root->fs_info; 9741 struct extent_io_tree *io_tree = &inode->io_tree; 9742 struct extent_changeset *data_reserved = NULL; 9743 struct extent_state *cached_state = NULL; 9744 struct btrfs_ordered_extent *ordered; 9745 struct btrfs_file_extent file_extent; 9746 int compression; 9747 size_t orig_count; 9748 u64 start, end; 9749 u64 num_bytes, ram_bytes, disk_num_bytes; 9750 unsigned long nr_folios, i; 9751 struct folio **folios; 9752 struct btrfs_key ins; 9753 bool extent_reserved = false; 9754 struct extent_map *em; 9755 ssize_t ret; 9756 9757 switch (encoded->compression) { 9758 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9759 compression = BTRFS_COMPRESS_ZLIB; 9760 break; 9761 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9762 compression = BTRFS_COMPRESS_ZSTD; 9763 break; 9764 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9765 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9766 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9767 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9768 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9769 /* The sector size must match for LZO. */ 9770 if (encoded->compression - 9771 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9772 fs_info->sectorsize_bits) 9773 return -EINVAL; 9774 compression = BTRFS_COMPRESS_LZO; 9775 break; 9776 default: 9777 return -EINVAL; 9778 } 9779 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9780 return -EINVAL; 9781 9782 /* 9783 * Compressed extents should always have checksums, so error out if we 9784 * have a NOCOW file or inode was created while mounted with NODATASUM. 9785 */ 9786 if (inode->flags & BTRFS_INODE_NODATASUM) 9787 return -EINVAL; 9788 9789 orig_count = iov_iter_count(from); 9790 9791 /* The extent size must be sane. */ 9792 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9793 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9794 return -EINVAL; 9795 9796 /* 9797 * The compressed data must be smaller than the decompressed data. 9798 * 9799 * It's of course possible for data to compress to larger or the same 9800 * size, but the buffered I/O path falls back to no compression for such 9801 * data, and we don't want to break any assumptions by creating these 9802 * extents. 9803 * 9804 * Note that this is less strict than the current check we have that the 9805 * compressed data must be at least one sector smaller than the 9806 * decompressed data. We only want to enforce the weaker requirement 9807 * from old kernels that it is at least one byte smaller. 9808 */ 9809 if (orig_count >= encoded->unencoded_len) 9810 return -EINVAL; 9811 9812 /* The extent must start on a sector boundary. */ 9813 start = iocb->ki_pos; 9814 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9815 return -EINVAL; 9816 9817 /* 9818 * The extent must end on a sector boundary. However, we allow a write 9819 * which ends at or extends i_size to have an unaligned length; we round 9820 * up the extent size and set i_size to the unaligned end. 9821 */ 9822 if (start + encoded->len < inode->vfs_inode.i_size && 9823 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9824 return -EINVAL; 9825 9826 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9827 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9828 return -EINVAL; 9829 9830 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9831 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9832 end = start + num_bytes - 1; 9833 9834 /* 9835 * If the extent cannot be inline, the compressed data on disk must be 9836 * sector-aligned. For convenience, we extend it with zeroes if it 9837 * isn't. 9838 */ 9839 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9840 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9841 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9842 if (!folios) 9843 return -ENOMEM; 9844 for (i = 0; i < nr_folios; i++) { 9845 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9846 char *kaddr; 9847 9848 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9849 if (!folios[i]) { 9850 ret = -ENOMEM; 9851 goto out_folios; 9852 } 9853 kaddr = kmap_local_folio(folios[i], 0); 9854 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9855 kunmap_local(kaddr); 9856 ret = -EFAULT; 9857 goto out_folios; 9858 } 9859 if (bytes < PAGE_SIZE) 9860 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9861 kunmap_local(kaddr); 9862 } 9863 9864 for (;;) { 9865 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9866 if (ret) 9867 goto out_folios; 9868 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9869 start >> PAGE_SHIFT, 9870 end >> PAGE_SHIFT); 9871 if (ret) 9872 goto out_folios; 9873 btrfs_lock_extent(io_tree, start, end, &cached_state); 9874 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9875 if (!ordered && 9876 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9877 break; 9878 if (ordered) 9879 btrfs_put_ordered_extent(ordered); 9880 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9881 cond_resched(); 9882 } 9883 9884 /* 9885 * We don't use the higher-level delalloc space functions because our 9886 * num_bytes and disk_num_bytes are different. 9887 */ 9888 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9889 if (ret) 9890 goto out_unlock; 9891 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9892 if (ret) 9893 goto out_free_data_space; 9894 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9895 false); 9896 if (ret) 9897 goto out_qgroup_free_data; 9898 9899 /* Try an inline extent first. */ 9900 if (encoded->unencoded_len == encoded->len && 9901 encoded->unencoded_offset == 0 && 9902 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9903 ret = __cow_file_range_inline(inode, encoded->len, 9904 orig_count, compression, folios[0], 9905 true); 9906 if (ret <= 0) { 9907 if (ret == 0) 9908 ret = orig_count; 9909 goto out_delalloc_release; 9910 } 9911 } 9912 9913 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9914 disk_num_bytes, 0, 0, &ins, true, true); 9915 if (ret) 9916 goto out_delalloc_release; 9917 extent_reserved = true; 9918 9919 file_extent.disk_bytenr = ins.objectid; 9920 file_extent.disk_num_bytes = ins.offset; 9921 file_extent.num_bytes = num_bytes; 9922 file_extent.ram_bytes = ram_bytes; 9923 file_extent.offset = encoded->unencoded_offset; 9924 file_extent.compression = compression; 9925 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9926 if (IS_ERR(em)) { 9927 ret = PTR_ERR(em); 9928 goto out_free_reserved; 9929 } 9930 btrfs_free_extent_map(em); 9931 9932 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9933 (1U << BTRFS_ORDERED_ENCODED) | 9934 (1U << BTRFS_ORDERED_COMPRESSED)); 9935 if (IS_ERR(ordered)) { 9936 btrfs_drop_extent_map_range(inode, start, end, false); 9937 ret = PTR_ERR(ordered); 9938 goto out_free_reserved; 9939 } 9940 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9941 9942 if (start + encoded->len > inode->vfs_inode.i_size) 9943 i_size_write(&inode->vfs_inode, start + encoded->len); 9944 9945 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9946 9947 btrfs_delalloc_release_extents(inode, num_bytes); 9948 9949 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9950 ret = orig_count; 9951 goto out; 9952 9953 out_free_reserved: 9954 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9955 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, true); 9956 out_delalloc_release: 9957 btrfs_delalloc_release_extents(inode, num_bytes); 9958 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9959 out_qgroup_free_data: 9960 if (ret < 0) 9961 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9962 out_free_data_space: 9963 /* 9964 * If btrfs_reserve_extent() succeeded, then we already decremented 9965 * bytes_may_use. 9966 */ 9967 if (!extent_reserved) 9968 btrfs_free_reserved_data_space_noquota(inode, disk_num_bytes); 9969 out_unlock: 9970 btrfs_unlock_extent(io_tree, start, end, &cached_state); 9971 out_folios: 9972 for (i = 0; i < nr_folios; i++) { 9973 if (folios[i]) 9974 folio_put(folios[i]); 9975 } 9976 kvfree(folios); 9977 out: 9978 if (ret >= 0) 9979 iocb->ki_pos += encoded->len; 9980 return ret; 9981 } 9982 9983 #ifdef CONFIG_SWAP 9984 /* 9985 * Add an entry indicating a block group or device which is pinned by a 9986 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9987 * negative errno on failure. 9988 */ 9989 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9990 bool is_block_group) 9991 { 9992 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9993 struct btrfs_swapfile_pin *sp, *entry; 9994 struct rb_node **p; 9995 struct rb_node *parent = NULL; 9996 9997 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9998 if (!sp) 9999 return -ENOMEM; 10000 sp->ptr = ptr; 10001 sp->inode = inode; 10002 sp->is_block_group = is_block_group; 10003 sp->bg_extent_count = 1; 10004 10005 spin_lock(&fs_info->swapfile_pins_lock); 10006 p = &fs_info->swapfile_pins.rb_node; 10007 while (*p) { 10008 parent = *p; 10009 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10010 if (sp->ptr < entry->ptr || 10011 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10012 p = &(*p)->rb_left; 10013 } else if (sp->ptr > entry->ptr || 10014 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10015 p = &(*p)->rb_right; 10016 } else { 10017 if (is_block_group) 10018 entry->bg_extent_count++; 10019 spin_unlock(&fs_info->swapfile_pins_lock); 10020 kfree(sp); 10021 return 1; 10022 } 10023 } 10024 rb_link_node(&sp->node, parent, p); 10025 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10026 spin_unlock(&fs_info->swapfile_pins_lock); 10027 return 0; 10028 } 10029 10030 /* Free all of the entries pinned by this swapfile. */ 10031 static void btrfs_free_swapfile_pins(struct inode *inode) 10032 { 10033 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10034 struct btrfs_swapfile_pin *sp; 10035 struct rb_node *node, *next; 10036 10037 spin_lock(&fs_info->swapfile_pins_lock); 10038 node = rb_first(&fs_info->swapfile_pins); 10039 while (node) { 10040 next = rb_next(node); 10041 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10042 if (sp->inode == inode) { 10043 rb_erase(&sp->node, &fs_info->swapfile_pins); 10044 if (sp->is_block_group) { 10045 btrfs_dec_block_group_swap_extents(sp->ptr, 10046 sp->bg_extent_count); 10047 btrfs_put_block_group(sp->ptr); 10048 } 10049 kfree(sp); 10050 } 10051 node = next; 10052 } 10053 spin_unlock(&fs_info->swapfile_pins_lock); 10054 } 10055 10056 struct btrfs_swap_info { 10057 u64 start; 10058 u64 block_start; 10059 u64 block_len; 10060 u64 lowest_ppage; 10061 u64 highest_ppage; 10062 unsigned long nr_pages; 10063 int nr_extents; 10064 }; 10065 10066 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10067 struct btrfs_swap_info *bsi) 10068 { 10069 unsigned long nr_pages; 10070 unsigned long max_pages; 10071 u64 first_ppage, first_ppage_reported, next_ppage; 10072 int ret; 10073 10074 /* 10075 * Our swapfile may have had its size extended after the swap header was 10076 * written. In that case activating the swapfile should not go beyond 10077 * the max size set in the swap header. 10078 */ 10079 if (bsi->nr_pages >= sis->max) 10080 return 0; 10081 10082 max_pages = sis->max - bsi->nr_pages; 10083 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10084 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10085 10086 if (first_ppage >= next_ppage) 10087 return 0; 10088 nr_pages = next_ppage - first_ppage; 10089 nr_pages = min(nr_pages, max_pages); 10090 10091 first_ppage_reported = first_ppage; 10092 if (bsi->start == 0) 10093 first_ppage_reported++; 10094 if (bsi->lowest_ppage > first_ppage_reported) 10095 bsi->lowest_ppage = first_ppage_reported; 10096 if (bsi->highest_ppage < (next_ppage - 1)) 10097 bsi->highest_ppage = next_ppage - 1; 10098 10099 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10100 if (ret < 0) 10101 return ret; 10102 bsi->nr_extents += ret; 10103 bsi->nr_pages += nr_pages; 10104 return 0; 10105 } 10106 10107 static void btrfs_swap_deactivate(struct file *file) 10108 { 10109 struct inode *inode = file_inode(file); 10110 10111 btrfs_free_swapfile_pins(inode); 10112 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10113 } 10114 10115 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10116 sector_t *span) 10117 { 10118 struct inode *inode = file_inode(file); 10119 struct btrfs_root *root = BTRFS_I(inode)->root; 10120 struct btrfs_fs_info *fs_info = root->fs_info; 10121 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10122 struct extent_state *cached_state = NULL; 10123 struct btrfs_chunk_map *map = NULL; 10124 struct btrfs_device *device = NULL; 10125 struct btrfs_swap_info bsi = { 10126 .lowest_ppage = (sector_t)-1ULL, 10127 }; 10128 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 10129 struct btrfs_path *path = NULL; 10130 int ret = 0; 10131 u64 isize; 10132 u64 prev_extent_end = 0; 10133 10134 /* 10135 * Acquire the inode's mmap lock to prevent races with memory mapped 10136 * writes, as they could happen after we flush delalloc below and before 10137 * we lock the extent range further below. The inode was already locked 10138 * up in the call chain. 10139 */ 10140 btrfs_assert_inode_locked(BTRFS_I(inode)); 10141 down_write(&BTRFS_I(inode)->i_mmap_lock); 10142 10143 /* 10144 * If the swap file was just created, make sure delalloc is done. If the 10145 * file changes again after this, the user is doing something stupid and 10146 * we don't really care. 10147 */ 10148 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 10149 if (ret) 10150 goto out_unlock_mmap; 10151 10152 /* 10153 * The inode is locked, so these flags won't change after we check them. 10154 */ 10155 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10156 btrfs_warn(fs_info, "swapfile must not be compressed"); 10157 ret = -EINVAL; 10158 goto out_unlock_mmap; 10159 } 10160 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10161 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10162 ret = -EINVAL; 10163 goto out_unlock_mmap; 10164 } 10165 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10166 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10167 ret = -EINVAL; 10168 goto out_unlock_mmap; 10169 } 10170 10171 path = btrfs_alloc_path(); 10172 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 10173 if (!path || !backref_ctx) { 10174 ret = -ENOMEM; 10175 goto out_unlock_mmap; 10176 } 10177 10178 /* 10179 * Balance or device remove/replace/resize can move stuff around from 10180 * under us. The exclop protection makes sure they aren't running/won't 10181 * run concurrently while we are mapping the swap extents, and 10182 * fs_info->swapfile_pins prevents them from running while the swap 10183 * file is active and moving the extents. Note that this also prevents 10184 * a concurrent device add which isn't actually necessary, but it's not 10185 * really worth the trouble to allow it. 10186 */ 10187 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10188 btrfs_warn(fs_info, 10189 "cannot activate swapfile while exclusive operation is running"); 10190 ret = -EBUSY; 10191 goto out_unlock_mmap; 10192 } 10193 10194 /* 10195 * Prevent snapshot creation while we are activating the swap file. 10196 * We do not want to race with snapshot creation. If snapshot creation 10197 * already started before we bumped nr_swapfiles from 0 to 1 and 10198 * completes before the first write into the swap file after it is 10199 * activated, than that write would fallback to COW. 10200 */ 10201 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10202 btrfs_exclop_finish(fs_info); 10203 btrfs_warn(fs_info, 10204 "cannot activate swapfile because snapshot creation is in progress"); 10205 ret = -EINVAL; 10206 goto out_unlock_mmap; 10207 } 10208 /* 10209 * Snapshots can create extents which require COW even if NODATACOW is 10210 * set. We use this counter to prevent snapshots. We must increment it 10211 * before walking the extents because we don't want a concurrent 10212 * snapshot to run after we've already checked the extents. 10213 * 10214 * It is possible that subvolume is marked for deletion but still not 10215 * removed yet. To prevent this race, we check the root status before 10216 * activating the swapfile. 10217 */ 10218 spin_lock(&root->root_item_lock); 10219 if (btrfs_root_dead(root)) { 10220 spin_unlock(&root->root_item_lock); 10221 10222 btrfs_drew_write_unlock(&root->snapshot_lock); 10223 btrfs_exclop_finish(fs_info); 10224 btrfs_warn(fs_info, 10225 "cannot activate swapfile because subvolume %llu is being deleted", 10226 btrfs_root_id(root)); 10227 ret = -EPERM; 10228 goto out_unlock_mmap; 10229 } 10230 atomic_inc(&root->nr_swapfiles); 10231 spin_unlock(&root->root_item_lock); 10232 10233 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10234 10235 btrfs_lock_extent(io_tree, 0, isize - 1, &cached_state); 10236 while (prev_extent_end < isize) { 10237 struct btrfs_key key; 10238 struct extent_buffer *leaf; 10239 struct btrfs_file_extent_item *ei; 10240 struct btrfs_block_group *bg; 10241 u64 logical_block_start; 10242 u64 physical_block_start; 10243 u64 extent_gen; 10244 u64 disk_bytenr; 10245 u64 len; 10246 10247 key.objectid = btrfs_ino(BTRFS_I(inode)); 10248 key.type = BTRFS_EXTENT_DATA_KEY; 10249 key.offset = prev_extent_end; 10250 10251 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10252 if (ret < 0) 10253 goto out; 10254 10255 /* 10256 * If key not found it means we have an implicit hole (NO_HOLES 10257 * is enabled). 10258 */ 10259 if (ret > 0) { 10260 btrfs_warn(fs_info, "swapfile must not have holes"); 10261 ret = -EINVAL; 10262 goto out; 10263 } 10264 10265 leaf = path->nodes[0]; 10266 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10267 10268 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10269 /* 10270 * It's unlikely we'll ever actually find ourselves 10271 * here, as a file small enough to fit inline won't be 10272 * big enough to store more than the swap header, but in 10273 * case something changes in the future, let's catch it 10274 * here rather than later. 10275 */ 10276 btrfs_warn(fs_info, "swapfile must not be inline"); 10277 ret = -EINVAL; 10278 goto out; 10279 } 10280 10281 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10282 btrfs_warn(fs_info, "swapfile must not be compressed"); 10283 ret = -EINVAL; 10284 goto out; 10285 } 10286 10287 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10288 if (disk_bytenr == 0) { 10289 btrfs_warn(fs_info, "swapfile must not have holes"); 10290 ret = -EINVAL; 10291 goto out; 10292 } 10293 10294 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10295 extent_gen = btrfs_file_extent_generation(leaf, ei); 10296 prev_extent_end = btrfs_file_extent_end(path); 10297 10298 if (prev_extent_end > isize) 10299 len = isize - key.offset; 10300 else 10301 len = btrfs_file_extent_num_bytes(leaf, ei); 10302 10303 backref_ctx->curr_leaf_bytenr = leaf->start; 10304 10305 /* 10306 * Don't need the path anymore, release to avoid deadlocks when 10307 * calling btrfs_is_data_extent_shared() because when joining a 10308 * transaction it can block waiting for the current one's commit 10309 * which in turn may be trying to lock the same leaf to flush 10310 * delayed items for example. 10311 */ 10312 btrfs_release_path(path); 10313 10314 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10315 extent_gen, backref_ctx); 10316 if (ret < 0) { 10317 goto out; 10318 } else if (ret > 0) { 10319 btrfs_warn(fs_info, 10320 "swapfile must not be copy-on-write"); 10321 ret = -EINVAL; 10322 goto out; 10323 } 10324 10325 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10326 if (IS_ERR(map)) { 10327 ret = PTR_ERR(map); 10328 goto out; 10329 } 10330 10331 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10332 btrfs_warn(fs_info, 10333 "swapfile must have single data profile"); 10334 ret = -EINVAL; 10335 goto out; 10336 } 10337 10338 if (device == NULL) { 10339 device = map->stripes[0].dev; 10340 ret = btrfs_add_swapfile_pin(inode, device, false); 10341 if (ret == 1) 10342 ret = 0; 10343 else if (ret) 10344 goto out; 10345 } else if (device != map->stripes[0].dev) { 10346 btrfs_warn(fs_info, "swapfile must be on one device"); 10347 ret = -EINVAL; 10348 goto out; 10349 } 10350 10351 physical_block_start = (map->stripes[0].physical + 10352 (logical_block_start - map->start)); 10353 btrfs_free_chunk_map(map); 10354 map = NULL; 10355 10356 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10357 if (!bg) { 10358 btrfs_warn(fs_info, 10359 "could not find block group containing swapfile"); 10360 ret = -EINVAL; 10361 goto out; 10362 } 10363 10364 if (!btrfs_inc_block_group_swap_extents(bg)) { 10365 btrfs_warn(fs_info, 10366 "block group for swapfile at %llu is read-only%s", 10367 bg->start, 10368 atomic_read(&fs_info->scrubs_running) ? 10369 " (scrub running)" : ""); 10370 btrfs_put_block_group(bg); 10371 ret = -EINVAL; 10372 goto out; 10373 } 10374 10375 ret = btrfs_add_swapfile_pin(inode, bg, true); 10376 if (ret) { 10377 btrfs_put_block_group(bg); 10378 if (ret == 1) 10379 ret = 0; 10380 else 10381 goto out; 10382 } 10383 10384 if (bsi.block_len && 10385 bsi.block_start + bsi.block_len == physical_block_start) { 10386 bsi.block_len += len; 10387 } else { 10388 if (bsi.block_len) { 10389 ret = btrfs_add_swap_extent(sis, &bsi); 10390 if (ret) 10391 goto out; 10392 } 10393 bsi.start = key.offset; 10394 bsi.block_start = physical_block_start; 10395 bsi.block_len = len; 10396 } 10397 10398 if (fatal_signal_pending(current)) { 10399 ret = -EINTR; 10400 goto out; 10401 } 10402 10403 cond_resched(); 10404 } 10405 10406 if (bsi.block_len) 10407 ret = btrfs_add_swap_extent(sis, &bsi); 10408 10409 out: 10410 if (!IS_ERR_OR_NULL(map)) 10411 btrfs_free_chunk_map(map); 10412 10413 btrfs_unlock_extent(io_tree, 0, isize - 1, &cached_state); 10414 10415 if (ret) 10416 btrfs_swap_deactivate(file); 10417 10418 btrfs_drew_write_unlock(&root->snapshot_lock); 10419 10420 btrfs_exclop_finish(fs_info); 10421 10422 out_unlock_mmap: 10423 up_write(&BTRFS_I(inode)->i_mmap_lock); 10424 btrfs_free_backref_share_ctx(backref_ctx); 10425 btrfs_free_path(path); 10426 if (ret) 10427 return ret; 10428 10429 if (device) 10430 sis->bdev = device->bdev; 10431 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10432 sis->max = bsi.nr_pages; 10433 sis->pages = bsi.nr_pages - 1; 10434 return bsi.nr_extents; 10435 } 10436 #else 10437 static void btrfs_swap_deactivate(struct file *file) 10438 { 10439 } 10440 10441 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10442 sector_t *span) 10443 { 10444 return -EOPNOTSUPP; 10445 } 10446 #endif 10447 10448 /* 10449 * Update the number of bytes used in the VFS' inode. When we replace extents in 10450 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10451 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10452 * always get a correct value. 10453 */ 10454 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10455 const u64 add_bytes, 10456 const u64 del_bytes) 10457 { 10458 if (add_bytes == del_bytes) 10459 return; 10460 10461 spin_lock(&inode->lock); 10462 if (del_bytes > 0) 10463 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10464 if (add_bytes > 0) 10465 inode_add_bytes(&inode->vfs_inode, add_bytes); 10466 spin_unlock(&inode->lock); 10467 } 10468 10469 /* 10470 * Verify that there are no ordered extents for a given file range. 10471 * 10472 * @inode: The target inode. 10473 * @start: Start offset of the file range, should be sector size aligned. 10474 * @end: End offset (inclusive) of the file range, its value +1 should be 10475 * sector size aligned. 10476 * 10477 * This should typically be used for cases where we locked an inode's VFS lock in 10478 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10479 * we have flushed all delalloc in the range, we have waited for all ordered 10480 * extents in the range to complete and finally we have locked the file range in 10481 * the inode's io_tree. 10482 */ 10483 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10484 { 10485 struct btrfs_root *root = inode->root; 10486 struct btrfs_ordered_extent *ordered; 10487 10488 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10489 return; 10490 10491 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10492 if (ordered) { 10493 btrfs_err(root->fs_info, 10494 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10495 start, end, btrfs_ino(inode), btrfs_root_id(root), 10496 ordered->file_offset, 10497 ordered->file_offset + ordered->num_bytes - 1); 10498 btrfs_put_ordered_extent(ordered); 10499 } 10500 10501 ASSERT(ordered == NULL); 10502 } 10503 10504 /* 10505 * Find the first inode with a minimum number. 10506 * 10507 * @root: The root to search for. 10508 * @min_ino: The minimum inode number. 10509 * 10510 * Find the first inode in the @root with a number >= @min_ino and return it. 10511 * Returns NULL if no such inode found. 10512 */ 10513 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10514 { 10515 struct btrfs_inode *inode; 10516 unsigned long from = min_ino; 10517 10518 xa_lock(&root->inodes); 10519 while (true) { 10520 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10521 if (!inode) 10522 break; 10523 if (igrab(&inode->vfs_inode)) 10524 break; 10525 10526 from = btrfs_ino(inode) + 1; 10527 cond_resched_lock(&root->inodes.xa_lock); 10528 } 10529 xa_unlock(&root->inodes); 10530 10531 return inode; 10532 } 10533 10534 static const struct inode_operations btrfs_dir_inode_operations = { 10535 .getattr = btrfs_getattr, 10536 .lookup = btrfs_lookup, 10537 .create = btrfs_create, 10538 .unlink = btrfs_unlink, 10539 .link = btrfs_link, 10540 .mkdir = btrfs_mkdir, 10541 .rmdir = btrfs_rmdir, 10542 .rename = btrfs_rename2, 10543 .symlink = btrfs_symlink, 10544 .setattr = btrfs_setattr, 10545 .mknod = btrfs_mknod, 10546 .listxattr = btrfs_listxattr, 10547 .permission = btrfs_permission, 10548 .get_inode_acl = btrfs_get_acl, 10549 .set_acl = btrfs_set_acl, 10550 .update_time = btrfs_update_time, 10551 .tmpfile = btrfs_tmpfile, 10552 .fileattr_get = btrfs_fileattr_get, 10553 .fileattr_set = btrfs_fileattr_set, 10554 }; 10555 10556 static const struct file_operations btrfs_dir_file_operations = { 10557 .llseek = btrfs_dir_llseek, 10558 .read = generic_read_dir, 10559 .iterate_shared = btrfs_real_readdir, 10560 .open = btrfs_opendir, 10561 .unlocked_ioctl = btrfs_ioctl, 10562 #ifdef CONFIG_COMPAT 10563 .compat_ioctl = btrfs_compat_ioctl, 10564 #endif 10565 .release = btrfs_release_file, 10566 .fsync = btrfs_sync_file, 10567 }; 10568 10569 /* 10570 * btrfs doesn't support the bmap operation because swapfiles 10571 * use bmap to make a mapping of extents in the file. They assume 10572 * these extents won't change over the life of the file and they 10573 * use the bmap result to do IO directly to the drive. 10574 * 10575 * the btrfs bmap call would return logical addresses that aren't 10576 * suitable for IO and they also will change frequently as COW 10577 * operations happen. So, swapfile + btrfs == corruption. 10578 * 10579 * For now we're avoiding this by dropping bmap. 10580 */ 10581 static const struct address_space_operations btrfs_aops = { 10582 .read_folio = btrfs_read_folio, 10583 .writepages = btrfs_writepages, 10584 .readahead = btrfs_readahead, 10585 .invalidate_folio = btrfs_invalidate_folio, 10586 .launder_folio = btrfs_launder_folio, 10587 .release_folio = btrfs_release_folio, 10588 .migrate_folio = btrfs_migrate_folio, 10589 .dirty_folio = filemap_dirty_folio, 10590 .error_remove_folio = generic_error_remove_folio, 10591 .swap_activate = btrfs_swap_activate, 10592 .swap_deactivate = btrfs_swap_deactivate, 10593 }; 10594 10595 static const struct inode_operations btrfs_file_inode_operations = { 10596 .getattr = btrfs_getattr, 10597 .setattr = btrfs_setattr, 10598 .listxattr = btrfs_listxattr, 10599 .permission = btrfs_permission, 10600 .fiemap = btrfs_fiemap, 10601 .get_inode_acl = btrfs_get_acl, 10602 .set_acl = btrfs_set_acl, 10603 .update_time = btrfs_update_time, 10604 .fileattr_get = btrfs_fileattr_get, 10605 .fileattr_set = btrfs_fileattr_set, 10606 }; 10607 static const struct inode_operations btrfs_special_inode_operations = { 10608 .getattr = btrfs_getattr, 10609 .setattr = btrfs_setattr, 10610 .permission = btrfs_permission, 10611 .listxattr = btrfs_listxattr, 10612 .get_inode_acl = btrfs_get_acl, 10613 .set_acl = btrfs_set_acl, 10614 .update_time = btrfs_update_time, 10615 }; 10616 static const struct inode_operations btrfs_symlink_inode_operations = { 10617 .get_link = page_get_link, 10618 .getattr = btrfs_getattr, 10619 .setattr = btrfs_setattr, 10620 .permission = btrfs_permission, 10621 .listxattr = btrfs_listxattr, 10622 .update_time = btrfs_update_time, 10623 }; 10624 10625 const struct dentry_operations btrfs_dentry_operations = { 10626 .d_delete = btrfs_dentry_delete, 10627 }; 10628