1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "bio.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 #include "fs.h" 59 #include "accessors.h" 60 #include "extent-tree.h" 61 #include "root-tree.h" 62 #include "defrag.h" 63 #include "dir-item.h" 64 #include "file-item.h" 65 #include "uuid-tree.h" 66 #include "ioctl.h" 67 #include "file.h" 68 #include "acl.h" 69 #include "relocation.h" 70 #include "verity.h" 71 #include "super.h" 72 #include "orphan.h" 73 #include "backref.h" 74 #include "raid-stripe-tree.h" 75 76 struct btrfs_iget_args { 77 u64 ino; 78 struct btrfs_root *root; 79 }; 80 81 struct btrfs_dio_data { 82 ssize_t submitted; 83 struct extent_changeset *data_reserved; 84 struct btrfs_ordered_extent *ordered; 85 bool data_space_reserved; 86 bool nocow_done; 87 }; 88 89 struct btrfs_dio_private { 90 /* Range of I/O */ 91 u64 file_offset; 92 u32 bytes; 93 94 /* This must be last */ 95 struct btrfs_bio bbio; 96 }; 97 98 static struct bio_set btrfs_dio_bioset; 99 100 struct btrfs_rename_ctx { 101 /* Output field. Stores the index number of the old directory entry. */ 102 u64 index; 103 }; 104 105 /* 106 * Used by data_reloc_print_warning_inode() to pass needed info for filename 107 * resolution and output of error message. 108 */ 109 struct data_reloc_warn { 110 struct btrfs_path path; 111 struct btrfs_fs_info *fs_info; 112 u64 extent_item_size; 113 u64 logical; 114 int mirror_num; 115 }; 116 117 /* 118 * For the file_extent_tree, we want to hold the inode lock when we lookup and 119 * update the disk_i_size, but lockdep will complain because our io_tree we hold 120 * the tree lock and get the inode lock when setting delalloc. These two things 121 * are unrelated, so make a class for the file_extent_tree so we don't get the 122 * two locking patterns mixed up. 123 */ 124 static struct lock_class_key file_extent_tree_class; 125 126 static const struct inode_operations btrfs_dir_inode_operations; 127 static const struct inode_operations btrfs_symlink_inode_operations; 128 static const struct inode_operations btrfs_special_inode_operations; 129 static const struct inode_operations btrfs_file_inode_operations; 130 static const struct address_space_operations btrfs_aops; 131 static const struct file_operations btrfs_dir_file_operations; 132 133 static struct kmem_cache *btrfs_inode_cachep; 134 135 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 136 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 137 138 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 139 struct page *locked_page, u64 start, 140 u64 end, struct writeback_control *wbc, 141 bool pages_dirty); 142 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 143 u64 len, u64 orig_start, u64 block_start, 144 u64 block_len, u64 orig_block_len, 145 u64 ram_bytes, int compress_type, 146 int type); 147 148 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 149 u64 root, void *warn_ctx) 150 { 151 struct data_reloc_warn *warn = warn_ctx; 152 struct btrfs_fs_info *fs_info = warn->fs_info; 153 struct extent_buffer *eb; 154 struct btrfs_inode_item *inode_item; 155 struct inode_fs_paths *ipath = NULL; 156 struct btrfs_root *local_root; 157 struct btrfs_key key; 158 unsigned int nofs_flag; 159 u32 nlink; 160 int ret; 161 162 local_root = btrfs_get_fs_root(fs_info, root, true); 163 if (IS_ERR(local_root)) { 164 ret = PTR_ERR(local_root); 165 goto err; 166 } 167 168 /* This makes the path point to (inum INODE_ITEM ioff). */ 169 key.objectid = inum; 170 key.type = BTRFS_INODE_ITEM_KEY; 171 key.offset = 0; 172 173 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 174 if (ret) { 175 btrfs_put_root(local_root); 176 btrfs_release_path(&warn->path); 177 goto err; 178 } 179 180 eb = warn->path.nodes[0]; 181 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 182 nlink = btrfs_inode_nlink(eb, inode_item); 183 btrfs_release_path(&warn->path); 184 185 nofs_flag = memalloc_nofs_save(); 186 ipath = init_ipath(4096, local_root, &warn->path); 187 memalloc_nofs_restore(nofs_flag); 188 if (IS_ERR(ipath)) { 189 btrfs_put_root(local_root); 190 ret = PTR_ERR(ipath); 191 ipath = NULL; 192 /* 193 * -ENOMEM, not a critical error, just output an generic error 194 * without filename. 195 */ 196 btrfs_warn(fs_info, 197 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 198 warn->logical, warn->mirror_num, root, inum, offset); 199 return ret; 200 } 201 ret = paths_from_inode(inum, ipath); 202 if (ret < 0) 203 goto err; 204 205 /* 206 * We deliberately ignore the bit ipath might have been too small to 207 * hold all of the paths here 208 */ 209 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 210 btrfs_warn(fs_info, 211 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 212 warn->logical, warn->mirror_num, root, inum, offset, 213 fs_info->sectorsize, nlink, 214 (char *)(unsigned long)ipath->fspath->val[i]); 215 } 216 217 btrfs_put_root(local_root); 218 free_ipath(ipath); 219 return 0; 220 221 err: 222 btrfs_warn(fs_info, 223 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 224 warn->logical, warn->mirror_num, root, inum, offset, ret); 225 226 free_ipath(ipath); 227 return ret; 228 } 229 230 /* 231 * Do extra user-friendly error output (e.g. lookup all the affected files). 232 * 233 * Return true if we succeeded doing the backref lookup. 234 * Return false if such lookup failed, and has to fallback to the old error message. 235 */ 236 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 237 const u8 *csum, const u8 *csum_expected, 238 int mirror_num) 239 { 240 struct btrfs_fs_info *fs_info = inode->root->fs_info; 241 struct btrfs_path path = { 0 }; 242 struct btrfs_key found_key = { 0 }; 243 struct extent_buffer *eb; 244 struct btrfs_extent_item *ei; 245 const u32 csum_size = fs_info->csum_size; 246 u64 logical; 247 u64 flags; 248 u32 item_size; 249 int ret; 250 251 mutex_lock(&fs_info->reloc_mutex); 252 logical = btrfs_get_reloc_bg_bytenr(fs_info); 253 mutex_unlock(&fs_info->reloc_mutex); 254 255 if (logical == U64_MAX) { 256 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 257 btrfs_warn_rl(fs_info, 258 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 259 inode->root->root_key.objectid, btrfs_ino(inode), file_off, 260 CSUM_FMT_VALUE(csum_size, csum), 261 CSUM_FMT_VALUE(csum_size, csum_expected), 262 mirror_num); 263 return; 264 } 265 266 logical += file_off; 267 btrfs_warn_rl(fs_info, 268 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 269 inode->root->root_key.objectid, 270 btrfs_ino(inode), file_off, logical, 271 CSUM_FMT_VALUE(csum_size, csum), 272 CSUM_FMT_VALUE(csum_size, csum_expected), 273 mirror_num); 274 275 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 276 if (ret < 0) { 277 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 278 logical, ret); 279 return; 280 } 281 eb = path.nodes[0]; 282 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 283 item_size = btrfs_item_size(eb, path.slots[0]); 284 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 285 unsigned long ptr = 0; 286 u64 ref_root; 287 u8 ref_level; 288 289 while (true) { 290 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 291 item_size, &ref_root, 292 &ref_level); 293 if (ret < 0) { 294 btrfs_warn_rl(fs_info, 295 "failed to resolve tree backref for logical %llu: %d", 296 logical, ret); 297 break; 298 } 299 if (ret > 0) 300 break; 301 302 btrfs_warn_rl(fs_info, 303 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 304 logical, mirror_num, 305 (ref_level ? "node" : "leaf"), 306 ref_level, ref_root); 307 } 308 btrfs_release_path(&path); 309 } else { 310 struct btrfs_backref_walk_ctx ctx = { 0 }; 311 struct data_reloc_warn reloc_warn = { 0 }; 312 313 btrfs_release_path(&path); 314 315 ctx.bytenr = found_key.objectid; 316 ctx.extent_item_pos = logical - found_key.objectid; 317 ctx.fs_info = fs_info; 318 319 reloc_warn.logical = logical; 320 reloc_warn.extent_item_size = found_key.offset; 321 reloc_warn.mirror_num = mirror_num; 322 reloc_warn.fs_info = fs_info; 323 324 iterate_extent_inodes(&ctx, true, 325 data_reloc_print_warning_inode, &reloc_warn); 326 } 327 } 328 329 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 330 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 331 { 332 struct btrfs_root *root = inode->root; 333 const u32 csum_size = root->fs_info->csum_size; 334 335 /* For data reloc tree, it's better to do a backref lookup instead. */ 336 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 337 return print_data_reloc_error(inode, logical_start, csum, 338 csum_expected, mirror_num); 339 340 /* Output without objectid, which is more meaningful */ 341 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) { 342 btrfs_warn_rl(root->fs_info, 343 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 344 root->root_key.objectid, btrfs_ino(inode), 345 logical_start, 346 CSUM_FMT_VALUE(csum_size, csum), 347 CSUM_FMT_VALUE(csum_size, csum_expected), 348 mirror_num); 349 } else { 350 btrfs_warn_rl(root->fs_info, 351 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 352 root->root_key.objectid, btrfs_ino(inode), 353 logical_start, 354 CSUM_FMT_VALUE(csum_size, csum), 355 CSUM_FMT_VALUE(csum_size, csum_expected), 356 mirror_num); 357 } 358 } 359 360 /* 361 * Lock inode i_rwsem based on arguments passed. 362 * 363 * ilock_flags can have the following bit set: 364 * 365 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 366 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 367 * return -EAGAIN 368 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 369 */ 370 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 371 { 372 if (ilock_flags & BTRFS_ILOCK_SHARED) { 373 if (ilock_flags & BTRFS_ILOCK_TRY) { 374 if (!inode_trylock_shared(&inode->vfs_inode)) 375 return -EAGAIN; 376 else 377 return 0; 378 } 379 inode_lock_shared(&inode->vfs_inode); 380 } else { 381 if (ilock_flags & BTRFS_ILOCK_TRY) { 382 if (!inode_trylock(&inode->vfs_inode)) 383 return -EAGAIN; 384 else 385 return 0; 386 } 387 inode_lock(&inode->vfs_inode); 388 } 389 if (ilock_flags & BTRFS_ILOCK_MMAP) 390 down_write(&inode->i_mmap_lock); 391 return 0; 392 } 393 394 /* 395 * Unock inode i_rwsem. 396 * 397 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 398 * to decide whether the lock acquired is shared or exclusive. 399 */ 400 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 401 { 402 if (ilock_flags & BTRFS_ILOCK_MMAP) 403 up_write(&inode->i_mmap_lock); 404 if (ilock_flags & BTRFS_ILOCK_SHARED) 405 inode_unlock_shared(&inode->vfs_inode); 406 else 407 inode_unlock(&inode->vfs_inode); 408 } 409 410 /* 411 * Cleanup all submitted ordered extents in specified range to handle errors 412 * from the btrfs_run_delalloc_range() callback. 413 * 414 * NOTE: caller must ensure that when an error happens, it can not call 415 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 416 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 417 * to be released, which we want to happen only when finishing the ordered 418 * extent (btrfs_finish_ordered_io()). 419 */ 420 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 421 struct page *locked_page, 422 u64 offset, u64 bytes) 423 { 424 unsigned long index = offset >> PAGE_SHIFT; 425 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 426 u64 page_start = 0, page_end = 0; 427 struct page *page; 428 429 if (locked_page) { 430 page_start = page_offset(locked_page); 431 page_end = page_start + PAGE_SIZE - 1; 432 } 433 434 while (index <= end_index) { 435 /* 436 * For locked page, we will call btrfs_mark_ordered_io_finished 437 * through btrfs_mark_ordered_io_finished() on it 438 * in run_delalloc_range() for the error handling, which will 439 * clear page Ordered and run the ordered extent accounting. 440 * 441 * Here we can't just clear the Ordered bit, or 442 * btrfs_mark_ordered_io_finished() would skip the accounting 443 * for the page range, and the ordered extent will never finish. 444 */ 445 if (locked_page && index == (page_start >> PAGE_SHIFT)) { 446 index++; 447 continue; 448 } 449 page = find_get_page(inode->vfs_inode.i_mapping, index); 450 index++; 451 if (!page) 452 continue; 453 454 /* 455 * Here we just clear all Ordered bits for every page in the 456 * range, then btrfs_mark_ordered_io_finished() will handle 457 * the ordered extent accounting for the range. 458 */ 459 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, 460 page_folio(page), offset, bytes); 461 put_page(page); 462 } 463 464 if (locked_page) { 465 /* The locked page covers the full range, nothing needs to be done */ 466 if (bytes + offset <= page_start + PAGE_SIZE) 467 return; 468 /* 469 * In case this page belongs to the delalloc range being 470 * instantiated then skip it, since the first page of a range is 471 * going to be properly cleaned up by the caller of 472 * run_delalloc_range 473 */ 474 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 475 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 476 offset = page_offset(locked_page) + PAGE_SIZE; 477 } 478 } 479 480 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 481 } 482 483 static int btrfs_dirty_inode(struct btrfs_inode *inode); 484 485 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 486 struct btrfs_new_inode_args *args) 487 { 488 int err; 489 490 if (args->default_acl) { 491 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 492 ACL_TYPE_DEFAULT); 493 if (err) 494 return err; 495 } 496 if (args->acl) { 497 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 498 if (err) 499 return err; 500 } 501 if (!args->default_acl && !args->acl) 502 cache_no_acl(args->inode); 503 return btrfs_xattr_security_init(trans, args->inode, args->dir, 504 &args->dentry->d_name); 505 } 506 507 /* 508 * this does all the hard work for inserting an inline extent into 509 * the btree. The caller should have done a btrfs_drop_extents so that 510 * no overlapping inline items exist in the btree 511 */ 512 static int insert_inline_extent(struct btrfs_trans_handle *trans, 513 struct btrfs_path *path, 514 struct btrfs_inode *inode, bool extent_inserted, 515 size_t size, size_t compressed_size, 516 int compress_type, 517 struct page **compressed_pages, 518 bool update_i_size) 519 { 520 struct btrfs_root *root = inode->root; 521 struct extent_buffer *leaf; 522 struct page *page = NULL; 523 char *kaddr; 524 unsigned long ptr; 525 struct btrfs_file_extent_item *ei; 526 int ret; 527 size_t cur_size = size; 528 u64 i_size; 529 530 ASSERT((compressed_size > 0 && compressed_pages) || 531 (compressed_size == 0 && !compressed_pages)); 532 533 if (compressed_size && compressed_pages) 534 cur_size = compressed_size; 535 536 if (!extent_inserted) { 537 struct btrfs_key key; 538 size_t datasize; 539 540 key.objectid = btrfs_ino(inode); 541 key.offset = 0; 542 key.type = BTRFS_EXTENT_DATA_KEY; 543 544 datasize = btrfs_file_extent_calc_inline_size(cur_size); 545 ret = btrfs_insert_empty_item(trans, root, path, &key, 546 datasize); 547 if (ret) 548 goto fail; 549 } 550 leaf = path->nodes[0]; 551 ei = btrfs_item_ptr(leaf, path->slots[0], 552 struct btrfs_file_extent_item); 553 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 554 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 555 btrfs_set_file_extent_encryption(leaf, ei, 0); 556 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 557 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 558 ptr = btrfs_file_extent_inline_start(ei); 559 560 if (compress_type != BTRFS_COMPRESS_NONE) { 561 struct page *cpage; 562 int i = 0; 563 while (compressed_size > 0) { 564 cpage = compressed_pages[i]; 565 cur_size = min_t(unsigned long, compressed_size, 566 PAGE_SIZE); 567 568 kaddr = kmap_local_page(cpage); 569 write_extent_buffer(leaf, kaddr, ptr, cur_size); 570 kunmap_local(kaddr); 571 572 i++; 573 ptr += cur_size; 574 compressed_size -= cur_size; 575 } 576 btrfs_set_file_extent_compression(leaf, ei, 577 compress_type); 578 } else { 579 page = find_get_page(inode->vfs_inode.i_mapping, 0); 580 btrfs_set_file_extent_compression(leaf, ei, 0); 581 kaddr = kmap_local_page(page); 582 write_extent_buffer(leaf, kaddr, ptr, size); 583 kunmap_local(kaddr); 584 put_page(page); 585 } 586 btrfs_mark_buffer_dirty(trans, leaf); 587 btrfs_release_path(path); 588 589 /* 590 * We align size to sectorsize for inline extents just for simplicity 591 * sake. 592 */ 593 ret = btrfs_inode_set_file_extent_range(inode, 0, 594 ALIGN(size, root->fs_info->sectorsize)); 595 if (ret) 596 goto fail; 597 598 /* 599 * We're an inline extent, so nobody can extend the file past i_size 600 * without locking a page we already have locked. 601 * 602 * We must do any i_size and inode updates before we unlock the pages. 603 * Otherwise we could end up racing with unlink. 604 */ 605 i_size = i_size_read(&inode->vfs_inode); 606 if (update_i_size && size > i_size) { 607 i_size_write(&inode->vfs_inode, size); 608 i_size = size; 609 } 610 inode->disk_i_size = i_size; 611 612 fail: 613 return ret; 614 } 615 616 617 /* 618 * conditionally insert an inline extent into the file. This 619 * does the checks required to make sure the data is small enough 620 * to fit as an inline extent. 621 */ 622 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 623 size_t compressed_size, 624 int compress_type, 625 struct page **compressed_pages, 626 bool update_i_size) 627 { 628 struct btrfs_drop_extents_args drop_args = { 0 }; 629 struct btrfs_root *root = inode->root; 630 struct btrfs_fs_info *fs_info = root->fs_info; 631 struct btrfs_trans_handle *trans; 632 u64 data_len = (compressed_size ?: size); 633 int ret; 634 struct btrfs_path *path; 635 636 /* 637 * We can create an inline extent if it ends at or beyond the current 638 * i_size, is no larger than a sector (decompressed), and the (possibly 639 * compressed) data fits in a leaf and the configured maximum inline 640 * size. 641 */ 642 if (size < i_size_read(&inode->vfs_inode) || 643 size > fs_info->sectorsize || 644 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 645 data_len > fs_info->max_inline) 646 return 1; 647 648 path = btrfs_alloc_path(); 649 if (!path) 650 return -ENOMEM; 651 652 trans = btrfs_join_transaction(root); 653 if (IS_ERR(trans)) { 654 btrfs_free_path(path); 655 return PTR_ERR(trans); 656 } 657 trans->block_rsv = &inode->block_rsv; 658 659 drop_args.path = path; 660 drop_args.start = 0; 661 drop_args.end = fs_info->sectorsize; 662 drop_args.drop_cache = true; 663 drop_args.replace_extent = true; 664 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 665 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 666 if (ret) { 667 btrfs_abort_transaction(trans, ret); 668 goto out; 669 } 670 671 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 672 size, compressed_size, compress_type, 673 compressed_pages, update_i_size); 674 if (ret && ret != -ENOSPC) { 675 btrfs_abort_transaction(trans, ret); 676 goto out; 677 } else if (ret == -ENOSPC) { 678 ret = 1; 679 goto out; 680 } 681 682 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 683 ret = btrfs_update_inode(trans, inode); 684 if (ret && ret != -ENOSPC) { 685 btrfs_abort_transaction(trans, ret); 686 goto out; 687 } else if (ret == -ENOSPC) { 688 ret = 1; 689 goto out; 690 } 691 692 btrfs_set_inode_full_sync(inode); 693 out: 694 /* 695 * Don't forget to free the reserved space, as for inlined extent 696 * it won't count as data extent, free them directly here. 697 * And at reserve time, it's always aligned to page size, so 698 * just free one page here. 699 */ 700 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL); 701 btrfs_free_path(path); 702 btrfs_end_transaction(trans); 703 return ret; 704 } 705 706 struct async_extent { 707 u64 start; 708 u64 ram_size; 709 u64 compressed_size; 710 struct page **pages; 711 unsigned long nr_pages; 712 int compress_type; 713 struct list_head list; 714 }; 715 716 struct async_chunk { 717 struct btrfs_inode *inode; 718 struct page *locked_page; 719 u64 start; 720 u64 end; 721 blk_opf_t write_flags; 722 struct list_head extents; 723 struct cgroup_subsys_state *blkcg_css; 724 struct btrfs_work work; 725 struct async_cow *async_cow; 726 }; 727 728 struct async_cow { 729 atomic_t num_chunks; 730 struct async_chunk chunks[]; 731 }; 732 733 static noinline int add_async_extent(struct async_chunk *cow, 734 u64 start, u64 ram_size, 735 u64 compressed_size, 736 struct page **pages, 737 unsigned long nr_pages, 738 int compress_type) 739 { 740 struct async_extent *async_extent; 741 742 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 743 BUG_ON(!async_extent); /* -ENOMEM */ 744 async_extent->start = start; 745 async_extent->ram_size = ram_size; 746 async_extent->compressed_size = compressed_size; 747 async_extent->pages = pages; 748 async_extent->nr_pages = nr_pages; 749 async_extent->compress_type = compress_type; 750 list_add_tail(&async_extent->list, &cow->extents); 751 return 0; 752 } 753 754 /* 755 * Check if the inode needs to be submitted to compression, based on mount 756 * options, defragmentation, properties or heuristics. 757 */ 758 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 759 u64 end) 760 { 761 struct btrfs_fs_info *fs_info = inode->root->fs_info; 762 763 if (!btrfs_inode_can_compress(inode)) { 764 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 765 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 766 btrfs_ino(inode)); 767 return 0; 768 } 769 /* 770 * Special check for subpage. 771 * 772 * We lock the full page then run each delalloc range in the page, thus 773 * for the following case, we will hit some subpage specific corner case: 774 * 775 * 0 32K 64K 776 * | |///////| |///////| 777 * \- A \- B 778 * 779 * In above case, both range A and range B will try to unlock the full 780 * page [0, 64K), causing the one finished later will have page 781 * unlocked already, triggering various page lock requirement BUG_ON()s. 782 * 783 * So here we add an artificial limit that subpage compression can only 784 * if the range is fully page aligned. 785 * 786 * In theory we only need to ensure the first page is fully covered, but 787 * the tailing partial page will be locked until the full compression 788 * finishes, delaying the write of other range. 789 * 790 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 791 * first to prevent any submitted async extent to unlock the full page. 792 * By this, we can ensure for subpage case that only the last async_cow 793 * will unlock the full page. 794 */ 795 if (fs_info->sectorsize < PAGE_SIZE) { 796 if (!PAGE_ALIGNED(start) || 797 !PAGE_ALIGNED(end + 1)) 798 return 0; 799 } 800 801 /* force compress */ 802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 803 return 1; 804 /* defrag ioctl */ 805 if (inode->defrag_compress) 806 return 1; 807 /* bad compression ratios */ 808 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 809 return 0; 810 if (btrfs_test_opt(fs_info, COMPRESS) || 811 inode->flags & BTRFS_INODE_COMPRESS || 812 inode->prop_compress) 813 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 814 return 0; 815 } 816 817 static inline void inode_should_defrag(struct btrfs_inode *inode, 818 u64 start, u64 end, u64 num_bytes, u32 small_write) 819 { 820 /* If this is a small write inside eof, kick off a defrag */ 821 if (num_bytes < small_write && 822 (start > 0 || end + 1 < inode->disk_i_size)) 823 btrfs_add_inode_defrag(NULL, inode, small_write); 824 } 825 826 /* 827 * Work queue call back to started compression on a file and pages. 828 * 829 * This is done inside an ordered work queue, and the compression is spread 830 * across many cpus. The actual IO submission is step two, and the ordered work 831 * queue takes care of making sure that happens in the same order things were 832 * put onto the queue by writepages and friends. 833 * 834 * If this code finds it can't get good compression, it puts an entry onto the 835 * work queue to write the uncompressed bytes. This makes sure that both 836 * compressed inodes and uncompressed inodes are written in the same order that 837 * the flusher thread sent them down. 838 */ 839 static void compress_file_range(struct btrfs_work *work) 840 { 841 struct async_chunk *async_chunk = 842 container_of(work, struct async_chunk, work); 843 struct btrfs_inode *inode = async_chunk->inode; 844 struct btrfs_fs_info *fs_info = inode->root->fs_info; 845 struct address_space *mapping = inode->vfs_inode.i_mapping; 846 u64 blocksize = fs_info->sectorsize; 847 u64 start = async_chunk->start; 848 u64 end = async_chunk->end; 849 u64 actual_end; 850 u64 i_size; 851 int ret = 0; 852 struct page **pages; 853 unsigned long nr_pages; 854 unsigned long total_compressed = 0; 855 unsigned long total_in = 0; 856 unsigned int poff; 857 int i; 858 int compress_type = fs_info->compress_type; 859 860 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 861 862 /* 863 * We need to call clear_page_dirty_for_io on each page in the range. 864 * Otherwise applications with the file mmap'd can wander in and change 865 * the page contents while we are compressing them. 866 */ 867 extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end); 868 869 /* 870 * We need to save i_size before now because it could change in between 871 * us evaluating the size and assigning it. This is because we lock and 872 * unlock the page in truncate and fallocate, and then modify the i_size 873 * later on. 874 * 875 * The barriers are to emulate READ_ONCE, remove that once i_size_read 876 * does that for us. 877 */ 878 barrier(); 879 i_size = i_size_read(&inode->vfs_inode); 880 barrier(); 881 actual_end = min_t(u64, i_size, end + 1); 882 again: 883 pages = NULL; 884 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 885 nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES); 886 887 /* 888 * we don't want to send crud past the end of i_size through 889 * compression, that's just a waste of CPU time. So, if the 890 * end of the file is before the start of our current 891 * requested range of bytes, we bail out to the uncompressed 892 * cleanup code that can deal with all of this. 893 * 894 * It isn't really the fastest way to fix things, but this is a 895 * very uncommon corner. 896 */ 897 if (actual_end <= start) 898 goto cleanup_and_bail_uncompressed; 899 900 total_compressed = actual_end - start; 901 902 /* 903 * Skip compression for a small file range(<=blocksize) that 904 * isn't an inline extent, since it doesn't save disk space at all. 905 */ 906 if (total_compressed <= blocksize && 907 (start > 0 || end + 1 < inode->disk_i_size)) 908 goto cleanup_and_bail_uncompressed; 909 910 /* 911 * For subpage case, we require full page alignment for the sector 912 * aligned range. 913 * Thus we must also check against @actual_end, not just @end. 914 */ 915 if (blocksize < PAGE_SIZE) { 916 if (!PAGE_ALIGNED(start) || 917 !PAGE_ALIGNED(round_up(actual_end, blocksize))) 918 goto cleanup_and_bail_uncompressed; 919 } 920 921 total_compressed = min_t(unsigned long, total_compressed, 922 BTRFS_MAX_UNCOMPRESSED); 923 total_in = 0; 924 ret = 0; 925 926 /* 927 * We do compression for mount -o compress and when the inode has not 928 * been flagged as NOCOMPRESS. This flag can change at any time if we 929 * discover bad compression ratios. 930 */ 931 if (!inode_need_compress(inode, start, end)) 932 goto cleanup_and_bail_uncompressed; 933 934 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 935 if (!pages) { 936 /* 937 * Memory allocation failure is not a fatal error, we can fall 938 * back to uncompressed code. 939 */ 940 goto cleanup_and_bail_uncompressed; 941 } 942 943 if (inode->defrag_compress) 944 compress_type = inode->defrag_compress; 945 else if (inode->prop_compress) 946 compress_type = inode->prop_compress; 947 948 /* Compression level is applied here. */ 949 ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4), 950 mapping, start, pages, &nr_pages, &total_in, 951 &total_compressed); 952 if (ret) 953 goto mark_incompressible; 954 955 /* 956 * Zero the tail end of the last page, as we might be sending it down 957 * to disk. 958 */ 959 poff = offset_in_page(total_compressed); 960 if (poff) 961 memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff); 962 963 /* 964 * Try to create an inline extent. 965 * 966 * If we didn't compress the entire range, try to create an uncompressed 967 * inline extent, else a compressed one. 968 * 969 * Check cow_file_range() for why we don't even try to create inline 970 * extent for the subpage case. 971 */ 972 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 973 if (total_in < actual_end) { 974 ret = cow_file_range_inline(inode, actual_end, 0, 975 BTRFS_COMPRESS_NONE, NULL, 976 false); 977 } else { 978 ret = cow_file_range_inline(inode, actual_end, 979 total_compressed, 980 compress_type, pages, 981 false); 982 } 983 if (ret <= 0) { 984 unsigned long clear_flags = EXTENT_DELALLOC | 985 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 986 EXTENT_DO_ACCOUNTING; 987 988 if (ret < 0) 989 mapping_set_error(mapping, -EIO); 990 991 /* 992 * inline extent creation worked or returned error, 993 * we don't need to create any more async work items. 994 * Unlock and free up our temp pages. 995 * 996 * We use DO_ACCOUNTING here because we need the 997 * delalloc_release_metadata to be done _after_ we drop 998 * our outstanding extent for clearing delalloc for this 999 * range. 1000 */ 1001 extent_clear_unlock_delalloc(inode, start, end, 1002 NULL, 1003 clear_flags, 1004 PAGE_UNLOCK | 1005 PAGE_START_WRITEBACK | 1006 PAGE_END_WRITEBACK); 1007 goto free_pages; 1008 } 1009 } 1010 1011 /* 1012 * We aren't doing an inline extent. Round the compressed size up to a 1013 * block size boundary so the allocator does sane things. 1014 */ 1015 total_compressed = ALIGN(total_compressed, blocksize); 1016 1017 /* 1018 * One last check to make sure the compression is really a win, compare 1019 * the page count read with the blocks on disk, compression must free at 1020 * least one sector. 1021 */ 1022 total_in = round_up(total_in, fs_info->sectorsize); 1023 if (total_compressed + blocksize > total_in) 1024 goto mark_incompressible; 1025 1026 /* 1027 * The async work queues will take care of doing actual allocation on 1028 * disk for these compressed pages, and will submit the bios. 1029 */ 1030 add_async_extent(async_chunk, start, total_in, total_compressed, pages, 1031 nr_pages, compress_type); 1032 if (start + total_in < end) { 1033 start += total_in; 1034 cond_resched(); 1035 goto again; 1036 } 1037 return; 1038 1039 mark_incompressible: 1040 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1041 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1042 cleanup_and_bail_uncompressed: 1043 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1044 BTRFS_COMPRESS_NONE); 1045 free_pages: 1046 if (pages) { 1047 for (i = 0; i < nr_pages; i++) { 1048 WARN_ON(pages[i]->mapping); 1049 btrfs_free_compr_page(pages[i]); 1050 } 1051 kfree(pages); 1052 } 1053 } 1054 1055 static void free_async_extent_pages(struct async_extent *async_extent) 1056 { 1057 int i; 1058 1059 if (!async_extent->pages) 1060 return; 1061 1062 for (i = 0; i < async_extent->nr_pages; i++) { 1063 WARN_ON(async_extent->pages[i]->mapping); 1064 btrfs_free_compr_page(async_extent->pages[i]); 1065 } 1066 kfree(async_extent->pages); 1067 async_extent->nr_pages = 0; 1068 async_extent->pages = NULL; 1069 } 1070 1071 static void submit_uncompressed_range(struct btrfs_inode *inode, 1072 struct async_extent *async_extent, 1073 struct page *locked_page) 1074 { 1075 u64 start = async_extent->start; 1076 u64 end = async_extent->start + async_extent->ram_size - 1; 1077 int ret; 1078 struct writeback_control wbc = { 1079 .sync_mode = WB_SYNC_ALL, 1080 .range_start = start, 1081 .range_end = end, 1082 .no_cgroup_owner = 1, 1083 }; 1084 1085 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1086 ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false); 1087 wbc_detach_inode(&wbc); 1088 if (ret < 0) { 1089 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1); 1090 if (locked_page) { 1091 const u64 page_start = page_offset(locked_page); 1092 1093 set_page_writeback(locked_page); 1094 end_page_writeback(locked_page); 1095 btrfs_mark_ordered_io_finished(inode, locked_page, 1096 page_start, PAGE_SIZE, 1097 !ret); 1098 mapping_set_error(locked_page->mapping, ret); 1099 unlock_page(locked_page); 1100 } 1101 } 1102 } 1103 1104 static void submit_one_async_extent(struct async_chunk *async_chunk, 1105 struct async_extent *async_extent, 1106 u64 *alloc_hint) 1107 { 1108 struct btrfs_inode *inode = async_chunk->inode; 1109 struct extent_io_tree *io_tree = &inode->io_tree; 1110 struct btrfs_root *root = inode->root; 1111 struct btrfs_fs_info *fs_info = root->fs_info; 1112 struct btrfs_ordered_extent *ordered; 1113 struct btrfs_key ins; 1114 struct page *locked_page = NULL; 1115 struct extent_map *em; 1116 int ret = 0; 1117 u64 start = async_extent->start; 1118 u64 end = async_extent->start + async_extent->ram_size - 1; 1119 1120 if (async_chunk->blkcg_css) 1121 kthread_associate_blkcg(async_chunk->blkcg_css); 1122 1123 /* 1124 * If async_chunk->locked_page is in the async_extent range, we need to 1125 * handle it. 1126 */ 1127 if (async_chunk->locked_page) { 1128 u64 locked_page_start = page_offset(async_chunk->locked_page); 1129 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 1130 1131 if (!(start >= locked_page_end || end <= locked_page_start)) 1132 locked_page = async_chunk->locked_page; 1133 } 1134 lock_extent(io_tree, start, end, NULL); 1135 1136 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1137 submit_uncompressed_range(inode, async_extent, locked_page); 1138 goto done; 1139 } 1140 1141 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1142 async_extent->compressed_size, 1143 async_extent->compressed_size, 1144 0, *alloc_hint, &ins, 1, 1); 1145 if (ret) { 1146 /* 1147 * Here we used to try again by going back to non-compressed 1148 * path for ENOSPC. But we can't reserve space even for 1149 * compressed size, how could it work for uncompressed size 1150 * which requires larger size? So here we directly go error 1151 * path. 1152 */ 1153 goto out_free; 1154 } 1155 1156 /* Here we're doing allocation and writeback of the compressed pages */ 1157 em = create_io_em(inode, start, 1158 async_extent->ram_size, /* len */ 1159 start, /* orig_start */ 1160 ins.objectid, /* block_start */ 1161 ins.offset, /* block_len */ 1162 ins.offset, /* orig_block_len */ 1163 async_extent->ram_size, /* ram_bytes */ 1164 async_extent->compress_type, 1165 BTRFS_ORDERED_COMPRESSED); 1166 if (IS_ERR(em)) { 1167 ret = PTR_ERR(em); 1168 goto out_free_reserve; 1169 } 1170 free_extent_map(em); 1171 1172 ordered = btrfs_alloc_ordered_extent(inode, start, /* file_offset */ 1173 async_extent->ram_size, /* num_bytes */ 1174 async_extent->ram_size, /* ram_bytes */ 1175 ins.objectid, /* disk_bytenr */ 1176 ins.offset, /* disk_num_bytes */ 1177 0, /* offset */ 1178 1 << BTRFS_ORDERED_COMPRESSED, 1179 async_extent->compress_type); 1180 if (IS_ERR(ordered)) { 1181 btrfs_drop_extent_map_range(inode, start, end, false); 1182 ret = PTR_ERR(ordered); 1183 goto out_free_reserve; 1184 } 1185 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1186 1187 /* Clear dirty, set writeback and unlock the pages. */ 1188 extent_clear_unlock_delalloc(inode, start, end, 1189 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 1190 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1191 btrfs_submit_compressed_write(ordered, 1192 async_extent->pages, /* compressed_pages */ 1193 async_extent->nr_pages, 1194 async_chunk->write_flags, true); 1195 *alloc_hint = ins.objectid + ins.offset; 1196 done: 1197 if (async_chunk->blkcg_css) 1198 kthread_associate_blkcg(NULL); 1199 kfree(async_extent); 1200 return; 1201 1202 out_free_reserve: 1203 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1204 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1205 out_free: 1206 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1207 extent_clear_unlock_delalloc(inode, start, end, 1208 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1209 EXTENT_DELALLOC_NEW | 1210 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1211 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1212 PAGE_END_WRITEBACK); 1213 free_async_extent_pages(async_extent); 1214 if (async_chunk->blkcg_css) 1215 kthread_associate_blkcg(NULL); 1216 btrfs_debug(fs_info, 1217 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1218 root->root_key.objectid, btrfs_ino(inode), start, 1219 async_extent->ram_size, ret); 1220 kfree(async_extent); 1221 } 1222 1223 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1224 u64 num_bytes) 1225 { 1226 struct extent_map_tree *em_tree = &inode->extent_tree; 1227 struct extent_map *em; 1228 u64 alloc_hint = 0; 1229 1230 read_lock(&em_tree->lock); 1231 em = search_extent_mapping(em_tree, start, num_bytes); 1232 if (em) { 1233 /* 1234 * if block start isn't an actual block number then find the 1235 * first block in this inode and use that as a hint. If that 1236 * block is also bogus then just don't worry about it. 1237 */ 1238 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1239 free_extent_map(em); 1240 em = search_extent_mapping(em_tree, 0, 0); 1241 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1242 alloc_hint = em->block_start; 1243 if (em) 1244 free_extent_map(em); 1245 } else { 1246 alloc_hint = em->block_start; 1247 free_extent_map(em); 1248 } 1249 } 1250 read_unlock(&em_tree->lock); 1251 1252 return alloc_hint; 1253 } 1254 1255 /* 1256 * when extent_io.c finds a delayed allocation range in the file, 1257 * the call backs end up in this code. The basic idea is to 1258 * allocate extents on disk for the range, and create ordered data structs 1259 * in ram to track those extents. 1260 * 1261 * locked_page is the page that writepage had locked already. We use 1262 * it to make sure we don't do extra locks or unlocks. 1263 * 1264 * When this function fails, it unlocks all pages except @locked_page. 1265 * 1266 * When this function successfully creates an inline extent, it returns 1 and 1267 * unlocks all pages including locked_page and starts I/O on them. 1268 * (In reality inline extents are limited to a single page, so locked_page is 1269 * the only page handled anyway). 1270 * 1271 * When this function succeed and creates a normal extent, the page locking 1272 * status depends on the passed in flags: 1273 * 1274 * - If @keep_locked is set, all pages are kept locked. 1275 * - Else all pages except for @locked_page are unlocked. 1276 * 1277 * When a failure happens in the second or later iteration of the 1278 * while-loop, the ordered extents created in previous iterations are kept 1279 * intact. So, the caller must clean them up by calling 1280 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for 1281 * example. 1282 */ 1283 static noinline int cow_file_range(struct btrfs_inode *inode, 1284 struct page *locked_page, u64 start, u64 end, 1285 u64 *done_offset, 1286 bool keep_locked, bool no_inline) 1287 { 1288 struct btrfs_root *root = inode->root; 1289 struct btrfs_fs_info *fs_info = root->fs_info; 1290 u64 alloc_hint = 0; 1291 u64 orig_start = start; 1292 u64 num_bytes; 1293 unsigned long ram_size; 1294 u64 cur_alloc_size = 0; 1295 u64 min_alloc_size; 1296 u64 blocksize = fs_info->sectorsize; 1297 struct btrfs_key ins; 1298 struct extent_map *em; 1299 unsigned clear_bits; 1300 unsigned long page_ops; 1301 bool extent_reserved = false; 1302 int ret = 0; 1303 1304 if (btrfs_is_free_space_inode(inode)) { 1305 ret = -EINVAL; 1306 goto out_unlock; 1307 } 1308 1309 num_bytes = ALIGN(end - start + 1, blocksize); 1310 num_bytes = max(blocksize, num_bytes); 1311 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1312 1313 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1314 1315 /* 1316 * Due to the page size limit, for subpage we can only trigger the 1317 * writeback for the dirty sectors of page, that means data writeback 1318 * is doing more writeback than what we want. 1319 * 1320 * This is especially unexpected for some call sites like fallocate, 1321 * where we only increase i_size after everything is done. 1322 * This means we can trigger inline extent even if we didn't want to. 1323 * So here we skip inline extent creation completely. 1324 */ 1325 if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) { 1326 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1327 end + 1); 1328 1329 /* lets try to make an inline extent */ 1330 ret = cow_file_range_inline(inode, actual_end, 0, 1331 BTRFS_COMPRESS_NONE, NULL, false); 1332 if (ret == 0) { 1333 /* 1334 * We use DO_ACCOUNTING here because we need the 1335 * delalloc_release_metadata to be run _after_ we drop 1336 * our outstanding extent for clearing delalloc for this 1337 * range. 1338 */ 1339 extent_clear_unlock_delalloc(inode, start, end, 1340 locked_page, 1341 EXTENT_LOCKED | EXTENT_DELALLOC | 1342 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1343 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1344 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1345 /* 1346 * locked_page is locked by the caller of 1347 * writepage_delalloc(), not locked by 1348 * __process_pages_contig(). 1349 * 1350 * We can't let __process_pages_contig() to unlock it, 1351 * as it doesn't have any subpage::writers recorded. 1352 * 1353 * Here we manually unlock the page, since the caller 1354 * can't determine if it's an inline extent or a 1355 * compressed extent. 1356 */ 1357 unlock_page(locked_page); 1358 ret = 1; 1359 goto done; 1360 } else if (ret < 0) { 1361 goto out_unlock; 1362 } 1363 } 1364 1365 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1366 1367 /* 1368 * Relocation relies on the relocated extents to have exactly the same 1369 * size as the original extents. Normally writeback for relocation data 1370 * extents follows a NOCOW path because relocation preallocates the 1371 * extents. However, due to an operation such as scrub turning a block 1372 * group to RO mode, it may fallback to COW mode, so we must make sure 1373 * an extent allocated during COW has exactly the requested size and can 1374 * not be split into smaller extents, otherwise relocation breaks and 1375 * fails during the stage where it updates the bytenr of file extent 1376 * items. 1377 */ 1378 if (btrfs_is_data_reloc_root(root)) 1379 min_alloc_size = num_bytes; 1380 else 1381 min_alloc_size = fs_info->sectorsize; 1382 1383 while (num_bytes > 0) { 1384 struct btrfs_ordered_extent *ordered; 1385 1386 cur_alloc_size = num_bytes; 1387 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1388 min_alloc_size, 0, alloc_hint, 1389 &ins, 1, 1); 1390 if (ret == -EAGAIN) { 1391 /* 1392 * btrfs_reserve_extent only returns -EAGAIN for zoned 1393 * file systems, which is an indication that there are 1394 * no active zones to allocate from at the moment. 1395 * 1396 * If this is the first loop iteration, wait for at 1397 * least one zone to finish before retrying the 1398 * allocation. Otherwise ask the caller to write out 1399 * the already allocated blocks before coming back to 1400 * us, or return -ENOSPC if it can't handle retries. 1401 */ 1402 ASSERT(btrfs_is_zoned(fs_info)); 1403 if (start == orig_start) { 1404 wait_on_bit_io(&inode->root->fs_info->flags, 1405 BTRFS_FS_NEED_ZONE_FINISH, 1406 TASK_UNINTERRUPTIBLE); 1407 continue; 1408 } 1409 if (done_offset) { 1410 *done_offset = start - 1; 1411 return 0; 1412 } 1413 ret = -ENOSPC; 1414 } 1415 if (ret < 0) 1416 goto out_unlock; 1417 cur_alloc_size = ins.offset; 1418 extent_reserved = true; 1419 1420 ram_size = ins.offset; 1421 em = create_io_em(inode, start, ins.offset, /* len */ 1422 start, /* orig_start */ 1423 ins.objectid, /* block_start */ 1424 ins.offset, /* block_len */ 1425 ins.offset, /* orig_block_len */ 1426 ram_size, /* ram_bytes */ 1427 BTRFS_COMPRESS_NONE, /* compress_type */ 1428 BTRFS_ORDERED_REGULAR /* type */); 1429 if (IS_ERR(em)) { 1430 ret = PTR_ERR(em); 1431 goto out_reserve; 1432 } 1433 free_extent_map(em); 1434 1435 ordered = btrfs_alloc_ordered_extent(inode, start, ram_size, 1436 ram_size, ins.objectid, cur_alloc_size, 1437 0, 1 << BTRFS_ORDERED_REGULAR, 1438 BTRFS_COMPRESS_NONE); 1439 if (IS_ERR(ordered)) { 1440 ret = PTR_ERR(ordered); 1441 goto out_drop_extent_cache; 1442 } 1443 1444 if (btrfs_is_data_reloc_root(root)) { 1445 ret = btrfs_reloc_clone_csums(ordered); 1446 1447 /* 1448 * Only drop cache here, and process as normal. 1449 * 1450 * We must not allow extent_clear_unlock_delalloc() 1451 * at out_unlock label to free meta of this ordered 1452 * extent, as its meta should be freed by 1453 * btrfs_finish_ordered_io(). 1454 * 1455 * So we must continue until @start is increased to 1456 * skip current ordered extent. 1457 */ 1458 if (ret) 1459 btrfs_drop_extent_map_range(inode, start, 1460 start + ram_size - 1, 1461 false); 1462 } 1463 btrfs_put_ordered_extent(ordered); 1464 1465 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1466 1467 /* 1468 * We're not doing compressed IO, don't unlock the first page 1469 * (which the caller expects to stay locked), don't clear any 1470 * dirty bits and don't set any writeback bits 1471 * 1472 * Do set the Ordered (Private2) bit so we know this page was 1473 * properly setup for writepage. 1474 */ 1475 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1476 page_ops |= PAGE_SET_ORDERED; 1477 1478 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1479 locked_page, 1480 EXTENT_LOCKED | EXTENT_DELALLOC, 1481 page_ops); 1482 if (num_bytes < cur_alloc_size) 1483 num_bytes = 0; 1484 else 1485 num_bytes -= cur_alloc_size; 1486 alloc_hint = ins.objectid + ins.offset; 1487 start += cur_alloc_size; 1488 extent_reserved = false; 1489 1490 /* 1491 * btrfs_reloc_clone_csums() error, since start is increased 1492 * extent_clear_unlock_delalloc() at out_unlock label won't 1493 * free metadata of current ordered extent, we're OK to exit. 1494 */ 1495 if (ret) 1496 goto out_unlock; 1497 } 1498 done: 1499 if (done_offset) 1500 *done_offset = end; 1501 return ret; 1502 1503 out_drop_extent_cache: 1504 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false); 1505 out_reserve: 1506 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1507 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1508 out_unlock: 1509 /* 1510 * Now, we have three regions to clean up: 1511 * 1512 * |-------(1)----|---(2)---|-------------(3)----------| 1513 * `- orig_start `- start `- start + cur_alloc_size `- end 1514 * 1515 * We process each region below. 1516 */ 1517 1518 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1519 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1520 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1521 1522 /* 1523 * For the range (1). We have already instantiated the ordered extents 1524 * for this region. They are cleaned up by 1525 * btrfs_cleanup_ordered_extents() in e.g, 1526 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are 1527 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW | 1528 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup 1529 * function. 1530 * 1531 * However, in case of @keep_locked, we still need to unlock the pages 1532 * (except @locked_page) to ensure all the pages are unlocked. 1533 */ 1534 if (keep_locked && orig_start < start) { 1535 if (!locked_page) 1536 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1537 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1538 locked_page, 0, page_ops); 1539 } 1540 1541 /* 1542 * For the range (2). If we reserved an extent for our delalloc range 1543 * (or a subrange) and failed to create the respective ordered extent, 1544 * then it means that when we reserved the extent we decremented the 1545 * extent's size from the data space_info's bytes_may_use counter and 1546 * incremented the space_info's bytes_reserved counter by the same 1547 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1548 * to decrement again the data space_info's bytes_may_use counter, 1549 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1550 */ 1551 if (extent_reserved) { 1552 extent_clear_unlock_delalloc(inode, start, 1553 start + cur_alloc_size - 1, 1554 locked_page, 1555 clear_bits, 1556 page_ops); 1557 start += cur_alloc_size; 1558 } 1559 1560 /* 1561 * For the range (3). We never touched the region. In addition to the 1562 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1563 * space_info's bytes_may_use counter, reserved in 1564 * btrfs_check_data_free_space(). 1565 */ 1566 if (start < end) { 1567 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1568 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1569 clear_bits, page_ops); 1570 } 1571 return ret; 1572 } 1573 1574 /* 1575 * Phase two of compressed writeback. This is the ordered portion of the code, 1576 * which only gets called in the order the work was queued. We walk all the 1577 * async extents created by compress_file_range and send them down to the disk. 1578 * 1579 * If called with @do_free == true then it'll try to finish the work and free 1580 * the work struct eventually. 1581 */ 1582 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1583 { 1584 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1585 work); 1586 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1587 struct async_extent *async_extent; 1588 unsigned long nr_pages; 1589 u64 alloc_hint = 0; 1590 1591 if (do_free) { 1592 struct async_chunk *async_chunk; 1593 struct async_cow *async_cow; 1594 1595 async_chunk = container_of(work, struct async_chunk, work); 1596 btrfs_add_delayed_iput(async_chunk->inode); 1597 if (async_chunk->blkcg_css) 1598 css_put(async_chunk->blkcg_css); 1599 1600 async_cow = async_chunk->async_cow; 1601 if (atomic_dec_and_test(&async_cow->num_chunks)) 1602 kvfree(async_cow); 1603 return; 1604 } 1605 1606 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1607 PAGE_SHIFT; 1608 1609 while (!list_empty(&async_chunk->extents)) { 1610 async_extent = list_entry(async_chunk->extents.next, 1611 struct async_extent, list); 1612 list_del(&async_extent->list); 1613 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1614 } 1615 1616 /* atomic_sub_return implies a barrier */ 1617 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1618 5 * SZ_1M) 1619 cond_wake_up_nomb(&fs_info->async_submit_wait); 1620 } 1621 1622 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1623 struct page *locked_page, u64 start, 1624 u64 end, struct writeback_control *wbc) 1625 { 1626 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1627 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1628 struct async_cow *ctx; 1629 struct async_chunk *async_chunk; 1630 unsigned long nr_pages; 1631 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1632 int i; 1633 unsigned nofs_flag; 1634 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1635 1636 nofs_flag = memalloc_nofs_save(); 1637 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1638 memalloc_nofs_restore(nofs_flag); 1639 if (!ctx) 1640 return false; 1641 1642 unlock_extent(&inode->io_tree, start, end, NULL); 1643 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1644 1645 async_chunk = ctx->chunks; 1646 atomic_set(&ctx->num_chunks, num_chunks); 1647 1648 for (i = 0; i < num_chunks; i++) { 1649 u64 cur_end = min(end, start + SZ_512K - 1); 1650 1651 /* 1652 * igrab is called higher up in the call chain, take only the 1653 * lightweight reference for the callback lifetime 1654 */ 1655 ihold(&inode->vfs_inode); 1656 async_chunk[i].async_cow = ctx; 1657 async_chunk[i].inode = inode; 1658 async_chunk[i].start = start; 1659 async_chunk[i].end = cur_end; 1660 async_chunk[i].write_flags = write_flags; 1661 INIT_LIST_HEAD(&async_chunk[i].extents); 1662 1663 /* 1664 * The locked_page comes all the way from writepage and its 1665 * the original page we were actually given. As we spread 1666 * this large delalloc region across multiple async_chunk 1667 * structs, only the first struct needs a pointer to locked_page 1668 * 1669 * This way we don't need racey decisions about who is supposed 1670 * to unlock it. 1671 */ 1672 if (locked_page) { 1673 /* 1674 * Depending on the compressibility, the pages might or 1675 * might not go through async. We want all of them to 1676 * be accounted against wbc once. Let's do it here 1677 * before the paths diverge. wbc accounting is used 1678 * only for foreign writeback detection and doesn't 1679 * need full accuracy. Just account the whole thing 1680 * against the first page. 1681 */ 1682 wbc_account_cgroup_owner(wbc, locked_page, 1683 cur_end - start); 1684 async_chunk[i].locked_page = locked_page; 1685 locked_page = NULL; 1686 } else { 1687 async_chunk[i].locked_page = NULL; 1688 } 1689 1690 if (blkcg_css != blkcg_root_css) { 1691 css_get(blkcg_css); 1692 async_chunk[i].blkcg_css = blkcg_css; 1693 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1694 } else { 1695 async_chunk[i].blkcg_css = NULL; 1696 } 1697 1698 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1699 submit_compressed_extents); 1700 1701 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1702 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1703 1704 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1705 1706 start = cur_end + 1; 1707 } 1708 return true; 1709 } 1710 1711 /* 1712 * Run the delalloc range from start to end, and write back any dirty pages 1713 * covered by the range. 1714 */ 1715 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1716 struct page *locked_page, u64 start, 1717 u64 end, struct writeback_control *wbc, 1718 bool pages_dirty) 1719 { 1720 u64 done_offset = end; 1721 int ret; 1722 1723 while (start <= end) { 1724 ret = cow_file_range(inode, locked_page, start, end, &done_offset, 1725 true, false); 1726 if (ret) 1727 return ret; 1728 extent_write_locked_range(&inode->vfs_inode, locked_page, start, 1729 done_offset, wbc, pages_dirty); 1730 start = done_offset + 1; 1731 } 1732 1733 return 1; 1734 } 1735 1736 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1737 u64 bytenr, u64 num_bytes, bool nowait) 1738 { 1739 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1740 struct btrfs_ordered_sum *sums; 1741 int ret; 1742 LIST_HEAD(list); 1743 1744 ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1, 1745 &list, 0, nowait); 1746 if (ret == 0 && list_empty(&list)) 1747 return 0; 1748 1749 while (!list_empty(&list)) { 1750 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1751 list_del(&sums->list); 1752 kfree(sums); 1753 } 1754 if (ret < 0) 1755 return ret; 1756 return 1; 1757 } 1758 1759 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1760 const u64 start, const u64 end) 1761 { 1762 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1763 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1764 const u64 range_bytes = end + 1 - start; 1765 struct extent_io_tree *io_tree = &inode->io_tree; 1766 u64 range_start = start; 1767 u64 count; 1768 int ret; 1769 1770 /* 1771 * If EXTENT_NORESERVE is set it means that when the buffered write was 1772 * made we had not enough available data space and therefore we did not 1773 * reserve data space for it, since we though we could do NOCOW for the 1774 * respective file range (either there is prealloc extent or the inode 1775 * has the NOCOW bit set). 1776 * 1777 * However when we need to fallback to COW mode (because for example the 1778 * block group for the corresponding extent was turned to RO mode by a 1779 * scrub or relocation) we need to do the following: 1780 * 1781 * 1) We increment the bytes_may_use counter of the data space info. 1782 * If COW succeeds, it allocates a new data extent and after doing 1783 * that it decrements the space info's bytes_may_use counter and 1784 * increments its bytes_reserved counter by the same amount (we do 1785 * this at btrfs_add_reserved_bytes()). So we need to increment the 1786 * bytes_may_use counter to compensate (when space is reserved at 1787 * buffered write time, the bytes_may_use counter is incremented); 1788 * 1789 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1790 * that if the COW path fails for any reason, it decrements (through 1791 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1792 * data space info, which we incremented in the step above. 1793 * 1794 * If we need to fallback to cow and the inode corresponds to a free 1795 * space cache inode or an inode of the data relocation tree, we must 1796 * also increment bytes_may_use of the data space_info for the same 1797 * reason. Space caches and relocated data extents always get a prealloc 1798 * extent for them, however scrub or balance may have set the block 1799 * group that contains that extent to RO mode and therefore force COW 1800 * when starting writeback. 1801 */ 1802 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1803 EXTENT_NORESERVE, 0, NULL); 1804 if (count > 0 || is_space_ino || is_reloc_ino) { 1805 u64 bytes = count; 1806 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1807 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1808 1809 if (is_space_ino || is_reloc_ino) 1810 bytes = range_bytes; 1811 1812 spin_lock(&sinfo->lock); 1813 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1814 spin_unlock(&sinfo->lock); 1815 1816 if (count > 0) 1817 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1818 NULL); 1819 } 1820 1821 /* 1822 * Don't try to create inline extents, as a mix of inline extent that 1823 * is written out and unlocked directly and a normal NOCOW extent 1824 * doesn't work. 1825 */ 1826 ret = cow_file_range(inode, locked_page, start, end, NULL, false, true); 1827 ASSERT(ret != 1); 1828 return ret; 1829 } 1830 1831 struct can_nocow_file_extent_args { 1832 /* Input fields. */ 1833 1834 /* Start file offset of the range we want to NOCOW. */ 1835 u64 start; 1836 /* End file offset (inclusive) of the range we want to NOCOW. */ 1837 u64 end; 1838 bool writeback_path; 1839 bool strict; 1840 /* 1841 * Free the path passed to can_nocow_file_extent() once it's not needed 1842 * anymore. 1843 */ 1844 bool free_path; 1845 1846 /* Output fields. Only set when can_nocow_file_extent() returns 1. */ 1847 1848 u64 disk_bytenr; 1849 u64 disk_num_bytes; 1850 u64 extent_offset; 1851 /* Number of bytes that can be written to in NOCOW mode. */ 1852 u64 num_bytes; 1853 }; 1854 1855 /* 1856 * Check if we can NOCOW the file extent that the path points to. 1857 * This function may return with the path released, so the caller should check 1858 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1859 * 1860 * Returns: < 0 on error 1861 * 0 if we can not NOCOW 1862 * 1 if we can NOCOW 1863 */ 1864 static int can_nocow_file_extent(struct btrfs_path *path, 1865 struct btrfs_key *key, 1866 struct btrfs_inode *inode, 1867 struct can_nocow_file_extent_args *args) 1868 { 1869 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1870 struct extent_buffer *leaf = path->nodes[0]; 1871 struct btrfs_root *root = inode->root; 1872 struct btrfs_file_extent_item *fi; 1873 u64 extent_end; 1874 u8 extent_type; 1875 int can_nocow = 0; 1876 int ret = 0; 1877 bool nowait = path->nowait; 1878 1879 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1880 extent_type = btrfs_file_extent_type(leaf, fi); 1881 1882 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1883 goto out; 1884 1885 /* Can't access these fields unless we know it's not an inline extent. */ 1886 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1887 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1888 args->extent_offset = btrfs_file_extent_offset(leaf, fi); 1889 1890 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1891 extent_type == BTRFS_FILE_EXTENT_REG) 1892 goto out; 1893 1894 /* 1895 * If the extent was created before the generation where the last snapshot 1896 * for its subvolume was created, then this implies the extent is shared, 1897 * hence we must COW. 1898 */ 1899 if (!args->strict && 1900 btrfs_file_extent_generation(leaf, fi) <= 1901 btrfs_root_last_snapshot(&root->root_item)) 1902 goto out; 1903 1904 /* An explicit hole, must COW. */ 1905 if (args->disk_bytenr == 0) 1906 goto out; 1907 1908 /* Compressed/encrypted/encoded extents must be COWed. */ 1909 if (btrfs_file_extent_compression(leaf, fi) || 1910 btrfs_file_extent_encryption(leaf, fi) || 1911 btrfs_file_extent_other_encoding(leaf, fi)) 1912 goto out; 1913 1914 extent_end = btrfs_file_extent_end(path); 1915 1916 /* 1917 * The following checks can be expensive, as they need to take other 1918 * locks and do btree or rbtree searches, so release the path to avoid 1919 * blocking other tasks for too long. 1920 */ 1921 btrfs_release_path(path); 1922 1923 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode), 1924 key->offset - args->extent_offset, 1925 args->disk_bytenr, args->strict, path); 1926 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1927 if (ret != 0) 1928 goto out; 1929 1930 if (args->free_path) { 1931 /* 1932 * We don't need the path anymore, plus through the 1933 * csum_exist_in_range() call below we will end up allocating 1934 * another path. So free the path to avoid unnecessary extra 1935 * memory usage. 1936 */ 1937 btrfs_free_path(path); 1938 path = NULL; 1939 } 1940 1941 /* If there are pending snapshots for this root, we must COW. */ 1942 if (args->writeback_path && !is_freespace_inode && 1943 atomic_read(&root->snapshot_force_cow)) 1944 goto out; 1945 1946 args->disk_bytenr += args->extent_offset; 1947 args->disk_bytenr += args->start - key->offset; 1948 args->num_bytes = min(args->end + 1, extent_end) - args->start; 1949 1950 /* 1951 * Force COW if csums exist in the range. This ensures that csums for a 1952 * given extent are either valid or do not exist. 1953 */ 1954 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes, 1955 nowait); 1956 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1957 if (ret != 0) 1958 goto out; 1959 1960 can_nocow = 1; 1961 out: 1962 if (args->free_path && path) 1963 btrfs_free_path(path); 1964 1965 return ret < 0 ? ret : can_nocow; 1966 } 1967 1968 /* 1969 * when nowcow writeback call back. This checks for snapshots or COW copies 1970 * of the extents that exist in the file, and COWs the file as required. 1971 * 1972 * If no cow copies or snapshots exist, we write directly to the existing 1973 * blocks on disk 1974 */ 1975 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1976 struct page *locked_page, 1977 const u64 start, const u64 end) 1978 { 1979 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1980 struct btrfs_root *root = inode->root; 1981 struct btrfs_path *path; 1982 u64 cow_start = (u64)-1; 1983 u64 cur_offset = start; 1984 int ret; 1985 bool check_prev = true; 1986 u64 ino = btrfs_ino(inode); 1987 struct can_nocow_file_extent_args nocow_args = { 0 }; 1988 1989 /* 1990 * Normally on a zoned device we're only doing COW writes, but in case 1991 * of relocation on a zoned filesystem serializes I/O so that we're only 1992 * writing sequentially and can end up here as well. 1993 */ 1994 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 1995 1996 path = btrfs_alloc_path(); 1997 if (!path) { 1998 ret = -ENOMEM; 1999 goto error; 2000 } 2001 2002 nocow_args.end = end; 2003 nocow_args.writeback_path = true; 2004 2005 while (1) { 2006 struct btrfs_block_group *nocow_bg = NULL; 2007 struct btrfs_ordered_extent *ordered; 2008 struct btrfs_key found_key; 2009 struct btrfs_file_extent_item *fi; 2010 struct extent_buffer *leaf; 2011 u64 extent_end; 2012 u64 ram_bytes; 2013 u64 nocow_end; 2014 int extent_type; 2015 bool is_prealloc; 2016 2017 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2018 cur_offset, 0); 2019 if (ret < 0) 2020 goto error; 2021 2022 /* 2023 * If there is no extent for our range when doing the initial 2024 * search, then go back to the previous slot as it will be the 2025 * one containing the search offset 2026 */ 2027 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2028 leaf = path->nodes[0]; 2029 btrfs_item_key_to_cpu(leaf, &found_key, 2030 path->slots[0] - 1); 2031 if (found_key.objectid == ino && 2032 found_key.type == BTRFS_EXTENT_DATA_KEY) 2033 path->slots[0]--; 2034 } 2035 check_prev = false; 2036 next_slot: 2037 /* Go to next leaf if we have exhausted the current one */ 2038 leaf = path->nodes[0]; 2039 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2040 ret = btrfs_next_leaf(root, path); 2041 if (ret < 0) 2042 goto error; 2043 if (ret > 0) 2044 break; 2045 leaf = path->nodes[0]; 2046 } 2047 2048 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2049 2050 /* Didn't find anything for our INO */ 2051 if (found_key.objectid > ino) 2052 break; 2053 /* 2054 * Keep searching until we find an EXTENT_ITEM or there are no 2055 * more extents for this inode 2056 */ 2057 if (WARN_ON_ONCE(found_key.objectid < ino) || 2058 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2059 path->slots[0]++; 2060 goto next_slot; 2061 } 2062 2063 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2064 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2065 found_key.offset > end) 2066 break; 2067 2068 /* 2069 * If the found extent starts after requested offset, then 2070 * adjust extent_end to be right before this extent begins 2071 */ 2072 if (found_key.offset > cur_offset) { 2073 extent_end = found_key.offset; 2074 extent_type = 0; 2075 goto must_cow; 2076 } 2077 2078 /* 2079 * Found extent which begins before our range and potentially 2080 * intersect it 2081 */ 2082 fi = btrfs_item_ptr(leaf, path->slots[0], 2083 struct btrfs_file_extent_item); 2084 extent_type = btrfs_file_extent_type(leaf, fi); 2085 /* If this is triggered then we have a memory corruption. */ 2086 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2087 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2088 ret = -EUCLEAN; 2089 goto error; 2090 } 2091 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 2092 extent_end = btrfs_file_extent_end(path); 2093 2094 /* 2095 * If the extent we got ends before our current offset, skip to 2096 * the next extent. 2097 */ 2098 if (extent_end <= cur_offset) { 2099 path->slots[0]++; 2100 goto next_slot; 2101 } 2102 2103 nocow_args.start = cur_offset; 2104 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2105 if (ret < 0) 2106 goto error; 2107 if (ret == 0) 2108 goto must_cow; 2109 2110 ret = 0; 2111 nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr); 2112 if (!nocow_bg) { 2113 must_cow: 2114 /* 2115 * If we can't perform NOCOW writeback for the range, 2116 * then record the beginning of the range that needs to 2117 * be COWed. It will be written out before the next 2118 * NOCOW range if we find one, or when exiting this 2119 * loop. 2120 */ 2121 if (cow_start == (u64)-1) 2122 cow_start = cur_offset; 2123 cur_offset = extent_end; 2124 if (cur_offset > end) 2125 break; 2126 if (!path->nodes[0]) 2127 continue; 2128 path->slots[0]++; 2129 goto next_slot; 2130 } 2131 2132 /* 2133 * COW range from cow_start to found_key.offset - 1. As the key 2134 * will contain the beginning of the first extent that can be 2135 * NOCOW, following one which needs to be COW'ed 2136 */ 2137 if (cow_start != (u64)-1) { 2138 ret = fallback_to_cow(inode, locked_page, 2139 cow_start, found_key.offset - 1); 2140 cow_start = (u64)-1; 2141 if (ret) { 2142 btrfs_dec_nocow_writers(nocow_bg); 2143 goto error; 2144 } 2145 } 2146 2147 nocow_end = cur_offset + nocow_args.num_bytes - 1; 2148 is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC; 2149 if (is_prealloc) { 2150 u64 orig_start = found_key.offset - nocow_args.extent_offset; 2151 struct extent_map *em; 2152 2153 em = create_io_em(inode, cur_offset, nocow_args.num_bytes, 2154 orig_start, 2155 nocow_args.disk_bytenr, /* block_start */ 2156 nocow_args.num_bytes, /* block_len */ 2157 nocow_args.disk_num_bytes, /* orig_block_len */ 2158 ram_bytes, BTRFS_COMPRESS_NONE, 2159 BTRFS_ORDERED_PREALLOC); 2160 if (IS_ERR(em)) { 2161 btrfs_dec_nocow_writers(nocow_bg); 2162 ret = PTR_ERR(em); 2163 goto error; 2164 } 2165 free_extent_map(em); 2166 } 2167 2168 ordered = btrfs_alloc_ordered_extent(inode, cur_offset, 2169 nocow_args.num_bytes, nocow_args.num_bytes, 2170 nocow_args.disk_bytenr, nocow_args.num_bytes, 0, 2171 is_prealloc 2172 ? (1 << BTRFS_ORDERED_PREALLOC) 2173 : (1 << BTRFS_ORDERED_NOCOW), 2174 BTRFS_COMPRESS_NONE); 2175 btrfs_dec_nocow_writers(nocow_bg); 2176 if (IS_ERR(ordered)) { 2177 if (is_prealloc) { 2178 btrfs_drop_extent_map_range(inode, cur_offset, 2179 nocow_end, false); 2180 } 2181 ret = PTR_ERR(ordered); 2182 goto error; 2183 } 2184 2185 if (btrfs_is_data_reloc_root(root)) 2186 /* 2187 * Error handled later, as we must prevent 2188 * extent_clear_unlock_delalloc() in error handler 2189 * from freeing metadata of created ordered extent. 2190 */ 2191 ret = btrfs_reloc_clone_csums(ordered); 2192 btrfs_put_ordered_extent(ordered); 2193 2194 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end, 2195 locked_page, EXTENT_LOCKED | 2196 EXTENT_DELALLOC | 2197 EXTENT_CLEAR_DATA_RESV, 2198 PAGE_UNLOCK | PAGE_SET_ORDERED); 2199 2200 cur_offset = extent_end; 2201 2202 /* 2203 * btrfs_reloc_clone_csums() error, now we're OK to call error 2204 * handler, as metadata for created ordered extent will only 2205 * be freed by btrfs_finish_ordered_io(). 2206 */ 2207 if (ret) 2208 goto error; 2209 if (cur_offset > end) 2210 break; 2211 } 2212 btrfs_release_path(path); 2213 2214 if (cur_offset <= end && cow_start == (u64)-1) 2215 cow_start = cur_offset; 2216 2217 if (cow_start != (u64)-1) { 2218 cur_offset = end; 2219 ret = fallback_to_cow(inode, locked_page, cow_start, end); 2220 cow_start = (u64)-1; 2221 if (ret) 2222 goto error; 2223 } 2224 2225 btrfs_free_path(path); 2226 return 0; 2227 2228 error: 2229 /* 2230 * If an error happened while a COW region is outstanding, cur_offset 2231 * needs to be reset to cow_start to ensure the COW region is unlocked 2232 * as well. 2233 */ 2234 if (cow_start != (u64)-1) 2235 cur_offset = cow_start; 2236 if (cur_offset < end) 2237 extent_clear_unlock_delalloc(inode, cur_offset, end, 2238 locked_page, EXTENT_LOCKED | 2239 EXTENT_DELALLOC | EXTENT_DEFRAG | 2240 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2241 PAGE_START_WRITEBACK | 2242 PAGE_END_WRITEBACK); 2243 btrfs_free_path(path); 2244 return ret; 2245 } 2246 2247 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2248 { 2249 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2250 if (inode->defrag_bytes && 2251 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2252 return false; 2253 return true; 2254 } 2255 return false; 2256 } 2257 2258 /* 2259 * Function to process delayed allocation (create CoW) for ranges which are 2260 * being touched for the first time. 2261 */ 2262 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 2263 u64 start, u64 end, struct writeback_control *wbc) 2264 { 2265 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2266 int ret; 2267 2268 /* 2269 * The range must cover part of the @locked_page, or a return of 1 2270 * can confuse the caller. 2271 */ 2272 ASSERT(!(end <= page_offset(locked_page) || 2273 start >= page_offset(locked_page) + PAGE_SIZE)); 2274 2275 if (should_nocow(inode, start, end)) { 2276 ret = run_delalloc_nocow(inode, locked_page, start, end); 2277 goto out; 2278 } 2279 2280 if (btrfs_inode_can_compress(inode) && 2281 inode_need_compress(inode, start, end) && 2282 run_delalloc_compressed(inode, locked_page, start, end, wbc)) 2283 return 1; 2284 2285 if (zoned) 2286 ret = run_delalloc_cow(inode, locked_page, start, end, wbc, 2287 true); 2288 else 2289 ret = cow_file_range(inode, locked_page, start, end, NULL, 2290 false, false); 2291 2292 out: 2293 if (ret < 0) 2294 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2295 end - start + 1); 2296 return ret; 2297 } 2298 2299 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2300 struct extent_state *orig, u64 split) 2301 { 2302 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2303 u64 size; 2304 2305 /* not delalloc, ignore it */ 2306 if (!(orig->state & EXTENT_DELALLOC)) 2307 return; 2308 2309 size = orig->end - orig->start + 1; 2310 if (size > fs_info->max_extent_size) { 2311 u32 num_extents; 2312 u64 new_size; 2313 2314 /* 2315 * See the explanation in btrfs_merge_delalloc_extent, the same 2316 * applies here, just in reverse. 2317 */ 2318 new_size = orig->end - split + 1; 2319 num_extents = count_max_extents(fs_info, new_size); 2320 new_size = split - orig->start; 2321 num_extents += count_max_extents(fs_info, new_size); 2322 if (count_max_extents(fs_info, size) >= num_extents) 2323 return; 2324 } 2325 2326 spin_lock(&inode->lock); 2327 btrfs_mod_outstanding_extents(inode, 1); 2328 spin_unlock(&inode->lock); 2329 } 2330 2331 /* 2332 * Handle merged delayed allocation extents so we can keep track of new extents 2333 * that are just merged onto old extents, such as when we are doing sequential 2334 * writes, so we can properly account for the metadata space we'll need. 2335 */ 2336 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2337 struct extent_state *other) 2338 { 2339 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2340 u64 new_size, old_size; 2341 u32 num_extents; 2342 2343 /* not delalloc, ignore it */ 2344 if (!(other->state & EXTENT_DELALLOC)) 2345 return; 2346 2347 if (new->start > other->start) 2348 new_size = new->end - other->start + 1; 2349 else 2350 new_size = other->end - new->start + 1; 2351 2352 /* we're not bigger than the max, unreserve the space and go */ 2353 if (new_size <= fs_info->max_extent_size) { 2354 spin_lock(&inode->lock); 2355 btrfs_mod_outstanding_extents(inode, -1); 2356 spin_unlock(&inode->lock); 2357 return; 2358 } 2359 2360 /* 2361 * We have to add up either side to figure out how many extents were 2362 * accounted for before we merged into one big extent. If the number of 2363 * extents we accounted for is <= the amount we need for the new range 2364 * then we can return, otherwise drop. Think of it like this 2365 * 2366 * [ 4k][MAX_SIZE] 2367 * 2368 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2369 * need 2 outstanding extents, on one side we have 1 and the other side 2370 * we have 1 so they are == and we can return. But in this case 2371 * 2372 * [MAX_SIZE+4k][MAX_SIZE+4k] 2373 * 2374 * Each range on their own accounts for 2 extents, but merged together 2375 * they are only 3 extents worth of accounting, so we need to drop in 2376 * this case. 2377 */ 2378 old_size = other->end - other->start + 1; 2379 num_extents = count_max_extents(fs_info, old_size); 2380 old_size = new->end - new->start + 1; 2381 num_extents += count_max_extents(fs_info, old_size); 2382 if (count_max_extents(fs_info, new_size) >= num_extents) 2383 return; 2384 2385 spin_lock(&inode->lock); 2386 btrfs_mod_outstanding_extents(inode, -1); 2387 spin_unlock(&inode->lock); 2388 } 2389 2390 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2391 struct btrfs_inode *inode) 2392 { 2393 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2394 2395 spin_lock(&root->delalloc_lock); 2396 if (list_empty(&inode->delalloc_inodes)) { 2397 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2398 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags); 2399 root->nr_delalloc_inodes++; 2400 if (root->nr_delalloc_inodes == 1) { 2401 spin_lock(&fs_info->delalloc_root_lock); 2402 BUG_ON(!list_empty(&root->delalloc_root)); 2403 list_add_tail(&root->delalloc_root, 2404 &fs_info->delalloc_roots); 2405 spin_unlock(&fs_info->delalloc_root_lock); 2406 } 2407 } 2408 spin_unlock(&root->delalloc_lock); 2409 } 2410 2411 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2412 struct btrfs_inode *inode) 2413 { 2414 struct btrfs_fs_info *fs_info = root->fs_info; 2415 2416 if (!list_empty(&inode->delalloc_inodes)) { 2417 list_del_init(&inode->delalloc_inodes); 2418 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2419 &inode->runtime_flags); 2420 root->nr_delalloc_inodes--; 2421 if (!root->nr_delalloc_inodes) { 2422 ASSERT(list_empty(&root->delalloc_inodes)); 2423 spin_lock(&fs_info->delalloc_root_lock); 2424 BUG_ON(list_empty(&root->delalloc_root)); 2425 list_del_init(&root->delalloc_root); 2426 spin_unlock(&fs_info->delalloc_root_lock); 2427 } 2428 } 2429 } 2430 2431 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2432 struct btrfs_inode *inode) 2433 { 2434 spin_lock(&root->delalloc_lock); 2435 __btrfs_del_delalloc_inode(root, inode); 2436 spin_unlock(&root->delalloc_lock); 2437 } 2438 2439 /* 2440 * Properly track delayed allocation bytes in the inode and to maintain the 2441 * list of inodes that have pending delalloc work to be done. 2442 */ 2443 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2444 u32 bits) 2445 { 2446 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2447 2448 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2449 WARN_ON(1); 2450 /* 2451 * set_bit and clear bit hooks normally require _irqsave/restore 2452 * but in this case, we are only testing for the DELALLOC 2453 * bit, which is only set or cleared with irqs on 2454 */ 2455 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2456 struct btrfs_root *root = inode->root; 2457 u64 len = state->end + 1 - state->start; 2458 u32 num_extents = count_max_extents(fs_info, len); 2459 bool do_list = !btrfs_is_free_space_inode(inode); 2460 2461 spin_lock(&inode->lock); 2462 btrfs_mod_outstanding_extents(inode, num_extents); 2463 spin_unlock(&inode->lock); 2464 2465 /* For sanity tests */ 2466 if (btrfs_is_testing(fs_info)) 2467 return; 2468 2469 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2470 fs_info->delalloc_batch); 2471 spin_lock(&inode->lock); 2472 inode->delalloc_bytes += len; 2473 if (bits & EXTENT_DEFRAG) 2474 inode->defrag_bytes += len; 2475 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2476 &inode->runtime_flags)) 2477 btrfs_add_delalloc_inodes(root, inode); 2478 spin_unlock(&inode->lock); 2479 } 2480 2481 if (!(state->state & EXTENT_DELALLOC_NEW) && 2482 (bits & EXTENT_DELALLOC_NEW)) { 2483 spin_lock(&inode->lock); 2484 inode->new_delalloc_bytes += state->end + 1 - state->start; 2485 spin_unlock(&inode->lock); 2486 } 2487 } 2488 2489 /* 2490 * Once a range is no longer delalloc this function ensures that proper 2491 * accounting happens. 2492 */ 2493 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2494 struct extent_state *state, u32 bits) 2495 { 2496 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2497 u64 len = state->end + 1 - state->start; 2498 u32 num_extents = count_max_extents(fs_info, len); 2499 2500 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2501 spin_lock(&inode->lock); 2502 inode->defrag_bytes -= len; 2503 spin_unlock(&inode->lock); 2504 } 2505 2506 /* 2507 * set_bit and clear bit hooks normally require _irqsave/restore 2508 * but in this case, we are only testing for the DELALLOC 2509 * bit, which is only set or cleared with irqs on 2510 */ 2511 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2512 struct btrfs_root *root = inode->root; 2513 bool do_list = !btrfs_is_free_space_inode(inode); 2514 2515 spin_lock(&inode->lock); 2516 btrfs_mod_outstanding_extents(inode, -num_extents); 2517 spin_unlock(&inode->lock); 2518 2519 /* 2520 * We don't reserve metadata space for space cache inodes so we 2521 * don't need to call delalloc_release_metadata if there is an 2522 * error. 2523 */ 2524 if (bits & EXTENT_CLEAR_META_RESV && 2525 root != fs_info->tree_root) 2526 btrfs_delalloc_release_metadata(inode, len, false); 2527 2528 /* For sanity tests. */ 2529 if (btrfs_is_testing(fs_info)) 2530 return; 2531 2532 if (!btrfs_is_data_reloc_root(root) && 2533 do_list && !(state->state & EXTENT_NORESERVE) && 2534 (bits & EXTENT_CLEAR_DATA_RESV)) 2535 btrfs_free_reserved_data_space_noquota(fs_info, len); 2536 2537 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2538 fs_info->delalloc_batch); 2539 spin_lock(&inode->lock); 2540 inode->delalloc_bytes -= len; 2541 if (do_list && inode->delalloc_bytes == 0 && 2542 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2543 &inode->runtime_flags)) 2544 btrfs_del_delalloc_inode(root, inode); 2545 spin_unlock(&inode->lock); 2546 } 2547 2548 if ((state->state & EXTENT_DELALLOC_NEW) && 2549 (bits & EXTENT_DELALLOC_NEW)) { 2550 spin_lock(&inode->lock); 2551 ASSERT(inode->new_delalloc_bytes >= len); 2552 inode->new_delalloc_bytes -= len; 2553 if (bits & EXTENT_ADD_INODE_BYTES) 2554 inode_add_bytes(&inode->vfs_inode, len); 2555 spin_unlock(&inode->lock); 2556 } 2557 } 2558 2559 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio, 2560 struct btrfs_ordered_extent *ordered) 2561 { 2562 u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT; 2563 u64 len = bbio->bio.bi_iter.bi_size; 2564 struct btrfs_ordered_extent *new; 2565 int ret; 2566 2567 /* Must always be called for the beginning of an ordered extent. */ 2568 if (WARN_ON_ONCE(start != ordered->disk_bytenr)) 2569 return -EINVAL; 2570 2571 /* No need to split if the ordered extent covers the entire bio. */ 2572 if (ordered->disk_num_bytes == len) { 2573 refcount_inc(&ordered->refs); 2574 bbio->ordered = ordered; 2575 return 0; 2576 } 2577 2578 /* 2579 * Don't split the extent_map for NOCOW extents, as we're writing into 2580 * a pre-existing one. 2581 */ 2582 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 2583 ret = split_extent_map(bbio->inode, bbio->file_offset, 2584 ordered->num_bytes, len, 2585 ordered->disk_bytenr); 2586 if (ret) 2587 return ret; 2588 } 2589 2590 new = btrfs_split_ordered_extent(ordered, len); 2591 if (IS_ERR(new)) 2592 return PTR_ERR(new); 2593 bbio->ordered = new; 2594 return 0; 2595 } 2596 2597 /* 2598 * given a list of ordered sums record them in the inode. This happens 2599 * at IO completion time based on sums calculated at bio submission time. 2600 */ 2601 static int add_pending_csums(struct btrfs_trans_handle *trans, 2602 struct list_head *list) 2603 { 2604 struct btrfs_ordered_sum *sum; 2605 struct btrfs_root *csum_root = NULL; 2606 int ret; 2607 2608 list_for_each_entry(sum, list, list) { 2609 trans->adding_csums = true; 2610 if (!csum_root) 2611 csum_root = btrfs_csum_root(trans->fs_info, 2612 sum->logical); 2613 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2614 trans->adding_csums = false; 2615 if (ret) 2616 return ret; 2617 } 2618 return 0; 2619 } 2620 2621 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2622 const u64 start, 2623 const u64 len, 2624 struct extent_state **cached_state) 2625 { 2626 u64 search_start = start; 2627 const u64 end = start + len - 1; 2628 2629 while (search_start < end) { 2630 const u64 search_len = end - search_start + 1; 2631 struct extent_map *em; 2632 u64 em_len; 2633 int ret = 0; 2634 2635 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2636 if (IS_ERR(em)) 2637 return PTR_ERR(em); 2638 2639 if (em->block_start != EXTENT_MAP_HOLE) 2640 goto next; 2641 2642 em_len = em->len; 2643 if (em->start < search_start) 2644 em_len -= search_start - em->start; 2645 if (em_len > search_len) 2646 em_len = search_len; 2647 2648 ret = set_extent_bit(&inode->io_tree, search_start, 2649 search_start + em_len - 1, 2650 EXTENT_DELALLOC_NEW, cached_state); 2651 next: 2652 search_start = extent_map_end(em); 2653 free_extent_map(em); 2654 if (ret) 2655 return ret; 2656 } 2657 return 0; 2658 } 2659 2660 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2661 unsigned int extra_bits, 2662 struct extent_state **cached_state) 2663 { 2664 WARN_ON(PAGE_ALIGNED(end)); 2665 2666 if (start >= i_size_read(&inode->vfs_inode) && 2667 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2668 /* 2669 * There can't be any extents following eof in this case so just 2670 * set the delalloc new bit for the range directly. 2671 */ 2672 extra_bits |= EXTENT_DELALLOC_NEW; 2673 } else { 2674 int ret; 2675 2676 ret = btrfs_find_new_delalloc_bytes(inode, start, 2677 end + 1 - start, 2678 cached_state); 2679 if (ret) 2680 return ret; 2681 } 2682 2683 return set_extent_bit(&inode->io_tree, start, end, 2684 EXTENT_DELALLOC | extra_bits, cached_state); 2685 } 2686 2687 /* see btrfs_writepage_start_hook for details on why this is required */ 2688 struct btrfs_writepage_fixup { 2689 struct page *page; 2690 struct btrfs_inode *inode; 2691 struct btrfs_work work; 2692 }; 2693 2694 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2695 { 2696 struct btrfs_writepage_fixup *fixup = 2697 container_of(work, struct btrfs_writepage_fixup, work); 2698 struct btrfs_ordered_extent *ordered; 2699 struct extent_state *cached_state = NULL; 2700 struct extent_changeset *data_reserved = NULL; 2701 struct page *page = fixup->page; 2702 struct btrfs_inode *inode = fixup->inode; 2703 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2704 u64 page_start = page_offset(page); 2705 u64 page_end = page_offset(page) + PAGE_SIZE - 1; 2706 int ret = 0; 2707 bool free_delalloc_space = true; 2708 2709 /* 2710 * This is similar to page_mkwrite, we need to reserve the space before 2711 * we take the page lock. 2712 */ 2713 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2714 PAGE_SIZE); 2715 again: 2716 lock_page(page); 2717 2718 /* 2719 * Before we queued this fixup, we took a reference on the page. 2720 * page->mapping may go NULL, but it shouldn't be moved to a different 2721 * address space. 2722 */ 2723 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2724 /* 2725 * Unfortunately this is a little tricky, either 2726 * 2727 * 1) We got here and our page had already been dealt with and 2728 * we reserved our space, thus ret == 0, so we need to just 2729 * drop our space reservation and bail. This can happen the 2730 * first time we come into the fixup worker, or could happen 2731 * while waiting for the ordered extent. 2732 * 2) Our page was already dealt with, but we happened to get an 2733 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2734 * this case we obviously don't have anything to release, but 2735 * because the page was already dealt with we don't want to 2736 * mark the page with an error, so make sure we're resetting 2737 * ret to 0. This is why we have this check _before_ the ret 2738 * check, because we do not want to have a surprise ENOSPC 2739 * when the page was already properly dealt with. 2740 */ 2741 if (!ret) { 2742 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2743 btrfs_delalloc_release_space(inode, data_reserved, 2744 page_start, PAGE_SIZE, 2745 true); 2746 } 2747 ret = 0; 2748 goto out_page; 2749 } 2750 2751 /* 2752 * We can't mess with the page state unless it is locked, so now that 2753 * it is locked bail if we failed to make our space reservation. 2754 */ 2755 if (ret) 2756 goto out_page; 2757 2758 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2759 2760 /* already ordered? We're done */ 2761 if (PageOrdered(page)) 2762 goto out_reserved; 2763 2764 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2765 if (ordered) { 2766 unlock_extent(&inode->io_tree, page_start, page_end, 2767 &cached_state); 2768 unlock_page(page); 2769 btrfs_start_ordered_extent(ordered); 2770 btrfs_put_ordered_extent(ordered); 2771 goto again; 2772 } 2773 2774 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2775 &cached_state); 2776 if (ret) 2777 goto out_reserved; 2778 2779 /* 2780 * Everything went as planned, we're now the owner of a dirty page with 2781 * delayed allocation bits set and space reserved for our COW 2782 * destination. 2783 * 2784 * The page was dirty when we started, nothing should have cleaned it. 2785 */ 2786 BUG_ON(!PageDirty(page)); 2787 free_delalloc_space = false; 2788 out_reserved: 2789 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2790 if (free_delalloc_space) 2791 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2792 PAGE_SIZE, true); 2793 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2794 out_page: 2795 if (ret) { 2796 /* 2797 * We hit ENOSPC or other errors. Update the mapping and page 2798 * to reflect the errors and clean the page. 2799 */ 2800 mapping_set_error(page->mapping, ret); 2801 btrfs_mark_ordered_io_finished(inode, page, page_start, 2802 PAGE_SIZE, !ret); 2803 clear_page_dirty_for_io(page); 2804 } 2805 btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE); 2806 unlock_page(page); 2807 put_page(page); 2808 kfree(fixup); 2809 extent_changeset_free(data_reserved); 2810 /* 2811 * As a precaution, do a delayed iput in case it would be the last iput 2812 * that could need flushing space. Recursing back to fixup worker would 2813 * deadlock. 2814 */ 2815 btrfs_add_delayed_iput(inode); 2816 } 2817 2818 /* 2819 * There are a few paths in the higher layers of the kernel that directly 2820 * set the page dirty bit without asking the filesystem if it is a 2821 * good idea. This causes problems because we want to make sure COW 2822 * properly happens and the data=ordered rules are followed. 2823 * 2824 * In our case any range that doesn't have the ORDERED bit set 2825 * hasn't been properly setup for IO. We kick off an async process 2826 * to fix it up. The async helper will wait for ordered extents, set 2827 * the delalloc bit and make it safe to write the page. 2828 */ 2829 int btrfs_writepage_cow_fixup(struct page *page) 2830 { 2831 struct inode *inode = page->mapping->host; 2832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2833 struct btrfs_writepage_fixup *fixup; 2834 2835 /* This page has ordered extent covering it already */ 2836 if (PageOrdered(page)) 2837 return 0; 2838 2839 /* 2840 * PageChecked is set below when we create a fixup worker for this page, 2841 * don't try to create another one if we're already PageChecked() 2842 * 2843 * The extent_io writepage code will redirty the page if we send back 2844 * EAGAIN. 2845 */ 2846 if (PageChecked(page)) 2847 return -EAGAIN; 2848 2849 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2850 if (!fixup) 2851 return -EAGAIN; 2852 2853 /* 2854 * We are already holding a reference to this inode from 2855 * write_cache_pages. We need to hold it because the space reservation 2856 * takes place outside of the page lock, and we can't trust 2857 * page->mapping outside of the page lock. 2858 */ 2859 ihold(inode); 2860 btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE); 2861 get_page(page); 2862 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2863 fixup->page = page; 2864 fixup->inode = BTRFS_I(inode); 2865 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2866 2867 return -EAGAIN; 2868 } 2869 2870 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2871 struct btrfs_inode *inode, u64 file_pos, 2872 struct btrfs_file_extent_item *stack_fi, 2873 const bool update_inode_bytes, 2874 u64 qgroup_reserved) 2875 { 2876 struct btrfs_root *root = inode->root; 2877 const u64 sectorsize = root->fs_info->sectorsize; 2878 struct btrfs_path *path; 2879 struct extent_buffer *leaf; 2880 struct btrfs_key ins; 2881 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2882 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2883 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2884 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2885 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2886 struct btrfs_drop_extents_args drop_args = { 0 }; 2887 int ret; 2888 2889 path = btrfs_alloc_path(); 2890 if (!path) 2891 return -ENOMEM; 2892 2893 /* 2894 * we may be replacing one extent in the tree with another. 2895 * The new extent is pinned in the extent map, and we don't want 2896 * to drop it from the cache until it is completely in the btree. 2897 * 2898 * So, tell btrfs_drop_extents to leave this extent in the cache. 2899 * the caller is expected to unpin it and allow it to be merged 2900 * with the others. 2901 */ 2902 drop_args.path = path; 2903 drop_args.start = file_pos; 2904 drop_args.end = file_pos + num_bytes; 2905 drop_args.replace_extent = true; 2906 drop_args.extent_item_size = sizeof(*stack_fi); 2907 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2908 if (ret) 2909 goto out; 2910 2911 if (!drop_args.extent_inserted) { 2912 ins.objectid = btrfs_ino(inode); 2913 ins.offset = file_pos; 2914 ins.type = BTRFS_EXTENT_DATA_KEY; 2915 2916 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2917 sizeof(*stack_fi)); 2918 if (ret) 2919 goto out; 2920 } 2921 leaf = path->nodes[0]; 2922 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2923 write_extent_buffer(leaf, stack_fi, 2924 btrfs_item_ptr_offset(leaf, path->slots[0]), 2925 sizeof(struct btrfs_file_extent_item)); 2926 2927 btrfs_mark_buffer_dirty(trans, leaf); 2928 btrfs_release_path(path); 2929 2930 /* 2931 * If we dropped an inline extent here, we know the range where it is 2932 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2933 * number of bytes only for that range containing the inline extent. 2934 * The remaining of the range will be processed when clearning the 2935 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2936 */ 2937 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2938 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2939 2940 inline_size = drop_args.bytes_found - inline_size; 2941 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2942 drop_args.bytes_found -= inline_size; 2943 num_bytes -= sectorsize; 2944 } 2945 2946 if (update_inode_bytes) 2947 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2948 2949 ins.objectid = disk_bytenr; 2950 ins.offset = disk_num_bytes; 2951 ins.type = BTRFS_EXTENT_ITEM_KEY; 2952 2953 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2954 if (ret) 2955 goto out; 2956 2957 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2958 file_pos - offset, 2959 qgroup_reserved, &ins); 2960 out: 2961 btrfs_free_path(path); 2962 2963 return ret; 2964 } 2965 2966 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2967 u64 start, u64 len) 2968 { 2969 struct btrfs_block_group *cache; 2970 2971 cache = btrfs_lookup_block_group(fs_info, start); 2972 ASSERT(cache); 2973 2974 spin_lock(&cache->lock); 2975 cache->delalloc_bytes -= len; 2976 spin_unlock(&cache->lock); 2977 2978 btrfs_put_block_group(cache); 2979 } 2980 2981 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2982 struct btrfs_ordered_extent *oe) 2983 { 2984 struct btrfs_file_extent_item stack_fi; 2985 bool update_inode_bytes; 2986 u64 num_bytes = oe->num_bytes; 2987 u64 ram_bytes = oe->ram_bytes; 2988 2989 memset(&stack_fi, 0, sizeof(stack_fi)); 2990 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2991 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2992 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2993 oe->disk_num_bytes); 2994 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2995 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) { 2996 num_bytes = oe->truncated_len; 2997 ram_bytes = num_bytes; 2998 } 2999 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3000 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3001 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3002 /* Encryption and other encoding is reserved and all 0 */ 3003 3004 /* 3005 * For delalloc, when completing an ordered extent we update the inode's 3006 * bytes when clearing the range in the inode's io tree, so pass false 3007 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3008 * except if the ordered extent was truncated. 3009 */ 3010 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3011 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3012 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3013 3014 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3015 oe->file_offset, &stack_fi, 3016 update_inode_bytes, oe->qgroup_rsv); 3017 } 3018 3019 /* 3020 * As ordered data IO finishes, this gets called so we can finish 3021 * an ordered extent if the range of bytes in the file it covers are 3022 * fully written. 3023 */ 3024 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3025 { 3026 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3027 struct btrfs_root *root = inode->root; 3028 struct btrfs_fs_info *fs_info = root->fs_info; 3029 struct btrfs_trans_handle *trans = NULL; 3030 struct extent_io_tree *io_tree = &inode->io_tree; 3031 struct extent_state *cached_state = NULL; 3032 u64 start, end; 3033 int compress_type = 0; 3034 int ret = 0; 3035 u64 logical_len = ordered_extent->num_bytes; 3036 bool freespace_inode; 3037 bool truncated = false; 3038 bool clear_reserved_extent = true; 3039 unsigned int clear_bits = EXTENT_DEFRAG; 3040 3041 start = ordered_extent->file_offset; 3042 end = start + ordered_extent->num_bytes - 1; 3043 3044 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3045 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3046 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3047 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3048 clear_bits |= EXTENT_DELALLOC_NEW; 3049 3050 freespace_inode = btrfs_is_free_space_inode(inode); 3051 if (!freespace_inode) 3052 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3053 3054 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3055 ret = -EIO; 3056 goto out; 3057 } 3058 3059 if (btrfs_is_zoned(fs_info)) 3060 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3061 ordered_extent->disk_num_bytes); 3062 3063 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3064 truncated = true; 3065 logical_len = ordered_extent->truncated_len; 3066 /* Truncated the entire extent, don't bother adding */ 3067 if (!logical_len) 3068 goto out; 3069 } 3070 3071 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3072 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3073 3074 btrfs_inode_safe_disk_i_size_write(inode, 0); 3075 if (freespace_inode) 3076 trans = btrfs_join_transaction_spacecache(root); 3077 else 3078 trans = btrfs_join_transaction(root); 3079 if (IS_ERR(trans)) { 3080 ret = PTR_ERR(trans); 3081 trans = NULL; 3082 goto out; 3083 } 3084 trans->block_rsv = &inode->block_rsv; 3085 ret = btrfs_update_inode_fallback(trans, inode); 3086 if (ret) /* -ENOMEM or corruption */ 3087 btrfs_abort_transaction(trans, ret); 3088 goto out; 3089 } 3090 3091 clear_bits |= EXTENT_LOCKED; 3092 lock_extent(io_tree, start, end, &cached_state); 3093 3094 if (freespace_inode) 3095 trans = btrfs_join_transaction_spacecache(root); 3096 else 3097 trans = btrfs_join_transaction(root); 3098 if (IS_ERR(trans)) { 3099 ret = PTR_ERR(trans); 3100 trans = NULL; 3101 goto out; 3102 } 3103 3104 trans->block_rsv = &inode->block_rsv; 3105 3106 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3107 if (ret) 3108 goto out; 3109 3110 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3111 compress_type = ordered_extent->compress_type; 3112 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3113 BUG_ON(compress_type); 3114 ret = btrfs_mark_extent_written(trans, inode, 3115 ordered_extent->file_offset, 3116 ordered_extent->file_offset + 3117 logical_len); 3118 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3119 ordered_extent->disk_num_bytes); 3120 } else { 3121 BUG_ON(root == fs_info->tree_root); 3122 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3123 if (!ret) { 3124 clear_reserved_extent = false; 3125 btrfs_release_delalloc_bytes(fs_info, 3126 ordered_extent->disk_bytenr, 3127 ordered_extent->disk_num_bytes); 3128 } 3129 } 3130 unpin_extent_cache(inode, ordered_extent->file_offset, 3131 ordered_extent->num_bytes, trans->transid); 3132 if (ret < 0) { 3133 btrfs_abort_transaction(trans, ret); 3134 goto out; 3135 } 3136 3137 ret = add_pending_csums(trans, &ordered_extent->list); 3138 if (ret) { 3139 btrfs_abort_transaction(trans, ret); 3140 goto out; 3141 } 3142 3143 /* 3144 * If this is a new delalloc range, clear its new delalloc flag to 3145 * update the inode's number of bytes. This needs to be done first 3146 * before updating the inode item. 3147 */ 3148 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3149 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3150 clear_extent_bit(&inode->io_tree, start, end, 3151 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3152 &cached_state); 3153 3154 btrfs_inode_safe_disk_i_size_write(inode, 0); 3155 ret = btrfs_update_inode_fallback(trans, inode); 3156 if (ret) { /* -ENOMEM or corruption */ 3157 btrfs_abort_transaction(trans, ret); 3158 goto out; 3159 } 3160 ret = 0; 3161 out: 3162 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3163 &cached_state); 3164 3165 if (trans) 3166 btrfs_end_transaction(trans); 3167 3168 if (ret || truncated) { 3169 u64 unwritten_start = start; 3170 3171 /* 3172 * If we failed to finish this ordered extent for any reason we 3173 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3174 * extent, and mark the inode with the error if it wasn't 3175 * already set. Any error during writeback would have already 3176 * set the mapping error, so we need to set it if we're the ones 3177 * marking this ordered extent as failed. 3178 */ 3179 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3180 &ordered_extent->flags)) 3181 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3182 3183 if (truncated) 3184 unwritten_start += logical_len; 3185 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3186 3187 /* 3188 * Drop extent maps for the part of the extent we didn't write. 3189 * 3190 * We have an exception here for the free_space_inode, this is 3191 * because when we do btrfs_get_extent() on the free space inode 3192 * we will search the commit root. If this is a new block group 3193 * we won't find anything, and we will trip over the assert in 3194 * writepage where we do ASSERT(em->block_start != 3195 * EXTENT_MAP_HOLE). 3196 * 3197 * Theoretically we could also skip this for any NOCOW extent as 3198 * we don't mess with the extent map tree in the NOCOW case, but 3199 * for now simply skip this if we are the free space inode. 3200 */ 3201 if (!btrfs_is_free_space_inode(inode)) 3202 btrfs_drop_extent_map_range(inode, unwritten_start, 3203 end, false); 3204 3205 /* 3206 * If the ordered extent had an IOERR or something else went 3207 * wrong we need to return the space for this ordered extent 3208 * back to the allocator. We only free the extent in the 3209 * truncated case if we didn't write out the extent at all. 3210 * 3211 * If we made it past insert_reserved_file_extent before we 3212 * errored out then we don't need to do this as the accounting 3213 * has already been done. 3214 */ 3215 if ((ret || !logical_len) && 3216 clear_reserved_extent && 3217 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3218 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3219 /* 3220 * Discard the range before returning it back to the 3221 * free space pool 3222 */ 3223 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3224 btrfs_discard_extent(fs_info, 3225 ordered_extent->disk_bytenr, 3226 ordered_extent->disk_num_bytes, 3227 NULL); 3228 btrfs_free_reserved_extent(fs_info, 3229 ordered_extent->disk_bytenr, 3230 ordered_extent->disk_num_bytes, 1); 3231 /* 3232 * Actually free the qgroup rsv which was released when 3233 * the ordered extent was created. 3234 */ 3235 btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid, 3236 ordered_extent->qgroup_rsv, 3237 BTRFS_QGROUP_RSV_DATA); 3238 } 3239 } 3240 3241 /* 3242 * This needs to be done to make sure anybody waiting knows we are done 3243 * updating everything for this ordered extent. 3244 */ 3245 btrfs_remove_ordered_extent(inode, ordered_extent); 3246 3247 /* once for us */ 3248 btrfs_put_ordered_extent(ordered_extent); 3249 /* once for the tree */ 3250 btrfs_put_ordered_extent(ordered_extent); 3251 3252 return ret; 3253 } 3254 3255 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3256 { 3257 if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) && 3258 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3259 list_empty(&ordered->bioc_list)) 3260 btrfs_finish_ordered_zoned(ordered); 3261 return btrfs_finish_one_ordered(ordered); 3262 } 3263 3264 /* 3265 * Verify the checksum for a single sector without any extra action that depend 3266 * on the type of I/O. 3267 */ 3268 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3269 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3270 { 3271 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3272 char *kaddr; 3273 3274 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3275 3276 shash->tfm = fs_info->csum_shash; 3277 3278 kaddr = kmap_local_page(page) + pgoff; 3279 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3280 kunmap_local(kaddr); 3281 3282 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3283 return -EIO; 3284 return 0; 3285 } 3286 3287 /* 3288 * Verify the checksum of a single data sector. 3289 * 3290 * @bbio: btrfs_io_bio which contains the csum 3291 * @dev: device the sector is on 3292 * @bio_offset: offset to the beginning of the bio (in bytes) 3293 * @bv: bio_vec to check 3294 * 3295 * Check if the checksum on a data block is valid. When a checksum mismatch is 3296 * detected, report the error and fill the corrupted range with zero. 3297 * 3298 * Return %true if the sector is ok or had no checksum to start with, else %false. 3299 */ 3300 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3301 u32 bio_offset, struct bio_vec *bv) 3302 { 3303 struct btrfs_inode *inode = bbio->inode; 3304 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3305 u64 file_offset = bbio->file_offset + bio_offset; 3306 u64 end = file_offset + bv->bv_len - 1; 3307 u8 *csum_expected; 3308 u8 csum[BTRFS_CSUM_SIZE]; 3309 3310 ASSERT(bv->bv_len == fs_info->sectorsize); 3311 3312 if (!bbio->csum) 3313 return true; 3314 3315 if (btrfs_is_data_reloc_root(inode->root) && 3316 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3317 NULL)) { 3318 /* Skip the range without csum for data reloc inode */ 3319 clear_extent_bits(&inode->io_tree, file_offset, end, 3320 EXTENT_NODATASUM); 3321 return true; 3322 } 3323 3324 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3325 fs_info->csum_size; 3326 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3327 csum_expected)) 3328 goto zeroit; 3329 return true; 3330 3331 zeroit: 3332 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3333 bbio->mirror_num); 3334 if (dev) 3335 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3336 memzero_bvec(bv); 3337 return false; 3338 } 3339 3340 /* 3341 * Perform a delayed iput on @inode. 3342 * 3343 * @inode: The inode we want to perform iput on 3344 * 3345 * This function uses the generic vfs_inode::i_count to track whether we should 3346 * just decrement it (in case it's > 1) or if this is the last iput then link 3347 * the inode to the delayed iput machinery. Delayed iputs are processed at 3348 * transaction commit time/superblock commit/cleaner kthread. 3349 */ 3350 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3351 { 3352 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3353 unsigned long flags; 3354 3355 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3356 return; 3357 3358 atomic_inc(&fs_info->nr_delayed_iputs); 3359 /* 3360 * Need to be irq safe here because we can be called from either an irq 3361 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3362 * context. 3363 */ 3364 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3365 ASSERT(list_empty(&inode->delayed_iput)); 3366 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3367 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3368 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3369 wake_up_process(fs_info->cleaner_kthread); 3370 } 3371 3372 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3373 struct btrfs_inode *inode) 3374 { 3375 list_del_init(&inode->delayed_iput); 3376 spin_unlock_irq(&fs_info->delayed_iput_lock); 3377 iput(&inode->vfs_inode); 3378 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3379 wake_up(&fs_info->delayed_iputs_wait); 3380 spin_lock_irq(&fs_info->delayed_iput_lock); 3381 } 3382 3383 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3384 struct btrfs_inode *inode) 3385 { 3386 if (!list_empty(&inode->delayed_iput)) { 3387 spin_lock_irq(&fs_info->delayed_iput_lock); 3388 if (!list_empty(&inode->delayed_iput)) 3389 run_delayed_iput_locked(fs_info, inode); 3390 spin_unlock_irq(&fs_info->delayed_iput_lock); 3391 } 3392 } 3393 3394 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3395 { 3396 /* 3397 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3398 * calls btrfs_add_delayed_iput() and that needs to lock 3399 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3400 * prevent a deadlock. 3401 */ 3402 spin_lock_irq(&fs_info->delayed_iput_lock); 3403 while (!list_empty(&fs_info->delayed_iputs)) { 3404 struct btrfs_inode *inode; 3405 3406 inode = list_first_entry(&fs_info->delayed_iputs, 3407 struct btrfs_inode, delayed_iput); 3408 run_delayed_iput_locked(fs_info, inode); 3409 if (need_resched()) { 3410 spin_unlock_irq(&fs_info->delayed_iput_lock); 3411 cond_resched(); 3412 spin_lock_irq(&fs_info->delayed_iput_lock); 3413 } 3414 } 3415 spin_unlock_irq(&fs_info->delayed_iput_lock); 3416 } 3417 3418 /* 3419 * Wait for flushing all delayed iputs 3420 * 3421 * @fs_info: the filesystem 3422 * 3423 * This will wait on any delayed iputs that are currently running with KILLABLE 3424 * set. Once they are all done running we will return, unless we are killed in 3425 * which case we return EINTR. This helps in user operations like fallocate etc 3426 * that might get blocked on the iputs. 3427 * 3428 * Return EINTR if we were killed, 0 if nothing's pending 3429 */ 3430 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3431 { 3432 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3433 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3434 if (ret) 3435 return -EINTR; 3436 return 0; 3437 } 3438 3439 /* 3440 * This creates an orphan entry for the given inode in case something goes wrong 3441 * in the middle of an unlink. 3442 */ 3443 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3444 struct btrfs_inode *inode) 3445 { 3446 int ret; 3447 3448 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3449 if (ret && ret != -EEXIST) { 3450 btrfs_abort_transaction(trans, ret); 3451 return ret; 3452 } 3453 3454 return 0; 3455 } 3456 3457 /* 3458 * We have done the delete so we can go ahead and remove the orphan item for 3459 * this particular inode. 3460 */ 3461 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3462 struct btrfs_inode *inode) 3463 { 3464 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3465 } 3466 3467 /* 3468 * this cleans up any orphans that may be left on the list from the last use 3469 * of this root. 3470 */ 3471 int btrfs_orphan_cleanup(struct btrfs_root *root) 3472 { 3473 struct btrfs_fs_info *fs_info = root->fs_info; 3474 struct btrfs_path *path; 3475 struct extent_buffer *leaf; 3476 struct btrfs_key key, found_key; 3477 struct btrfs_trans_handle *trans; 3478 struct inode *inode; 3479 u64 last_objectid = 0; 3480 int ret = 0, nr_unlink = 0; 3481 3482 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3483 return 0; 3484 3485 path = btrfs_alloc_path(); 3486 if (!path) { 3487 ret = -ENOMEM; 3488 goto out; 3489 } 3490 path->reada = READA_BACK; 3491 3492 key.objectid = BTRFS_ORPHAN_OBJECTID; 3493 key.type = BTRFS_ORPHAN_ITEM_KEY; 3494 key.offset = (u64)-1; 3495 3496 while (1) { 3497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3498 if (ret < 0) 3499 goto out; 3500 3501 /* 3502 * if ret == 0 means we found what we were searching for, which 3503 * is weird, but possible, so only screw with path if we didn't 3504 * find the key and see if we have stuff that matches 3505 */ 3506 if (ret > 0) { 3507 ret = 0; 3508 if (path->slots[0] == 0) 3509 break; 3510 path->slots[0]--; 3511 } 3512 3513 /* pull out the item */ 3514 leaf = path->nodes[0]; 3515 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3516 3517 /* make sure the item matches what we want */ 3518 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3519 break; 3520 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3521 break; 3522 3523 /* release the path since we're done with it */ 3524 btrfs_release_path(path); 3525 3526 /* 3527 * this is where we are basically btrfs_lookup, without the 3528 * crossing root thing. we store the inode number in the 3529 * offset of the orphan item. 3530 */ 3531 3532 if (found_key.offset == last_objectid) { 3533 /* 3534 * We found the same inode as before. This means we were 3535 * not able to remove its items via eviction triggered 3536 * by an iput(). A transaction abort may have happened, 3537 * due to -ENOSPC for example, so try to grab the error 3538 * that lead to a transaction abort, if any. 3539 */ 3540 btrfs_err(fs_info, 3541 "Error removing orphan entry, stopping orphan cleanup"); 3542 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3543 goto out; 3544 } 3545 3546 last_objectid = found_key.offset; 3547 3548 found_key.objectid = found_key.offset; 3549 found_key.type = BTRFS_INODE_ITEM_KEY; 3550 found_key.offset = 0; 3551 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3552 if (IS_ERR(inode)) { 3553 ret = PTR_ERR(inode); 3554 inode = NULL; 3555 if (ret != -ENOENT) 3556 goto out; 3557 } 3558 3559 if (!inode && root == fs_info->tree_root) { 3560 struct btrfs_root *dead_root; 3561 int is_dead_root = 0; 3562 3563 /* 3564 * This is an orphan in the tree root. Currently these 3565 * could come from 2 sources: 3566 * a) a root (snapshot/subvolume) deletion in progress 3567 * b) a free space cache inode 3568 * We need to distinguish those two, as the orphan item 3569 * for a root must not get deleted before the deletion 3570 * of the snapshot/subvolume's tree completes. 3571 * 3572 * btrfs_find_orphan_roots() ran before us, which has 3573 * found all deleted roots and loaded them into 3574 * fs_info->fs_roots_radix. So here we can find if an 3575 * orphan item corresponds to a deleted root by looking 3576 * up the root from that radix tree. 3577 */ 3578 3579 spin_lock(&fs_info->fs_roots_radix_lock); 3580 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3581 (unsigned long)found_key.objectid); 3582 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3583 is_dead_root = 1; 3584 spin_unlock(&fs_info->fs_roots_radix_lock); 3585 3586 if (is_dead_root) { 3587 /* prevent this orphan from being found again */ 3588 key.offset = found_key.objectid - 1; 3589 continue; 3590 } 3591 3592 } 3593 3594 /* 3595 * If we have an inode with links, there are a couple of 3596 * possibilities: 3597 * 3598 * 1. We were halfway through creating fsverity metadata for the 3599 * file. In that case, the orphan item represents incomplete 3600 * fsverity metadata which must be cleaned up with 3601 * btrfs_drop_verity_items and deleting the orphan item. 3602 3603 * 2. Old kernels (before v3.12) used to create an 3604 * orphan item for truncate indicating that there were possibly 3605 * extent items past i_size that needed to be deleted. In v3.12, 3606 * truncate was changed to update i_size in sync with the extent 3607 * items, but the (useless) orphan item was still created. Since 3608 * v4.18, we don't create the orphan item for truncate at all. 3609 * 3610 * So, this item could mean that we need to do a truncate, but 3611 * only if this filesystem was last used on a pre-v3.12 kernel 3612 * and was not cleanly unmounted. The odds of that are quite 3613 * slim, and it's a pain to do the truncate now, so just delete 3614 * the orphan item. 3615 * 3616 * It's also possible that this orphan item was supposed to be 3617 * deleted but wasn't. The inode number may have been reused, 3618 * but either way, we can delete the orphan item. 3619 */ 3620 if (!inode || inode->i_nlink) { 3621 if (inode) { 3622 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3623 iput(inode); 3624 inode = NULL; 3625 if (ret) 3626 goto out; 3627 } 3628 trans = btrfs_start_transaction(root, 1); 3629 if (IS_ERR(trans)) { 3630 ret = PTR_ERR(trans); 3631 goto out; 3632 } 3633 btrfs_debug(fs_info, "auto deleting %Lu", 3634 found_key.objectid); 3635 ret = btrfs_del_orphan_item(trans, root, 3636 found_key.objectid); 3637 btrfs_end_transaction(trans); 3638 if (ret) 3639 goto out; 3640 continue; 3641 } 3642 3643 nr_unlink++; 3644 3645 /* this will do delete_inode and everything for us */ 3646 iput(inode); 3647 } 3648 /* release the path since we're done with it */ 3649 btrfs_release_path(path); 3650 3651 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3652 trans = btrfs_join_transaction(root); 3653 if (!IS_ERR(trans)) 3654 btrfs_end_transaction(trans); 3655 } 3656 3657 if (nr_unlink) 3658 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3659 3660 out: 3661 if (ret) 3662 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3663 btrfs_free_path(path); 3664 return ret; 3665 } 3666 3667 /* 3668 * very simple check to peek ahead in the leaf looking for xattrs. If we 3669 * don't find any xattrs, we know there can't be any acls. 3670 * 3671 * slot is the slot the inode is in, objectid is the objectid of the inode 3672 */ 3673 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3674 int slot, u64 objectid, 3675 int *first_xattr_slot) 3676 { 3677 u32 nritems = btrfs_header_nritems(leaf); 3678 struct btrfs_key found_key; 3679 static u64 xattr_access = 0; 3680 static u64 xattr_default = 0; 3681 int scanned = 0; 3682 3683 if (!xattr_access) { 3684 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3685 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3686 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3687 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3688 } 3689 3690 slot++; 3691 *first_xattr_slot = -1; 3692 while (slot < nritems) { 3693 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3694 3695 /* we found a different objectid, there must not be acls */ 3696 if (found_key.objectid != objectid) 3697 return 0; 3698 3699 /* we found an xattr, assume we've got an acl */ 3700 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3701 if (*first_xattr_slot == -1) 3702 *first_xattr_slot = slot; 3703 if (found_key.offset == xattr_access || 3704 found_key.offset == xattr_default) 3705 return 1; 3706 } 3707 3708 /* 3709 * we found a key greater than an xattr key, there can't 3710 * be any acls later on 3711 */ 3712 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3713 return 0; 3714 3715 slot++; 3716 scanned++; 3717 3718 /* 3719 * it goes inode, inode backrefs, xattrs, extents, 3720 * so if there are a ton of hard links to an inode there can 3721 * be a lot of backrefs. Don't waste time searching too hard, 3722 * this is just an optimization 3723 */ 3724 if (scanned >= 8) 3725 break; 3726 } 3727 /* we hit the end of the leaf before we found an xattr or 3728 * something larger than an xattr. We have to assume the inode 3729 * has acls 3730 */ 3731 if (*first_xattr_slot == -1) 3732 *first_xattr_slot = slot; 3733 return 1; 3734 } 3735 3736 /* 3737 * read an inode from the btree into the in-memory inode 3738 */ 3739 static int btrfs_read_locked_inode(struct inode *inode, 3740 struct btrfs_path *in_path) 3741 { 3742 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3743 struct btrfs_path *path = in_path; 3744 struct extent_buffer *leaf; 3745 struct btrfs_inode_item *inode_item; 3746 struct btrfs_root *root = BTRFS_I(inode)->root; 3747 struct btrfs_key location; 3748 unsigned long ptr; 3749 int maybe_acls; 3750 u32 rdev; 3751 int ret; 3752 bool filled = false; 3753 int first_xattr_slot; 3754 3755 ret = btrfs_fill_inode(inode, &rdev); 3756 if (!ret) 3757 filled = true; 3758 3759 if (!path) { 3760 path = btrfs_alloc_path(); 3761 if (!path) 3762 return -ENOMEM; 3763 } 3764 3765 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3766 3767 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3768 if (ret) { 3769 if (path != in_path) 3770 btrfs_free_path(path); 3771 return ret; 3772 } 3773 3774 leaf = path->nodes[0]; 3775 3776 if (filled) 3777 goto cache_index; 3778 3779 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3780 struct btrfs_inode_item); 3781 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3782 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3783 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3784 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3785 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3786 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3787 round_up(i_size_read(inode), fs_info->sectorsize)); 3788 3789 inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3790 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3791 3792 inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3793 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3794 3795 inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3796 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3797 3798 BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3799 BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3800 3801 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3802 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3803 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3804 3805 inode_set_iversion_queried(inode, 3806 btrfs_inode_sequence(leaf, inode_item)); 3807 inode->i_generation = BTRFS_I(inode)->generation; 3808 inode->i_rdev = 0; 3809 rdev = btrfs_inode_rdev(leaf, inode_item); 3810 3811 BTRFS_I(inode)->index_cnt = (u64)-1; 3812 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3813 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3814 3815 cache_index: 3816 /* 3817 * If we were modified in the current generation and evicted from memory 3818 * and then re-read we need to do a full sync since we don't have any 3819 * idea about which extents were modified before we were evicted from 3820 * cache. 3821 * 3822 * This is required for both inode re-read from disk and delayed inode 3823 * in the delayed_nodes xarray. 3824 */ 3825 if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info)) 3826 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3827 &BTRFS_I(inode)->runtime_flags); 3828 3829 /* 3830 * We don't persist the id of the transaction where an unlink operation 3831 * against the inode was last made. So here we assume the inode might 3832 * have been evicted, and therefore the exact value of last_unlink_trans 3833 * lost, and set it to last_trans to avoid metadata inconsistencies 3834 * between the inode and its parent if the inode is fsync'ed and the log 3835 * replayed. For example, in the scenario: 3836 * 3837 * touch mydir/foo 3838 * ln mydir/foo mydir/bar 3839 * sync 3840 * unlink mydir/bar 3841 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3842 * xfs_io -c fsync mydir/foo 3843 * <power failure> 3844 * mount fs, triggers fsync log replay 3845 * 3846 * We must make sure that when we fsync our inode foo we also log its 3847 * parent inode, otherwise after log replay the parent still has the 3848 * dentry with the "bar" name but our inode foo has a link count of 1 3849 * and doesn't have an inode ref with the name "bar" anymore. 3850 * 3851 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3852 * but it guarantees correctness at the expense of occasional full 3853 * transaction commits on fsync if our inode is a directory, or if our 3854 * inode is not a directory, logging its parent unnecessarily. 3855 */ 3856 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3857 3858 /* 3859 * Same logic as for last_unlink_trans. We don't persist the generation 3860 * of the last transaction where this inode was used for a reflink 3861 * operation, so after eviction and reloading the inode we must be 3862 * pessimistic and assume the last transaction that modified the inode. 3863 */ 3864 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3865 3866 path->slots[0]++; 3867 if (inode->i_nlink != 1 || 3868 path->slots[0] >= btrfs_header_nritems(leaf)) 3869 goto cache_acl; 3870 3871 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3872 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3873 goto cache_acl; 3874 3875 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3876 if (location.type == BTRFS_INODE_REF_KEY) { 3877 struct btrfs_inode_ref *ref; 3878 3879 ref = (struct btrfs_inode_ref *)ptr; 3880 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3881 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3882 struct btrfs_inode_extref *extref; 3883 3884 extref = (struct btrfs_inode_extref *)ptr; 3885 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3886 extref); 3887 } 3888 cache_acl: 3889 /* 3890 * try to precache a NULL acl entry for files that don't have 3891 * any xattrs or acls 3892 */ 3893 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3894 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3895 if (first_xattr_slot != -1) { 3896 path->slots[0] = first_xattr_slot; 3897 ret = btrfs_load_inode_props(inode, path); 3898 if (ret) 3899 btrfs_err(fs_info, 3900 "error loading props for ino %llu (root %llu): %d", 3901 btrfs_ino(BTRFS_I(inode)), 3902 root->root_key.objectid, ret); 3903 } 3904 if (path != in_path) 3905 btrfs_free_path(path); 3906 3907 if (!maybe_acls) 3908 cache_no_acl(inode); 3909 3910 switch (inode->i_mode & S_IFMT) { 3911 case S_IFREG: 3912 inode->i_mapping->a_ops = &btrfs_aops; 3913 inode->i_fop = &btrfs_file_operations; 3914 inode->i_op = &btrfs_file_inode_operations; 3915 break; 3916 case S_IFDIR: 3917 inode->i_fop = &btrfs_dir_file_operations; 3918 inode->i_op = &btrfs_dir_inode_operations; 3919 break; 3920 case S_IFLNK: 3921 inode->i_op = &btrfs_symlink_inode_operations; 3922 inode_nohighmem(inode); 3923 inode->i_mapping->a_ops = &btrfs_aops; 3924 break; 3925 default: 3926 inode->i_op = &btrfs_special_inode_operations; 3927 init_special_inode(inode, inode->i_mode, rdev); 3928 break; 3929 } 3930 3931 btrfs_sync_inode_flags_to_i_flags(inode); 3932 return 0; 3933 } 3934 3935 /* 3936 * given a leaf and an inode, copy the inode fields into the leaf 3937 */ 3938 static void fill_inode_item(struct btrfs_trans_handle *trans, 3939 struct extent_buffer *leaf, 3940 struct btrfs_inode_item *item, 3941 struct inode *inode) 3942 { 3943 struct btrfs_map_token token; 3944 u64 flags; 3945 3946 btrfs_init_map_token(&token, leaf); 3947 3948 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3949 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3950 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3951 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3952 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3953 3954 btrfs_set_token_timespec_sec(&token, &item->atime, 3955 inode_get_atime_sec(inode)); 3956 btrfs_set_token_timespec_nsec(&token, &item->atime, 3957 inode_get_atime_nsec(inode)); 3958 3959 btrfs_set_token_timespec_sec(&token, &item->mtime, 3960 inode_get_mtime_sec(inode)); 3961 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3962 inode_get_mtime_nsec(inode)); 3963 3964 btrfs_set_token_timespec_sec(&token, &item->ctime, 3965 inode_get_ctime_sec(inode)); 3966 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3967 inode_get_ctime_nsec(inode)); 3968 3969 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 3970 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 3971 3972 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3973 btrfs_set_token_inode_generation(&token, item, 3974 BTRFS_I(inode)->generation); 3975 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3976 btrfs_set_token_inode_transid(&token, item, trans->transid); 3977 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3978 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3979 BTRFS_I(inode)->ro_flags); 3980 btrfs_set_token_inode_flags(&token, item, flags); 3981 btrfs_set_token_inode_block_group(&token, item, 0); 3982 } 3983 3984 /* 3985 * copy everything in the in-memory inode into the btree. 3986 */ 3987 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3988 struct btrfs_inode *inode) 3989 { 3990 struct btrfs_inode_item *inode_item; 3991 struct btrfs_path *path; 3992 struct extent_buffer *leaf; 3993 int ret; 3994 3995 path = btrfs_alloc_path(); 3996 if (!path) 3997 return -ENOMEM; 3998 3999 ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1); 4000 if (ret) { 4001 if (ret > 0) 4002 ret = -ENOENT; 4003 goto failed; 4004 } 4005 4006 leaf = path->nodes[0]; 4007 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4008 struct btrfs_inode_item); 4009 4010 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4011 btrfs_mark_buffer_dirty(trans, leaf); 4012 btrfs_set_inode_last_trans(trans, inode); 4013 ret = 0; 4014 failed: 4015 btrfs_free_path(path); 4016 return ret; 4017 } 4018 4019 /* 4020 * copy everything in the in-memory inode into the btree. 4021 */ 4022 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4023 struct btrfs_inode *inode) 4024 { 4025 struct btrfs_root *root = inode->root; 4026 struct btrfs_fs_info *fs_info = root->fs_info; 4027 int ret; 4028 4029 /* 4030 * If the inode is a free space inode, we can deadlock during commit 4031 * if we put it into the delayed code. 4032 * 4033 * The data relocation inode should also be directly updated 4034 * without delay 4035 */ 4036 if (!btrfs_is_free_space_inode(inode) 4037 && !btrfs_is_data_reloc_root(root) 4038 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4039 btrfs_update_root_times(trans, root); 4040 4041 ret = btrfs_delayed_update_inode(trans, inode); 4042 if (!ret) 4043 btrfs_set_inode_last_trans(trans, inode); 4044 return ret; 4045 } 4046 4047 return btrfs_update_inode_item(trans, inode); 4048 } 4049 4050 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4051 struct btrfs_inode *inode) 4052 { 4053 int ret; 4054 4055 ret = btrfs_update_inode(trans, inode); 4056 if (ret == -ENOSPC) 4057 return btrfs_update_inode_item(trans, inode); 4058 return ret; 4059 } 4060 4061 /* 4062 * unlink helper that gets used here in inode.c and in the tree logging 4063 * recovery code. It remove a link in a directory with a given name, and 4064 * also drops the back refs in the inode to the directory 4065 */ 4066 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4067 struct btrfs_inode *dir, 4068 struct btrfs_inode *inode, 4069 const struct fscrypt_str *name, 4070 struct btrfs_rename_ctx *rename_ctx) 4071 { 4072 struct btrfs_root *root = dir->root; 4073 struct btrfs_fs_info *fs_info = root->fs_info; 4074 struct btrfs_path *path; 4075 int ret = 0; 4076 struct btrfs_dir_item *di; 4077 u64 index; 4078 u64 ino = btrfs_ino(inode); 4079 u64 dir_ino = btrfs_ino(dir); 4080 4081 path = btrfs_alloc_path(); 4082 if (!path) { 4083 ret = -ENOMEM; 4084 goto out; 4085 } 4086 4087 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4088 if (IS_ERR_OR_NULL(di)) { 4089 ret = di ? PTR_ERR(di) : -ENOENT; 4090 goto err; 4091 } 4092 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4093 if (ret) 4094 goto err; 4095 btrfs_release_path(path); 4096 4097 /* 4098 * If we don't have dir index, we have to get it by looking up 4099 * the inode ref, since we get the inode ref, remove it directly, 4100 * it is unnecessary to do delayed deletion. 4101 * 4102 * But if we have dir index, needn't search inode ref to get it. 4103 * Since the inode ref is close to the inode item, it is better 4104 * that we delay to delete it, and just do this deletion when 4105 * we update the inode item. 4106 */ 4107 if (inode->dir_index) { 4108 ret = btrfs_delayed_delete_inode_ref(inode); 4109 if (!ret) { 4110 index = inode->dir_index; 4111 goto skip_backref; 4112 } 4113 } 4114 4115 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4116 if (ret) { 4117 btrfs_info(fs_info, 4118 "failed to delete reference to %.*s, inode %llu parent %llu", 4119 name->len, name->name, ino, dir_ino); 4120 btrfs_abort_transaction(trans, ret); 4121 goto err; 4122 } 4123 skip_backref: 4124 if (rename_ctx) 4125 rename_ctx->index = index; 4126 4127 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4128 if (ret) { 4129 btrfs_abort_transaction(trans, ret); 4130 goto err; 4131 } 4132 4133 /* 4134 * If we are in a rename context, we don't need to update anything in the 4135 * log. That will be done later during the rename by btrfs_log_new_name(). 4136 * Besides that, doing it here would only cause extra unnecessary btree 4137 * operations on the log tree, increasing latency for applications. 4138 */ 4139 if (!rename_ctx) { 4140 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4141 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4142 } 4143 4144 /* 4145 * If we have a pending delayed iput we could end up with the final iput 4146 * being run in btrfs-cleaner context. If we have enough of these built 4147 * up we can end up burning a lot of time in btrfs-cleaner without any 4148 * way to throttle the unlinks. Since we're currently holding a ref on 4149 * the inode we can run the delayed iput here without any issues as the 4150 * final iput won't be done until after we drop the ref we're currently 4151 * holding. 4152 */ 4153 btrfs_run_delayed_iput(fs_info, inode); 4154 err: 4155 btrfs_free_path(path); 4156 if (ret) 4157 goto out; 4158 4159 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4160 inode_inc_iversion(&inode->vfs_inode); 4161 inode_inc_iversion(&dir->vfs_inode); 4162 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4163 ret = btrfs_update_inode(trans, dir); 4164 out: 4165 return ret; 4166 } 4167 4168 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4169 struct btrfs_inode *dir, struct btrfs_inode *inode, 4170 const struct fscrypt_str *name) 4171 { 4172 int ret; 4173 4174 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4175 if (!ret) { 4176 drop_nlink(&inode->vfs_inode); 4177 ret = btrfs_update_inode(trans, inode); 4178 } 4179 return ret; 4180 } 4181 4182 /* 4183 * helper to start transaction for unlink and rmdir. 4184 * 4185 * unlink and rmdir are special in btrfs, they do not always free space, so 4186 * if we cannot make our reservations the normal way try and see if there is 4187 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4188 * allow the unlink to occur. 4189 */ 4190 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4191 { 4192 struct btrfs_root *root = dir->root; 4193 4194 return btrfs_start_transaction_fallback_global_rsv(root, 4195 BTRFS_UNLINK_METADATA_UNITS); 4196 } 4197 4198 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4199 { 4200 struct btrfs_trans_handle *trans; 4201 struct inode *inode = d_inode(dentry); 4202 int ret; 4203 struct fscrypt_name fname; 4204 4205 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4206 if (ret) 4207 return ret; 4208 4209 /* This needs to handle no-key deletions later on */ 4210 4211 trans = __unlink_start_trans(BTRFS_I(dir)); 4212 if (IS_ERR(trans)) { 4213 ret = PTR_ERR(trans); 4214 goto fscrypt_free; 4215 } 4216 4217 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4218 false); 4219 4220 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4221 &fname.disk_name); 4222 if (ret) 4223 goto end_trans; 4224 4225 if (inode->i_nlink == 0) { 4226 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4227 if (ret) 4228 goto end_trans; 4229 } 4230 4231 end_trans: 4232 btrfs_end_transaction(trans); 4233 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4234 fscrypt_free: 4235 fscrypt_free_filename(&fname); 4236 return ret; 4237 } 4238 4239 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4240 struct btrfs_inode *dir, struct dentry *dentry) 4241 { 4242 struct btrfs_root *root = dir->root; 4243 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4244 struct btrfs_path *path; 4245 struct extent_buffer *leaf; 4246 struct btrfs_dir_item *di; 4247 struct btrfs_key key; 4248 u64 index; 4249 int ret; 4250 u64 objectid; 4251 u64 dir_ino = btrfs_ino(dir); 4252 struct fscrypt_name fname; 4253 4254 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4255 if (ret) 4256 return ret; 4257 4258 /* This needs to handle no-key deletions later on */ 4259 4260 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4261 objectid = inode->root->root_key.objectid; 4262 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4263 objectid = inode->location.objectid; 4264 } else { 4265 WARN_ON(1); 4266 fscrypt_free_filename(&fname); 4267 return -EINVAL; 4268 } 4269 4270 path = btrfs_alloc_path(); 4271 if (!path) { 4272 ret = -ENOMEM; 4273 goto out; 4274 } 4275 4276 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4277 &fname.disk_name, -1); 4278 if (IS_ERR_OR_NULL(di)) { 4279 ret = di ? PTR_ERR(di) : -ENOENT; 4280 goto out; 4281 } 4282 4283 leaf = path->nodes[0]; 4284 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4285 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4286 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4287 if (ret) { 4288 btrfs_abort_transaction(trans, ret); 4289 goto out; 4290 } 4291 btrfs_release_path(path); 4292 4293 /* 4294 * This is a placeholder inode for a subvolume we didn't have a 4295 * reference to at the time of the snapshot creation. In the meantime 4296 * we could have renamed the real subvol link into our snapshot, so 4297 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4298 * Instead simply lookup the dir_index_item for this entry so we can 4299 * remove it. Otherwise we know we have a ref to the root and we can 4300 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4301 */ 4302 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4303 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4304 if (IS_ERR_OR_NULL(di)) { 4305 if (!di) 4306 ret = -ENOENT; 4307 else 4308 ret = PTR_ERR(di); 4309 btrfs_abort_transaction(trans, ret); 4310 goto out; 4311 } 4312 4313 leaf = path->nodes[0]; 4314 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4315 index = key.offset; 4316 btrfs_release_path(path); 4317 } else { 4318 ret = btrfs_del_root_ref(trans, objectid, 4319 root->root_key.objectid, dir_ino, 4320 &index, &fname.disk_name); 4321 if (ret) { 4322 btrfs_abort_transaction(trans, ret); 4323 goto out; 4324 } 4325 } 4326 4327 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4328 if (ret) { 4329 btrfs_abort_transaction(trans, ret); 4330 goto out; 4331 } 4332 4333 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4334 inode_inc_iversion(&dir->vfs_inode); 4335 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4336 ret = btrfs_update_inode_fallback(trans, dir); 4337 if (ret) 4338 btrfs_abort_transaction(trans, ret); 4339 out: 4340 btrfs_free_path(path); 4341 fscrypt_free_filename(&fname); 4342 return ret; 4343 } 4344 4345 /* 4346 * Helper to check if the subvolume references other subvolumes or if it's 4347 * default. 4348 */ 4349 static noinline int may_destroy_subvol(struct btrfs_root *root) 4350 { 4351 struct btrfs_fs_info *fs_info = root->fs_info; 4352 struct btrfs_path *path; 4353 struct btrfs_dir_item *di; 4354 struct btrfs_key key; 4355 struct fscrypt_str name = FSTR_INIT("default", 7); 4356 u64 dir_id; 4357 int ret; 4358 4359 path = btrfs_alloc_path(); 4360 if (!path) 4361 return -ENOMEM; 4362 4363 /* Make sure this root isn't set as the default subvol */ 4364 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4365 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4366 dir_id, &name, 0); 4367 if (di && !IS_ERR(di)) { 4368 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4369 if (key.objectid == root->root_key.objectid) { 4370 ret = -EPERM; 4371 btrfs_err(fs_info, 4372 "deleting default subvolume %llu is not allowed", 4373 key.objectid); 4374 goto out; 4375 } 4376 btrfs_release_path(path); 4377 } 4378 4379 key.objectid = root->root_key.objectid; 4380 key.type = BTRFS_ROOT_REF_KEY; 4381 key.offset = (u64)-1; 4382 4383 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4384 if (ret < 0) 4385 goto out; 4386 BUG_ON(ret == 0); 4387 4388 ret = 0; 4389 if (path->slots[0] > 0) { 4390 path->slots[0]--; 4391 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4392 if (key.objectid == root->root_key.objectid && 4393 key.type == BTRFS_ROOT_REF_KEY) 4394 ret = -ENOTEMPTY; 4395 } 4396 out: 4397 btrfs_free_path(path); 4398 return ret; 4399 } 4400 4401 /* Delete all dentries for inodes belonging to the root */ 4402 static void btrfs_prune_dentries(struct btrfs_root *root) 4403 { 4404 struct btrfs_fs_info *fs_info = root->fs_info; 4405 struct rb_node *node; 4406 struct rb_node *prev; 4407 struct btrfs_inode *entry; 4408 struct inode *inode; 4409 u64 objectid = 0; 4410 4411 if (!BTRFS_FS_ERROR(fs_info)) 4412 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4413 4414 spin_lock(&root->inode_lock); 4415 again: 4416 node = root->inode_tree.rb_node; 4417 prev = NULL; 4418 while (node) { 4419 prev = node; 4420 entry = rb_entry(node, struct btrfs_inode, rb_node); 4421 4422 if (objectid < btrfs_ino(entry)) 4423 node = node->rb_left; 4424 else if (objectid > btrfs_ino(entry)) 4425 node = node->rb_right; 4426 else 4427 break; 4428 } 4429 if (!node) { 4430 while (prev) { 4431 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4432 if (objectid <= btrfs_ino(entry)) { 4433 node = prev; 4434 break; 4435 } 4436 prev = rb_next(prev); 4437 } 4438 } 4439 while (node) { 4440 entry = rb_entry(node, struct btrfs_inode, rb_node); 4441 objectid = btrfs_ino(entry) + 1; 4442 inode = igrab(&entry->vfs_inode); 4443 if (inode) { 4444 spin_unlock(&root->inode_lock); 4445 if (atomic_read(&inode->i_count) > 1) 4446 d_prune_aliases(inode); 4447 /* 4448 * btrfs_drop_inode will have it removed from the inode 4449 * cache when its usage count hits zero. 4450 */ 4451 iput(inode); 4452 cond_resched(); 4453 spin_lock(&root->inode_lock); 4454 goto again; 4455 } 4456 4457 if (cond_resched_lock(&root->inode_lock)) 4458 goto again; 4459 4460 node = rb_next(node); 4461 } 4462 spin_unlock(&root->inode_lock); 4463 } 4464 4465 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4466 { 4467 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4468 struct btrfs_root *root = dir->root; 4469 struct inode *inode = d_inode(dentry); 4470 struct btrfs_root *dest = BTRFS_I(inode)->root; 4471 struct btrfs_trans_handle *trans; 4472 struct btrfs_block_rsv block_rsv; 4473 u64 root_flags; 4474 int ret; 4475 4476 down_write(&fs_info->subvol_sem); 4477 4478 /* 4479 * Don't allow to delete a subvolume with send in progress. This is 4480 * inside the inode lock so the error handling that has to drop the bit 4481 * again is not run concurrently. 4482 */ 4483 spin_lock(&dest->root_item_lock); 4484 if (dest->send_in_progress) { 4485 spin_unlock(&dest->root_item_lock); 4486 btrfs_warn(fs_info, 4487 "attempt to delete subvolume %llu during send", 4488 dest->root_key.objectid); 4489 ret = -EPERM; 4490 goto out_up_write; 4491 } 4492 if (atomic_read(&dest->nr_swapfiles)) { 4493 spin_unlock(&dest->root_item_lock); 4494 btrfs_warn(fs_info, 4495 "attempt to delete subvolume %llu with active swapfile", 4496 root->root_key.objectid); 4497 ret = -EPERM; 4498 goto out_up_write; 4499 } 4500 root_flags = btrfs_root_flags(&dest->root_item); 4501 btrfs_set_root_flags(&dest->root_item, 4502 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4503 spin_unlock(&dest->root_item_lock); 4504 4505 ret = may_destroy_subvol(dest); 4506 if (ret) 4507 goto out_undead; 4508 4509 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4510 /* 4511 * One for dir inode, 4512 * two for dir entries, 4513 * two for root ref/backref. 4514 */ 4515 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4516 if (ret) 4517 goto out_undead; 4518 4519 trans = btrfs_start_transaction(root, 0); 4520 if (IS_ERR(trans)) { 4521 ret = PTR_ERR(trans); 4522 goto out_release; 4523 } 4524 trans->block_rsv = &block_rsv; 4525 trans->bytes_reserved = block_rsv.size; 4526 4527 btrfs_record_snapshot_destroy(trans, dir); 4528 4529 ret = btrfs_unlink_subvol(trans, dir, dentry); 4530 if (ret) { 4531 btrfs_abort_transaction(trans, ret); 4532 goto out_end_trans; 4533 } 4534 4535 ret = btrfs_record_root_in_trans(trans, dest); 4536 if (ret) { 4537 btrfs_abort_transaction(trans, ret); 4538 goto out_end_trans; 4539 } 4540 4541 memset(&dest->root_item.drop_progress, 0, 4542 sizeof(dest->root_item.drop_progress)); 4543 btrfs_set_root_drop_level(&dest->root_item, 0); 4544 btrfs_set_root_refs(&dest->root_item, 0); 4545 4546 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4547 ret = btrfs_insert_orphan_item(trans, 4548 fs_info->tree_root, 4549 dest->root_key.objectid); 4550 if (ret) { 4551 btrfs_abort_transaction(trans, ret); 4552 goto out_end_trans; 4553 } 4554 } 4555 4556 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4557 BTRFS_UUID_KEY_SUBVOL, 4558 dest->root_key.objectid); 4559 if (ret && ret != -ENOENT) { 4560 btrfs_abort_transaction(trans, ret); 4561 goto out_end_trans; 4562 } 4563 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4564 ret = btrfs_uuid_tree_remove(trans, 4565 dest->root_item.received_uuid, 4566 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4567 dest->root_key.objectid); 4568 if (ret && ret != -ENOENT) { 4569 btrfs_abort_transaction(trans, ret); 4570 goto out_end_trans; 4571 } 4572 } 4573 4574 free_anon_bdev(dest->anon_dev); 4575 dest->anon_dev = 0; 4576 out_end_trans: 4577 trans->block_rsv = NULL; 4578 trans->bytes_reserved = 0; 4579 ret = btrfs_end_transaction(trans); 4580 inode->i_flags |= S_DEAD; 4581 out_release: 4582 btrfs_subvolume_release_metadata(root, &block_rsv); 4583 out_undead: 4584 if (ret) { 4585 spin_lock(&dest->root_item_lock); 4586 root_flags = btrfs_root_flags(&dest->root_item); 4587 btrfs_set_root_flags(&dest->root_item, 4588 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4589 spin_unlock(&dest->root_item_lock); 4590 } 4591 out_up_write: 4592 up_write(&fs_info->subvol_sem); 4593 if (!ret) { 4594 d_invalidate(dentry); 4595 btrfs_prune_dentries(dest); 4596 ASSERT(dest->send_in_progress == 0); 4597 } 4598 4599 return ret; 4600 } 4601 4602 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4603 { 4604 struct inode *inode = d_inode(dentry); 4605 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4606 int err = 0; 4607 struct btrfs_trans_handle *trans; 4608 u64 last_unlink_trans; 4609 struct fscrypt_name fname; 4610 4611 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4612 return -ENOTEMPTY; 4613 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4614 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4615 btrfs_err(fs_info, 4616 "extent tree v2 doesn't support snapshot deletion yet"); 4617 return -EOPNOTSUPP; 4618 } 4619 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4620 } 4621 4622 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4623 if (err) 4624 return err; 4625 4626 /* This needs to handle no-key deletions later on */ 4627 4628 trans = __unlink_start_trans(BTRFS_I(dir)); 4629 if (IS_ERR(trans)) { 4630 err = PTR_ERR(trans); 4631 goto out_notrans; 4632 } 4633 4634 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4635 err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4636 goto out; 4637 } 4638 4639 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4640 if (err) 4641 goto out; 4642 4643 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4644 4645 /* now the directory is empty */ 4646 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4647 &fname.disk_name); 4648 if (!err) { 4649 btrfs_i_size_write(BTRFS_I(inode), 0); 4650 /* 4651 * Propagate the last_unlink_trans value of the deleted dir to 4652 * its parent directory. This is to prevent an unrecoverable 4653 * log tree in the case we do something like this: 4654 * 1) create dir foo 4655 * 2) create snapshot under dir foo 4656 * 3) delete the snapshot 4657 * 4) rmdir foo 4658 * 5) mkdir foo 4659 * 6) fsync foo or some file inside foo 4660 */ 4661 if (last_unlink_trans >= trans->transid) 4662 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4663 } 4664 out: 4665 btrfs_end_transaction(trans); 4666 out_notrans: 4667 btrfs_btree_balance_dirty(fs_info); 4668 fscrypt_free_filename(&fname); 4669 4670 return err; 4671 } 4672 4673 /* 4674 * Read, zero a chunk and write a block. 4675 * 4676 * @inode - inode that we're zeroing 4677 * @from - the offset to start zeroing 4678 * @len - the length to zero, 0 to zero the entire range respective to the 4679 * offset 4680 * @front - zero up to the offset instead of from the offset on 4681 * 4682 * This will find the block for the "from" offset and cow the block and zero the 4683 * part we want to zero. This is used with truncate and hole punching. 4684 */ 4685 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4686 int front) 4687 { 4688 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4689 struct address_space *mapping = inode->vfs_inode.i_mapping; 4690 struct extent_io_tree *io_tree = &inode->io_tree; 4691 struct btrfs_ordered_extent *ordered; 4692 struct extent_state *cached_state = NULL; 4693 struct extent_changeset *data_reserved = NULL; 4694 bool only_release_metadata = false; 4695 u32 blocksize = fs_info->sectorsize; 4696 pgoff_t index = from >> PAGE_SHIFT; 4697 unsigned offset = from & (blocksize - 1); 4698 struct page *page; 4699 gfp_t mask = btrfs_alloc_write_mask(mapping); 4700 size_t write_bytes = blocksize; 4701 int ret = 0; 4702 u64 block_start; 4703 u64 block_end; 4704 4705 if (IS_ALIGNED(offset, blocksize) && 4706 (!len || IS_ALIGNED(len, blocksize))) 4707 goto out; 4708 4709 block_start = round_down(from, blocksize); 4710 block_end = block_start + blocksize - 1; 4711 4712 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4713 blocksize, false); 4714 if (ret < 0) { 4715 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4716 /* For nocow case, no need to reserve data space */ 4717 only_release_metadata = true; 4718 } else { 4719 goto out; 4720 } 4721 } 4722 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4723 if (ret < 0) { 4724 if (!only_release_metadata) 4725 btrfs_free_reserved_data_space(inode, data_reserved, 4726 block_start, blocksize); 4727 goto out; 4728 } 4729 again: 4730 page = find_or_create_page(mapping, index, mask); 4731 if (!page) { 4732 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4733 blocksize, true); 4734 btrfs_delalloc_release_extents(inode, blocksize); 4735 ret = -ENOMEM; 4736 goto out; 4737 } 4738 4739 if (!PageUptodate(page)) { 4740 ret = btrfs_read_folio(NULL, page_folio(page)); 4741 lock_page(page); 4742 if (page->mapping != mapping) { 4743 unlock_page(page); 4744 put_page(page); 4745 goto again; 4746 } 4747 if (!PageUptodate(page)) { 4748 ret = -EIO; 4749 goto out_unlock; 4750 } 4751 } 4752 4753 /* 4754 * We unlock the page after the io is completed and then re-lock it 4755 * above. release_folio() could have come in between that and cleared 4756 * folio private, but left the page in the mapping. Set the page mapped 4757 * here to make sure it's properly set for the subpage stuff. 4758 */ 4759 ret = set_page_extent_mapped(page); 4760 if (ret < 0) 4761 goto out_unlock; 4762 4763 wait_on_page_writeback(page); 4764 4765 lock_extent(io_tree, block_start, block_end, &cached_state); 4766 4767 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4768 if (ordered) { 4769 unlock_extent(io_tree, block_start, block_end, &cached_state); 4770 unlock_page(page); 4771 put_page(page); 4772 btrfs_start_ordered_extent(ordered); 4773 btrfs_put_ordered_extent(ordered); 4774 goto again; 4775 } 4776 4777 clear_extent_bit(&inode->io_tree, block_start, block_end, 4778 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4779 &cached_state); 4780 4781 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4782 &cached_state); 4783 if (ret) { 4784 unlock_extent(io_tree, block_start, block_end, &cached_state); 4785 goto out_unlock; 4786 } 4787 4788 if (offset != blocksize) { 4789 if (!len) 4790 len = blocksize - offset; 4791 if (front) 4792 memzero_page(page, (block_start - page_offset(page)), 4793 offset); 4794 else 4795 memzero_page(page, (block_start - page_offset(page)) + offset, 4796 len); 4797 } 4798 btrfs_folio_clear_checked(fs_info, page_folio(page), block_start, 4799 block_end + 1 - block_start); 4800 btrfs_folio_set_dirty(fs_info, page_folio(page), block_start, 4801 block_end + 1 - block_start); 4802 unlock_extent(io_tree, block_start, block_end, &cached_state); 4803 4804 if (only_release_metadata) 4805 set_extent_bit(&inode->io_tree, block_start, block_end, 4806 EXTENT_NORESERVE, NULL); 4807 4808 out_unlock: 4809 if (ret) { 4810 if (only_release_metadata) 4811 btrfs_delalloc_release_metadata(inode, blocksize, true); 4812 else 4813 btrfs_delalloc_release_space(inode, data_reserved, 4814 block_start, blocksize, true); 4815 } 4816 btrfs_delalloc_release_extents(inode, blocksize); 4817 unlock_page(page); 4818 put_page(page); 4819 out: 4820 if (only_release_metadata) 4821 btrfs_check_nocow_unlock(inode); 4822 extent_changeset_free(data_reserved); 4823 return ret; 4824 } 4825 4826 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4827 { 4828 struct btrfs_root *root = inode->root; 4829 struct btrfs_fs_info *fs_info = root->fs_info; 4830 struct btrfs_trans_handle *trans; 4831 struct btrfs_drop_extents_args drop_args = { 0 }; 4832 int ret; 4833 4834 /* 4835 * If NO_HOLES is enabled, we don't need to do anything. 4836 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4837 * or btrfs_update_inode() will be called, which guarantee that the next 4838 * fsync will know this inode was changed and needs to be logged. 4839 */ 4840 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4841 return 0; 4842 4843 /* 4844 * 1 - for the one we're dropping 4845 * 1 - for the one we're adding 4846 * 1 - for updating the inode. 4847 */ 4848 trans = btrfs_start_transaction(root, 3); 4849 if (IS_ERR(trans)) 4850 return PTR_ERR(trans); 4851 4852 drop_args.start = offset; 4853 drop_args.end = offset + len; 4854 drop_args.drop_cache = true; 4855 4856 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4857 if (ret) { 4858 btrfs_abort_transaction(trans, ret); 4859 btrfs_end_transaction(trans); 4860 return ret; 4861 } 4862 4863 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4864 if (ret) { 4865 btrfs_abort_transaction(trans, ret); 4866 } else { 4867 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4868 btrfs_update_inode(trans, inode); 4869 } 4870 btrfs_end_transaction(trans); 4871 return ret; 4872 } 4873 4874 /* 4875 * This function puts in dummy file extents for the area we're creating a hole 4876 * for. So if we are truncating this file to a larger size we need to insert 4877 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4878 * the range between oldsize and size 4879 */ 4880 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4881 { 4882 struct btrfs_root *root = inode->root; 4883 struct btrfs_fs_info *fs_info = root->fs_info; 4884 struct extent_io_tree *io_tree = &inode->io_tree; 4885 struct extent_map *em = NULL; 4886 struct extent_state *cached_state = NULL; 4887 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4888 u64 block_end = ALIGN(size, fs_info->sectorsize); 4889 u64 last_byte; 4890 u64 cur_offset; 4891 u64 hole_size; 4892 int err = 0; 4893 4894 /* 4895 * If our size started in the middle of a block we need to zero out the 4896 * rest of the block before we expand the i_size, otherwise we could 4897 * expose stale data. 4898 */ 4899 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4900 if (err) 4901 return err; 4902 4903 if (size <= hole_start) 4904 return 0; 4905 4906 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4907 &cached_state); 4908 cur_offset = hole_start; 4909 while (1) { 4910 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4911 block_end - cur_offset); 4912 if (IS_ERR(em)) { 4913 err = PTR_ERR(em); 4914 em = NULL; 4915 break; 4916 } 4917 last_byte = min(extent_map_end(em), block_end); 4918 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4919 hole_size = last_byte - cur_offset; 4920 4921 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 4922 struct extent_map *hole_em; 4923 4924 err = maybe_insert_hole(inode, cur_offset, hole_size); 4925 if (err) 4926 break; 4927 4928 err = btrfs_inode_set_file_extent_range(inode, 4929 cur_offset, hole_size); 4930 if (err) 4931 break; 4932 4933 hole_em = alloc_extent_map(); 4934 if (!hole_em) { 4935 btrfs_drop_extent_map_range(inode, cur_offset, 4936 cur_offset + hole_size - 1, 4937 false); 4938 btrfs_set_inode_full_sync(inode); 4939 goto next; 4940 } 4941 hole_em->start = cur_offset; 4942 hole_em->len = hole_size; 4943 hole_em->orig_start = cur_offset; 4944 4945 hole_em->block_start = EXTENT_MAP_HOLE; 4946 hole_em->block_len = 0; 4947 hole_em->orig_block_len = 0; 4948 hole_em->ram_bytes = hole_size; 4949 hole_em->generation = btrfs_get_fs_generation(fs_info); 4950 4951 err = btrfs_replace_extent_map_range(inode, hole_em, true); 4952 free_extent_map(hole_em); 4953 } else { 4954 err = btrfs_inode_set_file_extent_range(inode, 4955 cur_offset, hole_size); 4956 if (err) 4957 break; 4958 } 4959 next: 4960 free_extent_map(em); 4961 em = NULL; 4962 cur_offset = last_byte; 4963 if (cur_offset >= block_end) 4964 break; 4965 } 4966 free_extent_map(em); 4967 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 4968 return err; 4969 } 4970 4971 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4972 { 4973 struct btrfs_root *root = BTRFS_I(inode)->root; 4974 struct btrfs_trans_handle *trans; 4975 loff_t oldsize = i_size_read(inode); 4976 loff_t newsize = attr->ia_size; 4977 int mask = attr->ia_valid; 4978 int ret; 4979 4980 /* 4981 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4982 * special case where we need to update the times despite not having 4983 * these flags set. For all other operations the VFS set these flags 4984 * explicitly if it wants a timestamp update. 4985 */ 4986 if (newsize != oldsize) { 4987 inode_inc_iversion(inode); 4988 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 4989 inode_set_mtime_to_ts(inode, 4990 inode_set_ctime_current(inode)); 4991 } 4992 } 4993 4994 if (newsize > oldsize) { 4995 /* 4996 * Don't do an expanding truncate while snapshotting is ongoing. 4997 * This is to ensure the snapshot captures a fully consistent 4998 * state of this file - if the snapshot captures this expanding 4999 * truncation, it must capture all writes that happened before 5000 * this truncation. 5001 */ 5002 btrfs_drew_write_lock(&root->snapshot_lock); 5003 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5004 if (ret) { 5005 btrfs_drew_write_unlock(&root->snapshot_lock); 5006 return ret; 5007 } 5008 5009 trans = btrfs_start_transaction(root, 1); 5010 if (IS_ERR(trans)) { 5011 btrfs_drew_write_unlock(&root->snapshot_lock); 5012 return PTR_ERR(trans); 5013 } 5014 5015 i_size_write(inode, newsize); 5016 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5017 pagecache_isize_extended(inode, oldsize, newsize); 5018 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5019 btrfs_drew_write_unlock(&root->snapshot_lock); 5020 btrfs_end_transaction(trans); 5021 } else { 5022 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5023 5024 if (btrfs_is_zoned(fs_info)) { 5025 ret = btrfs_wait_ordered_range(inode, 5026 ALIGN(newsize, fs_info->sectorsize), 5027 (u64)-1); 5028 if (ret) 5029 return ret; 5030 } 5031 5032 /* 5033 * We're truncating a file that used to have good data down to 5034 * zero. Make sure any new writes to the file get on disk 5035 * on close. 5036 */ 5037 if (newsize == 0) 5038 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5039 &BTRFS_I(inode)->runtime_flags); 5040 5041 truncate_setsize(inode, newsize); 5042 5043 inode_dio_wait(inode); 5044 5045 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5046 if (ret && inode->i_nlink) { 5047 int err; 5048 5049 /* 5050 * Truncate failed, so fix up the in-memory size. We 5051 * adjusted disk_i_size down as we removed extents, so 5052 * wait for disk_i_size to be stable and then update the 5053 * in-memory size to match. 5054 */ 5055 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5056 if (err) 5057 return err; 5058 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5059 } 5060 } 5061 5062 return ret; 5063 } 5064 5065 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5066 struct iattr *attr) 5067 { 5068 struct inode *inode = d_inode(dentry); 5069 struct btrfs_root *root = BTRFS_I(inode)->root; 5070 int err; 5071 5072 if (btrfs_root_readonly(root)) 5073 return -EROFS; 5074 5075 err = setattr_prepare(idmap, dentry, attr); 5076 if (err) 5077 return err; 5078 5079 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5080 err = btrfs_setsize(inode, attr); 5081 if (err) 5082 return err; 5083 } 5084 5085 if (attr->ia_valid) { 5086 setattr_copy(idmap, inode, attr); 5087 inode_inc_iversion(inode); 5088 err = btrfs_dirty_inode(BTRFS_I(inode)); 5089 5090 if (!err && attr->ia_valid & ATTR_MODE) 5091 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5092 } 5093 5094 return err; 5095 } 5096 5097 /* 5098 * While truncating the inode pages during eviction, we get the VFS 5099 * calling btrfs_invalidate_folio() against each folio of the inode. This 5100 * is slow because the calls to btrfs_invalidate_folio() result in a 5101 * huge amount of calls to lock_extent() and clear_extent_bit(), 5102 * which keep merging and splitting extent_state structures over and over, 5103 * wasting lots of time. 5104 * 5105 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5106 * skip all those expensive operations on a per folio basis and do only 5107 * the ordered io finishing, while we release here the extent_map and 5108 * extent_state structures, without the excessive merging and splitting. 5109 */ 5110 static void evict_inode_truncate_pages(struct inode *inode) 5111 { 5112 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5113 struct rb_node *node; 5114 5115 ASSERT(inode->i_state & I_FREEING); 5116 truncate_inode_pages_final(&inode->i_data); 5117 5118 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5119 5120 /* 5121 * Keep looping until we have no more ranges in the io tree. 5122 * We can have ongoing bios started by readahead that have 5123 * their endio callback (extent_io.c:end_bio_extent_readpage) 5124 * still in progress (unlocked the pages in the bio but did not yet 5125 * unlocked the ranges in the io tree). Therefore this means some 5126 * ranges can still be locked and eviction started because before 5127 * submitting those bios, which are executed by a separate task (work 5128 * queue kthread), inode references (inode->i_count) were not taken 5129 * (which would be dropped in the end io callback of each bio). 5130 * Therefore here we effectively end up waiting for those bios and 5131 * anyone else holding locked ranges without having bumped the inode's 5132 * reference count - if we don't do it, when they access the inode's 5133 * io_tree to unlock a range it may be too late, leading to an 5134 * use-after-free issue. 5135 */ 5136 spin_lock(&io_tree->lock); 5137 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5138 struct extent_state *state; 5139 struct extent_state *cached_state = NULL; 5140 u64 start; 5141 u64 end; 5142 unsigned state_flags; 5143 5144 node = rb_first(&io_tree->state); 5145 state = rb_entry(node, struct extent_state, rb_node); 5146 start = state->start; 5147 end = state->end; 5148 state_flags = state->state; 5149 spin_unlock(&io_tree->lock); 5150 5151 lock_extent(io_tree, start, end, &cached_state); 5152 5153 /* 5154 * If still has DELALLOC flag, the extent didn't reach disk, 5155 * and its reserved space won't be freed by delayed_ref. 5156 * So we need to free its reserved space here. 5157 * (Refer to comment in btrfs_invalidate_folio, case 2) 5158 * 5159 * Note, end is the bytenr of last byte, so we need + 1 here. 5160 */ 5161 if (state_flags & EXTENT_DELALLOC) 5162 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5163 end - start + 1, NULL); 5164 5165 clear_extent_bit(io_tree, start, end, 5166 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5167 &cached_state); 5168 5169 cond_resched(); 5170 spin_lock(&io_tree->lock); 5171 } 5172 spin_unlock(&io_tree->lock); 5173 } 5174 5175 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5176 struct btrfs_block_rsv *rsv) 5177 { 5178 struct btrfs_fs_info *fs_info = root->fs_info; 5179 struct btrfs_trans_handle *trans; 5180 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5181 int ret; 5182 5183 /* 5184 * Eviction should be taking place at some place safe because of our 5185 * delayed iputs. However the normal flushing code will run delayed 5186 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5187 * 5188 * We reserve the delayed_refs_extra here again because we can't use 5189 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5190 * above. We reserve our extra bit here because we generate a ton of 5191 * delayed refs activity by truncating. 5192 * 5193 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5194 * if we fail to make this reservation we can re-try without the 5195 * delayed_refs_extra so we can make some forward progress. 5196 */ 5197 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5198 BTRFS_RESERVE_FLUSH_EVICT); 5199 if (ret) { 5200 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5201 BTRFS_RESERVE_FLUSH_EVICT); 5202 if (ret) { 5203 btrfs_warn(fs_info, 5204 "could not allocate space for delete; will truncate on mount"); 5205 return ERR_PTR(-ENOSPC); 5206 } 5207 delayed_refs_extra = 0; 5208 } 5209 5210 trans = btrfs_join_transaction(root); 5211 if (IS_ERR(trans)) 5212 return trans; 5213 5214 if (delayed_refs_extra) { 5215 trans->block_rsv = &fs_info->trans_block_rsv; 5216 trans->bytes_reserved = delayed_refs_extra; 5217 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5218 delayed_refs_extra, true); 5219 } 5220 return trans; 5221 } 5222 5223 void btrfs_evict_inode(struct inode *inode) 5224 { 5225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5226 struct btrfs_trans_handle *trans; 5227 struct btrfs_root *root = BTRFS_I(inode)->root; 5228 struct btrfs_block_rsv *rsv = NULL; 5229 int ret; 5230 5231 trace_btrfs_inode_evict(inode); 5232 5233 if (!root) { 5234 fsverity_cleanup_inode(inode); 5235 clear_inode(inode); 5236 return; 5237 } 5238 5239 evict_inode_truncate_pages(inode); 5240 5241 if (inode->i_nlink && 5242 ((btrfs_root_refs(&root->root_item) != 0 && 5243 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5244 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5245 goto out; 5246 5247 if (is_bad_inode(inode)) 5248 goto out; 5249 5250 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5251 goto out; 5252 5253 if (inode->i_nlink > 0) { 5254 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5255 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5256 goto out; 5257 } 5258 5259 /* 5260 * This makes sure the inode item in tree is uptodate and the space for 5261 * the inode update is released. 5262 */ 5263 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5264 if (ret) 5265 goto out; 5266 5267 /* 5268 * This drops any pending insert or delete operations we have for this 5269 * inode. We could have a delayed dir index deletion queued up, but 5270 * we're removing the inode completely so that'll be taken care of in 5271 * the truncate. 5272 */ 5273 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5274 5275 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5276 if (!rsv) 5277 goto out; 5278 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5279 rsv->failfast = true; 5280 5281 btrfs_i_size_write(BTRFS_I(inode), 0); 5282 5283 while (1) { 5284 struct btrfs_truncate_control control = { 5285 .inode = BTRFS_I(inode), 5286 .ino = btrfs_ino(BTRFS_I(inode)), 5287 .new_size = 0, 5288 .min_type = 0, 5289 }; 5290 5291 trans = evict_refill_and_join(root, rsv); 5292 if (IS_ERR(trans)) 5293 goto out; 5294 5295 trans->block_rsv = rsv; 5296 5297 ret = btrfs_truncate_inode_items(trans, root, &control); 5298 trans->block_rsv = &fs_info->trans_block_rsv; 5299 btrfs_end_transaction(trans); 5300 /* 5301 * We have not added new delayed items for our inode after we 5302 * have flushed its delayed items, so no need to throttle on 5303 * delayed items. However we have modified extent buffers. 5304 */ 5305 btrfs_btree_balance_dirty_nodelay(fs_info); 5306 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5307 goto out; 5308 else if (!ret) 5309 break; 5310 } 5311 5312 /* 5313 * Errors here aren't a big deal, it just means we leave orphan items in 5314 * the tree. They will be cleaned up on the next mount. If the inode 5315 * number gets reused, cleanup deletes the orphan item without doing 5316 * anything, and unlink reuses the existing orphan item. 5317 * 5318 * If it turns out that we are dropping too many of these, we might want 5319 * to add a mechanism for retrying these after a commit. 5320 */ 5321 trans = evict_refill_and_join(root, rsv); 5322 if (!IS_ERR(trans)) { 5323 trans->block_rsv = rsv; 5324 btrfs_orphan_del(trans, BTRFS_I(inode)); 5325 trans->block_rsv = &fs_info->trans_block_rsv; 5326 btrfs_end_transaction(trans); 5327 } 5328 5329 out: 5330 btrfs_free_block_rsv(fs_info, rsv); 5331 /* 5332 * If we didn't successfully delete, the orphan item will still be in 5333 * the tree and we'll retry on the next mount. Again, we might also want 5334 * to retry these periodically in the future. 5335 */ 5336 btrfs_remove_delayed_node(BTRFS_I(inode)); 5337 fsverity_cleanup_inode(inode); 5338 clear_inode(inode); 5339 } 5340 5341 /* 5342 * Return the key found in the dir entry in the location pointer, fill @type 5343 * with BTRFS_FT_*, and return 0. 5344 * 5345 * If no dir entries were found, returns -ENOENT. 5346 * If found a corrupted location in dir entry, returns -EUCLEAN. 5347 */ 5348 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5349 struct btrfs_key *location, u8 *type) 5350 { 5351 struct btrfs_dir_item *di; 5352 struct btrfs_path *path; 5353 struct btrfs_root *root = dir->root; 5354 int ret = 0; 5355 struct fscrypt_name fname; 5356 5357 path = btrfs_alloc_path(); 5358 if (!path) 5359 return -ENOMEM; 5360 5361 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5362 if (ret < 0) 5363 goto out; 5364 /* 5365 * fscrypt_setup_filename() should never return a positive value, but 5366 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5367 */ 5368 ASSERT(ret == 0); 5369 5370 /* This needs to handle no-key deletions later on */ 5371 5372 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5373 &fname.disk_name, 0); 5374 if (IS_ERR_OR_NULL(di)) { 5375 ret = di ? PTR_ERR(di) : -ENOENT; 5376 goto out; 5377 } 5378 5379 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5380 if (location->type != BTRFS_INODE_ITEM_KEY && 5381 location->type != BTRFS_ROOT_ITEM_KEY) { 5382 ret = -EUCLEAN; 5383 btrfs_warn(root->fs_info, 5384 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5385 __func__, fname.disk_name.name, btrfs_ino(dir), 5386 location->objectid, location->type, location->offset); 5387 } 5388 if (!ret) 5389 *type = btrfs_dir_ftype(path->nodes[0], di); 5390 out: 5391 fscrypt_free_filename(&fname); 5392 btrfs_free_path(path); 5393 return ret; 5394 } 5395 5396 /* 5397 * when we hit a tree root in a directory, the btrfs part of the inode 5398 * needs to be changed to reflect the root directory of the tree root. This 5399 * is kind of like crossing a mount point. 5400 */ 5401 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5402 struct btrfs_inode *dir, 5403 struct dentry *dentry, 5404 struct btrfs_key *location, 5405 struct btrfs_root **sub_root) 5406 { 5407 struct btrfs_path *path; 5408 struct btrfs_root *new_root; 5409 struct btrfs_root_ref *ref; 5410 struct extent_buffer *leaf; 5411 struct btrfs_key key; 5412 int ret; 5413 int err = 0; 5414 struct fscrypt_name fname; 5415 5416 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5417 if (ret) 5418 return ret; 5419 5420 path = btrfs_alloc_path(); 5421 if (!path) { 5422 err = -ENOMEM; 5423 goto out; 5424 } 5425 5426 err = -ENOENT; 5427 key.objectid = dir->root->root_key.objectid; 5428 key.type = BTRFS_ROOT_REF_KEY; 5429 key.offset = location->objectid; 5430 5431 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5432 if (ret) { 5433 if (ret < 0) 5434 err = ret; 5435 goto out; 5436 } 5437 5438 leaf = path->nodes[0]; 5439 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5440 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5441 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5442 goto out; 5443 5444 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5445 (unsigned long)(ref + 1), fname.disk_name.len); 5446 if (ret) 5447 goto out; 5448 5449 btrfs_release_path(path); 5450 5451 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5452 if (IS_ERR(new_root)) { 5453 err = PTR_ERR(new_root); 5454 goto out; 5455 } 5456 5457 *sub_root = new_root; 5458 location->objectid = btrfs_root_dirid(&new_root->root_item); 5459 location->type = BTRFS_INODE_ITEM_KEY; 5460 location->offset = 0; 5461 err = 0; 5462 out: 5463 btrfs_free_path(path); 5464 fscrypt_free_filename(&fname); 5465 return err; 5466 } 5467 5468 static void inode_tree_add(struct btrfs_inode *inode) 5469 { 5470 struct btrfs_root *root = inode->root; 5471 struct btrfs_inode *entry; 5472 struct rb_node **p; 5473 struct rb_node *parent; 5474 struct rb_node *new = &inode->rb_node; 5475 u64 ino = btrfs_ino(inode); 5476 5477 if (inode_unhashed(&inode->vfs_inode)) 5478 return; 5479 parent = NULL; 5480 spin_lock(&root->inode_lock); 5481 p = &root->inode_tree.rb_node; 5482 while (*p) { 5483 parent = *p; 5484 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5485 5486 if (ino < btrfs_ino(entry)) 5487 p = &parent->rb_left; 5488 else if (ino > btrfs_ino(entry)) 5489 p = &parent->rb_right; 5490 else { 5491 WARN_ON(!(entry->vfs_inode.i_state & 5492 (I_WILL_FREE | I_FREEING))); 5493 rb_replace_node(parent, new, &root->inode_tree); 5494 RB_CLEAR_NODE(parent); 5495 spin_unlock(&root->inode_lock); 5496 return; 5497 } 5498 } 5499 rb_link_node(new, parent, p); 5500 rb_insert_color(new, &root->inode_tree); 5501 spin_unlock(&root->inode_lock); 5502 } 5503 5504 static void inode_tree_del(struct btrfs_inode *inode) 5505 { 5506 struct btrfs_root *root = inode->root; 5507 int empty = 0; 5508 5509 spin_lock(&root->inode_lock); 5510 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5511 rb_erase(&inode->rb_node, &root->inode_tree); 5512 RB_CLEAR_NODE(&inode->rb_node); 5513 empty = RB_EMPTY_ROOT(&root->inode_tree); 5514 } 5515 spin_unlock(&root->inode_lock); 5516 5517 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5518 spin_lock(&root->inode_lock); 5519 empty = RB_EMPTY_ROOT(&root->inode_tree); 5520 spin_unlock(&root->inode_lock); 5521 if (empty) 5522 btrfs_add_dead_root(root); 5523 } 5524 } 5525 5526 5527 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5528 { 5529 struct btrfs_iget_args *args = p; 5530 5531 inode->i_ino = args->ino; 5532 BTRFS_I(inode)->location.objectid = args->ino; 5533 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5534 BTRFS_I(inode)->location.offset = 0; 5535 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5536 BUG_ON(args->root && !BTRFS_I(inode)->root); 5537 5538 if (args->root && args->root == args->root->fs_info->tree_root && 5539 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5540 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5541 &BTRFS_I(inode)->runtime_flags); 5542 return 0; 5543 } 5544 5545 static int btrfs_find_actor(struct inode *inode, void *opaque) 5546 { 5547 struct btrfs_iget_args *args = opaque; 5548 5549 return args->ino == BTRFS_I(inode)->location.objectid && 5550 args->root == BTRFS_I(inode)->root; 5551 } 5552 5553 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5554 struct btrfs_root *root) 5555 { 5556 struct inode *inode; 5557 struct btrfs_iget_args args; 5558 unsigned long hashval = btrfs_inode_hash(ino, root); 5559 5560 args.ino = ino; 5561 args.root = root; 5562 5563 inode = iget5_locked(s, hashval, btrfs_find_actor, 5564 btrfs_init_locked_inode, 5565 (void *)&args); 5566 return inode; 5567 } 5568 5569 /* 5570 * Get an inode object given its inode number and corresponding root. 5571 * Path can be preallocated to prevent recursing back to iget through 5572 * allocator. NULL is also valid but may require an additional allocation 5573 * later. 5574 */ 5575 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5576 struct btrfs_root *root, struct btrfs_path *path) 5577 { 5578 struct inode *inode; 5579 5580 inode = btrfs_iget_locked(s, ino, root); 5581 if (!inode) 5582 return ERR_PTR(-ENOMEM); 5583 5584 if (inode->i_state & I_NEW) { 5585 int ret; 5586 5587 ret = btrfs_read_locked_inode(inode, path); 5588 if (!ret) { 5589 inode_tree_add(BTRFS_I(inode)); 5590 unlock_new_inode(inode); 5591 } else { 5592 iget_failed(inode); 5593 /* 5594 * ret > 0 can come from btrfs_search_slot called by 5595 * btrfs_read_locked_inode, this means the inode item 5596 * was not found. 5597 */ 5598 if (ret > 0) 5599 ret = -ENOENT; 5600 inode = ERR_PTR(ret); 5601 } 5602 } 5603 5604 return inode; 5605 } 5606 5607 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5608 { 5609 return btrfs_iget_path(s, ino, root, NULL); 5610 } 5611 5612 static struct inode *new_simple_dir(struct inode *dir, 5613 struct btrfs_key *key, 5614 struct btrfs_root *root) 5615 { 5616 struct timespec64 ts; 5617 struct inode *inode = new_inode(dir->i_sb); 5618 5619 if (!inode) 5620 return ERR_PTR(-ENOMEM); 5621 5622 BTRFS_I(inode)->root = btrfs_grab_root(root); 5623 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5624 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5625 5626 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5627 /* 5628 * We only need lookup, the rest is read-only and there's no inode 5629 * associated with the dentry 5630 */ 5631 inode->i_op = &simple_dir_inode_operations; 5632 inode->i_opflags &= ~IOP_XATTR; 5633 inode->i_fop = &simple_dir_operations; 5634 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5635 5636 ts = inode_set_ctime_current(inode); 5637 inode_set_mtime_to_ts(inode, ts); 5638 inode_set_atime_to_ts(inode, inode_get_atime(dir)); 5639 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 5640 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 5641 5642 inode->i_uid = dir->i_uid; 5643 inode->i_gid = dir->i_gid; 5644 5645 return inode; 5646 } 5647 5648 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5649 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5650 static_assert(BTRFS_FT_DIR == FT_DIR); 5651 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5652 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5653 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5654 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5655 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5656 5657 static inline u8 btrfs_inode_type(struct inode *inode) 5658 { 5659 return fs_umode_to_ftype(inode->i_mode); 5660 } 5661 5662 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5663 { 5664 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5665 struct inode *inode; 5666 struct btrfs_root *root = BTRFS_I(dir)->root; 5667 struct btrfs_root *sub_root = root; 5668 struct btrfs_key location; 5669 u8 di_type = 0; 5670 int ret = 0; 5671 5672 if (dentry->d_name.len > BTRFS_NAME_LEN) 5673 return ERR_PTR(-ENAMETOOLONG); 5674 5675 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5676 if (ret < 0) 5677 return ERR_PTR(ret); 5678 5679 if (location.type == BTRFS_INODE_ITEM_KEY) { 5680 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5681 if (IS_ERR(inode)) 5682 return inode; 5683 5684 /* Do extra check against inode mode with di_type */ 5685 if (btrfs_inode_type(inode) != di_type) { 5686 btrfs_crit(fs_info, 5687 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5688 inode->i_mode, btrfs_inode_type(inode), 5689 di_type); 5690 iput(inode); 5691 return ERR_PTR(-EUCLEAN); 5692 } 5693 return inode; 5694 } 5695 5696 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5697 &location, &sub_root); 5698 if (ret < 0) { 5699 if (ret != -ENOENT) 5700 inode = ERR_PTR(ret); 5701 else 5702 inode = new_simple_dir(dir, &location, root); 5703 } else { 5704 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5705 btrfs_put_root(sub_root); 5706 5707 if (IS_ERR(inode)) 5708 return inode; 5709 5710 down_read(&fs_info->cleanup_work_sem); 5711 if (!sb_rdonly(inode->i_sb)) 5712 ret = btrfs_orphan_cleanup(sub_root); 5713 up_read(&fs_info->cleanup_work_sem); 5714 if (ret) { 5715 iput(inode); 5716 inode = ERR_PTR(ret); 5717 } 5718 } 5719 5720 return inode; 5721 } 5722 5723 static int btrfs_dentry_delete(const struct dentry *dentry) 5724 { 5725 struct btrfs_root *root; 5726 struct inode *inode = d_inode(dentry); 5727 5728 if (!inode && !IS_ROOT(dentry)) 5729 inode = d_inode(dentry->d_parent); 5730 5731 if (inode) { 5732 root = BTRFS_I(inode)->root; 5733 if (btrfs_root_refs(&root->root_item) == 0) 5734 return 1; 5735 5736 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5737 return 1; 5738 } 5739 return 0; 5740 } 5741 5742 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5743 unsigned int flags) 5744 { 5745 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5746 5747 if (inode == ERR_PTR(-ENOENT)) 5748 inode = NULL; 5749 return d_splice_alias(inode, dentry); 5750 } 5751 5752 /* 5753 * Find the highest existing sequence number in a directory and then set the 5754 * in-memory index_cnt variable to the first free sequence number. 5755 */ 5756 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5757 { 5758 struct btrfs_root *root = inode->root; 5759 struct btrfs_key key, found_key; 5760 struct btrfs_path *path; 5761 struct extent_buffer *leaf; 5762 int ret; 5763 5764 key.objectid = btrfs_ino(inode); 5765 key.type = BTRFS_DIR_INDEX_KEY; 5766 key.offset = (u64)-1; 5767 5768 path = btrfs_alloc_path(); 5769 if (!path) 5770 return -ENOMEM; 5771 5772 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5773 if (ret < 0) 5774 goto out; 5775 /* FIXME: we should be able to handle this */ 5776 if (ret == 0) 5777 goto out; 5778 ret = 0; 5779 5780 if (path->slots[0] == 0) { 5781 inode->index_cnt = BTRFS_DIR_START_INDEX; 5782 goto out; 5783 } 5784 5785 path->slots[0]--; 5786 5787 leaf = path->nodes[0]; 5788 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5789 5790 if (found_key.objectid != btrfs_ino(inode) || 5791 found_key.type != BTRFS_DIR_INDEX_KEY) { 5792 inode->index_cnt = BTRFS_DIR_START_INDEX; 5793 goto out; 5794 } 5795 5796 inode->index_cnt = found_key.offset + 1; 5797 out: 5798 btrfs_free_path(path); 5799 return ret; 5800 } 5801 5802 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5803 { 5804 int ret = 0; 5805 5806 btrfs_inode_lock(dir, 0); 5807 if (dir->index_cnt == (u64)-1) { 5808 ret = btrfs_inode_delayed_dir_index_count(dir); 5809 if (ret) { 5810 ret = btrfs_set_inode_index_count(dir); 5811 if (ret) 5812 goto out; 5813 } 5814 } 5815 5816 /* index_cnt is the index number of next new entry, so decrement it. */ 5817 *index = dir->index_cnt - 1; 5818 out: 5819 btrfs_inode_unlock(dir, 0); 5820 5821 return ret; 5822 } 5823 5824 /* 5825 * All this infrastructure exists because dir_emit can fault, and we are holding 5826 * the tree lock when doing readdir. For now just allocate a buffer and copy 5827 * our information into that, and then dir_emit from the buffer. This is 5828 * similar to what NFS does, only we don't keep the buffer around in pagecache 5829 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5830 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5831 * tree lock. 5832 */ 5833 static int btrfs_opendir(struct inode *inode, struct file *file) 5834 { 5835 struct btrfs_file_private *private; 5836 u64 last_index; 5837 int ret; 5838 5839 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5840 if (ret) 5841 return ret; 5842 5843 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5844 if (!private) 5845 return -ENOMEM; 5846 private->last_index = last_index; 5847 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5848 if (!private->filldir_buf) { 5849 kfree(private); 5850 return -ENOMEM; 5851 } 5852 file->private_data = private; 5853 return 0; 5854 } 5855 5856 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5857 { 5858 struct btrfs_file_private *private = file->private_data; 5859 int ret; 5860 5861 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5862 &private->last_index); 5863 if (ret) 5864 return ret; 5865 5866 return generic_file_llseek(file, offset, whence); 5867 } 5868 5869 struct dir_entry { 5870 u64 ino; 5871 u64 offset; 5872 unsigned type; 5873 int name_len; 5874 }; 5875 5876 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5877 { 5878 while (entries--) { 5879 struct dir_entry *entry = addr; 5880 char *name = (char *)(entry + 1); 5881 5882 ctx->pos = get_unaligned(&entry->offset); 5883 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5884 get_unaligned(&entry->ino), 5885 get_unaligned(&entry->type))) 5886 return 1; 5887 addr += sizeof(struct dir_entry) + 5888 get_unaligned(&entry->name_len); 5889 ctx->pos++; 5890 } 5891 return 0; 5892 } 5893 5894 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5895 { 5896 struct inode *inode = file_inode(file); 5897 struct btrfs_root *root = BTRFS_I(inode)->root; 5898 struct btrfs_file_private *private = file->private_data; 5899 struct btrfs_dir_item *di; 5900 struct btrfs_key key; 5901 struct btrfs_key found_key; 5902 struct btrfs_path *path; 5903 void *addr; 5904 LIST_HEAD(ins_list); 5905 LIST_HEAD(del_list); 5906 int ret; 5907 char *name_ptr; 5908 int name_len; 5909 int entries = 0; 5910 int total_len = 0; 5911 bool put = false; 5912 struct btrfs_key location; 5913 5914 if (!dir_emit_dots(file, ctx)) 5915 return 0; 5916 5917 path = btrfs_alloc_path(); 5918 if (!path) 5919 return -ENOMEM; 5920 5921 addr = private->filldir_buf; 5922 path->reada = READA_FORWARD; 5923 5924 put = btrfs_readdir_get_delayed_items(inode, private->last_index, 5925 &ins_list, &del_list); 5926 5927 again: 5928 key.type = BTRFS_DIR_INDEX_KEY; 5929 key.offset = ctx->pos; 5930 key.objectid = btrfs_ino(BTRFS_I(inode)); 5931 5932 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 5933 struct dir_entry *entry; 5934 struct extent_buffer *leaf = path->nodes[0]; 5935 u8 ftype; 5936 5937 if (found_key.objectid != key.objectid) 5938 break; 5939 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5940 break; 5941 if (found_key.offset < ctx->pos) 5942 continue; 5943 if (found_key.offset > private->last_index) 5944 break; 5945 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5946 continue; 5947 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 5948 name_len = btrfs_dir_name_len(leaf, di); 5949 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5950 PAGE_SIZE) { 5951 btrfs_release_path(path); 5952 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5953 if (ret) 5954 goto nopos; 5955 addr = private->filldir_buf; 5956 entries = 0; 5957 total_len = 0; 5958 goto again; 5959 } 5960 5961 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 5962 entry = addr; 5963 name_ptr = (char *)(entry + 1); 5964 read_extent_buffer(leaf, name_ptr, 5965 (unsigned long)(di + 1), name_len); 5966 put_unaligned(name_len, &entry->name_len); 5967 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 5968 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5969 put_unaligned(location.objectid, &entry->ino); 5970 put_unaligned(found_key.offset, &entry->offset); 5971 entries++; 5972 addr += sizeof(struct dir_entry) + name_len; 5973 total_len += sizeof(struct dir_entry) + name_len; 5974 } 5975 /* Catch error encountered during iteration */ 5976 if (ret < 0) 5977 goto err; 5978 5979 btrfs_release_path(path); 5980 5981 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5982 if (ret) 5983 goto nopos; 5984 5985 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5986 if (ret) 5987 goto nopos; 5988 5989 /* 5990 * Stop new entries from being returned after we return the last 5991 * entry. 5992 * 5993 * New directory entries are assigned a strictly increasing 5994 * offset. This means that new entries created during readdir 5995 * are *guaranteed* to be seen in the future by that readdir. 5996 * This has broken buggy programs which operate on names as 5997 * they're returned by readdir. Until we re-use freed offsets 5998 * we have this hack to stop new entries from being returned 5999 * under the assumption that they'll never reach this huge 6000 * offset. 6001 * 6002 * This is being careful not to overflow 32bit loff_t unless the 6003 * last entry requires it because doing so has broken 32bit apps 6004 * in the past. 6005 */ 6006 if (ctx->pos >= INT_MAX) 6007 ctx->pos = LLONG_MAX; 6008 else 6009 ctx->pos = INT_MAX; 6010 nopos: 6011 ret = 0; 6012 err: 6013 if (put) 6014 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 6015 btrfs_free_path(path); 6016 return ret; 6017 } 6018 6019 /* 6020 * This is somewhat expensive, updating the tree every time the 6021 * inode changes. But, it is most likely to find the inode in cache. 6022 * FIXME, needs more benchmarking...there are no reasons other than performance 6023 * to keep or drop this code. 6024 */ 6025 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6026 { 6027 struct btrfs_root *root = inode->root; 6028 struct btrfs_fs_info *fs_info = root->fs_info; 6029 struct btrfs_trans_handle *trans; 6030 int ret; 6031 6032 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6033 return 0; 6034 6035 trans = btrfs_join_transaction(root); 6036 if (IS_ERR(trans)) 6037 return PTR_ERR(trans); 6038 6039 ret = btrfs_update_inode(trans, inode); 6040 if (ret == -ENOSPC || ret == -EDQUOT) { 6041 /* whoops, lets try again with the full transaction */ 6042 btrfs_end_transaction(trans); 6043 trans = btrfs_start_transaction(root, 1); 6044 if (IS_ERR(trans)) 6045 return PTR_ERR(trans); 6046 6047 ret = btrfs_update_inode(trans, inode); 6048 } 6049 btrfs_end_transaction(trans); 6050 if (inode->delayed_node) 6051 btrfs_balance_delayed_items(fs_info); 6052 6053 return ret; 6054 } 6055 6056 /* 6057 * This is a copy of file_update_time. We need this so we can return error on 6058 * ENOSPC for updating the inode in the case of file write and mmap writes. 6059 */ 6060 static int btrfs_update_time(struct inode *inode, int flags) 6061 { 6062 struct btrfs_root *root = BTRFS_I(inode)->root; 6063 bool dirty; 6064 6065 if (btrfs_root_readonly(root)) 6066 return -EROFS; 6067 6068 dirty = inode_update_timestamps(inode, flags); 6069 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6070 } 6071 6072 /* 6073 * helper to find a free sequence number in a given directory. This current 6074 * code is very simple, later versions will do smarter things in the btree 6075 */ 6076 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6077 { 6078 int ret = 0; 6079 6080 if (dir->index_cnt == (u64)-1) { 6081 ret = btrfs_inode_delayed_dir_index_count(dir); 6082 if (ret) { 6083 ret = btrfs_set_inode_index_count(dir); 6084 if (ret) 6085 return ret; 6086 } 6087 } 6088 6089 *index = dir->index_cnt; 6090 dir->index_cnt++; 6091 6092 return ret; 6093 } 6094 6095 static int btrfs_insert_inode_locked(struct inode *inode) 6096 { 6097 struct btrfs_iget_args args; 6098 6099 args.ino = BTRFS_I(inode)->location.objectid; 6100 args.root = BTRFS_I(inode)->root; 6101 6102 return insert_inode_locked4(inode, 6103 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6104 btrfs_find_actor, &args); 6105 } 6106 6107 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6108 unsigned int *trans_num_items) 6109 { 6110 struct inode *dir = args->dir; 6111 struct inode *inode = args->inode; 6112 int ret; 6113 6114 if (!args->orphan) { 6115 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6116 &args->fname); 6117 if (ret) 6118 return ret; 6119 } 6120 6121 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6122 if (ret) { 6123 fscrypt_free_filename(&args->fname); 6124 return ret; 6125 } 6126 6127 /* 1 to add inode item */ 6128 *trans_num_items = 1; 6129 /* 1 to add compression property */ 6130 if (BTRFS_I(dir)->prop_compress) 6131 (*trans_num_items)++; 6132 /* 1 to add default ACL xattr */ 6133 if (args->default_acl) 6134 (*trans_num_items)++; 6135 /* 1 to add access ACL xattr */ 6136 if (args->acl) 6137 (*trans_num_items)++; 6138 #ifdef CONFIG_SECURITY 6139 /* 1 to add LSM xattr */ 6140 if (dir->i_security) 6141 (*trans_num_items)++; 6142 #endif 6143 if (args->orphan) { 6144 /* 1 to add orphan item */ 6145 (*trans_num_items)++; 6146 } else { 6147 /* 6148 * 1 to add dir item 6149 * 1 to add dir index 6150 * 1 to update parent inode item 6151 * 6152 * No need for 1 unit for the inode ref item because it is 6153 * inserted in a batch together with the inode item at 6154 * btrfs_create_new_inode(). 6155 */ 6156 *trans_num_items += 3; 6157 } 6158 return 0; 6159 } 6160 6161 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6162 { 6163 posix_acl_release(args->acl); 6164 posix_acl_release(args->default_acl); 6165 fscrypt_free_filename(&args->fname); 6166 } 6167 6168 /* 6169 * Inherit flags from the parent inode. 6170 * 6171 * Currently only the compression flags and the cow flags are inherited. 6172 */ 6173 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6174 { 6175 unsigned int flags; 6176 6177 flags = dir->flags; 6178 6179 if (flags & BTRFS_INODE_NOCOMPRESS) { 6180 inode->flags &= ~BTRFS_INODE_COMPRESS; 6181 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6182 } else if (flags & BTRFS_INODE_COMPRESS) { 6183 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6184 inode->flags |= BTRFS_INODE_COMPRESS; 6185 } 6186 6187 if (flags & BTRFS_INODE_NODATACOW) { 6188 inode->flags |= BTRFS_INODE_NODATACOW; 6189 if (S_ISREG(inode->vfs_inode.i_mode)) 6190 inode->flags |= BTRFS_INODE_NODATASUM; 6191 } 6192 6193 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 6194 } 6195 6196 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6197 struct btrfs_new_inode_args *args) 6198 { 6199 struct timespec64 ts; 6200 struct inode *dir = args->dir; 6201 struct inode *inode = args->inode; 6202 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6203 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6204 struct btrfs_root *root; 6205 struct btrfs_inode_item *inode_item; 6206 struct btrfs_key *location; 6207 struct btrfs_path *path; 6208 u64 objectid; 6209 struct btrfs_inode_ref *ref; 6210 struct btrfs_key key[2]; 6211 u32 sizes[2]; 6212 struct btrfs_item_batch batch; 6213 unsigned long ptr; 6214 int ret; 6215 6216 path = btrfs_alloc_path(); 6217 if (!path) 6218 return -ENOMEM; 6219 6220 if (!args->subvol) 6221 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6222 root = BTRFS_I(inode)->root; 6223 6224 ret = btrfs_get_free_objectid(root, &objectid); 6225 if (ret) 6226 goto out; 6227 inode->i_ino = objectid; 6228 6229 if (args->orphan) { 6230 /* 6231 * O_TMPFILE, set link count to 0, so that after this point, we 6232 * fill in an inode item with the correct link count. 6233 */ 6234 set_nlink(inode, 0); 6235 } else { 6236 trace_btrfs_inode_request(dir); 6237 6238 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6239 if (ret) 6240 goto out; 6241 } 6242 /* index_cnt is ignored for everything but a dir. */ 6243 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6244 BTRFS_I(inode)->generation = trans->transid; 6245 inode->i_generation = BTRFS_I(inode)->generation; 6246 6247 /* 6248 * We don't have any capability xattrs set here yet, shortcut any 6249 * queries for the xattrs here. If we add them later via the inode 6250 * security init path or any other path this flag will be cleared. 6251 */ 6252 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6253 6254 /* 6255 * Subvolumes don't inherit flags from their parent directory. 6256 * Originally this was probably by accident, but we probably can't 6257 * change it now without compatibility issues. 6258 */ 6259 if (!args->subvol) 6260 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6261 6262 if (S_ISREG(inode->i_mode)) { 6263 if (btrfs_test_opt(fs_info, NODATASUM)) 6264 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6265 if (btrfs_test_opt(fs_info, NODATACOW)) 6266 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6267 BTRFS_INODE_NODATASUM; 6268 } 6269 6270 location = &BTRFS_I(inode)->location; 6271 location->objectid = objectid; 6272 location->offset = 0; 6273 location->type = BTRFS_INODE_ITEM_KEY; 6274 6275 ret = btrfs_insert_inode_locked(inode); 6276 if (ret < 0) { 6277 if (!args->orphan) 6278 BTRFS_I(dir)->index_cnt--; 6279 goto out; 6280 } 6281 6282 /* 6283 * We could have gotten an inode number from somebody who was fsynced 6284 * and then removed in this same transaction, so let's just set full 6285 * sync since it will be a full sync anyway and this will blow away the 6286 * old info in the log. 6287 */ 6288 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6289 6290 key[0].objectid = objectid; 6291 key[0].type = BTRFS_INODE_ITEM_KEY; 6292 key[0].offset = 0; 6293 6294 sizes[0] = sizeof(struct btrfs_inode_item); 6295 6296 if (!args->orphan) { 6297 /* 6298 * Start new inodes with an inode_ref. This is slightly more 6299 * efficient for small numbers of hard links since they will 6300 * be packed into one item. Extended refs will kick in if we 6301 * add more hard links than can fit in the ref item. 6302 */ 6303 key[1].objectid = objectid; 6304 key[1].type = BTRFS_INODE_REF_KEY; 6305 if (args->subvol) { 6306 key[1].offset = objectid; 6307 sizes[1] = 2 + sizeof(*ref); 6308 } else { 6309 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6310 sizes[1] = name->len + sizeof(*ref); 6311 } 6312 } 6313 6314 batch.keys = &key[0]; 6315 batch.data_sizes = &sizes[0]; 6316 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6317 batch.nr = args->orphan ? 1 : 2; 6318 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6319 if (ret != 0) { 6320 btrfs_abort_transaction(trans, ret); 6321 goto discard; 6322 } 6323 6324 ts = simple_inode_init_ts(inode); 6325 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6326 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6327 6328 /* 6329 * We're going to fill the inode item now, so at this point the inode 6330 * must be fully initialized. 6331 */ 6332 6333 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6334 struct btrfs_inode_item); 6335 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6336 sizeof(*inode_item)); 6337 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6338 6339 if (!args->orphan) { 6340 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6341 struct btrfs_inode_ref); 6342 ptr = (unsigned long)(ref + 1); 6343 if (args->subvol) { 6344 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6345 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6346 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6347 } else { 6348 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6349 name->len); 6350 btrfs_set_inode_ref_index(path->nodes[0], ref, 6351 BTRFS_I(inode)->dir_index); 6352 write_extent_buffer(path->nodes[0], name->name, ptr, 6353 name->len); 6354 } 6355 } 6356 6357 btrfs_mark_buffer_dirty(trans, path->nodes[0]); 6358 /* 6359 * We don't need the path anymore, plus inheriting properties, adding 6360 * ACLs, security xattrs, orphan item or adding the link, will result in 6361 * allocating yet another path. So just free our path. 6362 */ 6363 btrfs_free_path(path); 6364 path = NULL; 6365 6366 if (args->subvol) { 6367 struct inode *parent; 6368 6369 /* 6370 * Subvolumes inherit properties from their parent subvolume, 6371 * not the directory they were created in. 6372 */ 6373 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID, 6374 BTRFS_I(dir)->root); 6375 if (IS_ERR(parent)) { 6376 ret = PTR_ERR(parent); 6377 } else { 6378 ret = btrfs_inode_inherit_props(trans, inode, parent); 6379 iput(parent); 6380 } 6381 } else { 6382 ret = btrfs_inode_inherit_props(trans, inode, dir); 6383 } 6384 if (ret) { 6385 btrfs_err(fs_info, 6386 "error inheriting props for ino %llu (root %llu): %d", 6387 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, 6388 ret); 6389 } 6390 6391 /* 6392 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6393 * probably a bug. 6394 */ 6395 if (!args->subvol) { 6396 ret = btrfs_init_inode_security(trans, args); 6397 if (ret) { 6398 btrfs_abort_transaction(trans, ret); 6399 goto discard; 6400 } 6401 } 6402 6403 inode_tree_add(BTRFS_I(inode)); 6404 6405 trace_btrfs_inode_new(inode); 6406 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6407 6408 btrfs_update_root_times(trans, root); 6409 6410 if (args->orphan) { 6411 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6412 } else { 6413 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6414 0, BTRFS_I(inode)->dir_index); 6415 } 6416 if (ret) { 6417 btrfs_abort_transaction(trans, ret); 6418 goto discard; 6419 } 6420 6421 return 0; 6422 6423 discard: 6424 /* 6425 * discard_new_inode() calls iput(), but the caller owns the reference 6426 * to the inode. 6427 */ 6428 ihold(inode); 6429 discard_new_inode(inode); 6430 out: 6431 btrfs_free_path(path); 6432 return ret; 6433 } 6434 6435 /* 6436 * utility function to add 'inode' into 'parent_inode' with 6437 * a give name and a given sequence number. 6438 * if 'add_backref' is true, also insert a backref from the 6439 * inode to the parent directory. 6440 */ 6441 int btrfs_add_link(struct btrfs_trans_handle *trans, 6442 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6443 const struct fscrypt_str *name, int add_backref, u64 index) 6444 { 6445 int ret = 0; 6446 struct btrfs_key key; 6447 struct btrfs_root *root = parent_inode->root; 6448 u64 ino = btrfs_ino(inode); 6449 u64 parent_ino = btrfs_ino(parent_inode); 6450 6451 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6452 memcpy(&key, &inode->root->root_key, sizeof(key)); 6453 } else { 6454 key.objectid = ino; 6455 key.type = BTRFS_INODE_ITEM_KEY; 6456 key.offset = 0; 6457 } 6458 6459 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6460 ret = btrfs_add_root_ref(trans, key.objectid, 6461 root->root_key.objectid, parent_ino, 6462 index, name); 6463 } else if (add_backref) { 6464 ret = btrfs_insert_inode_ref(trans, root, name, 6465 ino, parent_ino, index); 6466 } 6467 6468 /* Nothing to clean up yet */ 6469 if (ret) 6470 return ret; 6471 6472 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6473 btrfs_inode_type(&inode->vfs_inode), index); 6474 if (ret == -EEXIST || ret == -EOVERFLOW) 6475 goto fail_dir_item; 6476 else if (ret) { 6477 btrfs_abort_transaction(trans, ret); 6478 return ret; 6479 } 6480 6481 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6482 name->len * 2); 6483 inode_inc_iversion(&parent_inode->vfs_inode); 6484 /* 6485 * If we are replaying a log tree, we do not want to update the mtime 6486 * and ctime of the parent directory with the current time, since the 6487 * log replay procedure is responsible for setting them to their correct 6488 * values (the ones it had when the fsync was done). 6489 */ 6490 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6491 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6492 inode_set_ctime_current(&parent_inode->vfs_inode)); 6493 6494 ret = btrfs_update_inode(trans, parent_inode); 6495 if (ret) 6496 btrfs_abort_transaction(trans, ret); 6497 return ret; 6498 6499 fail_dir_item: 6500 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6501 u64 local_index; 6502 int err; 6503 err = btrfs_del_root_ref(trans, key.objectid, 6504 root->root_key.objectid, parent_ino, 6505 &local_index, name); 6506 if (err) 6507 btrfs_abort_transaction(trans, err); 6508 } else if (add_backref) { 6509 u64 local_index; 6510 int err; 6511 6512 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6513 &local_index); 6514 if (err) 6515 btrfs_abort_transaction(trans, err); 6516 } 6517 6518 /* Return the original error code */ 6519 return ret; 6520 } 6521 6522 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6523 struct inode *inode) 6524 { 6525 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6526 struct btrfs_root *root = BTRFS_I(dir)->root; 6527 struct btrfs_new_inode_args new_inode_args = { 6528 .dir = dir, 6529 .dentry = dentry, 6530 .inode = inode, 6531 }; 6532 unsigned int trans_num_items; 6533 struct btrfs_trans_handle *trans; 6534 int err; 6535 6536 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6537 if (err) 6538 goto out_inode; 6539 6540 trans = btrfs_start_transaction(root, trans_num_items); 6541 if (IS_ERR(trans)) { 6542 err = PTR_ERR(trans); 6543 goto out_new_inode_args; 6544 } 6545 6546 err = btrfs_create_new_inode(trans, &new_inode_args); 6547 if (!err) 6548 d_instantiate_new(dentry, inode); 6549 6550 btrfs_end_transaction(trans); 6551 btrfs_btree_balance_dirty(fs_info); 6552 out_new_inode_args: 6553 btrfs_new_inode_args_destroy(&new_inode_args); 6554 out_inode: 6555 if (err) 6556 iput(inode); 6557 return err; 6558 } 6559 6560 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6561 struct dentry *dentry, umode_t mode, dev_t rdev) 6562 { 6563 struct inode *inode; 6564 6565 inode = new_inode(dir->i_sb); 6566 if (!inode) 6567 return -ENOMEM; 6568 inode_init_owner(idmap, inode, dir, mode); 6569 inode->i_op = &btrfs_special_inode_operations; 6570 init_special_inode(inode, inode->i_mode, rdev); 6571 return btrfs_create_common(dir, dentry, inode); 6572 } 6573 6574 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6575 struct dentry *dentry, umode_t mode, bool excl) 6576 { 6577 struct inode *inode; 6578 6579 inode = new_inode(dir->i_sb); 6580 if (!inode) 6581 return -ENOMEM; 6582 inode_init_owner(idmap, inode, dir, mode); 6583 inode->i_fop = &btrfs_file_operations; 6584 inode->i_op = &btrfs_file_inode_operations; 6585 inode->i_mapping->a_ops = &btrfs_aops; 6586 return btrfs_create_common(dir, dentry, inode); 6587 } 6588 6589 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6590 struct dentry *dentry) 6591 { 6592 struct btrfs_trans_handle *trans = NULL; 6593 struct btrfs_root *root = BTRFS_I(dir)->root; 6594 struct inode *inode = d_inode(old_dentry); 6595 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6596 struct fscrypt_name fname; 6597 u64 index; 6598 int err; 6599 int drop_inode = 0; 6600 6601 /* do not allow sys_link's with other subvols of the same device */ 6602 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6603 return -EXDEV; 6604 6605 if (inode->i_nlink >= BTRFS_LINK_MAX) 6606 return -EMLINK; 6607 6608 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6609 if (err) 6610 goto fail; 6611 6612 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6613 if (err) 6614 goto fail; 6615 6616 /* 6617 * 2 items for inode and inode ref 6618 * 2 items for dir items 6619 * 1 item for parent inode 6620 * 1 item for orphan item deletion if O_TMPFILE 6621 */ 6622 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6623 if (IS_ERR(trans)) { 6624 err = PTR_ERR(trans); 6625 trans = NULL; 6626 goto fail; 6627 } 6628 6629 /* There are several dir indexes for this inode, clear the cache. */ 6630 BTRFS_I(inode)->dir_index = 0ULL; 6631 inc_nlink(inode); 6632 inode_inc_iversion(inode); 6633 inode_set_ctime_current(inode); 6634 ihold(inode); 6635 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6636 6637 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6638 &fname.disk_name, 1, index); 6639 6640 if (err) { 6641 drop_inode = 1; 6642 } else { 6643 struct dentry *parent = dentry->d_parent; 6644 6645 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6646 if (err) 6647 goto fail; 6648 if (inode->i_nlink == 1) { 6649 /* 6650 * If new hard link count is 1, it's a file created 6651 * with open(2) O_TMPFILE flag. 6652 */ 6653 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6654 if (err) 6655 goto fail; 6656 } 6657 d_instantiate(dentry, inode); 6658 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6659 } 6660 6661 fail: 6662 fscrypt_free_filename(&fname); 6663 if (trans) 6664 btrfs_end_transaction(trans); 6665 if (drop_inode) { 6666 inode_dec_link_count(inode); 6667 iput(inode); 6668 } 6669 btrfs_btree_balance_dirty(fs_info); 6670 return err; 6671 } 6672 6673 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6674 struct dentry *dentry, umode_t mode) 6675 { 6676 struct inode *inode; 6677 6678 inode = new_inode(dir->i_sb); 6679 if (!inode) 6680 return -ENOMEM; 6681 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6682 inode->i_op = &btrfs_dir_inode_operations; 6683 inode->i_fop = &btrfs_dir_file_operations; 6684 return btrfs_create_common(dir, dentry, inode); 6685 } 6686 6687 static noinline int uncompress_inline(struct btrfs_path *path, 6688 struct page *page, 6689 struct btrfs_file_extent_item *item) 6690 { 6691 int ret; 6692 struct extent_buffer *leaf = path->nodes[0]; 6693 char *tmp; 6694 size_t max_size; 6695 unsigned long inline_size; 6696 unsigned long ptr; 6697 int compress_type; 6698 6699 compress_type = btrfs_file_extent_compression(leaf, item); 6700 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6701 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6702 tmp = kmalloc(inline_size, GFP_NOFS); 6703 if (!tmp) 6704 return -ENOMEM; 6705 ptr = btrfs_file_extent_inline_start(item); 6706 6707 read_extent_buffer(leaf, tmp, ptr, inline_size); 6708 6709 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6710 ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size); 6711 6712 /* 6713 * decompression code contains a memset to fill in any space between the end 6714 * of the uncompressed data and the end of max_size in case the decompressed 6715 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6716 * the end of an inline extent and the beginning of the next block, so we 6717 * cover that region here. 6718 */ 6719 6720 if (max_size < PAGE_SIZE) 6721 memzero_page(page, max_size, PAGE_SIZE - max_size); 6722 kfree(tmp); 6723 return ret; 6724 } 6725 6726 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path, 6727 struct page *page) 6728 { 6729 struct btrfs_file_extent_item *fi; 6730 void *kaddr; 6731 size_t copy_size; 6732 6733 if (!page || PageUptodate(page)) 6734 return 0; 6735 6736 ASSERT(page_offset(page) == 0); 6737 6738 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6739 struct btrfs_file_extent_item); 6740 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6741 return uncompress_inline(path, page, fi); 6742 6743 copy_size = min_t(u64, PAGE_SIZE, 6744 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6745 kaddr = kmap_local_page(page); 6746 read_extent_buffer(path->nodes[0], kaddr, 6747 btrfs_file_extent_inline_start(fi), copy_size); 6748 kunmap_local(kaddr); 6749 if (copy_size < PAGE_SIZE) 6750 memzero_page(page, copy_size, PAGE_SIZE - copy_size); 6751 return 0; 6752 } 6753 6754 /* 6755 * Lookup the first extent overlapping a range in a file. 6756 * 6757 * @inode: file to search in 6758 * @page: page to read extent data into if the extent is inline 6759 * @pg_offset: offset into @page to copy to 6760 * @start: file offset 6761 * @len: length of range starting at @start 6762 * 6763 * Return the first &struct extent_map which overlaps the given range, reading 6764 * it from the B-tree and caching it if necessary. Note that there may be more 6765 * extents which overlap the given range after the returned extent_map. 6766 * 6767 * If @page is not NULL and the extent is inline, this also reads the extent 6768 * data directly into the page and marks the extent up to date in the io_tree. 6769 * 6770 * Return: ERR_PTR on error, non-NULL extent_map on success. 6771 */ 6772 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6773 struct page *page, size_t pg_offset, 6774 u64 start, u64 len) 6775 { 6776 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6777 int ret = 0; 6778 u64 extent_start = 0; 6779 u64 extent_end = 0; 6780 u64 objectid = btrfs_ino(inode); 6781 int extent_type = -1; 6782 struct btrfs_path *path = NULL; 6783 struct btrfs_root *root = inode->root; 6784 struct btrfs_file_extent_item *item; 6785 struct extent_buffer *leaf; 6786 struct btrfs_key found_key; 6787 struct extent_map *em = NULL; 6788 struct extent_map_tree *em_tree = &inode->extent_tree; 6789 6790 read_lock(&em_tree->lock); 6791 em = lookup_extent_mapping(em_tree, start, len); 6792 read_unlock(&em_tree->lock); 6793 6794 if (em) { 6795 if (em->start > start || em->start + em->len <= start) 6796 free_extent_map(em); 6797 else if (em->block_start == EXTENT_MAP_INLINE && page) 6798 free_extent_map(em); 6799 else 6800 goto out; 6801 } 6802 em = alloc_extent_map(); 6803 if (!em) { 6804 ret = -ENOMEM; 6805 goto out; 6806 } 6807 em->start = EXTENT_MAP_HOLE; 6808 em->orig_start = EXTENT_MAP_HOLE; 6809 em->len = (u64)-1; 6810 em->block_len = (u64)-1; 6811 6812 path = btrfs_alloc_path(); 6813 if (!path) { 6814 ret = -ENOMEM; 6815 goto out; 6816 } 6817 6818 /* Chances are we'll be called again, so go ahead and do readahead */ 6819 path->reada = READA_FORWARD; 6820 6821 /* 6822 * The same explanation in load_free_space_cache applies here as well, 6823 * we only read when we're loading the free space cache, and at that 6824 * point the commit_root has everything we need. 6825 */ 6826 if (btrfs_is_free_space_inode(inode)) { 6827 path->search_commit_root = 1; 6828 path->skip_locking = 1; 6829 } 6830 6831 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6832 if (ret < 0) { 6833 goto out; 6834 } else if (ret > 0) { 6835 if (path->slots[0] == 0) 6836 goto not_found; 6837 path->slots[0]--; 6838 ret = 0; 6839 } 6840 6841 leaf = path->nodes[0]; 6842 item = btrfs_item_ptr(leaf, path->slots[0], 6843 struct btrfs_file_extent_item); 6844 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6845 if (found_key.objectid != objectid || 6846 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6847 /* 6848 * If we backup past the first extent we want to move forward 6849 * and see if there is an extent in front of us, otherwise we'll 6850 * say there is a hole for our whole search range which can 6851 * cause problems. 6852 */ 6853 extent_end = start; 6854 goto next; 6855 } 6856 6857 extent_type = btrfs_file_extent_type(leaf, item); 6858 extent_start = found_key.offset; 6859 extent_end = btrfs_file_extent_end(path); 6860 if (extent_type == BTRFS_FILE_EXTENT_REG || 6861 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6862 /* Only regular file could have regular/prealloc extent */ 6863 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6864 ret = -EUCLEAN; 6865 btrfs_crit(fs_info, 6866 "regular/prealloc extent found for non-regular inode %llu", 6867 btrfs_ino(inode)); 6868 goto out; 6869 } 6870 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6871 extent_start); 6872 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6873 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6874 path->slots[0], 6875 extent_start); 6876 } 6877 next: 6878 if (start >= extent_end) { 6879 path->slots[0]++; 6880 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6881 ret = btrfs_next_leaf(root, path); 6882 if (ret < 0) 6883 goto out; 6884 else if (ret > 0) 6885 goto not_found; 6886 6887 leaf = path->nodes[0]; 6888 } 6889 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6890 if (found_key.objectid != objectid || 6891 found_key.type != BTRFS_EXTENT_DATA_KEY) 6892 goto not_found; 6893 if (start + len <= found_key.offset) 6894 goto not_found; 6895 if (start > found_key.offset) 6896 goto next; 6897 6898 /* New extent overlaps with existing one */ 6899 em->start = start; 6900 em->orig_start = start; 6901 em->len = found_key.offset - start; 6902 em->block_start = EXTENT_MAP_HOLE; 6903 goto insert; 6904 } 6905 6906 btrfs_extent_item_to_extent_map(inode, path, item, em); 6907 6908 if (extent_type == BTRFS_FILE_EXTENT_REG || 6909 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6910 goto insert; 6911 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6912 /* 6913 * Inline extent can only exist at file offset 0. This is 6914 * ensured by tree-checker and inline extent creation path. 6915 * Thus all members representing file offsets should be zero. 6916 */ 6917 ASSERT(pg_offset == 0); 6918 ASSERT(extent_start == 0); 6919 ASSERT(em->start == 0); 6920 6921 /* 6922 * btrfs_extent_item_to_extent_map() should have properly 6923 * initialized em members already. 6924 * 6925 * Other members are not utilized for inline extents. 6926 */ 6927 ASSERT(em->block_start == EXTENT_MAP_INLINE); 6928 ASSERT(em->len == fs_info->sectorsize); 6929 6930 ret = read_inline_extent(inode, path, page); 6931 if (ret < 0) 6932 goto out; 6933 goto insert; 6934 } 6935 not_found: 6936 em->start = start; 6937 em->orig_start = start; 6938 em->len = len; 6939 em->block_start = EXTENT_MAP_HOLE; 6940 insert: 6941 ret = 0; 6942 btrfs_release_path(path); 6943 if (em->start > start || extent_map_end(em) <= start) { 6944 btrfs_err(fs_info, 6945 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6946 em->start, em->len, start, len); 6947 ret = -EIO; 6948 goto out; 6949 } 6950 6951 write_lock(&em_tree->lock); 6952 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6953 write_unlock(&em_tree->lock); 6954 out: 6955 btrfs_free_path(path); 6956 6957 trace_btrfs_get_extent(root, inode, em); 6958 6959 if (ret) { 6960 free_extent_map(em); 6961 return ERR_PTR(ret); 6962 } 6963 return em; 6964 } 6965 6966 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6967 struct btrfs_dio_data *dio_data, 6968 const u64 start, 6969 const u64 len, 6970 const u64 orig_start, 6971 const u64 block_start, 6972 const u64 block_len, 6973 const u64 orig_block_len, 6974 const u64 ram_bytes, 6975 const int type) 6976 { 6977 struct extent_map *em = NULL; 6978 struct btrfs_ordered_extent *ordered; 6979 6980 if (type != BTRFS_ORDERED_NOCOW) { 6981 em = create_io_em(inode, start, len, orig_start, block_start, 6982 block_len, orig_block_len, ram_bytes, 6983 BTRFS_COMPRESS_NONE, /* compress_type */ 6984 type); 6985 if (IS_ERR(em)) 6986 goto out; 6987 } 6988 ordered = btrfs_alloc_ordered_extent(inode, start, len, len, 6989 block_start, block_len, 0, 6990 (1 << type) | 6991 (1 << BTRFS_ORDERED_DIRECT), 6992 BTRFS_COMPRESS_NONE); 6993 if (IS_ERR(ordered)) { 6994 if (em) { 6995 free_extent_map(em); 6996 btrfs_drop_extent_map_range(inode, start, 6997 start + len - 1, false); 6998 } 6999 em = ERR_CAST(ordered); 7000 } else { 7001 ASSERT(!dio_data->ordered); 7002 dio_data->ordered = ordered; 7003 } 7004 out: 7005 7006 return em; 7007 } 7008 7009 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7010 struct btrfs_dio_data *dio_data, 7011 u64 start, u64 len) 7012 { 7013 struct btrfs_root *root = inode->root; 7014 struct btrfs_fs_info *fs_info = root->fs_info; 7015 struct extent_map *em; 7016 struct btrfs_key ins; 7017 u64 alloc_hint; 7018 int ret; 7019 7020 alloc_hint = get_extent_allocation_hint(inode, start, len); 7021 again: 7022 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7023 0, alloc_hint, &ins, 1, 1); 7024 if (ret == -EAGAIN) { 7025 ASSERT(btrfs_is_zoned(fs_info)); 7026 wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH, 7027 TASK_UNINTERRUPTIBLE); 7028 goto again; 7029 } 7030 if (ret) 7031 return ERR_PTR(ret); 7032 7033 em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start, 7034 ins.objectid, ins.offset, ins.offset, 7035 ins.offset, BTRFS_ORDERED_REGULAR); 7036 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7037 if (IS_ERR(em)) 7038 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7039 1); 7040 7041 return em; 7042 } 7043 7044 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7045 { 7046 struct btrfs_block_group *block_group; 7047 bool readonly = false; 7048 7049 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7050 if (!block_group || block_group->ro) 7051 readonly = true; 7052 if (block_group) 7053 btrfs_put_block_group(block_group); 7054 return readonly; 7055 } 7056 7057 /* 7058 * Check if we can do nocow write into the range [@offset, @offset + @len) 7059 * 7060 * @offset: File offset 7061 * @len: The length to write, will be updated to the nocow writeable 7062 * range 7063 * @orig_start: (optional) Return the original file offset of the file extent 7064 * @orig_len: (optional) Return the original on-disk length of the file extent 7065 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7066 * @strict: if true, omit optimizations that might force us into unnecessary 7067 * cow. e.g., don't trust generation number. 7068 * 7069 * Return: 7070 * >0 and update @len if we can do nocow write 7071 * 0 if we can't do nocow write 7072 * <0 if error happened 7073 * 7074 * NOTE: This only checks the file extents, caller is responsible to wait for 7075 * any ordered extents. 7076 */ 7077 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7078 u64 *orig_start, u64 *orig_block_len, 7079 u64 *ram_bytes, bool nowait, bool strict) 7080 { 7081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7082 struct can_nocow_file_extent_args nocow_args = { 0 }; 7083 struct btrfs_path *path; 7084 int ret; 7085 struct extent_buffer *leaf; 7086 struct btrfs_root *root = BTRFS_I(inode)->root; 7087 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7088 struct btrfs_file_extent_item *fi; 7089 struct btrfs_key key; 7090 int found_type; 7091 7092 path = btrfs_alloc_path(); 7093 if (!path) 7094 return -ENOMEM; 7095 path->nowait = nowait; 7096 7097 ret = btrfs_lookup_file_extent(NULL, root, path, 7098 btrfs_ino(BTRFS_I(inode)), offset, 0); 7099 if (ret < 0) 7100 goto out; 7101 7102 if (ret == 1) { 7103 if (path->slots[0] == 0) { 7104 /* can't find the item, must cow */ 7105 ret = 0; 7106 goto out; 7107 } 7108 path->slots[0]--; 7109 } 7110 ret = 0; 7111 leaf = path->nodes[0]; 7112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7113 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7114 key.type != BTRFS_EXTENT_DATA_KEY) { 7115 /* not our file or wrong item type, must cow */ 7116 goto out; 7117 } 7118 7119 if (key.offset > offset) { 7120 /* Wrong offset, must cow */ 7121 goto out; 7122 } 7123 7124 if (btrfs_file_extent_end(path) <= offset) 7125 goto out; 7126 7127 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7128 found_type = btrfs_file_extent_type(leaf, fi); 7129 if (ram_bytes) 7130 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7131 7132 nocow_args.start = offset; 7133 nocow_args.end = offset + *len - 1; 7134 nocow_args.strict = strict; 7135 nocow_args.free_path = true; 7136 7137 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args); 7138 /* can_nocow_file_extent() has freed the path. */ 7139 path = NULL; 7140 7141 if (ret != 1) { 7142 /* Treat errors as not being able to NOCOW. */ 7143 ret = 0; 7144 goto out; 7145 } 7146 7147 ret = 0; 7148 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr)) 7149 goto out; 7150 7151 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7152 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7153 u64 range_end; 7154 7155 range_end = round_up(offset + nocow_args.num_bytes, 7156 root->fs_info->sectorsize) - 1; 7157 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7158 if (ret) { 7159 ret = -EAGAIN; 7160 goto out; 7161 } 7162 } 7163 7164 if (orig_start) 7165 *orig_start = key.offset - nocow_args.extent_offset; 7166 if (orig_block_len) 7167 *orig_block_len = nocow_args.disk_num_bytes; 7168 7169 *len = nocow_args.num_bytes; 7170 ret = 1; 7171 out: 7172 btrfs_free_path(path); 7173 return ret; 7174 } 7175 7176 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7177 struct extent_state **cached_state, 7178 unsigned int iomap_flags) 7179 { 7180 const bool writing = (iomap_flags & IOMAP_WRITE); 7181 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7182 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7183 struct btrfs_ordered_extent *ordered; 7184 int ret = 0; 7185 7186 while (1) { 7187 if (nowait) { 7188 if (!try_lock_extent(io_tree, lockstart, lockend, 7189 cached_state)) 7190 return -EAGAIN; 7191 } else { 7192 lock_extent(io_tree, lockstart, lockend, cached_state); 7193 } 7194 /* 7195 * We're concerned with the entire range that we're going to be 7196 * doing DIO to, so we need to make sure there's no ordered 7197 * extents in this range. 7198 */ 7199 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7200 lockend - lockstart + 1); 7201 7202 /* 7203 * We need to make sure there are no buffered pages in this 7204 * range either, we could have raced between the invalidate in 7205 * generic_file_direct_write and locking the extent. The 7206 * invalidate needs to happen so that reads after a write do not 7207 * get stale data. 7208 */ 7209 if (!ordered && 7210 (!writing || !filemap_range_has_page(inode->i_mapping, 7211 lockstart, lockend))) 7212 break; 7213 7214 unlock_extent(io_tree, lockstart, lockend, cached_state); 7215 7216 if (ordered) { 7217 if (nowait) { 7218 btrfs_put_ordered_extent(ordered); 7219 ret = -EAGAIN; 7220 break; 7221 } 7222 /* 7223 * If we are doing a DIO read and the ordered extent we 7224 * found is for a buffered write, we can not wait for it 7225 * to complete and retry, because if we do so we can 7226 * deadlock with concurrent buffered writes on page 7227 * locks. This happens only if our DIO read covers more 7228 * than one extent map, if at this point has already 7229 * created an ordered extent for a previous extent map 7230 * and locked its range in the inode's io tree, and a 7231 * concurrent write against that previous extent map's 7232 * range and this range started (we unlock the ranges 7233 * in the io tree only when the bios complete and 7234 * buffered writes always lock pages before attempting 7235 * to lock range in the io tree). 7236 */ 7237 if (writing || 7238 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7239 btrfs_start_ordered_extent(ordered); 7240 else 7241 ret = nowait ? -EAGAIN : -ENOTBLK; 7242 btrfs_put_ordered_extent(ordered); 7243 } else { 7244 /* 7245 * We could trigger writeback for this range (and wait 7246 * for it to complete) and then invalidate the pages for 7247 * this range (through invalidate_inode_pages2_range()), 7248 * but that can lead us to a deadlock with a concurrent 7249 * call to readahead (a buffered read or a defrag call 7250 * triggered a readahead) on a page lock due to an 7251 * ordered dio extent we created before but did not have 7252 * yet a corresponding bio submitted (whence it can not 7253 * complete), which makes readahead wait for that 7254 * ordered extent to complete while holding a lock on 7255 * that page. 7256 */ 7257 ret = nowait ? -EAGAIN : -ENOTBLK; 7258 } 7259 7260 if (ret) 7261 break; 7262 7263 cond_resched(); 7264 } 7265 7266 return ret; 7267 } 7268 7269 /* The callers of this must take lock_extent() */ 7270 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7271 u64 len, u64 orig_start, u64 block_start, 7272 u64 block_len, u64 orig_block_len, 7273 u64 ram_bytes, int compress_type, 7274 int type) 7275 { 7276 struct extent_map *em; 7277 int ret; 7278 7279 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7280 type == BTRFS_ORDERED_COMPRESSED || 7281 type == BTRFS_ORDERED_NOCOW || 7282 type == BTRFS_ORDERED_REGULAR); 7283 7284 em = alloc_extent_map(); 7285 if (!em) 7286 return ERR_PTR(-ENOMEM); 7287 7288 em->start = start; 7289 em->orig_start = orig_start; 7290 em->len = len; 7291 em->block_len = block_len; 7292 em->block_start = block_start; 7293 em->orig_block_len = orig_block_len; 7294 em->ram_bytes = ram_bytes; 7295 em->generation = -1; 7296 em->flags |= EXTENT_FLAG_PINNED; 7297 if (type == BTRFS_ORDERED_PREALLOC) 7298 em->flags |= EXTENT_FLAG_FILLING; 7299 else if (type == BTRFS_ORDERED_COMPRESSED) 7300 extent_map_set_compression(em, compress_type); 7301 7302 ret = btrfs_replace_extent_map_range(inode, em, true); 7303 if (ret) { 7304 free_extent_map(em); 7305 return ERR_PTR(ret); 7306 } 7307 7308 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7309 return em; 7310 } 7311 7312 7313 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7314 struct inode *inode, 7315 struct btrfs_dio_data *dio_data, 7316 u64 start, u64 *lenp, 7317 unsigned int iomap_flags) 7318 { 7319 const bool nowait = (iomap_flags & IOMAP_NOWAIT); 7320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7321 struct extent_map *em = *map; 7322 int type; 7323 u64 block_start, orig_start, orig_block_len, ram_bytes; 7324 struct btrfs_block_group *bg; 7325 bool can_nocow = false; 7326 bool space_reserved = false; 7327 u64 len = *lenp; 7328 u64 prev_len; 7329 int ret = 0; 7330 7331 /* 7332 * We don't allocate a new extent in the following cases 7333 * 7334 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7335 * existing extent. 7336 * 2) The extent is marked as PREALLOC. We're good to go here and can 7337 * just use the extent. 7338 * 7339 */ 7340 if ((em->flags & EXTENT_FLAG_PREALLOC) || 7341 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7342 em->block_start != EXTENT_MAP_HOLE)) { 7343 if (em->flags & EXTENT_FLAG_PREALLOC) 7344 type = BTRFS_ORDERED_PREALLOC; 7345 else 7346 type = BTRFS_ORDERED_NOCOW; 7347 len = min(len, em->len - (start - em->start)); 7348 block_start = em->block_start + (start - em->start); 7349 7350 if (can_nocow_extent(inode, start, &len, &orig_start, 7351 &orig_block_len, &ram_bytes, false, false) == 1) { 7352 bg = btrfs_inc_nocow_writers(fs_info, block_start); 7353 if (bg) 7354 can_nocow = true; 7355 } 7356 } 7357 7358 prev_len = len; 7359 if (can_nocow) { 7360 struct extent_map *em2; 7361 7362 /* We can NOCOW, so only need to reserve metadata space. */ 7363 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7364 nowait); 7365 if (ret < 0) { 7366 /* Our caller expects us to free the input extent map. */ 7367 free_extent_map(em); 7368 *map = NULL; 7369 btrfs_dec_nocow_writers(bg); 7370 if (nowait && (ret == -ENOSPC || ret == -EDQUOT)) 7371 ret = -EAGAIN; 7372 goto out; 7373 } 7374 space_reserved = true; 7375 7376 em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len, 7377 orig_start, block_start, 7378 len, orig_block_len, 7379 ram_bytes, type); 7380 btrfs_dec_nocow_writers(bg); 7381 if (type == BTRFS_ORDERED_PREALLOC) { 7382 free_extent_map(em); 7383 *map = em2; 7384 em = em2; 7385 } 7386 7387 if (IS_ERR(em2)) { 7388 ret = PTR_ERR(em2); 7389 goto out; 7390 } 7391 7392 dio_data->nocow_done = true; 7393 } else { 7394 /* Our caller expects us to free the input extent map. */ 7395 free_extent_map(em); 7396 *map = NULL; 7397 7398 if (nowait) { 7399 ret = -EAGAIN; 7400 goto out; 7401 } 7402 7403 /* 7404 * If we could not allocate data space before locking the file 7405 * range and we can't do a NOCOW write, then we have to fail. 7406 */ 7407 if (!dio_data->data_space_reserved) { 7408 ret = -ENOSPC; 7409 goto out; 7410 } 7411 7412 /* 7413 * We have to COW and we have already reserved data space before, 7414 * so now we reserve only metadata. 7415 */ 7416 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len, 7417 false); 7418 if (ret < 0) 7419 goto out; 7420 space_reserved = true; 7421 7422 em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len); 7423 if (IS_ERR(em)) { 7424 ret = PTR_ERR(em); 7425 goto out; 7426 } 7427 *map = em; 7428 len = min(len, em->len - (start - em->start)); 7429 if (len < prev_len) 7430 btrfs_delalloc_release_metadata(BTRFS_I(inode), 7431 prev_len - len, true); 7432 } 7433 7434 /* 7435 * We have created our ordered extent, so we can now release our reservation 7436 * for an outstanding extent. 7437 */ 7438 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len); 7439 7440 /* 7441 * Need to update the i_size under the extent lock so buffered 7442 * readers will get the updated i_size when we unlock. 7443 */ 7444 if (start + len > i_size_read(inode)) 7445 i_size_write(inode, start + len); 7446 out: 7447 if (ret && space_reserved) { 7448 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7449 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7450 } 7451 *lenp = len; 7452 return ret; 7453 } 7454 7455 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7456 loff_t length, unsigned int flags, struct iomap *iomap, 7457 struct iomap *srcmap) 7458 { 7459 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7461 struct extent_map *em; 7462 struct extent_state *cached_state = NULL; 7463 struct btrfs_dio_data *dio_data = iter->private; 7464 u64 lockstart, lockend; 7465 const bool write = !!(flags & IOMAP_WRITE); 7466 int ret = 0; 7467 u64 len = length; 7468 const u64 data_alloc_len = length; 7469 bool unlock_extents = false; 7470 7471 /* 7472 * We could potentially fault if we have a buffer > PAGE_SIZE, and if 7473 * we're NOWAIT we may submit a bio for a partial range and return 7474 * EIOCBQUEUED, which would result in an errant short read. 7475 * 7476 * The best way to handle this would be to allow for partial completions 7477 * of iocb's, so we could submit the partial bio, return and fault in 7478 * the rest of the pages, and then submit the io for the rest of the 7479 * range. However we don't have that currently, so simply return 7480 * -EAGAIN at this point so that the normal path is used. 7481 */ 7482 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE) 7483 return -EAGAIN; 7484 7485 /* 7486 * Cap the size of reads to that usually seen in buffered I/O as we need 7487 * to allocate a contiguous array for the checksums. 7488 */ 7489 if (!write) 7490 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS); 7491 7492 lockstart = start; 7493 lockend = start + len - 1; 7494 7495 /* 7496 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't 7497 * enough if we've written compressed pages to this area, so we need to 7498 * flush the dirty pages again to make absolutely sure that any 7499 * outstanding dirty pages are on disk - the first flush only starts 7500 * compression on the data, while keeping the pages locked, so by the 7501 * time the second flush returns we know bios for the compressed pages 7502 * were submitted and finished, and the pages no longer under writeback. 7503 * 7504 * If we have a NOWAIT request and we have any pages in the range that 7505 * are locked, likely due to compression still in progress, we don't want 7506 * to block on page locks. We also don't want to block on pages marked as 7507 * dirty or under writeback (same as for the non-compression case). 7508 * iomap_dio_rw() did the same check, but after that and before we got 7509 * here, mmap'ed writes may have happened or buffered reads started 7510 * (readpage() and readahead(), which lock pages), as we haven't locked 7511 * the file range yet. 7512 */ 7513 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7514 &BTRFS_I(inode)->runtime_flags)) { 7515 if (flags & IOMAP_NOWAIT) { 7516 if (filemap_range_needs_writeback(inode->i_mapping, 7517 lockstart, lockend)) 7518 return -EAGAIN; 7519 } else { 7520 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7521 start + length - 1); 7522 if (ret) 7523 return ret; 7524 } 7525 } 7526 7527 memset(dio_data, 0, sizeof(*dio_data)); 7528 7529 /* 7530 * We always try to allocate data space and must do it before locking 7531 * the file range, to avoid deadlocks with concurrent writes to the same 7532 * range if the range has several extents and the writes don't expand the 7533 * current i_size (the inode lock is taken in shared mode). If we fail to 7534 * allocate data space here we continue and later, after locking the 7535 * file range, we fail with ENOSPC only if we figure out we can not do a 7536 * NOCOW write. 7537 */ 7538 if (write && !(flags & IOMAP_NOWAIT)) { 7539 ret = btrfs_check_data_free_space(BTRFS_I(inode), 7540 &dio_data->data_reserved, 7541 start, data_alloc_len, false); 7542 if (!ret) 7543 dio_data->data_space_reserved = true; 7544 else if (ret && !(BTRFS_I(inode)->flags & 7545 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC))) 7546 goto err; 7547 } 7548 7549 /* 7550 * If this errors out it's because we couldn't invalidate pagecache for 7551 * this range and we need to fallback to buffered IO, or we are doing a 7552 * NOWAIT read/write and we need to block. 7553 */ 7554 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags); 7555 if (ret < 0) 7556 goto err; 7557 7558 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7559 if (IS_ERR(em)) { 7560 ret = PTR_ERR(em); 7561 goto unlock_err; 7562 } 7563 7564 /* 7565 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7566 * io. INLINE is special, and we could probably kludge it in here, but 7567 * it's still buffered so for safety lets just fall back to the generic 7568 * buffered path. 7569 * 7570 * For COMPRESSED we _have_ to read the entire extent in so we can 7571 * decompress it, so there will be buffering required no matter what we 7572 * do, so go ahead and fallback to buffered. 7573 * 7574 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7575 * to buffered IO. Don't blame me, this is the price we pay for using 7576 * the generic code. 7577 */ 7578 if (extent_map_is_compressed(em) || 7579 em->block_start == EXTENT_MAP_INLINE) { 7580 free_extent_map(em); 7581 /* 7582 * If we are in a NOWAIT context, return -EAGAIN in order to 7583 * fallback to buffered IO. This is not only because we can 7584 * block with buffered IO (no support for NOWAIT semantics at 7585 * the moment) but also to avoid returning short reads to user 7586 * space - this happens if we were able to read some data from 7587 * previous non-compressed extents and then when we fallback to 7588 * buffered IO, at btrfs_file_read_iter() by calling 7589 * filemap_read(), we fail to fault in pages for the read buffer, 7590 * in which case filemap_read() returns a short read (the number 7591 * of bytes previously read is > 0, so it does not return -EFAULT). 7592 */ 7593 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK; 7594 goto unlock_err; 7595 } 7596 7597 len = min(len, em->len - (start - em->start)); 7598 7599 /* 7600 * If we have a NOWAIT request and the range contains multiple extents 7601 * (or a mix of extents and holes), then we return -EAGAIN to make the 7602 * caller fallback to a context where it can do a blocking (without 7603 * NOWAIT) request. This way we avoid doing partial IO and returning 7604 * success to the caller, which is not optimal for writes and for reads 7605 * it can result in unexpected behaviour for an application. 7606 * 7607 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7608 * iomap_dio_rw(), we can end up returning less data then what the caller 7609 * asked for, resulting in an unexpected, and incorrect, short read. 7610 * That is, the caller asked to read N bytes and we return less than that, 7611 * which is wrong unless we are crossing EOF. This happens if we get a 7612 * page fault error when trying to fault in pages for the buffer that is 7613 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7614 * have previously submitted bios for other extents in the range, in 7615 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7616 * those bios have completed by the time we get the page fault error, 7617 * which we return back to our caller - we should only return EIOCBQUEUED 7618 * after we have submitted bios for all the extents in the range. 7619 */ 7620 if ((flags & IOMAP_NOWAIT) && len < length) { 7621 free_extent_map(em); 7622 ret = -EAGAIN; 7623 goto unlock_err; 7624 } 7625 7626 if (write) { 7627 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7628 start, &len, flags); 7629 if (ret < 0) 7630 goto unlock_err; 7631 unlock_extents = true; 7632 /* Recalc len in case the new em is smaller than requested */ 7633 len = min(len, em->len - (start - em->start)); 7634 if (dio_data->data_space_reserved) { 7635 u64 release_offset; 7636 u64 release_len = 0; 7637 7638 if (dio_data->nocow_done) { 7639 release_offset = start; 7640 release_len = data_alloc_len; 7641 } else if (len < data_alloc_len) { 7642 release_offset = start + len; 7643 release_len = data_alloc_len - len; 7644 } 7645 7646 if (release_len > 0) 7647 btrfs_free_reserved_data_space(BTRFS_I(inode), 7648 dio_data->data_reserved, 7649 release_offset, 7650 release_len); 7651 } 7652 } else { 7653 /* 7654 * We need to unlock only the end area that we aren't using. 7655 * The rest is going to be unlocked by the endio routine. 7656 */ 7657 lockstart = start + len; 7658 if (lockstart < lockend) 7659 unlock_extents = true; 7660 } 7661 7662 if (unlock_extents) 7663 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7664 &cached_state); 7665 else 7666 free_extent_state(cached_state); 7667 7668 /* 7669 * Translate extent map information to iomap. 7670 * We trim the extents (and move the addr) even though iomap code does 7671 * that, since we have locked only the parts we are performing I/O in. 7672 */ 7673 if ((em->block_start == EXTENT_MAP_HOLE) || 7674 ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) { 7675 iomap->addr = IOMAP_NULL_ADDR; 7676 iomap->type = IOMAP_HOLE; 7677 } else { 7678 iomap->addr = em->block_start + (start - em->start); 7679 iomap->type = IOMAP_MAPPED; 7680 } 7681 iomap->offset = start; 7682 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7683 iomap->length = len; 7684 free_extent_map(em); 7685 7686 return 0; 7687 7688 unlock_err: 7689 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7690 &cached_state); 7691 err: 7692 if (dio_data->data_space_reserved) { 7693 btrfs_free_reserved_data_space(BTRFS_I(inode), 7694 dio_data->data_reserved, 7695 start, data_alloc_len); 7696 extent_changeset_free(dio_data->data_reserved); 7697 } 7698 7699 return ret; 7700 } 7701 7702 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7703 ssize_t written, unsigned int flags, struct iomap *iomap) 7704 { 7705 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap); 7706 struct btrfs_dio_data *dio_data = iter->private; 7707 size_t submitted = dio_data->submitted; 7708 const bool write = !!(flags & IOMAP_WRITE); 7709 int ret = 0; 7710 7711 if (!write && (iomap->type == IOMAP_HOLE)) { 7712 /* If reading from a hole, unlock and return */ 7713 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1, 7714 NULL); 7715 return 0; 7716 } 7717 7718 if (submitted < length) { 7719 pos += submitted; 7720 length -= submitted; 7721 if (write) 7722 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7723 pos, length, false); 7724 else 7725 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7726 pos + length - 1, NULL); 7727 ret = -ENOTBLK; 7728 } 7729 if (write) { 7730 btrfs_put_ordered_extent(dio_data->ordered); 7731 dio_data->ordered = NULL; 7732 } 7733 7734 if (write) 7735 extent_changeset_free(dio_data->data_reserved); 7736 return ret; 7737 } 7738 7739 static void btrfs_dio_end_io(struct btrfs_bio *bbio) 7740 { 7741 struct btrfs_dio_private *dip = 7742 container_of(bbio, struct btrfs_dio_private, bbio); 7743 struct btrfs_inode *inode = bbio->inode; 7744 struct bio *bio = &bbio->bio; 7745 7746 if (bio->bi_status) { 7747 btrfs_warn(inode->root->fs_info, 7748 "direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d", 7749 btrfs_ino(inode), bio->bi_opf, 7750 dip->file_offset, dip->bytes, bio->bi_status); 7751 } 7752 7753 if (btrfs_op(bio) == BTRFS_MAP_WRITE) { 7754 btrfs_finish_ordered_extent(bbio->ordered, NULL, 7755 dip->file_offset, dip->bytes, 7756 !bio->bi_status); 7757 } else { 7758 unlock_extent(&inode->io_tree, dip->file_offset, 7759 dip->file_offset + dip->bytes - 1, NULL); 7760 } 7761 7762 bbio->bio.bi_private = bbio->private; 7763 iomap_dio_bio_end_io(bio); 7764 } 7765 7766 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio, 7767 loff_t file_offset) 7768 { 7769 struct btrfs_bio *bbio = btrfs_bio(bio); 7770 struct btrfs_dio_private *dip = 7771 container_of(bbio, struct btrfs_dio_private, bbio); 7772 struct btrfs_dio_data *dio_data = iter->private; 7773 7774 btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info, 7775 btrfs_dio_end_io, bio->bi_private); 7776 bbio->inode = BTRFS_I(iter->inode); 7777 bbio->file_offset = file_offset; 7778 7779 dip->file_offset = file_offset; 7780 dip->bytes = bio->bi_iter.bi_size; 7781 7782 dio_data->submitted += bio->bi_iter.bi_size; 7783 7784 /* 7785 * Check if we are doing a partial write. If we are, we need to split 7786 * the ordered extent to match the submitted bio. Hang on to the 7787 * remaining unfinishable ordered_extent in dio_data so that it can be 7788 * cancelled in iomap_end to avoid a deadlock wherein faulting the 7789 * remaining pages is blocked on the outstanding ordered extent. 7790 */ 7791 if (iter->flags & IOMAP_WRITE) { 7792 int ret; 7793 7794 ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered); 7795 if (ret) { 7796 btrfs_finish_ordered_extent(dio_data->ordered, NULL, 7797 file_offset, dip->bytes, 7798 !ret); 7799 bio->bi_status = errno_to_blk_status(ret); 7800 iomap_dio_bio_end_io(bio); 7801 return; 7802 } 7803 } 7804 7805 btrfs_submit_bio(bbio, 0); 7806 } 7807 7808 static const struct iomap_ops btrfs_dio_iomap_ops = { 7809 .iomap_begin = btrfs_dio_iomap_begin, 7810 .iomap_end = btrfs_dio_iomap_end, 7811 }; 7812 7813 static const struct iomap_dio_ops btrfs_dio_ops = { 7814 .submit_io = btrfs_dio_submit_io, 7815 .bio_set = &btrfs_dio_bioset, 7816 }; 7817 7818 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before) 7819 { 7820 struct btrfs_dio_data data = { 0 }; 7821 7822 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7823 IOMAP_DIO_PARTIAL, &data, done_before); 7824 } 7825 7826 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 7827 size_t done_before) 7828 { 7829 struct btrfs_dio_data data = { 0 }; 7830 7831 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops, 7832 IOMAP_DIO_PARTIAL, &data, done_before); 7833 } 7834 7835 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 7836 u64 start, u64 len) 7837 { 7838 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 7839 int ret; 7840 7841 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 7842 if (ret) 7843 return ret; 7844 7845 /* 7846 * fiemap_prep() called filemap_write_and_wait() for the whole possible 7847 * file range (0 to LLONG_MAX), but that is not enough if we have 7848 * compression enabled. The first filemap_fdatawrite_range() only kicks 7849 * in the compression of data (in an async thread) and will return 7850 * before the compression is done and writeback is started. A second 7851 * filemap_fdatawrite_range() is needed to wait for the compression to 7852 * complete and writeback to start. We also need to wait for ordered 7853 * extents to complete, because our fiemap implementation uses mainly 7854 * file extent items to list the extents, searching for extent maps 7855 * only for file ranges with holes or prealloc extents to figure out 7856 * if we have delalloc in those ranges. 7857 */ 7858 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7859 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7860 if (ret) 7861 return ret; 7862 } 7863 7864 btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED); 7865 7866 /* 7867 * We did an initial flush to avoid holding the inode's lock while 7868 * triggering writeback and waiting for the completion of IO and ordered 7869 * extents. Now after we locked the inode we do it again, because it's 7870 * possible a new write may have happened in between those two steps. 7871 */ 7872 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) { 7873 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX); 7874 if (ret) { 7875 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7876 return ret; 7877 } 7878 } 7879 7880 ret = extent_fiemap(btrfs_inode, fieinfo, start, len); 7881 btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED); 7882 7883 return ret; 7884 } 7885 7886 static int btrfs_writepages(struct address_space *mapping, 7887 struct writeback_control *wbc) 7888 { 7889 return extent_writepages(mapping, wbc); 7890 } 7891 7892 static void btrfs_readahead(struct readahead_control *rac) 7893 { 7894 extent_readahead(rac); 7895 } 7896 7897 /* 7898 * For release_folio() and invalidate_folio() we have a race window where 7899 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7900 * If we continue to release/invalidate the page, we could cause use-after-free 7901 * for subpage spinlock. So this function is to spin and wait for subpage 7902 * spinlock. 7903 */ 7904 static void wait_subpage_spinlock(struct page *page) 7905 { 7906 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 7907 struct folio *folio = page_folio(page); 7908 struct btrfs_subpage *subpage; 7909 7910 if (!btrfs_is_subpage(fs_info, page->mapping)) 7911 return; 7912 7913 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7914 subpage = folio_get_private(folio); 7915 7916 /* 7917 * This may look insane as we just acquire the spinlock and release it, 7918 * without doing anything. But we just want to make sure no one is 7919 * still holding the subpage spinlock. 7920 * And since the page is not dirty nor writeback, and we have page 7921 * locked, the only possible way to hold a spinlock is from the endio 7922 * function to clear page writeback. 7923 * 7924 * Here we just acquire the spinlock so that all existing callers 7925 * should exit and we're safe to release/invalidate the page. 7926 */ 7927 spin_lock_irq(&subpage->lock); 7928 spin_unlock_irq(&subpage->lock); 7929 } 7930 7931 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7932 { 7933 int ret = try_release_extent_mapping(&folio->page, gfp_flags); 7934 7935 if (ret == 1) { 7936 wait_subpage_spinlock(&folio->page); 7937 clear_page_extent_mapped(&folio->page); 7938 } 7939 return ret; 7940 } 7941 7942 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7943 { 7944 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7945 return false; 7946 return __btrfs_release_folio(folio, gfp_flags); 7947 } 7948 7949 #ifdef CONFIG_MIGRATION 7950 static int btrfs_migrate_folio(struct address_space *mapping, 7951 struct folio *dst, struct folio *src, 7952 enum migrate_mode mode) 7953 { 7954 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7955 7956 if (ret != MIGRATEPAGE_SUCCESS) 7957 return ret; 7958 7959 if (folio_test_ordered(src)) { 7960 folio_clear_ordered(src); 7961 folio_set_ordered(dst); 7962 } 7963 7964 return MIGRATEPAGE_SUCCESS; 7965 } 7966 #else 7967 #define btrfs_migrate_folio NULL 7968 #endif 7969 7970 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7971 size_t length) 7972 { 7973 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 7974 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7975 struct extent_io_tree *tree = &inode->io_tree; 7976 struct extent_state *cached_state = NULL; 7977 u64 page_start = folio_pos(folio); 7978 u64 page_end = page_start + folio_size(folio) - 1; 7979 u64 cur; 7980 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7981 7982 /* 7983 * We have folio locked so no new ordered extent can be created on this 7984 * page, nor bio can be submitted for this folio. 7985 * 7986 * But already submitted bio can still be finished on this folio. 7987 * Furthermore, endio function won't skip folio which has Ordered 7988 * (Private2) already cleared, so it's possible for endio and 7989 * invalidate_folio to do the same ordered extent accounting twice 7990 * on one folio. 7991 * 7992 * So here we wait for any submitted bios to finish, so that we won't 7993 * do double ordered extent accounting on the same folio. 7994 */ 7995 folio_wait_writeback(folio); 7996 wait_subpage_spinlock(&folio->page); 7997 7998 /* 7999 * For subpage case, we have call sites like 8000 * btrfs_punch_hole_lock_range() which passes range not aligned to 8001 * sectorsize. 8002 * If the range doesn't cover the full folio, we don't need to and 8003 * shouldn't clear page extent mapped, as folio->private can still 8004 * record subpage dirty bits for other part of the range. 8005 * 8006 * For cases that invalidate the full folio even the range doesn't 8007 * cover the full folio, like invalidating the last folio, we're 8008 * still safe to wait for ordered extent to finish. 8009 */ 8010 if (!(offset == 0 && length == folio_size(folio))) { 8011 btrfs_release_folio(folio, GFP_NOFS); 8012 return; 8013 } 8014 8015 if (!inode_evicting) 8016 lock_extent(tree, page_start, page_end, &cached_state); 8017 8018 cur = page_start; 8019 while (cur < page_end) { 8020 struct btrfs_ordered_extent *ordered; 8021 u64 range_end; 8022 u32 range_len; 8023 u32 extra_flags = 0; 8024 8025 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8026 page_end + 1 - cur); 8027 if (!ordered) { 8028 range_end = page_end; 8029 /* 8030 * No ordered extent covering this range, we are safe 8031 * to delete all extent states in the range. 8032 */ 8033 extra_flags = EXTENT_CLEAR_ALL_BITS; 8034 goto next; 8035 } 8036 if (ordered->file_offset > cur) { 8037 /* 8038 * There is a range between [cur, oe->file_offset) not 8039 * covered by any ordered extent. 8040 * We are safe to delete all extent states, and handle 8041 * the ordered extent in the next iteration. 8042 */ 8043 range_end = ordered->file_offset - 1; 8044 extra_flags = EXTENT_CLEAR_ALL_BITS; 8045 goto next; 8046 } 8047 8048 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8049 page_end); 8050 ASSERT(range_end + 1 - cur < U32_MAX); 8051 range_len = range_end + 1 - cur; 8052 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 8053 /* 8054 * If Ordered (Private2) is cleared, it means endio has 8055 * already been executed for the range. 8056 * We can't delete the extent states as 8057 * btrfs_finish_ordered_io() may still use some of them. 8058 */ 8059 goto next; 8060 } 8061 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 8062 8063 /* 8064 * IO on this page will never be started, so we need to account 8065 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8066 * here, must leave that up for the ordered extent completion. 8067 * 8068 * This will also unlock the range for incoming 8069 * btrfs_finish_ordered_io(). 8070 */ 8071 if (!inode_evicting) 8072 clear_extent_bit(tree, cur, range_end, 8073 EXTENT_DELALLOC | 8074 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8075 EXTENT_DEFRAG, &cached_state); 8076 8077 spin_lock_irq(&inode->ordered_tree_lock); 8078 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8079 ordered->truncated_len = min(ordered->truncated_len, 8080 cur - ordered->file_offset); 8081 spin_unlock_irq(&inode->ordered_tree_lock); 8082 8083 /* 8084 * If the ordered extent has finished, we're safe to delete all 8085 * the extent states of the range, otherwise 8086 * btrfs_finish_ordered_io() will get executed by endio for 8087 * other pages, so we can't delete extent states. 8088 */ 8089 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8090 cur, range_end + 1 - cur)) { 8091 btrfs_finish_ordered_io(ordered); 8092 /* 8093 * The ordered extent has finished, now we're again 8094 * safe to delete all extent states of the range. 8095 */ 8096 extra_flags = EXTENT_CLEAR_ALL_BITS; 8097 } 8098 next: 8099 if (ordered) 8100 btrfs_put_ordered_extent(ordered); 8101 /* 8102 * Qgroup reserved space handler 8103 * Sector(s) here will be either: 8104 * 8105 * 1) Already written to disk or bio already finished 8106 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8107 * Qgroup will be handled by its qgroup_record then. 8108 * btrfs_qgroup_free_data() call will do nothing here. 8109 * 8110 * 2) Not written to disk yet 8111 * Then btrfs_qgroup_free_data() call will clear the 8112 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8113 * reserved data space. 8114 * Since the IO will never happen for this page. 8115 */ 8116 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 8117 if (!inode_evicting) { 8118 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8119 EXTENT_DELALLOC | EXTENT_UPTODATE | 8120 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 8121 extra_flags, &cached_state); 8122 } 8123 cur = range_end + 1; 8124 } 8125 /* 8126 * We have iterated through all ordered extents of the page, the page 8127 * should not have Ordered (Private2) anymore, or the above iteration 8128 * did something wrong. 8129 */ 8130 ASSERT(!folio_test_ordered(folio)); 8131 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 8132 if (!inode_evicting) 8133 __btrfs_release_folio(folio, GFP_NOFS); 8134 clear_page_extent_mapped(&folio->page); 8135 } 8136 8137 /* 8138 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8139 * called from a page fault handler when a page is first dirtied. Hence we must 8140 * be careful to check for EOF conditions here. We set the page up correctly 8141 * for a written page which means we get ENOSPC checking when writing into 8142 * holes and correct delalloc and unwritten extent mapping on filesystems that 8143 * support these features. 8144 * 8145 * We are not allowed to take the i_mutex here so we have to play games to 8146 * protect against truncate races as the page could now be beyond EOF. Because 8147 * truncate_setsize() writes the inode size before removing pages, once we have 8148 * the page lock we can determine safely if the page is beyond EOF. If it is not 8149 * beyond EOF, then the page is guaranteed safe against truncation until we 8150 * unlock the page. 8151 */ 8152 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8153 { 8154 struct page *page = vmf->page; 8155 struct folio *folio = page_folio(page); 8156 struct inode *inode = file_inode(vmf->vma->vm_file); 8157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8158 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8159 struct btrfs_ordered_extent *ordered; 8160 struct extent_state *cached_state = NULL; 8161 struct extent_changeset *data_reserved = NULL; 8162 unsigned long zero_start; 8163 loff_t size; 8164 vm_fault_t ret; 8165 int ret2; 8166 int reserved = 0; 8167 u64 reserved_space; 8168 u64 page_start; 8169 u64 page_end; 8170 u64 end; 8171 8172 ASSERT(folio_order(folio) == 0); 8173 8174 reserved_space = PAGE_SIZE; 8175 8176 sb_start_pagefault(inode->i_sb); 8177 page_start = page_offset(page); 8178 page_end = page_start + PAGE_SIZE - 1; 8179 end = page_end; 8180 8181 /* 8182 * Reserving delalloc space after obtaining the page lock can lead to 8183 * deadlock. For example, if a dirty page is locked by this function 8184 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8185 * dirty page write out, then the btrfs_writepages() function could 8186 * end up waiting indefinitely to get a lock on the page currently 8187 * being processed by btrfs_page_mkwrite() function. 8188 */ 8189 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8190 page_start, reserved_space); 8191 if (!ret2) { 8192 ret2 = file_update_time(vmf->vma->vm_file); 8193 reserved = 1; 8194 } 8195 if (ret2) { 8196 ret = vmf_error(ret2); 8197 if (reserved) 8198 goto out; 8199 goto out_noreserve; 8200 } 8201 8202 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8203 again: 8204 down_read(&BTRFS_I(inode)->i_mmap_lock); 8205 lock_page(page); 8206 size = i_size_read(inode); 8207 8208 if ((page->mapping != inode->i_mapping) || 8209 (page_start >= size)) { 8210 /* page got truncated out from underneath us */ 8211 goto out_unlock; 8212 } 8213 wait_on_page_writeback(page); 8214 8215 lock_extent(io_tree, page_start, page_end, &cached_state); 8216 ret2 = set_page_extent_mapped(page); 8217 if (ret2 < 0) { 8218 ret = vmf_error(ret2); 8219 unlock_extent(io_tree, page_start, page_end, &cached_state); 8220 goto out_unlock; 8221 } 8222 8223 /* 8224 * we can't set the delalloc bits if there are pending ordered 8225 * extents. Drop our locks and wait for them to finish 8226 */ 8227 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8228 PAGE_SIZE); 8229 if (ordered) { 8230 unlock_extent(io_tree, page_start, page_end, &cached_state); 8231 unlock_page(page); 8232 up_read(&BTRFS_I(inode)->i_mmap_lock); 8233 btrfs_start_ordered_extent(ordered); 8234 btrfs_put_ordered_extent(ordered); 8235 goto again; 8236 } 8237 8238 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8239 reserved_space = round_up(size - page_start, 8240 fs_info->sectorsize); 8241 if (reserved_space < PAGE_SIZE) { 8242 end = page_start + reserved_space - 1; 8243 btrfs_delalloc_release_space(BTRFS_I(inode), 8244 data_reserved, page_start, 8245 PAGE_SIZE - reserved_space, true); 8246 } 8247 } 8248 8249 /* 8250 * page_mkwrite gets called when the page is firstly dirtied after it's 8251 * faulted in, but write(2) could also dirty a page and set delalloc 8252 * bits, thus in this case for space account reason, we still need to 8253 * clear any delalloc bits within this page range since we have to 8254 * reserve data&meta space before lock_page() (see above comments). 8255 */ 8256 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8257 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8258 EXTENT_DEFRAG, &cached_state); 8259 8260 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8261 &cached_state); 8262 if (ret2) { 8263 unlock_extent(io_tree, page_start, page_end, &cached_state); 8264 ret = VM_FAULT_SIGBUS; 8265 goto out_unlock; 8266 } 8267 8268 /* page is wholly or partially inside EOF */ 8269 if (page_start + PAGE_SIZE > size) 8270 zero_start = offset_in_page(size); 8271 else 8272 zero_start = PAGE_SIZE; 8273 8274 if (zero_start != PAGE_SIZE) 8275 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8276 8277 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 8278 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start); 8279 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start); 8280 8281 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8282 8283 unlock_extent(io_tree, page_start, page_end, &cached_state); 8284 up_read(&BTRFS_I(inode)->i_mmap_lock); 8285 8286 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8287 sb_end_pagefault(inode->i_sb); 8288 extent_changeset_free(data_reserved); 8289 return VM_FAULT_LOCKED; 8290 8291 out_unlock: 8292 unlock_page(page); 8293 up_read(&BTRFS_I(inode)->i_mmap_lock); 8294 out: 8295 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8296 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8297 reserved_space, (ret != 0)); 8298 out_noreserve: 8299 sb_end_pagefault(inode->i_sb); 8300 extent_changeset_free(data_reserved); 8301 return ret; 8302 } 8303 8304 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 8305 { 8306 struct btrfs_truncate_control control = { 8307 .inode = inode, 8308 .ino = btrfs_ino(inode), 8309 .min_type = BTRFS_EXTENT_DATA_KEY, 8310 .clear_extent_range = true, 8311 }; 8312 struct btrfs_root *root = inode->root; 8313 struct btrfs_fs_info *fs_info = root->fs_info; 8314 struct btrfs_block_rsv *rsv; 8315 int ret; 8316 struct btrfs_trans_handle *trans; 8317 u64 mask = fs_info->sectorsize - 1; 8318 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8319 8320 if (!skip_writeback) { 8321 ret = btrfs_wait_ordered_range(&inode->vfs_inode, 8322 inode->vfs_inode.i_size & (~mask), 8323 (u64)-1); 8324 if (ret) 8325 return ret; 8326 } 8327 8328 /* 8329 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8330 * things going on here: 8331 * 8332 * 1) We need to reserve space to update our inode. 8333 * 8334 * 2) We need to have something to cache all the space that is going to 8335 * be free'd up by the truncate operation, but also have some slack 8336 * space reserved in case it uses space during the truncate (thank you 8337 * very much snapshotting). 8338 * 8339 * And we need these to be separate. The fact is we can use a lot of 8340 * space doing the truncate, and we have no earthly idea how much space 8341 * we will use, so we need the truncate reservation to be separate so it 8342 * doesn't end up using space reserved for updating the inode. We also 8343 * need to be able to stop the transaction and start a new one, which 8344 * means we need to be able to update the inode several times, and we 8345 * have no idea of knowing how many times that will be, so we can't just 8346 * reserve 1 item for the entirety of the operation, so that has to be 8347 * done separately as well. 8348 * 8349 * So that leaves us with 8350 * 8351 * 1) rsv - for the truncate reservation, which we will steal from the 8352 * transaction reservation. 8353 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8354 * updating the inode. 8355 */ 8356 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8357 if (!rsv) 8358 return -ENOMEM; 8359 rsv->size = min_size; 8360 rsv->failfast = true; 8361 8362 /* 8363 * 1 for the truncate slack space 8364 * 1 for updating the inode. 8365 */ 8366 trans = btrfs_start_transaction(root, 2); 8367 if (IS_ERR(trans)) { 8368 ret = PTR_ERR(trans); 8369 goto out; 8370 } 8371 8372 /* Migrate the slack space for the truncate to our reserve */ 8373 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8374 min_size, false); 8375 /* 8376 * We have reserved 2 metadata units when we started the transaction and 8377 * min_size matches 1 unit, so this should never fail, but if it does, 8378 * it's not critical we just fail truncation. 8379 */ 8380 if (WARN_ON(ret)) { 8381 btrfs_end_transaction(trans); 8382 goto out; 8383 } 8384 8385 trans->block_rsv = rsv; 8386 8387 while (1) { 8388 struct extent_state *cached_state = NULL; 8389 const u64 new_size = inode->vfs_inode.i_size; 8390 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8391 8392 control.new_size = new_size; 8393 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8394 /* 8395 * We want to drop from the next block forward in case this new 8396 * size is not block aligned since we will be keeping the last 8397 * block of the extent just the way it is. 8398 */ 8399 btrfs_drop_extent_map_range(inode, 8400 ALIGN(new_size, fs_info->sectorsize), 8401 (u64)-1, false); 8402 8403 ret = btrfs_truncate_inode_items(trans, root, &control); 8404 8405 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 8406 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 8407 8408 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 8409 8410 trans->block_rsv = &fs_info->trans_block_rsv; 8411 if (ret != -ENOSPC && ret != -EAGAIN) 8412 break; 8413 8414 ret = btrfs_update_inode(trans, inode); 8415 if (ret) 8416 break; 8417 8418 btrfs_end_transaction(trans); 8419 btrfs_btree_balance_dirty(fs_info); 8420 8421 trans = btrfs_start_transaction(root, 2); 8422 if (IS_ERR(trans)) { 8423 ret = PTR_ERR(trans); 8424 trans = NULL; 8425 break; 8426 } 8427 8428 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8429 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8430 rsv, min_size, false); 8431 /* 8432 * We have reserved 2 metadata units when we started the 8433 * transaction and min_size matches 1 unit, so this should never 8434 * fail, but if it does, it's not critical we just fail truncation. 8435 */ 8436 if (WARN_ON(ret)) 8437 break; 8438 8439 trans->block_rsv = rsv; 8440 } 8441 8442 /* 8443 * We can't call btrfs_truncate_block inside a trans handle as we could 8444 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8445 * know we've truncated everything except the last little bit, and can 8446 * do btrfs_truncate_block and then update the disk_i_size. 8447 */ 8448 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8449 btrfs_end_transaction(trans); 8450 btrfs_btree_balance_dirty(fs_info); 8451 8452 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 8453 if (ret) 8454 goto out; 8455 trans = btrfs_start_transaction(root, 1); 8456 if (IS_ERR(trans)) { 8457 ret = PTR_ERR(trans); 8458 goto out; 8459 } 8460 btrfs_inode_safe_disk_i_size_write(inode, 0); 8461 } 8462 8463 if (trans) { 8464 int ret2; 8465 8466 trans->block_rsv = &fs_info->trans_block_rsv; 8467 ret2 = btrfs_update_inode(trans, inode); 8468 if (ret2 && !ret) 8469 ret = ret2; 8470 8471 ret2 = btrfs_end_transaction(trans); 8472 if (ret2 && !ret) 8473 ret = ret2; 8474 btrfs_btree_balance_dirty(fs_info); 8475 } 8476 out: 8477 btrfs_free_block_rsv(fs_info, rsv); 8478 /* 8479 * So if we truncate and then write and fsync we normally would just 8480 * write the extents that changed, which is a problem if we need to 8481 * first truncate that entire inode. So set this flag so we write out 8482 * all of the extents in the inode to the sync log so we're completely 8483 * safe. 8484 * 8485 * If no extents were dropped or trimmed we don't need to force the next 8486 * fsync to truncate all the inode's items from the log and re-log them 8487 * all. This means the truncate operation did not change the file size, 8488 * or changed it to a smaller size but there was only an implicit hole 8489 * between the old i_size and the new i_size, and there were no prealloc 8490 * extents beyond i_size to drop. 8491 */ 8492 if (control.extents_found > 0) 8493 btrfs_set_inode_full_sync(inode); 8494 8495 return ret; 8496 } 8497 8498 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 8499 struct inode *dir) 8500 { 8501 struct inode *inode; 8502 8503 inode = new_inode(dir->i_sb); 8504 if (inode) { 8505 /* 8506 * Subvolumes don't inherit the sgid bit or the parent's gid if 8507 * the parent's sgid bit is set. This is probably a bug. 8508 */ 8509 inode_init_owner(idmap, inode, NULL, 8510 S_IFDIR | (~current_umask() & S_IRWXUGO)); 8511 inode->i_op = &btrfs_dir_inode_operations; 8512 inode->i_fop = &btrfs_dir_file_operations; 8513 } 8514 return inode; 8515 } 8516 8517 struct inode *btrfs_alloc_inode(struct super_block *sb) 8518 { 8519 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8520 struct btrfs_inode *ei; 8521 struct inode *inode; 8522 struct extent_io_tree *file_extent_tree = NULL; 8523 8524 /* Self tests may pass a NULL fs_info. */ 8525 if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) { 8526 file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 8527 if (!file_extent_tree) 8528 return NULL; 8529 } 8530 8531 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8532 if (!ei) { 8533 kfree(file_extent_tree); 8534 return NULL; 8535 } 8536 8537 ei->root = NULL; 8538 ei->generation = 0; 8539 ei->last_trans = 0; 8540 ei->last_sub_trans = 0; 8541 ei->logged_trans = 0; 8542 ei->delalloc_bytes = 0; 8543 ei->new_delalloc_bytes = 0; 8544 ei->defrag_bytes = 0; 8545 ei->disk_i_size = 0; 8546 ei->flags = 0; 8547 ei->ro_flags = 0; 8548 ei->csum_bytes = 0; 8549 ei->index_cnt = (u64)-1; 8550 ei->dir_index = 0; 8551 ei->last_unlink_trans = 0; 8552 ei->last_reflink_trans = 0; 8553 ei->last_log_commit = 0; 8554 8555 spin_lock_init(&ei->lock); 8556 ei->outstanding_extents = 0; 8557 if (sb->s_magic != BTRFS_TEST_MAGIC) 8558 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8559 BTRFS_BLOCK_RSV_DELALLOC); 8560 ei->runtime_flags = 0; 8561 ei->prop_compress = BTRFS_COMPRESS_NONE; 8562 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8563 8564 ei->delayed_node = NULL; 8565 8566 ei->i_otime_sec = 0; 8567 ei->i_otime_nsec = 0; 8568 8569 inode = &ei->vfs_inode; 8570 extent_map_tree_init(&ei->extent_tree); 8571 8572 /* This io tree sets the valid inode. */ 8573 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 8574 ei->io_tree.inode = ei; 8575 8576 ei->file_extent_tree = file_extent_tree; 8577 if (file_extent_tree) { 8578 extent_io_tree_init(fs_info, ei->file_extent_tree, 8579 IO_TREE_INODE_FILE_EXTENT); 8580 /* Lockdep class is set only for the file extent tree. */ 8581 lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class); 8582 } 8583 mutex_init(&ei->log_mutex); 8584 spin_lock_init(&ei->ordered_tree_lock); 8585 ei->ordered_tree = RB_ROOT; 8586 ei->ordered_tree_last = NULL; 8587 INIT_LIST_HEAD(&ei->delalloc_inodes); 8588 INIT_LIST_HEAD(&ei->delayed_iput); 8589 RB_CLEAR_NODE(&ei->rb_node); 8590 init_rwsem(&ei->i_mmap_lock); 8591 8592 return inode; 8593 } 8594 8595 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8596 void btrfs_test_destroy_inode(struct inode *inode) 8597 { 8598 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 8599 kfree(BTRFS_I(inode)->file_extent_tree); 8600 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8601 } 8602 #endif 8603 8604 void btrfs_free_inode(struct inode *inode) 8605 { 8606 kfree(BTRFS_I(inode)->file_extent_tree); 8607 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8608 } 8609 8610 void btrfs_destroy_inode(struct inode *vfs_inode) 8611 { 8612 struct btrfs_ordered_extent *ordered; 8613 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8614 struct btrfs_root *root = inode->root; 8615 bool freespace_inode; 8616 8617 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8618 WARN_ON(vfs_inode->i_data.nrpages); 8619 WARN_ON(inode->block_rsv.reserved); 8620 WARN_ON(inode->block_rsv.size); 8621 WARN_ON(inode->outstanding_extents); 8622 if (!S_ISDIR(vfs_inode->i_mode)) { 8623 WARN_ON(inode->delalloc_bytes); 8624 WARN_ON(inode->new_delalloc_bytes); 8625 } 8626 WARN_ON(inode->csum_bytes); 8627 WARN_ON(inode->defrag_bytes); 8628 8629 /* 8630 * This can happen where we create an inode, but somebody else also 8631 * created the same inode and we need to destroy the one we already 8632 * created. 8633 */ 8634 if (!root) 8635 return; 8636 8637 /* 8638 * If this is a free space inode do not take the ordered extents lockdep 8639 * map. 8640 */ 8641 freespace_inode = btrfs_is_free_space_inode(inode); 8642 8643 while (1) { 8644 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8645 if (!ordered) 8646 break; 8647 else { 8648 btrfs_err(root->fs_info, 8649 "found ordered extent %llu %llu on inode cleanup", 8650 ordered->file_offset, ordered->num_bytes); 8651 8652 if (!freespace_inode) 8653 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 8654 8655 btrfs_remove_ordered_extent(inode, ordered); 8656 btrfs_put_ordered_extent(ordered); 8657 btrfs_put_ordered_extent(ordered); 8658 } 8659 } 8660 btrfs_qgroup_check_reserved_leak(inode); 8661 inode_tree_del(inode); 8662 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 8663 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8664 btrfs_put_root(inode->root); 8665 } 8666 8667 int btrfs_drop_inode(struct inode *inode) 8668 { 8669 struct btrfs_root *root = BTRFS_I(inode)->root; 8670 8671 if (root == NULL) 8672 return 1; 8673 8674 /* the snap/subvol tree is on deleting */ 8675 if (btrfs_root_refs(&root->root_item) == 0) 8676 return 1; 8677 else 8678 return generic_drop_inode(inode); 8679 } 8680 8681 static void init_once(void *foo) 8682 { 8683 struct btrfs_inode *ei = foo; 8684 8685 inode_init_once(&ei->vfs_inode); 8686 } 8687 8688 void __cold btrfs_destroy_cachep(void) 8689 { 8690 /* 8691 * Make sure all delayed rcu free inodes are flushed before we 8692 * destroy cache. 8693 */ 8694 rcu_barrier(); 8695 bioset_exit(&btrfs_dio_bioset); 8696 kmem_cache_destroy(btrfs_inode_cachep); 8697 } 8698 8699 int __init btrfs_init_cachep(void) 8700 { 8701 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8702 sizeof(struct btrfs_inode), 0, 8703 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8704 init_once); 8705 if (!btrfs_inode_cachep) 8706 goto fail; 8707 8708 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE, 8709 offsetof(struct btrfs_dio_private, bbio.bio), 8710 BIOSET_NEED_BVECS)) 8711 goto fail; 8712 8713 return 0; 8714 fail: 8715 btrfs_destroy_cachep(); 8716 return -ENOMEM; 8717 } 8718 8719 static int btrfs_getattr(struct mnt_idmap *idmap, 8720 const struct path *path, struct kstat *stat, 8721 u32 request_mask, unsigned int flags) 8722 { 8723 u64 delalloc_bytes; 8724 u64 inode_bytes; 8725 struct inode *inode = d_inode(path->dentry); 8726 u32 blocksize = inode->i_sb->s_blocksize; 8727 u32 bi_flags = BTRFS_I(inode)->flags; 8728 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 8729 8730 stat->result_mask |= STATX_BTIME; 8731 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 8732 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 8733 if (bi_flags & BTRFS_INODE_APPEND) 8734 stat->attributes |= STATX_ATTR_APPEND; 8735 if (bi_flags & BTRFS_INODE_COMPRESS) 8736 stat->attributes |= STATX_ATTR_COMPRESSED; 8737 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8738 stat->attributes |= STATX_ATTR_IMMUTABLE; 8739 if (bi_flags & BTRFS_INODE_NODUMP) 8740 stat->attributes |= STATX_ATTR_NODUMP; 8741 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 8742 stat->attributes |= STATX_ATTR_VERITY; 8743 8744 stat->attributes_mask |= (STATX_ATTR_APPEND | 8745 STATX_ATTR_COMPRESSED | 8746 STATX_ATTR_IMMUTABLE | 8747 STATX_ATTR_NODUMP); 8748 8749 generic_fillattr(idmap, request_mask, inode, stat); 8750 stat->dev = BTRFS_I(inode)->root->anon_dev; 8751 8752 spin_lock(&BTRFS_I(inode)->lock); 8753 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8754 inode_bytes = inode_get_bytes(inode); 8755 spin_unlock(&BTRFS_I(inode)->lock); 8756 stat->blocks = (ALIGN(inode_bytes, blocksize) + 8757 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 8758 return 0; 8759 } 8760 8761 static int btrfs_rename_exchange(struct inode *old_dir, 8762 struct dentry *old_dentry, 8763 struct inode *new_dir, 8764 struct dentry *new_dentry) 8765 { 8766 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8767 struct btrfs_trans_handle *trans; 8768 unsigned int trans_num_items; 8769 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8770 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8771 struct inode *new_inode = new_dentry->d_inode; 8772 struct inode *old_inode = old_dentry->d_inode; 8773 struct btrfs_rename_ctx old_rename_ctx; 8774 struct btrfs_rename_ctx new_rename_ctx; 8775 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8776 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8777 u64 old_idx = 0; 8778 u64 new_idx = 0; 8779 int ret; 8780 int ret2; 8781 bool need_abort = false; 8782 struct fscrypt_name old_fname, new_fname; 8783 struct fscrypt_str *old_name, *new_name; 8784 8785 /* 8786 * For non-subvolumes allow exchange only within one subvolume, in the 8787 * same inode namespace. Two subvolumes (represented as directory) can 8788 * be exchanged as they're a logical link and have a fixed inode number. 8789 */ 8790 if (root != dest && 8791 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 8792 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 8793 return -EXDEV; 8794 8795 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8796 if (ret) 8797 return ret; 8798 8799 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8800 if (ret) { 8801 fscrypt_free_filename(&old_fname); 8802 return ret; 8803 } 8804 8805 old_name = &old_fname.disk_name; 8806 new_name = &new_fname.disk_name; 8807 8808 /* close the race window with snapshot create/destroy ioctl */ 8809 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8810 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8811 down_read(&fs_info->subvol_sem); 8812 8813 /* 8814 * For each inode: 8815 * 1 to remove old dir item 8816 * 1 to remove old dir index 8817 * 1 to add new dir item 8818 * 1 to add new dir index 8819 * 1 to update parent inode 8820 * 8821 * If the parents are the same, we only need to account for one 8822 */ 8823 trans_num_items = (old_dir == new_dir ? 9 : 10); 8824 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8825 /* 8826 * 1 to remove old root ref 8827 * 1 to remove old root backref 8828 * 1 to add new root ref 8829 * 1 to add new root backref 8830 */ 8831 trans_num_items += 4; 8832 } else { 8833 /* 8834 * 1 to update inode item 8835 * 1 to remove old inode ref 8836 * 1 to add new inode ref 8837 */ 8838 trans_num_items += 3; 8839 } 8840 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8841 trans_num_items += 4; 8842 else 8843 trans_num_items += 3; 8844 trans = btrfs_start_transaction(root, trans_num_items); 8845 if (IS_ERR(trans)) { 8846 ret = PTR_ERR(trans); 8847 goto out_notrans; 8848 } 8849 8850 if (dest != root) { 8851 ret = btrfs_record_root_in_trans(trans, dest); 8852 if (ret) 8853 goto out_fail; 8854 } 8855 8856 /* 8857 * We need to find a free sequence number both in the source and 8858 * in the destination directory for the exchange. 8859 */ 8860 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8861 if (ret) 8862 goto out_fail; 8863 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8864 if (ret) 8865 goto out_fail; 8866 8867 BTRFS_I(old_inode)->dir_index = 0ULL; 8868 BTRFS_I(new_inode)->dir_index = 0ULL; 8869 8870 /* Reference for the source. */ 8871 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8872 /* force full log commit if subvolume involved. */ 8873 btrfs_set_log_full_commit(trans); 8874 } else { 8875 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8876 btrfs_ino(BTRFS_I(new_dir)), 8877 old_idx); 8878 if (ret) 8879 goto out_fail; 8880 need_abort = true; 8881 } 8882 8883 /* And now for the dest. */ 8884 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8885 /* force full log commit if subvolume involved. */ 8886 btrfs_set_log_full_commit(trans); 8887 } else { 8888 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8889 btrfs_ino(BTRFS_I(old_dir)), 8890 new_idx); 8891 if (ret) { 8892 if (need_abort) 8893 btrfs_abort_transaction(trans, ret); 8894 goto out_fail; 8895 } 8896 } 8897 8898 /* Update inode version and ctime/mtime. */ 8899 inode_inc_iversion(old_dir); 8900 inode_inc_iversion(new_dir); 8901 inode_inc_iversion(old_inode); 8902 inode_inc_iversion(new_inode); 8903 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8904 8905 if (old_dentry->d_parent != new_dentry->d_parent) { 8906 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8907 BTRFS_I(old_inode), true); 8908 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8909 BTRFS_I(new_inode), true); 8910 } 8911 8912 /* src is a subvolume */ 8913 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8914 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8915 } else { /* src is an inode */ 8916 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8917 BTRFS_I(old_dentry->d_inode), 8918 old_name, &old_rename_ctx); 8919 if (!ret) 8920 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8921 } 8922 if (ret) { 8923 btrfs_abort_transaction(trans, ret); 8924 goto out_fail; 8925 } 8926 8927 /* dest is a subvolume */ 8928 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8929 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8930 } else { /* dest is an inode */ 8931 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8932 BTRFS_I(new_dentry->d_inode), 8933 new_name, &new_rename_ctx); 8934 if (!ret) 8935 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8936 } 8937 if (ret) { 8938 btrfs_abort_transaction(trans, ret); 8939 goto out_fail; 8940 } 8941 8942 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8943 new_name, 0, old_idx); 8944 if (ret) { 8945 btrfs_abort_transaction(trans, ret); 8946 goto out_fail; 8947 } 8948 8949 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8950 old_name, 0, new_idx); 8951 if (ret) { 8952 btrfs_abort_transaction(trans, ret); 8953 goto out_fail; 8954 } 8955 8956 if (old_inode->i_nlink == 1) 8957 BTRFS_I(old_inode)->dir_index = old_idx; 8958 if (new_inode->i_nlink == 1) 8959 BTRFS_I(new_inode)->dir_index = new_idx; 8960 8961 /* 8962 * Now pin the logs of the roots. We do it to ensure that no other task 8963 * can sync the logs while we are in progress with the rename, because 8964 * that could result in an inconsistency in case any of the inodes that 8965 * are part of this rename operation were logged before. 8966 */ 8967 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8968 btrfs_pin_log_trans(root); 8969 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8970 btrfs_pin_log_trans(dest); 8971 8972 /* Do the log updates for all inodes. */ 8973 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8974 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8975 old_rename_ctx.index, new_dentry->d_parent); 8976 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8977 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8978 new_rename_ctx.index, old_dentry->d_parent); 8979 8980 /* Now unpin the logs. */ 8981 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8982 btrfs_end_log_trans(root); 8983 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8984 btrfs_end_log_trans(dest); 8985 out_fail: 8986 ret2 = btrfs_end_transaction(trans); 8987 ret = ret ? ret : ret2; 8988 out_notrans: 8989 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8990 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8991 up_read(&fs_info->subvol_sem); 8992 8993 fscrypt_free_filename(&new_fname); 8994 fscrypt_free_filename(&old_fname); 8995 return ret; 8996 } 8997 8998 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8999 struct inode *dir) 9000 { 9001 struct inode *inode; 9002 9003 inode = new_inode(dir->i_sb); 9004 if (inode) { 9005 inode_init_owner(idmap, inode, dir, 9006 S_IFCHR | WHITEOUT_MODE); 9007 inode->i_op = &btrfs_special_inode_operations; 9008 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 9009 } 9010 return inode; 9011 } 9012 9013 static int btrfs_rename(struct mnt_idmap *idmap, 9014 struct inode *old_dir, struct dentry *old_dentry, 9015 struct inode *new_dir, struct dentry *new_dentry, 9016 unsigned int flags) 9017 { 9018 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9019 struct btrfs_new_inode_args whiteout_args = { 9020 .dir = old_dir, 9021 .dentry = old_dentry, 9022 }; 9023 struct btrfs_trans_handle *trans; 9024 unsigned int trans_num_items; 9025 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9026 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9027 struct inode *new_inode = d_inode(new_dentry); 9028 struct inode *old_inode = d_inode(old_dentry); 9029 struct btrfs_rename_ctx rename_ctx; 9030 u64 index = 0; 9031 int ret; 9032 int ret2; 9033 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9034 struct fscrypt_name old_fname, new_fname; 9035 9036 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9037 return -EPERM; 9038 9039 /* we only allow rename subvolume link between subvolumes */ 9040 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9041 return -EXDEV; 9042 9043 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9044 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9045 return -ENOTEMPTY; 9046 9047 if (S_ISDIR(old_inode->i_mode) && new_inode && 9048 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9049 return -ENOTEMPTY; 9050 9051 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 9052 if (ret) 9053 return ret; 9054 9055 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 9056 if (ret) { 9057 fscrypt_free_filename(&old_fname); 9058 return ret; 9059 } 9060 9061 /* check for collisions, even if the name isn't there */ 9062 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 9063 if (ret) { 9064 if (ret == -EEXIST) { 9065 /* we shouldn't get 9066 * eexist without a new_inode */ 9067 if (WARN_ON(!new_inode)) { 9068 goto out_fscrypt_names; 9069 } 9070 } else { 9071 /* maybe -EOVERFLOW */ 9072 goto out_fscrypt_names; 9073 } 9074 } 9075 ret = 0; 9076 9077 /* 9078 * we're using rename to replace one file with another. Start IO on it 9079 * now so we don't add too much work to the end of the transaction 9080 */ 9081 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9082 filemap_flush(old_inode->i_mapping); 9083 9084 if (flags & RENAME_WHITEOUT) { 9085 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 9086 if (!whiteout_args.inode) { 9087 ret = -ENOMEM; 9088 goto out_fscrypt_names; 9089 } 9090 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 9091 if (ret) 9092 goto out_whiteout_inode; 9093 } else { 9094 /* 1 to update the old parent inode. */ 9095 trans_num_items = 1; 9096 } 9097 9098 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9099 /* Close the race window with snapshot create/destroy ioctl */ 9100 down_read(&fs_info->subvol_sem); 9101 /* 9102 * 1 to remove old root ref 9103 * 1 to remove old root backref 9104 * 1 to add new root ref 9105 * 1 to add new root backref 9106 */ 9107 trans_num_items += 4; 9108 } else { 9109 /* 9110 * 1 to update inode 9111 * 1 to remove old inode ref 9112 * 1 to add new inode ref 9113 */ 9114 trans_num_items += 3; 9115 } 9116 /* 9117 * 1 to remove old dir item 9118 * 1 to remove old dir index 9119 * 1 to add new dir item 9120 * 1 to add new dir index 9121 */ 9122 trans_num_items += 4; 9123 /* 1 to update new parent inode if it's not the same as the old parent */ 9124 if (new_dir != old_dir) 9125 trans_num_items++; 9126 if (new_inode) { 9127 /* 9128 * 1 to update inode 9129 * 1 to remove inode ref 9130 * 1 to remove dir item 9131 * 1 to remove dir index 9132 * 1 to possibly add orphan item 9133 */ 9134 trans_num_items += 5; 9135 } 9136 trans = btrfs_start_transaction(root, trans_num_items); 9137 if (IS_ERR(trans)) { 9138 ret = PTR_ERR(trans); 9139 goto out_notrans; 9140 } 9141 9142 if (dest != root) { 9143 ret = btrfs_record_root_in_trans(trans, dest); 9144 if (ret) 9145 goto out_fail; 9146 } 9147 9148 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9149 if (ret) 9150 goto out_fail; 9151 9152 BTRFS_I(old_inode)->dir_index = 0ULL; 9153 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9154 /* force full log commit if subvolume involved. */ 9155 btrfs_set_log_full_commit(trans); 9156 } else { 9157 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 9158 old_ino, btrfs_ino(BTRFS_I(new_dir)), 9159 index); 9160 if (ret) 9161 goto out_fail; 9162 } 9163 9164 inode_inc_iversion(old_dir); 9165 inode_inc_iversion(new_dir); 9166 inode_inc_iversion(old_inode); 9167 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 9168 9169 if (old_dentry->d_parent != new_dentry->d_parent) 9170 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9171 BTRFS_I(old_inode), true); 9172 9173 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9174 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 9175 } else { 9176 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9177 BTRFS_I(d_inode(old_dentry)), 9178 &old_fname.disk_name, &rename_ctx); 9179 if (!ret) 9180 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 9181 } 9182 if (ret) { 9183 btrfs_abort_transaction(trans, ret); 9184 goto out_fail; 9185 } 9186 9187 if (new_inode) { 9188 inode_inc_iversion(new_inode); 9189 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9190 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9191 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 9192 BUG_ON(new_inode->i_nlink == 0); 9193 } else { 9194 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9195 BTRFS_I(d_inode(new_dentry)), 9196 &new_fname.disk_name); 9197 } 9198 if (!ret && new_inode->i_nlink == 0) 9199 ret = btrfs_orphan_add(trans, 9200 BTRFS_I(d_inode(new_dentry))); 9201 if (ret) { 9202 btrfs_abort_transaction(trans, ret); 9203 goto out_fail; 9204 } 9205 } 9206 9207 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9208 &new_fname.disk_name, 0, index); 9209 if (ret) { 9210 btrfs_abort_transaction(trans, ret); 9211 goto out_fail; 9212 } 9213 9214 if (old_inode->i_nlink == 1) 9215 BTRFS_I(old_inode)->dir_index = index; 9216 9217 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9218 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9219 rename_ctx.index, new_dentry->d_parent); 9220 9221 if (flags & RENAME_WHITEOUT) { 9222 ret = btrfs_create_new_inode(trans, &whiteout_args); 9223 if (ret) { 9224 btrfs_abort_transaction(trans, ret); 9225 goto out_fail; 9226 } else { 9227 unlock_new_inode(whiteout_args.inode); 9228 iput(whiteout_args.inode); 9229 whiteout_args.inode = NULL; 9230 } 9231 } 9232 out_fail: 9233 ret2 = btrfs_end_transaction(trans); 9234 ret = ret ? ret : ret2; 9235 out_notrans: 9236 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9237 up_read(&fs_info->subvol_sem); 9238 if (flags & RENAME_WHITEOUT) 9239 btrfs_new_inode_args_destroy(&whiteout_args); 9240 out_whiteout_inode: 9241 if (flags & RENAME_WHITEOUT) 9242 iput(whiteout_args.inode); 9243 out_fscrypt_names: 9244 fscrypt_free_filename(&old_fname); 9245 fscrypt_free_filename(&new_fname); 9246 return ret; 9247 } 9248 9249 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 9250 struct dentry *old_dentry, struct inode *new_dir, 9251 struct dentry *new_dentry, unsigned int flags) 9252 { 9253 int ret; 9254 9255 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9256 return -EINVAL; 9257 9258 if (flags & RENAME_EXCHANGE) 9259 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9260 new_dentry); 9261 else 9262 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 9263 new_dentry, flags); 9264 9265 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 9266 9267 return ret; 9268 } 9269 9270 struct btrfs_delalloc_work { 9271 struct inode *inode; 9272 struct completion completion; 9273 struct list_head list; 9274 struct btrfs_work work; 9275 }; 9276 9277 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9278 { 9279 struct btrfs_delalloc_work *delalloc_work; 9280 struct inode *inode; 9281 9282 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9283 work); 9284 inode = delalloc_work->inode; 9285 filemap_flush(inode->i_mapping); 9286 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9287 &BTRFS_I(inode)->runtime_flags)) 9288 filemap_flush(inode->i_mapping); 9289 9290 iput(inode); 9291 complete(&delalloc_work->completion); 9292 } 9293 9294 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9295 { 9296 struct btrfs_delalloc_work *work; 9297 9298 work = kmalloc(sizeof(*work), GFP_NOFS); 9299 if (!work) 9300 return NULL; 9301 9302 init_completion(&work->completion); 9303 INIT_LIST_HEAD(&work->list); 9304 work->inode = inode; 9305 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 9306 9307 return work; 9308 } 9309 9310 /* 9311 * some fairly slow code that needs optimization. This walks the list 9312 * of all the inodes with pending delalloc and forces them to disk. 9313 */ 9314 static int start_delalloc_inodes(struct btrfs_root *root, 9315 struct writeback_control *wbc, bool snapshot, 9316 bool in_reclaim_context) 9317 { 9318 struct btrfs_inode *binode; 9319 struct inode *inode; 9320 struct btrfs_delalloc_work *work, *next; 9321 LIST_HEAD(works); 9322 LIST_HEAD(splice); 9323 int ret = 0; 9324 bool full_flush = wbc->nr_to_write == LONG_MAX; 9325 9326 mutex_lock(&root->delalloc_mutex); 9327 spin_lock(&root->delalloc_lock); 9328 list_splice_init(&root->delalloc_inodes, &splice); 9329 while (!list_empty(&splice)) { 9330 binode = list_entry(splice.next, struct btrfs_inode, 9331 delalloc_inodes); 9332 9333 list_move_tail(&binode->delalloc_inodes, 9334 &root->delalloc_inodes); 9335 9336 if (in_reclaim_context && 9337 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9338 continue; 9339 9340 inode = igrab(&binode->vfs_inode); 9341 if (!inode) { 9342 cond_resched_lock(&root->delalloc_lock); 9343 continue; 9344 } 9345 spin_unlock(&root->delalloc_lock); 9346 9347 if (snapshot) 9348 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9349 &binode->runtime_flags); 9350 if (full_flush) { 9351 work = btrfs_alloc_delalloc_work(inode); 9352 if (!work) { 9353 iput(inode); 9354 ret = -ENOMEM; 9355 goto out; 9356 } 9357 list_add_tail(&work->list, &works); 9358 btrfs_queue_work(root->fs_info->flush_workers, 9359 &work->work); 9360 } else { 9361 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9362 btrfs_add_delayed_iput(BTRFS_I(inode)); 9363 if (ret || wbc->nr_to_write <= 0) 9364 goto out; 9365 } 9366 cond_resched(); 9367 spin_lock(&root->delalloc_lock); 9368 } 9369 spin_unlock(&root->delalloc_lock); 9370 9371 out: 9372 list_for_each_entry_safe(work, next, &works, list) { 9373 list_del_init(&work->list); 9374 wait_for_completion(&work->completion); 9375 kfree(work); 9376 } 9377 9378 if (!list_empty(&splice)) { 9379 spin_lock(&root->delalloc_lock); 9380 list_splice_tail(&splice, &root->delalloc_inodes); 9381 spin_unlock(&root->delalloc_lock); 9382 } 9383 mutex_unlock(&root->delalloc_mutex); 9384 return ret; 9385 } 9386 9387 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9388 { 9389 struct writeback_control wbc = { 9390 .nr_to_write = LONG_MAX, 9391 .sync_mode = WB_SYNC_NONE, 9392 .range_start = 0, 9393 .range_end = LLONG_MAX, 9394 }; 9395 struct btrfs_fs_info *fs_info = root->fs_info; 9396 9397 if (BTRFS_FS_ERROR(fs_info)) 9398 return -EROFS; 9399 9400 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9401 } 9402 9403 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9404 bool in_reclaim_context) 9405 { 9406 struct writeback_control wbc = { 9407 .nr_to_write = nr, 9408 .sync_mode = WB_SYNC_NONE, 9409 .range_start = 0, 9410 .range_end = LLONG_MAX, 9411 }; 9412 struct btrfs_root *root; 9413 LIST_HEAD(splice); 9414 int ret; 9415 9416 if (BTRFS_FS_ERROR(fs_info)) 9417 return -EROFS; 9418 9419 mutex_lock(&fs_info->delalloc_root_mutex); 9420 spin_lock(&fs_info->delalloc_root_lock); 9421 list_splice_init(&fs_info->delalloc_roots, &splice); 9422 while (!list_empty(&splice)) { 9423 /* 9424 * Reset nr_to_write here so we know that we're doing a full 9425 * flush. 9426 */ 9427 if (nr == LONG_MAX) 9428 wbc.nr_to_write = LONG_MAX; 9429 9430 root = list_first_entry(&splice, struct btrfs_root, 9431 delalloc_root); 9432 root = btrfs_grab_root(root); 9433 BUG_ON(!root); 9434 list_move_tail(&root->delalloc_root, 9435 &fs_info->delalloc_roots); 9436 spin_unlock(&fs_info->delalloc_root_lock); 9437 9438 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9439 btrfs_put_root(root); 9440 if (ret < 0 || wbc.nr_to_write <= 0) 9441 goto out; 9442 spin_lock(&fs_info->delalloc_root_lock); 9443 } 9444 spin_unlock(&fs_info->delalloc_root_lock); 9445 9446 ret = 0; 9447 out: 9448 if (!list_empty(&splice)) { 9449 spin_lock(&fs_info->delalloc_root_lock); 9450 list_splice_tail(&splice, &fs_info->delalloc_roots); 9451 spin_unlock(&fs_info->delalloc_root_lock); 9452 } 9453 mutex_unlock(&fs_info->delalloc_root_mutex); 9454 return ret; 9455 } 9456 9457 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 9458 struct dentry *dentry, const char *symname) 9459 { 9460 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9461 struct btrfs_trans_handle *trans; 9462 struct btrfs_root *root = BTRFS_I(dir)->root; 9463 struct btrfs_path *path; 9464 struct btrfs_key key; 9465 struct inode *inode; 9466 struct btrfs_new_inode_args new_inode_args = { 9467 .dir = dir, 9468 .dentry = dentry, 9469 }; 9470 unsigned int trans_num_items; 9471 int err; 9472 int name_len; 9473 int datasize; 9474 unsigned long ptr; 9475 struct btrfs_file_extent_item *ei; 9476 struct extent_buffer *leaf; 9477 9478 name_len = strlen(symname); 9479 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9480 return -ENAMETOOLONG; 9481 9482 inode = new_inode(dir->i_sb); 9483 if (!inode) 9484 return -ENOMEM; 9485 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 9486 inode->i_op = &btrfs_symlink_inode_operations; 9487 inode_nohighmem(inode); 9488 inode->i_mapping->a_ops = &btrfs_aops; 9489 btrfs_i_size_write(BTRFS_I(inode), name_len); 9490 inode_set_bytes(inode, name_len); 9491 9492 new_inode_args.inode = inode; 9493 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9494 if (err) 9495 goto out_inode; 9496 /* 1 additional item for the inline extent */ 9497 trans_num_items++; 9498 9499 trans = btrfs_start_transaction(root, trans_num_items); 9500 if (IS_ERR(trans)) { 9501 err = PTR_ERR(trans); 9502 goto out_new_inode_args; 9503 } 9504 9505 err = btrfs_create_new_inode(trans, &new_inode_args); 9506 if (err) 9507 goto out; 9508 9509 path = btrfs_alloc_path(); 9510 if (!path) { 9511 err = -ENOMEM; 9512 btrfs_abort_transaction(trans, err); 9513 discard_new_inode(inode); 9514 inode = NULL; 9515 goto out; 9516 } 9517 key.objectid = btrfs_ino(BTRFS_I(inode)); 9518 key.offset = 0; 9519 key.type = BTRFS_EXTENT_DATA_KEY; 9520 datasize = btrfs_file_extent_calc_inline_size(name_len); 9521 err = btrfs_insert_empty_item(trans, root, path, &key, 9522 datasize); 9523 if (err) { 9524 btrfs_abort_transaction(trans, err); 9525 btrfs_free_path(path); 9526 discard_new_inode(inode); 9527 inode = NULL; 9528 goto out; 9529 } 9530 leaf = path->nodes[0]; 9531 ei = btrfs_item_ptr(leaf, path->slots[0], 9532 struct btrfs_file_extent_item); 9533 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9534 btrfs_set_file_extent_type(leaf, ei, 9535 BTRFS_FILE_EXTENT_INLINE); 9536 btrfs_set_file_extent_encryption(leaf, ei, 0); 9537 btrfs_set_file_extent_compression(leaf, ei, 0); 9538 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9539 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9540 9541 ptr = btrfs_file_extent_inline_start(ei); 9542 write_extent_buffer(leaf, symname, ptr, name_len); 9543 btrfs_mark_buffer_dirty(trans, leaf); 9544 btrfs_free_path(path); 9545 9546 d_instantiate_new(dentry, inode); 9547 err = 0; 9548 out: 9549 btrfs_end_transaction(trans); 9550 btrfs_btree_balance_dirty(fs_info); 9551 out_new_inode_args: 9552 btrfs_new_inode_args_destroy(&new_inode_args); 9553 out_inode: 9554 if (err) 9555 iput(inode); 9556 return err; 9557 } 9558 9559 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9560 struct btrfs_trans_handle *trans_in, 9561 struct btrfs_inode *inode, 9562 struct btrfs_key *ins, 9563 u64 file_offset) 9564 { 9565 struct btrfs_file_extent_item stack_fi; 9566 struct btrfs_replace_extent_info extent_info; 9567 struct btrfs_trans_handle *trans = trans_in; 9568 struct btrfs_path *path; 9569 u64 start = ins->objectid; 9570 u64 len = ins->offset; 9571 u64 qgroup_released = 0; 9572 int ret; 9573 9574 memset(&stack_fi, 0, sizeof(stack_fi)); 9575 9576 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9577 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9578 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9579 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9580 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9581 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9582 /* Encryption and other encoding is reserved and all 0 */ 9583 9584 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 9585 if (ret < 0) 9586 return ERR_PTR(ret); 9587 9588 if (trans) { 9589 ret = insert_reserved_file_extent(trans, inode, 9590 file_offset, &stack_fi, 9591 true, qgroup_released); 9592 if (ret) 9593 goto free_qgroup; 9594 return trans; 9595 } 9596 9597 extent_info.disk_offset = start; 9598 extent_info.disk_len = len; 9599 extent_info.data_offset = 0; 9600 extent_info.data_len = len; 9601 extent_info.file_offset = file_offset; 9602 extent_info.extent_buf = (char *)&stack_fi; 9603 extent_info.is_new_extent = true; 9604 extent_info.update_times = true; 9605 extent_info.qgroup_reserved = qgroup_released; 9606 extent_info.insertions = 0; 9607 9608 path = btrfs_alloc_path(); 9609 if (!path) { 9610 ret = -ENOMEM; 9611 goto free_qgroup; 9612 } 9613 9614 ret = btrfs_replace_file_extents(inode, path, file_offset, 9615 file_offset + len - 1, &extent_info, 9616 &trans); 9617 btrfs_free_path(path); 9618 if (ret) 9619 goto free_qgroup; 9620 return trans; 9621 9622 free_qgroup: 9623 /* 9624 * We have released qgroup data range at the beginning of the function, 9625 * and normally qgroup_released bytes will be freed when committing 9626 * transaction. 9627 * But if we error out early, we have to free what we have released 9628 * or we leak qgroup data reservation. 9629 */ 9630 btrfs_qgroup_free_refroot(inode->root->fs_info, 9631 inode->root->root_key.objectid, qgroup_released, 9632 BTRFS_QGROUP_RSV_DATA); 9633 return ERR_PTR(ret); 9634 } 9635 9636 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9637 u64 start, u64 num_bytes, u64 min_size, 9638 loff_t actual_len, u64 *alloc_hint, 9639 struct btrfs_trans_handle *trans) 9640 { 9641 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9642 struct extent_map *em; 9643 struct btrfs_root *root = BTRFS_I(inode)->root; 9644 struct btrfs_key ins; 9645 u64 cur_offset = start; 9646 u64 clear_offset = start; 9647 u64 i_size; 9648 u64 cur_bytes; 9649 u64 last_alloc = (u64)-1; 9650 int ret = 0; 9651 bool own_trans = true; 9652 u64 end = start + num_bytes - 1; 9653 9654 if (trans) 9655 own_trans = false; 9656 while (num_bytes > 0) { 9657 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9658 cur_bytes = max(cur_bytes, min_size); 9659 /* 9660 * If we are severely fragmented we could end up with really 9661 * small allocations, so if the allocator is returning small 9662 * chunks lets make its job easier by only searching for those 9663 * sized chunks. 9664 */ 9665 cur_bytes = min(cur_bytes, last_alloc); 9666 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9667 min_size, 0, *alloc_hint, &ins, 1, 0); 9668 if (ret) 9669 break; 9670 9671 /* 9672 * We've reserved this space, and thus converted it from 9673 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9674 * from here on out we will only need to clear our reservation 9675 * for the remaining unreserved area, so advance our 9676 * clear_offset by our extent size. 9677 */ 9678 clear_offset += ins.offset; 9679 9680 last_alloc = ins.offset; 9681 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9682 &ins, cur_offset); 9683 /* 9684 * Now that we inserted the prealloc extent we can finally 9685 * decrement the number of reservations in the block group. 9686 * If we did it before, we could race with relocation and have 9687 * relocation miss the reserved extent, making it fail later. 9688 */ 9689 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9690 if (IS_ERR(trans)) { 9691 ret = PTR_ERR(trans); 9692 btrfs_free_reserved_extent(fs_info, ins.objectid, 9693 ins.offset, 0); 9694 break; 9695 } 9696 9697 em = alloc_extent_map(); 9698 if (!em) { 9699 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 9700 cur_offset + ins.offset - 1, false); 9701 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9702 goto next; 9703 } 9704 9705 em->start = cur_offset; 9706 em->orig_start = cur_offset; 9707 em->len = ins.offset; 9708 em->block_start = ins.objectid; 9709 em->block_len = ins.offset; 9710 em->orig_block_len = ins.offset; 9711 em->ram_bytes = ins.offset; 9712 em->flags |= EXTENT_FLAG_PREALLOC; 9713 em->generation = trans->transid; 9714 9715 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 9716 free_extent_map(em); 9717 next: 9718 num_bytes -= ins.offset; 9719 cur_offset += ins.offset; 9720 *alloc_hint = ins.objectid + ins.offset; 9721 9722 inode_inc_iversion(inode); 9723 inode_set_ctime_current(inode); 9724 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9725 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9726 (actual_len > inode->i_size) && 9727 (cur_offset > inode->i_size)) { 9728 if (cur_offset > actual_len) 9729 i_size = actual_len; 9730 else 9731 i_size = cur_offset; 9732 i_size_write(inode, i_size); 9733 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 9734 } 9735 9736 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 9737 9738 if (ret) { 9739 btrfs_abort_transaction(trans, ret); 9740 if (own_trans) 9741 btrfs_end_transaction(trans); 9742 break; 9743 } 9744 9745 if (own_trans) { 9746 btrfs_end_transaction(trans); 9747 trans = NULL; 9748 } 9749 } 9750 if (clear_offset < end) 9751 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9752 end - clear_offset + 1); 9753 return ret; 9754 } 9755 9756 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9757 u64 start, u64 num_bytes, u64 min_size, 9758 loff_t actual_len, u64 *alloc_hint) 9759 { 9760 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9761 min_size, actual_len, alloc_hint, 9762 NULL); 9763 } 9764 9765 int btrfs_prealloc_file_range_trans(struct inode *inode, 9766 struct btrfs_trans_handle *trans, int mode, 9767 u64 start, u64 num_bytes, u64 min_size, 9768 loff_t actual_len, u64 *alloc_hint) 9769 { 9770 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9771 min_size, actual_len, alloc_hint, trans); 9772 } 9773 9774 static int btrfs_permission(struct mnt_idmap *idmap, 9775 struct inode *inode, int mask) 9776 { 9777 struct btrfs_root *root = BTRFS_I(inode)->root; 9778 umode_t mode = inode->i_mode; 9779 9780 if (mask & MAY_WRITE && 9781 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9782 if (btrfs_root_readonly(root)) 9783 return -EROFS; 9784 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9785 return -EACCES; 9786 } 9787 return generic_permission(idmap, inode, mask); 9788 } 9789 9790 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9791 struct file *file, umode_t mode) 9792 { 9793 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9794 struct btrfs_trans_handle *trans; 9795 struct btrfs_root *root = BTRFS_I(dir)->root; 9796 struct inode *inode; 9797 struct btrfs_new_inode_args new_inode_args = { 9798 .dir = dir, 9799 .dentry = file->f_path.dentry, 9800 .orphan = true, 9801 }; 9802 unsigned int trans_num_items; 9803 int ret; 9804 9805 inode = new_inode(dir->i_sb); 9806 if (!inode) 9807 return -ENOMEM; 9808 inode_init_owner(idmap, inode, dir, mode); 9809 inode->i_fop = &btrfs_file_operations; 9810 inode->i_op = &btrfs_file_inode_operations; 9811 inode->i_mapping->a_ops = &btrfs_aops; 9812 9813 new_inode_args.inode = inode; 9814 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9815 if (ret) 9816 goto out_inode; 9817 9818 trans = btrfs_start_transaction(root, trans_num_items); 9819 if (IS_ERR(trans)) { 9820 ret = PTR_ERR(trans); 9821 goto out_new_inode_args; 9822 } 9823 9824 ret = btrfs_create_new_inode(trans, &new_inode_args); 9825 9826 /* 9827 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9828 * set it to 1 because d_tmpfile() will issue a warning if the count is 9829 * 0, through: 9830 * 9831 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9832 */ 9833 set_nlink(inode, 1); 9834 9835 if (!ret) { 9836 d_tmpfile(file, inode); 9837 unlock_new_inode(inode); 9838 mark_inode_dirty(inode); 9839 } 9840 9841 btrfs_end_transaction(trans); 9842 btrfs_btree_balance_dirty(fs_info); 9843 out_new_inode_args: 9844 btrfs_new_inode_args_destroy(&new_inode_args); 9845 out_inode: 9846 if (ret) 9847 iput(inode); 9848 return finish_open_simple(file, ret); 9849 } 9850 9851 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 9852 { 9853 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9854 unsigned long index = start >> PAGE_SHIFT; 9855 unsigned long end_index = end >> PAGE_SHIFT; 9856 struct page *page; 9857 u32 len; 9858 9859 ASSERT(end + 1 - start <= U32_MAX); 9860 len = end + 1 - start; 9861 while (index <= end_index) { 9862 page = find_get_page(inode->vfs_inode.i_mapping, index); 9863 ASSERT(page); /* Pages should be in the extent_io_tree */ 9864 9865 /* This is for data, which doesn't yet support larger folio. */ 9866 ASSERT(folio_order(page_folio(page)) == 0); 9867 btrfs_folio_set_writeback(fs_info, page_folio(page), start, len); 9868 put_page(page); 9869 index++; 9870 } 9871 } 9872 9873 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9874 int compress_type) 9875 { 9876 switch (compress_type) { 9877 case BTRFS_COMPRESS_NONE: 9878 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9879 case BTRFS_COMPRESS_ZLIB: 9880 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9881 case BTRFS_COMPRESS_LZO: 9882 /* 9883 * The LZO format depends on the sector size. 64K is the maximum 9884 * sector size that we support. 9885 */ 9886 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9887 return -EINVAL; 9888 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9889 (fs_info->sectorsize_bits - 12); 9890 case BTRFS_COMPRESS_ZSTD: 9891 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9892 default: 9893 return -EUCLEAN; 9894 } 9895 } 9896 9897 static ssize_t btrfs_encoded_read_inline( 9898 struct kiocb *iocb, 9899 struct iov_iter *iter, u64 start, 9900 u64 lockend, 9901 struct extent_state **cached_state, 9902 u64 extent_start, size_t count, 9903 struct btrfs_ioctl_encoded_io_args *encoded, 9904 bool *unlocked) 9905 { 9906 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9907 struct btrfs_root *root = inode->root; 9908 struct btrfs_fs_info *fs_info = root->fs_info; 9909 struct extent_io_tree *io_tree = &inode->io_tree; 9910 struct btrfs_path *path; 9911 struct extent_buffer *leaf; 9912 struct btrfs_file_extent_item *item; 9913 u64 ram_bytes; 9914 unsigned long ptr; 9915 void *tmp; 9916 ssize_t ret; 9917 9918 path = btrfs_alloc_path(); 9919 if (!path) { 9920 ret = -ENOMEM; 9921 goto out; 9922 } 9923 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9924 extent_start, 0); 9925 if (ret) { 9926 if (ret > 0) { 9927 /* The extent item disappeared? */ 9928 ret = -EIO; 9929 } 9930 goto out; 9931 } 9932 leaf = path->nodes[0]; 9933 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9934 9935 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9936 ptr = btrfs_file_extent_inline_start(item); 9937 9938 encoded->len = min_t(u64, extent_start + ram_bytes, 9939 inode->vfs_inode.i_size) - iocb->ki_pos; 9940 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9941 btrfs_file_extent_compression(leaf, item)); 9942 if (ret < 0) 9943 goto out; 9944 encoded->compression = ret; 9945 if (encoded->compression) { 9946 size_t inline_size; 9947 9948 inline_size = btrfs_file_extent_inline_item_len(leaf, 9949 path->slots[0]); 9950 if (inline_size > count) { 9951 ret = -ENOBUFS; 9952 goto out; 9953 } 9954 count = inline_size; 9955 encoded->unencoded_len = ram_bytes; 9956 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9957 } else { 9958 count = min_t(u64, count, encoded->len); 9959 encoded->len = count; 9960 encoded->unencoded_len = count; 9961 ptr += iocb->ki_pos - extent_start; 9962 } 9963 9964 tmp = kmalloc(count, GFP_NOFS); 9965 if (!tmp) { 9966 ret = -ENOMEM; 9967 goto out; 9968 } 9969 read_extent_buffer(leaf, tmp, ptr, count); 9970 btrfs_release_path(path); 9971 unlock_extent(io_tree, start, lockend, cached_state); 9972 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9973 *unlocked = true; 9974 9975 ret = copy_to_iter(tmp, count, iter); 9976 if (ret != count) 9977 ret = -EFAULT; 9978 kfree(tmp); 9979 out: 9980 btrfs_free_path(path); 9981 return ret; 9982 } 9983 9984 struct btrfs_encoded_read_private { 9985 wait_queue_head_t wait; 9986 atomic_t pending; 9987 blk_status_t status; 9988 }; 9989 9990 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9991 { 9992 struct btrfs_encoded_read_private *priv = bbio->private; 9993 9994 if (bbio->bio.bi_status) { 9995 /* 9996 * The memory barrier implied by the atomic_dec_return() here 9997 * pairs with the memory barrier implied by the 9998 * atomic_dec_return() or io_wait_event() in 9999 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10000 * write is observed before the load of status in 10001 * btrfs_encoded_read_regular_fill_pages(). 10002 */ 10003 WRITE_ONCE(priv->status, bbio->bio.bi_status); 10004 } 10005 if (!atomic_dec_return(&priv->pending)) 10006 wake_up(&priv->wait); 10007 bio_put(&bbio->bio); 10008 } 10009 10010 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10011 u64 file_offset, u64 disk_bytenr, 10012 u64 disk_io_size, struct page **pages) 10013 { 10014 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10015 struct btrfs_encoded_read_private priv = { 10016 .pending = ATOMIC_INIT(1), 10017 }; 10018 unsigned long i = 0; 10019 struct btrfs_bio *bbio; 10020 10021 init_waitqueue_head(&priv.wait); 10022 10023 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 10024 btrfs_encoded_read_endio, &priv); 10025 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 10026 bbio->inode = inode; 10027 10028 do { 10029 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 10030 10031 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 10032 atomic_inc(&priv.pending); 10033 btrfs_submit_bio(bbio, 0); 10034 10035 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 10036 btrfs_encoded_read_endio, &priv); 10037 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 10038 bbio->inode = inode; 10039 continue; 10040 } 10041 10042 i++; 10043 disk_bytenr += bytes; 10044 disk_io_size -= bytes; 10045 } while (disk_io_size); 10046 10047 atomic_inc(&priv.pending); 10048 btrfs_submit_bio(bbio, 0); 10049 10050 if (atomic_dec_return(&priv.pending)) 10051 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10052 /* See btrfs_encoded_read_endio() for ordering. */ 10053 return blk_status_to_errno(READ_ONCE(priv.status)); 10054 } 10055 10056 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10057 struct iov_iter *iter, 10058 u64 start, u64 lockend, 10059 struct extent_state **cached_state, 10060 u64 disk_bytenr, u64 disk_io_size, 10061 size_t count, bool compressed, 10062 bool *unlocked) 10063 { 10064 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10065 struct extent_io_tree *io_tree = &inode->io_tree; 10066 struct page **pages; 10067 unsigned long nr_pages, i; 10068 u64 cur; 10069 size_t page_offset; 10070 ssize_t ret; 10071 10072 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10073 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10074 if (!pages) 10075 return -ENOMEM; 10076 ret = btrfs_alloc_page_array(nr_pages, pages, 0); 10077 if (ret) { 10078 ret = -ENOMEM; 10079 goto out; 10080 } 10081 10082 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10083 disk_io_size, pages); 10084 if (ret) 10085 goto out; 10086 10087 unlock_extent(io_tree, start, lockend, cached_state); 10088 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10089 *unlocked = true; 10090 10091 if (compressed) { 10092 i = 0; 10093 page_offset = 0; 10094 } else { 10095 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10096 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10097 } 10098 cur = 0; 10099 while (cur < count) { 10100 size_t bytes = min_t(size_t, count - cur, 10101 PAGE_SIZE - page_offset); 10102 10103 if (copy_page_to_iter(pages[i], page_offset, bytes, 10104 iter) != bytes) { 10105 ret = -EFAULT; 10106 goto out; 10107 } 10108 i++; 10109 cur += bytes; 10110 page_offset = 0; 10111 } 10112 ret = count; 10113 out: 10114 for (i = 0; i < nr_pages; i++) { 10115 if (pages[i]) 10116 __free_page(pages[i]); 10117 } 10118 kfree(pages); 10119 return ret; 10120 } 10121 10122 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10123 struct btrfs_ioctl_encoded_io_args *encoded) 10124 { 10125 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10126 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10127 struct extent_io_tree *io_tree = &inode->io_tree; 10128 ssize_t ret; 10129 size_t count = iov_iter_count(iter); 10130 u64 start, lockend, disk_bytenr, disk_io_size; 10131 struct extent_state *cached_state = NULL; 10132 struct extent_map *em; 10133 bool unlocked = false; 10134 10135 file_accessed(iocb->ki_filp); 10136 10137 btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED); 10138 10139 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10140 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10141 return 0; 10142 } 10143 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10144 /* 10145 * We don't know how long the extent containing iocb->ki_pos is, but if 10146 * it's compressed we know that it won't be longer than this. 10147 */ 10148 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10149 10150 for (;;) { 10151 struct btrfs_ordered_extent *ordered; 10152 10153 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10154 lockend - start + 1); 10155 if (ret) 10156 goto out_unlock_inode; 10157 lock_extent(io_tree, start, lockend, &cached_state); 10158 ordered = btrfs_lookup_ordered_range(inode, start, 10159 lockend - start + 1); 10160 if (!ordered) 10161 break; 10162 btrfs_put_ordered_extent(ordered); 10163 unlock_extent(io_tree, start, lockend, &cached_state); 10164 cond_resched(); 10165 } 10166 10167 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10168 if (IS_ERR(em)) { 10169 ret = PTR_ERR(em); 10170 goto out_unlock_extent; 10171 } 10172 10173 if (em->block_start == EXTENT_MAP_INLINE) { 10174 u64 extent_start = em->start; 10175 10176 /* 10177 * For inline extents we get everything we need out of the 10178 * extent item. 10179 */ 10180 free_extent_map(em); 10181 em = NULL; 10182 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10183 &cached_state, extent_start, 10184 count, encoded, &unlocked); 10185 goto out; 10186 } 10187 10188 /* 10189 * We only want to return up to EOF even if the extent extends beyond 10190 * that. 10191 */ 10192 encoded->len = min_t(u64, extent_map_end(em), 10193 inode->vfs_inode.i_size) - iocb->ki_pos; 10194 if (em->block_start == EXTENT_MAP_HOLE || 10195 (em->flags & EXTENT_FLAG_PREALLOC)) { 10196 disk_bytenr = EXTENT_MAP_HOLE; 10197 count = min_t(u64, count, encoded->len); 10198 encoded->len = count; 10199 encoded->unencoded_len = count; 10200 } else if (extent_map_is_compressed(em)) { 10201 disk_bytenr = em->block_start; 10202 /* 10203 * Bail if the buffer isn't large enough to return the whole 10204 * compressed extent. 10205 */ 10206 if (em->block_len > count) { 10207 ret = -ENOBUFS; 10208 goto out_em; 10209 } 10210 disk_io_size = em->block_len; 10211 count = em->block_len; 10212 encoded->unencoded_len = em->ram_bytes; 10213 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10214 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10215 extent_map_compression(em)); 10216 if (ret < 0) 10217 goto out_em; 10218 encoded->compression = ret; 10219 } else { 10220 disk_bytenr = em->block_start + (start - em->start); 10221 if (encoded->len > count) 10222 encoded->len = count; 10223 /* 10224 * Don't read beyond what we locked. This also limits the page 10225 * allocations that we'll do. 10226 */ 10227 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10228 count = start + disk_io_size - iocb->ki_pos; 10229 encoded->len = count; 10230 encoded->unencoded_len = count; 10231 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10232 } 10233 free_extent_map(em); 10234 em = NULL; 10235 10236 if (disk_bytenr == EXTENT_MAP_HOLE) { 10237 unlock_extent(io_tree, start, lockend, &cached_state); 10238 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10239 unlocked = true; 10240 ret = iov_iter_zero(count, iter); 10241 if (ret != count) 10242 ret = -EFAULT; 10243 } else { 10244 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10245 &cached_state, disk_bytenr, 10246 disk_io_size, count, 10247 encoded->compression, 10248 &unlocked); 10249 } 10250 10251 out: 10252 if (ret >= 0) 10253 iocb->ki_pos += encoded->len; 10254 out_em: 10255 free_extent_map(em); 10256 out_unlock_extent: 10257 if (!unlocked) 10258 unlock_extent(io_tree, start, lockend, &cached_state); 10259 out_unlock_inode: 10260 if (!unlocked) 10261 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 10262 return ret; 10263 } 10264 10265 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10266 const struct btrfs_ioctl_encoded_io_args *encoded) 10267 { 10268 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10269 struct btrfs_root *root = inode->root; 10270 struct btrfs_fs_info *fs_info = root->fs_info; 10271 struct extent_io_tree *io_tree = &inode->io_tree; 10272 struct extent_changeset *data_reserved = NULL; 10273 struct extent_state *cached_state = NULL; 10274 struct btrfs_ordered_extent *ordered; 10275 int compression; 10276 size_t orig_count; 10277 u64 start, end; 10278 u64 num_bytes, ram_bytes, disk_num_bytes; 10279 unsigned long nr_pages, i; 10280 struct page **pages; 10281 struct btrfs_key ins; 10282 bool extent_reserved = false; 10283 struct extent_map *em; 10284 ssize_t ret; 10285 10286 switch (encoded->compression) { 10287 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10288 compression = BTRFS_COMPRESS_ZLIB; 10289 break; 10290 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10291 compression = BTRFS_COMPRESS_ZSTD; 10292 break; 10293 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10294 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10295 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10296 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10297 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10298 /* The sector size must match for LZO. */ 10299 if (encoded->compression - 10300 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10301 fs_info->sectorsize_bits) 10302 return -EINVAL; 10303 compression = BTRFS_COMPRESS_LZO; 10304 break; 10305 default: 10306 return -EINVAL; 10307 } 10308 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10309 return -EINVAL; 10310 10311 /* 10312 * Compressed extents should always have checksums, so error out if we 10313 * have a NOCOW file or inode was created while mounted with NODATASUM. 10314 */ 10315 if (inode->flags & BTRFS_INODE_NODATASUM) 10316 return -EINVAL; 10317 10318 orig_count = iov_iter_count(from); 10319 10320 /* The extent size must be sane. */ 10321 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10322 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10323 return -EINVAL; 10324 10325 /* 10326 * The compressed data must be smaller than the decompressed data. 10327 * 10328 * It's of course possible for data to compress to larger or the same 10329 * size, but the buffered I/O path falls back to no compression for such 10330 * data, and we don't want to break any assumptions by creating these 10331 * extents. 10332 * 10333 * Note that this is less strict than the current check we have that the 10334 * compressed data must be at least one sector smaller than the 10335 * decompressed data. We only want to enforce the weaker requirement 10336 * from old kernels that it is at least one byte smaller. 10337 */ 10338 if (orig_count >= encoded->unencoded_len) 10339 return -EINVAL; 10340 10341 /* The extent must start on a sector boundary. */ 10342 start = iocb->ki_pos; 10343 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10344 return -EINVAL; 10345 10346 /* 10347 * The extent must end on a sector boundary. However, we allow a write 10348 * which ends at or extends i_size to have an unaligned length; we round 10349 * up the extent size and set i_size to the unaligned end. 10350 */ 10351 if (start + encoded->len < inode->vfs_inode.i_size && 10352 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10353 return -EINVAL; 10354 10355 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10356 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10357 return -EINVAL; 10358 10359 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10360 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10361 end = start + num_bytes - 1; 10362 10363 /* 10364 * If the extent cannot be inline, the compressed data on disk must be 10365 * sector-aligned. For convenience, we extend it with zeroes if it 10366 * isn't. 10367 */ 10368 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10369 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10370 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10371 if (!pages) 10372 return -ENOMEM; 10373 for (i = 0; i < nr_pages; i++) { 10374 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10375 char *kaddr; 10376 10377 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10378 if (!pages[i]) { 10379 ret = -ENOMEM; 10380 goto out_pages; 10381 } 10382 kaddr = kmap_local_page(pages[i]); 10383 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10384 kunmap_local(kaddr); 10385 ret = -EFAULT; 10386 goto out_pages; 10387 } 10388 if (bytes < PAGE_SIZE) 10389 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10390 kunmap_local(kaddr); 10391 } 10392 10393 for (;;) { 10394 struct btrfs_ordered_extent *ordered; 10395 10396 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10397 if (ret) 10398 goto out_pages; 10399 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10400 start >> PAGE_SHIFT, 10401 end >> PAGE_SHIFT); 10402 if (ret) 10403 goto out_pages; 10404 lock_extent(io_tree, start, end, &cached_state); 10405 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10406 if (!ordered && 10407 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10408 break; 10409 if (ordered) 10410 btrfs_put_ordered_extent(ordered); 10411 unlock_extent(io_tree, start, end, &cached_state); 10412 cond_resched(); 10413 } 10414 10415 /* 10416 * We don't use the higher-level delalloc space functions because our 10417 * num_bytes and disk_num_bytes are different. 10418 */ 10419 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10420 if (ret) 10421 goto out_unlock; 10422 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10423 if (ret) 10424 goto out_free_data_space; 10425 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 10426 false); 10427 if (ret) 10428 goto out_qgroup_free_data; 10429 10430 /* Try an inline extent first. */ 10431 if (start == 0 && encoded->unencoded_len == encoded->len && 10432 encoded->unencoded_offset == 0) { 10433 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10434 compression, pages, true); 10435 if (ret <= 0) { 10436 if (ret == 0) 10437 ret = orig_count; 10438 goto out_delalloc_release; 10439 } 10440 } 10441 10442 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10443 disk_num_bytes, 0, 0, &ins, 1, 1); 10444 if (ret) 10445 goto out_delalloc_release; 10446 extent_reserved = true; 10447 10448 em = create_io_em(inode, start, num_bytes, 10449 start - encoded->unencoded_offset, ins.objectid, 10450 ins.offset, ins.offset, ram_bytes, compression, 10451 BTRFS_ORDERED_COMPRESSED); 10452 if (IS_ERR(em)) { 10453 ret = PTR_ERR(em); 10454 goto out_free_reserved; 10455 } 10456 free_extent_map(em); 10457 10458 ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes, 10459 ins.objectid, ins.offset, 10460 encoded->unencoded_offset, 10461 (1 << BTRFS_ORDERED_ENCODED) | 10462 (1 << BTRFS_ORDERED_COMPRESSED), 10463 compression); 10464 if (IS_ERR(ordered)) { 10465 btrfs_drop_extent_map_range(inode, start, end, false); 10466 ret = PTR_ERR(ordered); 10467 goto out_free_reserved; 10468 } 10469 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10470 10471 if (start + encoded->len > inode->vfs_inode.i_size) 10472 i_size_write(&inode->vfs_inode, start + encoded->len); 10473 10474 unlock_extent(io_tree, start, end, &cached_state); 10475 10476 btrfs_delalloc_release_extents(inode, num_bytes); 10477 10478 btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false); 10479 ret = orig_count; 10480 goto out; 10481 10482 out_free_reserved: 10483 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10484 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10485 out_delalloc_release: 10486 btrfs_delalloc_release_extents(inode, num_bytes); 10487 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10488 out_qgroup_free_data: 10489 if (ret < 0) 10490 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 10491 out_free_data_space: 10492 /* 10493 * If btrfs_reserve_extent() succeeded, then we already decremented 10494 * bytes_may_use. 10495 */ 10496 if (!extent_reserved) 10497 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10498 out_unlock: 10499 unlock_extent(io_tree, start, end, &cached_state); 10500 out_pages: 10501 for (i = 0; i < nr_pages; i++) { 10502 if (pages[i]) 10503 __free_page(pages[i]); 10504 } 10505 kvfree(pages); 10506 out: 10507 if (ret >= 0) 10508 iocb->ki_pos += encoded->len; 10509 return ret; 10510 } 10511 10512 #ifdef CONFIG_SWAP 10513 /* 10514 * Add an entry indicating a block group or device which is pinned by a 10515 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10516 * negative errno on failure. 10517 */ 10518 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10519 bool is_block_group) 10520 { 10521 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10522 struct btrfs_swapfile_pin *sp, *entry; 10523 struct rb_node **p; 10524 struct rb_node *parent = NULL; 10525 10526 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10527 if (!sp) 10528 return -ENOMEM; 10529 sp->ptr = ptr; 10530 sp->inode = inode; 10531 sp->is_block_group = is_block_group; 10532 sp->bg_extent_count = 1; 10533 10534 spin_lock(&fs_info->swapfile_pins_lock); 10535 p = &fs_info->swapfile_pins.rb_node; 10536 while (*p) { 10537 parent = *p; 10538 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10539 if (sp->ptr < entry->ptr || 10540 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10541 p = &(*p)->rb_left; 10542 } else if (sp->ptr > entry->ptr || 10543 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10544 p = &(*p)->rb_right; 10545 } else { 10546 if (is_block_group) 10547 entry->bg_extent_count++; 10548 spin_unlock(&fs_info->swapfile_pins_lock); 10549 kfree(sp); 10550 return 1; 10551 } 10552 } 10553 rb_link_node(&sp->node, parent, p); 10554 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10555 spin_unlock(&fs_info->swapfile_pins_lock); 10556 return 0; 10557 } 10558 10559 /* Free all of the entries pinned by this swapfile. */ 10560 static void btrfs_free_swapfile_pins(struct inode *inode) 10561 { 10562 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10563 struct btrfs_swapfile_pin *sp; 10564 struct rb_node *node, *next; 10565 10566 spin_lock(&fs_info->swapfile_pins_lock); 10567 node = rb_first(&fs_info->swapfile_pins); 10568 while (node) { 10569 next = rb_next(node); 10570 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10571 if (sp->inode == inode) { 10572 rb_erase(&sp->node, &fs_info->swapfile_pins); 10573 if (sp->is_block_group) { 10574 btrfs_dec_block_group_swap_extents(sp->ptr, 10575 sp->bg_extent_count); 10576 btrfs_put_block_group(sp->ptr); 10577 } 10578 kfree(sp); 10579 } 10580 node = next; 10581 } 10582 spin_unlock(&fs_info->swapfile_pins_lock); 10583 } 10584 10585 struct btrfs_swap_info { 10586 u64 start; 10587 u64 block_start; 10588 u64 block_len; 10589 u64 lowest_ppage; 10590 u64 highest_ppage; 10591 unsigned long nr_pages; 10592 int nr_extents; 10593 }; 10594 10595 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10596 struct btrfs_swap_info *bsi) 10597 { 10598 unsigned long nr_pages; 10599 unsigned long max_pages; 10600 u64 first_ppage, first_ppage_reported, next_ppage; 10601 int ret; 10602 10603 /* 10604 * Our swapfile may have had its size extended after the swap header was 10605 * written. In that case activating the swapfile should not go beyond 10606 * the max size set in the swap header. 10607 */ 10608 if (bsi->nr_pages >= sis->max) 10609 return 0; 10610 10611 max_pages = sis->max - bsi->nr_pages; 10612 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 10613 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 10614 10615 if (first_ppage >= next_ppage) 10616 return 0; 10617 nr_pages = next_ppage - first_ppage; 10618 nr_pages = min(nr_pages, max_pages); 10619 10620 first_ppage_reported = first_ppage; 10621 if (bsi->start == 0) 10622 first_ppage_reported++; 10623 if (bsi->lowest_ppage > first_ppage_reported) 10624 bsi->lowest_ppage = first_ppage_reported; 10625 if (bsi->highest_ppage < (next_ppage - 1)) 10626 bsi->highest_ppage = next_ppage - 1; 10627 10628 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 10629 if (ret < 0) 10630 return ret; 10631 bsi->nr_extents += ret; 10632 bsi->nr_pages += nr_pages; 10633 return 0; 10634 } 10635 10636 static void btrfs_swap_deactivate(struct file *file) 10637 { 10638 struct inode *inode = file_inode(file); 10639 10640 btrfs_free_swapfile_pins(inode); 10641 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 10642 } 10643 10644 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10645 sector_t *span) 10646 { 10647 struct inode *inode = file_inode(file); 10648 struct btrfs_root *root = BTRFS_I(inode)->root; 10649 struct btrfs_fs_info *fs_info = root->fs_info; 10650 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 10651 struct extent_state *cached_state = NULL; 10652 struct extent_map *em = NULL; 10653 struct btrfs_chunk_map *map = NULL; 10654 struct btrfs_device *device = NULL; 10655 struct btrfs_swap_info bsi = { 10656 .lowest_ppage = (sector_t)-1ULL, 10657 }; 10658 int ret = 0; 10659 u64 isize; 10660 u64 start; 10661 10662 /* 10663 * If the swap file was just created, make sure delalloc is done. If the 10664 * file changes again after this, the user is doing something stupid and 10665 * we don't really care. 10666 */ 10667 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10668 if (ret) 10669 return ret; 10670 10671 /* 10672 * The inode is locked, so these flags won't change after we check them. 10673 */ 10674 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10675 btrfs_warn(fs_info, "swapfile must not be compressed"); 10676 return -EINVAL; 10677 } 10678 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10679 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10680 return -EINVAL; 10681 } 10682 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10683 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10684 return -EINVAL; 10685 } 10686 10687 /* 10688 * Balance or device remove/replace/resize can move stuff around from 10689 * under us. The exclop protection makes sure they aren't running/won't 10690 * run concurrently while we are mapping the swap extents, and 10691 * fs_info->swapfile_pins prevents them from running while the swap 10692 * file is active and moving the extents. Note that this also prevents 10693 * a concurrent device add which isn't actually necessary, but it's not 10694 * really worth the trouble to allow it. 10695 */ 10696 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10697 btrfs_warn(fs_info, 10698 "cannot activate swapfile while exclusive operation is running"); 10699 return -EBUSY; 10700 } 10701 10702 /* 10703 * Prevent snapshot creation while we are activating the swap file. 10704 * We do not want to race with snapshot creation. If snapshot creation 10705 * already started before we bumped nr_swapfiles from 0 to 1 and 10706 * completes before the first write into the swap file after it is 10707 * activated, than that write would fallback to COW. 10708 */ 10709 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10710 btrfs_exclop_finish(fs_info); 10711 btrfs_warn(fs_info, 10712 "cannot activate swapfile because snapshot creation is in progress"); 10713 return -EINVAL; 10714 } 10715 /* 10716 * Snapshots can create extents which require COW even if NODATACOW is 10717 * set. We use this counter to prevent snapshots. We must increment it 10718 * before walking the extents because we don't want a concurrent 10719 * snapshot to run after we've already checked the extents. 10720 * 10721 * It is possible that subvolume is marked for deletion but still not 10722 * removed yet. To prevent this race, we check the root status before 10723 * activating the swapfile. 10724 */ 10725 spin_lock(&root->root_item_lock); 10726 if (btrfs_root_dead(root)) { 10727 spin_unlock(&root->root_item_lock); 10728 10729 btrfs_exclop_finish(fs_info); 10730 btrfs_warn(fs_info, 10731 "cannot activate swapfile because subvolume %llu is being deleted", 10732 root->root_key.objectid); 10733 return -EPERM; 10734 } 10735 atomic_inc(&root->nr_swapfiles); 10736 spin_unlock(&root->root_item_lock); 10737 10738 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10739 10740 lock_extent(io_tree, 0, isize - 1, &cached_state); 10741 start = 0; 10742 while (start < isize) { 10743 u64 logical_block_start, physical_block_start; 10744 struct btrfs_block_group *bg; 10745 u64 len = isize - start; 10746 10747 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10748 if (IS_ERR(em)) { 10749 ret = PTR_ERR(em); 10750 goto out; 10751 } 10752 10753 if (em->block_start == EXTENT_MAP_HOLE) { 10754 btrfs_warn(fs_info, "swapfile must not have holes"); 10755 ret = -EINVAL; 10756 goto out; 10757 } 10758 if (em->block_start == EXTENT_MAP_INLINE) { 10759 /* 10760 * It's unlikely we'll ever actually find ourselves 10761 * here, as a file small enough to fit inline won't be 10762 * big enough to store more than the swap header, but in 10763 * case something changes in the future, let's catch it 10764 * here rather than later. 10765 */ 10766 btrfs_warn(fs_info, "swapfile must not be inline"); 10767 ret = -EINVAL; 10768 goto out; 10769 } 10770 if (extent_map_is_compressed(em)) { 10771 btrfs_warn(fs_info, "swapfile must not be compressed"); 10772 ret = -EINVAL; 10773 goto out; 10774 } 10775 10776 logical_block_start = em->block_start + (start - em->start); 10777 len = min(len, em->len - (start - em->start)); 10778 free_extent_map(em); 10779 em = NULL; 10780 10781 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true); 10782 if (ret < 0) { 10783 goto out; 10784 } else if (ret) { 10785 ret = 0; 10786 } else { 10787 btrfs_warn(fs_info, 10788 "swapfile must not be copy-on-write"); 10789 ret = -EINVAL; 10790 goto out; 10791 } 10792 10793 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10794 if (IS_ERR(map)) { 10795 ret = PTR_ERR(map); 10796 goto out; 10797 } 10798 10799 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10800 btrfs_warn(fs_info, 10801 "swapfile must have single data profile"); 10802 ret = -EINVAL; 10803 goto out; 10804 } 10805 10806 if (device == NULL) { 10807 device = map->stripes[0].dev; 10808 ret = btrfs_add_swapfile_pin(inode, device, false); 10809 if (ret == 1) 10810 ret = 0; 10811 else if (ret) 10812 goto out; 10813 } else if (device != map->stripes[0].dev) { 10814 btrfs_warn(fs_info, "swapfile must be on one device"); 10815 ret = -EINVAL; 10816 goto out; 10817 } 10818 10819 physical_block_start = (map->stripes[0].physical + 10820 (logical_block_start - map->start)); 10821 len = min(len, map->chunk_len - (logical_block_start - map->start)); 10822 btrfs_free_chunk_map(map); 10823 map = NULL; 10824 10825 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10826 if (!bg) { 10827 btrfs_warn(fs_info, 10828 "could not find block group containing swapfile"); 10829 ret = -EINVAL; 10830 goto out; 10831 } 10832 10833 if (!btrfs_inc_block_group_swap_extents(bg)) { 10834 btrfs_warn(fs_info, 10835 "block group for swapfile at %llu is read-only%s", 10836 bg->start, 10837 atomic_read(&fs_info->scrubs_running) ? 10838 " (scrub running)" : ""); 10839 btrfs_put_block_group(bg); 10840 ret = -EINVAL; 10841 goto out; 10842 } 10843 10844 ret = btrfs_add_swapfile_pin(inode, bg, true); 10845 if (ret) { 10846 btrfs_put_block_group(bg); 10847 if (ret == 1) 10848 ret = 0; 10849 else 10850 goto out; 10851 } 10852 10853 if (bsi.block_len && 10854 bsi.block_start + bsi.block_len == physical_block_start) { 10855 bsi.block_len += len; 10856 } else { 10857 if (bsi.block_len) { 10858 ret = btrfs_add_swap_extent(sis, &bsi); 10859 if (ret) 10860 goto out; 10861 } 10862 bsi.start = start; 10863 bsi.block_start = physical_block_start; 10864 bsi.block_len = len; 10865 } 10866 10867 start += len; 10868 } 10869 10870 if (bsi.block_len) 10871 ret = btrfs_add_swap_extent(sis, &bsi); 10872 10873 out: 10874 if (!IS_ERR_OR_NULL(em)) 10875 free_extent_map(em); 10876 if (!IS_ERR_OR_NULL(map)) 10877 btrfs_free_chunk_map(map); 10878 10879 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10880 10881 if (ret) 10882 btrfs_swap_deactivate(file); 10883 10884 btrfs_drew_write_unlock(&root->snapshot_lock); 10885 10886 btrfs_exclop_finish(fs_info); 10887 10888 if (ret) 10889 return ret; 10890 10891 if (device) 10892 sis->bdev = device->bdev; 10893 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10894 sis->max = bsi.nr_pages; 10895 sis->pages = bsi.nr_pages - 1; 10896 sis->highest_bit = bsi.nr_pages - 1; 10897 return bsi.nr_extents; 10898 } 10899 #else 10900 static void btrfs_swap_deactivate(struct file *file) 10901 { 10902 } 10903 10904 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10905 sector_t *span) 10906 { 10907 return -EOPNOTSUPP; 10908 } 10909 #endif 10910 10911 /* 10912 * Update the number of bytes used in the VFS' inode. When we replace extents in 10913 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10914 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10915 * always get a correct value. 10916 */ 10917 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10918 const u64 add_bytes, 10919 const u64 del_bytes) 10920 { 10921 if (add_bytes == del_bytes) 10922 return; 10923 10924 spin_lock(&inode->lock); 10925 if (del_bytes > 0) 10926 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10927 if (add_bytes > 0) 10928 inode_add_bytes(&inode->vfs_inode, add_bytes); 10929 spin_unlock(&inode->lock); 10930 } 10931 10932 /* 10933 * Verify that there are no ordered extents for a given file range. 10934 * 10935 * @inode: The target inode. 10936 * @start: Start offset of the file range, should be sector size aligned. 10937 * @end: End offset (inclusive) of the file range, its value +1 should be 10938 * sector size aligned. 10939 * 10940 * This should typically be used for cases where we locked an inode's VFS lock in 10941 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10942 * we have flushed all delalloc in the range, we have waited for all ordered 10943 * extents in the range to complete and finally we have locked the file range in 10944 * the inode's io_tree. 10945 */ 10946 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10947 { 10948 struct btrfs_root *root = inode->root; 10949 struct btrfs_ordered_extent *ordered; 10950 10951 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10952 return; 10953 10954 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10955 if (ordered) { 10956 btrfs_err(root->fs_info, 10957 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10958 start, end, btrfs_ino(inode), root->root_key.objectid, 10959 ordered->file_offset, 10960 ordered->file_offset + ordered->num_bytes - 1); 10961 btrfs_put_ordered_extent(ordered); 10962 } 10963 10964 ASSERT(ordered == NULL); 10965 } 10966 10967 static const struct inode_operations btrfs_dir_inode_operations = { 10968 .getattr = btrfs_getattr, 10969 .lookup = btrfs_lookup, 10970 .create = btrfs_create, 10971 .unlink = btrfs_unlink, 10972 .link = btrfs_link, 10973 .mkdir = btrfs_mkdir, 10974 .rmdir = btrfs_rmdir, 10975 .rename = btrfs_rename2, 10976 .symlink = btrfs_symlink, 10977 .setattr = btrfs_setattr, 10978 .mknod = btrfs_mknod, 10979 .listxattr = btrfs_listxattr, 10980 .permission = btrfs_permission, 10981 .get_inode_acl = btrfs_get_acl, 10982 .set_acl = btrfs_set_acl, 10983 .update_time = btrfs_update_time, 10984 .tmpfile = btrfs_tmpfile, 10985 .fileattr_get = btrfs_fileattr_get, 10986 .fileattr_set = btrfs_fileattr_set, 10987 }; 10988 10989 static const struct file_operations btrfs_dir_file_operations = { 10990 .llseek = btrfs_dir_llseek, 10991 .read = generic_read_dir, 10992 .iterate_shared = btrfs_real_readdir, 10993 .open = btrfs_opendir, 10994 .unlocked_ioctl = btrfs_ioctl, 10995 #ifdef CONFIG_COMPAT 10996 .compat_ioctl = btrfs_compat_ioctl, 10997 #endif 10998 .release = btrfs_release_file, 10999 .fsync = btrfs_sync_file, 11000 }; 11001 11002 /* 11003 * btrfs doesn't support the bmap operation because swapfiles 11004 * use bmap to make a mapping of extents in the file. They assume 11005 * these extents won't change over the life of the file and they 11006 * use the bmap result to do IO directly to the drive. 11007 * 11008 * the btrfs bmap call would return logical addresses that aren't 11009 * suitable for IO and they also will change frequently as COW 11010 * operations happen. So, swapfile + btrfs == corruption. 11011 * 11012 * For now we're avoiding this by dropping bmap. 11013 */ 11014 static const struct address_space_operations btrfs_aops = { 11015 .read_folio = btrfs_read_folio, 11016 .writepages = btrfs_writepages, 11017 .readahead = btrfs_readahead, 11018 .invalidate_folio = btrfs_invalidate_folio, 11019 .release_folio = btrfs_release_folio, 11020 .migrate_folio = btrfs_migrate_folio, 11021 .dirty_folio = filemap_dirty_folio, 11022 .error_remove_folio = generic_error_remove_folio, 11023 .swap_activate = btrfs_swap_activate, 11024 .swap_deactivate = btrfs_swap_deactivate, 11025 }; 11026 11027 static const struct inode_operations btrfs_file_inode_operations = { 11028 .getattr = btrfs_getattr, 11029 .setattr = btrfs_setattr, 11030 .listxattr = btrfs_listxattr, 11031 .permission = btrfs_permission, 11032 .fiemap = btrfs_fiemap, 11033 .get_inode_acl = btrfs_get_acl, 11034 .set_acl = btrfs_set_acl, 11035 .update_time = btrfs_update_time, 11036 .fileattr_get = btrfs_fileattr_get, 11037 .fileattr_set = btrfs_fileattr_set, 11038 }; 11039 static const struct inode_operations btrfs_special_inode_operations = { 11040 .getattr = btrfs_getattr, 11041 .setattr = btrfs_setattr, 11042 .permission = btrfs_permission, 11043 .listxattr = btrfs_listxattr, 11044 .get_inode_acl = btrfs_get_acl, 11045 .set_acl = btrfs_set_acl, 11046 .update_time = btrfs_update_time, 11047 }; 11048 static const struct inode_operations btrfs_symlink_inode_operations = { 11049 .get_link = page_get_link, 11050 .getattr = btrfs_getattr, 11051 .setattr = btrfs_setattr, 11052 .permission = btrfs_permission, 11053 .listxattr = btrfs_listxattr, 11054 .update_time = btrfs_update_time, 11055 }; 11056 11057 const struct dentry_operations btrfs_dentry_operations = { 11058 .d_delete = btrfs_dentry_delete, 11059 }; 11060