xref: /linux/fs/btrfs/inode.c (revision 4c8f1cb266cba4d1052f524d04df839d8f732ace)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52 
53 struct btrfs_iget_args {
54 	u64 ino;
55 	struct btrfs_root *root;
56 };
57 
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67 
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72 
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
76 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
77 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
78 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
79 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
80 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
81 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
82 };
83 
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87 				   struct page *locked_page,
88 				   u64 start, u64 end, int *page_started,
89 				   unsigned long *nr_written, int unlock);
90 
91 static int btrfs_init_inode_security(struct inode *inode,  struct inode *dir)
92 {
93 	int err;
94 
95 	err = btrfs_init_acl(inode, dir);
96 	if (!err)
97 		err = btrfs_xattr_security_init(inode, dir);
98 	return err;
99 }
100 
101 /*
102  * this does all the hard work for inserting an inline extent into
103  * the btree.  The caller should have done a btrfs_drop_extents so that
104  * no overlapping inline items exist in the btree
105  */
106 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
107 				struct btrfs_root *root, struct inode *inode,
108 				u64 start, size_t size, size_t compressed_size,
109 				struct page **compressed_pages)
110 {
111 	struct btrfs_key key;
112 	struct btrfs_path *path;
113 	struct extent_buffer *leaf;
114 	struct page *page = NULL;
115 	char *kaddr;
116 	unsigned long ptr;
117 	struct btrfs_file_extent_item *ei;
118 	int err = 0;
119 	int ret;
120 	size_t cur_size = size;
121 	size_t datasize;
122 	unsigned long offset;
123 	int use_compress = 0;
124 
125 	if (compressed_size && compressed_pages) {
126 		use_compress = 1;
127 		cur_size = compressed_size;
128 	}
129 
130 	path = btrfs_alloc_path();
131 	if (!path)
132 		return -ENOMEM;
133 
134 	path->leave_spinning = 1;
135 	btrfs_set_trans_block_group(trans, inode);
136 
137 	key.objectid = inode->i_ino;
138 	key.offset = start;
139 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
140 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
141 
142 	inode_add_bytes(inode, size);
143 	ret = btrfs_insert_empty_item(trans, root, path, &key,
144 				      datasize);
145 	BUG_ON(ret);
146 	if (ret) {
147 		err = ret;
148 		goto fail;
149 	}
150 	leaf = path->nodes[0];
151 	ei = btrfs_item_ptr(leaf, path->slots[0],
152 			    struct btrfs_file_extent_item);
153 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 	btrfs_set_file_extent_encryption(leaf, ei, 0);
156 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 	ptr = btrfs_file_extent_inline_start(ei);
159 
160 	if (use_compress) {
161 		struct page *cpage;
162 		int i = 0;
163 		while (compressed_size > 0) {
164 			cpage = compressed_pages[i];
165 			cur_size = min_t(unsigned long, compressed_size,
166 				       PAGE_CACHE_SIZE);
167 
168 			kaddr = kmap_atomic(cpage, KM_USER0);
169 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
170 			kunmap_atomic(kaddr, KM_USER0);
171 
172 			i++;
173 			ptr += cur_size;
174 			compressed_size -= cur_size;
175 		}
176 		btrfs_set_file_extent_compression(leaf, ei,
177 						  BTRFS_COMPRESS_ZLIB);
178 	} else {
179 		page = find_get_page(inode->i_mapping,
180 				     start >> PAGE_CACHE_SHIFT);
181 		btrfs_set_file_extent_compression(leaf, ei, 0);
182 		kaddr = kmap_atomic(page, KM_USER0);
183 		offset = start & (PAGE_CACHE_SIZE - 1);
184 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 		kunmap_atomic(kaddr, KM_USER0);
186 		page_cache_release(page);
187 	}
188 	btrfs_mark_buffer_dirty(leaf);
189 	btrfs_free_path(path);
190 
191 	BTRFS_I(inode)->disk_i_size = inode->i_size;
192 	btrfs_update_inode(trans, root, inode);
193 	return 0;
194 fail:
195 	btrfs_free_path(path);
196 	return err;
197 }
198 
199 
200 /*
201  * conditionally insert an inline extent into the file.  This
202  * does the checks required to make sure the data is small enough
203  * to fit as an inline extent.
204  */
205 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
206 				 struct btrfs_root *root,
207 				 struct inode *inode, u64 start, u64 end,
208 				 size_t compressed_size,
209 				 struct page **compressed_pages)
210 {
211 	u64 isize = i_size_read(inode);
212 	u64 actual_end = min(end + 1, isize);
213 	u64 inline_len = actual_end - start;
214 	u64 aligned_end = (end + root->sectorsize - 1) &
215 			~((u64)root->sectorsize - 1);
216 	u64 hint_byte;
217 	u64 data_len = inline_len;
218 	int ret;
219 
220 	if (compressed_size)
221 		data_len = compressed_size;
222 
223 	if (start > 0 ||
224 	    actual_end >= PAGE_CACHE_SIZE ||
225 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 	    (!compressed_size &&
227 	    (actual_end & (root->sectorsize - 1)) == 0) ||
228 	    end + 1 < isize ||
229 	    data_len > root->fs_info->max_inline) {
230 		return 1;
231 	}
232 
233 	ret = btrfs_drop_extents(trans, root, inode, start,
234 				 aligned_end, aligned_end, start,
235 				 &hint_byte, 1);
236 	BUG_ON(ret);
237 
238 	if (isize > actual_end)
239 		inline_len = min_t(u64, isize, actual_end);
240 	ret = insert_inline_extent(trans, root, inode, start,
241 				   inline_len, compressed_size,
242 				   compressed_pages);
243 	BUG_ON(ret);
244 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
245 	return 0;
246 }
247 
248 struct async_extent {
249 	u64 start;
250 	u64 ram_size;
251 	u64 compressed_size;
252 	struct page **pages;
253 	unsigned long nr_pages;
254 	struct list_head list;
255 };
256 
257 struct async_cow {
258 	struct inode *inode;
259 	struct btrfs_root *root;
260 	struct page *locked_page;
261 	u64 start;
262 	u64 end;
263 	struct list_head extents;
264 	struct btrfs_work work;
265 };
266 
267 static noinline int add_async_extent(struct async_cow *cow,
268 				     u64 start, u64 ram_size,
269 				     u64 compressed_size,
270 				     struct page **pages,
271 				     unsigned long nr_pages)
272 {
273 	struct async_extent *async_extent;
274 
275 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 	async_extent->start = start;
277 	async_extent->ram_size = ram_size;
278 	async_extent->compressed_size = compressed_size;
279 	async_extent->pages = pages;
280 	async_extent->nr_pages = nr_pages;
281 	list_add_tail(&async_extent->list, &cow->extents);
282 	return 0;
283 }
284 
285 /*
286  * we create compressed extents in two phases.  The first
287  * phase compresses a range of pages that have already been
288  * locked (both pages and state bits are locked).
289  *
290  * This is done inside an ordered work queue, and the compression
291  * is spread across many cpus.  The actual IO submission is step
292  * two, and the ordered work queue takes care of making sure that
293  * happens in the same order things were put onto the queue by
294  * writepages and friends.
295  *
296  * If this code finds it can't get good compression, it puts an
297  * entry onto the work queue to write the uncompressed bytes.  This
298  * makes sure that both compressed inodes and uncompressed inodes
299  * are written in the same order that pdflush sent them down.
300  */
301 static noinline int compress_file_range(struct inode *inode,
302 					struct page *locked_page,
303 					u64 start, u64 end,
304 					struct async_cow *async_cow,
305 					int *num_added)
306 {
307 	struct btrfs_root *root = BTRFS_I(inode)->root;
308 	struct btrfs_trans_handle *trans;
309 	u64 num_bytes;
310 	u64 orig_start;
311 	u64 disk_num_bytes;
312 	u64 blocksize = root->sectorsize;
313 	u64 actual_end;
314 	u64 isize = i_size_read(inode);
315 	int ret = 0;
316 	struct page **pages = NULL;
317 	unsigned long nr_pages;
318 	unsigned long nr_pages_ret = 0;
319 	unsigned long total_compressed = 0;
320 	unsigned long total_in = 0;
321 	unsigned long max_compressed = 128 * 1024;
322 	unsigned long max_uncompressed = 128 * 1024;
323 	int i;
324 	int will_compress;
325 
326 	orig_start = start;
327 
328 	actual_end = min_t(u64, isize, end + 1);
329 again:
330 	will_compress = 0;
331 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
333 
334 	/*
335 	 * we don't want to send crud past the end of i_size through
336 	 * compression, that's just a waste of CPU time.  So, if the
337 	 * end of the file is before the start of our current
338 	 * requested range of bytes, we bail out to the uncompressed
339 	 * cleanup code that can deal with all of this.
340 	 *
341 	 * It isn't really the fastest way to fix things, but this is a
342 	 * very uncommon corner.
343 	 */
344 	if (actual_end <= start)
345 		goto cleanup_and_bail_uncompressed;
346 
347 	total_compressed = actual_end - start;
348 
349 	/* we want to make sure that amount of ram required to uncompress
350 	 * an extent is reasonable, so we limit the total size in ram
351 	 * of a compressed extent to 128k.  This is a crucial number
352 	 * because it also controls how easily we can spread reads across
353 	 * cpus for decompression.
354 	 *
355 	 * We also want to make sure the amount of IO required to do
356 	 * a random read is reasonably small, so we limit the size of
357 	 * a compressed extent to 128k.
358 	 */
359 	total_compressed = min(total_compressed, max_uncompressed);
360 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
361 	num_bytes = max(blocksize,  num_bytes);
362 	disk_num_bytes = num_bytes;
363 	total_in = 0;
364 	ret = 0;
365 
366 	/*
367 	 * we do compression for mount -o compress and when the
368 	 * inode has not been flagged as nocompress.  This flag can
369 	 * change at any time if we discover bad compression ratios.
370 	 */
371 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
372 	    btrfs_test_opt(root, COMPRESS)) {
373 		WARN_ON(pages);
374 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
375 
376 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 						total_compressed, pages,
378 						nr_pages, &nr_pages_ret,
379 						&total_in,
380 						&total_compressed,
381 						max_compressed);
382 
383 		if (!ret) {
384 			unsigned long offset = total_compressed &
385 				(PAGE_CACHE_SIZE - 1);
386 			struct page *page = pages[nr_pages_ret - 1];
387 			char *kaddr;
388 
389 			/* zero the tail end of the last page, we might be
390 			 * sending it down to disk
391 			 */
392 			if (offset) {
393 				kaddr = kmap_atomic(page, KM_USER0);
394 				memset(kaddr + offset, 0,
395 				       PAGE_CACHE_SIZE - offset);
396 				kunmap_atomic(kaddr, KM_USER0);
397 			}
398 			will_compress = 1;
399 		}
400 	}
401 	if (start == 0) {
402 		trans = btrfs_join_transaction(root, 1);
403 		BUG_ON(!trans);
404 		btrfs_set_trans_block_group(trans, inode);
405 
406 		/* lets try to make an inline extent */
407 		if (ret || total_in < (actual_end - start)) {
408 			/* we didn't compress the entire range, try
409 			 * to make an uncompressed inline extent.
410 			 */
411 			ret = cow_file_range_inline(trans, root, inode,
412 						    start, end, 0, NULL);
413 		} else {
414 			/* try making a compressed inline extent */
415 			ret = cow_file_range_inline(trans, root, inode,
416 						    start, end,
417 						    total_compressed, pages);
418 		}
419 		btrfs_end_transaction(trans, root);
420 		if (ret == 0) {
421 			/*
422 			 * inline extent creation worked, we don't need
423 			 * to create any more async work items.  Unlock
424 			 * and free up our temp pages.
425 			 */
426 			extent_clear_unlock_delalloc(inode,
427 						     &BTRFS_I(inode)->io_tree,
428 						     start, end, NULL, 1, 0,
429 						     0, 1, 1, 1, 0);
430 			ret = 0;
431 			goto free_pages_out;
432 		}
433 	}
434 
435 	if (will_compress) {
436 		/*
437 		 * we aren't doing an inline extent round the compressed size
438 		 * up to a block size boundary so the allocator does sane
439 		 * things
440 		 */
441 		total_compressed = (total_compressed + blocksize - 1) &
442 			~(blocksize - 1);
443 
444 		/*
445 		 * one last check to make sure the compression is really a
446 		 * win, compare the page count read with the blocks on disk
447 		 */
448 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
449 			~(PAGE_CACHE_SIZE - 1);
450 		if (total_compressed >= total_in) {
451 			will_compress = 0;
452 		} else {
453 			disk_num_bytes = total_compressed;
454 			num_bytes = total_in;
455 		}
456 	}
457 	if (!will_compress && pages) {
458 		/*
459 		 * the compression code ran but failed to make things smaller,
460 		 * free any pages it allocated and our page pointer array
461 		 */
462 		for (i = 0; i < nr_pages_ret; i++) {
463 			WARN_ON(pages[i]->mapping);
464 			page_cache_release(pages[i]);
465 		}
466 		kfree(pages);
467 		pages = NULL;
468 		total_compressed = 0;
469 		nr_pages_ret = 0;
470 
471 		/* flag the file so we don't compress in the future */
472 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
473 	}
474 	if (will_compress) {
475 		*num_added += 1;
476 
477 		/* the async work queues will take care of doing actual
478 		 * allocation on disk for these compressed pages,
479 		 * and will submit them to the elevator.
480 		 */
481 		add_async_extent(async_cow, start, num_bytes,
482 				 total_compressed, pages, nr_pages_ret);
483 
484 		if (start + num_bytes < end && start + num_bytes < actual_end) {
485 			start += num_bytes;
486 			pages = NULL;
487 			cond_resched();
488 			goto again;
489 		}
490 	} else {
491 cleanup_and_bail_uncompressed:
492 		/*
493 		 * No compression, but we still need to write the pages in
494 		 * the file we've been given so far.  redirty the locked
495 		 * page if it corresponds to our extent and set things up
496 		 * for the async work queue to run cow_file_range to do
497 		 * the normal delalloc dance
498 		 */
499 		if (page_offset(locked_page) >= start &&
500 		    page_offset(locked_page) <= end) {
501 			__set_page_dirty_nobuffers(locked_page);
502 			/* unlocked later on in the async handlers */
503 		}
504 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
505 		*num_added += 1;
506 	}
507 
508 out:
509 	return 0;
510 
511 free_pages_out:
512 	for (i = 0; i < nr_pages_ret; i++) {
513 		WARN_ON(pages[i]->mapping);
514 		page_cache_release(pages[i]);
515 	}
516 	kfree(pages);
517 
518 	goto out;
519 }
520 
521 /*
522  * phase two of compressed writeback.  This is the ordered portion
523  * of the code, which only gets called in the order the work was
524  * queued.  We walk all the async extents created by compress_file_range
525  * and send them down to the disk.
526  */
527 static noinline int submit_compressed_extents(struct inode *inode,
528 					      struct async_cow *async_cow)
529 {
530 	struct async_extent *async_extent;
531 	u64 alloc_hint = 0;
532 	struct btrfs_trans_handle *trans;
533 	struct btrfs_key ins;
534 	struct extent_map *em;
535 	struct btrfs_root *root = BTRFS_I(inode)->root;
536 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
537 	struct extent_io_tree *io_tree;
538 	int ret;
539 
540 	if (list_empty(&async_cow->extents))
541 		return 0;
542 
543 	trans = btrfs_join_transaction(root, 1);
544 
545 	while (!list_empty(&async_cow->extents)) {
546 		async_extent = list_entry(async_cow->extents.next,
547 					  struct async_extent, list);
548 		list_del(&async_extent->list);
549 
550 		io_tree = &BTRFS_I(inode)->io_tree;
551 
552 		/* did the compression code fall back to uncompressed IO? */
553 		if (!async_extent->pages) {
554 			int page_started = 0;
555 			unsigned long nr_written = 0;
556 
557 			lock_extent(io_tree, async_extent->start,
558 				    async_extent->start +
559 				    async_extent->ram_size - 1, GFP_NOFS);
560 
561 			/* allocate blocks */
562 			cow_file_range(inode, async_cow->locked_page,
563 				       async_extent->start,
564 				       async_extent->start +
565 				       async_extent->ram_size - 1,
566 				       &page_started, &nr_written, 0);
567 
568 			/*
569 			 * if page_started, cow_file_range inserted an
570 			 * inline extent and took care of all the unlocking
571 			 * and IO for us.  Otherwise, we need to submit
572 			 * all those pages down to the drive.
573 			 */
574 			if (!page_started)
575 				extent_write_locked_range(io_tree,
576 						  inode, async_extent->start,
577 						  async_extent->start +
578 						  async_extent->ram_size - 1,
579 						  btrfs_get_extent,
580 						  WB_SYNC_ALL);
581 			kfree(async_extent);
582 			cond_resched();
583 			continue;
584 		}
585 
586 		lock_extent(io_tree, async_extent->start,
587 			    async_extent->start + async_extent->ram_size - 1,
588 			    GFP_NOFS);
589 		/*
590 		 * here we're doing allocation and writeback of the
591 		 * compressed pages
592 		 */
593 		btrfs_drop_extent_cache(inode, async_extent->start,
594 					async_extent->start +
595 					async_extent->ram_size - 1, 0);
596 
597 		ret = btrfs_reserve_extent(trans, root,
598 					   async_extent->compressed_size,
599 					   async_extent->compressed_size,
600 					   0, alloc_hint,
601 					   (u64)-1, &ins, 1);
602 		BUG_ON(ret);
603 		em = alloc_extent_map(GFP_NOFS);
604 		em->start = async_extent->start;
605 		em->len = async_extent->ram_size;
606 		em->orig_start = em->start;
607 
608 		em->block_start = ins.objectid;
609 		em->block_len = ins.offset;
610 		em->bdev = root->fs_info->fs_devices->latest_bdev;
611 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
612 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
613 
614 		while (1) {
615 			write_lock(&em_tree->lock);
616 			ret = add_extent_mapping(em_tree, em);
617 			write_unlock(&em_tree->lock);
618 			if (ret != -EEXIST) {
619 				free_extent_map(em);
620 				break;
621 			}
622 			btrfs_drop_extent_cache(inode, async_extent->start,
623 						async_extent->start +
624 						async_extent->ram_size - 1, 0);
625 		}
626 
627 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
628 					       ins.objectid,
629 					       async_extent->ram_size,
630 					       ins.offset,
631 					       BTRFS_ORDERED_COMPRESSED);
632 		BUG_ON(ret);
633 
634 		btrfs_end_transaction(trans, root);
635 
636 		/*
637 		 * clear dirty, set writeback and unlock the pages.
638 		 */
639 		extent_clear_unlock_delalloc(inode,
640 					     &BTRFS_I(inode)->io_tree,
641 					     async_extent->start,
642 					     async_extent->start +
643 					     async_extent->ram_size - 1,
644 					     NULL, 1, 1, 0, 1, 1, 0, 0);
645 
646 		ret = btrfs_submit_compressed_write(inode,
647 				    async_extent->start,
648 				    async_extent->ram_size,
649 				    ins.objectid,
650 				    ins.offset, async_extent->pages,
651 				    async_extent->nr_pages);
652 
653 		BUG_ON(ret);
654 		trans = btrfs_join_transaction(root, 1);
655 		alloc_hint = ins.objectid + ins.offset;
656 		kfree(async_extent);
657 		cond_resched();
658 	}
659 
660 	btrfs_end_transaction(trans, root);
661 	return 0;
662 }
663 
664 /*
665  * when extent_io.c finds a delayed allocation range in the file,
666  * the call backs end up in this code.  The basic idea is to
667  * allocate extents on disk for the range, and create ordered data structs
668  * in ram to track those extents.
669  *
670  * locked_page is the page that writepage had locked already.  We use
671  * it to make sure we don't do extra locks or unlocks.
672  *
673  * *page_started is set to one if we unlock locked_page and do everything
674  * required to start IO on it.  It may be clean and already done with
675  * IO when we return.
676  */
677 static noinline int cow_file_range(struct inode *inode,
678 				   struct page *locked_page,
679 				   u64 start, u64 end, int *page_started,
680 				   unsigned long *nr_written,
681 				   int unlock)
682 {
683 	struct btrfs_root *root = BTRFS_I(inode)->root;
684 	struct btrfs_trans_handle *trans;
685 	u64 alloc_hint = 0;
686 	u64 num_bytes;
687 	unsigned long ram_size;
688 	u64 disk_num_bytes;
689 	u64 cur_alloc_size;
690 	u64 blocksize = root->sectorsize;
691 	u64 actual_end;
692 	u64 isize = i_size_read(inode);
693 	struct btrfs_key ins;
694 	struct extent_map *em;
695 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
696 	int ret = 0;
697 
698 	trans = btrfs_join_transaction(root, 1);
699 	BUG_ON(!trans);
700 	btrfs_set_trans_block_group(trans, inode);
701 
702 	actual_end = min_t(u64, isize, end + 1);
703 
704 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
705 	num_bytes = max(blocksize,  num_bytes);
706 	disk_num_bytes = num_bytes;
707 	ret = 0;
708 
709 	if (start == 0) {
710 		/* lets try to make an inline extent */
711 		ret = cow_file_range_inline(trans, root, inode,
712 					    start, end, 0, NULL);
713 		if (ret == 0) {
714 			extent_clear_unlock_delalloc(inode,
715 						     &BTRFS_I(inode)->io_tree,
716 						     start, end, NULL, 1, 1,
717 						     1, 1, 1, 1, 0);
718 			*nr_written = *nr_written +
719 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
720 			*page_started = 1;
721 			ret = 0;
722 			goto out;
723 		}
724 	}
725 
726 	BUG_ON(disk_num_bytes >
727 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
728 
729 
730 	read_lock(&BTRFS_I(inode)->extent_tree.lock);
731 	em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
732 				   start, num_bytes);
733 	if (em) {
734 		alloc_hint = em->block_start;
735 		free_extent_map(em);
736 	}
737 	read_unlock(&BTRFS_I(inode)->extent_tree.lock);
738 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
739 
740 	while (disk_num_bytes > 0) {
741 		cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
742 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
743 					   root->sectorsize, 0, alloc_hint,
744 					   (u64)-1, &ins, 1);
745 		BUG_ON(ret);
746 
747 		em = alloc_extent_map(GFP_NOFS);
748 		em->start = start;
749 		em->orig_start = em->start;
750 		ram_size = ins.offset;
751 		em->len = ins.offset;
752 
753 		em->block_start = ins.objectid;
754 		em->block_len = ins.offset;
755 		em->bdev = root->fs_info->fs_devices->latest_bdev;
756 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
757 
758 		while (1) {
759 			write_lock(&em_tree->lock);
760 			ret = add_extent_mapping(em_tree, em);
761 			write_unlock(&em_tree->lock);
762 			if (ret != -EEXIST) {
763 				free_extent_map(em);
764 				break;
765 			}
766 			btrfs_drop_extent_cache(inode, start,
767 						start + ram_size - 1, 0);
768 		}
769 
770 		cur_alloc_size = ins.offset;
771 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
772 					       ram_size, cur_alloc_size, 0);
773 		BUG_ON(ret);
774 
775 		if (root->root_key.objectid ==
776 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
777 			ret = btrfs_reloc_clone_csums(inode, start,
778 						      cur_alloc_size);
779 			BUG_ON(ret);
780 		}
781 
782 		if (disk_num_bytes < cur_alloc_size)
783 			break;
784 
785 		/* we're not doing compressed IO, don't unlock the first
786 		 * page (which the caller expects to stay locked), don't
787 		 * clear any dirty bits and don't set any writeback bits
788 		 *
789 		 * Do set the Private2 bit so we know this page was properly
790 		 * setup for writepage
791 		 */
792 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
793 					     start, start + ram_size - 1,
794 					     locked_page, unlock, 1,
795 					     1, 0, 0, 0, 1);
796 		disk_num_bytes -= cur_alloc_size;
797 		num_bytes -= cur_alloc_size;
798 		alloc_hint = ins.objectid + ins.offset;
799 		start += cur_alloc_size;
800 	}
801 out:
802 	ret = 0;
803 	btrfs_end_transaction(trans, root);
804 
805 	return ret;
806 }
807 
808 /*
809  * work queue call back to started compression on a file and pages
810  */
811 static noinline void async_cow_start(struct btrfs_work *work)
812 {
813 	struct async_cow *async_cow;
814 	int num_added = 0;
815 	async_cow = container_of(work, struct async_cow, work);
816 
817 	compress_file_range(async_cow->inode, async_cow->locked_page,
818 			    async_cow->start, async_cow->end, async_cow,
819 			    &num_added);
820 	if (num_added == 0)
821 		async_cow->inode = NULL;
822 }
823 
824 /*
825  * work queue call back to submit previously compressed pages
826  */
827 static noinline void async_cow_submit(struct btrfs_work *work)
828 {
829 	struct async_cow *async_cow;
830 	struct btrfs_root *root;
831 	unsigned long nr_pages;
832 
833 	async_cow = container_of(work, struct async_cow, work);
834 
835 	root = async_cow->root;
836 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
837 		PAGE_CACHE_SHIFT;
838 
839 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
840 
841 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
842 	    5 * 1042 * 1024 &&
843 	    waitqueue_active(&root->fs_info->async_submit_wait))
844 		wake_up(&root->fs_info->async_submit_wait);
845 
846 	if (async_cow->inode)
847 		submit_compressed_extents(async_cow->inode, async_cow);
848 }
849 
850 static noinline void async_cow_free(struct btrfs_work *work)
851 {
852 	struct async_cow *async_cow;
853 	async_cow = container_of(work, struct async_cow, work);
854 	kfree(async_cow);
855 }
856 
857 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
858 				u64 start, u64 end, int *page_started,
859 				unsigned long *nr_written)
860 {
861 	struct async_cow *async_cow;
862 	struct btrfs_root *root = BTRFS_I(inode)->root;
863 	unsigned long nr_pages;
864 	u64 cur_end;
865 	int limit = 10 * 1024 * 1042;
866 
867 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
868 			 EXTENT_DELALLOC, 1, 0, NULL, GFP_NOFS);
869 	while (start < end) {
870 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
871 		async_cow->inode = inode;
872 		async_cow->root = root;
873 		async_cow->locked_page = locked_page;
874 		async_cow->start = start;
875 
876 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
877 			cur_end = end;
878 		else
879 			cur_end = min(end, start + 512 * 1024 - 1);
880 
881 		async_cow->end = cur_end;
882 		INIT_LIST_HEAD(&async_cow->extents);
883 
884 		async_cow->work.func = async_cow_start;
885 		async_cow->work.ordered_func = async_cow_submit;
886 		async_cow->work.ordered_free = async_cow_free;
887 		async_cow->work.flags = 0;
888 
889 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
890 			PAGE_CACHE_SHIFT;
891 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
892 
893 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
894 				   &async_cow->work);
895 
896 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
897 			wait_event(root->fs_info->async_submit_wait,
898 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
899 			    limit));
900 		}
901 
902 		while (atomic_read(&root->fs_info->async_submit_draining) &&
903 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
904 			wait_event(root->fs_info->async_submit_wait,
905 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
906 			   0));
907 		}
908 
909 		*nr_written += nr_pages;
910 		start = cur_end + 1;
911 	}
912 	*page_started = 1;
913 	return 0;
914 }
915 
916 static noinline int csum_exist_in_range(struct btrfs_root *root,
917 					u64 bytenr, u64 num_bytes)
918 {
919 	int ret;
920 	struct btrfs_ordered_sum *sums;
921 	LIST_HEAD(list);
922 
923 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
924 				       bytenr + num_bytes - 1, &list);
925 	if (ret == 0 && list_empty(&list))
926 		return 0;
927 
928 	while (!list_empty(&list)) {
929 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
930 		list_del(&sums->list);
931 		kfree(sums);
932 	}
933 	return 1;
934 }
935 
936 /*
937  * when nowcow writeback call back.  This checks for snapshots or COW copies
938  * of the extents that exist in the file, and COWs the file as required.
939  *
940  * If no cow copies or snapshots exist, we write directly to the existing
941  * blocks on disk
942  */
943 static noinline int run_delalloc_nocow(struct inode *inode,
944 				       struct page *locked_page,
945 			      u64 start, u64 end, int *page_started, int force,
946 			      unsigned long *nr_written)
947 {
948 	struct btrfs_root *root = BTRFS_I(inode)->root;
949 	struct btrfs_trans_handle *trans;
950 	struct extent_buffer *leaf;
951 	struct btrfs_path *path;
952 	struct btrfs_file_extent_item *fi;
953 	struct btrfs_key found_key;
954 	u64 cow_start;
955 	u64 cur_offset;
956 	u64 extent_end;
957 	u64 extent_offset;
958 	u64 disk_bytenr;
959 	u64 num_bytes;
960 	int extent_type;
961 	int ret;
962 	int type;
963 	int nocow;
964 	int check_prev = 1;
965 
966 	path = btrfs_alloc_path();
967 	BUG_ON(!path);
968 	trans = btrfs_join_transaction(root, 1);
969 	BUG_ON(!trans);
970 
971 	cow_start = (u64)-1;
972 	cur_offset = start;
973 	while (1) {
974 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
975 					       cur_offset, 0);
976 		BUG_ON(ret < 0);
977 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
978 			leaf = path->nodes[0];
979 			btrfs_item_key_to_cpu(leaf, &found_key,
980 					      path->slots[0] - 1);
981 			if (found_key.objectid == inode->i_ino &&
982 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
983 				path->slots[0]--;
984 		}
985 		check_prev = 0;
986 next_slot:
987 		leaf = path->nodes[0];
988 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
989 			ret = btrfs_next_leaf(root, path);
990 			if (ret < 0)
991 				BUG_ON(1);
992 			if (ret > 0)
993 				break;
994 			leaf = path->nodes[0];
995 		}
996 
997 		nocow = 0;
998 		disk_bytenr = 0;
999 		num_bytes = 0;
1000 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1001 
1002 		if (found_key.objectid > inode->i_ino ||
1003 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1004 		    found_key.offset > end)
1005 			break;
1006 
1007 		if (found_key.offset > cur_offset) {
1008 			extent_end = found_key.offset;
1009 			goto out_check;
1010 		}
1011 
1012 		fi = btrfs_item_ptr(leaf, path->slots[0],
1013 				    struct btrfs_file_extent_item);
1014 		extent_type = btrfs_file_extent_type(leaf, fi);
1015 
1016 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1017 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1018 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1019 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1020 			extent_end = found_key.offset +
1021 				btrfs_file_extent_num_bytes(leaf, fi);
1022 			if (extent_end <= start) {
1023 				path->slots[0]++;
1024 				goto next_slot;
1025 			}
1026 			if (disk_bytenr == 0)
1027 				goto out_check;
1028 			if (btrfs_file_extent_compression(leaf, fi) ||
1029 			    btrfs_file_extent_encryption(leaf, fi) ||
1030 			    btrfs_file_extent_other_encoding(leaf, fi))
1031 				goto out_check;
1032 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1033 				goto out_check;
1034 			if (btrfs_extent_readonly(root, disk_bytenr))
1035 				goto out_check;
1036 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1037 						  found_key.offset -
1038 						  extent_offset, disk_bytenr))
1039 				goto out_check;
1040 			disk_bytenr += extent_offset;
1041 			disk_bytenr += cur_offset - found_key.offset;
1042 			num_bytes = min(end + 1, extent_end) - cur_offset;
1043 			/*
1044 			 * force cow if csum exists in the range.
1045 			 * this ensure that csum for a given extent are
1046 			 * either valid or do not exist.
1047 			 */
1048 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1049 				goto out_check;
1050 			nocow = 1;
1051 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1052 			extent_end = found_key.offset +
1053 				btrfs_file_extent_inline_len(leaf, fi);
1054 			extent_end = ALIGN(extent_end, root->sectorsize);
1055 		} else {
1056 			BUG_ON(1);
1057 		}
1058 out_check:
1059 		if (extent_end <= start) {
1060 			path->slots[0]++;
1061 			goto next_slot;
1062 		}
1063 		if (!nocow) {
1064 			if (cow_start == (u64)-1)
1065 				cow_start = cur_offset;
1066 			cur_offset = extent_end;
1067 			if (cur_offset > end)
1068 				break;
1069 			path->slots[0]++;
1070 			goto next_slot;
1071 		}
1072 
1073 		btrfs_release_path(root, path);
1074 		if (cow_start != (u64)-1) {
1075 			ret = cow_file_range(inode, locked_page, cow_start,
1076 					found_key.offset - 1, page_started,
1077 					nr_written, 1);
1078 			BUG_ON(ret);
1079 			cow_start = (u64)-1;
1080 		}
1081 
1082 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1083 			struct extent_map *em;
1084 			struct extent_map_tree *em_tree;
1085 			em_tree = &BTRFS_I(inode)->extent_tree;
1086 			em = alloc_extent_map(GFP_NOFS);
1087 			em->start = cur_offset;
1088 			em->orig_start = em->start;
1089 			em->len = num_bytes;
1090 			em->block_len = num_bytes;
1091 			em->block_start = disk_bytenr;
1092 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1093 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1094 			while (1) {
1095 				write_lock(&em_tree->lock);
1096 				ret = add_extent_mapping(em_tree, em);
1097 				write_unlock(&em_tree->lock);
1098 				if (ret != -EEXIST) {
1099 					free_extent_map(em);
1100 					break;
1101 				}
1102 				btrfs_drop_extent_cache(inode, em->start,
1103 						em->start + em->len - 1, 0);
1104 			}
1105 			type = BTRFS_ORDERED_PREALLOC;
1106 		} else {
1107 			type = BTRFS_ORDERED_NOCOW;
1108 		}
1109 
1110 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1111 					       num_bytes, num_bytes, type);
1112 		BUG_ON(ret);
1113 
1114 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1115 					cur_offset, cur_offset + num_bytes - 1,
1116 					locked_page, 1, 1, 1, 0, 0, 0, 1);
1117 		cur_offset = extent_end;
1118 		if (cur_offset > end)
1119 			break;
1120 	}
1121 	btrfs_release_path(root, path);
1122 
1123 	if (cur_offset <= end && cow_start == (u64)-1)
1124 		cow_start = cur_offset;
1125 	if (cow_start != (u64)-1) {
1126 		ret = cow_file_range(inode, locked_page, cow_start, end,
1127 				     page_started, nr_written, 1);
1128 		BUG_ON(ret);
1129 	}
1130 
1131 	ret = btrfs_end_transaction(trans, root);
1132 	BUG_ON(ret);
1133 	btrfs_free_path(path);
1134 	return 0;
1135 }
1136 
1137 /*
1138  * extent_io.c call back to do delayed allocation processing
1139  */
1140 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1141 			      u64 start, u64 end, int *page_started,
1142 			      unsigned long *nr_written)
1143 {
1144 	int ret;
1145 	struct btrfs_root *root = BTRFS_I(inode)->root;
1146 
1147 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1148 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1149 					 page_started, 1, nr_written);
1150 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1151 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1152 					 page_started, 0, nr_written);
1153 	else if (!btrfs_test_opt(root, COMPRESS))
1154 		ret = cow_file_range(inode, locked_page, start, end,
1155 				      page_started, nr_written, 1);
1156 	else
1157 		ret = cow_file_range_async(inode, locked_page, start, end,
1158 					   page_started, nr_written);
1159 	return ret;
1160 }
1161 
1162 /*
1163  * extent_io.c set_bit_hook, used to track delayed allocation
1164  * bytes in this file, and to maintain the list of inodes that
1165  * have pending delalloc work to be done.
1166  */
1167 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1168 		       unsigned long old, unsigned long bits)
1169 {
1170 	/*
1171 	 * set_bit and clear bit hooks normally require _irqsave/restore
1172 	 * but in this case, we are only testeing for the DELALLOC
1173 	 * bit, which is only set or cleared with irqs on
1174 	 */
1175 	if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1176 		struct btrfs_root *root = BTRFS_I(inode)->root;
1177 		btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1178 		spin_lock(&root->fs_info->delalloc_lock);
1179 		BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1180 		root->fs_info->delalloc_bytes += end - start + 1;
1181 		if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1182 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1183 				      &root->fs_info->delalloc_inodes);
1184 		}
1185 		spin_unlock(&root->fs_info->delalloc_lock);
1186 	}
1187 	return 0;
1188 }
1189 
1190 /*
1191  * extent_io.c clear_bit_hook, see set_bit_hook for why
1192  */
1193 static int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1194 			 unsigned long old, unsigned long bits)
1195 {
1196 	/*
1197 	 * set_bit and clear bit hooks normally require _irqsave/restore
1198 	 * but in this case, we are only testeing for the DELALLOC
1199 	 * bit, which is only set or cleared with irqs on
1200 	 */
1201 	if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1202 		struct btrfs_root *root = BTRFS_I(inode)->root;
1203 
1204 		spin_lock(&root->fs_info->delalloc_lock);
1205 		if (end - start + 1 > root->fs_info->delalloc_bytes) {
1206 			printk(KERN_INFO "btrfs warning: delalloc account "
1207 			       "%llu %llu\n",
1208 			       (unsigned long long)end - start + 1,
1209 			       (unsigned long long)
1210 			       root->fs_info->delalloc_bytes);
1211 			btrfs_delalloc_free_space(root, inode, (u64)-1);
1212 			root->fs_info->delalloc_bytes = 0;
1213 			BTRFS_I(inode)->delalloc_bytes = 0;
1214 		} else {
1215 			btrfs_delalloc_free_space(root, inode,
1216 						  end - start + 1);
1217 			root->fs_info->delalloc_bytes -= end - start + 1;
1218 			BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1219 		}
1220 		if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1221 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1222 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1223 		}
1224 		spin_unlock(&root->fs_info->delalloc_lock);
1225 	}
1226 	return 0;
1227 }
1228 
1229 /*
1230  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1231  * we don't create bios that span stripes or chunks
1232  */
1233 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1234 			 size_t size, struct bio *bio,
1235 			 unsigned long bio_flags)
1236 {
1237 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1238 	struct btrfs_mapping_tree *map_tree;
1239 	u64 logical = (u64)bio->bi_sector << 9;
1240 	u64 length = 0;
1241 	u64 map_length;
1242 	int ret;
1243 
1244 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1245 		return 0;
1246 
1247 	length = bio->bi_size;
1248 	map_tree = &root->fs_info->mapping_tree;
1249 	map_length = length;
1250 	ret = btrfs_map_block(map_tree, READ, logical,
1251 			      &map_length, NULL, 0);
1252 
1253 	if (map_length < length + size)
1254 		return 1;
1255 	return 0;
1256 }
1257 
1258 /*
1259  * in order to insert checksums into the metadata in large chunks,
1260  * we wait until bio submission time.   All the pages in the bio are
1261  * checksummed and sums are attached onto the ordered extent record.
1262  *
1263  * At IO completion time the cums attached on the ordered extent record
1264  * are inserted into the btree
1265  */
1266 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1267 				    struct bio *bio, int mirror_num,
1268 				    unsigned long bio_flags)
1269 {
1270 	struct btrfs_root *root = BTRFS_I(inode)->root;
1271 	int ret = 0;
1272 
1273 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1274 	BUG_ON(ret);
1275 	return 0;
1276 }
1277 
1278 /*
1279  * in order to insert checksums into the metadata in large chunks,
1280  * we wait until bio submission time.   All the pages in the bio are
1281  * checksummed and sums are attached onto the ordered extent record.
1282  *
1283  * At IO completion time the cums attached on the ordered extent record
1284  * are inserted into the btree
1285  */
1286 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1287 			  int mirror_num, unsigned long bio_flags)
1288 {
1289 	struct btrfs_root *root = BTRFS_I(inode)->root;
1290 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1291 }
1292 
1293 /*
1294  * extent_io.c submission hook. This does the right thing for csum calculation
1295  * on write, or reading the csums from the tree before a read
1296  */
1297 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1298 			  int mirror_num, unsigned long bio_flags)
1299 {
1300 	struct btrfs_root *root = BTRFS_I(inode)->root;
1301 	int ret = 0;
1302 	int skip_sum;
1303 
1304 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1305 
1306 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1307 	BUG_ON(ret);
1308 
1309 	if (!(rw & (1 << BIO_RW))) {
1310 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1311 			return btrfs_submit_compressed_read(inode, bio,
1312 						    mirror_num, bio_flags);
1313 		} else if (!skip_sum)
1314 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1315 		goto mapit;
1316 	} else if (!skip_sum) {
1317 		/* csum items have already been cloned */
1318 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1319 			goto mapit;
1320 		/* we're doing a write, do the async checksumming */
1321 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1322 				   inode, rw, bio, mirror_num,
1323 				   bio_flags, __btrfs_submit_bio_start,
1324 				   __btrfs_submit_bio_done);
1325 	}
1326 
1327 mapit:
1328 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1329 }
1330 
1331 /*
1332  * given a list of ordered sums record them in the inode.  This happens
1333  * at IO completion time based on sums calculated at bio submission time.
1334  */
1335 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1336 			     struct inode *inode, u64 file_offset,
1337 			     struct list_head *list)
1338 {
1339 	struct btrfs_ordered_sum *sum;
1340 
1341 	btrfs_set_trans_block_group(trans, inode);
1342 
1343 	list_for_each_entry(sum, list, list) {
1344 		btrfs_csum_file_blocks(trans,
1345 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1346 	}
1347 	return 0;
1348 }
1349 
1350 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1351 {
1352 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1353 		WARN_ON(1);
1354 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1355 				   GFP_NOFS);
1356 }
1357 
1358 /* see btrfs_writepage_start_hook for details on why this is required */
1359 struct btrfs_writepage_fixup {
1360 	struct page *page;
1361 	struct btrfs_work work;
1362 };
1363 
1364 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1365 {
1366 	struct btrfs_writepage_fixup *fixup;
1367 	struct btrfs_ordered_extent *ordered;
1368 	struct page *page;
1369 	struct inode *inode;
1370 	u64 page_start;
1371 	u64 page_end;
1372 
1373 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1374 	page = fixup->page;
1375 again:
1376 	lock_page(page);
1377 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1378 		ClearPageChecked(page);
1379 		goto out_page;
1380 	}
1381 
1382 	inode = page->mapping->host;
1383 	page_start = page_offset(page);
1384 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1385 
1386 	lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1387 
1388 	/* already ordered? We're done */
1389 	if (PagePrivate2(page))
1390 		goto out;
1391 
1392 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1393 	if (ordered) {
1394 		unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1395 			      page_end, GFP_NOFS);
1396 		unlock_page(page);
1397 		btrfs_start_ordered_extent(inode, ordered, 1);
1398 		goto again;
1399 	}
1400 
1401 	btrfs_set_extent_delalloc(inode, page_start, page_end);
1402 	ClearPageChecked(page);
1403 out:
1404 	unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1405 out_page:
1406 	unlock_page(page);
1407 	page_cache_release(page);
1408 }
1409 
1410 /*
1411  * There are a few paths in the higher layers of the kernel that directly
1412  * set the page dirty bit without asking the filesystem if it is a
1413  * good idea.  This causes problems because we want to make sure COW
1414  * properly happens and the data=ordered rules are followed.
1415  *
1416  * In our case any range that doesn't have the ORDERED bit set
1417  * hasn't been properly setup for IO.  We kick off an async process
1418  * to fix it up.  The async helper will wait for ordered extents, set
1419  * the delalloc bit and make it safe to write the page.
1420  */
1421 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1422 {
1423 	struct inode *inode = page->mapping->host;
1424 	struct btrfs_writepage_fixup *fixup;
1425 	struct btrfs_root *root = BTRFS_I(inode)->root;
1426 
1427 	/* this page is properly in the ordered list */
1428 	if (TestClearPagePrivate2(page))
1429 		return 0;
1430 
1431 	if (PageChecked(page))
1432 		return -EAGAIN;
1433 
1434 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1435 	if (!fixup)
1436 		return -EAGAIN;
1437 
1438 	SetPageChecked(page);
1439 	page_cache_get(page);
1440 	fixup->work.func = btrfs_writepage_fixup_worker;
1441 	fixup->page = page;
1442 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1443 	return -EAGAIN;
1444 }
1445 
1446 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1447 				       struct inode *inode, u64 file_pos,
1448 				       u64 disk_bytenr, u64 disk_num_bytes,
1449 				       u64 num_bytes, u64 ram_bytes,
1450 				       u64 locked_end,
1451 				       u8 compression, u8 encryption,
1452 				       u16 other_encoding, int extent_type)
1453 {
1454 	struct btrfs_root *root = BTRFS_I(inode)->root;
1455 	struct btrfs_file_extent_item *fi;
1456 	struct btrfs_path *path;
1457 	struct extent_buffer *leaf;
1458 	struct btrfs_key ins;
1459 	u64 hint;
1460 	int ret;
1461 
1462 	path = btrfs_alloc_path();
1463 	BUG_ON(!path);
1464 
1465 	path->leave_spinning = 1;
1466 
1467 	/*
1468 	 * we may be replacing one extent in the tree with another.
1469 	 * The new extent is pinned in the extent map, and we don't want
1470 	 * to drop it from the cache until it is completely in the btree.
1471 	 *
1472 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1473 	 * the caller is expected to unpin it and allow it to be merged
1474 	 * with the others.
1475 	 */
1476 	ret = btrfs_drop_extents(trans, root, inode, file_pos,
1477 				 file_pos + num_bytes, locked_end,
1478 				 file_pos, &hint, 0);
1479 	BUG_ON(ret);
1480 
1481 	ins.objectid = inode->i_ino;
1482 	ins.offset = file_pos;
1483 	ins.type = BTRFS_EXTENT_DATA_KEY;
1484 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1485 	BUG_ON(ret);
1486 	leaf = path->nodes[0];
1487 	fi = btrfs_item_ptr(leaf, path->slots[0],
1488 			    struct btrfs_file_extent_item);
1489 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1490 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1491 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1492 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1493 	btrfs_set_file_extent_offset(leaf, fi, 0);
1494 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1495 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1496 	btrfs_set_file_extent_compression(leaf, fi, compression);
1497 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1498 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1499 
1500 	btrfs_unlock_up_safe(path, 1);
1501 	btrfs_set_lock_blocking(leaf);
1502 
1503 	btrfs_mark_buffer_dirty(leaf);
1504 
1505 	inode_add_bytes(inode, num_bytes);
1506 
1507 	ins.objectid = disk_bytenr;
1508 	ins.offset = disk_num_bytes;
1509 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1510 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1511 					root->root_key.objectid,
1512 					inode->i_ino, file_pos, &ins);
1513 	BUG_ON(ret);
1514 	btrfs_free_path(path);
1515 
1516 	return 0;
1517 }
1518 
1519 /*
1520  * helper function for btrfs_finish_ordered_io, this
1521  * just reads in some of the csum leaves to prime them into ram
1522  * before we start the transaction.  It limits the amount of btree
1523  * reads required while inside the transaction.
1524  */
1525 static noinline void reada_csum(struct btrfs_root *root,
1526 				struct btrfs_path *path,
1527 				struct btrfs_ordered_extent *ordered_extent)
1528 {
1529 	struct btrfs_ordered_sum *sum;
1530 	u64 bytenr;
1531 
1532 	sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1533 			 list);
1534 	bytenr = sum->sums[0].bytenr;
1535 
1536 	/*
1537 	 * we don't care about the results, the point of this search is
1538 	 * just to get the btree leaves into ram
1539 	 */
1540 	btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1541 }
1542 
1543 /* as ordered data IO finishes, this gets called so we can finish
1544  * an ordered extent if the range of bytes in the file it covers are
1545  * fully written.
1546  */
1547 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1548 {
1549 	struct btrfs_root *root = BTRFS_I(inode)->root;
1550 	struct btrfs_trans_handle *trans;
1551 	struct btrfs_ordered_extent *ordered_extent = NULL;
1552 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1553 	struct btrfs_path *path;
1554 	int compressed = 0;
1555 	int ret;
1556 
1557 	ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1558 	if (!ret)
1559 		return 0;
1560 
1561 	/*
1562 	 * before we join the transaction, try to do some of our IO.
1563 	 * This will limit the amount of IO that we have to do with
1564 	 * the transaction running.  We're unlikely to need to do any
1565 	 * IO if the file extents are new, the disk_i_size checks
1566 	 * covers the most common case.
1567 	 */
1568 	if (start < BTRFS_I(inode)->disk_i_size) {
1569 		path = btrfs_alloc_path();
1570 		if (path) {
1571 			ret = btrfs_lookup_file_extent(NULL, root, path,
1572 						       inode->i_ino,
1573 						       start, 0);
1574 			ordered_extent = btrfs_lookup_ordered_extent(inode,
1575 								     start);
1576 			if (!list_empty(&ordered_extent->list)) {
1577 				btrfs_release_path(root, path);
1578 				reada_csum(root, path, ordered_extent);
1579 			}
1580 			btrfs_free_path(path);
1581 		}
1582 	}
1583 
1584 	trans = btrfs_join_transaction(root, 1);
1585 
1586 	if (!ordered_extent)
1587 		ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1588 	BUG_ON(!ordered_extent);
1589 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1590 		goto nocow;
1591 
1592 	lock_extent(io_tree, ordered_extent->file_offset,
1593 		    ordered_extent->file_offset + ordered_extent->len - 1,
1594 		    GFP_NOFS);
1595 
1596 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1597 		compressed = 1;
1598 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1599 		BUG_ON(compressed);
1600 		ret = btrfs_mark_extent_written(trans, root, inode,
1601 						ordered_extent->file_offset,
1602 						ordered_extent->file_offset +
1603 						ordered_extent->len);
1604 		BUG_ON(ret);
1605 	} else {
1606 		ret = insert_reserved_file_extent(trans, inode,
1607 						ordered_extent->file_offset,
1608 						ordered_extent->start,
1609 						ordered_extent->disk_len,
1610 						ordered_extent->len,
1611 						ordered_extent->len,
1612 						ordered_extent->file_offset +
1613 						ordered_extent->len,
1614 						compressed, 0, 0,
1615 						BTRFS_FILE_EXTENT_REG);
1616 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1617 				   ordered_extent->file_offset,
1618 				   ordered_extent->len);
1619 		BUG_ON(ret);
1620 	}
1621 	unlock_extent(io_tree, ordered_extent->file_offset,
1622 		    ordered_extent->file_offset + ordered_extent->len - 1,
1623 		    GFP_NOFS);
1624 nocow:
1625 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1626 			  &ordered_extent->list);
1627 
1628 	mutex_lock(&BTRFS_I(inode)->extent_mutex);
1629 	btrfs_ordered_update_i_size(inode, ordered_extent);
1630 	btrfs_update_inode(trans, root, inode);
1631 	btrfs_remove_ordered_extent(inode, ordered_extent);
1632 	mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1633 
1634 	/* once for us */
1635 	btrfs_put_ordered_extent(ordered_extent);
1636 	/* once for the tree */
1637 	btrfs_put_ordered_extent(ordered_extent);
1638 
1639 	btrfs_end_transaction(trans, root);
1640 	return 0;
1641 }
1642 
1643 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1644 				struct extent_state *state, int uptodate)
1645 {
1646 	ClearPagePrivate2(page);
1647 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1648 }
1649 
1650 /*
1651  * When IO fails, either with EIO or csum verification fails, we
1652  * try other mirrors that might have a good copy of the data.  This
1653  * io_failure_record is used to record state as we go through all the
1654  * mirrors.  If another mirror has good data, the page is set up to date
1655  * and things continue.  If a good mirror can't be found, the original
1656  * bio end_io callback is called to indicate things have failed.
1657  */
1658 struct io_failure_record {
1659 	struct page *page;
1660 	u64 start;
1661 	u64 len;
1662 	u64 logical;
1663 	unsigned long bio_flags;
1664 	int last_mirror;
1665 };
1666 
1667 static int btrfs_io_failed_hook(struct bio *failed_bio,
1668 			 struct page *page, u64 start, u64 end,
1669 			 struct extent_state *state)
1670 {
1671 	struct io_failure_record *failrec = NULL;
1672 	u64 private;
1673 	struct extent_map *em;
1674 	struct inode *inode = page->mapping->host;
1675 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1676 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1677 	struct bio *bio;
1678 	int num_copies;
1679 	int ret;
1680 	int rw;
1681 	u64 logical;
1682 
1683 	ret = get_state_private(failure_tree, start, &private);
1684 	if (ret) {
1685 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1686 		if (!failrec)
1687 			return -ENOMEM;
1688 		failrec->start = start;
1689 		failrec->len = end - start + 1;
1690 		failrec->last_mirror = 0;
1691 		failrec->bio_flags = 0;
1692 
1693 		read_lock(&em_tree->lock);
1694 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1695 		if (em->start > start || em->start + em->len < start) {
1696 			free_extent_map(em);
1697 			em = NULL;
1698 		}
1699 		read_unlock(&em_tree->lock);
1700 
1701 		if (!em || IS_ERR(em)) {
1702 			kfree(failrec);
1703 			return -EIO;
1704 		}
1705 		logical = start - em->start;
1706 		logical = em->block_start + logical;
1707 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1708 			logical = em->block_start;
1709 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1710 		}
1711 		failrec->logical = logical;
1712 		free_extent_map(em);
1713 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1714 				EXTENT_DIRTY, GFP_NOFS);
1715 		set_state_private(failure_tree, start,
1716 				 (u64)(unsigned long)failrec);
1717 	} else {
1718 		failrec = (struct io_failure_record *)(unsigned long)private;
1719 	}
1720 	num_copies = btrfs_num_copies(
1721 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1722 			      failrec->logical, failrec->len);
1723 	failrec->last_mirror++;
1724 	if (!state) {
1725 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1726 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1727 						    failrec->start,
1728 						    EXTENT_LOCKED);
1729 		if (state && state->start != failrec->start)
1730 			state = NULL;
1731 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1732 	}
1733 	if (!state || failrec->last_mirror > num_copies) {
1734 		set_state_private(failure_tree, failrec->start, 0);
1735 		clear_extent_bits(failure_tree, failrec->start,
1736 				  failrec->start + failrec->len - 1,
1737 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1738 		kfree(failrec);
1739 		return -EIO;
1740 	}
1741 	bio = bio_alloc(GFP_NOFS, 1);
1742 	bio->bi_private = state;
1743 	bio->bi_end_io = failed_bio->bi_end_io;
1744 	bio->bi_sector = failrec->logical >> 9;
1745 	bio->bi_bdev = failed_bio->bi_bdev;
1746 	bio->bi_size = 0;
1747 
1748 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1749 	if (failed_bio->bi_rw & (1 << BIO_RW))
1750 		rw = WRITE;
1751 	else
1752 		rw = READ;
1753 
1754 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1755 						      failrec->last_mirror,
1756 						      failrec->bio_flags);
1757 	return 0;
1758 }
1759 
1760 /*
1761  * each time an IO finishes, we do a fast check in the IO failure tree
1762  * to see if we need to process or clean up an io_failure_record
1763  */
1764 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1765 {
1766 	u64 private;
1767 	u64 private_failure;
1768 	struct io_failure_record *failure;
1769 	int ret;
1770 
1771 	private = 0;
1772 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1773 			     (u64)-1, 1, EXTENT_DIRTY)) {
1774 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1775 					start, &private_failure);
1776 		if (ret == 0) {
1777 			failure = (struct io_failure_record *)(unsigned long)
1778 				   private_failure;
1779 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1780 					  failure->start, 0);
1781 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1782 					  failure->start,
1783 					  failure->start + failure->len - 1,
1784 					  EXTENT_DIRTY | EXTENT_LOCKED,
1785 					  GFP_NOFS);
1786 			kfree(failure);
1787 		}
1788 	}
1789 	return 0;
1790 }
1791 
1792 /*
1793  * when reads are done, we need to check csums to verify the data is correct
1794  * if there's a match, we allow the bio to finish.  If not, we go through
1795  * the io_failure_record routines to find good copies
1796  */
1797 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1798 			       struct extent_state *state)
1799 {
1800 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1801 	struct inode *inode = page->mapping->host;
1802 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1803 	char *kaddr;
1804 	u64 private = ~(u32)0;
1805 	int ret;
1806 	struct btrfs_root *root = BTRFS_I(inode)->root;
1807 	u32 csum = ~(u32)0;
1808 
1809 	if (PageChecked(page)) {
1810 		ClearPageChecked(page);
1811 		goto good;
1812 	}
1813 
1814 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1815 		return 0;
1816 
1817 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1818 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1819 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1820 				  GFP_NOFS);
1821 		return 0;
1822 	}
1823 
1824 	if (state && state->start == start) {
1825 		private = state->private;
1826 		ret = 0;
1827 	} else {
1828 		ret = get_state_private(io_tree, start, &private);
1829 	}
1830 	kaddr = kmap_atomic(page, KM_USER0);
1831 	if (ret)
1832 		goto zeroit;
1833 
1834 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1835 	btrfs_csum_final(csum, (char *)&csum);
1836 	if (csum != private)
1837 		goto zeroit;
1838 
1839 	kunmap_atomic(kaddr, KM_USER0);
1840 good:
1841 	/* if the io failure tree for this inode is non-empty,
1842 	 * check to see if we've recovered from a failed IO
1843 	 */
1844 	btrfs_clean_io_failures(inode, start);
1845 	return 0;
1846 
1847 zeroit:
1848 	if (printk_ratelimit()) {
1849 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1850 		       "private %llu\n", page->mapping->host->i_ino,
1851 		       (unsigned long long)start, csum,
1852 		       (unsigned long long)private);
1853 	}
1854 	memset(kaddr + offset, 1, end - start + 1);
1855 	flush_dcache_page(page);
1856 	kunmap_atomic(kaddr, KM_USER0);
1857 	if (private == 0)
1858 		return 0;
1859 	return -EIO;
1860 }
1861 
1862 /*
1863  * This creates an orphan entry for the given inode in case something goes
1864  * wrong in the middle of an unlink/truncate.
1865  */
1866 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1867 {
1868 	struct btrfs_root *root = BTRFS_I(inode)->root;
1869 	int ret = 0;
1870 
1871 	spin_lock(&root->list_lock);
1872 
1873 	/* already on the orphan list, we're good */
1874 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1875 		spin_unlock(&root->list_lock);
1876 		return 0;
1877 	}
1878 
1879 	list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1880 
1881 	spin_unlock(&root->list_lock);
1882 
1883 	/*
1884 	 * insert an orphan item to track this unlinked/truncated file
1885 	 */
1886 	ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1887 
1888 	return ret;
1889 }
1890 
1891 /*
1892  * We have done the truncate/delete so we can go ahead and remove the orphan
1893  * item for this particular inode.
1894  */
1895 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1896 {
1897 	struct btrfs_root *root = BTRFS_I(inode)->root;
1898 	int ret = 0;
1899 
1900 	spin_lock(&root->list_lock);
1901 
1902 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1903 		spin_unlock(&root->list_lock);
1904 		return 0;
1905 	}
1906 
1907 	list_del_init(&BTRFS_I(inode)->i_orphan);
1908 	if (!trans) {
1909 		spin_unlock(&root->list_lock);
1910 		return 0;
1911 	}
1912 
1913 	spin_unlock(&root->list_lock);
1914 
1915 	ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1916 
1917 	return ret;
1918 }
1919 
1920 /*
1921  * this cleans up any orphans that may be left on the list from the last use
1922  * of this root.
1923  */
1924 void btrfs_orphan_cleanup(struct btrfs_root *root)
1925 {
1926 	struct btrfs_path *path;
1927 	struct extent_buffer *leaf;
1928 	struct btrfs_item *item;
1929 	struct btrfs_key key, found_key;
1930 	struct btrfs_trans_handle *trans;
1931 	struct inode *inode;
1932 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
1933 
1934 	path = btrfs_alloc_path();
1935 	if (!path)
1936 		return;
1937 	path->reada = -1;
1938 
1939 	key.objectid = BTRFS_ORPHAN_OBJECTID;
1940 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1941 	key.offset = (u64)-1;
1942 
1943 
1944 	while (1) {
1945 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1946 		if (ret < 0) {
1947 			printk(KERN_ERR "Error searching slot for orphan: %d"
1948 			       "\n", ret);
1949 			break;
1950 		}
1951 
1952 		/*
1953 		 * if ret == 0 means we found what we were searching for, which
1954 		 * is weird, but possible, so only screw with path if we didnt
1955 		 * find the key and see if we have stuff that matches
1956 		 */
1957 		if (ret > 0) {
1958 			if (path->slots[0] == 0)
1959 				break;
1960 			path->slots[0]--;
1961 		}
1962 
1963 		/* pull out the item */
1964 		leaf = path->nodes[0];
1965 		item = btrfs_item_nr(leaf, path->slots[0]);
1966 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1967 
1968 		/* make sure the item matches what we want */
1969 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1970 			break;
1971 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1972 			break;
1973 
1974 		/* release the path since we're done with it */
1975 		btrfs_release_path(root, path);
1976 
1977 		/*
1978 		 * this is where we are basically btrfs_lookup, without the
1979 		 * crossing root thing.  we store the inode number in the
1980 		 * offset of the orphan item.
1981 		 */
1982 		found_key.objectid = found_key.offset;
1983 		found_key.type = BTRFS_INODE_ITEM_KEY;
1984 		found_key.offset = 0;
1985 		inode = btrfs_iget(root->fs_info->sb, &found_key, root);
1986 		if (IS_ERR(inode))
1987 			break;
1988 
1989 		/*
1990 		 * add this inode to the orphan list so btrfs_orphan_del does
1991 		 * the proper thing when we hit it
1992 		 */
1993 		spin_lock(&root->list_lock);
1994 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1995 		spin_unlock(&root->list_lock);
1996 
1997 		/*
1998 		 * if this is a bad inode, means we actually succeeded in
1999 		 * removing the inode, but not the orphan record, which means
2000 		 * we need to manually delete the orphan since iput will just
2001 		 * do a destroy_inode
2002 		 */
2003 		if (is_bad_inode(inode)) {
2004 			trans = btrfs_start_transaction(root, 1);
2005 			btrfs_orphan_del(trans, inode);
2006 			btrfs_end_transaction(trans, root);
2007 			iput(inode);
2008 			continue;
2009 		}
2010 
2011 		/* if we have links, this was a truncate, lets do that */
2012 		if (inode->i_nlink) {
2013 			nr_truncate++;
2014 			btrfs_truncate(inode);
2015 		} else {
2016 			nr_unlink++;
2017 		}
2018 
2019 		/* this will do delete_inode and everything for us */
2020 		iput(inode);
2021 	}
2022 
2023 	if (nr_unlink)
2024 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2025 	if (nr_truncate)
2026 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2027 
2028 	btrfs_free_path(path);
2029 }
2030 
2031 /*
2032  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2033  * don't find any xattrs, we know there can't be any acls.
2034  *
2035  * slot is the slot the inode is in, objectid is the objectid of the inode
2036  */
2037 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2038 					  int slot, u64 objectid)
2039 {
2040 	u32 nritems = btrfs_header_nritems(leaf);
2041 	struct btrfs_key found_key;
2042 	int scanned = 0;
2043 
2044 	slot++;
2045 	while (slot < nritems) {
2046 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2047 
2048 		/* we found a different objectid, there must not be acls */
2049 		if (found_key.objectid != objectid)
2050 			return 0;
2051 
2052 		/* we found an xattr, assume we've got an acl */
2053 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2054 			return 1;
2055 
2056 		/*
2057 		 * we found a key greater than an xattr key, there can't
2058 		 * be any acls later on
2059 		 */
2060 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2061 			return 0;
2062 
2063 		slot++;
2064 		scanned++;
2065 
2066 		/*
2067 		 * it goes inode, inode backrefs, xattrs, extents,
2068 		 * so if there are a ton of hard links to an inode there can
2069 		 * be a lot of backrefs.  Don't waste time searching too hard,
2070 		 * this is just an optimization
2071 		 */
2072 		if (scanned >= 8)
2073 			break;
2074 	}
2075 	/* we hit the end of the leaf before we found an xattr or
2076 	 * something larger than an xattr.  We have to assume the inode
2077 	 * has acls
2078 	 */
2079 	return 1;
2080 }
2081 
2082 /*
2083  * read an inode from the btree into the in-memory inode
2084  */
2085 static void btrfs_read_locked_inode(struct inode *inode)
2086 {
2087 	struct btrfs_path *path;
2088 	struct extent_buffer *leaf;
2089 	struct btrfs_inode_item *inode_item;
2090 	struct btrfs_timespec *tspec;
2091 	struct btrfs_root *root = BTRFS_I(inode)->root;
2092 	struct btrfs_key location;
2093 	int maybe_acls;
2094 	u64 alloc_group_block;
2095 	u32 rdev;
2096 	int ret;
2097 
2098 	path = btrfs_alloc_path();
2099 	BUG_ON(!path);
2100 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2101 
2102 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2103 	if (ret)
2104 		goto make_bad;
2105 
2106 	leaf = path->nodes[0];
2107 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2108 				    struct btrfs_inode_item);
2109 
2110 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2111 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2112 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2113 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2114 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2115 
2116 	tspec = btrfs_inode_atime(inode_item);
2117 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2118 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2119 
2120 	tspec = btrfs_inode_mtime(inode_item);
2121 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2122 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2123 
2124 	tspec = btrfs_inode_ctime(inode_item);
2125 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2126 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2127 
2128 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2129 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2130 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2131 	inode->i_generation = BTRFS_I(inode)->generation;
2132 	inode->i_rdev = 0;
2133 	rdev = btrfs_inode_rdev(leaf, inode_item);
2134 
2135 	BTRFS_I(inode)->index_cnt = (u64)-1;
2136 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2137 
2138 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2139 
2140 	/*
2141 	 * try to precache a NULL acl entry for files that don't have
2142 	 * any xattrs or acls
2143 	 */
2144 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2145 	if (!maybe_acls)
2146 		cache_no_acl(inode);
2147 
2148 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2149 						alloc_group_block, 0);
2150 	btrfs_free_path(path);
2151 	inode_item = NULL;
2152 
2153 	switch (inode->i_mode & S_IFMT) {
2154 	case S_IFREG:
2155 		inode->i_mapping->a_ops = &btrfs_aops;
2156 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2157 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2158 		inode->i_fop = &btrfs_file_operations;
2159 		inode->i_op = &btrfs_file_inode_operations;
2160 		break;
2161 	case S_IFDIR:
2162 		inode->i_fop = &btrfs_dir_file_operations;
2163 		if (root == root->fs_info->tree_root)
2164 			inode->i_op = &btrfs_dir_ro_inode_operations;
2165 		else
2166 			inode->i_op = &btrfs_dir_inode_operations;
2167 		break;
2168 	case S_IFLNK:
2169 		inode->i_op = &btrfs_symlink_inode_operations;
2170 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2171 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2172 		break;
2173 	default:
2174 		inode->i_op = &btrfs_special_inode_operations;
2175 		init_special_inode(inode, inode->i_mode, rdev);
2176 		break;
2177 	}
2178 
2179 	btrfs_update_iflags(inode);
2180 	return;
2181 
2182 make_bad:
2183 	btrfs_free_path(path);
2184 	make_bad_inode(inode);
2185 }
2186 
2187 /*
2188  * given a leaf and an inode, copy the inode fields into the leaf
2189  */
2190 static void fill_inode_item(struct btrfs_trans_handle *trans,
2191 			    struct extent_buffer *leaf,
2192 			    struct btrfs_inode_item *item,
2193 			    struct inode *inode)
2194 {
2195 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2196 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2197 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2198 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2199 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2200 
2201 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2202 			       inode->i_atime.tv_sec);
2203 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2204 				inode->i_atime.tv_nsec);
2205 
2206 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2207 			       inode->i_mtime.tv_sec);
2208 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2209 				inode->i_mtime.tv_nsec);
2210 
2211 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2212 			       inode->i_ctime.tv_sec);
2213 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2214 				inode->i_ctime.tv_nsec);
2215 
2216 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2217 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2218 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2219 	btrfs_set_inode_transid(leaf, item, trans->transid);
2220 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2221 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2222 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2223 }
2224 
2225 /*
2226  * copy everything in the in-memory inode into the btree.
2227  */
2228 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2229 				struct btrfs_root *root, struct inode *inode)
2230 {
2231 	struct btrfs_inode_item *inode_item;
2232 	struct btrfs_path *path;
2233 	struct extent_buffer *leaf;
2234 	int ret;
2235 
2236 	path = btrfs_alloc_path();
2237 	BUG_ON(!path);
2238 	path->leave_spinning = 1;
2239 	ret = btrfs_lookup_inode(trans, root, path,
2240 				 &BTRFS_I(inode)->location, 1);
2241 	if (ret) {
2242 		if (ret > 0)
2243 			ret = -ENOENT;
2244 		goto failed;
2245 	}
2246 
2247 	btrfs_unlock_up_safe(path, 1);
2248 	leaf = path->nodes[0];
2249 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2250 				  struct btrfs_inode_item);
2251 
2252 	fill_inode_item(trans, leaf, inode_item, inode);
2253 	btrfs_mark_buffer_dirty(leaf);
2254 	btrfs_set_inode_last_trans(trans, inode);
2255 	ret = 0;
2256 failed:
2257 	btrfs_free_path(path);
2258 	return ret;
2259 }
2260 
2261 
2262 /*
2263  * unlink helper that gets used here in inode.c and in the tree logging
2264  * recovery code.  It remove a link in a directory with a given name, and
2265  * also drops the back refs in the inode to the directory
2266  */
2267 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2268 		       struct btrfs_root *root,
2269 		       struct inode *dir, struct inode *inode,
2270 		       const char *name, int name_len)
2271 {
2272 	struct btrfs_path *path;
2273 	int ret = 0;
2274 	struct extent_buffer *leaf;
2275 	struct btrfs_dir_item *di;
2276 	struct btrfs_key key;
2277 	u64 index;
2278 
2279 	path = btrfs_alloc_path();
2280 	if (!path) {
2281 		ret = -ENOMEM;
2282 		goto err;
2283 	}
2284 
2285 	path->leave_spinning = 1;
2286 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2287 				    name, name_len, -1);
2288 	if (IS_ERR(di)) {
2289 		ret = PTR_ERR(di);
2290 		goto err;
2291 	}
2292 	if (!di) {
2293 		ret = -ENOENT;
2294 		goto err;
2295 	}
2296 	leaf = path->nodes[0];
2297 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2298 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2299 	if (ret)
2300 		goto err;
2301 	btrfs_release_path(root, path);
2302 
2303 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2304 				  inode->i_ino,
2305 				  dir->i_ino, &index);
2306 	if (ret) {
2307 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2308 		       "inode %lu parent %lu\n", name_len, name,
2309 		       inode->i_ino, dir->i_ino);
2310 		goto err;
2311 	}
2312 
2313 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2314 					 index, name, name_len, -1);
2315 	if (IS_ERR(di)) {
2316 		ret = PTR_ERR(di);
2317 		goto err;
2318 	}
2319 	if (!di) {
2320 		ret = -ENOENT;
2321 		goto err;
2322 	}
2323 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2324 	btrfs_release_path(root, path);
2325 
2326 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2327 					 inode, dir->i_ino);
2328 	BUG_ON(ret != 0 && ret != -ENOENT);
2329 
2330 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2331 					   dir, index);
2332 	BUG_ON(ret);
2333 err:
2334 	btrfs_free_path(path);
2335 	if (ret)
2336 		goto out;
2337 
2338 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2339 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2340 	btrfs_update_inode(trans, root, dir);
2341 	btrfs_drop_nlink(inode);
2342 	ret = btrfs_update_inode(trans, root, inode);
2343 out:
2344 	return ret;
2345 }
2346 
2347 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2348 {
2349 	struct btrfs_root *root;
2350 	struct btrfs_trans_handle *trans;
2351 	struct inode *inode = dentry->d_inode;
2352 	int ret;
2353 	unsigned long nr = 0;
2354 
2355 	root = BTRFS_I(dir)->root;
2356 
2357 	trans = btrfs_start_transaction(root, 1);
2358 
2359 	btrfs_set_trans_block_group(trans, dir);
2360 
2361 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2362 
2363 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2364 				 dentry->d_name.name, dentry->d_name.len);
2365 
2366 	if (inode->i_nlink == 0)
2367 		ret = btrfs_orphan_add(trans, inode);
2368 
2369 	nr = trans->blocks_used;
2370 
2371 	btrfs_end_transaction_throttle(trans, root);
2372 	btrfs_btree_balance_dirty(root, nr);
2373 	return ret;
2374 }
2375 
2376 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2377 			struct btrfs_root *root,
2378 			struct inode *dir, u64 objectid,
2379 			const char *name, int name_len)
2380 {
2381 	struct btrfs_path *path;
2382 	struct extent_buffer *leaf;
2383 	struct btrfs_dir_item *di;
2384 	struct btrfs_key key;
2385 	u64 index;
2386 	int ret;
2387 
2388 	path = btrfs_alloc_path();
2389 	if (!path)
2390 		return -ENOMEM;
2391 
2392 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2393 				   name, name_len, -1);
2394 	BUG_ON(!di || IS_ERR(di));
2395 
2396 	leaf = path->nodes[0];
2397 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2398 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2399 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2400 	BUG_ON(ret);
2401 	btrfs_release_path(root, path);
2402 
2403 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2404 				 objectid, root->root_key.objectid,
2405 				 dir->i_ino, &index, name, name_len);
2406 	if (ret < 0) {
2407 		BUG_ON(ret != -ENOENT);
2408 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2409 						 name, name_len);
2410 		BUG_ON(!di || IS_ERR(di));
2411 
2412 		leaf = path->nodes[0];
2413 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2414 		btrfs_release_path(root, path);
2415 		index = key.offset;
2416 	}
2417 
2418 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2419 					 index, name, name_len, -1);
2420 	BUG_ON(!di || IS_ERR(di));
2421 
2422 	leaf = path->nodes[0];
2423 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2424 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2425 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2426 	BUG_ON(ret);
2427 	btrfs_release_path(root, path);
2428 
2429 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2430 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2431 	ret = btrfs_update_inode(trans, root, dir);
2432 	BUG_ON(ret);
2433 	dir->i_sb->s_dirt = 1;
2434 
2435 	btrfs_free_path(path);
2436 	return 0;
2437 }
2438 
2439 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2440 {
2441 	struct inode *inode = dentry->d_inode;
2442 	int err = 0;
2443 	int ret;
2444 	struct btrfs_root *root = BTRFS_I(dir)->root;
2445 	struct btrfs_trans_handle *trans;
2446 	unsigned long nr = 0;
2447 
2448 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2449 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2450 		return -ENOTEMPTY;
2451 
2452 	trans = btrfs_start_transaction(root, 1);
2453 	btrfs_set_trans_block_group(trans, dir);
2454 
2455 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2456 		err = btrfs_unlink_subvol(trans, root, dir,
2457 					  BTRFS_I(inode)->location.objectid,
2458 					  dentry->d_name.name,
2459 					  dentry->d_name.len);
2460 		goto out;
2461 	}
2462 
2463 	err = btrfs_orphan_add(trans, inode);
2464 	if (err)
2465 		goto out;
2466 
2467 	/* now the directory is empty */
2468 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2469 				 dentry->d_name.name, dentry->d_name.len);
2470 	if (!err)
2471 		btrfs_i_size_write(inode, 0);
2472 out:
2473 	nr = trans->blocks_used;
2474 	ret = btrfs_end_transaction_throttle(trans, root);
2475 	btrfs_btree_balance_dirty(root, nr);
2476 
2477 	if (ret && !err)
2478 		err = ret;
2479 	return err;
2480 }
2481 
2482 #if 0
2483 /*
2484  * when truncating bytes in a file, it is possible to avoid reading
2485  * the leaves that contain only checksum items.  This can be the
2486  * majority of the IO required to delete a large file, but it must
2487  * be done carefully.
2488  *
2489  * The keys in the level just above the leaves are checked to make sure
2490  * the lowest key in a given leaf is a csum key, and starts at an offset
2491  * after the new  size.
2492  *
2493  * Then the key for the next leaf is checked to make sure it also has
2494  * a checksum item for the same file.  If it does, we know our target leaf
2495  * contains only checksum items, and it can be safely freed without reading
2496  * it.
2497  *
2498  * This is just an optimization targeted at large files.  It may do
2499  * nothing.  It will return 0 unless things went badly.
2500  */
2501 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2502 				     struct btrfs_root *root,
2503 				     struct btrfs_path *path,
2504 				     struct inode *inode, u64 new_size)
2505 {
2506 	struct btrfs_key key;
2507 	int ret;
2508 	int nritems;
2509 	struct btrfs_key found_key;
2510 	struct btrfs_key other_key;
2511 	struct btrfs_leaf_ref *ref;
2512 	u64 leaf_gen;
2513 	u64 leaf_start;
2514 
2515 	path->lowest_level = 1;
2516 	key.objectid = inode->i_ino;
2517 	key.type = BTRFS_CSUM_ITEM_KEY;
2518 	key.offset = new_size;
2519 again:
2520 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2521 	if (ret < 0)
2522 		goto out;
2523 
2524 	if (path->nodes[1] == NULL) {
2525 		ret = 0;
2526 		goto out;
2527 	}
2528 	ret = 0;
2529 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2530 	nritems = btrfs_header_nritems(path->nodes[1]);
2531 
2532 	if (!nritems)
2533 		goto out;
2534 
2535 	if (path->slots[1] >= nritems)
2536 		goto next_node;
2537 
2538 	/* did we find a key greater than anything we want to delete? */
2539 	if (found_key.objectid > inode->i_ino ||
2540 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
2541 		goto out;
2542 
2543 	/* we check the next key in the node to make sure the leave contains
2544 	 * only checksum items.  This comparison doesn't work if our
2545 	 * leaf is the last one in the node
2546 	 */
2547 	if (path->slots[1] + 1 >= nritems) {
2548 next_node:
2549 		/* search forward from the last key in the node, this
2550 		 * will bring us into the next node in the tree
2551 		 */
2552 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2553 
2554 		/* unlikely, but we inc below, so check to be safe */
2555 		if (found_key.offset == (u64)-1)
2556 			goto out;
2557 
2558 		/* search_forward needs a path with locks held, do the
2559 		 * search again for the original key.  It is possible
2560 		 * this will race with a balance and return a path that
2561 		 * we could modify, but this drop is just an optimization
2562 		 * and is allowed to miss some leaves.
2563 		 */
2564 		btrfs_release_path(root, path);
2565 		found_key.offset++;
2566 
2567 		/* setup a max key for search_forward */
2568 		other_key.offset = (u64)-1;
2569 		other_key.type = key.type;
2570 		other_key.objectid = key.objectid;
2571 
2572 		path->keep_locks = 1;
2573 		ret = btrfs_search_forward(root, &found_key, &other_key,
2574 					   path, 0, 0);
2575 		path->keep_locks = 0;
2576 		if (ret || found_key.objectid != key.objectid ||
2577 		    found_key.type != key.type) {
2578 			ret = 0;
2579 			goto out;
2580 		}
2581 
2582 		key.offset = found_key.offset;
2583 		btrfs_release_path(root, path);
2584 		cond_resched();
2585 		goto again;
2586 	}
2587 
2588 	/* we know there's one more slot after us in the tree,
2589 	 * read that key so we can verify it is also a checksum item
2590 	 */
2591 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2592 
2593 	if (found_key.objectid < inode->i_ino)
2594 		goto next_key;
2595 
2596 	if (found_key.type != key.type || found_key.offset < new_size)
2597 		goto next_key;
2598 
2599 	/*
2600 	 * if the key for the next leaf isn't a csum key from this objectid,
2601 	 * we can't be sure there aren't good items inside this leaf.
2602 	 * Bail out
2603 	 */
2604 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2605 		goto out;
2606 
2607 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2608 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2609 	/*
2610 	 * it is safe to delete this leaf, it contains only
2611 	 * csum items from this inode at an offset >= new_size
2612 	 */
2613 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
2614 	BUG_ON(ret);
2615 
2616 	if (root->ref_cows && leaf_gen < trans->transid) {
2617 		ref = btrfs_alloc_leaf_ref(root, 0);
2618 		if (ref) {
2619 			ref->root_gen = root->root_key.offset;
2620 			ref->bytenr = leaf_start;
2621 			ref->owner = 0;
2622 			ref->generation = leaf_gen;
2623 			ref->nritems = 0;
2624 
2625 			btrfs_sort_leaf_ref(ref);
2626 
2627 			ret = btrfs_add_leaf_ref(root, ref, 0);
2628 			WARN_ON(ret);
2629 			btrfs_free_leaf_ref(root, ref);
2630 		} else {
2631 			WARN_ON(1);
2632 		}
2633 	}
2634 next_key:
2635 	btrfs_release_path(root, path);
2636 
2637 	if (other_key.objectid == inode->i_ino &&
2638 	    other_key.type == key.type && other_key.offset > key.offset) {
2639 		key.offset = other_key.offset;
2640 		cond_resched();
2641 		goto again;
2642 	}
2643 	ret = 0;
2644 out:
2645 	/* fixup any changes we've made to the path */
2646 	path->lowest_level = 0;
2647 	path->keep_locks = 0;
2648 	btrfs_release_path(root, path);
2649 	return ret;
2650 }
2651 
2652 #endif
2653 
2654 /*
2655  * this can truncate away extent items, csum items and directory items.
2656  * It starts at a high offset and removes keys until it can't find
2657  * any higher than new_size
2658  *
2659  * csum items that cross the new i_size are truncated to the new size
2660  * as well.
2661  *
2662  * min_type is the minimum key type to truncate down to.  If set to 0, this
2663  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2664  */
2665 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2666 					struct btrfs_root *root,
2667 					struct inode *inode,
2668 					u64 new_size, u32 min_type)
2669 {
2670 	int ret;
2671 	struct btrfs_path *path;
2672 	struct btrfs_key key;
2673 	struct btrfs_key found_key;
2674 	u32 found_type = (u8)-1;
2675 	struct extent_buffer *leaf;
2676 	struct btrfs_file_extent_item *fi;
2677 	u64 extent_start = 0;
2678 	u64 extent_num_bytes = 0;
2679 	u64 extent_offset = 0;
2680 	u64 item_end = 0;
2681 	int found_extent;
2682 	int del_item;
2683 	int pending_del_nr = 0;
2684 	int pending_del_slot = 0;
2685 	int extent_type = -1;
2686 	int encoding;
2687 	u64 mask = root->sectorsize - 1;
2688 
2689 	if (root->ref_cows)
2690 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2691 	path = btrfs_alloc_path();
2692 	BUG_ON(!path);
2693 	path->reada = -1;
2694 
2695 	/* FIXME, add redo link to tree so we don't leak on crash */
2696 	key.objectid = inode->i_ino;
2697 	key.offset = (u64)-1;
2698 	key.type = (u8)-1;
2699 
2700 search_again:
2701 	path->leave_spinning = 1;
2702 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2703 	if (ret < 0)
2704 		goto error;
2705 
2706 	if (ret > 0) {
2707 		/* there are no items in the tree for us to truncate, we're
2708 		 * done
2709 		 */
2710 		if (path->slots[0] == 0) {
2711 			ret = 0;
2712 			goto error;
2713 		}
2714 		path->slots[0]--;
2715 	}
2716 
2717 	while (1) {
2718 		fi = NULL;
2719 		leaf = path->nodes[0];
2720 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2721 		found_type = btrfs_key_type(&found_key);
2722 		encoding = 0;
2723 
2724 		if (found_key.objectid != inode->i_ino)
2725 			break;
2726 
2727 		if (found_type < min_type)
2728 			break;
2729 
2730 		item_end = found_key.offset;
2731 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
2732 			fi = btrfs_item_ptr(leaf, path->slots[0],
2733 					    struct btrfs_file_extent_item);
2734 			extent_type = btrfs_file_extent_type(leaf, fi);
2735 			encoding = btrfs_file_extent_compression(leaf, fi);
2736 			encoding |= btrfs_file_extent_encryption(leaf, fi);
2737 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2738 
2739 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2740 				item_end +=
2741 				    btrfs_file_extent_num_bytes(leaf, fi);
2742 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2743 				item_end += btrfs_file_extent_inline_len(leaf,
2744 									 fi);
2745 			}
2746 			item_end--;
2747 		}
2748 		if (item_end < new_size) {
2749 			if (found_type == BTRFS_DIR_ITEM_KEY)
2750 				found_type = BTRFS_INODE_ITEM_KEY;
2751 			else if (found_type == BTRFS_EXTENT_ITEM_KEY)
2752 				found_type = BTRFS_EXTENT_DATA_KEY;
2753 			else if (found_type == BTRFS_EXTENT_DATA_KEY)
2754 				found_type = BTRFS_XATTR_ITEM_KEY;
2755 			else if (found_type == BTRFS_XATTR_ITEM_KEY)
2756 				found_type = BTRFS_INODE_REF_KEY;
2757 			else if (found_type)
2758 				found_type--;
2759 			else
2760 				break;
2761 			btrfs_set_key_type(&key, found_type);
2762 			goto next;
2763 		}
2764 		if (found_key.offset >= new_size)
2765 			del_item = 1;
2766 		else
2767 			del_item = 0;
2768 		found_extent = 0;
2769 
2770 		/* FIXME, shrink the extent if the ref count is only 1 */
2771 		if (found_type != BTRFS_EXTENT_DATA_KEY)
2772 			goto delete;
2773 
2774 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2775 			u64 num_dec;
2776 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2777 			if (!del_item && !encoding) {
2778 				u64 orig_num_bytes =
2779 					btrfs_file_extent_num_bytes(leaf, fi);
2780 				extent_num_bytes = new_size -
2781 					found_key.offset + root->sectorsize - 1;
2782 				extent_num_bytes = extent_num_bytes &
2783 					~((u64)root->sectorsize - 1);
2784 				btrfs_set_file_extent_num_bytes(leaf, fi,
2785 							 extent_num_bytes);
2786 				num_dec = (orig_num_bytes -
2787 					   extent_num_bytes);
2788 				if (root->ref_cows && extent_start != 0)
2789 					inode_sub_bytes(inode, num_dec);
2790 				btrfs_mark_buffer_dirty(leaf);
2791 			} else {
2792 				extent_num_bytes =
2793 					btrfs_file_extent_disk_num_bytes(leaf,
2794 									 fi);
2795 				extent_offset = found_key.offset -
2796 					btrfs_file_extent_offset(leaf, fi);
2797 
2798 				/* FIXME blocksize != 4096 */
2799 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2800 				if (extent_start != 0) {
2801 					found_extent = 1;
2802 					if (root->ref_cows)
2803 						inode_sub_bytes(inode, num_dec);
2804 				}
2805 			}
2806 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2807 			/*
2808 			 * we can't truncate inline items that have had
2809 			 * special encodings
2810 			 */
2811 			if (!del_item &&
2812 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
2813 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
2814 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2815 				u32 size = new_size - found_key.offset;
2816 
2817 				if (root->ref_cows) {
2818 					inode_sub_bytes(inode, item_end + 1 -
2819 							new_size);
2820 				}
2821 				size =
2822 				    btrfs_file_extent_calc_inline_size(size);
2823 				ret = btrfs_truncate_item(trans, root, path,
2824 							  size, 1);
2825 				BUG_ON(ret);
2826 			} else if (root->ref_cows) {
2827 				inode_sub_bytes(inode, item_end + 1 -
2828 						found_key.offset);
2829 			}
2830 		}
2831 delete:
2832 		if (del_item) {
2833 			if (!pending_del_nr) {
2834 				/* no pending yet, add ourselves */
2835 				pending_del_slot = path->slots[0];
2836 				pending_del_nr = 1;
2837 			} else if (pending_del_nr &&
2838 				   path->slots[0] + 1 == pending_del_slot) {
2839 				/* hop on the pending chunk */
2840 				pending_del_nr++;
2841 				pending_del_slot = path->slots[0];
2842 			} else {
2843 				BUG();
2844 			}
2845 		} else {
2846 			break;
2847 		}
2848 		if (found_extent && root->ref_cows) {
2849 			btrfs_set_path_blocking(path);
2850 			ret = btrfs_free_extent(trans, root, extent_start,
2851 						extent_num_bytes, 0,
2852 						btrfs_header_owner(leaf),
2853 						inode->i_ino, extent_offset);
2854 			BUG_ON(ret);
2855 		}
2856 next:
2857 		if (path->slots[0] == 0) {
2858 			if (pending_del_nr)
2859 				goto del_pending;
2860 			btrfs_release_path(root, path);
2861 			if (found_type == BTRFS_INODE_ITEM_KEY)
2862 				break;
2863 			goto search_again;
2864 		}
2865 
2866 		path->slots[0]--;
2867 		if (pending_del_nr &&
2868 		    path->slots[0] + 1 != pending_del_slot) {
2869 			struct btrfs_key debug;
2870 del_pending:
2871 			btrfs_item_key_to_cpu(path->nodes[0], &debug,
2872 					      pending_del_slot);
2873 			ret = btrfs_del_items(trans, root, path,
2874 					      pending_del_slot,
2875 					      pending_del_nr);
2876 			BUG_ON(ret);
2877 			pending_del_nr = 0;
2878 			btrfs_release_path(root, path);
2879 			if (found_type == BTRFS_INODE_ITEM_KEY)
2880 				break;
2881 			goto search_again;
2882 		}
2883 	}
2884 	ret = 0;
2885 error:
2886 	if (pending_del_nr) {
2887 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
2888 				      pending_del_nr);
2889 	}
2890 	btrfs_free_path(path);
2891 	return ret;
2892 }
2893 
2894 /*
2895  * taken from block_truncate_page, but does cow as it zeros out
2896  * any bytes left in the last page in the file.
2897  */
2898 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2899 {
2900 	struct inode *inode = mapping->host;
2901 	struct btrfs_root *root = BTRFS_I(inode)->root;
2902 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2903 	struct btrfs_ordered_extent *ordered;
2904 	char *kaddr;
2905 	u32 blocksize = root->sectorsize;
2906 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2907 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2908 	struct page *page;
2909 	int ret = 0;
2910 	u64 page_start;
2911 	u64 page_end;
2912 
2913 	if ((offset & (blocksize - 1)) == 0)
2914 		goto out;
2915 
2916 	ret = -ENOMEM;
2917 again:
2918 	page = grab_cache_page(mapping, index);
2919 	if (!page)
2920 		goto out;
2921 
2922 	page_start = page_offset(page);
2923 	page_end = page_start + PAGE_CACHE_SIZE - 1;
2924 
2925 	if (!PageUptodate(page)) {
2926 		ret = btrfs_readpage(NULL, page);
2927 		lock_page(page);
2928 		if (page->mapping != mapping) {
2929 			unlock_page(page);
2930 			page_cache_release(page);
2931 			goto again;
2932 		}
2933 		if (!PageUptodate(page)) {
2934 			ret = -EIO;
2935 			goto out_unlock;
2936 		}
2937 	}
2938 	wait_on_page_writeback(page);
2939 
2940 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2941 	set_page_extent_mapped(page);
2942 
2943 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
2944 	if (ordered) {
2945 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2946 		unlock_page(page);
2947 		page_cache_release(page);
2948 		btrfs_start_ordered_extent(inode, ordered, 1);
2949 		btrfs_put_ordered_extent(ordered);
2950 		goto again;
2951 	}
2952 
2953 	btrfs_set_extent_delalloc(inode, page_start, page_end);
2954 	ret = 0;
2955 	if (offset != PAGE_CACHE_SIZE) {
2956 		kaddr = kmap(page);
2957 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2958 		flush_dcache_page(page);
2959 		kunmap(page);
2960 	}
2961 	ClearPageChecked(page);
2962 	set_page_dirty(page);
2963 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2964 
2965 out_unlock:
2966 	unlock_page(page);
2967 	page_cache_release(page);
2968 out:
2969 	return ret;
2970 }
2971 
2972 int btrfs_cont_expand(struct inode *inode, loff_t size)
2973 {
2974 	struct btrfs_trans_handle *trans;
2975 	struct btrfs_root *root = BTRFS_I(inode)->root;
2976 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2977 	struct extent_map *em;
2978 	u64 mask = root->sectorsize - 1;
2979 	u64 hole_start = (inode->i_size + mask) & ~mask;
2980 	u64 block_end = (size + mask) & ~mask;
2981 	u64 last_byte;
2982 	u64 cur_offset;
2983 	u64 hole_size;
2984 	int err;
2985 
2986 	if (size <= hole_start)
2987 		return 0;
2988 
2989 	err = btrfs_check_metadata_free_space(root);
2990 	if (err)
2991 		return err;
2992 
2993 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
2994 
2995 	while (1) {
2996 		struct btrfs_ordered_extent *ordered;
2997 		btrfs_wait_ordered_range(inode, hole_start,
2998 					 block_end - hole_start);
2999 		lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3000 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3001 		if (!ordered)
3002 			break;
3003 		unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3004 		btrfs_put_ordered_extent(ordered);
3005 	}
3006 
3007 	trans = btrfs_start_transaction(root, 1);
3008 	btrfs_set_trans_block_group(trans, inode);
3009 
3010 	cur_offset = hole_start;
3011 	while (1) {
3012 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3013 				block_end - cur_offset, 0);
3014 		BUG_ON(IS_ERR(em) || !em);
3015 		last_byte = min(extent_map_end(em), block_end);
3016 		last_byte = (last_byte + mask) & ~mask;
3017 		if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
3018 			u64 hint_byte = 0;
3019 			hole_size = last_byte - cur_offset;
3020 			err = btrfs_drop_extents(trans, root, inode,
3021 						 cur_offset,
3022 						 cur_offset + hole_size,
3023 						 block_end,
3024 						 cur_offset, &hint_byte, 1);
3025 			if (err)
3026 				break;
3027 			err = btrfs_insert_file_extent(trans, root,
3028 					inode->i_ino, cur_offset, 0,
3029 					0, hole_size, 0, hole_size,
3030 					0, 0, 0);
3031 			btrfs_drop_extent_cache(inode, hole_start,
3032 					last_byte - 1, 0);
3033 		}
3034 		free_extent_map(em);
3035 		cur_offset = last_byte;
3036 		if (err || cur_offset >= block_end)
3037 			break;
3038 	}
3039 
3040 	btrfs_end_transaction(trans, root);
3041 	unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3042 	return err;
3043 }
3044 
3045 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3046 {
3047 	struct inode *inode = dentry->d_inode;
3048 	int err;
3049 
3050 	err = inode_change_ok(inode, attr);
3051 	if (err)
3052 		return err;
3053 
3054 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3055 		if (attr->ia_size > inode->i_size) {
3056 			err = btrfs_cont_expand(inode, attr->ia_size);
3057 			if (err)
3058 				return err;
3059 		} else if (inode->i_size > 0 &&
3060 			   attr->ia_size == 0) {
3061 
3062 			/* we're truncating a file that used to have good
3063 			 * data down to zero.  Make sure it gets into
3064 			 * the ordered flush list so that any new writes
3065 			 * get down to disk quickly.
3066 			 */
3067 			BTRFS_I(inode)->ordered_data_close = 1;
3068 		}
3069 	}
3070 
3071 	err = inode_setattr(inode, attr);
3072 
3073 	if (!err && ((attr->ia_valid & ATTR_MODE)))
3074 		err = btrfs_acl_chmod(inode);
3075 	return err;
3076 }
3077 
3078 void btrfs_delete_inode(struct inode *inode)
3079 {
3080 	struct btrfs_trans_handle *trans;
3081 	struct btrfs_root *root = BTRFS_I(inode)->root;
3082 	unsigned long nr;
3083 	int ret;
3084 
3085 	truncate_inode_pages(&inode->i_data, 0);
3086 	if (is_bad_inode(inode)) {
3087 		btrfs_orphan_del(NULL, inode);
3088 		goto no_delete;
3089 	}
3090 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3091 
3092 	if (inode->i_nlink > 0) {
3093 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3094 		goto no_delete;
3095 	}
3096 
3097 	btrfs_i_size_write(inode, 0);
3098 	trans = btrfs_join_transaction(root, 1);
3099 
3100 	btrfs_set_trans_block_group(trans, inode);
3101 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
3102 	if (ret) {
3103 		btrfs_orphan_del(NULL, inode);
3104 		goto no_delete_lock;
3105 	}
3106 
3107 	btrfs_orphan_del(trans, inode);
3108 
3109 	nr = trans->blocks_used;
3110 	clear_inode(inode);
3111 
3112 	btrfs_end_transaction(trans, root);
3113 	btrfs_btree_balance_dirty(root, nr);
3114 	return;
3115 
3116 no_delete_lock:
3117 	nr = trans->blocks_used;
3118 	btrfs_end_transaction(trans, root);
3119 	btrfs_btree_balance_dirty(root, nr);
3120 no_delete:
3121 	clear_inode(inode);
3122 }
3123 
3124 /*
3125  * this returns the key found in the dir entry in the location pointer.
3126  * If no dir entries were found, location->objectid is 0.
3127  */
3128 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3129 			       struct btrfs_key *location)
3130 {
3131 	const char *name = dentry->d_name.name;
3132 	int namelen = dentry->d_name.len;
3133 	struct btrfs_dir_item *di;
3134 	struct btrfs_path *path;
3135 	struct btrfs_root *root = BTRFS_I(dir)->root;
3136 	int ret = 0;
3137 
3138 	path = btrfs_alloc_path();
3139 	BUG_ON(!path);
3140 
3141 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3142 				    namelen, 0);
3143 	if (IS_ERR(di))
3144 		ret = PTR_ERR(di);
3145 
3146 	if (!di || IS_ERR(di))
3147 		goto out_err;
3148 
3149 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3150 out:
3151 	btrfs_free_path(path);
3152 	return ret;
3153 out_err:
3154 	location->objectid = 0;
3155 	goto out;
3156 }
3157 
3158 /*
3159  * when we hit a tree root in a directory, the btrfs part of the inode
3160  * needs to be changed to reflect the root directory of the tree root.  This
3161  * is kind of like crossing a mount point.
3162  */
3163 static int fixup_tree_root_location(struct btrfs_root *root,
3164 				    struct inode *dir,
3165 				    struct dentry *dentry,
3166 				    struct btrfs_key *location,
3167 				    struct btrfs_root **sub_root)
3168 {
3169 	struct btrfs_path *path;
3170 	struct btrfs_root *new_root;
3171 	struct btrfs_root_ref *ref;
3172 	struct extent_buffer *leaf;
3173 	int ret;
3174 	int err = 0;
3175 
3176 	path = btrfs_alloc_path();
3177 	if (!path) {
3178 		err = -ENOMEM;
3179 		goto out;
3180 	}
3181 
3182 	err = -ENOENT;
3183 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3184 				  BTRFS_I(dir)->root->root_key.objectid,
3185 				  location->objectid);
3186 	if (ret) {
3187 		if (ret < 0)
3188 			err = ret;
3189 		goto out;
3190 	}
3191 
3192 	leaf = path->nodes[0];
3193 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3194 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3195 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3196 		goto out;
3197 
3198 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3199 				   (unsigned long)(ref + 1),
3200 				   dentry->d_name.len);
3201 	if (ret)
3202 		goto out;
3203 
3204 	btrfs_release_path(root->fs_info->tree_root, path);
3205 
3206 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3207 	if (IS_ERR(new_root)) {
3208 		err = PTR_ERR(new_root);
3209 		goto out;
3210 	}
3211 
3212 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3213 		err = -ENOENT;
3214 		goto out;
3215 	}
3216 
3217 	*sub_root = new_root;
3218 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3219 	location->type = BTRFS_INODE_ITEM_KEY;
3220 	location->offset = 0;
3221 	err = 0;
3222 out:
3223 	btrfs_free_path(path);
3224 	return err;
3225 }
3226 
3227 static void inode_tree_add(struct inode *inode)
3228 {
3229 	struct btrfs_root *root = BTRFS_I(inode)->root;
3230 	struct btrfs_inode *entry;
3231 	struct rb_node **p;
3232 	struct rb_node *parent;
3233 again:
3234 	p = &root->inode_tree.rb_node;
3235 	parent = NULL;
3236 
3237 	if (hlist_unhashed(&inode->i_hash))
3238 		return;
3239 
3240 	spin_lock(&root->inode_lock);
3241 	while (*p) {
3242 		parent = *p;
3243 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3244 
3245 		if (inode->i_ino < entry->vfs_inode.i_ino)
3246 			p = &parent->rb_left;
3247 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3248 			p = &parent->rb_right;
3249 		else {
3250 			WARN_ON(!(entry->vfs_inode.i_state &
3251 				  (I_WILL_FREE | I_FREEING | I_CLEAR)));
3252 			rb_erase(parent, &root->inode_tree);
3253 			RB_CLEAR_NODE(parent);
3254 			spin_unlock(&root->inode_lock);
3255 			goto again;
3256 		}
3257 	}
3258 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3259 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3260 	spin_unlock(&root->inode_lock);
3261 }
3262 
3263 static void inode_tree_del(struct inode *inode)
3264 {
3265 	struct btrfs_root *root = BTRFS_I(inode)->root;
3266 	int empty = 0;
3267 
3268 	spin_lock(&root->inode_lock);
3269 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3270 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3271 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3272 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3273 	}
3274 	spin_unlock(&root->inode_lock);
3275 
3276 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
3277 		synchronize_srcu(&root->fs_info->subvol_srcu);
3278 		spin_lock(&root->inode_lock);
3279 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3280 		spin_unlock(&root->inode_lock);
3281 		if (empty)
3282 			btrfs_add_dead_root(root);
3283 	}
3284 }
3285 
3286 int btrfs_invalidate_inodes(struct btrfs_root *root)
3287 {
3288 	struct rb_node *node;
3289 	struct rb_node *prev;
3290 	struct btrfs_inode *entry;
3291 	struct inode *inode;
3292 	u64 objectid = 0;
3293 
3294 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3295 
3296 	spin_lock(&root->inode_lock);
3297 again:
3298 	node = root->inode_tree.rb_node;
3299 	prev = NULL;
3300 	while (node) {
3301 		prev = node;
3302 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3303 
3304 		if (objectid < entry->vfs_inode.i_ino)
3305 			node = node->rb_left;
3306 		else if (objectid > entry->vfs_inode.i_ino)
3307 			node = node->rb_right;
3308 		else
3309 			break;
3310 	}
3311 	if (!node) {
3312 		while (prev) {
3313 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3314 			if (objectid <= entry->vfs_inode.i_ino) {
3315 				node = prev;
3316 				break;
3317 			}
3318 			prev = rb_next(prev);
3319 		}
3320 	}
3321 	while (node) {
3322 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3323 		objectid = entry->vfs_inode.i_ino + 1;
3324 		inode = igrab(&entry->vfs_inode);
3325 		if (inode) {
3326 			spin_unlock(&root->inode_lock);
3327 			if (atomic_read(&inode->i_count) > 1)
3328 				d_prune_aliases(inode);
3329 			/*
3330 			 * btrfs_drop_inode will remove it from
3331 			 * the inode cache when its usage count
3332 			 * hits zero.
3333 			 */
3334 			iput(inode);
3335 			cond_resched();
3336 			spin_lock(&root->inode_lock);
3337 			goto again;
3338 		}
3339 
3340 		if (cond_resched_lock(&root->inode_lock))
3341 			goto again;
3342 
3343 		node = rb_next(node);
3344 	}
3345 	spin_unlock(&root->inode_lock);
3346 	return 0;
3347 }
3348 
3349 static noinline void init_btrfs_i(struct inode *inode)
3350 {
3351 	struct btrfs_inode *bi = BTRFS_I(inode);
3352 
3353 	bi->generation = 0;
3354 	bi->sequence = 0;
3355 	bi->last_trans = 0;
3356 	bi->logged_trans = 0;
3357 	bi->delalloc_bytes = 0;
3358 	bi->reserved_bytes = 0;
3359 	bi->disk_i_size = 0;
3360 	bi->flags = 0;
3361 	bi->index_cnt = (u64)-1;
3362 	bi->last_unlink_trans = 0;
3363 	bi->ordered_data_close = 0;
3364 	extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3365 	extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3366 			     inode->i_mapping, GFP_NOFS);
3367 	extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3368 			     inode->i_mapping, GFP_NOFS);
3369 	INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3370 	INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3371 	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3372 	btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3373 	mutex_init(&BTRFS_I(inode)->extent_mutex);
3374 	mutex_init(&BTRFS_I(inode)->log_mutex);
3375 }
3376 
3377 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3378 {
3379 	struct btrfs_iget_args *args = p;
3380 	inode->i_ino = args->ino;
3381 	init_btrfs_i(inode);
3382 	BTRFS_I(inode)->root = args->root;
3383 	btrfs_set_inode_space_info(args->root, inode);
3384 	return 0;
3385 }
3386 
3387 static int btrfs_find_actor(struct inode *inode, void *opaque)
3388 {
3389 	struct btrfs_iget_args *args = opaque;
3390 	return args->ino == inode->i_ino &&
3391 		args->root == BTRFS_I(inode)->root;
3392 }
3393 
3394 static struct inode *btrfs_iget_locked(struct super_block *s,
3395 				       u64 objectid,
3396 				       struct btrfs_root *root)
3397 {
3398 	struct inode *inode;
3399 	struct btrfs_iget_args args;
3400 	args.ino = objectid;
3401 	args.root = root;
3402 
3403 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3404 			     btrfs_init_locked_inode,
3405 			     (void *)&args);
3406 	return inode;
3407 }
3408 
3409 /* Get an inode object given its location and corresponding root.
3410  * Returns in *is_new if the inode was read from disk
3411  */
3412 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3413 			 struct btrfs_root *root)
3414 {
3415 	struct inode *inode;
3416 
3417 	inode = btrfs_iget_locked(s, location->objectid, root);
3418 	if (!inode)
3419 		return ERR_PTR(-ENOMEM);
3420 
3421 	if (inode->i_state & I_NEW) {
3422 		BTRFS_I(inode)->root = root;
3423 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3424 		btrfs_read_locked_inode(inode);
3425 
3426 		inode_tree_add(inode);
3427 		unlock_new_inode(inode);
3428 	}
3429 
3430 	return inode;
3431 }
3432 
3433 static struct inode *new_simple_dir(struct super_block *s,
3434 				    struct btrfs_key *key,
3435 				    struct btrfs_root *root)
3436 {
3437 	struct inode *inode = new_inode(s);
3438 
3439 	if (!inode)
3440 		return ERR_PTR(-ENOMEM);
3441 
3442 	init_btrfs_i(inode);
3443 
3444 	BTRFS_I(inode)->root = root;
3445 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3446 	BTRFS_I(inode)->dummy_inode = 1;
3447 
3448 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3449 	inode->i_op = &simple_dir_inode_operations;
3450 	inode->i_fop = &simple_dir_operations;
3451 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3452 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3453 
3454 	return inode;
3455 }
3456 
3457 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3458 {
3459 	struct inode *inode;
3460 	struct btrfs_root *root = BTRFS_I(dir)->root;
3461 	struct btrfs_root *sub_root = root;
3462 	struct btrfs_key location;
3463 	int index;
3464 	int ret;
3465 
3466 	dentry->d_op = &btrfs_dentry_operations;
3467 
3468 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3469 		return ERR_PTR(-ENAMETOOLONG);
3470 
3471 	ret = btrfs_inode_by_name(dir, dentry, &location);
3472 
3473 	if (ret < 0)
3474 		return ERR_PTR(ret);
3475 
3476 	if (location.objectid == 0)
3477 		return NULL;
3478 
3479 	if (location.type == BTRFS_INODE_ITEM_KEY) {
3480 		inode = btrfs_iget(dir->i_sb, &location, root);
3481 		return inode;
3482 	}
3483 
3484 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3485 
3486 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
3487 	ret = fixup_tree_root_location(root, dir, dentry,
3488 				       &location, &sub_root);
3489 	if (ret < 0) {
3490 		if (ret != -ENOENT)
3491 			inode = ERR_PTR(ret);
3492 		else
3493 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
3494 	} else {
3495 		inode = btrfs_iget(dir->i_sb, &location, sub_root);
3496 	}
3497 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3498 
3499 	return inode;
3500 }
3501 
3502 static int btrfs_dentry_delete(struct dentry *dentry)
3503 {
3504 	struct btrfs_root *root;
3505 
3506 	if (!dentry->d_inode)
3507 		return 0;
3508 
3509 	root = BTRFS_I(dentry->d_inode)->root;
3510 	if (btrfs_root_refs(&root->root_item) == 0)
3511 		return 1;
3512 	return 0;
3513 }
3514 
3515 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3516 				   struct nameidata *nd)
3517 {
3518 	struct inode *inode;
3519 
3520 	inode = btrfs_lookup_dentry(dir, dentry);
3521 	if (IS_ERR(inode))
3522 		return ERR_CAST(inode);
3523 
3524 	return d_splice_alias(inode, dentry);
3525 }
3526 
3527 static unsigned char btrfs_filetype_table[] = {
3528 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3529 };
3530 
3531 static int btrfs_real_readdir(struct file *filp, void *dirent,
3532 			      filldir_t filldir)
3533 {
3534 	struct inode *inode = filp->f_dentry->d_inode;
3535 	struct btrfs_root *root = BTRFS_I(inode)->root;
3536 	struct btrfs_item *item;
3537 	struct btrfs_dir_item *di;
3538 	struct btrfs_key key;
3539 	struct btrfs_key found_key;
3540 	struct btrfs_path *path;
3541 	int ret;
3542 	u32 nritems;
3543 	struct extent_buffer *leaf;
3544 	int slot;
3545 	int advance;
3546 	unsigned char d_type;
3547 	int over = 0;
3548 	u32 di_cur;
3549 	u32 di_total;
3550 	u32 di_len;
3551 	int key_type = BTRFS_DIR_INDEX_KEY;
3552 	char tmp_name[32];
3553 	char *name_ptr;
3554 	int name_len;
3555 
3556 	/* FIXME, use a real flag for deciding about the key type */
3557 	if (root->fs_info->tree_root == root)
3558 		key_type = BTRFS_DIR_ITEM_KEY;
3559 
3560 	/* special case for "." */
3561 	if (filp->f_pos == 0) {
3562 		over = filldir(dirent, ".", 1,
3563 			       1, inode->i_ino,
3564 			       DT_DIR);
3565 		if (over)
3566 			return 0;
3567 		filp->f_pos = 1;
3568 	}
3569 	/* special case for .., just use the back ref */
3570 	if (filp->f_pos == 1) {
3571 		u64 pino = parent_ino(filp->f_path.dentry);
3572 		over = filldir(dirent, "..", 2,
3573 			       2, pino, DT_DIR);
3574 		if (over)
3575 			return 0;
3576 		filp->f_pos = 2;
3577 	}
3578 	path = btrfs_alloc_path();
3579 	path->reada = 2;
3580 
3581 	btrfs_set_key_type(&key, key_type);
3582 	key.offset = filp->f_pos;
3583 	key.objectid = inode->i_ino;
3584 
3585 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3586 	if (ret < 0)
3587 		goto err;
3588 	advance = 0;
3589 
3590 	while (1) {
3591 		leaf = path->nodes[0];
3592 		nritems = btrfs_header_nritems(leaf);
3593 		slot = path->slots[0];
3594 		if (advance || slot >= nritems) {
3595 			if (slot >= nritems - 1) {
3596 				ret = btrfs_next_leaf(root, path);
3597 				if (ret)
3598 					break;
3599 				leaf = path->nodes[0];
3600 				nritems = btrfs_header_nritems(leaf);
3601 				slot = path->slots[0];
3602 			} else {
3603 				slot++;
3604 				path->slots[0]++;
3605 			}
3606 		}
3607 
3608 		advance = 1;
3609 		item = btrfs_item_nr(leaf, slot);
3610 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3611 
3612 		if (found_key.objectid != key.objectid)
3613 			break;
3614 		if (btrfs_key_type(&found_key) != key_type)
3615 			break;
3616 		if (found_key.offset < filp->f_pos)
3617 			continue;
3618 
3619 		filp->f_pos = found_key.offset;
3620 
3621 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3622 		di_cur = 0;
3623 		di_total = btrfs_item_size(leaf, item);
3624 
3625 		while (di_cur < di_total) {
3626 			struct btrfs_key location;
3627 
3628 			name_len = btrfs_dir_name_len(leaf, di);
3629 			if (name_len <= sizeof(tmp_name)) {
3630 				name_ptr = tmp_name;
3631 			} else {
3632 				name_ptr = kmalloc(name_len, GFP_NOFS);
3633 				if (!name_ptr) {
3634 					ret = -ENOMEM;
3635 					goto err;
3636 				}
3637 			}
3638 			read_extent_buffer(leaf, name_ptr,
3639 					   (unsigned long)(di + 1), name_len);
3640 
3641 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3642 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
3643 
3644 			/* is this a reference to our own snapshot? If so
3645 			 * skip it
3646 			 */
3647 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
3648 			    location.objectid == root->root_key.objectid) {
3649 				over = 0;
3650 				goto skip;
3651 			}
3652 			over = filldir(dirent, name_ptr, name_len,
3653 				       found_key.offset, location.objectid,
3654 				       d_type);
3655 
3656 skip:
3657 			if (name_ptr != tmp_name)
3658 				kfree(name_ptr);
3659 
3660 			if (over)
3661 				goto nopos;
3662 			di_len = btrfs_dir_name_len(leaf, di) +
3663 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
3664 			di_cur += di_len;
3665 			di = (struct btrfs_dir_item *)((char *)di + di_len);
3666 		}
3667 	}
3668 
3669 	/* Reached end of directory/root. Bump pos past the last item. */
3670 	if (key_type == BTRFS_DIR_INDEX_KEY)
3671 		filp->f_pos = INT_LIMIT(off_t);
3672 	else
3673 		filp->f_pos++;
3674 nopos:
3675 	ret = 0;
3676 err:
3677 	btrfs_free_path(path);
3678 	return ret;
3679 }
3680 
3681 int btrfs_write_inode(struct inode *inode, int wait)
3682 {
3683 	struct btrfs_root *root = BTRFS_I(inode)->root;
3684 	struct btrfs_trans_handle *trans;
3685 	int ret = 0;
3686 
3687 	if (root->fs_info->btree_inode == inode)
3688 		return 0;
3689 
3690 	if (wait) {
3691 		trans = btrfs_join_transaction(root, 1);
3692 		btrfs_set_trans_block_group(trans, inode);
3693 		ret = btrfs_commit_transaction(trans, root);
3694 	}
3695 	return ret;
3696 }
3697 
3698 /*
3699  * This is somewhat expensive, updating the tree every time the
3700  * inode changes.  But, it is most likely to find the inode in cache.
3701  * FIXME, needs more benchmarking...there are no reasons other than performance
3702  * to keep or drop this code.
3703  */
3704 void btrfs_dirty_inode(struct inode *inode)
3705 {
3706 	struct btrfs_root *root = BTRFS_I(inode)->root;
3707 	struct btrfs_trans_handle *trans;
3708 
3709 	trans = btrfs_join_transaction(root, 1);
3710 	btrfs_set_trans_block_group(trans, inode);
3711 	btrfs_update_inode(trans, root, inode);
3712 	btrfs_end_transaction(trans, root);
3713 }
3714 
3715 /*
3716  * find the highest existing sequence number in a directory
3717  * and then set the in-memory index_cnt variable to reflect
3718  * free sequence numbers
3719  */
3720 static int btrfs_set_inode_index_count(struct inode *inode)
3721 {
3722 	struct btrfs_root *root = BTRFS_I(inode)->root;
3723 	struct btrfs_key key, found_key;
3724 	struct btrfs_path *path;
3725 	struct extent_buffer *leaf;
3726 	int ret;
3727 
3728 	key.objectid = inode->i_ino;
3729 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3730 	key.offset = (u64)-1;
3731 
3732 	path = btrfs_alloc_path();
3733 	if (!path)
3734 		return -ENOMEM;
3735 
3736 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3737 	if (ret < 0)
3738 		goto out;
3739 	/* FIXME: we should be able to handle this */
3740 	if (ret == 0)
3741 		goto out;
3742 	ret = 0;
3743 
3744 	/*
3745 	 * MAGIC NUMBER EXPLANATION:
3746 	 * since we search a directory based on f_pos we have to start at 2
3747 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3748 	 * else has to start at 2
3749 	 */
3750 	if (path->slots[0] == 0) {
3751 		BTRFS_I(inode)->index_cnt = 2;
3752 		goto out;
3753 	}
3754 
3755 	path->slots[0]--;
3756 
3757 	leaf = path->nodes[0];
3758 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3759 
3760 	if (found_key.objectid != inode->i_ino ||
3761 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3762 		BTRFS_I(inode)->index_cnt = 2;
3763 		goto out;
3764 	}
3765 
3766 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3767 out:
3768 	btrfs_free_path(path);
3769 	return ret;
3770 }
3771 
3772 /*
3773  * helper to find a free sequence number in a given directory.  This current
3774  * code is very simple, later versions will do smarter things in the btree
3775  */
3776 int btrfs_set_inode_index(struct inode *dir, u64 *index)
3777 {
3778 	int ret = 0;
3779 
3780 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3781 		ret = btrfs_set_inode_index_count(dir);
3782 		if (ret)
3783 			return ret;
3784 	}
3785 
3786 	*index = BTRFS_I(dir)->index_cnt;
3787 	BTRFS_I(dir)->index_cnt++;
3788 
3789 	return ret;
3790 }
3791 
3792 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3793 				     struct btrfs_root *root,
3794 				     struct inode *dir,
3795 				     const char *name, int name_len,
3796 				     u64 ref_objectid, u64 objectid,
3797 				     u64 alloc_hint, int mode, u64 *index)
3798 {
3799 	struct inode *inode;
3800 	struct btrfs_inode_item *inode_item;
3801 	struct btrfs_key *location;
3802 	struct btrfs_path *path;
3803 	struct btrfs_inode_ref *ref;
3804 	struct btrfs_key key[2];
3805 	u32 sizes[2];
3806 	unsigned long ptr;
3807 	int ret;
3808 	int owner;
3809 
3810 	path = btrfs_alloc_path();
3811 	BUG_ON(!path);
3812 
3813 	inode = new_inode(root->fs_info->sb);
3814 	if (!inode)
3815 		return ERR_PTR(-ENOMEM);
3816 
3817 	if (dir) {
3818 		ret = btrfs_set_inode_index(dir, index);
3819 		if (ret) {
3820 			iput(inode);
3821 			return ERR_PTR(ret);
3822 		}
3823 	}
3824 	/*
3825 	 * index_cnt is ignored for everything but a dir,
3826 	 * btrfs_get_inode_index_count has an explanation for the magic
3827 	 * number
3828 	 */
3829 	init_btrfs_i(inode);
3830 	BTRFS_I(inode)->index_cnt = 2;
3831 	BTRFS_I(inode)->root = root;
3832 	BTRFS_I(inode)->generation = trans->transid;
3833 	btrfs_set_inode_space_info(root, inode);
3834 
3835 	if (mode & S_IFDIR)
3836 		owner = 0;
3837 	else
3838 		owner = 1;
3839 	BTRFS_I(inode)->block_group =
3840 			btrfs_find_block_group(root, 0, alloc_hint, owner);
3841 
3842 	key[0].objectid = objectid;
3843 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3844 	key[0].offset = 0;
3845 
3846 	key[1].objectid = objectid;
3847 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3848 	key[1].offset = ref_objectid;
3849 
3850 	sizes[0] = sizeof(struct btrfs_inode_item);
3851 	sizes[1] = name_len + sizeof(*ref);
3852 
3853 	path->leave_spinning = 1;
3854 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3855 	if (ret != 0)
3856 		goto fail;
3857 
3858 	inode->i_uid = current_fsuid();
3859 
3860 	if (dir && (dir->i_mode & S_ISGID)) {
3861 		inode->i_gid = dir->i_gid;
3862 		if (S_ISDIR(mode))
3863 			mode |= S_ISGID;
3864 	} else
3865 		inode->i_gid = current_fsgid();
3866 
3867 	inode->i_mode = mode;
3868 	inode->i_ino = objectid;
3869 	inode_set_bytes(inode, 0);
3870 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3871 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3872 				  struct btrfs_inode_item);
3873 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
3874 
3875 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3876 			     struct btrfs_inode_ref);
3877 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3878 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3879 	ptr = (unsigned long)(ref + 1);
3880 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
3881 
3882 	btrfs_mark_buffer_dirty(path->nodes[0]);
3883 	btrfs_free_path(path);
3884 
3885 	location = &BTRFS_I(inode)->location;
3886 	location->objectid = objectid;
3887 	location->offset = 0;
3888 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3889 
3890 	btrfs_inherit_iflags(inode, dir);
3891 
3892 	if ((mode & S_IFREG)) {
3893 		if (btrfs_test_opt(root, NODATASUM))
3894 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3895 		if (btrfs_test_opt(root, NODATACOW))
3896 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
3897 	}
3898 
3899 	insert_inode_hash(inode);
3900 	inode_tree_add(inode);
3901 	return inode;
3902 fail:
3903 	if (dir)
3904 		BTRFS_I(dir)->index_cnt--;
3905 	btrfs_free_path(path);
3906 	iput(inode);
3907 	return ERR_PTR(ret);
3908 }
3909 
3910 static inline u8 btrfs_inode_type(struct inode *inode)
3911 {
3912 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3913 }
3914 
3915 /*
3916  * utility function to add 'inode' into 'parent_inode' with
3917  * a give name and a given sequence number.
3918  * if 'add_backref' is true, also insert a backref from the
3919  * inode to the parent directory.
3920  */
3921 int btrfs_add_link(struct btrfs_trans_handle *trans,
3922 		   struct inode *parent_inode, struct inode *inode,
3923 		   const char *name, int name_len, int add_backref, u64 index)
3924 {
3925 	int ret = 0;
3926 	struct btrfs_key key;
3927 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3928 
3929 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
3930 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
3931 	} else {
3932 		key.objectid = inode->i_ino;
3933 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3934 		key.offset = 0;
3935 	}
3936 
3937 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
3938 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
3939 					 key.objectid, root->root_key.objectid,
3940 					 parent_inode->i_ino,
3941 					 index, name, name_len);
3942 	} else if (add_backref) {
3943 		ret = btrfs_insert_inode_ref(trans, root,
3944 					     name, name_len, inode->i_ino,
3945 					     parent_inode->i_ino, index);
3946 	}
3947 
3948 	if (ret == 0) {
3949 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
3950 					    parent_inode->i_ino, &key,
3951 					    btrfs_inode_type(inode), index);
3952 		BUG_ON(ret);
3953 
3954 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
3955 				   name_len * 2);
3956 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3957 		ret = btrfs_update_inode(trans, root, parent_inode);
3958 	}
3959 	return ret;
3960 }
3961 
3962 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3963 			    struct dentry *dentry, struct inode *inode,
3964 			    int backref, u64 index)
3965 {
3966 	int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3967 				 inode, dentry->d_name.name,
3968 				 dentry->d_name.len, backref, index);
3969 	if (!err) {
3970 		d_instantiate(dentry, inode);
3971 		return 0;
3972 	}
3973 	if (err > 0)
3974 		err = -EEXIST;
3975 	return err;
3976 }
3977 
3978 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3979 			int mode, dev_t rdev)
3980 {
3981 	struct btrfs_trans_handle *trans;
3982 	struct btrfs_root *root = BTRFS_I(dir)->root;
3983 	struct inode *inode = NULL;
3984 	int err;
3985 	int drop_inode = 0;
3986 	u64 objectid;
3987 	unsigned long nr = 0;
3988 	u64 index = 0;
3989 
3990 	if (!new_valid_dev(rdev))
3991 		return -EINVAL;
3992 
3993 	err = btrfs_check_metadata_free_space(root);
3994 	if (err)
3995 		goto fail;
3996 
3997 	trans = btrfs_start_transaction(root, 1);
3998 	btrfs_set_trans_block_group(trans, dir);
3999 
4000 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4001 	if (err) {
4002 		err = -ENOSPC;
4003 		goto out_unlock;
4004 	}
4005 
4006 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4007 				dentry->d_name.len,
4008 				dentry->d_parent->d_inode->i_ino, objectid,
4009 				BTRFS_I(dir)->block_group, mode, &index);
4010 	err = PTR_ERR(inode);
4011 	if (IS_ERR(inode))
4012 		goto out_unlock;
4013 
4014 	err = btrfs_init_inode_security(inode, dir);
4015 	if (err) {
4016 		drop_inode = 1;
4017 		goto out_unlock;
4018 	}
4019 
4020 	btrfs_set_trans_block_group(trans, inode);
4021 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4022 	if (err)
4023 		drop_inode = 1;
4024 	else {
4025 		inode->i_op = &btrfs_special_inode_operations;
4026 		init_special_inode(inode, inode->i_mode, rdev);
4027 		btrfs_update_inode(trans, root, inode);
4028 	}
4029 	btrfs_update_inode_block_group(trans, inode);
4030 	btrfs_update_inode_block_group(trans, dir);
4031 out_unlock:
4032 	nr = trans->blocks_used;
4033 	btrfs_end_transaction_throttle(trans, root);
4034 fail:
4035 	if (drop_inode) {
4036 		inode_dec_link_count(inode);
4037 		iput(inode);
4038 	}
4039 	btrfs_btree_balance_dirty(root, nr);
4040 	return err;
4041 }
4042 
4043 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4044 			int mode, struct nameidata *nd)
4045 {
4046 	struct btrfs_trans_handle *trans;
4047 	struct btrfs_root *root = BTRFS_I(dir)->root;
4048 	struct inode *inode = NULL;
4049 	int err;
4050 	int drop_inode = 0;
4051 	unsigned long nr = 0;
4052 	u64 objectid;
4053 	u64 index = 0;
4054 
4055 	err = btrfs_check_metadata_free_space(root);
4056 	if (err)
4057 		goto fail;
4058 	trans = btrfs_start_transaction(root, 1);
4059 	btrfs_set_trans_block_group(trans, dir);
4060 
4061 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4062 	if (err) {
4063 		err = -ENOSPC;
4064 		goto out_unlock;
4065 	}
4066 
4067 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4068 				dentry->d_name.len,
4069 				dentry->d_parent->d_inode->i_ino,
4070 				objectid, BTRFS_I(dir)->block_group, mode,
4071 				&index);
4072 	err = PTR_ERR(inode);
4073 	if (IS_ERR(inode))
4074 		goto out_unlock;
4075 
4076 	err = btrfs_init_inode_security(inode, dir);
4077 	if (err) {
4078 		drop_inode = 1;
4079 		goto out_unlock;
4080 	}
4081 
4082 	btrfs_set_trans_block_group(trans, inode);
4083 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4084 	if (err)
4085 		drop_inode = 1;
4086 	else {
4087 		inode->i_mapping->a_ops = &btrfs_aops;
4088 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4089 		inode->i_fop = &btrfs_file_operations;
4090 		inode->i_op = &btrfs_file_inode_operations;
4091 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4092 	}
4093 	btrfs_update_inode_block_group(trans, inode);
4094 	btrfs_update_inode_block_group(trans, dir);
4095 out_unlock:
4096 	nr = trans->blocks_used;
4097 	btrfs_end_transaction_throttle(trans, root);
4098 fail:
4099 	if (drop_inode) {
4100 		inode_dec_link_count(inode);
4101 		iput(inode);
4102 	}
4103 	btrfs_btree_balance_dirty(root, nr);
4104 	return err;
4105 }
4106 
4107 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4108 		      struct dentry *dentry)
4109 {
4110 	struct btrfs_trans_handle *trans;
4111 	struct btrfs_root *root = BTRFS_I(dir)->root;
4112 	struct inode *inode = old_dentry->d_inode;
4113 	u64 index;
4114 	unsigned long nr = 0;
4115 	int err;
4116 	int drop_inode = 0;
4117 
4118 	if (inode->i_nlink == 0)
4119 		return -ENOENT;
4120 
4121 	btrfs_inc_nlink(inode);
4122 	err = btrfs_check_metadata_free_space(root);
4123 	if (err)
4124 		goto fail;
4125 	err = btrfs_set_inode_index(dir, &index);
4126 	if (err)
4127 		goto fail;
4128 
4129 	trans = btrfs_start_transaction(root, 1);
4130 
4131 	btrfs_set_trans_block_group(trans, dir);
4132 	atomic_inc(&inode->i_count);
4133 
4134 	err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4135 
4136 	if (err) {
4137 		drop_inode = 1;
4138 	} else {
4139 		btrfs_update_inode_block_group(trans, dir);
4140 		err = btrfs_update_inode(trans, root, inode);
4141 		BUG_ON(err);
4142 		btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4143 	}
4144 
4145 	nr = trans->blocks_used;
4146 	btrfs_end_transaction_throttle(trans, root);
4147 fail:
4148 	if (drop_inode) {
4149 		inode_dec_link_count(inode);
4150 		iput(inode);
4151 	}
4152 	btrfs_btree_balance_dirty(root, nr);
4153 	return err;
4154 }
4155 
4156 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4157 {
4158 	struct inode *inode = NULL;
4159 	struct btrfs_trans_handle *trans;
4160 	struct btrfs_root *root = BTRFS_I(dir)->root;
4161 	int err = 0;
4162 	int drop_on_err = 0;
4163 	u64 objectid = 0;
4164 	u64 index = 0;
4165 	unsigned long nr = 1;
4166 
4167 	err = btrfs_check_metadata_free_space(root);
4168 	if (err)
4169 		goto out_unlock;
4170 
4171 	trans = btrfs_start_transaction(root, 1);
4172 	btrfs_set_trans_block_group(trans, dir);
4173 
4174 	if (IS_ERR(trans)) {
4175 		err = PTR_ERR(trans);
4176 		goto out_unlock;
4177 	}
4178 
4179 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4180 	if (err) {
4181 		err = -ENOSPC;
4182 		goto out_unlock;
4183 	}
4184 
4185 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4186 				dentry->d_name.len,
4187 				dentry->d_parent->d_inode->i_ino, objectid,
4188 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4189 				&index);
4190 	if (IS_ERR(inode)) {
4191 		err = PTR_ERR(inode);
4192 		goto out_fail;
4193 	}
4194 
4195 	drop_on_err = 1;
4196 
4197 	err = btrfs_init_inode_security(inode, dir);
4198 	if (err)
4199 		goto out_fail;
4200 
4201 	inode->i_op = &btrfs_dir_inode_operations;
4202 	inode->i_fop = &btrfs_dir_file_operations;
4203 	btrfs_set_trans_block_group(trans, inode);
4204 
4205 	btrfs_i_size_write(inode, 0);
4206 	err = btrfs_update_inode(trans, root, inode);
4207 	if (err)
4208 		goto out_fail;
4209 
4210 	err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4211 				 inode, dentry->d_name.name,
4212 				 dentry->d_name.len, 0, index);
4213 	if (err)
4214 		goto out_fail;
4215 
4216 	d_instantiate(dentry, inode);
4217 	drop_on_err = 0;
4218 	btrfs_update_inode_block_group(trans, inode);
4219 	btrfs_update_inode_block_group(trans, dir);
4220 
4221 out_fail:
4222 	nr = trans->blocks_used;
4223 	btrfs_end_transaction_throttle(trans, root);
4224 
4225 out_unlock:
4226 	if (drop_on_err)
4227 		iput(inode);
4228 	btrfs_btree_balance_dirty(root, nr);
4229 	return err;
4230 }
4231 
4232 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4233  * and an extent that you want to insert, deal with overlap and insert
4234  * the new extent into the tree.
4235  */
4236 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4237 				struct extent_map *existing,
4238 				struct extent_map *em,
4239 				u64 map_start, u64 map_len)
4240 {
4241 	u64 start_diff;
4242 
4243 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4244 	start_diff = map_start - em->start;
4245 	em->start = map_start;
4246 	em->len = map_len;
4247 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4248 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4249 		em->block_start += start_diff;
4250 		em->block_len -= start_diff;
4251 	}
4252 	return add_extent_mapping(em_tree, em);
4253 }
4254 
4255 static noinline int uncompress_inline(struct btrfs_path *path,
4256 				      struct inode *inode, struct page *page,
4257 				      size_t pg_offset, u64 extent_offset,
4258 				      struct btrfs_file_extent_item *item)
4259 {
4260 	int ret;
4261 	struct extent_buffer *leaf = path->nodes[0];
4262 	char *tmp;
4263 	size_t max_size;
4264 	unsigned long inline_size;
4265 	unsigned long ptr;
4266 
4267 	WARN_ON(pg_offset != 0);
4268 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4269 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4270 					btrfs_item_nr(leaf, path->slots[0]));
4271 	tmp = kmalloc(inline_size, GFP_NOFS);
4272 	ptr = btrfs_file_extent_inline_start(item);
4273 
4274 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4275 
4276 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4277 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4278 				    inline_size, max_size);
4279 	if (ret) {
4280 		char *kaddr = kmap_atomic(page, KM_USER0);
4281 		unsigned long copy_size = min_t(u64,
4282 				  PAGE_CACHE_SIZE - pg_offset,
4283 				  max_size - extent_offset);
4284 		memset(kaddr + pg_offset, 0, copy_size);
4285 		kunmap_atomic(kaddr, KM_USER0);
4286 	}
4287 	kfree(tmp);
4288 	return 0;
4289 }
4290 
4291 /*
4292  * a bit scary, this does extent mapping from logical file offset to the disk.
4293  * the ugly parts come from merging extents from the disk with the in-ram
4294  * representation.  This gets more complex because of the data=ordered code,
4295  * where the in-ram extents might be locked pending data=ordered completion.
4296  *
4297  * This also copies inline extents directly into the page.
4298  */
4299 
4300 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4301 				    size_t pg_offset, u64 start, u64 len,
4302 				    int create)
4303 {
4304 	int ret;
4305 	int err = 0;
4306 	u64 bytenr;
4307 	u64 extent_start = 0;
4308 	u64 extent_end = 0;
4309 	u64 objectid = inode->i_ino;
4310 	u32 found_type;
4311 	struct btrfs_path *path = NULL;
4312 	struct btrfs_root *root = BTRFS_I(inode)->root;
4313 	struct btrfs_file_extent_item *item;
4314 	struct extent_buffer *leaf;
4315 	struct btrfs_key found_key;
4316 	struct extent_map *em = NULL;
4317 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4318 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4319 	struct btrfs_trans_handle *trans = NULL;
4320 	int compressed;
4321 
4322 again:
4323 	read_lock(&em_tree->lock);
4324 	em = lookup_extent_mapping(em_tree, start, len);
4325 	if (em)
4326 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4327 	read_unlock(&em_tree->lock);
4328 
4329 	if (em) {
4330 		if (em->start > start || em->start + em->len <= start)
4331 			free_extent_map(em);
4332 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4333 			free_extent_map(em);
4334 		else
4335 			goto out;
4336 	}
4337 	em = alloc_extent_map(GFP_NOFS);
4338 	if (!em) {
4339 		err = -ENOMEM;
4340 		goto out;
4341 	}
4342 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4343 	em->start = EXTENT_MAP_HOLE;
4344 	em->orig_start = EXTENT_MAP_HOLE;
4345 	em->len = (u64)-1;
4346 	em->block_len = (u64)-1;
4347 
4348 	if (!path) {
4349 		path = btrfs_alloc_path();
4350 		BUG_ON(!path);
4351 	}
4352 
4353 	ret = btrfs_lookup_file_extent(trans, root, path,
4354 				       objectid, start, trans != NULL);
4355 	if (ret < 0) {
4356 		err = ret;
4357 		goto out;
4358 	}
4359 
4360 	if (ret != 0) {
4361 		if (path->slots[0] == 0)
4362 			goto not_found;
4363 		path->slots[0]--;
4364 	}
4365 
4366 	leaf = path->nodes[0];
4367 	item = btrfs_item_ptr(leaf, path->slots[0],
4368 			      struct btrfs_file_extent_item);
4369 	/* are we inside the extent that was found? */
4370 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4371 	found_type = btrfs_key_type(&found_key);
4372 	if (found_key.objectid != objectid ||
4373 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4374 		goto not_found;
4375 	}
4376 
4377 	found_type = btrfs_file_extent_type(leaf, item);
4378 	extent_start = found_key.offset;
4379 	compressed = btrfs_file_extent_compression(leaf, item);
4380 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4381 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4382 		extent_end = extent_start +
4383 		       btrfs_file_extent_num_bytes(leaf, item);
4384 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4385 		size_t size;
4386 		size = btrfs_file_extent_inline_len(leaf, item);
4387 		extent_end = (extent_start + size + root->sectorsize - 1) &
4388 			~((u64)root->sectorsize - 1);
4389 	}
4390 
4391 	if (start >= extent_end) {
4392 		path->slots[0]++;
4393 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4394 			ret = btrfs_next_leaf(root, path);
4395 			if (ret < 0) {
4396 				err = ret;
4397 				goto out;
4398 			}
4399 			if (ret > 0)
4400 				goto not_found;
4401 			leaf = path->nodes[0];
4402 		}
4403 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4404 		if (found_key.objectid != objectid ||
4405 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4406 			goto not_found;
4407 		if (start + len <= found_key.offset)
4408 			goto not_found;
4409 		em->start = start;
4410 		em->len = found_key.offset - start;
4411 		goto not_found_em;
4412 	}
4413 
4414 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4415 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4416 		em->start = extent_start;
4417 		em->len = extent_end - extent_start;
4418 		em->orig_start = extent_start -
4419 				 btrfs_file_extent_offset(leaf, item);
4420 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4421 		if (bytenr == 0) {
4422 			em->block_start = EXTENT_MAP_HOLE;
4423 			goto insert;
4424 		}
4425 		if (compressed) {
4426 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4427 			em->block_start = bytenr;
4428 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4429 									 item);
4430 		} else {
4431 			bytenr += btrfs_file_extent_offset(leaf, item);
4432 			em->block_start = bytenr;
4433 			em->block_len = em->len;
4434 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4435 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4436 		}
4437 		goto insert;
4438 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4439 		unsigned long ptr;
4440 		char *map;
4441 		size_t size;
4442 		size_t extent_offset;
4443 		size_t copy_size;
4444 
4445 		em->block_start = EXTENT_MAP_INLINE;
4446 		if (!page || create) {
4447 			em->start = extent_start;
4448 			em->len = extent_end - extent_start;
4449 			goto out;
4450 		}
4451 
4452 		size = btrfs_file_extent_inline_len(leaf, item);
4453 		extent_offset = page_offset(page) + pg_offset - extent_start;
4454 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4455 				size - extent_offset);
4456 		em->start = extent_start + extent_offset;
4457 		em->len = (copy_size + root->sectorsize - 1) &
4458 			~((u64)root->sectorsize - 1);
4459 		em->orig_start = EXTENT_MAP_INLINE;
4460 		if (compressed)
4461 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4462 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4463 		if (create == 0 && !PageUptodate(page)) {
4464 			if (btrfs_file_extent_compression(leaf, item) ==
4465 			    BTRFS_COMPRESS_ZLIB) {
4466 				ret = uncompress_inline(path, inode, page,
4467 							pg_offset,
4468 							extent_offset, item);
4469 				BUG_ON(ret);
4470 			} else {
4471 				map = kmap(page);
4472 				read_extent_buffer(leaf, map + pg_offset, ptr,
4473 						   copy_size);
4474 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4475 					memset(map + pg_offset + copy_size, 0,
4476 					       PAGE_CACHE_SIZE - pg_offset -
4477 					       copy_size);
4478 				}
4479 				kunmap(page);
4480 			}
4481 			flush_dcache_page(page);
4482 		} else if (create && PageUptodate(page)) {
4483 			if (!trans) {
4484 				kunmap(page);
4485 				free_extent_map(em);
4486 				em = NULL;
4487 				btrfs_release_path(root, path);
4488 				trans = btrfs_join_transaction(root, 1);
4489 				goto again;
4490 			}
4491 			map = kmap(page);
4492 			write_extent_buffer(leaf, map + pg_offset, ptr,
4493 					    copy_size);
4494 			kunmap(page);
4495 			btrfs_mark_buffer_dirty(leaf);
4496 		}
4497 		set_extent_uptodate(io_tree, em->start,
4498 				    extent_map_end(em) - 1, GFP_NOFS);
4499 		goto insert;
4500 	} else {
4501 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4502 		WARN_ON(1);
4503 	}
4504 not_found:
4505 	em->start = start;
4506 	em->len = len;
4507 not_found_em:
4508 	em->block_start = EXTENT_MAP_HOLE;
4509 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4510 insert:
4511 	btrfs_release_path(root, path);
4512 	if (em->start > start || extent_map_end(em) <= start) {
4513 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4514 		       "[%llu %llu]\n", (unsigned long long)em->start,
4515 		       (unsigned long long)em->len,
4516 		       (unsigned long long)start,
4517 		       (unsigned long long)len);
4518 		err = -EIO;
4519 		goto out;
4520 	}
4521 
4522 	err = 0;
4523 	write_lock(&em_tree->lock);
4524 	ret = add_extent_mapping(em_tree, em);
4525 	/* it is possible that someone inserted the extent into the tree
4526 	 * while we had the lock dropped.  It is also possible that
4527 	 * an overlapping map exists in the tree
4528 	 */
4529 	if (ret == -EEXIST) {
4530 		struct extent_map *existing;
4531 
4532 		ret = 0;
4533 
4534 		existing = lookup_extent_mapping(em_tree, start, len);
4535 		if (existing && (existing->start > start ||
4536 		    existing->start + existing->len <= start)) {
4537 			free_extent_map(existing);
4538 			existing = NULL;
4539 		}
4540 		if (!existing) {
4541 			existing = lookup_extent_mapping(em_tree, em->start,
4542 							 em->len);
4543 			if (existing) {
4544 				err = merge_extent_mapping(em_tree, existing,
4545 							   em, start,
4546 							   root->sectorsize);
4547 				free_extent_map(existing);
4548 				if (err) {
4549 					free_extent_map(em);
4550 					em = NULL;
4551 				}
4552 			} else {
4553 				err = -EIO;
4554 				free_extent_map(em);
4555 				em = NULL;
4556 			}
4557 		} else {
4558 			free_extent_map(em);
4559 			em = existing;
4560 			err = 0;
4561 		}
4562 	}
4563 	write_unlock(&em_tree->lock);
4564 out:
4565 	if (path)
4566 		btrfs_free_path(path);
4567 	if (trans) {
4568 		ret = btrfs_end_transaction(trans, root);
4569 		if (!err)
4570 			err = ret;
4571 	}
4572 	if (err) {
4573 		free_extent_map(em);
4574 		return ERR_PTR(err);
4575 	}
4576 	return em;
4577 }
4578 
4579 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4580 			const struct iovec *iov, loff_t offset,
4581 			unsigned long nr_segs)
4582 {
4583 	return -EINVAL;
4584 }
4585 
4586 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4587 		__u64 start, __u64 len)
4588 {
4589 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4590 }
4591 
4592 int btrfs_readpage(struct file *file, struct page *page)
4593 {
4594 	struct extent_io_tree *tree;
4595 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4596 	return extent_read_full_page(tree, page, btrfs_get_extent);
4597 }
4598 
4599 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4600 {
4601 	struct extent_io_tree *tree;
4602 
4603 
4604 	if (current->flags & PF_MEMALLOC) {
4605 		redirty_page_for_writepage(wbc, page);
4606 		unlock_page(page);
4607 		return 0;
4608 	}
4609 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4610 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4611 }
4612 
4613 int btrfs_writepages(struct address_space *mapping,
4614 		     struct writeback_control *wbc)
4615 {
4616 	struct extent_io_tree *tree;
4617 
4618 	tree = &BTRFS_I(mapping->host)->io_tree;
4619 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4620 }
4621 
4622 static int
4623 btrfs_readpages(struct file *file, struct address_space *mapping,
4624 		struct list_head *pages, unsigned nr_pages)
4625 {
4626 	struct extent_io_tree *tree;
4627 	tree = &BTRFS_I(mapping->host)->io_tree;
4628 	return extent_readpages(tree, mapping, pages, nr_pages,
4629 				btrfs_get_extent);
4630 }
4631 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4632 {
4633 	struct extent_io_tree *tree;
4634 	struct extent_map_tree *map;
4635 	int ret;
4636 
4637 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4638 	map = &BTRFS_I(page->mapping->host)->extent_tree;
4639 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4640 	if (ret == 1) {
4641 		ClearPagePrivate(page);
4642 		set_page_private(page, 0);
4643 		page_cache_release(page);
4644 	}
4645 	return ret;
4646 }
4647 
4648 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4649 {
4650 	if (PageWriteback(page) || PageDirty(page))
4651 		return 0;
4652 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
4653 }
4654 
4655 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4656 {
4657 	struct extent_io_tree *tree;
4658 	struct btrfs_ordered_extent *ordered;
4659 	u64 page_start = page_offset(page);
4660 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4661 
4662 
4663 	/*
4664 	 * we have the page locked, so new writeback can't start,
4665 	 * and the dirty bit won't be cleared while we are here.
4666 	 *
4667 	 * Wait for IO on this page so that we can safely clear
4668 	 * the PagePrivate2 bit and do ordered accounting
4669 	 */
4670 	wait_on_page_writeback(page);
4671 
4672 	tree = &BTRFS_I(page->mapping->host)->io_tree;
4673 	if (offset) {
4674 		btrfs_releasepage(page, GFP_NOFS);
4675 		return;
4676 	}
4677 	lock_extent(tree, page_start, page_end, GFP_NOFS);
4678 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4679 					   page_offset(page));
4680 	if (ordered) {
4681 		/*
4682 		 * IO on this page will never be started, so we need
4683 		 * to account for any ordered extents now
4684 		 */
4685 		clear_extent_bit(tree, page_start, page_end,
4686 				 EXTENT_DIRTY | EXTENT_DELALLOC |
4687 				 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
4688 		/*
4689 		 * whoever cleared the private bit is responsible
4690 		 * for the finish_ordered_io
4691 		 */
4692 		if (TestClearPagePrivate2(page)) {
4693 			btrfs_finish_ordered_io(page->mapping->host,
4694 						page_start, page_end);
4695 		}
4696 		btrfs_put_ordered_extent(ordered);
4697 		lock_extent(tree, page_start, page_end, GFP_NOFS);
4698 	}
4699 	clear_extent_bit(tree, page_start, page_end,
4700 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
4701 		 1, 1, NULL, GFP_NOFS);
4702 	__btrfs_releasepage(page, GFP_NOFS);
4703 
4704 	ClearPageChecked(page);
4705 	if (PagePrivate(page)) {
4706 		ClearPagePrivate(page);
4707 		set_page_private(page, 0);
4708 		page_cache_release(page);
4709 	}
4710 }
4711 
4712 /*
4713  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4714  * called from a page fault handler when a page is first dirtied. Hence we must
4715  * be careful to check for EOF conditions here. We set the page up correctly
4716  * for a written page which means we get ENOSPC checking when writing into
4717  * holes and correct delalloc and unwritten extent mapping on filesystems that
4718  * support these features.
4719  *
4720  * We are not allowed to take the i_mutex here so we have to play games to
4721  * protect against truncate races as the page could now be beyond EOF.  Because
4722  * vmtruncate() writes the inode size before removing pages, once we have the
4723  * page lock we can determine safely if the page is beyond EOF. If it is not
4724  * beyond EOF, then the page is guaranteed safe against truncation until we
4725  * unlock the page.
4726  */
4727 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4728 {
4729 	struct page *page = vmf->page;
4730 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
4731 	struct btrfs_root *root = BTRFS_I(inode)->root;
4732 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4733 	struct btrfs_ordered_extent *ordered;
4734 	char *kaddr;
4735 	unsigned long zero_start;
4736 	loff_t size;
4737 	int ret;
4738 	u64 page_start;
4739 	u64 page_end;
4740 
4741 	ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
4742 	if (ret) {
4743 		if (ret == -ENOMEM)
4744 			ret = VM_FAULT_OOM;
4745 		else /* -ENOSPC, -EIO, etc */
4746 			ret = VM_FAULT_SIGBUS;
4747 		goto out;
4748 	}
4749 
4750 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
4751 again:
4752 	lock_page(page);
4753 	size = i_size_read(inode);
4754 	page_start = page_offset(page);
4755 	page_end = page_start + PAGE_CACHE_SIZE - 1;
4756 
4757 	if ((page->mapping != inode->i_mapping) ||
4758 	    (page_start >= size)) {
4759 		btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4760 		/* page got truncated out from underneath us */
4761 		goto out_unlock;
4762 	}
4763 	wait_on_page_writeback(page);
4764 
4765 	lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4766 	set_page_extent_mapped(page);
4767 
4768 	/*
4769 	 * we can't set the delalloc bits if there are pending ordered
4770 	 * extents.  Drop our locks and wait for them to finish
4771 	 */
4772 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4773 	if (ordered) {
4774 		unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4775 		unlock_page(page);
4776 		btrfs_start_ordered_extent(inode, ordered, 1);
4777 		btrfs_put_ordered_extent(ordered);
4778 		goto again;
4779 	}
4780 
4781 	btrfs_set_extent_delalloc(inode, page_start, page_end);
4782 	ret = 0;
4783 
4784 	/* page is wholly or partially inside EOF */
4785 	if (page_start + PAGE_CACHE_SIZE > size)
4786 		zero_start = size & ~PAGE_CACHE_MASK;
4787 	else
4788 		zero_start = PAGE_CACHE_SIZE;
4789 
4790 	if (zero_start != PAGE_CACHE_SIZE) {
4791 		kaddr = kmap(page);
4792 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4793 		flush_dcache_page(page);
4794 		kunmap(page);
4795 	}
4796 	ClearPageChecked(page);
4797 	set_page_dirty(page);
4798 	SetPageUptodate(page);
4799 
4800 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
4801 	unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4802 
4803 out_unlock:
4804 	if (!ret)
4805 		return VM_FAULT_LOCKED;
4806 	unlock_page(page);
4807 out:
4808 	return ret;
4809 }
4810 
4811 static void btrfs_truncate(struct inode *inode)
4812 {
4813 	struct btrfs_root *root = BTRFS_I(inode)->root;
4814 	int ret;
4815 	struct btrfs_trans_handle *trans;
4816 	unsigned long nr;
4817 	u64 mask = root->sectorsize - 1;
4818 
4819 	if (!S_ISREG(inode->i_mode))
4820 		return;
4821 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4822 		return;
4823 
4824 	btrfs_truncate_page(inode->i_mapping, inode->i_size);
4825 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4826 
4827 	trans = btrfs_start_transaction(root, 1);
4828 
4829 	/*
4830 	 * setattr is responsible for setting the ordered_data_close flag,
4831 	 * but that is only tested during the last file release.  That
4832 	 * could happen well after the next commit, leaving a great big
4833 	 * window where new writes may get lost if someone chooses to write
4834 	 * to this file after truncating to zero
4835 	 *
4836 	 * The inode doesn't have any dirty data here, and so if we commit
4837 	 * this is a noop.  If someone immediately starts writing to the inode
4838 	 * it is very likely we'll catch some of their writes in this
4839 	 * transaction, and the commit will find this file on the ordered
4840 	 * data list with good things to send down.
4841 	 *
4842 	 * This is a best effort solution, there is still a window where
4843 	 * using truncate to replace the contents of the file will
4844 	 * end up with a zero length file after a crash.
4845 	 */
4846 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
4847 		btrfs_add_ordered_operation(trans, root, inode);
4848 
4849 	btrfs_set_trans_block_group(trans, inode);
4850 	btrfs_i_size_write(inode, inode->i_size);
4851 
4852 	ret = btrfs_orphan_add(trans, inode);
4853 	if (ret)
4854 		goto out;
4855 	/* FIXME, add redo link to tree so we don't leak on crash */
4856 	ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4857 				      BTRFS_EXTENT_DATA_KEY);
4858 	btrfs_update_inode(trans, root, inode);
4859 
4860 	ret = btrfs_orphan_del(trans, inode);
4861 	BUG_ON(ret);
4862 
4863 out:
4864 	nr = trans->blocks_used;
4865 	ret = btrfs_end_transaction_throttle(trans, root);
4866 	BUG_ON(ret);
4867 	btrfs_btree_balance_dirty(root, nr);
4868 }
4869 
4870 /*
4871  * create a new subvolume directory/inode (helper for the ioctl).
4872  */
4873 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
4874 			     struct btrfs_root *new_root,
4875 			     u64 new_dirid, u64 alloc_hint)
4876 {
4877 	struct inode *inode;
4878 	int err;
4879 	u64 index = 0;
4880 
4881 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4882 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
4883 	if (IS_ERR(inode))
4884 		return PTR_ERR(inode);
4885 	inode->i_op = &btrfs_dir_inode_operations;
4886 	inode->i_fop = &btrfs_dir_file_operations;
4887 
4888 	inode->i_nlink = 1;
4889 	btrfs_i_size_write(inode, 0);
4890 
4891 	err = btrfs_update_inode(trans, new_root, inode);
4892 	BUG_ON(err);
4893 
4894 	iput(inode);
4895 	return 0;
4896 }
4897 
4898 /* helper function for file defrag and space balancing.  This
4899  * forces readahead on a given range of bytes in an inode
4900  */
4901 unsigned long btrfs_force_ra(struct address_space *mapping,
4902 			      struct file_ra_state *ra, struct file *file,
4903 			      pgoff_t offset, pgoff_t last_index)
4904 {
4905 	pgoff_t req_size = last_index - offset + 1;
4906 
4907 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4908 	return offset + req_size;
4909 }
4910 
4911 struct inode *btrfs_alloc_inode(struct super_block *sb)
4912 {
4913 	struct btrfs_inode *ei;
4914 
4915 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4916 	if (!ei)
4917 		return NULL;
4918 	ei->last_trans = 0;
4919 	ei->logged_trans = 0;
4920 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4921 	INIT_LIST_HEAD(&ei->i_orphan);
4922 	INIT_LIST_HEAD(&ei->ordered_operations);
4923 	return &ei->vfs_inode;
4924 }
4925 
4926 void btrfs_destroy_inode(struct inode *inode)
4927 {
4928 	struct btrfs_ordered_extent *ordered;
4929 	struct btrfs_root *root = BTRFS_I(inode)->root;
4930 
4931 	WARN_ON(!list_empty(&inode->i_dentry));
4932 	WARN_ON(inode->i_data.nrpages);
4933 
4934 	/*
4935 	 * Make sure we're properly removed from the ordered operation
4936 	 * lists.
4937 	 */
4938 	smp_mb();
4939 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
4940 		spin_lock(&root->fs_info->ordered_extent_lock);
4941 		list_del_init(&BTRFS_I(inode)->ordered_operations);
4942 		spin_unlock(&root->fs_info->ordered_extent_lock);
4943 	}
4944 
4945 	spin_lock(&root->list_lock);
4946 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4947 		printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4948 		       " list\n", inode->i_ino);
4949 		dump_stack();
4950 	}
4951 	spin_unlock(&root->list_lock);
4952 
4953 	while (1) {
4954 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4955 		if (!ordered)
4956 			break;
4957 		else {
4958 			printk(KERN_ERR "btrfs found ordered "
4959 			       "extent %llu %llu on inode cleanup\n",
4960 			       (unsigned long long)ordered->file_offset,
4961 			       (unsigned long long)ordered->len);
4962 			btrfs_remove_ordered_extent(inode, ordered);
4963 			btrfs_put_ordered_extent(ordered);
4964 			btrfs_put_ordered_extent(ordered);
4965 		}
4966 	}
4967 	inode_tree_del(inode);
4968 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4969 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4970 }
4971 
4972 void btrfs_drop_inode(struct inode *inode)
4973 {
4974 	struct btrfs_root *root = BTRFS_I(inode)->root;
4975 
4976 	if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
4977 		generic_delete_inode(inode);
4978 	else
4979 		generic_drop_inode(inode);
4980 }
4981 
4982 static void init_once(void *foo)
4983 {
4984 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4985 
4986 	inode_init_once(&ei->vfs_inode);
4987 }
4988 
4989 void btrfs_destroy_cachep(void)
4990 {
4991 	if (btrfs_inode_cachep)
4992 		kmem_cache_destroy(btrfs_inode_cachep);
4993 	if (btrfs_trans_handle_cachep)
4994 		kmem_cache_destroy(btrfs_trans_handle_cachep);
4995 	if (btrfs_transaction_cachep)
4996 		kmem_cache_destroy(btrfs_transaction_cachep);
4997 	if (btrfs_path_cachep)
4998 		kmem_cache_destroy(btrfs_path_cachep);
4999 }
5000 
5001 int btrfs_init_cachep(void)
5002 {
5003 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5004 			sizeof(struct btrfs_inode), 0,
5005 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5006 	if (!btrfs_inode_cachep)
5007 		goto fail;
5008 
5009 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5010 			sizeof(struct btrfs_trans_handle), 0,
5011 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5012 	if (!btrfs_trans_handle_cachep)
5013 		goto fail;
5014 
5015 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5016 			sizeof(struct btrfs_transaction), 0,
5017 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5018 	if (!btrfs_transaction_cachep)
5019 		goto fail;
5020 
5021 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5022 			sizeof(struct btrfs_path), 0,
5023 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5024 	if (!btrfs_path_cachep)
5025 		goto fail;
5026 
5027 	return 0;
5028 fail:
5029 	btrfs_destroy_cachep();
5030 	return -ENOMEM;
5031 }
5032 
5033 static int btrfs_getattr(struct vfsmount *mnt,
5034 			 struct dentry *dentry, struct kstat *stat)
5035 {
5036 	struct inode *inode = dentry->d_inode;
5037 	generic_fillattr(inode, stat);
5038 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5039 	stat->blksize = PAGE_CACHE_SIZE;
5040 	stat->blocks = (inode_get_bytes(inode) +
5041 			BTRFS_I(inode)->delalloc_bytes) >> 9;
5042 	return 0;
5043 }
5044 
5045 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5046 			   struct inode *new_dir, struct dentry *new_dentry)
5047 {
5048 	struct btrfs_trans_handle *trans;
5049 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
5050 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5051 	struct inode *new_inode = new_dentry->d_inode;
5052 	struct inode *old_inode = old_dentry->d_inode;
5053 	struct timespec ctime = CURRENT_TIME;
5054 	u64 index = 0;
5055 	u64 root_objectid;
5056 	int ret;
5057 
5058 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5059 		return -EPERM;
5060 
5061 	/* we only allow rename subvolume link between subvolumes */
5062 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5063 		return -EXDEV;
5064 
5065 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5066 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5067 		return -ENOTEMPTY;
5068 
5069 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
5070 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5071 		return -ENOTEMPTY;
5072 
5073 	ret = btrfs_check_metadata_free_space(root);
5074 	if (ret)
5075 		return ret;
5076 
5077 	/*
5078 	 * we're using rename to replace one file with another.
5079 	 * and the replacement file is large.  Start IO on it now so
5080 	 * we don't add too much work to the end of the transaction
5081 	 */
5082 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5083 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5084 		filemap_flush(old_inode->i_mapping);
5085 
5086 	/* close the racy window with snapshot create/destroy ioctl */
5087 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5088 		down_read(&root->fs_info->subvol_sem);
5089 
5090 	trans = btrfs_start_transaction(root, 1);
5091 	btrfs_set_trans_block_group(trans, new_dir);
5092 
5093 	if (dest != root)
5094 		btrfs_record_root_in_trans(trans, dest);
5095 
5096 	ret = btrfs_set_inode_index(new_dir, &index);
5097 	if (ret)
5098 		goto out_fail;
5099 
5100 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5101 		/* force full log commit if subvolume involved. */
5102 		root->fs_info->last_trans_log_full_commit = trans->transid;
5103 	} else {
5104 		ret = btrfs_insert_inode_ref(trans, dest,
5105 					     new_dentry->d_name.name,
5106 					     new_dentry->d_name.len,
5107 					     old_inode->i_ino,
5108 					     new_dir->i_ino, index);
5109 		if (ret)
5110 			goto out_fail;
5111 		/*
5112 		 * this is an ugly little race, but the rename is required
5113 		 * to make sure that if we crash, the inode is either at the
5114 		 * old name or the new one.  pinning the log transaction lets
5115 		 * us make sure we don't allow a log commit to come in after
5116 		 * we unlink the name but before we add the new name back in.
5117 		 */
5118 		btrfs_pin_log_trans(root);
5119 	}
5120 	/*
5121 	 * make sure the inode gets flushed if it is replacing
5122 	 * something.
5123 	 */
5124 	if (new_inode && new_inode->i_size &&
5125 	    old_inode && S_ISREG(old_inode->i_mode)) {
5126 		btrfs_add_ordered_operation(trans, root, old_inode);
5127 	}
5128 
5129 	old_dir->i_ctime = old_dir->i_mtime = ctime;
5130 	new_dir->i_ctime = new_dir->i_mtime = ctime;
5131 	old_inode->i_ctime = ctime;
5132 
5133 	if (old_dentry->d_parent != new_dentry->d_parent)
5134 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5135 
5136 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5137 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5138 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5139 					old_dentry->d_name.name,
5140 					old_dentry->d_name.len);
5141 	} else {
5142 		btrfs_inc_nlink(old_dentry->d_inode);
5143 		ret = btrfs_unlink_inode(trans, root, old_dir,
5144 					 old_dentry->d_inode,
5145 					 old_dentry->d_name.name,
5146 					 old_dentry->d_name.len);
5147 	}
5148 	BUG_ON(ret);
5149 
5150 	if (new_inode) {
5151 		new_inode->i_ctime = CURRENT_TIME;
5152 		if (unlikely(new_inode->i_ino ==
5153 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5154 			root_objectid = BTRFS_I(new_inode)->location.objectid;
5155 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
5156 						root_objectid,
5157 						new_dentry->d_name.name,
5158 						new_dentry->d_name.len);
5159 			BUG_ON(new_inode->i_nlink == 0);
5160 		} else {
5161 			ret = btrfs_unlink_inode(trans, dest, new_dir,
5162 						 new_dentry->d_inode,
5163 						 new_dentry->d_name.name,
5164 						 new_dentry->d_name.len);
5165 		}
5166 		BUG_ON(ret);
5167 		if (new_inode->i_nlink == 0) {
5168 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5169 			BUG_ON(ret);
5170 		}
5171 	}
5172 
5173 	ret = btrfs_add_link(trans, new_dir, old_inode,
5174 			     new_dentry->d_name.name,
5175 			     new_dentry->d_name.len, 0, index);
5176 	BUG_ON(ret);
5177 
5178 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5179 		btrfs_log_new_name(trans, old_inode, old_dir,
5180 				   new_dentry->d_parent);
5181 		btrfs_end_log_trans(root);
5182 	}
5183 out_fail:
5184 	btrfs_end_transaction_throttle(trans, root);
5185 
5186 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5187 		up_read(&root->fs_info->subvol_sem);
5188 	return ret;
5189 }
5190 
5191 /*
5192  * some fairly slow code that needs optimization. This walks the list
5193  * of all the inodes with pending delalloc and forces them to disk.
5194  */
5195 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5196 {
5197 	struct list_head *head = &root->fs_info->delalloc_inodes;
5198 	struct btrfs_inode *binode;
5199 	struct inode *inode;
5200 
5201 	if (root->fs_info->sb->s_flags & MS_RDONLY)
5202 		return -EROFS;
5203 
5204 	spin_lock(&root->fs_info->delalloc_lock);
5205 	while (!list_empty(head)) {
5206 		binode = list_entry(head->next, struct btrfs_inode,
5207 				    delalloc_inodes);
5208 		inode = igrab(&binode->vfs_inode);
5209 		if (!inode)
5210 			list_del_init(&binode->delalloc_inodes);
5211 		spin_unlock(&root->fs_info->delalloc_lock);
5212 		if (inode) {
5213 			filemap_flush(inode->i_mapping);
5214 			iput(inode);
5215 		}
5216 		cond_resched();
5217 		spin_lock(&root->fs_info->delalloc_lock);
5218 	}
5219 	spin_unlock(&root->fs_info->delalloc_lock);
5220 
5221 	/* the filemap_flush will queue IO into the worker threads, but
5222 	 * we have to make sure the IO is actually started and that
5223 	 * ordered extents get created before we return
5224 	 */
5225 	atomic_inc(&root->fs_info->async_submit_draining);
5226 	while (atomic_read(&root->fs_info->nr_async_submits) ||
5227 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
5228 		wait_event(root->fs_info->async_submit_wait,
5229 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5230 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5231 	}
5232 	atomic_dec(&root->fs_info->async_submit_draining);
5233 	return 0;
5234 }
5235 
5236 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5237 			 const char *symname)
5238 {
5239 	struct btrfs_trans_handle *trans;
5240 	struct btrfs_root *root = BTRFS_I(dir)->root;
5241 	struct btrfs_path *path;
5242 	struct btrfs_key key;
5243 	struct inode *inode = NULL;
5244 	int err;
5245 	int drop_inode = 0;
5246 	u64 objectid;
5247 	u64 index = 0 ;
5248 	int name_len;
5249 	int datasize;
5250 	unsigned long ptr;
5251 	struct btrfs_file_extent_item *ei;
5252 	struct extent_buffer *leaf;
5253 	unsigned long nr = 0;
5254 
5255 	name_len = strlen(symname) + 1;
5256 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5257 		return -ENAMETOOLONG;
5258 
5259 	err = btrfs_check_metadata_free_space(root);
5260 	if (err)
5261 		goto out_fail;
5262 
5263 	trans = btrfs_start_transaction(root, 1);
5264 	btrfs_set_trans_block_group(trans, dir);
5265 
5266 	err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5267 	if (err) {
5268 		err = -ENOSPC;
5269 		goto out_unlock;
5270 	}
5271 
5272 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5273 				dentry->d_name.len,
5274 				dentry->d_parent->d_inode->i_ino, objectid,
5275 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5276 				&index);
5277 	err = PTR_ERR(inode);
5278 	if (IS_ERR(inode))
5279 		goto out_unlock;
5280 
5281 	err = btrfs_init_inode_security(inode, dir);
5282 	if (err) {
5283 		drop_inode = 1;
5284 		goto out_unlock;
5285 	}
5286 
5287 	btrfs_set_trans_block_group(trans, inode);
5288 	err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5289 	if (err)
5290 		drop_inode = 1;
5291 	else {
5292 		inode->i_mapping->a_ops = &btrfs_aops;
5293 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5294 		inode->i_fop = &btrfs_file_operations;
5295 		inode->i_op = &btrfs_file_inode_operations;
5296 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5297 	}
5298 	btrfs_update_inode_block_group(trans, inode);
5299 	btrfs_update_inode_block_group(trans, dir);
5300 	if (drop_inode)
5301 		goto out_unlock;
5302 
5303 	path = btrfs_alloc_path();
5304 	BUG_ON(!path);
5305 	key.objectid = inode->i_ino;
5306 	key.offset = 0;
5307 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5308 	datasize = btrfs_file_extent_calc_inline_size(name_len);
5309 	err = btrfs_insert_empty_item(trans, root, path, &key,
5310 				      datasize);
5311 	if (err) {
5312 		drop_inode = 1;
5313 		goto out_unlock;
5314 	}
5315 	leaf = path->nodes[0];
5316 	ei = btrfs_item_ptr(leaf, path->slots[0],
5317 			    struct btrfs_file_extent_item);
5318 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5319 	btrfs_set_file_extent_type(leaf, ei,
5320 				   BTRFS_FILE_EXTENT_INLINE);
5321 	btrfs_set_file_extent_encryption(leaf, ei, 0);
5322 	btrfs_set_file_extent_compression(leaf, ei, 0);
5323 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5324 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5325 
5326 	ptr = btrfs_file_extent_inline_start(ei);
5327 	write_extent_buffer(leaf, symname, ptr, name_len);
5328 	btrfs_mark_buffer_dirty(leaf);
5329 	btrfs_free_path(path);
5330 
5331 	inode->i_op = &btrfs_symlink_inode_operations;
5332 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
5333 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5334 	inode_set_bytes(inode, name_len);
5335 	btrfs_i_size_write(inode, name_len - 1);
5336 	err = btrfs_update_inode(trans, root, inode);
5337 	if (err)
5338 		drop_inode = 1;
5339 
5340 out_unlock:
5341 	nr = trans->blocks_used;
5342 	btrfs_end_transaction_throttle(trans, root);
5343 out_fail:
5344 	if (drop_inode) {
5345 		inode_dec_link_count(inode);
5346 		iput(inode);
5347 	}
5348 	btrfs_btree_balance_dirty(root, nr);
5349 	return err;
5350 }
5351 
5352 static int prealloc_file_range(struct btrfs_trans_handle *trans,
5353 			       struct inode *inode, u64 start, u64 end,
5354 			       u64 locked_end, u64 alloc_hint, int mode)
5355 {
5356 	struct btrfs_root *root = BTRFS_I(inode)->root;
5357 	struct btrfs_key ins;
5358 	u64 alloc_size;
5359 	u64 cur_offset = start;
5360 	u64 num_bytes = end - start;
5361 	int ret = 0;
5362 
5363 	while (num_bytes > 0) {
5364 		alloc_size = min(num_bytes, root->fs_info->max_extent);
5365 		ret = btrfs_reserve_extent(trans, root, alloc_size,
5366 					   root->sectorsize, 0, alloc_hint,
5367 					   (u64)-1, &ins, 1);
5368 		if (ret) {
5369 			WARN_ON(1);
5370 			goto out;
5371 		}
5372 		ret = insert_reserved_file_extent(trans, inode,
5373 						  cur_offset, ins.objectid,
5374 						  ins.offset, ins.offset,
5375 						  ins.offset, locked_end,
5376 						  0, 0, 0,
5377 						  BTRFS_FILE_EXTENT_PREALLOC);
5378 		BUG_ON(ret);
5379 		btrfs_drop_extent_cache(inode, cur_offset,
5380 					cur_offset + ins.offset -1, 0);
5381 		num_bytes -= ins.offset;
5382 		cur_offset += ins.offset;
5383 		alloc_hint = ins.objectid + ins.offset;
5384 	}
5385 out:
5386 	if (cur_offset > start) {
5387 		inode->i_ctime = CURRENT_TIME;
5388 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5389 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5390 		    cur_offset > i_size_read(inode))
5391 			btrfs_i_size_write(inode, cur_offset);
5392 		ret = btrfs_update_inode(trans, root, inode);
5393 		BUG_ON(ret);
5394 	}
5395 
5396 	return ret;
5397 }
5398 
5399 static long btrfs_fallocate(struct inode *inode, int mode,
5400 			    loff_t offset, loff_t len)
5401 {
5402 	u64 cur_offset;
5403 	u64 last_byte;
5404 	u64 alloc_start;
5405 	u64 alloc_end;
5406 	u64 alloc_hint = 0;
5407 	u64 locked_end;
5408 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5409 	struct extent_map *em;
5410 	struct btrfs_trans_handle *trans;
5411 	struct btrfs_root *root;
5412 	int ret;
5413 
5414 	alloc_start = offset & ~mask;
5415 	alloc_end =  (offset + len + mask) & ~mask;
5416 
5417 	/*
5418 	 * wait for ordered IO before we have any locks.  We'll loop again
5419 	 * below with the locks held.
5420 	 */
5421 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5422 
5423 	mutex_lock(&inode->i_mutex);
5424 	if (alloc_start > inode->i_size) {
5425 		ret = btrfs_cont_expand(inode, alloc_start);
5426 		if (ret)
5427 			goto out;
5428 	}
5429 
5430 	root = BTRFS_I(inode)->root;
5431 
5432 	ret = btrfs_check_data_free_space(root, inode,
5433 					  alloc_end - alloc_start);
5434 	if (ret)
5435 		goto out;
5436 
5437 	locked_end = alloc_end - 1;
5438 	while (1) {
5439 		struct btrfs_ordered_extent *ordered;
5440 
5441 		trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5442 		if (!trans) {
5443 			ret = -EIO;
5444 			goto out_free;
5445 		}
5446 
5447 		/* the extent lock is ordered inside the running
5448 		 * transaction
5449 		 */
5450 		lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5451 			    GFP_NOFS);
5452 		ordered = btrfs_lookup_first_ordered_extent(inode,
5453 							    alloc_end - 1);
5454 		if (ordered &&
5455 		    ordered->file_offset + ordered->len > alloc_start &&
5456 		    ordered->file_offset < alloc_end) {
5457 			btrfs_put_ordered_extent(ordered);
5458 			unlock_extent(&BTRFS_I(inode)->io_tree,
5459 				      alloc_start, locked_end, GFP_NOFS);
5460 			btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5461 
5462 			/*
5463 			 * we can't wait on the range with the transaction
5464 			 * running or with the extent lock held
5465 			 */
5466 			btrfs_wait_ordered_range(inode, alloc_start,
5467 						 alloc_end - alloc_start);
5468 		} else {
5469 			if (ordered)
5470 				btrfs_put_ordered_extent(ordered);
5471 			break;
5472 		}
5473 	}
5474 
5475 	cur_offset = alloc_start;
5476 	while (1) {
5477 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5478 				      alloc_end - cur_offset, 0);
5479 		BUG_ON(IS_ERR(em) || !em);
5480 		last_byte = min(extent_map_end(em), alloc_end);
5481 		last_byte = (last_byte + mask) & ~mask;
5482 		if (em->block_start == EXTENT_MAP_HOLE) {
5483 			ret = prealloc_file_range(trans, inode, cur_offset,
5484 					last_byte, locked_end + 1,
5485 					alloc_hint, mode);
5486 			if (ret < 0) {
5487 				free_extent_map(em);
5488 				break;
5489 			}
5490 		}
5491 		if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5492 			alloc_hint = em->block_start;
5493 		free_extent_map(em);
5494 
5495 		cur_offset = last_byte;
5496 		if (cur_offset >= alloc_end) {
5497 			ret = 0;
5498 			break;
5499 		}
5500 	}
5501 	unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5502 		      GFP_NOFS);
5503 
5504 	btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5505 out_free:
5506 	btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
5507 out:
5508 	mutex_unlock(&inode->i_mutex);
5509 	return ret;
5510 }
5511 
5512 static int btrfs_set_page_dirty(struct page *page)
5513 {
5514 	return __set_page_dirty_nobuffers(page);
5515 }
5516 
5517 static int btrfs_permission(struct inode *inode, int mask)
5518 {
5519 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5520 		return -EACCES;
5521 	return generic_permission(inode, mask, btrfs_check_acl);
5522 }
5523 
5524 static const struct inode_operations btrfs_dir_inode_operations = {
5525 	.getattr	= btrfs_getattr,
5526 	.lookup		= btrfs_lookup,
5527 	.create		= btrfs_create,
5528 	.unlink		= btrfs_unlink,
5529 	.link		= btrfs_link,
5530 	.mkdir		= btrfs_mkdir,
5531 	.rmdir		= btrfs_rmdir,
5532 	.rename		= btrfs_rename,
5533 	.symlink	= btrfs_symlink,
5534 	.setattr	= btrfs_setattr,
5535 	.mknod		= btrfs_mknod,
5536 	.setxattr	= btrfs_setxattr,
5537 	.getxattr	= btrfs_getxattr,
5538 	.listxattr	= btrfs_listxattr,
5539 	.removexattr	= btrfs_removexattr,
5540 	.permission	= btrfs_permission,
5541 };
5542 static const struct inode_operations btrfs_dir_ro_inode_operations = {
5543 	.lookup		= btrfs_lookup,
5544 	.permission	= btrfs_permission,
5545 };
5546 
5547 static struct file_operations btrfs_dir_file_operations = {
5548 	.llseek		= generic_file_llseek,
5549 	.read		= generic_read_dir,
5550 	.readdir	= btrfs_real_readdir,
5551 	.unlocked_ioctl	= btrfs_ioctl,
5552 #ifdef CONFIG_COMPAT
5553 	.compat_ioctl	= btrfs_ioctl,
5554 #endif
5555 	.release        = btrfs_release_file,
5556 	.fsync		= btrfs_sync_file,
5557 };
5558 
5559 static struct extent_io_ops btrfs_extent_io_ops = {
5560 	.fill_delalloc = run_delalloc_range,
5561 	.submit_bio_hook = btrfs_submit_bio_hook,
5562 	.merge_bio_hook = btrfs_merge_bio_hook,
5563 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
5564 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
5565 	.writepage_start_hook = btrfs_writepage_start_hook,
5566 	.readpage_io_failed_hook = btrfs_io_failed_hook,
5567 	.set_bit_hook = btrfs_set_bit_hook,
5568 	.clear_bit_hook = btrfs_clear_bit_hook,
5569 };
5570 
5571 /*
5572  * btrfs doesn't support the bmap operation because swapfiles
5573  * use bmap to make a mapping of extents in the file.  They assume
5574  * these extents won't change over the life of the file and they
5575  * use the bmap result to do IO directly to the drive.
5576  *
5577  * the btrfs bmap call would return logical addresses that aren't
5578  * suitable for IO and they also will change frequently as COW
5579  * operations happen.  So, swapfile + btrfs == corruption.
5580  *
5581  * For now we're avoiding this by dropping bmap.
5582  */
5583 static const struct address_space_operations btrfs_aops = {
5584 	.readpage	= btrfs_readpage,
5585 	.writepage	= btrfs_writepage,
5586 	.writepages	= btrfs_writepages,
5587 	.readpages	= btrfs_readpages,
5588 	.sync_page	= block_sync_page,
5589 	.direct_IO	= btrfs_direct_IO,
5590 	.invalidatepage = btrfs_invalidatepage,
5591 	.releasepage	= btrfs_releasepage,
5592 	.set_page_dirty	= btrfs_set_page_dirty,
5593 	.error_remove_page = generic_error_remove_page,
5594 };
5595 
5596 static const struct address_space_operations btrfs_symlink_aops = {
5597 	.readpage	= btrfs_readpage,
5598 	.writepage	= btrfs_writepage,
5599 	.invalidatepage = btrfs_invalidatepage,
5600 	.releasepage	= btrfs_releasepage,
5601 };
5602 
5603 static const struct inode_operations btrfs_file_inode_operations = {
5604 	.truncate	= btrfs_truncate,
5605 	.getattr	= btrfs_getattr,
5606 	.setattr	= btrfs_setattr,
5607 	.setxattr	= btrfs_setxattr,
5608 	.getxattr	= btrfs_getxattr,
5609 	.listxattr      = btrfs_listxattr,
5610 	.removexattr	= btrfs_removexattr,
5611 	.permission	= btrfs_permission,
5612 	.fallocate	= btrfs_fallocate,
5613 	.fiemap		= btrfs_fiemap,
5614 };
5615 static const struct inode_operations btrfs_special_inode_operations = {
5616 	.getattr	= btrfs_getattr,
5617 	.setattr	= btrfs_setattr,
5618 	.permission	= btrfs_permission,
5619 	.setxattr	= btrfs_setxattr,
5620 	.getxattr	= btrfs_getxattr,
5621 	.listxattr	= btrfs_listxattr,
5622 	.removexattr	= btrfs_removexattr,
5623 };
5624 static const struct inode_operations btrfs_symlink_inode_operations = {
5625 	.readlink	= generic_readlink,
5626 	.follow_link	= page_follow_link_light,
5627 	.put_link	= page_put_link,
5628 	.permission	= btrfs_permission,
5629 	.setxattr	= btrfs_setxattr,
5630 	.getxattr	= btrfs_getxattr,
5631 	.listxattr	= btrfs_listxattr,
5632 	.removexattr	= btrfs_removexattr,
5633 };
5634 
5635 struct dentry_operations btrfs_dentry_operations = {
5636 	.d_delete	= btrfs_dentry_delete,
5637 };
5638