1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include <linux/mount.h> 42 #include "compat.h" 43 #include "ctree.h" 44 #include "disk-io.h" 45 #include "transaction.h" 46 #include "btrfs_inode.h" 47 #include "ioctl.h" 48 #include "print-tree.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "volumes.h" 53 #include "compression.h" 54 #include "locking.h" 55 #include "free-space-cache.h" 56 #include "inode-map.h" 57 58 struct btrfs_iget_args { 59 u64 ino; 60 struct btrfs_root *root; 61 }; 62 63 static const struct inode_operations btrfs_dir_inode_operations; 64 static const struct inode_operations btrfs_symlink_inode_operations; 65 static const struct inode_operations btrfs_dir_ro_inode_operations; 66 static const struct inode_operations btrfs_special_inode_operations; 67 static const struct inode_operations btrfs_file_inode_operations; 68 static const struct address_space_operations btrfs_aops; 69 static const struct address_space_operations btrfs_symlink_aops; 70 static const struct file_operations btrfs_dir_file_operations; 71 static struct extent_io_ops btrfs_extent_io_ops; 72 73 static struct kmem_cache *btrfs_inode_cachep; 74 static struct kmem_cache *btrfs_delalloc_work_cachep; 75 struct kmem_cache *btrfs_trans_handle_cachep; 76 struct kmem_cache *btrfs_transaction_cachep; 77 struct kmem_cache *btrfs_path_cachep; 78 struct kmem_cache *btrfs_free_space_cachep; 79 80 #define S_SHIFT 12 81 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 82 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 83 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 84 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 85 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 86 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 87 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 88 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 89 }; 90 91 static int btrfs_setsize(struct inode *inode, loff_t newsize); 92 static int btrfs_truncate(struct inode *inode); 93 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 94 static noinline int cow_file_range(struct inode *inode, 95 struct page *locked_page, 96 u64 start, u64 end, int *page_started, 97 unsigned long *nr_written, int unlock); 98 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 99 u64 len, u64 orig_start, 100 u64 block_start, u64 block_len, 101 u64 orig_block_len, int type); 102 103 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 104 struct inode *inode, struct inode *dir, 105 const struct qstr *qstr) 106 { 107 int err; 108 109 err = btrfs_init_acl(trans, inode, dir); 110 if (!err) 111 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 112 return err; 113 } 114 115 /* 116 * this does all the hard work for inserting an inline extent into 117 * the btree. The caller should have done a btrfs_drop_extents so that 118 * no overlapping inline items exist in the btree 119 */ 120 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 121 struct btrfs_root *root, struct inode *inode, 122 u64 start, size_t size, size_t compressed_size, 123 int compress_type, 124 struct page **compressed_pages) 125 { 126 struct btrfs_key key; 127 struct btrfs_path *path; 128 struct extent_buffer *leaf; 129 struct page *page = NULL; 130 char *kaddr; 131 unsigned long ptr; 132 struct btrfs_file_extent_item *ei; 133 int err = 0; 134 int ret; 135 size_t cur_size = size; 136 size_t datasize; 137 unsigned long offset; 138 139 if (compressed_size && compressed_pages) 140 cur_size = compressed_size; 141 142 path = btrfs_alloc_path(); 143 if (!path) 144 return -ENOMEM; 145 146 path->leave_spinning = 1; 147 148 key.objectid = btrfs_ino(inode); 149 key.offset = start; 150 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 151 datasize = btrfs_file_extent_calc_inline_size(cur_size); 152 153 inode_add_bytes(inode, size); 154 ret = btrfs_insert_empty_item(trans, root, path, &key, 155 datasize); 156 if (ret) { 157 err = ret; 158 goto fail; 159 } 160 leaf = path->nodes[0]; 161 ei = btrfs_item_ptr(leaf, path->slots[0], 162 struct btrfs_file_extent_item); 163 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 164 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 165 btrfs_set_file_extent_encryption(leaf, ei, 0); 166 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 167 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 168 ptr = btrfs_file_extent_inline_start(ei); 169 170 if (compress_type != BTRFS_COMPRESS_NONE) { 171 struct page *cpage; 172 int i = 0; 173 while (compressed_size > 0) { 174 cpage = compressed_pages[i]; 175 cur_size = min_t(unsigned long, compressed_size, 176 PAGE_CACHE_SIZE); 177 178 kaddr = kmap_atomic(cpage); 179 write_extent_buffer(leaf, kaddr, ptr, cur_size); 180 kunmap_atomic(kaddr); 181 182 i++; 183 ptr += cur_size; 184 compressed_size -= cur_size; 185 } 186 btrfs_set_file_extent_compression(leaf, ei, 187 compress_type); 188 } else { 189 page = find_get_page(inode->i_mapping, 190 start >> PAGE_CACHE_SHIFT); 191 btrfs_set_file_extent_compression(leaf, ei, 0); 192 kaddr = kmap_atomic(page); 193 offset = start & (PAGE_CACHE_SIZE - 1); 194 write_extent_buffer(leaf, kaddr + offset, ptr, size); 195 kunmap_atomic(kaddr); 196 page_cache_release(page); 197 } 198 btrfs_mark_buffer_dirty(leaf); 199 btrfs_free_path(path); 200 201 /* 202 * we're an inline extent, so nobody can 203 * extend the file past i_size without locking 204 * a page we already have locked. 205 * 206 * We must do any isize and inode updates 207 * before we unlock the pages. Otherwise we 208 * could end up racing with unlink. 209 */ 210 BTRFS_I(inode)->disk_i_size = inode->i_size; 211 ret = btrfs_update_inode(trans, root, inode); 212 213 return ret; 214 fail: 215 btrfs_free_path(path); 216 return err; 217 } 218 219 220 /* 221 * conditionally insert an inline extent into the file. This 222 * does the checks required to make sure the data is small enough 223 * to fit as an inline extent. 224 */ 225 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 226 struct btrfs_root *root, 227 struct inode *inode, u64 start, u64 end, 228 size_t compressed_size, int compress_type, 229 struct page **compressed_pages) 230 { 231 u64 isize = i_size_read(inode); 232 u64 actual_end = min(end + 1, isize); 233 u64 inline_len = actual_end - start; 234 u64 aligned_end = (end + root->sectorsize - 1) & 235 ~((u64)root->sectorsize - 1); 236 u64 data_len = inline_len; 237 int ret; 238 239 if (compressed_size) 240 data_len = compressed_size; 241 242 if (start > 0 || 243 actual_end >= PAGE_CACHE_SIZE || 244 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 245 (!compressed_size && 246 (actual_end & (root->sectorsize - 1)) == 0) || 247 end + 1 < isize || 248 data_len > root->fs_info->max_inline) { 249 return 1; 250 } 251 252 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1); 253 if (ret) 254 return ret; 255 256 if (isize > actual_end) 257 inline_len = min_t(u64, isize, actual_end); 258 ret = insert_inline_extent(trans, root, inode, start, 259 inline_len, compressed_size, 260 compress_type, compressed_pages); 261 if (ret && ret != -ENOSPC) { 262 btrfs_abort_transaction(trans, root, ret); 263 return ret; 264 } else if (ret == -ENOSPC) { 265 return 1; 266 } 267 268 btrfs_delalloc_release_metadata(inode, end + 1 - start); 269 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 270 return 0; 271 } 272 273 struct async_extent { 274 u64 start; 275 u64 ram_size; 276 u64 compressed_size; 277 struct page **pages; 278 unsigned long nr_pages; 279 int compress_type; 280 struct list_head list; 281 }; 282 283 struct async_cow { 284 struct inode *inode; 285 struct btrfs_root *root; 286 struct page *locked_page; 287 u64 start; 288 u64 end; 289 struct list_head extents; 290 struct btrfs_work work; 291 }; 292 293 static noinline int add_async_extent(struct async_cow *cow, 294 u64 start, u64 ram_size, 295 u64 compressed_size, 296 struct page **pages, 297 unsigned long nr_pages, 298 int compress_type) 299 { 300 struct async_extent *async_extent; 301 302 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 303 BUG_ON(!async_extent); /* -ENOMEM */ 304 async_extent->start = start; 305 async_extent->ram_size = ram_size; 306 async_extent->compressed_size = compressed_size; 307 async_extent->pages = pages; 308 async_extent->nr_pages = nr_pages; 309 async_extent->compress_type = compress_type; 310 list_add_tail(&async_extent->list, &cow->extents); 311 return 0; 312 } 313 314 /* 315 * we create compressed extents in two phases. The first 316 * phase compresses a range of pages that have already been 317 * locked (both pages and state bits are locked). 318 * 319 * This is done inside an ordered work queue, and the compression 320 * is spread across many cpus. The actual IO submission is step 321 * two, and the ordered work queue takes care of making sure that 322 * happens in the same order things were put onto the queue by 323 * writepages and friends. 324 * 325 * If this code finds it can't get good compression, it puts an 326 * entry onto the work queue to write the uncompressed bytes. This 327 * makes sure that both compressed inodes and uncompressed inodes 328 * are written in the same order that the flusher thread sent them 329 * down. 330 */ 331 static noinline int compress_file_range(struct inode *inode, 332 struct page *locked_page, 333 u64 start, u64 end, 334 struct async_cow *async_cow, 335 int *num_added) 336 { 337 struct btrfs_root *root = BTRFS_I(inode)->root; 338 struct btrfs_trans_handle *trans; 339 u64 num_bytes; 340 u64 blocksize = root->sectorsize; 341 u64 actual_end; 342 u64 isize = i_size_read(inode); 343 int ret = 0; 344 struct page **pages = NULL; 345 unsigned long nr_pages; 346 unsigned long nr_pages_ret = 0; 347 unsigned long total_compressed = 0; 348 unsigned long total_in = 0; 349 unsigned long max_compressed = 128 * 1024; 350 unsigned long max_uncompressed = 128 * 1024; 351 int i; 352 int will_compress; 353 int compress_type = root->fs_info->compress_type; 354 355 /* if this is a small write inside eof, kick off a defrag */ 356 if ((end - start + 1) < 16 * 1024 && 357 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 358 btrfs_add_inode_defrag(NULL, inode); 359 360 actual_end = min_t(u64, isize, end + 1); 361 again: 362 will_compress = 0; 363 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 364 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 365 366 /* 367 * we don't want to send crud past the end of i_size through 368 * compression, that's just a waste of CPU time. So, if the 369 * end of the file is before the start of our current 370 * requested range of bytes, we bail out to the uncompressed 371 * cleanup code that can deal with all of this. 372 * 373 * It isn't really the fastest way to fix things, but this is a 374 * very uncommon corner. 375 */ 376 if (actual_end <= start) 377 goto cleanup_and_bail_uncompressed; 378 379 total_compressed = actual_end - start; 380 381 /* we want to make sure that amount of ram required to uncompress 382 * an extent is reasonable, so we limit the total size in ram 383 * of a compressed extent to 128k. This is a crucial number 384 * because it also controls how easily we can spread reads across 385 * cpus for decompression. 386 * 387 * We also want to make sure the amount of IO required to do 388 * a random read is reasonably small, so we limit the size of 389 * a compressed extent to 128k. 390 */ 391 total_compressed = min(total_compressed, max_uncompressed); 392 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 393 num_bytes = max(blocksize, num_bytes); 394 total_in = 0; 395 ret = 0; 396 397 /* 398 * we do compression for mount -o compress and when the 399 * inode has not been flagged as nocompress. This flag can 400 * change at any time if we discover bad compression ratios. 401 */ 402 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 403 (btrfs_test_opt(root, COMPRESS) || 404 (BTRFS_I(inode)->force_compress) || 405 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 406 WARN_ON(pages); 407 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 408 if (!pages) { 409 /* just bail out to the uncompressed code */ 410 goto cont; 411 } 412 413 if (BTRFS_I(inode)->force_compress) 414 compress_type = BTRFS_I(inode)->force_compress; 415 416 ret = btrfs_compress_pages(compress_type, 417 inode->i_mapping, start, 418 total_compressed, pages, 419 nr_pages, &nr_pages_ret, 420 &total_in, 421 &total_compressed, 422 max_compressed); 423 424 if (!ret) { 425 unsigned long offset = total_compressed & 426 (PAGE_CACHE_SIZE - 1); 427 struct page *page = pages[nr_pages_ret - 1]; 428 char *kaddr; 429 430 /* zero the tail end of the last page, we might be 431 * sending it down to disk 432 */ 433 if (offset) { 434 kaddr = kmap_atomic(page); 435 memset(kaddr + offset, 0, 436 PAGE_CACHE_SIZE - offset); 437 kunmap_atomic(kaddr); 438 } 439 will_compress = 1; 440 } 441 } 442 cont: 443 if (start == 0) { 444 trans = btrfs_join_transaction(root); 445 if (IS_ERR(trans)) { 446 ret = PTR_ERR(trans); 447 trans = NULL; 448 goto cleanup_and_out; 449 } 450 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 451 452 /* lets try to make an inline extent */ 453 if (ret || total_in < (actual_end - start)) { 454 /* we didn't compress the entire range, try 455 * to make an uncompressed inline extent. 456 */ 457 ret = cow_file_range_inline(trans, root, inode, 458 start, end, 0, 0, NULL); 459 } else { 460 /* try making a compressed inline extent */ 461 ret = cow_file_range_inline(trans, root, inode, 462 start, end, 463 total_compressed, 464 compress_type, pages); 465 } 466 if (ret <= 0) { 467 /* 468 * inline extent creation worked or returned error, 469 * we don't need to create any more async work items. 470 * Unlock and free up our temp pages. 471 */ 472 extent_clear_unlock_delalloc(inode, 473 &BTRFS_I(inode)->io_tree, 474 start, end, NULL, 475 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 476 EXTENT_CLEAR_DELALLOC | 477 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 478 479 btrfs_end_transaction(trans, root); 480 goto free_pages_out; 481 } 482 btrfs_end_transaction(trans, root); 483 } 484 485 if (will_compress) { 486 /* 487 * we aren't doing an inline extent round the compressed size 488 * up to a block size boundary so the allocator does sane 489 * things 490 */ 491 total_compressed = (total_compressed + blocksize - 1) & 492 ~(blocksize - 1); 493 494 /* 495 * one last check to make sure the compression is really a 496 * win, compare the page count read with the blocks on disk 497 */ 498 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 499 ~(PAGE_CACHE_SIZE - 1); 500 if (total_compressed >= total_in) { 501 will_compress = 0; 502 } else { 503 num_bytes = total_in; 504 } 505 } 506 if (!will_compress && pages) { 507 /* 508 * the compression code ran but failed to make things smaller, 509 * free any pages it allocated and our page pointer array 510 */ 511 for (i = 0; i < nr_pages_ret; i++) { 512 WARN_ON(pages[i]->mapping); 513 page_cache_release(pages[i]); 514 } 515 kfree(pages); 516 pages = NULL; 517 total_compressed = 0; 518 nr_pages_ret = 0; 519 520 /* flag the file so we don't compress in the future */ 521 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 522 !(BTRFS_I(inode)->force_compress)) { 523 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 524 } 525 } 526 if (will_compress) { 527 *num_added += 1; 528 529 /* the async work queues will take care of doing actual 530 * allocation on disk for these compressed pages, 531 * and will submit them to the elevator. 532 */ 533 add_async_extent(async_cow, start, num_bytes, 534 total_compressed, pages, nr_pages_ret, 535 compress_type); 536 537 if (start + num_bytes < end) { 538 start += num_bytes; 539 pages = NULL; 540 cond_resched(); 541 goto again; 542 } 543 } else { 544 cleanup_and_bail_uncompressed: 545 /* 546 * No compression, but we still need to write the pages in 547 * the file we've been given so far. redirty the locked 548 * page if it corresponds to our extent and set things up 549 * for the async work queue to run cow_file_range to do 550 * the normal delalloc dance 551 */ 552 if (page_offset(locked_page) >= start && 553 page_offset(locked_page) <= end) { 554 __set_page_dirty_nobuffers(locked_page); 555 /* unlocked later on in the async handlers */ 556 } 557 add_async_extent(async_cow, start, end - start + 1, 558 0, NULL, 0, BTRFS_COMPRESS_NONE); 559 *num_added += 1; 560 } 561 562 out: 563 return ret; 564 565 free_pages_out: 566 for (i = 0; i < nr_pages_ret; i++) { 567 WARN_ON(pages[i]->mapping); 568 page_cache_release(pages[i]); 569 } 570 kfree(pages); 571 572 goto out; 573 574 cleanup_and_out: 575 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 576 start, end, NULL, 577 EXTENT_CLEAR_UNLOCK_PAGE | 578 EXTENT_CLEAR_DIRTY | 579 EXTENT_CLEAR_DELALLOC | 580 EXTENT_SET_WRITEBACK | 581 EXTENT_END_WRITEBACK); 582 if (!trans || IS_ERR(trans)) 583 btrfs_error(root->fs_info, ret, "Failed to join transaction"); 584 else 585 btrfs_abort_transaction(trans, root, ret); 586 goto free_pages_out; 587 } 588 589 /* 590 * phase two of compressed writeback. This is the ordered portion 591 * of the code, which only gets called in the order the work was 592 * queued. We walk all the async extents created by compress_file_range 593 * and send them down to the disk. 594 */ 595 static noinline int submit_compressed_extents(struct inode *inode, 596 struct async_cow *async_cow) 597 { 598 struct async_extent *async_extent; 599 u64 alloc_hint = 0; 600 struct btrfs_trans_handle *trans; 601 struct btrfs_key ins; 602 struct extent_map *em; 603 struct btrfs_root *root = BTRFS_I(inode)->root; 604 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 605 struct extent_io_tree *io_tree; 606 int ret = 0; 607 608 if (list_empty(&async_cow->extents)) 609 return 0; 610 611 612 while (!list_empty(&async_cow->extents)) { 613 async_extent = list_entry(async_cow->extents.next, 614 struct async_extent, list); 615 list_del(&async_extent->list); 616 617 io_tree = &BTRFS_I(inode)->io_tree; 618 619 retry: 620 /* did the compression code fall back to uncompressed IO? */ 621 if (!async_extent->pages) { 622 int page_started = 0; 623 unsigned long nr_written = 0; 624 625 lock_extent(io_tree, async_extent->start, 626 async_extent->start + 627 async_extent->ram_size - 1); 628 629 /* allocate blocks */ 630 ret = cow_file_range(inode, async_cow->locked_page, 631 async_extent->start, 632 async_extent->start + 633 async_extent->ram_size - 1, 634 &page_started, &nr_written, 0); 635 636 /* JDM XXX */ 637 638 /* 639 * if page_started, cow_file_range inserted an 640 * inline extent and took care of all the unlocking 641 * and IO for us. Otherwise, we need to submit 642 * all those pages down to the drive. 643 */ 644 if (!page_started && !ret) 645 extent_write_locked_range(io_tree, 646 inode, async_extent->start, 647 async_extent->start + 648 async_extent->ram_size - 1, 649 btrfs_get_extent, 650 WB_SYNC_ALL); 651 kfree(async_extent); 652 cond_resched(); 653 continue; 654 } 655 656 lock_extent(io_tree, async_extent->start, 657 async_extent->start + async_extent->ram_size - 1); 658 659 trans = btrfs_join_transaction(root); 660 if (IS_ERR(trans)) { 661 ret = PTR_ERR(trans); 662 } else { 663 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 664 ret = btrfs_reserve_extent(trans, root, 665 async_extent->compressed_size, 666 async_extent->compressed_size, 667 0, alloc_hint, &ins, 1); 668 if (ret && ret != -ENOSPC) 669 btrfs_abort_transaction(trans, root, ret); 670 btrfs_end_transaction(trans, root); 671 } 672 673 if (ret) { 674 int i; 675 for (i = 0; i < async_extent->nr_pages; i++) { 676 WARN_ON(async_extent->pages[i]->mapping); 677 page_cache_release(async_extent->pages[i]); 678 } 679 kfree(async_extent->pages); 680 async_extent->nr_pages = 0; 681 async_extent->pages = NULL; 682 unlock_extent(io_tree, async_extent->start, 683 async_extent->start + 684 async_extent->ram_size - 1); 685 if (ret == -ENOSPC) 686 goto retry; 687 goto out_free; /* JDM: Requeue? */ 688 } 689 690 /* 691 * here we're doing allocation and writeback of the 692 * compressed pages 693 */ 694 btrfs_drop_extent_cache(inode, async_extent->start, 695 async_extent->start + 696 async_extent->ram_size - 1, 0); 697 698 em = alloc_extent_map(); 699 BUG_ON(!em); /* -ENOMEM */ 700 em->start = async_extent->start; 701 em->len = async_extent->ram_size; 702 em->orig_start = em->start; 703 704 em->block_start = ins.objectid; 705 em->block_len = ins.offset; 706 em->orig_block_len = ins.offset; 707 em->bdev = root->fs_info->fs_devices->latest_bdev; 708 em->compress_type = async_extent->compress_type; 709 set_bit(EXTENT_FLAG_PINNED, &em->flags); 710 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 711 em->generation = -1; 712 713 while (1) { 714 write_lock(&em_tree->lock); 715 ret = add_extent_mapping(em_tree, em); 716 if (!ret) 717 list_move(&em->list, 718 &em_tree->modified_extents); 719 write_unlock(&em_tree->lock); 720 if (ret != -EEXIST) { 721 free_extent_map(em); 722 break; 723 } 724 btrfs_drop_extent_cache(inode, async_extent->start, 725 async_extent->start + 726 async_extent->ram_size - 1, 0); 727 } 728 729 ret = btrfs_add_ordered_extent_compress(inode, 730 async_extent->start, 731 ins.objectid, 732 async_extent->ram_size, 733 ins.offset, 734 BTRFS_ORDERED_COMPRESSED, 735 async_extent->compress_type); 736 BUG_ON(ret); /* -ENOMEM */ 737 738 /* 739 * clear dirty, set writeback and unlock the pages. 740 */ 741 extent_clear_unlock_delalloc(inode, 742 &BTRFS_I(inode)->io_tree, 743 async_extent->start, 744 async_extent->start + 745 async_extent->ram_size - 1, 746 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 747 EXTENT_CLEAR_UNLOCK | 748 EXTENT_CLEAR_DELALLOC | 749 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 750 751 ret = btrfs_submit_compressed_write(inode, 752 async_extent->start, 753 async_extent->ram_size, 754 ins.objectid, 755 ins.offset, async_extent->pages, 756 async_extent->nr_pages); 757 758 BUG_ON(ret); /* -ENOMEM */ 759 alloc_hint = ins.objectid + ins.offset; 760 kfree(async_extent); 761 cond_resched(); 762 } 763 ret = 0; 764 out: 765 return ret; 766 out_free: 767 kfree(async_extent); 768 goto out; 769 } 770 771 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 772 u64 num_bytes) 773 { 774 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 775 struct extent_map *em; 776 u64 alloc_hint = 0; 777 778 read_lock(&em_tree->lock); 779 em = search_extent_mapping(em_tree, start, num_bytes); 780 if (em) { 781 /* 782 * if block start isn't an actual block number then find the 783 * first block in this inode and use that as a hint. If that 784 * block is also bogus then just don't worry about it. 785 */ 786 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 787 free_extent_map(em); 788 em = search_extent_mapping(em_tree, 0, 0); 789 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 790 alloc_hint = em->block_start; 791 if (em) 792 free_extent_map(em); 793 } else { 794 alloc_hint = em->block_start; 795 free_extent_map(em); 796 } 797 } 798 read_unlock(&em_tree->lock); 799 800 return alloc_hint; 801 } 802 803 /* 804 * when extent_io.c finds a delayed allocation range in the file, 805 * the call backs end up in this code. The basic idea is to 806 * allocate extents on disk for the range, and create ordered data structs 807 * in ram to track those extents. 808 * 809 * locked_page is the page that writepage had locked already. We use 810 * it to make sure we don't do extra locks or unlocks. 811 * 812 * *page_started is set to one if we unlock locked_page and do everything 813 * required to start IO on it. It may be clean and already done with 814 * IO when we return. 815 */ 816 static noinline int __cow_file_range(struct btrfs_trans_handle *trans, 817 struct inode *inode, 818 struct btrfs_root *root, 819 struct page *locked_page, 820 u64 start, u64 end, int *page_started, 821 unsigned long *nr_written, 822 int unlock) 823 { 824 u64 alloc_hint = 0; 825 u64 num_bytes; 826 unsigned long ram_size; 827 u64 disk_num_bytes; 828 u64 cur_alloc_size; 829 u64 blocksize = root->sectorsize; 830 struct btrfs_key ins; 831 struct extent_map *em; 832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 833 int ret = 0; 834 835 BUG_ON(btrfs_is_free_space_inode(inode)); 836 837 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 838 num_bytes = max(blocksize, num_bytes); 839 disk_num_bytes = num_bytes; 840 841 /* if this is a small write inside eof, kick off defrag */ 842 if (num_bytes < 64 * 1024 && 843 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 844 btrfs_add_inode_defrag(trans, inode); 845 846 if (start == 0) { 847 /* lets try to make an inline extent */ 848 ret = cow_file_range_inline(trans, root, inode, 849 start, end, 0, 0, NULL); 850 if (ret == 0) { 851 extent_clear_unlock_delalloc(inode, 852 &BTRFS_I(inode)->io_tree, 853 start, end, NULL, 854 EXTENT_CLEAR_UNLOCK_PAGE | 855 EXTENT_CLEAR_UNLOCK | 856 EXTENT_CLEAR_DELALLOC | 857 EXTENT_CLEAR_DIRTY | 858 EXTENT_SET_WRITEBACK | 859 EXTENT_END_WRITEBACK); 860 861 *nr_written = *nr_written + 862 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 863 *page_started = 1; 864 goto out; 865 } else if (ret < 0) { 866 btrfs_abort_transaction(trans, root, ret); 867 goto out_unlock; 868 } 869 } 870 871 BUG_ON(disk_num_bytes > 872 btrfs_super_total_bytes(root->fs_info->super_copy)); 873 874 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 875 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 876 877 while (disk_num_bytes > 0) { 878 unsigned long op; 879 880 cur_alloc_size = disk_num_bytes; 881 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 882 root->sectorsize, 0, alloc_hint, 883 &ins, 1); 884 if (ret < 0) { 885 btrfs_abort_transaction(trans, root, ret); 886 goto out_unlock; 887 } 888 889 em = alloc_extent_map(); 890 BUG_ON(!em); /* -ENOMEM */ 891 em->start = start; 892 em->orig_start = em->start; 893 ram_size = ins.offset; 894 em->len = ins.offset; 895 896 em->block_start = ins.objectid; 897 em->block_len = ins.offset; 898 em->orig_block_len = ins.offset; 899 em->bdev = root->fs_info->fs_devices->latest_bdev; 900 set_bit(EXTENT_FLAG_PINNED, &em->flags); 901 em->generation = -1; 902 903 while (1) { 904 write_lock(&em_tree->lock); 905 ret = add_extent_mapping(em_tree, em); 906 if (!ret) 907 list_move(&em->list, 908 &em_tree->modified_extents); 909 write_unlock(&em_tree->lock); 910 if (ret != -EEXIST) { 911 free_extent_map(em); 912 break; 913 } 914 btrfs_drop_extent_cache(inode, start, 915 start + ram_size - 1, 0); 916 } 917 918 cur_alloc_size = ins.offset; 919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 920 ram_size, cur_alloc_size, 0); 921 BUG_ON(ret); /* -ENOMEM */ 922 923 if (root->root_key.objectid == 924 BTRFS_DATA_RELOC_TREE_OBJECTID) { 925 ret = btrfs_reloc_clone_csums(inode, start, 926 cur_alloc_size); 927 if (ret) { 928 btrfs_abort_transaction(trans, root, ret); 929 goto out_unlock; 930 } 931 } 932 933 if (disk_num_bytes < cur_alloc_size) 934 break; 935 936 /* we're not doing compressed IO, don't unlock the first 937 * page (which the caller expects to stay locked), don't 938 * clear any dirty bits and don't set any writeback bits 939 * 940 * Do set the Private2 bit so we know this page was properly 941 * setup for writepage 942 */ 943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 945 EXTENT_SET_PRIVATE2; 946 947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 948 start, start + ram_size - 1, 949 locked_page, op); 950 disk_num_bytes -= cur_alloc_size; 951 num_bytes -= cur_alloc_size; 952 alloc_hint = ins.objectid + ins.offset; 953 start += cur_alloc_size; 954 } 955 out: 956 return ret; 957 958 out_unlock: 959 extent_clear_unlock_delalloc(inode, 960 &BTRFS_I(inode)->io_tree, 961 start, end, locked_page, 962 EXTENT_CLEAR_UNLOCK_PAGE | 963 EXTENT_CLEAR_UNLOCK | 964 EXTENT_CLEAR_DELALLOC | 965 EXTENT_CLEAR_DIRTY | 966 EXTENT_SET_WRITEBACK | 967 EXTENT_END_WRITEBACK); 968 969 goto out; 970 } 971 972 static noinline int cow_file_range(struct inode *inode, 973 struct page *locked_page, 974 u64 start, u64 end, int *page_started, 975 unsigned long *nr_written, 976 int unlock) 977 { 978 struct btrfs_trans_handle *trans; 979 struct btrfs_root *root = BTRFS_I(inode)->root; 980 int ret; 981 982 trans = btrfs_join_transaction(root); 983 if (IS_ERR(trans)) { 984 extent_clear_unlock_delalloc(inode, 985 &BTRFS_I(inode)->io_tree, 986 start, end, locked_page, 987 EXTENT_CLEAR_UNLOCK_PAGE | 988 EXTENT_CLEAR_UNLOCK | 989 EXTENT_CLEAR_DELALLOC | 990 EXTENT_CLEAR_DIRTY | 991 EXTENT_SET_WRITEBACK | 992 EXTENT_END_WRITEBACK); 993 return PTR_ERR(trans); 994 } 995 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 996 997 ret = __cow_file_range(trans, inode, root, locked_page, start, end, 998 page_started, nr_written, unlock); 999 1000 btrfs_end_transaction(trans, root); 1001 1002 return ret; 1003 } 1004 1005 /* 1006 * work queue call back to started compression on a file and pages 1007 */ 1008 static noinline void async_cow_start(struct btrfs_work *work) 1009 { 1010 struct async_cow *async_cow; 1011 int num_added = 0; 1012 async_cow = container_of(work, struct async_cow, work); 1013 1014 compress_file_range(async_cow->inode, async_cow->locked_page, 1015 async_cow->start, async_cow->end, async_cow, 1016 &num_added); 1017 if (num_added == 0) { 1018 btrfs_add_delayed_iput(async_cow->inode); 1019 async_cow->inode = NULL; 1020 } 1021 } 1022 1023 /* 1024 * work queue call back to submit previously compressed pages 1025 */ 1026 static noinline void async_cow_submit(struct btrfs_work *work) 1027 { 1028 struct async_cow *async_cow; 1029 struct btrfs_root *root; 1030 unsigned long nr_pages; 1031 1032 async_cow = container_of(work, struct async_cow, work); 1033 1034 root = async_cow->root; 1035 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 1036 PAGE_CACHE_SHIFT; 1037 1038 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) < 1039 5 * 1024 * 1024 && 1040 waitqueue_active(&root->fs_info->async_submit_wait)) 1041 wake_up(&root->fs_info->async_submit_wait); 1042 1043 if (async_cow->inode) 1044 submit_compressed_extents(async_cow->inode, async_cow); 1045 } 1046 1047 static noinline void async_cow_free(struct btrfs_work *work) 1048 { 1049 struct async_cow *async_cow; 1050 async_cow = container_of(work, struct async_cow, work); 1051 if (async_cow->inode) 1052 btrfs_add_delayed_iput(async_cow->inode); 1053 kfree(async_cow); 1054 } 1055 1056 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 1057 u64 start, u64 end, int *page_started, 1058 unsigned long *nr_written) 1059 { 1060 struct async_cow *async_cow; 1061 struct btrfs_root *root = BTRFS_I(inode)->root; 1062 unsigned long nr_pages; 1063 u64 cur_end; 1064 int limit = 10 * 1024 * 1024; 1065 1066 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 1067 1, 0, NULL, GFP_NOFS); 1068 while (start < end) { 1069 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 1070 BUG_ON(!async_cow); /* -ENOMEM */ 1071 async_cow->inode = igrab(inode); 1072 async_cow->root = root; 1073 async_cow->locked_page = locked_page; 1074 async_cow->start = start; 1075 1076 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 1077 cur_end = end; 1078 else 1079 cur_end = min(end, start + 512 * 1024 - 1); 1080 1081 async_cow->end = cur_end; 1082 INIT_LIST_HEAD(&async_cow->extents); 1083 1084 async_cow->work.func = async_cow_start; 1085 async_cow->work.ordered_func = async_cow_submit; 1086 async_cow->work.ordered_free = async_cow_free; 1087 async_cow->work.flags = 0; 1088 1089 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 1090 PAGE_CACHE_SHIFT; 1091 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 1092 1093 btrfs_queue_worker(&root->fs_info->delalloc_workers, 1094 &async_cow->work); 1095 1096 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 1097 wait_event(root->fs_info->async_submit_wait, 1098 (atomic_read(&root->fs_info->async_delalloc_pages) < 1099 limit)); 1100 } 1101 1102 while (atomic_read(&root->fs_info->async_submit_draining) && 1103 atomic_read(&root->fs_info->async_delalloc_pages)) { 1104 wait_event(root->fs_info->async_submit_wait, 1105 (atomic_read(&root->fs_info->async_delalloc_pages) == 1106 0)); 1107 } 1108 1109 *nr_written += nr_pages; 1110 start = cur_end + 1; 1111 } 1112 *page_started = 1; 1113 return 0; 1114 } 1115 1116 static noinline int csum_exist_in_range(struct btrfs_root *root, 1117 u64 bytenr, u64 num_bytes) 1118 { 1119 int ret; 1120 struct btrfs_ordered_sum *sums; 1121 LIST_HEAD(list); 1122 1123 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1124 bytenr + num_bytes - 1, &list, 0); 1125 if (ret == 0 && list_empty(&list)) 1126 return 0; 1127 1128 while (!list_empty(&list)) { 1129 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1130 list_del(&sums->list); 1131 kfree(sums); 1132 } 1133 return 1; 1134 } 1135 1136 /* 1137 * when nowcow writeback call back. This checks for snapshots or COW copies 1138 * of the extents that exist in the file, and COWs the file as required. 1139 * 1140 * If no cow copies or snapshots exist, we write directly to the existing 1141 * blocks on disk 1142 */ 1143 static noinline int run_delalloc_nocow(struct inode *inode, 1144 struct page *locked_page, 1145 u64 start, u64 end, int *page_started, int force, 1146 unsigned long *nr_written) 1147 { 1148 struct btrfs_root *root = BTRFS_I(inode)->root; 1149 struct btrfs_trans_handle *trans; 1150 struct extent_buffer *leaf; 1151 struct btrfs_path *path; 1152 struct btrfs_file_extent_item *fi; 1153 struct btrfs_key found_key; 1154 u64 cow_start; 1155 u64 cur_offset; 1156 u64 extent_end; 1157 u64 extent_offset; 1158 u64 disk_bytenr; 1159 u64 num_bytes; 1160 u64 disk_num_bytes; 1161 int extent_type; 1162 int ret, err; 1163 int type; 1164 int nocow; 1165 int check_prev = 1; 1166 bool nolock; 1167 u64 ino = btrfs_ino(inode); 1168 1169 path = btrfs_alloc_path(); 1170 if (!path) { 1171 extent_clear_unlock_delalloc(inode, 1172 &BTRFS_I(inode)->io_tree, 1173 start, end, locked_page, 1174 EXTENT_CLEAR_UNLOCK_PAGE | 1175 EXTENT_CLEAR_UNLOCK | 1176 EXTENT_CLEAR_DELALLOC | 1177 EXTENT_CLEAR_DIRTY | 1178 EXTENT_SET_WRITEBACK | 1179 EXTENT_END_WRITEBACK); 1180 return -ENOMEM; 1181 } 1182 1183 nolock = btrfs_is_free_space_inode(inode); 1184 1185 if (nolock) 1186 trans = btrfs_join_transaction_nolock(root); 1187 else 1188 trans = btrfs_join_transaction(root); 1189 1190 if (IS_ERR(trans)) { 1191 extent_clear_unlock_delalloc(inode, 1192 &BTRFS_I(inode)->io_tree, 1193 start, end, locked_page, 1194 EXTENT_CLEAR_UNLOCK_PAGE | 1195 EXTENT_CLEAR_UNLOCK | 1196 EXTENT_CLEAR_DELALLOC | 1197 EXTENT_CLEAR_DIRTY | 1198 EXTENT_SET_WRITEBACK | 1199 EXTENT_END_WRITEBACK); 1200 btrfs_free_path(path); 1201 return PTR_ERR(trans); 1202 } 1203 1204 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1205 1206 cow_start = (u64)-1; 1207 cur_offset = start; 1208 while (1) { 1209 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1210 cur_offset, 0); 1211 if (ret < 0) { 1212 btrfs_abort_transaction(trans, root, ret); 1213 goto error; 1214 } 1215 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1216 leaf = path->nodes[0]; 1217 btrfs_item_key_to_cpu(leaf, &found_key, 1218 path->slots[0] - 1); 1219 if (found_key.objectid == ino && 1220 found_key.type == BTRFS_EXTENT_DATA_KEY) 1221 path->slots[0]--; 1222 } 1223 check_prev = 0; 1224 next_slot: 1225 leaf = path->nodes[0]; 1226 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1227 ret = btrfs_next_leaf(root, path); 1228 if (ret < 0) { 1229 btrfs_abort_transaction(trans, root, ret); 1230 goto error; 1231 } 1232 if (ret > 0) 1233 break; 1234 leaf = path->nodes[0]; 1235 } 1236 1237 nocow = 0; 1238 disk_bytenr = 0; 1239 num_bytes = 0; 1240 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1241 1242 if (found_key.objectid > ino || 1243 found_key.type > BTRFS_EXTENT_DATA_KEY || 1244 found_key.offset > end) 1245 break; 1246 1247 if (found_key.offset > cur_offset) { 1248 extent_end = found_key.offset; 1249 extent_type = 0; 1250 goto out_check; 1251 } 1252 1253 fi = btrfs_item_ptr(leaf, path->slots[0], 1254 struct btrfs_file_extent_item); 1255 extent_type = btrfs_file_extent_type(leaf, fi); 1256 1257 if (extent_type == BTRFS_FILE_EXTENT_REG || 1258 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1259 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1260 extent_offset = btrfs_file_extent_offset(leaf, fi); 1261 extent_end = found_key.offset + 1262 btrfs_file_extent_num_bytes(leaf, fi); 1263 disk_num_bytes = 1264 btrfs_file_extent_disk_num_bytes(leaf, fi); 1265 if (extent_end <= start) { 1266 path->slots[0]++; 1267 goto next_slot; 1268 } 1269 if (disk_bytenr == 0) 1270 goto out_check; 1271 if (btrfs_file_extent_compression(leaf, fi) || 1272 btrfs_file_extent_encryption(leaf, fi) || 1273 btrfs_file_extent_other_encoding(leaf, fi)) 1274 goto out_check; 1275 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1276 goto out_check; 1277 if (btrfs_extent_readonly(root, disk_bytenr)) 1278 goto out_check; 1279 if (btrfs_cross_ref_exist(trans, root, ino, 1280 found_key.offset - 1281 extent_offset, disk_bytenr)) 1282 goto out_check; 1283 disk_bytenr += extent_offset; 1284 disk_bytenr += cur_offset - found_key.offset; 1285 num_bytes = min(end + 1, extent_end) - cur_offset; 1286 /* 1287 * force cow if csum exists in the range. 1288 * this ensure that csum for a given extent are 1289 * either valid or do not exist. 1290 */ 1291 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1292 goto out_check; 1293 nocow = 1; 1294 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1295 extent_end = found_key.offset + 1296 btrfs_file_extent_inline_len(leaf, fi); 1297 extent_end = ALIGN(extent_end, root->sectorsize); 1298 } else { 1299 BUG_ON(1); 1300 } 1301 out_check: 1302 if (extent_end <= start) { 1303 path->slots[0]++; 1304 goto next_slot; 1305 } 1306 if (!nocow) { 1307 if (cow_start == (u64)-1) 1308 cow_start = cur_offset; 1309 cur_offset = extent_end; 1310 if (cur_offset > end) 1311 break; 1312 path->slots[0]++; 1313 goto next_slot; 1314 } 1315 1316 btrfs_release_path(path); 1317 if (cow_start != (u64)-1) { 1318 ret = __cow_file_range(trans, inode, root, locked_page, 1319 cow_start, found_key.offset - 1, 1320 page_started, nr_written, 1); 1321 if (ret) { 1322 btrfs_abort_transaction(trans, root, ret); 1323 goto error; 1324 } 1325 cow_start = (u64)-1; 1326 } 1327 1328 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1329 struct extent_map *em; 1330 struct extent_map_tree *em_tree; 1331 em_tree = &BTRFS_I(inode)->extent_tree; 1332 em = alloc_extent_map(); 1333 BUG_ON(!em); /* -ENOMEM */ 1334 em->start = cur_offset; 1335 em->orig_start = found_key.offset - extent_offset; 1336 em->len = num_bytes; 1337 em->block_len = num_bytes; 1338 em->block_start = disk_bytenr; 1339 em->orig_block_len = disk_num_bytes; 1340 em->bdev = root->fs_info->fs_devices->latest_bdev; 1341 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1342 set_bit(EXTENT_FLAG_FILLING, &em->flags); 1343 em->generation = -1; 1344 while (1) { 1345 write_lock(&em_tree->lock); 1346 ret = add_extent_mapping(em_tree, em); 1347 if (!ret) 1348 list_move(&em->list, 1349 &em_tree->modified_extents); 1350 write_unlock(&em_tree->lock); 1351 if (ret != -EEXIST) { 1352 free_extent_map(em); 1353 break; 1354 } 1355 btrfs_drop_extent_cache(inode, em->start, 1356 em->start + em->len - 1, 0); 1357 } 1358 type = BTRFS_ORDERED_PREALLOC; 1359 } else { 1360 type = BTRFS_ORDERED_NOCOW; 1361 } 1362 1363 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1364 num_bytes, num_bytes, type); 1365 BUG_ON(ret); /* -ENOMEM */ 1366 1367 if (root->root_key.objectid == 1368 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1369 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1370 num_bytes); 1371 if (ret) { 1372 btrfs_abort_transaction(trans, root, ret); 1373 goto error; 1374 } 1375 } 1376 1377 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1378 cur_offset, cur_offset + num_bytes - 1, 1379 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1380 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1381 EXTENT_SET_PRIVATE2); 1382 cur_offset = extent_end; 1383 if (cur_offset > end) 1384 break; 1385 } 1386 btrfs_release_path(path); 1387 1388 if (cur_offset <= end && cow_start == (u64)-1) { 1389 cow_start = cur_offset; 1390 cur_offset = end; 1391 } 1392 1393 if (cow_start != (u64)-1) { 1394 ret = __cow_file_range(trans, inode, root, locked_page, 1395 cow_start, end, 1396 page_started, nr_written, 1); 1397 if (ret) { 1398 btrfs_abort_transaction(trans, root, ret); 1399 goto error; 1400 } 1401 } 1402 1403 error: 1404 err = btrfs_end_transaction(trans, root); 1405 if (!ret) 1406 ret = err; 1407 1408 if (ret && cur_offset < end) 1409 extent_clear_unlock_delalloc(inode, 1410 &BTRFS_I(inode)->io_tree, 1411 cur_offset, end, locked_page, 1412 EXTENT_CLEAR_UNLOCK_PAGE | 1413 EXTENT_CLEAR_UNLOCK | 1414 EXTENT_CLEAR_DELALLOC | 1415 EXTENT_CLEAR_DIRTY | 1416 EXTENT_SET_WRITEBACK | 1417 EXTENT_END_WRITEBACK); 1418 1419 btrfs_free_path(path); 1420 return ret; 1421 } 1422 1423 /* 1424 * extent_io.c call back to do delayed allocation processing 1425 */ 1426 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1427 u64 start, u64 end, int *page_started, 1428 unsigned long *nr_written) 1429 { 1430 int ret; 1431 struct btrfs_root *root = BTRFS_I(inode)->root; 1432 1433 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) { 1434 ret = run_delalloc_nocow(inode, locked_page, start, end, 1435 page_started, 1, nr_written); 1436 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) { 1437 ret = run_delalloc_nocow(inode, locked_page, start, end, 1438 page_started, 0, nr_written); 1439 } else if (!btrfs_test_opt(root, COMPRESS) && 1440 !(BTRFS_I(inode)->force_compress) && 1441 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) { 1442 ret = cow_file_range(inode, locked_page, start, end, 1443 page_started, nr_written, 1); 1444 } else { 1445 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1446 &BTRFS_I(inode)->runtime_flags); 1447 ret = cow_file_range_async(inode, locked_page, start, end, 1448 page_started, nr_written); 1449 } 1450 return ret; 1451 } 1452 1453 static void btrfs_split_extent_hook(struct inode *inode, 1454 struct extent_state *orig, u64 split) 1455 { 1456 /* not delalloc, ignore it */ 1457 if (!(orig->state & EXTENT_DELALLOC)) 1458 return; 1459 1460 spin_lock(&BTRFS_I(inode)->lock); 1461 BTRFS_I(inode)->outstanding_extents++; 1462 spin_unlock(&BTRFS_I(inode)->lock); 1463 } 1464 1465 /* 1466 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1467 * extents so we can keep track of new extents that are just merged onto old 1468 * extents, such as when we are doing sequential writes, so we can properly 1469 * account for the metadata space we'll need. 1470 */ 1471 static void btrfs_merge_extent_hook(struct inode *inode, 1472 struct extent_state *new, 1473 struct extent_state *other) 1474 { 1475 /* not delalloc, ignore it */ 1476 if (!(other->state & EXTENT_DELALLOC)) 1477 return; 1478 1479 spin_lock(&BTRFS_I(inode)->lock); 1480 BTRFS_I(inode)->outstanding_extents--; 1481 spin_unlock(&BTRFS_I(inode)->lock); 1482 } 1483 1484 /* 1485 * extent_io.c set_bit_hook, used to track delayed allocation 1486 * bytes in this file, and to maintain the list of inodes that 1487 * have pending delalloc work to be done. 1488 */ 1489 static void btrfs_set_bit_hook(struct inode *inode, 1490 struct extent_state *state, int *bits) 1491 { 1492 1493 /* 1494 * set_bit and clear bit hooks normally require _irqsave/restore 1495 * but in this case, we are only testing for the DELALLOC 1496 * bit, which is only set or cleared with irqs on 1497 */ 1498 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1499 struct btrfs_root *root = BTRFS_I(inode)->root; 1500 u64 len = state->end + 1 - state->start; 1501 bool do_list = !btrfs_is_free_space_inode(inode); 1502 1503 if (*bits & EXTENT_FIRST_DELALLOC) { 1504 *bits &= ~EXTENT_FIRST_DELALLOC; 1505 } else { 1506 spin_lock(&BTRFS_I(inode)->lock); 1507 BTRFS_I(inode)->outstanding_extents++; 1508 spin_unlock(&BTRFS_I(inode)->lock); 1509 } 1510 1511 spin_lock(&root->fs_info->delalloc_lock); 1512 BTRFS_I(inode)->delalloc_bytes += len; 1513 root->fs_info->delalloc_bytes += len; 1514 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1515 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1516 &root->fs_info->delalloc_inodes); 1517 } 1518 spin_unlock(&root->fs_info->delalloc_lock); 1519 } 1520 } 1521 1522 /* 1523 * extent_io.c clear_bit_hook, see set_bit_hook for why 1524 */ 1525 static void btrfs_clear_bit_hook(struct inode *inode, 1526 struct extent_state *state, int *bits) 1527 { 1528 /* 1529 * set_bit and clear bit hooks normally require _irqsave/restore 1530 * but in this case, we are only testing for the DELALLOC 1531 * bit, which is only set or cleared with irqs on 1532 */ 1533 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1534 struct btrfs_root *root = BTRFS_I(inode)->root; 1535 u64 len = state->end + 1 - state->start; 1536 bool do_list = !btrfs_is_free_space_inode(inode); 1537 1538 if (*bits & EXTENT_FIRST_DELALLOC) { 1539 *bits &= ~EXTENT_FIRST_DELALLOC; 1540 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1541 spin_lock(&BTRFS_I(inode)->lock); 1542 BTRFS_I(inode)->outstanding_extents--; 1543 spin_unlock(&BTRFS_I(inode)->lock); 1544 } 1545 1546 if (*bits & EXTENT_DO_ACCOUNTING) 1547 btrfs_delalloc_release_metadata(inode, len); 1548 1549 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1550 && do_list) 1551 btrfs_free_reserved_data_space(inode, len); 1552 1553 spin_lock(&root->fs_info->delalloc_lock); 1554 root->fs_info->delalloc_bytes -= len; 1555 BTRFS_I(inode)->delalloc_bytes -= len; 1556 1557 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1558 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1559 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1560 } 1561 spin_unlock(&root->fs_info->delalloc_lock); 1562 } 1563 } 1564 1565 /* 1566 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1567 * we don't create bios that span stripes or chunks 1568 */ 1569 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1570 size_t size, struct bio *bio, 1571 unsigned long bio_flags) 1572 { 1573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1574 u64 logical = (u64)bio->bi_sector << 9; 1575 u64 length = 0; 1576 u64 map_length; 1577 int ret; 1578 1579 if (bio_flags & EXTENT_BIO_COMPRESSED) 1580 return 0; 1581 1582 length = bio->bi_size; 1583 map_length = length; 1584 ret = btrfs_map_block(root->fs_info, READ, logical, 1585 &map_length, NULL, 0); 1586 /* Will always return 0 with map_multi == NULL */ 1587 BUG_ON(ret < 0); 1588 if (map_length < length + size) 1589 return 1; 1590 return 0; 1591 } 1592 1593 /* 1594 * in order to insert checksums into the metadata in large chunks, 1595 * we wait until bio submission time. All the pages in the bio are 1596 * checksummed and sums are attached onto the ordered extent record. 1597 * 1598 * At IO completion time the cums attached on the ordered extent record 1599 * are inserted into the btree 1600 */ 1601 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1602 struct bio *bio, int mirror_num, 1603 unsigned long bio_flags, 1604 u64 bio_offset) 1605 { 1606 struct btrfs_root *root = BTRFS_I(inode)->root; 1607 int ret = 0; 1608 1609 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1610 BUG_ON(ret); /* -ENOMEM */ 1611 return 0; 1612 } 1613 1614 /* 1615 * in order to insert checksums into the metadata in large chunks, 1616 * we wait until bio submission time. All the pages in the bio are 1617 * checksummed and sums are attached onto the ordered extent record. 1618 * 1619 * At IO completion time the cums attached on the ordered extent record 1620 * are inserted into the btree 1621 */ 1622 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1623 int mirror_num, unsigned long bio_flags, 1624 u64 bio_offset) 1625 { 1626 struct btrfs_root *root = BTRFS_I(inode)->root; 1627 int ret; 1628 1629 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1); 1630 if (ret) 1631 bio_endio(bio, ret); 1632 return ret; 1633 } 1634 1635 /* 1636 * extent_io.c submission hook. This does the right thing for csum calculation 1637 * on write, or reading the csums from the tree before a read 1638 */ 1639 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1640 int mirror_num, unsigned long bio_flags, 1641 u64 bio_offset) 1642 { 1643 struct btrfs_root *root = BTRFS_I(inode)->root; 1644 int ret = 0; 1645 int skip_sum; 1646 int metadata = 0; 1647 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 1648 1649 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1650 1651 if (btrfs_is_free_space_inode(inode)) 1652 metadata = 2; 1653 1654 if (!(rw & REQ_WRITE)) { 1655 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata); 1656 if (ret) 1657 goto out; 1658 1659 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1660 ret = btrfs_submit_compressed_read(inode, bio, 1661 mirror_num, 1662 bio_flags); 1663 goto out; 1664 } else if (!skip_sum) { 1665 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1666 if (ret) 1667 goto out; 1668 } 1669 goto mapit; 1670 } else if (async && !skip_sum) { 1671 /* csum items have already been cloned */ 1672 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1673 goto mapit; 1674 /* we're doing a write, do the async checksumming */ 1675 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1676 inode, rw, bio, mirror_num, 1677 bio_flags, bio_offset, 1678 __btrfs_submit_bio_start, 1679 __btrfs_submit_bio_done); 1680 goto out; 1681 } else if (!skip_sum) { 1682 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1683 if (ret) 1684 goto out; 1685 } 1686 1687 mapit: 1688 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0); 1689 1690 out: 1691 if (ret < 0) 1692 bio_endio(bio, ret); 1693 return ret; 1694 } 1695 1696 /* 1697 * given a list of ordered sums record them in the inode. This happens 1698 * at IO completion time based on sums calculated at bio submission time. 1699 */ 1700 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1701 struct inode *inode, u64 file_offset, 1702 struct list_head *list) 1703 { 1704 struct btrfs_ordered_sum *sum; 1705 1706 list_for_each_entry(sum, list, list) { 1707 btrfs_csum_file_blocks(trans, 1708 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1709 } 1710 return 0; 1711 } 1712 1713 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1714 struct extent_state **cached_state) 1715 { 1716 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0); 1717 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1718 cached_state, GFP_NOFS); 1719 } 1720 1721 /* see btrfs_writepage_start_hook for details on why this is required */ 1722 struct btrfs_writepage_fixup { 1723 struct page *page; 1724 struct btrfs_work work; 1725 }; 1726 1727 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1728 { 1729 struct btrfs_writepage_fixup *fixup; 1730 struct btrfs_ordered_extent *ordered; 1731 struct extent_state *cached_state = NULL; 1732 struct page *page; 1733 struct inode *inode; 1734 u64 page_start; 1735 u64 page_end; 1736 int ret; 1737 1738 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1739 page = fixup->page; 1740 again: 1741 lock_page(page); 1742 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1743 ClearPageChecked(page); 1744 goto out_page; 1745 } 1746 1747 inode = page->mapping->host; 1748 page_start = page_offset(page); 1749 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1750 1751 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1752 &cached_state); 1753 1754 /* already ordered? We're done */ 1755 if (PagePrivate2(page)) 1756 goto out; 1757 1758 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1759 if (ordered) { 1760 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1761 page_end, &cached_state, GFP_NOFS); 1762 unlock_page(page); 1763 btrfs_start_ordered_extent(inode, ordered, 1); 1764 btrfs_put_ordered_extent(ordered); 1765 goto again; 1766 } 1767 1768 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 1769 if (ret) { 1770 mapping_set_error(page->mapping, ret); 1771 end_extent_writepage(page, ret, page_start, page_end); 1772 ClearPageChecked(page); 1773 goto out; 1774 } 1775 1776 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1777 ClearPageChecked(page); 1778 set_page_dirty(page); 1779 out: 1780 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1781 &cached_state, GFP_NOFS); 1782 out_page: 1783 unlock_page(page); 1784 page_cache_release(page); 1785 kfree(fixup); 1786 } 1787 1788 /* 1789 * There are a few paths in the higher layers of the kernel that directly 1790 * set the page dirty bit without asking the filesystem if it is a 1791 * good idea. This causes problems because we want to make sure COW 1792 * properly happens and the data=ordered rules are followed. 1793 * 1794 * In our case any range that doesn't have the ORDERED bit set 1795 * hasn't been properly setup for IO. We kick off an async process 1796 * to fix it up. The async helper will wait for ordered extents, set 1797 * the delalloc bit and make it safe to write the page. 1798 */ 1799 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1800 { 1801 struct inode *inode = page->mapping->host; 1802 struct btrfs_writepage_fixup *fixup; 1803 struct btrfs_root *root = BTRFS_I(inode)->root; 1804 1805 /* this page is properly in the ordered list */ 1806 if (TestClearPagePrivate2(page)) 1807 return 0; 1808 1809 if (PageChecked(page)) 1810 return -EAGAIN; 1811 1812 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1813 if (!fixup) 1814 return -EAGAIN; 1815 1816 SetPageChecked(page); 1817 page_cache_get(page); 1818 fixup->work.func = btrfs_writepage_fixup_worker; 1819 fixup->page = page; 1820 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1821 return -EBUSY; 1822 } 1823 1824 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1825 struct inode *inode, u64 file_pos, 1826 u64 disk_bytenr, u64 disk_num_bytes, 1827 u64 num_bytes, u64 ram_bytes, 1828 u8 compression, u8 encryption, 1829 u16 other_encoding, int extent_type) 1830 { 1831 struct btrfs_root *root = BTRFS_I(inode)->root; 1832 struct btrfs_file_extent_item *fi; 1833 struct btrfs_path *path; 1834 struct extent_buffer *leaf; 1835 struct btrfs_key ins; 1836 int ret; 1837 1838 path = btrfs_alloc_path(); 1839 if (!path) 1840 return -ENOMEM; 1841 1842 path->leave_spinning = 1; 1843 1844 /* 1845 * we may be replacing one extent in the tree with another. 1846 * The new extent is pinned in the extent map, and we don't want 1847 * to drop it from the cache until it is completely in the btree. 1848 * 1849 * So, tell btrfs_drop_extents to leave this extent in the cache. 1850 * the caller is expected to unpin it and allow it to be merged 1851 * with the others. 1852 */ 1853 ret = btrfs_drop_extents(trans, root, inode, file_pos, 1854 file_pos + num_bytes, 0); 1855 if (ret) 1856 goto out; 1857 1858 ins.objectid = btrfs_ino(inode); 1859 ins.offset = file_pos; 1860 ins.type = BTRFS_EXTENT_DATA_KEY; 1861 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1862 if (ret) 1863 goto out; 1864 leaf = path->nodes[0]; 1865 fi = btrfs_item_ptr(leaf, path->slots[0], 1866 struct btrfs_file_extent_item); 1867 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1868 btrfs_set_file_extent_type(leaf, fi, extent_type); 1869 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1870 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1871 btrfs_set_file_extent_offset(leaf, fi, 0); 1872 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1873 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1874 btrfs_set_file_extent_compression(leaf, fi, compression); 1875 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1876 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1877 1878 btrfs_mark_buffer_dirty(leaf); 1879 btrfs_release_path(path); 1880 1881 inode_add_bytes(inode, num_bytes); 1882 1883 ins.objectid = disk_bytenr; 1884 ins.offset = disk_num_bytes; 1885 ins.type = BTRFS_EXTENT_ITEM_KEY; 1886 ret = btrfs_alloc_reserved_file_extent(trans, root, 1887 root->root_key.objectid, 1888 btrfs_ino(inode), file_pos, &ins); 1889 out: 1890 btrfs_free_path(path); 1891 1892 return ret; 1893 } 1894 1895 /* 1896 * helper function for btrfs_finish_ordered_io, this 1897 * just reads in some of the csum leaves to prime them into ram 1898 * before we start the transaction. It limits the amount of btree 1899 * reads required while inside the transaction. 1900 */ 1901 /* as ordered data IO finishes, this gets called so we can finish 1902 * an ordered extent if the range of bytes in the file it covers are 1903 * fully written. 1904 */ 1905 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 1906 { 1907 struct inode *inode = ordered_extent->inode; 1908 struct btrfs_root *root = BTRFS_I(inode)->root; 1909 struct btrfs_trans_handle *trans = NULL; 1910 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1911 struct extent_state *cached_state = NULL; 1912 int compress_type = 0; 1913 int ret; 1914 bool nolock; 1915 1916 nolock = btrfs_is_free_space_inode(inode); 1917 1918 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 1919 ret = -EIO; 1920 goto out; 1921 } 1922 1923 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1924 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 1925 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1926 if (nolock) 1927 trans = btrfs_join_transaction_nolock(root); 1928 else 1929 trans = btrfs_join_transaction(root); 1930 if (IS_ERR(trans)) { 1931 ret = PTR_ERR(trans); 1932 trans = NULL; 1933 goto out; 1934 } 1935 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1936 ret = btrfs_update_inode_fallback(trans, root, inode); 1937 if (ret) /* -ENOMEM or corruption */ 1938 btrfs_abort_transaction(trans, root, ret); 1939 goto out; 1940 } 1941 1942 lock_extent_bits(io_tree, ordered_extent->file_offset, 1943 ordered_extent->file_offset + ordered_extent->len - 1, 1944 0, &cached_state); 1945 1946 if (nolock) 1947 trans = btrfs_join_transaction_nolock(root); 1948 else 1949 trans = btrfs_join_transaction(root); 1950 if (IS_ERR(trans)) { 1951 ret = PTR_ERR(trans); 1952 trans = NULL; 1953 goto out_unlock; 1954 } 1955 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1956 1957 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1958 compress_type = ordered_extent->compress_type; 1959 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1960 BUG_ON(compress_type); 1961 ret = btrfs_mark_extent_written(trans, inode, 1962 ordered_extent->file_offset, 1963 ordered_extent->file_offset + 1964 ordered_extent->len); 1965 } else { 1966 BUG_ON(root == root->fs_info->tree_root); 1967 ret = insert_reserved_file_extent(trans, inode, 1968 ordered_extent->file_offset, 1969 ordered_extent->start, 1970 ordered_extent->disk_len, 1971 ordered_extent->len, 1972 ordered_extent->len, 1973 compress_type, 0, 0, 1974 BTRFS_FILE_EXTENT_REG); 1975 } 1976 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1977 ordered_extent->file_offset, ordered_extent->len, 1978 trans->transid); 1979 if (ret < 0) { 1980 btrfs_abort_transaction(trans, root, ret); 1981 goto out_unlock; 1982 } 1983 1984 add_pending_csums(trans, inode, ordered_extent->file_offset, 1985 &ordered_extent->list); 1986 1987 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1988 ret = btrfs_update_inode_fallback(trans, root, inode); 1989 if (ret) { /* -ENOMEM or corruption */ 1990 btrfs_abort_transaction(trans, root, ret); 1991 goto out_unlock; 1992 } 1993 ret = 0; 1994 out_unlock: 1995 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1996 ordered_extent->file_offset + 1997 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1998 out: 1999 if (root != root->fs_info->tree_root) 2000 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 2001 if (trans) 2002 btrfs_end_transaction(trans, root); 2003 2004 if (ret) 2005 clear_extent_uptodate(io_tree, ordered_extent->file_offset, 2006 ordered_extent->file_offset + 2007 ordered_extent->len - 1, NULL, GFP_NOFS); 2008 2009 /* 2010 * This needs to be done to make sure anybody waiting knows we are done 2011 * updating everything for this ordered extent. 2012 */ 2013 btrfs_remove_ordered_extent(inode, ordered_extent); 2014 2015 /* once for us */ 2016 btrfs_put_ordered_extent(ordered_extent); 2017 /* once for the tree */ 2018 btrfs_put_ordered_extent(ordered_extent); 2019 2020 return ret; 2021 } 2022 2023 static void finish_ordered_fn(struct btrfs_work *work) 2024 { 2025 struct btrfs_ordered_extent *ordered_extent; 2026 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2027 btrfs_finish_ordered_io(ordered_extent); 2028 } 2029 2030 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 2031 struct extent_state *state, int uptodate) 2032 { 2033 struct inode *inode = page->mapping->host; 2034 struct btrfs_root *root = BTRFS_I(inode)->root; 2035 struct btrfs_ordered_extent *ordered_extent = NULL; 2036 struct btrfs_workers *workers; 2037 2038 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2039 2040 ClearPagePrivate2(page); 2041 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2042 end - start + 1, uptodate)) 2043 return 0; 2044 2045 ordered_extent->work.func = finish_ordered_fn; 2046 ordered_extent->work.flags = 0; 2047 2048 if (btrfs_is_free_space_inode(inode)) 2049 workers = &root->fs_info->endio_freespace_worker; 2050 else 2051 workers = &root->fs_info->endio_write_workers; 2052 btrfs_queue_worker(workers, &ordered_extent->work); 2053 2054 return 0; 2055 } 2056 2057 /* 2058 * when reads are done, we need to check csums to verify the data is correct 2059 * if there's a match, we allow the bio to finish. If not, the code in 2060 * extent_io.c will try to find good copies for us. 2061 */ 2062 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 2063 struct extent_state *state, int mirror) 2064 { 2065 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 2066 struct inode *inode = page->mapping->host; 2067 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2068 char *kaddr; 2069 u64 private = ~(u32)0; 2070 int ret; 2071 struct btrfs_root *root = BTRFS_I(inode)->root; 2072 u32 csum = ~(u32)0; 2073 2074 if (PageChecked(page)) { 2075 ClearPageChecked(page); 2076 goto good; 2077 } 2078 2079 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2080 goto good; 2081 2082 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2083 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2084 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 2085 GFP_NOFS); 2086 return 0; 2087 } 2088 2089 if (state && state->start == start) { 2090 private = state->private; 2091 ret = 0; 2092 } else { 2093 ret = get_state_private(io_tree, start, &private); 2094 } 2095 kaddr = kmap_atomic(page); 2096 if (ret) 2097 goto zeroit; 2098 2099 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2100 btrfs_csum_final(csum, (char *)&csum); 2101 if (csum != private) 2102 goto zeroit; 2103 2104 kunmap_atomic(kaddr); 2105 good: 2106 return 0; 2107 2108 zeroit: 2109 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2110 "private %llu\n", 2111 (unsigned long long)btrfs_ino(page->mapping->host), 2112 (unsigned long long)start, csum, 2113 (unsigned long long)private); 2114 memset(kaddr + offset, 1, end - start + 1); 2115 flush_dcache_page(page); 2116 kunmap_atomic(kaddr); 2117 if (private == 0) 2118 return 0; 2119 return -EIO; 2120 } 2121 2122 struct delayed_iput { 2123 struct list_head list; 2124 struct inode *inode; 2125 }; 2126 2127 /* JDM: If this is fs-wide, why can't we add a pointer to 2128 * btrfs_inode instead and avoid the allocation? */ 2129 void btrfs_add_delayed_iput(struct inode *inode) 2130 { 2131 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2132 struct delayed_iput *delayed; 2133 2134 if (atomic_add_unless(&inode->i_count, -1, 1)) 2135 return; 2136 2137 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2138 delayed->inode = inode; 2139 2140 spin_lock(&fs_info->delayed_iput_lock); 2141 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2142 spin_unlock(&fs_info->delayed_iput_lock); 2143 } 2144 2145 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2146 { 2147 LIST_HEAD(list); 2148 struct btrfs_fs_info *fs_info = root->fs_info; 2149 struct delayed_iput *delayed; 2150 int empty; 2151 2152 spin_lock(&fs_info->delayed_iput_lock); 2153 empty = list_empty(&fs_info->delayed_iputs); 2154 spin_unlock(&fs_info->delayed_iput_lock); 2155 if (empty) 2156 return; 2157 2158 spin_lock(&fs_info->delayed_iput_lock); 2159 list_splice_init(&fs_info->delayed_iputs, &list); 2160 spin_unlock(&fs_info->delayed_iput_lock); 2161 2162 while (!list_empty(&list)) { 2163 delayed = list_entry(list.next, struct delayed_iput, list); 2164 list_del(&delayed->list); 2165 iput(delayed->inode); 2166 kfree(delayed); 2167 } 2168 } 2169 2170 enum btrfs_orphan_cleanup_state { 2171 ORPHAN_CLEANUP_STARTED = 1, 2172 ORPHAN_CLEANUP_DONE = 2, 2173 }; 2174 2175 /* 2176 * This is called in transaction commit time. If there are no orphan 2177 * files in the subvolume, it removes orphan item and frees block_rsv 2178 * structure. 2179 */ 2180 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2181 struct btrfs_root *root) 2182 { 2183 struct btrfs_block_rsv *block_rsv; 2184 int ret; 2185 2186 if (atomic_read(&root->orphan_inodes) || 2187 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2188 return; 2189 2190 spin_lock(&root->orphan_lock); 2191 if (atomic_read(&root->orphan_inodes)) { 2192 spin_unlock(&root->orphan_lock); 2193 return; 2194 } 2195 2196 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) { 2197 spin_unlock(&root->orphan_lock); 2198 return; 2199 } 2200 2201 block_rsv = root->orphan_block_rsv; 2202 root->orphan_block_rsv = NULL; 2203 spin_unlock(&root->orphan_lock); 2204 2205 if (root->orphan_item_inserted && 2206 btrfs_root_refs(&root->root_item) > 0) { 2207 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2208 root->root_key.objectid); 2209 BUG_ON(ret); 2210 root->orphan_item_inserted = 0; 2211 } 2212 2213 if (block_rsv) { 2214 WARN_ON(block_rsv->size > 0); 2215 btrfs_free_block_rsv(root, block_rsv); 2216 } 2217 } 2218 2219 /* 2220 * This creates an orphan entry for the given inode in case something goes 2221 * wrong in the middle of an unlink/truncate. 2222 * 2223 * NOTE: caller of this function should reserve 5 units of metadata for 2224 * this function. 2225 */ 2226 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2227 { 2228 struct btrfs_root *root = BTRFS_I(inode)->root; 2229 struct btrfs_block_rsv *block_rsv = NULL; 2230 int reserve = 0; 2231 int insert = 0; 2232 int ret; 2233 2234 if (!root->orphan_block_rsv) { 2235 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 2236 if (!block_rsv) 2237 return -ENOMEM; 2238 } 2239 2240 spin_lock(&root->orphan_lock); 2241 if (!root->orphan_block_rsv) { 2242 root->orphan_block_rsv = block_rsv; 2243 } else if (block_rsv) { 2244 btrfs_free_block_rsv(root, block_rsv); 2245 block_rsv = NULL; 2246 } 2247 2248 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2249 &BTRFS_I(inode)->runtime_flags)) { 2250 #if 0 2251 /* 2252 * For proper ENOSPC handling, we should do orphan 2253 * cleanup when mounting. But this introduces backward 2254 * compatibility issue. 2255 */ 2256 if (!xchg(&root->orphan_item_inserted, 1)) 2257 insert = 2; 2258 else 2259 insert = 1; 2260 #endif 2261 insert = 1; 2262 atomic_inc(&root->orphan_inodes); 2263 } 2264 2265 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2266 &BTRFS_I(inode)->runtime_flags)) 2267 reserve = 1; 2268 spin_unlock(&root->orphan_lock); 2269 2270 /* grab metadata reservation from transaction handle */ 2271 if (reserve) { 2272 ret = btrfs_orphan_reserve_metadata(trans, inode); 2273 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */ 2274 } 2275 2276 /* insert an orphan item to track this unlinked/truncated file */ 2277 if (insert >= 1) { 2278 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2279 if (ret && ret != -EEXIST) { 2280 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2281 &BTRFS_I(inode)->runtime_flags); 2282 btrfs_abort_transaction(trans, root, ret); 2283 return ret; 2284 } 2285 ret = 0; 2286 } 2287 2288 /* insert an orphan item to track subvolume contains orphan files */ 2289 if (insert >= 2) { 2290 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2291 root->root_key.objectid); 2292 if (ret && ret != -EEXIST) { 2293 btrfs_abort_transaction(trans, root, ret); 2294 return ret; 2295 } 2296 } 2297 return 0; 2298 } 2299 2300 /* 2301 * We have done the truncate/delete so we can go ahead and remove the orphan 2302 * item for this particular inode. 2303 */ 2304 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2305 { 2306 struct btrfs_root *root = BTRFS_I(inode)->root; 2307 int delete_item = 0; 2308 int release_rsv = 0; 2309 int ret = 0; 2310 2311 spin_lock(&root->orphan_lock); 2312 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2313 &BTRFS_I(inode)->runtime_flags)) 2314 delete_item = 1; 2315 2316 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED, 2317 &BTRFS_I(inode)->runtime_flags)) 2318 release_rsv = 1; 2319 spin_unlock(&root->orphan_lock); 2320 2321 if (trans && delete_item) { 2322 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2323 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 2324 } 2325 2326 if (release_rsv) { 2327 btrfs_orphan_release_metadata(inode); 2328 atomic_dec(&root->orphan_inodes); 2329 } 2330 2331 return 0; 2332 } 2333 2334 /* 2335 * this cleans up any orphans that may be left on the list from the last use 2336 * of this root. 2337 */ 2338 int btrfs_orphan_cleanup(struct btrfs_root *root) 2339 { 2340 struct btrfs_path *path; 2341 struct extent_buffer *leaf; 2342 struct btrfs_key key, found_key; 2343 struct btrfs_trans_handle *trans; 2344 struct inode *inode; 2345 u64 last_objectid = 0; 2346 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2347 2348 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2349 return 0; 2350 2351 path = btrfs_alloc_path(); 2352 if (!path) { 2353 ret = -ENOMEM; 2354 goto out; 2355 } 2356 path->reada = -1; 2357 2358 key.objectid = BTRFS_ORPHAN_OBJECTID; 2359 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2360 key.offset = (u64)-1; 2361 2362 while (1) { 2363 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2364 if (ret < 0) 2365 goto out; 2366 2367 /* 2368 * if ret == 0 means we found what we were searching for, which 2369 * is weird, but possible, so only screw with path if we didn't 2370 * find the key and see if we have stuff that matches 2371 */ 2372 if (ret > 0) { 2373 ret = 0; 2374 if (path->slots[0] == 0) 2375 break; 2376 path->slots[0]--; 2377 } 2378 2379 /* pull out the item */ 2380 leaf = path->nodes[0]; 2381 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2382 2383 /* make sure the item matches what we want */ 2384 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2385 break; 2386 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2387 break; 2388 2389 /* release the path since we're done with it */ 2390 btrfs_release_path(path); 2391 2392 /* 2393 * this is where we are basically btrfs_lookup, without the 2394 * crossing root thing. we store the inode number in the 2395 * offset of the orphan item. 2396 */ 2397 2398 if (found_key.offset == last_objectid) { 2399 printk(KERN_ERR "btrfs: Error removing orphan entry, " 2400 "stopping orphan cleanup\n"); 2401 ret = -EINVAL; 2402 goto out; 2403 } 2404 2405 last_objectid = found_key.offset; 2406 2407 found_key.objectid = found_key.offset; 2408 found_key.type = BTRFS_INODE_ITEM_KEY; 2409 found_key.offset = 0; 2410 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2411 ret = PTR_RET(inode); 2412 if (ret && ret != -ESTALE) 2413 goto out; 2414 2415 if (ret == -ESTALE && root == root->fs_info->tree_root) { 2416 struct btrfs_root *dead_root; 2417 struct btrfs_fs_info *fs_info = root->fs_info; 2418 int is_dead_root = 0; 2419 2420 /* 2421 * this is an orphan in the tree root. Currently these 2422 * could come from 2 sources: 2423 * a) a snapshot deletion in progress 2424 * b) a free space cache inode 2425 * We need to distinguish those two, as the snapshot 2426 * orphan must not get deleted. 2427 * find_dead_roots already ran before us, so if this 2428 * is a snapshot deletion, we should find the root 2429 * in the dead_roots list 2430 */ 2431 spin_lock(&fs_info->trans_lock); 2432 list_for_each_entry(dead_root, &fs_info->dead_roots, 2433 root_list) { 2434 if (dead_root->root_key.objectid == 2435 found_key.objectid) { 2436 is_dead_root = 1; 2437 break; 2438 } 2439 } 2440 spin_unlock(&fs_info->trans_lock); 2441 if (is_dead_root) { 2442 /* prevent this orphan from being found again */ 2443 key.offset = found_key.objectid - 1; 2444 continue; 2445 } 2446 } 2447 /* 2448 * Inode is already gone but the orphan item is still there, 2449 * kill the orphan item. 2450 */ 2451 if (ret == -ESTALE) { 2452 trans = btrfs_start_transaction(root, 1); 2453 if (IS_ERR(trans)) { 2454 ret = PTR_ERR(trans); 2455 goto out; 2456 } 2457 printk(KERN_ERR "auto deleting %Lu\n", 2458 found_key.objectid); 2459 ret = btrfs_del_orphan_item(trans, root, 2460 found_key.objectid); 2461 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */ 2462 btrfs_end_transaction(trans, root); 2463 continue; 2464 } 2465 2466 /* 2467 * add this inode to the orphan list so btrfs_orphan_del does 2468 * the proper thing when we hit it 2469 */ 2470 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 2471 &BTRFS_I(inode)->runtime_flags); 2472 2473 /* if we have links, this was a truncate, lets do that */ 2474 if (inode->i_nlink) { 2475 if (!S_ISREG(inode->i_mode)) { 2476 WARN_ON(1); 2477 iput(inode); 2478 continue; 2479 } 2480 nr_truncate++; 2481 ret = btrfs_truncate(inode); 2482 } else { 2483 nr_unlink++; 2484 } 2485 2486 /* this will do delete_inode and everything for us */ 2487 iput(inode); 2488 if (ret) 2489 goto out; 2490 } 2491 /* release the path since we're done with it */ 2492 btrfs_release_path(path); 2493 2494 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2495 2496 if (root->orphan_block_rsv) 2497 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2498 (u64)-1); 2499 2500 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2501 trans = btrfs_join_transaction(root); 2502 if (!IS_ERR(trans)) 2503 btrfs_end_transaction(trans, root); 2504 } 2505 2506 if (nr_unlink) 2507 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2508 if (nr_truncate) 2509 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2510 2511 out: 2512 if (ret) 2513 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2514 btrfs_free_path(path); 2515 return ret; 2516 } 2517 2518 /* 2519 * very simple check to peek ahead in the leaf looking for xattrs. If we 2520 * don't find any xattrs, we know there can't be any acls. 2521 * 2522 * slot is the slot the inode is in, objectid is the objectid of the inode 2523 */ 2524 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2525 int slot, u64 objectid) 2526 { 2527 u32 nritems = btrfs_header_nritems(leaf); 2528 struct btrfs_key found_key; 2529 int scanned = 0; 2530 2531 slot++; 2532 while (slot < nritems) { 2533 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2534 2535 /* we found a different objectid, there must not be acls */ 2536 if (found_key.objectid != objectid) 2537 return 0; 2538 2539 /* we found an xattr, assume we've got an acl */ 2540 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2541 return 1; 2542 2543 /* 2544 * we found a key greater than an xattr key, there can't 2545 * be any acls later on 2546 */ 2547 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2548 return 0; 2549 2550 slot++; 2551 scanned++; 2552 2553 /* 2554 * it goes inode, inode backrefs, xattrs, extents, 2555 * so if there are a ton of hard links to an inode there can 2556 * be a lot of backrefs. Don't waste time searching too hard, 2557 * this is just an optimization 2558 */ 2559 if (scanned >= 8) 2560 break; 2561 } 2562 /* we hit the end of the leaf before we found an xattr or 2563 * something larger than an xattr. We have to assume the inode 2564 * has acls 2565 */ 2566 return 1; 2567 } 2568 2569 /* 2570 * read an inode from the btree into the in-memory inode 2571 */ 2572 static void btrfs_read_locked_inode(struct inode *inode) 2573 { 2574 struct btrfs_path *path; 2575 struct extent_buffer *leaf; 2576 struct btrfs_inode_item *inode_item; 2577 struct btrfs_timespec *tspec; 2578 struct btrfs_root *root = BTRFS_I(inode)->root; 2579 struct btrfs_key location; 2580 int maybe_acls; 2581 u32 rdev; 2582 int ret; 2583 bool filled = false; 2584 2585 ret = btrfs_fill_inode(inode, &rdev); 2586 if (!ret) 2587 filled = true; 2588 2589 path = btrfs_alloc_path(); 2590 if (!path) 2591 goto make_bad; 2592 2593 path->leave_spinning = 1; 2594 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2595 2596 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2597 if (ret) 2598 goto make_bad; 2599 2600 leaf = path->nodes[0]; 2601 2602 if (filled) 2603 goto cache_acl; 2604 2605 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2606 struct btrfs_inode_item); 2607 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2608 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 2609 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 2610 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 2611 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2612 2613 tspec = btrfs_inode_atime(inode_item); 2614 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2615 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2616 2617 tspec = btrfs_inode_mtime(inode_item); 2618 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2619 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2620 2621 tspec = btrfs_inode_ctime(inode_item); 2622 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2623 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2624 2625 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2626 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2627 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 2628 2629 /* 2630 * If we were modified in the current generation and evicted from memory 2631 * and then re-read we need to do a full sync since we don't have any 2632 * idea about which extents were modified before we were evicted from 2633 * cache. 2634 */ 2635 if (BTRFS_I(inode)->last_trans == root->fs_info->generation) 2636 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 2637 &BTRFS_I(inode)->runtime_flags); 2638 2639 inode->i_version = btrfs_inode_sequence(leaf, inode_item); 2640 inode->i_generation = BTRFS_I(inode)->generation; 2641 inode->i_rdev = 0; 2642 rdev = btrfs_inode_rdev(leaf, inode_item); 2643 2644 BTRFS_I(inode)->index_cnt = (u64)-1; 2645 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2646 cache_acl: 2647 /* 2648 * try to precache a NULL acl entry for files that don't have 2649 * any xattrs or acls 2650 */ 2651 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2652 btrfs_ino(inode)); 2653 if (!maybe_acls) 2654 cache_no_acl(inode); 2655 2656 btrfs_free_path(path); 2657 2658 switch (inode->i_mode & S_IFMT) { 2659 case S_IFREG: 2660 inode->i_mapping->a_ops = &btrfs_aops; 2661 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2662 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2663 inode->i_fop = &btrfs_file_operations; 2664 inode->i_op = &btrfs_file_inode_operations; 2665 break; 2666 case S_IFDIR: 2667 inode->i_fop = &btrfs_dir_file_operations; 2668 if (root == root->fs_info->tree_root) 2669 inode->i_op = &btrfs_dir_ro_inode_operations; 2670 else 2671 inode->i_op = &btrfs_dir_inode_operations; 2672 break; 2673 case S_IFLNK: 2674 inode->i_op = &btrfs_symlink_inode_operations; 2675 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2676 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2677 break; 2678 default: 2679 inode->i_op = &btrfs_special_inode_operations; 2680 init_special_inode(inode, inode->i_mode, rdev); 2681 break; 2682 } 2683 2684 btrfs_update_iflags(inode); 2685 return; 2686 2687 make_bad: 2688 btrfs_free_path(path); 2689 make_bad_inode(inode); 2690 } 2691 2692 /* 2693 * given a leaf and an inode, copy the inode fields into the leaf 2694 */ 2695 static void fill_inode_item(struct btrfs_trans_handle *trans, 2696 struct extent_buffer *leaf, 2697 struct btrfs_inode_item *item, 2698 struct inode *inode) 2699 { 2700 btrfs_set_inode_uid(leaf, item, i_uid_read(inode)); 2701 btrfs_set_inode_gid(leaf, item, i_gid_read(inode)); 2702 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2703 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2704 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2705 2706 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2707 inode->i_atime.tv_sec); 2708 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2709 inode->i_atime.tv_nsec); 2710 2711 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2712 inode->i_mtime.tv_sec); 2713 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2714 inode->i_mtime.tv_nsec); 2715 2716 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2717 inode->i_ctime.tv_sec); 2718 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2719 inode->i_ctime.tv_nsec); 2720 2721 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2722 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2723 btrfs_set_inode_sequence(leaf, item, inode->i_version); 2724 btrfs_set_inode_transid(leaf, item, trans->transid); 2725 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2726 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2727 btrfs_set_inode_block_group(leaf, item, 0); 2728 } 2729 2730 /* 2731 * copy everything in the in-memory inode into the btree. 2732 */ 2733 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 2734 struct btrfs_root *root, struct inode *inode) 2735 { 2736 struct btrfs_inode_item *inode_item; 2737 struct btrfs_path *path; 2738 struct extent_buffer *leaf; 2739 int ret; 2740 2741 path = btrfs_alloc_path(); 2742 if (!path) 2743 return -ENOMEM; 2744 2745 path->leave_spinning = 1; 2746 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2747 1); 2748 if (ret) { 2749 if (ret > 0) 2750 ret = -ENOENT; 2751 goto failed; 2752 } 2753 2754 btrfs_unlock_up_safe(path, 1); 2755 leaf = path->nodes[0]; 2756 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2757 struct btrfs_inode_item); 2758 2759 fill_inode_item(trans, leaf, inode_item, inode); 2760 btrfs_mark_buffer_dirty(leaf); 2761 btrfs_set_inode_last_trans(trans, inode); 2762 ret = 0; 2763 failed: 2764 btrfs_free_path(path); 2765 return ret; 2766 } 2767 2768 /* 2769 * copy everything in the in-memory inode into the btree. 2770 */ 2771 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2772 struct btrfs_root *root, struct inode *inode) 2773 { 2774 int ret; 2775 2776 /* 2777 * If the inode is a free space inode, we can deadlock during commit 2778 * if we put it into the delayed code. 2779 * 2780 * The data relocation inode should also be directly updated 2781 * without delay 2782 */ 2783 if (!btrfs_is_free_space_inode(inode) 2784 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2785 btrfs_update_root_times(trans, root); 2786 2787 ret = btrfs_delayed_update_inode(trans, root, inode); 2788 if (!ret) 2789 btrfs_set_inode_last_trans(trans, inode); 2790 return ret; 2791 } 2792 2793 return btrfs_update_inode_item(trans, root, inode); 2794 } 2795 2796 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 2797 struct btrfs_root *root, 2798 struct inode *inode) 2799 { 2800 int ret; 2801 2802 ret = btrfs_update_inode(trans, root, inode); 2803 if (ret == -ENOSPC) 2804 return btrfs_update_inode_item(trans, root, inode); 2805 return ret; 2806 } 2807 2808 /* 2809 * unlink helper that gets used here in inode.c and in the tree logging 2810 * recovery code. It remove a link in a directory with a given name, and 2811 * also drops the back refs in the inode to the directory 2812 */ 2813 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2814 struct btrfs_root *root, 2815 struct inode *dir, struct inode *inode, 2816 const char *name, int name_len) 2817 { 2818 struct btrfs_path *path; 2819 int ret = 0; 2820 struct extent_buffer *leaf; 2821 struct btrfs_dir_item *di; 2822 struct btrfs_key key; 2823 u64 index; 2824 u64 ino = btrfs_ino(inode); 2825 u64 dir_ino = btrfs_ino(dir); 2826 2827 path = btrfs_alloc_path(); 2828 if (!path) { 2829 ret = -ENOMEM; 2830 goto out; 2831 } 2832 2833 path->leave_spinning = 1; 2834 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2835 name, name_len, -1); 2836 if (IS_ERR(di)) { 2837 ret = PTR_ERR(di); 2838 goto err; 2839 } 2840 if (!di) { 2841 ret = -ENOENT; 2842 goto err; 2843 } 2844 leaf = path->nodes[0]; 2845 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2846 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2847 if (ret) 2848 goto err; 2849 btrfs_release_path(path); 2850 2851 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2852 dir_ino, &index); 2853 if (ret) { 2854 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2855 "inode %llu parent %llu\n", name_len, name, 2856 (unsigned long long)ino, (unsigned long long)dir_ino); 2857 btrfs_abort_transaction(trans, root, ret); 2858 goto err; 2859 } 2860 2861 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2862 if (ret) { 2863 btrfs_abort_transaction(trans, root, ret); 2864 goto err; 2865 } 2866 2867 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2868 inode, dir_ino); 2869 if (ret != 0 && ret != -ENOENT) { 2870 btrfs_abort_transaction(trans, root, ret); 2871 goto err; 2872 } 2873 2874 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2875 dir, index); 2876 if (ret == -ENOENT) 2877 ret = 0; 2878 err: 2879 btrfs_free_path(path); 2880 if (ret) 2881 goto out; 2882 2883 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2884 inode_inc_iversion(inode); 2885 inode_inc_iversion(dir); 2886 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2887 ret = btrfs_update_inode(trans, root, dir); 2888 out: 2889 return ret; 2890 } 2891 2892 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2893 struct btrfs_root *root, 2894 struct inode *dir, struct inode *inode, 2895 const char *name, int name_len) 2896 { 2897 int ret; 2898 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2899 if (!ret) { 2900 btrfs_drop_nlink(inode); 2901 ret = btrfs_update_inode(trans, root, inode); 2902 } 2903 return ret; 2904 } 2905 2906 2907 /* helper to check if there is any shared block in the path */ 2908 static int check_path_shared(struct btrfs_root *root, 2909 struct btrfs_path *path) 2910 { 2911 struct extent_buffer *eb; 2912 int level; 2913 u64 refs = 1; 2914 2915 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2916 int ret; 2917 2918 if (!path->nodes[level]) 2919 break; 2920 eb = path->nodes[level]; 2921 if (!btrfs_block_can_be_shared(root, eb)) 2922 continue; 2923 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2924 &refs, NULL); 2925 if (refs > 1) 2926 return 1; 2927 } 2928 return 0; 2929 } 2930 2931 /* 2932 * helper to start transaction for unlink and rmdir. 2933 * 2934 * unlink and rmdir are special in btrfs, they do not always free space. 2935 * so in enospc case, we should make sure they will free space before 2936 * allowing them to use the global metadata reservation. 2937 */ 2938 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2939 struct dentry *dentry) 2940 { 2941 struct btrfs_trans_handle *trans; 2942 struct btrfs_root *root = BTRFS_I(dir)->root; 2943 struct btrfs_path *path; 2944 struct btrfs_dir_item *di; 2945 struct inode *inode = dentry->d_inode; 2946 u64 index; 2947 int check_link = 1; 2948 int err = -ENOSPC; 2949 int ret; 2950 u64 ino = btrfs_ino(inode); 2951 u64 dir_ino = btrfs_ino(dir); 2952 2953 /* 2954 * 1 for the possible orphan item 2955 * 1 for the dir item 2956 * 1 for the dir index 2957 * 1 for the inode ref 2958 * 1 for the inode ref in the tree log 2959 * 2 for the dir entries in the log 2960 * 1 for the inode 2961 */ 2962 trans = btrfs_start_transaction(root, 8); 2963 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2964 return trans; 2965 2966 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2967 return ERR_PTR(-ENOSPC); 2968 2969 /* check if there is someone else holds reference */ 2970 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2971 return ERR_PTR(-ENOSPC); 2972 2973 if (atomic_read(&inode->i_count) > 2) 2974 return ERR_PTR(-ENOSPC); 2975 2976 if (xchg(&root->fs_info->enospc_unlink, 1)) 2977 return ERR_PTR(-ENOSPC); 2978 2979 path = btrfs_alloc_path(); 2980 if (!path) { 2981 root->fs_info->enospc_unlink = 0; 2982 return ERR_PTR(-ENOMEM); 2983 } 2984 2985 /* 1 for the orphan item */ 2986 trans = btrfs_start_transaction(root, 1); 2987 if (IS_ERR(trans)) { 2988 btrfs_free_path(path); 2989 root->fs_info->enospc_unlink = 0; 2990 return trans; 2991 } 2992 2993 path->skip_locking = 1; 2994 path->search_commit_root = 1; 2995 2996 ret = btrfs_lookup_inode(trans, root, path, 2997 &BTRFS_I(dir)->location, 0); 2998 if (ret < 0) { 2999 err = ret; 3000 goto out; 3001 } 3002 if (ret == 0) { 3003 if (check_path_shared(root, path)) 3004 goto out; 3005 } else { 3006 check_link = 0; 3007 } 3008 btrfs_release_path(path); 3009 3010 ret = btrfs_lookup_inode(trans, root, path, 3011 &BTRFS_I(inode)->location, 0); 3012 if (ret < 0) { 3013 err = ret; 3014 goto out; 3015 } 3016 if (ret == 0) { 3017 if (check_path_shared(root, path)) 3018 goto out; 3019 } else { 3020 check_link = 0; 3021 } 3022 btrfs_release_path(path); 3023 3024 if (ret == 0 && S_ISREG(inode->i_mode)) { 3025 ret = btrfs_lookup_file_extent(trans, root, path, 3026 ino, (u64)-1, 0); 3027 if (ret < 0) { 3028 err = ret; 3029 goto out; 3030 } 3031 BUG_ON(ret == 0); /* Corruption */ 3032 if (check_path_shared(root, path)) 3033 goto out; 3034 btrfs_release_path(path); 3035 } 3036 3037 if (!check_link) { 3038 err = 0; 3039 goto out; 3040 } 3041 3042 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3043 dentry->d_name.name, dentry->d_name.len, 0); 3044 if (IS_ERR(di)) { 3045 err = PTR_ERR(di); 3046 goto out; 3047 } 3048 if (di) { 3049 if (check_path_shared(root, path)) 3050 goto out; 3051 } else { 3052 err = 0; 3053 goto out; 3054 } 3055 btrfs_release_path(path); 3056 3057 ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name, 3058 dentry->d_name.len, ino, dir_ino, 0, 3059 &index); 3060 if (ret) { 3061 err = ret; 3062 goto out; 3063 } 3064 3065 if (check_path_shared(root, path)) 3066 goto out; 3067 3068 btrfs_release_path(path); 3069 3070 /* 3071 * This is a commit root search, if we can lookup inode item and other 3072 * relative items in the commit root, it means the transaction of 3073 * dir/file creation has been committed, and the dir index item that we 3074 * delay to insert has also been inserted into the commit root. So 3075 * we needn't worry about the delayed insertion of the dir index item 3076 * here. 3077 */ 3078 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 3079 dentry->d_name.name, dentry->d_name.len, 0); 3080 if (IS_ERR(di)) { 3081 err = PTR_ERR(di); 3082 goto out; 3083 } 3084 BUG_ON(ret == -ENOENT); 3085 if (check_path_shared(root, path)) 3086 goto out; 3087 3088 err = 0; 3089 out: 3090 btrfs_free_path(path); 3091 /* Migrate the orphan reservation over */ 3092 if (!err) 3093 err = btrfs_block_rsv_migrate(trans->block_rsv, 3094 &root->fs_info->global_block_rsv, 3095 trans->bytes_reserved); 3096 3097 if (err) { 3098 btrfs_end_transaction(trans, root); 3099 root->fs_info->enospc_unlink = 0; 3100 return ERR_PTR(err); 3101 } 3102 3103 trans->block_rsv = &root->fs_info->global_block_rsv; 3104 return trans; 3105 } 3106 3107 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 3108 struct btrfs_root *root) 3109 { 3110 if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) { 3111 btrfs_block_rsv_release(root, trans->block_rsv, 3112 trans->bytes_reserved); 3113 trans->block_rsv = &root->fs_info->trans_block_rsv; 3114 BUG_ON(!root->fs_info->enospc_unlink); 3115 root->fs_info->enospc_unlink = 0; 3116 } 3117 btrfs_end_transaction(trans, root); 3118 } 3119 3120 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3121 { 3122 struct btrfs_root *root = BTRFS_I(dir)->root; 3123 struct btrfs_trans_handle *trans; 3124 struct inode *inode = dentry->d_inode; 3125 int ret; 3126 3127 trans = __unlink_start_trans(dir, dentry); 3128 if (IS_ERR(trans)) 3129 return PTR_ERR(trans); 3130 3131 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 3132 3133 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3134 dentry->d_name.name, dentry->d_name.len); 3135 if (ret) 3136 goto out; 3137 3138 if (inode->i_nlink == 0) { 3139 ret = btrfs_orphan_add(trans, inode); 3140 if (ret) 3141 goto out; 3142 } 3143 3144 out: 3145 __unlink_end_trans(trans, root); 3146 btrfs_btree_balance_dirty(root); 3147 return ret; 3148 } 3149 3150 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3151 struct btrfs_root *root, 3152 struct inode *dir, u64 objectid, 3153 const char *name, int name_len) 3154 { 3155 struct btrfs_path *path; 3156 struct extent_buffer *leaf; 3157 struct btrfs_dir_item *di; 3158 struct btrfs_key key; 3159 u64 index; 3160 int ret; 3161 u64 dir_ino = btrfs_ino(dir); 3162 3163 path = btrfs_alloc_path(); 3164 if (!path) 3165 return -ENOMEM; 3166 3167 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3168 name, name_len, -1); 3169 if (IS_ERR_OR_NULL(di)) { 3170 if (!di) 3171 ret = -ENOENT; 3172 else 3173 ret = PTR_ERR(di); 3174 goto out; 3175 } 3176 3177 leaf = path->nodes[0]; 3178 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3179 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3180 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3181 if (ret) { 3182 btrfs_abort_transaction(trans, root, ret); 3183 goto out; 3184 } 3185 btrfs_release_path(path); 3186 3187 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3188 objectid, root->root_key.objectid, 3189 dir_ino, &index, name, name_len); 3190 if (ret < 0) { 3191 if (ret != -ENOENT) { 3192 btrfs_abort_transaction(trans, root, ret); 3193 goto out; 3194 } 3195 di = btrfs_search_dir_index_item(root, path, dir_ino, 3196 name, name_len); 3197 if (IS_ERR_OR_NULL(di)) { 3198 if (!di) 3199 ret = -ENOENT; 3200 else 3201 ret = PTR_ERR(di); 3202 btrfs_abort_transaction(trans, root, ret); 3203 goto out; 3204 } 3205 3206 leaf = path->nodes[0]; 3207 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3208 btrfs_release_path(path); 3209 index = key.offset; 3210 } 3211 btrfs_release_path(path); 3212 3213 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3214 if (ret) { 3215 btrfs_abort_transaction(trans, root, ret); 3216 goto out; 3217 } 3218 3219 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3220 inode_inc_iversion(dir); 3221 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3222 ret = btrfs_update_inode_fallback(trans, root, dir); 3223 if (ret) 3224 btrfs_abort_transaction(trans, root, ret); 3225 out: 3226 btrfs_free_path(path); 3227 return ret; 3228 } 3229 3230 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3231 { 3232 struct inode *inode = dentry->d_inode; 3233 int err = 0; 3234 struct btrfs_root *root = BTRFS_I(dir)->root; 3235 struct btrfs_trans_handle *trans; 3236 3237 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 3238 return -ENOTEMPTY; 3239 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3240 return -EPERM; 3241 3242 trans = __unlink_start_trans(dir, dentry); 3243 if (IS_ERR(trans)) 3244 return PTR_ERR(trans); 3245 3246 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3247 err = btrfs_unlink_subvol(trans, root, dir, 3248 BTRFS_I(inode)->location.objectid, 3249 dentry->d_name.name, 3250 dentry->d_name.len); 3251 goto out; 3252 } 3253 3254 err = btrfs_orphan_add(trans, inode); 3255 if (err) 3256 goto out; 3257 3258 /* now the directory is empty */ 3259 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3260 dentry->d_name.name, dentry->d_name.len); 3261 if (!err) 3262 btrfs_i_size_write(inode, 0); 3263 out: 3264 __unlink_end_trans(trans, root); 3265 btrfs_btree_balance_dirty(root); 3266 3267 return err; 3268 } 3269 3270 /* 3271 * this can truncate away extent items, csum items and directory items. 3272 * It starts at a high offset and removes keys until it can't find 3273 * any higher than new_size 3274 * 3275 * csum items that cross the new i_size are truncated to the new size 3276 * as well. 3277 * 3278 * min_type is the minimum key type to truncate down to. If set to 0, this 3279 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3280 */ 3281 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3282 struct btrfs_root *root, 3283 struct inode *inode, 3284 u64 new_size, u32 min_type) 3285 { 3286 struct btrfs_path *path; 3287 struct extent_buffer *leaf; 3288 struct btrfs_file_extent_item *fi; 3289 struct btrfs_key key; 3290 struct btrfs_key found_key; 3291 u64 extent_start = 0; 3292 u64 extent_num_bytes = 0; 3293 u64 extent_offset = 0; 3294 u64 item_end = 0; 3295 u64 mask = root->sectorsize - 1; 3296 u32 found_type = (u8)-1; 3297 int found_extent; 3298 int del_item; 3299 int pending_del_nr = 0; 3300 int pending_del_slot = 0; 3301 int extent_type = -1; 3302 int ret; 3303 int err = 0; 3304 u64 ino = btrfs_ino(inode); 3305 3306 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3307 3308 path = btrfs_alloc_path(); 3309 if (!path) 3310 return -ENOMEM; 3311 path->reada = -1; 3312 3313 /* 3314 * We want to drop from the next block forward in case this new size is 3315 * not block aligned since we will be keeping the last block of the 3316 * extent just the way it is. 3317 */ 3318 if (root->ref_cows || root == root->fs_info->tree_root) 3319 btrfs_drop_extent_cache(inode, (new_size + mask) & (~mask), (u64)-1, 0); 3320 3321 /* 3322 * This function is also used to drop the items in the log tree before 3323 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3324 * it is used to drop the loged items. So we shouldn't kill the delayed 3325 * items. 3326 */ 3327 if (min_type == 0 && root == BTRFS_I(inode)->root) 3328 btrfs_kill_delayed_inode_items(inode); 3329 3330 key.objectid = ino; 3331 key.offset = (u64)-1; 3332 key.type = (u8)-1; 3333 3334 search_again: 3335 path->leave_spinning = 1; 3336 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3337 if (ret < 0) { 3338 err = ret; 3339 goto out; 3340 } 3341 3342 if (ret > 0) { 3343 /* there are no items in the tree for us to truncate, we're 3344 * done 3345 */ 3346 if (path->slots[0] == 0) 3347 goto out; 3348 path->slots[0]--; 3349 } 3350 3351 while (1) { 3352 fi = NULL; 3353 leaf = path->nodes[0]; 3354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3355 found_type = btrfs_key_type(&found_key); 3356 3357 if (found_key.objectid != ino) 3358 break; 3359 3360 if (found_type < min_type) 3361 break; 3362 3363 item_end = found_key.offset; 3364 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3365 fi = btrfs_item_ptr(leaf, path->slots[0], 3366 struct btrfs_file_extent_item); 3367 extent_type = btrfs_file_extent_type(leaf, fi); 3368 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3369 item_end += 3370 btrfs_file_extent_num_bytes(leaf, fi); 3371 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3372 item_end += btrfs_file_extent_inline_len(leaf, 3373 fi); 3374 } 3375 item_end--; 3376 } 3377 if (found_type > min_type) { 3378 del_item = 1; 3379 } else { 3380 if (item_end < new_size) 3381 break; 3382 if (found_key.offset >= new_size) 3383 del_item = 1; 3384 else 3385 del_item = 0; 3386 } 3387 found_extent = 0; 3388 /* FIXME, shrink the extent if the ref count is only 1 */ 3389 if (found_type != BTRFS_EXTENT_DATA_KEY) 3390 goto delete; 3391 3392 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3393 u64 num_dec; 3394 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3395 if (!del_item) { 3396 u64 orig_num_bytes = 3397 btrfs_file_extent_num_bytes(leaf, fi); 3398 extent_num_bytes = new_size - 3399 found_key.offset + root->sectorsize - 1; 3400 extent_num_bytes = extent_num_bytes & 3401 ~((u64)root->sectorsize - 1); 3402 btrfs_set_file_extent_num_bytes(leaf, fi, 3403 extent_num_bytes); 3404 num_dec = (orig_num_bytes - 3405 extent_num_bytes); 3406 if (root->ref_cows && extent_start != 0) 3407 inode_sub_bytes(inode, num_dec); 3408 btrfs_mark_buffer_dirty(leaf); 3409 } else { 3410 extent_num_bytes = 3411 btrfs_file_extent_disk_num_bytes(leaf, 3412 fi); 3413 extent_offset = found_key.offset - 3414 btrfs_file_extent_offset(leaf, fi); 3415 3416 /* FIXME blocksize != 4096 */ 3417 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3418 if (extent_start != 0) { 3419 found_extent = 1; 3420 if (root->ref_cows) 3421 inode_sub_bytes(inode, num_dec); 3422 } 3423 } 3424 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3425 /* 3426 * we can't truncate inline items that have had 3427 * special encodings 3428 */ 3429 if (!del_item && 3430 btrfs_file_extent_compression(leaf, fi) == 0 && 3431 btrfs_file_extent_encryption(leaf, fi) == 0 && 3432 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3433 u32 size = new_size - found_key.offset; 3434 3435 if (root->ref_cows) { 3436 inode_sub_bytes(inode, item_end + 1 - 3437 new_size); 3438 } 3439 size = 3440 btrfs_file_extent_calc_inline_size(size); 3441 btrfs_truncate_item(trans, root, path, 3442 size, 1); 3443 } else if (root->ref_cows) { 3444 inode_sub_bytes(inode, item_end + 1 - 3445 found_key.offset); 3446 } 3447 } 3448 delete: 3449 if (del_item) { 3450 if (!pending_del_nr) { 3451 /* no pending yet, add ourselves */ 3452 pending_del_slot = path->slots[0]; 3453 pending_del_nr = 1; 3454 } else if (pending_del_nr && 3455 path->slots[0] + 1 == pending_del_slot) { 3456 /* hop on the pending chunk */ 3457 pending_del_nr++; 3458 pending_del_slot = path->slots[0]; 3459 } else { 3460 BUG(); 3461 } 3462 } else { 3463 break; 3464 } 3465 if (found_extent && (root->ref_cows || 3466 root == root->fs_info->tree_root)) { 3467 btrfs_set_path_blocking(path); 3468 ret = btrfs_free_extent(trans, root, extent_start, 3469 extent_num_bytes, 0, 3470 btrfs_header_owner(leaf), 3471 ino, extent_offset, 0); 3472 BUG_ON(ret); 3473 } 3474 3475 if (found_type == BTRFS_INODE_ITEM_KEY) 3476 break; 3477 3478 if (path->slots[0] == 0 || 3479 path->slots[0] != pending_del_slot) { 3480 if (pending_del_nr) { 3481 ret = btrfs_del_items(trans, root, path, 3482 pending_del_slot, 3483 pending_del_nr); 3484 if (ret) { 3485 btrfs_abort_transaction(trans, 3486 root, ret); 3487 goto error; 3488 } 3489 pending_del_nr = 0; 3490 } 3491 btrfs_release_path(path); 3492 goto search_again; 3493 } else { 3494 path->slots[0]--; 3495 } 3496 } 3497 out: 3498 if (pending_del_nr) { 3499 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3500 pending_del_nr); 3501 if (ret) 3502 btrfs_abort_transaction(trans, root, ret); 3503 } 3504 error: 3505 btrfs_free_path(path); 3506 return err; 3507 } 3508 3509 /* 3510 * btrfs_truncate_page - read, zero a chunk and write a page 3511 * @inode - inode that we're zeroing 3512 * @from - the offset to start zeroing 3513 * @len - the length to zero, 0 to zero the entire range respective to the 3514 * offset 3515 * @front - zero up to the offset instead of from the offset on 3516 * 3517 * This will find the page for the "from" offset and cow the page and zero the 3518 * part we want to zero. This is used with truncate and hole punching. 3519 */ 3520 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 3521 int front) 3522 { 3523 struct address_space *mapping = inode->i_mapping; 3524 struct btrfs_root *root = BTRFS_I(inode)->root; 3525 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3526 struct btrfs_ordered_extent *ordered; 3527 struct extent_state *cached_state = NULL; 3528 char *kaddr; 3529 u32 blocksize = root->sectorsize; 3530 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3531 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3532 struct page *page; 3533 gfp_t mask = btrfs_alloc_write_mask(mapping); 3534 int ret = 0; 3535 u64 page_start; 3536 u64 page_end; 3537 3538 if ((offset & (blocksize - 1)) == 0 && 3539 (!len || ((len & (blocksize - 1)) == 0))) 3540 goto out; 3541 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3542 if (ret) 3543 goto out; 3544 3545 again: 3546 page = find_or_create_page(mapping, index, mask); 3547 if (!page) { 3548 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3549 ret = -ENOMEM; 3550 goto out; 3551 } 3552 3553 page_start = page_offset(page); 3554 page_end = page_start + PAGE_CACHE_SIZE - 1; 3555 3556 if (!PageUptodate(page)) { 3557 ret = btrfs_readpage(NULL, page); 3558 lock_page(page); 3559 if (page->mapping != mapping) { 3560 unlock_page(page); 3561 page_cache_release(page); 3562 goto again; 3563 } 3564 if (!PageUptodate(page)) { 3565 ret = -EIO; 3566 goto out_unlock; 3567 } 3568 } 3569 wait_on_page_writeback(page); 3570 3571 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 3572 set_page_extent_mapped(page); 3573 3574 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3575 if (ordered) { 3576 unlock_extent_cached(io_tree, page_start, page_end, 3577 &cached_state, GFP_NOFS); 3578 unlock_page(page); 3579 page_cache_release(page); 3580 btrfs_start_ordered_extent(inode, ordered, 1); 3581 btrfs_put_ordered_extent(ordered); 3582 goto again; 3583 } 3584 3585 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3586 EXTENT_DIRTY | EXTENT_DELALLOC | 3587 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 3588 0, 0, &cached_state, GFP_NOFS); 3589 3590 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3591 &cached_state); 3592 if (ret) { 3593 unlock_extent_cached(io_tree, page_start, page_end, 3594 &cached_state, GFP_NOFS); 3595 goto out_unlock; 3596 } 3597 3598 if (offset != PAGE_CACHE_SIZE) { 3599 if (!len) 3600 len = PAGE_CACHE_SIZE - offset; 3601 kaddr = kmap(page); 3602 if (front) 3603 memset(kaddr, 0, offset); 3604 else 3605 memset(kaddr + offset, 0, len); 3606 flush_dcache_page(page); 3607 kunmap(page); 3608 } 3609 ClearPageChecked(page); 3610 set_page_dirty(page); 3611 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3612 GFP_NOFS); 3613 3614 out_unlock: 3615 if (ret) 3616 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3617 unlock_page(page); 3618 page_cache_release(page); 3619 out: 3620 return ret; 3621 } 3622 3623 /* 3624 * This function puts in dummy file extents for the area we're creating a hole 3625 * for. So if we are truncating this file to a larger size we need to insert 3626 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3627 * the range between oldsize and size 3628 */ 3629 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3630 { 3631 struct btrfs_trans_handle *trans; 3632 struct btrfs_root *root = BTRFS_I(inode)->root; 3633 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3634 struct extent_map *em = NULL; 3635 struct extent_state *cached_state = NULL; 3636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3637 u64 mask = root->sectorsize - 1; 3638 u64 hole_start = (oldsize + mask) & ~mask; 3639 u64 block_end = (size + mask) & ~mask; 3640 u64 last_byte; 3641 u64 cur_offset; 3642 u64 hole_size; 3643 int err = 0; 3644 3645 if (size <= hole_start) 3646 return 0; 3647 3648 while (1) { 3649 struct btrfs_ordered_extent *ordered; 3650 btrfs_wait_ordered_range(inode, hole_start, 3651 block_end - hole_start); 3652 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3653 &cached_state); 3654 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3655 if (!ordered) 3656 break; 3657 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3658 &cached_state, GFP_NOFS); 3659 btrfs_put_ordered_extent(ordered); 3660 } 3661 3662 cur_offset = hole_start; 3663 while (1) { 3664 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3665 block_end - cur_offset, 0); 3666 if (IS_ERR(em)) { 3667 err = PTR_ERR(em); 3668 break; 3669 } 3670 last_byte = min(extent_map_end(em), block_end); 3671 last_byte = (last_byte + mask) & ~mask; 3672 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3673 struct extent_map *hole_em; 3674 hole_size = last_byte - cur_offset; 3675 3676 trans = btrfs_start_transaction(root, 3); 3677 if (IS_ERR(trans)) { 3678 err = PTR_ERR(trans); 3679 break; 3680 } 3681 3682 err = btrfs_drop_extents(trans, root, inode, 3683 cur_offset, 3684 cur_offset + hole_size, 1); 3685 if (err) { 3686 btrfs_abort_transaction(trans, root, err); 3687 btrfs_end_transaction(trans, root); 3688 break; 3689 } 3690 3691 err = btrfs_insert_file_extent(trans, root, 3692 btrfs_ino(inode), cur_offset, 0, 3693 0, hole_size, 0, hole_size, 3694 0, 0, 0); 3695 if (err) { 3696 btrfs_abort_transaction(trans, root, err); 3697 btrfs_end_transaction(trans, root); 3698 break; 3699 } 3700 3701 btrfs_drop_extent_cache(inode, cur_offset, 3702 cur_offset + hole_size - 1, 0); 3703 hole_em = alloc_extent_map(); 3704 if (!hole_em) { 3705 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3706 &BTRFS_I(inode)->runtime_flags); 3707 goto next; 3708 } 3709 hole_em->start = cur_offset; 3710 hole_em->len = hole_size; 3711 hole_em->orig_start = cur_offset; 3712 3713 hole_em->block_start = EXTENT_MAP_HOLE; 3714 hole_em->block_len = 0; 3715 hole_em->orig_block_len = 0; 3716 hole_em->bdev = root->fs_info->fs_devices->latest_bdev; 3717 hole_em->compress_type = BTRFS_COMPRESS_NONE; 3718 hole_em->generation = trans->transid; 3719 3720 while (1) { 3721 write_lock(&em_tree->lock); 3722 err = add_extent_mapping(em_tree, hole_em); 3723 if (!err) 3724 list_move(&hole_em->list, 3725 &em_tree->modified_extents); 3726 write_unlock(&em_tree->lock); 3727 if (err != -EEXIST) 3728 break; 3729 btrfs_drop_extent_cache(inode, cur_offset, 3730 cur_offset + 3731 hole_size - 1, 0); 3732 } 3733 free_extent_map(hole_em); 3734 next: 3735 btrfs_update_inode(trans, root, inode); 3736 btrfs_end_transaction(trans, root); 3737 } 3738 free_extent_map(em); 3739 em = NULL; 3740 cur_offset = last_byte; 3741 if (cur_offset >= block_end) 3742 break; 3743 } 3744 3745 free_extent_map(em); 3746 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3747 GFP_NOFS); 3748 return err; 3749 } 3750 3751 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3752 { 3753 struct btrfs_root *root = BTRFS_I(inode)->root; 3754 struct btrfs_trans_handle *trans; 3755 loff_t oldsize = i_size_read(inode); 3756 int ret; 3757 3758 if (newsize == oldsize) 3759 return 0; 3760 3761 if (newsize > oldsize) { 3762 truncate_pagecache(inode, oldsize, newsize); 3763 ret = btrfs_cont_expand(inode, oldsize, newsize); 3764 if (ret) 3765 return ret; 3766 3767 trans = btrfs_start_transaction(root, 1); 3768 if (IS_ERR(trans)) 3769 return PTR_ERR(trans); 3770 3771 i_size_write(inode, newsize); 3772 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3773 ret = btrfs_update_inode(trans, root, inode); 3774 btrfs_end_transaction(trans, root); 3775 } else { 3776 3777 /* 3778 * We're truncating a file that used to have good data down to 3779 * zero. Make sure it gets into the ordered flush list so that 3780 * any new writes get down to disk quickly. 3781 */ 3782 if (newsize == 0) 3783 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 3784 &BTRFS_I(inode)->runtime_flags); 3785 3786 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3787 truncate_setsize(inode, newsize); 3788 ret = btrfs_truncate(inode); 3789 } 3790 3791 return ret; 3792 } 3793 3794 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3795 { 3796 struct inode *inode = dentry->d_inode; 3797 struct btrfs_root *root = BTRFS_I(inode)->root; 3798 int err; 3799 3800 if (btrfs_root_readonly(root)) 3801 return -EROFS; 3802 3803 err = inode_change_ok(inode, attr); 3804 if (err) 3805 return err; 3806 3807 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3808 err = btrfs_setsize(inode, attr->ia_size); 3809 if (err) 3810 return err; 3811 } 3812 3813 if (attr->ia_valid) { 3814 setattr_copy(inode, attr); 3815 inode_inc_iversion(inode); 3816 err = btrfs_dirty_inode(inode); 3817 3818 if (!err && attr->ia_valid & ATTR_MODE) 3819 err = btrfs_acl_chmod(inode); 3820 } 3821 3822 return err; 3823 } 3824 3825 void btrfs_evict_inode(struct inode *inode) 3826 { 3827 struct btrfs_trans_handle *trans; 3828 struct btrfs_root *root = BTRFS_I(inode)->root; 3829 struct btrfs_block_rsv *rsv, *global_rsv; 3830 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 3831 int ret; 3832 3833 trace_btrfs_inode_evict(inode); 3834 3835 truncate_inode_pages(&inode->i_data, 0); 3836 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3837 btrfs_is_free_space_inode(inode))) 3838 goto no_delete; 3839 3840 if (is_bad_inode(inode)) { 3841 btrfs_orphan_del(NULL, inode); 3842 goto no_delete; 3843 } 3844 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3845 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3846 3847 if (root->fs_info->log_root_recovering) { 3848 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 3849 &BTRFS_I(inode)->runtime_flags)); 3850 goto no_delete; 3851 } 3852 3853 if (inode->i_nlink > 0) { 3854 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3855 goto no_delete; 3856 } 3857 3858 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 3859 if (!rsv) { 3860 btrfs_orphan_del(NULL, inode); 3861 goto no_delete; 3862 } 3863 rsv->size = min_size; 3864 rsv->failfast = 1; 3865 global_rsv = &root->fs_info->global_block_rsv; 3866 3867 btrfs_i_size_write(inode, 0); 3868 3869 /* 3870 * This is a bit simpler than btrfs_truncate since we've already 3871 * reserved our space for our orphan item in the unlink, so we just 3872 * need to reserve some slack space in case we add bytes and update 3873 * inode item when doing the truncate. 3874 */ 3875 while (1) { 3876 ret = btrfs_block_rsv_refill(root, rsv, min_size, 3877 BTRFS_RESERVE_FLUSH_LIMIT); 3878 3879 /* 3880 * Try and steal from the global reserve since we will 3881 * likely not use this space anyway, we want to try as 3882 * hard as possible to get this to work. 3883 */ 3884 if (ret) 3885 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size); 3886 3887 if (ret) { 3888 printk(KERN_WARNING "Could not get space for a " 3889 "delete, will truncate on mount %d\n", ret); 3890 btrfs_orphan_del(NULL, inode); 3891 btrfs_free_block_rsv(root, rsv); 3892 goto no_delete; 3893 } 3894 3895 trans = btrfs_start_transaction_lflush(root, 1); 3896 if (IS_ERR(trans)) { 3897 btrfs_orphan_del(NULL, inode); 3898 btrfs_free_block_rsv(root, rsv); 3899 goto no_delete; 3900 } 3901 3902 trans->block_rsv = rsv; 3903 3904 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3905 if (ret != -ENOSPC) 3906 break; 3907 3908 trans->block_rsv = &root->fs_info->trans_block_rsv; 3909 ret = btrfs_update_inode(trans, root, inode); 3910 BUG_ON(ret); 3911 3912 btrfs_end_transaction(trans, root); 3913 trans = NULL; 3914 btrfs_btree_balance_dirty(root); 3915 } 3916 3917 btrfs_free_block_rsv(root, rsv); 3918 3919 if (ret == 0) { 3920 trans->block_rsv = root->orphan_block_rsv; 3921 ret = btrfs_orphan_del(trans, inode); 3922 BUG_ON(ret); 3923 } 3924 3925 trans->block_rsv = &root->fs_info->trans_block_rsv; 3926 if (!(root == root->fs_info->tree_root || 3927 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3928 btrfs_return_ino(root, btrfs_ino(inode)); 3929 3930 btrfs_end_transaction(trans, root); 3931 btrfs_btree_balance_dirty(root); 3932 no_delete: 3933 clear_inode(inode); 3934 return; 3935 } 3936 3937 /* 3938 * this returns the key found in the dir entry in the location pointer. 3939 * If no dir entries were found, location->objectid is 0. 3940 */ 3941 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3942 struct btrfs_key *location) 3943 { 3944 const char *name = dentry->d_name.name; 3945 int namelen = dentry->d_name.len; 3946 struct btrfs_dir_item *di; 3947 struct btrfs_path *path; 3948 struct btrfs_root *root = BTRFS_I(dir)->root; 3949 int ret = 0; 3950 3951 path = btrfs_alloc_path(); 3952 if (!path) 3953 return -ENOMEM; 3954 3955 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3956 namelen, 0); 3957 if (IS_ERR(di)) 3958 ret = PTR_ERR(di); 3959 3960 if (IS_ERR_OR_NULL(di)) 3961 goto out_err; 3962 3963 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3964 out: 3965 btrfs_free_path(path); 3966 return ret; 3967 out_err: 3968 location->objectid = 0; 3969 goto out; 3970 } 3971 3972 /* 3973 * when we hit a tree root in a directory, the btrfs part of the inode 3974 * needs to be changed to reflect the root directory of the tree root. This 3975 * is kind of like crossing a mount point. 3976 */ 3977 static int fixup_tree_root_location(struct btrfs_root *root, 3978 struct inode *dir, 3979 struct dentry *dentry, 3980 struct btrfs_key *location, 3981 struct btrfs_root **sub_root) 3982 { 3983 struct btrfs_path *path; 3984 struct btrfs_root *new_root; 3985 struct btrfs_root_ref *ref; 3986 struct extent_buffer *leaf; 3987 int ret; 3988 int err = 0; 3989 3990 path = btrfs_alloc_path(); 3991 if (!path) { 3992 err = -ENOMEM; 3993 goto out; 3994 } 3995 3996 err = -ENOENT; 3997 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3998 BTRFS_I(dir)->root->root_key.objectid, 3999 location->objectid); 4000 if (ret) { 4001 if (ret < 0) 4002 err = ret; 4003 goto out; 4004 } 4005 4006 leaf = path->nodes[0]; 4007 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 4008 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 4009 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 4010 goto out; 4011 4012 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 4013 (unsigned long)(ref + 1), 4014 dentry->d_name.len); 4015 if (ret) 4016 goto out; 4017 4018 btrfs_release_path(path); 4019 4020 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 4021 if (IS_ERR(new_root)) { 4022 err = PTR_ERR(new_root); 4023 goto out; 4024 } 4025 4026 if (btrfs_root_refs(&new_root->root_item) == 0) { 4027 err = -ENOENT; 4028 goto out; 4029 } 4030 4031 *sub_root = new_root; 4032 location->objectid = btrfs_root_dirid(&new_root->root_item); 4033 location->type = BTRFS_INODE_ITEM_KEY; 4034 location->offset = 0; 4035 err = 0; 4036 out: 4037 btrfs_free_path(path); 4038 return err; 4039 } 4040 4041 static void inode_tree_add(struct inode *inode) 4042 { 4043 struct btrfs_root *root = BTRFS_I(inode)->root; 4044 struct btrfs_inode *entry; 4045 struct rb_node **p; 4046 struct rb_node *parent; 4047 u64 ino = btrfs_ino(inode); 4048 again: 4049 p = &root->inode_tree.rb_node; 4050 parent = NULL; 4051 4052 if (inode_unhashed(inode)) 4053 return; 4054 4055 spin_lock(&root->inode_lock); 4056 while (*p) { 4057 parent = *p; 4058 entry = rb_entry(parent, struct btrfs_inode, rb_node); 4059 4060 if (ino < btrfs_ino(&entry->vfs_inode)) 4061 p = &parent->rb_left; 4062 else if (ino > btrfs_ino(&entry->vfs_inode)) 4063 p = &parent->rb_right; 4064 else { 4065 WARN_ON(!(entry->vfs_inode.i_state & 4066 (I_WILL_FREE | I_FREEING))); 4067 rb_erase(parent, &root->inode_tree); 4068 RB_CLEAR_NODE(parent); 4069 spin_unlock(&root->inode_lock); 4070 goto again; 4071 } 4072 } 4073 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 4074 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4075 spin_unlock(&root->inode_lock); 4076 } 4077 4078 static void inode_tree_del(struct inode *inode) 4079 { 4080 struct btrfs_root *root = BTRFS_I(inode)->root; 4081 int empty = 0; 4082 4083 spin_lock(&root->inode_lock); 4084 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 4085 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 4086 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 4087 empty = RB_EMPTY_ROOT(&root->inode_tree); 4088 } 4089 spin_unlock(&root->inode_lock); 4090 4091 /* 4092 * Free space cache has inodes in the tree root, but the tree root has a 4093 * root_refs of 0, so this could end up dropping the tree root as a 4094 * snapshot, so we need the extra !root->fs_info->tree_root check to 4095 * make sure we don't drop it. 4096 */ 4097 if (empty && btrfs_root_refs(&root->root_item) == 0 && 4098 root != root->fs_info->tree_root) { 4099 synchronize_srcu(&root->fs_info->subvol_srcu); 4100 spin_lock(&root->inode_lock); 4101 empty = RB_EMPTY_ROOT(&root->inode_tree); 4102 spin_unlock(&root->inode_lock); 4103 if (empty) 4104 btrfs_add_dead_root(root); 4105 } 4106 } 4107 4108 void btrfs_invalidate_inodes(struct btrfs_root *root) 4109 { 4110 struct rb_node *node; 4111 struct rb_node *prev; 4112 struct btrfs_inode *entry; 4113 struct inode *inode; 4114 u64 objectid = 0; 4115 4116 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4117 4118 spin_lock(&root->inode_lock); 4119 again: 4120 node = root->inode_tree.rb_node; 4121 prev = NULL; 4122 while (node) { 4123 prev = node; 4124 entry = rb_entry(node, struct btrfs_inode, rb_node); 4125 4126 if (objectid < btrfs_ino(&entry->vfs_inode)) 4127 node = node->rb_left; 4128 else if (objectid > btrfs_ino(&entry->vfs_inode)) 4129 node = node->rb_right; 4130 else 4131 break; 4132 } 4133 if (!node) { 4134 while (prev) { 4135 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4136 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 4137 node = prev; 4138 break; 4139 } 4140 prev = rb_next(prev); 4141 } 4142 } 4143 while (node) { 4144 entry = rb_entry(node, struct btrfs_inode, rb_node); 4145 objectid = btrfs_ino(&entry->vfs_inode) + 1; 4146 inode = igrab(&entry->vfs_inode); 4147 if (inode) { 4148 spin_unlock(&root->inode_lock); 4149 if (atomic_read(&inode->i_count) > 1) 4150 d_prune_aliases(inode); 4151 /* 4152 * btrfs_drop_inode will have it removed from 4153 * the inode cache when its usage count 4154 * hits zero. 4155 */ 4156 iput(inode); 4157 cond_resched(); 4158 spin_lock(&root->inode_lock); 4159 goto again; 4160 } 4161 4162 if (cond_resched_lock(&root->inode_lock)) 4163 goto again; 4164 4165 node = rb_next(node); 4166 } 4167 spin_unlock(&root->inode_lock); 4168 } 4169 4170 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4171 { 4172 struct btrfs_iget_args *args = p; 4173 inode->i_ino = args->ino; 4174 BTRFS_I(inode)->root = args->root; 4175 return 0; 4176 } 4177 4178 static int btrfs_find_actor(struct inode *inode, void *opaque) 4179 { 4180 struct btrfs_iget_args *args = opaque; 4181 return args->ino == btrfs_ino(inode) && 4182 args->root == BTRFS_I(inode)->root; 4183 } 4184 4185 static struct inode *btrfs_iget_locked(struct super_block *s, 4186 u64 objectid, 4187 struct btrfs_root *root) 4188 { 4189 struct inode *inode; 4190 struct btrfs_iget_args args; 4191 args.ino = objectid; 4192 args.root = root; 4193 4194 inode = iget5_locked(s, objectid, btrfs_find_actor, 4195 btrfs_init_locked_inode, 4196 (void *)&args); 4197 return inode; 4198 } 4199 4200 /* Get an inode object given its location and corresponding root. 4201 * Returns in *is_new if the inode was read from disk 4202 */ 4203 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4204 struct btrfs_root *root, int *new) 4205 { 4206 struct inode *inode; 4207 4208 inode = btrfs_iget_locked(s, location->objectid, root); 4209 if (!inode) 4210 return ERR_PTR(-ENOMEM); 4211 4212 if (inode->i_state & I_NEW) { 4213 BTRFS_I(inode)->root = root; 4214 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4215 btrfs_read_locked_inode(inode); 4216 if (!is_bad_inode(inode)) { 4217 inode_tree_add(inode); 4218 unlock_new_inode(inode); 4219 if (new) 4220 *new = 1; 4221 } else { 4222 unlock_new_inode(inode); 4223 iput(inode); 4224 inode = ERR_PTR(-ESTALE); 4225 } 4226 } 4227 4228 return inode; 4229 } 4230 4231 static struct inode *new_simple_dir(struct super_block *s, 4232 struct btrfs_key *key, 4233 struct btrfs_root *root) 4234 { 4235 struct inode *inode = new_inode(s); 4236 4237 if (!inode) 4238 return ERR_PTR(-ENOMEM); 4239 4240 BTRFS_I(inode)->root = root; 4241 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4242 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 4243 4244 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4245 inode->i_op = &btrfs_dir_ro_inode_operations; 4246 inode->i_fop = &simple_dir_operations; 4247 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4248 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4249 4250 return inode; 4251 } 4252 4253 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4254 { 4255 struct inode *inode; 4256 struct btrfs_root *root = BTRFS_I(dir)->root; 4257 struct btrfs_root *sub_root = root; 4258 struct btrfs_key location; 4259 int index; 4260 int ret = 0; 4261 4262 if (dentry->d_name.len > BTRFS_NAME_LEN) 4263 return ERR_PTR(-ENAMETOOLONG); 4264 4265 ret = btrfs_inode_by_name(dir, dentry, &location); 4266 if (ret < 0) 4267 return ERR_PTR(ret); 4268 4269 if (location.objectid == 0) 4270 return NULL; 4271 4272 if (location.type == BTRFS_INODE_ITEM_KEY) { 4273 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4274 return inode; 4275 } 4276 4277 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4278 4279 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4280 ret = fixup_tree_root_location(root, dir, dentry, 4281 &location, &sub_root); 4282 if (ret < 0) { 4283 if (ret != -ENOENT) 4284 inode = ERR_PTR(ret); 4285 else 4286 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4287 } else { 4288 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4289 } 4290 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4291 4292 if (!IS_ERR(inode) && root != sub_root) { 4293 down_read(&root->fs_info->cleanup_work_sem); 4294 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4295 ret = btrfs_orphan_cleanup(sub_root); 4296 up_read(&root->fs_info->cleanup_work_sem); 4297 if (ret) 4298 inode = ERR_PTR(ret); 4299 } 4300 4301 return inode; 4302 } 4303 4304 static int btrfs_dentry_delete(const struct dentry *dentry) 4305 { 4306 struct btrfs_root *root; 4307 struct inode *inode = dentry->d_inode; 4308 4309 if (!inode && !IS_ROOT(dentry)) 4310 inode = dentry->d_parent->d_inode; 4311 4312 if (inode) { 4313 root = BTRFS_I(inode)->root; 4314 if (btrfs_root_refs(&root->root_item) == 0) 4315 return 1; 4316 4317 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 4318 return 1; 4319 } 4320 return 0; 4321 } 4322 4323 static void btrfs_dentry_release(struct dentry *dentry) 4324 { 4325 if (dentry->d_fsdata) 4326 kfree(dentry->d_fsdata); 4327 } 4328 4329 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4330 unsigned int flags) 4331 { 4332 struct dentry *ret; 4333 4334 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4335 return ret; 4336 } 4337 4338 unsigned char btrfs_filetype_table[] = { 4339 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4340 }; 4341 4342 static int btrfs_real_readdir(struct file *filp, void *dirent, 4343 filldir_t filldir) 4344 { 4345 struct inode *inode = filp->f_dentry->d_inode; 4346 struct btrfs_root *root = BTRFS_I(inode)->root; 4347 struct btrfs_item *item; 4348 struct btrfs_dir_item *di; 4349 struct btrfs_key key; 4350 struct btrfs_key found_key; 4351 struct btrfs_path *path; 4352 struct list_head ins_list; 4353 struct list_head del_list; 4354 int ret; 4355 struct extent_buffer *leaf; 4356 int slot; 4357 unsigned char d_type; 4358 int over = 0; 4359 u32 di_cur; 4360 u32 di_total; 4361 u32 di_len; 4362 int key_type = BTRFS_DIR_INDEX_KEY; 4363 char tmp_name[32]; 4364 char *name_ptr; 4365 int name_len; 4366 int is_curr = 0; /* filp->f_pos points to the current index? */ 4367 4368 /* FIXME, use a real flag for deciding about the key type */ 4369 if (root->fs_info->tree_root == root) 4370 key_type = BTRFS_DIR_ITEM_KEY; 4371 4372 /* special case for "." */ 4373 if (filp->f_pos == 0) { 4374 over = filldir(dirent, ".", 1, 4375 filp->f_pos, btrfs_ino(inode), DT_DIR); 4376 if (over) 4377 return 0; 4378 filp->f_pos = 1; 4379 } 4380 /* special case for .., just use the back ref */ 4381 if (filp->f_pos == 1) { 4382 u64 pino = parent_ino(filp->f_path.dentry); 4383 over = filldir(dirent, "..", 2, 4384 filp->f_pos, pino, DT_DIR); 4385 if (over) 4386 return 0; 4387 filp->f_pos = 2; 4388 } 4389 path = btrfs_alloc_path(); 4390 if (!path) 4391 return -ENOMEM; 4392 4393 path->reada = 1; 4394 4395 if (key_type == BTRFS_DIR_INDEX_KEY) { 4396 INIT_LIST_HEAD(&ins_list); 4397 INIT_LIST_HEAD(&del_list); 4398 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4399 } 4400 4401 btrfs_set_key_type(&key, key_type); 4402 key.offset = filp->f_pos; 4403 key.objectid = btrfs_ino(inode); 4404 4405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4406 if (ret < 0) 4407 goto err; 4408 4409 while (1) { 4410 leaf = path->nodes[0]; 4411 slot = path->slots[0]; 4412 if (slot >= btrfs_header_nritems(leaf)) { 4413 ret = btrfs_next_leaf(root, path); 4414 if (ret < 0) 4415 goto err; 4416 else if (ret > 0) 4417 break; 4418 continue; 4419 } 4420 4421 item = btrfs_item_nr(leaf, slot); 4422 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4423 4424 if (found_key.objectid != key.objectid) 4425 break; 4426 if (btrfs_key_type(&found_key) != key_type) 4427 break; 4428 if (found_key.offset < filp->f_pos) 4429 goto next; 4430 if (key_type == BTRFS_DIR_INDEX_KEY && 4431 btrfs_should_delete_dir_index(&del_list, 4432 found_key.offset)) 4433 goto next; 4434 4435 filp->f_pos = found_key.offset; 4436 is_curr = 1; 4437 4438 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4439 di_cur = 0; 4440 di_total = btrfs_item_size(leaf, item); 4441 4442 while (di_cur < di_total) { 4443 struct btrfs_key location; 4444 4445 if (verify_dir_item(root, leaf, di)) 4446 break; 4447 4448 name_len = btrfs_dir_name_len(leaf, di); 4449 if (name_len <= sizeof(tmp_name)) { 4450 name_ptr = tmp_name; 4451 } else { 4452 name_ptr = kmalloc(name_len, GFP_NOFS); 4453 if (!name_ptr) { 4454 ret = -ENOMEM; 4455 goto err; 4456 } 4457 } 4458 read_extent_buffer(leaf, name_ptr, 4459 (unsigned long)(di + 1), name_len); 4460 4461 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4462 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4463 4464 4465 /* is this a reference to our own snapshot? If so 4466 * skip it. 4467 * 4468 * In contrast to old kernels, we insert the snapshot's 4469 * dir item and dir index after it has been created, so 4470 * we won't find a reference to our own snapshot. We 4471 * still keep the following code for backward 4472 * compatibility. 4473 */ 4474 if (location.type == BTRFS_ROOT_ITEM_KEY && 4475 location.objectid == root->root_key.objectid) { 4476 over = 0; 4477 goto skip; 4478 } 4479 over = filldir(dirent, name_ptr, name_len, 4480 found_key.offset, location.objectid, 4481 d_type); 4482 4483 skip: 4484 if (name_ptr != tmp_name) 4485 kfree(name_ptr); 4486 4487 if (over) 4488 goto nopos; 4489 di_len = btrfs_dir_name_len(leaf, di) + 4490 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4491 di_cur += di_len; 4492 di = (struct btrfs_dir_item *)((char *)di + di_len); 4493 } 4494 next: 4495 path->slots[0]++; 4496 } 4497 4498 if (key_type == BTRFS_DIR_INDEX_KEY) { 4499 if (is_curr) 4500 filp->f_pos++; 4501 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4502 &ins_list); 4503 if (ret) 4504 goto nopos; 4505 } 4506 4507 /* Reached end of directory/root. Bump pos past the last item. */ 4508 if (key_type == BTRFS_DIR_INDEX_KEY) 4509 /* 4510 * 32-bit glibc will use getdents64, but then strtol - 4511 * so the last number we can serve is this. 4512 */ 4513 filp->f_pos = 0x7fffffff; 4514 else 4515 filp->f_pos++; 4516 nopos: 4517 ret = 0; 4518 err: 4519 if (key_type == BTRFS_DIR_INDEX_KEY) 4520 btrfs_put_delayed_items(&ins_list, &del_list); 4521 btrfs_free_path(path); 4522 return ret; 4523 } 4524 4525 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4526 { 4527 struct btrfs_root *root = BTRFS_I(inode)->root; 4528 struct btrfs_trans_handle *trans; 4529 int ret = 0; 4530 bool nolock = false; 4531 4532 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 4533 return 0; 4534 4535 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode)) 4536 nolock = true; 4537 4538 if (wbc->sync_mode == WB_SYNC_ALL) { 4539 if (nolock) 4540 trans = btrfs_join_transaction_nolock(root); 4541 else 4542 trans = btrfs_join_transaction(root); 4543 if (IS_ERR(trans)) 4544 return PTR_ERR(trans); 4545 ret = btrfs_commit_transaction(trans, root); 4546 } 4547 return ret; 4548 } 4549 4550 /* 4551 * This is somewhat expensive, updating the tree every time the 4552 * inode changes. But, it is most likely to find the inode in cache. 4553 * FIXME, needs more benchmarking...there are no reasons other than performance 4554 * to keep or drop this code. 4555 */ 4556 int btrfs_dirty_inode(struct inode *inode) 4557 { 4558 struct btrfs_root *root = BTRFS_I(inode)->root; 4559 struct btrfs_trans_handle *trans; 4560 int ret; 4561 4562 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 4563 return 0; 4564 4565 trans = btrfs_join_transaction(root); 4566 if (IS_ERR(trans)) 4567 return PTR_ERR(trans); 4568 4569 ret = btrfs_update_inode(trans, root, inode); 4570 if (ret && ret == -ENOSPC) { 4571 /* whoops, lets try again with the full transaction */ 4572 btrfs_end_transaction(trans, root); 4573 trans = btrfs_start_transaction(root, 1); 4574 if (IS_ERR(trans)) 4575 return PTR_ERR(trans); 4576 4577 ret = btrfs_update_inode(trans, root, inode); 4578 } 4579 btrfs_end_transaction(trans, root); 4580 if (BTRFS_I(inode)->delayed_node) 4581 btrfs_balance_delayed_items(root); 4582 4583 return ret; 4584 } 4585 4586 /* 4587 * This is a copy of file_update_time. We need this so we can return error on 4588 * ENOSPC for updating the inode in the case of file write and mmap writes. 4589 */ 4590 static int btrfs_update_time(struct inode *inode, struct timespec *now, 4591 int flags) 4592 { 4593 struct btrfs_root *root = BTRFS_I(inode)->root; 4594 4595 if (btrfs_root_readonly(root)) 4596 return -EROFS; 4597 4598 if (flags & S_VERSION) 4599 inode_inc_iversion(inode); 4600 if (flags & S_CTIME) 4601 inode->i_ctime = *now; 4602 if (flags & S_MTIME) 4603 inode->i_mtime = *now; 4604 if (flags & S_ATIME) 4605 inode->i_atime = *now; 4606 return btrfs_dirty_inode(inode); 4607 } 4608 4609 /* 4610 * find the highest existing sequence number in a directory 4611 * and then set the in-memory index_cnt variable to reflect 4612 * free sequence numbers 4613 */ 4614 static int btrfs_set_inode_index_count(struct inode *inode) 4615 { 4616 struct btrfs_root *root = BTRFS_I(inode)->root; 4617 struct btrfs_key key, found_key; 4618 struct btrfs_path *path; 4619 struct extent_buffer *leaf; 4620 int ret; 4621 4622 key.objectid = btrfs_ino(inode); 4623 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4624 key.offset = (u64)-1; 4625 4626 path = btrfs_alloc_path(); 4627 if (!path) 4628 return -ENOMEM; 4629 4630 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4631 if (ret < 0) 4632 goto out; 4633 /* FIXME: we should be able to handle this */ 4634 if (ret == 0) 4635 goto out; 4636 ret = 0; 4637 4638 /* 4639 * MAGIC NUMBER EXPLANATION: 4640 * since we search a directory based on f_pos we have to start at 2 4641 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4642 * else has to start at 2 4643 */ 4644 if (path->slots[0] == 0) { 4645 BTRFS_I(inode)->index_cnt = 2; 4646 goto out; 4647 } 4648 4649 path->slots[0]--; 4650 4651 leaf = path->nodes[0]; 4652 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4653 4654 if (found_key.objectid != btrfs_ino(inode) || 4655 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4656 BTRFS_I(inode)->index_cnt = 2; 4657 goto out; 4658 } 4659 4660 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4661 out: 4662 btrfs_free_path(path); 4663 return ret; 4664 } 4665 4666 /* 4667 * helper to find a free sequence number in a given directory. This current 4668 * code is very simple, later versions will do smarter things in the btree 4669 */ 4670 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4671 { 4672 int ret = 0; 4673 4674 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4675 ret = btrfs_inode_delayed_dir_index_count(dir); 4676 if (ret) { 4677 ret = btrfs_set_inode_index_count(dir); 4678 if (ret) 4679 return ret; 4680 } 4681 } 4682 4683 *index = BTRFS_I(dir)->index_cnt; 4684 BTRFS_I(dir)->index_cnt++; 4685 4686 return ret; 4687 } 4688 4689 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4690 struct btrfs_root *root, 4691 struct inode *dir, 4692 const char *name, int name_len, 4693 u64 ref_objectid, u64 objectid, 4694 umode_t mode, u64 *index) 4695 { 4696 struct inode *inode; 4697 struct btrfs_inode_item *inode_item; 4698 struct btrfs_key *location; 4699 struct btrfs_path *path; 4700 struct btrfs_inode_ref *ref; 4701 struct btrfs_key key[2]; 4702 u32 sizes[2]; 4703 unsigned long ptr; 4704 int ret; 4705 int owner; 4706 4707 path = btrfs_alloc_path(); 4708 if (!path) 4709 return ERR_PTR(-ENOMEM); 4710 4711 inode = new_inode(root->fs_info->sb); 4712 if (!inode) { 4713 btrfs_free_path(path); 4714 return ERR_PTR(-ENOMEM); 4715 } 4716 4717 /* 4718 * we have to initialize this early, so we can reclaim the inode 4719 * number if we fail afterwards in this function. 4720 */ 4721 inode->i_ino = objectid; 4722 4723 if (dir) { 4724 trace_btrfs_inode_request(dir); 4725 4726 ret = btrfs_set_inode_index(dir, index); 4727 if (ret) { 4728 btrfs_free_path(path); 4729 iput(inode); 4730 return ERR_PTR(ret); 4731 } 4732 } 4733 /* 4734 * index_cnt is ignored for everything but a dir, 4735 * btrfs_get_inode_index_count has an explanation for the magic 4736 * number 4737 */ 4738 BTRFS_I(inode)->index_cnt = 2; 4739 BTRFS_I(inode)->root = root; 4740 BTRFS_I(inode)->generation = trans->transid; 4741 inode->i_generation = BTRFS_I(inode)->generation; 4742 4743 /* 4744 * We could have gotten an inode number from somebody who was fsynced 4745 * and then removed in this same transaction, so let's just set full 4746 * sync since it will be a full sync anyway and this will blow away the 4747 * old info in the log. 4748 */ 4749 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 4750 4751 if (S_ISDIR(mode)) 4752 owner = 0; 4753 else 4754 owner = 1; 4755 4756 key[0].objectid = objectid; 4757 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4758 key[0].offset = 0; 4759 4760 /* 4761 * Start new inodes with an inode_ref. This is slightly more 4762 * efficient for small numbers of hard links since they will 4763 * be packed into one item. Extended refs will kick in if we 4764 * add more hard links than can fit in the ref item. 4765 */ 4766 key[1].objectid = objectid; 4767 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4768 key[1].offset = ref_objectid; 4769 4770 sizes[0] = sizeof(struct btrfs_inode_item); 4771 sizes[1] = name_len + sizeof(*ref); 4772 4773 path->leave_spinning = 1; 4774 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4775 if (ret != 0) 4776 goto fail; 4777 4778 inode_init_owner(inode, dir, mode); 4779 inode_set_bytes(inode, 0); 4780 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4781 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4782 struct btrfs_inode_item); 4783 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item, 4784 sizeof(*inode_item)); 4785 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4786 4787 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4788 struct btrfs_inode_ref); 4789 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4790 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4791 ptr = (unsigned long)(ref + 1); 4792 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4793 4794 btrfs_mark_buffer_dirty(path->nodes[0]); 4795 btrfs_free_path(path); 4796 4797 location = &BTRFS_I(inode)->location; 4798 location->objectid = objectid; 4799 location->offset = 0; 4800 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4801 4802 btrfs_inherit_iflags(inode, dir); 4803 4804 if (S_ISREG(mode)) { 4805 if (btrfs_test_opt(root, NODATASUM)) 4806 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4807 if (btrfs_test_opt(root, NODATACOW)) 4808 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4809 } 4810 4811 insert_inode_hash(inode); 4812 inode_tree_add(inode); 4813 4814 trace_btrfs_inode_new(inode); 4815 btrfs_set_inode_last_trans(trans, inode); 4816 4817 btrfs_update_root_times(trans, root); 4818 4819 return inode; 4820 fail: 4821 if (dir) 4822 BTRFS_I(dir)->index_cnt--; 4823 btrfs_free_path(path); 4824 iput(inode); 4825 return ERR_PTR(ret); 4826 } 4827 4828 static inline u8 btrfs_inode_type(struct inode *inode) 4829 { 4830 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4831 } 4832 4833 /* 4834 * utility function to add 'inode' into 'parent_inode' with 4835 * a give name and a given sequence number. 4836 * if 'add_backref' is true, also insert a backref from the 4837 * inode to the parent directory. 4838 */ 4839 int btrfs_add_link(struct btrfs_trans_handle *trans, 4840 struct inode *parent_inode, struct inode *inode, 4841 const char *name, int name_len, int add_backref, u64 index) 4842 { 4843 int ret = 0; 4844 struct btrfs_key key; 4845 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4846 u64 ino = btrfs_ino(inode); 4847 u64 parent_ino = btrfs_ino(parent_inode); 4848 4849 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4850 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4851 } else { 4852 key.objectid = ino; 4853 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4854 key.offset = 0; 4855 } 4856 4857 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4858 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4859 key.objectid, root->root_key.objectid, 4860 parent_ino, index, name, name_len); 4861 } else if (add_backref) { 4862 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4863 parent_ino, index); 4864 } 4865 4866 /* Nothing to clean up yet */ 4867 if (ret) 4868 return ret; 4869 4870 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4871 parent_inode, &key, 4872 btrfs_inode_type(inode), index); 4873 if (ret == -EEXIST || ret == -EOVERFLOW) 4874 goto fail_dir_item; 4875 else if (ret) { 4876 btrfs_abort_transaction(trans, root, ret); 4877 return ret; 4878 } 4879 4880 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4881 name_len * 2); 4882 inode_inc_iversion(parent_inode); 4883 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4884 ret = btrfs_update_inode(trans, root, parent_inode); 4885 if (ret) 4886 btrfs_abort_transaction(trans, root, ret); 4887 return ret; 4888 4889 fail_dir_item: 4890 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4891 u64 local_index; 4892 int err; 4893 err = btrfs_del_root_ref(trans, root->fs_info->tree_root, 4894 key.objectid, root->root_key.objectid, 4895 parent_ino, &local_index, name, name_len); 4896 4897 } else if (add_backref) { 4898 u64 local_index; 4899 int err; 4900 4901 err = btrfs_del_inode_ref(trans, root, name, name_len, 4902 ino, parent_ino, &local_index); 4903 } 4904 return ret; 4905 } 4906 4907 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4908 struct inode *dir, struct dentry *dentry, 4909 struct inode *inode, int backref, u64 index) 4910 { 4911 int err = btrfs_add_link(trans, dir, inode, 4912 dentry->d_name.name, dentry->d_name.len, 4913 backref, index); 4914 if (err > 0) 4915 err = -EEXIST; 4916 return err; 4917 } 4918 4919 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4920 umode_t mode, dev_t rdev) 4921 { 4922 struct btrfs_trans_handle *trans; 4923 struct btrfs_root *root = BTRFS_I(dir)->root; 4924 struct inode *inode = NULL; 4925 int err; 4926 int drop_inode = 0; 4927 u64 objectid; 4928 u64 index = 0; 4929 4930 if (!new_valid_dev(rdev)) 4931 return -EINVAL; 4932 4933 /* 4934 * 2 for inode item and ref 4935 * 2 for dir items 4936 * 1 for xattr if selinux is on 4937 */ 4938 trans = btrfs_start_transaction(root, 5); 4939 if (IS_ERR(trans)) 4940 return PTR_ERR(trans); 4941 4942 err = btrfs_find_free_ino(root, &objectid); 4943 if (err) 4944 goto out_unlock; 4945 4946 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4947 dentry->d_name.len, btrfs_ino(dir), objectid, 4948 mode, &index); 4949 if (IS_ERR(inode)) { 4950 err = PTR_ERR(inode); 4951 goto out_unlock; 4952 } 4953 4954 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4955 if (err) { 4956 drop_inode = 1; 4957 goto out_unlock; 4958 } 4959 4960 err = btrfs_update_inode(trans, root, inode); 4961 if (err) { 4962 drop_inode = 1; 4963 goto out_unlock; 4964 } 4965 4966 /* 4967 * If the active LSM wants to access the inode during 4968 * d_instantiate it needs these. Smack checks to see 4969 * if the filesystem supports xattrs by looking at the 4970 * ops vector. 4971 */ 4972 4973 inode->i_op = &btrfs_special_inode_operations; 4974 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4975 if (err) 4976 drop_inode = 1; 4977 else { 4978 init_special_inode(inode, inode->i_mode, rdev); 4979 btrfs_update_inode(trans, root, inode); 4980 d_instantiate(dentry, inode); 4981 } 4982 out_unlock: 4983 btrfs_end_transaction(trans, root); 4984 btrfs_btree_balance_dirty(root); 4985 if (drop_inode) { 4986 inode_dec_link_count(inode); 4987 iput(inode); 4988 } 4989 return err; 4990 } 4991 4992 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4993 umode_t mode, bool excl) 4994 { 4995 struct btrfs_trans_handle *trans; 4996 struct btrfs_root *root = BTRFS_I(dir)->root; 4997 struct inode *inode = NULL; 4998 int drop_inode_on_err = 0; 4999 int err; 5000 u64 objectid; 5001 u64 index = 0; 5002 5003 /* 5004 * 2 for inode item and ref 5005 * 2 for dir items 5006 * 1 for xattr if selinux is on 5007 */ 5008 trans = btrfs_start_transaction(root, 5); 5009 if (IS_ERR(trans)) 5010 return PTR_ERR(trans); 5011 5012 err = btrfs_find_free_ino(root, &objectid); 5013 if (err) 5014 goto out_unlock; 5015 5016 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5017 dentry->d_name.len, btrfs_ino(dir), objectid, 5018 mode, &index); 5019 if (IS_ERR(inode)) { 5020 err = PTR_ERR(inode); 5021 goto out_unlock; 5022 } 5023 drop_inode_on_err = 1; 5024 5025 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5026 if (err) 5027 goto out_unlock; 5028 5029 err = btrfs_update_inode(trans, root, inode); 5030 if (err) 5031 goto out_unlock; 5032 5033 /* 5034 * If the active LSM wants to access the inode during 5035 * d_instantiate it needs these. Smack checks to see 5036 * if the filesystem supports xattrs by looking at the 5037 * ops vector. 5038 */ 5039 inode->i_fop = &btrfs_file_operations; 5040 inode->i_op = &btrfs_file_inode_operations; 5041 5042 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 5043 if (err) 5044 goto out_unlock; 5045 5046 inode->i_mapping->a_ops = &btrfs_aops; 5047 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 5048 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 5049 d_instantiate(dentry, inode); 5050 5051 out_unlock: 5052 btrfs_end_transaction(trans, root); 5053 if (err && drop_inode_on_err) { 5054 inode_dec_link_count(inode); 5055 iput(inode); 5056 } 5057 btrfs_btree_balance_dirty(root); 5058 return err; 5059 } 5060 5061 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 5062 struct dentry *dentry) 5063 { 5064 struct btrfs_trans_handle *trans; 5065 struct btrfs_root *root = BTRFS_I(dir)->root; 5066 struct inode *inode = old_dentry->d_inode; 5067 u64 index; 5068 int err; 5069 int drop_inode = 0; 5070 5071 /* do not allow sys_link's with other subvols of the same device */ 5072 if (root->objectid != BTRFS_I(inode)->root->objectid) 5073 return -EXDEV; 5074 5075 if (inode->i_nlink >= BTRFS_LINK_MAX) 5076 return -EMLINK; 5077 5078 err = btrfs_set_inode_index(dir, &index); 5079 if (err) 5080 goto fail; 5081 5082 /* 5083 * 2 items for inode and inode ref 5084 * 2 items for dir items 5085 * 1 item for parent inode 5086 */ 5087 trans = btrfs_start_transaction(root, 5); 5088 if (IS_ERR(trans)) { 5089 err = PTR_ERR(trans); 5090 goto fail; 5091 } 5092 5093 btrfs_inc_nlink(inode); 5094 inode_inc_iversion(inode); 5095 inode->i_ctime = CURRENT_TIME; 5096 ihold(inode); 5097 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 5098 5099 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 5100 5101 if (err) { 5102 drop_inode = 1; 5103 } else { 5104 struct dentry *parent = dentry->d_parent; 5105 err = btrfs_update_inode(trans, root, inode); 5106 if (err) 5107 goto fail; 5108 d_instantiate(dentry, inode); 5109 btrfs_log_new_name(trans, inode, NULL, parent); 5110 } 5111 5112 btrfs_end_transaction(trans, root); 5113 fail: 5114 if (drop_inode) { 5115 inode_dec_link_count(inode); 5116 iput(inode); 5117 } 5118 btrfs_btree_balance_dirty(root); 5119 return err; 5120 } 5121 5122 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 5123 { 5124 struct inode *inode = NULL; 5125 struct btrfs_trans_handle *trans; 5126 struct btrfs_root *root = BTRFS_I(dir)->root; 5127 int err = 0; 5128 int drop_on_err = 0; 5129 u64 objectid = 0; 5130 u64 index = 0; 5131 5132 /* 5133 * 2 items for inode and ref 5134 * 2 items for dir items 5135 * 1 for xattr if selinux is on 5136 */ 5137 trans = btrfs_start_transaction(root, 5); 5138 if (IS_ERR(trans)) 5139 return PTR_ERR(trans); 5140 5141 err = btrfs_find_free_ino(root, &objectid); 5142 if (err) 5143 goto out_fail; 5144 5145 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 5146 dentry->d_name.len, btrfs_ino(dir), objectid, 5147 S_IFDIR | mode, &index); 5148 if (IS_ERR(inode)) { 5149 err = PTR_ERR(inode); 5150 goto out_fail; 5151 } 5152 5153 drop_on_err = 1; 5154 5155 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 5156 if (err) 5157 goto out_fail; 5158 5159 inode->i_op = &btrfs_dir_inode_operations; 5160 inode->i_fop = &btrfs_dir_file_operations; 5161 5162 btrfs_i_size_write(inode, 0); 5163 err = btrfs_update_inode(trans, root, inode); 5164 if (err) 5165 goto out_fail; 5166 5167 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 5168 dentry->d_name.len, 0, index); 5169 if (err) 5170 goto out_fail; 5171 5172 d_instantiate(dentry, inode); 5173 drop_on_err = 0; 5174 5175 out_fail: 5176 btrfs_end_transaction(trans, root); 5177 if (drop_on_err) 5178 iput(inode); 5179 btrfs_btree_balance_dirty(root); 5180 return err; 5181 } 5182 5183 /* helper for btfs_get_extent. Given an existing extent in the tree, 5184 * and an extent that you want to insert, deal with overlap and insert 5185 * the new extent into the tree. 5186 */ 5187 static int merge_extent_mapping(struct extent_map_tree *em_tree, 5188 struct extent_map *existing, 5189 struct extent_map *em, 5190 u64 map_start, u64 map_len) 5191 { 5192 u64 start_diff; 5193 5194 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 5195 start_diff = map_start - em->start; 5196 em->start = map_start; 5197 em->len = map_len; 5198 if (em->block_start < EXTENT_MAP_LAST_BYTE && 5199 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 5200 em->block_start += start_diff; 5201 em->block_len -= start_diff; 5202 } 5203 return add_extent_mapping(em_tree, em); 5204 } 5205 5206 static noinline int uncompress_inline(struct btrfs_path *path, 5207 struct inode *inode, struct page *page, 5208 size_t pg_offset, u64 extent_offset, 5209 struct btrfs_file_extent_item *item) 5210 { 5211 int ret; 5212 struct extent_buffer *leaf = path->nodes[0]; 5213 char *tmp; 5214 size_t max_size; 5215 unsigned long inline_size; 5216 unsigned long ptr; 5217 int compress_type; 5218 5219 WARN_ON(pg_offset != 0); 5220 compress_type = btrfs_file_extent_compression(leaf, item); 5221 max_size = btrfs_file_extent_ram_bytes(leaf, item); 5222 inline_size = btrfs_file_extent_inline_item_len(leaf, 5223 btrfs_item_nr(leaf, path->slots[0])); 5224 tmp = kmalloc(inline_size, GFP_NOFS); 5225 if (!tmp) 5226 return -ENOMEM; 5227 ptr = btrfs_file_extent_inline_start(item); 5228 5229 read_extent_buffer(leaf, tmp, ptr, inline_size); 5230 5231 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 5232 ret = btrfs_decompress(compress_type, tmp, page, 5233 extent_offset, inline_size, max_size); 5234 if (ret) { 5235 char *kaddr = kmap_atomic(page); 5236 unsigned long copy_size = min_t(u64, 5237 PAGE_CACHE_SIZE - pg_offset, 5238 max_size - extent_offset); 5239 memset(kaddr + pg_offset, 0, copy_size); 5240 kunmap_atomic(kaddr); 5241 } 5242 kfree(tmp); 5243 return 0; 5244 } 5245 5246 /* 5247 * a bit scary, this does extent mapping from logical file offset to the disk. 5248 * the ugly parts come from merging extents from the disk with the in-ram 5249 * representation. This gets more complex because of the data=ordered code, 5250 * where the in-ram extents might be locked pending data=ordered completion. 5251 * 5252 * This also copies inline extents directly into the page. 5253 */ 5254 5255 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 5256 size_t pg_offset, u64 start, u64 len, 5257 int create) 5258 { 5259 int ret; 5260 int err = 0; 5261 u64 bytenr; 5262 u64 extent_start = 0; 5263 u64 extent_end = 0; 5264 u64 objectid = btrfs_ino(inode); 5265 u32 found_type; 5266 struct btrfs_path *path = NULL; 5267 struct btrfs_root *root = BTRFS_I(inode)->root; 5268 struct btrfs_file_extent_item *item; 5269 struct extent_buffer *leaf; 5270 struct btrfs_key found_key; 5271 struct extent_map *em = NULL; 5272 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5273 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5274 struct btrfs_trans_handle *trans = NULL; 5275 int compress_type; 5276 5277 again: 5278 read_lock(&em_tree->lock); 5279 em = lookup_extent_mapping(em_tree, start, len); 5280 if (em) 5281 em->bdev = root->fs_info->fs_devices->latest_bdev; 5282 read_unlock(&em_tree->lock); 5283 5284 if (em) { 5285 if (em->start > start || em->start + em->len <= start) 5286 free_extent_map(em); 5287 else if (em->block_start == EXTENT_MAP_INLINE && page) 5288 free_extent_map(em); 5289 else 5290 goto out; 5291 } 5292 em = alloc_extent_map(); 5293 if (!em) { 5294 err = -ENOMEM; 5295 goto out; 5296 } 5297 em->bdev = root->fs_info->fs_devices->latest_bdev; 5298 em->start = EXTENT_MAP_HOLE; 5299 em->orig_start = EXTENT_MAP_HOLE; 5300 em->len = (u64)-1; 5301 em->block_len = (u64)-1; 5302 5303 if (!path) { 5304 path = btrfs_alloc_path(); 5305 if (!path) { 5306 err = -ENOMEM; 5307 goto out; 5308 } 5309 /* 5310 * Chances are we'll be called again, so go ahead and do 5311 * readahead 5312 */ 5313 path->reada = 1; 5314 } 5315 5316 ret = btrfs_lookup_file_extent(trans, root, path, 5317 objectid, start, trans != NULL); 5318 if (ret < 0) { 5319 err = ret; 5320 goto out; 5321 } 5322 5323 if (ret != 0) { 5324 if (path->slots[0] == 0) 5325 goto not_found; 5326 path->slots[0]--; 5327 } 5328 5329 leaf = path->nodes[0]; 5330 item = btrfs_item_ptr(leaf, path->slots[0], 5331 struct btrfs_file_extent_item); 5332 /* are we inside the extent that was found? */ 5333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5334 found_type = btrfs_key_type(&found_key); 5335 if (found_key.objectid != objectid || 5336 found_type != BTRFS_EXTENT_DATA_KEY) { 5337 goto not_found; 5338 } 5339 5340 found_type = btrfs_file_extent_type(leaf, item); 5341 extent_start = found_key.offset; 5342 compress_type = btrfs_file_extent_compression(leaf, item); 5343 if (found_type == BTRFS_FILE_EXTENT_REG || 5344 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5345 extent_end = extent_start + 5346 btrfs_file_extent_num_bytes(leaf, item); 5347 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5348 size_t size; 5349 size = btrfs_file_extent_inline_len(leaf, item); 5350 extent_end = (extent_start + size + root->sectorsize - 1) & 5351 ~((u64)root->sectorsize - 1); 5352 } 5353 5354 if (start >= extent_end) { 5355 path->slots[0]++; 5356 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5357 ret = btrfs_next_leaf(root, path); 5358 if (ret < 0) { 5359 err = ret; 5360 goto out; 5361 } 5362 if (ret > 0) 5363 goto not_found; 5364 leaf = path->nodes[0]; 5365 } 5366 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5367 if (found_key.objectid != objectid || 5368 found_key.type != BTRFS_EXTENT_DATA_KEY) 5369 goto not_found; 5370 if (start + len <= found_key.offset) 5371 goto not_found; 5372 em->start = start; 5373 em->orig_start = start; 5374 em->len = found_key.offset - start; 5375 goto not_found_em; 5376 } 5377 5378 if (found_type == BTRFS_FILE_EXTENT_REG || 5379 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5380 em->start = extent_start; 5381 em->len = extent_end - extent_start; 5382 em->orig_start = extent_start - 5383 btrfs_file_extent_offset(leaf, item); 5384 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, 5385 item); 5386 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5387 if (bytenr == 0) { 5388 em->block_start = EXTENT_MAP_HOLE; 5389 goto insert; 5390 } 5391 if (compress_type != BTRFS_COMPRESS_NONE) { 5392 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5393 em->compress_type = compress_type; 5394 em->block_start = bytenr; 5395 em->block_len = em->orig_block_len; 5396 } else { 5397 bytenr += btrfs_file_extent_offset(leaf, item); 5398 em->block_start = bytenr; 5399 em->block_len = em->len; 5400 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5401 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5402 } 5403 goto insert; 5404 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5405 unsigned long ptr; 5406 char *map; 5407 size_t size; 5408 size_t extent_offset; 5409 size_t copy_size; 5410 5411 em->block_start = EXTENT_MAP_INLINE; 5412 if (!page || create) { 5413 em->start = extent_start; 5414 em->len = extent_end - extent_start; 5415 goto out; 5416 } 5417 5418 size = btrfs_file_extent_inline_len(leaf, item); 5419 extent_offset = page_offset(page) + pg_offset - extent_start; 5420 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5421 size - extent_offset); 5422 em->start = extent_start + extent_offset; 5423 em->len = (copy_size + root->sectorsize - 1) & 5424 ~((u64)root->sectorsize - 1); 5425 em->orig_block_len = em->len; 5426 em->orig_start = em->start; 5427 if (compress_type) { 5428 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5429 em->compress_type = compress_type; 5430 } 5431 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5432 if (create == 0 && !PageUptodate(page)) { 5433 if (btrfs_file_extent_compression(leaf, item) != 5434 BTRFS_COMPRESS_NONE) { 5435 ret = uncompress_inline(path, inode, page, 5436 pg_offset, 5437 extent_offset, item); 5438 BUG_ON(ret); /* -ENOMEM */ 5439 } else { 5440 map = kmap(page); 5441 read_extent_buffer(leaf, map + pg_offset, ptr, 5442 copy_size); 5443 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5444 memset(map + pg_offset + copy_size, 0, 5445 PAGE_CACHE_SIZE - pg_offset - 5446 copy_size); 5447 } 5448 kunmap(page); 5449 } 5450 flush_dcache_page(page); 5451 } else if (create && PageUptodate(page)) { 5452 BUG(); 5453 if (!trans) { 5454 kunmap(page); 5455 free_extent_map(em); 5456 em = NULL; 5457 5458 btrfs_release_path(path); 5459 trans = btrfs_join_transaction(root); 5460 5461 if (IS_ERR(trans)) 5462 return ERR_CAST(trans); 5463 goto again; 5464 } 5465 map = kmap(page); 5466 write_extent_buffer(leaf, map + pg_offset, ptr, 5467 copy_size); 5468 kunmap(page); 5469 btrfs_mark_buffer_dirty(leaf); 5470 } 5471 set_extent_uptodate(io_tree, em->start, 5472 extent_map_end(em) - 1, NULL, GFP_NOFS); 5473 goto insert; 5474 } else { 5475 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type); 5476 } 5477 not_found: 5478 em->start = start; 5479 em->orig_start = start; 5480 em->len = len; 5481 not_found_em: 5482 em->block_start = EXTENT_MAP_HOLE; 5483 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5484 insert: 5485 btrfs_release_path(path); 5486 if (em->start > start || extent_map_end(em) <= start) { 5487 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5488 "[%llu %llu]\n", (unsigned long long)em->start, 5489 (unsigned long long)em->len, 5490 (unsigned long long)start, 5491 (unsigned long long)len); 5492 err = -EIO; 5493 goto out; 5494 } 5495 5496 err = 0; 5497 write_lock(&em_tree->lock); 5498 ret = add_extent_mapping(em_tree, em); 5499 /* it is possible that someone inserted the extent into the tree 5500 * while we had the lock dropped. It is also possible that 5501 * an overlapping map exists in the tree 5502 */ 5503 if (ret == -EEXIST) { 5504 struct extent_map *existing; 5505 5506 ret = 0; 5507 5508 existing = lookup_extent_mapping(em_tree, start, len); 5509 if (existing && (existing->start > start || 5510 existing->start + existing->len <= start)) { 5511 free_extent_map(existing); 5512 existing = NULL; 5513 } 5514 if (!existing) { 5515 existing = lookup_extent_mapping(em_tree, em->start, 5516 em->len); 5517 if (existing) { 5518 err = merge_extent_mapping(em_tree, existing, 5519 em, start, 5520 root->sectorsize); 5521 free_extent_map(existing); 5522 if (err) { 5523 free_extent_map(em); 5524 em = NULL; 5525 } 5526 } else { 5527 err = -EIO; 5528 free_extent_map(em); 5529 em = NULL; 5530 } 5531 } else { 5532 free_extent_map(em); 5533 em = existing; 5534 err = 0; 5535 } 5536 } 5537 write_unlock(&em_tree->lock); 5538 out: 5539 5540 if (em) 5541 trace_btrfs_get_extent(root, em); 5542 5543 if (path) 5544 btrfs_free_path(path); 5545 if (trans) { 5546 ret = btrfs_end_transaction(trans, root); 5547 if (!err) 5548 err = ret; 5549 } 5550 if (err) { 5551 free_extent_map(em); 5552 return ERR_PTR(err); 5553 } 5554 BUG_ON(!em); /* Error is always set */ 5555 return em; 5556 } 5557 5558 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5559 size_t pg_offset, u64 start, u64 len, 5560 int create) 5561 { 5562 struct extent_map *em; 5563 struct extent_map *hole_em = NULL; 5564 u64 range_start = start; 5565 u64 end; 5566 u64 found; 5567 u64 found_end; 5568 int err = 0; 5569 5570 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5571 if (IS_ERR(em)) 5572 return em; 5573 if (em) { 5574 /* 5575 * if our em maps to a hole, there might 5576 * actually be delalloc bytes behind it 5577 */ 5578 if (em->block_start != EXTENT_MAP_HOLE) 5579 return em; 5580 else 5581 hole_em = em; 5582 } 5583 5584 /* check to see if we've wrapped (len == -1 or similar) */ 5585 end = start + len; 5586 if (end < start) 5587 end = (u64)-1; 5588 else 5589 end -= 1; 5590 5591 em = NULL; 5592 5593 /* ok, we didn't find anything, lets look for delalloc */ 5594 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5595 end, len, EXTENT_DELALLOC, 1); 5596 found_end = range_start + found; 5597 if (found_end < range_start) 5598 found_end = (u64)-1; 5599 5600 /* 5601 * we didn't find anything useful, return 5602 * the original results from get_extent() 5603 */ 5604 if (range_start > end || found_end <= start) { 5605 em = hole_em; 5606 hole_em = NULL; 5607 goto out; 5608 } 5609 5610 /* adjust the range_start to make sure it doesn't 5611 * go backwards from the start they passed in 5612 */ 5613 range_start = max(start,range_start); 5614 found = found_end - range_start; 5615 5616 if (found > 0) { 5617 u64 hole_start = start; 5618 u64 hole_len = len; 5619 5620 em = alloc_extent_map(); 5621 if (!em) { 5622 err = -ENOMEM; 5623 goto out; 5624 } 5625 /* 5626 * when btrfs_get_extent can't find anything it 5627 * returns one huge hole 5628 * 5629 * make sure what it found really fits our range, and 5630 * adjust to make sure it is based on the start from 5631 * the caller 5632 */ 5633 if (hole_em) { 5634 u64 calc_end = extent_map_end(hole_em); 5635 5636 if (calc_end <= start || (hole_em->start > end)) { 5637 free_extent_map(hole_em); 5638 hole_em = NULL; 5639 } else { 5640 hole_start = max(hole_em->start, start); 5641 hole_len = calc_end - hole_start; 5642 } 5643 } 5644 em->bdev = NULL; 5645 if (hole_em && range_start > hole_start) { 5646 /* our hole starts before our delalloc, so we 5647 * have to return just the parts of the hole 5648 * that go until the delalloc starts 5649 */ 5650 em->len = min(hole_len, 5651 range_start - hole_start); 5652 em->start = hole_start; 5653 em->orig_start = hole_start; 5654 /* 5655 * don't adjust block start at all, 5656 * it is fixed at EXTENT_MAP_HOLE 5657 */ 5658 em->block_start = hole_em->block_start; 5659 em->block_len = hole_len; 5660 } else { 5661 em->start = range_start; 5662 em->len = found; 5663 em->orig_start = range_start; 5664 em->block_start = EXTENT_MAP_DELALLOC; 5665 em->block_len = found; 5666 } 5667 } else if (hole_em) { 5668 return hole_em; 5669 } 5670 out: 5671 5672 free_extent_map(hole_em); 5673 if (err) { 5674 free_extent_map(em); 5675 return ERR_PTR(err); 5676 } 5677 return em; 5678 } 5679 5680 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5681 u64 start, u64 len) 5682 { 5683 struct btrfs_root *root = BTRFS_I(inode)->root; 5684 struct btrfs_trans_handle *trans; 5685 struct extent_map *em; 5686 struct btrfs_key ins; 5687 u64 alloc_hint; 5688 int ret; 5689 5690 trans = btrfs_join_transaction(root); 5691 if (IS_ERR(trans)) 5692 return ERR_CAST(trans); 5693 5694 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5695 5696 alloc_hint = get_extent_allocation_hint(inode, start, len); 5697 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5698 alloc_hint, &ins, 1); 5699 if (ret) { 5700 em = ERR_PTR(ret); 5701 goto out; 5702 } 5703 5704 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid, 5705 ins.offset, ins.offset, 0); 5706 if (IS_ERR(em)) 5707 goto out; 5708 5709 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5710 ins.offset, ins.offset, 0); 5711 if (ret) { 5712 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5713 em = ERR_PTR(ret); 5714 } 5715 out: 5716 btrfs_end_transaction(trans, root); 5717 return em; 5718 } 5719 5720 /* 5721 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5722 * block must be cow'd 5723 */ 5724 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5725 struct inode *inode, u64 offset, u64 len) 5726 { 5727 struct btrfs_path *path; 5728 int ret; 5729 struct extent_buffer *leaf; 5730 struct btrfs_root *root = BTRFS_I(inode)->root; 5731 struct btrfs_file_extent_item *fi; 5732 struct btrfs_key key; 5733 u64 disk_bytenr; 5734 u64 backref_offset; 5735 u64 extent_end; 5736 u64 num_bytes; 5737 int slot; 5738 int found_type; 5739 5740 path = btrfs_alloc_path(); 5741 if (!path) 5742 return -ENOMEM; 5743 5744 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5745 offset, 0); 5746 if (ret < 0) 5747 goto out; 5748 5749 slot = path->slots[0]; 5750 if (ret == 1) { 5751 if (slot == 0) { 5752 /* can't find the item, must cow */ 5753 ret = 0; 5754 goto out; 5755 } 5756 slot--; 5757 } 5758 ret = 0; 5759 leaf = path->nodes[0]; 5760 btrfs_item_key_to_cpu(leaf, &key, slot); 5761 if (key.objectid != btrfs_ino(inode) || 5762 key.type != BTRFS_EXTENT_DATA_KEY) { 5763 /* not our file or wrong item type, must cow */ 5764 goto out; 5765 } 5766 5767 if (key.offset > offset) { 5768 /* Wrong offset, must cow */ 5769 goto out; 5770 } 5771 5772 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5773 found_type = btrfs_file_extent_type(leaf, fi); 5774 if (found_type != BTRFS_FILE_EXTENT_REG && 5775 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5776 /* not a regular extent, must cow */ 5777 goto out; 5778 } 5779 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5780 backref_offset = btrfs_file_extent_offset(leaf, fi); 5781 5782 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5783 if (extent_end < offset + len) { 5784 /* extent doesn't include our full range, must cow */ 5785 goto out; 5786 } 5787 5788 if (btrfs_extent_readonly(root, disk_bytenr)) 5789 goto out; 5790 5791 /* 5792 * look for other files referencing this extent, if we 5793 * find any we must cow 5794 */ 5795 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5796 key.offset - backref_offset, disk_bytenr)) 5797 goto out; 5798 5799 /* 5800 * adjust disk_bytenr and num_bytes to cover just the bytes 5801 * in this extent we are about to write. If there 5802 * are any csums in that range we have to cow in order 5803 * to keep the csums correct 5804 */ 5805 disk_bytenr += backref_offset; 5806 disk_bytenr += offset - key.offset; 5807 num_bytes = min(offset + len, extent_end) - offset; 5808 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5809 goto out; 5810 /* 5811 * all of the above have passed, it is safe to overwrite this extent 5812 * without cow 5813 */ 5814 ret = 1; 5815 out: 5816 btrfs_free_path(path); 5817 return ret; 5818 } 5819 5820 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 5821 struct extent_state **cached_state, int writing) 5822 { 5823 struct btrfs_ordered_extent *ordered; 5824 int ret = 0; 5825 5826 while (1) { 5827 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5828 0, cached_state); 5829 /* 5830 * We're concerned with the entire range that we're going to be 5831 * doing DIO to, so we need to make sure theres no ordered 5832 * extents in this range. 5833 */ 5834 ordered = btrfs_lookup_ordered_range(inode, lockstart, 5835 lockend - lockstart + 1); 5836 5837 /* 5838 * We need to make sure there are no buffered pages in this 5839 * range either, we could have raced between the invalidate in 5840 * generic_file_direct_write and locking the extent. The 5841 * invalidate needs to happen so that reads after a write do not 5842 * get stale data. 5843 */ 5844 if (!ordered && (!writing || 5845 !test_range_bit(&BTRFS_I(inode)->io_tree, 5846 lockstart, lockend, EXTENT_UPTODATE, 0, 5847 *cached_state))) 5848 break; 5849 5850 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5851 cached_state, GFP_NOFS); 5852 5853 if (ordered) { 5854 btrfs_start_ordered_extent(inode, ordered, 1); 5855 btrfs_put_ordered_extent(ordered); 5856 } else { 5857 /* Screw you mmap */ 5858 ret = filemap_write_and_wait_range(inode->i_mapping, 5859 lockstart, 5860 lockend); 5861 if (ret) 5862 break; 5863 5864 /* 5865 * If we found a page that couldn't be invalidated just 5866 * fall back to buffered. 5867 */ 5868 ret = invalidate_inode_pages2_range(inode->i_mapping, 5869 lockstart >> PAGE_CACHE_SHIFT, 5870 lockend >> PAGE_CACHE_SHIFT); 5871 if (ret) 5872 break; 5873 } 5874 5875 cond_resched(); 5876 } 5877 5878 return ret; 5879 } 5880 5881 static struct extent_map *create_pinned_em(struct inode *inode, u64 start, 5882 u64 len, u64 orig_start, 5883 u64 block_start, u64 block_len, 5884 u64 orig_block_len, int type) 5885 { 5886 struct extent_map_tree *em_tree; 5887 struct extent_map *em; 5888 struct btrfs_root *root = BTRFS_I(inode)->root; 5889 int ret; 5890 5891 em_tree = &BTRFS_I(inode)->extent_tree; 5892 em = alloc_extent_map(); 5893 if (!em) 5894 return ERR_PTR(-ENOMEM); 5895 5896 em->start = start; 5897 em->orig_start = orig_start; 5898 em->len = len; 5899 em->block_len = block_len; 5900 em->block_start = block_start; 5901 em->bdev = root->fs_info->fs_devices->latest_bdev; 5902 em->orig_block_len = orig_block_len; 5903 em->generation = -1; 5904 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5905 if (type == BTRFS_ORDERED_PREALLOC) 5906 set_bit(EXTENT_FLAG_FILLING, &em->flags); 5907 5908 do { 5909 btrfs_drop_extent_cache(inode, em->start, 5910 em->start + em->len - 1, 0); 5911 write_lock(&em_tree->lock); 5912 ret = add_extent_mapping(em_tree, em); 5913 if (!ret) 5914 list_move(&em->list, 5915 &em_tree->modified_extents); 5916 write_unlock(&em_tree->lock); 5917 } while (ret == -EEXIST); 5918 5919 if (ret) { 5920 free_extent_map(em); 5921 return ERR_PTR(ret); 5922 } 5923 5924 return em; 5925 } 5926 5927 5928 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5929 struct buffer_head *bh_result, int create) 5930 { 5931 struct extent_map *em; 5932 struct btrfs_root *root = BTRFS_I(inode)->root; 5933 struct extent_state *cached_state = NULL; 5934 u64 start = iblock << inode->i_blkbits; 5935 u64 lockstart, lockend; 5936 u64 len = bh_result->b_size; 5937 struct btrfs_trans_handle *trans; 5938 int unlock_bits = EXTENT_LOCKED; 5939 int ret; 5940 5941 if (create) { 5942 ret = btrfs_delalloc_reserve_space(inode, len); 5943 if (ret) 5944 return ret; 5945 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY; 5946 } else { 5947 len = min_t(u64, len, root->sectorsize); 5948 } 5949 5950 lockstart = start; 5951 lockend = start + len - 1; 5952 5953 /* 5954 * If this errors out it's because we couldn't invalidate pagecache for 5955 * this range and we need to fallback to buffered. 5956 */ 5957 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create)) 5958 return -ENOTBLK; 5959 5960 if (create) { 5961 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 5962 lockend, EXTENT_DELALLOC, NULL, 5963 &cached_state, GFP_NOFS); 5964 if (ret) 5965 goto unlock_err; 5966 } 5967 5968 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5969 if (IS_ERR(em)) { 5970 ret = PTR_ERR(em); 5971 goto unlock_err; 5972 } 5973 5974 /* 5975 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5976 * io. INLINE is special, and we could probably kludge it in here, but 5977 * it's still buffered so for safety lets just fall back to the generic 5978 * buffered path. 5979 * 5980 * For COMPRESSED we _have_ to read the entire extent in so we can 5981 * decompress it, so there will be buffering required no matter what we 5982 * do, so go ahead and fallback to buffered. 5983 * 5984 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5985 * to buffered IO. Don't blame me, this is the price we pay for using 5986 * the generic code. 5987 */ 5988 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5989 em->block_start == EXTENT_MAP_INLINE) { 5990 free_extent_map(em); 5991 ret = -ENOTBLK; 5992 goto unlock_err; 5993 } 5994 5995 /* Just a good old fashioned hole, return */ 5996 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5997 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5998 free_extent_map(em); 5999 ret = 0; 6000 goto unlock_err; 6001 } 6002 6003 /* 6004 * We don't allocate a new extent in the following cases 6005 * 6006 * 1) The inode is marked as NODATACOW. In this case we'll just use the 6007 * existing extent. 6008 * 2) The extent is marked as PREALLOC. We're good to go here and can 6009 * just use the extent. 6010 * 6011 */ 6012 if (!create) { 6013 len = min(len, em->len - (start - em->start)); 6014 lockstart = start + len; 6015 goto unlock; 6016 } 6017 6018 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 6019 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 6020 em->block_start != EXTENT_MAP_HOLE)) { 6021 int type; 6022 int ret; 6023 u64 block_start; 6024 6025 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6026 type = BTRFS_ORDERED_PREALLOC; 6027 else 6028 type = BTRFS_ORDERED_NOCOW; 6029 len = min(len, em->len - (start - em->start)); 6030 block_start = em->block_start + (start - em->start); 6031 6032 /* 6033 * we're not going to log anything, but we do need 6034 * to make sure the current transaction stays open 6035 * while we look for nocow cross refs 6036 */ 6037 trans = btrfs_join_transaction(root); 6038 if (IS_ERR(trans)) 6039 goto must_cow; 6040 6041 if (can_nocow_odirect(trans, inode, start, len) == 1) { 6042 u64 orig_start = em->orig_start; 6043 u64 orig_block_len = em->orig_block_len; 6044 6045 if (type == BTRFS_ORDERED_PREALLOC) { 6046 free_extent_map(em); 6047 em = create_pinned_em(inode, start, len, 6048 orig_start, 6049 block_start, len, 6050 orig_block_len, type); 6051 if (IS_ERR(em)) { 6052 btrfs_end_transaction(trans, root); 6053 goto unlock_err; 6054 } 6055 } 6056 6057 ret = btrfs_add_ordered_extent_dio(inode, start, 6058 block_start, len, len, type); 6059 btrfs_end_transaction(trans, root); 6060 if (ret) { 6061 free_extent_map(em); 6062 goto unlock_err; 6063 } 6064 goto unlock; 6065 } 6066 btrfs_end_transaction(trans, root); 6067 } 6068 must_cow: 6069 /* 6070 * this will cow the extent, reset the len in case we changed 6071 * it above 6072 */ 6073 len = bh_result->b_size; 6074 free_extent_map(em); 6075 em = btrfs_new_extent_direct(inode, start, len); 6076 if (IS_ERR(em)) { 6077 ret = PTR_ERR(em); 6078 goto unlock_err; 6079 } 6080 len = min(len, em->len - (start - em->start)); 6081 unlock: 6082 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 6083 inode->i_blkbits; 6084 bh_result->b_size = len; 6085 bh_result->b_bdev = em->bdev; 6086 set_buffer_mapped(bh_result); 6087 if (create) { 6088 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6089 set_buffer_new(bh_result); 6090 6091 /* 6092 * Need to update the i_size under the extent lock so buffered 6093 * readers will get the updated i_size when we unlock. 6094 */ 6095 if (start + len > i_size_read(inode)) 6096 i_size_write(inode, start + len); 6097 } 6098 6099 /* 6100 * In the case of write we need to clear and unlock the entire range, 6101 * in the case of read we need to unlock only the end area that we 6102 * aren't using if there is any left over space. 6103 */ 6104 if (lockstart < lockend) { 6105 if (create && len < lockend - lockstart) { 6106 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6107 lockstart + len - 1, 6108 unlock_bits | EXTENT_DEFRAG, 1, 0, 6109 &cached_state, GFP_NOFS); 6110 /* 6111 * Beside unlock, we also need to cleanup reserved space 6112 * for the left range by attaching EXTENT_DO_ACCOUNTING. 6113 */ 6114 clear_extent_bit(&BTRFS_I(inode)->io_tree, 6115 lockstart + len, lockend, 6116 unlock_bits | EXTENT_DO_ACCOUNTING | 6117 EXTENT_DEFRAG, 1, 0, NULL, GFP_NOFS); 6118 } else { 6119 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6120 lockend, unlock_bits, 1, 0, 6121 &cached_state, GFP_NOFS); 6122 } 6123 } else { 6124 free_extent_state(cached_state); 6125 } 6126 6127 free_extent_map(em); 6128 6129 return 0; 6130 6131 unlock_err: 6132 if (create) 6133 unlock_bits |= EXTENT_DO_ACCOUNTING; 6134 6135 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6136 unlock_bits, 1, 0, &cached_state, GFP_NOFS); 6137 return ret; 6138 } 6139 6140 struct btrfs_dio_private { 6141 struct inode *inode; 6142 u64 logical_offset; 6143 u64 disk_bytenr; 6144 u64 bytes; 6145 void *private; 6146 6147 /* number of bios pending for this dio */ 6148 atomic_t pending_bios; 6149 6150 /* IO errors */ 6151 int errors; 6152 6153 struct bio *orig_bio; 6154 }; 6155 6156 static void btrfs_endio_direct_read(struct bio *bio, int err) 6157 { 6158 struct btrfs_dio_private *dip = bio->bi_private; 6159 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 6160 struct bio_vec *bvec = bio->bi_io_vec; 6161 struct inode *inode = dip->inode; 6162 struct btrfs_root *root = BTRFS_I(inode)->root; 6163 u64 start; 6164 6165 start = dip->logical_offset; 6166 do { 6167 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 6168 struct page *page = bvec->bv_page; 6169 char *kaddr; 6170 u32 csum = ~(u32)0; 6171 u64 private = ~(u32)0; 6172 unsigned long flags; 6173 6174 if (get_state_private(&BTRFS_I(inode)->io_tree, 6175 start, &private)) 6176 goto failed; 6177 local_irq_save(flags); 6178 kaddr = kmap_atomic(page); 6179 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 6180 csum, bvec->bv_len); 6181 btrfs_csum_final(csum, (char *)&csum); 6182 kunmap_atomic(kaddr); 6183 local_irq_restore(flags); 6184 6185 flush_dcache_page(bvec->bv_page); 6186 if (csum != private) { 6187 failed: 6188 printk(KERN_ERR "btrfs csum failed ino %llu off" 6189 " %llu csum %u private %u\n", 6190 (unsigned long long)btrfs_ino(inode), 6191 (unsigned long long)start, 6192 csum, (unsigned)private); 6193 err = -EIO; 6194 } 6195 } 6196 6197 start += bvec->bv_len; 6198 bvec++; 6199 } while (bvec <= bvec_end); 6200 6201 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 6202 dip->logical_offset + dip->bytes - 1); 6203 bio->bi_private = dip->private; 6204 6205 kfree(dip); 6206 6207 /* If we had a csum failure make sure to clear the uptodate flag */ 6208 if (err) 6209 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6210 dio_end_io(bio, err); 6211 } 6212 6213 static void btrfs_endio_direct_write(struct bio *bio, int err) 6214 { 6215 struct btrfs_dio_private *dip = bio->bi_private; 6216 struct inode *inode = dip->inode; 6217 struct btrfs_root *root = BTRFS_I(inode)->root; 6218 struct btrfs_ordered_extent *ordered = NULL; 6219 u64 ordered_offset = dip->logical_offset; 6220 u64 ordered_bytes = dip->bytes; 6221 int ret; 6222 6223 if (err) 6224 goto out_done; 6225 again: 6226 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 6227 &ordered_offset, 6228 ordered_bytes, !err); 6229 if (!ret) 6230 goto out_test; 6231 6232 ordered->work.func = finish_ordered_fn; 6233 ordered->work.flags = 0; 6234 btrfs_queue_worker(&root->fs_info->endio_write_workers, 6235 &ordered->work); 6236 out_test: 6237 /* 6238 * our bio might span multiple ordered extents. If we haven't 6239 * completed the accounting for the whole dio, go back and try again 6240 */ 6241 if (ordered_offset < dip->logical_offset + dip->bytes) { 6242 ordered_bytes = dip->logical_offset + dip->bytes - 6243 ordered_offset; 6244 ordered = NULL; 6245 goto again; 6246 } 6247 out_done: 6248 bio->bi_private = dip->private; 6249 6250 kfree(dip); 6251 6252 /* If we had an error make sure to clear the uptodate flag */ 6253 if (err) 6254 clear_bit(BIO_UPTODATE, &bio->bi_flags); 6255 dio_end_io(bio, err); 6256 } 6257 6258 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 6259 struct bio *bio, int mirror_num, 6260 unsigned long bio_flags, u64 offset) 6261 { 6262 int ret; 6263 struct btrfs_root *root = BTRFS_I(inode)->root; 6264 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 6265 BUG_ON(ret); /* -ENOMEM */ 6266 return 0; 6267 } 6268 6269 static void btrfs_end_dio_bio(struct bio *bio, int err) 6270 { 6271 struct btrfs_dio_private *dip = bio->bi_private; 6272 6273 if (err) { 6274 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 6275 "sector %#Lx len %u err no %d\n", 6276 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 6277 (unsigned long long)bio->bi_sector, bio->bi_size, err); 6278 dip->errors = 1; 6279 6280 /* 6281 * before atomic variable goto zero, we must make sure 6282 * dip->errors is perceived to be set. 6283 */ 6284 smp_mb__before_atomic_dec(); 6285 } 6286 6287 /* if there are more bios still pending for this dio, just exit */ 6288 if (!atomic_dec_and_test(&dip->pending_bios)) 6289 goto out; 6290 6291 if (dip->errors) 6292 bio_io_error(dip->orig_bio); 6293 else { 6294 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 6295 bio_endio(dip->orig_bio, 0); 6296 } 6297 out: 6298 bio_put(bio); 6299 } 6300 6301 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 6302 u64 first_sector, gfp_t gfp_flags) 6303 { 6304 int nr_vecs = bio_get_nr_vecs(bdev); 6305 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 6306 } 6307 6308 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 6309 int rw, u64 file_offset, int skip_sum, 6310 int async_submit) 6311 { 6312 int write = rw & REQ_WRITE; 6313 struct btrfs_root *root = BTRFS_I(inode)->root; 6314 int ret; 6315 6316 if (async_submit) 6317 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 6318 6319 bio_get(bio); 6320 6321 if (!write) { 6322 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 6323 if (ret) 6324 goto err; 6325 } 6326 6327 if (skip_sum) 6328 goto map; 6329 6330 if (write && async_submit) { 6331 ret = btrfs_wq_submit_bio(root->fs_info, 6332 inode, rw, bio, 0, 0, 6333 file_offset, 6334 __btrfs_submit_bio_start_direct_io, 6335 __btrfs_submit_bio_done); 6336 goto err; 6337 } else if (write) { 6338 /* 6339 * If we aren't doing async submit, calculate the csum of the 6340 * bio now. 6341 */ 6342 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 6343 if (ret) 6344 goto err; 6345 } else if (!skip_sum) { 6346 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset); 6347 if (ret) 6348 goto err; 6349 } 6350 6351 map: 6352 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 6353 err: 6354 bio_put(bio); 6355 return ret; 6356 } 6357 6358 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 6359 int skip_sum) 6360 { 6361 struct inode *inode = dip->inode; 6362 struct btrfs_root *root = BTRFS_I(inode)->root; 6363 struct bio *bio; 6364 struct bio *orig_bio = dip->orig_bio; 6365 struct bio_vec *bvec = orig_bio->bi_io_vec; 6366 u64 start_sector = orig_bio->bi_sector; 6367 u64 file_offset = dip->logical_offset; 6368 u64 submit_len = 0; 6369 u64 map_length; 6370 int nr_pages = 0; 6371 int ret = 0; 6372 int async_submit = 0; 6373 6374 map_length = orig_bio->bi_size; 6375 ret = btrfs_map_block(root->fs_info, READ, start_sector << 9, 6376 &map_length, NULL, 0); 6377 if (ret) { 6378 bio_put(orig_bio); 6379 return -EIO; 6380 } 6381 6382 if (map_length >= orig_bio->bi_size) { 6383 bio = orig_bio; 6384 goto submit; 6385 } 6386 6387 async_submit = 1; 6388 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 6389 if (!bio) 6390 return -ENOMEM; 6391 bio->bi_private = dip; 6392 bio->bi_end_io = btrfs_end_dio_bio; 6393 atomic_inc(&dip->pending_bios); 6394 6395 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 6396 if (unlikely(map_length < submit_len + bvec->bv_len || 6397 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 6398 bvec->bv_offset) < bvec->bv_len)) { 6399 /* 6400 * inc the count before we submit the bio so 6401 * we know the end IO handler won't happen before 6402 * we inc the count. Otherwise, the dip might get freed 6403 * before we're done setting it up 6404 */ 6405 atomic_inc(&dip->pending_bios); 6406 ret = __btrfs_submit_dio_bio(bio, inode, rw, 6407 file_offset, skip_sum, 6408 async_submit); 6409 if (ret) { 6410 bio_put(bio); 6411 atomic_dec(&dip->pending_bios); 6412 goto out_err; 6413 } 6414 6415 start_sector += submit_len >> 9; 6416 file_offset += submit_len; 6417 6418 submit_len = 0; 6419 nr_pages = 0; 6420 6421 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6422 start_sector, GFP_NOFS); 6423 if (!bio) 6424 goto out_err; 6425 bio->bi_private = dip; 6426 bio->bi_end_io = btrfs_end_dio_bio; 6427 6428 map_length = orig_bio->bi_size; 6429 ret = btrfs_map_block(root->fs_info, READ, 6430 start_sector << 9, 6431 &map_length, NULL, 0); 6432 if (ret) { 6433 bio_put(bio); 6434 goto out_err; 6435 } 6436 } else { 6437 submit_len += bvec->bv_len; 6438 nr_pages ++; 6439 bvec++; 6440 } 6441 } 6442 6443 submit: 6444 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6445 async_submit); 6446 if (!ret) 6447 return 0; 6448 6449 bio_put(bio); 6450 out_err: 6451 dip->errors = 1; 6452 /* 6453 * before atomic variable goto zero, we must 6454 * make sure dip->errors is perceived to be set. 6455 */ 6456 smp_mb__before_atomic_dec(); 6457 if (atomic_dec_and_test(&dip->pending_bios)) 6458 bio_io_error(dip->orig_bio); 6459 6460 /* bio_end_io() will handle error, so we needn't return it */ 6461 return 0; 6462 } 6463 6464 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6465 loff_t file_offset) 6466 { 6467 struct btrfs_root *root = BTRFS_I(inode)->root; 6468 struct btrfs_dio_private *dip; 6469 struct bio_vec *bvec = bio->bi_io_vec; 6470 int skip_sum; 6471 int write = rw & REQ_WRITE; 6472 int ret = 0; 6473 6474 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6475 6476 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6477 if (!dip) { 6478 ret = -ENOMEM; 6479 goto free_ordered; 6480 } 6481 6482 dip->private = bio->bi_private; 6483 dip->inode = inode; 6484 dip->logical_offset = file_offset; 6485 6486 dip->bytes = 0; 6487 do { 6488 dip->bytes += bvec->bv_len; 6489 bvec++; 6490 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6491 6492 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6493 bio->bi_private = dip; 6494 dip->errors = 0; 6495 dip->orig_bio = bio; 6496 atomic_set(&dip->pending_bios, 0); 6497 6498 if (write) 6499 bio->bi_end_io = btrfs_endio_direct_write; 6500 else 6501 bio->bi_end_io = btrfs_endio_direct_read; 6502 6503 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6504 if (!ret) 6505 return; 6506 free_ordered: 6507 /* 6508 * If this is a write, we need to clean up the reserved space and kill 6509 * the ordered extent. 6510 */ 6511 if (write) { 6512 struct btrfs_ordered_extent *ordered; 6513 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6514 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6515 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6516 btrfs_free_reserved_extent(root, ordered->start, 6517 ordered->disk_len); 6518 btrfs_put_ordered_extent(ordered); 6519 btrfs_put_ordered_extent(ordered); 6520 } 6521 bio_endio(bio, ret); 6522 } 6523 6524 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6525 const struct iovec *iov, loff_t offset, 6526 unsigned long nr_segs) 6527 { 6528 int seg; 6529 int i; 6530 size_t size; 6531 unsigned long addr; 6532 unsigned blocksize_mask = root->sectorsize - 1; 6533 ssize_t retval = -EINVAL; 6534 loff_t end = offset; 6535 6536 if (offset & blocksize_mask) 6537 goto out; 6538 6539 /* Check the memory alignment. Blocks cannot straddle pages */ 6540 for (seg = 0; seg < nr_segs; seg++) { 6541 addr = (unsigned long)iov[seg].iov_base; 6542 size = iov[seg].iov_len; 6543 end += size; 6544 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6545 goto out; 6546 6547 /* If this is a write we don't need to check anymore */ 6548 if (rw & WRITE) 6549 continue; 6550 6551 /* 6552 * Check to make sure we don't have duplicate iov_base's in this 6553 * iovec, if so return EINVAL, otherwise we'll get csum errors 6554 * when reading back. 6555 */ 6556 for (i = seg + 1; i < nr_segs; i++) { 6557 if (iov[seg].iov_base == iov[i].iov_base) 6558 goto out; 6559 } 6560 } 6561 retval = 0; 6562 out: 6563 return retval; 6564 } 6565 6566 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6567 const struct iovec *iov, loff_t offset, 6568 unsigned long nr_segs) 6569 { 6570 struct file *file = iocb->ki_filp; 6571 struct inode *inode = file->f_mapping->host; 6572 6573 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6574 offset, nr_segs)) 6575 return 0; 6576 6577 return __blockdev_direct_IO(rw, iocb, inode, 6578 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6579 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6580 btrfs_submit_direct, 0); 6581 } 6582 6583 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC) 6584 6585 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6586 __u64 start, __u64 len) 6587 { 6588 int ret; 6589 6590 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); 6591 if (ret) 6592 return ret; 6593 6594 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6595 } 6596 6597 int btrfs_readpage(struct file *file, struct page *page) 6598 { 6599 struct extent_io_tree *tree; 6600 tree = &BTRFS_I(page->mapping->host)->io_tree; 6601 return extent_read_full_page(tree, page, btrfs_get_extent, 0); 6602 } 6603 6604 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6605 { 6606 struct extent_io_tree *tree; 6607 6608 6609 if (current->flags & PF_MEMALLOC) { 6610 redirty_page_for_writepage(wbc, page); 6611 unlock_page(page); 6612 return 0; 6613 } 6614 tree = &BTRFS_I(page->mapping->host)->io_tree; 6615 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6616 } 6617 6618 int btrfs_writepages(struct address_space *mapping, 6619 struct writeback_control *wbc) 6620 { 6621 struct extent_io_tree *tree; 6622 6623 tree = &BTRFS_I(mapping->host)->io_tree; 6624 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6625 } 6626 6627 static int 6628 btrfs_readpages(struct file *file, struct address_space *mapping, 6629 struct list_head *pages, unsigned nr_pages) 6630 { 6631 struct extent_io_tree *tree; 6632 tree = &BTRFS_I(mapping->host)->io_tree; 6633 return extent_readpages(tree, mapping, pages, nr_pages, 6634 btrfs_get_extent); 6635 } 6636 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6637 { 6638 struct extent_io_tree *tree; 6639 struct extent_map_tree *map; 6640 int ret; 6641 6642 tree = &BTRFS_I(page->mapping->host)->io_tree; 6643 map = &BTRFS_I(page->mapping->host)->extent_tree; 6644 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6645 if (ret == 1) { 6646 ClearPagePrivate(page); 6647 set_page_private(page, 0); 6648 page_cache_release(page); 6649 } 6650 return ret; 6651 } 6652 6653 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6654 { 6655 if (PageWriteback(page) || PageDirty(page)) 6656 return 0; 6657 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6658 } 6659 6660 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6661 { 6662 struct inode *inode = page->mapping->host; 6663 struct extent_io_tree *tree; 6664 struct btrfs_ordered_extent *ordered; 6665 struct extent_state *cached_state = NULL; 6666 u64 page_start = page_offset(page); 6667 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6668 6669 /* 6670 * we have the page locked, so new writeback can't start, 6671 * and the dirty bit won't be cleared while we are here. 6672 * 6673 * Wait for IO on this page so that we can safely clear 6674 * the PagePrivate2 bit and do ordered accounting 6675 */ 6676 wait_on_page_writeback(page); 6677 6678 tree = &BTRFS_I(inode)->io_tree; 6679 if (offset) { 6680 btrfs_releasepage(page, GFP_NOFS); 6681 return; 6682 } 6683 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 6684 ordered = btrfs_lookup_ordered_extent(inode, 6685 page_offset(page)); 6686 if (ordered) { 6687 /* 6688 * IO on this page will never be started, so we need 6689 * to account for any ordered extents now 6690 */ 6691 clear_extent_bit(tree, page_start, page_end, 6692 EXTENT_DIRTY | EXTENT_DELALLOC | 6693 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 6694 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS); 6695 /* 6696 * whoever cleared the private bit is responsible 6697 * for the finish_ordered_io 6698 */ 6699 if (TestClearPagePrivate2(page) && 6700 btrfs_dec_test_ordered_pending(inode, &ordered, page_start, 6701 PAGE_CACHE_SIZE, 1)) { 6702 btrfs_finish_ordered_io(ordered); 6703 } 6704 btrfs_put_ordered_extent(ordered); 6705 cached_state = NULL; 6706 lock_extent_bits(tree, page_start, page_end, 0, &cached_state); 6707 } 6708 clear_extent_bit(tree, page_start, page_end, 6709 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6710 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 6711 &cached_state, GFP_NOFS); 6712 __btrfs_releasepage(page, GFP_NOFS); 6713 6714 ClearPageChecked(page); 6715 if (PagePrivate(page)) { 6716 ClearPagePrivate(page); 6717 set_page_private(page, 0); 6718 page_cache_release(page); 6719 } 6720 } 6721 6722 /* 6723 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6724 * called from a page fault handler when a page is first dirtied. Hence we must 6725 * be careful to check for EOF conditions here. We set the page up correctly 6726 * for a written page which means we get ENOSPC checking when writing into 6727 * holes and correct delalloc and unwritten extent mapping on filesystems that 6728 * support these features. 6729 * 6730 * We are not allowed to take the i_mutex here so we have to play games to 6731 * protect against truncate races as the page could now be beyond EOF. Because 6732 * vmtruncate() writes the inode size before removing pages, once we have the 6733 * page lock we can determine safely if the page is beyond EOF. If it is not 6734 * beyond EOF, then the page is guaranteed safe against truncation until we 6735 * unlock the page. 6736 */ 6737 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6738 { 6739 struct page *page = vmf->page; 6740 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6741 struct btrfs_root *root = BTRFS_I(inode)->root; 6742 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6743 struct btrfs_ordered_extent *ordered; 6744 struct extent_state *cached_state = NULL; 6745 char *kaddr; 6746 unsigned long zero_start; 6747 loff_t size; 6748 int ret; 6749 int reserved = 0; 6750 u64 page_start; 6751 u64 page_end; 6752 6753 sb_start_pagefault(inode->i_sb); 6754 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6755 if (!ret) { 6756 ret = file_update_time(vma->vm_file); 6757 reserved = 1; 6758 } 6759 if (ret) { 6760 if (ret == -ENOMEM) 6761 ret = VM_FAULT_OOM; 6762 else /* -ENOSPC, -EIO, etc */ 6763 ret = VM_FAULT_SIGBUS; 6764 if (reserved) 6765 goto out; 6766 goto out_noreserve; 6767 } 6768 6769 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6770 again: 6771 lock_page(page); 6772 size = i_size_read(inode); 6773 page_start = page_offset(page); 6774 page_end = page_start + PAGE_CACHE_SIZE - 1; 6775 6776 if ((page->mapping != inode->i_mapping) || 6777 (page_start >= size)) { 6778 /* page got truncated out from underneath us */ 6779 goto out_unlock; 6780 } 6781 wait_on_page_writeback(page); 6782 6783 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state); 6784 set_page_extent_mapped(page); 6785 6786 /* 6787 * we can't set the delalloc bits if there are pending ordered 6788 * extents. Drop our locks and wait for them to finish 6789 */ 6790 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6791 if (ordered) { 6792 unlock_extent_cached(io_tree, page_start, page_end, 6793 &cached_state, GFP_NOFS); 6794 unlock_page(page); 6795 btrfs_start_ordered_extent(inode, ordered, 1); 6796 btrfs_put_ordered_extent(ordered); 6797 goto again; 6798 } 6799 6800 /* 6801 * XXX - page_mkwrite gets called every time the page is dirtied, even 6802 * if it was already dirty, so for space accounting reasons we need to 6803 * clear any delalloc bits for the range we are fixing to save. There 6804 * is probably a better way to do this, but for now keep consistent with 6805 * prepare_pages in the normal write path. 6806 */ 6807 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6808 EXTENT_DIRTY | EXTENT_DELALLOC | 6809 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 6810 0, 0, &cached_state, GFP_NOFS); 6811 6812 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6813 &cached_state); 6814 if (ret) { 6815 unlock_extent_cached(io_tree, page_start, page_end, 6816 &cached_state, GFP_NOFS); 6817 ret = VM_FAULT_SIGBUS; 6818 goto out_unlock; 6819 } 6820 ret = 0; 6821 6822 /* page is wholly or partially inside EOF */ 6823 if (page_start + PAGE_CACHE_SIZE > size) 6824 zero_start = size & ~PAGE_CACHE_MASK; 6825 else 6826 zero_start = PAGE_CACHE_SIZE; 6827 6828 if (zero_start != PAGE_CACHE_SIZE) { 6829 kaddr = kmap(page); 6830 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6831 flush_dcache_page(page); 6832 kunmap(page); 6833 } 6834 ClearPageChecked(page); 6835 set_page_dirty(page); 6836 SetPageUptodate(page); 6837 6838 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6839 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6840 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 6841 6842 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6843 6844 out_unlock: 6845 if (!ret) { 6846 sb_end_pagefault(inode->i_sb); 6847 return VM_FAULT_LOCKED; 6848 } 6849 unlock_page(page); 6850 out: 6851 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6852 out_noreserve: 6853 sb_end_pagefault(inode->i_sb); 6854 return ret; 6855 } 6856 6857 static int btrfs_truncate(struct inode *inode) 6858 { 6859 struct btrfs_root *root = BTRFS_I(inode)->root; 6860 struct btrfs_block_rsv *rsv; 6861 int ret; 6862 int err = 0; 6863 struct btrfs_trans_handle *trans; 6864 u64 mask = root->sectorsize - 1; 6865 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1); 6866 6867 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0); 6868 if (ret) 6869 return ret; 6870 6871 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6872 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6873 6874 /* 6875 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6876 * 3 things going on here 6877 * 6878 * 1) We need to reserve space for our orphan item and the space to 6879 * delete our orphan item. Lord knows we don't want to have a dangling 6880 * orphan item because we didn't reserve space to remove it. 6881 * 6882 * 2) We need to reserve space to update our inode. 6883 * 6884 * 3) We need to have something to cache all the space that is going to 6885 * be free'd up by the truncate operation, but also have some slack 6886 * space reserved in case it uses space during the truncate (thank you 6887 * very much snapshotting). 6888 * 6889 * And we need these to all be seperate. The fact is we can use alot of 6890 * space doing the truncate, and we have no earthly idea how much space 6891 * we will use, so we need the truncate reservation to be seperate so it 6892 * doesn't end up using space reserved for updating the inode or 6893 * removing the orphan item. We also need to be able to stop the 6894 * transaction and start a new one, which means we need to be able to 6895 * update the inode several times, and we have no idea of knowing how 6896 * many times that will be, so we can't just reserve 1 item for the 6897 * entirety of the opration, so that has to be done seperately as well. 6898 * Then there is the orphan item, which does indeed need to be held on 6899 * to for the whole operation, and we need nobody to touch this reserved 6900 * space except the orphan code. 6901 * 6902 * So that leaves us with 6903 * 6904 * 1) root->orphan_block_rsv - for the orphan deletion. 6905 * 2) rsv - for the truncate reservation, which we will steal from the 6906 * transaction reservation. 6907 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6908 * updating the inode. 6909 */ 6910 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP); 6911 if (!rsv) 6912 return -ENOMEM; 6913 rsv->size = min_size; 6914 rsv->failfast = 1; 6915 6916 /* 6917 * 1 for the truncate slack space 6918 * 1 for the orphan item we're going to add 6919 * 1 for the orphan item deletion 6920 * 1 for updating the inode. 6921 */ 6922 trans = btrfs_start_transaction(root, 4); 6923 if (IS_ERR(trans)) { 6924 err = PTR_ERR(trans); 6925 goto out; 6926 } 6927 6928 /* Migrate the slack space for the truncate to our reserve */ 6929 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv, 6930 min_size); 6931 BUG_ON(ret); 6932 6933 ret = btrfs_orphan_add(trans, inode); 6934 if (ret) { 6935 btrfs_end_transaction(trans, root); 6936 goto out; 6937 } 6938 6939 /* 6940 * setattr is responsible for setting the ordered_data_close flag, 6941 * but that is only tested during the last file release. That 6942 * could happen well after the next commit, leaving a great big 6943 * window where new writes may get lost if someone chooses to write 6944 * to this file after truncating to zero 6945 * 6946 * The inode doesn't have any dirty data here, and so if we commit 6947 * this is a noop. If someone immediately starts writing to the inode 6948 * it is very likely we'll catch some of their writes in this 6949 * transaction, and the commit will find this file on the ordered 6950 * data list with good things to send down. 6951 * 6952 * This is a best effort solution, there is still a window where 6953 * using truncate to replace the contents of the file will 6954 * end up with a zero length file after a crash. 6955 */ 6956 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, 6957 &BTRFS_I(inode)->runtime_flags)) 6958 btrfs_add_ordered_operation(trans, root, inode); 6959 6960 /* 6961 * So if we truncate and then write and fsync we normally would just 6962 * write the extents that changed, which is a problem if we need to 6963 * first truncate that entire inode. So set this flag so we write out 6964 * all of the extents in the inode to the sync log so we're completely 6965 * safe. 6966 */ 6967 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 6968 trans->block_rsv = rsv; 6969 6970 while (1) { 6971 ret = btrfs_truncate_inode_items(trans, root, inode, 6972 inode->i_size, 6973 BTRFS_EXTENT_DATA_KEY); 6974 if (ret != -ENOSPC) { 6975 err = ret; 6976 break; 6977 } 6978 6979 trans->block_rsv = &root->fs_info->trans_block_rsv; 6980 ret = btrfs_update_inode(trans, root, inode); 6981 if (ret) { 6982 err = ret; 6983 break; 6984 } 6985 6986 btrfs_end_transaction(trans, root); 6987 btrfs_btree_balance_dirty(root); 6988 6989 trans = btrfs_start_transaction(root, 2); 6990 if (IS_ERR(trans)) { 6991 ret = err = PTR_ERR(trans); 6992 trans = NULL; 6993 break; 6994 } 6995 6996 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, 6997 rsv, min_size); 6998 BUG_ON(ret); /* shouldn't happen */ 6999 trans->block_rsv = rsv; 7000 } 7001 7002 if (ret == 0 && inode->i_nlink > 0) { 7003 trans->block_rsv = root->orphan_block_rsv; 7004 ret = btrfs_orphan_del(trans, inode); 7005 if (ret) 7006 err = ret; 7007 } else if (ret && inode->i_nlink > 0) { 7008 /* 7009 * Failed to do the truncate, remove us from the in memory 7010 * orphan list. 7011 */ 7012 ret = btrfs_orphan_del(NULL, inode); 7013 } 7014 7015 if (trans) { 7016 trans->block_rsv = &root->fs_info->trans_block_rsv; 7017 ret = btrfs_update_inode(trans, root, inode); 7018 if (ret && !err) 7019 err = ret; 7020 7021 ret = btrfs_end_transaction(trans, root); 7022 btrfs_btree_balance_dirty(root); 7023 } 7024 7025 out: 7026 btrfs_free_block_rsv(root, rsv); 7027 7028 if (ret && !err) 7029 err = ret; 7030 7031 return err; 7032 } 7033 7034 /* 7035 * create a new subvolume directory/inode (helper for the ioctl). 7036 */ 7037 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 7038 struct btrfs_root *new_root, u64 new_dirid) 7039 { 7040 struct inode *inode; 7041 int err; 7042 u64 index = 0; 7043 7044 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 7045 new_dirid, new_dirid, 7046 S_IFDIR | (~current_umask() & S_IRWXUGO), 7047 &index); 7048 if (IS_ERR(inode)) 7049 return PTR_ERR(inode); 7050 inode->i_op = &btrfs_dir_inode_operations; 7051 inode->i_fop = &btrfs_dir_file_operations; 7052 7053 set_nlink(inode, 1); 7054 btrfs_i_size_write(inode, 0); 7055 7056 err = btrfs_update_inode(trans, new_root, inode); 7057 7058 iput(inode); 7059 return err; 7060 } 7061 7062 struct inode *btrfs_alloc_inode(struct super_block *sb) 7063 { 7064 struct btrfs_inode *ei; 7065 struct inode *inode; 7066 7067 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 7068 if (!ei) 7069 return NULL; 7070 7071 ei->root = NULL; 7072 ei->generation = 0; 7073 ei->last_trans = 0; 7074 ei->last_sub_trans = 0; 7075 ei->logged_trans = 0; 7076 ei->delalloc_bytes = 0; 7077 ei->disk_i_size = 0; 7078 ei->flags = 0; 7079 ei->csum_bytes = 0; 7080 ei->index_cnt = (u64)-1; 7081 ei->last_unlink_trans = 0; 7082 ei->last_log_commit = 0; 7083 7084 spin_lock_init(&ei->lock); 7085 ei->outstanding_extents = 0; 7086 ei->reserved_extents = 0; 7087 7088 ei->runtime_flags = 0; 7089 ei->force_compress = BTRFS_COMPRESS_NONE; 7090 7091 ei->delayed_node = NULL; 7092 7093 inode = &ei->vfs_inode; 7094 extent_map_tree_init(&ei->extent_tree); 7095 extent_io_tree_init(&ei->io_tree, &inode->i_data); 7096 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 7097 ei->io_tree.track_uptodate = 1; 7098 ei->io_failure_tree.track_uptodate = 1; 7099 atomic_set(&ei->sync_writers, 0); 7100 mutex_init(&ei->log_mutex); 7101 mutex_init(&ei->delalloc_mutex); 7102 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 7103 INIT_LIST_HEAD(&ei->delalloc_inodes); 7104 INIT_LIST_HEAD(&ei->ordered_operations); 7105 RB_CLEAR_NODE(&ei->rb_node); 7106 7107 return inode; 7108 } 7109 7110 static void btrfs_i_callback(struct rcu_head *head) 7111 { 7112 struct inode *inode = container_of(head, struct inode, i_rcu); 7113 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7114 } 7115 7116 void btrfs_destroy_inode(struct inode *inode) 7117 { 7118 struct btrfs_ordered_extent *ordered; 7119 struct btrfs_root *root = BTRFS_I(inode)->root; 7120 7121 WARN_ON(!hlist_empty(&inode->i_dentry)); 7122 WARN_ON(inode->i_data.nrpages); 7123 WARN_ON(BTRFS_I(inode)->outstanding_extents); 7124 WARN_ON(BTRFS_I(inode)->reserved_extents); 7125 WARN_ON(BTRFS_I(inode)->delalloc_bytes); 7126 WARN_ON(BTRFS_I(inode)->csum_bytes); 7127 7128 /* 7129 * This can happen where we create an inode, but somebody else also 7130 * created the same inode and we need to destroy the one we already 7131 * created. 7132 */ 7133 if (!root) 7134 goto free; 7135 7136 /* 7137 * Make sure we're properly removed from the ordered operation 7138 * lists. 7139 */ 7140 smp_mb(); 7141 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 7142 spin_lock(&root->fs_info->ordered_extent_lock); 7143 list_del_init(&BTRFS_I(inode)->ordered_operations); 7144 spin_unlock(&root->fs_info->ordered_extent_lock); 7145 } 7146 7147 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM, 7148 &BTRFS_I(inode)->runtime_flags)) { 7149 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 7150 (unsigned long long)btrfs_ino(inode)); 7151 atomic_dec(&root->orphan_inodes); 7152 } 7153 7154 while (1) { 7155 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7156 if (!ordered) 7157 break; 7158 else { 7159 printk(KERN_ERR "btrfs found ordered " 7160 "extent %llu %llu on inode cleanup\n", 7161 (unsigned long long)ordered->file_offset, 7162 (unsigned long long)ordered->len); 7163 btrfs_remove_ordered_extent(inode, ordered); 7164 btrfs_put_ordered_extent(ordered); 7165 btrfs_put_ordered_extent(ordered); 7166 } 7167 } 7168 inode_tree_del(inode); 7169 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 7170 free: 7171 btrfs_remove_delayed_node(inode); 7172 call_rcu(&inode->i_rcu, btrfs_i_callback); 7173 } 7174 7175 int btrfs_drop_inode(struct inode *inode) 7176 { 7177 struct btrfs_root *root = BTRFS_I(inode)->root; 7178 7179 if (btrfs_root_refs(&root->root_item) == 0 && 7180 !btrfs_is_free_space_inode(inode)) 7181 return 1; 7182 else 7183 return generic_drop_inode(inode); 7184 } 7185 7186 static void init_once(void *foo) 7187 { 7188 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 7189 7190 inode_init_once(&ei->vfs_inode); 7191 } 7192 7193 void btrfs_destroy_cachep(void) 7194 { 7195 /* 7196 * Make sure all delayed rcu free inodes are flushed before we 7197 * destroy cache. 7198 */ 7199 rcu_barrier(); 7200 if (btrfs_inode_cachep) 7201 kmem_cache_destroy(btrfs_inode_cachep); 7202 if (btrfs_trans_handle_cachep) 7203 kmem_cache_destroy(btrfs_trans_handle_cachep); 7204 if (btrfs_transaction_cachep) 7205 kmem_cache_destroy(btrfs_transaction_cachep); 7206 if (btrfs_path_cachep) 7207 kmem_cache_destroy(btrfs_path_cachep); 7208 if (btrfs_free_space_cachep) 7209 kmem_cache_destroy(btrfs_free_space_cachep); 7210 if (btrfs_delalloc_work_cachep) 7211 kmem_cache_destroy(btrfs_delalloc_work_cachep); 7212 } 7213 7214 int btrfs_init_cachep(void) 7215 { 7216 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7217 sizeof(struct btrfs_inode), 0, 7218 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 7219 if (!btrfs_inode_cachep) 7220 goto fail; 7221 7222 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 7223 sizeof(struct btrfs_trans_handle), 0, 7224 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7225 if (!btrfs_trans_handle_cachep) 7226 goto fail; 7227 7228 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction", 7229 sizeof(struct btrfs_transaction), 0, 7230 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7231 if (!btrfs_transaction_cachep) 7232 goto fail; 7233 7234 btrfs_path_cachep = kmem_cache_create("btrfs_path", 7235 sizeof(struct btrfs_path), 0, 7236 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7237 if (!btrfs_path_cachep) 7238 goto fail; 7239 7240 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 7241 sizeof(struct btrfs_free_space), 0, 7242 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 7243 if (!btrfs_free_space_cachep) 7244 goto fail; 7245 7246 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work", 7247 sizeof(struct btrfs_delalloc_work), 0, 7248 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 7249 NULL); 7250 if (!btrfs_delalloc_work_cachep) 7251 goto fail; 7252 7253 return 0; 7254 fail: 7255 btrfs_destroy_cachep(); 7256 return -ENOMEM; 7257 } 7258 7259 static int btrfs_getattr(struct vfsmount *mnt, 7260 struct dentry *dentry, struct kstat *stat) 7261 { 7262 struct inode *inode = dentry->d_inode; 7263 u32 blocksize = inode->i_sb->s_blocksize; 7264 7265 generic_fillattr(inode, stat); 7266 stat->dev = BTRFS_I(inode)->root->anon_dev; 7267 stat->blksize = PAGE_CACHE_SIZE; 7268 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 7269 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9; 7270 return 0; 7271 } 7272 7273 /* 7274 * If a file is moved, it will inherit the cow and compression flags of the new 7275 * directory. 7276 */ 7277 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 7278 { 7279 struct btrfs_inode *b_dir = BTRFS_I(dir); 7280 struct btrfs_inode *b_inode = BTRFS_I(inode); 7281 7282 if (b_dir->flags & BTRFS_INODE_NODATACOW) 7283 b_inode->flags |= BTRFS_INODE_NODATACOW; 7284 else 7285 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 7286 7287 if (b_dir->flags & BTRFS_INODE_COMPRESS) { 7288 b_inode->flags |= BTRFS_INODE_COMPRESS; 7289 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 7290 } else { 7291 b_inode->flags &= ~(BTRFS_INODE_COMPRESS | 7292 BTRFS_INODE_NOCOMPRESS); 7293 } 7294 } 7295 7296 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 7297 struct inode *new_dir, struct dentry *new_dentry) 7298 { 7299 struct btrfs_trans_handle *trans; 7300 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7301 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7302 struct inode *new_inode = new_dentry->d_inode; 7303 struct inode *old_inode = old_dentry->d_inode; 7304 struct timespec ctime = CURRENT_TIME; 7305 u64 index = 0; 7306 u64 root_objectid; 7307 int ret; 7308 u64 old_ino = btrfs_ino(old_inode); 7309 7310 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 7311 return -EPERM; 7312 7313 /* we only allow rename subvolume link between subvolumes */ 7314 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 7315 return -EXDEV; 7316 7317 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 7318 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 7319 return -ENOTEMPTY; 7320 7321 if (S_ISDIR(old_inode->i_mode) && new_inode && 7322 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 7323 return -ENOTEMPTY; 7324 7325 7326 /* check for collisions, even if the name isn't there */ 7327 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino, 7328 new_dentry->d_name.name, 7329 new_dentry->d_name.len); 7330 7331 if (ret) { 7332 if (ret == -EEXIST) { 7333 /* we shouldn't get 7334 * eexist without a new_inode */ 7335 if (!new_inode) { 7336 WARN_ON(1); 7337 return ret; 7338 } 7339 } else { 7340 /* maybe -EOVERFLOW */ 7341 return ret; 7342 } 7343 } 7344 ret = 0; 7345 7346 /* 7347 * we're using rename to replace one file with another. 7348 * and the replacement file is large. Start IO on it now so 7349 * we don't add too much work to the end of the transaction 7350 */ 7351 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 7352 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 7353 filemap_flush(old_inode->i_mapping); 7354 7355 /* close the racy window with snapshot create/destroy ioctl */ 7356 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7357 down_read(&root->fs_info->subvol_sem); 7358 /* 7359 * We want to reserve the absolute worst case amount of items. So if 7360 * both inodes are subvols and we need to unlink them then that would 7361 * require 4 item modifications, but if they are both normal inodes it 7362 * would require 5 item modifications, so we'll assume their normal 7363 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 7364 * should cover the worst case number of items we'll modify. 7365 */ 7366 trans = btrfs_start_transaction(root, 20); 7367 if (IS_ERR(trans)) { 7368 ret = PTR_ERR(trans); 7369 goto out_notrans; 7370 } 7371 7372 if (dest != root) 7373 btrfs_record_root_in_trans(trans, dest); 7374 7375 ret = btrfs_set_inode_index(new_dir, &index); 7376 if (ret) 7377 goto out_fail; 7378 7379 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7380 /* force full log commit if subvolume involved. */ 7381 root->fs_info->last_trans_log_full_commit = trans->transid; 7382 } else { 7383 ret = btrfs_insert_inode_ref(trans, dest, 7384 new_dentry->d_name.name, 7385 new_dentry->d_name.len, 7386 old_ino, 7387 btrfs_ino(new_dir), index); 7388 if (ret) 7389 goto out_fail; 7390 /* 7391 * this is an ugly little race, but the rename is required 7392 * to make sure that if we crash, the inode is either at the 7393 * old name or the new one. pinning the log transaction lets 7394 * us make sure we don't allow a log commit to come in after 7395 * we unlink the name but before we add the new name back in. 7396 */ 7397 btrfs_pin_log_trans(root); 7398 } 7399 /* 7400 * make sure the inode gets flushed if it is replacing 7401 * something. 7402 */ 7403 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7404 btrfs_add_ordered_operation(trans, root, old_inode); 7405 7406 inode_inc_iversion(old_dir); 7407 inode_inc_iversion(new_dir); 7408 inode_inc_iversion(old_inode); 7409 old_dir->i_ctime = old_dir->i_mtime = ctime; 7410 new_dir->i_ctime = new_dir->i_mtime = ctime; 7411 old_inode->i_ctime = ctime; 7412 7413 if (old_dentry->d_parent != new_dentry->d_parent) 7414 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7415 7416 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7417 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7418 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7419 old_dentry->d_name.name, 7420 old_dentry->d_name.len); 7421 } else { 7422 ret = __btrfs_unlink_inode(trans, root, old_dir, 7423 old_dentry->d_inode, 7424 old_dentry->d_name.name, 7425 old_dentry->d_name.len); 7426 if (!ret) 7427 ret = btrfs_update_inode(trans, root, old_inode); 7428 } 7429 if (ret) { 7430 btrfs_abort_transaction(trans, root, ret); 7431 goto out_fail; 7432 } 7433 7434 if (new_inode) { 7435 inode_inc_iversion(new_inode); 7436 new_inode->i_ctime = CURRENT_TIME; 7437 if (unlikely(btrfs_ino(new_inode) == 7438 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7439 root_objectid = BTRFS_I(new_inode)->location.objectid; 7440 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7441 root_objectid, 7442 new_dentry->d_name.name, 7443 new_dentry->d_name.len); 7444 BUG_ON(new_inode->i_nlink == 0); 7445 } else { 7446 ret = btrfs_unlink_inode(trans, dest, new_dir, 7447 new_dentry->d_inode, 7448 new_dentry->d_name.name, 7449 new_dentry->d_name.len); 7450 } 7451 if (!ret && new_inode->i_nlink == 0) { 7452 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7453 BUG_ON(ret); 7454 } 7455 if (ret) { 7456 btrfs_abort_transaction(trans, root, ret); 7457 goto out_fail; 7458 } 7459 } 7460 7461 fixup_inode_flags(new_dir, old_inode); 7462 7463 ret = btrfs_add_link(trans, new_dir, old_inode, 7464 new_dentry->d_name.name, 7465 new_dentry->d_name.len, 0, index); 7466 if (ret) { 7467 btrfs_abort_transaction(trans, root, ret); 7468 goto out_fail; 7469 } 7470 7471 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7472 struct dentry *parent = new_dentry->d_parent; 7473 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7474 btrfs_end_log_trans(root); 7475 } 7476 out_fail: 7477 btrfs_end_transaction(trans, root); 7478 out_notrans: 7479 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7480 up_read(&root->fs_info->subvol_sem); 7481 7482 return ret; 7483 } 7484 7485 static void btrfs_run_delalloc_work(struct btrfs_work *work) 7486 { 7487 struct btrfs_delalloc_work *delalloc_work; 7488 7489 delalloc_work = container_of(work, struct btrfs_delalloc_work, 7490 work); 7491 if (delalloc_work->wait) 7492 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1); 7493 else 7494 filemap_flush(delalloc_work->inode->i_mapping); 7495 7496 if (delalloc_work->delay_iput) 7497 btrfs_add_delayed_iput(delalloc_work->inode); 7498 else 7499 iput(delalloc_work->inode); 7500 complete(&delalloc_work->completion); 7501 } 7502 7503 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 7504 int wait, int delay_iput) 7505 { 7506 struct btrfs_delalloc_work *work; 7507 7508 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS); 7509 if (!work) 7510 return NULL; 7511 7512 init_completion(&work->completion); 7513 INIT_LIST_HEAD(&work->list); 7514 work->inode = inode; 7515 work->wait = wait; 7516 work->delay_iput = delay_iput; 7517 work->work.func = btrfs_run_delalloc_work; 7518 7519 return work; 7520 } 7521 7522 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work) 7523 { 7524 wait_for_completion(&work->completion); 7525 kmem_cache_free(btrfs_delalloc_work_cachep, work); 7526 } 7527 7528 /* 7529 * some fairly slow code that needs optimization. This walks the list 7530 * of all the inodes with pending delalloc and forces them to disk. 7531 */ 7532 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7533 { 7534 struct list_head *head = &root->fs_info->delalloc_inodes; 7535 struct btrfs_inode *binode; 7536 struct inode *inode; 7537 struct btrfs_delalloc_work *work, *next; 7538 struct list_head works; 7539 int ret = 0; 7540 7541 if (root->fs_info->sb->s_flags & MS_RDONLY) 7542 return -EROFS; 7543 7544 INIT_LIST_HEAD(&works); 7545 7546 spin_lock(&root->fs_info->delalloc_lock); 7547 while (!list_empty(head)) { 7548 binode = list_entry(head->next, struct btrfs_inode, 7549 delalloc_inodes); 7550 inode = igrab(&binode->vfs_inode); 7551 if (!inode) 7552 list_del_init(&binode->delalloc_inodes); 7553 spin_unlock(&root->fs_info->delalloc_lock); 7554 if (inode) { 7555 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput); 7556 if (!work) { 7557 ret = -ENOMEM; 7558 goto out; 7559 } 7560 list_add_tail(&work->list, &works); 7561 btrfs_queue_worker(&root->fs_info->flush_workers, 7562 &work->work); 7563 } 7564 cond_resched(); 7565 spin_lock(&root->fs_info->delalloc_lock); 7566 } 7567 spin_unlock(&root->fs_info->delalloc_lock); 7568 7569 /* the filemap_flush will queue IO into the worker threads, but 7570 * we have to make sure the IO is actually started and that 7571 * ordered extents get created before we return 7572 */ 7573 atomic_inc(&root->fs_info->async_submit_draining); 7574 while (atomic_read(&root->fs_info->nr_async_submits) || 7575 atomic_read(&root->fs_info->async_delalloc_pages)) { 7576 wait_event(root->fs_info->async_submit_wait, 7577 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7578 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7579 } 7580 atomic_dec(&root->fs_info->async_submit_draining); 7581 out: 7582 list_for_each_entry_safe(work, next, &works, list) { 7583 list_del_init(&work->list); 7584 btrfs_wait_and_free_delalloc_work(work); 7585 } 7586 return ret; 7587 } 7588 7589 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7590 const char *symname) 7591 { 7592 struct btrfs_trans_handle *trans; 7593 struct btrfs_root *root = BTRFS_I(dir)->root; 7594 struct btrfs_path *path; 7595 struct btrfs_key key; 7596 struct inode *inode = NULL; 7597 int err; 7598 int drop_inode = 0; 7599 u64 objectid; 7600 u64 index = 0 ; 7601 int name_len; 7602 int datasize; 7603 unsigned long ptr; 7604 struct btrfs_file_extent_item *ei; 7605 struct extent_buffer *leaf; 7606 7607 name_len = strlen(symname) + 1; 7608 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7609 return -ENAMETOOLONG; 7610 7611 /* 7612 * 2 items for inode item and ref 7613 * 2 items for dir items 7614 * 1 item for xattr if selinux is on 7615 */ 7616 trans = btrfs_start_transaction(root, 5); 7617 if (IS_ERR(trans)) 7618 return PTR_ERR(trans); 7619 7620 err = btrfs_find_free_ino(root, &objectid); 7621 if (err) 7622 goto out_unlock; 7623 7624 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7625 dentry->d_name.len, btrfs_ino(dir), objectid, 7626 S_IFLNK|S_IRWXUGO, &index); 7627 if (IS_ERR(inode)) { 7628 err = PTR_ERR(inode); 7629 goto out_unlock; 7630 } 7631 7632 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7633 if (err) { 7634 drop_inode = 1; 7635 goto out_unlock; 7636 } 7637 7638 /* 7639 * If the active LSM wants to access the inode during 7640 * d_instantiate it needs these. Smack checks to see 7641 * if the filesystem supports xattrs by looking at the 7642 * ops vector. 7643 */ 7644 inode->i_fop = &btrfs_file_operations; 7645 inode->i_op = &btrfs_file_inode_operations; 7646 7647 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7648 if (err) 7649 drop_inode = 1; 7650 else { 7651 inode->i_mapping->a_ops = &btrfs_aops; 7652 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7653 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7654 } 7655 if (drop_inode) 7656 goto out_unlock; 7657 7658 path = btrfs_alloc_path(); 7659 if (!path) { 7660 err = -ENOMEM; 7661 drop_inode = 1; 7662 goto out_unlock; 7663 } 7664 key.objectid = btrfs_ino(inode); 7665 key.offset = 0; 7666 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7667 datasize = btrfs_file_extent_calc_inline_size(name_len); 7668 err = btrfs_insert_empty_item(trans, root, path, &key, 7669 datasize); 7670 if (err) { 7671 drop_inode = 1; 7672 btrfs_free_path(path); 7673 goto out_unlock; 7674 } 7675 leaf = path->nodes[0]; 7676 ei = btrfs_item_ptr(leaf, path->slots[0], 7677 struct btrfs_file_extent_item); 7678 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7679 btrfs_set_file_extent_type(leaf, ei, 7680 BTRFS_FILE_EXTENT_INLINE); 7681 btrfs_set_file_extent_encryption(leaf, ei, 0); 7682 btrfs_set_file_extent_compression(leaf, ei, 0); 7683 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7684 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7685 7686 ptr = btrfs_file_extent_inline_start(ei); 7687 write_extent_buffer(leaf, symname, ptr, name_len); 7688 btrfs_mark_buffer_dirty(leaf); 7689 btrfs_free_path(path); 7690 7691 inode->i_op = &btrfs_symlink_inode_operations; 7692 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7693 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7694 inode_set_bytes(inode, name_len); 7695 btrfs_i_size_write(inode, name_len - 1); 7696 err = btrfs_update_inode(trans, root, inode); 7697 if (err) 7698 drop_inode = 1; 7699 7700 out_unlock: 7701 if (!err) 7702 d_instantiate(dentry, inode); 7703 btrfs_end_transaction(trans, root); 7704 if (drop_inode) { 7705 inode_dec_link_count(inode); 7706 iput(inode); 7707 } 7708 btrfs_btree_balance_dirty(root); 7709 return err; 7710 } 7711 7712 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7713 u64 start, u64 num_bytes, u64 min_size, 7714 loff_t actual_len, u64 *alloc_hint, 7715 struct btrfs_trans_handle *trans) 7716 { 7717 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 7718 struct extent_map *em; 7719 struct btrfs_root *root = BTRFS_I(inode)->root; 7720 struct btrfs_key ins; 7721 u64 cur_offset = start; 7722 u64 i_size; 7723 int ret = 0; 7724 bool own_trans = true; 7725 7726 if (trans) 7727 own_trans = false; 7728 while (num_bytes > 0) { 7729 if (own_trans) { 7730 trans = btrfs_start_transaction(root, 3); 7731 if (IS_ERR(trans)) { 7732 ret = PTR_ERR(trans); 7733 break; 7734 } 7735 } 7736 7737 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7738 0, *alloc_hint, &ins, 1); 7739 if (ret) { 7740 if (own_trans) 7741 btrfs_end_transaction(trans, root); 7742 break; 7743 } 7744 7745 ret = insert_reserved_file_extent(trans, inode, 7746 cur_offset, ins.objectid, 7747 ins.offset, ins.offset, 7748 ins.offset, 0, 0, 0, 7749 BTRFS_FILE_EXTENT_PREALLOC); 7750 if (ret) { 7751 btrfs_abort_transaction(trans, root, ret); 7752 if (own_trans) 7753 btrfs_end_transaction(trans, root); 7754 break; 7755 } 7756 btrfs_drop_extent_cache(inode, cur_offset, 7757 cur_offset + ins.offset -1, 0); 7758 7759 em = alloc_extent_map(); 7760 if (!em) { 7761 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 7762 &BTRFS_I(inode)->runtime_flags); 7763 goto next; 7764 } 7765 7766 em->start = cur_offset; 7767 em->orig_start = cur_offset; 7768 em->len = ins.offset; 7769 em->block_start = ins.objectid; 7770 em->block_len = ins.offset; 7771 em->orig_block_len = ins.offset; 7772 em->bdev = root->fs_info->fs_devices->latest_bdev; 7773 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7774 em->generation = trans->transid; 7775 7776 while (1) { 7777 write_lock(&em_tree->lock); 7778 ret = add_extent_mapping(em_tree, em); 7779 if (!ret) 7780 list_move(&em->list, 7781 &em_tree->modified_extents); 7782 write_unlock(&em_tree->lock); 7783 if (ret != -EEXIST) 7784 break; 7785 btrfs_drop_extent_cache(inode, cur_offset, 7786 cur_offset + ins.offset - 1, 7787 0); 7788 } 7789 free_extent_map(em); 7790 next: 7791 num_bytes -= ins.offset; 7792 cur_offset += ins.offset; 7793 *alloc_hint = ins.objectid + ins.offset; 7794 7795 inode_inc_iversion(inode); 7796 inode->i_ctime = CURRENT_TIME; 7797 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7798 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7799 (actual_len > inode->i_size) && 7800 (cur_offset > inode->i_size)) { 7801 if (cur_offset > actual_len) 7802 i_size = actual_len; 7803 else 7804 i_size = cur_offset; 7805 i_size_write(inode, i_size); 7806 btrfs_ordered_update_i_size(inode, i_size, NULL); 7807 } 7808 7809 ret = btrfs_update_inode(trans, root, inode); 7810 7811 if (ret) { 7812 btrfs_abort_transaction(trans, root, ret); 7813 if (own_trans) 7814 btrfs_end_transaction(trans, root); 7815 break; 7816 } 7817 7818 if (own_trans) 7819 btrfs_end_transaction(trans, root); 7820 } 7821 return ret; 7822 } 7823 7824 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7825 u64 start, u64 num_bytes, u64 min_size, 7826 loff_t actual_len, u64 *alloc_hint) 7827 { 7828 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7829 min_size, actual_len, alloc_hint, 7830 NULL); 7831 } 7832 7833 int btrfs_prealloc_file_range_trans(struct inode *inode, 7834 struct btrfs_trans_handle *trans, int mode, 7835 u64 start, u64 num_bytes, u64 min_size, 7836 loff_t actual_len, u64 *alloc_hint) 7837 { 7838 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7839 min_size, actual_len, alloc_hint, trans); 7840 } 7841 7842 static int btrfs_set_page_dirty(struct page *page) 7843 { 7844 return __set_page_dirty_nobuffers(page); 7845 } 7846 7847 static int btrfs_permission(struct inode *inode, int mask) 7848 { 7849 struct btrfs_root *root = BTRFS_I(inode)->root; 7850 umode_t mode = inode->i_mode; 7851 7852 if (mask & MAY_WRITE && 7853 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 7854 if (btrfs_root_readonly(root)) 7855 return -EROFS; 7856 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 7857 return -EACCES; 7858 } 7859 return generic_permission(inode, mask); 7860 } 7861 7862 static const struct inode_operations btrfs_dir_inode_operations = { 7863 .getattr = btrfs_getattr, 7864 .lookup = btrfs_lookup, 7865 .create = btrfs_create, 7866 .unlink = btrfs_unlink, 7867 .link = btrfs_link, 7868 .mkdir = btrfs_mkdir, 7869 .rmdir = btrfs_rmdir, 7870 .rename = btrfs_rename, 7871 .symlink = btrfs_symlink, 7872 .setattr = btrfs_setattr, 7873 .mknod = btrfs_mknod, 7874 .setxattr = btrfs_setxattr, 7875 .getxattr = btrfs_getxattr, 7876 .listxattr = btrfs_listxattr, 7877 .removexattr = btrfs_removexattr, 7878 .permission = btrfs_permission, 7879 .get_acl = btrfs_get_acl, 7880 }; 7881 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7882 .lookup = btrfs_lookup, 7883 .permission = btrfs_permission, 7884 .get_acl = btrfs_get_acl, 7885 }; 7886 7887 static const struct file_operations btrfs_dir_file_operations = { 7888 .llseek = generic_file_llseek, 7889 .read = generic_read_dir, 7890 .readdir = btrfs_real_readdir, 7891 .unlocked_ioctl = btrfs_ioctl, 7892 #ifdef CONFIG_COMPAT 7893 .compat_ioctl = btrfs_ioctl, 7894 #endif 7895 .release = btrfs_release_file, 7896 .fsync = btrfs_sync_file, 7897 }; 7898 7899 static struct extent_io_ops btrfs_extent_io_ops = { 7900 .fill_delalloc = run_delalloc_range, 7901 .submit_bio_hook = btrfs_submit_bio_hook, 7902 .merge_bio_hook = btrfs_merge_bio_hook, 7903 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7904 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7905 .writepage_start_hook = btrfs_writepage_start_hook, 7906 .set_bit_hook = btrfs_set_bit_hook, 7907 .clear_bit_hook = btrfs_clear_bit_hook, 7908 .merge_extent_hook = btrfs_merge_extent_hook, 7909 .split_extent_hook = btrfs_split_extent_hook, 7910 }; 7911 7912 /* 7913 * btrfs doesn't support the bmap operation because swapfiles 7914 * use bmap to make a mapping of extents in the file. They assume 7915 * these extents won't change over the life of the file and they 7916 * use the bmap result to do IO directly to the drive. 7917 * 7918 * the btrfs bmap call would return logical addresses that aren't 7919 * suitable for IO and they also will change frequently as COW 7920 * operations happen. So, swapfile + btrfs == corruption. 7921 * 7922 * For now we're avoiding this by dropping bmap. 7923 */ 7924 static const struct address_space_operations btrfs_aops = { 7925 .readpage = btrfs_readpage, 7926 .writepage = btrfs_writepage, 7927 .writepages = btrfs_writepages, 7928 .readpages = btrfs_readpages, 7929 .direct_IO = btrfs_direct_IO, 7930 .invalidatepage = btrfs_invalidatepage, 7931 .releasepage = btrfs_releasepage, 7932 .set_page_dirty = btrfs_set_page_dirty, 7933 .error_remove_page = generic_error_remove_page, 7934 }; 7935 7936 static const struct address_space_operations btrfs_symlink_aops = { 7937 .readpage = btrfs_readpage, 7938 .writepage = btrfs_writepage, 7939 .invalidatepage = btrfs_invalidatepage, 7940 .releasepage = btrfs_releasepage, 7941 }; 7942 7943 static const struct inode_operations btrfs_file_inode_operations = { 7944 .getattr = btrfs_getattr, 7945 .setattr = btrfs_setattr, 7946 .setxattr = btrfs_setxattr, 7947 .getxattr = btrfs_getxattr, 7948 .listxattr = btrfs_listxattr, 7949 .removexattr = btrfs_removexattr, 7950 .permission = btrfs_permission, 7951 .fiemap = btrfs_fiemap, 7952 .get_acl = btrfs_get_acl, 7953 .update_time = btrfs_update_time, 7954 }; 7955 static const struct inode_operations btrfs_special_inode_operations = { 7956 .getattr = btrfs_getattr, 7957 .setattr = btrfs_setattr, 7958 .permission = btrfs_permission, 7959 .setxattr = btrfs_setxattr, 7960 .getxattr = btrfs_getxattr, 7961 .listxattr = btrfs_listxattr, 7962 .removexattr = btrfs_removexattr, 7963 .get_acl = btrfs_get_acl, 7964 .update_time = btrfs_update_time, 7965 }; 7966 static const struct inode_operations btrfs_symlink_inode_operations = { 7967 .readlink = generic_readlink, 7968 .follow_link = page_follow_link_light, 7969 .put_link = page_put_link, 7970 .getattr = btrfs_getattr, 7971 .setattr = btrfs_setattr, 7972 .permission = btrfs_permission, 7973 .setxattr = btrfs_setxattr, 7974 .getxattr = btrfs_getxattr, 7975 .listxattr = btrfs_listxattr, 7976 .removexattr = btrfs_removexattr, 7977 .get_acl = btrfs_get_acl, 7978 .update_time = btrfs_update_time, 7979 }; 7980 7981 const struct dentry_operations btrfs_dentry_operations = { 7982 .d_delete = btrfs_dentry_delete, 7983 .d_release = btrfs_dentry_release, 7984 }; 7985