1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/file.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/init.h> 15 #include <linux/string.h> 16 #include <linux/backing-dev.h> 17 #include <linux/writeback.h> 18 #include <linux/compat.h> 19 #include <linux/xattr.h> 20 #include <linux/posix_acl.h> 21 #include <linux/falloc.h> 22 #include <linux/slab.h> 23 #include <linux/ratelimit.h> 24 #include <linux/btrfs.h> 25 #include <linux/blkdev.h> 26 #include <linux/posix_acl_xattr.h> 27 #include <linux/uio.h> 28 #include <linux/magic.h> 29 #include <linux/iversion.h> 30 #include <linux/swap.h> 31 #include <linux/migrate.h> 32 #include <linux/sched/mm.h> 33 #include <linux/iomap.h> 34 #include <asm/unaligned.h> 35 #include "misc.h" 36 #include "ctree.h" 37 #include "disk-io.h" 38 #include "transaction.h" 39 #include "btrfs_inode.h" 40 #include "print-tree.h" 41 #include "ordered-data.h" 42 #include "xattr.h" 43 #include "tree-log.h" 44 #include "volumes.h" 45 #include "compression.h" 46 #include "locking.h" 47 #include "free-space-cache.h" 48 #include "inode-map.h" 49 #include "props.h" 50 #include "qgroup.h" 51 #include "delalloc-space.h" 52 #include "block-group.h" 53 #include "space-info.h" 54 55 struct btrfs_iget_args { 56 u64 ino; 57 struct btrfs_root *root; 58 }; 59 60 struct btrfs_dio_data { 61 u64 reserve; 62 loff_t length; 63 ssize_t submitted; 64 struct extent_changeset *data_reserved; 65 bool sync; 66 }; 67 68 static const struct inode_operations btrfs_dir_inode_operations; 69 static const struct inode_operations btrfs_symlink_inode_operations; 70 static const struct inode_operations btrfs_special_inode_operations; 71 static const struct inode_operations btrfs_file_inode_operations; 72 static const struct address_space_operations btrfs_aops; 73 static const struct file_operations btrfs_dir_file_operations; 74 75 static struct kmem_cache *btrfs_inode_cachep; 76 struct kmem_cache *btrfs_trans_handle_cachep; 77 struct kmem_cache *btrfs_path_cachep; 78 struct kmem_cache *btrfs_free_space_cachep; 79 struct kmem_cache *btrfs_free_space_bitmap_cachep; 80 81 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 82 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 83 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 84 static noinline int cow_file_range(struct btrfs_inode *inode, 85 struct page *locked_page, 86 u64 start, u64 end, int *page_started, 87 unsigned long *nr_written, int unlock); 88 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 89 u64 len, u64 orig_start, u64 block_start, 90 u64 block_len, u64 orig_block_len, 91 u64 ram_bytes, int compress_type, 92 int type); 93 94 static void __endio_write_update_ordered(struct btrfs_inode *inode, 95 const u64 offset, const u64 bytes, 96 const bool uptodate); 97 98 /* 99 * Cleanup all submitted ordered extents in specified range to handle errors 100 * from the btrfs_run_delalloc_range() callback. 101 * 102 * NOTE: caller must ensure that when an error happens, it can not call 103 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 104 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 105 * to be released, which we want to happen only when finishing the ordered 106 * extent (btrfs_finish_ordered_io()). 107 */ 108 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 109 struct page *locked_page, 110 u64 offset, u64 bytes) 111 { 112 unsigned long index = offset >> PAGE_SHIFT; 113 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 114 u64 page_start = page_offset(locked_page); 115 u64 page_end = page_start + PAGE_SIZE - 1; 116 117 struct page *page; 118 119 while (index <= end_index) { 120 page = find_get_page(inode->vfs_inode.i_mapping, index); 121 index++; 122 if (!page) 123 continue; 124 ClearPagePrivate2(page); 125 put_page(page); 126 } 127 128 /* 129 * In case this page belongs to the delalloc range being instantiated 130 * then skip it, since the first page of a range is going to be 131 * properly cleaned up by the caller of run_delalloc_range 132 */ 133 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 134 offset += PAGE_SIZE; 135 bytes -= PAGE_SIZE; 136 } 137 138 return __endio_write_update_ordered(inode, offset, bytes, false); 139 } 140 141 static int btrfs_dirty_inode(struct inode *inode); 142 143 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 144 struct inode *inode, struct inode *dir, 145 const struct qstr *qstr) 146 { 147 int err; 148 149 err = btrfs_init_acl(trans, inode, dir); 150 if (!err) 151 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 152 return err; 153 } 154 155 /* 156 * this does all the hard work for inserting an inline extent into 157 * the btree. The caller should have done a btrfs_drop_extents so that 158 * no overlapping inline items exist in the btree 159 */ 160 static int insert_inline_extent(struct btrfs_trans_handle *trans, 161 struct btrfs_path *path, int extent_inserted, 162 struct btrfs_root *root, struct inode *inode, 163 u64 start, size_t size, size_t compressed_size, 164 int compress_type, 165 struct page **compressed_pages) 166 { 167 struct extent_buffer *leaf; 168 struct page *page = NULL; 169 char *kaddr; 170 unsigned long ptr; 171 struct btrfs_file_extent_item *ei; 172 int ret; 173 size_t cur_size = size; 174 unsigned long offset; 175 176 ASSERT((compressed_size > 0 && compressed_pages) || 177 (compressed_size == 0 && !compressed_pages)); 178 179 if (compressed_size && compressed_pages) 180 cur_size = compressed_size; 181 182 inode_add_bytes(inode, size); 183 184 if (!extent_inserted) { 185 struct btrfs_key key; 186 size_t datasize; 187 188 key.objectid = btrfs_ino(BTRFS_I(inode)); 189 key.offset = start; 190 key.type = BTRFS_EXTENT_DATA_KEY; 191 192 datasize = btrfs_file_extent_calc_inline_size(cur_size); 193 path->leave_spinning = 1; 194 ret = btrfs_insert_empty_item(trans, root, path, &key, 195 datasize); 196 if (ret) 197 goto fail; 198 } 199 leaf = path->nodes[0]; 200 ei = btrfs_item_ptr(leaf, path->slots[0], 201 struct btrfs_file_extent_item); 202 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 203 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 204 btrfs_set_file_extent_encryption(leaf, ei, 0); 205 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 206 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 207 ptr = btrfs_file_extent_inline_start(ei); 208 209 if (compress_type != BTRFS_COMPRESS_NONE) { 210 struct page *cpage; 211 int i = 0; 212 while (compressed_size > 0) { 213 cpage = compressed_pages[i]; 214 cur_size = min_t(unsigned long, compressed_size, 215 PAGE_SIZE); 216 217 kaddr = kmap_atomic(cpage); 218 write_extent_buffer(leaf, kaddr, ptr, cur_size); 219 kunmap_atomic(kaddr); 220 221 i++; 222 ptr += cur_size; 223 compressed_size -= cur_size; 224 } 225 btrfs_set_file_extent_compression(leaf, ei, 226 compress_type); 227 } else { 228 page = find_get_page(inode->i_mapping, 229 start >> PAGE_SHIFT); 230 btrfs_set_file_extent_compression(leaf, ei, 0); 231 kaddr = kmap_atomic(page); 232 offset = offset_in_page(start); 233 write_extent_buffer(leaf, kaddr + offset, ptr, size); 234 kunmap_atomic(kaddr); 235 put_page(page); 236 } 237 btrfs_mark_buffer_dirty(leaf); 238 btrfs_release_path(path); 239 240 /* 241 * We align size to sectorsize for inline extents just for simplicity 242 * sake. 243 */ 244 size = ALIGN(size, root->fs_info->sectorsize); 245 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size); 246 if (ret) 247 goto fail; 248 249 /* 250 * we're an inline extent, so nobody can 251 * extend the file past i_size without locking 252 * a page we already have locked. 253 * 254 * We must do any isize and inode updates 255 * before we unlock the pages. Otherwise we 256 * could end up racing with unlink. 257 */ 258 BTRFS_I(inode)->disk_i_size = inode->i_size; 259 ret = btrfs_update_inode(trans, root, inode); 260 261 fail: 262 return ret; 263 } 264 265 266 /* 267 * conditionally insert an inline extent into the file. This 268 * does the checks required to make sure the data is small enough 269 * to fit as an inline extent. 270 */ 271 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 start, 272 u64 end, size_t compressed_size, 273 int compress_type, 274 struct page **compressed_pages) 275 { 276 struct btrfs_root *root = inode->root; 277 struct btrfs_fs_info *fs_info = root->fs_info; 278 struct btrfs_trans_handle *trans; 279 u64 isize = i_size_read(&inode->vfs_inode); 280 u64 actual_end = min(end + 1, isize); 281 u64 inline_len = actual_end - start; 282 u64 aligned_end = ALIGN(end, fs_info->sectorsize); 283 u64 data_len = inline_len; 284 int ret; 285 struct btrfs_path *path; 286 int extent_inserted = 0; 287 u32 extent_item_size; 288 289 if (compressed_size) 290 data_len = compressed_size; 291 292 if (start > 0 || 293 actual_end > fs_info->sectorsize || 294 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 295 (!compressed_size && 296 (actual_end & (fs_info->sectorsize - 1)) == 0) || 297 end + 1 < isize || 298 data_len > fs_info->max_inline) { 299 return 1; 300 } 301 302 path = btrfs_alloc_path(); 303 if (!path) 304 return -ENOMEM; 305 306 trans = btrfs_join_transaction(root); 307 if (IS_ERR(trans)) { 308 btrfs_free_path(path); 309 return PTR_ERR(trans); 310 } 311 trans->block_rsv = &inode->block_rsv; 312 313 if (compressed_size && compressed_pages) 314 extent_item_size = btrfs_file_extent_calc_inline_size( 315 compressed_size); 316 else 317 extent_item_size = btrfs_file_extent_calc_inline_size( 318 inline_len); 319 320 ret = __btrfs_drop_extents(trans, root, inode, path, start, aligned_end, 321 NULL, 1, 1, extent_item_size, 322 &extent_inserted); 323 if (ret) { 324 btrfs_abort_transaction(trans, ret); 325 goto out; 326 } 327 328 if (isize > actual_end) 329 inline_len = min_t(u64, isize, actual_end); 330 ret = insert_inline_extent(trans, path, extent_inserted, 331 root, &inode->vfs_inode, start, 332 inline_len, compressed_size, 333 compress_type, compressed_pages); 334 if (ret && ret != -ENOSPC) { 335 btrfs_abort_transaction(trans, ret); 336 goto out; 337 } else if (ret == -ENOSPC) { 338 ret = 1; 339 goto out; 340 } 341 342 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 343 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 344 out: 345 /* 346 * Don't forget to free the reserved space, as for inlined extent 347 * it won't count as data extent, free them directly here. 348 * And at reserve time, it's always aligned to page size, so 349 * just free one page here. 350 */ 351 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 352 btrfs_free_path(path); 353 btrfs_end_transaction(trans); 354 return ret; 355 } 356 357 struct async_extent { 358 u64 start; 359 u64 ram_size; 360 u64 compressed_size; 361 struct page **pages; 362 unsigned long nr_pages; 363 int compress_type; 364 struct list_head list; 365 }; 366 367 struct async_chunk { 368 struct inode *inode; 369 struct page *locked_page; 370 u64 start; 371 u64 end; 372 unsigned int write_flags; 373 struct list_head extents; 374 struct cgroup_subsys_state *blkcg_css; 375 struct btrfs_work work; 376 atomic_t *pending; 377 }; 378 379 struct async_cow { 380 /* Number of chunks in flight; must be first in the structure */ 381 atomic_t num_chunks; 382 struct async_chunk chunks[]; 383 }; 384 385 static noinline int add_async_extent(struct async_chunk *cow, 386 u64 start, u64 ram_size, 387 u64 compressed_size, 388 struct page **pages, 389 unsigned long nr_pages, 390 int compress_type) 391 { 392 struct async_extent *async_extent; 393 394 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 395 BUG_ON(!async_extent); /* -ENOMEM */ 396 async_extent->start = start; 397 async_extent->ram_size = ram_size; 398 async_extent->compressed_size = compressed_size; 399 async_extent->pages = pages; 400 async_extent->nr_pages = nr_pages; 401 async_extent->compress_type = compress_type; 402 list_add_tail(&async_extent->list, &cow->extents); 403 return 0; 404 } 405 406 /* 407 * Check if the inode has flags compatible with compression 408 */ 409 static inline bool inode_can_compress(struct btrfs_inode *inode) 410 { 411 if (inode->flags & BTRFS_INODE_NODATACOW || 412 inode->flags & BTRFS_INODE_NODATASUM) 413 return false; 414 return true; 415 } 416 417 /* 418 * Check if the inode needs to be submitted to compression, based on mount 419 * options, defragmentation, properties or heuristics. 420 */ 421 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 422 u64 end) 423 { 424 struct btrfs_fs_info *fs_info = inode->root->fs_info; 425 426 if (!inode_can_compress(inode)) { 427 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 428 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 429 btrfs_ino(inode)); 430 return 0; 431 } 432 /* force compress */ 433 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 434 return 1; 435 /* defrag ioctl */ 436 if (inode->defrag_compress) 437 return 1; 438 /* bad compression ratios */ 439 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 440 return 0; 441 if (btrfs_test_opt(fs_info, COMPRESS) || 442 inode->flags & BTRFS_INODE_COMPRESS || 443 inode->prop_compress) 444 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 445 return 0; 446 } 447 448 static inline void inode_should_defrag(struct btrfs_inode *inode, 449 u64 start, u64 end, u64 num_bytes, u64 small_write) 450 { 451 /* If this is a small write inside eof, kick off a defrag */ 452 if (num_bytes < small_write && 453 (start > 0 || end + 1 < inode->disk_i_size)) 454 btrfs_add_inode_defrag(NULL, inode); 455 } 456 457 /* 458 * we create compressed extents in two phases. The first 459 * phase compresses a range of pages that have already been 460 * locked (both pages and state bits are locked). 461 * 462 * This is done inside an ordered work queue, and the compression 463 * is spread across many cpus. The actual IO submission is step 464 * two, and the ordered work queue takes care of making sure that 465 * happens in the same order things were put onto the queue by 466 * writepages and friends. 467 * 468 * If this code finds it can't get good compression, it puts an 469 * entry onto the work queue to write the uncompressed bytes. This 470 * makes sure that both compressed inodes and uncompressed inodes 471 * are written in the same order that the flusher thread sent them 472 * down. 473 */ 474 static noinline int compress_file_range(struct async_chunk *async_chunk) 475 { 476 struct inode *inode = async_chunk->inode; 477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 478 u64 blocksize = fs_info->sectorsize; 479 u64 start = async_chunk->start; 480 u64 end = async_chunk->end; 481 u64 actual_end; 482 u64 i_size; 483 int ret = 0; 484 struct page **pages = NULL; 485 unsigned long nr_pages; 486 unsigned long total_compressed = 0; 487 unsigned long total_in = 0; 488 int i; 489 int will_compress; 490 int compress_type = fs_info->compress_type; 491 int compressed_extents = 0; 492 int redirty = 0; 493 494 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 495 SZ_16K); 496 497 /* 498 * We need to save i_size before now because it could change in between 499 * us evaluating the size and assigning it. This is because we lock and 500 * unlock the page in truncate and fallocate, and then modify the i_size 501 * later on. 502 * 503 * The barriers are to emulate READ_ONCE, remove that once i_size_read 504 * does that for us. 505 */ 506 barrier(); 507 i_size = i_size_read(inode); 508 barrier(); 509 actual_end = min_t(u64, i_size, end + 1); 510 again: 511 will_compress = 0; 512 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 513 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); 514 nr_pages = min_t(unsigned long, nr_pages, 515 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 516 517 /* 518 * we don't want to send crud past the end of i_size through 519 * compression, that's just a waste of CPU time. So, if the 520 * end of the file is before the start of our current 521 * requested range of bytes, we bail out to the uncompressed 522 * cleanup code that can deal with all of this. 523 * 524 * It isn't really the fastest way to fix things, but this is a 525 * very uncommon corner. 526 */ 527 if (actual_end <= start) 528 goto cleanup_and_bail_uncompressed; 529 530 total_compressed = actual_end - start; 531 532 /* 533 * skip compression for a small file range(<=blocksize) that 534 * isn't an inline extent, since it doesn't save disk space at all. 535 */ 536 if (total_compressed <= blocksize && 537 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 538 goto cleanup_and_bail_uncompressed; 539 540 total_compressed = min_t(unsigned long, total_compressed, 541 BTRFS_MAX_UNCOMPRESSED); 542 total_in = 0; 543 ret = 0; 544 545 /* 546 * we do compression for mount -o compress and when the 547 * inode has not been flagged as nocompress. This flag can 548 * change at any time if we discover bad compression ratios. 549 */ 550 if (inode_need_compress(BTRFS_I(inode), start, end)) { 551 WARN_ON(pages); 552 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 553 if (!pages) { 554 /* just bail out to the uncompressed code */ 555 nr_pages = 0; 556 goto cont; 557 } 558 559 if (BTRFS_I(inode)->defrag_compress) 560 compress_type = BTRFS_I(inode)->defrag_compress; 561 else if (BTRFS_I(inode)->prop_compress) 562 compress_type = BTRFS_I(inode)->prop_compress; 563 564 /* 565 * we need to call clear_page_dirty_for_io on each 566 * page in the range. Otherwise applications with the file 567 * mmap'd can wander in and change the page contents while 568 * we are compressing them. 569 * 570 * If the compression fails for any reason, we set the pages 571 * dirty again later on. 572 * 573 * Note that the remaining part is redirtied, the start pointer 574 * has moved, the end is the original one. 575 */ 576 if (!redirty) { 577 extent_range_clear_dirty_for_io(inode, start, end); 578 redirty = 1; 579 } 580 581 /* Compression level is applied here and only here */ 582 ret = btrfs_compress_pages( 583 compress_type | (fs_info->compress_level << 4), 584 inode->i_mapping, start, 585 pages, 586 &nr_pages, 587 &total_in, 588 &total_compressed); 589 590 if (!ret) { 591 unsigned long offset = offset_in_page(total_compressed); 592 struct page *page = pages[nr_pages - 1]; 593 char *kaddr; 594 595 /* zero the tail end of the last page, we might be 596 * sending it down to disk 597 */ 598 if (offset) { 599 kaddr = kmap_atomic(page); 600 memset(kaddr + offset, 0, 601 PAGE_SIZE - offset); 602 kunmap_atomic(kaddr); 603 } 604 will_compress = 1; 605 } 606 } 607 cont: 608 if (start == 0) { 609 /* lets try to make an inline extent */ 610 if (ret || total_in < actual_end) { 611 /* we didn't compress the entire range, try 612 * to make an uncompressed inline extent. 613 */ 614 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 615 0, BTRFS_COMPRESS_NONE, 616 NULL); 617 } else { 618 /* try making a compressed inline extent */ 619 ret = cow_file_range_inline(BTRFS_I(inode), start, end, 620 total_compressed, 621 compress_type, pages); 622 } 623 if (ret <= 0) { 624 unsigned long clear_flags = EXTENT_DELALLOC | 625 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 626 EXTENT_DO_ACCOUNTING; 627 unsigned long page_error_op; 628 629 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 630 631 /* 632 * inline extent creation worked or returned error, 633 * we don't need to create any more async work items. 634 * Unlock and free up our temp pages. 635 * 636 * We use DO_ACCOUNTING here because we need the 637 * delalloc_release_metadata to be done _after_ we drop 638 * our outstanding extent for clearing delalloc for this 639 * range. 640 */ 641 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 642 NULL, 643 clear_flags, 644 PAGE_UNLOCK | 645 PAGE_CLEAR_DIRTY | 646 PAGE_SET_WRITEBACK | 647 page_error_op | 648 PAGE_END_WRITEBACK); 649 650 /* 651 * Ensure we only free the compressed pages if we have 652 * them allocated, as we can still reach here with 653 * inode_need_compress() == false. 654 */ 655 if (pages) { 656 for (i = 0; i < nr_pages; i++) { 657 WARN_ON(pages[i]->mapping); 658 put_page(pages[i]); 659 } 660 kfree(pages); 661 } 662 return 0; 663 } 664 } 665 666 if (will_compress) { 667 /* 668 * we aren't doing an inline extent round the compressed size 669 * up to a block size boundary so the allocator does sane 670 * things 671 */ 672 total_compressed = ALIGN(total_compressed, blocksize); 673 674 /* 675 * one last check to make sure the compression is really a 676 * win, compare the page count read with the blocks on disk, 677 * compression must free at least one sector size 678 */ 679 total_in = ALIGN(total_in, PAGE_SIZE); 680 if (total_compressed + blocksize <= total_in) { 681 compressed_extents++; 682 683 /* 684 * The async work queues will take care of doing actual 685 * allocation on disk for these compressed pages, and 686 * will submit them to the elevator. 687 */ 688 add_async_extent(async_chunk, start, total_in, 689 total_compressed, pages, nr_pages, 690 compress_type); 691 692 if (start + total_in < end) { 693 start += total_in; 694 pages = NULL; 695 cond_resched(); 696 goto again; 697 } 698 return compressed_extents; 699 } 700 } 701 if (pages) { 702 /* 703 * the compression code ran but failed to make things smaller, 704 * free any pages it allocated and our page pointer array 705 */ 706 for (i = 0; i < nr_pages; i++) { 707 WARN_ON(pages[i]->mapping); 708 put_page(pages[i]); 709 } 710 kfree(pages); 711 pages = NULL; 712 total_compressed = 0; 713 nr_pages = 0; 714 715 /* flag the file so we don't compress in the future */ 716 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 717 !(BTRFS_I(inode)->prop_compress)) { 718 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 719 } 720 } 721 cleanup_and_bail_uncompressed: 722 /* 723 * No compression, but we still need to write the pages in the file 724 * we've been given so far. redirty the locked page if it corresponds 725 * to our extent and set things up for the async work queue to run 726 * cow_file_range to do the normal delalloc dance. 727 */ 728 if (async_chunk->locked_page && 729 (page_offset(async_chunk->locked_page) >= start && 730 page_offset(async_chunk->locked_page)) <= end) { 731 __set_page_dirty_nobuffers(async_chunk->locked_page); 732 /* unlocked later on in the async handlers */ 733 } 734 735 if (redirty) 736 extent_range_redirty_for_io(inode, start, end); 737 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 738 BTRFS_COMPRESS_NONE); 739 compressed_extents++; 740 741 return compressed_extents; 742 } 743 744 static void free_async_extent_pages(struct async_extent *async_extent) 745 { 746 int i; 747 748 if (!async_extent->pages) 749 return; 750 751 for (i = 0; i < async_extent->nr_pages; i++) { 752 WARN_ON(async_extent->pages[i]->mapping); 753 put_page(async_extent->pages[i]); 754 } 755 kfree(async_extent->pages); 756 async_extent->nr_pages = 0; 757 async_extent->pages = NULL; 758 } 759 760 /* 761 * phase two of compressed writeback. This is the ordered portion 762 * of the code, which only gets called in the order the work was 763 * queued. We walk all the async extents created by compress_file_range 764 * and send them down to the disk. 765 */ 766 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 767 { 768 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 769 struct btrfs_fs_info *fs_info = inode->root->fs_info; 770 struct async_extent *async_extent; 771 u64 alloc_hint = 0; 772 struct btrfs_key ins; 773 struct extent_map *em; 774 struct btrfs_root *root = inode->root; 775 struct extent_io_tree *io_tree = &inode->io_tree; 776 int ret = 0; 777 778 again: 779 while (!list_empty(&async_chunk->extents)) { 780 async_extent = list_entry(async_chunk->extents.next, 781 struct async_extent, list); 782 list_del(&async_extent->list); 783 784 retry: 785 lock_extent(io_tree, async_extent->start, 786 async_extent->start + async_extent->ram_size - 1); 787 /* did the compression code fall back to uncompressed IO? */ 788 if (!async_extent->pages) { 789 int page_started = 0; 790 unsigned long nr_written = 0; 791 792 /* allocate blocks */ 793 ret = cow_file_range(inode, async_chunk->locked_page, 794 async_extent->start, 795 async_extent->start + 796 async_extent->ram_size - 1, 797 &page_started, &nr_written, 0); 798 799 /* JDM XXX */ 800 801 /* 802 * if page_started, cow_file_range inserted an 803 * inline extent and took care of all the unlocking 804 * and IO for us. Otherwise, we need to submit 805 * all those pages down to the drive. 806 */ 807 if (!page_started && !ret) 808 extent_write_locked_range(&inode->vfs_inode, 809 async_extent->start, 810 async_extent->start + 811 async_extent->ram_size - 1, 812 WB_SYNC_ALL); 813 else if (ret && async_chunk->locked_page) 814 unlock_page(async_chunk->locked_page); 815 kfree(async_extent); 816 cond_resched(); 817 continue; 818 } 819 820 ret = btrfs_reserve_extent(root, async_extent->ram_size, 821 async_extent->compressed_size, 822 async_extent->compressed_size, 823 0, alloc_hint, &ins, 1, 1); 824 if (ret) { 825 free_async_extent_pages(async_extent); 826 827 if (ret == -ENOSPC) { 828 unlock_extent(io_tree, async_extent->start, 829 async_extent->start + 830 async_extent->ram_size - 1); 831 832 /* 833 * we need to redirty the pages if we decide to 834 * fallback to uncompressed IO, otherwise we 835 * will not submit these pages down to lower 836 * layers. 837 */ 838 extent_range_redirty_for_io(&inode->vfs_inode, 839 async_extent->start, 840 async_extent->start + 841 async_extent->ram_size - 1); 842 843 goto retry; 844 } 845 goto out_free; 846 } 847 /* 848 * here we're doing allocation and writeback of the 849 * compressed pages 850 */ 851 em = create_io_em(inode, async_extent->start, 852 async_extent->ram_size, /* len */ 853 async_extent->start, /* orig_start */ 854 ins.objectid, /* block_start */ 855 ins.offset, /* block_len */ 856 ins.offset, /* orig_block_len */ 857 async_extent->ram_size, /* ram_bytes */ 858 async_extent->compress_type, 859 BTRFS_ORDERED_COMPRESSED); 860 if (IS_ERR(em)) 861 /* ret value is not necessary due to void function */ 862 goto out_free_reserve; 863 free_extent_map(em); 864 865 ret = btrfs_add_ordered_extent_compress(inode, 866 async_extent->start, 867 ins.objectid, 868 async_extent->ram_size, 869 ins.offset, 870 BTRFS_ORDERED_COMPRESSED, 871 async_extent->compress_type); 872 if (ret) { 873 btrfs_drop_extent_cache(inode, async_extent->start, 874 async_extent->start + 875 async_extent->ram_size - 1, 0); 876 goto out_free_reserve; 877 } 878 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 879 880 /* 881 * clear dirty, set writeback and unlock the pages. 882 */ 883 extent_clear_unlock_delalloc(inode, async_extent->start, 884 async_extent->start + 885 async_extent->ram_size - 1, 886 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 887 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 888 PAGE_SET_WRITEBACK); 889 if (btrfs_submit_compressed_write(inode, async_extent->start, 890 async_extent->ram_size, 891 ins.objectid, 892 ins.offset, async_extent->pages, 893 async_extent->nr_pages, 894 async_chunk->write_flags, 895 async_chunk->blkcg_css)) { 896 struct page *p = async_extent->pages[0]; 897 const u64 start = async_extent->start; 898 const u64 end = start + async_extent->ram_size - 1; 899 900 p->mapping = inode->vfs_inode.i_mapping; 901 btrfs_writepage_endio_finish_ordered(p, start, end, 0); 902 903 p->mapping = NULL; 904 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 905 PAGE_END_WRITEBACK | 906 PAGE_SET_ERROR); 907 free_async_extent_pages(async_extent); 908 } 909 alloc_hint = ins.objectid + ins.offset; 910 kfree(async_extent); 911 cond_resched(); 912 } 913 return; 914 out_free_reserve: 915 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 916 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 917 out_free: 918 extent_clear_unlock_delalloc(inode, async_extent->start, 919 async_extent->start + 920 async_extent->ram_size - 1, 921 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 922 EXTENT_DELALLOC_NEW | 923 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 924 PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 925 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 926 PAGE_SET_ERROR); 927 free_async_extent_pages(async_extent); 928 kfree(async_extent); 929 goto again; 930 } 931 932 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 933 u64 num_bytes) 934 { 935 struct extent_map_tree *em_tree = &inode->extent_tree; 936 struct extent_map *em; 937 u64 alloc_hint = 0; 938 939 read_lock(&em_tree->lock); 940 em = search_extent_mapping(em_tree, start, num_bytes); 941 if (em) { 942 /* 943 * if block start isn't an actual block number then find the 944 * first block in this inode and use that as a hint. If that 945 * block is also bogus then just don't worry about it. 946 */ 947 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 948 free_extent_map(em); 949 em = search_extent_mapping(em_tree, 0, 0); 950 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 951 alloc_hint = em->block_start; 952 if (em) 953 free_extent_map(em); 954 } else { 955 alloc_hint = em->block_start; 956 free_extent_map(em); 957 } 958 } 959 read_unlock(&em_tree->lock); 960 961 return alloc_hint; 962 } 963 964 /* 965 * when extent_io.c finds a delayed allocation range in the file, 966 * the call backs end up in this code. The basic idea is to 967 * allocate extents on disk for the range, and create ordered data structs 968 * in ram to track those extents. 969 * 970 * locked_page is the page that writepage had locked already. We use 971 * it to make sure we don't do extra locks or unlocks. 972 * 973 * *page_started is set to one if we unlock locked_page and do everything 974 * required to start IO on it. It may be clean and already done with 975 * IO when we return. 976 */ 977 static noinline int cow_file_range(struct btrfs_inode *inode, 978 struct page *locked_page, 979 u64 start, u64 end, int *page_started, 980 unsigned long *nr_written, int unlock) 981 { 982 struct btrfs_root *root = inode->root; 983 struct btrfs_fs_info *fs_info = root->fs_info; 984 u64 alloc_hint = 0; 985 u64 num_bytes; 986 unsigned long ram_size; 987 u64 cur_alloc_size = 0; 988 u64 min_alloc_size; 989 u64 blocksize = fs_info->sectorsize; 990 struct btrfs_key ins; 991 struct extent_map *em; 992 unsigned clear_bits; 993 unsigned long page_ops; 994 bool extent_reserved = false; 995 int ret = 0; 996 997 if (btrfs_is_free_space_inode(inode)) { 998 WARN_ON_ONCE(1); 999 ret = -EINVAL; 1000 goto out_unlock; 1001 } 1002 1003 num_bytes = ALIGN(end - start + 1, blocksize); 1004 num_bytes = max(blocksize, num_bytes); 1005 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1006 1007 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1008 1009 if (start == 0) { 1010 /* lets try to make an inline extent */ 1011 ret = cow_file_range_inline(inode, start, end, 0, 1012 BTRFS_COMPRESS_NONE, NULL); 1013 if (ret == 0) { 1014 /* 1015 * We use DO_ACCOUNTING here because we need the 1016 * delalloc_release_metadata to be run _after_ we drop 1017 * our outstanding extent for clearing delalloc for this 1018 * range. 1019 */ 1020 extent_clear_unlock_delalloc(inode, start, end, NULL, 1021 EXTENT_LOCKED | EXTENT_DELALLOC | 1022 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1023 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1024 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1025 PAGE_END_WRITEBACK); 1026 *nr_written = *nr_written + 1027 (end - start + PAGE_SIZE) / PAGE_SIZE; 1028 *page_started = 1; 1029 goto out; 1030 } else if (ret < 0) { 1031 goto out_unlock; 1032 } 1033 } 1034 1035 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1036 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1037 1038 /* 1039 * Relocation relies on the relocated extents to have exactly the same 1040 * size as the original extents. Normally writeback for relocation data 1041 * extents follows a NOCOW path because relocation preallocates the 1042 * extents. However, due to an operation such as scrub turning a block 1043 * group to RO mode, it may fallback to COW mode, so we must make sure 1044 * an extent allocated during COW has exactly the requested size and can 1045 * not be split into smaller extents, otherwise relocation breaks and 1046 * fails during the stage where it updates the bytenr of file extent 1047 * items. 1048 */ 1049 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1050 min_alloc_size = num_bytes; 1051 else 1052 min_alloc_size = fs_info->sectorsize; 1053 1054 while (num_bytes > 0) { 1055 cur_alloc_size = num_bytes; 1056 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1057 min_alloc_size, 0, alloc_hint, 1058 &ins, 1, 1); 1059 if (ret < 0) 1060 goto out_unlock; 1061 cur_alloc_size = ins.offset; 1062 extent_reserved = true; 1063 1064 ram_size = ins.offset; 1065 em = create_io_em(inode, start, ins.offset, /* len */ 1066 start, /* orig_start */ 1067 ins.objectid, /* block_start */ 1068 ins.offset, /* block_len */ 1069 ins.offset, /* orig_block_len */ 1070 ram_size, /* ram_bytes */ 1071 BTRFS_COMPRESS_NONE, /* compress_type */ 1072 BTRFS_ORDERED_REGULAR /* type */); 1073 if (IS_ERR(em)) { 1074 ret = PTR_ERR(em); 1075 goto out_reserve; 1076 } 1077 free_extent_map(em); 1078 1079 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 1080 ram_size, cur_alloc_size, 0); 1081 if (ret) 1082 goto out_drop_extent_cache; 1083 1084 if (root->root_key.objectid == 1085 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1086 ret = btrfs_reloc_clone_csums(inode, start, 1087 cur_alloc_size); 1088 /* 1089 * Only drop cache here, and process as normal. 1090 * 1091 * We must not allow extent_clear_unlock_delalloc() 1092 * at out_unlock label to free meta of this ordered 1093 * extent, as its meta should be freed by 1094 * btrfs_finish_ordered_io(). 1095 * 1096 * So we must continue until @start is increased to 1097 * skip current ordered extent. 1098 */ 1099 if (ret) 1100 btrfs_drop_extent_cache(inode, start, 1101 start + ram_size - 1, 0); 1102 } 1103 1104 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1105 1106 /* we're not doing compressed IO, don't unlock the first 1107 * page (which the caller expects to stay locked), don't 1108 * clear any dirty bits and don't set any writeback bits 1109 * 1110 * Do set the Private2 bit so we know this page was properly 1111 * setup for writepage 1112 */ 1113 page_ops = unlock ? PAGE_UNLOCK : 0; 1114 page_ops |= PAGE_SET_PRIVATE2; 1115 1116 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1117 locked_page, 1118 EXTENT_LOCKED | EXTENT_DELALLOC, 1119 page_ops); 1120 if (num_bytes < cur_alloc_size) 1121 num_bytes = 0; 1122 else 1123 num_bytes -= cur_alloc_size; 1124 alloc_hint = ins.objectid + ins.offset; 1125 start += cur_alloc_size; 1126 extent_reserved = false; 1127 1128 /* 1129 * btrfs_reloc_clone_csums() error, since start is increased 1130 * extent_clear_unlock_delalloc() at out_unlock label won't 1131 * free metadata of current ordered extent, we're OK to exit. 1132 */ 1133 if (ret) 1134 goto out_unlock; 1135 } 1136 out: 1137 return ret; 1138 1139 out_drop_extent_cache: 1140 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1141 out_reserve: 1142 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1143 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1144 out_unlock: 1145 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1146 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1147 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | 1148 PAGE_END_WRITEBACK; 1149 /* 1150 * If we reserved an extent for our delalloc range (or a subrange) and 1151 * failed to create the respective ordered extent, then it means that 1152 * when we reserved the extent we decremented the extent's size from 1153 * the data space_info's bytes_may_use counter and incremented the 1154 * space_info's bytes_reserved counter by the same amount. We must make 1155 * sure extent_clear_unlock_delalloc() does not try to decrement again 1156 * the data space_info's bytes_may_use counter, therefore we do not pass 1157 * it the flag EXTENT_CLEAR_DATA_RESV. 1158 */ 1159 if (extent_reserved) { 1160 extent_clear_unlock_delalloc(inode, start, 1161 start + cur_alloc_size - 1, 1162 locked_page, 1163 clear_bits, 1164 page_ops); 1165 start += cur_alloc_size; 1166 if (start >= end) 1167 goto out; 1168 } 1169 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1170 clear_bits | EXTENT_CLEAR_DATA_RESV, 1171 page_ops); 1172 goto out; 1173 } 1174 1175 /* 1176 * work queue call back to started compression on a file and pages 1177 */ 1178 static noinline void async_cow_start(struct btrfs_work *work) 1179 { 1180 struct async_chunk *async_chunk; 1181 int compressed_extents; 1182 1183 async_chunk = container_of(work, struct async_chunk, work); 1184 1185 compressed_extents = compress_file_range(async_chunk); 1186 if (compressed_extents == 0) { 1187 btrfs_add_delayed_iput(async_chunk->inode); 1188 async_chunk->inode = NULL; 1189 } 1190 } 1191 1192 /* 1193 * work queue call back to submit previously compressed pages 1194 */ 1195 static noinline void async_cow_submit(struct btrfs_work *work) 1196 { 1197 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1198 work); 1199 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1200 unsigned long nr_pages; 1201 1202 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1203 PAGE_SHIFT; 1204 1205 /* atomic_sub_return implies a barrier */ 1206 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1207 5 * SZ_1M) 1208 cond_wake_up_nomb(&fs_info->async_submit_wait); 1209 1210 /* 1211 * ->inode could be NULL if async_chunk_start has failed to compress, 1212 * in which case we don't have anything to submit, yet we need to 1213 * always adjust ->async_delalloc_pages as its paired with the init 1214 * happening in cow_file_range_async 1215 */ 1216 if (async_chunk->inode) 1217 submit_compressed_extents(async_chunk); 1218 } 1219 1220 static noinline void async_cow_free(struct btrfs_work *work) 1221 { 1222 struct async_chunk *async_chunk; 1223 1224 async_chunk = container_of(work, struct async_chunk, work); 1225 if (async_chunk->inode) 1226 btrfs_add_delayed_iput(async_chunk->inode); 1227 if (async_chunk->blkcg_css) 1228 css_put(async_chunk->blkcg_css); 1229 /* 1230 * Since the pointer to 'pending' is at the beginning of the array of 1231 * async_chunk's, freeing it ensures the whole array has been freed. 1232 */ 1233 if (atomic_dec_and_test(async_chunk->pending)) 1234 kvfree(async_chunk->pending); 1235 } 1236 1237 static int cow_file_range_async(struct btrfs_inode *inode, 1238 struct writeback_control *wbc, 1239 struct page *locked_page, 1240 u64 start, u64 end, int *page_started, 1241 unsigned long *nr_written) 1242 { 1243 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1244 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1245 struct async_cow *ctx; 1246 struct async_chunk *async_chunk; 1247 unsigned long nr_pages; 1248 u64 cur_end; 1249 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1250 int i; 1251 bool should_compress; 1252 unsigned nofs_flag; 1253 const unsigned int write_flags = wbc_to_write_flags(wbc); 1254 1255 unlock_extent(&inode->io_tree, start, end); 1256 1257 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1258 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1259 num_chunks = 1; 1260 should_compress = false; 1261 } else { 1262 should_compress = true; 1263 } 1264 1265 nofs_flag = memalloc_nofs_save(); 1266 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1267 memalloc_nofs_restore(nofs_flag); 1268 1269 if (!ctx) { 1270 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1271 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1272 EXTENT_DO_ACCOUNTING; 1273 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | 1274 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | 1275 PAGE_SET_ERROR; 1276 1277 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1278 clear_bits, page_ops); 1279 return -ENOMEM; 1280 } 1281 1282 async_chunk = ctx->chunks; 1283 atomic_set(&ctx->num_chunks, num_chunks); 1284 1285 for (i = 0; i < num_chunks; i++) { 1286 if (should_compress) 1287 cur_end = min(end, start + SZ_512K - 1); 1288 else 1289 cur_end = end; 1290 1291 /* 1292 * igrab is called higher up in the call chain, take only the 1293 * lightweight reference for the callback lifetime 1294 */ 1295 ihold(&inode->vfs_inode); 1296 async_chunk[i].pending = &ctx->num_chunks; 1297 async_chunk[i].inode = &inode->vfs_inode; 1298 async_chunk[i].start = start; 1299 async_chunk[i].end = cur_end; 1300 async_chunk[i].write_flags = write_flags; 1301 INIT_LIST_HEAD(&async_chunk[i].extents); 1302 1303 /* 1304 * The locked_page comes all the way from writepage and its 1305 * the original page we were actually given. As we spread 1306 * this large delalloc region across multiple async_chunk 1307 * structs, only the first struct needs a pointer to locked_page 1308 * 1309 * This way we don't need racey decisions about who is supposed 1310 * to unlock it. 1311 */ 1312 if (locked_page) { 1313 /* 1314 * Depending on the compressibility, the pages might or 1315 * might not go through async. We want all of them to 1316 * be accounted against wbc once. Let's do it here 1317 * before the paths diverge. wbc accounting is used 1318 * only for foreign writeback detection and doesn't 1319 * need full accuracy. Just account the whole thing 1320 * against the first page. 1321 */ 1322 wbc_account_cgroup_owner(wbc, locked_page, 1323 cur_end - start); 1324 async_chunk[i].locked_page = locked_page; 1325 locked_page = NULL; 1326 } else { 1327 async_chunk[i].locked_page = NULL; 1328 } 1329 1330 if (blkcg_css != blkcg_root_css) { 1331 css_get(blkcg_css); 1332 async_chunk[i].blkcg_css = blkcg_css; 1333 } else { 1334 async_chunk[i].blkcg_css = NULL; 1335 } 1336 1337 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1338 async_cow_submit, async_cow_free); 1339 1340 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1341 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1342 1343 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1344 1345 *nr_written += nr_pages; 1346 start = cur_end + 1; 1347 } 1348 *page_started = 1; 1349 return 0; 1350 } 1351 1352 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1353 u64 bytenr, u64 num_bytes) 1354 { 1355 int ret; 1356 struct btrfs_ordered_sum *sums; 1357 LIST_HEAD(list); 1358 1359 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, 1360 bytenr + num_bytes - 1, &list, 0); 1361 if (ret == 0 && list_empty(&list)) 1362 return 0; 1363 1364 while (!list_empty(&list)) { 1365 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1366 list_del(&sums->list); 1367 kfree(sums); 1368 } 1369 if (ret < 0) 1370 return ret; 1371 return 1; 1372 } 1373 1374 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1375 const u64 start, const u64 end, 1376 int *page_started, unsigned long *nr_written) 1377 { 1378 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1379 const bool is_reloc_ino = (inode->root->root_key.objectid == 1380 BTRFS_DATA_RELOC_TREE_OBJECTID); 1381 const u64 range_bytes = end + 1 - start; 1382 struct extent_io_tree *io_tree = &inode->io_tree; 1383 u64 range_start = start; 1384 u64 count; 1385 1386 /* 1387 * If EXTENT_NORESERVE is set it means that when the buffered write was 1388 * made we had not enough available data space and therefore we did not 1389 * reserve data space for it, since we though we could do NOCOW for the 1390 * respective file range (either there is prealloc extent or the inode 1391 * has the NOCOW bit set). 1392 * 1393 * However when we need to fallback to COW mode (because for example the 1394 * block group for the corresponding extent was turned to RO mode by a 1395 * scrub or relocation) we need to do the following: 1396 * 1397 * 1) We increment the bytes_may_use counter of the data space info. 1398 * If COW succeeds, it allocates a new data extent and after doing 1399 * that it decrements the space info's bytes_may_use counter and 1400 * increments its bytes_reserved counter by the same amount (we do 1401 * this at btrfs_add_reserved_bytes()). So we need to increment the 1402 * bytes_may_use counter to compensate (when space is reserved at 1403 * buffered write time, the bytes_may_use counter is incremented); 1404 * 1405 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1406 * that if the COW path fails for any reason, it decrements (through 1407 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1408 * data space info, which we incremented in the step above. 1409 * 1410 * If we need to fallback to cow and the inode corresponds to a free 1411 * space cache inode or an inode of the data relocation tree, we must 1412 * also increment bytes_may_use of the data space_info for the same 1413 * reason. Space caches and relocated data extents always get a prealloc 1414 * extent for them, however scrub or balance may have set the block 1415 * group that contains that extent to RO mode and therefore force COW 1416 * when starting writeback. 1417 */ 1418 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1419 EXTENT_NORESERVE, 0); 1420 if (count > 0 || is_space_ino || is_reloc_ino) { 1421 u64 bytes = count; 1422 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1423 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1424 1425 if (is_space_ino || is_reloc_ino) 1426 bytes = range_bytes; 1427 1428 spin_lock(&sinfo->lock); 1429 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1430 spin_unlock(&sinfo->lock); 1431 1432 if (count > 0) 1433 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1434 0, 0, NULL); 1435 } 1436 1437 return cow_file_range(inode, locked_page, start, end, page_started, 1438 nr_written, 1); 1439 } 1440 1441 /* 1442 * when nowcow writeback call back. This checks for snapshots or COW copies 1443 * of the extents that exist in the file, and COWs the file as required. 1444 * 1445 * If no cow copies or snapshots exist, we write directly to the existing 1446 * blocks on disk 1447 */ 1448 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1449 struct page *locked_page, 1450 const u64 start, const u64 end, 1451 int *page_started, int force, 1452 unsigned long *nr_written) 1453 { 1454 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1455 struct btrfs_root *root = inode->root; 1456 struct btrfs_path *path; 1457 u64 cow_start = (u64)-1; 1458 u64 cur_offset = start; 1459 int ret; 1460 bool check_prev = true; 1461 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1462 u64 ino = btrfs_ino(inode); 1463 bool nocow = false; 1464 u64 disk_bytenr = 0; 1465 1466 path = btrfs_alloc_path(); 1467 if (!path) { 1468 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1469 EXTENT_LOCKED | EXTENT_DELALLOC | 1470 EXTENT_DO_ACCOUNTING | 1471 EXTENT_DEFRAG, PAGE_UNLOCK | 1472 PAGE_CLEAR_DIRTY | 1473 PAGE_SET_WRITEBACK | 1474 PAGE_END_WRITEBACK); 1475 return -ENOMEM; 1476 } 1477 1478 while (1) { 1479 struct btrfs_key found_key; 1480 struct btrfs_file_extent_item *fi; 1481 struct extent_buffer *leaf; 1482 u64 extent_end; 1483 u64 extent_offset; 1484 u64 num_bytes = 0; 1485 u64 disk_num_bytes; 1486 u64 ram_bytes; 1487 int extent_type; 1488 1489 nocow = false; 1490 1491 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1492 cur_offset, 0); 1493 if (ret < 0) 1494 goto error; 1495 1496 /* 1497 * If there is no extent for our range when doing the initial 1498 * search, then go back to the previous slot as it will be the 1499 * one containing the search offset 1500 */ 1501 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1502 leaf = path->nodes[0]; 1503 btrfs_item_key_to_cpu(leaf, &found_key, 1504 path->slots[0] - 1); 1505 if (found_key.objectid == ino && 1506 found_key.type == BTRFS_EXTENT_DATA_KEY) 1507 path->slots[0]--; 1508 } 1509 check_prev = false; 1510 next_slot: 1511 /* Go to next leaf if we have exhausted the current one */ 1512 leaf = path->nodes[0]; 1513 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1514 ret = btrfs_next_leaf(root, path); 1515 if (ret < 0) { 1516 if (cow_start != (u64)-1) 1517 cur_offset = cow_start; 1518 goto error; 1519 } 1520 if (ret > 0) 1521 break; 1522 leaf = path->nodes[0]; 1523 } 1524 1525 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1526 1527 /* Didn't find anything for our INO */ 1528 if (found_key.objectid > ino) 1529 break; 1530 /* 1531 * Keep searching until we find an EXTENT_ITEM or there are no 1532 * more extents for this inode 1533 */ 1534 if (WARN_ON_ONCE(found_key.objectid < ino) || 1535 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1536 path->slots[0]++; 1537 goto next_slot; 1538 } 1539 1540 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1541 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1542 found_key.offset > end) 1543 break; 1544 1545 /* 1546 * If the found extent starts after requested offset, then 1547 * adjust extent_end to be right before this extent begins 1548 */ 1549 if (found_key.offset > cur_offset) { 1550 extent_end = found_key.offset; 1551 extent_type = 0; 1552 goto out_check; 1553 } 1554 1555 /* 1556 * Found extent which begins before our range and potentially 1557 * intersect it 1558 */ 1559 fi = btrfs_item_ptr(leaf, path->slots[0], 1560 struct btrfs_file_extent_item); 1561 extent_type = btrfs_file_extent_type(leaf, fi); 1562 1563 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1564 if (extent_type == BTRFS_FILE_EXTENT_REG || 1565 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1566 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1567 extent_offset = btrfs_file_extent_offset(leaf, fi); 1568 extent_end = found_key.offset + 1569 btrfs_file_extent_num_bytes(leaf, fi); 1570 disk_num_bytes = 1571 btrfs_file_extent_disk_num_bytes(leaf, fi); 1572 /* 1573 * If the extent we got ends before our current offset, 1574 * skip to the next extent. 1575 */ 1576 if (extent_end <= cur_offset) { 1577 path->slots[0]++; 1578 goto next_slot; 1579 } 1580 /* Skip holes */ 1581 if (disk_bytenr == 0) 1582 goto out_check; 1583 /* Skip compressed/encrypted/encoded extents */ 1584 if (btrfs_file_extent_compression(leaf, fi) || 1585 btrfs_file_extent_encryption(leaf, fi) || 1586 btrfs_file_extent_other_encoding(leaf, fi)) 1587 goto out_check; 1588 /* 1589 * If extent is created before the last volume's snapshot 1590 * this implies the extent is shared, hence we can't do 1591 * nocow. This is the same check as in 1592 * btrfs_cross_ref_exist but without calling 1593 * btrfs_search_slot. 1594 */ 1595 if (!freespace_inode && 1596 btrfs_file_extent_generation(leaf, fi) <= 1597 btrfs_root_last_snapshot(&root->root_item)) 1598 goto out_check; 1599 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1600 goto out_check; 1601 /* If extent is RO, we must COW it */ 1602 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 1603 goto out_check; 1604 ret = btrfs_cross_ref_exist(root, ino, 1605 found_key.offset - 1606 extent_offset, disk_bytenr, false); 1607 if (ret) { 1608 /* 1609 * ret could be -EIO if the above fails to read 1610 * metadata. 1611 */ 1612 if (ret < 0) { 1613 if (cow_start != (u64)-1) 1614 cur_offset = cow_start; 1615 goto error; 1616 } 1617 1618 WARN_ON_ONCE(freespace_inode); 1619 goto out_check; 1620 } 1621 disk_bytenr += extent_offset; 1622 disk_bytenr += cur_offset - found_key.offset; 1623 num_bytes = min(end + 1, extent_end) - cur_offset; 1624 /* 1625 * If there are pending snapshots for this root, we 1626 * fall into common COW way 1627 */ 1628 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1629 goto out_check; 1630 /* 1631 * force cow if csum exists in the range. 1632 * this ensure that csum for a given extent are 1633 * either valid or do not exist. 1634 */ 1635 ret = csum_exist_in_range(fs_info, disk_bytenr, 1636 num_bytes); 1637 if (ret) { 1638 /* 1639 * ret could be -EIO if the above fails to read 1640 * metadata. 1641 */ 1642 if (ret < 0) { 1643 if (cow_start != (u64)-1) 1644 cur_offset = cow_start; 1645 goto error; 1646 } 1647 WARN_ON_ONCE(freespace_inode); 1648 goto out_check; 1649 } 1650 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1651 goto out_check; 1652 nocow = true; 1653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1654 extent_end = found_key.offset + ram_bytes; 1655 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1656 /* Skip extents outside of our requested range */ 1657 if (extent_end <= start) { 1658 path->slots[0]++; 1659 goto next_slot; 1660 } 1661 } else { 1662 /* If this triggers then we have a memory corruption */ 1663 BUG(); 1664 } 1665 out_check: 1666 /* 1667 * If nocow is false then record the beginning of the range 1668 * that needs to be COWed 1669 */ 1670 if (!nocow) { 1671 if (cow_start == (u64)-1) 1672 cow_start = cur_offset; 1673 cur_offset = extent_end; 1674 if (cur_offset > end) 1675 break; 1676 path->slots[0]++; 1677 goto next_slot; 1678 } 1679 1680 btrfs_release_path(path); 1681 1682 /* 1683 * COW range from cow_start to found_key.offset - 1. As the key 1684 * will contain the beginning of the first extent that can be 1685 * NOCOW, following one which needs to be COW'ed 1686 */ 1687 if (cow_start != (u64)-1) { 1688 ret = fallback_to_cow(inode, locked_page, 1689 cow_start, found_key.offset - 1, 1690 page_started, nr_written); 1691 if (ret) 1692 goto error; 1693 cow_start = (u64)-1; 1694 } 1695 1696 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1697 u64 orig_start = found_key.offset - extent_offset; 1698 struct extent_map *em; 1699 1700 em = create_io_em(inode, cur_offset, num_bytes, 1701 orig_start, 1702 disk_bytenr, /* block_start */ 1703 num_bytes, /* block_len */ 1704 disk_num_bytes, /* orig_block_len */ 1705 ram_bytes, BTRFS_COMPRESS_NONE, 1706 BTRFS_ORDERED_PREALLOC); 1707 if (IS_ERR(em)) { 1708 ret = PTR_ERR(em); 1709 goto error; 1710 } 1711 free_extent_map(em); 1712 ret = btrfs_add_ordered_extent(inode, cur_offset, 1713 disk_bytenr, num_bytes, 1714 num_bytes, 1715 BTRFS_ORDERED_PREALLOC); 1716 if (ret) { 1717 btrfs_drop_extent_cache(inode, cur_offset, 1718 cur_offset + num_bytes - 1, 1719 0); 1720 goto error; 1721 } 1722 } else { 1723 ret = btrfs_add_ordered_extent(inode, cur_offset, 1724 disk_bytenr, num_bytes, 1725 num_bytes, 1726 BTRFS_ORDERED_NOCOW); 1727 if (ret) 1728 goto error; 1729 } 1730 1731 if (nocow) 1732 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1733 nocow = false; 1734 1735 if (root->root_key.objectid == 1736 BTRFS_DATA_RELOC_TREE_OBJECTID) 1737 /* 1738 * Error handled later, as we must prevent 1739 * extent_clear_unlock_delalloc() in error handler 1740 * from freeing metadata of created ordered extent. 1741 */ 1742 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1743 num_bytes); 1744 1745 extent_clear_unlock_delalloc(inode, cur_offset, 1746 cur_offset + num_bytes - 1, 1747 locked_page, EXTENT_LOCKED | 1748 EXTENT_DELALLOC | 1749 EXTENT_CLEAR_DATA_RESV, 1750 PAGE_UNLOCK | PAGE_SET_PRIVATE2); 1751 1752 cur_offset = extent_end; 1753 1754 /* 1755 * btrfs_reloc_clone_csums() error, now we're OK to call error 1756 * handler, as metadata for created ordered extent will only 1757 * be freed by btrfs_finish_ordered_io(). 1758 */ 1759 if (ret) 1760 goto error; 1761 if (cur_offset > end) 1762 break; 1763 } 1764 btrfs_release_path(path); 1765 1766 if (cur_offset <= end && cow_start == (u64)-1) 1767 cow_start = cur_offset; 1768 1769 if (cow_start != (u64)-1) { 1770 cur_offset = end; 1771 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1772 page_started, nr_written); 1773 if (ret) 1774 goto error; 1775 } 1776 1777 error: 1778 if (nocow) 1779 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1780 1781 if (ret && cur_offset < end) 1782 extent_clear_unlock_delalloc(inode, cur_offset, end, 1783 locked_page, EXTENT_LOCKED | 1784 EXTENT_DELALLOC | EXTENT_DEFRAG | 1785 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1786 PAGE_CLEAR_DIRTY | 1787 PAGE_SET_WRITEBACK | 1788 PAGE_END_WRITEBACK); 1789 btrfs_free_path(path); 1790 return ret; 1791 } 1792 1793 static inline int need_force_cow(struct btrfs_inode *inode, u64 start, u64 end) 1794 { 1795 1796 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1797 !(inode->flags & BTRFS_INODE_PREALLOC)) 1798 return 0; 1799 1800 /* 1801 * @defrag_bytes is a hint value, no spinlock held here, 1802 * if is not zero, it means the file is defragging. 1803 * Force cow if given extent needs to be defragged. 1804 */ 1805 if (inode->defrag_bytes && 1806 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 0, NULL)) 1807 return 1; 1808 1809 return 0; 1810 } 1811 1812 /* 1813 * Function to process delayed allocation (create CoW) for ranges which are 1814 * being touched for the first time. 1815 */ 1816 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1817 u64 start, u64 end, int *page_started, unsigned long *nr_written, 1818 struct writeback_control *wbc) 1819 { 1820 int ret; 1821 int force_cow = need_force_cow(inode, start, end); 1822 1823 if (inode->flags & BTRFS_INODE_NODATACOW && !force_cow) { 1824 ret = run_delalloc_nocow(inode, locked_page, start, end, 1825 page_started, 1, nr_written); 1826 } else if (inode->flags & BTRFS_INODE_PREALLOC && !force_cow) { 1827 ret = run_delalloc_nocow(inode, locked_page, start, end, 1828 page_started, 0, nr_written); 1829 } else if (!inode_can_compress(inode) || 1830 !inode_need_compress(inode, start, end)) { 1831 ret = cow_file_range(inode, locked_page, start, end, 1832 page_started, nr_written, 1); 1833 } else { 1834 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1835 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 1836 page_started, nr_written); 1837 } 1838 if (ret) 1839 btrfs_cleanup_ordered_extents(inode, locked_page, start, 1840 end - start + 1); 1841 return ret; 1842 } 1843 1844 void btrfs_split_delalloc_extent(struct inode *inode, 1845 struct extent_state *orig, u64 split) 1846 { 1847 u64 size; 1848 1849 /* not delalloc, ignore it */ 1850 if (!(orig->state & EXTENT_DELALLOC)) 1851 return; 1852 1853 size = orig->end - orig->start + 1; 1854 if (size > BTRFS_MAX_EXTENT_SIZE) { 1855 u32 num_extents; 1856 u64 new_size; 1857 1858 /* 1859 * See the explanation in btrfs_merge_delalloc_extent, the same 1860 * applies here, just in reverse. 1861 */ 1862 new_size = orig->end - split + 1; 1863 num_extents = count_max_extents(new_size); 1864 new_size = split - orig->start; 1865 num_extents += count_max_extents(new_size); 1866 if (count_max_extents(size) >= num_extents) 1867 return; 1868 } 1869 1870 spin_lock(&BTRFS_I(inode)->lock); 1871 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1872 spin_unlock(&BTRFS_I(inode)->lock); 1873 } 1874 1875 /* 1876 * Handle merged delayed allocation extents so we can keep track of new extents 1877 * that are just merged onto old extents, such as when we are doing sequential 1878 * writes, so we can properly account for the metadata space we'll need. 1879 */ 1880 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 1881 struct extent_state *other) 1882 { 1883 u64 new_size, old_size; 1884 u32 num_extents; 1885 1886 /* not delalloc, ignore it */ 1887 if (!(other->state & EXTENT_DELALLOC)) 1888 return; 1889 1890 if (new->start > other->start) 1891 new_size = new->end - other->start + 1; 1892 else 1893 new_size = other->end - new->start + 1; 1894 1895 /* we're not bigger than the max, unreserve the space and go */ 1896 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 1897 spin_lock(&BTRFS_I(inode)->lock); 1898 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1899 spin_unlock(&BTRFS_I(inode)->lock); 1900 return; 1901 } 1902 1903 /* 1904 * We have to add up either side to figure out how many extents were 1905 * accounted for before we merged into one big extent. If the number of 1906 * extents we accounted for is <= the amount we need for the new range 1907 * then we can return, otherwise drop. Think of it like this 1908 * 1909 * [ 4k][MAX_SIZE] 1910 * 1911 * So we've grown the extent by a MAX_SIZE extent, this would mean we 1912 * need 2 outstanding extents, on one side we have 1 and the other side 1913 * we have 1 so they are == and we can return. But in this case 1914 * 1915 * [MAX_SIZE+4k][MAX_SIZE+4k] 1916 * 1917 * Each range on their own accounts for 2 extents, but merged together 1918 * they are only 3 extents worth of accounting, so we need to drop in 1919 * this case. 1920 */ 1921 old_size = other->end - other->start + 1; 1922 num_extents = count_max_extents(old_size); 1923 old_size = new->end - new->start + 1; 1924 num_extents += count_max_extents(old_size); 1925 if (count_max_extents(new_size) >= num_extents) 1926 return; 1927 1928 spin_lock(&BTRFS_I(inode)->lock); 1929 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 1930 spin_unlock(&BTRFS_I(inode)->lock); 1931 } 1932 1933 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 1934 struct inode *inode) 1935 { 1936 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1937 1938 spin_lock(&root->delalloc_lock); 1939 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1940 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1941 &root->delalloc_inodes); 1942 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1943 &BTRFS_I(inode)->runtime_flags); 1944 root->nr_delalloc_inodes++; 1945 if (root->nr_delalloc_inodes == 1) { 1946 spin_lock(&fs_info->delalloc_root_lock); 1947 BUG_ON(!list_empty(&root->delalloc_root)); 1948 list_add_tail(&root->delalloc_root, 1949 &fs_info->delalloc_roots); 1950 spin_unlock(&fs_info->delalloc_root_lock); 1951 } 1952 } 1953 spin_unlock(&root->delalloc_lock); 1954 } 1955 1956 1957 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 1958 struct btrfs_inode *inode) 1959 { 1960 struct btrfs_fs_info *fs_info = root->fs_info; 1961 1962 if (!list_empty(&inode->delalloc_inodes)) { 1963 list_del_init(&inode->delalloc_inodes); 1964 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 1965 &inode->runtime_flags); 1966 root->nr_delalloc_inodes--; 1967 if (!root->nr_delalloc_inodes) { 1968 ASSERT(list_empty(&root->delalloc_inodes)); 1969 spin_lock(&fs_info->delalloc_root_lock); 1970 BUG_ON(list_empty(&root->delalloc_root)); 1971 list_del_init(&root->delalloc_root); 1972 spin_unlock(&fs_info->delalloc_root_lock); 1973 } 1974 } 1975 } 1976 1977 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 1978 struct btrfs_inode *inode) 1979 { 1980 spin_lock(&root->delalloc_lock); 1981 __btrfs_del_delalloc_inode(root, inode); 1982 spin_unlock(&root->delalloc_lock); 1983 } 1984 1985 /* 1986 * Properly track delayed allocation bytes in the inode and to maintain the 1987 * list of inodes that have pending delalloc work to be done. 1988 */ 1989 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 1990 unsigned *bits) 1991 { 1992 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1993 1994 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 1995 WARN_ON(1); 1996 /* 1997 * set_bit and clear bit hooks normally require _irqsave/restore 1998 * but in this case, we are only testing for the DELALLOC 1999 * bit, which is only set or cleared with irqs on 2000 */ 2001 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2002 struct btrfs_root *root = BTRFS_I(inode)->root; 2003 u64 len = state->end + 1 - state->start; 2004 u32 num_extents = count_max_extents(len); 2005 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2006 2007 spin_lock(&BTRFS_I(inode)->lock); 2008 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2009 spin_unlock(&BTRFS_I(inode)->lock); 2010 2011 /* For sanity tests */ 2012 if (btrfs_is_testing(fs_info)) 2013 return; 2014 2015 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2016 fs_info->delalloc_batch); 2017 spin_lock(&BTRFS_I(inode)->lock); 2018 BTRFS_I(inode)->delalloc_bytes += len; 2019 if (*bits & EXTENT_DEFRAG) 2020 BTRFS_I(inode)->defrag_bytes += len; 2021 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2022 &BTRFS_I(inode)->runtime_flags)) 2023 btrfs_add_delalloc_inodes(root, inode); 2024 spin_unlock(&BTRFS_I(inode)->lock); 2025 } 2026 2027 if (!(state->state & EXTENT_DELALLOC_NEW) && 2028 (*bits & EXTENT_DELALLOC_NEW)) { 2029 spin_lock(&BTRFS_I(inode)->lock); 2030 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2031 state->start; 2032 spin_unlock(&BTRFS_I(inode)->lock); 2033 } 2034 } 2035 2036 /* 2037 * Once a range is no longer delalloc this function ensures that proper 2038 * accounting happens. 2039 */ 2040 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2041 struct extent_state *state, unsigned *bits) 2042 { 2043 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2044 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2045 u64 len = state->end + 1 - state->start; 2046 u32 num_extents = count_max_extents(len); 2047 2048 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2049 spin_lock(&inode->lock); 2050 inode->defrag_bytes -= len; 2051 spin_unlock(&inode->lock); 2052 } 2053 2054 /* 2055 * set_bit and clear bit hooks normally require _irqsave/restore 2056 * but in this case, we are only testing for the DELALLOC 2057 * bit, which is only set or cleared with irqs on 2058 */ 2059 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2060 struct btrfs_root *root = inode->root; 2061 bool do_list = !btrfs_is_free_space_inode(inode); 2062 2063 spin_lock(&inode->lock); 2064 btrfs_mod_outstanding_extents(inode, -num_extents); 2065 spin_unlock(&inode->lock); 2066 2067 /* 2068 * We don't reserve metadata space for space cache inodes so we 2069 * don't need to call delalloc_release_metadata if there is an 2070 * error. 2071 */ 2072 if (*bits & EXTENT_CLEAR_META_RESV && 2073 root != fs_info->tree_root) 2074 btrfs_delalloc_release_metadata(inode, len, false); 2075 2076 /* For sanity tests. */ 2077 if (btrfs_is_testing(fs_info)) 2078 return; 2079 2080 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && 2081 do_list && !(state->state & EXTENT_NORESERVE) && 2082 (*bits & EXTENT_CLEAR_DATA_RESV)) 2083 btrfs_free_reserved_data_space_noquota(fs_info, len); 2084 2085 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2086 fs_info->delalloc_batch); 2087 spin_lock(&inode->lock); 2088 inode->delalloc_bytes -= len; 2089 if (do_list && inode->delalloc_bytes == 0 && 2090 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2091 &inode->runtime_flags)) 2092 btrfs_del_delalloc_inode(root, inode); 2093 spin_unlock(&inode->lock); 2094 } 2095 2096 if ((state->state & EXTENT_DELALLOC_NEW) && 2097 (*bits & EXTENT_DELALLOC_NEW)) { 2098 spin_lock(&inode->lock); 2099 ASSERT(inode->new_delalloc_bytes >= len); 2100 inode->new_delalloc_bytes -= len; 2101 spin_unlock(&inode->lock); 2102 } 2103 } 2104 2105 /* 2106 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit 2107 * in a chunk's stripe. This function ensures that bios do not span a 2108 * stripe/chunk 2109 * 2110 * @page - The page we are about to add to the bio 2111 * @size - size we want to add to the bio 2112 * @bio - bio we want to ensure is smaller than a stripe 2113 * @bio_flags - flags of the bio 2114 * 2115 * return 1 if page cannot be added to the bio 2116 * return 0 if page can be added to the bio 2117 * return error otherwise 2118 */ 2119 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 2120 unsigned long bio_flags) 2121 { 2122 struct inode *inode = page->mapping->host; 2123 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2124 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 2125 u64 length = 0; 2126 u64 map_length; 2127 int ret; 2128 struct btrfs_io_geometry geom; 2129 2130 if (bio_flags & EXTENT_BIO_COMPRESSED) 2131 return 0; 2132 2133 length = bio->bi_iter.bi_size; 2134 map_length = length; 2135 ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length, 2136 &geom); 2137 if (ret < 0) 2138 return ret; 2139 2140 if (geom.len < length + size) 2141 return 1; 2142 return 0; 2143 } 2144 2145 /* 2146 * in order to insert checksums into the metadata in large chunks, 2147 * we wait until bio submission time. All the pages in the bio are 2148 * checksummed and sums are attached onto the ordered extent record. 2149 * 2150 * At IO completion time the cums attached on the ordered extent record 2151 * are inserted into the btree 2152 */ 2153 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, 2154 u64 bio_offset) 2155 { 2156 struct inode *inode = private_data; 2157 2158 return btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2159 } 2160 2161 /* 2162 * extent_io.c submission hook. This does the right thing for csum calculation 2163 * on write, or reading the csums from the tree before a read. 2164 * 2165 * Rules about async/sync submit, 2166 * a) read: sync submit 2167 * 2168 * b) write without checksum: sync submit 2169 * 2170 * c) write with checksum: 2171 * c-1) if bio is issued by fsync: sync submit 2172 * (sync_writers != 0) 2173 * 2174 * c-2) if root is reloc root: sync submit 2175 * (only in case of buffered IO) 2176 * 2177 * c-3) otherwise: async submit 2178 */ 2179 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2180 int mirror_num, unsigned long bio_flags) 2181 2182 { 2183 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2184 struct btrfs_root *root = BTRFS_I(inode)->root; 2185 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2186 blk_status_t ret = 0; 2187 int skip_sum; 2188 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2189 2190 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 2191 2192 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2193 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2194 2195 if (bio_op(bio) != REQ_OP_WRITE) { 2196 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2197 if (ret) 2198 goto out; 2199 2200 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2201 ret = btrfs_submit_compressed_read(inode, bio, 2202 mirror_num, 2203 bio_flags); 2204 goto out; 2205 } else if (!skip_sum) { 2206 ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL); 2207 if (ret) 2208 goto out; 2209 } 2210 goto mapit; 2211 } else if (async && !skip_sum) { 2212 /* csum items have already been cloned */ 2213 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 2214 goto mapit; 2215 /* we're doing a write, do the async checksumming */ 2216 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, 2217 0, inode, btrfs_submit_bio_start); 2218 goto out; 2219 } else if (!skip_sum) { 2220 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, 0, 0); 2221 if (ret) 2222 goto out; 2223 } 2224 2225 mapit: 2226 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2227 2228 out: 2229 if (ret) { 2230 bio->bi_status = ret; 2231 bio_endio(bio); 2232 } 2233 return ret; 2234 } 2235 2236 /* 2237 * given a list of ordered sums record them in the inode. This happens 2238 * at IO completion time based on sums calculated at bio submission time. 2239 */ 2240 static int add_pending_csums(struct btrfs_trans_handle *trans, 2241 struct list_head *list) 2242 { 2243 struct btrfs_ordered_sum *sum; 2244 int ret; 2245 2246 list_for_each_entry(sum, list, list) { 2247 trans->adding_csums = true; 2248 ret = btrfs_csum_file_blocks(trans, trans->fs_info->csum_root, sum); 2249 trans->adding_csums = false; 2250 if (ret) 2251 return ret; 2252 } 2253 return 0; 2254 } 2255 2256 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2257 unsigned int extra_bits, 2258 struct extent_state **cached_state) 2259 { 2260 WARN_ON(PAGE_ALIGNED(end)); 2261 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2262 cached_state); 2263 } 2264 2265 /* see btrfs_writepage_start_hook for details on why this is required */ 2266 struct btrfs_writepage_fixup { 2267 struct page *page; 2268 struct inode *inode; 2269 struct btrfs_work work; 2270 }; 2271 2272 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2273 { 2274 struct btrfs_writepage_fixup *fixup; 2275 struct btrfs_ordered_extent *ordered; 2276 struct extent_state *cached_state = NULL; 2277 struct extent_changeset *data_reserved = NULL; 2278 struct page *page; 2279 struct btrfs_inode *inode; 2280 u64 page_start; 2281 u64 page_end; 2282 int ret = 0; 2283 bool free_delalloc_space = true; 2284 2285 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2286 page = fixup->page; 2287 inode = BTRFS_I(fixup->inode); 2288 page_start = page_offset(page); 2289 page_end = page_offset(page) + PAGE_SIZE - 1; 2290 2291 /* 2292 * This is similar to page_mkwrite, we need to reserve the space before 2293 * we take the page lock. 2294 */ 2295 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2296 PAGE_SIZE); 2297 again: 2298 lock_page(page); 2299 2300 /* 2301 * Before we queued this fixup, we took a reference on the page. 2302 * page->mapping may go NULL, but it shouldn't be moved to a different 2303 * address space. 2304 */ 2305 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2306 /* 2307 * Unfortunately this is a little tricky, either 2308 * 2309 * 1) We got here and our page had already been dealt with and 2310 * we reserved our space, thus ret == 0, so we need to just 2311 * drop our space reservation and bail. This can happen the 2312 * first time we come into the fixup worker, or could happen 2313 * while waiting for the ordered extent. 2314 * 2) Our page was already dealt with, but we happened to get an 2315 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2316 * this case we obviously don't have anything to release, but 2317 * because the page was already dealt with we don't want to 2318 * mark the page with an error, so make sure we're resetting 2319 * ret to 0. This is why we have this check _before_ the ret 2320 * check, because we do not want to have a surprise ENOSPC 2321 * when the page was already properly dealt with. 2322 */ 2323 if (!ret) { 2324 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2325 btrfs_delalloc_release_space(inode, data_reserved, 2326 page_start, PAGE_SIZE, 2327 true); 2328 } 2329 ret = 0; 2330 goto out_page; 2331 } 2332 2333 /* 2334 * We can't mess with the page state unless it is locked, so now that 2335 * it is locked bail if we failed to make our space reservation. 2336 */ 2337 if (ret) 2338 goto out_page; 2339 2340 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2341 2342 /* already ordered? We're done */ 2343 if (PagePrivate2(page)) 2344 goto out_reserved; 2345 2346 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2347 if (ordered) { 2348 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2349 &cached_state); 2350 unlock_page(page); 2351 btrfs_start_ordered_extent(ordered, 1); 2352 btrfs_put_ordered_extent(ordered); 2353 goto again; 2354 } 2355 2356 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2357 &cached_state); 2358 if (ret) 2359 goto out_reserved; 2360 2361 /* 2362 * Everything went as planned, we're now the owner of a dirty page with 2363 * delayed allocation bits set and space reserved for our COW 2364 * destination. 2365 * 2366 * The page was dirty when we started, nothing should have cleaned it. 2367 */ 2368 BUG_ON(!PageDirty(page)); 2369 free_delalloc_space = false; 2370 out_reserved: 2371 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2372 if (free_delalloc_space) 2373 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2374 PAGE_SIZE, true); 2375 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2376 &cached_state); 2377 out_page: 2378 if (ret) { 2379 /* 2380 * We hit ENOSPC or other errors. Update the mapping and page 2381 * to reflect the errors and clean the page. 2382 */ 2383 mapping_set_error(page->mapping, ret); 2384 end_extent_writepage(page, ret, page_start, page_end); 2385 clear_page_dirty_for_io(page); 2386 SetPageError(page); 2387 } 2388 ClearPageChecked(page); 2389 unlock_page(page); 2390 put_page(page); 2391 kfree(fixup); 2392 extent_changeset_free(data_reserved); 2393 /* 2394 * As a precaution, do a delayed iput in case it would be the last iput 2395 * that could need flushing space. Recursing back to fixup worker would 2396 * deadlock. 2397 */ 2398 btrfs_add_delayed_iput(&inode->vfs_inode); 2399 } 2400 2401 /* 2402 * There are a few paths in the higher layers of the kernel that directly 2403 * set the page dirty bit without asking the filesystem if it is a 2404 * good idea. This causes problems because we want to make sure COW 2405 * properly happens and the data=ordered rules are followed. 2406 * 2407 * In our case any range that doesn't have the ORDERED bit set 2408 * hasn't been properly setup for IO. We kick off an async process 2409 * to fix it up. The async helper will wait for ordered extents, set 2410 * the delalloc bit and make it safe to write the page. 2411 */ 2412 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end) 2413 { 2414 struct inode *inode = page->mapping->host; 2415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2416 struct btrfs_writepage_fixup *fixup; 2417 2418 /* this page is properly in the ordered list */ 2419 if (TestClearPagePrivate2(page)) 2420 return 0; 2421 2422 /* 2423 * PageChecked is set below when we create a fixup worker for this page, 2424 * don't try to create another one if we're already PageChecked() 2425 * 2426 * The extent_io writepage code will redirty the page if we send back 2427 * EAGAIN. 2428 */ 2429 if (PageChecked(page)) 2430 return -EAGAIN; 2431 2432 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2433 if (!fixup) 2434 return -EAGAIN; 2435 2436 /* 2437 * We are already holding a reference to this inode from 2438 * write_cache_pages. We need to hold it because the space reservation 2439 * takes place outside of the page lock, and we can't trust 2440 * page->mapping outside of the page lock. 2441 */ 2442 ihold(inode); 2443 SetPageChecked(page); 2444 get_page(page); 2445 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2446 fixup->page = page; 2447 fixup->inode = inode; 2448 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2449 2450 return -EAGAIN; 2451 } 2452 2453 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2454 struct btrfs_inode *inode, u64 file_pos, 2455 struct btrfs_file_extent_item *stack_fi, 2456 u64 qgroup_reserved) 2457 { 2458 struct btrfs_root *root = inode->root; 2459 struct btrfs_path *path; 2460 struct extent_buffer *leaf; 2461 struct btrfs_key ins; 2462 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2463 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2464 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2465 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2466 int extent_inserted = 0; 2467 int ret; 2468 2469 path = btrfs_alloc_path(); 2470 if (!path) 2471 return -ENOMEM; 2472 2473 /* 2474 * we may be replacing one extent in the tree with another. 2475 * The new extent is pinned in the extent map, and we don't want 2476 * to drop it from the cache until it is completely in the btree. 2477 * 2478 * So, tell btrfs_drop_extents to leave this extent in the cache. 2479 * the caller is expected to unpin it and allow it to be merged 2480 * with the others. 2481 */ 2482 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, 2483 file_pos + num_bytes, NULL, 0, 2484 1, sizeof(*stack_fi), &extent_inserted); 2485 if (ret) 2486 goto out; 2487 2488 if (!extent_inserted) { 2489 ins.objectid = btrfs_ino(inode); 2490 ins.offset = file_pos; 2491 ins.type = BTRFS_EXTENT_DATA_KEY; 2492 2493 path->leave_spinning = 1; 2494 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2495 sizeof(*stack_fi)); 2496 if (ret) 2497 goto out; 2498 } 2499 leaf = path->nodes[0]; 2500 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2501 write_extent_buffer(leaf, stack_fi, 2502 btrfs_item_ptr_offset(leaf, path->slots[0]), 2503 sizeof(struct btrfs_file_extent_item)); 2504 2505 btrfs_mark_buffer_dirty(leaf); 2506 btrfs_release_path(path); 2507 2508 inode_add_bytes(&inode->vfs_inode, num_bytes); 2509 2510 ins.objectid = disk_bytenr; 2511 ins.offset = disk_num_bytes; 2512 ins.type = BTRFS_EXTENT_ITEM_KEY; 2513 2514 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2515 if (ret) 2516 goto out; 2517 2518 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2519 file_pos, qgroup_reserved, &ins); 2520 out: 2521 btrfs_free_path(path); 2522 2523 return ret; 2524 } 2525 2526 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2527 u64 start, u64 len) 2528 { 2529 struct btrfs_block_group *cache; 2530 2531 cache = btrfs_lookup_block_group(fs_info, start); 2532 ASSERT(cache); 2533 2534 spin_lock(&cache->lock); 2535 cache->delalloc_bytes -= len; 2536 spin_unlock(&cache->lock); 2537 2538 btrfs_put_block_group(cache); 2539 } 2540 2541 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2542 struct btrfs_ordered_extent *oe) 2543 { 2544 struct btrfs_file_extent_item stack_fi; 2545 u64 logical_len; 2546 2547 memset(&stack_fi, 0, sizeof(stack_fi)); 2548 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2549 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2550 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2551 oe->disk_num_bytes); 2552 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2553 logical_len = oe->truncated_len; 2554 else 2555 logical_len = oe->num_bytes; 2556 btrfs_set_stack_file_extent_num_bytes(&stack_fi, logical_len); 2557 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, logical_len); 2558 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 2559 /* Encryption and other encoding is reserved and all 0 */ 2560 2561 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 2562 oe->file_offset, &stack_fi, 2563 oe->qgroup_rsv); 2564 } 2565 2566 /* 2567 * As ordered data IO finishes, this gets called so we can finish 2568 * an ordered extent if the range of bytes in the file it covers are 2569 * fully written. 2570 */ 2571 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 2572 { 2573 struct inode *inode = ordered_extent->inode; 2574 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2575 struct btrfs_root *root = BTRFS_I(inode)->root; 2576 struct btrfs_trans_handle *trans = NULL; 2577 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2578 struct extent_state *cached_state = NULL; 2579 u64 start, end; 2580 int compress_type = 0; 2581 int ret = 0; 2582 u64 logical_len = ordered_extent->num_bytes; 2583 bool freespace_inode; 2584 bool truncated = false; 2585 bool range_locked = false; 2586 bool clear_new_delalloc_bytes = false; 2587 bool clear_reserved_extent = true; 2588 unsigned int clear_bits; 2589 2590 start = ordered_extent->file_offset; 2591 end = start + ordered_extent->num_bytes - 1; 2592 2593 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2594 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 2595 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) 2596 clear_new_delalloc_bytes = true; 2597 2598 freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode)); 2599 2600 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 2601 ret = -EIO; 2602 goto out; 2603 } 2604 2605 btrfs_free_io_failure_record(BTRFS_I(inode), start, end); 2606 2607 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 2608 truncated = true; 2609 logical_len = ordered_extent->truncated_len; 2610 /* Truncated the entire extent, don't bother adding */ 2611 if (!logical_len) 2612 goto out; 2613 } 2614 2615 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 2616 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 2617 2618 btrfs_inode_safe_disk_i_size_write(inode, 0); 2619 if (freespace_inode) 2620 trans = btrfs_join_transaction_spacecache(root); 2621 else 2622 trans = btrfs_join_transaction(root); 2623 if (IS_ERR(trans)) { 2624 ret = PTR_ERR(trans); 2625 trans = NULL; 2626 goto out; 2627 } 2628 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2629 ret = btrfs_update_inode_fallback(trans, root, inode); 2630 if (ret) /* -ENOMEM or corruption */ 2631 btrfs_abort_transaction(trans, ret); 2632 goto out; 2633 } 2634 2635 range_locked = true; 2636 lock_extent_bits(io_tree, start, end, &cached_state); 2637 2638 if (freespace_inode) 2639 trans = btrfs_join_transaction_spacecache(root); 2640 else 2641 trans = btrfs_join_transaction(root); 2642 if (IS_ERR(trans)) { 2643 ret = PTR_ERR(trans); 2644 trans = NULL; 2645 goto out; 2646 } 2647 2648 trans->block_rsv = &BTRFS_I(inode)->block_rsv; 2649 2650 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 2651 compress_type = ordered_extent->compress_type; 2652 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2653 BUG_ON(compress_type); 2654 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), 2655 ordered_extent->file_offset, 2656 ordered_extent->file_offset + 2657 logical_len); 2658 } else { 2659 BUG_ON(root == fs_info->tree_root); 2660 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 2661 if (!ret) { 2662 clear_reserved_extent = false; 2663 btrfs_release_delalloc_bytes(fs_info, 2664 ordered_extent->disk_bytenr, 2665 ordered_extent->disk_num_bytes); 2666 } 2667 } 2668 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 2669 ordered_extent->file_offset, 2670 ordered_extent->num_bytes, trans->transid); 2671 if (ret < 0) { 2672 btrfs_abort_transaction(trans, ret); 2673 goto out; 2674 } 2675 2676 ret = add_pending_csums(trans, &ordered_extent->list); 2677 if (ret) { 2678 btrfs_abort_transaction(trans, ret); 2679 goto out; 2680 } 2681 2682 btrfs_inode_safe_disk_i_size_write(inode, 0); 2683 ret = btrfs_update_inode_fallback(trans, root, inode); 2684 if (ret) { /* -ENOMEM or corruption */ 2685 btrfs_abort_transaction(trans, ret); 2686 goto out; 2687 } 2688 ret = 0; 2689 out: 2690 clear_bits = EXTENT_DEFRAG; 2691 if (range_locked) 2692 clear_bits |= EXTENT_LOCKED; 2693 if (clear_new_delalloc_bytes) 2694 clear_bits |= EXTENT_DELALLOC_NEW; 2695 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 2696 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 2697 &cached_state); 2698 2699 if (trans) 2700 btrfs_end_transaction(trans); 2701 2702 if (ret || truncated) { 2703 u64 unwritten_start = start; 2704 2705 if (truncated) 2706 unwritten_start += logical_len; 2707 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 2708 2709 /* Drop the cache for the part of the extent we didn't write. */ 2710 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0); 2711 2712 /* 2713 * If the ordered extent had an IOERR or something else went 2714 * wrong we need to return the space for this ordered extent 2715 * back to the allocator. We only free the extent in the 2716 * truncated case if we didn't write out the extent at all. 2717 * 2718 * If we made it past insert_reserved_file_extent before we 2719 * errored out then we don't need to do this as the accounting 2720 * has already been done. 2721 */ 2722 if ((ret || !logical_len) && 2723 clear_reserved_extent && 2724 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 2725 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 2726 /* 2727 * Discard the range before returning it back to the 2728 * free space pool 2729 */ 2730 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 2731 btrfs_discard_extent(fs_info, 2732 ordered_extent->disk_bytenr, 2733 ordered_extent->disk_num_bytes, 2734 NULL); 2735 btrfs_free_reserved_extent(fs_info, 2736 ordered_extent->disk_bytenr, 2737 ordered_extent->disk_num_bytes, 1); 2738 } 2739 } 2740 2741 /* 2742 * This needs to be done to make sure anybody waiting knows we are done 2743 * updating everything for this ordered extent. 2744 */ 2745 btrfs_remove_ordered_extent(BTRFS_I(inode), ordered_extent); 2746 2747 /* once for us */ 2748 btrfs_put_ordered_extent(ordered_extent); 2749 /* once for the tree */ 2750 btrfs_put_ordered_extent(ordered_extent); 2751 2752 return ret; 2753 } 2754 2755 static void finish_ordered_fn(struct btrfs_work *work) 2756 { 2757 struct btrfs_ordered_extent *ordered_extent; 2758 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 2759 btrfs_finish_ordered_io(ordered_extent); 2760 } 2761 2762 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 2763 u64 end, int uptodate) 2764 { 2765 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 2766 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2767 struct btrfs_ordered_extent *ordered_extent = NULL; 2768 struct btrfs_workqueue *wq; 2769 2770 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 2771 2772 ClearPagePrivate2(page); 2773 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 2774 end - start + 1, uptodate)) 2775 return; 2776 2777 if (btrfs_is_free_space_inode(inode)) 2778 wq = fs_info->endio_freespace_worker; 2779 else 2780 wq = fs_info->endio_write_workers; 2781 2782 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL); 2783 btrfs_queue_work(wq, &ordered_extent->work); 2784 } 2785 2786 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio, 2787 int icsum, struct page *page, int pgoff, u64 start, 2788 size_t len) 2789 { 2790 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2791 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2792 char *kaddr; 2793 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2794 u8 *csum_expected; 2795 u8 csum[BTRFS_CSUM_SIZE]; 2796 2797 csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size; 2798 2799 kaddr = kmap_atomic(page); 2800 shash->tfm = fs_info->csum_shash; 2801 2802 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 2803 2804 if (memcmp(csum, csum_expected, csum_size)) 2805 goto zeroit; 2806 2807 kunmap_atomic(kaddr); 2808 return 0; 2809 zeroit: 2810 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 2811 io_bio->mirror_num); 2812 if (io_bio->device) 2813 btrfs_dev_stat_inc_and_print(io_bio->device, 2814 BTRFS_DEV_STAT_CORRUPTION_ERRS); 2815 memset(kaddr + pgoff, 1, len); 2816 flush_dcache_page(page); 2817 kunmap_atomic(kaddr); 2818 return -EIO; 2819 } 2820 2821 /* 2822 * when reads are done, we need to check csums to verify the data is correct 2823 * if there's a match, we allow the bio to finish. If not, the code in 2824 * extent_io.c will try to find good copies for us. 2825 */ 2826 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u64 phy_offset, 2827 struct page *page, u64 start, u64 end, int mirror) 2828 { 2829 size_t offset = start - page_offset(page); 2830 struct inode *inode = page->mapping->host; 2831 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 2832 struct btrfs_root *root = BTRFS_I(inode)->root; 2833 2834 if (PageChecked(page)) { 2835 ClearPageChecked(page); 2836 return 0; 2837 } 2838 2839 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 2840 return 0; 2841 2842 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 2843 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 2844 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); 2845 return 0; 2846 } 2847 2848 phy_offset >>= inode->i_sb->s_blocksize_bits; 2849 return check_data_csum(inode, io_bio, phy_offset, page, offset, start, 2850 (size_t)(end - start + 1)); 2851 } 2852 2853 /* 2854 * btrfs_add_delayed_iput - perform a delayed iput on @inode 2855 * 2856 * @inode: The inode we want to perform iput on 2857 * 2858 * This function uses the generic vfs_inode::i_count to track whether we should 2859 * just decrement it (in case it's > 1) or if this is the last iput then link 2860 * the inode to the delayed iput machinery. Delayed iputs are processed at 2861 * transaction commit time/superblock commit/cleaner kthread. 2862 */ 2863 void btrfs_add_delayed_iput(struct inode *inode) 2864 { 2865 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2866 struct btrfs_inode *binode = BTRFS_I(inode); 2867 2868 if (atomic_add_unless(&inode->i_count, -1, 1)) 2869 return; 2870 2871 atomic_inc(&fs_info->nr_delayed_iputs); 2872 spin_lock(&fs_info->delayed_iput_lock); 2873 ASSERT(list_empty(&binode->delayed_iput)); 2874 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 2875 spin_unlock(&fs_info->delayed_iput_lock); 2876 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 2877 wake_up_process(fs_info->cleaner_kthread); 2878 } 2879 2880 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 2881 struct btrfs_inode *inode) 2882 { 2883 list_del_init(&inode->delayed_iput); 2884 spin_unlock(&fs_info->delayed_iput_lock); 2885 iput(&inode->vfs_inode); 2886 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 2887 wake_up(&fs_info->delayed_iputs_wait); 2888 spin_lock(&fs_info->delayed_iput_lock); 2889 } 2890 2891 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 2892 struct btrfs_inode *inode) 2893 { 2894 if (!list_empty(&inode->delayed_iput)) { 2895 spin_lock(&fs_info->delayed_iput_lock); 2896 if (!list_empty(&inode->delayed_iput)) 2897 run_delayed_iput_locked(fs_info, inode); 2898 spin_unlock(&fs_info->delayed_iput_lock); 2899 } 2900 } 2901 2902 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 2903 { 2904 2905 spin_lock(&fs_info->delayed_iput_lock); 2906 while (!list_empty(&fs_info->delayed_iputs)) { 2907 struct btrfs_inode *inode; 2908 2909 inode = list_first_entry(&fs_info->delayed_iputs, 2910 struct btrfs_inode, delayed_iput); 2911 run_delayed_iput_locked(fs_info, inode); 2912 } 2913 spin_unlock(&fs_info->delayed_iput_lock); 2914 } 2915 2916 /** 2917 * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running 2918 * @fs_info - the fs_info for this fs 2919 * @return - EINTR if we were killed, 0 if nothing's pending 2920 * 2921 * This will wait on any delayed iputs that are currently running with KILLABLE 2922 * set. Once they are all done running we will return, unless we are killed in 2923 * which case we return EINTR. This helps in user operations like fallocate etc 2924 * that might get blocked on the iputs. 2925 */ 2926 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 2927 { 2928 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 2929 atomic_read(&fs_info->nr_delayed_iputs) == 0); 2930 if (ret) 2931 return -EINTR; 2932 return 0; 2933 } 2934 2935 /* 2936 * This creates an orphan entry for the given inode in case something goes wrong 2937 * in the middle of an unlink. 2938 */ 2939 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 2940 struct btrfs_inode *inode) 2941 { 2942 int ret; 2943 2944 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 2945 if (ret && ret != -EEXIST) { 2946 btrfs_abort_transaction(trans, ret); 2947 return ret; 2948 } 2949 2950 return 0; 2951 } 2952 2953 /* 2954 * We have done the delete so we can go ahead and remove the orphan item for 2955 * this particular inode. 2956 */ 2957 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 2958 struct btrfs_inode *inode) 2959 { 2960 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 2961 } 2962 2963 /* 2964 * this cleans up any orphans that may be left on the list from the last use 2965 * of this root. 2966 */ 2967 int btrfs_orphan_cleanup(struct btrfs_root *root) 2968 { 2969 struct btrfs_fs_info *fs_info = root->fs_info; 2970 struct btrfs_path *path; 2971 struct extent_buffer *leaf; 2972 struct btrfs_key key, found_key; 2973 struct btrfs_trans_handle *trans; 2974 struct inode *inode; 2975 u64 last_objectid = 0; 2976 int ret = 0, nr_unlink = 0; 2977 2978 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2979 return 0; 2980 2981 path = btrfs_alloc_path(); 2982 if (!path) { 2983 ret = -ENOMEM; 2984 goto out; 2985 } 2986 path->reada = READA_BACK; 2987 2988 key.objectid = BTRFS_ORPHAN_OBJECTID; 2989 key.type = BTRFS_ORPHAN_ITEM_KEY; 2990 key.offset = (u64)-1; 2991 2992 while (1) { 2993 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2994 if (ret < 0) 2995 goto out; 2996 2997 /* 2998 * if ret == 0 means we found what we were searching for, which 2999 * is weird, but possible, so only screw with path if we didn't 3000 * find the key and see if we have stuff that matches 3001 */ 3002 if (ret > 0) { 3003 ret = 0; 3004 if (path->slots[0] == 0) 3005 break; 3006 path->slots[0]--; 3007 } 3008 3009 /* pull out the item */ 3010 leaf = path->nodes[0]; 3011 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3012 3013 /* make sure the item matches what we want */ 3014 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3015 break; 3016 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3017 break; 3018 3019 /* release the path since we're done with it */ 3020 btrfs_release_path(path); 3021 3022 /* 3023 * this is where we are basically btrfs_lookup, without the 3024 * crossing root thing. we store the inode number in the 3025 * offset of the orphan item. 3026 */ 3027 3028 if (found_key.offset == last_objectid) { 3029 btrfs_err(fs_info, 3030 "Error removing orphan entry, stopping orphan cleanup"); 3031 ret = -EINVAL; 3032 goto out; 3033 } 3034 3035 last_objectid = found_key.offset; 3036 3037 found_key.objectid = found_key.offset; 3038 found_key.type = BTRFS_INODE_ITEM_KEY; 3039 found_key.offset = 0; 3040 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3041 ret = PTR_ERR_OR_ZERO(inode); 3042 if (ret && ret != -ENOENT) 3043 goto out; 3044 3045 if (ret == -ENOENT && root == fs_info->tree_root) { 3046 struct btrfs_root *dead_root; 3047 int is_dead_root = 0; 3048 3049 /* 3050 * this is an orphan in the tree root. Currently these 3051 * could come from 2 sources: 3052 * a) a snapshot deletion in progress 3053 * b) a free space cache inode 3054 * We need to distinguish those two, as the snapshot 3055 * orphan must not get deleted. 3056 * find_dead_roots already ran before us, so if this 3057 * is a snapshot deletion, we should find the root 3058 * in the fs_roots radix tree. 3059 */ 3060 3061 spin_lock(&fs_info->fs_roots_radix_lock); 3062 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3063 (unsigned long)found_key.objectid); 3064 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3065 is_dead_root = 1; 3066 spin_unlock(&fs_info->fs_roots_radix_lock); 3067 3068 if (is_dead_root) { 3069 /* prevent this orphan from being found again */ 3070 key.offset = found_key.objectid - 1; 3071 continue; 3072 } 3073 3074 } 3075 3076 /* 3077 * If we have an inode with links, there are a couple of 3078 * possibilities. Old kernels (before v3.12) used to create an 3079 * orphan item for truncate indicating that there were possibly 3080 * extent items past i_size that needed to be deleted. In v3.12, 3081 * truncate was changed to update i_size in sync with the extent 3082 * items, but the (useless) orphan item was still created. Since 3083 * v4.18, we don't create the orphan item for truncate at all. 3084 * 3085 * So, this item could mean that we need to do a truncate, but 3086 * only if this filesystem was last used on a pre-v3.12 kernel 3087 * and was not cleanly unmounted. The odds of that are quite 3088 * slim, and it's a pain to do the truncate now, so just delete 3089 * the orphan item. 3090 * 3091 * It's also possible that this orphan item was supposed to be 3092 * deleted but wasn't. The inode number may have been reused, 3093 * but either way, we can delete the orphan item. 3094 */ 3095 if (ret == -ENOENT || inode->i_nlink) { 3096 if (!ret) 3097 iput(inode); 3098 trans = btrfs_start_transaction(root, 1); 3099 if (IS_ERR(trans)) { 3100 ret = PTR_ERR(trans); 3101 goto out; 3102 } 3103 btrfs_debug(fs_info, "auto deleting %Lu", 3104 found_key.objectid); 3105 ret = btrfs_del_orphan_item(trans, root, 3106 found_key.objectid); 3107 btrfs_end_transaction(trans); 3108 if (ret) 3109 goto out; 3110 continue; 3111 } 3112 3113 nr_unlink++; 3114 3115 /* this will do delete_inode and everything for us */ 3116 iput(inode); 3117 } 3118 /* release the path since we're done with it */ 3119 btrfs_release_path(path); 3120 3121 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 3122 3123 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3124 trans = btrfs_join_transaction(root); 3125 if (!IS_ERR(trans)) 3126 btrfs_end_transaction(trans); 3127 } 3128 3129 if (nr_unlink) 3130 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3131 3132 out: 3133 if (ret) 3134 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3135 btrfs_free_path(path); 3136 return ret; 3137 } 3138 3139 /* 3140 * very simple check to peek ahead in the leaf looking for xattrs. If we 3141 * don't find any xattrs, we know there can't be any acls. 3142 * 3143 * slot is the slot the inode is in, objectid is the objectid of the inode 3144 */ 3145 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3146 int slot, u64 objectid, 3147 int *first_xattr_slot) 3148 { 3149 u32 nritems = btrfs_header_nritems(leaf); 3150 struct btrfs_key found_key; 3151 static u64 xattr_access = 0; 3152 static u64 xattr_default = 0; 3153 int scanned = 0; 3154 3155 if (!xattr_access) { 3156 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3157 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3158 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3159 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3160 } 3161 3162 slot++; 3163 *first_xattr_slot = -1; 3164 while (slot < nritems) { 3165 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3166 3167 /* we found a different objectid, there must not be acls */ 3168 if (found_key.objectid != objectid) 3169 return 0; 3170 3171 /* we found an xattr, assume we've got an acl */ 3172 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3173 if (*first_xattr_slot == -1) 3174 *first_xattr_slot = slot; 3175 if (found_key.offset == xattr_access || 3176 found_key.offset == xattr_default) 3177 return 1; 3178 } 3179 3180 /* 3181 * we found a key greater than an xattr key, there can't 3182 * be any acls later on 3183 */ 3184 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3185 return 0; 3186 3187 slot++; 3188 scanned++; 3189 3190 /* 3191 * it goes inode, inode backrefs, xattrs, extents, 3192 * so if there are a ton of hard links to an inode there can 3193 * be a lot of backrefs. Don't waste time searching too hard, 3194 * this is just an optimization 3195 */ 3196 if (scanned >= 8) 3197 break; 3198 } 3199 /* we hit the end of the leaf before we found an xattr or 3200 * something larger than an xattr. We have to assume the inode 3201 * has acls 3202 */ 3203 if (*first_xattr_slot == -1) 3204 *first_xattr_slot = slot; 3205 return 1; 3206 } 3207 3208 /* 3209 * read an inode from the btree into the in-memory inode 3210 */ 3211 static int btrfs_read_locked_inode(struct inode *inode, 3212 struct btrfs_path *in_path) 3213 { 3214 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3215 struct btrfs_path *path = in_path; 3216 struct extent_buffer *leaf; 3217 struct btrfs_inode_item *inode_item; 3218 struct btrfs_root *root = BTRFS_I(inode)->root; 3219 struct btrfs_key location; 3220 unsigned long ptr; 3221 int maybe_acls; 3222 u32 rdev; 3223 int ret; 3224 bool filled = false; 3225 int first_xattr_slot; 3226 3227 ret = btrfs_fill_inode(inode, &rdev); 3228 if (!ret) 3229 filled = true; 3230 3231 if (!path) { 3232 path = btrfs_alloc_path(); 3233 if (!path) 3234 return -ENOMEM; 3235 } 3236 3237 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3238 3239 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3240 if (ret) { 3241 if (path != in_path) 3242 btrfs_free_path(path); 3243 return ret; 3244 } 3245 3246 leaf = path->nodes[0]; 3247 3248 if (filled) 3249 goto cache_index; 3250 3251 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3252 struct btrfs_inode_item); 3253 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3254 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3255 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3256 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3257 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3258 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3259 round_up(i_size_read(inode), fs_info->sectorsize)); 3260 3261 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3262 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3263 3264 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3265 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3266 3267 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3268 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3269 3270 BTRFS_I(inode)->i_otime.tv_sec = 3271 btrfs_timespec_sec(leaf, &inode_item->otime); 3272 BTRFS_I(inode)->i_otime.tv_nsec = 3273 btrfs_timespec_nsec(leaf, &inode_item->otime); 3274 3275 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3276 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3277 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3278 3279 inode_set_iversion_queried(inode, 3280 btrfs_inode_sequence(leaf, inode_item)); 3281 inode->i_generation = BTRFS_I(inode)->generation; 3282 inode->i_rdev = 0; 3283 rdev = btrfs_inode_rdev(leaf, inode_item); 3284 3285 BTRFS_I(inode)->index_cnt = (u64)-1; 3286 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 3287 3288 cache_index: 3289 /* 3290 * If we were modified in the current generation and evicted from memory 3291 * and then re-read we need to do a full sync since we don't have any 3292 * idea about which extents were modified before we were evicted from 3293 * cache. 3294 * 3295 * This is required for both inode re-read from disk and delayed inode 3296 * in delayed_nodes_tree. 3297 */ 3298 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3300 &BTRFS_I(inode)->runtime_flags); 3301 3302 /* 3303 * We don't persist the id of the transaction where an unlink operation 3304 * against the inode was last made. So here we assume the inode might 3305 * have been evicted, and therefore the exact value of last_unlink_trans 3306 * lost, and set it to last_trans to avoid metadata inconsistencies 3307 * between the inode and its parent if the inode is fsync'ed and the log 3308 * replayed. For example, in the scenario: 3309 * 3310 * touch mydir/foo 3311 * ln mydir/foo mydir/bar 3312 * sync 3313 * unlink mydir/bar 3314 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3315 * xfs_io -c fsync mydir/foo 3316 * <power failure> 3317 * mount fs, triggers fsync log replay 3318 * 3319 * We must make sure that when we fsync our inode foo we also log its 3320 * parent inode, otherwise after log replay the parent still has the 3321 * dentry with the "bar" name but our inode foo has a link count of 1 3322 * and doesn't have an inode ref with the name "bar" anymore. 3323 * 3324 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3325 * but it guarantees correctness at the expense of occasional full 3326 * transaction commits on fsync if our inode is a directory, or if our 3327 * inode is not a directory, logging its parent unnecessarily. 3328 */ 3329 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3330 3331 /* 3332 * Same logic as for last_unlink_trans. We don't persist the generation 3333 * of the last transaction where this inode was used for a reflink 3334 * operation, so after eviction and reloading the inode we must be 3335 * pessimistic and assume the last transaction that modified the inode. 3336 */ 3337 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3338 3339 path->slots[0]++; 3340 if (inode->i_nlink != 1 || 3341 path->slots[0] >= btrfs_header_nritems(leaf)) 3342 goto cache_acl; 3343 3344 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3345 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3346 goto cache_acl; 3347 3348 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3349 if (location.type == BTRFS_INODE_REF_KEY) { 3350 struct btrfs_inode_ref *ref; 3351 3352 ref = (struct btrfs_inode_ref *)ptr; 3353 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3354 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3355 struct btrfs_inode_extref *extref; 3356 3357 extref = (struct btrfs_inode_extref *)ptr; 3358 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3359 extref); 3360 } 3361 cache_acl: 3362 /* 3363 * try to precache a NULL acl entry for files that don't have 3364 * any xattrs or acls 3365 */ 3366 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3367 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3368 if (first_xattr_slot != -1) { 3369 path->slots[0] = first_xattr_slot; 3370 ret = btrfs_load_inode_props(inode, path); 3371 if (ret) 3372 btrfs_err(fs_info, 3373 "error loading props for ino %llu (root %llu): %d", 3374 btrfs_ino(BTRFS_I(inode)), 3375 root->root_key.objectid, ret); 3376 } 3377 if (path != in_path) 3378 btrfs_free_path(path); 3379 3380 if (!maybe_acls) 3381 cache_no_acl(inode); 3382 3383 switch (inode->i_mode & S_IFMT) { 3384 case S_IFREG: 3385 inode->i_mapping->a_ops = &btrfs_aops; 3386 inode->i_fop = &btrfs_file_operations; 3387 inode->i_op = &btrfs_file_inode_operations; 3388 break; 3389 case S_IFDIR: 3390 inode->i_fop = &btrfs_dir_file_operations; 3391 inode->i_op = &btrfs_dir_inode_operations; 3392 break; 3393 case S_IFLNK: 3394 inode->i_op = &btrfs_symlink_inode_operations; 3395 inode_nohighmem(inode); 3396 inode->i_mapping->a_ops = &btrfs_aops; 3397 break; 3398 default: 3399 inode->i_op = &btrfs_special_inode_operations; 3400 init_special_inode(inode, inode->i_mode, rdev); 3401 break; 3402 } 3403 3404 btrfs_sync_inode_flags_to_i_flags(inode); 3405 return 0; 3406 } 3407 3408 /* 3409 * given a leaf and an inode, copy the inode fields into the leaf 3410 */ 3411 static void fill_inode_item(struct btrfs_trans_handle *trans, 3412 struct extent_buffer *leaf, 3413 struct btrfs_inode_item *item, 3414 struct inode *inode) 3415 { 3416 struct btrfs_map_token token; 3417 3418 btrfs_init_map_token(&token, leaf); 3419 3420 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3421 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3422 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3423 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3424 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3425 3426 btrfs_set_token_timespec_sec(&token, &item->atime, 3427 inode->i_atime.tv_sec); 3428 btrfs_set_token_timespec_nsec(&token, &item->atime, 3429 inode->i_atime.tv_nsec); 3430 3431 btrfs_set_token_timespec_sec(&token, &item->mtime, 3432 inode->i_mtime.tv_sec); 3433 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3434 inode->i_mtime.tv_nsec); 3435 3436 btrfs_set_token_timespec_sec(&token, &item->ctime, 3437 inode->i_ctime.tv_sec); 3438 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3439 inode->i_ctime.tv_nsec); 3440 3441 btrfs_set_token_timespec_sec(&token, &item->otime, 3442 BTRFS_I(inode)->i_otime.tv_sec); 3443 btrfs_set_token_timespec_nsec(&token, &item->otime, 3444 BTRFS_I(inode)->i_otime.tv_nsec); 3445 3446 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3447 btrfs_set_token_inode_generation(&token, item, 3448 BTRFS_I(inode)->generation); 3449 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3450 btrfs_set_token_inode_transid(&token, item, trans->transid); 3451 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3452 btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags); 3453 btrfs_set_token_inode_block_group(&token, item, 0); 3454 } 3455 3456 /* 3457 * copy everything in the in-memory inode into the btree. 3458 */ 3459 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3460 struct btrfs_root *root, struct inode *inode) 3461 { 3462 struct btrfs_inode_item *inode_item; 3463 struct btrfs_path *path; 3464 struct extent_buffer *leaf; 3465 int ret; 3466 3467 path = btrfs_alloc_path(); 3468 if (!path) 3469 return -ENOMEM; 3470 3471 path->leave_spinning = 1; 3472 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 3473 1); 3474 if (ret) { 3475 if (ret > 0) 3476 ret = -ENOENT; 3477 goto failed; 3478 } 3479 3480 leaf = path->nodes[0]; 3481 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3482 struct btrfs_inode_item); 3483 3484 fill_inode_item(trans, leaf, inode_item, inode); 3485 btrfs_mark_buffer_dirty(leaf); 3486 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 3487 ret = 0; 3488 failed: 3489 btrfs_free_path(path); 3490 return ret; 3491 } 3492 3493 /* 3494 * copy everything in the in-memory inode into the btree. 3495 */ 3496 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 3497 struct btrfs_root *root, struct inode *inode) 3498 { 3499 struct btrfs_fs_info *fs_info = root->fs_info; 3500 int ret; 3501 3502 /* 3503 * If the inode is a free space inode, we can deadlock during commit 3504 * if we put it into the delayed code. 3505 * 3506 * The data relocation inode should also be directly updated 3507 * without delay 3508 */ 3509 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) 3510 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 3511 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 3512 btrfs_update_root_times(trans, root); 3513 3514 ret = btrfs_delayed_update_inode(trans, root, inode); 3515 if (!ret) 3516 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 3517 return ret; 3518 } 3519 3520 return btrfs_update_inode_item(trans, root, inode); 3521 } 3522 3523 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3524 struct btrfs_root *root, 3525 struct inode *inode) 3526 { 3527 int ret; 3528 3529 ret = btrfs_update_inode(trans, root, inode); 3530 if (ret == -ENOSPC) 3531 return btrfs_update_inode_item(trans, root, inode); 3532 return ret; 3533 } 3534 3535 /* 3536 * unlink helper that gets used here in inode.c and in the tree logging 3537 * recovery code. It remove a link in a directory with a given name, and 3538 * also drops the back refs in the inode to the directory 3539 */ 3540 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3541 struct btrfs_root *root, 3542 struct btrfs_inode *dir, 3543 struct btrfs_inode *inode, 3544 const char *name, int name_len) 3545 { 3546 struct btrfs_fs_info *fs_info = root->fs_info; 3547 struct btrfs_path *path; 3548 int ret = 0; 3549 struct btrfs_dir_item *di; 3550 u64 index; 3551 u64 ino = btrfs_ino(inode); 3552 u64 dir_ino = btrfs_ino(dir); 3553 3554 path = btrfs_alloc_path(); 3555 if (!path) { 3556 ret = -ENOMEM; 3557 goto out; 3558 } 3559 3560 path->leave_spinning = 1; 3561 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3562 name, name_len, -1); 3563 if (IS_ERR_OR_NULL(di)) { 3564 ret = di ? PTR_ERR(di) : -ENOENT; 3565 goto err; 3566 } 3567 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3568 if (ret) 3569 goto err; 3570 btrfs_release_path(path); 3571 3572 /* 3573 * If we don't have dir index, we have to get it by looking up 3574 * the inode ref, since we get the inode ref, remove it directly, 3575 * it is unnecessary to do delayed deletion. 3576 * 3577 * But if we have dir index, needn't search inode ref to get it. 3578 * Since the inode ref is close to the inode item, it is better 3579 * that we delay to delete it, and just do this deletion when 3580 * we update the inode item. 3581 */ 3582 if (inode->dir_index) { 3583 ret = btrfs_delayed_delete_inode_ref(inode); 3584 if (!ret) { 3585 index = inode->dir_index; 3586 goto skip_backref; 3587 } 3588 } 3589 3590 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 3591 dir_ino, &index); 3592 if (ret) { 3593 btrfs_info(fs_info, 3594 "failed to delete reference to %.*s, inode %llu parent %llu", 3595 name_len, name, ino, dir_ino); 3596 btrfs_abort_transaction(trans, ret); 3597 goto err; 3598 } 3599 skip_backref: 3600 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 3601 if (ret) { 3602 btrfs_abort_transaction(trans, ret); 3603 goto err; 3604 } 3605 3606 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 3607 dir_ino); 3608 if (ret != 0 && ret != -ENOENT) { 3609 btrfs_abort_transaction(trans, ret); 3610 goto err; 3611 } 3612 3613 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 3614 index); 3615 if (ret == -ENOENT) 3616 ret = 0; 3617 else if (ret) 3618 btrfs_abort_transaction(trans, ret); 3619 3620 /* 3621 * If we have a pending delayed iput we could end up with the final iput 3622 * being run in btrfs-cleaner context. If we have enough of these built 3623 * up we can end up burning a lot of time in btrfs-cleaner without any 3624 * way to throttle the unlinks. Since we're currently holding a ref on 3625 * the inode we can run the delayed iput here without any issues as the 3626 * final iput won't be done until after we drop the ref we're currently 3627 * holding. 3628 */ 3629 btrfs_run_delayed_iput(fs_info, inode); 3630 err: 3631 btrfs_free_path(path); 3632 if (ret) 3633 goto out; 3634 3635 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 3636 inode_inc_iversion(&inode->vfs_inode); 3637 inode_inc_iversion(&dir->vfs_inode); 3638 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 3639 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 3640 ret = btrfs_update_inode(trans, root, &dir->vfs_inode); 3641 out: 3642 return ret; 3643 } 3644 3645 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3646 struct btrfs_root *root, 3647 struct btrfs_inode *dir, struct btrfs_inode *inode, 3648 const char *name, int name_len) 3649 { 3650 int ret; 3651 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 3652 if (!ret) { 3653 drop_nlink(&inode->vfs_inode); 3654 ret = btrfs_update_inode(trans, root, &inode->vfs_inode); 3655 } 3656 return ret; 3657 } 3658 3659 /* 3660 * helper to start transaction for unlink and rmdir. 3661 * 3662 * unlink and rmdir are special in btrfs, they do not always free space, so 3663 * if we cannot make our reservations the normal way try and see if there is 3664 * plenty of slack room in the global reserve to migrate, otherwise we cannot 3665 * allow the unlink to occur. 3666 */ 3667 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 3668 { 3669 struct btrfs_root *root = BTRFS_I(dir)->root; 3670 3671 /* 3672 * 1 for the possible orphan item 3673 * 1 for the dir item 3674 * 1 for the dir index 3675 * 1 for the inode ref 3676 * 1 for the inode 3677 */ 3678 return btrfs_start_transaction_fallback_global_rsv(root, 5); 3679 } 3680 3681 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 3682 { 3683 struct btrfs_root *root = BTRFS_I(dir)->root; 3684 struct btrfs_trans_handle *trans; 3685 struct inode *inode = d_inode(dentry); 3686 int ret; 3687 3688 trans = __unlink_start_trans(dir); 3689 if (IS_ERR(trans)) 3690 return PTR_ERR(trans); 3691 3692 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 3693 0); 3694 3695 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 3696 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 3697 dentry->d_name.len); 3698 if (ret) 3699 goto out; 3700 3701 if (inode->i_nlink == 0) { 3702 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 3703 if (ret) 3704 goto out; 3705 } 3706 3707 out: 3708 btrfs_end_transaction(trans); 3709 btrfs_btree_balance_dirty(root->fs_info); 3710 return ret; 3711 } 3712 3713 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3714 struct inode *dir, struct dentry *dentry) 3715 { 3716 struct btrfs_root *root = BTRFS_I(dir)->root; 3717 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 3718 struct btrfs_path *path; 3719 struct extent_buffer *leaf; 3720 struct btrfs_dir_item *di; 3721 struct btrfs_key key; 3722 const char *name = dentry->d_name.name; 3723 int name_len = dentry->d_name.len; 3724 u64 index; 3725 int ret; 3726 u64 objectid; 3727 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 3728 3729 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 3730 objectid = inode->root->root_key.objectid; 3731 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3732 objectid = inode->location.objectid; 3733 } else { 3734 WARN_ON(1); 3735 return -EINVAL; 3736 } 3737 3738 path = btrfs_alloc_path(); 3739 if (!path) 3740 return -ENOMEM; 3741 3742 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3743 name, name_len, -1); 3744 if (IS_ERR_OR_NULL(di)) { 3745 ret = di ? PTR_ERR(di) : -ENOENT; 3746 goto out; 3747 } 3748 3749 leaf = path->nodes[0]; 3750 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3751 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3752 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3753 if (ret) { 3754 btrfs_abort_transaction(trans, ret); 3755 goto out; 3756 } 3757 btrfs_release_path(path); 3758 3759 /* 3760 * This is a placeholder inode for a subvolume we didn't have a 3761 * reference to at the time of the snapshot creation. In the meantime 3762 * we could have renamed the real subvol link into our snapshot, so 3763 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. 3764 * Instead simply lookup the dir_index_item for this entry so we can 3765 * remove it. Otherwise we know we have a ref to the root and we can 3766 * call btrfs_del_root_ref, and it _shouldn't_ fail. 3767 */ 3768 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 3769 di = btrfs_search_dir_index_item(root, path, dir_ino, 3770 name, name_len); 3771 if (IS_ERR_OR_NULL(di)) { 3772 if (!di) 3773 ret = -ENOENT; 3774 else 3775 ret = PTR_ERR(di); 3776 btrfs_abort_transaction(trans, ret); 3777 goto out; 3778 } 3779 3780 leaf = path->nodes[0]; 3781 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3782 index = key.offset; 3783 btrfs_release_path(path); 3784 } else { 3785 ret = btrfs_del_root_ref(trans, objectid, 3786 root->root_key.objectid, dir_ino, 3787 &index, name, name_len); 3788 if (ret) { 3789 btrfs_abort_transaction(trans, ret); 3790 goto out; 3791 } 3792 } 3793 3794 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 3795 if (ret) { 3796 btrfs_abort_transaction(trans, ret); 3797 goto out; 3798 } 3799 3800 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 3801 inode_inc_iversion(dir); 3802 dir->i_mtime = dir->i_ctime = current_time(dir); 3803 ret = btrfs_update_inode_fallback(trans, root, dir); 3804 if (ret) 3805 btrfs_abort_transaction(trans, ret); 3806 out: 3807 btrfs_free_path(path); 3808 return ret; 3809 } 3810 3811 /* 3812 * Helper to check if the subvolume references other subvolumes or if it's 3813 * default. 3814 */ 3815 static noinline int may_destroy_subvol(struct btrfs_root *root) 3816 { 3817 struct btrfs_fs_info *fs_info = root->fs_info; 3818 struct btrfs_path *path; 3819 struct btrfs_dir_item *di; 3820 struct btrfs_key key; 3821 u64 dir_id; 3822 int ret; 3823 3824 path = btrfs_alloc_path(); 3825 if (!path) 3826 return -ENOMEM; 3827 3828 /* Make sure this root isn't set as the default subvol */ 3829 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3830 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 3831 dir_id, "default", 7, 0); 3832 if (di && !IS_ERR(di)) { 3833 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 3834 if (key.objectid == root->root_key.objectid) { 3835 ret = -EPERM; 3836 btrfs_err(fs_info, 3837 "deleting default subvolume %llu is not allowed", 3838 key.objectid); 3839 goto out; 3840 } 3841 btrfs_release_path(path); 3842 } 3843 3844 key.objectid = root->root_key.objectid; 3845 key.type = BTRFS_ROOT_REF_KEY; 3846 key.offset = (u64)-1; 3847 3848 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3849 if (ret < 0) 3850 goto out; 3851 BUG_ON(ret == 0); 3852 3853 ret = 0; 3854 if (path->slots[0] > 0) { 3855 path->slots[0]--; 3856 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3857 if (key.objectid == root->root_key.objectid && 3858 key.type == BTRFS_ROOT_REF_KEY) 3859 ret = -ENOTEMPTY; 3860 } 3861 out: 3862 btrfs_free_path(path); 3863 return ret; 3864 } 3865 3866 /* Delete all dentries for inodes belonging to the root */ 3867 static void btrfs_prune_dentries(struct btrfs_root *root) 3868 { 3869 struct btrfs_fs_info *fs_info = root->fs_info; 3870 struct rb_node *node; 3871 struct rb_node *prev; 3872 struct btrfs_inode *entry; 3873 struct inode *inode; 3874 u64 objectid = 0; 3875 3876 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 3877 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3878 3879 spin_lock(&root->inode_lock); 3880 again: 3881 node = root->inode_tree.rb_node; 3882 prev = NULL; 3883 while (node) { 3884 prev = node; 3885 entry = rb_entry(node, struct btrfs_inode, rb_node); 3886 3887 if (objectid < btrfs_ino(entry)) 3888 node = node->rb_left; 3889 else if (objectid > btrfs_ino(entry)) 3890 node = node->rb_right; 3891 else 3892 break; 3893 } 3894 if (!node) { 3895 while (prev) { 3896 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3897 if (objectid <= btrfs_ino(entry)) { 3898 node = prev; 3899 break; 3900 } 3901 prev = rb_next(prev); 3902 } 3903 } 3904 while (node) { 3905 entry = rb_entry(node, struct btrfs_inode, rb_node); 3906 objectid = btrfs_ino(entry) + 1; 3907 inode = igrab(&entry->vfs_inode); 3908 if (inode) { 3909 spin_unlock(&root->inode_lock); 3910 if (atomic_read(&inode->i_count) > 1) 3911 d_prune_aliases(inode); 3912 /* 3913 * btrfs_drop_inode will have it removed from the inode 3914 * cache when its usage count hits zero. 3915 */ 3916 iput(inode); 3917 cond_resched(); 3918 spin_lock(&root->inode_lock); 3919 goto again; 3920 } 3921 3922 if (cond_resched_lock(&root->inode_lock)) 3923 goto again; 3924 3925 node = rb_next(node); 3926 } 3927 spin_unlock(&root->inode_lock); 3928 } 3929 3930 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 3931 { 3932 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 3933 struct btrfs_root *root = BTRFS_I(dir)->root; 3934 struct inode *inode = d_inode(dentry); 3935 struct btrfs_root *dest = BTRFS_I(inode)->root; 3936 struct btrfs_trans_handle *trans; 3937 struct btrfs_block_rsv block_rsv; 3938 u64 root_flags; 3939 int ret; 3940 int err; 3941 3942 /* 3943 * Don't allow to delete a subvolume with send in progress. This is 3944 * inside the inode lock so the error handling that has to drop the bit 3945 * again is not run concurrently. 3946 */ 3947 spin_lock(&dest->root_item_lock); 3948 if (dest->send_in_progress) { 3949 spin_unlock(&dest->root_item_lock); 3950 btrfs_warn(fs_info, 3951 "attempt to delete subvolume %llu during send", 3952 dest->root_key.objectid); 3953 return -EPERM; 3954 } 3955 root_flags = btrfs_root_flags(&dest->root_item); 3956 btrfs_set_root_flags(&dest->root_item, 3957 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 3958 spin_unlock(&dest->root_item_lock); 3959 3960 down_write(&fs_info->subvol_sem); 3961 3962 err = may_destroy_subvol(dest); 3963 if (err) 3964 goto out_up_write; 3965 3966 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 3967 /* 3968 * One for dir inode, 3969 * two for dir entries, 3970 * two for root ref/backref. 3971 */ 3972 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 3973 if (err) 3974 goto out_up_write; 3975 3976 trans = btrfs_start_transaction(root, 0); 3977 if (IS_ERR(trans)) { 3978 err = PTR_ERR(trans); 3979 goto out_release; 3980 } 3981 trans->block_rsv = &block_rsv; 3982 trans->bytes_reserved = block_rsv.size; 3983 3984 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 3985 3986 ret = btrfs_unlink_subvol(trans, dir, dentry); 3987 if (ret) { 3988 err = ret; 3989 btrfs_abort_transaction(trans, ret); 3990 goto out_end_trans; 3991 } 3992 3993 btrfs_record_root_in_trans(trans, dest); 3994 3995 memset(&dest->root_item.drop_progress, 0, 3996 sizeof(dest->root_item.drop_progress)); 3997 dest->root_item.drop_level = 0; 3998 btrfs_set_root_refs(&dest->root_item, 0); 3999 4000 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4001 ret = btrfs_insert_orphan_item(trans, 4002 fs_info->tree_root, 4003 dest->root_key.objectid); 4004 if (ret) { 4005 btrfs_abort_transaction(trans, ret); 4006 err = ret; 4007 goto out_end_trans; 4008 } 4009 } 4010 4011 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4012 BTRFS_UUID_KEY_SUBVOL, 4013 dest->root_key.objectid); 4014 if (ret && ret != -ENOENT) { 4015 btrfs_abort_transaction(trans, ret); 4016 err = ret; 4017 goto out_end_trans; 4018 } 4019 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4020 ret = btrfs_uuid_tree_remove(trans, 4021 dest->root_item.received_uuid, 4022 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4023 dest->root_key.objectid); 4024 if (ret && ret != -ENOENT) { 4025 btrfs_abort_transaction(trans, ret); 4026 err = ret; 4027 goto out_end_trans; 4028 } 4029 } 4030 4031 free_anon_bdev(dest->anon_dev); 4032 dest->anon_dev = 0; 4033 out_end_trans: 4034 trans->block_rsv = NULL; 4035 trans->bytes_reserved = 0; 4036 ret = btrfs_end_transaction(trans); 4037 if (ret && !err) 4038 err = ret; 4039 inode->i_flags |= S_DEAD; 4040 out_release: 4041 btrfs_subvolume_release_metadata(root, &block_rsv); 4042 out_up_write: 4043 up_write(&fs_info->subvol_sem); 4044 if (err) { 4045 spin_lock(&dest->root_item_lock); 4046 root_flags = btrfs_root_flags(&dest->root_item); 4047 btrfs_set_root_flags(&dest->root_item, 4048 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4049 spin_unlock(&dest->root_item_lock); 4050 } else { 4051 d_invalidate(dentry); 4052 btrfs_prune_dentries(dest); 4053 ASSERT(dest->send_in_progress == 0); 4054 4055 /* the last ref */ 4056 if (dest->ino_cache_inode) { 4057 iput(dest->ino_cache_inode); 4058 dest->ino_cache_inode = NULL; 4059 } 4060 } 4061 4062 return err; 4063 } 4064 4065 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4066 { 4067 struct inode *inode = d_inode(dentry); 4068 int err = 0; 4069 struct btrfs_root *root = BTRFS_I(dir)->root; 4070 struct btrfs_trans_handle *trans; 4071 u64 last_unlink_trans; 4072 4073 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4074 return -ENOTEMPTY; 4075 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) 4076 return btrfs_delete_subvolume(dir, dentry); 4077 4078 trans = __unlink_start_trans(dir); 4079 if (IS_ERR(trans)) 4080 return PTR_ERR(trans); 4081 4082 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4083 err = btrfs_unlink_subvol(trans, dir, dentry); 4084 goto out; 4085 } 4086 4087 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4088 if (err) 4089 goto out; 4090 4091 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4092 4093 /* now the directory is empty */ 4094 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), 4095 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4096 dentry->d_name.len); 4097 if (!err) { 4098 btrfs_i_size_write(BTRFS_I(inode), 0); 4099 /* 4100 * Propagate the last_unlink_trans value of the deleted dir to 4101 * its parent directory. This is to prevent an unrecoverable 4102 * log tree in the case we do something like this: 4103 * 1) create dir foo 4104 * 2) create snapshot under dir foo 4105 * 3) delete the snapshot 4106 * 4) rmdir foo 4107 * 5) mkdir foo 4108 * 6) fsync foo or some file inside foo 4109 */ 4110 if (last_unlink_trans >= trans->transid) 4111 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4112 } 4113 out: 4114 btrfs_end_transaction(trans); 4115 btrfs_btree_balance_dirty(root->fs_info); 4116 4117 return err; 4118 } 4119 4120 /* 4121 * Return this if we need to call truncate_block for the last bit of the 4122 * truncate. 4123 */ 4124 #define NEED_TRUNCATE_BLOCK 1 4125 4126 /* 4127 * this can truncate away extent items, csum items and directory items. 4128 * It starts at a high offset and removes keys until it can't find 4129 * any higher than new_size 4130 * 4131 * csum items that cross the new i_size are truncated to the new size 4132 * as well. 4133 * 4134 * min_type is the minimum key type to truncate down to. If set to 0, this 4135 * will kill all the items on this inode, including the INODE_ITEM_KEY. 4136 */ 4137 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 4138 struct btrfs_root *root, 4139 struct inode *inode, 4140 u64 new_size, u32 min_type) 4141 { 4142 struct btrfs_fs_info *fs_info = root->fs_info; 4143 struct btrfs_path *path; 4144 struct extent_buffer *leaf; 4145 struct btrfs_file_extent_item *fi; 4146 struct btrfs_key key; 4147 struct btrfs_key found_key; 4148 u64 extent_start = 0; 4149 u64 extent_num_bytes = 0; 4150 u64 extent_offset = 0; 4151 u64 item_end = 0; 4152 u64 last_size = new_size; 4153 u32 found_type = (u8)-1; 4154 int found_extent; 4155 int del_item; 4156 int pending_del_nr = 0; 4157 int pending_del_slot = 0; 4158 int extent_type = -1; 4159 int ret; 4160 u64 ino = btrfs_ino(BTRFS_I(inode)); 4161 u64 bytes_deleted = 0; 4162 bool be_nice = false; 4163 bool should_throttle = false; 4164 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 4165 struct extent_state *cached_state = NULL; 4166 4167 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 4168 4169 /* 4170 * For non-free space inodes and non-shareable roots, we want to back 4171 * off from time to time. This means all inodes in subvolume roots, 4172 * reloc roots, and data reloc roots. 4173 */ 4174 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && 4175 test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4176 be_nice = true; 4177 4178 path = btrfs_alloc_path(); 4179 if (!path) 4180 return -ENOMEM; 4181 path->reada = READA_BACK; 4182 4183 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4184 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 4185 &cached_state); 4186 4187 /* 4188 * We want to drop from the next block forward in case this 4189 * new size is not block aligned since we will be keeping the 4190 * last block of the extent just the way it is. 4191 */ 4192 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, 4193 fs_info->sectorsize), 4194 (u64)-1, 0); 4195 } 4196 4197 /* 4198 * This function is also used to drop the items in the log tree before 4199 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 4200 * it is used to drop the logged items. So we shouldn't kill the delayed 4201 * items. 4202 */ 4203 if (min_type == 0 && root == BTRFS_I(inode)->root) 4204 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 4205 4206 key.objectid = ino; 4207 key.offset = (u64)-1; 4208 key.type = (u8)-1; 4209 4210 search_again: 4211 /* 4212 * with a 16K leaf size and 128MB extents, you can actually queue 4213 * up a huge file in a single leaf. Most of the time that 4214 * bytes_deleted is > 0, it will be huge by the time we get here 4215 */ 4216 if (be_nice && bytes_deleted > SZ_32M && 4217 btrfs_should_end_transaction(trans)) { 4218 ret = -EAGAIN; 4219 goto out; 4220 } 4221 4222 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 4223 if (ret < 0) 4224 goto out; 4225 4226 if (ret > 0) { 4227 ret = 0; 4228 /* there are no items in the tree for us to truncate, we're 4229 * done 4230 */ 4231 if (path->slots[0] == 0) 4232 goto out; 4233 path->slots[0]--; 4234 } 4235 4236 while (1) { 4237 u64 clear_start = 0, clear_len = 0; 4238 4239 fi = NULL; 4240 leaf = path->nodes[0]; 4241 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4242 found_type = found_key.type; 4243 4244 if (found_key.objectid != ino) 4245 break; 4246 4247 if (found_type < min_type) 4248 break; 4249 4250 item_end = found_key.offset; 4251 if (found_type == BTRFS_EXTENT_DATA_KEY) { 4252 fi = btrfs_item_ptr(leaf, path->slots[0], 4253 struct btrfs_file_extent_item); 4254 extent_type = btrfs_file_extent_type(leaf, fi); 4255 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4256 item_end += 4257 btrfs_file_extent_num_bytes(leaf, fi); 4258 4259 trace_btrfs_truncate_show_fi_regular( 4260 BTRFS_I(inode), leaf, fi, 4261 found_key.offset); 4262 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4263 item_end += btrfs_file_extent_ram_bytes(leaf, 4264 fi); 4265 4266 trace_btrfs_truncate_show_fi_inline( 4267 BTRFS_I(inode), leaf, fi, path->slots[0], 4268 found_key.offset); 4269 } 4270 item_end--; 4271 } 4272 if (found_type > min_type) { 4273 del_item = 1; 4274 } else { 4275 if (item_end < new_size) 4276 break; 4277 if (found_key.offset >= new_size) 4278 del_item = 1; 4279 else 4280 del_item = 0; 4281 } 4282 found_extent = 0; 4283 /* FIXME, shrink the extent if the ref count is only 1 */ 4284 if (found_type != BTRFS_EXTENT_DATA_KEY) 4285 goto delete; 4286 4287 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 4288 u64 num_dec; 4289 4290 clear_start = found_key.offset; 4291 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 4292 if (!del_item) { 4293 u64 orig_num_bytes = 4294 btrfs_file_extent_num_bytes(leaf, fi); 4295 extent_num_bytes = ALIGN(new_size - 4296 found_key.offset, 4297 fs_info->sectorsize); 4298 clear_start = ALIGN(new_size, fs_info->sectorsize); 4299 btrfs_set_file_extent_num_bytes(leaf, fi, 4300 extent_num_bytes); 4301 num_dec = (orig_num_bytes - 4302 extent_num_bytes); 4303 if (test_bit(BTRFS_ROOT_SHAREABLE, 4304 &root->state) && 4305 extent_start != 0) 4306 inode_sub_bytes(inode, num_dec); 4307 btrfs_mark_buffer_dirty(leaf); 4308 } else { 4309 extent_num_bytes = 4310 btrfs_file_extent_disk_num_bytes(leaf, 4311 fi); 4312 extent_offset = found_key.offset - 4313 btrfs_file_extent_offset(leaf, fi); 4314 4315 /* FIXME blocksize != 4096 */ 4316 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 4317 if (extent_start != 0) { 4318 found_extent = 1; 4319 if (test_bit(BTRFS_ROOT_SHAREABLE, 4320 &root->state)) 4321 inode_sub_bytes(inode, num_dec); 4322 } 4323 } 4324 clear_len = num_dec; 4325 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 4326 /* 4327 * we can't truncate inline items that have had 4328 * special encodings 4329 */ 4330 if (!del_item && 4331 btrfs_file_extent_encryption(leaf, fi) == 0 && 4332 btrfs_file_extent_other_encoding(leaf, fi) == 0 && 4333 btrfs_file_extent_compression(leaf, fi) == 0) { 4334 u32 size = (u32)(new_size - found_key.offset); 4335 4336 btrfs_set_file_extent_ram_bytes(leaf, fi, size); 4337 size = btrfs_file_extent_calc_inline_size(size); 4338 btrfs_truncate_item(path, size, 1); 4339 } else if (!del_item) { 4340 /* 4341 * We have to bail so the last_size is set to 4342 * just before this extent. 4343 */ 4344 ret = NEED_TRUNCATE_BLOCK; 4345 break; 4346 } else { 4347 /* 4348 * Inline extents are special, we just treat 4349 * them as a full sector worth in the file 4350 * extent tree just for simplicity sake. 4351 */ 4352 clear_len = fs_info->sectorsize; 4353 } 4354 4355 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 4356 inode_sub_bytes(inode, item_end + 1 - new_size); 4357 } 4358 delete: 4359 /* 4360 * We use btrfs_truncate_inode_items() to clean up log trees for 4361 * multiple fsyncs, and in this case we don't want to clear the 4362 * file extent range because it's just the log. 4363 */ 4364 if (root == BTRFS_I(inode)->root) { 4365 ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 4366 clear_start, clear_len); 4367 if (ret) { 4368 btrfs_abort_transaction(trans, ret); 4369 break; 4370 } 4371 } 4372 4373 if (del_item) 4374 last_size = found_key.offset; 4375 else 4376 last_size = new_size; 4377 if (del_item) { 4378 if (!pending_del_nr) { 4379 /* no pending yet, add ourselves */ 4380 pending_del_slot = path->slots[0]; 4381 pending_del_nr = 1; 4382 } else if (pending_del_nr && 4383 path->slots[0] + 1 == pending_del_slot) { 4384 /* hop on the pending chunk */ 4385 pending_del_nr++; 4386 pending_del_slot = path->slots[0]; 4387 } else { 4388 BUG(); 4389 } 4390 } else { 4391 break; 4392 } 4393 should_throttle = false; 4394 4395 if (found_extent && 4396 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4397 struct btrfs_ref ref = { 0 }; 4398 4399 bytes_deleted += extent_num_bytes; 4400 4401 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, 4402 extent_start, extent_num_bytes, 0); 4403 ref.real_root = root->root_key.objectid; 4404 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 4405 ino, extent_offset); 4406 ret = btrfs_free_extent(trans, &ref); 4407 if (ret) { 4408 btrfs_abort_transaction(trans, ret); 4409 break; 4410 } 4411 if (be_nice) { 4412 if (btrfs_should_throttle_delayed_refs(trans)) 4413 should_throttle = true; 4414 } 4415 } 4416 4417 if (found_type == BTRFS_INODE_ITEM_KEY) 4418 break; 4419 4420 if (path->slots[0] == 0 || 4421 path->slots[0] != pending_del_slot || 4422 should_throttle) { 4423 if (pending_del_nr) { 4424 ret = btrfs_del_items(trans, root, path, 4425 pending_del_slot, 4426 pending_del_nr); 4427 if (ret) { 4428 btrfs_abort_transaction(trans, ret); 4429 break; 4430 } 4431 pending_del_nr = 0; 4432 } 4433 btrfs_release_path(path); 4434 4435 /* 4436 * We can generate a lot of delayed refs, so we need to 4437 * throttle every once and a while and make sure we're 4438 * adding enough space to keep up with the work we are 4439 * generating. Since we hold a transaction here we 4440 * can't flush, and we don't want to FLUSH_LIMIT because 4441 * we could have generated too many delayed refs to 4442 * actually allocate, so just bail if we're short and 4443 * let the normal reservation dance happen higher up. 4444 */ 4445 if (should_throttle) { 4446 ret = btrfs_delayed_refs_rsv_refill(fs_info, 4447 BTRFS_RESERVE_NO_FLUSH); 4448 if (ret) { 4449 ret = -EAGAIN; 4450 break; 4451 } 4452 } 4453 goto search_again; 4454 } else { 4455 path->slots[0]--; 4456 } 4457 } 4458 out: 4459 if (ret >= 0 && pending_del_nr) { 4460 int err; 4461 4462 err = btrfs_del_items(trans, root, path, pending_del_slot, 4463 pending_del_nr); 4464 if (err) { 4465 btrfs_abort_transaction(trans, err); 4466 ret = err; 4467 } 4468 } 4469 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { 4470 ASSERT(last_size >= new_size); 4471 if (!ret && last_size > new_size) 4472 last_size = new_size; 4473 btrfs_inode_safe_disk_i_size_write(inode, last_size); 4474 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 4475 (u64)-1, &cached_state); 4476 } 4477 4478 btrfs_free_path(path); 4479 return ret; 4480 } 4481 4482 /* 4483 * btrfs_truncate_block - read, zero a chunk and write a block 4484 * @inode - inode that we're zeroing 4485 * @from - the offset to start zeroing 4486 * @len - the length to zero, 0 to zero the entire range respective to the 4487 * offset 4488 * @front - zero up to the offset instead of from the offset on 4489 * 4490 * This will find the block for the "from" offset and cow the block and zero the 4491 * part we want to zero. This is used with truncate and hole punching. 4492 */ 4493 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, 4494 int front) 4495 { 4496 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4497 struct address_space *mapping = inode->i_mapping; 4498 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4499 struct btrfs_ordered_extent *ordered; 4500 struct extent_state *cached_state = NULL; 4501 struct extent_changeset *data_reserved = NULL; 4502 char *kaddr; 4503 bool only_release_metadata = false; 4504 u32 blocksize = fs_info->sectorsize; 4505 pgoff_t index = from >> PAGE_SHIFT; 4506 unsigned offset = from & (blocksize - 1); 4507 struct page *page; 4508 gfp_t mask = btrfs_alloc_write_mask(mapping); 4509 size_t write_bytes = blocksize; 4510 int ret = 0; 4511 u64 block_start; 4512 u64 block_end; 4513 4514 if (IS_ALIGNED(offset, blocksize) && 4515 (!len || IS_ALIGNED(len, blocksize))) 4516 goto out; 4517 4518 block_start = round_down(from, blocksize); 4519 block_end = block_start + blocksize - 1; 4520 4521 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 4522 block_start, blocksize); 4523 if (ret < 0) { 4524 if (btrfs_check_nocow_lock(BTRFS_I(inode), block_start, 4525 &write_bytes) > 0) { 4526 /* For nocow case, no need to reserve data space */ 4527 only_release_metadata = true; 4528 } else { 4529 goto out; 4530 } 4531 } 4532 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), blocksize); 4533 if (ret < 0) { 4534 if (!only_release_metadata) 4535 btrfs_free_reserved_data_space(BTRFS_I(inode), 4536 data_reserved, block_start, blocksize); 4537 goto out; 4538 } 4539 again: 4540 page = find_or_create_page(mapping, index, mask); 4541 if (!page) { 4542 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 4543 block_start, blocksize, true); 4544 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4545 ret = -ENOMEM; 4546 goto out; 4547 } 4548 4549 if (!PageUptodate(page)) { 4550 ret = btrfs_readpage(NULL, page); 4551 lock_page(page); 4552 if (page->mapping != mapping) { 4553 unlock_page(page); 4554 put_page(page); 4555 goto again; 4556 } 4557 if (!PageUptodate(page)) { 4558 ret = -EIO; 4559 goto out_unlock; 4560 } 4561 } 4562 wait_on_page_writeback(page); 4563 4564 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4565 set_page_extent_mapped(page); 4566 4567 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), block_start); 4568 if (ordered) { 4569 unlock_extent_cached(io_tree, block_start, block_end, 4570 &cached_state); 4571 unlock_page(page); 4572 put_page(page); 4573 btrfs_start_ordered_extent(ordered, 1); 4574 btrfs_put_ordered_extent(ordered); 4575 goto again; 4576 } 4577 4578 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, 4579 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4580 0, 0, &cached_state); 4581 4582 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), block_start, block_end, 0, 4583 &cached_state); 4584 if (ret) { 4585 unlock_extent_cached(io_tree, block_start, block_end, 4586 &cached_state); 4587 goto out_unlock; 4588 } 4589 4590 if (offset != blocksize) { 4591 if (!len) 4592 len = blocksize - offset; 4593 kaddr = kmap(page); 4594 if (front) 4595 memset(kaddr + (block_start - page_offset(page)), 4596 0, offset); 4597 else 4598 memset(kaddr + (block_start - page_offset(page)) + offset, 4599 0, len); 4600 flush_dcache_page(page); 4601 kunmap(page); 4602 } 4603 ClearPageChecked(page); 4604 set_page_dirty(page); 4605 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4606 4607 if (only_release_metadata) 4608 set_extent_bit(&BTRFS_I(inode)->io_tree, block_start, 4609 block_end, EXTENT_NORESERVE, NULL, NULL, 4610 GFP_NOFS); 4611 4612 out_unlock: 4613 if (ret) { 4614 if (only_release_metadata) 4615 btrfs_delalloc_release_metadata(BTRFS_I(inode), 4616 blocksize, true); 4617 else 4618 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 4619 block_start, blocksize, true); 4620 } 4621 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); 4622 unlock_page(page); 4623 put_page(page); 4624 out: 4625 if (only_release_metadata) 4626 btrfs_check_nocow_unlock(BTRFS_I(inode)); 4627 extent_changeset_free(data_reserved); 4628 return ret; 4629 } 4630 4631 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, 4632 u64 offset, u64 len) 4633 { 4634 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4635 struct btrfs_trans_handle *trans; 4636 int ret; 4637 4638 /* 4639 * Still need to make sure the inode looks like it's been updated so 4640 * that any holes get logged if we fsync. 4641 */ 4642 if (btrfs_fs_incompat(fs_info, NO_HOLES)) { 4643 BTRFS_I(inode)->last_trans = fs_info->generation; 4644 BTRFS_I(inode)->last_sub_trans = root->log_transid; 4645 BTRFS_I(inode)->last_log_commit = root->last_log_commit; 4646 return 0; 4647 } 4648 4649 /* 4650 * 1 - for the one we're dropping 4651 * 1 - for the one we're adding 4652 * 1 - for updating the inode. 4653 */ 4654 trans = btrfs_start_transaction(root, 3); 4655 if (IS_ERR(trans)) 4656 return PTR_ERR(trans); 4657 4658 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); 4659 if (ret) { 4660 btrfs_abort_transaction(trans, ret); 4661 btrfs_end_transaction(trans); 4662 return ret; 4663 } 4664 4665 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), 4666 offset, 0, 0, len, 0, len, 0, 0, 0); 4667 if (ret) 4668 btrfs_abort_transaction(trans, ret); 4669 else 4670 btrfs_update_inode(trans, root, inode); 4671 btrfs_end_transaction(trans); 4672 return ret; 4673 } 4674 4675 /* 4676 * This function puts in dummy file extents for the area we're creating a hole 4677 * for. So if we are truncating this file to a larger size we need to insert 4678 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4679 * the range between oldsize and size 4680 */ 4681 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 4682 { 4683 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4684 struct btrfs_root *root = BTRFS_I(inode)->root; 4685 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4686 struct extent_map *em = NULL; 4687 struct extent_state *cached_state = NULL; 4688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4689 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4690 u64 block_end = ALIGN(size, fs_info->sectorsize); 4691 u64 last_byte; 4692 u64 cur_offset; 4693 u64 hole_size; 4694 int err = 0; 4695 4696 /* 4697 * If our size started in the middle of a block we need to zero out the 4698 * rest of the block before we expand the i_size, otherwise we could 4699 * expose stale data. 4700 */ 4701 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4702 if (err) 4703 return err; 4704 4705 if (size <= hole_start) 4706 return 0; 4707 4708 btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start, 4709 block_end - 1, &cached_state); 4710 cur_offset = hole_start; 4711 while (1) { 4712 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, 4713 block_end - cur_offset); 4714 if (IS_ERR(em)) { 4715 err = PTR_ERR(em); 4716 em = NULL; 4717 break; 4718 } 4719 last_byte = min(extent_map_end(em), block_end); 4720 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4721 hole_size = last_byte - cur_offset; 4722 4723 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4724 struct extent_map *hole_em; 4725 4726 err = maybe_insert_hole(root, inode, cur_offset, 4727 hole_size); 4728 if (err) 4729 break; 4730 4731 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4732 cur_offset, hole_size); 4733 if (err) 4734 break; 4735 4736 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 4737 cur_offset + hole_size - 1, 0); 4738 hole_em = alloc_extent_map(); 4739 if (!hole_em) { 4740 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 4741 &BTRFS_I(inode)->runtime_flags); 4742 goto next; 4743 } 4744 hole_em->start = cur_offset; 4745 hole_em->len = hole_size; 4746 hole_em->orig_start = cur_offset; 4747 4748 hole_em->block_start = EXTENT_MAP_HOLE; 4749 hole_em->block_len = 0; 4750 hole_em->orig_block_len = 0; 4751 hole_em->ram_bytes = hole_size; 4752 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4753 hole_em->generation = fs_info->generation; 4754 4755 while (1) { 4756 write_lock(&em_tree->lock); 4757 err = add_extent_mapping(em_tree, hole_em, 1); 4758 write_unlock(&em_tree->lock); 4759 if (err != -EEXIST) 4760 break; 4761 btrfs_drop_extent_cache(BTRFS_I(inode), 4762 cur_offset, 4763 cur_offset + 4764 hole_size - 1, 0); 4765 } 4766 free_extent_map(hole_em); 4767 } else { 4768 err = btrfs_inode_set_file_extent_range(BTRFS_I(inode), 4769 cur_offset, hole_size); 4770 if (err) 4771 break; 4772 } 4773 next: 4774 free_extent_map(em); 4775 em = NULL; 4776 cur_offset = last_byte; 4777 if (cur_offset >= block_end) 4778 break; 4779 } 4780 free_extent_map(em); 4781 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4782 return err; 4783 } 4784 4785 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4786 { 4787 struct btrfs_root *root = BTRFS_I(inode)->root; 4788 struct btrfs_trans_handle *trans; 4789 loff_t oldsize = i_size_read(inode); 4790 loff_t newsize = attr->ia_size; 4791 int mask = attr->ia_valid; 4792 int ret; 4793 4794 /* 4795 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4796 * special case where we need to update the times despite not having 4797 * these flags set. For all other operations the VFS set these flags 4798 * explicitly if it wants a timestamp update. 4799 */ 4800 if (newsize != oldsize) { 4801 inode_inc_iversion(inode); 4802 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4803 inode->i_ctime = inode->i_mtime = 4804 current_time(inode); 4805 } 4806 4807 if (newsize > oldsize) { 4808 /* 4809 * Don't do an expanding truncate while snapshotting is ongoing. 4810 * This is to ensure the snapshot captures a fully consistent 4811 * state of this file - if the snapshot captures this expanding 4812 * truncation, it must capture all writes that happened before 4813 * this truncation. 4814 */ 4815 btrfs_drew_write_lock(&root->snapshot_lock); 4816 ret = btrfs_cont_expand(inode, oldsize, newsize); 4817 if (ret) { 4818 btrfs_drew_write_unlock(&root->snapshot_lock); 4819 return ret; 4820 } 4821 4822 trans = btrfs_start_transaction(root, 1); 4823 if (IS_ERR(trans)) { 4824 btrfs_drew_write_unlock(&root->snapshot_lock); 4825 return PTR_ERR(trans); 4826 } 4827 4828 i_size_write(inode, newsize); 4829 btrfs_inode_safe_disk_i_size_write(inode, 0); 4830 pagecache_isize_extended(inode, oldsize, newsize); 4831 ret = btrfs_update_inode(trans, root, inode); 4832 btrfs_drew_write_unlock(&root->snapshot_lock); 4833 btrfs_end_transaction(trans); 4834 } else { 4835 4836 /* 4837 * We're truncating a file that used to have good data down to 4838 * zero. Make sure any new writes to the file get on disk 4839 * on close. 4840 */ 4841 if (newsize == 0) 4842 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 4843 &BTRFS_I(inode)->runtime_flags); 4844 4845 truncate_setsize(inode, newsize); 4846 4847 inode_dio_wait(inode); 4848 4849 ret = btrfs_truncate(inode, newsize == oldsize); 4850 if (ret && inode->i_nlink) { 4851 int err; 4852 4853 /* 4854 * Truncate failed, so fix up the in-memory size. We 4855 * adjusted disk_i_size down as we removed extents, so 4856 * wait for disk_i_size to be stable and then update the 4857 * in-memory size to match. 4858 */ 4859 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 4860 if (err) 4861 return err; 4862 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 4863 } 4864 } 4865 4866 return ret; 4867 } 4868 4869 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 4870 { 4871 struct inode *inode = d_inode(dentry); 4872 struct btrfs_root *root = BTRFS_I(inode)->root; 4873 int err; 4874 4875 if (btrfs_root_readonly(root)) 4876 return -EROFS; 4877 4878 err = setattr_prepare(dentry, attr); 4879 if (err) 4880 return err; 4881 4882 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 4883 err = btrfs_setsize(inode, attr); 4884 if (err) 4885 return err; 4886 } 4887 4888 if (attr->ia_valid) { 4889 setattr_copy(inode, attr); 4890 inode_inc_iversion(inode); 4891 err = btrfs_dirty_inode(inode); 4892 4893 if (!err && attr->ia_valid & ATTR_MODE) 4894 err = posix_acl_chmod(inode, inode->i_mode); 4895 } 4896 4897 return err; 4898 } 4899 4900 /* 4901 * While truncating the inode pages during eviction, we get the VFS calling 4902 * btrfs_invalidatepage() against each page of the inode. This is slow because 4903 * the calls to btrfs_invalidatepage() result in a huge amount of calls to 4904 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting 4905 * extent_state structures over and over, wasting lots of time. 4906 * 4907 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all 4908 * those expensive operations on a per page basis and do only the ordered io 4909 * finishing, while we release here the extent_map and extent_state structures, 4910 * without the excessive merging and splitting. 4911 */ 4912 static void evict_inode_truncate_pages(struct inode *inode) 4913 { 4914 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4915 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 4916 struct rb_node *node; 4917 4918 ASSERT(inode->i_state & I_FREEING); 4919 truncate_inode_pages_final(&inode->i_data); 4920 4921 write_lock(&map_tree->lock); 4922 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 4923 struct extent_map *em; 4924 4925 node = rb_first_cached(&map_tree->map); 4926 em = rb_entry(node, struct extent_map, rb_node); 4927 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 4928 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 4929 remove_extent_mapping(map_tree, em); 4930 free_extent_map(em); 4931 if (need_resched()) { 4932 write_unlock(&map_tree->lock); 4933 cond_resched(); 4934 write_lock(&map_tree->lock); 4935 } 4936 } 4937 write_unlock(&map_tree->lock); 4938 4939 /* 4940 * Keep looping until we have no more ranges in the io tree. 4941 * We can have ongoing bios started by readahead that have 4942 * their endio callback (extent_io.c:end_bio_extent_readpage) 4943 * still in progress (unlocked the pages in the bio but did not yet 4944 * unlocked the ranges in the io tree). Therefore this means some 4945 * ranges can still be locked and eviction started because before 4946 * submitting those bios, which are executed by a separate task (work 4947 * queue kthread), inode references (inode->i_count) were not taken 4948 * (which would be dropped in the end io callback of each bio). 4949 * Therefore here we effectively end up waiting for those bios and 4950 * anyone else holding locked ranges without having bumped the inode's 4951 * reference count - if we don't do it, when they access the inode's 4952 * io_tree to unlock a range it may be too late, leading to an 4953 * use-after-free issue. 4954 */ 4955 spin_lock(&io_tree->lock); 4956 while (!RB_EMPTY_ROOT(&io_tree->state)) { 4957 struct extent_state *state; 4958 struct extent_state *cached_state = NULL; 4959 u64 start; 4960 u64 end; 4961 unsigned state_flags; 4962 4963 node = rb_first(&io_tree->state); 4964 state = rb_entry(node, struct extent_state, rb_node); 4965 start = state->start; 4966 end = state->end; 4967 state_flags = state->state; 4968 spin_unlock(&io_tree->lock); 4969 4970 lock_extent_bits(io_tree, start, end, &cached_state); 4971 4972 /* 4973 * If still has DELALLOC flag, the extent didn't reach disk, 4974 * and its reserved space won't be freed by delayed_ref. 4975 * So we need to free its reserved space here. 4976 * (Refer to comment in btrfs_invalidatepage, case 2) 4977 * 4978 * Note, end is the bytenr of last byte, so we need + 1 here. 4979 */ 4980 if (state_flags & EXTENT_DELALLOC) 4981 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 4982 end - start + 1); 4983 4984 clear_extent_bit(io_tree, start, end, 4985 EXTENT_LOCKED | EXTENT_DELALLOC | 4986 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 4987 &cached_state); 4988 4989 cond_resched(); 4990 spin_lock(&io_tree->lock); 4991 } 4992 spin_unlock(&io_tree->lock); 4993 } 4994 4995 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 4996 struct btrfs_block_rsv *rsv) 4997 { 4998 struct btrfs_fs_info *fs_info = root->fs_info; 4999 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 5000 struct btrfs_trans_handle *trans; 5001 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5002 int ret; 5003 5004 /* 5005 * Eviction should be taking place at some place safe because of our 5006 * delayed iputs. However the normal flushing code will run delayed 5007 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5008 * 5009 * We reserve the delayed_refs_extra here again because we can't use 5010 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5011 * above. We reserve our extra bit here because we generate a ton of 5012 * delayed refs activity by truncating. 5013 * 5014 * If we cannot make our reservation we'll attempt to steal from the 5015 * global reserve, because we really want to be able to free up space. 5016 */ 5017 ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra, 5018 BTRFS_RESERVE_FLUSH_EVICT); 5019 if (ret) { 5020 /* 5021 * Try to steal from the global reserve if there is space for 5022 * it. 5023 */ 5024 if (btrfs_check_space_for_delayed_refs(fs_info) || 5025 btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) { 5026 btrfs_warn(fs_info, 5027 "could not allocate space for delete; will truncate on mount"); 5028 return ERR_PTR(-ENOSPC); 5029 } 5030 delayed_refs_extra = 0; 5031 } 5032 5033 trans = btrfs_join_transaction(root); 5034 if (IS_ERR(trans)) 5035 return trans; 5036 5037 if (delayed_refs_extra) { 5038 trans->block_rsv = &fs_info->trans_block_rsv; 5039 trans->bytes_reserved = delayed_refs_extra; 5040 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5041 delayed_refs_extra, 1); 5042 } 5043 return trans; 5044 } 5045 5046 void btrfs_evict_inode(struct inode *inode) 5047 { 5048 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5049 struct btrfs_trans_handle *trans; 5050 struct btrfs_root *root = BTRFS_I(inode)->root; 5051 struct btrfs_block_rsv *rsv; 5052 int ret; 5053 5054 trace_btrfs_inode_evict(inode); 5055 5056 if (!root) { 5057 clear_inode(inode); 5058 return; 5059 } 5060 5061 evict_inode_truncate_pages(inode); 5062 5063 if (inode->i_nlink && 5064 ((btrfs_root_refs(&root->root_item) != 0 && 5065 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5066 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5067 goto no_delete; 5068 5069 if (is_bad_inode(inode)) 5070 goto no_delete; 5071 5072 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5073 5074 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5075 goto no_delete; 5076 5077 if (inode->i_nlink > 0) { 5078 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5079 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5080 goto no_delete; 5081 } 5082 5083 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5084 if (ret) 5085 goto no_delete; 5086 5087 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5088 if (!rsv) 5089 goto no_delete; 5090 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5091 rsv->failfast = 1; 5092 5093 btrfs_i_size_write(BTRFS_I(inode), 0); 5094 5095 while (1) { 5096 trans = evict_refill_and_join(root, rsv); 5097 if (IS_ERR(trans)) 5098 goto free_rsv; 5099 5100 trans->block_rsv = rsv; 5101 5102 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 5103 trans->block_rsv = &fs_info->trans_block_rsv; 5104 btrfs_end_transaction(trans); 5105 btrfs_btree_balance_dirty(fs_info); 5106 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5107 goto free_rsv; 5108 else if (!ret) 5109 break; 5110 } 5111 5112 /* 5113 * Errors here aren't a big deal, it just means we leave orphan items in 5114 * the tree. They will be cleaned up on the next mount. If the inode 5115 * number gets reused, cleanup deletes the orphan item without doing 5116 * anything, and unlink reuses the existing orphan item. 5117 * 5118 * If it turns out that we are dropping too many of these, we might want 5119 * to add a mechanism for retrying these after a commit. 5120 */ 5121 trans = evict_refill_and_join(root, rsv); 5122 if (!IS_ERR(trans)) { 5123 trans->block_rsv = rsv; 5124 btrfs_orphan_del(trans, BTRFS_I(inode)); 5125 trans->block_rsv = &fs_info->trans_block_rsv; 5126 btrfs_end_transaction(trans); 5127 } 5128 5129 if (!(root == fs_info->tree_root || 5130 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 5131 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); 5132 5133 free_rsv: 5134 btrfs_free_block_rsv(fs_info, rsv); 5135 no_delete: 5136 /* 5137 * If we didn't successfully delete, the orphan item will still be in 5138 * the tree and we'll retry on the next mount. Again, we might also want 5139 * to retry these periodically in the future. 5140 */ 5141 btrfs_remove_delayed_node(BTRFS_I(inode)); 5142 clear_inode(inode); 5143 } 5144 5145 /* 5146 * Return the key found in the dir entry in the location pointer, fill @type 5147 * with BTRFS_FT_*, and return 0. 5148 * 5149 * If no dir entries were found, returns -ENOENT. 5150 * If found a corrupted location in dir entry, returns -EUCLEAN. 5151 */ 5152 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5153 struct btrfs_key *location, u8 *type) 5154 { 5155 const char *name = dentry->d_name.name; 5156 int namelen = dentry->d_name.len; 5157 struct btrfs_dir_item *di; 5158 struct btrfs_path *path; 5159 struct btrfs_root *root = BTRFS_I(dir)->root; 5160 int ret = 0; 5161 5162 path = btrfs_alloc_path(); 5163 if (!path) 5164 return -ENOMEM; 5165 5166 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5167 name, namelen, 0); 5168 if (IS_ERR_OR_NULL(di)) { 5169 ret = di ? PTR_ERR(di) : -ENOENT; 5170 goto out; 5171 } 5172 5173 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5174 if (location->type != BTRFS_INODE_ITEM_KEY && 5175 location->type != BTRFS_ROOT_ITEM_KEY) { 5176 ret = -EUCLEAN; 5177 btrfs_warn(root->fs_info, 5178 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5179 __func__, name, btrfs_ino(BTRFS_I(dir)), 5180 location->objectid, location->type, location->offset); 5181 } 5182 if (!ret) 5183 *type = btrfs_dir_type(path->nodes[0], di); 5184 out: 5185 btrfs_free_path(path); 5186 return ret; 5187 } 5188 5189 /* 5190 * when we hit a tree root in a directory, the btrfs part of the inode 5191 * needs to be changed to reflect the root directory of the tree root. This 5192 * is kind of like crossing a mount point. 5193 */ 5194 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5195 struct inode *dir, 5196 struct dentry *dentry, 5197 struct btrfs_key *location, 5198 struct btrfs_root **sub_root) 5199 { 5200 struct btrfs_path *path; 5201 struct btrfs_root *new_root; 5202 struct btrfs_root_ref *ref; 5203 struct extent_buffer *leaf; 5204 struct btrfs_key key; 5205 int ret; 5206 int err = 0; 5207 5208 path = btrfs_alloc_path(); 5209 if (!path) { 5210 err = -ENOMEM; 5211 goto out; 5212 } 5213 5214 err = -ENOENT; 5215 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5216 key.type = BTRFS_ROOT_REF_KEY; 5217 key.offset = location->objectid; 5218 5219 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5220 if (ret) { 5221 if (ret < 0) 5222 err = ret; 5223 goto out; 5224 } 5225 5226 leaf = path->nodes[0]; 5227 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5228 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5229 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5230 goto out; 5231 5232 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5233 (unsigned long)(ref + 1), 5234 dentry->d_name.len); 5235 if (ret) 5236 goto out; 5237 5238 btrfs_release_path(path); 5239 5240 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5241 if (IS_ERR(new_root)) { 5242 err = PTR_ERR(new_root); 5243 goto out; 5244 } 5245 5246 *sub_root = new_root; 5247 location->objectid = btrfs_root_dirid(&new_root->root_item); 5248 location->type = BTRFS_INODE_ITEM_KEY; 5249 location->offset = 0; 5250 err = 0; 5251 out: 5252 btrfs_free_path(path); 5253 return err; 5254 } 5255 5256 static void inode_tree_add(struct inode *inode) 5257 { 5258 struct btrfs_root *root = BTRFS_I(inode)->root; 5259 struct btrfs_inode *entry; 5260 struct rb_node **p; 5261 struct rb_node *parent; 5262 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5263 u64 ino = btrfs_ino(BTRFS_I(inode)); 5264 5265 if (inode_unhashed(inode)) 5266 return; 5267 parent = NULL; 5268 spin_lock(&root->inode_lock); 5269 p = &root->inode_tree.rb_node; 5270 while (*p) { 5271 parent = *p; 5272 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5273 5274 if (ino < btrfs_ino(entry)) 5275 p = &parent->rb_left; 5276 else if (ino > btrfs_ino(entry)) 5277 p = &parent->rb_right; 5278 else { 5279 WARN_ON(!(entry->vfs_inode.i_state & 5280 (I_WILL_FREE | I_FREEING))); 5281 rb_replace_node(parent, new, &root->inode_tree); 5282 RB_CLEAR_NODE(parent); 5283 spin_unlock(&root->inode_lock); 5284 return; 5285 } 5286 } 5287 rb_link_node(new, parent, p); 5288 rb_insert_color(new, &root->inode_tree); 5289 spin_unlock(&root->inode_lock); 5290 } 5291 5292 static void inode_tree_del(struct btrfs_inode *inode) 5293 { 5294 struct btrfs_root *root = inode->root; 5295 int empty = 0; 5296 5297 spin_lock(&root->inode_lock); 5298 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5299 rb_erase(&inode->rb_node, &root->inode_tree); 5300 RB_CLEAR_NODE(&inode->rb_node); 5301 empty = RB_EMPTY_ROOT(&root->inode_tree); 5302 } 5303 spin_unlock(&root->inode_lock); 5304 5305 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5306 spin_lock(&root->inode_lock); 5307 empty = RB_EMPTY_ROOT(&root->inode_tree); 5308 spin_unlock(&root->inode_lock); 5309 if (empty) 5310 btrfs_add_dead_root(root); 5311 } 5312 } 5313 5314 5315 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5316 { 5317 struct btrfs_iget_args *args = p; 5318 5319 inode->i_ino = args->ino; 5320 BTRFS_I(inode)->location.objectid = args->ino; 5321 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5322 BTRFS_I(inode)->location.offset = 0; 5323 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5324 BUG_ON(args->root && !BTRFS_I(inode)->root); 5325 return 0; 5326 } 5327 5328 static int btrfs_find_actor(struct inode *inode, void *opaque) 5329 { 5330 struct btrfs_iget_args *args = opaque; 5331 5332 return args->ino == BTRFS_I(inode)->location.objectid && 5333 args->root == BTRFS_I(inode)->root; 5334 } 5335 5336 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5337 struct btrfs_root *root) 5338 { 5339 struct inode *inode; 5340 struct btrfs_iget_args args; 5341 unsigned long hashval = btrfs_inode_hash(ino, root); 5342 5343 args.ino = ino; 5344 args.root = root; 5345 5346 inode = iget5_locked(s, hashval, btrfs_find_actor, 5347 btrfs_init_locked_inode, 5348 (void *)&args); 5349 return inode; 5350 } 5351 5352 /* 5353 * Get an inode object given its inode number and corresponding root. 5354 * Path can be preallocated to prevent recursing back to iget through 5355 * allocator. NULL is also valid but may require an additional allocation 5356 * later. 5357 */ 5358 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5359 struct btrfs_root *root, struct btrfs_path *path) 5360 { 5361 struct inode *inode; 5362 5363 inode = btrfs_iget_locked(s, ino, root); 5364 if (!inode) 5365 return ERR_PTR(-ENOMEM); 5366 5367 if (inode->i_state & I_NEW) { 5368 int ret; 5369 5370 ret = btrfs_read_locked_inode(inode, path); 5371 if (!ret) { 5372 inode_tree_add(inode); 5373 unlock_new_inode(inode); 5374 } else { 5375 iget_failed(inode); 5376 /* 5377 * ret > 0 can come from btrfs_search_slot called by 5378 * btrfs_read_locked_inode, this means the inode item 5379 * was not found. 5380 */ 5381 if (ret > 0) 5382 ret = -ENOENT; 5383 inode = ERR_PTR(ret); 5384 } 5385 } 5386 5387 return inode; 5388 } 5389 5390 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5391 { 5392 return btrfs_iget_path(s, ino, root, NULL); 5393 } 5394 5395 static struct inode *new_simple_dir(struct super_block *s, 5396 struct btrfs_key *key, 5397 struct btrfs_root *root) 5398 { 5399 struct inode *inode = new_inode(s); 5400 5401 if (!inode) 5402 return ERR_PTR(-ENOMEM); 5403 5404 BTRFS_I(inode)->root = btrfs_grab_root(root); 5405 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5406 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5407 5408 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5409 /* 5410 * We only need lookup, the rest is read-only and there's no inode 5411 * associated with the dentry 5412 */ 5413 inode->i_op = &simple_dir_inode_operations; 5414 inode->i_opflags &= ~IOP_XATTR; 5415 inode->i_fop = &simple_dir_operations; 5416 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5417 inode->i_mtime = current_time(inode); 5418 inode->i_atime = inode->i_mtime; 5419 inode->i_ctime = inode->i_mtime; 5420 BTRFS_I(inode)->i_otime = inode->i_mtime; 5421 5422 return inode; 5423 } 5424 5425 static inline u8 btrfs_inode_type(struct inode *inode) 5426 { 5427 /* 5428 * Compile-time asserts that generic FT_* types still match 5429 * BTRFS_FT_* types 5430 */ 5431 BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN); 5432 BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE); 5433 BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR); 5434 BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV); 5435 BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV); 5436 BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO); 5437 BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK); 5438 BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK); 5439 5440 return fs_umode_to_ftype(inode->i_mode); 5441 } 5442 5443 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5444 { 5445 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5446 struct inode *inode; 5447 struct btrfs_root *root = BTRFS_I(dir)->root; 5448 struct btrfs_root *sub_root = root; 5449 struct btrfs_key location; 5450 u8 di_type = 0; 5451 int ret = 0; 5452 5453 if (dentry->d_name.len > BTRFS_NAME_LEN) 5454 return ERR_PTR(-ENAMETOOLONG); 5455 5456 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5457 if (ret < 0) 5458 return ERR_PTR(ret); 5459 5460 if (location.type == BTRFS_INODE_ITEM_KEY) { 5461 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5462 if (IS_ERR(inode)) 5463 return inode; 5464 5465 /* Do extra check against inode mode with di_type */ 5466 if (btrfs_inode_type(inode) != di_type) { 5467 btrfs_crit(fs_info, 5468 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5469 inode->i_mode, btrfs_inode_type(inode), 5470 di_type); 5471 iput(inode); 5472 return ERR_PTR(-EUCLEAN); 5473 } 5474 return inode; 5475 } 5476 5477 ret = fixup_tree_root_location(fs_info, dir, dentry, 5478 &location, &sub_root); 5479 if (ret < 0) { 5480 if (ret != -ENOENT) 5481 inode = ERR_PTR(ret); 5482 else 5483 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5484 } else { 5485 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5486 } 5487 if (root != sub_root) 5488 btrfs_put_root(sub_root); 5489 5490 if (!IS_ERR(inode) && root != sub_root) { 5491 down_read(&fs_info->cleanup_work_sem); 5492 if (!sb_rdonly(inode->i_sb)) 5493 ret = btrfs_orphan_cleanup(sub_root); 5494 up_read(&fs_info->cleanup_work_sem); 5495 if (ret) { 5496 iput(inode); 5497 inode = ERR_PTR(ret); 5498 } 5499 } 5500 5501 return inode; 5502 } 5503 5504 static int btrfs_dentry_delete(const struct dentry *dentry) 5505 { 5506 struct btrfs_root *root; 5507 struct inode *inode = d_inode(dentry); 5508 5509 if (!inode && !IS_ROOT(dentry)) 5510 inode = d_inode(dentry->d_parent); 5511 5512 if (inode) { 5513 root = BTRFS_I(inode)->root; 5514 if (btrfs_root_refs(&root->root_item) == 0) 5515 return 1; 5516 5517 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5518 return 1; 5519 } 5520 return 0; 5521 } 5522 5523 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5524 unsigned int flags) 5525 { 5526 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5527 5528 if (inode == ERR_PTR(-ENOENT)) 5529 inode = NULL; 5530 return d_splice_alias(inode, dentry); 5531 } 5532 5533 /* 5534 * All this infrastructure exists because dir_emit can fault, and we are holding 5535 * the tree lock when doing readdir. For now just allocate a buffer and copy 5536 * our information into that, and then dir_emit from the buffer. This is 5537 * similar to what NFS does, only we don't keep the buffer around in pagecache 5538 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5539 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5540 * tree lock. 5541 */ 5542 static int btrfs_opendir(struct inode *inode, struct file *file) 5543 { 5544 struct btrfs_file_private *private; 5545 5546 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5547 if (!private) 5548 return -ENOMEM; 5549 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5550 if (!private->filldir_buf) { 5551 kfree(private); 5552 return -ENOMEM; 5553 } 5554 file->private_data = private; 5555 return 0; 5556 } 5557 5558 struct dir_entry { 5559 u64 ino; 5560 u64 offset; 5561 unsigned type; 5562 int name_len; 5563 }; 5564 5565 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5566 { 5567 while (entries--) { 5568 struct dir_entry *entry = addr; 5569 char *name = (char *)(entry + 1); 5570 5571 ctx->pos = get_unaligned(&entry->offset); 5572 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5573 get_unaligned(&entry->ino), 5574 get_unaligned(&entry->type))) 5575 return 1; 5576 addr += sizeof(struct dir_entry) + 5577 get_unaligned(&entry->name_len); 5578 ctx->pos++; 5579 } 5580 return 0; 5581 } 5582 5583 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5584 { 5585 struct inode *inode = file_inode(file); 5586 struct btrfs_root *root = BTRFS_I(inode)->root; 5587 struct btrfs_file_private *private = file->private_data; 5588 struct btrfs_dir_item *di; 5589 struct btrfs_key key; 5590 struct btrfs_key found_key; 5591 struct btrfs_path *path; 5592 void *addr; 5593 struct list_head ins_list; 5594 struct list_head del_list; 5595 int ret; 5596 struct extent_buffer *leaf; 5597 int slot; 5598 char *name_ptr; 5599 int name_len; 5600 int entries = 0; 5601 int total_len = 0; 5602 bool put = false; 5603 struct btrfs_key location; 5604 5605 if (!dir_emit_dots(file, ctx)) 5606 return 0; 5607 5608 path = btrfs_alloc_path(); 5609 if (!path) 5610 return -ENOMEM; 5611 5612 addr = private->filldir_buf; 5613 path->reada = READA_FORWARD; 5614 5615 INIT_LIST_HEAD(&ins_list); 5616 INIT_LIST_HEAD(&del_list); 5617 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5618 5619 again: 5620 key.type = BTRFS_DIR_INDEX_KEY; 5621 key.offset = ctx->pos; 5622 key.objectid = btrfs_ino(BTRFS_I(inode)); 5623 5624 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5625 if (ret < 0) 5626 goto err; 5627 5628 while (1) { 5629 struct dir_entry *entry; 5630 5631 leaf = path->nodes[0]; 5632 slot = path->slots[0]; 5633 if (slot >= btrfs_header_nritems(leaf)) { 5634 ret = btrfs_next_leaf(root, path); 5635 if (ret < 0) 5636 goto err; 5637 else if (ret > 0) 5638 break; 5639 continue; 5640 } 5641 5642 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5643 5644 if (found_key.objectid != key.objectid) 5645 break; 5646 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5647 break; 5648 if (found_key.offset < ctx->pos) 5649 goto next; 5650 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5651 goto next; 5652 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5653 name_len = btrfs_dir_name_len(leaf, di); 5654 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5655 PAGE_SIZE) { 5656 btrfs_release_path(path); 5657 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5658 if (ret) 5659 goto nopos; 5660 addr = private->filldir_buf; 5661 entries = 0; 5662 total_len = 0; 5663 goto again; 5664 } 5665 5666 entry = addr; 5667 put_unaligned(name_len, &entry->name_len); 5668 name_ptr = (char *)(entry + 1); 5669 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5670 name_len); 5671 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5672 &entry->type); 5673 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5674 put_unaligned(location.objectid, &entry->ino); 5675 put_unaligned(found_key.offset, &entry->offset); 5676 entries++; 5677 addr += sizeof(struct dir_entry) + name_len; 5678 total_len += sizeof(struct dir_entry) + name_len; 5679 next: 5680 path->slots[0]++; 5681 } 5682 btrfs_release_path(path); 5683 5684 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5685 if (ret) 5686 goto nopos; 5687 5688 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5689 if (ret) 5690 goto nopos; 5691 5692 /* 5693 * Stop new entries from being returned after we return the last 5694 * entry. 5695 * 5696 * New directory entries are assigned a strictly increasing 5697 * offset. This means that new entries created during readdir 5698 * are *guaranteed* to be seen in the future by that readdir. 5699 * This has broken buggy programs which operate on names as 5700 * they're returned by readdir. Until we re-use freed offsets 5701 * we have this hack to stop new entries from being returned 5702 * under the assumption that they'll never reach this huge 5703 * offset. 5704 * 5705 * This is being careful not to overflow 32bit loff_t unless the 5706 * last entry requires it because doing so has broken 32bit apps 5707 * in the past. 5708 */ 5709 if (ctx->pos >= INT_MAX) 5710 ctx->pos = LLONG_MAX; 5711 else 5712 ctx->pos = INT_MAX; 5713 nopos: 5714 ret = 0; 5715 err: 5716 if (put) 5717 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5718 btrfs_free_path(path); 5719 return ret; 5720 } 5721 5722 /* 5723 * This is somewhat expensive, updating the tree every time the 5724 * inode changes. But, it is most likely to find the inode in cache. 5725 * FIXME, needs more benchmarking...there are no reasons other than performance 5726 * to keep or drop this code. 5727 */ 5728 static int btrfs_dirty_inode(struct inode *inode) 5729 { 5730 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5731 struct btrfs_root *root = BTRFS_I(inode)->root; 5732 struct btrfs_trans_handle *trans; 5733 int ret; 5734 5735 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5736 return 0; 5737 5738 trans = btrfs_join_transaction(root); 5739 if (IS_ERR(trans)) 5740 return PTR_ERR(trans); 5741 5742 ret = btrfs_update_inode(trans, root, inode); 5743 if (ret && ret == -ENOSPC) { 5744 /* whoops, lets try again with the full transaction */ 5745 btrfs_end_transaction(trans); 5746 trans = btrfs_start_transaction(root, 1); 5747 if (IS_ERR(trans)) 5748 return PTR_ERR(trans); 5749 5750 ret = btrfs_update_inode(trans, root, inode); 5751 } 5752 btrfs_end_transaction(trans); 5753 if (BTRFS_I(inode)->delayed_node) 5754 btrfs_balance_delayed_items(fs_info); 5755 5756 return ret; 5757 } 5758 5759 /* 5760 * This is a copy of file_update_time. We need this so we can return error on 5761 * ENOSPC for updating the inode in the case of file write and mmap writes. 5762 */ 5763 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5764 int flags) 5765 { 5766 struct btrfs_root *root = BTRFS_I(inode)->root; 5767 bool dirty = flags & ~S_VERSION; 5768 5769 if (btrfs_root_readonly(root)) 5770 return -EROFS; 5771 5772 if (flags & S_VERSION) 5773 dirty |= inode_maybe_inc_iversion(inode, dirty); 5774 if (flags & S_CTIME) 5775 inode->i_ctime = *now; 5776 if (flags & S_MTIME) 5777 inode->i_mtime = *now; 5778 if (flags & S_ATIME) 5779 inode->i_atime = *now; 5780 return dirty ? btrfs_dirty_inode(inode) : 0; 5781 } 5782 5783 /* 5784 * find the highest existing sequence number in a directory 5785 * and then set the in-memory index_cnt variable to reflect 5786 * free sequence numbers 5787 */ 5788 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5789 { 5790 struct btrfs_root *root = inode->root; 5791 struct btrfs_key key, found_key; 5792 struct btrfs_path *path; 5793 struct extent_buffer *leaf; 5794 int ret; 5795 5796 key.objectid = btrfs_ino(inode); 5797 key.type = BTRFS_DIR_INDEX_KEY; 5798 key.offset = (u64)-1; 5799 5800 path = btrfs_alloc_path(); 5801 if (!path) 5802 return -ENOMEM; 5803 5804 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5805 if (ret < 0) 5806 goto out; 5807 /* FIXME: we should be able to handle this */ 5808 if (ret == 0) 5809 goto out; 5810 ret = 0; 5811 5812 /* 5813 * MAGIC NUMBER EXPLANATION: 5814 * since we search a directory based on f_pos we have to start at 2 5815 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 5816 * else has to start at 2 5817 */ 5818 if (path->slots[0] == 0) { 5819 inode->index_cnt = 2; 5820 goto out; 5821 } 5822 5823 path->slots[0]--; 5824 5825 leaf = path->nodes[0]; 5826 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5827 5828 if (found_key.objectid != btrfs_ino(inode) || 5829 found_key.type != BTRFS_DIR_INDEX_KEY) { 5830 inode->index_cnt = 2; 5831 goto out; 5832 } 5833 5834 inode->index_cnt = found_key.offset + 1; 5835 out: 5836 btrfs_free_path(path); 5837 return ret; 5838 } 5839 5840 /* 5841 * helper to find a free sequence number in a given directory. This current 5842 * code is very simple, later versions will do smarter things in the btree 5843 */ 5844 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 5845 { 5846 int ret = 0; 5847 5848 if (dir->index_cnt == (u64)-1) { 5849 ret = btrfs_inode_delayed_dir_index_count(dir); 5850 if (ret) { 5851 ret = btrfs_set_inode_index_count(dir); 5852 if (ret) 5853 return ret; 5854 } 5855 } 5856 5857 *index = dir->index_cnt; 5858 dir->index_cnt++; 5859 5860 return ret; 5861 } 5862 5863 static int btrfs_insert_inode_locked(struct inode *inode) 5864 { 5865 struct btrfs_iget_args args; 5866 5867 args.ino = BTRFS_I(inode)->location.objectid; 5868 args.root = BTRFS_I(inode)->root; 5869 5870 return insert_inode_locked4(inode, 5871 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 5872 btrfs_find_actor, &args); 5873 } 5874 5875 /* 5876 * Inherit flags from the parent inode. 5877 * 5878 * Currently only the compression flags and the cow flags are inherited. 5879 */ 5880 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 5881 { 5882 unsigned int flags; 5883 5884 if (!dir) 5885 return; 5886 5887 flags = BTRFS_I(dir)->flags; 5888 5889 if (flags & BTRFS_INODE_NOCOMPRESS) { 5890 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 5891 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 5892 } else if (flags & BTRFS_INODE_COMPRESS) { 5893 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 5894 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 5895 } 5896 5897 if (flags & BTRFS_INODE_NODATACOW) { 5898 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 5899 if (S_ISREG(inode->i_mode)) 5900 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 5901 } 5902 5903 btrfs_sync_inode_flags_to_i_flags(inode); 5904 } 5905 5906 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 5907 struct btrfs_root *root, 5908 struct inode *dir, 5909 const char *name, int name_len, 5910 u64 ref_objectid, u64 objectid, 5911 umode_t mode, u64 *index) 5912 { 5913 struct btrfs_fs_info *fs_info = root->fs_info; 5914 struct inode *inode; 5915 struct btrfs_inode_item *inode_item; 5916 struct btrfs_key *location; 5917 struct btrfs_path *path; 5918 struct btrfs_inode_ref *ref; 5919 struct btrfs_key key[2]; 5920 u32 sizes[2]; 5921 int nitems = name ? 2 : 1; 5922 unsigned long ptr; 5923 unsigned int nofs_flag; 5924 int ret; 5925 5926 path = btrfs_alloc_path(); 5927 if (!path) 5928 return ERR_PTR(-ENOMEM); 5929 5930 nofs_flag = memalloc_nofs_save(); 5931 inode = new_inode(fs_info->sb); 5932 memalloc_nofs_restore(nofs_flag); 5933 if (!inode) { 5934 btrfs_free_path(path); 5935 return ERR_PTR(-ENOMEM); 5936 } 5937 5938 /* 5939 * O_TMPFILE, set link count to 0, so that after this point, 5940 * we fill in an inode item with the correct link count. 5941 */ 5942 if (!name) 5943 set_nlink(inode, 0); 5944 5945 /* 5946 * we have to initialize this early, so we can reclaim the inode 5947 * number if we fail afterwards in this function. 5948 */ 5949 inode->i_ino = objectid; 5950 5951 if (dir && name) { 5952 trace_btrfs_inode_request(dir); 5953 5954 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 5955 if (ret) { 5956 btrfs_free_path(path); 5957 iput(inode); 5958 return ERR_PTR(ret); 5959 } 5960 } else if (dir) { 5961 *index = 0; 5962 } 5963 /* 5964 * index_cnt is ignored for everything but a dir, 5965 * btrfs_set_inode_index_count has an explanation for the magic 5966 * number 5967 */ 5968 BTRFS_I(inode)->index_cnt = 2; 5969 BTRFS_I(inode)->dir_index = *index; 5970 BTRFS_I(inode)->root = btrfs_grab_root(root); 5971 BTRFS_I(inode)->generation = trans->transid; 5972 inode->i_generation = BTRFS_I(inode)->generation; 5973 5974 /* 5975 * We could have gotten an inode number from somebody who was fsynced 5976 * and then removed in this same transaction, so let's just set full 5977 * sync since it will be a full sync anyway and this will blow away the 5978 * old info in the log. 5979 */ 5980 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 5981 5982 key[0].objectid = objectid; 5983 key[0].type = BTRFS_INODE_ITEM_KEY; 5984 key[0].offset = 0; 5985 5986 sizes[0] = sizeof(struct btrfs_inode_item); 5987 5988 if (name) { 5989 /* 5990 * Start new inodes with an inode_ref. This is slightly more 5991 * efficient for small numbers of hard links since they will 5992 * be packed into one item. Extended refs will kick in if we 5993 * add more hard links than can fit in the ref item. 5994 */ 5995 key[1].objectid = objectid; 5996 key[1].type = BTRFS_INODE_REF_KEY; 5997 key[1].offset = ref_objectid; 5998 5999 sizes[1] = name_len + sizeof(*ref); 6000 } 6001 6002 location = &BTRFS_I(inode)->location; 6003 location->objectid = objectid; 6004 location->offset = 0; 6005 location->type = BTRFS_INODE_ITEM_KEY; 6006 6007 ret = btrfs_insert_inode_locked(inode); 6008 if (ret < 0) { 6009 iput(inode); 6010 goto fail; 6011 } 6012 6013 path->leave_spinning = 1; 6014 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); 6015 if (ret != 0) 6016 goto fail_unlock; 6017 6018 inode_init_owner(inode, dir, mode); 6019 inode_set_bytes(inode, 0); 6020 6021 inode->i_mtime = current_time(inode); 6022 inode->i_atime = inode->i_mtime; 6023 inode->i_ctime = inode->i_mtime; 6024 BTRFS_I(inode)->i_otime = inode->i_mtime; 6025 6026 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6027 struct btrfs_inode_item); 6028 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6029 sizeof(*inode_item)); 6030 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6031 6032 if (name) { 6033 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6034 struct btrfs_inode_ref); 6035 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6036 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6037 ptr = (unsigned long)(ref + 1); 6038 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6039 } 6040 6041 btrfs_mark_buffer_dirty(path->nodes[0]); 6042 btrfs_free_path(path); 6043 6044 btrfs_inherit_iflags(inode, dir); 6045 6046 if (S_ISREG(mode)) { 6047 if (btrfs_test_opt(fs_info, NODATASUM)) 6048 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6049 if (btrfs_test_opt(fs_info, NODATACOW)) 6050 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6051 BTRFS_INODE_NODATASUM; 6052 } 6053 6054 inode_tree_add(inode); 6055 6056 trace_btrfs_inode_new(inode); 6057 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6058 6059 btrfs_update_root_times(trans, root); 6060 6061 ret = btrfs_inode_inherit_props(trans, inode, dir); 6062 if (ret) 6063 btrfs_err(fs_info, 6064 "error inheriting props for ino %llu (root %llu): %d", 6065 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6066 6067 return inode; 6068 6069 fail_unlock: 6070 discard_new_inode(inode); 6071 fail: 6072 if (dir && name) 6073 BTRFS_I(dir)->index_cnt--; 6074 btrfs_free_path(path); 6075 return ERR_PTR(ret); 6076 } 6077 6078 /* 6079 * utility function to add 'inode' into 'parent_inode' with 6080 * a give name and a given sequence number. 6081 * if 'add_backref' is true, also insert a backref from the 6082 * inode to the parent directory. 6083 */ 6084 int btrfs_add_link(struct btrfs_trans_handle *trans, 6085 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6086 const char *name, int name_len, int add_backref, u64 index) 6087 { 6088 int ret = 0; 6089 struct btrfs_key key; 6090 struct btrfs_root *root = parent_inode->root; 6091 u64 ino = btrfs_ino(inode); 6092 u64 parent_ino = btrfs_ino(parent_inode); 6093 6094 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6095 memcpy(&key, &inode->root->root_key, sizeof(key)); 6096 } else { 6097 key.objectid = ino; 6098 key.type = BTRFS_INODE_ITEM_KEY; 6099 key.offset = 0; 6100 } 6101 6102 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6103 ret = btrfs_add_root_ref(trans, key.objectid, 6104 root->root_key.objectid, parent_ino, 6105 index, name, name_len); 6106 } else if (add_backref) { 6107 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6108 parent_ino, index); 6109 } 6110 6111 /* Nothing to clean up yet */ 6112 if (ret) 6113 return ret; 6114 6115 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6116 btrfs_inode_type(&inode->vfs_inode), index); 6117 if (ret == -EEXIST || ret == -EOVERFLOW) 6118 goto fail_dir_item; 6119 else if (ret) { 6120 btrfs_abort_transaction(trans, ret); 6121 return ret; 6122 } 6123 6124 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6125 name_len * 2); 6126 inode_inc_iversion(&parent_inode->vfs_inode); 6127 /* 6128 * If we are replaying a log tree, we do not want to update the mtime 6129 * and ctime of the parent directory with the current time, since the 6130 * log replay procedure is responsible for setting them to their correct 6131 * values (the ones it had when the fsync was done). 6132 */ 6133 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6134 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6135 6136 parent_inode->vfs_inode.i_mtime = now; 6137 parent_inode->vfs_inode.i_ctime = now; 6138 } 6139 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); 6140 if (ret) 6141 btrfs_abort_transaction(trans, ret); 6142 return ret; 6143 6144 fail_dir_item: 6145 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6146 u64 local_index; 6147 int err; 6148 err = btrfs_del_root_ref(trans, key.objectid, 6149 root->root_key.objectid, parent_ino, 6150 &local_index, name, name_len); 6151 if (err) 6152 btrfs_abort_transaction(trans, err); 6153 } else if (add_backref) { 6154 u64 local_index; 6155 int err; 6156 6157 err = btrfs_del_inode_ref(trans, root, name, name_len, 6158 ino, parent_ino, &local_index); 6159 if (err) 6160 btrfs_abort_transaction(trans, err); 6161 } 6162 6163 /* Return the original error code */ 6164 return ret; 6165 } 6166 6167 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6168 struct btrfs_inode *dir, struct dentry *dentry, 6169 struct btrfs_inode *inode, int backref, u64 index) 6170 { 6171 int err = btrfs_add_link(trans, dir, inode, 6172 dentry->d_name.name, dentry->d_name.len, 6173 backref, index); 6174 if (err > 0) 6175 err = -EEXIST; 6176 return err; 6177 } 6178 6179 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 6180 umode_t mode, dev_t rdev) 6181 { 6182 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6183 struct btrfs_trans_handle *trans; 6184 struct btrfs_root *root = BTRFS_I(dir)->root; 6185 struct inode *inode = NULL; 6186 int err; 6187 u64 objectid; 6188 u64 index = 0; 6189 6190 /* 6191 * 2 for inode item and ref 6192 * 2 for dir items 6193 * 1 for xattr if selinux is on 6194 */ 6195 trans = btrfs_start_transaction(root, 5); 6196 if (IS_ERR(trans)) 6197 return PTR_ERR(trans); 6198 6199 err = btrfs_find_free_ino(root, &objectid); 6200 if (err) 6201 goto out_unlock; 6202 6203 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6204 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6205 mode, &index); 6206 if (IS_ERR(inode)) { 6207 err = PTR_ERR(inode); 6208 inode = NULL; 6209 goto out_unlock; 6210 } 6211 6212 /* 6213 * If the active LSM wants to access the inode during 6214 * d_instantiate it needs these. Smack checks to see 6215 * if the filesystem supports xattrs by looking at the 6216 * ops vector. 6217 */ 6218 inode->i_op = &btrfs_special_inode_operations; 6219 init_special_inode(inode, inode->i_mode, rdev); 6220 6221 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6222 if (err) 6223 goto out_unlock; 6224 6225 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6226 0, index); 6227 if (err) 6228 goto out_unlock; 6229 6230 btrfs_update_inode(trans, root, inode); 6231 d_instantiate_new(dentry, inode); 6232 6233 out_unlock: 6234 btrfs_end_transaction(trans); 6235 btrfs_btree_balance_dirty(fs_info); 6236 if (err && inode) { 6237 inode_dec_link_count(inode); 6238 discard_new_inode(inode); 6239 } 6240 return err; 6241 } 6242 6243 static int btrfs_create(struct inode *dir, struct dentry *dentry, 6244 umode_t mode, bool excl) 6245 { 6246 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6247 struct btrfs_trans_handle *trans; 6248 struct btrfs_root *root = BTRFS_I(dir)->root; 6249 struct inode *inode = NULL; 6250 int err; 6251 u64 objectid; 6252 u64 index = 0; 6253 6254 /* 6255 * 2 for inode item and ref 6256 * 2 for dir items 6257 * 1 for xattr if selinux is on 6258 */ 6259 trans = btrfs_start_transaction(root, 5); 6260 if (IS_ERR(trans)) 6261 return PTR_ERR(trans); 6262 6263 err = btrfs_find_free_ino(root, &objectid); 6264 if (err) 6265 goto out_unlock; 6266 6267 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6268 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6269 mode, &index); 6270 if (IS_ERR(inode)) { 6271 err = PTR_ERR(inode); 6272 inode = NULL; 6273 goto out_unlock; 6274 } 6275 /* 6276 * If the active LSM wants to access the inode during 6277 * d_instantiate it needs these. Smack checks to see 6278 * if the filesystem supports xattrs by looking at the 6279 * ops vector. 6280 */ 6281 inode->i_fop = &btrfs_file_operations; 6282 inode->i_op = &btrfs_file_inode_operations; 6283 inode->i_mapping->a_ops = &btrfs_aops; 6284 6285 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6286 if (err) 6287 goto out_unlock; 6288 6289 err = btrfs_update_inode(trans, root, inode); 6290 if (err) 6291 goto out_unlock; 6292 6293 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6294 0, index); 6295 if (err) 6296 goto out_unlock; 6297 6298 d_instantiate_new(dentry, inode); 6299 6300 out_unlock: 6301 btrfs_end_transaction(trans); 6302 if (err && inode) { 6303 inode_dec_link_count(inode); 6304 discard_new_inode(inode); 6305 } 6306 btrfs_btree_balance_dirty(fs_info); 6307 return err; 6308 } 6309 6310 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6311 struct dentry *dentry) 6312 { 6313 struct btrfs_trans_handle *trans = NULL; 6314 struct btrfs_root *root = BTRFS_I(dir)->root; 6315 struct inode *inode = d_inode(old_dentry); 6316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6317 u64 index; 6318 int err; 6319 int drop_inode = 0; 6320 6321 /* do not allow sys_link's with other subvols of the same device */ 6322 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6323 return -EXDEV; 6324 6325 if (inode->i_nlink >= BTRFS_LINK_MAX) 6326 return -EMLINK; 6327 6328 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6329 if (err) 6330 goto fail; 6331 6332 /* 6333 * 2 items for inode and inode ref 6334 * 2 items for dir items 6335 * 1 item for parent inode 6336 * 1 item for orphan item deletion if O_TMPFILE 6337 */ 6338 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6339 if (IS_ERR(trans)) { 6340 err = PTR_ERR(trans); 6341 trans = NULL; 6342 goto fail; 6343 } 6344 6345 /* There are several dir indexes for this inode, clear the cache. */ 6346 BTRFS_I(inode)->dir_index = 0ULL; 6347 inc_nlink(inode); 6348 inode_inc_iversion(inode); 6349 inode->i_ctime = current_time(inode); 6350 ihold(inode); 6351 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6352 6353 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6354 1, index); 6355 6356 if (err) { 6357 drop_inode = 1; 6358 } else { 6359 struct dentry *parent = dentry->d_parent; 6360 6361 err = btrfs_update_inode(trans, root, inode); 6362 if (err) 6363 goto fail; 6364 if (inode->i_nlink == 1) { 6365 /* 6366 * If new hard link count is 1, it's a file created 6367 * with open(2) O_TMPFILE flag. 6368 */ 6369 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6370 if (err) 6371 goto fail; 6372 } 6373 d_instantiate(dentry, inode); 6374 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent); 6375 } 6376 6377 fail: 6378 if (trans) 6379 btrfs_end_transaction(trans); 6380 if (drop_inode) { 6381 inode_dec_link_count(inode); 6382 iput(inode); 6383 } 6384 btrfs_btree_balance_dirty(fs_info); 6385 return err; 6386 } 6387 6388 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 6389 { 6390 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6391 struct inode *inode = NULL; 6392 struct btrfs_trans_handle *trans; 6393 struct btrfs_root *root = BTRFS_I(dir)->root; 6394 int err = 0; 6395 u64 objectid = 0; 6396 u64 index = 0; 6397 6398 /* 6399 * 2 items for inode and ref 6400 * 2 items for dir items 6401 * 1 for xattr if selinux is on 6402 */ 6403 trans = btrfs_start_transaction(root, 5); 6404 if (IS_ERR(trans)) 6405 return PTR_ERR(trans); 6406 6407 err = btrfs_find_free_ino(root, &objectid); 6408 if (err) 6409 goto out_fail; 6410 6411 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6412 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, 6413 S_IFDIR | mode, &index); 6414 if (IS_ERR(inode)) { 6415 err = PTR_ERR(inode); 6416 inode = NULL; 6417 goto out_fail; 6418 } 6419 6420 /* these must be set before we unlock the inode */ 6421 inode->i_op = &btrfs_dir_inode_operations; 6422 inode->i_fop = &btrfs_dir_file_operations; 6423 6424 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6425 if (err) 6426 goto out_fail; 6427 6428 btrfs_i_size_write(BTRFS_I(inode), 0); 6429 err = btrfs_update_inode(trans, root, inode); 6430 if (err) 6431 goto out_fail; 6432 6433 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6434 dentry->d_name.name, 6435 dentry->d_name.len, 0, index); 6436 if (err) 6437 goto out_fail; 6438 6439 d_instantiate_new(dentry, inode); 6440 6441 out_fail: 6442 btrfs_end_transaction(trans); 6443 if (err && inode) { 6444 inode_dec_link_count(inode); 6445 discard_new_inode(inode); 6446 } 6447 btrfs_btree_balance_dirty(fs_info); 6448 return err; 6449 } 6450 6451 static noinline int uncompress_inline(struct btrfs_path *path, 6452 struct page *page, 6453 size_t pg_offset, u64 extent_offset, 6454 struct btrfs_file_extent_item *item) 6455 { 6456 int ret; 6457 struct extent_buffer *leaf = path->nodes[0]; 6458 char *tmp; 6459 size_t max_size; 6460 unsigned long inline_size; 6461 unsigned long ptr; 6462 int compress_type; 6463 6464 WARN_ON(pg_offset != 0); 6465 compress_type = btrfs_file_extent_compression(leaf, item); 6466 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6467 inline_size = btrfs_file_extent_inline_item_len(leaf, 6468 btrfs_item_nr(path->slots[0])); 6469 tmp = kmalloc(inline_size, GFP_NOFS); 6470 if (!tmp) 6471 return -ENOMEM; 6472 ptr = btrfs_file_extent_inline_start(item); 6473 6474 read_extent_buffer(leaf, tmp, ptr, inline_size); 6475 6476 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6477 ret = btrfs_decompress(compress_type, tmp, page, 6478 extent_offset, inline_size, max_size); 6479 6480 /* 6481 * decompression code contains a memset to fill in any space between the end 6482 * of the uncompressed data and the end of max_size in case the decompressed 6483 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6484 * the end of an inline extent and the beginning of the next block, so we 6485 * cover that region here. 6486 */ 6487 6488 if (max_size + pg_offset < PAGE_SIZE) { 6489 char *map = kmap(page); 6490 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); 6491 kunmap(page); 6492 } 6493 kfree(tmp); 6494 return ret; 6495 } 6496 6497 /** 6498 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6499 * @inode: file to search in 6500 * @page: page to read extent data into if the extent is inline 6501 * @pg_offset: offset into @page to copy to 6502 * @start: file offset 6503 * @len: length of range starting at @start 6504 * 6505 * This returns the first &struct extent_map which overlaps with the given 6506 * range, reading it from the B-tree and caching it if necessary. Note that 6507 * there may be more extents which overlap the given range after the returned 6508 * extent_map. 6509 * 6510 * If @page is not NULL and the extent is inline, this also reads the extent 6511 * data directly into the page and marks the extent up to date in the io_tree. 6512 * 6513 * Return: ERR_PTR on error, non-NULL extent_map on success. 6514 */ 6515 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6516 struct page *page, size_t pg_offset, 6517 u64 start, u64 len) 6518 { 6519 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6520 int ret = 0; 6521 u64 extent_start = 0; 6522 u64 extent_end = 0; 6523 u64 objectid = btrfs_ino(inode); 6524 int extent_type = -1; 6525 struct btrfs_path *path = NULL; 6526 struct btrfs_root *root = inode->root; 6527 struct btrfs_file_extent_item *item; 6528 struct extent_buffer *leaf; 6529 struct btrfs_key found_key; 6530 struct extent_map *em = NULL; 6531 struct extent_map_tree *em_tree = &inode->extent_tree; 6532 struct extent_io_tree *io_tree = &inode->io_tree; 6533 6534 read_lock(&em_tree->lock); 6535 em = lookup_extent_mapping(em_tree, start, len); 6536 read_unlock(&em_tree->lock); 6537 6538 if (em) { 6539 if (em->start > start || em->start + em->len <= start) 6540 free_extent_map(em); 6541 else if (em->block_start == EXTENT_MAP_INLINE && page) 6542 free_extent_map(em); 6543 else 6544 goto out; 6545 } 6546 em = alloc_extent_map(); 6547 if (!em) { 6548 ret = -ENOMEM; 6549 goto out; 6550 } 6551 em->start = EXTENT_MAP_HOLE; 6552 em->orig_start = EXTENT_MAP_HOLE; 6553 em->len = (u64)-1; 6554 em->block_len = (u64)-1; 6555 6556 path = btrfs_alloc_path(); 6557 if (!path) { 6558 ret = -ENOMEM; 6559 goto out; 6560 } 6561 6562 /* Chances are we'll be called again, so go ahead and do readahead */ 6563 path->reada = READA_FORWARD; 6564 6565 /* 6566 * Unless we're going to uncompress the inline extent, no sleep would 6567 * happen. 6568 */ 6569 path->leave_spinning = 1; 6570 6571 path->recurse = btrfs_is_free_space_inode(inode); 6572 6573 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6574 if (ret < 0) { 6575 goto out; 6576 } else if (ret > 0) { 6577 if (path->slots[0] == 0) 6578 goto not_found; 6579 path->slots[0]--; 6580 ret = 0; 6581 } 6582 6583 leaf = path->nodes[0]; 6584 item = btrfs_item_ptr(leaf, path->slots[0], 6585 struct btrfs_file_extent_item); 6586 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6587 if (found_key.objectid != objectid || 6588 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6589 /* 6590 * If we backup past the first extent we want to move forward 6591 * and see if there is an extent in front of us, otherwise we'll 6592 * say there is a hole for our whole search range which can 6593 * cause problems. 6594 */ 6595 extent_end = start; 6596 goto next; 6597 } 6598 6599 extent_type = btrfs_file_extent_type(leaf, item); 6600 extent_start = found_key.offset; 6601 extent_end = btrfs_file_extent_end(path); 6602 if (extent_type == BTRFS_FILE_EXTENT_REG || 6603 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6604 /* Only regular file could have regular/prealloc extent */ 6605 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6606 ret = -EUCLEAN; 6607 btrfs_crit(fs_info, 6608 "regular/prealloc extent found for non-regular inode %llu", 6609 btrfs_ino(inode)); 6610 goto out; 6611 } 6612 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6613 extent_start); 6614 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6615 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6616 path->slots[0], 6617 extent_start); 6618 } 6619 next: 6620 if (start >= extent_end) { 6621 path->slots[0]++; 6622 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6623 ret = btrfs_next_leaf(root, path); 6624 if (ret < 0) 6625 goto out; 6626 else if (ret > 0) 6627 goto not_found; 6628 6629 leaf = path->nodes[0]; 6630 } 6631 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6632 if (found_key.objectid != objectid || 6633 found_key.type != BTRFS_EXTENT_DATA_KEY) 6634 goto not_found; 6635 if (start + len <= found_key.offset) 6636 goto not_found; 6637 if (start > found_key.offset) 6638 goto next; 6639 6640 /* New extent overlaps with existing one */ 6641 em->start = start; 6642 em->orig_start = start; 6643 em->len = found_key.offset - start; 6644 em->block_start = EXTENT_MAP_HOLE; 6645 goto insert; 6646 } 6647 6648 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6649 6650 if (extent_type == BTRFS_FILE_EXTENT_REG || 6651 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6652 goto insert; 6653 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6654 unsigned long ptr; 6655 char *map; 6656 size_t size; 6657 size_t extent_offset; 6658 size_t copy_size; 6659 6660 if (!page) 6661 goto out; 6662 6663 size = btrfs_file_extent_ram_bytes(leaf, item); 6664 extent_offset = page_offset(page) + pg_offset - extent_start; 6665 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6666 size - extent_offset); 6667 em->start = extent_start + extent_offset; 6668 em->len = ALIGN(copy_size, fs_info->sectorsize); 6669 em->orig_block_len = em->len; 6670 em->orig_start = em->start; 6671 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6672 6673 btrfs_set_path_blocking(path); 6674 if (!PageUptodate(page)) { 6675 if (btrfs_file_extent_compression(leaf, item) != 6676 BTRFS_COMPRESS_NONE) { 6677 ret = uncompress_inline(path, page, pg_offset, 6678 extent_offset, item); 6679 if (ret) 6680 goto out; 6681 } else { 6682 map = kmap(page); 6683 read_extent_buffer(leaf, map + pg_offset, ptr, 6684 copy_size); 6685 if (pg_offset + copy_size < PAGE_SIZE) { 6686 memset(map + pg_offset + copy_size, 0, 6687 PAGE_SIZE - pg_offset - 6688 copy_size); 6689 } 6690 kunmap(page); 6691 } 6692 flush_dcache_page(page); 6693 } 6694 set_extent_uptodate(io_tree, em->start, 6695 extent_map_end(em) - 1, NULL, GFP_NOFS); 6696 goto insert; 6697 } 6698 not_found: 6699 em->start = start; 6700 em->orig_start = start; 6701 em->len = len; 6702 em->block_start = EXTENT_MAP_HOLE; 6703 insert: 6704 ret = 0; 6705 btrfs_release_path(path); 6706 if (em->start > start || extent_map_end(em) <= start) { 6707 btrfs_err(fs_info, 6708 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6709 em->start, em->len, start, len); 6710 ret = -EIO; 6711 goto out; 6712 } 6713 6714 write_lock(&em_tree->lock); 6715 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6716 write_unlock(&em_tree->lock); 6717 out: 6718 btrfs_free_path(path); 6719 6720 trace_btrfs_get_extent(root, inode, em); 6721 6722 if (ret) { 6723 free_extent_map(em); 6724 return ERR_PTR(ret); 6725 } 6726 return em; 6727 } 6728 6729 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6730 u64 start, u64 len) 6731 { 6732 struct extent_map *em; 6733 struct extent_map *hole_em = NULL; 6734 u64 delalloc_start = start; 6735 u64 end; 6736 u64 delalloc_len; 6737 u64 delalloc_end; 6738 int err = 0; 6739 6740 em = btrfs_get_extent(inode, NULL, 0, start, len); 6741 if (IS_ERR(em)) 6742 return em; 6743 /* 6744 * If our em maps to: 6745 * - a hole or 6746 * - a pre-alloc extent, 6747 * there might actually be delalloc bytes behind it. 6748 */ 6749 if (em->block_start != EXTENT_MAP_HOLE && 6750 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6751 return em; 6752 else 6753 hole_em = em; 6754 6755 /* check to see if we've wrapped (len == -1 or similar) */ 6756 end = start + len; 6757 if (end < start) 6758 end = (u64)-1; 6759 else 6760 end -= 1; 6761 6762 em = NULL; 6763 6764 /* ok, we didn't find anything, lets look for delalloc */ 6765 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6766 end, len, EXTENT_DELALLOC, 1); 6767 delalloc_end = delalloc_start + delalloc_len; 6768 if (delalloc_end < delalloc_start) 6769 delalloc_end = (u64)-1; 6770 6771 /* 6772 * We didn't find anything useful, return the original results from 6773 * get_extent() 6774 */ 6775 if (delalloc_start > end || delalloc_end <= start) { 6776 em = hole_em; 6777 hole_em = NULL; 6778 goto out; 6779 } 6780 6781 /* 6782 * Adjust the delalloc_start to make sure it doesn't go backwards from 6783 * the start they passed in 6784 */ 6785 delalloc_start = max(start, delalloc_start); 6786 delalloc_len = delalloc_end - delalloc_start; 6787 6788 if (delalloc_len > 0) { 6789 u64 hole_start; 6790 u64 hole_len; 6791 const u64 hole_end = extent_map_end(hole_em); 6792 6793 em = alloc_extent_map(); 6794 if (!em) { 6795 err = -ENOMEM; 6796 goto out; 6797 } 6798 6799 ASSERT(hole_em); 6800 /* 6801 * When btrfs_get_extent can't find anything it returns one 6802 * huge hole 6803 * 6804 * Make sure what it found really fits our range, and adjust to 6805 * make sure it is based on the start from the caller 6806 */ 6807 if (hole_end <= start || hole_em->start > end) { 6808 free_extent_map(hole_em); 6809 hole_em = NULL; 6810 } else { 6811 hole_start = max(hole_em->start, start); 6812 hole_len = hole_end - hole_start; 6813 } 6814 6815 if (hole_em && delalloc_start > hole_start) { 6816 /* 6817 * Our hole starts before our delalloc, so we have to 6818 * return just the parts of the hole that go until the 6819 * delalloc starts 6820 */ 6821 em->len = min(hole_len, delalloc_start - hole_start); 6822 em->start = hole_start; 6823 em->orig_start = hole_start; 6824 /* 6825 * Don't adjust block start at all, it is fixed at 6826 * EXTENT_MAP_HOLE 6827 */ 6828 em->block_start = hole_em->block_start; 6829 em->block_len = hole_len; 6830 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 6831 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 6832 } else { 6833 /* 6834 * Hole is out of passed range or it starts after 6835 * delalloc range 6836 */ 6837 em->start = delalloc_start; 6838 em->len = delalloc_len; 6839 em->orig_start = delalloc_start; 6840 em->block_start = EXTENT_MAP_DELALLOC; 6841 em->block_len = delalloc_len; 6842 } 6843 } else { 6844 return hole_em; 6845 } 6846 out: 6847 6848 free_extent_map(hole_em); 6849 if (err) { 6850 free_extent_map(em); 6851 return ERR_PTR(err); 6852 } 6853 return em; 6854 } 6855 6856 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 6857 const u64 start, 6858 const u64 len, 6859 const u64 orig_start, 6860 const u64 block_start, 6861 const u64 block_len, 6862 const u64 orig_block_len, 6863 const u64 ram_bytes, 6864 const int type) 6865 { 6866 struct extent_map *em = NULL; 6867 int ret; 6868 6869 if (type != BTRFS_ORDERED_NOCOW) { 6870 em = create_io_em(inode, start, len, orig_start, block_start, 6871 block_len, orig_block_len, ram_bytes, 6872 BTRFS_COMPRESS_NONE, /* compress_type */ 6873 type); 6874 if (IS_ERR(em)) 6875 goto out; 6876 } 6877 ret = btrfs_add_ordered_extent_dio(inode, start, block_start, len, 6878 block_len, type); 6879 if (ret) { 6880 if (em) { 6881 free_extent_map(em); 6882 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 6883 } 6884 em = ERR_PTR(ret); 6885 } 6886 out: 6887 6888 return em; 6889 } 6890 6891 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 6892 u64 start, u64 len) 6893 { 6894 struct btrfs_root *root = inode->root; 6895 struct btrfs_fs_info *fs_info = root->fs_info; 6896 struct extent_map *em; 6897 struct btrfs_key ins; 6898 u64 alloc_hint; 6899 int ret; 6900 6901 alloc_hint = get_extent_allocation_hint(inode, start, len); 6902 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 6903 0, alloc_hint, &ins, 1, 1); 6904 if (ret) 6905 return ERR_PTR(ret); 6906 6907 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 6908 ins.objectid, ins.offset, ins.offset, 6909 ins.offset, BTRFS_ORDERED_REGULAR); 6910 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 6911 if (IS_ERR(em)) 6912 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 6913 1); 6914 6915 return em; 6916 } 6917 6918 /* 6919 * Check if we can do nocow write into the range [@offset, @offset + @len) 6920 * 6921 * @offset: File offset 6922 * @len: The length to write, will be updated to the nocow writeable 6923 * range 6924 * @orig_start: (optional) Return the original file offset of the file extent 6925 * @orig_len: (optional) Return the original on-disk length of the file extent 6926 * @ram_bytes: (optional) Return the ram_bytes of the file extent 6927 * @strict: if true, omit optimizations that might force us into unnecessary 6928 * cow. e.g., don't trust generation number. 6929 * 6930 * This function will flush ordered extents in the range to ensure proper 6931 * nocow checks for (nowait == false) case. 6932 * 6933 * Return: 6934 * >0 and update @len if we can do nocow write 6935 * 0 if we can't do nocow write 6936 * <0 if error happened 6937 * 6938 * NOTE: This only checks the file extents, caller is responsible to wait for 6939 * any ordered extents. 6940 */ 6941 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 6942 u64 *orig_start, u64 *orig_block_len, 6943 u64 *ram_bytes, bool strict) 6944 { 6945 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6946 struct btrfs_path *path; 6947 int ret; 6948 struct extent_buffer *leaf; 6949 struct btrfs_root *root = BTRFS_I(inode)->root; 6950 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6951 struct btrfs_file_extent_item *fi; 6952 struct btrfs_key key; 6953 u64 disk_bytenr; 6954 u64 backref_offset; 6955 u64 extent_end; 6956 u64 num_bytes; 6957 int slot; 6958 int found_type; 6959 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 6960 6961 path = btrfs_alloc_path(); 6962 if (!path) 6963 return -ENOMEM; 6964 6965 ret = btrfs_lookup_file_extent(NULL, root, path, 6966 btrfs_ino(BTRFS_I(inode)), offset, 0); 6967 if (ret < 0) 6968 goto out; 6969 6970 slot = path->slots[0]; 6971 if (ret == 1) { 6972 if (slot == 0) { 6973 /* can't find the item, must cow */ 6974 ret = 0; 6975 goto out; 6976 } 6977 slot--; 6978 } 6979 ret = 0; 6980 leaf = path->nodes[0]; 6981 btrfs_item_key_to_cpu(leaf, &key, slot); 6982 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 6983 key.type != BTRFS_EXTENT_DATA_KEY) { 6984 /* not our file or wrong item type, must cow */ 6985 goto out; 6986 } 6987 6988 if (key.offset > offset) { 6989 /* Wrong offset, must cow */ 6990 goto out; 6991 } 6992 6993 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 6994 found_type = btrfs_file_extent_type(leaf, fi); 6995 if (found_type != BTRFS_FILE_EXTENT_REG && 6996 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 6997 /* not a regular extent, must cow */ 6998 goto out; 6999 } 7000 7001 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7002 goto out; 7003 7004 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7005 if (extent_end <= offset) 7006 goto out; 7007 7008 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7009 if (disk_bytenr == 0) 7010 goto out; 7011 7012 if (btrfs_file_extent_compression(leaf, fi) || 7013 btrfs_file_extent_encryption(leaf, fi) || 7014 btrfs_file_extent_other_encoding(leaf, fi)) 7015 goto out; 7016 7017 /* 7018 * Do the same check as in btrfs_cross_ref_exist but without the 7019 * unnecessary search. 7020 */ 7021 if (!strict && 7022 (btrfs_file_extent_generation(leaf, fi) <= 7023 btrfs_root_last_snapshot(&root->root_item))) 7024 goto out; 7025 7026 backref_offset = btrfs_file_extent_offset(leaf, fi); 7027 7028 if (orig_start) { 7029 *orig_start = key.offset - backref_offset; 7030 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7031 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7032 } 7033 7034 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7035 goto out; 7036 7037 num_bytes = min(offset + *len, extent_end) - offset; 7038 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7039 u64 range_end; 7040 7041 range_end = round_up(offset + num_bytes, 7042 root->fs_info->sectorsize) - 1; 7043 ret = test_range_bit(io_tree, offset, range_end, 7044 EXTENT_DELALLOC, 0, NULL); 7045 if (ret) { 7046 ret = -EAGAIN; 7047 goto out; 7048 } 7049 } 7050 7051 btrfs_release_path(path); 7052 7053 /* 7054 * look for other files referencing this extent, if we 7055 * find any we must cow 7056 */ 7057 7058 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7059 key.offset - backref_offset, disk_bytenr, 7060 strict); 7061 if (ret) { 7062 ret = 0; 7063 goto out; 7064 } 7065 7066 /* 7067 * adjust disk_bytenr and num_bytes to cover just the bytes 7068 * in this extent we are about to write. If there 7069 * are any csums in that range we have to cow in order 7070 * to keep the csums correct 7071 */ 7072 disk_bytenr += backref_offset; 7073 disk_bytenr += offset - key.offset; 7074 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7075 goto out; 7076 /* 7077 * all of the above have passed, it is safe to overwrite this extent 7078 * without cow 7079 */ 7080 *len = num_bytes; 7081 ret = 1; 7082 out: 7083 btrfs_free_path(path); 7084 return ret; 7085 } 7086 7087 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7088 struct extent_state **cached_state, bool writing) 7089 { 7090 struct btrfs_ordered_extent *ordered; 7091 int ret = 0; 7092 7093 while (1) { 7094 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7095 cached_state); 7096 /* 7097 * We're concerned with the entire range that we're going to be 7098 * doing DIO to, so we need to make sure there's no ordered 7099 * extents in this range. 7100 */ 7101 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7102 lockend - lockstart + 1); 7103 7104 /* 7105 * We need to make sure there are no buffered pages in this 7106 * range either, we could have raced between the invalidate in 7107 * generic_file_direct_write and locking the extent. The 7108 * invalidate needs to happen so that reads after a write do not 7109 * get stale data. 7110 */ 7111 if (!ordered && 7112 (!writing || !filemap_range_has_page(inode->i_mapping, 7113 lockstart, lockend))) 7114 break; 7115 7116 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7117 cached_state); 7118 7119 if (ordered) { 7120 /* 7121 * If we are doing a DIO read and the ordered extent we 7122 * found is for a buffered write, we can not wait for it 7123 * to complete and retry, because if we do so we can 7124 * deadlock with concurrent buffered writes on page 7125 * locks. This happens only if our DIO read covers more 7126 * than one extent map, if at this point has already 7127 * created an ordered extent for a previous extent map 7128 * and locked its range in the inode's io tree, and a 7129 * concurrent write against that previous extent map's 7130 * range and this range started (we unlock the ranges 7131 * in the io tree only when the bios complete and 7132 * buffered writes always lock pages before attempting 7133 * to lock range in the io tree). 7134 */ 7135 if (writing || 7136 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7137 btrfs_start_ordered_extent(ordered, 1); 7138 else 7139 ret = -ENOTBLK; 7140 btrfs_put_ordered_extent(ordered); 7141 } else { 7142 /* 7143 * We could trigger writeback for this range (and wait 7144 * for it to complete) and then invalidate the pages for 7145 * this range (through invalidate_inode_pages2_range()), 7146 * but that can lead us to a deadlock with a concurrent 7147 * call to readahead (a buffered read or a defrag call 7148 * triggered a readahead) on a page lock due to an 7149 * ordered dio extent we created before but did not have 7150 * yet a corresponding bio submitted (whence it can not 7151 * complete), which makes readahead wait for that 7152 * ordered extent to complete while holding a lock on 7153 * that page. 7154 */ 7155 ret = -ENOTBLK; 7156 } 7157 7158 if (ret) 7159 break; 7160 7161 cond_resched(); 7162 } 7163 7164 return ret; 7165 } 7166 7167 /* The callers of this must take lock_extent() */ 7168 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7169 u64 len, u64 orig_start, u64 block_start, 7170 u64 block_len, u64 orig_block_len, 7171 u64 ram_bytes, int compress_type, 7172 int type) 7173 { 7174 struct extent_map_tree *em_tree; 7175 struct extent_map *em; 7176 int ret; 7177 7178 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7179 type == BTRFS_ORDERED_COMPRESSED || 7180 type == BTRFS_ORDERED_NOCOW || 7181 type == BTRFS_ORDERED_REGULAR); 7182 7183 em_tree = &inode->extent_tree; 7184 em = alloc_extent_map(); 7185 if (!em) 7186 return ERR_PTR(-ENOMEM); 7187 7188 em->start = start; 7189 em->orig_start = orig_start; 7190 em->len = len; 7191 em->block_len = block_len; 7192 em->block_start = block_start; 7193 em->orig_block_len = orig_block_len; 7194 em->ram_bytes = ram_bytes; 7195 em->generation = -1; 7196 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7197 if (type == BTRFS_ORDERED_PREALLOC) { 7198 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7199 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7200 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7201 em->compress_type = compress_type; 7202 } 7203 7204 do { 7205 btrfs_drop_extent_cache(inode, em->start, 7206 em->start + em->len - 1, 0); 7207 write_lock(&em_tree->lock); 7208 ret = add_extent_mapping(em_tree, em, 1); 7209 write_unlock(&em_tree->lock); 7210 /* 7211 * The caller has taken lock_extent(), who could race with us 7212 * to add em? 7213 */ 7214 } while (ret == -EEXIST); 7215 7216 if (ret) { 7217 free_extent_map(em); 7218 return ERR_PTR(ret); 7219 } 7220 7221 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7222 return em; 7223 } 7224 7225 7226 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7227 struct inode *inode, 7228 struct btrfs_dio_data *dio_data, 7229 u64 start, u64 len) 7230 { 7231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7232 struct extent_map *em = *map; 7233 int ret = 0; 7234 7235 /* 7236 * We don't allocate a new extent in the following cases 7237 * 7238 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7239 * existing extent. 7240 * 2) The extent is marked as PREALLOC. We're good to go here and can 7241 * just use the extent. 7242 * 7243 */ 7244 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7245 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7246 em->block_start != EXTENT_MAP_HOLE)) { 7247 int type; 7248 u64 block_start, orig_start, orig_block_len, ram_bytes; 7249 7250 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7251 type = BTRFS_ORDERED_PREALLOC; 7252 else 7253 type = BTRFS_ORDERED_NOCOW; 7254 len = min(len, em->len - (start - em->start)); 7255 block_start = em->block_start + (start - em->start); 7256 7257 if (can_nocow_extent(inode, start, &len, &orig_start, 7258 &orig_block_len, &ram_bytes, false) == 1 && 7259 btrfs_inc_nocow_writers(fs_info, block_start)) { 7260 struct extent_map *em2; 7261 7262 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7263 orig_start, block_start, 7264 len, orig_block_len, 7265 ram_bytes, type); 7266 btrfs_dec_nocow_writers(fs_info, block_start); 7267 if (type == BTRFS_ORDERED_PREALLOC) { 7268 free_extent_map(em); 7269 *map = em = em2; 7270 } 7271 7272 if (em2 && IS_ERR(em2)) { 7273 ret = PTR_ERR(em2); 7274 goto out; 7275 } 7276 /* 7277 * For inode marked NODATACOW or extent marked PREALLOC, 7278 * use the existing or preallocated extent, so does not 7279 * need to adjust btrfs_space_info's bytes_may_use. 7280 */ 7281 btrfs_free_reserved_data_space_noquota(fs_info, len); 7282 goto skip_cow; 7283 } 7284 } 7285 7286 /* this will cow the extent */ 7287 free_extent_map(em); 7288 *map = em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7289 if (IS_ERR(em)) { 7290 ret = PTR_ERR(em); 7291 goto out; 7292 } 7293 7294 len = min(len, em->len - (start - em->start)); 7295 7296 skip_cow: 7297 /* 7298 * Need to update the i_size under the extent lock so buffered 7299 * readers will get the updated i_size when we unlock. 7300 */ 7301 if (start + len > i_size_read(inode)) 7302 i_size_write(inode, start + len); 7303 7304 dio_data->reserve -= len; 7305 out: 7306 return ret; 7307 } 7308 7309 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7310 loff_t length, unsigned int flags, struct iomap *iomap, 7311 struct iomap *srcmap) 7312 { 7313 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7314 struct extent_map *em; 7315 struct extent_state *cached_state = NULL; 7316 struct btrfs_dio_data *dio_data = NULL; 7317 u64 lockstart, lockend; 7318 const bool write = !!(flags & IOMAP_WRITE); 7319 int ret = 0; 7320 u64 len = length; 7321 bool unlock_extents = false; 7322 bool sync = (current->journal_info == BTRFS_DIO_SYNC_STUB); 7323 7324 /* 7325 * We used current->journal_info here to see if we were sync, but 7326 * there's a lot of tests in the enospc machinery to not do flushing if 7327 * we have a journal_info set, so we need to clear this out and re-set 7328 * it in iomap_end. 7329 */ 7330 ASSERT(current->journal_info == NULL || 7331 current->journal_info == BTRFS_DIO_SYNC_STUB); 7332 current->journal_info = NULL; 7333 7334 if (!write) 7335 len = min_t(u64, len, fs_info->sectorsize); 7336 7337 lockstart = start; 7338 lockend = start + len - 1; 7339 7340 /* 7341 * The generic stuff only does filemap_write_and_wait_range, which 7342 * isn't enough if we've written compressed pages to this area, so we 7343 * need to flush the dirty pages again to make absolutely sure that any 7344 * outstanding dirty pages are on disk. 7345 */ 7346 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7347 &BTRFS_I(inode)->runtime_flags)) { 7348 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7349 start + length - 1); 7350 if (ret) 7351 return ret; 7352 } 7353 7354 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7355 if (!dio_data) 7356 return -ENOMEM; 7357 7358 dio_data->sync = sync; 7359 dio_data->length = length; 7360 if (write) { 7361 dio_data->reserve = round_up(length, fs_info->sectorsize); 7362 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7363 &dio_data->data_reserved, 7364 start, dio_data->reserve); 7365 if (ret) { 7366 extent_changeset_free(dio_data->data_reserved); 7367 kfree(dio_data); 7368 return ret; 7369 } 7370 } 7371 iomap->private = dio_data; 7372 7373 7374 /* 7375 * If this errors out it's because we couldn't invalidate pagecache for 7376 * this range and we need to fallback to buffered. 7377 */ 7378 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7379 ret = -ENOTBLK; 7380 goto err; 7381 } 7382 7383 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7384 if (IS_ERR(em)) { 7385 ret = PTR_ERR(em); 7386 goto unlock_err; 7387 } 7388 7389 /* 7390 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7391 * io. INLINE is special, and we could probably kludge it in here, but 7392 * it's still buffered so for safety lets just fall back to the generic 7393 * buffered path. 7394 * 7395 * For COMPRESSED we _have_ to read the entire extent in so we can 7396 * decompress it, so there will be buffering required no matter what we 7397 * do, so go ahead and fallback to buffered. 7398 * 7399 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7400 * to buffered IO. Don't blame me, this is the price we pay for using 7401 * the generic code. 7402 */ 7403 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7404 em->block_start == EXTENT_MAP_INLINE) { 7405 free_extent_map(em); 7406 ret = -ENOTBLK; 7407 goto unlock_err; 7408 } 7409 7410 len = min(len, em->len - (start - em->start)); 7411 if (write) { 7412 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7413 start, len); 7414 if (ret < 0) 7415 goto unlock_err; 7416 unlock_extents = true; 7417 /* Recalc len in case the new em is smaller than requested */ 7418 len = min(len, em->len - (start - em->start)); 7419 } else { 7420 /* 7421 * We need to unlock only the end area that we aren't using. 7422 * The rest is going to be unlocked by the endio routine. 7423 */ 7424 lockstart = start + len; 7425 if (lockstart < lockend) 7426 unlock_extents = true; 7427 } 7428 7429 if (unlock_extents) 7430 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7431 lockstart, lockend, &cached_state); 7432 else 7433 free_extent_state(cached_state); 7434 7435 /* 7436 * Translate extent map information to iomap. 7437 * We trim the extents (and move the addr) even though iomap code does 7438 * that, since we have locked only the parts we are performing I/O in. 7439 */ 7440 if ((em->block_start == EXTENT_MAP_HOLE) || 7441 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7442 iomap->addr = IOMAP_NULL_ADDR; 7443 iomap->type = IOMAP_HOLE; 7444 } else { 7445 iomap->addr = em->block_start + (start - em->start); 7446 iomap->type = IOMAP_MAPPED; 7447 } 7448 iomap->offset = start; 7449 iomap->bdev = fs_info->fs_devices->latest_bdev; 7450 iomap->length = len; 7451 7452 free_extent_map(em); 7453 7454 return 0; 7455 7456 unlock_err: 7457 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7458 &cached_state); 7459 err: 7460 if (dio_data) { 7461 btrfs_delalloc_release_space(BTRFS_I(inode), 7462 dio_data->data_reserved, start, 7463 dio_data->reserve, true); 7464 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->reserve); 7465 extent_changeset_free(dio_data->data_reserved); 7466 kfree(dio_data); 7467 } 7468 return ret; 7469 } 7470 7471 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7472 ssize_t written, unsigned int flags, struct iomap *iomap) 7473 { 7474 int ret = 0; 7475 struct btrfs_dio_data *dio_data = iomap->private; 7476 size_t submitted = dio_data->submitted; 7477 const bool write = !!(flags & IOMAP_WRITE); 7478 7479 if (!write && (iomap->type == IOMAP_HOLE)) { 7480 /* If reading from a hole, unlock and return */ 7481 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7482 goto out; 7483 } 7484 7485 if (submitted < length) { 7486 pos += submitted; 7487 length -= submitted; 7488 if (write) 7489 __endio_write_update_ordered(BTRFS_I(inode), pos, 7490 length, false); 7491 else 7492 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7493 pos + length - 1); 7494 ret = -ENOTBLK; 7495 } 7496 7497 if (write) { 7498 if (dio_data->reserve) 7499 btrfs_delalloc_release_space(BTRFS_I(inode), 7500 dio_data->data_reserved, pos, 7501 dio_data->reserve, true); 7502 btrfs_delalloc_release_extents(BTRFS_I(inode), dio_data->length); 7503 extent_changeset_free(dio_data->data_reserved); 7504 } 7505 out: 7506 /* 7507 * We're all done, we can re-set the current->journal_info now safely 7508 * for our endio. 7509 */ 7510 if (dio_data->sync) { 7511 ASSERT(current->journal_info == NULL); 7512 current->journal_info = BTRFS_DIO_SYNC_STUB; 7513 } 7514 kfree(dio_data); 7515 iomap->private = NULL; 7516 7517 return ret; 7518 } 7519 7520 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7521 { 7522 /* 7523 * This implies a barrier so that stores to dio_bio->bi_status before 7524 * this and loads of dio_bio->bi_status after this are fully ordered. 7525 */ 7526 if (!refcount_dec_and_test(&dip->refs)) 7527 return; 7528 7529 if (bio_op(dip->dio_bio) == REQ_OP_WRITE) { 7530 __endio_write_update_ordered(BTRFS_I(dip->inode), 7531 dip->logical_offset, 7532 dip->bytes, 7533 !dip->dio_bio->bi_status); 7534 } else { 7535 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7536 dip->logical_offset, 7537 dip->logical_offset + dip->bytes - 1); 7538 } 7539 7540 bio_endio(dip->dio_bio); 7541 kfree(dip); 7542 } 7543 7544 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7545 int mirror_num, 7546 unsigned long bio_flags) 7547 { 7548 struct btrfs_dio_private *dip = bio->bi_private; 7549 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7550 blk_status_t ret; 7551 7552 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7553 7554 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7555 if (ret) 7556 return ret; 7557 7558 refcount_inc(&dip->refs); 7559 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7560 if (ret) 7561 refcount_dec(&dip->refs); 7562 return ret; 7563 } 7564 7565 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode, 7566 struct btrfs_io_bio *io_bio, 7567 const bool uptodate) 7568 { 7569 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7570 const u32 sectorsize = fs_info->sectorsize; 7571 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7572 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7573 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7574 struct bio_vec bvec; 7575 struct bvec_iter iter; 7576 u64 start = io_bio->logical; 7577 int icsum = 0; 7578 blk_status_t err = BLK_STS_OK; 7579 7580 __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) { 7581 unsigned int i, nr_sectors, pgoff; 7582 7583 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7584 pgoff = bvec.bv_offset; 7585 for (i = 0; i < nr_sectors; i++) { 7586 ASSERT(pgoff < PAGE_SIZE); 7587 if (uptodate && 7588 (!csum || !check_data_csum(inode, io_bio, icsum, 7589 bvec.bv_page, pgoff, 7590 start, sectorsize))) { 7591 clean_io_failure(fs_info, failure_tree, io_tree, 7592 start, bvec.bv_page, 7593 btrfs_ino(BTRFS_I(inode)), 7594 pgoff); 7595 } else { 7596 blk_status_t status; 7597 7598 status = btrfs_submit_read_repair(inode, 7599 &io_bio->bio, 7600 start - io_bio->logical, 7601 bvec.bv_page, pgoff, 7602 start, 7603 start + sectorsize - 1, 7604 io_bio->mirror_num, 7605 submit_dio_repair_bio); 7606 if (status) 7607 err = status; 7608 } 7609 start += sectorsize; 7610 icsum++; 7611 pgoff += sectorsize; 7612 } 7613 } 7614 return err; 7615 } 7616 7617 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7618 const u64 offset, const u64 bytes, 7619 const bool uptodate) 7620 { 7621 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7622 struct btrfs_ordered_extent *ordered = NULL; 7623 struct btrfs_workqueue *wq; 7624 u64 ordered_offset = offset; 7625 u64 ordered_bytes = bytes; 7626 u64 last_offset; 7627 7628 if (btrfs_is_free_space_inode(inode)) 7629 wq = fs_info->endio_freespace_worker; 7630 else 7631 wq = fs_info->endio_write_workers; 7632 7633 while (ordered_offset < offset + bytes) { 7634 last_offset = ordered_offset; 7635 if (btrfs_dec_test_first_ordered_pending(inode, &ordered, 7636 &ordered_offset, 7637 ordered_bytes, 7638 uptodate)) { 7639 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, 7640 NULL); 7641 btrfs_queue_work(wq, &ordered->work); 7642 } 7643 /* 7644 * If btrfs_dec_test_ordered_pending does not find any ordered 7645 * extent in the range, we can exit. 7646 */ 7647 if (ordered_offset == last_offset) 7648 return; 7649 /* 7650 * Our bio might span multiple ordered extents. In this case 7651 * we keep going until we have accounted the whole dio. 7652 */ 7653 if (ordered_offset < offset + bytes) { 7654 ordered_bytes = offset + bytes - ordered_offset; 7655 ordered = NULL; 7656 } 7657 } 7658 } 7659 7660 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, 7661 struct bio *bio, u64 offset) 7662 { 7663 struct inode *inode = private_data; 7664 7665 return btrfs_csum_one_bio(BTRFS_I(inode), bio, offset, 1); 7666 } 7667 7668 static void btrfs_end_dio_bio(struct bio *bio) 7669 { 7670 struct btrfs_dio_private *dip = bio->bi_private; 7671 blk_status_t err = bio->bi_status; 7672 7673 if (err) 7674 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7675 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7676 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7677 bio->bi_opf, 7678 (unsigned long long)bio->bi_iter.bi_sector, 7679 bio->bi_iter.bi_size, err); 7680 7681 if (bio_op(bio) == REQ_OP_READ) { 7682 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio), 7683 !err); 7684 } 7685 7686 if (err) 7687 dip->dio_bio->bi_status = err; 7688 7689 bio_put(bio); 7690 btrfs_dio_private_put(dip); 7691 } 7692 7693 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7694 struct inode *inode, u64 file_offset, int async_submit) 7695 { 7696 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7697 struct btrfs_dio_private *dip = bio->bi_private; 7698 bool write = bio_op(bio) == REQ_OP_WRITE; 7699 blk_status_t ret; 7700 7701 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7702 if (async_submit) 7703 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7704 7705 if (!write) { 7706 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7707 if (ret) 7708 goto err; 7709 } 7710 7711 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7712 goto map; 7713 7714 if (write && async_submit) { 7715 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, 7716 file_offset, inode, 7717 btrfs_submit_bio_start_direct_io); 7718 goto err; 7719 } else if (write) { 7720 /* 7721 * If we aren't doing async submit, calculate the csum of the 7722 * bio now. 7723 */ 7724 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, 1); 7725 if (ret) 7726 goto err; 7727 } else { 7728 u64 csum_offset; 7729 7730 csum_offset = file_offset - dip->logical_offset; 7731 csum_offset >>= inode->i_sb->s_blocksize_bits; 7732 csum_offset *= btrfs_super_csum_size(fs_info->super_copy); 7733 btrfs_io_bio(bio)->csum = dip->csums + csum_offset; 7734 } 7735 map: 7736 ret = btrfs_map_bio(fs_info, bio, 0); 7737 err: 7738 return ret; 7739 } 7740 7741 /* 7742 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7743 * or ordered extents whether or not we submit any bios. 7744 */ 7745 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7746 struct inode *inode, 7747 loff_t file_offset) 7748 { 7749 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7750 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7751 size_t dip_size; 7752 struct btrfs_dio_private *dip; 7753 7754 dip_size = sizeof(*dip); 7755 if (!write && csum) { 7756 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7757 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 7758 size_t nblocks; 7759 7760 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits; 7761 dip_size += csum_size * nblocks; 7762 } 7763 7764 dip = kzalloc(dip_size, GFP_NOFS); 7765 if (!dip) 7766 return NULL; 7767 7768 dip->inode = inode; 7769 dip->logical_offset = file_offset; 7770 dip->bytes = dio_bio->bi_iter.bi_size; 7771 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; 7772 dip->dio_bio = dio_bio; 7773 refcount_set(&dip->refs, 1); 7774 return dip; 7775 } 7776 7777 static blk_qc_t btrfs_submit_direct(struct inode *inode, struct iomap *iomap, 7778 struct bio *dio_bio, loff_t file_offset) 7779 { 7780 const bool write = (bio_op(dio_bio) == REQ_OP_WRITE); 7781 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7782 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7783 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7784 BTRFS_BLOCK_GROUP_RAID56_MASK); 7785 struct btrfs_dio_private *dip; 7786 struct bio *bio; 7787 u64 start_sector; 7788 int async_submit = 0; 7789 u64 submit_len; 7790 int clone_offset = 0; 7791 int clone_len; 7792 int ret; 7793 blk_status_t status; 7794 struct btrfs_io_geometry geom; 7795 struct btrfs_dio_data *dio_data = iomap->private; 7796 7797 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7798 if (!dip) { 7799 if (!write) { 7800 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7801 file_offset + dio_bio->bi_iter.bi_size - 1); 7802 } 7803 dio_bio->bi_status = BLK_STS_RESOURCE; 7804 bio_endio(dio_bio); 7805 return BLK_QC_T_NONE; 7806 } 7807 7808 if (!write && csum) { 7809 /* 7810 * Load the csums up front to reduce csum tree searches and 7811 * contention when submitting bios. 7812 */ 7813 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset, 7814 dip->csums); 7815 if (status != BLK_STS_OK) 7816 goto out_err; 7817 } 7818 7819 start_sector = dio_bio->bi_iter.bi_sector; 7820 submit_len = dio_bio->bi_iter.bi_size; 7821 7822 do { 7823 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio), 7824 start_sector << 9, submit_len, 7825 &geom); 7826 if (ret) { 7827 status = errno_to_blk_status(ret); 7828 goto out_err; 7829 } 7830 ASSERT(geom.len <= INT_MAX); 7831 7832 clone_len = min_t(int, submit_len, geom.len); 7833 7834 /* 7835 * This will never fail as it's passing GPF_NOFS and 7836 * the allocation is backed by btrfs_bioset. 7837 */ 7838 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 7839 bio->bi_private = dip; 7840 bio->bi_end_io = btrfs_end_dio_bio; 7841 btrfs_io_bio(bio)->logical = file_offset; 7842 7843 ASSERT(submit_len >= clone_len); 7844 submit_len -= clone_len; 7845 7846 /* 7847 * Increase the count before we submit the bio so we know 7848 * the end IO handler won't happen before we increase the 7849 * count. Otherwise, the dip might get freed before we're 7850 * done setting it up. 7851 * 7852 * We transfer the initial reference to the last bio, so we 7853 * don't need to increment the reference count for the last one. 7854 */ 7855 if (submit_len > 0) { 7856 refcount_inc(&dip->refs); 7857 /* 7858 * If we are submitting more than one bio, submit them 7859 * all asynchronously. The exception is RAID 5 or 6, as 7860 * asynchronous checksums make it difficult to collect 7861 * full stripe writes. 7862 */ 7863 if (!raid56) 7864 async_submit = 1; 7865 } 7866 7867 status = btrfs_submit_dio_bio(bio, inode, file_offset, 7868 async_submit); 7869 if (status) { 7870 bio_put(bio); 7871 if (submit_len > 0) 7872 refcount_dec(&dip->refs); 7873 goto out_err; 7874 } 7875 7876 dio_data->submitted += clone_len; 7877 clone_offset += clone_len; 7878 start_sector += clone_len >> 9; 7879 file_offset += clone_len; 7880 } while (submit_len > 0); 7881 return BLK_QC_T_NONE; 7882 7883 out_err: 7884 dip->dio_bio->bi_status = status; 7885 btrfs_dio_private_put(dip); 7886 return BLK_QC_T_NONE; 7887 } 7888 7889 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, 7890 const struct iov_iter *iter, loff_t offset) 7891 { 7892 int seg; 7893 int i; 7894 unsigned int blocksize_mask = fs_info->sectorsize - 1; 7895 ssize_t retval = -EINVAL; 7896 7897 if (offset & blocksize_mask) 7898 goto out; 7899 7900 if (iov_iter_alignment(iter) & blocksize_mask) 7901 goto out; 7902 7903 /* If this is a write we don't need to check anymore */ 7904 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) 7905 return 0; 7906 /* 7907 * Check to make sure we don't have duplicate iov_base's in this 7908 * iovec, if so return EINVAL, otherwise we'll get csum errors 7909 * when reading back. 7910 */ 7911 for (seg = 0; seg < iter->nr_segs; seg++) { 7912 for (i = seg + 1; i < iter->nr_segs; i++) { 7913 if (iter->iov[seg].iov_base == iter->iov[i].iov_base) 7914 goto out; 7915 } 7916 } 7917 retval = 0; 7918 out: 7919 return retval; 7920 } 7921 7922 static inline int btrfs_maybe_fsync_end_io(struct kiocb *iocb, ssize_t size, 7923 int error, unsigned flags) 7924 { 7925 /* 7926 * Now if we're still in the context of our submitter we know we can't 7927 * safely run generic_write_sync(), so clear our flag here so that the 7928 * caller knows to follow up with a sync. 7929 */ 7930 if (current->journal_info == BTRFS_DIO_SYNC_STUB) { 7931 current->journal_info = NULL; 7932 return error; 7933 } 7934 7935 if (error) 7936 return error; 7937 7938 if (size) { 7939 iocb->ki_flags |= IOCB_DSYNC; 7940 return generic_write_sync(iocb, size); 7941 } 7942 7943 return 0; 7944 } 7945 7946 static const struct iomap_ops btrfs_dio_iomap_ops = { 7947 .iomap_begin = btrfs_dio_iomap_begin, 7948 .iomap_end = btrfs_dio_iomap_end, 7949 }; 7950 7951 static const struct iomap_dio_ops btrfs_dio_ops = { 7952 .submit_io = btrfs_submit_direct, 7953 }; 7954 7955 static const struct iomap_dio_ops btrfs_sync_dops = { 7956 .submit_io = btrfs_submit_direct, 7957 .end_io = btrfs_maybe_fsync_end_io, 7958 }; 7959 7960 ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 7961 { 7962 struct file *file = iocb->ki_filp; 7963 struct inode *inode = file->f_mapping->host; 7964 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7965 struct extent_changeset *data_reserved = NULL; 7966 loff_t offset = iocb->ki_pos; 7967 size_t count = 0; 7968 bool relock = false; 7969 ssize_t ret; 7970 7971 if (check_direct_IO(fs_info, iter, offset)) 7972 return 0; 7973 7974 count = iov_iter_count(iter); 7975 if (iov_iter_rw(iter) == WRITE) { 7976 /* 7977 * If the write DIO is beyond the EOF, we need update 7978 * the isize, but it is protected by i_mutex. So we can 7979 * not unlock the i_mutex at this case. 7980 */ 7981 if (offset + count <= inode->i_size) { 7982 inode_unlock(inode); 7983 relock = true; 7984 } 7985 down_read(&BTRFS_I(inode)->dio_sem); 7986 } 7987 7988 /* 7989 * We have are actually a sync iocb, so we need our fancy endio to know 7990 * if we need to sync. 7991 */ 7992 if (current->journal_info) 7993 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, 7994 &btrfs_sync_dops, is_sync_kiocb(iocb)); 7995 else 7996 ret = iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, 7997 &btrfs_dio_ops, is_sync_kiocb(iocb)); 7998 7999 if (ret == -ENOTBLK) 8000 ret = 0; 8001 8002 if (iov_iter_rw(iter) == WRITE) 8003 up_read(&BTRFS_I(inode)->dio_sem); 8004 8005 if (relock) 8006 inode_lock(inode); 8007 8008 extent_changeset_free(data_reserved); 8009 return ret; 8010 } 8011 8012 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8013 u64 start, u64 len) 8014 { 8015 int ret; 8016 8017 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8018 if (ret) 8019 return ret; 8020 8021 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8022 } 8023 8024 int btrfs_readpage(struct file *file, struct page *page) 8025 { 8026 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8027 u64 start = page_offset(page); 8028 u64 end = start + PAGE_SIZE - 1; 8029 unsigned long bio_flags = 0; 8030 struct bio *bio = NULL; 8031 int ret; 8032 8033 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8034 8035 ret = btrfs_do_readpage(page, NULL, &bio, &bio_flags, 0, NULL); 8036 if (bio) 8037 ret = submit_one_bio(bio, 0, bio_flags); 8038 return ret; 8039 } 8040 8041 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8042 { 8043 struct inode *inode = page->mapping->host; 8044 int ret; 8045 8046 if (current->flags & PF_MEMALLOC) { 8047 redirty_page_for_writepage(wbc, page); 8048 unlock_page(page); 8049 return 0; 8050 } 8051 8052 /* 8053 * If we are under memory pressure we will call this directly from the 8054 * VM, we need to make sure we have the inode referenced for the ordered 8055 * extent. If not just return like we didn't do anything. 8056 */ 8057 if (!igrab(inode)) { 8058 redirty_page_for_writepage(wbc, page); 8059 return AOP_WRITEPAGE_ACTIVATE; 8060 } 8061 ret = extent_write_full_page(page, wbc); 8062 btrfs_add_delayed_iput(inode); 8063 return ret; 8064 } 8065 8066 static int btrfs_writepages(struct address_space *mapping, 8067 struct writeback_control *wbc) 8068 { 8069 return extent_writepages(mapping, wbc); 8070 } 8071 8072 static void btrfs_readahead(struct readahead_control *rac) 8073 { 8074 extent_readahead(rac); 8075 } 8076 8077 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8078 { 8079 int ret = try_release_extent_mapping(page, gfp_flags); 8080 if (ret == 1) 8081 detach_page_private(page); 8082 return ret; 8083 } 8084 8085 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8086 { 8087 if (PageWriteback(page) || PageDirty(page)) 8088 return 0; 8089 return __btrfs_releasepage(page, gfp_flags); 8090 } 8091 8092 #ifdef CONFIG_MIGRATION 8093 static int btrfs_migratepage(struct address_space *mapping, 8094 struct page *newpage, struct page *page, 8095 enum migrate_mode mode) 8096 { 8097 int ret; 8098 8099 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8100 if (ret != MIGRATEPAGE_SUCCESS) 8101 return ret; 8102 8103 if (page_has_private(page)) 8104 attach_page_private(newpage, detach_page_private(page)); 8105 8106 if (PagePrivate2(page)) { 8107 ClearPagePrivate2(page); 8108 SetPagePrivate2(newpage); 8109 } 8110 8111 if (mode != MIGRATE_SYNC_NO_COPY) 8112 migrate_page_copy(newpage, page); 8113 else 8114 migrate_page_states(newpage, page); 8115 return MIGRATEPAGE_SUCCESS; 8116 } 8117 #endif 8118 8119 static void btrfs_invalidatepage(struct page *page, unsigned int offset, 8120 unsigned int length) 8121 { 8122 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8123 struct extent_io_tree *tree = &inode->io_tree; 8124 struct btrfs_ordered_extent *ordered; 8125 struct extent_state *cached_state = NULL; 8126 u64 page_start = page_offset(page); 8127 u64 page_end = page_start + PAGE_SIZE - 1; 8128 u64 start; 8129 u64 end; 8130 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8131 8132 /* 8133 * we have the page locked, so new writeback can't start, 8134 * and the dirty bit won't be cleared while we are here. 8135 * 8136 * Wait for IO on this page so that we can safely clear 8137 * the PagePrivate2 bit and do ordered accounting 8138 */ 8139 wait_on_page_writeback(page); 8140 8141 if (offset) { 8142 btrfs_releasepage(page, GFP_NOFS); 8143 return; 8144 } 8145 8146 if (!inode_evicting) 8147 lock_extent_bits(tree, page_start, page_end, &cached_state); 8148 again: 8149 start = page_start; 8150 ordered = btrfs_lookup_ordered_range(inode, start, page_end - start + 1); 8151 if (ordered) { 8152 end = min(page_end, 8153 ordered->file_offset + ordered->num_bytes - 1); 8154 /* 8155 * IO on this page will never be started, so we need 8156 * to account for any ordered extents now 8157 */ 8158 if (!inode_evicting) 8159 clear_extent_bit(tree, start, end, 8160 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8161 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8162 EXTENT_DEFRAG, 1, 0, &cached_state); 8163 /* 8164 * whoever cleared the private bit is responsible 8165 * for the finish_ordered_io 8166 */ 8167 if (TestClearPagePrivate2(page)) { 8168 struct btrfs_ordered_inode_tree *tree; 8169 u64 new_len; 8170 8171 tree = &inode->ordered_tree; 8172 8173 spin_lock_irq(&tree->lock); 8174 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8175 new_len = start - ordered->file_offset; 8176 if (new_len < ordered->truncated_len) 8177 ordered->truncated_len = new_len; 8178 spin_unlock_irq(&tree->lock); 8179 8180 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8181 start, 8182 end - start + 1, 1)) 8183 btrfs_finish_ordered_io(ordered); 8184 } 8185 btrfs_put_ordered_extent(ordered); 8186 if (!inode_evicting) { 8187 cached_state = NULL; 8188 lock_extent_bits(tree, start, end, 8189 &cached_state); 8190 } 8191 8192 start = end + 1; 8193 if (start < page_end) 8194 goto again; 8195 } 8196 8197 /* 8198 * Qgroup reserved space handler 8199 * Page here will be either 8200 * 1) Already written to disk or ordered extent already submitted 8201 * Then its QGROUP_RESERVED bit in io_tree is already cleaned. 8202 * Qgroup will be handled by its qgroup_record then. 8203 * btrfs_qgroup_free_data() call will do nothing here. 8204 * 8205 * 2) Not written to disk yet 8206 * Then btrfs_qgroup_free_data() call will clear the QGROUP_RESERVED 8207 * bit of its io_tree, and free the qgroup reserved data space. 8208 * Since the IO will never happen for this page. 8209 */ 8210 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); 8211 if (!inode_evicting) { 8212 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED | 8213 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 8214 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 8215 &cached_state); 8216 8217 __btrfs_releasepage(page, GFP_NOFS); 8218 } 8219 8220 ClearPageChecked(page); 8221 detach_page_private(page); 8222 } 8223 8224 /* 8225 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8226 * called from a page fault handler when a page is first dirtied. Hence we must 8227 * be careful to check for EOF conditions here. We set the page up correctly 8228 * for a written page which means we get ENOSPC checking when writing into 8229 * holes and correct delalloc and unwritten extent mapping on filesystems that 8230 * support these features. 8231 * 8232 * We are not allowed to take the i_mutex here so we have to play games to 8233 * protect against truncate races as the page could now be beyond EOF. Because 8234 * truncate_setsize() writes the inode size before removing pages, once we have 8235 * the page lock we can determine safely if the page is beyond EOF. If it is not 8236 * beyond EOF, then the page is guaranteed safe against truncation until we 8237 * unlock the page. 8238 */ 8239 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8240 { 8241 struct page *page = vmf->page; 8242 struct inode *inode = file_inode(vmf->vma->vm_file); 8243 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8244 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8245 struct btrfs_ordered_extent *ordered; 8246 struct extent_state *cached_state = NULL; 8247 struct extent_changeset *data_reserved = NULL; 8248 char *kaddr; 8249 unsigned long zero_start; 8250 loff_t size; 8251 vm_fault_t ret; 8252 int ret2; 8253 int reserved = 0; 8254 u64 reserved_space; 8255 u64 page_start; 8256 u64 page_end; 8257 u64 end; 8258 8259 reserved_space = PAGE_SIZE; 8260 8261 sb_start_pagefault(inode->i_sb); 8262 page_start = page_offset(page); 8263 page_end = page_start + PAGE_SIZE - 1; 8264 end = page_end; 8265 8266 /* 8267 * Reserving delalloc space after obtaining the page lock can lead to 8268 * deadlock. For example, if a dirty page is locked by this function 8269 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8270 * dirty page write out, then the btrfs_writepage() function could 8271 * end up waiting indefinitely to get a lock on the page currently 8272 * being processed by btrfs_page_mkwrite() function. 8273 */ 8274 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8275 page_start, reserved_space); 8276 if (!ret2) { 8277 ret2 = file_update_time(vmf->vma->vm_file); 8278 reserved = 1; 8279 } 8280 if (ret2) { 8281 ret = vmf_error(ret2); 8282 if (reserved) 8283 goto out; 8284 goto out_noreserve; 8285 } 8286 8287 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8288 again: 8289 lock_page(page); 8290 size = i_size_read(inode); 8291 8292 if ((page->mapping != inode->i_mapping) || 8293 (page_start >= size)) { 8294 /* page got truncated out from underneath us */ 8295 goto out_unlock; 8296 } 8297 wait_on_page_writeback(page); 8298 8299 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8300 set_page_extent_mapped(page); 8301 8302 /* 8303 * we can't set the delalloc bits if there are pending ordered 8304 * extents. Drop our locks and wait for them to finish 8305 */ 8306 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8307 PAGE_SIZE); 8308 if (ordered) { 8309 unlock_extent_cached(io_tree, page_start, page_end, 8310 &cached_state); 8311 unlock_page(page); 8312 btrfs_start_ordered_extent(ordered, 1); 8313 btrfs_put_ordered_extent(ordered); 8314 goto again; 8315 } 8316 8317 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8318 reserved_space = round_up(size - page_start, 8319 fs_info->sectorsize); 8320 if (reserved_space < PAGE_SIZE) { 8321 end = page_start + reserved_space - 1; 8322 btrfs_delalloc_release_space(BTRFS_I(inode), 8323 data_reserved, page_start, 8324 PAGE_SIZE - reserved_space, true); 8325 } 8326 } 8327 8328 /* 8329 * page_mkwrite gets called when the page is firstly dirtied after it's 8330 * faulted in, but write(2) could also dirty a page and set delalloc 8331 * bits, thus in this case for space account reason, we still need to 8332 * clear any delalloc bits within this page range since we have to 8333 * reserve data&meta space before lock_page() (see above comments). 8334 */ 8335 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8336 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8337 EXTENT_DEFRAG, 0, 0, &cached_state); 8338 8339 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8340 &cached_state); 8341 if (ret2) { 8342 unlock_extent_cached(io_tree, page_start, page_end, 8343 &cached_state); 8344 ret = VM_FAULT_SIGBUS; 8345 goto out_unlock; 8346 } 8347 8348 /* page is wholly or partially inside EOF */ 8349 if (page_start + PAGE_SIZE > size) 8350 zero_start = offset_in_page(size); 8351 else 8352 zero_start = PAGE_SIZE; 8353 8354 if (zero_start != PAGE_SIZE) { 8355 kaddr = kmap(page); 8356 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); 8357 flush_dcache_page(page); 8358 kunmap(page); 8359 } 8360 ClearPageChecked(page); 8361 set_page_dirty(page); 8362 SetPageUptodate(page); 8363 8364 BTRFS_I(inode)->last_trans = fs_info->generation; 8365 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 8366 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; 8367 8368 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8369 8370 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8371 sb_end_pagefault(inode->i_sb); 8372 extent_changeset_free(data_reserved); 8373 return VM_FAULT_LOCKED; 8374 8375 out_unlock: 8376 unlock_page(page); 8377 out: 8378 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8379 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8380 reserved_space, (ret != 0)); 8381 out_noreserve: 8382 sb_end_pagefault(inode->i_sb); 8383 extent_changeset_free(data_reserved); 8384 return ret; 8385 } 8386 8387 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8388 { 8389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8390 struct btrfs_root *root = BTRFS_I(inode)->root; 8391 struct btrfs_block_rsv *rsv; 8392 int ret; 8393 struct btrfs_trans_handle *trans; 8394 u64 mask = fs_info->sectorsize - 1; 8395 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8396 8397 if (!skip_writeback) { 8398 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8399 (u64)-1); 8400 if (ret) 8401 return ret; 8402 } 8403 8404 /* 8405 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8406 * things going on here: 8407 * 8408 * 1) We need to reserve space to update our inode. 8409 * 8410 * 2) We need to have something to cache all the space that is going to 8411 * be free'd up by the truncate operation, but also have some slack 8412 * space reserved in case it uses space during the truncate (thank you 8413 * very much snapshotting). 8414 * 8415 * And we need these to be separate. The fact is we can use a lot of 8416 * space doing the truncate, and we have no earthly idea how much space 8417 * we will use, so we need the truncate reservation to be separate so it 8418 * doesn't end up using space reserved for updating the inode. We also 8419 * need to be able to stop the transaction and start a new one, which 8420 * means we need to be able to update the inode several times, and we 8421 * have no idea of knowing how many times that will be, so we can't just 8422 * reserve 1 item for the entirety of the operation, so that has to be 8423 * done separately as well. 8424 * 8425 * So that leaves us with 8426 * 8427 * 1) rsv - for the truncate reservation, which we will steal from the 8428 * transaction reservation. 8429 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8430 * updating the inode. 8431 */ 8432 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8433 if (!rsv) 8434 return -ENOMEM; 8435 rsv->size = min_size; 8436 rsv->failfast = 1; 8437 8438 /* 8439 * 1 for the truncate slack space 8440 * 1 for updating the inode. 8441 */ 8442 trans = btrfs_start_transaction(root, 2); 8443 if (IS_ERR(trans)) { 8444 ret = PTR_ERR(trans); 8445 goto out; 8446 } 8447 8448 /* Migrate the slack space for the truncate to our reserve */ 8449 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8450 min_size, false); 8451 BUG_ON(ret); 8452 8453 /* 8454 * So if we truncate and then write and fsync we normally would just 8455 * write the extents that changed, which is a problem if we need to 8456 * first truncate that entire inode. So set this flag so we write out 8457 * all of the extents in the inode to the sync log so we're completely 8458 * safe. 8459 */ 8460 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); 8461 trans->block_rsv = rsv; 8462 8463 while (1) { 8464 ret = btrfs_truncate_inode_items(trans, root, inode, 8465 inode->i_size, 8466 BTRFS_EXTENT_DATA_KEY); 8467 trans->block_rsv = &fs_info->trans_block_rsv; 8468 if (ret != -ENOSPC && ret != -EAGAIN) 8469 break; 8470 8471 ret = btrfs_update_inode(trans, root, inode); 8472 if (ret) 8473 break; 8474 8475 btrfs_end_transaction(trans); 8476 btrfs_btree_balance_dirty(fs_info); 8477 8478 trans = btrfs_start_transaction(root, 2); 8479 if (IS_ERR(trans)) { 8480 ret = PTR_ERR(trans); 8481 trans = NULL; 8482 break; 8483 } 8484 8485 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8486 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8487 rsv, min_size, false); 8488 BUG_ON(ret); /* shouldn't happen */ 8489 trans->block_rsv = rsv; 8490 } 8491 8492 /* 8493 * We can't call btrfs_truncate_block inside a trans handle as we could 8494 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know 8495 * we've truncated everything except the last little bit, and can do 8496 * btrfs_truncate_block and then update the disk_i_size. 8497 */ 8498 if (ret == NEED_TRUNCATE_BLOCK) { 8499 btrfs_end_transaction(trans); 8500 btrfs_btree_balance_dirty(fs_info); 8501 8502 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); 8503 if (ret) 8504 goto out; 8505 trans = btrfs_start_transaction(root, 1); 8506 if (IS_ERR(trans)) { 8507 ret = PTR_ERR(trans); 8508 goto out; 8509 } 8510 btrfs_inode_safe_disk_i_size_write(inode, 0); 8511 } 8512 8513 if (trans) { 8514 int ret2; 8515 8516 trans->block_rsv = &fs_info->trans_block_rsv; 8517 ret2 = btrfs_update_inode(trans, root, inode); 8518 if (ret2 && !ret) 8519 ret = ret2; 8520 8521 ret2 = btrfs_end_transaction(trans); 8522 if (ret2 && !ret) 8523 ret = ret2; 8524 btrfs_btree_balance_dirty(fs_info); 8525 } 8526 out: 8527 btrfs_free_block_rsv(fs_info, rsv); 8528 8529 return ret; 8530 } 8531 8532 /* 8533 * create a new subvolume directory/inode (helper for the ioctl). 8534 */ 8535 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8536 struct btrfs_root *new_root, 8537 struct btrfs_root *parent_root, 8538 u64 new_dirid) 8539 { 8540 struct inode *inode; 8541 int err; 8542 u64 index = 0; 8543 8544 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, 8545 new_dirid, new_dirid, 8546 S_IFDIR | (~current_umask() & S_IRWXUGO), 8547 &index); 8548 if (IS_ERR(inode)) 8549 return PTR_ERR(inode); 8550 inode->i_op = &btrfs_dir_inode_operations; 8551 inode->i_fop = &btrfs_dir_file_operations; 8552 8553 set_nlink(inode, 1); 8554 btrfs_i_size_write(BTRFS_I(inode), 0); 8555 unlock_new_inode(inode); 8556 8557 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8558 if (err) 8559 btrfs_err(new_root->fs_info, 8560 "error inheriting subvolume %llu properties: %d", 8561 new_root->root_key.objectid, err); 8562 8563 err = btrfs_update_inode(trans, new_root, inode); 8564 8565 iput(inode); 8566 return err; 8567 } 8568 8569 struct inode *btrfs_alloc_inode(struct super_block *sb) 8570 { 8571 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8572 struct btrfs_inode *ei; 8573 struct inode *inode; 8574 8575 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); 8576 if (!ei) 8577 return NULL; 8578 8579 ei->root = NULL; 8580 ei->generation = 0; 8581 ei->last_trans = 0; 8582 ei->last_sub_trans = 0; 8583 ei->logged_trans = 0; 8584 ei->delalloc_bytes = 0; 8585 ei->new_delalloc_bytes = 0; 8586 ei->defrag_bytes = 0; 8587 ei->disk_i_size = 0; 8588 ei->flags = 0; 8589 ei->csum_bytes = 0; 8590 ei->index_cnt = (u64)-1; 8591 ei->dir_index = 0; 8592 ei->last_unlink_trans = 0; 8593 ei->last_reflink_trans = 0; 8594 ei->last_log_commit = 0; 8595 8596 spin_lock_init(&ei->lock); 8597 ei->outstanding_extents = 0; 8598 if (sb->s_magic != BTRFS_TEST_MAGIC) 8599 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8600 BTRFS_BLOCK_RSV_DELALLOC); 8601 ei->runtime_flags = 0; 8602 ei->prop_compress = BTRFS_COMPRESS_NONE; 8603 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8604 8605 ei->delayed_node = NULL; 8606 8607 ei->i_otime.tv_sec = 0; 8608 ei->i_otime.tv_nsec = 0; 8609 8610 inode = &ei->vfs_inode; 8611 extent_map_tree_init(&ei->extent_tree); 8612 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8613 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8614 IO_TREE_INODE_IO_FAILURE, inode); 8615 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8616 IO_TREE_INODE_FILE_EXTENT, inode); 8617 ei->io_tree.track_uptodate = true; 8618 ei->io_failure_tree.track_uptodate = true; 8619 atomic_set(&ei->sync_writers, 0); 8620 mutex_init(&ei->log_mutex); 8621 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8622 INIT_LIST_HEAD(&ei->delalloc_inodes); 8623 INIT_LIST_HEAD(&ei->delayed_iput); 8624 RB_CLEAR_NODE(&ei->rb_node); 8625 init_rwsem(&ei->dio_sem); 8626 8627 return inode; 8628 } 8629 8630 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8631 void btrfs_test_destroy_inode(struct inode *inode) 8632 { 8633 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8634 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8635 } 8636 #endif 8637 8638 void btrfs_free_inode(struct inode *inode) 8639 { 8640 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8641 } 8642 8643 void btrfs_destroy_inode(struct inode *vfs_inode) 8644 { 8645 struct btrfs_ordered_extent *ordered; 8646 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8647 struct btrfs_root *root = inode->root; 8648 8649 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8650 WARN_ON(vfs_inode->i_data.nrpages); 8651 WARN_ON(inode->block_rsv.reserved); 8652 WARN_ON(inode->block_rsv.size); 8653 WARN_ON(inode->outstanding_extents); 8654 WARN_ON(inode->delalloc_bytes); 8655 WARN_ON(inode->new_delalloc_bytes); 8656 WARN_ON(inode->csum_bytes); 8657 WARN_ON(inode->defrag_bytes); 8658 8659 /* 8660 * This can happen where we create an inode, but somebody else also 8661 * created the same inode and we need to destroy the one we already 8662 * created. 8663 */ 8664 if (!root) 8665 return; 8666 8667 while (1) { 8668 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8669 if (!ordered) 8670 break; 8671 else { 8672 btrfs_err(root->fs_info, 8673 "found ordered extent %llu %llu on inode cleanup", 8674 ordered->file_offset, ordered->num_bytes); 8675 btrfs_remove_ordered_extent(inode, ordered); 8676 btrfs_put_ordered_extent(ordered); 8677 btrfs_put_ordered_extent(ordered); 8678 } 8679 } 8680 btrfs_qgroup_check_reserved_leak(inode); 8681 inode_tree_del(inode); 8682 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8683 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8684 btrfs_put_root(inode->root); 8685 } 8686 8687 int btrfs_drop_inode(struct inode *inode) 8688 { 8689 struct btrfs_root *root = BTRFS_I(inode)->root; 8690 8691 if (root == NULL) 8692 return 1; 8693 8694 /* the snap/subvol tree is on deleting */ 8695 if (btrfs_root_refs(&root->root_item) == 0) 8696 return 1; 8697 else 8698 return generic_drop_inode(inode); 8699 } 8700 8701 static void init_once(void *foo) 8702 { 8703 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8704 8705 inode_init_once(&ei->vfs_inode); 8706 } 8707 8708 void __cold btrfs_destroy_cachep(void) 8709 { 8710 /* 8711 * Make sure all delayed rcu free inodes are flushed before we 8712 * destroy cache. 8713 */ 8714 rcu_barrier(); 8715 kmem_cache_destroy(btrfs_inode_cachep); 8716 kmem_cache_destroy(btrfs_trans_handle_cachep); 8717 kmem_cache_destroy(btrfs_path_cachep); 8718 kmem_cache_destroy(btrfs_free_space_cachep); 8719 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8720 } 8721 8722 int __init btrfs_init_cachep(void) 8723 { 8724 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8725 sizeof(struct btrfs_inode), 0, 8726 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8727 init_once); 8728 if (!btrfs_inode_cachep) 8729 goto fail; 8730 8731 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8732 sizeof(struct btrfs_trans_handle), 0, 8733 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8734 if (!btrfs_trans_handle_cachep) 8735 goto fail; 8736 8737 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8738 sizeof(struct btrfs_path), 0, 8739 SLAB_MEM_SPREAD, NULL); 8740 if (!btrfs_path_cachep) 8741 goto fail; 8742 8743 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8744 sizeof(struct btrfs_free_space), 0, 8745 SLAB_MEM_SPREAD, NULL); 8746 if (!btrfs_free_space_cachep) 8747 goto fail; 8748 8749 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 8750 PAGE_SIZE, PAGE_SIZE, 8751 SLAB_RED_ZONE, NULL); 8752 if (!btrfs_free_space_bitmap_cachep) 8753 goto fail; 8754 8755 return 0; 8756 fail: 8757 btrfs_destroy_cachep(); 8758 return -ENOMEM; 8759 } 8760 8761 static int btrfs_getattr(const struct path *path, struct kstat *stat, 8762 u32 request_mask, unsigned int flags) 8763 { 8764 u64 delalloc_bytes; 8765 struct inode *inode = d_inode(path->dentry); 8766 u32 blocksize = inode->i_sb->s_blocksize; 8767 u32 bi_flags = BTRFS_I(inode)->flags; 8768 8769 stat->result_mask |= STATX_BTIME; 8770 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 8771 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 8772 if (bi_flags & BTRFS_INODE_APPEND) 8773 stat->attributes |= STATX_ATTR_APPEND; 8774 if (bi_flags & BTRFS_INODE_COMPRESS) 8775 stat->attributes |= STATX_ATTR_COMPRESSED; 8776 if (bi_flags & BTRFS_INODE_IMMUTABLE) 8777 stat->attributes |= STATX_ATTR_IMMUTABLE; 8778 if (bi_flags & BTRFS_INODE_NODUMP) 8779 stat->attributes |= STATX_ATTR_NODUMP; 8780 8781 stat->attributes_mask |= (STATX_ATTR_APPEND | 8782 STATX_ATTR_COMPRESSED | 8783 STATX_ATTR_IMMUTABLE | 8784 STATX_ATTR_NODUMP); 8785 8786 generic_fillattr(inode, stat); 8787 stat->dev = BTRFS_I(inode)->root->anon_dev; 8788 8789 spin_lock(&BTRFS_I(inode)->lock); 8790 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 8791 spin_unlock(&BTRFS_I(inode)->lock); 8792 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + 8793 ALIGN(delalloc_bytes, blocksize)) >> 9; 8794 return 0; 8795 } 8796 8797 static int btrfs_rename_exchange(struct inode *old_dir, 8798 struct dentry *old_dentry, 8799 struct inode *new_dir, 8800 struct dentry *new_dentry) 8801 { 8802 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 8803 struct btrfs_trans_handle *trans; 8804 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8805 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8806 struct inode *new_inode = new_dentry->d_inode; 8807 struct inode *old_inode = old_dentry->d_inode; 8808 struct timespec64 ctime = current_time(old_inode); 8809 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8810 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 8811 u64 old_idx = 0; 8812 u64 new_idx = 0; 8813 int ret; 8814 int ret2; 8815 bool root_log_pinned = false; 8816 bool dest_log_pinned = false; 8817 8818 /* we only allow rename subvolume link between subvolumes */ 8819 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8820 return -EXDEV; 8821 8822 /* close the race window with snapshot create/destroy ioctl */ 8823 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8824 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8825 down_read(&fs_info->subvol_sem); 8826 8827 /* 8828 * We want to reserve the absolute worst case amount of items. So if 8829 * both inodes are subvols and we need to unlink them then that would 8830 * require 4 item modifications, but if they are both normal inodes it 8831 * would require 5 item modifications, so we'll assume their normal 8832 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 8833 * should cover the worst case number of items we'll modify. 8834 */ 8835 trans = btrfs_start_transaction(root, 12); 8836 if (IS_ERR(trans)) { 8837 ret = PTR_ERR(trans); 8838 goto out_notrans; 8839 } 8840 8841 if (dest != root) 8842 btrfs_record_root_in_trans(trans, dest); 8843 8844 /* 8845 * We need to find a free sequence number both in the source and 8846 * in the destination directory for the exchange. 8847 */ 8848 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8849 if (ret) 8850 goto out_fail; 8851 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8852 if (ret) 8853 goto out_fail; 8854 8855 BTRFS_I(old_inode)->dir_index = 0ULL; 8856 BTRFS_I(new_inode)->dir_index = 0ULL; 8857 8858 /* Reference for the source. */ 8859 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8860 /* force full log commit if subvolume involved. */ 8861 btrfs_set_log_full_commit(trans); 8862 } else { 8863 btrfs_pin_log_trans(root); 8864 root_log_pinned = true; 8865 ret = btrfs_insert_inode_ref(trans, dest, 8866 new_dentry->d_name.name, 8867 new_dentry->d_name.len, 8868 old_ino, 8869 btrfs_ino(BTRFS_I(new_dir)), 8870 old_idx); 8871 if (ret) 8872 goto out_fail; 8873 } 8874 8875 /* And now for the dest. */ 8876 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8877 /* force full log commit if subvolume involved. */ 8878 btrfs_set_log_full_commit(trans); 8879 } else { 8880 btrfs_pin_log_trans(dest); 8881 dest_log_pinned = true; 8882 ret = btrfs_insert_inode_ref(trans, root, 8883 old_dentry->d_name.name, 8884 old_dentry->d_name.len, 8885 new_ino, 8886 btrfs_ino(BTRFS_I(old_dir)), 8887 new_idx); 8888 if (ret) 8889 goto out_fail; 8890 } 8891 8892 /* Update inode version and ctime/mtime. */ 8893 inode_inc_iversion(old_dir); 8894 inode_inc_iversion(new_dir); 8895 inode_inc_iversion(old_inode); 8896 inode_inc_iversion(new_inode); 8897 old_dir->i_ctime = old_dir->i_mtime = ctime; 8898 new_dir->i_ctime = new_dir->i_mtime = ctime; 8899 old_inode->i_ctime = ctime; 8900 new_inode->i_ctime = ctime; 8901 8902 if (old_dentry->d_parent != new_dentry->d_parent) { 8903 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8904 BTRFS_I(old_inode), 1); 8905 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8906 BTRFS_I(new_inode), 1); 8907 } 8908 8909 /* src is a subvolume */ 8910 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8911 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 8912 } else { /* src is an inode */ 8913 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 8914 BTRFS_I(old_dentry->d_inode), 8915 old_dentry->d_name.name, 8916 old_dentry->d_name.len); 8917 if (!ret) 8918 ret = btrfs_update_inode(trans, root, old_inode); 8919 } 8920 if (ret) { 8921 btrfs_abort_transaction(trans, ret); 8922 goto out_fail; 8923 } 8924 8925 /* dest is a subvolume */ 8926 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8927 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 8928 } else { /* dest is an inode */ 8929 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 8930 BTRFS_I(new_dentry->d_inode), 8931 new_dentry->d_name.name, 8932 new_dentry->d_name.len); 8933 if (!ret) 8934 ret = btrfs_update_inode(trans, dest, new_inode); 8935 } 8936 if (ret) { 8937 btrfs_abort_transaction(trans, ret); 8938 goto out_fail; 8939 } 8940 8941 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8942 new_dentry->d_name.name, 8943 new_dentry->d_name.len, 0, old_idx); 8944 if (ret) { 8945 btrfs_abort_transaction(trans, ret); 8946 goto out_fail; 8947 } 8948 8949 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8950 old_dentry->d_name.name, 8951 old_dentry->d_name.len, 0, new_idx); 8952 if (ret) { 8953 btrfs_abort_transaction(trans, ret); 8954 goto out_fail; 8955 } 8956 8957 if (old_inode->i_nlink == 1) 8958 BTRFS_I(old_inode)->dir_index = old_idx; 8959 if (new_inode->i_nlink == 1) 8960 BTRFS_I(new_inode)->dir_index = new_idx; 8961 8962 if (root_log_pinned) { 8963 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 8964 new_dentry->d_parent); 8965 btrfs_end_log_trans(root); 8966 root_log_pinned = false; 8967 } 8968 if (dest_log_pinned) { 8969 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir), 8970 old_dentry->d_parent); 8971 btrfs_end_log_trans(dest); 8972 dest_log_pinned = false; 8973 } 8974 out_fail: 8975 /* 8976 * If we have pinned a log and an error happened, we unpin tasks 8977 * trying to sync the log and force them to fallback to a transaction 8978 * commit if the log currently contains any of the inodes involved in 8979 * this rename operation (to ensure we do not persist a log with an 8980 * inconsistent state for any of these inodes or leading to any 8981 * inconsistencies when replayed). If the transaction was aborted, the 8982 * abortion reason is propagated to userspace when attempting to commit 8983 * the transaction. If the log does not contain any of these inodes, we 8984 * allow the tasks to sync it. 8985 */ 8986 if (ret && (root_log_pinned || dest_log_pinned)) { 8987 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 8988 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 8989 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 8990 (new_inode && 8991 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 8992 btrfs_set_log_full_commit(trans); 8993 8994 if (root_log_pinned) { 8995 btrfs_end_log_trans(root); 8996 root_log_pinned = false; 8997 } 8998 if (dest_log_pinned) { 8999 btrfs_end_log_trans(dest); 9000 dest_log_pinned = false; 9001 } 9002 } 9003 ret2 = btrfs_end_transaction(trans); 9004 ret = ret ? ret : ret2; 9005 out_notrans: 9006 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9007 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9008 up_read(&fs_info->subvol_sem); 9009 9010 return ret; 9011 } 9012 9013 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9014 struct btrfs_root *root, 9015 struct inode *dir, 9016 struct dentry *dentry) 9017 { 9018 int ret; 9019 struct inode *inode; 9020 u64 objectid; 9021 u64 index; 9022 9023 ret = btrfs_find_free_ino(root, &objectid); 9024 if (ret) 9025 return ret; 9026 9027 inode = btrfs_new_inode(trans, root, dir, 9028 dentry->d_name.name, 9029 dentry->d_name.len, 9030 btrfs_ino(BTRFS_I(dir)), 9031 objectid, 9032 S_IFCHR | WHITEOUT_MODE, 9033 &index); 9034 9035 if (IS_ERR(inode)) { 9036 ret = PTR_ERR(inode); 9037 return ret; 9038 } 9039 9040 inode->i_op = &btrfs_special_inode_operations; 9041 init_special_inode(inode, inode->i_mode, 9042 WHITEOUT_DEV); 9043 9044 ret = btrfs_init_inode_security(trans, inode, dir, 9045 &dentry->d_name); 9046 if (ret) 9047 goto out; 9048 9049 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9050 BTRFS_I(inode), 0, index); 9051 if (ret) 9052 goto out; 9053 9054 ret = btrfs_update_inode(trans, root, inode); 9055 out: 9056 unlock_new_inode(inode); 9057 if (ret) 9058 inode_dec_link_count(inode); 9059 iput(inode); 9060 9061 return ret; 9062 } 9063 9064 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 9065 struct inode *new_dir, struct dentry *new_dentry, 9066 unsigned int flags) 9067 { 9068 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9069 struct btrfs_trans_handle *trans; 9070 unsigned int trans_num_items; 9071 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9072 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9073 struct inode *new_inode = d_inode(new_dentry); 9074 struct inode *old_inode = d_inode(old_dentry); 9075 u64 index = 0; 9076 int ret; 9077 int ret2; 9078 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9079 bool log_pinned = false; 9080 9081 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9082 return -EPERM; 9083 9084 /* we only allow rename subvolume link between subvolumes */ 9085 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9086 return -EXDEV; 9087 9088 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9089 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9090 return -ENOTEMPTY; 9091 9092 if (S_ISDIR(old_inode->i_mode) && new_inode && 9093 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9094 return -ENOTEMPTY; 9095 9096 9097 /* check for collisions, even if the name isn't there */ 9098 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9099 new_dentry->d_name.name, 9100 new_dentry->d_name.len); 9101 9102 if (ret) { 9103 if (ret == -EEXIST) { 9104 /* we shouldn't get 9105 * eexist without a new_inode */ 9106 if (WARN_ON(!new_inode)) { 9107 return ret; 9108 } 9109 } else { 9110 /* maybe -EOVERFLOW */ 9111 return ret; 9112 } 9113 } 9114 ret = 0; 9115 9116 /* 9117 * we're using rename to replace one file with another. Start IO on it 9118 * now so we don't add too much work to the end of the transaction 9119 */ 9120 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9121 filemap_flush(old_inode->i_mapping); 9122 9123 /* close the racy window with snapshot create/destroy ioctl */ 9124 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9125 down_read(&fs_info->subvol_sem); 9126 /* 9127 * We want to reserve the absolute worst case amount of items. So if 9128 * both inodes are subvols and we need to unlink them then that would 9129 * require 4 item modifications, but if they are both normal inodes it 9130 * would require 5 item modifications, so we'll assume they are normal 9131 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9132 * should cover the worst case number of items we'll modify. 9133 * If our rename has the whiteout flag, we need more 5 units for the 9134 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9135 * when selinux is enabled). 9136 */ 9137 trans_num_items = 11; 9138 if (flags & RENAME_WHITEOUT) 9139 trans_num_items += 5; 9140 trans = btrfs_start_transaction(root, trans_num_items); 9141 if (IS_ERR(trans)) { 9142 ret = PTR_ERR(trans); 9143 goto out_notrans; 9144 } 9145 9146 if (dest != root) 9147 btrfs_record_root_in_trans(trans, dest); 9148 9149 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9150 if (ret) 9151 goto out_fail; 9152 9153 BTRFS_I(old_inode)->dir_index = 0ULL; 9154 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9155 /* force full log commit if subvolume involved. */ 9156 btrfs_set_log_full_commit(trans); 9157 } else { 9158 btrfs_pin_log_trans(root); 9159 log_pinned = true; 9160 ret = btrfs_insert_inode_ref(trans, dest, 9161 new_dentry->d_name.name, 9162 new_dentry->d_name.len, 9163 old_ino, 9164 btrfs_ino(BTRFS_I(new_dir)), index); 9165 if (ret) 9166 goto out_fail; 9167 } 9168 9169 inode_inc_iversion(old_dir); 9170 inode_inc_iversion(new_dir); 9171 inode_inc_iversion(old_inode); 9172 old_dir->i_ctime = old_dir->i_mtime = 9173 new_dir->i_ctime = new_dir->i_mtime = 9174 old_inode->i_ctime = current_time(old_dir); 9175 9176 if (old_dentry->d_parent != new_dentry->d_parent) 9177 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9178 BTRFS_I(old_inode), 1); 9179 9180 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9181 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9182 } else { 9183 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), 9184 BTRFS_I(d_inode(old_dentry)), 9185 old_dentry->d_name.name, 9186 old_dentry->d_name.len); 9187 if (!ret) 9188 ret = btrfs_update_inode(trans, root, old_inode); 9189 } 9190 if (ret) { 9191 btrfs_abort_transaction(trans, ret); 9192 goto out_fail; 9193 } 9194 9195 if (new_inode) { 9196 inode_inc_iversion(new_inode); 9197 new_inode->i_ctime = current_time(new_inode); 9198 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9199 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9200 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9201 BUG_ON(new_inode->i_nlink == 0); 9202 } else { 9203 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), 9204 BTRFS_I(d_inode(new_dentry)), 9205 new_dentry->d_name.name, 9206 new_dentry->d_name.len); 9207 } 9208 if (!ret && new_inode->i_nlink == 0) 9209 ret = btrfs_orphan_add(trans, 9210 BTRFS_I(d_inode(new_dentry))); 9211 if (ret) { 9212 btrfs_abort_transaction(trans, ret); 9213 goto out_fail; 9214 } 9215 } 9216 9217 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9218 new_dentry->d_name.name, 9219 new_dentry->d_name.len, 0, index); 9220 if (ret) { 9221 btrfs_abort_transaction(trans, ret); 9222 goto out_fail; 9223 } 9224 9225 if (old_inode->i_nlink == 1) 9226 BTRFS_I(old_inode)->dir_index = index; 9227 9228 if (log_pinned) { 9229 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir), 9230 new_dentry->d_parent); 9231 btrfs_end_log_trans(root); 9232 log_pinned = false; 9233 } 9234 9235 if (flags & RENAME_WHITEOUT) { 9236 ret = btrfs_whiteout_for_rename(trans, root, old_dir, 9237 old_dentry); 9238 9239 if (ret) { 9240 btrfs_abort_transaction(trans, ret); 9241 goto out_fail; 9242 } 9243 } 9244 out_fail: 9245 /* 9246 * If we have pinned the log and an error happened, we unpin tasks 9247 * trying to sync the log and force them to fallback to a transaction 9248 * commit if the log currently contains any of the inodes involved in 9249 * this rename operation (to ensure we do not persist a log with an 9250 * inconsistent state for any of these inodes or leading to any 9251 * inconsistencies when replayed). If the transaction was aborted, the 9252 * abortion reason is propagated to userspace when attempting to commit 9253 * the transaction. If the log does not contain any of these inodes, we 9254 * allow the tasks to sync it. 9255 */ 9256 if (ret && log_pinned) { 9257 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || 9258 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || 9259 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || 9260 (new_inode && 9261 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) 9262 btrfs_set_log_full_commit(trans); 9263 9264 btrfs_end_log_trans(root); 9265 log_pinned = false; 9266 } 9267 ret2 = btrfs_end_transaction(trans); 9268 ret = ret ? ret : ret2; 9269 out_notrans: 9270 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9271 up_read(&fs_info->subvol_sem); 9272 9273 return ret; 9274 } 9275 9276 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, 9277 struct inode *new_dir, struct dentry *new_dentry, 9278 unsigned int flags) 9279 { 9280 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9281 return -EINVAL; 9282 9283 if (flags & RENAME_EXCHANGE) 9284 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9285 new_dentry); 9286 9287 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); 9288 } 9289 9290 struct btrfs_delalloc_work { 9291 struct inode *inode; 9292 struct completion completion; 9293 struct list_head list; 9294 struct btrfs_work work; 9295 }; 9296 9297 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9298 { 9299 struct btrfs_delalloc_work *delalloc_work; 9300 struct inode *inode; 9301 9302 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9303 work); 9304 inode = delalloc_work->inode; 9305 filemap_flush(inode->i_mapping); 9306 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9307 &BTRFS_I(inode)->runtime_flags)) 9308 filemap_flush(inode->i_mapping); 9309 9310 iput(inode); 9311 complete(&delalloc_work->completion); 9312 } 9313 9314 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9315 { 9316 struct btrfs_delalloc_work *work; 9317 9318 work = kmalloc(sizeof(*work), GFP_NOFS); 9319 if (!work) 9320 return NULL; 9321 9322 init_completion(&work->completion); 9323 INIT_LIST_HEAD(&work->list); 9324 work->inode = inode; 9325 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9326 9327 return work; 9328 } 9329 9330 /* 9331 * some fairly slow code that needs optimization. This walks the list 9332 * of all the inodes with pending delalloc and forces them to disk. 9333 */ 9334 static int start_delalloc_inodes(struct btrfs_root *root, u64 *nr, bool snapshot) 9335 { 9336 struct btrfs_inode *binode; 9337 struct inode *inode; 9338 struct btrfs_delalloc_work *work, *next; 9339 struct list_head works; 9340 struct list_head splice; 9341 int ret = 0; 9342 9343 INIT_LIST_HEAD(&works); 9344 INIT_LIST_HEAD(&splice); 9345 9346 mutex_lock(&root->delalloc_mutex); 9347 spin_lock(&root->delalloc_lock); 9348 list_splice_init(&root->delalloc_inodes, &splice); 9349 while (!list_empty(&splice)) { 9350 binode = list_entry(splice.next, struct btrfs_inode, 9351 delalloc_inodes); 9352 9353 list_move_tail(&binode->delalloc_inodes, 9354 &root->delalloc_inodes); 9355 inode = igrab(&binode->vfs_inode); 9356 if (!inode) { 9357 cond_resched_lock(&root->delalloc_lock); 9358 continue; 9359 } 9360 spin_unlock(&root->delalloc_lock); 9361 9362 if (snapshot) 9363 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9364 &binode->runtime_flags); 9365 work = btrfs_alloc_delalloc_work(inode); 9366 if (!work) { 9367 iput(inode); 9368 ret = -ENOMEM; 9369 goto out; 9370 } 9371 list_add_tail(&work->list, &works); 9372 btrfs_queue_work(root->fs_info->flush_workers, 9373 &work->work); 9374 if (*nr != U64_MAX) { 9375 (*nr)--; 9376 if (*nr == 0) 9377 goto out; 9378 } 9379 cond_resched(); 9380 spin_lock(&root->delalloc_lock); 9381 } 9382 spin_unlock(&root->delalloc_lock); 9383 9384 out: 9385 list_for_each_entry_safe(work, next, &works, list) { 9386 list_del_init(&work->list); 9387 wait_for_completion(&work->completion); 9388 kfree(work); 9389 } 9390 9391 if (!list_empty(&splice)) { 9392 spin_lock(&root->delalloc_lock); 9393 list_splice_tail(&splice, &root->delalloc_inodes); 9394 spin_unlock(&root->delalloc_lock); 9395 } 9396 mutex_unlock(&root->delalloc_mutex); 9397 return ret; 9398 } 9399 9400 int btrfs_start_delalloc_snapshot(struct btrfs_root *root) 9401 { 9402 struct btrfs_fs_info *fs_info = root->fs_info; 9403 u64 nr = U64_MAX; 9404 9405 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9406 return -EROFS; 9407 9408 return start_delalloc_inodes(root, &nr, true); 9409 } 9410 9411 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, u64 nr) 9412 { 9413 struct btrfs_root *root; 9414 struct list_head splice; 9415 int ret; 9416 9417 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 9418 return -EROFS; 9419 9420 INIT_LIST_HEAD(&splice); 9421 9422 mutex_lock(&fs_info->delalloc_root_mutex); 9423 spin_lock(&fs_info->delalloc_root_lock); 9424 list_splice_init(&fs_info->delalloc_roots, &splice); 9425 while (!list_empty(&splice) && nr) { 9426 root = list_first_entry(&splice, struct btrfs_root, 9427 delalloc_root); 9428 root = btrfs_grab_root(root); 9429 BUG_ON(!root); 9430 list_move_tail(&root->delalloc_root, 9431 &fs_info->delalloc_roots); 9432 spin_unlock(&fs_info->delalloc_root_lock); 9433 9434 ret = start_delalloc_inodes(root, &nr, false); 9435 btrfs_put_root(root); 9436 if (ret < 0) 9437 goto out; 9438 spin_lock(&fs_info->delalloc_root_lock); 9439 } 9440 spin_unlock(&fs_info->delalloc_root_lock); 9441 9442 ret = 0; 9443 out: 9444 if (!list_empty(&splice)) { 9445 spin_lock(&fs_info->delalloc_root_lock); 9446 list_splice_tail(&splice, &fs_info->delalloc_roots); 9447 spin_unlock(&fs_info->delalloc_root_lock); 9448 } 9449 mutex_unlock(&fs_info->delalloc_root_mutex); 9450 return ret; 9451 } 9452 9453 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 9454 const char *symname) 9455 { 9456 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9457 struct btrfs_trans_handle *trans; 9458 struct btrfs_root *root = BTRFS_I(dir)->root; 9459 struct btrfs_path *path; 9460 struct btrfs_key key; 9461 struct inode *inode = NULL; 9462 int err; 9463 u64 objectid; 9464 u64 index = 0; 9465 int name_len; 9466 int datasize; 9467 unsigned long ptr; 9468 struct btrfs_file_extent_item *ei; 9469 struct extent_buffer *leaf; 9470 9471 name_len = strlen(symname); 9472 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9473 return -ENAMETOOLONG; 9474 9475 /* 9476 * 2 items for inode item and ref 9477 * 2 items for dir items 9478 * 1 item for updating parent inode item 9479 * 1 item for the inline extent item 9480 * 1 item for xattr if selinux is on 9481 */ 9482 trans = btrfs_start_transaction(root, 7); 9483 if (IS_ERR(trans)) 9484 return PTR_ERR(trans); 9485 9486 err = btrfs_find_free_ino(root, &objectid); 9487 if (err) 9488 goto out_unlock; 9489 9490 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 9491 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), 9492 objectid, S_IFLNK|S_IRWXUGO, &index); 9493 if (IS_ERR(inode)) { 9494 err = PTR_ERR(inode); 9495 inode = NULL; 9496 goto out_unlock; 9497 } 9498 9499 /* 9500 * If the active LSM wants to access the inode during 9501 * d_instantiate it needs these. Smack checks to see 9502 * if the filesystem supports xattrs by looking at the 9503 * ops vector. 9504 */ 9505 inode->i_fop = &btrfs_file_operations; 9506 inode->i_op = &btrfs_file_inode_operations; 9507 inode->i_mapping->a_ops = &btrfs_aops; 9508 9509 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9510 if (err) 9511 goto out_unlock; 9512 9513 path = btrfs_alloc_path(); 9514 if (!path) { 9515 err = -ENOMEM; 9516 goto out_unlock; 9517 } 9518 key.objectid = btrfs_ino(BTRFS_I(inode)); 9519 key.offset = 0; 9520 key.type = BTRFS_EXTENT_DATA_KEY; 9521 datasize = btrfs_file_extent_calc_inline_size(name_len); 9522 err = btrfs_insert_empty_item(trans, root, path, &key, 9523 datasize); 9524 if (err) { 9525 btrfs_free_path(path); 9526 goto out_unlock; 9527 } 9528 leaf = path->nodes[0]; 9529 ei = btrfs_item_ptr(leaf, path->slots[0], 9530 struct btrfs_file_extent_item); 9531 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9532 btrfs_set_file_extent_type(leaf, ei, 9533 BTRFS_FILE_EXTENT_INLINE); 9534 btrfs_set_file_extent_encryption(leaf, ei, 0); 9535 btrfs_set_file_extent_compression(leaf, ei, 0); 9536 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9537 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9538 9539 ptr = btrfs_file_extent_inline_start(ei); 9540 write_extent_buffer(leaf, symname, ptr, name_len); 9541 btrfs_mark_buffer_dirty(leaf); 9542 btrfs_free_path(path); 9543 9544 inode->i_op = &btrfs_symlink_inode_operations; 9545 inode_nohighmem(inode); 9546 inode_set_bytes(inode, name_len); 9547 btrfs_i_size_write(BTRFS_I(inode), name_len); 9548 err = btrfs_update_inode(trans, root, inode); 9549 /* 9550 * Last step, add directory indexes for our symlink inode. This is the 9551 * last step to avoid extra cleanup of these indexes if an error happens 9552 * elsewhere above. 9553 */ 9554 if (!err) 9555 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9556 BTRFS_I(inode), 0, index); 9557 if (err) 9558 goto out_unlock; 9559 9560 d_instantiate_new(dentry, inode); 9561 9562 out_unlock: 9563 btrfs_end_transaction(trans); 9564 if (err && inode) { 9565 inode_dec_link_count(inode); 9566 discard_new_inode(inode); 9567 } 9568 btrfs_btree_balance_dirty(fs_info); 9569 return err; 9570 } 9571 9572 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9573 struct btrfs_trans_handle *trans_in, 9574 struct inode *inode, struct btrfs_key *ins, 9575 u64 file_offset) 9576 { 9577 struct btrfs_file_extent_item stack_fi; 9578 struct btrfs_replace_extent_info extent_info; 9579 struct btrfs_trans_handle *trans = trans_in; 9580 struct btrfs_path *path; 9581 u64 start = ins->objectid; 9582 u64 len = ins->offset; 9583 int ret; 9584 9585 memset(&stack_fi, 0, sizeof(stack_fi)); 9586 9587 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9588 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9589 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9590 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9591 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9592 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9593 /* Encryption and other encoding is reserved and all 0 */ 9594 9595 ret = btrfs_qgroup_release_data(BTRFS_I(inode), file_offset, len); 9596 if (ret < 0) 9597 return ERR_PTR(ret); 9598 9599 if (trans) { 9600 ret = insert_reserved_file_extent(trans, BTRFS_I(inode), 9601 file_offset, &stack_fi, ret); 9602 if (ret) 9603 return ERR_PTR(ret); 9604 return trans; 9605 } 9606 9607 extent_info.disk_offset = start; 9608 extent_info.disk_len = len; 9609 extent_info.data_offset = 0; 9610 extent_info.data_len = len; 9611 extent_info.file_offset = file_offset; 9612 extent_info.extent_buf = (char *)&stack_fi; 9613 extent_info.is_new_extent = true; 9614 extent_info.qgroup_reserved = ret; 9615 extent_info.insertions = 0; 9616 9617 path = btrfs_alloc_path(); 9618 if (!path) 9619 return ERR_PTR(-ENOMEM); 9620 9621 ret = btrfs_replace_file_extents(inode, path, file_offset, 9622 file_offset + len - 1, &extent_info, 9623 &trans); 9624 btrfs_free_path(path); 9625 if (ret) 9626 return ERR_PTR(ret); 9627 9628 return trans; 9629 } 9630 9631 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9632 u64 start, u64 num_bytes, u64 min_size, 9633 loff_t actual_len, u64 *alloc_hint, 9634 struct btrfs_trans_handle *trans) 9635 { 9636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9637 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9638 struct extent_map *em; 9639 struct btrfs_root *root = BTRFS_I(inode)->root; 9640 struct btrfs_key ins; 9641 u64 cur_offset = start; 9642 u64 clear_offset = start; 9643 u64 i_size; 9644 u64 cur_bytes; 9645 u64 last_alloc = (u64)-1; 9646 int ret = 0; 9647 bool own_trans = true; 9648 u64 end = start + num_bytes - 1; 9649 9650 if (trans) 9651 own_trans = false; 9652 while (num_bytes > 0) { 9653 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9654 cur_bytes = max(cur_bytes, min_size); 9655 /* 9656 * If we are severely fragmented we could end up with really 9657 * small allocations, so if the allocator is returning small 9658 * chunks lets make its job easier by only searching for those 9659 * sized chunks. 9660 */ 9661 cur_bytes = min(cur_bytes, last_alloc); 9662 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9663 min_size, 0, *alloc_hint, &ins, 1, 0); 9664 if (ret) 9665 break; 9666 9667 /* 9668 * We've reserved this space, and thus converted it from 9669 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9670 * from here on out we will only need to clear our reservation 9671 * for the remaining unreserved area, so advance our 9672 * clear_offset by our extent size. 9673 */ 9674 clear_offset += ins.offset; 9675 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9676 9677 last_alloc = ins.offset; 9678 trans = insert_prealloc_file_extent(trans, inode, &ins, cur_offset); 9679 if (IS_ERR(trans)) { 9680 ret = PTR_ERR(trans); 9681 btrfs_free_reserved_extent(fs_info, ins.objectid, 9682 ins.offset, 0); 9683 break; 9684 } 9685 9686 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9687 cur_offset + ins.offset -1, 0); 9688 9689 em = alloc_extent_map(); 9690 if (!em) { 9691 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 9692 &BTRFS_I(inode)->runtime_flags); 9693 goto next; 9694 } 9695 9696 em->start = cur_offset; 9697 em->orig_start = cur_offset; 9698 em->len = ins.offset; 9699 em->block_start = ins.objectid; 9700 em->block_len = ins.offset; 9701 em->orig_block_len = ins.offset; 9702 em->ram_bytes = ins.offset; 9703 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9704 em->generation = trans->transid; 9705 9706 while (1) { 9707 write_lock(&em_tree->lock); 9708 ret = add_extent_mapping(em_tree, em, 1); 9709 write_unlock(&em_tree->lock); 9710 if (ret != -EEXIST) 9711 break; 9712 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9713 cur_offset + ins.offset - 1, 9714 0); 9715 } 9716 free_extent_map(em); 9717 next: 9718 num_bytes -= ins.offset; 9719 cur_offset += ins.offset; 9720 *alloc_hint = ins.objectid + ins.offset; 9721 9722 inode_inc_iversion(inode); 9723 inode->i_ctime = current_time(inode); 9724 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 9725 if (!(mode & FALLOC_FL_KEEP_SIZE) && 9726 (actual_len > inode->i_size) && 9727 (cur_offset > inode->i_size)) { 9728 if (cur_offset > actual_len) 9729 i_size = actual_len; 9730 else 9731 i_size = cur_offset; 9732 i_size_write(inode, i_size); 9733 btrfs_inode_safe_disk_i_size_write(inode, 0); 9734 } 9735 9736 ret = btrfs_update_inode(trans, root, inode); 9737 9738 if (ret) { 9739 btrfs_abort_transaction(trans, ret); 9740 if (own_trans) 9741 btrfs_end_transaction(trans); 9742 break; 9743 } 9744 9745 if (own_trans) { 9746 btrfs_end_transaction(trans); 9747 trans = NULL; 9748 } 9749 } 9750 if (clear_offset < end) 9751 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 9752 end - clear_offset + 1); 9753 return ret; 9754 } 9755 9756 int btrfs_prealloc_file_range(struct inode *inode, int mode, 9757 u64 start, u64 num_bytes, u64 min_size, 9758 loff_t actual_len, u64 *alloc_hint) 9759 { 9760 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9761 min_size, actual_len, alloc_hint, 9762 NULL); 9763 } 9764 9765 int btrfs_prealloc_file_range_trans(struct inode *inode, 9766 struct btrfs_trans_handle *trans, int mode, 9767 u64 start, u64 num_bytes, u64 min_size, 9768 loff_t actual_len, u64 *alloc_hint) 9769 { 9770 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 9771 min_size, actual_len, alloc_hint, trans); 9772 } 9773 9774 static int btrfs_set_page_dirty(struct page *page) 9775 { 9776 return __set_page_dirty_nobuffers(page); 9777 } 9778 9779 static int btrfs_permission(struct inode *inode, int mask) 9780 { 9781 struct btrfs_root *root = BTRFS_I(inode)->root; 9782 umode_t mode = inode->i_mode; 9783 9784 if (mask & MAY_WRITE && 9785 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9786 if (btrfs_root_readonly(root)) 9787 return -EROFS; 9788 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9789 return -EACCES; 9790 } 9791 return generic_permission(inode, mask); 9792 } 9793 9794 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) 9795 { 9796 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9797 struct btrfs_trans_handle *trans; 9798 struct btrfs_root *root = BTRFS_I(dir)->root; 9799 struct inode *inode = NULL; 9800 u64 objectid; 9801 u64 index; 9802 int ret = 0; 9803 9804 /* 9805 * 5 units required for adding orphan entry 9806 */ 9807 trans = btrfs_start_transaction(root, 5); 9808 if (IS_ERR(trans)) 9809 return PTR_ERR(trans); 9810 9811 ret = btrfs_find_free_ino(root, &objectid); 9812 if (ret) 9813 goto out; 9814 9815 inode = btrfs_new_inode(trans, root, dir, NULL, 0, 9816 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 9817 if (IS_ERR(inode)) { 9818 ret = PTR_ERR(inode); 9819 inode = NULL; 9820 goto out; 9821 } 9822 9823 inode->i_fop = &btrfs_file_operations; 9824 inode->i_op = &btrfs_file_inode_operations; 9825 9826 inode->i_mapping->a_ops = &btrfs_aops; 9827 9828 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 9829 if (ret) 9830 goto out; 9831 9832 ret = btrfs_update_inode(trans, root, inode); 9833 if (ret) 9834 goto out; 9835 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 9836 if (ret) 9837 goto out; 9838 9839 /* 9840 * We set number of links to 0 in btrfs_new_inode(), and here we set 9841 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 9842 * through: 9843 * 9844 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9845 */ 9846 set_nlink(inode, 1); 9847 d_tmpfile(dentry, inode); 9848 unlock_new_inode(inode); 9849 mark_inode_dirty(inode); 9850 out: 9851 btrfs_end_transaction(trans); 9852 if (ret && inode) 9853 discard_new_inode(inode); 9854 btrfs_btree_balance_dirty(fs_info); 9855 return ret; 9856 } 9857 9858 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 9859 { 9860 struct inode *inode = tree->private_data; 9861 unsigned long index = start >> PAGE_SHIFT; 9862 unsigned long end_index = end >> PAGE_SHIFT; 9863 struct page *page; 9864 9865 while (index <= end_index) { 9866 page = find_get_page(inode->i_mapping, index); 9867 ASSERT(page); /* Pages should be in the extent_io_tree */ 9868 set_page_writeback(page); 9869 put_page(page); 9870 index++; 9871 } 9872 } 9873 9874 #ifdef CONFIG_SWAP 9875 /* 9876 * Add an entry indicating a block group or device which is pinned by a 9877 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9878 * negative errno on failure. 9879 */ 9880 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9881 bool is_block_group) 9882 { 9883 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9884 struct btrfs_swapfile_pin *sp, *entry; 9885 struct rb_node **p; 9886 struct rb_node *parent = NULL; 9887 9888 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9889 if (!sp) 9890 return -ENOMEM; 9891 sp->ptr = ptr; 9892 sp->inode = inode; 9893 sp->is_block_group = is_block_group; 9894 9895 spin_lock(&fs_info->swapfile_pins_lock); 9896 p = &fs_info->swapfile_pins.rb_node; 9897 while (*p) { 9898 parent = *p; 9899 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9900 if (sp->ptr < entry->ptr || 9901 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9902 p = &(*p)->rb_left; 9903 } else if (sp->ptr > entry->ptr || 9904 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9905 p = &(*p)->rb_right; 9906 } else { 9907 spin_unlock(&fs_info->swapfile_pins_lock); 9908 kfree(sp); 9909 return 1; 9910 } 9911 } 9912 rb_link_node(&sp->node, parent, p); 9913 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9914 spin_unlock(&fs_info->swapfile_pins_lock); 9915 return 0; 9916 } 9917 9918 /* Free all of the entries pinned by this swapfile. */ 9919 static void btrfs_free_swapfile_pins(struct inode *inode) 9920 { 9921 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9922 struct btrfs_swapfile_pin *sp; 9923 struct rb_node *node, *next; 9924 9925 spin_lock(&fs_info->swapfile_pins_lock); 9926 node = rb_first(&fs_info->swapfile_pins); 9927 while (node) { 9928 next = rb_next(node); 9929 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9930 if (sp->inode == inode) { 9931 rb_erase(&sp->node, &fs_info->swapfile_pins); 9932 if (sp->is_block_group) 9933 btrfs_put_block_group(sp->ptr); 9934 kfree(sp); 9935 } 9936 node = next; 9937 } 9938 spin_unlock(&fs_info->swapfile_pins_lock); 9939 } 9940 9941 struct btrfs_swap_info { 9942 u64 start; 9943 u64 block_start; 9944 u64 block_len; 9945 u64 lowest_ppage; 9946 u64 highest_ppage; 9947 unsigned long nr_pages; 9948 int nr_extents; 9949 }; 9950 9951 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9952 struct btrfs_swap_info *bsi) 9953 { 9954 unsigned long nr_pages; 9955 u64 first_ppage, first_ppage_reported, next_ppage; 9956 int ret; 9957 9958 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 9959 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 9960 PAGE_SIZE) >> PAGE_SHIFT; 9961 9962 if (first_ppage >= next_ppage) 9963 return 0; 9964 nr_pages = next_ppage - first_ppage; 9965 9966 first_ppage_reported = first_ppage; 9967 if (bsi->start == 0) 9968 first_ppage_reported++; 9969 if (bsi->lowest_ppage > first_ppage_reported) 9970 bsi->lowest_ppage = first_ppage_reported; 9971 if (bsi->highest_ppage < (next_ppage - 1)) 9972 bsi->highest_ppage = next_ppage - 1; 9973 9974 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9975 if (ret < 0) 9976 return ret; 9977 bsi->nr_extents += ret; 9978 bsi->nr_pages += nr_pages; 9979 return 0; 9980 } 9981 9982 static void btrfs_swap_deactivate(struct file *file) 9983 { 9984 struct inode *inode = file_inode(file); 9985 9986 btrfs_free_swapfile_pins(inode); 9987 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9988 } 9989 9990 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9991 sector_t *span) 9992 { 9993 struct inode *inode = file_inode(file); 9994 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9995 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9996 struct extent_state *cached_state = NULL; 9997 struct extent_map *em = NULL; 9998 struct btrfs_device *device = NULL; 9999 struct btrfs_swap_info bsi = { 10000 .lowest_ppage = (sector_t)-1ULL, 10001 }; 10002 int ret = 0; 10003 u64 isize; 10004 u64 start; 10005 10006 /* 10007 * If the swap file was just created, make sure delalloc is done. If the 10008 * file changes again after this, the user is doing something stupid and 10009 * we don't really care. 10010 */ 10011 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 10012 if (ret) 10013 return ret; 10014 10015 /* 10016 * The inode is locked, so these flags won't change after we check them. 10017 */ 10018 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 10019 btrfs_warn(fs_info, "swapfile must not be compressed"); 10020 return -EINVAL; 10021 } 10022 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 10023 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 10024 return -EINVAL; 10025 } 10026 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 10027 btrfs_warn(fs_info, "swapfile must not be checksummed"); 10028 return -EINVAL; 10029 } 10030 10031 /* 10032 * Balance or device remove/replace/resize can move stuff around from 10033 * under us. The exclop protection makes sure they aren't running/won't 10034 * run concurrently while we are mapping the swap extents, and 10035 * fs_info->swapfile_pins prevents them from running while the swap 10036 * file is active and moving the extents. Note that this also prevents 10037 * a concurrent device add which isn't actually necessary, but it's not 10038 * really worth the trouble to allow it. 10039 */ 10040 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 10041 btrfs_warn(fs_info, 10042 "cannot activate swapfile while exclusive operation is running"); 10043 return -EBUSY; 10044 } 10045 /* 10046 * Snapshots can create extents which require COW even if NODATACOW is 10047 * set. We use this counter to prevent snapshots. We must increment it 10048 * before walking the extents because we don't want a concurrent 10049 * snapshot to run after we've already checked the extents. 10050 */ 10051 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles); 10052 10053 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10054 10055 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 10056 start = 0; 10057 while (start < isize) { 10058 u64 logical_block_start, physical_block_start; 10059 struct btrfs_block_group *bg; 10060 u64 len = isize - start; 10061 10062 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 10063 if (IS_ERR(em)) { 10064 ret = PTR_ERR(em); 10065 goto out; 10066 } 10067 10068 if (em->block_start == EXTENT_MAP_HOLE) { 10069 btrfs_warn(fs_info, "swapfile must not have holes"); 10070 ret = -EINVAL; 10071 goto out; 10072 } 10073 if (em->block_start == EXTENT_MAP_INLINE) { 10074 /* 10075 * It's unlikely we'll ever actually find ourselves 10076 * here, as a file small enough to fit inline won't be 10077 * big enough to store more than the swap header, but in 10078 * case something changes in the future, let's catch it 10079 * here rather than later. 10080 */ 10081 btrfs_warn(fs_info, "swapfile must not be inline"); 10082 ret = -EINVAL; 10083 goto out; 10084 } 10085 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10086 btrfs_warn(fs_info, "swapfile must not be compressed"); 10087 ret = -EINVAL; 10088 goto out; 10089 } 10090 10091 logical_block_start = em->block_start + (start - em->start); 10092 len = min(len, em->len - (start - em->start)); 10093 free_extent_map(em); 10094 em = NULL; 10095 10096 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 10097 if (ret < 0) { 10098 goto out; 10099 } else if (ret) { 10100 ret = 0; 10101 } else { 10102 btrfs_warn(fs_info, 10103 "swapfile must not be copy-on-write"); 10104 ret = -EINVAL; 10105 goto out; 10106 } 10107 10108 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10109 if (IS_ERR(em)) { 10110 ret = PTR_ERR(em); 10111 goto out; 10112 } 10113 10114 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10115 btrfs_warn(fs_info, 10116 "swapfile must have single data profile"); 10117 ret = -EINVAL; 10118 goto out; 10119 } 10120 10121 if (device == NULL) { 10122 device = em->map_lookup->stripes[0].dev; 10123 ret = btrfs_add_swapfile_pin(inode, device, false); 10124 if (ret == 1) 10125 ret = 0; 10126 else if (ret) 10127 goto out; 10128 } else if (device != em->map_lookup->stripes[0].dev) { 10129 btrfs_warn(fs_info, "swapfile must be on one device"); 10130 ret = -EINVAL; 10131 goto out; 10132 } 10133 10134 physical_block_start = (em->map_lookup->stripes[0].physical + 10135 (logical_block_start - em->start)); 10136 len = min(len, em->len - (logical_block_start - em->start)); 10137 free_extent_map(em); 10138 em = NULL; 10139 10140 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10141 if (!bg) { 10142 btrfs_warn(fs_info, 10143 "could not find block group containing swapfile"); 10144 ret = -EINVAL; 10145 goto out; 10146 } 10147 10148 ret = btrfs_add_swapfile_pin(inode, bg, true); 10149 if (ret) { 10150 btrfs_put_block_group(bg); 10151 if (ret == 1) 10152 ret = 0; 10153 else 10154 goto out; 10155 } 10156 10157 if (bsi.block_len && 10158 bsi.block_start + bsi.block_len == physical_block_start) { 10159 bsi.block_len += len; 10160 } else { 10161 if (bsi.block_len) { 10162 ret = btrfs_add_swap_extent(sis, &bsi); 10163 if (ret) 10164 goto out; 10165 } 10166 bsi.start = start; 10167 bsi.block_start = physical_block_start; 10168 bsi.block_len = len; 10169 } 10170 10171 start += len; 10172 } 10173 10174 if (bsi.block_len) 10175 ret = btrfs_add_swap_extent(sis, &bsi); 10176 10177 out: 10178 if (!IS_ERR_OR_NULL(em)) 10179 free_extent_map(em); 10180 10181 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 10182 10183 if (ret) 10184 btrfs_swap_deactivate(file); 10185 10186 btrfs_exclop_finish(fs_info); 10187 10188 if (ret) 10189 return ret; 10190 10191 if (device) 10192 sis->bdev = device->bdev; 10193 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10194 sis->max = bsi.nr_pages; 10195 sis->pages = bsi.nr_pages - 1; 10196 sis->highest_bit = bsi.nr_pages - 1; 10197 return bsi.nr_extents; 10198 } 10199 #else 10200 static void btrfs_swap_deactivate(struct file *file) 10201 { 10202 } 10203 10204 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10205 sector_t *span) 10206 { 10207 return -EOPNOTSUPP; 10208 } 10209 #endif 10210 10211 static const struct inode_operations btrfs_dir_inode_operations = { 10212 .getattr = btrfs_getattr, 10213 .lookup = btrfs_lookup, 10214 .create = btrfs_create, 10215 .unlink = btrfs_unlink, 10216 .link = btrfs_link, 10217 .mkdir = btrfs_mkdir, 10218 .rmdir = btrfs_rmdir, 10219 .rename = btrfs_rename2, 10220 .symlink = btrfs_symlink, 10221 .setattr = btrfs_setattr, 10222 .mknod = btrfs_mknod, 10223 .listxattr = btrfs_listxattr, 10224 .permission = btrfs_permission, 10225 .get_acl = btrfs_get_acl, 10226 .set_acl = btrfs_set_acl, 10227 .update_time = btrfs_update_time, 10228 .tmpfile = btrfs_tmpfile, 10229 }; 10230 10231 static const struct file_operations btrfs_dir_file_operations = { 10232 .llseek = generic_file_llseek, 10233 .read = generic_read_dir, 10234 .iterate_shared = btrfs_real_readdir, 10235 .open = btrfs_opendir, 10236 .unlocked_ioctl = btrfs_ioctl, 10237 #ifdef CONFIG_COMPAT 10238 .compat_ioctl = btrfs_compat_ioctl, 10239 #endif 10240 .release = btrfs_release_file, 10241 .fsync = btrfs_sync_file, 10242 }; 10243 10244 /* 10245 * btrfs doesn't support the bmap operation because swapfiles 10246 * use bmap to make a mapping of extents in the file. They assume 10247 * these extents won't change over the life of the file and they 10248 * use the bmap result to do IO directly to the drive. 10249 * 10250 * the btrfs bmap call would return logical addresses that aren't 10251 * suitable for IO and they also will change frequently as COW 10252 * operations happen. So, swapfile + btrfs == corruption. 10253 * 10254 * For now we're avoiding this by dropping bmap. 10255 */ 10256 static const struct address_space_operations btrfs_aops = { 10257 .readpage = btrfs_readpage, 10258 .writepage = btrfs_writepage, 10259 .writepages = btrfs_writepages, 10260 .readahead = btrfs_readahead, 10261 .direct_IO = noop_direct_IO, 10262 .invalidatepage = btrfs_invalidatepage, 10263 .releasepage = btrfs_releasepage, 10264 #ifdef CONFIG_MIGRATION 10265 .migratepage = btrfs_migratepage, 10266 #endif 10267 .set_page_dirty = btrfs_set_page_dirty, 10268 .error_remove_page = generic_error_remove_page, 10269 .swap_activate = btrfs_swap_activate, 10270 .swap_deactivate = btrfs_swap_deactivate, 10271 }; 10272 10273 static const struct inode_operations btrfs_file_inode_operations = { 10274 .getattr = btrfs_getattr, 10275 .setattr = btrfs_setattr, 10276 .listxattr = btrfs_listxattr, 10277 .permission = btrfs_permission, 10278 .fiemap = btrfs_fiemap, 10279 .get_acl = btrfs_get_acl, 10280 .set_acl = btrfs_set_acl, 10281 .update_time = btrfs_update_time, 10282 }; 10283 static const struct inode_operations btrfs_special_inode_operations = { 10284 .getattr = btrfs_getattr, 10285 .setattr = btrfs_setattr, 10286 .permission = btrfs_permission, 10287 .listxattr = btrfs_listxattr, 10288 .get_acl = btrfs_get_acl, 10289 .set_acl = btrfs_set_acl, 10290 .update_time = btrfs_update_time, 10291 }; 10292 static const struct inode_operations btrfs_symlink_inode_operations = { 10293 .get_link = page_get_link, 10294 .getattr = btrfs_getattr, 10295 .setattr = btrfs_setattr, 10296 .permission = btrfs_permission, 10297 .listxattr = btrfs_listxattr, 10298 .update_time = btrfs_update_time, 10299 }; 10300 10301 const struct dentry_operations btrfs_dentry_operations = { 10302 .d_delete = btrfs_dentry_delete, 10303 }; 10304