xref: /linux/fs/btrfs/inode.c (revision 424f0750edd5af866f80f5e65998e0610503cb5c)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "volumes.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56 
57 struct btrfs_iget_args {
58 	u64 ino;
59 	struct btrfs_root *root;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71 
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
81 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
82 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
83 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
84 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
85 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
86 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
87 };
88 
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 				   struct page *locked_page,
94 				   u64 start, u64 end, int *page_started,
95 				   unsigned long *nr_written, int unlock);
96 
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 				     struct inode *inode,  struct inode *dir,
99 				     const struct qstr *qstr)
100 {
101 	int err;
102 
103 	err = btrfs_init_acl(trans, inode, dir);
104 	if (!err)
105 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106 	return err;
107 }
108 
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 				struct btrfs_root *root, struct inode *inode,
116 				u64 start, size_t size, size_t compressed_size,
117 				int compress_type,
118 				struct page **compressed_pages)
119 {
120 	struct btrfs_key key;
121 	struct btrfs_path *path;
122 	struct extent_buffer *leaf;
123 	struct page *page = NULL;
124 	char *kaddr;
125 	unsigned long ptr;
126 	struct btrfs_file_extent_item *ei;
127 	int err = 0;
128 	int ret;
129 	size_t cur_size = size;
130 	size_t datasize;
131 	unsigned long offset;
132 
133 	if (compressed_size && compressed_pages)
134 		cur_size = compressed_size;
135 
136 	path = btrfs_alloc_path();
137 	if (!path)
138 		return -ENOMEM;
139 
140 	path->leave_spinning = 1;
141 
142 	key.objectid = btrfs_ino(inode);
143 	key.offset = start;
144 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
146 
147 	inode_add_bytes(inode, size);
148 	ret = btrfs_insert_empty_item(trans, root, path, &key,
149 				      datasize);
150 	BUG_ON(ret);
151 	if (ret) {
152 		err = ret;
153 		goto fail;
154 	}
155 	leaf = path->nodes[0];
156 	ei = btrfs_item_ptr(leaf, path->slots[0],
157 			    struct btrfs_file_extent_item);
158 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 	btrfs_set_file_extent_encryption(leaf, ei, 0);
161 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 	ptr = btrfs_file_extent_inline_start(ei);
164 
165 	if (compress_type != BTRFS_COMPRESS_NONE) {
166 		struct page *cpage;
167 		int i = 0;
168 		while (compressed_size > 0) {
169 			cpage = compressed_pages[i];
170 			cur_size = min_t(unsigned long, compressed_size,
171 				       PAGE_CACHE_SIZE);
172 
173 			kaddr = kmap_atomic(cpage, KM_USER0);
174 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 			kunmap_atomic(kaddr, KM_USER0);
176 
177 			i++;
178 			ptr += cur_size;
179 			compressed_size -= cur_size;
180 		}
181 		btrfs_set_file_extent_compression(leaf, ei,
182 						  compress_type);
183 	} else {
184 		page = find_get_page(inode->i_mapping,
185 				     start >> PAGE_CACHE_SHIFT);
186 		btrfs_set_file_extent_compression(leaf, ei, 0);
187 		kaddr = kmap_atomic(page, KM_USER0);
188 		offset = start & (PAGE_CACHE_SIZE - 1);
189 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 		kunmap_atomic(kaddr, KM_USER0);
191 		page_cache_release(page);
192 	}
193 	btrfs_mark_buffer_dirty(leaf);
194 	btrfs_free_path(path);
195 
196 	/*
197 	 * we're an inline extent, so nobody can
198 	 * extend the file past i_size without locking
199 	 * a page we already have locked.
200 	 *
201 	 * We must do any isize and inode updates
202 	 * before we unlock the pages.  Otherwise we
203 	 * could end up racing with unlink.
204 	 */
205 	BTRFS_I(inode)->disk_i_size = inode->i_size;
206 	btrfs_update_inode(trans, root, inode);
207 
208 	return 0;
209 fail:
210 	btrfs_free_path(path);
211 	return err;
212 }
213 
214 
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 				 struct btrfs_root *root,
222 				 struct inode *inode, u64 start, u64 end,
223 				 size_t compressed_size, int compress_type,
224 				 struct page **compressed_pages)
225 {
226 	u64 isize = i_size_read(inode);
227 	u64 actual_end = min(end + 1, isize);
228 	u64 inline_len = actual_end - start;
229 	u64 aligned_end = (end + root->sectorsize - 1) &
230 			~((u64)root->sectorsize - 1);
231 	u64 hint_byte;
232 	u64 data_len = inline_len;
233 	int ret;
234 
235 	if (compressed_size)
236 		data_len = compressed_size;
237 
238 	if (start > 0 ||
239 	    actual_end >= PAGE_CACHE_SIZE ||
240 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 	    (!compressed_size &&
242 	    (actual_end & (root->sectorsize - 1)) == 0) ||
243 	    end + 1 < isize ||
244 	    data_len > root->fs_info->max_inline) {
245 		return 1;
246 	}
247 
248 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 				 &hint_byte, 1);
250 	BUG_ON(ret);
251 
252 	if (isize > actual_end)
253 		inline_len = min_t(u64, isize, actual_end);
254 	ret = insert_inline_extent(trans, root, inode, start,
255 				   inline_len, compressed_size,
256 				   compress_type, compressed_pages);
257 	BUG_ON(ret);
258 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 	return 0;
261 }
262 
263 struct async_extent {
264 	u64 start;
265 	u64 ram_size;
266 	u64 compressed_size;
267 	struct page **pages;
268 	unsigned long nr_pages;
269 	int compress_type;
270 	struct list_head list;
271 };
272 
273 struct async_cow {
274 	struct inode *inode;
275 	struct btrfs_root *root;
276 	struct page *locked_page;
277 	u64 start;
278 	u64 end;
279 	struct list_head extents;
280 	struct btrfs_work work;
281 };
282 
283 static noinline int add_async_extent(struct async_cow *cow,
284 				     u64 start, u64 ram_size,
285 				     u64 compressed_size,
286 				     struct page **pages,
287 				     unsigned long nr_pages,
288 				     int compress_type)
289 {
290 	struct async_extent *async_extent;
291 
292 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 	BUG_ON(!async_extent);
294 	async_extent->start = start;
295 	async_extent->ram_size = ram_size;
296 	async_extent->compressed_size = compressed_size;
297 	async_extent->pages = pages;
298 	async_extent->nr_pages = nr_pages;
299 	async_extent->compress_type = compress_type;
300 	list_add_tail(&async_extent->list, &cow->extents);
301 	return 0;
302 }
303 
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321 					struct page *locked_page,
322 					u64 start, u64 end,
323 					struct async_cow *async_cow,
324 					int *num_added)
325 {
326 	struct btrfs_root *root = BTRFS_I(inode)->root;
327 	struct btrfs_trans_handle *trans;
328 	u64 num_bytes;
329 	u64 blocksize = root->sectorsize;
330 	u64 actual_end;
331 	u64 isize = i_size_read(inode);
332 	int ret = 0;
333 	struct page **pages = NULL;
334 	unsigned long nr_pages;
335 	unsigned long nr_pages_ret = 0;
336 	unsigned long total_compressed = 0;
337 	unsigned long total_in = 0;
338 	unsigned long max_compressed = 128 * 1024;
339 	unsigned long max_uncompressed = 128 * 1024;
340 	int i;
341 	int will_compress;
342 	int compress_type = root->fs_info->compress_type;
343 
344 	/* if this is a small write inside eof, kick off a defragbot */
345 	if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 		btrfs_add_inode_defrag(NULL, inode);
347 
348 	actual_end = min_t(u64, isize, end + 1);
349 again:
350 	will_compress = 0;
351 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353 
354 	/*
355 	 * we don't want to send crud past the end of i_size through
356 	 * compression, that's just a waste of CPU time.  So, if the
357 	 * end of the file is before the start of our current
358 	 * requested range of bytes, we bail out to the uncompressed
359 	 * cleanup code that can deal with all of this.
360 	 *
361 	 * It isn't really the fastest way to fix things, but this is a
362 	 * very uncommon corner.
363 	 */
364 	if (actual_end <= start)
365 		goto cleanup_and_bail_uncompressed;
366 
367 	total_compressed = actual_end - start;
368 
369 	/* we want to make sure that amount of ram required to uncompress
370 	 * an extent is reasonable, so we limit the total size in ram
371 	 * of a compressed extent to 128k.  This is a crucial number
372 	 * because it also controls how easily we can spread reads across
373 	 * cpus for decompression.
374 	 *
375 	 * We also want to make sure the amount of IO required to do
376 	 * a random read is reasonably small, so we limit the size of
377 	 * a compressed extent to 128k.
378 	 */
379 	total_compressed = min(total_compressed, max_uncompressed);
380 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381 	num_bytes = max(blocksize,  num_bytes);
382 	total_in = 0;
383 	ret = 0;
384 
385 	/*
386 	 * we do compression for mount -o compress and when the
387 	 * inode has not been flagged as nocompress.  This flag can
388 	 * change at any time if we discover bad compression ratios.
389 	 */
390 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391 	    (btrfs_test_opt(root, COMPRESS) ||
392 	     (BTRFS_I(inode)->force_compress) ||
393 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394 		WARN_ON(pages);
395 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396 		if (!pages) {
397 			/* just bail out to the uncompressed code */
398 			goto cont;
399 		}
400 
401 		if (BTRFS_I(inode)->force_compress)
402 			compress_type = BTRFS_I(inode)->force_compress;
403 
404 		ret = btrfs_compress_pages(compress_type,
405 					   inode->i_mapping, start,
406 					   total_compressed, pages,
407 					   nr_pages, &nr_pages_ret,
408 					   &total_in,
409 					   &total_compressed,
410 					   max_compressed);
411 
412 		if (!ret) {
413 			unsigned long offset = total_compressed &
414 				(PAGE_CACHE_SIZE - 1);
415 			struct page *page = pages[nr_pages_ret - 1];
416 			char *kaddr;
417 
418 			/* zero the tail end of the last page, we might be
419 			 * sending it down to disk
420 			 */
421 			if (offset) {
422 				kaddr = kmap_atomic(page, KM_USER0);
423 				memset(kaddr + offset, 0,
424 				       PAGE_CACHE_SIZE - offset);
425 				kunmap_atomic(kaddr, KM_USER0);
426 			}
427 			will_compress = 1;
428 		}
429 	}
430 cont:
431 	if (start == 0) {
432 		trans = btrfs_join_transaction(root);
433 		BUG_ON(IS_ERR(trans));
434 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
435 
436 		/* lets try to make an inline extent */
437 		if (ret || total_in < (actual_end - start)) {
438 			/* we didn't compress the entire range, try
439 			 * to make an uncompressed inline extent.
440 			 */
441 			ret = cow_file_range_inline(trans, root, inode,
442 						    start, end, 0, 0, NULL);
443 		} else {
444 			/* try making a compressed inline extent */
445 			ret = cow_file_range_inline(trans, root, inode,
446 						    start, end,
447 						    total_compressed,
448 						    compress_type, pages);
449 		}
450 		if (ret == 0) {
451 			/*
452 			 * inline extent creation worked, we don't need
453 			 * to create any more async work items.  Unlock
454 			 * and free up our temp pages.
455 			 */
456 			extent_clear_unlock_delalloc(inode,
457 			     &BTRFS_I(inode)->io_tree,
458 			     start, end, NULL,
459 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
460 			     EXTENT_CLEAR_DELALLOC |
461 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
462 
463 			btrfs_end_transaction(trans, root);
464 			goto free_pages_out;
465 		}
466 		btrfs_end_transaction(trans, root);
467 	}
468 
469 	if (will_compress) {
470 		/*
471 		 * we aren't doing an inline extent round the compressed size
472 		 * up to a block size boundary so the allocator does sane
473 		 * things
474 		 */
475 		total_compressed = (total_compressed + blocksize - 1) &
476 			~(blocksize - 1);
477 
478 		/*
479 		 * one last check to make sure the compression is really a
480 		 * win, compare the page count read with the blocks on disk
481 		 */
482 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
483 			~(PAGE_CACHE_SIZE - 1);
484 		if (total_compressed >= total_in) {
485 			will_compress = 0;
486 		} else {
487 			num_bytes = total_in;
488 		}
489 	}
490 	if (!will_compress && pages) {
491 		/*
492 		 * the compression code ran but failed to make things smaller,
493 		 * free any pages it allocated and our page pointer array
494 		 */
495 		for (i = 0; i < nr_pages_ret; i++) {
496 			WARN_ON(pages[i]->mapping);
497 			page_cache_release(pages[i]);
498 		}
499 		kfree(pages);
500 		pages = NULL;
501 		total_compressed = 0;
502 		nr_pages_ret = 0;
503 
504 		/* flag the file so we don't compress in the future */
505 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
506 		    !(BTRFS_I(inode)->force_compress)) {
507 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
508 		}
509 	}
510 	if (will_compress) {
511 		*num_added += 1;
512 
513 		/* the async work queues will take care of doing actual
514 		 * allocation on disk for these compressed pages,
515 		 * and will submit them to the elevator.
516 		 */
517 		add_async_extent(async_cow, start, num_bytes,
518 				 total_compressed, pages, nr_pages_ret,
519 				 compress_type);
520 
521 		if (start + num_bytes < end) {
522 			start += num_bytes;
523 			pages = NULL;
524 			cond_resched();
525 			goto again;
526 		}
527 	} else {
528 cleanup_and_bail_uncompressed:
529 		/*
530 		 * No compression, but we still need to write the pages in
531 		 * the file we've been given so far.  redirty the locked
532 		 * page if it corresponds to our extent and set things up
533 		 * for the async work queue to run cow_file_range to do
534 		 * the normal delalloc dance
535 		 */
536 		if (page_offset(locked_page) >= start &&
537 		    page_offset(locked_page) <= end) {
538 			__set_page_dirty_nobuffers(locked_page);
539 			/* unlocked later on in the async handlers */
540 		}
541 		add_async_extent(async_cow, start, end - start + 1,
542 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
543 		*num_added += 1;
544 	}
545 
546 out:
547 	return 0;
548 
549 free_pages_out:
550 	for (i = 0; i < nr_pages_ret; i++) {
551 		WARN_ON(pages[i]->mapping);
552 		page_cache_release(pages[i]);
553 	}
554 	kfree(pages);
555 
556 	goto out;
557 }
558 
559 /*
560  * phase two of compressed writeback.  This is the ordered portion
561  * of the code, which only gets called in the order the work was
562  * queued.  We walk all the async extents created by compress_file_range
563  * and send them down to the disk.
564  */
565 static noinline int submit_compressed_extents(struct inode *inode,
566 					      struct async_cow *async_cow)
567 {
568 	struct async_extent *async_extent;
569 	u64 alloc_hint = 0;
570 	struct btrfs_trans_handle *trans;
571 	struct btrfs_key ins;
572 	struct extent_map *em;
573 	struct btrfs_root *root = BTRFS_I(inode)->root;
574 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
575 	struct extent_io_tree *io_tree;
576 	int ret = 0;
577 
578 	if (list_empty(&async_cow->extents))
579 		return 0;
580 
581 
582 	while (!list_empty(&async_cow->extents)) {
583 		async_extent = list_entry(async_cow->extents.next,
584 					  struct async_extent, list);
585 		list_del(&async_extent->list);
586 
587 		io_tree = &BTRFS_I(inode)->io_tree;
588 
589 retry:
590 		/* did the compression code fall back to uncompressed IO? */
591 		if (!async_extent->pages) {
592 			int page_started = 0;
593 			unsigned long nr_written = 0;
594 
595 			lock_extent(io_tree, async_extent->start,
596 					 async_extent->start +
597 					 async_extent->ram_size - 1, GFP_NOFS);
598 
599 			/* allocate blocks */
600 			ret = cow_file_range(inode, async_cow->locked_page,
601 					     async_extent->start,
602 					     async_extent->start +
603 					     async_extent->ram_size - 1,
604 					     &page_started, &nr_written, 0);
605 
606 			/*
607 			 * if page_started, cow_file_range inserted an
608 			 * inline extent and took care of all the unlocking
609 			 * and IO for us.  Otherwise, we need to submit
610 			 * all those pages down to the drive.
611 			 */
612 			if (!page_started && !ret)
613 				extent_write_locked_range(io_tree,
614 						  inode, async_extent->start,
615 						  async_extent->start +
616 						  async_extent->ram_size - 1,
617 						  btrfs_get_extent,
618 						  WB_SYNC_ALL);
619 			kfree(async_extent);
620 			cond_resched();
621 			continue;
622 		}
623 
624 		lock_extent(io_tree, async_extent->start,
625 			    async_extent->start + async_extent->ram_size - 1,
626 			    GFP_NOFS);
627 
628 		trans = btrfs_join_transaction(root);
629 		BUG_ON(IS_ERR(trans));
630 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
631 		ret = btrfs_reserve_extent(trans, root,
632 					   async_extent->compressed_size,
633 					   async_extent->compressed_size,
634 					   0, alloc_hint,
635 					   (u64)-1, &ins, 1);
636 		btrfs_end_transaction(trans, root);
637 
638 		if (ret) {
639 			int i;
640 			for (i = 0; i < async_extent->nr_pages; i++) {
641 				WARN_ON(async_extent->pages[i]->mapping);
642 				page_cache_release(async_extent->pages[i]);
643 			}
644 			kfree(async_extent->pages);
645 			async_extent->nr_pages = 0;
646 			async_extent->pages = NULL;
647 			unlock_extent(io_tree, async_extent->start,
648 				      async_extent->start +
649 				      async_extent->ram_size - 1, GFP_NOFS);
650 			goto retry;
651 		}
652 
653 		/*
654 		 * here we're doing allocation and writeback of the
655 		 * compressed pages
656 		 */
657 		btrfs_drop_extent_cache(inode, async_extent->start,
658 					async_extent->start +
659 					async_extent->ram_size - 1, 0);
660 
661 		em = alloc_extent_map();
662 		BUG_ON(!em);
663 		em->start = async_extent->start;
664 		em->len = async_extent->ram_size;
665 		em->orig_start = em->start;
666 
667 		em->block_start = ins.objectid;
668 		em->block_len = ins.offset;
669 		em->bdev = root->fs_info->fs_devices->latest_bdev;
670 		em->compress_type = async_extent->compress_type;
671 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
672 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
673 
674 		while (1) {
675 			write_lock(&em_tree->lock);
676 			ret = add_extent_mapping(em_tree, em);
677 			write_unlock(&em_tree->lock);
678 			if (ret != -EEXIST) {
679 				free_extent_map(em);
680 				break;
681 			}
682 			btrfs_drop_extent_cache(inode, async_extent->start,
683 						async_extent->start +
684 						async_extent->ram_size - 1, 0);
685 		}
686 
687 		ret = btrfs_add_ordered_extent_compress(inode,
688 						async_extent->start,
689 						ins.objectid,
690 						async_extent->ram_size,
691 						ins.offset,
692 						BTRFS_ORDERED_COMPRESSED,
693 						async_extent->compress_type);
694 		BUG_ON(ret);
695 
696 		/*
697 		 * clear dirty, set writeback and unlock the pages.
698 		 */
699 		extent_clear_unlock_delalloc(inode,
700 				&BTRFS_I(inode)->io_tree,
701 				async_extent->start,
702 				async_extent->start +
703 				async_extent->ram_size - 1,
704 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
705 				EXTENT_CLEAR_UNLOCK |
706 				EXTENT_CLEAR_DELALLOC |
707 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
708 
709 		ret = btrfs_submit_compressed_write(inode,
710 				    async_extent->start,
711 				    async_extent->ram_size,
712 				    ins.objectid,
713 				    ins.offset, async_extent->pages,
714 				    async_extent->nr_pages);
715 
716 		BUG_ON(ret);
717 		alloc_hint = ins.objectid + ins.offset;
718 		kfree(async_extent);
719 		cond_resched();
720 	}
721 
722 	return 0;
723 }
724 
725 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
726 				      u64 num_bytes)
727 {
728 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
729 	struct extent_map *em;
730 	u64 alloc_hint = 0;
731 
732 	read_lock(&em_tree->lock);
733 	em = search_extent_mapping(em_tree, start, num_bytes);
734 	if (em) {
735 		/*
736 		 * if block start isn't an actual block number then find the
737 		 * first block in this inode and use that as a hint.  If that
738 		 * block is also bogus then just don't worry about it.
739 		 */
740 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
741 			free_extent_map(em);
742 			em = search_extent_mapping(em_tree, 0, 0);
743 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
744 				alloc_hint = em->block_start;
745 			if (em)
746 				free_extent_map(em);
747 		} else {
748 			alloc_hint = em->block_start;
749 			free_extent_map(em);
750 		}
751 	}
752 	read_unlock(&em_tree->lock);
753 
754 	return alloc_hint;
755 }
756 
757 /*
758  * when extent_io.c finds a delayed allocation range in the file,
759  * the call backs end up in this code.  The basic idea is to
760  * allocate extents on disk for the range, and create ordered data structs
761  * in ram to track those extents.
762  *
763  * locked_page is the page that writepage had locked already.  We use
764  * it to make sure we don't do extra locks or unlocks.
765  *
766  * *page_started is set to one if we unlock locked_page and do everything
767  * required to start IO on it.  It may be clean and already done with
768  * IO when we return.
769  */
770 static noinline int cow_file_range(struct inode *inode,
771 				   struct page *locked_page,
772 				   u64 start, u64 end, int *page_started,
773 				   unsigned long *nr_written,
774 				   int unlock)
775 {
776 	struct btrfs_root *root = BTRFS_I(inode)->root;
777 	struct btrfs_trans_handle *trans;
778 	u64 alloc_hint = 0;
779 	u64 num_bytes;
780 	unsigned long ram_size;
781 	u64 disk_num_bytes;
782 	u64 cur_alloc_size;
783 	u64 blocksize = root->sectorsize;
784 	struct btrfs_key ins;
785 	struct extent_map *em;
786 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
787 	int ret = 0;
788 
789 	BUG_ON(btrfs_is_free_space_inode(root, inode));
790 	trans = btrfs_join_transaction(root);
791 	BUG_ON(IS_ERR(trans));
792 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
793 
794 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
795 	num_bytes = max(blocksize,  num_bytes);
796 	disk_num_bytes = num_bytes;
797 	ret = 0;
798 
799 	/* if this is a small write inside eof, kick off defrag */
800 	if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
801 		btrfs_add_inode_defrag(trans, inode);
802 
803 	if (start == 0) {
804 		/* lets try to make an inline extent */
805 		ret = cow_file_range_inline(trans, root, inode,
806 					    start, end, 0, 0, NULL);
807 		if (ret == 0) {
808 			extent_clear_unlock_delalloc(inode,
809 				     &BTRFS_I(inode)->io_tree,
810 				     start, end, NULL,
811 				     EXTENT_CLEAR_UNLOCK_PAGE |
812 				     EXTENT_CLEAR_UNLOCK |
813 				     EXTENT_CLEAR_DELALLOC |
814 				     EXTENT_CLEAR_DIRTY |
815 				     EXTENT_SET_WRITEBACK |
816 				     EXTENT_END_WRITEBACK);
817 
818 			*nr_written = *nr_written +
819 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
820 			*page_started = 1;
821 			ret = 0;
822 			goto out;
823 		}
824 	}
825 
826 	BUG_ON(disk_num_bytes >
827 	       btrfs_super_total_bytes(root->fs_info->super_copy));
828 
829 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
830 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
831 
832 	while (disk_num_bytes > 0) {
833 		unsigned long op;
834 
835 		cur_alloc_size = disk_num_bytes;
836 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
837 					   root->sectorsize, 0, alloc_hint,
838 					   (u64)-1, &ins, 1);
839 		BUG_ON(ret);
840 
841 		em = alloc_extent_map();
842 		BUG_ON(!em);
843 		em->start = start;
844 		em->orig_start = em->start;
845 		ram_size = ins.offset;
846 		em->len = ins.offset;
847 
848 		em->block_start = ins.objectid;
849 		em->block_len = ins.offset;
850 		em->bdev = root->fs_info->fs_devices->latest_bdev;
851 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
852 
853 		while (1) {
854 			write_lock(&em_tree->lock);
855 			ret = add_extent_mapping(em_tree, em);
856 			write_unlock(&em_tree->lock);
857 			if (ret != -EEXIST) {
858 				free_extent_map(em);
859 				break;
860 			}
861 			btrfs_drop_extent_cache(inode, start,
862 						start + ram_size - 1, 0);
863 		}
864 
865 		cur_alloc_size = ins.offset;
866 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
867 					       ram_size, cur_alloc_size, 0);
868 		BUG_ON(ret);
869 
870 		if (root->root_key.objectid ==
871 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
872 			ret = btrfs_reloc_clone_csums(inode, start,
873 						      cur_alloc_size);
874 			BUG_ON(ret);
875 		}
876 
877 		if (disk_num_bytes < cur_alloc_size)
878 			break;
879 
880 		/* we're not doing compressed IO, don't unlock the first
881 		 * page (which the caller expects to stay locked), don't
882 		 * clear any dirty bits and don't set any writeback bits
883 		 *
884 		 * Do set the Private2 bit so we know this page was properly
885 		 * setup for writepage
886 		 */
887 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
888 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
889 			EXTENT_SET_PRIVATE2;
890 
891 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
892 					     start, start + ram_size - 1,
893 					     locked_page, op);
894 		disk_num_bytes -= cur_alloc_size;
895 		num_bytes -= cur_alloc_size;
896 		alloc_hint = ins.objectid + ins.offset;
897 		start += cur_alloc_size;
898 	}
899 out:
900 	ret = 0;
901 	btrfs_end_transaction(trans, root);
902 
903 	return ret;
904 }
905 
906 /*
907  * work queue call back to started compression on a file and pages
908  */
909 static noinline void async_cow_start(struct btrfs_work *work)
910 {
911 	struct async_cow *async_cow;
912 	int num_added = 0;
913 	async_cow = container_of(work, struct async_cow, work);
914 
915 	compress_file_range(async_cow->inode, async_cow->locked_page,
916 			    async_cow->start, async_cow->end, async_cow,
917 			    &num_added);
918 	if (num_added == 0)
919 		async_cow->inode = NULL;
920 }
921 
922 /*
923  * work queue call back to submit previously compressed pages
924  */
925 static noinline void async_cow_submit(struct btrfs_work *work)
926 {
927 	struct async_cow *async_cow;
928 	struct btrfs_root *root;
929 	unsigned long nr_pages;
930 
931 	async_cow = container_of(work, struct async_cow, work);
932 
933 	root = async_cow->root;
934 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
935 		PAGE_CACHE_SHIFT;
936 
937 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
938 
939 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
940 	    5 * 1042 * 1024 &&
941 	    waitqueue_active(&root->fs_info->async_submit_wait))
942 		wake_up(&root->fs_info->async_submit_wait);
943 
944 	if (async_cow->inode)
945 		submit_compressed_extents(async_cow->inode, async_cow);
946 }
947 
948 static noinline void async_cow_free(struct btrfs_work *work)
949 {
950 	struct async_cow *async_cow;
951 	async_cow = container_of(work, struct async_cow, work);
952 	kfree(async_cow);
953 }
954 
955 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
956 				u64 start, u64 end, int *page_started,
957 				unsigned long *nr_written)
958 {
959 	struct async_cow *async_cow;
960 	struct btrfs_root *root = BTRFS_I(inode)->root;
961 	unsigned long nr_pages;
962 	u64 cur_end;
963 	int limit = 10 * 1024 * 1042;
964 
965 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
966 			 1, 0, NULL, GFP_NOFS);
967 	while (start < end) {
968 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
969 		BUG_ON(!async_cow);
970 		async_cow->inode = inode;
971 		async_cow->root = root;
972 		async_cow->locked_page = locked_page;
973 		async_cow->start = start;
974 
975 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
976 			cur_end = end;
977 		else
978 			cur_end = min(end, start + 512 * 1024 - 1);
979 
980 		async_cow->end = cur_end;
981 		INIT_LIST_HEAD(&async_cow->extents);
982 
983 		async_cow->work.func = async_cow_start;
984 		async_cow->work.ordered_func = async_cow_submit;
985 		async_cow->work.ordered_free = async_cow_free;
986 		async_cow->work.flags = 0;
987 
988 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
989 			PAGE_CACHE_SHIFT;
990 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
991 
992 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
993 				   &async_cow->work);
994 
995 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
996 			wait_event(root->fs_info->async_submit_wait,
997 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
998 			    limit));
999 		}
1000 
1001 		while (atomic_read(&root->fs_info->async_submit_draining) &&
1002 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1003 			wait_event(root->fs_info->async_submit_wait,
1004 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1005 			   0));
1006 		}
1007 
1008 		*nr_written += nr_pages;
1009 		start = cur_end + 1;
1010 	}
1011 	*page_started = 1;
1012 	return 0;
1013 }
1014 
1015 static noinline int csum_exist_in_range(struct btrfs_root *root,
1016 					u64 bytenr, u64 num_bytes)
1017 {
1018 	int ret;
1019 	struct btrfs_ordered_sum *sums;
1020 	LIST_HEAD(list);
1021 
1022 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1023 				       bytenr + num_bytes - 1, &list, 0);
1024 	if (ret == 0 && list_empty(&list))
1025 		return 0;
1026 
1027 	while (!list_empty(&list)) {
1028 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1029 		list_del(&sums->list);
1030 		kfree(sums);
1031 	}
1032 	return 1;
1033 }
1034 
1035 /*
1036  * when nowcow writeback call back.  This checks for snapshots or COW copies
1037  * of the extents that exist in the file, and COWs the file as required.
1038  *
1039  * If no cow copies or snapshots exist, we write directly to the existing
1040  * blocks on disk
1041  */
1042 static noinline int run_delalloc_nocow(struct inode *inode,
1043 				       struct page *locked_page,
1044 			      u64 start, u64 end, int *page_started, int force,
1045 			      unsigned long *nr_written)
1046 {
1047 	struct btrfs_root *root = BTRFS_I(inode)->root;
1048 	struct btrfs_trans_handle *trans;
1049 	struct extent_buffer *leaf;
1050 	struct btrfs_path *path;
1051 	struct btrfs_file_extent_item *fi;
1052 	struct btrfs_key found_key;
1053 	u64 cow_start;
1054 	u64 cur_offset;
1055 	u64 extent_end;
1056 	u64 extent_offset;
1057 	u64 disk_bytenr;
1058 	u64 num_bytes;
1059 	int extent_type;
1060 	int ret;
1061 	int type;
1062 	int nocow;
1063 	int check_prev = 1;
1064 	bool nolock;
1065 	u64 ino = btrfs_ino(inode);
1066 
1067 	path = btrfs_alloc_path();
1068 	if (!path)
1069 		return -ENOMEM;
1070 
1071 	nolock = btrfs_is_free_space_inode(root, inode);
1072 
1073 	if (nolock)
1074 		trans = btrfs_join_transaction_nolock(root);
1075 	else
1076 		trans = btrfs_join_transaction(root);
1077 
1078 	BUG_ON(IS_ERR(trans));
1079 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1080 
1081 	cow_start = (u64)-1;
1082 	cur_offset = start;
1083 	while (1) {
1084 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1085 					       cur_offset, 0);
1086 		BUG_ON(ret < 0);
1087 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1088 			leaf = path->nodes[0];
1089 			btrfs_item_key_to_cpu(leaf, &found_key,
1090 					      path->slots[0] - 1);
1091 			if (found_key.objectid == ino &&
1092 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1093 				path->slots[0]--;
1094 		}
1095 		check_prev = 0;
1096 next_slot:
1097 		leaf = path->nodes[0];
1098 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1099 			ret = btrfs_next_leaf(root, path);
1100 			if (ret < 0)
1101 				BUG_ON(1);
1102 			if (ret > 0)
1103 				break;
1104 			leaf = path->nodes[0];
1105 		}
1106 
1107 		nocow = 0;
1108 		disk_bytenr = 0;
1109 		num_bytes = 0;
1110 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1111 
1112 		if (found_key.objectid > ino ||
1113 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1114 		    found_key.offset > end)
1115 			break;
1116 
1117 		if (found_key.offset > cur_offset) {
1118 			extent_end = found_key.offset;
1119 			extent_type = 0;
1120 			goto out_check;
1121 		}
1122 
1123 		fi = btrfs_item_ptr(leaf, path->slots[0],
1124 				    struct btrfs_file_extent_item);
1125 		extent_type = btrfs_file_extent_type(leaf, fi);
1126 
1127 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1128 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1129 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1130 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1131 			extent_end = found_key.offset +
1132 				btrfs_file_extent_num_bytes(leaf, fi);
1133 			if (extent_end <= start) {
1134 				path->slots[0]++;
1135 				goto next_slot;
1136 			}
1137 			if (disk_bytenr == 0)
1138 				goto out_check;
1139 			if (btrfs_file_extent_compression(leaf, fi) ||
1140 			    btrfs_file_extent_encryption(leaf, fi) ||
1141 			    btrfs_file_extent_other_encoding(leaf, fi))
1142 				goto out_check;
1143 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1144 				goto out_check;
1145 			if (btrfs_extent_readonly(root, disk_bytenr))
1146 				goto out_check;
1147 			if (btrfs_cross_ref_exist(trans, root, ino,
1148 						  found_key.offset -
1149 						  extent_offset, disk_bytenr))
1150 				goto out_check;
1151 			disk_bytenr += extent_offset;
1152 			disk_bytenr += cur_offset - found_key.offset;
1153 			num_bytes = min(end + 1, extent_end) - cur_offset;
1154 			/*
1155 			 * force cow if csum exists in the range.
1156 			 * this ensure that csum for a given extent are
1157 			 * either valid or do not exist.
1158 			 */
1159 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1160 				goto out_check;
1161 			nocow = 1;
1162 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1163 			extent_end = found_key.offset +
1164 				btrfs_file_extent_inline_len(leaf, fi);
1165 			extent_end = ALIGN(extent_end, root->sectorsize);
1166 		} else {
1167 			BUG_ON(1);
1168 		}
1169 out_check:
1170 		if (extent_end <= start) {
1171 			path->slots[0]++;
1172 			goto next_slot;
1173 		}
1174 		if (!nocow) {
1175 			if (cow_start == (u64)-1)
1176 				cow_start = cur_offset;
1177 			cur_offset = extent_end;
1178 			if (cur_offset > end)
1179 				break;
1180 			path->slots[0]++;
1181 			goto next_slot;
1182 		}
1183 
1184 		btrfs_release_path(path);
1185 		if (cow_start != (u64)-1) {
1186 			ret = cow_file_range(inode, locked_page, cow_start,
1187 					found_key.offset - 1, page_started,
1188 					nr_written, 1);
1189 			BUG_ON(ret);
1190 			cow_start = (u64)-1;
1191 		}
1192 
1193 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1194 			struct extent_map *em;
1195 			struct extent_map_tree *em_tree;
1196 			em_tree = &BTRFS_I(inode)->extent_tree;
1197 			em = alloc_extent_map();
1198 			BUG_ON(!em);
1199 			em->start = cur_offset;
1200 			em->orig_start = em->start;
1201 			em->len = num_bytes;
1202 			em->block_len = num_bytes;
1203 			em->block_start = disk_bytenr;
1204 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1205 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1206 			while (1) {
1207 				write_lock(&em_tree->lock);
1208 				ret = add_extent_mapping(em_tree, em);
1209 				write_unlock(&em_tree->lock);
1210 				if (ret != -EEXIST) {
1211 					free_extent_map(em);
1212 					break;
1213 				}
1214 				btrfs_drop_extent_cache(inode, em->start,
1215 						em->start + em->len - 1, 0);
1216 			}
1217 			type = BTRFS_ORDERED_PREALLOC;
1218 		} else {
1219 			type = BTRFS_ORDERED_NOCOW;
1220 		}
1221 
1222 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1223 					       num_bytes, num_bytes, type);
1224 		BUG_ON(ret);
1225 
1226 		if (root->root_key.objectid ==
1227 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1228 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1229 						      num_bytes);
1230 			BUG_ON(ret);
1231 		}
1232 
1233 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1234 				cur_offset, cur_offset + num_bytes - 1,
1235 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1236 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1237 				EXTENT_SET_PRIVATE2);
1238 		cur_offset = extent_end;
1239 		if (cur_offset > end)
1240 			break;
1241 	}
1242 	btrfs_release_path(path);
1243 
1244 	if (cur_offset <= end && cow_start == (u64)-1)
1245 		cow_start = cur_offset;
1246 	if (cow_start != (u64)-1) {
1247 		ret = cow_file_range(inode, locked_page, cow_start, end,
1248 				     page_started, nr_written, 1);
1249 		BUG_ON(ret);
1250 	}
1251 
1252 	if (nolock) {
1253 		ret = btrfs_end_transaction_nolock(trans, root);
1254 		BUG_ON(ret);
1255 	} else {
1256 		ret = btrfs_end_transaction(trans, root);
1257 		BUG_ON(ret);
1258 	}
1259 	btrfs_free_path(path);
1260 	return 0;
1261 }
1262 
1263 /*
1264  * extent_io.c call back to do delayed allocation processing
1265  */
1266 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1267 			      u64 start, u64 end, int *page_started,
1268 			      unsigned long *nr_written)
1269 {
1270 	int ret;
1271 	struct btrfs_root *root = BTRFS_I(inode)->root;
1272 
1273 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1274 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1275 					 page_started, 1, nr_written);
1276 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1277 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1278 					 page_started, 0, nr_written);
1279 	else if (!btrfs_test_opt(root, COMPRESS) &&
1280 		 !(BTRFS_I(inode)->force_compress) &&
1281 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1282 		ret = cow_file_range(inode, locked_page, start, end,
1283 				      page_started, nr_written, 1);
1284 	else
1285 		ret = cow_file_range_async(inode, locked_page, start, end,
1286 					   page_started, nr_written);
1287 	return ret;
1288 }
1289 
1290 static void btrfs_split_extent_hook(struct inode *inode,
1291 				    struct extent_state *orig, u64 split)
1292 {
1293 	/* not delalloc, ignore it */
1294 	if (!(orig->state & EXTENT_DELALLOC))
1295 		return;
1296 
1297 	spin_lock(&BTRFS_I(inode)->lock);
1298 	BTRFS_I(inode)->outstanding_extents++;
1299 	spin_unlock(&BTRFS_I(inode)->lock);
1300 }
1301 
1302 /*
1303  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1304  * extents so we can keep track of new extents that are just merged onto old
1305  * extents, such as when we are doing sequential writes, so we can properly
1306  * account for the metadata space we'll need.
1307  */
1308 static void btrfs_merge_extent_hook(struct inode *inode,
1309 				    struct extent_state *new,
1310 				    struct extent_state *other)
1311 {
1312 	/* not delalloc, ignore it */
1313 	if (!(other->state & EXTENT_DELALLOC))
1314 		return;
1315 
1316 	spin_lock(&BTRFS_I(inode)->lock);
1317 	BTRFS_I(inode)->outstanding_extents--;
1318 	spin_unlock(&BTRFS_I(inode)->lock);
1319 }
1320 
1321 /*
1322  * extent_io.c set_bit_hook, used to track delayed allocation
1323  * bytes in this file, and to maintain the list of inodes that
1324  * have pending delalloc work to be done.
1325  */
1326 static void btrfs_set_bit_hook(struct inode *inode,
1327 			       struct extent_state *state, int *bits)
1328 {
1329 
1330 	/*
1331 	 * set_bit and clear bit hooks normally require _irqsave/restore
1332 	 * but in this case, we are only testing for the DELALLOC
1333 	 * bit, which is only set or cleared with irqs on
1334 	 */
1335 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1336 		struct btrfs_root *root = BTRFS_I(inode)->root;
1337 		u64 len = state->end + 1 - state->start;
1338 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1339 
1340 		if (*bits & EXTENT_FIRST_DELALLOC) {
1341 			*bits &= ~EXTENT_FIRST_DELALLOC;
1342 		} else {
1343 			spin_lock(&BTRFS_I(inode)->lock);
1344 			BTRFS_I(inode)->outstanding_extents++;
1345 			spin_unlock(&BTRFS_I(inode)->lock);
1346 		}
1347 
1348 		spin_lock(&root->fs_info->delalloc_lock);
1349 		BTRFS_I(inode)->delalloc_bytes += len;
1350 		root->fs_info->delalloc_bytes += len;
1351 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1352 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1353 				      &root->fs_info->delalloc_inodes);
1354 		}
1355 		spin_unlock(&root->fs_info->delalloc_lock);
1356 	}
1357 }
1358 
1359 /*
1360  * extent_io.c clear_bit_hook, see set_bit_hook for why
1361  */
1362 static void btrfs_clear_bit_hook(struct inode *inode,
1363 				 struct extent_state *state, int *bits)
1364 {
1365 	/*
1366 	 * set_bit and clear bit hooks normally require _irqsave/restore
1367 	 * but in this case, we are only testing for the DELALLOC
1368 	 * bit, which is only set or cleared with irqs on
1369 	 */
1370 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1371 		struct btrfs_root *root = BTRFS_I(inode)->root;
1372 		u64 len = state->end + 1 - state->start;
1373 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1374 
1375 		if (*bits & EXTENT_FIRST_DELALLOC) {
1376 			*bits &= ~EXTENT_FIRST_DELALLOC;
1377 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1378 			spin_lock(&BTRFS_I(inode)->lock);
1379 			BTRFS_I(inode)->outstanding_extents--;
1380 			spin_unlock(&BTRFS_I(inode)->lock);
1381 		}
1382 
1383 		if (*bits & EXTENT_DO_ACCOUNTING)
1384 			btrfs_delalloc_release_metadata(inode, len);
1385 
1386 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1387 		    && do_list)
1388 			btrfs_free_reserved_data_space(inode, len);
1389 
1390 		spin_lock(&root->fs_info->delalloc_lock);
1391 		root->fs_info->delalloc_bytes -= len;
1392 		BTRFS_I(inode)->delalloc_bytes -= len;
1393 
1394 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1395 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1396 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1397 		}
1398 		spin_unlock(&root->fs_info->delalloc_lock);
1399 	}
1400 }
1401 
1402 /*
1403  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1404  * we don't create bios that span stripes or chunks
1405  */
1406 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1407 			 size_t size, struct bio *bio,
1408 			 unsigned long bio_flags)
1409 {
1410 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1411 	struct btrfs_mapping_tree *map_tree;
1412 	u64 logical = (u64)bio->bi_sector << 9;
1413 	u64 length = 0;
1414 	u64 map_length;
1415 	int ret;
1416 
1417 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1418 		return 0;
1419 
1420 	length = bio->bi_size;
1421 	map_tree = &root->fs_info->mapping_tree;
1422 	map_length = length;
1423 	ret = btrfs_map_block(map_tree, READ, logical,
1424 			      &map_length, NULL, 0);
1425 
1426 	if (map_length < length + size)
1427 		return 1;
1428 	return ret;
1429 }
1430 
1431 /*
1432  * in order to insert checksums into the metadata in large chunks,
1433  * we wait until bio submission time.   All the pages in the bio are
1434  * checksummed and sums are attached onto the ordered extent record.
1435  *
1436  * At IO completion time the cums attached on the ordered extent record
1437  * are inserted into the btree
1438  */
1439 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1440 				    struct bio *bio, int mirror_num,
1441 				    unsigned long bio_flags,
1442 				    u64 bio_offset)
1443 {
1444 	struct btrfs_root *root = BTRFS_I(inode)->root;
1445 	int ret = 0;
1446 
1447 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1448 	BUG_ON(ret);
1449 	return 0;
1450 }
1451 
1452 /*
1453  * in order to insert checksums into the metadata in large chunks,
1454  * we wait until bio submission time.   All the pages in the bio are
1455  * checksummed and sums are attached onto the ordered extent record.
1456  *
1457  * At IO completion time the cums attached on the ordered extent record
1458  * are inserted into the btree
1459  */
1460 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1461 			  int mirror_num, unsigned long bio_flags,
1462 			  u64 bio_offset)
1463 {
1464 	struct btrfs_root *root = BTRFS_I(inode)->root;
1465 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1466 }
1467 
1468 /*
1469  * extent_io.c submission hook. This does the right thing for csum calculation
1470  * on write, or reading the csums from the tree before a read
1471  */
1472 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1473 			  int mirror_num, unsigned long bio_flags,
1474 			  u64 bio_offset)
1475 {
1476 	struct btrfs_root *root = BTRFS_I(inode)->root;
1477 	int ret = 0;
1478 	int skip_sum;
1479 
1480 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1481 
1482 	if (btrfs_is_free_space_inode(root, inode))
1483 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1484 	else
1485 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1486 	BUG_ON(ret);
1487 
1488 	if (!(rw & REQ_WRITE)) {
1489 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1490 			return btrfs_submit_compressed_read(inode, bio,
1491 						    mirror_num, bio_flags);
1492 		} else if (!skip_sum) {
1493 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1494 			if (ret)
1495 				return ret;
1496 		}
1497 		goto mapit;
1498 	} else if (!skip_sum) {
1499 		/* csum items have already been cloned */
1500 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1501 			goto mapit;
1502 		/* we're doing a write, do the async checksumming */
1503 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1504 				   inode, rw, bio, mirror_num,
1505 				   bio_flags, bio_offset,
1506 				   __btrfs_submit_bio_start,
1507 				   __btrfs_submit_bio_done);
1508 	}
1509 
1510 mapit:
1511 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1512 }
1513 
1514 /*
1515  * given a list of ordered sums record them in the inode.  This happens
1516  * at IO completion time based on sums calculated at bio submission time.
1517  */
1518 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1519 			     struct inode *inode, u64 file_offset,
1520 			     struct list_head *list)
1521 {
1522 	struct btrfs_ordered_sum *sum;
1523 
1524 	list_for_each_entry(sum, list, list) {
1525 		btrfs_csum_file_blocks(trans,
1526 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1527 	}
1528 	return 0;
1529 }
1530 
1531 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1532 			      struct extent_state **cached_state)
1533 {
1534 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1535 		WARN_ON(1);
1536 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1537 				   cached_state, GFP_NOFS);
1538 }
1539 
1540 /* see btrfs_writepage_start_hook for details on why this is required */
1541 struct btrfs_writepage_fixup {
1542 	struct page *page;
1543 	struct btrfs_work work;
1544 };
1545 
1546 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1547 {
1548 	struct btrfs_writepage_fixup *fixup;
1549 	struct btrfs_ordered_extent *ordered;
1550 	struct extent_state *cached_state = NULL;
1551 	struct page *page;
1552 	struct inode *inode;
1553 	u64 page_start;
1554 	u64 page_end;
1555 
1556 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1557 	page = fixup->page;
1558 again:
1559 	lock_page(page);
1560 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1561 		ClearPageChecked(page);
1562 		goto out_page;
1563 	}
1564 
1565 	inode = page->mapping->host;
1566 	page_start = page_offset(page);
1567 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1568 
1569 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1570 			 &cached_state, GFP_NOFS);
1571 
1572 	/* already ordered? We're done */
1573 	if (PagePrivate2(page))
1574 		goto out;
1575 
1576 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1577 	if (ordered) {
1578 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1579 				     page_end, &cached_state, GFP_NOFS);
1580 		unlock_page(page);
1581 		btrfs_start_ordered_extent(inode, ordered, 1);
1582 		goto again;
1583 	}
1584 
1585 	BUG();
1586 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1587 	ClearPageChecked(page);
1588 out:
1589 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1590 			     &cached_state, GFP_NOFS);
1591 out_page:
1592 	unlock_page(page);
1593 	page_cache_release(page);
1594 	kfree(fixup);
1595 }
1596 
1597 /*
1598  * There are a few paths in the higher layers of the kernel that directly
1599  * set the page dirty bit without asking the filesystem if it is a
1600  * good idea.  This causes problems because we want to make sure COW
1601  * properly happens and the data=ordered rules are followed.
1602  *
1603  * In our case any range that doesn't have the ORDERED bit set
1604  * hasn't been properly setup for IO.  We kick off an async process
1605  * to fix it up.  The async helper will wait for ordered extents, set
1606  * the delalloc bit and make it safe to write the page.
1607  */
1608 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1609 {
1610 	struct inode *inode = page->mapping->host;
1611 	struct btrfs_writepage_fixup *fixup;
1612 	struct btrfs_root *root = BTRFS_I(inode)->root;
1613 
1614 	/* this page is properly in the ordered list */
1615 	if (TestClearPagePrivate2(page))
1616 		return 0;
1617 
1618 	if (PageChecked(page))
1619 		return -EAGAIN;
1620 
1621 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1622 	if (!fixup)
1623 		return -EAGAIN;
1624 
1625 	SetPageChecked(page);
1626 	page_cache_get(page);
1627 	fixup->work.func = btrfs_writepage_fixup_worker;
1628 	fixup->page = page;
1629 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1630 	return -EAGAIN;
1631 }
1632 
1633 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1634 				       struct inode *inode, u64 file_pos,
1635 				       u64 disk_bytenr, u64 disk_num_bytes,
1636 				       u64 num_bytes, u64 ram_bytes,
1637 				       u8 compression, u8 encryption,
1638 				       u16 other_encoding, int extent_type)
1639 {
1640 	struct btrfs_root *root = BTRFS_I(inode)->root;
1641 	struct btrfs_file_extent_item *fi;
1642 	struct btrfs_path *path;
1643 	struct extent_buffer *leaf;
1644 	struct btrfs_key ins;
1645 	u64 hint;
1646 	int ret;
1647 
1648 	path = btrfs_alloc_path();
1649 	if (!path)
1650 		return -ENOMEM;
1651 
1652 	path->leave_spinning = 1;
1653 
1654 	/*
1655 	 * we may be replacing one extent in the tree with another.
1656 	 * The new extent is pinned in the extent map, and we don't want
1657 	 * to drop it from the cache until it is completely in the btree.
1658 	 *
1659 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1660 	 * the caller is expected to unpin it and allow it to be merged
1661 	 * with the others.
1662 	 */
1663 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1664 				 &hint, 0);
1665 	BUG_ON(ret);
1666 
1667 	ins.objectid = btrfs_ino(inode);
1668 	ins.offset = file_pos;
1669 	ins.type = BTRFS_EXTENT_DATA_KEY;
1670 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1671 	BUG_ON(ret);
1672 	leaf = path->nodes[0];
1673 	fi = btrfs_item_ptr(leaf, path->slots[0],
1674 			    struct btrfs_file_extent_item);
1675 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1676 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1677 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1678 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1679 	btrfs_set_file_extent_offset(leaf, fi, 0);
1680 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1681 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1682 	btrfs_set_file_extent_compression(leaf, fi, compression);
1683 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1684 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1685 
1686 	btrfs_unlock_up_safe(path, 1);
1687 	btrfs_set_lock_blocking(leaf);
1688 
1689 	btrfs_mark_buffer_dirty(leaf);
1690 
1691 	inode_add_bytes(inode, num_bytes);
1692 
1693 	ins.objectid = disk_bytenr;
1694 	ins.offset = disk_num_bytes;
1695 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1696 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1697 					root->root_key.objectid,
1698 					btrfs_ino(inode), file_pos, &ins);
1699 	BUG_ON(ret);
1700 	btrfs_free_path(path);
1701 
1702 	return 0;
1703 }
1704 
1705 /*
1706  * helper function for btrfs_finish_ordered_io, this
1707  * just reads in some of the csum leaves to prime them into ram
1708  * before we start the transaction.  It limits the amount of btree
1709  * reads required while inside the transaction.
1710  */
1711 /* as ordered data IO finishes, this gets called so we can finish
1712  * an ordered extent if the range of bytes in the file it covers are
1713  * fully written.
1714  */
1715 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1716 {
1717 	struct btrfs_root *root = BTRFS_I(inode)->root;
1718 	struct btrfs_trans_handle *trans = NULL;
1719 	struct btrfs_ordered_extent *ordered_extent = NULL;
1720 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1721 	struct extent_state *cached_state = NULL;
1722 	int compress_type = 0;
1723 	int ret;
1724 	bool nolock;
1725 
1726 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1727 					     end - start + 1);
1728 	if (!ret)
1729 		return 0;
1730 	BUG_ON(!ordered_extent);
1731 
1732 	nolock = btrfs_is_free_space_inode(root, inode);
1733 
1734 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1735 		BUG_ON(!list_empty(&ordered_extent->list));
1736 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1737 		if (!ret) {
1738 			if (nolock)
1739 				trans = btrfs_join_transaction_nolock(root);
1740 			else
1741 				trans = btrfs_join_transaction(root);
1742 			BUG_ON(IS_ERR(trans));
1743 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1744 			ret = btrfs_update_inode(trans, root, inode);
1745 			BUG_ON(ret);
1746 		}
1747 		goto out;
1748 	}
1749 
1750 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1751 			 ordered_extent->file_offset + ordered_extent->len - 1,
1752 			 0, &cached_state, GFP_NOFS);
1753 
1754 	if (nolock)
1755 		trans = btrfs_join_transaction_nolock(root);
1756 	else
1757 		trans = btrfs_join_transaction(root);
1758 	BUG_ON(IS_ERR(trans));
1759 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1760 
1761 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1762 		compress_type = ordered_extent->compress_type;
1763 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1764 		BUG_ON(compress_type);
1765 		ret = btrfs_mark_extent_written(trans, inode,
1766 						ordered_extent->file_offset,
1767 						ordered_extent->file_offset +
1768 						ordered_extent->len);
1769 		BUG_ON(ret);
1770 	} else {
1771 		BUG_ON(root == root->fs_info->tree_root);
1772 		ret = insert_reserved_file_extent(trans, inode,
1773 						ordered_extent->file_offset,
1774 						ordered_extent->start,
1775 						ordered_extent->disk_len,
1776 						ordered_extent->len,
1777 						ordered_extent->len,
1778 						compress_type, 0, 0,
1779 						BTRFS_FILE_EXTENT_REG);
1780 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1781 				   ordered_extent->file_offset,
1782 				   ordered_extent->len);
1783 		BUG_ON(ret);
1784 	}
1785 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1786 			     ordered_extent->file_offset +
1787 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1788 
1789 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1790 			  &ordered_extent->list);
1791 
1792 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1793 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1794 		ret = btrfs_update_inode(trans, root, inode);
1795 		BUG_ON(ret);
1796 	}
1797 	ret = 0;
1798 out:
1799 	if (root != root->fs_info->tree_root)
1800 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1801 	if (trans) {
1802 		if (nolock)
1803 			btrfs_end_transaction_nolock(trans, root);
1804 		else
1805 			btrfs_end_transaction(trans, root);
1806 	}
1807 
1808 	/* once for us */
1809 	btrfs_put_ordered_extent(ordered_extent);
1810 	/* once for the tree */
1811 	btrfs_put_ordered_extent(ordered_extent);
1812 
1813 	return 0;
1814 }
1815 
1816 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1817 				struct extent_state *state, int uptodate)
1818 {
1819 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1820 
1821 	ClearPagePrivate2(page);
1822 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1823 }
1824 
1825 /*
1826  * when reads are done, we need to check csums to verify the data is correct
1827  * if there's a match, we allow the bio to finish.  If not, the code in
1828  * extent_io.c will try to find good copies for us.
1829  */
1830 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1831 			       struct extent_state *state)
1832 {
1833 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1834 	struct inode *inode = page->mapping->host;
1835 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1836 	char *kaddr;
1837 	u64 private = ~(u32)0;
1838 	int ret;
1839 	struct btrfs_root *root = BTRFS_I(inode)->root;
1840 	u32 csum = ~(u32)0;
1841 
1842 	if (PageChecked(page)) {
1843 		ClearPageChecked(page);
1844 		goto good;
1845 	}
1846 
1847 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1848 		goto good;
1849 
1850 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1851 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1852 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1853 				  GFP_NOFS);
1854 		return 0;
1855 	}
1856 
1857 	if (state && state->start == start) {
1858 		private = state->private;
1859 		ret = 0;
1860 	} else {
1861 		ret = get_state_private(io_tree, start, &private);
1862 	}
1863 	kaddr = kmap_atomic(page, KM_USER0);
1864 	if (ret)
1865 		goto zeroit;
1866 
1867 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1868 	btrfs_csum_final(csum, (char *)&csum);
1869 	if (csum != private)
1870 		goto zeroit;
1871 
1872 	kunmap_atomic(kaddr, KM_USER0);
1873 good:
1874 	return 0;
1875 
1876 zeroit:
1877 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1878 		       "private %llu\n",
1879 		       (unsigned long long)btrfs_ino(page->mapping->host),
1880 		       (unsigned long long)start, csum,
1881 		       (unsigned long long)private);
1882 	memset(kaddr + offset, 1, end - start + 1);
1883 	flush_dcache_page(page);
1884 	kunmap_atomic(kaddr, KM_USER0);
1885 	if (private == 0)
1886 		return 0;
1887 	return -EIO;
1888 }
1889 
1890 struct delayed_iput {
1891 	struct list_head list;
1892 	struct inode *inode;
1893 };
1894 
1895 void btrfs_add_delayed_iput(struct inode *inode)
1896 {
1897 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1898 	struct delayed_iput *delayed;
1899 
1900 	if (atomic_add_unless(&inode->i_count, -1, 1))
1901 		return;
1902 
1903 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1904 	delayed->inode = inode;
1905 
1906 	spin_lock(&fs_info->delayed_iput_lock);
1907 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1908 	spin_unlock(&fs_info->delayed_iput_lock);
1909 }
1910 
1911 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1912 {
1913 	LIST_HEAD(list);
1914 	struct btrfs_fs_info *fs_info = root->fs_info;
1915 	struct delayed_iput *delayed;
1916 	int empty;
1917 
1918 	spin_lock(&fs_info->delayed_iput_lock);
1919 	empty = list_empty(&fs_info->delayed_iputs);
1920 	spin_unlock(&fs_info->delayed_iput_lock);
1921 	if (empty)
1922 		return;
1923 
1924 	down_read(&root->fs_info->cleanup_work_sem);
1925 	spin_lock(&fs_info->delayed_iput_lock);
1926 	list_splice_init(&fs_info->delayed_iputs, &list);
1927 	spin_unlock(&fs_info->delayed_iput_lock);
1928 
1929 	while (!list_empty(&list)) {
1930 		delayed = list_entry(list.next, struct delayed_iput, list);
1931 		list_del(&delayed->list);
1932 		iput(delayed->inode);
1933 		kfree(delayed);
1934 	}
1935 	up_read(&root->fs_info->cleanup_work_sem);
1936 }
1937 
1938 enum btrfs_orphan_cleanup_state {
1939 	ORPHAN_CLEANUP_STARTED	= 1,
1940 	ORPHAN_CLEANUP_DONE	= 2,
1941 };
1942 
1943 /*
1944  * This is called in transaction commmit time. If there are no orphan
1945  * files in the subvolume, it removes orphan item and frees block_rsv
1946  * structure.
1947  */
1948 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1949 			      struct btrfs_root *root)
1950 {
1951 	int ret;
1952 
1953 	if (!list_empty(&root->orphan_list) ||
1954 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1955 		return;
1956 
1957 	if (root->orphan_item_inserted &&
1958 	    btrfs_root_refs(&root->root_item) > 0) {
1959 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1960 					    root->root_key.objectid);
1961 		BUG_ON(ret);
1962 		root->orphan_item_inserted = 0;
1963 	}
1964 
1965 	if (root->orphan_block_rsv) {
1966 		WARN_ON(root->orphan_block_rsv->size > 0);
1967 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
1968 		root->orphan_block_rsv = NULL;
1969 	}
1970 }
1971 
1972 /*
1973  * This creates an orphan entry for the given inode in case something goes
1974  * wrong in the middle of an unlink/truncate.
1975  *
1976  * NOTE: caller of this function should reserve 5 units of metadata for
1977  *	 this function.
1978  */
1979 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1980 {
1981 	struct btrfs_root *root = BTRFS_I(inode)->root;
1982 	struct btrfs_block_rsv *block_rsv = NULL;
1983 	int reserve = 0;
1984 	int insert = 0;
1985 	int ret;
1986 
1987 	if (!root->orphan_block_rsv) {
1988 		block_rsv = btrfs_alloc_block_rsv(root);
1989 		if (!block_rsv)
1990 			return -ENOMEM;
1991 	}
1992 
1993 	spin_lock(&root->orphan_lock);
1994 	if (!root->orphan_block_rsv) {
1995 		root->orphan_block_rsv = block_rsv;
1996 	} else if (block_rsv) {
1997 		btrfs_free_block_rsv(root, block_rsv);
1998 		block_rsv = NULL;
1999 	}
2000 
2001 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2002 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2003 #if 0
2004 		/*
2005 		 * For proper ENOSPC handling, we should do orphan
2006 		 * cleanup when mounting. But this introduces backward
2007 		 * compatibility issue.
2008 		 */
2009 		if (!xchg(&root->orphan_item_inserted, 1))
2010 			insert = 2;
2011 		else
2012 			insert = 1;
2013 #endif
2014 		insert = 1;
2015 	}
2016 
2017 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2018 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2019 		reserve = 1;
2020 	}
2021 	spin_unlock(&root->orphan_lock);
2022 
2023 	/* grab metadata reservation from transaction handle */
2024 	if (reserve) {
2025 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2026 		BUG_ON(ret);
2027 	}
2028 
2029 	/* insert an orphan item to track this unlinked/truncated file */
2030 	if (insert >= 1) {
2031 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2032 		BUG_ON(ret);
2033 	}
2034 
2035 	/* insert an orphan item to track subvolume contains orphan files */
2036 	if (insert >= 2) {
2037 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2038 					       root->root_key.objectid);
2039 		BUG_ON(ret);
2040 	}
2041 	return 0;
2042 }
2043 
2044 /*
2045  * We have done the truncate/delete so we can go ahead and remove the orphan
2046  * item for this particular inode.
2047  */
2048 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2049 {
2050 	struct btrfs_root *root = BTRFS_I(inode)->root;
2051 	int delete_item = 0;
2052 	int release_rsv = 0;
2053 	int ret = 0;
2054 
2055 	spin_lock(&root->orphan_lock);
2056 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2057 		list_del_init(&BTRFS_I(inode)->i_orphan);
2058 		delete_item = 1;
2059 	}
2060 
2061 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2062 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2063 		release_rsv = 1;
2064 	}
2065 	spin_unlock(&root->orphan_lock);
2066 
2067 	if (trans && delete_item) {
2068 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2069 		BUG_ON(ret);
2070 	}
2071 
2072 	if (release_rsv)
2073 		btrfs_orphan_release_metadata(inode);
2074 
2075 	return 0;
2076 }
2077 
2078 /*
2079  * this cleans up any orphans that may be left on the list from the last use
2080  * of this root.
2081  */
2082 int btrfs_orphan_cleanup(struct btrfs_root *root)
2083 {
2084 	struct btrfs_path *path;
2085 	struct extent_buffer *leaf;
2086 	struct btrfs_key key, found_key;
2087 	struct btrfs_trans_handle *trans;
2088 	struct inode *inode;
2089 	u64 last_objectid = 0;
2090 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2091 
2092 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2093 		return 0;
2094 
2095 	path = btrfs_alloc_path();
2096 	if (!path) {
2097 		ret = -ENOMEM;
2098 		goto out;
2099 	}
2100 	path->reada = -1;
2101 
2102 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2103 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2104 	key.offset = (u64)-1;
2105 
2106 	while (1) {
2107 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2108 		if (ret < 0)
2109 			goto out;
2110 
2111 		/*
2112 		 * if ret == 0 means we found what we were searching for, which
2113 		 * is weird, but possible, so only screw with path if we didn't
2114 		 * find the key and see if we have stuff that matches
2115 		 */
2116 		if (ret > 0) {
2117 			ret = 0;
2118 			if (path->slots[0] == 0)
2119 				break;
2120 			path->slots[0]--;
2121 		}
2122 
2123 		/* pull out the item */
2124 		leaf = path->nodes[0];
2125 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2126 
2127 		/* make sure the item matches what we want */
2128 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2129 			break;
2130 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2131 			break;
2132 
2133 		/* release the path since we're done with it */
2134 		btrfs_release_path(path);
2135 
2136 		/*
2137 		 * this is where we are basically btrfs_lookup, without the
2138 		 * crossing root thing.  we store the inode number in the
2139 		 * offset of the orphan item.
2140 		 */
2141 
2142 		if (found_key.offset == last_objectid) {
2143 			printk(KERN_ERR "btrfs: Error removing orphan entry, "
2144 			       "stopping orphan cleanup\n");
2145 			ret = -EINVAL;
2146 			goto out;
2147 		}
2148 
2149 		last_objectid = found_key.offset;
2150 
2151 		found_key.objectid = found_key.offset;
2152 		found_key.type = BTRFS_INODE_ITEM_KEY;
2153 		found_key.offset = 0;
2154 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2155 		ret = PTR_RET(inode);
2156 		if (ret && ret != -ESTALE)
2157 			goto out;
2158 
2159 		/*
2160 		 * Inode is already gone but the orphan item is still there,
2161 		 * kill the orphan item.
2162 		 */
2163 		if (ret == -ESTALE) {
2164 			trans = btrfs_start_transaction(root, 1);
2165 			if (IS_ERR(trans)) {
2166 				ret = PTR_ERR(trans);
2167 				goto out;
2168 			}
2169 			ret = btrfs_del_orphan_item(trans, root,
2170 						    found_key.objectid);
2171 			BUG_ON(ret);
2172 			btrfs_end_transaction(trans, root);
2173 			continue;
2174 		}
2175 
2176 		/*
2177 		 * add this inode to the orphan list so btrfs_orphan_del does
2178 		 * the proper thing when we hit it
2179 		 */
2180 		spin_lock(&root->orphan_lock);
2181 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2182 		spin_unlock(&root->orphan_lock);
2183 
2184 		/* if we have links, this was a truncate, lets do that */
2185 		if (inode->i_nlink) {
2186 			if (!S_ISREG(inode->i_mode)) {
2187 				WARN_ON(1);
2188 				iput(inode);
2189 				continue;
2190 			}
2191 			nr_truncate++;
2192 			ret = btrfs_truncate(inode);
2193 		} else {
2194 			nr_unlink++;
2195 		}
2196 
2197 		/* this will do delete_inode and everything for us */
2198 		iput(inode);
2199 		if (ret)
2200 			goto out;
2201 	}
2202 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2203 
2204 	if (root->orphan_block_rsv)
2205 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2206 					(u64)-1);
2207 
2208 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2209 		trans = btrfs_join_transaction(root);
2210 		if (!IS_ERR(trans))
2211 			btrfs_end_transaction(trans, root);
2212 	}
2213 
2214 	if (nr_unlink)
2215 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2216 	if (nr_truncate)
2217 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2218 
2219 out:
2220 	if (ret)
2221 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2222 	btrfs_free_path(path);
2223 	return ret;
2224 }
2225 
2226 /*
2227  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2228  * don't find any xattrs, we know there can't be any acls.
2229  *
2230  * slot is the slot the inode is in, objectid is the objectid of the inode
2231  */
2232 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2233 					  int slot, u64 objectid)
2234 {
2235 	u32 nritems = btrfs_header_nritems(leaf);
2236 	struct btrfs_key found_key;
2237 	int scanned = 0;
2238 
2239 	slot++;
2240 	while (slot < nritems) {
2241 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2242 
2243 		/* we found a different objectid, there must not be acls */
2244 		if (found_key.objectid != objectid)
2245 			return 0;
2246 
2247 		/* we found an xattr, assume we've got an acl */
2248 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2249 			return 1;
2250 
2251 		/*
2252 		 * we found a key greater than an xattr key, there can't
2253 		 * be any acls later on
2254 		 */
2255 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2256 			return 0;
2257 
2258 		slot++;
2259 		scanned++;
2260 
2261 		/*
2262 		 * it goes inode, inode backrefs, xattrs, extents,
2263 		 * so if there are a ton of hard links to an inode there can
2264 		 * be a lot of backrefs.  Don't waste time searching too hard,
2265 		 * this is just an optimization
2266 		 */
2267 		if (scanned >= 8)
2268 			break;
2269 	}
2270 	/* we hit the end of the leaf before we found an xattr or
2271 	 * something larger than an xattr.  We have to assume the inode
2272 	 * has acls
2273 	 */
2274 	return 1;
2275 }
2276 
2277 /*
2278  * read an inode from the btree into the in-memory inode
2279  */
2280 static void btrfs_read_locked_inode(struct inode *inode)
2281 {
2282 	struct btrfs_path *path;
2283 	struct extent_buffer *leaf;
2284 	struct btrfs_inode_item *inode_item;
2285 	struct btrfs_timespec *tspec;
2286 	struct btrfs_root *root = BTRFS_I(inode)->root;
2287 	struct btrfs_key location;
2288 	int maybe_acls;
2289 	u32 rdev;
2290 	int ret;
2291 	bool filled = false;
2292 
2293 	ret = btrfs_fill_inode(inode, &rdev);
2294 	if (!ret)
2295 		filled = true;
2296 
2297 	path = btrfs_alloc_path();
2298 	if (!path)
2299 		goto make_bad;
2300 
2301 	path->leave_spinning = 1;
2302 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2303 
2304 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2305 	if (ret)
2306 		goto make_bad;
2307 
2308 	leaf = path->nodes[0];
2309 
2310 	if (filled)
2311 		goto cache_acl;
2312 
2313 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2314 				    struct btrfs_inode_item);
2315 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2316 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2317 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2318 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2319 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2320 
2321 	tspec = btrfs_inode_atime(inode_item);
2322 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2323 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2324 
2325 	tspec = btrfs_inode_mtime(inode_item);
2326 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2327 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2328 
2329 	tspec = btrfs_inode_ctime(inode_item);
2330 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2331 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2332 
2333 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2334 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2335 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2336 	inode->i_generation = BTRFS_I(inode)->generation;
2337 	inode->i_rdev = 0;
2338 	rdev = btrfs_inode_rdev(leaf, inode_item);
2339 
2340 	BTRFS_I(inode)->index_cnt = (u64)-1;
2341 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2342 cache_acl:
2343 	/*
2344 	 * try to precache a NULL acl entry for files that don't have
2345 	 * any xattrs or acls
2346 	 */
2347 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2348 					   btrfs_ino(inode));
2349 	if (!maybe_acls)
2350 		cache_no_acl(inode);
2351 
2352 	btrfs_free_path(path);
2353 
2354 	switch (inode->i_mode & S_IFMT) {
2355 	case S_IFREG:
2356 		inode->i_mapping->a_ops = &btrfs_aops;
2357 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2358 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2359 		inode->i_fop = &btrfs_file_operations;
2360 		inode->i_op = &btrfs_file_inode_operations;
2361 		break;
2362 	case S_IFDIR:
2363 		inode->i_fop = &btrfs_dir_file_operations;
2364 		if (root == root->fs_info->tree_root)
2365 			inode->i_op = &btrfs_dir_ro_inode_operations;
2366 		else
2367 			inode->i_op = &btrfs_dir_inode_operations;
2368 		break;
2369 	case S_IFLNK:
2370 		inode->i_op = &btrfs_symlink_inode_operations;
2371 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2372 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2373 		break;
2374 	default:
2375 		inode->i_op = &btrfs_special_inode_operations;
2376 		init_special_inode(inode, inode->i_mode, rdev);
2377 		break;
2378 	}
2379 
2380 	btrfs_update_iflags(inode);
2381 	return;
2382 
2383 make_bad:
2384 	btrfs_free_path(path);
2385 	make_bad_inode(inode);
2386 }
2387 
2388 /*
2389  * given a leaf and an inode, copy the inode fields into the leaf
2390  */
2391 static void fill_inode_item(struct btrfs_trans_handle *trans,
2392 			    struct extent_buffer *leaf,
2393 			    struct btrfs_inode_item *item,
2394 			    struct inode *inode)
2395 {
2396 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2397 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2398 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2399 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2400 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2401 
2402 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2403 			       inode->i_atime.tv_sec);
2404 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2405 				inode->i_atime.tv_nsec);
2406 
2407 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2408 			       inode->i_mtime.tv_sec);
2409 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2410 				inode->i_mtime.tv_nsec);
2411 
2412 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2413 			       inode->i_ctime.tv_sec);
2414 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2415 				inode->i_ctime.tv_nsec);
2416 
2417 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2418 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2419 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2420 	btrfs_set_inode_transid(leaf, item, trans->transid);
2421 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2422 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2423 	btrfs_set_inode_block_group(leaf, item, 0);
2424 }
2425 
2426 /*
2427  * copy everything in the in-memory inode into the btree.
2428  */
2429 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2430 				struct btrfs_root *root, struct inode *inode)
2431 {
2432 	struct btrfs_inode_item *inode_item;
2433 	struct btrfs_path *path;
2434 	struct extent_buffer *leaf;
2435 	int ret;
2436 
2437 	/*
2438 	 * If the inode is a free space inode, we can deadlock during commit
2439 	 * if we put it into the delayed code.
2440 	 *
2441 	 * The data relocation inode should also be directly updated
2442 	 * without delay
2443 	 */
2444 	if (!btrfs_is_free_space_inode(root, inode)
2445 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2446 		ret = btrfs_delayed_update_inode(trans, root, inode);
2447 		if (!ret)
2448 			btrfs_set_inode_last_trans(trans, inode);
2449 		return ret;
2450 	}
2451 
2452 	path = btrfs_alloc_path();
2453 	if (!path)
2454 		return -ENOMEM;
2455 
2456 	path->leave_spinning = 1;
2457 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2458 				 1);
2459 	if (ret) {
2460 		if (ret > 0)
2461 			ret = -ENOENT;
2462 		goto failed;
2463 	}
2464 
2465 	btrfs_unlock_up_safe(path, 1);
2466 	leaf = path->nodes[0];
2467 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2468 				    struct btrfs_inode_item);
2469 
2470 	fill_inode_item(trans, leaf, inode_item, inode);
2471 	btrfs_mark_buffer_dirty(leaf);
2472 	btrfs_set_inode_last_trans(trans, inode);
2473 	ret = 0;
2474 failed:
2475 	btrfs_free_path(path);
2476 	return ret;
2477 }
2478 
2479 /*
2480  * unlink helper that gets used here in inode.c and in the tree logging
2481  * recovery code.  It remove a link in a directory with a given name, and
2482  * also drops the back refs in the inode to the directory
2483  */
2484 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2485 				struct btrfs_root *root,
2486 				struct inode *dir, struct inode *inode,
2487 				const char *name, int name_len)
2488 {
2489 	struct btrfs_path *path;
2490 	int ret = 0;
2491 	struct extent_buffer *leaf;
2492 	struct btrfs_dir_item *di;
2493 	struct btrfs_key key;
2494 	u64 index;
2495 	u64 ino = btrfs_ino(inode);
2496 	u64 dir_ino = btrfs_ino(dir);
2497 
2498 	path = btrfs_alloc_path();
2499 	if (!path) {
2500 		ret = -ENOMEM;
2501 		goto out;
2502 	}
2503 
2504 	path->leave_spinning = 1;
2505 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2506 				    name, name_len, -1);
2507 	if (IS_ERR(di)) {
2508 		ret = PTR_ERR(di);
2509 		goto err;
2510 	}
2511 	if (!di) {
2512 		ret = -ENOENT;
2513 		goto err;
2514 	}
2515 	leaf = path->nodes[0];
2516 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2517 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2518 	if (ret)
2519 		goto err;
2520 	btrfs_release_path(path);
2521 
2522 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2523 				  dir_ino, &index);
2524 	if (ret) {
2525 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2526 		       "inode %llu parent %llu\n", name_len, name,
2527 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2528 		goto err;
2529 	}
2530 
2531 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2532 	if (ret)
2533 		goto err;
2534 
2535 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2536 					 inode, dir_ino);
2537 	BUG_ON(ret != 0 && ret != -ENOENT);
2538 
2539 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2540 					   dir, index);
2541 	if (ret == -ENOENT)
2542 		ret = 0;
2543 err:
2544 	btrfs_free_path(path);
2545 	if (ret)
2546 		goto out;
2547 
2548 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2549 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2550 	btrfs_update_inode(trans, root, dir);
2551 out:
2552 	return ret;
2553 }
2554 
2555 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2556 		       struct btrfs_root *root,
2557 		       struct inode *dir, struct inode *inode,
2558 		       const char *name, int name_len)
2559 {
2560 	int ret;
2561 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2562 	if (!ret) {
2563 		btrfs_drop_nlink(inode);
2564 		ret = btrfs_update_inode(trans, root, inode);
2565 	}
2566 	return ret;
2567 }
2568 
2569 
2570 /* helper to check if there is any shared block in the path */
2571 static int check_path_shared(struct btrfs_root *root,
2572 			     struct btrfs_path *path)
2573 {
2574 	struct extent_buffer *eb;
2575 	int level;
2576 	u64 refs = 1;
2577 
2578 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2579 		int ret;
2580 
2581 		if (!path->nodes[level])
2582 			break;
2583 		eb = path->nodes[level];
2584 		if (!btrfs_block_can_be_shared(root, eb))
2585 			continue;
2586 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2587 					       &refs, NULL);
2588 		if (refs > 1)
2589 			return 1;
2590 	}
2591 	return 0;
2592 }
2593 
2594 /*
2595  * helper to start transaction for unlink and rmdir.
2596  *
2597  * unlink and rmdir are special in btrfs, they do not always free space.
2598  * so in enospc case, we should make sure they will free space before
2599  * allowing them to use the global metadata reservation.
2600  */
2601 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2602 						       struct dentry *dentry)
2603 {
2604 	struct btrfs_trans_handle *trans;
2605 	struct btrfs_root *root = BTRFS_I(dir)->root;
2606 	struct btrfs_path *path;
2607 	struct btrfs_inode_ref *ref;
2608 	struct btrfs_dir_item *di;
2609 	struct inode *inode = dentry->d_inode;
2610 	u64 index;
2611 	int check_link = 1;
2612 	int err = -ENOSPC;
2613 	int ret;
2614 	u64 ino = btrfs_ino(inode);
2615 	u64 dir_ino = btrfs_ino(dir);
2616 
2617 	/*
2618 	 * 1 for the possible orphan item
2619 	 * 1 for the dir item
2620 	 * 1 for the dir index
2621 	 * 1 for the inode ref
2622 	 * 1 for the inode ref in the tree log
2623 	 * 2 for the dir entries in the log
2624 	 * 1 for the inode
2625 	 */
2626 	trans = btrfs_start_transaction(root, 8);
2627 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2628 		return trans;
2629 
2630 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2631 		return ERR_PTR(-ENOSPC);
2632 
2633 	/* check if there is someone else holds reference */
2634 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2635 		return ERR_PTR(-ENOSPC);
2636 
2637 	if (atomic_read(&inode->i_count) > 2)
2638 		return ERR_PTR(-ENOSPC);
2639 
2640 	if (xchg(&root->fs_info->enospc_unlink, 1))
2641 		return ERR_PTR(-ENOSPC);
2642 
2643 	path = btrfs_alloc_path();
2644 	if (!path) {
2645 		root->fs_info->enospc_unlink = 0;
2646 		return ERR_PTR(-ENOMEM);
2647 	}
2648 
2649 	/* 1 for the orphan item */
2650 	trans = btrfs_start_transaction(root, 1);
2651 	if (IS_ERR(trans)) {
2652 		btrfs_free_path(path);
2653 		root->fs_info->enospc_unlink = 0;
2654 		return trans;
2655 	}
2656 
2657 	path->skip_locking = 1;
2658 	path->search_commit_root = 1;
2659 
2660 	ret = btrfs_lookup_inode(trans, root, path,
2661 				&BTRFS_I(dir)->location, 0);
2662 	if (ret < 0) {
2663 		err = ret;
2664 		goto out;
2665 	}
2666 	if (ret == 0) {
2667 		if (check_path_shared(root, path))
2668 			goto out;
2669 	} else {
2670 		check_link = 0;
2671 	}
2672 	btrfs_release_path(path);
2673 
2674 	ret = btrfs_lookup_inode(trans, root, path,
2675 				&BTRFS_I(inode)->location, 0);
2676 	if (ret < 0) {
2677 		err = ret;
2678 		goto out;
2679 	}
2680 	if (ret == 0) {
2681 		if (check_path_shared(root, path))
2682 			goto out;
2683 	} else {
2684 		check_link = 0;
2685 	}
2686 	btrfs_release_path(path);
2687 
2688 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2689 		ret = btrfs_lookup_file_extent(trans, root, path,
2690 					       ino, (u64)-1, 0);
2691 		if (ret < 0) {
2692 			err = ret;
2693 			goto out;
2694 		}
2695 		BUG_ON(ret == 0);
2696 		if (check_path_shared(root, path))
2697 			goto out;
2698 		btrfs_release_path(path);
2699 	}
2700 
2701 	if (!check_link) {
2702 		err = 0;
2703 		goto out;
2704 	}
2705 
2706 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2707 				dentry->d_name.name, dentry->d_name.len, 0);
2708 	if (IS_ERR(di)) {
2709 		err = PTR_ERR(di);
2710 		goto out;
2711 	}
2712 	if (di) {
2713 		if (check_path_shared(root, path))
2714 			goto out;
2715 	} else {
2716 		err = 0;
2717 		goto out;
2718 	}
2719 	btrfs_release_path(path);
2720 
2721 	ref = btrfs_lookup_inode_ref(trans, root, path,
2722 				dentry->d_name.name, dentry->d_name.len,
2723 				ino, dir_ino, 0);
2724 	if (IS_ERR(ref)) {
2725 		err = PTR_ERR(ref);
2726 		goto out;
2727 	}
2728 	BUG_ON(!ref);
2729 	if (check_path_shared(root, path))
2730 		goto out;
2731 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2732 	btrfs_release_path(path);
2733 
2734 	/*
2735 	 * This is a commit root search, if we can lookup inode item and other
2736 	 * relative items in the commit root, it means the transaction of
2737 	 * dir/file creation has been committed, and the dir index item that we
2738 	 * delay to insert has also been inserted into the commit root. So
2739 	 * we needn't worry about the delayed insertion of the dir index item
2740 	 * here.
2741 	 */
2742 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2743 				dentry->d_name.name, dentry->d_name.len, 0);
2744 	if (IS_ERR(di)) {
2745 		err = PTR_ERR(di);
2746 		goto out;
2747 	}
2748 	BUG_ON(ret == -ENOENT);
2749 	if (check_path_shared(root, path))
2750 		goto out;
2751 
2752 	err = 0;
2753 out:
2754 	btrfs_free_path(path);
2755 	/* Migrate the orphan reservation over */
2756 	if (!err)
2757 		err = btrfs_block_rsv_migrate(trans->block_rsv,
2758 				&root->fs_info->global_block_rsv,
2759 				trans->bytes_reserved);
2760 
2761 	if (err) {
2762 		btrfs_end_transaction(trans, root);
2763 		root->fs_info->enospc_unlink = 0;
2764 		return ERR_PTR(err);
2765 	}
2766 
2767 	trans->block_rsv = &root->fs_info->global_block_rsv;
2768 	return trans;
2769 }
2770 
2771 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2772 			       struct btrfs_root *root)
2773 {
2774 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2775 		btrfs_block_rsv_release(root, trans->block_rsv,
2776 					trans->bytes_reserved);
2777 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2778 		BUG_ON(!root->fs_info->enospc_unlink);
2779 		root->fs_info->enospc_unlink = 0;
2780 	}
2781 	btrfs_end_transaction_throttle(trans, root);
2782 }
2783 
2784 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2785 {
2786 	struct btrfs_root *root = BTRFS_I(dir)->root;
2787 	struct btrfs_trans_handle *trans;
2788 	struct inode *inode = dentry->d_inode;
2789 	int ret;
2790 	unsigned long nr = 0;
2791 
2792 	trans = __unlink_start_trans(dir, dentry);
2793 	if (IS_ERR(trans))
2794 		return PTR_ERR(trans);
2795 
2796 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2797 
2798 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2799 				 dentry->d_name.name, dentry->d_name.len);
2800 	if (ret)
2801 		goto out;
2802 
2803 	if (inode->i_nlink == 0) {
2804 		ret = btrfs_orphan_add(trans, inode);
2805 		if (ret)
2806 			goto out;
2807 	}
2808 
2809 out:
2810 	nr = trans->blocks_used;
2811 	__unlink_end_trans(trans, root);
2812 	btrfs_btree_balance_dirty(root, nr);
2813 	return ret;
2814 }
2815 
2816 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2817 			struct btrfs_root *root,
2818 			struct inode *dir, u64 objectid,
2819 			const char *name, int name_len)
2820 {
2821 	struct btrfs_path *path;
2822 	struct extent_buffer *leaf;
2823 	struct btrfs_dir_item *di;
2824 	struct btrfs_key key;
2825 	u64 index;
2826 	int ret;
2827 	u64 dir_ino = btrfs_ino(dir);
2828 
2829 	path = btrfs_alloc_path();
2830 	if (!path)
2831 		return -ENOMEM;
2832 
2833 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2834 				   name, name_len, -1);
2835 	BUG_ON(IS_ERR_OR_NULL(di));
2836 
2837 	leaf = path->nodes[0];
2838 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2839 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2840 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2841 	BUG_ON(ret);
2842 	btrfs_release_path(path);
2843 
2844 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2845 				 objectid, root->root_key.objectid,
2846 				 dir_ino, &index, name, name_len);
2847 	if (ret < 0) {
2848 		BUG_ON(ret != -ENOENT);
2849 		di = btrfs_search_dir_index_item(root, path, dir_ino,
2850 						 name, name_len);
2851 		BUG_ON(IS_ERR_OR_NULL(di));
2852 
2853 		leaf = path->nodes[0];
2854 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2855 		btrfs_release_path(path);
2856 		index = key.offset;
2857 	}
2858 	btrfs_release_path(path);
2859 
2860 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2861 	BUG_ON(ret);
2862 
2863 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2864 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2865 	ret = btrfs_update_inode(trans, root, dir);
2866 	BUG_ON(ret);
2867 
2868 	btrfs_free_path(path);
2869 	return 0;
2870 }
2871 
2872 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2873 {
2874 	struct inode *inode = dentry->d_inode;
2875 	int err = 0;
2876 	struct btrfs_root *root = BTRFS_I(dir)->root;
2877 	struct btrfs_trans_handle *trans;
2878 	unsigned long nr = 0;
2879 
2880 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2881 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
2882 		return -ENOTEMPTY;
2883 
2884 	trans = __unlink_start_trans(dir, dentry);
2885 	if (IS_ERR(trans))
2886 		return PTR_ERR(trans);
2887 
2888 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2889 		err = btrfs_unlink_subvol(trans, root, dir,
2890 					  BTRFS_I(inode)->location.objectid,
2891 					  dentry->d_name.name,
2892 					  dentry->d_name.len);
2893 		goto out;
2894 	}
2895 
2896 	err = btrfs_orphan_add(trans, inode);
2897 	if (err)
2898 		goto out;
2899 
2900 	/* now the directory is empty */
2901 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2902 				 dentry->d_name.name, dentry->d_name.len);
2903 	if (!err)
2904 		btrfs_i_size_write(inode, 0);
2905 out:
2906 	nr = trans->blocks_used;
2907 	__unlink_end_trans(trans, root);
2908 	btrfs_btree_balance_dirty(root, nr);
2909 
2910 	return err;
2911 }
2912 
2913 /*
2914  * this can truncate away extent items, csum items and directory items.
2915  * It starts at a high offset and removes keys until it can't find
2916  * any higher than new_size
2917  *
2918  * csum items that cross the new i_size are truncated to the new size
2919  * as well.
2920  *
2921  * min_type is the minimum key type to truncate down to.  If set to 0, this
2922  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2923  */
2924 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2925 			       struct btrfs_root *root,
2926 			       struct inode *inode,
2927 			       u64 new_size, u32 min_type)
2928 {
2929 	struct btrfs_path *path;
2930 	struct extent_buffer *leaf;
2931 	struct btrfs_file_extent_item *fi;
2932 	struct btrfs_key key;
2933 	struct btrfs_key found_key;
2934 	u64 extent_start = 0;
2935 	u64 extent_num_bytes = 0;
2936 	u64 extent_offset = 0;
2937 	u64 item_end = 0;
2938 	u64 mask = root->sectorsize - 1;
2939 	u32 found_type = (u8)-1;
2940 	int found_extent;
2941 	int del_item;
2942 	int pending_del_nr = 0;
2943 	int pending_del_slot = 0;
2944 	int extent_type = -1;
2945 	int encoding;
2946 	int ret;
2947 	int err = 0;
2948 	u64 ino = btrfs_ino(inode);
2949 
2950 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2951 
2952 	path = btrfs_alloc_path();
2953 	if (!path)
2954 		return -ENOMEM;
2955 	path->reada = -1;
2956 
2957 	if (root->ref_cows || root == root->fs_info->tree_root)
2958 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2959 
2960 	/*
2961 	 * This function is also used to drop the items in the log tree before
2962 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
2963 	 * it is used to drop the loged items. So we shouldn't kill the delayed
2964 	 * items.
2965 	 */
2966 	if (min_type == 0 && root == BTRFS_I(inode)->root)
2967 		btrfs_kill_delayed_inode_items(inode);
2968 
2969 	key.objectid = ino;
2970 	key.offset = (u64)-1;
2971 	key.type = (u8)-1;
2972 
2973 search_again:
2974 	path->leave_spinning = 1;
2975 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2976 	if (ret < 0) {
2977 		err = ret;
2978 		goto out;
2979 	}
2980 
2981 	if (ret > 0) {
2982 		/* there are no items in the tree for us to truncate, we're
2983 		 * done
2984 		 */
2985 		if (path->slots[0] == 0)
2986 			goto out;
2987 		path->slots[0]--;
2988 	}
2989 
2990 	while (1) {
2991 		fi = NULL;
2992 		leaf = path->nodes[0];
2993 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2994 		found_type = btrfs_key_type(&found_key);
2995 		encoding = 0;
2996 
2997 		if (found_key.objectid != ino)
2998 			break;
2999 
3000 		if (found_type < min_type)
3001 			break;
3002 
3003 		item_end = found_key.offset;
3004 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3005 			fi = btrfs_item_ptr(leaf, path->slots[0],
3006 					    struct btrfs_file_extent_item);
3007 			extent_type = btrfs_file_extent_type(leaf, fi);
3008 			encoding = btrfs_file_extent_compression(leaf, fi);
3009 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3010 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3011 
3012 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3013 				item_end +=
3014 				    btrfs_file_extent_num_bytes(leaf, fi);
3015 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3016 				item_end += btrfs_file_extent_inline_len(leaf,
3017 									 fi);
3018 			}
3019 			item_end--;
3020 		}
3021 		if (found_type > min_type) {
3022 			del_item = 1;
3023 		} else {
3024 			if (item_end < new_size)
3025 				break;
3026 			if (found_key.offset >= new_size)
3027 				del_item = 1;
3028 			else
3029 				del_item = 0;
3030 		}
3031 		found_extent = 0;
3032 		/* FIXME, shrink the extent if the ref count is only 1 */
3033 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3034 			goto delete;
3035 
3036 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3037 			u64 num_dec;
3038 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3039 			if (!del_item && !encoding) {
3040 				u64 orig_num_bytes =
3041 					btrfs_file_extent_num_bytes(leaf, fi);
3042 				extent_num_bytes = new_size -
3043 					found_key.offset + root->sectorsize - 1;
3044 				extent_num_bytes = extent_num_bytes &
3045 					~((u64)root->sectorsize - 1);
3046 				btrfs_set_file_extent_num_bytes(leaf, fi,
3047 							 extent_num_bytes);
3048 				num_dec = (orig_num_bytes -
3049 					   extent_num_bytes);
3050 				if (root->ref_cows && extent_start != 0)
3051 					inode_sub_bytes(inode, num_dec);
3052 				btrfs_mark_buffer_dirty(leaf);
3053 			} else {
3054 				extent_num_bytes =
3055 					btrfs_file_extent_disk_num_bytes(leaf,
3056 									 fi);
3057 				extent_offset = found_key.offset -
3058 					btrfs_file_extent_offset(leaf, fi);
3059 
3060 				/* FIXME blocksize != 4096 */
3061 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3062 				if (extent_start != 0) {
3063 					found_extent = 1;
3064 					if (root->ref_cows)
3065 						inode_sub_bytes(inode, num_dec);
3066 				}
3067 			}
3068 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3069 			/*
3070 			 * we can't truncate inline items that have had
3071 			 * special encodings
3072 			 */
3073 			if (!del_item &&
3074 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3075 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3076 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3077 				u32 size = new_size - found_key.offset;
3078 
3079 				if (root->ref_cows) {
3080 					inode_sub_bytes(inode, item_end + 1 -
3081 							new_size);
3082 				}
3083 				size =
3084 				    btrfs_file_extent_calc_inline_size(size);
3085 				ret = btrfs_truncate_item(trans, root, path,
3086 							  size, 1);
3087 			} else if (root->ref_cows) {
3088 				inode_sub_bytes(inode, item_end + 1 -
3089 						found_key.offset);
3090 			}
3091 		}
3092 delete:
3093 		if (del_item) {
3094 			if (!pending_del_nr) {
3095 				/* no pending yet, add ourselves */
3096 				pending_del_slot = path->slots[0];
3097 				pending_del_nr = 1;
3098 			} else if (pending_del_nr &&
3099 				   path->slots[0] + 1 == pending_del_slot) {
3100 				/* hop on the pending chunk */
3101 				pending_del_nr++;
3102 				pending_del_slot = path->slots[0];
3103 			} else {
3104 				BUG();
3105 			}
3106 		} else {
3107 			break;
3108 		}
3109 		if (found_extent && (root->ref_cows ||
3110 				     root == root->fs_info->tree_root)) {
3111 			btrfs_set_path_blocking(path);
3112 			ret = btrfs_free_extent(trans, root, extent_start,
3113 						extent_num_bytes, 0,
3114 						btrfs_header_owner(leaf),
3115 						ino, extent_offset);
3116 			BUG_ON(ret);
3117 		}
3118 
3119 		if (found_type == BTRFS_INODE_ITEM_KEY)
3120 			break;
3121 
3122 		if (path->slots[0] == 0 ||
3123 		    path->slots[0] != pending_del_slot) {
3124 			if (root->ref_cows &&
3125 			    BTRFS_I(inode)->location.objectid !=
3126 						BTRFS_FREE_INO_OBJECTID) {
3127 				err = -EAGAIN;
3128 				goto out;
3129 			}
3130 			if (pending_del_nr) {
3131 				ret = btrfs_del_items(trans, root, path,
3132 						pending_del_slot,
3133 						pending_del_nr);
3134 				BUG_ON(ret);
3135 				pending_del_nr = 0;
3136 			}
3137 			btrfs_release_path(path);
3138 			goto search_again;
3139 		} else {
3140 			path->slots[0]--;
3141 		}
3142 	}
3143 out:
3144 	if (pending_del_nr) {
3145 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3146 				      pending_del_nr);
3147 		BUG_ON(ret);
3148 	}
3149 	btrfs_free_path(path);
3150 	return err;
3151 }
3152 
3153 /*
3154  * taken from block_truncate_page, but does cow as it zeros out
3155  * any bytes left in the last page in the file.
3156  */
3157 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3158 {
3159 	struct inode *inode = mapping->host;
3160 	struct btrfs_root *root = BTRFS_I(inode)->root;
3161 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3162 	struct btrfs_ordered_extent *ordered;
3163 	struct extent_state *cached_state = NULL;
3164 	char *kaddr;
3165 	u32 blocksize = root->sectorsize;
3166 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3167 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3168 	struct page *page;
3169 	gfp_t mask = btrfs_alloc_write_mask(mapping);
3170 	int ret = 0;
3171 	u64 page_start;
3172 	u64 page_end;
3173 
3174 	if ((offset & (blocksize - 1)) == 0)
3175 		goto out;
3176 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3177 	if (ret)
3178 		goto out;
3179 
3180 	ret = -ENOMEM;
3181 again:
3182 	page = find_or_create_page(mapping, index, mask);
3183 	if (!page) {
3184 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3185 		goto out;
3186 	}
3187 
3188 	page_start = page_offset(page);
3189 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3190 
3191 	if (!PageUptodate(page)) {
3192 		ret = btrfs_readpage(NULL, page);
3193 		lock_page(page);
3194 		if (page->mapping != mapping) {
3195 			unlock_page(page);
3196 			page_cache_release(page);
3197 			goto again;
3198 		}
3199 		if (!PageUptodate(page)) {
3200 			ret = -EIO;
3201 			goto out_unlock;
3202 		}
3203 	}
3204 	wait_on_page_writeback(page);
3205 
3206 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3207 			 GFP_NOFS);
3208 	set_page_extent_mapped(page);
3209 
3210 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3211 	if (ordered) {
3212 		unlock_extent_cached(io_tree, page_start, page_end,
3213 				     &cached_state, GFP_NOFS);
3214 		unlock_page(page);
3215 		page_cache_release(page);
3216 		btrfs_start_ordered_extent(inode, ordered, 1);
3217 		btrfs_put_ordered_extent(ordered);
3218 		goto again;
3219 	}
3220 
3221 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3222 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3223 			  0, 0, &cached_state, GFP_NOFS);
3224 
3225 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3226 					&cached_state);
3227 	if (ret) {
3228 		unlock_extent_cached(io_tree, page_start, page_end,
3229 				     &cached_state, GFP_NOFS);
3230 		goto out_unlock;
3231 	}
3232 
3233 	ret = 0;
3234 	if (offset != PAGE_CACHE_SIZE) {
3235 		kaddr = kmap(page);
3236 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3237 		flush_dcache_page(page);
3238 		kunmap(page);
3239 	}
3240 	ClearPageChecked(page);
3241 	set_page_dirty(page);
3242 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3243 			     GFP_NOFS);
3244 
3245 out_unlock:
3246 	if (ret)
3247 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3248 	unlock_page(page);
3249 	page_cache_release(page);
3250 out:
3251 	return ret;
3252 }
3253 
3254 /*
3255  * This function puts in dummy file extents for the area we're creating a hole
3256  * for.  So if we are truncating this file to a larger size we need to insert
3257  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3258  * the range between oldsize and size
3259  */
3260 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3261 {
3262 	struct btrfs_trans_handle *trans;
3263 	struct btrfs_root *root = BTRFS_I(inode)->root;
3264 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3265 	struct extent_map *em = NULL;
3266 	struct extent_state *cached_state = NULL;
3267 	u64 mask = root->sectorsize - 1;
3268 	u64 hole_start = (oldsize + mask) & ~mask;
3269 	u64 block_end = (size + mask) & ~mask;
3270 	u64 last_byte;
3271 	u64 cur_offset;
3272 	u64 hole_size;
3273 	int err = 0;
3274 
3275 	if (size <= hole_start)
3276 		return 0;
3277 
3278 	while (1) {
3279 		struct btrfs_ordered_extent *ordered;
3280 		btrfs_wait_ordered_range(inode, hole_start,
3281 					 block_end - hole_start);
3282 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3283 				 &cached_state, GFP_NOFS);
3284 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3285 		if (!ordered)
3286 			break;
3287 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3288 				     &cached_state, GFP_NOFS);
3289 		btrfs_put_ordered_extent(ordered);
3290 	}
3291 
3292 	cur_offset = hole_start;
3293 	while (1) {
3294 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3295 				block_end - cur_offset, 0);
3296 		BUG_ON(IS_ERR_OR_NULL(em));
3297 		last_byte = min(extent_map_end(em), block_end);
3298 		last_byte = (last_byte + mask) & ~mask;
3299 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3300 			u64 hint_byte = 0;
3301 			hole_size = last_byte - cur_offset;
3302 
3303 			trans = btrfs_start_transaction(root, 2);
3304 			if (IS_ERR(trans)) {
3305 				err = PTR_ERR(trans);
3306 				break;
3307 			}
3308 
3309 			err = btrfs_drop_extents(trans, inode, cur_offset,
3310 						 cur_offset + hole_size,
3311 						 &hint_byte, 1);
3312 			if (err) {
3313 				btrfs_end_transaction(trans, root);
3314 				break;
3315 			}
3316 
3317 			err = btrfs_insert_file_extent(trans, root,
3318 					btrfs_ino(inode), cur_offset, 0,
3319 					0, hole_size, 0, hole_size,
3320 					0, 0, 0);
3321 			if (err) {
3322 				btrfs_end_transaction(trans, root);
3323 				break;
3324 			}
3325 
3326 			btrfs_drop_extent_cache(inode, hole_start,
3327 					last_byte - 1, 0);
3328 
3329 			btrfs_end_transaction(trans, root);
3330 		}
3331 		free_extent_map(em);
3332 		em = NULL;
3333 		cur_offset = last_byte;
3334 		if (cur_offset >= block_end)
3335 			break;
3336 	}
3337 
3338 	free_extent_map(em);
3339 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3340 			     GFP_NOFS);
3341 	return err;
3342 }
3343 
3344 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3345 {
3346 	loff_t oldsize = i_size_read(inode);
3347 	int ret;
3348 
3349 	if (newsize == oldsize)
3350 		return 0;
3351 
3352 	if (newsize > oldsize) {
3353 		i_size_write(inode, newsize);
3354 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3355 		truncate_pagecache(inode, oldsize, newsize);
3356 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3357 		if (ret) {
3358 			btrfs_setsize(inode, oldsize);
3359 			return ret;
3360 		}
3361 
3362 		mark_inode_dirty(inode);
3363 	} else {
3364 
3365 		/*
3366 		 * We're truncating a file that used to have good data down to
3367 		 * zero. Make sure it gets into the ordered flush list so that
3368 		 * any new writes get down to disk quickly.
3369 		 */
3370 		if (newsize == 0)
3371 			BTRFS_I(inode)->ordered_data_close = 1;
3372 
3373 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3374 		truncate_setsize(inode, newsize);
3375 		ret = btrfs_truncate(inode);
3376 	}
3377 
3378 	return ret;
3379 }
3380 
3381 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3382 {
3383 	struct inode *inode = dentry->d_inode;
3384 	struct btrfs_root *root = BTRFS_I(inode)->root;
3385 	int err;
3386 
3387 	if (btrfs_root_readonly(root))
3388 		return -EROFS;
3389 
3390 	err = inode_change_ok(inode, attr);
3391 	if (err)
3392 		return err;
3393 
3394 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3395 		err = btrfs_setsize(inode, attr->ia_size);
3396 		if (err)
3397 			return err;
3398 	}
3399 
3400 	if (attr->ia_valid) {
3401 		setattr_copy(inode, attr);
3402 		mark_inode_dirty(inode);
3403 
3404 		if (attr->ia_valid & ATTR_MODE)
3405 			err = btrfs_acl_chmod(inode);
3406 	}
3407 
3408 	return err;
3409 }
3410 
3411 void btrfs_evict_inode(struct inode *inode)
3412 {
3413 	struct btrfs_trans_handle *trans;
3414 	struct btrfs_root *root = BTRFS_I(inode)->root;
3415 	struct btrfs_block_rsv *rsv, *global_rsv;
3416 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3417 	unsigned long nr;
3418 	int ret;
3419 
3420 	trace_btrfs_inode_evict(inode);
3421 
3422 	truncate_inode_pages(&inode->i_data, 0);
3423 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3424 			       btrfs_is_free_space_inode(root, inode)))
3425 		goto no_delete;
3426 
3427 	if (is_bad_inode(inode)) {
3428 		btrfs_orphan_del(NULL, inode);
3429 		goto no_delete;
3430 	}
3431 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3432 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3433 
3434 	if (root->fs_info->log_root_recovering) {
3435 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3436 		goto no_delete;
3437 	}
3438 
3439 	if (inode->i_nlink > 0) {
3440 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3441 		goto no_delete;
3442 	}
3443 
3444 	rsv = btrfs_alloc_block_rsv(root);
3445 	if (!rsv) {
3446 		btrfs_orphan_del(NULL, inode);
3447 		goto no_delete;
3448 	}
3449 	rsv->size = min_size;
3450 	global_rsv = &root->fs_info->global_block_rsv;
3451 
3452 	btrfs_i_size_write(inode, 0);
3453 
3454 	/*
3455 	 * This is a bit simpler than btrfs_truncate since
3456 	 *
3457 	 * 1) We've already reserved our space for our orphan item in the
3458 	 *    unlink.
3459 	 * 2) We're going to delete the inode item, so we don't need to update
3460 	 *    it at all.
3461 	 *
3462 	 * So we just need to reserve some slack space in case we add bytes when
3463 	 * doing the truncate.
3464 	 */
3465 	while (1) {
3466 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
3467 
3468 		/*
3469 		 * Try and steal from the global reserve since we will
3470 		 * likely not use this space anyway, we want to try as
3471 		 * hard as possible to get this to work.
3472 		 */
3473 		if (ret)
3474 			ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3475 
3476 		if (ret) {
3477 			printk(KERN_WARNING "Could not get space for a "
3478 			       "delete, will truncate on mount %d\n", ret);
3479 			btrfs_orphan_del(NULL, inode);
3480 			btrfs_free_block_rsv(root, rsv);
3481 			goto no_delete;
3482 		}
3483 
3484 		trans = btrfs_start_transaction(root, 0);
3485 		if (IS_ERR(trans)) {
3486 			btrfs_orphan_del(NULL, inode);
3487 			btrfs_free_block_rsv(root, rsv);
3488 			goto no_delete;
3489 		}
3490 
3491 		trans->block_rsv = rsv;
3492 
3493 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3494 		if (ret != -EAGAIN)
3495 			break;
3496 
3497 		nr = trans->blocks_used;
3498 		btrfs_end_transaction(trans, root);
3499 		trans = NULL;
3500 		btrfs_btree_balance_dirty(root, nr);
3501 	}
3502 
3503 	btrfs_free_block_rsv(root, rsv);
3504 
3505 	if (ret == 0) {
3506 		trans->block_rsv = root->orphan_block_rsv;
3507 		ret = btrfs_orphan_del(trans, inode);
3508 		BUG_ON(ret);
3509 	}
3510 
3511 	trans->block_rsv = &root->fs_info->trans_block_rsv;
3512 	if (!(root == root->fs_info->tree_root ||
3513 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3514 		btrfs_return_ino(root, btrfs_ino(inode));
3515 
3516 	nr = trans->blocks_used;
3517 	btrfs_end_transaction(trans, root);
3518 	btrfs_btree_balance_dirty(root, nr);
3519 no_delete:
3520 	end_writeback(inode);
3521 	return;
3522 }
3523 
3524 /*
3525  * this returns the key found in the dir entry in the location pointer.
3526  * If no dir entries were found, location->objectid is 0.
3527  */
3528 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3529 			       struct btrfs_key *location)
3530 {
3531 	const char *name = dentry->d_name.name;
3532 	int namelen = dentry->d_name.len;
3533 	struct btrfs_dir_item *di;
3534 	struct btrfs_path *path;
3535 	struct btrfs_root *root = BTRFS_I(dir)->root;
3536 	int ret = 0;
3537 
3538 	path = btrfs_alloc_path();
3539 	if (!path)
3540 		return -ENOMEM;
3541 
3542 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3543 				    namelen, 0);
3544 	if (IS_ERR(di))
3545 		ret = PTR_ERR(di);
3546 
3547 	if (IS_ERR_OR_NULL(di))
3548 		goto out_err;
3549 
3550 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3551 out:
3552 	btrfs_free_path(path);
3553 	return ret;
3554 out_err:
3555 	location->objectid = 0;
3556 	goto out;
3557 }
3558 
3559 /*
3560  * when we hit a tree root in a directory, the btrfs part of the inode
3561  * needs to be changed to reflect the root directory of the tree root.  This
3562  * is kind of like crossing a mount point.
3563  */
3564 static int fixup_tree_root_location(struct btrfs_root *root,
3565 				    struct inode *dir,
3566 				    struct dentry *dentry,
3567 				    struct btrfs_key *location,
3568 				    struct btrfs_root **sub_root)
3569 {
3570 	struct btrfs_path *path;
3571 	struct btrfs_root *new_root;
3572 	struct btrfs_root_ref *ref;
3573 	struct extent_buffer *leaf;
3574 	int ret;
3575 	int err = 0;
3576 
3577 	path = btrfs_alloc_path();
3578 	if (!path) {
3579 		err = -ENOMEM;
3580 		goto out;
3581 	}
3582 
3583 	err = -ENOENT;
3584 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3585 				  BTRFS_I(dir)->root->root_key.objectid,
3586 				  location->objectid);
3587 	if (ret) {
3588 		if (ret < 0)
3589 			err = ret;
3590 		goto out;
3591 	}
3592 
3593 	leaf = path->nodes[0];
3594 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3595 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3596 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3597 		goto out;
3598 
3599 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3600 				   (unsigned long)(ref + 1),
3601 				   dentry->d_name.len);
3602 	if (ret)
3603 		goto out;
3604 
3605 	btrfs_release_path(path);
3606 
3607 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3608 	if (IS_ERR(new_root)) {
3609 		err = PTR_ERR(new_root);
3610 		goto out;
3611 	}
3612 
3613 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3614 		err = -ENOENT;
3615 		goto out;
3616 	}
3617 
3618 	*sub_root = new_root;
3619 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3620 	location->type = BTRFS_INODE_ITEM_KEY;
3621 	location->offset = 0;
3622 	err = 0;
3623 out:
3624 	btrfs_free_path(path);
3625 	return err;
3626 }
3627 
3628 static void inode_tree_add(struct inode *inode)
3629 {
3630 	struct btrfs_root *root = BTRFS_I(inode)->root;
3631 	struct btrfs_inode *entry;
3632 	struct rb_node **p;
3633 	struct rb_node *parent;
3634 	u64 ino = btrfs_ino(inode);
3635 again:
3636 	p = &root->inode_tree.rb_node;
3637 	parent = NULL;
3638 
3639 	if (inode_unhashed(inode))
3640 		return;
3641 
3642 	spin_lock(&root->inode_lock);
3643 	while (*p) {
3644 		parent = *p;
3645 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3646 
3647 		if (ino < btrfs_ino(&entry->vfs_inode))
3648 			p = &parent->rb_left;
3649 		else if (ino > btrfs_ino(&entry->vfs_inode))
3650 			p = &parent->rb_right;
3651 		else {
3652 			WARN_ON(!(entry->vfs_inode.i_state &
3653 				  (I_WILL_FREE | I_FREEING)));
3654 			rb_erase(parent, &root->inode_tree);
3655 			RB_CLEAR_NODE(parent);
3656 			spin_unlock(&root->inode_lock);
3657 			goto again;
3658 		}
3659 	}
3660 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3661 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3662 	spin_unlock(&root->inode_lock);
3663 }
3664 
3665 static void inode_tree_del(struct inode *inode)
3666 {
3667 	struct btrfs_root *root = BTRFS_I(inode)->root;
3668 	int empty = 0;
3669 
3670 	spin_lock(&root->inode_lock);
3671 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3672 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3673 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3674 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3675 	}
3676 	spin_unlock(&root->inode_lock);
3677 
3678 	/*
3679 	 * Free space cache has inodes in the tree root, but the tree root has a
3680 	 * root_refs of 0, so this could end up dropping the tree root as a
3681 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3682 	 * make sure we don't drop it.
3683 	 */
3684 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3685 	    root != root->fs_info->tree_root) {
3686 		synchronize_srcu(&root->fs_info->subvol_srcu);
3687 		spin_lock(&root->inode_lock);
3688 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3689 		spin_unlock(&root->inode_lock);
3690 		if (empty)
3691 			btrfs_add_dead_root(root);
3692 	}
3693 }
3694 
3695 int btrfs_invalidate_inodes(struct btrfs_root *root)
3696 {
3697 	struct rb_node *node;
3698 	struct rb_node *prev;
3699 	struct btrfs_inode *entry;
3700 	struct inode *inode;
3701 	u64 objectid = 0;
3702 
3703 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3704 
3705 	spin_lock(&root->inode_lock);
3706 again:
3707 	node = root->inode_tree.rb_node;
3708 	prev = NULL;
3709 	while (node) {
3710 		prev = node;
3711 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3712 
3713 		if (objectid < btrfs_ino(&entry->vfs_inode))
3714 			node = node->rb_left;
3715 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3716 			node = node->rb_right;
3717 		else
3718 			break;
3719 	}
3720 	if (!node) {
3721 		while (prev) {
3722 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3723 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3724 				node = prev;
3725 				break;
3726 			}
3727 			prev = rb_next(prev);
3728 		}
3729 	}
3730 	while (node) {
3731 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3732 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3733 		inode = igrab(&entry->vfs_inode);
3734 		if (inode) {
3735 			spin_unlock(&root->inode_lock);
3736 			if (atomic_read(&inode->i_count) > 1)
3737 				d_prune_aliases(inode);
3738 			/*
3739 			 * btrfs_drop_inode will have it removed from
3740 			 * the inode cache when its usage count
3741 			 * hits zero.
3742 			 */
3743 			iput(inode);
3744 			cond_resched();
3745 			spin_lock(&root->inode_lock);
3746 			goto again;
3747 		}
3748 
3749 		if (cond_resched_lock(&root->inode_lock))
3750 			goto again;
3751 
3752 		node = rb_next(node);
3753 	}
3754 	spin_unlock(&root->inode_lock);
3755 	return 0;
3756 }
3757 
3758 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3759 {
3760 	struct btrfs_iget_args *args = p;
3761 	inode->i_ino = args->ino;
3762 	BTRFS_I(inode)->root = args->root;
3763 	btrfs_set_inode_space_info(args->root, inode);
3764 	return 0;
3765 }
3766 
3767 static int btrfs_find_actor(struct inode *inode, void *opaque)
3768 {
3769 	struct btrfs_iget_args *args = opaque;
3770 	return args->ino == btrfs_ino(inode) &&
3771 		args->root == BTRFS_I(inode)->root;
3772 }
3773 
3774 static struct inode *btrfs_iget_locked(struct super_block *s,
3775 				       u64 objectid,
3776 				       struct btrfs_root *root)
3777 {
3778 	struct inode *inode;
3779 	struct btrfs_iget_args args;
3780 	args.ino = objectid;
3781 	args.root = root;
3782 
3783 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3784 			     btrfs_init_locked_inode,
3785 			     (void *)&args);
3786 	return inode;
3787 }
3788 
3789 /* Get an inode object given its location and corresponding root.
3790  * Returns in *is_new if the inode was read from disk
3791  */
3792 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3793 			 struct btrfs_root *root, int *new)
3794 {
3795 	struct inode *inode;
3796 
3797 	inode = btrfs_iget_locked(s, location->objectid, root);
3798 	if (!inode)
3799 		return ERR_PTR(-ENOMEM);
3800 
3801 	if (inode->i_state & I_NEW) {
3802 		BTRFS_I(inode)->root = root;
3803 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3804 		btrfs_read_locked_inode(inode);
3805 		if (!is_bad_inode(inode)) {
3806 			inode_tree_add(inode);
3807 			unlock_new_inode(inode);
3808 			if (new)
3809 				*new = 1;
3810 		} else {
3811 			unlock_new_inode(inode);
3812 			iput(inode);
3813 			inode = ERR_PTR(-ESTALE);
3814 		}
3815 	}
3816 
3817 	return inode;
3818 }
3819 
3820 static struct inode *new_simple_dir(struct super_block *s,
3821 				    struct btrfs_key *key,
3822 				    struct btrfs_root *root)
3823 {
3824 	struct inode *inode = new_inode(s);
3825 
3826 	if (!inode)
3827 		return ERR_PTR(-ENOMEM);
3828 
3829 	BTRFS_I(inode)->root = root;
3830 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3831 	BTRFS_I(inode)->dummy_inode = 1;
3832 
3833 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3834 	inode->i_op = &simple_dir_inode_operations;
3835 	inode->i_fop = &simple_dir_operations;
3836 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3837 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3838 
3839 	return inode;
3840 }
3841 
3842 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3843 {
3844 	struct inode *inode;
3845 	struct btrfs_root *root = BTRFS_I(dir)->root;
3846 	struct btrfs_root *sub_root = root;
3847 	struct btrfs_key location;
3848 	int index;
3849 	int ret = 0;
3850 
3851 	if (dentry->d_name.len > BTRFS_NAME_LEN)
3852 		return ERR_PTR(-ENAMETOOLONG);
3853 
3854 	if (unlikely(d_need_lookup(dentry))) {
3855 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3856 		kfree(dentry->d_fsdata);
3857 		dentry->d_fsdata = NULL;
3858 		/* This thing is hashed, drop it for now */
3859 		d_drop(dentry);
3860 	} else {
3861 		ret = btrfs_inode_by_name(dir, dentry, &location);
3862 	}
3863 
3864 	if (ret < 0)
3865 		return ERR_PTR(ret);
3866 
3867 	if (location.objectid == 0)
3868 		return NULL;
3869 
3870 	if (location.type == BTRFS_INODE_ITEM_KEY) {
3871 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3872 		return inode;
3873 	}
3874 
3875 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3876 
3877 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
3878 	ret = fixup_tree_root_location(root, dir, dentry,
3879 				       &location, &sub_root);
3880 	if (ret < 0) {
3881 		if (ret != -ENOENT)
3882 			inode = ERR_PTR(ret);
3883 		else
3884 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
3885 	} else {
3886 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3887 	}
3888 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3889 
3890 	if (!IS_ERR(inode) && root != sub_root) {
3891 		down_read(&root->fs_info->cleanup_work_sem);
3892 		if (!(inode->i_sb->s_flags & MS_RDONLY))
3893 			ret = btrfs_orphan_cleanup(sub_root);
3894 		up_read(&root->fs_info->cleanup_work_sem);
3895 		if (ret)
3896 			inode = ERR_PTR(ret);
3897 	}
3898 
3899 	return inode;
3900 }
3901 
3902 static int btrfs_dentry_delete(const struct dentry *dentry)
3903 {
3904 	struct btrfs_root *root;
3905 
3906 	if (!dentry->d_inode && !IS_ROOT(dentry))
3907 		dentry = dentry->d_parent;
3908 
3909 	if (dentry->d_inode) {
3910 		root = BTRFS_I(dentry->d_inode)->root;
3911 		if (btrfs_root_refs(&root->root_item) == 0)
3912 			return 1;
3913 	}
3914 	return 0;
3915 }
3916 
3917 static void btrfs_dentry_release(struct dentry *dentry)
3918 {
3919 	if (dentry->d_fsdata)
3920 		kfree(dentry->d_fsdata);
3921 }
3922 
3923 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3924 				   struct nameidata *nd)
3925 {
3926 	struct dentry *ret;
3927 
3928 	ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
3929 	if (unlikely(d_need_lookup(dentry))) {
3930 		spin_lock(&dentry->d_lock);
3931 		dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
3932 		spin_unlock(&dentry->d_lock);
3933 	}
3934 	return ret;
3935 }
3936 
3937 unsigned char btrfs_filetype_table[] = {
3938 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3939 };
3940 
3941 static int btrfs_real_readdir(struct file *filp, void *dirent,
3942 			      filldir_t filldir)
3943 {
3944 	struct inode *inode = filp->f_dentry->d_inode;
3945 	struct btrfs_root *root = BTRFS_I(inode)->root;
3946 	struct btrfs_item *item;
3947 	struct btrfs_dir_item *di;
3948 	struct btrfs_key key;
3949 	struct btrfs_key found_key;
3950 	struct btrfs_path *path;
3951 	struct list_head ins_list;
3952 	struct list_head del_list;
3953 	struct qstr q;
3954 	int ret;
3955 	struct extent_buffer *leaf;
3956 	int slot;
3957 	unsigned char d_type;
3958 	int over = 0;
3959 	u32 di_cur;
3960 	u32 di_total;
3961 	u32 di_len;
3962 	int key_type = BTRFS_DIR_INDEX_KEY;
3963 	char tmp_name[32];
3964 	char *name_ptr;
3965 	int name_len;
3966 	int is_curr = 0;	/* filp->f_pos points to the current index? */
3967 
3968 	/* FIXME, use a real flag for deciding about the key type */
3969 	if (root->fs_info->tree_root == root)
3970 		key_type = BTRFS_DIR_ITEM_KEY;
3971 
3972 	/* special case for "." */
3973 	if (filp->f_pos == 0) {
3974 		over = filldir(dirent, ".", 1,
3975 			       filp->f_pos, btrfs_ino(inode), DT_DIR);
3976 		if (over)
3977 			return 0;
3978 		filp->f_pos = 1;
3979 	}
3980 	/* special case for .., just use the back ref */
3981 	if (filp->f_pos == 1) {
3982 		u64 pino = parent_ino(filp->f_path.dentry);
3983 		over = filldir(dirent, "..", 2,
3984 			       filp->f_pos, pino, DT_DIR);
3985 		if (over)
3986 			return 0;
3987 		filp->f_pos = 2;
3988 	}
3989 	path = btrfs_alloc_path();
3990 	if (!path)
3991 		return -ENOMEM;
3992 
3993 	path->reada = 1;
3994 
3995 	if (key_type == BTRFS_DIR_INDEX_KEY) {
3996 		INIT_LIST_HEAD(&ins_list);
3997 		INIT_LIST_HEAD(&del_list);
3998 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
3999 	}
4000 
4001 	btrfs_set_key_type(&key, key_type);
4002 	key.offset = filp->f_pos;
4003 	key.objectid = btrfs_ino(inode);
4004 
4005 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4006 	if (ret < 0)
4007 		goto err;
4008 
4009 	while (1) {
4010 		leaf = path->nodes[0];
4011 		slot = path->slots[0];
4012 		if (slot >= btrfs_header_nritems(leaf)) {
4013 			ret = btrfs_next_leaf(root, path);
4014 			if (ret < 0)
4015 				goto err;
4016 			else if (ret > 0)
4017 				break;
4018 			continue;
4019 		}
4020 
4021 		item = btrfs_item_nr(leaf, slot);
4022 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4023 
4024 		if (found_key.objectid != key.objectid)
4025 			break;
4026 		if (btrfs_key_type(&found_key) != key_type)
4027 			break;
4028 		if (found_key.offset < filp->f_pos)
4029 			goto next;
4030 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4031 		    btrfs_should_delete_dir_index(&del_list,
4032 						  found_key.offset))
4033 			goto next;
4034 
4035 		filp->f_pos = found_key.offset;
4036 		is_curr = 1;
4037 
4038 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4039 		di_cur = 0;
4040 		di_total = btrfs_item_size(leaf, item);
4041 
4042 		while (di_cur < di_total) {
4043 			struct btrfs_key location;
4044 			struct dentry *tmp;
4045 
4046 			if (verify_dir_item(root, leaf, di))
4047 				break;
4048 
4049 			name_len = btrfs_dir_name_len(leaf, di);
4050 			if (name_len <= sizeof(tmp_name)) {
4051 				name_ptr = tmp_name;
4052 			} else {
4053 				name_ptr = kmalloc(name_len, GFP_NOFS);
4054 				if (!name_ptr) {
4055 					ret = -ENOMEM;
4056 					goto err;
4057 				}
4058 			}
4059 			read_extent_buffer(leaf, name_ptr,
4060 					   (unsigned long)(di + 1), name_len);
4061 
4062 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4063 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4064 
4065 			q.name = name_ptr;
4066 			q.len = name_len;
4067 			q.hash = full_name_hash(q.name, q.len);
4068 			tmp = d_lookup(filp->f_dentry, &q);
4069 			if (!tmp) {
4070 				struct btrfs_key *newkey;
4071 
4072 				newkey = kzalloc(sizeof(struct btrfs_key),
4073 						 GFP_NOFS);
4074 				if (!newkey)
4075 					goto no_dentry;
4076 				tmp = d_alloc(filp->f_dentry, &q);
4077 				if (!tmp) {
4078 					kfree(newkey);
4079 					dput(tmp);
4080 					goto no_dentry;
4081 				}
4082 				memcpy(newkey, &location,
4083 				       sizeof(struct btrfs_key));
4084 				tmp->d_fsdata = newkey;
4085 				tmp->d_flags |= DCACHE_NEED_LOOKUP;
4086 				d_rehash(tmp);
4087 				dput(tmp);
4088 			} else {
4089 				dput(tmp);
4090 			}
4091 no_dentry:
4092 			/* is this a reference to our own snapshot? If so
4093 			 * skip it
4094 			 */
4095 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4096 			    location.objectid == root->root_key.objectid) {
4097 				over = 0;
4098 				goto skip;
4099 			}
4100 			over = filldir(dirent, name_ptr, name_len,
4101 				       found_key.offset, location.objectid,
4102 				       d_type);
4103 
4104 skip:
4105 			if (name_ptr != tmp_name)
4106 				kfree(name_ptr);
4107 
4108 			if (over)
4109 				goto nopos;
4110 			di_len = btrfs_dir_name_len(leaf, di) +
4111 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4112 			di_cur += di_len;
4113 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4114 		}
4115 next:
4116 		path->slots[0]++;
4117 	}
4118 
4119 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4120 		if (is_curr)
4121 			filp->f_pos++;
4122 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4123 						      &ins_list);
4124 		if (ret)
4125 			goto nopos;
4126 	}
4127 
4128 	/* Reached end of directory/root. Bump pos past the last item. */
4129 	if (key_type == BTRFS_DIR_INDEX_KEY)
4130 		/*
4131 		 * 32-bit glibc will use getdents64, but then strtol -
4132 		 * so the last number we can serve is this.
4133 		 */
4134 		filp->f_pos = 0x7fffffff;
4135 	else
4136 		filp->f_pos++;
4137 nopos:
4138 	ret = 0;
4139 err:
4140 	if (key_type == BTRFS_DIR_INDEX_KEY)
4141 		btrfs_put_delayed_items(&ins_list, &del_list);
4142 	btrfs_free_path(path);
4143 	return ret;
4144 }
4145 
4146 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4147 {
4148 	struct btrfs_root *root = BTRFS_I(inode)->root;
4149 	struct btrfs_trans_handle *trans;
4150 	int ret = 0;
4151 	bool nolock = false;
4152 
4153 	if (BTRFS_I(inode)->dummy_inode)
4154 		return 0;
4155 
4156 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4157 		nolock = true;
4158 
4159 	if (wbc->sync_mode == WB_SYNC_ALL) {
4160 		if (nolock)
4161 			trans = btrfs_join_transaction_nolock(root);
4162 		else
4163 			trans = btrfs_join_transaction(root);
4164 		if (IS_ERR(trans))
4165 			return PTR_ERR(trans);
4166 		if (nolock)
4167 			ret = btrfs_end_transaction_nolock(trans, root);
4168 		else
4169 			ret = btrfs_commit_transaction(trans, root);
4170 	}
4171 	return ret;
4172 }
4173 
4174 /*
4175  * This is somewhat expensive, updating the tree every time the
4176  * inode changes.  But, it is most likely to find the inode in cache.
4177  * FIXME, needs more benchmarking...there are no reasons other than performance
4178  * to keep or drop this code.
4179  */
4180 void btrfs_dirty_inode(struct inode *inode, int flags)
4181 {
4182 	struct btrfs_root *root = BTRFS_I(inode)->root;
4183 	struct btrfs_trans_handle *trans;
4184 	int ret;
4185 
4186 	if (BTRFS_I(inode)->dummy_inode)
4187 		return;
4188 
4189 	trans = btrfs_join_transaction(root);
4190 	BUG_ON(IS_ERR(trans));
4191 
4192 	ret = btrfs_update_inode(trans, root, inode);
4193 	if (ret && ret == -ENOSPC) {
4194 		/* whoops, lets try again with the full transaction */
4195 		btrfs_end_transaction(trans, root);
4196 		trans = btrfs_start_transaction(root, 1);
4197 		if (IS_ERR(trans)) {
4198 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4199 				       "dirty  inode %llu error %ld\n",
4200 				       (unsigned long long)btrfs_ino(inode),
4201 				       PTR_ERR(trans));
4202 			return;
4203 		}
4204 
4205 		ret = btrfs_update_inode(trans, root, inode);
4206 		if (ret) {
4207 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4208 				       "dirty  inode %llu error %d\n",
4209 				       (unsigned long long)btrfs_ino(inode),
4210 				       ret);
4211 		}
4212 	}
4213 	btrfs_end_transaction(trans, root);
4214 	if (BTRFS_I(inode)->delayed_node)
4215 		btrfs_balance_delayed_items(root);
4216 }
4217 
4218 /*
4219  * find the highest existing sequence number in a directory
4220  * and then set the in-memory index_cnt variable to reflect
4221  * free sequence numbers
4222  */
4223 static int btrfs_set_inode_index_count(struct inode *inode)
4224 {
4225 	struct btrfs_root *root = BTRFS_I(inode)->root;
4226 	struct btrfs_key key, found_key;
4227 	struct btrfs_path *path;
4228 	struct extent_buffer *leaf;
4229 	int ret;
4230 
4231 	key.objectid = btrfs_ino(inode);
4232 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4233 	key.offset = (u64)-1;
4234 
4235 	path = btrfs_alloc_path();
4236 	if (!path)
4237 		return -ENOMEM;
4238 
4239 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4240 	if (ret < 0)
4241 		goto out;
4242 	/* FIXME: we should be able to handle this */
4243 	if (ret == 0)
4244 		goto out;
4245 	ret = 0;
4246 
4247 	/*
4248 	 * MAGIC NUMBER EXPLANATION:
4249 	 * since we search a directory based on f_pos we have to start at 2
4250 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4251 	 * else has to start at 2
4252 	 */
4253 	if (path->slots[0] == 0) {
4254 		BTRFS_I(inode)->index_cnt = 2;
4255 		goto out;
4256 	}
4257 
4258 	path->slots[0]--;
4259 
4260 	leaf = path->nodes[0];
4261 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4262 
4263 	if (found_key.objectid != btrfs_ino(inode) ||
4264 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4265 		BTRFS_I(inode)->index_cnt = 2;
4266 		goto out;
4267 	}
4268 
4269 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4270 out:
4271 	btrfs_free_path(path);
4272 	return ret;
4273 }
4274 
4275 /*
4276  * helper to find a free sequence number in a given directory.  This current
4277  * code is very simple, later versions will do smarter things in the btree
4278  */
4279 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4280 {
4281 	int ret = 0;
4282 
4283 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4284 		ret = btrfs_inode_delayed_dir_index_count(dir);
4285 		if (ret) {
4286 			ret = btrfs_set_inode_index_count(dir);
4287 			if (ret)
4288 				return ret;
4289 		}
4290 	}
4291 
4292 	*index = BTRFS_I(dir)->index_cnt;
4293 	BTRFS_I(dir)->index_cnt++;
4294 
4295 	return ret;
4296 }
4297 
4298 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4299 				     struct btrfs_root *root,
4300 				     struct inode *dir,
4301 				     const char *name, int name_len,
4302 				     u64 ref_objectid, u64 objectid, int mode,
4303 				     u64 *index)
4304 {
4305 	struct inode *inode;
4306 	struct btrfs_inode_item *inode_item;
4307 	struct btrfs_key *location;
4308 	struct btrfs_path *path;
4309 	struct btrfs_inode_ref *ref;
4310 	struct btrfs_key key[2];
4311 	u32 sizes[2];
4312 	unsigned long ptr;
4313 	int ret;
4314 	int owner;
4315 
4316 	path = btrfs_alloc_path();
4317 	if (!path)
4318 		return ERR_PTR(-ENOMEM);
4319 
4320 	inode = new_inode(root->fs_info->sb);
4321 	if (!inode) {
4322 		btrfs_free_path(path);
4323 		return ERR_PTR(-ENOMEM);
4324 	}
4325 
4326 	/*
4327 	 * we have to initialize this early, so we can reclaim the inode
4328 	 * number if we fail afterwards in this function.
4329 	 */
4330 	inode->i_ino = objectid;
4331 
4332 	if (dir) {
4333 		trace_btrfs_inode_request(dir);
4334 
4335 		ret = btrfs_set_inode_index(dir, index);
4336 		if (ret) {
4337 			btrfs_free_path(path);
4338 			iput(inode);
4339 			return ERR_PTR(ret);
4340 		}
4341 	}
4342 	/*
4343 	 * index_cnt is ignored for everything but a dir,
4344 	 * btrfs_get_inode_index_count has an explanation for the magic
4345 	 * number
4346 	 */
4347 	BTRFS_I(inode)->index_cnt = 2;
4348 	BTRFS_I(inode)->root = root;
4349 	BTRFS_I(inode)->generation = trans->transid;
4350 	inode->i_generation = BTRFS_I(inode)->generation;
4351 	btrfs_set_inode_space_info(root, inode);
4352 
4353 	if (S_ISDIR(mode))
4354 		owner = 0;
4355 	else
4356 		owner = 1;
4357 
4358 	key[0].objectid = objectid;
4359 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4360 	key[0].offset = 0;
4361 
4362 	key[1].objectid = objectid;
4363 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4364 	key[1].offset = ref_objectid;
4365 
4366 	sizes[0] = sizeof(struct btrfs_inode_item);
4367 	sizes[1] = name_len + sizeof(*ref);
4368 
4369 	path->leave_spinning = 1;
4370 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4371 	if (ret != 0)
4372 		goto fail;
4373 
4374 	inode_init_owner(inode, dir, mode);
4375 	inode_set_bytes(inode, 0);
4376 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4377 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4378 				  struct btrfs_inode_item);
4379 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4380 
4381 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4382 			     struct btrfs_inode_ref);
4383 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4384 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4385 	ptr = (unsigned long)(ref + 1);
4386 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4387 
4388 	btrfs_mark_buffer_dirty(path->nodes[0]);
4389 	btrfs_free_path(path);
4390 
4391 	location = &BTRFS_I(inode)->location;
4392 	location->objectid = objectid;
4393 	location->offset = 0;
4394 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4395 
4396 	btrfs_inherit_iflags(inode, dir);
4397 
4398 	if (S_ISREG(mode)) {
4399 		if (btrfs_test_opt(root, NODATASUM))
4400 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4401 		if (btrfs_test_opt(root, NODATACOW) ||
4402 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4403 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4404 	}
4405 
4406 	insert_inode_hash(inode);
4407 	inode_tree_add(inode);
4408 
4409 	trace_btrfs_inode_new(inode);
4410 	btrfs_set_inode_last_trans(trans, inode);
4411 
4412 	return inode;
4413 fail:
4414 	if (dir)
4415 		BTRFS_I(dir)->index_cnt--;
4416 	btrfs_free_path(path);
4417 	iput(inode);
4418 	return ERR_PTR(ret);
4419 }
4420 
4421 static inline u8 btrfs_inode_type(struct inode *inode)
4422 {
4423 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4424 }
4425 
4426 /*
4427  * utility function to add 'inode' into 'parent_inode' with
4428  * a give name and a given sequence number.
4429  * if 'add_backref' is true, also insert a backref from the
4430  * inode to the parent directory.
4431  */
4432 int btrfs_add_link(struct btrfs_trans_handle *trans,
4433 		   struct inode *parent_inode, struct inode *inode,
4434 		   const char *name, int name_len, int add_backref, u64 index)
4435 {
4436 	int ret = 0;
4437 	struct btrfs_key key;
4438 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4439 	u64 ino = btrfs_ino(inode);
4440 	u64 parent_ino = btrfs_ino(parent_inode);
4441 
4442 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4443 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4444 	} else {
4445 		key.objectid = ino;
4446 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4447 		key.offset = 0;
4448 	}
4449 
4450 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4451 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4452 					 key.objectid, root->root_key.objectid,
4453 					 parent_ino, index, name, name_len);
4454 	} else if (add_backref) {
4455 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4456 					     parent_ino, index);
4457 	}
4458 
4459 	if (ret == 0) {
4460 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4461 					    parent_inode, &key,
4462 					    btrfs_inode_type(inode), index);
4463 		BUG_ON(ret);
4464 
4465 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4466 				   name_len * 2);
4467 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4468 		ret = btrfs_update_inode(trans, root, parent_inode);
4469 	}
4470 	return ret;
4471 }
4472 
4473 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4474 			    struct inode *dir, struct dentry *dentry,
4475 			    struct inode *inode, int backref, u64 index)
4476 {
4477 	int err = btrfs_add_link(trans, dir, inode,
4478 				 dentry->d_name.name, dentry->d_name.len,
4479 				 backref, index);
4480 	if (!err) {
4481 		d_instantiate(dentry, inode);
4482 		return 0;
4483 	}
4484 	if (err > 0)
4485 		err = -EEXIST;
4486 	return err;
4487 }
4488 
4489 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4490 			int mode, dev_t rdev)
4491 {
4492 	struct btrfs_trans_handle *trans;
4493 	struct btrfs_root *root = BTRFS_I(dir)->root;
4494 	struct inode *inode = NULL;
4495 	int err;
4496 	int drop_inode = 0;
4497 	u64 objectid;
4498 	unsigned long nr = 0;
4499 	u64 index = 0;
4500 
4501 	if (!new_valid_dev(rdev))
4502 		return -EINVAL;
4503 
4504 	/*
4505 	 * 2 for inode item and ref
4506 	 * 2 for dir items
4507 	 * 1 for xattr if selinux is on
4508 	 */
4509 	trans = btrfs_start_transaction(root, 5);
4510 	if (IS_ERR(trans))
4511 		return PTR_ERR(trans);
4512 
4513 	err = btrfs_find_free_ino(root, &objectid);
4514 	if (err)
4515 		goto out_unlock;
4516 
4517 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4518 				dentry->d_name.len, btrfs_ino(dir), objectid,
4519 				mode, &index);
4520 	if (IS_ERR(inode)) {
4521 		err = PTR_ERR(inode);
4522 		goto out_unlock;
4523 	}
4524 
4525 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4526 	if (err) {
4527 		drop_inode = 1;
4528 		goto out_unlock;
4529 	}
4530 
4531 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4532 	if (err)
4533 		drop_inode = 1;
4534 	else {
4535 		inode->i_op = &btrfs_special_inode_operations;
4536 		init_special_inode(inode, inode->i_mode, rdev);
4537 		btrfs_update_inode(trans, root, inode);
4538 	}
4539 out_unlock:
4540 	nr = trans->blocks_used;
4541 	btrfs_end_transaction_throttle(trans, root);
4542 	btrfs_btree_balance_dirty(root, nr);
4543 	if (drop_inode) {
4544 		inode_dec_link_count(inode);
4545 		iput(inode);
4546 	}
4547 	return err;
4548 }
4549 
4550 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4551 			int mode, struct nameidata *nd)
4552 {
4553 	struct btrfs_trans_handle *trans;
4554 	struct btrfs_root *root = BTRFS_I(dir)->root;
4555 	struct inode *inode = NULL;
4556 	int drop_inode = 0;
4557 	int err;
4558 	unsigned long nr = 0;
4559 	u64 objectid;
4560 	u64 index = 0;
4561 
4562 	/*
4563 	 * 2 for inode item and ref
4564 	 * 2 for dir items
4565 	 * 1 for xattr if selinux is on
4566 	 */
4567 	trans = btrfs_start_transaction(root, 5);
4568 	if (IS_ERR(trans))
4569 		return PTR_ERR(trans);
4570 
4571 	err = btrfs_find_free_ino(root, &objectid);
4572 	if (err)
4573 		goto out_unlock;
4574 
4575 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4576 				dentry->d_name.len, btrfs_ino(dir), objectid,
4577 				mode, &index);
4578 	if (IS_ERR(inode)) {
4579 		err = PTR_ERR(inode);
4580 		goto out_unlock;
4581 	}
4582 
4583 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4584 	if (err) {
4585 		drop_inode = 1;
4586 		goto out_unlock;
4587 	}
4588 
4589 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4590 	if (err)
4591 		drop_inode = 1;
4592 	else {
4593 		inode->i_mapping->a_ops = &btrfs_aops;
4594 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4595 		inode->i_fop = &btrfs_file_operations;
4596 		inode->i_op = &btrfs_file_inode_operations;
4597 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4598 	}
4599 out_unlock:
4600 	nr = trans->blocks_used;
4601 	btrfs_end_transaction_throttle(trans, root);
4602 	if (drop_inode) {
4603 		inode_dec_link_count(inode);
4604 		iput(inode);
4605 	}
4606 	btrfs_btree_balance_dirty(root, nr);
4607 	return err;
4608 }
4609 
4610 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4611 		      struct dentry *dentry)
4612 {
4613 	struct btrfs_trans_handle *trans;
4614 	struct btrfs_root *root = BTRFS_I(dir)->root;
4615 	struct inode *inode = old_dentry->d_inode;
4616 	u64 index;
4617 	unsigned long nr = 0;
4618 	int err;
4619 	int drop_inode = 0;
4620 
4621 	/* do not allow sys_link's with other subvols of the same device */
4622 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4623 		return -EXDEV;
4624 
4625 	if (inode->i_nlink == ~0U)
4626 		return -EMLINK;
4627 
4628 	err = btrfs_set_inode_index(dir, &index);
4629 	if (err)
4630 		goto fail;
4631 
4632 	/*
4633 	 * 2 items for inode and inode ref
4634 	 * 2 items for dir items
4635 	 * 1 item for parent inode
4636 	 */
4637 	trans = btrfs_start_transaction(root, 5);
4638 	if (IS_ERR(trans)) {
4639 		err = PTR_ERR(trans);
4640 		goto fail;
4641 	}
4642 
4643 	btrfs_inc_nlink(inode);
4644 	inode->i_ctime = CURRENT_TIME;
4645 	ihold(inode);
4646 
4647 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4648 
4649 	if (err) {
4650 		drop_inode = 1;
4651 	} else {
4652 		struct dentry *parent = dentry->d_parent;
4653 		err = btrfs_update_inode(trans, root, inode);
4654 		BUG_ON(err);
4655 		btrfs_log_new_name(trans, inode, NULL, parent);
4656 	}
4657 
4658 	nr = trans->blocks_used;
4659 	btrfs_end_transaction_throttle(trans, root);
4660 fail:
4661 	if (drop_inode) {
4662 		inode_dec_link_count(inode);
4663 		iput(inode);
4664 	}
4665 	btrfs_btree_balance_dirty(root, nr);
4666 	return err;
4667 }
4668 
4669 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4670 {
4671 	struct inode *inode = NULL;
4672 	struct btrfs_trans_handle *trans;
4673 	struct btrfs_root *root = BTRFS_I(dir)->root;
4674 	int err = 0;
4675 	int drop_on_err = 0;
4676 	u64 objectid = 0;
4677 	u64 index = 0;
4678 	unsigned long nr = 1;
4679 
4680 	/*
4681 	 * 2 items for inode and ref
4682 	 * 2 items for dir items
4683 	 * 1 for xattr if selinux is on
4684 	 */
4685 	trans = btrfs_start_transaction(root, 5);
4686 	if (IS_ERR(trans))
4687 		return PTR_ERR(trans);
4688 
4689 	err = btrfs_find_free_ino(root, &objectid);
4690 	if (err)
4691 		goto out_fail;
4692 
4693 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4694 				dentry->d_name.len, btrfs_ino(dir), objectid,
4695 				S_IFDIR | mode, &index);
4696 	if (IS_ERR(inode)) {
4697 		err = PTR_ERR(inode);
4698 		goto out_fail;
4699 	}
4700 
4701 	drop_on_err = 1;
4702 
4703 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4704 	if (err)
4705 		goto out_fail;
4706 
4707 	inode->i_op = &btrfs_dir_inode_operations;
4708 	inode->i_fop = &btrfs_dir_file_operations;
4709 
4710 	btrfs_i_size_write(inode, 0);
4711 	err = btrfs_update_inode(trans, root, inode);
4712 	if (err)
4713 		goto out_fail;
4714 
4715 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4716 			     dentry->d_name.len, 0, index);
4717 	if (err)
4718 		goto out_fail;
4719 
4720 	d_instantiate(dentry, inode);
4721 	drop_on_err = 0;
4722 
4723 out_fail:
4724 	nr = trans->blocks_used;
4725 	btrfs_end_transaction_throttle(trans, root);
4726 	if (drop_on_err)
4727 		iput(inode);
4728 	btrfs_btree_balance_dirty(root, nr);
4729 	return err;
4730 }
4731 
4732 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4733  * and an extent that you want to insert, deal with overlap and insert
4734  * the new extent into the tree.
4735  */
4736 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4737 				struct extent_map *existing,
4738 				struct extent_map *em,
4739 				u64 map_start, u64 map_len)
4740 {
4741 	u64 start_diff;
4742 
4743 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4744 	start_diff = map_start - em->start;
4745 	em->start = map_start;
4746 	em->len = map_len;
4747 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4748 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4749 		em->block_start += start_diff;
4750 		em->block_len -= start_diff;
4751 	}
4752 	return add_extent_mapping(em_tree, em);
4753 }
4754 
4755 static noinline int uncompress_inline(struct btrfs_path *path,
4756 				      struct inode *inode, struct page *page,
4757 				      size_t pg_offset, u64 extent_offset,
4758 				      struct btrfs_file_extent_item *item)
4759 {
4760 	int ret;
4761 	struct extent_buffer *leaf = path->nodes[0];
4762 	char *tmp;
4763 	size_t max_size;
4764 	unsigned long inline_size;
4765 	unsigned long ptr;
4766 	int compress_type;
4767 
4768 	WARN_ON(pg_offset != 0);
4769 	compress_type = btrfs_file_extent_compression(leaf, item);
4770 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4771 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4772 					btrfs_item_nr(leaf, path->slots[0]));
4773 	tmp = kmalloc(inline_size, GFP_NOFS);
4774 	if (!tmp)
4775 		return -ENOMEM;
4776 	ptr = btrfs_file_extent_inline_start(item);
4777 
4778 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4779 
4780 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4781 	ret = btrfs_decompress(compress_type, tmp, page,
4782 			       extent_offset, inline_size, max_size);
4783 	if (ret) {
4784 		char *kaddr = kmap_atomic(page, KM_USER0);
4785 		unsigned long copy_size = min_t(u64,
4786 				  PAGE_CACHE_SIZE - pg_offset,
4787 				  max_size - extent_offset);
4788 		memset(kaddr + pg_offset, 0, copy_size);
4789 		kunmap_atomic(kaddr, KM_USER0);
4790 	}
4791 	kfree(tmp);
4792 	return 0;
4793 }
4794 
4795 /*
4796  * a bit scary, this does extent mapping from logical file offset to the disk.
4797  * the ugly parts come from merging extents from the disk with the in-ram
4798  * representation.  This gets more complex because of the data=ordered code,
4799  * where the in-ram extents might be locked pending data=ordered completion.
4800  *
4801  * This also copies inline extents directly into the page.
4802  */
4803 
4804 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4805 				    size_t pg_offset, u64 start, u64 len,
4806 				    int create)
4807 {
4808 	int ret;
4809 	int err = 0;
4810 	u64 bytenr;
4811 	u64 extent_start = 0;
4812 	u64 extent_end = 0;
4813 	u64 objectid = btrfs_ino(inode);
4814 	u32 found_type;
4815 	struct btrfs_path *path = NULL;
4816 	struct btrfs_root *root = BTRFS_I(inode)->root;
4817 	struct btrfs_file_extent_item *item;
4818 	struct extent_buffer *leaf;
4819 	struct btrfs_key found_key;
4820 	struct extent_map *em = NULL;
4821 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4822 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4823 	struct btrfs_trans_handle *trans = NULL;
4824 	int compress_type;
4825 
4826 again:
4827 	read_lock(&em_tree->lock);
4828 	em = lookup_extent_mapping(em_tree, start, len);
4829 	if (em)
4830 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4831 	read_unlock(&em_tree->lock);
4832 
4833 	if (em) {
4834 		if (em->start > start || em->start + em->len <= start)
4835 			free_extent_map(em);
4836 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4837 			free_extent_map(em);
4838 		else
4839 			goto out;
4840 	}
4841 	em = alloc_extent_map();
4842 	if (!em) {
4843 		err = -ENOMEM;
4844 		goto out;
4845 	}
4846 	em->bdev = root->fs_info->fs_devices->latest_bdev;
4847 	em->start = EXTENT_MAP_HOLE;
4848 	em->orig_start = EXTENT_MAP_HOLE;
4849 	em->len = (u64)-1;
4850 	em->block_len = (u64)-1;
4851 
4852 	if (!path) {
4853 		path = btrfs_alloc_path();
4854 		if (!path) {
4855 			err = -ENOMEM;
4856 			goto out;
4857 		}
4858 		/*
4859 		 * Chances are we'll be called again, so go ahead and do
4860 		 * readahead
4861 		 */
4862 		path->reada = 1;
4863 	}
4864 
4865 	ret = btrfs_lookup_file_extent(trans, root, path,
4866 				       objectid, start, trans != NULL);
4867 	if (ret < 0) {
4868 		err = ret;
4869 		goto out;
4870 	}
4871 
4872 	if (ret != 0) {
4873 		if (path->slots[0] == 0)
4874 			goto not_found;
4875 		path->slots[0]--;
4876 	}
4877 
4878 	leaf = path->nodes[0];
4879 	item = btrfs_item_ptr(leaf, path->slots[0],
4880 			      struct btrfs_file_extent_item);
4881 	/* are we inside the extent that was found? */
4882 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4883 	found_type = btrfs_key_type(&found_key);
4884 	if (found_key.objectid != objectid ||
4885 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4886 		goto not_found;
4887 	}
4888 
4889 	found_type = btrfs_file_extent_type(leaf, item);
4890 	extent_start = found_key.offset;
4891 	compress_type = btrfs_file_extent_compression(leaf, item);
4892 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4893 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4894 		extent_end = extent_start +
4895 		       btrfs_file_extent_num_bytes(leaf, item);
4896 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4897 		size_t size;
4898 		size = btrfs_file_extent_inline_len(leaf, item);
4899 		extent_end = (extent_start + size + root->sectorsize - 1) &
4900 			~((u64)root->sectorsize - 1);
4901 	}
4902 
4903 	if (start >= extent_end) {
4904 		path->slots[0]++;
4905 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4906 			ret = btrfs_next_leaf(root, path);
4907 			if (ret < 0) {
4908 				err = ret;
4909 				goto out;
4910 			}
4911 			if (ret > 0)
4912 				goto not_found;
4913 			leaf = path->nodes[0];
4914 		}
4915 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4916 		if (found_key.objectid != objectid ||
4917 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
4918 			goto not_found;
4919 		if (start + len <= found_key.offset)
4920 			goto not_found;
4921 		em->start = start;
4922 		em->len = found_key.offset - start;
4923 		goto not_found_em;
4924 	}
4925 
4926 	if (found_type == BTRFS_FILE_EXTENT_REG ||
4927 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4928 		em->start = extent_start;
4929 		em->len = extent_end - extent_start;
4930 		em->orig_start = extent_start -
4931 				 btrfs_file_extent_offset(leaf, item);
4932 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4933 		if (bytenr == 0) {
4934 			em->block_start = EXTENT_MAP_HOLE;
4935 			goto insert;
4936 		}
4937 		if (compress_type != BTRFS_COMPRESS_NONE) {
4938 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4939 			em->compress_type = compress_type;
4940 			em->block_start = bytenr;
4941 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4942 									 item);
4943 		} else {
4944 			bytenr += btrfs_file_extent_offset(leaf, item);
4945 			em->block_start = bytenr;
4946 			em->block_len = em->len;
4947 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4948 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4949 		}
4950 		goto insert;
4951 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4952 		unsigned long ptr;
4953 		char *map;
4954 		size_t size;
4955 		size_t extent_offset;
4956 		size_t copy_size;
4957 
4958 		em->block_start = EXTENT_MAP_INLINE;
4959 		if (!page || create) {
4960 			em->start = extent_start;
4961 			em->len = extent_end - extent_start;
4962 			goto out;
4963 		}
4964 
4965 		size = btrfs_file_extent_inline_len(leaf, item);
4966 		extent_offset = page_offset(page) + pg_offset - extent_start;
4967 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4968 				size - extent_offset);
4969 		em->start = extent_start + extent_offset;
4970 		em->len = (copy_size + root->sectorsize - 1) &
4971 			~((u64)root->sectorsize - 1);
4972 		em->orig_start = EXTENT_MAP_INLINE;
4973 		if (compress_type) {
4974 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4975 			em->compress_type = compress_type;
4976 		}
4977 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4978 		if (create == 0 && !PageUptodate(page)) {
4979 			if (btrfs_file_extent_compression(leaf, item) !=
4980 			    BTRFS_COMPRESS_NONE) {
4981 				ret = uncompress_inline(path, inode, page,
4982 							pg_offset,
4983 							extent_offset, item);
4984 				BUG_ON(ret);
4985 			} else {
4986 				map = kmap(page);
4987 				read_extent_buffer(leaf, map + pg_offset, ptr,
4988 						   copy_size);
4989 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4990 					memset(map + pg_offset + copy_size, 0,
4991 					       PAGE_CACHE_SIZE - pg_offset -
4992 					       copy_size);
4993 				}
4994 				kunmap(page);
4995 			}
4996 			flush_dcache_page(page);
4997 		} else if (create && PageUptodate(page)) {
4998 			WARN_ON(1);
4999 			if (!trans) {
5000 				kunmap(page);
5001 				free_extent_map(em);
5002 				em = NULL;
5003 
5004 				btrfs_release_path(path);
5005 				trans = btrfs_join_transaction(root);
5006 
5007 				if (IS_ERR(trans))
5008 					return ERR_CAST(trans);
5009 				goto again;
5010 			}
5011 			map = kmap(page);
5012 			write_extent_buffer(leaf, map + pg_offset, ptr,
5013 					    copy_size);
5014 			kunmap(page);
5015 			btrfs_mark_buffer_dirty(leaf);
5016 		}
5017 		set_extent_uptodate(io_tree, em->start,
5018 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5019 		goto insert;
5020 	} else {
5021 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5022 		WARN_ON(1);
5023 	}
5024 not_found:
5025 	em->start = start;
5026 	em->len = len;
5027 not_found_em:
5028 	em->block_start = EXTENT_MAP_HOLE;
5029 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5030 insert:
5031 	btrfs_release_path(path);
5032 	if (em->start > start || extent_map_end(em) <= start) {
5033 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5034 		       "[%llu %llu]\n", (unsigned long long)em->start,
5035 		       (unsigned long long)em->len,
5036 		       (unsigned long long)start,
5037 		       (unsigned long long)len);
5038 		err = -EIO;
5039 		goto out;
5040 	}
5041 
5042 	err = 0;
5043 	write_lock(&em_tree->lock);
5044 	ret = add_extent_mapping(em_tree, em);
5045 	/* it is possible that someone inserted the extent into the tree
5046 	 * while we had the lock dropped.  It is also possible that
5047 	 * an overlapping map exists in the tree
5048 	 */
5049 	if (ret == -EEXIST) {
5050 		struct extent_map *existing;
5051 
5052 		ret = 0;
5053 
5054 		existing = lookup_extent_mapping(em_tree, start, len);
5055 		if (existing && (existing->start > start ||
5056 		    existing->start + existing->len <= start)) {
5057 			free_extent_map(existing);
5058 			existing = NULL;
5059 		}
5060 		if (!existing) {
5061 			existing = lookup_extent_mapping(em_tree, em->start,
5062 							 em->len);
5063 			if (existing) {
5064 				err = merge_extent_mapping(em_tree, existing,
5065 							   em, start,
5066 							   root->sectorsize);
5067 				free_extent_map(existing);
5068 				if (err) {
5069 					free_extent_map(em);
5070 					em = NULL;
5071 				}
5072 			} else {
5073 				err = -EIO;
5074 				free_extent_map(em);
5075 				em = NULL;
5076 			}
5077 		} else {
5078 			free_extent_map(em);
5079 			em = existing;
5080 			err = 0;
5081 		}
5082 	}
5083 	write_unlock(&em_tree->lock);
5084 out:
5085 
5086 	trace_btrfs_get_extent(root, em);
5087 
5088 	if (path)
5089 		btrfs_free_path(path);
5090 	if (trans) {
5091 		ret = btrfs_end_transaction(trans, root);
5092 		if (!err)
5093 			err = ret;
5094 	}
5095 	if (err) {
5096 		free_extent_map(em);
5097 		return ERR_PTR(err);
5098 	}
5099 	return em;
5100 }
5101 
5102 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5103 					   size_t pg_offset, u64 start, u64 len,
5104 					   int create)
5105 {
5106 	struct extent_map *em;
5107 	struct extent_map *hole_em = NULL;
5108 	u64 range_start = start;
5109 	u64 end;
5110 	u64 found;
5111 	u64 found_end;
5112 	int err = 0;
5113 
5114 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5115 	if (IS_ERR(em))
5116 		return em;
5117 	if (em) {
5118 		/*
5119 		 * if our em maps to a hole, there might
5120 		 * actually be delalloc bytes behind it
5121 		 */
5122 		if (em->block_start != EXTENT_MAP_HOLE)
5123 			return em;
5124 		else
5125 			hole_em = em;
5126 	}
5127 
5128 	/* check to see if we've wrapped (len == -1 or similar) */
5129 	end = start + len;
5130 	if (end < start)
5131 		end = (u64)-1;
5132 	else
5133 		end -= 1;
5134 
5135 	em = NULL;
5136 
5137 	/* ok, we didn't find anything, lets look for delalloc */
5138 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5139 				 end, len, EXTENT_DELALLOC, 1);
5140 	found_end = range_start + found;
5141 	if (found_end < range_start)
5142 		found_end = (u64)-1;
5143 
5144 	/*
5145 	 * we didn't find anything useful, return
5146 	 * the original results from get_extent()
5147 	 */
5148 	if (range_start > end || found_end <= start) {
5149 		em = hole_em;
5150 		hole_em = NULL;
5151 		goto out;
5152 	}
5153 
5154 	/* adjust the range_start to make sure it doesn't
5155 	 * go backwards from the start they passed in
5156 	 */
5157 	range_start = max(start,range_start);
5158 	found = found_end - range_start;
5159 
5160 	if (found > 0) {
5161 		u64 hole_start = start;
5162 		u64 hole_len = len;
5163 
5164 		em = alloc_extent_map();
5165 		if (!em) {
5166 			err = -ENOMEM;
5167 			goto out;
5168 		}
5169 		/*
5170 		 * when btrfs_get_extent can't find anything it
5171 		 * returns one huge hole
5172 		 *
5173 		 * make sure what it found really fits our range, and
5174 		 * adjust to make sure it is based on the start from
5175 		 * the caller
5176 		 */
5177 		if (hole_em) {
5178 			u64 calc_end = extent_map_end(hole_em);
5179 
5180 			if (calc_end <= start || (hole_em->start > end)) {
5181 				free_extent_map(hole_em);
5182 				hole_em = NULL;
5183 			} else {
5184 				hole_start = max(hole_em->start, start);
5185 				hole_len = calc_end - hole_start;
5186 			}
5187 		}
5188 		em->bdev = NULL;
5189 		if (hole_em && range_start > hole_start) {
5190 			/* our hole starts before our delalloc, so we
5191 			 * have to return just the parts of the hole
5192 			 * that go until  the delalloc starts
5193 			 */
5194 			em->len = min(hole_len,
5195 				      range_start - hole_start);
5196 			em->start = hole_start;
5197 			em->orig_start = hole_start;
5198 			/*
5199 			 * don't adjust block start at all,
5200 			 * it is fixed at EXTENT_MAP_HOLE
5201 			 */
5202 			em->block_start = hole_em->block_start;
5203 			em->block_len = hole_len;
5204 		} else {
5205 			em->start = range_start;
5206 			em->len = found;
5207 			em->orig_start = range_start;
5208 			em->block_start = EXTENT_MAP_DELALLOC;
5209 			em->block_len = found;
5210 		}
5211 	} else if (hole_em) {
5212 		return hole_em;
5213 	}
5214 out:
5215 
5216 	free_extent_map(hole_em);
5217 	if (err) {
5218 		free_extent_map(em);
5219 		return ERR_PTR(err);
5220 	}
5221 	return em;
5222 }
5223 
5224 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5225 						  struct extent_map *em,
5226 						  u64 start, u64 len)
5227 {
5228 	struct btrfs_root *root = BTRFS_I(inode)->root;
5229 	struct btrfs_trans_handle *trans;
5230 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5231 	struct btrfs_key ins;
5232 	u64 alloc_hint;
5233 	int ret;
5234 	bool insert = false;
5235 
5236 	/*
5237 	 * Ok if the extent map we looked up is a hole and is for the exact
5238 	 * range we want, there is no reason to allocate a new one, however if
5239 	 * it is not right then we need to free this one and drop the cache for
5240 	 * our range.
5241 	 */
5242 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5243 	    em->len != len) {
5244 		free_extent_map(em);
5245 		em = NULL;
5246 		insert = true;
5247 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5248 	}
5249 
5250 	trans = btrfs_join_transaction(root);
5251 	if (IS_ERR(trans))
5252 		return ERR_CAST(trans);
5253 
5254 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5255 		btrfs_add_inode_defrag(trans, inode);
5256 
5257 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5258 
5259 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5260 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5261 				   alloc_hint, (u64)-1, &ins, 1);
5262 	if (ret) {
5263 		em = ERR_PTR(ret);
5264 		goto out;
5265 	}
5266 
5267 	if (!em) {
5268 		em = alloc_extent_map();
5269 		if (!em) {
5270 			em = ERR_PTR(-ENOMEM);
5271 			goto out;
5272 		}
5273 	}
5274 
5275 	em->start = start;
5276 	em->orig_start = em->start;
5277 	em->len = ins.offset;
5278 
5279 	em->block_start = ins.objectid;
5280 	em->block_len = ins.offset;
5281 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5282 
5283 	/*
5284 	 * We need to do this because if we're using the original em we searched
5285 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5286 	 */
5287 	em->flags = 0;
5288 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5289 
5290 	while (insert) {
5291 		write_lock(&em_tree->lock);
5292 		ret = add_extent_mapping(em_tree, em);
5293 		write_unlock(&em_tree->lock);
5294 		if (ret != -EEXIST)
5295 			break;
5296 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5297 	}
5298 
5299 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5300 					   ins.offset, ins.offset, 0);
5301 	if (ret) {
5302 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5303 		em = ERR_PTR(ret);
5304 	}
5305 out:
5306 	btrfs_end_transaction(trans, root);
5307 	return em;
5308 }
5309 
5310 /*
5311  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5312  * block must be cow'd
5313  */
5314 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5315 				      struct inode *inode, u64 offset, u64 len)
5316 {
5317 	struct btrfs_path *path;
5318 	int ret;
5319 	struct extent_buffer *leaf;
5320 	struct btrfs_root *root = BTRFS_I(inode)->root;
5321 	struct btrfs_file_extent_item *fi;
5322 	struct btrfs_key key;
5323 	u64 disk_bytenr;
5324 	u64 backref_offset;
5325 	u64 extent_end;
5326 	u64 num_bytes;
5327 	int slot;
5328 	int found_type;
5329 
5330 	path = btrfs_alloc_path();
5331 	if (!path)
5332 		return -ENOMEM;
5333 
5334 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5335 				       offset, 0);
5336 	if (ret < 0)
5337 		goto out;
5338 
5339 	slot = path->slots[0];
5340 	if (ret == 1) {
5341 		if (slot == 0) {
5342 			/* can't find the item, must cow */
5343 			ret = 0;
5344 			goto out;
5345 		}
5346 		slot--;
5347 	}
5348 	ret = 0;
5349 	leaf = path->nodes[0];
5350 	btrfs_item_key_to_cpu(leaf, &key, slot);
5351 	if (key.objectid != btrfs_ino(inode) ||
5352 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5353 		/* not our file or wrong item type, must cow */
5354 		goto out;
5355 	}
5356 
5357 	if (key.offset > offset) {
5358 		/* Wrong offset, must cow */
5359 		goto out;
5360 	}
5361 
5362 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5363 	found_type = btrfs_file_extent_type(leaf, fi);
5364 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5365 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5366 		/* not a regular extent, must cow */
5367 		goto out;
5368 	}
5369 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5370 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5371 
5372 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5373 	if (extent_end < offset + len) {
5374 		/* extent doesn't include our full range, must cow */
5375 		goto out;
5376 	}
5377 
5378 	if (btrfs_extent_readonly(root, disk_bytenr))
5379 		goto out;
5380 
5381 	/*
5382 	 * look for other files referencing this extent, if we
5383 	 * find any we must cow
5384 	 */
5385 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5386 				  key.offset - backref_offset, disk_bytenr))
5387 		goto out;
5388 
5389 	/*
5390 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5391 	 * in this extent we are about to write.  If there
5392 	 * are any csums in that range we have to cow in order
5393 	 * to keep the csums correct
5394 	 */
5395 	disk_bytenr += backref_offset;
5396 	disk_bytenr += offset - key.offset;
5397 	num_bytes = min(offset + len, extent_end) - offset;
5398 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5399 				goto out;
5400 	/*
5401 	 * all of the above have passed, it is safe to overwrite this extent
5402 	 * without cow
5403 	 */
5404 	ret = 1;
5405 out:
5406 	btrfs_free_path(path);
5407 	return ret;
5408 }
5409 
5410 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5411 				   struct buffer_head *bh_result, int create)
5412 {
5413 	struct extent_map *em;
5414 	struct btrfs_root *root = BTRFS_I(inode)->root;
5415 	u64 start = iblock << inode->i_blkbits;
5416 	u64 len = bh_result->b_size;
5417 	struct btrfs_trans_handle *trans;
5418 
5419 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5420 	if (IS_ERR(em))
5421 		return PTR_ERR(em);
5422 
5423 	/*
5424 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5425 	 * io.  INLINE is special, and we could probably kludge it in here, but
5426 	 * it's still buffered so for safety lets just fall back to the generic
5427 	 * buffered path.
5428 	 *
5429 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5430 	 * decompress it, so there will be buffering required no matter what we
5431 	 * do, so go ahead and fallback to buffered.
5432 	 *
5433 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5434 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5435 	 * the generic code.
5436 	 */
5437 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5438 	    em->block_start == EXTENT_MAP_INLINE) {
5439 		free_extent_map(em);
5440 		return -ENOTBLK;
5441 	}
5442 
5443 	/* Just a good old fashioned hole, return */
5444 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5445 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5446 		free_extent_map(em);
5447 		/* DIO will do one hole at a time, so just unlock a sector */
5448 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5449 			      start + root->sectorsize - 1, GFP_NOFS);
5450 		return 0;
5451 	}
5452 
5453 	/*
5454 	 * We don't allocate a new extent in the following cases
5455 	 *
5456 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5457 	 * existing extent.
5458 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5459 	 * just use the extent.
5460 	 *
5461 	 */
5462 	if (!create) {
5463 		len = em->len - (start - em->start);
5464 		goto map;
5465 	}
5466 
5467 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5468 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5469 	     em->block_start != EXTENT_MAP_HOLE)) {
5470 		int type;
5471 		int ret;
5472 		u64 block_start;
5473 
5474 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5475 			type = BTRFS_ORDERED_PREALLOC;
5476 		else
5477 			type = BTRFS_ORDERED_NOCOW;
5478 		len = min(len, em->len - (start - em->start));
5479 		block_start = em->block_start + (start - em->start);
5480 
5481 		/*
5482 		 * we're not going to log anything, but we do need
5483 		 * to make sure the current transaction stays open
5484 		 * while we look for nocow cross refs
5485 		 */
5486 		trans = btrfs_join_transaction(root);
5487 		if (IS_ERR(trans))
5488 			goto must_cow;
5489 
5490 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5491 			ret = btrfs_add_ordered_extent_dio(inode, start,
5492 					   block_start, len, len, type);
5493 			btrfs_end_transaction(trans, root);
5494 			if (ret) {
5495 				free_extent_map(em);
5496 				return ret;
5497 			}
5498 			goto unlock;
5499 		}
5500 		btrfs_end_transaction(trans, root);
5501 	}
5502 must_cow:
5503 	/*
5504 	 * this will cow the extent, reset the len in case we changed
5505 	 * it above
5506 	 */
5507 	len = bh_result->b_size;
5508 	em = btrfs_new_extent_direct(inode, em, start, len);
5509 	if (IS_ERR(em))
5510 		return PTR_ERR(em);
5511 	len = min(len, em->len - (start - em->start));
5512 unlock:
5513 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5514 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5515 			  0, NULL, GFP_NOFS);
5516 map:
5517 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5518 		inode->i_blkbits;
5519 	bh_result->b_size = len;
5520 	bh_result->b_bdev = em->bdev;
5521 	set_buffer_mapped(bh_result);
5522 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5523 		set_buffer_new(bh_result);
5524 
5525 	free_extent_map(em);
5526 
5527 	return 0;
5528 }
5529 
5530 struct btrfs_dio_private {
5531 	struct inode *inode;
5532 	u64 logical_offset;
5533 	u64 disk_bytenr;
5534 	u64 bytes;
5535 	u32 *csums;
5536 	void *private;
5537 
5538 	/* number of bios pending for this dio */
5539 	atomic_t pending_bios;
5540 
5541 	/* IO errors */
5542 	int errors;
5543 
5544 	struct bio *orig_bio;
5545 };
5546 
5547 static void btrfs_endio_direct_read(struct bio *bio, int err)
5548 {
5549 	struct btrfs_dio_private *dip = bio->bi_private;
5550 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5551 	struct bio_vec *bvec = bio->bi_io_vec;
5552 	struct inode *inode = dip->inode;
5553 	struct btrfs_root *root = BTRFS_I(inode)->root;
5554 	u64 start;
5555 	u32 *private = dip->csums;
5556 
5557 	start = dip->logical_offset;
5558 	do {
5559 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5560 			struct page *page = bvec->bv_page;
5561 			char *kaddr;
5562 			u32 csum = ~(u32)0;
5563 			unsigned long flags;
5564 
5565 			local_irq_save(flags);
5566 			kaddr = kmap_atomic(page, KM_IRQ0);
5567 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5568 					       csum, bvec->bv_len);
5569 			btrfs_csum_final(csum, (char *)&csum);
5570 			kunmap_atomic(kaddr, KM_IRQ0);
5571 			local_irq_restore(flags);
5572 
5573 			flush_dcache_page(bvec->bv_page);
5574 			if (csum != *private) {
5575 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5576 				      " %llu csum %u private %u\n",
5577 				      (unsigned long long)btrfs_ino(inode),
5578 				      (unsigned long long)start,
5579 				      csum, *private);
5580 				err = -EIO;
5581 			}
5582 		}
5583 
5584 		start += bvec->bv_len;
5585 		private++;
5586 		bvec++;
5587 	} while (bvec <= bvec_end);
5588 
5589 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5590 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5591 	bio->bi_private = dip->private;
5592 
5593 	kfree(dip->csums);
5594 	kfree(dip);
5595 
5596 	/* If we had a csum failure make sure to clear the uptodate flag */
5597 	if (err)
5598 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5599 	dio_end_io(bio, err);
5600 }
5601 
5602 static void btrfs_endio_direct_write(struct bio *bio, int err)
5603 {
5604 	struct btrfs_dio_private *dip = bio->bi_private;
5605 	struct inode *inode = dip->inode;
5606 	struct btrfs_root *root = BTRFS_I(inode)->root;
5607 	struct btrfs_trans_handle *trans;
5608 	struct btrfs_ordered_extent *ordered = NULL;
5609 	struct extent_state *cached_state = NULL;
5610 	u64 ordered_offset = dip->logical_offset;
5611 	u64 ordered_bytes = dip->bytes;
5612 	int ret;
5613 
5614 	if (err)
5615 		goto out_done;
5616 again:
5617 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5618 						   &ordered_offset,
5619 						   ordered_bytes);
5620 	if (!ret)
5621 		goto out_test;
5622 
5623 	BUG_ON(!ordered);
5624 
5625 	trans = btrfs_join_transaction(root);
5626 	if (IS_ERR(trans)) {
5627 		err = -ENOMEM;
5628 		goto out;
5629 	}
5630 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5631 
5632 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5633 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5634 		if (!ret)
5635 			err = btrfs_update_inode(trans, root, inode);
5636 		goto out;
5637 	}
5638 
5639 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5640 			 ordered->file_offset + ordered->len - 1, 0,
5641 			 &cached_state, GFP_NOFS);
5642 
5643 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5644 		ret = btrfs_mark_extent_written(trans, inode,
5645 						ordered->file_offset,
5646 						ordered->file_offset +
5647 						ordered->len);
5648 		if (ret) {
5649 			err = ret;
5650 			goto out_unlock;
5651 		}
5652 	} else {
5653 		ret = insert_reserved_file_extent(trans, inode,
5654 						  ordered->file_offset,
5655 						  ordered->start,
5656 						  ordered->disk_len,
5657 						  ordered->len,
5658 						  ordered->len,
5659 						  0, 0, 0,
5660 						  BTRFS_FILE_EXTENT_REG);
5661 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5662 				   ordered->file_offset, ordered->len);
5663 		if (ret) {
5664 			err = ret;
5665 			WARN_ON(1);
5666 			goto out_unlock;
5667 		}
5668 	}
5669 
5670 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5671 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5672 	if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5673 		btrfs_update_inode(trans, root, inode);
5674 	ret = 0;
5675 out_unlock:
5676 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5677 			     ordered->file_offset + ordered->len - 1,
5678 			     &cached_state, GFP_NOFS);
5679 out:
5680 	btrfs_delalloc_release_metadata(inode, ordered->len);
5681 	btrfs_end_transaction(trans, root);
5682 	ordered_offset = ordered->file_offset + ordered->len;
5683 	btrfs_put_ordered_extent(ordered);
5684 	btrfs_put_ordered_extent(ordered);
5685 
5686 out_test:
5687 	/*
5688 	 * our bio might span multiple ordered extents.  If we haven't
5689 	 * completed the accounting for the whole dio, go back and try again
5690 	 */
5691 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5692 		ordered_bytes = dip->logical_offset + dip->bytes -
5693 			ordered_offset;
5694 		goto again;
5695 	}
5696 out_done:
5697 	bio->bi_private = dip->private;
5698 
5699 	kfree(dip->csums);
5700 	kfree(dip);
5701 
5702 	/* If we had an error make sure to clear the uptodate flag */
5703 	if (err)
5704 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5705 	dio_end_io(bio, err);
5706 }
5707 
5708 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5709 				    struct bio *bio, int mirror_num,
5710 				    unsigned long bio_flags, u64 offset)
5711 {
5712 	int ret;
5713 	struct btrfs_root *root = BTRFS_I(inode)->root;
5714 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5715 	BUG_ON(ret);
5716 	return 0;
5717 }
5718 
5719 static void btrfs_end_dio_bio(struct bio *bio, int err)
5720 {
5721 	struct btrfs_dio_private *dip = bio->bi_private;
5722 
5723 	if (err) {
5724 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5725 		      "sector %#Lx len %u err no %d\n",
5726 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5727 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5728 		dip->errors = 1;
5729 
5730 		/*
5731 		 * before atomic variable goto zero, we must make sure
5732 		 * dip->errors is perceived to be set.
5733 		 */
5734 		smp_mb__before_atomic_dec();
5735 	}
5736 
5737 	/* if there are more bios still pending for this dio, just exit */
5738 	if (!atomic_dec_and_test(&dip->pending_bios))
5739 		goto out;
5740 
5741 	if (dip->errors)
5742 		bio_io_error(dip->orig_bio);
5743 	else {
5744 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5745 		bio_endio(dip->orig_bio, 0);
5746 	}
5747 out:
5748 	bio_put(bio);
5749 }
5750 
5751 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5752 				       u64 first_sector, gfp_t gfp_flags)
5753 {
5754 	int nr_vecs = bio_get_nr_vecs(bdev);
5755 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5756 }
5757 
5758 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5759 					 int rw, u64 file_offset, int skip_sum,
5760 					 u32 *csums, int async_submit)
5761 {
5762 	int write = rw & REQ_WRITE;
5763 	struct btrfs_root *root = BTRFS_I(inode)->root;
5764 	int ret;
5765 
5766 	bio_get(bio);
5767 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5768 	if (ret)
5769 		goto err;
5770 
5771 	if (skip_sum)
5772 		goto map;
5773 
5774 	if (write && async_submit) {
5775 		ret = btrfs_wq_submit_bio(root->fs_info,
5776 				   inode, rw, bio, 0, 0,
5777 				   file_offset,
5778 				   __btrfs_submit_bio_start_direct_io,
5779 				   __btrfs_submit_bio_done);
5780 		goto err;
5781 	} else if (write) {
5782 		/*
5783 		 * If we aren't doing async submit, calculate the csum of the
5784 		 * bio now.
5785 		 */
5786 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5787 		if (ret)
5788 			goto err;
5789 	} else if (!skip_sum) {
5790 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5791 					  file_offset, csums);
5792 		if (ret)
5793 			goto err;
5794 	}
5795 
5796 map:
5797 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5798 err:
5799 	bio_put(bio);
5800 	return ret;
5801 }
5802 
5803 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5804 				    int skip_sum)
5805 {
5806 	struct inode *inode = dip->inode;
5807 	struct btrfs_root *root = BTRFS_I(inode)->root;
5808 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5809 	struct bio *bio;
5810 	struct bio *orig_bio = dip->orig_bio;
5811 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5812 	u64 start_sector = orig_bio->bi_sector;
5813 	u64 file_offset = dip->logical_offset;
5814 	u64 submit_len = 0;
5815 	u64 map_length;
5816 	int nr_pages = 0;
5817 	u32 *csums = dip->csums;
5818 	int ret = 0;
5819 	int async_submit = 0;
5820 	int write = rw & REQ_WRITE;
5821 
5822 	map_length = orig_bio->bi_size;
5823 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5824 			      &map_length, NULL, 0);
5825 	if (ret) {
5826 		bio_put(orig_bio);
5827 		return -EIO;
5828 	}
5829 
5830 	if (map_length >= orig_bio->bi_size) {
5831 		bio = orig_bio;
5832 		goto submit;
5833 	}
5834 
5835 	async_submit = 1;
5836 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5837 	if (!bio)
5838 		return -ENOMEM;
5839 	bio->bi_private = dip;
5840 	bio->bi_end_io = btrfs_end_dio_bio;
5841 	atomic_inc(&dip->pending_bios);
5842 
5843 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5844 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5845 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5846 				 bvec->bv_offset) < bvec->bv_len)) {
5847 			/*
5848 			 * inc the count before we submit the bio so
5849 			 * we know the end IO handler won't happen before
5850 			 * we inc the count. Otherwise, the dip might get freed
5851 			 * before we're done setting it up
5852 			 */
5853 			atomic_inc(&dip->pending_bios);
5854 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5855 						     file_offset, skip_sum,
5856 						     csums, async_submit);
5857 			if (ret) {
5858 				bio_put(bio);
5859 				atomic_dec(&dip->pending_bios);
5860 				goto out_err;
5861 			}
5862 
5863 			/* Write's use the ordered csums */
5864 			if (!write && !skip_sum)
5865 				csums = csums + nr_pages;
5866 			start_sector += submit_len >> 9;
5867 			file_offset += submit_len;
5868 
5869 			submit_len = 0;
5870 			nr_pages = 0;
5871 
5872 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5873 						  start_sector, GFP_NOFS);
5874 			if (!bio)
5875 				goto out_err;
5876 			bio->bi_private = dip;
5877 			bio->bi_end_io = btrfs_end_dio_bio;
5878 
5879 			map_length = orig_bio->bi_size;
5880 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5881 					      &map_length, NULL, 0);
5882 			if (ret) {
5883 				bio_put(bio);
5884 				goto out_err;
5885 			}
5886 		} else {
5887 			submit_len += bvec->bv_len;
5888 			nr_pages ++;
5889 			bvec++;
5890 		}
5891 	}
5892 
5893 submit:
5894 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5895 				     csums, async_submit);
5896 	if (!ret)
5897 		return 0;
5898 
5899 	bio_put(bio);
5900 out_err:
5901 	dip->errors = 1;
5902 	/*
5903 	 * before atomic variable goto zero, we must
5904 	 * make sure dip->errors is perceived to be set.
5905 	 */
5906 	smp_mb__before_atomic_dec();
5907 	if (atomic_dec_and_test(&dip->pending_bios))
5908 		bio_io_error(dip->orig_bio);
5909 
5910 	/* bio_end_io() will handle error, so we needn't return it */
5911 	return 0;
5912 }
5913 
5914 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5915 				loff_t file_offset)
5916 {
5917 	struct btrfs_root *root = BTRFS_I(inode)->root;
5918 	struct btrfs_dio_private *dip;
5919 	struct bio_vec *bvec = bio->bi_io_vec;
5920 	int skip_sum;
5921 	int write = rw & REQ_WRITE;
5922 	int ret = 0;
5923 
5924 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5925 
5926 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
5927 	if (!dip) {
5928 		ret = -ENOMEM;
5929 		goto free_ordered;
5930 	}
5931 	dip->csums = NULL;
5932 
5933 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
5934 	if (!write && !skip_sum) {
5935 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5936 		if (!dip->csums) {
5937 			kfree(dip);
5938 			ret = -ENOMEM;
5939 			goto free_ordered;
5940 		}
5941 	}
5942 
5943 	dip->private = bio->bi_private;
5944 	dip->inode = inode;
5945 	dip->logical_offset = file_offset;
5946 
5947 	dip->bytes = 0;
5948 	do {
5949 		dip->bytes += bvec->bv_len;
5950 		bvec++;
5951 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5952 
5953 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
5954 	bio->bi_private = dip;
5955 	dip->errors = 0;
5956 	dip->orig_bio = bio;
5957 	atomic_set(&dip->pending_bios, 0);
5958 
5959 	if (write)
5960 		bio->bi_end_io = btrfs_endio_direct_write;
5961 	else
5962 		bio->bi_end_io = btrfs_endio_direct_read;
5963 
5964 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5965 	if (!ret)
5966 		return;
5967 free_ordered:
5968 	/*
5969 	 * If this is a write, we need to clean up the reserved space and kill
5970 	 * the ordered extent.
5971 	 */
5972 	if (write) {
5973 		struct btrfs_ordered_extent *ordered;
5974 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5975 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5976 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5977 			btrfs_free_reserved_extent(root, ordered->start,
5978 						   ordered->disk_len);
5979 		btrfs_put_ordered_extent(ordered);
5980 		btrfs_put_ordered_extent(ordered);
5981 	}
5982 	bio_endio(bio, ret);
5983 }
5984 
5985 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5986 			const struct iovec *iov, loff_t offset,
5987 			unsigned long nr_segs)
5988 {
5989 	int seg;
5990 	int i;
5991 	size_t size;
5992 	unsigned long addr;
5993 	unsigned blocksize_mask = root->sectorsize - 1;
5994 	ssize_t retval = -EINVAL;
5995 	loff_t end = offset;
5996 
5997 	if (offset & blocksize_mask)
5998 		goto out;
5999 
6000 	/* Check the memory alignment.  Blocks cannot straddle pages */
6001 	for (seg = 0; seg < nr_segs; seg++) {
6002 		addr = (unsigned long)iov[seg].iov_base;
6003 		size = iov[seg].iov_len;
6004 		end += size;
6005 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6006 			goto out;
6007 
6008 		/* If this is a write we don't need to check anymore */
6009 		if (rw & WRITE)
6010 			continue;
6011 
6012 		/*
6013 		 * Check to make sure we don't have duplicate iov_base's in this
6014 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6015 		 * when reading back.
6016 		 */
6017 		for (i = seg + 1; i < nr_segs; i++) {
6018 			if (iov[seg].iov_base == iov[i].iov_base)
6019 				goto out;
6020 		}
6021 	}
6022 	retval = 0;
6023 out:
6024 	return retval;
6025 }
6026 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6027 			const struct iovec *iov, loff_t offset,
6028 			unsigned long nr_segs)
6029 {
6030 	struct file *file = iocb->ki_filp;
6031 	struct inode *inode = file->f_mapping->host;
6032 	struct btrfs_ordered_extent *ordered;
6033 	struct extent_state *cached_state = NULL;
6034 	u64 lockstart, lockend;
6035 	ssize_t ret;
6036 	int writing = rw & WRITE;
6037 	int write_bits = 0;
6038 	size_t count = iov_length(iov, nr_segs);
6039 
6040 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6041 			    offset, nr_segs)) {
6042 		return 0;
6043 	}
6044 
6045 	lockstart = offset;
6046 	lockend = offset + count - 1;
6047 
6048 	if (writing) {
6049 		ret = btrfs_delalloc_reserve_space(inode, count);
6050 		if (ret)
6051 			goto out;
6052 	}
6053 
6054 	while (1) {
6055 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6056 				 0, &cached_state, GFP_NOFS);
6057 		/*
6058 		 * We're concerned with the entire range that we're going to be
6059 		 * doing DIO to, so we need to make sure theres no ordered
6060 		 * extents in this range.
6061 		 */
6062 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6063 						     lockend - lockstart + 1);
6064 		if (!ordered)
6065 			break;
6066 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6067 				     &cached_state, GFP_NOFS);
6068 		btrfs_start_ordered_extent(inode, ordered, 1);
6069 		btrfs_put_ordered_extent(ordered);
6070 		cond_resched();
6071 	}
6072 
6073 	/*
6074 	 * we don't use btrfs_set_extent_delalloc because we don't want
6075 	 * the dirty or uptodate bits
6076 	 */
6077 	if (writing) {
6078 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6079 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6080 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6081 				     GFP_NOFS);
6082 		if (ret) {
6083 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6084 					 lockend, EXTENT_LOCKED | write_bits,
6085 					 1, 0, &cached_state, GFP_NOFS);
6086 			goto out;
6087 		}
6088 	}
6089 
6090 	free_extent_state(cached_state);
6091 	cached_state = NULL;
6092 
6093 	ret = __blockdev_direct_IO(rw, iocb, inode,
6094 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6095 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6096 		   btrfs_submit_direct, 0);
6097 
6098 	if (ret < 0 && ret != -EIOCBQUEUED) {
6099 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6100 			      offset + iov_length(iov, nr_segs) - 1,
6101 			      EXTENT_LOCKED | write_bits, 1, 0,
6102 			      &cached_state, GFP_NOFS);
6103 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6104 		/*
6105 		 * We're falling back to buffered, unlock the section we didn't
6106 		 * do IO on.
6107 		 */
6108 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6109 			      offset + iov_length(iov, nr_segs) - 1,
6110 			      EXTENT_LOCKED | write_bits, 1, 0,
6111 			      &cached_state, GFP_NOFS);
6112 	}
6113 out:
6114 	free_extent_state(cached_state);
6115 	return ret;
6116 }
6117 
6118 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6119 		__u64 start, __u64 len)
6120 {
6121 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6122 }
6123 
6124 int btrfs_readpage(struct file *file, struct page *page)
6125 {
6126 	struct extent_io_tree *tree;
6127 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6128 	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6129 }
6130 
6131 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6132 {
6133 	struct extent_io_tree *tree;
6134 
6135 
6136 	if (current->flags & PF_MEMALLOC) {
6137 		redirty_page_for_writepage(wbc, page);
6138 		unlock_page(page);
6139 		return 0;
6140 	}
6141 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6142 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6143 }
6144 
6145 int btrfs_writepages(struct address_space *mapping,
6146 		     struct writeback_control *wbc)
6147 {
6148 	struct extent_io_tree *tree;
6149 
6150 	tree = &BTRFS_I(mapping->host)->io_tree;
6151 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6152 }
6153 
6154 static int
6155 btrfs_readpages(struct file *file, struct address_space *mapping,
6156 		struct list_head *pages, unsigned nr_pages)
6157 {
6158 	struct extent_io_tree *tree;
6159 	tree = &BTRFS_I(mapping->host)->io_tree;
6160 	return extent_readpages(tree, mapping, pages, nr_pages,
6161 				btrfs_get_extent);
6162 }
6163 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6164 {
6165 	struct extent_io_tree *tree;
6166 	struct extent_map_tree *map;
6167 	int ret;
6168 
6169 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6170 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6171 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6172 	if (ret == 1) {
6173 		ClearPagePrivate(page);
6174 		set_page_private(page, 0);
6175 		page_cache_release(page);
6176 	}
6177 	return ret;
6178 }
6179 
6180 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6181 {
6182 	if (PageWriteback(page) || PageDirty(page))
6183 		return 0;
6184 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6185 }
6186 
6187 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6188 {
6189 	struct extent_io_tree *tree;
6190 	struct btrfs_ordered_extent *ordered;
6191 	struct extent_state *cached_state = NULL;
6192 	u64 page_start = page_offset(page);
6193 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6194 
6195 
6196 	/*
6197 	 * we have the page locked, so new writeback can't start,
6198 	 * and the dirty bit won't be cleared while we are here.
6199 	 *
6200 	 * Wait for IO on this page so that we can safely clear
6201 	 * the PagePrivate2 bit and do ordered accounting
6202 	 */
6203 	wait_on_page_writeback(page);
6204 
6205 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6206 	if (offset) {
6207 		btrfs_releasepage(page, GFP_NOFS);
6208 		return;
6209 	}
6210 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6211 			 GFP_NOFS);
6212 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6213 					   page_offset(page));
6214 	if (ordered) {
6215 		/*
6216 		 * IO on this page will never be started, so we need
6217 		 * to account for any ordered extents now
6218 		 */
6219 		clear_extent_bit(tree, page_start, page_end,
6220 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6221 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6222 				 &cached_state, GFP_NOFS);
6223 		/*
6224 		 * whoever cleared the private bit is responsible
6225 		 * for the finish_ordered_io
6226 		 */
6227 		if (TestClearPagePrivate2(page)) {
6228 			btrfs_finish_ordered_io(page->mapping->host,
6229 						page_start, page_end);
6230 		}
6231 		btrfs_put_ordered_extent(ordered);
6232 		cached_state = NULL;
6233 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6234 				 GFP_NOFS);
6235 	}
6236 	clear_extent_bit(tree, page_start, page_end,
6237 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6238 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6239 	__btrfs_releasepage(page, GFP_NOFS);
6240 
6241 	ClearPageChecked(page);
6242 	if (PagePrivate(page)) {
6243 		ClearPagePrivate(page);
6244 		set_page_private(page, 0);
6245 		page_cache_release(page);
6246 	}
6247 }
6248 
6249 /*
6250  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6251  * called from a page fault handler when a page is first dirtied. Hence we must
6252  * be careful to check for EOF conditions here. We set the page up correctly
6253  * for a written page which means we get ENOSPC checking when writing into
6254  * holes and correct delalloc and unwritten extent mapping on filesystems that
6255  * support these features.
6256  *
6257  * We are not allowed to take the i_mutex here so we have to play games to
6258  * protect against truncate races as the page could now be beyond EOF.  Because
6259  * vmtruncate() writes the inode size before removing pages, once we have the
6260  * page lock we can determine safely if the page is beyond EOF. If it is not
6261  * beyond EOF, then the page is guaranteed safe against truncation until we
6262  * unlock the page.
6263  */
6264 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6265 {
6266 	struct page *page = vmf->page;
6267 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6268 	struct btrfs_root *root = BTRFS_I(inode)->root;
6269 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6270 	struct btrfs_ordered_extent *ordered;
6271 	struct extent_state *cached_state = NULL;
6272 	char *kaddr;
6273 	unsigned long zero_start;
6274 	loff_t size;
6275 	int ret;
6276 	u64 page_start;
6277 	u64 page_end;
6278 
6279 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6280 	if (ret) {
6281 		if (ret == -ENOMEM)
6282 			ret = VM_FAULT_OOM;
6283 		else /* -ENOSPC, -EIO, etc */
6284 			ret = VM_FAULT_SIGBUS;
6285 		goto out;
6286 	}
6287 
6288 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6289 again:
6290 	lock_page(page);
6291 	size = i_size_read(inode);
6292 	page_start = page_offset(page);
6293 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6294 
6295 	if ((page->mapping != inode->i_mapping) ||
6296 	    (page_start >= size)) {
6297 		/* page got truncated out from underneath us */
6298 		goto out_unlock;
6299 	}
6300 	wait_on_page_writeback(page);
6301 
6302 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6303 			 GFP_NOFS);
6304 	set_page_extent_mapped(page);
6305 
6306 	/*
6307 	 * we can't set the delalloc bits if there are pending ordered
6308 	 * extents.  Drop our locks and wait for them to finish
6309 	 */
6310 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6311 	if (ordered) {
6312 		unlock_extent_cached(io_tree, page_start, page_end,
6313 				     &cached_state, GFP_NOFS);
6314 		unlock_page(page);
6315 		btrfs_start_ordered_extent(inode, ordered, 1);
6316 		btrfs_put_ordered_extent(ordered);
6317 		goto again;
6318 	}
6319 
6320 	/*
6321 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6322 	 * if it was already dirty, so for space accounting reasons we need to
6323 	 * clear any delalloc bits for the range we are fixing to save.  There
6324 	 * is probably a better way to do this, but for now keep consistent with
6325 	 * prepare_pages in the normal write path.
6326 	 */
6327 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6328 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6329 			  0, 0, &cached_state, GFP_NOFS);
6330 
6331 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6332 					&cached_state);
6333 	if (ret) {
6334 		unlock_extent_cached(io_tree, page_start, page_end,
6335 				     &cached_state, GFP_NOFS);
6336 		ret = VM_FAULT_SIGBUS;
6337 		goto out_unlock;
6338 	}
6339 	ret = 0;
6340 
6341 	/* page is wholly or partially inside EOF */
6342 	if (page_start + PAGE_CACHE_SIZE > size)
6343 		zero_start = size & ~PAGE_CACHE_MASK;
6344 	else
6345 		zero_start = PAGE_CACHE_SIZE;
6346 
6347 	if (zero_start != PAGE_CACHE_SIZE) {
6348 		kaddr = kmap(page);
6349 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6350 		flush_dcache_page(page);
6351 		kunmap(page);
6352 	}
6353 	ClearPageChecked(page);
6354 	set_page_dirty(page);
6355 	SetPageUptodate(page);
6356 
6357 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6358 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6359 
6360 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6361 
6362 out_unlock:
6363 	if (!ret)
6364 		return VM_FAULT_LOCKED;
6365 	unlock_page(page);
6366 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6367 out:
6368 	return ret;
6369 }
6370 
6371 static int btrfs_truncate(struct inode *inode)
6372 {
6373 	struct btrfs_root *root = BTRFS_I(inode)->root;
6374 	struct btrfs_block_rsv *rsv;
6375 	int ret;
6376 	int err = 0;
6377 	struct btrfs_trans_handle *trans;
6378 	unsigned long nr;
6379 	u64 mask = root->sectorsize - 1;
6380 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6381 
6382 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6383 	if (ret)
6384 		return ret;
6385 
6386 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6387 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6388 
6389 	/*
6390 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6391 	 * 3 things going on here
6392 	 *
6393 	 * 1) We need to reserve space for our orphan item and the space to
6394 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6395 	 * orphan item because we didn't reserve space to remove it.
6396 	 *
6397 	 * 2) We need to reserve space to update our inode.
6398 	 *
6399 	 * 3) We need to have something to cache all the space that is going to
6400 	 * be free'd up by the truncate operation, but also have some slack
6401 	 * space reserved in case it uses space during the truncate (thank you
6402 	 * very much snapshotting).
6403 	 *
6404 	 * And we need these to all be seperate.  The fact is we can use alot of
6405 	 * space doing the truncate, and we have no earthly idea how much space
6406 	 * we will use, so we need the truncate reservation to be seperate so it
6407 	 * doesn't end up using space reserved for updating the inode or
6408 	 * removing the orphan item.  We also need to be able to stop the
6409 	 * transaction and start a new one, which means we need to be able to
6410 	 * update the inode several times, and we have no idea of knowing how
6411 	 * many times that will be, so we can't just reserve 1 item for the
6412 	 * entirety of the opration, so that has to be done seperately as well.
6413 	 * Then there is the orphan item, which does indeed need to be held on
6414 	 * to for the whole operation, and we need nobody to touch this reserved
6415 	 * space except the orphan code.
6416 	 *
6417 	 * So that leaves us with
6418 	 *
6419 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6420 	 * 2) rsv - for the truncate reservation, which we will steal from the
6421 	 * transaction reservation.
6422 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6423 	 * updating the inode.
6424 	 */
6425 	rsv = btrfs_alloc_block_rsv(root);
6426 	if (!rsv)
6427 		return -ENOMEM;
6428 	rsv->size = min_size;
6429 
6430 	/*
6431 	 * 1 for the truncate slack space
6432 	 * 1 for the orphan item we're going to add
6433 	 * 1 for the orphan item deletion
6434 	 * 1 for updating the inode.
6435 	 */
6436 	trans = btrfs_start_transaction(root, 4);
6437 	if (IS_ERR(trans)) {
6438 		err = PTR_ERR(trans);
6439 		goto out;
6440 	}
6441 
6442 	/* Migrate the slack space for the truncate to our reserve */
6443 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6444 				      min_size);
6445 	BUG_ON(ret);
6446 
6447 	ret = btrfs_orphan_add(trans, inode);
6448 	if (ret) {
6449 		btrfs_end_transaction(trans, root);
6450 		goto out;
6451 	}
6452 
6453 	/*
6454 	 * setattr is responsible for setting the ordered_data_close flag,
6455 	 * but that is only tested during the last file release.  That
6456 	 * could happen well after the next commit, leaving a great big
6457 	 * window where new writes may get lost if someone chooses to write
6458 	 * to this file after truncating to zero
6459 	 *
6460 	 * The inode doesn't have any dirty data here, and so if we commit
6461 	 * this is a noop.  If someone immediately starts writing to the inode
6462 	 * it is very likely we'll catch some of their writes in this
6463 	 * transaction, and the commit will find this file on the ordered
6464 	 * data list with good things to send down.
6465 	 *
6466 	 * This is a best effort solution, there is still a window where
6467 	 * using truncate to replace the contents of the file will
6468 	 * end up with a zero length file after a crash.
6469 	 */
6470 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6471 		btrfs_add_ordered_operation(trans, root, inode);
6472 
6473 	while (1) {
6474 		ret = btrfs_block_rsv_refill(root, rsv, min_size);
6475 		if (ret) {
6476 			/*
6477 			 * This can only happen with the original transaction we
6478 			 * started above, every other time we shouldn't have a
6479 			 * transaction started yet.
6480 			 */
6481 			if (ret == -EAGAIN)
6482 				goto end_trans;
6483 			err = ret;
6484 			break;
6485 		}
6486 
6487 		if (!trans) {
6488 			/* Just need the 1 for updating the inode */
6489 			trans = btrfs_start_transaction(root, 1);
6490 			if (IS_ERR(trans)) {
6491 				err = PTR_ERR(trans);
6492 				goto out;
6493 			}
6494 		}
6495 
6496 		trans->block_rsv = rsv;
6497 
6498 		ret = btrfs_truncate_inode_items(trans, root, inode,
6499 						 inode->i_size,
6500 						 BTRFS_EXTENT_DATA_KEY);
6501 		if (ret != -EAGAIN) {
6502 			err = ret;
6503 			break;
6504 		}
6505 
6506 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6507 		ret = btrfs_update_inode(trans, root, inode);
6508 		if (ret) {
6509 			err = ret;
6510 			break;
6511 		}
6512 end_trans:
6513 		nr = trans->blocks_used;
6514 		btrfs_end_transaction(trans, root);
6515 		trans = NULL;
6516 		btrfs_btree_balance_dirty(root, nr);
6517 	}
6518 
6519 	if (ret == 0 && inode->i_nlink > 0) {
6520 		trans->block_rsv = root->orphan_block_rsv;
6521 		ret = btrfs_orphan_del(trans, inode);
6522 		if (ret)
6523 			err = ret;
6524 	} else if (ret && inode->i_nlink > 0) {
6525 		/*
6526 		 * Failed to do the truncate, remove us from the in memory
6527 		 * orphan list.
6528 		 */
6529 		ret = btrfs_orphan_del(NULL, inode);
6530 	}
6531 
6532 	trans->block_rsv = &root->fs_info->trans_block_rsv;
6533 	ret = btrfs_update_inode(trans, root, inode);
6534 	if (ret && !err)
6535 		err = ret;
6536 
6537 	nr = trans->blocks_used;
6538 	ret = btrfs_end_transaction_throttle(trans, root);
6539 	btrfs_btree_balance_dirty(root, nr);
6540 
6541 out:
6542 	btrfs_free_block_rsv(root, rsv);
6543 
6544 	if (ret && !err)
6545 		err = ret;
6546 
6547 	return err;
6548 }
6549 
6550 /*
6551  * create a new subvolume directory/inode (helper for the ioctl).
6552  */
6553 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6554 			     struct btrfs_root *new_root, u64 new_dirid)
6555 {
6556 	struct inode *inode;
6557 	int err;
6558 	u64 index = 0;
6559 
6560 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6561 				new_dirid, S_IFDIR | 0700, &index);
6562 	if (IS_ERR(inode))
6563 		return PTR_ERR(inode);
6564 	inode->i_op = &btrfs_dir_inode_operations;
6565 	inode->i_fop = &btrfs_dir_file_operations;
6566 
6567 	set_nlink(inode, 1);
6568 	btrfs_i_size_write(inode, 0);
6569 
6570 	err = btrfs_update_inode(trans, new_root, inode);
6571 	BUG_ON(err);
6572 
6573 	iput(inode);
6574 	return 0;
6575 }
6576 
6577 struct inode *btrfs_alloc_inode(struct super_block *sb)
6578 {
6579 	struct btrfs_inode *ei;
6580 	struct inode *inode;
6581 
6582 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6583 	if (!ei)
6584 		return NULL;
6585 
6586 	ei->root = NULL;
6587 	ei->space_info = NULL;
6588 	ei->generation = 0;
6589 	ei->sequence = 0;
6590 	ei->last_trans = 0;
6591 	ei->last_sub_trans = 0;
6592 	ei->logged_trans = 0;
6593 	ei->delalloc_bytes = 0;
6594 	ei->disk_i_size = 0;
6595 	ei->flags = 0;
6596 	ei->csum_bytes = 0;
6597 	ei->index_cnt = (u64)-1;
6598 	ei->last_unlink_trans = 0;
6599 
6600 	spin_lock_init(&ei->lock);
6601 	ei->outstanding_extents = 0;
6602 	ei->reserved_extents = 0;
6603 
6604 	ei->ordered_data_close = 0;
6605 	ei->orphan_meta_reserved = 0;
6606 	ei->dummy_inode = 0;
6607 	ei->in_defrag = 0;
6608 	ei->force_compress = BTRFS_COMPRESS_NONE;
6609 
6610 	ei->delayed_node = NULL;
6611 
6612 	inode = &ei->vfs_inode;
6613 	extent_map_tree_init(&ei->extent_tree);
6614 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6615 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6616 	mutex_init(&ei->log_mutex);
6617 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6618 	INIT_LIST_HEAD(&ei->i_orphan);
6619 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6620 	INIT_LIST_HEAD(&ei->ordered_operations);
6621 	RB_CLEAR_NODE(&ei->rb_node);
6622 
6623 	return inode;
6624 }
6625 
6626 static void btrfs_i_callback(struct rcu_head *head)
6627 {
6628 	struct inode *inode = container_of(head, struct inode, i_rcu);
6629 	INIT_LIST_HEAD(&inode->i_dentry);
6630 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6631 }
6632 
6633 void btrfs_destroy_inode(struct inode *inode)
6634 {
6635 	struct btrfs_ordered_extent *ordered;
6636 	struct btrfs_root *root = BTRFS_I(inode)->root;
6637 
6638 	WARN_ON(!list_empty(&inode->i_dentry));
6639 	WARN_ON(inode->i_data.nrpages);
6640 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
6641 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6642 	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6643 	WARN_ON(BTRFS_I(inode)->csum_bytes);
6644 
6645 	/*
6646 	 * This can happen where we create an inode, but somebody else also
6647 	 * created the same inode and we need to destroy the one we already
6648 	 * created.
6649 	 */
6650 	if (!root)
6651 		goto free;
6652 
6653 	/*
6654 	 * Make sure we're properly removed from the ordered operation
6655 	 * lists.
6656 	 */
6657 	smp_mb();
6658 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6659 		spin_lock(&root->fs_info->ordered_extent_lock);
6660 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6661 		spin_unlock(&root->fs_info->ordered_extent_lock);
6662 	}
6663 
6664 	spin_lock(&root->orphan_lock);
6665 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6666 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6667 		       (unsigned long long)btrfs_ino(inode));
6668 		list_del_init(&BTRFS_I(inode)->i_orphan);
6669 	}
6670 	spin_unlock(&root->orphan_lock);
6671 
6672 	while (1) {
6673 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6674 		if (!ordered)
6675 			break;
6676 		else {
6677 			printk(KERN_ERR "btrfs found ordered "
6678 			       "extent %llu %llu on inode cleanup\n",
6679 			       (unsigned long long)ordered->file_offset,
6680 			       (unsigned long long)ordered->len);
6681 			btrfs_remove_ordered_extent(inode, ordered);
6682 			btrfs_put_ordered_extent(ordered);
6683 			btrfs_put_ordered_extent(ordered);
6684 		}
6685 	}
6686 	inode_tree_del(inode);
6687 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6688 free:
6689 	btrfs_remove_delayed_node(inode);
6690 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6691 }
6692 
6693 int btrfs_drop_inode(struct inode *inode)
6694 {
6695 	struct btrfs_root *root = BTRFS_I(inode)->root;
6696 
6697 	if (btrfs_root_refs(&root->root_item) == 0 &&
6698 	    !btrfs_is_free_space_inode(root, inode))
6699 		return 1;
6700 	else
6701 		return generic_drop_inode(inode);
6702 }
6703 
6704 static void init_once(void *foo)
6705 {
6706 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6707 
6708 	inode_init_once(&ei->vfs_inode);
6709 }
6710 
6711 void btrfs_destroy_cachep(void)
6712 {
6713 	if (btrfs_inode_cachep)
6714 		kmem_cache_destroy(btrfs_inode_cachep);
6715 	if (btrfs_trans_handle_cachep)
6716 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6717 	if (btrfs_transaction_cachep)
6718 		kmem_cache_destroy(btrfs_transaction_cachep);
6719 	if (btrfs_path_cachep)
6720 		kmem_cache_destroy(btrfs_path_cachep);
6721 	if (btrfs_free_space_cachep)
6722 		kmem_cache_destroy(btrfs_free_space_cachep);
6723 }
6724 
6725 int btrfs_init_cachep(void)
6726 {
6727 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6728 			sizeof(struct btrfs_inode), 0,
6729 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6730 	if (!btrfs_inode_cachep)
6731 		goto fail;
6732 
6733 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6734 			sizeof(struct btrfs_trans_handle), 0,
6735 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6736 	if (!btrfs_trans_handle_cachep)
6737 		goto fail;
6738 
6739 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6740 			sizeof(struct btrfs_transaction), 0,
6741 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6742 	if (!btrfs_transaction_cachep)
6743 		goto fail;
6744 
6745 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6746 			sizeof(struct btrfs_path), 0,
6747 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6748 	if (!btrfs_path_cachep)
6749 		goto fail;
6750 
6751 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6752 			sizeof(struct btrfs_free_space), 0,
6753 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6754 	if (!btrfs_free_space_cachep)
6755 		goto fail;
6756 
6757 	return 0;
6758 fail:
6759 	btrfs_destroy_cachep();
6760 	return -ENOMEM;
6761 }
6762 
6763 static int btrfs_getattr(struct vfsmount *mnt,
6764 			 struct dentry *dentry, struct kstat *stat)
6765 {
6766 	struct inode *inode = dentry->d_inode;
6767 	generic_fillattr(inode, stat);
6768 	stat->dev = BTRFS_I(inode)->root->anon_dev;
6769 	stat->blksize = PAGE_CACHE_SIZE;
6770 	stat->blocks = (inode_get_bytes(inode) +
6771 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6772 	return 0;
6773 }
6774 
6775 /*
6776  * If a file is moved, it will inherit the cow and compression flags of the new
6777  * directory.
6778  */
6779 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6780 {
6781 	struct btrfs_inode *b_dir = BTRFS_I(dir);
6782 	struct btrfs_inode *b_inode = BTRFS_I(inode);
6783 
6784 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
6785 		b_inode->flags |= BTRFS_INODE_NODATACOW;
6786 	else
6787 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6788 
6789 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
6790 		b_inode->flags |= BTRFS_INODE_COMPRESS;
6791 	else
6792 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6793 }
6794 
6795 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6796 			   struct inode *new_dir, struct dentry *new_dentry)
6797 {
6798 	struct btrfs_trans_handle *trans;
6799 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6800 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6801 	struct inode *new_inode = new_dentry->d_inode;
6802 	struct inode *old_inode = old_dentry->d_inode;
6803 	struct timespec ctime = CURRENT_TIME;
6804 	u64 index = 0;
6805 	u64 root_objectid;
6806 	int ret;
6807 	u64 old_ino = btrfs_ino(old_inode);
6808 
6809 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6810 		return -EPERM;
6811 
6812 	/* we only allow rename subvolume link between subvolumes */
6813 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6814 		return -EXDEV;
6815 
6816 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6817 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6818 		return -ENOTEMPTY;
6819 
6820 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6821 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6822 		return -ENOTEMPTY;
6823 	/*
6824 	 * we're using rename to replace one file with another.
6825 	 * and the replacement file is large.  Start IO on it now so
6826 	 * we don't add too much work to the end of the transaction
6827 	 */
6828 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6829 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6830 		filemap_flush(old_inode->i_mapping);
6831 
6832 	/* close the racy window with snapshot create/destroy ioctl */
6833 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6834 		down_read(&root->fs_info->subvol_sem);
6835 	/*
6836 	 * We want to reserve the absolute worst case amount of items.  So if
6837 	 * both inodes are subvols and we need to unlink them then that would
6838 	 * require 4 item modifications, but if they are both normal inodes it
6839 	 * would require 5 item modifications, so we'll assume their normal
6840 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6841 	 * should cover the worst case number of items we'll modify.
6842 	 */
6843 	trans = btrfs_start_transaction(root, 20);
6844 	if (IS_ERR(trans)) {
6845                 ret = PTR_ERR(trans);
6846                 goto out_notrans;
6847         }
6848 
6849 	if (dest != root)
6850 		btrfs_record_root_in_trans(trans, dest);
6851 
6852 	ret = btrfs_set_inode_index(new_dir, &index);
6853 	if (ret)
6854 		goto out_fail;
6855 
6856 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6857 		/* force full log commit if subvolume involved. */
6858 		root->fs_info->last_trans_log_full_commit = trans->transid;
6859 	} else {
6860 		ret = btrfs_insert_inode_ref(trans, dest,
6861 					     new_dentry->d_name.name,
6862 					     new_dentry->d_name.len,
6863 					     old_ino,
6864 					     btrfs_ino(new_dir), index);
6865 		if (ret)
6866 			goto out_fail;
6867 		/*
6868 		 * this is an ugly little race, but the rename is required
6869 		 * to make sure that if we crash, the inode is either at the
6870 		 * old name or the new one.  pinning the log transaction lets
6871 		 * us make sure we don't allow a log commit to come in after
6872 		 * we unlink the name but before we add the new name back in.
6873 		 */
6874 		btrfs_pin_log_trans(root);
6875 	}
6876 	/*
6877 	 * make sure the inode gets flushed if it is replacing
6878 	 * something.
6879 	 */
6880 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
6881 		btrfs_add_ordered_operation(trans, root, old_inode);
6882 
6883 	old_dir->i_ctime = old_dir->i_mtime = ctime;
6884 	new_dir->i_ctime = new_dir->i_mtime = ctime;
6885 	old_inode->i_ctime = ctime;
6886 
6887 	if (old_dentry->d_parent != new_dentry->d_parent)
6888 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6889 
6890 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6891 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6892 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6893 					old_dentry->d_name.name,
6894 					old_dentry->d_name.len);
6895 	} else {
6896 		ret = __btrfs_unlink_inode(trans, root, old_dir,
6897 					old_dentry->d_inode,
6898 					old_dentry->d_name.name,
6899 					old_dentry->d_name.len);
6900 		if (!ret)
6901 			ret = btrfs_update_inode(trans, root, old_inode);
6902 	}
6903 	BUG_ON(ret);
6904 
6905 	if (new_inode) {
6906 		new_inode->i_ctime = CURRENT_TIME;
6907 		if (unlikely(btrfs_ino(new_inode) ==
6908 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6909 			root_objectid = BTRFS_I(new_inode)->location.objectid;
6910 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
6911 						root_objectid,
6912 						new_dentry->d_name.name,
6913 						new_dentry->d_name.len);
6914 			BUG_ON(new_inode->i_nlink == 0);
6915 		} else {
6916 			ret = btrfs_unlink_inode(trans, dest, new_dir,
6917 						 new_dentry->d_inode,
6918 						 new_dentry->d_name.name,
6919 						 new_dentry->d_name.len);
6920 		}
6921 		BUG_ON(ret);
6922 		if (new_inode->i_nlink == 0) {
6923 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6924 			BUG_ON(ret);
6925 		}
6926 	}
6927 
6928 	fixup_inode_flags(new_dir, old_inode);
6929 
6930 	ret = btrfs_add_link(trans, new_dir, old_inode,
6931 			     new_dentry->d_name.name,
6932 			     new_dentry->d_name.len, 0, index);
6933 	BUG_ON(ret);
6934 
6935 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
6936 		struct dentry *parent = new_dentry->d_parent;
6937 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
6938 		btrfs_end_log_trans(root);
6939 	}
6940 out_fail:
6941 	btrfs_end_transaction_throttle(trans, root);
6942 out_notrans:
6943 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6944 		up_read(&root->fs_info->subvol_sem);
6945 
6946 	return ret;
6947 }
6948 
6949 /*
6950  * some fairly slow code that needs optimization. This walks the list
6951  * of all the inodes with pending delalloc and forces them to disk.
6952  */
6953 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6954 {
6955 	struct list_head *head = &root->fs_info->delalloc_inodes;
6956 	struct btrfs_inode *binode;
6957 	struct inode *inode;
6958 
6959 	if (root->fs_info->sb->s_flags & MS_RDONLY)
6960 		return -EROFS;
6961 
6962 	spin_lock(&root->fs_info->delalloc_lock);
6963 	while (!list_empty(head)) {
6964 		binode = list_entry(head->next, struct btrfs_inode,
6965 				    delalloc_inodes);
6966 		inode = igrab(&binode->vfs_inode);
6967 		if (!inode)
6968 			list_del_init(&binode->delalloc_inodes);
6969 		spin_unlock(&root->fs_info->delalloc_lock);
6970 		if (inode) {
6971 			filemap_flush(inode->i_mapping);
6972 			if (delay_iput)
6973 				btrfs_add_delayed_iput(inode);
6974 			else
6975 				iput(inode);
6976 		}
6977 		cond_resched();
6978 		spin_lock(&root->fs_info->delalloc_lock);
6979 	}
6980 	spin_unlock(&root->fs_info->delalloc_lock);
6981 
6982 	/* the filemap_flush will queue IO into the worker threads, but
6983 	 * we have to make sure the IO is actually started and that
6984 	 * ordered extents get created before we return
6985 	 */
6986 	atomic_inc(&root->fs_info->async_submit_draining);
6987 	while (atomic_read(&root->fs_info->nr_async_submits) ||
6988 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
6989 		wait_event(root->fs_info->async_submit_wait,
6990 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6991 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6992 	}
6993 	atomic_dec(&root->fs_info->async_submit_draining);
6994 	return 0;
6995 }
6996 
6997 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6998 			 const char *symname)
6999 {
7000 	struct btrfs_trans_handle *trans;
7001 	struct btrfs_root *root = BTRFS_I(dir)->root;
7002 	struct btrfs_path *path;
7003 	struct btrfs_key key;
7004 	struct inode *inode = NULL;
7005 	int err;
7006 	int drop_inode = 0;
7007 	u64 objectid;
7008 	u64 index = 0 ;
7009 	int name_len;
7010 	int datasize;
7011 	unsigned long ptr;
7012 	struct btrfs_file_extent_item *ei;
7013 	struct extent_buffer *leaf;
7014 	unsigned long nr = 0;
7015 
7016 	name_len = strlen(symname) + 1;
7017 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7018 		return -ENAMETOOLONG;
7019 
7020 	/*
7021 	 * 2 items for inode item and ref
7022 	 * 2 items for dir items
7023 	 * 1 item for xattr if selinux is on
7024 	 */
7025 	trans = btrfs_start_transaction(root, 5);
7026 	if (IS_ERR(trans))
7027 		return PTR_ERR(trans);
7028 
7029 	err = btrfs_find_free_ino(root, &objectid);
7030 	if (err)
7031 		goto out_unlock;
7032 
7033 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7034 				dentry->d_name.len, btrfs_ino(dir), objectid,
7035 				S_IFLNK|S_IRWXUGO, &index);
7036 	if (IS_ERR(inode)) {
7037 		err = PTR_ERR(inode);
7038 		goto out_unlock;
7039 	}
7040 
7041 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7042 	if (err) {
7043 		drop_inode = 1;
7044 		goto out_unlock;
7045 	}
7046 
7047 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7048 	if (err)
7049 		drop_inode = 1;
7050 	else {
7051 		inode->i_mapping->a_ops = &btrfs_aops;
7052 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7053 		inode->i_fop = &btrfs_file_operations;
7054 		inode->i_op = &btrfs_file_inode_operations;
7055 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7056 	}
7057 	if (drop_inode)
7058 		goto out_unlock;
7059 
7060 	path = btrfs_alloc_path();
7061 	if (!path) {
7062 		err = -ENOMEM;
7063 		drop_inode = 1;
7064 		goto out_unlock;
7065 	}
7066 	key.objectid = btrfs_ino(inode);
7067 	key.offset = 0;
7068 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7069 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7070 	err = btrfs_insert_empty_item(trans, root, path, &key,
7071 				      datasize);
7072 	if (err) {
7073 		drop_inode = 1;
7074 		btrfs_free_path(path);
7075 		goto out_unlock;
7076 	}
7077 	leaf = path->nodes[0];
7078 	ei = btrfs_item_ptr(leaf, path->slots[0],
7079 			    struct btrfs_file_extent_item);
7080 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7081 	btrfs_set_file_extent_type(leaf, ei,
7082 				   BTRFS_FILE_EXTENT_INLINE);
7083 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7084 	btrfs_set_file_extent_compression(leaf, ei, 0);
7085 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7086 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7087 
7088 	ptr = btrfs_file_extent_inline_start(ei);
7089 	write_extent_buffer(leaf, symname, ptr, name_len);
7090 	btrfs_mark_buffer_dirty(leaf);
7091 	btrfs_free_path(path);
7092 
7093 	inode->i_op = &btrfs_symlink_inode_operations;
7094 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7095 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7096 	inode_set_bytes(inode, name_len);
7097 	btrfs_i_size_write(inode, name_len - 1);
7098 	err = btrfs_update_inode(trans, root, inode);
7099 	if (err)
7100 		drop_inode = 1;
7101 
7102 out_unlock:
7103 	nr = trans->blocks_used;
7104 	btrfs_end_transaction_throttle(trans, root);
7105 	if (drop_inode) {
7106 		inode_dec_link_count(inode);
7107 		iput(inode);
7108 	}
7109 	btrfs_btree_balance_dirty(root, nr);
7110 	return err;
7111 }
7112 
7113 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7114 				       u64 start, u64 num_bytes, u64 min_size,
7115 				       loff_t actual_len, u64 *alloc_hint,
7116 				       struct btrfs_trans_handle *trans)
7117 {
7118 	struct btrfs_root *root = BTRFS_I(inode)->root;
7119 	struct btrfs_key ins;
7120 	u64 cur_offset = start;
7121 	u64 i_size;
7122 	int ret = 0;
7123 	bool own_trans = true;
7124 
7125 	if (trans)
7126 		own_trans = false;
7127 	while (num_bytes > 0) {
7128 		if (own_trans) {
7129 			trans = btrfs_start_transaction(root, 3);
7130 			if (IS_ERR(trans)) {
7131 				ret = PTR_ERR(trans);
7132 				break;
7133 			}
7134 		}
7135 
7136 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7137 					   0, *alloc_hint, (u64)-1, &ins, 1);
7138 		if (ret) {
7139 			if (own_trans)
7140 				btrfs_end_transaction(trans, root);
7141 			break;
7142 		}
7143 
7144 		ret = insert_reserved_file_extent(trans, inode,
7145 						  cur_offset, ins.objectid,
7146 						  ins.offset, ins.offset,
7147 						  ins.offset, 0, 0, 0,
7148 						  BTRFS_FILE_EXTENT_PREALLOC);
7149 		BUG_ON(ret);
7150 		btrfs_drop_extent_cache(inode, cur_offset,
7151 					cur_offset + ins.offset -1, 0);
7152 
7153 		num_bytes -= ins.offset;
7154 		cur_offset += ins.offset;
7155 		*alloc_hint = ins.objectid + ins.offset;
7156 
7157 		inode->i_ctime = CURRENT_TIME;
7158 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7159 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7160 		    (actual_len > inode->i_size) &&
7161 		    (cur_offset > inode->i_size)) {
7162 			if (cur_offset > actual_len)
7163 				i_size = actual_len;
7164 			else
7165 				i_size = cur_offset;
7166 			i_size_write(inode, i_size);
7167 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7168 		}
7169 
7170 		ret = btrfs_update_inode(trans, root, inode);
7171 		BUG_ON(ret);
7172 
7173 		if (own_trans)
7174 			btrfs_end_transaction(trans, root);
7175 	}
7176 	return ret;
7177 }
7178 
7179 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7180 			      u64 start, u64 num_bytes, u64 min_size,
7181 			      loff_t actual_len, u64 *alloc_hint)
7182 {
7183 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7184 					   min_size, actual_len, alloc_hint,
7185 					   NULL);
7186 }
7187 
7188 int btrfs_prealloc_file_range_trans(struct inode *inode,
7189 				    struct btrfs_trans_handle *trans, int mode,
7190 				    u64 start, u64 num_bytes, u64 min_size,
7191 				    loff_t actual_len, u64 *alloc_hint)
7192 {
7193 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7194 					   min_size, actual_len, alloc_hint, trans);
7195 }
7196 
7197 static int btrfs_set_page_dirty(struct page *page)
7198 {
7199 	return __set_page_dirty_nobuffers(page);
7200 }
7201 
7202 static int btrfs_permission(struct inode *inode, int mask)
7203 {
7204 	struct btrfs_root *root = BTRFS_I(inode)->root;
7205 	umode_t mode = inode->i_mode;
7206 
7207 	if (mask & MAY_WRITE &&
7208 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7209 		if (btrfs_root_readonly(root))
7210 			return -EROFS;
7211 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7212 			return -EACCES;
7213 	}
7214 	return generic_permission(inode, mask);
7215 }
7216 
7217 static const struct inode_operations btrfs_dir_inode_operations = {
7218 	.getattr	= btrfs_getattr,
7219 	.lookup		= btrfs_lookup,
7220 	.create		= btrfs_create,
7221 	.unlink		= btrfs_unlink,
7222 	.link		= btrfs_link,
7223 	.mkdir		= btrfs_mkdir,
7224 	.rmdir		= btrfs_rmdir,
7225 	.rename		= btrfs_rename,
7226 	.symlink	= btrfs_symlink,
7227 	.setattr	= btrfs_setattr,
7228 	.mknod		= btrfs_mknod,
7229 	.setxattr	= btrfs_setxattr,
7230 	.getxattr	= btrfs_getxattr,
7231 	.listxattr	= btrfs_listxattr,
7232 	.removexattr	= btrfs_removexattr,
7233 	.permission	= btrfs_permission,
7234 	.get_acl	= btrfs_get_acl,
7235 };
7236 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7237 	.lookup		= btrfs_lookup,
7238 	.permission	= btrfs_permission,
7239 	.get_acl	= btrfs_get_acl,
7240 };
7241 
7242 static const struct file_operations btrfs_dir_file_operations = {
7243 	.llseek		= generic_file_llseek,
7244 	.read		= generic_read_dir,
7245 	.readdir	= btrfs_real_readdir,
7246 	.unlocked_ioctl	= btrfs_ioctl,
7247 #ifdef CONFIG_COMPAT
7248 	.compat_ioctl	= btrfs_ioctl,
7249 #endif
7250 	.release        = btrfs_release_file,
7251 	.fsync		= btrfs_sync_file,
7252 };
7253 
7254 static struct extent_io_ops btrfs_extent_io_ops = {
7255 	.fill_delalloc = run_delalloc_range,
7256 	.submit_bio_hook = btrfs_submit_bio_hook,
7257 	.merge_bio_hook = btrfs_merge_bio_hook,
7258 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7259 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7260 	.writepage_start_hook = btrfs_writepage_start_hook,
7261 	.set_bit_hook = btrfs_set_bit_hook,
7262 	.clear_bit_hook = btrfs_clear_bit_hook,
7263 	.merge_extent_hook = btrfs_merge_extent_hook,
7264 	.split_extent_hook = btrfs_split_extent_hook,
7265 };
7266 
7267 /*
7268  * btrfs doesn't support the bmap operation because swapfiles
7269  * use bmap to make a mapping of extents in the file.  They assume
7270  * these extents won't change over the life of the file and they
7271  * use the bmap result to do IO directly to the drive.
7272  *
7273  * the btrfs bmap call would return logical addresses that aren't
7274  * suitable for IO and they also will change frequently as COW
7275  * operations happen.  So, swapfile + btrfs == corruption.
7276  *
7277  * For now we're avoiding this by dropping bmap.
7278  */
7279 static const struct address_space_operations btrfs_aops = {
7280 	.readpage	= btrfs_readpage,
7281 	.writepage	= btrfs_writepage,
7282 	.writepages	= btrfs_writepages,
7283 	.readpages	= btrfs_readpages,
7284 	.direct_IO	= btrfs_direct_IO,
7285 	.invalidatepage = btrfs_invalidatepage,
7286 	.releasepage	= btrfs_releasepage,
7287 	.set_page_dirty	= btrfs_set_page_dirty,
7288 	.error_remove_page = generic_error_remove_page,
7289 };
7290 
7291 static const struct address_space_operations btrfs_symlink_aops = {
7292 	.readpage	= btrfs_readpage,
7293 	.writepage	= btrfs_writepage,
7294 	.invalidatepage = btrfs_invalidatepage,
7295 	.releasepage	= btrfs_releasepage,
7296 };
7297 
7298 static const struct inode_operations btrfs_file_inode_operations = {
7299 	.getattr	= btrfs_getattr,
7300 	.setattr	= btrfs_setattr,
7301 	.setxattr	= btrfs_setxattr,
7302 	.getxattr	= btrfs_getxattr,
7303 	.listxattr      = btrfs_listxattr,
7304 	.removexattr	= btrfs_removexattr,
7305 	.permission	= btrfs_permission,
7306 	.fiemap		= btrfs_fiemap,
7307 	.get_acl	= btrfs_get_acl,
7308 };
7309 static const struct inode_operations btrfs_special_inode_operations = {
7310 	.getattr	= btrfs_getattr,
7311 	.setattr	= btrfs_setattr,
7312 	.permission	= btrfs_permission,
7313 	.setxattr	= btrfs_setxattr,
7314 	.getxattr	= btrfs_getxattr,
7315 	.listxattr	= btrfs_listxattr,
7316 	.removexattr	= btrfs_removexattr,
7317 	.get_acl	= btrfs_get_acl,
7318 };
7319 static const struct inode_operations btrfs_symlink_inode_operations = {
7320 	.readlink	= generic_readlink,
7321 	.follow_link	= page_follow_link_light,
7322 	.put_link	= page_put_link,
7323 	.getattr	= btrfs_getattr,
7324 	.permission	= btrfs_permission,
7325 	.setxattr	= btrfs_setxattr,
7326 	.getxattr	= btrfs_getxattr,
7327 	.listxattr	= btrfs_listxattr,
7328 	.removexattr	= btrfs_removexattr,
7329 	.get_acl	= btrfs_get_acl,
7330 };
7331 
7332 const struct dentry_operations btrfs_dentry_operations = {
7333 	.d_delete	= btrfs_dentry_delete,
7334 	.d_release	= btrfs_dentry_release,
7335 };
7336