1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <asm/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "print-tree.h" 43 #include "ordered-data.h" 44 #include "xattr.h" 45 #include "tree-log.h" 46 #include "volumes.h" 47 #include "compression.h" 48 #include "locking.h" 49 #include "free-space-cache.h" 50 #include "props.h" 51 #include "qgroup.h" 52 #include "delalloc-space.h" 53 #include "block-group.h" 54 #include "space-info.h" 55 #include "zoned.h" 56 #include "subpage.h" 57 #include "inode-item.h" 58 59 struct btrfs_iget_args { 60 u64 ino; 61 struct btrfs_root *root; 62 }; 63 64 struct btrfs_dio_data { 65 ssize_t submitted; 66 struct extent_changeset *data_reserved; 67 }; 68 69 struct btrfs_rename_ctx { 70 /* Output field. Stores the index number of the old directory entry. */ 71 u64 index; 72 }; 73 74 static const struct inode_operations btrfs_dir_inode_operations; 75 static const struct inode_operations btrfs_symlink_inode_operations; 76 static const struct inode_operations btrfs_special_inode_operations; 77 static const struct inode_operations btrfs_file_inode_operations; 78 static const struct address_space_operations btrfs_aops; 79 static const struct file_operations btrfs_dir_file_operations; 80 81 static struct kmem_cache *btrfs_inode_cachep; 82 struct kmem_cache *btrfs_trans_handle_cachep; 83 struct kmem_cache *btrfs_path_cachep; 84 struct kmem_cache *btrfs_free_space_cachep; 85 struct kmem_cache *btrfs_free_space_bitmap_cachep; 86 87 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 88 static int btrfs_truncate(struct inode *inode, bool skip_writeback); 89 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); 90 static noinline int cow_file_range(struct btrfs_inode *inode, 91 struct page *locked_page, 92 u64 start, u64 end, int *page_started, 93 unsigned long *nr_written, int unlock); 94 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 95 u64 len, u64 orig_start, u64 block_start, 96 u64 block_len, u64 orig_block_len, 97 u64 ram_bytes, int compress_type, 98 int type); 99 100 static void __endio_write_update_ordered(struct btrfs_inode *inode, 101 const u64 offset, const u64 bytes, 102 const bool uptodate); 103 104 /* 105 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed 106 * 107 * ilock_flags can have the following bit set: 108 * 109 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 110 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 111 * return -EAGAIN 112 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 113 */ 114 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags) 115 { 116 if (ilock_flags & BTRFS_ILOCK_SHARED) { 117 if (ilock_flags & BTRFS_ILOCK_TRY) { 118 if (!inode_trylock_shared(inode)) 119 return -EAGAIN; 120 else 121 return 0; 122 } 123 inode_lock_shared(inode); 124 } else { 125 if (ilock_flags & BTRFS_ILOCK_TRY) { 126 if (!inode_trylock(inode)) 127 return -EAGAIN; 128 else 129 return 0; 130 } 131 inode_lock(inode); 132 } 133 if (ilock_flags & BTRFS_ILOCK_MMAP) 134 down_write(&BTRFS_I(inode)->i_mmap_lock); 135 return 0; 136 } 137 138 /* 139 * btrfs_inode_unlock - unock inode i_rwsem 140 * 141 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 142 * to decide whether the lock acquired is shared or exclusive. 143 */ 144 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags) 145 { 146 if (ilock_flags & BTRFS_ILOCK_MMAP) 147 up_write(&BTRFS_I(inode)->i_mmap_lock); 148 if (ilock_flags & BTRFS_ILOCK_SHARED) 149 inode_unlock_shared(inode); 150 else 151 inode_unlock(inode); 152 } 153 154 /* 155 * Cleanup all submitted ordered extents in specified range to handle errors 156 * from the btrfs_run_delalloc_range() callback. 157 * 158 * NOTE: caller must ensure that when an error happens, it can not call 159 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 160 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 161 * to be released, which we want to happen only when finishing the ordered 162 * extent (btrfs_finish_ordered_io()). 163 */ 164 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 165 struct page *locked_page, 166 u64 offset, u64 bytes) 167 { 168 unsigned long index = offset >> PAGE_SHIFT; 169 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 170 u64 page_start = page_offset(locked_page); 171 u64 page_end = page_start + PAGE_SIZE - 1; 172 173 struct page *page; 174 175 while (index <= end_index) { 176 /* 177 * For locked page, we will call end_extent_writepage() on it 178 * in run_delalloc_range() for the error handling. That 179 * end_extent_writepage() function will call 180 * btrfs_mark_ordered_io_finished() to clear page Ordered and 181 * run the ordered extent accounting. 182 * 183 * Here we can't just clear the Ordered bit, or 184 * btrfs_mark_ordered_io_finished() would skip the accounting 185 * for the page range, and the ordered extent will never finish. 186 */ 187 if (index == (page_offset(locked_page) >> PAGE_SHIFT)) { 188 index++; 189 continue; 190 } 191 page = find_get_page(inode->vfs_inode.i_mapping, index); 192 index++; 193 if (!page) 194 continue; 195 196 /* 197 * Here we just clear all Ordered bits for every page in the 198 * range, then __endio_write_update_ordered() will handle 199 * the ordered extent accounting for the range. 200 */ 201 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page, 202 offset, bytes); 203 put_page(page); 204 } 205 206 /* The locked page covers the full range, nothing needs to be done */ 207 if (bytes + offset <= page_offset(locked_page) + PAGE_SIZE) 208 return; 209 /* 210 * In case this page belongs to the delalloc range being instantiated 211 * then skip it, since the first page of a range is going to be 212 * properly cleaned up by the caller of run_delalloc_range 213 */ 214 if (page_start >= offset && page_end <= (offset + bytes - 1)) { 215 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE; 216 offset = page_offset(locked_page) + PAGE_SIZE; 217 } 218 219 return __endio_write_update_ordered(inode, offset, bytes, false); 220 } 221 222 static int btrfs_dirty_inode(struct inode *inode); 223 224 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 225 struct inode *inode, struct inode *dir, 226 const struct qstr *qstr) 227 { 228 int err; 229 230 err = btrfs_init_acl(trans, inode, dir); 231 if (!err) 232 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 233 return err; 234 } 235 236 /* 237 * this does all the hard work for inserting an inline extent into 238 * the btree. The caller should have done a btrfs_drop_extents so that 239 * no overlapping inline items exist in the btree 240 */ 241 static int insert_inline_extent(struct btrfs_trans_handle *trans, 242 struct btrfs_path *path, 243 struct btrfs_inode *inode, bool extent_inserted, 244 size_t size, size_t compressed_size, 245 int compress_type, 246 struct page **compressed_pages, 247 bool update_i_size) 248 { 249 struct btrfs_root *root = inode->root; 250 struct extent_buffer *leaf; 251 struct page *page = NULL; 252 char *kaddr; 253 unsigned long ptr; 254 struct btrfs_file_extent_item *ei; 255 int ret; 256 size_t cur_size = size; 257 u64 i_size; 258 259 ASSERT((compressed_size > 0 && compressed_pages) || 260 (compressed_size == 0 && !compressed_pages)); 261 262 if (compressed_size && compressed_pages) 263 cur_size = compressed_size; 264 265 if (!extent_inserted) { 266 struct btrfs_key key; 267 size_t datasize; 268 269 key.objectid = btrfs_ino(inode); 270 key.offset = 0; 271 key.type = BTRFS_EXTENT_DATA_KEY; 272 273 datasize = btrfs_file_extent_calc_inline_size(cur_size); 274 ret = btrfs_insert_empty_item(trans, root, path, &key, 275 datasize); 276 if (ret) 277 goto fail; 278 } 279 leaf = path->nodes[0]; 280 ei = btrfs_item_ptr(leaf, path->slots[0], 281 struct btrfs_file_extent_item); 282 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 283 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 284 btrfs_set_file_extent_encryption(leaf, ei, 0); 285 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 286 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 287 ptr = btrfs_file_extent_inline_start(ei); 288 289 if (compress_type != BTRFS_COMPRESS_NONE) { 290 struct page *cpage; 291 int i = 0; 292 while (compressed_size > 0) { 293 cpage = compressed_pages[i]; 294 cur_size = min_t(unsigned long, compressed_size, 295 PAGE_SIZE); 296 297 kaddr = kmap_atomic(cpage); 298 write_extent_buffer(leaf, kaddr, ptr, cur_size); 299 kunmap_atomic(kaddr); 300 301 i++; 302 ptr += cur_size; 303 compressed_size -= cur_size; 304 } 305 btrfs_set_file_extent_compression(leaf, ei, 306 compress_type); 307 } else { 308 page = find_get_page(inode->vfs_inode.i_mapping, 0); 309 btrfs_set_file_extent_compression(leaf, ei, 0); 310 kaddr = kmap_atomic(page); 311 write_extent_buffer(leaf, kaddr, ptr, size); 312 kunmap_atomic(kaddr); 313 put_page(page); 314 } 315 btrfs_mark_buffer_dirty(leaf); 316 btrfs_release_path(path); 317 318 /* 319 * We align size to sectorsize for inline extents just for simplicity 320 * sake. 321 */ 322 ret = btrfs_inode_set_file_extent_range(inode, 0, 323 ALIGN(size, root->fs_info->sectorsize)); 324 if (ret) 325 goto fail; 326 327 /* 328 * We're an inline extent, so nobody can extend the file past i_size 329 * without locking a page we already have locked. 330 * 331 * We must do any i_size and inode updates before we unlock the pages. 332 * Otherwise we could end up racing with unlink. 333 */ 334 i_size = i_size_read(&inode->vfs_inode); 335 if (update_i_size && size > i_size) { 336 i_size_write(&inode->vfs_inode, size); 337 i_size = size; 338 } 339 inode->disk_i_size = i_size; 340 341 fail: 342 return ret; 343 } 344 345 346 /* 347 * conditionally insert an inline extent into the file. This 348 * does the checks required to make sure the data is small enough 349 * to fit as an inline extent. 350 */ 351 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size, 352 size_t compressed_size, 353 int compress_type, 354 struct page **compressed_pages, 355 bool update_i_size) 356 { 357 struct btrfs_drop_extents_args drop_args = { 0 }; 358 struct btrfs_root *root = inode->root; 359 struct btrfs_fs_info *fs_info = root->fs_info; 360 struct btrfs_trans_handle *trans; 361 u64 data_len = (compressed_size ?: size); 362 int ret; 363 struct btrfs_path *path; 364 365 /* 366 * We can create an inline extent if it ends at or beyond the current 367 * i_size, is no larger than a sector (decompressed), and the (possibly 368 * compressed) data fits in a leaf and the configured maximum inline 369 * size. 370 */ 371 if (size < i_size_read(&inode->vfs_inode) || 372 size > fs_info->sectorsize || 373 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 374 data_len > fs_info->max_inline) 375 return 1; 376 377 path = btrfs_alloc_path(); 378 if (!path) 379 return -ENOMEM; 380 381 trans = btrfs_join_transaction(root); 382 if (IS_ERR(trans)) { 383 btrfs_free_path(path); 384 return PTR_ERR(trans); 385 } 386 trans->block_rsv = &inode->block_rsv; 387 388 drop_args.path = path; 389 drop_args.start = 0; 390 drop_args.end = fs_info->sectorsize; 391 drop_args.drop_cache = true; 392 drop_args.replace_extent = true; 393 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 394 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 395 if (ret) { 396 btrfs_abort_transaction(trans, ret); 397 goto out; 398 } 399 400 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 401 size, compressed_size, compress_type, 402 compressed_pages, update_i_size); 403 if (ret && ret != -ENOSPC) { 404 btrfs_abort_transaction(trans, ret); 405 goto out; 406 } else if (ret == -ENOSPC) { 407 ret = 1; 408 goto out; 409 } 410 411 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 412 ret = btrfs_update_inode(trans, root, inode); 413 if (ret && ret != -ENOSPC) { 414 btrfs_abort_transaction(trans, ret); 415 goto out; 416 } else if (ret == -ENOSPC) { 417 ret = 1; 418 goto out; 419 } 420 421 btrfs_set_inode_full_sync(inode); 422 out: 423 /* 424 * Don't forget to free the reserved space, as for inlined extent 425 * it won't count as data extent, free them directly here. 426 * And at reserve time, it's always aligned to page size, so 427 * just free one page here. 428 */ 429 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); 430 btrfs_free_path(path); 431 btrfs_end_transaction(trans); 432 return ret; 433 } 434 435 struct async_extent { 436 u64 start; 437 u64 ram_size; 438 u64 compressed_size; 439 struct page **pages; 440 unsigned long nr_pages; 441 int compress_type; 442 struct list_head list; 443 }; 444 445 struct async_chunk { 446 struct inode *inode; 447 struct page *locked_page; 448 u64 start; 449 u64 end; 450 unsigned int write_flags; 451 struct list_head extents; 452 struct cgroup_subsys_state *blkcg_css; 453 struct btrfs_work work; 454 struct async_cow *async_cow; 455 }; 456 457 struct async_cow { 458 atomic_t num_chunks; 459 struct async_chunk chunks[]; 460 }; 461 462 static noinline int add_async_extent(struct async_chunk *cow, 463 u64 start, u64 ram_size, 464 u64 compressed_size, 465 struct page **pages, 466 unsigned long nr_pages, 467 int compress_type) 468 { 469 struct async_extent *async_extent; 470 471 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 472 BUG_ON(!async_extent); /* -ENOMEM */ 473 async_extent->start = start; 474 async_extent->ram_size = ram_size; 475 async_extent->compressed_size = compressed_size; 476 async_extent->pages = pages; 477 async_extent->nr_pages = nr_pages; 478 async_extent->compress_type = compress_type; 479 list_add_tail(&async_extent->list, &cow->extents); 480 return 0; 481 } 482 483 /* 484 * Check if the inode has flags compatible with compression 485 */ 486 static inline bool inode_can_compress(struct btrfs_inode *inode) 487 { 488 if (inode->flags & BTRFS_INODE_NODATACOW || 489 inode->flags & BTRFS_INODE_NODATASUM) 490 return false; 491 return true; 492 } 493 494 /* 495 * Check if the inode needs to be submitted to compression, based on mount 496 * options, defragmentation, properties or heuristics. 497 */ 498 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 499 u64 end) 500 { 501 struct btrfs_fs_info *fs_info = inode->root->fs_info; 502 503 if (!inode_can_compress(inode)) { 504 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 505 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 506 btrfs_ino(inode)); 507 return 0; 508 } 509 /* 510 * Special check for subpage. 511 * 512 * We lock the full page then run each delalloc range in the page, thus 513 * for the following case, we will hit some subpage specific corner case: 514 * 515 * 0 32K 64K 516 * | |///////| |///////| 517 * \- A \- B 518 * 519 * In above case, both range A and range B will try to unlock the full 520 * page [0, 64K), causing the one finished later will have page 521 * unlocked already, triggering various page lock requirement BUG_ON()s. 522 * 523 * So here we add an artificial limit that subpage compression can only 524 * if the range is fully page aligned. 525 * 526 * In theory we only need to ensure the first page is fully covered, but 527 * the tailing partial page will be locked until the full compression 528 * finishes, delaying the write of other range. 529 * 530 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range 531 * first to prevent any submitted async extent to unlock the full page. 532 * By this, we can ensure for subpage case that only the last async_cow 533 * will unlock the full page. 534 */ 535 if (fs_info->sectorsize < PAGE_SIZE) { 536 if (!IS_ALIGNED(start, PAGE_SIZE) || 537 !IS_ALIGNED(end + 1, PAGE_SIZE)) 538 return 0; 539 } 540 541 /* force compress */ 542 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 543 return 1; 544 /* defrag ioctl */ 545 if (inode->defrag_compress) 546 return 1; 547 /* bad compression ratios */ 548 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 549 return 0; 550 if (btrfs_test_opt(fs_info, COMPRESS) || 551 inode->flags & BTRFS_INODE_COMPRESS || 552 inode->prop_compress) 553 return btrfs_compress_heuristic(&inode->vfs_inode, start, end); 554 return 0; 555 } 556 557 static inline void inode_should_defrag(struct btrfs_inode *inode, 558 u64 start, u64 end, u64 num_bytes, u32 small_write) 559 { 560 /* If this is a small write inside eof, kick off a defrag */ 561 if (num_bytes < small_write && 562 (start > 0 || end + 1 < inode->disk_i_size)) 563 btrfs_add_inode_defrag(NULL, inode, small_write); 564 } 565 566 /* 567 * we create compressed extents in two phases. The first 568 * phase compresses a range of pages that have already been 569 * locked (both pages and state bits are locked). 570 * 571 * This is done inside an ordered work queue, and the compression 572 * is spread across many cpus. The actual IO submission is step 573 * two, and the ordered work queue takes care of making sure that 574 * happens in the same order things were put onto the queue by 575 * writepages and friends. 576 * 577 * If this code finds it can't get good compression, it puts an 578 * entry onto the work queue to write the uncompressed bytes. This 579 * makes sure that both compressed inodes and uncompressed inodes 580 * are written in the same order that the flusher thread sent them 581 * down. 582 */ 583 static noinline int compress_file_range(struct async_chunk *async_chunk) 584 { 585 struct inode *inode = async_chunk->inode; 586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 587 u64 blocksize = fs_info->sectorsize; 588 u64 start = async_chunk->start; 589 u64 end = async_chunk->end; 590 u64 actual_end; 591 u64 i_size; 592 int ret = 0; 593 struct page **pages = NULL; 594 unsigned long nr_pages; 595 unsigned long total_compressed = 0; 596 unsigned long total_in = 0; 597 int i; 598 int will_compress; 599 int compress_type = fs_info->compress_type; 600 int compressed_extents = 0; 601 int redirty = 0; 602 603 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, 604 SZ_16K); 605 606 /* 607 * We need to save i_size before now because it could change in between 608 * us evaluating the size and assigning it. This is because we lock and 609 * unlock the page in truncate and fallocate, and then modify the i_size 610 * later on. 611 * 612 * The barriers are to emulate READ_ONCE, remove that once i_size_read 613 * does that for us. 614 */ 615 barrier(); 616 i_size = i_size_read(inode); 617 barrier(); 618 actual_end = min_t(u64, i_size, end + 1); 619 again: 620 will_compress = 0; 621 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 622 nr_pages = min_t(unsigned long, nr_pages, 623 BTRFS_MAX_COMPRESSED / PAGE_SIZE); 624 625 /* 626 * we don't want to send crud past the end of i_size through 627 * compression, that's just a waste of CPU time. So, if the 628 * end of the file is before the start of our current 629 * requested range of bytes, we bail out to the uncompressed 630 * cleanup code that can deal with all of this. 631 * 632 * It isn't really the fastest way to fix things, but this is a 633 * very uncommon corner. 634 */ 635 if (actual_end <= start) 636 goto cleanup_and_bail_uncompressed; 637 638 total_compressed = actual_end - start; 639 640 /* 641 * Skip compression for a small file range(<=blocksize) that 642 * isn't an inline extent, since it doesn't save disk space at all. 643 */ 644 if (total_compressed <= blocksize && 645 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) 646 goto cleanup_and_bail_uncompressed; 647 648 /* 649 * For subpage case, we require full page alignment for the sector 650 * aligned range. 651 * Thus we must also check against @actual_end, not just @end. 652 */ 653 if (blocksize < PAGE_SIZE) { 654 if (!IS_ALIGNED(start, PAGE_SIZE) || 655 !IS_ALIGNED(round_up(actual_end, blocksize), PAGE_SIZE)) 656 goto cleanup_and_bail_uncompressed; 657 } 658 659 total_compressed = min_t(unsigned long, total_compressed, 660 BTRFS_MAX_UNCOMPRESSED); 661 total_in = 0; 662 ret = 0; 663 664 /* 665 * we do compression for mount -o compress and when the 666 * inode has not been flagged as nocompress. This flag can 667 * change at any time if we discover bad compression ratios. 668 */ 669 if (inode_need_compress(BTRFS_I(inode), start, end)) { 670 WARN_ON(pages); 671 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 672 if (!pages) { 673 /* just bail out to the uncompressed code */ 674 nr_pages = 0; 675 goto cont; 676 } 677 678 if (BTRFS_I(inode)->defrag_compress) 679 compress_type = BTRFS_I(inode)->defrag_compress; 680 else if (BTRFS_I(inode)->prop_compress) 681 compress_type = BTRFS_I(inode)->prop_compress; 682 683 /* 684 * we need to call clear_page_dirty_for_io on each 685 * page in the range. Otherwise applications with the file 686 * mmap'd can wander in and change the page contents while 687 * we are compressing them. 688 * 689 * If the compression fails for any reason, we set the pages 690 * dirty again later on. 691 * 692 * Note that the remaining part is redirtied, the start pointer 693 * has moved, the end is the original one. 694 */ 695 if (!redirty) { 696 extent_range_clear_dirty_for_io(inode, start, end); 697 redirty = 1; 698 } 699 700 /* Compression level is applied here and only here */ 701 ret = btrfs_compress_pages( 702 compress_type | (fs_info->compress_level << 4), 703 inode->i_mapping, start, 704 pages, 705 &nr_pages, 706 &total_in, 707 &total_compressed); 708 709 if (!ret) { 710 unsigned long offset = offset_in_page(total_compressed); 711 struct page *page = pages[nr_pages - 1]; 712 713 /* zero the tail end of the last page, we might be 714 * sending it down to disk 715 */ 716 if (offset) 717 memzero_page(page, offset, PAGE_SIZE - offset); 718 will_compress = 1; 719 } 720 } 721 cont: 722 /* 723 * Check cow_file_range() for why we don't even try to create inline 724 * extent for subpage case. 725 */ 726 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 727 /* lets try to make an inline extent */ 728 if (ret || total_in < actual_end) { 729 /* we didn't compress the entire range, try 730 * to make an uncompressed inline extent. 731 */ 732 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 733 0, BTRFS_COMPRESS_NONE, 734 NULL, false); 735 } else { 736 /* try making a compressed inline extent */ 737 ret = cow_file_range_inline(BTRFS_I(inode), actual_end, 738 total_compressed, 739 compress_type, pages, 740 false); 741 } 742 if (ret <= 0) { 743 unsigned long clear_flags = EXTENT_DELALLOC | 744 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 745 EXTENT_DO_ACCOUNTING; 746 unsigned long page_error_op; 747 748 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; 749 750 /* 751 * inline extent creation worked or returned error, 752 * we don't need to create any more async work items. 753 * Unlock and free up our temp pages. 754 * 755 * We use DO_ACCOUNTING here because we need the 756 * delalloc_release_metadata to be done _after_ we drop 757 * our outstanding extent for clearing delalloc for this 758 * range. 759 */ 760 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end, 761 NULL, 762 clear_flags, 763 PAGE_UNLOCK | 764 PAGE_START_WRITEBACK | 765 page_error_op | 766 PAGE_END_WRITEBACK); 767 768 /* 769 * Ensure we only free the compressed pages if we have 770 * them allocated, as we can still reach here with 771 * inode_need_compress() == false. 772 */ 773 if (pages) { 774 for (i = 0; i < nr_pages; i++) { 775 WARN_ON(pages[i]->mapping); 776 put_page(pages[i]); 777 } 778 kfree(pages); 779 } 780 return 0; 781 } 782 } 783 784 if (will_compress) { 785 /* 786 * we aren't doing an inline extent round the compressed size 787 * up to a block size boundary so the allocator does sane 788 * things 789 */ 790 total_compressed = ALIGN(total_compressed, blocksize); 791 792 /* 793 * one last check to make sure the compression is really a 794 * win, compare the page count read with the blocks on disk, 795 * compression must free at least one sector size 796 */ 797 total_in = round_up(total_in, fs_info->sectorsize); 798 if (total_compressed + blocksize <= total_in) { 799 compressed_extents++; 800 801 /* 802 * The async work queues will take care of doing actual 803 * allocation on disk for these compressed pages, and 804 * will submit them to the elevator. 805 */ 806 add_async_extent(async_chunk, start, total_in, 807 total_compressed, pages, nr_pages, 808 compress_type); 809 810 if (start + total_in < end) { 811 start += total_in; 812 pages = NULL; 813 cond_resched(); 814 goto again; 815 } 816 return compressed_extents; 817 } 818 } 819 if (pages) { 820 /* 821 * the compression code ran but failed to make things smaller, 822 * free any pages it allocated and our page pointer array 823 */ 824 for (i = 0; i < nr_pages; i++) { 825 WARN_ON(pages[i]->mapping); 826 put_page(pages[i]); 827 } 828 kfree(pages); 829 pages = NULL; 830 total_compressed = 0; 831 nr_pages = 0; 832 833 /* flag the file so we don't compress in the future */ 834 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && 835 !(BTRFS_I(inode)->prop_compress)) { 836 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 837 } 838 } 839 cleanup_and_bail_uncompressed: 840 /* 841 * No compression, but we still need to write the pages in the file 842 * we've been given so far. redirty the locked page if it corresponds 843 * to our extent and set things up for the async work queue to run 844 * cow_file_range to do the normal delalloc dance. 845 */ 846 if (async_chunk->locked_page && 847 (page_offset(async_chunk->locked_page) >= start && 848 page_offset(async_chunk->locked_page)) <= end) { 849 __set_page_dirty_nobuffers(async_chunk->locked_page); 850 /* unlocked later on in the async handlers */ 851 } 852 853 if (redirty) 854 extent_range_redirty_for_io(inode, start, end); 855 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 856 BTRFS_COMPRESS_NONE); 857 compressed_extents++; 858 859 return compressed_extents; 860 } 861 862 static void free_async_extent_pages(struct async_extent *async_extent) 863 { 864 int i; 865 866 if (!async_extent->pages) 867 return; 868 869 for (i = 0; i < async_extent->nr_pages; i++) { 870 WARN_ON(async_extent->pages[i]->mapping); 871 put_page(async_extent->pages[i]); 872 } 873 kfree(async_extent->pages); 874 async_extent->nr_pages = 0; 875 async_extent->pages = NULL; 876 } 877 878 static int submit_uncompressed_range(struct btrfs_inode *inode, 879 struct async_extent *async_extent, 880 struct page *locked_page) 881 { 882 u64 start = async_extent->start; 883 u64 end = async_extent->start + async_extent->ram_size - 1; 884 unsigned long nr_written = 0; 885 int page_started = 0; 886 int ret; 887 888 /* 889 * Call cow_file_range() to run the delalloc range directly, since we 890 * won't go to NOCOW or async path again. 891 * 892 * Also we call cow_file_range() with @unlock_page == 0, so that we 893 * can directly submit them without interruption. 894 */ 895 ret = cow_file_range(inode, locked_page, start, end, &page_started, 896 &nr_written, 0); 897 /* Inline extent inserted, page gets unlocked and everything is done */ 898 if (page_started) { 899 ret = 0; 900 goto out; 901 } 902 if (ret < 0) { 903 if (locked_page) 904 unlock_page(locked_page); 905 goto out; 906 } 907 908 ret = extent_write_locked_range(&inode->vfs_inode, start, end); 909 /* All pages will be unlocked, including @locked_page */ 910 out: 911 kfree(async_extent); 912 return ret; 913 } 914 915 static int submit_one_async_extent(struct btrfs_inode *inode, 916 struct async_chunk *async_chunk, 917 struct async_extent *async_extent, 918 u64 *alloc_hint) 919 { 920 struct extent_io_tree *io_tree = &inode->io_tree; 921 struct btrfs_root *root = inode->root; 922 struct btrfs_fs_info *fs_info = root->fs_info; 923 struct btrfs_key ins; 924 struct page *locked_page = NULL; 925 struct extent_map *em; 926 int ret = 0; 927 u64 start = async_extent->start; 928 u64 end = async_extent->start + async_extent->ram_size - 1; 929 930 /* 931 * If async_chunk->locked_page is in the async_extent range, we need to 932 * handle it. 933 */ 934 if (async_chunk->locked_page) { 935 u64 locked_page_start = page_offset(async_chunk->locked_page); 936 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1; 937 938 if (!(start >= locked_page_end || end <= locked_page_start)) 939 locked_page = async_chunk->locked_page; 940 } 941 lock_extent(io_tree, start, end); 942 943 /* We have fall back to uncompressed write */ 944 if (!async_extent->pages) 945 return submit_uncompressed_range(inode, async_extent, locked_page); 946 947 ret = btrfs_reserve_extent(root, async_extent->ram_size, 948 async_extent->compressed_size, 949 async_extent->compressed_size, 950 0, *alloc_hint, &ins, 1, 1); 951 if (ret) { 952 free_async_extent_pages(async_extent); 953 /* 954 * Here we used to try again by going back to non-compressed 955 * path for ENOSPC. But we can't reserve space even for 956 * compressed size, how could it work for uncompressed size 957 * which requires larger size? So here we directly go error 958 * path. 959 */ 960 goto out_free; 961 } 962 963 /* Here we're doing allocation and writeback of the compressed pages */ 964 em = create_io_em(inode, start, 965 async_extent->ram_size, /* len */ 966 start, /* orig_start */ 967 ins.objectid, /* block_start */ 968 ins.offset, /* block_len */ 969 ins.offset, /* orig_block_len */ 970 async_extent->ram_size, /* ram_bytes */ 971 async_extent->compress_type, 972 BTRFS_ORDERED_COMPRESSED); 973 if (IS_ERR(em)) { 974 ret = PTR_ERR(em); 975 goto out_free_reserve; 976 } 977 free_extent_map(em); 978 979 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */ 980 async_extent->ram_size, /* num_bytes */ 981 async_extent->ram_size, /* ram_bytes */ 982 ins.objectid, /* disk_bytenr */ 983 ins.offset, /* disk_num_bytes */ 984 0, /* offset */ 985 1 << BTRFS_ORDERED_COMPRESSED, 986 async_extent->compress_type); 987 if (ret) { 988 btrfs_drop_extent_cache(inode, start, end, 0); 989 goto out_free_reserve; 990 } 991 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 992 993 /* Clear dirty, set writeback and unlock the pages. */ 994 extent_clear_unlock_delalloc(inode, start, end, 995 NULL, EXTENT_LOCKED | EXTENT_DELALLOC, 996 PAGE_UNLOCK | PAGE_START_WRITEBACK); 997 if (btrfs_submit_compressed_write(inode, start, /* file_offset */ 998 async_extent->ram_size, /* num_bytes */ 999 ins.objectid, /* disk_bytenr */ 1000 ins.offset, /* compressed_len */ 1001 async_extent->pages, /* compressed_pages */ 1002 async_extent->nr_pages, 1003 async_chunk->write_flags, 1004 async_chunk->blkcg_css, true)) { 1005 const u64 start = async_extent->start; 1006 const u64 end = start + async_extent->ram_size - 1; 1007 1008 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0); 1009 1010 extent_clear_unlock_delalloc(inode, start, end, NULL, 0, 1011 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1012 free_async_extent_pages(async_extent); 1013 } 1014 *alloc_hint = ins.objectid + ins.offset; 1015 kfree(async_extent); 1016 return ret; 1017 1018 out_free_reserve: 1019 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1020 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1021 out_free: 1022 extent_clear_unlock_delalloc(inode, start, end, 1023 NULL, EXTENT_LOCKED | EXTENT_DELALLOC | 1024 EXTENT_DELALLOC_NEW | 1025 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1026 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1027 PAGE_END_WRITEBACK | PAGE_SET_ERROR); 1028 free_async_extent_pages(async_extent); 1029 kfree(async_extent); 1030 return ret; 1031 } 1032 1033 /* 1034 * Phase two of compressed writeback. This is the ordered portion of the code, 1035 * which only gets called in the order the work was queued. We walk all the 1036 * async extents created by compress_file_range and send them down to the disk. 1037 */ 1038 static noinline void submit_compressed_extents(struct async_chunk *async_chunk) 1039 { 1040 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode); 1041 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1042 struct async_extent *async_extent; 1043 u64 alloc_hint = 0; 1044 int ret = 0; 1045 1046 while (!list_empty(&async_chunk->extents)) { 1047 u64 extent_start; 1048 u64 ram_size; 1049 1050 async_extent = list_entry(async_chunk->extents.next, 1051 struct async_extent, list); 1052 list_del(&async_extent->list); 1053 extent_start = async_extent->start; 1054 ram_size = async_extent->ram_size; 1055 1056 ret = submit_one_async_extent(inode, async_chunk, async_extent, 1057 &alloc_hint); 1058 btrfs_debug(fs_info, 1059 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1060 inode->root->root_key.objectid, 1061 btrfs_ino(inode), extent_start, ram_size, ret); 1062 } 1063 } 1064 1065 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1066 u64 num_bytes) 1067 { 1068 struct extent_map_tree *em_tree = &inode->extent_tree; 1069 struct extent_map *em; 1070 u64 alloc_hint = 0; 1071 1072 read_lock(&em_tree->lock); 1073 em = search_extent_mapping(em_tree, start, num_bytes); 1074 if (em) { 1075 /* 1076 * if block start isn't an actual block number then find the 1077 * first block in this inode and use that as a hint. If that 1078 * block is also bogus then just don't worry about it. 1079 */ 1080 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1081 free_extent_map(em); 1082 em = search_extent_mapping(em_tree, 0, 0); 1083 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 1084 alloc_hint = em->block_start; 1085 if (em) 1086 free_extent_map(em); 1087 } else { 1088 alloc_hint = em->block_start; 1089 free_extent_map(em); 1090 } 1091 } 1092 read_unlock(&em_tree->lock); 1093 1094 return alloc_hint; 1095 } 1096 1097 /* 1098 * when extent_io.c finds a delayed allocation range in the file, 1099 * the call backs end up in this code. The basic idea is to 1100 * allocate extents on disk for the range, and create ordered data structs 1101 * in ram to track those extents. 1102 * 1103 * locked_page is the page that writepage had locked already. We use 1104 * it to make sure we don't do extra locks or unlocks. 1105 * 1106 * *page_started is set to one if we unlock locked_page and do everything 1107 * required to start IO on it. It may be clean and already done with 1108 * IO when we return. 1109 */ 1110 static noinline int cow_file_range(struct btrfs_inode *inode, 1111 struct page *locked_page, 1112 u64 start, u64 end, int *page_started, 1113 unsigned long *nr_written, int unlock) 1114 { 1115 struct btrfs_root *root = inode->root; 1116 struct btrfs_fs_info *fs_info = root->fs_info; 1117 u64 alloc_hint = 0; 1118 u64 num_bytes; 1119 unsigned long ram_size; 1120 u64 cur_alloc_size = 0; 1121 u64 min_alloc_size; 1122 u64 blocksize = fs_info->sectorsize; 1123 struct btrfs_key ins; 1124 struct extent_map *em; 1125 unsigned clear_bits; 1126 unsigned long page_ops; 1127 bool extent_reserved = false; 1128 int ret = 0; 1129 1130 if (btrfs_is_free_space_inode(inode)) { 1131 WARN_ON_ONCE(1); 1132 ret = -EINVAL; 1133 goto out_unlock; 1134 } 1135 1136 num_bytes = ALIGN(end - start + 1, blocksize); 1137 num_bytes = max(blocksize, num_bytes); 1138 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1139 1140 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1141 1142 /* 1143 * Due to the page size limit, for subpage we can only trigger the 1144 * writeback for the dirty sectors of page, that means data writeback 1145 * is doing more writeback than what we want. 1146 * 1147 * This is especially unexpected for some call sites like fallocate, 1148 * where we only increase i_size after everything is done. 1149 * This means we can trigger inline extent even if we didn't want to. 1150 * So here we skip inline extent creation completely. 1151 */ 1152 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) { 1153 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode), 1154 end + 1); 1155 1156 /* lets try to make an inline extent */ 1157 ret = cow_file_range_inline(inode, actual_end, 0, 1158 BTRFS_COMPRESS_NONE, NULL, false); 1159 if (ret == 0) { 1160 /* 1161 * We use DO_ACCOUNTING here because we need the 1162 * delalloc_release_metadata to be run _after_ we drop 1163 * our outstanding extent for clearing delalloc for this 1164 * range. 1165 */ 1166 extent_clear_unlock_delalloc(inode, start, end, 1167 locked_page, 1168 EXTENT_LOCKED | EXTENT_DELALLOC | 1169 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1170 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1171 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 1172 *nr_written = *nr_written + 1173 (end - start + PAGE_SIZE) / PAGE_SIZE; 1174 *page_started = 1; 1175 /* 1176 * locked_page is locked by the caller of 1177 * writepage_delalloc(), not locked by 1178 * __process_pages_contig(). 1179 * 1180 * We can't let __process_pages_contig() to unlock it, 1181 * as it doesn't have any subpage::writers recorded. 1182 * 1183 * Here we manually unlock the page, since the caller 1184 * can't use page_started to determine if it's an 1185 * inline extent or a compressed extent. 1186 */ 1187 unlock_page(locked_page); 1188 goto out; 1189 } else if (ret < 0) { 1190 goto out_unlock; 1191 } 1192 } 1193 1194 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 1195 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 1196 1197 /* 1198 * Relocation relies on the relocated extents to have exactly the same 1199 * size as the original extents. Normally writeback for relocation data 1200 * extents follows a NOCOW path because relocation preallocates the 1201 * extents. However, due to an operation such as scrub turning a block 1202 * group to RO mode, it may fallback to COW mode, so we must make sure 1203 * an extent allocated during COW has exactly the requested size and can 1204 * not be split into smaller extents, otherwise relocation breaks and 1205 * fails during the stage where it updates the bytenr of file extent 1206 * items. 1207 */ 1208 if (btrfs_is_data_reloc_root(root)) 1209 min_alloc_size = num_bytes; 1210 else 1211 min_alloc_size = fs_info->sectorsize; 1212 1213 while (num_bytes > 0) { 1214 cur_alloc_size = num_bytes; 1215 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, 1216 min_alloc_size, 0, alloc_hint, 1217 &ins, 1, 1); 1218 if (ret < 0) 1219 goto out_unlock; 1220 cur_alloc_size = ins.offset; 1221 extent_reserved = true; 1222 1223 ram_size = ins.offset; 1224 em = create_io_em(inode, start, ins.offset, /* len */ 1225 start, /* orig_start */ 1226 ins.objectid, /* block_start */ 1227 ins.offset, /* block_len */ 1228 ins.offset, /* orig_block_len */ 1229 ram_size, /* ram_bytes */ 1230 BTRFS_COMPRESS_NONE, /* compress_type */ 1231 BTRFS_ORDERED_REGULAR /* type */); 1232 if (IS_ERR(em)) { 1233 ret = PTR_ERR(em); 1234 goto out_reserve; 1235 } 1236 free_extent_map(em); 1237 1238 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size, 1239 ins.objectid, cur_alloc_size, 0, 1240 1 << BTRFS_ORDERED_REGULAR, 1241 BTRFS_COMPRESS_NONE); 1242 if (ret) 1243 goto out_drop_extent_cache; 1244 1245 if (btrfs_is_data_reloc_root(root)) { 1246 ret = btrfs_reloc_clone_csums(inode, start, 1247 cur_alloc_size); 1248 /* 1249 * Only drop cache here, and process as normal. 1250 * 1251 * We must not allow extent_clear_unlock_delalloc() 1252 * at out_unlock label to free meta of this ordered 1253 * extent, as its meta should be freed by 1254 * btrfs_finish_ordered_io(). 1255 * 1256 * So we must continue until @start is increased to 1257 * skip current ordered extent. 1258 */ 1259 if (ret) 1260 btrfs_drop_extent_cache(inode, start, 1261 start + ram_size - 1, 0); 1262 } 1263 1264 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1265 1266 /* 1267 * We're not doing compressed IO, don't unlock the first page 1268 * (which the caller expects to stay locked), don't clear any 1269 * dirty bits and don't set any writeback bits 1270 * 1271 * Do set the Ordered (Private2) bit so we know this page was 1272 * properly setup for writepage. 1273 */ 1274 page_ops = unlock ? PAGE_UNLOCK : 0; 1275 page_ops |= PAGE_SET_ORDERED; 1276 1277 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1, 1278 locked_page, 1279 EXTENT_LOCKED | EXTENT_DELALLOC, 1280 page_ops); 1281 if (num_bytes < cur_alloc_size) 1282 num_bytes = 0; 1283 else 1284 num_bytes -= cur_alloc_size; 1285 alloc_hint = ins.objectid + ins.offset; 1286 start += cur_alloc_size; 1287 extent_reserved = false; 1288 1289 /* 1290 * btrfs_reloc_clone_csums() error, since start is increased 1291 * extent_clear_unlock_delalloc() at out_unlock label won't 1292 * free metadata of current ordered extent, we're OK to exit. 1293 */ 1294 if (ret) 1295 goto out_unlock; 1296 } 1297 out: 1298 return ret; 1299 1300 out_drop_extent_cache: 1301 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0); 1302 out_reserve: 1303 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1304 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1305 out_unlock: 1306 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1307 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1308 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1309 /* 1310 * If we reserved an extent for our delalloc range (or a subrange) and 1311 * failed to create the respective ordered extent, then it means that 1312 * when we reserved the extent we decremented the extent's size from 1313 * the data space_info's bytes_may_use counter and incremented the 1314 * space_info's bytes_reserved counter by the same amount. We must make 1315 * sure extent_clear_unlock_delalloc() does not try to decrement again 1316 * the data space_info's bytes_may_use counter, therefore we do not pass 1317 * it the flag EXTENT_CLEAR_DATA_RESV. 1318 */ 1319 if (extent_reserved) { 1320 extent_clear_unlock_delalloc(inode, start, 1321 start + cur_alloc_size - 1, 1322 locked_page, 1323 clear_bits, 1324 page_ops); 1325 start += cur_alloc_size; 1326 if (start >= end) 1327 goto out; 1328 } 1329 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1330 clear_bits | EXTENT_CLEAR_DATA_RESV, 1331 page_ops); 1332 goto out; 1333 } 1334 1335 /* 1336 * work queue call back to started compression on a file and pages 1337 */ 1338 static noinline void async_cow_start(struct btrfs_work *work) 1339 { 1340 struct async_chunk *async_chunk; 1341 int compressed_extents; 1342 1343 async_chunk = container_of(work, struct async_chunk, work); 1344 1345 compressed_extents = compress_file_range(async_chunk); 1346 if (compressed_extents == 0) { 1347 btrfs_add_delayed_iput(async_chunk->inode); 1348 async_chunk->inode = NULL; 1349 } 1350 } 1351 1352 /* 1353 * work queue call back to submit previously compressed pages 1354 */ 1355 static noinline void async_cow_submit(struct btrfs_work *work) 1356 { 1357 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1358 work); 1359 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1360 unsigned long nr_pages; 1361 1362 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1363 PAGE_SHIFT; 1364 1365 /* 1366 * ->inode could be NULL if async_chunk_start has failed to compress, 1367 * in which case we don't have anything to submit, yet we need to 1368 * always adjust ->async_delalloc_pages as its paired with the init 1369 * happening in cow_file_range_async 1370 */ 1371 if (async_chunk->inode) 1372 submit_compressed_extents(async_chunk); 1373 1374 /* atomic_sub_return implies a barrier */ 1375 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1376 5 * SZ_1M) 1377 cond_wake_up_nomb(&fs_info->async_submit_wait); 1378 } 1379 1380 static noinline void async_cow_free(struct btrfs_work *work) 1381 { 1382 struct async_chunk *async_chunk; 1383 struct async_cow *async_cow; 1384 1385 async_chunk = container_of(work, struct async_chunk, work); 1386 if (async_chunk->inode) 1387 btrfs_add_delayed_iput(async_chunk->inode); 1388 if (async_chunk->blkcg_css) 1389 css_put(async_chunk->blkcg_css); 1390 1391 async_cow = async_chunk->async_cow; 1392 if (atomic_dec_and_test(&async_cow->num_chunks)) 1393 kvfree(async_cow); 1394 } 1395 1396 static int cow_file_range_async(struct btrfs_inode *inode, 1397 struct writeback_control *wbc, 1398 struct page *locked_page, 1399 u64 start, u64 end, int *page_started, 1400 unsigned long *nr_written) 1401 { 1402 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1403 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1404 struct async_cow *ctx; 1405 struct async_chunk *async_chunk; 1406 unsigned long nr_pages; 1407 u64 cur_end; 1408 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1409 int i; 1410 bool should_compress; 1411 unsigned nofs_flag; 1412 const unsigned int write_flags = wbc_to_write_flags(wbc); 1413 1414 unlock_extent(&inode->io_tree, start, end); 1415 1416 if (inode->flags & BTRFS_INODE_NOCOMPRESS && 1417 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) { 1418 num_chunks = 1; 1419 should_compress = false; 1420 } else { 1421 should_compress = true; 1422 } 1423 1424 nofs_flag = memalloc_nofs_save(); 1425 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1426 memalloc_nofs_restore(nofs_flag); 1427 1428 if (!ctx) { 1429 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | 1430 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | 1431 EXTENT_DO_ACCOUNTING; 1432 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | 1433 PAGE_END_WRITEBACK | PAGE_SET_ERROR; 1434 1435 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1436 clear_bits, page_ops); 1437 return -ENOMEM; 1438 } 1439 1440 async_chunk = ctx->chunks; 1441 atomic_set(&ctx->num_chunks, num_chunks); 1442 1443 for (i = 0; i < num_chunks; i++) { 1444 if (should_compress) 1445 cur_end = min(end, start + SZ_512K - 1); 1446 else 1447 cur_end = end; 1448 1449 /* 1450 * igrab is called higher up in the call chain, take only the 1451 * lightweight reference for the callback lifetime 1452 */ 1453 ihold(&inode->vfs_inode); 1454 async_chunk[i].async_cow = ctx; 1455 async_chunk[i].inode = &inode->vfs_inode; 1456 async_chunk[i].start = start; 1457 async_chunk[i].end = cur_end; 1458 async_chunk[i].write_flags = write_flags; 1459 INIT_LIST_HEAD(&async_chunk[i].extents); 1460 1461 /* 1462 * The locked_page comes all the way from writepage and its 1463 * the original page we were actually given. As we spread 1464 * this large delalloc region across multiple async_chunk 1465 * structs, only the first struct needs a pointer to locked_page 1466 * 1467 * This way we don't need racey decisions about who is supposed 1468 * to unlock it. 1469 */ 1470 if (locked_page) { 1471 /* 1472 * Depending on the compressibility, the pages might or 1473 * might not go through async. We want all of them to 1474 * be accounted against wbc once. Let's do it here 1475 * before the paths diverge. wbc accounting is used 1476 * only for foreign writeback detection and doesn't 1477 * need full accuracy. Just account the whole thing 1478 * against the first page. 1479 */ 1480 wbc_account_cgroup_owner(wbc, locked_page, 1481 cur_end - start); 1482 async_chunk[i].locked_page = locked_page; 1483 locked_page = NULL; 1484 } else { 1485 async_chunk[i].locked_page = NULL; 1486 } 1487 1488 if (blkcg_css != blkcg_root_css) { 1489 css_get(blkcg_css); 1490 async_chunk[i].blkcg_css = blkcg_css; 1491 } else { 1492 async_chunk[i].blkcg_css = NULL; 1493 } 1494 1495 btrfs_init_work(&async_chunk[i].work, async_cow_start, 1496 async_cow_submit, async_cow_free); 1497 1498 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1499 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1500 1501 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1502 1503 *nr_written += nr_pages; 1504 start = cur_end + 1; 1505 } 1506 *page_started = 1; 1507 return 0; 1508 } 1509 1510 static noinline int run_delalloc_zoned(struct btrfs_inode *inode, 1511 struct page *locked_page, u64 start, 1512 u64 end, int *page_started, 1513 unsigned long *nr_written) 1514 { 1515 int ret; 1516 1517 ret = cow_file_range(inode, locked_page, start, end, page_started, 1518 nr_written, 0); 1519 if (ret) 1520 return ret; 1521 1522 if (*page_started) 1523 return 0; 1524 1525 __set_page_dirty_nobuffers(locked_page); 1526 account_page_redirty(locked_page); 1527 extent_write_locked_range(&inode->vfs_inode, start, end); 1528 *page_started = 1; 1529 1530 return 0; 1531 } 1532 1533 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, 1534 u64 bytenr, u64 num_bytes) 1535 { 1536 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr); 1537 struct btrfs_ordered_sum *sums; 1538 int ret; 1539 LIST_HEAD(list); 1540 1541 ret = btrfs_lookup_csums_range(csum_root, bytenr, 1542 bytenr + num_bytes - 1, &list, 0); 1543 if (ret == 0 && list_empty(&list)) 1544 return 0; 1545 1546 while (!list_empty(&list)) { 1547 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1548 list_del(&sums->list); 1549 kfree(sums); 1550 } 1551 if (ret < 0) 1552 return ret; 1553 return 1; 1554 } 1555 1556 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page, 1557 const u64 start, const u64 end, 1558 int *page_started, unsigned long *nr_written) 1559 { 1560 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1561 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1562 const u64 range_bytes = end + 1 - start; 1563 struct extent_io_tree *io_tree = &inode->io_tree; 1564 u64 range_start = start; 1565 u64 count; 1566 1567 /* 1568 * If EXTENT_NORESERVE is set it means that when the buffered write was 1569 * made we had not enough available data space and therefore we did not 1570 * reserve data space for it, since we though we could do NOCOW for the 1571 * respective file range (either there is prealloc extent or the inode 1572 * has the NOCOW bit set). 1573 * 1574 * However when we need to fallback to COW mode (because for example the 1575 * block group for the corresponding extent was turned to RO mode by a 1576 * scrub or relocation) we need to do the following: 1577 * 1578 * 1) We increment the bytes_may_use counter of the data space info. 1579 * If COW succeeds, it allocates a new data extent and after doing 1580 * that it decrements the space info's bytes_may_use counter and 1581 * increments its bytes_reserved counter by the same amount (we do 1582 * this at btrfs_add_reserved_bytes()). So we need to increment the 1583 * bytes_may_use counter to compensate (when space is reserved at 1584 * buffered write time, the bytes_may_use counter is incremented); 1585 * 1586 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1587 * that if the COW path fails for any reason, it decrements (through 1588 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1589 * data space info, which we incremented in the step above. 1590 * 1591 * If we need to fallback to cow and the inode corresponds to a free 1592 * space cache inode or an inode of the data relocation tree, we must 1593 * also increment bytes_may_use of the data space_info for the same 1594 * reason. Space caches and relocated data extents always get a prealloc 1595 * extent for them, however scrub or balance may have set the block 1596 * group that contains that extent to RO mode and therefore force COW 1597 * when starting writeback. 1598 */ 1599 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1600 EXTENT_NORESERVE, 0); 1601 if (count > 0 || is_space_ino || is_reloc_ino) { 1602 u64 bytes = count; 1603 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1604 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1605 1606 if (is_space_ino || is_reloc_ino) 1607 bytes = range_bytes; 1608 1609 spin_lock(&sinfo->lock); 1610 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes); 1611 spin_unlock(&sinfo->lock); 1612 1613 if (count > 0) 1614 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1615 0, 0, NULL); 1616 } 1617 1618 return cow_file_range(inode, locked_page, start, end, page_started, 1619 nr_written, 1); 1620 } 1621 1622 /* 1623 * when nowcow writeback call back. This checks for snapshots or COW copies 1624 * of the extents that exist in the file, and COWs the file as required. 1625 * 1626 * If no cow copies or snapshots exist, we write directly to the existing 1627 * blocks on disk 1628 */ 1629 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 1630 struct page *locked_page, 1631 const u64 start, const u64 end, 1632 int *page_started, 1633 unsigned long *nr_written) 1634 { 1635 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1636 struct btrfs_root *root = inode->root; 1637 struct btrfs_path *path; 1638 u64 cow_start = (u64)-1; 1639 u64 cur_offset = start; 1640 int ret; 1641 bool check_prev = true; 1642 const bool freespace_inode = btrfs_is_free_space_inode(inode); 1643 u64 ino = btrfs_ino(inode); 1644 bool nocow = false; 1645 u64 disk_bytenr = 0; 1646 const bool force = inode->flags & BTRFS_INODE_NODATACOW; 1647 1648 path = btrfs_alloc_path(); 1649 if (!path) { 1650 extent_clear_unlock_delalloc(inode, start, end, locked_page, 1651 EXTENT_LOCKED | EXTENT_DELALLOC | 1652 EXTENT_DO_ACCOUNTING | 1653 EXTENT_DEFRAG, PAGE_UNLOCK | 1654 PAGE_START_WRITEBACK | 1655 PAGE_END_WRITEBACK); 1656 return -ENOMEM; 1657 } 1658 1659 while (1) { 1660 struct btrfs_key found_key; 1661 struct btrfs_file_extent_item *fi; 1662 struct extent_buffer *leaf; 1663 u64 extent_end; 1664 u64 extent_offset; 1665 u64 num_bytes = 0; 1666 u64 disk_num_bytes; 1667 u64 ram_bytes; 1668 int extent_type; 1669 1670 nocow = false; 1671 1672 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 1673 cur_offset, 0); 1674 if (ret < 0) 1675 goto error; 1676 1677 /* 1678 * If there is no extent for our range when doing the initial 1679 * search, then go back to the previous slot as it will be the 1680 * one containing the search offset 1681 */ 1682 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1683 leaf = path->nodes[0]; 1684 btrfs_item_key_to_cpu(leaf, &found_key, 1685 path->slots[0] - 1); 1686 if (found_key.objectid == ino && 1687 found_key.type == BTRFS_EXTENT_DATA_KEY) 1688 path->slots[0]--; 1689 } 1690 check_prev = false; 1691 next_slot: 1692 /* Go to next leaf if we have exhausted the current one */ 1693 leaf = path->nodes[0]; 1694 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1695 ret = btrfs_next_leaf(root, path); 1696 if (ret < 0) { 1697 if (cow_start != (u64)-1) 1698 cur_offset = cow_start; 1699 goto error; 1700 } 1701 if (ret > 0) 1702 break; 1703 leaf = path->nodes[0]; 1704 } 1705 1706 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1707 1708 /* Didn't find anything for our INO */ 1709 if (found_key.objectid > ino) 1710 break; 1711 /* 1712 * Keep searching until we find an EXTENT_ITEM or there are no 1713 * more extents for this inode 1714 */ 1715 if (WARN_ON_ONCE(found_key.objectid < ino) || 1716 found_key.type < BTRFS_EXTENT_DATA_KEY) { 1717 path->slots[0]++; 1718 goto next_slot; 1719 } 1720 1721 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 1722 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 1723 found_key.offset > end) 1724 break; 1725 1726 /* 1727 * If the found extent starts after requested offset, then 1728 * adjust extent_end to be right before this extent begins 1729 */ 1730 if (found_key.offset > cur_offset) { 1731 extent_end = found_key.offset; 1732 extent_type = 0; 1733 goto out_check; 1734 } 1735 1736 /* 1737 * Found extent which begins before our range and potentially 1738 * intersect it 1739 */ 1740 fi = btrfs_item_ptr(leaf, path->slots[0], 1741 struct btrfs_file_extent_item); 1742 extent_type = btrfs_file_extent_type(leaf, fi); 1743 1744 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1745 if (extent_type == BTRFS_FILE_EXTENT_REG || 1746 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1747 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1748 extent_offset = btrfs_file_extent_offset(leaf, fi); 1749 extent_end = found_key.offset + 1750 btrfs_file_extent_num_bytes(leaf, fi); 1751 disk_num_bytes = 1752 btrfs_file_extent_disk_num_bytes(leaf, fi); 1753 /* 1754 * If the extent we got ends before our current offset, 1755 * skip to the next extent. 1756 */ 1757 if (extent_end <= cur_offset) { 1758 path->slots[0]++; 1759 goto next_slot; 1760 } 1761 /* Skip holes */ 1762 if (disk_bytenr == 0) 1763 goto out_check; 1764 /* Skip compressed/encrypted/encoded extents */ 1765 if (btrfs_file_extent_compression(leaf, fi) || 1766 btrfs_file_extent_encryption(leaf, fi) || 1767 btrfs_file_extent_other_encoding(leaf, fi)) 1768 goto out_check; 1769 /* 1770 * If extent is created before the last volume's snapshot 1771 * this implies the extent is shared, hence we can't do 1772 * nocow. This is the same check as in 1773 * btrfs_cross_ref_exist but without calling 1774 * btrfs_search_slot. 1775 */ 1776 if (!freespace_inode && 1777 btrfs_file_extent_generation(leaf, fi) <= 1778 btrfs_root_last_snapshot(&root->root_item)) 1779 goto out_check; 1780 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1781 goto out_check; 1782 1783 /* 1784 * The following checks can be expensive, as they need to 1785 * take other locks and do btree or rbtree searches, so 1786 * release the path to avoid blocking other tasks for too 1787 * long. 1788 */ 1789 btrfs_release_path(path); 1790 1791 ret = btrfs_cross_ref_exist(root, ino, 1792 found_key.offset - 1793 extent_offset, disk_bytenr, false); 1794 if (ret) { 1795 /* 1796 * ret could be -EIO if the above fails to read 1797 * metadata. 1798 */ 1799 if (ret < 0) { 1800 if (cow_start != (u64)-1) 1801 cur_offset = cow_start; 1802 goto error; 1803 } 1804 1805 WARN_ON_ONCE(freespace_inode); 1806 goto out_check; 1807 } 1808 disk_bytenr += extent_offset; 1809 disk_bytenr += cur_offset - found_key.offset; 1810 num_bytes = min(end + 1, extent_end) - cur_offset; 1811 /* 1812 * If there are pending snapshots for this root, we 1813 * fall into common COW way 1814 */ 1815 if (!freespace_inode && atomic_read(&root->snapshot_force_cow)) 1816 goto out_check; 1817 /* 1818 * force cow if csum exists in the range. 1819 * this ensure that csum for a given extent are 1820 * either valid or do not exist. 1821 */ 1822 ret = csum_exist_in_range(fs_info, disk_bytenr, 1823 num_bytes); 1824 if (ret) { 1825 /* 1826 * ret could be -EIO if the above fails to read 1827 * metadata. 1828 */ 1829 if (ret < 0) { 1830 if (cow_start != (u64)-1) 1831 cur_offset = cow_start; 1832 goto error; 1833 } 1834 WARN_ON_ONCE(freespace_inode); 1835 goto out_check; 1836 } 1837 /* If the extent's block group is RO, we must COW */ 1838 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) 1839 goto out_check; 1840 nocow = true; 1841 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1842 extent_end = found_key.offset + ram_bytes; 1843 extent_end = ALIGN(extent_end, fs_info->sectorsize); 1844 /* Skip extents outside of our requested range */ 1845 if (extent_end <= start) { 1846 path->slots[0]++; 1847 goto next_slot; 1848 } 1849 } else { 1850 /* If this triggers then we have a memory corruption */ 1851 BUG(); 1852 } 1853 out_check: 1854 /* 1855 * If nocow is false then record the beginning of the range 1856 * that needs to be COWed 1857 */ 1858 if (!nocow) { 1859 if (cow_start == (u64)-1) 1860 cow_start = cur_offset; 1861 cur_offset = extent_end; 1862 if (cur_offset > end) 1863 break; 1864 if (!path->nodes[0]) 1865 continue; 1866 path->slots[0]++; 1867 goto next_slot; 1868 } 1869 1870 /* 1871 * COW range from cow_start to found_key.offset - 1. As the key 1872 * will contain the beginning of the first extent that can be 1873 * NOCOW, following one which needs to be COW'ed 1874 */ 1875 if (cow_start != (u64)-1) { 1876 ret = fallback_to_cow(inode, locked_page, 1877 cow_start, found_key.offset - 1, 1878 page_started, nr_written); 1879 if (ret) 1880 goto error; 1881 cow_start = (u64)-1; 1882 } 1883 1884 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1885 u64 orig_start = found_key.offset - extent_offset; 1886 struct extent_map *em; 1887 1888 em = create_io_em(inode, cur_offset, num_bytes, 1889 orig_start, 1890 disk_bytenr, /* block_start */ 1891 num_bytes, /* block_len */ 1892 disk_num_bytes, /* orig_block_len */ 1893 ram_bytes, BTRFS_COMPRESS_NONE, 1894 BTRFS_ORDERED_PREALLOC); 1895 if (IS_ERR(em)) { 1896 ret = PTR_ERR(em); 1897 goto error; 1898 } 1899 free_extent_map(em); 1900 ret = btrfs_add_ordered_extent(inode, 1901 cur_offset, num_bytes, num_bytes, 1902 disk_bytenr, num_bytes, 0, 1903 1 << BTRFS_ORDERED_PREALLOC, 1904 BTRFS_COMPRESS_NONE); 1905 if (ret) { 1906 btrfs_drop_extent_cache(inode, cur_offset, 1907 cur_offset + num_bytes - 1, 1908 0); 1909 goto error; 1910 } 1911 } else { 1912 ret = btrfs_add_ordered_extent(inode, cur_offset, 1913 num_bytes, num_bytes, 1914 disk_bytenr, num_bytes, 1915 0, 1916 1 << BTRFS_ORDERED_NOCOW, 1917 BTRFS_COMPRESS_NONE); 1918 if (ret) 1919 goto error; 1920 } 1921 1922 if (nocow) 1923 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1924 nocow = false; 1925 1926 if (btrfs_is_data_reloc_root(root)) 1927 /* 1928 * Error handled later, as we must prevent 1929 * extent_clear_unlock_delalloc() in error handler 1930 * from freeing metadata of created ordered extent. 1931 */ 1932 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1933 num_bytes); 1934 1935 extent_clear_unlock_delalloc(inode, cur_offset, 1936 cur_offset + num_bytes - 1, 1937 locked_page, EXTENT_LOCKED | 1938 EXTENT_DELALLOC | 1939 EXTENT_CLEAR_DATA_RESV, 1940 PAGE_UNLOCK | PAGE_SET_ORDERED); 1941 1942 cur_offset = extent_end; 1943 1944 /* 1945 * btrfs_reloc_clone_csums() error, now we're OK to call error 1946 * handler, as metadata for created ordered extent will only 1947 * be freed by btrfs_finish_ordered_io(). 1948 */ 1949 if (ret) 1950 goto error; 1951 if (cur_offset > end) 1952 break; 1953 } 1954 btrfs_release_path(path); 1955 1956 if (cur_offset <= end && cow_start == (u64)-1) 1957 cow_start = cur_offset; 1958 1959 if (cow_start != (u64)-1) { 1960 cur_offset = end; 1961 ret = fallback_to_cow(inode, locked_page, cow_start, end, 1962 page_started, nr_written); 1963 if (ret) 1964 goto error; 1965 } 1966 1967 error: 1968 if (nocow) 1969 btrfs_dec_nocow_writers(fs_info, disk_bytenr); 1970 1971 if (ret && cur_offset < end) 1972 extent_clear_unlock_delalloc(inode, cur_offset, end, 1973 locked_page, EXTENT_LOCKED | 1974 EXTENT_DELALLOC | EXTENT_DEFRAG | 1975 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 1976 PAGE_START_WRITEBACK | 1977 PAGE_END_WRITEBACK); 1978 btrfs_free_path(path); 1979 return ret; 1980 } 1981 1982 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 1983 { 1984 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 1985 if (inode->defrag_bytes && 1986 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG, 1987 0, NULL)) 1988 return false; 1989 return true; 1990 } 1991 return false; 1992 } 1993 1994 /* 1995 * Function to process delayed allocation (create CoW) for ranges which are 1996 * being touched for the first time. 1997 */ 1998 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 1999 u64 start, u64 end, int *page_started, unsigned long *nr_written, 2000 struct writeback_control *wbc) 2001 { 2002 int ret; 2003 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2004 2005 /* 2006 * The range must cover part of the @locked_page, or the returned 2007 * @page_started can confuse the caller. 2008 */ 2009 ASSERT(!(end <= page_offset(locked_page) || 2010 start >= page_offset(locked_page) + PAGE_SIZE)); 2011 2012 if (should_nocow(inode, start, end)) { 2013 /* 2014 * Normally on a zoned device we're only doing COW writes, but 2015 * in case of relocation on a zoned filesystem we have taken 2016 * precaution, that we're only writing sequentially. It's safe 2017 * to use run_delalloc_nocow() here, like for regular 2018 * preallocated inodes. 2019 */ 2020 ASSERT(!zoned || 2021 (zoned && btrfs_is_data_reloc_root(inode->root))); 2022 ret = run_delalloc_nocow(inode, locked_page, start, end, 2023 page_started, nr_written); 2024 } else if (!inode_can_compress(inode) || 2025 !inode_need_compress(inode, start, end)) { 2026 if (zoned) 2027 ret = run_delalloc_zoned(inode, locked_page, start, end, 2028 page_started, nr_written); 2029 else 2030 ret = cow_file_range(inode, locked_page, start, end, 2031 page_started, nr_written, 1); 2032 } else { 2033 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 2034 ret = cow_file_range_async(inode, wbc, locked_page, start, end, 2035 page_started, nr_written); 2036 } 2037 ASSERT(ret <= 0); 2038 if (ret) 2039 btrfs_cleanup_ordered_extents(inode, locked_page, start, 2040 end - start + 1); 2041 return ret; 2042 } 2043 2044 void btrfs_split_delalloc_extent(struct inode *inode, 2045 struct extent_state *orig, u64 split) 2046 { 2047 u64 size; 2048 2049 /* not delalloc, ignore it */ 2050 if (!(orig->state & EXTENT_DELALLOC)) 2051 return; 2052 2053 size = orig->end - orig->start + 1; 2054 if (size > BTRFS_MAX_EXTENT_SIZE) { 2055 u32 num_extents; 2056 u64 new_size; 2057 2058 /* 2059 * See the explanation in btrfs_merge_delalloc_extent, the same 2060 * applies here, just in reverse. 2061 */ 2062 new_size = orig->end - split + 1; 2063 num_extents = count_max_extents(new_size); 2064 new_size = split - orig->start; 2065 num_extents += count_max_extents(new_size); 2066 if (count_max_extents(size) >= num_extents) 2067 return; 2068 } 2069 2070 spin_lock(&BTRFS_I(inode)->lock); 2071 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 2072 spin_unlock(&BTRFS_I(inode)->lock); 2073 } 2074 2075 /* 2076 * Handle merged delayed allocation extents so we can keep track of new extents 2077 * that are just merged onto old extents, such as when we are doing sequential 2078 * writes, so we can properly account for the metadata space we'll need. 2079 */ 2080 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 2081 struct extent_state *other) 2082 { 2083 u64 new_size, old_size; 2084 u32 num_extents; 2085 2086 /* not delalloc, ignore it */ 2087 if (!(other->state & EXTENT_DELALLOC)) 2088 return; 2089 2090 if (new->start > other->start) 2091 new_size = new->end - other->start + 1; 2092 else 2093 new_size = other->end - new->start + 1; 2094 2095 /* we're not bigger than the max, unreserve the space and go */ 2096 if (new_size <= BTRFS_MAX_EXTENT_SIZE) { 2097 spin_lock(&BTRFS_I(inode)->lock); 2098 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2099 spin_unlock(&BTRFS_I(inode)->lock); 2100 return; 2101 } 2102 2103 /* 2104 * We have to add up either side to figure out how many extents were 2105 * accounted for before we merged into one big extent. If the number of 2106 * extents we accounted for is <= the amount we need for the new range 2107 * then we can return, otherwise drop. Think of it like this 2108 * 2109 * [ 4k][MAX_SIZE] 2110 * 2111 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2112 * need 2 outstanding extents, on one side we have 1 and the other side 2113 * we have 1 so they are == and we can return. But in this case 2114 * 2115 * [MAX_SIZE+4k][MAX_SIZE+4k] 2116 * 2117 * Each range on their own accounts for 2 extents, but merged together 2118 * they are only 3 extents worth of accounting, so we need to drop in 2119 * this case. 2120 */ 2121 old_size = other->end - other->start + 1; 2122 num_extents = count_max_extents(old_size); 2123 old_size = new->end - new->start + 1; 2124 num_extents += count_max_extents(old_size); 2125 if (count_max_extents(new_size) >= num_extents) 2126 return; 2127 2128 spin_lock(&BTRFS_I(inode)->lock); 2129 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); 2130 spin_unlock(&BTRFS_I(inode)->lock); 2131 } 2132 2133 static void btrfs_add_delalloc_inodes(struct btrfs_root *root, 2134 struct inode *inode) 2135 { 2136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2137 2138 spin_lock(&root->delalloc_lock); 2139 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 2140 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 2141 &root->delalloc_inodes); 2142 set_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2143 &BTRFS_I(inode)->runtime_flags); 2144 root->nr_delalloc_inodes++; 2145 if (root->nr_delalloc_inodes == 1) { 2146 spin_lock(&fs_info->delalloc_root_lock); 2147 BUG_ON(!list_empty(&root->delalloc_root)); 2148 list_add_tail(&root->delalloc_root, 2149 &fs_info->delalloc_roots); 2150 spin_unlock(&fs_info->delalloc_root_lock); 2151 } 2152 } 2153 spin_unlock(&root->delalloc_lock); 2154 } 2155 2156 2157 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 2158 struct btrfs_inode *inode) 2159 { 2160 struct btrfs_fs_info *fs_info = root->fs_info; 2161 2162 if (!list_empty(&inode->delalloc_inodes)) { 2163 list_del_init(&inode->delalloc_inodes); 2164 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2165 &inode->runtime_flags); 2166 root->nr_delalloc_inodes--; 2167 if (!root->nr_delalloc_inodes) { 2168 ASSERT(list_empty(&root->delalloc_inodes)); 2169 spin_lock(&fs_info->delalloc_root_lock); 2170 BUG_ON(list_empty(&root->delalloc_root)); 2171 list_del_init(&root->delalloc_root); 2172 spin_unlock(&fs_info->delalloc_root_lock); 2173 } 2174 } 2175 } 2176 2177 static void btrfs_del_delalloc_inode(struct btrfs_root *root, 2178 struct btrfs_inode *inode) 2179 { 2180 spin_lock(&root->delalloc_lock); 2181 __btrfs_del_delalloc_inode(root, inode); 2182 spin_unlock(&root->delalloc_lock); 2183 } 2184 2185 /* 2186 * Properly track delayed allocation bytes in the inode and to maintain the 2187 * list of inodes that have pending delalloc work to be done. 2188 */ 2189 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 2190 unsigned *bits) 2191 { 2192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2193 2194 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) 2195 WARN_ON(1); 2196 /* 2197 * set_bit and clear bit hooks normally require _irqsave/restore 2198 * but in this case, we are only testing for the DELALLOC 2199 * bit, which is only set or cleared with irqs on 2200 */ 2201 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2202 struct btrfs_root *root = BTRFS_I(inode)->root; 2203 u64 len = state->end + 1 - state->start; 2204 u32 num_extents = count_max_extents(len); 2205 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); 2206 2207 spin_lock(&BTRFS_I(inode)->lock); 2208 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); 2209 spin_unlock(&BTRFS_I(inode)->lock); 2210 2211 /* For sanity tests */ 2212 if (btrfs_is_testing(fs_info)) 2213 return; 2214 2215 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2216 fs_info->delalloc_batch); 2217 spin_lock(&BTRFS_I(inode)->lock); 2218 BTRFS_I(inode)->delalloc_bytes += len; 2219 if (*bits & EXTENT_DEFRAG) 2220 BTRFS_I(inode)->defrag_bytes += len; 2221 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2222 &BTRFS_I(inode)->runtime_flags)) 2223 btrfs_add_delalloc_inodes(root, inode); 2224 spin_unlock(&BTRFS_I(inode)->lock); 2225 } 2226 2227 if (!(state->state & EXTENT_DELALLOC_NEW) && 2228 (*bits & EXTENT_DELALLOC_NEW)) { 2229 spin_lock(&BTRFS_I(inode)->lock); 2230 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - 2231 state->start; 2232 spin_unlock(&BTRFS_I(inode)->lock); 2233 } 2234 } 2235 2236 /* 2237 * Once a range is no longer delalloc this function ensures that proper 2238 * accounting happens. 2239 */ 2240 void btrfs_clear_delalloc_extent(struct inode *vfs_inode, 2241 struct extent_state *state, unsigned *bits) 2242 { 2243 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 2244 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb); 2245 u64 len = state->end + 1 - state->start; 2246 u32 num_extents = count_max_extents(len); 2247 2248 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { 2249 spin_lock(&inode->lock); 2250 inode->defrag_bytes -= len; 2251 spin_unlock(&inode->lock); 2252 } 2253 2254 /* 2255 * set_bit and clear bit hooks normally require _irqsave/restore 2256 * but in this case, we are only testing for the DELALLOC 2257 * bit, which is only set or cleared with irqs on 2258 */ 2259 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 2260 struct btrfs_root *root = inode->root; 2261 bool do_list = !btrfs_is_free_space_inode(inode); 2262 2263 spin_lock(&inode->lock); 2264 btrfs_mod_outstanding_extents(inode, -num_extents); 2265 spin_unlock(&inode->lock); 2266 2267 /* 2268 * We don't reserve metadata space for space cache inodes so we 2269 * don't need to call delalloc_release_metadata if there is an 2270 * error. 2271 */ 2272 if (*bits & EXTENT_CLEAR_META_RESV && 2273 root != fs_info->tree_root) 2274 btrfs_delalloc_release_metadata(inode, len, false); 2275 2276 /* For sanity tests. */ 2277 if (btrfs_is_testing(fs_info)) 2278 return; 2279 2280 if (!btrfs_is_data_reloc_root(root) && 2281 do_list && !(state->state & EXTENT_NORESERVE) && 2282 (*bits & EXTENT_CLEAR_DATA_RESV)) 2283 btrfs_free_reserved_data_space_noquota(fs_info, len); 2284 2285 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2286 fs_info->delalloc_batch); 2287 spin_lock(&inode->lock); 2288 inode->delalloc_bytes -= len; 2289 if (do_list && inode->delalloc_bytes == 0 && 2290 test_bit(BTRFS_INODE_IN_DELALLOC_LIST, 2291 &inode->runtime_flags)) 2292 btrfs_del_delalloc_inode(root, inode); 2293 spin_unlock(&inode->lock); 2294 } 2295 2296 if ((state->state & EXTENT_DELALLOC_NEW) && 2297 (*bits & EXTENT_DELALLOC_NEW)) { 2298 spin_lock(&inode->lock); 2299 ASSERT(inode->new_delalloc_bytes >= len); 2300 inode->new_delalloc_bytes -= len; 2301 if (*bits & EXTENT_ADD_INODE_BYTES) 2302 inode_add_bytes(&inode->vfs_inode, len); 2303 spin_unlock(&inode->lock); 2304 } 2305 } 2306 2307 /* 2308 * in order to insert checksums into the metadata in large chunks, 2309 * we wait until bio submission time. All the pages in the bio are 2310 * checksummed and sums are attached onto the ordered extent record. 2311 * 2312 * At IO completion time the cums attached on the ordered extent record 2313 * are inserted into the btree 2314 */ 2315 static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio, 2316 u64 dio_file_offset) 2317 { 2318 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2319 } 2320 2321 /* 2322 * Split an extent_map at [start, start + len] 2323 * 2324 * This function is intended to be used only for extract_ordered_extent(). 2325 */ 2326 static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len, 2327 u64 pre, u64 post) 2328 { 2329 struct extent_map_tree *em_tree = &inode->extent_tree; 2330 struct extent_map *em; 2331 struct extent_map *split_pre = NULL; 2332 struct extent_map *split_mid = NULL; 2333 struct extent_map *split_post = NULL; 2334 int ret = 0; 2335 unsigned long flags; 2336 2337 /* Sanity check */ 2338 if (pre == 0 && post == 0) 2339 return 0; 2340 2341 split_pre = alloc_extent_map(); 2342 if (pre) 2343 split_mid = alloc_extent_map(); 2344 if (post) 2345 split_post = alloc_extent_map(); 2346 if (!split_pre || (pre && !split_mid) || (post && !split_post)) { 2347 ret = -ENOMEM; 2348 goto out; 2349 } 2350 2351 ASSERT(pre + post < len); 2352 2353 lock_extent(&inode->io_tree, start, start + len - 1); 2354 write_lock(&em_tree->lock); 2355 em = lookup_extent_mapping(em_tree, start, len); 2356 if (!em) { 2357 ret = -EIO; 2358 goto out_unlock; 2359 } 2360 2361 ASSERT(em->len == len); 2362 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)); 2363 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE); 2364 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags)); 2365 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags)); 2366 ASSERT(!list_empty(&em->list)); 2367 2368 flags = em->flags; 2369 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 2370 2371 /* First, replace the em with a new extent_map starting from * em->start */ 2372 split_pre->start = em->start; 2373 split_pre->len = (pre ? pre : em->len - post); 2374 split_pre->orig_start = split_pre->start; 2375 split_pre->block_start = em->block_start; 2376 split_pre->block_len = split_pre->len; 2377 split_pre->orig_block_len = split_pre->block_len; 2378 split_pre->ram_bytes = split_pre->len; 2379 split_pre->flags = flags; 2380 split_pre->compress_type = em->compress_type; 2381 split_pre->generation = em->generation; 2382 2383 replace_extent_mapping(em_tree, em, split_pre, 1); 2384 2385 /* 2386 * Now we only have an extent_map at: 2387 * [em->start, em->start + pre] if pre != 0 2388 * [em->start, em->start + em->len - post] if pre == 0 2389 */ 2390 2391 if (pre) { 2392 /* Insert the middle extent_map */ 2393 split_mid->start = em->start + pre; 2394 split_mid->len = em->len - pre - post; 2395 split_mid->orig_start = split_mid->start; 2396 split_mid->block_start = em->block_start + pre; 2397 split_mid->block_len = split_mid->len; 2398 split_mid->orig_block_len = split_mid->block_len; 2399 split_mid->ram_bytes = split_mid->len; 2400 split_mid->flags = flags; 2401 split_mid->compress_type = em->compress_type; 2402 split_mid->generation = em->generation; 2403 add_extent_mapping(em_tree, split_mid, 1); 2404 } 2405 2406 if (post) { 2407 split_post->start = em->start + em->len - post; 2408 split_post->len = post; 2409 split_post->orig_start = split_post->start; 2410 split_post->block_start = em->block_start + em->len - post; 2411 split_post->block_len = split_post->len; 2412 split_post->orig_block_len = split_post->block_len; 2413 split_post->ram_bytes = split_post->len; 2414 split_post->flags = flags; 2415 split_post->compress_type = em->compress_type; 2416 split_post->generation = em->generation; 2417 add_extent_mapping(em_tree, split_post, 1); 2418 } 2419 2420 /* Once for us */ 2421 free_extent_map(em); 2422 /* Once for the tree */ 2423 free_extent_map(em); 2424 2425 out_unlock: 2426 write_unlock(&em_tree->lock); 2427 unlock_extent(&inode->io_tree, start, start + len - 1); 2428 out: 2429 free_extent_map(split_pre); 2430 free_extent_map(split_mid); 2431 free_extent_map(split_post); 2432 2433 return ret; 2434 } 2435 2436 static blk_status_t extract_ordered_extent(struct btrfs_inode *inode, 2437 struct bio *bio, loff_t file_offset) 2438 { 2439 struct btrfs_ordered_extent *ordered; 2440 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT; 2441 u64 file_len; 2442 u64 len = bio->bi_iter.bi_size; 2443 u64 end = start + len; 2444 u64 ordered_end; 2445 u64 pre, post; 2446 int ret = 0; 2447 2448 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 2449 if (WARN_ON_ONCE(!ordered)) 2450 return BLK_STS_IOERR; 2451 2452 /* No need to split */ 2453 if (ordered->disk_num_bytes == len) 2454 goto out; 2455 2456 /* We cannot split once end_bio'd ordered extent */ 2457 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) { 2458 ret = -EINVAL; 2459 goto out; 2460 } 2461 2462 /* We cannot split a compressed ordered extent */ 2463 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) { 2464 ret = -EINVAL; 2465 goto out; 2466 } 2467 2468 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes; 2469 /* bio must be in one ordered extent */ 2470 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) { 2471 ret = -EINVAL; 2472 goto out; 2473 } 2474 2475 /* Checksum list should be empty */ 2476 if (WARN_ON_ONCE(!list_empty(&ordered->list))) { 2477 ret = -EINVAL; 2478 goto out; 2479 } 2480 2481 file_len = ordered->num_bytes; 2482 pre = start - ordered->disk_bytenr; 2483 post = ordered_end - end; 2484 2485 ret = btrfs_split_ordered_extent(ordered, pre, post); 2486 if (ret) 2487 goto out; 2488 ret = split_zoned_em(inode, file_offset, file_len, pre, post); 2489 2490 out: 2491 btrfs_put_ordered_extent(ordered); 2492 2493 return errno_to_blk_status(ret); 2494 } 2495 2496 /* 2497 * extent_io.c submission hook. This does the right thing for csum calculation 2498 * on write, or reading the csums from the tree before a read. 2499 * 2500 * Rules about async/sync submit, 2501 * a) read: sync submit 2502 * 2503 * b) write without checksum: sync submit 2504 * 2505 * c) write with checksum: 2506 * c-1) if bio is issued by fsync: sync submit 2507 * (sync_writers != 0) 2508 * 2509 * c-2) if root is reloc root: sync submit 2510 * (only in case of buffered IO) 2511 * 2512 * c-3) otherwise: async submit 2513 */ 2514 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 2515 int mirror_num, unsigned long bio_flags) 2516 2517 { 2518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2519 struct btrfs_root *root = BTRFS_I(inode)->root; 2520 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; 2521 blk_status_t ret = 0; 2522 int skip_sum; 2523 int async = !atomic_read(&BTRFS_I(inode)->sync_writers); 2524 2525 skip_sum = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) || 2526 test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state); 2527 2528 if (btrfs_is_free_space_inode(BTRFS_I(inode))) 2529 metadata = BTRFS_WQ_ENDIO_FREE_SPACE; 2530 2531 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 2532 struct page *page = bio_first_bvec_all(bio)->bv_page; 2533 loff_t file_offset = page_offset(page); 2534 2535 ret = extract_ordered_extent(BTRFS_I(inode), bio, file_offset); 2536 if (ret) 2537 goto out; 2538 } 2539 2540 if (btrfs_op(bio) != BTRFS_MAP_WRITE) { 2541 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); 2542 if (ret) 2543 goto out; 2544 2545 if (bio_flags & EXTENT_BIO_COMPRESSED) { 2546 /* 2547 * btrfs_submit_compressed_read will handle completing 2548 * the bio if there were any errors, so just return 2549 * here. 2550 */ 2551 ret = btrfs_submit_compressed_read(inode, bio, 2552 mirror_num, 2553 bio_flags); 2554 goto out_no_endio; 2555 } else { 2556 /* 2557 * Lookup bio sums does extra checks around whether we 2558 * need to csum or not, which is why we ignore skip_sum 2559 * here. 2560 */ 2561 ret = btrfs_lookup_bio_sums(inode, bio, NULL); 2562 if (ret) 2563 goto out; 2564 } 2565 goto mapit; 2566 } else if (async && !skip_sum) { 2567 /* csum items have already been cloned */ 2568 if (btrfs_is_data_reloc_root(root)) 2569 goto mapit; 2570 /* we're doing a write, do the async checksumming */ 2571 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, bio_flags, 2572 0, btrfs_submit_bio_start); 2573 goto out; 2574 } else if (!skip_sum) { 2575 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false); 2576 if (ret) 2577 goto out; 2578 } 2579 2580 mapit: 2581 ret = btrfs_map_bio(fs_info, bio, mirror_num); 2582 2583 out: 2584 if (ret) { 2585 bio->bi_status = ret; 2586 bio_endio(bio); 2587 } 2588 out_no_endio: 2589 return ret; 2590 } 2591 2592 /* 2593 * given a list of ordered sums record them in the inode. This happens 2594 * at IO completion time based on sums calculated at bio submission time. 2595 */ 2596 static int add_pending_csums(struct btrfs_trans_handle *trans, 2597 struct list_head *list) 2598 { 2599 struct btrfs_ordered_sum *sum; 2600 struct btrfs_root *csum_root = NULL; 2601 int ret; 2602 2603 list_for_each_entry(sum, list, list) { 2604 trans->adding_csums = true; 2605 if (!csum_root) 2606 csum_root = btrfs_csum_root(trans->fs_info, 2607 sum->bytenr); 2608 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2609 trans->adding_csums = false; 2610 if (ret) 2611 return ret; 2612 } 2613 return 0; 2614 } 2615 2616 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2617 const u64 start, 2618 const u64 len, 2619 struct extent_state **cached_state) 2620 { 2621 u64 search_start = start; 2622 const u64 end = start + len - 1; 2623 2624 while (search_start < end) { 2625 const u64 search_len = end - search_start + 1; 2626 struct extent_map *em; 2627 u64 em_len; 2628 int ret = 0; 2629 2630 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len); 2631 if (IS_ERR(em)) 2632 return PTR_ERR(em); 2633 2634 if (em->block_start != EXTENT_MAP_HOLE) 2635 goto next; 2636 2637 em_len = em->len; 2638 if (em->start < search_start) 2639 em_len -= search_start - em->start; 2640 if (em_len > search_len) 2641 em_len = search_len; 2642 2643 ret = set_extent_bit(&inode->io_tree, search_start, 2644 search_start + em_len - 1, 2645 EXTENT_DELALLOC_NEW, 0, NULL, cached_state, 2646 GFP_NOFS, NULL); 2647 next: 2648 search_start = extent_map_end(em); 2649 free_extent_map(em); 2650 if (ret) 2651 return ret; 2652 } 2653 return 0; 2654 } 2655 2656 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2657 unsigned int extra_bits, 2658 struct extent_state **cached_state) 2659 { 2660 WARN_ON(PAGE_ALIGNED(end)); 2661 2662 if (start >= i_size_read(&inode->vfs_inode) && 2663 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2664 /* 2665 * There can't be any extents following eof in this case so just 2666 * set the delalloc new bit for the range directly. 2667 */ 2668 extra_bits |= EXTENT_DELALLOC_NEW; 2669 } else { 2670 int ret; 2671 2672 ret = btrfs_find_new_delalloc_bytes(inode, start, 2673 end + 1 - start, 2674 cached_state); 2675 if (ret) 2676 return ret; 2677 } 2678 2679 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits, 2680 cached_state); 2681 } 2682 2683 /* see btrfs_writepage_start_hook for details on why this is required */ 2684 struct btrfs_writepage_fixup { 2685 struct page *page; 2686 struct inode *inode; 2687 struct btrfs_work work; 2688 }; 2689 2690 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2691 { 2692 struct btrfs_writepage_fixup *fixup; 2693 struct btrfs_ordered_extent *ordered; 2694 struct extent_state *cached_state = NULL; 2695 struct extent_changeset *data_reserved = NULL; 2696 struct page *page; 2697 struct btrfs_inode *inode; 2698 u64 page_start; 2699 u64 page_end; 2700 int ret = 0; 2701 bool free_delalloc_space = true; 2702 2703 fixup = container_of(work, struct btrfs_writepage_fixup, work); 2704 page = fixup->page; 2705 inode = BTRFS_I(fixup->inode); 2706 page_start = page_offset(page); 2707 page_end = page_offset(page) + PAGE_SIZE - 1; 2708 2709 /* 2710 * This is similar to page_mkwrite, we need to reserve the space before 2711 * we take the page lock. 2712 */ 2713 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2714 PAGE_SIZE); 2715 again: 2716 lock_page(page); 2717 2718 /* 2719 * Before we queued this fixup, we took a reference on the page. 2720 * page->mapping may go NULL, but it shouldn't be moved to a different 2721 * address space. 2722 */ 2723 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 2724 /* 2725 * Unfortunately this is a little tricky, either 2726 * 2727 * 1) We got here and our page had already been dealt with and 2728 * we reserved our space, thus ret == 0, so we need to just 2729 * drop our space reservation and bail. This can happen the 2730 * first time we come into the fixup worker, or could happen 2731 * while waiting for the ordered extent. 2732 * 2) Our page was already dealt with, but we happened to get an 2733 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2734 * this case we obviously don't have anything to release, but 2735 * because the page was already dealt with we don't want to 2736 * mark the page with an error, so make sure we're resetting 2737 * ret to 0. This is why we have this check _before_ the ret 2738 * check, because we do not want to have a surprise ENOSPC 2739 * when the page was already properly dealt with. 2740 */ 2741 if (!ret) { 2742 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2743 btrfs_delalloc_release_space(inode, data_reserved, 2744 page_start, PAGE_SIZE, 2745 true); 2746 } 2747 ret = 0; 2748 goto out_page; 2749 } 2750 2751 /* 2752 * We can't mess with the page state unless it is locked, so now that 2753 * it is locked bail if we failed to make our space reservation. 2754 */ 2755 if (ret) 2756 goto out_page; 2757 2758 lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state); 2759 2760 /* already ordered? We're done */ 2761 if (PageOrdered(page)) 2762 goto out_reserved; 2763 2764 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2765 if (ordered) { 2766 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2767 &cached_state); 2768 unlock_page(page); 2769 btrfs_start_ordered_extent(ordered, 1); 2770 btrfs_put_ordered_extent(ordered); 2771 goto again; 2772 } 2773 2774 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2775 &cached_state); 2776 if (ret) 2777 goto out_reserved; 2778 2779 /* 2780 * Everything went as planned, we're now the owner of a dirty page with 2781 * delayed allocation bits set and space reserved for our COW 2782 * destination. 2783 * 2784 * The page was dirty when we started, nothing should have cleaned it. 2785 */ 2786 BUG_ON(!PageDirty(page)); 2787 free_delalloc_space = false; 2788 out_reserved: 2789 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2790 if (free_delalloc_space) 2791 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2792 PAGE_SIZE, true); 2793 unlock_extent_cached(&inode->io_tree, page_start, page_end, 2794 &cached_state); 2795 out_page: 2796 if (ret) { 2797 /* 2798 * We hit ENOSPC or other errors. Update the mapping and page 2799 * to reflect the errors and clean the page. 2800 */ 2801 mapping_set_error(page->mapping, ret); 2802 end_extent_writepage(page, ret, page_start, page_end); 2803 clear_page_dirty_for_io(page); 2804 SetPageError(page); 2805 } 2806 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE); 2807 unlock_page(page); 2808 put_page(page); 2809 kfree(fixup); 2810 extent_changeset_free(data_reserved); 2811 /* 2812 * As a precaution, do a delayed iput in case it would be the last iput 2813 * that could need flushing space. Recursing back to fixup worker would 2814 * deadlock. 2815 */ 2816 btrfs_add_delayed_iput(&inode->vfs_inode); 2817 } 2818 2819 /* 2820 * There are a few paths in the higher layers of the kernel that directly 2821 * set the page dirty bit without asking the filesystem if it is a 2822 * good idea. This causes problems because we want to make sure COW 2823 * properly happens and the data=ordered rules are followed. 2824 * 2825 * In our case any range that doesn't have the ORDERED bit set 2826 * hasn't been properly setup for IO. We kick off an async process 2827 * to fix it up. The async helper will wait for ordered extents, set 2828 * the delalloc bit and make it safe to write the page. 2829 */ 2830 int btrfs_writepage_cow_fixup(struct page *page) 2831 { 2832 struct inode *inode = page->mapping->host; 2833 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2834 struct btrfs_writepage_fixup *fixup; 2835 2836 /* This page has ordered extent covering it already */ 2837 if (PageOrdered(page)) 2838 return 0; 2839 2840 /* 2841 * PageChecked is set below when we create a fixup worker for this page, 2842 * don't try to create another one if we're already PageChecked() 2843 * 2844 * The extent_io writepage code will redirty the page if we send back 2845 * EAGAIN. 2846 */ 2847 if (PageChecked(page)) 2848 return -EAGAIN; 2849 2850 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2851 if (!fixup) 2852 return -EAGAIN; 2853 2854 /* 2855 * We are already holding a reference to this inode from 2856 * write_cache_pages. We need to hold it because the space reservation 2857 * takes place outside of the page lock, and we can't trust 2858 * page->mapping outside of the page lock. 2859 */ 2860 ihold(inode); 2861 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE); 2862 get_page(page); 2863 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL); 2864 fixup->page = page; 2865 fixup->inode = inode; 2866 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2867 2868 return -EAGAIN; 2869 } 2870 2871 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2872 struct btrfs_inode *inode, u64 file_pos, 2873 struct btrfs_file_extent_item *stack_fi, 2874 const bool update_inode_bytes, 2875 u64 qgroup_reserved) 2876 { 2877 struct btrfs_root *root = inode->root; 2878 const u64 sectorsize = root->fs_info->sectorsize; 2879 struct btrfs_path *path; 2880 struct extent_buffer *leaf; 2881 struct btrfs_key ins; 2882 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2883 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2884 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2885 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2886 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2887 struct btrfs_drop_extents_args drop_args = { 0 }; 2888 int ret; 2889 2890 path = btrfs_alloc_path(); 2891 if (!path) 2892 return -ENOMEM; 2893 2894 /* 2895 * we may be replacing one extent in the tree with another. 2896 * The new extent is pinned in the extent map, and we don't want 2897 * to drop it from the cache until it is completely in the btree. 2898 * 2899 * So, tell btrfs_drop_extents to leave this extent in the cache. 2900 * the caller is expected to unpin it and allow it to be merged 2901 * with the others. 2902 */ 2903 drop_args.path = path; 2904 drop_args.start = file_pos; 2905 drop_args.end = file_pos + num_bytes; 2906 drop_args.replace_extent = true; 2907 drop_args.extent_item_size = sizeof(*stack_fi); 2908 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2909 if (ret) 2910 goto out; 2911 2912 if (!drop_args.extent_inserted) { 2913 ins.objectid = btrfs_ino(inode); 2914 ins.offset = file_pos; 2915 ins.type = BTRFS_EXTENT_DATA_KEY; 2916 2917 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2918 sizeof(*stack_fi)); 2919 if (ret) 2920 goto out; 2921 } 2922 leaf = path->nodes[0]; 2923 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2924 write_extent_buffer(leaf, stack_fi, 2925 btrfs_item_ptr_offset(leaf, path->slots[0]), 2926 sizeof(struct btrfs_file_extent_item)); 2927 2928 btrfs_mark_buffer_dirty(leaf); 2929 btrfs_release_path(path); 2930 2931 /* 2932 * If we dropped an inline extent here, we know the range where it is 2933 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 2934 * number of bytes only for that range containing the inline extent. 2935 * The remaining of the range will be processed when clearning the 2936 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 2937 */ 2938 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 2939 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 2940 2941 inline_size = drop_args.bytes_found - inline_size; 2942 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 2943 drop_args.bytes_found -= inline_size; 2944 num_bytes -= sectorsize; 2945 } 2946 2947 if (update_inode_bytes) 2948 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 2949 2950 ins.objectid = disk_bytenr; 2951 ins.offset = disk_num_bytes; 2952 ins.type = BTRFS_EXTENT_ITEM_KEY; 2953 2954 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 2955 if (ret) 2956 goto out; 2957 2958 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 2959 file_pos - offset, 2960 qgroup_reserved, &ins); 2961 out: 2962 btrfs_free_path(path); 2963 2964 return ret; 2965 } 2966 2967 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 2968 u64 start, u64 len) 2969 { 2970 struct btrfs_block_group *cache; 2971 2972 cache = btrfs_lookup_block_group(fs_info, start); 2973 ASSERT(cache); 2974 2975 spin_lock(&cache->lock); 2976 cache->delalloc_bytes -= len; 2977 spin_unlock(&cache->lock); 2978 2979 btrfs_put_block_group(cache); 2980 } 2981 2982 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 2983 struct btrfs_ordered_extent *oe) 2984 { 2985 struct btrfs_file_extent_item stack_fi; 2986 bool update_inode_bytes; 2987 u64 num_bytes = oe->num_bytes; 2988 u64 ram_bytes = oe->ram_bytes; 2989 2990 memset(&stack_fi, 0, sizeof(stack_fi)); 2991 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 2992 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 2993 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 2994 oe->disk_num_bytes); 2995 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 2996 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 2997 num_bytes = ram_bytes = oe->truncated_len; 2998 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 2999 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3000 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3001 /* Encryption and other encoding is reserved and all 0 */ 3002 3003 /* 3004 * For delalloc, when completing an ordered extent we update the inode's 3005 * bytes when clearing the range in the inode's io tree, so pass false 3006 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3007 * except if the ordered extent was truncated. 3008 */ 3009 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3010 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3011 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3012 3013 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode), 3014 oe->file_offset, &stack_fi, 3015 update_inode_bytes, oe->qgroup_rsv); 3016 } 3017 3018 /* 3019 * As ordered data IO finishes, this gets called so we can finish 3020 * an ordered extent if the range of bytes in the file it covers are 3021 * fully written. 3022 */ 3023 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) 3024 { 3025 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode); 3026 struct btrfs_root *root = inode->root; 3027 struct btrfs_fs_info *fs_info = root->fs_info; 3028 struct btrfs_trans_handle *trans = NULL; 3029 struct extent_io_tree *io_tree = &inode->io_tree; 3030 struct extent_state *cached_state = NULL; 3031 u64 start, end; 3032 int compress_type = 0; 3033 int ret = 0; 3034 u64 logical_len = ordered_extent->num_bytes; 3035 bool freespace_inode; 3036 bool truncated = false; 3037 bool clear_reserved_extent = true; 3038 unsigned int clear_bits = EXTENT_DEFRAG; 3039 3040 start = ordered_extent->file_offset; 3041 end = start + ordered_extent->num_bytes - 1; 3042 3043 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3044 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3045 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3046 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3047 clear_bits |= EXTENT_DELALLOC_NEW; 3048 3049 freespace_inode = btrfs_is_free_space_inode(inode); 3050 3051 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3052 ret = -EIO; 3053 goto out; 3054 } 3055 3056 /* A valid bdev implies a write on a sequential zone */ 3057 if (ordered_extent->bdev) { 3058 btrfs_rewrite_logical_zoned(ordered_extent); 3059 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3060 ordered_extent->disk_num_bytes); 3061 } 3062 3063 btrfs_free_io_failure_record(inode, start, end); 3064 3065 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3066 truncated = true; 3067 logical_len = ordered_extent->truncated_len; 3068 /* Truncated the entire extent, don't bother adding */ 3069 if (!logical_len) 3070 goto out; 3071 } 3072 3073 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3074 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ 3075 3076 btrfs_inode_safe_disk_i_size_write(inode, 0); 3077 if (freespace_inode) 3078 trans = btrfs_join_transaction_spacecache(root); 3079 else 3080 trans = btrfs_join_transaction(root); 3081 if (IS_ERR(trans)) { 3082 ret = PTR_ERR(trans); 3083 trans = NULL; 3084 goto out; 3085 } 3086 trans->block_rsv = &inode->block_rsv; 3087 ret = btrfs_update_inode_fallback(trans, root, inode); 3088 if (ret) /* -ENOMEM or corruption */ 3089 btrfs_abort_transaction(trans, ret); 3090 goto out; 3091 } 3092 3093 clear_bits |= EXTENT_LOCKED; 3094 lock_extent_bits(io_tree, start, end, &cached_state); 3095 3096 if (freespace_inode) 3097 trans = btrfs_join_transaction_spacecache(root); 3098 else 3099 trans = btrfs_join_transaction(root); 3100 if (IS_ERR(trans)) { 3101 ret = PTR_ERR(trans); 3102 trans = NULL; 3103 goto out; 3104 } 3105 3106 trans->block_rsv = &inode->block_rsv; 3107 3108 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3109 compress_type = ordered_extent->compress_type; 3110 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3111 BUG_ON(compress_type); 3112 ret = btrfs_mark_extent_written(trans, inode, 3113 ordered_extent->file_offset, 3114 ordered_extent->file_offset + 3115 logical_len); 3116 } else { 3117 BUG_ON(root == fs_info->tree_root); 3118 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3119 if (!ret) { 3120 clear_reserved_extent = false; 3121 btrfs_release_delalloc_bytes(fs_info, 3122 ordered_extent->disk_bytenr, 3123 ordered_extent->disk_num_bytes); 3124 } 3125 } 3126 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset, 3127 ordered_extent->num_bytes, trans->transid); 3128 if (ret < 0) { 3129 btrfs_abort_transaction(trans, ret); 3130 goto out; 3131 } 3132 3133 ret = add_pending_csums(trans, &ordered_extent->list); 3134 if (ret) { 3135 btrfs_abort_transaction(trans, ret); 3136 goto out; 3137 } 3138 3139 /* 3140 * If this is a new delalloc range, clear its new delalloc flag to 3141 * update the inode's number of bytes. This needs to be done first 3142 * before updating the inode item. 3143 */ 3144 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3145 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3146 clear_extent_bit(&inode->io_tree, start, end, 3147 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3148 0, 0, &cached_state); 3149 3150 btrfs_inode_safe_disk_i_size_write(inode, 0); 3151 ret = btrfs_update_inode_fallback(trans, root, inode); 3152 if (ret) { /* -ENOMEM or corruption */ 3153 btrfs_abort_transaction(trans, ret); 3154 goto out; 3155 } 3156 ret = 0; 3157 out: 3158 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3159 (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0, 3160 &cached_state); 3161 3162 if (trans) 3163 btrfs_end_transaction(trans); 3164 3165 if (ret || truncated) { 3166 u64 unwritten_start = start; 3167 3168 /* 3169 * If we failed to finish this ordered extent for any reason we 3170 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3171 * extent, and mark the inode with the error if it wasn't 3172 * already set. Any error during writeback would have already 3173 * set the mapping error, so we need to set it if we're the ones 3174 * marking this ordered extent as failed. 3175 */ 3176 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR, 3177 &ordered_extent->flags)) 3178 mapping_set_error(ordered_extent->inode->i_mapping, -EIO); 3179 3180 if (truncated) 3181 unwritten_start += logical_len; 3182 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3183 3184 /* Drop the cache for the part of the extent we didn't write. */ 3185 btrfs_drop_extent_cache(inode, unwritten_start, end, 0); 3186 3187 /* 3188 * If the ordered extent had an IOERR or something else went 3189 * wrong we need to return the space for this ordered extent 3190 * back to the allocator. We only free the extent in the 3191 * truncated case if we didn't write out the extent at all. 3192 * 3193 * If we made it past insert_reserved_file_extent before we 3194 * errored out then we don't need to do this as the accounting 3195 * has already been done. 3196 */ 3197 if ((ret || !logical_len) && 3198 clear_reserved_extent && 3199 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3200 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3201 /* 3202 * Discard the range before returning it back to the 3203 * free space pool 3204 */ 3205 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3206 btrfs_discard_extent(fs_info, 3207 ordered_extent->disk_bytenr, 3208 ordered_extent->disk_num_bytes, 3209 NULL); 3210 btrfs_free_reserved_extent(fs_info, 3211 ordered_extent->disk_bytenr, 3212 ordered_extent->disk_num_bytes, 1); 3213 } 3214 } 3215 3216 /* 3217 * This needs to be done to make sure anybody waiting knows we are done 3218 * updating everything for this ordered extent. 3219 */ 3220 btrfs_remove_ordered_extent(inode, ordered_extent); 3221 3222 /* once for us */ 3223 btrfs_put_ordered_extent(ordered_extent); 3224 /* once for the tree */ 3225 btrfs_put_ordered_extent(ordered_extent); 3226 3227 return ret; 3228 } 3229 3230 static void finish_ordered_fn(struct btrfs_work *work) 3231 { 3232 struct btrfs_ordered_extent *ordered_extent; 3233 ordered_extent = container_of(work, struct btrfs_ordered_extent, work); 3234 btrfs_finish_ordered_io(ordered_extent); 3235 } 3236 3237 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3238 struct page *page, u64 start, 3239 u64 end, bool uptodate) 3240 { 3241 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate); 3242 3243 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, 3244 finish_ordered_fn, uptodate); 3245 } 3246 3247 /* 3248 * check_data_csum - verify checksum of one sector of uncompressed data 3249 * @inode: inode 3250 * @io_bio: btrfs_io_bio which contains the csum 3251 * @bio_offset: offset to the beginning of the bio (in bytes) 3252 * @page: page where is the data to be verified 3253 * @pgoff: offset inside the page 3254 * @start: logical offset in the file 3255 * 3256 * The length of such check is always one sector size. 3257 */ 3258 static int check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3259 u32 bio_offset, struct page *page, u32 pgoff, 3260 u64 start) 3261 { 3262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3263 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3264 char *kaddr; 3265 u32 len = fs_info->sectorsize; 3266 const u32 csum_size = fs_info->csum_size; 3267 unsigned int offset_sectors; 3268 u8 *csum_expected; 3269 u8 csum[BTRFS_CSUM_SIZE]; 3270 3271 ASSERT(pgoff + len <= PAGE_SIZE); 3272 3273 offset_sectors = bio_offset >> fs_info->sectorsize_bits; 3274 csum_expected = ((u8 *)bbio->csum) + offset_sectors * csum_size; 3275 3276 kaddr = kmap_atomic(page); 3277 shash->tfm = fs_info->csum_shash; 3278 3279 crypto_shash_digest(shash, kaddr + pgoff, len, csum); 3280 3281 if (memcmp(csum, csum_expected, csum_size)) 3282 goto zeroit; 3283 3284 kunmap_atomic(kaddr); 3285 return 0; 3286 zeroit: 3287 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, 3288 bbio->mirror_num); 3289 if (bbio->device) 3290 btrfs_dev_stat_inc_and_print(bbio->device, 3291 BTRFS_DEV_STAT_CORRUPTION_ERRS); 3292 memset(kaddr + pgoff, 1, len); 3293 flush_dcache_page(page); 3294 kunmap_atomic(kaddr); 3295 return -EIO; 3296 } 3297 3298 /* 3299 * When reads are done, we need to check csums to verify the data is correct. 3300 * if there's a match, we allow the bio to finish. If not, the code in 3301 * extent_io.c will try to find good copies for us. 3302 * 3303 * @bio_offset: offset to the beginning of the bio (in bytes) 3304 * @start: file offset of the range start 3305 * @end: file offset of the range end (inclusive) 3306 * 3307 * Return a bitmap where bit set means a csum mismatch, and bit not set means 3308 * csum match. 3309 */ 3310 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3311 u32 bio_offset, struct page *page, 3312 u64 start, u64 end) 3313 { 3314 struct inode *inode = page->mapping->host; 3315 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3316 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3317 struct btrfs_root *root = BTRFS_I(inode)->root; 3318 const u32 sectorsize = root->fs_info->sectorsize; 3319 u32 pg_off; 3320 unsigned int result = 0; 3321 3322 if (btrfs_page_test_checked(fs_info, page, start, end + 1 - start)) { 3323 btrfs_page_clear_checked(fs_info, page, start, end + 1 - start); 3324 return 0; 3325 } 3326 3327 /* 3328 * This only happens for NODATASUM or compressed read. 3329 * Normally this should be covered by above check for compressed read 3330 * or the next check for NODATASUM. Just do a quicker exit here. 3331 */ 3332 if (bbio->csum == NULL) 3333 return 0; 3334 3335 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 3336 return 0; 3337 3338 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))) 3339 return 0; 3340 3341 ASSERT(page_offset(page) <= start && 3342 end <= page_offset(page) + PAGE_SIZE - 1); 3343 for (pg_off = offset_in_page(start); 3344 pg_off < offset_in_page(end); 3345 pg_off += sectorsize, bio_offset += sectorsize) { 3346 u64 file_offset = pg_off + page_offset(page); 3347 int ret; 3348 3349 if (btrfs_is_data_reloc_root(root) && 3350 test_range_bit(io_tree, file_offset, 3351 file_offset + sectorsize - 1, 3352 EXTENT_NODATASUM, 1, NULL)) { 3353 /* Skip the range without csum for data reloc inode */ 3354 clear_extent_bits(io_tree, file_offset, 3355 file_offset + sectorsize - 1, 3356 EXTENT_NODATASUM); 3357 continue; 3358 } 3359 ret = check_data_csum(inode, bbio, bio_offset, page, pg_off, 3360 page_offset(page) + pg_off); 3361 if (ret < 0) { 3362 const int nr_bit = (pg_off - offset_in_page(start)) >> 3363 root->fs_info->sectorsize_bits; 3364 3365 result |= (1U << nr_bit); 3366 } 3367 } 3368 return result; 3369 } 3370 3371 /* 3372 * btrfs_add_delayed_iput - perform a delayed iput on @inode 3373 * 3374 * @inode: The inode we want to perform iput on 3375 * 3376 * This function uses the generic vfs_inode::i_count to track whether we should 3377 * just decrement it (in case it's > 1) or if this is the last iput then link 3378 * the inode to the delayed iput machinery. Delayed iputs are processed at 3379 * transaction commit time/superblock commit/cleaner kthread. 3380 */ 3381 void btrfs_add_delayed_iput(struct inode *inode) 3382 { 3383 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3384 struct btrfs_inode *binode = BTRFS_I(inode); 3385 3386 if (atomic_add_unless(&inode->i_count, -1, 1)) 3387 return; 3388 3389 atomic_inc(&fs_info->nr_delayed_iputs); 3390 spin_lock(&fs_info->delayed_iput_lock); 3391 ASSERT(list_empty(&binode->delayed_iput)); 3392 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); 3393 spin_unlock(&fs_info->delayed_iput_lock); 3394 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3395 wake_up_process(fs_info->cleaner_kthread); 3396 } 3397 3398 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3399 struct btrfs_inode *inode) 3400 { 3401 list_del_init(&inode->delayed_iput); 3402 spin_unlock(&fs_info->delayed_iput_lock); 3403 iput(&inode->vfs_inode); 3404 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3405 wake_up(&fs_info->delayed_iputs_wait); 3406 spin_lock(&fs_info->delayed_iput_lock); 3407 } 3408 3409 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3410 struct btrfs_inode *inode) 3411 { 3412 if (!list_empty(&inode->delayed_iput)) { 3413 spin_lock(&fs_info->delayed_iput_lock); 3414 if (!list_empty(&inode->delayed_iput)) 3415 run_delayed_iput_locked(fs_info, inode); 3416 spin_unlock(&fs_info->delayed_iput_lock); 3417 } 3418 } 3419 3420 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3421 { 3422 3423 spin_lock(&fs_info->delayed_iput_lock); 3424 while (!list_empty(&fs_info->delayed_iputs)) { 3425 struct btrfs_inode *inode; 3426 3427 inode = list_first_entry(&fs_info->delayed_iputs, 3428 struct btrfs_inode, delayed_iput); 3429 run_delayed_iput_locked(fs_info, inode); 3430 cond_resched_lock(&fs_info->delayed_iput_lock); 3431 } 3432 spin_unlock(&fs_info->delayed_iput_lock); 3433 } 3434 3435 /** 3436 * Wait for flushing all delayed iputs 3437 * 3438 * @fs_info: the filesystem 3439 * 3440 * This will wait on any delayed iputs that are currently running with KILLABLE 3441 * set. Once they are all done running we will return, unless we are killed in 3442 * which case we return EINTR. This helps in user operations like fallocate etc 3443 * that might get blocked on the iputs. 3444 * 3445 * Return EINTR if we were killed, 0 if nothing's pending 3446 */ 3447 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3448 { 3449 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3450 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3451 if (ret) 3452 return -EINTR; 3453 return 0; 3454 } 3455 3456 /* 3457 * This creates an orphan entry for the given inode in case something goes wrong 3458 * in the middle of an unlink. 3459 */ 3460 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3461 struct btrfs_inode *inode) 3462 { 3463 int ret; 3464 3465 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3466 if (ret && ret != -EEXIST) { 3467 btrfs_abort_transaction(trans, ret); 3468 return ret; 3469 } 3470 3471 return 0; 3472 } 3473 3474 /* 3475 * We have done the delete so we can go ahead and remove the orphan item for 3476 * this particular inode. 3477 */ 3478 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3479 struct btrfs_inode *inode) 3480 { 3481 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3482 } 3483 3484 /* 3485 * this cleans up any orphans that may be left on the list from the last use 3486 * of this root. 3487 */ 3488 int btrfs_orphan_cleanup(struct btrfs_root *root) 3489 { 3490 struct btrfs_fs_info *fs_info = root->fs_info; 3491 struct btrfs_path *path; 3492 struct extent_buffer *leaf; 3493 struct btrfs_key key, found_key; 3494 struct btrfs_trans_handle *trans; 3495 struct inode *inode; 3496 u64 last_objectid = 0; 3497 int ret = 0, nr_unlink = 0; 3498 3499 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3500 return 0; 3501 3502 path = btrfs_alloc_path(); 3503 if (!path) { 3504 ret = -ENOMEM; 3505 goto out; 3506 } 3507 path->reada = READA_BACK; 3508 3509 key.objectid = BTRFS_ORPHAN_OBJECTID; 3510 key.type = BTRFS_ORPHAN_ITEM_KEY; 3511 key.offset = (u64)-1; 3512 3513 while (1) { 3514 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3515 if (ret < 0) 3516 goto out; 3517 3518 /* 3519 * if ret == 0 means we found what we were searching for, which 3520 * is weird, but possible, so only screw with path if we didn't 3521 * find the key and see if we have stuff that matches 3522 */ 3523 if (ret > 0) { 3524 ret = 0; 3525 if (path->slots[0] == 0) 3526 break; 3527 path->slots[0]--; 3528 } 3529 3530 /* pull out the item */ 3531 leaf = path->nodes[0]; 3532 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3533 3534 /* make sure the item matches what we want */ 3535 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3536 break; 3537 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3538 break; 3539 3540 /* release the path since we're done with it */ 3541 btrfs_release_path(path); 3542 3543 /* 3544 * this is where we are basically btrfs_lookup, without the 3545 * crossing root thing. we store the inode number in the 3546 * offset of the orphan item. 3547 */ 3548 3549 if (found_key.offset == last_objectid) { 3550 btrfs_err(fs_info, 3551 "Error removing orphan entry, stopping orphan cleanup"); 3552 ret = -EINVAL; 3553 goto out; 3554 } 3555 3556 last_objectid = found_key.offset; 3557 3558 found_key.objectid = found_key.offset; 3559 found_key.type = BTRFS_INODE_ITEM_KEY; 3560 found_key.offset = 0; 3561 inode = btrfs_iget(fs_info->sb, last_objectid, root); 3562 ret = PTR_ERR_OR_ZERO(inode); 3563 if (ret && ret != -ENOENT) 3564 goto out; 3565 3566 if (ret == -ENOENT && root == fs_info->tree_root) { 3567 struct btrfs_root *dead_root; 3568 int is_dead_root = 0; 3569 3570 /* 3571 * This is an orphan in the tree root. Currently these 3572 * could come from 2 sources: 3573 * a) a root (snapshot/subvolume) deletion in progress 3574 * b) a free space cache inode 3575 * We need to distinguish those two, as the orphan item 3576 * for a root must not get deleted before the deletion 3577 * of the snapshot/subvolume's tree completes. 3578 * 3579 * btrfs_find_orphan_roots() ran before us, which has 3580 * found all deleted roots and loaded them into 3581 * fs_info->fs_roots_radix. So here we can find if an 3582 * orphan item corresponds to a deleted root by looking 3583 * up the root from that radix tree. 3584 */ 3585 3586 spin_lock(&fs_info->fs_roots_radix_lock); 3587 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3588 (unsigned long)found_key.objectid); 3589 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3590 is_dead_root = 1; 3591 spin_unlock(&fs_info->fs_roots_radix_lock); 3592 3593 if (is_dead_root) { 3594 /* prevent this orphan from being found again */ 3595 key.offset = found_key.objectid - 1; 3596 continue; 3597 } 3598 3599 } 3600 3601 /* 3602 * If we have an inode with links, there are a couple of 3603 * possibilities: 3604 * 3605 * 1. We were halfway through creating fsverity metadata for the 3606 * file. In that case, the orphan item represents incomplete 3607 * fsverity metadata which must be cleaned up with 3608 * btrfs_drop_verity_items and deleting the orphan item. 3609 3610 * 2. Old kernels (before v3.12) used to create an 3611 * orphan item for truncate indicating that there were possibly 3612 * extent items past i_size that needed to be deleted. In v3.12, 3613 * truncate was changed to update i_size in sync with the extent 3614 * items, but the (useless) orphan item was still created. Since 3615 * v4.18, we don't create the orphan item for truncate at all. 3616 * 3617 * So, this item could mean that we need to do a truncate, but 3618 * only if this filesystem was last used on a pre-v3.12 kernel 3619 * and was not cleanly unmounted. The odds of that are quite 3620 * slim, and it's a pain to do the truncate now, so just delete 3621 * the orphan item. 3622 * 3623 * It's also possible that this orphan item was supposed to be 3624 * deleted but wasn't. The inode number may have been reused, 3625 * but either way, we can delete the orphan item. 3626 */ 3627 if (ret == -ENOENT || inode->i_nlink) { 3628 if (!ret) { 3629 ret = btrfs_drop_verity_items(BTRFS_I(inode)); 3630 iput(inode); 3631 if (ret) 3632 goto out; 3633 } 3634 trans = btrfs_start_transaction(root, 1); 3635 if (IS_ERR(trans)) { 3636 ret = PTR_ERR(trans); 3637 goto out; 3638 } 3639 btrfs_debug(fs_info, "auto deleting %Lu", 3640 found_key.objectid); 3641 ret = btrfs_del_orphan_item(trans, root, 3642 found_key.objectid); 3643 btrfs_end_transaction(trans); 3644 if (ret) 3645 goto out; 3646 continue; 3647 } 3648 3649 nr_unlink++; 3650 3651 /* this will do delete_inode and everything for us */ 3652 iput(inode); 3653 } 3654 /* release the path since we're done with it */ 3655 btrfs_release_path(path); 3656 3657 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3658 trans = btrfs_join_transaction(root); 3659 if (!IS_ERR(trans)) 3660 btrfs_end_transaction(trans); 3661 } 3662 3663 if (nr_unlink) 3664 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3665 3666 out: 3667 if (ret) 3668 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3669 btrfs_free_path(path); 3670 return ret; 3671 } 3672 3673 /* 3674 * very simple check to peek ahead in the leaf looking for xattrs. If we 3675 * don't find any xattrs, we know there can't be any acls. 3676 * 3677 * slot is the slot the inode is in, objectid is the objectid of the inode 3678 */ 3679 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3680 int slot, u64 objectid, 3681 int *first_xattr_slot) 3682 { 3683 u32 nritems = btrfs_header_nritems(leaf); 3684 struct btrfs_key found_key; 3685 static u64 xattr_access = 0; 3686 static u64 xattr_default = 0; 3687 int scanned = 0; 3688 3689 if (!xattr_access) { 3690 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3691 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3692 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3693 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3694 } 3695 3696 slot++; 3697 *first_xattr_slot = -1; 3698 while (slot < nritems) { 3699 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3700 3701 /* we found a different objectid, there must not be acls */ 3702 if (found_key.objectid != objectid) 3703 return 0; 3704 3705 /* we found an xattr, assume we've got an acl */ 3706 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3707 if (*first_xattr_slot == -1) 3708 *first_xattr_slot = slot; 3709 if (found_key.offset == xattr_access || 3710 found_key.offset == xattr_default) 3711 return 1; 3712 } 3713 3714 /* 3715 * we found a key greater than an xattr key, there can't 3716 * be any acls later on 3717 */ 3718 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3719 return 0; 3720 3721 slot++; 3722 scanned++; 3723 3724 /* 3725 * it goes inode, inode backrefs, xattrs, extents, 3726 * so if there are a ton of hard links to an inode there can 3727 * be a lot of backrefs. Don't waste time searching too hard, 3728 * this is just an optimization 3729 */ 3730 if (scanned >= 8) 3731 break; 3732 } 3733 /* we hit the end of the leaf before we found an xattr or 3734 * something larger than an xattr. We have to assume the inode 3735 * has acls 3736 */ 3737 if (*first_xattr_slot == -1) 3738 *first_xattr_slot = slot; 3739 return 1; 3740 } 3741 3742 /* 3743 * read an inode from the btree into the in-memory inode 3744 */ 3745 static int btrfs_read_locked_inode(struct inode *inode, 3746 struct btrfs_path *in_path) 3747 { 3748 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3749 struct btrfs_path *path = in_path; 3750 struct extent_buffer *leaf; 3751 struct btrfs_inode_item *inode_item; 3752 struct btrfs_root *root = BTRFS_I(inode)->root; 3753 struct btrfs_key location; 3754 unsigned long ptr; 3755 int maybe_acls; 3756 u32 rdev; 3757 int ret; 3758 bool filled = false; 3759 int first_xattr_slot; 3760 3761 ret = btrfs_fill_inode(inode, &rdev); 3762 if (!ret) 3763 filled = true; 3764 3765 if (!path) { 3766 path = btrfs_alloc_path(); 3767 if (!path) 3768 return -ENOMEM; 3769 } 3770 3771 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 3772 3773 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3774 if (ret) { 3775 if (path != in_path) 3776 btrfs_free_path(path); 3777 return ret; 3778 } 3779 3780 leaf = path->nodes[0]; 3781 3782 if (filled) 3783 goto cache_index; 3784 3785 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3786 struct btrfs_inode_item); 3787 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3788 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); 3789 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); 3790 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); 3791 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); 3792 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 3793 round_up(i_size_read(inode), fs_info->sectorsize)); 3794 3795 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); 3796 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); 3797 3798 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); 3799 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); 3800 3801 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); 3802 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); 3803 3804 BTRFS_I(inode)->i_otime.tv_sec = 3805 btrfs_timespec_sec(leaf, &inode_item->otime); 3806 BTRFS_I(inode)->i_otime.tv_nsec = 3807 btrfs_timespec_nsec(leaf, &inode_item->otime); 3808 3809 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 3810 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 3811 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); 3812 3813 inode_set_iversion_queried(inode, 3814 btrfs_inode_sequence(leaf, inode_item)); 3815 inode->i_generation = BTRFS_I(inode)->generation; 3816 inode->i_rdev = 0; 3817 rdev = btrfs_inode_rdev(leaf, inode_item); 3818 3819 BTRFS_I(inode)->index_cnt = (u64)-1; 3820 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3821 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 3822 3823 cache_index: 3824 /* 3825 * If we were modified in the current generation and evicted from memory 3826 * and then re-read we need to do a full sync since we don't have any 3827 * idea about which extents were modified before we were evicted from 3828 * cache. 3829 * 3830 * This is required for both inode re-read from disk and delayed inode 3831 * in delayed_nodes_tree. 3832 */ 3833 if (BTRFS_I(inode)->last_trans == fs_info->generation) 3834 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3835 &BTRFS_I(inode)->runtime_flags); 3836 3837 /* 3838 * We don't persist the id of the transaction where an unlink operation 3839 * against the inode was last made. So here we assume the inode might 3840 * have been evicted, and therefore the exact value of last_unlink_trans 3841 * lost, and set it to last_trans to avoid metadata inconsistencies 3842 * between the inode and its parent if the inode is fsync'ed and the log 3843 * replayed. For example, in the scenario: 3844 * 3845 * touch mydir/foo 3846 * ln mydir/foo mydir/bar 3847 * sync 3848 * unlink mydir/bar 3849 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3850 * xfs_io -c fsync mydir/foo 3851 * <power failure> 3852 * mount fs, triggers fsync log replay 3853 * 3854 * We must make sure that when we fsync our inode foo we also log its 3855 * parent inode, otherwise after log replay the parent still has the 3856 * dentry with the "bar" name but our inode foo has a link count of 1 3857 * and doesn't have an inode ref with the name "bar" anymore. 3858 * 3859 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3860 * but it guarantees correctness at the expense of occasional full 3861 * transaction commits on fsync if our inode is a directory, or if our 3862 * inode is not a directory, logging its parent unnecessarily. 3863 */ 3864 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; 3865 3866 /* 3867 * Same logic as for last_unlink_trans. We don't persist the generation 3868 * of the last transaction where this inode was used for a reflink 3869 * operation, so after eviction and reloading the inode we must be 3870 * pessimistic and assume the last transaction that modified the inode. 3871 */ 3872 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans; 3873 3874 path->slots[0]++; 3875 if (inode->i_nlink != 1 || 3876 path->slots[0] >= btrfs_header_nritems(leaf)) 3877 goto cache_acl; 3878 3879 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 3880 if (location.objectid != btrfs_ino(BTRFS_I(inode))) 3881 goto cache_acl; 3882 3883 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3884 if (location.type == BTRFS_INODE_REF_KEY) { 3885 struct btrfs_inode_ref *ref; 3886 3887 ref = (struct btrfs_inode_ref *)ptr; 3888 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); 3889 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 3890 struct btrfs_inode_extref *extref; 3891 3892 extref = (struct btrfs_inode_extref *)ptr; 3893 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, 3894 extref); 3895 } 3896 cache_acl: 3897 /* 3898 * try to precache a NULL acl entry for files that don't have 3899 * any xattrs or acls 3900 */ 3901 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 3902 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); 3903 if (first_xattr_slot != -1) { 3904 path->slots[0] = first_xattr_slot; 3905 ret = btrfs_load_inode_props(inode, path); 3906 if (ret) 3907 btrfs_err(fs_info, 3908 "error loading props for ino %llu (root %llu): %d", 3909 btrfs_ino(BTRFS_I(inode)), 3910 root->root_key.objectid, ret); 3911 } 3912 if (path != in_path) 3913 btrfs_free_path(path); 3914 3915 if (!maybe_acls) 3916 cache_no_acl(inode); 3917 3918 switch (inode->i_mode & S_IFMT) { 3919 case S_IFREG: 3920 inode->i_mapping->a_ops = &btrfs_aops; 3921 inode->i_fop = &btrfs_file_operations; 3922 inode->i_op = &btrfs_file_inode_operations; 3923 break; 3924 case S_IFDIR: 3925 inode->i_fop = &btrfs_dir_file_operations; 3926 inode->i_op = &btrfs_dir_inode_operations; 3927 break; 3928 case S_IFLNK: 3929 inode->i_op = &btrfs_symlink_inode_operations; 3930 inode_nohighmem(inode); 3931 inode->i_mapping->a_ops = &btrfs_aops; 3932 break; 3933 default: 3934 inode->i_op = &btrfs_special_inode_operations; 3935 init_special_inode(inode, inode->i_mode, rdev); 3936 break; 3937 } 3938 3939 btrfs_sync_inode_flags_to_i_flags(inode); 3940 return 0; 3941 } 3942 3943 /* 3944 * given a leaf and an inode, copy the inode fields into the leaf 3945 */ 3946 static void fill_inode_item(struct btrfs_trans_handle *trans, 3947 struct extent_buffer *leaf, 3948 struct btrfs_inode_item *item, 3949 struct inode *inode) 3950 { 3951 struct btrfs_map_token token; 3952 u64 flags; 3953 3954 btrfs_init_map_token(&token, leaf); 3955 3956 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 3957 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 3958 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 3959 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 3960 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 3961 3962 btrfs_set_token_timespec_sec(&token, &item->atime, 3963 inode->i_atime.tv_sec); 3964 btrfs_set_token_timespec_nsec(&token, &item->atime, 3965 inode->i_atime.tv_nsec); 3966 3967 btrfs_set_token_timespec_sec(&token, &item->mtime, 3968 inode->i_mtime.tv_sec); 3969 btrfs_set_token_timespec_nsec(&token, &item->mtime, 3970 inode->i_mtime.tv_nsec); 3971 3972 btrfs_set_token_timespec_sec(&token, &item->ctime, 3973 inode->i_ctime.tv_sec); 3974 btrfs_set_token_timespec_nsec(&token, &item->ctime, 3975 inode->i_ctime.tv_nsec); 3976 3977 btrfs_set_token_timespec_sec(&token, &item->otime, 3978 BTRFS_I(inode)->i_otime.tv_sec); 3979 btrfs_set_token_timespec_nsec(&token, &item->otime, 3980 BTRFS_I(inode)->i_otime.tv_nsec); 3981 3982 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 3983 btrfs_set_token_inode_generation(&token, item, 3984 BTRFS_I(inode)->generation); 3985 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 3986 btrfs_set_token_inode_transid(&token, item, trans->transid); 3987 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 3988 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 3989 BTRFS_I(inode)->ro_flags); 3990 btrfs_set_token_inode_flags(&token, item, flags); 3991 btrfs_set_token_inode_block_group(&token, item, 0); 3992 } 3993 3994 /* 3995 * copy everything in the in-memory inode into the btree. 3996 */ 3997 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 3998 struct btrfs_root *root, 3999 struct btrfs_inode *inode) 4000 { 4001 struct btrfs_inode_item *inode_item; 4002 struct btrfs_path *path; 4003 struct extent_buffer *leaf; 4004 int ret; 4005 4006 path = btrfs_alloc_path(); 4007 if (!path) 4008 return -ENOMEM; 4009 4010 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1); 4011 if (ret) { 4012 if (ret > 0) 4013 ret = -ENOENT; 4014 goto failed; 4015 } 4016 4017 leaf = path->nodes[0]; 4018 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4019 struct btrfs_inode_item); 4020 4021 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4022 btrfs_mark_buffer_dirty(leaf); 4023 btrfs_set_inode_last_trans(trans, inode); 4024 ret = 0; 4025 failed: 4026 btrfs_free_path(path); 4027 return ret; 4028 } 4029 4030 /* 4031 * copy everything in the in-memory inode into the btree. 4032 */ 4033 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 4034 struct btrfs_root *root, 4035 struct btrfs_inode *inode) 4036 { 4037 struct btrfs_fs_info *fs_info = root->fs_info; 4038 int ret; 4039 4040 /* 4041 * If the inode is a free space inode, we can deadlock during commit 4042 * if we put it into the delayed code. 4043 * 4044 * The data relocation inode should also be directly updated 4045 * without delay 4046 */ 4047 if (!btrfs_is_free_space_inode(inode) 4048 && !btrfs_is_data_reloc_root(root) 4049 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4050 btrfs_update_root_times(trans, root); 4051 4052 ret = btrfs_delayed_update_inode(trans, root, inode); 4053 if (!ret) 4054 btrfs_set_inode_last_trans(trans, inode); 4055 return ret; 4056 } 4057 4058 return btrfs_update_inode_item(trans, root, inode); 4059 } 4060 4061 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4062 struct btrfs_root *root, struct btrfs_inode *inode) 4063 { 4064 int ret; 4065 4066 ret = btrfs_update_inode(trans, root, inode); 4067 if (ret == -ENOSPC) 4068 return btrfs_update_inode_item(trans, root, inode); 4069 return ret; 4070 } 4071 4072 /* 4073 * unlink helper that gets used here in inode.c and in the tree logging 4074 * recovery code. It remove a link in a directory with a given name, and 4075 * also drops the back refs in the inode to the directory 4076 */ 4077 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4078 struct btrfs_inode *dir, 4079 struct btrfs_inode *inode, 4080 const char *name, int name_len, 4081 struct btrfs_rename_ctx *rename_ctx) 4082 { 4083 struct btrfs_root *root = dir->root; 4084 struct btrfs_fs_info *fs_info = root->fs_info; 4085 struct btrfs_path *path; 4086 int ret = 0; 4087 struct btrfs_dir_item *di; 4088 u64 index; 4089 u64 ino = btrfs_ino(inode); 4090 u64 dir_ino = btrfs_ino(dir); 4091 4092 path = btrfs_alloc_path(); 4093 if (!path) { 4094 ret = -ENOMEM; 4095 goto out; 4096 } 4097 4098 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4099 name, name_len, -1); 4100 if (IS_ERR_OR_NULL(di)) { 4101 ret = di ? PTR_ERR(di) : -ENOENT; 4102 goto err; 4103 } 4104 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4105 if (ret) 4106 goto err; 4107 btrfs_release_path(path); 4108 4109 /* 4110 * If we don't have dir index, we have to get it by looking up 4111 * the inode ref, since we get the inode ref, remove it directly, 4112 * it is unnecessary to do delayed deletion. 4113 * 4114 * But if we have dir index, needn't search inode ref to get it. 4115 * Since the inode ref is close to the inode item, it is better 4116 * that we delay to delete it, and just do this deletion when 4117 * we update the inode item. 4118 */ 4119 if (inode->dir_index) { 4120 ret = btrfs_delayed_delete_inode_ref(inode); 4121 if (!ret) { 4122 index = inode->dir_index; 4123 goto skip_backref; 4124 } 4125 } 4126 4127 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 4128 dir_ino, &index); 4129 if (ret) { 4130 btrfs_info(fs_info, 4131 "failed to delete reference to %.*s, inode %llu parent %llu", 4132 name_len, name, ino, dir_ino); 4133 btrfs_abort_transaction(trans, ret); 4134 goto err; 4135 } 4136 skip_backref: 4137 if (rename_ctx) 4138 rename_ctx->index = index; 4139 4140 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4141 if (ret) { 4142 btrfs_abort_transaction(trans, ret); 4143 goto err; 4144 } 4145 4146 /* 4147 * If we are in a rename context, we don't need to update anything in the 4148 * log. That will be done later during the rename by btrfs_log_new_name(). 4149 * Besides that, doing it here would only cause extra unncessary btree 4150 * operations on the log tree, increasing latency for applications. 4151 */ 4152 if (!rename_ctx) { 4153 btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, 4154 dir_ino); 4155 btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, 4156 index); 4157 } 4158 4159 /* 4160 * If we have a pending delayed iput we could end up with the final iput 4161 * being run in btrfs-cleaner context. If we have enough of these built 4162 * up we can end up burning a lot of time in btrfs-cleaner without any 4163 * way to throttle the unlinks. Since we're currently holding a ref on 4164 * the inode we can run the delayed iput here without any issues as the 4165 * final iput won't be done until after we drop the ref we're currently 4166 * holding. 4167 */ 4168 btrfs_run_delayed_iput(fs_info, inode); 4169 err: 4170 btrfs_free_path(path); 4171 if (ret) 4172 goto out; 4173 4174 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); 4175 inode_inc_iversion(&inode->vfs_inode); 4176 inode_inc_iversion(&dir->vfs_inode); 4177 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = 4178 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 4179 ret = btrfs_update_inode(trans, root, dir); 4180 out: 4181 return ret; 4182 } 4183 4184 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4185 struct btrfs_inode *dir, struct btrfs_inode *inode, 4186 const char *name, int name_len) 4187 { 4188 int ret; 4189 ret = __btrfs_unlink_inode(trans, dir, inode, name, name_len, NULL); 4190 if (!ret) { 4191 drop_nlink(&inode->vfs_inode); 4192 ret = btrfs_update_inode(trans, inode->root, inode); 4193 } 4194 return ret; 4195 } 4196 4197 /* 4198 * helper to start transaction for unlink and rmdir. 4199 * 4200 * unlink and rmdir are special in btrfs, they do not always free space, so 4201 * if we cannot make our reservations the normal way try and see if there is 4202 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4203 * allow the unlink to occur. 4204 */ 4205 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) 4206 { 4207 struct btrfs_root *root = BTRFS_I(dir)->root; 4208 4209 /* 4210 * 1 for the possible orphan item 4211 * 1 for the dir item 4212 * 1 for the dir index 4213 * 1 for the inode ref 4214 * 1 for the inode 4215 */ 4216 return btrfs_start_transaction_fallback_global_rsv(root, 5); 4217 } 4218 4219 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4220 { 4221 struct btrfs_trans_handle *trans; 4222 struct inode *inode = d_inode(dentry); 4223 int ret; 4224 4225 trans = __unlink_start_trans(dir); 4226 if (IS_ERR(trans)) 4227 return PTR_ERR(trans); 4228 4229 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4230 0); 4231 4232 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), 4233 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4234 dentry->d_name.len); 4235 if (ret) 4236 goto out; 4237 4238 if (inode->i_nlink == 0) { 4239 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4240 if (ret) 4241 goto out; 4242 } 4243 4244 out: 4245 btrfs_end_transaction(trans); 4246 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4247 return ret; 4248 } 4249 4250 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4251 struct inode *dir, struct dentry *dentry) 4252 { 4253 struct btrfs_root *root = BTRFS_I(dir)->root; 4254 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4255 struct btrfs_path *path; 4256 struct extent_buffer *leaf; 4257 struct btrfs_dir_item *di; 4258 struct btrfs_key key; 4259 const char *name = dentry->d_name.name; 4260 int name_len = dentry->d_name.len; 4261 u64 index; 4262 int ret; 4263 u64 objectid; 4264 u64 dir_ino = btrfs_ino(BTRFS_I(dir)); 4265 4266 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4267 objectid = inode->root->root_key.objectid; 4268 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4269 objectid = inode->location.objectid; 4270 } else { 4271 WARN_ON(1); 4272 return -EINVAL; 4273 } 4274 4275 path = btrfs_alloc_path(); 4276 if (!path) 4277 return -ENOMEM; 4278 4279 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4280 name, name_len, -1); 4281 if (IS_ERR_OR_NULL(di)) { 4282 ret = di ? PTR_ERR(di) : -ENOENT; 4283 goto out; 4284 } 4285 4286 leaf = path->nodes[0]; 4287 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4288 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4289 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4290 if (ret) { 4291 btrfs_abort_transaction(trans, ret); 4292 goto out; 4293 } 4294 btrfs_release_path(path); 4295 4296 /* 4297 * This is a placeholder inode for a subvolume we didn't have a 4298 * reference to at the time of the snapshot creation. In the meantime 4299 * we could have renamed the real subvol link into our snapshot, so 4300 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4301 * Instead simply lookup the dir_index_item for this entry so we can 4302 * remove it. Otherwise we know we have a ref to the root and we can 4303 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4304 */ 4305 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4306 di = btrfs_search_dir_index_item(root, path, dir_ino, 4307 name, name_len); 4308 if (IS_ERR_OR_NULL(di)) { 4309 if (!di) 4310 ret = -ENOENT; 4311 else 4312 ret = PTR_ERR(di); 4313 btrfs_abort_transaction(trans, ret); 4314 goto out; 4315 } 4316 4317 leaf = path->nodes[0]; 4318 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4319 index = key.offset; 4320 btrfs_release_path(path); 4321 } else { 4322 ret = btrfs_del_root_ref(trans, objectid, 4323 root->root_key.objectid, dir_ino, 4324 &index, name, name_len); 4325 if (ret) { 4326 btrfs_abort_transaction(trans, ret); 4327 goto out; 4328 } 4329 } 4330 4331 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); 4332 if (ret) { 4333 btrfs_abort_transaction(trans, ret); 4334 goto out; 4335 } 4336 4337 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); 4338 inode_inc_iversion(dir); 4339 dir->i_mtime = dir->i_ctime = current_time(dir); 4340 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir)); 4341 if (ret) 4342 btrfs_abort_transaction(trans, ret); 4343 out: 4344 btrfs_free_path(path); 4345 return ret; 4346 } 4347 4348 /* 4349 * Helper to check if the subvolume references other subvolumes or if it's 4350 * default. 4351 */ 4352 static noinline int may_destroy_subvol(struct btrfs_root *root) 4353 { 4354 struct btrfs_fs_info *fs_info = root->fs_info; 4355 struct btrfs_path *path; 4356 struct btrfs_dir_item *di; 4357 struct btrfs_key key; 4358 u64 dir_id; 4359 int ret; 4360 4361 path = btrfs_alloc_path(); 4362 if (!path) 4363 return -ENOMEM; 4364 4365 /* Make sure this root isn't set as the default subvol */ 4366 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4367 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4368 dir_id, "default", 7, 0); 4369 if (di && !IS_ERR(di)) { 4370 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4371 if (key.objectid == root->root_key.objectid) { 4372 ret = -EPERM; 4373 btrfs_err(fs_info, 4374 "deleting default subvolume %llu is not allowed", 4375 key.objectid); 4376 goto out; 4377 } 4378 btrfs_release_path(path); 4379 } 4380 4381 key.objectid = root->root_key.objectid; 4382 key.type = BTRFS_ROOT_REF_KEY; 4383 key.offset = (u64)-1; 4384 4385 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4386 if (ret < 0) 4387 goto out; 4388 BUG_ON(ret == 0); 4389 4390 ret = 0; 4391 if (path->slots[0] > 0) { 4392 path->slots[0]--; 4393 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4394 if (key.objectid == root->root_key.objectid && 4395 key.type == BTRFS_ROOT_REF_KEY) 4396 ret = -ENOTEMPTY; 4397 } 4398 out: 4399 btrfs_free_path(path); 4400 return ret; 4401 } 4402 4403 /* Delete all dentries for inodes belonging to the root */ 4404 static void btrfs_prune_dentries(struct btrfs_root *root) 4405 { 4406 struct btrfs_fs_info *fs_info = root->fs_info; 4407 struct rb_node *node; 4408 struct rb_node *prev; 4409 struct btrfs_inode *entry; 4410 struct inode *inode; 4411 u64 objectid = 0; 4412 4413 if (!BTRFS_FS_ERROR(fs_info)) 4414 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4415 4416 spin_lock(&root->inode_lock); 4417 again: 4418 node = root->inode_tree.rb_node; 4419 prev = NULL; 4420 while (node) { 4421 prev = node; 4422 entry = rb_entry(node, struct btrfs_inode, rb_node); 4423 4424 if (objectid < btrfs_ino(entry)) 4425 node = node->rb_left; 4426 else if (objectid > btrfs_ino(entry)) 4427 node = node->rb_right; 4428 else 4429 break; 4430 } 4431 if (!node) { 4432 while (prev) { 4433 entry = rb_entry(prev, struct btrfs_inode, rb_node); 4434 if (objectid <= btrfs_ino(entry)) { 4435 node = prev; 4436 break; 4437 } 4438 prev = rb_next(prev); 4439 } 4440 } 4441 while (node) { 4442 entry = rb_entry(node, struct btrfs_inode, rb_node); 4443 objectid = btrfs_ino(entry) + 1; 4444 inode = igrab(&entry->vfs_inode); 4445 if (inode) { 4446 spin_unlock(&root->inode_lock); 4447 if (atomic_read(&inode->i_count) > 1) 4448 d_prune_aliases(inode); 4449 /* 4450 * btrfs_drop_inode will have it removed from the inode 4451 * cache when its usage count hits zero. 4452 */ 4453 iput(inode); 4454 cond_resched(); 4455 spin_lock(&root->inode_lock); 4456 goto again; 4457 } 4458 4459 if (cond_resched_lock(&root->inode_lock)) 4460 goto again; 4461 4462 node = rb_next(node); 4463 } 4464 spin_unlock(&root->inode_lock); 4465 } 4466 4467 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) 4468 { 4469 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 4470 struct btrfs_root *root = BTRFS_I(dir)->root; 4471 struct inode *inode = d_inode(dentry); 4472 struct btrfs_root *dest = BTRFS_I(inode)->root; 4473 struct btrfs_trans_handle *trans; 4474 struct btrfs_block_rsv block_rsv; 4475 u64 root_flags; 4476 int ret; 4477 4478 /* 4479 * Don't allow to delete a subvolume with send in progress. This is 4480 * inside the inode lock so the error handling that has to drop the bit 4481 * again is not run concurrently. 4482 */ 4483 spin_lock(&dest->root_item_lock); 4484 if (dest->send_in_progress) { 4485 spin_unlock(&dest->root_item_lock); 4486 btrfs_warn(fs_info, 4487 "attempt to delete subvolume %llu during send", 4488 dest->root_key.objectid); 4489 return -EPERM; 4490 } 4491 root_flags = btrfs_root_flags(&dest->root_item); 4492 btrfs_set_root_flags(&dest->root_item, 4493 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4494 spin_unlock(&dest->root_item_lock); 4495 4496 down_write(&fs_info->subvol_sem); 4497 4498 ret = may_destroy_subvol(dest); 4499 if (ret) 4500 goto out_up_write; 4501 4502 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4503 /* 4504 * One for dir inode, 4505 * two for dir entries, 4506 * two for root ref/backref. 4507 */ 4508 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4509 if (ret) 4510 goto out_up_write; 4511 4512 trans = btrfs_start_transaction(root, 0); 4513 if (IS_ERR(trans)) { 4514 ret = PTR_ERR(trans); 4515 goto out_release; 4516 } 4517 trans->block_rsv = &block_rsv; 4518 trans->bytes_reserved = block_rsv.size; 4519 4520 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); 4521 4522 ret = btrfs_unlink_subvol(trans, dir, dentry); 4523 if (ret) { 4524 btrfs_abort_transaction(trans, ret); 4525 goto out_end_trans; 4526 } 4527 4528 ret = btrfs_record_root_in_trans(trans, dest); 4529 if (ret) { 4530 btrfs_abort_transaction(trans, ret); 4531 goto out_end_trans; 4532 } 4533 4534 memset(&dest->root_item.drop_progress, 0, 4535 sizeof(dest->root_item.drop_progress)); 4536 btrfs_set_root_drop_level(&dest->root_item, 0); 4537 btrfs_set_root_refs(&dest->root_item, 0); 4538 4539 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4540 ret = btrfs_insert_orphan_item(trans, 4541 fs_info->tree_root, 4542 dest->root_key.objectid); 4543 if (ret) { 4544 btrfs_abort_transaction(trans, ret); 4545 goto out_end_trans; 4546 } 4547 } 4548 4549 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4550 BTRFS_UUID_KEY_SUBVOL, 4551 dest->root_key.objectid); 4552 if (ret && ret != -ENOENT) { 4553 btrfs_abort_transaction(trans, ret); 4554 goto out_end_trans; 4555 } 4556 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4557 ret = btrfs_uuid_tree_remove(trans, 4558 dest->root_item.received_uuid, 4559 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4560 dest->root_key.objectid); 4561 if (ret && ret != -ENOENT) { 4562 btrfs_abort_transaction(trans, ret); 4563 goto out_end_trans; 4564 } 4565 } 4566 4567 free_anon_bdev(dest->anon_dev); 4568 dest->anon_dev = 0; 4569 out_end_trans: 4570 trans->block_rsv = NULL; 4571 trans->bytes_reserved = 0; 4572 ret = btrfs_end_transaction(trans); 4573 inode->i_flags |= S_DEAD; 4574 out_release: 4575 btrfs_subvolume_release_metadata(root, &block_rsv); 4576 out_up_write: 4577 up_write(&fs_info->subvol_sem); 4578 if (ret) { 4579 spin_lock(&dest->root_item_lock); 4580 root_flags = btrfs_root_flags(&dest->root_item); 4581 btrfs_set_root_flags(&dest->root_item, 4582 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4583 spin_unlock(&dest->root_item_lock); 4584 } else { 4585 d_invalidate(dentry); 4586 btrfs_prune_dentries(dest); 4587 ASSERT(dest->send_in_progress == 0); 4588 } 4589 4590 return ret; 4591 } 4592 4593 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4594 { 4595 struct inode *inode = d_inode(dentry); 4596 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4597 int err = 0; 4598 struct btrfs_trans_handle *trans; 4599 u64 last_unlink_trans; 4600 4601 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4602 return -ENOTEMPTY; 4603 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4604 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4605 btrfs_err(fs_info, 4606 "extent tree v2 doesn't support snapshot deletion yet"); 4607 return -EOPNOTSUPP; 4608 } 4609 return btrfs_delete_subvolume(dir, dentry); 4610 } 4611 4612 trans = __unlink_start_trans(dir); 4613 if (IS_ERR(trans)) 4614 return PTR_ERR(trans); 4615 4616 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4617 err = btrfs_unlink_subvol(trans, dir, dentry); 4618 goto out; 4619 } 4620 4621 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4622 if (err) 4623 goto out; 4624 4625 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4626 4627 /* now the directory is empty */ 4628 err = btrfs_unlink_inode(trans, BTRFS_I(dir), 4629 BTRFS_I(d_inode(dentry)), dentry->d_name.name, 4630 dentry->d_name.len); 4631 if (!err) { 4632 btrfs_i_size_write(BTRFS_I(inode), 0); 4633 /* 4634 * Propagate the last_unlink_trans value of the deleted dir to 4635 * its parent directory. This is to prevent an unrecoverable 4636 * log tree in the case we do something like this: 4637 * 1) create dir foo 4638 * 2) create snapshot under dir foo 4639 * 3) delete the snapshot 4640 * 4) rmdir foo 4641 * 5) mkdir foo 4642 * 6) fsync foo or some file inside foo 4643 */ 4644 if (last_unlink_trans >= trans->transid) 4645 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4646 } 4647 out: 4648 btrfs_end_transaction(trans); 4649 btrfs_btree_balance_dirty(fs_info); 4650 4651 return err; 4652 } 4653 4654 /* 4655 * btrfs_truncate_block - read, zero a chunk and write a block 4656 * @inode - inode that we're zeroing 4657 * @from - the offset to start zeroing 4658 * @len - the length to zero, 0 to zero the entire range respective to the 4659 * offset 4660 * @front - zero up to the offset instead of from the offset on 4661 * 4662 * This will find the block for the "from" offset and cow the block and zero the 4663 * part we want to zero. This is used with truncate and hole punching. 4664 */ 4665 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4666 int front) 4667 { 4668 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4669 struct address_space *mapping = inode->vfs_inode.i_mapping; 4670 struct extent_io_tree *io_tree = &inode->io_tree; 4671 struct btrfs_ordered_extent *ordered; 4672 struct extent_state *cached_state = NULL; 4673 struct extent_changeset *data_reserved = NULL; 4674 bool only_release_metadata = false; 4675 u32 blocksize = fs_info->sectorsize; 4676 pgoff_t index = from >> PAGE_SHIFT; 4677 unsigned offset = from & (blocksize - 1); 4678 struct page *page; 4679 gfp_t mask = btrfs_alloc_write_mask(mapping); 4680 size_t write_bytes = blocksize; 4681 int ret = 0; 4682 u64 block_start; 4683 u64 block_end; 4684 4685 if (IS_ALIGNED(offset, blocksize) && 4686 (!len || IS_ALIGNED(len, blocksize))) 4687 goto out; 4688 4689 block_start = round_down(from, blocksize); 4690 block_end = block_start + blocksize - 1; 4691 4692 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4693 blocksize); 4694 if (ret < 0) { 4695 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes) > 0) { 4696 /* For nocow case, no need to reserve data space */ 4697 only_release_metadata = true; 4698 } else { 4699 goto out; 4700 } 4701 } 4702 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize); 4703 if (ret < 0) { 4704 if (!only_release_metadata) 4705 btrfs_free_reserved_data_space(inode, data_reserved, 4706 block_start, blocksize); 4707 goto out; 4708 } 4709 again: 4710 page = find_or_create_page(mapping, index, mask); 4711 if (!page) { 4712 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4713 blocksize, true); 4714 btrfs_delalloc_release_extents(inode, blocksize); 4715 ret = -ENOMEM; 4716 goto out; 4717 } 4718 ret = set_page_extent_mapped(page); 4719 if (ret < 0) 4720 goto out_unlock; 4721 4722 if (!PageUptodate(page)) { 4723 ret = btrfs_readpage(NULL, page); 4724 lock_page(page); 4725 if (page->mapping != mapping) { 4726 unlock_page(page); 4727 put_page(page); 4728 goto again; 4729 } 4730 if (!PageUptodate(page)) { 4731 ret = -EIO; 4732 goto out_unlock; 4733 } 4734 } 4735 wait_on_page_writeback(page); 4736 4737 lock_extent_bits(io_tree, block_start, block_end, &cached_state); 4738 4739 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4740 if (ordered) { 4741 unlock_extent_cached(io_tree, block_start, block_end, 4742 &cached_state); 4743 unlock_page(page); 4744 put_page(page); 4745 btrfs_start_ordered_extent(ordered, 1); 4746 btrfs_put_ordered_extent(ordered); 4747 goto again; 4748 } 4749 4750 clear_extent_bit(&inode->io_tree, block_start, block_end, 4751 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4752 0, 0, &cached_state); 4753 4754 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4755 &cached_state); 4756 if (ret) { 4757 unlock_extent_cached(io_tree, block_start, block_end, 4758 &cached_state); 4759 goto out_unlock; 4760 } 4761 4762 if (offset != blocksize) { 4763 if (!len) 4764 len = blocksize - offset; 4765 if (front) 4766 memzero_page(page, (block_start - page_offset(page)), 4767 offset); 4768 else 4769 memzero_page(page, (block_start - page_offset(page)) + offset, 4770 len); 4771 flush_dcache_page(page); 4772 } 4773 btrfs_page_clear_checked(fs_info, page, block_start, 4774 block_end + 1 - block_start); 4775 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start); 4776 unlock_extent_cached(io_tree, block_start, block_end, &cached_state); 4777 4778 if (only_release_metadata) 4779 set_extent_bit(&inode->io_tree, block_start, block_end, 4780 EXTENT_NORESERVE, 0, NULL, NULL, GFP_NOFS, NULL); 4781 4782 out_unlock: 4783 if (ret) { 4784 if (only_release_metadata) 4785 btrfs_delalloc_release_metadata(inode, blocksize, true); 4786 else 4787 btrfs_delalloc_release_space(inode, data_reserved, 4788 block_start, blocksize, true); 4789 } 4790 btrfs_delalloc_release_extents(inode, blocksize); 4791 unlock_page(page); 4792 put_page(page); 4793 out: 4794 if (only_release_metadata) 4795 btrfs_check_nocow_unlock(inode); 4796 extent_changeset_free(data_reserved); 4797 return ret; 4798 } 4799 4800 static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode, 4801 u64 offset, u64 len) 4802 { 4803 struct btrfs_fs_info *fs_info = root->fs_info; 4804 struct btrfs_trans_handle *trans; 4805 struct btrfs_drop_extents_args drop_args = { 0 }; 4806 int ret; 4807 4808 /* 4809 * If NO_HOLES is enabled, we don't need to do anything. 4810 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4811 * or btrfs_update_inode() will be called, which guarantee that the next 4812 * fsync will know this inode was changed and needs to be logged. 4813 */ 4814 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4815 return 0; 4816 4817 /* 4818 * 1 - for the one we're dropping 4819 * 1 - for the one we're adding 4820 * 1 - for updating the inode. 4821 */ 4822 trans = btrfs_start_transaction(root, 3); 4823 if (IS_ERR(trans)) 4824 return PTR_ERR(trans); 4825 4826 drop_args.start = offset; 4827 drop_args.end = offset + len; 4828 drop_args.drop_cache = true; 4829 4830 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4831 if (ret) { 4832 btrfs_abort_transaction(trans, ret); 4833 btrfs_end_transaction(trans); 4834 return ret; 4835 } 4836 4837 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), 4838 offset, 0, 0, len, 0, len, 0, 0, 0); 4839 if (ret) { 4840 btrfs_abort_transaction(trans, ret); 4841 } else { 4842 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4843 btrfs_update_inode(trans, root, inode); 4844 } 4845 btrfs_end_transaction(trans); 4846 return ret; 4847 } 4848 4849 /* 4850 * This function puts in dummy file extents for the area we're creating a hole 4851 * for. So if we are truncating this file to a larger size we need to insert 4852 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4853 * the range between oldsize and size 4854 */ 4855 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 4856 { 4857 struct btrfs_root *root = inode->root; 4858 struct btrfs_fs_info *fs_info = root->fs_info; 4859 struct extent_io_tree *io_tree = &inode->io_tree; 4860 struct extent_map *em = NULL; 4861 struct extent_state *cached_state = NULL; 4862 struct extent_map_tree *em_tree = &inode->extent_tree; 4863 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 4864 u64 block_end = ALIGN(size, fs_info->sectorsize); 4865 u64 last_byte; 4866 u64 cur_offset; 4867 u64 hole_size; 4868 int err = 0; 4869 4870 /* 4871 * If our size started in the middle of a block we need to zero out the 4872 * rest of the block before we expand the i_size, otherwise we could 4873 * expose stale data. 4874 */ 4875 err = btrfs_truncate_block(inode, oldsize, 0, 0); 4876 if (err) 4877 return err; 4878 4879 if (size <= hole_start) 4880 return 0; 4881 4882 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 4883 &cached_state); 4884 cur_offset = hole_start; 4885 while (1) { 4886 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 4887 block_end - cur_offset); 4888 if (IS_ERR(em)) { 4889 err = PTR_ERR(em); 4890 em = NULL; 4891 break; 4892 } 4893 last_byte = min(extent_map_end(em), block_end); 4894 last_byte = ALIGN(last_byte, fs_info->sectorsize); 4895 hole_size = last_byte - cur_offset; 4896 4897 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 4898 struct extent_map *hole_em; 4899 4900 err = maybe_insert_hole(root, inode, cur_offset, 4901 hole_size); 4902 if (err) 4903 break; 4904 4905 err = btrfs_inode_set_file_extent_range(inode, 4906 cur_offset, hole_size); 4907 if (err) 4908 break; 4909 4910 btrfs_drop_extent_cache(inode, cur_offset, 4911 cur_offset + hole_size - 1, 0); 4912 hole_em = alloc_extent_map(); 4913 if (!hole_em) { 4914 btrfs_set_inode_full_sync(inode); 4915 goto next; 4916 } 4917 hole_em->start = cur_offset; 4918 hole_em->len = hole_size; 4919 hole_em->orig_start = cur_offset; 4920 4921 hole_em->block_start = EXTENT_MAP_HOLE; 4922 hole_em->block_len = 0; 4923 hole_em->orig_block_len = 0; 4924 hole_em->ram_bytes = hole_size; 4925 hole_em->compress_type = BTRFS_COMPRESS_NONE; 4926 hole_em->generation = fs_info->generation; 4927 4928 while (1) { 4929 write_lock(&em_tree->lock); 4930 err = add_extent_mapping(em_tree, hole_em, 1); 4931 write_unlock(&em_tree->lock); 4932 if (err != -EEXIST) 4933 break; 4934 btrfs_drop_extent_cache(inode, cur_offset, 4935 cur_offset + 4936 hole_size - 1, 0); 4937 } 4938 free_extent_map(hole_em); 4939 } else { 4940 err = btrfs_inode_set_file_extent_range(inode, 4941 cur_offset, hole_size); 4942 if (err) 4943 break; 4944 } 4945 next: 4946 free_extent_map(em); 4947 em = NULL; 4948 cur_offset = last_byte; 4949 if (cur_offset >= block_end) 4950 break; 4951 } 4952 free_extent_map(em); 4953 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); 4954 return err; 4955 } 4956 4957 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 4958 { 4959 struct btrfs_root *root = BTRFS_I(inode)->root; 4960 struct btrfs_trans_handle *trans; 4961 loff_t oldsize = i_size_read(inode); 4962 loff_t newsize = attr->ia_size; 4963 int mask = attr->ia_valid; 4964 int ret; 4965 4966 /* 4967 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 4968 * special case where we need to update the times despite not having 4969 * these flags set. For all other operations the VFS set these flags 4970 * explicitly if it wants a timestamp update. 4971 */ 4972 if (newsize != oldsize) { 4973 inode_inc_iversion(inode); 4974 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) 4975 inode->i_ctime = inode->i_mtime = 4976 current_time(inode); 4977 } 4978 4979 if (newsize > oldsize) { 4980 /* 4981 * Don't do an expanding truncate while snapshotting is ongoing. 4982 * This is to ensure the snapshot captures a fully consistent 4983 * state of this file - if the snapshot captures this expanding 4984 * truncation, it must capture all writes that happened before 4985 * this truncation. 4986 */ 4987 btrfs_drew_write_lock(&root->snapshot_lock); 4988 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 4989 if (ret) { 4990 btrfs_drew_write_unlock(&root->snapshot_lock); 4991 return ret; 4992 } 4993 4994 trans = btrfs_start_transaction(root, 1); 4995 if (IS_ERR(trans)) { 4996 btrfs_drew_write_unlock(&root->snapshot_lock); 4997 return PTR_ERR(trans); 4998 } 4999 5000 i_size_write(inode, newsize); 5001 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5002 pagecache_isize_extended(inode, oldsize, newsize); 5003 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5004 btrfs_drew_write_unlock(&root->snapshot_lock); 5005 btrfs_end_transaction(trans); 5006 } else { 5007 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5008 5009 if (btrfs_is_zoned(fs_info)) { 5010 ret = btrfs_wait_ordered_range(inode, 5011 ALIGN(newsize, fs_info->sectorsize), 5012 (u64)-1); 5013 if (ret) 5014 return ret; 5015 } 5016 5017 /* 5018 * We're truncating a file that used to have good data down to 5019 * zero. Make sure any new writes to the file get on disk 5020 * on close. 5021 */ 5022 if (newsize == 0) 5023 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5024 &BTRFS_I(inode)->runtime_flags); 5025 5026 truncate_setsize(inode, newsize); 5027 5028 inode_dio_wait(inode); 5029 5030 ret = btrfs_truncate(inode, newsize == oldsize); 5031 if (ret && inode->i_nlink) { 5032 int err; 5033 5034 /* 5035 * Truncate failed, so fix up the in-memory size. We 5036 * adjusted disk_i_size down as we removed extents, so 5037 * wait for disk_i_size to be stable and then update the 5038 * in-memory size to match. 5039 */ 5040 err = btrfs_wait_ordered_range(inode, 0, (u64)-1); 5041 if (err) 5042 return err; 5043 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5044 } 5045 } 5046 5047 return ret; 5048 } 5049 5050 static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 5051 struct iattr *attr) 5052 { 5053 struct inode *inode = d_inode(dentry); 5054 struct btrfs_root *root = BTRFS_I(inode)->root; 5055 int err; 5056 5057 if (btrfs_root_readonly(root)) 5058 return -EROFS; 5059 5060 err = setattr_prepare(mnt_userns, dentry, attr); 5061 if (err) 5062 return err; 5063 5064 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5065 err = btrfs_setsize(inode, attr); 5066 if (err) 5067 return err; 5068 } 5069 5070 if (attr->ia_valid) { 5071 setattr_copy(mnt_userns, inode, attr); 5072 inode_inc_iversion(inode); 5073 err = btrfs_dirty_inode(inode); 5074 5075 if (!err && attr->ia_valid & ATTR_MODE) 5076 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode); 5077 } 5078 5079 return err; 5080 } 5081 5082 /* 5083 * While truncating the inode pages during eviction, we get the VFS 5084 * calling btrfs_invalidate_folio() against each folio of the inode. This 5085 * is slow because the calls to btrfs_invalidate_folio() result in a 5086 * huge amount of calls to lock_extent_bits() and clear_extent_bit(), 5087 * which keep merging and splitting extent_state structures over and over, 5088 * wasting lots of time. 5089 * 5090 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5091 * skip all those expensive operations on a per folio basis and do only 5092 * the ordered io finishing, while we release here the extent_map and 5093 * extent_state structures, without the excessive merging and splitting. 5094 */ 5095 static void evict_inode_truncate_pages(struct inode *inode) 5096 { 5097 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5098 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; 5099 struct rb_node *node; 5100 5101 ASSERT(inode->i_state & I_FREEING); 5102 truncate_inode_pages_final(&inode->i_data); 5103 5104 write_lock(&map_tree->lock); 5105 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) { 5106 struct extent_map *em; 5107 5108 node = rb_first_cached(&map_tree->map); 5109 em = rb_entry(node, struct extent_map, rb_node); 5110 clear_bit(EXTENT_FLAG_PINNED, &em->flags); 5111 clear_bit(EXTENT_FLAG_LOGGING, &em->flags); 5112 remove_extent_mapping(map_tree, em); 5113 free_extent_map(em); 5114 if (need_resched()) { 5115 write_unlock(&map_tree->lock); 5116 cond_resched(); 5117 write_lock(&map_tree->lock); 5118 } 5119 } 5120 write_unlock(&map_tree->lock); 5121 5122 /* 5123 * Keep looping until we have no more ranges in the io tree. 5124 * We can have ongoing bios started by readahead that have 5125 * their endio callback (extent_io.c:end_bio_extent_readpage) 5126 * still in progress (unlocked the pages in the bio but did not yet 5127 * unlocked the ranges in the io tree). Therefore this means some 5128 * ranges can still be locked and eviction started because before 5129 * submitting those bios, which are executed by a separate task (work 5130 * queue kthread), inode references (inode->i_count) were not taken 5131 * (which would be dropped in the end io callback of each bio). 5132 * Therefore here we effectively end up waiting for those bios and 5133 * anyone else holding locked ranges without having bumped the inode's 5134 * reference count - if we don't do it, when they access the inode's 5135 * io_tree to unlock a range it may be too late, leading to an 5136 * use-after-free issue. 5137 */ 5138 spin_lock(&io_tree->lock); 5139 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5140 struct extent_state *state; 5141 struct extent_state *cached_state = NULL; 5142 u64 start; 5143 u64 end; 5144 unsigned state_flags; 5145 5146 node = rb_first(&io_tree->state); 5147 state = rb_entry(node, struct extent_state, rb_node); 5148 start = state->start; 5149 end = state->end; 5150 state_flags = state->state; 5151 spin_unlock(&io_tree->lock); 5152 5153 lock_extent_bits(io_tree, start, end, &cached_state); 5154 5155 /* 5156 * If still has DELALLOC flag, the extent didn't reach disk, 5157 * and its reserved space won't be freed by delayed_ref. 5158 * So we need to free its reserved space here. 5159 * (Refer to comment in btrfs_invalidate_folio, case 2) 5160 * 5161 * Note, end is the bytenr of last byte, so we need + 1 here. 5162 */ 5163 if (state_flags & EXTENT_DELALLOC) 5164 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5165 end - start + 1); 5166 5167 clear_extent_bit(io_tree, start, end, 5168 EXTENT_LOCKED | EXTENT_DELALLOC | 5169 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, 5170 &cached_state); 5171 5172 cond_resched(); 5173 spin_lock(&io_tree->lock); 5174 } 5175 spin_unlock(&io_tree->lock); 5176 } 5177 5178 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5179 struct btrfs_block_rsv *rsv) 5180 { 5181 struct btrfs_fs_info *fs_info = root->fs_info; 5182 struct btrfs_trans_handle *trans; 5183 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1); 5184 int ret; 5185 5186 /* 5187 * Eviction should be taking place at some place safe because of our 5188 * delayed iputs. However the normal flushing code will run delayed 5189 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5190 * 5191 * We reserve the delayed_refs_extra here again because we can't use 5192 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5193 * above. We reserve our extra bit here because we generate a ton of 5194 * delayed refs activity by truncating. 5195 * 5196 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5197 * if we fail to make this reservation we can re-try without the 5198 * delayed_refs_extra so we can make some forward progress. 5199 */ 5200 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5201 BTRFS_RESERVE_FLUSH_EVICT); 5202 if (ret) { 5203 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5204 BTRFS_RESERVE_FLUSH_EVICT); 5205 if (ret) { 5206 btrfs_warn(fs_info, 5207 "could not allocate space for delete; will truncate on mount"); 5208 return ERR_PTR(-ENOSPC); 5209 } 5210 delayed_refs_extra = 0; 5211 } 5212 5213 trans = btrfs_join_transaction(root); 5214 if (IS_ERR(trans)) 5215 return trans; 5216 5217 if (delayed_refs_extra) { 5218 trans->block_rsv = &fs_info->trans_block_rsv; 5219 trans->bytes_reserved = delayed_refs_extra; 5220 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5221 delayed_refs_extra, 1); 5222 } 5223 return trans; 5224 } 5225 5226 void btrfs_evict_inode(struct inode *inode) 5227 { 5228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5229 struct btrfs_trans_handle *trans; 5230 struct btrfs_root *root = BTRFS_I(inode)->root; 5231 struct btrfs_block_rsv *rsv; 5232 int ret; 5233 5234 trace_btrfs_inode_evict(inode); 5235 5236 if (!root) { 5237 fsverity_cleanup_inode(inode); 5238 clear_inode(inode); 5239 return; 5240 } 5241 5242 evict_inode_truncate_pages(inode); 5243 5244 if (inode->i_nlink && 5245 ((btrfs_root_refs(&root->root_item) != 0 && 5246 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || 5247 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5248 goto no_delete; 5249 5250 if (is_bad_inode(inode)) 5251 goto no_delete; 5252 5253 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); 5254 5255 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5256 goto no_delete; 5257 5258 if (inode->i_nlink > 0) { 5259 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5260 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); 5261 goto no_delete; 5262 } 5263 5264 /* 5265 * This makes sure the inode item in tree is uptodate and the space for 5266 * the inode update is released. 5267 */ 5268 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5269 if (ret) 5270 goto no_delete; 5271 5272 /* 5273 * This drops any pending insert or delete operations we have for this 5274 * inode. We could have a delayed dir index deletion queued up, but 5275 * we're removing the inode completely so that'll be taken care of in 5276 * the truncate. 5277 */ 5278 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5279 5280 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5281 if (!rsv) 5282 goto no_delete; 5283 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5284 rsv->failfast = 1; 5285 5286 btrfs_i_size_write(BTRFS_I(inode), 0); 5287 5288 while (1) { 5289 struct btrfs_truncate_control control = { 5290 .inode = BTRFS_I(inode), 5291 .ino = btrfs_ino(BTRFS_I(inode)), 5292 .new_size = 0, 5293 .min_type = 0, 5294 }; 5295 5296 trans = evict_refill_and_join(root, rsv); 5297 if (IS_ERR(trans)) 5298 goto free_rsv; 5299 5300 trans->block_rsv = rsv; 5301 5302 ret = btrfs_truncate_inode_items(trans, root, &control); 5303 trans->block_rsv = &fs_info->trans_block_rsv; 5304 btrfs_end_transaction(trans); 5305 btrfs_btree_balance_dirty(fs_info); 5306 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5307 goto free_rsv; 5308 else if (!ret) 5309 break; 5310 } 5311 5312 /* 5313 * Errors here aren't a big deal, it just means we leave orphan items in 5314 * the tree. They will be cleaned up on the next mount. If the inode 5315 * number gets reused, cleanup deletes the orphan item without doing 5316 * anything, and unlink reuses the existing orphan item. 5317 * 5318 * If it turns out that we are dropping too many of these, we might want 5319 * to add a mechanism for retrying these after a commit. 5320 */ 5321 trans = evict_refill_and_join(root, rsv); 5322 if (!IS_ERR(trans)) { 5323 trans->block_rsv = rsv; 5324 btrfs_orphan_del(trans, BTRFS_I(inode)); 5325 trans->block_rsv = &fs_info->trans_block_rsv; 5326 btrfs_end_transaction(trans); 5327 } 5328 5329 free_rsv: 5330 btrfs_free_block_rsv(fs_info, rsv); 5331 no_delete: 5332 /* 5333 * If we didn't successfully delete, the orphan item will still be in 5334 * the tree and we'll retry on the next mount. Again, we might also want 5335 * to retry these periodically in the future. 5336 */ 5337 btrfs_remove_delayed_node(BTRFS_I(inode)); 5338 fsverity_cleanup_inode(inode); 5339 clear_inode(inode); 5340 } 5341 5342 /* 5343 * Return the key found in the dir entry in the location pointer, fill @type 5344 * with BTRFS_FT_*, and return 0. 5345 * 5346 * If no dir entries were found, returns -ENOENT. 5347 * If found a corrupted location in dir entry, returns -EUCLEAN. 5348 */ 5349 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 5350 struct btrfs_key *location, u8 *type) 5351 { 5352 const char *name = dentry->d_name.name; 5353 int namelen = dentry->d_name.len; 5354 struct btrfs_dir_item *di; 5355 struct btrfs_path *path; 5356 struct btrfs_root *root = BTRFS_I(dir)->root; 5357 int ret = 0; 5358 5359 path = btrfs_alloc_path(); 5360 if (!path) 5361 return -ENOMEM; 5362 5363 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), 5364 name, namelen, 0); 5365 if (IS_ERR_OR_NULL(di)) { 5366 ret = di ? PTR_ERR(di) : -ENOENT; 5367 goto out; 5368 } 5369 5370 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5371 if (location->type != BTRFS_INODE_ITEM_KEY && 5372 location->type != BTRFS_ROOT_ITEM_KEY) { 5373 ret = -EUCLEAN; 5374 btrfs_warn(root->fs_info, 5375 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5376 __func__, name, btrfs_ino(BTRFS_I(dir)), 5377 location->objectid, location->type, location->offset); 5378 } 5379 if (!ret) 5380 *type = btrfs_dir_type(path->nodes[0], di); 5381 out: 5382 btrfs_free_path(path); 5383 return ret; 5384 } 5385 5386 /* 5387 * when we hit a tree root in a directory, the btrfs part of the inode 5388 * needs to be changed to reflect the root directory of the tree root. This 5389 * is kind of like crossing a mount point. 5390 */ 5391 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5392 struct inode *dir, 5393 struct dentry *dentry, 5394 struct btrfs_key *location, 5395 struct btrfs_root **sub_root) 5396 { 5397 struct btrfs_path *path; 5398 struct btrfs_root *new_root; 5399 struct btrfs_root_ref *ref; 5400 struct extent_buffer *leaf; 5401 struct btrfs_key key; 5402 int ret; 5403 int err = 0; 5404 5405 path = btrfs_alloc_path(); 5406 if (!path) { 5407 err = -ENOMEM; 5408 goto out; 5409 } 5410 5411 err = -ENOENT; 5412 key.objectid = BTRFS_I(dir)->root->root_key.objectid; 5413 key.type = BTRFS_ROOT_REF_KEY; 5414 key.offset = location->objectid; 5415 5416 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5417 if (ret) { 5418 if (ret < 0) 5419 err = ret; 5420 goto out; 5421 } 5422 5423 leaf = path->nodes[0]; 5424 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5425 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || 5426 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 5427 goto out; 5428 5429 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 5430 (unsigned long)(ref + 1), 5431 dentry->d_name.len); 5432 if (ret) 5433 goto out; 5434 5435 btrfs_release_path(path); 5436 5437 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5438 if (IS_ERR(new_root)) { 5439 err = PTR_ERR(new_root); 5440 goto out; 5441 } 5442 5443 *sub_root = new_root; 5444 location->objectid = btrfs_root_dirid(&new_root->root_item); 5445 location->type = BTRFS_INODE_ITEM_KEY; 5446 location->offset = 0; 5447 err = 0; 5448 out: 5449 btrfs_free_path(path); 5450 return err; 5451 } 5452 5453 static void inode_tree_add(struct inode *inode) 5454 { 5455 struct btrfs_root *root = BTRFS_I(inode)->root; 5456 struct btrfs_inode *entry; 5457 struct rb_node **p; 5458 struct rb_node *parent; 5459 struct rb_node *new = &BTRFS_I(inode)->rb_node; 5460 u64 ino = btrfs_ino(BTRFS_I(inode)); 5461 5462 if (inode_unhashed(inode)) 5463 return; 5464 parent = NULL; 5465 spin_lock(&root->inode_lock); 5466 p = &root->inode_tree.rb_node; 5467 while (*p) { 5468 parent = *p; 5469 entry = rb_entry(parent, struct btrfs_inode, rb_node); 5470 5471 if (ino < btrfs_ino(entry)) 5472 p = &parent->rb_left; 5473 else if (ino > btrfs_ino(entry)) 5474 p = &parent->rb_right; 5475 else { 5476 WARN_ON(!(entry->vfs_inode.i_state & 5477 (I_WILL_FREE | I_FREEING))); 5478 rb_replace_node(parent, new, &root->inode_tree); 5479 RB_CLEAR_NODE(parent); 5480 spin_unlock(&root->inode_lock); 5481 return; 5482 } 5483 } 5484 rb_link_node(new, parent, p); 5485 rb_insert_color(new, &root->inode_tree); 5486 spin_unlock(&root->inode_lock); 5487 } 5488 5489 static void inode_tree_del(struct btrfs_inode *inode) 5490 { 5491 struct btrfs_root *root = inode->root; 5492 int empty = 0; 5493 5494 spin_lock(&root->inode_lock); 5495 if (!RB_EMPTY_NODE(&inode->rb_node)) { 5496 rb_erase(&inode->rb_node, &root->inode_tree); 5497 RB_CLEAR_NODE(&inode->rb_node); 5498 empty = RB_EMPTY_ROOT(&root->inode_tree); 5499 } 5500 spin_unlock(&root->inode_lock); 5501 5502 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5503 spin_lock(&root->inode_lock); 5504 empty = RB_EMPTY_ROOT(&root->inode_tree); 5505 spin_unlock(&root->inode_lock); 5506 if (empty) 5507 btrfs_add_dead_root(root); 5508 } 5509 } 5510 5511 5512 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5513 { 5514 struct btrfs_iget_args *args = p; 5515 5516 inode->i_ino = args->ino; 5517 BTRFS_I(inode)->location.objectid = args->ino; 5518 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY; 5519 BTRFS_I(inode)->location.offset = 0; 5520 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5521 BUG_ON(args->root && !BTRFS_I(inode)->root); 5522 return 0; 5523 } 5524 5525 static int btrfs_find_actor(struct inode *inode, void *opaque) 5526 { 5527 struct btrfs_iget_args *args = opaque; 5528 5529 return args->ino == BTRFS_I(inode)->location.objectid && 5530 args->root == BTRFS_I(inode)->root; 5531 } 5532 5533 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino, 5534 struct btrfs_root *root) 5535 { 5536 struct inode *inode; 5537 struct btrfs_iget_args args; 5538 unsigned long hashval = btrfs_inode_hash(ino, root); 5539 5540 args.ino = ino; 5541 args.root = root; 5542 5543 inode = iget5_locked(s, hashval, btrfs_find_actor, 5544 btrfs_init_locked_inode, 5545 (void *)&args); 5546 return inode; 5547 } 5548 5549 /* 5550 * Get an inode object given its inode number and corresponding root. 5551 * Path can be preallocated to prevent recursing back to iget through 5552 * allocator. NULL is also valid but may require an additional allocation 5553 * later. 5554 */ 5555 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 5556 struct btrfs_root *root, struct btrfs_path *path) 5557 { 5558 struct inode *inode; 5559 5560 inode = btrfs_iget_locked(s, ino, root); 5561 if (!inode) 5562 return ERR_PTR(-ENOMEM); 5563 5564 if (inode->i_state & I_NEW) { 5565 int ret; 5566 5567 ret = btrfs_read_locked_inode(inode, path); 5568 if (!ret) { 5569 inode_tree_add(inode); 5570 unlock_new_inode(inode); 5571 } else { 5572 iget_failed(inode); 5573 /* 5574 * ret > 0 can come from btrfs_search_slot called by 5575 * btrfs_read_locked_inode, this means the inode item 5576 * was not found. 5577 */ 5578 if (ret > 0) 5579 ret = -ENOENT; 5580 inode = ERR_PTR(ret); 5581 } 5582 } 5583 5584 return inode; 5585 } 5586 5587 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root) 5588 { 5589 return btrfs_iget_path(s, ino, root, NULL); 5590 } 5591 5592 static struct inode *new_simple_dir(struct super_block *s, 5593 struct btrfs_key *key, 5594 struct btrfs_root *root) 5595 { 5596 struct inode *inode = new_inode(s); 5597 5598 if (!inode) 5599 return ERR_PTR(-ENOMEM); 5600 5601 BTRFS_I(inode)->root = btrfs_grab_root(root); 5602 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 5603 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); 5604 5605 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 5606 /* 5607 * We only need lookup, the rest is read-only and there's no inode 5608 * associated with the dentry 5609 */ 5610 inode->i_op = &simple_dir_inode_operations; 5611 inode->i_opflags &= ~IOP_XATTR; 5612 inode->i_fop = &simple_dir_operations; 5613 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5614 inode->i_mtime = current_time(inode); 5615 inode->i_atime = inode->i_mtime; 5616 inode->i_ctime = inode->i_mtime; 5617 BTRFS_I(inode)->i_otime = inode->i_mtime; 5618 5619 return inode; 5620 } 5621 5622 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5623 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5624 static_assert(BTRFS_FT_DIR == FT_DIR); 5625 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5626 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5627 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5628 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5629 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5630 5631 static inline u8 btrfs_inode_type(struct inode *inode) 5632 { 5633 return fs_umode_to_ftype(inode->i_mode); 5634 } 5635 5636 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5637 { 5638 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 5639 struct inode *inode; 5640 struct btrfs_root *root = BTRFS_I(dir)->root; 5641 struct btrfs_root *sub_root = root; 5642 struct btrfs_key location; 5643 u8 di_type = 0; 5644 int ret = 0; 5645 5646 if (dentry->d_name.len > BTRFS_NAME_LEN) 5647 return ERR_PTR(-ENAMETOOLONG); 5648 5649 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type); 5650 if (ret < 0) 5651 return ERR_PTR(ret); 5652 5653 if (location.type == BTRFS_INODE_ITEM_KEY) { 5654 inode = btrfs_iget(dir->i_sb, location.objectid, root); 5655 if (IS_ERR(inode)) 5656 return inode; 5657 5658 /* Do extra check against inode mode with di_type */ 5659 if (btrfs_inode_type(inode) != di_type) { 5660 btrfs_crit(fs_info, 5661 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5662 inode->i_mode, btrfs_inode_type(inode), 5663 di_type); 5664 iput(inode); 5665 return ERR_PTR(-EUCLEAN); 5666 } 5667 return inode; 5668 } 5669 5670 ret = fixup_tree_root_location(fs_info, dir, dentry, 5671 &location, &sub_root); 5672 if (ret < 0) { 5673 if (ret != -ENOENT) 5674 inode = ERR_PTR(ret); 5675 else 5676 inode = new_simple_dir(dir->i_sb, &location, sub_root); 5677 } else { 5678 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root); 5679 } 5680 if (root != sub_root) 5681 btrfs_put_root(sub_root); 5682 5683 if (!IS_ERR(inode) && root != sub_root) { 5684 down_read(&fs_info->cleanup_work_sem); 5685 if (!sb_rdonly(inode->i_sb)) 5686 ret = btrfs_orphan_cleanup(sub_root); 5687 up_read(&fs_info->cleanup_work_sem); 5688 if (ret) { 5689 iput(inode); 5690 inode = ERR_PTR(ret); 5691 } 5692 } 5693 5694 return inode; 5695 } 5696 5697 static int btrfs_dentry_delete(const struct dentry *dentry) 5698 { 5699 struct btrfs_root *root; 5700 struct inode *inode = d_inode(dentry); 5701 5702 if (!inode && !IS_ROOT(dentry)) 5703 inode = d_inode(dentry->d_parent); 5704 5705 if (inode) { 5706 root = BTRFS_I(inode)->root; 5707 if (btrfs_root_refs(&root->root_item) == 0) 5708 return 1; 5709 5710 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5711 return 1; 5712 } 5713 return 0; 5714 } 5715 5716 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5717 unsigned int flags) 5718 { 5719 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5720 5721 if (inode == ERR_PTR(-ENOENT)) 5722 inode = NULL; 5723 return d_splice_alias(inode, dentry); 5724 } 5725 5726 /* 5727 * All this infrastructure exists because dir_emit can fault, and we are holding 5728 * the tree lock when doing readdir. For now just allocate a buffer and copy 5729 * our information into that, and then dir_emit from the buffer. This is 5730 * similar to what NFS does, only we don't keep the buffer around in pagecache 5731 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5732 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5733 * tree lock. 5734 */ 5735 static int btrfs_opendir(struct inode *inode, struct file *file) 5736 { 5737 struct btrfs_file_private *private; 5738 5739 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5740 if (!private) 5741 return -ENOMEM; 5742 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5743 if (!private->filldir_buf) { 5744 kfree(private); 5745 return -ENOMEM; 5746 } 5747 file->private_data = private; 5748 return 0; 5749 } 5750 5751 struct dir_entry { 5752 u64 ino; 5753 u64 offset; 5754 unsigned type; 5755 int name_len; 5756 }; 5757 5758 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5759 { 5760 while (entries--) { 5761 struct dir_entry *entry = addr; 5762 char *name = (char *)(entry + 1); 5763 5764 ctx->pos = get_unaligned(&entry->offset); 5765 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5766 get_unaligned(&entry->ino), 5767 get_unaligned(&entry->type))) 5768 return 1; 5769 addr += sizeof(struct dir_entry) + 5770 get_unaligned(&entry->name_len); 5771 ctx->pos++; 5772 } 5773 return 0; 5774 } 5775 5776 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5777 { 5778 struct inode *inode = file_inode(file); 5779 struct btrfs_root *root = BTRFS_I(inode)->root; 5780 struct btrfs_file_private *private = file->private_data; 5781 struct btrfs_dir_item *di; 5782 struct btrfs_key key; 5783 struct btrfs_key found_key; 5784 struct btrfs_path *path; 5785 void *addr; 5786 struct list_head ins_list; 5787 struct list_head del_list; 5788 int ret; 5789 struct extent_buffer *leaf; 5790 int slot; 5791 char *name_ptr; 5792 int name_len; 5793 int entries = 0; 5794 int total_len = 0; 5795 bool put = false; 5796 struct btrfs_key location; 5797 5798 if (!dir_emit_dots(file, ctx)) 5799 return 0; 5800 5801 path = btrfs_alloc_path(); 5802 if (!path) 5803 return -ENOMEM; 5804 5805 addr = private->filldir_buf; 5806 path->reada = READA_FORWARD; 5807 5808 INIT_LIST_HEAD(&ins_list); 5809 INIT_LIST_HEAD(&del_list); 5810 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); 5811 5812 again: 5813 key.type = BTRFS_DIR_INDEX_KEY; 5814 key.offset = ctx->pos; 5815 key.objectid = btrfs_ino(BTRFS_I(inode)); 5816 5817 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5818 if (ret < 0) 5819 goto err; 5820 5821 while (1) { 5822 struct dir_entry *entry; 5823 5824 leaf = path->nodes[0]; 5825 slot = path->slots[0]; 5826 if (slot >= btrfs_header_nritems(leaf)) { 5827 ret = btrfs_next_leaf(root, path); 5828 if (ret < 0) 5829 goto err; 5830 else if (ret > 0) 5831 break; 5832 continue; 5833 } 5834 5835 btrfs_item_key_to_cpu(leaf, &found_key, slot); 5836 5837 if (found_key.objectid != key.objectid) 5838 break; 5839 if (found_key.type != BTRFS_DIR_INDEX_KEY) 5840 break; 5841 if (found_key.offset < ctx->pos) 5842 goto next; 5843 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 5844 goto next; 5845 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 5846 name_len = btrfs_dir_name_len(leaf, di); 5847 if ((total_len + sizeof(struct dir_entry) + name_len) >= 5848 PAGE_SIZE) { 5849 btrfs_release_path(path); 5850 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5851 if (ret) 5852 goto nopos; 5853 addr = private->filldir_buf; 5854 entries = 0; 5855 total_len = 0; 5856 goto again; 5857 } 5858 5859 entry = addr; 5860 put_unaligned(name_len, &entry->name_len); 5861 name_ptr = (char *)(entry + 1); 5862 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), 5863 name_len); 5864 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)), 5865 &entry->type); 5866 btrfs_dir_item_key_to_cpu(leaf, di, &location); 5867 put_unaligned(location.objectid, &entry->ino); 5868 put_unaligned(found_key.offset, &entry->offset); 5869 entries++; 5870 addr += sizeof(struct dir_entry) + name_len; 5871 total_len += sizeof(struct dir_entry) + name_len; 5872 next: 5873 path->slots[0]++; 5874 } 5875 btrfs_release_path(path); 5876 5877 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 5878 if (ret) 5879 goto nopos; 5880 5881 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 5882 if (ret) 5883 goto nopos; 5884 5885 /* 5886 * Stop new entries from being returned after we return the last 5887 * entry. 5888 * 5889 * New directory entries are assigned a strictly increasing 5890 * offset. This means that new entries created during readdir 5891 * are *guaranteed* to be seen in the future by that readdir. 5892 * This has broken buggy programs which operate on names as 5893 * they're returned by readdir. Until we re-use freed offsets 5894 * we have this hack to stop new entries from being returned 5895 * under the assumption that they'll never reach this huge 5896 * offset. 5897 * 5898 * This is being careful not to overflow 32bit loff_t unless the 5899 * last entry requires it because doing so has broken 32bit apps 5900 * in the past. 5901 */ 5902 if (ctx->pos >= INT_MAX) 5903 ctx->pos = LLONG_MAX; 5904 else 5905 ctx->pos = INT_MAX; 5906 nopos: 5907 ret = 0; 5908 err: 5909 if (put) 5910 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); 5911 btrfs_free_path(path); 5912 return ret; 5913 } 5914 5915 /* 5916 * This is somewhat expensive, updating the tree every time the 5917 * inode changes. But, it is most likely to find the inode in cache. 5918 * FIXME, needs more benchmarking...there are no reasons other than performance 5919 * to keep or drop this code. 5920 */ 5921 static int btrfs_dirty_inode(struct inode *inode) 5922 { 5923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 5924 struct btrfs_root *root = BTRFS_I(inode)->root; 5925 struct btrfs_trans_handle *trans; 5926 int ret; 5927 5928 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) 5929 return 0; 5930 5931 trans = btrfs_join_transaction(root); 5932 if (IS_ERR(trans)) 5933 return PTR_ERR(trans); 5934 5935 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5936 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) { 5937 /* whoops, lets try again with the full transaction */ 5938 btrfs_end_transaction(trans); 5939 trans = btrfs_start_transaction(root, 1); 5940 if (IS_ERR(trans)) 5941 return PTR_ERR(trans); 5942 5943 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 5944 } 5945 btrfs_end_transaction(trans); 5946 if (BTRFS_I(inode)->delayed_node) 5947 btrfs_balance_delayed_items(fs_info); 5948 5949 return ret; 5950 } 5951 5952 /* 5953 * This is a copy of file_update_time. We need this so we can return error on 5954 * ENOSPC for updating the inode in the case of file write and mmap writes. 5955 */ 5956 static int btrfs_update_time(struct inode *inode, struct timespec64 *now, 5957 int flags) 5958 { 5959 struct btrfs_root *root = BTRFS_I(inode)->root; 5960 bool dirty = flags & ~S_VERSION; 5961 5962 if (btrfs_root_readonly(root)) 5963 return -EROFS; 5964 5965 if (flags & S_VERSION) 5966 dirty |= inode_maybe_inc_iversion(inode, dirty); 5967 if (flags & S_CTIME) 5968 inode->i_ctime = *now; 5969 if (flags & S_MTIME) 5970 inode->i_mtime = *now; 5971 if (flags & S_ATIME) 5972 inode->i_atime = *now; 5973 return dirty ? btrfs_dirty_inode(inode) : 0; 5974 } 5975 5976 /* 5977 * find the highest existing sequence number in a directory 5978 * and then set the in-memory index_cnt variable to reflect 5979 * free sequence numbers 5980 */ 5981 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5982 { 5983 struct btrfs_root *root = inode->root; 5984 struct btrfs_key key, found_key; 5985 struct btrfs_path *path; 5986 struct extent_buffer *leaf; 5987 int ret; 5988 5989 key.objectid = btrfs_ino(inode); 5990 key.type = BTRFS_DIR_INDEX_KEY; 5991 key.offset = (u64)-1; 5992 5993 path = btrfs_alloc_path(); 5994 if (!path) 5995 return -ENOMEM; 5996 5997 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5998 if (ret < 0) 5999 goto out; 6000 /* FIXME: we should be able to handle this */ 6001 if (ret == 0) 6002 goto out; 6003 ret = 0; 6004 6005 if (path->slots[0] == 0) { 6006 inode->index_cnt = BTRFS_DIR_START_INDEX; 6007 goto out; 6008 } 6009 6010 path->slots[0]--; 6011 6012 leaf = path->nodes[0]; 6013 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6014 6015 if (found_key.objectid != btrfs_ino(inode) || 6016 found_key.type != BTRFS_DIR_INDEX_KEY) { 6017 inode->index_cnt = BTRFS_DIR_START_INDEX; 6018 goto out; 6019 } 6020 6021 inode->index_cnt = found_key.offset + 1; 6022 out: 6023 btrfs_free_path(path); 6024 return ret; 6025 } 6026 6027 /* 6028 * helper to find a free sequence number in a given directory. This current 6029 * code is very simple, later versions will do smarter things in the btree 6030 */ 6031 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6032 { 6033 int ret = 0; 6034 6035 if (dir->index_cnt == (u64)-1) { 6036 ret = btrfs_inode_delayed_dir_index_count(dir); 6037 if (ret) { 6038 ret = btrfs_set_inode_index_count(dir); 6039 if (ret) 6040 return ret; 6041 } 6042 } 6043 6044 *index = dir->index_cnt; 6045 dir->index_cnt++; 6046 6047 return ret; 6048 } 6049 6050 static int btrfs_insert_inode_locked(struct inode *inode) 6051 { 6052 struct btrfs_iget_args args; 6053 6054 args.ino = BTRFS_I(inode)->location.objectid; 6055 args.root = BTRFS_I(inode)->root; 6056 6057 return insert_inode_locked4(inode, 6058 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6059 btrfs_find_actor, &args); 6060 } 6061 6062 /* 6063 * Inherit flags from the parent inode. 6064 * 6065 * Currently only the compression flags and the cow flags are inherited. 6066 */ 6067 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 6068 { 6069 unsigned int flags; 6070 6071 if (!dir) 6072 return; 6073 6074 flags = BTRFS_I(dir)->flags; 6075 6076 if (flags & BTRFS_INODE_NOCOMPRESS) { 6077 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 6078 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 6079 } else if (flags & BTRFS_INODE_COMPRESS) { 6080 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 6081 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 6082 } 6083 6084 if (flags & BTRFS_INODE_NODATACOW) { 6085 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 6086 if (S_ISREG(inode->i_mode)) 6087 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6088 } 6089 6090 btrfs_sync_inode_flags_to_i_flags(inode); 6091 } 6092 6093 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 6094 struct btrfs_root *root, 6095 struct user_namespace *mnt_userns, 6096 struct inode *dir, 6097 const char *name, int name_len, 6098 u64 ref_objectid, u64 objectid, 6099 umode_t mode, u64 *index) 6100 { 6101 struct btrfs_fs_info *fs_info = root->fs_info; 6102 struct inode *inode; 6103 struct btrfs_inode_item *inode_item; 6104 struct btrfs_key *location; 6105 struct btrfs_path *path; 6106 struct btrfs_inode_ref *ref; 6107 struct btrfs_key key[2]; 6108 u32 sizes[2]; 6109 struct btrfs_item_batch batch; 6110 unsigned long ptr; 6111 unsigned int nofs_flag; 6112 int ret; 6113 6114 path = btrfs_alloc_path(); 6115 if (!path) 6116 return ERR_PTR(-ENOMEM); 6117 6118 nofs_flag = memalloc_nofs_save(); 6119 inode = new_inode(fs_info->sb); 6120 memalloc_nofs_restore(nofs_flag); 6121 if (!inode) { 6122 btrfs_free_path(path); 6123 return ERR_PTR(-ENOMEM); 6124 } 6125 6126 /* 6127 * O_TMPFILE, set link count to 0, so that after this point, 6128 * we fill in an inode item with the correct link count. 6129 */ 6130 if (!name) 6131 set_nlink(inode, 0); 6132 6133 /* 6134 * we have to initialize this early, so we can reclaim the inode 6135 * number if we fail afterwards in this function. 6136 */ 6137 inode->i_ino = objectid; 6138 6139 if (dir && name) { 6140 trace_btrfs_inode_request(dir); 6141 6142 ret = btrfs_set_inode_index(BTRFS_I(dir), index); 6143 if (ret) { 6144 btrfs_free_path(path); 6145 iput(inode); 6146 return ERR_PTR(ret); 6147 } 6148 } else if (dir) { 6149 *index = 0; 6150 } 6151 /* 6152 * index_cnt is ignored for everything but a dir, 6153 * btrfs_set_inode_index_count has an explanation for the magic 6154 * number 6155 */ 6156 BTRFS_I(inode)->index_cnt = 2; 6157 BTRFS_I(inode)->dir_index = *index; 6158 BTRFS_I(inode)->root = btrfs_grab_root(root); 6159 BTRFS_I(inode)->generation = trans->transid; 6160 inode->i_generation = BTRFS_I(inode)->generation; 6161 6162 /* 6163 * We could have gotten an inode number from somebody who was fsynced 6164 * and then removed in this same transaction, so let's just set full 6165 * sync since it will be a full sync anyway and this will blow away the 6166 * old info in the log. 6167 */ 6168 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6169 6170 key[0].objectid = objectid; 6171 key[0].type = BTRFS_INODE_ITEM_KEY; 6172 key[0].offset = 0; 6173 6174 sizes[0] = sizeof(struct btrfs_inode_item); 6175 6176 if (name) { 6177 /* 6178 * Start new inodes with an inode_ref. This is slightly more 6179 * efficient for small numbers of hard links since they will 6180 * be packed into one item. Extended refs will kick in if we 6181 * add more hard links than can fit in the ref item. 6182 */ 6183 key[1].objectid = objectid; 6184 key[1].type = BTRFS_INODE_REF_KEY; 6185 key[1].offset = ref_objectid; 6186 6187 sizes[1] = name_len + sizeof(*ref); 6188 } 6189 6190 location = &BTRFS_I(inode)->location; 6191 location->objectid = objectid; 6192 location->offset = 0; 6193 location->type = BTRFS_INODE_ITEM_KEY; 6194 6195 ret = btrfs_insert_inode_locked(inode); 6196 if (ret < 0) { 6197 iput(inode); 6198 goto fail; 6199 } 6200 6201 batch.keys = &key[0]; 6202 batch.data_sizes = &sizes[0]; 6203 batch.total_data_size = sizes[0] + (name ? sizes[1] : 0); 6204 batch.nr = name ? 2 : 1; 6205 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6206 if (ret != 0) 6207 goto fail_unlock; 6208 6209 inode_init_owner(mnt_userns, inode, dir, mode); 6210 inode_set_bytes(inode, 0); 6211 6212 inode->i_mtime = current_time(inode); 6213 inode->i_atime = inode->i_mtime; 6214 inode->i_ctime = inode->i_mtime; 6215 BTRFS_I(inode)->i_otime = inode->i_mtime; 6216 6217 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6218 struct btrfs_inode_item); 6219 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6220 sizeof(*inode_item)); 6221 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6222 6223 if (name) { 6224 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6225 struct btrfs_inode_ref); 6226 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 6227 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 6228 ptr = (unsigned long)(ref + 1); 6229 write_extent_buffer(path->nodes[0], name, ptr, name_len); 6230 } 6231 6232 btrfs_mark_buffer_dirty(path->nodes[0]); 6233 btrfs_free_path(path); 6234 6235 btrfs_inherit_iflags(inode, dir); 6236 6237 if (S_ISREG(mode)) { 6238 if (btrfs_test_opt(fs_info, NODATASUM)) 6239 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6240 if (btrfs_test_opt(fs_info, NODATACOW)) 6241 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6242 BTRFS_INODE_NODATASUM; 6243 } 6244 6245 inode_tree_add(inode); 6246 6247 trace_btrfs_inode_new(inode); 6248 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6249 6250 btrfs_update_root_times(trans, root); 6251 6252 ret = btrfs_inode_inherit_props(trans, inode, dir); 6253 if (ret) 6254 btrfs_err(fs_info, 6255 "error inheriting props for ino %llu (root %llu): %d", 6256 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); 6257 6258 return inode; 6259 6260 fail_unlock: 6261 discard_new_inode(inode); 6262 fail: 6263 if (dir && name) 6264 BTRFS_I(dir)->index_cnt--; 6265 btrfs_free_path(path); 6266 return ERR_PTR(ret); 6267 } 6268 6269 /* 6270 * utility function to add 'inode' into 'parent_inode' with 6271 * a give name and a given sequence number. 6272 * if 'add_backref' is true, also insert a backref from the 6273 * inode to the parent directory. 6274 */ 6275 int btrfs_add_link(struct btrfs_trans_handle *trans, 6276 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6277 const char *name, int name_len, int add_backref, u64 index) 6278 { 6279 int ret = 0; 6280 struct btrfs_key key; 6281 struct btrfs_root *root = parent_inode->root; 6282 u64 ino = btrfs_ino(inode); 6283 u64 parent_ino = btrfs_ino(parent_inode); 6284 6285 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6286 memcpy(&key, &inode->root->root_key, sizeof(key)); 6287 } else { 6288 key.objectid = ino; 6289 key.type = BTRFS_INODE_ITEM_KEY; 6290 key.offset = 0; 6291 } 6292 6293 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6294 ret = btrfs_add_root_ref(trans, key.objectid, 6295 root->root_key.objectid, parent_ino, 6296 index, name, name_len); 6297 } else if (add_backref) { 6298 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 6299 parent_ino, index); 6300 } 6301 6302 /* Nothing to clean up yet */ 6303 if (ret) 6304 return ret; 6305 6306 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key, 6307 btrfs_inode_type(&inode->vfs_inode), index); 6308 if (ret == -EEXIST || ret == -EOVERFLOW) 6309 goto fail_dir_item; 6310 else if (ret) { 6311 btrfs_abort_transaction(trans, ret); 6312 return ret; 6313 } 6314 6315 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6316 name_len * 2); 6317 inode_inc_iversion(&parent_inode->vfs_inode); 6318 /* 6319 * If we are replaying a log tree, we do not want to update the mtime 6320 * and ctime of the parent directory with the current time, since the 6321 * log replay procedure is responsible for setting them to their correct 6322 * values (the ones it had when the fsync was done). 6323 */ 6324 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { 6325 struct timespec64 now = current_time(&parent_inode->vfs_inode); 6326 6327 parent_inode->vfs_inode.i_mtime = now; 6328 parent_inode->vfs_inode.i_ctime = now; 6329 } 6330 ret = btrfs_update_inode(trans, root, parent_inode); 6331 if (ret) 6332 btrfs_abort_transaction(trans, ret); 6333 return ret; 6334 6335 fail_dir_item: 6336 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6337 u64 local_index; 6338 int err; 6339 err = btrfs_del_root_ref(trans, key.objectid, 6340 root->root_key.objectid, parent_ino, 6341 &local_index, name, name_len); 6342 if (err) 6343 btrfs_abort_transaction(trans, err); 6344 } else if (add_backref) { 6345 u64 local_index; 6346 int err; 6347 6348 err = btrfs_del_inode_ref(trans, root, name, name_len, 6349 ino, parent_ino, &local_index); 6350 if (err) 6351 btrfs_abort_transaction(trans, err); 6352 } 6353 6354 /* Return the original error code */ 6355 return ret; 6356 } 6357 6358 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 6359 struct btrfs_inode *dir, struct dentry *dentry, 6360 struct btrfs_inode *inode, int backref, u64 index) 6361 { 6362 int err = btrfs_add_link(trans, dir, inode, 6363 dentry->d_name.name, dentry->d_name.len, 6364 backref, index); 6365 if (err > 0) 6366 err = -EEXIST; 6367 return err; 6368 } 6369 6370 static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 6371 struct dentry *dentry, umode_t mode, dev_t rdev) 6372 { 6373 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6374 struct btrfs_trans_handle *trans; 6375 struct btrfs_root *root = BTRFS_I(dir)->root; 6376 struct inode *inode = NULL; 6377 int err; 6378 u64 objectid; 6379 u64 index = 0; 6380 6381 /* 6382 * 2 for inode item and ref 6383 * 2 for dir items 6384 * 1 for xattr if selinux is on 6385 */ 6386 trans = btrfs_start_transaction(root, 5); 6387 if (IS_ERR(trans)) 6388 return PTR_ERR(trans); 6389 6390 err = btrfs_get_free_objectid(root, &objectid); 6391 if (err) 6392 goto out_unlock; 6393 6394 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6395 dentry->d_name.name, dentry->d_name.len, 6396 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 6397 if (IS_ERR(inode)) { 6398 err = PTR_ERR(inode); 6399 inode = NULL; 6400 goto out_unlock; 6401 } 6402 6403 /* 6404 * If the active LSM wants to access the inode during 6405 * d_instantiate it needs these. Smack checks to see 6406 * if the filesystem supports xattrs by looking at the 6407 * ops vector. 6408 */ 6409 inode->i_op = &btrfs_special_inode_operations; 6410 init_special_inode(inode, inode->i_mode, rdev); 6411 6412 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6413 if (err) 6414 goto out_unlock; 6415 6416 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6417 0, index); 6418 if (err) 6419 goto out_unlock; 6420 6421 btrfs_update_inode(trans, root, BTRFS_I(inode)); 6422 d_instantiate_new(dentry, inode); 6423 6424 out_unlock: 6425 btrfs_end_transaction(trans); 6426 btrfs_btree_balance_dirty(fs_info); 6427 if (err && inode) { 6428 inode_dec_link_count(inode); 6429 discard_new_inode(inode); 6430 } 6431 return err; 6432 } 6433 6434 static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir, 6435 struct dentry *dentry, umode_t mode, bool excl) 6436 { 6437 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6438 struct btrfs_trans_handle *trans; 6439 struct btrfs_root *root = BTRFS_I(dir)->root; 6440 struct inode *inode = NULL; 6441 int err; 6442 u64 objectid; 6443 u64 index = 0; 6444 6445 /* 6446 * 2 for inode item and ref 6447 * 2 for dir items 6448 * 1 for xattr if selinux is on 6449 */ 6450 trans = btrfs_start_transaction(root, 5); 6451 if (IS_ERR(trans)) 6452 return PTR_ERR(trans); 6453 6454 err = btrfs_get_free_objectid(root, &objectid); 6455 if (err) 6456 goto out_unlock; 6457 6458 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6459 dentry->d_name.name, dentry->d_name.len, 6460 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 6461 if (IS_ERR(inode)) { 6462 err = PTR_ERR(inode); 6463 inode = NULL; 6464 goto out_unlock; 6465 } 6466 /* 6467 * If the active LSM wants to access the inode during 6468 * d_instantiate it needs these. Smack checks to see 6469 * if the filesystem supports xattrs by looking at the 6470 * ops vector. 6471 */ 6472 inode->i_fop = &btrfs_file_operations; 6473 inode->i_op = &btrfs_file_inode_operations; 6474 inode->i_mapping->a_ops = &btrfs_aops; 6475 6476 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6477 if (err) 6478 goto out_unlock; 6479 6480 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6481 if (err) 6482 goto out_unlock; 6483 6484 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6485 0, index); 6486 if (err) 6487 goto out_unlock; 6488 6489 d_instantiate_new(dentry, inode); 6490 6491 out_unlock: 6492 btrfs_end_transaction(trans); 6493 if (err && inode) { 6494 inode_dec_link_count(inode); 6495 discard_new_inode(inode); 6496 } 6497 btrfs_btree_balance_dirty(fs_info); 6498 return err; 6499 } 6500 6501 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6502 struct dentry *dentry) 6503 { 6504 struct btrfs_trans_handle *trans = NULL; 6505 struct btrfs_root *root = BTRFS_I(dir)->root; 6506 struct inode *inode = d_inode(old_dentry); 6507 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 6508 u64 index; 6509 int err; 6510 int drop_inode = 0; 6511 6512 /* do not allow sys_link's with other subvols of the same device */ 6513 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid) 6514 return -EXDEV; 6515 6516 if (inode->i_nlink >= BTRFS_LINK_MAX) 6517 return -EMLINK; 6518 6519 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6520 if (err) 6521 goto fail; 6522 6523 /* 6524 * 2 items for inode and inode ref 6525 * 2 items for dir items 6526 * 1 item for parent inode 6527 * 1 item for orphan item deletion if O_TMPFILE 6528 */ 6529 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6530 if (IS_ERR(trans)) { 6531 err = PTR_ERR(trans); 6532 trans = NULL; 6533 goto fail; 6534 } 6535 6536 /* There are several dir indexes for this inode, clear the cache. */ 6537 BTRFS_I(inode)->dir_index = 0ULL; 6538 inc_nlink(inode); 6539 inode_inc_iversion(inode); 6540 inode->i_ctime = current_time(inode); 6541 ihold(inode); 6542 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6543 6544 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), 6545 1, index); 6546 6547 if (err) { 6548 drop_inode = 1; 6549 } else { 6550 struct dentry *parent = dentry->d_parent; 6551 6552 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6553 if (err) 6554 goto fail; 6555 if (inode->i_nlink == 1) { 6556 /* 6557 * If new hard link count is 1, it's a file created 6558 * with open(2) O_TMPFILE flag. 6559 */ 6560 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6561 if (err) 6562 goto fail; 6563 } 6564 d_instantiate(dentry, inode); 6565 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6566 } 6567 6568 fail: 6569 if (trans) 6570 btrfs_end_transaction(trans); 6571 if (drop_inode) { 6572 inode_dec_link_count(inode); 6573 iput(inode); 6574 } 6575 btrfs_btree_balance_dirty(fs_info); 6576 return err; 6577 } 6578 6579 static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 6580 struct dentry *dentry, umode_t mode) 6581 { 6582 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 6583 struct inode *inode = NULL; 6584 struct btrfs_trans_handle *trans; 6585 struct btrfs_root *root = BTRFS_I(dir)->root; 6586 int err = 0; 6587 u64 objectid = 0; 6588 u64 index = 0; 6589 6590 /* 6591 * 2 items for inode and ref 6592 * 2 items for dir items 6593 * 1 for xattr if selinux is on 6594 */ 6595 trans = btrfs_start_transaction(root, 5); 6596 if (IS_ERR(trans)) 6597 return PTR_ERR(trans); 6598 6599 err = btrfs_get_free_objectid(root, &objectid); 6600 if (err) 6601 goto out_fail; 6602 6603 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 6604 dentry->d_name.name, dentry->d_name.len, 6605 btrfs_ino(BTRFS_I(dir)), objectid, 6606 S_IFDIR | mode, &index); 6607 if (IS_ERR(inode)) { 6608 err = PTR_ERR(inode); 6609 inode = NULL; 6610 goto out_fail; 6611 } 6612 6613 /* these must be set before we unlock the inode */ 6614 inode->i_op = &btrfs_dir_inode_operations; 6615 inode->i_fop = &btrfs_dir_file_operations; 6616 6617 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 6618 if (err) 6619 goto out_fail; 6620 6621 btrfs_i_size_write(BTRFS_I(inode), 0); 6622 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 6623 if (err) 6624 goto out_fail; 6625 6626 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6627 dentry->d_name.name, 6628 dentry->d_name.len, 0, index); 6629 if (err) 6630 goto out_fail; 6631 6632 d_instantiate_new(dentry, inode); 6633 6634 out_fail: 6635 btrfs_end_transaction(trans); 6636 if (err && inode) { 6637 inode_dec_link_count(inode); 6638 discard_new_inode(inode); 6639 } 6640 btrfs_btree_balance_dirty(fs_info); 6641 return err; 6642 } 6643 6644 static noinline int uncompress_inline(struct btrfs_path *path, 6645 struct page *page, 6646 size_t pg_offset, u64 extent_offset, 6647 struct btrfs_file_extent_item *item) 6648 { 6649 int ret; 6650 struct extent_buffer *leaf = path->nodes[0]; 6651 char *tmp; 6652 size_t max_size; 6653 unsigned long inline_size; 6654 unsigned long ptr; 6655 int compress_type; 6656 6657 WARN_ON(pg_offset != 0); 6658 compress_type = btrfs_file_extent_compression(leaf, item); 6659 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6660 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6661 tmp = kmalloc(inline_size, GFP_NOFS); 6662 if (!tmp) 6663 return -ENOMEM; 6664 ptr = btrfs_file_extent_inline_start(item); 6665 6666 read_extent_buffer(leaf, tmp, ptr, inline_size); 6667 6668 max_size = min_t(unsigned long, PAGE_SIZE, max_size); 6669 ret = btrfs_decompress(compress_type, tmp, page, 6670 extent_offset, inline_size, max_size); 6671 6672 /* 6673 * decompression code contains a memset to fill in any space between the end 6674 * of the uncompressed data and the end of max_size in case the decompressed 6675 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6676 * the end of an inline extent and the beginning of the next block, so we 6677 * cover that region here. 6678 */ 6679 6680 if (max_size + pg_offset < PAGE_SIZE) 6681 memzero_page(page, pg_offset + max_size, 6682 PAGE_SIZE - max_size - pg_offset); 6683 kfree(tmp); 6684 return ret; 6685 } 6686 6687 /** 6688 * btrfs_get_extent - Lookup the first extent overlapping a range in a file. 6689 * @inode: file to search in 6690 * @page: page to read extent data into if the extent is inline 6691 * @pg_offset: offset into @page to copy to 6692 * @start: file offset 6693 * @len: length of range starting at @start 6694 * 6695 * This returns the first &struct extent_map which overlaps with the given 6696 * range, reading it from the B-tree and caching it if necessary. Note that 6697 * there may be more extents which overlap the given range after the returned 6698 * extent_map. 6699 * 6700 * If @page is not NULL and the extent is inline, this also reads the extent 6701 * data directly into the page and marks the extent up to date in the io_tree. 6702 * 6703 * Return: ERR_PTR on error, non-NULL extent_map on success. 6704 */ 6705 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6706 struct page *page, size_t pg_offset, 6707 u64 start, u64 len) 6708 { 6709 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6710 int ret = 0; 6711 u64 extent_start = 0; 6712 u64 extent_end = 0; 6713 u64 objectid = btrfs_ino(inode); 6714 int extent_type = -1; 6715 struct btrfs_path *path = NULL; 6716 struct btrfs_root *root = inode->root; 6717 struct btrfs_file_extent_item *item; 6718 struct extent_buffer *leaf; 6719 struct btrfs_key found_key; 6720 struct extent_map *em = NULL; 6721 struct extent_map_tree *em_tree = &inode->extent_tree; 6722 struct extent_io_tree *io_tree = &inode->io_tree; 6723 6724 read_lock(&em_tree->lock); 6725 em = lookup_extent_mapping(em_tree, start, len); 6726 read_unlock(&em_tree->lock); 6727 6728 if (em) { 6729 if (em->start > start || em->start + em->len <= start) 6730 free_extent_map(em); 6731 else if (em->block_start == EXTENT_MAP_INLINE && page) 6732 free_extent_map(em); 6733 else 6734 goto out; 6735 } 6736 em = alloc_extent_map(); 6737 if (!em) { 6738 ret = -ENOMEM; 6739 goto out; 6740 } 6741 em->start = EXTENT_MAP_HOLE; 6742 em->orig_start = EXTENT_MAP_HOLE; 6743 em->len = (u64)-1; 6744 em->block_len = (u64)-1; 6745 6746 path = btrfs_alloc_path(); 6747 if (!path) { 6748 ret = -ENOMEM; 6749 goto out; 6750 } 6751 6752 /* Chances are we'll be called again, so go ahead and do readahead */ 6753 path->reada = READA_FORWARD; 6754 6755 /* 6756 * The same explanation in load_free_space_cache applies here as well, 6757 * we only read when we're loading the free space cache, and at that 6758 * point the commit_root has everything we need. 6759 */ 6760 if (btrfs_is_free_space_inode(inode)) { 6761 path->search_commit_root = 1; 6762 path->skip_locking = 1; 6763 } 6764 6765 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6766 if (ret < 0) { 6767 goto out; 6768 } else if (ret > 0) { 6769 if (path->slots[0] == 0) 6770 goto not_found; 6771 path->slots[0]--; 6772 ret = 0; 6773 } 6774 6775 leaf = path->nodes[0]; 6776 item = btrfs_item_ptr(leaf, path->slots[0], 6777 struct btrfs_file_extent_item); 6778 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6779 if (found_key.objectid != objectid || 6780 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6781 /* 6782 * If we backup past the first extent we want to move forward 6783 * and see if there is an extent in front of us, otherwise we'll 6784 * say there is a hole for our whole search range which can 6785 * cause problems. 6786 */ 6787 extent_end = start; 6788 goto next; 6789 } 6790 6791 extent_type = btrfs_file_extent_type(leaf, item); 6792 extent_start = found_key.offset; 6793 extent_end = btrfs_file_extent_end(path); 6794 if (extent_type == BTRFS_FILE_EXTENT_REG || 6795 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6796 /* Only regular file could have regular/prealloc extent */ 6797 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6798 ret = -EUCLEAN; 6799 btrfs_crit(fs_info, 6800 "regular/prealloc extent found for non-regular inode %llu", 6801 btrfs_ino(inode)); 6802 goto out; 6803 } 6804 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6805 extent_start); 6806 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6807 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6808 path->slots[0], 6809 extent_start); 6810 } 6811 next: 6812 if (start >= extent_end) { 6813 path->slots[0]++; 6814 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6815 ret = btrfs_next_leaf(root, path); 6816 if (ret < 0) 6817 goto out; 6818 else if (ret > 0) 6819 goto not_found; 6820 6821 leaf = path->nodes[0]; 6822 } 6823 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6824 if (found_key.objectid != objectid || 6825 found_key.type != BTRFS_EXTENT_DATA_KEY) 6826 goto not_found; 6827 if (start + len <= found_key.offset) 6828 goto not_found; 6829 if (start > found_key.offset) 6830 goto next; 6831 6832 /* New extent overlaps with existing one */ 6833 em->start = start; 6834 em->orig_start = start; 6835 em->len = found_key.offset - start; 6836 em->block_start = EXTENT_MAP_HOLE; 6837 goto insert; 6838 } 6839 6840 btrfs_extent_item_to_extent_map(inode, path, item, !page, em); 6841 6842 if (extent_type == BTRFS_FILE_EXTENT_REG || 6843 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6844 goto insert; 6845 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6846 unsigned long ptr; 6847 char *map; 6848 size_t size; 6849 size_t extent_offset; 6850 size_t copy_size; 6851 6852 if (!page) 6853 goto out; 6854 6855 size = btrfs_file_extent_ram_bytes(leaf, item); 6856 extent_offset = page_offset(page) + pg_offset - extent_start; 6857 copy_size = min_t(u64, PAGE_SIZE - pg_offset, 6858 size - extent_offset); 6859 em->start = extent_start + extent_offset; 6860 em->len = ALIGN(copy_size, fs_info->sectorsize); 6861 em->orig_block_len = em->len; 6862 em->orig_start = em->start; 6863 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 6864 6865 if (!PageUptodate(page)) { 6866 if (btrfs_file_extent_compression(leaf, item) != 6867 BTRFS_COMPRESS_NONE) { 6868 ret = uncompress_inline(path, page, pg_offset, 6869 extent_offset, item); 6870 if (ret) 6871 goto out; 6872 } else { 6873 map = kmap_local_page(page); 6874 read_extent_buffer(leaf, map + pg_offset, ptr, 6875 copy_size); 6876 if (pg_offset + copy_size < PAGE_SIZE) { 6877 memset(map + pg_offset + copy_size, 0, 6878 PAGE_SIZE - pg_offset - 6879 copy_size); 6880 } 6881 kunmap_local(map); 6882 } 6883 flush_dcache_page(page); 6884 } 6885 set_extent_uptodate(io_tree, em->start, 6886 extent_map_end(em) - 1, NULL, GFP_NOFS); 6887 goto insert; 6888 } 6889 not_found: 6890 em->start = start; 6891 em->orig_start = start; 6892 em->len = len; 6893 em->block_start = EXTENT_MAP_HOLE; 6894 insert: 6895 ret = 0; 6896 btrfs_release_path(path); 6897 if (em->start > start || extent_map_end(em) <= start) { 6898 btrfs_err(fs_info, 6899 "bad extent! em: [%llu %llu] passed [%llu %llu]", 6900 em->start, em->len, start, len); 6901 ret = -EIO; 6902 goto out; 6903 } 6904 6905 write_lock(&em_tree->lock); 6906 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); 6907 write_unlock(&em_tree->lock); 6908 out: 6909 btrfs_free_path(path); 6910 6911 trace_btrfs_get_extent(root, inode, em); 6912 6913 if (ret) { 6914 free_extent_map(em); 6915 return ERR_PTR(ret); 6916 } 6917 return em; 6918 } 6919 6920 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 6921 u64 start, u64 len) 6922 { 6923 struct extent_map *em; 6924 struct extent_map *hole_em = NULL; 6925 u64 delalloc_start = start; 6926 u64 end; 6927 u64 delalloc_len; 6928 u64 delalloc_end; 6929 int err = 0; 6930 6931 em = btrfs_get_extent(inode, NULL, 0, start, len); 6932 if (IS_ERR(em)) 6933 return em; 6934 /* 6935 * If our em maps to: 6936 * - a hole or 6937 * - a pre-alloc extent, 6938 * there might actually be delalloc bytes behind it. 6939 */ 6940 if (em->block_start != EXTENT_MAP_HOLE && 6941 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 6942 return em; 6943 else 6944 hole_em = em; 6945 6946 /* check to see if we've wrapped (len == -1 or similar) */ 6947 end = start + len; 6948 if (end < start) 6949 end = (u64)-1; 6950 else 6951 end -= 1; 6952 6953 em = NULL; 6954 6955 /* ok, we didn't find anything, lets look for delalloc */ 6956 delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start, 6957 end, len, EXTENT_DELALLOC, 1); 6958 delalloc_end = delalloc_start + delalloc_len; 6959 if (delalloc_end < delalloc_start) 6960 delalloc_end = (u64)-1; 6961 6962 /* 6963 * We didn't find anything useful, return the original results from 6964 * get_extent() 6965 */ 6966 if (delalloc_start > end || delalloc_end <= start) { 6967 em = hole_em; 6968 hole_em = NULL; 6969 goto out; 6970 } 6971 6972 /* 6973 * Adjust the delalloc_start to make sure it doesn't go backwards from 6974 * the start they passed in 6975 */ 6976 delalloc_start = max(start, delalloc_start); 6977 delalloc_len = delalloc_end - delalloc_start; 6978 6979 if (delalloc_len > 0) { 6980 u64 hole_start; 6981 u64 hole_len; 6982 const u64 hole_end = extent_map_end(hole_em); 6983 6984 em = alloc_extent_map(); 6985 if (!em) { 6986 err = -ENOMEM; 6987 goto out; 6988 } 6989 6990 ASSERT(hole_em); 6991 /* 6992 * When btrfs_get_extent can't find anything it returns one 6993 * huge hole 6994 * 6995 * Make sure what it found really fits our range, and adjust to 6996 * make sure it is based on the start from the caller 6997 */ 6998 if (hole_end <= start || hole_em->start > end) { 6999 free_extent_map(hole_em); 7000 hole_em = NULL; 7001 } else { 7002 hole_start = max(hole_em->start, start); 7003 hole_len = hole_end - hole_start; 7004 } 7005 7006 if (hole_em && delalloc_start > hole_start) { 7007 /* 7008 * Our hole starts before our delalloc, so we have to 7009 * return just the parts of the hole that go until the 7010 * delalloc starts 7011 */ 7012 em->len = min(hole_len, delalloc_start - hole_start); 7013 em->start = hole_start; 7014 em->orig_start = hole_start; 7015 /* 7016 * Don't adjust block start at all, it is fixed at 7017 * EXTENT_MAP_HOLE 7018 */ 7019 em->block_start = hole_em->block_start; 7020 em->block_len = hole_len; 7021 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) 7022 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 7023 } else { 7024 /* 7025 * Hole is out of passed range or it starts after 7026 * delalloc range 7027 */ 7028 em->start = delalloc_start; 7029 em->len = delalloc_len; 7030 em->orig_start = delalloc_start; 7031 em->block_start = EXTENT_MAP_DELALLOC; 7032 em->block_len = delalloc_len; 7033 } 7034 } else { 7035 return hole_em; 7036 } 7037 out: 7038 7039 free_extent_map(hole_em); 7040 if (err) { 7041 free_extent_map(em); 7042 return ERR_PTR(err); 7043 } 7044 return em; 7045 } 7046 7047 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode, 7048 const u64 start, 7049 const u64 len, 7050 const u64 orig_start, 7051 const u64 block_start, 7052 const u64 block_len, 7053 const u64 orig_block_len, 7054 const u64 ram_bytes, 7055 const int type) 7056 { 7057 struct extent_map *em = NULL; 7058 int ret; 7059 7060 if (type != BTRFS_ORDERED_NOCOW) { 7061 em = create_io_em(inode, start, len, orig_start, block_start, 7062 block_len, orig_block_len, ram_bytes, 7063 BTRFS_COMPRESS_NONE, /* compress_type */ 7064 type); 7065 if (IS_ERR(em)) 7066 goto out; 7067 } 7068 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start, 7069 block_len, 0, 7070 (1 << type) | 7071 (1 << BTRFS_ORDERED_DIRECT), 7072 BTRFS_COMPRESS_NONE); 7073 if (ret) { 7074 if (em) { 7075 free_extent_map(em); 7076 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 7077 } 7078 em = ERR_PTR(ret); 7079 } 7080 out: 7081 7082 return em; 7083 } 7084 7085 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode, 7086 u64 start, u64 len) 7087 { 7088 struct btrfs_root *root = inode->root; 7089 struct btrfs_fs_info *fs_info = root->fs_info; 7090 struct extent_map *em; 7091 struct btrfs_key ins; 7092 u64 alloc_hint; 7093 int ret; 7094 7095 alloc_hint = get_extent_allocation_hint(inode, start, len); 7096 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, 7097 0, alloc_hint, &ins, 1, 1); 7098 if (ret) 7099 return ERR_PTR(ret); 7100 7101 em = btrfs_create_dio_extent(inode, start, ins.offset, start, 7102 ins.objectid, ins.offset, ins.offset, 7103 ins.offset, BTRFS_ORDERED_REGULAR); 7104 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 7105 if (IS_ERR(em)) 7106 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 7107 1); 7108 7109 return em; 7110 } 7111 7112 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7113 { 7114 struct btrfs_block_group *block_group; 7115 bool readonly = false; 7116 7117 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7118 if (!block_group || block_group->ro) 7119 readonly = true; 7120 if (block_group) 7121 btrfs_put_block_group(block_group); 7122 return readonly; 7123 } 7124 7125 /* 7126 * Check if we can do nocow write into the range [@offset, @offset + @len) 7127 * 7128 * @offset: File offset 7129 * @len: The length to write, will be updated to the nocow writeable 7130 * range 7131 * @orig_start: (optional) Return the original file offset of the file extent 7132 * @orig_len: (optional) Return the original on-disk length of the file extent 7133 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7134 * @strict: if true, omit optimizations that might force us into unnecessary 7135 * cow. e.g., don't trust generation number. 7136 * 7137 * Return: 7138 * >0 and update @len if we can do nocow write 7139 * 0 if we can't do nocow write 7140 * <0 if error happened 7141 * 7142 * NOTE: This only checks the file extents, caller is responsible to wait for 7143 * any ordered extents. 7144 */ 7145 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 7146 u64 *orig_start, u64 *orig_block_len, 7147 u64 *ram_bytes, bool strict) 7148 { 7149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7150 struct btrfs_path *path; 7151 int ret; 7152 struct extent_buffer *leaf; 7153 struct btrfs_root *root = BTRFS_I(inode)->root; 7154 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7155 struct btrfs_file_extent_item *fi; 7156 struct btrfs_key key; 7157 u64 disk_bytenr; 7158 u64 backref_offset; 7159 u64 extent_end; 7160 u64 num_bytes; 7161 int slot; 7162 int found_type; 7163 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); 7164 7165 path = btrfs_alloc_path(); 7166 if (!path) 7167 return -ENOMEM; 7168 7169 ret = btrfs_lookup_file_extent(NULL, root, path, 7170 btrfs_ino(BTRFS_I(inode)), offset, 0); 7171 if (ret < 0) 7172 goto out; 7173 7174 slot = path->slots[0]; 7175 if (ret == 1) { 7176 if (slot == 0) { 7177 /* can't find the item, must cow */ 7178 ret = 0; 7179 goto out; 7180 } 7181 slot--; 7182 } 7183 ret = 0; 7184 leaf = path->nodes[0]; 7185 btrfs_item_key_to_cpu(leaf, &key, slot); 7186 if (key.objectid != btrfs_ino(BTRFS_I(inode)) || 7187 key.type != BTRFS_EXTENT_DATA_KEY) { 7188 /* not our file or wrong item type, must cow */ 7189 goto out; 7190 } 7191 7192 if (key.offset > offset) { 7193 /* Wrong offset, must cow */ 7194 goto out; 7195 } 7196 7197 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 7198 found_type = btrfs_file_extent_type(leaf, fi); 7199 if (found_type != BTRFS_FILE_EXTENT_REG && 7200 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 7201 /* not a regular extent, must cow */ 7202 goto out; 7203 } 7204 7205 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) 7206 goto out; 7207 7208 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 7209 if (extent_end <= offset) 7210 goto out; 7211 7212 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 7213 if (disk_bytenr == 0) 7214 goto out; 7215 7216 if (btrfs_file_extent_compression(leaf, fi) || 7217 btrfs_file_extent_encryption(leaf, fi) || 7218 btrfs_file_extent_other_encoding(leaf, fi)) 7219 goto out; 7220 7221 /* 7222 * Do the same check as in btrfs_cross_ref_exist but without the 7223 * unnecessary search. 7224 */ 7225 if (!strict && 7226 (btrfs_file_extent_generation(leaf, fi) <= 7227 btrfs_root_last_snapshot(&root->root_item))) 7228 goto out; 7229 7230 backref_offset = btrfs_file_extent_offset(leaf, fi); 7231 7232 if (orig_start) { 7233 *orig_start = key.offset - backref_offset; 7234 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); 7235 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 7236 } 7237 7238 if (btrfs_extent_readonly(fs_info, disk_bytenr)) 7239 goto out; 7240 7241 num_bytes = min(offset + *len, extent_end) - offset; 7242 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7243 u64 range_end; 7244 7245 range_end = round_up(offset + num_bytes, 7246 root->fs_info->sectorsize) - 1; 7247 ret = test_range_bit(io_tree, offset, range_end, 7248 EXTENT_DELALLOC, 0, NULL); 7249 if (ret) { 7250 ret = -EAGAIN; 7251 goto out; 7252 } 7253 } 7254 7255 btrfs_release_path(path); 7256 7257 /* 7258 * look for other files referencing this extent, if we 7259 * find any we must cow 7260 */ 7261 7262 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), 7263 key.offset - backref_offset, disk_bytenr, 7264 strict); 7265 if (ret) { 7266 ret = 0; 7267 goto out; 7268 } 7269 7270 /* 7271 * adjust disk_bytenr and num_bytes to cover just the bytes 7272 * in this extent we are about to write. If there 7273 * are any csums in that range we have to cow in order 7274 * to keep the csums correct 7275 */ 7276 disk_bytenr += backref_offset; 7277 disk_bytenr += offset - key.offset; 7278 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) 7279 goto out; 7280 /* 7281 * all of the above have passed, it is safe to overwrite this extent 7282 * without cow 7283 */ 7284 *len = num_bytes; 7285 ret = 1; 7286 out: 7287 btrfs_free_path(path); 7288 return ret; 7289 } 7290 7291 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, 7292 struct extent_state **cached_state, bool writing) 7293 { 7294 struct btrfs_ordered_extent *ordered; 7295 int ret = 0; 7296 7297 while (1) { 7298 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7299 cached_state); 7300 /* 7301 * We're concerned with the entire range that we're going to be 7302 * doing DIO to, so we need to make sure there's no ordered 7303 * extents in this range. 7304 */ 7305 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, 7306 lockend - lockstart + 1); 7307 7308 /* 7309 * We need to make sure there are no buffered pages in this 7310 * range either, we could have raced between the invalidate in 7311 * generic_file_direct_write and locking the extent. The 7312 * invalidate needs to happen so that reads after a write do not 7313 * get stale data. 7314 */ 7315 if (!ordered && 7316 (!writing || !filemap_range_has_page(inode->i_mapping, 7317 lockstart, lockend))) 7318 break; 7319 7320 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7321 cached_state); 7322 7323 if (ordered) { 7324 /* 7325 * If we are doing a DIO read and the ordered extent we 7326 * found is for a buffered write, we can not wait for it 7327 * to complete and retry, because if we do so we can 7328 * deadlock with concurrent buffered writes on page 7329 * locks. This happens only if our DIO read covers more 7330 * than one extent map, if at this point has already 7331 * created an ordered extent for a previous extent map 7332 * and locked its range in the inode's io tree, and a 7333 * concurrent write against that previous extent map's 7334 * range and this range started (we unlock the ranges 7335 * in the io tree only when the bios complete and 7336 * buffered writes always lock pages before attempting 7337 * to lock range in the io tree). 7338 */ 7339 if (writing || 7340 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) 7341 btrfs_start_ordered_extent(ordered, 1); 7342 else 7343 ret = -ENOTBLK; 7344 btrfs_put_ordered_extent(ordered); 7345 } else { 7346 /* 7347 * We could trigger writeback for this range (and wait 7348 * for it to complete) and then invalidate the pages for 7349 * this range (through invalidate_inode_pages2_range()), 7350 * but that can lead us to a deadlock with a concurrent 7351 * call to readahead (a buffered read or a defrag call 7352 * triggered a readahead) on a page lock due to an 7353 * ordered dio extent we created before but did not have 7354 * yet a corresponding bio submitted (whence it can not 7355 * complete), which makes readahead wait for that 7356 * ordered extent to complete while holding a lock on 7357 * that page. 7358 */ 7359 ret = -ENOTBLK; 7360 } 7361 7362 if (ret) 7363 break; 7364 7365 cond_resched(); 7366 } 7367 7368 return ret; 7369 } 7370 7371 /* The callers of this must take lock_extent() */ 7372 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start, 7373 u64 len, u64 orig_start, u64 block_start, 7374 u64 block_len, u64 orig_block_len, 7375 u64 ram_bytes, int compress_type, 7376 int type) 7377 { 7378 struct extent_map_tree *em_tree; 7379 struct extent_map *em; 7380 int ret; 7381 7382 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7383 type == BTRFS_ORDERED_COMPRESSED || 7384 type == BTRFS_ORDERED_NOCOW || 7385 type == BTRFS_ORDERED_REGULAR); 7386 7387 em_tree = &inode->extent_tree; 7388 em = alloc_extent_map(); 7389 if (!em) 7390 return ERR_PTR(-ENOMEM); 7391 7392 em->start = start; 7393 em->orig_start = orig_start; 7394 em->len = len; 7395 em->block_len = block_len; 7396 em->block_start = block_start; 7397 em->orig_block_len = orig_block_len; 7398 em->ram_bytes = ram_bytes; 7399 em->generation = -1; 7400 set_bit(EXTENT_FLAG_PINNED, &em->flags); 7401 if (type == BTRFS_ORDERED_PREALLOC) { 7402 set_bit(EXTENT_FLAG_FILLING, &em->flags); 7403 } else if (type == BTRFS_ORDERED_COMPRESSED) { 7404 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 7405 em->compress_type = compress_type; 7406 } 7407 7408 do { 7409 btrfs_drop_extent_cache(inode, em->start, 7410 em->start + em->len - 1, 0); 7411 write_lock(&em_tree->lock); 7412 ret = add_extent_mapping(em_tree, em, 1); 7413 write_unlock(&em_tree->lock); 7414 /* 7415 * The caller has taken lock_extent(), who could race with us 7416 * to add em? 7417 */ 7418 } while (ret == -EEXIST); 7419 7420 if (ret) { 7421 free_extent_map(em); 7422 return ERR_PTR(ret); 7423 } 7424 7425 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7426 return em; 7427 } 7428 7429 7430 static int btrfs_get_blocks_direct_write(struct extent_map **map, 7431 struct inode *inode, 7432 struct btrfs_dio_data *dio_data, 7433 u64 start, u64 len) 7434 { 7435 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7436 struct extent_map *em = *map; 7437 int type; 7438 u64 block_start, orig_start, orig_block_len, ram_bytes; 7439 bool can_nocow = false; 7440 bool space_reserved = false; 7441 int ret = 0; 7442 7443 /* 7444 * We don't allocate a new extent in the following cases 7445 * 7446 * 1) The inode is marked as NODATACOW. In this case we'll just use the 7447 * existing extent. 7448 * 2) The extent is marked as PREALLOC. We're good to go here and can 7449 * just use the extent. 7450 * 7451 */ 7452 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 7453 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 7454 em->block_start != EXTENT_MAP_HOLE)) { 7455 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 7456 type = BTRFS_ORDERED_PREALLOC; 7457 else 7458 type = BTRFS_ORDERED_NOCOW; 7459 len = min(len, em->len - (start - em->start)); 7460 block_start = em->block_start + (start - em->start); 7461 7462 if (can_nocow_extent(inode, start, &len, &orig_start, 7463 &orig_block_len, &ram_bytes, false) == 1 && 7464 btrfs_inc_nocow_writers(fs_info, block_start)) 7465 can_nocow = true; 7466 } 7467 7468 if (can_nocow) { 7469 struct extent_map *em2; 7470 7471 /* We can NOCOW, so only need to reserve metadata space. */ 7472 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len); 7473 if (ret < 0) { 7474 /* Our caller expects us to free the input extent map. */ 7475 free_extent_map(em); 7476 *map = NULL; 7477 btrfs_dec_nocow_writers(fs_info, block_start); 7478 goto out; 7479 } 7480 space_reserved = true; 7481 7482 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len, 7483 orig_start, block_start, 7484 len, orig_block_len, 7485 ram_bytes, type); 7486 btrfs_dec_nocow_writers(fs_info, block_start); 7487 if (type == BTRFS_ORDERED_PREALLOC) { 7488 free_extent_map(em); 7489 *map = em = em2; 7490 } 7491 7492 if (IS_ERR(em2)) { 7493 ret = PTR_ERR(em2); 7494 goto out; 7495 } 7496 } else { 7497 const u64 prev_len = len; 7498 7499 /* Our caller expects us to free the input extent map. */ 7500 free_extent_map(em); 7501 *map = NULL; 7502 7503 /* We have to COW, so need to reserve metadata and data space. */ 7504 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), 7505 &dio_data->data_reserved, 7506 start, len); 7507 if (ret < 0) 7508 goto out; 7509 space_reserved = true; 7510 7511 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len); 7512 if (IS_ERR(em)) { 7513 ret = PTR_ERR(em); 7514 goto out; 7515 } 7516 *map = em; 7517 len = min(len, em->len - (start - em->start)); 7518 if (len < prev_len) 7519 btrfs_delalloc_release_space(BTRFS_I(inode), 7520 dio_data->data_reserved, 7521 start + len, prev_len - len, 7522 true); 7523 } 7524 7525 /* 7526 * We have created our ordered extent, so we can now release our reservation 7527 * for an outstanding extent. 7528 */ 7529 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7530 7531 /* 7532 * Need to update the i_size under the extent lock so buffered 7533 * readers will get the updated i_size when we unlock. 7534 */ 7535 if (start + len > i_size_read(inode)) 7536 i_size_write(inode, start + len); 7537 out: 7538 if (ret && space_reserved) { 7539 btrfs_delalloc_release_extents(BTRFS_I(inode), len); 7540 if (can_nocow) { 7541 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true); 7542 } else { 7543 btrfs_delalloc_release_space(BTRFS_I(inode), 7544 dio_data->data_reserved, 7545 start, len, true); 7546 extent_changeset_free(dio_data->data_reserved); 7547 dio_data->data_reserved = NULL; 7548 } 7549 } 7550 return ret; 7551 } 7552 7553 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start, 7554 loff_t length, unsigned int flags, struct iomap *iomap, 7555 struct iomap *srcmap) 7556 { 7557 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7558 struct extent_map *em; 7559 struct extent_state *cached_state = NULL; 7560 struct btrfs_dio_data *dio_data = NULL; 7561 u64 lockstart, lockend; 7562 const bool write = !!(flags & IOMAP_WRITE); 7563 int ret = 0; 7564 u64 len = length; 7565 bool unlock_extents = false; 7566 7567 if (!write) 7568 len = min_t(u64, len, fs_info->sectorsize); 7569 7570 lockstart = start; 7571 lockend = start + len - 1; 7572 7573 /* 7574 * The generic stuff only does filemap_write_and_wait_range, which 7575 * isn't enough if we've written compressed pages to this area, so we 7576 * need to flush the dirty pages again to make absolutely sure that any 7577 * outstanding dirty pages are on disk. 7578 */ 7579 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 7580 &BTRFS_I(inode)->runtime_flags)) { 7581 ret = filemap_fdatawrite_range(inode->i_mapping, start, 7582 start + length - 1); 7583 if (ret) 7584 return ret; 7585 } 7586 7587 dio_data = kzalloc(sizeof(*dio_data), GFP_NOFS); 7588 if (!dio_data) 7589 return -ENOMEM; 7590 7591 iomap->private = dio_data; 7592 7593 7594 /* 7595 * If this errors out it's because we couldn't invalidate pagecache for 7596 * this range and we need to fallback to buffered. 7597 */ 7598 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, write)) { 7599 ret = -ENOTBLK; 7600 goto err; 7601 } 7602 7603 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 7604 if (IS_ERR(em)) { 7605 ret = PTR_ERR(em); 7606 goto unlock_err; 7607 } 7608 7609 /* 7610 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 7611 * io. INLINE is special, and we could probably kludge it in here, but 7612 * it's still buffered so for safety lets just fall back to the generic 7613 * buffered path. 7614 * 7615 * For COMPRESSED we _have_ to read the entire extent in so we can 7616 * decompress it, so there will be buffering required no matter what we 7617 * do, so go ahead and fallback to buffered. 7618 * 7619 * We return -ENOTBLK because that's what makes DIO go ahead and go back 7620 * to buffered IO. Don't blame me, this is the price we pay for using 7621 * the generic code. 7622 */ 7623 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 7624 em->block_start == EXTENT_MAP_INLINE) { 7625 free_extent_map(em); 7626 ret = -ENOTBLK; 7627 goto unlock_err; 7628 } 7629 7630 len = min(len, em->len - (start - em->start)); 7631 7632 /* 7633 * If we have a NOWAIT request and the range contains multiple extents 7634 * (or a mix of extents and holes), then we return -EAGAIN to make the 7635 * caller fallback to a context where it can do a blocking (without 7636 * NOWAIT) request. This way we avoid doing partial IO and returning 7637 * success to the caller, which is not optimal for writes and for reads 7638 * it can result in unexpected behaviour for an application. 7639 * 7640 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling 7641 * iomap_dio_rw(), we can end up returning less data then what the caller 7642 * asked for, resulting in an unexpected, and incorrect, short read. 7643 * That is, the caller asked to read N bytes and we return less than that, 7644 * which is wrong unless we are crossing EOF. This happens if we get a 7645 * page fault error when trying to fault in pages for the buffer that is 7646 * associated to the struct iov_iter passed to iomap_dio_rw(), and we 7647 * have previously submitted bios for other extents in the range, in 7648 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of 7649 * those bios have completed by the time we get the page fault error, 7650 * which we return back to our caller - we should only return EIOCBQUEUED 7651 * after we have submitted bios for all the extents in the range. 7652 */ 7653 if ((flags & IOMAP_NOWAIT) && len < length) { 7654 free_extent_map(em); 7655 ret = -EAGAIN; 7656 goto unlock_err; 7657 } 7658 7659 if (write) { 7660 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data, 7661 start, len); 7662 if (ret < 0) 7663 goto unlock_err; 7664 unlock_extents = true; 7665 /* Recalc len in case the new em is smaller than requested */ 7666 len = min(len, em->len - (start - em->start)); 7667 } else { 7668 /* 7669 * We need to unlock only the end area that we aren't using. 7670 * The rest is going to be unlocked by the endio routine. 7671 */ 7672 lockstart = start + len; 7673 if (lockstart < lockend) 7674 unlock_extents = true; 7675 } 7676 7677 if (unlock_extents) 7678 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7679 lockstart, lockend, &cached_state); 7680 else 7681 free_extent_state(cached_state); 7682 7683 /* 7684 * Translate extent map information to iomap. 7685 * We trim the extents (and move the addr) even though iomap code does 7686 * that, since we have locked only the parts we are performing I/O in. 7687 */ 7688 if ((em->block_start == EXTENT_MAP_HOLE) || 7689 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) { 7690 iomap->addr = IOMAP_NULL_ADDR; 7691 iomap->type = IOMAP_HOLE; 7692 } else { 7693 iomap->addr = em->block_start + (start - em->start); 7694 iomap->type = IOMAP_MAPPED; 7695 } 7696 iomap->offset = start; 7697 iomap->bdev = fs_info->fs_devices->latest_dev->bdev; 7698 iomap->length = len; 7699 7700 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start)) 7701 iomap->flags |= IOMAP_F_ZONE_APPEND; 7702 7703 free_extent_map(em); 7704 7705 return 0; 7706 7707 unlock_err: 7708 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 7709 &cached_state); 7710 err: 7711 kfree(dio_data); 7712 7713 return ret; 7714 } 7715 7716 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length, 7717 ssize_t written, unsigned int flags, struct iomap *iomap) 7718 { 7719 int ret = 0; 7720 struct btrfs_dio_data *dio_data = iomap->private; 7721 size_t submitted = dio_data->submitted; 7722 const bool write = !!(flags & IOMAP_WRITE); 7723 7724 if (!write && (iomap->type == IOMAP_HOLE)) { 7725 /* If reading from a hole, unlock and return */ 7726 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1); 7727 goto out; 7728 } 7729 7730 if (submitted < length) { 7731 pos += submitted; 7732 length -= submitted; 7733 if (write) 7734 __endio_write_update_ordered(BTRFS_I(inode), pos, 7735 length, false); 7736 else 7737 unlock_extent(&BTRFS_I(inode)->io_tree, pos, 7738 pos + length - 1); 7739 ret = -ENOTBLK; 7740 } 7741 7742 if (write) 7743 extent_changeset_free(dio_data->data_reserved); 7744 out: 7745 kfree(dio_data); 7746 iomap->private = NULL; 7747 7748 return ret; 7749 } 7750 7751 static void btrfs_dio_private_put(struct btrfs_dio_private *dip) 7752 { 7753 /* 7754 * This implies a barrier so that stores to dio_bio->bi_status before 7755 * this and loads of dio_bio->bi_status after this are fully ordered. 7756 */ 7757 if (!refcount_dec_and_test(&dip->refs)) 7758 return; 7759 7760 if (btrfs_op(dip->dio_bio) == BTRFS_MAP_WRITE) { 7761 __endio_write_update_ordered(BTRFS_I(dip->inode), 7762 dip->file_offset, 7763 dip->bytes, 7764 !dip->dio_bio->bi_status); 7765 } else { 7766 unlock_extent(&BTRFS_I(dip->inode)->io_tree, 7767 dip->file_offset, 7768 dip->file_offset + dip->bytes - 1); 7769 } 7770 7771 bio_endio(dip->dio_bio); 7772 kfree(dip); 7773 } 7774 7775 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio, 7776 int mirror_num, 7777 unsigned long bio_flags) 7778 { 7779 struct btrfs_dio_private *dip = bio->bi_private; 7780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7781 blk_status_t ret; 7782 7783 BUG_ON(bio_op(bio) == REQ_OP_WRITE); 7784 7785 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7786 if (ret) 7787 return ret; 7788 7789 refcount_inc(&dip->refs); 7790 ret = btrfs_map_bio(fs_info, bio, mirror_num); 7791 if (ret) 7792 refcount_dec(&dip->refs); 7793 return ret; 7794 } 7795 7796 static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip, 7797 struct btrfs_bio *bbio, 7798 const bool uptodate) 7799 { 7800 struct inode *inode = dip->inode; 7801 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 7802 const u32 sectorsize = fs_info->sectorsize; 7803 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 7804 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 7805 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7806 struct bio_vec bvec; 7807 struct bvec_iter iter; 7808 const u64 orig_file_offset = dip->file_offset; 7809 u64 start = orig_file_offset; 7810 u32 bio_offset = 0; 7811 blk_status_t err = BLK_STS_OK; 7812 7813 __bio_for_each_segment(bvec, &bbio->bio, iter, bbio->iter) { 7814 unsigned int i, nr_sectors, pgoff; 7815 7816 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); 7817 pgoff = bvec.bv_offset; 7818 for (i = 0; i < nr_sectors; i++) { 7819 ASSERT(pgoff < PAGE_SIZE); 7820 if (uptodate && 7821 (!csum || !check_data_csum(inode, bbio, 7822 bio_offset, bvec.bv_page, 7823 pgoff, start))) { 7824 clean_io_failure(fs_info, failure_tree, io_tree, 7825 start, bvec.bv_page, 7826 btrfs_ino(BTRFS_I(inode)), 7827 pgoff); 7828 } else { 7829 int ret; 7830 7831 ASSERT((start - orig_file_offset) < UINT_MAX); 7832 ret = btrfs_repair_one_sector(inode, 7833 &bbio->bio, 7834 start - orig_file_offset, 7835 bvec.bv_page, pgoff, 7836 start, bbio->mirror_num, 7837 submit_dio_repair_bio); 7838 if (ret) 7839 err = errno_to_blk_status(ret); 7840 } 7841 start += sectorsize; 7842 ASSERT(bio_offset + sectorsize > bio_offset); 7843 bio_offset += sectorsize; 7844 pgoff += sectorsize; 7845 } 7846 } 7847 return err; 7848 } 7849 7850 static void __endio_write_update_ordered(struct btrfs_inode *inode, 7851 const u64 offset, const u64 bytes, 7852 const bool uptodate) 7853 { 7854 btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, 7855 finish_ordered_fn, uptodate); 7856 } 7857 7858 static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode, 7859 struct bio *bio, 7860 u64 dio_file_offset) 7861 { 7862 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false); 7863 } 7864 7865 static void btrfs_end_dio_bio(struct bio *bio) 7866 { 7867 struct btrfs_dio_private *dip = bio->bi_private; 7868 blk_status_t err = bio->bi_status; 7869 7870 if (err) 7871 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, 7872 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", 7873 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), 7874 bio->bi_opf, bio->bi_iter.bi_sector, 7875 bio->bi_iter.bi_size, err); 7876 7877 if (bio_op(bio) == REQ_OP_READ) 7878 err = btrfs_check_read_dio_bio(dip, btrfs_bio(bio), !err); 7879 7880 if (err) 7881 dip->dio_bio->bi_status = err; 7882 7883 btrfs_record_physical_zoned(dip->inode, dip->file_offset, bio); 7884 7885 bio_put(bio); 7886 btrfs_dio_private_put(dip); 7887 } 7888 7889 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, 7890 struct inode *inode, u64 file_offset, int async_submit) 7891 { 7892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7893 struct btrfs_dio_private *dip = bio->bi_private; 7894 bool write = btrfs_op(bio) == BTRFS_MAP_WRITE; 7895 blk_status_t ret; 7896 7897 /* Check btrfs_submit_bio_hook() for rules about async submit. */ 7898 if (async_submit) 7899 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); 7900 7901 if (!write) { 7902 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 7903 if (ret) 7904 goto err; 7905 } 7906 7907 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 7908 goto map; 7909 7910 if (write && async_submit) { 7911 ret = btrfs_wq_submit_bio(inode, bio, 0, 0, file_offset, 7912 btrfs_submit_bio_start_direct_io); 7913 goto err; 7914 } else if (write) { 7915 /* 7916 * If we aren't doing async submit, calculate the csum of the 7917 * bio now. 7918 */ 7919 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false); 7920 if (ret) 7921 goto err; 7922 } else { 7923 u64 csum_offset; 7924 7925 csum_offset = file_offset - dip->file_offset; 7926 csum_offset >>= fs_info->sectorsize_bits; 7927 csum_offset *= fs_info->csum_size; 7928 btrfs_bio(bio)->csum = dip->csums + csum_offset; 7929 } 7930 map: 7931 ret = btrfs_map_bio(fs_info, bio, 0); 7932 err: 7933 return ret; 7934 } 7935 7936 /* 7937 * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked 7938 * or ordered extents whether or not we submit any bios. 7939 */ 7940 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio, 7941 struct inode *inode, 7942 loff_t file_offset) 7943 { 7944 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 7945 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM); 7946 size_t dip_size; 7947 struct btrfs_dio_private *dip; 7948 7949 dip_size = sizeof(*dip); 7950 if (!write && csum) { 7951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7952 size_t nblocks; 7953 7954 nblocks = dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits; 7955 dip_size += fs_info->csum_size * nblocks; 7956 } 7957 7958 dip = kzalloc(dip_size, GFP_NOFS); 7959 if (!dip) 7960 return NULL; 7961 7962 dip->inode = inode; 7963 dip->file_offset = file_offset; 7964 dip->bytes = dio_bio->bi_iter.bi_size; 7965 dip->disk_bytenr = dio_bio->bi_iter.bi_sector << 9; 7966 dip->dio_bio = dio_bio; 7967 refcount_set(&dip->refs, 1); 7968 return dip; 7969 } 7970 7971 static void btrfs_submit_direct(const struct iomap_iter *iter, 7972 struct bio *dio_bio, loff_t file_offset) 7973 { 7974 struct inode *inode = iter->inode; 7975 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE); 7976 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 7977 const bool raid56 = (btrfs_data_alloc_profile(fs_info) & 7978 BTRFS_BLOCK_GROUP_RAID56_MASK); 7979 struct btrfs_dio_private *dip; 7980 struct bio *bio; 7981 u64 start_sector; 7982 int async_submit = 0; 7983 u64 submit_len; 7984 u64 clone_offset = 0; 7985 u64 clone_len; 7986 u64 logical; 7987 int ret; 7988 blk_status_t status; 7989 struct btrfs_io_geometry geom; 7990 struct btrfs_dio_data *dio_data = iter->iomap.private; 7991 struct extent_map *em = NULL; 7992 7993 dip = btrfs_create_dio_private(dio_bio, inode, file_offset); 7994 if (!dip) { 7995 if (!write) { 7996 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, 7997 file_offset + dio_bio->bi_iter.bi_size - 1); 7998 } 7999 dio_bio->bi_status = BLK_STS_RESOURCE; 8000 bio_endio(dio_bio); 8001 return; 8002 } 8003 8004 if (!write) { 8005 /* 8006 * Load the csums up front to reduce csum tree searches and 8007 * contention when submitting bios. 8008 * 8009 * If we have csums disabled this will do nothing. 8010 */ 8011 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums); 8012 if (status != BLK_STS_OK) 8013 goto out_err; 8014 } 8015 8016 start_sector = dio_bio->bi_iter.bi_sector; 8017 submit_len = dio_bio->bi_iter.bi_size; 8018 8019 do { 8020 logical = start_sector << 9; 8021 em = btrfs_get_chunk_map(fs_info, logical, submit_len); 8022 if (IS_ERR(em)) { 8023 status = errno_to_blk_status(PTR_ERR(em)); 8024 em = NULL; 8025 goto out_err_em; 8026 } 8027 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio), 8028 logical, &geom); 8029 if (ret) { 8030 status = errno_to_blk_status(ret); 8031 goto out_err_em; 8032 } 8033 8034 clone_len = min(submit_len, geom.len); 8035 ASSERT(clone_len <= UINT_MAX); 8036 8037 /* 8038 * This will never fail as it's passing GPF_NOFS and 8039 * the allocation is backed by btrfs_bioset. 8040 */ 8041 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len); 8042 bio->bi_private = dip; 8043 bio->bi_end_io = btrfs_end_dio_bio; 8044 8045 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 8046 status = extract_ordered_extent(BTRFS_I(inode), bio, 8047 file_offset); 8048 if (status) { 8049 bio_put(bio); 8050 goto out_err; 8051 } 8052 } 8053 8054 ASSERT(submit_len >= clone_len); 8055 submit_len -= clone_len; 8056 8057 /* 8058 * Increase the count before we submit the bio so we know 8059 * the end IO handler won't happen before we increase the 8060 * count. Otherwise, the dip might get freed before we're 8061 * done setting it up. 8062 * 8063 * We transfer the initial reference to the last bio, so we 8064 * don't need to increment the reference count for the last one. 8065 */ 8066 if (submit_len > 0) { 8067 refcount_inc(&dip->refs); 8068 /* 8069 * If we are submitting more than one bio, submit them 8070 * all asynchronously. The exception is RAID 5 or 6, as 8071 * asynchronous checksums make it difficult to collect 8072 * full stripe writes. 8073 */ 8074 if (!raid56) 8075 async_submit = 1; 8076 } 8077 8078 status = btrfs_submit_dio_bio(bio, inode, file_offset, 8079 async_submit); 8080 if (status) { 8081 bio_put(bio); 8082 if (submit_len > 0) 8083 refcount_dec(&dip->refs); 8084 goto out_err_em; 8085 } 8086 8087 dio_data->submitted += clone_len; 8088 clone_offset += clone_len; 8089 start_sector += clone_len >> 9; 8090 file_offset += clone_len; 8091 8092 free_extent_map(em); 8093 } while (submit_len > 0); 8094 return; 8095 8096 out_err_em: 8097 free_extent_map(em); 8098 out_err: 8099 dip->dio_bio->bi_status = status; 8100 btrfs_dio_private_put(dip); 8101 } 8102 8103 const struct iomap_ops btrfs_dio_iomap_ops = { 8104 .iomap_begin = btrfs_dio_iomap_begin, 8105 .iomap_end = btrfs_dio_iomap_end, 8106 }; 8107 8108 const struct iomap_dio_ops btrfs_dio_ops = { 8109 .submit_io = btrfs_submit_direct, 8110 }; 8111 8112 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 8113 u64 start, u64 len) 8114 { 8115 int ret; 8116 8117 ret = fiemap_prep(inode, fieinfo, start, &len, 0); 8118 if (ret) 8119 return ret; 8120 8121 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len); 8122 } 8123 8124 int btrfs_readpage(struct file *file, struct page *page) 8125 { 8126 struct btrfs_inode *inode = BTRFS_I(page->mapping->host); 8127 u64 start = page_offset(page); 8128 u64 end = start + PAGE_SIZE - 1; 8129 struct btrfs_bio_ctrl bio_ctrl = { 0 }; 8130 int ret; 8131 8132 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL); 8133 8134 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL); 8135 if (bio_ctrl.bio) { 8136 int ret2; 8137 8138 ret2 = submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags); 8139 if (ret == 0) 8140 ret = ret2; 8141 } 8142 return ret; 8143 } 8144 8145 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 8146 { 8147 struct inode *inode = page->mapping->host; 8148 int ret; 8149 8150 if (current->flags & PF_MEMALLOC) { 8151 redirty_page_for_writepage(wbc, page); 8152 unlock_page(page); 8153 return 0; 8154 } 8155 8156 /* 8157 * If we are under memory pressure we will call this directly from the 8158 * VM, we need to make sure we have the inode referenced for the ordered 8159 * extent. If not just return like we didn't do anything. 8160 */ 8161 if (!igrab(inode)) { 8162 redirty_page_for_writepage(wbc, page); 8163 return AOP_WRITEPAGE_ACTIVATE; 8164 } 8165 ret = extent_write_full_page(page, wbc); 8166 btrfs_add_delayed_iput(inode); 8167 return ret; 8168 } 8169 8170 static int btrfs_writepages(struct address_space *mapping, 8171 struct writeback_control *wbc) 8172 { 8173 return extent_writepages(mapping, wbc); 8174 } 8175 8176 static void btrfs_readahead(struct readahead_control *rac) 8177 { 8178 extent_readahead(rac); 8179 } 8180 8181 /* 8182 * For releasepage() and invalidate_folio() we have a race window where 8183 * folio_end_writeback() is called but the subpage spinlock is not yet released. 8184 * If we continue to release/invalidate the page, we could cause use-after-free 8185 * for subpage spinlock. So this function is to spin and wait for subpage 8186 * spinlock. 8187 */ 8188 static void wait_subpage_spinlock(struct page *page) 8189 { 8190 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb); 8191 struct btrfs_subpage *subpage; 8192 8193 if (fs_info->sectorsize == PAGE_SIZE) 8194 return; 8195 8196 ASSERT(PagePrivate(page) && page->private); 8197 subpage = (struct btrfs_subpage *)page->private; 8198 8199 /* 8200 * This may look insane as we just acquire the spinlock and release it, 8201 * without doing anything. But we just want to make sure no one is 8202 * still holding the subpage spinlock. 8203 * And since the page is not dirty nor writeback, and we have page 8204 * locked, the only possible way to hold a spinlock is from the endio 8205 * function to clear page writeback. 8206 * 8207 * Here we just acquire the spinlock so that all existing callers 8208 * should exit and we're safe to release/invalidate the page. 8209 */ 8210 spin_lock_irq(&subpage->lock); 8211 spin_unlock_irq(&subpage->lock); 8212 } 8213 8214 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8215 { 8216 int ret = try_release_extent_mapping(page, gfp_flags); 8217 8218 if (ret == 1) { 8219 wait_subpage_spinlock(page); 8220 clear_page_extent_mapped(page); 8221 } 8222 return ret; 8223 } 8224 8225 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 8226 { 8227 if (PageWriteback(page) || PageDirty(page)) 8228 return 0; 8229 return __btrfs_releasepage(page, gfp_flags); 8230 } 8231 8232 #ifdef CONFIG_MIGRATION 8233 static int btrfs_migratepage(struct address_space *mapping, 8234 struct page *newpage, struct page *page, 8235 enum migrate_mode mode) 8236 { 8237 int ret; 8238 8239 ret = migrate_page_move_mapping(mapping, newpage, page, 0); 8240 if (ret != MIGRATEPAGE_SUCCESS) 8241 return ret; 8242 8243 if (page_has_private(page)) 8244 attach_page_private(newpage, detach_page_private(page)); 8245 8246 if (PageOrdered(page)) { 8247 ClearPageOrdered(page); 8248 SetPageOrdered(newpage); 8249 } 8250 8251 if (mode != MIGRATE_SYNC_NO_COPY) 8252 migrate_page_copy(newpage, page); 8253 else 8254 migrate_page_states(newpage, page); 8255 return MIGRATEPAGE_SUCCESS; 8256 } 8257 #endif 8258 8259 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 8260 size_t length) 8261 { 8262 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host); 8263 struct btrfs_fs_info *fs_info = inode->root->fs_info; 8264 struct extent_io_tree *tree = &inode->io_tree; 8265 struct extent_state *cached_state = NULL; 8266 u64 page_start = folio_pos(folio); 8267 u64 page_end = page_start + folio_size(folio) - 1; 8268 u64 cur; 8269 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 8270 8271 /* 8272 * We have folio locked so no new ordered extent can be created on this 8273 * page, nor bio can be submitted for this folio. 8274 * 8275 * But already submitted bio can still be finished on this folio. 8276 * Furthermore, endio function won't skip folio which has Ordered 8277 * (Private2) already cleared, so it's possible for endio and 8278 * invalidate_folio to do the same ordered extent accounting twice 8279 * on one folio. 8280 * 8281 * So here we wait for any submitted bios to finish, so that we won't 8282 * do double ordered extent accounting on the same folio. 8283 */ 8284 folio_wait_writeback(folio); 8285 wait_subpage_spinlock(&folio->page); 8286 8287 /* 8288 * For subpage case, we have call sites like 8289 * btrfs_punch_hole_lock_range() which passes range not aligned to 8290 * sectorsize. 8291 * If the range doesn't cover the full folio, we don't need to and 8292 * shouldn't clear page extent mapped, as folio->private can still 8293 * record subpage dirty bits for other part of the range. 8294 * 8295 * For cases that invalidate the full folio even the range doesn't 8296 * cover the full folio, like invalidating the last folio, we're 8297 * still safe to wait for ordered extent to finish. 8298 */ 8299 if (!(offset == 0 && length == folio_size(folio))) { 8300 btrfs_releasepage(&folio->page, GFP_NOFS); 8301 return; 8302 } 8303 8304 if (!inode_evicting) 8305 lock_extent_bits(tree, page_start, page_end, &cached_state); 8306 8307 cur = page_start; 8308 while (cur < page_end) { 8309 struct btrfs_ordered_extent *ordered; 8310 bool delete_states; 8311 u64 range_end; 8312 u32 range_len; 8313 8314 ordered = btrfs_lookup_first_ordered_range(inode, cur, 8315 page_end + 1 - cur); 8316 if (!ordered) { 8317 range_end = page_end; 8318 /* 8319 * No ordered extent covering this range, we are safe 8320 * to delete all extent states in the range. 8321 */ 8322 delete_states = true; 8323 goto next; 8324 } 8325 if (ordered->file_offset > cur) { 8326 /* 8327 * There is a range between [cur, oe->file_offset) not 8328 * covered by any ordered extent. 8329 * We are safe to delete all extent states, and handle 8330 * the ordered extent in the next iteration. 8331 */ 8332 range_end = ordered->file_offset - 1; 8333 delete_states = true; 8334 goto next; 8335 } 8336 8337 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 8338 page_end); 8339 ASSERT(range_end + 1 - cur < U32_MAX); 8340 range_len = range_end + 1 - cur; 8341 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) { 8342 /* 8343 * If Ordered (Private2) is cleared, it means endio has 8344 * already been executed for the range. 8345 * We can't delete the extent states as 8346 * btrfs_finish_ordered_io() may still use some of them. 8347 */ 8348 delete_states = false; 8349 goto next; 8350 } 8351 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len); 8352 8353 /* 8354 * IO on this page will never be started, so we need to account 8355 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 8356 * here, must leave that up for the ordered extent completion. 8357 * 8358 * This will also unlock the range for incoming 8359 * btrfs_finish_ordered_io(). 8360 */ 8361 if (!inode_evicting) 8362 clear_extent_bit(tree, cur, range_end, 8363 EXTENT_DELALLOC | 8364 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 8365 EXTENT_DEFRAG, 1, 0, &cached_state); 8366 8367 spin_lock_irq(&inode->ordered_tree.lock); 8368 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 8369 ordered->truncated_len = min(ordered->truncated_len, 8370 cur - ordered->file_offset); 8371 spin_unlock_irq(&inode->ordered_tree.lock); 8372 8373 if (btrfs_dec_test_ordered_pending(inode, &ordered, 8374 cur, range_end + 1 - cur)) { 8375 btrfs_finish_ordered_io(ordered); 8376 /* 8377 * The ordered extent has finished, now we're again 8378 * safe to delete all extent states of the range. 8379 */ 8380 delete_states = true; 8381 } else { 8382 /* 8383 * btrfs_finish_ordered_io() will get executed by endio 8384 * of other pages, thus we can't delete extent states 8385 * anymore 8386 */ 8387 delete_states = false; 8388 } 8389 next: 8390 if (ordered) 8391 btrfs_put_ordered_extent(ordered); 8392 /* 8393 * Qgroup reserved space handler 8394 * Sector(s) here will be either: 8395 * 8396 * 1) Already written to disk or bio already finished 8397 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 8398 * Qgroup will be handled by its qgroup_record then. 8399 * btrfs_qgroup_free_data() call will do nothing here. 8400 * 8401 * 2) Not written to disk yet 8402 * Then btrfs_qgroup_free_data() call will clear the 8403 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 8404 * reserved data space. 8405 * Since the IO will never happen for this page. 8406 */ 8407 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur); 8408 if (!inode_evicting) { 8409 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 8410 EXTENT_DELALLOC | EXTENT_UPTODATE | 8411 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 8412 delete_states, &cached_state); 8413 } 8414 cur = range_end + 1; 8415 } 8416 /* 8417 * We have iterated through all ordered extents of the page, the page 8418 * should not have Ordered (Private2) anymore, or the above iteration 8419 * did something wrong. 8420 */ 8421 ASSERT(!folio_test_ordered(folio)); 8422 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio)); 8423 if (!inode_evicting) 8424 __btrfs_releasepage(&folio->page, GFP_NOFS); 8425 clear_page_extent_mapped(&folio->page); 8426 } 8427 8428 /* 8429 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 8430 * called from a page fault handler when a page is first dirtied. Hence we must 8431 * be careful to check for EOF conditions here. We set the page up correctly 8432 * for a written page which means we get ENOSPC checking when writing into 8433 * holes and correct delalloc and unwritten extent mapping on filesystems that 8434 * support these features. 8435 * 8436 * We are not allowed to take the i_mutex here so we have to play games to 8437 * protect against truncate races as the page could now be beyond EOF. Because 8438 * truncate_setsize() writes the inode size before removing pages, once we have 8439 * the page lock we can determine safely if the page is beyond EOF. If it is not 8440 * beyond EOF, then the page is guaranteed safe against truncation until we 8441 * unlock the page. 8442 */ 8443 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) 8444 { 8445 struct page *page = vmf->page; 8446 struct inode *inode = file_inode(vmf->vma->vm_file); 8447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8448 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 8449 struct btrfs_ordered_extent *ordered; 8450 struct extent_state *cached_state = NULL; 8451 struct extent_changeset *data_reserved = NULL; 8452 unsigned long zero_start; 8453 loff_t size; 8454 vm_fault_t ret; 8455 int ret2; 8456 int reserved = 0; 8457 u64 reserved_space; 8458 u64 page_start; 8459 u64 page_end; 8460 u64 end; 8461 8462 reserved_space = PAGE_SIZE; 8463 8464 sb_start_pagefault(inode->i_sb); 8465 page_start = page_offset(page); 8466 page_end = page_start + PAGE_SIZE - 1; 8467 end = page_end; 8468 8469 /* 8470 * Reserving delalloc space after obtaining the page lock can lead to 8471 * deadlock. For example, if a dirty page is locked by this function 8472 * and the call to btrfs_delalloc_reserve_space() ends up triggering 8473 * dirty page write out, then the btrfs_writepage() function could 8474 * end up waiting indefinitely to get a lock on the page currently 8475 * being processed by btrfs_page_mkwrite() function. 8476 */ 8477 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 8478 page_start, reserved_space); 8479 if (!ret2) { 8480 ret2 = file_update_time(vmf->vma->vm_file); 8481 reserved = 1; 8482 } 8483 if (ret2) { 8484 ret = vmf_error(ret2); 8485 if (reserved) 8486 goto out; 8487 goto out_noreserve; 8488 } 8489 8490 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 8491 again: 8492 down_read(&BTRFS_I(inode)->i_mmap_lock); 8493 lock_page(page); 8494 size = i_size_read(inode); 8495 8496 if ((page->mapping != inode->i_mapping) || 8497 (page_start >= size)) { 8498 /* page got truncated out from underneath us */ 8499 goto out_unlock; 8500 } 8501 wait_on_page_writeback(page); 8502 8503 lock_extent_bits(io_tree, page_start, page_end, &cached_state); 8504 ret2 = set_page_extent_mapped(page); 8505 if (ret2 < 0) { 8506 ret = vmf_error(ret2); 8507 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8508 goto out_unlock; 8509 } 8510 8511 /* 8512 * we can't set the delalloc bits if there are pending ordered 8513 * extents. Drop our locks and wait for them to finish 8514 */ 8515 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, 8516 PAGE_SIZE); 8517 if (ordered) { 8518 unlock_extent_cached(io_tree, page_start, page_end, 8519 &cached_state); 8520 unlock_page(page); 8521 up_read(&BTRFS_I(inode)->i_mmap_lock); 8522 btrfs_start_ordered_extent(ordered, 1); 8523 btrfs_put_ordered_extent(ordered); 8524 goto again; 8525 } 8526 8527 if (page->index == ((size - 1) >> PAGE_SHIFT)) { 8528 reserved_space = round_up(size - page_start, 8529 fs_info->sectorsize); 8530 if (reserved_space < PAGE_SIZE) { 8531 end = page_start + reserved_space - 1; 8532 btrfs_delalloc_release_space(BTRFS_I(inode), 8533 data_reserved, page_start, 8534 PAGE_SIZE - reserved_space, true); 8535 } 8536 } 8537 8538 /* 8539 * page_mkwrite gets called when the page is firstly dirtied after it's 8540 * faulted in, but write(2) could also dirty a page and set delalloc 8541 * bits, thus in this case for space account reason, we still need to 8542 * clear any delalloc bits within this page range since we have to 8543 * reserve data&meta space before lock_page() (see above comments). 8544 */ 8545 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, 8546 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 8547 EXTENT_DEFRAG, 0, 0, &cached_state); 8548 8549 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0, 8550 &cached_state); 8551 if (ret2) { 8552 unlock_extent_cached(io_tree, page_start, page_end, 8553 &cached_state); 8554 ret = VM_FAULT_SIGBUS; 8555 goto out_unlock; 8556 } 8557 8558 /* page is wholly or partially inside EOF */ 8559 if (page_start + PAGE_SIZE > size) 8560 zero_start = offset_in_page(size); 8561 else 8562 zero_start = PAGE_SIZE; 8563 8564 if (zero_start != PAGE_SIZE) { 8565 memzero_page(page, zero_start, PAGE_SIZE - zero_start); 8566 flush_dcache_page(page); 8567 } 8568 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE); 8569 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start); 8570 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start); 8571 8572 btrfs_set_inode_last_sub_trans(BTRFS_I(inode)); 8573 8574 unlock_extent_cached(io_tree, page_start, page_end, &cached_state); 8575 up_read(&BTRFS_I(inode)->i_mmap_lock); 8576 8577 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8578 sb_end_pagefault(inode->i_sb); 8579 extent_changeset_free(data_reserved); 8580 return VM_FAULT_LOCKED; 8581 8582 out_unlock: 8583 unlock_page(page); 8584 up_read(&BTRFS_I(inode)->i_mmap_lock); 8585 out: 8586 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 8587 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start, 8588 reserved_space, (ret != 0)); 8589 out_noreserve: 8590 sb_end_pagefault(inode->i_sb); 8591 extent_changeset_free(data_reserved); 8592 return ret; 8593 } 8594 8595 static int btrfs_truncate(struct inode *inode, bool skip_writeback) 8596 { 8597 struct btrfs_truncate_control control = { 8598 .inode = BTRFS_I(inode), 8599 .ino = btrfs_ino(BTRFS_I(inode)), 8600 .min_type = BTRFS_EXTENT_DATA_KEY, 8601 .clear_extent_range = true, 8602 }; 8603 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 8604 struct btrfs_root *root = BTRFS_I(inode)->root; 8605 struct btrfs_block_rsv *rsv; 8606 int ret; 8607 struct btrfs_trans_handle *trans; 8608 u64 mask = fs_info->sectorsize - 1; 8609 u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 8610 8611 if (!skip_writeback) { 8612 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), 8613 (u64)-1); 8614 if (ret) 8615 return ret; 8616 } 8617 8618 /* 8619 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 8620 * things going on here: 8621 * 8622 * 1) We need to reserve space to update our inode. 8623 * 8624 * 2) We need to have something to cache all the space that is going to 8625 * be free'd up by the truncate operation, but also have some slack 8626 * space reserved in case it uses space during the truncate (thank you 8627 * very much snapshotting). 8628 * 8629 * And we need these to be separate. The fact is we can use a lot of 8630 * space doing the truncate, and we have no earthly idea how much space 8631 * we will use, so we need the truncate reservation to be separate so it 8632 * doesn't end up using space reserved for updating the inode. We also 8633 * need to be able to stop the transaction and start a new one, which 8634 * means we need to be able to update the inode several times, and we 8635 * have no idea of knowing how many times that will be, so we can't just 8636 * reserve 1 item for the entirety of the operation, so that has to be 8637 * done separately as well. 8638 * 8639 * So that leaves us with 8640 * 8641 * 1) rsv - for the truncate reservation, which we will steal from the 8642 * transaction reservation. 8643 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 8644 * updating the inode. 8645 */ 8646 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 8647 if (!rsv) 8648 return -ENOMEM; 8649 rsv->size = min_size; 8650 rsv->failfast = 1; 8651 8652 /* 8653 * 1 for the truncate slack space 8654 * 1 for updating the inode. 8655 */ 8656 trans = btrfs_start_transaction(root, 2); 8657 if (IS_ERR(trans)) { 8658 ret = PTR_ERR(trans); 8659 goto out; 8660 } 8661 8662 /* Migrate the slack space for the truncate to our reserve */ 8663 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 8664 min_size, false); 8665 BUG_ON(ret); 8666 8667 trans->block_rsv = rsv; 8668 8669 while (1) { 8670 struct extent_state *cached_state = NULL; 8671 const u64 new_size = inode->i_size; 8672 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 8673 8674 control.new_size = new_size; 8675 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1, 8676 &cached_state); 8677 /* 8678 * We want to drop from the next block forward in case this new 8679 * size is not block aligned since we will be keeping the last 8680 * block of the extent just the way it is. 8681 */ 8682 btrfs_drop_extent_cache(BTRFS_I(inode), 8683 ALIGN(new_size, fs_info->sectorsize), 8684 (u64)-1, 0); 8685 8686 ret = btrfs_truncate_inode_items(trans, root, &control); 8687 8688 inode_sub_bytes(inode, control.sub_bytes); 8689 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size); 8690 8691 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, 8692 (u64)-1, &cached_state); 8693 8694 trans->block_rsv = &fs_info->trans_block_rsv; 8695 if (ret != -ENOSPC && ret != -EAGAIN) 8696 break; 8697 8698 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8699 if (ret) 8700 break; 8701 8702 btrfs_end_transaction(trans); 8703 btrfs_btree_balance_dirty(fs_info); 8704 8705 trans = btrfs_start_transaction(root, 2); 8706 if (IS_ERR(trans)) { 8707 ret = PTR_ERR(trans); 8708 trans = NULL; 8709 break; 8710 } 8711 8712 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 8713 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 8714 rsv, min_size, false); 8715 BUG_ON(ret); /* shouldn't happen */ 8716 trans->block_rsv = rsv; 8717 } 8718 8719 /* 8720 * We can't call btrfs_truncate_block inside a trans handle as we could 8721 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 8722 * know we've truncated everything except the last little bit, and can 8723 * do btrfs_truncate_block and then update the disk_i_size. 8724 */ 8725 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 8726 btrfs_end_transaction(trans); 8727 btrfs_btree_balance_dirty(fs_info); 8728 8729 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0); 8730 if (ret) 8731 goto out; 8732 trans = btrfs_start_transaction(root, 1); 8733 if (IS_ERR(trans)) { 8734 ret = PTR_ERR(trans); 8735 goto out; 8736 } 8737 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8738 } 8739 8740 if (trans) { 8741 int ret2; 8742 8743 trans->block_rsv = &fs_info->trans_block_rsv; 8744 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode)); 8745 if (ret2 && !ret) 8746 ret = ret2; 8747 8748 ret2 = btrfs_end_transaction(trans); 8749 if (ret2 && !ret) 8750 ret = ret2; 8751 btrfs_btree_balance_dirty(fs_info); 8752 } 8753 out: 8754 btrfs_free_block_rsv(fs_info, rsv); 8755 /* 8756 * So if we truncate and then write and fsync we normally would just 8757 * write the extents that changed, which is a problem if we need to 8758 * first truncate that entire inode. So set this flag so we write out 8759 * all of the extents in the inode to the sync log so we're completely 8760 * safe. 8761 * 8762 * If no extents were dropped or trimmed we don't need to force the next 8763 * fsync to truncate all the inode's items from the log and re-log them 8764 * all. This means the truncate operation did not change the file size, 8765 * or changed it to a smaller size but there was only an implicit hole 8766 * between the old i_size and the new i_size, and there were no prealloc 8767 * extents beyond i_size to drop. 8768 */ 8769 if (control.extents_found > 0) 8770 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8771 8772 return ret; 8773 } 8774 8775 /* 8776 * create a new subvolume directory/inode (helper for the ioctl). 8777 */ 8778 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 8779 struct btrfs_root *new_root, 8780 struct btrfs_root *parent_root, 8781 struct user_namespace *mnt_userns) 8782 { 8783 struct inode *inode; 8784 int err; 8785 u64 index = 0; 8786 u64 ino; 8787 8788 err = btrfs_get_free_objectid(new_root, &ino); 8789 if (err < 0) 8790 return err; 8791 8792 inode = btrfs_new_inode(trans, new_root, mnt_userns, NULL, "..", 2, 8793 ino, ino, 8794 S_IFDIR | (~current_umask() & S_IRWXUGO), 8795 &index); 8796 if (IS_ERR(inode)) 8797 return PTR_ERR(inode); 8798 inode->i_op = &btrfs_dir_inode_operations; 8799 inode->i_fop = &btrfs_dir_file_operations; 8800 8801 set_nlink(inode, 1); 8802 btrfs_i_size_write(BTRFS_I(inode), 0); 8803 unlock_new_inode(inode); 8804 8805 err = btrfs_subvol_inherit_props(trans, new_root, parent_root); 8806 if (err) 8807 btrfs_err(new_root->fs_info, 8808 "error inheriting subvolume %llu properties: %d", 8809 new_root->root_key.objectid, err); 8810 8811 err = btrfs_update_inode(trans, new_root, BTRFS_I(inode)); 8812 8813 iput(inode); 8814 return err; 8815 } 8816 8817 struct inode *btrfs_alloc_inode(struct super_block *sb) 8818 { 8819 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 8820 struct btrfs_inode *ei; 8821 struct inode *inode; 8822 8823 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 8824 if (!ei) 8825 return NULL; 8826 8827 ei->root = NULL; 8828 ei->generation = 0; 8829 ei->last_trans = 0; 8830 ei->last_sub_trans = 0; 8831 ei->logged_trans = 0; 8832 ei->delalloc_bytes = 0; 8833 ei->new_delalloc_bytes = 0; 8834 ei->defrag_bytes = 0; 8835 ei->disk_i_size = 0; 8836 ei->flags = 0; 8837 ei->ro_flags = 0; 8838 ei->csum_bytes = 0; 8839 ei->index_cnt = (u64)-1; 8840 ei->dir_index = 0; 8841 ei->last_unlink_trans = 0; 8842 ei->last_reflink_trans = 0; 8843 ei->last_log_commit = 0; 8844 8845 spin_lock_init(&ei->lock); 8846 ei->outstanding_extents = 0; 8847 if (sb->s_magic != BTRFS_TEST_MAGIC) 8848 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 8849 BTRFS_BLOCK_RSV_DELALLOC); 8850 ei->runtime_flags = 0; 8851 ei->prop_compress = BTRFS_COMPRESS_NONE; 8852 ei->defrag_compress = BTRFS_COMPRESS_NONE; 8853 8854 ei->delayed_node = NULL; 8855 8856 ei->i_otime.tv_sec = 0; 8857 ei->i_otime.tv_nsec = 0; 8858 8859 inode = &ei->vfs_inode; 8860 extent_map_tree_init(&ei->extent_tree); 8861 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode); 8862 extent_io_tree_init(fs_info, &ei->io_failure_tree, 8863 IO_TREE_INODE_IO_FAILURE, inode); 8864 extent_io_tree_init(fs_info, &ei->file_extent_tree, 8865 IO_TREE_INODE_FILE_EXTENT, inode); 8866 ei->io_tree.track_uptodate = true; 8867 ei->io_failure_tree.track_uptodate = true; 8868 atomic_set(&ei->sync_writers, 0); 8869 mutex_init(&ei->log_mutex); 8870 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 8871 INIT_LIST_HEAD(&ei->delalloc_inodes); 8872 INIT_LIST_HEAD(&ei->delayed_iput); 8873 RB_CLEAR_NODE(&ei->rb_node); 8874 init_rwsem(&ei->i_mmap_lock); 8875 8876 return inode; 8877 } 8878 8879 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 8880 void btrfs_test_destroy_inode(struct inode *inode) 8881 { 8882 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); 8883 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8884 } 8885 #endif 8886 8887 void btrfs_free_inode(struct inode *inode) 8888 { 8889 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 8890 } 8891 8892 void btrfs_destroy_inode(struct inode *vfs_inode) 8893 { 8894 struct btrfs_ordered_extent *ordered; 8895 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 8896 struct btrfs_root *root = inode->root; 8897 8898 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 8899 WARN_ON(vfs_inode->i_data.nrpages); 8900 WARN_ON(inode->block_rsv.reserved); 8901 WARN_ON(inode->block_rsv.size); 8902 WARN_ON(inode->outstanding_extents); 8903 if (!S_ISDIR(vfs_inode->i_mode)) { 8904 WARN_ON(inode->delalloc_bytes); 8905 WARN_ON(inode->new_delalloc_bytes); 8906 } 8907 WARN_ON(inode->csum_bytes); 8908 WARN_ON(inode->defrag_bytes); 8909 8910 /* 8911 * This can happen where we create an inode, but somebody else also 8912 * created the same inode and we need to destroy the one we already 8913 * created. 8914 */ 8915 if (!root) 8916 return; 8917 8918 while (1) { 8919 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 8920 if (!ordered) 8921 break; 8922 else { 8923 btrfs_err(root->fs_info, 8924 "found ordered extent %llu %llu on inode cleanup", 8925 ordered->file_offset, ordered->num_bytes); 8926 btrfs_remove_ordered_extent(inode, ordered); 8927 btrfs_put_ordered_extent(ordered); 8928 btrfs_put_ordered_extent(ordered); 8929 } 8930 } 8931 btrfs_qgroup_check_reserved_leak(inode); 8932 inode_tree_del(inode); 8933 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 8934 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 8935 btrfs_put_root(inode->root); 8936 } 8937 8938 int btrfs_drop_inode(struct inode *inode) 8939 { 8940 struct btrfs_root *root = BTRFS_I(inode)->root; 8941 8942 if (root == NULL) 8943 return 1; 8944 8945 /* the snap/subvol tree is on deleting */ 8946 if (btrfs_root_refs(&root->root_item) == 0) 8947 return 1; 8948 else 8949 return generic_drop_inode(inode); 8950 } 8951 8952 static void init_once(void *foo) 8953 { 8954 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 8955 8956 inode_init_once(&ei->vfs_inode); 8957 } 8958 8959 void __cold btrfs_destroy_cachep(void) 8960 { 8961 /* 8962 * Make sure all delayed rcu free inodes are flushed before we 8963 * destroy cache. 8964 */ 8965 rcu_barrier(); 8966 kmem_cache_destroy(btrfs_inode_cachep); 8967 kmem_cache_destroy(btrfs_trans_handle_cachep); 8968 kmem_cache_destroy(btrfs_path_cachep); 8969 kmem_cache_destroy(btrfs_free_space_cachep); 8970 kmem_cache_destroy(btrfs_free_space_bitmap_cachep); 8971 } 8972 8973 int __init btrfs_init_cachep(void) 8974 { 8975 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 8976 sizeof(struct btrfs_inode), 0, 8977 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, 8978 init_once); 8979 if (!btrfs_inode_cachep) 8980 goto fail; 8981 8982 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 8983 sizeof(struct btrfs_trans_handle), 0, 8984 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 8985 if (!btrfs_trans_handle_cachep) 8986 goto fail; 8987 8988 btrfs_path_cachep = kmem_cache_create("btrfs_path", 8989 sizeof(struct btrfs_path), 0, 8990 SLAB_MEM_SPREAD, NULL); 8991 if (!btrfs_path_cachep) 8992 goto fail; 8993 8994 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", 8995 sizeof(struct btrfs_free_space), 0, 8996 SLAB_MEM_SPREAD, NULL); 8997 if (!btrfs_free_space_cachep) 8998 goto fail; 8999 9000 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", 9001 PAGE_SIZE, PAGE_SIZE, 9002 SLAB_MEM_SPREAD, NULL); 9003 if (!btrfs_free_space_bitmap_cachep) 9004 goto fail; 9005 9006 return 0; 9007 fail: 9008 btrfs_destroy_cachep(); 9009 return -ENOMEM; 9010 } 9011 9012 static int btrfs_getattr(struct user_namespace *mnt_userns, 9013 const struct path *path, struct kstat *stat, 9014 u32 request_mask, unsigned int flags) 9015 { 9016 u64 delalloc_bytes; 9017 u64 inode_bytes; 9018 struct inode *inode = d_inode(path->dentry); 9019 u32 blocksize = inode->i_sb->s_blocksize; 9020 u32 bi_flags = BTRFS_I(inode)->flags; 9021 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 9022 9023 stat->result_mask |= STATX_BTIME; 9024 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; 9025 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; 9026 if (bi_flags & BTRFS_INODE_APPEND) 9027 stat->attributes |= STATX_ATTR_APPEND; 9028 if (bi_flags & BTRFS_INODE_COMPRESS) 9029 stat->attributes |= STATX_ATTR_COMPRESSED; 9030 if (bi_flags & BTRFS_INODE_IMMUTABLE) 9031 stat->attributes |= STATX_ATTR_IMMUTABLE; 9032 if (bi_flags & BTRFS_INODE_NODUMP) 9033 stat->attributes |= STATX_ATTR_NODUMP; 9034 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 9035 stat->attributes |= STATX_ATTR_VERITY; 9036 9037 stat->attributes_mask |= (STATX_ATTR_APPEND | 9038 STATX_ATTR_COMPRESSED | 9039 STATX_ATTR_IMMUTABLE | 9040 STATX_ATTR_NODUMP); 9041 9042 generic_fillattr(mnt_userns, inode, stat); 9043 stat->dev = BTRFS_I(inode)->root->anon_dev; 9044 9045 spin_lock(&BTRFS_I(inode)->lock); 9046 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 9047 inode_bytes = inode_get_bytes(inode); 9048 spin_unlock(&BTRFS_I(inode)->lock); 9049 stat->blocks = (ALIGN(inode_bytes, blocksize) + 9050 ALIGN(delalloc_bytes, blocksize)) >> 9; 9051 return 0; 9052 } 9053 9054 static int btrfs_rename_exchange(struct inode *old_dir, 9055 struct dentry *old_dentry, 9056 struct inode *new_dir, 9057 struct dentry *new_dentry) 9058 { 9059 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9060 struct btrfs_trans_handle *trans; 9061 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9062 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9063 struct inode *new_inode = new_dentry->d_inode; 9064 struct inode *old_inode = old_dentry->d_inode; 9065 struct timespec64 ctime = current_time(old_inode); 9066 struct btrfs_rename_ctx old_rename_ctx; 9067 struct btrfs_rename_ctx new_rename_ctx; 9068 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9069 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 9070 u64 old_idx = 0; 9071 u64 new_idx = 0; 9072 int ret; 9073 int ret2; 9074 bool need_abort = false; 9075 9076 /* 9077 * For non-subvolumes allow exchange only within one subvolume, in the 9078 * same inode namespace. Two subvolumes (represented as directory) can 9079 * be exchanged as they're a logical link and have a fixed inode number. 9080 */ 9081 if (root != dest && 9082 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 9083 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 9084 return -EXDEV; 9085 9086 /* close the race window with snapshot create/destroy ioctl */ 9087 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 9088 new_ino == BTRFS_FIRST_FREE_OBJECTID) 9089 down_read(&fs_info->subvol_sem); 9090 9091 /* 9092 * We want to reserve the absolute worst case amount of items. So if 9093 * both inodes are subvols and we need to unlink them then that would 9094 * require 4 item modifications, but if they are both normal inodes it 9095 * would require 5 item modifications, so we'll assume their normal 9096 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items 9097 * should cover the worst case number of items we'll modify. 9098 */ 9099 trans = btrfs_start_transaction(root, 12); 9100 if (IS_ERR(trans)) { 9101 ret = PTR_ERR(trans); 9102 goto out_notrans; 9103 } 9104 9105 if (dest != root) { 9106 ret = btrfs_record_root_in_trans(trans, dest); 9107 if (ret) 9108 goto out_fail; 9109 } 9110 9111 /* 9112 * We need to find a free sequence number both in the source and 9113 * in the destination directory for the exchange. 9114 */ 9115 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 9116 if (ret) 9117 goto out_fail; 9118 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 9119 if (ret) 9120 goto out_fail; 9121 9122 BTRFS_I(old_inode)->dir_index = 0ULL; 9123 BTRFS_I(new_inode)->dir_index = 0ULL; 9124 9125 /* Reference for the source. */ 9126 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9127 /* force full log commit if subvolume involved. */ 9128 btrfs_set_log_full_commit(trans); 9129 } else { 9130 ret = btrfs_insert_inode_ref(trans, dest, 9131 new_dentry->d_name.name, 9132 new_dentry->d_name.len, 9133 old_ino, 9134 btrfs_ino(BTRFS_I(new_dir)), 9135 old_idx); 9136 if (ret) 9137 goto out_fail; 9138 need_abort = true; 9139 } 9140 9141 /* And now for the dest. */ 9142 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9143 /* force full log commit if subvolume involved. */ 9144 btrfs_set_log_full_commit(trans); 9145 } else { 9146 ret = btrfs_insert_inode_ref(trans, root, 9147 old_dentry->d_name.name, 9148 old_dentry->d_name.len, 9149 new_ino, 9150 btrfs_ino(BTRFS_I(old_dir)), 9151 new_idx); 9152 if (ret) { 9153 if (need_abort) 9154 btrfs_abort_transaction(trans, ret); 9155 goto out_fail; 9156 } 9157 } 9158 9159 /* Update inode version and ctime/mtime. */ 9160 inode_inc_iversion(old_dir); 9161 inode_inc_iversion(new_dir); 9162 inode_inc_iversion(old_inode); 9163 inode_inc_iversion(new_inode); 9164 old_dir->i_ctime = old_dir->i_mtime = ctime; 9165 new_dir->i_ctime = new_dir->i_mtime = ctime; 9166 old_inode->i_ctime = ctime; 9167 new_inode->i_ctime = ctime; 9168 9169 if (old_dentry->d_parent != new_dentry->d_parent) { 9170 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9171 BTRFS_I(old_inode), 1); 9172 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 9173 BTRFS_I(new_inode), 1); 9174 } 9175 9176 /* src is a subvolume */ 9177 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 9178 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9179 } else { /* src is an inode */ 9180 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9181 BTRFS_I(old_dentry->d_inode), 9182 old_dentry->d_name.name, 9183 old_dentry->d_name.len, 9184 &old_rename_ctx); 9185 if (!ret) 9186 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9187 } 9188 if (ret) { 9189 btrfs_abort_transaction(trans, ret); 9190 goto out_fail; 9191 } 9192 9193 /* dest is a subvolume */ 9194 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 9195 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9196 } else { /* dest is an inode */ 9197 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9198 BTRFS_I(new_dentry->d_inode), 9199 new_dentry->d_name.name, 9200 new_dentry->d_name.len, 9201 &new_rename_ctx); 9202 if (!ret) 9203 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode)); 9204 } 9205 if (ret) { 9206 btrfs_abort_transaction(trans, ret); 9207 goto out_fail; 9208 } 9209 9210 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9211 new_dentry->d_name.name, 9212 new_dentry->d_name.len, 0, old_idx); 9213 if (ret) { 9214 btrfs_abort_transaction(trans, ret); 9215 goto out_fail; 9216 } 9217 9218 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 9219 old_dentry->d_name.name, 9220 old_dentry->d_name.len, 0, new_idx); 9221 if (ret) { 9222 btrfs_abort_transaction(trans, ret); 9223 goto out_fail; 9224 } 9225 9226 if (old_inode->i_nlink == 1) 9227 BTRFS_I(old_inode)->dir_index = old_idx; 9228 if (new_inode->i_nlink == 1) 9229 BTRFS_I(new_inode)->dir_index = new_idx; 9230 9231 /* 9232 * Now pin the logs of the roots. We do it to ensure that no other task 9233 * can sync the logs while we are in progress with the rename, because 9234 * that could result in an inconsistency in case any of the inodes that 9235 * are part of this rename operation were logged before. 9236 */ 9237 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9238 btrfs_pin_log_trans(root); 9239 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9240 btrfs_pin_log_trans(dest); 9241 9242 /* Do the log updates for all inodes. */ 9243 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9244 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9245 old_rename_ctx.index, new_dentry->d_parent); 9246 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9247 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 9248 new_rename_ctx.index, old_dentry->d_parent); 9249 9250 /* Now unpin the logs. */ 9251 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9252 btrfs_end_log_trans(root); 9253 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 9254 btrfs_end_log_trans(dest); 9255 out_fail: 9256 ret2 = btrfs_end_transaction(trans); 9257 ret = ret ? ret : ret2; 9258 out_notrans: 9259 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 9260 old_ino == BTRFS_FIRST_FREE_OBJECTID) 9261 up_read(&fs_info->subvol_sem); 9262 9263 return ret; 9264 } 9265 9266 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, 9267 struct btrfs_root *root, 9268 struct user_namespace *mnt_userns, 9269 struct inode *dir, 9270 struct dentry *dentry) 9271 { 9272 int ret; 9273 struct inode *inode; 9274 u64 objectid; 9275 u64 index; 9276 9277 ret = btrfs_get_free_objectid(root, &objectid); 9278 if (ret) 9279 return ret; 9280 9281 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 9282 dentry->d_name.name, 9283 dentry->d_name.len, 9284 btrfs_ino(BTRFS_I(dir)), 9285 objectid, 9286 S_IFCHR | WHITEOUT_MODE, 9287 &index); 9288 9289 if (IS_ERR(inode)) { 9290 ret = PTR_ERR(inode); 9291 return ret; 9292 } 9293 9294 inode->i_op = &btrfs_special_inode_operations; 9295 init_special_inode(inode, inode->i_mode, 9296 WHITEOUT_DEV); 9297 9298 ret = btrfs_init_inode_security(trans, inode, dir, 9299 &dentry->d_name); 9300 if (ret) 9301 goto out; 9302 9303 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9304 BTRFS_I(inode), 0, index); 9305 if (ret) 9306 goto out; 9307 9308 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9309 out: 9310 unlock_new_inode(inode); 9311 if (ret) 9312 inode_dec_link_count(inode); 9313 iput(inode); 9314 9315 return ret; 9316 } 9317 9318 static int btrfs_rename(struct user_namespace *mnt_userns, 9319 struct inode *old_dir, struct dentry *old_dentry, 9320 struct inode *new_dir, struct dentry *new_dentry, 9321 unsigned int flags) 9322 { 9323 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); 9324 struct btrfs_trans_handle *trans; 9325 unsigned int trans_num_items; 9326 struct btrfs_root *root = BTRFS_I(old_dir)->root; 9327 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 9328 struct inode *new_inode = d_inode(new_dentry); 9329 struct inode *old_inode = d_inode(old_dentry); 9330 struct btrfs_rename_ctx rename_ctx; 9331 u64 index = 0; 9332 int ret; 9333 int ret2; 9334 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 9335 9336 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 9337 return -EPERM; 9338 9339 /* we only allow rename subvolume link between subvolumes */ 9340 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 9341 return -EXDEV; 9342 9343 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 9344 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 9345 return -ENOTEMPTY; 9346 9347 if (S_ISDIR(old_inode->i_mode) && new_inode && 9348 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 9349 return -ENOTEMPTY; 9350 9351 9352 /* check for collisions, even if the name isn't there */ 9353 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, 9354 new_dentry->d_name.name, 9355 new_dentry->d_name.len); 9356 9357 if (ret) { 9358 if (ret == -EEXIST) { 9359 /* we shouldn't get 9360 * eexist without a new_inode */ 9361 if (WARN_ON(!new_inode)) { 9362 return ret; 9363 } 9364 } else { 9365 /* maybe -EOVERFLOW */ 9366 return ret; 9367 } 9368 } 9369 ret = 0; 9370 9371 /* 9372 * we're using rename to replace one file with another. Start IO on it 9373 * now so we don't add too much work to the end of the transaction 9374 */ 9375 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 9376 filemap_flush(old_inode->i_mapping); 9377 9378 /* close the racy window with snapshot create/destroy ioctl */ 9379 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9380 down_read(&fs_info->subvol_sem); 9381 /* 9382 * We want to reserve the absolute worst case amount of items. So if 9383 * both inodes are subvols and we need to unlink them then that would 9384 * require 4 item modifications, but if they are both normal inodes it 9385 * would require 5 item modifications, so we'll assume they are normal 9386 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 9387 * should cover the worst case number of items we'll modify. 9388 * If our rename has the whiteout flag, we need more 5 units for the 9389 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item 9390 * when selinux is enabled). 9391 */ 9392 trans_num_items = 11; 9393 if (flags & RENAME_WHITEOUT) 9394 trans_num_items += 5; 9395 trans = btrfs_start_transaction(root, trans_num_items); 9396 if (IS_ERR(trans)) { 9397 ret = PTR_ERR(trans); 9398 goto out_notrans; 9399 } 9400 9401 if (dest != root) { 9402 ret = btrfs_record_root_in_trans(trans, dest); 9403 if (ret) 9404 goto out_fail; 9405 } 9406 9407 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 9408 if (ret) 9409 goto out_fail; 9410 9411 BTRFS_I(old_inode)->dir_index = 0ULL; 9412 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9413 /* force full log commit if subvolume involved. */ 9414 btrfs_set_log_full_commit(trans); 9415 } else { 9416 ret = btrfs_insert_inode_ref(trans, dest, 9417 new_dentry->d_name.name, 9418 new_dentry->d_name.len, 9419 old_ino, 9420 btrfs_ino(BTRFS_I(new_dir)), index); 9421 if (ret) 9422 goto out_fail; 9423 } 9424 9425 inode_inc_iversion(old_dir); 9426 inode_inc_iversion(new_dir); 9427 inode_inc_iversion(old_inode); 9428 old_dir->i_ctime = old_dir->i_mtime = 9429 new_dir->i_ctime = new_dir->i_mtime = 9430 old_inode->i_ctime = current_time(old_dir); 9431 9432 if (old_dentry->d_parent != new_dentry->d_parent) 9433 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 9434 BTRFS_I(old_inode), 1); 9435 9436 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 9437 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); 9438 } else { 9439 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 9440 BTRFS_I(d_inode(old_dentry)), 9441 old_dentry->d_name.name, 9442 old_dentry->d_name.len, 9443 &rename_ctx); 9444 if (!ret) 9445 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode)); 9446 } 9447 if (ret) { 9448 btrfs_abort_transaction(trans, ret); 9449 goto out_fail; 9450 } 9451 9452 if (new_inode) { 9453 inode_inc_iversion(new_inode); 9454 new_inode->i_ctime = current_time(new_inode); 9455 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 9456 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 9457 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); 9458 BUG_ON(new_inode->i_nlink == 0); 9459 } else { 9460 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 9461 BTRFS_I(d_inode(new_dentry)), 9462 new_dentry->d_name.name, 9463 new_dentry->d_name.len); 9464 } 9465 if (!ret && new_inode->i_nlink == 0) 9466 ret = btrfs_orphan_add(trans, 9467 BTRFS_I(d_inode(new_dentry))); 9468 if (ret) { 9469 btrfs_abort_transaction(trans, ret); 9470 goto out_fail; 9471 } 9472 } 9473 9474 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 9475 new_dentry->d_name.name, 9476 new_dentry->d_name.len, 0, index); 9477 if (ret) { 9478 btrfs_abort_transaction(trans, ret); 9479 goto out_fail; 9480 } 9481 9482 if (old_inode->i_nlink == 1) 9483 BTRFS_I(old_inode)->dir_index = index; 9484 9485 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 9486 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 9487 rename_ctx.index, new_dentry->d_parent); 9488 9489 if (flags & RENAME_WHITEOUT) { 9490 ret = btrfs_whiteout_for_rename(trans, root, mnt_userns, 9491 old_dir, old_dentry); 9492 9493 if (ret) { 9494 btrfs_abort_transaction(trans, ret); 9495 goto out_fail; 9496 } 9497 } 9498 out_fail: 9499 ret2 = btrfs_end_transaction(trans); 9500 ret = ret ? ret : ret2; 9501 out_notrans: 9502 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 9503 up_read(&fs_info->subvol_sem); 9504 9505 return ret; 9506 } 9507 9508 static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir, 9509 struct dentry *old_dentry, struct inode *new_dir, 9510 struct dentry *new_dentry, unsigned int flags) 9511 { 9512 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 9513 return -EINVAL; 9514 9515 if (flags & RENAME_EXCHANGE) 9516 return btrfs_rename_exchange(old_dir, old_dentry, new_dir, 9517 new_dentry); 9518 9519 return btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir, 9520 new_dentry, flags); 9521 } 9522 9523 struct btrfs_delalloc_work { 9524 struct inode *inode; 9525 struct completion completion; 9526 struct list_head list; 9527 struct btrfs_work work; 9528 }; 9529 9530 static void btrfs_run_delalloc_work(struct btrfs_work *work) 9531 { 9532 struct btrfs_delalloc_work *delalloc_work; 9533 struct inode *inode; 9534 9535 delalloc_work = container_of(work, struct btrfs_delalloc_work, 9536 work); 9537 inode = delalloc_work->inode; 9538 filemap_flush(inode->i_mapping); 9539 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 9540 &BTRFS_I(inode)->runtime_flags)) 9541 filemap_flush(inode->i_mapping); 9542 9543 iput(inode); 9544 complete(&delalloc_work->completion); 9545 } 9546 9547 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 9548 { 9549 struct btrfs_delalloc_work *work; 9550 9551 work = kmalloc(sizeof(*work), GFP_NOFS); 9552 if (!work) 9553 return NULL; 9554 9555 init_completion(&work->completion); 9556 INIT_LIST_HEAD(&work->list); 9557 work->inode = inode; 9558 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL); 9559 9560 return work; 9561 } 9562 9563 /* 9564 * some fairly slow code that needs optimization. This walks the list 9565 * of all the inodes with pending delalloc and forces them to disk. 9566 */ 9567 static int start_delalloc_inodes(struct btrfs_root *root, 9568 struct writeback_control *wbc, bool snapshot, 9569 bool in_reclaim_context) 9570 { 9571 struct btrfs_inode *binode; 9572 struct inode *inode; 9573 struct btrfs_delalloc_work *work, *next; 9574 struct list_head works; 9575 struct list_head splice; 9576 int ret = 0; 9577 bool full_flush = wbc->nr_to_write == LONG_MAX; 9578 9579 INIT_LIST_HEAD(&works); 9580 INIT_LIST_HEAD(&splice); 9581 9582 mutex_lock(&root->delalloc_mutex); 9583 spin_lock(&root->delalloc_lock); 9584 list_splice_init(&root->delalloc_inodes, &splice); 9585 while (!list_empty(&splice)) { 9586 binode = list_entry(splice.next, struct btrfs_inode, 9587 delalloc_inodes); 9588 9589 list_move_tail(&binode->delalloc_inodes, 9590 &root->delalloc_inodes); 9591 9592 if (in_reclaim_context && 9593 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags)) 9594 continue; 9595 9596 inode = igrab(&binode->vfs_inode); 9597 if (!inode) { 9598 cond_resched_lock(&root->delalloc_lock); 9599 continue; 9600 } 9601 spin_unlock(&root->delalloc_lock); 9602 9603 if (snapshot) 9604 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, 9605 &binode->runtime_flags); 9606 if (full_flush) { 9607 work = btrfs_alloc_delalloc_work(inode); 9608 if (!work) { 9609 iput(inode); 9610 ret = -ENOMEM; 9611 goto out; 9612 } 9613 list_add_tail(&work->list, &works); 9614 btrfs_queue_work(root->fs_info->flush_workers, 9615 &work->work); 9616 } else { 9617 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc); 9618 btrfs_add_delayed_iput(inode); 9619 if (ret || wbc->nr_to_write <= 0) 9620 goto out; 9621 } 9622 cond_resched(); 9623 spin_lock(&root->delalloc_lock); 9624 } 9625 spin_unlock(&root->delalloc_lock); 9626 9627 out: 9628 list_for_each_entry_safe(work, next, &works, list) { 9629 list_del_init(&work->list); 9630 wait_for_completion(&work->completion); 9631 kfree(work); 9632 } 9633 9634 if (!list_empty(&splice)) { 9635 spin_lock(&root->delalloc_lock); 9636 list_splice_tail(&splice, &root->delalloc_inodes); 9637 spin_unlock(&root->delalloc_lock); 9638 } 9639 mutex_unlock(&root->delalloc_mutex); 9640 return ret; 9641 } 9642 9643 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 9644 { 9645 struct writeback_control wbc = { 9646 .nr_to_write = LONG_MAX, 9647 .sync_mode = WB_SYNC_NONE, 9648 .range_start = 0, 9649 .range_end = LLONG_MAX, 9650 }; 9651 struct btrfs_fs_info *fs_info = root->fs_info; 9652 9653 if (BTRFS_FS_ERROR(fs_info)) 9654 return -EROFS; 9655 9656 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 9657 } 9658 9659 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 9660 bool in_reclaim_context) 9661 { 9662 struct writeback_control wbc = { 9663 .nr_to_write = nr, 9664 .sync_mode = WB_SYNC_NONE, 9665 .range_start = 0, 9666 .range_end = LLONG_MAX, 9667 }; 9668 struct btrfs_root *root; 9669 struct list_head splice; 9670 int ret; 9671 9672 if (BTRFS_FS_ERROR(fs_info)) 9673 return -EROFS; 9674 9675 INIT_LIST_HEAD(&splice); 9676 9677 mutex_lock(&fs_info->delalloc_root_mutex); 9678 spin_lock(&fs_info->delalloc_root_lock); 9679 list_splice_init(&fs_info->delalloc_roots, &splice); 9680 while (!list_empty(&splice)) { 9681 /* 9682 * Reset nr_to_write here so we know that we're doing a full 9683 * flush. 9684 */ 9685 if (nr == LONG_MAX) 9686 wbc.nr_to_write = LONG_MAX; 9687 9688 root = list_first_entry(&splice, struct btrfs_root, 9689 delalloc_root); 9690 root = btrfs_grab_root(root); 9691 BUG_ON(!root); 9692 list_move_tail(&root->delalloc_root, 9693 &fs_info->delalloc_roots); 9694 spin_unlock(&fs_info->delalloc_root_lock); 9695 9696 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 9697 btrfs_put_root(root); 9698 if (ret < 0 || wbc.nr_to_write <= 0) 9699 goto out; 9700 spin_lock(&fs_info->delalloc_root_lock); 9701 } 9702 spin_unlock(&fs_info->delalloc_root_lock); 9703 9704 ret = 0; 9705 out: 9706 if (!list_empty(&splice)) { 9707 spin_lock(&fs_info->delalloc_root_lock); 9708 list_splice_tail(&splice, &fs_info->delalloc_roots); 9709 spin_unlock(&fs_info->delalloc_root_lock); 9710 } 9711 mutex_unlock(&fs_info->delalloc_root_mutex); 9712 return ret; 9713 } 9714 9715 static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir, 9716 struct dentry *dentry, const char *symname) 9717 { 9718 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 9719 struct btrfs_trans_handle *trans; 9720 struct btrfs_root *root = BTRFS_I(dir)->root; 9721 struct btrfs_path *path; 9722 struct btrfs_key key; 9723 struct inode *inode = NULL; 9724 int err; 9725 u64 objectid; 9726 u64 index = 0; 9727 int name_len; 9728 int datasize; 9729 unsigned long ptr; 9730 struct btrfs_file_extent_item *ei; 9731 struct extent_buffer *leaf; 9732 9733 name_len = strlen(symname); 9734 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 9735 return -ENAMETOOLONG; 9736 9737 /* 9738 * 2 items for inode item and ref 9739 * 2 items for dir items 9740 * 1 item for updating parent inode item 9741 * 1 item for the inline extent item 9742 * 1 item for xattr if selinux is on 9743 */ 9744 trans = btrfs_start_transaction(root, 7); 9745 if (IS_ERR(trans)) 9746 return PTR_ERR(trans); 9747 9748 err = btrfs_get_free_objectid(root, &objectid); 9749 if (err) 9750 goto out_unlock; 9751 9752 inode = btrfs_new_inode(trans, root, mnt_userns, dir, 9753 dentry->d_name.name, dentry->d_name.len, 9754 btrfs_ino(BTRFS_I(dir)), objectid, 9755 S_IFLNK | S_IRWXUGO, &index); 9756 if (IS_ERR(inode)) { 9757 err = PTR_ERR(inode); 9758 inode = NULL; 9759 goto out_unlock; 9760 } 9761 9762 /* 9763 * If the active LSM wants to access the inode during 9764 * d_instantiate it needs these. Smack checks to see 9765 * if the filesystem supports xattrs by looking at the 9766 * ops vector. 9767 */ 9768 inode->i_fop = &btrfs_file_operations; 9769 inode->i_op = &btrfs_file_inode_operations; 9770 inode->i_mapping->a_ops = &btrfs_aops; 9771 9772 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 9773 if (err) 9774 goto out_unlock; 9775 9776 path = btrfs_alloc_path(); 9777 if (!path) { 9778 err = -ENOMEM; 9779 goto out_unlock; 9780 } 9781 key.objectid = btrfs_ino(BTRFS_I(inode)); 9782 key.offset = 0; 9783 key.type = BTRFS_EXTENT_DATA_KEY; 9784 datasize = btrfs_file_extent_calc_inline_size(name_len); 9785 err = btrfs_insert_empty_item(trans, root, path, &key, 9786 datasize); 9787 if (err) { 9788 btrfs_free_path(path); 9789 goto out_unlock; 9790 } 9791 leaf = path->nodes[0]; 9792 ei = btrfs_item_ptr(leaf, path->slots[0], 9793 struct btrfs_file_extent_item); 9794 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 9795 btrfs_set_file_extent_type(leaf, ei, 9796 BTRFS_FILE_EXTENT_INLINE); 9797 btrfs_set_file_extent_encryption(leaf, ei, 0); 9798 btrfs_set_file_extent_compression(leaf, ei, 0); 9799 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 9800 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 9801 9802 ptr = btrfs_file_extent_inline_start(ei); 9803 write_extent_buffer(leaf, symname, ptr, name_len); 9804 btrfs_mark_buffer_dirty(leaf); 9805 btrfs_free_path(path); 9806 9807 inode->i_op = &btrfs_symlink_inode_operations; 9808 inode_nohighmem(inode); 9809 inode_set_bytes(inode, name_len); 9810 btrfs_i_size_write(BTRFS_I(inode), name_len); 9811 err = btrfs_update_inode(trans, root, BTRFS_I(inode)); 9812 /* 9813 * Last step, add directory indexes for our symlink inode. This is the 9814 * last step to avoid extra cleanup of these indexes if an error happens 9815 * elsewhere above. 9816 */ 9817 if (!err) 9818 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, 9819 BTRFS_I(inode), 0, index); 9820 if (err) 9821 goto out_unlock; 9822 9823 d_instantiate_new(dentry, inode); 9824 9825 out_unlock: 9826 btrfs_end_transaction(trans); 9827 if (err && inode) { 9828 inode_dec_link_count(inode); 9829 discard_new_inode(inode); 9830 } 9831 btrfs_btree_balance_dirty(fs_info); 9832 return err; 9833 } 9834 9835 static struct btrfs_trans_handle *insert_prealloc_file_extent( 9836 struct btrfs_trans_handle *trans_in, 9837 struct btrfs_inode *inode, 9838 struct btrfs_key *ins, 9839 u64 file_offset) 9840 { 9841 struct btrfs_file_extent_item stack_fi; 9842 struct btrfs_replace_extent_info extent_info; 9843 struct btrfs_trans_handle *trans = trans_in; 9844 struct btrfs_path *path; 9845 u64 start = ins->objectid; 9846 u64 len = ins->offset; 9847 int qgroup_released; 9848 int ret; 9849 9850 memset(&stack_fi, 0, sizeof(stack_fi)); 9851 9852 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 9853 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 9854 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 9855 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 9856 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 9857 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 9858 /* Encryption and other encoding is reserved and all 0 */ 9859 9860 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len); 9861 if (qgroup_released < 0) 9862 return ERR_PTR(qgroup_released); 9863 9864 if (trans) { 9865 ret = insert_reserved_file_extent(trans, inode, 9866 file_offset, &stack_fi, 9867 true, qgroup_released); 9868 if (ret) 9869 goto free_qgroup; 9870 return trans; 9871 } 9872 9873 extent_info.disk_offset = start; 9874 extent_info.disk_len = len; 9875 extent_info.data_offset = 0; 9876 extent_info.data_len = len; 9877 extent_info.file_offset = file_offset; 9878 extent_info.extent_buf = (char *)&stack_fi; 9879 extent_info.is_new_extent = true; 9880 extent_info.qgroup_reserved = qgroup_released; 9881 extent_info.insertions = 0; 9882 9883 path = btrfs_alloc_path(); 9884 if (!path) { 9885 ret = -ENOMEM; 9886 goto free_qgroup; 9887 } 9888 9889 ret = btrfs_replace_file_extents(inode, path, file_offset, 9890 file_offset + len - 1, &extent_info, 9891 &trans); 9892 btrfs_free_path(path); 9893 if (ret) 9894 goto free_qgroup; 9895 return trans; 9896 9897 free_qgroup: 9898 /* 9899 * We have released qgroup data range at the beginning of the function, 9900 * and normally qgroup_released bytes will be freed when committing 9901 * transaction. 9902 * But if we error out early, we have to free what we have released 9903 * or we leak qgroup data reservation. 9904 */ 9905 btrfs_qgroup_free_refroot(inode->root->fs_info, 9906 inode->root->root_key.objectid, qgroup_released, 9907 BTRFS_QGROUP_RSV_DATA); 9908 return ERR_PTR(ret); 9909 } 9910 9911 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 9912 u64 start, u64 num_bytes, u64 min_size, 9913 loff_t actual_len, u64 *alloc_hint, 9914 struct btrfs_trans_handle *trans) 9915 { 9916 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 9917 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 9918 struct extent_map *em; 9919 struct btrfs_root *root = BTRFS_I(inode)->root; 9920 struct btrfs_key ins; 9921 u64 cur_offset = start; 9922 u64 clear_offset = start; 9923 u64 i_size; 9924 u64 cur_bytes; 9925 u64 last_alloc = (u64)-1; 9926 int ret = 0; 9927 bool own_trans = true; 9928 u64 end = start + num_bytes - 1; 9929 9930 if (trans) 9931 own_trans = false; 9932 while (num_bytes > 0) { 9933 cur_bytes = min_t(u64, num_bytes, SZ_256M); 9934 cur_bytes = max(cur_bytes, min_size); 9935 /* 9936 * If we are severely fragmented we could end up with really 9937 * small allocations, so if the allocator is returning small 9938 * chunks lets make its job easier by only searching for those 9939 * sized chunks. 9940 */ 9941 cur_bytes = min(cur_bytes, last_alloc); 9942 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 9943 min_size, 0, *alloc_hint, &ins, 1, 0); 9944 if (ret) 9945 break; 9946 9947 /* 9948 * We've reserved this space, and thus converted it from 9949 * ->bytes_may_use to ->bytes_reserved. Any error that happens 9950 * from here on out we will only need to clear our reservation 9951 * for the remaining unreserved area, so advance our 9952 * clear_offset by our extent size. 9953 */ 9954 clear_offset += ins.offset; 9955 9956 last_alloc = ins.offset; 9957 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 9958 &ins, cur_offset); 9959 /* 9960 * Now that we inserted the prealloc extent we can finally 9961 * decrement the number of reservations in the block group. 9962 * If we did it before, we could race with relocation and have 9963 * relocation miss the reserved extent, making it fail later. 9964 */ 9965 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9966 if (IS_ERR(trans)) { 9967 ret = PTR_ERR(trans); 9968 btrfs_free_reserved_extent(fs_info, ins.objectid, 9969 ins.offset, 0); 9970 break; 9971 } 9972 9973 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9974 cur_offset + ins.offset -1, 0); 9975 9976 em = alloc_extent_map(); 9977 if (!em) { 9978 btrfs_set_inode_full_sync(BTRFS_I(inode)); 9979 goto next; 9980 } 9981 9982 em->start = cur_offset; 9983 em->orig_start = cur_offset; 9984 em->len = ins.offset; 9985 em->block_start = ins.objectid; 9986 em->block_len = ins.offset; 9987 em->orig_block_len = ins.offset; 9988 em->ram_bytes = ins.offset; 9989 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 9990 em->generation = trans->transid; 9991 9992 while (1) { 9993 write_lock(&em_tree->lock); 9994 ret = add_extent_mapping(em_tree, em, 1); 9995 write_unlock(&em_tree->lock); 9996 if (ret != -EEXIST) 9997 break; 9998 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, 9999 cur_offset + ins.offset - 1, 10000 0); 10001 } 10002 free_extent_map(em); 10003 next: 10004 num_bytes -= ins.offset; 10005 cur_offset += ins.offset; 10006 *alloc_hint = ins.objectid + ins.offset; 10007 10008 inode_inc_iversion(inode); 10009 inode->i_ctime = current_time(inode); 10010 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 10011 if (!(mode & FALLOC_FL_KEEP_SIZE) && 10012 (actual_len > inode->i_size) && 10013 (cur_offset > inode->i_size)) { 10014 if (cur_offset > actual_len) 10015 i_size = actual_len; 10016 else 10017 i_size = cur_offset; 10018 i_size_write(inode, i_size); 10019 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 10020 } 10021 10022 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10023 10024 if (ret) { 10025 btrfs_abort_transaction(trans, ret); 10026 if (own_trans) 10027 btrfs_end_transaction(trans); 10028 break; 10029 } 10030 10031 if (own_trans) { 10032 btrfs_end_transaction(trans); 10033 trans = NULL; 10034 } 10035 } 10036 if (clear_offset < end) 10037 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 10038 end - clear_offset + 1); 10039 return ret; 10040 } 10041 10042 int btrfs_prealloc_file_range(struct inode *inode, int mode, 10043 u64 start, u64 num_bytes, u64 min_size, 10044 loff_t actual_len, u64 *alloc_hint) 10045 { 10046 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10047 min_size, actual_len, alloc_hint, 10048 NULL); 10049 } 10050 10051 int btrfs_prealloc_file_range_trans(struct inode *inode, 10052 struct btrfs_trans_handle *trans, int mode, 10053 u64 start, u64 num_bytes, u64 min_size, 10054 loff_t actual_len, u64 *alloc_hint) 10055 { 10056 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 10057 min_size, actual_len, alloc_hint, trans); 10058 } 10059 10060 static int btrfs_permission(struct user_namespace *mnt_userns, 10061 struct inode *inode, int mask) 10062 { 10063 struct btrfs_root *root = BTRFS_I(inode)->root; 10064 umode_t mode = inode->i_mode; 10065 10066 if (mask & MAY_WRITE && 10067 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 10068 if (btrfs_root_readonly(root)) 10069 return -EROFS; 10070 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 10071 return -EACCES; 10072 } 10073 return generic_permission(mnt_userns, inode, mask); 10074 } 10075 10076 static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir, 10077 struct dentry *dentry, umode_t mode) 10078 { 10079 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 10080 struct btrfs_trans_handle *trans; 10081 struct btrfs_root *root = BTRFS_I(dir)->root; 10082 struct inode *inode = NULL; 10083 u64 objectid; 10084 u64 index; 10085 int ret = 0; 10086 10087 /* 10088 * 5 units required for adding orphan entry 10089 */ 10090 trans = btrfs_start_transaction(root, 5); 10091 if (IS_ERR(trans)) 10092 return PTR_ERR(trans); 10093 10094 ret = btrfs_get_free_objectid(root, &objectid); 10095 if (ret) 10096 goto out; 10097 10098 inode = btrfs_new_inode(trans, root, mnt_userns, dir, NULL, 0, 10099 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); 10100 if (IS_ERR(inode)) { 10101 ret = PTR_ERR(inode); 10102 inode = NULL; 10103 goto out; 10104 } 10105 10106 inode->i_fop = &btrfs_file_operations; 10107 inode->i_op = &btrfs_file_inode_operations; 10108 10109 inode->i_mapping->a_ops = &btrfs_aops; 10110 10111 ret = btrfs_init_inode_security(trans, inode, dir, NULL); 10112 if (ret) 10113 goto out; 10114 10115 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 10116 if (ret) 10117 goto out; 10118 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 10119 if (ret) 10120 goto out; 10121 10122 /* 10123 * We set number of links to 0 in btrfs_new_inode(), and here we set 10124 * it to 1 because d_tmpfile() will issue a warning if the count is 0, 10125 * through: 10126 * 10127 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 10128 */ 10129 set_nlink(inode, 1); 10130 d_tmpfile(dentry, inode); 10131 unlock_new_inode(inode); 10132 mark_inode_dirty(inode); 10133 out: 10134 btrfs_end_transaction(trans); 10135 if (ret && inode) 10136 discard_new_inode(inode); 10137 btrfs_btree_balance_dirty(fs_info); 10138 return ret; 10139 } 10140 10141 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end) 10142 { 10143 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10144 unsigned long index = start >> PAGE_SHIFT; 10145 unsigned long end_index = end >> PAGE_SHIFT; 10146 struct page *page; 10147 u32 len; 10148 10149 ASSERT(end + 1 - start <= U32_MAX); 10150 len = end + 1 - start; 10151 while (index <= end_index) { 10152 page = find_get_page(inode->vfs_inode.i_mapping, index); 10153 ASSERT(page); /* Pages should be in the extent_io_tree */ 10154 10155 btrfs_page_set_writeback(fs_info, page, start, len); 10156 put_page(page); 10157 index++; 10158 } 10159 } 10160 10161 static int btrfs_encoded_io_compression_from_extent( 10162 struct btrfs_fs_info *fs_info, 10163 int compress_type) 10164 { 10165 switch (compress_type) { 10166 case BTRFS_COMPRESS_NONE: 10167 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 10168 case BTRFS_COMPRESS_ZLIB: 10169 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 10170 case BTRFS_COMPRESS_LZO: 10171 /* 10172 * The LZO format depends on the sector size. 64K is the maximum 10173 * sector size that we support. 10174 */ 10175 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 10176 return -EINVAL; 10177 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 10178 (fs_info->sectorsize_bits - 12); 10179 case BTRFS_COMPRESS_ZSTD: 10180 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 10181 default: 10182 return -EUCLEAN; 10183 } 10184 } 10185 10186 static ssize_t btrfs_encoded_read_inline( 10187 struct kiocb *iocb, 10188 struct iov_iter *iter, u64 start, 10189 u64 lockend, 10190 struct extent_state **cached_state, 10191 u64 extent_start, size_t count, 10192 struct btrfs_ioctl_encoded_io_args *encoded, 10193 bool *unlocked) 10194 { 10195 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10196 struct btrfs_root *root = inode->root; 10197 struct btrfs_fs_info *fs_info = root->fs_info; 10198 struct extent_io_tree *io_tree = &inode->io_tree; 10199 struct btrfs_path *path; 10200 struct extent_buffer *leaf; 10201 struct btrfs_file_extent_item *item; 10202 u64 ram_bytes; 10203 unsigned long ptr; 10204 void *tmp; 10205 ssize_t ret; 10206 10207 path = btrfs_alloc_path(); 10208 if (!path) { 10209 ret = -ENOMEM; 10210 goto out; 10211 } 10212 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 10213 extent_start, 0); 10214 if (ret) { 10215 if (ret > 0) { 10216 /* The extent item disappeared? */ 10217 ret = -EIO; 10218 } 10219 goto out; 10220 } 10221 leaf = path->nodes[0]; 10222 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10223 10224 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 10225 ptr = btrfs_file_extent_inline_start(item); 10226 10227 encoded->len = min_t(u64, extent_start + ram_bytes, 10228 inode->vfs_inode.i_size) - iocb->ki_pos; 10229 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10230 btrfs_file_extent_compression(leaf, item)); 10231 if (ret < 0) 10232 goto out; 10233 encoded->compression = ret; 10234 if (encoded->compression) { 10235 size_t inline_size; 10236 10237 inline_size = btrfs_file_extent_inline_item_len(leaf, 10238 path->slots[0]); 10239 if (inline_size > count) { 10240 ret = -ENOBUFS; 10241 goto out; 10242 } 10243 count = inline_size; 10244 encoded->unencoded_len = ram_bytes; 10245 encoded->unencoded_offset = iocb->ki_pos - extent_start; 10246 } else { 10247 count = min_t(u64, count, encoded->len); 10248 encoded->len = count; 10249 encoded->unencoded_len = count; 10250 ptr += iocb->ki_pos - extent_start; 10251 } 10252 10253 tmp = kmalloc(count, GFP_NOFS); 10254 if (!tmp) { 10255 ret = -ENOMEM; 10256 goto out; 10257 } 10258 read_extent_buffer(leaf, tmp, ptr, count); 10259 btrfs_release_path(path); 10260 unlock_extent_cached(io_tree, start, lockend, cached_state); 10261 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10262 *unlocked = true; 10263 10264 ret = copy_to_iter(tmp, count, iter); 10265 if (ret != count) 10266 ret = -EFAULT; 10267 kfree(tmp); 10268 out: 10269 btrfs_free_path(path); 10270 return ret; 10271 } 10272 10273 struct btrfs_encoded_read_private { 10274 struct btrfs_inode *inode; 10275 u64 file_offset; 10276 wait_queue_head_t wait; 10277 atomic_t pending; 10278 blk_status_t status; 10279 bool skip_csum; 10280 }; 10281 10282 static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode, 10283 struct bio *bio, int mirror_num) 10284 { 10285 struct btrfs_encoded_read_private *priv = bio->bi_private; 10286 struct btrfs_bio *bbio = btrfs_bio(bio); 10287 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10288 blk_status_t ret; 10289 10290 if (!priv->skip_csum) { 10291 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL); 10292 if (ret) 10293 return ret; 10294 } 10295 10296 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); 10297 if (ret) { 10298 btrfs_bio_free_csum(bbio); 10299 return ret; 10300 } 10301 10302 atomic_inc(&priv->pending); 10303 ret = btrfs_map_bio(fs_info, bio, mirror_num); 10304 if (ret) { 10305 atomic_dec(&priv->pending); 10306 btrfs_bio_free_csum(bbio); 10307 } 10308 return ret; 10309 } 10310 10311 static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio) 10312 { 10313 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK); 10314 struct btrfs_encoded_read_private *priv = bbio->bio.bi_private; 10315 struct btrfs_inode *inode = priv->inode; 10316 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10317 u32 sectorsize = fs_info->sectorsize; 10318 struct bio_vec *bvec; 10319 struct bvec_iter_all iter_all; 10320 u64 start = priv->file_offset; 10321 u32 bio_offset = 0; 10322 10323 if (priv->skip_csum || !uptodate) 10324 return bbio->bio.bi_status; 10325 10326 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) { 10327 unsigned int i, nr_sectors, pgoff; 10328 10329 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len); 10330 pgoff = bvec->bv_offset; 10331 for (i = 0; i < nr_sectors; i++) { 10332 ASSERT(pgoff < PAGE_SIZE); 10333 if (check_data_csum(&inode->vfs_inode, bbio, bio_offset, 10334 bvec->bv_page, pgoff, start)) 10335 return BLK_STS_IOERR; 10336 start += sectorsize; 10337 bio_offset += sectorsize; 10338 pgoff += sectorsize; 10339 } 10340 } 10341 return BLK_STS_OK; 10342 } 10343 10344 static void btrfs_encoded_read_endio(struct bio *bio) 10345 { 10346 struct btrfs_encoded_read_private *priv = bio->bi_private; 10347 struct btrfs_bio *bbio = btrfs_bio(bio); 10348 blk_status_t status; 10349 10350 status = btrfs_encoded_read_verify_csum(bbio); 10351 if (status) { 10352 /* 10353 * The memory barrier implied by the atomic_dec_return() here 10354 * pairs with the memory barrier implied by the 10355 * atomic_dec_return() or io_wait_event() in 10356 * btrfs_encoded_read_regular_fill_pages() to ensure that this 10357 * write is observed before the load of status in 10358 * btrfs_encoded_read_regular_fill_pages(). 10359 */ 10360 WRITE_ONCE(priv->status, status); 10361 } 10362 if (!atomic_dec_return(&priv->pending)) 10363 wake_up(&priv->wait); 10364 btrfs_bio_free_csum(bbio); 10365 bio_put(bio); 10366 } 10367 10368 static int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 10369 u64 file_offset, 10370 u64 disk_bytenr, 10371 u64 disk_io_size, 10372 struct page **pages) 10373 { 10374 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10375 struct btrfs_encoded_read_private priv = { 10376 .inode = inode, 10377 .file_offset = file_offset, 10378 .pending = ATOMIC_INIT(1), 10379 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM), 10380 }; 10381 unsigned long i = 0; 10382 u64 cur = 0; 10383 int ret; 10384 10385 init_waitqueue_head(&priv.wait); 10386 /* 10387 * Submit bios for the extent, splitting due to bio or stripe limits as 10388 * necessary. 10389 */ 10390 while (cur < disk_io_size) { 10391 struct extent_map *em; 10392 struct btrfs_io_geometry geom; 10393 struct bio *bio = NULL; 10394 u64 remaining; 10395 10396 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur, 10397 disk_io_size - cur); 10398 if (IS_ERR(em)) { 10399 ret = PTR_ERR(em); 10400 } else { 10401 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ, 10402 disk_bytenr + cur, &geom); 10403 free_extent_map(em); 10404 } 10405 if (ret) { 10406 WRITE_ONCE(priv.status, errno_to_blk_status(ret)); 10407 break; 10408 } 10409 remaining = min(geom.len, disk_io_size - cur); 10410 while (bio || remaining) { 10411 size_t bytes = min_t(u64, remaining, PAGE_SIZE); 10412 10413 if (!bio) { 10414 bio = btrfs_bio_alloc(BIO_MAX_VECS); 10415 bio->bi_iter.bi_sector = 10416 (disk_bytenr + cur) >> SECTOR_SHIFT; 10417 bio->bi_end_io = btrfs_encoded_read_endio; 10418 bio->bi_private = &priv; 10419 bio->bi_opf = REQ_OP_READ; 10420 } 10421 10422 if (!bytes || 10423 bio_add_page(bio, pages[i], bytes, 0) < bytes) { 10424 blk_status_t status; 10425 10426 status = submit_encoded_read_bio(inode, bio, 0); 10427 if (status) { 10428 WRITE_ONCE(priv.status, status); 10429 bio_put(bio); 10430 goto out; 10431 } 10432 bio = NULL; 10433 continue; 10434 } 10435 10436 i++; 10437 cur += bytes; 10438 remaining -= bytes; 10439 } 10440 } 10441 10442 out: 10443 if (atomic_dec_return(&priv.pending)) 10444 io_wait_event(priv.wait, !atomic_read(&priv.pending)); 10445 /* See btrfs_encoded_read_endio() for ordering. */ 10446 return blk_status_to_errno(READ_ONCE(priv.status)); 10447 } 10448 10449 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, 10450 struct iov_iter *iter, 10451 u64 start, u64 lockend, 10452 struct extent_state **cached_state, 10453 u64 disk_bytenr, u64 disk_io_size, 10454 size_t count, bool compressed, 10455 bool *unlocked) 10456 { 10457 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10458 struct extent_io_tree *io_tree = &inode->io_tree; 10459 struct page **pages; 10460 unsigned long nr_pages, i; 10461 u64 cur; 10462 size_t page_offset; 10463 ssize_t ret; 10464 10465 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 10466 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 10467 if (!pages) 10468 return -ENOMEM; 10469 for (i = 0; i < nr_pages; i++) { 10470 pages[i] = alloc_page(GFP_NOFS); 10471 if (!pages[i]) { 10472 ret = -ENOMEM; 10473 goto out; 10474 } 10475 } 10476 10477 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr, 10478 disk_io_size, pages); 10479 if (ret) 10480 goto out; 10481 10482 unlock_extent_cached(io_tree, start, lockend, cached_state); 10483 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10484 *unlocked = true; 10485 10486 if (compressed) { 10487 i = 0; 10488 page_offset = 0; 10489 } else { 10490 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 10491 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 10492 } 10493 cur = 0; 10494 while (cur < count) { 10495 size_t bytes = min_t(size_t, count - cur, 10496 PAGE_SIZE - page_offset); 10497 10498 if (copy_page_to_iter(pages[i], page_offset, bytes, 10499 iter) != bytes) { 10500 ret = -EFAULT; 10501 goto out; 10502 } 10503 i++; 10504 cur += bytes; 10505 page_offset = 0; 10506 } 10507 ret = count; 10508 out: 10509 for (i = 0; i < nr_pages; i++) { 10510 if (pages[i]) 10511 __free_page(pages[i]); 10512 } 10513 kfree(pages); 10514 return ret; 10515 } 10516 10517 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 10518 struct btrfs_ioctl_encoded_io_args *encoded) 10519 { 10520 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10521 struct btrfs_fs_info *fs_info = inode->root->fs_info; 10522 struct extent_io_tree *io_tree = &inode->io_tree; 10523 ssize_t ret; 10524 size_t count = iov_iter_count(iter); 10525 u64 start, lockend, disk_bytenr, disk_io_size; 10526 struct extent_state *cached_state = NULL; 10527 struct extent_map *em; 10528 bool unlocked = false; 10529 10530 file_accessed(iocb->ki_filp); 10531 10532 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10533 10534 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 10535 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10536 return 0; 10537 } 10538 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 10539 /* 10540 * We don't know how long the extent containing iocb->ki_pos is, but if 10541 * it's compressed we know that it won't be longer than this. 10542 */ 10543 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 10544 10545 for (;;) { 10546 struct btrfs_ordered_extent *ordered; 10547 10548 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, 10549 lockend - start + 1); 10550 if (ret) 10551 goto out_unlock_inode; 10552 lock_extent_bits(io_tree, start, lockend, &cached_state); 10553 ordered = btrfs_lookup_ordered_range(inode, start, 10554 lockend - start + 1); 10555 if (!ordered) 10556 break; 10557 btrfs_put_ordered_extent(ordered); 10558 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10559 cond_resched(); 10560 } 10561 10562 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1); 10563 if (IS_ERR(em)) { 10564 ret = PTR_ERR(em); 10565 goto out_unlock_extent; 10566 } 10567 10568 if (em->block_start == EXTENT_MAP_INLINE) { 10569 u64 extent_start = em->start; 10570 10571 /* 10572 * For inline extents we get everything we need out of the 10573 * extent item. 10574 */ 10575 free_extent_map(em); 10576 em = NULL; 10577 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 10578 &cached_state, extent_start, 10579 count, encoded, &unlocked); 10580 goto out; 10581 } 10582 10583 /* 10584 * We only want to return up to EOF even if the extent extends beyond 10585 * that. 10586 */ 10587 encoded->len = min_t(u64, extent_map_end(em), 10588 inode->vfs_inode.i_size) - iocb->ki_pos; 10589 if (em->block_start == EXTENT_MAP_HOLE || 10590 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 10591 disk_bytenr = EXTENT_MAP_HOLE; 10592 count = min_t(u64, count, encoded->len); 10593 encoded->len = count; 10594 encoded->unencoded_len = count; 10595 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 10596 disk_bytenr = em->block_start; 10597 /* 10598 * Bail if the buffer isn't large enough to return the whole 10599 * compressed extent. 10600 */ 10601 if (em->block_len > count) { 10602 ret = -ENOBUFS; 10603 goto out_em; 10604 } 10605 disk_io_size = count = em->block_len; 10606 encoded->unencoded_len = em->ram_bytes; 10607 encoded->unencoded_offset = iocb->ki_pos - em->orig_start; 10608 ret = btrfs_encoded_io_compression_from_extent(fs_info, 10609 em->compress_type); 10610 if (ret < 0) 10611 goto out_em; 10612 encoded->compression = ret; 10613 } else { 10614 disk_bytenr = em->block_start + (start - em->start); 10615 if (encoded->len > count) 10616 encoded->len = count; 10617 /* 10618 * Don't read beyond what we locked. This also limits the page 10619 * allocations that we'll do. 10620 */ 10621 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 10622 count = start + disk_io_size - iocb->ki_pos; 10623 encoded->len = count; 10624 encoded->unencoded_len = count; 10625 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize); 10626 } 10627 free_extent_map(em); 10628 em = NULL; 10629 10630 if (disk_bytenr == EXTENT_MAP_HOLE) { 10631 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10632 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10633 unlocked = true; 10634 ret = iov_iter_zero(count, iter); 10635 if (ret != count) 10636 ret = -EFAULT; 10637 } else { 10638 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend, 10639 &cached_state, disk_bytenr, 10640 disk_io_size, count, 10641 encoded->compression, 10642 &unlocked); 10643 } 10644 10645 out: 10646 if (ret >= 0) 10647 iocb->ki_pos += encoded->len; 10648 out_em: 10649 free_extent_map(em); 10650 out_unlock_extent: 10651 if (!unlocked) 10652 unlock_extent_cached(io_tree, start, lockend, &cached_state); 10653 out_unlock_inode: 10654 if (!unlocked) 10655 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED); 10656 return ret; 10657 } 10658 10659 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 10660 const struct btrfs_ioctl_encoded_io_args *encoded) 10661 { 10662 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 10663 struct btrfs_root *root = inode->root; 10664 struct btrfs_fs_info *fs_info = root->fs_info; 10665 struct extent_io_tree *io_tree = &inode->io_tree; 10666 struct extent_changeset *data_reserved = NULL; 10667 struct extent_state *cached_state = NULL; 10668 int compression; 10669 size_t orig_count; 10670 u64 start, end; 10671 u64 num_bytes, ram_bytes, disk_num_bytes; 10672 unsigned long nr_pages, i; 10673 struct page **pages; 10674 struct btrfs_key ins; 10675 bool extent_reserved = false; 10676 struct extent_map *em; 10677 ssize_t ret; 10678 10679 switch (encoded->compression) { 10680 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 10681 compression = BTRFS_COMPRESS_ZLIB; 10682 break; 10683 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 10684 compression = BTRFS_COMPRESS_ZSTD; 10685 break; 10686 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 10687 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 10688 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 10689 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 10690 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 10691 /* The sector size must match for LZO. */ 10692 if (encoded->compression - 10693 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 10694 fs_info->sectorsize_bits) 10695 return -EINVAL; 10696 compression = BTRFS_COMPRESS_LZO; 10697 break; 10698 default: 10699 return -EINVAL; 10700 } 10701 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 10702 return -EINVAL; 10703 10704 orig_count = iov_iter_count(from); 10705 10706 /* The extent size must be sane. */ 10707 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 10708 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 10709 return -EINVAL; 10710 10711 /* 10712 * The compressed data must be smaller than the decompressed data. 10713 * 10714 * It's of course possible for data to compress to larger or the same 10715 * size, but the buffered I/O path falls back to no compression for such 10716 * data, and we don't want to break any assumptions by creating these 10717 * extents. 10718 * 10719 * Note that this is less strict than the current check we have that the 10720 * compressed data must be at least one sector smaller than the 10721 * decompressed data. We only want to enforce the weaker requirement 10722 * from old kernels that it is at least one byte smaller. 10723 */ 10724 if (orig_count >= encoded->unencoded_len) 10725 return -EINVAL; 10726 10727 /* The extent must start on a sector boundary. */ 10728 start = iocb->ki_pos; 10729 if (!IS_ALIGNED(start, fs_info->sectorsize)) 10730 return -EINVAL; 10731 10732 /* 10733 * The extent must end on a sector boundary. However, we allow a write 10734 * which ends at or extends i_size to have an unaligned length; we round 10735 * up the extent size and set i_size to the unaligned end. 10736 */ 10737 if (start + encoded->len < inode->vfs_inode.i_size && 10738 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 10739 return -EINVAL; 10740 10741 /* Finally, the offset in the unencoded data must be sector-aligned. */ 10742 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 10743 return -EINVAL; 10744 10745 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 10746 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 10747 end = start + num_bytes - 1; 10748 10749 /* 10750 * If the extent cannot be inline, the compressed data on disk must be 10751 * sector-aligned. For convenience, we extend it with zeroes if it 10752 * isn't. 10753 */ 10754 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 10755 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 10756 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT); 10757 if (!pages) 10758 return -ENOMEM; 10759 for (i = 0; i < nr_pages; i++) { 10760 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 10761 char *kaddr; 10762 10763 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT); 10764 if (!pages[i]) { 10765 ret = -ENOMEM; 10766 goto out_pages; 10767 } 10768 kaddr = kmap(pages[i]); 10769 if (copy_from_iter(kaddr, bytes, from) != bytes) { 10770 kunmap(pages[i]); 10771 ret = -EFAULT; 10772 goto out_pages; 10773 } 10774 if (bytes < PAGE_SIZE) 10775 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 10776 kunmap(pages[i]); 10777 } 10778 10779 for (;;) { 10780 struct btrfs_ordered_extent *ordered; 10781 10782 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes); 10783 if (ret) 10784 goto out_pages; 10785 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 10786 start >> PAGE_SHIFT, 10787 end >> PAGE_SHIFT); 10788 if (ret) 10789 goto out_pages; 10790 lock_extent_bits(io_tree, start, end, &cached_state); 10791 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 10792 if (!ordered && 10793 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 10794 break; 10795 if (ordered) 10796 btrfs_put_ordered_extent(ordered); 10797 unlock_extent_cached(io_tree, start, end, &cached_state); 10798 cond_resched(); 10799 } 10800 10801 /* 10802 * We don't use the higher-level delalloc space functions because our 10803 * num_bytes and disk_num_bytes are different. 10804 */ 10805 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 10806 if (ret) 10807 goto out_unlock; 10808 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 10809 if (ret) 10810 goto out_free_data_space; 10811 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes); 10812 if (ret) 10813 goto out_qgroup_free_data; 10814 10815 /* Try an inline extent first. */ 10816 if (start == 0 && encoded->unencoded_len == encoded->len && 10817 encoded->unencoded_offset == 0) { 10818 ret = cow_file_range_inline(inode, encoded->len, orig_count, 10819 compression, pages, true); 10820 if (ret <= 0) { 10821 if (ret == 0) 10822 ret = orig_count; 10823 goto out_delalloc_release; 10824 } 10825 } 10826 10827 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 10828 disk_num_bytes, 0, 0, &ins, 1, 1); 10829 if (ret) 10830 goto out_delalloc_release; 10831 extent_reserved = true; 10832 10833 em = create_io_em(inode, start, num_bytes, 10834 start - encoded->unencoded_offset, ins.objectid, 10835 ins.offset, ins.offset, ram_bytes, compression, 10836 BTRFS_ORDERED_COMPRESSED); 10837 if (IS_ERR(em)) { 10838 ret = PTR_ERR(em); 10839 goto out_free_reserved; 10840 } 10841 free_extent_map(em); 10842 10843 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes, 10844 ins.objectid, ins.offset, 10845 encoded->unencoded_offset, 10846 (1 << BTRFS_ORDERED_ENCODED) | 10847 (1 << BTRFS_ORDERED_COMPRESSED), 10848 compression); 10849 if (ret) { 10850 btrfs_drop_extent_cache(inode, start, end, 0); 10851 goto out_free_reserved; 10852 } 10853 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10854 10855 if (start + encoded->len > inode->vfs_inode.i_size) 10856 i_size_write(&inode->vfs_inode, start + encoded->len); 10857 10858 unlock_extent_cached(io_tree, start, end, &cached_state); 10859 10860 btrfs_delalloc_release_extents(inode, num_bytes); 10861 10862 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid, 10863 ins.offset, pages, nr_pages, 0, NULL, 10864 false)) { 10865 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0); 10866 ret = -EIO; 10867 goto out_pages; 10868 } 10869 ret = orig_count; 10870 goto out; 10871 10872 out_free_reserved: 10873 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 10874 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 10875 out_delalloc_release: 10876 btrfs_delalloc_release_extents(inode, num_bytes); 10877 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 10878 out_qgroup_free_data: 10879 if (ret < 0) 10880 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes); 10881 out_free_data_space: 10882 /* 10883 * If btrfs_reserve_extent() succeeded, then we already decremented 10884 * bytes_may_use. 10885 */ 10886 if (!extent_reserved) 10887 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 10888 out_unlock: 10889 unlock_extent_cached(io_tree, start, end, &cached_state); 10890 out_pages: 10891 for (i = 0; i < nr_pages; i++) { 10892 if (pages[i]) 10893 __free_page(pages[i]); 10894 } 10895 kvfree(pages); 10896 out: 10897 if (ret >= 0) 10898 iocb->ki_pos += encoded->len; 10899 return ret; 10900 } 10901 10902 #ifdef CONFIG_SWAP 10903 /* 10904 * Add an entry indicating a block group or device which is pinned by a 10905 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 10906 * negative errno on failure. 10907 */ 10908 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 10909 bool is_block_group) 10910 { 10911 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10912 struct btrfs_swapfile_pin *sp, *entry; 10913 struct rb_node **p; 10914 struct rb_node *parent = NULL; 10915 10916 sp = kmalloc(sizeof(*sp), GFP_NOFS); 10917 if (!sp) 10918 return -ENOMEM; 10919 sp->ptr = ptr; 10920 sp->inode = inode; 10921 sp->is_block_group = is_block_group; 10922 sp->bg_extent_count = 1; 10923 10924 spin_lock(&fs_info->swapfile_pins_lock); 10925 p = &fs_info->swapfile_pins.rb_node; 10926 while (*p) { 10927 parent = *p; 10928 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 10929 if (sp->ptr < entry->ptr || 10930 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 10931 p = &(*p)->rb_left; 10932 } else if (sp->ptr > entry->ptr || 10933 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 10934 p = &(*p)->rb_right; 10935 } else { 10936 if (is_block_group) 10937 entry->bg_extent_count++; 10938 spin_unlock(&fs_info->swapfile_pins_lock); 10939 kfree(sp); 10940 return 1; 10941 } 10942 } 10943 rb_link_node(&sp->node, parent, p); 10944 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 10945 spin_unlock(&fs_info->swapfile_pins_lock); 10946 return 0; 10947 } 10948 10949 /* Free all of the entries pinned by this swapfile. */ 10950 static void btrfs_free_swapfile_pins(struct inode *inode) 10951 { 10952 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 10953 struct btrfs_swapfile_pin *sp; 10954 struct rb_node *node, *next; 10955 10956 spin_lock(&fs_info->swapfile_pins_lock); 10957 node = rb_first(&fs_info->swapfile_pins); 10958 while (node) { 10959 next = rb_next(node); 10960 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 10961 if (sp->inode == inode) { 10962 rb_erase(&sp->node, &fs_info->swapfile_pins); 10963 if (sp->is_block_group) { 10964 btrfs_dec_block_group_swap_extents(sp->ptr, 10965 sp->bg_extent_count); 10966 btrfs_put_block_group(sp->ptr); 10967 } 10968 kfree(sp); 10969 } 10970 node = next; 10971 } 10972 spin_unlock(&fs_info->swapfile_pins_lock); 10973 } 10974 10975 struct btrfs_swap_info { 10976 u64 start; 10977 u64 block_start; 10978 u64 block_len; 10979 u64 lowest_ppage; 10980 u64 highest_ppage; 10981 unsigned long nr_pages; 10982 int nr_extents; 10983 }; 10984 10985 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 10986 struct btrfs_swap_info *bsi) 10987 { 10988 unsigned long nr_pages; 10989 unsigned long max_pages; 10990 u64 first_ppage, first_ppage_reported, next_ppage; 10991 int ret; 10992 10993 /* 10994 * Our swapfile may have had its size extended after the swap header was 10995 * written. In that case activating the swapfile should not go beyond 10996 * the max size set in the swap header. 10997 */ 10998 if (bsi->nr_pages >= sis->max) 10999 return 0; 11000 11001 max_pages = sis->max - bsi->nr_pages; 11002 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT; 11003 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len, 11004 PAGE_SIZE) >> PAGE_SHIFT; 11005 11006 if (first_ppage >= next_ppage) 11007 return 0; 11008 nr_pages = next_ppage - first_ppage; 11009 nr_pages = min(nr_pages, max_pages); 11010 11011 first_ppage_reported = first_ppage; 11012 if (bsi->start == 0) 11013 first_ppage_reported++; 11014 if (bsi->lowest_ppage > first_ppage_reported) 11015 bsi->lowest_ppage = first_ppage_reported; 11016 if (bsi->highest_ppage < (next_ppage - 1)) 11017 bsi->highest_ppage = next_ppage - 1; 11018 11019 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 11020 if (ret < 0) 11021 return ret; 11022 bsi->nr_extents += ret; 11023 bsi->nr_pages += nr_pages; 11024 return 0; 11025 } 11026 11027 static void btrfs_swap_deactivate(struct file *file) 11028 { 11029 struct inode *inode = file_inode(file); 11030 11031 btrfs_free_swapfile_pins(inode); 11032 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 11033 } 11034 11035 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11036 sector_t *span) 11037 { 11038 struct inode *inode = file_inode(file); 11039 struct btrfs_root *root = BTRFS_I(inode)->root; 11040 struct btrfs_fs_info *fs_info = root->fs_info; 11041 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 11042 struct extent_state *cached_state = NULL; 11043 struct extent_map *em = NULL; 11044 struct btrfs_device *device = NULL; 11045 struct btrfs_swap_info bsi = { 11046 .lowest_ppage = (sector_t)-1ULL, 11047 }; 11048 int ret = 0; 11049 u64 isize; 11050 u64 start; 11051 11052 /* 11053 * If the swap file was just created, make sure delalloc is done. If the 11054 * file changes again after this, the user is doing something stupid and 11055 * we don't really care. 11056 */ 11057 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 11058 if (ret) 11059 return ret; 11060 11061 /* 11062 * The inode is locked, so these flags won't change after we check them. 11063 */ 11064 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 11065 btrfs_warn(fs_info, "swapfile must not be compressed"); 11066 return -EINVAL; 11067 } 11068 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 11069 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 11070 return -EINVAL; 11071 } 11072 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 11073 btrfs_warn(fs_info, "swapfile must not be checksummed"); 11074 return -EINVAL; 11075 } 11076 11077 /* 11078 * Balance or device remove/replace/resize can move stuff around from 11079 * under us. The exclop protection makes sure they aren't running/won't 11080 * run concurrently while we are mapping the swap extents, and 11081 * fs_info->swapfile_pins prevents them from running while the swap 11082 * file is active and moving the extents. Note that this also prevents 11083 * a concurrent device add which isn't actually necessary, but it's not 11084 * really worth the trouble to allow it. 11085 */ 11086 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 11087 btrfs_warn(fs_info, 11088 "cannot activate swapfile while exclusive operation is running"); 11089 return -EBUSY; 11090 } 11091 11092 /* 11093 * Prevent snapshot creation while we are activating the swap file. 11094 * We do not want to race with snapshot creation. If snapshot creation 11095 * already started before we bumped nr_swapfiles from 0 to 1 and 11096 * completes before the first write into the swap file after it is 11097 * activated, than that write would fallback to COW. 11098 */ 11099 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 11100 btrfs_exclop_finish(fs_info); 11101 btrfs_warn(fs_info, 11102 "cannot activate swapfile because snapshot creation is in progress"); 11103 return -EINVAL; 11104 } 11105 /* 11106 * Snapshots can create extents which require COW even if NODATACOW is 11107 * set. We use this counter to prevent snapshots. We must increment it 11108 * before walking the extents because we don't want a concurrent 11109 * snapshot to run after we've already checked the extents. 11110 */ 11111 atomic_inc(&root->nr_swapfiles); 11112 11113 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 11114 11115 lock_extent_bits(io_tree, 0, isize - 1, &cached_state); 11116 start = 0; 11117 while (start < isize) { 11118 u64 logical_block_start, physical_block_start; 11119 struct btrfs_block_group *bg; 11120 u64 len = isize - start; 11121 11122 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 11123 if (IS_ERR(em)) { 11124 ret = PTR_ERR(em); 11125 goto out; 11126 } 11127 11128 if (em->block_start == EXTENT_MAP_HOLE) { 11129 btrfs_warn(fs_info, "swapfile must not have holes"); 11130 ret = -EINVAL; 11131 goto out; 11132 } 11133 if (em->block_start == EXTENT_MAP_INLINE) { 11134 /* 11135 * It's unlikely we'll ever actually find ourselves 11136 * here, as a file small enough to fit inline won't be 11137 * big enough to store more than the swap header, but in 11138 * case something changes in the future, let's catch it 11139 * here rather than later. 11140 */ 11141 btrfs_warn(fs_info, "swapfile must not be inline"); 11142 ret = -EINVAL; 11143 goto out; 11144 } 11145 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 11146 btrfs_warn(fs_info, "swapfile must not be compressed"); 11147 ret = -EINVAL; 11148 goto out; 11149 } 11150 11151 logical_block_start = em->block_start + (start - em->start); 11152 len = min(len, em->len - (start - em->start)); 11153 free_extent_map(em); 11154 em = NULL; 11155 11156 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, true); 11157 if (ret < 0) { 11158 goto out; 11159 } else if (ret) { 11160 ret = 0; 11161 } else { 11162 btrfs_warn(fs_info, 11163 "swapfile must not be copy-on-write"); 11164 ret = -EINVAL; 11165 goto out; 11166 } 11167 11168 em = btrfs_get_chunk_map(fs_info, logical_block_start, len); 11169 if (IS_ERR(em)) { 11170 ret = PTR_ERR(em); 11171 goto out; 11172 } 11173 11174 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 11175 btrfs_warn(fs_info, 11176 "swapfile must have single data profile"); 11177 ret = -EINVAL; 11178 goto out; 11179 } 11180 11181 if (device == NULL) { 11182 device = em->map_lookup->stripes[0].dev; 11183 ret = btrfs_add_swapfile_pin(inode, device, false); 11184 if (ret == 1) 11185 ret = 0; 11186 else if (ret) 11187 goto out; 11188 } else if (device != em->map_lookup->stripes[0].dev) { 11189 btrfs_warn(fs_info, "swapfile must be on one device"); 11190 ret = -EINVAL; 11191 goto out; 11192 } 11193 11194 physical_block_start = (em->map_lookup->stripes[0].physical + 11195 (logical_block_start - em->start)); 11196 len = min(len, em->len - (logical_block_start - em->start)); 11197 free_extent_map(em); 11198 em = NULL; 11199 11200 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 11201 if (!bg) { 11202 btrfs_warn(fs_info, 11203 "could not find block group containing swapfile"); 11204 ret = -EINVAL; 11205 goto out; 11206 } 11207 11208 if (!btrfs_inc_block_group_swap_extents(bg)) { 11209 btrfs_warn(fs_info, 11210 "block group for swapfile at %llu is read-only%s", 11211 bg->start, 11212 atomic_read(&fs_info->scrubs_running) ? 11213 " (scrub running)" : ""); 11214 btrfs_put_block_group(bg); 11215 ret = -EINVAL; 11216 goto out; 11217 } 11218 11219 ret = btrfs_add_swapfile_pin(inode, bg, true); 11220 if (ret) { 11221 btrfs_put_block_group(bg); 11222 if (ret == 1) 11223 ret = 0; 11224 else 11225 goto out; 11226 } 11227 11228 if (bsi.block_len && 11229 bsi.block_start + bsi.block_len == physical_block_start) { 11230 bsi.block_len += len; 11231 } else { 11232 if (bsi.block_len) { 11233 ret = btrfs_add_swap_extent(sis, &bsi); 11234 if (ret) 11235 goto out; 11236 } 11237 bsi.start = start; 11238 bsi.block_start = physical_block_start; 11239 bsi.block_len = len; 11240 } 11241 11242 start += len; 11243 } 11244 11245 if (bsi.block_len) 11246 ret = btrfs_add_swap_extent(sis, &bsi); 11247 11248 out: 11249 if (!IS_ERR_OR_NULL(em)) 11250 free_extent_map(em); 11251 11252 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state); 11253 11254 if (ret) 11255 btrfs_swap_deactivate(file); 11256 11257 btrfs_drew_write_unlock(&root->snapshot_lock); 11258 11259 btrfs_exclop_finish(fs_info); 11260 11261 if (ret) 11262 return ret; 11263 11264 if (device) 11265 sis->bdev = device->bdev; 11266 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 11267 sis->max = bsi.nr_pages; 11268 sis->pages = bsi.nr_pages - 1; 11269 sis->highest_bit = bsi.nr_pages - 1; 11270 return bsi.nr_extents; 11271 } 11272 #else 11273 static void btrfs_swap_deactivate(struct file *file) 11274 { 11275 } 11276 11277 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 11278 sector_t *span) 11279 { 11280 return -EOPNOTSUPP; 11281 } 11282 #endif 11283 11284 /* 11285 * Update the number of bytes used in the VFS' inode. When we replace extents in 11286 * a range (clone, dedupe, fallocate's zero range), we must update the number of 11287 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 11288 * always get a correct value. 11289 */ 11290 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 11291 const u64 add_bytes, 11292 const u64 del_bytes) 11293 { 11294 if (add_bytes == del_bytes) 11295 return; 11296 11297 spin_lock(&inode->lock); 11298 if (del_bytes > 0) 11299 inode_sub_bytes(&inode->vfs_inode, del_bytes); 11300 if (add_bytes > 0) 11301 inode_add_bytes(&inode->vfs_inode, add_bytes); 11302 spin_unlock(&inode->lock); 11303 } 11304 11305 static const struct inode_operations btrfs_dir_inode_operations = { 11306 .getattr = btrfs_getattr, 11307 .lookup = btrfs_lookup, 11308 .create = btrfs_create, 11309 .unlink = btrfs_unlink, 11310 .link = btrfs_link, 11311 .mkdir = btrfs_mkdir, 11312 .rmdir = btrfs_rmdir, 11313 .rename = btrfs_rename2, 11314 .symlink = btrfs_symlink, 11315 .setattr = btrfs_setattr, 11316 .mknod = btrfs_mknod, 11317 .listxattr = btrfs_listxattr, 11318 .permission = btrfs_permission, 11319 .get_acl = btrfs_get_acl, 11320 .set_acl = btrfs_set_acl, 11321 .update_time = btrfs_update_time, 11322 .tmpfile = btrfs_tmpfile, 11323 .fileattr_get = btrfs_fileattr_get, 11324 .fileattr_set = btrfs_fileattr_set, 11325 }; 11326 11327 static const struct file_operations btrfs_dir_file_operations = { 11328 .llseek = generic_file_llseek, 11329 .read = generic_read_dir, 11330 .iterate_shared = btrfs_real_readdir, 11331 .open = btrfs_opendir, 11332 .unlocked_ioctl = btrfs_ioctl, 11333 #ifdef CONFIG_COMPAT 11334 .compat_ioctl = btrfs_compat_ioctl, 11335 #endif 11336 .release = btrfs_release_file, 11337 .fsync = btrfs_sync_file, 11338 }; 11339 11340 /* 11341 * btrfs doesn't support the bmap operation because swapfiles 11342 * use bmap to make a mapping of extents in the file. They assume 11343 * these extents won't change over the life of the file and they 11344 * use the bmap result to do IO directly to the drive. 11345 * 11346 * the btrfs bmap call would return logical addresses that aren't 11347 * suitable for IO and they also will change frequently as COW 11348 * operations happen. So, swapfile + btrfs == corruption. 11349 * 11350 * For now we're avoiding this by dropping bmap. 11351 */ 11352 static const struct address_space_operations btrfs_aops = { 11353 .readpage = btrfs_readpage, 11354 .writepage = btrfs_writepage, 11355 .writepages = btrfs_writepages, 11356 .readahead = btrfs_readahead, 11357 .direct_IO = noop_direct_IO, 11358 .invalidate_folio = btrfs_invalidate_folio, 11359 .releasepage = btrfs_releasepage, 11360 #ifdef CONFIG_MIGRATION 11361 .migratepage = btrfs_migratepage, 11362 #endif 11363 .dirty_folio = filemap_dirty_folio, 11364 .error_remove_page = generic_error_remove_page, 11365 .swap_activate = btrfs_swap_activate, 11366 .swap_deactivate = btrfs_swap_deactivate, 11367 }; 11368 11369 static const struct inode_operations btrfs_file_inode_operations = { 11370 .getattr = btrfs_getattr, 11371 .setattr = btrfs_setattr, 11372 .listxattr = btrfs_listxattr, 11373 .permission = btrfs_permission, 11374 .fiemap = btrfs_fiemap, 11375 .get_acl = btrfs_get_acl, 11376 .set_acl = btrfs_set_acl, 11377 .update_time = btrfs_update_time, 11378 .fileattr_get = btrfs_fileattr_get, 11379 .fileattr_set = btrfs_fileattr_set, 11380 }; 11381 static const struct inode_operations btrfs_special_inode_operations = { 11382 .getattr = btrfs_getattr, 11383 .setattr = btrfs_setattr, 11384 .permission = btrfs_permission, 11385 .listxattr = btrfs_listxattr, 11386 .get_acl = btrfs_get_acl, 11387 .set_acl = btrfs_set_acl, 11388 .update_time = btrfs_update_time, 11389 }; 11390 static const struct inode_operations btrfs_symlink_inode_operations = { 11391 .get_link = page_get_link, 11392 .getattr = btrfs_getattr, 11393 .setattr = btrfs_setattr, 11394 .permission = btrfs_permission, 11395 .listxattr = btrfs_listxattr, 11396 .update_time = btrfs_update_time, 11397 }; 11398 11399 const struct dentry_operations btrfs_dentry_operations = { 11400 .d_delete = btrfs_dentry_delete, 11401 }; 11402