1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "compression.h" 52 #include "locking.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 static const struct inode_operations btrfs_dir_inode_operations; 60 static const struct inode_operations btrfs_symlink_inode_operations; 61 static const struct inode_operations btrfs_dir_ro_inode_operations; 62 static const struct inode_operations btrfs_special_inode_operations; 63 static const struct inode_operations btrfs_file_inode_operations; 64 static const struct address_space_operations btrfs_aops; 65 static const struct address_space_operations btrfs_symlink_aops; 66 static const struct file_operations btrfs_dir_file_operations; 67 static struct extent_io_ops btrfs_extent_io_ops; 68 69 static struct kmem_cache *btrfs_inode_cachep; 70 struct kmem_cache *btrfs_trans_handle_cachep; 71 struct kmem_cache *btrfs_transaction_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 74 #define S_SHIFT 12 75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 83 }; 84 85 static void btrfs_truncate(struct inode *inode); 86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 87 static noinline int cow_file_range(struct inode *inode, 88 struct page *locked_page, 89 u64 start, u64 end, int *page_started, 90 unsigned long *nr_written, int unlock); 91 92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 93 struct inode *inode, struct inode *dir) 94 { 95 int err; 96 97 err = btrfs_init_acl(trans, inode, dir); 98 if (!err) 99 err = btrfs_xattr_security_init(trans, inode, dir); 100 return err; 101 } 102 103 /* 104 * this does all the hard work for inserting an inline extent into 105 * the btree. The caller should have done a btrfs_drop_extents so that 106 * no overlapping inline items exist in the btree 107 */ 108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, struct inode *inode, 110 u64 start, size_t size, size_t compressed_size, 111 struct page **compressed_pages) 112 { 113 struct btrfs_key key; 114 struct btrfs_path *path; 115 struct extent_buffer *leaf; 116 struct page *page = NULL; 117 char *kaddr; 118 unsigned long ptr; 119 struct btrfs_file_extent_item *ei; 120 int err = 0; 121 int ret; 122 size_t cur_size = size; 123 size_t datasize; 124 unsigned long offset; 125 int use_compress = 0; 126 127 if (compressed_size && compressed_pages) { 128 use_compress = 1; 129 cur_size = compressed_size; 130 } 131 132 path = btrfs_alloc_path(); 133 if (!path) 134 return -ENOMEM; 135 136 path->leave_spinning = 1; 137 btrfs_set_trans_block_group(trans, inode); 138 139 key.objectid = inode->i_ino; 140 key.offset = start; 141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 142 datasize = btrfs_file_extent_calc_inline_size(cur_size); 143 144 inode_add_bytes(inode, size); 145 ret = btrfs_insert_empty_item(trans, root, path, &key, 146 datasize); 147 BUG_ON(ret); 148 if (ret) { 149 err = ret; 150 goto fail; 151 } 152 leaf = path->nodes[0]; 153 ei = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_file_extent_item); 155 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 157 btrfs_set_file_extent_encryption(leaf, ei, 0); 158 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 159 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 160 ptr = btrfs_file_extent_inline_start(ei); 161 162 if (use_compress) { 163 struct page *cpage; 164 int i = 0; 165 while (compressed_size > 0) { 166 cpage = compressed_pages[i]; 167 cur_size = min_t(unsigned long, compressed_size, 168 PAGE_CACHE_SIZE); 169 170 kaddr = kmap_atomic(cpage, KM_USER0); 171 write_extent_buffer(leaf, kaddr, ptr, cur_size); 172 kunmap_atomic(kaddr, KM_USER0); 173 174 i++; 175 ptr += cur_size; 176 compressed_size -= cur_size; 177 } 178 btrfs_set_file_extent_compression(leaf, ei, 179 BTRFS_COMPRESS_ZLIB); 180 } else { 181 page = find_get_page(inode->i_mapping, 182 start >> PAGE_CACHE_SHIFT); 183 btrfs_set_file_extent_compression(leaf, ei, 0); 184 kaddr = kmap_atomic(page, KM_USER0); 185 offset = start & (PAGE_CACHE_SIZE - 1); 186 write_extent_buffer(leaf, kaddr + offset, ptr, size); 187 kunmap_atomic(kaddr, KM_USER0); 188 page_cache_release(page); 189 } 190 btrfs_mark_buffer_dirty(leaf); 191 btrfs_free_path(path); 192 193 /* 194 * we're an inline extent, so nobody can 195 * extend the file past i_size without locking 196 * a page we already have locked. 197 * 198 * We must do any isize and inode updates 199 * before we unlock the pages. Otherwise we 200 * could end up racing with unlink. 201 */ 202 BTRFS_I(inode)->disk_i_size = inode->i_size; 203 btrfs_update_inode(trans, root, inode); 204 205 return 0; 206 fail: 207 btrfs_free_path(path); 208 return err; 209 } 210 211 212 /* 213 * conditionally insert an inline extent into the file. This 214 * does the checks required to make sure the data is small enough 215 * to fit as an inline extent. 216 */ 217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 218 struct btrfs_root *root, 219 struct inode *inode, u64 start, u64 end, 220 size_t compressed_size, 221 struct page **compressed_pages) 222 { 223 u64 isize = i_size_read(inode); 224 u64 actual_end = min(end + 1, isize); 225 u64 inline_len = actual_end - start; 226 u64 aligned_end = (end + root->sectorsize - 1) & 227 ~((u64)root->sectorsize - 1); 228 u64 hint_byte; 229 u64 data_len = inline_len; 230 int ret; 231 232 if (compressed_size) 233 data_len = compressed_size; 234 235 if (start > 0 || 236 actual_end >= PAGE_CACHE_SIZE || 237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 238 (!compressed_size && 239 (actual_end & (root->sectorsize - 1)) == 0) || 240 end + 1 < isize || 241 data_len > root->fs_info->max_inline) { 242 return 1; 243 } 244 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 246 &hint_byte, 1); 247 BUG_ON(ret); 248 249 if (isize > actual_end) 250 inline_len = min_t(u64, isize, actual_end); 251 ret = insert_inline_extent(trans, root, inode, start, 252 inline_len, compressed_size, 253 compressed_pages); 254 BUG_ON(ret); 255 btrfs_delalloc_release_metadata(inode, end + 1 - start); 256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 257 return 0; 258 } 259 260 struct async_extent { 261 u64 start; 262 u64 ram_size; 263 u64 compressed_size; 264 struct page **pages; 265 unsigned long nr_pages; 266 struct list_head list; 267 }; 268 269 struct async_cow { 270 struct inode *inode; 271 struct btrfs_root *root; 272 struct page *locked_page; 273 u64 start; 274 u64 end; 275 struct list_head extents; 276 struct btrfs_work work; 277 }; 278 279 static noinline int add_async_extent(struct async_cow *cow, 280 u64 start, u64 ram_size, 281 u64 compressed_size, 282 struct page **pages, 283 unsigned long nr_pages) 284 { 285 struct async_extent *async_extent; 286 287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 288 async_extent->start = start; 289 async_extent->ram_size = ram_size; 290 async_extent->compressed_size = compressed_size; 291 async_extent->pages = pages; 292 async_extent->nr_pages = nr_pages; 293 list_add_tail(&async_extent->list, &cow->extents); 294 return 0; 295 } 296 297 /* 298 * we create compressed extents in two phases. The first 299 * phase compresses a range of pages that have already been 300 * locked (both pages and state bits are locked). 301 * 302 * This is done inside an ordered work queue, and the compression 303 * is spread across many cpus. The actual IO submission is step 304 * two, and the ordered work queue takes care of making sure that 305 * happens in the same order things were put onto the queue by 306 * writepages and friends. 307 * 308 * If this code finds it can't get good compression, it puts an 309 * entry onto the work queue to write the uncompressed bytes. This 310 * makes sure that both compressed inodes and uncompressed inodes 311 * are written in the same order that pdflush sent them down. 312 */ 313 static noinline int compress_file_range(struct inode *inode, 314 struct page *locked_page, 315 u64 start, u64 end, 316 struct async_cow *async_cow, 317 int *num_added) 318 { 319 struct btrfs_root *root = BTRFS_I(inode)->root; 320 struct btrfs_trans_handle *trans; 321 u64 num_bytes; 322 u64 blocksize = root->sectorsize; 323 u64 actual_end; 324 u64 isize = i_size_read(inode); 325 int ret = 0; 326 struct page **pages = NULL; 327 unsigned long nr_pages; 328 unsigned long nr_pages_ret = 0; 329 unsigned long total_compressed = 0; 330 unsigned long total_in = 0; 331 unsigned long max_compressed = 128 * 1024; 332 unsigned long max_uncompressed = 128 * 1024; 333 int i; 334 int will_compress; 335 336 actual_end = min_t(u64, isize, end + 1); 337 again: 338 will_compress = 0; 339 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 340 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 341 342 /* 343 * we don't want to send crud past the end of i_size through 344 * compression, that's just a waste of CPU time. So, if the 345 * end of the file is before the start of our current 346 * requested range of bytes, we bail out to the uncompressed 347 * cleanup code that can deal with all of this. 348 * 349 * It isn't really the fastest way to fix things, but this is a 350 * very uncommon corner. 351 */ 352 if (actual_end <= start) 353 goto cleanup_and_bail_uncompressed; 354 355 total_compressed = actual_end - start; 356 357 /* we want to make sure that amount of ram required to uncompress 358 * an extent is reasonable, so we limit the total size in ram 359 * of a compressed extent to 128k. This is a crucial number 360 * because it also controls how easily we can spread reads across 361 * cpus for decompression. 362 * 363 * We also want to make sure the amount of IO required to do 364 * a random read is reasonably small, so we limit the size of 365 * a compressed extent to 128k. 366 */ 367 total_compressed = min(total_compressed, max_uncompressed); 368 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 369 num_bytes = max(blocksize, num_bytes); 370 total_in = 0; 371 ret = 0; 372 373 /* 374 * we do compression for mount -o compress and when the 375 * inode has not been flagged as nocompress. This flag can 376 * change at any time if we discover bad compression ratios. 377 */ 378 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 379 (btrfs_test_opt(root, COMPRESS) || 380 (BTRFS_I(inode)->force_compress))) { 381 WARN_ON(pages); 382 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 383 384 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 385 total_compressed, pages, 386 nr_pages, &nr_pages_ret, 387 &total_in, 388 &total_compressed, 389 max_compressed); 390 391 if (!ret) { 392 unsigned long offset = total_compressed & 393 (PAGE_CACHE_SIZE - 1); 394 struct page *page = pages[nr_pages_ret - 1]; 395 char *kaddr; 396 397 /* zero the tail end of the last page, we might be 398 * sending it down to disk 399 */ 400 if (offset) { 401 kaddr = kmap_atomic(page, KM_USER0); 402 memset(kaddr + offset, 0, 403 PAGE_CACHE_SIZE - offset); 404 kunmap_atomic(kaddr, KM_USER0); 405 } 406 will_compress = 1; 407 } 408 } 409 if (start == 0) { 410 trans = btrfs_join_transaction(root, 1); 411 BUG_ON(!trans); 412 btrfs_set_trans_block_group(trans, inode); 413 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 414 415 /* lets try to make an inline extent */ 416 if (ret || total_in < (actual_end - start)) { 417 /* we didn't compress the entire range, try 418 * to make an uncompressed inline extent. 419 */ 420 ret = cow_file_range_inline(trans, root, inode, 421 start, end, 0, NULL); 422 } else { 423 /* try making a compressed inline extent */ 424 ret = cow_file_range_inline(trans, root, inode, 425 start, end, 426 total_compressed, pages); 427 } 428 if (ret == 0) { 429 /* 430 * inline extent creation worked, we don't need 431 * to create any more async work items. Unlock 432 * and free up our temp pages. 433 */ 434 extent_clear_unlock_delalloc(inode, 435 &BTRFS_I(inode)->io_tree, 436 start, end, NULL, 437 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 438 EXTENT_CLEAR_DELALLOC | 439 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 440 441 btrfs_end_transaction(trans, root); 442 goto free_pages_out; 443 } 444 btrfs_end_transaction(trans, root); 445 } 446 447 if (will_compress) { 448 /* 449 * we aren't doing an inline extent round the compressed size 450 * up to a block size boundary so the allocator does sane 451 * things 452 */ 453 total_compressed = (total_compressed + blocksize - 1) & 454 ~(blocksize - 1); 455 456 /* 457 * one last check to make sure the compression is really a 458 * win, compare the page count read with the blocks on disk 459 */ 460 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 461 ~(PAGE_CACHE_SIZE - 1); 462 if (total_compressed >= total_in) { 463 will_compress = 0; 464 } else { 465 num_bytes = total_in; 466 } 467 } 468 if (!will_compress && pages) { 469 /* 470 * the compression code ran but failed to make things smaller, 471 * free any pages it allocated and our page pointer array 472 */ 473 for (i = 0; i < nr_pages_ret; i++) { 474 WARN_ON(pages[i]->mapping); 475 page_cache_release(pages[i]); 476 } 477 kfree(pages); 478 pages = NULL; 479 total_compressed = 0; 480 nr_pages_ret = 0; 481 482 /* flag the file so we don't compress in the future */ 483 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 484 !(BTRFS_I(inode)->force_compress)) { 485 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 486 } 487 } 488 if (will_compress) { 489 *num_added += 1; 490 491 /* the async work queues will take care of doing actual 492 * allocation on disk for these compressed pages, 493 * and will submit them to the elevator. 494 */ 495 add_async_extent(async_cow, start, num_bytes, 496 total_compressed, pages, nr_pages_ret); 497 498 if (start + num_bytes < end) { 499 start += num_bytes; 500 pages = NULL; 501 cond_resched(); 502 goto again; 503 } 504 } else { 505 cleanup_and_bail_uncompressed: 506 /* 507 * No compression, but we still need to write the pages in 508 * the file we've been given so far. redirty the locked 509 * page if it corresponds to our extent and set things up 510 * for the async work queue to run cow_file_range to do 511 * the normal delalloc dance 512 */ 513 if (page_offset(locked_page) >= start && 514 page_offset(locked_page) <= end) { 515 __set_page_dirty_nobuffers(locked_page); 516 /* unlocked later on in the async handlers */ 517 } 518 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 519 *num_added += 1; 520 } 521 522 out: 523 return 0; 524 525 free_pages_out: 526 for (i = 0; i < nr_pages_ret; i++) { 527 WARN_ON(pages[i]->mapping); 528 page_cache_release(pages[i]); 529 } 530 kfree(pages); 531 532 goto out; 533 } 534 535 /* 536 * phase two of compressed writeback. This is the ordered portion 537 * of the code, which only gets called in the order the work was 538 * queued. We walk all the async extents created by compress_file_range 539 * and send them down to the disk. 540 */ 541 static noinline int submit_compressed_extents(struct inode *inode, 542 struct async_cow *async_cow) 543 { 544 struct async_extent *async_extent; 545 u64 alloc_hint = 0; 546 struct btrfs_trans_handle *trans; 547 struct btrfs_key ins; 548 struct extent_map *em; 549 struct btrfs_root *root = BTRFS_I(inode)->root; 550 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 551 struct extent_io_tree *io_tree; 552 int ret = 0; 553 554 if (list_empty(&async_cow->extents)) 555 return 0; 556 557 558 while (!list_empty(&async_cow->extents)) { 559 async_extent = list_entry(async_cow->extents.next, 560 struct async_extent, list); 561 list_del(&async_extent->list); 562 563 io_tree = &BTRFS_I(inode)->io_tree; 564 565 retry: 566 /* did the compression code fall back to uncompressed IO? */ 567 if (!async_extent->pages) { 568 int page_started = 0; 569 unsigned long nr_written = 0; 570 571 lock_extent(io_tree, async_extent->start, 572 async_extent->start + 573 async_extent->ram_size - 1, GFP_NOFS); 574 575 /* allocate blocks */ 576 ret = cow_file_range(inode, async_cow->locked_page, 577 async_extent->start, 578 async_extent->start + 579 async_extent->ram_size - 1, 580 &page_started, &nr_written, 0); 581 582 /* 583 * if page_started, cow_file_range inserted an 584 * inline extent and took care of all the unlocking 585 * and IO for us. Otherwise, we need to submit 586 * all those pages down to the drive. 587 */ 588 if (!page_started && !ret) 589 extent_write_locked_range(io_tree, 590 inode, async_extent->start, 591 async_extent->start + 592 async_extent->ram_size - 1, 593 btrfs_get_extent, 594 WB_SYNC_ALL); 595 kfree(async_extent); 596 cond_resched(); 597 continue; 598 } 599 600 lock_extent(io_tree, async_extent->start, 601 async_extent->start + async_extent->ram_size - 1, 602 GFP_NOFS); 603 604 trans = btrfs_join_transaction(root, 1); 605 ret = btrfs_reserve_extent(trans, root, 606 async_extent->compressed_size, 607 async_extent->compressed_size, 608 0, alloc_hint, 609 (u64)-1, &ins, 1); 610 btrfs_end_transaction(trans, root); 611 612 if (ret) { 613 int i; 614 for (i = 0; i < async_extent->nr_pages; i++) { 615 WARN_ON(async_extent->pages[i]->mapping); 616 page_cache_release(async_extent->pages[i]); 617 } 618 kfree(async_extent->pages); 619 async_extent->nr_pages = 0; 620 async_extent->pages = NULL; 621 unlock_extent(io_tree, async_extent->start, 622 async_extent->start + 623 async_extent->ram_size - 1, GFP_NOFS); 624 goto retry; 625 } 626 627 /* 628 * here we're doing allocation and writeback of the 629 * compressed pages 630 */ 631 btrfs_drop_extent_cache(inode, async_extent->start, 632 async_extent->start + 633 async_extent->ram_size - 1, 0); 634 635 em = alloc_extent_map(GFP_NOFS); 636 em->start = async_extent->start; 637 em->len = async_extent->ram_size; 638 em->orig_start = em->start; 639 640 em->block_start = ins.objectid; 641 em->block_len = ins.offset; 642 em->bdev = root->fs_info->fs_devices->latest_bdev; 643 set_bit(EXTENT_FLAG_PINNED, &em->flags); 644 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 645 646 while (1) { 647 write_lock(&em_tree->lock); 648 ret = add_extent_mapping(em_tree, em); 649 write_unlock(&em_tree->lock); 650 if (ret != -EEXIST) { 651 free_extent_map(em); 652 break; 653 } 654 btrfs_drop_extent_cache(inode, async_extent->start, 655 async_extent->start + 656 async_extent->ram_size - 1, 0); 657 } 658 659 ret = btrfs_add_ordered_extent(inode, async_extent->start, 660 ins.objectid, 661 async_extent->ram_size, 662 ins.offset, 663 BTRFS_ORDERED_COMPRESSED); 664 BUG_ON(ret); 665 666 /* 667 * clear dirty, set writeback and unlock the pages. 668 */ 669 extent_clear_unlock_delalloc(inode, 670 &BTRFS_I(inode)->io_tree, 671 async_extent->start, 672 async_extent->start + 673 async_extent->ram_size - 1, 674 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 675 EXTENT_CLEAR_UNLOCK | 676 EXTENT_CLEAR_DELALLOC | 677 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 678 679 ret = btrfs_submit_compressed_write(inode, 680 async_extent->start, 681 async_extent->ram_size, 682 ins.objectid, 683 ins.offset, async_extent->pages, 684 async_extent->nr_pages); 685 686 BUG_ON(ret); 687 alloc_hint = ins.objectid + ins.offset; 688 kfree(async_extent); 689 cond_resched(); 690 } 691 692 return 0; 693 } 694 695 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 696 u64 num_bytes) 697 { 698 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 699 struct extent_map *em; 700 u64 alloc_hint = 0; 701 702 read_lock(&em_tree->lock); 703 em = search_extent_mapping(em_tree, start, num_bytes); 704 if (em) { 705 /* 706 * if block start isn't an actual block number then find the 707 * first block in this inode and use that as a hint. If that 708 * block is also bogus then just don't worry about it. 709 */ 710 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 711 free_extent_map(em); 712 em = search_extent_mapping(em_tree, 0, 0); 713 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 714 alloc_hint = em->block_start; 715 if (em) 716 free_extent_map(em); 717 } else { 718 alloc_hint = em->block_start; 719 free_extent_map(em); 720 } 721 } 722 read_unlock(&em_tree->lock); 723 724 return alloc_hint; 725 } 726 727 /* 728 * when extent_io.c finds a delayed allocation range in the file, 729 * the call backs end up in this code. The basic idea is to 730 * allocate extents on disk for the range, and create ordered data structs 731 * in ram to track those extents. 732 * 733 * locked_page is the page that writepage had locked already. We use 734 * it to make sure we don't do extra locks or unlocks. 735 * 736 * *page_started is set to one if we unlock locked_page and do everything 737 * required to start IO on it. It may be clean and already done with 738 * IO when we return. 739 */ 740 static noinline int cow_file_range(struct inode *inode, 741 struct page *locked_page, 742 u64 start, u64 end, int *page_started, 743 unsigned long *nr_written, 744 int unlock) 745 { 746 struct btrfs_root *root = BTRFS_I(inode)->root; 747 struct btrfs_trans_handle *trans; 748 u64 alloc_hint = 0; 749 u64 num_bytes; 750 unsigned long ram_size; 751 u64 disk_num_bytes; 752 u64 cur_alloc_size; 753 u64 blocksize = root->sectorsize; 754 struct btrfs_key ins; 755 struct extent_map *em; 756 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 757 int ret = 0; 758 759 BUG_ON(root == root->fs_info->tree_root); 760 trans = btrfs_join_transaction(root, 1); 761 BUG_ON(!trans); 762 btrfs_set_trans_block_group(trans, inode); 763 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 764 765 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 766 num_bytes = max(blocksize, num_bytes); 767 disk_num_bytes = num_bytes; 768 ret = 0; 769 770 if (start == 0) { 771 /* lets try to make an inline extent */ 772 ret = cow_file_range_inline(trans, root, inode, 773 start, end, 0, NULL); 774 if (ret == 0) { 775 extent_clear_unlock_delalloc(inode, 776 &BTRFS_I(inode)->io_tree, 777 start, end, NULL, 778 EXTENT_CLEAR_UNLOCK_PAGE | 779 EXTENT_CLEAR_UNLOCK | 780 EXTENT_CLEAR_DELALLOC | 781 EXTENT_CLEAR_DIRTY | 782 EXTENT_SET_WRITEBACK | 783 EXTENT_END_WRITEBACK); 784 785 *nr_written = *nr_written + 786 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 787 *page_started = 1; 788 ret = 0; 789 goto out; 790 } 791 } 792 793 BUG_ON(disk_num_bytes > 794 btrfs_super_total_bytes(&root->fs_info->super_copy)); 795 796 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 797 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 798 799 while (disk_num_bytes > 0) { 800 unsigned long op; 801 802 cur_alloc_size = disk_num_bytes; 803 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 804 root->sectorsize, 0, alloc_hint, 805 (u64)-1, &ins, 1); 806 BUG_ON(ret); 807 808 em = alloc_extent_map(GFP_NOFS); 809 em->start = start; 810 em->orig_start = em->start; 811 ram_size = ins.offset; 812 em->len = ins.offset; 813 814 em->block_start = ins.objectid; 815 em->block_len = ins.offset; 816 em->bdev = root->fs_info->fs_devices->latest_bdev; 817 set_bit(EXTENT_FLAG_PINNED, &em->flags); 818 819 while (1) { 820 write_lock(&em_tree->lock); 821 ret = add_extent_mapping(em_tree, em); 822 write_unlock(&em_tree->lock); 823 if (ret != -EEXIST) { 824 free_extent_map(em); 825 break; 826 } 827 btrfs_drop_extent_cache(inode, start, 828 start + ram_size - 1, 0); 829 } 830 831 cur_alloc_size = ins.offset; 832 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 833 ram_size, cur_alloc_size, 0); 834 BUG_ON(ret); 835 836 if (root->root_key.objectid == 837 BTRFS_DATA_RELOC_TREE_OBJECTID) { 838 ret = btrfs_reloc_clone_csums(inode, start, 839 cur_alloc_size); 840 BUG_ON(ret); 841 } 842 843 if (disk_num_bytes < cur_alloc_size) 844 break; 845 846 /* we're not doing compressed IO, don't unlock the first 847 * page (which the caller expects to stay locked), don't 848 * clear any dirty bits and don't set any writeback bits 849 * 850 * Do set the Private2 bit so we know this page was properly 851 * setup for writepage 852 */ 853 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 854 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 855 EXTENT_SET_PRIVATE2; 856 857 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 858 start, start + ram_size - 1, 859 locked_page, op); 860 disk_num_bytes -= cur_alloc_size; 861 num_bytes -= cur_alloc_size; 862 alloc_hint = ins.objectid + ins.offset; 863 start += cur_alloc_size; 864 } 865 out: 866 ret = 0; 867 btrfs_end_transaction(trans, root); 868 869 return ret; 870 } 871 872 /* 873 * work queue call back to started compression on a file and pages 874 */ 875 static noinline void async_cow_start(struct btrfs_work *work) 876 { 877 struct async_cow *async_cow; 878 int num_added = 0; 879 async_cow = container_of(work, struct async_cow, work); 880 881 compress_file_range(async_cow->inode, async_cow->locked_page, 882 async_cow->start, async_cow->end, async_cow, 883 &num_added); 884 if (num_added == 0) 885 async_cow->inode = NULL; 886 } 887 888 /* 889 * work queue call back to submit previously compressed pages 890 */ 891 static noinline void async_cow_submit(struct btrfs_work *work) 892 { 893 struct async_cow *async_cow; 894 struct btrfs_root *root; 895 unsigned long nr_pages; 896 897 async_cow = container_of(work, struct async_cow, work); 898 899 root = async_cow->root; 900 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 901 PAGE_CACHE_SHIFT; 902 903 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 904 905 if (atomic_read(&root->fs_info->async_delalloc_pages) < 906 5 * 1042 * 1024 && 907 waitqueue_active(&root->fs_info->async_submit_wait)) 908 wake_up(&root->fs_info->async_submit_wait); 909 910 if (async_cow->inode) 911 submit_compressed_extents(async_cow->inode, async_cow); 912 } 913 914 static noinline void async_cow_free(struct btrfs_work *work) 915 { 916 struct async_cow *async_cow; 917 async_cow = container_of(work, struct async_cow, work); 918 kfree(async_cow); 919 } 920 921 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 922 u64 start, u64 end, int *page_started, 923 unsigned long *nr_written) 924 { 925 struct async_cow *async_cow; 926 struct btrfs_root *root = BTRFS_I(inode)->root; 927 unsigned long nr_pages; 928 u64 cur_end; 929 int limit = 10 * 1024 * 1042; 930 931 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 932 1, 0, NULL, GFP_NOFS); 933 while (start < end) { 934 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 935 async_cow->inode = inode; 936 async_cow->root = root; 937 async_cow->locked_page = locked_page; 938 async_cow->start = start; 939 940 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 941 cur_end = end; 942 else 943 cur_end = min(end, start + 512 * 1024 - 1); 944 945 async_cow->end = cur_end; 946 INIT_LIST_HEAD(&async_cow->extents); 947 948 async_cow->work.func = async_cow_start; 949 async_cow->work.ordered_func = async_cow_submit; 950 async_cow->work.ordered_free = async_cow_free; 951 async_cow->work.flags = 0; 952 953 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 954 PAGE_CACHE_SHIFT; 955 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 956 957 btrfs_queue_worker(&root->fs_info->delalloc_workers, 958 &async_cow->work); 959 960 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 961 wait_event(root->fs_info->async_submit_wait, 962 (atomic_read(&root->fs_info->async_delalloc_pages) < 963 limit)); 964 } 965 966 while (atomic_read(&root->fs_info->async_submit_draining) && 967 atomic_read(&root->fs_info->async_delalloc_pages)) { 968 wait_event(root->fs_info->async_submit_wait, 969 (atomic_read(&root->fs_info->async_delalloc_pages) == 970 0)); 971 } 972 973 *nr_written += nr_pages; 974 start = cur_end + 1; 975 } 976 *page_started = 1; 977 return 0; 978 } 979 980 static noinline int csum_exist_in_range(struct btrfs_root *root, 981 u64 bytenr, u64 num_bytes) 982 { 983 int ret; 984 struct btrfs_ordered_sum *sums; 985 LIST_HEAD(list); 986 987 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 988 bytenr + num_bytes - 1, &list); 989 if (ret == 0 && list_empty(&list)) 990 return 0; 991 992 while (!list_empty(&list)) { 993 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 994 list_del(&sums->list); 995 kfree(sums); 996 } 997 return 1; 998 } 999 1000 /* 1001 * when nowcow writeback call back. This checks for snapshots or COW copies 1002 * of the extents that exist in the file, and COWs the file as required. 1003 * 1004 * If no cow copies or snapshots exist, we write directly to the existing 1005 * blocks on disk 1006 */ 1007 static noinline int run_delalloc_nocow(struct inode *inode, 1008 struct page *locked_page, 1009 u64 start, u64 end, int *page_started, int force, 1010 unsigned long *nr_written) 1011 { 1012 struct btrfs_root *root = BTRFS_I(inode)->root; 1013 struct btrfs_trans_handle *trans; 1014 struct extent_buffer *leaf; 1015 struct btrfs_path *path; 1016 struct btrfs_file_extent_item *fi; 1017 struct btrfs_key found_key; 1018 u64 cow_start; 1019 u64 cur_offset; 1020 u64 extent_end; 1021 u64 extent_offset; 1022 u64 disk_bytenr; 1023 u64 num_bytes; 1024 int extent_type; 1025 int ret; 1026 int type; 1027 int nocow; 1028 int check_prev = 1; 1029 bool nolock = false; 1030 1031 path = btrfs_alloc_path(); 1032 BUG_ON(!path); 1033 if (root == root->fs_info->tree_root) { 1034 nolock = true; 1035 trans = btrfs_join_transaction_nolock(root, 1); 1036 } else { 1037 trans = btrfs_join_transaction(root, 1); 1038 } 1039 BUG_ON(!trans); 1040 1041 cow_start = (u64)-1; 1042 cur_offset = start; 1043 while (1) { 1044 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 1045 cur_offset, 0); 1046 BUG_ON(ret < 0); 1047 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1048 leaf = path->nodes[0]; 1049 btrfs_item_key_to_cpu(leaf, &found_key, 1050 path->slots[0] - 1); 1051 if (found_key.objectid == inode->i_ino && 1052 found_key.type == BTRFS_EXTENT_DATA_KEY) 1053 path->slots[0]--; 1054 } 1055 check_prev = 0; 1056 next_slot: 1057 leaf = path->nodes[0]; 1058 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1059 ret = btrfs_next_leaf(root, path); 1060 if (ret < 0) 1061 BUG_ON(1); 1062 if (ret > 0) 1063 break; 1064 leaf = path->nodes[0]; 1065 } 1066 1067 nocow = 0; 1068 disk_bytenr = 0; 1069 num_bytes = 0; 1070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1071 1072 if (found_key.objectid > inode->i_ino || 1073 found_key.type > BTRFS_EXTENT_DATA_KEY || 1074 found_key.offset > end) 1075 break; 1076 1077 if (found_key.offset > cur_offset) { 1078 extent_end = found_key.offset; 1079 extent_type = 0; 1080 goto out_check; 1081 } 1082 1083 fi = btrfs_item_ptr(leaf, path->slots[0], 1084 struct btrfs_file_extent_item); 1085 extent_type = btrfs_file_extent_type(leaf, fi); 1086 1087 if (extent_type == BTRFS_FILE_EXTENT_REG || 1088 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1089 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1090 extent_offset = btrfs_file_extent_offset(leaf, fi); 1091 extent_end = found_key.offset + 1092 btrfs_file_extent_num_bytes(leaf, fi); 1093 if (extent_end <= start) { 1094 path->slots[0]++; 1095 goto next_slot; 1096 } 1097 if (disk_bytenr == 0) 1098 goto out_check; 1099 if (btrfs_file_extent_compression(leaf, fi) || 1100 btrfs_file_extent_encryption(leaf, fi) || 1101 btrfs_file_extent_other_encoding(leaf, fi)) 1102 goto out_check; 1103 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1104 goto out_check; 1105 if (btrfs_extent_readonly(root, disk_bytenr)) 1106 goto out_check; 1107 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1108 found_key.offset - 1109 extent_offset, disk_bytenr)) 1110 goto out_check; 1111 disk_bytenr += extent_offset; 1112 disk_bytenr += cur_offset - found_key.offset; 1113 num_bytes = min(end + 1, extent_end) - cur_offset; 1114 /* 1115 * force cow if csum exists in the range. 1116 * this ensure that csum for a given extent are 1117 * either valid or do not exist. 1118 */ 1119 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1120 goto out_check; 1121 nocow = 1; 1122 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1123 extent_end = found_key.offset + 1124 btrfs_file_extent_inline_len(leaf, fi); 1125 extent_end = ALIGN(extent_end, root->sectorsize); 1126 } else { 1127 BUG_ON(1); 1128 } 1129 out_check: 1130 if (extent_end <= start) { 1131 path->slots[0]++; 1132 goto next_slot; 1133 } 1134 if (!nocow) { 1135 if (cow_start == (u64)-1) 1136 cow_start = cur_offset; 1137 cur_offset = extent_end; 1138 if (cur_offset > end) 1139 break; 1140 path->slots[0]++; 1141 goto next_slot; 1142 } 1143 1144 btrfs_release_path(root, path); 1145 if (cow_start != (u64)-1) { 1146 ret = cow_file_range(inode, locked_page, cow_start, 1147 found_key.offset - 1, page_started, 1148 nr_written, 1); 1149 BUG_ON(ret); 1150 cow_start = (u64)-1; 1151 } 1152 1153 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1154 struct extent_map *em; 1155 struct extent_map_tree *em_tree; 1156 em_tree = &BTRFS_I(inode)->extent_tree; 1157 em = alloc_extent_map(GFP_NOFS); 1158 em->start = cur_offset; 1159 em->orig_start = em->start; 1160 em->len = num_bytes; 1161 em->block_len = num_bytes; 1162 em->block_start = disk_bytenr; 1163 em->bdev = root->fs_info->fs_devices->latest_bdev; 1164 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1165 while (1) { 1166 write_lock(&em_tree->lock); 1167 ret = add_extent_mapping(em_tree, em); 1168 write_unlock(&em_tree->lock); 1169 if (ret != -EEXIST) { 1170 free_extent_map(em); 1171 break; 1172 } 1173 btrfs_drop_extent_cache(inode, em->start, 1174 em->start + em->len - 1, 0); 1175 } 1176 type = BTRFS_ORDERED_PREALLOC; 1177 } else { 1178 type = BTRFS_ORDERED_NOCOW; 1179 } 1180 1181 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1182 num_bytes, num_bytes, type); 1183 BUG_ON(ret); 1184 1185 if (root->root_key.objectid == 1186 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1187 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1188 num_bytes); 1189 BUG_ON(ret); 1190 } 1191 1192 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1193 cur_offset, cur_offset + num_bytes - 1, 1194 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1195 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1196 EXTENT_SET_PRIVATE2); 1197 cur_offset = extent_end; 1198 if (cur_offset > end) 1199 break; 1200 } 1201 btrfs_release_path(root, path); 1202 1203 if (cur_offset <= end && cow_start == (u64)-1) 1204 cow_start = cur_offset; 1205 if (cow_start != (u64)-1) { 1206 ret = cow_file_range(inode, locked_page, cow_start, end, 1207 page_started, nr_written, 1); 1208 BUG_ON(ret); 1209 } 1210 1211 if (nolock) { 1212 ret = btrfs_end_transaction_nolock(trans, root); 1213 BUG_ON(ret); 1214 } else { 1215 ret = btrfs_end_transaction(trans, root); 1216 BUG_ON(ret); 1217 } 1218 btrfs_free_path(path); 1219 return 0; 1220 } 1221 1222 /* 1223 * extent_io.c call back to do delayed allocation processing 1224 */ 1225 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1226 u64 start, u64 end, int *page_started, 1227 unsigned long *nr_written) 1228 { 1229 int ret; 1230 struct btrfs_root *root = BTRFS_I(inode)->root; 1231 1232 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1233 ret = run_delalloc_nocow(inode, locked_page, start, end, 1234 page_started, 1, nr_written); 1235 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1236 ret = run_delalloc_nocow(inode, locked_page, start, end, 1237 page_started, 0, nr_written); 1238 else if (!btrfs_test_opt(root, COMPRESS) && 1239 !(BTRFS_I(inode)->force_compress)) 1240 ret = cow_file_range(inode, locked_page, start, end, 1241 page_started, nr_written, 1); 1242 else 1243 ret = cow_file_range_async(inode, locked_page, start, end, 1244 page_started, nr_written); 1245 return ret; 1246 } 1247 1248 static int btrfs_split_extent_hook(struct inode *inode, 1249 struct extent_state *orig, u64 split) 1250 { 1251 /* not delalloc, ignore it */ 1252 if (!(orig->state & EXTENT_DELALLOC)) 1253 return 0; 1254 1255 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1256 return 0; 1257 } 1258 1259 /* 1260 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1261 * extents so we can keep track of new extents that are just merged onto old 1262 * extents, such as when we are doing sequential writes, so we can properly 1263 * account for the metadata space we'll need. 1264 */ 1265 static int btrfs_merge_extent_hook(struct inode *inode, 1266 struct extent_state *new, 1267 struct extent_state *other) 1268 { 1269 /* not delalloc, ignore it */ 1270 if (!(other->state & EXTENT_DELALLOC)) 1271 return 0; 1272 1273 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1274 return 0; 1275 } 1276 1277 /* 1278 * extent_io.c set_bit_hook, used to track delayed allocation 1279 * bytes in this file, and to maintain the list of inodes that 1280 * have pending delalloc work to be done. 1281 */ 1282 static int btrfs_set_bit_hook(struct inode *inode, 1283 struct extent_state *state, int *bits) 1284 { 1285 1286 /* 1287 * set_bit and clear bit hooks normally require _irqsave/restore 1288 * but in this case, we are only testeing for the DELALLOC 1289 * bit, which is only set or cleared with irqs on 1290 */ 1291 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1292 struct btrfs_root *root = BTRFS_I(inode)->root; 1293 u64 len = state->end + 1 - state->start; 1294 int do_list = (root->root_key.objectid != 1295 BTRFS_ROOT_TREE_OBJECTID); 1296 1297 if (*bits & EXTENT_FIRST_DELALLOC) 1298 *bits &= ~EXTENT_FIRST_DELALLOC; 1299 else 1300 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1301 1302 spin_lock(&root->fs_info->delalloc_lock); 1303 BTRFS_I(inode)->delalloc_bytes += len; 1304 root->fs_info->delalloc_bytes += len; 1305 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1306 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1307 &root->fs_info->delalloc_inodes); 1308 } 1309 spin_unlock(&root->fs_info->delalloc_lock); 1310 } 1311 return 0; 1312 } 1313 1314 /* 1315 * extent_io.c clear_bit_hook, see set_bit_hook for why 1316 */ 1317 static int btrfs_clear_bit_hook(struct inode *inode, 1318 struct extent_state *state, int *bits) 1319 { 1320 /* 1321 * set_bit and clear bit hooks normally require _irqsave/restore 1322 * but in this case, we are only testeing for the DELALLOC 1323 * bit, which is only set or cleared with irqs on 1324 */ 1325 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1326 struct btrfs_root *root = BTRFS_I(inode)->root; 1327 u64 len = state->end + 1 - state->start; 1328 int do_list = (root->root_key.objectid != 1329 BTRFS_ROOT_TREE_OBJECTID); 1330 1331 if (*bits & EXTENT_FIRST_DELALLOC) 1332 *bits &= ~EXTENT_FIRST_DELALLOC; 1333 else if (!(*bits & EXTENT_DO_ACCOUNTING)) 1334 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1335 1336 if (*bits & EXTENT_DO_ACCOUNTING) 1337 btrfs_delalloc_release_metadata(inode, len); 1338 1339 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1340 && do_list) 1341 btrfs_free_reserved_data_space(inode, len); 1342 1343 spin_lock(&root->fs_info->delalloc_lock); 1344 root->fs_info->delalloc_bytes -= len; 1345 BTRFS_I(inode)->delalloc_bytes -= len; 1346 1347 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1348 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1349 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1350 } 1351 spin_unlock(&root->fs_info->delalloc_lock); 1352 } 1353 return 0; 1354 } 1355 1356 /* 1357 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1358 * we don't create bios that span stripes or chunks 1359 */ 1360 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1361 size_t size, struct bio *bio, 1362 unsigned long bio_flags) 1363 { 1364 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1365 struct btrfs_mapping_tree *map_tree; 1366 u64 logical = (u64)bio->bi_sector << 9; 1367 u64 length = 0; 1368 u64 map_length; 1369 int ret; 1370 1371 if (bio_flags & EXTENT_BIO_COMPRESSED) 1372 return 0; 1373 1374 length = bio->bi_size; 1375 map_tree = &root->fs_info->mapping_tree; 1376 map_length = length; 1377 ret = btrfs_map_block(map_tree, READ, logical, 1378 &map_length, NULL, 0); 1379 1380 if (map_length < length + size) 1381 return 1; 1382 return ret; 1383 } 1384 1385 /* 1386 * in order to insert checksums into the metadata in large chunks, 1387 * we wait until bio submission time. All the pages in the bio are 1388 * checksummed and sums are attached onto the ordered extent record. 1389 * 1390 * At IO completion time the cums attached on the ordered extent record 1391 * are inserted into the btree 1392 */ 1393 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1394 struct bio *bio, int mirror_num, 1395 unsigned long bio_flags, 1396 u64 bio_offset) 1397 { 1398 struct btrfs_root *root = BTRFS_I(inode)->root; 1399 int ret = 0; 1400 1401 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1402 BUG_ON(ret); 1403 return 0; 1404 } 1405 1406 /* 1407 * in order to insert checksums into the metadata in large chunks, 1408 * we wait until bio submission time. All the pages in the bio are 1409 * checksummed and sums are attached onto the ordered extent record. 1410 * 1411 * At IO completion time the cums attached on the ordered extent record 1412 * are inserted into the btree 1413 */ 1414 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1415 int mirror_num, unsigned long bio_flags, 1416 u64 bio_offset) 1417 { 1418 struct btrfs_root *root = BTRFS_I(inode)->root; 1419 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1420 } 1421 1422 /* 1423 * extent_io.c submission hook. This does the right thing for csum calculation 1424 * on write, or reading the csums from the tree before a read 1425 */ 1426 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1427 int mirror_num, unsigned long bio_flags, 1428 u64 bio_offset) 1429 { 1430 struct btrfs_root *root = BTRFS_I(inode)->root; 1431 int ret = 0; 1432 int skip_sum; 1433 1434 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1435 1436 if (root == root->fs_info->tree_root) 1437 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1438 else 1439 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1440 BUG_ON(ret); 1441 1442 if (!(rw & REQ_WRITE)) { 1443 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1444 return btrfs_submit_compressed_read(inode, bio, 1445 mirror_num, bio_flags); 1446 } else if (!skip_sum) 1447 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1448 goto mapit; 1449 } else if (!skip_sum) { 1450 /* csum items have already been cloned */ 1451 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1452 goto mapit; 1453 /* we're doing a write, do the async checksumming */ 1454 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1455 inode, rw, bio, mirror_num, 1456 bio_flags, bio_offset, 1457 __btrfs_submit_bio_start, 1458 __btrfs_submit_bio_done); 1459 } 1460 1461 mapit: 1462 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1463 } 1464 1465 /* 1466 * given a list of ordered sums record them in the inode. This happens 1467 * at IO completion time based on sums calculated at bio submission time. 1468 */ 1469 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1470 struct inode *inode, u64 file_offset, 1471 struct list_head *list) 1472 { 1473 struct btrfs_ordered_sum *sum; 1474 1475 btrfs_set_trans_block_group(trans, inode); 1476 1477 list_for_each_entry(sum, list, list) { 1478 btrfs_csum_file_blocks(trans, 1479 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1480 } 1481 return 0; 1482 } 1483 1484 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1485 struct extent_state **cached_state) 1486 { 1487 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1488 WARN_ON(1); 1489 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1490 cached_state, GFP_NOFS); 1491 } 1492 1493 /* see btrfs_writepage_start_hook for details on why this is required */ 1494 struct btrfs_writepage_fixup { 1495 struct page *page; 1496 struct btrfs_work work; 1497 }; 1498 1499 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1500 { 1501 struct btrfs_writepage_fixup *fixup; 1502 struct btrfs_ordered_extent *ordered; 1503 struct extent_state *cached_state = NULL; 1504 struct page *page; 1505 struct inode *inode; 1506 u64 page_start; 1507 u64 page_end; 1508 1509 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1510 page = fixup->page; 1511 again: 1512 lock_page(page); 1513 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1514 ClearPageChecked(page); 1515 goto out_page; 1516 } 1517 1518 inode = page->mapping->host; 1519 page_start = page_offset(page); 1520 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1521 1522 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1523 &cached_state, GFP_NOFS); 1524 1525 /* already ordered? We're done */ 1526 if (PagePrivate2(page)) 1527 goto out; 1528 1529 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1530 if (ordered) { 1531 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1532 page_end, &cached_state, GFP_NOFS); 1533 unlock_page(page); 1534 btrfs_start_ordered_extent(inode, ordered, 1); 1535 goto again; 1536 } 1537 1538 BUG(); 1539 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1540 ClearPageChecked(page); 1541 out: 1542 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1543 &cached_state, GFP_NOFS); 1544 out_page: 1545 unlock_page(page); 1546 page_cache_release(page); 1547 } 1548 1549 /* 1550 * There are a few paths in the higher layers of the kernel that directly 1551 * set the page dirty bit without asking the filesystem if it is a 1552 * good idea. This causes problems because we want to make sure COW 1553 * properly happens and the data=ordered rules are followed. 1554 * 1555 * In our case any range that doesn't have the ORDERED bit set 1556 * hasn't been properly setup for IO. We kick off an async process 1557 * to fix it up. The async helper will wait for ordered extents, set 1558 * the delalloc bit and make it safe to write the page. 1559 */ 1560 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1561 { 1562 struct inode *inode = page->mapping->host; 1563 struct btrfs_writepage_fixup *fixup; 1564 struct btrfs_root *root = BTRFS_I(inode)->root; 1565 1566 /* this page is properly in the ordered list */ 1567 if (TestClearPagePrivate2(page)) 1568 return 0; 1569 1570 if (PageChecked(page)) 1571 return -EAGAIN; 1572 1573 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1574 if (!fixup) 1575 return -EAGAIN; 1576 1577 SetPageChecked(page); 1578 page_cache_get(page); 1579 fixup->work.func = btrfs_writepage_fixup_worker; 1580 fixup->page = page; 1581 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1582 return -EAGAIN; 1583 } 1584 1585 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1586 struct inode *inode, u64 file_pos, 1587 u64 disk_bytenr, u64 disk_num_bytes, 1588 u64 num_bytes, u64 ram_bytes, 1589 u8 compression, u8 encryption, 1590 u16 other_encoding, int extent_type) 1591 { 1592 struct btrfs_root *root = BTRFS_I(inode)->root; 1593 struct btrfs_file_extent_item *fi; 1594 struct btrfs_path *path; 1595 struct extent_buffer *leaf; 1596 struct btrfs_key ins; 1597 u64 hint; 1598 int ret; 1599 1600 path = btrfs_alloc_path(); 1601 BUG_ON(!path); 1602 1603 path->leave_spinning = 1; 1604 1605 /* 1606 * we may be replacing one extent in the tree with another. 1607 * The new extent is pinned in the extent map, and we don't want 1608 * to drop it from the cache until it is completely in the btree. 1609 * 1610 * So, tell btrfs_drop_extents to leave this extent in the cache. 1611 * the caller is expected to unpin it and allow it to be merged 1612 * with the others. 1613 */ 1614 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1615 &hint, 0); 1616 BUG_ON(ret); 1617 1618 ins.objectid = inode->i_ino; 1619 ins.offset = file_pos; 1620 ins.type = BTRFS_EXTENT_DATA_KEY; 1621 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1622 BUG_ON(ret); 1623 leaf = path->nodes[0]; 1624 fi = btrfs_item_ptr(leaf, path->slots[0], 1625 struct btrfs_file_extent_item); 1626 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1627 btrfs_set_file_extent_type(leaf, fi, extent_type); 1628 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1629 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1630 btrfs_set_file_extent_offset(leaf, fi, 0); 1631 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1632 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1633 btrfs_set_file_extent_compression(leaf, fi, compression); 1634 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1635 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1636 1637 btrfs_unlock_up_safe(path, 1); 1638 btrfs_set_lock_blocking(leaf); 1639 1640 btrfs_mark_buffer_dirty(leaf); 1641 1642 inode_add_bytes(inode, num_bytes); 1643 1644 ins.objectid = disk_bytenr; 1645 ins.offset = disk_num_bytes; 1646 ins.type = BTRFS_EXTENT_ITEM_KEY; 1647 ret = btrfs_alloc_reserved_file_extent(trans, root, 1648 root->root_key.objectid, 1649 inode->i_ino, file_pos, &ins); 1650 BUG_ON(ret); 1651 btrfs_free_path(path); 1652 1653 return 0; 1654 } 1655 1656 /* 1657 * helper function for btrfs_finish_ordered_io, this 1658 * just reads in some of the csum leaves to prime them into ram 1659 * before we start the transaction. It limits the amount of btree 1660 * reads required while inside the transaction. 1661 */ 1662 /* as ordered data IO finishes, this gets called so we can finish 1663 * an ordered extent if the range of bytes in the file it covers are 1664 * fully written. 1665 */ 1666 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1667 { 1668 struct btrfs_root *root = BTRFS_I(inode)->root; 1669 struct btrfs_trans_handle *trans = NULL; 1670 struct btrfs_ordered_extent *ordered_extent = NULL; 1671 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1672 struct extent_state *cached_state = NULL; 1673 int compressed = 0; 1674 int ret; 1675 bool nolock = false; 1676 1677 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1678 end - start + 1); 1679 if (!ret) 1680 return 0; 1681 BUG_ON(!ordered_extent); 1682 1683 nolock = (root == root->fs_info->tree_root); 1684 1685 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1686 BUG_ON(!list_empty(&ordered_extent->list)); 1687 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1688 if (!ret) { 1689 if (nolock) 1690 trans = btrfs_join_transaction_nolock(root, 1); 1691 else 1692 trans = btrfs_join_transaction(root, 1); 1693 BUG_ON(!trans); 1694 btrfs_set_trans_block_group(trans, inode); 1695 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1696 ret = btrfs_update_inode(trans, root, inode); 1697 BUG_ON(ret); 1698 } 1699 goto out; 1700 } 1701 1702 lock_extent_bits(io_tree, ordered_extent->file_offset, 1703 ordered_extent->file_offset + ordered_extent->len - 1, 1704 0, &cached_state, GFP_NOFS); 1705 1706 if (nolock) 1707 trans = btrfs_join_transaction_nolock(root, 1); 1708 else 1709 trans = btrfs_join_transaction(root, 1); 1710 btrfs_set_trans_block_group(trans, inode); 1711 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1712 1713 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1714 compressed = 1; 1715 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1716 BUG_ON(compressed); 1717 ret = btrfs_mark_extent_written(trans, inode, 1718 ordered_extent->file_offset, 1719 ordered_extent->file_offset + 1720 ordered_extent->len); 1721 BUG_ON(ret); 1722 } else { 1723 BUG_ON(root == root->fs_info->tree_root); 1724 ret = insert_reserved_file_extent(trans, inode, 1725 ordered_extent->file_offset, 1726 ordered_extent->start, 1727 ordered_extent->disk_len, 1728 ordered_extent->len, 1729 ordered_extent->len, 1730 compressed, 0, 0, 1731 BTRFS_FILE_EXTENT_REG); 1732 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1733 ordered_extent->file_offset, 1734 ordered_extent->len); 1735 BUG_ON(ret); 1736 } 1737 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1738 ordered_extent->file_offset + 1739 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1740 1741 add_pending_csums(trans, inode, ordered_extent->file_offset, 1742 &ordered_extent->list); 1743 1744 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1745 ret = btrfs_update_inode(trans, root, inode); 1746 BUG_ON(ret); 1747 out: 1748 if (nolock) { 1749 if (trans) 1750 btrfs_end_transaction_nolock(trans, root); 1751 } else { 1752 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1753 if (trans) 1754 btrfs_end_transaction(trans, root); 1755 } 1756 1757 /* once for us */ 1758 btrfs_put_ordered_extent(ordered_extent); 1759 /* once for the tree */ 1760 btrfs_put_ordered_extent(ordered_extent); 1761 1762 return 0; 1763 } 1764 1765 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1766 struct extent_state *state, int uptodate) 1767 { 1768 ClearPagePrivate2(page); 1769 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1770 } 1771 1772 /* 1773 * When IO fails, either with EIO or csum verification fails, we 1774 * try other mirrors that might have a good copy of the data. This 1775 * io_failure_record is used to record state as we go through all the 1776 * mirrors. If another mirror has good data, the page is set up to date 1777 * and things continue. If a good mirror can't be found, the original 1778 * bio end_io callback is called to indicate things have failed. 1779 */ 1780 struct io_failure_record { 1781 struct page *page; 1782 u64 start; 1783 u64 len; 1784 u64 logical; 1785 unsigned long bio_flags; 1786 int last_mirror; 1787 }; 1788 1789 static int btrfs_io_failed_hook(struct bio *failed_bio, 1790 struct page *page, u64 start, u64 end, 1791 struct extent_state *state) 1792 { 1793 struct io_failure_record *failrec = NULL; 1794 u64 private; 1795 struct extent_map *em; 1796 struct inode *inode = page->mapping->host; 1797 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1798 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1799 struct bio *bio; 1800 int num_copies; 1801 int ret; 1802 int rw; 1803 u64 logical; 1804 1805 ret = get_state_private(failure_tree, start, &private); 1806 if (ret) { 1807 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1808 if (!failrec) 1809 return -ENOMEM; 1810 failrec->start = start; 1811 failrec->len = end - start + 1; 1812 failrec->last_mirror = 0; 1813 failrec->bio_flags = 0; 1814 1815 read_lock(&em_tree->lock); 1816 em = lookup_extent_mapping(em_tree, start, failrec->len); 1817 if (em->start > start || em->start + em->len < start) { 1818 free_extent_map(em); 1819 em = NULL; 1820 } 1821 read_unlock(&em_tree->lock); 1822 1823 if (!em || IS_ERR(em)) { 1824 kfree(failrec); 1825 return -EIO; 1826 } 1827 logical = start - em->start; 1828 logical = em->block_start + logical; 1829 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1830 logical = em->block_start; 1831 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1832 } 1833 failrec->logical = logical; 1834 free_extent_map(em); 1835 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1836 EXTENT_DIRTY, GFP_NOFS); 1837 set_state_private(failure_tree, start, 1838 (u64)(unsigned long)failrec); 1839 } else { 1840 failrec = (struct io_failure_record *)(unsigned long)private; 1841 } 1842 num_copies = btrfs_num_copies( 1843 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1844 failrec->logical, failrec->len); 1845 failrec->last_mirror++; 1846 if (!state) { 1847 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1848 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1849 failrec->start, 1850 EXTENT_LOCKED); 1851 if (state && state->start != failrec->start) 1852 state = NULL; 1853 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1854 } 1855 if (!state || failrec->last_mirror > num_copies) { 1856 set_state_private(failure_tree, failrec->start, 0); 1857 clear_extent_bits(failure_tree, failrec->start, 1858 failrec->start + failrec->len - 1, 1859 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1860 kfree(failrec); 1861 return -EIO; 1862 } 1863 bio = bio_alloc(GFP_NOFS, 1); 1864 bio->bi_private = state; 1865 bio->bi_end_io = failed_bio->bi_end_io; 1866 bio->bi_sector = failrec->logical >> 9; 1867 bio->bi_bdev = failed_bio->bi_bdev; 1868 bio->bi_size = 0; 1869 1870 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1871 if (failed_bio->bi_rw & REQ_WRITE) 1872 rw = WRITE; 1873 else 1874 rw = READ; 1875 1876 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1877 failrec->last_mirror, 1878 failrec->bio_flags, 0); 1879 return 0; 1880 } 1881 1882 /* 1883 * each time an IO finishes, we do a fast check in the IO failure tree 1884 * to see if we need to process or clean up an io_failure_record 1885 */ 1886 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1887 { 1888 u64 private; 1889 u64 private_failure; 1890 struct io_failure_record *failure; 1891 int ret; 1892 1893 private = 0; 1894 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1895 (u64)-1, 1, EXTENT_DIRTY)) { 1896 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1897 start, &private_failure); 1898 if (ret == 0) { 1899 failure = (struct io_failure_record *)(unsigned long) 1900 private_failure; 1901 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1902 failure->start, 0); 1903 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1904 failure->start, 1905 failure->start + failure->len - 1, 1906 EXTENT_DIRTY | EXTENT_LOCKED, 1907 GFP_NOFS); 1908 kfree(failure); 1909 } 1910 } 1911 return 0; 1912 } 1913 1914 /* 1915 * when reads are done, we need to check csums to verify the data is correct 1916 * if there's a match, we allow the bio to finish. If not, we go through 1917 * the io_failure_record routines to find good copies 1918 */ 1919 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1920 struct extent_state *state) 1921 { 1922 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1923 struct inode *inode = page->mapping->host; 1924 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1925 char *kaddr; 1926 u64 private = ~(u32)0; 1927 int ret; 1928 struct btrfs_root *root = BTRFS_I(inode)->root; 1929 u32 csum = ~(u32)0; 1930 1931 if (PageChecked(page)) { 1932 ClearPageChecked(page); 1933 goto good; 1934 } 1935 1936 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1937 return 0; 1938 1939 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1940 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1941 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1942 GFP_NOFS); 1943 return 0; 1944 } 1945 1946 if (state && state->start == start) { 1947 private = state->private; 1948 ret = 0; 1949 } else { 1950 ret = get_state_private(io_tree, start, &private); 1951 } 1952 kaddr = kmap_atomic(page, KM_USER0); 1953 if (ret) 1954 goto zeroit; 1955 1956 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1957 btrfs_csum_final(csum, (char *)&csum); 1958 if (csum != private) 1959 goto zeroit; 1960 1961 kunmap_atomic(kaddr, KM_USER0); 1962 good: 1963 /* if the io failure tree for this inode is non-empty, 1964 * check to see if we've recovered from a failed IO 1965 */ 1966 btrfs_clean_io_failures(inode, start); 1967 return 0; 1968 1969 zeroit: 1970 if (printk_ratelimit()) { 1971 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1972 "private %llu\n", page->mapping->host->i_ino, 1973 (unsigned long long)start, csum, 1974 (unsigned long long)private); 1975 } 1976 memset(kaddr + offset, 1, end - start + 1); 1977 flush_dcache_page(page); 1978 kunmap_atomic(kaddr, KM_USER0); 1979 if (private == 0) 1980 return 0; 1981 return -EIO; 1982 } 1983 1984 struct delayed_iput { 1985 struct list_head list; 1986 struct inode *inode; 1987 }; 1988 1989 void btrfs_add_delayed_iput(struct inode *inode) 1990 { 1991 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1992 struct delayed_iput *delayed; 1993 1994 if (atomic_add_unless(&inode->i_count, -1, 1)) 1995 return; 1996 1997 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 1998 delayed->inode = inode; 1999 2000 spin_lock(&fs_info->delayed_iput_lock); 2001 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2002 spin_unlock(&fs_info->delayed_iput_lock); 2003 } 2004 2005 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2006 { 2007 LIST_HEAD(list); 2008 struct btrfs_fs_info *fs_info = root->fs_info; 2009 struct delayed_iput *delayed; 2010 int empty; 2011 2012 spin_lock(&fs_info->delayed_iput_lock); 2013 empty = list_empty(&fs_info->delayed_iputs); 2014 spin_unlock(&fs_info->delayed_iput_lock); 2015 if (empty) 2016 return; 2017 2018 down_read(&root->fs_info->cleanup_work_sem); 2019 spin_lock(&fs_info->delayed_iput_lock); 2020 list_splice_init(&fs_info->delayed_iputs, &list); 2021 spin_unlock(&fs_info->delayed_iput_lock); 2022 2023 while (!list_empty(&list)) { 2024 delayed = list_entry(list.next, struct delayed_iput, list); 2025 list_del(&delayed->list); 2026 iput(delayed->inode); 2027 kfree(delayed); 2028 } 2029 up_read(&root->fs_info->cleanup_work_sem); 2030 } 2031 2032 /* 2033 * calculate extra metadata reservation when snapshotting a subvolume 2034 * contains orphan files. 2035 */ 2036 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2037 struct btrfs_pending_snapshot *pending, 2038 u64 *bytes_to_reserve) 2039 { 2040 struct btrfs_root *root; 2041 struct btrfs_block_rsv *block_rsv; 2042 u64 num_bytes; 2043 int index; 2044 2045 root = pending->root; 2046 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2047 return; 2048 2049 block_rsv = root->orphan_block_rsv; 2050 2051 /* orphan block reservation for the snapshot */ 2052 num_bytes = block_rsv->size; 2053 2054 /* 2055 * after the snapshot is created, COWing tree blocks may use more 2056 * space than it frees. So we should make sure there is enough 2057 * reserved space. 2058 */ 2059 index = trans->transid & 0x1; 2060 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2061 num_bytes += block_rsv->size - 2062 (block_rsv->reserved + block_rsv->freed[index]); 2063 } 2064 2065 *bytes_to_reserve += num_bytes; 2066 } 2067 2068 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2069 struct btrfs_pending_snapshot *pending) 2070 { 2071 struct btrfs_root *root = pending->root; 2072 struct btrfs_root *snap = pending->snap; 2073 struct btrfs_block_rsv *block_rsv; 2074 u64 num_bytes; 2075 int index; 2076 int ret; 2077 2078 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2079 return; 2080 2081 /* refill source subvolume's orphan block reservation */ 2082 block_rsv = root->orphan_block_rsv; 2083 index = trans->transid & 0x1; 2084 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2085 num_bytes = block_rsv->size - 2086 (block_rsv->reserved + block_rsv->freed[index]); 2087 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2088 root->orphan_block_rsv, 2089 num_bytes); 2090 BUG_ON(ret); 2091 } 2092 2093 /* setup orphan block reservation for the snapshot */ 2094 block_rsv = btrfs_alloc_block_rsv(snap); 2095 BUG_ON(!block_rsv); 2096 2097 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2098 snap->orphan_block_rsv = block_rsv; 2099 2100 num_bytes = root->orphan_block_rsv->size; 2101 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2102 block_rsv, num_bytes); 2103 BUG_ON(ret); 2104 2105 #if 0 2106 /* insert orphan item for the snapshot */ 2107 WARN_ON(!root->orphan_item_inserted); 2108 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2109 snap->root_key.objectid); 2110 BUG_ON(ret); 2111 snap->orphan_item_inserted = 1; 2112 #endif 2113 } 2114 2115 enum btrfs_orphan_cleanup_state { 2116 ORPHAN_CLEANUP_STARTED = 1, 2117 ORPHAN_CLEANUP_DONE = 2, 2118 }; 2119 2120 /* 2121 * This is called in transaction commmit time. If there are no orphan 2122 * files in the subvolume, it removes orphan item and frees block_rsv 2123 * structure. 2124 */ 2125 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2126 struct btrfs_root *root) 2127 { 2128 int ret; 2129 2130 if (!list_empty(&root->orphan_list) || 2131 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2132 return; 2133 2134 if (root->orphan_item_inserted && 2135 btrfs_root_refs(&root->root_item) > 0) { 2136 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2137 root->root_key.objectid); 2138 BUG_ON(ret); 2139 root->orphan_item_inserted = 0; 2140 } 2141 2142 if (root->orphan_block_rsv) { 2143 WARN_ON(root->orphan_block_rsv->size > 0); 2144 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2145 root->orphan_block_rsv = NULL; 2146 } 2147 } 2148 2149 /* 2150 * This creates an orphan entry for the given inode in case something goes 2151 * wrong in the middle of an unlink/truncate. 2152 * 2153 * NOTE: caller of this function should reserve 5 units of metadata for 2154 * this function. 2155 */ 2156 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2157 { 2158 struct btrfs_root *root = BTRFS_I(inode)->root; 2159 struct btrfs_block_rsv *block_rsv = NULL; 2160 int reserve = 0; 2161 int insert = 0; 2162 int ret; 2163 2164 if (!root->orphan_block_rsv) { 2165 block_rsv = btrfs_alloc_block_rsv(root); 2166 BUG_ON(!block_rsv); 2167 } 2168 2169 spin_lock(&root->orphan_lock); 2170 if (!root->orphan_block_rsv) { 2171 root->orphan_block_rsv = block_rsv; 2172 } else if (block_rsv) { 2173 btrfs_free_block_rsv(root, block_rsv); 2174 block_rsv = NULL; 2175 } 2176 2177 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2178 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2179 #if 0 2180 /* 2181 * For proper ENOSPC handling, we should do orphan 2182 * cleanup when mounting. But this introduces backward 2183 * compatibility issue. 2184 */ 2185 if (!xchg(&root->orphan_item_inserted, 1)) 2186 insert = 2; 2187 else 2188 insert = 1; 2189 #endif 2190 insert = 1; 2191 } else { 2192 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved); 2193 } 2194 2195 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2196 BTRFS_I(inode)->orphan_meta_reserved = 1; 2197 reserve = 1; 2198 } 2199 spin_unlock(&root->orphan_lock); 2200 2201 if (block_rsv) 2202 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2203 2204 /* grab metadata reservation from transaction handle */ 2205 if (reserve) { 2206 ret = btrfs_orphan_reserve_metadata(trans, inode); 2207 BUG_ON(ret); 2208 } 2209 2210 /* insert an orphan item to track this unlinked/truncated file */ 2211 if (insert >= 1) { 2212 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 2213 BUG_ON(ret); 2214 } 2215 2216 /* insert an orphan item to track subvolume contains orphan files */ 2217 if (insert >= 2) { 2218 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2219 root->root_key.objectid); 2220 BUG_ON(ret); 2221 } 2222 return 0; 2223 } 2224 2225 /* 2226 * We have done the truncate/delete so we can go ahead and remove the orphan 2227 * item for this particular inode. 2228 */ 2229 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2230 { 2231 struct btrfs_root *root = BTRFS_I(inode)->root; 2232 int delete_item = 0; 2233 int release_rsv = 0; 2234 int ret = 0; 2235 2236 spin_lock(&root->orphan_lock); 2237 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2238 list_del_init(&BTRFS_I(inode)->i_orphan); 2239 delete_item = 1; 2240 } 2241 2242 if (BTRFS_I(inode)->orphan_meta_reserved) { 2243 BTRFS_I(inode)->orphan_meta_reserved = 0; 2244 release_rsv = 1; 2245 } 2246 spin_unlock(&root->orphan_lock); 2247 2248 if (trans && delete_item) { 2249 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 2250 BUG_ON(ret); 2251 } 2252 2253 if (release_rsv) 2254 btrfs_orphan_release_metadata(inode); 2255 2256 return 0; 2257 } 2258 2259 /* 2260 * this cleans up any orphans that may be left on the list from the last use 2261 * of this root. 2262 */ 2263 void btrfs_orphan_cleanup(struct btrfs_root *root) 2264 { 2265 struct btrfs_path *path; 2266 struct extent_buffer *leaf; 2267 struct btrfs_key key, found_key; 2268 struct btrfs_trans_handle *trans; 2269 struct inode *inode; 2270 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2271 2272 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2273 return; 2274 2275 path = btrfs_alloc_path(); 2276 BUG_ON(!path); 2277 path->reada = -1; 2278 2279 key.objectid = BTRFS_ORPHAN_OBJECTID; 2280 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2281 key.offset = (u64)-1; 2282 2283 while (1) { 2284 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2285 if (ret < 0) { 2286 printk(KERN_ERR "Error searching slot for orphan: %d" 2287 "\n", ret); 2288 break; 2289 } 2290 2291 /* 2292 * if ret == 0 means we found what we were searching for, which 2293 * is weird, but possible, so only screw with path if we didnt 2294 * find the key and see if we have stuff that matches 2295 */ 2296 if (ret > 0) { 2297 if (path->slots[0] == 0) 2298 break; 2299 path->slots[0]--; 2300 } 2301 2302 /* pull out the item */ 2303 leaf = path->nodes[0]; 2304 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2305 2306 /* make sure the item matches what we want */ 2307 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2308 break; 2309 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2310 break; 2311 2312 /* release the path since we're done with it */ 2313 btrfs_release_path(root, path); 2314 2315 /* 2316 * this is where we are basically btrfs_lookup, without the 2317 * crossing root thing. we store the inode number in the 2318 * offset of the orphan item. 2319 */ 2320 found_key.objectid = found_key.offset; 2321 found_key.type = BTRFS_INODE_ITEM_KEY; 2322 found_key.offset = 0; 2323 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2324 BUG_ON(IS_ERR(inode)); 2325 2326 /* 2327 * add this inode to the orphan list so btrfs_orphan_del does 2328 * the proper thing when we hit it 2329 */ 2330 spin_lock(&root->orphan_lock); 2331 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2332 spin_unlock(&root->orphan_lock); 2333 2334 /* 2335 * if this is a bad inode, means we actually succeeded in 2336 * removing the inode, but not the orphan record, which means 2337 * we need to manually delete the orphan since iput will just 2338 * do a destroy_inode 2339 */ 2340 if (is_bad_inode(inode)) { 2341 trans = btrfs_start_transaction(root, 0); 2342 btrfs_orphan_del(trans, inode); 2343 btrfs_end_transaction(trans, root); 2344 iput(inode); 2345 continue; 2346 } 2347 2348 /* if we have links, this was a truncate, lets do that */ 2349 if (inode->i_nlink) { 2350 nr_truncate++; 2351 btrfs_truncate(inode); 2352 } else { 2353 nr_unlink++; 2354 } 2355 2356 /* this will do delete_inode and everything for us */ 2357 iput(inode); 2358 } 2359 btrfs_free_path(path); 2360 2361 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2362 2363 if (root->orphan_block_rsv) 2364 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2365 (u64)-1); 2366 2367 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2368 trans = btrfs_join_transaction(root, 1); 2369 btrfs_end_transaction(trans, root); 2370 } 2371 2372 if (nr_unlink) 2373 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2374 if (nr_truncate) 2375 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2376 } 2377 2378 /* 2379 * very simple check to peek ahead in the leaf looking for xattrs. If we 2380 * don't find any xattrs, we know there can't be any acls. 2381 * 2382 * slot is the slot the inode is in, objectid is the objectid of the inode 2383 */ 2384 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2385 int slot, u64 objectid) 2386 { 2387 u32 nritems = btrfs_header_nritems(leaf); 2388 struct btrfs_key found_key; 2389 int scanned = 0; 2390 2391 slot++; 2392 while (slot < nritems) { 2393 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2394 2395 /* we found a different objectid, there must not be acls */ 2396 if (found_key.objectid != objectid) 2397 return 0; 2398 2399 /* we found an xattr, assume we've got an acl */ 2400 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2401 return 1; 2402 2403 /* 2404 * we found a key greater than an xattr key, there can't 2405 * be any acls later on 2406 */ 2407 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2408 return 0; 2409 2410 slot++; 2411 scanned++; 2412 2413 /* 2414 * it goes inode, inode backrefs, xattrs, extents, 2415 * so if there are a ton of hard links to an inode there can 2416 * be a lot of backrefs. Don't waste time searching too hard, 2417 * this is just an optimization 2418 */ 2419 if (scanned >= 8) 2420 break; 2421 } 2422 /* we hit the end of the leaf before we found an xattr or 2423 * something larger than an xattr. We have to assume the inode 2424 * has acls 2425 */ 2426 return 1; 2427 } 2428 2429 /* 2430 * read an inode from the btree into the in-memory inode 2431 */ 2432 static void btrfs_read_locked_inode(struct inode *inode) 2433 { 2434 struct btrfs_path *path; 2435 struct extent_buffer *leaf; 2436 struct btrfs_inode_item *inode_item; 2437 struct btrfs_timespec *tspec; 2438 struct btrfs_root *root = BTRFS_I(inode)->root; 2439 struct btrfs_key location; 2440 int maybe_acls; 2441 u64 alloc_group_block; 2442 u32 rdev; 2443 int ret; 2444 2445 path = btrfs_alloc_path(); 2446 BUG_ON(!path); 2447 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2448 2449 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2450 if (ret) 2451 goto make_bad; 2452 2453 leaf = path->nodes[0]; 2454 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2455 struct btrfs_inode_item); 2456 2457 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2458 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2459 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2460 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2461 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2462 2463 tspec = btrfs_inode_atime(inode_item); 2464 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2465 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2466 2467 tspec = btrfs_inode_mtime(inode_item); 2468 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2469 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2470 2471 tspec = btrfs_inode_ctime(inode_item); 2472 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2473 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2474 2475 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2476 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2477 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2478 inode->i_generation = BTRFS_I(inode)->generation; 2479 inode->i_rdev = 0; 2480 rdev = btrfs_inode_rdev(leaf, inode_item); 2481 2482 BTRFS_I(inode)->index_cnt = (u64)-1; 2483 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2484 2485 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2486 2487 /* 2488 * try to precache a NULL acl entry for files that don't have 2489 * any xattrs or acls 2490 */ 2491 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2492 if (!maybe_acls) 2493 cache_no_acl(inode); 2494 2495 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2496 alloc_group_block, 0); 2497 btrfs_free_path(path); 2498 inode_item = NULL; 2499 2500 switch (inode->i_mode & S_IFMT) { 2501 case S_IFREG: 2502 inode->i_mapping->a_ops = &btrfs_aops; 2503 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2504 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2505 inode->i_fop = &btrfs_file_operations; 2506 inode->i_op = &btrfs_file_inode_operations; 2507 break; 2508 case S_IFDIR: 2509 inode->i_fop = &btrfs_dir_file_operations; 2510 if (root == root->fs_info->tree_root) 2511 inode->i_op = &btrfs_dir_ro_inode_operations; 2512 else 2513 inode->i_op = &btrfs_dir_inode_operations; 2514 break; 2515 case S_IFLNK: 2516 inode->i_op = &btrfs_symlink_inode_operations; 2517 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2518 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2519 break; 2520 default: 2521 inode->i_op = &btrfs_special_inode_operations; 2522 init_special_inode(inode, inode->i_mode, rdev); 2523 break; 2524 } 2525 2526 btrfs_update_iflags(inode); 2527 return; 2528 2529 make_bad: 2530 btrfs_free_path(path); 2531 make_bad_inode(inode); 2532 } 2533 2534 /* 2535 * given a leaf and an inode, copy the inode fields into the leaf 2536 */ 2537 static void fill_inode_item(struct btrfs_trans_handle *trans, 2538 struct extent_buffer *leaf, 2539 struct btrfs_inode_item *item, 2540 struct inode *inode) 2541 { 2542 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2543 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2544 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2545 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2546 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2547 2548 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2549 inode->i_atime.tv_sec); 2550 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2551 inode->i_atime.tv_nsec); 2552 2553 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2554 inode->i_mtime.tv_sec); 2555 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2556 inode->i_mtime.tv_nsec); 2557 2558 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2559 inode->i_ctime.tv_sec); 2560 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2561 inode->i_ctime.tv_nsec); 2562 2563 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2564 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2565 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2566 btrfs_set_inode_transid(leaf, item, trans->transid); 2567 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2568 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2569 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2570 } 2571 2572 /* 2573 * copy everything in the in-memory inode into the btree. 2574 */ 2575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2576 struct btrfs_root *root, struct inode *inode) 2577 { 2578 struct btrfs_inode_item *inode_item; 2579 struct btrfs_path *path; 2580 struct extent_buffer *leaf; 2581 int ret; 2582 2583 path = btrfs_alloc_path(); 2584 BUG_ON(!path); 2585 path->leave_spinning = 1; 2586 ret = btrfs_lookup_inode(trans, root, path, 2587 &BTRFS_I(inode)->location, 1); 2588 if (ret) { 2589 if (ret > 0) 2590 ret = -ENOENT; 2591 goto failed; 2592 } 2593 2594 btrfs_unlock_up_safe(path, 1); 2595 leaf = path->nodes[0]; 2596 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2597 struct btrfs_inode_item); 2598 2599 fill_inode_item(trans, leaf, inode_item, inode); 2600 btrfs_mark_buffer_dirty(leaf); 2601 btrfs_set_inode_last_trans(trans, inode); 2602 ret = 0; 2603 failed: 2604 btrfs_free_path(path); 2605 return ret; 2606 } 2607 2608 2609 /* 2610 * unlink helper that gets used here in inode.c and in the tree logging 2611 * recovery code. It remove a link in a directory with a given name, and 2612 * also drops the back refs in the inode to the directory 2613 */ 2614 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2615 struct btrfs_root *root, 2616 struct inode *dir, struct inode *inode, 2617 const char *name, int name_len) 2618 { 2619 struct btrfs_path *path; 2620 int ret = 0; 2621 struct extent_buffer *leaf; 2622 struct btrfs_dir_item *di; 2623 struct btrfs_key key; 2624 u64 index; 2625 2626 path = btrfs_alloc_path(); 2627 if (!path) { 2628 ret = -ENOMEM; 2629 goto err; 2630 } 2631 2632 path->leave_spinning = 1; 2633 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2634 name, name_len, -1); 2635 if (IS_ERR(di)) { 2636 ret = PTR_ERR(di); 2637 goto err; 2638 } 2639 if (!di) { 2640 ret = -ENOENT; 2641 goto err; 2642 } 2643 leaf = path->nodes[0]; 2644 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2645 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2646 if (ret) 2647 goto err; 2648 btrfs_release_path(root, path); 2649 2650 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2651 inode->i_ino, 2652 dir->i_ino, &index); 2653 if (ret) { 2654 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2655 "inode %lu parent %lu\n", name_len, name, 2656 inode->i_ino, dir->i_ino); 2657 goto err; 2658 } 2659 2660 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2661 index, name, name_len, -1); 2662 if (IS_ERR(di)) { 2663 ret = PTR_ERR(di); 2664 goto err; 2665 } 2666 if (!di) { 2667 ret = -ENOENT; 2668 goto err; 2669 } 2670 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2671 btrfs_release_path(root, path); 2672 2673 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2674 inode, dir->i_ino); 2675 BUG_ON(ret != 0 && ret != -ENOENT); 2676 2677 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2678 dir, index); 2679 if (ret == -ENOENT) 2680 ret = 0; 2681 err: 2682 btrfs_free_path(path); 2683 if (ret) 2684 goto out; 2685 2686 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2687 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2688 btrfs_update_inode(trans, root, dir); 2689 btrfs_drop_nlink(inode); 2690 ret = btrfs_update_inode(trans, root, inode); 2691 out: 2692 return ret; 2693 } 2694 2695 /* helper to check if there is any shared block in the path */ 2696 static int check_path_shared(struct btrfs_root *root, 2697 struct btrfs_path *path) 2698 { 2699 struct extent_buffer *eb; 2700 int level; 2701 u64 refs = 1; 2702 int uninitialized_var(ret); 2703 2704 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2705 if (!path->nodes[level]) 2706 break; 2707 eb = path->nodes[level]; 2708 if (!btrfs_block_can_be_shared(root, eb)) 2709 continue; 2710 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2711 &refs, NULL); 2712 if (refs > 1) 2713 return 1; 2714 } 2715 return ret; /* XXX callers? */ 2716 } 2717 2718 /* 2719 * helper to start transaction for unlink and rmdir. 2720 * 2721 * unlink and rmdir are special in btrfs, they do not always free space. 2722 * so in enospc case, we should make sure they will free space before 2723 * allowing them to use the global metadata reservation. 2724 */ 2725 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2726 struct dentry *dentry) 2727 { 2728 struct btrfs_trans_handle *trans; 2729 struct btrfs_root *root = BTRFS_I(dir)->root; 2730 struct btrfs_path *path; 2731 struct btrfs_inode_ref *ref; 2732 struct btrfs_dir_item *di; 2733 struct inode *inode = dentry->d_inode; 2734 u64 index; 2735 int check_link = 1; 2736 int err = -ENOSPC; 2737 int ret; 2738 2739 trans = btrfs_start_transaction(root, 10); 2740 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2741 return trans; 2742 2743 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2744 return ERR_PTR(-ENOSPC); 2745 2746 /* check if there is someone else holds reference */ 2747 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2748 return ERR_PTR(-ENOSPC); 2749 2750 if (atomic_read(&inode->i_count) > 2) 2751 return ERR_PTR(-ENOSPC); 2752 2753 if (xchg(&root->fs_info->enospc_unlink, 1)) 2754 return ERR_PTR(-ENOSPC); 2755 2756 path = btrfs_alloc_path(); 2757 if (!path) { 2758 root->fs_info->enospc_unlink = 0; 2759 return ERR_PTR(-ENOMEM); 2760 } 2761 2762 trans = btrfs_start_transaction(root, 0); 2763 if (IS_ERR(trans)) { 2764 btrfs_free_path(path); 2765 root->fs_info->enospc_unlink = 0; 2766 return trans; 2767 } 2768 2769 path->skip_locking = 1; 2770 path->search_commit_root = 1; 2771 2772 ret = btrfs_lookup_inode(trans, root, path, 2773 &BTRFS_I(dir)->location, 0); 2774 if (ret < 0) { 2775 err = ret; 2776 goto out; 2777 } 2778 if (ret == 0) { 2779 if (check_path_shared(root, path)) 2780 goto out; 2781 } else { 2782 check_link = 0; 2783 } 2784 btrfs_release_path(root, path); 2785 2786 ret = btrfs_lookup_inode(trans, root, path, 2787 &BTRFS_I(inode)->location, 0); 2788 if (ret < 0) { 2789 err = ret; 2790 goto out; 2791 } 2792 if (ret == 0) { 2793 if (check_path_shared(root, path)) 2794 goto out; 2795 } else { 2796 check_link = 0; 2797 } 2798 btrfs_release_path(root, path); 2799 2800 if (ret == 0 && S_ISREG(inode->i_mode)) { 2801 ret = btrfs_lookup_file_extent(trans, root, path, 2802 inode->i_ino, (u64)-1, 0); 2803 if (ret < 0) { 2804 err = ret; 2805 goto out; 2806 } 2807 BUG_ON(ret == 0); 2808 if (check_path_shared(root, path)) 2809 goto out; 2810 btrfs_release_path(root, path); 2811 } 2812 2813 if (!check_link) { 2814 err = 0; 2815 goto out; 2816 } 2817 2818 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2819 dentry->d_name.name, dentry->d_name.len, 0); 2820 if (IS_ERR(di)) { 2821 err = PTR_ERR(di); 2822 goto out; 2823 } 2824 if (di) { 2825 if (check_path_shared(root, path)) 2826 goto out; 2827 } else { 2828 err = 0; 2829 goto out; 2830 } 2831 btrfs_release_path(root, path); 2832 2833 ref = btrfs_lookup_inode_ref(trans, root, path, 2834 dentry->d_name.name, dentry->d_name.len, 2835 inode->i_ino, dir->i_ino, 0); 2836 if (IS_ERR(ref)) { 2837 err = PTR_ERR(ref); 2838 goto out; 2839 } 2840 BUG_ON(!ref); 2841 if (check_path_shared(root, path)) 2842 goto out; 2843 index = btrfs_inode_ref_index(path->nodes[0], ref); 2844 btrfs_release_path(root, path); 2845 2846 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index, 2847 dentry->d_name.name, dentry->d_name.len, 0); 2848 if (IS_ERR(di)) { 2849 err = PTR_ERR(di); 2850 goto out; 2851 } 2852 BUG_ON(ret == -ENOENT); 2853 if (check_path_shared(root, path)) 2854 goto out; 2855 2856 err = 0; 2857 out: 2858 btrfs_free_path(path); 2859 if (err) { 2860 btrfs_end_transaction(trans, root); 2861 root->fs_info->enospc_unlink = 0; 2862 return ERR_PTR(err); 2863 } 2864 2865 trans->block_rsv = &root->fs_info->global_block_rsv; 2866 return trans; 2867 } 2868 2869 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2870 struct btrfs_root *root) 2871 { 2872 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2873 BUG_ON(!root->fs_info->enospc_unlink); 2874 root->fs_info->enospc_unlink = 0; 2875 } 2876 btrfs_end_transaction_throttle(trans, root); 2877 } 2878 2879 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2880 { 2881 struct btrfs_root *root = BTRFS_I(dir)->root; 2882 struct btrfs_trans_handle *trans; 2883 struct inode *inode = dentry->d_inode; 2884 int ret; 2885 unsigned long nr = 0; 2886 2887 trans = __unlink_start_trans(dir, dentry); 2888 if (IS_ERR(trans)) 2889 return PTR_ERR(trans); 2890 2891 btrfs_set_trans_block_group(trans, dir); 2892 2893 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2894 2895 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2896 dentry->d_name.name, dentry->d_name.len); 2897 BUG_ON(ret); 2898 2899 if (inode->i_nlink == 0) { 2900 ret = btrfs_orphan_add(trans, inode); 2901 BUG_ON(ret); 2902 } 2903 2904 nr = trans->blocks_used; 2905 __unlink_end_trans(trans, root); 2906 btrfs_btree_balance_dirty(root, nr); 2907 return ret; 2908 } 2909 2910 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2911 struct btrfs_root *root, 2912 struct inode *dir, u64 objectid, 2913 const char *name, int name_len) 2914 { 2915 struct btrfs_path *path; 2916 struct extent_buffer *leaf; 2917 struct btrfs_dir_item *di; 2918 struct btrfs_key key; 2919 u64 index; 2920 int ret; 2921 2922 path = btrfs_alloc_path(); 2923 if (!path) 2924 return -ENOMEM; 2925 2926 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2927 name, name_len, -1); 2928 BUG_ON(!di || IS_ERR(di)); 2929 2930 leaf = path->nodes[0]; 2931 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2932 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2933 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2934 BUG_ON(ret); 2935 btrfs_release_path(root, path); 2936 2937 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2938 objectid, root->root_key.objectid, 2939 dir->i_ino, &index, name, name_len); 2940 if (ret < 0) { 2941 BUG_ON(ret != -ENOENT); 2942 di = btrfs_search_dir_index_item(root, path, dir->i_ino, 2943 name, name_len); 2944 BUG_ON(!di || IS_ERR(di)); 2945 2946 leaf = path->nodes[0]; 2947 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2948 btrfs_release_path(root, path); 2949 index = key.offset; 2950 } 2951 2952 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2953 index, name, name_len, -1); 2954 BUG_ON(!di || IS_ERR(di)); 2955 2956 leaf = path->nodes[0]; 2957 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2958 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2959 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2960 BUG_ON(ret); 2961 btrfs_release_path(root, path); 2962 2963 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2964 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2965 ret = btrfs_update_inode(trans, root, dir); 2966 BUG_ON(ret); 2967 2968 btrfs_free_path(path); 2969 return 0; 2970 } 2971 2972 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2973 { 2974 struct inode *inode = dentry->d_inode; 2975 int err = 0; 2976 struct btrfs_root *root = BTRFS_I(dir)->root; 2977 struct btrfs_trans_handle *trans; 2978 unsigned long nr = 0; 2979 2980 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2981 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 2982 return -ENOTEMPTY; 2983 2984 trans = __unlink_start_trans(dir, dentry); 2985 if (IS_ERR(trans)) 2986 return PTR_ERR(trans); 2987 2988 btrfs_set_trans_block_group(trans, dir); 2989 2990 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2991 err = btrfs_unlink_subvol(trans, root, dir, 2992 BTRFS_I(inode)->location.objectid, 2993 dentry->d_name.name, 2994 dentry->d_name.len); 2995 goto out; 2996 } 2997 2998 err = btrfs_orphan_add(trans, inode); 2999 if (err) 3000 goto out; 3001 3002 /* now the directory is empty */ 3003 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3004 dentry->d_name.name, dentry->d_name.len); 3005 if (!err) 3006 btrfs_i_size_write(inode, 0); 3007 out: 3008 nr = trans->blocks_used; 3009 __unlink_end_trans(trans, root); 3010 btrfs_btree_balance_dirty(root, nr); 3011 3012 return err; 3013 } 3014 3015 #if 0 3016 /* 3017 * when truncating bytes in a file, it is possible to avoid reading 3018 * the leaves that contain only checksum items. This can be the 3019 * majority of the IO required to delete a large file, but it must 3020 * be done carefully. 3021 * 3022 * The keys in the level just above the leaves are checked to make sure 3023 * the lowest key in a given leaf is a csum key, and starts at an offset 3024 * after the new size. 3025 * 3026 * Then the key for the next leaf is checked to make sure it also has 3027 * a checksum item for the same file. If it does, we know our target leaf 3028 * contains only checksum items, and it can be safely freed without reading 3029 * it. 3030 * 3031 * This is just an optimization targeted at large files. It may do 3032 * nothing. It will return 0 unless things went badly. 3033 */ 3034 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 3035 struct btrfs_root *root, 3036 struct btrfs_path *path, 3037 struct inode *inode, u64 new_size) 3038 { 3039 struct btrfs_key key; 3040 int ret; 3041 int nritems; 3042 struct btrfs_key found_key; 3043 struct btrfs_key other_key; 3044 struct btrfs_leaf_ref *ref; 3045 u64 leaf_gen; 3046 u64 leaf_start; 3047 3048 path->lowest_level = 1; 3049 key.objectid = inode->i_ino; 3050 key.type = BTRFS_CSUM_ITEM_KEY; 3051 key.offset = new_size; 3052 again: 3053 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3054 if (ret < 0) 3055 goto out; 3056 3057 if (path->nodes[1] == NULL) { 3058 ret = 0; 3059 goto out; 3060 } 3061 ret = 0; 3062 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 3063 nritems = btrfs_header_nritems(path->nodes[1]); 3064 3065 if (!nritems) 3066 goto out; 3067 3068 if (path->slots[1] >= nritems) 3069 goto next_node; 3070 3071 /* did we find a key greater than anything we want to delete? */ 3072 if (found_key.objectid > inode->i_ino || 3073 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 3074 goto out; 3075 3076 /* we check the next key in the node to make sure the leave contains 3077 * only checksum items. This comparison doesn't work if our 3078 * leaf is the last one in the node 3079 */ 3080 if (path->slots[1] + 1 >= nritems) { 3081 next_node: 3082 /* search forward from the last key in the node, this 3083 * will bring us into the next node in the tree 3084 */ 3085 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 3086 3087 /* unlikely, but we inc below, so check to be safe */ 3088 if (found_key.offset == (u64)-1) 3089 goto out; 3090 3091 /* search_forward needs a path with locks held, do the 3092 * search again for the original key. It is possible 3093 * this will race with a balance and return a path that 3094 * we could modify, but this drop is just an optimization 3095 * and is allowed to miss some leaves. 3096 */ 3097 btrfs_release_path(root, path); 3098 found_key.offset++; 3099 3100 /* setup a max key for search_forward */ 3101 other_key.offset = (u64)-1; 3102 other_key.type = key.type; 3103 other_key.objectid = key.objectid; 3104 3105 path->keep_locks = 1; 3106 ret = btrfs_search_forward(root, &found_key, &other_key, 3107 path, 0, 0); 3108 path->keep_locks = 0; 3109 if (ret || found_key.objectid != key.objectid || 3110 found_key.type != key.type) { 3111 ret = 0; 3112 goto out; 3113 } 3114 3115 key.offset = found_key.offset; 3116 btrfs_release_path(root, path); 3117 cond_resched(); 3118 goto again; 3119 } 3120 3121 /* we know there's one more slot after us in the tree, 3122 * read that key so we can verify it is also a checksum item 3123 */ 3124 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 3125 3126 if (found_key.objectid < inode->i_ino) 3127 goto next_key; 3128 3129 if (found_key.type != key.type || found_key.offset < new_size) 3130 goto next_key; 3131 3132 /* 3133 * if the key for the next leaf isn't a csum key from this objectid, 3134 * we can't be sure there aren't good items inside this leaf. 3135 * Bail out 3136 */ 3137 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 3138 goto out; 3139 3140 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 3141 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 3142 /* 3143 * it is safe to delete this leaf, it contains only 3144 * csum items from this inode at an offset >= new_size 3145 */ 3146 ret = btrfs_del_leaf(trans, root, path, leaf_start); 3147 BUG_ON(ret); 3148 3149 if (root->ref_cows && leaf_gen < trans->transid) { 3150 ref = btrfs_alloc_leaf_ref(root, 0); 3151 if (ref) { 3152 ref->root_gen = root->root_key.offset; 3153 ref->bytenr = leaf_start; 3154 ref->owner = 0; 3155 ref->generation = leaf_gen; 3156 ref->nritems = 0; 3157 3158 btrfs_sort_leaf_ref(ref); 3159 3160 ret = btrfs_add_leaf_ref(root, ref, 0); 3161 WARN_ON(ret); 3162 btrfs_free_leaf_ref(root, ref); 3163 } else { 3164 WARN_ON(1); 3165 } 3166 } 3167 next_key: 3168 btrfs_release_path(root, path); 3169 3170 if (other_key.objectid == inode->i_ino && 3171 other_key.type == key.type && other_key.offset > key.offset) { 3172 key.offset = other_key.offset; 3173 cond_resched(); 3174 goto again; 3175 } 3176 ret = 0; 3177 out: 3178 /* fixup any changes we've made to the path */ 3179 path->lowest_level = 0; 3180 path->keep_locks = 0; 3181 btrfs_release_path(root, path); 3182 return ret; 3183 } 3184 3185 #endif 3186 3187 /* 3188 * this can truncate away extent items, csum items and directory items. 3189 * It starts at a high offset and removes keys until it can't find 3190 * any higher than new_size 3191 * 3192 * csum items that cross the new i_size are truncated to the new size 3193 * as well. 3194 * 3195 * min_type is the minimum key type to truncate down to. If set to 0, this 3196 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3197 */ 3198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3199 struct btrfs_root *root, 3200 struct inode *inode, 3201 u64 new_size, u32 min_type) 3202 { 3203 struct btrfs_path *path; 3204 struct extent_buffer *leaf; 3205 struct btrfs_file_extent_item *fi; 3206 struct btrfs_key key; 3207 struct btrfs_key found_key; 3208 u64 extent_start = 0; 3209 u64 extent_num_bytes = 0; 3210 u64 extent_offset = 0; 3211 u64 item_end = 0; 3212 u64 mask = root->sectorsize - 1; 3213 u32 found_type = (u8)-1; 3214 int found_extent; 3215 int del_item; 3216 int pending_del_nr = 0; 3217 int pending_del_slot = 0; 3218 int extent_type = -1; 3219 int encoding; 3220 int ret; 3221 int err = 0; 3222 3223 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3224 3225 if (root->ref_cows || root == root->fs_info->tree_root) 3226 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3227 3228 path = btrfs_alloc_path(); 3229 BUG_ON(!path); 3230 path->reada = -1; 3231 3232 key.objectid = inode->i_ino; 3233 key.offset = (u64)-1; 3234 key.type = (u8)-1; 3235 3236 search_again: 3237 path->leave_spinning = 1; 3238 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3239 if (ret < 0) { 3240 err = ret; 3241 goto out; 3242 } 3243 3244 if (ret > 0) { 3245 /* there are no items in the tree for us to truncate, we're 3246 * done 3247 */ 3248 if (path->slots[0] == 0) 3249 goto out; 3250 path->slots[0]--; 3251 } 3252 3253 while (1) { 3254 fi = NULL; 3255 leaf = path->nodes[0]; 3256 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3257 found_type = btrfs_key_type(&found_key); 3258 encoding = 0; 3259 3260 if (found_key.objectid != inode->i_ino) 3261 break; 3262 3263 if (found_type < min_type) 3264 break; 3265 3266 item_end = found_key.offset; 3267 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3268 fi = btrfs_item_ptr(leaf, path->slots[0], 3269 struct btrfs_file_extent_item); 3270 extent_type = btrfs_file_extent_type(leaf, fi); 3271 encoding = btrfs_file_extent_compression(leaf, fi); 3272 encoding |= btrfs_file_extent_encryption(leaf, fi); 3273 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3274 3275 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3276 item_end += 3277 btrfs_file_extent_num_bytes(leaf, fi); 3278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3279 item_end += btrfs_file_extent_inline_len(leaf, 3280 fi); 3281 } 3282 item_end--; 3283 } 3284 if (found_type > min_type) { 3285 del_item = 1; 3286 } else { 3287 if (item_end < new_size) 3288 break; 3289 if (found_key.offset >= new_size) 3290 del_item = 1; 3291 else 3292 del_item = 0; 3293 } 3294 found_extent = 0; 3295 /* FIXME, shrink the extent if the ref count is only 1 */ 3296 if (found_type != BTRFS_EXTENT_DATA_KEY) 3297 goto delete; 3298 3299 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3300 u64 num_dec; 3301 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3302 if (!del_item && !encoding) { 3303 u64 orig_num_bytes = 3304 btrfs_file_extent_num_bytes(leaf, fi); 3305 extent_num_bytes = new_size - 3306 found_key.offset + root->sectorsize - 1; 3307 extent_num_bytes = extent_num_bytes & 3308 ~((u64)root->sectorsize - 1); 3309 btrfs_set_file_extent_num_bytes(leaf, fi, 3310 extent_num_bytes); 3311 num_dec = (orig_num_bytes - 3312 extent_num_bytes); 3313 if (root->ref_cows && extent_start != 0) 3314 inode_sub_bytes(inode, num_dec); 3315 btrfs_mark_buffer_dirty(leaf); 3316 } else { 3317 extent_num_bytes = 3318 btrfs_file_extent_disk_num_bytes(leaf, 3319 fi); 3320 extent_offset = found_key.offset - 3321 btrfs_file_extent_offset(leaf, fi); 3322 3323 /* FIXME blocksize != 4096 */ 3324 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3325 if (extent_start != 0) { 3326 found_extent = 1; 3327 if (root->ref_cows) 3328 inode_sub_bytes(inode, num_dec); 3329 } 3330 } 3331 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3332 /* 3333 * we can't truncate inline items that have had 3334 * special encodings 3335 */ 3336 if (!del_item && 3337 btrfs_file_extent_compression(leaf, fi) == 0 && 3338 btrfs_file_extent_encryption(leaf, fi) == 0 && 3339 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3340 u32 size = new_size - found_key.offset; 3341 3342 if (root->ref_cows) { 3343 inode_sub_bytes(inode, item_end + 1 - 3344 new_size); 3345 } 3346 size = 3347 btrfs_file_extent_calc_inline_size(size); 3348 ret = btrfs_truncate_item(trans, root, path, 3349 size, 1); 3350 BUG_ON(ret); 3351 } else if (root->ref_cows) { 3352 inode_sub_bytes(inode, item_end + 1 - 3353 found_key.offset); 3354 } 3355 } 3356 delete: 3357 if (del_item) { 3358 if (!pending_del_nr) { 3359 /* no pending yet, add ourselves */ 3360 pending_del_slot = path->slots[0]; 3361 pending_del_nr = 1; 3362 } else if (pending_del_nr && 3363 path->slots[0] + 1 == pending_del_slot) { 3364 /* hop on the pending chunk */ 3365 pending_del_nr++; 3366 pending_del_slot = path->slots[0]; 3367 } else { 3368 BUG(); 3369 } 3370 } else { 3371 break; 3372 } 3373 if (found_extent && (root->ref_cows || 3374 root == root->fs_info->tree_root)) { 3375 btrfs_set_path_blocking(path); 3376 ret = btrfs_free_extent(trans, root, extent_start, 3377 extent_num_bytes, 0, 3378 btrfs_header_owner(leaf), 3379 inode->i_ino, extent_offset); 3380 BUG_ON(ret); 3381 } 3382 3383 if (found_type == BTRFS_INODE_ITEM_KEY) 3384 break; 3385 3386 if (path->slots[0] == 0 || 3387 path->slots[0] != pending_del_slot) { 3388 if (root->ref_cows) { 3389 err = -EAGAIN; 3390 goto out; 3391 } 3392 if (pending_del_nr) { 3393 ret = btrfs_del_items(trans, root, path, 3394 pending_del_slot, 3395 pending_del_nr); 3396 BUG_ON(ret); 3397 pending_del_nr = 0; 3398 } 3399 btrfs_release_path(root, path); 3400 goto search_again; 3401 } else { 3402 path->slots[0]--; 3403 } 3404 } 3405 out: 3406 if (pending_del_nr) { 3407 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3408 pending_del_nr); 3409 BUG_ON(ret); 3410 } 3411 btrfs_free_path(path); 3412 return err; 3413 } 3414 3415 /* 3416 * taken from block_truncate_page, but does cow as it zeros out 3417 * any bytes left in the last page in the file. 3418 */ 3419 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3420 { 3421 struct inode *inode = mapping->host; 3422 struct btrfs_root *root = BTRFS_I(inode)->root; 3423 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3424 struct btrfs_ordered_extent *ordered; 3425 struct extent_state *cached_state = NULL; 3426 char *kaddr; 3427 u32 blocksize = root->sectorsize; 3428 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3429 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3430 struct page *page; 3431 int ret = 0; 3432 u64 page_start; 3433 u64 page_end; 3434 3435 if ((offset & (blocksize - 1)) == 0) 3436 goto out; 3437 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3438 if (ret) 3439 goto out; 3440 3441 ret = -ENOMEM; 3442 again: 3443 page = grab_cache_page(mapping, index); 3444 if (!page) { 3445 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3446 goto out; 3447 } 3448 3449 page_start = page_offset(page); 3450 page_end = page_start + PAGE_CACHE_SIZE - 1; 3451 3452 if (!PageUptodate(page)) { 3453 ret = btrfs_readpage(NULL, page); 3454 lock_page(page); 3455 if (page->mapping != mapping) { 3456 unlock_page(page); 3457 page_cache_release(page); 3458 goto again; 3459 } 3460 if (!PageUptodate(page)) { 3461 ret = -EIO; 3462 goto out_unlock; 3463 } 3464 } 3465 wait_on_page_writeback(page); 3466 3467 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3468 GFP_NOFS); 3469 set_page_extent_mapped(page); 3470 3471 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3472 if (ordered) { 3473 unlock_extent_cached(io_tree, page_start, page_end, 3474 &cached_state, GFP_NOFS); 3475 unlock_page(page); 3476 page_cache_release(page); 3477 btrfs_start_ordered_extent(inode, ordered, 1); 3478 btrfs_put_ordered_extent(ordered); 3479 goto again; 3480 } 3481 3482 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3483 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3484 0, 0, &cached_state, GFP_NOFS); 3485 3486 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3487 &cached_state); 3488 if (ret) { 3489 unlock_extent_cached(io_tree, page_start, page_end, 3490 &cached_state, GFP_NOFS); 3491 goto out_unlock; 3492 } 3493 3494 ret = 0; 3495 if (offset != PAGE_CACHE_SIZE) { 3496 kaddr = kmap(page); 3497 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3498 flush_dcache_page(page); 3499 kunmap(page); 3500 } 3501 ClearPageChecked(page); 3502 set_page_dirty(page); 3503 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3504 GFP_NOFS); 3505 3506 out_unlock: 3507 if (ret) 3508 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3509 unlock_page(page); 3510 page_cache_release(page); 3511 out: 3512 return ret; 3513 } 3514 3515 int btrfs_cont_expand(struct inode *inode, loff_t size) 3516 { 3517 struct btrfs_trans_handle *trans; 3518 struct btrfs_root *root = BTRFS_I(inode)->root; 3519 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3520 struct extent_map *em = NULL; 3521 struct extent_state *cached_state = NULL; 3522 u64 mask = root->sectorsize - 1; 3523 u64 hole_start = (inode->i_size + mask) & ~mask; 3524 u64 block_end = (size + mask) & ~mask; 3525 u64 last_byte; 3526 u64 cur_offset; 3527 u64 hole_size; 3528 int err = 0; 3529 3530 if (size <= hole_start) 3531 return 0; 3532 3533 while (1) { 3534 struct btrfs_ordered_extent *ordered; 3535 btrfs_wait_ordered_range(inode, hole_start, 3536 block_end - hole_start); 3537 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3538 &cached_state, GFP_NOFS); 3539 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3540 if (!ordered) 3541 break; 3542 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3543 &cached_state, GFP_NOFS); 3544 btrfs_put_ordered_extent(ordered); 3545 } 3546 3547 cur_offset = hole_start; 3548 while (1) { 3549 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3550 block_end - cur_offset, 0); 3551 BUG_ON(IS_ERR(em) || !em); 3552 last_byte = min(extent_map_end(em), block_end); 3553 last_byte = (last_byte + mask) & ~mask; 3554 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3555 u64 hint_byte = 0; 3556 hole_size = last_byte - cur_offset; 3557 3558 trans = btrfs_start_transaction(root, 2); 3559 if (IS_ERR(trans)) { 3560 err = PTR_ERR(trans); 3561 break; 3562 } 3563 btrfs_set_trans_block_group(trans, inode); 3564 3565 err = btrfs_drop_extents(trans, inode, cur_offset, 3566 cur_offset + hole_size, 3567 &hint_byte, 1); 3568 BUG_ON(err); 3569 3570 err = btrfs_insert_file_extent(trans, root, 3571 inode->i_ino, cur_offset, 0, 3572 0, hole_size, 0, hole_size, 3573 0, 0, 0); 3574 BUG_ON(err); 3575 3576 btrfs_drop_extent_cache(inode, hole_start, 3577 last_byte - 1, 0); 3578 3579 btrfs_end_transaction(trans, root); 3580 } 3581 free_extent_map(em); 3582 em = NULL; 3583 cur_offset = last_byte; 3584 if (cur_offset >= block_end) 3585 break; 3586 } 3587 3588 free_extent_map(em); 3589 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3590 GFP_NOFS); 3591 return err; 3592 } 3593 3594 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr) 3595 { 3596 struct btrfs_root *root = BTRFS_I(inode)->root; 3597 struct btrfs_trans_handle *trans; 3598 unsigned long nr; 3599 int ret; 3600 3601 if (attr->ia_size == inode->i_size) 3602 return 0; 3603 3604 if (attr->ia_size > inode->i_size) { 3605 unsigned long limit; 3606 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 3607 if (attr->ia_size > inode->i_sb->s_maxbytes) 3608 return -EFBIG; 3609 if (limit != RLIM_INFINITY && attr->ia_size > limit) { 3610 send_sig(SIGXFSZ, current, 0); 3611 return -EFBIG; 3612 } 3613 } 3614 3615 trans = btrfs_start_transaction(root, 5); 3616 if (IS_ERR(trans)) 3617 return PTR_ERR(trans); 3618 3619 btrfs_set_trans_block_group(trans, inode); 3620 3621 ret = btrfs_orphan_add(trans, inode); 3622 BUG_ON(ret); 3623 3624 nr = trans->blocks_used; 3625 btrfs_end_transaction(trans, root); 3626 btrfs_btree_balance_dirty(root, nr); 3627 3628 if (attr->ia_size > inode->i_size) { 3629 ret = btrfs_cont_expand(inode, attr->ia_size); 3630 if (ret) { 3631 btrfs_truncate(inode); 3632 return ret; 3633 } 3634 3635 i_size_write(inode, attr->ia_size); 3636 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 3637 3638 trans = btrfs_start_transaction(root, 0); 3639 BUG_ON(IS_ERR(trans)); 3640 btrfs_set_trans_block_group(trans, inode); 3641 trans->block_rsv = root->orphan_block_rsv; 3642 BUG_ON(!trans->block_rsv); 3643 3644 ret = btrfs_update_inode(trans, root, inode); 3645 BUG_ON(ret); 3646 if (inode->i_nlink > 0) { 3647 ret = btrfs_orphan_del(trans, inode); 3648 BUG_ON(ret); 3649 } 3650 nr = trans->blocks_used; 3651 btrfs_end_transaction(trans, root); 3652 btrfs_btree_balance_dirty(root, nr); 3653 return 0; 3654 } 3655 3656 /* 3657 * We're truncating a file that used to have good data down to 3658 * zero. Make sure it gets into the ordered flush list so that 3659 * any new writes get down to disk quickly. 3660 */ 3661 if (attr->ia_size == 0) 3662 BTRFS_I(inode)->ordered_data_close = 1; 3663 3664 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3665 ret = vmtruncate(inode, attr->ia_size); 3666 BUG_ON(ret); 3667 3668 return 0; 3669 } 3670 3671 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3672 { 3673 struct inode *inode = dentry->d_inode; 3674 int err; 3675 3676 err = inode_change_ok(inode, attr); 3677 if (err) 3678 return err; 3679 3680 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3681 err = btrfs_setattr_size(inode, attr); 3682 if (err) 3683 return err; 3684 } 3685 3686 if (attr->ia_valid) { 3687 setattr_copy(inode, attr); 3688 mark_inode_dirty(inode); 3689 3690 if (attr->ia_valid & ATTR_MODE) 3691 err = btrfs_acl_chmod(inode); 3692 } 3693 3694 return err; 3695 } 3696 3697 void btrfs_evict_inode(struct inode *inode) 3698 { 3699 struct btrfs_trans_handle *trans; 3700 struct btrfs_root *root = BTRFS_I(inode)->root; 3701 unsigned long nr; 3702 int ret; 3703 3704 truncate_inode_pages(&inode->i_data, 0); 3705 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3706 root == root->fs_info->tree_root)) 3707 goto no_delete; 3708 3709 if (is_bad_inode(inode)) { 3710 btrfs_orphan_del(NULL, inode); 3711 goto no_delete; 3712 } 3713 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3714 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3715 3716 if (root->fs_info->log_root_recovering) { 3717 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3718 goto no_delete; 3719 } 3720 3721 if (inode->i_nlink > 0) { 3722 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3723 goto no_delete; 3724 } 3725 3726 btrfs_i_size_write(inode, 0); 3727 3728 while (1) { 3729 trans = btrfs_start_transaction(root, 0); 3730 BUG_ON(IS_ERR(trans)); 3731 btrfs_set_trans_block_group(trans, inode); 3732 trans->block_rsv = root->orphan_block_rsv; 3733 3734 ret = btrfs_block_rsv_check(trans, root, 3735 root->orphan_block_rsv, 0, 5); 3736 if (ret) { 3737 BUG_ON(ret != -EAGAIN); 3738 ret = btrfs_commit_transaction(trans, root); 3739 BUG_ON(ret); 3740 continue; 3741 } 3742 3743 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3744 if (ret != -EAGAIN) 3745 break; 3746 3747 nr = trans->blocks_used; 3748 btrfs_end_transaction(trans, root); 3749 trans = NULL; 3750 btrfs_btree_balance_dirty(root, nr); 3751 3752 } 3753 3754 if (ret == 0) { 3755 ret = btrfs_orphan_del(trans, inode); 3756 BUG_ON(ret); 3757 } 3758 3759 nr = trans->blocks_used; 3760 btrfs_end_transaction(trans, root); 3761 btrfs_btree_balance_dirty(root, nr); 3762 no_delete: 3763 end_writeback(inode); 3764 return; 3765 } 3766 3767 /* 3768 * this returns the key found in the dir entry in the location pointer. 3769 * If no dir entries were found, location->objectid is 0. 3770 */ 3771 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3772 struct btrfs_key *location) 3773 { 3774 const char *name = dentry->d_name.name; 3775 int namelen = dentry->d_name.len; 3776 struct btrfs_dir_item *di; 3777 struct btrfs_path *path; 3778 struct btrfs_root *root = BTRFS_I(dir)->root; 3779 int ret = 0; 3780 3781 path = btrfs_alloc_path(); 3782 BUG_ON(!path); 3783 3784 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3785 namelen, 0); 3786 if (IS_ERR(di)) 3787 ret = PTR_ERR(di); 3788 3789 if (!di || IS_ERR(di)) 3790 goto out_err; 3791 3792 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3793 out: 3794 btrfs_free_path(path); 3795 return ret; 3796 out_err: 3797 location->objectid = 0; 3798 goto out; 3799 } 3800 3801 /* 3802 * when we hit a tree root in a directory, the btrfs part of the inode 3803 * needs to be changed to reflect the root directory of the tree root. This 3804 * is kind of like crossing a mount point. 3805 */ 3806 static int fixup_tree_root_location(struct btrfs_root *root, 3807 struct inode *dir, 3808 struct dentry *dentry, 3809 struct btrfs_key *location, 3810 struct btrfs_root **sub_root) 3811 { 3812 struct btrfs_path *path; 3813 struct btrfs_root *new_root; 3814 struct btrfs_root_ref *ref; 3815 struct extent_buffer *leaf; 3816 int ret; 3817 int err = 0; 3818 3819 path = btrfs_alloc_path(); 3820 if (!path) { 3821 err = -ENOMEM; 3822 goto out; 3823 } 3824 3825 err = -ENOENT; 3826 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3827 BTRFS_I(dir)->root->root_key.objectid, 3828 location->objectid); 3829 if (ret) { 3830 if (ret < 0) 3831 err = ret; 3832 goto out; 3833 } 3834 3835 leaf = path->nodes[0]; 3836 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3837 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino || 3838 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3839 goto out; 3840 3841 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3842 (unsigned long)(ref + 1), 3843 dentry->d_name.len); 3844 if (ret) 3845 goto out; 3846 3847 btrfs_release_path(root->fs_info->tree_root, path); 3848 3849 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3850 if (IS_ERR(new_root)) { 3851 err = PTR_ERR(new_root); 3852 goto out; 3853 } 3854 3855 if (btrfs_root_refs(&new_root->root_item) == 0) { 3856 err = -ENOENT; 3857 goto out; 3858 } 3859 3860 *sub_root = new_root; 3861 location->objectid = btrfs_root_dirid(&new_root->root_item); 3862 location->type = BTRFS_INODE_ITEM_KEY; 3863 location->offset = 0; 3864 err = 0; 3865 out: 3866 btrfs_free_path(path); 3867 return err; 3868 } 3869 3870 static void inode_tree_add(struct inode *inode) 3871 { 3872 struct btrfs_root *root = BTRFS_I(inode)->root; 3873 struct btrfs_inode *entry; 3874 struct rb_node **p; 3875 struct rb_node *parent; 3876 again: 3877 p = &root->inode_tree.rb_node; 3878 parent = NULL; 3879 3880 if (inode_unhashed(inode)) 3881 return; 3882 3883 spin_lock(&root->inode_lock); 3884 while (*p) { 3885 parent = *p; 3886 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3887 3888 if (inode->i_ino < entry->vfs_inode.i_ino) 3889 p = &parent->rb_left; 3890 else if (inode->i_ino > entry->vfs_inode.i_ino) 3891 p = &parent->rb_right; 3892 else { 3893 WARN_ON(!(entry->vfs_inode.i_state & 3894 (I_WILL_FREE | I_FREEING))); 3895 rb_erase(parent, &root->inode_tree); 3896 RB_CLEAR_NODE(parent); 3897 spin_unlock(&root->inode_lock); 3898 goto again; 3899 } 3900 } 3901 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3902 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3903 spin_unlock(&root->inode_lock); 3904 } 3905 3906 static void inode_tree_del(struct inode *inode) 3907 { 3908 struct btrfs_root *root = BTRFS_I(inode)->root; 3909 int empty = 0; 3910 3911 spin_lock(&root->inode_lock); 3912 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3913 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3914 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3915 empty = RB_EMPTY_ROOT(&root->inode_tree); 3916 } 3917 spin_unlock(&root->inode_lock); 3918 3919 /* 3920 * Free space cache has inodes in the tree root, but the tree root has a 3921 * root_refs of 0, so this could end up dropping the tree root as a 3922 * snapshot, so we need the extra !root->fs_info->tree_root check to 3923 * make sure we don't drop it. 3924 */ 3925 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3926 root != root->fs_info->tree_root) { 3927 synchronize_srcu(&root->fs_info->subvol_srcu); 3928 spin_lock(&root->inode_lock); 3929 empty = RB_EMPTY_ROOT(&root->inode_tree); 3930 spin_unlock(&root->inode_lock); 3931 if (empty) 3932 btrfs_add_dead_root(root); 3933 } 3934 } 3935 3936 int btrfs_invalidate_inodes(struct btrfs_root *root) 3937 { 3938 struct rb_node *node; 3939 struct rb_node *prev; 3940 struct btrfs_inode *entry; 3941 struct inode *inode; 3942 u64 objectid = 0; 3943 3944 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3945 3946 spin_lock(&root->inode_lock); 3947 again: 3948 node = root->inode_tree.rb_node; 3949 prev = NULL; 3950 while (node) { 3951 prev = node; 3952 entry = rb_entry(node, struct btrfs_inode, rb_node); 3953 3954 if (objectid < entry->vfs_inode.i_ino) 3955 node = node->rb_left; 3956 else if (objectid > entry->vfs_inode.i_ino) 3957 node = node->rb_right; 3958 else 3959 break; 3960 } 3961 if (!node) { 3962 while (prev) { 3963 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3964 if (objectid <= entry->vfs_inode.i_ino) { 3965 node = prev; 3966 break; 3967 } 3968 prev = rb_next(prev); 3969 } 3970 } 3971 while (node) { 3972 entry = rb_entry(node, struct btrfs_inode, rb_node); 3973 objectid = entry->vfs_inode.i_ino + 1; 3974 inode = igrab(&entry->vfs_inode); 3975 if (inode) { 3976 spin_unlock(&root->inode_lock); 3977 if (atomic_read(&inode->i_count) > 1) 3978 d_prune_aliases(inode); 3979 /* 3980 * btrfs_drop_inode will have it removed from 3981 * the inode cache when its usage count 3982 * hits zero. 3983 */ 3984 iput(inode); 3985 cond_resched(); 3986 spin_lock(&root->inode_lock); 3987 goto again; 3988 } 3989 3990 if (cond_resched_lock(&root->inode_lock)) 3991 goto again; 3992 3993 node = rb_next(node); 3994 } 3995 spin_unlock(&root->inode_lock); 3996 return 0; 3997 } 3998 3999 static int btrfs_init_locked_inode(struct inode *inode, void *p) 4000 { 4001 struct btrfs_iget_args *args = p; 4002 inode->i_ino = args->ino; 4003 BTRFS_I(inode)->root = args->root; 4004 btrfs_set_inode_space_info(args->root, inode); 4005 return 0; 4006 } 4007 4008 static int btrfs_find_actor(struct inode *inode, void *opaque) 4009 { 4010 struct btrfs_iget_args *args = opaque; 4011 return args->ino == inode->i_ino && 4012 args->root == BTRFS_I(inode)->root; 4013 } 4014 4015 static struct inode *btrfs_iget_locked(struct super_block *s, 4016 u64 objectid, 4017 struct btrfs_root *root) 4018 { 4019 struct inode *inode; 4020 struct btrfs_iget_args args; 4021 args.ino = objectid; 4022 args.root = root; 4023 4024 inode = iget5_locked(s, objectid, btrfs_find_actor, 4025 btrfs_init_locked_inode, 4026 (void *)&args); 4027 return inode; 4028 } 4029 4030 /* Get an inode object given its location and corresponding root. 4031 * Returns in *is_new if the inode was read from disk 4032 */ 4033 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 4034 struct btrfs_root *root, int *new) 4035 { 4036 struct inode *inode; 4037 4038 inode = btrfs_iget_locked(s, location->objectid, root); 4039 if (!inode) 4040 return ERR_PTR(-ENOMEM); 4041 4042 if (inode->i_state & I_NEW) { 4043 BTRFS_I(inode)->root = root; 4044 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4045 btrfs_read_locked_inode(inode); 4046 4047 inode_tree_add(inode); 4048 unlock_new_inode(inode); 4049 if (new) 4050 *new = 1; 4051 } 4052 4053 return inode; 4054 } 4055 4056 static struct inode *new_simple_dir(struct super_block *s, 4057 struct btrfs_key *key, 4058 struct btrfs_root *root) 4059 { 4060 struct inode *inode = new_inode(s); 4061 4062 if (!inode) 4063 return ERR_PTR(-ENOMEM); 4064 4065 BTRFS_I(inode)->root = root; 4066 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4067 BTRFS_I(inode)->dummy_inode = 1; 4068 4069 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4070 inode->i_op = &simple_dir_inode_operations; 4071 inode->i_fop = &simple_dir_operations; 4072 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4073 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4074 4075 return inode; 4076 } 4077 4078 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4079 { 4080 struct inode *inode; 4081 struct btrfs_root *root = BTRFS_I(dir)->root; 4082 struct btrfs_root *sub_root = root; 4083 struct btrfs_key location; 4084 int index; 4085 int ret; 4086 4087 if (dentry->d_name.len > BTRFS_NAME_LEN) 4088 return ERR_PTR(-ENAMETOOLONG); 4089 4090 ret = btrfs_inode_by_name(dir, dentry, &location); 4091 4092 if (ret < 0) 4093 return ERR_PTR(ret); 4094 4095 if (location.objectid == 0) 4096 return NULL; 4097 4098 if (location.type == BTRFS_INODE_ITEM_KEY) { 4099 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4100 return inode; 4101 } 4102 4103 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4104 4105 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4106 ret = fixup_tree_root_location(root, dir, dentry, 4107 &location, &sub_root); 4108 if (ret < 0) { 4109 if (ret != -ENOENT) 4110 inode = ERR_PTR(ret); 4111 else 4112 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4113 } else { 4114 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4115 } 4116 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4117 4118 if (root != sub_root) { 4119 down_read(&root->fs_info->cleanup_work_sem); 4120 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4121 btrfs_orphan_cleanup(sub_root); 4122 up_read(&root->fs_info->cleanup_work_sem); 4123 } 4124 4125 return inode; 4126 } 4127 4128 static int btrfs_dentry_delete(const struct dentry *dentry) 4129 { 4130 struct btrfs_root *root; 4131 4132 if (!dentry->d_inode && !IS_ROOT(dentry)) 4133 dentry = dentry->d_parent; 4134 4135 if (dentry->d_inode) { 4136 root = BTRFS_I(dentry->d_inode)->root; 4137 if (btrfs_root_refs(&root->root_item) == 0) 4138 return 1; 4139 } 4140 return 0; 4141 } 4142 4143 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4144 struct nameidata *nd) 4145 { 4146 struct inode *inode; 4147 4148 inode = btrfs_lookup_dentry(dir, dentry); 4149 if (IS_ERR(inode)) 4150 return ERR_CAST(inode); 4151 4152 return d_splice_alias(inode, dentry); 4153 } 4154 4155 static unsigned char btrfs_filetype_table[] = { 4156 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4157 }; 4158 4159 static int btrfs_real_readdir(struct file *filp, void *dirent, 4160 filldir_t filldir) 4161 { 4162 struct inode *inode = filp->f_dentry->d_inode; 4163 struct btrfs_root *root = BTRFS_I(inode)->root; 4164 struct btrfs_item *item; 4165 struct btrfs_dir_item *di; 4166 struct btrfs_key key; 4167 struct btrfs_key found_key; 4168 struct btrfs_path *path; 4169 int ret; 4170 u32 nritems; 4171 struct extent_buffer *leaf; 4172 int slot; 4173 int advance; 4174 unsigned char d_type; 4175 int over = 0; 4176 u32 di_cur; 4177 u32 di_total; 4178 u32 di_len; 4179 int key_type = BTRFS_DIR_INDEX_KEY; 4180 char tmp_name[32]; 4181 char *name_ptr; 4182 int name_len; 4183 4184 /* FIXME, use a real flag for deciding about the key type */ 4185 if (root->fs_info->tree_root == root) 4186 key_type = BTRFS_DIR_ITEM_KEY; 4187 4188 /* special case for "." */ 4189 if (filp->f_pos == 0) { 4190 over = filldir(dirent, ".", 1, 4191 1, inode->i_ino, 4192 DT_DIR); 4193 if (over) 4194 return 0; 4195 filp->f_pos = 1; 4196 } 4197 /* special case for .., just use the back ref */ 4198 if (filp->f_pos == 1) { 4199 u64 pino = parent_ino(filp->f_path.dentry); 4200 over = filldir(dirent, "..", 2, 4201 2, pino, DT_DIR); 4202 if (over) 4203 return 0; 4204 filp->f_pos = 2; 4205 } 4206 path = btrfs_alloc_path(); 4207 path->reada = 2; 4208 4209 btrfs_set_key_type(&key, key_type); 4210 key.offset = filp->f_pos; 4211 key.objectid = inode->i_ino; 4212 4213 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4214 if (ret < 0) 4215 goto err; 4216 advance = 0; 4217 4218 while (1) { 4219 leaf = path->nodes[0]; 4220 nritems = btrfs_header_nritems(leaf); 4221 slot = path->slots[0]; 4222 if (advance || slot >= nritems) { 4223 if (slot >= nritems - 1) { 4224 ret = btrfs_next_leaf(root, path); 4225 if (ret) 4226 break; 4227 leaf = path->nodes[0]; 4228 nritems = btrfs_header_nritems(leaf); 4229 slot = path->slots[0]; 4230 } else { 4231 slot++; 4232 path->slots[0]++; 4233 } 4234 } 4235 4236 advance = 1; 4237 item = btrfs_item_nr(leaf, slot); 4238 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4239 4240 if (found_key.objectid != key.objectid) 4241 break; 4242 if (btrfs_key_type(&found_key) != key_type) 4243 break; 4244 if (found_key.offset < filp->f_pos) 4245 continue; 4246 4247 filp->f_pos = found_key.offset; 4248 4249 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4250 di_cur = 0; 4251 di_total = btrfs_item_size(leaf, item); 4252 4253 while (di_cur < di_total) { 4254 struct btrfs_key location; 4255 4256 name_len = btrfs_dir_name_len(leaf, di); 4257 if (name_len <= sizeof(tmp_name)) { 4258 name_ptr = tmp_name; 4259 } else { 4260 name_ptr = kmalloc(name_len, GFP_NOFS); 4261 if (!name_ptr) { 4262 ret = -ENOMEM; 4263 goto err; 4264 } 4265 } 4266 read_extent_buffer(leaf, name_ptr, 4267 (unsigned long)(di + 1), name_len); 4268 4269 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4270 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4271 4272 /* is this a reference to our own snapshot? If so 4273 * skip it 4274 */ 4275 if (location.type == BTRFS_ROOT_ITEM_KEY && 4276 location.objectid == root->root_key.objectid) { 4277 over = 0; 4278 goto skip; 4279 } 4280 over = filldir(dirent, name_ptr, name_len, 4281 found_key.offset, location.objectid, 4282 d_type); 4283 4284 skip: 4285 if (name_ptr != tmp_name) 4286 kfree(name_ptr); 4287 4288 if (over) 4289 goto nopos; 4290 di_len = btrfs_dir_name_len(leaf, di) + 4291 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4292 di_cur += di_len; 4293 di = (struct btrfs_dir_item *)((char *)di + di_len); 4294 } 4295 } 4296 4297 /* Reached end of directory/root. Bump pos past the last item. */ 4298 if (key_type == BTRFS_DIR_INDEX_KEY) 4299 /* 4300 * 32-bit glibc will use getdents64, but then strtol - 4301 * so the last number we can serve is this. 4302 */ 4303 filp->f_pos = 0x7fffffff; 4304 else 4305 filp->f_pos++; 4306 nopos: 4307 ret = 0; 4308 err: 4309 btrfs_free_path(path); 4310 return ret; 4311 } 4312 4313 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4314 { 4315 struct btrfs_root *root = BTRFS_I(inode)->root; 4316 struct btrfs_trans_handle *trans; 4317 int ret = 0; 4318 bool nolock = false; 4319 4320 if (BTRFS_I(inode)->dummy_inode) 4321 return 0; 4322 4323 smp_mb(); 4324 nolock = (root->fs_info->closing && root == root->fs_info->tree_root); 4325 4326 if (wbc->sync_mode == WB_SYNC_ALL) { 4327 if (nolock) 4328 trans = btrfs_join_transaction_nolock(root, 1); 4329 else 4330 trans = btrfs_join_transaction(root, 1); 4331 btrfs_set_trans_block_group(trans, inode); 4332 if (nolock) 4333 ret = btrfs_end_transaction_nolock(trans, root); 4334 else 4335 ret = btrfs_commit_transaction(trans, root); 4336 } 4337 return ret; 4338 } 4339 4340 /* 4341 * This is somewhat expensive, updating the tree every time the 4342 * inode changes. But, it is most likely to find the inode in cache. 4343 * FIXME, needs more benchmarking...there are no reasons other than performance 4344 * to keep or drop this code. 4345 */ 4346 void btrfs_dirty_inode(struct inode *inode) 4347 { 4348 struct btrfs_root *root = BTRFS_I(inode)->root; 4349 struct btrfs_trans_handle *trans; 4350 int ret; 4351 4352 if (BTRFS_I(inode)->dummy_inode) 4353 return; 4354 4355 trans = btrfs_join_transaction(root, 1); 4356 btrfs_set_trans_block_group(trans, inode); 4357 4358 ret = btrfs_update_inode(trans, root, inode); 4359 if (ret && ret == -ENOSPC) { 4360 /* whoops, lets try again with the full transaction */ 4361 btrfs_end_transaction(trans, root); 4362 trans = btrfs_start_transaction(root, 1); 4363 if (IS_ERR(trans)) { 4364 if (printk_ratelimit()) { 4365 printk(KERN_ERR "btrfs: fail to " 4366 "dirty inode %lu error %ld\n", 4367 inode->i_ino, PTR_ERR(trans)); 4368 } 4369 return; 4370 } 4371 btrfs_set_trans_block_group(trans, inode); 4372 4373 ret = btrfs_update_inode(trans, root, inode); 4374 if (ret) { 4375 if (printk_ratelimit()) { 4376 printk(KERN_ERR "btrfs: fail to " 4377 "dirty inode %lu error %d\n", 4378 inode->i_ino, ret); 4379 } 4380 } 4381 } 4382 btrfs_end_transaction(trans, root); 4383 } 4384 4385 /* 4386 * find the highest existing sequence number in a directory 4387 * and then set the in-memory index_cnt variable to reflect 4388 * free sequence numbers 4389 */ 4390 static int btrfs_set_inode_index_count(struct inode *inode) 4391 { 4392 struct btrfs_root *root = BTRFS_I(inode)->root; 4393 struct btrfs_key key, found_key; 4394 struct btrfs_path *path; 4395 struct extent_buffer *leaf; 4396 int ret; 4397 4398 key.objectid = inode->i_ino; 4399 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4400 key.offset = (u64)-1; 4401 4402 path = btrfs_alloc_path(); 4403 if (!path) 4404 return -ENOMEM; 4405 4406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4407 if (ret < 0) 4408 goto out; 4409 /* FIXME: we should be able to handle this */ 4410 if (ret == 0) 4411 goto out; 4412 ret = 0; 4413 4414 /* 4415 * MAGIC NUMBER EXPLANATION: 4416 * since we search a directory based on f_pos we have to start at 2 4417 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4418 * else has to start at 2 4419 */ 4420 if (path->slots[0] == 0) { 4421 BTRFS_I(inode)->index_cnt = 2; 4422 goto out; 4423 } 4424 4425 path->slots[0]--; 4426 4427 leaf = path->nodes[0]; 4428 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4429 4430 if (found_key.objectid != inode->i_ino || 4431 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4432 BTRFS_I(inode)->index_cnt = 2; 4433 goto out; 4434 } 4435 4436 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4437 out: 4438 btrfs_free_path(path); 4439 return ret; 4440 } 4441 4442 /* 4443 * helper to find a free sequence number in a given directory. This current 4444 * code is very simple, later versions will do smarter things in the btree 4445 */ 4446 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4447 { 4448 int ret = 0; 4449 4450 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4451 ret = btrfs_set_inode_index_count(dir); 4452 if (ret) 4453 return ret; 4454 } 4455 4456 *index = BTRFS_I(dir)->index_cnt; 4457 BTRFS_I(dir)->index_cnt++; 4458 4459 return ret; 4460 } 4461 4462 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4463 struct btrfs_root *root, 4464 struct inode *dir, 4465 const char *name, int name_len, 4466 u64 ref_objectid, u64 objectid, 4467 u64 alloc_hint, int mode, u64 *index) 4468 { 4469 struct inode *inode; 4470 struct btrfs_inode_item *inode_item; 4471 struct btrfs_key *location; 4472 struct btrfs_path *path; 4473 struct btrfs_inode_ref *ref; 4474 struct btrfs_key key[2]; 4475 u32 sizes[2]; 4476 unsigned long ptr; 4477 int ret; 4478 int owner; 4479 4480 path = btrfs_alloc_path(); 4481 BUG_ON(!path); 4482 4483 inode = new_inode(root->fs_info->sb); 4484 if (!inode) 4485 return ERR_PTR(-ENOMEM); 4486 4487 if (dir) { 4488 ret = btrfs_set_inode_index(dir, index); 4489 if (ret) { 4490 iput(inode); 4491 return ERR_PTR(ret); 4492 } 4493 } 4494 /* 4495 * index_cnt is ignored for everything but a dir, 4496 * btrfs_get_inode_index_count has an explanation for the magic 4497 * number 4498 */ 4499 BTRFS_I(inode)->index_cnt = 2; 4500 BTRFS_I(inode)->root = root; 4501 BTRFS_I(inode)->generation = trans->transid; 4502 inode->i_generation = BTRFS_I(inode)->generation; 4503 btrfs_set_inode_space_info(root, inode); 4504 4505 if (mode & S_IFDIR) 4506 owner = 0; 4507 else 4508 owner = 1; 4509 BTRFS_I(inode)->block_group = 4510 btrfs_find_block_group(root, 0, alloc_hint, owner); 4511 4512 key[0].objectid = objectid; 4513 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4514 key[0].offset = 0; 4515 4516 key[1].objectid = objectid; 4517 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4518 key[1].offset = ref_objectid; 4519 4520 sizes[0] = sizeof(struct btrfs_inode_item); 4521 sizes[1] = name_len + sizeof(*ref); 4522 4523 path->leave_spinning = 1; 4524 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4525 if (ret != 0) 4526 goto fail; 4527 4528 inode_init_owner(inode, dir, mode); 4529 inode->i_ino = objectid; 4530 inode_set_bytes(inode, 0); 4531 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4532 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4533 struct btrfs_inode_item); 4534 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4535 4536 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4537 struct btrfs_inode_ref); 4538 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4539 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4540 ptr = (unsigned long)(ref + 1); 4541 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4542 4543 btrfs_mark_buffer_dirty(path->nodes[0]); 4544 btrfs_free_path(path); 4545 4546 location = &BTRFS_I(inode)->location; 4547 location->objectid = objectid; 4548 location->offset = 0; 4549 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4550 4551 btrfs_inherit_iflags(inode, dir); 4552 4553 if ((mode & S_IFREG)) { 4554 if (btrfs_test_opt(root, NODATASUM)) 4555 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4556 if (btrfs_test_opt(root, NODATACOW)) 4557 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4558 } 4559 4560 insert_inode_hash(inode); 4561 inode_tree_add(inode); 4562 return inode; 4563 fail: 4564 if (dir) 4565 BTRFS_I(dir)->index_cnt--; 4566 btrfs_free_path(path); 4567 iput(inode); 4568 return ERR_PTR(ret); 4569 } 4570 4571 static inline u8 btrfs_inode_type(struct inode *inode) 4572 { 4573 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4574 } 4575 4576 /* 4577 * utility function to add 'inode' into 'parent_inode' with 4578 * a give name and a given sequence number. 4579 * if 'add_backref' is true, also insert a backref from the 4580 * inode to the parent directory. 4581 */ 4582 int btrfs_add_link(struct btrfs_trans_handle *trans, 4583 struct inode *parent_inode, struct inode *inode, 4584 const char *name, int name_len, int add_backref, u64 index) 4585 { 4586 int ret = 0; 4587 struct btrfs_key key; 4588 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4589 4590 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4591 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4592 } else { 4593 key.objectid = inode->i_ino; 4594 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4595 key.offset = 0; 4596 } 4597 4598 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4599 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4600 key.objectid, root->root_key.objectid, 4601 parent_inode->i_ino, 4602 index, name, name_len); 4603 } else if (add_backref) { 4604 ret = btrfs_insert_inode_ref(trans, root, 4605 name, name_len, inode->i_ino, 4606 parent_inode->i_ino, index); 4607 } 4608 4609 if (ret == 0) { 4610 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4611 parent_inode->i_ino, &key, 4612 btrfs_inode_type(inode), index); 4613 BUG_ON(ret); 4614 4615 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4616 name_len * 2); 4617 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4618 ret = btrfs_update_inode(trans, root, parent_inode); 4619 } 4620 return ret; 4621 } 4622 4623 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4624 struct inode *dir, struct dentry *dentry, 4625 struct inode *inode, int backref, u64 index) 4626 { 4627 int err = btrfs_add_link(trans, dir, inode, 4628 dentry->d_name.name, dentry->d_name.len, 4629 backref, index); 4630 if (!err) { 4631 d_instantiate(dentry, inode); 4632 return 0; 4633 } 4634 if (err > 0) 4635 err = -EEXIST; 4636 return err; 4637 } 4638 4639 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4640 int mode, dev_t rdev) 4641 { 4642 struct btrfs_trans_handle *trans; 4643 struct btrfs_root *root = BTRFS_I(dir)->root; 4644 struct inode *inode = NULL; 4645 int err; 4646 int drop_inode = 0; 4647 u64 objectid; 4648 unsigned long nr = 0; 4649 u64 index = 0; 4650 4651 if (!new_valid_dev(rdev)) 4652 return -EINVAL; 4653 4654 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4655 if (err) 4656 return err; 4657 4658 /* 4659 * 2 for inode item and ref 4660 * 2 for dir items 4661 * 1 for xattr if selinux is on 4662 */ 4663 trans = btrfs_start_transaction(root, 5); 4664 if (IS_ERR(trans)) 4665 return PTR_ERR(trans); 4666 4667 btrfs_set_trans_block_group(trans, dir); 4668 4669 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4670 dentry->d_name.len, dir->i_ino, objectid, 4671 BTRFS_I(dir)->block_group, mode, &index); 4672 err = PTR_ERR(inode); 4673 if (IS_ERR(inode)) 4674 goto out_unlock; 4675 4676 err = btrfs_init_inode_security(trans, inode, dir); 4677 if (err) { 4678 drop_inode = 1; 4679 goto out_unlock; 4680 } 4681 4682 btrfs_set_trans_block_group(trans, inode); 4683 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4684 if (err) 4685 drop_inode = 1; 4686 else { 4687 inode->i_op = &btrfs_special_inode_operations; 4688 init_special_inode(inode, inode->i_mode, rdev); 4689 btrfs_update_inode(trans, root, inode); 4690 } 4691 btrfs_update_inode_block_group(trans, inode); 4692 btrfs_update_inode_block_group(trans, dir); 4693 out_unlock: 4694 nr = trans->blocks_used; 4695 btrfs_end_transaction_throttle(trans, root); 4696 btrfs_btree_balance_dirty(root, nr); 4697 if (drop_inode) { 4698 inode_dec_link_count(inode); 4699 iput(inode); 4700 } 4701 return err; 4702 } 4703 4704 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4705 int mode, struct nameidata *nd) 4706 { 4707 struct btrfs_trans_handle *trans; 4708 struct btrfs_root *root = BTRFS_I(dir)->root; 4709 struct inode *inode = NULL; 4710 int drop_inode = 0; 4711 int err; 4712 unsigned long nr = 0; 4713 u64 objectid; 4714 u64 index = 0; 4715 4716 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4717 if (err) 4718 return err; 4719 /* 4720 * 2 for inode item and ref 4721 * 2 for dir items 4722 * 1 for xattr if selinux is on 4723 */ 4724 trans = btrfs_start_transaction(root, 5); 4725 if (IS_ERR(trans)) 4726 return PTR_ERR(trans); 4727 4728 btrfs_set_trans_block_group(trans, dir); 4729 4730 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4731 dentry->d_name.len, dir->i_ino, objectid, 4732 BTRFS_I(dir)->block_group, mode, &index); 4733 err = PTR_ERR(inode); 4734 if (IS_ERR(inode)) 4735 goto out_unlock; 4736 4737 err = btrfs_init_inode_security(trans, inode, dir); 4738 if (err) { 4739 drop_inode = 1; 4740 goto out_unlock; 4741 } 4742 4743 btrfs_set_trans_block_group(trans, inode); 4744 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4745 if (err) 4746 drop_inode = 1; 4747 else { 4748 inode->i_mapping->a_ops = &btrfs_aops; 4749 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4750 inode->i_fop = &btrfs_file_operations; 4751 inode->i_op = &btrfs_file_inode_operations; 4752 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4753 } 4754 btrfs_update_inode_block_group(trans, inode); 4755 btrfs_update_inode_block_group(trans, dir); 4756 out_unlock: 4757 nr = trans->blocks_used; 4758 btrfs_end_transaction_throttle(trans, root); 4759 if (drop_inode) { 4760 inode_dec_link_count(inode); 4761 iput(inode); 4762 } 4763 btrfs_btree_balance_dirty(root, nr); 4764 return err; 4765 } 4766 4767 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4768 struct dentry *dentry) 4769 { 4770 struct btrfs_trans_handle *trans; 4771 struct btrfs_root *root = BTRFS_I(dir)->root; 4772 struct inode *inode = old_dentry->d_inode; 4773 u64 index; 4774 unsigned long nr = 0; 4775 int err; 4776 int drop_inode = 0; 4777 4778 if (inode->i_nlink == 0) 4779 return -ENOENT; 4780 4781 /* do not allow sys_link's with other subvols of the same device */ 4782 if (root->objectid != BTRFS_I(inode)->root->objectid) 4783 return -EPERM; 4784 4785 btrfs_inc_nlink(inode); 4786 inode->i_ctime = CURRENT_TIME; 4787 4788 err = btrfs_set_inode_index(dir, &index); 4789 if (err) 4790 goto fail; 4791 4792 /* 4793 * 1 item for inode ref 4794 * 2 items for dir items 4795 */ 4796 trans = btrfs_start_transaction(root, 3); 4797 if (IS_ERR(trans)) { 4798 err = PTR_ERR(trans); 4799 goto fail; 4800 } 4801 4802 btrfs_set_trans_block_group(trans, dir); 4803 ihold(inode); 4804 4805 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4806 4807 if (err) { 4808 drop_inode = 1; 4809 } else { 4810 struct dentry *parent = dget_parent(dentry); 4811 btrfs_update_inode_block_group(trans, dir); 4812 err = btrfs_update_inode(trans, root, inode); 4813 BUG_ON(err); 4814 btrfs_log_new_name(trans, inode, NULL, parent); 4815 dput(parent); 4816 } 4817 4818 nr = trans->blocks_used; 4819 btrfs_end_transaction_throttle(trans, root); 4820 fail: 4821 if (drop_inode) { 4822 inode_dec_link_count(inode); 4823 iput(inode); 4824 } 4825 btrfs_btree_balance_dirty(root, nr); 4826 return err; 4827 } 4828 4829 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4830 { 4831 struct inode *inode = NULL; 4832 struct btrfs_trans_handle *trans; 4833 struct btrfs_root *root = BTRFS_I(dir)->root; 4834 int err = 0; 4835 int drop_on_err = 0; 4836 u64 objectid = 0; 4837 u64 index = 0; 4838 unsigned long nr = 1; 4839 4840 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4841 if (err) 4842 return err; 4843 4844 /* 4845 * 2 items for inode and ref 4846 * 2 items for dir items 4847 * 1 for xattr if selinux is on 4848 */ 4849 trans = btrfs_start_transaction(root, 5); 4850 if (IS_ERR(trans)) 4851 return PTR_ERR(trans); 4852 btrfs_set_trans_block_group(trans, dir); 4853 4854 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4855 dentry->d_name.len, dir->i_ino, objectid, 4856 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4857 &index); 4858 if (IS_ERR(inode)) { 4859 err = PTR_ERR(inode); 4860 goto out_fail; 4861 } 4862 4863 drop_on_err = 1; 4864 4865 err = btrfs_init_inode_security(trans, inode, dir); 4866 if (err) 4867 goto out_fail; 4868 4869 inode->i_op = &btrfs_dir_inode_operations; 4870 inode->i_fop = &btrfs_dir_file_operations; 4871 btrfs_set_trans_block_group(trans, inode); 4872 4873 btrfs_i_size_write(inode, 0); 4874 err = btrfs_update_inode(trans, root, inode); 4875 if (err) 4876 goto out_fail; 4877 4878 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4879 dentry->d_name.len, 0, index); 4880 if (err) 4881 goto out_fail; 4882 4883 d_instantiate(dentry, inode); 4884 drop_on_err = 0; 4885 btrfs_update_inode_block_group(trans, inode); 4886 btrfs_update_inode_block_group(trans, dir); 4887 4888 out_fail: 4889 nr = trans->blocks_used; 4890 btrfs_end_transaction_throttle(trans, root); 4891 if (drop_on_err) 4892 iput(inode); 4893 btrfs_btree_balance_dirty(root, nr); 4894 return err; 4895 } 4896 4897 /* helper for btfs_get_extent. Given an existing extent in the tree, 4898 * and an extent that you want to insert, deal with overlap and insert 4899 * the new extent into the tree. 4900 */ 4901 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4902 struct extent_map *existing, 4903 struct extent_map *em, 4904 u64 map_start, u64 map_len) 4905 { 4906 u64 start_diff; 4907 4908 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4909 start_diff = map_start - em->start; 4910 em->start = map_start; 4911 em->len = map_len; 4912 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4913 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4914 em->block_start += start_diff; 4915 em->block_len -= start_diff; 4916 } 4917 return add_extent_mapping(em_tree, em); 4918 } 4919 4920 static noinline int uncompress_inline(struct btrfs_path *path, 4921 struct inode *inode, struct page *page, 4922 size_t pg_offset, u64 extent_offset, 4923 struct btrfs_file_extent_item *item) 4924 { 4925 int ret; 4926 struct extent_buffer *leaf = path->nodes[0]; 4927 char *tmp; 4928 size_t max_size; 4929 unsigned long inline_size; 4930 unsigned long ptr; 4931 4932 WARN_ON(pg_offset != 0); 4933 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4934 inline_size = btrfs_file_extent_inline_item_len(leaf, 4935 btrfs_item_nr(leaf, path->slots[0])); 4936 tmp = kmalloc(inline_size, GFP_NOFS); 4937 ptr = btrfs_file_extent_inline_start(item); 4938 4939 read_extent_buffer(leaf, tmp, ptr, inline_size); 4940 4941 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4942 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4943 inline_size, max_size); 4944 if (ret) { 4945 char *kaddr = kmap_atomic(page, KM_USER0); 4946 unsigned long copy_size = min_t(u64, 4947 PAGE_CACHE_SIZE - pg_offset, 4948 max_size - extent_offset); 4949 memset(kaddr + pg_offset, 0, copy_size); 4950 kunmap_atomic(kaddr, KM_USER0); 4951 } 4952 kfree(tmp); 4953 return 0; 4954 } 4955 4956 /* 4957 * a bit scary, this does extent mapping from logical file offset to the disk. 4958 * the ugly parts come from merging extents from the disk with the in-ram 4959 * representation. This gets more complex because of the data=ordered code, 4960 * where the in-ram extents might be locked pending data=ordered completion. 4961 * 4962 * This also copies inline extents directly into the page. 4963 */ 4964 4965 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4966 size_t pg_offset, u64 start, u64 len, 4967 int create) 4968 { 4969 int ret; 4970 int err = 0; 4971 u64 bytenr; 4972 u64 extent_start = 0; 4973 u64 extent_end = 0; 4974 u64 objectid = inode->i_ino; 4975 u32 found_type; 4976 struct btrfs_path *path = NULL; 4977 struct btrfs_root *root = BTRFS_I(inode)->root; 4978 struct btrfs_file_extent_item *item; 4979 struct extent_buffer *leaf; 4980 struct btrfs_key found_key; 4981 struct extent_map *em = NULL; 4982 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4983 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4984 struct btrfs_trans_handle *trans = NULL; 4985 int compressed; 4986 4987 again: 4988 read_lock(&em_tree->lock); 4989 em = lookup_extent_mapping(em_tree, start, len); 4990 if (em) 4991 em->bdev = root->fs_info->fs_devices->latest_bdev; 4992 read_unlock(&em_tree->lock); 4993 4994 if (em) { 4995 if (em->start > start || em->start + em->len <= start) 4996 free_extent_map(em); 4997 else if (em->block_start == EXTENT_MAP_INLINE && page) 4998 free_extent_map(em); 4999 else 5000 goto out; 5001 } 5002 em = alloc_extent_map(GFP_NOFS); 5003 if (!em) { 5004 err = -ENOMEM; 5005 goto out; 5006 } 5007 em->bdev = root->fs_info->fs_devices->latest_bdev; 5008 em->start = EXTENT_MAP_HOLE; 5009 em->orig_start = EXTENT_MAP_HOLE; 5010 em->len = (u64)-1; 5011 em->block_len = (u64)-1; 5012 5013 if (!path) { 5014 path = btrfs_alloc_path(); 5015 BUG_ON(!path); 5016 } 5017 5018 ret = btrfs_lookup_file_extent(trans, root, path, 5019 objectid, start, trans != NULL); 5020 if (ret < 0) { 5021 err = ret; 5022 goto out; 5023 } 5024 5025 if (ret != 0) { 5026 if (path->slots[0] == 0) 5027 goto not_found; 5028 path->slots[0]--; 5029 } 5030 5031 leaf = path->nodes[0]; 5032 item = btrfs_item_ptr(leaf, path->slots[0], 5033 struct btrfs_file_extent_item); 5034 /* are we inside the extent that was found? */ 5035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5036 found_type = btrfs_key_type(&found_key); 5037 if (found_key.objectid != objectid || 5038 found_type != BTRFS_EXTENT_DATA_KEY) { 5039 goto not_found; 5040 } 5041 5042 found_type = btrfs_file_extent_type(leaf, item); 5043 extent_start = found_key.offset; 5044 compressed = btrfs_file_extent_compression(leaf, item); 5045 if (found_type == BTRFS_FILE_EXTENT_REG || 5046 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5047 extent_end = extent_start + 5048 btrfs_file_extent_num_bytes(leaf, item); 5049 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5050 size_t size; 5051 size = btrfs_file_extent_inline_len(leaf, item); 5052 extent_end = (extent_start + size + root->sectorsize - 1) & 5053 ~((u64)root->sectorsize - 1); 5054 } 5055 5056 if (start >= extent_end) { 5057 path->slots[0]++; 5058 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5059 ret = btrfs_next_leaf(root, path); 5060 if (ret < 0) { 5061 err = ret; 5062 goto out; 5063 } 5064 if (ret > 0) 5065 goto not_found; 5066 leaf = path->nodes[0]; 5067 } 5068 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5069 if (found_key.objectid != objectid || 5070 found_key.type != BTRFS_EXTENT_DATA_KEY) 5071 goto not_found; 5072 if (start + len <= found_key.offset) 5073 goto not_found; 5074 em->start = start; 5075 em->len = found_key.offset - start; 5076 goto not_found_em; 5077 } 5078 5079 if (found_type == BTRFS_FILE_EXTENT_REG || 5080 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5081 em->start = extent_start; 5082 em->len = extent_end - extent_start; 5083 em->orig_start = extent_start - 5084 btrfs_file_extent_offset(leaf, item); 5085 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5086 if (bytenr == 0) { 5087 em->block_start = EXTENT_MAP_HOLE; 5088 goto insert; 5089 } 5090 if (compressed) { 5091 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5092 em->block_start = bytenr; 5093 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5094 item); 5095 } else { 5096 bytenr += btrfs_file_extent_offset(leaf, item); 5097 em->block_start = bytenr; 5098 em->block_len = em->len; 5099 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5100 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5101 } 5102 goto insert; 5103 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5104 unsigned long ptr; 5105 char *map; 5106 size_t size; 5107 size_t extent_offset; 5108 size_t copy_size; 5109 5110 em->block_start = EXTENT_MAP_INLINE; 5111 if (!page || create) { 5112 em->start = extent_start; 5113 em->len = extent_end - extent_start; 5114 goto out; 5115 } 5116 5117 size = btrfs_file_extent_inline_len(leaf, item); 5118 extent_offset = page_offset(page) + pg_offset - extent_start; 5119 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5120 size - extent_offset); 5121 em->start = extent_start + extent_offset; 5122 em->len = (copy_size + root->sectorsize - 1) & 5123 ~((u64)root->sectorsize - 1); 5124 em->orig_start = EXTENT_MAP_INLINE; 5125 if (compressed) 5126 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5127 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5128 if (create == 0 && !PageUptodate(page)) { 5129 if (btrfs_file_extent_compression(leaf, item) == 5130 BTRFS_COMPRESS_ZLIB) { 5131 ret = uncompress_inline(path, inode, page, 5132 pg_offset, 5133 extent_offset, item); 5134 BUG_ON(ret); 5135 } else { 5136 map = kmap(page); 5137 read_extent_buffer(leaf, map + pg_offset, ptr, 5138 copy_size); 5139 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5140 memset(map + pg_offset + copy_size, 0, 5141 PAGE_CACHE_SIZE - pg_offset - 5142 copy_size); 5143 } 5144 kunmap(page); 5145 } 5146 flush_dcache_page(page); 5147 } else if (create && PageUptodate(page)) { 5148 WARN_ON(1); 5149 if (!trans) { 5150 kunmap(page); 5151 free_extent_map(em); 5152 em = NULL; 5153 btrfs_release_path(root, path); 5154 trans = btrfs_join_transaction(root, 1); 5155 goto again; 5156 } 5157 map = kmap(page); 5158 write_extent_buffer(leaf, map + pg_offset, ptr, 5159 copy_size); 5160 kunmap(page); 5161 btrfs_mark_buffer_dirty(leaf); 5162 } 5163 set_extent_uptodate(io_tree, em->start, 5164 extent_map_end(em) - 1, GFP_NOFS); 5165 goto insert; 5166 } else { 5167 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5168 WARN_ON(1); 5169 } 5170 not_found: 5171 em->start = start; 5172 em->len = len; 5173 not_found_em: 5174 em->block_start = EXTENT_MAP_HOLE; 5175 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5176 insert: 5177 btrfs_release_path(root, path); 5178 if (em->start > start || extent_map_end(em) <= start) { 5179 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5180 "[%llu %llu]\n", (unsigned long long)em->start, 5181 (unsigned long long)em->len, 5182 (unsigned long long)start, 5183 (unsigned long long)len); 5184 err = -EIO; 5185 goto out; 5186 } 5187 5188 err = 0; 5189 write_lock(&em_tree->lock); 5190 ret = add_extent_mapping(em_tree, em); 5191 /* it is possible that someone inserted the extent into the tree 5192 * while we had the lock dropped. It is also possible that 5193 * an overlapping map exists in the tree 5194 */ 5195 if (ret == -EEXIST) { 5196 struct extent_map *existing; 5197 5198 ret = 0; 5199 5200 existing = lookup_extent_mapping(em_tree, start, len); 5201 if (existing && (existing->start > start || 5202 existing->start + existing->len <= start)) { 5203 free_extent_map(existing); 5204 existing = NULL; 5205 } 5206 if (!existing) { 5207 existing = lookup_extent_mapping(em_tree, em->start, 5208 em->len); 5209 if (existing) { 5210 err = merge_extent_mapping(em_tree, existing, 5211 em, start, 5212 root->sectorsize); 5213 free_extent_map(existing); 5214 if (err) { 5215 free_extent_map(em); 5216 em = NULL; 5217 } 5218 } else { 5219 err = -EIO; 5220 free_extent_map(em); 5221 em = NULL; 5222 } 5223 } else { 5224 free_extent_map(em); 5225 em = existing; 5226 err = 0; 5227 } 5228 } 5229 write_unlock(&em_tree->lock); 5230 out: 5231 if (path) 5232 btrfs_free_path(path); 5233 if (trans) { 5234 ret = btrfs_end_transaction(trans, root); 5235 if (!err) 5236 err = ret; 5237 } 5238 if (err) { 5239 free_extent_map(em); 5240 return ERR_PTR(err); 5241 } 5242 return em; 5243 } 5244 5245 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5246 u64 start, u64 len) 5247 { 5248 struct btrfs_root *root = BTRFS_I(inode)->root; 5249 struct btrfs_trans_handle *trans; 5250 struct extent_map *em; 5251 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5252 struct btrfs_key ins; 5253 u64 alloc_hint; 5254 int ret; 5255 5256 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5257 5258 trans = btrfs_join_transaction(root, 0); 5259 if (!trans) 5260 return ERR_PTR(-ENOMEM); 5261 5262 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5263 5264 alloc_hint = get_extent_allocation_hint(inode, start, len); 5265 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5266 alloc_hint, (u64)-1, &ins, 1); 5267 if (ret) { 5268 em = ERR_PTR(ret); 5269 goto out; 5270 } 5271 5272 em = alloc_extent_map(GFP_NOFS); 5273 if (!em) { 5274 em = ERR_PTR(-ENOMEM); 5275 goto out; 5276 } 5277 5278 em->start = start; 5279 em->orig_start = em->start; 5280 em->len = ins.offset; 5281 5282 em->block_start = ins.objectid; 5283 em->block_len = ins.offset; 5284 em->bdev = root->fs_info->fs_devices->latest_bdev; 5285 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5286 5287 while (1) { 5288 write_lock(&em_tree->lock); 5289 ret = add_extent_mapping(em_tree, em); 5290 write_unlock(&em_tree->lock); 5291 if (ret != -EEXIST) 5292 break; 5293 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5294 } 5295 5296 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5297 ins.offset, ins.offset, 0); 5298 if (ret) { 5299 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5300 em = ERR_PTR(ret); 5301 } 5302 out: 5303 btrfs_end_transaction(trans, root); 5304 return em; 5305 } 5306 5307 /* 5308 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5309 * block must be cow'd 5310 */ 5311 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5312 struct inode *inode, u64 offset, u64 len) 5313 { 5314 struct btrfs_path *path; 5315 int ret; 5316 struct extent_buffer *leaf; 5317 struct btrfs_root *root = BTRFS_I(inode)->root; 5318 struct btrfs_file_extent_item *fi; 5319 struct btrfs_key key; 5320 u64 disk_bytenr; 5321 u64 backref_offset; 5322 u64 extent_end; 5323 u64 num_bytes; 5324 int slot; 5325 int found_type; 5326 5327 path = btrfs_alloc_path(); 5328 if (!path) 5329 return -ENOMEM; 5330 5331 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 5332 offset, 0); 5333 if (ret < 0) 5334 goto out; 5335 5336 slot = path->slots[0]; 5337 if (ret == 1) { 5338 if (slot == 0) { 5339 /* can't find the item, must cow */ 5340 ret = 0; 5341 goto out; 5342 } 5343 slot--; 5344 } 5345 ret = 0; 5346 leaf = path->nodes[0]; 5347 btrfs_item_key_to_cpu(leaf, &key, slot); 5348 if (key.objectid != inode->i_ino || 5349 key.type != BTRFS_EXTENT_DATA_KEY) { 5350 /* not our file or wrong item type, must cow */ 5351 goto out; 5352 } 5353 5354 if (key.offset > offset) { 5355 /* Wrong offset, must cow */ 5356 goto out; 5357 } 5358 5359 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5360 found_type = btrfs_file_extent_type(leaf, fi); 5361 if (found_type != BTRFS_FILE_EXTENT_REG && 5362 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5363 /* not a regular extent, must cow */ 5364 goto out; 5365 } 5366 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5367 backref_offset = btrfs_file_extent_offset(leaf, fi); 5368 5369 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5370 if (extent_end < offset + len) { 5371 /* extent doesn't include our full range, must cow */ 5372 goto out; 5373 } 5374 5375 if (btrfs_extent_readonly(root, disk_bytenr)) 5376 goto out; 5377 5378 /* 5379 * look for other files referencing this extent, if we 5380 * find any we must cow 5381 */ 5382 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 5383 key.offset - backref_offset, disk_bytenr)) 5384 goto out; 5385 5386 /* 5387 * adjust disk_bytenr and num_bytes to cover just the bytes 5388 * in this extent we are about to write. If there 5389 * are any csums in that range we have to cow in order 5390 * to keep the csums correct 5391 */ 5392 disk_bytenr += backref_offset; 5393 disk_bytenr += offset - key.offset; 5394 num_bytes = min(offset + len, extent_end) - offset; 5395 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5396 goto out; 5397 /* 5398 * all of the above have passed, it is safe to overwrite this extent 5399 * without cow 5400 */ 5401 ret = 1; 5402 out: 5403 btrfs_free_path(path); 5404 return ret; 5405 } 5406 5407 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5408 struct buffer_head *bh_result, int create) 5409 { 5410 struct extent_map *em; 5411 struct btrfs_root *root = BTRFS_I(inode)->root; 5412 u64 start = iblock << inode->i_blkbits; 5413 u64 len = bh_result->b_size; 5414 struct btrfs_trans_handle *trans; 5415 5416 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5417 if (IS_ERR(em)) 5418 return PTR_ERR(em); 5419 5420 /* 5421 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5422 * io. INLINE is special, and we could probably kludge it in here, but 5423 * it's still buffered so for safety lets just fall back to the generic 5424 * buffered path. 5425 * 5426 * For COMPRESSED we _have_ to read the entire extent in so we can 5427 * decompress it, so there will be buffering required no matter what we 5428 * do, so go ahead and fallback to buffered. 5429 * 5430 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5431 * to buffered IO. Don't blame me, this is the price we pay for using 5432 * the generic code. 5433 */ 5434 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5435 em->block_start == EXTENT_MAP_INLINE) { 5436 free_extent_map(em); 5437 return -ENOTBLK; 5438 } 5439 5440 /* Just a good old fashioned hole, return */ 5441 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5442 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5443 free_extent_map(em); 5444 /* DIO will do one hole at a time, so just unlock a sector */ 5445 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5446 start + root->sectorsize - 1, GFP_NOFS); 5447 return 0; 5448 } 5449 5450 /* 5451 * We don't allocate a new extent in the following cases 5452 * 5453 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5454 * existing extent. 5455 * 2) The extent is marked as PREALLOC. We're good to go here and can 5456 * just use the extent. 5457 * 5458 */ 5459 if (!create) { 5460 len = em->len - (start - em->start); 5461 goto map; 5462 } 5463 5464 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5465 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5466 em->block_start != EXTENT_MAP_HOLE)) { 5467 int type; 5468 int ret; 5469 u64 block_start; 5470 5471 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5472 type = BTRFS_ORDERED_PREALLOC; 5473 else 5474 type = BTRFS_ORDERED_NOCOW; 5475 len = min(len, em->len - (start - em->start)); 5476 block_start = em->block_start + (start - em->start); 5477 5478 /* 5479 * we're not going to log anything, but we do need 5480 * to make sure the current transaction stays open 5481 * while we look for nocow cross refs 5482 */ 5483 trans = btrfs_join_transaction(root, 0); 5484 if (!trans) 5485 goto must_cow; 5486 5487 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5488 ret = btrfs_add_ordered_extent_dio(inode, start, 5489 block_start, len, len, type); 5490 btrfs_end_transaction(trans, root); 5491 if (ret) { 5492 free_extent_map(em); 5493 return ret; 5494 } 5495 goto unlock; 5496 } 5497 btrfs_end_transaction(trans, root); 5498 } 5499 must_cow: 5500 /* 5501 * this will cow the extent, reset the len in case we changed 5502 * it above 5503 */ 5504 len = bh_result->b_size; 5505 free_extent_map(em); 5506 em = btrfs_new_extent_direct(inode, start, len); 5507 if (IS_ERR(em)) 5508 return PTR_ERR(em); 5509 len = min(len, em->len - (start - em->start)); 5510 unlock: 5511 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5512 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5513 0, NULL, GFP_NOFS); 5514 map: 5515 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5516 inode->i_blkbits; 5517 bh_result->b_size = len; 5518 bh_result->b_bdev = em->bdev; 5519 set_buffer_mapped(bh_result); 5520 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5521 set_buffer_new(bh_result); 5522 5523 free_extent_map(em); 5524 5525 return 0; 5526 } 5527 5528 struct btrfs_dio_private { 5529 struct inode *inode; 5530 u64 logical_offset; 5531 u64 disk_bytenr; 5532 u64 bytes; 5533 u32 *csums; 5534 void *private; 5535 5536 /* number of bios pending for this dio */ 5537 atomic_t pending_bios; 5538 5539 /* IO errors */ 5540 int errors; 5541 5542 struct bio *orig_bio; 5543 }; 5544 5545 static void btrfs_endio_direct_read(struct bio *bio, int err) 5546 { 5547 struct btrfs_dio_private *dip = bio->bi_private; 5548 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5549 struct bio_vec *bvec = bio->bi_io_vec; 5550 struct inode *inode = dip->inode; 5551 struct btrfs_root *root = BTRFS_I(inode)->root; 5552 u64 start; 5553 u32 *private = dip->csums; 5554 5555 start = dip->logical_offset; 5556 do { 5557 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5558 struct page *page = bvec->bv_page; 5559 char *kaddr; 5560 u32 csum = ~(u32)0; 5561 unsigned long flags; 5562 5563 local_irq_save(flags); 5564 kaddr = kmap_atomic(page, KM_IRQ0); 5565 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5566 csum, bvec->bv_len); 5567 btrfs_csum_final(csum, (char *)&csum); 5568 kunmap_atomic(kaddr, KM_IRQ0); 5569 local_irq_restore(flags); 5570 5571 flush_dcache_page(bvec->bv_page); 5572 if (csum != *private) { 5573 printk(KERN_ERR "btrfs csum failed ino %lu off" 5574 " %llu csum %u private %u\n", 5575 inode->i_ino, (unsigned long long)start, 5576 csum, *private); 5577 err = -EIO; 5578 } 5579 } 5580 5581 start += bvec->bv_len; 5582 private++; 5583 bvec++; 5584 } while (bvec <= bvec_end); 5585 5586 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5587 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5588 bio->bi_private = dip->private; 5589 5590 kfree(dip->csums); 5591 kfree(dip); 5592 dio_end_io(bio, err); 5593 } 5594 5595 static void btrfs_endio_direct_write(struct bio *bio, int err) 5596 { 5597 struct btrfs_dio_private *dip = bio->bi_private; 5598 struct inode *inode = dip->inode; 5599 struct btrfs_root *root = BTRFS_I(inode)->root; 5600 struct btrfs_trans_handle *trans; 5601 struct btrfs_ordered_extent *ordered = NULL; 5602 struct extent_state *cached_state = NULL; 5603 u64 ordered_offset = dip->logical_offset; 5604 u64 ordered_bytes = dip->bytes; 5605 int ret; 5606 5607 if (err) 5608 goto out_done; 5609 again: 5610 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5611 &ordered_offset, 5612 ordered_bytes); 5613 if (!ret) 5614 goto out_test; 5615 5616 BUG_ON(!ordered); 5617 5618 trans = btrfs_join_transaction(root, 1); 5619 if (!trans) { 5620 err = -ENOMEM; 5621 goto out; 5622 } 5623 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5624 5625 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5626 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5627 if (!ret) 5628 ret = btrfs_update_inode(trans, root, inode); 5629 err = ret; 5630 goto out; 5631 } 5632 5633 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5634 ordered->file_offset + ordered->len - 1, 0, 5635 &cached_state, GFP_NOFS); 5636 5637 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5638 ret = btrfs_mark_extent_written(trans, inode, 5639 ordered->file_offset, 5640 ordered->file_offset + 5641 ordered->len); 5642 if (ret) { 5643 err = ret; 5644 goto out_unlock; 5645 } 5646 } else { 5647 ret = insert_reserved_file_extent(trans, inode, 5648 ordered->file_offset, 5649 ordered->start, 5650 ordered->disk_len, 5651 ordered->len, 5652 ordered->len, 5653 0, 0, 0, 5654 BTRFS_FILE_EXTENT_REG); 5655 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5656 ordered->file_offset, ordered->len); 5657 if (ret) { 5658 err = ret; 5659 WARN_ON(1); 5660 goto out_unlock; 5661 } 5662 } 5663 5664 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5665 btrfs_ordered_update_i_size(inode, 0, ordered); 5666 btrfs_update_inode(trans, root, inode); 5667 out_unlock: 5668 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5669 ordered->file_offset + ordered->len - 1, 5670 &cached_state, GFP_NOFS); 5671 out: 5672 btrfs_delalloc_release_metadata(inode, ordered->len); 5673 btrfs_end_transaction(trans, root); 5674 ordered_offset = ordered->file_offset + ordered->len; 5675 btrfs_put_ordered_extent(ordered); 5676 btrfs_put_ordered_extent(ordered); 5677 5678 out_test: 5679 /* 5680 * our bio might span multiple ordered extents. If we haven't 5681 * completed the accounting for the whole dio, go back and try again 5682 */ 5683 if (ordered_offset < dip->logical_offset + dip->bytes) { 5684 ordered_bytes = dip->logical_offset + dip->bytes - 5685 ordered_offset; 5686 goto again; 5687 } 5688 out_done: 5689 bio->bi_private = dip->private; 5690 5691 kfree(dip->csums); 5692 kfree(dip); 5693 dio_end_io(bio, err); 5694 } 5695 5696 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5697 struct bio *bio, int mirror_num, 5698 unsigned long bio_flags, u64 offset) 5699 { 5700 int ret; 5701 struct btrfs_root *root = BTRFS_I(inode)->root; 5702 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5703 BUG_ON(ret); 5704 return 0; 5705 } 5706 5707 static void btrfs_end_dio_bio(struct bio *bio, int err) 5708 { 5709 struct btrfs_dio_private *dip = bio->bi_private; 5710 5711 if (err) { 5712 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu " 5713 "sector %#Lx len %u err no %d\n", 5714 dip->inode->i_ino, bio->bi_rw, 5715 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5716 dip->errors = 1; 5717 5718 /* 5719 * before atomic variable goto zero, we must make sure 5720 * dip->errors is perceived to be set. 5721 */ 5722 smp_mb__before_atomic_dec(); 5723 } 5724 5725 /* if there are more bios still pending for this dio, just exit */ 5726 if (!atomic_dec_and_test(&dip->pending_bios)) 5727 goto out; 5728 5729 if (dip->errors) 5730 bio_io_error(dip->orig_bio); 5731 else { 5732 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5733 bio_endio(dip->orig_bio, 0); 5734 } 5735 out: 5736 bio_put(bio); 5737 } 5738 5739 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5740 u64 first_sector, gfp_t gfp_flags) 5741 { 5742 int nr_vecs = bio_get_nr_vecs(bdev); 5743 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5744 } 5745 5746 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5747 int rw, u64 file_offset, int skip_sum, 5748 u32 *csums) 5749 { 5750 int write = rw & REQ_WRITE; 5751 struct btrfs_root *root = BTRFS_I(inode)->root; 5752 int ret; 5753 5754 bio_get(bio); 5755 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5756 if (ret) 5757 goto err; 5758 5759 if (write && !skip_sum) { 5760 ret = btrfs_wq_submit_bio(root->fs_info, 5761 inode, rw, bio, 0, 0, 5762 file_offset, 5763 __btrfs_submit_bio_start_direct_io, 5764 __btrfs_submit_bio_done); 5765 goto err; 5766 } else if (!skip_sum) 5767 btrfs_lookup_bio_sums_dio(root, inode, bio, 5768 file_offset, csums); 5769 5770 ret = btrfs_map_bio(root, rw, bio, 0, 1); 5771 err: 5772 bio_put(bio); 5773 return ret; 5774 } 5775 5776 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5777 int skip_sum) 5778 { 5779 struct inode *inode = dip->inode; 5780 struct btrfs_root *root = BTRFS_I(inode)->root; 5781 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5782 struct bio *bio; 5783 struct bio *orig_bio = dip->orig_bio; 5784 struct bio_vec *bvec = orig_bio->bi_io_vec; 5785 u64 start_sector = orig_bio->bi_sector; 5786 u64 file_offset = dip->logical_offset; 5787 u64 submit_len = 0; 5788 u64 map_length; 5789 int nr_pages = 0; 5790 u32 *csums = dip->csums; 5791 int ret = 0; 5792 5793 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5794 if (!bio) 5795 return -ENOMEM; 5796 bio->bi_private = dip; 5797 bio->bi_end_io = btrfs_end_dio_bio; 5798 atomic_inc(&dip->pending_bios); 5799 5800 map_length = orig_bio->bi_size; 5801 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5802 &map_length, NULL, 0); 5803 if (ret) { 5804 bio_put(bio); 5805 return -EIO; 5806 } 5807 5808 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5809 if (unlikely(map_length < submit_len + bvec->bv_len || 5810 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5811 bvec->bv_offset) < bvec->bv_len)) { 5812 /* 5813 * inc the count before we submit the bio so 5814 * we know the end IO handler won't happen before 5815 * we inc the count. Otherwise, the dip might get freed 5816 * before we're done setting it up 5817 */ 5818 atomic_inc(&dip->pending_bios); 5819 ret = __btrfs_submit_dio_bio(bio, inode, rw, 5820 file_offset, skip_sum, 5821 csums); 5822 if (ret) { 5823 bio_put(bio); 5824 atomic_dec(&dip->pending_bios); 5825 goto out_err; 5826 } 5827 5828 if (!skip_sum) 5829 csums = csums + nr_pages; 5830 start_sector += submit_len >> 9; 5831 file_offset += submit_len; 5832 5833 submit_len = 0; 5834 nr_pages = 0; 5835 5836 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 5837 start_sector, GFP_NOFS); 5838 if (!bio) 5839 goto out_err; 5840 bio->bi_private = dip; 5841 bio->bi_end_io = btrfs_end_dio_bio; 5842 5843 map_length = orig_bio->bi_size; 5844 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5845 &map_length, NULL, 0); 5846 if (ret) { 5847 bio_put(bio); 5848 goto out_err; 5849 } 5850 } else { 5851 submit_len += bvec->bv_len; 5852 nr_pages ++; 5853 bvec++; 5854 } 5855 } 5856 5857 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 5858 csums); 5859 if (!ret) 5860 return 0; 5861 5862 bio_put(bio); 5863 out_err: 5864 dip->errors = 1; 5865 /* 5866 * before atomic variable goto zero, we must 5867 * make sure dip->errors is perceived to be set. 5868 */ 5869 smp_mb__before_atomic_dec(); 5870 if (atomic_dec_and_test(&dip->pending_bios)) 5871 bio_io_error(dip->orig_bio); 5872 5873 /* bio_end_io() will handle error, so we needn't return it */ 5874 return 0; 5875 } 5876 5877 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 5878 loff_t file_offset) 5879 { 5880 struct btrfs_root *root = BTRFS_I(inode)->root; 5881 struct btrfs_dio_private *dip; 5882 struct bio_vec *bvec = bio->bi_io_vec; 5883 int skip_sum; 5884 int write = rw & REQ_WRITE; 5885 int ret = 0; 5886 5887 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 5888 5889 dip = kmalloc(sizeof(*dip), GFP_NOFS); 5890 if (!dip) { 5891 ret = -ENOMEM; 5892 goto free_ordered; 5893 } 5894 dip->csums = NULL; 5895 5896 if (!skip_sum) { 5897 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 5898 if (!dip->csums) { 5899 ret = -ENOMEM; 5900 goto free_ordered; 5901 } 5902 } 5903 5904 dip->private = bio->bi_private; 5905 dip->inode = inode; 5906 dip->logical_offset = file_offset; 5907 5908 dip->bytes = 0; 5909 do { 5910 dip->bytes += bvec->bv_len; 5911 bvec++; 5912 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 5913 5914 dip->disk_bytenr = (u64)bio->bi_sector << 9; 5915 bio->bi_private = dip; 5916 dip->errors = 0; 5917 dip->orig_bio = bio; 5918 atomic_set(&dip->pending_bios, 0); 5919 5920 if (write) 5921 bio->bi_end_io = btrfs_endio_direct_write; 5922 else 5923 bio->bi_end_io = btrfs_endio_direct_read; 5924 5925 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 5926 if (!ret) 5927 return; 5928 free_ordered: 5929 /* 5930 * If this is a write, we need to clean up the reserved space and kill 5931 * the ordered extent. 5932 */ 5933 if (write) { 5934 struct btrfs_ordered_extent *ordered; 5935 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 5936 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 5937 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 5938 btrfs_free_reserved_extent(root, ordered->start, 5939 ordered->disk_len); 5940 btrfs_put_ordered_extent(ordered); 5941 btrfs_put_ordered_extent(ordered); 5942 } 5943 bio_endio(bio, ret); 5944 } 5945 5946 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 5947 const struct iovec *iov, loff_t offset, 5948 unsigned long nr_segs) 5949 { 5950 int seg; 5951 size_t size; 5952 unsigned long addr; 5953 unsigned blocksize_mask = root->sectorsize - 1; 5954 ssize_t retval = -EINVAL; 5955 loff_t end = offset; 5956 5957 if (offset & blocksize_mask) 5958 goto out; 5959 5960 /* Check the memory alignment. Blocks cannot straddle pages */ 5961 for (seg = 0; seg < nr_segs; seg++) { 5962 addr = (unsigned long)iov[seg].iov_base; 5963 size = iov[seg].iov_len; 5964 end += size; 5965 if ((addr & blocksize_mask) || (size & blocksize_mask)) 5966 goto out; 5967 } 5968 retval = 0; 5969 out: 5970 return retval; 5971 } 5972 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 5973 const struct iovec *iov, loff_t offset, 5974 unsigned long nr_segs) 5975 { 5976 struct file *file = iocb->ki_filp; 5977 struct inode *inode = file->f_mapping->host; 5978 struct btrfs_ordered_extent *ordered; 5979 struct extent_state *cached_state = NULL; 5980 u64 lockstart, lockend; 5981 ssize_t ret; 5982 int writing = rw & WRITE; 5983 int write_bits = 0; 5984 size_t count = iov_length(iov, nr_segs); 5985 5986 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 5987 offset, nr_segs)) { 5988 return 0; 5989 } 5990 5991 lockstart = offset; 5992 lockend = offset + count - 1; 5993 5994 if (writing) { 5995 ret = btrfs_delalloc_reserve_space(inode, count); 5996 if (ret) 5997 goto out; 5998 } 5999 6000 while (1) { 6001 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6002 0, &cached_state, GFP_NOFS); 6003 /* 6004 * We're concerned with the entire range that we're going to be 6005 * doing DIO to, so we need to make sure theres no ordered 6006 * extents in this range. 6007 */ 6008 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6009 lockend - lockstart + 1); 6010 if (!ordered) 6011 break; 6012 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6013 &cached_state, GFP_NOFS); 6014 btrfs_start_ordered_extent(inode, ordered, 1); 6015 btrfs_put_ordered_extent(ordered); 6016 cond_resched(); 6017 } 6018 6019 /* 6020 * we don't use btrfs_set_extent_delalloc because we don't want 6021 * the dirty or uptodate bits 6022 */ 6023 if (writing) { 6024 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6025 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6026 EXTENT_DELALLOC, 0, NULL, &cached_state, 6027 GFP_NOFS); 6028 if (ret) { 6029 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6030 lockend, EXTENT_LOCKED | write_bits, 6031 1, 0, &cached_state, GFP_NOFS); 6032 goto out; 6033 } 6034 } 6035 6036 free_extent_state(cached_state); 6037 cached_state = NULL; 6038 6039 ret = __blockdev_direct_IO(rw, iocb, inode, 6040 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6041 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6042 btrfs_submit_direct, 0); 6043 6044 if (ret < 0 && ret != -EIOCBQUEUED) { 6045 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6046 offset + iov_length(iov, nr_segs) - 1, 6047 EXTENT_LOCKED | write_bits, 1, 0, 6048 &cached_state, GFP_NOFS); 6049 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6050 /* 6051 * We're falling back to buffered, unlock the section we didn't 6052 * do IO on. 6053 */ 6054 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6055 offset + iov_length(iov, nr_segs) - 1, 6056 EXTENT_LOCKED | write_bits, 1, 0, 6057 &cached_state, GFP_NOFS); 6058 } 6059 out: 6060 free_extent_state(cached_state); 6061 return ret; 6062 } 6063 6064 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6065 __u64 start, __u64 len) 6066 { 6067 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 6068 } 6069 6070 int btrfs_readpage(struct file *file, struct page *page) 6071 { 6072 struct extent_io_tree *tree; 6073 tree = &BTRFS_I(page->mapping->host)->io_tree; 6074 return extent_read_full_page(tree, page, btrfs_get_extent); 6075 } 6076 6077 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6078 { 6079 struct extent_io_tree *tree; 6080 6081 6082 if (current->flags & PF_MEMALLOC) { 6083 redirty_page_for_writepage(wbc, page); 6084 unlock_page(page); 6085 return 0; 6086 } 6087 tree = &BTRFS_I(page->mapping->host)->io_tree; 6088 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6089 } 6090 6091 int btrfs_writepages(struct address_space *mapping, 6092 struct writeback_control *wbc) 6093 { 6094 struct extent_io_tree *tree; 6095 6096 tree = &BTRFS_I(mapping->host)->io_tree; 6097 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6098 } 6099 6100 static int 6101 btrfs_readpages(struct file *file, struct address_space *mapping, 6102 struct list_head *pages, unsigned nr_pages) 6103 { 6104 struct extent_io_tree *tree; 6105 tree = &BTRFS_I(mapping->host)->io_tree; 6106 return extent_readpages(tree, mapping, pages, nr_pages, 6107 btrfs_get_extent); 6108 } 6109 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6110 { 6111 struct extent_io_tree *tree; 6112 struct extent_map_tree *map; 6113 int ret; 6114 6115 tree = &BTRFS_I(page->mapping->host)->io_tree; 6116 map = &BTRFS_I(page->mapping->host)->extent_tree; 6117 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6118 if (ret == 1) { 6119 ClearPagePrivate(page); 6120 set_page_private(page, 0); 6121 page_cache_release(page); 6122 } 6123 return ret; 6124 } 6125 6126 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6127 { 6128 if (PageWriteback(page) || PageDirty(page)) 6129 return 0; 6130 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6131 } 6132 6133 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6134 { 6135 struct extent_io_tree *tree; 6136 struct btrfs_ordered_extent *ordered; 6137 struct extent_state *cached_state = NULL; 6138 u64 page_start = page_offset(page); 6139 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6140 6141 6142 /* 6143 * we have the page locked, so new writeback can't start, 6144 * and the dirty bit won't be cleared while we are here. 6145 * 6146 * Wait for IO on this page so that we can safely clear 6147 * the PagePrivate2 bit and do ordered accounting 6148 */ 6149 wait_on_page_writeback(page); 6150 6151 tree = &BTRFS_I(page->mapping->host)->io_tree; 6152 if (offset) { 6153 btrfs_releasepage(page, GFP_NOFS); 6154 return; 6155 } 6156 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6157 GFP_NOFS); 6158 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6159 page_offset(page)); 6160 if (ordered) { 6161 /* 6162 * IO on this page will never be started, so we need 6163 * to account for any ordered extents now 6164 */ 6165 clear_extent_bit(tree, page_start, page_end, 6166 EXTENT_DIRTY | EXTENT_DELALLOC | 6167 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6168 &cached_state, GFP_NOFS); 6169 /* 6170 * whoever cleared the private bit is responsible 6171 * for the finish_ordered_io 6172 */ 6173 if (TestClearPagePrivate2(page)) { 6174 btrfs_finish_ordered_io(page->mapping->host, 6175 page_start, page_end); 6176 } 6177 btrfs_put_ordered_extent(ordered); 6178 cached_state = NULL; 6179 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6180 GFP_NOFS); 6181 } 6182 clear_extent_bit(tree, page_start, page_end, 6183 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6184 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6185 __btrfs_releasepage(page, GFP_NOFS); 6186 6187 ClearPageChecked(page); 6188 if (PagePrivate(page)) { 6189 ClearPagePrivate(page); 6190 set_page_private(page, 0); 6191 page_cache_release(page); 6192 } 6193 } 6194 6195 /* 6196 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6197 * called from a page fault handler when a page is first dirtied. Hence we must 6198 * be careful to check for EOF conditions here. We set the page up correctly 6199 * for a written page which means we get ENOSPC checking when writing into 6200 * holes and correct delalloc and unwritten extent mapping on filesystems that 6201 * support these features. 6202 * 6203 * We are not allowed to take the i_mutex here so we have to play games to 6204 * protect against truncate races as the page could now be beyond EOF. Because 6205 * vmtruncate() writes the inode size before removing pages, once we have the 6206 * page lock we can determine safely if the page is beyond EOF. If it is not 6207 * beyond EOF, then the page is guaranteed safe against truncation until we 6208 * unlock the page. 6209 */ 6210 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6211 { 6212 struct page *page = vmf->page; 6213 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6214 struct btrfs_root *root = BTRFS_I(inode)->root; 6215 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6216 struct btrfs_ordered_extent *ordered; 6217 struct extent_state *cached_state = NULL; 6218 char *kaddr; 6219 unsigned long zero_start; 6220 loff_t size; 6221 int ret; 6222 u64 page_start; 6223 u64 page_end; 6224 6225 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6226 if (ret) { 6227 if (ret == -ENOMEM) 6228 ret = VM_FAULT_OOM; 6229 else /* -ENOSPC, -EIO, etc */ 6230 ret = VM_FAULT_SIGBUS; 6231 goto out; 6232 } 6233 6234 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6235 again: 6236 lock_page(page); 6237 size = i_size_read(inode); 6238 page_start = page_offset(page); 6239 page_end = page_start + PAGE_CACHE_SIZE - 1; 6240 6241 if ((page->mapping != inode->i_mapping) || 6242 (page_start >= size)) { 6243 /* page got truncated out from underneath us */ 6244 goto out_unlock; 6245 } 6246 wait_on_page_writeback(page); 6247 6248 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6249 GFP_NOFS); 6250 set_page_extent_mapped(page); 6251 6252 /* 6253 * we can't set the delalloc bits if there are pending ordered 6254 * extents. Drop our locks and wait for them to finish 6255 */ 6256 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6257 if (ordered) { 6258 unlock_extent_cached(io_tree, page_start, page_end, 6259 &cached_state, GFP_NOFS); 6260 unlock_page(page); 6261 btrfs_start_ordered_extent(inode, ordered, 1); 6262 btrfs_put_ordered_extent(ordered); 6263 goto again; 6264 } 6265 6266 /* 6267 * XXX - page_mkwrite gets called every time the page is dirtied, even 6268 * if it was already dirty, so for space accounting reasons we need to 6269 * clear any delalloc bits for the range we are fixing to save. There 6270 * is probably a better way to do this, but for now keep consistent with 6271 * prepare_pages in the normal write path. 6272 */ 6273 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6274 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6275 0, 0, &cached_state, GFP_NOFS); 6276 6277 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6278 &cached_state); 6279 if (ret) { 6280 unlock_extent_cached(io_tree, page_start, page_end, 6281 &cached_state, GFP_NOFS); 6282 ret = VM_FAULT_SIGBUS; 6283 goto out_unlock; 6284 } 6285 ret = 0; 6286 6287 /* page is wholly or partially inside EOF */ 6288 if (page_start + PAGE_CACHE_SIZE > size) 6289 zero_start = size & ~PAGE_CACHE_MASK; 6290 else 6291 zero_start = PAGE_CACHE_SIZE; 6292 6293 if (zero_start != PAGE_CACHE_SIZE) { 6294 kaddr = kmap(page); 6295 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6296 flush_dcache_page(page); 6297 kunmap(page); 6298 } 6299 ClearPageChecked(page); 6300 set_page_dirty(page); 6301 SetPageUptodate(page); 6302 6303 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6304 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6305 6306 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6307 6308 out_unlock: 6309 if (!ret) 6310 return VM_FAULT_LOCKED; 6311 unlock_page(page); 6312 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6313 out: 6314 return ret; 6315 } 6316 6317 static void btrfs_truncate(struct inode *inode) 6318 { 6319 struct btrfs_root *root = BTRFS_I(inode)->root; 6320 int ret; 6321 struct btrfs_trans_handle *trans; 6322 unsigned long nr; 6323 u64 mask = root->sectorsize - 1; 6324 6325 if (!S_ISREG(inode->i_mode)) { 6326 WARN_ON(1); 6327 return; 6328 } 6329 6330 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6331 if (ret) 6332 return; 6333 6334 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6335 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6336 6337 trans = btrfs_start_transaction(root, 0); 6338 BUG_ON(IS_ERR(trans)); 6339 btrfs_set_trans_block_group(trans, inode); 6340 trans->block_rsv = root->orphan_block_rsv; 6341 6342 /* 6343 * setattr is responsible for setting the ordered_data_close flag, 6344 * but that is only tested during the last file release. That 6345 * could happen well after the next commit, leaving a great big 6346 * window where new writes may get lost if someone chooses to write 6347 * to this file after truncating to zero 6348 * 6349 * The inode doesn't have any dirty data here, and so if we commit 6350 * this is a noop. If someone immediately starts writing to the inode 6351 * it is very likely we'll catch some of their writes in this 6352 * transaction, and the commit will find this file on the ordered 6353 * data list with good things to send down. 6354 * 6355 * This is a best effort solution, there is still a window where 6356 * using truncate to replace the contents of the file will 6357 * end up with a zero length file after a crash. 6358 */ 6359 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6360 btrfs_add_ordered_operation(trans, root, inode); 6361 6362 while (1) { 6363 if (!trans) { 6364 trans = btrfs_start_transaction(root, 0); 6365 BUG_ON(IS_ERR(trans)); 6366 btrfs_set_trans_block_group(trans, inode); 6367 trans->block_rsv = root->orphan_block_rsv; 6368 } 6369 6370 ret = btrfs_block_rsv_check(trans, root, 6371 root->orphan_block_rsv, 0, 5); 6372 if (ret) { 6373 BUG_ON(ret != -EAGAIN); 6374 ret = btrfs_commit_transaction(trans, root); 6375 BUG_ON(ret); 6376 trans = NULL; 6377 continue; 6378 } 6379 6380 ret = btrfs_truncate_inode_items(trans, root, inode, 6381 inode->i_size, 6382 BTRFS_EXTENT_DATA_KEY); 6383 if (ret != -EAGAIN) 6384 break; 6385 6386 ret = btrfs_update_inode(trans, root, inode); 6387 BUG_ON(ret); 6388 6389 nr = trans->blocks_used; 6390 btrfs_end_transaction(trans, root); 6391 trans = NULL; 6392 btrfs_btree_balance_dirty(root, nr); 6393 } 6394 6395 if (ret == 0 && inode->i_nlink > 0) { 6396 ret = btrfs_orphan_del(trans, inode); 6397 BUG_ON(ret); 6398 } 6399 6400 ret = btrfs_update_inode(trans, root, inode); 6401 BUG_ON(ret); 6402 6403 nr = trans->blocks_used; 6404 ret = btrfs_end_transaction_throttle(trans, root); 6405 BUG_ON(ret); 6406 btrfs_btree_balance_dirty(root, nr); 6407 } 6408 6409 /* 6410 * create a new subvolume directory/inode (helper for the ioctl). 6411 */ 6412 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6413 struct btrfs_root *new_root, 6414 u64 new_dirid, u64 alloc_hint) 6415 { 6416 struct inode *inode; 6417 int err; 6418 u64 index = 0; 6419 6420 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6421 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 6422 if (IS_ERR(inode)) 6423 return PTR_ERR(inode); 6424 inode->i_op = &btrfs_dir_inode_operations; 6425 inode->i_fop = &btrfs_dir_file_operations; 6426 6427 inode->i_nlink = 1; 6428 btrfs_i_size_write(inode, 0); 6429 6430 err = btrfs_update_inode(trans, new_root, inode); 6431 BUG_ON(err); 6432 6433 iput(inode); 6434 return 0; 6435 } 6436 6437 /* helper function for file defrag and space balancing. This 6438 * forces readahead on a given range of bytes in an inode 6439 */ 6440 unsigned long btrfs_force_ra(struct address_space *mapping, 6441 struct file_ra_state *ra, struct file *file, 6442 pgoff_t offset, pgoff_t last_index) 6443 { 6444 pgoff_t req_size = last_index - offset + 1; 6445 6446 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 6447 return offset + req_size; 6448 } 6449 6450 struct inode *btrfs_alloc_inode(struct super_block *sb) 6451 { 6452 struct btrfs_inode *ei; 6453 struct inode *inode; 6454 6455 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6456 if (!ei) 6457 return NULL; 6458 6459 ei->root = NULL; 6460 ei->space_info = NULL; 6461 ei->generation = 0; 6462 ei->sequence = 0; 6463 ei->last_trans = 0; 6464 ei->last_sub_trans = 0; 6465 ei->logged_trans = 0; 6466 ei->delalloc_bytes = 0; 6467 ei->reserved_bytes = 0; 6468 ei->disk_i_size = 0; 6469 ei->flags = 0; 6470 ei->index_cnt = (u64)-1; 6471 ei->last_unlink_trans = 0; 6472 6473 spin_lock_init(&ei->accounting_lock); 6474 atomic_set(&ei->outstanding_extents, 0); 6475 ei->reserved_extents = 0; 6476 6477 ei->ordered_data_close = 0; 6478 ei->orphan_meta_reserved = 0; 6479 ei->dummy_inode = 0; 6480 ei->force_compress = 0; 6481 6482 inode = &ei->vfs_inode; 6483 extent_map_tree_init(&ei->extent_tree, GFP_NOFS); 6484 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS); 6485 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS); 6486 mutex_init(&ei->log_mutex); 6487 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6488 INIT_LIST_HEAD(&ei->i_orphan); 6489 INIT_LIST_HEAD(&ei->delalloc_inodes); 6490 INIT_LIST_HEAD(&ei->ordered_operations); 6491 RB_CLEAR_NODE(&ei->rb_node); 6492 6493 return inode; 6494 } 6495 6496 static void btrfs_i_callback(struct rcu_head *head) 6497 { 6498 struct inode *inode = container_of(head, struct inode, i_rcu); 6499 INIT_LIST_HEAD(&inode->i_dentry); 6500 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6501 } 6502 6503 void btrfs_destroy_inode(struct inode *inode) 6504 { 6505 struct btrfs_ordered_extent *ordered; 6506 struct btrfs_root *root = BTRFS_I(inode)->root; 6507 6508 WARN_ON(!list_empty(&inode->i_dentry)); 6509 WARN_ON(inode->i_data.nrpages); 6510 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents)); 6511 WARN_ON(BTRFS_I(inode)->reserved_extents); 6512 6513 /* 6514 * This can happen where we create an inode, but somebody else also 6515 * created the same inode and we need to destroy the one we already 6516 * created. 6517 */ 6518 if (!root) 6519 goto free; 6520 6521 /* 6522 * Make sure we're properly removed from the ordered operation 6523 * lists. 6524 */ 6525 smp_mb(); 6526 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6527 spin_lock(&root->fs_info->ordered_extent_lock); 6528 list_del_init(&BTRFS_I(inode)->ordered_operations); 6529 spin_unlock(&root->fs_info->ordered_extent_lock); 6530 } 6531 6532 if (root == root->fs_info->tree_root) { 6533 struct btrfs_block_group_cache *block_group; 6534 6535 block_group = btrfs_lookup_block_group(root->fs_info, 6536 BTRFS_I(inode)->block_group); 6537 if (block_group && block_group->inode == inode) { 6538 spin_lock(&block_group->lock); 6539 block_group->inode = NULL; 6540 spin_unlock(&block_group->lock); 6541 btrfs_put_block_group(block_group); 6542 } else if (block_group) { 6543 btrfs_put_block_group(block_group); 6544 } 6545 } 6546 6547 spin_lock(&root->orphan_lock); 6548 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6549 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n", 6550 inode->i_ino); 6551 list_del_init(&BTRFS_I(inode)->i_orphan); 6552 } 6553 spin_unlock(&root->orphan_lock); 6554 6555 while (1) { 6556 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6557 if (!ordered) 6558 break; 6559 else { 6560 printk(KERN_ERR "btrfs found ordered " 6561 "extent %llu %llu on inode cleanup\n", 6562 (unsigned long long)ordered->file_offset, 6563 (unsigned long long)ordered->len); 6564 btrfs_remove_ordered_extent(inode, ordered); 6565 btrfs_put_ordered_extent(ordered); 6566 btrfs_put_ordered_extent(ordered); 6567 } 6568 } 6569 inode_tree_del(inode); 6570 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6571 free: 6572 call_rcu(&inode->i_rcu, btrfs_i_callback); 6573 } 6574 6575 int btrfs_drop_inode(struct inode *inode) 6576 { 6577 struct btrfs_root *root = BTRFS_I(inode)->root; 6578 6579 if (btrfs_root_refs(&root->root_item) == 0 && 6580 root != root->fs_info->tree_root) 6581 return 1; 6582 else 6583 return generic_drop_inode(inode); 6584 } 6585 6586 static void init_once(void *foo) 6587 { 6588 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6589 6590 inode_init_once(&ei->vfs_inode); 6591 } 6592 6593 void btrfs_destroy_cachep(void) 6594 { 6595 if (btrfs_inode_cachep) 6596 kmem_cache_destroy(btrfs_inode_cachep); 6597 if (btrfs_trans_handle_cachep) 6598 kmem_cache_destroy(btrfs_trans_handle_cachep); 6599 if (btrfs_transaction_cachep) 6600 kmem_cache_destroy(btrfs_transaction_cachep); 6601 if (btrfs_path_cachep) 6602 kmem_cache_destroy(btrfs_path_cachep); 6603 } 6604 6605 int btrfs_init_cachep(void) 6606 { 6607 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6608 sizeof(struct btrfs_inode), 0, 6609 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6610 if (!btrfs_inode_cachep) 6611 goto fail; 6612 6613 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6614 sizeof(struct btrfs_trans_handle), 0, 6615 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6616 if (!btrfs_trans_handle_cachep) 6617 goto fail; 6618 6619 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6620 sizeof(struct btrfs_transaction), 0, 6621 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6622 if (!btrfs_transaction_cachep) 6623 goto fail; 6624 6625 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6626 sizeof(struct btrfs_path), 0, 6627 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6628 if (!btrfs_path_cachep) 6629 goto fail; 6630 6631 return 0; 6632 fail: 6633 btrfs_destroy_cachep(); 6634 return -ENOMEM; 6635 } 6636 6637 static int btrfs_getattr(struct vfsmount *mnt, 6638 struct dentry *dentry, struct kstat *stat) 6639 { 6640 struct inode *inode = dentry->d_inode; 6641 generic_fillattr(inode, stat); 6642 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 6643 stat->blksize = PAGE_CACHE_SIZE; 6644 stat->blocks = (inode_get_bytes(inode) + 6645 BTRFS_I(inode)->delalloc_bytes) >> 9; 6646 return 0; 6647 } 6648 6649 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6650 struct inode *new_dir, struct dentry *new_dentry) 6651 { 6652 struct btrfs_trans_handle *trans; 6653 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6654 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6655 struct inode *new_inode = new_dentry->d_inode; 6656 struct inode *old_inode = old_dentry->d_inode; 6657 struct timespec ctime = CURRENT_TIME; 6658 u64 index = 0; 6659 u64 root_objectid; 6660 int ret; 6661 6662 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6663 return -EPERM; 6664 6665 /* we only allow rename subvolume link between subvolumes */ 6666 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6667 return -EXDEV; 6668 6669 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6670 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) 6671 return -ENOTEMPTY; 6672 6673 if (S_ISDIR(old_inode->i_mode) && new_inode && 6674 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6675 return -ENOTEMPTY; 6676 /* 6677 * we're using rename to replace one file with another. 6678 * and the replacement file is large. Start IO on it now so 6679 * we don't add too much work to the end of the transaction 6680 */ 6681 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6682 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6683 filemap_flush(old_inode->i_mapping); 6684 6685 /* close the racy window with snapshot create/destroy ioctl */ 6686 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6687 down_read(&root->fs_info->subvol_sem); 6688 /* 6689 * We want to reserve the absolute worst case amount of items. So if 6690 * both inodes are subvols and we need to unlink them then that would 6691 * require 4 item modifications, but if they are both normal inodes it 6692 * would require 5 item modifications, so we'll assume their normal 6693 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6694 * should cover the worst case number of items we'll modify. 6695 */ 6696 trans = btrfs_start_transaction(root, 20); 6697 if (IS_ERR(trans)) 6698 return PTR_ERR(trans); 6699 6700 btrfs_set_trans_block_group(trans, new_dir); 6701 6702 if (dest != root) 6703 btrfs_record_root_in_trans(trans, dest); 6704 6705 ret = btrfs_set_inode_index(new_dir, &index); 6706 if (ret) 6707 goto out_fail; 6708 6709 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6710 /* force full log commit if subvolume involved. */ 6711 root->fs_info->last_trans_log_full_commit = trans->transid; 6712 } else { 6713 ret = btrfs_insert_inode_ref(trans, dest, 6714 new_dentry->d_name.name, 6715 new_dentry->d_name.len, 6716 old_inode->i_ino, 6717 new_dir->i_ino, index); 6718 if (ret) 6719 goto out_fail; 6720 /* 6721 * this is an ugly little race, but the rename is required 6722 * to make sure that if we crash, the inode is either at the 6723 * old name or the new one. pinning the log transaction lets 6724 * us make sure we don't allow a log commit to come in after 6725 * we unlink the name but before we add the new name back in. 6726 */ 6727 btrfs_pin_log_trans(root); 6728 } 6729 /* 6730 * make sure the inode gets flushed if it is replacing 6731 * something. 6732 */ 6733 if (new_inode && new_inode->i_size && 6734 old_inode && S_ISREG(old_inode->i_mode)) { 6735 btrfs_add_ordered_operation(trans, root, old_inode); 6736 } 6737 6738 old_dir->i_ctime = old_dir->i_mtime = ctime; 6739 new_dir->i_ctime = new_dir->i_mtime = ctime; 6740 old_inode->i_ctime = ctime; 6741 6742 if (old_dentry->d_parent != new_dentry->d_parent) 6743 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 6744 6745 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6746 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 6747 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 6748 old_dentry->d_name.name, 6749 old_dentry->d_name.len); 6750 } else { 6751 btrfs_inc_nlink(old_dentry->d_inode); 6752 ret = btrfs_unlink_inode(trans, root, old_dir, 6753 old_dentry->d_inode, 6754 old_dentry->d_name.name, 6755 old_dentry->d_name.len); 6756 } 6757 BUG_ON(ret); 6758 6759 if (new_inode) { 6760 new_inode->i_ctime = CURRENT_TIME; 6761 if (unlikely(new_inode->i_ino == 6762 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 6763 root_objectid = BTRFS_I(new_inode)->location.objectid; 6764 ret = btrfs_unlink_subvol(trans, dest, new_dir, 6765 root_objectid, 6766 new_dentry->d_name.name, 6767 new_dentry->d_name.len); 6768 BUG_ON(new_inode->i_nlink == 0); 6769 } else { 6770 ret = btrfs_unlink_inode(trans, dest, new_dir, 6771 new_dentry->d_inode, 6772 new_dentry->d_name.name, 6773 new_dentry->d_name.len); 6774 } 6775 BUG_ON(ret); 6776 if (new_inode->i_nlink == 0) { 6777 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 6778 BUG_ON(ret); 6779 } 6780 } 6781 6782 ret = btrfs_add_link(trans, new_dir, old_inode, 6783 new_dentry->d_name.name, 6784 new_dentry->d_name.len, 0, index); 6785 BUG_ON(ret); 6786 6787 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 6788 struct dentry *parent = dget_parent(new_dentry); 6789 btrfs_log_new_name(trans, old_inode, old_dir, parent); 6790 dput(parent); 6791 btrfs_end_log_trans(root); 6792 } 6793 out_fail: 6794 btrfs_end_transaction_throttle(trans, root); 6795 6796 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6797 up_read(&root->fs_info->subvol_sem); 6798 6799 return ret; 6800 } 6801 6802 /* 6803 * some fairly slow code that needs optimization. This walks the list 6804 * of all the inodes with pending delalloc and forces them to disk. 6805 */ 6806 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 6807 { 6808 struct list_head *head = &root->fs_info->delalloc_inodes; 6809 struct btrfs_inode *binode; 6810 struct inode *inode; 6811 6812 if (root->fs_info->sb->s_flags & MS_RDONLY) 6813 return -EROFS; 6814 6815 spin_lock(&root->fs_info->delalloc_lock); 6816 while (!list_empty(head)) { 6817 binode = list_entry(head->next, struct btrfs_inode, 6818 delalloc_inodes); 6819 inode = igrab(&binode->vfs_inode); 6820 if (!inode) 6821 list_del_init(&binode->delalloc_inodes); 6822 spin_unlock(&root->fs_info->delalloc_lock); 6823 if (inode) { 6824 filemap_flush(inode->i_mapping); 6825 if (delay_iput) 6826 btrfs_add_delayed_iput(inode); 6827 else 6828 iput(inode); 6829 } 6830 cond_resched(); 6831 spin_lock(&root->fs_info->delalloc_lock); 6832 } 6833 spin_unlock(&root->fs_info->delalloc_lock); 6834 6835 /* the filemap_flush will queue IO into the worker threads, but 6836 * we have to make sure the IO is actually started and that 6837 * ordered extents get created before we return 6838 */ 6839 atomic_inc(&root->fs_info->async_submit_draining); 6840 while (atomic_read(&root->fs_info->nr_async_submits) || 6841 atomic_read(&root->fs_info->async_delalloc_pages)) { 6842 wait_event(root->fs_info->async_submit_wait, 6843 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 6844 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 6845 } 6846 atomic_dec(&root->fs_info->async_submit_draining); 6847 return 0; 6848 } 6849 6850 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput, 6851 int sync) 6852 { 6853 struct btrfs_inode *binode; 6854 struct inode *inode = NULL; 6855 6856 spin_lock(&root->fs_info->delalloc_lock); 6857 while (!list_empty(&root->fs_info->delalloc_inodes)) { 6858 binode = list_entry(root->fs_info->delalloc_inodes.next, 6859 struct btrfs_inode, delalloc_inodes); 6860 inode = igrab(&binode->vfs_inode); 6861 if (inode) { 6862 list_move_tail(&binode->delalloc_inodes, 6863 &root->fs_info->delalloc_inodes); 6864 break; 6865 } 6866 6867 list_del_init(&binode->delalloc_inodes); 6868 cond_resched_lock(&root->fs_info->delalloc_lock); 6869 } 6870 spin_unlock(&root->fs_info->delalloc_lock); 6871 6872 if (inode) { 6873 if (sync) { 6874 filemap_write_and_wait(inode->i_mapping); 6875 /* 6876 * We have to do this because compression doesn't 6877 * actually set PG_writeback until it submits the pages 6878 * for IO, which happens in an async thread, so we could 6879 * race and not actually wait for any writeback pages 6880 * because they've not been submitted yet. Technically 6881 * this could still be the case for the ordered stuff 6882 * since the async thread may not have started to do its 6883 * work yet. If this becomes the case then we need to 6884 * figure out a way to make sure that in writepage we 6885 * wait for any async pages to be submitted before 6886 * returning so that fdatawait does what its supposed to 6887 * do. 6888 */ 6889 btrfs_wait_ordered_range(inode, 0, (u64)-1); 6890 } else { 6891 filemap_flush(inode->i_mapping); 6892 } 6893 if (delay_iput) 6894 btrfs_add_delayed_iput(inode); 6895 else 6896 iput(inode); 6897 return 1; 6898 } 6899 return 0; 6900 } 6901 6902 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 6903 const char *symname) 6904 { 6905 struct btrfs_trans_handle *trans; 6906 struct btrfs_root *root = BTRFS_I(dir)->root; 6907 struct btrfs_path *path; 6908 struct btrfs_key key; 6909 struct inode *inode = NULL; 6910 int err; 6911 int drop_inode = 0; 6912 u64 objectid; 6913 u64 index = 0 ; 6914 int name_len; 6915 int datasize; 6916 unsigned long ptr; 6917 struct btrfs_file_extent_item *ei; 6918 struct extent_buffer *leaf; 6919 unsigned long nr = 0; 6920 6921 name_len = strlen(symname) + 1; 6922 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 6923 return -ENAMETOOLONG; 6924 6925 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 6926 if (err) 6927 return err; 6928 /* 6929 * 2 items for inode item and ref 6930 * 2 items for dir items 6931 * 1 item for xattr if selinux is on 6932 */ 6933 trans = btrfs_start_transaction(root, 5); 6934 if (IS_ERR(trans)) 6935 return PTR_ERR(trans); 6936 6937 btrfs_set_trans_block_group(trans, dir); 6938 6939 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6940 dentry->d_name.len, dir->i_ino, objectid, 6941 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 6942 &index); 6943 err = PTR_ERR(inode); 6944 if (IS_ERR(inode)) 6945 goto out_unlock; 6946 6947 err = btrfs_init_inode_security(trans, inode, dir); 6948 if (err) { 6949 drop_inode = 1; 6950 goto out_unlock; 6951 } 6952 6953 btrfs_set_trans_block_group(trans, inode); 6954 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 6955 if (err) 6956 drop_inode = 1; 6957 else { 6958 inode->i_mapping->a_ops = &btrfs_aops; 6959 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 6960 inode->i_fop = &btrfs_file_operations; 6961 inode->i_op = &btrfs_file_inode_operations; 6962 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6963 } 6964 btrfs_update_inode_block_group(trans, inode); 6965 btrfs_update_inode_block_group(trans, dir); 6966 if (drop_inode) 6967 goto out_unlock; 6968 6969 path = btrfs_alloc_path(); 6970 BUG_ON(!path); 6971 key.objectid = inode->i_ino; 6972 key.offset = 0; 6973 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 6974 datasize = btrfs_file_extent_calc_inline_size(name_len); 6975 err = btrfs_insert_empty_item(trans, root, path, &key, 6976 datasize); 6977 if (err) { 6978 drop_inode = 1; 6979 goto out_unlock; 6980 } 6981 leaf = path->nodes[0]; 6982 ei = btrfs_item_ptr(leaf, path->slots[0], 6983 struct btrfs_file_extent_item); 6984 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 6985 btrfs_set_file_extent_type(leaf, ei, 6986 BTRFS_FILE_EXTENT_INLINE); 6987 btrfs_set_file_extent_encryption(leaf, ei, 0); 6988 btrfs_set_file_extent_compression(leaf, ei, 0); 6989 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 6990 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 6991 6992 ptr = btrfs_file_extent_inline_start(ei); 6993 write_extent_buffer(leaf, symname, ptr, name_len); 6994 btrfs_mark_buffer_dirty(leaf); 6995 btrfs_free_path(path); 6996 6997 inode->i_op = &btrfs_symlink_inode_operations; 6998 inode->i_mapping->a_ops = &btrfs_symlink_aops; 6999 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7000 inode_set_bytes(inode, name_len); 7001 btrfs_i_size_write(inode, name_len - 1); 7002 err = btrfs_update_inode(trans, root, inode); 7003 if (err) 7004 drop_inode = 1; 7005 7006 out_unlock: 7007 nr = trans->blocks_used; 7008 btrfs_end_transaction_throttle(trans, root); 7009 if (drop_inode) { 7010 inode_dec_link_count(inode); 7011 iput(inode); 7012 } 7013 btrfs_btree_balance_dirty(root, nr); 7014 return err; 7015 } 7016 7017 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7018 u64 start, u64 num_bytes, u64 min_size, 7019 loff_t actual_len, u64 *alloc_hint, 7020 struct btrfs_trans_handle *trans) 7021 { 7022 struct btrfs_root *root = BTRFS_I(inode)->root; 7023 struct btrfs_key ins; 7024 u64 cur_offset = start; 7025 u64 i_size; 7026 int ret = 0; 7027 bool own_trans = true; 7028 7029 if (trans) 7030 own_trans = false; 7031 while (num_bytes > 0) { 7032 if (own_trans) { 7033 trans = btrfs_start_transaction(root, 3); 7034 if (IS_ERR(trans)) { 7035 ret = PTR_ERR(trans); 7036 break; 7037 } 7038 } 7039 7040 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7041 0, *alloc_hint, (u64)-1, &ins, 1); 7042 if (ret) { 7043 if (own_trans) 7044 btrfs_end_transaction(trans, root); 7045 break; 7046 } 7047 7048 ret = insert_reserved_file_extent(trans, inode, 7049 cur_offset, ins.objectid, 7050 ins.offset, ins.offset, 7051 ins.offset, 0, 0, 0, 7052 BTRFS_FILE_EXTENT_PREALLOC); 7053 BUG_ON(ret); 7054 btrfs_drop_extent_cache(inode, cur_offset, 7055 cur_offset + ins.offset -1, 0); 7056 7057 num_bytes -= ins.offset; 7058 cur_offset += ins.offset; 7059 *alloc_hint = ins.objectid + ins.offset; 7060 7061 inode->i_ctime = CURRENT_TIME; 7062 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7063 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7064 (actual_len > inode->i_size) && 7065 (cur_offset > inode->i_size)) { 7066 if (cur_offset > actual_len) 7067 i_size = actual_len; 7068 else 7069 i_size = cur_offset; 7070 i_size_write(inode, i_size); 7071 btrfs_ordered_update_i_size(inode, i_size, NULL); 7072 } 7073 7074 ret = btrfs_update_inode(trans, root, inode); 7075 BUG_ON(ret); 7076 7077 if (own_trans) 7078 btrfs_end_transaction(trans, root); 7079 } 7080 return ret; 7081 } 7082 7083 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7084 u64 start, u64 num_bytes, u64 min_size, 7085 loff_t actual_len, u64 *alloc_hint) 7086 { 7087 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7088 min_size, actual_len, alloc_hint, 7089 NULL); 7090 } 7091 7092 int btrfs_prealloc_file_range_trans(struct inode *inode, 7093 struct btrfs_trans_handle *trans, int mode, 7094 u64 start, u64 num_bytes, u64 min_size, 7095 loff_t actual_len, u64 *alloc_hint) 7096 { 7097 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7098 min_size, actual_len, alloc_hint, trans); 7099 } 7100 7101 static long btrfs_fallocate(struct inode *inode, int mode, 7102 loff_t offset, loff_t len) 7103 { 7104 struct extent_state *cached_state = NULL; 7105 u64 cur_offset; 7106 u64 last_byte; 7107 u64 alloc_start; 7108 u64 alloc_end; 7109 u64 alloc_hint = 0; 7110 u64 locked_end; 7111 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 7112 struct extent_map *em; 7113 int ret; 7114 7115 alloc_start = offset & ~mask; 7116 alloc_end = (offset + len + mask) & ~mask; 7117 7118 /* We only support the FALLOC_FL_KEEP_SIZE mode */ 7119 if (mode && (mode != FALLOC_FL_KEEP_SIZE)) 7120 return -EOPNOTSUPP; 7121 7122 /* 7123 * wait for ordered IO before we have any locks. We'll loop again 7124 * below with the locks held. 7125 */ 7126 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 7127 7128 mutex_lock(&inode->i_mutex); 7129 ret = inode_newsize_ok(inode, alloc_end); 7130 if (ret) 7131 goto out; 7132 7133 if (alloc_start > inode->i_size) { 7134 ret = btrfs_cont_expand(inode, alloc_start); 7135 if (ret) 7136 goto out; 7137 } 7138 7139 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 7140 if (ret) 7141 goto out; 7142 7143 locked_end = alloc_end - 1; 7144 while (1) { 7145 struct btrfs_ordered_extent *ordered; 7146 7147 /* the extent lock is ordered inside the running 7148 * transaction 7149 */ 7150 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 7151 locked_end, 0, &cached_state, GFP_NOFS); 7152 ordered = btrfs_lookup_first_ordered_extent(inode, 7153 alloc_end - 1); 7154 if (ordered && 7155 ordered->file_offset + ordered->len > alloc_start && 7156 ordered->file_offset < alloc_end) { 7157 btrfs_put_ordered_extent(ordered); 7158 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 7159 alloc_start, locked_end, 7160 &cached_state, GFP_NOFS); 7161 /* 7162 * we can't wait on the range with the transaction 7163 * running or with the extent lock held 7164 */ 7165 btrfs_wait_ordered_range(inode, alloc_start, 7166 alloc_end - alloc_start); 7167 } else { 7168 if (ordered) 7169 btrfs_put_ordered_extent(ordered); 7170 break; 7171 } 7172 } 7173 7174 cur_offset = alloc_start; 7175 while (1) { 7176 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 7177 alloc_end - cur_offset, 0); 7178 BUG_ON(IS_ERR(em) || !em); 7179 last_byte = min(extent_map_end(em), alloc_end); 7180 last_byte = (last_byte + mask) & ~mask; 7181 if (em->block_start == EXTENT_MAP_HOLE || 7182 (cur_offset >= inode->i_size && 7183 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 7184 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 7185 last_byte - cur_offset, 7186 1 << inode->i_blkbits, 7187 offset + len, 7188 &alloc_hint); 7189 if (ret < 0) { 7190 free_extent_map(em); 7191 break; 7192 } 7193 } 7194 free_extent_map(em); 7195 7196 cur_offset = last_byte; 7197 if (cur_offset >= alloc_end) { 7198 ret = 0; 7199 break; 7200 } 7201 } 7202 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 7203 &cached_state, GFP_NOFS); 7204 7205 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 7206 out: 7207 mutex_unlock(&inode->i_mutex); 7208 return ret; 7209 } 7210 7211 static int btrfs_set_page_dirty(struct page *page) 7212 { 7213 return __set_page_dirty_nobuffers(page); 7214 } 7215 7216 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags) 7217 { 7218 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 7219 return -EACCES; 7220 return generic_permission(inode, mask, flags, btrfs_check_acl); 7221 } 7222 7223 static const struct inode_operations btrfs_dir_inode_operations = { 7224 .getattr = btrfs_getattr, 7225 .lookup = btrfs_lookup, 7226 .create = btrfs_create, 7227 .unlink = btrfs_unlink, 7228 .link = btrfs_link, 7229 .mkdir = btrfs_mkdir, 7230 .rmdir = btrfs_rmdir, 7231 .rename = btrfs_rename, 7232 .symlink = btrfs_symlink, 7233 .setattr = btrfs_setattr, 7234 .mknod = btrfs_mknod, 7235 .setxattr = btrfs_setxattr, 7236 .getxattr = btrfs_getxattr, 7237 .listxattr = btrfs_listxattr, 7238 .removexattr = btrfs_removexattr, 7239 .permission = btrfs_permission, 7240 }; 7241 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7242 .lookup = btrfs_lookup, 7243 .permission = btrfs_permission, 7244 }; 7245 7246 static const struct file_operations btrfs_dir_file_operations = { 7247 .llseek = generic_file_llseek, 7248 .read = generic_read_dir, 7249 .readdir = btrfs_real_readdir, 7250 .unlocked_ioctl = btrfs_ioctl, 7251 #ifdef CONFIG_COMPAT 7252 .compat_ioctl = btrfs_ioctl, 7253 #endif 7254 .release = btrfs_release_file, 7255 .fsync = btrfs_sync_file, 7256 }; 7257 7258 static struct extent_io_ops btrfs_extent_io_ops = { 7259 .fill_delalloc = run_delalloc_range, 7260 .submit_bio_hook = btrfs_submit_bio_hook, 7261 .merge_bio_hook = btrfs_merge_bio_hook, 7262 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7263 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7264 .writepage_start_hook = btrfs_writepage_start_hook, 7265 .readpage_io_failed_hook = btrfs_io_failed_hook, 7266 .set_bit_hook = btrfs_set_bit_hook, 7267 .clear_bit_hook = btrfs_clear_bit_hook, 7268 .merge_extent_hook = btrfs_merge_extent_hook, 7269 .split_extent_hook = btrfs_split_extent_hook, 7270 }; 7271 7272 /* 7273 * btrfs doesn't support the bmap operation because swapfiles 7274 * use bmap to make a mapping of extents in the file. They assume 7275 * these extents won't change over the life of the file and they 7276 * use the bmap result to do IO directly to the drive. 7277 * 7278 * the btrfs bmap call would return logical addresses that aren't 7279 * suitable for IO and they also will change frequently as COW 7280 * operations happen. So, swapfile + btrfs == corruption. 7281 * 7282 * For now we're avoiding this by dropping bmap. 7283 */ 7284 static const struct address_space_operations btrfs_aops = { 7285 .readpage = btrfs_readpage, 7286 .writepage = btrfs_writepage, 7287 .writepages = btrfs_writepages, 7288 .readpages = btrfs_readpages, 7289 .sync_page = block_sync_page, 7290 .direct_IO = btrfs_direct_IO, 7291 .invalidatepage = btrfs_invalidatepage, 7292 .releasepage = btrfs_releasepage, 7293 .set_page_dirty = btrfs_set_page_dirty, 7294 .error_remove_page = generic_error_remove_page, 7295 }; 7296 7297 static const struct address_space_operations btrfs_symlink_aops = { 7298 .readpage = btrfs_readpage, 7299 .writepage = btrfs_writepage, 7300 .invalidatepage = btrfs_invalidatepage, 7301 .releasepage = btrfs_releasepage, 7302 }; 7303 7304 static const struct inode_operations btrfs_file_inode_operations = { 7305 .truncate = btrfs_truncate, 7306 .getattr = btrfs_getattr, 7307 .setattr = btrfs_setattr, 7308 .setxattr = btrfs_setxattr, 7309 .getxattr = btrfs_getxattr, 7310 .listxattr = btrfs_listxattr, 7311 .removexattr = btrfs_removexattr, 7312 .permission = btrfs_permission, 7313 .fallocate = btrfs_fallocate, 7314 .fiemap = btrfs_fiemap, 7315 }; 7316 static const struct inode_operations btrfs_special_inode_operations = { 7317 .getattr = btrfs_getattr, 7318 .setattr = btrfs_setattr, 7319 .permission = btrfs_permission, 7320 .setxattr = btrfs_setxattr, 7321 .getxattr = btrfs_getxattr, 7322 .listxattr = btrfs_listxattr, 7323 .removexattr = btrfs_removexattr, 7324 }; 7325 static const struct inode_operations btrfs_symlink_inode_operations = { 7326 .readlink = generic_readlink, 7327 .follow_link = page_follow_link_light, 7328 .put_link = page_put_link, 7329 .getattr = btrfs_getattr, 7330 .permission = btrfs_permission, 7331 .setxattr = btrfs_setxattr, 7332 .getxattr = btrfs_getxattr, 7333 .listxattr = btrfs_listxattr, 7334 .removexattr = btrfs_removexattr, 7335 }; 7336 7337 const struct dentry_operations btrfs_dentry_operations = { 7338 .d_delete = btrfs_dentry_delete, 7339 }; 7340