xref: /linux/fs/btrfs/inode.c (revision 394d83c17fac2b7bcf05cb99d1e945135767bb6b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 
54 struct btrfs_iget_args {
55 	u64 ino;
56 	struct btrfs_root *root;
57 };
58 
59 static const struct inode_operations btrfs_dir_inode_operations;
60 static const struct inode_operations btrfs_symlink_inode_operations;
61 static const struct inode_operations btrfs_dir_ro_inode_operations;
62 static const struct inode_operations btrfs_special_inode_operations;
63 static const struct inode_operations btrfs_file_inode_operations;
64 static const struct address_space_operations btrfs_aops;
65 static const struct address_space_operations btrfs_symlink_aops;
66 static const struct file_operations btrfs_dir_file_operations;
67 static struct extent_io_ops btrfs_extent_io_ops;
68 
69 static struct kmem_cache *btrfs_inode_cachep;
70 struct kmem_cache *btrfs_trans_handle_cachep;
71 struct kmem_cache *btrfs_transaction_cachep;
72 struct kmem_cache *btrfs_path_cachep;
73 
74 #define S_SHIFT 12
75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
76 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
77 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
78 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
79 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
80 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
81 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
82 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
83 };
84 
85 static void btrfs_truncate(struct inode *inode);
86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
87 static noinline int cow_file_range(struct inode *inode,
88 				   struct page *locked_page,
89 				   u64 start, u64 end, int *page_started,
90 				   unsigned long *nr_written, int unlock);
91 
92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
93 				     struct inode *inode,  struct inode *dir)
94 {
95 	int err;
96 
97 	err = btrfs_init_acl(trans, inode, dir);
98 	if (!err)
99 		err = btrfs_xattr_security_init(trans, inode, dir);
100 	return err;
101 }
102 
103 /*
104  * this does all the hard work for inserting an inline extent into
105  * the btree.  The caller should have done a btrfs_drop_extents so that
106  * no overlapping inline items exist in the btree
107  */
108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
109 				struct btrfs_root *root, struct inode *inode,
110 				u64 start, size_t size, size_t compressed_size,
111 				struct page **compressed_pages)
112 {
113 	struct btrfs_key key;
114 	struct btrfs_path *path;
115 	struct extent_buffer *leaf;
116 	struct page *page = NULL;
117 	char *kaddr;
118 	unsigned long ptr;
119 	struct btrfs_file_extent_item *ei;
120 	int err = 0;
121 	int ret;
122 	size_t cur_size = size;
123 	size_t datasize;
124 	unsigned long offset;
125 	int use_compress = 0;
126 
127 	if (compressed_size && compressed_pages) {
128 		use_compress = 1;
129 		cur_size = compressed_size;
130 	}
131 
132 	path = btrfs_alloc_path();
133 	if (!path)
134 		return -ENOMEM;
135 
136 	path->leave_spinning = 1;
137 	btrfs_set_trans_block_group(trans, inode);
138 
139 	key.objectid = inode->i_ino;
140 	key.offset = start;
141 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
142 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
143 
144 	inode_add_bytes(inode, size);
145 	ret = btrfs_insert_empty_item(trans, root, path, &key,
146 				      datasize);
147 	BUG_ON(ret);
148 	if (ret) {
149 		err = ret;
150 		goto fail;
151 	}
152 	leaf = path->nodes[0];
153 	ei = btrfs_item_ptr(leaf, path->slots[0],
154 			    struct btrfs_file_extent_item);
155 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
156 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
157 	btrfs_set_file_extent_encryption(leaf, ei, 0);
158 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
159 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
160 	ptr = btrfs_file_extent_inline_start(ei);
161 
162 	if (use_compress) {
163 		struct page *cpage;
164 		int i = 0;
165 		while (compressed_size > 0) {
166 			cpage = compressed_pages[i];
167 			cur_size = min_t(unsigned long, compressed_size,
168 				       PAGE_CACHE_SIZE);
169 
170 			kaddr = kmap_atomic(cpage, KM_USER0);
171 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
172 			kunmap_atomic(kaddr, KM_USER0);
173 
174 			i++;
175 			ptr += cur_size;
176 			compressed_size -= cur_size;
177 		}
178 		btrfs_set_file_extent_compression(leaf, ei,
179 						  BTRFS_COMPRESS_ZLIB);
180 	} else {
181 		page = find_get_page(inode->i_mapping,
182 				     start >> PAGE_CACHE_SHIFT);
183 		btrfs_set_file_extent_compression(leaf, ei, 0);
184 		kaddr = kmap_atomic(page, KM_USER0);
185 		offset = start & (PAGE_CACHE_SIZE - 1);
186 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
187 		kunmap_atomic(kaddr, KM_USER0);
188 		page_cache_release(page);
189 	}
190 	btrfs_mark_buffer_dirty(leaf);
191 	btrfs_free_path(path);
192 
193 	/*
194 	 * we're an inline extent, so nobody can
195 	 * extend the file past i_size without locking
196 	 * a page we already have locked.
197 	 *
198 	 * We must do any isize and inode updates
199 	 * before we unlock the pages.  Otherwise we
200 	 * could end up racing with unlink.
201 	 */
202 	BTRFS_I(inode)->disk_i_size = inode->i_size;
203 	btrfs_update_inode(trans, root, inode);
204 
205 	return 0;
206 fail:
207 	btrfs_free_path(path);
208 	return err;
209 }
210 
211 
212 /*
213  * conditionally insert an inline extent into the file.  This
214  * does the checks required to make sure the data is small enough
215  * to fit as an inline extent.
216  */
217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
218 				 struct btrfs_root *root,
219 				 struct inode *inode, u64 start, u64 end,
220 				 size_t compressed_size,
221 				 struct page **compressed_pages)
222 {
223 	u64 isize = i_size_read(inode);
224 	u64 actual_end = min(end + 1, isize);
225 	u64 inline_len = actual_end - start;
226 	u64 aligned_end = (end + root->sectorsize - 1) &
227 			~((u64)root->sectorsize - 1);
228 	u64 hint_byte;
229 	u64 data_len = inline_len;
230 	int ret;
231 
232 	if (compressed_size)
233 		data_len = compressed_size;
234 
235 	if (start > 0 ||
236 	    actual_end >= PAGE_CACHE_SIZE ||
237 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
238 	    (!compressed_size &&
239 	    (actual_end & (root->sectorsize - 1)) == 0) ||
240 	    end + 1 < isize ||
241 	    data_len > root->fs_info->max_inline) {
242 		return 1;
243 	}
244 
245 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
246 				 &hint_byte, 1);
247 	BUG_ON(ret);
248 
249 	if (isize > actual_end)
250 		inline_len = min_t(u64, isize, actual_end);
251 	ret = insert_inline_extent(trans, root, inode, start,
252 				   inline_len, compressed_size,
253 				   compressed_pages);
254 	BUG_ON(ret);
255 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
256 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
257 	return 0;
258 }
259 
260 struct async_extent {
261 	u64 start;
262 	u64 ram_size;
263 	u64 compressed_size;
264 	struct page **pages;
265 	unsigned long nr_pages;
266 	struct list_head list;
267 };
268 
269 struct async_cow {
270 	struct inode *inode;
271 	struct btrfs_root *root;
272 	struct page *locked_page;
273 	u64 start;
274 	u64 end;
275 	struct list_head extents;
276 	struct btrfs_work work;
277 };
278 
279 static noinline int add_async_extent(struct async_cow *cow,
280 				     u64 start, u64 ram_size,
281 				     u64 compressed_size,
282 				     struct page **pages,
283 				     unsigned long nr_pages)
284 {
285 	struct async_extent *async_extent;
286 
287 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
288 	async_extent->start = start;
289 	async_extent->ram_size = ram_size;
290 	async_extent->compressed_size = compressed_size;
291 	async_extent->pages = pages;
292 	async_extent->nr_pages = nr_pages;
293 	list_add_tail(&async_extent->list, &cow->extents);
294 	return 0;
295 }
296 
297 /*
298  * we create compressed extents in two phases.  The first
299  * phase compresses a range of pages that have already been
300  * locked (both pages and state bits are locked).
301  *
302  * This is done inside an ordered work queue, and the compression
303  * is spread across many cpus.  The actual IO submission is step
304  * two, and the ordered work queue takes care of making sure that
305  * happens in the same order things were put onto the queue by
306  * writepages and friends.
307  *
308  * If this code finds it can't get good compression, it puts an
309  * entry onto the work queue to write the uncompressed bytes.  This
310  * makes sure that both compressed inodes and uncompressed inodes
311  * are written in the same order that pdflush sent them down.
312  */
313 static noinline int compress_file_range(struct inode *inode,
314 					struct page *locked_page,
315 					u64 start, u64 end,
316 					struct async_cow *async_cow,
317 					int *num_added)
318 {
319 	struct btrfs_root *root = BTRFS_I(inode)->root;
320 	struct btrfs_trans_handle *trans;
321 	u64 num_bytes;
322 	u64 blocksize = root->sectorsize;
323 	u64 actual_end;
324 	u64 isize = i_size_read(inode);
325 	int ret = 0;
326 	struct page **pages = NULL;
327 	unsigned long nr_pages;
328 	unsigned long nr_pages_ret = 0;
329 	unsigned long total_compressed = 0;
330 	unsigned long total_in = 0;
331 	unsigned long max_compressed = 128 * 1024;
332 	unsigned long max_uncompressed = 128 * 1024;
333 	int i;
334 	int will_compress;
335 
336 	actual_end = min_t(u64, isize, end + 1);
337 again:
338 	will_compress = 0;
339 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
340 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
341 
342 	/*
343 	 * we don't want to send crud past the end of i_size through
344 	 * compression, that's just a waste of CPU time.  So, if the
345 	 * end of the file is before the start of our current
346 	 * requested range of bytes, we bail out to the uncompressed
347 	 * cleanup code that can deal with all of this.
348 	 *
349 	 * It isn't really the fastest way to fix things, but this is a
350 	 * very uncommon corner.
351 	 */
352 	if (actual_end <= start)
353 		goto cleanup_and_bail_uncompressed;
354 
355 	total_compressed = actual_end - start;
356 
357 	/* we want to make sure that amount of ram required to uncompress
358 	 * an extent is reasonable, so we limit the total size in ram
359 	 * of a compressed extent to 128k.  This is a crucial number
360 	 * because it also controls how easily we can spread reads across
361 	 * cpus for decompression.
362 	 *
363 	 * We also want to make sure the amount of IO required to do
364 	 * a random read is reasonably small, so we limit the size of
365 	 * a compressed extent to 128k.
366 	 */
367 	total_compressed = min(total_compressed, max_uncompressed);
368 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
369 	num_bytes = max(blocksize,  num_bytes);
370 	total_in = 0;
371 	ret = 0;
372 
373 	/*
374 	 * we do compression for mount -o compress and when the
375 	 * inode has not been flagged as nocompress.  This flag can
376 	 * change at any time if we discover bad compression ratios.
377 	 */
378 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
379 	    (btrfs_test_opt(root, COMPRESS) ||
380 	     (BTRFS_I(inode)->force_compress))) {
381 		WARN_ON(pages);
382 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
383 
384 		ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
385 						total_compressed, pages,
386 						nr_pages, &nr_pages_ret,
387 						&total_in,
388 						&total_compressed,
389 						max_compressed);
390 
391 		if (!ret) {
392 			unsigned long offset = total_compressed &
393 				(PAGE_CACHE_SIZE - 1);
394 			struct page *page = pages[nr_pages_ret - 1];
395 			char *kaddr;
396 
397 			/* zero the tail end of the last page, we might be
398 			 * sending it down to disk
399 			 */
400 			if (offset) {
401 				kaddr = kmap_atomic(page, KM_USER0);
402 				memset(kaddr + offset, 0,
403 				       PAGE_CACHE_SIZE - offset);
404 				kunmap_atomic(kaddr, KM_USER0);
405 			}
406 			will_compress = 1;
407 		}
408 	}
409 	if (start == 0) {
410 		trans = btrfs_join_transaction(root, 1);
411 		BUG_ON(!trans);
412 		btrfs_set_trans_block_group(trans, inode);
413 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
414 
415 		/* lets try to make an inline extent */
416 		if (ret || total_in < (actual_end - start)) {
417 			/* we didn't compress the entire range, try
418 			 * to make an uncompressed inline extent.
419 			 */
420 			ret = cow_file_range_inline(trans, root, inode,
421 						    start, end, 0, NULL);
422 		} else {
423 			/* try making a compressed inline extent */
424 			ret = cow_file_range_inline(trans, root, inode,
425 						    start, end,
426 						    total_compressed, pages);
427 		}
428 		if (ret == 0) {
429 			/*
430 			 * inline extent creation worked, we don't need
431 			 * to create any more async work items.  Unlock
432 			 * and free up our temp pages.
433 			 */
434 			extent_clear_unlock_delalloc(inode,
435 			     &BTRFS_I(inode)->io_tree,
436 			     start, end, NULL,
437 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
438 			     EXTENT_CLEAR_DELALLOC |
439 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
440 
441 			btrfs_end_transaction(trans, root);
442 			goto free_pages_out;
443 		}
444 		btrfs_end_transaction(trans, root);
445 	}
446 
447 	if (will_compress) {
448 		/*
449 		 * we aren't doing an inline extent round the compressed size
450 		 * up to a block size boundary so the allocator does sane
451 		 * things
452 		 */
453 		total_compressed = (total_compressed + blocksize - 1) &
454 			~(blocksize - 1);
455 
456 		/*
457 		 * one last check to make sure the compression is really a
458 		 * win, compare the page count read with the blocks on disk
459 		 */
460 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
461 			~(PAGE_CACHE_SIZE - 1);
462 		if (total_compressed >= total_in) {
463 			will_compress = 0;
464 		} else {
465 			num_bytes = total_in;
466 		}
467 	}
468 	if (!will_compress && pages) {
469 		/*
470 		 * the compression code ran but failed to make things smaller,
471 		 * free any pages it allocated and our page pointer array
472 		 */
473 		for (i = 0; i < nr_pages_ret; i++) {
474 			WARN_ON(pages[i]->mapping);
475 			page_cache_release(pages[i]);
476 		}
477 		kfree(pages);
478 		pages = NULL;
479 		total_compressed = 0;
480 		nr_pages_ret = 0;
481 
482 		/* flag the file so we don't compress in the future */
483 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
484 		    !(BTRFS_I(inode)->force_compress)) {
485 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
486 		}
487 	}
488 	if (will_compress) {
489 		*num_added += 1;
490 
491 		/* the async work queues will take care of doing actual
492 		 * allocation on disk for these compressed pages,
493 		 * and will submit them to the elevator.
494 		 */
495 		add_async_extent(async_cow, start, num_bytes,
496 				 total_compressed, pages, nr_pages_ret);
497 
498 		if (start + num_bytes < end) {
499 			start += num_bytes;
500 			pages = NULL;
501 			cond_resched();
502 			goto again;
503 		}
504 	} else {
505 cleanup_and_bail_uncompressed:
506 		/*
507 		 * No compression, but we still need to write the pages in
508 		 * the file we've been given so far.  redirty the locked
509 		 * page if it corresponds to our extent and set things up
510 		 * for the async work queue to run cow_file_range to do
511 		 * the normal delalloc dance
512 		 */
513 		if (page_offset(locked_page) >= start &&
514 		    page_offset(locked_page) <= end) {
515 			__set_page_dirty_nobuffers(locked_page);
516 			/* unlocked later on in the async handlers */
517 		}
518 		add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
519 		*num_added += 1;
520 	}
521 
522 out:
523 	return 0;
524 
525 free_pages_out:
526 	for (i = 0; i < nr_pages_ret; i++) {
527 		WARN_ON(pages[i]->mapping);
528 		page_cache_release(pages[i]);
529 	}
530 	kfree(pages);
531 
532 	goto out;
533 }
534 
535 /*
536  * phase two of compressed writeback.  This is the ordered portion
537  * of the code, which only gets called in the order the work was
538  * queued.  We walk all the async extents created by compress_file_range
539  * and send them down to the disk.
540  */
541 static noinline int submit_compressed_extents(struct inode *inode,
542 					      struct async_cow *async_cow)
543 {
544 	struct async_extent *async_extent;
545 	u64 alloc_hint = 0;
546 	struct btrfs_trans_handle *trans;
547 	struct btrfs_key ins;
548 	struct extent_map *em;
549 	struct btrfs_root *root = BTRFS_I(inode)->root;
550 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
551 	struct extent_io_tree *io_tree;
552 	int ret = 0;
553 
554 	if (list_empty(&async_cow->extents))
555 		return 0;
556 
557 
558 	while (!list_empty(&async_cow->extents)) {
559 		async_extent = list_entry(async_cow->extents.next,
560 					  struct async_extent, list);
561 		list_del(&async_extent->list);
562 
563 		io_tree = &BTRFS_I(inode)->io_tree;
564 
565 retry:
566 		/* did the compression code fall back to uncompressed IO? */
567 		if (!async_extent->pages) {
568 			int page_started = 0;
569 			unsigned long nr_written = 0;
570 
571 			lock_extent(io_tree, async_extent->start,
572 					 async_extent->start +
573 					 async_extent->ram_size - 1, GFP_NOFS);
574 
575 			/* allocate blocks */
576 			ret = cow_file_range(inode, async_cow->locked_page,
577 					     async_extent->start,
578 					     async_extent->start +
579 					     async_extent->ram_size - 1,
580 					     &page_started, &nr_written, 0);
581 
582 			/*
583 			 * if page_started, cow_file_range inserted an
584 			 * inline extent and took care of all the unlocking
585 			 * and IO for us.  Otherwise, we need to submit
586 			 * all those pages down to the drive.
587 			 */
588 			if (!page_started && !ret)
589 				extent_write_locked_range(io_tree,
590 						  inode, async_extent->start,
591 						  async_extent->start +
592 						  async_extent->ram_size - 1,
593 						  btrfs_get_extent,
594 						  WB_SYNC_ALL);
595 			kfree(async_extent);
596 			cond_resched();
597 			continue;
598 		}
599 
600 		lock_extent(io_tree, async_extent->start,
601 			    async_extent->start + async_extent->ram_size - 1,
602 			    GFP_NOFS);
603 
604 		trans = btrfs_join_transaction(root, 1);
605 		ret = btrfs_reserve_extent(trans, root,
606 					   async_extent->compressed_size,
607 					   async_extent->compressed_size,
608 					   0, alloc_hint,
609 					   (u64)-1, &ins, 1);
610 		btrfs_end_transaction(trans, root);
611 
612 		if (ret) {
613 			int i;
614 			for (i = 0; i < async_extent->nr_pages; i++) {
615 				WARN_ON(async_extent->pages[i]->mapping);
616 				page_cache_release(async_extent->pages[i]);
617 			}
618 			kfree(async_extent->pages);
619 			async_extent->nr_pages = 0;
620 			async_extent->pages = NULL;
621 			unlock_extent(io_tree, async_extent->start,
622 				      async_extent->start +
623 				      async_extent->ram_size - 1, GFP_NOFS);
624 			goto retry;
625 		}
626 
627 		/*
628 		 * here we're doing allocation and writeback of the
629 		 * compressed pages
630 		 */
631 		btrfs_drop_extent_cache(inode, async_extent->start,
632 					async_extent->start +
633 					async_extent->ram_size - 1, 0);
634 
635 		em = alloc_extent_map(GFP_NOFS);
636 		em->start = async_extent->start;
637 		em->len = async_extent->ram_size;
638 		em->orig_start = em->start;
639 
640 		em->block_start = ins.objectid;
641 		em->block_len = ins.offset;
642 		em->bdev = root->fs_info->fs_devices->latest_bdev;
643 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
644 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
645 
646 		while (1) {
647 			write_lock(&em_tree->lock);
648 			ret = add_extent_mapping(em_tree, em);
649 			write_unlock(&em_tree->lock);
650 			if (ret != -EEXIST) {
651 				free_extent_map(em);
652 				break;
653 			}
654 			btrfs_drop_extent_cache(inode, async_extent->start,
655 						async_extent->start +
656 						async_extent->ram_size - 1, 0);
657 		}
658 
659 		ret = btrfs_add_ordered_extent(inode, async_extent->start,
660 					       ins.objectid,
661 					       async_extent->ram_size,
662 					       ins.offset,
663 					       BTRFS_ORDERED_COMPRESSED);
664 		BUG_ON(ret);
665 
666 		/*
667 		 * clear dirty, set writeback and unlock the pages.
668 		 */
669 		extent_clear_unlock_delalloc(inode,
670 				&BTRFS_I(inode)->io_tree,
671 				async_extent->start,
672 				async_extent->start +
673 				async_extent->ram_size - 1,
674 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
675 				EXTENT_CLEAR_UNLOCK |
676 				EXTENT_CLEAR_DELALLOC |
677 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
678 
679 		ret = btrfs_submit_compressed_write(inode,
680 				    async_extent->start,
681 				    async_extent->ram_size,
682 				    ins.objectid,
683 				    ins.offset, async_extent->pages,
684 				    async_extent->nr_pages);
685 
686 		BUG_ON(ret);
687 		alloc_hint = ins.objectid + ins.offset;
688 		kfree(async_extent);
689 		cond_resched();
690 	}
691 
692 	return 0;
693 }
694 
695 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
696 				      u64 num_bytes)
697 {
698 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
699 	struct extent_map *em;
700 	u64 alloc_hint = 0;
701 
702 	read_lock(&em_tree->lock);
703 	em = search_extent_mapping(em_tree, start, num_bytes);
704 	if (em) {
705 		/*
706 		 * if block start isn't an actual block number then find the
707 		 * first block in this inode and use that as a hint.  If that
708 		 * block is also bogus then just don't worry about it.
709 		 */
710 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
711 			free_extent_map(em);
712 			em = search_extent_mapping(em_tree, 0, 0);
713 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
714 				alloc_hint = em->block_start;
715 			if (em)
716 				free_extent_map(em);
717 		} else {
718 			alloc_hint = em->block_start;
719 			free_extent_map(em);
720 		}
721 	}
722 	read_unlock(&em_tree->lock);
723 
724 	return alloc_hint;
725 }
726 
727 /*
728  * when extent_io.c finds a delayed allocation range in the file,
729  * the call backs end up in this code.  The basic idea is to
730  * allocate extents on disk for the range, and create ordered data structs
731  * in ram to track those extents.
732  *
733  * locked_page is the page that writepage had locked already.  We use
734  * it to make sure we don't do extra locks or unlocks.
735  *
736  * *page_started is set to one if we unlock locked_page and do everything
737  * required to start IO on it.  It may be clean and already done with
738  * IO when we return.
739  */
740 static noinline int cow_file_range(struct inode *inode,
741 				   struct page *locked_page,
742 				   u64 start, u64 end, int *page_started,
743 				   unsigned long *nr_written,
744 				   int unlock)
745 {
746 	struct btrfs_root *root = BTRFS_I(inode)->root;
747 	struct btrfs_trans_handle *trans;
748 	u64 alloc_hint = 0;
749 	u64 num_bytes;
750 	unsigned long ram_size;
751 	u64 disk_num_bytes;
752 	u64 cur_alloc_size;
753 	u64 blocksize = root->sectorsize;
754 	struct btrfs_key ins;
755 	struct extent_map *em;
756 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
757 	int ret = 0;
758 
759 	BUG_ON(root == root->fs_info->tree_root);
760 	trans = btrfs_join_transaction(root, 1);
761 	BUG_ON(!trans);
762 	btrfs_set_trans_block_group(trans, inode);
763 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
764 
765 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
766 	num_bytes = max(blocksize,  num_bytes);
767 	disk_num_bytes = num_bytes;
768 	ret = 0;
769 
770 	if (start == 0) {
771 		/* lets try to make an inline extent */
772 		ret = cow_file_range_inline(trans, root, inode,
773 					    start, end, 0, NULL);
774 		if (ret == 0) {
775 			extent_clear_unlock_delalloc(inode,
776 				     &BTRFS_I(inode)->io_tree,
777 				     start, end, NULL,
778 				     EXTENT_CLEAR_UNLOCK_PAGE |
779 				     EXTENT_CLEAR_UNLOCK |
780 				     EXTENT_CLEAR_DELALLOC |
781 				     EXTENT_CLEAR_DIRTY |
782 				     EXTENT_SET_WRITEBACK |
783 				     EXTENT_END_WRITEBACK);
784 
785 			*nr_written = *nr_written +
786 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
787 			*page_started = 1;
788 			ret = 0;
789 			goto out;
790 		}
791 	}
792 
793 	BUG_ON(disk_num_bytes >
794 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
795 
796 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
797 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
798 
799 	while (disk_num_bytes > 0) {
800 		unsigned long op;
801 
802 		cur_alloc_size = disk_num_bytes;
803 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
804 					   root->sectorsize, 0, alloc_hint,
805 					   (u64)-1, &ins, 1);
806 		BUG_ON(ret);
807 
808 		em = alloc_extent_map(GFP_NOFS);
809 		em->start = start;
810 		em->orig_start = em->start;
811 		ram_size = ins.offset;
812 		em->len = ins.offset;
813 
814 		em->block_start = ins.objectid;
815 		em->block_len = ins.offset;
816 		em->bdev = root->fs_info->fs_devices->latest_bdev;
817 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
818 
819 		while (1) {
820 			write_lock(&em_tree->lock);
821 			ret = add_extent_mapping(em_tree, em);
822 			write_unlock(&em_tree->lock);
823 			if (ret != -EEXIST) {
824 				free_extent_map(em);
825 				break;
826 			}
827 			btrfs_drop_extent_cache(inode, start,
828 						start + ram_size - 1, 0);
829 		}
830 
831 		cur_alloc_size = ins.offset;
832 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
833 					       ram_size, cur_alloc_size, 0);
834 		BUG_ON(ret);
835 
836 		if (root->root_key.objectid ==
837 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
838 			ret = btrfs_reloc_clone_csums(inode, start,
839 						      cur_alloc_size);
840 			BUG_ON(ret);
841 		}
842 
843 		if (disk_num_bytes < cur_alloc_size)
844 			break;
845 
846 		/* we're not doing compressed IO, don't unlock the first
847 		 * page (which the caller expects to stay locked), don't
848 		 * clear any dirty bits and don't set any writeback bits
849 		 *
850 		 * Do set the Private2 bit so we know this page was properly
851 		 * setup for writepage
852 		 */
853 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
854 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
855 			EXTENT_SET_PRIVATE2;
856 
857 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
858 					     start, start + ram_size - 1,
859 					     locked_page, op);
860 		disk_num_bytes -= cur_alloc_size;
861 		num_bytes -= cur_alloc_size;
862 		alloc_hint = ins.objectid + ins.offset;
863 		start += cur_alloc_size;
864 	}
865 out:
866 	ret = 0;
867 	btrfs_end_transaction(trans, root);
868 
869 	return ret;
870 }
871 
872 /*
873  * work queue call back to started compression on a file and pages
874  */
875 static noinline void async_cow_start(struct btrfs_work *work)
876 {
877 	struct async_cow *async_cow;
878 	int num_added = 0;
879 	async_cow = container_of(work, struct async_cow, work);
880 
881 	compress_file_range(async_cow->inode, async_cow->locked_page,
882 			    async_cow->start, async_cow->end, async_cow,
883 			    &num_added);
884 	if (num_added == 0)
885 		async_cow->inode = NULL;
886 }
887 
888 /*
889  * work queue call back to submit previously compressed pages
890  */
891 static noinline void async_cow_submit(struct btrfs_work *work)
892 {
893 	struct async_cow *async_cow;
894 	struct btrfs_root *root;
895 	unsigned long nr_pages;
896 
897 	async_cow = container_of(work, struct async_cow, work);
898 
899 	root = async_cow->root;
900 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
901 		PAGE_CACHE_SHIFT;
902 
903 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
904 
905 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
906 	    5 * 1042 * 1024 &&
907 	    waitqueue_active(&root->fs_info->async_submit_wait))
908 		wake_up(&root->fs_info->async_submit_wait);
909 
910 	if (async_cow->inode)
911 		submit_compressed_extents(async_cow->inode, async_cow);
912 }
913 
914 static noinline void async_cow_free(struct btrfs_work *work)
915 {
916 	struct async_cow *async_cow;
917 	async_cow = container_of(work, struct async_cow, work);
918 	kfree(async_cow);
919 }
920 
921 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
922 				u64 start, u64 end, int *page_started,
923 				unsigned long *nr_written)
924 {
925 	struct async_cow *async_cow;
926 	struct btrfs_root *root = BTRFS_I(inode)->root;
927 	unsigned long nr_pages;
928 	u64 cur_end;
929 	int limit = 10 * 1024 * 1042;
930 
931 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
932 			 1, 0, NULL, GFP_NOFS);
933 	while (start < end) {
934 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
935 		async_cow->inode = inode;
936 		async_cow->root = root;
937 		async_cow->locked_page = locked_page;
938 		async_cow->start = start;
939 
940 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
941 			cur_end = end;
942 		else
943 			cur_end = min(end, start + 512 * 1024 - 1);
944 
945 		async_cow->end = cur_end;
946 		INIT_LIST_HEAD(&async_cow->extents);
947 
948 		async_cow->work.func = async_cow_start;
949 		async_cow->work.ordered_func = async_cow_submit;
950 		async_cow->work.ordered_free = async_cow_free;
951 		async_cow->work.flags = 0;
952 
953 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
954 			PAGE_CACHE_SHIFT;
955 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
956 
957 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
958 				   &async_cow->work);
959 
960 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
961 			wait_event(root->fs_info->async_submit_wait,
962 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
963 			    limit));
964 		}
965 
966 		while (atomic_read(&root->fs_info->async_submit_draining) &&
967 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
968 			wait_event(root->fs_info->async_submit_wait,
969 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
970 			   0));
971 		}
972 
973 		*nr_written += nr_pages;
974 		start = cur_end + 1;
975 	}
976 	*page_started = 1;
977 	return 0;
978 }
979 
980 static noinline int csum_exist_in_range(struct btrfs_root *root,
981 					u64 bytenr, u64 num_bytes)
982 {
983 	int ret;
984 	struct btrfs_ordered_sum *sums;
985 	LIST_HEAD(list);
986 
987 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
988 				       bytenr + num_bytes - 1, &list);
989 	if (ret == 0 && list_empty(&list))
990 		return 0;
991 
992 	while (!list_empty(&list)) {
993 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
994 		list_del(&sums->list);
995 		kfree(sums);
996 	}
997 	return 1;
998 }
999 
1000 /*
1001  * when nowcow writeback call back.  This checks for snapshots or COW copies
1002  * of the extents that exist in the file, and COWs the file as required.
1003  *
1004  * If no cow copies or snapshots exist, we write directly to the existing
1005  * blocks on disk
1006  */
1007 static noinline int run_delalloc_nocow(struct inode *inode,
1008 				       struct page *locked_page,
1009 			      u64 start, u64 end, int *page_started, int force,
1010 			      unsigned long *nr_written)
1011 {
1012 	struct btrfs_root *root = BTRFS_I(inode)->root;
1013 	struct btrfs_trans_handle *trans;
1014 	struct extent_buffer *leaf;
1015 	struct btrfs_path *path;
1016 	struct btrfs_file_extent_item *fi;
1017 	struct btrfs_key found_key;
1018 	u64 cow_start;
1019 	u64 cur_offset;
1020 	u64 extent_end;
1021 	u64 extent_offset;
1022 	u64 disk_bytenr;
1023 	u64 num_bytes;
1024 	int extent_type;
1025 	int ret;
1026 	int type;
1027 	int nocow;
1028 	int check_prev = 1;
1029 	bool nolock = false;
1030 
1031 	path = btrfs_alloc_path();
1032 	BUG_ON(!path);
1033 	if (root == root->fs_info->tree_root) {
1034 		nolock = true;
1035 		trans = btrfs_join_transaction_nolock(root, 1);
1036 	} else {
1037 		trans = btrfs_join_transaction(root, 1);
1038 	}
1039 	BUG_ON(!trans);
1040 
1041 	cow_start = (u64)-1;
1042 	cur_offset = start;
1043 	while (1) {
1044 		ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1045 					       cur_offset, 0);
1046 		BUG_ON(ret < 0);
1047 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1048 			leaf = path->nodes[0];
1049 			btrfs_item_key_to_cpu(leaf, &found_key,
1050 					      path->slots[0] - 1);
1051 			if (found_key.objectid == inode->i_ino &&
1052 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1053 				path->slots[0]--;
1054 		}
1055 		check_prev = 0;
1056 next_slot:
1057 		leaf = path->nodes[0];
1058 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1059 			ret = btrfs_next_leaf(root, path);
1060 			if (ret < 0)
1061 				BUG_ON(1);
1062 			if (ret > 0)
1063 				break;
1064 			leaf = path->nodes[0];
1065 		}
1066 
1067 		nocow = 0;
1068 		disk_bytenr = 0;
1069 		num_bytes = 0;
1070 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1071 
1072 		if (found_key.objectid > inode->i_ino ||
1073 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1074 		    found_key.offset > end)
1075 			break;
1076 
1077 		if (found_key.offset > cur_offset) {
1078 			extent_end = found_key.offset;
1079 			extent_type = 0;
1080 			goto out_check;
1081 		}
1082 
1083 		fi = btrfs_item_ptr(leaf, path->slots[0],
1084 				    struct btrfs_file_extent_item);
1085 		extent_type = btrfs_file_extent_type(leaf, fi);
1086 
1087 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1088 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1089 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1090 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1091 			extent_end = found_key.offset +
1092 				btrfs_file_extent_num_bytes(leaf, fi);
1093 			if (extent_end <= start) {
1094 				path->slots[0]++;
1095 				goto next_slot;
1096 			}
1097 			if (disk_bytenr == 0)
1098 				goto out_check;
1099 			if (btrfs_file_extent_compression(leaf, fi) ||
1100 			    btrfs_file_extent_encryption(leaf, fi) ||
1101 			    btrfs_file_extent_other_encoding(leaf, fi))
1102 				goto out_check;
1103 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1104 				goto out_check;
1105 			if (btrfs_extent_readonly(root, disk_bytenr))
1106 				goto out_check;
1107 			if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1108 						  found_key.offset -
1109 						  extent_offset, disk_bytenr))
1110 				goto out_check;
1111 			disk_bytenr += extent_offset;
1112 			disk_bytenr += cur_offset - found_key.offset;
1113 			num_bytes = min(end + 1, extent_end) - cur_offset;
1114 			/*
1115 			 * force cow if csum exists in the range.
1116 			 * this ensure that csum for a given extent are
1117 			 * either valid or do not exist.
1118 			 */
1119 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1120 				goto out_check;
1121 			nocow = 1;
1122 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1123 			extent_end = found_key.offset +
1124 				btrfs_file_extent_inline_len(leaf, fi);
1125 			extent_end = ALIGN(extent_end, root->sectorsize);
1126 		} else {
1127 			BUG_ON(1);
1128 		}
1129 out_check:
1130 		if (extent_end <= start) {
1131 			path->slots[0]++;
1132 			goto next_slot;
1133 		}
1134 		if (!nocow) {
1135 			if (cow_start == (u64)-1)
1136 				cow_start = cur_offset;
1137 			cur_offset = extent_end;
1138 			if (cur_offset > end)
1139 				break;
1140 			path->slots[0]++;
1141 			goto next_slot;
1142 		}
1143 
1144 		btrfs_release_path(root, path);
1145 		if (cow_start != (u64)-1) {
1146 			ret = cow_file_range(inode, locked_page, cow_start,
1147 					found_key.offset - 1, page_started,
1148 					nr_written, 1);
1149 			BUG_ON(ret);
1150 			cow_start = (u64)-1;
1151 		}
1152 
1153 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1154 			struct extent_map *em;
1155 			struct extent_map_tree *em_tree;
1156 			em_tree = &BTRFS_I(inode)->extent_tree;
1157 			em = alloc_extent_map(GFP_NOFS);
1158 			em->start = cur_offset;
1159 			em->orig_start = em->start;
1160 			em->len = num_bytes;
1161 			em->block_len = num_bytes;
1162 			em->block_start = disk_bytenr;
1163 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1164 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1165 			while (1) {
1166 				write_lock(&em_tree->lock);
1167 				ret = add_extent_mapping(em_tree, em);
1168 				write_unlock(&em_tree->lock);
1169 				if (ret != -EEXIST) {
1170 					free_extent_map(em);
1171 					break;
1172 				}
1173 				btrfs_drop_extent_cache(inode, em->start,
1174 						em->start + em->len - 1, 0);
1175 			}
1176 			type = BTRFS_ORDERED_PREALLOC;
1177 		} else {
1178 			type = BTRFS_ORDERED_NOCOW;
1179 		}
1180 
1181 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1182 					       num_bytes, num_bytes, type);
1183 		BUG_ON(ret);
1184 
1185 		if (root->root_key.objectid ==
1186 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1187 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1188 						      num_bytes);
1189 			BUG_ON(ret);
1190 		}
1191 
1192 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1193 				cur_offset, cur_offset + num_bytes - 1,
1194 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1195 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1196 				EXTENT_SET_PRIVATE2);
1197 		cur_offset = extent_end;
1198 		if (cur_offset > end)
1199 			break;
1200 	}
1201 	btrfs_release_path(root, path);
1202 
1203 	if (cur_offset <= end && cow_start == (u64)-1)
1204 		cow_start = cur_offset;
1205 	if (cow_start != (u64)-1) {
1206 		ret = cow_file_range(inode, locked_page, cow_start, end,
1207 				     page_started, nr_written, 1);
1208 		BUG_ON(ret);
1209 	}
1210 
1211 	if (nolock) {
1212 		ret = btrfs_end_transaction_nolock(trans, root);
1213 		BUG_ON(ret);
1214 	} else {
1215 		ret = btrfs_end_transaction(trans, root);
1216 		BUG_ON(ret);
1217 	}
1218 	btrfs_free_path(path);
1219 	return 0;
1220 }
1221 
1222 /*
1223  * extent_io.c call back to do delayed allocation processing
1224  */
1225 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1226 			      u64 start, u64 end, int *page_started,
1227 			      unsigned long *nr_written)
1228 {
1229 	int ret;
1230 	struct btrfs_root *root = BTRFS_I(inode)->root;
1231 
1232 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1233 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1234 					 page_started, 1, nr_written);
1235 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1236 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1237 					 page_started, 0, nr_written);
1238 	else if (!btrfs_test_opt(root, COMPRESS) &&
1239 		 !(BTRFS_I(inode)->force_compress))
1240 		ret = cow_file_range(inode, locked_page, start, end,
1241 				      page_started, nr_written, 1);
1242 	else
1243 		ret = cow_file_range_async(inode, locked_page, start, end,
1244 					   page_started, nr_written);
1245 	return ret;
1246 }
1247 
1248 static int btrfs_split_extent_hook(struct inode *inode,
1249 				   struct extent_state *orig, u64 split)
1250 {
1251 	/* not delalloc, ignore it */
1252 	if (!(orig->state & EXTENT_DELALLOC))
1253 		return 0;
1254 
1255 	atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1256 	return 0;
1257 }
1258 
1259 /*
1260  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1261  * extents so we can keep track of new extents that are just merged onto old
1262  * extents, such as when we are doing sequential writes, so we can properly
1263  * account for the metadata space we'll need.
1264  */
1265 static int btrfs_merge_extent_hook(struct inode *inode,
1266 				   struct extent_state *new,
1267 				   struct extent_state *other)
1268 {
1269 	/* not delalloc, ignore it */
1270 	if (!(other->state & EXTENT_DELALLOC))
1271 		return 0;
1272 
1273 	atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1274 	return 0;
1275 }
1276 
1277 /*
1278  * extent_io.c set_bit_hook, used to track delayed allocation
1279  * bytes in this file, and to maintain the list of inodes that
1280  * have pending delalloc work to be done.
1281  */
1282 static int btrfs_set_bit_hook(struct inode *inode,
1283 			      struct extent_state *state, int *bits)
1284 {
1285 
1286 	/*
1287 	 * set_bit and clear bit hooks normally require _irqsave/restore
1288 	 * but in this case, we are only testeing for the DELALLOC
1289 	 * bit, which is only set or cleared with irqs on
1290 	 */
1291 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1292 		struct btrfs_root *root = BTRFS_I(inode)->root;
1293 		u64 len = state->end + 1 - state->start;
1294 		int do_list = (root->root_key.objectid !=
1295 			       BTRFS_ROOT_TREE_OBJECTID);
1296 
1297 		if (*bits & EXTENT_FIRST_DELALLOC)
1298 			*bits &= ~EXTENT_FIRST_DELALLOC;
1299 		else
1300 			atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1301 
1302 		spin_lock(&root->fs_info->delalloc_lock);
1303 		BTRFS_I(inode)->delalloc_bytes += len;
1304 		root->fs_info->delalloc_bytes += len;
1305 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1306 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1307 				      &root->fs_info->delalloc_inodes);
1308 		}
1309 		spin_unlock(&root->fs_info->delalloc_lock);
1310 	}
1311 	return 0;
1312 }
1313 
1314 /*
1315  * extent_io.c clear_bit_hook, see set_bit_hook for why
1316  */
1317 static int btrfs_clear_bit_hook(struct inode *inode,
1318 				struct extent_state *state, int *bits)
1319 {
1320 	/*
1321 	 * set_bit and clear bit hooks normally require _irqsave/restore
1322 	 * but in this case, we are only testeing for the DELALLOC
1323 	 * bit, which is only set or cleared with irqs on
1324 	 */
1325 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1326 		struct btrfs_root *root = BTRFS_I(inode)->root;
1327 		u64 len = state->end + 1 - state->start;
1328 		int do_list = (root->root_key.objectid !=
1329 			       BTRFS_ROOT_TREE_OBJECTID);
1330 
1331 		if (*bits & EXTENT_FIRST_DELALLOC)
1332 			*bits &= ~EXTENT_FIRST_DELALLOC;
1333 		else if (!(*bits & EXTENT_DO_ACCOUNTING))
1334 			atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1335 
1336 		if (*bits & EXTENT_DO_ACCOUNTING)
1337 			btrfs_delalloc_release_metadata(inode, len);
1338 
1339 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1340 		    && do_list)
1341 			btrfs_free_reserved_data_space(inode, len);
1342 
1343 		spin_lock(&root->fs_info->delalloc_lock);
1344 		root->fs_info->delalloc_bytes -= len;
1345 		BTRFS_I(inode)->delalloc_bytes -= len;
1346 
1347 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1348 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1349 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1350 		}
1351 		spin_unlock(&root->fs_info->delalloc_lock);
1352 	}
1353 	return 0;
1354 }
1355 
1356 /*
1357  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1358  * we don't create bios that span stripes or chunks
1359  */
1360 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1361 			 size_t size, struct bio *bio,
1362 			 unsigned long bio_flags)
1363 {
1364 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1365 	struct btrfs_mapping_tree *map_tree;
1366 	u64 logical = (u64)bio->bi_sector << 9;
1367 	u64 length = 0;
1368 	u64 map_length;
1369 	int ret;
1370 
1371 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1372 		return 0;
1373 
1374 	length = bio->bi_size;
1375 	map_tree = &root->fs_info->mapping_tree;
1376 	map_length = length;
1377 	ret = btrfs_map_block(map_tree, READ, logical,
1378 			      &map_length, NULL, 0);
1379 
1380 	if (map_length < length + size)
1381 		return 1;
1382 	return ret;
1383 }
1384 
1385 /*
1386  * in order to insert checksums into the metadata in large chunks,
1387  * we wait until bio submission time.   All the pages in the bio are
1388  * checksummed and sums are attached onto the ordered extent record.
1389  *
1390  * At IO completion time the cums attached on the ordered extent record
1391  * are inserted into the btree
1392  */
1393 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1394 				    struct bio *bio, int mirror_num,
1395 				    unsigned long bio_flags,
1396 				    u64 bio_offset)
1397 {
1398 	struct btrfs_root *root = BTRFS_I(inode)->root;
1399 	int ret = 0;
1400 
1401 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1402 	BUG_ON(ret);
1403 	return 0;
1404 }
1405 
1406 /*
1407  * in order to insert checksums into the metadata in large chunks,
1408  * we wait until bio submission time.   All the pages in the bio are
1409  * checksummed and sums are attached onto the ordered extent record.
1410  *
1411  * At IO completion time the cums attached on the ordered extent record
1412  * are inserted into the btree
1413  */
1414 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1415 			  int mirror_num, unsigned long bio_flags,
1416 			  u64 bio_offset)
1417 {
1418 	struct btrfs_root *root = BTRFS_I(inode)->root;
1419 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1420 }
1421 
1422 /*
1423  * extent_io.c submission hook. This does the right thing for csum calculation
1424  * on write, or reading the csums from the tree before a read
1425  */
1426 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1427 			  int mirror_num, unsigned long bio_flags,
1428 			  u64 bio_offset)
1429 {
1430 	struct btrfs_root *root = BTRFS_I(inode)->root;
1431 	int ret = 0;
1432 	int skip_sum;
1433 
1434 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1435 
1436 	if (root == root->fs_info->tree_root)
1437 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1438 	else
1439 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1440 	BUG_ON(ret);
1441 
1442 	if (!(rw & REQ_WRITE)) {
1443 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1444 			return btrfs_submit_compressed_read(inode, bio,
1445 						    mirror_num, bio_flags);
1446 		} else if (!skip_sum)
1447 			btrfs_lookup_bio_sums(root, inode, bio, NULL);
1448 		goto mapit;
1449 	} else if (!skip_sum) {
1450 		/* csum items have already been cloned */
1451 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1452 			goto mapit;
1453 		/* we're doing a write, do the async checksumming */
1454 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1455 				   inode, rw, bio, mirror_num,
1456 				   bio_flags, bio_offset,
1457 				   __btrfs_submit_bio_start,
1458 				   __btrfs_submit_bio_done);
1459 	}
1460 
1461 mapit:
1462 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1463 }
1464 
1465 /*
1466  * given a list of ordered sums record them in the inode.  This happens
1467  * at IO completion time based on sums calculated at bio submission time.
1468  */
1469 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1470 			     struct inode *inode, u64 file_offset,
1471 			     struct list_head *list)
1472 {
1473 	struct btrfs_ordered_sum *sum;
1474 
1475 	btrfs_set_trans_block_group(trans, inode);
1476 
1477 	list_for_each_entry(sum, list, list) {
1478 		btrfs_csum_file_blocks(trans,
1479 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1480 	}
1481 	return 0;
1482 }
1483 
1484 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1485 			      struct extent_state **cached_state)
1486 {
1487 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1488 		WARN_ON(1);
1489 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1490 				   cached_state, GFP_NOFS);
1491 }
1492 
1493 /* see btrfs_writepage_start_hook for details on why this is required */
1494 struct btrfs_writepage_fixup {
1495 	struct page *page;
1496 	struct btrfs_work work;
1497 };
1498 
1499 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1500 {
1501 	struct btrfs_writepage_fixup *fixup;
1502 	struct btrfs_ordered_extent *ordered;
1503 	struct extent_state *cached_state = NULL;
1504 	struct page *page;
1505 	struct inode *inode;
1506 	u64 page_start;
1507 	u64 page_end;
1508 
1509 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1510 	page = fixup->page;
1511 again:
1512 	lock_page(page);
1513 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1514 		ClearPageChecked(page);
1515 		goto out_page;
1516 	}
1517 
1518 	inode = page->mapping->host;
1519 	page_start = page_offset(page);
1520 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1521 
1522 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1523 			 &cached_state, GFP_NOFS);
1524 
1525 	/* already ordered? We're done */
1526 	if (PagePrivate2(page))
1527 		goto out;
1528 
1529 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1530 	if (ordered) {
1531 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1532 				     page_end, &cached_state, GFP_NOFS);
1533 		unlock_page(page);
1534 		btrfs_start_ordered_extent(inode, ordered, 1);
1535 		goto again;
1536 	}
1537 
1538 	BUG();
1539 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1540 	ClearPageChecked(page);
1541 out:
1542 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1543 			     &cached_state, GFP_NOFS);
1544 out_page:
1545 	unlock_page(page);
1546 	page_cache_release(page);
1547 }
1548 
1549 /*
1550  * There are a few paths in the higher layers of the kernel that directly
1551  * set the page dirty bit without asking the filesystem if it is a
1552  * good idea.  This causes problems because we want to make sure COW
1553  * properly happens and the data=ordered rules are followed.
1554  *
1555  * In our case any range that doesn't have the ORDERED bit set
1556  * hasn't been properly setup for IO.  We kick off an async process
1557  * to fix it up.  The async helper will wait for ordered extents, set
1558  * the delalloc bit and make it safe to write the page.
1559  */
1560 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1561 {
1562 	struct inode *inode = page->mapping->host;
1563 	struct btrfs_writepage_fixup *fixup;
1564 	struct btrfs_root *root = BTRFS_I(inode)->root;
1565 
1566 	/* this page is properly in the ordered list */
1567 	if (TestClearPagePrivate2(page))
1568 		return 0;
1569 
1570 	if (PageChecked(page))
1571 		return -EAGAIN;
1572 
1573 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1574 	if (!fixup)
1575 		return -EAGAIN;
1576 
1577 	SetPageChecked(page);
1578 	page_cache_get(page);
1579 	fixup->work.func = btrfs_writepage_fixup_worker;
1580 	fixup->page = page;
1581 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1582 	return -EAGAIN;
1583 }
1584 
1585 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1586 				       struct inode *inode, u64 file_pos,
1587 				       u64 disk_bytenr, u64 disk_num_bytes,
1588 				       u64 num_bytes, u64 ram_bytes,
1589 				       u8 compression, u8 encryption,
1590 				       u16 other_encoding, int extent_type)
1591 {
1592 	struct btrfs_root *root = BTRFS_I(inode)->root;
1593 	struct btrfs_file_extent_item *fi;
1594 	struct btrfs_path *path;
1595 	struct extent_buffer *leaf;
1596 	struct btrfs_key ins;
1597 	u64 hint;
1598 	int ret;
1599 
1600 	path = btrfs_alloc_path();
1601 	BUG_ON(!path);
1602 
1603 	path->leave_spinning = 1;
1604 
1605 	/*
1606 	 * we may be replacing one extent in the tree with another.
1607 	 * The new extent is pinned in the extent map, and we don't want
1608 	 * to drop it from the cache until it is completely in the btree.
1609 	 *
1610 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1611 	 * the caller is expected to unpin it and allow it to be merged
1612 	 * with the others.
1613 	 */
1614 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1615 				 &hint, 0);
1616 	BUG_ON(ret);
1617 
1618 	ins.objectid = inode->i_ino;
1619 	ins.offset = file_pos;
1620 	ins.type = BTRFS_EXTENT_DATA_KEY;
1621 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1622 	BUG_ON(ret);
1623 	leaf = path->nodes[0];
1624 	fi = btrfs_item_ptr(leaf, path->slots[0],
1625 			    struct btrfs_file_extent_item);
1626 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1627 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1628 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1629 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1630 	btrfs_set_file_extent_offset(leaf, fi, 0);
1631 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1632 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1633 	btrfs_set_file_extent_compression(leaf, fi, compression);
1634 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1635 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1636 
1637 	btrfs_unlock_up_safe(path, 1);
1638 	btrfs_set_lock_blocking(leaf);
1639 
1640 	btrfs_mark_buffer_dirty(leaf);
1641 
1642 	inode_add_bytes(inode, num_bytes);
1643 
1644 	ins.objectid = disk_bytenr;
1645 	ins.offset = disk_num_bytes;
1646 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1647 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1648 					root->root_key.objectid,
1649 					inode->i_ino, file_pos, &ins);
1650 	BUG_ON(ret);
1651 	btrfs_free_path(path);
1652 
1653 	return 0;
1654 }
1655 
1656 /*
1657  * helper function for btrfs_finish_ordered_io, this
1658  * just reads in some of the csum leaves to prime them into ram
1659  * before we start the transaction.  It limits the amount of btree
1660  * reads required while inside the transaction.
1661  */
1662 /* as ordered data IO finishes, this gets called so we can finish
1663  * an ordered extent if the range of bytes in the file it covers are
1664  * fully written.
1665  */
1666 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1667 {
1668 	struct btrfs_root *root = BTRFS_I(inode)->root;
1669 	struct btrfs_trans_handle *trans = NULL;
1670 	struct btrfs_ordered_extent *ordered_extent = NULL;
1671 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1672 	struct extent_state *cached_state = NULL;
1673 	int compressed = 0;
1674 	int ret;
1675 	bool nolock = false;
1676 
1677 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1678 					     end - start + 1);
1679 	if (!ret)
1680 		return 0;
1681 	BUG_ON(!ordered_extent);
1682 
1683 	nolock = (root == root->fs_info->tree_root);
1684 
1685 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1686 		BUG_ON(!list_empty(&ordered_extent->list));
1687 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1688 		if (!ret) {
1689 			if (nolock)
1690 				trans = btrfs_join_transaction_nolock(root, 1);
1691 			else
1692 				trans = btrfs_join_transaction(root, 1);
1693 			BUG_ON(!trans);
1694 			btrfs_set_trans_block_group(trans, inode);
1695 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1696 			ret = btrfs_update_inode(trans, root, inode);
1697 			BUG_ON(ret);
1698 		}
1699 		goto out;
1700 	}
1701 
1702 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1703 			 ordered_extent->file_offset + ordered_extent->len - 1,
1704 			 0, &cached_state, GFP_NOFS);
1705 
1706 	if (nolock)
1707 		trans = btrfs_join_transaction_nolock(root, 1);
1708 	else
1709 		trans = btrfs_join_transaction(root, 1);
1710 	btrfs_set_trans_block_group(trans, inode);
1711 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1712 
1713 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1714 		compressed = 1;
1715 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1716 		BUG_ON(compressed);
1717 		ret = btrfs_mark_extent_written(trans, inode,
1718 						ordered_extent->file_offset,
1719 						ordered_extent->file_offset +
1720 						ordered_extent->len);
1721 		BUG_ON(ret);
1722 	} else {
1723 		BUG_ON(root == root->fs_info->tree_root);
1724 		ret = insert_reserved_file_extent(trans, inode,
1725 						ordered_extent->file_offset,
1726 						ordered_extent->start,
1727 						ordered_extent->disk_len,
1728 						ordered_extent->len,
1729 						ordered_extent->len,
1730 						compressed, 0, 0,
1731 						BTRFS_FILE_EXTENT_REG);
1732 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1733 				   ordered_extent->file_offset,
1734 				   ordered_extent->len);
1735 		BUG_ON(ret);
1736 	}
1737 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1738 			     ordered_extent->file_offset +
1739 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1740 
1741 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1742 			  &ordered_extent->list);
1743 
1744 	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1745 	ret = btrfs_update_inode(trans, root, inode);
1746 	BUG_ON(ret);
1747 out:
1748 	if (nolock) {
1749 		if (trans)
1750 			btrfs_end_transaction_nolock(trans, root);
1751 	} else {
1752 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1753 		if (trans)
1754 			btrfs_end_transaction(trans, root);
1755 	}
1756 
1757 	/* once for us */
1758 	btrfs_put_ordered_extent(ordered_extent);
1759 	/* once for the tree */
1760 	btrfs_put_ordered_extent(ordered_extent);
1761 
1762 	return 0;
1763 }
1764 
1765 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1766 				struct extent_state *state, int uptodate)
1767 {
1768 	ClearPagePrivate2(page);
1769 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1770 }
1771 
1772 /*
1773  * When IO fails, either with EIO or csum verification fails, we
1774  * try other mirrors that might have a good copy of the data.  This
1775  * io_failure_record is used to record state as we go through all the
1776  * mirrors.  If another mirror has good data, the page is set up to date
1777  * and things continue.  If a good mirror can't be found, the original
1778  * bio end_io callback is called to indicate things have failed.
1779  */
1780 struct io_failure_record {
1781 	struct page *page;
1782 	u64 start;
1783 	u64 len;
1784 	u64 logical;
1785 	unsigned long bio_flags;
1786 	int last_mirror;
1787 };
1788 
1789 static int btrfs_io_failed_hook(struct bio *failed_bio,
1790 			 struct page *page, u64 start, u64 end,
1791 			 struct extent_state *state)
1792 {
1793 	struct io_failure_record *failrec = NULL;
1794 	u64 private;
1795 	struct extent_map *em;
1796 	struct inode *inode = page->mapping->host;
1797 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1798 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1799 	struct bio *bio;
1800 	int num_copies;
1801 	int ret;
1802 	int rw;
1803 	u64 logical;
1804 
1805 	ret = get_state_private(failure_tree, start, &private);
1806 	if (ret) {
1807 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1808 		if (!failrec)
1809 			return -ENOMEM;
1810 		failrec->start = start;
1811 		failrec->len = end - start + 1;
1812 		failrec->last_mirror = 0;
1813 		failrec->bio_flags = 0;
1814 
1815 		read_lock(&em_tree->lock);
1816 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1817 		if (em->start > start || em->start + em->len < start) {
1818 			free_extent_map(em);
1819 			em = NULL;
1820 		}
1821 		read_unlock(&em_tree->lock);
1822 
1823 		if (!em || IS_ERR(em)) {
1824 			kfree(failrec);
1825 			return -EIO;
1826 		}
1827 		logical = start - em->start;
1828 		logical = em->block_start + logical;
1829 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1830 			logical = em->block_start;
1831 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1832 		}
1833 		failrec->logical = logical;
1834 		free_extent_map(em);
1835 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1836 				EXTENT_DIRTY, GFP_NOFS);
1837 		set_state_private(failure_tree, start,
1838 				 (u64)(unsigned long)failrec);
1839 	} else {
1840 		failrec = (struct io_failure_record *)(unsigned long)private;
1841 	}
1842 	num_copies = btrfs_num_copies(
1843 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1844 			      failrec->logical, failrec->len);
1845 	failrec->last_mirror++;
1846 	if (!state) {
1847 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1848 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1849 						    failrec->start,
1850 						    EXTENT_LOCKED);
1851 		if (state && state->start != failrec->start)
1852 			state = NULL;
1853 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1854 	}
1855 	if (!state || failrec->last_mirror > num_copies) {
1856 		set_state_private(failure_tree, failrec->start, 0);
1857 		clear_extent_bits(failure_tree, failrec->start,
1858 				  failrec->start + failrec->len - 1,
1859 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1860 		kfree(failrec);
1861 		return -EIO;
1862 	}
1863 	bio = bio_alloc(GFP_NOFS, 1);
1864 	bio->bi_private = state;
1865 	bio->bi_end_io = failed_bio->bi_end_io;
1866 	bio->bi_sector = failrec->logical >> 9;
1867 	bio->bi_bdev = failed_bio->bi_bdev;
1868 	bio->bi_size = 0;
1869 
1870 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1871 	if (failed_bio->bi_rw & REQ_WRITE)
1872 		rw = WRITE;
1873 	else
1874 		rw = READ;
1875 
1876 	BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1877 						      failrec->last_mirror,
1878 						      failrec->bio_flags, 0);
1879 	return 0;
1880 }
1881 
1882 /*
1883  * each time an IO finishes, we do a fast check in the IO failure tree
1884  * to see if we need to process or clean up an io_failure_record
1885  */
1886 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1887 {
1888 	u64 private;
1889 	u64 private_failure;
1890 	struct io_failure_record *failure;
1891 	int ret;
1892 
1893 	private = 0;
1894 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1895 			     (u64)-1, 1, EXTENT_DIRTY)) {
1896 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1897 					start, &private_failure);
1898 		if (ret == 0) {
1899 			failure = (struct io_failure_record *)(unsigned long)
1900 				   private_failure;
1901 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1902 					  failure->start, 0);
1903 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1904 					  failure->start,
1905 					  failure->start + failure->len - 1,
1906 					  EXTENT_DIRTY | EXTENT_LOCKED,
1907 					  GFP_NOFS);
1908 			kfree(failure);
1909 		}
1910 	}
1911 	return 0;
1912 }
1913 
1914 /*
1915  * when reads are done, we need to check csums to verify the data is correct
1916  * if there's a match, we allow the bio to finish.  If not, we go through
1917  * the io_failure_record routines to find good copies
1918  */
1919 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1920 			       struct extent_state *state)
1921 {
1922 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1923 	struct inode *inode = page->mapping->host;
1924 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1925 	char *kaddr;
1926 	u64 private = ~(u32)0;
1927 	int ret;
1928 	struct btrfs_root *root = BTRFS_I(inode)->root;
1929 	u32 csum = ~(u32)0;
1930 
1931 	if (PageChecked(page)) {
1932 		ClearPageChecked(page);
1933 		goto good;
1934 	}
1935 
1936 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1937 		return 0;
1938 
1939 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1940 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1941 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1942 				  GFP_NOFS);
1943 		return 0;
1944 	}
1945 
1946 	if (state && state->start == start) {
1947 		private = state->private;
1948 		ret = 0;
1949 	} else {
1950 		ret = get_state_private(io_tree, start, &private);
1951 	}
1952 	kaddr = kmap_atomic(page, KM_USER0);
1953 	if (ret)
1954 		goto zeroit;
1955 
1956 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1957 	btrfs_csum_final(csum, (char *)&csum);
1958 	if (csum != private)
1959 		goto zeroit;
1960 
1961 	kunmap_atomic(kaddr, KM_USER0);
1962 good:
1963 	/* if the io failure tree for this inode is non-empty,
1964 	 * check to see if we've recovered from a failed IO
1965 	 */
1966 	btrfs_clean_io_failures(inode, start);
1967 	return 0;
1968 
1969 zeroit:
1970 	if (printk_ratelimit()) {
1971 		printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1972 		       "private %llu\n", page->mapping->host->i_ino,
1973 		       (unsigned long long)start, csum,
1974 		       (unsigned long long)private);
1975 	}
1976 	memset(kaddr + offset, 1, end - start + 1);
1977 	flush_dcache_page(page);
1978 	kunmap_atomic(kaddr, KM_USER0);
1979 	if (private == 0)
1980 		return 0;
1981 	return -EIO;
1982 }
1983 
1984 struct delayed_iput {
1985 	struct list_head list;
1986 	struct inode *inode;
1987 };
1988 
1989 void btrfs_add_delayed_iput(struct inode *inode)
1990 {
1991 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1992 	struct delayed_iput *delayed;
1993 
1994 	if (atomic_add_unless(&inode->i_count, -1, 1))
1995 		return;
1996 
1997 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1998 	delayed->inode = inode;
1999 
2000 	spin_lock(&fs_info->delayed_iput_lock);
2001 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2002 	spin_unlock(&fs_info->delayed_iput_lock);
2003 }
2004 
2005 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2006 {
2007 	LIST_HEAD(list);
2008 	struct btrfs_fs_info *fs_info = root->fs_info;
2009 	struct delayed_iput *delayed;
2010 	int empty;
2011 
2012 	spin_lock(&fs_info->delayed_iput_lock);
2013 	empty = list_empty(&fs_info->delayed_iputs);
2014 	spin_unlock(&fs_info->delayed_iput_lock);
2015 	if (empty)
2016 		return;
2017 
2018 	down_read(&root->fs_info->cleanup_work_sem);
2019 	spin_lock(&fs_info->delayed_iput_lock);
2020 	list_splice_init(&fs_info->delayed_iputs, &list);
2021 	spin_unlock(&fs_info->delayed_iput_lock);
2022 
2023 	while (!list_empty(&list)) {
2024 		delayed = list_entry(list.next, struct delayed_iput, list);
2025 		list_del(&delayed->list);
2026 		iput(delayed->inode);
2027 		kfree(delayed);
2028 	}
2029 	up_read(&root->fs_info->cleanup_work_sem);
2030 }
2031 
2032 /*
2033  * calculate extra metadata reservation when snapshotting a subvolume
2034  * contains orphan files.
2035  */
2036 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2037 				struct btrfs_pending_snapshot *pending,
2038 				u64 *bytes_to_reserve)
2039 {
2040 	struct btrfs_root *root;
2041 	struct btrfs_block_rsv *block_rsv;
2042 	u64 num_bytes;
2043 	int index;
2044 
2045 	root = pending->root;
2046 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2047 		return;
2048 
2049 	block_rsv = root->orphan_block_rsv;
2050 
2051 	/* orphan block reservation for the snapshot */
2052 	num_bytes = block_rsv->size;
2053 
2054 	/*
2055 	 * after the snapshot is created, COWing tree blocks may use more
2056 	 * space than it frees. So we should make sure there is enough
2057 	 * reserved space.
2058 	 */
2059 	index = trans->transid & 0x1;
2060 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2061 		num_bytes += block_rsv->size -
2062 			     (block_rsv->reserved + block_rsv->freed[index]);
2063 	}
2064 
2065 	*bytes_to_reserve += num_bytes;
2066 }
2067 
2068 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2069 				struct btrfs_pending_snapshot *pending)
2070 {
2071 	struct btrfs_root *root = pending->root;
2072 	struct btrfs_root *snap = pending->snap;
2073 	struct btrfs_block_rsv *block_rsv;
2074 	u64 num_bytes;
2075 	int index;
2076 	int ret;
2077 
2078 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079 		return;
2080 
2081 	/* refill source subvolume's orphan block reservation */
2082 	block_rsv = root->orphan_block_rsv;
2083 	index = trans->transid & 0x1;
2084 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2085 		num_bytes = block_rsv->size -
2086 			    (block_rsv->reserved + block_rsv->freed[index]);
2087 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2088 					      root->orphan_block_rsv,
2089 					      num_bytes);
2090 		BUG_ON(ret);
2091 	}
2092 
2093 	/* setup orphan block reservation for the snapshot */
2094 	block_rsv = btrfs_alloc_block_rsv(snap);
2095 	BUG_ON(!block_rsv);
2096 
2097 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2098 	snap->orphan_block_rsv = block_rsv;
2099 
2100 	num_bytes = root->orphan_block_rsv->size;
2101 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2102 				      block_rsv, num_bytes);
2103 	BUG_ON(ret);
2104 
2105 #if 0
2106 	/* insert orphan item for the snapshot */
2107 	WARN_ON(!root->orphan_item_inserted);
2108 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2109 				       snap->root_key.objectid);
2110 	BUG_ON(ret);
2111 	snap->orphan_item_inserted = 1;
2112 #endif
2113 }
2114 
2115 enum btrfs_orphan_cleanup_state {
2116 	ORPHAN_CLEANUP_STARTED	= 1,
2117 	ORPHAN_CLEANUP_DONE	= 2,
2118 };
2119 
2120 /*
2121  * This is called in transaction commmit time. If there are no orphan
2122  * files in the subvolume, it removes orphan item and frees block_rsv
2123  * structure.
2124  */
2125 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2126 			      struct btrfs_root *root)
2127 {
2128 	int ret;
2129 
2130 	if (!list_empty(&root->orphan_list) ||
2131 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2132 		return;
2133 
2134 	if (root->orphan_item_inserted &&
2135 	    btrfs_root_refs(&root->root_item) > 0) {
2136 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2137 					    root->root_key.objectid);
2138 		BUG_ON(ret);
2139 		root->orphan_item_inserted = 0;
2140 	}
2141 
2142 	if (root->orphan_block_rsv) {
2143 		WARN_ON(root->orphan_block_rsv->size > 0);
2144 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2145 		root->orphan_block_rsv = NULL;
2146 	}
2147 }
2148 
2149 /*
2150  * This creates an orphan entry for the given inode in case something goes
2151  * wrong in the middle of an unlink/truncate.
2152  *
2153  * NOTE: caller of this function should reserve 5 units of metadata for
2154  *	 this function.
2155  */
2156 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2157 {
2158 	struct btrfs_root *root = BTRFS_I(inode)->root;
2159 	struct btrfs_block_rsv *block_rsv = NULL;
2160 	int reserve = 0;
2161 	int insert = 0;
2162 	int ret;
2163 
2164 	if (!root->orphan_block_rsv) {
2165 		block_rsv = btrfs_alloc_block_rsv(root);
2166 		BUG_ON(!block_rsv);
2167 	}
2168 
2169 	spin_lock(&root->orphan_lock);
2170 	if (!root->orphan_block_rsv) {
2171 		root->orphan_block_rsv = block_rsv;
2172 	} else if (block_rsv) {
2173 		btrfs_free_block_rsv(root, block_rsv);
2174 		block_rsv = NULL;
2175 	}
2176 
2177 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2178 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2179 #if 0
2180 		/*
2181 		 * For proper ENOSPC handling, we should do orphan
2182 		 * cleanup when mounting. But this introduces backward
2183 		 * compatibility issue.
2184 		 */
2185 		if (!xchg(&root->orphan_item_inserted, 1))
2186 			insert = 2;
2187 		else
2188 			insert = 1;
2189 #endif
2190 		insert = 1;
2191 	} else {
2192 		WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved);
2193 	}
2194 
2195 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2196 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2197 		reserve = 1;
2198 	}
2199 	spin_unlock(&root->orphan_lock);
2200 
2201 	if (block_rsv)
2202 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2203 
2204 	/* grab metadata reservation from transaction handle */
2205 	if (reserve) {
2206 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2207 		BUG_ON(ret);
2208 	}
2209 
2210 	/* insert an orphan item to track this unlinked/truncated file */
2211 	if (insert >= 1) {
2212 		ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2213 		BUG_ON(ret);
2214 	}
2215 
2216 	/* insert an orphan item to track subvolume contains orphan files */
2217 	if (insert >= 2) {
2218 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2219 					       root->root_key.objectid);
2220 		BUG_ON(ret);
2221 	}
2222 	return 0;
2223 }
2224 
2225 /*
2226  * We have done the truncate/delete so we can go ahead and remove the orphan
2227  * item for this particular inode.
2228  */
2229 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2230 {
2231 	struct btrfs_root *root = BTRFS_I(inode)->root;
2232 	int delete_item = 0;
2233 	int release_rsv = 0;
2234 	int ret = 0;
2235 
2236 	spin_lock(&root->orphan_lock);
2237 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2238 		list_del_init(&BTRFS_I(inode)->i_orphan);
2239 		delete_item = 1;
2240 	}
2241 
2242 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2243 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2244 		release_rsv = 1;
2245 	}
2246 	spin_unlock(&root->orphan_lock);
2247 
2248 	if (trans && delete_item) {
2249 		ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2250 		BUG_ON(ret);
2251 	}
2252 
2253 	if (release_rsv)
2254 		btrfs_orphan_release_metadata(inode);
2255 
2256 	return 0;
2257 }
2258 
2259 /*
2260  * this cleans up any orphans that may be left on the list from the last use
2261  * of this root.
2262  */
2263 void btrfs_orphan_cleanup(struct btrfs_root *root)
2264 {
2265 	struct btrfs_path *path;
2266 	struct extent_buffer *leaf;
2267 	struct btrfs_key key, found_key;
2268 	struct btrfs_trans_handle *trans;
2269 	struct inode *inode;
2270 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2271 
2272 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2273 		return;
2274 
2275 	path = btrfs_alloc_path();
2276 	BUG_ON(!path);
2277 	path->reada = -1;
2278 
2279 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2280 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2281 	key.offset = (u64)-1;
2282 
2283 	while (1) {
2284 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2285 		if (ret < 0) {
2286 			printk(KERN_ERR "Error searching slot for orphan: %d"
2287 			       "\n", ret);
2288 			break;
2289 		}
2290 
2291 		/*
2292 		 * if ret == 0 means we found what we were searching for, which
2293 		 * is weird, but possible, so only screw with path if we didnt
2294 		 * find the key and see if we have stuff that matches
2295 		 */
2296 		if (ret > 0) {
2297 			if (path->slots[0] == 0)
2298 				break;
2299 			path->slots[0]--;
2300 		}
2301 
2302 		/* pull out the item */
2303 		leaf = path->nodes[0];
2304 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2305 
2306 		/* make sure the item matches what we want */
2307 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2308 			break;
2309 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2310 			break;
2311 
2312 		/* release the path since we're done with it */
2313 		btrfs_release_path(root, path);
2314 
2315 		/*
2316 		 * this is where we are basically btrfs_lookup, without the
2317 		 * crossing root thing.  we store the inode number in the
2318 		 * offset of the orphan item.
2319 		 */
2320 		found_key.objectid = found_key.offset;
2321 		found_key.type = BTRFS_INODE_ITEM_KEY;
2322 		found_key.offset = 0;
2323 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2324 		BUG_ON(IS_ERR(inode));
2325 
2326 		/*
2327 		 * add this inode to the orphan list so btrfs_orphan_del does
2328 		 * the proper thing when we hit it
2329 		 */
2330 		spin_lock(&root->orphan_lock);
2331 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2332 		spin_unlock(&root->orphan_lock);
2333 
2334 		/*
2335 		 * if this is a bad inode, means we actually succeeded in
2336 		 * removing the inode, but not the orphan record, which means
2337 		 * we need to manually delete the orphan since iput will just
2338 		 * do a destroy_inode
2339 		 */
2340 		if (is_bad_inode(inode)) {
2341 			trans = btrfs_start_transaction(root, 0);
2342 			btrfs_orphan_del(trans, inode);
2343 			btrfs_end_transaction(trans, root);
2344 			iput(inode);
2345 			continue;
2346 		}
2347 
2348 		/* if we have links, this was a truncate, lets do that */
2349 		if (inode->i_nlink) {
2350 			nr_truncate++;
2351 			btrfs_truncate(inode);
2352 		} else {
2353 			nr_unlink++;
2354 		}
2355 
2356 		/* this will do delete_inode and everything for us */
2357 		iput(inode);
2358 	}
2359 	btrfs_free_path(path);
2360 
2361 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2362 
2363 	if (root->orphan_block_rsv)
2364 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2365 					(u64)-1);
2366 
2367 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2368 		trans = btrfs_join_transaction(root, 1);
2369 		btrfs_end_transaction(trans, root);
2370 	}
2371 
2372 	if (nr_unlink)
2373 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2374 	if (nr_truncate)
2375 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2376 }
2377 
2378 /*
2379  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2380  * don't find any xattrs, we know there can't be any acls.
2381  *
2382  * slot is the slot the inode is in, objectid is the objectid of the inode
2383  */
2384 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2385 					  int slot, u64 objectid)
2386 {
2387 	u32 nritems = btrfs_header_nritems(leaf);
2388 	struct btrfs_key found_key;
2389 	int scanned = 0;
2390 
2391 	slot++;
2392 	while (slot < nritems) {
2393 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2394 
2395 		/* we found a different objectid, there must not be acls */
2396 		if (found_key.objectid != objectid)
2397 			return 0;
2398 
2399 		/* we found an xattr, assume we've got an acl */
2400 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2401 			return 1;
2402 
2403 		/*
2404 		 * we found a key greater than an xattr key, there can't
2405 		 * be any acls later on
2406 		 */
2407 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2408 			return 0;
2409 
2410 		slot++;
2411 		scanned++;
2412 
2413 		/*
2414 		 * it goes inode, inode backrefs, xattrs, extents,
2415 		 * so if there are a ton of hard links to an inode there can
2416 		 * be a lot of backrefs.  Don't waste time searching too hard,
2417 		 * this is just an optimization
2418 		 */
2419 		if (scanned >= 8)
2420 			break;
2421 	}
2422 	/* we hit the end of the leaf before we found an xattr or
2423 	 * something larger than an xattr.  We have to assume the inode
2424 	 * has acls
2425 	 */
2426 	return 1;
2427 }
2428 
2429 /*
2430  * read an inode from the btree into the in-memory inode
2431  */
2432 static void btrfs_read_locked_inode(struct inode *inode)
2433 {
2434 	struct btrfs_path *path;
2435 	struct extent_buffer *leaf;
2436 	struct btrfs_inode_item *inode_item;
2437 	struct btrfs_timespec *tspec;
2438 	struct btrfs_root *root = BTRFS_I(inode)->root;
2439 	struct btrfs_key location;
2440 	int maybe_acls;
2441 	u64 alloc_group_block;
2442 	u32 rdev;
2443 	int ret;
2444 
2445 	path = btrfs_alloc_path();
2446 	BUG_ON(!path);
2447 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2448 
2449 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2450 	if (ret)
2451 		goto make_bad;
2452 
2453 	leaf = path->nodes[0];
2454 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2455 				    struct btrfs_inode_item);
2456 
2457 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2458 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2459 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2460 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2461 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2462 
2463 	tspec = btrfs_inode_atime(inode_item);
2464 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2465 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2466 
2467 	tspec = btrfs_inode_mtime(inode_item);
2468 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2469 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2470 
2471 	tspec = btrfs_inode_ctime(inode_item);
2472 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2473 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2474 
2475 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2476 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2477 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2478 	inode->i_generation = BTRFS_I(inode)->generation;
2479 	inode->i_rdev = 0;
2480 	rdev = btrfs_inode_rdev(leaf, inode_item);
2481 
2482 	BTRFS_I(inode)->index_cnt = (u64)-1;
2483 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2484 
2485 	alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2486 
2487 	/*
2488 	 * try to precache a NULL acl entry for files that don't have
2489 	 * any xattrs or acls
2490 	 */
2491 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2492 	if (!maybe_acls)
2493 		cache_no_acl(inode);
2494 
2495 	BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2496 						alloc_group_block, 0);
2497 	btrfs_free_path(path);
2498 	inode_item = NULL;
2499 
2500 	switch (inode->i_mode & S_IFMT) {
2501 	case S_IFREG:
2502 		inode->i_mapping->a_ops = &btrfs_aops;
2503 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2504 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2505 		inode->i_fop = &btrfs_file_operations;
2506 		inode->i_op = &btrfs_file_inode_operations;
2507 		break;
2508 	case S_IFDIR:
2509 		inode->i_fop = &btrfs_dir_file_operations;
2510 		if (root == root->fs_info->tree_root)
2511 			inode->i_op = &btrfs_dir_ro_inode_operations;
2512 		else
2513 			inode->i_op = &btrfs_dir_inode_operations;
2514 		break;
2515 	case S_IFLNK:
2516 		inode->i_op = &btrfs_symlink_inode_operations;
2517 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2518 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2519 		break;
2520 	default:
2521 		inode->i_op = &btrfs_special_inode_operations;
2522 		init_special_inode(inode, inode->i_mode, rdev);
2523 		break;
2524 	}
2525 
2526 	btrfs_update_iflags(inode);
2527 	return;
2528 
2529 make_bad:
2530 	btrfs_free_path(path);
2531 	make_bad_inode(inode);
2532 }
2533 
2534 /*
2535  * given a leaf and an inode, copy the inode fields into the leaf
2536  */
2537 static void fill_inode_item(struct btrfs_trans_handle *trans,
2538 			    struct extent_buffer *leaf,
2539 			    struct btrfs_inode_item *item,
2540 			    struct inode *inode)
2541 {
2542 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2543 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2544 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2545 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2546 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2547 
2548 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2549 			       inode->i_atime.tv_sec);
2550 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2551 				inode->i_atime.tv_nsec);
2552 
2553 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2554 			       inode->i_mtime.tv_sec);
2555 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2556 				inode->i_mtime.tv_nsec);
2557 
2558 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2559 			       inode->i_ctime.tv_sec);
2560 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2561 				inode->i_ctime.tv_nsec);
2562 
2563 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2564 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2565 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2566 	btrfs_set_inode_transid(leaf, item, trans->transid);
2567 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2568 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2569 	btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2570 }
2571 
2572 /*
2573  * copy everything in the in-memory inode into the btree.
2574  */
2575 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2576 				struct btrfs_root *root, struct inode *inode)
2577 {
2578 	struct btrfs_inode_item *inode_item;
2579 	struct btrfs_path *path;
2580 	struct extent_buffer *leaf;
2581 	int ret;
2582 
2583 	path = btrfs_alloc_path();
2584 	BUG_ON(!path);
2585 	path->leave_spinning = 1;
2586 	ret = btrfs_lookup_inode(trans, root, path,
2587 				 &BTRFS_I(inode)->location, 1);
2588 	if (ret) {
2589 		if (ret > 0)
2590 			ret = -ENOENT;
2591 		goto failed;
2592 	}
2593 
2594 	btrfs_unlock_up_safe(path, 1);
2595 	leaf = path->nodes[0];
2596 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2597 				  struct btrfs_inode_item);
2598 
2599 	fill_inode_item(trans, leaf, inode_item, inode);
2600 	btrfs_mark_buffer_dirty(leaf);
2601 	btrfs_set_inode_last_trans(trans, inode);
2602 	ret = 0;
2603 failed:
2604 	btrfs_free_path(path);
2605 	return ret;
2606 }
2607 
2608 
2609 /*
2610  * unlink helper that gets used here in inode.c and in the tree logging
2611  * recovery code.  It remove a link in a directory with a given name, and
2612  * also drops the back refs in the inode to the directory
2613  */
2614 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2615 		       struct btrfs_root *root,
2616 		       struct inode *dir, struct inode *inode,
2617 		       const char *name, int name_len)
2618 {
2619 	struct btrfs_path *path;
2620 	int ret = 0;
2621 	struct extent_buffer *leaf;
2622 	struct btrfs_dir_item *di;
2623 	struct btrfs_key key;
2624 	u64 index;
2625 
2626 	path = btrfs_alloc_path();
2627 	if (!path) {
2628 		ret = -ENOMEM;
2629 		goto err;
2630 	}
2631 
2632 	path->leave_spinning = 1;
2633 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2634 				    name, name_len, -1);
2635 	if (IS_ERR(di)) {
2636 		ret = PTR_ERR(di);
2637 		goto err;
2638 	}
2639 	if (!di) {
2640 		ret = -ENOENT;
2641 		goto err;
2642 	}
2643 	leaf = path->nodes[0];
2644 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2645 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2646 	if (ret)
2647 		goto err;
2648 	btrfs_release_path(root, path);
2649 
2650 	ret = btrfs_del_inode_ref(trans, root, name, name_len,
2651 				  inode->i_ino,
2652 				  dir->i_ino, &index);
2653 	if (ret) {
2654 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2655 		       "inode %lu parent %lu\n", name_len, name,
2656 		       inode->i_ino, dir->i_ino);
2657 		goto err;
2658 	}
2659 
2660 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2661 					 index, name, name_len, -1);
2662 	if (IS_ERR(di)) {
2663 		ret = PTR_ERR(di);
2664 		goto err;
2665 	}
2666 	if (!di) {
2667 		ret = -ENOENT;
2668 		goto err;
2669 	}
2670 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2671 	btrfs_release_path(root, path);
2672 
2673 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2674 					 inode, dir->i_ino);
2675 	BUG_ON(ret != 0 && ret != -ENOENT);
2676 
2677 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2678 					   dir, index);
2679 	if (ret == -ENOENT)
2680 		ret = 0;
2681 err:
2682 	btrfs_free_path(path);
2683 	if (ret)
2684 		goto out;
2685 
2686 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2687 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2688 	btrfs_update_inode(trans, root, dir);
2689 	btrfs_drop_nlink(inode);
2690 	ret = btrfs_update_inode(trans, root, inode);
2691 out:
2692 	return ret;
2693 }
2694 
2695 /* helper to check if there is any shared block in the path */
2696 static int check_path_shared(struct btrfs_root *root,
2697 			     struct btrfs_path *path)
2698 {
2699 	struct extent_buffer *eb;
2700 	int level;
2701 	u64 refs = 1;
2702 	int uninitialized_var(ret);
2703 
2704 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2705 		if (!path->nodes[level])
2706 			break;
2707 		eb = path->nodes[level];
2708 		if (!btrfs_block_can_be_shared(root, eb))
2709 			continue;
2710 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2711 					       &refs, NULL);
2712 		if (refs > 1)
2713 			return 1;
2714 	}
2715 	return ret; /* XXX callers? */
2716 }
2717 
2718 /*
2719  * helper to start transaction for unlink and rmdir.
2720  *
2721  * unlink and rmdir are special in btrfs, they do not always free space.
2722  * so in enospc case, we should make sure they will free space before
2723  * allowing them to use the global metadata reservation.
2724  */
2725 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2726 						       struct dentry *dentry)
2727 {
2728 	struct btrfs_trans_handle *trans;
2729 	struct btrfs_root *root = BTRFS_I(dir)->root;
2730 	struct btrfs_path *path;
2731 	struct btrfs_inode_ref *ref;
2732 	struct btrfs_dir_item *di;
2733 	struct inode *inode = dentry->d_inode;
2734 	u64 index;
2735 	int check_link = 1;
2736 	int err = -ENOSPC;
2737 	int ret;
2738 
2739 	trans = btrfs_start_transaction(root, 10);
2740 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2741 		return trans;
2742 
2743 	if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2744 		return ERR_PTR(-ENOSPC);
2745 
2746 	/* check if there is someone else holds reference */
2747 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2748 		return ERR_PTR(-ENOSPC);
2749 
2750 	if (atomic_read(&inode->i_count) > 2)
2751 		return ERR_PTR(-ENOSPC);
2752 
2753 	if (xchg(&root->fs_info->enospc_unlink, 1))
2754 		return ERR_PTR(-ENOSPC);
2755 
2756 	path = btrfs_alloc_path();
2757 	if (!path) {
2758 		root->fs_info->enospc_unlink = 0;
2759 		return ERR_PTR(-ENOMEM);
2760 	}
2761 
2762 	trans = btrfs_start_transaction(root, 0);
2763 	if (IS_ERR(trans)) {
2764 		btrfs_free_path(path);
2765 		root->fs_info->enospc_unlink = 0;
2766 		return trans;
2767 	}
2768 
2769 	path->skip_locking = 1;
2770 	path->search_commit_root = 1;
2771 
2772 	ret = btrfs_lookup_inode(trans, root, path,
2773 				&BTRFS_I(dir)->location, 0);
2774 	if (ret < 0) {
2775 		err = ret;
2776 		goto out;
2777 	}
2778 	if (ret == 0) {
2779 		if (check_path_shared(root, path))
2780 			goto out;
2781 	} else {
2782 		check_link = 0;
2783 	}
2784 	btrfs_release_path(root, path);
2785 
2786 	ret = btrfs_lookup_inode(trans, root, path,
2787 				&BTRFS_I(inode)->location, 0);
2788 	if (ret < 0) {
2789 		err = ret;
2790 		goto out;
2791 	}
2792 	if (ret == 0) {
2793 		if (check_path_shared(root, path))
2794 			goto out;
2795 	} else {
2796 		check_link = 0;
2797 	}
2798 	btrfs_release_path(root, path);
2799 
2800 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2801 		ret = btrfs_lookup_file_extent(trans, root, path,
2802 					       inode->i_ino, (u64)-1, 0);
2803 		if (ret < 0) {
2804 			err = ret;
2805 			goto out;
2806 		}
2807 		BUG_ON(ret == 0);
2808 		if (check_path_shared(root, path))
2809 			goto out;
2810 		btrfs_release_path(root, path);
2811 	}
2812 
2813 	if (!check_link) {
2814 		err = 0;
2815 		goto out;
2816 	}
2817 
2818 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2819 				dentry->d_name.name, dentry->d_name.len, 0);
2820 	if (IS_ERR(di)) {
2821 		err = PTR_ERR(di);
2822 		goto out;
2823 	}
2824 	if (di) {
2825 		if (check_path_shared(root, path))
2826 			goto out;
2827 	} else {
2828 		err = 0;
2829 		goto out;
2830 	}
2831 	btrfs_release_path(root, path);
2832 
2833 	ref = btrfs_lookup_inode_ref(trans, root, path,
2834 				dentry->d_name.name, dentry->d_name.len,
2835 				inode->i_ino, dir->i_ino, 0);
2836 	if (IS_ERR(ref)) {
2837 		err = PTR_ERR(ref);
2838 		goto out;
2839 	}
2840 	BUG_ON(!ref);
2841 	if (check_path_shared(root, path))
2842 		goto out;
2843 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2844 	btrfs_release_path(root, path);
2845 
2846 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2847 				dentry->d_name.name, dentry->d_name.len, 0);
2848 	if (IS_ERR(di)) {
2849 		err = PTR_ERR(di);
2850 		goto out;
2851 	}
2852 	BUG_ON(ret == -ENOENT);
2853 	if (check_path_shared(root, path))
2854 		goto out;
2855 
2856 	err = 0;
2857 out:
2858 	btrfs_free_path(path);
2859 	if (err) {
2860 		btrfs_end_transaction(trans, root);
2861 		root->fs_info->enospc_unlink = 0;
2862 		return ERR_PTR(err);
2863 	}
2864 
2865 	trans->block_rsv = &root->fs_info->global_block_rsv;
2866 	return trans;
2867 }
2868 
2869 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2870 			       struct btrfs_root *root)
2871 {
2872 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2873 		BUG_ON(!root->fs_info->enospc_unlink);
2874 		root->fs_info->enospc_unlink = 0;
2875 	}
2876 	btrfs_end_transaction_throttle(trans, root);
2877 }
2878 
2879 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2880 {
2881 	struct btrfs_root *root = BTRFS_I(dir)->root;
2882 	struct btrfs_trans_handle *trans;
2883 	struct inode *inode = dentry->d_inode;
2884 	int ret;
2885 	unsigned long nr = 0;
2886 
2887 	trans = __unlink_start_trans(dir, dentry);
2888 	if (IS_ERR(trans))
2889 		return PTR_ERR(trans);
2890 
2891 	btrfs_set_trans_block_group(trans, dir);
2892 
2893 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2894 
2895 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2896 				 dentry->d_name.name, dentry->d_name.len);
2897 	BUG_ON(ret);
2898 
2899 	if (inode->i_nlink == 0) {
2900 		ret = btrfs_orphan_add(trans, inode);
2901 		BUG_ON(ret);
2902 	}
2903 
2904 	nr = trans->blocks_used;
2905 	__unlink_end_trans(trans, root);
2906 	btrfs_btree_balance_dirty(root, nr);
2907 	return ret;
2908 }
2909 
2910 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2911 			struct btrfs_root *root,
2912 			struct inode *dir, u64 objectid,
2913 			const char *name, int name_len)
2914 {
2915 	struct btrfs_path *path;
2916 	struct extent_buffer *leaf;
2917 	struct btrfs_dir_item *di;
2918 	struct btrfs_key key;
2919 	u64 index;
2920 	int ret;
2921 
2922 	path = btrfs_alloc_path();
2923 	if (!path)
2924 		return -ENOMEM;
2925 
2926 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2927 				   name, name_len, -1);
2928 	BUG_ON(!di || IS_ERR(di));
2929 
2930 	leaf = path->nodes[0];
2931 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2932 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2933 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2934 	BUG_ON(ret);
2935 	btrfs_release_path(root, path);
2936 
2937 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2938 				 objectid, root->root_key.objectid,
2939 				 dir->i_ino, &index, name, name_len);
2940 	if (ret < 0) {
2941 		BUG_ON(ret != -ENOENT);
2942 		di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2943 						 name, name_len);
2944 		BUG_ON(!di || IS_ERR(di));
2945 
2946 		leaf = path->nodes[0];
2947 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2948 		btrfs_release_path(root, path);
2949 		index = key.offset;
2950 	}
2951 
2952 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2953 					 index, name, name_len, -1);
2954 	BUG_ON(!di || IS_ERR(di));
2955 
2956 	leaf = path->nodes[0];
2957 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2958 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2959 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2960 	BUG_ON(ret);
2961 	btrfs_release_path(root, path);
2962 
2963 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2964 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2965 	ret = btrfs_update_inode(trans, root, dir);
2966 	BUG_ON(ret);
2967 
2968 	btrfs_free_path(path);
2969 	return 0;
2970 }
2971 
2972 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2973 {
2974 	struct inode *inode = dentry->d_inode;
2975 	int err = 0;
2976 	struct btrfs_root *root = BTRFS_I(dir)->root;
2977 	struct btrfs_trans_handle *trans;
2978 	unsigned long nr = 0;
2979 
2980 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2981 	    inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2982 		return -ENOTEMPTY;
2983 
2984 	trans = __unlink_start_trans(dir, dentry);
2985 	if (IS_ERR(trans))
2986 		return PTR_ERR(trans);
2987 
2988 	btrfs_set_trans_block_group(trans, dir);
2989 
2990 	if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2991 		err = btrfs_unlink_subvol(trans, root, dir,
2992 					  BTRFS_I(inode)->location.objectid,
2993 					  dentry->d_name.name,
2994 					  dentry->d_name.len);
2995 		goto out;
2996 	}
2997 
2998 	err = btrfs_orphan_add(trans, inode);
2999 	if (err)
3000 		goto out;
3001 
3002 	/* now the directory is empty */
3003 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3004 				 dentry->d_name.name, dentry->d_name.len);
3005 	if (!err)
3006 		btrfs_i_size_write(inode, 0);
3007 out:
3008 	nr = trans->blocks_used;
3009 	__unlink_end_trans(trans, root);
3010 	btrfs_btree_balance_dirty(root, nr);
3011 
3012 	return err;
3013 }
3014 
3015 #if 0
3016 /*
3017  * when truncating bytes in a file, it is possible to avoid reading
3018  * the leaves that contain only checksum items.  This can be the
3019  * majority of the IO required to delete a large file, but it must
3020  * be done carefully.
3021  *
3022  * The keys in the level just above the leaves are checked to make sure
3023  * the lowest key in a given leaf is a csum key, and starts at an offset
3024  * after the new  size.
3025  *
3026  * Then the key for the next leaf is checked to make sure it also has
3027  * a checksum item for the same file.  If it does, we know our target leaf
3028  * contains only checksum items, and it can be safely freed without reading
3029  * it.
3030  *
3031  * This is just an optimization targeted at large files.  It may do
3032  * nothing.  It will return 0 unless things went badly.
3033  */
3034 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3035 				     struct btrfs_root *root,
3036 				     struct btrfs_path *path,
3037 				     struct inode *inode, u64 new_size)
3038 {
3039 	struct btrfs_key key;
3040 	int ret;
3041 	int nritems;
3042 	struct btrfs_key found_key;
3043 	struct btrfs_key other_key;
3044 	struct btrfs_leaf_ref *ref;
3045 	u64 leaf_gen;
3046 	u64 leaf_start;
3047 
3048 	path->lowest_level = 1;
3049 	key.objectid = inode->i_ino;
3050 	key.type = BTRFS_CSUM_ITEM_KEY;
3051 	key.offset = new_size;
3052 again:
3053 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3054 	if (ret < 0)
3055 		goto out;
3056 
3057 	if (path->nodes[1] == NULL) {
3058 		ret = 0;
3059 		goto out;
3060 	}
3061 	ret = 0;
3062 	btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3063 	nritems = btrfs_header_nritems(path->nodes[1]);
3064 
3065 	if (!nritems)
3066 		goto out;
3067 
3068 	if (path->slots[1] >= nritems)
3069 		goto next_node;
3070 
3071 	/* did we find a key greater than anything we want to delete? */
3072 	if (found_key.objectid > inode->i_ino ||
3073 	   (found_key.objectid == inode->i_ino && found_key.type > key.type))
3074 		goto out;
3075 
3076 	/* we check the next key in the node to make sure the leave contains
3077 	 * only checksum items.  This comparison doesn't work if our
3078 	 * leaf is the last one in the node
3079 	 */
3080 	if (path->slots[1] + 1 >= nritems) {
3081 next_node:
3082 		/* search forward from the last key in the node, this
3083 		 * will bring us into the next node in the tree
3084 		 */
3085 		btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3086 
3087 		/* unlikely, but we inc below, so check to be safe */
3088 		if (found_key.offset == (u64)-1)
3089 			goto out;
3090 
3091 		/* search_forward needs a path with locks held, do the
3092 		 * search again for the original key.  It is possible
3093 		 * this will race with a balance and return a path that
3094 		 * we could modify, but this drop is just an optimization
3095 		 * and is allowed to miss some leaves.
3096 		 */
3097 		btrfs_release_path(root, path);
3098 		found_key.offset++;
3099 
3100 		/* setup a max key for search_forward */
3101 		other_key.offset = (u64)-1;
3102 		other_key.type = key.type;
3103 		other_key.objectid = key.objectid;
3104 
3105 		path->keep_locks = 1;
3106 		ret = btrfs_search_forward(root, &found_key, &other_key,
3107 					   path, 0, 0);
3108 		path->keep_locks = 0;
3109 		if (ret || found_key.objectid != key.objectid ||
3110 		    found_key.type != key.type) {
3111 			ret = 0;
3112 			goto out;
3113 		}
3114 
3115 		key.offset = found_key.offset;
3116 		btrfs_release_path(root, path);
3117 		cond_resched();
3118 		goto again;
3119 	}
3120 
3121 	/* we know there's one more slot after us in the tree,
3122 	 * read that key so we can verify it is also a checksum item
3123 	 */
3124 	btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3125 
3126 	if (found_key.objectid < inode->i_ino)
3127 		goto next_key;
3128 
3129 	if (found_key.type != key.type || found_key.offset < new_size)
3130 		goto next_key;
3131 
3132 	/*
3133 	 * if the key for the next leaf isn't a csum key from this objectid,
3134 	 * we can't be sure there aren't good items inside this leaf.
3135 	 * Bail out
3136 	 */
3137 	if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3138 		goto out;
3139 
3140 	leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3141 	leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3142 	/*
3143 	 * it is safe to delete this leaf, it contains only
3144 	 * csum items from this inode at an offset >= new_size
3145 	 */
3146 	ret = btrfs_del_leaf(trans, root, path, leaf_start);
3147 	BUG_ON(ret);
3148 
3149 	if (root->ref_cows && leaf_gen < trans->transid) {
3150 		ref = btrfs_alloc_leaf_ref(root, 0);
3151 		if (ref) {
3152 			ref->root_gen = root->root_key.offset;
3153 			ref->bytenr = leaf_start;
3154 			ref->owner = 0;
3155 			ref->generation = leaf_gen;
3156 			ref->nritems = 0;
3157 
3158 			btrfs_sort_leaf_ref(ref);
3159 
3160 			ret = btrfs_add_leaf_ref(root, ref, 0);
3161 			WARN_ON(ret);
3162 			btrfs_free_leaf_ref(root, ref);
3163 		} else {
3164 			WARN_ON(1);
3165 		}
3166 	}
3167 next_key:
3168 	btrfs_release_path(root, path);
3169 
3170 	if (other_key.objectid == inode->i_ino &&
3171 	    other_key.type == key.type && other_key.offset > key.offset) {
3172 		key.offset = other_key.offset;
3173 		cond_resched();
3174 		goto again;
3175 	}
3176 	ret = 0;
3177 out:
3178 	/* fixup any changes we've made to the path */
3179 	path->lowest_level = 0;
3180 	path->keep_locks = 0;
3181 	btrfs_release_path(root, path);
3182 	return ret;
3183 }
3184 
3185 #endif
3186 
3187 /*
3188  * this can truncate away extent items, csum items and directory items.
3189  * It starts at a high offset and removes keys until it can't find
3190  * any higher than new_size
3191  *
3192  * csum items that cross the new i_size are truncated to the new size
3193  * as well.
3194  *
3195  * min_type is the minimum key type to truncate down to.  If set to 0, this
3196  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3197  */
3198 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3199 			       struct btrfs_root *root,
3200 			       struct inode *inode,
3201 			       u64 new_size, u32 min_type)
3202 {
3203 	struct btrfs_path *path;
3204 	struct extent_buffer *leaf;
3205 	struct btrfs_file_extent_item *fi;
3206 	struct btrfs_key key;
3207 	struct btrfs_key found_key;
3208 	u64 extent_start = 0;
3209 	u64 extent_num_bytes = 0;
3210 	u64 extent_offset = 0;
3211 	u64 item_end = 0;
3212 	u64 mask = root->sectorsize - 1;
3213 	u32 found_type = (u8)-1;
3214 	int found_extent;
3215 	int del_item;
3216 	int pending_del_nr = 0;
3217 	int pending_del_slot = 0;
3218 	int extent_type = -1;
3219 	int encoding;
3220 	int ret;
3221 	int err = 0;
3222 
3223 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3224 
3225 	if (root->ref_cows || root == root->fs_info->tree_root)
3226 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3227 
3228 	path = btrfs_alloc_path();
3229 	BUG_ON(!path);
3230 	path->reada = -1;
3231 
3232 	key.objectid = inode->i_ino;
3233 	key.offset = (u64)-1;
3234 	key.type = (u8)-1;
3235 
3236 search_again:
3237 	path->leave_spinning = 1;
3238 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3239 	if (ret < 0) {
3240 		err = ret;
3241 		goto out;
3242 	}
3243 
3244 	if (ret > 0) {
3245 		/* there are no items in the tree for us to truncate, we're
3246 		 * done
3247 		 */
3248 		if (path->slots[0] == 0)
3249 			goto out;
3250 		path->slots[0]--;
3251 	}
3252 
3253 	while (1) {
3254 		fi = NULL;
3255 		leaf = path->nodes[0];
3256 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3257 		found_type = btrfs_key_type(&found_key);
3258 		encoding = 0;
3259 
3260 		if (found_key.objectid != inode->i_ino)
3261 			break;
3262 
3263 		if (found_type < min_type)
3264 			break;
3265 
3266 		item_end = found_key.offset;
3267 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3268 			fi = btrfs_item_ptr(leaf, path->slots[0],
3269 					    struct btrfs_file_extent_item);
3270 			extent_type = btrfs_file_extent_type(leaf, fi);
3271 			encoding = btrfs_file_extent_compression(leaf, fi);
3272 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3273 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3274 
3275 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3276 				item_end +=
3277 				    btrfs_file_extent_num_bytes(leaf, fi);
3278 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3279 				item_end += btrfs_file_extent_inline_len(leaf,
3280 									 fi);
3281 			}
3282 			item_end--;
3283 		}
3284 		if (found_type > min_type) {
3285 			del_item = 1;
3286 		} else {
3287 			if (item_end < new_size)
3288 				break;
3289 			if (found_key.offset >= new_size)
3290 				del_item = 1;
3291 			else
3292 				del_item = 0;
3293 		}
3294 		found_extent = 0;
3295 		/* FIXME, shrink the extent if the ref count is only 1 */
3296 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3297 			goto delete;
3298 
3299 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3300 			u64 num_dec;
3301 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3302 			if (!del_item && !encoding) {
3303 				u64 orig_num_bytes =
3304 					btrfs_file_extent_num_bytes(leaf, fi);
3305 				extent_num_bytes = new_size -
3306 					found_key.offset + root->sectorsize - 1;
3307 				extent_num_bytes = extent_num_bytes &
3308 					~((u64)root->sectorsize - 1);
3309 				btrfs_set_file_extent_num_bytes(leaf, fi,
3310 							 extent_num_bytes);
3311 				num_dec = (orig_num_bytes -
3312 					   extent_num_bytes);
3313 				if (root->ref_cows && extent_start != 0)
3314 					inode_sub_bytes(inode, num_dec);
3315 				btrfs_mark_buffer_dirty(leaf);
3316 			} else {
3317 				extent_num_bytes =
3318 					btrfs_file_extent_disk_num_bytes(leaf,
3319 									 fi);
3320 				extent_offset = found_key.offset -
3321 					btrfs_file_extent_offset(leaf, fi);
3322 
3323 				/* FIXME blocksize != 4096 */
3324 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3325 				if (extent_start != 0) {
3326 					found_extent = 1;
3327 					if (root->ref_cows)
3328 						inode_sub_bytes(inode, num_dec);
3329 				}
3330 			}
3331 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3332 			/*
3333 			 * we can't truncate inline items that have had
3334 			 * special encodings
3335 			 */
3336 			if (!del_item &&
3337 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3338 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3339 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3340 				u32 size = new_size - found_key.offset;
3341 
3342 				if (root->ref_cows) {
3343 					inode_sub_bytes(inode, item_end + 1 -
3344 							new_size);
3345 				}
3346 				size =
3347 				    btrfs_file_extent_calc_inline_size(size);
3348 				ret = btrfs_truncate_item(trans, root, path,
3349 							  size, 1);
3350 				BUG_ON(ret);
3351 			} else if (root->ref_cows) {
3352 				inode_sub_bytes(inode, item_end + 1 -
3353 						found_key.offset);
3354 			}
3355 		}
3356 delete:
3357 		if (del_item) {
3358 			if (!pending_del_nr) {
3359 				/* no pending yet, add ourselves */
3360 				pending_del_slot = path->slots[0];
3361 				pending_del_nr = 1;
3362 			} else if (pending_del_nr &&
3363 				   path->slots[0] + 1 == pending_del_slot) {
3364 				/* hop on the pending chunk */
3365 				pending_del_nr++;
3366 				pending_del_slot = path->slots[0];
3367 			} else {
3368 				BUG();
3369 			}
3370 		} else {
3371 			break;
3372 		}
3373 		if (found_extent && (root->ref_cows ||
3374 				     root == root->fs_info->tree_root)) {
3375 			btrfs_set_path_blocking(path);
3376 			ret = btrfs_free_extent(trans, root, extent_start,
3377 						extent_num_bytes, 0,
3378 						btrfs_header_owner(leaf),
3379 						inode->i_ino, extent_offset);
3380 			BUG_ON(ret);
3381 		}
3382 
3383 		if (found_type == BTRFS_INODE_ITEM_KEY)
3384 			break;
3385 
3386 		if (path->slots[0] == 0 ||
3387 		    path->slots[0] != pending_del_slot) {
3388 			if (root->ref_cows) {
3389 				err = -EAGAIN;
3390 				goto out;
3391 			}
3392 			if (pending_del_nr) {
3393 				ret = btrfs_del_items(trans, root, path,
3394 						pending_del_slot,
3395 						pending_del_nr);
3396 				BUG_ON(ret);
3397 				pending_del_nr = 0;
3398 			}
3399 			btrfs_release_path(root, path);
3400 			goto search_again;
3401 		} else {
3402 			path->slots[0]--;
3403 		}
3404 	}
3405 out:
3406 	if (pending_del_nr) {
3407 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3408 				      pending_del_nr);
3409 		BUG_ON(ret);
3410 	}
3411 	btrfs_free_path(path);
3412 	return err;
3413 }
3414 
3415 /*
3416  * taken from block_truncate_page, but does cow as it zeros out
3417  * any bytes left in the last page in the file.
3418  */
3419 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3420 {
3421 	struct inode *inode = mapping->host;
3422 	struct btrfs_root *root = BTRFS_I(inode)->root;
3423 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3424 	struct btrfs_ordered_extent *ordered;
3425 	struct extent_state *cached_state = NULL;
3426 	char *kaddr;
3427 	u32 blocksize = root->sectorsize;
3428 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3429 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3430 	struct page *page;
3431 	int ret = 0;
3432 	u64 page_start;
3433 	u64 page_end;
3434 
3435 	if ((offset & (blocksize - 1)) == 0)
3436 		goto out;
3437 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3438 	if (ret)
3439 		goto out;
3440 
3441 	ret = -ENOMEM;
3442 again:
3443 	page = grab_cache_page(mapping, index);
3444 	if (!page) {
3445 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3446 		goto out;
3447 	}
3448 
3449 	page_start = page_offset(page);
3450 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3451 
3452 	if (!PageUptodate(page)) {
3453 		ret = btrfs_readpage(NULL, page);
3454 		lock_page(page);
3455 		if (page->mapping != mapping) {
3456 			unlock_page(page);
3457 			page_cache_release(page);
3458 			goto again;
3459 		}
3460 		if (!PageUptodate(page)) {
3461 			ret = -EIO;
3462 			goto out_unlock;
3463 		}
3464 	}
3465 	wait_on_page_writeback(page);
3466 
3467 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3468 			 GFP_NOFS);
3469 	set_page_extent_mapped(page);
3470 
3471 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3472 	if (ordered) {
3473 		unlock_extent_cached(io_tree, page_start, page_end,
3474 				     &cached_state, GFP_NOFS);
3475 		unlock_page(page);
3476 		page_cache_release(page);
3477 		btrfs_start_ordered_extent(inode, ordered, 1);
3478 		btrfs_put_ordered_extent(ordered);
3479 		goto again;
3480 	}
3481 
3482 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3483 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3484 			  0, 0, &cached_state, GFP_NOFS);
3485 
3486 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3487 					&cached_state);
3488 	if (ret) {
3489 		unlock_extent_cached(io_tree, page_start, page_end,
3490 				     &cached_state, GFP_NOFS);
3491 		goto out_unlock;
3492 	}
3493 
3494 	ret = 0;
3495 	if (offset != PAGE_CACHE_SIZE) {
3496 		kaddr = kmap(page);
3497 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3498 		flush_dcache_page(page);
3499 		kunmap(page);
3500 	}
3501 	ClearPageChecked(page);
3502 	set_page_dirty(page);
3503 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3504 			     GFP_NOFS);
3505 
3506 out_unlock:
3507 	if (ret)
3508 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3509 	unlock_page(page);
3510 	page_cache_release(page);
3511 out:
3512 	return ret;
3513 }
3514 
3515 int btrfs_cont_expand(struct inode *inode, loff_t size)
3516 {
3517 	struct btrfs_trans_handle *trans;
3518 	struct btrfs_root *root = BTRFS_I(inode)->root;
3519 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3520 	struct extent_map *em = NULL;
3521 	struct extent_state *cached_state = NULL;
3522 	u64 mask = root->sectorsize - 1;
3523 	u64 hole_start = (inode->i_size + mask) & ~mask;
3524 	u64 block_end = (size + mask) & ~mask;
3525 	u64 last_byte;
3526 	u64 cur_offset;
3527 	u64 hole_size;
3528 	int err = 0;
3529 
3530 	if (size <= hole_start)
3531 		return 0;
3532 
3533 	while (1) {
3534 		struct btrfs_ordered_extent *ordered;
3535 		btrfs_wait_ordered_range(inode, hole_start,
3536 					 block_end - hole_start);
3537 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3538 				 &cached_state, GFP_NOFS);
3539 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3540 		if (!ordered)
3541 			break;
3542 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3543 				     &cached_state, GFP_NOFS);
3544 		btrfs_put_ordered_extent(ordered);
3545 	}
3546 
3547 	cur_offset = hole_start;
3548 	while (1) {
3549 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3550 				block_end - cur_offset, 0);
3551 		BUG_ON(IS_ERR(em) || !em);
3552 		last_byte = min(extent_map_end(em), block_end);
3553 		last_byte = (last_byte + mask) & ~mask;
3554 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3555 			u64 hint_byte = 0;
3556 			hole_size = last_byte - cur_offset;
3557 
3558 			trans = btrfs_start_transaction(root, 2);
3559 			if (IS_ERR(trans)) {
3560 				err = PTR_ERR(trans);
3561 				break;
3562 			}
3563 			btrfs_set_trans_block_group(trans, inode);
3564 
3565 			err = btrfs_drop_extents(trans, inode, cur_offset,
3566 						 cur_offset + hole_size,
3567 						 &hint_byte, 1);
3568 			BUG_ON(err);
3569 
3570 			err = btrfs_insert_file_extent(trans, root,
3571 					inode->i_ino, cur_offset, 0,
3572 					0, hole_size, 0, hole_size,
3573 					0, 0, 0);
3574 			BUG_ON(err);
3575 
3576 			btrfs_drop_extent_cache(inode, hole_start,
3577 					last_byte - 1, 0);
3578 
3579 			btrfs_end_transaction(trans, root);
3580 		}
3581 		free_extent_map(em);
3582 		em = NULL;
3583 		cur_offset = last_byte;
3584 		if (cur_offset >= block_end)
3585 			break;
3586 	}
3587 
3588 	free_extent_map(em);
3589 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3590 			     GFP_NOFS);
3591 	return err;
3592 }
3593 
3594 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3595 {
3596 	struct btrfs_root *root = BTRFS_I(inode)->root;
3597 	struct btrfs_trans_handle *trans;
3598 	unsigned long nr;
3599 	int ret;
3600 
3601 	if (attr->ia_size == inode->i_size)
3602 		return 0;
3603 
3604 	if (attr->ia_size > inode->i_size) {
3605 		unsigned long limit;
3606 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3607 		if (attr->ia_size > inode->i_sb->s_maxbytes)
3608 			return -EFBIG;
3609 		if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3610 			send_sig(SIGXFSZ, current, 0);
3611 			return -EFBIG;
3612 		}
3613 	}
3614 
3615 	trans = btrfs_start_transaction(root, 5);
3616 	if (IS_ERR(trans))
3617 		return PTR_ERR(trans);
3618 
3619 	btrfs_set_trans_block_group(trans, inode);
3620 
3621 	ret = btrfs_orphan_add(trans, inode);
3622 	BUG_ON(ret);
3623 
3624 	nr = trans->blocks_used;
3625 	btrfs_end_transaction(trans, root);
3626 	btrfs_btree_balance_dirty(root, nr);
3627 
3628 	if (attr->ia_size > inode->i_size) {
3629 		ret = btrfs_cont_expand(inode, attr->ia_size);
3630 		if (ret) {
3631 			btrfs_truncate(inode);
3632 			return ret;
3633 		}
3634 
3635 		i_size_write(inode, attr->ia_size);
3636 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3637 
3638 		trans = btrfs_start_transaction(root, 0);
3639 		BUG_ON(IS_ERR(trans));
3640 		btrfs_set_trans_block_group(trans, inode);
3641 		trans->block_rsv = root->orphan_block_rsv;
3642 		BUG_ON(!trans->block_rsv);
3643 
3644 		ret = btrfs_update_inode(trans, root, inode);
3645 		BUG_ON(ret);
3646 		if (inode->i_nlink > 0) {
3647 			ret = btrfs_orphan_del(trans, inode);
3648 			BUG_ON(ret);
3649 		}
3650 		nr = trans->blocks_used;
3651 		btrfs_end_transaction(trans, root);
3652 		btrfs_btree_balance_dirty(root, nr);
3653 		return 0;
3654 	}
3655 
3656 	/*
3657 	 * We're truncating a file that used to have good data down to
3658 	 * zero. Make sure it gets into the ordered flush list so that
3659 	 * any new writes get down to disk quickly.
3660 	 */
3661 	if (attr->ia_size == 0)
3662 		BTRFS_I(inode)->ordered_data_close = 1;
3663 
3664 	/* we don't support swapfiles, so vmtruncate shouldn't fail */
3665 	ret = vmtruncate(inode, attr->ia_size);
3666 	BUG_ON(ret);
3667 
3668 	return 0;
3669 }
3670 
3671 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3672 {
3673 	struct inode *inode = dentry->d_inode;
3674 	int err;
3675 
3676 	err = inode_change_ok(inode, attr);
3677 	if (err)
3678 		return err;
3679 
3680 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3681 		err = btrfs_setattr_size(inode, attr);
3682 		if (err)
3683 			return err;
3684 	}
3685 
3686 	if (attr->ia_valid) {
3687 		setattr_copy(inode, attr);
3688 		mark_inode_dirty(inode);
3689 
3690 		if (attr->ia_valid & ATTR_MODE)
3691 			err = btrfs_acl_chmod(inode);
3692 	}
3693 
3694 	return err;
3695 }
3696 
3697 void btrfs_evict_inode(struct inode *inode)
3698 {
3699 	struct btrfs_trans_handle *trans;
3700 	struct btrfs_root *root = BTRFS_I(inode)->root;
3701 	unsigned long nr;
3702 	int ret;
3703 
3704 	truncate_inode_pages(&inode->i_data, 0);
3705 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3706 			       root == root->fs_info->tree_root))
3707 		goto no_delete;
3708 
3709 	if (is_bad_inode(inode)) {
3710 		btrfs_orphan_del(NULL, inode);
3711 		goto no_delete;
3712 	}
3713 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3714 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3715 
3716 	if (root->fs_info->log_root_recovering) {
3717 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3718 		goto no_delete;
3719 	}
3720 
3721 	if (inode->i_nlink > 0) {
3722 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3723 		goto no_delete;
3724 	}
3725 
3726 	btrfs_i_size_write(inode, 0);
3727 
3728 	while (1) {
3729 		trans = btrfs_start_transaction(root, 0);
3730 		BUG_ON(IS_ERR(trans));
3731 		btrfs_set_trans_block_group(trans, inode);
3732 		trans->block_rsv = root->orphan_block_rsv;
3733 
3734 		ret = btrfs_block_rsv_check(trans, root,
3735 					    root->orphan_block_rsv, 0, 5);
3736 		if (ret) {
3737 			BUG_ON(ret != -EAGAIN);
3738 			ret = btrfs_commit_transaction(trans, root);
3739 			BUG_ON(ret);
3740 			continue;
3741 		}
3742 
3743 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3744 		if (ret != -EAGAIN)
3745 			break;
3746 
3747 		nr = trans->blocks_used;
3748 		btrfs_end_transaction(trans, root);
3749 		trans = NULL;
3750 		btrfs_btree_balance_dirty(root, nr);
3751 
3752 	}
3753 
3754 	if (ret == 0) {
3755 		ret = btrfs_orphan_del(trans, inode);
3756 		BUG_ON(ret);
3757 	}
3758 
3759 	nr = trans->blocks_used;
3760 	btrfs_end_transaction(trans, root);
3761 	btrfs_btree_balance_dirty(root, nr);
3762 no_delete:
3763 	end_writeback(inode);
3764 	return;
3765 }
3766 
3767 /*
3768  * this returns the key found in the dir entry in the location pointer.
3769  * If no dir entries were found, location->objectid is 0.
3770  */
3771 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3772 			       struct btrfs_key *location)
3773 {
3774 	const char *name = dentry->d_name.name;
3775 	int namelen = dentry->d_name.len;
3776 	struct btrfs_dir_item *di;
3777 	struct btrfs_path *path;
3778 	struct btrfs_root *root = BTRFS_I(dir)->root;
3779 	int ret = 0;
3780 
3781 	path = btrfs_alloc_path();
3782 	BUG_ON(!path);
3783 
3784 	di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3785 				    namelen, 0);
3786 	if (IS_ERR(di))
3787 		ret = PTR_ERR(di);
3788 
3789 	if (!di || IS_ERR(di))
3790 		goto out_err;
3791 
3792 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3793 out:
3794 	btrfs_free_path(path);
3795 	return ret;
3796 out_err:
3797 	location->objectid = 0;
3798 	goto out;
3799 }
3800 
3801 /*
3802  * when we hit a tree root in a directory, the btrfs part of the inode
3803  * needs to be changed to reflect the root directory of the tree root.  This
3804  * is kind of like crossing a mount point.
3805  */
3806 static int fixup_tree_root_location(struct btrfs_root *root,
3807 				    struct inode *dir,
3808 				    struct dentry *dentry,
3809 				    struct btrfs_key *location,
3810 				    struct btrfs_root **sub_root)
3811 {
3812 	struct btrfs_path *path;
3813 	struct btrfs_root *new_root;
3814 	struct btrfs_root_ref *ref;
3815 	struct extent_buffer *leaf;
3816 	int ret;
3817 	int err = 0;
3818 
3819 	path = btrfs_alloc_path();
3820 	if (!path) {
3821 		err = -ENOMEM;
3822 		goto out;
3823 	}
3824 
3825 	err = -ENOENT;
3826 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3827 				  BTRFS_I(dir)->root->root_key.objectid,
3828 				  location->objectid);
3829 	if (ret) {
3830 		if (ret < 0)
3831 			err = ret;
3832 		goto out;
3833 	}
3834 
3835 	leaf = path->nodes[0];
3836 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3837 	if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3838 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3839 		goto out;
3840 
3841 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3842 				   (unsigned long)(ref + 1),
3843 				   dentry->d_name.len);
3844 	if (ret)
3845 		goto out;
3846 
3847 	btrfs_release_path(root->fs_info->tree_root, path);
3848 
3849 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3850 	if (IS_ERR(new_root)) {
3851 		err = PTR_ERR(new_root);
3852 		goto out;
3853 	}
3854 
3855 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3856 		err = -ENOENT;
3857 		goto out;
3858 	}
3859 
3860 	*sub_root = new_root;
3861 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3862 	location->type = BTRFS_INODE_ITEM_KEY;
3863 	location->offset = 0;
3864 	err = 0;
3865 out:
3866 	btrfs_free_path(path);
3867 	return err;
3868 }
3869 
3870 static void inode_tree_add(struct inode *inode)
3871 {
3872 	struct btrfs_root *root = BTRFS_I(inode)->root;
3873 	struct btrfs_inode *entry;
3874 	struct rb_node **p;
3875 	struct rb_node *parent;
3876 again:
3877 	p = &root->inode_tree.rb_node;
3878 	parent = NULL;
3879 
3880 	if (inode_unhashed(inode))
3881 		return;
3882 
3883 	spin_lock(&root->inode_lock);
3884 	while (*p) {
3885 		parent = *p;
3886 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3887 
3888 		if (inode->i_ino < entry->vfs_inode.i_ino)
3889 			p = &parent->rb_left;
3890 		else if (inode->i_ino > entry->vfs_inode.i_ino)
3891 			p = &parent->rb_right;
3892 		else {
3893 			WARN_ON(!(entry->vfs_inode.i_state &
3894 				  (I_WILL_FREE | I_FREEING)));
3895 			rb_erase(parent, &root->inode_tree);
3896 			RB_CLEAR_NODE(parent);
3897 			spin_unlock(&root->inode_lock);
3898 			goto again;
3899 		}
3900 	}
3901 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3902 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3903 	spin_unlock(&root->inode_lock);
3904 }
3905 
3906 static void inode_tree_del(struct inode *inode)
3907 {
3908 	struct btrfs_root *root = BTRFS_I(inode)->root;
3909 	int empty = 0;
3910 
3911 	spin_lock(&root->inode_lock);
3912 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3913 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3914 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3915 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3916 	}
3917 	spin_unlock(&root->inode_lock);
3918 
3919 	/*
3920 	 * Free space cache has inodes in the tree root, but the tree root has a
3921 	 * root_refs of 0, so this could end up dropping the tree root as a
3922 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3923 	 * make sure we don't drop it.
3924 	 */
3925 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3926 	    root != root->fs_info->tree_root) {
3927 		synchronize_srcu(&root->fs_info->subvol_srcu);
3928 		spin_lock(&root->inode_lock);
3929 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3930 		spin_unlock(&root->inode_lock);
3931 		if (empty)
3932 			btrfs_add_dead_root(root);
3933 	}
3934 }
3935 
3936 int btrfs_invalidate_inodes(struct btrfs_root *root)
3937 {
3938 	struct rb_node *node;
3939 	struct rb_node *prev;
3940 	struct btrfs_inode *entry;
3941 	struct inode *inode;
3942 	u64 objectid = 0;
3943 
3944 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3945 
3946 	spin_lock(&root->inode_lock);
3947 again:
3948 	node = root->inode_tree.rb_node;
3949 	prev = NULL;
3950 	while (node) {
3951 		prev = node;
3952 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3953 
3954 		if (objectid < entry->vfs_inode.i_ino)
3955 			node = node->rb_left;
3956 		else if (objectid > entry->vfs_inode.i_ino)
3957 			node = node->rb_right;
3958 		else
3959 			break;
3960 	}
3961 	if (!node) {
3962 		while (prev) {
3963 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3964 			if (objectid <= entry->vfs_inode.i_ino) {
3965 				node = prev;
3966 				break;
3967 			}
3968 			prev = rb_next(prev);
3969 		}
3970 	}
3971 	while (node) {
3972 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3973 		objectid = entry->vfs_inode.i_ino + 1;
3974 		inode = igrab(&entry->vfs_inode);
3975 		if (inode) {
3976 			spin_unlock(&root->inode_lock);
3977 			if (atomic_read(&inode->i_count) > 1)
3978 				d_prune_aliases(inode);
3979 			/*
3980 			 * btrfs_drop_inode will have it removed from
3981 			 * the inode cache when its usage count
3982 			 * hits zero.
3983 			 */
3984 			iput(inode);
3985 			cond_resched();
3986 			spin_lock(&root->inode_lock);
3987 			goto again;
3988 		}
3989 
3990 		if (cond_resched_lock(&root->inode_lock))
3991 			goto again;
3992 
3993 		node = rb_next(node);
3994 	}
3995 	spin_unlock(&root->inode_lock);
3996 	return 0;
3997 }
3998 
3999 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4000 {
4001 	struct btrfs_iget_args *args = p;
4002 	inode->i_ino = args->ino;
4003 	BTRFS_I(inode)->root = args->root;
4004 	btrfs_set_inode_space_info(args->root, inode);
4005 	return 0;
4006 }
4007 
4008 static int btrfs_find_actor(struct inode *inode, void *opaque)
4009 {
4010 	struct btrfs_iget_args *args = opaque;
4011 	return args->ino == inode->i_ino &&
4012 		args->root == BTRFS_I(inode)->root;
4013 }
4014 
4015 static struct inode *btrfs_iget_locked(struct super_block *s,
4016 				       u64 objectid,
4017 				       struct btrfs_root *root)
4018 {
4019 	struct inode *inode;
4020 	struct btrfs_iget_args args;
4021 	args.ino = objectid;
4022 	args.root = root;
4023 
4024 	inode = iget5_locked(s, objectid, btrfs_find_actor,
4025 			     btrfs_init_locked_inode,
4026 			     (void *)&args);
4027 	return inode;
4028 }
4029 
4030 /* Get an inode object given its location and corresponding root.
4031  * Returns in *is_new if the inode was read from disk
4032  */
4033 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4034 			 struct btrfs_root *root, int *new)
4035 {
4036 	struct inode *inode;
4037 
4038 	inode = btrfs_iget_locked(s, location->objectid, root);
4039 	if (!inode)
4040 		return ERR_PTR(-ENOMEM);
4041 
4042 	if (inode->i_state & I_NEW) {
4043 		BTRFS_I(inode)->root = root;
4044 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4045 		btrfs_read_locked_inode(inode);
4046 
4047 		inode_tree_add(inode);
4048 		unlock_new_inode(inode);
4049 		if (new)
4050 			*new = 1;
4051 	}
4052 
4053 	return inode;
4054 }
4055 
4056 static struct inode *new_simple_dir(struct super_block *s,
4057 				    struct btrfs_key *key,
4058 				    struct btrfs_root *root)
4059 {
4060 	struct inode *inode = new_inode(s);
4061 
4062 	if (!inode)
4063 		return ERR_PTR(-ENOMEM);
4064 
4065 	BTRFS_I(inode)->root = root;
4066 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4067 	BTRFS_I(inode)->dummy_inode = 1;
4068 
4069 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4070 	inode->i_op = &simple_dir_inode_operations;
4071 	inode->i_fop = &simple_dir_operations;
4072 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4073 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4074 
4075 	return inode;
4076 }
4077 
4078 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4079 {
4080 	struct inode *inode;
4081 	struct btrfs_root *root = BTRFS_I(dir)->root;
4082 	struct btrfs_root *sub_root = root;
4083 	struct btrfs_key location;
4084 	int index;
4085 	int ret;
4086 
4087 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4088 		return ERR_PTR(-ENAMETOOLONG);
4089 
4090 	ret = btrfs_inode_by_name(dir, dentry, &location);
4091 
4092 	if (ret < 0)
4093 		return ERR_PTR(ret);
4094 
4095 	if (location.objectid == 0)
4096 		return NULL;
4097 
4098 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4099 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4100 		return inode;
4101 	}
4102 
4103 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4104 
4105 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4106 	ret = fixup_tree_root_location(root, dir, dentry,
4107 				       &location, &sub_root);
4108 	if (ret < 0) {
4109 		if (ret != -ENOENT)
4110 			inode = ERR_PTR(ret);
4111 		else
4112 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4113 	} else {
4114 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4115 	}
4116 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4117 
4118 	if (root != sub_root) {
4119 		down_read(&root->fs_info->cleanup_work_sem);
4120 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4121 			btrfs_orphan_cleanup(sub_root);
4122 		up_read(&root->fs_info->cleanup_work_sem);
4123 	}
4124 
4125 	return inode;
4126 }
4127 
4128 static int btrfs_dentry_delete(const struct dentry *dentry)
4129 {
4130 	struct btrfs_root *root;
4131 
4132 	if (!dentry->d_inode && !IS_ROOT(dentry))
4133 		dentry = dentry->d_parent;
4134 
4135 	if (dentry->d_inode) {
4136 		root = BTRFS_I(dentry->d_inode)->root;
4137 		if (btrfs_root_refs(&root->root_item) == 0)
4138 			return 1;
4139 	}
4140 	return 0;
4141 }
4142 
4143 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4144 				   struct nameidata *nd)
4145 {
4146 	struct inode *inode;
4147 
4148 	inode = btrfs_lookup_dentry(dir, dentry);
4149 	if (IS_ERR(inode))
4150 		return ERR_CAST(inode);
4151 
4152 	return d_splice_alias(inode, dentry);
4153 }
4154 
4155 static unsigned char btrfs_filetype_table[] = {
4156 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4157 };
4158 
4159 static int btrfs_real_readdir(struct file *filp, void *dirent,
4160 			      filldir_t filldir)
4161 {
4162 	struct inode *inode = filp->f_dentry->d_inode;
4163 	struct btrfs_root *root = BTRFS_I(inode)->root;
4164 	struct btrfs_item *item;
4165 	struct btrfs_dir_item *di;
4166 	struct btrfs_key key;
4167 	struct btrfs_key found_key;
4168 	struct btrfs_path *path;
4169 	int ret;
4170 	u32 nritems;
4171 	struct extent_buffer *leaf;
4172 	int slot;
4173 	int advance;
4174 	unsigned char d_type;
4175 	int over = 0;
4176 	u32 di_cur;
4177 	u32 di_total;
4178 	u32 di_len;
4179 	int key_type = BTRFS_DIR_INDEX_KEY;
4180 	char tmp_name[32];
4181 	char *name_ptr;
4182 	int name_len;
4183 
4184 	/* FIXME, use a real flag for deciding about the key type */
4185 	if (root->fs_info->tree_root == root)
4186 		key_type = BTRFS_DIR_ITEM_KEY;
4187 
4188 	/* special case for "." */
4189 	if (filp->f_pos == 0) {
4190 		over = filldir(dirent, ".", 1,
4191 			       1, inode->i_ino,
4192 			       DT_DIR);
4193 		if (over)
4194 			return 0;
4195 		filp->f_pos = 1;
4196 	}
4197 	/* special case for .., just use the back ref */
4198 	if (filp->f_pos == 1) {
4199 		u64 pino = parent_ino(filp->f_path.dentry);
4200 		over = filldir(dirent, "..", 2,
4201 			       2, pino, DT_DIR);
4202 		if (over)
4203 			return 0;
4204 		filp->f_pos = 2;
4205 	}
4206 	path = btrfs_alloc_path();
4207 	path->reada = 2;
4208 
4209 	btrfs_set_key_type(&key, key_type);
4210 	key.offset = filp->f_pos;
4211 	key.objectid = inode->i_ino;
4212 
4213 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4214 	if (ret < 0)
4215 		goto err;
4216 	advance = 0;
4217 
4218 	while (1) {
4219 		leaf = path->nodes[0];
4220 		nritems = btrfs_header_nritems(leaf);
4221 		slot = path->slots[0];
4222 		if (advance || slot >= nritems) {
4223 			if (slot >= nritems - 1) {
4224 				ret = btrfs_next_leaf(root, path);
4225 				if (ret)
4226 					break;
4227 				leaf = path->nodes[0];
4228 				nritems = btrfs_header_nritems(leaf);
4229 				slot = path->slots[0];
4230 			} else {
4231 				slot++;
4232 				path->slots[0]++;
4233 			}
4234 		}
4235 
4236 		advance = 1;
4237 		item = btrfs_item_nr(leaf, slot);
4238 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4239 
4240 		if (found_key.objectid != key.objectid)
4241 			break;
4242 		if (btrfs_key_type(&found_key) != key_type)
4243 			break;
4244 		if (found_key.offset < filp->f_pos)
4245 			continue;
4246 
4247 		filp->f_pos = found_key.offset;
4248 
4249 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4250 		di_cur = 0;
4251 		di_total = btrfs_item_size(leaf, item);
4252 
4253 		while (di_cur < di_total) {
4254 			struct btrfs_key location;
4255 
4256 			name_len = btrfs_dir_name_len(leaf, di);
4257 			if (name_len <= sizeof(tmp_name)) {
4258 				name_ptr = tmp_name;
4259 			} else {
4260 				name_ptr = kmalloc(name_len, GFP_NOFS);
4261 				if (!name_ptr) {
4262 					ret = -ENOMEM;
4263 					goto err;
4264 				}
4265 			}
4266 			read_extent_buffer(leaf, name_ptr,
4267 					   (unsigned long)(di + 1), name_len);
4268 
4269 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4270 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4271 
4272 			/* is this a reference to our own snapshot? If so
4273 			 * skip it
4274 			 */
4275 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4276 			    location.objectid == root->root_key.objectid) {
4277 				over = 0;
4278 				goto skip;
4279 			}
4280 			over = filldir(dirent, name_ptr, name_len,
4281 				       found_key.offset, location.objectid,
4282 				       d_type);
4283 
4284 skip:
4285 			if (name_ptr != tmp_name)
4286 				kfree(name_ptr);
4287 
4288 			if (over)
4289 				goto nopos;
4290 			di_len = btrfs_dir_name_len(leaf, di) +
4291 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4292 			di_cur += di_len;
4293 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4294 		}
4295 	}
4296 
4297 	/* Reached end of directory/root. Bump pos past the last item. */
4298 	if (key_type == BTRFS_DIR_INDEX_KEY)
4299 		/*
4300 		 * 32-bit glibc will use getdents64, but then strtol -
4301 		 * so the last number we can serve is this.
4302 		 */
4303 		filp->f_pos = 0x7fffffff;
4304 	else
4305 		filp->f_pos++;
4306 nopos:
4307 	ret = 0;
4308 err:
4309 	btrfs_free_path(path);
4310 	return ret;
4311 }
4312 
4313 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4314 {
4315 	struct btrfs_root *root = BTRFS_I(inode)->root;
4316 	struct btrfs_trans_handle *trans;
4317 	int ret = 0;
4318 	bool nolock = false;
4319 
4320 	if (BTRFS_I(inode)->dummy_inode)
4321 		return 0;
4322 
4323 	smp_mb();
4324 	nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4325 
4326 	if (wbc->sync_mode == WB_SYNC_ALL) {
4327 		if (nolock)
4328 			trans = btrfs_join_transaction_nolock(root, 1);
4329 		else
4330 			trans = btrfs_join_transaction(root, 1);
4331 		btrfs_set_trans_block_group(trans, inode);
4332 		if (nolock)
4333 			ret = btrfs_end_transaction_nolock(trans, root);
4334 		else
4335 			ret = btrfs_commit_transaction(trans, root);
4336 	}
4337 	return ret;
4338 }
4339 
4340 /*
4341  * This is somewhat expensive, updating the tree every time the
4342  * inode changes.  But, it is most likely to find the inode in cache.
4343  * FIXME, needs more benchmarking...there are no reasons other than performance
4344  * to keep or drop this code.
4345  */
4346 void btrfs_dirty_inode(struct inode *inode)
4347 {
4348 	struct btrfs_root *root = BTRFS_I(inode)->root;
4349 	struct btrfs_trans_handle *trans;
4350 	int ret;
4351 
4352 	if (BTRFS_I(inode)->dummy_inode)
4353 		return;
4354 
4355 	trans = btrfs_join_transaction(root, 1);
4356 	btrfs_set_trans_block_group(trans, inode);
4357 
4358 	ret = btrfs_update_inode(trans, root, inode);
4359 	if (ret && ret == -ENOSPC) {
4360 		/* whoops, lets try again with the full transaction */
4361 		btrfs_end_transaction(trans, root);
4362 		trans = btrfs_start_transaction(root, 1);
4363 		if (IS_ERR(trans)) {
4364 			if (printk_ratelimit()) {
4365 				printk(KERN_ERR "btrfs: fail to "
4366 				       "dirty  inode %lu error %ld\n",
4367 				       inode->i_ino, PTR_ERR(trans));
4368 			}
4369 			return;
4370 		}
4371 		btrfs_set_trans_block_group(trans, inode);
4372 
4373 		ret = btrfs_update_inode(trans, root, inode);
4374 		if (ret) {
4375 			if (printk_ratelimit()) {
4376 				printk(KERN_ERR "btrfs: fail to "
4377 				       "dirty  inode %lu error %d\n",
4378 				       inode->i_ino, ret);
4379 			}
4380 		}
4381 	}
4382 	btrfs_end_transaction(trans, root);
4383 }
4384 
4385 /*
4386  * find the highest existing sequence number in a directory
4387  * and then set the in-memory index_cnt variable to reflect
4388  * free sequence numbers
4389  */
4390 static int btrfs_set_inode_index_count(struct inode *inode)
4391 {
4392 	struct btrfs_root *root = BTRFS_I(inode)->root;
4393 	struct btrfs_key key, found_key;
4394 	struct btrfs_path *path;
4395 	struct extent_buffer *leaf;
4396 	int ret;
4397 
4398 	key.objectid = inode->i_ino;
4399 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4400 	key.offset = (u64)-1;
4401 
4402 	path = btrfs_alloc_path();
4403 	if (!path)
4404 		return -ENOMEM;
4405 
4406 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4407 	if (ret < 0)
4408 		goto out;
4409 	/* FIXME: we should be able to handle this */
4410 	if (ret == 0)
4411 		goto out;
4412 	ret = 0;
4413 
4414 	/*
4415 	 * MAGIC NUMBER EXPLANATION:
4416 	 * since we search a directory based on f_pos we have to start at 2
4417 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4418 	 * else has to start at 2
4419 	 */
4420 	if (path->slots[0] == 0) {
4421 		BTRFS_I(inode)->index_cnt = 2;
4422 		goto out;
4423 	}
4424 
4425 	path->slots[0]--;
4426 
4427 	leaf = path->nodes[0];
4428 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4429 
4430 	if (found_key.objectid != inode->i_ino ||
4431 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4432 		BTRFS_I(inode)->index_cnt = 2;
4433 		goto out;
4434 	}
4435 
4436 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4437 out:
4438 	btrfs_free_path(path);
4439 	return ret;
4440 }
4441 
4442 /*
4443  * helper to find a free sequence number in a given directory.  This current
4444  * code is very simple, later versions will do smarter things in the btree
4445  */
4446 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4447 {
4448 	int ret = 0;
4449 
4450 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4451 		ret = btrfs_set_inode_index_count(dir);
4452 		if (ret)
4453 			return ret;
4454 	}
4455 
4456 	*index = BTRFS_I(dir)->index_cnt;
4457 	BTRFS_I(dir)->index_cnt++;
4458 
4459 	return ret;
4460 }
4461 
4462 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4463 				     struct btrfs_root *root,
4464 				     struct inode *dir,
4465 				     const char *name, int name_len,
4466 				     u64 ref_objectid, u64 objectid,
4467 				     u64 alloc_hint, int mode, u64 *index)
4468 {
4469 	struct inode *inode;
4470 	struct btrfs_inode_item *inode_item;
4471 	struct btrfs_key *location;
4472 	struct btrfs_path *path;
4473 	struct btrfs_inode_ref *ref;
4474 	struct btrfs_key key[2];
4475 	u32 sizes[2];
4476 	unsigned long ptr;
4477 	int ret;
4478 	int owner;
4479 
4480 	path = btrfs_alloc_path();
4481 	BUG_ON(!path);
4482 
4483 	inode = new_inode(root->fs_info->sb);
4484 	if (!inode)
4485 		return ERR_PTR(-ENOMEM);
4486 
4487 	if (dir) {
4488 		ret = btrfs_set_inode_index(dir, index);
4489 		if (ret) {
4490 			iput(inode);
4491 			return ERR_PTR(ret);
4492 		}
4493 	}
4494 	/*
4495 	 * index_cnt is ignored for everything but a dir,
4496 	 * btrfs_get_inode_index_count has an explanation for the magic
4497 	 * number
4498 	 */
4499 	BTRFS_I(inode)->index_cnt = 2;
4500 	BTRFS_I(inode)->root = root;
4501 	BTRFS_I(inode)->generation = trans->transid;
4502 	inode->i_generation = BTRFS_I(inode)->generation;
4503 	btrfs_set_inode_space_info(root, inode);
4504 
4505 	if (mode & S_IFDIR)
4506 		owner = 0;
4507 	else
4508 		owner = 1;
4509 	BTRFS_I(inode)->block_group =
4510 			btrfs_find_block_group(root, 0, alloc_hint, owner);
4511 
4512 	key[0].objectid = objectid;
4513 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4514 	key[0].offset = 0;
4515 
4516 	key[1].objectid = objectid;
4517 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4518 	key[1].offset = ref_objectid;
4519 
4520 	sizes[0] = sizeof(struct btrfs_inode_item);
4521 	sizes[1] = name_len + sizeof(*ref);
4522 
4523 	path->leave_spinning = 1;
4524 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4525 	if (ret != 0)
4526 		goto fail;
4527 
4528 	inode_init_owner(inode, dir, mode);
4529 	inode->i_ino = objectid;
4530 	inode_set_bytes(inode, 0);
4531 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4532 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4533 				  struct btrfs_inode_item);
4534 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4535 
4536 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4537 			     struct btrfs_inode_ref);
4538 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4539 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4540 	ptr = (unsigned long)(ref + 1);
4541 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4542 
4543 	btrfs_mark_buffer_dirty(path->nodes[0]);
4544 	btrfs_free_path(path);
4545 
4546 	location = &BTRFS_I(inode)->location;
4547 	location->objectid = objectid;
4548 	location->offset = 0;
4549 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4550 
4551 	btrfs_inherit_iflags(inode, dir);
4552 
4553 	if ((mode & S_IFREG)) {
4554 		if (btrfs_test_opt(root, NODATASUM))
4555 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4556 		if (btrfs_test_opt(root, NODATACOW))
4557 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4558 	}
4559 
4560 	insert_inode_hash(inode);
4561 	inode_tree_add(inode);
4562 	return inode;
4563 fail:
4564 	if (dir)
4565 		BTRFS_I(dir)->index_cnt--;
4566 	btrfs_free_path(path);
4567 	iput(inode);
4568 	return ERR_PTR(ret);
4569 }
4570 
4571 static inline u8 btrfs_inode_type(struct inode *inode)
4572 {
4573 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4574 }
4575 
4576 /*
4577  * utility function to add 'inode' into 'parent_inode' with
4578  * a give name and a given sequence number.
4579  * if 'add_backref' is true, also insert a backref from the
4580  * inode to the parent directory.
4581  */
4582 int btrfs_add_link(struct btrfs_trans_handle *trans,
4583 		   struct inode *parent_inode, struct inode *inode,
4584 		   const char *name, int name_len, int add_backref, u64 index)
4585 {
4586 	int ret = 0;
4587 	struct btrfs_key key;
4588 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4589 
4590 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4591 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4592 	} else {
4593 		key.objectid = inode->i_ino;
4594 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4595 		key.offset = 0;
4596 	}
4597 
4598 	if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4599 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4600 					 key.objectid, root->root_key.objectid,
4601 					 parent_inode->i_ino,
4602 					 index, name, name_len);
4603 	} else if (add_backref) {
4604 		ret = btrfs_insert_inode_ref(trans, root,
4605 					     name, name_len, inode->i_ino,
4606 					     parent_inode->i_ino, index);
4607 	}
4608 
4609 	if (ret == 0) {
4610 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4611 					    parent_inode->i_ino, &key,
4612 					    btrfs_inode_type(inode), index);
4613 		BUG_ON(ret);
4614 
4615 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4616 				   name_len * 2);
4617 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4618 		ret = btrfs_update_inode(trans, root, parent_inode);
4619 	}
4620 	return ret;
4621 }
4622 
4623 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4624 			    struct inode *dir, struct dentry *dentry,
4625 			    struct inode *inode, int backref, u64 index)
4626 {
4627 	int err = btrfs_add_link(trans, dir, inode,
4628 				 dentry->d_name.name, dentry->d_name.len,
4629 				 backref, index);
4630 	if (!err) {
4631 		d_instantiate(dentry, inode);
4632 		return 0;
4633 	}
4634 	if (err > 0)
4635 		err = -EEXIST;
4636 	return err;
4637 }
4638 
4639 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4640 			int mode, dev_t rdev)
4641 {
4642 	struct btrfs_trans_handle *trans;
4643 	struct btrfs_root *root = BTRFS_I(dir)->root;
4644 	struct inode *inode = NULL;
4645 	int err;
4646 	int drop_inode = 0;
4647 	u64 objectid;
4648 	unsigned long nr = 0;
4649 	u64 index = 0;
4650 
4651 	if (!new_valid_dev(rdev))
4652 		return -EINVAL;
4653 
4654 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4655 	if (err)
4656 		return err;
4657 
4658 	/*
4659 	 * 2 for inode item and ref
4660 	 * 2 for dir items
4661 	 * 1 for xattr if selinux is on
4662 	 */
4663 	trans = btrfs_start_transaction(root, 5);
4664 	if (IS_ERR(trans))
4665 		return PTR_ERR(trans);
4666 
4667 	btrfs_set_trans_block_group(trans, dir);
4668 
4669 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4670 				dentry->d_name.len, dir->i_ino, objectid,
4671 				BTRFS_I(dir)->block_group, mode, &index);
4672 	err = PTR_ERR(inode);
4673 	if (IS_ERR(inode))
4674 		goto out_unlock;
4675 
4676 	err = btrfs_init_inode_security(trans, inode, dir);
4677 	if (err) {
4678 		drop_inode = 1;
4679 		goto out_unlock;
4680 	}
4681 
4682 	btrfs_set_trans_block_group(trans, inode);
4683 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4684 	if (err)
4685 		drop_inode = 1;
4686 	else {
4687 		inode->i_op = &btrfs_special_inode_operations;
4688 		init_special_inode(inode, inode->i_mode, rdev);
4689 		btrfs_update_inode(trans, root, inode);
4690 	}
4691 	btrfs_update_inode_block_group(trans, inode);
4692 	btrfs_update_inode_block_group(trans, dir);
4693 out_unlock:
4694 	nr = trans->blocks_used;
4695 	btrfs_end_transaction_throttle(trans, root);
4696 	btrfs_btree_balance_dirty(root, nr);
4697 	if (drop_inode) {
4698 		inode_dec_link_count(inode);
4699 		iput(inode);
4700 	}
4701 	return err;
4702 }
4703 
4704 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4705 			int mode, struct nameidata *nd)
4706 {
4707 	struct btrfs_trans_handle *trans;
4708 	struct btrfs_root *root = BTRFS_I(dir)->root;
4709 	struct inode *inode = NULL;
4710 	int drop_inode = 0;
4711 	int err;
4712 	unsigned long nr = 0;
4713 	u64 objectid;
4714 	u64 index = 0;
4715 
4716 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4717 	if (err)
4718 		return err;
4719 	/*
4720 	 * 2 for inode item and ref
4721 	 * 2 for dir items
4722 	 * 1 for xattr if selinux is on
4723 	 */
4724 	trans = btrfs_start_transaction(root, 5);
4725 	if (IS_ERR(trans))
4726 		return PTR_ERR(trans);
4727 
4728 	btrfs_set_trans_block_group(trans, dir);
4729 
4730 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4731 				dentry->d_name.len, dir->i_ino, objectid,
4732 				BTRFS_I(dir)->block_group, mode, &index);
4733 	err = PTR_ERR(inode);
4734 	if (IS_ERR(inode))
4735 		goto out_unlock;
4736 
4737 	err = btrfs_init_inode_security(trans, inode, dir);
4738 	if (err) {
4739 		drop_inode = 1;
4740 		goto out_unlock;
4741 	}
4742 
4743 	btrfs_set_trans_block_group(trans, inode);
4744 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4745 	if (err)
4746 		drop_inode = 1;
4747 	else {
4748 		inode->i_mapping->a_ops = &btrfs_aops;
4749 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4750 		inode->i_fop = &btrfs_file_operations;
4751 		inode->i_op = &btrfs_file_inode_operations;
4752 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4753 	}
4754 	btrfs_update_inode_block_group(trans, inode);
4755 	btrfs_update_inode_block_group(trans, dir);
4756 out_unlock:
4757 	nr = trans->blocks_used;
4758 	btrfs_end_transaction_throttle(trans, root);
4759 	if (drop_inode) {
4760 		inode_dec_link_count(inode);
4761 		iput(inode);
4762 	}
4763 	btrfs_btree_balance_dirty(root, nr);
4764 	return err;
4765 }
4766 
4767 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4768 		      struct dentry *dentry)
4769 {
4770 	struct btrfs_trans_handle *trans;
4771 	struct btrfs_root *root = BTRFS_I(dir)->root;
4772 	struct inode *inode = old_dentry->d_inode;
4773 	u64 index;
4774 	unsigned long nr = 0;
4775 	int err;
4776 	int drop_inode = 0;
4777 
4778 	if (inode->i_nlink == 0)
4779 		return -ENOENT;
4780 
4781 	/* do not allow sys_link's with other subvols of the same device */
4782 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4783 		return -EPERM;
4784 
4785 	btrfs_inc_nlink(inode);
4786 	inode->i_ctime = CURRENT_TIME;
4787 
4788 	err = btrfs_set_inode_index(dir, &index);
4789 	if (err)
4790 		goto fail;
4791 
4792 	/*
4793 	 * 1 item for inode ref
4794 	 * 2 items for dir items
4795 	 */
4796 	trans = btrfs_start_transaction(root, 3);
4797 	if (IS_ERR(trans)) {
4798 		err = PTR_ERR(trans);
4799 		goto fail;
4800 	}
4801 
4802 	btrfs_set_trans_block_group(trans, dir);
4803 	ihold(inode);
4804 
4805 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4806 
4807 	if (err) {
4808 		drop_inode = 1;
4809 	} else {
4810 		struct dentry *parent = dget_parent(dentry);
4811 		btrfs_update_inode_block_group(trans, dir);
4812 		err = btrfs_update_inode(trans, root, inode);
4813 		BUG_ON(err);
4814 		btrfs_log_new_name(trans, inode, NULL, parent);
4815 		dput(parent);
4816 	}
4817 
4818 	nr = trans->blocks_used;
4819 	btrfs_end_transaction_throttle(trans, root);
4820 fail:
4821 	if (drop_inode) {
4822 		inode_dec_link_count(inode);
4823 		iput(inode);
4824 	}
4825 	btrfs_btree_balance_dirty(root, nr);
4826 	return err;
4827 }
4828 
4829 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4830 {
4831 	struct inode *inode = NULL;
4832 	struct btrfs_trans_handle *trans;
4833 	struct btrfs_root *root = BTRFS_I(dir)->root;
4834 	int err = 0;
4835 	int drop_on_err = 0;
4836 	u64 objectid = 0;
4837 	u64 index = 0;
4838 	unsigned long nr = 1;
4839 
4840 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4841 	if (err)
4842 		return err;
4843 
4844 	/*
4845 	 * 2 items for inode and ref
4846 	 * 2 items for dir items
4847 	 * 1 for xattr if selinux is on
4848 	 */
4849 	trans = btrfs_start_transaction(root, 5);
4850 	if (IS_ERR(trans))
4851 		return PTR_ERR(trans);
4852 	btrfs_set_trans_block_group(trans, dir);
4853 
4854 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4855 				dentry->d_name.len, dir->i_ino, objectid,
4856 				BTRFS_I(dir)->block_group, S_IFDIR | mode,
4857 				&index);
4858 	if (IS_ERR(inode)) {
4859 		err = PTR_ERR(inode);
4860 		goto out_fail;
4861 	}
4862 
4863 	drop_on_err = 1;
4864 
4865 	err = btrfs_init_inode_security(trans, inode, dir);
4866 	if (err)
4867 		goto out_fail;
4868 
4869 	inode->i_op = &btrfs_dir_inode_operations;
4870 	inode->i_fop = &btrfs_dir_file_operations;
4871 	btrfs_set_trans_block_group(trans, inode);
4872 
4873 	btrfs_i_size_write(inode, 0);
4874 	err = btrfs_update_inode(trans, root, inode);
4875 	if (err)
4876 		goto out_fail;
4877 
4878 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4879 			     dentry->d_name.len, 0, index);
4880 	if (err)
4881 		goto out_fail;
4882 
4883 	d_instantiate(dentry, inode);
4884 	drop_on_err = 0;
4885 	btrfs_update_inode_block_group(trans, inode);
4886 	btrfs_update_inode_block_group(trans, dir);
4887 
4888 out_fail:
4889 	nr = trans->blocks_used;
4890 	btrfs_end_transaction_throttle(trans, root);
4891 	if (drop_on_err)
4892 		iput(inode);
4893 	btrfs_btree_balance_dirty(root, nr);
4894 	return err;
4895 }
4896 
4897 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4898  * and an extent that you want to insert, deal with overlap and insert
4899  * the new extent into the tree.
4900  */
4901 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4902 				struct extent_map *existing,
4903 				struct extent_map *em,
4904 				u64 map_start, u64 map_len)
4905 {
4906 	u64 start_diff;
4907 
4908 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4909 	start_diff = map_start - em->start;
4910 	em->start = map_start;
4911 	em->len = map_len;
4912 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4913 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4914 		em->block_start += start_diff;
4915 		em->block_len -= start_diff;
4916 	}
4917 	return add_extent_mapping(em_tree, em);
4918 }
4919 
4920 static noinline int uncompress_inline(struct btrfs_path *path,
4921 				      struct inode *inode, struct page *page,
4922 				      size_t pg_offset, u64 extent_offset,
4923 				      struct btrfs_file_extent_item *item)
4924 {
4925 	int ret;
4926 	struct extent_buffer *leaf = path->nodes[0];
4927 	char *tmp;
4928 	size_t max_size;
4929 	unsigned long inline_size;
4930 	unsigned long ptr;
4931 
4932 	WARN_ON(pg_offset != 0);
4933 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4934 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4935 					btrfs_item_nr(leaf, path->slots[0]));
4936 	tmp = kmalloc(inline_size, GFP_NOFS);
4937 	ptr = btrfs_file_extent_inline_start(item);
4938 
4939 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4940 
4941 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4942 	ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4943 				    inline_size, max_size);
4944 	if (ret) {
4945 		char *kaddr = kmap_atomic(page, KM_USER0);
4946 		unsigned long copy_size = min_t(u64,
4947 				  PAGE_CACHE_SIZE - pg_offset,
4948 				  max_size - extent_offset);
4949 		memset(kaddr + pg_offset, 0, copy_size);
4950 		kunmap_atomic(kaddr, KM_USER0);
4951 	}
4952 	kfree(tmp);
4953 	return 0;
4954 }
4955 
4956 /*
4957  * a bit scary, this does extent mapping from logical file offset to the disk.
4958  * the ugly parts come from merging extents from the disk with the in-ram
4959  * representation.  This gets more complex because of the data=ordered code,
4960  * where the in-ram extents might be locked pending data=ordered completion.
4961  *
4962  * This also copies inline extents directly into the page.
4963  */
4964 
4965 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4966 				    size_t pg_offset, u64 start, u64 len,
4967 				    int create)
4968 {
4969 	int ret;
4970 	int err = 0;
4971 	u64 bytenr;
4972 	u64 extent_start = 0;
4973 	u64 extent_end = 0;
4974 	u64 objectid = inode->i_ino;
4975 	u32 found_type;
4976 	struct btrfs_path *path = NULL;
4977 	struct btrfs_root *root = BTRFS_I(inode)->root;
4978 	struct btrfs_file_extent_item *item;
4979 	struct extent_buffer *leaf;
4980 	struct btrfs_key found_key;
4981 	struct extent_map *em = NULL;
4982 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4983 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4984 	struct btrfs_trans_handle *trans = NULL;
4985 	int compressed;
4986 
4987 again:
4988 	read_lock(&em_tree->lock);
4989 	em = lookup_extent_mapping(em_tree, start, len);
4990 	if (em)
4991 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4992 	read_unlock(&em_tree->lock);
4993 
4994 	if (em) {
4995 		if (em->start > start || em->start + em->len <= start)
4996 			free_extent_map(em);
4997 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4998 			free_extent_map(em);
4999 		else
5000 			goto out;
5001 	}
5002 	em = alloc_extent_map(GFP_NOFS);
5003 	if (!em) {
5004 		err = -ENOMEM;
5005 		goto out;
5006 	}
5007 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5008 	em->start = EXTENT_MAP_HOLE;
5009 	em->orig_start = EXTENT_MAP_HOLE;
5010 	em->len = (u64)-1;
5011 	em->block_len = (u64)-1;
5012 
5013 	if (!path) {
5014 		path = btrfs_alloc_path();
5015 		BUG_ON(!path);
5016 	}
5017 
5018 	ret = btrfs_lookup_file_extent(trans, root, path,
5019 				       objectid, start, trans != NULL);
5020 	if (ret < 0) {
5021 		err = ret;
5022 		goto out;
5023 	}
5024 
5025 	if (ret != 0) {
5026 		if (path->slots[0] == 0)
5027 			goto not_found;
5028 		path->slots[0]--;
5029 	}
5030 
5031 	leaf = path->nodes[0];
5032 	item = btrfs_item_ptr(leaf, path->slots[0],
5033 			      struct btrfs_file_extent_item);
5034 	/* are we inside the extent that was found? */
5035 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5036 	found_type = btrfs_key_type(&found_key);
5037 	if (found_key.objectid != objectid ||
5038 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5039 		goto not_found;
5040 	}
5041 
5042 	found_type = btrfs_file_extent_type(leaf, item);
5043 	extent_start = found_key.offset;
5044 	compressed = btrfs_file_extent_compression(leaf, item);
5045 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5046 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5047 		extent_end = extent_start +
5048 		       btrfs_file_extent_num_bytes(leaf, item);
5049 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5050 		size_t size;
5051 		size = btrfs_file_extent_inline_len(leaf, item);
5052 		extent_end = (extent_start + size + root->sectorsize - 1) &
5053 			~((u64)root->sectorsize - 1);
5054 	}
5055 
5056 	if (start >= extent_end) {
5057 		path->slots[0]++;
5058 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5059 			ret = btrfs_next_leaf(root, path);
5060 			if (ret < 0) {
5061 				err = ret;
5062 				goto out;
5063 			}
5064 			if (ret > 0)
5065 				goto not_found;
5066 			leaf = path->nodes[0];
5067 		}
5068 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5069 		if (found_key.objectid != objectid ||
5070 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5071 			goto not_found;
5072 		if (start + len <= found_key.offset)
5073 			goto not_found;
5074 		em->start = start;
5075 		em->len = found_key.offset - start;
5076 		goto not_found_em;
5077 	}
5078 
5079 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5080 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5081 		em->start = extent_start;
5082 		em->len = extent_end - extent_start;
5083 		em->orig_start = extent_start -
5084 				 btrfs_file_extent_offset(leaf, item);
5085 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5086 		if (bytenr == 0) {
5087 			em->block_start = EXTENT_MAP_HOLE;
5088 			goto insert;
5089 		}
5090 		if (compressed) {
5091 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5092 			em->block_start = bytenr;
5093 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5094 									 item);
5095 		} else {
5096 			bytenr += btrfs_file_extent_offset(leaf, item);
5097 			em->block_start = bytenr;
5098 			em->block_len = em->len;
5099 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5100 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5101 		}
5102 		goto insert;
5103 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5104 		unsigned long ptr;
5105 		char *map;
5106 		size_t size;
5107 		size_t extent_offset;
5108 		size_t copy_size;
5109 
5110 		em->block_start = EXTENT_MAP_INLINE;
5111 		if (!page || create) {
5112 			em->start = extent_start;
5113 			em->len = extent_end - extent_start;
5114 			goto out;
5115 		}
5116 
5117 		size = btrfs_file_extent_inline_len(leaf, item);
5118 		extent_offset = page_offset(page) + pg_offset - extent_start;
5119 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5120 				size - extent_offset);
5121 		em->start = extent_start + extent_offset;
5122 		em->len = (copy_size + root->sectorsize - 1) &
5123 			~((u64)root->sectorsize - 1);
5124 		em->orig_start = EXTENT_MAP_INLINE;
5125 		if (compressed)
5126 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5127 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5128 		if (create == 0 && !PageUptodate(page)) {
5129 			if (btrfs_file_extent_compression(leaf, item) ==
5130 			    BTRFS_COMPRESS_ZLIB) {
5131 				ret = uncompress_inline(path, inode, page,
5132 							pg_offset,
5133 							extent_offset, item);
5134 				BUG_ON(ret);
5135 			} else {
5136 				map = kmap(page);
5137 				read_extent_buffer(leaf, map + pg_offset, ptr,
5138 						   copy_size);
5139 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5140 					memset(map + pg_offset + copy_size, 0,
5141 					       PAGE_CACHE_SIZE - pg_offset -
5142 					       copy_size);
5143 				}
5144 				kunmap(page);
5145 			}
5146 			flush_dcache_page(page);
5147 		} else if (create && PageUptodate(page)) {
5148 			WARN_ON(1);
5149 			if (!trans) {
5150 				kunmap(page);
5151 				free_extent_map(em);
5152 				em = NULL;
5153 				btrfs_release_path(root, path);
5154 				trans = btrfs_join_transaction(root, 1);
5155 				goto again;
5156 			}
5157 			map = kmap(page);
5158 			write_extent_buffer(leaf, map + pg_offset, ptr,
5159 					    copy_size);
5160 			kunmap(page);
5161 			btrfs_mark_buffer_dirty(leaf);
5162 		}
5163 		set_extent_uptodate(io_tree, em->start,
5164 				    extent_map_end(em) - 1, GFP_NOFS);
5165 		goto insert;
5166 	} else {
5167 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5168 		WARN_ON(1);
5169 	}
5170 not_found:
5171 	em->start = start;
5172 	em->len = len;
5173 not_found_em:
5174 	em->block_start = EXTENT_MAP_HOLE;
5175 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5176 insert:
5177 	btrfs_release_path(root, path);
5178 	if (em->start > start || extent_map_end(em) <= start) {
5179 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5180 		       "[%llu %llu]\n", (unsigned long long)em->start,
5181 		       (unsigned long long)em->len,
5182 		       (unsigned long long)start,
5183 		       (unsigned long long)len);
5184 		err = -EIO;
5185 		goto out;
5186 	}
5187 
5188 	err = 0;
5189 	write_lock(&em_tree->lock);
5190 	ret = add_extent_mapping(em_tree, em);
5191 	/* it is possible that someone inserted the extent into the tree
5192 	 * while we had the lock dropped.  It is also possible that
5193 	 * an overlapping map exists in the tree
5194 	 */
5195 	if (ret == -EEXIST) {
5196 		struct extent_map *existing;
5197 
5198 		ret = 0;
5199 
5200 		existing = lookup_extent_mapping(em_tree, start, len);
5201 		if (existing && (existing->start > start ||
5202 		    existing->start + existing->len <= start)) {
5203 			free_extent_map(existing);
5204 			existing = NULL;
5205 		}
5206 		if (!existing) {
5207 			existing = lookup_extent_mapping(em_tree, em->start,
5208 							 em->len);
5209 			if (existing) {
5210 				err = merge_extent_mapping(em_tree, existing,
5211 							   em, start,
5212 							   root->sectorsize);
5213 				free_extent_map(existing);
5214 				if (err) {
5215 					free_extent_map(em);
5216 					em = NULL;
5217 				}
5218 			} else {
5219 				err = -EIO;
5220 				free_extent_map(em);
5221 				em = NULL;
5222 			}
5223 		} else {
5224 			free_extent_map(em);
5225 			em = existing;
5226 			err = 0;
5227 		}
5228 	}
5229 	write_unlock(&em_tree->lock);
5230 out:
5231 	if (path)
5232 		btrfs_free_path(path);
5233 	if (trans) {
5234 		ret = btrfs_end_transaction(trans, root);
5235 		if (!err)
5236 			err = ret;
5237 	}
5238 	if (err) {
5239 		free_extent_map(em);
5240 		return ERR_PTR(err);
5241 	}
5242 	return em;
5243 }
5244 
5245 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5246 						  u64 start, u64 len)
5247 {
5248 	struct btrfs_root *root = BTRFS_I(inode)->root;
5249 	struct btrfs_trans_handle *trans;
5250 	struct extent_map *em;
5251 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5252 	struct btrfs_key ins;
5253 	u64 alloc_hint;
5254 	int ret;
5255 
5256 	btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5257 
5258 	trans = btrfs_join_transaction(root, 0);
5259 	if (!trans)
5260 		return ERR_PTR(-ENOMEM);
5261 
5262 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5263 
5264 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5265 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5266 				   alloc_hint, (u64)-1, &ins, 1);
5267 	if (ret) {
5268 		em = ERR_PTR(ret);
5269 		goto out;
5270 	}
5271 
5272 	em = alloc_extent_map(GFP_NOFS);
5273 	if (!em) {
5274 		em = ERR_PTR(-ENOMEM);
5275 		goto out;
5276 	}
5277 
5278 	em->start = start;
5279 	em->orig_start = em->start;
5280 	em->len = ins.offset;
5281 
5282 	em->block_start = ins.objectid;
5283 	em->block_len = ins.offset;
5284 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5285 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5286 
5287 	while (1) {
5288 		write_lock(&em_tree->lock);
5289 		ret = add_extent_mapping(em_tree, em);
5290 		write_unlock(&em_tree->lock);
5291 		if (ret != -EEXIST)
5292 			break;
5293 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5294 	}
5295 
5296 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5297 					   ins.offset, ins.offset, 0);
5298 	if (ret) {
5299 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5300 		em = ERR_PTR(ret);
5301 	}
5302 out:
5303 	btrfs_end_transaction(trans, root);
5304 	return em;
5305 }
5306 
5307 /*
5308  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5309  * block must be cow'd
5310  */
5311 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5312 				      struct inode *inode, u64 offset, u64 len)
5313 {
5314 	struct btrfs_path *path;
5315 	int ret;
5316 	struct extent_buffer *leaf;
5317 	struct btrfs_root *root = BTRFS_I(inode)->root;
5318 	struct btrfs_file_extent_item *fi;
5319 	struct btrfs_key key;
5320 	u64 disk_bytenr;
5321 	u64 backref_offset;
5322 	u64 extent_end;
5323 	u64 num_bytes;
5324 	int slot;
5325 	int found_type;
5326 
5327 	path = btrfs_alloc_path();
5328 	if (!path)
5329 		return -ENOMEM;
5330 
5331 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5332 				       offset, 0);
5333 	if (ret < 0)
5334 		goto out;
5335 
5336 	slot = path->slots[0];
5337 	if (ret == 1) {
5338 		if (slot == 0) {
5339 			/* can't find the item, must cow */
5340 			ret = 0;
5341 			goto out;
5342 		}
5343 		slot--;
5344 	}
5345 	ret = 0;
5346 	leaf = path->nodes[0];
5347 	btrfs_item_key_to_cpu(leaf, &key, slot);
5348 	if (key.objectid != inode->i_ino ||
5349 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5350 		/* not our file or wrong item type, must cow */
5351 		goto out;
5352 	}
5353 
5354 	if (key.offset > offset) {
5355 		/* Wrong offset, must cow */
5356 		goto out;
5357 	}
5358 
5359 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5360 	found_type = btrfs_file_extent_type(leaf, fi);
5361 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5362 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5363 		/* not a regular extent, must cow */
5364 		goto out;
5365 	}
5366 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5367 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5368 
5369 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5370 	if (extent_end < offset + len) {
5371 		/* extent doesn't include our full range, must cow */
5372 		goto out;
5373 	}
5374 
5375 	if (btrfs_extent_readonly(root, disk_bytenr))
5376 		goto out;
5377 
5378 	/*
5379 	 * look for other files referencing this extent, if we
5380 	 * find any we must cow
5381 	 */
5382 	if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5383 				  key.offset - backref_offset, disk_bytenr))
5384 		goto out;
5385 
5386 	/*
5387 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5388 	 * in this extent we are about to write.  If there
5389 	 * are any csums in that range we have to cow in order
5390 	 * to keep the csums correct
5391 	 */
5392 	disk_bytenr += backref_offset;
5393 	disk_bytenr += offset - key.offset;
5394 	num_bytes = min(offset + len, extent_end) - offset;
5395 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5396 				goto out;
5397 	/*
5398 	 * all of the above have passed, it is safe to overwrite this extent
5399 	 * without cow
5400 	 */
5401 	ret = 1;
5402 out:
5403 	btrfs_free_path(path);
5404 	return ret;
5405 }
5406 
5407 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5408 				   struct buffer_head *bh_result, int create)
5409 {
5410 	struct extent_map *em;
5411 	struct btrfs_root *root = BTRFS_I(inode)->root;
5412 	u64 start = iblock << inode->i_blkbits;
5413 	u64 len = bh_result->b_size;
5414 	struct btrfs_trans_handle *trans;
5415 
5416 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5417 	if (IS_ERR(em))
5418 		return PTR_ERR(em);
5419 
5420 	/*
5421 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5422 	 * io.  INLINE is special, and we could probably kludge it in here, but
5423 	 * it's still buffered so for safety lets just fall back to the generic
5424 	 * buffered path.
5425 	 *
5426 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5427 	 * decompress it, so there will be buffering required no matter what we
5428 	 * do, so go ahead and fallback to buffered.
5429 	 *
5430 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5431 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5432 	 * the generic code.
5433 	 */
5434 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5435 	    em->block_start == EXTENT_MAP_INLINE) {
5436 		free_extent_map(em);
5437 		return -ENOTBLK;
5438 	}
5439 
5440 	/* Just a good old fashioned hole, return */
5441 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5442 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5443 		free_extent_map(em);
5444 		/* DIO will do one hole at a time, so just unlock a sector */
5445 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5446 			      start + root->sectorsize - 1, GFP_NOFS);
5447 		return 0;
5448 	}
5449 
5450 	/*
5451 	 * We don't allocate a new extent in the following cases
5452 	 *
5453 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5454 	 * existing extent.
5455 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5456 	 * just use the extent.
5457 	 *
5458 	 */
5459 	if (!create) {
5460 		len = em->len - (start - em->start);
5461 		goto map;
5462 	}
5463 
5464 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5465 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5466 	     em->block_start != EXTENT_MAP_HOLE)) {
5467 		int type;
5468 		int ret;
5469 		u64 block_start;
5470 
5471 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5472 			type = BTRFS_ORDERED_PREALLOC;
5473 		else
5474 			type = BTRFS_ORDERED_NOCOW;
5475 		len = min(len, em->len - (start - em->start));
5476 		block_start = em->block_start + (start - em->start);
5477 
5478 		/*
5479 		 * we're not going to log anything, but we do need
5480 		 * to make sure the current transaction stays open
5481 		 * while we look for nocow cross refs
5482 		 */
5483 		trans = btrfs_join_transaction(root, 0);
5484 		if (!trans)
5485 			goto must_cow;
5486 
5487 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5488 			ret = btrfs_add_ordered_extent_dio(inode, start,
5489 					   block_start, len, len, type);
5490 			btrfs_end_transaction(trans, root);
5491 			if (ret) {
5492 				free_extent_map(em);
5493 				return ret;
5494 			}
5495 			goto unlock;
5496 		}
5497 		btrfs_end_transaction(trans, root);
5498 	}
5499 must_cow:
5500 	/*
5501 	 * this will cow the extent, reset the len in case we changed
5502 	 * it above
5503 	 */
5504 	len = bh_result->b_size;
5505 	free_extent_map(em);
5506 	em = btrfs_new_extent_direct(inode, start, len);
5507 	if (IS_ERR(em))
5508 		return PTR_ERR(em);
5509 	len = min(len, em->len - (start - em->start));
5510 unlock:
5511 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5512 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5513 			  0, NULL, GFP_NOFS);
5514 map:
5515 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5516 		inode->i_blkbits;
5517 	bh_result->b_size = len;
5518 	bh_result->b_bdev = em->bdev;
5519 	set_buffer_mapped(bh_result);
5520 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5521 		set_buffer_new(bh_result);
5522 
5523 	free_extent_map(em);
5524 
5525 	return 0;
5526 }
5527 
5528 struct btrfs_dio_private {
5529 	struct inode *inode;
5530 	u64 logical_offset;
5531 	u64 disk_bytenr;
5532 	u64 bytes;
5533 	u32 *csums;
5534 	void *private;
5535 
5536 	/* number of bios pending for this dio */
5537 	atomic_t pending_bios;
5538 
5539 	/* IO errors */
5540 	int errors;
5541 
5542 	struct bio *orig_bio;
5543 };
5544 
5545 static void btrfs_endio_direct_read(struct bio *bio, int err)
5546 {
5547 	struct btrfs_dio_private *dip = bio->bi_private;
5548 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5549 	struct bio_vec *bvec = bio->bi_io_vec;
5550 	struct inode *inode = dip->inode;
5551 	struct btrfs_root *root = BTRFS_I(inode)->root;
5552 	u64 start;
5553 	u32 *private = dip->csums;
5554 
5555 	start = dip->logical_offset;
5556 	do {
5557 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5558 			struct page *page = bvec->bv_page;
5559 			char *kaddr;
5560 			u32 csum = ~(u32)0;
5561 			unsigned long flags;
5562 
5563 			local_irq_save(flags);
5564 			kaddr = kmap_atomic(page, KM_IRQ0);
5565 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5566 					       csum, bvec->bv_len);
5567 			btrfs_csum_final(csum, (char *)&csum);
5568 			kunmap_atomic(kaddr, KM_IRQ0);
5569 			local_irq_restore(flags);
5570 
5571 			flush_dcache_page(bvec->bv_page);
5572 			if (csum != *private) {
5573 				printk(KERN_ERR "btrfs csum failed ino %lu off"
5574 				      " %llu csum %u private %u\n",
5575 				      inode->i_ino, (unsigned long long)start,
5576 				      csum, *private);
5577 				err = -EIO;
5578 			}
5579 		}
5580 
5581 		start += bvec->bv_len;
5582 		private++;
5583 		bvec++;
5584 	} while (bvec <= bvec_end);
5585 
5586 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5587 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5588 	bio->bi_private = dip->private;
5589 
5590 	kfree(dip->csums);
5591 	kfree(dip);
5592 	dio_end_io(bio, err);
5593 }
5594 
5595 static void btrfs_endio_direct_write(struct bio *bio, int err)
5596 {
5597 	struct btrfs_dio_private *dip = bio->bi_private;
5598 	struct inode *inode = dip->inode;
5599 	struct btrfs_root *root = BTRFS_I(inode)->root;
5600 	struct btrfs_trans_handle *trans;
5601 	struct btrfs_ordered_extent *ordered = NULL;
5602 	struct extent_state *cached_state = NULL;
5603 	u64 ordered_offset = dip->logical_offset;
5604 	u64 ordered_bytes = dip->bytes;
5605 	int ret;
5606 
5607 	if (err)
5608 		goto out_done;
5609 again:
5610 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5611 						   &ordered_offset,
5612 						   ordered_bytes);
5613 	if (!ret)
5614 		goto out_test;
5615 
5616 	BUG_ON(!ordered);
5617 
5618 	trans = btrfs_join_transaction(root, 1);
5619 	if (!trans) {
5620 		err = -ENOMEM;
5621 		goto out;
5622 	}
5623 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5624 
5625 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5626 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5627 		if (!ret)
5628 			ret = btrfs_update_inode(trans, root, inode);
5629 		err = ret;
5630 		goto out;
5631 	}
5632 
5633 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5634 			 ordered->file_offset + ordered->len - 1, 0,
5635 			 &cached_state, GFP_NOFS);
5636 
5637 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5638 		ret = btrfs_mark_extent_written(trans, inode,
5639 						ordered->file_offset,
5640 						ordered->file_offset +
5641 						ordered->len);
5642 		if (ret) {
5643 			err = ret;
5644 			goto out_unlock;
5645 		}
5646 	} else {
5647 		ret = insert_reserved_file_extent(trans, inode,
5648 						  ordered->file_offset,
5649 						  ordered->start,
5650 						  ordered->disk_len,
5651 						  ordered->len,
5652 						  ordered->len,
5653 						  0, 0, 0,
5654 						  BTRFS_FILE_EXTENT_REG);
5655 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5656 				   ordered->file_offset, ordered->len);
5657 		if (ret) {
5658 			err = ret;
5659 			WARN_ON(1);
5660 			goto out_unlock;
5661 		}
5662 	}
5663 
5664 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5665 	btrfs_ordered_update_i_size(inode, 0, ordered);
5666 	btrfs_update_inode(trans, root, inode);
5667 out_unlock:
5668 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5669 			     ordered->file_offset + ordered->len - 1,
5670 			     &cached_state, GFP_NOFS);
5671 out:
5672 	btrfs_delalloc_release_metadata(inode, ordered->len);
5673 	btrfs_end_transaction(trans, root);
5674 	ordered_offset = ordered->file_offset + ordered->len;
5675 	btrfs_put_ordered_extent(ordered);
5676 	btrfs_put_ordered_extent(ordered);
5677 
5678 out_test:
5679 	/*
5680 	 * our bio might span multiple ordered extents.  If we haven't
5681 	 * completed the accounting for the whole dio, go back and try again
5682 	 */
5683 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5684 		ordered_bytes = dip->logical_offset + dip->bytes -
5685 			ordered_offset;
5686 		goto again;
5687 	}
5688 out_done:
5689 	bio->bi_private = dip->private;
5690 
5691 	kfree(dip->csums);
5692 	kfree(dip);
5693 	dio_end_io(bio, err);
5694 }
5695 
5696 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5697 				    struct bio *bio, int mirror_num,
5698 				    unsigned long bio_flags, u64 offset)
5699 {
5700 	int ret;
5701 	struct btrfs_root *root = BTRFS_I(inode)->root;
5702 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5703 	BUG_ON(ret);
5704 	return 0;
5705 }
5706 
5707 static void btrfs_end_dio_bio(struct bio *bio, int err)
5708 {
5709 	struct btrfs_dio_private *dip = bio->bi_private;
5710 
5711 	if (err) {
5712 		printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5713 		      "sector %#Lx len %u err no %d\n",
5714 		      dip->inode->i_ino, bio->bi_rw,
5715 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5716 		dip->errors = 1;
5717 
5718 		/*
5719 		 * before atomic variable goto zero, we must make sure
5720 		 * dip->errors is perceived to be set.
5721 		 */
5722 		smp_mb__before_atomic_dec();
5723 	}
5724 
5725 	/* if there are more bios still pending for this dio, just exit */
5726 	if (!atomic_dec_and_test(&dip->pending_bios))
5727 		goto out;
5728 
5729 	if (dip->errors)
5730 		bio_io_error(dip->orig_bio);
5731 	else {
5732 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5733 		bio_endio(dip->orig_bio, 0);
5734 	}
5735 out:
5736 	bio_put(bio);
5737 }
5738 
5739 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5740 				       u64 first_sector, gfp_t gfp_flags)
5741 {
5742 	int nr_vecs = bio_get_nr_vecs(bdev);
5743 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5744 }
5745 
5746 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5747 					 int rw, u64 file_offset, int skip_sum,
5748 					 u32 *csums)
5749 {
5750 	int write = rw & REQ_WRITE;
5751 	struct btrfs_root *root = BTRFS_I(inode)->root;
5752 	int ret;
5753 
5754 	bio_get(bio);
5755 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5756 	if (ret)
5757 		goto err;
5758 
5759 	if (write && !skip_sum) {
5760 		ret = btrfs_wq_submit_bio(root->fs_info,
5761 				   inode, rw, bio, 0, 0,
5762 				   file_offset,
5763 				   __btrfs_submit_bio_start_direct_io,
5764 				   __btrfs_submit_bio_done);
5765 		goto err;
5766 	} else if (!skip_sum)
5767 		btrfs_lookup_bio_sums_dio(root, inode, bio,
5768 					  file_offset, csums);
5769 
5770 	ret = btrfs_map_bio(root, rw, bio, 0, 1);
5771 err:
5772 	bio_put(bio);
5773 	return ret;
5774 }
5775 
5776 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5777 				    int skip_sum)
5778 {
5779 	struct inode *inode = dip->inode;
5780 	struct btrfs_root *root = BTRFS_I(inode)->root;
5781 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5782 	struct bio *bio;
5783 	struct bio *orig_bio = dip->orig_bio;
5784 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5785 	u64 start_sector = orig_bio->bi_sector;
5786 	u64 file_offset = dip->logical_offset;
5787 	u64 submit_len = 0;
5788 	u64 map_length;
5789 	int nr_pages = 0;
5790 	u32 *csums = dip->csums;
5791 	int ret = 0;
5792 
5793 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5794 	if (!bio)
5795 		return -ENOMEM;
5796 	bio->bi_private = dip;
5797 	bio->bi_end_io = btrfs_end_dio_bio;
5798 	atomic_inc(&dip->pending_bios);
5799 
5800 	map_length = orig_bio->bi_size;
5801 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5802 			      &map_length, NULL, 0);
5803 	if (ret) {
5804 		bio_put(bio);
5805 		return -EIO;
5806 	}
5807 
5808 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5809 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5810 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5811 				 bvec->bv_offset) < bvec->bv_len)) {
5812 			/*
5813 			 * inc the count before we submit the bio so
5814 			 * we know the end IO handler won't happen before
5815 			 * we inc the count. Otherwise, the dip might get freed
5816 			 * before we're done setting it up
5817 			 */
5818 			atomic_inc(&dip->pending_bios);
5819 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
5820 						     file_offset, skip_sum,
5821 						     csums);
5822 			if (ret) {
5823 				bio_put(bio);
5824 				atomic_dec(&dip->pending_bios);
5825 				goto out_err;
5826 			}
5827 
5828 			if (!skip_sum)
5829 				csums = csums + nr_pages;
5830 			start_sector += submit_len >> 9;
5831 			file_offset += submit_len;
5832 
5833 			submit_len = 0;
5834 			nr_pages = 0;
5835 
5836 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5837 						  start_sector, GFP_NOFS);
5838 			if (!bio)
5839 				goto out_err;
5840 			bio->bi_private = dip;
5841 			bio->bi_end_io = btrfs_end_dio_bio;
5842 
5843 			map_length = orig_bio->bi_size;
5844 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5845 					      &map_length, NULL, 0);
5846 			if (ret) {
5847 				bio_put(bio);
5848 				goto out_err;
5849 			}
5850 		} else {
5851 			submit_len += bvec->bv_len;
5852 			nr_pages ++;
5853 			bvec++;
5854 		}
5855 	}
5856 
5857 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5858 				     csums);
5859 	if (!ret)
5860 		return 0;
5861 
5862 	bio_put(bio);
5863 out_err:
5864 	dip->errors = 1;
5865 	/*
5866 	 * before atomic variable goto zero, we must
5867 	 * make sure dip->errors is perceived to be set.
5868 	 */
5869 	smp_mb__before_atomic_dec();
5870 	if (atomic_dec_and_test(&dip->pending_bios))
5871 		bio_io_error(dip->orig_bio);
5872 
5873 	/* bio_end_io() will handle error, so we needn't return it */
5874 	return 0;
5875 }
5876 
5877 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
5878 				loff_t file_offset)
5879 {
5880 	struct btrfs_root *root = BTRFS_I(inode)->root;
5881 	struct btrfs_dio_private *dip;
5882 	struct bio_vec *bvec = bio->bi_io_vec;
5883 	int skip_sum;
5884 	int write = rw & REQ_WRITE;
5885 	int ret = 0;
5886 
5887 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
5888 
5889 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
5890 	if (!dip) {
5891 		ret = -ENOMEM;
5892 		goto free_ordered;
5893 	}
5894 	dip->csums = NULL;
5895 
5896 	if (!skip_sum) {
5897 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
5898 		if (!dip->csums) {
5899 			ret = -ENOMEM;
5900 			goto free_ordered;
5901 		}
5902 	}
5903 
5904 	dip->private = bio->bi_private;
5905 	dip->inode = inode;
5906 	dip->logical_offset = file_offset;
5907 
5908 	dip->bytes = 0;
5909 	do {
5910 		dip->bytes += bvec->bv_len;
5911 		bvec++;
5912 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
5913 
5914 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
5915 	bio->bi_private = dip;
5916 	dip->errors = 0;
5917 	dip->orig_bio = bio;
5918 	atomic_set(&dip->pending_bios, 0);
5919 
5920 	if (write)
5921 		bio->bi_end_io = btrfs_endio_direct_write;
5922 	else
5923 		bio->bi_end_io = btrfs_endio_direct_read;
5924 
5925 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
5926 	if (!ret)
5927 		return;
5928 free_ordered:
5929 	/*
5930 	 * If this is a write, we need to clean up the reserved space and kill
5931 	 * the ordered extent.
5932 	 */
5933 	if (write) {
5934 		struct btrfs_ordered_extent *ordered;
5935 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
5936 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
5937 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
5938 			btrfs_free_reserved_extent(root, ordered->start,
5939 						   ordered->disk_len);
5940 		btrfs_put_ordered_extent(ordered);
5941 		btrfs_put_ordered_extent(ordered);
5942 	}
5943 	bio_endio(bio, ret);
5944 }
5945 
5946 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
5947 			const struct iovec *iov, loff_t offset,
5948 			unsigned long nr_segs)
5949 {
5950 	int seg;
5951 	size_t size;
5952 	unsigned long addr;
5953 	unsigned blocksize_mask = root->sectorsize - 1;
5954 	ssize_t retval = -EINVAL;
5955 	loff_t end = offset;
5956 
5957 	if (offset & blocksize_mask)
5958 		goto out;
5959 
5960 	/* Check the memory alignment.  Blocks cannot straddle pages */
5961 	for (seg = 0; seg < nr_segs; seg++) {
5962 		addr = (unsigned long)iov[seg].iov_base;
5963 		size = iov[seg].iov_len;
5964 		end += size;
5965 		if ((addr & blocksize_mask) || (size & blocksize_mask))
5966 			goto out;
5967 	}
5968 	retval = 0;
5969 out:
5970 	return retval;
5971 }
5972 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
5973 			const struct iovec *iov, loff_t offset,
5974 			unsigned long nr_segs)
5975 {
5976 	struct file *file = iocb->ki_filp;
5977 	struct inode *inode = file->f_mapping->host;
5978 	struct btrfs_ordered_extent *ordered;
5979 	struct extent_state *cached_state = NULL;
5980 	u64 lockstart, lockend;
5981 	ssize_t ret;
5982 	int writing = rw & WRITE;
5983 	int write_bits = 0;
5984 	size_t count = iov_length(iov, nr_segs);
5985 
5986 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
5987 			    offset, nr_segs)) {
5988 		return 0;
5989 	}
5990 
5991 	lockstart = offset;
5992 	lockend = offset + count - 1;
5993 
5994 	if (writing) {
5995 		ret = btrfs_delalloc_reserve_space(inode, count);
5996 		if (ret)
5997 			goto out;
5998 	}
5999 
6000 	while (1) {
6001 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6002 				 0, &cached_state, GFP_NOFS);
6003 		/*
6004 		 * We're concerned with the entire range that we're going to be
6005 		 * doing DIO to, so we need to make sure theres no ordered
6006 		 * extents in this range.
6007 		 */
6008 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6009 						     lockend - lockstart + 1);
6010 		if (!ordered)
6011 			break;
6012 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6013 				     &cached_state, GFP_NOFS);
6014 		btrfs_start_ordered_extent(inode, ordered, 1);
6015 		btrfs_put_ordered_extent(ordered);
6016 		cond_resched();
6017 	}
6018 
6019 	/*
6020 	 * we don't use btrfs_set_extent_delalloc because we don't want
6021 	 * the dirty or uptodate bits
6022 	 */
6023 	if (writing) {
6024 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6025 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6026 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6027 				     GFP_NOFS);
6028 		if (ret) {
6029 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6030 					 lockend, EXTENT_LOCKED | write_bits,
6031 					 1, 0, &cached_state, GFP_NOFS);
6032 			goto out;
6033 		}
6034 	}
6035 
6036 	free_extent_state(cached_state);
6037 	cached_state = NULL;
6038 
6039 	ret = __blockdev_direct_IO(rw, iocb, inode,
6040 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6041 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6042 		   btrfs_submit_direct, 0);
6043 
6044 	if (ret < 0 && ret != -EIOCBQUEUED) {
6045 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6046 			      offset + iov_length(iov, nr_segs) - 1,
6047 			      EXTENT_LOCKED | write_bits, 1, 0,
6048 			      &cached_state, GFP_NOFS);
6049 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6050 		/*
6051 		 * We're falling back to buffered, unlock the section we didn't
6052 		 * do IO on.
6053 		 */
6054 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6055 			      offset + iov_length(iov, nr_segs) - 1,
6056 			      EXTENT_LOCKED | write_bits, 1, 0,
6057 			      &cached_state, GFP_NOFS);
6058 	}
6059 out:
6060 	free_extent_state(cached_state);
6061 	return ret;
6062 }
6063 
6064 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6065 		__u64 start, __u64 len)
6066 {
6067 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
6068 }
6069 
6070 int btrfs_readpage(struct file *file, struct page *page)
6071 {
6072 	struct extent_io_tree *tree;
6073 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6074 	return extent_read_full_page(tree, page, btrfs_get_extent);
6075 }
6076 
6077 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6078 {
6079 	struct extent_io_tree *tree;
6080 
6081 
6082 	if (current->flags & PF_MEMALLOC) {
6083 		redirty_page_for_writepage(wbc, page);
6084 		unlock_page(page);
6085 		return 0;
6086 	}
6087 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6088 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6089 }
6090 
6091 int btrfs_writepages(struct address_space *mapping,
6092 		     struct writeback_control *wbc)
6093 {
6094 	struct extent_io_tree *tree;
6095 
6096 	tree = &BTRFS_I(mapping->host)->io_tree;
6097 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6098 }
6099 
6100 static int
6101 btrfs_readpages(struct file *file, struct address_space *mapping,
6102 		struct list_head *pages, unsigned nr_pages)
6103 {
6104 	struct extent_io_tree *tree;
6105 	tree = &BTRFS_I(mapping->host)->io_tree;
6106 	return extent_readpages(tree, mapping, pages, nr_pages,
6107 				btrfs_get_extent);
6108 }
6109 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6110 {
6111 	struct extent_io_tree *tree;
6112 	struct extent_map_tree *map;
6113 	int ret;
6114 
6115 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6116 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6117 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6118 	if (ret == 1) {
6119 		ClearPagePrivate(page);
6120 		set_page_private(page, 0);
6121 		page_cache_release(page);
6122 	}
6123 	return ret;
6124 }
6125 
6126 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6127 {
6128 	if (PageWriteback(page) || PageDirty(page))
6129 		return 0;
6130 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6131 }
6132 
6133 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6134 {
6135 	struct extent_io_tree *tree;
6136 	struct btrfs_ordered_extent *ordered;
6137 	struct extent_state *cached_state = NULL;
6138 	u64 page_start = page_offset(page);
6139 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6140 
6141 
6142 	/*
6143 	 * we have the page locked, so new writeback can't start,
6144 	 * and the dirty bit won't be cleared while we are here.
6145 	 *
6146 	 * Wait for IO on this page so that we can safely clear
6147 	 * the PagePrivate2 bit and do ordered accounting
6148 	 */
6149 	wait_on_page_writeback(page);
6150 
6151 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6152 	if (offset) {
6153 		btrfs_releasepage(page, GFP_NOFS);
6154 		return;
6155 	}
6156 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6157 			 GFP_NOFS);
6158 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6159 					   page_offset(page));
6160 	if (ordered) {
6161 		/*
6162 		 * IO on this page will never be started, so we need
6163 		 * to account for any ordered extents now
6164 		 */
6165 		clear_extent_bit(tree, page_start, page_end,
6166 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6167 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6168 				 &cached_state, GFP_NOFS);
6169 		/*
6170 		 * whoever cleared the private bit is responsible
6171 		 * for the finish_ordered_io
6172 		 */
6173 		if (TestClearPagePrivate2(page)) {
6174 			btrfs_finish_ordered_io(page->mapping->host,
6175 						page_start, page_end);
6176 		}
6177 		btrfs_put_ordered_extent(ordered);
6178 		cached_state = NULL;
6179 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6180 				 GFP_NOFS);
6181 	}
6182 	clear_extent_bit(tree, page_start, page_end,
6183 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6184 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6185 	__btrfs_releasepage(page, GFP_NOFS);
6186 
6187 	ClearPageChecked(page);
6188 	if (PagePrivate(page)) {
6189 		ClearPagePrivate(page);
6190 		set_page_private(page, 0);
6191 		page_cache_release(page);
6192 	}
6193 }
6194 
6195 /*
6196  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6197  * called from a page fault handler when a page is first dirtied. Hence we must
6198  * be careful to check for EOF conditions here. We set the page up correctly
6199  * for a written page which means we get ENOSPC checking when writing into
6200  * holes and correct delalloc and unwritten extent mapping on filesystems that
6201  * support these features.
6202  *
6203  * We are not allowed to take the i_mutex here so we have to play games to
6204  * protect against truncate races as the page could now be beyond EOF.  Because
6205  * vmtruncate() writes the inode size before removing pages, once we have the
6206  * page lock we can determine safely if the page is beyond EOF. If it is not
6207  * beyond EOF, then the page is guaranteed safe against truncation until we
6208  * unlock the page.
6209  */
6210 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6211 {
6212 	struct page *page = vmf->page;
6213 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6214 	struct btrfs_root *root = BTRFS_I(inode)->root;
6215 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6216 	struct btrfs_ordered_extent *ordered;
6217 	struct extent_state *cached_state = NULL;
6218 	char *kaddr;
6219 	unsigned long zero_start;
6220 	loff_t size;
6221 	int ret;
6222 	u64 page_start;
6223 	u64 page_end;
6224 
6225 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6226 	if (ret) {
6227 		if (ret == -ENOMEM)
6228 			ret = VM_FAULT_OOM;
6229 		else /* -ENOSPC, -EIO, etc */
6230 			ret = VM_FAULT_SIGBUS;
6231 		goto out;
6232 	}
6233 
6234 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6235 again:
6236 	lock_page(page);
6237 	size = i_size_read(inode);
6238 	page_start = page_offset(page);
6239 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6240 
6241 	if ((page->mapping != inode->i_mapping) ||
6242 	    (page_start >= size)) {
6243 		/* page got truncated out from underneath us */
6244 		goto out_unlock;
6245 	}
6246 	wait_on_page_writeback(page);
6247 
6248 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6249 			 GFP_NOFS);
6250 	set_page_extent_mapped(page);
6251 
6252 	/*
6253 	 * we can't set the delalloc bits if there are pending ordered
6254 	 * extents.  Drop our locks and wait for them to finish
6255 	 */
6256 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6257 	if (ordered) {
6258 		unlock_extent_cached(io_tree, page_start, page_end,
6259 				     &cached_state, GFP_NOFS);
6260 		unlock_page(page);
6261 		btrfs_start_ordered_extent(inode, ordered, 1);
6262 		btrfs_put_ordered_extent(ordered);
6263 		goto again;
6264 	}
6265 
6266 	/*
6267 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6268 	 * if it was already dirty, so for space accounting reasons we need to
6269 	 * clear any delalloc bits for the range we are fixing to save.  There
6270 	 * is probably a better way to do this, but for now keep consistent with
6271 	 * prepare_pages in the normal write path.
6272 	 */
6273 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6274 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6275 			  0, 0, &cached_state, GFP_NOFS);
6276 
6277 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6278 					&cached_state);
6279 	if (ret) {
6280 		unlock_extent_cached(io_tree, page_start, page_end,
6281 				     &cached_state, GFP_NOFS);
6282 		ret = VM_FAULT_SIGBUS;
6283 		goto out_unlock;
6284 	}
6285 	ret = 0;
6286 
6287 	/* page is wholly or partially inside EOF */
6288 	if (page_start + PAGE_CACHE_SIZE > size)
6289 		zero_start = size & ~PAGE_CACHE_MASK;
6290 	else
6291 		zero_start = PAGE_CACHE_SIZE;
6292 
6293 	if (zero_start != PAGE_CACHE_SIZE) {
6294 		kaddr = kmap(page);
6295 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6296 		flush_dcache_page(page);
6297 		kunmap(page);
6298 	}
6299 	ClearPageChecked(page);
6300 	set_page_dirty(page);
6301 	SetPageUptodate(page);
6302 
6303 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6304 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6305 
6306 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6307 
6308 out_unlock:
6309 	if (!ret)
6310 		return VM_FAULT_LOCKED;
6311 	unlock_page(page);
6312 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6313 out:
6314 	return ret;
6315 }
6316 
6317 static void btrfs_truncate(struct inode *inode)
6318 {
6319 	struct btrfs_root *root = BTRFS_I(inode)->root;
6320 	int ret;
6321 	struct btrfs_trans_handle *trans;
6322 	unsigned long nr;
6323 	u64 mask = root->sectorsize - 1;
6324 
6325 	if (!S_ISREG(inode->i_mode)) {
6326 		WARN_ON(1);
6327 		return;
6328 	}
6329 
6330 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6331 	if (ret)
6332 		return;
6333 
6334 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6335 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6336 
6337 	trans = btrfs_start_transaction(root, 0);
6338 	BUG_ON(IS_ERR(trans));
6339 	btrfs_set_trans_block_group(trans, inode);
6340 	trans->block_rsv = root->orphan_block_rsv;
6341 
6342 	/*
6343 	 * setattr is responsible for setting the ordered_data_close flag,
6344 	 * but that is only tested during the last file release.  That
6345 	 * could happen well after the next commit, leaving a great big
6346 	 * window where new writes may get lost if someone chooses to write
6347 	 * to this file after truncating to zero
6348 	 *
6349 	 * The inode doesn't have any dirty data here, and so if we commit
6350 	 * this is a noop.  If someone immediately starts writing to the inode
6351 	 * it is very likely we'll catch some of their writes in this
6352 	 * transaction, and the commit will find this file on the ordered
6353 	 * data list with good things to send down.
6354 	 *
6355 	 * This is a best effort solution, there is still a window where
6356 	 * using truncate to replace the contents of the file will
6357 	 * end up with a zero length file after a crash.
6358 	 */
6359 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6360 		btrfs_add_ordered_operation(trans, root, inode);
6361 
6362 	while (1) {
6363 		if (!trans) {
6364 			trans = btrfs_start_transaction(root, 0);
6365 			BUG_ON(IS_ERR(trans));
6366 			btrfs_set_trans_block_group(trans, inode);
6367 			trans->block_rsv = root->orphan_block_rsv;
6368 		}
6369 
6370 		ret = btrfs_block_rsv_check(trans, root,
6371 					    root->orphan_block_rsv, 0, 5);
6372 		if (ret) {
6373 			BUG_ON(ret != -EAGAIN);
6374 			ret = btrfs_commit_transaction(trans, root);
6375 			BUG_ON(ret);
6376 			trans = NULL;
6377 			continue;
6378 		}
6379 
6380 		ret = btrfs_truncate_inode_items(trans, root, inode,
6381 						 inode->i_size,
6382 						 BTRFS_EXTENT_DATA_KEY);
6383 		if (ret != -EAGAIN)
6384 			break;
6385 
6386 		ret = btrfs_update_inode(trans, root, inode);
6387 		BUG_ON(ret);
6388 
6389 		nr = trans->blocks_used;
6390 		btrfs_end_transaction(trans, root);
6391 		trans = NULL;
6392 		btrfs_btree_balance_dirty(root, nr);
6393 	}
6394 
6395 	if (ret == 0 && inode->i_nlink > 0) {
6396 		ret = btrfs_orphan_del(trans, inode);
6397 		BUG_ON(ret);
6398 	}
6399 
6400 	ret = btrfs_update_inode(trans, root, inode);
6401 	BUG_ON(ret);
6402 
6403 	nr = trans->blocks_used;
6404 	ret = btrfs_end_transaction_throttle(trans, root);
6405 	BUG_ON(ret);
6406 	btrfs_btree_balance_dirty(root, nr);
6407 }
6408 
6409 /*
6410  * create a new subvolume directory/inode (helper for the ioctl).
6411  */
6412 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6413 			     struct btrfs_root *new_root,
6414 			     u64 new_dirid, u64 alloc_hint)
6415 {
6416 	struct inode *inode;
6417 	int err;
6418 	u64 index = 0;
6419 
6420 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6421 				new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6422 	if (IS_ERR(inode))
6423 		return PTR_ERR(inode);
6424 	inode->i_op = &btrfs_dir_inode_operations;
6425 	inode->i_fop = &btrfs_dir_file_operations;
6426 
6427 	inode->i_nlink = 1;
6428 	btrfs_i_size_write(inode, 0);
6429 
6430 	err = btrfs_update_inode(trans, new_root, inode);
6431 	BUG_ON(err);
6432 
6433 	iput(inode);
6434 	return 0;
6435 }
6436 
6437 /* helper function for file defrag and space balancing.  This
6438  * forces readahead on a given range of bytes in an inode
6439  */
6440 unsigned long btrfs_force_ra(struct address_space *mapping,
6441 			      struct file_ra_state *ra, struct file *file,
6442 			      pgoff_t offset, pgoff_t last_index)
6443 {
6444 	pgoff_t req_size = last_index - offset + 1;
6445 
6446 	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6447 	return offset + req_size;
6448 }
6449 
6450 struct inode *btrfs_alloc_inode(struct super_block *sb)
6451 {
6452 	struct btrfs_inode *ei;
6453 	struct inode *inode;
6454 
6455 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6456 	if (!ei)
6457 		return NULL;
6458 
6459 	ei->root = NULL;
6460 	ei->space_info = NULL;
6461 	ei->generation = 0;
6462 	ei->sequence = 0;
6463 	ei->last_trans = 0;
6464 	ei->last_sub_trans = 0;
6465 	ei->logged_trans = 0;
6466 	ei->delalloc_bytes = 0;
6467 	ei->reserved_bytes = 0;
6468 	ei->disk_i_size = 0;
6469 	ei->flags = 0;
6470 	ei->index_cnt = (u64)-1;
6471 	ei->last_unlink_trans = 0;
6472 
6473 	spin_lock_init(&ei->accounting_lock);
6474 	atomic_set(&ei->outstanding_extents, 0);
6475 	ei->reserved_extents = 0;
6476 
6477 	ei->ordered_data_close = 0;
6478 	ei->orphan_meta_reserved = 0;
6479 	ei->dummy_inode = 0;
6480 	ei->force_compress = 0;
6481 
6482 	inode = &ei->vfs_inode;
6483 	extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6484 	extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6485 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6486 	mutex_init(&ei->log_mutex);
6487 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6488 	INIT_LIST_HEAD(&ei->i_orphan);
6489 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6490 	INIT_LIST_HEAD(&ei->ordered_operations);
6491 	RB_CLEAR_NODE(&ei->rb_node);
6492 
6493 	return inode;
6494 }
6495 
6496 static void btrfs_i_callback(struct rcu_head *head)
6497 {
6498 	struct inode *inode = container_of(head, struct inode, i_rcu);
6499 	INIT_LIST_HEAD(&inode->i_dentry);
6500 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6501 }
6502 
6503 void btrfs_destroy_inode(struct inode *inode)
6504 {
6505 	struct btrfs_ordered_extent *ordered;
6506 	struct btrfs_root *root = BTRFS_I(inode)->root;
6507 
6508 	WARN_ON(!list_empty(&inode->i_dentry));
6509 	WARN_ON(inode->i_data.nrpages);
6510 	WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6511 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6512 
6513 	/*
6514 	 * This can happen where we create an inode, but somebody else also
6515 	 * created the same inode and we need to destroy the one we already
6516 	 * created.
6517 	 */
6518 	if (!root)
6519 		goto free;
6520 
6521 	/*
6522 	 * Make sure we're properly removed from the ordered operation
6523 	 * lists.
6524 	 */
6525 	smp_mb();
6526 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6527 		spin_lock(&root->fs_info->ordered_extent_lock);
6528 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6529 		spin_unlock(&root->fs_info->ordered_extent_lock);
6530 	}
6531 
6532 	if (root == root->fs_info->tree_root) {
6533 		struct btrfs_block_group_cache *block_group;
6534 
6535 		block_group = btrfs_lookup_block_group(root->fs_info,
6536 						BTRFS_I(inode)->block_group);
6537 		if (block_group && block_group->inode == inode) {
6538 			spin_lock(&block_group->lock);
6539 			block_group->inode = NULL;
6540 			spin_unlock(&block_group->lock);
6541 			btrfs_put_block_group(block_group);
6542 		} else if (block_group) {
6543 			btrfs_put_block_group(block_group);
6544 		}
6545 	}
6546 
6547 	spin_lock(&root->orphan_lock);
6548 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6549 		printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6550 		       inode->i_ino);
6551 		list_del_init(&BTRFS_I(inode)->i_orphan);
6552 	}
6553 	spin_unlock(&root->orphan_lock);
6554 
6555 	while (1) {
6556 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6557 		if (!ordered)
6558 			break;
6559 		else {
6560 			printk(KERN_ERR "btrfs found ordered "
6561 			       "extent %llu %llu on inode cleanup\n",
6562 			       (unsigned long long)ordered->file_offset,
6563 			       (unsigned long long)ordered->len);
6564 			btrfs_remove_ordered_extent(inode, ordered);
6565 			btrfs_put_ordered_extent(ordered);
6566 			btrfs_put_ordered_extent(ordered);
6567 		}
6568 	}
6569 	inode_tree_del(inode);
6570 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6571 free:
6572 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6573 }
6574 
6575 int btrfs_drop_inode(struct inode *inode)
6576 {
6577 	struct btrfs_root *root = BTRFS_I(inode)->root;
6578 
6579 	if (btrfs_root_refs(&root->root_item) == 0 &&
6580 	    root != root->fs_info->tree_root)
6581 		return 1;
6582 	else
6583 		return generic_drop_inode(inode);
6584 }
6585 
6586 static void init_once(void *foo)
6587 {
6588 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6589 
6590 	inode_init_once(&ei->vfs_inode);
6591 }
6592 
6593 void btrfs_destroy_cachep(void)
6594 {
6595 	if (btrfs_inode_cachep)
6596 		kmem_cache_destroy(btrfs_inode_cachep);
6597 	if (btrfs_trans_handle_cachep)
6598 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6599 	if (btrfs_transaction_cachep)
6600 		kmem_cache_destroy(btrfs_transaction_cachep);
6601 	if (btrfs_path_cachep)
6602 		kmem_cache_destroy(btrfs_path_cachep);
6603 }
6604 
6605 int btrfs_init_cachep(void)
6606 {
6607 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6608 			sizeof(struct btrfs_inode), 0,
6609 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6610 	if (!btrfs_inode_cachep)
6611 		goto fail;
6612 
6613 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6614 			sizeof(struct btrfs_trans_handle), 0,
6615 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6616 	if (!btrfs_trans_handle_cachep)
6617 		goto fail;
6618 
6619 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6620 			sizeof(struct btrfs_transaction), 0,
6621 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6622 	if (!btrfs_transaction_cachep)
6623 		goto fail;
6624 
6625 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6626 			sizeof(struct btrfs_path), 0,
6627 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6628 	if (!btrfs_path_cachep)
6629 		goto fail;
6630 
6631 	return 0;
6632 fail:
6633 	btrfs_destroy_cachep();
6634 	return -ENOMEM;
6635 }
6636 
6637 static int btrfs_getattr(struct vfsmount *mnt,
6638 			 struct dentry *dentry, struct kstat *stat)
6639 {
6640 	struct inode *inode = dentry->d_inode;
6641 	generic_fillattr(inode, stat);
6642 	stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6643 	stat->blksize = PAGE_CACHE_SIZE;
6644 	stat->blocks = (inode_get_bytes(inode) +
6645 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6646 	return 0;
6647 }
6648 
6649 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6650 			   struct inode *new_dir, struct dentry *new_dentry)
6651 {
6652 	struct btrfs_trans_handle *trans;
6653 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6654 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6655 	struct inode *new_inode = new_dentry->d_inode;
6656 	struct inode *old_inode = old_dentry->d_inode;
6657 	struct timespec ctime = CURRENT_TIME;
6658 	u64 index = 0;
6659 	u64 root_objectid;
6660 	int ret;
6661 
6662 	if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6663 		return -EPERM;
6664 
6665 	/* we only allow rename subvolume link between subvolumes */
6666 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6667 		return -EXDEV;
6668 
6669 	if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6670 	    (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
6671 		return -ENOTEMPTY;
6672 
6673 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6674 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6675 		return -ENOTEMPTY;
6676 	/*
6677 	 * we're using rename to replace one file with another.
6678 	 * and the replacement file is large.  Start IO on it now so
6679 	 * we don't add too much work to the end of the transaction
6680 	 */
6681 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6682 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6683 		filemap_flush(old_inode->i_mapping);
6684 
6685 	/* close the racy window with snapshot create/destroy ioctl */
6686 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6687 		down_read(&root->fs_info->subvol_sem);
6688 	/*
6689 	 * We want to reserve the absolute worst case amount of items.  So if
6690 	 * both inodes are subvols and we need to unlink them then that would
6691 	 * require 4 item modifications, but if they are both normal inodes it
6692 	 * would require 5 item modifications, so we'll assume their normal
6693 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6694 	 * should cover the worst case number of items we'll modify.
6695 	 */
6696 	trans = btrfs_start_transaction(root, 20);
6697 	if (IS_ERR(trans))
6698 		return PTR_ERR(trans);
6699 
6700 	btrfs_set_trans_block_group(trans, new_dir);
6701 
6702 	if (dest != root)
6703 		btrfs_record_root_in_trans(trans, dest);
6704 
6705 	ret = btrfs_set_inode_index(new_dir, &index);
6706 	if (ret)
6707 		goto out_fail;
6708 
6709 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6710 		/* force full log commit if subvolume involved. */
6711 		root->fs_info->last_trans_log_full_commit = trans->transid;
6712 	} else {
6713 		ret = btrfs_insert_inode_ref(trans, dest,
6714 					     new_dentry->d_name.name,
6715 					     new_dentry->d_name.len,
6716 					     old_inode->i_ino,
6717 					     new_dir->i_ino, index);
6718 		if (ret)
6719 			goto out_fail;
6720 		/*
6721 		 * this is an ugly little race, but the rename is required
6722 		 * to make sure that if we crash, the inode is either at the
6723 		 * old name or the new one.  pinning the log transaction lets
6724 		 * us make sure we don't allow a log commit to come in after
6725 		 * we unlink the name but before we add the new name back in.
6726 		 */
6727 		btrfs_pin_log_trans(root);
6728 	}
6729 	/*
6730 	 * make sure the inode gets flushed if it is replacing
6731 	 * something.
6732 	 */
6733 	if (new_inode && new_inode->i_size &&
6734 	    old_inode && S_ISREG(old_inode->i_mode)) {
6735 		btrfs_add_ordered_operation(trans, root, old_inode);
6736 	}
6737 
6738 	old_dir->i_ctime = old_dir->i_mtime = ctime;
6739 	new_dir->i_ctime = new_dir->i_mtime = ctime;
6740 	old_inode->i_ctime = ctime;
6741 
6742 	if (old_dentry->d_parent != new_dentry->d_parent)
6743 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6744 
6745 	if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6746 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6747 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6748 					old_dentry->d_name.name,
6749 					old_dentry->d_name.len);
6750 	} else {
6751 		btrfs_inc_nlink(old_dentry->d_inode);
6752 		ret = btrfs_unlink_inode(trans, root, old_dir,
6753 					 old_dentry->d_inode,
6754 					 old_dentry->d_name.name,
6755 					 old_dentry->d_name.len);
6756 	}
6757 	BUG_ON(ret);
6758 
6759 	if (new_inode) {
6760 		new_inode->i_ctime = CURRENT_TIME;
6761 		if (unlikely(new_inode->i_ino ==
6762 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
6763 			root_objectid = BTRFS_I(new_inode)->location.objectid;
6764 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
6765 						root_objectid,
6766 						new_dentry->d_name.name,
6767 						new_dentry->d_name.len);
6768 			BUG_ON(new_inode->i_nlink == 0);
6769 		} else {
6770 			ret = btrfs_unlink_inode(trans, dest, new_dir,
6771 						 new_dentry->d_inode,
6772 						 new_dentry->d_name.name,
6773 						 new_dentry->d_name.len);
6774 		}
6775 		BUG_ON(ret);
6776 		if (new_inode->i_nlink == 0) {
6777 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
6778 			BUG_ON(ret);
6779 		}
6780 	}
6781 
6782 	ret = btrfs_add_link(trans, new_dir, old_inode,
6783 			     new_dentry->d_name.name,
6784 			     new_dentry->d_name.len, 0, index);
6785 	BUG_ON(ret);
6786 
6787 	if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6788 		struct dentry *parent = dget_parent(new_dentry);
6789 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
6790 		dput(parent);
6791 		btrfs_end_log_trans(root);
6792 	}
6793 out_fail:
6794 	btrfs_end_transaction_throttle(trans, root);
6795 
6796 	if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6797 		up_read(&root->fs_info->subvol_sem);
6798 
6799 	return ret;
6800 }
6801 
6802 /*
6803  * some fairly slow code that needs optimization. This walks the list
6804  * of all the inodes with pending delalloc and forces them to disk.
6805  */
6806 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
6807 {
6808 	struct list_head *head = &root->fs_info->delalloc_inodes;
6809 	struct btrfs_inode *binode;
6810 	struct inode *inode;
6811 
6812 	if (root->fs_info->sb->s_flags & MS_RDONLY)
6813 		return -EROFS;
6814 
6815 	spin_lock(&root->fs_info->delalloc_lock);
6816 	while (!list_empty(head)) {
6817 		binode = list_entry(head->next, struct btrfs_inode,
6818 				    delalloc_inodes);
6819 		inode = igrab(&binode->vfs_inode);
6820 		if (!inode)
6821 			list_del_init(&binode->delalloc_inodes);
6822 		spin_unlock(&root->fs_info->delalloc_lock);
6823 		if (inode) {
6824 			filemap_flush(inode->i_mapping);
6825 			if (delay_iput)
6826 				btrfs_add_delayed_iput(inode);
6827 			else
6828 				iput(inode);
6829 		}
6830 		cond_resched();
6831 		spin_lock(&root->fs_info->delalloc_lock);
6832 	}
6833 	spin_unlock(&root->fs_info->delalloc_lock);
6834 
6835 	/* the filemap_flush will queue IO into the worker threads, but
6836 	 * we have to make sure the IO is actually started and that
6837 	 * ordered extents get created before we return
6838 	 */
6839 	atomic_inc(&root->fs_info->async_submit_draining);
6840 	while (atomic_read(&root->fs_info->nr_async_submits) ||
6841 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
6842 		wait_event(root->fs_info->async_submit_wait,
6843 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
6844 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
6845 	}
6846 	atomic_dec(&root->fs_info->async_submit_draining);
6847 	return 0;
6848 }
6849 
6850 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
6851 				   int sync)
6852 {
6853 	struct btrfs_inode *binode;
6854 	struct inode *inode = NULL;
6855 
6856 	spin_lock(&root->fs_info->delalloc_lock);
6857 	while (!list_empty(&root->fs_info->delalloc_inodes)) {
6858 		binode = list_entry(root->fs_info->delalloc_inodes.next,
6859 				    struct btrfs_inode, delalloc_inodes);
6860 		inode = igrab(&binode->vfs_inode);
6861 		if (inode) {
6862 			list_move_tail(&binode->delalloc_inodes,
6863 				       &root->fs_info->delalloc_inodes);
6864 			break;
6865 		}
6866 
6867 		list_del_init(&binode->delalloc_inodes);
6868 		cond_resched_lock(&root->fs_info->delalloc_lock);
6869 	}
6870 	spin_unlock(&root->fs_info->delalloc_lock);
6871 
6872 	if (inode) {
6873 		if (sync) {
6874 			filemap_write_and_wait(inode->i_mapping);
6875 			/*
6876 			 * We have to do this because compression doesn't
6877 			 * actually set PG_writeback until it submits the pages
6878 			 * for IO, which happens in an async thread, so we could
6879 			 * race and not actually wait for any writeback pages
6880 			 * because they've not been submitted yet.  Technically
6881 			 * this could still be the case for the ordered stuff
6882 			 * since the async thread may not have started to do its
6883 			 * work yet.  If this becomes the case then we need to
6884 			 * figure out a way to make sure that in writepage we
6885 			 * wait for any async pages to be submitted before
6886 			 * returning so that fdatawait does what its supposed to
6887 			 * do.
6888 			 */
6889 			btrfs_wait_ordered_range(inode, 0, (u64)-1);
6890 		} else {
6891 			filemap_flush(inode->i_mapping);
6892 		}
6893 		if (delay_iput)
6894 			btrfs_add_delayed_iput(inode);
6895 		else
6896 			iput(inode);
6897 		return 1;
6898 	}
6899 	return 0;
6900 }
6901 
6902 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
6903 			 const char *symname)
6904 {
6905 	struct btrfs_trans_handle *trans;
6906 	struct btrfs_root *root = BTRFS_I(dir)->root;
6907 	struct btrfs_path *path;
6908 	struct btrfs_key key;
6909 	struct inode *inode = NULL;
6910 	int err;
6911 	int drop_inode = 0;
6912 	u64 objectid;
6913 	u64 index = 0 ;
6914 	int name_len;
6915 	int datasize;
6916 	unsigned long ptr;
6917 	struct btrfs_file_extent_item *ei;
6918 	struct extent_buffer *leaf;
6919 	unsigned long nr = 0;
6920 
6921 	name_len = strlen(symname) + 1;
6922 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
6923 		return -ENAMETOOLONG;
6924 
6925 	err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
6926 	if (err)
6927 		return err;
6928 	/*
6929 	 * 2 items for inode item and ref
6930 	 * 2 items for dir items
6931 	 * 1 item for xattr if selinux is on
6932 	 */
6933 	trans = btrfs_start_transaction(root, 5);
6934 	if (IS_ERR(trans))
6935 		return PTR_ERR(trans);
6936 
6937 	btrfs_set_trans_block_group(trans, dir);
6938 
6939 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6940 				dentry->d_name.len, dir->i_ino, objectid,
6941 				BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
6942 				&index);
6943 	err = PTR_ERR(inode);
6944 	if (IS_ERR(inode))
6945 		goto out_unlock;
6946 
6947 	err = btrfs_init_inode_security(trans, inode, dir);
6948 	if (err) {
6949 		drop_inode = 1;
6950 		goto out_unlock;
6951 	}
6952 
6953 	btrfs_set_trans_block_group(trans, inode);
6954 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6955 	if (err)
6956 		drop_inode = 1;
6957 	else {
6958 		inode->i_mapping->a_ops = &btrfs_aops;
6959 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6960 		inode->i_fop = &btrfs_file_operations;
6961 		inode->i_op = &btrfs_file_inode_operations;
6962 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6963 	}
6964 	btrfs_update_inode_block_group(trans, inode);
6965 	btrfs_update_inode_block_group(trans, dir);
6966 	if (drop_inode)
6967 		goto out_unlock;
6968 
6969 	path = btrfs_alloc_path();
6970 	BUG_ON(!path);
6971 	key.objectid = inode->i_ino;
6972 	key.offset = 0;
6973 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
6974 	datasize = btrfs_file_extent_calc_inline_size(name_len);
6975 	err = btrfs_insert_empty_item(trans, root, path, &key,
6976 				      datasize);
6977 	if (err) {
6978 		drop_inode = 1;
6979 		goto out_unlock;
6980 	}
6981 	leaf = path->nodes[0];
6982 	ei = btrfs_item_ptr(leaf, path->slots[0],
6983 			    struct btrfs_file_extent_item);
6984 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
6985 	btrfs_set_file_extent_type(leaf, ei,
6986 				   BTRFS_FILE_EXTENT_INLINE);
6987 	btrfs_set_file_extent_encryption(leaf, ei, 0);
6988 	btrfs_set_file_extent_compression(leaf, ei, 0);
6989 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
6990 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
6991 
6992 	ptr = btrfs_file_extent_inline_start(ei);
6993 	write_extent_buffer(leaf, symname, ptr, name_len);
6994 	btrfs_mark_buffer_dirty(leaf);
6995 	btrfs_free_path(path);
6996 
6997 	inode->i_op = &btrfs_symlink_inode_operations;
6998 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
6999 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7000 	inode_set_bytes(inode, name_len);
7001 	btrfs_i_size_write(inode, name_len - 1);
7002 	err = btrfs_update_inode(trans, root, inode);
7003 	if (err)
7004 		drop_inode = 1;
7005 
7006 out_unlock:
7007 	nr = trans->blocks_used;
7008 	btrfs_end_transaction_throttle(trans, root);
7009 	if (drop_inode) {
7010 		inode_dec_link_count(inode);
7011 		iput(inode);
7012 	}
7013 	btrfs_btree_balance_dirty(root, nr);
7014 	return err;
7015 }
7016 
7017 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7018 				       u64 start, u64 num_bytes, u64 min_size,
7019 				       loff_t actual_len, u64 *alloc_hint,
7020 				       struct btrfs_trans_handle *trans)
7021 {
7022 	struct btrfs_root *root = BTRFS_I(inode)->root;
7023 	struct btrfs_key ins;
7024 	u64 cur_offset = start;
7025 	u64 i_size;
7026 	int ret = 0;
7027 	bool own_trans = true;
7028 
7029 	if (trans)
7030 		own_trans = false;
7031 	while (num_bytes > 0) {
7032 		if (own_trans) {
7033 			trans = btrfs_start_transaction(root, 3);
7034 			if (IS_ERR(trans)) {
7035 				ret = PTR_ERR(trans);
7036 				break;
7037 			}
7038 		}
7039 
7040 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7041 					   0, *alloc_hint, (u64)-1, &ins, 1);
7042 		if (ret) {
7043 			if (own_trans)
7044 				btrfs_end_transaction(trans, root);
7045 			break;
7046 		}
7047 
7048 		ret = insert_reserved_file_extent(trans, inode,
7049 						  cur_offset, ins.objectid,
7050 						  ins.offset, ins.offset,
7051 						  ins.offset, 0, 0, 0,
7052 						  BTRFS_FILE_EXTENT_PREALLOC);
7053 		BUG_ON(ret);
7054 		btrfs_drop_extent_cache(inode, cur_offset,
7055 					cur_offset + ins.offset -1, 0);
7056 
7057 		num_bytes -= ins.offset;
7058 		cur_offset += ins.offset;
7059 		*alloc_hint = ins.objectid + ins.offset;
7060 
7061 		inode->i_ctime = CURRENT_TIME;
7062 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7063 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7064 		    (actual_len > inode->i_size) &&
7065 		    (cur_offset > inode->i_size)) {
7066 			if (cur_offset > actual_len)
7067 				i_size = actual_len;
7068 			else
7069 				i_size = cur_offset;
7070 			i_size_write(inode, i_size);
7071 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7072 		}
7073 
7074 		ret = btrfs_update_inode(trans, root, inode);
7075 		BUG_ON(ret);
7076 
7077 		if (own_trans)
7078 			btrfs_end_transaction(trans, root);
7079 	}
7080 	return ret;
7081 }
7082 
7083 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7084 			      u64 start, u64 num_bytes, u64 min_size,
7085 			      loff_t actual_len, u64 *alloc_hint)
7086 {
7087 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7088 					   min_size, actual_len, alloc_hint,
7089 					   NULL);
7090 }
7091 
7092 int btrfs_prealloc_file_range_trans(struct inode *inode,
7093 				    struct btrfs_trans_handle *trans, int mode,
7094 				    u64 start, u64 num_bytes, u64 min_size,
7095 				    loff_t actual_len, u64 *alloc_hint)
7096 {
7097 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7098 					   min_size, actual_len, alloc_hint, trans);
7099 }
7100 
7101 static long btrfs_fallocate(struct inode *inode, int mode,
7102 			    loff_t offset, loff_t len)
7103 {
7104 	struct extent_state *cached_state = NULL;
7105 	u64 cur_offset;
7106 	u64 last_byte;
7107 	u64 alloc_start;
7108 	u64 alloc_end;
7109 	u64 alloc_hint = 0;
7110 	u64 locked_end;
7111 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
7112 	struct extent_map *em;
7113 	int ret;
7114 
7115 	alloc_start = offset & ~mask;
7116 	alloc_end =  (offset + len + mask) & ~mask;
7117 
7118 	/* We only support the FALLOC_FL_KEEP_SIZE mode */
7119 	if (mode && (mode != FALLOC_FL_KEEP_SIZE))
7120 		return -EOPNOTSUPP;
7121 
7122 	/*
7123 	 * wait for ordered IO before we have any locks.  We'll loop again
7124 	 * below with the locks held.
7125 	 */
7126 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
7127 
7128 	mutex_lock(&inode->i_mutex);
7129 	ret = inode_newsize_ok(inode, alloc_end);
7130 	if (ret)
7131 		goto out;
7132 
7133 	if (alloc_start > inode->i_size) {
7134 		ret = btrfs_cont_expand(inode, alloc_start);
7135 		if (ret)
7136 			goto out;
7137 	}
7138 
7139 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
7140 	if (ret)
7141 		goto out;
7142 
7143 	locked_end = alloc_end - 1;
7144 	while (1) {
7145 		struct btrfs_ordered_extent *ordered;
7146 
7147 		/* the extent lock is ordered inside the running
7148 		 * transaction
7149 		 */
7150 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
7151 				 locked_end, 0, &cached_state, GFP_NOFS);
7152 		ordered = btrfs_lookup_first_ordered_extent(inode,
7153 							    alloc_end - 1);
7154 		if (ordered &&
7155 		    ordered->file_offset + ordered->len > alloc_start &&
7156 		    ordered->file_offset < alloc_end) {
7157 			btrfs_put_ordered_extent(ordered);
7158 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7159 					     alloc_start, locked_end,
7160 					     &cached_state, GFP_NOFS);
7161 			/*
7162 			 * we can't wait on the range with the transaction
7163 			 * running or with the extent lock held
7164 			 */
7165 			btrfs_wait_ordered_range(inode, alloc_start,
7166 						 alloc_end - alloc_start);
7167 		} else {
7168 			if (ordered)
7169 				btrfs_put_ordered_extent(ordered);
7170 			break;
7171 		}
7172 	}
7173 
7174 	cur_offset = alloc_start;
7175 	while (1) {
7176 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
7177 				      alloc_end - cur_offset, 0);
7178 		BUG_ON(IS_ERR(em) || !em);
7179 		last_byte = min(extent_map_end(em), alloc_end);
7180 		last_byte = (last_byte + mask) & ~mask;
7181 		if (em->block_start == EXTENT_MAP_HOLE ||
7182 		    (cur_offset >= inode->i_size &&
7183 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7184 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
7185 							last_byte - cur_offset,
7186 							1 << inode->i_blkbits,
7187 							offset + len,
7188 							&alloc_hint);
7189 			if (ret < 0) {
7190 				free_extent_map(em);
7191 				break;
7192 			}
7193 		}
7194 		free_extent_map(em);
7195 
7196 		cur_offset = last_byte;
7197 		if (cur_offset >= alloc_end) {
7198 			ret = 0;
7199 			break;
7200 		}
7201 	}
7202 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
7203 			     &cached_state, GFP_NOFS);
7204 
7205 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
7206 out:
7207 	mutex_unlock(&inode->i_mutex);
7208 	return ret;
7209 }
7210 
7211 static int btrfs_set_page_dirty(struct page *page)
7212 {
7213 	return __set_page_dirty_nobuffers(page);
7214 }
7215 
7216 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7217 {
7218 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7219 		return -EACCES;
7220 	return generic_permission(inode, mask, flags, btrfs_check_acl);
7221 }
7222 
7223 static const struct inode_operations btrfs_dir_inode_operations = {
7224 	.getattr	= btrfs_getattr,
7225 	.lookup		= btrfs_lookup,
7226 	.create		= btrfs_create,
7227 	.unlink		= btrfs_unlink,
7228 	.link		= btrfs_link,
7229 	.mkdir		= btrfs_mkdir,
7230 	.rmdir		= btrfs_rmdir,
7231 	.rename		= btrfs_rename,
7232 	.symlink	= btrfs_symlink,
7233 	.setattr	= btrfs_setattr,
7234 	.mknod		= btrfs_mknod,
7235 	.setxattr	= btrfs_setxattr,
7236 	.getxattr	= btrfs_getxattr,
7237 	.listxattr	= btrfs_listxattr,
7238 	.removexattr	= btrfs_removexattr,
7239 	.permission	= btrfs_permission,
7240 };
7241 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7242 	.lookup		= btrfs_lookup,
7243 	.permission	= btrfs_permission,
7244 };
7245 
7246 static const struct file_operations btrfs_dir_file_operations = {
7247 	.llseek		= generic_file_llseek,
7248 	.read		= generic_read_dir,
7249 	.readdir	= btrfs_real_readdir,
7250 	.unlocked_ioctl	= btrfs_ioctl,
7251 #ifdef CONFIG_COMPAT
7252 	.compat_ioctl	= btrfs_ioctl,
7253 #endif
7254 	.release        = btrfs_release_file,
7255 	.fsync		= btrfs_sync_file,
7256 };
7257 
7258 static struct extent_io_ops btrfs_extent_io_ops = {
7259 	.fill_delalloc = run_delalloc_range,
7260 	.submit_bio_hook = btrfs_submit_bio_hook,
7261 	.merge_bio_hook = btrfs_merge_bio_hook,
7262 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7263 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7264 	.writepage_start_hook = btrfs_writepage_start_hook,
7265 	.readpage_io_failed_hook = btrfs_io_failed_hook,
7266 	.set_bit_hook = btrfs_set_bit_hook,
7267 	.clear_bit_hook = btrfs_clear_bit_hook,
7268 	.merge_extent_hook = btrfs_merge_extent_hook,
7269 	.split_extent_hook = btrfs_split_extent_hook,
7270 };
7271 
7272 /*
7273  * btrfs doesn't support the bmap operation because swapfiles
7274  * use bmap to make a mapping of extents in the file.  They assume
7275  * these extents won't change over the life of the file and they
7276  * use the bmap result to do IO directly to the drive.
7277  *
7278  * the btrfs bmap call would return logical addresses that aren't
7279  * suitable for IO and they also will change frequently as COW
7280  * operations happen.  So, swapfile + btrfs == corruption.
7281  *
7282  * For now we're avoiding this by dropping bmap.
7283  */
7284 static const struct address_space_operations btrfs_aops = {
7285 	.readpage	= btrfs_readpage,
7286 	.writepage	= btrfs_writepage,
7287 	.writepages	= btrfs_writepages,
7288 	.readpages	= btrfs_readpages,
7289 	.sync_page	= block_sync_page,
7290 	.direct_IO	= btrfs_direct_IO,
7291 	.invalidatepage = btrfs_invalidatepage,
7292 	.releasepage	= btrfs_releasepage,
7293 	.set_page_dirty	= btrfs_set_page_dirty,
7294 	.error_remove_page = generic_error_remove_page,
7295 };
7296 
7297 static const struct address_space_operations btrfs_symlink_aops = {
7298 	.readpage	= btrfs_readpage,
7299 	.writepage	= btrfs_writepage,
7300 	.invalidatepage = btrfs_invalidatepage,
7301 	.releasepage	= btrfs_releasepage,
7302 };
7303 
7304 static const struct inode_operations btrfs_file_inode_operations = {
7305 	.truncate	= btrfs_truncate,
7306 	.getattr	= btrfs_getattr,
7307 	.setattr	= btrfs_setattr,
7308 	.setxattr	= btrfs_setxattr,
7309 	.getxattr	= btrfs_getxattr,
7310 	.listxattr      = btrfs_listxattr,
7311 	.removexattr	= btrfs_removexattr,
7312 	.permission	= btrfs_permission,
7313 	.fallocate	= btrfs_fallocate,
7314 	.fiemap		= btrfs_fiemap,
7315 };
7316 static const struct inode_operations btrfs_special_inode_operations = {
7317 	.getattr	= btrfs_getattr,
7318 	.setattr	= btrfs_setattr,
7319 	.permission	= btrfs_permission,
7320 	.setxattr	= btrfs_setxattr,
7321 	.getxattr	= btrfs_getxattr,
7322 	.listxattr	= btrfs_listxattr,
7323 	.removexattr	= btrfs_removexattr,
7324 };
7325 static const struct inode_operations btrfs_symlink_inode_operations = {
7326 	.readlink	= generic_readlink,
7327 	.follow_link	= page_follow_link_light,
7328 	.put_link	= page_put_link,
7329 	.getattr	= btrfs_getattr,
7330 	.permission	= btrfs_permission,
7331 	.setxattr	= btrfs_setxattr,
7332 	.getxattr	= btrfs_getxattr,
7333 	.listxattr	= btrfs_listxattr,
7334 	.removexattr	= btrfs_removexattr,
7335 };
7336 
7337 const struct dentry_operations btrfs_dentry_operations = {
7338 	.d_delete	= btrfs_dentry_delete,
7339 };
7340