1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include "compat.h" 41 #include "ctree.h" 42 #include "disk-io.h" 43 #include "transaction.h" 44 #include "btrfs_inode.h" 45 #include "ioctl.h" 46 #include "print-tree.h" 47 #include "volumes.h" 48 #include "ordered-data.h" 49 #include "xattr.h" 50 #include "tree-log.h" 51 #include "compression.h" 52 #include "locking.h" 53 54 struct btrfs_iget_args { 55 u64 ino; 56 struct btrfs_root *root; 57 }; 58 59 static const struct inode_operations btrfs_dir_inode_operations; 60 static const struct inode_operations btrfs_symlink_inode_operations; 61 static const struct inode_operations btrfs_dir_ro_inode_operations; 62 static const struct inode_operations btrfs_special_inode_operations; 63 static const struct inode_operations btrfs_file_inode_operations; 64 static const struct address_space_operations btrfs_aops; 65 static const struct address_space_operations btrfs_symlink_aops; 66 static const struct file_operations btrfs_dir_file_operations; 67 static struct extent_io_ops btrfs_extent_io_ops; 68 69 static struct kmem_cache *btrfs_inode_cachep; 70 struct kmem_cache *btrfs_trans_handle_cachep; 71 struct kmem_cache *btrfs_transaction_cachep; 72 struct kmem_cache *btrfs_path_cachep; 73 74 #define S_SHIFT 12 75 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 76 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 77 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 78 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 79 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 80 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 81 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 82 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 83 }; 84 85 static void btrfs_truncate(struct inode *inode); 86 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 87 static noinline int cow_file_range(struct inode *inode, 88 struct page *locked_page, 89 u64 start, u64 end, int *page_started, 90 unsigned long *nr_written, int unlock); 91 92 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 93 struct inode *inode, struct inode *dir) 94 { 95 int err; 96 97 err = btrfs_init_acl(trans, inode, dir); 98 if (!err) 99 err = btrfs_xattr_security_init(trans, inode, dir); 100 return err; 101 } 102 103 /* 104 * this does all the hard work for inserting an inline extent into 105 * the btree. The caller should have done a btrfs_drop_extents so that 106 * no overlapping inline items exist in the btree 107 */ 108 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 109 struct btrfs_root *root, struct inode *inode, 110 u64 start, size_t size, size_t compressed_size, 111 struct page **compressed_pages) 112 { 113 struct btrfs_key key; 114 struct btrfs_path *path; 115 struct extent_buffer *leaf; 116 struct page *page = NULL; 117 char *kaddr; 118 unsigned long ptr; 119 struct btrfs_file_extent_item *ei; 120 int err = 0; 121 int ret; 122 size_t cur_size = size; 123 size_t datasize; 124 unsigned long offset; 125 int use_compress = 0; 126 127 if (compressed_size && compressed_pages) { 128 use_compress = 1; 129 cur_size = compressed_size; 130 } 131 132 path = btrfs_alloc_path(); 133 if (!path) 134 return -ENOMEM; 135 136 path->leave_spinning = 1; 137 btrfs_set_trans_block_group(trans, inode); 138 139 key.objectid = inode->i_ino; 140 key.offset = start; 141 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 142 datasize = btrfs_file_extent_calc_inline_size(cur_size); 143 144 inode_add_bytes(inode, size); 145 ret = btrfs_insert_empty_item(trans, root, path, &key, 146 datasize); 147 BUG_ON(ret); 148 if (ret) { 149 err = ret; 150 goto fail; 151 } 152 leaf = path->nodes[0]; 153 ei = btrfs_item_ptr(leaf, path->slots[0], 154 struct btrfs_file_extent_item); 155 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 156 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 157 btrfs_set_file_extent_encryption(leaf, ei, 0); 158 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 159 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 160 ptr = btrfs_file_extent_inline_start(ei); 161 162 if (use_compress) { 163 struct page *cpage; 164 int i = 0; 165 while (compressed_size > 0) { 166 cpage = compressed_pages[i]; 167 cur_size = min_t(unsigned long, compressed_size, 168 PAGE_CACHE_SIZE); 169 170 kaddr = kmap_atomic(cpage, KM_USER0); 171 write_extent_buffer(leaf, kaddr, ptr, cur_size); 172 kunmap_atomic(kaddr, KM_USER0); 173 174 i++; 175 ptr += cur_size; 176 compressed_size -= cur_size; 177 } 178 btrfs_set_file_extent_compression(leaf, ei, 179 BTRFS_COMPRESS_ZLIB); 180 } else { 181 page = find_get_page(inode->i_mapping, 182 start >> PAGE_CACHE_SHIFT); 183 btrfs_set_file_extent_compression(leaf, ei, 0); 184 kaddr = kmap_atomic(page, KM_USER0); 185 offset = start & (PAGE_CACHE_SIZE - 1); 186 write_extent_buffer(leaf, kaddr + offset, ptr, size); 187 kunmap_atomic(kaddr, KM_USER0); 188 page_cache_release(page); 189 } 190 btrfs_mark_buffer_dirty(leaf); 191 btrfs_free_path(path); 192 193 /* 194 * we're an inline extent, so nobody can 195 * extend the file past i_size without locking 196 * a page we already have locked. 197 * 198 * We must do any isize and inode updates 199 * before we unlock the pages. Otherwise we 200 * could end up racing with unlink. 201 */ 202 BTRFS_I(inode)->disk_i_size = inode->i_size; 203 btrfs_update_inode(trans, root, inode); 204 205 return 0; 206 fail: 207 btrfs_free_path(path); 208 return err; 209 } 210 211 212 /* 213 * conditionally insert an inline extent into the file. This 214 * does the checks required to make sure the data is small enough 215 * to fit as an inline extent. 216 */ 217 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 218 struct btrfs_root *root, 219 struct inode *inode, u64 start, u64 end, 220 size_t compressed_size, 221 struct page **compressed_pages) 222 { 223 u64 isize = i_size_read(inode); 224 u64 actual_end = min(end + 1, isize); 225 u64 inline_len = actual_end - start; 226 u64 aligned_end = (end + root->sectorsize - 1) & 227 ~((u64)root->sectorsize - 1); 228 u64 hint_byte; 229 u64 data_len = inline_len; 230 int ret; 231 232 if (compressed_size) 233 data_len = compressed_size; 234 235 if (start > 0 || 236 actual_end >= PAGE_CACHE_SIZE || 237 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 238 (!compressed_size && 239 (actual_end & (root->sectorsize - 1)) == 0) || 240 end + 1 < isize || 241 data_len > root->fs_info->max_inline) { 242 return 1; 243 } 244 245 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 246 &hint_byte, 1); 247 BUG_ON(ret); 248 249 if (isize > actual_end) 250 inline_len = min_t(u64, isize, actual_end); 251 ret = insert_inline_extent(trans, root, inode, start, 252 inline_len, compressed_size, 253 compressed_pages); 254 BUG_ON(ret); 255 btrfs_delalloc_release_metadata(inode, end + 1 - start); 256 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 257 return 0; 258 } 259 260 struct async_extent { 261 u64 start; 262 u64 ram_size; 263 u64 compressed_size; 264 struct page **pages; 265 unsigned long nr_pages; 266 struct list_head list; 267 }; 268 269 struct async_cow { 270 struct inode *inode; 271 struct btrfs_root *root; 272 struct page *locked_page; 273 u64 start; 274 u64 end; 275 struct list_head extents; 276 struct btrfs_work work; 277 }; 278 279 static noinline int add_async_extent(struct async_cow *cow, 280 u64 start, u64 ram_size, 281 u64 compressed_size, 282 struct page **pages, 283 unsigned long nr_pages) 284 { 285 struct async_extent *async_extent; 286 287 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 288 async_extent->start = start; 289 async_extent->ram_size = ram_size; 290 async_extent->compressed_size = compressed_size; 291 async_extent->pages = pages; 292 async_extent->nr_pages = nr_pages; 293 list_add_tail(&async_extent->list, &cow->extents); 294 return 0; 295 } 296 297 /* 298 * we create compressed extents in two phases. The first 299 * phase compresses a range of pages that have already been 300 * locked (both pages and state bits are locked). 301 * 302 * This is done inside an ordered work queue, and the compression 303 * is spread across many cpus. The actual IO submission is step 304 * two, and the ordered work queue takes care of making sure that 305 * happens in the same order things were put onto the queue by 306 * writepages and friends. 307 * 308 * If this code finds it can't get good compression, it puts an 309 * entry onto the work queue to write the uncompressed bytes. This 310 * makes sure that both compressed inodes and uncompressed inodes 311 * are written in the same order that pdflush sent them down. 312 */ 313 static noinline int compress_file_range(struct inode *inode, 314 struct page *locked_page, 315 u64 start, u64 end, 316 struct async_cow *async_cow, 317 int *num_added) 318 { 319 struct btrfs_root *root = BTRFS_I(inode)->root; 320 struct btrfs_trans_handle *trans; 321 u64 num_bytes; 322 u64 orig_start; 323 u64 disk_num_bytes; 324 u64 blocksize = root->sectorsize; 325 u64 actual_end; 326 u64 isize = i_size_read(inode); 327 int ret = 0; 328 struct page **pages = NULL; 329 unsigned long nr_pages; 330 unsigned long nr_pages_ret = 0; 331 unsigned long total_compressed = 0; 332 unsigned long total_in = 0; 333 unsigned long max_compressed = 128 * 1024; 334 unsigned long max_uncompressed = 128 * 1024; 335 int i; 336 int will_compress; 337 338 orig_start = start; 339 340 actual_end = min_t(u64, isize, end + 1); 341 again: 342 will_compress = 0; 343 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 344 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 345 346 /* 347 * we don't want to send crud past the end of i_size through 348 * compression, that's just a waste of CPU time. So, if the 349 * end of the file is before the start of our current 350 * requested range of bytes, we bail out to the uncompressed 351 * cleanup code that can deal with all of this. 352 * 353 * It isn't really the fastest way to fix things, but this is a 354 * very uncommon corner. 355 */ 356 if (actual_end <= start) 357 goto cleanup_and_bail_uncompressed; 358 359 total_compressed = actual_end - start; 360 361 /* we want to make sure that amount of ram required to uncompress 362 * an extent is reasonable, so we limit the total size in ram 363 * of a compressed extent to 128k. This is a crucial number 364 * because it also controls how easily we can spread reads across 365 * cpus for decompression. 366 * 367 * We also want to make sure the amount of IO required to do 368 * a random read is reasonably small, so we limit the size of 369 * a compressed extent to 128k. 370 */ 371 total_compressed = min(total_compressed, max_uncompressed); 372 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 373 num_bytes = max(blocksize, num_bytes); 374 disk_num_bytes = num_bytes; 375 total_in = 0; 376 ret = 0; 377 378 /* 379 * we do compression for mount -o compress and when the 380 * inode has not been flagged as nocompress. This flag can 381 * change at any time if we discover bad compression ratios. 382 */ 383 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 384 (btrfs_test_opt(root, COMPRESS) || 385 (BTRFS_I(inode)->force_compress))) { 386 WARN_ON(pages); 387 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 388 389 ret = btrfs_zlib_compress_pages(inode->i_mapping, start, 390 total_compressed, pages, 391 nr_pages, &nr_pages_ret, 392 &total_in, 393 &total_compressed, 394 max_compressed); 395 396 if (!ret) { 397 unsigned long offset = total_compressed & 398 (PAGE_CACHE_SIZE - 1); 399 struct page *page = pages[nr_pages_ret - 1]; 400 char *kaddr; 401 402 /* zero the tail end of the last page, we might be 403 * sending it down to disk 404 */ 405 if (offset) { 406 kaddr = kmap_atomic(page, KM_USER0); 407 memset(kaddr + offset, 0, 408 PAGE_CACHE_SIZE - offset); 409 kunmap_atomic(kaddr, KM_USER0); 410 } 411 will_compress = 1; 412 } 413 } 414 if (start == 0) { 415 trans = btrfs_join_transaction(root, 1); 416 BUG_ON(!trans); 417 btrfs_set_trans_block_group(trans, inode); 418 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 419 420 /* lets try to make an inline extent */ 421 if (ret || total_in < (actual_end - start)) { 422 /* we didn't compress the entire range, try 423 * to make an uncompressed inline extent. 424 */ 425 ret = cow_file_range_inline(trans, root, inode, 426 start, end, 0, NULL); 427 } else { 428 /* try making a compressed inline extent */ 429 ret = cow_file_range_inline(trans, root, inode, 430 start, end, 431 total_compressed, pages); 432 } 433 if (ret == 0) { 434 /* 435 * inline extent creation worked, we don't need 436 * to create any more async work items. Unlock 437 * and free up our temp pages. 438 */ 439 extent_clear_unlock_delalloc(inode, 440 &BTRFS_I(inode)->io_tree, 441 start, end, NULL, 442 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 443 EXTENT_CLEAR_DELALLOC | 444 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 445 446 btrfs_end_transaction(trans, root); 447 goto free_pages_out; 448 } 449 btrfs_end_transaction(trans, root); 450 } 451 452 if (will_compress) { 453 /* 454 * we aren't doing an inline extent round the compressed size 455 * up to a block size boundary so the allocator does sane 456 * things 457 */ 458 total_compressed = (total_compressed + blocksize - 1) & 459 ~(blocksize - 1); 460 461 /* 462 * one last check to make sure the compression is really a 463 * win, compare the page count read with the blocks on disk 464 */ 465 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 466 ~(PAGE_CACHE_SIZE - 1); 467 if (total_compressed >= total_in) { 468 will_compress = 0; 469 } else { 470 disk_num_bytes = total_compressed; 471 num_bytes = total_in; 472 } 473 } 474 if (!will_compress && pages) { 475 /* 476 * the compression code ran but failed to make things smaller, 477 * free any pages it allocated and our page pointer array 478 */ 479 for (i = 0; i < nr_pages_ret; i++) { 480 WARN_ON(pages[i]->mapping); 481 page_cache_release(pages[i]); 482 } 483 kfree(pages); 484 pages = NULL; 485 total_compressed = 0; 486 nr_pages_ret = 0; 487 488 /* flag the file so we don't compress in the future */ 489 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 490 !(BTRFS_I(inode)->force_compress)) { 491 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 492 } 493 } 494 if (will_compress) { 495 *num_added += 1; 496 497 /* the async work queues will take care of doing actual 498 * allocation on disk for these compressed pages, 499 * and will submit them to the elevator. 500 */ 501 add_async_extent(async_cow, start, num_bytes, 502 total_compressed, pages, nr_pages_ret); 503 504 if (start + num_bytes < end && start + num_bytes < actual_end) { 505 start += num_bytes; 506 pages = NULL; 507 cond_resched(); 508 goto again; 509 } 510 } else { 511 cleanup_and_bail_uncompressed: 512 /* 513 * No compression, but we still need to write the pages in 514 * the file we've been given so far. redirty the locked 515 * page if it corresponds to our extent and set things up 516 * for the async work queue to run cow_file_range to do 517 * the normal delalloc dance 518 */ 519 if (page_offset(locked_page) >= start && 520 page_offset(locked_page) <= end) { 521 __set_page_dirty_nobuffers(locked_page); 522 /* unlocked later on in the async handlers */ 523 } 524 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0); 525 *num_added += 1; 526 } 527 528 out: 529 return 0; 530 531 free_pages_out: 532 for (i = 0; i < nr_pages_ret; i++) { 533 WARN_ON(pages[i]->mapping); 534 page_cache_release(pages[i]); 535 } 536 kfree(pages); 537 538 goto out; 539 } 540 541 /* 542 * phase two of compressed writeback. This is the ordered portion 543 * of the code, which only gets called in the order the work was 544 * queued. We walk all the async extents created by compress_file_range 545 * and send them down to the disk. 546 */ 547 static noinline int submit_compressed_extents(struct inode *inode, 548 struct async_cow *async_cow) 549 { 550 struct async_extent *async_extent; 551 u64 alloc_hint = 0; 552 struct btrfs_trans_handle *trans; 553 struct btrfs_key ins; 554 struct extent_map *em; 555 struct btrfs_root *root = BTRFS_I(inode)->root; 556 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 557 struct extent_io_tree *io_tree; 558 int ret = 0; 559 560 if (list_empty(&async_cow->extents)) 561 return 0; 562 563 564 while (!list_empty(&async_cow->extents)) { 565 async_extent = list_entry(async_cow->extents.next, 566 struct async_extent, list); 567 list_del(&async_extent->list); 568 569 io_tree = &BTRFS_I(inode)->io_tree; 570 571 retry: 572 /* did the compression code fall back to uncompressed IO? */ 573 if (!async_extent->pages) { 574 int page_started = 0; 575 unsigned long nr_written = 0; 576 577 lock_extent(io_tree, async_extent->start, 578 async_extent->start + 579 async_extent->ram_size - 1, GFP_NOFS); 580 581 /* allocate blocks */ 582 ret = cow_file_range(inode, async_cow->locked_page, 583 async_extent->start, 584 async_extent->start + 585 async_extent->ram_size - 1, 586 &page_started, &nr_written, 0); 587 588 /* 589 * if page_started, cow_file_range inserted an 590 * inline extent and took care of all the unlocking 591 * and IO for us. Otherwise, we need to submit 592 * all those pages down to the drive. 593 */ 594 if (!page_started && !ret) 595 extent_write_locked_range(io_tree, 596 inode, async_extent->start, 597 async_extent->start + 598 async_extent->ram_size - 1, 599 btrfs_get_extent, 600 WB_SYNC_ALL); 601 kfree(async_extent); 602 cond_resched(); 603 continue; 604 } 605 606 lock_extent(io_tree, async_extent->start, 607 async_extent->start + async_extent->ram_size - 1, 608 GFP_NOFS); 609 610 trans = btrfs_join_transaction(root, 1); 611 ret = btrfs_reserve_extent(trans, root, 612 async_extent->compressed_size, 613 async_extent->compressed_size, 614 0, alloc_hint, 615 (u64)-1, &ins, 1); 616 btrfs_end_transaction(trans, root); 617 618 if (ret) { 619 int i; 620 for (i = 0; i < async_extent->nr_pages; i++) { 621 WARN_ON(async_extent->pages[i]->mapping); 622 page_cache_release(async_extent->pages[i]); 623 } 624 kfree(async_extent->pages); 625 async_extent->nr_pages = 0; 626 async_extent->pages = NULL; 627 unlock_extent(io_tree, async_extent->start, 628 async_extent->start + 629 async_extent->ram_size - 1, GFP_NOFS); 630 goto retry; 631 } 632 633 /* 634 * here we're doing allocation and writeback of the 635 * compressed pages 636 */ 637 btrfs_drop_extent_cache(inode, async_extent->start, 638 async_extent->start + 639 async_extent->ram_size - 1, 0); 640 641 em = alloc_extent_map(GFP_NOFS); 642 em->start = async_extent->start; 643 em->len = async_extent->ram_size; 644 em->orig_start = em->start; 645 646 em->block_start = ins.objectid; 647 em->block_len = ins.offset; 648 em->bdev = root->fs_info->fs_devices->latest_bdev; 649 set_bit(EXTENT_FLAG_PINNED, &em->flags); 650 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 651 652 while (1) { 653 write_lock(&em_tree->lock); 654 ret = add_extent_mapping(em_tree, em); 655 write_unlock(&em_tree->lock); 656 if (ret != -EEXIST) { 657 free_extent_map(em); 658 break; 659 } 660 btrfs_drop_extent_cache(inode, async_extent->start, 661 async_extent->start + 662 async_extent->ram_size - 1, 0); 663 } 664 665 ret = btrfs_add_ordered_extent(inode, async_extent->start, 666 ins.objectid, 667 async_extent->ram_size, 668 ins.offset, 669 BTRFS_ORDERED_COMPRESSED); 670 BUG_ON(ret); 671 672 /* 673 * clear dirty, set writeback and unlock the pages. 674 */ 675 extent_clear_unlock_delalloc(inode, 676 &BTRFS_I(inode)->io_tree, 677 async_extent->start, 678 async_extent->start + 679 async_extent->ram_size - 1, 680 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 681 EXTENT_CLEAR_UNLOCK | 682 EXTENT_CLEAR_DELALLOC | 683 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 684 685 ret = btrfs_submit_compressed_write(inode, 686 async_extent->start, 687 async_extent->ram_size, 688 ins.objectid, 689 ins.offset, async_extent->pages, 690 async_extent->nr_pages); 691 692 BUG_ON(ret); 693 alloc_hint = ins.objectid + ins.offset; 694 kfree(async_extent); 695 cond_resched(); 696 } 697 698 return 0; 699 } 700 701 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 702 u64 num_bytes) 703 { 704 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 705 struct extent_map *em; 706 u64 alloc_hint = 0; 707 708 read_lock(&em_tree->lock); 709 em = search_extent_mapping(em_tree, start, num_bytes); 710 if (em) { 711 /* 712 * if block start isn't an actual block number then find the 713 * first block in this inode and use that as a hint. If that 714 * block is also bogus then just don't worry about it. 715 */ 716 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 717 free_extent_map(em); 718 em = search_extent_mapping(em_tree, 0, 0); 719 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 720 alloc_hint = em->block_start; 721 if (em) 722 free_extent_map(em); 723 } else { 724 alloc_hint = em->block_start; 725 free_extent_map(em); 726 } 727 } 728 read_unlock(&em_tree->lock); 729 730 return alloc_hint; 731 } 732 733 /* 734 * when extent_io.c finds a delayed allocation range in the file, 735 * the call backs end up in this code. The basic idea is to 736 * allocate extents on disk for the range, and create ordered data structs 737 * in ram to track those extents. 738 * 739 * locked_page is the page that writepage had locked already. We use 740 * it to make sure we don't do extra locks or unlocks. 741 * 742 * *page_started is set to one if we unlock locked_page and do everything 743 * required to start IO on it. It may be clean and already done with 744 * IO when we return. 745 */ 746 static noinline int cow_file_range(struct inode *inode, 747 struct page *locked_page, 748 u64 start, u64 end, int *page_started, 749 unsigned long *nr_written, 750 int unlock) 751 { 752 struct btrfs_root *root = BTRFS_I(inode)->root; 753 struct btrfs_trans_handle *trans; 754 u64 alloc_hint = 0; 755 u64 num_bytes; 756 unsigned long ram_size; 757 u64 disk_num_bytes; 758 u64 cur_alloc_size; 759 u64 blocksize = root->sectorsize; 760 u64 actual_end; 761 u64 isize = i_size_read(inode); 762 struct btrfs_key ins; 763 struct extent_map *em; 764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 765 int ret = 0; 766 767 trans = btrfs_join_transaction(root, 1); 768 BUG_ON(!trans); 769 btrfs_set_trans_block_group(trans, inode); 770 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 771 772 actual_end = min_t(u64, isize, end + 1); 773 774 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 775 num_bytes = max(blocksize, num_bytes); 776 disk_num_bytes = num_bytes; 777 ret = 0; 778 779 if (start == 0) { 780 /* lets try to make an inline extent */ 781 ret = cow_file_range_inline(trans, root, inode, 782 start, end, 0, NULL); 783 if (ret == 0) { 784 extent_clear_unlock_delalloc(inode, 785 &BTRFS_I(inode)->io_tree, 786 start, end, NULL, 787 EXTENT_CLEAR_UNLOCK_PAGE | 788 EXTENT_CLEAR_UNLOCK | 789 EXTENT_CLEAR_DELALLOC | 790 EXTENT_CLEAR_DIRTY | 791 EXTENT_SET_WRITEBACK | 792 EXTENT_END_WRITEBACK); 793 794 *nr_written = *nr_written + 795 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 796 *page_started = 1; 797 ret = 0; 798 goto out; 799 } 800 } 801 802 BUG_ON(disk_num_bytes > 803 btrfs_super_total_bytes(&root->fs_info->super_copy)); 804 805 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 806 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 807 808 while (disk_num_bytes > 0) { 809 unsigned long op; 810 811 cur_alloc_size = disk_num_bytes; 812 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 813 root->sectorsize, 0, alloc_hint, 814 (u64)-1, &ins, 1); 815 BUG_ON(ret); 816 817 em = alloc_extent_map(GFP_NOFS); 818 em->start = start; 819 em->orig_start = em->start; 820 ram_size = ins.offset; 821 em->len = ins.offset; 822 823 em->block_start = ins.objectid; 824 em->block_len = ins.offset; 825 em->bdev = root->fs_info->fs_devices->latest_bdev; 826 set_bit(EXTENT_FLAG_PINNED, &em->flags); 827 828 while (1) { 829 write_lock(&em_tree->lock); 830 ret = add_extent_mapping(em_tree, em); 831 write_unlock(&em_tree->lock); 832 if (ret != -EEXIST) { 833 free_extent_map(em); 834 break; 835 } 836 btrfs_drop_extent_cache(inode, start, 837 start + ram_size - 1, 0); 838 } 839 840 cur_alloc_size = ins.offset; 841 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 842 ram_size, cur_alloc_size, 0); 843 BUG_ON(ret); 844 845 if (root->root_key.objectid == 846 BTRFS_DATA_RELOC_TREE_OBJECTID) { 847 ret = btrfs_reloc_clone_csums(inode, start, 848 cur_alloc_size); 849 BUG_ON(ret); 850 } 851 852 if (disk_num_bytes < cur_alloc_size) 853 break; 854 855 /* we're not doing compressed IO, don't unlock the first 856 * page (which the caller expects to stay locked), don't 857 * clear any dirty bits and don't set any writeback bits 858 * 859 * Do set the Private2 bit so we know this page was properly 860 * setup for writepage 861 */ 862 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 863 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 864 EXTENT_SET_PRIVATE2; 865 866 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 867 start, start + ram_size - 1, 868 locked_page, op); 869 disk_num_bytes -= cur_alloc_size; 870 num_bytes -= cur_alloc_size; 871 alloc_hint = ins.objectid + ins.offset; 872 start += cur_alloc_size; 873 } 874 out: 875 ret = 0; 876 btrfs_end_transaction(trans, root); 877 878 return ret; 879 } 880 881 /* 882 * work queue call back to started compression on a file and pages 883 */ 884 static noinline void async_cow_start(struct btrfs_work *work) 885 { 886 struct async_cow *async_cow; 887 int num_added = 0; 888 async_cow = container_of(work, struct async_cow, work); 889 890 compress_file_range(async_cow->inode, async_cow->locked_page, 891 async_cow->start, async_cow->end, async_cow, 892 &num_added); 893 if (num_added == 0) 894 async_cow->inode = NULL; 895 } 896 897 /* 898 * work queue call back to submit previously compressed pages 899 */ 900 static noinline void async_cow_submit(struct btrfs_work *work) 901 { 902 struct async_cow *async_cow; 903 struct btrfs_root *root; 904 unsigned long nr_pages; 905 906 async_cow = container_of(work, struct async_cow, work); 907 908 root = async_cow->root; 909 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 910 PAGE_CACHE_SHIFT; 911 912 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 913 914 if (atomic_read(&root->fs_info->async_delalloc_pages) < 915 5 * 1042 * 1024 && 916 waitqueue_active(&root->fs_info->async_submit_wait)) 917 wake_up(&root->fs_info->async_submit_wait); 918 919 if (async_cow->inode) 920 submit_compressed_extents(async_cow->inode, async_cow); 921 } 922 923 static noinline void async_cow_free(struct btrfs_work *work) 924 { 925 struct async_cow *async_cow; 926 async_cow = container_of(work, struct async_cow, work); 927 kfree(async_cow); 928 } 929 930 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 931 u64 start, u64 end, int *page_started, 932 unsigned long *nr_written) 933 { 934 struct async_cow *async_cow; 935 struct btrfs_root *root = BTRFS_I(inode)->root; 936 unsigned long nr_pages; 937 u64 cur_end; 938 int limit = 10 * 1024 * 1042; 939 940 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 941 1, 0, NULL, GFP_NOFS); 942 while (start < end) { 943 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 944 async_cow->inode = inode; 945 async_cow->root = root; 946 async_cow->locked_page = locked_page; 947 async_cow->start = start; 948 949 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 950 cur_end = end; 951 else 952 cur_end = min(end, start + 512 * 1024 - 1); 953 954 async_cow->end = cur_end; 955 INIT_LIST_HEAD(&async_cow->extents); 956 957 async_cow->work.func = async_cow_start; 958 async_cow->work.ordered_func = async_cow_submit; 959 async_cow->work.ordered_free = async_cow_free; 960 async_cow->work.flags = 0; 961 962 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 963 PAGE_CACHE_SHIFT; 964 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 965 966 btrfs_queue_worker(&root->fs_info->delalloc_workers, 967 &async_cow->work); 968 969 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 970 wait_event(root->fs_info->async_submit_wait, 971 (atomic_read(&root->fs_info->async_delalloc_pages) < 972 limit)); 973 } 974 975 while (atomic_read(&root->fs_info->async_submit_draining) && 976 atomic_read(&root->fs_info->async_delalloc_pages)) { 977 wait_event(root->fs_info->async_submit_wait, 978 (atomic_read(&root->fs_info->async_delalloc_pages) == 979 0)); 980 } 981 982 *nr_written += nr_pages; 983 start = cur_end + 1; 984 } 985 *page_started = 1; 986 return 0; 987 } 988 989 static noinline int csum_exist_in_range(struct btrfs_root *root, 990 u64 bytenr, u64 num_bytes) 991 { 992 int ret; 993 struct btrfs_ordered_sum *sums; 994 LIST_HEAD(list); 995 996 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 997 bytenr + num_bytes - 1, &list); 998 if (ret == 0 && list_empty(&list)) 999 return 0; 1000 1001 while (!list_empty(&list)) { 1002 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1003 list_del(&sums->list); 1004 kfree(sums); 1005 } 1006 return 1; 1007 } 1008 1009 /* 1010 * when nowcow writeback call back. This checks for snapshots or COW copies 1011 * of the extents that exist in the file, and COWs the file as required. 1012 * 1013 * If no cow copies or snapshots exist, we write directly to the existing 1014 * blocks on disk 1015 */ 1016 static noinline int run_delalloc_nocow(struct inode *inode, 1017 struct page *locked_page, 1018 u64 start, u64 end, int *page_started, int force, 1019 unsigned long *nr_written) 1020 { 1021 struct btrfs_root *root = BTRFS_I(inode)->root; 1022 struct btrfs_trans_handle *trans; 1023 struct extent_buffer *leaf; 1024 struct btrfs_path *path; 1025 struct btrfs_file_extent_item *fi; 1026 struct btrfs_key found_key; 1027 u64 cow_start; 1028 u64 cur_offset; 1029 u64 extent_end; 1030 u64 extent_offset; 1031 u64 disk_bytenr; 1032 u64 num_bytes; 1033 int extent_type; 1034 int ret; 1035 int type; 1036 int nocow; 1037 int check_prev = 1; 1038 1039 path = btrfs_alloc_path(); 1040 BUG_ON(!path); 1041 trans = btrfs_join_transaction(root, 1); 1042 BUG_ON(!trans); 1043 1044 cow_start = (u64)-1; 1045 cur_offset = start; 1046 while (1) { 1047 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 1048 cur_offset, 0); 1049 BUG_ON(ret < 0); 1050 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1051 leaf = path->nodes[0]; 1052 btrfs_item_key_to_cpu(leaf, &found_key, 1053 path->slots[0] - 1); 1054 if (found_key.objectid == inode->i_ino && 1055 found_key.type == BTRFS_EXTENT_DATA_KEY) 1056 path->slots[0]--; 1057 } 1058 check_prev = 0; 1059 next_slot: 1060 leaf = path->nodes[0]; 1061 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1062 ret = btrfs_next_leaf(root, path); 1063 if (ret < 0) 1064 BUG_ON(1); 1065 if (ret > 0) 1066 break; 1067 leaf = path->nodes[0]; 1068 } 1069 1070 nocow = 0; 1071 disk_bytenr = 0; 1072 num_bytes = 0; 1073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1074 1075 if (found_key.objectid > inode->i_ino || 1076 found_key.type > BTRFS_EXTENT_DATA_KEY || 1077 found_key.offset > end) 1078 break; 1079 1080 if (found_key.offset > cur_offset) { 1081 extent_end = found_key.offset; 1082 extent_type = 0; 1083 goto out_check; 1084 } 1085 1086 fi = btrfs_item_ptr(leaf, path->slots[0], 1087 struct btrfs_file_extent_item); 1088 extent_type = btrfs_file_extent_type(leaf, fi); 1089 1090 if (extent_type == BTRFS_FILE_EXTENT_REG || 1091 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1092 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1093 extent_offset = btrfs_file_extent_offset(leaf, fi); 1094 extent_end = found_key.offset + 1095 btrfs_file_extent_num_bytes(leaf, fi); 1096 if (extent_end <= start) { 1097 path->slots[0]++; 1098 goto next_slot; 1099 } 1100 if (disk_bytenr == 0) 1101 goto out_check; 1102 if (btrfs_file_extent_compression(leaf, fi) || 1103 btrfs_file_extent_encryption(leaf, fi) || 1104 btrfs_file_extent_other_encoding(leaf, fi)) 1105 goto out_check; 1106 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1107 goto out_check; 1108 if (btrfs_extent_readonly(root, disk_bytenr)) 1109 goto out_check; 1110 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 1111 found_key.offset - 1112 extent_offset, disk_bytenr)) 1113 goto out_check; 1114 disk_bytenr += extent_offset; 1115 disk_bytenr += cur_offset - found_key.offset; 1116 num_bytes = min(end + 1, extent_end) - cur_offset; 1117 /* 1118 * force cow if csum exists in the range. 1119 * this ensure that csum for a given extent are 1120 * either valid or do not exist. 1121 */ 1122 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1123 goto out_check; 1124 nocow = 1; 1125 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1126 extent_end = found_key.offset + 1127 btrfs_file_extent_inline_len(leaf, fi); 1128 extent_end = ALIGN(extent_end, root->sectorsize); 1129 } else { 1130 BUG_ON(1); 1131 } 1132 out_check: 1133 if (extent_end <= start) { 1134 path->slots[0]++; 1135 goto next_slot; 1136 } 1137 if (!nocow) { 1138 if (cow_start == (u64)-1) 1139 cow_start = cur_offset; 1140 cur_offset = extent_end; 1141 if (cur_offset > end) 1142 break; 1143 path->slots[0]++; 1144 goto next_slot; 1145 } 1146 1147 btrfs_release_path(root, path); 1148 if (cow_start != (u64)-1) { 1149 ret = cow_file_range(inode, locked_page, cow_start, 1150 found_key.offset - 1, page_started, 1151 nr_written, 1); 1152 BUG_ON(ret); 1153 cow_start = (u64)-1; 1154 } 1155 1156 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1157 struct extent_map *em; 1158 struct extent_map_tree *em_tree; 1159 em_tree = &BTRFS_I(inode)->extent_tree; 1160 em = alloc_extent_map(GFP_NOFS); 1161 em->start = cur_offset; 1162 em->orig_start = em->start; 1163 em->len = num_bytes; 1164 em->block_len = num_bytes; 1165 em->block_start = disk_bytenr; 1166 em->bdev = root->fs_info->fs_devices->latest_bdev; 1167 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1168 while (1) { 1169 write_lock(&em_tree->lock); 1170 ret = add_extent_mapping(em_tree, em); 1171 write_unlock(&em_tree->lock); 1172 if (ret != -EEXIST) { 1173 free_extent_map(em); 1174 break; 1175 } 1176 btrfs_drop_extent_cache(inode, em->start, 1177 em->start + em->len - 1, 0); 1178 } 1179 type = BTRFS_ORDERED_PREALLOC; 1180 } else { 1181 type = BTRFS_ORDERED_NOCOW; 1182 } 1183 1184 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1185 num_bytes, num_bytes, type); 1186 BUG_ON(ret); 1187 1188 if (root->root_key.objectid == 1189 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1190 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1191 num_bytes); 1192 BUG_ON(ret); 1193 } 1194 1195 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1196 cur_offset, cur_offset + num_bytes - 1, 1197 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1198 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1199 EXTENT_SET_PRIVATE2); 1200 cur_offset = extent_end; 1201 if (cur_offset > end) 1202 break; 1203 } 1204 btrfs_release_path(root, path); 1205 1206 if (cur_offset <= end && cow_start == (u64)-1) 1207 cow_start = cur_offset; 1208 if (cow_start != (u64)-1) { 1209 ret = cow_file_range(inode, locked_page, cow_start, end, 1210 page_started, nr_written, 1); 1211 BUG_ON(ret); 1212 } 1213 1214 ret = btrfs_end_transaction(trans, root); 1215 BUG_ON(ret); 1216 btrfs_free_path(path); 1217 return 0; 1218 } 1219 1220 /* 1221 * extent_io.c call back to do delayed allocation processing 1222 */ 1223 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1224 u64 start, u64 end, int *page_started, 1225 unsigned long *nr_written) 1226 { 1227 int ret; 1228 struct btrfs_root *root = BTRFS_I(inode)->root; 1229 1230 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1231 ret = run_delalloc_nocow(inode, locked_page, start, end, 1232 page_started, 1, nr_written); 1233 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1234 ret = run_delalloc_nocow(inode, locked_page, start, end, 1235 page_started, 0, nr_written); 1236 else if (!btrfs_test_opt(root, COMPRESS) && 1237 !(BTRFS_I(inode)->force_compress)) 1238 ret = cow_file_range(inode, locked_page, start, end, 1239 page_started, nr_written, 1); 1240 else 1241 ret = cow_file_range_async(inode, locked_page, start, end, 1242 page_started, nr_written); 1243 return ret; 1244 } 1245 1246 static int btrfs_split_extent_hook(struct inode *inode, 1247 struct extent_state *orig, u64 split) 1248 { 1249 /* not delalloc, ignore it */ 1250 if (!(orig->state & EXTENT_DELALLOC)) 1251 return 0; 1252 1253 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1254 return 0; 1255 } 1256 1257 /* 1258 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1259 * extents so we can keep track of new extents that are just merged onto old 1260 * extents, such as when we are doing sequential writes, so we can properly 1261 * account for the metadata space we'll need. 1262 */ 1263 static int btrfs_merge_extent_hook(struct inode *inode, 1264 struct extent_state *new, 1265 struct extent_state *other) 1266 { 1267 /* not delalloc, ignore it */ 1268 if (!(other->state & EXTENT_DELALLOC)) 1269 return 0; 1270 1271 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1272 return 0; 1273 } 1274 1275 /* 1276 * extent_io.c set_bit_hook, used to track delayed allocation 1277 * bytes in this file, and to maintain the list of inodes that 1278 * have pending delalloc work to be done. 1279 */ 1280 static int btrfs_set_bit_hook(struct inode *inode, 1281 struct extent_state *state, int *bits) 1282 { 1283 1284 /* 1285 * set_bit and clear bit hooks normally require _irqsave/restore 1286 * but in this case, we are only testeing for the DELALLOC 1287 * bit, which is only set or cleared with irqs on 1288 */ 1289 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1290 struct btrfs_root *root = BTRFS_I(inode)->root; 1291 u64 len = state->end + 1 - state->start; 1292 1293 if (*bits & EXTENT_FIRST_DELALLOC) 1294 *bits &= ~EXTENT_FIRST_DELALLOC; 1295 else 1296 atomic_inc(&BTRFS_I(inode)->outstanding_extents); 1297 1298 spin_lock(&root->fs_info->delalloc_lock); 1299 BTRFS_I(inode)->delalloc_bytes += len; 1300 root->fs_info->delalloc_bytes += len; 1301 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1302 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1303 &root->fs_info->delalloc_inodes); 1304 } 1305 spin_unlock(&root->fs_info->delalloc_lock); 1306 } 1307 return 0; 1308 } 1309 1310 /* 1311 * extent_io.c clear_bit_hook, see set_bit_hook for why 1312 */ 1313 static int btrfs_clear_bit_hook(struct inode *inode, 1314 struct extent_state *state, int *bits) 1315 { 1316 /* 1317 * set_bit and clear bit hooks normally require _irqsave/restore 1318 * but in this case, we are only testeing for the DELALLOC 1319 * bit, which is only set or cleared with irqs on 1320 */ 1321 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1322 struct btrfs_root *root = BTRFS_I(inode)->root; 1323 u64 len = state->end + 1 - state->start; 1324 1325 if (*bits & EXTENT_FIRST_DELALLOC) 1326 *bits &= ~EXTENT_FIRST_DELALLOC; 1327 else if (!(*bits & EXTENT_DO_ACCOUNTING)) 1328 atomic_dec(&BTRFS_I(inode)->outstanding_extents); 1329 1330 if (*bits & EXTENT_DO_ACCOUNTING) 1331 btrfs_delalloc_release_metadata(inode, len); 1332 1333 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) 1334 btrfs_free_reserved_data_space(inode, len); 1335 1336 spin_lock(&root->fs_info->delalloc_lock); 1337 root->fs_info->delalloc_bytes -= len; 1338 BTRFS_I(inode)->delalloc_bytes -= len; 1339 1340 if (BTRFS_I(inode)->delalloc_bytes == 0 && 1341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1342 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1343 } 1344 spin_unlock(&root->fs_info->delalloc_lock); 1345 } 1346 return 0; 1347 } 1348 1349 /* 1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1351 * we don't create bios that span stripes or chunks 1352 */ 1353 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1354 size_t size, struct bio *bio, 1355 unsigned long bio_flags) 1356 { 1357 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1358 struct btrfs_mapping_tree *map_tree; 1359 u64 logical = (u64)bio->bi_sector << 9; 1360 u64 length = 0; 1361 u64 map_length; 1362 int ret; 1363 1364 if (bio_flags & EXTENT_BIO_COMPRESSED) 1365 return 0; 1366 1367 length = bio->bi_size; 1368 map_tree = &root->fs_info->mapping_tree; 1369 map_length = length; 1370 ret = btrfs_map_block(map_tree, READ, logical, 1371 &map_length, NULL, 0); 1372 1373 if (map_length < length + size) 1374 return 1; 1375 return 0; 1376 } 1377 1378 /* 1379 * in order to insert checksums into the metadata in large chunks, 1380 * we wait until bio submission time. All the pages in the bio are 1381 * checksummed and sums are attached onto the ordered extent record. 1382 * 1383 * At IO completion time the cums attached on the ordered extent record 1384 * are inserted into the btree 1385 */ 1386 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1387 struct bio *bio, int mirror_num, 1388 unsigned long bio_flags, 1389 u64 bio_offset) 1390 { 1391 struct btrfs_root *root = BTRFS_I(inode)->root; 1392 int ret = 0; 1393 1394 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1395 BUG_ON(ret); 1396 return 0; 1397 } 1398 1399 /* 1400 * in order to insert checksums into the metadata in large chunks, 1401 * we wait until bio submission time. All the pages in the bio are 1402 * checksummed and sums are attached onto the ordered extent record. 1403 * 1404 * At IO completion time the cums attached on the ordered extent record 1405 * are inserted into the btree 1406 */ 1407 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1408 int mirror_num, unsigned long bio_flags, 1409 u64 bio_offset) 1410 { 1411 struct btrfs_root *root = BTRFS_I(inode)->root; 1412 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1413 } 1414 1415 /* 1416 * extent_io.c submission hook. This does the right thing for csum calculation 1417 * on write, or reading the csums from the tree before a read 1418 */ 1419 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1420 int mirror_num, unsigned long bio_flags, 1421 u64 bio_offset) 1422 { 1423 struct btrfs_root *root = BTRFS_I(inode)->root; 1424 int ret = 0; 1425 int skip_sum; 1426 1427 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1428 1429 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1430 BUG_ON(ret); 1431 1432 if (!(rw & (1 << BIO_RW))) { 1433 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1434 return btrfs_submit_compressed_read(inode, bio, 1435 mirror_num, bio_flags); 1436 } else if (!skip_sum) 1437 btrfs_lookup_bio_sums(root, inode, bio, NULL); 1438 goto mapit; 1439 } else if (!skip_sum) { 1440 /* csum items have already been cloned */ 1441 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1442 goto mapit; 1443 /* we're doing a write, do the async checksumming */ 1444 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1445 inode, rw, bio, mirror_num, 1446 bio_flags, bio_offset, 1447 __btrfs_submit_bio_start, 1448 __btrfs_submit_bio_done); 1449 } 1450 1451 mapit: 1452 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1453 } 1454 1455 /* 1456 * given a list of ordered sums record them in the inode. This happens 1457 * at IO completion time based on sums calculated at bio submission time. 1458 */ 1459 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1460 struct inode *inode, u64 file_offset, 1461 struct list_head *list) 1462 { 1463 struct btrfs_ordered_sum *sum; 1464 1465 btrfs_set_trans_block_group(trans, inode); 1466 1467 list_for_each_entry(sum, list, list) { 1468 btrfs_csum_file_blocks(trans, 1469 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1470 } 1471 return 0; 1472 } 1473 1474 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1475 struct extent_state **cached_state) 1476 { 1477 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1478 WARN_ON(1); 1479 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1480 cached_state, GFP_NOFS); 1481 } 1482 1483 /* see btrfs_writepage_start_hook for details on why this is required */ 1484 struct btrfs_writepage_fixup { 1485 struct page *page; 1486 struct btrfs_work work; 1487 }; 1488 1489 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1490 { 1491 struct btrfs_writepage_fixup *fixup; 1492 struct btrfs_ordered_extent *ordered; 1493 struct extent_state *cached_state = NULL; 1494 struct page *page; 1495 struct inode *inode; 1496 u64 page_start; 1497 u64 page_end; 1498 1499 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1500 page = fixup->page; 1501 again: 1502 lock_page(page); 1503 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1504 ClearPageChecked(page); 1505 goto out_page; 1506 } 1507 1508 inode = page->mapping->host; 1509 page_start = page_offset(page); 1510 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1511 1512 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1513 &cached_state, GFP_NOFS); 1514 1515 /* already ordered? We're done */ 1516 if (PagePrivate2(page)) 1517 goto out; 1518 1519 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1520 if (ordered) { 1521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1522 page_end, &cached_state, GFP_NOFS); 1523 unlock_page(page); 1524 btrfs_start_ordered_extent(inode, ordered, 1); 1525 goto again; 1526 } 1527 1528 BUG(); 1529 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1530 ClearPageChecked(page); 1531 out: 1532 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1533 &cached_state, GFP_NOFS); 1534 out_page: 1535 unlock_page(page); 1536 page_cache_release(page); 1537 } 1538 1539 /* 1540 * There are a few paths in the higher layers of the kernel that directly 1541 * set the page dirty bit without asking the filesystem if it is a 1542 * good idea. This causes problems because we want to make sure COW 1543 * properly happens and the data=ordered rules are followed. 1544 * 1545 * In our case any range that doesn't have the ORDERED bit set 1546 * hasn't been properly setup for IO. We kick off an async process 1547 * to fix it up. The async helper will wait for ordered extents, set 1548 * the delalloc bit and make it safe to write the page. 1549 */ 1550 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1551 { 1552 struct inode *inode = page->mapping->host; 1553 struct btrfs_writepage_fixup *fixup; 1554 struct btrfs_root *root = BTRFS_I(inode)->root; 1555 1556 /* this page is properly in the ordered list */ 1557 if (TestClearPagePrivate2(page)) 1558 return 0; 1559 1560 if (PageChecked(page)) 1561 return -EAGAIN; 1562 1563 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1564 if (!fixup) 1565 return -EAGAIN; 1566 1567 SetPageChecked(page); 1568 page_cache_get(page); 1569 fixup->work.func = btrfs_writepage_fixup_worker; 1570 fixup->page = page; 1571 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1572 return -EAGAIN; 1573 } 1574 1575 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1576 struct inode *inode, u64 file_pos, 1577 u64 disk_bytenr, u64 disk_num_bytes, 1578 u64 num_bytes, u64 ram_bytes, 1579 u8 compression, u8 encryption, 1580 u16 other_encoding, int extent_type) 1581 { 1582 struct btrfs_root *root = BTRFS_I(inode)->root; 1583 struct btrfs_file_extent_item *fi; 1584 struct btrfs_path *path; 1585 struct extent_buffer *leaf; 1586 struct btrfs_key ins; 1587 u64 hint; 1588 int ret; 1589 1590 path = btrfs_alloc_path(); 1591 BUG_ON(!path); 1592 1593 path->leave_spinning = 1; 1594 1595 /* 1596 * we may be replacing one extent in the tree with another. 1597 * The new extent is pinned in the extent map, and we don't want 1598 * to drop it from the cache until it is completely in the btree. 1599 * 1600 * So, tell btrfs_drop_extents to leave this extent in the cache. 1601 * the caller is expected to unpin it and allow it to be merged 1602 * with the others. 1603 */ 1604 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1605 &hint, 0); 1606 BUG_ON(ret); 1607 1608 ins.objectid = inode->i_ino; 1609 ins.offset = file_pos; 1610 ins.type = BTRFS_EXTENT_DATA_KEY; 1611 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1612 BUG_ON(ret); 1613 leaf = path->nodes[0]; 1614 fi = btrfs_item_ptr(leaf, path->slots[0], 1615 struct btrfs_file_extent_item); 1616 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1617 btrfs_set_file_extent_type(leaf, fi, extent_type); 1618 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1619 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1620 btrfs_set_file_extent_offset(leaf, fi, 0); 1621 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1622 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1623 btrfs_set_file_extent_compression(leaf, fi, compression); 1624 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1625 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1626 1627 btrfs_unlock_up_safe(path, 1); 1628 btrfs_set_lock_blocking(leaf); 1629 1630 btrfs_mark_buffer_dirty(leaf); 1631 1632 inode_add_bytes(inode, num_bytes); 1633 1634 ins.objectid = disk_bytenr; 1635 ins.offset = disk_num_bytes; 1636 ins.type = BTRFS_EXTENT_ITEM_KEY; 1637 ret = btrfs_alloc_reserved_file_extent(trans, root, 1638 root->root_key.objectid, 1639 inode->i_ino, file_pos, &ins); 1640 BUG_ON(ret); 1641 btrfs_free_path(path); 1642 1643 return 0; 1644 } 1645 1646 /* 1647 * helper function for btrfs_finish_ordered_io, this 1648 * just reads in some of the csum leaves to prime them into ram 1649 * before we start the transaction. It limits the amount of btree 1650 * reads required while inside the transaction. 1651 */ 1652 /* as ordered data IO finishes, this gets called so we can finish 1653 * an ordered extent if the range of bytes in the file it covers are 1654 * fully written. 1655 */ 1656 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1657 { 1658 struct btrfs_root *root = BTRFS_I(inode)->root; 1659 struct btrfs_trans_handle *trans = NULL; 1660 struct btrfs_ordered_extent *ordered_extent = NULL; 1661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1662 struct extent_state *cached_state = NULL; 1663 int compressed = 0; 1664 int ret; 1665 1666 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1667 end - start + 1); 1668 if (!ret) 1669 return 0; 1670 BUG_ON(!ordered_extent); 1671 1672 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1673 BUG_ON(!list_empty(&ordered_extent->list)); 1674 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1675 if (!ret) { 1676 trans = btrfs_join_transaction(root, 1); 1677 btrfs_set_trans_block_group(trans, inode); 1678 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1679 ret = btrfs_update_inode(trans, root, inode); 1680 BUG_ON(ret); 1681 } 1682 goto out; 1683 } 1684 1685 lock_extent_bits(io_tree, ordered_extent->file_offset, 1686 ordered_extent->file_offset + ordered_extent->len - 1, 1687 0, &cached_state, GFP_NOFS); 1688 1689 trans = btrfs_join_transaction(root, 1); 1690 btrfs_set_trans_block_group(trans, inode); 1691 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1692 1693 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1694 compressed = 1; 1695 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1696 BUG_ON(compressed); 1697 ret = btrfs_mark_extent_written(trans, inode, 1698 ordered_extent->file_offset, 1699 ordered_extent->file_offset + 1700 ordered_extent->len); 1701 BUG_ON(ret); 1702 } else { 1703 ret = insert_reserved_file_extent(trans, inode, 1704 ordered_extent->file_offset, 1705 ordered_extent->start, 1706 ordered_extent->disk_len, 1707 ordered_extent->len, 1708 ordered_extent->len, 1709 compressed, 0, 0, 1710 BTRFS_FILE_EXTENT_REG); 1711 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1712 ordered_extent->file_offset, 1713 ordered_extent->len); 1714 BUG_ON(ret); 1715 } 1716 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1717 ordered_extent->file_offset + 1718 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1719 1720 add_pending_csums(trans, inode, ordered_extent->file_offset, 1721 &ordered_extent->list); 1722 1723 btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1724 ret = btrfs_update_inode(trans, root, inode); 1725 BUG_ON(ret); 1726 out: 1727 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1728 if (trans) 1729 btrfs_end_transaction(trans, root); 1730 /* once for us */ 1731 btrfs_put_ordered_extent(ordered_extent); 1732 /* once for the tree */ 1733 btrfs_put_ordered_extent(ordered_extent); 1734 1735 return 0; 1736 } 1737 1738 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1739 struct extent_state *state, int uptodate) 1740 { 1741 ClearPagePrivate2(page); 1742 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1743 } 1744 1745 /* 1746 * When IO fails, either with EIO or csum verification fails, we 1747 * try other mirrors that might have a good copy of the data. This 1748 * io_failure_record is used to record state as we go through all the 1749 * mirrors. If another mirror has good data, the page is set up to date 1750 * and things continue. If a good mirror can't be found, the original 1751 * bio end_io callback is called to indicate things have failed. 1752 */ 1753 struct io_failure_record { 1754 struct page *page; 1755 u64 start; 1756 u64 len; 1757 u64 logical; 1758 unsigned long bio_flags; 1759 int last_mirror; 1760 }; 1761 1762 static int btrfs_io_failed_hook(struct bio *failed_bio, 1763 struct page *page, u64 start, u64 end, 1764 struct extent_state *state) 1765 { 1766 struct io_failure_record *failrec = NULL; 1767 u64 private; 1768 struct extent_map *em; 1769 struct inode *inode = page->mapping->host; 1770 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1771 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1772 struct bio *bio; 1773 int num_copies; 1774 int ret; 1775 int rw; 1776 u64 logical; 1777 1778 ret = get_state_private(failure_tree, start, &private); 1779 if (ret) { 1780 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1781 if (!failrec) 1782 return -ENOMEM; 1783 failrec->start = start; 1784 failrec->len = end - start + 1; 1785 failrec->last_mirror = 0; 1786 failrec->bio_flags = 0; 1787 1788 read_lock(&em_tree->lock); 1789 em = lookup_extent_mapping(em_tree, start, failrec->len); 1790 if (em->start > start || em->start + em->len < start) { 1791 free_extent_map(em); 1792 em = NULL; 1793 } 1794 read_unlock(&em_tree->lock); 1795 1796 if (!em || IS_ERR(em)) { 1797 kfree(failrec); 1798 return -EIO; 1799 } 1800 logical = start - em->start; 1801 logical = em->block_start + logical; 1802 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1803 logical = em->block_start; 1804 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1805 } 1806 failrec->logical = logical; 1807 free_extent_map(em); 1808 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1809 EXTENT_DIRTY, GFP_NOFS); 1810 set_state_private(failure_tree, start, 1811 (u64)(unsigned long)failrec); 1812 } else { 1813 failrec = (struct io_failure_record *)(unsigned long)private; 1814 } 1815 num_copies = btrfs_num_copies( 1816 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1817 failrec->logical, failrec->len); 1818 failrec->last_mirror++; 1819 if (!state) { 1820 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1821 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1822 failrec->start, 1823 EXTENT_LOCKED); 1824 if (state && state->start != failrec->start) 1825 state = NULL; 1826 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1827 } 1828 if (!state || failrec->last_mirror > num_copies) { 1829 set_state_private(failure_tree, failrec->start, 0); 1830 clear_extent_bits(failure_tree, failrec->start, 1831 failrec->start + failrec->len - 1, 1832 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1833 kfree(failrec); 1834 return -EIO; 1835 } 1836 bio = bio_alloc(GFP_NOFS, 1); 1837 bio->bi_private = state; 1838 bio->bi_end_io = failed_bio->bi_end_io; 1839 bio->bi_sector = failrec->logical >> 9; 1840 bio->bi_bdev = failed_bio->bi_bdev; 1841 bio->bi_size = 0; 1842 1843 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1844 if (failed_bio->bi_rw & (1 << BIO_RW)) 1845 rw = WRITE; 1846 else 1847 rw = READ; 1848 1849 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1850 failrec->last_mirror, 1851 failrec->bio_flags, 0); 1852 return 0; 1853 } 1854 1855 /* 1856 * each time an IO finishes, we do a fast check in the IO failure tree 1857 * to see if we need to process or clean up an io_failure_record 1858 */ 1859 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1860 { 1861 u64 private; 1862 u64 private_failure; 1863 struct io_failure_record *failure; 1864 int ret; 1865 1866 private = 0; 1867 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1868 (u64)-1, 1, EXTENT_DIRTY)) { 1869 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1870 start, &private_failure); 1871 if (ret == 0) { 1872 failure = (struct io_failure_record *)(unsigned long) 1873 private_failure; 1874 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1875 failure->start, 0); 1876 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1877 failure->start, 1878 failure->start + failure->len - 1, 1879 EXTENT_DIRTY | EXTENT_LOCKED, 1880 GFP_NOFS); 1881 kfree(failure); 1882 } 1883 } 1884 return 0; 1885 } 1886 1887 /* 1888 * when reads are done, we need to check csums to verify the data is correct 1889 * if there's a match, we allow the bio to finish. If not, we go through 1890 * the io_failure_record routines to find good copies 1891 */ 1892 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1893 struct extent_state *state) 1894 { 1895 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1896 struct inode *inode = page->mapping->host; 1897 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1898 char *kaddr; 1899 u64 private = ~(u32)0; 1900 int ret; 1901 struct btrfs_root *root = BTRFS_I(inode)->root; 1902 u32 csum = ~(u32)0; 1903 1904 if (PageChecked(page)) { 1905 ClearPageChecked(page); 1906 goto good; 1907 } 1908 1909 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1910 return 0; 1911 1912 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1913 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1914 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1915 GFP_NOFS); 1916 return 0; 1917 } 1918 1919 if (state && state->start == start) { 1920 private = state->private; 1921 ret = 0; 1922 } else { 1923 ret = get_state_private(io_tree, start, &private); 1924 } 1925 kaddr = kmap_atomic(page, KM_USER0); 1926 if (ret) 1927 goto zeroit; 1928 1929 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 1930 btrfs_csum_final(csum, (char *)&csum); 1931 if (csum != private) 1932 goto zeroit; 1933 1934 kunmap_atomic(kaddr, KM_USER0); 1935 good: 1936 /* if the io failure tree for this inode is non-empty, 1937 * check to see if we've recovered from a failed IO 1938 */ 1939 btrfs_clean_io_failures(inode, start); 1940 return 0; 1941 1942 zeroit: 1943 if (printk_ratelimit()) { 1944 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u " 1945 "private %llu\n", page->mapping->host->i_ino, 1946 (unsigned long long)start, csum, 1947 (unsigned long long)private); 1948 } 1949 memset(kaddr + offset, 1, end - start + 1); 1950 flush_dcache_page(page); 1951 kunmap_atomic(kaddr, KM_USER0); 1952 if (private == 0) 1953 return 0; 1954 return -EIO; 1955 } 1956 1957 struct delayed_iput { 1958 struct list_head list; 1959 struct inode *inode; 1960 }; 1961 1962 void btrfs_add_delayed_iput(struct inode *inode) 1963 { 1964 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1965 struct delayed_iput *delayed; 1966 1967 if (atomic_add_unless(&inode->i_count, -1, 1)) 1968 return; 1969 1970 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 1971 delayed->inode = inode; 1972 1973 spin_lock(&fs_info->delayed_iput_lock); 1974 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 1975 spin_unlock(&fs_info->delayed_iput_lock); 1976 } 1977 1978 void btrfs_run_delayed_iputs(struct btrfs_root *root) 1979 { 1980 LIST_HEAD(list); 1981 struct btrfs_fs_info *fs_info = root->fs_info; 1982 struct delayed_iput *delayed; 1983 int empty; 1984 1985 spin_lock(&fs_info->delayed_iput_lock); 1986 empty = list_empty(&fs_info->delayed_iputs); 1987 spin_unlock(&fs_info->delayed_iput_lock); 1988 if (empty) 1989 return; 1990 1991 down_read(&root->fs_info->cleanup_work_sem); 1992 spin_lock(&fs_info->delayed_iput_lock); 1993 list_splice_init(&fs_info->delayed_iputs, &list); 1994 spin_unlock(&fs_info->delayed_iput_lock); 1995 1996 while (!list_empty(&list)) { 1997 delayed = list_entry(list.next, struct delayed_iput, list); 1998 list_del(&delayed->list); 1999 iput(delayed->inode); 2000 kfree(delayed); 2001 } 2002 up_read(&root->fs_info->cleanup_work_sem); 2003 } 2004 2005 /* 2006 * calculate extra metadata reservation when snapshotting a subvolume 2007 * contains orphan files. 2008 */ 2009 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2010 struct btrfs_pending_snapshot *pending, 2011 u64 *bytes_to_reserve) 2012 { 2013 struct btrfs_root *root; 2014 struct btrfs_block_rsv *block_rsv; 2015 u64 num_bytes; 2016 int index; 2017 2018 root = pending->root; 2019 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2020 return; 2021 2022 block_rsv = root->orphan_block_rsv; 2023 2024 /* orphan block reservation for the snapshot */ 2025 num_bytes = block_rsv->size; 2026 2027 /* 2028 * after the snapshot is created, COWing tree blocks may use more 2029 * space than it frees. So we should make sure there is enough 2030 * reserved space. 2031 */ 2032 index = trans->transid & 0x1; 2033 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2034 num_bytes += block_rsv->size - 2035 (block_rsv->reserved + block_rsv->freed[index]); 2036 } 2037 2038 *bytes_to_reserve += num_bytes; 2039 } 2040 2041 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2042 struct btrfs_pending_snapshot *pending) 2043 { 2044 struct btrfs_root *root = pending->root; 2045 struct btrfs_root *snap = pending->snap; 2046 struct btrfs_block_rsv *block_rsv; 2047 u64 num_bytes; 2048 int index; 2049 int ret; 2050 2051 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2052 return; 2053 2054 /* refill source subvolume's orphan block reservation */ 2055 block_rsv = root->orphan_block_rsv; 2056 index = trans->transid & 0x1; 2057 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2058 num_bytes = block_rsv->size - 2059 (block_rsv->reserved + block_rsv->freed[index]); 2060 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2061 root->orphan_block_rsv, 2062 num_bytes); 2063 BUG_ON(ret); 2064 } 2065 2066 /* setup orphan block reservation for the snapshot */ 2067 block_rsv = btrfs_alloc_block_rsv(snap); 2068 BUG_ON(!block_rsv); 2069 2070 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2071 snap->orphan_block_rsv = block_rsv; 2072 2073 num_bytes = root->orphan_block_rsv->size; 2074 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2075 block_rsv, num_bytes); 2076 BUG_ON(ret); 2077 2078 #if 0 2079 /* insert orphan item for the snapshot */ 2080 WARN_ON(!root->orphan_item_inserted); 2081 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2082 snap->root_key.objectid); 2083 BUG_ON(ret); 2084 snap->orphan_item_inserted = 1; 2085 #endif 2086 } 2087 2088 enum btrfs_orphan_cleanup_state { 2089 ORPHAN_CLEANUP_STARTED = 1, 2090 ORPHAN_CLEANUP_DONE = 2, 2091 }; 2092 2093 /* 2094 * This is called in transaction commmit time. If there are no orphan 2095 * files in the subvolume, it removes orphan item and frees block_rsv 2096 * structure. 2097 */ 2098 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2099 struct btrfs_root *root) 2100 { 2101 int ret; 2102 2103 if (!list_empty(&root->orphan_list) || 2104 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2105 return; 2106 2107 if (root->orphan_item_inserted && 2108 btrfs_root_refs(&root->root_item) > 0) { 2109 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2110 root->root_key.objectid); 2111 BUG_ON(ret); 2112 root->orphan_item_inserted = 0; 2113 } 2114 2115 if (root->orphan_block_rsv) { 2116 WARN_ON(root->orphan_block_rsv->size > 0); 2117 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2118 root->orphan_block_rsv = NULL; 2119 } 2120 } 2121 2122 /* 2123 * This creates an orphan entry for the given inode in case something goes 2124 * wrong in the middle of an unlink/truncate. 2125 * 2126 * NOTE: caller of this function should reserve 5 units of metadata for 2127 * this function. 2128 */ 2129 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2130 { 2131 struct btrfs_root *root = BTRFS_I(inode)->root; 2132 struct btrfs_block_rsv *block_rsv = NULL; 2133 int reserve = 0; 2134 int insert = 0; 2135 int ret; 2136 2137 if (!root->orphan_block_rsv) { 2138 block_rsv = btrfs_alloc_block_rsv(root); 2139 BUG_ON(!block_rsv); 2140 } 2141 2142 spin_lock(&root->orphan_lock); 2143 if (!root->orphan_block_rsv) { 2144 root->orphan_block_rsv = block_rsv; 2145 } else if (block_rsv) { 2146 btrfs_free_block_rsv(root, block_rsv); 2147 block_rsv = NULL; 2148 } 2149 2150 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2151 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2152 #if 0 2153 /* 2154 * For proper ENOSPC handling, we should do orphan 2155 * cleanup when mounting. But this introduces backward 2156 * compatibility issue. 2157 */ 2158 if (!xchg(&root->orphan_item_inserted, 1)) 2159 insert = 2; 2160 else 2161 insert = 1; 2162 #endif 2163 insert = 1; 2164 } else { 2165 WARN_ON(!BTRFS_I(inode)->orphan_meta_reserved); 2166 } 2167 2168 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2169 BTRFS_I(inode)->orphan_meta_reserved = 1; 2170 reserve = 1; 2171 } 2172 spin_unlock(&root->orphan_lock); 2173 2174 if (block_rsv) 2175 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2176 2177 /* grab metadata reservation from transaction handle */ 2178 if (reserve) { 2179 ret = btrfs_orphan_reserve_metadata(trans, inode); 2180 BUG_ON(ret); 2181 } 2182 2183 /* insert an orphan item to track this unlinked/truncated file */ 2184 if (insert >= 1) { 2185 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino); 2186 BUG_ON(ret); 2187 } 2188 2189 /* insert an orphan item to track subvolume contains orphan files */ 2190 if (insert >= 2) { 2191 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2192 root->root_key.objectid); 2193 BUG_ON(ret); 2194 } 2195 return 0; 2196 } 2197 2198 /* 2199 * We have done the truncate/delete so we can go ahead and remove the orphan 2200 * item for this particular inode. 2201 */ 2202 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2203 { 2204 struct btrfs_root *root = BTRFS_I(inode)->root; 2205 int delete_item = 0; 2206 int release_rsv = 0; 2207 int ret = 0; 2208 2209 spin_lock(&root->orphan_lock); 2210 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2211 list_del_init(&BTRFS_I(inode)->i_orphan); 2212 delete_item = 1; 2213 } 2214 2215 if (BTRFS_I(inode)->orphan_meta_reserved) { 2216 BTRFS_I(inode)->orphan_meta_reserved = 0; 2217 release_rsv = 1; 2218 } 2219 spin_unlock(&root->orphan_lock); 2220 2221 if (trans && delete_item) { 2222 ret = btrfs_del_orphan_item(trans, root, inode->i_ino); 2223 BUG_ON(ret); 2224 } 2225 2226 if (release_rsv) 2227 btrfs_orphan_release_metadata(inode); 2228 2229 return 0; 2230 } 2231 2232 /* 2233 * this cleans up any orphans that may be left on the list from the last use 2234 * of this root. 2235 */ 2236 void btrfs_orphan_cleanup(struct btrfs_root *root) 2237 { 2238 struct btrfs_path *path; 2239 struct extent_buffer *leaf; 2240 struct btrfs_item *item; 2241 struct btrfs_key key, found_key; 2242 struct btrfs_trans_handle *trans; 2243 struct inode *inode; 2244 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2245 2246 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2247 return; 2248 2249 path = btrfs_alloc_path(); 2250 BUG_ON(!path); 2251 path->reada = -1; 2252 2253 key.objectid = BTRFS_ORPHAN_OBJECTID; 2254 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2255 key.offset = (u64)-1; 2256 2257 while (1) { 2258 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2259 if (ret < 0) { 2260 printk(KERN_ERR "Error searching slot for orphan: %d" 2261 "\n", ret); 2262 break; 2263 } 2264 2265 /* 2266 * if ret == 0 means we found what we were searching for, which 2267 * is weird, but possible, so only screw with path if we didnt 2268 * find the key and see if we have stuff that matches 2269 */ 2270 if (ret > 0) { 2271 if (path->slots[0] == 0) 2272 break; 2273 path->slots[0]--; 2274 } 2275 2276 /* pull out the item */ 2277 leaf = path->nodes[0]; 2278 item = btrfs_item_nr(leaf, path->slots[0]); 2279 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2280 2281 /* make sure the item matches what we want */ 2282 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2283 break; 2284 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2285 break; 2286 2287 /* release the path since we're done with it */ 2288 btrfs_release_path(root, path); 2289 2290 /* 2291 * this is where we are basically btrfs_lookup, without the 2292 * crossing root thing. we store the inode number in the 2293 * offset of the orphan item. 2294 */ 2295 found_key.objectid = found_key.offset; 2296 found_key.type = BTRFS_INODE_ITEM_KEY; 2297 found_key.offset = 0; 2298 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2299 BUG_ON(IS_ERR(inode)); 2300 2301 /* 2302 * add this inode to the orphan list so btrfs_orphan_del does 2303 * the proper thing when we hit it 2304 */ 2305 spin_lock(&root->orphan_lock); 2306 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2307 spin_unlock(&root->orphan_lock); 2308 2309 /* 2310 * if this is a bad inode, means we actually succeeded in 2311 * removing the inode, but not the orphan record, which means 2312 * we need to manually delete the orphan since iput will just 2313 * do a destroy_inode 2314 */ 2315 if (is_bad_inode(inode)) { 2316 trans = btrfs_start_transaction(root, 0); 2317 btrfs_orphan_del(trans, inode); 2318 btrfs_end_transaction(trans, root); 2319 iput(inode); 2320 continue; 2321 } 2322 2323 /* if we have links, this was a truncate, lets do that */ 2324 if (inode->i_nlink) { 2325 nr_truncate++; 2326 btrfs_truncate(inode); 2327 } else { 2328 nr_unlink++; 2329 } 2330 2331 /* this will do delete_inode and everything for us */ 2332 iput(inode); 2333 } 2334 btrfs_free_path(path); 2335 2336 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2337 2338 if (root->orphan_block_rsv) 2339 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2340 (u64)-1); 2341 2342 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2343 trans = btrfs_join_transaction(root, 1); 2344 btrfs_end_transaction(trans, root); 2345 } 2346 2347 if (nr_unlink) 2348 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2349 if (nr_truncate) 2350 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2351 } 2352 2353 /* 2354 * very simple check to peek ahead in the leaf looking for xattrs. If we 2355 * don't find any xattrs, we know there can't be any acls. 2356 * 2357 * slot is the slot the inode is in, objectid is the objectid of the inode 2358 */ 2359 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2360 int slot, u64 objectid) 2361 { 2362 u32 nritems = btrfs_header_nritems(leaf); 2363 struct btrfs_key found_key; 2364 int scanned = 0; 2365 2366 slot++; 2367 while (slot < nritems) { 2368 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2369 2370 /* we found a different objectid, there must not be acls */ 2371 if (found_key.objectid != objectid) 2372 return 0; 2373 2374 /* we found an xattr, assume we've got an acl */ 2375 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2376 return 1; 2377 2378 /* 2379 * we found a key greater than an xattr key, there can't 2380 * be any acls later on 2381 */ 2382 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2383 return 0; 2384 2385 slot++; 2386 scanned++; 2387 2388 /* 2389 * it goes inode, inode backrefs, xattrs, extents, 2390 * so if there are a ton of hard links to an inode there can 2391 * be a lot of backrefs. Don't waste time searching too hard, 2392 * this is just an optimization 2393 */ 2394 if (scanned >= 8) 2395 break; 2396 } 2397 /* we hit the end of the leaf before we found an xattr or 2398 * something larger than an xattr. We have to assume the inode 2399 * has acls 2400 */ 2401 return 1; 2402 } 2403 2404 /* 2405 * read an inode from the btree into the in-memory inode 2406 */ 2407 static void btrfs_read_locked_inode(struct inode *inode) 2408 { 2409 struct btrfs_path *path; 2410 struct extent_buffer *leaf; 2411 struct btrfs_inode_item *inode_item; 2412 struct btrfs_timespec *tspec; 2413 struct btrfs_root *root = BTRFS_I(inode)->root; 2414 struct btrfs_key location; 2415 int maybe_acls; 2416 u64 alloc_group_block; 2417 u32 rdev; 2418 int ret; 2419 2420 path = btrfs_alloc_path(); 2421 BUG_ON(!path); 2422 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2423 2424 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2425 if (ret) 2426 goto make_bad; 2427 2428 leaf = path->nodes[0]; 2429 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2430 struct btrfs_inode_item); 2431 2432 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2433 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2434 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2435 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2436 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2437 2438 tspec = btrfs_inode_atime(inode_item); 2439 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2440 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2441 2442 tspec = btrfs_inode_mtime(inode_item); 2443 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2444 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2445 2446 tspec = btrfs_inode_ctime(inode_item); 2447 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2448 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2449 2450 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2451 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2452 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2453 inode->i_generation = BTRFS_I(inode)->generation; 2454 inode->i_rdev = 0; 2455 rdev = btrfs_inode_rdev(leaf, inode_item); 2456 2457 BTRFS_I(inode)->index_cnt = (u64)-1; 2458 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2459 2460 alloc_group_block = btrfs_inode_block_group(leaf, inode_item); 2461 2462 /* 2463 * try to precache a NULL acl entry for files that don't have 2464 * any xattrs or acls 2465 */ 2466 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino); 2467 if (!maybe_acls) 2468 cache_no_acl(inode); 2469 2470 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0, 2471 alloc_group_block, 0); 2472 btrfs_free_path(path); 2473 inode_item = NULL; 2474 2475 switch (inode->i_mode & S_IFMT) { 2476 case S_IFREG: 2477 inode->i_mapping->a_ops = &btrfs_aops; 2478 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2479 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2480 inode->i_fop = &btrfs_file_operations; 2481 inode->i_op = &btrfs_file_inode_operations; 2482 break; 2483 case S_IFDIR: 2484 inode->i_fop = &btrfs_dir_file_operations; 2485 if (root == root->fs_info->tree_root) 2486 inode->i_op = &btrfs_dir_ro_inode_operations; 2487 else 2488 inode->i_op = &btrfs_dir_inode_operations; 2489 break; 2490 case S_IFLNK: 2491 inode->i_op = &btrfs_symlink_inode_operations; 2492 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2493 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2494 break; 2495 default: 2496 inode->i_op = &btrfs_special_inode_operations; 2497 init_special_inode(inode, inode->i_mode, rdev); 2498 break; 2499 } 2500 2501 btrfs_update_iflags(inode); 2502 return; 2503 2504 make_bad: 2505 btrfs_free_path(path); 2506 make_bad_inode(inode); 2507 } 2508 2509 /* 2510 * given a leaf and an inode, copy the inode fields into the leaf 2511 */ 2512 static void fill_inode_item(struct btrfs_trans_handle *trans, 2513 struct extent_buffer *leaf, 2514 struct btrfs_inode_item *item, 2515 struct inode *inode) 2516 { 2517 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2518 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2519 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2520 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2521 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2522 2523 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2524 inode->i_atime.tv_sec); 2525 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2526 inode->i_atime.tv_nsec); 2527 2528 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2529 inode->i_mtime.tv_sec); 2530 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2531 inode->i_mtime.tv_nsec); 2532 2533 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2534 inode->i_ctime.tv_sec); 2535 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2536 inode->i_ctime.tv_nsec); 2537 2538 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2539 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2540 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2541 btrfs_set_inode_transid(leaf, item, trans->transid); 2542 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2543 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2544 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group); 2545 } 2546 2547 /* 2548 * copy everything in the in-memory inode into the btree. 2549 */ 2550 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2551 struct btrfs_root *root, struct inode *inode) 2552 { 2553 struct btrfs_inode_item *inode_item; 2554 struct btrfs_path *path; 2555 struct extent_buffer *leaf; 2556 int ret; 2557 2558 path = btrfs_alloc_path(); 2559 BUG_ON(!path); 2560 path->leave_spinning = 1; 2561 ret = btrfs_lookup_inode(trans, root, path, 2562 &BTRFS_I(inode)->location, 1); 2563 if (ret) { 2564 if (ret > 0) 2565 ret = -ENOENT; 2566 goto failed; 2567 } 2568 2569 btrfs_unlock_up_safe(path, 1); 2570 leaf = path->nodes[0]; 2571 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2572 struct btrfs_inode_item); 2573 2574 fill_inode_item(trans, leaf, inode_item, inode); 2575 btrfs_mark_buffer_dirty(leaf); 2576 btrfs_set_inode_last_trans(trans, inode); 2577 ret = 0; 2578 failed: 2579 btrfs_free_path(path); 2580 return ret; 2581 } 2582 2583 2584 /* 2585 * unlink helper that gets used here in inode.c and in the tree logging 2586 * recovery code. It remove a link in a directory with a given name, and 2587 * also drops the back refs in the inode to the directory 2588 */ 2589 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2590 struct btrfs_root *root, 2591 struct inode *dir, struct inode *inode, 2592 const char *name, int name_len) 2593 { 2594 struct btrfs_path *path; 2595 int ret = 0; 2596 struct extent_buffer *leaf; 2597 struct btrfs_dir_item *di; 2598 struct btrfs_key key; 2599 u64 index; 2600 2601 path = btrfs_alloc_path(); 2602 if (!path) { 2603 ret = -ENOMEM; 2604 goto err; 2605 } 2606 2607 path->leave_spinning = 1; 2608 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2609 name, name_len, -1); 2610 if (IS_ERR(di)) { 2611 ret = PTR_ERR(di); 2612 goto err; 2613 } 2614 if (!di) { 2615 ret = -ENOENT; 2616 goto err; 2617 } 2618 leaf = path->nodes[0]; 2619 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2620 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2621 if (ret) 2622 goto err; 2623 btrfs_release_path(root, path); 2624 2625 ret = btrfs_del_inode_ref(trans, root, name, name_len, 2626 inode->i_ino, 2627 dir->i_ino, &index); 2628 if (ret) { 2629 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2630 "inode %lu parent %lu\n", name_len, name, 2631 inode->i_ino, dir->i_ino); 2632 goto err; 2633 } 2634 2635 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2636 index, name, name_len, -1); 2637 if (IS_ERR(di)) { 2638 ret = PTR_ERR(di); 2639 goto err; 2640 } 2641 if (!di) { 2642 ret = -ENOENT; 2643 goto err; 2644 } 2645 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2646 btrfs_release_path(root, path); 2647 2648 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2649 inode, dir->i_ino); 2650 BUG_ON(ret != 0 && ret != -ENOENT); 2651 2652 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2653 dir, index); 2654 BUG_ON(ret); 2655 err: 2656 btrfs_free_path(path); 2657 if (ret) 2658 goto out; 2659 2660 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2661 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2662 btrfs_update_inode(trans, root, dir); 2663 btrfs_drop_nlink(inode); 2664 ret = btrfs_update_inode(trans, root, inode); 2665 out: 2666 return ret; 2667 } 2668 2669 /* helper to check if there is any shared block in the path */ 2670 static int check_path_shared(struct btrfs_root *root, 2671 struct btrfs_path *path) 2672 { 2673 struct extent_buffer *eb; 2674 int level; 2675 int ret; 2676 u64 refs = 1; 2677 2678 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2679 if (!path->nodes[level]) 2680 break; 2681 eb = path->nodes[level]; 2682 if (!btrfs_block_can_be_shared(root, eb)) 2683 continue; 2684 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2685 &refs, NULL); 2686 if (refs > 1) 2687 return 1; 2688 } 2689 return 0; 2690 } 2691 2692 /* 2693 * helper to start transaction for unlink and rmdir. 2694 * 2695 * unlink and rmdir are special in btrfs, they do not always free space. 2696 * so in enospc case, we should make sure they will free space before 2697 * allowing them to use the global metadata reservation. 2698 */ 2699 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2700 struct dentry *dentry) 2701 { 2702 struct btrfs_trans_handle *trans; 2703 struct btrfs_root *root = BTRFS_I(dir)->root; 2704 struct btrfs_path *path; 2705 struct btrfs_inode_ref *ref; 2706 struct btrfs_dir_item *di; 2707 struct inode *inode = dentry->d_inode; 2708 u64 index; 2709 int check_link = 1; 2710 int err = -ENOSPC; 2711 int ret; 2712 2713 trans = btrfs_start_transaction(root, 10); 2714 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2715 return trans; 2716 2717 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2718 return ERR_PTR(-ENOSPC); 2719 2720 /* check if there is someone else holds reference */ 2721 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2722 return ERR_PTR(-ENOSPC); 2723 2724 if (atomic_read(&inode->i_count) > 2) 2725 return ERR_PTR(-ENOSPC); 2726 2727 if (xchg(&root->fs_info->enospc_unlink, 1)) 2728 return ERR_PTR(-ENOSPC); 2729 2730 path = btrfs_alloc_path(); 2731 if (!path) { 2732 root->fs_info->enospc_unlink = 0; 2733 return ERR_PTR(-ENOMEM); 2734 } 2735 2736 trans = btrfs_start_transaction(root, 0); 2737 if (IS_ERR(trans)) { 2738 btrfs_free_path(path); 2739 root->fs_info->enospc_unlink = 0; 2740 return trans; 2741 } 2742 2743 path->skip_locking = 1; 2744 path->search_commit_root = 1; 2745 2746 ret = btrfs_lookup_inode(trans, root, path, 2747 &BTRFS_I(dir)->location, 0); 2748 if (ret < 0) { 2749 err = ret; 2750 goto out; 2751 } 2752 if (ret == 0) { 2753 if (check_path_shared(root, path)) 2754 goto out; 2755 } else { 2756 check_link = 0; 2757 } 2758 btrfs_release_path(root, path); 2759 2760 ret = btrfs_lookup_inode(trans, root, path, 2761 &BTRFS_I(inode)->location, 0); 2762 if (ret < 0) { 2763 err = ret; 2764 goto out; 2765 } 2766 if (ret == 0) { 2767 if (check_path_shared(root, path)) 2768 goto out; 2769 } else { 2770 check_link = 0; 2771 } 2772 btrfs_release_path(root, path); 2773 2774 if (ret == 0 && S_ISREG(inode->i_mode)) { 2775 ret = btrfs_lookup_file_extent(trans, root, path, 2776 inode->i_ino, (u64)-1, 0); 2777 if (ret < 0) { 2778 err = ret; 2779 goto out; 2780 } 2781 BUG_ON(ret == 0); 2782 if (check_path_shared(root, path)) 2783 goto out; 2784 btrfs_release_path(root, path); 2785 } 2786 2787 if (!check_link) { 2788 err = 0; 2789 goto out; 2790 } 2791 2792 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2793 dentry->d_name.name, dentry->d_name.len, 0); 2794 if (IS_ERR(di)) { 2795 err = PTR_ERR(di); 2796 goto out; 2797 } 2798 if (di) { 2799 if (check_path_shared(root, path)) 2800 goto out; 2801 } else { 2802 err = 0; 2803 goto out; 2804 } 2805 btrfs_release_path(root, path); 2806 2807 ref = btrfs_lookup_inode_ref(trans, root, path, 2808 dentry->d_name.name, dentry->d_name.len, 2809 inode->i_ino, dir->i_ino, 0); 2810 if (IS_ERR(ref)) { 2811 err = PTR_ERR(ref); 2812 goto out; 2813 } 2814 BUG_ON(!ref); 2815 if (check_path_shared(root, path)) 2816 goto out; 2817 index = btrfs_inode_ref_index(path->nodes[0], ref); 2818 btrfs_release_path(root, path); 2819 2820 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index, 2821 dentry->d_name.name, dentry->d_name.len, 0); 2822 if (IS_ERR(di)) { 2823 err = PTR_ERR(di); 2824 goto out; 2825 } 2826 BUG_ON(ret == -ENOENT); 2827 if (check_path_shared(root, path)) 2828 goto out; 2829 2830 err = 0; 2831 out: 2832 btrfs_free_path(path); 2833 if (err) { 2834 btrfs_end_transaction(trans, root); 2835 root->fs_info->enospc_unlink = 0; 2836 return ERR_PTR(err); 2837 } 2838 2839 trans->block_rsv = &root->fs_info->global_block_rsv; 2840 return trans; 2841 } 2842 2843 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root) 2845 { 2846 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2847 BUG_ON(!root->fs_info->enospc_unlink); 2848 root->fs_info->enospc_unlink = 0; 2849 } 2850 btrfs_end_transaction_throttle(trans, root); 2851 } 2852 2853 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2854 { 2855 struct btrfs_root *root = BTRFS_I(dir)->root; 2856 struct btrfs_trans_handle *trans; 2857 struct inode *inode = dentry->d_inode; 2858 int ret; 2859 unsigned long nr = 0; 2860 2861 trans = __unlink_start_trans(dir, dentry); 2862 if (IS_ERR(trans)) 2863 return PTR_ERR(trans); 2864 2865 btrfs_set_trans_block_group(trans, dir); 2866 2867 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2868 2869 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2870 dentry->d_name.name, dentry->d_name.len); 2871 BUG_ON(ret); 2872 2873 if (inode->i_nlink == 0) { 2874 ret = btrfs_orphan_add(trans, inode); 2875 BUG_ON(ret); 2876 } 2877 2878 nr = trans->blocks_used; 2879 __unlink_end_trans(trans, root); 2880 btrfs_btree_balance_dirty(root, nr); 2881 return ret; 2882 } 2883 2884 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 2885 struct btrfs_root *root, 2886 struct inode *dir, u64 objectid, 2887 const char *name, int name_len) 2888 { 2889 struct btrfs_path *path; 2890 struct extent_buffer *leaf; 2891 struct btrfs_dir_item *di; 2892 struct btrfs_key key; 2893 u64 index; 2894 int ret; 2895 2896 path = btrfs_alloc_path(); 2897 if (!path) 2898 return -ENOMEM; 2899 2900 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino, 2901 name, name_len, -1); 2902 BUG_ON(!di || IS_ERR(di)); 2903 2904 leaf = path->nodes[0]; 2905 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2906 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2907 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2908 BUG_ON(ret); 2909 btrfs_release_path(root, path); 2910 2911 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 2912 objectid, root->root_key.objectid, 2913 dir->i_ino, &index, name, name_len); 2914 if (ret < 0) { 2915 BUG_ON(ret != -ENOENT); 2916 di = btrfs_search_dir_index_item(root, path, dir->i_ino, 2917 name, name_len); 2918 BUG_ON(!di || IS_ERR(di)); 2919 2920 leaf = path->nodes[0]; 2921 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2922 btrfs_release_path(root, path); 2923 index = key.offset; 2924 } 2925 2926 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, 2927 index, name, name_len, -1); 2928 BUG_ON(!di || IS_ERR(di)); 2929 2930 leaf = path->nodes[0]; 2931 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2932 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 2933 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2934 BUG_ON(ret); 2935 btrfs_release_path(root, path); 2936 2937 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2938 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2939 ret = btrfs_update_inode(trans, root, dir); 2940 BUG_ON(ret); 2941 dir->i_sb->s_dirt = 1; 2942 2943 btrfs_free_path(path); 2944 return 0; 2945 } 2946 2947 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 2948 { 2949 struct inode *inode = dentry->d_inode; 2950 int err = 0; 2951 struct btrfs_root *root = BTRFS_I(dir)->root; 2952 struct btrfs_trans_handle *trans; 2953 unsigned long nr = 0; 2954 2955 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 2956 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 2957 return -ENOTEMPTY; 2958 2959 trans = __unlink_start_trans(dir, dentry); 2960 if (IS_ERR(trans)) 2961 return PTR_ERR(trans); 2962 2963 btrfs_set_trans_block_group(trans, dir); 2964 2965 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 2966 err = btrfs_unlink_subvol(trans, root, dir, 2967 BTRFS_I(inode)->location.objectid, 2968 dentry->d_name.name, 2969 dentry->d_name.len); 2970 goto out; 2971 } 2972 2973 err = btrfs_orphan_add(trans, inode); 2974 if (err) 2975 goto out; 2976 2977 /* now the directory is empty */ 2978 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 2979 dentry->d_name.name, dentry->d_name.len); 2980 if (!err) 2981 btrfs_i_size_write(inode, 0); 2982 out: 2983 nr = trans->blocks_used; 2984 __unlink_end_trans(trans, root); 2985 btrfs_btree_balance_dirty(root, nr); 2986 2987 return err; 2988 } 2989 2990 #if 0 2991 /* 2992 * when truncating bytes in a file, it is possible to avoid reading 2993 * the leaves that contain only checksum items. This can be the 2994 * majority of the IO required to delete a large file, but it must 2995 * be done carefully. 2996 * 2997 * The keys in the level just above the leaves are checked to make sure 2998 * the lowest key in a given leaf is a csum key, and starts at an offset 2999 * after the new size. 3000 * 3001 * Then the key for the next leaf is checked to make sure it also has 3002 * a checksum item for the same file. If it does, we know our target leaf 3003 * contains only checksum items, and it can be safely freed without reading 3004 * it. 3005 * 3006 * This is just an optimization targeted at large files. It may do 3007 * nothing. It will return 0 unless things went badly. 3008 */ 3009 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans, 3010 struct btrfs_root *root, 3011 struct btrfs_path *path, 3012 struct inode *inode, u64 new_size) 3013 { 3014 struct btrfs_key key; 3015 int ret; 3016 int nritems; 3017 struct btrfs_key found_key; 3018 struct btrfs_key other_key; 3019 struct btrfs_leaf_ref *ref; 3020 u64 leaf_gen; 3021 u64 leaf_start; 3022 3023 path->lowest_level = 1; 3024 key.objectid = inode->i_ino; 3025 key.type = BTRFS_CSUM_ITEM_KEY; 3026 key.offset = new_size; 3027 again: 3028 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3029 if (ret < 0) 3030 goto out; 3031 3032 if (path->nodes[1] == NULL) { 3033 ret = 0; 3034 goto out; 3035 } 3036 ret = 0; 3037 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]); 3038 nritems = btrfs_header_nritems(path->nodes[1]); 3039 3040 if (!nritems) 3041 goto out; 3042 3043 if (path->slots[1] >= nritems) 3044 goto next_node; 3045 3046 /* did we find a key greater than anything we want to delete? */ 3047 if (found_key.objectid > inode->i_ino || 3048 (found_key.objectid == inode->i_ino && found_key.type > key.type)) 3049 goto out; 3050 3051 /* we check the next key in the node to make sure the leave contains 3052 * only checksum items. This comparison doesn't work if our 3053 * leaf is the last one in the node 3054 */ 3055 if (path->slots[1] + 1 >= nritems) { 3056 next_node: 3057 /* search forward from the last key in the node, this 3058 * will bring us into the next node in the tree 3059 */ 3060 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1); 3061 3062 /* unlikely, but we inc below, so check to be safe */ 3063 if (found_key.offset == (u64)-1) 3064 goto out; 3065 3066 /* search_forward needs a path with locks held, do the 3067 * search again for the original key. It is possible 3068 * this will race with a balance and return a path that 3069 * we could modify, but this drop is just an optimization 3070 * and is allowed to miss some leaves. 3071 */ 3072 btrfs_release_path(root, path); 3073 found_key.offset++; 3074 3075 /* setup a max key for search_forward */ 3076 other_key.offset = (u64)-1; 3077 other_key.type = key.type; 3078 other_key.objectid = key.objectid; 3079 3080 path->keep_locks = 1; 3081 ret = btrfs_search_forward(root, &found_key, &other_key, 3082 path, 0, 0); 3083 path->keep_locks = 0; 3084 if (ret || found_key.objectid != key.objectid || 3085 found_key.type != key.type) { 3086 ret = 0; 3087 goto out; 3088 } 3089 3090 key.offset = found_key.offset; 3091 btrfs_release_path(root, path); 3092 cond_resched(); 3093 goto again; 3094 } 3095 3096 /* we know there's one more slot after us in the tree, 3097 * read that key so we can verify it is also a checksum item 3098 */ 3099 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1); 3100 3101 if (found_key.objectid < inode->i_ino) 3102 goto next_key; 3103 3104 if (found_key.type != key.type || found_key.offset < new_size) 3105 goto next_key; 3106 3107 /* 3108 * if the key for the next leaf isn't a csum key from this objectid, 3109 * we can't be sure there aren't good items inside this leaf. 3110 * Bail out 3111 */ 3112 if (other_key.objectid != inode->i_ino || other_key.type != key.type) 3113 goto out; 3114 3115 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]); 3116 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]); 3117 /* 3118 * it is safe to delete this leaf, it contains only 3119 * csum items from this inode at an offset >= new_size 3120 */ 3121 ret = btrfs_del_leaf(trans, root, path, leaf_start); 3122 BUG_ON(ret); 3123 3124 if (root->ref_cows && leaf_gen < trans->transid) { 3125 ref = btrfs_alloc_leaf_ref(root, 0); 3126 if (ref) { 3127 ref->root_gen = root->root_key.offset; 3128 ref->bytenr = leaf_start; 3129 ref->owner = 0; 3130 ref->generation = leaf_gen; 3131 ref->nritems = 0; 3132 3133 btrfs_sort_leaf_ref(ref); 3134 3135 ret = btrfs_add_leaf_ref(root, ref, 0); 3136 WARN_ON(ret); 3137 btrfs_free_leaf_ref(root, ref); 3138 } else { 3139 WARN_ON(1); 3140 } 3141 } 3142 next_key: 3143 btrfs_release_path(root, path); 3144 3145 if (other_key.objectid == inode->i_ino && 3146 other_key.type == key.type && other_key.offset > key.offset) { 3147 key.offset = other_key.offset; 3148 cond_resched(); 3149 goto again; 3150 } 3151 ret = 0; 3152 out: 3153 /* fixup any changes we've made to the path */ 3154 path->lowest_level = 0; 3155 path->keep_locks = 0; 3156 btrfs_release_path(root, path); 3157 return ret; 3158 } 3159 3160 #endif 3161 3162 /* 3163 * this can truncate away extent items, csum items and directory items. 3164 * It starts at a high offset and removes keys until it can't find 3165 * any higher than new_size 3166 * 3167 * csum items that cross the new i_size are truncated to the new size 3168 * as well. 3169 * 3170 * min_type is the minimum key type to truncate down to. If set to 0, this 3171 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3172 */ 3173 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3174 struct btrfs_root *root, 3175 struct inode *inode, 3176 u64 new_size, u32 min_type) 3177 { 3178 struct btrfs_path *path; 3179 struct extent_buffer *leaf; 3180 struct btrfs_file_extent_item *fi; 3181 struct btrfs_key key; 3182 struct btrfs_key found_key; 3183 u64 extent_start = 0; 3184 u64 extent_num_bytes = 0; 3185 u64 extent_offset = 0; 3186 u64 item_end = 0; 3187 u64 mask = root->sectorsize - 1; 3188 u32 found_type = (u8)-1; 3189 int found_extent; 3190 int del_item; 3191 int pending_del_nr = 0; 3192 int pending_del_slot = 0; 3193 int extent_type = -1; 3194 int encoding; 3195 int ret; 3196 int err = 0; 3197 3198 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3199 3200 if (root->ref_cows) 3201 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3202 3203 path = btrfs_alloc_path(); 3204 BUG_ON(!path); 3205 path->reada = -1; 3206 3207 key.objectid = inode->i_ino; 3208 key.offset = (u64)-1; 3209 key.type = (u8)-1; 3210 3211 search_again: 3212 path->leave_spinning = 1; 3213 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3214 if (ret < 0) { 3215 err = ret; 3216 goto out; 3217 } 3218 3219 if (ret > 0) { 3220 /* there are no items in the tree for us to truncate, we're 3221 * done 3222 */ 3223 if (path->slots[0] == 0) 3224 goto out; 3225 path->slots[0]--; 3226 } 3227 3228 while (1) { 3229 fi = NULL; 3230 leaf = path->nodes[0]; 3231 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3232 found_type = btrfs_key_type(&found_key); 3233 encoding = 0; 3234 3235 if (found_key.objectid != inode->i_ino) 3236 break; 3237 3238 if (found_type < min_type) 3239 break; 3240 3241 item_end = found_key.offset; 3242 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3243 fi = btrfs_item_ptr(leaf, path->slots[0], 3244 struct btrfs_file_extent_item); 3245 extent_type = btrfs_file_extent_type(leaf, fi); 3246 encoding = btrfs_file_extent_compression(leaf, fi); 3247 encoding |= btrfs_file_extent_encryption(leaf, fi); 3248 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3249 3250 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3251 item_end += 3252 btrfs_file_extent_num_bytes(leaf, fi); 3253 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3254 item_end += btrfs_file_extent_inline_len(leaf, 3255 fi); 3256 } 3257 item_end--; 3258 } 3259 if (found_type > min_type) { 3260 del_item = 1; 3261 } else { 3262 if (item_end < new_size) 3263 break; 3264 if (found_key.offset >= new_size) 3265 del_item = 1; 3266 else 3267 del_item = 0; 3268 } 3269 found_extent = 0; 3270 /* FIXME, shrink the extent if the ref count is only 1 */ 3271 if (found_type != BTRFS_EXTENT_DATA_KEY) 3272 goto delete; 3273 3274 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3275 u64 num_dec; 3276 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3277 if (!del_item && !encoding) { 3278 u64 orig_num_bytes = 3279 btrfs_file_extent_num_bytes(leaf, fi); 3280 extent_num_bytes = new_size - 3281 found_key.offset + root->sectorsize - 1; 3282 extent_num_bytes = extent_num_bytes & 3283 ~((u64)root->sectorsize - 1); 3284 btrfs_set_file_extent_num_bytes(leaf, fi, 3285 extent_num_bytes); 3286 num_dec = (orig_num_bytes - 3287 extent_num_bytes); 3288 if (root->ref_cows && extent_start != 0) 3289 inode_sub_bytes(inode, num_dec); 3290 btrfs_mark_buffer_dirty(leaf); 3291 } else { 3292 extent_num_bytes = 3293 btrfs_file_extent_disk_num_bytes(leaf, 3294 fi); 3295 extent_offset = found_key.offset - 3296 btrfs_file_extent_offset(leaf, fi); 3297 3298 /* FIXME blocksize != 4096 */ 3299 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3300 if (extent_start != 0) { 3301 found_extent = 1; 3302 if (root->ref_cows) 3303 inode_sub_bytes(inode, num_dec); 3304 } 3305 } 3306 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3307 /* 3308 * we can't truncate inline items that have had 3309 * special encodings 3310 */ 3311 if (!del_item && 3312 btrfs_file_extent_compression(leaf, fi) == 0 && 3313 btrfs_file_extent_encryption(leaf, fi) == 0 && 3314 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3315 u32 size = new_size - found_key.offset; 3316 3317 if (root->ref_cows) { 3318 inode_sub_bytes(inode, item_end + 1 - 3319 new_size); 3320 } 3321 size = 3322 btrfs_file_extent_calc_inline_size(size); 3323 ret = btrfs_truncate_item(trans, root, path, 3324 size, 1); 3325 BUG_ON(ret); 3326 } else if (root->ref_cows) { 3327 inode_sub_bytes(inode, item_end + 1 - 3328 found_key.offset); 3329 } 3330 } 3331 delete: 3332 if (del_item) { 3333 if (!pending_del_nr) { 3334 /* no pending yet, add ourselves */ 3335 pending_del_slot = path->slots[0]; 3336 pending_del_nr = 1; 3337 } else if (pending_del_nr && 3338 path->slots[0] + 1 == pending_del_slot) { 3339 /* hop on the pending chunk */ 3340 pending_del_nr++; 3341 pending_del_slot = path->slots[0]; 3342 } else { 3343 BUG(); 3344 } 3345 } else { 3346 break; 3347 } 3348 if (found_extent && root->ref_cows) { 3349 btrfs_set_path_blocking(path); 3350 ret = btrfs_free_extent(trans, root, extent_start, 3351 extent_num_bytes, 0, 3352 btrfs_header_owner(leaf), 3353 inode->i_ino, extent_offset); 3354 BUG_ON(ret); 3355 } 3356 3357 if (found_type == BTRFS_INODE_ITEM_KEY) 3358 break; 3359 3360 if (path->slots[0] == 0 || 3361 path->slots[0] != pending_del_slot) { 3362 if (root->ref_cows) { 3363 err = -EAGAIN; 3364 goto out; 3365 } 3366 if (pending_del_nr) { 3367 ret = btrfs_del_items(trans, root, path, 3368 pending_del_slot, 3369 pending_del_nr); 3370 BUG_ON(ret); 3371 pending_del_nr = 0; 3372 } 3373 btrfs_release_path(root, path); 3374 goto search_again; 3375 } else { 3376 path->slots[0]--; 3377 } 3378 } 3379 out: 3380 if (pending_del_nr) { 3381 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3382 pending_del_nr); 3383 BUG_ON(ret); 3384 } 3385 btrfs_free_path(path); 3386 return err; 3387 } 3388 3389 /* 3390 * taken from block_truncate_page, but does cow as it zeros out 3391 * any bytes left in the last page in the file. 3392 */ 3393 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3394 { 3395 struct inode *inode = mapping->host; 3396 struct btrfs_root *root = BTRFS_I(inode)->root; 3397 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3398 struct btrfs_ordered_extent *ordered; 3399 struct extent_state *cached_state = NULL; 3400 char *kaddr; 3401 u32 blocksize = root->sectorsize; 3402 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3403 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3404 struct page *page; 3405 int ret = 0; 3406 u64 page_start; 3407 u64 page_end; 3408 3409 if ((offset & (blocksize - 1)) == 0) 3410 goto out; 3411 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3412 if (ret) 3413 goto out; 3414 3415 ret = -ENOMEM; 3416 again: 3417 page = grab_cache_page(mapping, index); 3418 if (!page) { 3419 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3420 goto out; 3421 } 3422 3423 page_start = page_offset(page); 3424 page_end = page_start + PAGE_CACHE_SIZE - 1; 3425 3426 if (!PageUptodate(page)) { 3427 ret = btrfs_readpage(NULL, page); 3428 lock_page(page); 3429 if (page->mapping != mapping) { 3430 unlock_page(page); 3431 page_cache_release(page); 3432 goto again; 3433 } 3434 if (!PageUptodate(page)) { 3435 ret = -EIO; 3436 goto out_unlock; 3437 } 3438 } 3439 wait_on_page_writeback(page); 3440 3441 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3442 GFP_NOFS); 3443 set_page_extent_mapped(page); 3444 3445 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3446 if (ordered) { 3447 unlock_extent_cached(io_tree, page_start, page_end, 3448 &cached_state, GFP_NOFS); 3449 unlock_page(page); 3450 page_cache_release(page); 3451 btrfs_start_ordered_extent(inode, ordered, 1); 3452 btrfs_put_ordered_extent(ordered); 3453 goto again; 3454 } 3455 3456 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3457 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3458 0, 0, &cached_state, GFP_NOFS); 3459 3460 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3461 &cached_state); 3462 if (ret) { 3463 unlock_extent_cached(io_tree, page_start, page_end, 3464 &cached_state, GFP_NOFS); 3465 goto out_unlock; 3466 } 3467 3468 ret = 0; 3469 if (offset != PAGE_CACHE_SIZE) { 3470 kaddr = kmap(page); 3471 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3472 flush_dcache_page(page); 3473 kunmap(page); 3474 } 3475 ClearPageChecked(page); 3476 set_page_dirty(page); 3477 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3478 GFP_NOFS); 3479 3480 out_unlock: 3481 if (ret) 3482 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3483 unlock_page(page); 3484 page_cache_release(page); 3485 out: 3486 return ret; 3487 } 3488 3489 int btrfs_cont_expand(struct inode *inode, loff_t size) 3490 { 3491 struct btrfs_trans_handle *trans; 3492 struct btrfs_root *root = BTRFS_I(inode)->root; 3493 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3494 struct extent_map *em = NULL; 3495 struct extent_state *cached_state = NULL; 3496 u64 mask = root->sectorsize - 1; 3497 u64 hole_start = (inode->i_size + mask) & ~mask; 3498 u64 block_end = (size + mask) & ~mask; 3499 u64 last_byte; 3500 u64 cur_offset; 3501 u64 hole_size; 3502 int err = 0; 3503 3504 if (size <= hole_start) 3505 return 0; 3506 3507 while (1) { 3508 struct btrfs_ordered_extent *ordered; 3509 btrfs_wait_ordered_range(inode, hole_start, 3510 block_end - hole_start); 3511 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3512 &cached_state, GFP_NOFS); 3513 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3514 if (!ordered) 3515 break; 3516 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3517 &cached_state, GFP_NOFS); 3518 btrfs_put_ordered_extent(ordered); 3519 } 3520 3521 cur_offset = hole_start; 3522 while (1) { 3523 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3524 block_end - cur_offset, 0); 3525 BUG_ON(IS_ERR(em) || !em); 3526 last_byte = min(extent_map_end(em), block_end); 3527 last_byte = (last_byte + mask) & ~mask; 3528 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3529 u64 hint_byte = 0; 3530 hole_size = last_byte - cur_offset; 3531 3532 trans = btrfs_start_transaction(root, 2); 3533 if (IS_ERR(trans)) { 3534 err = PTR_ERR(trans); 3535 break; 3536 } 3537 btrfs_set_trans_block_group(trans, inode); 3538 3539 err = btrfs_drop_extents(trans, inode, cur_offset, 3540 cur_offset + hole_size, 3541 &hint_byte, 1); 3542 BUG_ON(err); 3543 3544 err = btrfs_insert_file_extent(trans, root, 3545 inode->i_ino, cur_offset, 0, 3546 0, hole_size, 0, hole_size, 3547 0, 0, 0); 3548 BUG_ON(err); 3549 3550 btrfs_drop_extent_cache(inode, hole_start, 3551 last_byte - 1, 0); 3552 3553 btrfs_end_transaction(trans, root); 3554 } 3555 free_extent_map(em); 3556 em = NULL; 3557 cur_offset = last_byte; 3558 if (cur_offset >= block_end) 3559 break; 3560 } 3561 3562 free_extent_map(em); 3563 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3564 GFP_NOFS); 3565 return err; 3566 } 3567 3568 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr) 3569 { 3570 struct btrfs_root *root = BTRFS_I(inode)->root; 3571 struct btrfs_trans_handle *trans; 3572 unsigned long nr; 3573 int ret; 3574 3575 if (attr->ia_size == inode->i_size) 3576 return 0; 3577 3578 if (attr->ia_size > inode->i_size) { 3579 unsigned long limit; 3580 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 3581 if (attr->ia_size > inode->i_sb->s_maxbytes) 3582 return -EFBIG; 3583 if (limit != RLIM_INFINITY && attr->ia_size > limit) { 3584 send_sig(SIGXFSZ, current, 0); 3585 return -EFBIG; 3586 } 3587 } 3588 3589 trans = btrfs_start_transaction(root, 5); 3590 if (IS_ERR(trans)) 3591 return PTR_ERR(trans); 3592 3593 btrfs_set_trans_block_group(trans, inode); 3594 3595 ret = btrfs_orphan_add(trans, inode); 3596 BUG_ON(ret); 3597 3598 nr = trans->blocks_used; 3599 btrfs_end_transaction(trans, root); 3600 btrfs_btree_balance_dirty(root, nr); 3601 3602 if (attr->ia_size > inode->i_size) { 3603 ret = btrfs_cont_expand(inode, attr->ia_size); 3604 if (ret) { 3605 btrfs_truncate(inode); 3606 return ret; 3607 } 3608 3609 i_size_write(inode, attr->ia_size); 3610 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 3611 3612 trans = btrfs_start_transaction(root, 0); 3613 BUG_ON(IS_ERR(trans)); 3614 btrfs_set_trans_block_group(trans, inode); 3615 trans->block_rsv = root->orphan_block_rsv; 3616 BUG_ON(!trans->block_rsv); 3617 3618 ret = btrfs_update_inode(trans, root, inode); 3619 BUG_ON(ret); 3620 if (inode->i_nlink > 0) { 3621 ret = btrfs_orphan_del(trans, inode); 3622 BUG_ON(ret); 3623 } 3624 nr = trans->blocks_used; 3625 btrfs_end_transaction(trans, root); 3626 btrfs_btree_balance_dirty(root, nr); 3627 return 0; 3628 } 3629 3630 /* 3631 * We're truncating a file that used to have good data down to 3632 * zero. Make sure it gets into the ordered flush list so that 3633 * any new writes get down to disk quickly. 3634 */ 3635 if (attr->ia_size == 0) 3636 BTRFS_I(inode)->ordered_data_close = 1; 3637 3638 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3639 ret = vmtruncate(inode, attr->ia_size); 3640 BUG_ON(ret); 3641 3642 return 0; 3643 } 3644 3645 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3646 { 3647 struct inode *inode = dentry->d_inode; 3648 int err; 3649 3650 err = inode_change_ok(inode, attr); 3651 if (err) 3652 return err; 3653 3654 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3655 err = btrfs_setattr_size(inode, attr); 3656 if (err) 3657 return err; 3658 } 3659 attr->ia_valid &= ~ATTR_SIZE; 3660 3661 if (attr->ia_valid) 3662 err = inode_setattr(inode, attr); 3663 3664 if (!err && ((attr->ia_valid & ATTR_MODE))) 3665 err = btrfs_acl_chmod(inode); 3666 return err; 3667 } 3668 3669 void btrfs_delete_inode(struct inode *inode) 3670 { 3671 struct btrfs_trans_handle *trans; 3672 struct btrfs_root *root = BTRFS_I(inode)->root; 3673 unsigned long nr; 3674 int ret; 3675 3676 truncate_inode_pages(&inode->i_data, 0); 3677 if (is_bad_inode(inode)) { 3678 btrfs_orphan_del(NULL, inode); 3679 goto no_delete; 3680 } 3681 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3682 3683 if (root->fs_info->log_root_recovering) { 3684 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3685 goto no_delete; 3686 } 3687 3688 if (inode->i_nlink > 0) { 3689 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3690 goto no_delete; 3691 } 3692 3693 btrfs_i_size_write(inode, 0); 3694 3695 while (1) { 3696 trans = btrfs_start_transaction(root, 0); 3697 BUG_ON(IS_ERR(trans)); 3698 btrfs_set_trans_block_group(trans, inode); 3699 trans->block_rsv = root->orphan_block_rsv; 3700 3701 ret = btrfs_block_rsv_check(trans, root, 3702 root->orphan_block_rsv, 0, 5); 3703 if (ret) { 3704 BUG_ON(ret != -EAGAIN); 3705 ret = btrfs_commit_transaction(trans, root); 3706 BUG_ON(ret); 3707 continue; 3708 } 3709 3710 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3711 if (ret != -EAGAIN) 3712 break; 3713 3714 nr = trans->blocks_used; 3715 btrfs_end_transaction(trans, root); 3716 trans = NULL; 3717 btrfs_btree_balance_dirty(root, nr); 3718 3719 } 3720 3721 if (ret == 0) { 3722 ret = btrfs_orphan_del(trans, inode); 3723 BUG_ON(ret); 3724 } 3725 3726 nr = trans->blocks_used; 3727 btrfs_end_transaction(trans, root); 3728 btrfs_btree_balance_dirty(root, nr); 3729 no_delete: 3730 clear_inode(inode); 3731 return; 3732 } 3733 3734 /* 3735 * this returns the key found in the dir entry in the location pointer. 3736 * If no dir entries were found, location->objectid is 0. 3737 */ 3738 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3739 struct btrfs_key *location) 3740 { 3741 const char *name = dentry->d_name.name; 3742 int namelen = dentry->d_name.len; 3743 struct btrfs_dir_item *di; 3744 struct btrfs_path *path; 3745 struct btrfs_root *root = BTRFS_I(dir)->root; 3746 int ret = 0; 3747 3748 path = btrfs_alloc_path(); 3749 BUG_ON(!path); 3750 3751 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name, 3752 namelen, 0); 3753 if (IS_ERR(di)) 3754 ret = PTR_ERR(di); 3755 3756 if (!di || IS_ERR(di)) 3757 goto out_err; 3758 3759 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3760 out: 3761 btrfs_free_path(path); 3762 return ret; 3763 out_err: 3764 location->objectid = 0; 3765 goto out; 3766 } 3767 3768 /* 3769 * when we hit a tree root in a directory, the btrfs part of the inode 3770 * needs to be changed to reflect the root directory of the tree root. This 3771 * is kind of like crossing a mount point. 3772 */ 3773 static int fixup_tree_root_location(struct btrfs_root *root, 3774 struct inode *dir, 3775 struct dentry *dentry, 3776 struct btrfs_key *location, 3777 struct btrfs_root **sub_root) 3778 { 3779 struct btrfs_path *path; 3780 struct btrfs_root *new_root; 3781 struct btrfs_root_ref *ref; 3782 struct extent_buffer *leaf; 3783 int ret; 3784 int err = 0; 3785 3786 path = btrfs_alloc_path(); 3787 if (!path) { 3788 err = -ENOMEM; 3789 goto out; 3790 } 3791 3792 err = -ENOENT; 3793 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3794 BTRFS_I(dir)->root->root_key.objectid, 3795 location->objectid); 3796 if (ret) { 3797 if (ret < 0) 3798 err = ret; 3799 goto out; 3800 } 3801 3802 leaf = path->nodes[0]; 3803 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3804 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino || 3805 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3806 goto out; 3807 3808 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3809 (unsigned long)(ref + 1), 3810 dentry->d_name.len); 3811 if (ret) 3812 goto out; 3813 3814 btrfs_release_path(root->fs_info->tree_root, path); 3815 3816 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3817 if (IS_ERR(new_root)) { 3818 err = PTR_ERR(new_root); 3819 goto out; 3820 } 3821 3822 if (btrfs_root_refs(&new_root->root_item) == 0) { 3823 err = -ENOENT; 3824 goto out; 3825 } 3826 3827 *sub_root = new_root; 3828 location->objectid = btrfs_root_dirid(&new_root->root_item); 3829 location->type = BTRFS_INODE_ITEM_KEY; 3830 location->offset = 0; 3831 err = 0; 3832 out: 3833 btrfs_free_path(path); 3834 return err; 3835 } 3836 3837 static void inode_tree_add(struct inode *inode) 3838 { 3839 struct btrfs_root *root = BTRFS_I(inode)->root; 3840 struct btrfs_inode *entry; 3841 struct rb_node **p; 3842 struct rb_node *parent; 3843 again: 3844 p = &root->inode_tree.rb_node; 3845 parent = NULL; 3846 3847 if (hlist_unhashed(&inode->i_hash)) 3848 return; 3849 3850 spin_lock(&root->inode_lock); 3851 while (*p) { 3852 parent = *p; 3853 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3854 3855 if (inode->i_ino < entry->vfs_inode.i_ino) 3856 p = &parent->rb_left; 3857 else if (inode->i_ino > entry->vfs_inode.i_ino) 3858 p = &parent->rb_right; 3859 else { 3860 WARN_ON(!(entry->vfs_inode.i_state & 3861 (I_WILL_FREE | I_FREEING | I_CLEAR))); 3862 rb_erase(parent, &root->inode_tree); 3863 RB_CLEAR_NODE(parent); 3864 spin_unlock(&root->inode_lock); 3865 goto again; 3866 } 3867 } 3868 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3869 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3870 spin_unlock(&root->inode_lock); 3871 } 3872 3873 static void inode_tree_del(struct inode *inode) 3874 { 3875 struct btrfs_root *root = BTRFS_I(inode)->root; 3876 int empty = 0; 3877 3878 spin_lock(&root->inode_lock); 3879 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3880 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3881 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3882 empty = RB_EMPTY_ROOT(&root->inode_tree); 3883 } 3884 spin_unlock(&root->inode_lock); 3885 3886 if (empty && btrfs_root_refs(&root->root_item) == 0) { 3887 synchronize_srcu(&root->fs_info->subvol_srcu); 3888 spin_lock(&root->inode_lock); 3889 empty = RB_EMPTY_ROOT(&root->inode_tree); 3890 spin_unlock(&root->inode_lock); 3891 if (empty) 3892 btrfs_add_dead_root(root); 3893 } 3894 } 3895 3896 int btrfs_invalidate_inodes(struct btrfs_root *root) 3897 { 3898 struct rb_node *node; 3899 struct rb_node *prev; 3900 struct btrfs_inode *entry; 3901 struct inode *inode; 3902 u64 objectid = 0; 3903 3904 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3905 3906 spin_lock(&root->inode_lock); 3907 again: 3908 node = root->inode_tree.rb_node; 3909 prev = NULL; 3910 while (node) { 3911 prev = node; 3912 entry = rb_entry(node, struct btrfs_inode, rb_node); 3913 3914 if (objectid < entry->vfs_inode.i_ino) 3915 node = node->rb_left; 3916 else if (objectid > entry->vfs_inode.i_ino) 3917 node = node->rb_right; 3918 else 3919 break; 3920 } 3921 if (!node) { 3922 while (prev) { 3923 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3924 if (objectid <= entry->vfs_inode.i_ino) { 3925 node = prev; 3926 break; 3927 } 3928 prev = rb_next(prev); 3929 } 3930 } 3931 while (node) { 3932 entry = rb_entry(node, struct btrfs_inode, rb_node); 3933 objectid = entry->vfs_inode.i_ino + 1; 3934 inode = igrab(&entry->vfs_inode); 3935 if (inode) { 3936 spin_unlock(&root->inode_lock); 3937 if (atomic_read(&inode->i_count) > 1) 3938 d_prune_aliases(inode); 3939 /* 3940 * btrfs_drop_inode will remove it from 3941 * the inode cache when its usage count 3942 * hits zero. 3943 */ 3944 iput(inode); 3945 cond_resched(); 3946 spin_lock(&root->inode_lock); 3947 goto again; 3948 } 3949 3950 if (cond_resched_lock(&root->inode_lock)) 3951 goto again; 3952 3953 node = rb_next(node); 3954 } 3955 spin_unlock(&root->inode_lock); 3956 return 0; 3957 } 3958 3959 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3960 { 3961 struct btrfs_iget_args *args = p; 3962 inode->i_ino = args->ino; 3963 BTRFS_I(inode)->root = args->root; 3964 btrfs_set_inode_space_info(args->root, inode); 3965 return 0; 3966 } 3967 3968 static int btrfs_find_actor(struct inode *inode, void *opaque) 3969 { 3970 struct btrfs_iget_args *args = opaque; 3971 return args->ino == inode->i_ino && 3972 args->root == BTRFS_I(inode)->root; 3973 } 3974 3975 static struct inode *btrfs_iget_locked(struct super_block *s, 3976 u64 objectid, 3977 struct btrfs_root *root) 3978 { 3979 struct inode *inode; 3980 struct btrfs_iget_args args; 3981 args.ino = objectid; 3982 args.root = root; 3983 3984 inode = iget5_locked(s, objectid, btrfs_find_actor, 3985 btrfs_init_locked_inode, 3986 (void *)&args); 3987 return inode; 3988 } 3989 3990 /* Get an inode object given its location and corresponding root. 3991 * Returns in *is_new if the inode was read from disk 3992 */ 3993 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3994 struct btrfs_root *root, int *new) 3995 { 3996 struct inode *inode; 3997 3998 inode = btrfs_iget_locked(s, location->objectid, root); 3999 if (!inode) 4000 return ERR_PTR(-ENOMEM); 4001 4002 if (inode->i_state & I_NEW) { 4003 BTRFS_I(inode)->root = root; 4004 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 4005 btrfs_read_locked_inode(inode); 4006 4007 inode_tree_add(inode); 4008 unlock_new_inode(inode); 4009 if (new) 4010 *new = 1; 4011 } 4012 4013 return inode; 4014 } 4015 4016 static struct inode *new_simple_dir(struct super_block *s, 4017 struct btrfs_key *key, 4018 struct btrfs_root *root) 4019 { 4020 struct inode *inode = new_inode(s); 4021 4022 if (!inode) 4023 return ERR_PTR(-ENOMEM); 4024 4025 BTRFS_I(inode)->root = root; 4026 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 4027 BTRFS_I(inode)->dummy_inode = 1; 4028 4029 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 4030 inode->i_op = &simple_dir_inode_operations; 4031 inode->i_fop = &simple_dir_operations; 4032 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4033 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4034 4035 return inode; 4036 } 4037 4038 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4039 { 4040 struct inode *inode; 4041 struct btrfs_root *root = BTRFS_I(dir)->root; 4042 struct btrfs_root *sub_root = root; 4043 struct btrfs_key location; 4044 int index; 4045 int ret; 4046 4047 dentry->d_op = &btrfs_dentry_operations; 4048 4049 if (dentry->d_name.len > BTRFS_NAME_LEN) 4050 return ERR_PTR(-ENAMETOOLONG); 4051 4052 ret = btrfs_inode_by_name(dir, dentry, &location); 4053 4054 if (ret < 0) 4055 return ERR_PTR(ret); 4056 4057 if (location.objectid == 0) 4058 return NULL; 4059 4060 if (location.type == BTRFS_INODE_ITEM_KEY) { 4061 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4062 return inode; 4063 } 4064 4065 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4066 4067 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4068 ret = fixup_tree_root_location(root, dir, dentry, 4069 &location, &sub_root); 4070 if (ret < 0) { 4071 if (ret != -ENOENT) 4072 inode = ERR_PTR(ret); 4073 else 4074 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4075 } else { 4076 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4077 } 4078 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4079 4080 if (root != sub_root) { 4081 down_read(&root->fs_info->cleanup_work_sem); 4082 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4083 btrfs_orphan_cleanup(sub_root); 4084 up_read(&root->fs_info->cleanup_work_sem); 4085 } 4086 4087 return inode; 4088 } 4089 4090 static int btrfs_dentry_delete(struct dentry *dentry) 4091 { 4092 struct btrfs_root *root; 4093 4094 if (!dentry->d_inode && !IS_ROOT(dentry)) 4095 dentry = dentry->d_parent; 4096 4097 if (dentry->d_inode) { 4098 root = BTRFS_I(dentry->d_inode)->root; 4099 if (btrfs_root_refs(&root->root_item) == 0) 4100 return 1; 4101 } 4102 return 0; 4103 } 4104 4105 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4106 struct nameidata *nd) 4107 { 4108 struct inode *inode; 4109 4110 inode = btrfs_lookup_dentry(dir, dentry); 4111 if (IS_ERR(inode)) 4112 return ERR_CAST(inode); 4113 4114 return d_splice_alias(inode, dentry); 4115 } 4116 4117 static unsigned char btrfs_filetype_table[] = { 4118 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4119 }; 4120 4121 static int btrfs_real_readdir(struct file *filp, void *dirent, 4122 filldir_t filldir) 4123 { 4124 struct inode *inode = filp->f_dentry->d_inode; 4125 struct btrfs_root *root = BTRFS_I(inode)->root; 4126 struct btrfs_item *item; 4127 struct btrfs_dir_item *di; 4128 struct btrfs_key key; 4129 struct btrfs_key found_key; 4130 struct btrfs_path *path; 4131 int ret; 4132 u32 nritems; 4133 struct extent_buffer *leaf; 4134 int slot; 4135 int advance; 4136 unsigned char d_type; 4137 int over = 0; 4138 u32 di_cur; 4139 u32 di_total; 4140 u32 di_len; 4141 int key_type = BTRFS_DIR_INDEX_KEY; 4142 char tmp_name[32]; 4143 char *name_ptr; 4144 int name_len; 4145 4146 /* FIXME, use a real flag for deciding about the key type */ 4147 if (root->fs_info->tree_root == root) 4148 key_type = BTRFS_DIR_ITEM_KEY; 4149 4150 /* special case for "." */ 4151 if (filp->f_pos == 0) { 4152 over = filldir(dirent, ".", 1, 4153 1, inode->i_ino, 4154 DT_DIR); 4155 if (over) 4156 return 0; 4157 filp->f_pos = 1; 4158 } 4159 /* special case for .., just use the back ref */ 4160 if (filp->f_pos == 1) { 4161 u64 pino = parent_ino(filp->f_path.dentry); 4162 over = filldir(dirent, "..", 2, 4163 2, pino, DT_DIR); 4164 if (over) 4165 return 0; 4166 filp->f_pos = 2; 4167 } 4168 path = btrfs_alloc_path(); 4169 path->reada = 2; 4170 4171 btrfs_set_key_type(&key, key_type); 4172 key.offset = filp->f_pos; 4173 key.objectid = inode->i_ino; 4174 4175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4176 if (ret < 0) 4177 goto err; 4178 advance = 0; 4179 4180 while (1) { 4181 leaf = path->nodes[0]; 4182 nritems = btrfs_header_nritems(leaf); 4183 slot = path->slots[0]; 4184 if (advance || slot >= nritems) { 4185 if (slot >= nritems - 1) { 4186 ret = btrfs_next_leaf(root, path); 4187 if (ret) 4188 break; 4189 leaf = path->nodes[0]; 4190 nritems = btrfs_header_nritems(leaf); 4191 slot = path->slots[0]; 4192 } else { 4193 slot++; 4194 path->slots[0]++; 4195 } 4196 } 4197 4198 advance = 1; 4199 item = btrfs_item_nr(leaf, slot); 4200 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4201 4202 if (found_key.objectid != key.objectid) 4203 break; 4204 if (btrfs_key_type(&found_key) != key_type) 4205 break; 4206 if (found_key.offset < filp->f_pos) 4207 continue; 4208 4209 filp->f_pos = found_key.offset; 4210 4211 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4212 di_cur = 0; 4213 di_total = btrfs_item_size(leaf, item); 4214 4215 while (di_cur < di_total) { 4216 struct btrfs_key location; 4217 4218 name_len = btrfs_dir_name_len(leaf, di); 4219 if (name_len <= sizeof(tmp_name)) { 4220 name_ptr = tmp_name; 4221 } else { 4222 name_ptr = kmalloc(name_len, GFP_NOFS); 4223 if (!name_ptr) { 4224 ret = -ENOMEM; 4225 goto err; 4226 } 4227 } 4228 read_extent_buffer(leaf, name_ptr, 4229 (unsigned long)(di + 1), name_len); 4230 4231 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4232 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4233 4234 /* is this a reference to our own snapshot? If so 4235 * skip it 4236 */ 4237 if (location.type == BTRFS_ROOT_ITEM_KEY && 4238 location.objectid == root->root_key.objectid) { 4239 over = 0; 4240 goto skip; 4241 } 4242 over = filldir(dirent, name_ptr, name_len, 4243 found_key.offset, location.objectid, 4244 d_type); 4245 4246 skip: 4247 if (name_ptr != tmp_name) 4248 kfree(name_ptr); 4249 4250 if (over) 4251 goto nopos; 4252 di_len = btrfs_dir_name_len(leaf, di) + 4253 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4254 di_cur += di_len; 4255 di = (struct btrfs_dir_item *)((char *)di + di_len); 4256 } 4257 } 4258 4259 /* Reached end of directory/root. Bump pos past the last item. */ 4260 if (key_type == BTRFS_DIR_INDEX_KEY) 4261 /* 4262 * 32-bit glibc will use getdents64, but then strtol - 4263 * so the last number we can serve is this. 4264 */ 4265 filp->f_pos = 0x7fffffff; 4266 else 4267 filp->f_pos++; 4268 nopos: 4269 ret = 0; 4270 err: 4271 btrfs_free_path(path); 4272 return ret; 4273 } 4274 4275 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4276 { 4277 struct btrfs_root *root = BTRFS_I(inode)->root; 4278 struct btrfs_trans_handle *trans; 4279 int ret = 0; 4280 4281 if (BTRFS_I(inode)->dummy_inode) 4282 return 0; 4283 4284 if (wbc->sync_mode == WB_SYNC_ALL) { 4285 trans = btrfs_join_transaction(root, 1); 4286 btrfs_set_trans_block_group(trans, inode); 4287 ret = btrfs_commit_transaction(trans, root); 4288 } 4289 return ret; 4290 } 4291 4292 /* 4293 * This is somewhat expensive, updating the tree every time the 4294 * inode changes. But, it is most likely to find the inode in cache. 4295 * FIXME, needs more benchmarking...there are no reasons other than performance 4296 * to keep or drop this code. 4297 */ 4298 void btrfs_dirty_inode(struct inode *inode) 4299 { 4300 struct btrfs_root *root = BTRFS_I(inode)->root; 4301 struct btrfs_trans_handle *trans; 4302 int ret; 4303 4304 if (BTRFS_I(inode)->dummy_inode) 4305 return; 4306 4307 trans = btrfs_join_transaction(root, 1); 4308 btrfs_set_trans_block_group(trans, inode); 4309 4310 ret = btrfs_update_inode(trans, root, inode); 4311 if (ret && ret == -ENOSPC) { 4312 /* whoops, lets try again with the full transaction */ 4313 btrfs_end_transaction(trans, root); 4314 trans = btrfs_start_transaction(root, 1); 4315 if (IS_ERR(trans)) { 4316 if (printk_ratelimit()) { 4317 printk(KERN_ERR "btrfs: fail to " 4318 "dirty inode %lu error %ld\n", 4319 inode->i_ino, PTR_ERR(trans)); 4320 } 4321 return; 4322 } 4323 btrfs_set_trans_block_group(trans, inode); 4324 4325 ret = btrfs_update_inode(trans, root, inode); 4326 if (ret) { 4327 if (printk_ratelimit()) { 4328 printk(KERN_ERR "btrfs: fail to " 4329 "dirty inode %lu error %d\n", 4330 inode->i_ino, ret); 4331 } 4332 } 4333 } 4334 btrfs_end_transaction(trans, root); 4335 } 4336 4337 /* 4338 * find the highest existing sequence number in a directory 4339 * and then set the in-memory index_cnt variable to reflect 4340 * free sequence numbers 4341 */ 4342 static int btrfs_set_inode_index_count(struct inode *inode) 4343 { 4344 struct btrfs_root *root = BTRFS_I(inode)->root; 4345 struct btrfs_key key, found_key; 4346 struct btrfs_path *path; 4347 struct extent_buffer *leaf; 4348 int ret; 4349 4350 key.objectid = inode->i_ino; 4351 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4352 key.offset = (u64)-1; 4353 4354 path = btrfs_alloc_path(); 4355 if (!path) 4356 return -ENOMEM; 4357 4358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4359 if (ret < 0) 4360 goto out; 4361 /* FIXME: we should be able to handle this */ 4362 if (ret == 0) 4363 goto out; 4364 ret = 0; 4365 4366 /* 4367 * MAGIC NUMBER EXPLANATION: 4368 * since we search a directory based on f_pos we have to start at 2 4369 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4370 * else has to start at 2 4371 */ 4372 if (path->slots[0] == 0) { 4373 BTRFS_I(inode)->index_cnt = 2; 4374 goto out; 4375 } 4376 4377 path->slots[0]--; 4378 4379 leaf = path->nodes[0]; 4380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4381 4382 if (found_key.objectid != inode->i_ino || 4383 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4384 BTRFS_I(inode)->index_cnt = 2; 4385 goto out; 4386 } 4387 4388 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4389 out: 4390 btrfs_free_path(path); 4391 return ret; 4392 } 4393 4394 /* 4395 * helper to find a free sequence number in a given directory. This current 4396 * code is very simple, later versions will do smarter things in the btree 4397 */ 4398 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4399 { 4400 int ret = 0; 4401 4402 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4403 ret = btrfs_set_inode_index_count(dir); 4404 if (ret) 4405 return ret; 4406 } 4407 4408 *index = BTRFS_I(dir)->index_cnt; 4409 BTRFS_I(dir)->index_cnt++; 4410 4411 return ret; 4412 } 4413 4414 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4415 struct btrfs_root *root, 4416 struct inode *dir, 4417 const char *name, int name_len, 4418 u64 ref_objectid, u64 objectid, 4419 u64 alloc_hint, int mode, u64 *index) 4420 { 4421 struct inode *inode; 4422 struct btrfs_inode_item *inode_item; 4423 struct btrfs_key *location; 4424 struct btrfs_path *path; 4425 struct btrfs_inode_ref *ref; 4426 struct btrfs_key key[2]; 4427 u32 sizes[2]; 4428 unsigned long ptr; 4429 int ret; 4430 int owner; 4431 4432 path = btrfs_alloc_path(); 4433 BUG_ON(!path); 4434 4435 inode = new_inode(root->fs_info->sb); 4436 if (!inode) 4437 return ERR_PTR(-ENOMEM); 4438 4439 if (dir) { 4440 ret = btrfs_set_inode_index(dir, index); 4441 if (ret) { 4442 iput(inode); 4443 return ERR_PTR(ret); 4444 } 4445 } 4446 /* 4447 * index_cnt is ignored for everything but a dir, 4448 * btrfs_get_inode_index_count has an explanation for the magic 4449 * number 4450 */ 4451 BTRFS_I(inode)->index_cnt = 2; 4452 BTRFS_I(inode)->root = root; 4453 BTRFS_I(inode)->generation = trans->transid; 4454 btrfs_set_inode_space_info(root, inode); 4455 4456 if (mode & S_IFDIR) 4457 owner = 0; 4458 else 4459 owner = 1; 4460 BTRFS_I(inode)->block_group = 4461 btrfs_find_block_group(root, 0, alloc_hint, owner); 4462 4463 key[0].objectid = objectid; 4464 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4465 key[0].offset = 0; 4466 4467 key[1].objectid = objectid; 4468 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4469 key[1].offset = ref_objectid; 4470 4471 sizes[0] = sizeof(struct btrfs_inode_item); 4472 sizes[1] = name_len + sizeof(*ref); 4473 4474 path->leave_spinning = 1; 4475 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4476 if (ret != 0) 4477 goto fail; 4478 4479 inode_init_owner(inode, dir, mode); 4480 inode->i_ino = objectid; 4481 inode_set_bytes(inode, 0); 4482 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4483 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4484 struct btrfs_inode_item); 4485 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4486 4487 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4488 struct btrfs_inode_ref); 4489 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4490 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4491 ptr = (unsigned long)(ref + 1); 4492 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4493 4494 btrfs_mark_buffer_dirty(path->nodes[0]); 4495 btrfs_free_path(path); 4496 4497 location = &BTRFS_I(inode)->location; 4498 location->objectid = objectid; 4499 location->offset = 0; 4500 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4501 4502 btrfs_inherit_iflags(inode, dir); 4503 4504 if ((mode & S_IFREG)) { 4505 if (btrfs_test_opt(root, NODATASUM)) 4506 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4507 if (btrfs_test_opt(root, NODATACOW)) 4508 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4509 } 4510 4511 insert_inode_hash(inode); 4512 inode_tree_add(inode); 4513 return inode; 4514 fail: 4515 if (dir) 4516 BTRFS_I(dir)->index_cnt--; 4517 btrfs_free_path(path); 4518 iput(inode); 4519 return ERR_PTR(ret); 4520 } 4521 4522 static inline u8 btrfs_inode_type(struct inode *inode) 4523 { 4524 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4525 } 4526 4527 /* 4528 * utility function to add 'inode' into 'parent_inode' with 4529 * a give name and a given sequence number. 4530 * if 'add_backref' is true, also insert a backref from the 4531 * inode to the parent directory. 4532 */ 4533 int btrfs_add_link(struct btrfs_trans_handle *trans, 4534 struct inode *parent_inode, struct inode *inode, 4535 const char *name, int name_len, int add_backref, u64 index) 4536 { 4537 int ret = 0; 4538 struct btrfs_key key; 4539 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4540 4541 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4542 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4543 } else { 4544 key.objectid = inode->i_ino; 4545 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4546 key.offset = 0; 4547 } 4548 4549 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 4550 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4551 key.objectid, root->root_key.objectid, 4552 parent_inode->i_ino, 4553 index, name, name_len); 4554 } else if (add_backref) { 4555 ret = btrfs_insert_inode_ref(trans, root, 4556 name, name_len, inode->i_ino, 4557 parent_inode->i_ino, index); 4558 } 4559 4560 if (ret == 0) { 4561 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4562 parent_inode->i_ino, &key, 4563 btrfs_inode_type(inode), index); 4564 BUG_ON(ret); 4565 4566 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4567 name_len * 2); 4568 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4569 ret = btrfs_update_inode(trans, root, parent_inode); 4570 } 4571 return ret; 4572 } 4573 4574 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4575 struct dentry *dentry, struct inode *inode, 4576 int backref, u64 index) 4577 { 4578 int err = btrfs_add_link(trans, dentry->d_parent->d_inode, 4579 inode, dentry->d_name.name, 4580 dentry->d_name.len, backref, index); 4581 if (!err) { 4582 d_instantiate(dentry, inode); 4583 return 0; 4584 } 4585 if (err > 0) 4586 err = -EEXIST; 4587 return err; 4588 } 4589 4590 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4591 int mode, dev_t rdev) 4592 { 4593 struct btrfs_trans_handle *trans; 4594 struct btrfs_root *root = BTRFS_I(dir)->root; 4595 struct inode *inode = NULL; 4596 int err; 4597 int drop_inode = 0; 4598 u64 objectid; 4599 unsigned long nr = 0; 4600 u64 index = 0; 4601 4602 if (!new_valid_dev(rdev)) 4603 return -EINVAL; 4604 4605 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4606 if (err) 4607 return err; 4608 4609 /* 4610 * 2 for inode item and ref 4611 * 2 for dir items 4612 * 1 for xattr if selinux is on 4613 */ 4614 trans = btrfs_start_transaction(root, 5); 4615 if (IS_ERR(trans)) 4616 return PTR_ERR(trans); 4617 4618 btrfs_set_trans_block_group(trans, dir); 4619 4620 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4621 dentry->d_name.len, 4622 dentry->d_parent->d_inode->i_ino, objectid, 4623 BTRFS_I(dir)->block_group, mode, &index); 4624 err = PTR_ERR(inode); 4625 if (IS_ERR(inode)) 4626 goto out_unlock; 4627 4628 err = btrfs_init_inode_security(trans, inode, dir); 4629 if (err) { 4630 drop_inode = 1; 4631 goto out_unlock; 4632 } 4633 4634 btrfs_set_trans_block_group(trans, inode); 4635 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4636 if (err) 4637 drop_inode = 1; 4638 else { 4639 inode->i_op = &btrfs_special_inode_operations; 4640 init_special_inode(inode, inode->i_mode, rdev); 4641 btrfs_update_inode(trans, root, inode); 4642 } 4643 btrfs_update_inode_block_group(trans, inode); 4644 btrfs_update_inode_block_group(trans, dir); 4645 out_unlock: 4646 nr = trans->blocks_used; 4647 btrfs_end_transaction_throttle(trans, root); 4648 btrfs_btree_balance_dirty(root, nr); 4649 if (drop_inode) { 4650 inode_dec_link_count(inode); 4651 iput(inode); 4652 } 4653 return err; 4654 } 4655 4656 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4657 int mode, struct nameidata *nd) 4658 { 4659 struct btrfs_trans_handle *trans; 4660 struct btrfs_root *root = BTRFS_I(dir)->root; 4661 struct inode *inode = NULL; 4662 int drop_inode = 0; 4663 int err; 4664 unsigned long nr = 0; 4665 u64 objectid; 4666 u64 index = 0; 4667 4668 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4669 if (err) 4670 return err; 4671 /* 4672 * 2 for inode item and ref 4673 * 2 for dir items 4674 * 1 for xattr if selinux is on 4675 */ 4676 trans = btrfs_start_transaction(root, 5); 4677 if (IS_ERR(trans)) 4678 return PTR_ERR(trans); 4679 4680 btrfs_set_trans_block_group(trans, dir); 4681 4682 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4683 dentry->d_name.len, 4684 dentry->d_parent->d_inode->i_ino, 4685 objectid, BTRFS_I(dir)->block_group, mode, 4686 &index); 4687 err = PTR_ERR(inode); 4688 if (IS_ERR(inode)) 4689 goto out_unlock; 4690 4691 err = btrfs_init_inode_security(trans, inode, dir); 4692 if (err) { 4693 drop_inode = 1; 4694 goto out_unlock; 4695 } 4696 4697 btrfs_set_trans_block_group(trans, inode); 4698 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 4699 if (err) 4700 drop_inode = 1; 4701 else { 4702 inode->i_mapping->a_ops = &btrfs_aops; 4703 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4704 inode->i_fop = &btrfs_file_operations; 4705 inode->i_op = &btrfs_file_inode_operations; 4706 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4707 } 4708 btrfs_update_inode_block_group(trans, inode); 4709 btrfs_update_inode_block_group(trans, dir); 4710 out_unlock: 4711 nr = trans->blocks_used; 4712 btrfs_end_transaction_throttle(trans, root); 4713 if (drop_inode) { 4714 inode_dec_link_count(inode); 4715 iput(inode); 4716 } 4717 btrfs_btree_balance_dirty(root, nr); 4718 return err; 4719 } 4720 4721 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4722 struct dentry *dentry) 4723 { 4724 struct btrfs_trans_handle *trans; 4725 struct btrfs_root *root = BTRFS_I(dir)->root; 4726 struct inode *inode = old_dentry->d_inode; 4727 u64 index; 4728 unsigned long nr = 0; 4729 int err; 4730 int drop_inode = 0; 4731 4732 if (inode->i_nlink == 0) 4733 return -ENOENT; 4734 4735 /* do not allow sys_link's with other subvols of the same device */ 4736 if (root->objectid != BTRFS_I(inode)->root->objectid) 4737 return -EPERM; 4738 4739 btrfs_inc_nlink(inode); 4740 4741 err = btrfs_set_inode_index(dir, &index); 4742 if (err) 4743 goto fail; 4744 4745 /* 4746 * 1 item for inode ref 4747 * 2 items for dir items 4748 */ 4749 trans = btrfs_start_transaction(root, 3); 4750 if (IS_ERR(trans)) { 4751 err = PTR_ERR(trans); 4752 goto fail; 4753 } 4754 4755 btrfs_set_trans_block_group(trans, dir); 4756 atomic_inc(&inode->i_count); 4757 4758 err = btrfs_add_nondir(trans, dentry, inode, 1, index); 4759 4760 if (err) { 4761 drop_inode = 1; 4762 } else { 4763 btrfs_update_inode_block_group(trans, dir); 4764 err = btrfs_update_inode(trans, root, inode); 4765 BUG_ON(err); 4766 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent); 4767 } 4768 4769 nr = trans->blocks_used; 4770 btrfs_end_transaction_throttle(trans, root); 4771 fail: 4772 if (drop_inode) { 4773 inode_dec_link_count(inode); 4774 iput(inode); 4775 } 4776 btrfs_btree_balance_dirty(root, nr); 4777 return err; 4778 } 4779 4780 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4781 { 4782 struct inode *inode = NULL; 4783 struct btrfs_trans_handle *trans; 4784 struct btrfs_root *root = BTRFS_I(dir)->root; 4785 int err = 0; 4786 int drop_on_err = 0; 4787 u64 objectid = 0; 4788 u64 index = 0; 4789 unsigned long nr = 1; 4790 4791 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 4792 if (err) 4793 return err; 4794 4795 /* 4796 * 2 items for inode and ref 4797 * 2 items for dir items 4798 * 1 for xattr if selinux is on 4799 */ 4800 trans = btrfs_start_transaction(root, 5); 4801 if (IS_ERR(trans)) 4802 return PTR_ERR(trans); 4803 btrfs_set_trans_block_group(trans, dir); 4804 4805 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4806 dentry->d_name.len, 4807 dentry->d_parent->d_inode->i_ino, objectid, 4808 BTRFS_I(dir)->block_group, S_IFDIR | mode, 4809 &index); 4810 if (IS_ERR(inode)) { 4811 err = PTR_ERR(inode); 4812 goto out_fail; 4813 } 4814 4815 drop_on_err = 1; 4816 4817 err = btrfs_init_inode_security(trans, inode, dir); 4818 if (err) 4819 goto out_fail; 4820 4821 inode->i_op = &btrfs_dir_inode_operations; 4822 inode->i_fop = &btrfs_dir_file_operations; 4823 btrfs_set_trans_block_group(trans, inode); 4824 4825 btrfs_i_size_write(inode, 0); 4826 err = btrfs_update_inode(trans, root, inode); 4827 if (err) 4828 goto out_fail; 4829 4830 err = btrfs_add_link(trans, dentry->d_parent->d_inode, 4831 inode, dentry->d_name.name, 4832 dentry->d_name.len, 0, index); 4833 if (err) 4834 goto out_fail; 4835 4836 d_instantiate(dentry, inode); 4837 drop_on_err = 0; 4838 btrfs_update_inode_block_group(trans, inode); 4839 btrfs_update_inode_block_group(trans, dir); 4840 4841 out_fail: 4842 nr = trans->blocks_used; 4843 btrfs_end_transaction_throttle(trans, root); 4844 if (drop_on_err) 4845 iput(inode); 4846 btrfs_btree_balance_dirty(root, nr); 4847 return err; 4848 } 4849 4850 /* helper for btfs_get_extent. Given an existing extent in the tree, 4851 * and an extent that you want to insert, deal with overlap and insert 4852 * the new extent into the tree. 4853 */ 4854 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4855 struct extent_map *existing, 4856 struct extent_map *em, 4857 u64 map_start, u64 map_len) 4858 { 4859 u64 start_diff; 4860 4861 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4862 start_diff = map_start - em->start; 4863 em->start = map_start; 4864 em->len = map_len; 4865 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4866 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4867 em->block_start += start_diff; 4868 em->block_len -= start_diff; 4869 } 4870 return add_extent_mapping(em_tree, em); 4871 } 4872 4873 static noinline int uncompress_inline(struct btrfs_path *path, 4874 struct inode *inode, struct page *page, 4875 size_t pg_offset, u64 extent_offset, 4876 struct btrfs_file_extent_item *item) 4877 { 4878 int ret; 4879 struct extent_buffer *leaf = path->nodes[0]; 4880 char *tmp; 4881 size_t max_size; 4882 unsigned long inline_size; 4883 unsigned long ptr; 4884 4885 WARN_ON(pg_offset != 0); 4886 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4887 inline_size = btrfs_file_extent_inline_item_len(leaf, 4888 btrfs_item_nr(leaf, path->slots[0])); 4889 tmp = kmalloc(inline_size, GFP_NOFS); 4890 ptr = btrfs_file_extent_inline_start(item); 4891 4892 read_extent_buffer(leaf, tmp, ptr, inline_size); 4893 4894 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4895 ret = btrfs_zlib_decompress(tmp, page, extent_offset, 4896 inline_size, max_size); 4897 if (ret) { 4898 char *kaddr = kmap_atomic(page, KM_USER0); 4899 unsigned long copy_size = min_t(u64, 4900 PAGE_CACHE_SIZE - pg_offset, 4901 max_size - extent_offset); 4902 memset(kaddr + pg_offset, 0, copy_size); 4903 kunmap_atomic(kaddr, KM_USER0); 4904 } 4905 kfree(tmp); 4906 return 0; 4907 } 4908 4909 /* 4910 * a bit scary, this does extent mapping from logical file offset to the disk. 4911 * the ugly parts come from merging extents from the disk with the in-ram 4912 * representation. This gets more complex because of the data=ordered code, 4913 * where the in-ram extents might be locked pending data=ordered completion. 4914 * 4915 * This also copies inline extents directly into the page. 4916 */ 4917 4918 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4919 size_t pg_offset, u64 start, u64 len, 4920 int create) 4921 { 4922 int ret; 4923 int err = 0; 4924 u64 bytenr; 4925 u64 extent_start = 0; 4926 u64 extent_end = 0; 4927 u64 objectid = inode->i_ino; 4928 u32 found_type; 4929 struct btrfs_path *path = NULL; 4930 struct btrfs_root *root = BTRFS_I(inode)->root; 4931 struct btrfs_file_extent_item *item; 4932 struct extent_buffer *leaf; 4933 struct btrfs_key found_key; 4934 struct extent_map *em = NULL; 4935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4937 struct btrfs_trans_handle *trans = NULL; 4938 int compressed; 4939 4940 again: 4941 read_lock(&em_tree->lock); 4942 em = lookup_extent_mapping(em_tree, start, len); 4943 if (em) 4944 em->bdev = root->fs_info->fs_devices->latest_bdev; 4945 read_unlock(&em_tree->lock); 4946 4947 if (em) { 4948 if (em->start > start || em->start + em->len <= start) 4949 free_extent_map(em); 4950 else if (em->block_start == EXTENT_MAP_INLINE && page) 4951 free_extent_map(em); 4952 else 4953 goto out; 4954 } 4955 em = alloc_extent_map(GFP_NOFS); 4956 if (!em) { 4957 err = -ENOMEM; 4958 goto out; 4959 } 4960 em->bdev = root->fs_info->fs_devices->latest_bdev; 4961 em->start = EXTENT_MAP_HOLE; 4962 em->orig_start = EXTENT_MAP_HOLE; 4963 em->len = (u64)-1; 4964 em->block_len = (u64)-1; 4965 4966 if (!path) { 4967 path = btrfs_alloc_path(); 4968 BUG_ON(!path); 4969 } 4970 4971 ret = btrfs_lookup_file_extent(trans, root, path, 4972 objectid, start, trans != NULL); 4973 if (ret < 0) { 4974 err = ret; 4975 goto out; 4976 } 4977 4978 if (ret != 0) { 4979 if (path->slots[0] == 0) 4980 goto not_found; 4981 path->slots[0]--; 4982 } 4983 4984 leaf = path->nodes[0]; 4985 item = btrfs_item_ptr(leaf, path->slots[0], 4986 struct btrfs_file_extent_item); 4987 /* are we inside the extent that was found? */ 4988 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4989 found_type = btrfs_key_type(&found_key); 4990 if (found_key.objectid != objectid || 4991 found_type != BTRFS_EXTENT_DATA_KEY) { 4992 goto not_found; 4993 } 4994 4995 found_type = btrfs_file_extent_type(leaf, item); 4996 extent_start = found_key.offset; 4997 compressed = btrfs_file_extent_compression(leaf, item); 4998 if (found_type == BTRFS_FILE_EXTENT_REG || 4999 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5000 extent_end = extent_start + 5001 btrfs_file_extent_num_bytes(leaf, item); 5002 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5003 size_t size; 5004 size = btrfs_file_extent_inline_len(leaf, item); 5005 extent_end = (extent_start + size + root->sectorsize - 1) & 5006 ~((u64)root->sectorsize - 1); 5007 } 5008 5009 if (start >= extent_end) { 5010 path->slots[0]++; 5011 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5012 ret = btrfs_next_leaf(root, path); 5013 if (ret < 0) { 5014 err = ret; 5015 goto out; 5016 } 5017 if (ret > 0) 5018 goto not_found; 5019 leaf = path->nodes[0]; 5020 } 5021 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5022 if (found_key.objectid != objectid || 5023 found_key.type != BTRFS_EXTENT_DATA_KEY) 5024 goto not_found; 5025 if (start + len <= found_key.offset) 5026 goto not_found; 5027 em->start = start; 5028 em->len = found_key.offset - start; 5029 goto not_found_em; 5030 } 5031 5032 if (found_type == BTRFS_FILE_EXTENT_REG || 5033 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5034 em->start = extent_start; 5035 em->len = extent_end - extent_start; 5036 em->orig_start = extent_start - 5037 btrfs_file_extent_offset(leaf, item); 5038 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5039 if (bytenr == 0) { 5040 em->block_start = EXTENT_MAP_HOLE; 5041 goto insert; 5042 } 5043 if (compressed) { 5044 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5045 em->block_start = bytenr; 5046 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5047 item); 5048 } else { 5049 bytenr += btrfs_file_extent_offset(leaf, item); 5050 em->block_start = bytenr; 5051 em->block_len = em->len; 5052 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5053 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5054 } 5055 goto insert; 5056 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5057 unsigned long ptr; 5058 char *map; 5059 size_t size; 5060 size_t extent_offset; 5061 size_t copy_size; 5062 5063 em->block_start = EXTENT_MAP_INLINE; 5064 if (!page || create) { 5065 em->start = extent_start; 5066 em->len = extent_end - extent_start; 5067 goto out; 5068 } 5069 5070 size = btrfs_file_extent_inline_len(leaf, item); 5071 extent_offset = page_offset(page) + pg_offset - extent_start; 5072 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5073 size - extent_offset); 5074 em->start = extent_start + extent_offset; 5075 em->len = (copy_size + root->sectorsize - 1) & 5076 ~((u64)root->sectorsize - 1); 5077 em->orig_start = EXTENT_MAP_INLINE; 5078 if (compressed) 5079 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5080 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5081 if (create == 0 && !PageUptodate(page)) { 5082 if (btrfs_file_extent_compression(leaf, item) == 5083 BTRFS_COMPRESS_ZLIB) { 5084 ret = uncompress_inline(path, inode, page, 5085 pg_offset, 5086 extent_offset, item); 5087 BUG_ON(ret); 5088 } else { 5089 map = kmap(page); 5090 read_extent_buffer(leaf, map + pg_offset, ptr, 5091 copy_size); 5092 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5093 memset(map + pg_offset + copy_size, 0, 5094 PAGE_CACHE_SIZE - pg_offset - 5095 copy_size); 5096 } 5097 kunmap(page); 5098 } 5099 flush_dcache_page(page); 5100 } else if (create && PageUptodate(page)) { 5101 WARN_ON(1); 5102 if (!trans) { 5103 kunmap(page); 5104 free_extent_map(em); 5105 em = NULL; 5106 btrfs_release_path(root, path); 5107 trans = btrfs_join_transaction(root, 1); 5108 goto again; 5109 } 5110 map = kmap(page); 5111 write_extent_buffer(leaf, map + pg_offset, ptr, 5112 copy_size); 5113 kunmap(page); 5114 btrfs_mark_buffer_dirty(leaf); 5115 } 5116 set_extent_uptodate(io_tree, em->start, 5117 extent_map_end(em) - 1, GFP_NOFS); 5118 goto insert; 5119 } else { 5120 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5121 WARN_ON(1); 5122 } 5123 not_found: 5124 em->start = start; 5125 em->len = len; 5126 not_found_em: 5127 em->block_start = EXTENT_MAP_HOLE; 5128 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5129 insert: 5130 btrfs_release_path(root, path); 5131 if (em->start > start || extent_map_end(em) <= start) { 5132 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5133 "[%llu %llu]\n", (unsigned long long)em->start, 5134 (unsigned long long)em->len, 5135 (unsigned long long)start, 5136 (unsigned long long)len); 5137 err = -EIO; 5138 goto out; 5139 } 5140 5141 err = 0; 5142 write_lock(&em_tree->lock); 5143 ret = add_extent_mapping(em_tree, em); 5144 /* it is possible that someone inserted the extent into the tree 5145 * while we had the lock dropped. It is also possible that 5146 * an overlapping map exists in the tree 5147 */ 5148 if (ret == -EEXIST) { 5149 struct extent_map *existing; 5150 5151 ret = 0; 5152 5153 existing = lookup_extent_mapping(em_tree, start, len); 5154 if (existing && (existing->start > start || 5155 existing->start + existing->len <= start)) { 5156 free_extent_map(existing); 5157 existing = NULL; 5158 } 5159 if (!existing) { 5160 existing = lookup_extent_mapping(em_tree, em->start, 5161 em->len); 5162 if (existing) { 5163 err = merge_extent_mapping(em_tree, existing, 5164 em, start, 5165 root->sectorsize); 5166 free_extent_map(existing); 5167 if (err) { 5168 free_extent_map(em); 5169 em = NULL; 5170 } 5171 } else { 5172 err = -EIO; 5173 free_extent_map(em); 5174 em = NULL; 5175 } 5176 } else { 5177 free_extent_map(em); 5178 em = existing; 5179 err = 0; 5180 } 5181 } 5182 write_unlock(&em_tree->lock); 5183 out: 5184 if (path) 5185 btrfs_free_path(path); 5186 if (trans) { 5187 ret = btrfs_end_transaction(trans, root); 5188 if (!err) 5189 err = ret; 5190 } 5191 if (err) { 5192 free_extent_map(em); 5193 return ERR_PTR(err); 5194 } 5195 return em; 5196 } 5197 5198 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5199 u64 start, u64 len) 5200 { 5201 struct btrfs_root *root = BTRFS_I(inode)->root; 5202 struct btrfs_trans_handle *trans; 5203 struct extent_map *em; 5204 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5205 struct btrfs_key ins; 5206 u64 alloc_hint; 5207 int ret; 5208 5209 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5210 5211 trans = btrfs_join_transaction(root, 0); 5212 if (!trans) 5213 return ERR_PTR(-ENOMEM); 5214 5215 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5216 5217 alloc_hint = get_extent_allocation_hint(inode, start, len); 5218 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5219 alloc_hint, (u64)-1, &ins, 1); 5220 if (ret) { 5221 em = ERR_PTR(ret); 5222 goto out; 5223 } 5224 5225 em = alloc_extent_map(GFP_NOFS); 5226 if (!em) { 5227 em = ERR_PTR(-ENOMEM); 5228 goto out; 5229 } 5230 5231 em->start = start; 5232 em->orig_start = em->start; 5233 em->len = ins.offset; 5234 5235 em->block_start = ins.objectid; 5236 em->block_len = ins.offset; 5237 em->bdev = root->fs_info->fs_devices->latest_bdev; 5238 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5239 5240 while (1) { 5241 write_lock(&em_tree->lock); 5242 ret = add_extent_mapping(em_tree, em); 5243 write_unlock(&em_tree->lock); 5244 if (ret != -EEXIST) 5245 break; 5246 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5247 } 5248 5249 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5250 ins.offset, ins.offset, 0); 5251 if (ret) { 5252 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5253 em = ERR_PTR(ret); 5254 } 5255 out: 5256 btrfs_end_transaction(trans, root); 5257 return em; 5258 } 5259 5260 /* 5261 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5262 * block must be cow'd 5263 */ 5264 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5265 struct inode *inode, u64 offset, u64 len) 5266 { 5267 struct btrfs_path *path; 5268 int ret; 5269 struct extent_buffer *leaf; 5270 struct btrfs_root *root = BTRFS_I(inode)->root; 5271 struct btrfs_file_extent_item *fi; 5272 struct btrfs_key key; 5273 u64 disk_bytenr; 5274 u64 backref_offset; 5275 u64 extent_end; 5276 u64 num_bytes; 5277 int slot; 5278 int found_type; 5279 5280 path = btrfs_alloc_path(); 5281 if (!path) 5282 return -ENOMEM; 5283 5284 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino, 5285 offset, 0); 5286 if (ret < 0) 5287 goto out; 5288 5289 slot = path->slots[0]; 5290 if (ret == 1) { 5291 if (slot == 0) { 5292 /* can't find the item, must cow */ 5293 ret = 0; 5294 goto out; 5295 } 5296 slot--; 5297 } 5298 ret = 0; 5299 leaf = path->nodes[0]; 5300 btrfs_item_key_to_cpu(leaf, &key, slot); 5301 if (key.objectid != inode->i_ino || 5302 key.type != BTRFS_EXTENT_DATA_KEY) { 5303 /* not our file or wrong item type, must cow */ 5304 goto out; 5305 } 5306 5307 if (key.offset > offset) { 5308 /* Wrong offset, must cow */ 5309 goto out; 5310 } 5311 5312 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5313 found_type = btrfs_file_extent_type(leaf, fi); 5314 if (found_type != BTRFS_FILE_EXTENT_REG && 5315 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5316 /* not a regular extent, must cow */ 5317 goto out; 5318 } 5319 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5320 backref_offset = btrfs_file_extent_offset(leaf, fi); 5321 5322 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5323 if (extent_end < offset + len) { 5324 /* extent doesn't include our full range, must cow */ 5325 goto out; 5326 } 5327 5328 if (btrfs_extent_readonly(root, disk_bytenr)) 5329 goto out; 5330 5331 /* 5332 * look for other files referencing this extent, if we 5333 * find any we must cow 5334 */ 5335 if (btrfs_cross_ref_exist(trans, root, inode->i_ino, 5336 key.offset - backref_offset, disk_bytenr)) 5337 goto out; 5338 5339 /* 5340 * adjust disk_bytenr and num_bytes to cover just the bytes 5341 * in this extent we are about to write. If there 5342 * are any csums in that range we have to cow in order 5343 * to keep the csums correct 5344 */ 5345 disk_bytenr += backref_offset; 5346 disk_bytenr += offset - key.offset; 5347 num_bytes = min(offset + len, extent_end) - offset; 5348 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5349 goto out; 5350 /* 5351 * all of the above have passed, it is safe to overwrite this extent 5352 * without cow 5353 */ 5354 ret = 1; 5355 out: 5356 btrfs_free_path(path); 5357 return ret; 5358 } 5359 5360 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5361 struct buffer_head *bh_result, int create) 5362 { 5363 struct extent_map *em; 5364 struct btrfs_root *root = BTRFS_I(inode)->root; 5365 u64 start = iblock << inode->i_blkbits; 5366 u64 len = bh_result->b_size; 5367 struct btrfs_trans_handle *trans; 5368 5369 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5370 if (IS_ERR(em)) 5371 return PTR_ERR(em); 5372 5373 /* 5374 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5375 * io. INLINE is special, and we could probably kludge it in here, but 5376 * it's still buffered so for safety lets just fall back to the generic 5377 * buffered path. 5378 * 5379 * For COMPRESSED we _have_ to read the entire extent in so we can 5380 * decompress it, so there will be buffering required no matter what we 5381 * do, so go ahead and fallback to buffered. 5382 * 5383 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5384 * to buffered IO. Don't blame me, this is the price we pay for using 5385 * the generic code. 5386 */ 5387 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5388 em->block_start == EXTENT_MAP_INLINE) { 5389 free_extent_map(em); 5390 return -ENOTBLK; 5391 } 5392 5393 /* Just a good old fashioned hole, return */ 5394 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5395 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5396 free_extent_map(em); 5397 /* DIO will do one hole at a time, so just unlock a sector */ 5398 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5399 start + root->sectorsize - 1, GFP_NOFS); 5400 return 0; 5401 } 5402 5403 /* 5404 * We don't allocate a new extent in the following cases 5405 * 5406 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5407 * existing extent. 5408 * 2) The extent is marked as PREALLOC. We're good to go here and can 5409 * just use the extent. 5410 * 5411 */ 5412 if (!create) { 5413 len = em->len - (start - em->start); 5414 goto map; 5415 } 5416 5417 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5418 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5419 em->block_start != EXTENT_MAP_HOLE)) { 5420 int type; 5421 int ret; 5422 u64 block_start; 5423 5424 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5425 type = BTRFS_ORDERED_PREALLOC; 5426 else 5427 type = BTRFS_ORDERED_NOCOW; 5428 len = min(len, em->len - (start - em->start)); 5429 block_start = em->block_start + (start - em->start); 5430 5431 /* 5432 * we're not going to log anything, but we do need 5433 * to make sure the current transaction stays open 5434 * while we look for nocow cross refs 5435 */ 5436 trans = btrfs_join_transaction(root, 0); 5437 if (!trans) 5438 goto must_cow; 5439 5440 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5441 ret = btrfs_add_ordered_extent_dio(inode, start, 5442 block_start, len, len, type); 5443 btrfs_end_transaction(trans, root); 5444 if (ret) { 5445 free_extent_map(em); 5446 return ret; 5447 } 5448 goto unlock; 5449 } 5450 btrfs_end_transaction(trans, root); 5451 } 5452 must_cow: 5453 /* 5454 * this will cow the extent, reset the len in case we changed 5455 * it above 5456 */ 5457 len = bh_result->b_size; 5458 free_extent_map(em); 5459 em = btrfs_new_extent_direct(inode, start, len); 5460 if (IS_ERR(em)) 5461 return PTR_ERR(em); 5462 len = min(len, em->len - (start - em->start)); 5463 unlock: 5464 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5465 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5466 0, NULL, GFP_NOFS); 5467 map: 5468 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5469 inode->i_blkbits; 5470 bh_result->b_size = len; 5471 bh_result->b_bdev = em->bdev; 5472 set_buffer_mapped(bh_result); 5473 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5474 set_buffer_new(bh_result); 5475 5476 free_extent_map(em); 5477 5478 return 0; 5479 } 5480 5481 struct btrfs_dio_private { 5482 struct inode *inode; 5483 u64 logical_offset; 5484 u64 disk_bytenr; 5485 u64 bytes; 5486 u32 *csums; 5487 void *private; 5488 }; 5489 5490 static void btrfs_endio_direct_read(struct bio *bio, int err) 5491 { 5492 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5493 struct bio_vec *bvec = bio->bi_io_vec; 5494 struct btrfs_dio_private *dip = bio->bi_private; 5495 struct inode *inode = dip->inode; 5496 struct btrfs_root *root = BTRFS_I(inode)->root; 5497 u64 start; 5498 u32 *private = dip->csums; 5499 5500 start = dip->logical_offset; 5501 do { 5502 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5503 struct page *page = bvec->bv_page; 5504 char *kaddr; 5505 u32 csum = ~(u32)0; 5506 unsigned long flags; 5507 5508 local_irq_save(flags); 5509 kaddr = kmap_atomic(page, KM_IRQ0); 5510 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5511 csum, bvec->bv_len); 5512 btrfs_csum_final(csum, (char *)&csum); 5513 kunmap_atomic(kaddr, KM_IRQ0); 5514 local_irq_restore(flags); 5515 5516 flush_dcache_page(bvec->bv_page); 5517 if (csum != *private) { 5518 printk(KERN_ERR "btrfs csum failed ino %lu off" 5519 " %llu csum %u private %u\n", 5520 inode->i_ino, (unsigned long long)start, 5521 csum, *private); 5522 err = -EIO; 5523 } 5524 } 5525 5526 start += bvec->bv_len; 5527 private++; 5528 bvec++; 5529 } while (bvec <= bvec_end); 5530 5531 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5532 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5533 bio->bi_private = dip->private; 5534 5535 kfree(dip->csums); 5536 kfree(dip); 5537 dio_end_io(bio, err); 5538 } 5539 5540 static void btrfs_endio_direct_write(struct bio *bio, int err) 5541 { 5542 struct btrfs_dio_private *dip = bio->bi_private; 5543 struct inode *inode = dip->inode; 5544 struct btrfs_root *root = BTRFS_I(inode)->root; 5545 struct btrfs_trans_handle *trans; 5546 struct btrfs_ordered_extent *ordered = NULL; 5547 struct extent_state *cached_state = NULL; 5548 int ret; 5549 5550 if (err) 5551 goto out_done; 5552 5553 ret = btrfs_dec_test_ordered_pending(inode, &ordered, 5554 dip->logical_offset, dip->bytes); 5555 if (!ret) 5556 goto out_done; 5557 5558 BUG_ON(!ordered); 5559 5560 trans = btrfs_join_transaction(root, 1); 5561 if (!trans) { 5562 err = -ENOMEM; 5563 goto out; 5564 } 5565 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5566 5567 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5568 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5569 if (!ret) 5570 ret = btrfs_update_inode(trans, root, inode); 5571 err = ret; 5572 goto out; 5573 } 5574 5575 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5576 ordered->file_offset + ordered->len - 1, 0, 5577 &cached_state, GFP_NOFS); 5578 5579 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5580 ret = btrfs_mark_extent_written(trans, inode, 5581 ordered->file_offset, 5582 ordered->file_offset + 5583 ordered->len); 5584 if (ret) { 5585 err = ret; 5586 goto out_unlock; 5587 } 5588 } else { 5589 ret = insert_reserved_file_extent(trans, inode, 5590 ordered->file_offset, 5591 ordered->start, 5592 ordered->disk_len, 5593 ordered->len, 5594 ordered->len, 5595 0, 0, 0, 5596 BTRFS_FILE_EXTENT_REG); 5597 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5598 ordered->file_offset, ordered->len); 5599 if (ret) { 5600 err = ret; 5601 WARN_ON(1); 5602 goto out_unlock; 5603 } 5604 } 5605 5606 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5607 btrfs_ordered_update_i_size(inode, 0, ordered); 5608 btrfs_update_inode(trans, root, inode); 5609 out_unlock: 5610 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5611 ordered->file_offset + ordered->len - 1, 5612 &cached_state, GFP_NOFS); 5613 out: 5614 btrfs_delalloc_release_metadata(inode, ordered->len); 5615 btrfs_end_transaction(trans, root); 5616 btrfs_put_ordered_extent(ordered); 5617 btrfs_put_ordered_extent(ordered); 5618 out_done: 5619 bio->bi_private = dip->private; 5620 5621 kfree(dip->csums); 5622 kfree(dip); 5623 dio_end_io(bio, err); 5624 } 5625 5626 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5627 struct bio *bio, int mirror_num, 5628 unsigned long bio_flags, u64 offset) 5629 { 5630 int ret; 5631 struct btrfs_root *root = BTRFS_I(inode)->root; 5632 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5633 BUG_ON(ret); 5634 return 0; 5635 } 5636 5637 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 5638 loff_t file_offset) 5639 { 5640 struct btrfs_root *root = BTRFS_I(inode)->root; 5641 struct btrfs_dio_private *dip; 5642 struct bio_vec *bvec = bio->bi_io_vec; 5643 u64 start; 5644 int skip_sum; 5645 int write = rw & (1 << BIO_RW); 5646 int ret = 0; 5647 5648 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 5649 5650 dip = kmalloc(sizeof(*dip), GFP_NOFS); 5651 if (!dip) { 5652 ret = -ENOMEM; 5653 goto free_ordered; 5654 } 5655 dip->csums = NULL; 5656 5657 if (!skip_sum) { 5658 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 5659 if (!dip->csums) { 5660 ret = -ENOMEM; 5661 goto free_ordered; 5662 } 5663 } 5664 5665 dip->private = bio->bi_private; 5666 dip->inode = inode; 5667 dip->logical_offset = file_offset; 5668 5669 start = dip->logical_offset; 5670 dip->bytes = 0; 5671 do { 5672 dip->bytes += bvec->bv_len; 5673 bvec++; 5674 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 5675 5676 dip->disk_bytenr = (u64)bio->bi_sector << 9; 5677 bio->bi_private = dip; 5678 5679 if (write) 5680 bio->bi_end_io = btrfs_endio_direct_write; 5681 else 5682 bio->bi_end_io = btrfs_endio_direct_read; 5683 5684 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5685 if (ret) 5686 goto out_err; 5687 5688 if (write && !skip_sum) { 5689 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 5690 inode, rw, bio, 0, 0, 5691 dip->logical_offset, 5692 __btrfs_submit_bio_start_direct_io, 5693 __btrfs_submit_bio_done); 5694 if (ret) 5695 goto out_err; 5696 return; 5697 } else if (!skip_sum) 5698 btrfs_lookup_bio_sums_dio(root, inode, bio, 5699 dip->logical_offset, dip->csums); 5700 5701 ret = btrfs_map_bio(root, rw, bio, 0, 1); 5702 if (ret) 5703 goto out_err; 5704 return; 5705 out_err: 5706 kfree(dip->csums); 5707 kfree(dip); 5708 free_ordered: 5709 /* 5710 * If this is a write, we need to clean up the reserved space and kill 5711 * the ordered extent. 5712 */ 5713 if (write) { 5714 struct btrfs_ordered_extent *ordered; 5715 ordered = btrfs_lookup_ordered_extent(inode, 5716 dip->logical_offset); 5717 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 5718 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 5719 btrfs_free_reserved_extent(root, ordered->start, 5720 ordered->disk_len); 5721 btrfs_put_ordered_extent(ordered); 5722 btrfs_put_ordered_extent(ordered); 5723 } 5724 bio_endio(bio, ret); 5725 } 5726 5727 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 5728 const struct iovec *iov, loff_t offset, 5729 unsigned long nr_segs) 5730 { 5731 int seg; 5732 size_t size; 5733 unsigned long addr; 5734 unsigned blocksize_mask = root->sectorsize - 1; 5735 ssize_t retval = -EINVAL; 5736 loff_t end = offset; 5737 5738 if (offset & blocksize_mask) 5739 goto out; 5740 5741 /* Check the memory alignment. Blocks cannot straddle pages */ 5742 for (seg = 0; seg < nr_segs; seg++) { 5743 addr = (unsigned long)iov[seg].iov_base; 5744 size = iov[seg].iov_len; 5745 end += size; 5746 if ((addr & blocksize_mask) || (size & blocksize_mask)) 5747 goto out; 5748 } 5749 retval = 0; 5750 out: 5751 return retval; 5752 } 5753 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 5754 const struct iovec *iov, loff_t offset, 5755 unsigned long nr_segs) 5756 { 5757 struct file *file = iocb->ki_filp; 5758 struct inode *inode = file->f_mapping->host; 5759 struct btrfs_ordered_extent *ordered; 5760 struct extent_state *cached_state = NULL; 5761 u64 lockstart, lockend; 5762 ssize_t ret; 5763 int writing = rw & WRITE; 5764 int write_bits = 0; 5765 size_t count = iov_length(iov, nr_segs); 5766 5767 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 5768 offset, nr_segs)) { 5769 return 0; 5770 } 5771 5772 lockstart = offset; 5773 lockend = offset + count - 1; 5774 5775 if (writing) { 5776 ret = btrfs_delalloc_reserve_space(inode, count); 5777 if (ret) 5778 goto out; 5779 } 5780 5781 while (1) { 5782 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5783 0, &cached_state, GFP_NOFS); 5784 /* 5785 * We're concerned with the entire range that we're going to be 5786 * doing DIO to, so we need to make sure theres no ordered 5787 * extents in this range. 5788 */ 5789 ordered = btrfs_lookup_ordered_range(inode, lockstart, 5790 lockend - lockstart + 1); 5791 if (!ordered) 5792 break; 5793 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5794 &cached_state, GFP_NOFS); 5795 btrfs_start_ordered_extent(inode, ordered, 1); 5796 btrfs_put_ordered_extent(ordered); 5797 cond_resched(); 5798 } 5799 5800 /* 5801 * we don't use btrfs_set_extent_delalloc because we don't want 5802 * the dirty or uptodate bits 5803 */ 5804 if (writing) { 5805 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 5806 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 5807 EXTENT_DELALLOC, 0, NULL, &cached_state, 5808 GFP_NOFS); 5809 if (ret) { 5810 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 5811 lockend, EXTENT_LOCKED | write_bits, 5812 1, 0, &cached_state, GFP_NOFS); 5813 goto out; 5814 } 5815 } 5816 5817 free_extent_state(cached_state); 5818 cached_state = NULL; 5819 5820 ret = __blockdev_direct_IO(rw, iocb, inode, 5821 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 5822 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 5823 btrfs_submit_direct, 0); 5824 5825 if (ret < 0 && ret != -EIOCBQUEUED) { 5826 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 5827 offset + iov_length(iov, nr_segs) - 1, 5828 EXTENT_LOCKED | write_bits, 1, 0, 5829 &cached_state, GFP_NOFS); 5830 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 5831 /* 5832 * We're falling back to buffered, unlock the section we didn't 5833 * do IO on. 5834 */ 5835 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 5836 offset + iov_length(iov, nr_segs) - 1, 5837 EXTENT_LOCKED | write_bits, 1, 0, 5838 &cached_state, GFP_NOFS); 5839 } 5840 out: 5841 free_extent_state(cached_state); 5842 return ret; 5843 } 5844 5845 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 5846 __u64 start, __u64 len) 5847 { 5848 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent); 5849 } 5850 5851 int btrfs_readpage(struct file *file, struct page *page) 5852 { 5853 struct extent_io_tree *tree; 5854 tree = &BTRFS_I(page->mapping->host)->io_tree; 5855 return extent_read_full_page(tree, page, btrfs_get_extent); 5856 } 5857 5858 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 5859 { 5860 struct extent_io_tree *tree; 5861 5862 5863 if (current->flags & PF_MEMALLOC) { 5864 redirty_page_for_writepage(wbc, page); 5865 unlock_page(page); 5866 return 0; 5867 } 5868 tree = &BTRFS_I(page->mapping->host)->io_tree; 5869 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 5870 } 5871 5872 int btrfs_writepages(struct address_space *mapping, 5873 struct writeback_control *wbc) 5874 { 5875 struct extent_io_tree *tree; 5876 5877 tree = &BTRFS_I(mapping->host)->io_tree; 5878 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 5879 } 5880 5881 static int 5882 btrfs_readpages(struct file *file, struct address_space *mapping, 5883 struct list_head *pages, unsigned nr_pages) 5884 { 5885 struct extent_io_tree *tree; 5886 tree = &BTRFS_I(mapping->host)->io_tree; 5887 return extent_readpages(tree, mapping, pages, nr_pages, 5888 btrfs_get_extent); 5889 } 5890 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 5891 { 5892 struct extent_io_tree *tree; 5893 struct extent_map_tree *map; 5894 int ret; 5895 5896 tree = &BTRFS_I(page->mapping->host)->io_tree; 5897 map = &BTRFS_I(page->mapping->host)->extent_tree; 5898 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 5899 if (ret == 1) { 5900 ClearPagePrivate(page); 5901 set_page_private(page, 0); 5902 page_cache_release(page); 5903 } 5904 return ret; 5905 } 5906 5907 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 5908 { 5909 if (PageWriteback(page) || PageDirty(page)) 5910 return 0; 5911 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 5912 } 5913 5914 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 5915 { 5916 struct extent_io_tree *tree; 5917 struct btrfs_ordered_extent *ordered; 5918 struct extent_state *cached_state = NULL; 5919 u64 page_start = page_offset(page); 5920 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 5921 5922 5923 /* 5924 * we have the page locked, so new writeback can't start, 5925 * and the dirty bit won't be cleared while we are here. 5926 * 5927 * Wait for IO on this page so that we can safely clear 5928 * the PagePrivate2 bit and do ordered accounting 5929 */ 5930 wait_on_page_writeback(page); 5931 5932 tree = &BTRFS_I(page->mapping->host)->io_tree; 5933 if (offset) { 5934 btrfs_releasepage(page, GFP_NOFS); 5935 return; 5936 } 5937 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 5938 GFP_NOFS); 5939 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 5940 page_offset(page)); 5941 if (ordered) { 5942 /* 5943 * IO on this page will never be started, so we need 5944 * to account for any ordered extents now 5945 */ 5946 clear_extent_bit(tree, page_start, page_end, 5947 EXTENT_DIRTY | EXTENT_DELALLOC | 5948 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 5949 &cached_state, GFP_NOFS); 5950 /* 5951 * whoever cleared the private bit is responsible 5952 * for the finish_ordered_io 5953 */ 5954 if (TestClearPagePrivate2(page)) { 5955 btrfs_finish_ordered_io(page->mapping->host, 5956 page_start, page_end); 5957 } 5958 btrfs_put_ordered_extent(ordered); 5959 cached_state = NULL; 5960 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 5961 GFP_NOFS); 5962 } 5963 clear_extent_bit(tree, page_start, page_end, 5964 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 5965 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 5966 __btrfs_releasepage(page, GFP_NOFS); 5967 5968 ClearPageChecked(page); 5969 if (PagePrivate(page)) { 5970 ClearPagePrivate(page); 5971 set_page_private(page, 0); 5972 page_cache_release(page); 5973 } 5974 } 5975 5976 /* 5977 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 5978 * called from a page fault handler when a page is first dirtied. Hence we must 5979 * be careful to check for EOF conditions here. We set the page up correctly 5980 * for a written page which means we get ENOSPC checking when writing into 5981 * holes and correct delalloc and unwritten extent mapping on filesystems that 5982 * support these features. 5983 * 5984 * We are not allowed to take the i_mutex here so we have to play games to 5985 * protect against truncate races as the page could now be beyond EOF. Because 5986 * vmtruncate() writes the inode size before removing pages, once we have the 5987 * page lock we can determine safely if the page is beyond EOF. If it is not 5988 * beyond EOF, then the page is guaranteed safe against truncation until we 5989 * unlock the page. 5990 */ 5991 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5992 { 5993 struct page *page = vmf->page; 5994 struct inode *inode = fdentry(vma->vm_file)->d_inode; 5995 struct btrfs_root *root = BTRFS_I(inode)->root; 5996 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5997 struct btrfs_ordered_extent *ordered; 5998 struct extent_state *cached_state = NULL; 5999 char *kaddr; 6000 unsigned long zero_start; 6001 loff_t size; 6002 int ret; 6003 u64 page_start; 6004 u64 page_end; 6005 6006 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6007 if (ret) { 6008 if (ret == -ENOMEM) 6009 ret = VM_FAULT_OOM; 6010 else /* -ENOSPC, -EIO, etc */ 6011 ret = VM_FAULT_SIGBUS; 6012 goto out; 6013 } 6014 6015 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6016 again: 6017 lock_page(page); 6018 size = i_size_read(inode); 6019 page_start = page_offset(page); 6020 page_end = page_start + PAGE_CACHE_SIZE - 1; 6021 6022 if ((page->mapping != inode->i_mapping) || 6023 (page_start >= size)) { 6024 /* page got truncated out from underneath us */ 6025 goto out_unlock; 6026 } 6027 wait_on_page_writeback(page); 6028 6029 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6030 GFP_NOFS); 6031 set_page_extent_mapped(page); 6032 6033 /* 6034 * we can't set the delalloc bits if there are pending ordered 6035 * extents. Drop our locks and wait for them to finish 6036 */ 6037 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6038 if (ordered) { 6039 unlock_extent_cached(io_tree, page_start, page_end, 6040 &cached_state, GFP_NOFS); 6041 unlock_page(page); 6042 btrfs_start_ordered_extent(inode, ordered, 1); 6043 btrfs_put_ordered_extent(ordered); 6044 goto again; 6045 } 6046 6047 /* 6048 * XXX - page_mkwrite gets called every time the page is dirtied, even 6049 * if it was already dirty, so for space accounting reasons we need to 6050 * clear any delalloc bits for the range we are fixing to save. There 6051 * is probably a better way to do this, but for now keep consistent with 6052 * prepare_pages in the normal write path. 6053 */ 6054 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6055 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6056 0, 0, &cached_state, GFP_NOFS); 6057 6058 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6059 &cached_state); 6060 if (ret) { 6061 unlock_extent_cached(io_tree, page_start, page_end, 6062 &cached_state, GFP_NOFS); 6063 ret = VM_FAULT_SIGBUS; 6064 goto out_unlock; 6065 } 6066 ret = 0; 6067 6068 /* page is wholly or partially inside EOF */ 6069 if (page_start + PAGE_CACHE_SIZE > size) 6070 zero_start = size & ~PAGE_CACHE_MASK; 6071 else 6072 zero_start = PAGE_CACHE_SIZE; 6073 6074 if (zero_start != PAGE_CACHE_SIZE) { 6075 kaddr = kmap(page); 6076 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6077 flush_dcache_page(page); 6078 kunmap(page); 6079 } 6080 ClearPageChecked(page); 6081 set_page_dirty(page); 6082 SetPageUptodate(page); 6083 6084 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6085 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6086 6087 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6088 6089 out_unlock: 6090 if (!ret) 6091 return VM_FAULT_LOCKED; 6092 unlock_page(page); 6093 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6094 out: 6095 return ret; 6096 } 6097 6098 static void btrfs_truncate(struct inode *inode) 6099 { 6100 struct btrfs_root *root = BTRFS_I(inode)->root; 6101 int ret; 6102 struct btrfs_trans_handle *trans; 6103 unsigned long nr; 6104 u64 mask = root->sectorsize - 1; 6105 6106 if (!S_ISREG(inode->i_mode)) { 6107 WARN_ON(1); 6108 return; 6109 } 6110 6111 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6112 if (ret) 6113 return; 6114 6115 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6116 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6117 6118 trans = btrfs_start_transaction(root, 0); 6119 BUG_ON(IS_ERR(trans)); 6120 btrfs_set_trans_block_group(trans, inode); 6121 trans->block_rsv = root->orphan_block_rsv; 6122 6123 /* 6124 * setattr is responsible for setting the ordered_data_close flag, 6125 * but that is only tested during the last file release. That 6126 * could happen well after the next commit, leaving a great big 6127 * window where new writes may get lost if someone chooses to write 6128 * to this file after truncating to zero 6129 * 6130 * The inode doesn't have any dirty data here, and so if we commit 6131 * this is a noop. If someone immediately starts writing to the inode 6132 * it is very likely we'll catch some of their writes in this 6133 * transaction, and the commit will find this file on the ordered 6134 * data list with good things to send down. 6135 * 6136 * This is a best effort solution, there is still a window where 6137 * using truncate to replace the contents of the file will 6138 * end up with a zero length file after a crash. 6139 */ 6140 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6141 btrfs_add_ordered_operation(trans, root, inode); 6142 6143 while (1) { 6144 if (!trans) { 6145 trans = btrfs_start_transaction(root, 0); 6146 BUG_ON(IS_ERR(trans)); 6147 btrfs_set_trans_block_group(trans, inode); 6148 trans->block_rsv = root->orphan_block_rsv; 6149 } 6150 6151 ret = btrfs_block_rsv_check(trans, root, 6152 root->orphan_block_rsv, 0, 5); 6153 if (ret) { 6154 BUG_ON(ret != -EAGAIN); 6155 ret = btrfs_commit_transaction(trans, root); 6156 BUG_ON(ret); 6157 trans = NULL; 6158 continue; 6159 } 6160 6161 ret = btrfs_truncate_inode_items(trans, root, inode, 6162 inode->i_size, 6163 BTRFS_EXTENT_DATA_KEY); 6164 if (ret != -EAGAIN) 6165 break; 6166 6167 ret = btrfs_update_inode(trans, root, inode); 6168 BUG_ON(ret); 6169 6170 nr = trans->blocks_used; 6171 btrfs_end_transaction(trans, root); 6172 trans = NULL; 6173 btrfs_btree_balance_dirty(root, nr); 6174 } 6175 6176 if (ret == 0 && inode->i_nlink > 0) { 6177 ret = btrfs_orphan_del(trans, inode); 6178 BUG_ON(ret); 6179 } 6180 6181 ret = btrfs_update_inode(trans, root, inode); 6182 BUG_ON(ret); 6183 6184 nr = trans->blocks_used; 6185 ret = btrfs_end_transaction_throttle(trans, root); 6186 BUG_ON(ret); 6187 btrfs_btree_balance_dirty(root, nr); 6188 } 6189 6190 /* 6191 * create a new subvolume directory/inode (helper for the ioctl). 6192 */ 6193 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6194 struct btrfs_root *new_root, 6195 u64 new_dirid, u64 alloc_hint) 6196 { 6197 struct inode *inode; 6198 int err; 6199 u64 index = 0; 6200 6201 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6202 new_dirid, alloc_hint, S_IFDIR | 0700, &index); 6203 if (IS_ERR(inode)) 6204 return PTR_ERR(inode); 6205 inode->i_op = &btrfs_dir_inode_operations; 6206 inode->i_fop = &btrfs_dir_file_operations; 6207 6208 inode->i_nlink = 1; 6209 btrfs_i_size_write(inode, 0); 6210 6211 err = btrfs_update_inode(trans, new_root, inode); 6212 BUG_ON(err); 6213 6214 iput(inode); 6215 return 0; 6216 } 6217 6218 /* helper function for file defrag and space balancing. This 6219 * forces readahead on a given range of bytes in an inode 6220 */ 6221 unsigned long btrfs_force_ra(struct address_space *mapping, 6222 struct file_ra_state *ra, struct file *file, 6223 pgoff_t offset, pgoff_t last_index) 6224 { 6225 pgoff_t req_size = last_index - offset + 1; 6226 6227 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 6228 return offset + req_size; 6229 } 6230 6231 struct inode *btrfs_alloc_inode(struct super_block *sb) 6232 { 6233 struct btrfs_inode *ei; 6234 struct inode *inode; 6235 6236 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6237 if (!ei) 6238 return NULL; 6239 6240 ei->root = NULL; 6241 ei->space_info = NULL; 6242 ei->generation = 0; 6243 ei->sequence = 0; 6244 ei->last_trans = 0; 6245 ei->last_sub_trans = 0; 6246 ei->logged_trans = 0; 6247 ei->delalloc_bytes = 0; 6248 ei->reserved_bytes = 0; 6249 ei->disk_i_size = 0; 6250 ei->flags = 0; 6251 ei->index_cnt = (u64)-1; 6252 ei->last_unlink_trans = 0; 6253 6254 spin_lock_init(&ei->accounting_lock); 6255 atomic_set(&ei->outstanding_extents, 0); 6256 ei->reserved_extents = 0; 6257 6258 ei->ordered_data_close = 0; 6259 ei->orphan_meta_reserved = 0; 6260 ei->dummy_inode = 0; 6261 ei->force_compress = 0; 6262 6263 inode = &ei->vfs_inode; 6264 extent_map_tree_init(&ei->extent_tree, GFP_NOFS); 6265 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS); 6266 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS); 6267 mutex_init(&ei->log_mutex); 6268 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6269 INIT_LIST_HEAD(&ei->i_orphan); 6270 INIT_LIST_HEAD(&ei->delalloc_inodes); 6271 INIT_LIST_HEAD(&ei->ordered_operations); 6272 RB_CLEAR_NODE(&ei->rb_node); 6273 6274 return inode; 6275 } 6276 6277 void btrfs_destroy_inode(struct inode *inode) 6278 { 6279 struct btrfs_ordered_extent *ordered; 6280 struct btrfs_root *root = BTRFS_I(inode)->root; 6281 6282 WARN_ON(!list_empty(&inode->i_dentry)); 6283 WARN_ON(inode->i_data.nrpages); 6284 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents)); 6285 WARN_ON(BTRFS_I(inode)->reserved_extents); 6286 6287 /* 6288 * This can happen where we create an inode, but somebody else also 6289 * created the same inode and we need to destroy the one we already 6290 * created. 6291 */ 6292 if (!root) 6293 goto free; 6294 6295 /* 6296 * Make sure we're properly removed from the ordered operation 6297 * lists. 6298 */ 6299 smp_mb(); 6300 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6301 spin_lock(&root->fs_info->ordered_extent_lock); 6302 list_del_init(&BTRFS_I(inode)->ordered_operations); 6303 spin_unlock(&root->fs_info->ordered_extent_lock); 6304 } 6305 6306 spin_lock(&root->orphan_lock); 6307 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6308 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n", 6309 inode->i_ino); 6310 list_del_init(&BTRFS_I(inode)->i_orphan); 6311 } 6312 spin_unlock(&root->orphan_lock); 6313 6314 while (1) { 6315 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6316 if (!ordered) 6317 break; 6318 else { 6319 printk(KERN_ERR "btrfs found ordered " 6320 "extent %llu %llu on inode cleanup\n", 6321 (unsigned long long)ordered->file_offset, 6322 (unsigned long long)ordered->len); 6323 btrfs_remove_ordered_extent(inode, ordered); 6324 btrfs_put_ordered_extent(ordered); 6325 btrfs_put_ordered_extent(ordered); 6326 } 6327 } 6328 inode_tree_del(inode); 6329 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6330 free: 6331 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6332 } 6333 6334 void btrfs_drop_inode(struct inode *inode) 6335 { 6336 struct btrfs_root *root = BTRFS_I(inode)->root; 6337 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0) 6338 generic_delete_inode(inode); 6339 else 6340 generic_drop_inode(inode); 6341 } 6342 6343 static void init_once(void *foo) 6344 { 6345 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6346 6347 inode_init_once(&ei->vfs_inode); 6348 } 6349 6350 void btrfs_destroy_cachep(void) 6351 { 6352 if (btrfs_inode_cachep) 6353 kmem_cache_destroy(btrfs_inode_cachep); 6354 if (btrfs_trans_handle_cachep) 6355 kmem_cache_destroy(btrfs_trans_handle_cachep); 6356 if (btrfs_transaction_cachep) 6357 kmem_cache_destroy(btrfs_transaction_cachep); 6358 if (btrfs_path_cachep) 6359 kmem_cache_destroy(btrfs_path_cachep); 6360 } 6361 6362 int btrfs_init_cachep(void) 6363 { 6364 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6365 sizeof(struct btrfs_inode), 0, 6366 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6367 if (!btrfs_inode_cachep) 6368 goto fail; 6369 6370 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6371 sizeof(struct btrfs_trans_handle), 0, 6372 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6373 if (!btrfs_trans_handle_cachep) 6374 goto fail; 6375 6376 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6377 sizeof(struct btrfs_transaction), 0, 6378 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6379 if (!btrfs_transaction_cachep) 6380 goto fail; 6381 6382 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6383 sizeof(struct btrfs_path), 0, 6384 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6385 if (!btrfs_path_cachep) 6386 goto fail; 6387 6388 return 0; 6389 fail: 6390 btrfs_destroy_cachep(); 6391 return -ENOMEM; 6392 } 6393 6394 static int btrfs_getattr(struct vfsmount *mnt, 6395 struct dentry *dentry, struct kstat *stat) 6396 { 6397 struct inode *inode = dentry->d_inode; 6398 generic_fillattr(inode, stat); 6399 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev; 6400 stat->blksize = PAGE_CACHE_SIZE; 6401 stat->blocks = (inode_get_bytes(inode) + 6402 BTRFS_I(inode)->delalloc_bytes) >> 9; 6403 return 0; 6404 } 6405 6406 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6407 struct inode *new_dir, struct dentry *new_dentry) 6408 { 6409 struct btrfs_trans_handle *trans; 6410 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6411 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6412 struct inode *new_inode = new_dentry->d_inode; 6413 struct inode *old_inode = old_dentry->d_inode; 6414 struct timespec ctime = CURRENT_TIME; 6415 u64 index = 0; 6416 u64 root_objectid; 6417 int ret; 6418 6419 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6420 return -EPERM; 6421 6422 /* we only allow rename subvolume link between subvolumes */ 6423 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6424 return -EXDEV; 6425 6426 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6427 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) 6428 return -ENOTEMPTY; 6429 6430 if (S_ISDIR(old_inode->i_mode) && new_inode && 6431 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6432 return -ENOTEMPTY; 6433 /* 6434 * we're using rename to replace one file with another. 6435 * and the replacement file is large. Start IO on it now so 6436 * we don't add too much work to the end of the transaction 6437 */ 6438 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6439 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6440 filemap_flush(old_inode->i_mapping); 6441 6442 /* close the racy window with snapshot create/destroy ioctl */ 6443 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6444 down_read(&root->fs_info->subvol_sem); 6445 /* 6446 * We want to reserve the absolute worst case amount of items. So if 6447 * both inodes are subvols and we need to unlink them then that would 6448 * require 4 item modifications, but if they are both normal inodes it 6449 * would require 5 item modifications, so we'll assume their normal 6450 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6451 * should cover the worst case number of items we'll modify. 6452 */ 6453 trans = btrfs_start_transaction(root, 20); 6454 if (IS_ERR(trans)) 6455 return PTR_ERR(trans); 6456 6457 btrfs_set_trans_block_group(trans, new_dir); 6458 6459 if (dest != root) 6460 btrfs_record_root_in_trans(trans, dest); 6461 6462 ret = btrfs_set_inode_index(new_dir, &index); 6463 if (ret) 6464 goto out_fail; 6465 6466 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6467 /* force full log commit if subvolume involved. */ 6468 root->fs_info->last_trans_log_full_commit = trans->transid; 6469 } else { 6470 ret = btrfs_insert_inode_ref(trans, dest, 6471 new_dentry->d_name.name, 6472 new_dentry->d_name.len, 6473 old_inode->i_ino, 6474 new_dir->i_ino, index); 6475 if (ret) 6476 goto out_fail; 6477 /* 6478 * this is an ugly little race, but the rename is required 6479 * to make sure that if we crash, the inode is either at the 6480 * old name or the new one. pinning the log transaction lets 6481 * us make sure we don't allow a log commit to come in after 6482 * we unlink the name but before we add the new name back in. 6483 */ 6484 btrfs_pin_log_trans(root); 6485 } 6486 /* 6487 * make sure the inode gets flushed if it is replacing 6488 * something. 6489 */ 6490 if (new_inode && new_inode->i_size && 6491 old_inode && S_ISREG(old_inode->i_mode)) { 6492 btrfs_add_ordered_operation(trans, root, old_inode); 6493 } 6494 6495 old_dir->i_ctime = old_dir->i_mtime = ctime; 6496 new_dir->i_ctime = new_dir->i_mtime = ctime; 6497 old_inode->i_ctime = ctime; 6498 6499 if (old_dentry->d_parent != new_dentry->d_parent) 6500 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 6501 6502 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) { 6503 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 6504 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 6505 old_dentry->d_name.name, 6506 old_dentry->d_name.len); 6507 } else { 6508 btrfs_inc_nlink(old_dentry->d_inode); 6509 ret = btrfs_unlink_inode(trans, root, old_dir, 6510 old_dentry->d_inode, 6511 old_dentry->d_name.name, 6512 old_dentry->d_name.len); 6513 } 6514 BUG_ON(ret); 6515 6516 if (new_inode) { 6517 new_inode->i_ctime = CURRENT_TIME; 6518 if (unlikely(new_inode->i_ino == 6519 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 6520 root_objectid = BTRFS_I(new_inode)->location.objectid; 6521 ret = btrfs_unlink_subvol(trans, dest, new_dir, 6522 root_objectid, 6523 new_dentry->d_name.name, 6524 new_dentry->d_name.len); 6525 BUG_ON(new_inode->i_nlink == 0); 6526 } else { 6527 ret = btrfs_unlink_inode(trans, dest, new_dir, 6528 new_dentry->d_inode, 6529 new_dentry->d_name.name, 6530 new_dentry->d_name.len); 6531 } 6532 BUG_ON(ret); 6533 if (new_inode->i_nlink == 0) { 6534 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 6535 BUG_ON(ret); 6536 } 6537 } 6538 6539 ret = btrfs_add_link(trans, new_dir, old_inode, 6540 new_dentry->d_name.name, 6541 new_dentry->d_name.len, 0, index); 6542 BUG_ON(ret); 6543 6544 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) { 6545 btrfs_log_new_name(trans, old_inode, old_dir, 6546 new_dentry->d_parent); 6547 btrfs_end_log_trans(root); 6548 } 6549 out_fail: 6550 btrfs_end_transaction_throttle(trans, root); 6551 6552 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 6553 up_read(&root->fs_info->subvol_sem); 6554 6555 return ret; 6556 } 6557 6558 /* 6559 * some fairly slow code that needs optimization. This walks the list 6560 * of all the inodes with pending delalloc and forces them to disk. 6561 */ 6562 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 6563 { 6564 struct list_head *head = &root->fs_info->delalloc_inodes; 6565 struct btrfs_inode *binode; 6566 struct inode *inode; 6567 6568 if (root->fs_info->sb->s_flags & MS_RDONLY) 6569 return -EROFS; 6570 6571 spin_lock(&root->fs_info->delalloc_lock); 6572 while (!list_empty(head)) { 6573 binode = list_entry(head->next, struct btrfs_inode, 6574 delalloc_inodes); 6575 inode = igrab(&binode->vfs_inode); 6576 if (!inode) 6577 list_del_init(&binode->delalloc_inodes); 6578 spin_unlock(&root->fs_info->delalloc_lock); 6579 if (inode) { 6580 filemap_flush(inode->i_mapping); 6581 if (delay_iput) 6582 btrfs_add_delayed_iput(inode); 6583 else 6584 iput(inode); 6585 } 6586 cond_resched(); 6587 spin_lock(&root->fs_info->delalloc_lock); 6588 } 6589 spin_unlock(&root->fs_info->delalloc_lock); 6590 6591 /* the filemap_flush will queue IO into the worker threads, but 6592 * we have to make sure the IO is actually started and that 6593 * ordered extents get created before we return 6594 */ 6595 atomic_inc(&root->fs_info->async_submit_draining); 6596 while (atomic_read(&root->fs_info->nr_async_submits) || 6597 atomic_read(&root->fs_info->async_delalloc_pages)) { 6598 wait_event(root->fs_info->async_submit_wait, 6599 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 6600 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 6601 } 6602 atomic_dec(&root->fs_info->async_submit_draining); 6603 return 0; 6604 } 6605 6606 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput) 6607 { 6608 struct btrfs_inode *binode; 6609 struct inode *inode = NULL; 6610 6611 spin_lock(&root->fs_info->delalloc_lock); 6612 while (!list_empty(&root->fs_info->delalloc_inodes)) { 6613 binode = list_entry(root->fs_info->delalloc_inodes.next, 6614 struct btrfs_inode, delalloc_inodes); 6615 inode = igrab(&binode->vfs_inode); 6616 if (inode) { 6617 list_move_tail(&binode->delalloc_inodes, 6618 &root->fs_info->delalloc_inodes); 6619 break; 6620 } 6621 6622 list_del_init(&binode->delalloc_inodes); 6623 cond_resched_lock(&root->fs_info->delalloc_lock); 6624 } 6625 spin_unlock(&root->fs_info->delalloc_lock); 6626 6627 if (inode) { 6628 write_inode_now(inode, 0); 6629 if (delay_iput) 6630 btrfs_add_delayed_iput(inode); 6631 else 6632 iput(inode); 6633 return 1; 6634 } 6635 return 0; 6636 } 6637 6638 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 6639 const char *symname) 6640 { 6641 struct btrfs_trans_handle *trans; 6642 struct btrfs_root *root = BTRFS_I(dir)->root; 6643 struct btrfs_path *path; 6644 struct btrfs_key key; 6645 struct inode *inode = NULL; 6646 int err; 6647 int drop_inode = 0; 6648 u64 objectid; 6649 u64 index = 0 ; 6650 int name_len; 6651 int datasize; 6652 unsigned long ptr; 6653 struct btrfs_file_extent_item *ei; 6654 struct extent_buffer *leaf; 6655 unsigned long nr = 0; 6656 6657 name_len = strlen(symname) + 1; 6658 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 6659 return -ENAMETOOLONG; 6660 6661 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid); 6662 if (err) 6663 return err; 6664 /* 6665 * 2 items for inode item and ref 6666 * 2 items for dir items 6667 * 1 item for xattr if selinux is on 6668 */ 6669 trans = btrfs_start_transaction(root, 5); 6670 if (IS_ERR(trans)) 6671 return PTR_ERR(trans); 6672 6673 btrfs_set_trans_block_group(trans, dir); 6674 6675 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 6676 dentry->d_name.len, 6677 dentry->d_parent->d_inode->i_ino, objectid, 6678 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO, 6679 &index); 6680 err = PTR_ERR(inode); 6681 if (IS_ERR(inode)) 6682 goto out_unlock; 6683 6684 err = btrfs_init_inode_security(trans, inode, dir); 6685 if (err) { 6686 drop_inode = 1; 6687 goto out_unlock; 6688 } 6689 6690 btrfs_set_trans_block_group(trans, inode); 6691 err = btrfs_add_nondir(trans, dentry, inode, 0, index); 6692 if (err) 6693 drop_inode = 1; 6694 else { 6695 inode->i_mapping->a_ops = &btrfs_aops; 6696 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 6697 inode->i_fop = &btrfs_file_operations; 6698 inode->i_op = &btrfs_file_inode_operations; 6699 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 6700 } 6701 btrfs_update_inode_block_group(trans, inode); 6702 btrfs_update_inode_block_group(trans, dir); 6703 if (drop_inode) 6704 goto out_unlock; 6705 6706 path = btrfs_alloc_path(); 6707 BUG_ON(!path); 6708 key.objectid = inode->i_ino; 6709 key.offset = 0; 6710 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 6711 datasize = btrfs_file_extent_calc_inline_size(name_len); 6712 err = btrfs_insert_empty_item(trans, root, path, &key, 6713 datasize); 6714 if (err) { 6715 drop_inode = 1; 6716 goto out_unlock; 6717 } 6718 leaf = path->nodes[0]; 6719 ei = btrfs_item_ptr(leaf, path->slots[0], 6720 struct btrfs_file_extent_item); 6721 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 6722 btrfs_set_file_extent_type(leaf, ei, 6723 BTRFS_FILE_EXTENT_INLINE); 6724 btrfs_set_file_extent_encryption(leaf, ei, 0); 6725 btrfs_set_file_extent_compression(leaf, ei, 0); 6726 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 6727 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 6728 6729 ptr = btrfs_file_extent_inline_start(ei); 6730 write_extent_buffer(leaf, symname, ptr, name_len); 6731 btrfs_mark_buffer_dirty(leaf); 6732 btrfs_free_path(path); 6733 6734 inode->i_op = &btrfs_symlink_inode_operations; 6735 inode->i_mapping->a_ops = &btrfs_symlink_aops; 6736 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 6737 inode_set_bytes(inode, name_len); 6738 btrfs_i_size_write(inode, name_len - 1); 6739 err = btrfs_update_inode(trans, root, inode); 6740 if (err) 6741 drop_inode = 1; 6742 6743 out_unlock: 6744 nr = trans->blocks_used; 6745 btrfs_end_transaction_throttle(trans, root); 6746 if (drop_inode) { 6747 inode_dec_link_count(inode); 6748 iput(inode); 6749 } 6750 btrfs_btree_balance_dirty(root, nr); 6751 return err; 6752 } 6753 6754 int btrfs_prealloc_file_range(struct inode *inode, int mode, 6755 u64 start, u64 num_bytes, u64 min_size, 6756 loff_t actual_len, u64 *alloc_hint) 6757 { 6758 struct btrfs_trans_handle *trans; 6759 struct btrfs_root *root = BTRFS_I(inode)->root; 6760 struct btrfs_key ins; 6761 u64 cur_offset = start; 6762 int ret = 0; 6763 6764 while (num_bytes > 0) { 6765 trans = btrfs_start_transaction(root, 3); 6766 if (IS_ERR(trans)) { 6767 ret = PTR_ERR(trans); 6768 break; 6769 } 6770 6771 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 6772 0, *alloc_hint, (u64)-1, &ins, 1); 6773 if (ret) { 6774 btrfs_end_transaction(trans, root); 6775 break; 6776 } 6777 6778 ret = insert_reserved_file_extent(trans, inode, 6779 cur_offset, ins.objectid, 6780 ins.offset, ins.offset, 6781 ins.offset, 0, 0, 0, 6782 BTRFS_FILE_EXTENT_PREALLOC); 6783 BUG_ON(ret); 6784 btrfs_drop_extent_cache(inode, cur_offset, 6785 cur_offset + ins.offset -1, 0); 6786 6787 num_bytes -= ins.offset; 6788 cur_offset += ins.offset; 6789 *alloc_hint = ins.objectid + ins.offset; 6790 6791 inode->i_ctime = CURRENT_TIME; 6792 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 6793 if (!(mode & FALLOC_FL_KEEP_SIZE) && 6794 (actual_len > inode->i_size) && 6795 (cur_offset > inode->i_size)) { 6796 if (cur_offset > actual_len) 6797 i_size_write(inode, actual_len); 6798 else 6799 i_size_write(inode, cur_offset); 6800 i_size_write(inode, cur_offset); 6801 btrfs_ordered_update_i_size(inode, cur_offset, NULL); 6802 } 6803 6804 ret = btrfs_update_inode(trans, root, inode); 6805 BUG_ON(ret); 6806 6807 btrfs_end_transaction(trans, root); 6808 } 6809 return ret; 6810 } 6811 6812 static long btrfs_fallocate(struct inode *inode, int mode, 6813 loff_t offset, loff_t len) 6814 { 6815 struct extent_state *cached_state = NULL; 6816 u64 cur_offset; 6817 u64 last_byte; 6818 u64 alloc_start; 6819 u64 alloc_end; 6820 u64 alloc_hint = 0; 6821 u64 locked_end; 6822 u64 mask = BTRFS_I(inode)->root->sectorsize - 1; 6823 struct extent_map *em; 6824 int ret; 6825 6826 alloc_start = offset & ~mask; 6827 alloc_end = (offset + len + mask) & ~mask; 6828 6829 /* 6830 * wait for ordered IO before we have any locks. We'll loop again 6831 * below with the locks held. 6832 */ 6833 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start); 6834 6835 mutex_lock(&inode->i_mutex); 6836 if (alloc_start > inode->i_size) { 6837 ret = btrfs_cont_expand(inode, alloc_start); 6838 if (ret) 6839 goto out; 6840 } 6841 6842 ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start); 6843 if (ret) 6844 goto out; 6845 6846 locked_end = alloc_end - 1; 6847 while (1) { 6848 struct btrfs_ordered_extent *ordered; 6849 6850 /* the extent lock is ordered inside the running 6851 * transaction 6852 */ 6853 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start, 6854 locked_end, 0, &cached_state, GFP_NOFS); 6855 ordered = btrfs_lookup_first_ordered_extent(inode, 6856 alloc_end - 1); 6857 if (ordered && 6858 ordered->file_offset + ordered->len > alloc_start && 6859 ordered->file_offset < alloc_end) { 6860 btrfs_put_ordered_extent(ordered); 6861 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 6862 alloc_start, locked_end, 6863 &cached_state, GFP_NOFS); 6864 /* 6865 * we can't wait on the range with the transaction 6866 * running or with the extent lock held 6867 */ 6868 btrfs_wait_ordered_range(inode, alloc_start, 6869 alloc_end - alloc_start); 6870 } else { 6871 if (ordered) 6872 btrfs_put_ordered_extent(ordered); 6873 break; 6874 } 6875 } 6876 6877 cur_offset = alloc_start; 6878 while (1) { 6879 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 6880 alloc_end - cur_offset, 0); 6881 BUG_ON(IS_ERR(em) || !em); 6882 last_byte = min(extent_map_end(em), alloc_end); 6883 last_byte = (last_byte + mask) & ~mask; 6884 if (em->block_start == EXTENT_MAP_HOLE || 6885 (cur_offset >= inode->i_size && 6886 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 6887 ret = btrfs_prealloc_file_range(inode, mode, cur_offset, 6888 last_byte - cur_offset, 6889 1 << inode->i_blkbits, 6890 offset + len, 6891 &alloc_hint); 6892 if (ret < 0) { 6893 free_extent_map(em); 6894 break; 6895 } 6896 } 6897 free_extent_map(em); 6898 6899 cur_offset = last_byte; 6900 if (cur_offset >= alloc_end) { 6901 ret = 0; 6902 break; 6903 } 6904 } 6905 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end, 6906 &cached_state, GFP_NOFS); 6907 6908 btrfs_free_reserved_data_space(inode, alloc_end - alloc_start); 6909 out: 6910 mutex_unlock(&inode->i_mutex); 6911 return ret; 6912 } 6913 6914 static int btrfs_set_page_dirty(struct page *page) 6915 { 6916 return __set_page_dirty_nobuffers(page); 6917 } 6918 6919 static int btrfs_permission(struct inode *inode, int mask) 6920 { 6921 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 6922 return -EACCES; 6923 return generic_permission(inode, mask, btrfs_check_acl); 6924 } 6925 6926 static const struct inode_operations btrfs_dir_inode_operations = { 6927 .getattr = btrfs_getattr, 6928 .lookup = btrfs_lookup, 6929 .create = btrfs_create, 6930 .unlink = btrfs_unlink, 6931 .link = btrfs_link, 6932 .mkdir = btrfs_mkdir, 6933 .rmdir = btrfs_rmdir, 6934 .rename = btrfs_rename, 6935 .symlink = btrfs_symlink, 6936 .setattr = btrfs_setattr, 6937 .mknod = btrfs_mknod, 6938 .setxattr = btrfs_setxattr, 6939 .getxattr = btrfs_getxattr, 6940 .listxattr = btrfs_listxattr, 6941 .removexattr = btrfs_removexattr, 6942 .permission = btrfs_permission, 6943 }; 6944 static const struct inode_operations btrfs_dir_ro_inode_operations = { 6945 .lookup = btrfs_lookup, 6946 .permission = btrfs_permission, 6947 }; 6948 6949 static const struct file_operations btrfs_dir_file_operations = { 6950 .llseek = generic_file_llseek, 6951 .read = generic_read_dir, 6952 .readdir = btrfs_real_readdir, 6953 .unlocked_ioctl = btrfs_ioctl, 6954 #ifdef CONFIG_COMPAT 6955 .compat_ioctl = btrfs_ioctl, 6956 #endif 6957 .release = btrfs_release_file, 6958 .fsync = btrfs_sync_file, 6959 }; 6960 6961 static struct extent_io_ops btrfs_extent_io_ops = { 6962 .fill_delalloc = run_delalloc_range, 6963 .submit_bio_hook = btrfs_submit_bio_hook, 6964 .merge_bio_hook = btrfs_merge_bio_hook, 6965 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 6966 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 6967 .writepage_start_hook = btrfs_writepage_start_hook, 6968 .readpage_io_failed_hook = btrfs_io_failed_hook, 6969 .set_bit_hook = btrfs_set_bit_hook, 6970 .clear_bit_hook = btrfs_clear_bit_hook, 6971 .merge_extent_hook = btrfs_merge_extent_hook, 6972 .split_extent_hook = btrfs_split_extent_hook, 6973 }; 6974 6975 /* 6976 * btrfs doesn't support the bmap operation because swapfiles 6977 * use bmap to make a mapping of extents in the file. They assume 6978 * these extents won't change over the life of the file and they 6979 * use the bmap result to do IO directly to the drive. 6980 * 6981 * the btrfs bmap call would return logical addresses that aren't 6982 * suitable for IO and they also will change frequently as COW 6983 * operations happen. So, swapfile + btrfs == corruption. 6984 * 6985 * For now we're avoiding this by dropping bmap. 6986 */ 6987 static const struct address_space_operations btrfs_aops = { 6988 .readpage = btrfs_readpage, 6989 .writepage = btrfs_writepage, 6990 .writepages = btrfs_writepages, 6991 .readpages = btrfs_readpages, 6992 .sync_page = block_sync_page, 6993 .direct_IO = btrfs_direct_IO, 6994 .invalidatepage = btrfs_invalidatepage, 6995 .releasepage = btrfs_releasepage, 6996 .set_page_dirty = btrfs_set_page_dirty, 6997 .error_remove_page = generic_error_remove_page, 6998 }; 6999 7000 static const struct address_space_operations btrfs_symlink_aops = { 7001 .readpage = btrfs_readpage, 7002 .writepage = btrfs_writepage, 7003 .invalidatepage = btrfs_invalidatepage, 7004 .releasepage = btrfs_releasepage, 7005 }; 7006 7007 static const struct inode_operations btrfs_file_inode_operations = { 7008 .truncate = btrfs_truncate, 7009 .getattr = btrfs_getattr, 7010 .setattr = btrfs_setattr, 7011 .setxattr = btrfs_setxattr, 7012 .getxattr = btrfs_getxattr, 7013 .listxattr = btrfs_listxattr, 7014 .removexattr = btrfs_removexattr, 7015 .permission = btrfs_permission, 7016 .fallocate = btrfs_fallocate, 7017 .fiemap = btrfs_fiemap, 7018 }; 7019 static const struct inode_operations btrfs_special_inode_operations = { 7020 .getattr = btrfs_getattr, 7021 .setattr = btrfs_setattr, 7022 .permission = btrfs_permission, 7023 .setxattr = btrfs_setxattr, 7024 .getxattr = btrfs_getxattr, 7025 .listxattr = btrfs_listxattr, 7026 .removexattr = btrfs_removexattr, 7027 }; 7028 static const struct inode_operations btrfs_symlink_inode_operations = { 7029 .readlink = generic_readlink, 7030 .follow_link = page_follow_link_light, 7031 .put_link = page_put_link, 7032 .permission = btrfs_permission, 7033 .setxattr = btrfs_setxattr, 7034 .getxattr = btrfs_getxattr, 7035 .listxattr = btrfs_listxattr, 7036 .removexattr = btrfs_removexattr, 7037 }; 7038 7039 const struct dentry_operations btrfs_dentry_operations = { 7040 .d_delete = btrfs_dentry_delete, 7041 }; 7042