1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <crypto/hash.h> 7 #include <linux/kernel.h> 8 #include <linux/bio.h> 9 #include <linux/blk-cgroup.h> 10 #include <linux/file.h> 11 #include <linux/fs.h> 12 #include <linux/pagemap.h> 13 #include <linux/highmem.h> 14 #include <linux/time.h> 15 #include <linux/init.h> 16 #include <linux/string.h> 17 #include <linux/backing-dev.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/xattr.h> 21 #include <linux/posix_acl.h> 22 #include <linux/falloc.h> 23 #include <linux/slab.h> 24 #include <linux/ratelimit.h> 25 #include <linux/btrfs.h> 26 #include <linux/blkdev.h> 27 #include <linux/posix_acl_xattr.h> 28 #include <linux/uio.h> 29 #include <linux/magic.h> 30 #include <linux/iversion.h> 31 #include <linux/swap.h> 32 #include <linux/migrate.h> 33 #include <linux/sched/mm.h> 34 #include <linux/iomap.h> 35 #include <linux/unaligned.h> 36 #include <linux/fsverity.h> 37 #include "misc.h" 38 #include "ctree.h" 39 #include "disk-io.h" 40 #include "transaction.h" 41 #include "btrfs_inode.h" 42 #include "ordered-data.h" 43 #include "xattr.h" 44 #include "tree-log.h" 45 #include "bio.h" 46 #include "compression.h" 47 #include "locking.h" 48 #include "props.h" 49 #include "qgroup.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "space-info.h" 53 #include "zoned.h" 54 #include "subpage.h" 55 #include "inode-item.h" 56 #include "fs.h" 57 #include "accessors.h" 58 #include "extent-tree.h" 59 #include "root-tree.h" 60 #include "defrag.h" 61 #include "dir-item.h" 62 #include "file-item.h" 63 #include "uuid-tree.h" 64 #include "ioctl.h" 65 #include "file.h" 66 #include "acl.h" 67 #include "relocation.h" 68 #include "verity.h" 69 #include "super.h" 70 #include "orphan.h" 71 #include "backref.h" 72 #include "raid-stripe-tree.h" 73 #include "fiemap.h" 74 75 struct btrfs_iget_args { 76 u64 ino; 77 struct btrfs_root *root; 78 }; 79 80 struct btrfs_rename_ctx { 81 /* Output field. Stores the index number of the old directory entry. */ 82 u64 index; 83 }; 84 85 /* 86 * Used by data_reloc_print_warning_inode() to pass needed info for filename 87 * resolution and output of error message. 88 */ 89 struct data_reloc_warn { 90 struct btrfs_path path; 91 struct btrfs_fs_info *fs_info; 92 u64 extent_item_size; 93 u64 logical; 94 int mirror_num; 95 }; 96 97 /* 98 * For the file_extent_tree, we want to hold the inode lock when we lookup and 99 * update the disk_i_size, but lockdep will complain because our io_tree we hold 100 * the tree lock and get the inode lock when setting delalloc. These two things 101 * are unrelated, so make a class for the file_extent_tree so we don't get the 102 * two locking patterns mixed up. 103 */ 104 static struct lock_class_key file_extent_tree_class; 105 106 static const struct inode_operations btrfs_dir_inode_operations; 107 static const struct inode_operations btrfs_symlink_inode_operations; 108 static const struct inode_operations btrfs_special_inode_operations; 109 static const struct inode_operations btrfs_file_inode_operations; 110 static const struct address_space_operations btrfs_aops; 111 static const struct file_operations btrfs_dir_file_operations; 112 113 static struct kmem_cache *btrfs_inode_cachep; 114 115 static int btrfs_setsize(struct inode *inode, struct iattr *attr); 116 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback); 117 118 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 119 struct folio *locked_folio, u64 start, 120 u64 end, struct writeback_control *wbc, 121 bool pages_dirty); 122 123 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes, 124 u64 root, void *warn_ctx) 125 { 126 struct data_reloc_warn *warn = warn_ctx; 127 struct btrfs_fs_info *fs_info = warn->fs_info; 128 struct extent_buffer *eb; 129 struct btrfs_inode_item *inode_item; 130 struct inode_fs_paths *ipath = NULL; 131 struct btrfs_root *local_root; 132 struct btrfs_key key; 133 unsigned int nofs_flag; 134 u32 nlink; 135 int ret; 136 137 local_root = btrfs_get_fs_root(fs_info, root, true); 138 if (IS_ERR(local_root)) { 139 ret = PTR_ERR(local_root); 140 goto err; 141 } 142 143 /* This makes the path point to (inum INODE_ITEM ioff). */ 144 key.objectid = inum; 145 key.type = BTRFS_INODE_ITEM_KEY; 146 key.offset = 0; 147 148 ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0); 149 if (ret) { 150 btrfs_put_root(local_root); 151 btrfs_release_path(&warn->path); 152 goto err; 153 } 154 155 eb = warn->path.nodes[0]; 156 inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item); 157 nlink = btrfs_inode_nlink(eb, inode_item); 158 btrfs_release_path(&warn->path); 159 160 nofs_flag = memalloc_nofs_save(); 161 ipath = init_ipath(4096, local_root, &warn->path); 162 memalloc_nofs_restore(nofs_flag); 163 if (IS_ERR(ipath)) { 164 btrfs_put_root(local_root); 165 ret = PTR_ERR(ipath); 166 ipath = NULL; 167 /* 168 * -ENOMEM, not a critical error, just output an generic error 169 * without filename. 170 */ 171 btrfs_warn(fs_info, 172 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu", 173 warn->logical, warn->mirror_num, root, inum, offset); 174 return ret; 175 } 176 ret = paths_from_inode(inum, ipath); 177 if (ret < 0) 178 goto err; 179 180 /* 181 * We deliberately ignore the bit ipath might have been too small to 182 * hold all of the paths here 183 */ 184 for (int i = 0; i < ipath->fspath->elem_cnt; i++) { 185 btrfs_warn(fs_info, 186 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)", 187 warn->logical, warn->mirror_num, root, inum, offset, 188 fs_info->sectorsize, nlink, 189 (char *)(unsigned long)ipath->fspath->val[i]); 190 } 191 192 btrfs_put_root(local_root); 193 free_ipath(ipath); 194 return 0; 195 196 err: 197 btrfs_warn(fs_info, 198 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d", 199 warn->logical, warn->mirror_num, root, inum, offset, ret); 200 201 free_ipath(ipath); 202 return ret; 203 } 204 205 /* 206 * Do extra user-friendly error output (e.g. lookup all the affected files). 207 * 208 * Return true if we succeeded doing the backref lookup. 209 * Return false if such lookup failed, and has to fallback to the old error message. 210 */ 211 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off, 212 const u8 *csum, const u8 *csum_expected, 213 int mirror_num) 214 { 215 struct btrfs_fs_info *fs_info = inode->root->fs_info; 216 struct btrfs_path path = { 0 }; 217 struct btrfs_key found_key = { 0 }; 218 struct extent_buffer *eb; 219 struct btrfs_extent_item *ei; 220 const u32 csum_size = fs_info->csum_size; 221 u64 logical; 222 u64 flags; 223 u32 item_size; 224 int ret; 225 226 mutex_lock(&fs_info->reloc_mutex); 227 logical = btrfs_get_reloc_bg_bytenr(fs_info); 228 mutex_unlock(&fs_info->reloc_mutex); 229 230 if (logical == U64_MAX) { 231 btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation"); 232 btrfs_warn_rl(fs_info, 233 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 234 btrfs_root_id(inode->root), btrfs_ino(inode), file_off, 235 CSUM_FMT_VALUE(csum_size, csum), 236 CSUM_FMT_VALUE(csum_size, csum_expected), 237 mirror_num); 238 return; 239 } 240 241 logical += file_off; 242 btrfs_warn_rl(fs_info, 243 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 244 btrfs_root_id(inode->root), 245 btrfs_ino(inode), file_off, logical, 246 CSUM_FMT_VALUE(csum_size, csum), 247 CSUM_FMT_VALUE(csum_size, csum_expected), 248 mirror_num); 249 250 ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags); 251 if (ret < 0) { 252 btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d", 253 logical, ret); 254 return; 255 } 256 eb = path.nodes[0]; 257 ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item); 258 item_size = btrfs_item_size(eb, path.slots[0]); 259 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 260 unsigned long ptr = 0; 261 u64 ref_root; 262 u8 ref_level; 263 264 while (true) { 265 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 266 item_size, &ref_root, 267 &ref_level); 268 if (ret < 0) { 269 btrfs_warn_rl(fs_info, 270 "failed to resolve tree backref for logical %llu: %d", 271 logical, ret); 272 break; 273 } 274 if (ret > 0) 275 break; 276 277 btrfs_warn_rl(fs_info, 278 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu", 279 logical, mirror_num, 280 (ref_level ? "node" : "leaf"), 281 ref_level, ref_root); 282 } 283 btrfs_release_path(&path); 284 } else { 285 struct btrfs_backref_walk_ctx ctx = { 0 }; 286 struct data_reloc_warn reloc_warn = { 0 }; 287 288 btrfs_release_path(&path); 289 290 ctx.bytenr = found_key.objectid; 291 ctx.extent_item_pos = logical - found_key.objectid; 292 ctx.fs_info = fs_info; 293 294 reloc_warn.logical = logical; 295 reloc_warn.extent_item_size = found_key.offset; 296 reloc_warn.mirror_num = mirror_num; 297 reloc_warn.fs_info = fs_info; 298 299 iterate_extent_inodes(&ctx, true, 300 data_reloc_print_warning_inode, &reloc_warn); 301 } 302 } 303 304 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode, 305 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num) 306 { 307 struct btrfs_root *root = inode->root; 308 const u32 csum_size = root->fs_info->csum_size; 309 310 /* For data reloc tree, it's better to do a backref lookup instead. */ 311 if (btrfs_root_id(root) == BTRFS_DATA_RELOC_TREE_OBJECTID) 312 return print_data_reloc_error(inode, logical_start, csum, 313 csum_expected, mirror_num); 314 315 /* Output without objectid, which is more meaningful */ 316 if (btrfs_root_id(root) >= BTRFS_LAST_FREE_OBJECTID) { 317 btrfs_warn_rl(root->fs_info, 318 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 319 btrfs_root_id(root), btrfs_ino(inode), 320 logical_start, 321 CSUM_FMT_VALUE(csum_size, csum), 322 CSUM_FMT_VALUE(csum_size, csum_expected), 323 mirror_num); 324 } else { 325 btrfs_warn_rl(root->fs_info, 326 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d", 327 btrfs_root_id(root), btrfs_ino(inode), 328 logical_start, 329 CSUM_FMT_VALUE(csum_size, csum), 330 CSUM_FMT_VALUE(csum_size, csum_expected), 331 mirror_num); 332 } 333 } 334 335 /* 336 * Lock inode i_rwsem based on arguments passed. 337 * 338 * ilock_flags can have the following bit set: 339 * 340 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode 341 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt 342 * return -EAGAIN 343 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock 344 */ 345 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags) 346 { 347 if (ilock_flags & BTRFS_ILOCK_SHARED) { 348 if (ilock_flags & BTRFS_ILOCK_TRY) { 349 if (!inode_trylock_shared(&inode->vfs_inode)) 350 return -EAGAIN; 351 else 352 return 0; 353 } 354 inode_lock_shared(&inode->vfs_inode); 355 } else { 356 if (ilock_flags & BTRFS_ILOCK_TRY) { 357 if (!inode_trylock(&inode->vfs_inode)) 358 return -EAGAIN; 359 else 360 return 0; 361 } 362 inode_lock(&inode->vfs_inode); 363 } 364 if (ilock_flags & BTRFS_ILOCK_MMAP) 365 down_write(&inode->i_mmap_lock); 366 return 0; 367 } 368 369 /* 370 * Unock inode i_rwsem. 371 * 372 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock() 373 * to decide whether the lock acquired is shared or exclusive. 374 */ 375 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags) 376 { 377 if (ilock_flags & BTRFS_ILOCK_MMAP) 378 up_write(&inode->i_mmap_lock); 379 if (ilock_flags & BTRFS_ILOCK_SHARED) 380 inode_unlock_shared(&inode->vfs_inode); 381 else 382 inode_unlock(&inode->vfs_inode); 383 } 384 385 /* 386 * Cleanup all submitted ordered extents in specified range to handle errors 387 * from the btrfs_run_delalloc_range() callback. 388 * 389 * NOTE: caller must ensure that when an error happens, it can not call 390 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING 391 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata 392 * to be released, which we want to happen only when finishing the ordered 393 * extent (btrfs_finish_ordered_io()). 394 */ 395 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode, 396 u64 offset, u64 bytes) 397 { 398 unsigned long index = offset >> PAGE_SHIFT; 399 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; 400 struct folio *folio; 401 402 while (index <= end_index) { 403 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 404 index++; 405 if (IS_ERR(folio)) 406 continue; 407 408 /* 409 * Here we just clear all Ordered bits for every page in the 410 * range, then btrfs_mark_ordered_io_finished() will handle 411 * the ordered extent accounting for the range. 412 */ 413 btrfs_folio_clamp_clear_ordered(inode->root->fs_info, folio, 414 offset, bytes); 415 folio_put(folio); 416 } 417 418 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false); 419 } 420 421 static int btrfs_dirty_inode(struct btrfs_inode *inode); 422 423 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 424 struct btrfs_new_inode_args *args) 425 { 426 int err; 427 428 if (args->default_acl) { 429 err = __btrfs_set_acl(trans, args->inode, args->default_acl, 430 ACL_TYPE_DEFAULT); 431 if (err) 432 return err; 433 } 434 if (args->acl) { 435 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS); 436 if (err) 437 return err; 438 } 439 if (!args->default_acl && !args->acl) 440 cache_no_acl(args->inode); 441 return btrfs_xattr_security_init(trans, args->inode, args->dir, 442 &args->dentry->d_name); 443 } 444 445 /* 446 * this does all the hard work for inserting an inline extent into 447 * the btree. The caller should have done a btrfs_drop_extents so that 448 * no overlapping inline items exist in the btree 449 */ 450 static int insert_inline_extent(struct btrfs_trans_handle *trans, 451 struct btrfs_path *path, 452 struct btrfs_inode *inode, bool extent_inserted, 453 size_t size, size_t compressed_size, 454 int compress_type, 455 struct folio *compressed_folio, 456 bool update_i_size) 457 { 458 struct btrfs_root *root = inode->root; 459 struct extent_buffer *leaf; 460 const u32 sectorsize = trans->fs_info->sectorsize; 461 char *kaddr; 462 unsigned long ptr; 463 struct btrfs_file_extent_item *ei; 464 int ret; 465 size_t cur_size = size; 466 u64 i_size; 467 468 /* 469 * The decompressed size must still be no larger than a sector. Under 470 * heavy race, we can have size == 0 passed in, but that shouldn't be a 471 * big deal and we can continue the insertion. 472 */ 473 ASSERT(size <= sectorsize); 474 475 /* 476 * The compressed size also needs to be no larger than a sector. 477 * That's also why we only need one page as the parameter. 478 */ 479 if (compressed_folio) 480 ASSERT(compressed_size <= sectorsize); 481 else 482 ASSERT(compressed_size == 0); 483 484 if (compressed_size && compressed_folio) 485 cur_size = compressed_size; 486 487 if (!extent_inserted) { 488 struct btrfs_key key; 489 size_t datasize; 490 491 key.objectid = btrfs_ino(inode); 492 key.type = BTRFS_EXTENT_DATA_KEY; 493 key.offset = 0; 494 495 datasize = btrfs_file_extent_calc_inline_size(cur_size); 496 ret = btrfs_insert_empty_item(trans, root, path, &key, 497 datasize); 498 if (ret) 499 goto fail; 500 } 501 leaf = path->nodes[0]; 502 ei = btrfs_item_ptr(leaf, path->slots[0], 503 struct btrfs_file_extent_item); 504 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 505 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 506 btrfs_set_file_extent_encryption(leaf, ei, 0); 507 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 508 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 509 ptr = btrfs_file_extent_inline_start(ei); 510 511 if (compress_type != BTRFS_COMPRESS_NONE) { 512 kaddr = kmap_local_folio(compressed_folio, 0); 513 write_extent_buffer(leaf, kaddr, ptr, compressed_size); 514 kunmap_local(kaddr); 515 516 btrfs_set_file_extent_compression(leaf, ei, 517 compress_type); 518 } else { 519 struct folio *folio; 520 521 folio = filemap_get_folio(inode->vfs_inode.i_mapping, 0); 522 ASSERT(!IS_ERR(folio)); 523 btrfs_set_file_extent_compression(leaf, ei, 0); 524 kaddr = kmap_local_folio(folio, 0); 525 write_extent_buffer(leaf, kaddr, ptr, size); 526 kunmap_local(kaddr); 527 folio_put(folio); 528 } 529 btrfs_release_path(path); 530 531 /* 532 * We align size to sectorsize for inline extents just for simplicity 533 * sake. 534 */ 535 ret = btrfs_inode_set_file_extent_range(inode, 0, 536 ALIGN(size, root->fs_info->sectorsize)); 537 if (ret) 538 goto fail; 539 540 /* 541 * We're an inline extent, so nobody can extend the file past i_size 542 * without locking a page we already have locked. 543 * 544 * We must do any i_size and inode updates before we unlock the pages. 545 * Otherwise we could end up racing with unlink. 546 */ 547 i_size = i_size_read(&inode->vfs_inode); 548 if (update_i_size && size > i_size) { 549 i_size_write(&inode->vfs_inode, size); 550 i_size = size; 551 } 552 inode->disk_i_size = i_size; 553 554 fail: 555 return ret; 556 } 557 558 static bool can_cow_file_range_inline(struct btrfs_inode *inode, 559 u64 offset, u64 size, 560 size_t compressed_size) 561 { 562 struct btrfs_fs_info *fs_info = inode->root->fs_info; 563 u64 data_len = (compressed_size ?: size); 564 565 /* Inline extents must start at offset 0. */ 566 if (offset != 0) 567 return false; 568 569 /* Inline extents are limited to sectorsize. */ 570 if (size > fs_info->sectorsize) 571 return false; 572 573 /* We do not allow a non-compressed extent to be as large as block size. */ 574 if (data_len >= fs_info->sectorsize) 575 return false; 576 577 /* We cannot exceed the maximum inline data size. */ 578 if (data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) 579 return false; 580 581 /* We cannot exceed the user specified max_inline size. */ 582 if (data_len > fs_info->max_inline) 583 return false; 584 585 /* Inline extents must be the entirety of the file. */ 586 if (size < i_size_read(&inode->vfs_inode)) 587 return false; 588 589 return true; 590 } 591 592 /* 593 * conditionally insert an inline extent into the file. This 594 * does the checks required to make sure the data is small enough 595 * to fit as an inline extent. 596 * 597 * If being used directly, you must have already checked we're allowed to cow 598 * the range by getting true from can_cow_file_range_inline(). 599 */ 600 static noinline int __cow_file_range_inline(struct btrfs_inode *inode, 601 u64 size, size_t compressed_size, 602 int compress_type, 603 struct folio *compressed_folio, 604 bool update_i_size) 605 { 606 struct btrfs_drop_extents_args drop_args = { 0 }; 607 struct btrfs_root *root = inode->root; 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_trans_handle *trans; 610 u64 data_len = (compressed_size ?: size); 611 int ret; 612 struct btrfs_path *path; 613 614 path = btrfs_alloc_path(); 615 if (!path) 616 return -ENOMEM; 617 618 trans = btrfs_join_transaction(root); 619 if (IS_ERR(trans)) { 620 btrfs_free_path(path); 621 return PTR_ERR(trans); 622 } 623 trans->block_rsv = &inode->block_rsv; 624 625 drop_args.path = path; 626 drop_args.start = 0; 627 drop_args.end = fs_info->sectorsize; 628 drop_args.drop_cache = true; 629 drop_args.replace_extent = true; 630 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len); 631 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 632 if (ret) { 633 btrfs_abort_transaction(trans, ret); 634 goto out; 635 } 636 637 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted, 638 size, compressed_size, compress_type, 639 compressed_folio, update_i_size); 640 if (ret && ret != -ENOSPC) { 641 btrfs_abort_transaction(trans, ret); 642 goto out; 643 } else if (ret == -ENOSPC) { 644 ret = 1; 645 goto out; 646 } 647 648 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found); 649 ret = btrfs_update_inode(trans, inode); 650 if (ret && ret != -ENOSPC) { 651 btrfs_abort_transaction(trans, ret); 652 goto out; 653 } else if (ret == -ENOSPC) { 654 ret = 1; 655 goto out; 656 } 657 658 btrfs_set_inode_full_sync(inode); 659 out: 660 /* 661 * Don't forget to free the reserved space, as for inlined extent 662 * it won't count as data extent, free them directly here. 663 * And at reserve time, it's always aligned to page size, so 664 * just free one page here. 665 */ 666 btrfs_qgroup_free_data(inode, NULL, 0, fs_info->sectorsize, NULL); 667 btrfs_free_path(path); 668 btrfs_end_transaction(trans); 669 return ret; 670 } 671 672 static noinline int cow_file_range_inline(struct btrfs_inode *inode, 673 struct folio *locked_folio, 674 u64 offset, u64 end, 675 size_t compressed_size, 676 int compress_type, 677 struct folio *compressed_folio, 678 bool update_i_size) 679 { 680 struct extent_state *cached = NULL; 681 unsigned long clear_flags = EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 682 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING | EXTENT_LOCKED; 683 u64 size = min_t(u64, i_size_read(&inode->vfs_inode), end + 1); 684 int ret; 685 686 if (!can_cow_file_range_inline(inode, offset, size, compressed_size)) 687 return 1; 688 689 lock_extent(&inode->io_tree, offset, end, &cached); 690 ret = __cow_file_range_inline(inode, size, compressed_size, 691 compress_type, compressed_folio, 692 update_i_size); 693 if (ret > 0) { 694 unlock_extent(&inode->io_tree, offset, end, &cached); 695 return ret; 696 } 697 698 /* 699 * In the successful case (ret == 0 here), cow_file_range will return 1. 700 * 701 * Quite a bit further up the callstack in extent_writepage(), ret == 1 702 * is treated as a short circuited success and does not unlock the folio, 703 * so we must do it here. 704 * 705 * In the failure case, the locked_folio does get unlocked by 706 * btrfs_folio_end_all_writers, which asserts that it is still locked 707 * at that point, so we must *not* unlock it here. 708 * 709 * The other two callsites in compress_file_range do not have a 710 * locked_folio, so they are not relevant to this logic. 711 */ 712 if (ret == 0) 713 locked_folio = NULL; 714 715 extent_clear_unlock_delalloc(inode, offset, end, locked_folio, &cached, 716 clear_flags, PAGE_UNLOCK | 717 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK); 718 return ret; 719 } 720 721 struct async_extent { 722 u64 start; 723 u64 ram_size; 724 u64 compressed_size; 725 struct folio **folios; 726 unsigned long nr_folios; 727 int compress_type; 728 struct list_head list; 729 }; 730 731 struct async_chunk { 732 struct btrfs_inode *inode; 733 struct folio *locked_folio; 734 u64 start; 735 u64 end; 736 blk_opf_t write_flags; 737 struct list_head extents; 738 struct cgroup_subsys_state *blkcg_css; 739 struct btrfs_work work; 740 struct async_cow *async_cow; 741 }; 742 743 struct async_cow { 744 atomic_t num_chunks; 745 struct async_chunk chunks[]; 746 }; 747 748 static noinline int add_async_extent(struct async_chunk *cow, 749 u64 start, u64 ram_size, 750 u64 compressed_size, 751 struct folio **folios, 752 unsigned long nr_folios, 753 int compress_type) 754 { 755 struct async_extent *async_extent; 756 757 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 758 if (!async_extent) 759 return -ENOMEM; 760 async_extent->start = start; 761 async_extent->ram_size = ram_size; 762 async_extent->compressed_size = compressed_size; 763 async_extent->folios = folios; 764 async_extent->nr_folios = nr_folios; 765 async_extent->compress_type = compress_type; 766 list_add_tail(&async_extent->list, &cow->extents); 767 return 0; 768 } 769 770 /* 771 * Check if the inode needs to be submitted to compression, based on mount 772 * options, defragmentation, properties or heuristics. 773 */ 774 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start, 775 u64 end) 776 { 777 struct btrfs_fs_info *fs_info = inode->root->fs_info; 778 779 if (!btrfs_inode_can_compress(inode)) { 780 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), 781 KERN_ERR "BTRFS: unexpected compression for ino %llu\n", 782 btrfs_ino(inode)); 783 return 0; 784 } 785 /* 786 * Only enable sector perfect compression for experimental builds. 787 * 788 * This is a big feature change for subpage cases, and can hit 789 * different corner cases, so only limit this feature for 790 * experimental build for now. 791 * 792 * ETA for moving this out of experimental builds is 6.15. 793 */ 794 if (fs_info->sectorsize < PAGE_SIZE && 795 !IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 796 if (!PAGE_ALIGNED(start) || 797 !PAGE_ALIGNED(end + 1)) 798 return 0; 799 } 800 801 /* force compress */ 802 if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) 803 return 1; 804 /* defrag ioctl */ 805 if (inode->defrag_compress) 806 return 1; 807 /* bad compression ratios */ 808 if (inode->flags & BTRFS_INODE_NOCOMPRESS) 809 return 0; 810 if (btrfs_test_opt(fs_info, COMPRESS) || 811 inode->flags & BTRFS_INODE_COMPRESS || 812 inode->prop_compress) 813 return btrfs_compress_heuristic(inode, start, end); 814 return 0; 815 } 816 817 static inline void inode_should_defrag(struct btrfs_inode *inode, 818 u64 start, u64 end, u64 num_bytes, u32 small_write) 819 { 820 /* If this is a small write inside eof, kick off a defrag */ 821 if (num_bytes < small_write && 822 (start > 0 || end + 1 < inode->disk_i_size)) 823 btrfs_add_inode_defrag(inode, small_write); 824 } 825 826 static int extent_range_clear_dirty_for_io(struct btrfs_inode *inode, u64 start, u64 end) 827 { 828 unsigned long end_index = end >> PAGE_SHIFT; 829 struct folio *folio; 830 int ret = 0; 831 832 for (unsigned long index = start >> PAGE_SHIFT; 833 index <= end_index; index++) { 834 folio = filemap_get_folio(inode->vfs_inode.i_mapping, index); 835 if (IS_ERR(folio)) { 836 if (!ret) 837 ret = PTR_ERR(folio); 838 continue; 839 } 840 btrfs_folio_clamp_clear_dirty(inode->root->fs_info, folio, start, 841 end + 1 - start); 842 folio_put(folio); 843 } 844 return ret; 845 } 846 847 /* 848 * Work queue call back to started compression on a file and pages. 849 * 850 * This is done inside an ordered work queue, and the compression is spread 851 * across many cpus. The actual IO submission is step two, and the ordered work 852 * queue takes care of making sure that happens in the same order things were 853 * put onto the queue by writepages and friends. 854 * 855 * If this code finds it can't get good compression, it puts an entry onto the 856 * work queue to write the uncompressed bytes. This makes sure that both 857 * compressed inodes and uncompressed inodes are written in the same order that 858 * the flusher thread sent them down. 859 */ 860 static void compress_file_range(struct btrfs_work *work) 861 { 862 struct async_chunk *async_chunk = 863 container_of(work, struct async_chunk, work); 864 struct btrfs_inode *inode = async_chunk->inode; 865 struct btrfs_fs_info *fs_info = inode->root->fs_info; 866 struct address_space *mapping = inode->vfs_inode.i_mapping; 867 u64 blocksize = fs_info->sectorsize; 868 u64 start = async_chunk->start; 869 u64 end = async_chunk->end; 870 u64 actual_end; 871 u64 i_size; 872 int ret = 0; 873 struct folio **folios; 874 unsigned long nr_folios; 875 unsigned long total_compressed = 0; 876 unsigned long total_in = 0; 877 unsigned int poff; 878 int i; 879 int compress_type = fs_info->compress_type; 880 int compress_level = fs_info->compress_level; 881 882 inode_should_defrag(inode, start, end, end - start + 1, SZ_16K); 883 884 /* 885 * We need to call clear_page_dirty_for_io on each page in the range. 886 * Otherwise applications with the file mmap'd can wander in and change 887 * the page contents while we are compressing them. 888 */ 889 ret = extent_range_clear_dirty_for_io(inode, start, end); 890 891 /* 892 * All the folios should have been locked thus no failure. 893 * 894 * And even if some folios are missing, btrfs_compress_folios() 895 * would handle them correctly, so here just do an ASSERT() check for 896 * early logic errors. 897 */ 898 ASSERT(ret == 0); 899 900 /* 901 * We need to save i_size before now because it could change in between 902 * us evaluating the size and assigning it. This is because we lock and 903 * unlock the page in truncate and fallocate, and then modify the i_size 904 * later on. 905 * 906 * The barriers are to emulate READ_ONCE, remove that once i_size_read 907 * does that for us. 908 */ 909 barrier(); 910 i_size = i_size_read(&inode->vfs_inode); 911 barrier(); 912 actual_end = min_t(u64, i_size, end + 1); 913 again: 914 folios = NULL; 915 nr_folios = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; 916 nr_folios = min_t(unsigned long, nr_folios, BTRFS_MAX_COMPRESSED_PAGES); 917 918 /* 919 * we don't want to send crud past the end of i_size through 920 * compression, that's just a waste of CPU time. So, if the 921 * end of the file is before the start of our current 922 * requested range of bytes, we bail out to the uncompressed 923 * cleanup code that can deal with all of this. 924 * 925 * It isn't really the fastest way to fix things, but this is a 926 * very uncommon corner. 927 */ 928 if (actual_end <= start) 929 goto cleanup_and_bail_uncompressed; 930 931 total_compressed = actual_end - start; 932 933 /* 934 * Skip compression for a small file range(<=blocksize) that 935 * isn't an inline extent, since it doesn't save disk space at all. 936 */ 937 if (total_compressed <= blocksize && 938 (start > 0 || end + 1 < inode->disk_i_size)) 939 goto cleanup_and_bail_uncompressed; 940 941 total_compressed = min_t(unsigned long, total_compressed, 942 BTRFS_MAX_UNCOMPRESSED); 943 total_in = 0; 944 ret = 0; 945 946 /* 947 * We do compression for mount -o compress and when the inode has not 948 * been flagged as NOCOMPRESS. This flag can change at any time if we 949 * discover bad compression ratios. 950 */ 951 if (!inode_need_compress(inode, start, end)) 952 goto cleanup_and_bail_uncompressed; 953 954 folios = kcalloc(nr_folios, sizeof(struct folio *), GFP_NOFS); 955 if (!folios) { 956 /* 957 * Memory allocation failure is not a fatal error, we can fall 958 * back to uncompressed code. 959 */ 960 goto cleanup_and_bail_uncompressed; 961 } 962 963 if (inode->defrag_compress) { 964 compress_type = inode->defrag_compress; 965 compress_level = inode->defrag_compress_level; 966 } else if (inode->prop_compress) { 967 compress_type = inode->prop_compress; 968 } 969 970 /* Compression level is applied here. */ 971 ret = btrfs_compress_folios(compress_type, compress_level, 972 mapping, start, folios, &nr_folios, &total_in, 973 &total_compressed); 974 if (ret) 975 goto mark_incompressible; 976 977 /* 978 * Zero the tail end of the last page, as we might be sending it down 979 * to disk. 980 */ 981 poff = offset_in_page(total_compressed); 982 if (poff) 983 folio_zero_range(folios[nr_folios - 1], poff, PAGE_SIZE - poff); 984 985 /* 986 * Try to create an inline extent. 987 * 988 * If we didn't compress the entire range, try to create an uncompressed 989 * inline extent, else a compressed one. 990 * 991 * Check cow_file_range() for why we don't even try to create inline 992 * extent for the subpage case. 993 */ 994 if (total_in < actual_end) 995 ret = cow_file_range_inline(inode, NULL, start, end, 0, 996 BTRFS_COMPRESS_NONE, NULL, false); 997 else 998 ret = cow_file_range_inline(inode, NULL, start, end, total_compressed, 999 compress_type, folios[0], false); 1000 if (ret <= 0) { 1001 if (ret < 0) 1002 mapping_set_error(mapping, -EIO); 1003 goto free_pages; 1004 } 1005 1006 /* 1007 * We aren't doing an inline extent. Round the compressed size up to a 1008 * block size boundary so the allocator does sane things. 1009 */ 1010 total_compressed = ALIGN(total_compressed, blocksize); 1011 1012 /* 1013 * One last check to make sure the compression is really a win, compare 1014 * the page count read with the blocks on disk, compression must free at 1015 * least one sector. 1016 */ 1017 total_in = round_up(total_in, fs_info->sectorsize); 1018 if (total_compressed + blocksize > total_in) 1019 goto mark_incompressible; 1020 1021 /* 1022 * The async work queues will take care of doing actual allocation on 1023 * disk for these compressed pages, and will submit the bios. 1024 */ 1025 ret = add_async_extent(async_chunk, start, total_in, total_compressed, folios, 1026 nr_folios, compress_type); 1027 BUG_ON(ret); 1028 if (start + total_in < end) { 1029 start += total_in; 1030 cond_resched(); 1031 goto again; 1032 } 1033 return; 1034 1035 mark_incompressible: 1036 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress) 1037 inode->flags |= BTRFS_INODE_NOCOMPRESS; 1038 cleanup_and_bail_uncompressed: 1039 ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0, 1040 BTRFS_COMPRESS_NONE); 1041 BUG_ON(ret); 1042 free_pages: 1043 if (folios) { 1044 for (i = 0; i < nr_folios; i++) { 1045 WARN_ON(folios[i]->mapping); 1046 btrfs_free_compr_folio(folios[i]); 1047 } 1048 kfree(folios); 1049 } 1050 } 1051 1052 static void free_async_extent_pages(struct async_extent *async_extent) 1053 { 1054 int i; 1055 1056 if (!async_extent->folios) 1057 return; 1058 1059 for (i = 0; i < async_extent->nr_folios; i++) { 1060 WARN_ON(async_extent->folios[i]->mapping); 1061 btrfs_free_compr_folio(async_extent->folios[i]); 1062 } 1063 kfree(async_extent->folios); 1064 async_extent->nr_folios = 0; 1065 async_extent->folios = NULL; 1066 } 1067 1068 static void submit_uncompressed_range(struct btrfs_inode *inode, 1069 struct async_extent *async_extent, 1070 struct folio *locked_folio) 1071 { 1072 u64 start = async_extent->start; 1073 u64 end = async_extent->start + async_extent->ram_size - 1; 1074 int ret; 1075 struct writeback_control wbc = { 1076 .sync_mode = WB_SYNC_ALL, 1077 .range_start = start, 1078 .range_end = end, 1079 .no_cgroup_owner = 1, 1080 }; 1081 1082 wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode); 1083 ret = run_delalloc_cow(inode, locked_folio, start, end, 1084 &wbc, false); 1085 wbc_detach_inode(&wbc); 1086 if (ret < 0) { 1087 if (locked_folio) 1088 btrfs_folio_end_lock(inode->root->fs_info, locked_folio, 1089 start, async_extent->ram_size); 1090 btrfs_err_rl(inode->root->fs_info, 1091 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1092 __func__, btrfs_root_id(inode->root), 1093 btrfs_ino(inode), start, async_extent->ram_size, ret); 1094 } 1095 } 1096 1097 static void submit_one_async_extent(struct async_chunk *async_chunk, 1098 struct async_extent *async_extent, 1099 u64 *alloc_hint) 1100 { 1101 struct btrfs_inode *inode = async_chunk->inode; 1102 struct extent_io_tree *io_tree = &inode->io_tree; 1103 struct btrfs_root *root = inode->root; 1104 struct btrfs_fs_info *fs_info = root->fs_info; 1105 struct btrfs_ordered_extent *ordered; 1106 struct btrfs_file_extent file_extent; 1107 struct btrfs_key ins; 1108 struct folio *locked_folio = NULL; 1109 struct extent_state *cached = NULL; 1110 struct extent_map *em; 1111 int ret = 0; 1112 bool free_pages = false; 1113 u64 start = async_extent->start; 1114 u64 end = async_extent->start + async_extent->ram_size - 1; 1115 1116 if (async_chunk->blkcg_css) 1117 kthread_associate_blkcg(async_chunk->blkcg_css); 1118 1119 /* 1120 * If async_chunk->locked_folio is in the async_extent range, we need to 1121 * handle it. 1122 */ 1123 if (async_chunk->locked_folio) { 1124 u64 locked_folio_start = folio_pos(async_chunk->locked_folio); 1125 u64 locked_folio_end = locked_folio_start + 1126 folio_size(async_chunk->locked_folio) - 1; 1127 1128 if (!(start >= locked_folio_end || end <= locked_folio_start)) 1129 locked_folio = async_chunk->locked_folio; 1130 } 1131 1132 if (async_extent->compress_type == BTRFS_COMPRESS_NONE) { 1133 ASSERT(!async_extent->folios); 1134 ASSERT(async_extent->nr_folios == 0); 1135 submit_uncompressed_range(inode, async_extent, locked_folio); 1136 free_pages = true; 1137 goto done; 1138 } 1139 1140 ret = btrfs_reserve_extent(root, async_extent->ram_size, 1141 async_extent->compressed_size, 1142 async_extent->compressed_size, 1143 0, *alloc_hint, &ins, 1, 1); 1144 if (ret) { 1145 /* 1146 * We can't reserve contiguous space for the compressed size. 1147 * Unlikely, but it's possible that we could have enough 1148 * non-contiguous space for the uncompressed size instead. So 1149 * fall back to uncompressed. 1150 */ 1151 submit_uncompressed_range(inode, async_extent, locked_folio); 1152 free_pages = true; 1153 goto done; 1154 } 1155 1156 lock_extent(io_tree, start, end, &cached); 1157 1158 /* Here we're doing allocation and writeback of the compressed pages */ 1159 file_extent.disk_bytenr = ins.objectid; 1160 file_extent.disk_num_bytes = ins.offset; 1161 file_extent.ram_bytes = async_extent->ram_size; 1162 file_extent.num_bytes = async_extent->ram_size; 1163 file_extent.offset = 0; 1164 file_extent.compression = async_extent->compress_type; 1165 1166 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 1167 if (IS_ERR(em)) { 1168 ret = PTR_ERR(em); 1169 goto out_free_reserve; 1170 } 1171 free_extent_map(em); 1172 1173 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1174 1 << BTRFS_ORDERED_COMPRESSED); 1175 if (IS_ERR(ordered)) { 1176 btrfs_drop_extent_map_range(inode, start, end, false); 1177 ret = PTR_ERR(ordered); 1178 goto out_free_reserve; 1179 } 1180 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1181 1182 /* Clear dirty, set writeback and unlock the pages. */ 1183 extent_clear_unlock_delalloc(inode, start, end, 1184 NULL, &cached, EXTENT_LOCKED | EXTENT_DELALLOC, 1185 PAGE_UNLOCK | PAGE_START_WRITEBACK); 1186 btrfs_submit_compressed_write(ordered, 1187 async_extent->folios, /* compressed_folios */ 1188 async_extent->nr_folios, 1189 async_chunk->write_flags, true); 1190 *alloc_hint = ins.objectid + ins.offset; 1191 done: 1192 if (async_chunk->blkcg_css) 1193 kthread_associate_blkcg(NULL); 1194 if (free_pages) 1195 free_async_extent_pages(async_extent); 1196 kfree(async_extent); 1197 return; 1198 1199 out_free_reserve: 1200 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1201 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1202 mapping_set_error(inode->vfs_inode.i_mapping, -EIO); 1203 extent_clear_unlock_delalloc(inode, start, end, 1204 NULL, &cached, 1205 EXTENT_LOCKED | EXTENT_DELALLOC | 1206 EXTENT_DELALLOC_NEW | 1207 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, 1208 PAGE_UNLOCK | PAGE_START_WRITEBACK | 1209 PAGE_END_WRITEBACK); 1210 free_async_extent_pages(async_extent); 1211 if (async_chunk->blkcg_css) 1212 kthread_associate_blkcg(NULL); 1213 btrfs_debug(fs_info, 1214 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d", 1215 btrfs_root_id(root), btrfs_ino(inode), start, 1216 async_extent->ram_size, ret); 1217 kfree(async_extent); 1218 } 1219 1220 u64 btrfs_get_extent_allocation_hint(struct btrfs_inode *inode, u64 start, 1221 u64 num_bytes) 1222 { 1223 struct extent_map_tree *em_tree = &inode->extent_tree; 1224 struct extent_map *em; 1225 u64 alloc_hint = 0; 1226 1227 read_lock(&em_tree->lock); 1228 em = search_extent_mapping(em_tree, start, num_bytes); 1229 if (em) { 1230 /* 1231 * if block start isn't an actual block number then find the 1232 * first block in this inode and use that as a hint. If that 1233 * block is also bogus then just don't worry about it. 1234 */ 1235 if (em->disk_bytenr >= EXTENT_MAP_LAST_BYTE) { 1236 free_extent_map(em); 1237 em = search_extent_mapping(em_tree, 0, 0); 1238 if (em && em->disk_bytenr < EXTENT_MAP_LAST_BYTE) 1239 alloc_hint = extent_map_block_start(em); 1240 if (em) 1241 free_extent_map(em); 1242 } else { 1243 alloc_hint = extent_map_block_start(em); 1244 free_extent_map(em); 1245 } 1246 } 1247 read_unlock(&em_tree->lock); 1248 1249 return alloc_hint; 1250 } 1251 1252 /* 1253 * when extent_io.c finds a delayed allocation range in the file, 1254 * the call backs end up in this code. The basic idea is to 1255 * allocate extents on disk for the range, and create ordered data structs 1256 * in ram to track those extents. 1257 * 1258 * locked_folio is the folio that writepage had locked already. We use 1259 * it to make sure we don't do extra locks or unlocks. 1260 * 1261 * When this function fails, it unlocks all pages except @locked_folio. 1262 * 1263 * When this function successfully creates an inline extent, it returns 1 and 1264 * unlocks all pages including locked_folio and starts I/O on them. 1265 * (In reality inline extents are limited to a single page, so locked_folio is 1266 * the only page handled anyway). 1267 * 1268 * When this function succeed and creates a normal extent, the page locking 1269 * status depends on the passed in flags: 1270 * 1271 * - If @keep_locked is set, all pages are kept locked. 1272 * - Else all pages except for @locked_folio are unlocked. 1273 * 1274 * When a failure happens in the second or later iteration of the 1275 * while-loop, the ordered extents created in previous iterations are cleaned up. 1276 */ 1277 static noinline int cow_file_range(struct btrfs_inode *inode, 1278 struct folio *locked_folio, u64 start, 1279 u64 end, u64 *done_offset, 1280 bool keep_locked, bool no_inline) 1281 { 1282 struct btrfs_root *root = inode->root; 1283 struct btrfs_fs_info *fs_info = root->fs_info; 1284 struct extent_state *cached = NULL; 1285 u64 alloc_hint = 0; 1286 u64 orig_start = start; 1287 u64 num_bytes; 1288 u64 cur_alloc_size = 0; 1289 u64 min_alloc_size; 1290 u64 blocksize = fs_info->sectorsize; 1291 struct btrfs_key ins; 1292 struct extent_map *em; 1293 unsigned clear_bits; 1294 unsigned long page_ops; 1295 int ret = 0; 1296 1297 if (btrfs_is_free_space_inode(inode)) { 1298 ret = -EINVAL; 1299 goto out_unlock; 1300 } 1301 1302 num_bytes = ALIGN(end - start + 1, blocksize); 1303 num_bytes = max(blocksize, num_bytes); 1304 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); 1305 1306 inode_should_defrag(inode, start, end, num_bytes, SZ_64K); 1307 1308 if (!no_inline) { 1309 /* lets try to make an inline extent */ 1310 ret = cow_file_range_inline(inode, locked_folio, start, end, 0, 1311 BTRFS_COMPRESS_NONE, NULL, false); 1312 if (ret <= 0) { 1313 /* 1314 * We succeeded, return 1 so the caller knows we're done 1315 * with this page and already handled the IO. 1316 * 1317 * If there was an error then cow_file_range_inline() has 1318 * already done the cleanup. 1319 */ 1320 if (ret == 0) 1321 ret = 1; 1322 goto done; 1323 } 1324 } 1325 1326 alloc_hint = btrfs_get_extent_allocation_hint(inode, start, num_bytes); 1327 1328 /* 1329 * We're not doing compressed IO, don't unlock the first page (which 1330 * the caller expects to stay locked), don't clear any dirty bits and 1331 * don't set any writeback bits. 1332 * 1333 * Do set the Ordered (Private2) bit so we know this page was properly 1334 * setup for writepage. 1335 */ 1336 page_ops = (keep_locked ? 0 : PAGE_UNLOCK); 1337 page_ops |= PAGE_SET_ORDERED; 1338 1339 /* 1340 * Relocation relies on the relocated extents to have exactly the same 1341 * size as the original extents. Normally writeback for relocation data 1342 * extents follows a NOCOW path because relocation preallocates the 1343 * extents. However, due to an operation such as scrub turning a block 1344 * group to RO mode, it may fallback to COW mode, so we must make sure 1345 * an extent allocated during COW has exactly the requested size and can 1346 * not be split into smaller extents, otherwise relocation breaks and 1347 * fails during the stage where it updates the bytenr of file extent 1348 * items. 1349 */ 1350 if (btrfs_is_data_reloc_root(root)) 1351 min_alloc_size = num_bytes; 1352 else 1353 min_alloc_size = fs_info->sectorsize; 1354 1355 while (num_bytes > 0) { 1356 struct btrfs_ordered_extent *ordered; 1357 struct btrfs_file_extent file_extent; 1358 1359 ret = btrfs_reserve_extent(root, num_bytes, num_bytes, 1360 min_alloc_size, 0, alloc_hint, 1361 &ins, 1, 1); 1362 if (ret == -EAGAIN) { 1363 /* 1364 * btrfs_reserve_extent only returns -EAGAIN for zoned 1365 * file systems, which is an indication that there are 1366 * no active zones to allocate from at the moment. 1367 * 1368 * If this is the first loop iteration, wait for at 1369 * least one zone to finish before retrying the 1370 * allocation. Otherwise ask the caller to write out 1371 * the already allocated blocks before coming back to 1372 * us, or return -ENOSPC if it can't handle retries. 1373 */ 1374 ASSERT(btrfs_is_zoned(fs_info)); 1375 if (start == orig_start) { 1376 wait_on_bit_io(&inode->root->fs_info->flags, 1377 BTRFS_FS_NEED_ZONE_FINISH, 1378 TASK_UNINTERRUPTIBLE); 1379 continue; 1380 } 1381 if (done_offset) { 1382 /* 1383 * Move @end to the end of the processed range, 1384 * and exit the loop to unlock the processed extents. 1385 */ 1386 end = start - 1; 1387 ret = 0; 1388 break; 1389 } 1390 ret = -ENOSPC; 1391 } 1392 if (ret < 0) 1393 goto out_unlock; 1394 cur_alloc_size = ins.offset; 1395 1396 file_extent.disk_bytenr = ins.objectid; 1397 file_extent.disk_num_bytes = ins.offset; 1398 file_extent.num_bytes = ins.offset; 1399 file_extent.ram_bytes = ins.offset; 1400 file_extent.offset = 0; 1401 file_extent.compression = BTRFS_COMPRESS_NONE; 1402 1403 /* 1404 * Locked range will be released either during error clean up or 1405 * after the whole range is finished. 1406 */ 1407 lock_extent(&inode->io_tree, start, start + cur_alloc_size - 1, 1408 &cached); 1409 1410 em = btrfs_create_io_em(inode, start, &file_extent, 1411 BTRFS_ORDERED_REGULAR); 1412 if (IS_ERR(em)) { 1413 unlock_extent(&inode->io_tree, start, 1414 start + cur_alloc_size - 1, &cached); 1415 ret = PTR_ERR(em); 1416 goto out_reserve; 1417 } 1418 free_extent_map(em); 1419 1420 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 1421 1 << BTRFS_ORDERED_REGULAR); 1422 if (IS_ERR(ordered)) { 1423 unlock_extent(&inode->io_tree, start, 1424 start + cur_alloc_size - 1, &cached); 1425 ret = PTR_ERR(ordered); 1426 goto out_drop_extent_cache; 1427 } 1428 1429 if (btrfs_is_data_reloc_root(root)) { 1430 ret = btrfs_reloc_clone_csums(ordered); 1431 1432 /* 1433 * Only drop cache here, and process as normal. 1434 * 1435 * We must not allow extent_clear_unlock_delalloc() 1436 * at out_unlock label to free meta of this ordered 1437 * extent, as its meta should be freed by 1438 * btrfs_finish_ordered_io(). 1439 * 1440 * So we must continue until @start is increased to 1441 * skip current ordered extent. 1442 */ 1443 if (ret) 1444 btrfs_drop_extent_map_range(inode, start, 1445 start + cur_alloc_size - 1, 1446 false); 1447 } 1448 btrfs_put_ordered_extent(ordered); 1449 1450 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1451 1452 if (num_bytes < cur_alloc_size) 1453 num_bytes = 0; 1454 else 1455 num_bytes -= cur_alloc_size; 1456 alloc_hint = ins.objectid + ins.offset; 1457 start += cur_alloc_size; 1458 cur_alloc_size = 0; 1459 1460 /* 1461 * btrfs_reloc_clone_csums() error, since start is increased 1462 * extent_clear_unlock_delalloc() at out_unlock label won't 1463 * free metadata of current ordered extent, we're OK to exit. 1464 */ 1465 if (ret) 1466 goto out_unlock; 1467 } 1468 extent_clear_unlock_delalloc(inode, orig_start, end, locked_folio, &cached, 1469 EXTENT_LOCKED | EXTENT_DELALLOC, page_ops); 1470 done: 1471 if (done_offset) 1472 *done_offset = end; 1473 return ret; 1474 1475 out_drop_extent_cache: 1476 btrfs_drop_extent_map_range(inode, start, start + cur_alloc_size - 1, false); 1477 out_reserve: 1478 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 1479 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 1480 out_unlock: 1481 /* 1482 * Now, we have three regions to clean up: 1483 * 1484 * |-------(1)----|---(2)---|-------------(3)----------| 1485 * `- orig_start `- start `- start + cur_alloc_size `- end 1486 * 1487 * We process each region below. 1488 */ 1489 1490 /* 1491 * For the range (1). We have already instantiated the ordered extents 1492 * for this region, thus we need to cleanup those ordered extents. 1493 * EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV 1494 * are also handled by the ordered extents cleanup. 1495 * 1496 * So here we only clear EXTENT_LOCKED and EXTENT_DELALLOC flag, and 1497 * finish the writeback of the involved folios, which will be never submitted. 1498 */ 1499 if (orig_start < start) { 1500 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC; 1501 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1502 1503 if (!locked_folio) 1504 mapping_set_error(inode->vfs_inode.i_mapping, ret); 1505 1506 btrfs_cleanup_ordered_extents(inode, orig_start, start - orig_start); 1507 extent_clear_unlock_delalloc(inode, orig_start, start - 1, 1508 locked_folio, NULL, clear_bits, page_ops); 1509 } 1510 1511 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | 1512 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; 1513 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK; 1514 1515 /* 1516 * For the range (2). If we reserved an extent for our delalloc range 1517 * (or a subrange) and failed to create the respective ordered extent, 1518 * then it means that when we reserved the extent we decremented the 1519 * extent's size from the data space_info's bytes_may_use counter and 1520 * incremented the space_info's bytes_reserved counter by the same 1521 * amount. We must make sure extent_clear_unlock_delalloc() does not try 1522 * to decrement again the data space_info's bytes_may_use counter, 1523 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV. 1524 */ 1525 if (cur_alloc_size) { 1526 extent_clear_unlock_delalloc(inode, start, 1527 start + cur_alloc_size - 1, 1528 locked_folio, &cached, clear_bits, 1529 page_ops); 1530 btrfs_qgroup_free_data(inode, NULL, start, cur_alloc_size, NULL); 1531 } 1532 1533 /* 1534 * For the range (3). We never touched the region. In addition to the 1535 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data 1536 * space_info's bytes_may_use counter, reserved in 1537 * btrfs_check_data_free_space(). 1538 */ 1539 if (start + cur_alloc_size < end) { 1540 clear_bits |= EXTENT_CLEAR_DATA_RESV; 1541 extent_clear_unlock_delalloc(inode, start + cur_alloc_size, 1542 end, locked_folio, 1543 &cached, clear_bits, page_ops); 1544 btrfs_qgroup_free_data(inode, NULL, start + cur_alloc_size, 1545 end - start - cur_alloc_size + 1, NULL); 1546 } 1547 btrfs_err_rl(fs_info, 1548 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 1549 __func__, btrfs_root_id(inode->root), 1550 btrfs_ino(inode), orig_start, end + 1 - orig_start, ret); 1551 return ret; 1552 } 1553 1554 /* 1555 * Phase two of compressed writeback. This is the ordered portion of the code, 1556 * which only gets called in the order the work was queued. We walk all the 1557 * async extents created by compress_file_range and send them down to the disk. 1558 * 1559 * If called with @do_free == true then it'll try to finish the work and free 1560 * the work struct eventually. 1561 */ 1562 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free) 1563 { 1564 struct async_chunk *async_chunk = container_of(work, struct async_chunk, 1565 work); 1566 struct btrfs_fs_info *fs_info = btrfs_work_owner(work); 1567 struct async_extent *async_extent; 1568 unsigned long nr_pages; 1569 u64 alloc_hint = 0; 1570 1571 if (do_free) { 1572 struct async_cow *async_cow; 1573 1574 btrfs_add_delayed_iput(async_chunk->inode); 1575 if (async_chunk->blkcg_css) 1576 css_put(async_chunk->blkcg_css); 1577 1578 async_cow = async_chunk->async_cow; 1579 if (atomic_dec_and_test(&async_cow->num_chunks)) 1580 kvfree(async_cow); 1581 return; 1582 } 1583 1584 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >> 1585 PAGE_SHIFT; 1586 1587 while (!list_empty(&async_chunk->extents)) { 1588 async_extent = list_entry(async_chunk->extents.next, 1589 struct async_extent, list); 1590 list_del(&async_extent->list); 1591 submit_one_async_extent(async_chunk, async_extent, &alloc_hint); 1592 } 1593 1594 /* atomic_sub_return implies a barrier */ 1595 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < 1596 5 * SZ_1M) 1597 cond_wake_up_nomb(&fs_info->async_submit_wait); 1598 } 1599 1600 static bool run_delalloc_compressed(struct btrfs_inode *inode, 1601 struct folio *locked_folio, u64 start, 1602 u64 end, struct writeback_control *wbc) 1603 { 1604 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1605 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc); 1606 struct async_cow *ctx; 1607 struct async_chunk *async_chunk; 1608 unsigned long nr_pages; 1609 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K); 1610 int i; 1611 unsigned nofs_flag; 1612 const blk_opf_t write_flags = wbc_to_write_flags(wbc); 1613 1614 nofs_flag = memalloc_nofs_save(); 1615 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL); 1616 memalloc_nofs_restore(nofs_flag); 1617 if (!ctx) 1618 return false; 1619 1620 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags); 1621 1622 async_chunk = ctx->chunks; 1623 atomic_set(&ctx->num_chunks, num_chunks); 1624 1625 for (i = 0; i < num_chunks; i++) { 1626 u64 cur_end = min(end, start + SZ_512K - 1); 1627 1628 /* 1629 * igrab is called higher up in the call chain, take only the 1630 * lightweight reference for the callback lifetime 1631 */ 1632 ihold(&inode->vfs_inode); 1633 async_chunk[i].async_cow = ctx; 1634 async_chunk[i].inode = inode; 1635 async_chunk[i].start = start; 1636 async_chunk[i].end = cur_end; 1637 async_chunk[i].write_flags = write_flags; 1638 INIT_LIST_HEAD(&async_chunk[i].extents); 1639 1640 /* 1641 * The locked_folio comes all the way from writepage and its 1642 * the original folio we were actually given. As we spread 1643 * this large delalloc region across multiple async_chunk 1644 * structs, only the first struct needs a pointer to 1645 * locked_folio. 1646 * 1647 * This way we don't need racey decisions about who is supposed 1648 * to unlock it. 1649 */ 1650 if (locked_folio) { 1651 /* 1652 * Depending on the compressibility, the pages might or 1653 * might not go through async. We want all of them to 1654 * be accounted against wbc once. Let's do it here 1655 * before the paths diverge. wbc accounting is used 1656 * only for foreign writeback detection and doesn't 1657 * need full accuracy. Just account the whole thing 1658 * against the first page. 1659 */ 1660 wbc_account_cgroup_owner(wbc, locked_folio, 1661 cur_end - start); 1662 async_chunk[i].locked_folio = locked_folio; 1663 locked_folio = NULL; 1664 } else { 1665 async_chunk[i].locked_folio = NULL; 1666 } 1667 1668 if (blkcg_css != blkcg_root_css) { 1669 css_get(blkcg_css); 1670 async_chunk[i].blkcg_css = blkcg_css; 1671 async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT; 1672 } else { 1673 async_chunk[i].blkcg_css = NULL; 1674 } 1675 1676 btrfs_init_work(&async_chunk[i].work, compress_file_range, 1677 submit_compressed_extents); 1678 1679 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE); 1680 atomic_add(nr_pages, &fs_info->async_delalloc_pages); 1681 1682 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work); 1683 1684 start = cur_end + 1; 1685 } 1686 return true; 1687 } 1688 1689 /* 1690 * Run the delalloc range from start to end, and write back any dirty pages 1691 * covered by the range. 1692 */ 1693 static noinline int run_delalloc_cow(struct btrfs_inode *inode, 1694 struct folio *locked_folio, u64 start, 1695 u64 end, struct writeback_control *wbc, 1696 bool pages_dirty) 1697 { 1698 u64 done_offset = end; 1699 int ret; 1700 1701 while (start <= end) { 1702 ret = cow_file_range(inode, locked_folio, start, end, 1703 &done_offset, true, false); 1704 if (ret) 1705 return ret; 1706 extent_write_locked_range(&inode->vfs_inode, locked_folio, 1707 start, done_offset, wbc, pages_dirty); 1708 start = done_offset + 1; 1709 } 1710 1711 return 1; 1712 } 1713 1714 static int fallback_to_cow(struct btrfs_inode *inode, 1715 struct folio *locked_folio, const u64 start, 1716 const u64 end) 1717 { 1718 const bool is_space_ino = btrfs_is_free_space_inode(inode); 1719 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root); 1720 const u64 range_bytes = end + 1 - start; 1721 struct extent_io_tree *io_tree = &inode->io_tree; 1722 struct extent_state *cached_state = NULL; 1723 u64 range_start = start; 1724 u64 count; 1725 int ret; 1726 1727 /* 1728 * If EXTENT_NORESERVE is set it means that when the buffered write was 1729 * made we had not enough available data space and therefore we did not 1730 * reserve data space for it, since we though we could do NOCOW for the 1731 * respective file range (either there is prealloc extent or the inode 1732 * has the NOCOW bit set). 1733 * 1734 * However when we need to fallback to COW mode (because for example the 1735 * block group for the corresponding extent was turned to RO mode by a 1736 * scrub or relocation) we need to do the following: 1737 * 1738 * 1) We increment the bytes_may_use counter of the data space info. 1739 * If COW succeeds, it allocates a new data extent and after doing 1740 * that it decrements the space info's bytes_may_use counter and 1741 * increments its bytes_reserved counter by the same amount (we do 1742 * this at btrfs_add_reserved_bytes()). So we need to increment the 1743 * bytes_may_use counter to compensate (when space is reserved at 1744 * buffered write time, the bytes_may_use counter is incremented); 1745 * 1746 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so 1747 * that if the COW path fails for any reason, it decrements (through 1748 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the 1749 * data space info, which we incremented in the step above. 1750 * 1751 * If we need to fallback to cow and the inode corresponds to a free 1752 * space cache inode or an inode of the data relocation tree, we must 1753 * also increment bytes_may_use of the data space_info for the same 1754 * reason. Space caches and relocated data extents always get a prealloc 1755 * extent for them, however scrub or balance may have set the block 1756 * group that contains that extent to RO mode and therefore force COW 1757 * when starting writeback. 1758 */ 1759 lock_extent(io_tree, start, end, &cached_state); 1760 count = count_range_bits(io_tree, &range_start, end, range_bytes, 1761 EXTENT_NORESERVE, 0, NULL); 1762 if (count > 0 || is_space_ino || is_reloc_ino) { 1763 u64 bytes = count; 1764 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1765 struct btrfs_space_info *sinfo = fs_info->data_sinfo; 1766 1767 if (is_space_ino || is_reloc_ino) 1768 bytes = range_bytes; 1769 1770 spin_lock(&sinfo->lock); 1771 btrfs_space_info_update_bytes_may_use(sinfo, bytes); 1772 spin_unlock(&sinfo->lock); 1773 1774 if (count > 0) 1775 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE, 1776 NULL); 1777 } 1778 unlock_extent(io_tree, start, end, &cached_state); 1779 1780 /* 1781 * Don't try to create inline extents, as a mix of inline extent that 1782 * is written out and unlocked directly and a normal NOCOW extent 1783 * doesn't work. 1784 */ 1785 ret = cow_file_range(inode, locked_folio, start, end, NULL, false, 1786 true); 1787 ASSERT(ret != 1); 1788 return ret; 1789 } 1790 1791 struct can_nocow_file_extent_args { 1792 /* Input fields. */ 1793 1794 /* Start file offset of the range we want to NOCOW. */ 1795 u64 start; 1796 /* End file offset (inclusive) of the range we want to NOCOW. */ 1797 u64 end; 1798 bool writeback_path; 1799 /* 1800 * Free the path passed to can_nocow_file_extent() once it's not needed 1801 * anymore. 1802 */ 1803 bool free_path; 1804 1805 /* 1806 * Output fields. Only set when can_nocow_file_extent() returns 1. 1807 * The expected file extent for the NOCOW write. 1808 */ 1809 struct btrfs_file_extent file_extent; 1810 }; 1811 1812 /* 1813 * Check if we can NOCOW the file extent that the path points to. 1814 * This function may return with the path released, so the caller should check 1815 * if path->nodes[0] is NULL or not if it needs to use the path afterwards. 1816 * 1817 * Returns: < 0 on error 1818 * 0 if we can not NOCOW 1819 * 1 if we can NOCOW 1820 */ 1821 static int can_nocow_file_extent(struct btrfs_path *path, 1822 struct btrfs_key *key, 1823 struct btrfs_inode *inode, 1824 struct can_nocow_file_extent_args *args) 1825 { 1826 const bool is_freespace_inode = btrfs_is_free_space_inode(inode); 1827 struct extent_buffer *leaf = path->nodes[0]; 1828 struct btrfs_root *root = inode->root; 1829 struct btrfs_file_extent_item *fi; 1830 struct btrfs_root *csum_root; 1831 u64 io_start; 1832 u64 extent_end; 1833 u8 extent_type; 1834 int can_nocow = 0; 1835 int ret = 0; 1836 bool nowait = path->nowait; 1837 1838 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 1839 extent_type = btrfs_file_extent_type(leaf, fi); 1840 1841 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 1842 goto out; 1843 1844 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 1845 extent_type == BTRFS_FILE_EXTENT_REG) 1846 goto out; 1847 1848 /* 1849 * If the extent was created before the generation where the last snapshot 1850 * for its subvolume was created, then this implies the extent is shared, 1851 * hence we must COW. 1852 */ 1853 if (btrfs_file_extent_generation(leaf, fi) <= 1854 btrfs_root_last_snapshot(&root->root_item)) 1855 goto out; 1856 1857 /* An explicit hole, must COW. */ 1858 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) 1859 goto out; 1860 1861 /* Compressed/encrypted/encoded extents must be COWed. */ 1862 if (btrfs_file_extent_compression(leaf, fi) || 1863 btrfs_file_extent_encryption(leaf, fi) || 1864 btrfs_file_extent_other_encoding(leaf, fi)) 1865 goto out; 1866 1867 extent_end = btrfs_file_extent_end(path); 1868 1869 args->file_extent.disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1870 args->file_extent.disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1871 args->file_extent.ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); 1872 args->file_extent.offset = btrfs_file_extent_offset(leaf, fi); 1873 args->file_extent.compression = btrfs_file_extent_compression(leaf, fi); 1874 1875 /* 1876 * The following checks can be expensive, as they need to take other 1877 * locks and do btree or rbtree searches, so release the path to avoid 1878 * blocking other tasks for too long. 1879 */ 1880 btrfs_release_path(path); 1881 1882 ret = btrfs_cross_ref_exist(inode, key->offset - args->file_extent.offset, 1883 args->file_extent.disk_bytenr, path); 1884 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1885 if (ret != 0) 1886 goto out; 1887 1888 if (args->free_path) { 1889 /* 1890 * We don't need the path anymore, plus through the 1891 * btrfs_lookup_csums_list() call below we will end up allocating 1892 * another path. So free the path to avoid unnecessary extra 1893 * memory usage. 1894 */ 1895 btrfs_free_path(path); 1896 path = NULL; 1897 } 1898 1899 /* If there are pending snapshots for this root, we must COW. */ 1900 if (args->writeback_path && !is_freespace_inode && 1901 atomic_read(&root->snapshot_force_cow)) 1902 goto out; 1903 1904 args->file_extent.num_bytes = min(args->end + 1, extent_end) - args->start; 1905 args->file_extent.offset += args->start - key->offset; 1906 io_start = args->file_extent.disk_bytenr + args->file_extent.offset; 1907 1908 /* 1909 * Force COW if csums exist in the range. This ensures that csums for a 1910 * given extent are either valid or do not exist. 1911 */ 1912 1913 csum_root = btrfs_csum_root(root->fs_info, io_start); 1914 ret = btrfs_lookup_csums_list(csum_root, io_start, 1915 io_start + args->file_extent.num_bytes - 1, 1916 NULL, nowait); 1917 WARN_ON_ONCE(ret > 0 && is_freespace_inode); 1918 if (ret != 0) 1919 goto out; 1920 1921 can_nocow = 1; 1922 out: 1923 if (args->free_path && path) 1924 btrfs_free_path(path); 1925 1926 return ret < 0 ? ret : can_nocow; 1927 } 1928 1929 /* 1930 * Cleanup the dirty folios which will never be submitted due to error. 1931 * 1932 * When running a delalloc range, we may need to split the ranges (due to 1933 * fragmentation or NOCOW). If we hit an error in the later part, we will error 1934 * out and previously successfully executed range will never be submitted, thus 1935 * we have to cleanup those folios by clearing their dirty flag, starting and 1936 * finishing the writeback. 1937 */ 1938 static void cleanup_dirty_folios(struct btrfs_inode *inode, 1939 struct folio *locked_folio, 1940 u64 start, u64 end, int error) 1941 { 1942 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1943 struct address_space *mapping = inode->vfs_inode.i_mapping; 1944 pgoff_t start_index = start >> PAGE_SHIFT; 1945 pgoff_t end_index = end >> PAGE_SHIFT; 1946 u32 len; 1947 1948 ASSERT(end + 1 - start < U32_MAX); 1949 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) && 1950 IS_ALIGNED(end + 1, fs_info->sectorsize)); 1951 len = end + 1 - start; 1952 1953 /* 1954 * Handle the locked folio first. 1955 * The btrfs_folio_clamp_*() helpers can handle range out of the folio case. 1956 */ 1957 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1958 1959 for (pgoff_t index = start_index; index <= end_index; index++) { 1960 struct folio *folio; 1961 1962 /* Already handled at the beginning. */ 1963 if (index == locked_folio->index) 1964 continue; 1965 folio = __filemap_get_folio(mapping, index, FGP_LOCK, GFP_NOFS); 1966 /* Cache already dropped, no need to do any cleanup. */ 1967 if (IS_ERR(folio)) 1968 continue; 1969 btrfs_folio_clamp_finish_io(fs_info, locked_folio, start, len); 1970 folio_unlock(folio); 1971 folio_put(folio); 1972 } 1973 mapping_set_error(mapping, error); 1974 } 1975 1976 static int nocow_one_range(struct btrfs_inode *inode, struct folio *locked_folio, 1977 struct extent_state **cached, 1978 struct can_nocow_file_extent_args *nocow_args, 1979 u64 file_pos, bool is_prealloc) 1980 { 1981 struct btrfs_ordered_extent *ordered; 1982 u64 len = nocow_args->file_extent.num_bytes; 1983 u64 end = file_pos + len - 1; 1984 int ret = 0; 1985 1986 lock_extent(&inode->io_tree, file_pos, end, cached); 1987 1988 if (is_prealloc) { 1989 struct extent_map *em; 1990 1991 em = btrfs_create_io_em(inode, file_pos, &nocow_args->file_extent, 1992 BTRFS_ORDERED_PREALLOC); 1993 if (IS_ERR(em)) { 1994 unlock_extent(&inode->io_tree, file_pos, end, cached); 1995 return PTR_ERR(em); 1996 } 1997 free_extent_map(em); 1998 } 1999 2000 ordered = btrfs_alloc_ordered_extent(inode, file_pos, &nocow_args->file_extent, 2001 is_prealloc 2002 ? (1 << BTRFS_ORDERED_PREALLOC) 2003 : (1 << BTRFS_ORDERED_NOCOW)); 2004 if (IS_ERR(ordered)) { 2005 if (is_prealloc) 2006 btrfs_drop_extent_map_range(inode, file_pos, end, false); 2007 unlock_extent(&inode->io_tree, file_pos, end, cached); 2008 return PTR_ERR(ordered); 2009 } 2010 2011 if (btrfs_is_data_reloc_root(inode->root)) 2012 /* 2013 * Errors are handled later, as we must prevent 2014 * extent_clear_unlock_delalloc() in error handler from freeing 2015 * metadata of the created ordered extent. 2016 */ 2017 ret = btrfs_reloc_clone_csums(ordered); 2018 btrfs_put_ordered_extent(ordered); 2019 2020 extent_clear_unlock_delalloc(inode, file_pos, end, locked_folio, cached, 2021 EXTENT_LOCKED | EXTENT_DELALLOC | 2022 EXTENT_CLEAR_DATA_RESV, 2023 PAGE_UNLOCK | PAGE_SET_ORDERED); 2024 /* 2025 * On error, we need to cleanup the ordered extents we created. 2026 * 2027 * We do not clear the folio Dirty flags because they are set and 2028 * cleaered by the caller. 2029 */ 2030 if (ret < 0) 2031 btrfs_cleanup_ordered_extents(inode, file_pos, end); 2032 return ret; 2033 } 2034 2035 /* 2036 * when nowcow writeback call back. This checks for snapshots or COW copies 2037 * of the extents that exist in the file, and COWs the file as required. 2038 * 2039 * If no cow copies or snapshots exist, we write directly to the existing 2040 * blocks on disk 2041 */ 2042 static noinline int run_delalloc_nocow(struct btrfs_inode *inode, 2043 struct folio *locked_folio, 2044 const u64 start, const u64 end) 2045 { 2046 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2047 struct btrfs_root *root = inode->root; 2048 struct btrfs_path *path; 2049 u64 cow_start = (u64)-1; 2050 /* 2051 * If not 0, represents the inclusive end of the last fallback_to_cow() 2052 * range. Only for error handling. 2053 */ 2054 u64 cow_end = 0; 2055 u64 cur_offset = start; 2056 int ret; 2057 bool check_prev = true; 2058 u64 ino = btrfs_ino(inode); 2059 struct can_nocow_file_extent_args nocow_args = { 0 }; 2060 2061 /* 2062 * Normally on a zoned device we're only doing COW writes, but in case 2063 * of relocation on a zoned filesystem serializes I/O so that we're only 2064 * writing sequentially and can end up here as well. 2065 */ 2066 ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root)); 2067 2068 path = btrfs_alloc_path(); 2069 if (!path) { 2070 ret = -ENOMEM; 2071 goto error; 2072 } 2073 2074 nocow_args.end = end; 2075 nocow_args.writeback_path = true; 2076 2077 while (cur_offset <= end) { 2078 struct btrfs_block_group *nocow_bg = NULL; 2079 struct btrfs_key found_key; 2080 struct btrfs_file_extent_item *fi; 2081 struct extent_buffer *leaf; 2082 struct extent_state *cached_state = NULL; 2083 u64 extent_end; 2084 int extent_type; 2085 2086 ret = btrfs_lookup_file_extent(NULL, root, path, ino, 2087 cur_offset, 0); 2088 if (ret < 0) 2089 goto error; 2090 2091 /* 2092 * If there is no extent for our range when doing the initial 2093 * search, then go back to the previous slot as it will be the 2094 * one containing the search offset 2095 */ 2096 if (ret > 0 && path->slots[0] > 0 && check_prev) { 2097 leaf = path->nodes[0]; 2098 btrfs_item_key_to_cpu(leaf, &found_key, 2099 path->slots[0] - 1); 2100 if (found_key.objectid == ino && 2101 found_key.type == BTRFS_EXTENT_DATA_KEY) 2102 path->slots[0]--; 2103 } 2104 check_prev = false; 2105 next_slot: 2106 /* Go to next leaf if we have exhausted the current one */ 2107 leaf = path->nodes[0]; 2108 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2109 ret = btrfs_next_leaf(root, path); 2110 if (ret < 0) 2111 goto error; 2112 if (ret > 0) 2113 break; 2114 leaf = path->nodes[0]; 2115 } 2116 2117 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2118 2119 /* Didn't find anything for our INO */ 2120 if (found_key.objectid > ino) 2121 break; 2122 /* 2123 * Keep searching until we find an EXTENT_ITEM or there are no 2124 * more extents for this inode 2125 */ 2126 if (WARN_ON_ONCE(found_key.objectid < ino) || 2127 found_key.type < BTRFS_EXTENT_DATA_KEY) { 2128 path->slots[0]++; 2129 goto next_slot; 2130 } 2131 2132 /* Found key is not EXTENT_DATA_KEY or starts after req range */ 2133 if (found_key.type > BTRFS_EXTENT_DATA_KEY || 2134 found_key.offset > end) 2135 break; 2136 2137 /* 2138 * If the found extent starts after requested offset, then 2139 * adjust cur_offset to be right before this extent begins. 2140 */ 2141 if (found_key.offset > cur_offset) { 2142 if (cow_start == (u64)-1) 2143 cow_start = cur_offset; 2144 cur_offset = found_key.offset; 2145 goto next_slot; 2146 } 2147 2148 /* 2149 * Found extent which begins before our range and potentially 2150 * intersect it 2151 */ 2152 fi = btrfs_item_ptr(leaf, path->slots[0], 2153 struct btrfs_file_extent_item); 2154 extent_type = btrfs_file_extent_type(leaf, fi); 2155 /* If this is triggered then we have a memory corruption. */ 2156 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES); 2157 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) { 2158 ret = -EUCLEAN; 2159 goto error; 2160 } 2161 extent_end = btrfs_file_extent_end(path); 2162 2163 /* 2164 * If the extent we got ends before our current offset, skip to 2165 * the next extent. 2166 */ 2167 if (extent_end <= cur_offset) { 2168 path->slots[0]++; 2169 goto next_slot; 2170 } 2171 2172 nocow_args.start = cur_offset; 2173 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args); 2174 if (ret < 0) 2175 goto error; 2176 if (ret == 0) 2177 goto must_cow; 2178 2179 ret = 0; 2180 nocow_bg = btrfs_inc_nocow_writers(fs_info, 2181 nocow_args.file_extent.disk_bytenr + 2182 nocow_args.file_extent.offset); 2183 if (!nocow_bg) { 2184 must_cow: 2185 /* 2186 * If we can't perform NOCOW writeback for the range, 2187 * then record the beginning of the range that needs to 2188 * be COWed. It will be written out before the next 2189 * NOCOW range if we find one, or when exiting this 2190 * loop. 2191 */ 2192 if (cow_start == (u64)-1) 2193 cow_start = cur_offset; 2194 cur_offset = extent_end; 2195 if (cur_offset > end) 2196 break; 2197 if (!path->nodes[0]) 2198 continue; 2199 path->slots[0]++; 2200 goto next_slot; 2201 } 2202 2203 /* 2204 * COW range from cow_start to found_key.offset - 1. As the key 2205 * will contain the beginning of the first extent that can be 2206 * NOCOW, following one which needs to be COW'ed 2207 */ 2208 if (cow_start != (u64)-1) { 2209 ret = fallback_to_cow(inode, locked_folio, cow_start, 2210 found_key.offset - 1); 2211 if (ret) { 2212 cow_end = found_key.offset - 1; 2213 btrfs_dec_nocow_writers(nocow_bg); 2214 goto error; 2215 } 2216 cow_start = (u64)-1; 2217 } 2218 2219 ret = nocow_one_range(inode, locked_folio, &cached_state, 2220 &nocow_args, cur_offset, 2221 extent_type == BTRFS_FILE_EXTENT_PREALLOC); 2222 btrfs_dec_nocow_writers(nocow_bg); 2223 if (ret < 0) 2224 goto error; 2225 cur_offset = extent_end; 2226 } 2227 btrfs_release_path(path); 2228 2229 if (cur_offset <= end && cow_start == (u64)-1) 2230 cow_start = cur_offset; 2231 2232 if (cow_start != (u64)-1) { 2233 ret = fallback_to_cow(inode, locked_folio, cow_start, end); 2234 if (ret) { 2235 cow_end = end; 2236 goto error; 2237 } 2238 cow_start = (u64)-1; 2239 } 2240 2241 btrfs_free_path(path); 2242 return 0; 2243 2244 error: 2245 /* 2246 * There are several error cases: 2247 * 2248 * 1) Failed without falling back to COW 2249 * start cur_offset end 2250 * |/////////////| | 2251 * 2252 * In this case, cow_start should be (u64)-1. 2253 * 2254 * For range [start, cur_offset) the folios are already unlocked (except 2255 * @locked_folio), EXTENT_DELALLOC already removed. 2256 * Need to clear the dirty flags and finish the ordered extents. 2257 * 2258 * 2) Failed with error before calling fallback_to_cow() 2259 * 2260 * start cow_start end 2261 * |/////////////| | 2262 * 2263 * In this case, only @cow_start is set, @cur_offset is between 2264 * [cow_start, end) 2265 * 2266 * It's mostly the same as case 1), just replace @cur_offset with 2267 * @cow_start. 2268 * 2269 * 3) Failed with error from fallback_to_cow() 2270 * 2271 * start cow_start cow_end end 2272 * |/////////////|-----------| | 2273 * 2274 * In this case, both @cow_start and @cow_end is set. 2275 * 2276 * For range [start, cow_start) it's the same as case 1). 2277 * But for range [cow_start, cow_end), all the cleanup is handled by 2278 * cow_file_range(), we should not touch anything in that range. 2279 * 2280 * So for all above cases, if @cow_start is set, cleanup ordered extents 2281 * for range [start, @cow_start), other wise cleanup range [start, @cur_offset). 2282 */ 2283 if (cow_start != (u64)-1) 2284 cur_offset = cow_start; 2285 2286 if (cur_offset > start) { 2287 btrfs_cleanup_ordered_extents(inode, start, cur_offset - start); 2288 cleanup_dirty_folios(inode, locked_folio, start, cur_offset - 1, ret); 2289 } 2290 2291 /* 2292 * If an error happened while a COW region is outstanding, cur_offset 2293 * needs to be reset to @cow_end + 1 to skip the COW range, as 2294 * cow_file_range() will do the proper cleanup at error. 2295 */ 2296 if (cow_end) 2297 cur_offset = cow_end + 1; 2298 2299 /* 2300 * We need to lock the extent here because we're clearing DELALLOC and 2301 * we're not locked at this point. 2302 */ 2303 if (cur_offset < end) { 2304 struct extent_state *cached = NULL; 2305 2306 lock_extent(&inode->io_tree, cur_offset, end, &cached); 2307 extent_clear_unlock_delalloc(inode, cur_offset, end, 2308 locked_folio, &cached, 2309 EXTENT_LOCKED | EXTENT_DELALLOC | 2310 EXTENT_DEFRAG | 2311 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | 2312 PAGE_START_WRITEBACK | 2313 PAGE_END_WRITEBACK); 2314 btrfs_qgroup_free_data(inode, NULL, cur_offset, end - cur_offset + 1, NULL); 2315 } 2316 btrfs_free_path(path); 2317 btrfs_err_rl(fs_info, 2318 "%s failed, root=%llu inode=%llu start=%llu len=%llu: %d", 2319 __func__, btrfs_root_id(inode->root), 2320 btrfs_ino(inode), start, end + 1 - start, ret); 2321 return ret; 2322 } 2323 2324 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end) 2325 { 2326 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) { 2327 if (inode->defrag_bytes && 2328 test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG)) 2329 return false; 2330 return true; 2331 } 2332 return false; 2333 } 2334 2335 /* 2336 * Function to process delayed allocation (create CoW) for ranges which are 2337 * being touched for the first time. 2338 */ 2339 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct folio *locked_folio, 2340 u64 start, u64 end, struct writeback_control *wbc) 2341 { 2342 const bool zoned = btrfs_is_zoned(inode->root->fs_info); 2343 int ret; 2344 2345 /* 2346 * The range must cover part of the @locked_folio, or a return of 1 2347 * can confuse the caller. 2348 */ 2349 ASSERT(!(end <= folio_pos(locked_folio) || 2350 start >= folio_pos(locked_folio) + folio_size(locked_folio))); 2351 2352 if (should_nocow(inode, start, end)) { 2353 ret = run_delalloc_nocow(inode, locked_folio, start, end); 2354 return ret; 2355 } 2356 2357 if (btrfs_inode_can_compress(inode) && 2358 inode_need_compress(inode, start, end) && 2359 run_delalloc_compressed(inode, locked_folio, start, end, wbc)) 2360 return 1; 2361 2362 if (zoned) 2363 ret = run_delalloc_cow(inode, locked_folio, start, end, wbc, 2364 true); 2365 else 2366 ret = cow_file_range(inode, locked_folio, start, end, NULL, 2367 false, false); 2368 return ret; 2369 } 2370 2371 void btrfs_split_delalloc_extent(struct btrfs_inode *inode, 2372 struct extent_state *orig, u64 split) 2373 { 2374 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2375 u64 size; 2376 2377 lockdep_assert_held(&inode->io_tree.lock); 2378 2379 /* not delalloc, ignore it */ 2380 if (!(orig->state & EXTENT_DELALLOC)) 2381 return; 2382 2383 size = orig->end - orig->start + 1; 2384 if (size > fs_info->max_extent_size) { 2385 u32 num_extents; 2386 u64 new_size; 2387 2388 /* 2389 * See the explanation in btrfs_merge_delalloc_extent, the same 2390 * applies here, just in reverse. 2391 */ 2392 new_size = orig->end - split + 1; 2393 num_extents = count_max_extents(fs_info, new_size); 2394 new_size = split - orig->start; 2395 num_extents += count_max_extents(fs_info, new_size); 2396 if (count_max_extents(fs_info, size) >= num_extents) 2397 return; 2398 } 2399 2400 spin_lock(&inode->lock); 2401 btrfs_mod_outstanding_extents(inode, 1); 2402 spin_unlock(&inode->lock); 2403 } 2404 2405 /* 2406 * Handle merged delayed allocation extents so we can keep track of new extents 2407 * that are just merged onto old extents, such as when we are doing sequential 2408 * writes, so we can properly account for the metadata space we'll need. 2409 */ 2410 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new, 2411 struct extent_state *other) 2412 { 2413 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2414 u64 new_size, old_size; 2415 u32 num_extents; 2416 2417 lockdep_assert_held(&inode->io_tree.lock); 2418 2419 /* not delalloc, ignore it */ 2420 if (!(other->state & EXTENT_DELALLOC)) 2421 return; 2422 2423 if (new->start > other->start) 2424 new_size = new->end - other->start + 1; 2425 else 2426 new_size = other->end - new->start + 1; 2427 2428 /* we're not bigger than the max, unreserve the space and go */ 2429 if (new_size <= fs_info->max_extent_size) { 2430 spin_lock(&inode->lock); 2431 btrfs_mod_outstanding_extents(inode, -1); 2432 spin_unlock(&inode->lock); 2433 return; 2434 } 2435 2436 /* 2437 * We have to add up either side to figure out how many extents were 2438 * accounted for before we merged into one big extent. If the number of 2439 * extents we accounted for is <= the amount we need for the new range 2440 * then we can return, otherwise drop. Think of it like this 2441 * 2442 * [ 4k][MAX_SIZE] 2443 * 2444 * So we've grown the extent by a MAX_SIZE extent, this would mean we 2445 * need 2 outstanding extents, on one side we have 1 and the other side 2446 * we have 1 so they are == and we can return. But in this case 2447 * 2448 * [MAX_SIZE+4k][MAX_SIZE+4k] 2449 * 2450 * Each range on their own accounts for 2 extents, but merged together 2451 * they are only 3 extents worth of accounting, so we need to drop in 2452 * this case. 2453 */ 2454 old_size = other->end - other->start + 1; 2455 num_extents = count_max_extents(fs_info, old_size); 2456 old_size = new->end - new->start + 1; 2457 num_extents += count_max_extents(fs_info, old_size); 2458 if (count_max_extents(fs_info, new_size) >= num_extents) 2459 return; 2460 2461 spin_lock(&inode->lock); 2462 btrfs_mod_outstanding_extents(inode, -1); 2463 spin_unlock(&inode->lock); 2464 } 2465 2466 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode) 2467 { 2468 struct btrfs_root *root = inode->root; 2469 struct btrfs_fs_info *fs_info = root->fs_info; 2470 2471 spin_lock(&root->delalloc_lock); 2472 ASSERT(list_empty(&inode->delalloc_inodes)); 2473 list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 2474 root->nr_delalloc_inodes++; 2475 if (root->nr_delalloc_inodes == 1) { 2476 spin_lock(&fs_info->delalloc_root_lock); 2477 ASSERT(list_empty(&root->delalloc_root)); 2478 list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots); 2479 spin_unlock(&fs_info->delalloc_root_lock); 2480 } 2481 spin_unlock(&root->delalloc_lock); 2482 } 2483 2484 void btrfs_del_delalloc_inode(struct btrfs_inode *inode) 2485 { 2486 struct btrfs_root *root = inode->root; 2487 struct btrfs_fs_info *fs_info = root->fs_info; 2488 2489 lockdep_assert_held(&root->delalloc_lock); 2490 2491 /* 2492 * We may be called after the inode was already deleted from the list, 2493 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(), 2494 * and then later through btrfs_clear_delalloc_extent() while the inode 2495 * still has ->delalloc_bytes > 0. 2496 */ 2497 if (!list_empty(&inode->delalloc_inodes)) { 2498 list_del_init(&inode->delalloc_inodes); 2499 root->nr_delalloc_inodes--; 2500 if (!root->nr_delalloc_inodes) { 2501 ASSERT(list_empty(&root->delalloc_inodes)); 2502 spin_lock(&fs_info->delalloc_root_lock); 2503 ASSERT(!list_empty(&root->delalloc_root)); 2504 list_del_init(&root->delalloc_root); 2505 spin_unlock(&fs_info->delalloc_root_lock); 2506 } 2507 } 2508 } 2509 2510 /* 2511 * Properly track delayed allocation bytes in the inode and to maintain the 2512 * list of inodes that have pending delalloc work to be done. 2513 */ 2514 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state, 2515 u32 bits) 2516 { 2517 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2518 2519 lockdep_assert_held(&inode->io_tree.lock); 2520 2521 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC)) 2522 WARN_ON(1); 2523 /* 2524 * set_bit and clear bit hooks normally require _irqsave/restore 2525 * but in this case, we are only testing for the DELALLOC 2526 * bit, which is only set or cleared with irqs on 2527 */ 2528 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2529 u64 len = state->end + 1 - state->start; 2530 u64 prev_delalloc_bytes; 2531 u32 num_extents = count_max_extents(fs_info, len); 2532 2533 spin_lock(&inode->lock); 2534 btrfs_mod_outstanding_extents(inode, num_extents); 2535 spin_unlock(&inode->lock); 2536 2537 /* For sanity tests */ 2538 if (btrfs_is_testing(fs_info)) 2539 return; 2540 2541 percpu_counter_add_batch(&fs_info->delalloc_bytes, len, 2542 fs_info->delalloc_batch); 2543 spin_lock(&inode->lock); 2544 prev_delalloc_bytes = inode->delalloc_bytes; 2545 inode->delalloc_bytes += len; 2546 if (bits & EXTENT_DEFRAG) 2547 inode->defrag_bytes += len; 2548 spin_unlock(&inode->lock); 2549 2550 /* 2551 * We don't need to be under the protection of the inode's lock, 2552 * because we are called while holding the inode's io_tree lock 2553 * and are therefore protected against concurrent calls of this 2554 * function and btrfs_clear_delalloc_extent(). 2555 */ 2556 if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0) 2557 btrfs_add_delalloc_inode(inode); 2558 } 2559 2560 if (!(state->state & EXTENT_DELALLOC_NEW) && 2561 (bits & EXTENT_DELALLOC_NEW)) { 2562 spin_lock(&inode->lock); 2563 inode->new_delalloc_bytes += state->end + 1 - state->start; 2564 spin_unlock(&inode->lock); 2565 } 2566 } 2567 2568 /* 2569 * Once a range is no longer delalloc this function ensures that proper 2570 * accounting happens. 2571 */ 2572 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode, 2573 struct extent_state *state, u32 bits) 2574 { 2575 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2576 u64 len = state->end + 1 - state->start; 2577 u32 num_extents = count_max_extents(fs_info, len); 2578 2579 lockdep_assert_held(&inode->io_tree.lock); 2580 2581 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) { 2582 spin_lock(&inode->lock); 2583 inode->defrag_bytes -= len; 2584 spin_unlock(&inode->lock); 2585 } 2586 2587 /* 2588 * set_bit and clear bit hooks normally require _irqsave/restore 2589 * but in this case, we are only testing for the DELALLOC 2590 * bit, which is only set or cleared with irqs on 2591 */ 2592 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) { 2593 struct btrfs_root *root = inode->root; 2594 u64 new_delalloc_bytes; 2595 2596 spin_lock(&inode->lock); 2597 btrfs_mod_outstanding_extents(inode, -num_extents); 2598 spin_unlock(&inode->lock); 2599 2600 /* 2601 * We don't reserve metadata space for space cache inodes so we 2602 * don't need to call delalloc_release_metadata if there is an 2603 * error. 2604 */ 2605 if (bits & EXTENT_CLEAR_META_RESV && 2606 root != fs_info->tree_root) 2607 btrfs_delalloc_release_metadata(inode, len, true); 2608 2609 /* For sanity tests. */ 2610 if (btrfs_is_testing(fs_info)) 2611 return; 2612 2613 if (!btrfs_is_data_reloc_root(root) && 2614 !btrfs_is_free_space_inode(inode) && 2615 !(state->state & EXTENT_NORESERVE) && 2616 (bits & EXTENT_CLEAR_DATA_RESV)) 2617 btrfs_free_reserved_data_space_noquota(fs_info, len); 2618 2619 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, 2620 fs_info->delalloc_batch); 2621 spin_lock(&inode->lock); 2622 inode->delalloc_bytes -= len; 2623 new_delalloc_bytes = inode->delalloc_bytes; 2624 spin_unlock(&inode->lock); 2625 2626 /* 2627 * We don't need to be under the protection of the inode's lock, 2628 * because we are called while holding the inode's io_tree lock 2629 * and are therefore protected against concurrent calls of this 2630 * function and btrfs_set_delalloc_extent(). 2631 */ 2632 if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) { 2633 spin_lock(&root->delalloc_lock); 2634 btrfs_del_delalloc_inode(inode); 2635 spin_unlock(&root->delalloc_lock); 2636 } 2637 } 2638 2639 if ((state->state & EXTENT_DELALLOC_NEW) && 2640 (bits & EXTENT_DELALLOC_NEW)) { 2641 spin_lock(&inode->lock); 2642 ASSERT(inode->new_delalloc_bytes >= len); 2643 inode->new_delalloc_bytes -= len; 2644 if (bits & EXTENT_ADD_INODE_BYTES) 2645 inode_add_bytes(&inode->vfs_inode, len); 2646 spin_unlock(&inode->lock); 2647 } 2648 } 2649 2650 /* 2651 * given a list of ordered sums record them in the inode. This happens 2652 * at IO completion time based on sums calculated at bio submission time. 2653 */ 2654 static int add_pending_csums(struct btrfs_trans_handle *trans, 2655 struct list_head *list) 2656 { 2657 struct btrfs_ordered_sum *sum; 2658 struct btrfs_root *csum_root = NULL; 2659 int ret; 2660 2661 list_for_each_entry(sum, list, list) { 2662 trans->adding_csums = true; 2663 if (!csum_root) 2664 csum_root = btrfs_csum_root(trans->fs_info, 2665 sum->logical); 2666 ret = btrfs_csum_file_blocks(trans, csum_root, sum); 2667 trans->adding_csums = false; 2668 if (ret) 2669 return ret; 2670 } 2671 return 0; 2672 } 2673 2674 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode, 2675 const u64 start, 2676 const u64 len, 2677 struct extent_state **cached_state) 2678 { 2679 u64 search_start = start; 2680 const u64 end = start + len - 1; 2681 2682 while (search_start < end) { 2683 const u64 search_len = end - search_start + 1; 2684 struct extent_map *em; 2685 u64 em_len; 2686 int ret = 0; 2687 2688 em = btrfs_get_extent(inode, NULL, search_start, search_len); 2689 if (IS_ERR(em)) 2690 return PTR_ERR(em); 2691 2692 if (em->disk_bytenr != EXTENT_MAP_HOLE) 2693 goto next; 2694 2695 em_len = em->len; 2696 if (em->start < search_start) 2697 em_len -= search_start - em->start; 2698 if (em_len > search_len) 2699 em_len = search_len; 2700 2701 ret = set_extent_bit(&inode->io_tree, search_start, 2702 search_start + em_len - 1, 2703 EXTENT_DELALLOC_NEW, cached_state); 2704 next: 2705 search_start = extent_map_end(em); 2706 free_extent_map(em); 2707 if (ret) 2708 return ret; 2709 } 2710 return 0; 2711 } 2712 2713 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 2714 unsigned int extra_bits, 2715 struct extent_state **cached_state) 2716 { 2717 WARN_ON(PAGE_ALIGNED(end)); 2718 2719 if (start >= i_size_read(&inode->vfs_inode) && 2720 !(inode->flags & BTRFS_INODE_PREALLOC)) { 2721 /* 2722 * There can't be any extents following eof in this case so just 2723 * set the delalloc new bit for the range directly. 2724 */ 2725 extra_bits |= EXTENT_DELALLOC_NEW; 2726 } else { 2727 int ret; 2728 2729 ret = btrfs_find_new_delalloc_bytes(inode, start, 2730 end + 1 - start, 2731 cached_state); 2732 if (ret) 2733 return ret; 2734 } 2735 2736 return set_extent_bit(&inode->io_tree, start, end, 2737 EXTENT_DELALLOC | extra_bits, cached_state); 2738 } 2739 2740 /* see btrfs_writepage_start_hook for details on why this is required */ 2741 struct btrfs_writepage_fixup { 2742 struct folio *folio; 2743 struct btrfs_inode *inode; 2744 struct btrfs_work work; 2745 }; 2746 2747 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 2748 { 2749 struct btrfs_writepage_fixup *fixup = 2750 container_of(work, struct btrfs_writepage_fixup, work); 2751 struct btrfs_ordered_extent *ordered; 2752 struct extent_state *cached_state = NULL; 2753 struct extent_changeset *data_reserved = NULL; 2754 struct folio *folio = fixup->folio; 2755 struct btrfs_inode *inode = fixup->inode; 2756 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2757 u64 page_start = folio_pos(folio); 2758 u64 page_end = folio_pos(folio) + folio_size(folio) - 1; 2759 int ret = 0; 2760 bool free_delalloc_space = true; 2761 2762 /* 2763 * This is similar to page_mkwrite, we need to reserve the space before 2764 * we take the folio lock. 2765 */ 2766 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, 2767 folio_size(folio)); 2768 again: 2769 folio_lock(folio); 2770 2771 /* 2772 * Before we queued this fixup, we took a reference on the folio. 2773 * folio->mapping may go NULL, but it shouldn't be moved to a different 2774 * address space. 2775 */ 2776 if (!folio->mapping || !folio_test_dirty(folio) || 2777 !folio_test_checked(folio)) { 2778 /* 2779 * Unfortunately this is a little tricky, either 2780 * 2781 * 1) We got here and our folio had already been dealt with and 2782 * we reserved our space, thus ret == 0, so we need to just 2783 * drop our space reservation and bail. This can happen the 2784 * first time we come into the fixup worker, or could happen 2785 * while waiting for the ordered extent. 2786 * 2) Our folio was already dealt with, but we happened to get an 2787 * ENOSPC above from the btrfs_delalloc_reserve_space. In 2788 * this case we obviously don't have anything to release, but 2789 * because the folio was already dealt with we don't want to 2790 * mark the folio with an error, so make sure we're resetting 2791 * ret to 0. This is why we have this check _before_ the ret 2792 * check, because we do not want to have a surprise ENOSPC 2793 * when the folio was already properly dealt with. 2794 */ 2795 if (!ret) { 2796 btrfs_delalloc_release_extents(inode, folio_size(folio)); 2797 btrfs_delalloc_release_space(inode, data_reserved, 2798 page_start, folio_size(folio), 2799 true); 2800 } 2801 ret = 0; 2802 goto out_page; 2803 } 2804 2805 /* 2806 * We can't mess with the folio state unless it is locked, so now that 2807 * it is locked bail if we failed to make our space reservation. 2808 */ 2809 if (ret) 2810 goto out_page; 2811 2812 lock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2813 2814 /* already ordered? We're done */ 2815 if (folio_test_ordered(folio)) 2816 goto out_reserved; 2817 2818 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE); 2819 if (ordered) { 2820 unlock_extent(&inode->io_tree, page_start, page_end, 2821 &cached_state); 2822 folio_unlock(folio); 2823 btrfs_start_ordered_extent(ordered); 2824 btrfs_put_ordered_extent(ordered); 2825 goto again; 2826 } 2827 2828 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2829 &cached_state); 2830 if (ret) 2831 goto out_reserved; 2832 2833 /* 2834 * Everything went as planned, we're now the owner of a dirty page with 2835 * delayed allocation bits set and space reserved for our COW 2836 * destination. 2837 * 2838 * The page was dirty when we started, nothing should have cleaned it. 2839 */ 2840 BUG_ON(!folio_test_dirty(folio)); 2841 free_delalloc_space = false; 2842 out_reserved: 2843 btrfs_delalloc_release_extents(inode, PAGE_SIZE); 2844 if (free_delalloc_space) 2845 btrfs_delalloc_release_space(inode, data_reserved, page_start, 2846 PAGE_SIZE, true); 2847 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state); 2848 out_page: 2849 if (ret) { 2850 /* 2851 * We hit ENOSPC or other errors. Update the mapping and page 2852 * to reflect the errors and clean the page. 2853 */ 2854 mapping_set_error(folio->mapping, ret); 2855 btrfs_mark_ordered_io_finished(inode, folio, page_start, 2856 folio_size(folio), !ret); 2857 folio_clear_dirty_for_io(folio); 2858 } 2859 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE); 2860 folio_unlock(folio); 2861 folio_put(folio); 2862 kfree(fixup); 2863 extent_changeset_free(data_reserved); 2864 /* 2865 * As a precaution, do a delayed iput in case it would be the last iput 2866 * that could need flushing space. Recursing back to fixup worker would 2867 * deadlock. 2868 */ 2869 btrfs_add_delayed_iput(inode); 2870 } 2871 2872 /* 2873 * There are a few paths in the higher layers of the kernel that directly 2874 * set the folio dirty bit without asking the filesystem if it is a 2875 * good idea. This causes problems because we want to make sure COW 2876 * properly happens and the data=ordered rules are followed. 2877 * 2878 * In our case any range that doesn't have the ORDERED bit set 2879 * hasn't been properly setup for IO. We kick off an async process 2880 * to fix it up. The async helper will wait for ordered extents, set 2881 * the delalloc bit and make it safe to write the folio. 2882 */ 2883 int btrfs_writepage_cow_fixup(struct folio *folio) 2884 { 2885 struct inode *inode = folio->mapping->host; 2886 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 2887 struct btrfs_writepage_fixup *fixup; 2888 2889 /* This folio has ordered extent covering it already */ 2890 if (folio_test_ordered(folio)) 2891 return 0; 2892 2893 /* 2894 * For experimental build, we error out instead of EAGAIN. 2895 * 2896 * We should not hit such out-of-band dirty folios anymore. 2897 */ 2898 if (IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL)) { 2899 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2900 btrfs_err_rl(fs_info, 2901 "root %lld ino %llu folio %llu is marked dirty without notifying the fs", 2902 BTRFS_I(inode)->root->root_key.objectid, 2903 btrfs_ino(BTRFS_I(inode)), 2904 folio_pos(folio)); 2905 return -EUCLEAN; 2906 } 2907 2908 /* 2909 * folio_checked is set below when we create a fixup worker for this 2910 * folio, don't try to create another one if we're already 2911 * folio_test_checked. 2912 * 2913 * The extent_io writepage code will redirty the foio if we send back 2914 * EAGAIN. 2915 */ 2916 if (folio_test_checked(folio)) 2917 return -EAGAIN; 2918 2919 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 2920 if (!fixup) 2921 return -EAGAIN; 2922 2923 /* 2924 * We are already holding a reference to this inode from 2925 * write_cache_pages. We need to hold it because the space reservation 2926 * takes place outside of the folio lock, and we can't trust 2927 * folio->mapping outside of the folio lock. 2928 */ 2929 ihold(inode); 2930 btrfs_folio_set_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 2931 folio_get(folio); 2932 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL); 2933 fixup->folio = folio; 2934 fixup->inode = BTRFS_I(inode); 2935 btrfs_queue_work(fs_info->fixup_workers, &fixup->work); 2936 2937 return -EAGAIN; 2938 } 2939 2940 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 2941 struct btrfs_inode *inode, u64 file_pos, 2942 struct btrfs_file_extent_item *stack_fi, 2943 const bool update_inode_bytes, 2944 u64 qgroup_reserved) 2945 { 2946 struct btrfs_root *root = inode->root; 2947 const u64 sectorsize = root->fs_info->sectorsize; 2948 struct btrfs_path *path; 2949 struct extent_buffer *leaf; 2950 struct btrfs_key ins; 2951 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi); 2952 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi); 2953 u64 offset = btrfs_stack_file_extent_offset(stack_fi); 2954 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi); 2955 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi); 2956 struct btrfs_drop_extents_args drop_args = { 0 }; 2957 int ret; 2958 2959 path = btrfs_alloc_path(); 2960 if (!path) 2961 return -ENOMEM; 2962 2963 /* 2964 * we may be replacing one extent in the tree with another. 2965 * The new extent is pinned in the extent map, and we don't want 2966 * to drop it from the cache until it is completely in the btree. 2967 * 2968 * So, tell btrfs_drop_extents to leave this extent in the cache. 2969 * the caller is expected to unpin it and allow it to be merged 2970 * with the others. 2971 */ 2972 drop_args.path = path; 2973 drop_args.start = file_pos; 2974 drop_args.end = file_pos + num_bytes; 2975 drop_args.replace_extent = true; 2976 drop_args.extent_item_size = sizeof(*stack_fi); 2977 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 2978 if (ret) 2979 goto out; 2980 2981 if (!drop_args.extent_inserted) { 2982 ins.objectid = btrfs_ino(inode); 2983 ins.type = BTRFS_EXTENT_DATA_KEY; 2984 ins.offset = file_pos; 2985 2986 ret = btrfs_insert_empty_item(trans, root, path, &ins, 2987 sizeof(*stack_fi)); 2988 if (ret) 2989 goto out; 2990 } 2991 leaf = path->nodes[0]; 2992 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid); 2993 write_extent_buffer(leaf, stack_fi, 2994 btrfs_item_ptr_offset(leaf, path->slots[0]), 2995 sizeof(struct btrfs_file_extent_item)); 2996 2997 btrfs_release_path(path); 2998 2999 /* 3000 * If we dropped an inline extent here, we know the range where it is 3001 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the 3002 * number of bytes only for that range containing the inline extent. 3003 * The remaining of the range will be processed when clearning the 3004 * EXTENT_DELALLOC_BIT bit through the ordered extent completion. 3005 */ 3006 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) { 3007 u64 inline_size = round_down(drop_args.bytes_found, sectorsize); 3008 3009 inline_size = drop_args.bytes_found - inline_size; 3010 btrfs_update_inode_bytes(inode, sectorsize, inline_size); 3011 drop_args.bytes_found -= inline_size; 3012 num_bytes -= sectorsize; 3013 } 3014 3015 if (update_inode_bytes) 3016 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found); 3017 3018 ins.objectid = disk_bytenr; 3019 ins.type = BTRFS_EXTENT_ITEM_KEY; 3020 ins.offset = disk_num_bytes; 3021 3022 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes); 3023 if (ret) 3024 goto out; 3025 3026 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode), 3027 file_pos - offset, 3028 qgroup_reserved, &ins); 3029 out: 3030 btrfs_free_path(path); 3031 3032 return ret; 3033 } 3034 3035 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, 3036 u64 start, u64 len) 3037 { 3038 struct btrfs_block_group *cache; 3039 3040 cache = btrfs_lookup_block_group(fs_info, start); 3041 ASSERT(cache); 3042 3043 spin_lock(&cache->lock); 3044 cache->delalloc_bytes -= len; 3045 spin_unlock(&cache->lock); 3046 3047 btrfs_put_block_group(cache); 3048 } 3049 3050 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans, 3051 struct btrfs_ordered_extent *oe) 3052 { 3053 struct btrfs_file_extent_item stack_fi; 3054 bool update_inode_bytes; 3055 u64 num_bytes = oe->num_bytes; 3056 u64 ram_bytes = oe->ram_bytes; 3057 3058 memset(&stack_fi, 0, sizeof(stack_fi)); 3059 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG); 3060 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr); 3061 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, 3062 oe->disk_num_bytes); 3063 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset); 3064 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) 3065 num_bytes = oe->truncated_len; 3066 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes); 3067 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes); 3068 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type); 3069 /* Encryption and other encoding is reserved and all 0 */ 3070 3071 /* 3072 * For delalloc, when completing an ordered extent we update the inode's 3073 * bytes when clearing the range in the inode's io tree, so pass false 3074 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(), 3075 * except if the ordered extent was truncated. 3076 */ 3077 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) || 3078 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) || 3079 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags); 3080 3081 return insert_reserved_file_extent(trans, oe->inode, 3082 oe->file_offset, &stack_fi, 3083 update_inode_bytes, oe->qgroup_rsv); 3084 } 3085 3086 /* 3087 * As ordered data IO finishes, this gets called so we can finish 3088 * an ordered extent if the range of bytes in the file it covers are 3089 * fully written. 3090 */ 3091 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent) 3092 { 3093 struct btrfs_inode *inode = ordered_extent->inode; 3094 struct btrfs_root *root = inode->root; 3095 struct btrfs_fs_info *fs_info = root->fs_info; 3096 struct btrfs_trans_handle *trans = NULL; 3097 struct extent_io_tree *io_tree = &inode->io_tree; 3098 struct extent_state *cached_state = NULL; 3099 u64 start, end; 3100 int compress_type = 0; 3101 int ret = 0; 3102 u64 logical_len = ordered_extent->num_bytes; 3103 bool freespace_inode; 3104 bool truncated = false; 3105 bool clear_reserved_extent = true; 3106 unsigned int clear_bits = EXTENT_DEFRAG; 3107 3108 start = ordered_extent->file_offset; 3109 end = start + ordered_extent->num_bytes - 1; 3110 3111 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3112 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && 3113 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) && 3114 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags)) 3115 clear_bits |= EXTENT_DELALLOC_NEW; 3116 3117 freespace_inode = btrfs_is_free_space_inode(inode); 3118 if (!freespace_inode) 3119 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent); 3120 3121 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { 3122 ret = -EIO; 3123 goto out; 3124 } 3125 3126 if (btrfs_is_zoned(fs_info)) 3127 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr, 3128 ordered_extent->disk_num_bytes); 3129 3130 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { 3131 truncated = true; 3132 logical_len = ordered_extent->truncated_len; 3133 /* Truncated the entire extent, don't bother adding */ 3134 if (!logical_len) 3135 goto out; 3136 } 3137 3138 /* 3139 * If it's a COW write we need to lock the extent range as we will be 3140 * inserting/replacing file extent items and unpinning an extent map. 3141 * This must be taken before joining a transaction, as it's a higher 3142 * level lock (like the inode's VFS lock), otherwise we can run into an 3143 * ABBA deadlock with other tasks (transactions work like a lock, 3144 * depending on their current state). 3145 */ 3146 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3147 clear_bits |= EXTENT_LOCKED; 3148 lock_extent(io_tree, start, end, &cached_state); 3149 } 3150 3151 if (freespace_inode) 3152 trans = btrfs_join_transaction_spacecache(root); 3153 else 3154 trans = btrfs_join_transaction(root); 3155 if (IS_ERR(trans)) { 3156 ret = PTR_ERR(trans); 3157 trans = NULL; 3158 goto out; 3159 } 3160 3161 trans->block_rsv = &inode->block_rsv; 3162 3163 ret = btrfs_insert_raid_extent(trans, ordered_extent); 3164 if (ret) { 3165 btrfs_abort_transaction(trans, ret); 3166 goto out; 3167 } 3168 3169 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 3170 /* Logic error */ 3171 ASSERT(list_empty(&ordered_extent->list)); 3172 if (!list_empty(&ordered_extent->list)) { 3173 ret = -EINVAL; 3174 btrfs_abort_transaction(trans, ret); 3175 goto out; 3176 } 3177 3178 btrfs_inode_safe_disk_i_size_write(inode, 0); 3179 ret = btrfs_update_inode_fallback(trans, inode); 3180 if (ret) { 3181 /* -ENOMEM or corruption */ 3182 btrfs_abort_transaction(trans, ret); 3183 } 3184 goto out; 3185 } 3186 3187 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 3188 compress_type = ordered_extent->compress_type; 3189 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3190 BUG_ON(compress_type); 3191 ret = btrfs_mark_extent_written(trans, inode, 3192 ordered_extent->file_offset, 3193 ordered_extent->file_offset + 3194 logical_len); 3195 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr, 3196 ordered_extent->disk_num_bytes); 3197 } else { 3198 BUG_ON(root == fs_info->tree_root); 3199 ret = insert_ordered_extent_file_extent(trans, ordered_extent); 3200 if (!ret) { 3201 clear_reserved_extent = false; 3202 btrfs_release_delalloc_bytes(fs_info, 3203 ordered_extent->disk_bytenr, 3204 ordered_extent->disk_num_bytes); 3205 } 3206 } 3207 if (ret < 0) { 3208 btrfs_abort_transaction(trans, ret); 3209 goto out; 3210 } 3211 3212 ret = unpin_extent_cache(inode, ordered_extent->file_offset, 3213 ordered_extent->num_bytes, trans->transid); 3214 if (ret < 0) { 3215 btrfs_abort_transaction(trans, ret); 3216 goto out; 3217 } 3218 3219 ret = add_pending_csums(trans, &ordered_extent->list); 3220 if (ret) { 3221 btrfs_abort_transaction(trans, ret); 3222 goto out; 3223 } 3224 3225 /* 3226 * If this is a new delalloc range, clear its new delalloc flag to 3227 * update the inode's number of bytes. This needs to be done first 3228 * before updating the inode item. 3229 */ 3230 if ((clear_bits & EXTENT_DELALLOC_NEW) && 3231 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) 3232 clear_extent_bit(&inode->io_tree, start, end, 3233 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES, 3234 &cached_state); 3235 3236 btrfs_inode_safe_disk_i_size_write(inode, 0); 3237 ret = btrfs_update_inode_fallback(trans, inode); 3238 if (ret) { /* -ENOMEM or corruption */ 3239 btrfs_abort_transaction(trans, ret); 3240 goto out; 3241 } 3242 out: 3243 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 3244 &cached_state); 3245 3246 if (trans) 3247 btrfs_end_transaction(trans); 3248 3249 if (ret || truncated) { 3250 u64 unwritten_start = start; 3251 3252 /* 3253 * If we failed to finish this ordered extent for any reason we 3254 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered 3255 * extent, and mark the inode with the error if it wasn't 3256 * already set. Any error during writeback would have already 3257 * set the mapping error, so we need to set it if we're the ones 3258 * marking this ordered extent as failed. 3259 */ 3260 if (ret) 3261 btrfs_mark_ordered_extent_error(ordered_extent); 3262 3263 if (truncated) 3264 unwritten_start += logical_len; 3265 clear_extent_uptodate(io_tree, unwritten_start, end, NULL); 3266 3267 /* 3268 * Drop extent maps for the part of the extent we didn't write. 3269 * 3270 * We have an exception here for the free_space_inode, this is 3271 * because when we do btrfs_get_extent() on the free space inode 3272 * we will search the commit root. If this is a new block group 3273 * we won't find anything, and we will trip over the assert in 3274 * writepage where we do ASSERT(em->block_start != 3275 * EXTENT_MAP_HOLE). 3276 * 3277 * Theoretically we could also skip this for any NOCOW extent as 3278 * we don't mess with the extent map tree in the NOCOW case, but 3279 * for now simply skip this if we are the free space inode. 3280 */ 3281 if (!btrfs_is_free_space_inode(inode)) 3282 btrfs_drop_extent_map_range(inode, unwritten_start, 3283 end, false); 3284 3285 /* 3286 * If the ordered extent had an IOERR or something else went 3287 * wrong we need to return the space for this ordered extent 3288 * back to the allocator. We only free the extent in the 3289 * truncated case if we didn't write out the extent at all. 3290 * 3291 * If we made it past insert_reserved_file_extent before we 3292 * errored out then we don't need to do this as the accounting 3293 * has already been done. 3294 */ 3295 if ((ret || !logical_len) && 3296 clear_reserved_extent && 3297 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && 3298 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 3299 /* 3300 * Discard the range before returning it back to the 3301 * free space pool 3302 */ 3303 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC)) 3304 btrfs_discard_extent(fs_info, 3305 ordered_extent->disk_bytenr, 3306 ordered_extent->disk_num_bytes, 3307 NULL); 3308 btrfs_free_reserved_extent(fs_info, 3309 ordered_extent->disk_bytenr, 3310 ordered_extent->disk_num_bytes, 1); 3311 /* 3312 * Actually free the qgroup rsv which was released when 3313 * the ordered extent was created. 3314 */ 3315 btrfs_qgroup_free_refroot(fs_info, btrfs_root_id(inode->root), 3316 ordered_extent->qgroup_rsv, 3317 BTRFS_QGROUP_RSV_DATA); 3318 } 3319 } 3320 3321 /* 3322 * This needs to be done to make sure anybody waiting knows we are done 3323 * updating everything for this ordered extent. 3324 */ 3325 btrfs_remove_ordered_extent(inode, ordered_extent); 3326 3327 /* once for us */ 3328 btrfs_put_ordered_extent(ordered_extent); 3329 /* once for the tree */ 3330 btrfs_put_ordered_extent(ordered_extent); 3331 3332 return ret; 3333 } 3334 3335 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered) 3336 { 3337 if (btrfs_is_zoned(ordered->inode->root->fs_info) && 3338 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) && 3339 list_empty(&ordered->bioc_list)) 3340 btrfs_finish_ordered_zoned(ordered); 3341 return btrfs_finish_one_ordered(ordered); 3342 } 3343 3344 /* 3345 * Verify the checksum for a single sector without any extra action that depend 3346 * on the type of I/O. 3347 */ 3348 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3349 u32 pgoff, u8 *csum, const u8 * const csum_expected) 3350 { 3351 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 3352 char *kaddr; 3353 3354 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE); 3355 3356 shash->tfm = fs_info->csum_shash; 3357 3358 kaddr = kmap_local_page(page) + pgoff; 3359 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 3360 kunmap_local(kaddr); 3361 3362 if (memcmp(csum, csum_expected, fs_info->csum_size)) 3363 return -EIO; 3364 return 0; 3365 } 3366 3367 /* 3368 * Verify the checksum of a single data sector. 3369 * 3370 * @bbio: btrfs_io_bio which contains the csum 3371 * @dev: device the sector is on 3372 * @bio_offset: offset to the beginning of the bio (in bytes) 3373 * @bv: bio_vec to check 3374 * 3375 * Check if the checksum on a data block is valid. When a checksum mismatch is 3376 * detected, report the error and fill the corrupted range with zero. 3377 * 3378 * Return %true if the sector is ok or had no checksum to start with, else %false. 3379 */ 3380 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev, 3381 u32 bio_offset, struct bio_vec *bv) 3382 { 3383 struct btrfs_inode *inode = bbio->inode; 3384 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3385 u64 file_offset = bbio->file_offset + bio_offset; 3386 u64 end = file_offset + bv->bv_len - 1; 3387 u8 *csum_expected; 3388 u8 csum[BTRFS_CSUM_SIZE]; 3389 3390 ASSERT(bv->bv_len == fs_info->sectorsize); 3391 3392 if (!bbio->csum) 3393 return true; 3394 3395 if (btrfs_is_data_reloc_root(inode->root) && 3396 test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM, 3397 NULL)) { 3398 /* Skip the range without csum for data reloc inode */ 3399 clear_extent_bits(&inode->io_tree, file_offset, end, 3400 EXTENT_NODATASUM); 3401 return true; 3402 } 3403 3404 csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) * 3405 fs_info->csum_size; 3406 if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum, 3407 csum_expected)) 3408 goto zeroit; 3409 return true; 3410 3411 zeroit: 3412 btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected, 3413 bbio->mirror_num); 3414 if (dev) 3415 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 3416 memzero_bvec(bv); 3417 return false; 3418 } 3419 3420 /* 3421 * Perform a delayed iput on @inode. 3422 * 3423 * @inode: The inode we want to perform iput on 3424 * 3425 * This function uses the generic vfs_inode::i_count to track whether we should 3426 * just decrement it (in case it's > 1) or if this is the last iput then link 3427 * the inode to the delayed iput machinery. Delayed iputs are processed at 3428 * transaction commit time/superblock commit/cleaner kthread. 3429 */ 3430 void btrfs_add_delayed_iput(struct btrfs_inode *inode) 3431 { 3432 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3433 unsigned long flags; 3434 3435 if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1)) 3436 return; 3437 3438 WARN_ON_ONCE(test_bit(BTRFS_FS_STATE_NO_DELAYED_IPUT, &fs_info->fs_state)); 3439 atomic_inc(&fs_info->nr_delayed_iputs); 3440 /* 3441 * Need to be irq safe here because we can be called from either an irq 3442 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq 3443 * context. 3444 */ 3445 spin_lock_irqsave(&fs_info->delayed_iput_lock, flags); 3446 ASSERT(list_empty(&inode->delayed_iput)); 3447 list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs); 3448 spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags); 3449 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags)) 3450 wake_up_process(fs_info->cleaner_kthread); 3451 } 3452 3453 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info, 3454 struct btrfs_inode *inode) 3455 { 3456 list_del_init(&inode->delayed_iput); 3457 spin_unlock_irq(&fs_info->delayed_iput_lock); 3458 iput(&inode->vfs_inode); 3459 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs)) 3460 wake_up(&fs_info->delayed_iputs_wait); 3461 spin_lock_irq(&fs_info->delayed_iput_lock); 3462 } 3463 3464 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info, 3465 struct btrfs_inode *inode) 3466 { 3467 if (!list_empty(&inode->delayed_iput)) { 3468 spin_lock_irq(&fs_info->delayed_iput_lock); 3469 if (!list_empty(&inode->delayed_iput)) 3470 run_delayed_iput_locked(fs_info, inode); 3471 spin_unlock_irq(&fs_info->delayed_iput_lock); 3472 } 3473 } 3474 3475 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) 3476 { 3477 /* 3478 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which 3479 * calls btrfs_add_delayed_iput() and that needs to lock 3480 * fs_info->delayed_iput_lock. So we need to disable irqs here to 3481 * prevent a deadlock. 3482 */ 3483 spin_lock_irq(&fs_info->delayed_iput_lock); 3484 while (!list_empty(&fs_info->delayed_iputs)) { 3485 struct btrfs_inode *inode; 3486 3487 inode = list_first_entry(&fs_info->delayed_iputs, 3488 struct btrfs_inode, delayed_iput); 3489 run_delayed_iput_locked(fs_info, inode); 3490 if (need_resched()) { 3491 spin_unlock_irq(&fs_info->delayed_iput_lock); 3492 cond_resched(); 3493 spin_lock_irq(&fs_info->delayed_iput_lock); 3494 } 3495 } 3496 spin_unlock_irq(&fs_info->delayed_iput_lock); 3497 } 3498 3499 /* 3500 * Wait for flushing all delayed iputs 3501 * 3502 * @fs_info: the filesystem 3503 * 3504 * This will wait on any delayed iputs that are currently running with KILLABLE 3505 * set. Once they are all done running we will return, unless we are killed in 3506 * which case we return EINTR. This helps in user operations like fallocate etc 3507 * that might get blocked on the iputs. 3508 * 3509 * Return EINTR if we were killed, 0 if nothing's pending 3510 */ 3511 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info) 3512 { 3513 int ret = wait_event_killable(fs_info->delayed_iputs_wait, 3514 atomic_read(&fs_info->nr_delayed_iputs) == 0); 3515 if (ret) 3516 return -EINTR; 3517 return 0; 3518 } 3519 3520 /* 3521 * This creates an orphan entry for the given inode in case something goes wrong 3522 * in the middle of an unlink. 3523 */ 3524 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3525 struct btrfs_inode *inode) 3526 { 3527 int ret; 3528 3529 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); 3530 if (ret && ret != -EEXIST) { 3531 btrfs_abort_transaction(trans, ret); 3532 return ret; 3533 } 3534 3535 return 0; 3536 } 3537 3538 /* 3539 * We have done the delete so we can go ahead and remove the orphan item for 3540 * this particular inode. 3541 */ 3542 static int btrfs_orphan_del(struct btrfs_trans_handle *trans, 3543 struct btrfs_inode *inode) 3544 { 3545 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); 3546 } 3547 3548 /* 3549 * this cleans up any orphans that may be left on the list from the last use 3550 * of this root. 3551 */ 3552 int btrfs_orphan_cleanup(struct btrfs_root *root) 3553 { 3554 struct btrfs_fs_info *fs_info = root->fs_info; 3555 struct btrfs_path *path; 3556 struct extent_buffer *leaf; 3557 struct btrfs_key key, found_key; 3558 struct btrfs_trans_handle *trans; 3559 u64 last_objectid = 0; 3560 int ret = 0, nr_unlink = 0; 3561 3562 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state)) 3563 return 0; 3564 3565 path = btrfs_alloc_path(); 3566 if (!path) { 3567 ret = -ENOMEM; 3568 goto out; 3569 } 3570 path->reada = READA_BACK; 3571 3572 key.objectid = BTRFS_ORPHAN_OBJECTID; 3573 key.type = BTRFS_ORPHAN_ITEM_KEY; 3574 key.offset = (u64)-1; 3575 3576 while (1) { 3577 struct btrfs_inode *inode; 3578 3579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3580 if (ret < 0) 3581 goto out; 3582 3583 /* 3584 * if ret == 0 means we found what we were searching for, which 3585 * is weird, but possible, so only screw with path if we didn't 3586 * find the key and see if we have stuff that matches 3587 */ 3588 if (ret > 0) { 3589 ret = 0; 3590 if (path->slots[0] == 0) 3591 break; 3592 path->slots[0]--; 3593 } 3594 3595 /* pull out the item */ 3596 leaf = path->nodes[0]; 3597 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3598 3599 /* make sure the item matches what we want */ 3600 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 3601 break; 3602 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) 3603 break; 3604 3605 /* release the path since we're done with it */ 3606 btrfs_release_path(path); 3607 3608 /* 3609 * this is where we are basically btrfs_lookup, without the 3610 * crossing root thing. we store the inode number in the 3611 * offset of the orphan item. 3612 */ 3613 3614 if (found_key.offset == last_objectid) { 3615 /* 3616 * We found the same inode as before. This means we were 3617 * not able to remove its items via eviction triggered 3618 * by an iput(). A transaction abort may have happened, 3619 * due to -ENOSPC for example, so try to grab the error 3620 * that lead to a transaction abort, if any. 3621 */ 3622 btrfs_err(fs_info, 3623 "Error removing orphan entry, stopping orphan cleanup"); 3624 ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL; 3625 goto out; 3626 } 3627 3628 last_objectid = found_key.offset; 3629 3630 found_key.objectid = found_key.offset; 3631 found_key.type = BTRFS_INODE_ITEM_KEY; 3632 found_key.offset = 0; 3633 inode = btrfs_iget(last_objectid, root); 3634 if (IS_ERR(inode)) { 3635 ret = PTR_ERR(inode); 3636 inode = NULL; 3637 if (ret != -ENOENT) 3638 goto out; 3639 } 3640 3641 if (!inode && root == fs_info->tree_root) { 3642 struct btrfs_root *dead_root; 3643 int is_dead_root = 0; 3644 3645 /* 3646 * This is an orphan in the tree root. Currently these 3647 * could come from 2 sources: 3648 * a) a root (snapshot/subvolume) deletion in progress 3649 * b) a free space cache inode 3650 * We need to distinguish those two, as the orphan item 3651 * for a root must not get deleted before the deletion 3652 * of the snapshot/subvolume's tree completes. 3653 * 3654 * btrfs_find_orphan_roots() ran before us, which has 3655 * found all deleted roots and loaded them into 3656 * fs_info->fs_roots_radix. So here we can find if an 3657 * orphan item corresponds to a deleted root by looking 3658 * up the root from that radix tree. 3659 */ 3660 3661 spin_lock(&fs_info->fs_roots_radix_lock); 3662 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix, 3663 (unsigned long)found_key.objectid); 3664 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0) 3665 is_dead_root = 1; 3666 spin_unlock(&fs_info->fs_roots_radix_lock); 3667 3668 if (is_dead_root) { 3669 /* prevent this orphan from being found again */ 3670 key.offset = found_key.objectid - 1; 3671 continue; 3672 } 3673 3674 } 3675 3676 /* 3677 * If we have an inode with links, there are a couple of 3678 * possibilities: 3679 * 3680 * 1. We were halfway through creating fsverity metadata for the 3681 * file. In that case, the orphan item represents incomplete 3682 * fsverity metadata which must be cleaned up with 3683 * btrfs_drop_verity_items and deleting the orphan item. 3684 3685 * 2. Old kernels (before v3.12) used to create an 3686 * orphan item for truncate indicating that there were possibly 3687 * extent items past i_size that needed to be deleted. In v3.12, 3688 * truncate was changed to update i_size in sync with the extent 3689 * items, but the (useless) orphan item was still created. Since 3690 * v4.18, we don't create the orphan item for truncate at all. 3691 * 3692 * So, this item could mean that we need to do a truncate, but 3693 * only if this filesystem was last used on a pre-v3.12 kernel 3694 * and was not cleanly unmounted. The odds of that are quite 3695 * slim, and it's a pain to do the truncate now, so just delete 3696 * the orphan item. 3697 * 3698 * It's also possible that this orphan item was supposed to be 3699 * deleted but wasn't. The inode number may have been reused, 3700 * but either way, we can delete the orphan item. 3701 */ 3702 if (!inode || inode->vfs_inode.i_nlink) { 3703 if (inode) { 3704 ret = btrfs_drop_verity_items(inode); 3705 iput(&inode->vfs_inode); 3706 inode = NULL; 3707 if (ret) 3708 goto out; 3709 } 3710 trans = btrfs_start_transaction(root, 1); 3711 if (IS_ERR(trans)) { 3712 ret = PTR_ERR(trans); 3713 goto out; 3714 } 3715 btrfs_debug(fs_info, "auto deleting %Lu", 3716 found_key.objectid); 3717 ret = btrfs_del_orphan_item(trans, root, 3718 found_key.objectid); 3719 btrfs_end_transaction(trans); 3720 if (ret) 3721 goto out; 3722 continue; 3723 } 3724 3725 nr_unlink++; 3726 3727 /* this will do delete_inode and everything for us */ 3728 iput(&inode->vfs_inode); 3729 } 3730 /* release the path since we're done with it */ 3731 btrfs_release_path(path); 3732 3733 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { 3734 trans = btrfs_join_transaction(root); 3735 if (!IS_ERR(trans)) 3736 btrfs_end_transaction(trans); 3737 } 3738 3739 if (nr_unlink) 3740 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); 3741 3742 out: 3743 if (ret) 3744 btrfs_err(fs_info, "could not do orphan cleanup %d", ret); 3745 btrfs_free_path(path); 3746 return ret; 3747 } 3748 3749 /* 3750 * very simple check to peek ahead in the leaf looking for xattrs. If we 3751 * don't find any xattrs, we know there can't be any acls. 3752 * 3753 * slot is the slot the inode is in, objectid is the objectid of the inode 3754 */ 3755 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 3756 int slot, u64 objectid, 3757 int *first_xattr_slot) 3758 { 3759 u32 nritems = btrfs_header_nritems(leaf); 3760 struct btrfs_key found_key; 3761 static u64 xattr_access = 0; 3762 static u64 xattr_default = 0; 3763 int scanned = 0; 3764 3765 if (!xattr_access) { 3766 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, 3767 strlen(XATTR_NAME_POSIX_ACL_ACCESS)); 3768 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, 3769 strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); 3770 } 3771 3772 slot++; 3773 *first_xattr_slot = -1; 3774 while (slot < nritems) { 3775 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3776 3777 /* we found a different objectid, there must not be acls */ 3778 if (found_key.objectid != objectid) 3779 return 0; 3780 3781 /* we found an xattr, assume we've got an acl */ 3782 if (found_key.type == BTRFS_XATTR_ITEM_KEY) { 3783 if (*first_xattr_slot == -1) 3784 *first_xattr_slot = slot; 3785 if (found_key.offset == xattr_access || 3786 found_key.offset == xattr_default) 3787 return 1; 3788 } 3789 3790 /* 3791 * we found a key greater than an xattr key, there can't 3792 * be any acls later on 3793 */ 3794 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 3795 return 0; 3796 3797 slot++; 3798 scanned++; 3799 3800 /* 3801 * it goes inode, inode backrefs, xattrs, extents, 3802 * so if there are a ton of hard links to an inode there can 3803 * be a lot of backrefs. Don't waste time searching too hard, 3804 * this is just an optimization 3805 */ 3806 if (scanned >= 8) 3807 break; 3808 } 3809 /* we hit the end of the leaf before we found an xattr or 3810 * something larger than an xattr. We have to assume the inode 3811 * has acls 3812 */ 3813 if (*first_xattr_slot == -1) 3814 *first_xattr_slot = slot; 3815 return 1; 3816 } 3817 3818 static int btrfs_init_file_extent_tree(struct btrfs_inode *inode) 3819 { 3820 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3821 3822 if (WARN_ON_ONCE(inode->file_extent_tree)) 3823 return 0; 3824 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 3825 return 0; 3826 if (!S_ISREG(inode->vfs_inode.i_mode)) 3827 return 0; 3828 if (btrfs_is_free_space_inode(inode)) 3829 return 0; 3830 3831 inode->file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL); 3832 if (!inode->file_extent_tree) 3833 return -ENOMEM; 3834 3835 extent_io_tree_init(fs_info, inode->file_extent_tree, IO_TREE_INODE_FILE_EXTENT); 3836 /* Lockdep class is set only for the file extent tree. */ 3837 lockdep_set_class(&inode->file_extent_tree->lock, &file_extent_tree_class); 3838 3839 return 0; 3840 } 3841 3842 static int btrfs_add_inode_to_root(struct btrfs_inode *inode, bool prealloc) 3843 { 3844 struct btrfs_root *root = inode->root; 3845 struct btrfs_inode *existing; 3846 const u64 ino = btrfs_ino(inode); 3847 int ret; 3848 3849 if (inode_unhashed(&inode->vfs_inode)) 3850 return 0; 3851 3852 if (prealloc) { 3853 ret = xa_reserve(&root->inodes, ino, GFP_NOFS); 3854 if (ret) 3855 return ret; 3856 } 3857 3858 existing = xa_store(&root->inodes, ino, inode, GFP_ATOMIC); 3859 3860 if (xa_is_err(existing)) { 3861 ret = xa_err(existing); 3862 ASSERT(ret != -EINVAL); 3863 ASSERT(ret != -ENOMEM); 3864 return ret; 3865 } else if (existing) { 3866 WARN_ON(!(existing->vfs_inode.i_state & (I_WILL_FREE | I_FREEING))); 3867 } 3868 3869 return 0; 3870 } 3871 3872 /* 3873 * Read a locked inode from the btree into the in-memory inode and add it to 3874 * its root list/tree. 3875 * 3876 * On failure clean up the inode. 3877 */ 3878 static int btrfs_read_locked_inode(struct btrfs_inode *inode, struct btrfs_path *path) 3879 { 3880 struct btrfs_root *root = inode->root; 3881 struct btrfs_fs_info *fs_info = root->fs_info; 3882 struct extent_buffer *leaf; 3883 struct btrfs_inode_item *inode_item; 3884 struct inode *vfs_inode = &inode->vfs_inode; 3885 struct btrfs_key location; 3886 unsigned long ptr; 3887 int maybe_acls; 3888 u32 rdev; 3889 int ret; 3890 bool filled = false; 3891 int first_xattr_slot; 3892 3893 ret = btrfs_init_file_extent_tree(inode); 3894 if (ret) 3895 goto out; 3896 3897 ret = btrfs_fill_inode(inode, &rdev); 3898 if (!ret) 3899 filled = true; 3900 3901 ASSERT(path); 3902 3903 btrfs_get_inode_key(inode, &location); 3904 3905 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 3906 if (ret) { 3907 /* 3908 * ret > 0 can come from btrfs_search_slot called by 3909 * btrfs_lookup_inode(), this means the inode was not found. 3910 */ 3911 if (ret > 0) 3912 ret = -ENOENT; 3913 goto out; 3914 } 3915 3916 leaf = path->nodes[0]; 3917 3918 if (filled) 3919 goto cache_index; 3920 3921 inode_item = btrfs_item_ptr(leaf, path->slots[0], 3922 struct btrfs_inode_item); 3923 vfs_inode->i_mode = btrfs_inode_mode(leaf, inode_item); 3924 set_nlink(vfs_inode, btrfs_inode_nlink(leaf, inode_item)); 3925 i_uid_write(vfs_inode, btrfs_inode_uid(leaf, inode_item)); 3926 i_gid_write(vfs_inode, btrfs_inode_gid(leaf, inode_item)); 3927 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 3928 btrfs_inode_set_file_extent_range(inode, 0, 3929 round_up(i_size_read(vfs_inode), fs_info->sectorsize)); 3930 3931 inode_set_atime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->atime), 3932 btrfs_timespec_nsec(leaf, &inode_item->atime)); 3933 3934 inode_set_mtime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->mtime), 3935 btrfs_timespec_nsec(leaf, &inode_item->mtime)); 3936 3937 inode_set_ctime(vfs_inode, btrfs_timespec_sec(leaf, &inode_item->ctime), 3938 btrfs_timespec_nsec(leaf, &inode_item->ctime)); 3939 3940 inode->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime); 3941 inode->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime); 3942 3943 inode_set_bytes(vfs_inode, btrfs_inode_nbytes(leaf, inode_item)); 3944 inode->generation = btrfs_inode_generation(leaf, inode_item); 3945 inode->last_trans = btrfs_inode_transid(leaf, inode_item); 3946 3947 inode_set_iversion_queried(vfs_inode, btrfs_inode_sequence(leaf, inode_item)); 3948 vfs_inode->i_generation = inode->generation; 3949 vfs_inode->i_rdev = 0; 3950 rdev = btrfs_inode_rdev(leaf, inode_item); 3951 3952 if (S_ISDIR(vfs_inode->i_mode)) 3953 inode->index_cnt = (u64)-1; 3954 3955 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item), 3956 &inode->flags, &inode->ro_flags); 3957 btrfs_update_inode_mapping_flags(inode); 3958 3959 cache_index: 3960 /* 3961 * If we were modified in the current generation and evicted from memory 3962 * and then re-read we need to do a full sync since we don't have any 3963 * idea about which extents were modified before we were evicted from 3964 * cache. 3965 * 3966 * This is required for both inode re-read from disk and delayed inode 3967 * in the delayed_nodes xarray. 3968 */ 3969 if (inode->last_trans == btrfs_get_fs_generation(fs_info)) 3970 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags); 3971 3972 /* 3973 * We don't persist the id of the transaction where an unlink operation 3974 * against the inode was last made. So here we assume the inode might 3975 * have been evicted, and therefore the exact value of last_unlink_trans 3976 * lost, and set it to last_trans to avoid metadata inconsistencies 3977 * between the inode and its parent if the inode is fsync'ed and the log 3978 * replayed. For example, in the scenario: 3979 * 3980 * touch mydir/foo 3981 * ln mydir/foo mydir/bar 3982 * sync 3983 * unlink mydir/bar 3984 * echo 2 > /proc/sys/vm/drop_caches # evicts inode 3985 * xfs_io -c fsync mydir/foo 3986 * <power failure> 3987 * mount fs, triggers fsync log replay 3988 * 3989 * We must make sure that when we fsync our inode foo we also log its 3990 * parent inode, otherwise after log replay the parent still has the 3991 * dentry with the "bar" name but our inode foo has a link count of 1 3992 * and doesn't have an inode ref with the name "bar" anymore. 3993 * 3994 * Setting last_unlink_trans to last_trans is a pessimistic approach, 3995 * but it guarantees correctness at the expense of occasional full 3996 * transaction commits on fsync if our inode is a directory, or if our 3997 * inode is not a directory, logging its parent unnecessarily. 3998 */ 3999 inode->last_unlink_trans = inode->last_trans; 4000 4001 /* 4002 * Same logic as for last_unlink_trans. We don't persist the generation 4003 * of the last transaction where this inode was used for a reflink 4004 * operation, so after eviction and reloading the inode we must be 4005 * pessimistic and assume the last transaction that modified the inode. 4006 */ 4007 inode->last_reflink_trans = inode->last_trans; 4008 4009 path->slots[0]++; 4010 if (vfs_inode->i_nlink != 1 || 4011 path->slots[0] >= btrfs_header_nritems(leaf)) 4012 goto cache_acl; 4013 4014 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); 4015 if (location.objectid != btrfs_ino(inode)) 4016 goto cache_acl; 4017 4018 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4019 if (location.type == BTRFS_INODE_REF_KEY) { 4020 struct btrfs_inode_ref *ref; 4021 4022 ref = (struct btrfs_inode_ref *)ptr; 4023 inode->dir_index = btrfs_inode_ref_index(leaf, ref); 4024 } else if (location.type == BTRFS_INODE_EXTREF_KEY) { 4025 struct btrfs_inode_extref *extref; 4026 4027 extref = (struct btrfs_inode_extref *)ptr; 4028 inode->dir_index = btrfs_inode_extref_index(leaf, extref); 4029 } 4030 cache_acl: 4031 /* 4032 * try to precache a NULL acl entry for files that don't have 4033 * any xattrs or acls 4034 */ 4035 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 4036 btrfs_ino(inode), &first_xattr_slot); 4037 if (first_xattr_slot != -1) { 4038 path->slots[0] = first_xattr_slot; 4039 ret = btrfs_load_inode_props(inode, path); 4040 if (ret) 4041 btrfs_err(fs_info, 4042 "error loading props for ino %llu (root %llu): %d", 4043 btrfs_ino(inode), btrfs_root_id(root), ret); 4044 } 4045 4046 if (!maybe_acls) 4047 cache_no_acl(vfs_inode); 4048 4049 switch (vfs_inode->i_mode & S_IFMT) { 4050 case S_IFREG: 4051 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4052 vfs_inode->i_fop = &btrfs_file_operations; 4053 vfs_inode->i_op = &btrfs_file_inode_operations; 4054 break; 4055 case S_IFDIR: 4056 vfs_inode->i_fop = &btrfs_dir_file_operations; 4057 vfs_inode->i_op = &btrfs_dir_inode_operations; 4058 break; 4059 case S_IFLNK: 4060 vfs_inode->i_op = &btrfs_symlink_inode_operations; 4061 inode_nohighmem(vfs_inode); 4062 vfs_inode->i_mapping->a_ops = &btrfs_aops; 4063 break; 4064 default: 4065 vfs_inode->i_op = &btrfs_special_inode_operations; 4066 init_special_inode(vfs_inode, vfs_inode->i_mode, rdev); 4067 break; 4068 } 4069 4070 btrfs_sync_inode_flags_to_i_flags(inode); 4071 4072 ret = btrfs_add_inode_to_root(inode, true); 4073 if (ret) 4074 goto out; 4075 4076 return 0; 4077 out: 4078 iget_failed(vfs_inode); 4079 return ret; 4080 } 4081 4082 /* 4083 * given a leaf and an inode, copy the inode fields into the leaf 4084 */ 4085 static void fill_inode_item(struct btrfs_trans_handle *trans, 4086 struct extent_buffer *leaf, 4087 struct btrfs_inode_item *item, 4088 struct inode *inode) 4089 { 4090 struct btrfs_map_token token; 4091 u64 flags; 4092 4093 btrfs_init_map_token(&token, leaf); 4094 4095 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode)); 4096 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode)); 4097 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size); 4098 btrfs_set_token_inode_mode(&token, item, inode->i_mode); 4099 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink); 4100 4101 btrfs_set_token_timespec_sec(&token, &item->atime, 4102 inode_get_atime_sec(inode)); 4103 btrfs_set_token_timespec_nsec(&token, &item->atime, 4104 inode_get_atime_nsec(inode)); 4105 4106 btrfs_set_token_timespec_sec(&token, &item->mtime, 4107 inode_get_mtime_sec(inode)); 4108 btrfs_set_token_timespec_nsec(&token, &item->mtime, 4109 inode_get_mtime_nsec(inode)); 4110 4111 btrfs_set_token_timespec_sec(&token, &item->ctime, 4112 inode_get_ctime_sec(inode)); 4113 btrfs_set_token_timespec_nsec(&token, &item->ctime, 4114 inode_get_ctime_nsec(inode)); 4115 4116 btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec); 4117 btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec); 4118 4119 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode)); 4120 btrfs_set_token_inode_generation(&token, item, 4121 BTRFS_I(inode)->generation); 4122 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode)); 4123 btrfs_set_token_inode_transid(&token, item, trans->transid); 4124 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev); 4125 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 4126 BTRFS_I(inode)->ro_flags); 4127 btrfs_set_token_inode_flags(&token, item, flags); 4128 btrfs_set_token_inode_block_group(&token, item, 0); 4129 } 4130 4131 /* 4132 * copy everything in the in-memory inode into the btree. 4133 */ 4134 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, 4135 struct btrfs_inode *inode) 4136 { 4137 struct btrfs_inode_item *inode_item; 4138 struct btrfs_path *path; 4139 struct extent_buffer *leaf; 4140 struct btrfs_key key; 4141 int ret; 4142 4143 path = btrfs_alloc_path(); 4144 if (!path) 4145 return -ENOMEM; 4146 4147 btrfs_get_inode_key(inode, &key); 4148 ret = btrfs_lookup_inode(trans, inode->root, path, &key, 1); 4149 if (ret) { 4150 if (ret > 0) 4151 ret = -ENOENT; 4152 goto failed; 4153 } 4154 4155 leaf = path->nodes[0]; 4156 inode_item = btrfs_item_ptr(leaf, path->slots[0], 4157 struct btrfs_inode_item); 4158 4159 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode); 4160 btrfs_set_inode_last_trans(trans, inode); 4161 ret = 0; 4162 failed: 4163 btrfs_free_path(path); 4164 return ret; 4165 } 4166 4167 /* 4168 * copy everything in the in-memory inode into the btree. 4169 */ 4170 int btrfs_update_inode(struct btrfs_trans_handle *trans, 4171 struct btrfs_inode *inode) 4172 { 4173 struct btrfs_root *root = inode->root; 4174 struct btrfs_fs_info *fs_info = root->fs_info; 4175 int ret; 4176 4177 /* 4178 * If the inode is a free space inode, we can deadlock during commit 4179 * if we put it into the delayed code. 4180 * 4181 * The data relocation inode should also be directly updated 4182 * without delay 4183 */ 4184 if (!btrfs_is_free_space_inode(inode) 4185 && !btrfs_is_data_reloc_root(root) 4186 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { 4187 btrfs_update_root_times(trans, root); 4188 4189 ret = btrfs_delayed_update_inode(trans, inode); 4190 if (!ret) 4191 btrfs_set_inode_last_trans(trans, inode); 4192 return ret; 4193 } 4194 4195 return btrfs_update_inode_item(trans, inode); 4196 } 4197 4198 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 4199 struct btrfs_inode *inode) 4200 { 4201 int ret; 4202 4203 ret = btrfs_update_inode(trans, inode); 4204 if (ret == -ENOSPC) 4205 return btrfs_update_inode_item(trans, inode); 4206 return ret; 4207 } 4208 4209 /* 4210 * unlink helper that gets used here in inode.c and in the tree logging 4211 * recovery code. It remove a link in a directory with a given name, and 4212 * also drops the back refs in the inode to the directory 4213 */ 4214 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4215 struct btrfs_inode *dir, 4216 struct btrfs_inode *inode, 4217 const struct fscrypt_str *name, 4218 struct btrfs_rename_ctx *rename_ctx) 4219 { 4220 struct btrfs_root *root = dir->root; 4221 struct btrfs_fs_info *fs_info = root->fs_info; 4222 struct btrfs_path *path; 4223 int ret = 0; 4224 struct btrfs_dir_item *di; 4225 u64 index; 4226 u64 ino = btrfs_ino(inode); 4227 u64 dir_ino = btrfs_ino(dir); 4228 4229 path = btrfs_alloc_path(); 4230 if (!path) { 4231 ret = -ENOMEM; 4232 goto out; 4233 } 4234 4235 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1); 4236 if (IS_ERR_OR_NULL(di)) { 4237 ret = di ? PTR_ERR(di) : -ENOENT; 4238 goto err; 4239 } 4240 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4241 if (ret) 4242 goto err; 4243 btrfs_release_path(path); 4244 4245 /* 4246 * If we don't have dir index, we have to get it by looking up 4247 * the inode ref, since we get the inode ref, remove it directly, 4248 * it is unnecessary to do delayed deletion. 4249 * 4250 * But if we have dir index, needn't search inode ref to get it. 4251 * Since the inode ref is close to the inode item, it is better 4252 * that we delay to delete it, and just do this deletion when 4253 * we update the inode item. 4254 */ 4255 if (inode->dir_index) { 4256 ret = btrfs_delayed_delete_inode_ref(inode); 4257 if (!ret) { 4258 index = inode->dir_index; 4259 goto skip_backref; 4260 } 4261 } 4262 4263 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index); 4264 if (ret) { 4265 btrfs_info(fs_info, 4266 "failed to delete reference to %.*s, inode %llu parent %llu", 4267 name->len, name->name, ino, dir_ino); 4268 btrfs_abort_transaction(trans, ret); 4269 goto err; 4270 } 4271 skip_backref: 4272 if (rename_ctx) 4273 rename_ctx->index = index; 4274 4275 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4276 if (ret) { 4277 btrfs_abort_transaction(trans, ret); 4278 goto err; 4279 } 4280 4281 /* 4282 * If we are in a rename context, we don't need to update anything in the 4283 * log. That will be done later during the rename by btrfs_log_new_name(). 4284 * Besides that, doing it here would only cause extra unnecessary btree 4285 * operations on the log tree, increasing latency for applications. 4286 */ 4287 if (!rename_ctx) { 4288 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino); 4289 btrfs_del_dir_entries_in_log(trans, root, name, dir, index); 4290 } 4291 4292 /* 4293 * If we have a pending delayed iput we could end up with the final iput 4294 * being run in btrfs-cleaner context. If we have enough of these built 4295 * up we can end up burning a lot of time in btrfs-cleaner without any 4296 * way to throttle the unlinks. Since we're currently holding a ref on 4297 * the inode we can run the delayed iput here without any issues as the 4298 * final iput won't be done until after we drop the ref we're currently 4299 * holding. 4300 */ 4301 btrfs_run_delayed_iput(fs_info, inode); 4302 err: 4303 btrfs_free_path(path); 4304 if (ret) 4305 goto out; 4306 4307 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2); 4308 inode_inc_iversion(&inode->vfs_inode); 4309 inode_set_ctime_current(&inode->vfs_inode); 4310 inode_inc_iversion(&dir->vfs_inode); 4311 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4312 ret = btrfs_update_inode(trans, dir); 4313 out: 4314 return ret; 4315 } 4316 4317 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 4318 struct btrfs_inode *dir, struct btrfs_inode *inode, 4319 const struct fscrypt_str *name) 4320 { 4321 int ret; 4322 4323 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL); 4324 if (!ret) { 4325 drop_nlink(&inode->vfs_inode); 4326 ret = btrfs_update_inode(trans, inode); 4327 } 4328 return ret; 4329 } 4330 4331 /* 4332 * helper to start transaction for unlink and rmdir. 4333 * 4334 * unlink and rmdir are special in btrfs, they do not always free space, so 4335 * if we cannot make our reservations the normal way try and see if there is 4336 * plenty of slack room in the global reserve to migrate, otherwise we cannot 4337 * allow the unlink to occur. 4338 */ 4339 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir) 4340 { 4341 struct btrfs_root *root = dir->root; 4342 4343 return btrfs_start_transaction_fallback_global_rsv(root, 4344 BTRFS_UNLINK_METADATA_UNITS); 4345 } 4346 4347 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 4348 { 4349 struct btrfs_trans_handle *trans; 4350 struct inode *inode = d_inode(dentry); 4351 int ret; 4352 struct fscrypt_name fname; 4353 4354 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4355 if (ret) 4356 return ret; 4357 4358 /* This needs to handle no-key deletions later on */ 4359 4360 trans = __unlink_start_trans(BTRFS_I(dir)); 4361 if (IS_ERR(trans)) { 4362 ret = PTR_ERR(trans); 4363 goto fscrypt_free; 4364 } 4365 4366 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4367 false); 4368 4369 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4370 &fname.disk_name); 4371 if (ret) 4372 goto end_trans; 4373 4374 if (inode->i_nlink == 0) { 4375 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4376 if (ret) 4377 goto end_trans; 4378 } 4379 4380 end_trans: 4381 btrfs_end_transaction(trans); 4382 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info); 4383 fscrypt_free: 4384 fscrypt_free_filename(&fname); 4385 return ret; 4386 } 4387 4388 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 4389 struct btrfs_inode *dir, struct dentry *dentry) 4390 { 4391 struct btrfs_root *root = dir->root; 4392 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); 4393 struct btrfs_path *path; 4394 struct extent_buffer *leaf; 4395 struct btrfs_dir_item *di; 4396 struct btrfs_key key; 4397 u64 index; 4398 int ret; 4399 u64 objectid; 4400 u64 dir_ino = btrfs_ino(dir); 4401 struct fscrypt_name fname; 4402 4403 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 4404 if (ret) 4405 return ret; 4406 4407 /* This needs to handle no-key deletions later on */ 4408 4409 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { 4410 objectid = btrfs_root_id(inode->root); 4411 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4412 objectid = inode->ref_root_id; 4413 } else { 4414 WARN_ON(1); 4415 fscrypt_free_filename(&fname); 4416 return -EINVAL; 4417 } 4418 4419 path = btrfs_alloc_path(); 4420 if (!path) { 4421 ret = -ENOMEM; 4422 goto out; 4423 } 4424 4425 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 4426 &fname.disk_name, -1); 4427 if (IS_ERR_OR_NULL(di)) { 4428 ret = di ? PTR_ERR(di) : -ENOENT; 4429 goto out; 4430 } 4431 4432 leaf = path->nodes[0]; 4433 btrfs_dir_item_key_to_cpu(leaf, di, &key); 4434 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 4435 ret = btrfs_delete_one_dir_name(trans, root, path, di); 4436 if (ret) { 4437 btrfs_abort_transaction(trans, ret); 4438 goto out; 4439 } 4440 btrfs_release_path(path); 4441 4442 /* 4443 * This is a placeholder inode for a subvolume we didn't have a 4444 * reference to at the time of the snapshot creation. In the meantime 4445 * we could have renamed the real subvol link into our snapshot, so 4446 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect. 4447 * Instead simply lookup the dir_index_item for this entry so we can 4448 * remove it. Otherwise we know we have a ref to the root and we can 4449 * call btrfs_del_root_ref, and it _shouldn't_ fail. 4450 */ 4451 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { 4452 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name); 4453 if (IS_ERR(di)) { 4454 ret = PTR_ERR(di); 4455 btrfs_abort_transaction(trans, ret); 4456 goto out; 4457 } 4458 4459 leaf = path->nodes[0]; 4460 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4461 index = key.offset; 4462 btrfs_release_path(path); 4463 } else { 4464 ret = btrfs_del_root_ref(trans, objectid, 4465 btrfs_root_id(root), dir_ino, 4466 &index, &fname.disk_name); 4467 if (ret) { 4468 btrfs_abort_transaction(trans, ret); 4469 goto out; 4470 } 4471 } 4472 4473 ret = btrfs_delete_delayed_dir_index(trans, dir, index); 4474 if (ret) { 4475 btrfs_abort_transaction(trans, ret); 4476 goto out; 4477 } 4478 4479 btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2); 4480 inode_inc_iversion(&dir->vfs_inode); 4481 inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode)); 4482 ret = btrfs_update_inode_fallback(trans, dir); 4483 if (ret) 4484 btrfs_abort_transaction(trans, ret); 4485 out: 4486 btrfs_free_path(path); 4487 fscrypt_free_filename(&fname); 4488 return ret; 4489 } 4490 4491 /* 4492 * Helper to check if the subvolume references other subvolumes or if it's 4493 * default. 4494 */ 4495 static noinline int may_destroy_subvol(struct btrfs_root *root) 4496 { 4497 struct btrfs_fs_info *fs_info = root->fs_info; 4498 struct btrfs_path *path; 4499 struct btrfs_dir_item *di; 4500 struct btrfs_key key; 4501 struct fscrypt_str name = FSTR_INIT("default", 7); 4502 u64 dir_id; 4503 int ret; 4504 4505 path = btrfs_alloc_path(); 4506 if (!path) 4507 return -ENOMEM; 4508 4509 /* Make sure this root isn't set as the default subvol */ 4510 dir_id = btrfs_super_root_dir(fs_info->super_copy); 4511 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, 4512 dir_id, &name, 0); 4513 if (di && !IS_ERR(di)) { 4514 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 4515 if (key.objectid == btrfs_root_id(root)) { 4516 ret = -EPERM; 4517 btrfs_err(fs_info, 4518 "deleting default subvolume %llu is not allowed", 4519 key.objectid); 4520 goto out; 4521 } 4522 btrfs_release_path(path); 4523 } 4524 4525 key.objectid = btrfs_root_id(root); 4526 key.type = BTRFS_ROOT_REF_KEY; 4527 key.offset = (u64)-1; 4528 4529 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4530 if (ret < 0) 4531 goto out; 4532 if (ret == 0) { 4533 /* 4534 * Key with offset -1 found, there would have to exist a root 4535 * with such id, but this is out of valid range. 4536 */ 4537 ret = -EUCLEAN; 4538 goto out; 4539 } 4540 4541 ret = 0; 4542 if (path->slots[0] > 0) { 4543 path->slots[0]--; 4544 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4545 if (key.objectid == btrfs_root_id(root) && key.type == BTRFS_ROOT_REF_KEY) 4546 ret = -ENOTEMPTY; 4547 } 4548 out: 4549 btrfs_free_path(path); 4550 return ret; 4551 } 4552 4553 /* Delete all dentries for inodes belonging to the root */ 4554 static void btrfs_prune_dentries(struct btrfs_root *root) 4555 { 4556 struct btrfs_fs_info *fs_info = root->fs_info; 4557 struct btrfs_inode *inode; 4558 u64 min_ino = 0; 4559 4560 if (!BTRFS_FS_ERROR(fs_info)) 4561 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 4562 4563 inode = btrfs_find_first_inode(root, min_ino); 4564 while (inode) { 4565 if (atomic_read(&inode->vfs_inode.i_count) > 1) 4566 d_prune_aliases(&inode->vfs_inode); 4567 4568 min_ino = btrfs_ino(inode) + 1; 4569 /* 4570 * btrfs_drop_inode() will have it removed from the inode 4571 * cache when its usage count hits zero. 4572 */ 4573 iput(&inode->vfs_inode); 4574 cond_resched(); 4575 inode = btrfs_find_first_inode(root, min_ino); 4576 } 4577 } 4578 4579 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry) 4580 { 4581 struct btrfs_root *root = dir->root; 4582 struct btrfs_fs_info *fs_info = root->fs_info; 4583 struct inode *inode = d_inode(dentry); 4584 struct btrfs_root *dest = BTRFS_I(inode)->root; 4585 struct btrfs_trans_handle *trans; 4586 struct btrfs_block_rsv block_rsv; 4587 u64 root_flags; 4588 u64 qgroup_reserved = 0; 4589 int ret; 4590 4591 down_write(&fs_info->subvol_sem); 4592 4593 /* 4594 * Don't allow to delete a subvolume with send in progress. This is 4595 * inside the inode lock so the error handling that has to drop the bit 4596 * again is not run concurrently. 4597 */ 4598 spin_lock(&dest->root_item_lock); 4599 if (dest->send_in_progress) { 4600 spin_unlock(&dest->root_item_lock); 4601 btrfs_warn(fs_info, 4602 "attempt to delete subvolume %llu during send", 4603 btrfs_root_id(dest)); 4604 ret = -EPERM; 4605 goto out_up_write; 4606 } 4607 if (atomic_read(&dest->nr_swapfiles)) { 4608 spin_unlock(&dest->root_item_lock); 4609 btrfs_warn(fs_info, 4610 "attempt to delete subvolume %llu with active swapfile", 4611 btrfs_root_id(root)); 4612 ret = -EPERM; 4613 goto out_up_write; 4614 } 4615 root_flags = btrfs_root_flags(&dest->root_item); 4616 btrfs_set_root_flags(&dest->root_item, 4617 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 4618 spin_unlock(&dest->root_item_lock); 4619 4620 ret = may_destroy_subvol(dest); 4621 if (ret) 4622 goto out_undead; 4623 4624 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 4625 /* 4626 * One for dir inode, 4627 * two for dir entries, 4628 * two for root ref/backref. 4629 */ 4630 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); 4631 if (ret) 4632 goto out_undead; 4633 qgroup_reserved = block_rsv.qgroup_rsv_reserved; 4634 4635 trans = btrfs_start_transaction(root, 0); 4636 if (IS_ERR(trans)) { 4637 ret = PTR_ERR(trans); 4638 goto out_release; 4639 } 4640 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 4641 qgroup_reserved = 0; 4642 trans->block_rsv = &block_rsv; 4643 trans->bytes_reserved = block_rsv.size; 4644 4645 btrfs_record_snapshot_destroy(trans, dir); 4646 4647 ret = btrfs_unlink_subvol(trans, dir, dentry); 4648 if (ret) { 4649 btrfs_abort_transaction(trans, ret); 4650 goto out_end_trans; 4651 } 4652 4653 ret = btrfs_record_root_in_trans(trans, dest); 4654 if (ret) { 4655 btrfs_abort_transaction(trans, ret); 4656 goto out_end_trans; 4657 } 4658 4659 memset(&dest->root_item.drop_progress, 0, 4660 sizeof(dest->root_item.drop_progress)); 4661 btrfs_set_root_drop_level(&dest->root_item, 0); 4662 btrfs_set_root_refs(&dest->root_item, 0); 4663 4664 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 4665 ret = btrfs_insert_orphan_item(trans, 4666 fs_info->tree_root, 4667 btrfs_root_id(dest)); 4668 if (ret) { 4669 btrfs_abort_transaction(trans, ret); 4670 goto out_end_trans; 4671 } 4672 } 4673 4674 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, 4675 BTRFS_UUID_KEY_SUBVOL, btrfs_root_id(dest)); 4676 if (ret && ret != -ENOENT) { 4677 btrfs_abort_transaction(trans, ret); 4678 goto out_end_trans; 4679 } 4680 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 4681 ret = btrfs_uuid_tree_remove(trans, 4682 dest->root_item.received_uuid, 4683 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4684 btrfs_root_id(dest)); 4685 if (ret && ret != -ENOENT) { 4686 btrfs_abort_transaction(trans, ret); 4687 goto out_end_trans; 4688 } 4689 } 4690 4691 free_anon_bdev(dest->anon_dev); 4692 dest->anon_dev = 0; 4693 out_end_trans: 4694 trans->block_rsv = NULL; 4695 trans->bytes_reserved = 0; 4696 ret = btrfs_end_transaction(trans); 4697 inode->i_flags |= S_DEAD; 4698 out_release: 4699 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL); 4700 if (qgroup_reserved) 4701 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 4702 out_undead: 4703 if (ret) { 4704 spin_lock(&dest->root_item_lock); 4705 root_flags = btrfs_root_flags(&dest->root_item); 4706 btrfs_set_root_flags(&dest->root_item, 4707 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 4708 spin_unlock(&dest->root_item_lock); 4709 } 4710 out_up_write: 4711 up_write(&fs_info->subvol_sem); 4712 if (!ret) { 4713 d_invalidate(dentry); 4714 btrfs_prune_dentries(dest); 4715 ASSERT(dest->send_in_progress == 0); 4716 } 4717 4718 return ret; 4719 } 4720 4721 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 4722 { 4723 struct inode *inode = d_inode(dentry); 4724 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 4725 int ret = 0; 4726 struct btrfs_trans_handle *trans; 4727 u64 last_unlink_trans; 4728 struct fscrypt_name fname; 4729 4730 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) 4731 return -ENOTEMPTY; 4732 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) { 4733 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) { 4734 btrfs_err(fs_info, 4735 "extent tree v2 doesn't support snapshot deletion yet"); 4736 return -EOPNOTSUPP; 4737 } 4738 return btrfs_delete_subvolume(BTRFS_I(dir), dentry); 4739 } 4740 4741 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname); 4742 if (ret) 4743 return ret; 4744 4745 /* This needs to handle no-key deletions later on */ 4746 4747 trans = __unlink_start_trans(BTRFS_I(dir)); 4748 if (IS_ERR(trans)) { 4749 ret = PTR_ERR(trans); 4750 goto out_notrans; 4751 } 4752 4753 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 4754 ret = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry); 4755 goto out; 4756 } 4757 4758 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 4759 if (ret) 4760 goto out; 4761 4762 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; 4763 4764 /* now the directory is empty */ 4765 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), 4766 &fname.disk_name); 4767 if (!ret) { 4768 btrfs_i_size_write(BTRFS_I(inode), 0); 4769 /* 4770 * Propagate the last_unlink_trans value of the deleted dir to 4771 * its parent directory. This is to prevent an unrecoverable 4772 * log tree in the case we do something like this: 4773 * 1) create dir foo 4774 * 2) create snapshot under dir foo 4775 * 3) delete the snapshot 4776 * 4) rmdir foo 4777 * 5) mkdir foo 4778 * 6) fsync foo or some file inside foo 4779 */ 4780 if (last_unlink_trans >= trans->transid) 4781 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; 4782 } 4783 out: 4784 btrfs_end_transaction(trans); 4785 out_notrans: 4786 btrfs_btree_balance_dirty(fs_info); 4787 fscrypt_free_filename(&fname); 4788 4789 return ret; 4790 } 4791 4792 /* 4793 * Read, zero a chunk and write a block. 4794 * 4795 * @inode - inode that we're zeroing 4796 * @from - the offset to start zeroing 4797 * @len - the length to zero, 0 to zero the entire range respective to the 4798 * offset 4799 * @front - zero up to the offset instead of from the offset on 4800 * 4801 * This will find the block for the "from" offset and cow the block and zero the 4802 * part we want to zero. This is used with truncate and hole punching. 4803 */ 4804 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 4805 int front) 4806 { 4807 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4808 struct address_space *mapping = inode->vfs_inode.i_mapping; 4809 struct extent_io_tree *io_tree = &inode->io_tree; 4810 struct btrfs_ordered_extent *ordered; 4811 struct extent_state *cached_state = NULL; 4812 struct extent_changeset *data_reserved = NULL; 4813 bool only_release_metadata = false; 4814 u32 blocksize = fs_info->sectorsize; 4815 pgoff_t index = from >> PAGE_SHIFT; 4816 unsigned offset = from & (blocksize - 1); 4817 struct folio *folio; 4818 gfp_t mask = btrfs_alloc_write_mask(mapping); 4819 size_t write_bytes = blocksize; 4820 int ret = 0; 4821 u64 block_start; 4822 u64 block_end; 4823 4824 if (IS_ALIGNED(offset, blocksize) && 4825 (!len || IS_ALIGNED(len, blocksize))) 4826 goto out; 4827 4828 block_start = round_down(from, blocksize); 4829 block_end = block_start + blocksize - 1; 4830 4831 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start, 4832 blocksize, false); 4833 if (ret < 0) { 4834 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) { 4835 /* For nocow case, no need to reserve data space */ 4836 only_release_metadata = true; 4837 } else { 4838 goto out; 4839 } 4840 } 4841 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false); 4842 if (ret < 0) { 4843 if (!only_release_metadata) 4844 btrfs_free_reserved_data_space(inode, data_reserved, 4845 block_start, blocksize); 4846 goto out; 4847 } 4848 again: 4849 folio = __filemap_get_folio(mapping, index, 4850 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask); 4851 if (IS_ERR(folio)) { 4852 btrfs_delalloc_release_space(inode, data_reserved, block_start, 4853 blocksize, true); 4854 btrfs_delalloc_release_extents(inode, blocksize); 4855 ret = -ENOMEM; 4856 goto out; 4857 } 4858 4859 if (!folio_test_uptodate(folio)) { 4860 ret = btrfs_read_folio(NULL, folio); 4861 folio_lock(folio); 4862 if (folio->mapping != mapping) { 4863 folio_unlock(folio); 4864 folio_put(folio); 4865 goto again; 4866 } 4867 if (!folio_test_uptodate(folio)) { 4868 ret = -EIO; 4869 goto out_unlock; 4870 } 4871 } 4872 4873 /* 4874 * We unlock the page after the io is completed and then re-lock it 4875 * above. release_folio() could have come in between that and cleared 4876 * folio private, but left the page in the mapping. Set the page mapped 4877 * here to make sure it's properly set for the subpage stuff. 4878 */ 4879 ret = set_folio_extent_mapped(folio); 4880 if (ret < 0) 4881 goto out_unlock; 4882 4883 folio_wait_writeback(folio); 4884 4885 lock_extent(io_tree, block_start, block_end, &cached_state); 4886 4887 ordered = btrfs_lookup_ordered_extent(inode, block_start); 4888 if (ordered) { 4889 unlock_extent(io_tree, block_start, block_end, &cached_state); 4890 folio_unlock(folio); 4891 folio_put(folio); 4892 btrfs_start_ordered_extent(ordered); 4893 btrfs_put_ordered_extent(ordered); 4894 goto again; 4895 } 4896 4897 clear_extent_bit(&inode->io_tree, block_start, block_end, 4898 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 4899 &cached_state); 4900 4901 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, 4902 &cached_state); 4903 if (ret) { 4904 unlock_extent(io_tree, block_start, block_end, &cached_state); 4905 goto out_unlock; 4906 } 4907 4908 if (offset != blocksize) { 4909 if (!len) 4910 len = blocksize - offset; 4911 if (front) 4912 folio_zero_range(folio, block_start - folio_pos(folio), 4913 offset); 4914 else 4915 folio_zero_range(folio, 4916 (block_start - folio_pos(folio)) + offset, 4917 len); 4918 } 4919 btrfs_folio_clear_checked(fs_info, folio, block_start, 4920 block_end + 1 - block_start); 4921 btrfs_folio_set_dirty(fs_info, folio, block_start, 4922 block_end + 1 - block_start); 4923 unlock_extent(io_tree, block_start, block_end, &cached_state); 4924 4925 if (only_release_metadata) 4926 set_extent_bit(&inode->io_tree, block_start, block_end, 4927 EXTENT_NORESERVE, NULL); 4928 4929 out_unlock: 4930 if (ret) { 4931 if (only_release_metadata) 4932 btrfs_delalloc_release_metadata(inode, blocksize, true); 4933 else 4934 btrfs_delalloc_release_space(inode, data_reserved, 4935 block_start, blocksize, true); 4936 } 4937 btrfs_delalloc_release_extents(inode, blocksize); 4938 folio_unlock(folio); 4939 folio_put(folio); 4940 out: 4941 if (only_release_metadata) 4942 btrfs_check_nocow_unlock(inode); 4943 extent_changeset_free(data_reserved); 4944 return ret; 4945 } 4946 4947 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len) 4948 { 4949 struct btrfs_root *root = inode->root; 4950 struct btrfs_fs_info *fs_info = root->fs_info; 4951 struct btrfs_trans_handle *trans; 4952 struct btrfs_drop_extents_args drop_args = { 0 }; 4953 int ret; 4954 4955 /* 4956 * If NO_HOLES is enabled, we don't need to do anything. 4957 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans() 4958 * or btrfs_update_inode() will be called, which guarantee that the next 4959 * fsync will know this inode was changed and needs to be logged. 4960 */ 4961 if (btrfs_fs_incompat(fs_info, NO_HOLES)) 4962 return 0; 4963 4964 /* 4965 * 1 - for the one we're dropping 4966 * 1 - for the one we're adding 4967 * 1 - for updating the inode. 4968 */ 4969 trans = btrfs_start_transaction(root, 3); 4970 if (IS_ERR(trans)) 4971 return PTR_ERR(trans); 4972 4973 drop_args.start = offset; 4974 drop_args.end = offset + len; 4975 drop_args.drop_cache = true; 4976 4977 ret = btrfs_drop_extents(trans, root, inode, &drop_args); 4978 if (ret) { 4979 btrfs_abort_transaction(trans, ret); 4980 btrfs_end_transaction(trans); 4981 return ret; 4982 } 4983 4984 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len); 4985 if (ret) { 4986 btrfs_abort_transaction(trans, ret); 4987 } else { 4988 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found); 4989 btrfs_update_inode(trans, inode); 4990 } 4991 btrfs_end_transaction(trans); 4992 return ret; 4993 } 4994 4995 /* 4996 * This function puts in dummy file extents for the area we're creating a hole 4997 * for. So if we are truncating this file to a larger size we need to insert 4998 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 4999 * the range between oldsize and size 5000 */ 5001 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size) 5002 { 5003 struct btrfs_root *root = inode->root; 5004 struct btrfs_fs_info *fs_info = root->fs_info; 5005 struct extent_io_tree *io_tree = &inode->io_tree; 5006 struct extent_map *em = NULL; 5007 struct extent_state *cached_state = NULL; 5008 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); 5009 u64 block_end = ALIGN(size, fs_info->sectorsize); 5010 u64 last_byte; 5011 u64 cur_offset; 5012 u64 hole_size; 5013 int ret = 0; 5014 5015 /* 5016 * If our size started in the middle of a block we need to zero out the 5017 * rest of the block before we expand the i_size, otherwise we could 5018 * expose stale data. 5019 */ 5020 ret = btrfs_truncate_block(inode, oldsize, 0, 0); 5021 if (ret) 5022 return ret; 5023 5024 if (size <= hole_start) 5025 return 0; 5026 5027 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1, 5028 &cached_state); 5029 cur_offset = hole_start; 5030 while (1) { 5031 em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset); 5032 if (IS_ERR(em)) { 5033 ret = PTR_ERR(em); 5034 em = NULL; 5035 break; 5036 } 5037 last_byte = min(extent_map_end(em), block_end); 5038 last_byte = ALIGN(last_byte, fs_info->sectorsize); 5039 hole_size = last_byte - cur_offset; 5040 5041 if (!(em->flags & EXTENT_FLAG_PREALLOC)) { 5042 struct extent_map *hole_em; 5043 5044 ret = maybe_insert_hole(inode, cur_offset, hole_size); 5045 if (ret) 5046 break; 5047 5048 ret = btrfs_inode_set_file_extent_range(inode, 5049 cur_offset, hole_size); 5050 if (ret) 5051 break; 5052 5053 hole_em = alloc_extent_map(); 5054 if (!hole_em) { 5055 btrfs_drop_extent_map_range(inode, cur_offset, 5056 cur_offset + hole_size - 1, 5057 false); 5058 btrfs_set_inode_full_sync(inode); 5059 goto next; 5060 } 5061 hole_em->start = cur_offset; 5062 hole_em->len = hole_size; 5063 5064 hole_em->disk_bytenr = EXTENT_MAP_HOLE; 5065 hole_em->disk_num_bytes = 0; 5066 hole_em->ram_bytes = hole_size; 5067 hole_em->generation = btrfs_get_fs_generation(fs_info); 5068 5069 ret = btrfs_replace_extent_map_range(inode, hole_em, true); 5070 free_extent_map(hole_em); 5071 } else { 5072 ret = btrfs_inode_set_file_extent_range(inode, 5073 cur_offset, hole_size); 5074 if (ret) 5075 break; 5076 } 5077 next: 5078 free_extent_map(em); 5079 em = NULL; 5080 cur_offset = last_byte; 5081 if (cur_offset >= block_end) 5082 break; 5083 } 5084 free_extent_map(em); 5085 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state); 5086 return ret; 5087 } 5088 5089 static int btrfs_setsize(struct inode *inode, struct iattr *attr) 5090 { 5091 struct btrfs_root *root = BTRFS_I(inode)->root; 5092 struct btrfs_trans_handle *trans; 5093 loff_t oldsize = i_size_read(inode); 5094 loff_t newsize = attr->ia_size; 5095 int mask = attr->ia_valid; 5096 int ret; 5097 5098 /* 5099 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a 5100 * special case where we need to update the times despite not having 5101 * these flags set. For all other operations the VFS set these flags 5102 * explicitly if it wants a timestamp update. 5103 */ 5104 if (newsize != oldsize) { 5105 inode_inc_iversion(inode); 5106 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) { 5107 inode_set_mtime_to_ts(inode, 5108 inode_set_ctime_current(inode)); 5109 } 5110 } 5111 5112 if (newsize > oldsize) { 5113 /* 5114 * Don't do an expanding truncate while snapshotting is ongoing. 5115 * This is to ensure the snapshot captures a fully consistent 5116 * state of this file - if the snapshot captures this expanding 5117 * truncation, it must capture all writes that happened before 5118 * this truncation. 5119 */ 5120 btrfs_drew_write_lock(&root->snapshot_lock); 5121 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize); 5122 if (ret) { 5123 btrfs_drew_write_unlock(&root->snapshot_lock); 5124 return ret; 5125 } 5126 5127 trans = btrfs_start_transaction(root, 1); 5128 if (IS_ERR(trans)) { 5129 btrfs_drew_write_unlock(&root->snapshot_lock); 5130 return PTR_ERR(trans); 5131 } 5132 5133 i_size_write(inode, newsize); 5134 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 5135 pagecache_isize_extended(inode, oldsize, newsize); 5136 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 5137 btrfs_drew_write_unlock(&root->snapshot_lock); 5138 btrfs_end_transaction(trans); 5139 } else { 5140 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 5141 5142 if (btrfs_is_zoned(fs_info)) { 5143 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 5144 ALIGN(newsize, fs_info->sectorsize), 5145 (u64)-1); 5146 if (ret) 5147 return ret; 5148 } 5149 5150 /* 5151 * We're truncating a file that used to have good data down to 5152 * zero. Make sure any new writes to the file get on disk 5153 * on close. 5154 */ 5155 if (newsize == 0) 5156 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE, 5157 &BTRFS_I(inode)->runtime_flags); 5158 5159 truncate_setsize(inode, newsize); 5160 5161 inode_dio_wait(inode); 5162 5163 ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize); 5164 if (ret && inode->i_nlink) { 5165 int err; 5166 5167 /* 5168 * Truncate failed, so fix up the in-memory size. We 5169 * adjusted disk_i_size down as we removed extents, so 5170 * wait for disk_i_size to be stable and then update the 5171 * in-memory size to match. 5172 */ 5173 err = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 5174 if (err) 5175 return err; 5176 i_size_write(inode, BTRFS_I(inode)->disk_i_size); 5177 } 5178 } 5179 5180 return ret; 5181 } 5182 5183 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 5184 struct iattr *attr) 5185 { 5186 struct inode *inode = d_inode(dentry); 5187 struct btrfs_root *root = BTRFS_I(inode)->root; 5188 int err; 5189 5190 if (btrfs_root_readonly(root)) 5191 return -EROFS; 5192 5193 err = setattr_prepare(idmap, dentry, attr); 5194 if (err) 5195 return err; 5196 5197 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 5198 err = btrfs_setsize(inode, attr); 5199 if (err) 5200 return err; 5201 } 5202 5203 if (attr->ia_valid) { 5204 setattr_copy(idmap, inode, attr); 5205 inode_inc_iversion(inode); 5206 err = btrfs_dirty_inode(BTRFS_I(inode)); 5207 5208 if (!err && attr->ia_valid & ATTR_MODE) 5209 err = posix_acl_chmod(idmap, dentry, inode->i_mode); 5210 } 5211 5212 return err; 5213 } 5214 5215 /* 5216 * While truncating the inode pages during eviction, we get the VFS 5217 * calling btrfs_invalidate_folio() against each folio of the inode. This 5218 * is slow because the calls to btrfs_invalidate_folio() result in a 5219 * huge amount of calls to lock_extent() and clear_extent_bit(), 5220 * which keep merging and splitting extent_state structures over and over, 5221 * wasting lots of time. 5222 * 5223 * Therefore if the inode is being evicted, let btrfs_invalidate_folio() 5224 * skip all those expensive operations on a per folio basis and do only 5225 * the ordered io finishing, while we release here the extent_map and 5226 * extent_state structures, without the excessive merging and splitting. 5227 */ 5228 static void evict_inode_truncate_pages(struct inode *inode) 5229 { 5230 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 5231 struct rb_node *node; 5232 5233 ASSERT(inode->i_state & I_FREEING); 5234 truncate_inode_pages_final(&inode->i_data); 5235 5236 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 5237 5238 /* 5239 * Keep looping until we have no more ranges in the io tree. 5240 * We can have ongoing bios started by readahead that have 5241 * their endio callback (extent_io.c:end_bio_extent_readpage) 5242 * still in progress (unlocked the pages in the bio but did not yet 5243 * unlocked the ranges in the io tree). Therefore this means some 5244 * ranges can still be locked and eviction started because before 5245 * submitting those bios, which are executed by a separate task (work 5246 * queue kthread), inode references (inode->i_count) were not taken 5247 * (which would be dropped in the end io callback of each bio). 5248 * Therefore here we effectively end up waiting for those bios and 5249 * anyone else holding locked ranges without having bumped the inode's 5250 * reference count - if we don't do it, when they access the inode's 5251 * io_tree to unlock a range it may be too late, leading to an 5252 * use-after-free issue. 5253 */ 5254 spin_lock(&io_tree->lock); 5255 while (!RB_EMPTY_ROOT(&io_tree->state)) { 5256 struct extent_state *state; 5257 struct extent_state *cached_state = NULL; 5258 u64 start; 5259 u64 end; 5260 unsigned state_flags; 5261 5262 node = rb_first(&io_tree->state); 5263 state = rb_entry(node, struct extent_state, rb_node); 5264 start = state->start; 5265 end = state->end; 5266 state_flags = state->state; 5267 spin_unlock(&io_tree->lock); 5268 5269 lock_extent(io_tree, start, end, &cached_state); 5270 5271 /* 5272 * If still has DELALLOC flag, the extent didn't reach disk, 5273 * and its reserved space won't be freed by delayed_ref. 5274 * So we need to free its reserved space here. 5275 * (Refer to comment in btrfs_invalidate_folio, case 2) 5276 * 5277 * Note, end is the bytenr of last byte, so we need + 1 here. 5278 */ 5279 if (state_flags & EXTENT_DELALLOC) 5280 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start, 5281 end - start + 1, NULL); 5282 5283 clear_extent_bit(io_tree, start, end, 5284 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING, 5285 &cached_state); 5286 5287 cond_resched(); 5288 spin_lock(&io_tree->lock); 5289 } 5290 spin_unlock(&io_tree->lock); 5291 } 5292 5293 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, 5294 struct btrfs_block_rsv *rsv) 5295 { 5296 struct btrfs_fs_info *fs_info = root->fs_info; 5297 struct btrfs_trans_handle *trans; 5298 u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1); 5299 int ret; 5300 5301 /* 5302 * Eviction should be taking place at some place safe because of our 5303 * delayed iputs. However the normal flushing code will run delayed 5304 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock. 5305 * 5306 * We reserve the delayed_refs_extra here again because we can't use 5307 * btrfs_start_transaction(root, 0) for the same deadlocky reason as 5308 * above. We reserve our extra bit here because we generate a ton of 5309 * delayed refs activity by truncating. 5310 * 5311 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can, 5312 * if we fail to make this reservation we can re-try without the 5313 * delayed_refs_extra so we can make some forward progress. 5314 */ 5315 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra, 5316 BTRFS_RESERVE_FLUSH_EVICT); 5317 if (ret) { 5318 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size, 5319 BTRFS_RESERVE_FLUSH_EVICT); 5320 if (ret) { 5321 btrfs_warn(fs_info, 5322 "could not allocate space for delete; will truncate on mount"); 5323 return ERR_PTR(-ENOSPC); 5324 } 5325 delayed_refs_extra = 0; 5326 } 5327 5328 trans = btrfs_join_transaction(root); 5329 if (IS_ERR(trans)) 5330 return trans; 5331 5332 if (delayed_refs_extra) { 5333 trans->block_rsv = &fs_info->trans_block_rsv; 5334 trans->bytes_reserved = delayed_refs_extra; 5335 btrfs_block_rsv_migrate(rsv, trans->block_rsv, 5336 delayed_refs_extra, true); 5337 } 5338 return trans; 5339 } 5340 5341 void btrfs_evict_inode(struct inode *inode) 5342 { 5343 struct btrfs_fs_info *fs_info; 5344 struct btrfs_trans_handle *trans; 5345 struct btrfs_root *root = BTRFS_I(inode)->root; 5346 struct btrfs_block_rsv *rsv = NULL; 5347 int ret; 5348 5349 trace_btrfs_inode_evict(inode); 5350 5351 if (!root) { 5352 fsverity_cleanup_inode(inode); 5353 clear_inode(inode); 5354 return; 5355 } 5356 5357 fs_info = inode_to_fs_info(inode); 5358 evict_inode_truncate_pages(inode); 5359 5360 if (inode->i_nlink && 5361 ((btrfs_root_refs(&root->root_item) != 0 && 5362 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID) || 5363 btrfs_is_free_space_inode(BTRFS_I(inode)))) 5364 goto out; 5365 5366 if (is_bad_inode(inode)) 5367 goto out; 5368 5369 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 5370 goto out; 5371 5372 if (inode->i_nlink > 0) { 5373 BUG_ON(btrfs_root_refs(&root->root_item) != 0 && 5374 btrfs_root_id(root) != BTRFS_ROOT_TREE_OBJECTID); 5375 goto out; 5376 } 5377 5378 /* 5379 * This makes sure the inode item in tree is uptodate and the space for 5380 * the inode update is released. 5381 */ 5382 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); 5383 if (ret) 5384 goto out; 5385 5386 /* 5387 * This drops any pending insert or delete operations we have for this 5388 * inode. We could have a delayed dir index deletion queued up, but 5389 * we're removing the inode completely so that'll be taken care of in 5390 * the truncate. 5391 */ 5392 btrfs_kill_delayed_inode_items(BTRFS_I(inode)); 5393 5394 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 5395 if (!rsv) 5396 goto out; 5397 rsv->size = btrfs_calc_metadata_size(fs_info, 1); 5398 rsv->failfast = true; 5399 5400 btrfs_i_size_write(BTRFS_I(inode), 0); 5401 5402 while (1) { 5403 struct btrfs_truncate_control control = { 5404 .inode = BTRFS_I(inode), 5405 .ino = btrfs_ino(BTRFS_I(inode)), 5406 .new_size = 0, 5407 .min_type = 0, 5408 }; 5409 5410 trans = evict_refill_and_join(root, rsv); 5411 if (IS_ERR(trans)) 5412 goto out; 5413 5414 trans->block_rsv = rsv; 5415 5416 ret = btrfs_truncate_inode_items(trans, root, &control); 5417 trans->block_rsv = &fs_info->trans_block_rsv; 5418 btrfs_end_transaction(trans); 5419 /* 5420 * We have not added new delayed items for our inode after we 5421 * have flushed its delayed items, so no need to throttle on 5422 * delayed items. However we have modified extent buffers. 5423 */ 5424 btrfs_btree_balance_dirty_nodelay(fs_info); 5425 if (ret && ret != -ENOSPC && ret != -EAGAIN) 5426 goto out; 5427 else if (!ret) 5428 break; 5429 } 5430 5431 /* 5432 * Errors here aren't a big deal, it just means we leave orphan items in 5433 * the tree. They will be cleaned up on the next mount. If the inode 5434 * number gets reused, cleanup deletes the orphan item without doing 5435 * anything, and unlink reuses the existing orphan item. 5436 * 5437 * If it turns out that we are dropping too many of these, we might want 5438 * to add a mechanism for retrying these after a commit. 5439 */ 5440 trans = evict_refill_and_join(root, rsv); 5441 if (!IS_ERR(trans)) { 5442 trans->block_rsv = rsv; 5443 btrfs_orphan_del(trans, BTRFS_I(inode)); 5444 trans->block_rsv = &fs_info->trans_block_rsv; 5445 btrfs_end_transaction(trans); 5446 } 5447 5448 out: 5449 btrfs_free_block_rsv(fs_info, rsv); 5450 /* 5451 * If we didn't successfully delete, the orphan item will still be in 5452 * the tree and we'll retry on the next mount. Again, we might also want 5453 * to retry these periodically in the future. 5454 */ 5455 btrfs_remove_delayed_node(BTRFS_I(inode)); 5456 fsverity_cleanup_inode(inode); 5457 clear_inode(inode); 5458 } 5459 5460 /* 5461 * Return the key found in the dir entry in the location pointer, fill @type 5462 * with BTRFS_FT_*, and return 0. 5463 * 5464 * If no dir entries were found, returns -ENOENT. 5465 * If found a corrupted location in dir entry, returns -EUCLEAN. 5466 */ 5467 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry, 5468 struct btrfs_key *location, u8 *type) 5469 { 5470 struct btrfs_dir_item *di; 5471 struct btrfs_path *path; 5472 struct btrfs_root *root = dir->root; 5473 int ret = 0; 5474 struct fscrypt_name fname; 5475 5476 path = btrfs_alloc_path(); 5477 if (!path) 5478 return -ENOMEM; 5479 5480 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname); 5481 if (ret < 0) 5482 goto out; 5483 /* 5484 * fscrypt_setup_filename() should never return a positive value, but 5485 * gcc on sparc/parisc thinks it can, so assert that doesn't happen. 5486 */ 5487 ASSERT(ret == 0); 5488 5489 /* This needs to handle no-key deletions later on */ 5490 5491 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), 5492 &fname.disk_name, 0); 5493 if (IS_ERR_OR_NULL(di)) { 5494 ret = di ? PTR_ERR(di) : -ENOENT; 5495 goto out; 5496 } 5497 5498 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 5499 if (location->type != BTRFS_INODE_ITEM_KEY && 5500 location->type != BTRFS_ROOT_ITEM_KEY) { 5501 ret = -EUCLEAN; 5502 btrfs_warn(root->fs_info, 5503 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", 5504 __func__, fname.disk_name.name, btrfs_ino(dir), 5505 location->objectid, location->type, location->offset); 5506 } 5507 if (!ret) 5508 *type = btrfs_dir_ftype(path->nodes[0], di); 5509 out: 5510 fscrypt_free_filename(&fname); 5511 btrfs_free_path(path); 5512 return ret; 5513 } 5514 5515 /* 5516 * when we hit a tree root in a directory, the btrfs part of the inode 5517 * needs to be changed to reflect the root directory of the tree root. This 5518 * is kind of like crossing a mount point. 5519 */ 5520 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, 5521 struct btrfs_inode *dir, 5522 struct dentry *dentry, 5523 struct btrfs_key *location, 5524 struct btrfs_root **sub_root) 5525 { 5526 struct btrfs_path *path; 5527 struct btrfs_root *new_root; 5528 struct btrfs_root_ref *ref; 5529 struct extent_buffer *leaf; 5530 struct btrfs_key key; 5531 int ret; 5532 int err = 0; 5533 struct fscrypt_name fname; 5534 5535 ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname); 5536 if (ret) 5537 return ret; 5538 5539 path = btrfs_alloc_path(); 5540 if (!path) { 5541 err = -ENOMEM; 5542 goto out; 5543 } 5544 5545 err = -ENOENT; 5546 key.objectid = btrfs_root_id(dir->root); 5547 key.type = BTRFS_ROOT_REF_KEY; 5548 key.offset = location->objectid; 5549 5550 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 5551 if (ret) { 5552 if (ret < 0) 5553 err = ret; 5554 goto out; 5555 } 5556 5557 leaf = path->nodes[0]; 5558 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 5559 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 5560 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len) 5561 goto out; 5562 5563 ret = memcmp_extent_buffer(leaf, fname.disk_name.name, 5564 (unsigned long)(ref + 1), fname.disk_name.len); 5565 if (ret) 5566 goto out; 5567 5568 btrfs_release_path(path); 5569 5570 new_root = btrfs_get_fs_root(fs_info, location->objectid, true); 5571 if (IS_ERR(new_root)) { 5572 err = PTR_ERR(new_root); 5573 goto out; 5574 } 5575 5576 *sub_root = new_root; 5577 location->objectid = btrfs_root_dirid(&new_root->root_item); 5578 location->type = BTRFS_INODE_ITEM_KEY; 5579 location->offset = 0; 5580 err = 0; 5581 out: 5582 btrfs_free_path(path); 5583 fscrypt_free_filename(&fname); 5584 return err; 5585 } 5586 5587 5588 5589 static void btrfs_del_inode_from_root(struct btrfs_inode *inode) 5590 { 5591 struct btrfs_root *root = inode->root; 5592 struct btrfs_inode *entry; 5593 bool empty = false; 5594 5595 xa_lock(&root->inodes); 5596 entry = __xa_erase(&root->inodes, btrfs_ino(inode)); 5597 if (entry == inode) 5598 empty = xa_empty(&root->inodes); 5599 xa_unlock(&root->inodes); 5600 5601 if (empty && btrfs_root_refs(&root->root_item) == 0) { 5602 xa_lock(&root->inodes); 5603 empty = xa_empty(&root->inodes); 5604 xa_unlock(&root->inodes); 5605 if (empty) 5606 btrfs_add_dead_root(root); 5607 } 5608 } 5609 5610 5611 static int btrfs_init_locked_inode(struct inode *inode, void *p) 5612 { 5613 struct btrfs_iget_args *args = p; 5614 5615 btrfs_set_inode_number(BTRFS_I(inode), args->ino); 5616 BTRFS_I(inode)->root = btrfs_grab_root(args->root); 5617 5618 if (args->root && args->root == args->root->fs_info->tree_root && 5619 args->ino != BTRFS_BTREE_INODE_OBJECTID) 5620 set_bit(BTRFS_INODE_FREE_SPACE_INODE, 5621 &BTRFS_I(inode)->runtime_flags); 5622 return 0; 5623 } 5624 5625 static int btrfs_find_actor(struct inode *inode, void *opaque) 5626 { 5627 struct btrfs_iget_args *args = opaque; 5628 5629 return args->ino == btrfs_ino(BTRFS_I(inode)) && 5630 args->root == BTRFS_I(inode)->root; 5631 } 5632 5633 static struct btrfs_inode *btrfs_iget_locked(u64 ino, struct btrfs_root *root) 5634 { 5635 struct inode *inode; 5636 struct btrfs_iget_args args; 5637 unsigned long hashval = btrfs_inode_hash(ino, root); 5638 5639 args.ino = ino; 5640 args.root = root; 5641 5642 inode = iget5_locked_rcu(root->fs_info->sb, hashval, btrfs_find_actor, 5643 btrfs_init_locked_inode, 5644 (void *)&args); 5645 if (!inode) 5646 return NULL; 5647 return BTRFS_I(inode); 5648 } 5649 5650 /* 5651 * Get an inode object given its inode number and corresponding root. Path is 5652 * preallocated to prevent recursing back to iget through allocator. 5653 */ 5654 struct btrfs_inode *btrfs_iget_path(u64 ino, struct btrfs_root *root, 5655 struct btrfs_path *path) 5656 { 5657 struct btrfs_inode *inode; 5658 int ret; 5659 5660 inode = btrfs_iget_locked(ino, root); 5661 if (!inode) 5662 return ERR_PTR(-ENOMEM); 5663 5664 if (!(inode->vfs_inode.i_state & I_NEW)) 5665 return inode; 5666 5667 ret = btrfs_read_locked_inode(inode, path); 5668 if (ret) 5669 return ERR_PTR(ret); 5670 5671 unlock_new_inode(&inode->vfs_inode); 5672 return inode; 5673 } 5674 5675 /* 5676 * Get an inode object given its inode number and corresponding root. 5677 */ 5678 struct btrfs_inode *btrfs_iget(u64 ino, struct btrfs_root *root) 5679 { 5680 struct btrfs_inode *inode; 5681 struct btrfs_path *path; 5682 int ret; 5683 5684 inode = btrfs_iget_locked(ino, root); 5685 if (!inode) 5686 return ERR_PTR(-ENOMEM); 5687 5688 if (!(inode->vfs_inode.i_state & I_NEW)) 5689 return inode; 5690 5691 path = btrfs_alloc_path(); 5692 if (!path) { 5693 iget_failed(&inode->vfs_inode); 5694 return ERR_PTR(-ENOMEM); 5695 } 5696 5697 ret = btrfs_read_locked_inode(inode, path); 5698 btrfs_free_path(path); 5699 if (ret) 5700 return ERR_PTR(ret); 5701 5702 unlock_new_inode(&inode->vfs_inode); 5703 return inode; 5704 } 5705 5706 static struct btrfs_inode *new_simple_dir(struct inode *dir, 5707 struct btrfs_key *key, 5708 struct btrfs_root *root) 5709 { 5710 struct timespec64 ts; 5711 struct inode *vfs_inode; 5712 struct btrfs_inode *inode; 5713 5714 vfs_inode = new_inode(dir->i_sb); 5715 if (!vfs_inode) 5716 return ERR_PTR(-ENOMEM); 5717 5718 inode = BTRFS_I(vfs_inode); 5719 inode->root = btrfs_grab_root(root); 5720 inode->ref_root_id = key->objectid; 5721 set_bit(BTRFS_INODE_ROOT_STUB, &inode->runtime_flags); 5722 set_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags); 5723 5724 btrfs_set_inode_number(inode, BTRFS_EMPTY_SUBVOL_DIR_OBJECTID); 5725 /* 5726 * We only need lookup, the rest is read-only and there's no inode 5727 * associated with the dentry 5728 */ 5729 vfs_inode->i_op = &simple_dir_inode_operations; 5730 vfs_inode->i_opflags &= ~IOP_XATTR; 5731 vfs_inode->i_fop = &simple_dir_operations; 5732 vfs_inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 5733 5734 ts = inode_set_ctime_current(vfs_inode); 5735 inode_set_mtime_to_ts(vfs_inode, ts); 5736 inode_set_atime_to_ts(vfs_inode, inode_get_atime(dir)); 5737 inode->i_otime_sec = ts.tv_sec; 5738 inode->i_otime_nsec = ts.tv_nsec; 5739 5740 vfs_inode->i_uid = dir->i_uid; 5741 vfs_inode->i_gid = dir->i_gid; 5742 5743 return inode; 5744 } 5745 5746 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN); 5747 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE); 5748 static_assert(BTRFS_FT_DIR == FT_DIR); 5749 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV); 5750 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV); 5751 static_assert(BTRFS_FT_FIFO == FT_FIFO); 5752 static_assert(BTRFS_FT_SOCK == FT_SOCK); 5753 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK); 5754 5755 static inline u8 btrfs_inode_type(const struct btrfs_inode *inode) 5756 { 5757 return fs_umode_to_ftype(inode->vfs_inode.i_mode); 5758 } 5759 5760 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 5761 { 5762 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 5763 struct btrfs_inode *inode; 5764 struct btrfs_root *root = BTRFS_I(dir)->root; 5765 struct btrfs_root *sub_root = root; 5766 struct btrfs_key location = { 0 }; 5767 u8 di_type = 0; 5768 int ret = 0; 5769 5770 if (dentry->d_name.len > BTRFS_NAME_LEN) 5771 return ERR_PTR(-ENAMETOOLONG); 5772 5773 ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type); 5774 if (ret < 0) 5775 return ERR_PTR(ret); 5776 5777 if (location.type == BTRFS_INODE_ITEM_KEY) { 5778 inode = btrfs_iget(location.objectid, root); 5779 if (IS_ERR(inode)) 5780 return ERR_CAST(inode); 5781 5782 /* Do extra check against inode mode with di_type */ 5783 if (btrfs_inode_type(inode) != di_type) { 5784 btrfs_crit(fs_info, 5785 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u", 5786 inode->vfs_inode.i_mode, btrfs_inode_type(inode), 5787 di_type); 5788 iput(&inode->vfs_inode); 5789 return ERR_PTR(-EUCLEAN); 5790 } 5791 return &inode->vfs_inode; 5792 } 5793 5794 ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry, 5795 &location, &sub_root); 5796 if (ret < 0) { 5797 if (ret != -ENOENT) 5798 inode = ERR_PTR(ret); 5799 else 5800 inode = new_simple_dir(dir, &location, root); 5801 } else { 5802 inode = btrfs_iget(location.objectid, sub_root); 5803 btrfs_put_root(sub_root); 5804 5805 if (IS_ERR(inode)) 5806 return ERR_CAST(inode); 5807 5808 down_read(&fs_info->cleanup_work_sem); 5809 if (!sb_rdonly(inode->vfs_inode.i_sb)) 5810 ret = btrfs_orphan_cleanup(sub_root); 5811 up_read(&fs_info->cleanup_work_sem); 5812 if (ret) { 5813 iput(&inode->vfs_inode); 5814 inode = ERR_PTR(ret); 5815 } 5816 } 5817 5818 if (IS_ERR(inode)) 5819 return ERR_CAST(inode); 5820 5821 return &inode->vfs_inode; 5822 } 5823 5824 static int btrfs_dentry_delete(const struct dentry *dentry) 5825 { 5826 struct btrfs_root *root; 5827 struct inode *inode = d_inode(dentry); 5828 5829 if (!inode && !IS_ROOT(dentry)) 5830 inode = d_inode(dentry->d_parent); 5831 5832 if (inode) { 5833 root = BTRFS_I(inode)->root; 5834 if (btrfs_root_refs(&root->root_item) == 0) 5835 return 1; 5836 5837 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 5838 return 1; 5839 } 5840 return 0; 5841 } 5842 5843 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 5844 unsigned int flags) 5845 { 5846 struct inode *inode = btrfs_lookup_dentry(dir, dentry); 5847 5848 if (inode == ERR_PTR(-ENOENT)) 5849 inode = NULL; 5850 return d_splice_alias(inode, dentry); 5851 } 5852 5853 /* 5854 * Find the highest existing sequence number in a directory and then set the 5855 * in-memory index_cnt variable to the first free sequence number. 5856 */ 5857 static int btrfs_set_inode_index_count(struct btrfs_inode *inode) 5858 { 5859 struct btrfs_root *root = inode->root; 5860 struct btrfs_key key, found_key; 5861 struct btrfs_path *path; 5862 struct extent_buffer *leaf; 5863 int ret; 5864 5865 key.objectid = btrfs_ino(inode); 5866 key.type = BTRFS_DIR_INDEX_KEY; 5867 key.offset = (u64)-1; 5868 5869 path = btrfs_alloc_path(); 5870 if (!path) 5871 return -ENOMEM; 5872 5873 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5874 if (ret < 0) 5875 goto out; 5876 /* FIXME: we should be able to handle this */ 5877 if (ret == 0) 5878 goto out; 5879 ret = 0; 5880 5881 if (path->slots[0] == 0) { 5882 inode->index_cnt = BTRFS_DIR_START_INDEX; 5883 goto out; 5884 } 5885 5886 path->slots[0]--; 5887 5888 leaf = path->nodes[0]; 5889 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5890 5891 if (found_key.objectid != btrfs_ino(inode) || 5892 found_key.type != BTRFS_DIR_INDEX_KEY) { 5893 inode->index_cnt = BTRFS_DIR_START_INDEX; 5894 goto out; 5895 } 5896 5897 inode->index_cnt = found_key.offset + 1; 5898 out: 5899 btrfs_free_path(path); 5900 return ret; 5901 } 5902 5903 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index) 5904 { 5905 int ret = 0; 5906 5907 btrfs_inode_lock(dir, 0); 5908 if (dir->index_cnt == (u64)-1) { 5909 ret = btrfs_inode_delayed_dir_index_count(dir); 5910 if (ret) { 5911 ret = btrfs_set_inode_index_count(dir); 5912 if (ret) 5913 goto out; 5914 } 5915 } 5916 5917 /* index_cnt is the index number of next new entry, so decrement it. */ 5918 *index = dir->index_cnt - 1; 5919 out: 5920 btrfs_inode_unlock(dir, 0); 5921 5922 return ret; 5923 } 5924 5925 /* 5926 * All this infrastructure exists because dir_emit can fault, and we are holding 5927 * the tree lock when doing readdir. For now just allocate a buffer and copy 5928 * our information into that, and then dir_emit from the buffer. This is 5929 * similar to what NFS does, only we don't keep the buffer around in pagecache 5930 * because I'm afraid I'll mess that up. Long term we need to make filldir do 5931 * copy_to_user_inatomic so we don't have to worry about page faulting under the 5932 * tree lock. 5933 */ 5934 static int btrfs_opendir(struct inode *inode, struct file *file) 5935 { 5936 struct btrfs_file_private *private; 5937 u64 last_index; 5938 int ret; 5939 5940 ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index); 5941 if (ret) 5942 return ret; 5943 5944 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); 5945 if (!private) 5946 return -ENOMEM; 5947 private->last_index = last_index; 5948 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); 5949 if (!private->filldir_buf) { 5950 kfree(private); 5951 return -ENOMEM; 5952 } 5953 file->private_data = private; 5954 return 0; 5955 } 5956 5957 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence) 5958 { 5959 struct btrfs_file_private *private = file->private_data; 5960 int ret; 5961 5962 ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)), 5963 &private->last_index); 5964 if (ret) 5965 return ret; 5966 5967 return generic_file_llseek(file, offset, whence); 5968 } 5969 5970 struct dir_entry { 5971 u64 ino; 5972 u64 offset; 5973 unsigned type; 5974 int name_len; 5975 }; 5976 5977 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) 5978 { 5979 while (entries--) { 5980 struct dir_entry *entry = addr; 5981 char *name = (char *)(entry + 1); 5982 5983 ctx->pos = get_unaligned(&entry->offset); 5984 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), 5985 get_unaligned(&entry->ino), 5986 get_unaligned(&entry->type))) 5987 return 1; 5988 addr += sizeof(struct dir_entry) + 5989 get_unaligned(&entry->name_len); 5990 ctx->pos++; 5991 } 5992 return 0; 5993 } 5994 5995 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) 5996 { 5997 struct inode *inode = file_inode(file); 5998 struct btrfs_root *root = BTRFS_I(inode)->root; 5999 struct btrfs_file_private *private = file->private_data; 6000 struct btrfs_dir_item *di; 6001 struct btrfs_key key; 6002 struct btrfs_key found_key; 6003 struct btrfs_path *path; 6004 void *addr; 6005 LIST_HEAD(ins_list); 6006 LIST_HEAD(del_list); 6007 int ret; 6008 char *name_ptr; 6009 int name_len; 6010 int entries = 0; 6011 int total_len = 0; 6012 bool put = false; 6013 struct btrfs_key location; 6014 6015 if (!dir_emit_dots(file, ctx)) 6016 return 0; 6017 6018 path = btrfs_alloc_path(); 6019 if (!path) 6020 return -ENOMEM; 6021 6022 addr = private->filldir_buf; 6023 path->reada = READA_FORWARD; 6024 6025 put = btrfs_readdir_get_delayed_items(BTRFS_I(inode), private->last_index, 6026 &ins_list, &del_list); 6027 6028 again: 6029 key.type = BTRFS_DIR_INDEX_KEY; 6030 key.offset = ctx->pos; 6031 key.objectid = btrfs_ino(BTRFS_I(inode)); 6032 6033 btrfs_for_each_slot(root, &key, &found_key, path, ret) { 6034 struct dir_entry *entry; 6035 struct extent_buffer *leaf = path->nodes[0]; 6036 u8 ftype; 6037 6038 if (found_key.objectid != key.objectid) 6039 break; 6040 if (found_key.type != BTRFS_DIR_INDEX_KEY) 6041 break; 6042 if (found_key.offset < ctx->pos) 6043 continue; 6044 if (found_key.offset > private->last_index) 6045 break; 6046 if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) 6047 continue; 6048 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item); 6049 name_len = btrfs_dir_name_len(leaf, di); 6050 if ((total_len + sizeof(struct dir_entry) + name_len) >= 6051 PAGE_SIZE) { 6052 btrfs_release_path(path); 6053 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6054 if (ret) 6055 goto nopos; 6056 addr = private->filldir_buf; 6057 entries = 0; 6058 total_len = 0; 6059 goto again; 6060 } 6061 6062 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di)); 6063 entry = addr; 6064 name_ptr = (char *)(entry + 1); 6065 read_extent_buffer(leaf, name_ptr, 6066 (unsigned long)(di + 1), name_len); 6067 put_unaligned(name_len, &entry->name_len); 6068 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type); 6069 btrfs_dir_item_key_to_cpu(leaf, di, &location); 6070 put_unaligned(location.objectid, &entry->ino); 6071 put_unaligned(found_key.offset, &entry->offset); 6072 entries++; 6073 addr += sizeof(struct dir_entry) + name_len; 6074 total_len += sizeof(struct dir_entry) + name_len; 6075 } 6076 /* Catch error encountered during iteration */ 6077 if (ret < 0) 6078 goto err; 6079 6080 btrfs_release_path(path); 6081 6082 ret = btrfs_filldir(private->filldir_buf, entries, ctx); 6083 if (ret) 6084 goto nopos; 6085 6086 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); 6087 if (ret) 6088 goto nopos; 6089 6090 /* 6091 * Stop new entries from being returned after we return the last 6092 * entry. 6093 * 6094 * New directory entries are assigned a strictly increasing 6095 * offset. This means that new entries created during readdir 6096 * are *guaranteed* to be seen in the future by that readdir. 6097 * This has broken buggy programs which operate on names as 6098 * they're returned by readdir. Until we reuse freed offsets 6099 * we have this hack to stop new entries from being returned 6100 * under the assumption that they'll never reach this huge 6101 * offset. 6102 * 6103 * This is being careful not to overflow 32bit loff_t unless the 6104 * last entry requires it because doing so has broken 32bit apps 6105 * in the past. 6106 */ 6107 if (ctx->pos >= INT_MAX) 6108 ctx->pos = LLONG_MAX; 6109 else 6110 ctx->pos = INT_MAX; 6111 nopos: 6112 ret = 0; 6113 err: 6114 if (put) 6115 btrfs_readdir_put_delayed_items(BTRFS_I(inode), &ins_list, &del_list); 6116 btrfs_free_path(path); 6117 return ret; 6118 } 6119 6120 /* 6121 * This is somewhat expensive, updating the tree every time the 6122 * inode changes. But, it is most likely to find the inode in cache. 6123 * FIXME, needs more benchmarking...there are no reasons other than performance 6124 * to keep or drop this code. 6125 */ 6126 static int btrfs_dirty_inode(struct btrfs_inode *inode) 6127 { 6128 struct btrfs_root *root = inode->root; 6129 struct btrfs_fs_info *fs_info = root->fs_info; 6130 struct btrfs_trans_handle *trans; 6131 int ret; 6132 6133 if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags)) 6134 return 0; 6135 6136 trans = btrfs_join_transaction(root); 6137 if (IS_ERR(trans)) 6138 return PTR_ERR(trans); 6139 6140 ret = btrfs_update_inode(trans, inode); 6141 if (ret == -ENOSPC || ret == -EDQUOT) { 6142 /* whoops, lets try again with the full transaction */ 6143 btrfs_end_transaction(trans); 6144 trans = btrfs_start_transaction(root, 1); 6145 if (IS_ERR(trans)) 6146 return PTR_ERR(trans); 6147 6148 ret = btrfs_update_inode(trans, inode); 6149 } 6150 btrfs_end_transaction(trans); 6151 if (inode->delayed_node) 6152 btrfs_balance_delayed_items(fs_info); 6153 6154 return ret; 6155 } 6156 6157 /* 6158 * This is a copy of file_update_time. We need this so we can return error on 6159 * ENOSPC for updating the inode in the case of file write and mmap writes. 6160 */ 6161 static int btrfs_update_time(struct inode *inode, int flags) 6162 { 6163 struct btrfs_root *root = BTRFS_I(inode)->root; 6164 bool dirty; 6165 6166 if (btrfs_root_readonly(root)) 6167 return -EROFS; 6168 6169 dirty = inode_update_timestamps(inode, flags); 6170 return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0; 6171 } 6172 6173 /* 6174 * helper to find a free sequence number in a given directory. This current 6175 * code is very simple, later versions will do smarter things in the btree 6176 */ 6177 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) 6178 { 6179 int ret = 0; 6180 6181 if (dir->index_cnt == (u64)-1) { 6182 ret = btrfs_inode_delayed_dir_index_count(dir); 6183 if (ret) { 6184 ret = btrfs_set_inode_index_count(dir); 6185 if (ret) 6186 return ret; 6187 } 6188 } 6189 6190 *index = dir->index_cnt; 6191 dir->index_cnt++; 6192 6193 return ret; 6194 } 6195 6196 static int btrfs_insert_inode_locked(struct inode *inode) 6197 { 6198 struct btrfs_iget_args args; 6199 6200 args.ino = btrfs_ino(BTRFS_I(inode)); 6201 args.root = BTRFS_I(inode)->root; 6202 6203 return insert_inode_locked4(inode, 6204 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), 6205 btrfs_find_actor, &args); 6206 } 6207 6208 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 6209 unsigned int *trans_num_items) 6210 { 6211 struct inode *dir = args->dir; 6212 struct inode *inode = args->inode; 6213 int ret; 6214 6215 if (!args->orphan) { 6216 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0, 6217 &args->fname); 6218 if (ret) 6219 return ret; 6220 } 6221 6222 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl); 6223 if (ret) { 6224 fscrypt_free_filename(&args->fname); 6225 return ret; 6226 } 6227 6228 /* 1 to add inode item */ 6229 *trans_num_items = 1; 6230 /* 1 to add compression property */ 6231 if (BTRFS_I(dir)->prop_compress) 6232 (*trans_num_items)++; 6233 /* 1 to add default ACL xattr */ 6234 if (args->default_acl) 6235 (*trans_num_items)++; 6236 /* 1 to add access ACL xattr */ 6237 if (args->acl) 6238 (*trans_num_items)++; 6239 #ifdef CONFIG_SECURITY 6240 /* 1 to add LSM xattr */ 6241 if (dir->i_security) 6242 (*trans_num_items)++; 6243 #endif 6244 if (args->orphan) { 6245 /* 1 to add orphan item */ 6246 (*trans_num_items)++; 6247 } else { 6248 /* 6249 * 1 to add dir item 6250 * 1 to add dir index 6251 * 1 to update parent inode item 6252 * 6253 * No need for 1 unit for the inode ref item because it is 6254 * inserted in a batch together with the inode item at 6255 * btrfs_create_new_inode(). 6256 */ 6257 *trans_num_items += 3; 6258 } 6259 return 0; 6260 } 6261 6262 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args) 6263 { 6264 posix_acl_release(args->acl); 6265 posix_acl_release(args->default_acl); 6266 fscrypt_free_filename(&args->fname); 6267 } 6268 6269 /* 6270 * Inherit flags from the parent inode. 6271 * 6272 * Currently only the compression flags and the cow flags are inherited. 6273 */ 6274 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir) 6275 { 6276 unsigned int flags; 6277 6278 flags = dir->flags; 6279 6280 if (flags & BTRFS_INODE_NOCOMPRESS) { 6281 inode->flags &= ~BTRFS_INODE_COMPRESS; 6282 inode->flags |= BTRFS_INODE_NOCOMPRESS; 6283 } else if (flags & BTRFS_INODE_COMPRESS) { 6284 inode->flags &= ~BTRFS_INODE_NOCOMPRESS; 6285 inode->flags |= BTRFS_INODE_COMPRESS; 6286 } 6287 6288 if (flags & BTRFS_INODE_NODATACOW) { 6289 inode->flags |= BTRFS_INODE_NODATACOW; 6290 if (S_ISREG(inode->vfs_inode.i_mode)) 6291 inode->flags |= BTRFS_INODE_NODATASUM; 6292 } 6293 6294 btrfs_sync_inode_flags_to_i_flags(inode); 6295 } 6296 6297 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 6298 struct btrfs_new_inode_args *args) 6299 { 6300 struct timespec64 ts; 6301 struct inode *dir = args->dir; 6302 struct inode *inode = args->inode; 6303 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name; 6304 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6305 struct btrfs_root *root; 6306 struct btrfs_inode_item *inode_item; 6307 struct btrfs_path *path; 6308 u64 objectid; 6309 struct btrfs_inode_ref *ref; 6310 struct btrfs_key key[2]; 6311 u32 sizes[2]; 6312 struct btrfs_item_batch batch; 6313 unsigned long ptr; 6314 int ret; 6315 bool xa_reserved = false; 6316 6317 path = btrfs_alloc_path(); 6318 if (!path) 6319 return -ENOMEM; 6320 6321 if (!args->subvol) 6322 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root); 6323 root = BTRFS_I(inode)->root; 6324 6325 ret = btrfs_init_file_extent_tree(BTRFS_I(inode)); 6326 if (ret) 6327 goto out; 6328 6329 ret = btrfs_get_free_objectid(root, &objectid); 6330 if (ret) 6331 goto out; 6332 btrfs_set_inode_number(BTRFS_I(inode), objectid); 6333 6334 ret = xa_reserve(&root->inodes, objectid, GFP_NOFS); 6335 if (ret) 6336 goto out; 6337 xa_reserved = true; 6338 6339 if (args->orphan) { 6340 /* 6341 * O_TMPFILE, set link count to 0, so that after this point, we 6342 * fill in an inode item with the correct link count. 6343 */ 6344 set_nlink(inode, 0); 6345 } else { 6346 trace_btrfs_inode_request(dir); 6347 6348 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index); 6349 if (ret) 6350 goto out; 6351 } 6352 6353 if (S_ISDIR(inode->i_mode)) 6354 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX; 6355 6356 BTRFS_I(inode)->generation = trans->transid; 6357 inode->i_generation = BTRFS_I(inode)->generation; 6358 6359 /* 6360 * We don't have any capability xattrs set here yet, shortcut any 6361 * queries for the xattrs here. If we add them later via the inode 6362 * security init path or any other path this flag will be cleared. 6363 */ 6364 set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags); 6365 6366 /* 6367 * Subvolumes don't inherit flags from their parent directory. 6368 * Originally this was probably by accident, but we probably can't 6369 * change it now without compatibility issues. 6370 */ 6371 if (!args->subvol) 6372 btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir)); 6373 6374 if (S_ISREG(inode->i_mode)) { 6375 if (btrfs_test_opt(fs_info, NODATASUM)) 6376 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 6377 if (btrfs_test_opt(fs_info, NODATACOW)) 6378 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | 6379 BTRFS_INODE_NODATASUM; 6380 btrfs_update_inode_mapping_flags(BTRFS_I(inode)); 6381 } 6382 6383 ret = btrfs_insert_inode_locked(inode); 6384 if (ret < 0) { 6385 if (!args->orphan) 6386 BTRFS_I(dir)->index_cnt--; 6387 goto out; 6388 } 6389 6390 /* 6391 * We could have gotten an inode number from somebody who was fsynced 6392 * and then removed in this same transaction, so let's just set full 6393 * sync since it will be a full sync anyway and this will blow away the 6394 * old info in the log. 6395 */ 6396 btrfs_set_inode_full_sync(BTRFS_I(inode)); 6397 6398 key[0].objectid = objectid; 6399 key[0].type = BTRFS_INODE_ITEM_KEY; 6400 key[0].offset = 0; 6401 6402 sizes[0] = sizeof(struct btrfs_inode_item); 6403 6404 if (!args->orphan) { 6405 /* 6406 * Start new inodes with an inode_ref. This is slightly more 6407 * efficient for small numbers of hard links since they will 6408 * be packed into one item. Extended refs will kick in if we 6409 * add more hard links than can fit in the ref item. 6410 */ 6411 key[1].objectid = objectid; 6412 key[1].type = BTRFS_INODE_REF_KEY; 6413 if (args->subvol) { 6414 key[1].offset = objectid; 6415 sizes[1] = 2 + sizeof(*ref); 6416 } else { 6417 key[1].offset = btrfs_ino(BTRFS_I(dir)); 6418 sizes[1] = name->len + sizeof(*ref); 6419 } 6420 } 6421 6422 batch.keys = &key[0]; 6423 batch.data_sizes = &sizes[0]; 6424 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]); 6425 batch.nr = args->orphan ? 1 : 2; 6426 ret = btrfs_insert_empty_items(trans, root, path, &batch); 6427 if (ret != 0) { 6428 btrfs_abort_transaction(trans, ret); 6429 goto discard; 6430 } 6431 6432 ts = simple_inode_init_ts(inode); 6433 BTRFS_I(inode)->i_otime_sec = ts.tv_sec; 6434 BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec; 6435 6436 /* 6437 * We're going to fill the inode item now, so at this point the inode 6438 * must be fully initialized. 6439 */ 6440 6441 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 6442 struct btrfs_inode_item); 6443 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, 6444 sizeof(*inode_item)); 6445 fill_inode_item(trans, path->nodes[0], inode_item, inode); 6446 6447 if (!args->orphan) { 6448 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 6449 struct btrfs_inode_ref); 6450 ptr = (unsigned long)(ref + 1); 6451 if (args->subvol) { 6452 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2); 6453 btrfs_set_inode_ref_index(path->nodes[0], ref, 0); 6454 write_extent_buffer(path->nodes[0], "..", ptr, 2); 6455 } else { 6456 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 6457 name->len); 6458 btrfs_set_inode_ref_index(path->nodes[0], ref, 6459 BTRFS_I(inode)->dir_index); 6460 write_extent_buffer(path->nodes[0], name->name, ptr, 6461 name->len); 6462 } 6463 } 6464 6465 /* 6466 * We don't need the path anymore, plus inheriting properties, adding 6467 * ACLs, security xattrs, orphan item or adding the link, will result in 6468 * allocating yet another path. So just free our path. 6469 */ 6470 btrfs_free_path(path); 6471 path = NULL; 6472 6473 if (args->subvol) { 6474 struct btrfs_inode *parent; 6475 6476 /* 6477 * Subvolumes inherit properties from their parent subvolume, 6478 * not the directory they were created in. 6479 */ 6480 parent = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, BTRFS_I(dir)->root); 6481 if (IS_ERR(parent)) { 6482 ret = PTR_ERR(parent); 6483 } else { 6484 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6485 parent); 6486 iput(&parent->vfs_inode); 6487 } 6488 } else { 6489 ret = btrfs_inode_inherit_props(trans, BTRFS_I(inode), 6490 BTRFS_I(dir)); 6491 } 6492 if (ret) { 6493 btrfs_err(fs_info, 6494 "error inheriting props for ino %llu (root %llu): %d", 6495 btrfs_ino(BTRFS_I(inode)), btrfs_root_id(root), ret); 6496 } 6497 6498 /* 6499 * Subvolumes don't inherit ACLs or get passed to the LSM. This is 6500 * probably a bug. 6501 */ 6502 if (!args->subvol) { 6503 ret = btrfs_init_inode_security(trans, args); 6504 if (ret) { 6505 btrfs_abort_transaction(trans, ret); 6506 goto discard; 6507 } 6508 } 6509 6510 ret = btrfs_add_inode_to_root(BTRFS_I(inode), false); 6511 if (WARN_ON(ret)) { 6512 /* Shouldn't happen, we used xa_reserve() before. */ 6513 btrfs_abort_transaction(trans, ret); 6514 goto discard; 6515 } 6516 6517 trace_btrfs_inode_new(inode); 6518 btrfs_set_inode_last_trans(trans, BTRFS_I(inode)); 6519 6520 btrfs_update_root_times(trans, root); 6521 6522 if (args->orphan) { 6523 ret = btrfs_orphan_add(trans, BTRFS_I(inode)); 6524 } else { 6525 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name, 6526 0, BTRFS_I(inode)->dir_index); 6527 } 6528 if (ret) { 6529 btrfs_abort_transaction(trans, ret); 6530 goto discard; 6531 } 6532 6533 return 0; 6534 6535 discard: 6536 /* 6537 * discard_new_inode() calls iput(), but the caller owns the reference 6538 * to the inode. 6539 */ 6540 ihold(inode); 6541 discard_new_inode(inode); 6542 out: 6543 if (xa_reserved) 6544 xa_release(&root->inodes, objectid); 6545 6546 btrfs_free_path(path); 6547 return ret; 6548 } 6549 6550 /* 6551 * utility function to add 'inode' into 'parent_inode' with 6552 * a give name and a given sequence number. 6553 * if 'add_backref' is true, also insert a backref from the 6554 * inode to the parent directory. 6555 */ 6556 int btrfs_add_link(struct btrfs_trans_handle *trans, 6557 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 6558 const struct fscrypt_str *name, int add_backref, u64 index) 6559 { 6560 int ret = 0; 6561 struct btrfs_key key; 6562 struct btrfs_root *root = parent_inode->root; 6563 u64 ino = btrfs_ino(inode); 6564 u64 parent_ino = btrfs_ino(parent_inode); 6565 6566 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6567 memcpy(&key, &inode->root->root_key, sizeof(key)); 6568 } else { 6569 key.objectid = ino; 6570 key.type = BTRFS_INODE_ITEM_KEY; 6571 key.offset = 0; 6572 } 6573 6574 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6575 ret = btrfs_add_root_ref(trans, key.objectid, 6576 btrfs_root_id(root), parent_ino, 6577 index, name); 6578 } else if (add_backref) { 6579 ret = btrfs_insert_inode_ref(trans, root, name, 6580 ino, parent_ino, index); 6581 } 6582 6583 /* Nothing to clean up yet */ 6584 if (ret) 6585 return ret; 6586 6587 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key, 6588 btrfs_inode_type(inode), index); 6589 if (ret == -EEXIST || ret == -EOVERFLOW) 6590 goto fail_dir_item; 6591 else if (ret) { 6592 btrfs_abort_transaction(trans, ret); 6593 return ret; 6594 } 6595 6596 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + 6597 name->len * 2); 6598 inode_inc_iversion(&parent_inode->vfs_inode); 6599 /* 6600 * If we are replaying a log tree, we do not want to update the mtime 6601 * and ctime of the parent directory with the current time, since the 6602 * log replay procedure is responsible for setting them to their correct 6603 * values (the ones it had when the fsync was done). 6604 */ 6605 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) 6606 inode_set_mtime_to_ts(&parent_inode->vfs_inode, 6607 inode_set_ctime_current(&parent_inode->vfs_inode)); 6608 6609 ret = btrfs_update_inode(trans, parent_inode); 6610 if (ret) 6611 btrfs_abort_transaction(trans, ret); 6612 return ret; 6613 6614 fail_dir_item: 6615 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 6616 u64 local_index; 6617 int err; 6618 err = btrfs_del_root_ref(trans, key.objectid, 6619 btrfs_root_id(root), parent_ino, 6620 &local_index, name); 6621 if (err) 6622 btrfs_abort_transaction(trans, err); 6623 } else if (add_backref) { 6624 u64 local_index; 6625 int err; 6626 6627 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino, 6628 &local_index); 6629 if (err) 6630 btrfs_abort_transaction(trans, err); 6631 } 6632 6633 /* Return the original error code */ 6634 return ret; 6635 } 6636 6637 static int btrfs_create_common(struct inode *dir, struct dentry *dentry, 6638 struct inode *inode) 6639 { 6640 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 6641 struct btrfs_root *root = BTRFS_I(dir)->root; 6642 struct btrfs_new_inode_args new_inode_args = { 6643 .dir = dir, 6644 .dentry = dentry, 6645 .inode = inode, 6646 }; 6647 unsigned int trans_num_items; 6648 struct btrfs_trans_handle *trans; 6649 int err; 6650 6651 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 6652 if (err) 6653 goto out_inode; 6654 6655 trans = btrfs_start_transaction(root, trans_num_items); 6656 if (IS_ERR(trans)) { 6657 err = PTR_ERR(trans); 6658 goto out_new_inode_args; 6659 } 6660 6661 err = btrfs_create_new_inode(trans, &new_inode_args); 6662 if (!err) 6663 d_instantiate_new(dentry, inode); 6664 6665 btrfs_end_transaction(trans); 6666 btrfs_btree_balance_dirty(fs_info); 6667 out_new_inode_args: 6668 btrfs_new_inode_args_destroy(&new_inode_args); 6669 out_inode: 6670 if (err) 6671 iput(inode); 6672 return err; 6673 } 6674 6675 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir, 6676 struct dentry *dentry, umode_t mode, dev_t rdev) 6677 { 6678 struct inode *inode; 6679 6680 inode = new_inode(dir->i_sb); 6681 if (!inode) 6682 return -ENOMEM; 6683 inode_init_owner(idmap, inode, dir, mode); 6684 inode->i_op = &btrfs_special_inode_operations; 6685 init_special_inode(inode, inode->i_mode, rdev); 6686 return btrfs_create_common(dir, dentry, inode); 6687 } 6688 6689 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir, 6690 struct dentry *dentry, umode_t mode, bool excl) 6691 { 6692 struct inode *inode; 6693 6694 inode = new_inode(dir->i_sb); 6695 if (!inode) 6696 return -ENOMEM; 6697 inode_init_owner(idmap, inode, dir, mode); 6698 inode->i_fop = &btrfs_file_operations; 6699 inode->i_op = &btrfs_file_inode_operations; 6700 inode->i_mapping->a_ops = &btrfs_aops; 6701 return btrfs_create_common(dir, dentry, inode); 6702 } 6703 6704 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 6705 struct dentry *dentry) 6706 { 6707 struct btrfs_trans_handle *trans = NULL; 6708 struct btrfs_root *root = BTRFS_I(dir)->root; 6709 struct inode *inode = d_inode(old_dentry); 6710 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 6711 struct fscrypt_name fname; 6712 u64 index; 6713 int err; 6714 int drop_inode = 0; 6715 6716 /* do not allow sys_link's with other subvols of the same device */ 6717 if (btrfs_root_id(root) != btrfs_root_id(BTRFS_I(inode)->root)) 6718 return -EXDEV; 6719 6720 if (inode->i_nlink >= BTRFS_LINK_MAX) 6721 return -EMLINK; 6722 6723 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname); 6724 if (err) 6725 goto fail; 6726 6727 err = btrfs_set_inode_index(BTRFS_I(dir), &index); 6728 if (err) 6729 goto fail; 6730 6731 /* 6732 * 2 items for inode and inode ref 6733 * 2 items for dir items 6734 * 1 item for parent inode 6735 * 1 item for orphan item deletion if O_TMPFILE 6736 */ 6737 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); 6738 if (IS_ERR(trans)) { 6739 err = PTR_ERR(trans); 6740 trans = NULL; 6741 goto fail; 6742 } 6743 6744 /* There are several dir indexes for this inode, clear the cache. */ 6745 BTRFS_I(inode)->dir_index = 0ULL; 6746 inc_nlink(inode); 6747 inode_inc_iversion(inode); 6748 inode_set_ctime_current(inode); 6749 ihold(inode); 6750 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); 6751 6752 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), 6753 &fname.disk_name, 1, index); 6754 6755 if (err) { 6756 drop_inode = 1; 6757 } else { 6758 struct dentry *parent = dentry->d_parent; 6759 6760 err = btrfs_update_inode(trans, BTRFS_I(inode)); 6761 if (err) 6762 goto fail; 6763 if (inode->i_nlink == 1) { 6764 /* 6765 * If new hard link count is 1, it's a file created 6766 * with open(2) O_TMPFILE flag. 6767 */ 6768 err = btrfs_orphan_del(trans, BTRFS_I(inode)); 6769 if (err) 6770 goto fail; 6771 } 6772 d_instantiate(dentry, inode); 6773 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent); 6774 } 6775 6776 fail: 6777 fscrypt_free_filename(&fname); 6778 if (trans) 6779 btrfs_end_transaction(trans); 6780 if (drop_inode) { 6781 inode_dec_link_count(inode); 6782 iput(inode); 6783 } 6784 btrfs_btree_balance_dirty(fs_info); 6785 return err; 6786 } 6787 6788 static struct dentry *btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir, 6789 struct dentry *dentry, umode_t mode) 6790 { 6791 struct inode *inode; 6792 6793 inode = new_inode(dir->i_sb); 6794 if (!inode) 6795 return ERR_PTR(-ENOMEM); 6796 inode_init_owner(idmap, inode, dir, S_IFDIR | mode); 6797 inode->i_op = &btrfs_dir_inode_operations; 6798 inode->i_fop = &btrfs_dir_file_operations; 6799 return ERR_PTR(btrfs_create_common(dir, dentry, inode)); 6800 } 6801 6802 static noinline int uncompress_inline(struct btrfs_path *path, 6803 struct folio *folio, 6804 struct btrfs_file_extent_item *item) 6805 { 6806 int ret; 6807 struct extent_buffer *leaf = path->nodes[0]; 6808 const u32 blocksize = leaf->fs_info->sectorsize; 6809 char *tmp; 6810 size_t max_size; 6811 unsigned long inline_size; 6812 unsigned long ptr; 6813 int compress_type; 6814 6815 compress_type = btrfs_file_extent_compression(leaf, item); 6816 max_size = btrfs_file_extent_ram_bytes(leaf, item); 6817 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]); 6818 tmp = kmalloc(inline_size, GFP_NOFS); 6819 if (!tmp) 6820 return -ENOMEM; 6821 ptr = btrfs_file_extent_inline_start(item); 6822 6823 read_extent_buffer(leaf, tmp, ptr, inline_size); 6824 6825 max_size = min_t(unsigned long, blocksize, max_size); 6826 ret = btrfs_decompress(compress_type, tmp, folio, 0, inline_size, 6827 max_size); 6828 6829 /* 6830 * decompression code contains a memset to fill in any space between the end 6831 * of the uncompressed data and the end of max_size in case the decompressed 6832 * data ends up shorter than ram_bytes. That doesn't cover the hole between 6833 * the end of an inline extent and the beginning of the next block, so we 6834 * cover that region here. 6835 */ 6836 6837 if (max_size < blocksize) 6838 folio_zero_range(folio, max_size, blocksize - max_size); 6839 kfree(tmp); 6840 return ret; 6841 } 6842 6843 static int read_inline_extent(struct btrfs_path *path, struct folio *folio) 6844 { 6845 const u32 blocksize = path->nodes[0]->fs_info->sectorsize; 6846 struct btrfs_file_extent_item *fi; 6847 void *kaddr; 6848 size_t copy_size; 6849 6850 if (!folio || folio_test_uptodate(folio)) 6851 return 0; 6852 6853 ASSERT(folio_pos(folio) == 0); 6854 6855 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 6856 struct btrfs_file_extent_item); 6857 if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE) 6858 return uncompress_inline(path, folio, fi); 6859 6860 copy_size = min_t(u64, blocksize, 6861 btrfs_file_extent_ram_bytes(path->nodes[0], fi)); 6862 kaddr = kmap_local_folio(folio, 0); 6863 read_extent_buffer(path->nodes[0], kaddr, 6864 btrfs_file_extent_inline_start(fi), copy_size); 6865 kunmap_local(kaddr); 6866 if (copy_size < blocksize) 6867 folio_zero_range(folio, copy_size, blocksize - copy_size); 6868 return 0; 6869 } 6870 6871 /* 6872 * Lookup the first extent overlapping a range in a file. 6873 * 6874 * @inode: file to search in 6875 * @page: page to read extent data into if the extent is inline 6876 * @start: file offset 6877 * @len: length of range starting at @start 6878 * 6879 * Return the first &struct extent_map which overlaps the given range, reading 6880 * it from the B-tree and caching it if necessary. Note that there may be more 6881 * extents which overlap the given range after the returned extent_map. 6882 * 6883 * If @page is not NULL and the extent is inline, this also reads the extent 6884 * data directly into the page and marks the extent up to date in the io_tree. 6885 * 6886 * Return: ERR_PTR on error, non-NULL extent_map on success. 6887 */ 6888 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 6889 struct folio *folio, u64 start, u64 len) 6890 { 6891 struct btrfs_fs_info *fs_info = inode->root->fs_info; 6892 int ret = 0; 6893 u64 extent_start = 0; 6894 u64 extent_end = 0; 6895 u64 objectid = btrfs_ino(inode); 6896 int extent_type = -1; 6897 struct btrfs_path *path = NULL; 6898 struct btrfs_root *root = inode->root; 6899 struct btrfs_file_extent_item *item; 6900 struct extent_buffer *leaf; 6901 struct btrfs_key found_key; 6902 struct extent_map *em = NULL; 6903 struct extent_map_tree *em_tree = &inode->extent_tree; 6904 6905 read_lock(&em_tree->lock); 6906 em = lookup_extent_mapping(em_tree, start, len); 6907 read_unlock(&em_tree->lock); 6908 6909 if (em) { 6910 if (em->start > start || em->start + em->len <= start) 6911 free_extent_map(em); 6912 else if (em->disk_bytenr == EXTENT_MAP_INLINE && folio) 6913 free_extent_map(em); 6914 else 6915 goto out; 6916 } 6917 em = alloc_extent_map(); 6918 if (!em) { 6919 ret = -ENOMEM; 6920 goto out; 6921 } 6922 em->start = EXTENT_MAP_HOLE; 6923 em->disk_bytenr = EXTENT_MAP_HOLE; 6924 em->len = (u64)-1; 6925 6926 path = btrfs_alloc_path(); 6927 if (!path) { 6928 ret = -ENOMEM; 6929 goto out; 6930 } 6931 6932 /* Chances are we'll be called again, so go ahead and do readahead */ 6933 path->reada = READA_FORWARD; 6934 6935 /* 6936 * The same explanation in load_free_space_cache applies here as well, 6937 * we only read when we're loading the free space cache, and at that 6938 * point the commit_root has everything we need. 6939 */ 6940 if (btrfs_is_free_space_inode(inode)) { 6941 path->search_commit_root = 1; 6942 path->skip_locking = 1; 6943 } 6944 6945 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); 6946 if (ret < 0) { 6947 goto out; 6948 } else if (ret > 0) { 6949 if (path->slots[0] == 0) 6950 goto not_found; 6951 path->slots[0]--; 6952 ret = 0; 6953 } 6954 6955 leaf = path->nodes[0]; 6956 item = btrfs_item_ptr(leaf, path->slots[0], 6957 struct btrfs_file_extent_item); 6958 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 6959 if (found_key.objectid != objectid || 6960 found_key.type != BTRFS_EXTENT_DATA_KEY) { 6961 /* 6962 * If we backup past the first extent we want to move forward 6963 * and see if there is an extent in front of us, otherwise we'll 6964 * say there is a hole for our whole search range which can 6965 * cause problems. 6966 */ 6967 extent_end = start; 6968 goto next; 6969 } 6970 6971 extent_type = btrfs_file_extent_type(leaf, item); 6972 extent_start = found_key.offset; 6973 extent_end = btrfs_file_extent_end(path); 6974 if (extent_type == BTRFS_FILE_EXTENT_REG || 6975 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 6976 /* Only regular file could have regular/prealloc extent */ 6977 if (!S_ISREG(inode->vfs_inode.i_mode)) { 6978 ret = -EUCLEAN; 6979 btrfs_crit(fs_info, 6980 "regular/prealloc extent found for non-regular inode %llu", 6981 btrfs_ino(inode)); 6982 goto out; 6983 } 6984 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, 6985 extent_start); 6986 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 6987 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, 6988 path->slots[0], 6989 extent_start); 6990 } 6991 next: 6992 if (start >= extent_end) { 6993 path->slots[0]++; 6994 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 6995 ret = btrfs_next_leaf(root, path); 6996 if (ret < 0) 6997 goto out; 6998 else if (ret > 0) 6999 goto not_found; 7000 7001 leaf = path->nodes[0]; 7002 } 7003 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 7004 if (found_key.objectid != objectid || 7005 found_key.type != BTRFS_EXTENT_DATA_KEY) 7006 goto not_found; 7007 if (start + len <= found_key.offset) 7008 goto not_found; 7009 if (start > found_key.offset) 7010 goto next; 7011 7012 /* New extent overlaps with existing one */ 7013 em->start = start; 7014 em->len = found_key.offset - start; 7015 em->disk_bytenr = EXTENT_MAP_HOLE; 7016 goto insert; 7017 } 7018 7019 btrfs_extent_item_to_extent_map(inode, path, item, em); 7020 7021 if (extent_type == BTRFS_FILE_EXTENT_REG || 7022 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 7023 goto insert; 7024 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 7025 /* 7026 * Inline extent can only exist at file offset 0. This is 7027 * ensured by tree-checker and inline extent creation path. 7028 * Thus all members representing file offsets should be zero. 7029 */ 7030 ASSERT(extent_start == 0); 7031 ASSERT(em->start == 0); 7032 7033 /* 7034 * btrfs_extent_item_to_extent_map() should have properly 7035 * initialized em members already. 7036 * 7037 * Other members are not utilized for inline extents. 7038 */ 7039 ASSERT(em->disk_bytenr == EXTENT_MAP_INLINE); 7040 ASSERT(em->len == fs_info->sectorsize); 7041 7042 ret = read_inline_extent(path, folio); 7043 if (ret < 0) 7044 goto out; 7045 goto insert; 7046 } 7047 not_found: 7048 em->start = start; 7049 em->len = len; 7050 em->disk_bytenr = EXTENT_MAP_HOLE; 7051 insert: 7052 ret = 0; 7053 btrfs_release_path(path); 7054 if (em->start > start || extent_map_end(em) <= start) { 7055 btrfs_err(fs_info, 7056 "bad extent! em: [%llu %llu] passed [%llu %llu]", 7057 em->start, em->len, start, len); 7058 ret = -EIO; 7059 goto out; 7060 } 7061 7062 write_lock(&em_tree->lock); 7063 ret = btrfs_add_extent_mapping(inode, &em, start, len); 7064 write_unlock(&em_tree->lock); 7065 out: 7066 btrfs_free_path(path); 7067 7068 trace_btrfs_get_extent(root, inode, em); 7069 7070 if (ret) { 7071 free_extent_map(em); 7072 return ERR_PTR(ret); 7073 } 7074 return em; 7075 } 7076 7077 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) 7078 { 7079 struct btrfs_block_group *block_group; 7080 bool readonly = false; 7081 7082 block_group = btrfs_lookup_block_group(fs_info, bytenr); 7083 if (!block_group || block_group->ro) 7084 readonly = true; 7085 if (block_group) 7086 btrfs_put_block_group(block_group); 7087 return readonly; 7088 } 7089 7090 /* 7091 * Check if we can do nocow write into the range [@offset, @offset + @len) 7092 * 7093 * @offset: File offset 7094 * @len: The length to write, will be updated to the nocow writeable 7095 * range 7096 * @orig_start: (optional) Return the original file offset of the file extent 7097 * @orig_len: (optional) Return the original on-disk length of the file extent 7098 * @ram_bytes: (optional) Return the ram_bytes of the file extent 7099 * 7100 * Return: 7101 * >0 and update @len if we can do nocow write 7102 * 0 if we can't do nocow write 7103 * <0 if error happened 7104 * 7105 * NOTE: This only checks the file extents, caller is responsible to wait for 7106 * any ordered extents. 7107 */ 7108 noinline int can_nocow_extent(struct btrfs_inode *inode, u64 offset, u64 *len, 7109 struct btrfs_file_extent *file_extent, 7110 bool nowait) 7111 { 7112 struct btrfs_root *root = inode->root; 7113 struct btrfs_fs_info *fs_info = root->fs_info; 7114 struct can_nocow_file_extent_args nocow_args = { 0 }; 7115 struct btrfs_path *path; 7116 int ret; 7117 struct extent_buffer *leaf; 7118 struct extent_io_tree *io_tree = &inode->io_tree; 7119 struct btrfs_file_extent_item *fi; 7120 struct btrfs_key key; 7121 int found_type; 7122 7123 path = btrfs_alloc_path(); 7124 if (!path) 7125 return -ENOMEM; 7126 path->nowait = nowait; 7127 7128 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 7129 offset, 0); 7130 if (ret < 0) 7131 goto out; 7132 7133 if (ret == 1) { 7134 if (path->slots[0] == 0) { 7135 /* can't find the item, must cow */ 7136 ret = 0; 7137 goto out; 7138 } 7139 path->slots[0]--; 7140 } 7141 ret = 0; 7142 leaf = path->nodes[0]; 7143 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 7144 if (key.objectid != btrfs_ino(inode) || 7145 key.type != BTRFS_EXTENT_DATA_KEY) { 7146 /* not our file or wrong item type, must cow */ 7147 goto out; 7148 } 7149 7150 if (key.offset > offset) { 7151 /* Wrong offset, must cow */ 7152 goto out; 7153 } 7154 7155 if (btrfs_file_extent_end(path) <= offset) 7156 goto out; 7157 7158 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 7159 found_type = btrfs_file_extent_type(leaf, fi); 7160 7161 nocow_args.start = offset; 7162 nocow_args.end = offset + *len - 1; 7163 nocow_args.free_path = true; 7164 7165 ret = can_nocow_file_extent(path, &key, inode, &nocow_args); 7166 /* can_nocow_file_extent() has freed the path. */ 7167 path = NULL; 7168 7169 if (ret != 1) { 7170 /* Treat errors as not being able to NOCOW. */ 7171 ret = 0; 7172 goto out; 7173 } 7174 7175 ret = 0; 7176 if (btrfs_extent_readonly(fs_info, 7177 nocow_args.file_extent.disk_bytenr + 7178 nocow_args.file_extent.offset)) 7179 goto out; 7180 7181 if (!(inode->flags & BTRFS_INODE_NODATACOW) && 7182 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 7183 u64 range_end; 7184 7185 range_end = round_up(offset + nocow_args.file_extent.num_bytes, 7186 root->fs_info->sectorsize) - 1; 7187 ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC); 7188 if (ret) { 7189 ret = -EAGAIN; 7190 goto out; 7191 } 7192 } 7193 7194 if (file_extent) 7195 memcpy(file_extent, &nocow_args.file_extent, sizeof(*file_extent)); 7196 7197 *len = nocow_args.file_extent.num_bytes; 7198 ret = 1; 7199 out: 7200 btrfs_free_path(path); 7201 return ret; 7202 } 7203 7204 /* The callers of this must take lock_extent() */ 7205 struct extent_map *btrfs_create_io_em(struct btrfs_inode *inode, u64 start, 7206 const struct btrfs_file_extent *file_extent, 7207 int type) 7208 { 7209 struct extent_map *em; 7210 int ret; 7211 7212 /* 7213 * Note the missing NOCOW type. 7214 * 7215 * For pure NOCOW writes, we should not create an io extent map, but 7216 * just reusing the existing one. 7217 * Only PREALLOC writes (NOCOW write into preallocated range) can 7218 * create an io extent map. 7219 */ 7220 ASSERT(type == BTRFS_ORDERED_PREALLOC || 7221 type == BTRFS_ORDERED_COMPRESSED || 7222 type == BTRFS_ORDERED_REGULAR); 7223 7224 switch (type) { 7225 case BTRFS_ORDERED_PREALLOC: 7226 /* We're only referring part of a larger preallocated extent. */ 7227 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7228 break; 7229 case BTRFS_ORDERED_REGULAR: 7230 /* COW results a new extent matching our file extent size. */ 7231 ASSERT(file_extent->disk_num_bytes == file_extent->num_bytes); 7232 ASSERT(file_extent->ram_bytes == file_extent->num_bytes); 7233 7234 /* Since it's a new extent, we should not have any offset. */ 7235 ASSERT(file_extent->offset == 0); 7236 break; 7237 case BTRFS_ORDERED_COMPRESSED: 7238 /* Must be compressed. */ 7239 ASSERT(file_extent->compression != BTRFS_COMPRESS_NONE); 7240 7241 /* 7242 * Encoded write can make us to refer to part of the 7243 * uncompressed extent. 7244 */ 7245 ASSERT(file_extent->num_bytes <= file_extent->ram_bytes); 7246 break; 7247 } 7248 7249 em = alloc_extent_map(); 7250 if (!em) 7251 return ERR_PTR(-ENOMEM); 7252 7253 em->start = start; 7254 em->len = file_extent->num_bytes; 7255 em->disk_bytenr = file_extent->disk_bytenr; 7256 em->disk_num_bytes = file_extent->disk_num_bytes; 7257 em->ram_bytes = file_extent->ram_bytes; 7258 em->generation = -1; 7259 em->offset = file_extent->offset; 7260 em->flags |= EXTENT_FLAG_PINNED; 7261 if (type == BTRFS_ORDERED_COMPRESSED) 7262 extent_map_set_compression(em, file_extent->compression); 7263 7264 ret = btrfs_replace_extent_map_range(inode, em, true); 7265 if (ret) { 7266 free_extent_map(em); 7267 return ERR_PTR(ret); 7268 } 7269 7270 /* em got 2 refs now, callers needs to do free_extent_map once. */ 7271 return em; 7272 } 7273 7274 /* 7275 * For release_folio() and invalidate_folio() we have a race window where 7276 * folio_end_writeback() is called but the subpage spinlock is not yet released. 7277 * If we continue to release/invalidate the page, we could cause use-after-free 7278 * for subpage spinlock. So this function is to spin and wait for subpage 7279 * spinlock. 7280 */ 7281 static void wait_subpage_spinlock(struct folio *folio) 7282 { 7283 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio); 7284 struct btrfs_subpage *subpage; 7285 7286 if (!btrfs_is_subpage(fs_info, folio)) 7287 return; 7288 7289 ASSERT(folio_test_private(folio) && folio_get_private(folio)); 7290 subpage = folio_get_private(folio); 7291 7292 /* 7293 * This may look insane as we just acquire the spinlock and release it, 7294 * without doing anything. But we just want to make sure no one is 7295 * still holding the subpage spinlock. 7296 * And since the page is not dirty nor writeback, and we have page 7297 * locked, the only possible way to hold a spinlock is from the endio 7298 * function to clear page writeback. 7299 * 7300 * Here we just acquire the spinlock so that all existing callers 7301 * should exit and we're safe to release/invalidate the page. 7302 */ 7303 spin_lock_irq(&subpage->lock); 7304 spin_unlock_irq(&subpage->lock); 7305 } 7306 7307 static int btrfs_launder_folio(struct folio *folio) 7308 { 7309 return btrfs_qgroup_free_data(folio_to_inode(folio), NULL, folio_pos(folio), 7310 folio_size(folio), NULL); 7311 } 7312 7313 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7314 { 7315 if (try_release_extent_mapping(folio, gfp_flags)) { 7316 wait_subpage_spinlock(folio); 7317 clear_folio_extent_mapped(folio); 7318 return true; 7319 } 7320 return false; 7321 } 7322 7323 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags) 7324 { 7325 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 7326 return false; 7327 return __btrfs_release_folio(folio, gfp_flags); 7328 } 7329 7330 #ifdef CONFIG_MIGRATION 7331 static int btrfs_migrate_folio(struct address_space *mapping, 7332 struct folio *dst, struct folio *src, 7333 enum migrate_mode mode) 7334 { 7335 int ret = filemap_migrate_folio(mapping, dst, src, mode); 7336 7337 if (ret != MIGRATEPAGE_SUCCESS) 7338 return ret; 7339 7340 if (folio_test_ordered(src)) { 7341 folio_clear_ordered(src); 7342 folio_set_ordered(dst); 7343 } 7344 7345 return MIGRATEPAGE_SUCCESS; 7346 } 7347 #else 7348 #define btrfs_migrate_folio NULL 7349 #endif 7350 7351 static void btrfs_invalidate_folio(struct folio *folio, size_t offset, 7352 size_t length) 7353 { 7354 struct btrfs_inode *inode = folio_to_inode(folio); 7355 struct btrfs_fs_info *fs_info = inode->root->fs_info; 7356 struct extent_io_tree *tree = &inode->io_tree; 7357 struct extent_state *cached_state = NULL; 7358 u64 page_start = folio_pos(folio); 7359 u64 page_end = page_start + folio_size(folio) - 1; 7360 u64 cur; 7361 int inode_evicting = inode->vfs_inode.i_state & I_FREEING; 7362 7363 /* 7364 * We have folio locked so no new ordered extent can be created on this 7365 * page, nor bio can be submitted for this folio. 7366 * 7367 * But already submitted bio can still be finished on this folio. 7368 * Furthermore, endio function won't skip folio which has Ordered 7369 * already cleared, so it's possible for endio and 7370 * invalidate_folio to do the same ordered extent accounting twice 7371 * on one folio. 7372 * 7373 * So here we wait for any submitted bios to finish, so that we won't 7374 * do double ordered extent accounting on the same folio. 7375 */ 7376 folio_wait_writeback(folio); 7377 wait_subpage_spinlock(folio); 7378 7379 /* 7380 * For subpage case, we have call sites like 7381 * btrfs_punch_hole_lock_range() which passes range not aligned to 7382 * sectorsize. 7383 * If the range doesn't cover the full folio, we don't need to and 7384 * shouldn't clear page extent mapped, as folio->private can still 7385 * record subpage dirty bits for other part of the range. 7386 * 7387 * For cases that invalidate the full folio even the range doesn't 7388 * cover the full folio, like invalidating the last folio, we're 7389 * still safe to wait for ordered extent to finish. 7390 */ 7391 if (!(offset == 0 && length == folio_size(folio))) { 7392 btrfs_release_folio(folio, GFP_NOFS); 7393 return; 7394 } 7395 7396 if (!inode_evicting) 7397 lock_extent(tree, page_start, page_end, &cached_state); 7398 7399 cur = page_start; 7400 while (cur < page_end) { 7401 struct btrfs_ordered_extent *ordered; 7402 u64 range_end; 7403 u32 range_len; 7404 u32 extra_flags = 0; 7405 7406 ordered = btrfs_lookup_first_ordered_range(inode, cur, 7407 page_end + 1 - cur); 7408 if (!ordered) { 7409 range_end = page_end; 7410 /* 7411 * No ordered extent covering this range, we are safe 7412 * to delete all extent states in the range. 7413 */ 7414 extra_flags = EXTENT_CLEAR_ALL_BITS; 7415 goto next; 7416 } 7417 if (ordered->file_offset > cur) { 7418 /* 7419 * There is a range between [cur, oe->file_offset) not 7420 * covered by any ordered extent. 7421 * We are safe to delete all extent states, and handle 7422 * the ordered extent in the next iteration. 7423 */ 7424 range_end = ordered->file_offset - 1; 7425 extra_flags = EXTENT_CLEAR_ALL_BITS; 7426 goto next; 7427 } 7428 7429 range_end = min(ordered->file_offset + ordered->num_bytes - 1, 7430 page_end); 7431 ASSERT(range_end + 1 - cur < U32_MAX); 7432 range_len = range_end + 1 - cur; 7433 if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) { 7434 /* 7435 * If Ordered is cleared, it means endio has 7436 * already been executed for the range. 7437 * We can't delete the extent states as 7438 * btrfs_finish_ordered_io() may still use some of them. 7439 */ 7440 goto next; 7441 } 7442 btrfs_folio_clear_ordered(fs_info, folio, cur, range_len); 7443 7444 /* 7445 * IO on this page will never be started, so we need to account 7446 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW 7447 * here, must leave that up for the ordered extent completion. 7448 * 7449 * This will also unlock the range for incoming 7450 * btrfs_finish_ordered_io(). 7451 */ 7452 if (!inode_evicting) 7453 clear_extent_bit(tree, cur, range_end, 7454 EXTENT_DELALLOC | 7455 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | 7456 EXTENT_DEFRAG, &cached_state); 7457 7458 spin_lock_irq(&inode->ordered_tree_lock); 7459 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); 7460 ordered->truncated_len = min(ordered->truncated_len, 7461 cur - ordered->file_offset); 7462 spin_unlock_irq(&inode->ordered_tree_lock); 7463 7464 /* 7465 * If the ordered extent has finished, we're safe to delete all 7466 * the extent states of the range, otherwise 7467 * btrfs_finish_ordered_io() will get executed by endio for 7468 * other pages, so we can't delete extent states. 7469 */ 7470 if (btrfs_dec_test_ordered_pending(inode, &ordered, 7471 cur, range_end + 1 - cur)) { 7472 btrfs_finish_ordered_io(ordered); 7473 /* 7474 * The ordered extent has finished, now we're again 7475 * safe to delete all extent states of the range. 7476 */ 7477 extra_flags = EXTENT_CLEAR_ALL_BITS; 7478 } 7479 next: 7480 if (ordered) 7481 btrfs_put_ordered_extent(ordered); 7482 /* 7483 * Qgroup reserved space handler 7484 * Sector(s) here will be either: 7485 * 7486 * 1) Already written to disk or bio already finished 7487 * Then its QGROUP_RESERVED bit in io_tree is already cleared. 7488 * Qgroup will be handled by its qgroup_record then. 7489 * btrfs_qgroup_free_data() call will do nothing here. 7490 * 7491 * 2) Not written to disk yet 7492 * Then btrfs_qgroup_free_data() call will clear the 7493 * QGROUP_RESERVED bit of its io_tree, and free the qgroup 7494 * reserved data space. 7495 * Since the IO will never happen for this page. 7496 */ 7497 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL); 7498 if (!inode_evicting) { 7499 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED | 7500 EXTENT_DELALLOC | EXTENT_UPTODATE | 7501 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG | 7502 extra_flags, &cached_state); 7503 } 7504 cur = range_end + 1; 7505 } 7506 /* 7507 * We have iterated through all ordered extents of the page, the page 7508 * should not have Ordered anymore, or the above iteration 7509 * did something wrong. 7510 */ 7511 ASSERT(!folio_test_ordered(folio)); 7512 btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio)); 7513 if (!inode_evicting) 7514 __btrfs_release_folio(folio, GFP_NOFS); 7515 clear_folio_extent_mapped(folio); 7516 } 7517 7518 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback) 7519 { 7520 struct btrfs_truncate_control control = { 7521 .inode = inode, 7522 .ino = btrfs_ino(inode), 7523 .min_type = BTRFS_EXTENT_DATA_KEY, 7524 .clear_extent_range = true, 7525 }; 7526 struct btrfs_root *root = inode->root; 7527 struct btrfs_fs_info *fs_info = root->fs_info; 7528 struct btrfs_block_rsv *rsv; 7529 int ret; 7530 struct btrfs_trans_handle *trans; 7531 u64 mask = fs_info->sectorsize - 1; 7532 const u64 min_size = btrfs_calc_metadata_size(fs_info, 1); 7533 7534 if (!skip_writeback) { 7535 ret = btrfs_wait_ordered_range(inode, 7536 inode->vfs_inode.i_size & (~mask), 7537 (u64)-1); 7538 if (ret) 7539 return ret; 7540 } 7541 7542 /* 7543 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of 7544 * things going on here: 7545 * 7546 * 1) We need to reserve space to update our inode. 7547 * 7548 * 2) We need to have something to cache all the space that is going to 7549 * be free'd up by the truncate operation, but also have some slack 7550 * space reserved in case it uses space during the truncate (thank you 7551 * very much snapshotting). 7552 * 7553 * And we need these to be separate. The fact is we can use a lot of 7554 * space doing the truncate, and we have no earthly idea how much space 7555 * we will use, so we need the truncate reservation to be separate so it 7556 * doesn't end up using space reserved for updating the inode. We also 7557 * need to be able to stop the transaction and start a new one, which 7558 * means we need to be able to update the inode several times, and we 7559 * have no idea of knowing how many times that will be, so we can't just 7560 * reserve 1 item for the entirety of the operation, so that has to be 7561 * done separately as well. 7562 * 7563 * So that leaves us with 7564 * 7565 * 1) rsv - for the truncate reservation, which we will steal from the 7566 * transaction reservation. 7567 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for 7568 * updating the inode. 7569 */ 7570 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); 7571 if (!rsv) 7572 return -ENOMEM; 7573 rsv->size = min_size; 7574 rsv->failfast = true; 7575 7576 /* 7577 * 1 for the truncate slack space 7578 * 1 for updating the inode. 7579 */ 7580 trans = btrfs_start_transaction(root, 2); 7581 if (IS_ERR(trans)) { 7582 ret = PTR_ERR(trans); 7583 goto out; 7584 } 7585 7586 /* Migrate the slack space for the truncate to our reserve */ 7587 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, 7588 min_size, false); 7589 /* 7590 * We have reserved 2 metadata units when we started the transaction and 7591 * min_size matches 1 unit, so this should never fail, but if it does, 7592 * it's not critical we just fail truncation. 7593 */ 7594 if (WARN_ON(ret)) { 7595 btrfs_end_transaction(trans); 7596 goto out; 7597 } 7598 7599 trans->block_rsv = rsv; 7600 7601 while (1) { 7602 struct extent_state *cached_state = NULL; 7603 const u64 new_size = inode->vfs_inode.i_size; 7604 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize); 7605 7606 control.new_size = new_size; 7607 lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7608 /* 7609 * We want to drop from the next block forward in case this new 7610 * size is not block aligned since we will be keeping the last 7611 * block of the extent just the way it is. 7612 */ 7613 btrfs_drop_extent_map_range(inode, 7614 ALIGN(new_size, fs_info->sectorsize), 7615 (u64)-1, false); 7616 7617 ret = btrfs_truncate_inode_items(trans, root, &control); 7618 7619 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes); 7620 btrfs_inode_safe_disk_i_size_write(inode, control.last_size); 7621 7622 unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state); 7623 7624 trans->block_rsv = &fs_info->trans_block_rsv; 7625 if (ret != -ENOSPC && ret != -EAGAIN) 7626 break; 7627 7628 ret = btrfs_update_inode(trans, inode); 7629 if (ret) 7630 break; 7631 7632 btrfs_end_transaction(trans); 7633 btrfs_btree_balance_dirty(fs_info); 7634 7635 trans = btrfs_start_transaction(root, 2); 7636 if (IS_ERR(trans)) { 7637 ret = PTR_ERR(trans); 7638 trans = NULL; 7639 break; 7640 } 7641 7642 btrfs_block_rsv_release(fs_info, rsv, -1, NULL); 7643 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, 7644 rsv, min_size, false); 7645 /* 7646 * We have reserved 2 metadata units when we started the 7647 * transaction and min_size matches 1 unit, so this should never 7648 * fail, but if it does, it's not critical we just fail truncation. 7649 */ 7650 if (WARN_ON(ret)) 7651 break; 7652 7653 trans->block_rsv = rsv; 7654 } 7655 7656 /* 7657 * We can't call btrfs_truncate_block inside a trans handle as we could 7658 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we 7659 * know we've truncated everything except the last little bit, and can 7660 * do btrfs_truncate_block and then update the disk_i_size. 7661 */ 7662 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) { 7663 btrfs_end_transaction(trans); 7664 btrfs_btree_balance_dirty(fs_info); 7665 7666 ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0); 7667 if (ret) 7668 goto out; 7669 trans = btrfs_start_transaction(root, 1); 7670 if (IS_ERR(trans)) { 7671 ret = PTR_ERR(trans); 7672 goto out; 7673 } 7674 btrfs_inode_safe_disk_i_size_write(inode, 0); 7675 } 7676 7677 if (trans) { 7678 int ret2; 7679 7680 trans->block_rsv = &fs_info->trans_block_rsv; 7681 ret2 = btrfs_update_inode(trans, inode); 7682 if (ret2 && !ret) 7683 ret = ret2; 7684 7685 ret2 = btrfs_end_transaction(trans); 7686 if (ret2 && !ret) 7687 ret = ret2; 7688 btrfs_btree_balance_dirty(fs_info); 7689 } 7690 out: 7691 btrfs_free_block_rsv(fs_info, rsv); 7692 /* 7693 * So if we truncate and then write and fsync we normally would just 7694 * write the extents that changed, which is a problem if we need to 7695 * first truncate that entire inode. So set this flag so we write out 7696 * all of the extents in the inode to the sync log so we're completely 7697 * safe. 7698 * 7699 * If no extents were dropped or trimmed we don't need to force the next 7700 * fsync to truncate all the inode's items from the log and re-log them 7701 * all. This means the truncate operation did not change the file size, 7702 * or changed it to a smaller size but there was only an implicit hole 7703 * between the old i_size and the new i_size, and there were no prealloc 7704 * extents beyond i_size to drop. 7705 */ 7706 if (control.extents_found > 0) 7707 btrfs_set_inode_full_sync(inode); 7708 7709 return ret; 7710 } 7711 7712 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap, 7713 struct inode *dir) 7714 { 7715 struct inode *inode; 7716 7717 inode = new_inode(dir->i_sb); 7718 if (inode) { 7719 /* 7720 * Subvolumes don't inherit the sgid bit or the parent's gid if 7721 * the parent's sgid bit is set. This is probably a bug. 7722 */ 7723 inode_init_owner(idmap, inode, NULL, 7724 S_IFDIR | (~current_umask() & S_IRWXUGO)); 7725 inode->i_op = &btrfs_dir_inode_operations; 7726 inode->i_fop = &btrfs_dir_file_operations; 7727 } 7728 return inode; 7729 } 7730 7731 struct inode *btrfs_alloc_inode(struct super_block *sb) 7732 { 7733 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 7734 struct btrfs_inode *ei; 7735 struct inode *inode; 7736 7737 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL); 7738 if (!ei) 7739 return NULL; 7740 7741 ei->root = NULL; 7742 ei->generation = 0; 7743 ei->last_trans = 0; 7744 ei->last_sub_trans = 0; 7745 ei->logged_trans = 0; 7746 ei->delalloc_bytes = 0; 7747 ei->new_delalloc_bytes = 0; 7748 ei->defrag_bytes = 0; 7749 ei->disk_i_size = 0; 7750 ei->flags = 0; 7751 ei->ro_flags = 0; 7752 /* 7753 * ->index_cnt will be properly initialized later when creating a new 7754 * inode (btrfs_create_new_inode()) or when reading an existing inode 7755 * from disk (btrfs_read_locked_inode()). 7756 */ 7757 ei->csum_bytes = 0; 7758 ei->dir_index = 0; 7759 ei->last_unlink_trans = 0; 7760 ei->last_reflink_trans = 0; 7761 ei->last_log_commit = 0; 7762 7763 spin_lock_init(&ei->lock); 7764 ei->outstanding_extents = 0; 7765 if (sb->s_magic != BTRFS_TEST_MAGIC) 7766 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, 7767 BTRFS_BLOCK_RSV_DELALLOC); 7768 ei->runtime_flags = 0; 7769 ei->prop_compress = BTRFS_COMPRESS_NONE; 7770 ei->defrag_compress = BTRFS_COMPRESS_NONE; 7771 7772 ei->delayed_node = NULL; 7773 7774 ei->i_otime_sec = 0; 7775 ei->i_otime_nsec = 0; 7776 7777 inode = &ei->vfs_inode; 7778 extent_map_tree_init(&ei->extent_tree); 7779 7780 /* This io tree sets the valid inode. */ 7781 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO); 7782 ei->io_tree.inode = ei; 7783 7784 ei->file_extent_tree = NULL; 7785 7786 mutex_init(&ei->log_mutex); 7787 spin_lock_init(&ei->ordered_tree_lock); 7788 ei->ordered_tree = RB_ROOT; 7789 ei->ordered_tree_last = NULL; 7790 INIT_LIST_HEAD(&ei->delalloc_inodes); 7791 INIT_LIST_HEAD(&ei->delayed_iput); 7792 init_rwsem(&ei->i_mmap_lock); 7793 7794 return inode; 7795 } 7796 7797 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 7798 void btrfs_test_destroy_inode(struct inode *inode) 7799 { 7800 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false); 7801 kfree(BTRFS_I(inode)->file_extent_tree); 7802 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7803 } 7804 #endif 7805 7806 void btrfs_free_inode(struct inode *inode) 7807 { 7808 kfree(BTRFS_I(inode)->file_extent_tree); 7809 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 7810 } 7811 7812 void btrfs_destroy_inode(struct inode *vfs_inode) 7813 { 7814 struct btrfs_ordered_extent *ordered; 7815 struct btrfs_inode *inode = BTRFS_I(vfs_inode); 7816 struct btrfs_root *root = inode->root; 7817 bool freespace_inode; 7818 7819 WARN_ON(!hlist_empty(&vfs_inode->i_dentry)); 7820 WARN_ON(vfs_inode->i_data.nrpages); 7821 WARN_ON(inode->block_rsv.reserved); 7822 WARN_ON(inode->block_rsv.size); 7823 WARN_ON(inode->outstanding_extents); 7824 if (!S_ISDIR(vfs_inode->i_mode)) { 7825 WARN_ON(inode->delalloc_bytes); 7826 WARN_ON(inode->new_delalloc_bytes); 7827 WARN_ON(inode->csum_bytes); 7828 } 7829 if (!root || !btrfs_is_data_reloc_root(root)) 7830 WARN_ON(inode->defrag_bytes); 7831 7832 /* 7833 * This can happen where we create an inode, but somebody else also 7834 * created the same inode and we need to destroy the one we already 7835 * created. 7836 */ 7837 if (!root) 7838 return; 7839 7840 /* 7841 * If this is a free space inode do not take the ordered extents lockdep 7842 * map. 7843 */ 7844 freespace_inode = btrfs_is_free_space_inode(inode); 7845 7846 while (1) { 7847 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 7848 if (!ordered) 7849 break; 7850 else { 7851 btrfs_err(root->fs_info, 7852 "found ordered extent %llu %llu on inode cleanup", 7853 ordered->file_offset, ordered->num_bytes); 7854 7855 if (!freespace_inode) 7856 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent); 7857 7858 btrfs_remove_ordered_extent(inode, ordered); 7859 btrfs_put_ordered_extent(ordered); 7860 btrfs_put_ordered_extent(ordered); 7861 } 7862 } 7863 btrfs_qgroup_check_reserved_leak(inode); 7864 btrfs_del_inode_from_root(inode); 7865 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false); 7866 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1); 7867 btrfs_put_root(inode->root); 7868 } 7869 7870 int btrfs_drop_inode(struct inode *inode) 7871 { 7872 struct btrfs_root *root = BTRFS_I(inode)->root; 7873 7874 if (root == NULL) 7875 return 1; 7876 7877 /* the snap/subvol tree is on deleting */ 7878 if (btrfs_root_refs(&root->root_item) == 0) 7879 return 1; 7880 else 7881 return generic_drop_inode(inode); 7882 } 7883 7884 static void init_once(void *foo) 7885 { 7886 struct btrfs_inode *ei = foo; 7887 7888 inode_init_once(&ei->vfs_inode); 7889 } 7890 7891 void __cold btrfs_destroy_cachep(void) 7892 { 7893 /* 7894 * Make sure all delayed rcu free inodes are flushed before we 7895 * destroy cache. 7896 */ 7897 rcu_barrier(); 7898 kmem_cache_destroy(btrfs_inode_cachep); 7899 } 7900 7901 int __init btrfs_init_cachep(void) 7902 { 7903 btrfs_inode_cachep = kmem_cache_create("btrfs_inode", 7904 sizeof(struct btrfs_inode), 0, 7905 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT, 7906 init_once); 7907 if (!btrfs_inode_cachep) 7908 return -ENOMEM; 7909 7910 return 0; 7911 } 7912 7913 static int btrfs_getattr(struct mnt_idmap *idmap, 7914 const struct path *path, struct kstat *stat, 7915 u32 request_mask, unsigned int flags) 7916 { 7917 u64 delalloc_bytes; 7918 u64 inode_bytes; 7919 struct inode *inode = d_inode(path->dentry); 7920 u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize; 7921 u32 bi_flags = BTRFS_I(inode)->flags; 7922 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags; 7923 7924 stat->result_mask |= STATX_BTIME; 7925 stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec; 7926 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec; 7927 if (bi_flags & BTRFS_INODE_APPEND) 7928 stat->attributes |= STATX_ATTR_APPEND; 7929 if (bi_flags & BTRFS_INODE_COMPRESS) 7930 stat->attributes |= STATX_ATTR_COMPRESSED; 7931 if (bi_flags & BTRFS_INODE_IMMUTABLE) 7932 stat->attributes |= STATX_ATTR_IMMUTABLE; 7933 if (bi_flags & BTRFS_INODE_NODUMP) 7934 stat->attributes |= STATX_ATTR_NODUMP; 7935 if (bi_ro_flags & BTRFS_INODE_RO_VERITY) 7936 stat->attributes |= STATX_ATTR_VERITY; 7937 7938 stat->attributes_mask |= (STATX_ATTR_APPEND | 7939 STATX_ATTR_COMPRESSED | 7940 STATX_ATTR_IMMUTABLE | 7941 STATX_ATTR_NODUMP); 7942 7943 generic_fillattr(idmap, request_mask, inode, stat); 7944 stat->dev = BTRFS_I(inode)->root->anon_dev; 7945 7946 stat->subvol = BTRFS_I(inode)->root->root_key.objectid; 7947 stat->result_mask |= STATX_SUBVOL; 7948 7949 spin_lock(&BTRFS_I(inode)->lock); 7950 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; 7951 inode_bytes = inode_get_bytes(inode); 7952 spin_unlock(&BTRFS_I(inode)->lock); 7953 stat->blocks = (ALIGN(inode_bytes, blocksize) + 7954 ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT; 7955 return 0; 7956 } 7957 7958 static int btrfs_rename_exchange(struct inode *old_dir, 7959 struct dentry *old_dentry, 7960 struct inode *new_dir, 7961 struct dentry *new_dentry) 7962 { 7963 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 7964 struct btrfs_trans_handle *trans; 7965 unsigned int trans_num_items; 7966 struct btrfs_root *root = BTRFS_I(old_dir)->root; 7967 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 7968 struct inode *new_inode = new_dentry->d_inode; 7969 struct inode *old_inode = old_dentry->d_inode; 7970 struct btrfs_rename_ctx old_rename_ctx; 7971 struct btrfs_rename_ctx new_rename_ctx; 7972 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 7973 u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); 7974 u64 old_idx = 0; 7975 u64 new_idx = 0; 7976 int ret; 7977 int ret2; 7978 bool need_abort = false; 7979 struct fscrypt_name old_fname, new_fname; 7980 struct fscrypt_str *old_name, *new_name; 7981 7982 /* 7983 * For non-subvolumes allow exchange only within one subvolume, in the 7984 * same inode namespace. Two subvolumes (represented as directory) can 7985 * be exchanged as they're a logical link and have a fixed inode number. 7986 */ 7987 if (root != dest && 7988 (old_ino != BTRFS_FIRST_FREE_OBJECTID || 7989 new_ino != BTRFS_FIRST_FREE_OBJECTID)) 7990 return -EXDEV; 7991 7992 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 7993 if (ret) 7994 return ret; 7995 7996 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 7997 if (ret) { 7998 fscrypt_free_filename(&old_fname); 7999 return ret; 8000 } 8001 8002 old_name = &old_fname.disk_name; 8003 new_name = &new_fname.disk_name; 8004 8005 /* close the race window with snapshot create/destroy ioctl */ 8006 if (old_ino == BTRFS_FIRST_FREE_OBJECTID || 8007 new_ino == BTRFS_FIRST_FREE_OBJECTID) 8008 down_read(&fs_info->subvol_sem); 8009 8010 /* 8011 * For each inode: 8012 * 1 to remove old dir item 8013 * 1 to remove old dir index 8014 * 1 to add new dir item 8015 * 1 to add new dir index 8016 * 1 to update parent inode 8017 * 8018 * If the parents are the same, we only need to account for one 8019 */ 8020 trans_num_items = (old_dir == new_dir ? 9 : 10); 8021 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8022 /* 8023 * 1 to remove old root ref 8024 * 1 to remove old root backref 8025 * 1 to add new root ref 8026 * 1 to add new root backref 8027 */ 8028 trans_num_items += 4; 8029 } else { 8030 /* 8031 * 1 to update inode item 8032 * 1 to remove old inode ref 8033 * 1 to add new inode ref 8034 */ 8035 trans_num_items += 3; 8036 } 8037 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) 8038 trans_num_items += 4; 8039 else 8040 trans_num_items += 3; 8041 trans = btrfs_start_transaction(root, trans_num_items); 8042 if (IS_ERR(trans)) { 8043 ret = PTR_ERR(trans); 8044 goto out_notrans; 8045 } 8046 8047 if (dest != root) { 8048 ret = btrfs_record_root_in_trans(trans, dest); 8049 if (ret) 8050 goto out_fail; 8051 } 8052 8053 /* 8054 * We need to find a free sequence number both in the source and 8055 * in the destination directory for the exchange. 8056 */ 8057 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); 8058 if (ret) 8059 goto out_fail; 8060 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); 8061 if (ret) 8062 goto out_fail; 8063 8064 BTRFS_I(old_inode)->dir_index = 0ULL; 8065 BTRFS_I(new_inode)->dir_index = 0ULL; 8066 8067 /* Reference for the source. */ 8068 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8069 /* force full log commit if subvolume involved. */ 8070 btrfs_set_log_full_commit(trans); 8071 } else { 8072 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino, 8073 btrfs_ino(BTRFS_I(new_dir)), 8074 old_idx); 8075 if (ret) 8076 goto out_fail; 8077 need_abort = true; 8078 } 8079 8080 /* And now for the dest. */ 8081 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8082 /* force full log commit if subvolume involved. */ 8083 btrfs_set_log_full_commit(trans); 8084 } else { 8085 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino, 8086 btrfs_ino(BTRFS_I(old_dir)), 8087 new_idx); 8088 if (ret) { 8089 if (need_abort) 8090 btrfs_abort_transaction(trans, ret); 8091 goto out_fail; 8092 } 8093 } 8094 8095 /* Update inode version and ctime/mtime. */ 8096 inode_inc_iversion(old_dir); 8097 inode_inc_iversion(new_dir); 8098 inode_inc_iversion(old_inode); 8099 inode_inc_iversion(new_inode); 8100 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8101 8102 if (old_dentry->d_parent != new_dentry->d_parent) { 8103 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8104 BTRFS_I(old_inode), true); 8105 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), 8106 BTRFS_I(new_inode), true); 8107 } 8108 8109 /* src is a subvolume */ 8110 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8111 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8112 if (ret) { 8113 btrfs_abort_transaction(trans, ret); 8114 goto out_fail; 8115 } 8116 } else { /* src is an inode */ 8117 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8118 BTRFS_I(old_dentry->d_inode), 8119 old_name, &old_rename_ctx); 8120 if (ret) { 8121 btrfs_abort_transaction(trans, ret); 8122 goto out_fail; 8123 } 8124 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8125 if (ret) { 8126 btrfs_abort_transaction(trans, ret); 8127 goto out_fail; 8128 } 8129 } 8130 8131 /* dest is a subvolume */ 8132 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { 8133 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8134 if (ret) { 8135 btrfs_abort_transaction(trans, ret); 8136 goto out_fail; 8137 } 8138 } else { /* dest is an inode */ 8139 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8140 BTRFS_I(new_dentry->d_inode), 8141 new_name, &new_rename_ctx); 8142 if (ret) { 8143 btrfs_abort_transaction(trans, ret); 8144 goto out_fail; 8145 } 8146 ret = btrfs_update_inode(trans, BTRFS_I(new_inode)); 8147 if (ret) { 8148 btrfs_abort_transaction(trans, ret); 8149 goto out_fail; 8150 } 8151 } 8152 8153 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8154 new_name, 0, old_idx); 8155 if (ret) { 8156 btrfs_abort_transaction(trans, ret); 8157 goto out_fail; 8158 } 8159 8160 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), 8161 old_name, 0, new_idx); 8162 if (ret) { 8163 btrfs_abort_transaction(trans, ret); 8164 goto out_fail; 8165 } 8166 8167 if (old_inode->i_nlink == 1) 8168 BTRFS_I(old_inode)->dir_index = old_idx; 8169 if (new_inode->i_nlink == 1) 8170 BTRFS_I(new_inode)->dir_index = new_idx; 8171 8172 /* 8173 * Now pin the logs of the roots. We do it to ensure that no other task 8174 * can sync the logs while we are in progress with the rename, because 8175 * that could result in an inconsistency in case any of the inodes that 8176 * are part of this rename operation were logged before. 8177 */ 8178 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8179 btrfs_pin_log_trans(root); 8180 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8181 btrfs_pin_log_trans(dest); 8182 8183 /* Do the log updates for all inodes. */ 8184 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8185 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8186 old_rename_ctx.index, new_dentry->d_parent); 8187 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8188 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir), 8189 new_rename_ctx.index, old_dentry->d_parent); 8190 8191 /* Now unpin the logs. */ 8192 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8193 btrfs_end_log_trans(root); 8194 if (new_ino != BTRFS_FIRST_FREE_OBJECTID) 8195 btrfs_end_log_trans(dest); 8196 out_fail: 8197 ret2 = btrfs_end_transaction(trans); 8198 ret = ret ? ret : ret2; 8199 out_notrans: 8200 if (new_ino == BTRFS_FIRST_FREE_OBJECTID || 8201 old_ino == BTRFS_FIRST_FREE_OBJECTID) 8202 up_read(&fs_info->subvol_sem); 8203 8204 fscrypt_free_filename(&new_fname); 8205 fscrypt_free_filename(&old_fname); 8206 return ret; 8207 } 8208 8209 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap, 8210 struct inode *dir) 8211 { 8212 struct inode *inode; 8213 8214 inode = new_inode(dir->i_sb); 8215 if (inode) { 8216 inode_init_owner(idmap, inode, dir, 8217 S_IFCHR | WHITEOUT_MODE); 8218 inode->i_op = &btrfs_special_inode_operations; 8219 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV); 8220 } 8221 return inode; 8222 } 8223 8224 static int btrfs_rename(struct mnt_idmap *idmap, 8225 struct inode *old_dir, struct dentry *old_dentry, 8226 struct inode *new_dir, struct dentry *new_dentry, 8227 unsigned int flags) 8228 { 8229 struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir); 8230 struct btrfs_new_inode_args whiteout_args = { 8231 .dir = old_dir, 8232 .dentry = old_dentry, 8233 }; 8234 struct btrfs_trans_handle *trans; 8235 unsigned int trans_num_items; 8236 struct btrfs_root *root = BTRFS_I(old_dir)->root; 8237 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 8238 struct inode *new_inode = d_inode(new_dentry); 8239 struct inode *old_inode = d_inode(old_dentry); 8240 struct btrfs_rename_ctx rename_ctx; 8241 u64 index = 0; 8242 int ret; 8243 int ret2; 8244 u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); 8245 struct fscrypt_name old_fname, new_fname; 8246 8247 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 8248 return -EPERM; 8249 8250 /* we only allow rename subvolume link between subvolumes */ 8251 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 8252 return -EXDEV; 8253 8254 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 8255 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) 8256 return -ENOTEMPTY; 8257 8258 if (S_ISDIR(old_inode->i_mode) && new_inode && 8259 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 8260 return -ENOTEMPTY; 8261 8262 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname); 8263 if (ret) 8264 return ret; 8265 8266 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname); 8267 if (ret) { 8268 fscrypt_free_filename(&old_fname); 8269 return ret; 8270 } 8271 8272 /* check for collisions, even if the name isn't there */ 8273 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name); 8274 if (ret) { 8275 if (ret == -EEXIST) { 8276 /* we shouldn't get 8277 * eexist without a new_inode */ 8278 if (WARN_ON(!new_inode)) { 8279 goto out_fscrypt_names; 8280 } 8281 } else { 8282 /* maybe -EOVERFLOW */ 8283 goto out_fscrypt_names; 8284 } 8285 } 8286 ret = 0; 8287 8288 /* 8289 * we're using rename to replace one file with another. Start IO on it 8290 * now so we don't add too much work to the end of the transaction 8291 */ 8292 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) 8293 filemap_flush(old_inode->i_mapping); 8294 8295 if (flags & RENAME_WHITEOUT) { 8296 whiteout_args.inode = new_whiteout_inode(idmap, old_dir); 8297 if (!whiteout_args.inode) { 8298 ret = -ENOMEM; 8299 goto out_fscrypt_names; 8300 } 8301 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items); 8302 if (ret) 8303 goto out_whiteout_inode; 8304 } else { 8305 /* 1 to update the old parent inode. */ 8306 trans_num_items = 1; 8307 } 8308 8309 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { 8310 /* Close the race window with snapshot create/destroy ioctl */ 8311 down_read(&fs_info->subvol_sem); 8312 /* 8313 * 1 to remove old root ref 8314 * 1 to remove old root backref 8315 * 1 to add new root ref 8316 * 1 to add new root backref 8317 */ 8318 trans_num_items += 4; 8319 } else { 8320 /* 8321 * 1 to update inode 8322 * 1 to remove old inode ref 8323 * 1 to add new inode ref 8324 */ 8325 trans_num_items += 3; 8326 } 8327 /* 8328 * 1 to remove old dir item 8329 * 1 to remove old dir index 8330 * 1 to add new dir item 8331 * 1 to add new dir index 8332 */ 8333 trans_num_items += 4; 8334 /* 1 to update new parent inode if it's not the same as the old parent */ 8335 if (new_dir != old_dir) 8336 trans_num_items++; 8337 if (new_inode) { 8338 /* 8339 * 1 to update inode 8340 * 1 to remove inode ref 8341 * 1 to remove dir item 8342 * 1 to remove dir index 8343 * 1 to possibly add orphan item 8344 */ 8345 trans_num_items += 5; 8346 } 8347 trans = btrfs_start_transaction(root, trans_num_items); 8348 if (IS_ERR(trans)) { 8349 ret = PTR_ERR(trans); 8350 goto out_notrans; 8351 } 8352 8353 if (dest != root) { 8354 ret = btrfs_record_root_in_trans(trans, dest); 8355 if (ret) 8356 goto out_fail; 8357 } 8358 8359 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); 8360 if (ret) 8361 goto out_fail; 8362 8363 BTRFS_I(old_inode)->dir_index = 0ULL; 8364 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8365 /* force full log commit if subvolume involved. */ 8366 btrfs_set_log_full_commit(trans); 8367 } else { 8368 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name, 8369 old_ino, btrfs_ino(BTRFS_I(new_dir)), 8370 index); 8371 if (ret) 8372 goto out_fail; 8373 } 8374 8375 inode_inc_iversion(old_dir); 8376 inode_inc_iversion(new_dir); 8377 inode_inc_iversion(old_inode); 8378 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 8379 8380 if (old_dentry->d_parent != new_dentry->d_parent) 8381 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), 8382 BTRFS_I(old_inode), true); 8383 8384 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 8385 ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry); 8386 if (ret) { 8387 btrfs_abort_transaction(trans, ret); 8388 goto out_fail; 8389 } 8390 } else { 8391 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir), 8392 BTRFS_I(d_inode(old_dentry)), 8393 &old_fname.disk_name, &rename_ctx); 8394 if (ret) { 8395 btrfs_abort_transaction(trans, ret); 8396 goto out_fail; 8397 } 8398 ret = btrfs_update_inode(trans, BTRFS_I(old_inode)); 8399 if (ret) { 8400 btrfs_abort_transaction(trans, ret); 8401 goto out_fail; 8402 } 8403 } 8404 8405 if (new_inode) { 8406 inode_inc_iversion(new_inode); 8407 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == 8408 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 8409 ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry); 8410 if (ret) { 8411 btrfs_abort_transaction(trans, ret); 8412 goto out_fail; 8413 } 8414 BUG_ON(new_inode->i_nlink == 0); 8415 } else { 8416 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir), 8417 BTRFS_I(d_inode(new_dentry)), 8418 &new_fname.disk_name); 8419 if (ret) { 8420 btrfs_abort_transaction(trans, ret); 8421 goto out_fail; 8422 } 8423 } 8424 if (new_inode->i_nlink == 0) { 8425 ret = btrfs_orphan_add(trans, 8426 BTRFS_I(d_inode(new_dentry))); 8427 if (ret) { 8428 btrfs_abort_transaction(trans, ret); 8429 goto out_fail; 8430 } 8431 } 8432 } 8433 8434 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), 8435 &new_fname.disk_name, 0, index); 8436 if (ret) { 8437 btrfs_abort_transaction(trans, ret); 8438 goto out_fail; 8439 } 8440 8441 if (old_inode->i_nlink == 1) 8442 BTRFS_I(old_inode)->dir_index = index; 8443 8444 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) 8445 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir), 8446 rename_ctx.index, new_dentry->d_parent); 8447 8448 if (flags & RENAME_WHITEOUT) { 8449 ret = btrfs_create_new_inode(trans, &whiteout_args); 8450 if (ret) { 8451 btrfs_abort_transaction(trans, ret); 8452 goto out_fail; 8453 } else { 8454 unlock_new_inode(whiteout_args.inode); 8455 iput(whiteout_args.inode); 8456 whiteout_args.inode = NULL; 8457 } 8458 } 8459 out_fail: 8460 ret2 = btrfs_end_transaction(trans); 8461 ret = ret ? ret : ret2; 8462 out_notrans: 8463 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 8464 up_read(&fs_info->subvol_sem); 8465 if (flags & RENAME_WHITEOUT) 8466 btrfs_new_inode_args_destroy(&whiteout_args); 8467 out_whiteout_inode: 8468 if (flags & RENAME_WHITEOUT) 8469 iput(whiteout_args.inode); 8470 out_fscrypt_names: 8471 fscrypt_free_filename(&old_fname); 8472 fscrypt_free_filename(&new_fname); 8473 return ret; 8474 } 8475 8476 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir, 8477 struct dentry *old_dentry, struct inode *new_dir, 8478 struct dentry *new_dentry, unsigned int flags) 8479 { 8480 int ret; 8481 8482 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 8483 return -EINVAL; 8484 8485 if (flags & RENAME_EXCHANGE) 8486 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir, 8487 new_dentry); 8488 else 8489 ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir, 8490 new_dentry, flags); 8491 8492 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info); 8493 8494 return ret; 8495 } 8496 8497 struct btrfs_delalloc_work { 8498 struct inode *inode; 8499 struct completion completion; 8500 struct list_head list; 8501 struct btrfs_work work; 8502 }; 8503 8504 static void btrfs_run_delalloc_work(struct btrfs_work *work) 8505 { 8506 struct btrfs_delalloc_work *delalloc_work; 8507 struct inode *inode; 8508 8509 delalloc_work = container_of(work, struct btrfs_delalloc_work, 8510 work); 8511 inode = delalloc_work->inode; 8512 filemap_flush(inode->i_mapping); 8513 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 8514 &BTRFS_I(inode)->runtime_flags)) 8515 filemap_flush(inode->i_mapping); 8516 8517 iput(inode); 8518 complete(&delalloc_work->completion); 8519 } 8520 8521 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) 8522 { 8523 struct btrfs_delalloc_work *work; 8524 8525 work = kmalloc(sizeof(*work), GFP_NOFS); 8526 if (!work) 8527 return NULL; 8528 8529 init_completion(&work->completion); 8530 INIT_LIST_HEAD(&work->list); 8531 work->inode = inode; 8532 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL); 8533 8534 return work; 8535 } 8536 8537 /* 8538 * some fairly slow code that needs optimization. This walks the list 8539 * of all the inodes with pending delalloc and forces them to disk. 8540 */ 8541 static int start_delalloc_inodes(struct btrfs_root *root, 8542 struct writeback_control *wbc, bool snapshot, 8543 bool in_reclaim_context) 8544 { 8545 struct btrfs_delalloc_work *work, *next; 8546 LIST_HEAD(works); 8547 LIST_HEAD(splice); 8548 int ret = 0; 8549 bool full_flush = wbc->nr_to_write == LONG_MAX; 8550 8551 mutex_lock(&root->delalloc_mutex); 8552 spin_lock(&root->delalloc_lock); 8553 list_splice_init(&root->delalloc_inodes, &splice); 8554 while (!list_empty(&splice)) { 8555 struct btrfs_inode *inode; 8556 struct inode *tmp_inode; 8557 8558 inode = list_entry(splice.next, struct btrfs_inode, delalloc_inodes); 8559 8560 list_move_tail(&inode->delalloc_inodes, &root->delalloc_inodes); 8561 8562 if (in_reclaim_context && 8563 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &inode->runtime_flags)) 8564 continue; 8565 8566 tmp_inode = igrab(&inode->vfs_inode); 8567 if (!tmp_inode) { 8568 cond_resched_lock(&root->delalloc_lock); 8569 continue; 8570 } 8571 spin_unlock(&root->delalloc_lock); 8572 8573 if (snapshot) 8574 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, &inode->runtime_flags); 8575 if (full_flush) { 8576 work = btrfs_alloc_delalloc_work(&inode->vfs_inode); 8577 if (!work) { 8578 iput(&inode->vfs_inode); 8579 ret = -ENOMEM; 8580 goto out; 8581 } 8582 list_add_tail(&work->list, &works); 8583 btrfs_queue_work(root->fs_info->flush_workers, 8584 &work->work); 8585 } else { 8586 ret = filemap_fdatawrite_wbc(inode->vfs_inode.i_mapping, wbc); 8587 btrfs_add_delayed_iput(inode); 8588 if (ret || wbc->nr_to_write <= 0) 8589 goto out; 8590 } 8591 cond_resched(); 8592 spin_lock(&root->delalloc_lock); 8593 } 8594 spin_unlock(&root->delalloc_lock); 8595 8596 out: 8597 list_for_each_entry_safe(work, next, &works, list) { 8598 list_del_init(&work->list); 8599 wait_for_completion(&work->completion); 8600 kfree(work); 8601 } 8602 8603 if (!list_empty(&splice)) { 8604 spin_lock(&root->delalloc_lock); 8605 list_splice_tail(&splice, &root->delalloc_inodes); 8606 spin_unlock(&root->delalloc_lock); 8607 } 8608 mutex_unlock(&root->delalloc_mutex); 8609 return ret; 8610 } 8611 8612 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context) 8613 { 8614 struct writeback_control wbc = { 8615 .nr_to_write = LONG_MAX, 8616 .sync_mode = WB_SYNC_NONE, 8617 .range_start = 0, 8618 .range_end = LLONG_MAX, 8619 }; 8620 struct btrfs_fs_info *fs_info = root->fs_info; 8621 8622 if (BTRFS_FS_ERROR(fs_info)) 8623 return -EROFS; 8624 8625 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context); 8626 } 8627 8628 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 8629 bool in_reclaim_context) 8630 { 8631 struct writeback_control wbc = { 8632 .nr_to_write = nr, 8633 .sync_mode = WB_SYNC_NONE, 8634 .range_start = 0, 8635 .range_end = LLONG_MAX, 8636 }; 8637 struct btrfs_root *root; 8638 LIST_HEAD(splice); 8639 int ret; 8640 8641 if (BTRFS_FS_ERROR(fs_info)) 8642 return -EROFS; 8643 8644 mutex_lock(&fs_info->delalloc_root_mutex); 8645 spin_lock(&fs_info->delalloc_root_lock); 8646 list_splice_init(&fs_info->delalloc_roots, &splice); 8647 while (!list_empty(&splice)) { 8648 /* 8649 * Reset nr_to_write here so we know that we're doing a full 8650 * flush. 8651 */ 8652 if (nr == LONG_MAX) 8653 wbc.nr_to_write = LONG_MAX; 8654 8655 root = list_first_entry(&splice, struct btrfs_root, 8656 delalloc_root); 8657 root = btrfs_grab_root(root); 8658 BUG_ON(!root); 8659 list_move_tail(&root->delalloc_root, 8660 &fs_info->delalloc_roots); 8661 spin_unlock(&fs_info->delalloc_root_lock); 8662 8663 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context); 8664 btrfs_put_root(root); 8665 if (ret < 0 || wbc.nr_to_write <= 0) 8666 goto out; 8667 spin_lock(&fs_info->delalloc_root_lock); 8668 } 8669 spin_unlock(&fs_info->delalloc_root_lock); 8670 8671 ret = 0; 8672 out: 8673 if (!list_empty(&splice)) { 8674 spin_lock(&fs_info->delalloc_root_lock); 8675 list_splice_tail(&splice, &fs_info->delalloc_roots); 8676 spin_unlock(&fs_info->delalloc_root_lock); 8677 } 8678 mutex_unlock(&fs_info->delalloc_root_mutex); 8679 return ret; 8680 } 8681 8682 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir, 8683 struct dentry *dentry, const char *symname) 8684 { 8685 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 8686 struct btrfs_trans_handle *trans; 8687 struct btrfs_root *root = BTRFS_I(dir)->root; 8688 struct btrfs_path *path; 8689 struct btrfs_key key; 8690 struct inode *inode; 8691 struct btrfs_new_inode_args new_inode_args = { 8692 .dir = dir, 8693 .dentry = dentry, 8694 }; 8695 unsigned int trans_num_items; 8696 int err; 8697 int name_len; 8698 int datasize; 8699 unsigned long ptr; 8700 struct btrfs_file_extent_item *ei; 8701 struct extent_buffer *leaf; 8702 8703 name_len = strlen(symname); 8704 /* 8705 * Symlinks utilize uncompressed inline extent data, which should not 8706 * reach block size. 8707 */ 8708 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || 8709 name_len >= fs_info->sectorsize) 8710 return -ENAMETOOLONG; 8711 8712 inode = new_inode(dir->i_sb); 8713 if (!inode) 8714 return -ENOMEM; 8715 inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO); 8716 inode->i_op = &btrfs_symlink_inode_operations; 8717 inode_nohighmem(inode); 8718 inode->i_mapping->a_ops = &btrfs_aops; 8719 btrfs_i_size_write(BTRFS_I(inode), name_len); 8720 inode_set_bytes(inode, name_len); 8721 8722 new_inode_args.inode = inode; 8723 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 8724 if (err) 8725 goto out_inode; 8726 /* 1 additional item for the inline extent */ 8727 trans_num_items++; 8728 8729 trans = btrfs_start_transaction(root, trans_num_items); 8730 if (IS_ERR(trans)) { 8731 err = PTR_ERR(trans); 8732 goto out_new_inode_args; 8733 } 8734 8735 err = btrfs_create_new_inode(trans, &new_inode_args); 8736 if (err) 8737 goto out; 8738 8739 path = btrfs_alloc_path(); 8740 if (!path) { 8741 err = -ENOMEM; 8742 btrfs_abort_transaction(trans, err); 8743 discard_new_inode(inode); 8744 inode = NULL; 8745 goto out; 8746 } 8747 key.objectid = btrfs_ino(BTRFS_I(inode)); 8748 key.type = BTRFS_EXTENT_DATA_KEY; 8749 key.offset = 0; 8750 datasize = btrfs_file_extent_calc_inline_size(name_len); 8751 err = btrfs_insert_empty_item(trans, root, path, &key, 8752 datasize); 8753 if (err) { 8754 btrfs_abort_transaction(trans, err); 8755 btrfs_free_path(path); 8756 discard_new_inode(inode); 8757 inode = NULL; 8758 goto out; 8759 } 8760 leaf = path->nodes[0]; 8761 ei = btrfs_item_ptr(leaf, path->slots[0], 8762 struct btrfs_file_extent_item); 8763 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 8764 btrfs_set_file_extent_type(leaf, ei, 8765 BTRFS_FILE_EXTENT_INLINE); 8766 btrfs_set_file_extent_encryption(leaf, ei, 0); 8767 btrfs_set_file_extent_compression(leaf, ei, 0); 8768 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 8769 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 8770 8771 ptr = btrfs_file_extent_inline_start(ei); 8772 write_extent_buffer(leaf, symname, ptr, name_len); 8773 btrfs_free_path(path); 8774 8775 d_instantiate_new(dentry, inode); 8776 err = 0; 8777 out: 8778 btrfs_end_transaction(trans); 8779 btrfs_btree_balance_dirty(fs_info); 8780 out_new_inode_args: 8781 btrfs_new_inode_args_destroy(&new_inode_args); 8782 out_inode: 8783 if (err) 8784 iput(inode); 8785 return err; 8786 } 8787 8788 static struct btrfs_trans_handle *insert_prealloc_file_extent( 8789 struct btrfs_trans_handle *trans_in, 8790 struct btrfs_inode *inode, 8791 struct btrfs_key *ins, 8792 u64 file_offset) 8793 { 8794 struct btrfs_file_extent_item stack_fi; 8795 struct btrfs_replace_extent_info extent_info; 8796 struct btrfs_trans_handle *trans = trans_in; 8797 struct btrfs_path *path; 8798 u64 start = ins->objectid; 8799 u64 len = ins->offset; 8800 u64 qgroup_released = 0; 8801 int ret; 8802 8803 memset(&stack_fi, 0, sizeof(stack_fi)); 8804 8805 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC); 8806 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start); 8807 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len); 8808 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len); 8809 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len); 8810 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE); 8811 /* Encryption and other encoding is reserved and all 0 */ 8812 8813 ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released); 8814 if (ret < 0) 8815 return ERR_PTR(ret); 8816 8817 if (trans) { 8818 ret = insert_reserved_file_extent(trans, inode, 8819 file_offset, &stack_fi, 8820 true, qgroup_released); 8821 if (ret) 8822 goto free_qgroup; 8823 return trans; 8824 } 8825 8826 extent_info.disk_offset = start; 8827 extent_info.disk_len = len; 8828 extent_info.data_offset = 0; 8829 extent_info.data_len = len; 8830 extent_info.file_offset = file_offset; 8831 extent_info.extent_buf = (char *)&stack_fi; 8832 extent_info.is_new_extent = true; 8833 extent_info.update_times = true; 8834 extent_info.qgroup_reserved = qgroup_released; 8835 extent_info.insertions = 0; 8836 8837 path = btrfs_alloc_path(); 8838 if (!path) { 8839 ret = -ENOMEM; 8840 goto free_qgroup; 8841 } 8842 8843 ret = btrfs_replace_file_extents(inode, path, file_offset, 8844 file_offset + len - 1, &extent_info, 8845 &trans); 8846 btrfs_free_path(path); 8847 if (ret) 8848 goto free_qgroup; 8849 return trans; 8850 8851 free_qgroup: 8852 /* 8853 * We have released qgroup data range at the beginning of the function, 8854 * and normally qgroup_released bytes will be freed when committing 8855 * transaction. 8856 * But if we error out early, we have to free what we have released 8857 * or we leak qgroup data reservation. 8858 */ 8859 btrfs_qgroup_free_refroot(inode->root->fs_info, 8860 btrfs_root_id(inode->root), qgroup_released, 8861 BTRFS_QGROUP_RSV_DATA); 8862 return ERR_PTR(ret); 8863 } 8864 8865 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 8866 u64 start, u64 num_bytes, u64 min_size, 8867 loff_t actual_len, u64 *alloc_hint, 8868 struct btrfs_trans_handle *trans) 8869 { 8870 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode); 8871 struct extent_map *em; 8872 struct btrfs_root *root = BTRFS_I(inode)->root; 8873 struct btrfs_key ins; 8874 u64 cur_offset = start; 8875 u64 clear_offset = start; 8876 u64 i_size; 8877 u64 cur_bytes; 8878 u64 last_alloc = (u64)-1; 8879 int ret = 0; 8880 bool own_trans = true; 8881 u64 end = start + num_bytes - 1; 8882 8883 if (trans) 8884 own_trans = false; 8885 while (num_bytes > 0) { 8886 cur_bytes = min_t(u64, num_bytes, SZ_256M); 8887 cur_bytes = max(cur_bytes, min_size); 8888 /* 8889 * If we are severely fragmented we could end up with really 8890 * small allocations, so if the allocator is returning small 8891 * chunks lets make its job easier by only searching for those 8892 * sized chunks. 8893 */ 8894 cur_bytes = min(cur_bytes, last_alloc); 8895 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, 8896 min_size, 0, *alloc_hint, &ins, 1, 0); 8897 if (ret) 8898 break; 8899 8900 /* 8901 * We've reserved this space, and thus converted it from 8902 * ->bytes_may_use to ->bytes_reserved. Any error that happens 8903 * from here on out we will only need to clear our reservation 8904 * for the remaining unreserved area, so advance our 8905 * clear_offset by our extent size. 8906 */ 8907 clear_offset += ins.offset; 8908 8909 last_alloc = ins.offset; 8910 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode), 8911 &ins, cur_offset); 8912 /* 8913 * Now that we inserted the prealloc extent we can finally 8914 * decrement the number of reservations in the block group. 8915 * If we did it before, we could race with relocation and have 8916 * relocation miss the reserved extent, making it fail later. 8917 */ 8918 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 8919 if (IS_ERR(trans)) { 8920 ret = PTR_ERR(trans); 8921 btrfs_free_reserved_extent(fs_info, ins.objectid, 8922 ins.offset, 0); 8923 break; 8924 } 8925 8926 em = alloc_extent_map(); 8927 if (!em) { 8928 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset, 8929 cur_offset + ins.offset - 1, false); 8930 btrfs_set_inode_full_sync(BTRFS_I(inode)); 8931 goto next; 8932 } 8933 8934 em->start = cur_offset; 8935 em->len = ins.offset; 8936 em->disk_bytenr = ins.objectid; 8937 em->offset = 0; 8938 em->disk_num_bytes = ins.offset; 8939 em->ram_bytes = ins.offset; 8940 em->flags |= EXTENT_FLAG_PREALLOC; 8941 em->generation = trans->transid; 8942 8943 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true); 8944 free_extent_map(em); 8945 next: 8946 num_bytes -= ins.offset; 8947 cur_offset += ins.offset; 8948 *alloc_hint = ins.objectid + ins.offset; 8949 8950 inode_inc_iversion(inode); 8951 inode_set_ctime_current(inode); 8952 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 8953 if (!(mode & FALLOC_FL_KEEP_SIZE) && 8954 (actual_len > inode->i_size) && 8955 (cur_offset > inode->i_size)) { 8956 if (cur_offset > actual_len) 8957 i_size = actual_len; 8958 else 8959 i_size = cur_offset; 8960 i_size_write(inode, i_size); 8961 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0); 8962 } 8963 8964 ret = btrfs_update_inode(trans, BTRFS_I(inode)); 8965 8966 if (ret) { 8967 btrfs_abort_transaction(trans, ret); 8968 if (own_trans) 8969 btrfs_end_transaction(trans); 8970 break; 8971 } 8972 8973 if (own_trans) { 8974 btrfs_end_transaction(trans); 8975 trans = NULL; 8976 } 8977 } 8978 if (clear_offset < end) 8979 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset, 8980 end - clear_offset + 1); 8981 return ret; 8982 } 8983 8984 int btrfs_prealloc_file_range(struct inode *inode, int mode, 8985 u64 start, u64 num_bytes, u64 min_size, 8986 loff_t actual_len, u64 *alloc_hint) 8987 { 8988 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8989 min_size, actual_len, alloc_hint, 8990 NULL); 8991 } 8992 8993 int btrfs_prealloc_file_range_trans(struct inode *inode, 8994 struct btrfs_trans_handle *trans, int mode, 8995 u64 start, u64 num_bytes, u64 min_size, 8996 loff_t actual_len, u64 *alloc_hint) 8997 { 8998 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 8999 min_size, actual_len, alloc_hint, trans); 9000 } 9001 9002 static int btrfs_permission(struct mnt_idmap *idmap, 9003 struct inode *inode, int mask) 9004 { 9005 struct btrfs_root *root = BTRFS_I(inode)->root; 9006 umode_t mode = inode->i_mode; 9007 9008 if (mask & MAY_WRITE && 9009 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { 9010 if (btrfs_root_readonly(root)) 9011 return -EROFS; 9012 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) 9013 return -EACCES; 9014 } 9015 return generic_permission(idmap, inode, mask); 9016 } 9017 9018 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir, 9019 struct file *file, umode_t mode) 9020 { 9021 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir); 9022 struct btrfs_trans_handle *trans; 9023 struct btrfs_root *root = BTRFS_I(dir)->root; 9024 struct inode *inode; 9025 struct btrfs_new_inode_args new_inode_args = { 9026 .dir = dir, 9027 .dentry = file->f_path.dentry, 9028 .orphan = true, 9029 }; 9030 unsigned int trans_num_items; 9031 int ret; 9032 9033 inode = new_inode(dir->i_sb); 9034 if (!inode) 9035 return -ENOMEM; 9036 inode_init_owner(idmap, inode, dir, mode); 9037 inode->i_fop = &btrfs_file_operations; 9038 inode->i_op = &btrfs_file_inode_operations; 9039 inode->i_mapping->a_ops = &btrfs_aops; 9040 9041 new_inode_args.inode = inode; 9042 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 9043 if (ret) 9044 goto out_inode; 9045 9046 trans = btrfs_start_transaction(root, trans_num_items); 9047 if (IS_ERR(trans)) { 9048 ret = PTR_ERR(trans); 9049 goto out_new_inode_args; 9050 } 9051 9052 ret = btrfs_create_new_inode(trans, &new_inode_args); 9053 9054 /* 9055 * We set number of links to 0 in btrfs_create_new_inode(), and here we 9056 * set it to 1 because d_tmpfile() will issue a warning if the count is 9057 * 0, through: 9058 * 9059 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink() 9060 */ 9061 set_nlink(inode, 1); 9062 9063 if (!ret) { 9064 d_tmpfile(file, inode); 9065 unlock_new_inode(inode); 9066 mark_inode_dirty(inode); 9067 } 9068 9069 btrfs_end_transaction(trans); 9070 btrfs_btree_balance_dirty(fs_info); 9071 out_new_inode_args: 9072 btrfs_new_inode_args_destroy(&new_inode_args); 9073 out_inode: 9074 if (ret) 9075 iput(inode); 9076 return finish_open_simple(file, ret); 9077 } 9078 9079 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 9080 int compress_type) 9081 { 9082 switch (compress_type) { 9083 case BTRFS_COMPRESS_NONE: 9084 return BTRFS_ENCODED_IO_COMPRESSION_NONE; 9085 case BTRFS_COMPRESS_ZLIB: 9086 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB; 9087 case BTRFS_COMPRESS_LZO: 9088 /* 9089 * The LZO format depends on the sector size. 64K is the maximum 9090 * sector size that we support. 9091 */ 9092 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K) 9093 return -EINVAL; 9094 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 9095 (fs_info->sectorsize_bits - 12); 9096 case BTRFS_COMPRESS_ZSTD: 9097 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD; 9098 default: 9099 return -EUCLEAN; 9100 } 9101 } 9102 9103 static ssize_t btrfs_encoded_read_inline( 9104 struct kiocb *iocb, 9105 struct iov_iter *iter, u64 start, 9106 u64 lockend, 9107 struct extent_state **cached_state, 9108 u64 extent_start, size_t count, 9109 struct btrfs_ioctl_encoded_io_args *encoded, 9110 bool *unlocked) 9111 { 9112 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9113 struct btrfs_root *root = inode->root; 9114 struct btrfs_fs_info *fs_info = root->fs_info; 9115 struct extent_io_tree *io_tree = &inode->io_tree; 9116 struct btrfs_path *path; 9117 struct extent_buffer *leaf; 9118 struct btrfs_file_extent_item *item; 9119 u64 ram_bytes; 9120 unsigned long ptr; 9121 void *tmp; 9122 ssize_t ret; 9123 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9124 9125 path = btrfs_alloc_path(); 9126 if (!path) { 9127 ret = -ENOMEM; 9128 goto out; 9129 } 9130 9131 path->nowait = nowait; 9132 9133 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), 9134 extent_start, 0); 9135 if (ret) { 9136 if (ret > 0) { 9137 /* The extent item disappeared? */ 9138 ret = -EIO; 9139 } 9140 goto out; 9141 } 9142 leaf = path->nodes[0]; 9143 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 9144 9145 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item); 9146 ptr = btrfs_file_extent_inline_start(item); 9147 9148 encoded->len = min_t(u64, extent_start + ram_bytes, 9149 inode->vfs_inode.i_size) - iocb->ki_pos; 9150 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9151 btrfs_file_extent_compression(leaf, item)); 9152 if (ret < 0) 9153 goto out; 9154 encoded->compression = ret; 9155 if (encoded->compression) { 9156 size_t inline_size; 9157 9158 inline_size = btrfs_file_extent_inline_item_len(leaf, 9159 path->slots[0]); 9160 if (inline_size > count) { 9161 ret = -ENOBUFS; 9162 goto out; 9163 } 9164 count = inline_size; 9165 encoded->unencoded_len = ram_bytes; 9166 encoded->unencoded_offset = iocb->ki_pos - extent_start; 9167 } else { 9168 count = min_t(u64, count, encoded->len); 9169 encoded->len = count; 9170 encoded->unencoded_len = count; 9171 ptr += iocb->ki_pos - extent_start; 9172 } 9173 9174 tmp = kmalloc(count, GFP_NOFS); 9175 if (!tmp) { 9176 ret = -ENOMEM; 9177 goto out; 9178 } 9179 read_extent_buffer(leaf, tmp, ptr, count); 9180 btrfs_release_path(path); 9181 unlock_extent(io_tree, start, lockend, cached_state); 9182 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9183 *unlocked = true; 9184 9185 ret = copy_to_iter(tmp, count, iter); 9186 if (ret != count) 9187 ret = -EFAULT; 9188 kfree(tmp); 9189 out: 9190 btrfs_free_path(path); 9191 return ret; 9192 } 9193 9194 struct btrfs_encoded_read_private { 9195 struct completion *sync_reads; 9196 void *uring_ctx; 9197 refcount_t pending_refs; 9198 blk_status_t status; 9199 }; 9200 9201 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio) 9202 { 9203 struct btrfs_encoded_read_private *priv = bbio->private; 9204 9205 if (bbio->bio.bi_status) { 9206 /* 9207 * The memory barrier implied by the refcount_dec_and_test() here 9208 * pairs with the memory barrier implied by the refcount_dec_and_test() 9209 * in btrfs_encoded_read_regular_fill_pages() to ensure that 9210 * this write is observed before the load of status in 9211 * btrfs_encoded_read_regular_fill_pages(). 9212 */ 9213 WRITE_ONCE(priv->status, bbio->bio.bi_status); 9214 } 9215 if (refcount_dec_and_test(&priv->pending_refs)) { 9216 int err = blk_status_to_errno(READ_ONCE(priv->status)); 9217 9218 if (priv->uring_ctx) { 9219 btrfs_uring_read_extent_endio(priv->uring_ctx, err); 9220 kfree(priv); 9221 } else { 9222 complete(priv->sync_reads); 9223 } 9224 } 9225 bio_put(&bbio->bio); 9226 } 9227 9228 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 9229 u64 disk_bytenr, u64 disk_io_size, 9230 struct page **pages, void *uring_ctx) 9231 { 9232 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9233 struct btrfs_encoded_read_private *priv, sync_priv; 9234 struct completion sync_reads; 9235 unsigned long i = 0; 9236 struct btrfs_bio *bbio; 9237 int ret; 9238 9239 /* 9240 * Fast path for synchronous reads which completes in this call, io_uring 9241 * needs longer time span. 9242 */ 9243 if (uring_ctx) { 9244 priv = kmalloc(sizeof(struct btrfs_encoded_read_private), GFP_NOFS); 9245 if (!priv) 9246 return -ENOMEM; 9247 } else { 9248 priv = &sync_priv; 9249 init_completion(&sync_reads); 9250 priv->sync_reads = &sync_reads; 9251 } 9252 9253 refcount_set(&priv->pending_refs, 1); 9254 priv->status = 0; 9255 priv->uring_ctx = uring_ctx; 9256 9257 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9258 btrfs_encoded_read_endio, priv); 9259 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9260 bbio->inode = inode; 9261 9262 do { 9263 size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE); 9264 9265 if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) { 9266 refcount_inc(&priv->pending_refs); 9267 btrfs_submit_bbio(bbio, 0); 9268 9269 bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info, 9270 btrfs_encoded_read_endio, priv); 9271 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT; 9272 bbio->inode = inode; 9273 continue; 9274 } 9275 9276 i++; 9277 disk_bytenr += bytes; 9278 disk_io_size -= bytes; 9279 } while (disk_io_size); 9280 9281 refcount_inc(&priv->pending_refs); 9282 btrfs_submit_bbio(bbio, 0); 9283 9284 if (uring_ctx) { 9285 if (refcount_dec_and_test(&priv->pending_refs)) { 9286 ret = blk_status_to_errno(READ_ONCE(priv->status)); 9287 btrfs_uring_read_extent_endio(uring_ctx, ret); 9288 kfree(priv); 9289 return ret; 9290 } 9291 9292 return -EIOCBQUEUED; 9293 } else { 9294 if (!refcount_dec_and_test(&priv->pending_refs)) 9295 wait_for_completion_io(&sync_reads); 9296 /* See btrfs_encoded_read_endio() for ordering. */ 9297 return blk_status_to_errno(READ_ONCE(priv->status)); 9298 } 9299 } 9300 9301 ssize_t btrfs_encoded_read_regular(struct kiocb *iocb, struct iov_iter *iter, 9302 u64 start, u64 lockend, 9303 struct extent_state **cached_state, 9304 u64 disk_bytenr, u64 disk_io_size, 9305 size_t count, bool compressed, bool *unlocked) 9306 { 9307 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9308 struct extent_io_tree *io_tree = &inode->io_tree; 9309 struct page **pages; 9310 unsigned long nr_pages, i; 9311 u64 cur; 9312 size_t page_offset; 9313 ssize_t ret; 9314 9315 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE); 9316 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); 9317 if (!pages) 9318 return -ENOMEM; 9319 ret = btrfs_alloc_page_array(nr_pages, pages, false); 9320 if (ret) { 9321 ret = -ENOMEM; 9322 goto out; 9323 } 9324 9325 ret = btrfs_encoded_read_regular_fill_pages(inode, disk_bytenr, 9326 disk_io_size, pages, NULL); 9327 if (ret) 9328 goto out; 9329 9330 unlock_extent(io_tree, start, lockend, cached_state); 9331 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9332 *unlocked = true; 9333 9334 if (compressed) { 9335 i = 0; 9336 page_offset = 0; 9337 } else { 9338 i = (iocb->ki_pos - start) >> PAGE_SHIFT; 9339 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1); 9340 } 9341 cur = 0; 9342 while (cur < count) { 9343 size_t bytes = min_t(size_t, count - cur, 9344 PAGE_SIZE - page_offset); 9345 9346 if (copy_page_to_iter(pages[i], page_offset, bytes, 9347 iter) != bytes) { 9348 ret = -EFAULT; 9349 goto out; 9350 } 9351 i++; 9352 cur += bytes; 9353 page_offset = 0; 9354 } 9355 ret = count; 9356 out: 9357 for (i = 0; i < nr_pages; i++) { 9358 if (pages[i]) 9359 __free_page(pages[i]); 9360 } 9361 kfree(pages); 9362 return ret; 9363 } 9364 9365 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 9366 struct btrfs_ioctl_encoded_io_args *encoded, 9367 struct extent_state **cached_state, 9368 u64 *disk_bytenr, u64 *disk_io_size) 9369 { 9370 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9371 struct btrfs_fs_info *fs_info = inode->root->fs_info; 9372 struct extent_io_tree *io_tree = &inode->io_tree; 9373 ssize_t ret; 9374 size_t count = iov_iter_count(iter); 9375 u64 start, lockend; 9376 struct extent_map *em; 9377 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT); 9378 bool unlocked = false; 9379 9380 file_accessed(iocb->ki_filp); 9381 9382 ret = btrfs_inode_lock(inode, 9383 BTRFS_ILOCK_SHARED | (nowait ? BTRFS_ILOCK_TRY : 0)); 9384 if (ret) 9385 return ret; 9386 9387 if (iocb->ki_pos >= inode->vfs_inode.i_size) { 9388 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9389 return 0; 9390 } 9391 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize); 9392 /* 9393 * We don't know how long the extent containing iocb->ki_pos is, but if 9394 * it's compressed we know that it won't be longer than this. 9395 */ 9396 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1; 9397 9398 if (nowait) { 9399 struct btrfs_ordered_extent *ordered; 9400 9401 if (filemap_range_needs_writeback(inode->vfs_inode.i_mapping, 9402 start, lockend)) { 9403 ret = -EAGAIN; 9404 goto out_unlock_inode; 9405 } 9406 9407 if (!try_lock_extent(io_tree, start, lockend, cached_state)) { 9408 ret = -EAGAIN; 9409 goto out_unlock_inode; 9410 } 9411 9412 ordered = btrfs_lookup_ordered_range(inode, start, 9413 lockend - start + 1); 9414 if (ordered) { 9415 btrfs_put_ordered_extent(ordered); 9416 unlock_extent(io_tree, start, lockend, cached_state); 9417 ret = -EAGAIN; 9418 goto out_unlock_inode; 9419 } 9420 } else { 9421 for (;;) { 9422 struct btrfs_ordered_extent *ordered; 9423 9424 ret = btrfs_wait_ordered_range(inode, start, 9425 lockend - start + 1); 9426 if (ret) 9427 goto out_unlock_inode; 9428 9429 lock_extent(io_tree, start, lockend, cached_state); 9430 ordered = btrfs_lookup_ordered_range(inode, start, 9431 lockend - start + 1); 9432 if (!ordered) 9433 break; 9434 btrfs_put_ordered_extent(ordered); 9435 unlock_extent(io_tree, start, lockend, cached_state); 9436 cond_resched(); 9437 } 9438 } 9439 9440 em = btrfs_get_extent(inode, NULL, start, lockend - start + 1); 9441 if (IS_ERR(em)) { 9442 ret = PTR_ERR(em); 9443 goto out_unlock_extent; 9444 } 9445 9446 if (em->disk_bytenr == EXTENT_MAP_INLINE) { 9447 u64 extent_start = em->start; 9448 9449 /* 9450 * For inline extents we get everything we need out of the 9451 * extent item. 9452 */ 9453 free_extent_map(em); 9454 em = NULL; 9455 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend, 9456 cached_state, extent_start, 9457 count, encoded, &unlocked); 9458 goto out_unlock_extent; 9459 } 9460 9461 /* 9462 * We only want to return up to EOF even if the extent extends beyond 9463 * that. 9464 */ 9465 encoded->len = min_t(u64, extent_map_end(em), 9466 inode->vfs_inode.i_size) - iocb->ki_pos; 9467 if (em->disk_bytenr == EXTENT_MAP_HOLE || 9468 (em->flags & EXTENT_FLAG_PREALLOC)) { 9469 *disk_bytenr = EXTENT_MAP_HOLE; 9470 count = min_t(u64, count, encoded->len); 9471 encoded->len = count; 9472 encoded->unencoded_len = count; 9473 } else if (extent_map_is_compressed(em)) { 9474 *disk_bytenr = em->disk_bytenr; 9475 /* 9476 * Bail if the buffer isn't large enough to return the whole 9477 * compressed extent. 9478 */ 9479 if (em->disk_num_bytes > count) { 9480 ret = -ENOBUFS; 9481 goto out_em; 9482 } 9483 *disk_io_size = em->disk_num_bytes; 9484 count = em->disk_num_bytes; 9485 encoded->unencoded_len = em->ram_bytes; 9486 encoded->unencoded_offset = iocb->ki_pos - (em->start - em->offset); 9487 ret = btrfs_encoded_io_compression_from_extent(fs_info, 9488 extent_map_compression(em)); 9489 if (ret < 0) 9490 goto out_em; 9491 encoded->compression = ret; 9492 } else { 9493 *disk_bytenr = extent_map_block_start(em) + (start - em->start); 9494 if (encoded->len > count) 9495 encoded->len = count; 9496 /* 9497 * Don't read beyond what we locked. This also limits the page 9498 * allocations that we'll do. 9499 */ 9500 *disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start; 9501 count = start + *disk_io_size - iocb->ki_pos; 9502 encoded->len = count; 9503 encoded->unencoded_len = count; 9504 *disk_io_size = ALIGN(*disk_io_size, fs_info->sectorsize); 9505 } 9506 free_extent_map(em); 9507 em = NULL; 9508 9509 if (*disk_bytenr == EXTENT_MAP_HOLE) { 9510 unlock_extent(io_tree, start, lockend, cached_state); 9511 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9512 unlocked = true; 9513 ret = iov_iter_zero(count, iter); 9514 if (ret != count) 9515 ret = -EFAULT; 9516 } else { 9517 ret = -EIOCBQUEUED; 9518 goto out_unlock_extent; 9519 } 9520 9521 out_em: 9522 free_extent_map(em); 9523 out_unlock_extent: 9524 /* Leave inode and extent locked if we need to do a read. */ 9525 if (!unlocked && ret != -EIOCBQUEUED) 9526 unlock_extent(io_tree, start, lockend, cached_state); 9527 out_unlock_inode: 9528 if (!unlocked && ret != -EIOCBQUEUED) 9529 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 9530 return ret; 9531 } 9532 9533 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 9534 const struct btrfs_ioctl_encoded_io_args *encoded) 9535 { 9536 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp)); 9537 struct btrfs_root *root = inode->root; 9538 struct btrfs_fs_info *fs_info = root->fs_info; 9539 struct extent_io_tree *io_tree = &inode->io_tree; 9540 struct extent_changeset *data_reserved = NULL; 9541 struct extent_state *cached_state = NULL; 9542 struct btrfs_ordered_extent *ordered; 9543 struct btrfs_file_extent file_extent; 9544 int compression; 9545 size_t orig_count; 9546 u64 start, end; 9547 u64 num_bytes, ram_bytes, disk_num_bytes; 9548 unsigned long nr_folios, i; 9549 struct folio **folios; 9550 struct btrfs_key ins; 9551 bool extent_reserved = false; 9552 struct extent_map *em; 9553 ssize_t ret; 9554 9555 switch (encoded->compression) { 9556 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB: 9557 compression = BTRFS_COMPRESS_ZLIB; 9558 break; 9559 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD: 9560 compression = BTRFS_COMPRESS_ZSTD; 9561 break; 9562 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K: 9563 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K: 9564 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K: 9565 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K: 9566 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K: 9567 /* The sector size must match for LZO. */ 9568 if (encoded->compression - 9569 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 != 9570 fs_info->sectorsize_bits) 9571 return -EINVAL; 9572 compression = BTRFS_COMPRESS_LZO; 9573 break; 9574 default: 9575 return -EINVAL; 9576 } 9577 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE) 9578 return -EINVAL; 9579 9580 /* 9581 * Compressed extents should always have checksums, so error out if we 9582 * have a NOCOW file or inode was created while mounted with NODATASUM. 9583 */ 9584 if (inode->flags & BTRFS_INODE_NODATASUM) 9585 return -EINVAL; 9586 9587 orig_count = iov_iter_count(from); 9588 9589 /* The extent size must be sane. */ 9590 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED || 9591 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0) 9592 return -EINVAL; 9593 9594 /* 9595 * The compressed data must be smaller than the decompressed data. 9596 * 9597 * It's of course possible for data to compress to larger or the same 9598 * size, but the buffered I/O path falls back to no compression for such 9599 * data, and we don't want to break any assumptions by creating these 9600 * extents. 9601 * 9602 * Note that this is less strict than the current check we have that the 9603 * compressed data must be at least one sector smaller than the 9604 * decompressed data. We only want to enforce the weaker requirement 9605 * from old kernels that it is at least one byte smaller. 9606 */ 9607 if (orig_count >= encoded->unencoded_len) 9608 return -EINVAL; 9609 9610 /* The extent must start on a sector boundary. */ 9611 start = iocb->ki_pos; 9612 if (!IS_ALIGNED(start, fs_info->sectorsize)) 9613 return -EINVAL; 9614 9615 /* 9616 * The extent must end on a sector boundary. However, we allow a write 9617 * which ends at or extends i_size to have an unaligned length; we round 9618 * up the extent size and set i_size to the unaligned end. 9619 */ 9620 if (start + encoded->len < inode->vfs_inode.i_size && 9621 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize)) 9622 return -EINVAL; 9623 9624 /* Finally, the offset in the unencoded data must be sector-aligned. */ 9625 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize)) 9626 return -EINVAL; 9627 9628 num_bytes = ALIGN(encoded->len, fs_info->sectorsize); 9629 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize); 9630 end = start + num_bytes - 1; 9631 9632 /* 9633 * If the extent cannot be inline, the compressed data on disk must be 9634 * sector-aligned. For convenience, we extend it with zeroes if it 9635 * isn't. 9636 */ 9637 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize); 9638 nr_folios = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE); 9639 folios = kvcalloc(nr_folios, sizeof(struct folio *), GFP_KERNEL_ACCOUNT); 9640 if (!folios) 9641 return -ENOMEM; 9642 for (i = 0; i < nr_folios; i++) { 9643 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from)); 9644 char *kaddr; 9645 9646 folios[i] = folio_alloc(GFP_KERNEL_ACCOUNT, 0); 9647 if (!folios[i]) { 9648 ret = -ENOMEM; 9649 goto out_folios; 9650 } 9651 kaddr = kmap_local_folio(folios[i], 0); 9652 if (copy_from_iter(kaddr, bytes, from) != bytes) { 9653 kunmap_local(kaddr); 9654 ret = -EFAULT; 9655 goto out_folios; 9656 } 9657 if (bytes < PAGE_SIZE) 9658 memset(kaddr + bytes, 0, PAGE_SIZE - bytes); 9659 kunmap_local(kaddr); 9660 } 9661 9662 for (;;) { 9663 struct btrfs_ordered_extent *ordered; 9664 9665 ret = btrfs_wait_ordered_range(inode, start, num_bytes); 9666 if (ret) 9667 goto out_folios; 9668 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping, 9669 start >> PAGE_SHIFT, 9670 end >> PAGE_SHIFT); 9671 if (ret) 9672 goto out_folios; 9673 lock_extent(io_tree, start, end, &cached_state); 9674 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes); 9675 if (!ordered && 9676 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end)) 9677 break; 9678 if (ordered) 9679 btrfs_put_ordered_extent(ordered); 9680 unlock_extent(io_tree, start, end, &cached_state); 9681 cond_resched(); 9682 } 9683 9684 /* 9685 * We don't use the higher-level delalloc space functions because our 9686 * num_bytes and disk_num_bytes are different. 9687 */ 9688 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes); 9689 if (ret) 9690 goto out_unlock; 9691 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes); 9692 if (ret) 9693 goto out_free_data_space; 9694 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes, 9695 false); 9696 if (ret) 9697 goto out_qgroup_free_data; 9698 9699 /* Try an inline extent first. */ 9700 if (encoded->unencoded_len == encoded->len && 9701 encoded->unencoded_offset == 0 && 9702 can_cow_file_range_inline(inode, start, encoded->len, orig_count)) { 9703 ret = __cow_file_range_inline(inode, encoded->len, 9704 orig_count, compression, folios[0], 9705 true); 9706 if (ret <= 0) { 9707 if (ret == 0) 9708 ret = orig_count; 9709 goto out_delalloc_release; 9710 } 9711 } 9712 9713 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes, 9714 disk_num_bytes, 0, 0, &ins, 1, 1); 9715 if (ret) 9716 goto out_delalloc_release; 9717 extent_reserved = true; 9718 9719 file_extent.disk_bytenr = ins.objectid; 9720 file_extent.disk_num_bytes = ins.offset; 9721 file_extent.num_bytes = num_bytes; 9722 file_extent.ram_bytes = ram_bytes; 9723 file_extent.offset = encoded->unencoded_offset; 9724 file_extent.compression = compression; 9725 em = btrfs_create_io_em(inode, start, &file_extent, BTRFS_ORDERED_COMPRESSED); 9726 if (IS_ERR(em)) { 9727 ret = PTR_ERR(em); 9728 goto out_free_reserved; 9729 } 9730 free_extent_map(em); 9731 9732 ordered = btrfs_alloc_ordered_extent(inode, start, &file_extent, 9733 (1 << BTRFS_ORDERED_ENCODED) | 9734 (1 << BTRFS_ORDERED_COMPRESSED)); 9735 if (IS_ERR(ordered)) { 9736 btrfs_drop_extent_map_range(inode, start, end, false); 9737 ret = PTR_ERR(ordered); 9738 goto out_free_reserved; 9739 } 9740 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9741 9742 if (start + encoded->len > inode->vfs_inode.i_size) 9743 i_size_write(&inode->vfs_inode, start + encoded->len); 9744 9745 unlock_extent(io_tree, start, end, &cached_state); 9746 9747 btrfs_delalloc_release_extents(inode, num_bytes); 9748 9749 btrfs_submit_compressed_write(ordered, folios, nr_folios, 0, false); 9750 ret = orig_count; 9751 goto out; 9752 9753 out_free_reserved: 9754 btrfs_dec_block_group_reservations(fs_info, ins.objectid); 9755 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); 9756 out_delalloc_release: 9757 btrfs_delalloc_release_extents(inode, num_bytes); 9758 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0); 9759 out_qgroup_free_data: 9760 if (ret < 0) 9761 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL); 9762 out_free_data_space: 9763 /* 9764 * If btrfs_reserve_extent() succeeded, then we already decremented 9765 * bytes_may_use. 9766 */ 9767 if (!extent_reserved) 9768 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes); 9769 out_unlock: 9770 unlock_extent(io_tree, start, end, &cached_state); 9771 out_folios: 9772 for (i = 0; i < nr_folios; i++) { 9773 if (folios[i]) 9774 folio_put(folios[i]); 9775 } 9776 kvfree(folios); 9777 out: 9778 if (ret >= 0) 9779 iocb->ki_pos += encoded->len; 9780 return ret; 9781 } 9782 9783 #ifdef CONFIG_SWAP 9784 /* 9785 * Add an entry indicating a block group or device which is pinned by a 9786 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a 9787 * negative errno on failure. 9788 */ 9789 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr, 9790 bool is_block_group) 9791 { 9792 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9793 struct btrfs_swapfile_pin *sp, *entry; 9794 struct rb_node **p; 9795 struct rb_node *parent = NULL; 9796 9797 sp = kmalloc(sizeof(*sp), GFP_NOFS); 9798 if (!sp) 9799 return -ENOMEM; 9800 sp->ptr = ptr; 9801 sp->inode = inode; 9802 sp->is_block_group = is_block_group; 9803 sp->bg_extent_count = 1; 9804 9805 spin_lock(&fs_info->swapfile_pins_lock); 9806 p = &fs_info->swapfile_pins.rb_node; 9807 while (*p) { 9808 parent = *p; 9809 entry = rb_entry(parent, struct btrfs_swapfile_pin, node); 9810 if (sp->ptr < entry->ptr || 9811 (sp->ptr == entry->ptr && sp->inode < entry->inode)) { 9812 p = &(*p)->rb_left; 9813 } else if (sp->ptr > entry->ptr || 9814 (sp->ptr == entry->ptr && sp->inode > entry->inode)) { 9815 p = &(*p)->rb_right; 9816 } else { 9817 if (is_block_group) 9818 entry->bg_extent_count++; 9819 spin_unlock(&fs_info->swapfile_pins_lock); 9820 kfree(sp); 9821 return 1; 9822 } 9823 } 9824 rb_link_node(&sp->node, parent, p); 9825 rb_insert_color(&sp->node, &fs_info->swapfile_pins); 9826 spin_unlock(&fs_info->swapfile_pins_lock); 9827 return 0; 9828 } 9829 9830 /* Free all of the entries pinned by this swapfile. */ 9831 static void btrfs_free_swapfile_pins(struct inode *inode) 9832 { 9833 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 9834 struct btrfs_swapfile_pin *sp; 9835 struct rb_node *node, *next; 9836 9837 spin_lock(&fs_info->swapfile_pins_lock); 9838 node = rb_first(&fs_info->swapfile_pins); 9839 while (node) { 9840 next = rb_next(node); 9841 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 9842 if (sp->inode == inode) { 9843 rb_erase(&sp->node, &fs_info->swapfile_pins); 9844 if (sp->is_block_group) { 9845 btrfs_dec_block_group_swap_extents(sp->ptr, 9846 sp->bg_extent_count); 9847 btrfs_put_block_group(sp->ptr); 9848 } 9849 kfree(sp); 9850 } 9851 node = next; 9852 } 9853 spin_unlock(&fs_info->swapfile_pins_lock); 9854 } 9855 9856 struct btrfs_swap_info { 9857 u64 start; 9858 u64 block_start; 9859 u64 block_len; 9860 u64 lowest_ppage; 9861 u64 highest_ppage; 9862 unsigned long nr_pages; 9863 int nr_extents; 9864 }; 9865 9866 static int btrfs_add_swap_extent(struct swap_info_struct *sis, 9867 struct btrfs_swap_info *bsi) 9868 { 9869 unsigned long nr_pages; 9870 unsigned long max_pages; 9871 u64 first_ppage, first_ppage_reported, next_ppage; 9872 int ret; 9873 9874 /* 9875 * Our swapfile may have had its size extended after the swap header was 9876 * written. In that case activating the swapfile should not go beyond 9877 * the max size set in the swap header. 9878 */ 9879 if (bsi->nr_pages >= sis->max) 9880 return 0; 9881 9882 max_pages = sis->max - bsi->nr_pages; 9883 first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT; 9884 next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT; 9885 9886 if (first_ppage >= next_ppage) 9887 return 0; 9888 nr_pages = next_ppage - first_ppage; 9889 nr_pages = min(nr_pages, max_pages); 9890 9891 first_ppage_reported = first_ppage; 9892 if (bsi->start == 0) 9893 first_ppage_reported++; 9894 if (bsi->lowest_ppage > first_ppage_reported) 9895 bsi->lowest_ppage = first_ppage_reported; 9896 if (bsi->highest_ppage < (next_ppage - 1)) 9897 bsi->highest_ppage = next_ppage - 1; 9898 9899 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage); 9900 if (ret < 0) 9901 return ret; 9902 bsi->nr_extents += ret; 9903 bsi->nr_pages += nr_pages; 9904 return 0; 9905 } 9906 9907 static void btrfs_swap_deactivate(struct file *file) 9908 { 9909 struct inode *inode = file_inode(file); 9910 9911 btrfs_free_swapfile_pins(inode); 9912 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles); 9913 } 9914 9915 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 9916 sector_t *span) 9917 { 9918 struct inode *inode = file_inode(file); 9919 struct btrfs_root *root = BTRFS_I(inode)->root; 9920 struct btrfs_fs_info *fs_info = root->fs_info; 9921 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 9922 struct extent_state *cached_state = NULL; 9923 struct btrfs_chunk_map *map = NULL; 9924 struct btrfs_device *device = NULL; 9925 struct btrfs_swap_info bsi = { 9926 .lowest_ppage = (sector_t)-1ULL, 9927 }; 9928 struct btrfs_backref_share_check_ctx *backref_ctx = NULL; 9929 struct btrfs_path *path = NULL; 9930 int ret = 0; 9931 u64 isize; 9932 u64 prev_extent_end = 0; 9933 9934 /* 9935 * Acquire the inode's mmap lock to prevent races with memory mapped 9936 * writes, as they could happen after we flush delalloc below and before 9937 * we lock the extent range further below. The inode was already locked 9938 * up in the call chain. 9939 */ 9940 btrfs_assert_inode_locked(BTRFS_I(inode)); 9941 down_write(&BTRFS_I(inode)->i_mmap_lock); 9942 9943 /* 9944 * If the swap file was just created, make sure delalloc is done. If the 9945 * file changes again after this, the user is doing something stupid and 9946 * we don't really care. 9947 */ 9948 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1); 9949 if (ret) 9950 goto out_unlock_mmap; 9951 9952 /* 9953 * The inode is locked, so these flags won't change after we check them. 9954 */ 9955 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) { 9956 btrfs_warn(fs_info, "swapfile must not be compressed"); 9957 ret = -EINVAL; 9958 goto out_unlock_mmap; 9959 } 9960 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) { 9961 btrfs_warn(fs_info, "swapfile must not be copy-on-write"); 9962 ret = -EINVAL; 9963 goto out_unlock_mmap; 9964 } 9965 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 9966 btrfs_warn(fs_info, "swapfile must not be checksummed"); 9967 ret = -EINVAL; 9968 goto out_unlock_mmap; 9969 } 9970 9971 path = btrfs_alloc_path(); 9972 backref_ctx = btrfs_alloc_backref_share_check_ctx(); 9973 if (!path || !backref_ctx) { 9974 ret = -ENOMEM; 9975 goto out_unlock_mmap; 9976 } 9977 9978 /* 9979 * Balance or device remove/replace/resize can move stuff around from 9980 * under us. The exclop protection makes sure they aren't running/won't 9981 * run concurrently while we are mapping the swap extents, and 9982 * fs_info->swapfile_pins prevents them from running while the swap 9983 * file is active and moving the extents. Note that this also prevents 9984 * a concurrent device add which isn't actually necessary, but it's not 9985 * really worth the trouble to allow it. 9986 */ 9987 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) { 9988 btrfs_warn(fs_info, 9989 "cannot activate swapfile while exclusive operation is running"); 9990 ret = -EBUSY; 9991 goto out_unlock_mmap; 9992 } 9993 9994 /* 9995 * Prevent snapshot creation while we are activating the swap file. 9996 * We do not want to race with snapshot creation. If snapshot creation 9997 * already started before we bumped nr_swapfiles from 0 to 1 and 9998 * completes before the first write into the swap file after it is 9999 * activated, than that write would fallback to COW. 10000 */ 10001 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) { 10002 btrfs_exclop_finish(fs_info); 10003 btrfs_warn(fs_info, 10004 "cannot activate swapfile because snapshot creation is in progress"); 10005 ret = -EINVAL; 10006 goto out_unlock_mmap; 10007 } 10008 /* 10009 * Snapshots can create extents which require COW even if NODATACOW is 10010 * set. We use this counter to prevent snapshots. We must increment it 10011 * before walking the extents because we don't want a concurrent 10012 * snapshot to run after we've already checked the extents. 10013 * 10014 * It is possible that subvolume is marked for deletion but still not 10015 * removed yet. To prevent this race, we check the root status before 10016 * activating the swapfile. 10017 */ 10018 spin_lock(&root->root_item_lock); 10019 if (btrfs_root_dead(root)) { 10020 spin_unlock(&root->root_item_lock); 10021 10022 btrfs_drew_write_unlock(&root->snapshot_lock); 10023 btrfs_exclop_finish(fs_info); 10024 btrfs_warn(fs_info, 10025 "cannot activate swapfile because subvolume %llu is being deleted", 10026 btrfs_root_id(root)); 10027 ret = -EPERM; 10028 goto out_unlock_mmap; 10029 } 10030 atomic_inc(&root->nr_swapfiles); 10031 spin_unlock(&root->root_item_lock); 10032 10033 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize); 10034 10035 lock_extent(io_tree, 0, isize - 1, &cached_state); 10036 while (prev_extent_end < isize) { 10037 struct btrfs_key key; 10038 struct extent_buffer *leaf; 10039 struct btrfs_file_extent_item *ei; 10040 struct btrfs_block_group *bg; 10041 u64 logical_block_start; 10042 u64 physical_block_start; 10043 u64 extent_gen; 10044 u64 disk_bytenr; 10045 u64 len; 10046 10047 key.objectid = btrfs_ino(BTRFS_I(inode)); 10048 key.type = BTRFS_EXTENT_DATA_KEY; 10049 key.offset = prev_extent_end; 10050 10051 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 10052 if (ret < 0) 10053 goto out; 10054 10055 /* 10056 * If key not found it means we have an implicit hole (NO_HOLES 10057 * is enabled). 10058 */ 10059 if (ret > 0) { 10060 btrfs_warn(fs_info, "swapfile must not have holes"); 10061 ret = -EINVAL; 10062 goto out; 10063 } 10064 10065 leaf = path->nodes[0]; 10066 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item); 10067 10068 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) { 10069 /* 10070 * It's unlikely we'll ever actually find ourselves 10071 * here, as a file small enough to fit inline won't be 10072 * big enough to store more than the swap header, but in 10073 * case something changes in the future, let's catch it 10074 * here rather than later. 10075 */ 10076 btrfs_warn(fs_info, "swapfile must not be inline"); 10077 ret = -EINVAL; 10078 goto out; 10079 } 10080 10081 if (btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) { 10082 btrfs_warn(fs_info, "swapfile must not be compressed"); 10083 ret = -EINVAL; 10084 goto out; 10085 } 10086 10087 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei); 10088 if (disk_bytenr == 0) { 10089 btrfs_warn(fs_info, "swapfile must not have holes"); 10090 ret = -EINVAL; 10091 goto out; 10092 } 10093 10094 logical_block_start = disk_bytenr + btrfs_file_extent_offset(leaf, ei); 10095 extent_gen = btrfs_file_extent_generation(leaf, ei); 10096 prev_extent_end = btrfs_file_extent_end(path); 10097 10098 if (prev_extent_end > isize) 10099 len = isize - key.offset; 10100 else 10101 len = btrfs_file_extent_num_bytes(leaf, ei); 10102 10103 backref_ctx->curr_leaf_bytenr = leaf->start; 10104 10105 /* 10106 * Don't need the path anymore, release to avoid deadlocks when 10107 * calling btrfs_is_data_extent_shared() because when joining a 10108 * transaction it can block waiting for the current one's commit 10109 * which in turn may be trying to lock the same leaf to flush 10110 * delayed items for example. 10111 */ 10112 btrfs_release_path(path); 10113 10114 ret = btrfs_is_data_extent_shared(BTRFS_I(inode), disk_bytenr, 10115 extent_gen, backref_ctx); 10116 if (ret < 0) { 10117 goto out; 10118 } else if (ret > 0) { 10119 btrfs_warn(fs_info, 10120 "swapfile must not be copy-on-write"); 10121 ret = -EINVAL; 10122 goto out; 10123 } 10124 10125 map = btrfs_get_chunk_map(fs_info, logical_block_start, len); 10126 if (IS_ERR(map)) { 10127 ret = PTR_ERR(map); 10128 goto out; 10129 } 10130 10131 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 10132 btrfs_warn(fs_info, 10133 "swapfile must have single data profile"); 10134 ret = -EINVAL; 10135 goto out; 10136 } 10137 10138 if (device == NULL) { 10139 device = map->stripes[0].dev; 10140 ret = btrfs_add_swapfile_pin(inode, device, false); 10141 if (ret == 1) 10142 ret = 0; 10143 else if (ret) 10144 goto out; 10145 } else if (device != map->stripes[0].dev) { 10146 btrfs_warn(fs_info, "swapfile must be on one device"); 10147 ret = -EINVAL; 10148 goto out; 10149 } 10150 10151 physical_block_start = (map->stripes[0].physical + 10152 (logical_block_start - map->start)); 10153 btrfs_free_chunk_map(map); 10154 map = NULL; 10155 10156 bg = btrfs_lookup_block_group(fs_info, logical_block_start); 10157 if (!bg) { 10158 btrfs_warn(fs_info, 10159 "could not find block group containing swapfile"); 10160 ret = -EINVAL; 10161 goto out; 10162 } 10163 10164 if (!btrfs_inc_block_group_swap_extents(bg)) { 10165 btrfs_warn(fs_info, 10166 "block group for swapfile at %llu is read-only%s", 10167 bg->start, 10168 atomic_read(&fs_info->scrubs_running) ? 10169 " (scrub running)" : ""); 10170 btrfs_put_block_group(bg); 10171 ret = -EINVAL; 10172 goto out; 10173 } 10174 10175 ret = btrfs_add_swapfile_pin(inode, bg, true); 10176 if (ret) { 10177 btrfs_put_block_group(bg); 10178 if (ret == 1) 10179 ret = 0; 10180 else 10181 goto out; 10182 } 10183 10184 if (bsi.block_len && 10185 bsi.block_start + bsi.block_len == physical_block_start) { 10186 bsi.block_len += len; 10187 } else { 10188 if (bsi.block_len) { 10189 ret = btrfs_add_swap_extent(sis, &bsi); 10190 if (ret) 10191 goto out; 10192 } 10193 bsi.start = key.offset; 10194 bsi.block_start = physical_block_start; 10195 bsi.block_len = len; 10196 } 10197 10198 if (fatal_signal_pending(current)) { 10199 ret = -EINTR; 10200 goto out; 10201 } 10202 10203 cond_resched(); 10204 } 10205 10206 if (bsi.block_len) 10207 ret = btrfs_add_swap_extent(sis, &bsi); 10208 10209 out: 10210 if (!IS_ERR_OR_NULL(map)) 10211 btrfs_free_chunk_map(map); 10212 10213 unlock_extent(io_tree, 0, isize - 1, &cached_state); 10214 10215 if (ret) 10216 btrfs_swap_deactivate(file); 10217 10218 btrfs_drew_write_unlock(&root->snapshot_lock); 10219 10220 btrfs_exclop_finish(fs_info); 10221 10222 out_unlock_mmap: 10223 up_write(&BTRFS_I(inode)->i_mmap_lock); 10224 btrfs_free_backref_share_ctx(backref_ctx); 10225 btrfs_free_path(path); 10226 if (ret) 10227 return ret; 10228 10229 if (device) 10230 sis->bdev = device->bdev; 10231 *span = bsi.highest_ppage - bsi.lowest_ppage + 1; 10232 sis->max = bsi.nr_pages; 10233 sis->pages = bsi.nr_pages - 1; 10234 return bsi.nr_extents; 10235 } 10236 #else 10237 static void btrfs_swap_deactivate(struct file *file) 10238 { 10239 } 10240 10241 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file, 10242 sector_t *span) 10243 { 10244 return -EOPNOTSUPP; 10245 } 10246 #endif 10247 10248 /* 10249 * Update the number of bytes used in the VFS' inode. When we replace extents in 10250 * a range (clone, dedupe, fallocate's zero range), we must update the number of 10251 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls 10252 * always get a correct value. 10253 */ 10254 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 10255 const u64 add_bytes, 10256 const u64 del_bytes) 10257 { 10258 if (add_bytes == del_bytes) 10259 return; 10260 10261 spin_lock(&inode->lock); 10262 if (del_bytes > 0) 10263 inode_sub_bytes(&inode->vfs_inode, del_bytes); 10264 if (add_bytes > 0) 10265 inode_add_bytes(&inode->vfs_inode, add_bytes); 10266 spin_unlock(&inode->lock); 10267 } 10268 10269 /* 10270 * Verify that there are no ordered extents for a given file range. 10271 * 10272 * @inode: The target inode. 10273 * @start: Start offset of the file range, should be sector size aligned. 10274 * @end: End offset (inclusive) of the file range, its value +1 should be 10275 * sector size aligned. 10276 * 10277 * This should typically be used for cases where we locked an inode's VFS lock in 10278 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode, 10279 * we have flushed all delalloc in the range, we have waited for all ordered 10280 * extents in the range to complete and finally we have locked the file range in 10281 * the inode's io_tree. 10282 */ 10283 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end) 10284 { 10285 struct btrfs_root *root = inode->root; 10286 struct btrfs_ordered_extent *ordered; 10287 10288 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT)) 10289 return; 10290 10291 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start); 10292 if (ordered) { 10293 btrfs_err(root->fs_info, 10294 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])", 10295 start, end, btrfs_ino(inode), btrfs_root_id(root), 10296 ordered->file_offset, 10297 ordered->file_offset + ordered->num_bytes - 1); 10298 btrfs_put_ordered_extent(ordered); 10299 } 10300 10301 ASSERT(ordered == NULL); 10302 } 10303 10304 /* 10305 * Find the first inode with a minimum number. 10306 * 10307 * @root: The root to search for. 10308 * @min_ino: The minimum inode number. 10309 * 10310 * Find the first inode in the @root with a number >= @min_ino and return it. 10311 * Returns NULL if no such inode found. 10312 */ 10313 struct btrfs_inode *btrfs_find_first_inode(struct btrfs_root *root, u64 min_ino) 10314 { 10315 struct btrfs_inode *inode; 10316 unsigned long from = min_ino; 10317 10318 xa_lock(&root->inodes); 10319 while (true) { 10320 inode = xa_find(&root->inodes, &from, ULONG_MAX, XA_PRESENT); 10321 if (!inode) 10322 break; 10323 if (igrab(&inode->vfs_inode)) 10324 break; 10325 10326 from = btrfs_ino(inode) + 1; 10327 cond_resched_lock(&root->inodes.xa_lock); 10328 } 10329 xa_unlock(&root->inodes); 10330 10331 return inode; 10332 } 10333 10334 static const struct inode_operations btrfs_dir_inode_operations = { 10335 .getattr = btrfs_getattr, 10336 .lookup = btrfs_lookup, 10337 .create = btrfs_create, 10338 .unlink = btrfs_unlink, 10339 .link = btrfs_link, 10340 .mkdir = btrfs_mkdir, 10341 .rmdir = btrfs_rmdir, 10342 .rename = btrfs_rename2, 10343 .symlink = btrfs_symlink, 10344 .setattr = btrfs_setattr, 10345 .mknod = btrfs_mknod, 10346 .listxattr = btrfs_listxattr, 10347 .permission = btrfs_permission, 10348 .get_inode_acl = btrfs_get_acl, 10349 .set_acl = btrfs_set_acl, 10350 .update_time = btrfs_update_time, 10351 .tmpfile = btrfs_tmpfile, 10352 .fileattr_get = btrfs_fileattr_get, 10353 .fileattr_set = btrfs_fileattr_set, 10354 }; 10355 10356 static const struct file_operations btrfs_dir_file_operations = { 10357 .llseek = btrfs_dir_llseek, 10358 .read = generic_read_dir, 10359 .iterate_shared = btrfs_real_readdir, 10360 .open = btrfs_opendir, 10361 .unlocked_ioctl = btrfs_ioctl, 10362 #ifdef CONFIG_COMPAT 10363 .compat_ioctl = btrfs_compat_ioctl, 10364 #endif 10365 .release = btrfs_release_file, 10366 .fsync = btrfs_sync_file, 10367 }; 10368 10369 /* 10370 * btrfs doesn't support the bmap operation because swapfiles 10371 * use bmap to make a mapping of extents in the file. They assume 10372 * these extents won't change over the life of the file and they 10373 * use the bmap result to do IO directly to the drive. 10374 * 10375 * the btrfs bmap call would return logical addresses that aren't 10376 * suitable for IO and they also will change frequently as COW 10377 * operations happen. So, swapfile + btrfs == corruption. 10378 * 10379 * For now we're avoiding this by dropping bmap. 10380 */ 10381 static const struct address_space_operations btrfs_aops = { 10382 .read_folio = btrfs_read_folio, 10383 .writepages = btrfs_writepages, 10384 .readahead = btrfs_readahead, 10385 .invalidate_folio = btrfs_invalidate_folio, 10386 .launder_folio = btrfs_launder_folio, 10387 .release_folio = btrfs_release_folio, 10388 .migrate_folio = btrfs_migrate_folio, 10389 .dirty_folio = filemap_dirty_folio, 10390 .error_remove_folio = generic_error_remove_folio, 10391 .swap_activate = btrfs_swap_activate, 10392 .swap_deactivate = btrfs_swap_deactivate, 10393 }; 10394 10395 static const struct inode_operations btrfs_file_inode_operations = { 10396 .getattr = btrfs_getattr, 10397 .setattr = btrfs_setattr, 10398 .listxattr = btrfs_listxattr, 10399 .permission = btrfs_permission, 10400 .fiemap = btrfs_fiemap, 10401 .get_inode_acl = btrfs_get_acl, 10402 .set_acl = btrfs_set_acl, 10403 .update_time = btrfs_update_time, 10404 .fileattr_get = btrfs_fileattr_get, 10405 .fileattr_set = btrfs_fileattr_set, 10406 }; 10407 static const struct inode_operations btrfs_special_inode_operations = { 10408 .getattr = btrfs_getattr, 10409 .setattr = btrfs_setattr, 10410 .permission = btrfs_permission, 10411 .listxattr = btrfs_listxattr, 10412 .get_inode_acl = btrfs_get_acl, 10413 .set_acl = btrfs_set_acl, 10414 .update_time = btrfs_update_time, 10415 }; 10416 static const struct inode_operations btrfs_symlink_inode_operations = { 10417 .get_link = page_get_link, 10418 .getattr = btrfs_getattr, 10419 .setattr = btrfs_setattr, 10420 .permission = btrfs_permission, 10421 .listxattr = btrfs_listxattr, 10422 .update_time = btrfs_update_time, 10423 }; 10424 10425 const struct dentry_operations btrfs_dentry_operations = { 10426 .d_delete = btrfs_dentry_delete, 10427 }; 10428