xref: /linux/fs/btrfs/inode.c (revision 2d7f3d1a5866705be2393150e1ffdf67030ab88d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "print-tree.h"
43 #include "ordered-data.h"
44 #include "xattr.h"
45 #include "tree-log.h"
46 #include "bio.h"
47 #include "compression.h"
48 #include "locking.h"
49 #include "free-space-cache.h"
50 #include "props.h"
51 #include "qgroup.h"
52 #include "delalloc-space.h"
53 #include "block-group.h"
54 #include "space-info.h"
55 #include "zoned.h"
56 #include "subpage.h"
57 #include "inode-item.h"
58 #include "fs.h"
59 #include "accessors.h"
60 #include "extent-tree.h"
61 #include "root-tree.h"
62 #include "defrag.h"
63 #include "dir-item.h"
64 #include "file-item.h"
65 #include "uuid-tree.h"
66 #include "ioctl.h"
67 #include "file.h"
68 #include "acl.h"
69 #include "relocation.h"
70 #include "verity.h"
71 #include "super.h"
72 #include "orphan.h"
73 #include "backref.h"
74 #include "raid-stripe-tree.h"
75 
76 struct btrfs_iget_args {
77 	u64 ino;
78 	struct btrfs_root *root;
79 };
80 
81 struct btrfs_dio_data {
82 	ssize_t submitted;
83 	struct extent_changeset *data_reserved;
84 	struct btrfs_ordered_extent *ordered;
85 	bool data_space_reserved;
86 	bool nocow_done;
87 };
88 
89 struct btrfs_dio_private {
90 	/* Range of I/O */
91 	u64 file_offset;
92 	u32 bytes;
93 
94 	/* This must be last */
95 	struct btrfs_bio bbio;
96 };
97 
98 static struct bio_set btrfs_dio_bioset;
99 
100 struct btrfs_rename_ctx {
101 	/* Output field. Stores the index number of the old directory entry. */
102 	u64 index;
103 };
104 
105 /*
106  * Used by data_reloc_print_warning_inode() to pass needed info for filename
107  * resolution and output of error message.
108  */
109 struct data_reloc_warn {
110 	struct btrfs_path path;
111 	struct btrfs_fs_info *fs_info;
112 	u64 extent_item_size;
113 	u64 logical;
114 	int mirror_num;
115 };
116 
117 /*
118  * For the file_extent_tree, we want to hold the inode lock when we lookup and
119  * update the disk_i_size, but lockdep will complain because our io_tree we hold
120  * the tree lock and get the inode lock when setting delalloc. These two things
121  * are unrelated, so make a class for the file_extent_tree so we don't get the
122  * two locking patterns mixed up.
123  */
124 static struct lock_class_key file_extent_tree_class;
125 
126 static const struct inode_operations btrfs_dir_inode_operations;
127 static const struct inode_operations btrfs_symlink_inode_operations;
128 static const struct inode_operations btrfs_special_inode_operations;
129 static const struct inode_operations btrfs_file_inode_operations;
130 static const struct address_space_operations btrfs_aops;
131 static const struct file_operations btrfs_dir_file_operations;
132 
133 static struct kmem_cache *btrfs_inode_cachep;
134 
135 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
136 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
137 
138 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
139 				     struct page *locked_page, u64 start,
140 				     u64 end, struct writeback_control *wbc,
141 				     bool pages_dirty);
142 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
143 				       u64 len, u64 orig_start, u64 block_start,
144 				       u64 block_len, u64 orig_block_len,
145 				       u64 ram_bytes, int compress_type,
146 				       int type);
147 
148 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
149 					  u64 root, void *warn_ctx)
150 {
151 	struct data_reloc_warn *warn = warn_ctx;
152 	struct btrfs_fs_info *fs_info = warn->fs_info;
153 	struct extent_buffer *eb;
154 	struct btrfs_inode_item *inode_item;
155 	struct inode_fs_paths *ipath = NULL;
156 	struct btrfs_root *local_root;
157 	struct btrfs_key key;
158 	unsigned int nofs_flag;
159 	u32 nlink;
160 	int ret;
161 
162 	local_root = btrfs_get_fs_root(fs_info, root, true);
163 	if (IS_ERR(local_root)) {
164 		ret = PTR_ERR(local_root);
165 		goto err;
166 	}
167 
168 	/* This makes the path point to (inum INODE_ITEM ioff). */
169 	key.objectid = inum;
170 	key.type = BTRFS_INODE_ITEM_KEY;
171 	key.offset = 0;
172 
173 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
174 	if (ret) {
175 		btrfs_put_root(local_root);
176 		btrfs_release_path(&warn->path);
177 		goto err;
178 	}
179 
180 	eb = warn->path.nodes[0];
181 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
182 	nlink = btrfs_inode_nlink(eb, inode_item);
183 	btrfs_release_path(&warn->path);
184 
185 	nofs_flag = memalloc_nofs_save();
186 	ipath = init_ipath(4096, local_root, &warn->path);
187 	memalloc_nofs_restore(nofs_flag);
188 	if (IS_ERR(ipath)) {
189 		btrfs_put_root(local_root);
190 		ret = PTR_ERR(ipath);
191 		ipath = NULL;
192 		/*
193 		 * -ENOMEM, not a critical error, just output an generic error
194 		 * without filename.
195 		 */
196 		btrfs_warn(fs_info,
197 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
198 			   warn->logical, warn->mirror_num, root, inum, offset);
199 		return ret;
200 	}
201 	ret = paths_from_inode(inum, ipath);
202 	if (ret < 0)
203 		goto err;
204 
205 	/*
206 	 * We deliberately ignore the bit ipath might have been too small to
207 	 * hold all of the paths here
208 	 */
209 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
210 		btrfs_warn(fs_info,
211 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
212 			   warn->logical, warn->mirror_num, root, inum, offset,
213 			   fs_info->sectorsize, nlink,
214 			   (char *)(unsigned long)ipath->fspath->val[i]);
215 	}
216 
217 	btrfs_put_root(local_root);
218 	free_ipath(ipath);
219 	return 0;
220 
221 err:
222 	btrfs_warn(fs_info,
223 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
224 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
225 
226 	free_ipath(ipath);
227 	return ret;
228 }
229 
230 /*
231  * Do extra user-friendly error output (e.g. lookup all the affected files).
232  *
233  * Return true if we succeeded doing the backref lookup.
234  * Return false if such lookup failed, and has to fallback to the old error message.
235  */
236 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
237 				   const u8 *csum, const u8 *csum_expected,
238 				   int mirror_num)
239 {
240 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
241 	struct btrfs_path path = { 0 };
242 	struct btrfs_key found_key = { 0 };
243 	struct extent_buffer *eb;
244 	struct btrfs_extent_item *ei;
245 	const u32 csum_size = fs_info->csum_size;
246 	u64 logical;
247 	u64 flags;
248 	u32 item_size;
249 	int ret;
250 
251 	mutex_lock(&fs_info->reloc_mutex);
252 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
253 	mutex_unlock(&fs_info->reloc_mutex);
254 
255 	if (logical == U64_MAX) {
256 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
257 		btrfs_warn_rl(fs_info,
258 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
259 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
260 			CSUM_FMT_VALUE(csum_size, csum),
261 			CSUM_FMT_VALUE(csum_size, csum_expected),
262 			mirror_num);
263 		return;
264 	}
265 
266 	logical += file_off;
267 	btrfs_warn_rl(fs_info,
268 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
269 			inode->root->root_key.objectid,
270 			btrfs_ino(inode), file_off, logical,
271 			CSUM_FMT_VALUE(csum_size, csum),
272 			CSUM_FMT_VALUE(csum_size, csum_expected),
273 			mirror_num);
274 
275 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
276 	if (ret < 0) {
277 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
278 			     logical, ret);
279 		return;
280 	}
281 	eb = path.nodes[0];
282 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
283 	item_size = btrfs_item_size(eb, path.slots[0]);
284 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
285 		unsigned long ptr = 0;
286 		u64 ref_root;
287 		u8 ref_level;
288 
289 		while (true) {
290 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
291 						      item_size, &ref_root,
292 						      &ref_level);
293 			if (ret < 0) {
294 				btrfs_warn_rl(fs_info,
295 				"failed to resolve tree backref for logical %llu: %d",
296 					      logical, ret);
297 				break;
298 			}
299 			if (ret > 0)
300 				break;
301 
302 			btrfs_warn_rl(fs_info,
303 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
304 				logical, mirror_num,
305 				(ref_level ? "node" : "leaf"),
306 				ref_level, ref_root);
307 		}
308 		btrfs_release_path(&path);
309 	} else {
310 		struct btrfs_backref_walk_ctx ctx = { 0 };
311 		struct data_reloc_warn reloc_warn = { 0 };
312 
313 		btrfs_release_path(&path);
314 
315 		ctx.bytenr = found_key.objectid;
316 		ctx.extent_item_pos = logical - found_key.objectid;
317 		ctx.fs_info = fs_info;
318 
319 		reloc_warn.logical = logical;
320 		reloc_warn.extent_item_size = found_key.offset;
321 		reloc_warn.mirror_num = mirror_num;
322 		reloc_warn.fs_info = fs_info;
323 
324 		iterate_extent_inodes(&ctx, true,
325 				      data_reloc_print_warning_inode, &reloc_warn);
326 	}
327 }
328 
329 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
330 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
331 {
332 	struct btrfs_root *root = inode->root;
333 	const u32 csum_size = root->fs_info->csum_size;
334 
335 	/* For data reloc tree, it's better to do a backref lookup instead. */
336 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
337 		return print_data_reloc_error(inode, logical_start, csum,
338 					      csum_expected, mirror_num);
339 
340 	/* Output without objectid, which is more meaningful */
341 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
342 		btrfs_warn_rl(root->fs_info,
343 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
344 			root->root_key.objectid, btrfs_ino(inode),
345 			logical_start,
346 			CSUM_FMT_VALUE(csum_size, csum),
347 			CSUM_FMT_VALUE(csum_size, csum_expected),
348 			mirror_num);
349 	} else {
350 		btrfs_warn_rl(root->fs_info,
351 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
352 			root->root_key.objectid, btrfs_ino(inode),
353 			logical_start,
354 			CSUM_FMT_VALUE(csum_size, csum),
355 			CSUM_FMT_VALUE(csum_size, csum_expected),
356 			mirror_num);
357 	}
358 }
359 
360 /*
361  * Lock inode i_rwsem based on arguments passed.
362  *
363  * ilock_flags can have the following bit set:
364  *
365  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
366  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
367  *		     return -EAGAIN
368  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
369  */
370 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
371 {
372 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
373 		if (ilock_flags & BTRFS_ILOCK_TRY) {
374 			if (!inode_trylock_shared(&inode->vfs_inode))
375 				return -EAGAIN;
376 			else
377 				return 0;
378 		}
379 		inode_lock_shared(&inode->vfs_inode);
380 	} else {
381 		if (ilock_flags & BTRFS_ILOCK_TRY) {
382 			if (!inode_trylock(&inode->vfs_inode))
383 				return -EAGAIN;
384 			else
385 				return 0;
386 		}
387 		inode_lock(&inode->vfs_inode);
388 	}
389 	if (ilock_flags & BTRFS_ILOCK_MMAP)
390 		down_write(&inode->i_mmap_lock);
391 	return 0;
392 }
393 
394 /*
395  * Unock inode i_rwsem.
396  *
397  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
398  * to decide whether the lock acquired is shared or exclusive.
399  */
400 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
401 {
402 	if (ilock_flags & BTRFS_ILOCK_MMAP)
403 		up_write(&inode->i_mmap_lock);
404 	if (ilock_flags & BTRFS_ILOCK_SHARED)
405 		inode_unlock_shared(&inode->vfs_inode);
406 	else
407 		inode_unlock(&inode->vfs_inode);
408 }
409 
410 /*
411  * Cleanup all submitted ordered extents in specified range to handle errors
412  * from the btrfs_run_delalloc_range() callback.
413  *
414  * NOTE: caller must ensure that when an error happens, it can not call
415  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
416  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
417  * to be released, which we want to happen only when finishing the ordered
418  * extent (btrfs_finish_ordered_io()).
419  */
420 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
421 						 struct page *locked_page,
422 						 u64 offset, u64 bytes)
423 {
424 	unsigned long index = offset >> PAGE_SHIFT;
425 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
426 	u64 page_start = 0, page_end = 0;
427 	struct page *page;
428 
429 	if (locked_page) {
430 		page_start = page_offset(locked_page);
431 		page_end = page_start + PAGE_SIZE - 1;
432 	}
433 
434 	while (index <= end_index) {
435 		/*
436 		 * For locked page, we will call btrfs_mark_ordered_io_finished
437 		 * through btrfs_mark_ordered_io_finished() on it
438 		 * in run_delalloc_range() for the error handling, which will
439 		 * clear page Ordered and run the ordered extent accounting.
440 		 *
441 		 * Here we can't just clear the Ordered bit, or
442 		 * btrfs_mark_ordered_io_finished() would skip the accounting
443 		 * for the page range, and the ordered extent will never finish.
444 		 */
445 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
446 			index++;
447 			continue;
448 		}
449 		page = find_get_page(inode->vfs_inode.i_mapping, index);
450 		index++;
451 		if (!page)
452 			continue;
453 
454 		/*
455 		 * Here we just clear all Ordered bits for every page in the
456 		 * range, then btrfs_mark_ordered_io_finished() will handle
457 		 * the ordered extent accounting for the range.
458 		 */
459 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
460 						page_folio(page), offset, bytes);
461 		put_page(page);
462 	}
463 
464 	if (locked_page) {
465 		/* The locked page covers the full range, nothing needs to be done */
466 		if (bytes + offset <= page_start + PAGE_SIZE)
467 			return;
468 		/*
469 		 * In case this page belongs to the delalloc range being
470 		 * instantiated then skip it, since the first page of a range is
471 		 * going to be properly cleaned up by the caller of
472 		 * run_delalloc_range
473 		 */
474 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
475 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
476 			offset = page_offset(locked_page) + PAGE_SIZE;
477 		}
478 	}
479 
480 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
481 }
482 
483 static int btrfs_dirty_inode(struct btrfs_inode *inode);
484 
485 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
486 				     struct btrfs_new_inode_args *args)
487 {
488 	int err;
489 
490 	if (args->default_acl) {
491 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
492 				      ACL_TYPE_DEFAULT);
493 		if (err)
494 			return err;
495 	}
496 	if (args->acl) {
497 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
498 		if (err)
499 			return err;
500 	}
501 	if (!args->default_acl && !args->acl)
502 		cache_no_acl(args->inode);
503 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
504 					 &args->dentry->d_name);
505 }
506 
507 /*
508  * this does all the hard work for inserting an inline extent into
509  * the btree.  The caller should have done a btrfs_drop_extents so that
510  * no overlapping inline items exist in the btree
511  */
512 static int insert_inline_extent(struct btrfs_trans_handle *trans,
513 				struct btrfs_path *path,
514 				struct btrfs_inode *inode, bool extent_inserted,
515 				size_t size, size_t compressed_size,
516 				int compress_type,
517 				struct page **compressed_pages,
518 				bool update_i_size)
519 {
520 	struct btrfs_root *root = inode->root;
521 	struct extent_buffer *leaf;
522 	struct page *page = NULL;
523 	char *kaddr;
524 	unsigned long ptr;
525 	struct btrfs_file_extent_item *ei;
526 	int ret;
527 	size_t cur_size = size;
528 	u64 i_size;
529 
530 	ASSERT((compressed_size > 0 && compressed_pages) ||
531 	       (compressed_size == 0 && !compressed_pages));
532 
533 	if (compressed_size && compressed_pages)
534 		cur_size = compressed_size;
535 
536 	if (!extent_inserted) {
537 		struct btrfs_key key;
538 		size_t datasize;
539 
540 		key.objectid = btrfs_ino(inode);
541 		key.offset = 0;
542 		key.type = BTRFS_EXTENT_DATA_KEY;
543 
544 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
545 		ret = btrfs_insert_empty_item(trans, root, path, &key,
546 					      datasize);
547 		if (ret)
548 			goto fail;
549 	}
550 	leaf = path->nodes[0];
551 	ei = btrfs_item_ptr(leaf, path->slots[0],
552 			    struct btrfs_file_extent_item);
553 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
554 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
555 	btrfs_set_file_extent_encryption(leaf, ei, 0);
556 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
557 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
558 	ptr = btrfs_file_extent_inline_start(ei);
559 
560 	if (compress_type != BTRFS_COMPRESS_NONE) {
561 		struct page *cpage;
562 		int i = 0;
563 		while (compressed_size > 0) {
564 			cpage = compressed_pages[i];
565 			cur_size = min_t(unsigned long, compressed_size,
566 				       PAGE_SIZE);
567 
568 			kaddr = kmap_local_page(cpage);
569 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
570 			kunmap_local(kaddr);
571 
572 			i++;
573 			ptr += cur_size;
574 			compressed_size -= cur_size;
575 		}
576 		btrfs_set_file_extent_compression(leaf, ei,
577 						  compress_type);
578 	} else {
579 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
580 		btrfs_set_file_extent_compression(leaf, ei, 0);
581 		kaddr = kmap_local_page(page);
582 		write_extent_buffer(leaf, kaddr, ptr, size);
583 		kunmap_local(kaddr);
584 		put_page(page);
585 	}
586 	btrfs_mark_buffer_dirty(trans, leaf);
587 	btrfs_release_path(path);
588 
589 	/*
590 	 * We align size to sectorsize for inline extents just for simplicity
591 	 * sake.
592 	 */
593 	ret = btrfs_inode_set_file_extent_range(inode, 0,
594 					ALIGN(size, root->fs_info->sectorsize));
595 	if (ret)
596 		goto fail;
597 
598 	/*
599 	 * We're an inline extent, so nobody can extend the file past i_size
600 	 * without locking a page we already have locked.
601 	 *
602 	 * We must do any i_size and inode updates before we unlock the pages.
603 	 * Otherwise we could end up racing with unlink.
604 	 */
605 	i_size = i_size_read(&inode->vfs_inode);
606 	if (update_i_size && size > i_size) {
607 		i_size_write(&inode->vfs_inode, size);
608 		i_size = size;
609 	}
610 	inode->disk_i_size = i_size;
611 
612 fail:
613 	return ret;
614 }
615 
616 
617 /*
618  * conditionally insert an inline extent into the file.  This
619  * does the checks required to make sure the data is small enough
620  * to fit as an inline extent.
621  */
622 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
623 					  size_t compressed_size,
624 					  int compress_type,
625 					  struct page **compressed_pages,
626 					  bool update_i_size)
627 {
628 	struct btrfs_drop_extents_args drop_args = { 0 };
629 	struct btrfs_root *root = inode->root;
630 	struct btrfs_fs_info *fs_info = root->fs_info;
631 	struct btrfs_trans_handle *trans;
632 	u64 data_len = (compressed_size ?: size);
633 	int ret;
634 	struct btrfs_path *path;
635 
636 	/*
637 	 * We can create an inline extent if it ends at or beyond the current
638 	 * i_size, is no larger than a sector (decompressed), and the (possibly
639 	 * compressed) data fits in a leaf and the configured maximum inline
640 	 * size.
641 	 */
642 	if (size < i_size_read(&inode->vfs_inode) ||
643 	    size > fs_info->sectorsize ||
644 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
645 	    data_len > fs_info->max_inline)
646 		return 1;
647 
648 	path = btrfs_alloc_path();
649 	if (!path)
650 		return -ENOMEM;
651 
652 	trans = btrfs_join_transaction(root);
653 	if (IS_ERR(trans)) {
654 		btrfs_free_path(path);
655 		return PTR_ERR(trans);
656 	}
657 	trans->block_rsv = &inode->block_rsv;
658 
659 	drop_args.path = path;
660 	drop_args.start = 0;
661 	drop_args.end = fs_info->sectorsize;
662 	drop_args.drop_cache = true;
663 	drop_args.replace_extent = true;
664 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
665 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
666 	if (ret) {
667 		btrfs_abort_transaction(trans, ret);
668 		goto out;
669 	}
670 
671 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
672 				   size, compressed_size, compress_type,
673 				   compressed_pages, update_i_size);
674 	if (ret && ret != -ENOSPC) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto out;
677 	} else if (ret == -ENOSPC) {
678 		ret = 1;
679 		goto out;
680 	}
681 
682 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
683 	ret = btrfs_update_inode(trans, inode);
684 	if (ret && ret != -ENOSPC) {
685 		btrfs_abort_transaction(trans, ret);
686 		goto out;
687 	} else if (ret == -ENOSPC) {
688 		ret = 1;
689 		goto out;
690 	}
691 
692 	btrfs_set_inode_full_sync(inode);
693 out:
694 	/*
695 	 * Don't forget to free the reserved space, as for inlined extent
696 	 * it won't count as data extent, free them directly here.
697 	 * And at reserve time, it's always aligned to page size, so
698 	 * just free one page here.
699 	 */
700 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
701 	btrfs_free_path(path);
702 	btrfs_end_transaction(trans);
703 	return ret;
704 }
705 
706 struct async_extent {
707 	u64 start;
708 	u64 ram_size;
709 	u64 compressed_size;
710 	struct page **pages;
711 	unsigned long nr_pages;
712 	int compress_type;
713 	struct list_head list;
714 };
715 
716 struct async_chunk {
717 	struct btrfs_inode *inode;
718 	struct page *locked_page;
719 	u64 start;
720 	u64 end;
721 	blk_opf_t write_flags;
722 	struct list_head extents;
723 	struct cgroup_subsys_state *blkcg_css;
724 	struct btrfs_work work;
725 	struct async_cow *async_cow;
726 };
727 
728 struct async_cow {
729 	atomic_t num_chunks;
730 	struct async_chunk chunks[];
731 };
732 
733 static noinline int add_async_extent(struct async_chunk *cow,
734 				     u64 start, u64 ram_size,
735 				     u64 compressed_size,
736 				     struct page **pages,
737 				     unsigned long nr_pages,
738 				     int compress_type)
739 {
740 	struct async_extent *async_extent;
741 
742 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
743 	BUG_ON(!async_extent); /* -ENOMEM */
744 	async_extent->start = start;
745 	async_extent->ram_size = ram_size;
746 	async_extent->compressed_size = compressed_size;
747 	async_extent->pages = pages;
748 	async_extent->nr_pages = nr_pages;
749 	async_extent->compress_type = compress_type;
750 	list_add_tail(&async_extent->list, &cow->extents);
751 	return 0;
752 }
753 
754 /*
755  * Check if the inode needs to be submitted to compression, based on mount
756  * options, defragmentation, properties or heuristics.
757  */
758 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
759 				      u64 end)
760 {
761 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
762 
763 	if (!btrfs_inode_can_compress(inode)) {
764 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
765 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
766 			btrfs_ino(inode));
767 		return 0;
768 	}
769 	/*
770 	 * Special check for subpage.
771 	 *
772 	 * We lock the full page then run each delalloc range in the page, thus
773 	 * for the following case, we will hit some subpage specific corner case:
774 	 *
775 	 * 0		32K		64K
776 	 * |	|///////|	|///////|
777 	 *		\- A		\- B
778 	 *
779 	 * In above case, both range A and range B will try to unlock the full
780 	 * page [0, 64K), causing the one finished later will have page
781 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
782 	 *
783 	 * So here we add an artificial limit that subpage compression can only
784 	 * if the range is fully page aligned.
785 	 *
786 	 * In theory we only need to ensure the first page is fully covered, but
787 	 * the tailing partial page will be locked until the full compression
788 	 * finishes, delaying the write of other range.
789 	 *
790 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
791 	 * first to prevent any submitted async extent to unlock the full page.
792 	 * By this, we can ensure for subpage case that only the last async_cow
793 	 * will unlock the full page.
794 	 */
795 	if (fs_info->sectorsize < PAGE_SIZE) {
796 		if (!PAGE_ALIGNED(start) ||
797 		    !PAGE_ALIGNED(end + 1))
798 			return 0;
799 	}
800 
801 	/* force compress */
802 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
803 		return 1;
804 	/* defrag ioctl */
805 	if (inode->defrag_compress)
806 		return 1;
807 	/* bad compression ratios */
808 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
809 		return 0;
810 	if (btrfs_test_opt(fs_info, COMPRESS) ||
811 	    inode->flags & BTRFS_INODE_COMPRESS ||
812 	    inode->prop_compress)
813 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
814 	return 0;
815 }
816 
817 static inline void inode_should_defrag(struct btrfs_inode *inode,
818 		u64 start, u64 end, u64 num_bytes, u32 small_write)
819 {
820 	/* If this is a small write inside eof, kick off a defrag */
821 	if (num_bytes < small_write &&
822 	    (start > 0 || end + 1 < inode->disk_i_size))
823 		btrfs_add_inode_defrag(NULL, inode, small_write);
824 }
825 
826 /*
827  * Work queue call back to started compression on a file and pages.
828  *
829  * This is done inside an ordered work queue, and the compression is spread
830  * across many cpus.  The actual IO submission is step two, and the ordered work
831  * queue takes care of making sure that happens in the same order things were
832  * put onto the queue by writepages and friends.
833  *
834  * If this code finds it can't get good compression, it puts an entry onto the
835  * work queue to write the uncompressed bytes.  This makes sure that both
836  * compressed inodes and uncompressed inodes are written in the same order that
837  * the flusher thread sent them down.
838  */
839 static void compress_file_range(struct btrfs_work *work)
840 {
841 	struct async_chunk *async_chunk =
842 		container_of(work, struct async_chunk, work);
843 	struct btrfs_inode *inode = async_chunk->inode;
844 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
845 	struct address_space *mapping = inode->vfs_inode.i_mapping;
846 	u64 blocksize = fs_info->sectorsize;
847 	u64 start = async_chunk->start;
848 	u64 end = async_chunk->end;
849 	u64 actual_end;
850 	u64 i_size;
851 	int ret = 0;
852 	struct page **pages;
853 	unsigned long nr_pages;
854 	unsigned long total_compressed = 0;
855 	unsigned long total_in = 0;
856 	unsigned int poff;
857 	int i;
858 	int compress_type = fs_info->compress_type;
859 
860 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
861 
862 	/*
863 	 * We need to call clear_page_dirty_for_io on each page in the range.
864 	 * Otherwise applications with the file mmap'd can wander in and change
865 	 * the page contents while we are compressing them.
866 	 */
867 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
868 
869 	/*
870 	 * We need to save i_size before now because it could change in between
871 	 * us evaluating the size and assigning it.  This is because we lock and
872 	 * unlock the page in truncate and fallocate, and then modify the i_size
873 	 * later on.
874 	 *
875 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
876 	 * does that for us.
877 	 */
878 	barrier();
879 	i_size = i_size_read(&inode->vfs_inode);
880 	barrier();
881 	actual_end = min_t(u64, i_size, end + 1);
882 again:
883 	pages = NULL;
884 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
885 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
886 
887 	/*
888 	 * we don't want to send crud past the end of i_size through
889 	 * compression, that's just a waste of CPU time.  So, if the
890 	 * end of the file is before the start of our current
891 	 * requested range of bytes, we bail out to the uncompressed
892 	 * cleanup code that can deal with all of this.
893 	 *
894 	 * It isn't really the fastest way to fix things, but this is a
895 	 * very uncommon corner.
896 	 */
897 	if (actual_end <= start)
898 		goto cleanup_and_bail_uncompressed;
899 
900 	total_compressed = actual_end - start;
901 
902 	/*
903 	 * Skip compression for a small file range(<=blocksize) that
904 	 * isn't an inline extent, since it doesn't save disk space at all.
905 	 */
906 	if (total_compressed <= blocksize &&
907 	   (start > 0 || end + 1 < inode->disk_i_size))
908 		goto cleanup_and_bail_uncompressed;
909 
910 	/*
911 	 * For subpage case, we require full page alignment for the sector
912 	 * aligned range.
913 	 * Thus we must also check against @actual_end, not just @end.
914 	 */
915 	if (blocksize < PAGE_SIZE) {
916 		if (!PAGE_ALIGNED(start) ||
917 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
918 			goto cleanup_and_bail_uncompressed;
919 	}
920 
921 	total_compressed = min_t(unsigned long, total_compressed,
922 			BTRFS_MAX_UNCOMPRESSED);
923 	total_in = 0;
924 	ret = 0;
925 
926 	/*
927 	 * We do compression for mount -o compress and when the inode has not
928 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
929 	 * discover bad compression ratios.
930 	 */
931 	if (!inode_need_compress(inode, start, end))
932 		goto cleanup_and_bail_uncompressed;
933 
934 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
935 	if (!pages) {
936 		/*
937 		 * Memory allocation failure is not a fatal error, we can fall
938 		 * back to uncompressed code.
939 		 */
940 		goto cleanup_and_bail_uncompressed;
941 	}
942 
943 	if (inode->defrag_compress)
944 		compress_type = inode->defrag_compress;
945 	else if (inode->prop_compress)
946 		compress_type = inode->prop_compress;
947 
948 	/* Compression level is applied here. */
949 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
950 				   mapping, start, pages, &nr_pages, &total_in,
951 				   &total_compressed);
952 	if (ret)
953 		goto mark_incompressible;
954 
955 	/*
956 	 * Zero the tail end of the last page, as we might be sending it down
957 	 * to disk.
958 	 */
959 	poff = offset_in_page(total_compressed);
960 	if (poff)
961 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
962 
963 	/*
964 	 * Try to create an inline extent.
965 	 *
966 	 * If we didn't compress the entire range, try to create an uncompressed
967 	 * inline extent, else a compressed one.
968 	 *
969 	 * Check cow_file_range() for why we don't even try to create inline
970 	 * extent for the subpage case.
971 	 */
972 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
973 		if (total_in < actual_end) {
974 			ret = cow_file_range_inline(inode, actual_end, 0,
975 						    BTRFS_COMPRESS_NONE, NULL,
976 						    false);
977 		} else {
978 			ret = cow_file_range_inline(inode, actual_end,
979 						    total_compressed,
980 						    compress_type, pages,
981 						    false);
982 		}
983 		if (ret <= 0) {
984 			unsigned long clear_flags = EXTENT_DELALLOC |
985 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
986 				EXTENT_DO_ACCOUNTING;
987 
988 			if (ret < 0)
989 				mapping_set_error(mapping, -EIO);
990 
991 			/*
992 			 * inline extent creation worked or returned error,
993 			 * we don't need to create any more async work items.
994 			 * Unlock and free up our temp pages.
995 			 *
996 			 * We use DO_ACCOUNTING here because we need the
997 			 * delalloc_release_metadata to be done _after_ we drop
998 			 * our outstanding extent for clearing delalloc for this
999 			 * range.
1000 			 */
1001 			extent_clear_unlock_delalloc(inode, start, end,
1002 						     NULL,
1003 						     clear_flags,
1004 						     PAGE_UNLOCK |
1005 						     PAGE_START_WRITEBACK |
1006 						     PAGE_END_WRITEBACK);
1007 			goto free_pages;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * We aren't doing an inline extent. Round the compressed size up to a
1013 	 * block size boundary so the allocator does sane things.
1014 	 */
1015 	total_compressed = ALIGN(total_compressed, blocksize);
1016 
1017 	/*
1018 	 * One last check to make sure the compression is really a win, compare
1019 	 * the page count read with the blocks on disk, compression must free at
1020 	 * least one sector.
1021 	 */
1022 	total_in = round_up(total_in, fs_info->sectorsize);
1023 	if (total_compressed + blocksize > total_in)
1024 		goto mark_incompressible;
1025 
1026 	/*
1027 	 * The async work queues will take care of doing actual allocation on
1028 	 * disk for these compressed pages, and will submit the bios.
1029 	 */
1030 	add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1031 			 nr_pages, compress_type);
1032 	if (start + total_in < end) {
1033 		start += total_in;
1034 		cond_resched();
1035 		goto again;
1036 	}
1037 	return;
1038 
1039 mark_incompressible:
1040 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1042 cleanup_and_bail_uncompressed:
1043 	add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1044 			 BTRFS_COMPRESS_NONE);
1045 free_pages:
1046 	if (pages) {
1047 		for (i = 0; i < nr_pages; i++) {
1048 			WARN_ON(pages[i]->mapping);
1049 			btrfs_free_compr_page(pages[i]);
1050 		}
1051 		kfree(pages);
1052 	}
1053 }
1054 
1055 static void free_async_extent_pages(struct async_extent *async_extent)
1056 {
1057 	int i;
1058 
1059 	if (!async_extent->pages)
1060 		return;
1061 
1062 	for (i = 0; i < async_extent->nr_pages; i++) {
1063 		WARN_ON(async_extent->pages[i]->mapping);
1064 		btrfs_free_compr_page(async_extent->pages[i]);
1065 	}
1066 	kfree(async_extent->pages);
1067 	async_extent->nr_pages = 0;
1068 	async_extent->pages = NULL;
1069 }
1070 
1071 static void submit_uncompressed_range(struct btrfs_inode *inode,
1072 				      struct async_extent *async_extent,
1073 				      struct page *locked_page)
1074 {
1075 	u64 start = async_extent->start;
1076 	u64 end = async_extent->start + async_extent->ram_size - 1;
1077 	int ret;
1078 	struct writeback_control wbc = {
1079 		.sync_mode		= WB_SYNC_ALL,
1080 		.range_start		= start,
1081 		.range_end		= end,
1082 		.no_cgroup_owner	= 1,
1083 	};
1084 
1085 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1086 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1087 	wbc_detach_inode(&wbc);
1088 	if (ret < 0) {
1089 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1090 		if (locked_page) {
1091 			const u64 page_start = page_offset(locked_page);
1092 
1093 			set_page_writeback(locked_page);
1094 			end_page_writeback(locked_page);
1095 			btrfs_mark_ordered_io_finished(inode, locked_page,
1096 						       page_start, PAGE_SIZE,
1097 						       !ret);
1098 			mapping_set_error(locked_page->mapping, ret);
1099 			unlock_page(locked_page);
1100 		}
1101 	}
1102 }
1103 
1104 static void submit_one_async_extent(struct async_chunk *async_chunk,
1105 				    struct async_extent *async_extent,
1106 				    u64 *alloc_hint)
1107 {
1108 	struct btrfs_inode *inode = async_chunk->inode;
1109 	struct extent_io_tree *io_tree = &inode->io_tree;
1110 	struct btrfs_root *root = inode->root;
1111 	struct btrfs_fs_info *fs_info = root->fs_info;
1112 	struct btrfs_ordered_extent *ordered;
1113 	struct btrfs_key ins;
1114 	struct page *locked_page = NULL;
1115 	struct extent_map *em;
1116 	int ret = 0;
1117 	u64 start = async_extent->start;
1118 	u64 end = async_extent->start + async_extent->ram_size - 1;
1119 
1120 	if (async_chunk->blkcg_css)
1121 		kthread_associate_blkcg(async_chunk->blkcg_css);
1122 
1123 	/*
1124 	 * If async_chunk->locked_page is in the async_extent range, we need to
1125 	 * handle it.
1126 	 */
1127 	if (async_chunk->locked_page) {
1128 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1129 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1130 
1131 		if (!(start >= locked_page_end || end <= locked_page_start))
1132 			locked_page = async_chunk->locked_page;
1133 	}
1134 	lock_extent(io_tree, start, end, NULL);
1135 
1136 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1137 		submit_uncompressed_range(inode, async_extent, locked_page);
1138 		goto done;
1139 	}
1140 
1141 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1142 				   async_extent->compressed_size,
1143 				   async_extent->compressed_size,
1144 				   0, *alloc_hint, &ins, 1, 1);
1145 	if (ret) {
1146 		/*
1147 		 * Here we used to try again by going back to non-compressed
1148 		 * path for ENOSPC.  But we can't reserve space even for
1149 		 * compressed size, how could it work for uncompressed size
1150 		 * which requires larger size?  So here we directly go error
1151 		 * path.
1152 		 */
1153 		goto out_free;
1154 	}
1155 
1156 	/* Here we're doing allocation and writeback of the compressed pages */
1157 	em = create_io_em(inode, start,
1158 			  async_extent->ram_size,	/* len */
1159 			  start,			/* orig_start */
1160 			  ins.objectid,			/* block_start */
1161 			  ins.offset,			/* block_len */
1162 			  ins.offset,			/* orig_block_len */
1163 			  async_extent->ram_size,	/* ram_bytes */
1164 			  async_extent->compress_type,
1165 			  BTRFS_ORDERED_COMPRESSED);
1166 	if (IS_ERR(em)) {
1167 		ret = PTR_ERR(em);
1168 		goto out_free_reserve;
1169 	}
1170 	free_extent_map(em);
1171 
1172 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1173 				       async_extent->ram_size,	/* num_bytes */
1174 				       async_extent->ram_size,	/* ram_bytes */
1175 				       ins.objectid,		/* disk_bytenr */
1176 				       ins.offset,		/* disk_num_bytes */
1177 				       0,			/* offset */
1178 				       1 << BTRFS_ORDERED_COMPRESSED,
1179 				       async_extent->compress_type);
1180 	if (IS_ERR(ordered)) {
1181 		btrfs_drop_extent_map_range(inode, start, end, false);
1182 		ret = PTR_ERR(ordered);
1183 		goto out_free_reserve;
1184 	}
1185 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1186 
1187 	/* Clear dirty, set writeback and unlock the pages. */
1188 	extent_clear_unlock_delalloc(inode, start, end,
1189 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1190 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1191 	btrfs_submit_compressed_write(ordered,
1192 			    async_extent->pages,	/* compressed_pages */
1193 			    async_extent->nr_pages,
1194 			    async_chunk->write_flags, true);
1195 	*alloc_hint = ins.objectid + ins.offset;
1196 done:
1197 	if (async_chunk->blkcg_css)
1198 		kthread_associate_blkcg(NULL);
1199 	kfree(async_extent);
1200 	return;
1201 
1202 out_free_reserve:
1203 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1204 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1205 out_free:
1206 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1207 	extent_clear_unlock_delalloc(inode, start, end,
1208 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1209 				     EXTENT_DELALLOC_NEW |
1210 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1211 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1212 				     PAGE_END_WRITEBACK);
1213 	free_async_extent_pages(async_extent);
1214 	if (async_chunk->blkcg_css)
1215 		kthread_associate_blkcg(NULL);
1216 	btrfs_debug(fs_info,
1217 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1218 		    root->root_key.objectid, btrfs_ino(inode), start,
1219 		    async_extent->ram_size, ret);
1220 	kfree(async_extent);
1221 }
1222 
1223 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1224 				      u64 num_bytes)
1225 {
1226 	struct extent_map_tree *em_tree = &inode->extent_tree;
1227 	struct extent_map *em;
1228 	u64 alloc_hint = 0;
1229 
1230 	read_lock(&em_tree->lock);
1231 	em = search_extent_mapping(em_tree, start, num_bytes);
1232 	if (em) {
1233 		/*
1234 		 * if block start isn't an actual block number then find the
1235 		 * first block in this inode and use that as a hint.  If that
1236 		 * block is also bogus then just don't worry about it.
1237 		 */
1238 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1239 			free_extent_map(em);
1240 			em = search_extent_mapping(em_tree, 0, 0);
1241 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1242 				alloc_hint = em->block_start;
1243 			if (em)
1244 				free_extent_map(em);
1245 		} else {
1246 			alloc_hint = em->block_start;
1247 			free_extent_map(em);
1248 		}
1249 	}
1250 	read_unlock(&em_tree->lock);
1251 
1252 	return alloc_hint;
1253 }
1254 
1255 /*
1256  * when extent_io.c finds a delayed allocation range in the file,
1257  * the call backs end up in this code.  The basic idea is to
1258  * allocate extents on disk for the range, and create ordered data structs
1259  * in ram to track those extents.
1260  *
1261  * locked_page is the page that writepage had locked already.  We use
1262  * it to make sure we don't do extra locks or unlocks.
1263  *
1264  * When this function fails, it unlocks all pages except @locked_page.
1265  *
1266  * When this function successfully creates an inline extent, it returns 1 and
1267  * unlocks all pages including locked_page and starts I/O on them.
1268  * (In reality inline extents are limited to a single page, so locked_page is
1269  * the only page handled anyway).
1270  *
1271  * When this function succeed and creates a normal extent, the page locking
1272  * status depends on the passed in flags:
1273  *
1274  * - If @keep_locked is set, all pages are kept locked.
1275  * - Else all pages except for @locked_page are unlocked.
1276  *
1277  * When a failure happens in the second or later iteration of the
1278  * while-loop, the ordered extents created in previous iterations are kept
1279  * intact. So, the caller must clean them up by calling
1280  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1281  * example.
1282  */
1283 static noinline int cow_file_range(struct btrfs_inode *inode,
1284 				   struct page *locked_page, u64 start, u64 end,
1285 				   u64 *done_offset,
1286 				   bool keep_locked, bool no_inline)
1287 {
1288 	struct btrfs_root *root = inode->root;
1289 	struct btrfs_fs_info *fs_info = root->fs_info;
1290 	u64 alloc_hint = 0;
1291 	u64 orig_start = start;
1292 	u64 num_bytes;
1293 	unsigned long ram_size;
1294 	u64 cur_alloc_size = 0;
1295 	u64 min_alloc_size;
1296 	u64 blocksize = fs_info->sectorsize;
1297 	struct btrfs_key ins;
1298 	struct extent_map *em;
1299 	unsigned clear_bits;
1300 	unsigned long page_ops;
1301 	bool extent_reserved = false;
1302 	int ret = 0;
1303 
1304 	if (btrfs_is_free_space_inode(inode)) {
1305 		ret = -EINVAL;
1306 		goto out_unlock;
1307 	}
1308 
1309 	num_bytes = ALIGN(end - start + 1, blocksize);
1310 	num_bytes = max(blocksize,  num_bytes);
1311 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1312 
1313 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1314 
1315 	/*
1316 	 * Due to the page size limit, for subpage we can only trigger the
1317 	 * writeback for the dirty sectors of page, that means data writeback
1318 	 * is doing more writeback than what we want.
1319 	 *
1320 	 * This is especially unexpected for some call sites like fallocate,
1321 	 * where we only increase i_size after everything is done.
1322 	 * This means we can trigger inline extent even if we didn't want to.
1323 	 * So here we skip inline extent creation completely.
1324 	 */
1325 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1326 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1327 				       end + 1);
1328 
1329 		/* lets try to make an inline extent */
1330 		ret = cow_file_range_inline(inode, actual_end, 0,
1331 					    BTRFS_COMPRESS_NONE, NULL, false);
1332 		if (ret == 0) {
1333 			/*
1334 			 * We use DO_ACCOUNTING here because we need the
1335 			 * delalloc_release_metadata to be run _after_ we drop
1336 			 * our outstanding extent for clearing delalloc for this
1337 			 * range.
1338 			 */
1339 			extent_clear_unlock_delalloc(inode, start, end,
1340 				     locked_page,
1341 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1342 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1343 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1344 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1345 			/*
1346 			 * locked_page is locked by the caller of
1347 			 * writepage_delalloc(), not locked by
1348 			 * __process_pages_contig().
1349 			 *
1350 			 * We can't let __process_pages_contig() to unlock it,
1351 			 * as it doesn't have any subpage::writers recorded.
1352 			 *
1353 			 * Here we manually unlock the page, since the caller
1354 			 * can't determine if it's an inline extent or a
1355 			 * compressed extent.
1356 			 */
1357 			unlock_page(locked_page);
1358 			ret = 1;
1359 			goto done;
1360 		} else if (ret < 0) {
1361 			goto out_unlock;
1362 		}
1363 	}
1364 
1365 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1366 
1367 	/*
1368 	 * Relocation relies on the relocated extents to have exactly the same
1369 	 * size as the original extents. Normally writeback for relocation data
1370 	 * extents follows a NOCOW path because relocation preallocates the
1371 	 * extents. However, due to an operation such as scrub turning a block
1372 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1373 	 * an extent allocated during COW has exactly the requested size and can
1374 	 * not be split into smaller extents, otherwise relocation breaks and
1375 	 * fails during the stage where it updates the bytenr of file extent
1376 	 * items.
1377 	 */
1378 	if (btrfs_is_data_reloc_root(root))
1379 		min_alloc_size = num_bytes;
1380 	else
1381 		min_alloc_size = fs_info->sectorsize;
1382 
1383 	while (num_bytes > 0) {
1384 		struct btrfs_ordered_extent *ordered;
1385 
1386 		cur_alloc_size = num_bytes;
1387 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1388 					   min_alloc_size, 0, alloc_hint,
1389 					   &ins, 1, 1);
1390 		if (ret == -EAGAIN) {
1391 			/*
1392 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1393 			 * file systems, which is an indication that there are
1394 			 * no active zones to allocate from at the moment.
1395 			 *
1396 			 * If this is the first loop iteration, wait for at
1397 			 * least one zone to finish before retrying the
1398 			 * allocation.  Otherwise ask the caller to write out
1399 			 * the already allocated blocks before coming back to
1400 			 * us, or return -ENOSPC if it can't handle retries.
1401 			 */
1402 			ASSERT(btrfs_is_zoned(fs_info));
1403 			if (start == orig_start) {
1404 				wait_on_bit_io(&inode->root->fs_info->flags,
1405 					       BTRFS_FS_NEED_ZONE_FINISH,
1406 					       TASK_UNINTERRUPTIBLE);
1407 				continue;
1408 			}
1409 			if (done_offset) {
1410 				*done_offset = start - 1;
1411 				return 0;
1412 			}
1413 			ret = -ENOSPC;
1414 		}
1415 		if (ret < 0)
1416 			goto out_unlock;
1417 		cur_alloc_size = ins.offset;
1418 		extent_reserved = true;
1419 
1420 		ram_size = ins.offset;
1421 		em = create_io_em(inode, start, ins.offset, /* len */
1422 				  start, /* orig_start */
1423 				  ins.objectid, /* block_start */
1424 				  ins.offset, /* block_len */
1425 				  ins.offset, /* orig_block_len */
1426 				  ram_size, /* ram_bytes */
1427 				  BTRFS_COMPRESS_NONE, /* compress_type */
1428 				  BTRFS_ORDERED_REGULAR /* type */);
1429 		if (IS_ERR(em)) {
1430 			ret = PTR_ERR(em);
1431 			goto out_reserve;
1432 		}
1433 		free_extent_map(em);
1434 
1435 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1436 					ram_size, ins.objectid, cur_alloc_size,
1437 					0, 1 << BTRFS_ORDERED_REGULAR,
1438 					BTRFS_COMPRESS_NONE);
1439 		if (IS_ERR(ordered)) {
1440 			ret = PTR_ERR(ordered);
1441 			goto out_drop_extent_cache;
1442 		}
1443 
1444 		if (btrfs_is_data_reloc_root(root)) {
1445 			ret = btrfs_reloc_clone_csums(ordered);
1446 
1447 			/*
1448 			 * Only drop cache here, and process as normal.
1449 			 *
1450 			 * We must not allow extent_clear_unlock_delalloc()
1451 			 * at out_unlock label to free meta of this ordered
1452 			 * extent, as its meta should be freed by
1453 			 * btrfs_finish_ordered_io().
1454 			 *
1455 			 * So we must continue until @start is increased to
1456 			 * skip current ordered extent.
1457 			 */
1458 			if (ret)
1459 				btrfs_drop_extent_map_range(inode, start,
1460 							    start + ram_size - 1,
1461 							    false);
1462 		}
1463 		btrfs_put_ordered_extent(ordered);
1464 
1465 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1466 
1467 		/*
1468 		 * We're not doing compressed IO, don't unlock the first page
1469 		 * (which the caller expects to stay locked), don't clear any
1470 		 * dirty bits and don't set any writeback bits
1471 		 *
1472 		 * Do set the Ordered (Private2) bit so we know this page was
1473 		 * properly setup for writepage.
1474 		 */
1475 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1476 		page_ops |= PAGE_SET_ORDERED;
1477 
1478 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1479 					     locked_page,
1480 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1481 					     page_ops);
1482 		if (num_bytes < cur_alloc_size)
1483 			num_bytes = 0;
1484 		else
1485 			num_bytes -= cur_alloc_size;
1486 		alloc_hint = ins.objectid + ins.offset;
1487 		start += cur_alloc_size;
1488 		extent_reserved = false;
1489 
1490 		/*
1491 		 * btrfs_reloc_clone_csums() error, since start is increased
1492 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1493 		 * free metadata of current ordered extent, we're OK to exit.
1494 		 */
1495 		if (ret)
1496 			goto out_unlock;
1497 	}
1498 done:
1499 	if (done_offset)
1500 		*done_offset = end;
1501 	return ret;
1502 
1503 out_drop_extent_cache:
1504 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1505 out_reserve:
1506 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1507 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1508 out_unlock:
1509 	/*
1510 	 * Now, we have three regions to clean up:
1511 	 *
1512 	 * |-------(1)----|---(2)---|-------------(3)----------|
1513 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1514 	 *
1515 	 * We process each region below.
1516 	 */
1517 
1518 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1519 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1520 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1521 
1522 	/*
1523 	 * For the range (1). We have already instantiated the ordered extents
1524 	 * for this region. They are cleaned up by
1525 	 * btrfs_cleanup_ordered_extents() in e.g,
1526 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1527 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1528 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1529 	 * function.
1530 	 *
1531 	 * However, in case of @keep_locked, we still need to unlock the pages
1532 	 * (except @locked_page) to ensure all the pages are unlocked.
1533 	 */
1534 	if (keep_locked && orig_start < start) {
1535 		if (!locked_page)
1536 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1537 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1538 					     locked_page, 0, page_ops);
1539 	}
1540 
1541 	/*
1542 	 * For the range (2). If we reserved an extent for our delalloc range
1543 	 * (or a subrange) and failed to create the respective ordered extent,
1544 	 * then it means that when we reserved the extent we decremented the
1545 	 * extent's size from the data space_info's bytes_may_use counter and
1546 	 * incremented the space_info's bytes_reserved counter by the same
1547 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1548 	 * to decrement again the data space_info's bytes_may_use counter,
1549 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1550 	 */
1551 	if (extent_reserved) {
1552 		extent_clear_unlock_delalloc(inode, start,
1553 					     start + cur_alloc_size - 1,
1554 					     locked_page,
1555 					     clear_bits,
1556 					     page_ops);
1557 		start += cur_alloc_size;
1558 	}
1559 
1560 	/*
1561 	 * For the range (3). We never touched the region. In addition to the
1562 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1563 	 * space_info's bytes_may_use counter, reserved in
1564 	 * btrfs_check_data_free_space().
1565 	 */
1566 	if (start < end) {
1567 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1568 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1569 					     clear_bits, page_ops);
1570 	}
1571 	return ret;
1572 }
1573 
1574 /*
1575  * Phase two of compressed writeback.  This is the ordered portion of the code,
1576  * which only gets called in the order the work was queued.  We walk all the
1577  * async extents created by compress_file_range and send them down to the disk.
1578  *
1579  * If called with @do_free == true then it'll try to finish the work and free
1580  * the work struct eventually.
1581  */
1582 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1583 {
1584 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1585 						     work);
1586 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1587 	struct async_extent *async_extent;
1588 	unsigned long nr_pages;
1589 	u64 alloc_hint = 0;
1590 
1591 	if (do_free) {
1592 		struct async_chunk *async_chunk;
1593 		struct async_cow *async_cow;
1594 
1595 		async_chunk = container_of(work, struct async_chunk, work);
1596 		btrfs_add_delayed_iput(async_chunk->inode);
1597 		if (async_chunk->blkcg_css)
1598 			css_put(async_chunk->blkcg_css);
1599 
1600 		async_cow = async_chunk->async_cow;
1601 		if (atomic_dec_and_test(&async_cow->num_chunks))
1602 			kvfree(async_cow);
1603 		return;
1604 	}
1605 
1606 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1607 		PAGE_SHIFT;
1608 
1609 	while (!list_empty(&async_chunk->extents)) {
1610 		async_extent = list_entry(async_chunk->extents.next,
1611 					  struct async_extent, list);
1612 		list_del(&async_extent->list);
1613 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1614 	}
1615 
1616 	/* atomic_sub_return implies a barrier */
1617 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1618 	    5 * SZ_1M)
1619 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1620 }
1621 
1622 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1623 				    struct page *locked_page, u64 start,
1624 				    u64 end, struct writeback_control *wbc)
1625 {
1626 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1627 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1628 	struct async_cow *ctx;
1629 	struct async_chunk *async_chunk;
1630 	unsigned long nr_pages;
1631 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1632 	int i;
1633 	unsigned nofs_flag;
1634 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1635 
1636 	nofs_flag = memalloc_nofs_save();
1637 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1638 	memalloc_nofs_restore(nofs_flag);
1639 	if (!ctx)
1640 		return false;
1641 
1642 	unlock_extent(&inode->io_tree, start, end, NULL);
1643 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1644 
1645 	async_chunk = ctx->chunks;
1646 	atomic_set(&ctx->num_chunks, num_chunks);
1647 
1648 	for (i = 0; i < num_chunks; i++) {
1649 		u64 cur_end = min(end, start + SZ_512K - 1);
1650 
1651 		/*
1652 		 * igrab is called higher up in the call chain, take only the
1653 		 * lightweight reference for the callback lifetime
1654 		 */
1655 		ihold(&inode->vfs_inode);
1656 		async_chunk[i].async_cow = ctx;
1657 		async_chunk[i].inode = inode;
1658 		async_chunk[i].start = start;
1659 		async_chunk[i].end = cur_end;
1660 		async_chunk[i].write_flags = write_flags;
1661 		INIT_LIST_HEAD(&async_chunk[i].extents);
1662 
1663 		/*
1664 		 * The locked_page comes all the way from writepage and its
1665 		 * the original page we were actually given.  As we spread
1666 		 * this large delalloc region across multiple async_chunk
1667 		 * structs, only the first struct needs a pointer to locked_page
1668 		 *
1669 		 * This way we don't need racey decisions about who is supposed
1670 		 * to unlock it.
1671 		 */
1672 		if (locked_page) {
1673 			/*
1674 			 * Depending on the compressibility, the pages might or
1675 			 * might not go through async.  We want all of them to
1676 			 * be accounted against wbc once.  Let's do it here
1677 			 * before the paths diverge.  wbc accounting is used
1678 			 * only for foreign writeback detection and doesn't
1679 			 * need full accuracy.  Just account the whole thing
1680 			 * against the first page.
1681 			 */
1682 			wbc_account_cgroup_owner(wbc, locked_page,
1683 						 cur_end - start);
1684 			async_chunk[i].locked_page = locked_page;
1685 			locked_page = NULL;
1686 		} else {
1687 			async_chunk[i].locked_page = NULL;
1688 		}
1689 
1690 		if (blkcg_css != blkcg_root_css) {
1691 			css_get(blkcg_css);
1692 			async_chunk[i].blkcg_css = blkcg_css;
1693 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1694 		} else {
1695 			async_chunk[i].blkcg_css = NULL;
1696 		}
1697 
1698 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1699 				submit_compressed_extents);
1700 
1701 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1702 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1703 
1704 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1705 
1706 		start = cur_end + 1;
1707 	}
1708 	return true;
1709 }
1710 
1711 /*
1712  * Run the delalloc range from start to end, and write back any dirty pages
1713  * covered by the range.
1714  */
1715 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1716 				     struct page *locked_page, u64 start,
1717 				     u64 end, struct writeback_control *wbc,
1718 				     bool pages_dirty)
1719 {
1720 	u64 done_offset = end;
1721 	int ret;
1722 
1723 	while (start <= end) {
1724 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1725 				     true, false);
1726 		if (ret)
1727 			return ret;
1728 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1729 					  done_offset, wbc, pages_dirty);
1730 		start = done_offset + 1;
1731 	}
1732 
1733 	return 1;
1734 }
1735 
1736 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1737 					u64 bytenr, u64 num_bytes, bool nowait)
1738 {
1739 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1740 	struct btrfs_ordered_sum *sums;
1741 	int ret;
1742 	LIST_HEAD(list);
1743 
1744 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1745 				      &list, 0, nowait);
1746 	if (ret == 0 && list_empty(&list))
1747 		return 0;
1748 
1749 	while (!list_empty(&list)) {
1750 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1751 		list_del(&sums->list);
1752 		kfree(sums);
1753 	}
1754 	if (ret < 0)
1755 		return ret;
1756 	return 1;
1757 }
1758 
1759 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1760 			   const u64 start, const u64 end)
1761 {
1762 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1763 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1764 	const u64 range_bytes = end + 1 - start;
1765 	struct extent_io_tree *io_tree = &inode->io_tree;
1766 	u64 range_start = start;
1767 	u64 count;
1768 	int ret;
1769 
1770 	/*
1771 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1772 	 * made we had not enough available data space and therefore we did not
1773 	 * reserve data space for it, since we though we could do NOCOW for the
1774 	 * respective file range (either there is prealloc extent or the inode
1775 	 * has the NOCOW bit set).
1776 	 *
1777 	 * However when we need to fallback to COW mode (because for example the
1778 	 * block group for the corresponding extent was turned to RO mode by a
1779 	 * scrub or relocation) we need to do the following:
1780 	 *
1781 	 * 1) We increment the bytes_may_use counter of the data space info.
1782 	 *    If COW succeeds, it allocates a new data extent and after doing
1783 	 *    that it decrements the space info's bytes_may_use counter and
1784 	 *    increments its bytes_reserved counter by the same amount (we do
1785 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1786 	 *    bytes_may_use counter to compensate (when space is reserved at
1787 	 *    buffered write time, the bytes_may_use counter is incremented);
1788 	 *
1789 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1790 	 *    that if the COW path fails for any reason, it decrements (through
1791 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1792 	 *    data space info, which we incremented in the step above.
1793 	 *
1794 	 * If we need to fallback to cow and the inode corresponds to a free
1795 	 * space cache inode or an inode of the data relocation tree, we must
1796 	 * also increment bytes_may_use of the data space_info for the same
1797 	 * reason. Space caches and relocated data extents always get a prealloc
1798 	 * extent for them, however scrub or balance may have set the block
1799 	 * group that contains that extent to RO mode and therefore force COW
1800 	 * when starting writeback.
1801 	 */
1802 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1803 				 EXTENT_NORESERVE, 0, NULL);
1804 	if (count > 0 || is_space_ino || is_reloc_ino) {
1805 		u64 bytes = count;
1806 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1807 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1808 
1809 		if (is_space_ino || is_reloc_ino)
1810 			bytes = range_bytes;
1811 
1812 		spin_lock(&sinfo->lock);
1813 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1814 		spin_unlock(&sinfo->lock);
1815 
1816 		if (count > 0)
1817 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1818 					 NULL);
1819 	}
1820 
1821 	/*
1822 	 * Don't try to create inline extents, as a mix of inline extent that
1823 	 * is written out and unlocked directly and a normal NOCOW extent
1824 	 * doesn't work.
1825 	 */
1826 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1827 	ASSERT(ret != 1);
1828 	return ret;
1829 }
1830 
1831 struct can_nocow_file_extent_args {
1832 	/* Input fields. */
1833 
1834 	/* Start file offset of the range we want to NOCOW. */
1835 	u64 start;
1836 	/* End file offset (inclusive) of the range we want to NOCOW. */
1837 	u64 end;
1838 	bool writeback_path;
1839 	bool strict;
1840 	/*
1841 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1842 	 * anymore.
1843 	 */
1844 	bool free_path;
1845 
1846 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1847 
1848 	u64 disk_bytenr;
1849 	u64 disk_num_bytes;
1850 	u64 extent_offset;
1851 	/* Number of bytes that can be written to in NOCOW mode. */
1852 	u64 num_bytes;
1853 };
1854 
1855 /*
1856  * Check if we can NOCOW the file extent that the path points to.
1857  * This function may return with the path released, so the caller should check
1858  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1859  *
1860  * Returns: < 0 on error
1861  *            0 if we can not NOCOW
1862  *            1 if we can NOCOW
1863  */
1864 static int can_nocow_file_extent(struct btrfs_path *path,
1865 				 struct btrfs_key *key,
1866 				 struct btrfs_inode *inode,
1867 				 struct can_nocow_file_extent_args *args)
1868 {
1869 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1870 	struct extent_buffer *leaf = path->nodes[0];
1871 	struct btrfs_root *root = inode->root;
1872 	struct btrfs_file_extent_item *fi;
1873 	u64 extent_end;
1874 	u8 extent_type;
1875 	int can_nocow = 0;
1876 	int ret = 0;
1877 	bool nowait = path->nowait;
1878 
1879 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1880 	extent_type = btrfs_file_extent_type(leaf, fi);
1881 
1882 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1883 		goto out;
1884 
1885 	/* Can't access these fields unless we know it's not an inline extent. */
1886 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1887 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1888 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1889 
1890 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1891 	    extent_type == BTRFS_FILE_EXTENT_REG)
1892 		goto out;
1893 
1894 	/*
1895 	 * If the extent was created before the generation where the last snapshot
1896 	 * for its subvolume was created, then this implies the extent is shared,
1897 	 * hence we must COW.
1898 	 */
1899 	if (!args->strict &&
1900 	    btrfs_file_extent_generation(leaf, fi) <=
1901 	    btrfs_root_last_snapshot(&root->root_item))
1902 		goto out;
1903 
1904 	/* An explicit hole, must COW. */
1905 	if (args->disk_bytenr == 0)
1906 		goto out;
1907 
1908 	/* Compressed/encrypted/encoded extents must be COWed. */
1909 	if (btrfs_file_extent_compression(leaf, fi) ||
1910 	    btrfs_file_extent_encryption(leaf, fi) ||
1911 	    btrfs_file_extent_other_encoding(leaf, fi))
1912 		goto out;
1913 
1914 	extent_end = btrfs_file_extent_end(path);
1915 
1916 	/*
1917 	 * The following checks can be expensive, as they need to take other
1918 	 * locks and do btree or rbtree searches, so release the path to avoid
1919 	 * blocking other tasks for too long.
1920 	 */
1921 	btrfs_release_path(path);
1922 
1923 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1924 				    key->offset - args->extent_offset,
1925 				    args->disk_bytenr, args->strict, path);
1926 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1927 	if (ret != 0)
1928 		goto out;
1929 
1930 	if (args->free_path) {
1931 		/*
1932 		 * We don't need the path anymore, plus through the
1933 		 * csum_exist_in_range() call below we will end up allocating
1934 		 * another path. So free the path to avoid unnecessary extra
1935 		 * memory usage.
1936 		 */
1937 		btrfs_free_path(path);
1938 		path = NULL;
1939 	}
1940 
1941 	/* If there are pending snapshots for this root, we must COW. */
1942 	if (args->writeback_path && !is_freespace_inode &&
1943 	    atomic_read(&root->snapshot_force_cow))
1944 		goto out;
1945 
1946 	args->disk_bytenr += args->extent_offset;
1947 	args->disk_bytenr += args->start - key->offset;
1948 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1949 
1950 	/*
1951 	 * Force COW if csums exist in the range. This ensures that csums for a
1952 	 * given extent are either valid or do not exist.
1953 	 */
1954 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1955 				  nowait);
1956 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1957 	if (ret != 0)
1958 		goto out;
1959 
1960 	can_nocow = 1;
1961  out:
1962 	if (args->free_path && path)
1963 		btrfs_free_path(path);
1964 
1965 	return ret < 0 ? ret : can_nocow;
1966 }
1967 
1968 /*
1969  * when nowcow writeback call back.  This checks for snapshots or COW copies
1970  * of the extents that exist in the file, and COWs the file as required.
1971  *
1972  * If no cow copies or snapshots exist, we write directly to the existing
1973  * blocks on disk
1974  */
1975 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1976 				       struct page *locked_page,
1977 				       const u64 start, const u64 end)
1978 {
1979 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1980 	struct btrfs_root *root = inode->root;
1981 	struct btrfs_path *path;
1982 	u64 cow_start = (u64)-1;
1983 	u64 cur_offset = start;
1984 	int ret;
1985 	bool check_prev = true;
1986 	u64 ino = btrfs_ino(inode);
1987 	struct can_nocow_file_extent_args nocow_args = { 0 };
1988 
1989 	/*
1990 	 * Normally on a zoned device we're only doing COW writes, but in case
1991 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1992 	 * writing sequentially and can end up here as well.
1993 	 */
1994 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1995 
1996 	path = btrfs_alloc_path();
1997 	if (!path) {
1998 		ret = -ENOMEM;
1999 		goto error;
2000 	}
2001 
2002 	nocow_args.end = end;
2003 	nocow_args.writeback_path = true;
2004 
2005 	while (1) {
2006 		struct btrfs_block_group *nocow_bg = NULL;
2007 		struct btrfs_ordered_extent *ordered;
2008 		struct btrfs_key found_key;
2009 		struct btrfs_file_extent_item *fi;
2010 		struct extent_buffer *leaf;
2011 		u64 extent_end;
2012 		u64 ram_bytes;
2013 		u64 nocow_end;
2014 		int extent_type;
2015 		bool is_prealloc;
2016 
2017 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2018 					       cur_offset, 0);
2019 		if (ret < 0)
2020 			goto error;
2021 
2022 		/*
2023 		 * If there is no extent for our range when doing the initial
2024 		 * search, then go back to the previous slot as it will be the
2025 		 * one containing the search offset
2026 		 */
2027 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2028 			leaf = path->nodes[0];
2029 			btrfs_item_key_to_cpu(leaf, &found_key,
2030 					      path->slots[0] - 1);
2031 			if (found_key.objectid == ino &&
2032 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2033 				path->slots[0]--;
2034 		}
2035 		check_prev = false;
2036 next_slot:
2037 		/* Go to next leaf if we have exhausted the current one */
2038 		leaf = path->nodes[0];
2039 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2040 			ret = btrfs_next_leaf(root, path);
2041 			if (ret < 0)
2042 				goto error;
2043 			if (ret > 0)
2044 				break;
2045 			leaf = path->nodes[0];
2046 		}
2047 
2048 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2049 
2050 		/* Didn't find anything for our INO */
2051 		if (found_key.objectid > ino)
2052 			break;
2053 		/*
2054 		 * Keep searching until we find an EXTENT_ITEM or there are no
2055 		 * more extents for this inode
2056 		 */
2057 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2058 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2059 			path->slots[0]++;
2060 			goto next_slot;
2061 		}
2062 
2063 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2064 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2065 		    found_key.offset > end)
2066 			break;
2067 
2068 		/*
2069 		 * If the found extent starts after requested offset, then
2070 		 * adjust extent_end to be right before this extent begins
2071 		 */
2072 		if (found_key.offset > cur_offset) {
2073 			extent_end = found_key.offset;
2074 			extent_type = 0;
2075 			goto must_cow;
2076 		}
2077 
2078 		/*
2079 		 * Found extent which begins before our range and potentially
2080 		 * intersect it
2081 		 */
2082 		fi = btrfs_item_ptr(leaf, path->slots[0],
2083 				    struct btrfs_file_extent_item);
2084 		extent_type = btrfs_file_extent_type(leaf, fi);
2085 		/* If this is triggered then we have a memory corruption. */
2086 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2087 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2088 			ret = -EUCLEAN;
2089 			goto error;
2090 		}
2091 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2092 		extent_end = btrfs_file_extent_end(path);
2093 
2094 		/*
2095 		 * If the extent we got ends before our current offset, skip to
2096 		 * the next extent.
2097 		 */
2098 		if (extent_end <= cur_offset) {
2099 			path->slots[0]++;
2100 			goto next_slot;
2101 		}
2102 
2103 		nocow_args.start = cur_offset;
2104 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2105 		if (ret < 0)
2106 			goto error;
2107 		if (ret == 0)
2108 			goto must_cow;
2109 
2110 		ret = 0;
2111 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2112 		if (!nocow_bg) {
2113 must_cow:
2114 			/*
2115 			 * If we can't perform NOCOW writeback for the range,
2116 			 * then record the beginning of the range that needs to
2117 			 * be COWed.  It will be written out before the next
2118 			 * NOCOW range if we find one, or when exiting this
2119 			 * loop.
2120 			 */
2121 			if (cow_start == (u64)-1)
2122 				cow_start = cur_offset;
2123 			cur_offset = extent_end;
2124 			if (cur_offset > end)
2125 				break;
2126 			if (!path->nodes[0])
2127 				continue;
2128 			path->slots[0]++;
2129 			goto next_slot;
2130 		}
2131 
2132 		/*
2133 		 * COW range from cow_start to found_key.offset - 1. As the key
2134 		 * will contain the beginning of the first extent that can be
2135 		 * NOCOW, following one which needs to be COW'ed
2136 		 */
2137 		if (cow_start != (u64)-1) {
2138 			ret = fallback_to_cow(inode, locked_page,
2139 					      cow_start, found_key.offset - 1);
2140 			cow_start = (u64)-1;
2141 			if (ret) {
2142 				btrfs_dec_nocow_writers(nocow_bg);
2143 				goto error;
2144 			}
2145 		}
2146 
2147 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2148 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2149 		if (is_prealloc) {
2150 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2151 			struct extent_map *em;
2152 
2153 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2154 					  orig_start,
2155 					  nocow_args.disk_bytenr, /* block_start */
2156 					  nocow_args.num_bytes, /* block_len */
2157 					  nocow_args.disk_num_bytes, /* orig_block_len */
2158 					  ram_bytes, BTRFS_COMPRESS_NONE,
2159 					  BTRFS_ORDERED_PREALLOC);
2160 			if (IS_ERR(em)) {
2161 				btrfs_dec_nocow_writers(nocow_bg);
2162 				ret = PTR_ERR(em);
2163 				goto error;
2164 			}
2165 			free_extent_map(em);
2166 		}
2167 
2168 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2169 				nocow_args.num_bytes, nocow_args.num_bytes,
2170 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2171 				is_prealloc
2172 				? (1 << BTRFS_ORDERED_PREALLOC)
2173 				: (1 << BTRFS_ORDERED_NOCOW),
2174 				BTRFS_COMPRESS_NONE);
2175 		btrfs_dec_nocow_writers(nocow_bg);
2176 		if (IS_ERR(ordered)) {
2177 			if (is_prealloc) {
2178 				btrfs_drop_extent_map_range(inode, cur_offset,
2179 							    nocow_end, false);
2180 			}
2181 			ret = PTR_ERR(ordered);
2182 			goto error;
2183 		}
2184 
2185 		if (btrfs_is_data_reloc_root(root))
2186 			/*
2187 			 * Error handled later, as we must prevent
2188 			 * extent_clear_unlock_delalloc() in error handler
2189 			 * from freeing metadata of created ordered extent.
2190 			 */
2191 			ret = btrfs_reloc_clone_csums(ordered);
2192 		btrfs_put_ordered_extent(ordered);
2193 
2194 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2195 					     locked_page, EXTENT_LOCKED |
2196 					     EXTENT_DELALLOC |
2197 					     EXTENT_CLEAR_DATA_RESV,
2198 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2199 
2200 		cur_offset = extent_end;
2201 
2202 		/*
2203 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2204 		 * handler, as metadata for created ordered extent will only
2205 		 * be freed by btrfs_finish_ordered_io().
2206 		 */
2207 		if (ret)
2208 			goto error;
2209 		if (cur_offset > end)
2210 			break;
2211 	}
2212 	btrfs_release_path(path);
2213 
2214 	if (cur_offset <= end && cow_start == (u64)-1)
2215 		cow_start = cur_offset;
2216 
2217 	if (cow_start != (u64)-1) {
2218 		cur_offset = end;
2219 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2220 		cow_start = (u64)-1;
2221 		if (ret)
2222 			goto error;
2223 	}
2224 
2225 	btrfs_free_path(path);
2226 	return 0;
2227 
2228 error:
2229 	/*
2230 	 * If an error happened while a COW region is outstanding, cur_offset
2231 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2232 	 * as well.
2233 	 */
2234 	if (cow_start != (u64)-1)
2235 		cur_offset = cow_start;
2236 	if (cur_offset < end)
2237 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2238 					     locked_page, EXTENT_LOCKED |
2239 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2240 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2241 					     PAGE_START_WRITEBACK |
2242 					     PAGE_END_WRITEBACK);
2243 	btrfs_free_path(path);
2244 	return ret;
2245 }
2246 
2247 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2248 {
2249 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2250 		if (inode->defrag_bytes &&
2251 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2252 			return false;
2253 		return true;
2254 	}
2255 	return false;
2256 }
2257 
2258 /*
2259  * Function to process delayed allocation (create CoW) for ranges which are
2260  * being touched for the first time.
2261  */
2262 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2263 			     u64 start, u64 end, struct writeback_control *wbc)
2264 {
2265 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2266 	int ret;
2267 
2268 	/*
2269 	 * The range must cover part of the @locked_page, or a return of 1
2270 	 * can confuse the caller.
2271 	 */
2272 	ASSERT(!(end <= page_offset(locked_page) ||
2273 		 start >= page_offset(locked_page) + PAGE_SIZE));
2274 
2275 	if (should_nocow(inode, start, end)) {
2276 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2277 		goto out;
2278 	}
2279 
2280 	if (btrfs_inode_can_compress(inode) &&
2281 	    inode_need_compress(inode, start, end) &&
2282 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2283 		return 1;
2284 
2285 	if (zoned)
2286 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2287 				       true);
2288 	else
2289 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2290 				     false, false);
2291 
2292 out:
2293 	if (ret < 0)
2294 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2295 					      end - start + 1);
2296 	return ret;
2297 }
2298 
2299 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2300 				 struct extent_state *orig, u64 split)
2301 {
2302 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2303 	u64 size;
2304 
2305 	/* not delalloc, ignore it */
2306 	if (!(orig->state & EXTENT_DELALLOC))
2307 		return;
2308 
2309 	size = orig->end - orig->start + 1;
2310 	if (size > fs_info->max_extent_size) {
2311 		u32 num_extents;
2312 		u64 new_size;
2313 
2314 		/*
2315 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2316 		 * applies here, just in reverse.
2317 		 */
2318 		new_size = orig->end - split + 1;
2319 		num_extents = count_max_extents(fs_info, new_size);
2320 		new_size = split - orig->start;
2321 		num_extents += count_max_extents(fs_info, new_size);
2322 		if (count_max_extents(fs_info, size) >= num_extents)
2323 			return;
2324 	}
2325 
2326 	spin_lock(&inode->lock);
2327 	btrfs_mod_outstanding_extents(inode, 1);
2328 	spin_unlock(&inode->lock);
2329 }
2330 
2331 /*
2332  * Handle merged delayed allocation extents so we can keep track of new extents
2333  * that are just merged onto old extents, such as when we are doing sequential
2334  * writes, so we can properly account for the metadata space we'll need.
2335  */
2336 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2337 				 struct extent_state *other)
2338 {
2339 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2340 	u64 new_size, old_size;
2341 	u32 num_extents;
2342 
2343 	/* not delalloc, ignore it */
2344 	if (!(other->state & EXTENT_DELALLOC))
2345 		return;
2346 
2347 	if (new->start > other->start)
2348 		new_size = new->end - other->start + 1;
2349 	else
2350 		new_size = other->end - new->start + 1;
2351 
2352 	/* we're not bigger than the max, unreserve the space and go */
2353 	if (new_size <= fs_info->max_extent_size) {
2354 		spin_lock(&inode->lock);
2355 		btrfs_mod_outstanding_extents(inode, -1);
2356 		spin_unlock(&inode->lock);
2357 		return;
2358 	}
2359 
2360 	/*
2361 	 * We have to add up either side to figure out how many extents were
2362 	 * accounted for before we merged into one big extent.  If the number of
2363 	 * extents we accounted for is <= the amount we need for the new range
2364 	 * then we can return, otherwise drop.  Think of it like this
2365 	 *
2366 	 * [ 4k][MAX_SIZE]
2367 	 *
2368 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2369 	 * need 2 outstanding extents, on one side we have 1 and the other side
2370 	 * we have 1 so they are == and we can return.  But in this case
2371 	 *
2372 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2373 	 *
2374 	 * Each range on their own accounts for 2 extents, but merged together
2375 	 * they are only 3 extents worth of accounting, so we need to drop in
2376 	 * this case.
2377 	 */
2378 	old_size = other->end - other->start + 1;
2379 	num_extents = count_max_extents(fs_info, old_size);
2380 	old_size = new->end - new->start + 1;
2381 	num_extents += count_max_extents(fs_info, old_size);
2382 	if (count_max_extents(fs_info, new_size) >= num_extents)
2383 		return;
2384 
2385 	spin_lock(&inode->lock);
2386 	btrfs_mod_outstanding_extents(inode, -1);
2387 	spin_unlock(&inode->lock);
2388 }
2389 
2390 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2391 				      struct btrfs_inode *inode)
2392 {
2393 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2394 
2395 	spin_lock(&root->delalloc_lock);
2396 	if (list_empty(&inode->delalloc_inodes)) {
2397 		list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2398 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, &inode->runtime_flags);
2399 		root->nr_delalloc_inodes++;
2400 		if (root->nr_delalloc_inodes == 1) {
2401 			spin_lock(&fs_info->delalloc_root_lock);
2402 			BUG_ON(!list_empty(&root->delalloc_root));
2403 			list_add_tail(&root->delalloc_root,
2404 				      &fs_info->delalloc_roots);
2405 			spin_unlock(&fs_info->delalloc_root_lock);
2406 		}
2407 	}
2408 	spin_unlock(&root->delalloc_lock);
2409 }
2410 
2411 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2412 				struct btrfs_inode *inode)
2413 {
2414 	struct btrfs_fs_info *fs_info = root->fs_info;
2415 
2416 	if (!list_empty(&inode->delalloc_inodes)) {
2417 		list_del_init(&inode->delalloc_inodes);
2418 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2419 			  &inode->runtime_flags);
2420 		root->nr_delalloc_inodes--;
2421 		if (!root->nr_delalloc_inodes) {
2422 			ASSERT(list_empty(&root->delalloc_inodes));
2423 			spin_lock(&fs_info->delalloc_root_lock);
2424 			BUG_ON(list_empty(&root->delalloc_root));
2425 			list_del_init(&root->delalloc_root);
2426 			spin_unlock(&fs_info->delalloc_root_lock);
2427 		}
2428 	}
2429 }
2430 
2431 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2432 				     struct btrfs_inode *inode)
2433 {
2434 	spin_lock(&root->delalloc_lock);
2435 	__btrfs_del_delalloc_inode(root, inode);
2436 	spin_unlock(&root->delalloc_lock);
2437 }
2438 
2439 /*
2440  * Properly track delayed allocation bytes in the inode and to maintain the
2441  * list of inodes that have pending delalloc work to be done.
2442  */
2443 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2444 			       u32 bits)
2445 {
2446 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2447 
2448 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2449 		WARN_ON(1);
2450 	/*
2451 	 * set_bit and clear bit hooks normally require _irqsave/restore
2452 	 * but in this case, we are only testing for the DELALLOC
2453 	 * bit, which is only set or cleared with irqs on
2454 	 */
2455 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2456 		struct btrfs_root *root = inode->root;
2457 		u64 len = state->end + 1 - state->start;
2458 		u32 num_extents = count_max_extents(fs_info, len);
2459 		bool do_list = !btrfs_is_free_space_inode(inode);
2460 
2461 		spin_lock(&inode->lock);
2462 		btrfs_mod_outstanding_extents(inode, num_extents);
2463 		spin_unlock(&inode->lock);
2464 
2465 		/* For sanity tests */
2466 		if (btrfs_is_testing(fs_info))
2467 			return;
2468 
2469 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2470 					 fs_info->delalloc_batch);
2471 		spin_lock(&inode->lock);
2472 		inode->delalloc_bytes += len;
2473 		if (bits & EXTENT_DEFRAG)
2474 			inode->defrag_bytes += len;
2475 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2476 					 &inode->runtime_flags))
2477 			btrfs_add_delalloc_inodes(root, inode);
2478 		spin_unlock(&inode->lock);
2479 	}
2480 
2481 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2482 	    (bits & EXTENT_DELALLOC_NEW)) {
2483 		spin_lock(&inode->lock);
2484 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2485 		spin_unlock(&inode->lock);
2486 	}
2487 }
2488 
2489 /*
2490  * Once a range is no longer delalloc this function ensures that proper
2491  * accounting happens.
2492  */
2493 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2494 				 struct extent_state *state, u32 bits)
2495 {
2496 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2497 	u64 len = state->end + 1 - state->start;
2498 	u32 num_extents = count_max_extents(fs_info, len);
2499 
2500 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2501 		spin_lock(&inode->lock);
2502 		inode->defrag_bytes -= len;
2503 		spin_unlock(&inode->lock);
2504 	}
2505 
2506 	/*
2507 	 * set_bit and clear bit hooks normally require _irqsave/restore
2508 	 * but in this case, we are only testing for the DELALLOC
2509 	 * bit, which is only set or cleared with irqs on
2510 	 */
2511 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2512 		struct btrfs_root *root = inode->root;
2513 		bool do_list = !btrfs_is_free_space_inode(inode);
2514 
2515 		spin_lock(&inode->lock);
2516 		btrfs_mod_outstanding_extents(inode, -num_extents);
2517 		spin_unlock(&inode->lock);
2518 
2519 		/*
2520 		 * We don't reserve metadata space for space cache inodes so we
2521 		 * don't need to call delalloc_release_metadata if there is an
2522 		 * error.
2523 		 */
2524 		if (bits & EXTENT_CLEAR_META_RESV &&
2525 		    root != fs_info->tree_root)
2526 			btrfs_delalloc_release_metadata(inode, len, false);
2527 
2528 		/* For sanity tests. */
2529 		if (btrfs_is_testing(fs_info))
2530 			return;
2531 
2532 		if (!btrfs_is_data_reloc_root(root) &&
2533 		    do_list && !(state->state & EXTENT_NORESERVE) &&
2534 		    (bits & EXTENT_CLEAR_DATA_RESV))
2535 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2536 
2537 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2538 					 fs_info->delalloc_batch);
2539 		spin_lock(&inode->lock);
2540 		inode->delalloc_bytes -= len;
2541 		if (do_list && inode->delalloc_bytes == 0 &&
2542 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2543 					&inode->runtime_flags))
2544 			btrfs_del_delalloc_inode(root, inode);
2545 		spin_unlock(&inode->lock);
2546 	}
2547 
2548 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2549 	    (bits & EXTENT_DELALLOC_NEW)) {
2550 		spin_lock(&inode->lock);
2551 		ASSERT(inode->new_delalloc_bytes >= len);
2552 		inode->new_delalloc_bytes -= len;
2553 		if (bits & EXTENT_ADD_INODE_BYTES)
2554 			inode_add_bytes(&inode->vfs_inode, len);
2555 		spin_unlock(&inode->lock);
2556 	}
2557 }
2558 
2559 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2560 					struct btrfs_ordered_extent *ordered)
2561 {
2562 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2563 	u64 len = bbio->bio.bi_iter.bi_size;
2564 	struct btrfs_ordered_extent *new;
2565 	int ret;
2566 
2567 	/* Must always be called for the beginning of an ordered extent. */
2568 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2569 		return -EINVAL;
2570 
2571 	/* No need to split if the ordered extent covers the entire bio. */
2572 	if (ordered->disk_num_bytes == len) {
2573 		refcount_inc(&ordered->refs);
2574 		bbio->ordered = ordered;
2575 		return 0;
2576 	}
2577 
2578 	/*
2579 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2580 	 * a pre-existing one.
2581 	 */
2582 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2583 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2584 				       ordered->num_bytes, len,
2585 				       ordered->disk_bytenr);
2586 		if (ret)
2587 			return ret;
2588 	}
2589 
2590 	new = btrfs_split_ordered_extent(ordered, len);
2591 	if (IS_ERR(new))
2592 		return PTR_ERR(new);
2593 	bbio->ordered = new;
2594 	return 0;
2595 }
2596 
2597 /*
2598  * given a list of ordered sums record them in the inode.  This happens
2599  * at IO completion time based on sums calculated at bio submission time.
2600  */
2601 static int add_pending_csums(struct btrfs_trans_handle *trans,
2602 			     struct list_head *list)
2603 {
2604 	struct btrfs_ordered_sum *sum;
2605 	struct btrfs_root *csum_root = NULL;
2606 	int ret;
2607 
2608 	list_for_each_entry(sum, list, list) {
2609 		trans->adding_csums = true;
2610 		if (!csum_root)
2611 			csum_root = btrfs_csum_root(trans->fs_info,
2612 						    sum->logical);
2613 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2614 		trans->adding_csums = false;
2615 		if (ret)
2616 			return ret;
2617 	}
2618 	return 0;
2619 }
2620 
2621 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2622 					 const u64 start,
2623 					 const u64 len,
2624 					 struct extent_state **cached_state)
2625 {
2626 	u64 search_start = start;
2627 	const u64 end = start + len - 1;
2628 
2629 	while (search_start < end) {
2630 		const u64 search_len = end - search_start + 1;
2631 		struct extent_map *em;
2632 		u64 em_len;
2633 		int ret = 0;
2634 
2635 		em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2636 		if (IS_ERR(em))
2637 			return PTR_ERR(em);
2638 
2639 		if (em->block_start != EXTENT_MAP_HOLE)
2640 			goto next;
2641 
2642 		em_len = em->len;
2643 		if (em->start < search_start)
2644 			em_len -= search_start - em->start;
2645 		if (em_len > search_len)
2646 			em_len = search_len;
2647 
2648 		ret = set_extent_bit(&inode->io_tree, search_start,
2649 				     search_start + em_len - 1,
2650 				     EXTENT_DELALLOC_NEW, cached_state);
2651 next:
2652 		search_start = extent_map_end(em);
2653 		free_extent_map(em);
2654 		if (ret)
2655 			return ret;
2656 	}
2657 	return 0;
2658 }
2659 
2660 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2661 			      unsigned int extra_bits,
2662 			      struct extent_state **cached_state)
2663 {
2664 	WARN_ON(PAGE_ALIGNED(end));
2665 
2666 	if (start >= i_size_read(&inode->vfs_inode) &&
2667 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2668 		/*
2669 		 * There can't be any extents following eof in this case so just
2670 		 * set the delalloc new bit for the range directly.
2671 		 */
2672 		extra_bits |= EXTENT_DELALLOC_NEW;
2673 	} else {
2674 		int ret;
2675 
2676 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2677 						    end + 1 - start,
2678 						    cached_state);
2679 		if (ret)
2680 			return ret;
2681 	}
2682 
2683 	return set_extent_bit(&inode->io_tree, start, end,
2684 			      EXTENT_DELALLOC | extra_bits, cached_state);
2685 }
2686 
2687 /* see btrfs_writepage_start_hook for details on why this is required */
2688 struct btrfs_writepage_fixup {
2689 	struct page *page;
2690 	struct btrfs_inode *inode;
2691 	struct btrfs_work work;
2692 };
2693 
2694 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2695 {
2696 	struct btrfs_writepage_fixup *fixup =
2697 		container_of(work, struct btrfs_writepage_fixup, work);
2698 	struct btrfs_ordered_extent *ordered;
2699 	struct extent_state *cached_state = NULL;
2700 	struct extent_changeset *data_reserved = NULL;
2701 	struct page *page = fixup->page;
2702 	struct btrfs_inode *inode = fixup->inode;
2703 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2704 	u64 page_start = page_offset(page);
2705 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2706 	int ret = 0;
2707 	bool free_delalloc_space = true;
2708 
2709 	/*
2710 	 * This is similar to page_mkwrite, we need to reserve the space before
2711 	 * we take the page lock.
2712 	 */
2713 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2714 					   PAGE_SIZE);
2715 again:
2716 	lock_page(page);
2717 
2718 	/*
2719 	 * Before we queued this fixup, we took a reference on the page.
2720 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2721 	 * address space.
2722 	 */
2723 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2724 		/*
2725 		 * Unfortunately this is a little tricky, either
2726 		 *
2727 		 * 1) We got here and our page had already been dealt with and
2728 		 *    we reserved our space, thus ret == 0, so we need to just
2729 		 *    drop our space reservation and bail.  This can happen the
2730 		 *    first time we come into the fixup worker, or could happen
2731 		 *    while waiting for the ordered extent.
2732 		 * 2) Our page was already dealt with, but we happened to get an
2733 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2734 		 *    this case we obviously don't have anything to release, but
2735 		 *    because the page was already dealt with we don't want to
2736 		 *    mark the page with an error, so make sure we're resetting
2737 		 *    ret to 0.  This is why we have this check _before_ the ret
2738 		 *    check, because we do not want to have a surprise ENOSPC
2739 		 *    when the page was already properly dealt with.
2740 		 */
2741 		if (!ret) {
2742 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2743 			btrfs_delalloc_release_space(inode, data_reserved,
2744 						     page_start, PAGE_SIZE,
2745 						     true);
2746 		}
2747 		ret = 0;
2748 		goto out_page;
2749 	}
2750 
2751 	/*
2752 	 * We can't mess with the page state unless it is locked, so now that
2753 	 * it is locked bail if we failed to make our space reservation.
2754 	 */
2755 	if (ret)
2756 		goto out_page;
2757 
2758 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2759 
2760 	/* already ordered? We're done */
2761 	if (PageOrdered(page))
2762 		goto out_reserved;
2763 
2764 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2765 	if (ordered) {
2766 		unlock_extent(&inode->io_tree, page_start, page_end,
2767 			      &cached_state);
2768 		unlock_page(page);
2769 		btrfs_start_ordered_extent(ordered);
2770 		btrfs_put_ordered_extent(ordered);
2771 		goto again;
2772 	}
2773 
2774 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2775 					&cached_state);
2776 	if (ret)
2777 		goto out_reserved;
2778 
2779 	/*
2780 	 * Everything went as planned, we're now the owner of a dirty page with
2781 	 * delayed allocation bits set and space reserved for our COW
2782 	 * destination.
2783 	 *
2784 	 * The page was dirty when we started, nothing should have cleaned it.
2785 	 */
2786 	BUG_ON(!PageDirty(page));
2787 	free_delalloc_space = false;
2788 out_reserved:
2789 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2790 	if (free_delalloc_space)
2791 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2792 					     PAGE_SIZE, true);
2793 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2794 out_page:
2795 	if (ret) {
2796 		/*
2797 		 * We hit ENOSPC or other errors.  Update the mapping and page
2798 		 * to reflect the errors and clean the page.
2799 		 */
2800 		mapping_set_error(page->mapping, ret);
2801 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2802 					       PAGE_SIZE, !ret);
2803 		clear_page_dirty_for_io(page);
2804 	}
2805 	btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2806 	unlock_page(page);
2807 	put_page(page);
2808 	kfree(fixup);
2809 	extent_changeset_free(data_reserved);
2810 	/*
2811 	 * As a precaution, do a delayed iput in case it would be the last iput
2812 	 * that could need flushing space. Recursing back to fixup worker would
2813 	 * deadlock.
2814 	 */
2815 	btrfs_add_delayed_iput(inode);
2816 }
2817 
2818 /*
2819  * There are a few paths in the higher layers of the kernel that directly
2820  * set the page dirty bit without asking the filesystem if it is a
2821  * good idea.  This causes problems because we want to make sure COW
2822  * properly happens and the data=ordered rules are followed.
2823  *
2824  * In our case any range that doesn't have the ORDERED bit set
2825  * hasn't been properly setup for IO.  We kick off an async process
2826  * to fix it up.  The async helper will wait for ordered extents, set
2827  * the delalloc bit and make it safe to write the page.
2828  */
2829 int btrfs_writepage_cow_fixup(struct page *page)
2830 {
2831 	struct inode *inode = page->mapping->host;
2832 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2833 	struct btrfs_writepage_fixup *fixup;
2834 
2835 	/* This page has ordered extent covering it already */
2836 	if (PageOrdered(page))
2837 		return 0;
2838 
2839 	/*
2840 	 * PageChecked is set below when we create a fixup worker for this page,
2841 	 * don't try to create another one if we're already PageChecked()
2842 	 *
2843 	 * The extent_io writepage code will redirty the page if we send back
2844 	 * EAGAIN.
2845 	 */
2846 	if (PageChecked(page))
2847 		return -EAGAIN;
2848 
2849 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2850 	if (!fixup)
2851 		return -EAGAIN;
2852 
2853 	/*
2854 	 * We are already holding a reference to this inode from
2855 	 * write_cache_pages.  We need to hold it because the space reservation
2856 	 * takes place outside of the page lock, and we can't trust
2857 	 * page->mapping outside of the page lock.
2858 	 */
2859 	ihold(inode);
2860 	btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2861 	get_page(page);
2862 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2863 	fixup->page = page;
2864 	fixup->inode = BTRFS_I(inode);
2865 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2866 
2867 	return -EAGAIN;
2868 }
2869 
2870 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2871 				       struct btrfs_inode *inode, u64 file_pos,
2872 				       struct btrfs_file_extent_item *stack_fi,
2873 				       const bool update_inode_bytes,
2874 				       u64 qgroup_reserved)
2875 {
2876 	struct btrfs_root *root = inode->root;
2877 	const u64 sectorsize = root->fs_info->sectorsize;
2878 	struct btrfs_path *path;
2879 	struct extent_buffer *leaf;
2880 	struct btrfs_key ins;
2881 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2882 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2883 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2884 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2885 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2886 	struct btrfs_drop_extents_args drop_args = { 0 };
2887 	int ret;
2888 
2889 	path = btrfs_alloc_path();
2890 	if (!path)
2891 		return -ENOMEM;
2892 
2893 	/*
2894 	 * we may be replacing one extent in the tree with another.
2895 	 * The new extent is pinned in the extent map, and we don't want
2896 	 * to drop it from the cache until it is completely in the btree.
2897 	 *
2898 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2899 	 * the caller is expected to unpin it and allow it to be merged
2900 	 * with the others.
2901 	 */
2902 	drop_args.path = path;
2903 	drop_args.start = file_pos;
2904 	drop_args.end = file_pos + num_bytes;
2905 	drop_args.replace_extent = true;
2906 	drop_args.extent_item_size = sizeof(*stack_fi);
2907 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2908 	if (ret)
2909 		goto out;
2910 
2911 	if (!drop_args.extent_inserted) {
2912 		ins.objectid = btrfs_ino(inode);
2913 		ins.offset = file_pos;
2914 		ins.type = BTRFS_EXTENT_DATA_KEY;
2915 
2916 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2917 					      sizeof(*stack_fi));
2918 		if (ret)
2919 			goto out;
2920 	}
2921 	leaf = path->nodes[0];
2922 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2923 	write_extent_buffer(leaf, stack_fi,
2924 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2925 			sizeof(struct btrfs_file_extent_item));
2926 
2927 	btrfs_mark_buffer_dirty(trans, leaf);
2928 	btrfs_release_path(path);
2929 
2930 	/*
2931 	 * If we dropped an inline extent here, we know the range where it is
2932 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2933 	 * number of bytes only for that range containing the inline extent.
2934 	 * The remaining of the range will be processed when clearning the
2935 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2936 	 */
2937 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2938 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2939 
2940 		inline_size = drop_args.bytes_found - inline_size;
2941 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2942 		drop_args.bytes_found -= inline_size;
2943 		num_bytes -= sectorsize;
2944 	}
2945 
2946 	if (update_inode_bytes)
2947 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2948 
2949 	ins.objectid = disk_bytenr;
2950 	ins.offset = disk_num_bytes;
2951 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2952 
2953 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2954 	if (ret)
2955 		goto out;
2956 
2957 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2958 					       file_pos - offset,
2959 					       qgroup_reserved, &ins);
2960 out:
2961 	btrfs_free_path(path);
2962 
2963 	return ret;
2964 }
2965 
2966 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2967 					 u64 start, u64 len)
2968 {
2969 	struct btrfs_block_group *cache;
2970 
2971 	cache = btrfs_lookup_block_group(fs_info, start);
2972 	ASSERT(cache);
2973 
2974 	spin_lock(&cache->lock);
2975 	cache->delalloc_bytes -= len;
2976 	spin_unlock(&cache->lock);
2977 
2978 	btrfs_put_block_group(cache);
2979 }
2980 
2981 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
2982 					     struct btrfs_ordered_extent *oe)
2983 {
2984 	struct btrfs_file_extent_item stack_fi;
2985 	bool update_inode_bytes;
2986 	u64 num_bytes = oe->num_bytes;
2987 	u64 ram_bytes = oe->ram_bytes;
2988 
2989 	memset(&stack_fi, 0, sizeof(stack_fi));
2990 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
2991 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
2992 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
2993 						   oe->disk_num_bytes);
2994 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
2995 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
2996 		num_bytes = oe->truncated_len;
2997 		ram_bytes = num_bytes;
2998 	}
2999 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3000 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3001 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3002 	/* Encryption and other encoding is reserved and all 0 */
3003 
3004 	/*
3005 	 * For delalloc, when completing an ordered extent we update the inode's
3006 	 * bytes when clearing the range in the inode's io tree, so pass false
3007 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3008 	 * except if the ordered extent was truncated.
3009 	 */
3010 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3011 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3012 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3013 
3014 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3015 					   oe->file_offset, &stack_fi,
3016 					   update_inode_bytes, oe->qgroup_rsv);
3017 }
3018 
3019 /*
3020  * As ordered data IO finishes, this gets called so we can finish
3021  * an ordered extent if the range of bytes in the file it covers are
3022  * fully written.
3023  */
3024 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3025 {
3026 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3027 	struct btrfs_root *root = inode->root;
3028 	struct btrfs_fs_info *fs_info = root->fs_info;
3029 	struct btrfs_trans_handle *trans = NULL;
3030 	struct extent_io_tree *io_tree = &inode->io_tree;
3031 	struct extent_state *cached_state = NULL;
3032 	u64 start, end;
3033 	int compress_type = 0;
3034 	int ret = 0;
3035 	u64 logical_len = ordered_extent->num_bytes;
3036 	bool freespace_inode;
3037 	bool truncated = false;
3038 	bool clear_reserved_extent = true;
3039 	unsigned int clear_bits = EXTENT_DEFRAG;
3040 
3041 	start = ordered_extent->file_offset;
3042 	end = start + ordered_extent->num_bytes - 1;
3043 
3044 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3045 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3046 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3047 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3048 		clear_bits |= EXTENT_DELALLOC_NEW;
3049 
3050 	freespace_inode = btrfs_is_free_space_inode(inode);
3051 	if (!freespace_inode)
3052 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3053 
3054 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3055 		ret = -EIO;
3056 		goto out;
3057 	}
3058 
3059 	if (btrfs_is_zoned(fs_info))
3060 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3061 					ordered_extent->disk_num_bytes);
3062 
3063 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3064 		truncated = true;
3065 		logical_len = ordered_extent->truncated_len;
3066 		/* Truncated the entire extent, don't bother adding */
3067 		if (!logical_len)
3068 			goto out;
3069 	}
3070 
3071 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3072 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3073 
3074 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3075 		if (freespace_inode)
3076 			trans = btrfs_join_transaction_spacecache(root);
3077 		else
3078 			trans = btrfs_join_transaction(root);
3079 		if (IS_ERR(trans)) {
3080 			ret = PTR_ERR(trans);
3081 			trans = NULL;
3082 			goto out;
3083 		}
3084 		trans->block_rsv = &inode->block_rsv;
3085 		ret = btrfs_update_inode_fallback(trans, inode);
3086 		if (ret) /* -ENOMEM or corruption */
3087 			btrfs_abort_transaction(trans, ret);
3088 		goto out;
3089 	}
3090 
3091 	clear_bits |= EXTENT_LOCKED;
3092 	lock_extent(io_tree, start, end, &cached_state);
3093 
3094 	if (freespace_inode)
3095 		trans = btrfs_join_transaction_spacecache(root);
3096 	else
3097 		trans = btrfs_join_transaction(root);
3098 	if (IS_ERR(trans)) {
3099 		ret = PTR_ERR(trans);
3100 		trans = NULL;
3101 		goto out;
3102 	}
3103 
3104 	trans->block_rsv = &inode->block_rsv;
3105 
3106 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3107 	if (ret)
3108 		goto out;
3109 
3110 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3111 		compress_type = ordered_extent->compress_type;
3112 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3113 		BUG_ON(compress_type);
3114 		ret = btrfs_mark_extent_written(trans, inode,
3115 						ordered_extent->file_offset,
3116 						ordered_extent->file_offset +
3117 						logical_len);
3118 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3119 						  ordered_extent->disk_num_bytes);
3120 	} else {
3121 		BUG_ON(root == fs_info->tree_root);
3122 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3123 		if (!ret) {
3124 			clear_reserved_extent = false;
3125 			btrfs_release_delalloc_bytes(fs_info,
3126 						ordered_extent->disk_bytenr,
3127 						ordered_extent->disk_num_bytes);
3128 		}
3129 	}
3130 	unpin_extent_cache(inode, ordered_extent->file_offset,
3131 			   ordered_extent->num_bytes, trans->transid);
3132 	if (ret < 0) {
3133 		btrfs_abort_transaction(trans, ret);
3134 		goto out;
3135 	}
3136 
3137 	ret = add_pending_csums(trans, &ordered_extent->list);
3138 	if (ret) {
3139 		btrfs_abort_transaction(trans, ret);
3140 		goto out;
3141 	}
3142 
3143 	/*
3144 	 * If this is a new delalloc range, clear its new delalloc flag to
3145 	 * update the inode's number of bytes. This needs to be done first
3146 	 * before updating the inode item.
3147 	 */
3148 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3149 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3150 		clear_extent_bit(&inode->io_tree, start, end,
3151 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3152 				 &cached_state);
3153 
3154 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3155 	ret = btrfs_update_inode_fallback(trans, inode);
3156 	if (ret) { /* -ENOMEM or corruption */
3157 		btrfs_abort_transaction(trans, ret);
3158 		goto out;
3159 	}
3160 	ret = 0;
3161 out:
3162 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3163 			 &cached_state);
3164 
3165 	if (trans)
3166 		btrfs_end_transaction(trans);
3167 
3168 	if (ret || truncated) {
3169 		u64 unwritten_start = start;
3170 
3171 		/*
3172 		 * If we failed to finish this ordered extent for any reason we
3173 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3174 		 * extent, and mark the inode with the error if it wasn't
3175 		 * already set.  Any error during writeback would have already
3176 		 * set the mapping error, so we need to set it if we're the ones
3177 		 * marking this ordered extent as failed.
3178 		 */
3179 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3180 					     &ordered_extent->flags))
3181 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3182 
3183 		if (truncated)
3184 			unwritten_start += logical_len;
3185 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3186 
3187 		/*
3188 		 * Drop extent maps for the part of the extent we didn't write.
3189 		 *
3190 		 * We have an exception here for the free_space_inode, this is
3191 		 * because when we do btrfs_get_extent() on the free space inode
3192 		 * we will search the commit root.  If this is a new block group
3193 		 * we won't find anything, and we will trip over the assert in
3194 		 * writepage where we do ASSERT(em->block_start !=
3195 		 * EXTENT_MAP_HOLE).
3196 		 *
3197 		 * Theoretically we could also skip this for any NOCOW extent as
3198 		 * we don't mess with the extent map tree in the NOCOW case, but
3199 		 * for now simply skip this if we are the free space inode.
3200 		 */
3201 		if (!btrfs_is_free_space_inode(inode))
3202 			btrfs_drop_extent_map_range(inode, unwritten_start,
3203 						    end, false);
3204 
3205 		/*
3206 		 * If the ordered extent had an IOERR or something else went
3207 		 * wrong we need to return the space for this ordered extent
3208 		 * back to the allocator.  We only free the extent in the
3209 		 * truncated case if we didn't write out the extent at all.
3210 		 *
3211 		 * If we made it past insert_reserved_file_extent before we
3212 		 * errored out then we don't need to do this as the accounting
3213 		 * has already been done.
3214 		 */
3215 		if ((ret || !logical_len) &&
3216 		    clear_reserved_extent &&
3217 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3218 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3219 			/*
3220 			 * Discard the range before returning it back to the
3221 			 * free space pool
3222 			 */
3223 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3224 				btrfs_discard_extent(fs_info,
3225 						ordered_extent->disk_bytenr,
3226 						ordered_extent->disk_num_bytes,
3227 						NULL);
3228 			btrfs_free_reserved_extent(fs_info,
3229 					ordered_extent->disk_bytenr,
3230 					ordered_extent->disk_num_bytes, 1);
3231 			/*
3232 			 * Actually free the qgroup rsv which was released when
3233 			 * the ordered extent was created.
3234 			 */
3235 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3236 						  ordered_extent->qgroup_rsv,
3237 						  BTRFS_QGROUP_RSV_DATA);
3238 		}
3239 	}
3240 
3241 	/*
3242 	 * This needs to be done to make sure anybody waiting knows we are done
3243 	 * updating everything for this ordered extent.
3244 	 */
3245 	btrfs_remove_ordered_extent(inode, ordered_extent);
3246 
3247 	/* once for us */
3248 	btrfs_put_ordered_extent(ordered_extent);
3249 	/* once for the tree */
3250 	btrfs_put_ordered_extent(ordered_extent);
3251 
3252 	return ret;
3253 }
3254 
3255 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3256 {
3257 	if (btrfs_is_zoned(btrfs_sb(ordered->inode->i_sb)) &&
3258 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3259 	    list_empty(&ordered->bioc_list))
3260 		btrfs_finish_ordered_zoned(ordered);
3261 	return btrfs_finish_one_ordered(ordered);
3262 }
3263 
3264 /*
3265  * Verify the checksum for a single sector without any extra action that depend
3266  * on the type of I/O.
3267  */
3268 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3269 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3270 {
3271 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3272 	char *kaddr;
3273 
3274 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3275 
3276 	shash->tfm = fs_info->csum_shash;
3277 
3278 	kaddr = kmap_local_page(page) + pgoff;
3279 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3280 	kunmap_local(kaddr);
3281 
3282 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3283 		return -EIO;
3284 	return 0;
3285 }
3286 
3287 /*
3288  * Verify the checksum of a single data sector.
3289  *
3290  * @bbio:	btrfs_io_bio which contains the csum
3291  * @dev:	device the sector is on
3292  * @bio_offset:	offset to the beginning of the bio (in bytes)
3293  * @bv:		bio_vec to check
3294  *
3295  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3296  * detected, report the error and fill the corrupted range with zero.
3297  *
3298  * Return %true if the sector is ok or had no checksum to start with, else %false.
3299  */
3300 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3301 			u32 bio_offset, struct bio_vec *bv)
3302 {
3303 	struct btrfs_inode *inode = bbio->inode;
3304 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3305 	u64 file_offset = bbio->file_offset + bio_offset;
3306 	u64 end = file_offset + bv->bv_len - 1;
3307 	u8 *csum_expected;
3308 	u8 csum[BTRFS_CSUM_SIZE];
3309 
3310 	ASSERT(bv->bv_len == fs_info->sectorsize);
3311 
3312 	if (!bbio->csum)
3313 		return true;
3314 
3315 	if (btrfs_is_data_reloc_root(inode->root) &&
3316 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3317 			   NULL)) {
3318 		/* Skip the range without csum for data reloc inode */
3319 		clear_extent_bits(&inode->io_tree, file_offset, end,
3320 				  EXTENT_NODATASUM);
3321 		return true;
3322 	}
3323 
3324 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3325 				fs_info->csum_size;
3326 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3327 				    csum_expected))
3328 		goto zeroit;
3329 	return true;
3330 
3331 zeroit:
3332 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3333 				    bbio->mirror_num);
3334 	if (dev)
3335 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3336 	memzero_bvec(bv);
3337 	return false;
3338 }
3339 
3340 /*
3341  * Perform a delayed iput on @inode.
3342  *
3343  * @inode: The inode we want to perform iput on
3344  *
3345  * This function uses the generic vfs_inode::i_count to track whether we should
3346  * just decrement it (in case it's > 1) or if this is the last iput then link
3347  * the inode to the delayed iput machinery. Delayed iputs are processed at
3348  * transaction commit time/superblock commit/cleaner kthread.
3349  */
3350 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3351 {
3352 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3353 	unsigned long flags;
3354 
3355 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3356 		return;
3357 
3358 	atomic_inc(&fs_info->nr_delayed_iputs);
3359 	/*
3360 	 * Need to be irq safe here because we can be called from either an irq
3361 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3362 	 * context.
3363 	 */
3364 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3365 	ASSERT(list_empty(&inode->delayed_iput));
3366 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3367 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3368 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3369 		wake_up_process(fs_info->cleaner_kthread);
3370 }
3371 
3372 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3373 				    struct btrfs_inode *inode)
3374 {
3375 	list_del_init(&inode->delayed_iput);
3376 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3377 	iput(&inode->vfs_inode);
3378 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3379 		wake_up(&fs_info->delayed_iputs_wait);
3380 	spin_lock_irq(&fs_info->delayed_iput_lock);
3381 }
3382 
3383 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3384 				   struct btrfs_inode *inode)
3385 {
3386 	if (!list_empty(&inode->delayed_iput)) {
3387 		spin_lock_irq(&fs_info->delayed_iput_lock);
3388 		if (!list_empty(&inode->delayed_iput))
3389 			run_delayed_iput_locked(fs_info, inode);
3390 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3391 	}
3392 }
3393 
3394 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3395 {
3396 	/*
3397 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3398 	 * calls btrfs_add_delayed_iput() and that needs to lock
3399 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3400 	 * prevent a deadlock.
3401 	 */
3402 	spin_lock_irq(&fs_info->delayed_iput_lock);
3403 	while (!list_empty(&fs_info->delayed_iputs)) {
3404 		struct btrfs_inode *inode;
3405 
3406 		inode = list_first_entry(&fs_info->delayed_iputs,
3407 				struct btrfs_inode, delayed_iput);
3408 		run_delayed_iput_locked(fs_info, inode);
3409 		if (need_resched()) {
3410 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3411 			cond_resched();
3412 			spin_lock_irq(&fs_info->delayed_iput_lock);
3413 		}
3414 	}
3415 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3416 }
3417 
3418 /*
3419  * Wait for flushing all delayed iputs
3420  *
3421  * @fs_info:  the filesystem
3422  *
3423  * This will wait on any delayed iputs that are currently running with KILLABLE
3424  * set.  Once they are all done running we will return, unless we are killed in
3425  * which case we return EINTR. This helps in user operations like fallocate etc
3426  * that might get blocked on the iputs.
3427  *
3428  * Return EINTR if we were killed, 0 if nothing's pending
3429  */
3430 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3431 {
3432 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3433 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3434 	if (ret)
3435 		return -EINTR;
3436 	return 0;
3437 }
3438 
3439 /*
3440  * This creates an orphan entry for the given inode in case something goes wrong
3441  * in the middle of an unlink.
3442  */
3443 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3444 		     struct btrfs_inode *inode)
3445 {
3446 	int ret;
3447 
3448 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3449 	if (ret && ret != -EEXIST) {
3450 		btrfs_abort_transaction(trans, ret);
3451 		return ret;
3452 	}
3453 
3454 	return 0;
3455 }
3456 
3457 /*
3458  * We have done the delete so we can go ahead and remove the orphan item for
3459  * this particular inode.
3460  */
3461 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3462 			    struct btrfs_inode *inode)
3463 {
3464 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3465 }
3466 
3467 /*
3468  * this cleans up any orphans that may be left on the list from the last use
3469  * of this root.
3470  */
3471 int btrfs_orphan_cleanup(struct btrfs_root *root)
3472 {
3473 	struct btrfs_fs_info *fs_info = root->fs_info;
3474 	struct btrfs_path *path;
3475 	struct extent_buffer *leaf;
3476 	struct btrfs_key key, found_key;
3477 	struct btrfs_trans_handle *trans;
3478 	struct inode *inode;
3479 	u64 last_objectid = 0;
3480 	int ret = 0, nr_unlink = 0;
3481 
3482 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3483 		return 0;
3484 
3485 	path = btrfs_alloc_path();
3486 	if (!path) {
3487 		ret = -ENOMEM;
3488 		goto out;
3489 	}
3490 	path->reada = READA_BACK;
3491 
3492 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3493 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3494 	key.offset = (u64)-1;
3495 
3496 	while (1) {
3497 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3498 		if (ret < 0)
3499 			goto out;
3500 
3501 		/*
3502 		 * if ret == 0 means we found what we were searching for, which
3503 		 * is weird, but possible, so only screw with path if we didn't
3504 		 * find the key and see if we have stuff that matches
3505 		 */
3506 		if (ret > 0) {
3507 			ret = 0;
3508 			if (path->slots[0] == 0)
3509 				break;
3510 			path->slots[0]--;
3511 		}
3512 
3513 		/* pull out the item */
3514 		leaf = path->nodes[0];
3515 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3516 
3517 		/* make sure the item matches what we want */
3518 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3519 			break;
3520 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3521 			break;
3522 
3523 		/* release the path since we're done with it */
3524 		btrfs_release_path(path);
3525 
3526 		/*
3527 		 * this is where we are basically btrfs_lookup, without the
3528 		 * crossing root thing.  we store the inode number in the
3529 		 * offset of the orphan item.
3530 		 */
3531 
3532 		if (found_key.offset == last_objectid) {
3533 			/*
3534 			 * We found the same inode as before. This means we were
3535 			 * not able to remove its items via eviction triggered
3536 			 * by an iput(). A transaction abort may have happened,
3537 			 * due to -ENOSPC for example, so try to grab the error
3538 			 * that lead to a transaction abort, if any.
3539 			 */
3540 			btrfs_err(fs_info,
3541 				  "Error removing orphan entry, stopping orphan cleanup");
3542 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3543 			goto out;
3544 		}
3545 
3546 		last_objectid = found_key.offset;
3547 
3548 		found_key.objectid = found_key.offset;
3549 		found_key.type = BTRFS_INODE_ITEM_KEY;
3550 		found_key.offset = 0;
3551 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3552 		if (IS_ERR(inode)) {
3553 			ret = PTR_ERR(inode);
3554 			inode = NULL;
3555 			if (ret != -ENOENT)
3556 				goto out;
3557 		}
3558 
3559 		if (!inode && root == fs_info->tree_root) {
3560 			struct btrfs_root *dead_root;
3561 			int is_dead_root = 0;
3562 
3563 			/*
3564 			 * This is an orphan in the tree root. Currently these
3565 			 * could come from 2 sources:
3566 			 *  a) a root (snapshot/subvolume) deletion in progress
3567 			 *  b) a free space cache inode
3568 			 * We need to distinguish those two, as the orphan item
3569 			 * for a root must not get deleted before the deletion
3570 			 * of the snapshot/subvolume's tree completes.
3571 			 *
3572 			 * btrfs_find_orphan_roots() ran before us, which has
3573 			 * found all deleted roots and loaded them into
3574 			 * fs_info->fs_roots_radix. So here we can find if an
3575 			 * orphan item corresponds to a deleted root by looking
3576 			 * up the root from that radix tree.
3577 			 */
3578 
3579 			spin_lock(&fs_info->fs_roots_radix_lock);
3580 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3581 							 (unsigned long)found_key.objectid);
3582 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3583 				is_dead_root = 1;
3584 			spin_unlock(&fs_info->fs_roots_radix_lock);
3585 
3586 			if (is_dead_root) {
3587 				/* prevent this orphan from being found again */
3588 				key.offset = found_key.objectid - 1;
3589 				continue;
3590 			}
3591 
3592 		}
3593 
3594 		/*
3595 		 * If we have an inode with links, there are a couple of
3596 		 * possibilities:
3597 		 *
3598 		 * 1. We were halfway through creating fsverity metadata for the
3599 		 * file. In that case, the orphan item represents incomplete
3600 		 * fsverity metadata which must be cleaned up with
3601 		 * btrfs_drop_verity_items and deleting the orphan item.
3602 
3603 		 * 2. Old kernels (before v3.12) used to create an
3604 		 * orphan item for truncate indicating that there were possibly
3605 		 * extent items past i_size that needed to be deleted. In v3.12,
3606 		 * truncate was changed to update i_size in sync with the extent
3607 		 * items, but the (useless) orphan item was still created. Since
3608 		 * v4.18, we don't create the orphan item for truncate at all.
3609 		 *
3610 		 * So, this item could mean that we need to do a truncate, but
3611 		 * only if this filesystem was last used on a pre-v3.12 kernel
3612 		 * and was not cleanly unmounted. The odds of that are quite
3613 		 * slim, and it's a pain to do the truncate now, so just delete
3614 		 * the orphan item.
3615 		 *
3616 		 * It's also possible that this orphan item was supposed to be
3617 		 * deleted but wasn't. The inode number may have been reused,
3618 		 * but either way, we can delete the orphan item.
3619 		 */
3620 		if (!inode || inode->i_nlink) {
3621 			if (inode) {
3622 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3623 				iput(inode);
3624 				inode = NULL;
3625 				if (ret)
3626 					goto out;
3627 			}
3628 			trans = btrfs_start_transaction(root, 1);
3629 			if (IS_ERR(trans)) {
3630 				ret = PTR_ERR(trans);
3631 				goto out;
3632 			}
3633 			btrfs_debug(fs_info, "auto deleting %Lu",
3634 				    found_key.objectid);
3635 			ret = btrfs_del_orphan_item(trans, root,
3636 						    found_key.objectid);
3637 			btrfs_end_transaction(trans);
3638 			if (ret)
3639 				goto out;
3640 			continue;
3641 		}
3642 
3643 		nr_unlink++;
3644 
3645 		/* this will do delete_inode and everything for us */
3646 		iput(inode);
3647 	}
3648 	/* release the path since we're done with it */
3649 	btrfs_release_path(path);
3650 
3651 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3652 		trans = btrfs_join_transaction(root);
3653 		if (!IS_ERR(trans))
3654 			btrfs_end_transaction(trans);
3655 	}
3656 
3657 	if (nr_unlink)
3658 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3659 
3660 out:
3661 	if (ret)
3662 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3663 	btrfs_free_path(path);
3664 	return ret;
3665 }
3666 
3667 /*
3668  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3669  * don't find any xattrs, we know there can't be any acls.
3670  *
3671  * slot is the slot the inode is in, objectid is the objectid of the inode
3672  */
3673 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3674 					  int slot, u64 objectid,
3675 					  int *first_xattr_slot)
3676 {
3677 	u32 nritems = btrfs_header_nritems(leaf);
3678 	struct btrfs_key found_key;
3679 	static u64 xattr_access = 0;
3680 	static u64 xattr_default = 0;
3681 	int scanned = 0;
3682 
3683 	if (!xattr_access) {
3684 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3685 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3686 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3687 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3688 	}
3689 
3690 	slot++;
3691 	*first_xattr_slot = -1;
3692 	while (slot < nritems) {
3693 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3694 
3695 		/* we found a different objectid, there must not be acls */
3696 		if (found_key.objectid != objectid)
3697 			return 0;
3698 
3699 		/* we found an xattr, assume we've got an acl */
3700 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3701 			if (*first_xattr_slot == -1)
3702 				*first_xattr_slot = slot;
3703 			if (found_key.offset == xattr_access ||
3704 			    found_key.offset == xattr_default)
3705 				return 1;
3706 		}
3707 
3708 		/*
3709 		 * we found a key greater than an xattr key, there can't
3710 		 * be any acls later on
3711 		 */
3712 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3713 			return 0;
3714 
3715 		slot++;
3716 		scanned++;
3717 
3718 		/*
3719 		 * it goes inode, inode backrefs, xattrs, extents,
3720 		 * so if there are a ton of hard links to an inode there can
3721 		 * be a lot of backrefs.  Don't waste time searching too hard,
3722 		 * this is just an optimization
3723 		 */
3724 		if (scanned >= 8)
3725 			break;
3726 	}
3727 	/* we hit the end of the leaf before we found an xattr or
3728 	 * something larger than an xattr.  We have to assume the inode
3729 	 * has acls
3730 	 */
3731 	if (*first_xattr_slot == -1)
3732 		*first_xattr_slot = slot;
3733 	return 1;
3734 }
3735 
3736 /*
3737  * read an inode from the btree into the in-memory inode
3738  */
3739 static int btrfs_read_locked_inode(struct inode *inode,
3740 				   struct btrfs_path *in_path)
3741 {
3742 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3743 	struct btrfs_path *path = in_path;
3744 	struct extent_buffer *leaf;
3745 	struct btrfs_inode_item *inode_item;
3746 	struct btrfs_root *root = BTRFS_I(inode)->root;
3747 	struct btrfs_key location;
3748 	unsigned long ptr;
3749 	int maybe_acls;
3750 	u32 rdev;
3751 	int ret;
3752 	bool filled = false;
3753 	int first_xattr_slot;
3754 
3755 	ret = btrfs_fill_inode(inode, &rdev);
3756 	if (!ret)
3757 		filled = true;
3758 
3759 	if (!path) {
3760 		path = btrfs_alloc_path();
3761 		if (!path)
3762 			return -ENOMEM;
3763 	}
3764 
3765 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3766 
3767 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3768 	if (ret) {
3769 		if (path != in_path)
3770 			btrfs_free_path(path);
3771 		return ret;
3772 	}
3773 
3774 	leaf = path->nodes[0];
3775 
3776 	if (filled)
3777 		goto cache_index;
3778 
3779 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3780 				    struct btrfs_inode_item);
3781 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3782 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3783 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3784 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3785 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3786 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3787 			round_up(i_size_read(inode), fs_info->sectorsize));
3788 
3789 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3790 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3791 
3792 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3793 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3794 
3795 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3796 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3797 
3798 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3799 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3800 
3801 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3802 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3803 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3804 
3805 	inode_set_iversion_queried(inode,
3806 				   btrfs_inode_sequence(leaf, inode_item));
3807 	inode->i_generation = BTRFS_I(inode)->generation;
3808 	inode->i_rdev = 0;
3809 	rdev = btrfs_inode_rdev(leaf, inode_item);
3810 
3811 	BTRFS_I(inode)->index_cnt = (u64)-1;
3812 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3813 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3814 
3815 cache_index:
3816 	/*
3817 	 * If we were modified in the current generation and evicted from memory
3818 	 * and then re-read we need to do a full sync since we don't have any
3819 	 * idea about which extents were modified before we were evicted from
3820 	 * cache.
3821 	 *
3822 	 * This is required for both inode re-read from disk and delayed inode
3823 	 * in the delayed_nodes xarray.
3824 	 */
3825 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3826 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3827 			&BTRFS_I(inode)->runtime_flags);
3828 
3829 	/*
3830 	 * We don't persist the id of the transaction where an unlink operation
3831 	 * against the inode was last made. So here we assume the inode might
3832 	 * have been evicted, and therefore the exact value of last_unlink_trans
3833 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3834 	 * between the inode and its parent if the inode is fsync'ed and the log
3835 	 * replayed. For example, in the scenario:
3836 	 *
3837 	 * touch mydir/foo
3838 	 * ln mydir/foo mydir/bar
3839 	 * sync
3840 	 * unlink mydir/bar
3841 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3842 	 * xfs_io -c fsync mydir/foo
3843 	 * <power failure>
3844 	 * mount fs, triggers fsync log replay
3845 	 *
3846 	 * We must make sure that when we fsync our inode foo we also log its
3847 	 * parent inode, otherwise after log replay the parent still has the
3848 	 * dentry with the "bar" name but our inode foo has a link count of 1
3849 	 * and doesn't have an inode ref with the name "bar" anymore.
3850 	 *
3851 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3852 	 * but it guarantees correctness at the expense of occasional full
3853 	 * transaction commits on fsync if our inode is a directory, or if our
3854 	 * inode is not a directory, logging its parent unnecessarily.
3855 	 */
3856 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3857 
3858 	/*
3859 	 * Same logic as for last_unlink_trans. We don't persist the generation
3860 	 * of the last transaction where this inode was used for a reflink
3861 	 * operation, so after eviction and reloading the inode we must be
3862 	 * pessimistic and assume the last transaction that modified the inode.
3863 	 */
3864 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3865 
3866 	path->slots[0]++;
3867 	if (inode->i_nlink != 1 ||
3868 	    path->slots[0] >= btrfs_header_nritems(leaf))
3869 		goto cache_acl;
3870 
3871 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3872 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3873 		goto cache_acl;
3874 
3875 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3876 	if (location.type == BTRFS_INODE_REF_KEY) {
3877 		struct btrfs_inode_ref *ref;
3878 
3879 		ref = (struct btrfs_inode_ref *)ptr;
3880 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3881 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3882 		struct btrfs_inode_extref *extref;
3883 
3884 		extref = (struct btrfs_inode_extref *)ptr;
3885 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3886 								     extref);
3887 	}
3888 cache_acl:
3889 	/*
3890 	 * try to precache a NULL acl entry for files that don't have
3891 	 * any xattrs or acls
3892 	 */
3893 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3894 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3895 	if (first_xattr_slot != -1) {
3896 		path->slots[0] = first_xattr_slot;
3897 		ret = btrfs_load_inode_props(inode, path);
3898 		if (ret)
3899 			btrfs_err(fs_info,
3900 				  "error loading props for ino %llu (root %llu): %d",
3901 				  btrfs_ino(BTRFS_I(inode)),
3902 				  root->root_key.objectid, ret);
3903 	}
3904 	if (path != in_path)
3905 		btrfs_free_path(path);
3906 
3907 	if (!maybe_acls)
3908 		cache_no_acl(inode);
3909 
3910 	switch (inode->i_mode & S_IFMT) {
3911 	case S_IFREG:
3912 		inode->i_mapping->a_ops = &btrfs_aops;
3913 		inode->i_fop = &btrfs_file_operations;
3914 		inode->i_op = &btrfs_file_inode_operations;
3915 		break;
3916 	case S_IFDIR:
3917 		inode->i_fop = &btrfs_dir_file_operations;
3918 		inode->i_op = &btrfs_dir_inode_operations;
3919 		break;
3920 	case S_IFLNK:
3921 		inode->i_op = &btrfs_symlink_inode_operations;
3922 		inode_nohighmem(inode);
3923 		inode->i_mapping->a_ops = &btrfs_aops;
3924 		break;
3925 	default:
3926 		inode->i_op = &btrfs_special_inode_operations;
3927 		init_special_inode(inode, inode->i_mode, rdev);
3928 		break;
3929 	}
3930 
3931 	btrfs_sync_inode_flags_to_i_flags(inode);
3932 	return 0;
3933 }
3934 
3935 /*
3936  * given a leaf and an inode, copy the inode fields into the leaf
3937  */
3938 static void fill_inode_item(struct btrfs_trans_handle *trans,
3939 			    struct extent_buffer *leaf,
3940 			    struct btrfs_inode_item *item,
3941 			    struct inode *inode)
3942 {
3943 	struct btrfs_map_token token;
3944 	u64 flags;
3945 
3946 	btrfs_init_map_token(&token, leaf);
3947 
3948 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3949 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3950 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3951 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3952 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3953 
3954 	btrfs_set_token_timespec_sec(&token, &item->atime,
3955 				     inode_get_atime_sec(inode));
3956 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3957 				      inode_get_atime_nsec(inode));
3958 
3959 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3960 				     inode_get_mtime_sec(inode));
3961 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3962 				      inode_get_mtime_nsec(inode));
3963 
3964 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3965 				     inode_get_ctime_sec(inode));
3966 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3967 				      inode_get_ctime_nsec(inode));
3968 
3969 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3970 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
3971 
3972 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3973 	btrfs_set_token_inode_generation(&token, item,
3974 					 BTRFS_I(inode)->generation);
3975 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3976 	btrfs_set_token_inode_transid(&token, item, trans->transid);
3977 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3978 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
3979 					  BTRFS_I(inode)->ro_flags);
3980 	btrfs_set_token_inode_flags(&token, item, flags);
3981 	btrfs_set_token_inode_block_group(&token, item, 0);
3982 }
3983 
3984 /*
3985  * copy everything in the in-memory inode into the btree.
3986  */
3987 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3988 					    struct btrfs_inode *inode)
3989 {
3990 	struct btrfs_inode_item *inode_item;
3991 	struct btrfs_path *path;
3992 	struct extent_buffer *leaf;
3993 	int ret;
3994 
3995 	path = btrfs_alloc_path();
3996 	if (!path)
3997 		return -ENOMEM;
3998 
3999 	ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
4000 	if (ret) {
4001 		if (ret > 0)
4002 			ret = -ENOENT;
4003 		goto failed;
4004 	}
4005 
4006 	leaf = path->nodes[0];
4007 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4008 				    struct btrfs_inode_item);
4009 
4010 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4011 	btrfs_mark_buffer_dirty(trans, leaf);
4012 	btrfs_set_inode_last_trans(trans, inode);
4013 	ret = 0;
4014 failed:
4015 	btrfs_free_path(path);
4016 	return ret;
4017 }
4018 
4019 /*
4020  * copy everything in the in-memory inode into the btree.
4021  */
4022 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4023 		       struct btrfs_inode *inode)
4024 {
4025 	struct btrfs_root *root = inode->root;
4026 	struct btrfs_fs_info *fs_info = root->fs_info;
4027 	int ret;
4028 
4029 	/*
4030 	 * If the inode is a free space inode, we can deadlock during commit
4031 	 * if we put it into the delayed code.
4032 	 *
4033 	 * The data relocation inode should also be directly updated
4034 	 * without delay
4035 	 */
4036 	if (!btrfs_is_free_space_inode(inode)
4037 	    && !btrfs_is_data_reloc_root(root)
4038 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4039 		btrfs_update_root_times(trans, root);
4040 
4041 		ret = btrfs_delayed_update_inode(trans, inode);
4042 		if (!ret)
4043 			btrfs_set_inode_last_trans(trans, inode);
4044 		return ret;
4045 	}
4046 
4047 	return btrfs_update_inode_item(trans, inode);
4048 }
4049 
4050 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4051 				struct btrfs_inode *inode)
4052 {
4053 	int ret;
4054 
4055 	ret = btrfs_update_inode(trans, inode);
4056 	if (ret == -ENOSPC)
4057 		return btrfs_update_inode_item(trans, inode);
4058 	return ret;
4059 }
4060 
4061 /*
4062  * unlink helper that gets used here in inode.c and in the tree logging
4063  * recovery code.  It remove a link in a directory with a given name, and
4064  * also drops the back refs in the inode to the directory
4065  */
4066 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4067 				struct btrfs_inode *dir,
4068 				struct btrfs_inode *inode,
4069 				const struct fscrypt_str *name,
4070 				struct btrfs_rename_ctx *rename_ctx)
4071 {
4072 	struct btrfs_root *root = dir->root;
4073 	struct btrfs_fs_info *fs_info = root->fs_info;
4074 	struct btrfs_path *path;
4075 	int ret = 0;
4076 	struct btrfs_dir_item *di;
4077 	u64 index;
4078 	u64 ino = btrfs_ino(inode);
4079 	u64 dir_ino = btrfs_ino(dir);
4080 
4081 	path = btrfs_alloc_path();
4082 	if (!path) {
4083 		ret = -ENOMEM;
4084 		goto out;
4085 	}
4086 
4087 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4088 	if (IS_ERR_OR_NULL(di)) {
4089 		ret = di ? PTR_ERR(di) : -ENOENT;
4090 		goto err;
4091 	}
4092 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4093 	if (ret)
4094 		goto err;
4095 	btrfs_release_path(path);
4096 
4097 	/*
4098 	 * If we don't have dir index, we have to get it by looking up
4099 	 * the inode ref, since we get the inode ref, remove it directly,
4100 	 * it is unnecessary to do delayed deletion.
4101 	 *
4102 	 * But if we have dir index, needn't search inode ref to get it.
4103 	 * Since the inode ref is close to the inode item, it is better
4104 	 * that we delay to delete it, and just do this deletion when
4105 	 * we update the inode item.
4106 	 */
4107 	if (inode->dir_index) {
4108 		ret = btrfs_delayed_delete_inode_ref(inode);
4109 		if (!ret) {
4110 			index = inode->dir_index;
4111 			goto skip_backref;
4112 		}
4113 	}
4114 
4115 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4116 	if (ret) {
4117 		btrfs_info(fs_info,
4118 			"failed to delete reference to %.*s, inode %llu parent %llu",
4119 			name->len, name->name, ino, dir_ino);
4120 		btrfs_abort_transaction(trans, ret);
4121 		goto err;
4122 	}
4123 skip_backref:
4124 	if (rename_ctx)
4125 		rename_ctx->index = index;
4126 
4127 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4128 	if (ret) {
4129 		btrfs_abort_transaction(trans, ret);
4130 		goto err;
4131 	}
4132 
4133 	/*
4134 	 * If we are in a rename context, we don't need to update anything in the
4135 	 * log. That will be done later during the rename by btrfs_log_new_name().
4136 	 * Besides that, doing it here would only cause extra unnecessary btree
4137 	 * operations on the log tree, increasing latency for applications.
4138 	 */
4139 	if (!rename_ctx) {
4140 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4141 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4142 	}
4143 
4144 	/*
4145 	 * If we have a pending delayed iput we could end up with the final iput
4146 	 * being run in btrfs-cleaner context.  If we have enough of these built
4147 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4148 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4149 	 * the inode we can run the delayed iput here without any issues as the
4150 	 * final iput won't be done until after we drop the ref we're currently
4151 	 * holding.
4152 	 */
4153 	btrfs_run_delayed_iput(fs_info, inode);
4154 err:
4155 	btrfs_free_path(path);
4156 	if (ret)
4157 		goto out;
4158 
4159 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4160 	inode_inc_iversion(&inode->vfs_inode);
4161 	inode_inc_iversion(&dir->vfs_inode);
4162  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4163 	ret = btrfs_update_inode(trans, dir);
4164 out:
4165 	return ret;
4166 }
4167 
4168 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4169 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4170 		       const struct fscrypt_str *name)
4171 {
4172 	int ret;
4173 
4174 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4175 	if (!ret) {
4176 		drop_nlink(&inode->vfs_inode);
4177 		ret = btrfs_update_inode(trans, inode);
4178 	}
4179 	return ret;
4180 }
4181 
4182 /*
4183  * helper to start transaction for unlink and rmdir.
4184  *
4185  * unlink and rmdir are special in btrfs, they do not always free space, so
4186  * if we cannot make our reservations the normal way try and see if there is
4187  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4188  * allow the unlink to occur.
4189  */
4190 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4191 {
4192 	struct btrfs_root *root = dir->root;
4193 
4194 	return btrfs_start_transaction_fallback_global_rsv(root,
4195 						   BTRFS_UNLINK_METADATA_UNITS);
4196 }
4197 
4198 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4199 {
4200 	struct btrfs_trans_handle *trans;
4201 	struct inode *inode = d_inode(dentry);
4202 	int ret;
4203 	struct fscrypt_name fname;
4204 
4205 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4206 	if (ret)
4207 		return ret;
4208 
4209 	/* This needs to handle no-key deletions later on */
4210 
4211 	trans = __unlink_start_trans(BTRFS_I(dir));
4212 	if (IS_ERR(trans)) {
4213 		ret = PTR_ERR(trans);
4214 		goto fscrypt_free;
4215 	}
4216 
4217 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4218 				false);
4219 
4220 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4221 				 &fname.disk_name);
4222 	if (ret)
4223 		goto end_trans;
4224 
4225 	if (inode->i_nlink == 0) {
4226 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4227 		if (ret)
4228 			goto end_trans;
4229 	}
4230 
4231 end_trans:
4232 	btrfs_end_transaction(trans);
4233 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4234 fscrypt_free:
4235 	fscrypt_free_filename(&fname);
4236 	return ret;
4237 }
4238 
4239 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4240 			       struct btrfs_inode *dir, struct dentry *dentry)
4241 {
4242 	struct btrfs_root *root = dir->root;
4243 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4244 	struct btrfs_path *path;
4245 	struct extent_buffer *leaf;
4246 	struct btrfs_dir_item *di;
4247 	struct btrfs_key key;
4248 	u64 index;
4249 	int ret;
4250 	u64 objectid;
4251 	u64 dir_ino = btrfs_ino(dir);
4252 	struct fscrypt_name fname;
4253 
4254 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4255 	if (ret)
4256 		return ret;
4257 
4258 	/* This needs to handle no-key deletions later on */
4259 
4260 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4261 		objectid = inode->root->root_key.objectid;
4262 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4263 		objectid = inode->location.objectid;
4264 	} else {
4265 		WARN_ON(1);
4266 		fscrypt_free_filename(&fname);
4267 		return -EINVAL;
4268 	}
4269 
4270 	path = btrfs_alloc_path();
4271 	if (!path) {
4272 		ret = -ENOMEM;
4273 		goto out;
4274 	}
4275 
4276 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4277 				   &fname.disk_name, -1);
4278 	if (IS_ERR_OR_NULL(di)) {
4279 		ret = di ? PTR_ERR(di) : -ENOENT;
4280 		goto out;
4281 	}
4282 
4283 	leaf = path->nodes[0];
4284 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4285 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4286 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4287 	if (ret) {
4288 		btrfs_abort_transaction(trans, ret);
4289 		goto out;
4290 	}
4291 	btrfs_release_path(path);
4292 
4293 	/*
4294 	 * This is a placeholder inode for a subvolume we didn't have a
4295 	 * reference to at the time of the snapshot creation.  In the meantime
4296 	 * we could have renamed the real subvol link into our snapshot, so
4297 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4298 	 * Instead simply lookup the dir_index_item for this entry so we can
4299 	 * remove it.  Otherwise we know we have a ref to the root and we can
4300 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4301 	 */
4302 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4303 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4304 		if (IS_ERR_OR_NULL(di)) {
4305 			if (!di)
4306 				ret = -ENOENT;
4307 			else
4308 				ret = PTR_ERR(di);
4309 			btrfs_abort_transaction(trans, ret);
4310 			goto out;
4311 		}
4312 
4313 		leaf = path->nodes[0];
4314 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4315 		index = key.offset;
4316 		btrfs_release_path(path);
4317 	} else {
4318 		ret = btrfs_del_root_ref(trans, objectid,
4319 					 root->root_key.objectid, dir_ino,
4320 					 &index, &fname.disk_name);
4321 		if (ret) {
4322 			btrfs_abort_transaction(trans, ret);
4323 			goto out;
4324 		}
4325 	}
4326 
4327 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4328 	if (ret) {
4329 		btrfs_abort_transaction(trans, ret);
4330 		goto out;
4331 	}
4332 
4333 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4334 	inode_inc_iversion(&dir->vfs_inode);
4335 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4336 	ret = btrfs_update_inode_fallback(trans, dir);
4337 	if (ret)
4338 		btrfs_abort_transaction(trans, ret);
4339 out:
4340 	btrfs_free_path(path);
4341 	fscrypt_free_filename(&fname);
4342 	return ret;
4343 }
4344 
4345 /*
4346  * Helper to check if the subvolume references other subvolumes or if it's
4347  * default.
4348  */
4349 static noinline int may_destroy_subvol(struct btrfs_root *root)
4350 {
4351 	struct btrfs_fs_info *fs_info = root->fs_info;
4352 	struct btrfs_path *path;
4353 	struct btrfs_dir_item *di;
4354 	struct btrfs_key key;
4355 	struct fscrypt_str name = FSTR_INIT("default", 7);
4356 	u64 dir_id;
4357 	int ret;
4358 
4359 	path = btrfs_alloc_path();
4360 	if (!path)
4361 		return -ENOMEM;
4362 
4363 	/* Make sure this root isn't set as the default subvol */
4364 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4365 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4366 				   dir_id, &name, 0);
4367 	if (di && !IS_ERR(di)) {
4368 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4369 		if (key.objectid == root->root_key.objectid) {
4370 			ret = -EPERM;
4371 			btrfs_err(fs_info,
4372 				  "deleting default subvolume %llu is not allowed",
4373 				  key.objectid);
4374 			goto out;
4375 		}
4376 		btrfs_release_path(path);
4377 	}
4378 
4379 	key.objectid = root->root_key.objectid;
4380 	key.type = BTRFS_ROOT_REF_KEY;
4381 	key.offset = (u64)-1;
4382 
4383 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4384 	if (ret < 0)
4385 		goto out;
4386 	BUG_ON(ret == 0);
4387 
4388 	ret = 0;
4389 	if (path->slots[0] > 0) {
4390 		path->slots[0]--;
4391 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4392 		if (key.objectid == root->root_key.objectid &&
4393 		    key.type == BTRFS_ROOT_REF_KEY)
4394 			ret = -ENOTEMPTY;
4395 	}
4396 out:
4397 	btrfs_free_path(path);
4398 	return ret;
4399 }
4400 
4401 /* Delete all dentries for inodes belonging to the root */
4402 static void btrfs_prune_dentries(struct btrfs_root *root)
4403 {
4404 	struct btrfs_fs_info *fs_info = root->fs_info;
4405 	struct rb_node *node;
4406 	struct rb_node *prev;
4407 	struct btrfs_inode *entry;
4408 	struct inode *inode;
4409 	u64 objectid = 0;
4410 
4411 	if (!BTRFS_FS_ERROR(fs_info))
4412 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4413 
4414 	spin_lock(&root->inode_lock);
4415 again:
4416 	node = root->inode_tree.rb_node;
4417 	prev = NULL;
4418 	while (node) {
4419 		prev = node;
4420 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4421 
4422 		if (objectid < btrfs_ino(entry))
4423 			node = node->rb_left;
4424 		else if (objectid > btrfs_ino(entry))
4425 			node = node->rb_right;
4426 		else
4427 			break;
4428 	}
4429 	if (!node) {
4430 		while (prev) {
4431 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4432 			if (objectid <= btrfs_ino(entry)) {
4433 				node = prev;
4434 				break;
4435 			}
4436 			prev = rb_next(prev);
4437 		}
4438 	}
4439 	while (node) {
4440 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4441 		objectid = btrfs_ino(entry) + 1;
4442 		inode = igrab(&entry->vfs_inode);
4443 		if (inode) {
4444 			spin_unlock(&root->inode_lock);
4445 			if (atomic_read(&inode->i_count) > 1)
4446 				d_prune_aliases(inode);
4447 			/*
4448 			 * btrfs_drop_inode will have it removed from the inode
4449 			 * cache when its usage count hits zero.
4450 			 */
4451 			iput(inode);
4452 			cond_resched();
4453 			spin_lock(&root->inode_lock);
4454 			goto again;
4455 		}
4456 
4457 		if (cond_resched_lock(&root->inode_lock))
4458 			goto again;
4459 
4460 		node = rb_next(node);
4461 	}
4462 	spin_unlock(&root->inode_lock);
4463 }
4464 
4465 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4466 {
4467 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4468 	struct btrfs_root *root = dir->root;
4469 	struct inode *inode = d_inode(dentry);
4470 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4471 	struct btrfs_trans_handle *trans;
4472 	struct btrfs_block_rsv block_rsv;
4473 	u64 root_flags;
4474 	int ret;
4475 
4476 	down_write(&fs_info->subvol_sem);
4477 
4478 	/*
4479 	 * Don't allow to delete a subvolume with send in progress. This is
4480 	 * inside the inode lock so the error handling that has to drop the bit
4481 	 * again is not run concurrently.
4482 	 */
4483 	spin_lock(&dest->root_item_lock);
4484 	if (dest->send_in_progress) {
4485 		spin_unlock(&dest->root_item_lock);
4486 		btrfs_warn(fs_info,
4487 			   "attempt to delete subvolume %llu during send",
4488 			   dest->root_key.objectid);
4489 		ret = -EPERM;
4490 		goto out_up_write;
4491 	}
4492 	if (atomic_read(&dest->nr_swapfiles)) {
4493 		spin_unlock(&dest->root_item_lock);
4494 		btrfs_warn(fs_info,
4495 			   "attempt to delete subvolume %llu with active swapfile",
4496 			   root->root_key.objectid);
4497 		ret = -EPERM;
4498 		goto out_up_write;
4499 	}
4500 	root_flags = btrfs_root_flags(&dest->root_item);
4501 	btrfs_set_root_flags(&dest->root_item,
4502 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4503 	spin_unlock(&dest->root_item_lock);
4504 
4505 	ret = may_destroy_subvol(dest);
4506 	if (ret)
4507 		goto out_undead;
4508 
4509 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4510 	/*
4511 	 * One for dir inode,
4512 	 * two for dir entries,
4513 	 * two for root ref/backref.
4514 	 */
4515 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4516 	if (ret)
4517 		goto out_undead;
4518 
4519 	trans = btrfs_start_transaction(root, 0);
4520 	if (IS_ERR(trans)) {
4521 		ret = PTR_ERR(trans);
4522 		goto out_release;
4523 	}
4524 	trans->block_rsv = &block_rsv;
4525 	trans->bytes_reserved = block_rsv.size;
4526 
4527 	btrfs_record_snapshot_destroy(trans, dir);
4528 
4529 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4530 	if (ret) {
4531 		btrfs_abort_transaction(trans, ret);
4532 		goto out_end_trans;
4533 	}
4534 
4535 	ret = btrfs_record_root_in_trans(trans, dest);
4536 	if (ret) {
4537 		btrfs_abort_transaction(trans, ret);
4538 		goto out_end_trans;
4539 	}
4540 
4541 	memset(&dest->root_item.drop_progress, 0,
4542 		sizeof(dest->root_item.drop_progress));
4543 	btrfs_set_root_drop_level(&dest->root_item, 0);
4544 	btrfs_set_root_refs(&dest->root_item, 0);
4545 
4546 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4547 		ret = btrfs_insert_orphan_item(trans,
4548 					fs_info->tree_root,
4549 					dest->root_key.objectid);
4550 		if (ret) {
4551 			btrfs_abort_transaction(trans, ret);
4552 			goto out_end_trans;
4553 		}
4554 	}
4555 
4556 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4557 				  BTRFS_UUID_KEY_SUBVOL,
4558 				  dest->root_key.objectid);
4559 	if (ret && ret != -ENOENT) {
4560 		btrfs_abort_transaction(trans, ret);
4561 		goto out_end_trans;
4562 	}
4563 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4564 		ret = btrfs_uuid_tree_remove(trans,
4565 					  dest->root_item.received_uuid,
4566 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4567 					  dest->root_key.objectid);
4568 		if (ret && ret != -ENOENT) {
4569 			btrfs_abort_transaction(trans, ret);
4570 			goto out_end_trans;
4571 		}
4572 	}
4573 
4574 	free_anon_bdev(dest->anon_dev);
4575 	dest->anon_dev = 0;
4576 out_end_trans:
4577 	trans->block_rsv = NULL;
4578 	trans->bytes_reserved = 0;
4579 	ret = btrfs_end_transaction(trans);
4580 	inode->i_flags |= S_DEAD;
4581 out_release:
4582 	btrfs_subvolume_release_metadata(root, &block_rsv);
4583 out_undead:
4584 	if (ret) {
4585 		spin_lock(&dest->root_item_lock);
4586 		root_flags = btrfs_root_flags(&dest->root_item);
4587 		btrfs_set_root_flags(&dest->root_item,
4588 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4589 		spin_unlock(&dest->root_item_lock);
4590 	}
4591 out_up_write:
4592 	up_write(&fs_info->subvol_sem);
4593 	if (!ret) {
4594 		d_invalidate(dentry);
4595 		btrfs_prune_dentries(dest);
4596 		ASSERT(dest->send_in_progress == 0);
4597 	}
4598 
4599 	return ret;
4600 }
4601 
4602 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4603 {
4604 	struct inode *inode = d_inode(dentry);
4605 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4606 	int err = 0;
4607 	struct btrfs_trans_handle *trans;
4608 	u64 last_unlink_trans;
4609 	struct fscrypt_name fname;
4610 
4611 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4612 		return -ENOTEMPTY;
4613 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4614 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4615 			btrfs_err(fs_info,
4616 			"extent tree v2 doesn't support snapshot deletion yet");
4617 			return -EOPNOTSUPP;
4618 		}
4619 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4620 	}
4621 
4622 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4623 	if (err)
4624 		return err;
4625 
4626 	/* This needs to handle no-key deletions later on */
4627 
4628 	trans = __unlink_start_trans(BTRFS_I(dir));
4629 	if (IS_ERR(trans)) {
4630 		err = PTR_ERR(trans);
4631 		goto out_notrans;
4632 	}
4633 
4634 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4635 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4636 		goto out;
4637 	}
4638 
4639 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4640 	if (err)
4641 		goto out;
4642 
4643 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4644 
4645 	/* now the directory is empty */
4646 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4647 				 &fname.disk_name);
4648 	if (!err) {
4649 		btrfs_i_size_write(BTRFS_I(inode), 0);
4650 		/*
4651 		 * Propagate the last_unlink_trans value of the deleted dir to
4652 		 * its parent directory. This is to prevent an unrecoverable
4653 		 * log tree in the case we do something like this:
4654 		 * 1) create dir foo
4655 		 * 2) create snapshot under dir foo
4656 		 * 3) delete the snapshot
4657 		 * 4) rmdir foo
4658 		 * 5) mkdir foo
4659 		 * 6) fsync foo or some file inside foo
4660 		 */
4661 		if (last_unlink_trans >= trans->transid)
4662 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4663 	}
4664 out:
4665 	btrfs_end_transaction(trans);
4666 out_notrans:
4667 	btrfs_btree_balance_dirty(fs_info);
4668 	fscrypt_free_filename(&fname);
4669 
4670 	return err;
4671 }
4672 
4673 /*
4674  * Read, zero a chunk and write a block.
4675  *
4676  * @inode - inode that we're zeroing
4677  * @from - the offset to start zeroing
4678  * @len - the length to zero, 0 to zero the entire range respective to the
4679  *	offset
4680  * @front - zero up to the offset instead of from the offset on
4681  *
4682  * This will find the block for the "from" offset and cow the block and zero the
4683  * part we want to zero.  This is used with truncate and hole punching.
4684  */
4685 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4686 			 int front)
4687 {
4688 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4689 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4690 	struct extent_io_tree *io_tree = &inode->io_tree;
4691 	struct btrfs_ordered_extent *ordered;
4692 	struct extent_state *cached_state = NULL;
4693 	struct extent_changeset *data_reserved = NULL;
4694 	bool only_release_metadata = false;
4695 	u32 blocksize = fs_info->sectorsize;
4696 	pgoff_t index = from >> PAGE_SHIFT;
4697 	unsigned offset = from & (blocksize - 1);
4698 	struct page *page;
4699 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4700 	size_t write_bytes = blocksize;
4701 	int ret = 0;
4702 	u64 block_start;
4703 	u64 block_end;
4704 
4705 	if (IS_ALIGNED(offset, blocksize) &&
4706 	    (!len || IS_ALIGNED(len, blocksize)))
4707 		goto out;
4708 
4709 	block_start = round_down(from, blocksize);
4710 	block_end = block_start + blocksize - 1;
4711 
4712 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4713 					  blocksize, false);
4714 	if (ret < 0) {
4715 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4716 			/* For nocow case, no need to reserve data space */
4717 			only_release_metadata = true;
4718 		} else {
4719 			goto out;
4720 		}
4721 	}
4722 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4723 	if (ret < 0) {
4724 		if (!only_release_metadata)
4725 			btrfs_free_reserved_data_space(inode, data_reserved,
4726 						       block_start, blocksize);
4727 		goto out;
4728 	}
4729 again:
4730 	page = find_or_create_page(mapping, index, mask);
4731 	if (!page) {
4732 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4733 					     blocksize, true);
4734 		btrfs_delalloc_release_extents(inode, blocksize);
4735 		ret = -ENOMEM;
4736 		goto out;
4737 	}
4738 
4739 	if (!PageUptodate(page)) {
4740 		ret = btrfs_read_folio(NULL, page_folio(page));
4741 		lock_page(page);
4742 		if (page->mapping != mapping) {
4743 			unlock_page(page);
4744 			put_page(page);
4745 			goto again;
4746 		}
4747 		if (!PageUptodate(page)) {
4748 			ret = -EIO;
4749 			goto out_unlock;
4750 		}
4751 	}
4752 
4753 	/*
4754 	 * We unlock the page after the io is completed and then re-lock it
4755 	 * above.  release_folio() could have come in between that and cleared
4756 	 * folio private, but left the page in the mapping.  Set the page mapped
4757 	 * here to make sure it's properly set for the subpage stuff.
4758 	 */
4759 	ret = set_page_extent_mapped(page);
4760 	if (ret < 0)
4761 		goto out_unlock;
4762 
4763 	wait_on_page_writeback(page);
4764 
4765 	lock_extent(io_tree, block_start, block_end, &cached_state);
4766 
4767 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4768 	if (ordered) {
4769 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4770 		unlock_page(page);
4771 		put_page(page);
4772 		btrfs_start_ordered_extent(ordered);
4773 		btrfs_put_ordered_extent(ordered);
4774 		goto again;
4775 	}
4776 
4777 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4778 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4779 			 &cached_state);
4780 
4781 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4782 					&cached_state);
4783 	if (ret) {
4784 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4785 		goto out_unlock;
4786 	}
4787 
4788 	if (offset != blocksize) {
4789 		if (!len)
4790 			len = blocksize - offset;
4791 		if (front)
4792 			memzero_page(page, (block_start - page_offset(page)),
4793 				     offset);
4794 		else
4795 			memzero_page(page, (block_start - page_offset(page)) + offset,
4796 				     len);
4797 	}
4798 	btrfs_folio_clear_checked(fs_info, page_folio(page), block_start,
4799 				  block_end + 1 - block_start);
4800 	btrfs_folio_set_dirty(fs_info, page_folio(page), block_start,
4801 			      block_end + 1 - block_start);
4802 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4803 
4804 	if (only_release_metadata)
4805 		set_extent_bit(&inode->io_tree, block_start, block_end,
4806 			       EXTENT_NORESERVE, NULL);
4807 
4808 out_unlock:
4809 	if (ret) {
4810 		if (only_release_metadata)
4811 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4812 		else
4813 			btrfs_delalloc_release_space(inode, data_reserved,
4814 					block_start, blocksize, true);
4815 	}
4816 	btrfs_delalloc_release_extents(inode, blocksize);
4817 	unlock_page(page);
4818 	put_page(page);
4819 out:
4820 	if (only_release_metadata)
4821 		btrfs_check_nocow_unlock(inode);
4822 	extent_changeset_free(data_reserved);
4823 	return ret;
4824 }
4825 
4826 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4827 {
4828 	struct btrfs_root *root = inode->root;
4829 	struct btrfs_fs_info *fs_info = root->fs_info;
4830 	struct btrfs_trans_handle *trans;
4831 	struct btrfs_drop_extents_args drop_args = { 0 };
4832 	int ret;
4833 
4834 	/*
4835 	 * If NO_HOLES is enabled, we don't need to do anything.
4836 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4837 	 * or btrfs_update_inode() will be called, which guarantee that the next
4838 	 * fsync will know this inode was changed and needs to be logged.
4839 	 */
4840 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4841 		return 0;
4842 
4843 	/*
4844 	 * 1 - for the one we're dropping
4845 	 * 1 - for the one we're adding
4846 	 * 1 - for updating the inode.
4847 	 */
4848 	trans = btrfs_start_transaction(root, 3);
4849 	if (IS_ERR(trans))
4850 		return PTR_ERR(trans);
4851 
4852 	drop_args.start = offset;
4853 	drop_args.end = offset + len;
4854 	drop_args.drop_cache = true;
4855 
4856 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4857 	if (ret) {
4858 		btrfs_abort_transaction(trans, ret);
4859 		btrfs_end_transaction(trans);
4860 		return ret;
4861 	}
4862 
4863 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4864 	if (ret) {
4865 		btrfs_abort_transaction(trans, ret);
4866 	} else {
4867 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4868 		btrfs_update_inode(trans, inode);
4869 	}
4870 	btrfs_end_transaction(trans);
4871 	return ret;
4872 }
4873 
4874 /*
4875  * This function puts in dummy file extents for the area we're creating a hole
4876  * for.  So if we are truncating this file to a larger size we need to insert
4877  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4878  * the range between oldsize and size
4879  */
4880 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4881 {
4882 	struct btrfs_root *root = inode->root;
4883 	struct btrfs_fs_info *fs_info = root->fs_info;
4884 	struct extent_io_tree *io_tree = &inode->io_tree;
4885 	struct extent_map *em = NULL;
4886 	struct extent_state *cached_state = NULL;
4887 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4888 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4889 	u64 last_byte;
4890 	u64 cur_offset;
4891 	u64 hole_size;
4892 	int err = 0;
4893 
4894 	/*
4895 	 * If our size started in the middle of a block we need to zero out the
4896 	 * rest of the block before we expand the i_size, otherwise we could
4897 	 * expose stale data.
4898 	 */
4899 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4900 	if (err)
4901 		return err;
4902 
4903 	if (size <= hole_start)
4904 		return 0;
4905 
4906 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4907 					   &cached_state);
4908 	cur_offset = hole_start;
4909 	while (1) {
4910 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4911 				      block_end - cur_offset);
4912 		if (IS_ERR(em)) {
4913 			err = PTR_ERR(em);
4914 			em = NULL;
4915 			break;
4916 		}
4917 		last_byte = min(extent_map_end(em), block_end);
4918 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4919 		hole_size = last_byte - cur_offset;
4920 
4921 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4922 			struct extent_map *hole_em;
4923 
4924 			err = maybe_insert_hole(inode, cur_offset, hole_size);
4925 			if (err)
4926 				break;
4927 
4928 			err = btrfs_inode_set_file_extent_range(inode,
4929 							cur_offset, hole_size);
4930 			if (err)
4931 				break;
4932 
4933 			hole_em = alloc_extent_map();
4934 			if (!hole_em) {
4935 				btrfs_drop_extent_map_range(inode, cur_offset,
4936 						    cur_offset + hole_size - 1,
4937 						    false);
4938 				btrfs_set_inode_full_sync(inode);
4939 				goto next;
4940 			}
4941 			hole_em->start = cur_offset;
4942 			hole_em->len = hole_size;
4943 			hole_em->orig_start = cur_offset;
4944 
4945 			hole_em->block_start = EXTENT_MAP_HOLE;
4946 			hole_em->block_len = 0;
4947 			hole_em->orig_block_len = 0;
4948 			hole_em->ram_bytes = hole_size;
4949 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4950 
4951 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4952 			free_extent_map(hole_em);
4953 		} else {
4954 			err = btrfs_inode_set_file_extent_range(inode,
4955 							cur_offset, hole_size);
4956 			if (err)
4957 				break;
4958 		}
4959 next:
4960 		free_extent_map(em);
4961 		em = NULL;
4962 		cur_offset = last_byte;
4963 		if (cur_offset >= block_end)
4964 			break;
4965 	}
4966 	free_extent_map(em);
4967 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
4968 	return err;
4969 }
4970 
4971 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4972 {
4973 	struct btrfs_root *root = BTRFS_I(inode)->root;
4974 	struct btrfs_trans_handle *trans;
4975 	loff_t oldsize = i_size_read(inode);
4976 	loff_t newsize = attr->ia_size;
4977 	int mask = attr->ia_valid;
4978 	int ret;
4979 
4980 	/*
4981 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4982 	 * special case where we need to update the times despite not having
4983 	 * these flags set.  For all other operations the VFS set these flags
4984 	 * explicitly if it wants a timestamp update.
4985 	 */
4986 	if (newsize != oldsize) {
4987 		inode_inc_iversion(inode);
4988 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
4989 			inode_set_mtime_to_ts(inode,
4990 					      inode_set_ctime_current(inode));
4991 		}
4992 	}
4993 
4994 	if (newsize > oldsize) {
4995 		/*
4996 		 * Don't do an expanding truncate while snapshotting is ongoing.
4997 		 * This is to ensure the snapshot captures a fully consistent
4998 		 * state of this file - if the snapshot captures this expanding
4999 		 * truncation, it must capture all writes that happened before
5000 		 * this truncation.
5001 		 */
5002 		btrfs_drew_write_lock(&root->snapshot_lock);
5003 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5004 		if (ret) {
5005 			btrfs_drew_write_unlock(&root->snapshot_lock);
5006 			return ret;
5007 		}
5008 
5009 		trans = btrfs_start_transaction(root, 1);
5010 		if (IS_ERR(trans)) {
5011 			btrfs_drew_write_unlock(&root->snapshot_lock);
5012 			return PTR_ERR(trans);
5013 		}
5014 
5015 		i_size_write(inode, newsize);
5016 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5017 		pagecache_isize_extended(inode, oldsize, newsize);
5018 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5019 		btrfs_drew_write_unlock(&root->snapshot_lock);
5020 		btrfs_end_transaction(trans);
5021 	} else {
5022 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5023 
5024 		if (btrfs_is_zoned(fs_info)) {
5025 			ret = btrfs_wait_ordered_range(inode,
5026 					ALIGN(newsize, fs_info->sectorsize),
5027 					(u64)-1);
5028 			if (ret)
5029 				return ret;
5030 		}
5031 
5032 		/*
5033 		 * We're truncating a file that used to have good data down to
5034 		 * zero. Make sure any new writes to the file get on disk
5035 		 * on close.
5036 		 */
5037 		if (newsize == 0)
5038 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5039 				&BTRFS_I(inode)->runtime_flags);
5040 
5041 		truncate_setsize(inode, newsize);
5042 
5043 		inode_dio_wait(inode);
5044 
5045 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5046 		if (ret && inode->i_nlink) {
5047 			int err;
5048 
5049 			/*
5050 			 * Truncate failed, so fix up the in-memory size. We
5051 			 * adjusted disk_i_size down as we removed extents, so
5052 			 * wait for disk_i_size to be stable and then update the
5053 			 * in-memory size to match.
5054 			 */
5055 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5056 			if (err)
5057 				return err;
5058 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5059 		}
5060 	}
5061 
5062 	return ret;
5063 }
5064 
5065 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5066 			 struct iattr *attr)
5067 {
5068 	struct inode *inode = d_inode(dentry);
5069 	struct btrfs_root *root = BTRFS_I(inode)->root;
5070 	int err;
5071 
5072 	if (btrfs_root_readonly(root))
5073 		return -EROFS;
5074 
5075 	err = setattr_prepare(idmap, dentry, attr);
5076 	if (err)
5077 		return err;
5078 
5079 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5080 		err = btrfs_setsize(inode, attr);
5081 		if (err)
5082 			return err;
5083 	}
5084 
5085 	if (attr->ia_valid) {
5086 		setattr_copy(idmap, inode, attr);
5087 		inode_inc_iversion(inode);
5088 		err = btrfs_dirty_inode(BTRFS_I(inode));
5089 
5090 		if (!err && attr->ia_valid & ATTR_MODE)
5091 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5092 	}
5093 
5094 	return err;
5095 }
5096 
5097 /*
5098  * While truncating the inode pages during eviction, we get the VFS
5099  * calling btrfs_invalidate_folio() against each folio of the inode. This
5100  * is slow because the calls to btrfs_invalidate_folio() result in a
5101  * huge amount of calls to lock_extent() and clear_extent_bit(),
5102  * which keep merging and splitting extent_state structures over and over,
5103  * wasting lots of time.
5104  *
5105  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5106  * skip all those expensive operations on a per folio basis and do only
5107  * the ordered io finishing, while we release here the extent_map and
5108  * extent_state structures, without the excessive merging and splitting.
5109  */
5110 static void evict_inode_truncate_pages(struct inode *inode)
5111 {
5112 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5113 	struct rb_node *node;
5114 
5115 	ASSERT(inode->i_state & I_FREEING);
5116 	truncate_inode_pages_final(&inode->i_data);
5117 
5118 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5119 
5120 	/*
5121 	 * Keep looping until we have no more ranges in the io tree.
5122 	 * We can have ongoing bios started by readahead that have
5123 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5124 	 * still in progress (unlocked the pages in the bio but did not yet
5125 	 * unlocked the ranges in the io tree). Therefore this means some
5126 	 * ranges can still be locked and eviction started because before
5127 	 * submitting those bios, which are executed by a separate task (work
5128 	 * queue kthread), inode references (inode->i_count) were not taken
5129 	 * (which would be dropped in the end io callback of each bio).
5130 	 * Therefore here we effectively end up waiting for those bios and
5131 	 * anyone else holding locked ranges without having bumped the inode's
5132 	 * reference count - if we don't do it, when they access the inode's
5133 	 * io_tree to unlock a range it may be too late, leading to an
5134 	 * use-after-free issue.
5135 	 */
5136 	spin_lock(&io_tree->lock);
5137 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5138 		struct extent_state *state;
5139 		struct extent_state *cached_state = NULL;
5140 		u64 start;
5141 		u64 end;
5142 		unsigned state_flags;
5143 
5144 		node = rb_first(&io_tree->state);
5145 		state = rb_entry(node, struct extent_state, rb_node);
5146 		start = state->start;
5147 		end = state->end;
5148 		state_flags = state->state;
5149 		spin_unlock(&io_tree->lock);
5150 
5151 		lock_extent(io_tree, start, end, &cached_state);
5152 
5153 		/*
5154 		 * If still has DELALLOC flag, the extent didn't reach disk,
5155 		 * and its reserved space won't be freed by delayed_ref.
5156 		 * So we need to free its reserved space here.
5157 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5158 		 *
5159 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5160 		 */
5161 		if (state_flags & EXTENT_DELALLOC)
5162 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5163 					       end - start + 1, NULL);
5164 
5165 		clear_extent_bit(io_tree, start, end,
5166 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5167 				 &cached_state);
5168 
5169 		cond_resched();
5170 		spin_lock(&io_tree->lock);
5171 	}
5172 	spin_unlock(&io_tree->lock);
5173 }
5174 
5175 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5176 							struct btrfs_block_rsv *rsv)
5177 {
5178 	struct btrfs_fs_info *fs_info = root->fs_info;
5179 	struct btrfs_trans_handle *trans;
5180 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5181 	int ret;
5182 
5183 	/*
5184 	 * Eviction should be taking place at some place safe because of our
5185 	 * delayed iputs.  However the normal flushing code will run delayed
5186 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5187 	 *
5188 	 * We reserve the delayed_refs_extra here again because we can't use
5189 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5190 	 * above.  We reserve our extra bit here because we generate a ton of
5191 	 * delayed refs activity by truncating.
5192 	 *
5193 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5194 	 * if we fail to make this reservation we can re-try without the
5195 	 * delayed_refs_extra so we can make some forward progress.
5196 	 */
5197 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5198 				     BTRFS_RESERVE_FLUSH_EVICT);
5199 	if (ret) {
5200 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5201 					     BTRFS_RESERVE_FLUSH_EVICT);
5202 		if (ret) {
5203 			btrfs_warn(fs_info,
5204 				   "could not allocate space for delete; will truncate on mount");
5205 			return ERR_PTR(-ENOSPC);
5206 		}
5207 		delayed_refs_extra = 0;
5208 	}
5209 
5210 	trans = btrfs_join_transaction(root);
5211 	if (IS_ERR(trans))
5212 		return trans;
5213 
5214 	if (delayed_refs_extra) {
5215 		trans->block_rsv = &fs_info->trans_block_rsv;
5216 		trans->bytes_reserved = delayed_refs_extra;
5217 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5218 					delayed_refs_extra, true);
5219 	}
5220 	return trans;
5221 }
5222 
5223 void btrfs_evict_inode(struct inode *inode)
5224 {
5225 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5226 	struct btrfs_trans_handle *trans;
5227 	struct btrfs_root *root = BTRFS_I(inode)->root;
5228 	struct btrfs_block_rsv *rsv = NULL;
5229 	int ret;
5230 
5231 	trace_btrfs_inode_evict(inode);
5232 
5233 	if (!root) {
5234 		fsverity_cleanup_inode(inode);
5235 		clear_inode(inode);
5236 		return;
5237 	}
5238 
5239 	evict_inode_truncate_pages(inode);
5240 
5241 	if (inode->i_nlink &&
5242 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5243 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5244 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5245 		goto out;
5246 
5247 	if (is_bad_inode(inode))
5248 		goto out;
5249 
5250 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5251 		goto out;
5252 
5253 	if (inode->i_nlink > 0) {
5254 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5255 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5256 		goto out;
5257 	}
5258 
5259 	/*
5260 	 * This makes sure the inode item in tree is uptodate and the space for
5261 	 * the inode update is released.
5262 	 */
5263 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5264 	if (ret)
5265 		goto out;
5266 
5267 	/*
5268 	 * This drops any pending insert or delete operations we have for this
5269 	 * inode.  We could have a delayed dir index deletion queued up, but
5270 	 * we're removing the inode completely so that'll be taken care of in
5271 	 * the truncate.
5272 	 */
5273 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5274 
5275 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5276 	if (!rsv)
5277 		goto out;
5278 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5279 	rsv->failfast = true;
5280 
5281 	btrfs_i_size_write(BTRFS_I(inode), 0);
5282 
5283 	while (1) {
5284 		struct btrfs_truncate_control control = {
5285 			.inode = BTRFS_I(inode),
5286 			.ino = btrfs_ino(BTRFS_I(inode)),
5287 			.new_size = 0,
5288 			.min_type = 0,
5289 		};
5290 
5291 		trans = evict_refill_and_join(root, rsv);
5292 		if (IS_ERR(trans))
5293 			goto out;
5294 
5295 		trans->block_rsv = rsv;
5296 
5297 		ret = btrfs_truncate_inode_items(trans, root, &control);
5298 		trans->block_rsv = &fs_info->trans_block_rsv;
5299 		btrfs_end_transaction(trans);
5300 		/*
5301 		 * We have not added new delayed items for our inode after we
5302 		 * have flushed its delayed items, so no need to throttle on
5303 		 * delayed items. However we have modified extent buffers.
5304 		 */
5305 		btrfs_btree_balance_dirty_nodelay(fs_info);
5306 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5307 			goto out;
5308 		else if (!ret)
5309 			break;
5310 	}
5311 
5312 	/*
5313 	 * Errors here aren't a big deal, it just means we leave orphan items in
5314 	 * the tree. They will be cleaned up on the next mount. If the inode
5315 	 * number gets reused, cleanup deletes the orphan item without doing
5316 	 * anything, and unlink reuses the existing orphan item.
5317 	 *
5318 	 * If it turns out that we are dropping too many of these, we might want
5319 	 * to add a mechanism for retrying these after a commit.
5320 	 */
5321 	trans = evict_refill_and_join(root, rsv);
5322 	if (!IS_ERR(trans)) {
5323 		trans->block_rsv = rsv;
5324 		btrfs_orphan_del(trans, BTRFS_I(inode));
5325 		trans->block_rsv = &fs_info->trans_block_rsv;
5326 		btrfs_end_transaction(trans);
5327 	}
5328 
5329 out:
5330 	btrfs_free_block_rsv(fs_info, rsv);
5331 	/*
5332 	 * If we didn't successfully delete, the orphan item will still be in
5333 	 * the tree and we'll retry on the next mount. Again, we might also want
5334 	 * to retry these periodically in the future.
5335 	 */
5336 	btrfs_remove_delayed_node(BTRFS_I(inode));
5337 	fsverity_cleanup_inode(inode);
5338 	clear_inode(inode);
5339 }
5340 
5341 /*
5342  * Return the key found in the dir entry in the location pointer, fill @type
5343  * with BTRFS_FT_*, and return 0.
5344  *
5345  * If no dir entries were found, returns -ENOENT.
5346  * If found a corrupted location in dir entry, returns -EUCLEAN.
5347  */
5348 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5349 			       struct btrfs_key *location, u8 *type)
5350 {
5351 	struct btrfs_dir_item *di;
5352 	struct btrfs_path *path;
5353 	struct btrfs_root *root = dir->root;
5354 	int ret = 0;
5355 	struct fscrypt_name fname;
5356 
5357 	path = btrfs_alloc_path();
5358 	if (!path)
5359 		return -ENOMEM;
5360 
5361 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5362 	if (ret < 0)
5363 		goto out;
5364 	/*
5365 	 * fscrypt_setup_filename() should never return a positive value, but
5366 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5367 	 */
5368 	ASSERT(ret == 0);
5369 
5370 	/* This needs to handle no-key deletions later on */
5371 
5372 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5373 				   &fname.disk_name, 0);
5374 	if (IS_ERR_OR_NULL(di)) {
5375 		ret = di ? PTR_ERR(di) : -ENOENT;
5376 		goto out;
5377 	}
5378 
5379 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5380 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5381 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5382 		ret = -EUCLEAN;
5383 		btrfs_warn(root->fs_info,
5384 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5385 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5386 			   location->objectid, location->type, location->offset);
5387 	}
5388 	if (!ret)
5389 		*type = btrfs_dir_ftype(path->nodes[0], di);
5390 out:
5391 	fscrypt_free_filename(&fname);
5392 	btrfs_free_path(path);
5393 	return ret;
5394 }
5395 
5396 /*
5397  * when we hit a tree root in a directory, the btrfs part of the inode
5398  * needs to be changed to reflect the root directory of the tree root.  This
5399  * is kind of like crossing a mount point.
5400  */
5401 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5402 				    struct btrfs_inode *dir,
5403 				    struct dentry *dentry,
5404 				    struct btrfs_key *location,
5405 				    struct btrfs_root **sub_root)
5406 {
5407 	struct btrfs_path *path;
5408 	struct btrfs_root *new_root;
5409 	struct btrfs_root_ref *ref;
5410 	struct extent_buffer *leaf;
5411 	struct btrfs_key key;
5412 	int ret;
5413 	int err = 0;
5414 	struct fscrypt_name fname;
5415 
5416 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5417 	if (ret)
5418 		return ret;
5419 
5420 	path = btrfs_alloc_path();
5421 	if (!path) {
5422 		err = -ENOMEM;
5423 		goto out;
5424 	}
5425 
5426 	err = -ENOENT;
5427 	key.objectid = dir->root->root_key.objectid;
5428 	key.type = BTRFS_ROOT_REF_KEY;
5429 	key.offset = location->objectid;
5430 
5431 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5432 	if (ret) {
5433 		if (ret < 0)
5434 			err = ret;
5435 		goto out;
5436 	}
5437 
5438 	leaf = path->nodes[0];
5439 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5440 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5441 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5442 		goto out;
5443 
5444 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5445 				   (unsigned long)(ref + 1), fname.disk_name.len);
5446 	if (ret)
5447 		goto out;
5448 
5449 	btrfs_release_path(path);
5450 
5451 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5452 	if (IS_ERR(new_root)) {
5453 		err = PTR_ERR(new_root);
5454 		goto out;
5455 	}
5456 
5457 	*sub_root = new_root;
5458 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5459 	location->type = BTRFS_INODE_ITEM_KEY;
5460 	location->offset = 0;
5461 	err = 0;
5462 out:
5463 	btrfs_free_path(path);
5464 	fscrypt_free_filename(&fname);
5465 	return err;
5466 }
5467 
5468 static void inode_tree_add(struct btrfs_inode *inode)
5469 {
5470 	struct btrfs_root *root = inode->root;
5471 	struct btrfs_inode *entry;
5472 	struct rb_node **p;
5473 	struct rb_node *parent;
5474 	struct rb_node *new = &inode->rb_node;
5475 	u64 ino = btrfs_ino(inode);
5476 
5477 	if (inode_unhashed(&inode->vfs_inode))
5478 		return;
5479 	parent = NULL;
5480 	spin_lock(&root->inode_lock);
5481 	p = &root->inode_tree.rb_node;
5482 	while (*p) {
5483 		parent = *p;
5484 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5485 
5486 		if (ino < btrfs_ino(entry))
5487 			p = &parent->rb_left;
5488 		else if (ino > btrfs_ino(entry))
5489 			p = &parent->rb_right;
5490 		else {
5491 			WARN_ON(!(entry->vfs_inode.i_state &
5492 				  (I_WILL_FREE | I_FREEING)));
5493 			rb_replace_node(parent, new, &root->inode_tree);
5494 			RB_CLEAR_NODE(parent);
5495 			spin_unlock(&root->inode_lock);
5496 			return;
5497 		}
5498 	}
5499 	rb_link_node(new, parent, p);
5500 	rb_insert_color(new, &root->inode_tree);
5501 	spin_unlock(&root->inode_lock);
5502 }
5503 
5504 static void inode_tree_del(struct btrfs_inode *inode)
5505 {
5506 	struct btrfs_root *root = inode->root;
5507 	int empty = 0;
5508 
5509 	spin_lock(&root->inode_lock);
5510 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5511 		rb_erase(&inode->rb_node, &root->inode_tree);
5512 		RB_CLEAR_NODE(&inode->rb_node);
5513 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5514 	}
5515 	spin_unlock(&root->inode_lock);
5516 
5517 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5518 		spin_lock(&root->inode_lock);
5519 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5520 		spin_unlock(&root->inode_lock);
5521 		if (empty)
5522 			btrfs_add_dead_root(root);
5523 	}
5524 }
5525 
5526 
5527 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5528 {
5529 	struct btrfs_iget_args *args = p;
5530 
5531 	inode->i_ino = args->ino;
5532 	BTRFS_I(inode)->location.objectid = args->ino;
5533 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5534 	BTRFS_I(inode)->location.offset = 0;
5535 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5536 	BUG_ON(args->root && !BTRFS_I(inode)->root);
5537 
5538 	if (args->root && args->root == args->root->fs_info->tree_root &&
5539 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5540 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5541 			&BTRFS_I(inode)->runtime_flags);
5542 	return 0;
5543 }
5544 
5545 static int btrfs_find_actor(struct inode *inode, void *opaque)
5546 {
5547 	struct btrfs_iget_args *args = opaque;
5548 
5549 	return args->ino == BTRFS_I(inode)->location.objectid &&
5550 		args->root == BTRFS_I(inode)->root;
5551 }
5552 
5553 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5554 				       struct btrfs_root *root)
5555 {
5556 	struct inode *inode;
5557 	struct btrfs_iget_args args;
5558 	unsigned long hashval = btrfs_inode_hash(ino, root);
5559 
5560 	args.ino = ino;
5561 	args.root = root;
5562 
5563 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5564 			     btrfs_init_locked_inode,
5565 			     (void *)&args);
5566 	return inode;
5567 }
5568 
5569 /*
5570  * Get an inode object given its inode number and corresponding root.
5571  * Path can be preallocated to prevent recursing back to iget through
5572  * allocator. NULL is also valid but may require an additional allocation
5573  * later.
5574  */
5575 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5576 			      struct btrfs_root *root, struct btrfs_path *path)
5577 {
5578 	struct inode *inode;
5579 
5580 	inode = btrfs_iget_locked(s, ino, root);
5581 	if (!inode)
5582 		return ERR_PTR(-ENOMEM);
5583 
5584 	if (inode->i_state & I_NEW) {
5585 		int ret;
5586 
5587 		ret = btrfs_read_locked_inode(inode, path);
5588 		if (!ret) {
5589 			inode_tree_add(BTRFS_I(inode));
5590 			unlock_new_inode(inode);
5591 		} else {
5592 			iget_failed(inode);
5593 			/*
5594 			 * ret > 0 can come from btrfs_search_slot called by
5595 			 * btrfs_read_locked_inode, this means the inode item
5596 			 * was not found.
5597 			 */
5598 			if (ret > 0)
5599 				ret = -ENOENT;
5600 			inode = ERR_PTR(ret);
5601 		}
5602 	}
5603 
5604 	return inode;
5605 }
5606 
5607 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5608 {
5609 	return btrfs_iget_path(s, ino, root, NULL);
5610 }
5611 
5612 static struct inode *new_simple_dir(struct inode *dir,
5613 				    struct btrfs_key *key,
5614 				    struct btrfs_root *root)
5615 {
5616 	struct timespec64 ts;
5617 	struct inode *inode = new_inode(dir->i_sb);
5618 
5619 	if (!inode)
5620 		return ERR_PTR(-ENOMEM);
5621 
5622 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5623 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5624 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5625 
5626 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5627 	/*
5628 	 * We only need lookup, the rest is read-only and there's no inode
5629 	 * associated with the dentry
5630 	 */
5631 	inode->i_op = &simple_dir_inode_operations;
5632 	inode->i_opflags &= ~IOP_XATTR;
5633 	inode->i_fop = &simple_dir_operations;
5634 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5635 
5636 	ts = inode_set_ctime_current(inode);
5637 	inode_set_mtime_to_ts(inode, ts);
5638 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5639 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5640 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5641 
5642 	inode->i_uid = dir->i_uid;
5643 	inode->i_gid = dir->i_gid;
5644 
5645 	return inode;
5646 }
5647 
5648 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5649 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5650 static_assert(BTRFS_FT_DIR == FT_DIR);
5651 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5652 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5653 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5654 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5655 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5656 
5657 static inline u8 btrfs_inode_type(struct inode *inode)
5658 {
5659 	return fs_umode_to_ftype(inode->i_mode);
5660 }
5661 
5662 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5663 {
5664 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5665 	struct inode *inode;
5666 	struct btrfs_root *root = BTRFS_I(dir)->root;
5667 	struct btrfs_root *sub_root = root;
5668 	struct btrfs_key location;
5669 	u8 di_type = 0;
5670 	int ret = 0;
5671 
5672 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5673 		return ERR_PTR(-ENAMETOOLONG);
5674 
5675 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5676 	if (ret < 0)
5677 		return ERR_PTR(ret);
5678 
5679 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5680 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5681 		if (IS_ERR(inode))
5682 			return inode;
5683 
5684 		/* Do extra check against inode mode with di_type */
5685 		if (btrfs_inode_type(inode) != di_type) {
5686 			btrfs_crit(fs_info,
5687 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5688 				  inode->i_mode, btrfs_inode_type(inode),
5689 				  di_type);
5690 			iput(inode);
5691 			return ERR_PTR(-EUCLEAN);
5692 		}
5693 		return inode;
5694 	}
5695 
5696 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5697 				       &location, &sub_root);
5698 	if (ret < 0) {
5699 		if (ret != -ENOENT)
5700 			inode = ERR_PTR(ret);
5701 		else
5702 			inode = new_simple_dir(dir, &location, root);
5703 	} else {
5704 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5705 		btrfs_put_root(sub_root);
5706 
5707 		if (IS_ERR(inode))
5708 			return inode;
5709 
5710 		down_read(&fs_info->cleanup_work_sem);
5711 		if (!sb_rdonly(inode->i_sb))
5712 			ret = btrfs_orphan_cleanup(sub_root);
5713 		up_read(&fs_info->cleanup_work_sem);
5714 		if (ret) {
5715 			iput(inode);
5716 			inode = ERR_PTR(ret);
5717 		}
5718 	}
5719 
5720 	return inode;
5721 }
5722 
5723 static int btrfs_dentry_delete(const struct dentry *dentry)
5724 {
5725 	struct btrfs_root *root;
5726 	struct inode *inode = d_inode(dentry);
5727 
5728 	if (!inode && !IS_ROOT(dentry))
5729 		inode = d_inode(dentry->d_parent);
5730 
5731 	if (inode) {
5732 		root = BTRFS_I(inode)->root;
5733 		if (btrfs_root_refs(&root->root_item) == 0)
5734 			return 1;
5735 
5736 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5737 			return 1;
5738 	}
5739 	return 0;
5740 }
5741 
5742 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5743 				   unsigned int flags)
5744 {
5745 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5746 
5747 	if (inode == ERR_PTR(-ENOENT))
5748 		inode = NULL;
5749 	return d_splice_alias(inode, dentry);
5750 }
5751 
5752 /*
5753  * Find the highest existing sequence number in a directory and then set the
5754  * in-memory index_cnt variable to the first free sequence number.
5755  */
5756 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5757 {
5758 	struct btrfs_root *root = inode->root;
5759 	struct btrfs_key key, found_key;
5760 	struct btrfs_path *path;
5761 	struct extent_buffer *leaf;
5762 	int ret;
5763 
5764 	key.objectid = btrfs_ino(inode);
5765 	key.type = BTRFS_DIR_INDEX_KEY;
5766 	key.offset = (u64)-1;
5767 
5768 	path = btrfs_alloc_path();
5769 	if (!path)
5770 		return -ENOMEM;
5771 
5772 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5773 	if (ret < 0)
5774 		goto out;
5775 	/* FIXME: we should be able to handle this */
5776 	if (ret == 0)
5777 		goto out;
5778 	ret = 0;
5779 
5780 	if (path->slots[0] == 0) {
5781 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5782 		goto out;
5783 	}
5784 
5785 	path->slots[0]--;
5786 
5787 	leaf = path->nodes[0];
5788 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5789 
5790 	if (found_key.objectid != btrfs_ino(inode) ||
5791 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5792 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5793 		goto out;
5794 	}
5795 
5796 	inode->index_cnt = found_key.offset + 1;
5797 out:
5798 	btrfs_free_path(path);
5799 	return ret;
5800 }
5801 
5802 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5803 {
5804 	int ret = 0;
5805 
5806 	btrfs_inode_lock(dir, 0);
5807 	if (dir->index_cnt == (u64)-1) {
5808 		ret = btrfs_inode_delayed_dir_index_count(dir);
5809 		if (ret) {
5810 			ret = btrfs_set_inode_index_count(dir);
5811 			if (ret)
5812 				goto out;
5813 		}
5814 	}
5815 
5816 	/* index_cnt is the index number of next new entry, so decrement it. */
5817 	*index = dir->index_cnt - 1;
5818 out:
5819 	btrfs_inode_unlock(dir, 0);
5820 
5821 	return ret;
5822 }
5823 
5824 /*
5825  * All this infrastructure exists because dir_emit can fault, and we are holding
5826  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5827  * our information into that, and then dir_emit from the buffer.  This is
5828  * similar to what NFS does, only we don't keep the buffer around in pagecache
5829  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5830  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5831  * tree lock.
5832  */
5833 static int btrfs_opendir(struct inode *inode, struct file *file)
5834 {
5835 	struct btrfs_file_private *private;
5836 	u64 last_index;
5837 	int ret;
5838 
5839 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5840 	if (ret)
5841 		return ret;
5842 
5843 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5844 	if (!private)
5845 		return -ENOMEM;
5846 	private->last_index = last_index;
5847 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5848 	if (!private->filldir_buf) {
5849 		kfree(private);
5850 		return -ENOMEM;
5851 	}
5852 	file->private_data = private;
5853 	return 0;
5854 }
5855 
5856 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5857 {
5858 	struct btrfs_file_private *private = file->private_data;
5859 	int ret;
5860 
5861 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5862 				       &private->last_index);
5863 	if (ret)
5864 		return ret;
5865 
5866 	return generic_file_llseek(file, offset, whence);
5867 }
5868 
5869 struct dir_entry {
5870 	u64 ino;
5871 	u64 offset;
5872 	unsigned type;
5873 	int name_len;
5874 };
5875 
5876 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5877 {
5878 	while (entries--) {
5879 		struct dir_entry *entry = addr;
5880 		char *name = (char *)(entry + 1);
5881 
5882 		ctx->pos = get_unaligned(&entry->offset);
5883 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5884 					 get_unaligned(&entry->ino),
5885 					 get_unaligned(&entry->type)))
5886 			return 1;
5887 		addr += sizeof(struct dir_entry) +
5888 			get_unaligned(&entry->name_len);
5889 		ctx->pos++;
5890 	}
5891 	return 0;
5892 }
5893 
5894 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5895 {
5896 	struct inode *inode = file_inode(file);
5897 	struct btrfs_root *root = BTRFS_I(inode)->root;
5898 	struct btrfs_file_private *private = file->private_data;
5899 	struct btrfs_dir_item *di;
5900 	struct btrfs_key key;
5901 	struct btrfs_key found_key;
5902 	struct btrfs_path *path;
5903 	void *addr;
5904 	LIST_HEAD(ins_list);
5905 	LIST_HEAD(del_list);
5906 	int ret;
5907 	char *name_ptr;
5908 	int name_len;
5909 	int entries = 0;
5910 	int total_len = 0;
5911 	bool put = false;
5912 	struct btrfs_key location;
5913 
5914 	if (!dir_emit_dots(file, ctx))
5915 		return 0;
5916 
5917 	path = btrfs_alloc_path();
5918 	if (!path)
5919 		return -ENOMEM;
5920 
5921 	addr = private->filldir_buf;
5922 	path->reada = READA_FORWARD;
5923 
5924 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5925 					      &ins_list, &del_list);
5926 
5927 again:
5928 	key.type = BTRFS_DIR_INDEX_KEY;
5929 	key.offset = ctx->pos;
5930 	key.objectid = btrfs_ino(BTRFS_I(inode));
5931 
5932 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5933 		struct dir_entry *entry;
5934 		struct extent_buffer *leaf = path->nodes[0];
5935 		u8 ftype;
5936 
5937 		if (found_key.objectid != key.objectid)
5938 			break;
5939 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5940 			break;
5941 		if (found_key.offset < ctx->pos)
5942 			continue;
5943 		if (found_key.offset > private->last_index)
5944 			break;
5945 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5946 			continue;
5947 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5948 		name_len = btrfs_dir_name_len(leaf, di);
5949 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5950 		    PAGE_SIZE) {
5951 			btrfs_release_path(path);
5952 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5953 			if (ret)
5954 				goto nopos;
5955 			addr = private->filldir_buf;
5956 			entries = 0;
5957 			total_len = 0;
5958 			goto again;
5959 		}
5960 
5961 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
5962 		entry = addr;
5963 		name_ptr = (char *)(entry + 1);
5964 		read_extent_buffer(leaf, name_ptr,
5965 				   (unsigned long)(di + 1), name_len);
5966 		put_unaligned(name_len, &entry->name_len);
5967 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
5968 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
5969 		put_unaligned(location.objectid, &entry->ino);
5970 		put_unaligned(found_key.offset, &entry->offset);
5971 		entries++;
5972 		addr += sizeof(struct dir_entry) + name_len;
5973 		total_len += sizeof(struct dir_entry) + name_len;
5974 	}
5975 	/* Catch error encountered during iteration */
5976 	if (ret < 0)
5977 		goto err;
5978 
5979 	btrfs_release_path(path);
5980 
5981 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5982 	if (ret)
5983 		goto nopos;
5984 
5985 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5986 	if (ret)
5987 		goto nopos;
5988 
5989 	/*
5990 	 * Stop new entries from being returned after we return the last
5991 	 * entry.
5992 	 *
5993 	 * New directory entries are assigned a strictly increasing
5994 	 * offset.  This means that new entries created during readdir
5995 	 * are *guaranteed* to be seen in the future by that readdir.
5996 	 * This has broken buggy programs which operate on names as
5997 	 * they're returned by readdir.  Until we re-use freed offsets
5998 	 * we have this hack to stop new entries from being returned
5999 	 * under the assumption that they'll never reach this huge
6000 	 * offset.
6001 	 *
6002 	 * This is being careful not to overflow 32bit loff_t unless the
6003 	 * last entry requires it because doing so has broken 32bit apps
6004 	 * in the past.
6005 	 */
6006 	if (ctx->pos >= INT_MAX)
6007 		ctx->pos = LLONG_MAX;
6008 	else
6009 		ctx->pos = INT_MAX;
6010 nopos:
6011 	ret = 0;
6012 err:
6013 	if (put)
6014 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6015 	btrfs_free_path(path);
6016 	return ret;
6017 }
6018 
6019 /*
6020  * This is somewhat expensive, updating the tree every time the
6021  * inode changes.  But, it is most likely to find the inode in cache.
6022  * FIXME, needs more benchmarking...there are no reasons other than performance
6023  * to keep or drop this code.
6024  */
6025 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6026 {
6027 	struct btrfs_root *root = inode->root;
6028 	struct btrfs_fs_info *fs_info = root->fs_info;
6029 	struct btrfs_trans_handle *trans;
6030 	int ret;
6031 
6032 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6033 		return 0;
6034 
6035 	trans = btrfs_join_transaction(root);
6036 	if (IS_ERR(trans))
6037 		return PTR_ERR(trans);
6038 
6039 	ret = btrfs_update_inode(trans, inode);
6040 	if (ret == -ENOSPC || ret == -EDQUOT) {
6041 		/* whoops, lets try again with the full transaction */
6042 		btrfs_end_transaction(trans);
6043 		trans = btrfs_start_transaction(root, 1);
6044 		if (IS_ERR(trans))
6045 			return PTR_ERR(trans);
6046 
6047 		ret = btrfs_update_inode(trans, inode);
6048 	}
6049 	btrfs_end_transaction(trans);
6050 	if (inode->delayed_node)
6051 		btrfs_balance_delayed_items(fs_info);
6052 
6053 	return ret;
6054 }
6055 
6056 /*
6057  * This is a copy of file_update_time.  We need this so we can return error on
6058  * ENOSPC for updating the inode in the case of file write and mmap writes.
6059  */
6060 static int btrfs_update_time(struct inode *inode, int flags)
6061 {
6062 	struct btrfs_root *root = BTRFS_I(inode)->root;
6063 	bool dirty;
6064 
6065 	if (btrfs_root_readonly(root))
6066 		return -EROFS;
6067 
6068 	dirty = inode_update_timestamps(inode, flags);
6069 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6070 }
6071 
6072 /*
6073  * helper to find a free sequence number in a given directory.  This current
6074  * code is very simple, later versions will do smarter things in the btree
6075  */
6076 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6077 {
6078 	int ret = 0;
6079 
6080 	if (dir->index_cnt == (u64)-1) {
6081 		ret = btrfs_inode_delayed_dir_index_count(dir);
6082 		if (ret) {
6083 			ret = btrfs_set_inode_index_count(dir);
6084 			if (ret)
6085 				return ret;
6086 		}
6087 	}
6088 
6089 	*index = dir->index_cnt;
6090 	dir->index_cnt++;
6091 
6092 	return ret;
6093 }
6094 
6095 static int btrfs_insert_inode_locked(struct inode *inode)
6096 {
6097 	struct btrfs_iget_args args;
6098 
6099 	args.ino = BTRFS_I(inode)->location.objectid;
6100 	args.root = BTRFS_I(inode)->root;
6101 
6102 	return insert_inode_locked4(inode,
6103 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6104 		   btrfs_find_actor, &args);
6105 }
6106 
6107 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6108 			    unsigned int *trans_num_items)
6109 {
6110 	struct inode *dir = args->dir;
6111 	struct inode *inode = args->inode;
6112 	int ret;
6113 
6114 	if (!args->orphan) {
6115 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6116 					     &args->fname);
6117 		if (ret)
6118 			return ret;
6119 	}
6120 
6121 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6122 	if (ret) {
6123 		fscrypt_free_filename(&args->fname);
6124 		return ret;
6125 	}
6126 
6127 	/* 1 to add inode item */
6128 	*trans_num_items = 1;
6129 	/* 1 to add compression property */
6130 	if (BTRFS_I(dir)->prop_compress)
6131 		(*trans_num_items)++;
6132 	/* 1 to add default ACL xattr */
6133 	if (args->default_acl)
6134 		(*trans_num_items)++;
6135 	/* 1 to add access ACL xattr */
6136 	if (args->acl)
6137 		(*trans_num_items)++;
6138 #ifdef CONFIG_SECURITY
6139 	/* 1 to add LSM xattr */
6140 	if (dir->i_security)
6141 		(*trans_num_items)++;
6142 #endif
6143 	if (args->orphan) {
6144 		/* 1 to add orphan item */
6145 		(*trans_num_items)++;
6146 	} else {
6147 		/*
6148 		 * 1 to add dir item
6149 		 * 1 to add dir index
6150 		 * 1 to update parent inode item
6151 		 *
6152 		 * No need for 1 unit for the inode ref item because it is
6153 		 * inserted in a batch together with the inode item at
6154 		 * btrfs_create_new_inode().
6155 		 */
6156 		*trans_num_items += 3;
6157 	}
6158 	return 0;
6159 }
6160 
6161 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6162 {
6163 	posix_acl_release(args->acl);
6164 	posix_acl_release(args->default_acl);
6165 	fscrypt_free_filename(&args->fname);
6166 }
6167 
6168 /*
6169  * Inherit flags from the parent inode.
6170  *
6171  * Currently only the compression flags and the cow flags are inherited.
6172  */
6173 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6174 {
6175 	unsigned int flags;
6176 
6177 	flags = dir->flags;
6178 
6179 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6180 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6181 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6182 	} else if (flags & BTRFS_INODE_COMPRESS) {
6183 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6184 		inode->flags |= BTRFS_INODE_COMPRESS;
6185 	}
6186 
6187 	if (flags & BTRFS_INODE_NODATACOW) {
6188 		inode->flags |= BTRFS_INODE_NODATACOW;
6189 		if (S_ISREG(inode->vfs_inode.i_mode))
6190 			inode->flags |= BTRFS_INODE_NODATASUM;
6191 	}
6192 
6193 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6194 }
6195 
6196 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6197 			   struct btrfs_new_inode_args *args)
6198 {
6199 	struct timespec64 ts;
6200 	struct inode *dir = args->dir;
6201 	struct inode *inode = args->inode;
6202 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6203 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6204 	struct btrfs_root *root;
6205 	struct btrfs_inode_item *inode_item;
6206 	struct btrfs_key *location;
6207 	struct btrfs_path *path;
6208 	u64 objectid;
6209 	struct btrfs_inode_ref *ref;
6210 	struct btrfs_key key[2];
6211 	u32 sizes[2];
6212 	struct btrfs_item_batch batch;
6213 	unsigned long ptr;
6214 	int ret;
6215 
6216 	path = btrfs_alloc_path();
6217 	if (!path)
6218 		return -ENOMEM;
6219 
6220 	if (!args->subvol)
6221 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6222 	root = BTRFS_I(inode)->root;
6223 
6224 	ret = btrfs_get_free_objectid(root, &objectid);
6225 	if (ret)
6226 		goto out;
6227 	inode->i_ino = objectid;
6228 
6229 	if (args->orphan) {
6230 		/*
6231 		 * O_TMPFILE, set link count to 0, so that after this point, we
6232 		 * fill in an inode item with the correct link count.
6233 		 */
6234 		set_nlink(inode, 0);
6235 	} else {
6236 		trace_btrfs_inode_request(dir);
6237 
6238 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6239 		if (ret)
6240 			goto out;
6241 	}
6242 	/* index_cnt is ignored for everything but a dir. */
6243 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6244 	BTRFS_I(inode)->generation = trans->transid;
6245 	inode->i_generation = BTRFS_I(inode)->generation;
6246 
6247 	/*
6248 	 * We don't have any capability xattrs set here yet, shortcut any
6249 	 * queries for the xattrs here.  If we add them later via the inode
6250 	 * security init path or any other path this flag will be cleared.
6251 	 */
6252 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6253 
6254 	/*
6255 	 * Subvolumes don't inherit flags from their parent directory.
6256 	 * Originally this was probably by accident, but we probably can't
6257 	 * change it now without compatibility issues.
6258 	 */
6259 	if (!args->subvol)
6260 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6261 
6262 	if (S_ISREG(inode->i_mode)) {
6263 		if (btrfs_test_opt(fs_info, NODATASUM))
6264 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6265 		if (btrfs_test_opt(fs_info, NODATACOW))
6266 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6267 				BTRFS_INODE_NODATASUM;
6268 	}
6269 
6270 	location = &BTRFS_I(inode)->location;
6271 	location->objectid = objectid;
6272 	location->offset = 0;
6273 	location->type = BTRFS_INODE_ITEM_KEY;
6274 
6275 	ret = btrfs_insert_inode_locked(inode);
6276 	if (ret < 0) {
6277 		if (!args->orphan)
6278 			BTRFS_I(dir)->index_cnt--;
6279 		goto out;
6280 	}
6281 
6282 	/*
6283 	 * We could have gotten an inode number from somebody who was fsynced
6284 	 * and then removed in this same transaction, so let's just set full
6285 	 * sync since it will be a full sync anyway and this will blow away the
6286 	 * old info in the log.
6287 	 */
6288 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6289 
6290 	key[0].objectid = objectid;
6291 	key[0].type = BTRFS_INODE_ITEM_KEY;
6292 	key[0].offset = 0;
6293 
6294 	sizes[0] = sizeof(struct btrfs_inode_item);
6295 
6296 	if (!args->orphan) {
6297 		/*
6298 		 * Start new inodes with an inode_ref. This is slightly more
6299 		 * efficient for small numbers of hard links since they will
6300 		 * be packed into one item. Extended refs will kick in if we
6301 		 * add more hard links than can fit in the ref item.
6302 		 */
6303 		key[1].objectid = objectid;
6304 		key[1].type = BTRFS_INODE_REF_KEY;
6305 		if (args->subvol) {
6306 			key[1].offset = objectid;
6307 			sizes[1] = 2 + sizeof(*ref);
6308 		} else {
6309 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6310 			sizes[1] = name->len + sizeof(*ref);
6311 		}
6312 	}
6313 
6314 	batch.keys = &key[0];
6315 	batch.data_sizes = &sizes[0];
6316 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6317 	batch.nr = args->orphan ? 1 : 2;
6318 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6319 	if (ret != 0) {
6320 		btrfs_abort_transaction(trans, ret);
6321 		goto discard;
6322 	}
6323 
6324 	ts = simple_inode_init_ts(inode);
6325 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6326 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6327 
6328 	/*
6329 	 * We're going to fill the inode item now, so at this point the inode
6330 	 * must be fully initialized.
6331 	 */
6332 
6333 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6334 				  struct btrfs_inode_item);
6335 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6336 			     sizeof(*inode_item));
6337 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6338 
6339 	if (!args->orphan) {
6340 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6341 				     struct btrfs_inode_ref);
6342 		ptr = (unsigned long)(ref + 1);
6343 		if (args->subvol) {
6344 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6345 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6346 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6347 		} else {
6348 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6349 						     name->len);
6350 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6351 						  BTRFS_I(inode)->dir_index);
6352 			write_extent_buffer(path->nodes[0], name->name, ptr,
6353 					    name->len);
6354 		}
6355 	}
6356 
6357 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6358 	/*
6359 	 * We don't need the path anymore, plus inheriting properties, adding
6360 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6361 	 * allocating yet another path. So just free our path.
6362 	 */
6363 	btrfs_free_path(path);
6364 	path = NULL;
6365 
6366 	if (args->subvol) {
6367 		struct inode *parent;
6368 
6369 		/*
6370 		 * Subvolumes inherit properties from their parent subvolume,
6371 		 * not the directory they were created in.
6372 		 */
6373 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6374 				    BTRFS_I(dir)->root);
6375 		if (IS_ERR(parent)) {
6376 			ret = PTR_ERR(parent);
6377 		} else {
6378 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6379 			iput(parent);
6380 		}
6381 	} else {
6382 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6383 	}
6384 	if (ret) {
6385 		btrfs_err(fs_info,
6386 			  "error inheriting props for ino %llu (root %llu): %d",
6387 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6388 			  ret);
6389 	}
6390 
6391 	/*
6392 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6393 	 * probably a bug.
6394 	 */
6395 	if (!args->subvol) {
6396 		ret = btrfs_init_inode_security(trans, args);
6397 		if (ret) {
6398 			btrfs_abort_transaction(trans, ret);
6399 			goto discard;
6400 		}
6401 	}
6402 
6403 	inode_tree_add(BTRFS_I(inode));
6404 
6405 	trace_btrfs_inode_new(inode);
6406 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6407 
6408 	btrfs_update_root_times(trans, root);
6409 
6410 	if (args->orphan) {
6411 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6412 	} else {
6413 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6414 				     0, BTRFS_I(inode)->dir_index);
6415 	}
6416 	if (ret) {
6417 		btrfs_abort_transaction(trans, ret);
6418 		goto discard;
6419 	}
6420 
6421 	return 0;
6422 
6423 discard:
6424 	/*
6425 	 * discard_new_inode() calls iput(), but the caller owns the reference
6426 	 * to the inode.
6427 	 */
6428 	ihold(inode);
6429 	discard_new_inode(inode);
6430 out:
6431 	btrfs_free_path(path);
6432 	return ret;
6433 }
6434 
6435 /*
6436  * utility function to add 'inode' into 'parent_inode' with
6437  * a give name and a given sequence number.
6438  * if 'add_backref' is true, also insert a backref from the
6439  * inode to the parent directory.
6440  */
6441 int btrfs_add_link(struct btrfs_trans_handle *trans,
6442 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6443 		   const struct fscrypt_str *name, int add_backref, u64 index)
6444 {
6445 	int ret = 0;
6446 	struct btrfs_key key;
6447 	struct btrfs_root *root = parent_inode->root;
6448 	u64 ino = btrfs_ino(inode);
6449 	u64 parent_ino = btrfs_ino(parent_inode);
6450 
6451 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6452 		memcpy(&key, &inode->root->root_key, sizeof(key));
6453 	} else {
6454 		key.objectid = ino;
6455 		key.type = BTRFS_INODE_ITEM_KEY;
6456 		key.offset = 0;
6457 	}
6458 
6459 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6460 		ret = btrfs_add_root_ref(trans, key.objectid,
6461 					 root->root_key.objectid, parent_ino,
6462 					 index, name);
6463 	} else if (add_backref) {
6464 		ret = btrfs_insert_inode_ref(trans, root, name,
6465 					     ino, parent_ino, index);
6466 	}
6467 
6468 	/* Nothing to clean up yet */
6469 	if (ret)
6470 		return ret;
6471 
6472 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6473 				    btrfs_inode_type(&inode->vfs_inode), index);
6474 	if (ret == -EEXIST || ret == -EOVERFLOW)
6475 		goto fail_dir_item;
6476 	else if (ret) {
6477 		btrfs_abort_transaction(trans, ret);
6478 		return ret;
6479 	}
6480 
6481 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6482 			   name->len * 2);
6483 	inode_inc_iversion(&parent_inode->vfs_inode);
6484 	/*
6485 	 * If we are replaying a log tree, we do not want to update the mtime
6486 	 * and ctime of the parent directory with the current time, since the
6487 	 * log replay procedure is responsible for setting them to their correct
6488 	 * values (the ones it had when the fsync was done).
6489 	 */
6490 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6491 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6492 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6493 
6494 	ret = btrfs_update_inode(trans, parent_inode);
6495 	if (ret)
6496 		btrfs_abort_transaction(trans, ret);
6497 	return ret;
6498 
6499 fail_dir_item:
6500 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6501 		u64 local_index;
6502 		int err;
6503 		err = btrfs_del_root_ref(trans, key.objectid,
6504 					 root->root_key.objectid, parent_ino,
6505 					 &local_index, name);
6506 		if (err)
6507 			btrfs_abort_transaction(trans, err);
6508 	} else if (add_backref) {
6509 		u64 local_index;
6510 		int err;
6511 
6512 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6513 					  &local_index);
6514 		if (err)
6515 			btrfs_abort_transaction(trans, err);
6516 	}
6517 
6518 	/* Return the original error code */
6519 	return ret;
6520 }
6521 
6522 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6523 			       struct inode *inode)
6524 {
6525 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6526 	struct btrfs_root *root = BTRFS_I(dir)->root;
6527 	struct btrfs_new_inode_args new_inode_args = {
6528 		.dir = dir,
6529 		.dentry = dentry,
6530 		.inode = inode,
6531 	};
6532 	unsigned int trans_num_items;
6533 	struct btrfs_trans_handle *trans;
6534 	int err;
6535 
6536 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6537 	if (err)
6538 		goto out_inode;
6539 
6540 	trans = btrfs_start_transaction(root, trans_num_items);
6541 	if (IS_ERR(trans)) {
6542 		err = PTR_ERR(trans);
6543 		goto out_new_inode_args;
6544 	}
6545 
6546 	err = btrfs_create_new_inode(trans, &new_inode_args);
6547 	if (!err)
6548 		d_instantiate_new(dentry, inode);
6549 
6550 	btrfs_end_transaction(trans);
6551 	btrfs_btree_balance_dirty(fs_info);
6552 out_new_inode_args:
6553 	btrfs_new_inode_args_destroy(&new_inode_args);
6554 out_inode:
6555 	if (err)
6556 		iput(inode);
6557 	return err;
6558 }
6559 
6560 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6561 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6562 {
6563 	struct inode *inode;
6564 
6565 	inode = new_inode(dir->i_sb);
6566 	if (!inode)
6567 		return -ENOMEM;
6568 	inode_init_owner(idmap, inode, dir, mode);
6569 	inode->i_op = &btrfs_special_inode_operations;
6570 	init_special_inode(inode, inode->i_mode, rdev);
6571 	return btrfs_create_common(dir, dentry, inode);
6572 }
6573 
6574 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6575 			struct dentry *dentry, umode_t mode, bool excl)
6576 {
6577 	struct inode *inode;
6578 
6579 	inode = new_inode(dir->i_sb);
6580 	if (!inode)
6581 		return -ENOMEM;
6582 	inode_init_owner(idmap, inode, dir, mode);
6583 	inode->i_fop = &btrfs_file_operations;
6584 	inode->i_op = &btrfs_file_inode_operations;
6585 	inode->i_mapping->a_ops = &btrfs_aops;
6586 	return btrfs_create_common(dir, dentry, inode);
6587 }
6588 
6589 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6590 		      struct dentry *dentry)
6591 {
6592 	struct btrfs_trans_handle *trans = NULL;
6593 	struct btrfs_root *root = BTRFS_I(dir)->root;
6594 	struct inode *inode = d_inode(old_dentry);
6595 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6596 	struct fscrypt_name fname;
6597 	u64 index;
6598 	int err;
6599 	int drop_inode = 0;
6600 
6601 	/* do not allow sys_link's with other subvols of the same device */
6602 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6603 		return -EXDEV;
6604 
6605 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6606 		return -EMLINK;
6607 
6608 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6609 	if (err)
6610 		goto fail;
6611 
6612 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6613 	if (err)
6614 		goto fail;
6615 
6616 	/*
6617 	 * 2 items for inode and inode ref
6618 	 * 2 items for dir items
6619 	 * 1 item for parent inode
6620 	 * 1 item for orphan item deletion if O_TMPFILE
6621 	 */
6622 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6623 	if (IS_ERR(trans)) {
6624 		err = PTR_ERR(trans);
6625 		trans = NULL;
6626 		goto fail;
6627 	}
6628 
6629 	/* There are several dir indexes for this inode, clear the cache. */
6630 	BTRFS_I(inode)->dir_index = 0ULL;
6631 	inc_nlink(inode);
6632 	inode_inc_iversion(inode);
6633 	inode_set_ctime_current(inode);
6634 	ihold(inode);
6635 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6636 
6637 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6638 			     &fname.disk_name, 1, index);
6639 
6640 	if (err) {
6641 		drop_inode = 1;
6642 	} else {
6643 		struct dentry *parent = dentry->d_parent;
6644 
6645 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6646 		if (err)
6647 			goto fail;
6648 		if (inode->i_nlink == 1) {
6649 			/*
6650 			 * If new hard link count is 1, it's a file created
6651 			 * with open(2) O_TMPFILE flag.
6652 			 */
6653 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6654 			if (err)
6655 				goto fail;
6656 		}
6657 		d_instantiate(dentry, inode);
6658 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6659 	}
6660 
6661 fail:
6662 	fscrypt_free_filename(&fname);
6663 	if (trans)
6664 		btrfs_end_transaction(trans);
6665 	if (drop_inode) {
6666 		inode_dec_link_count(inode);
6667 		iput(inode);
6668 	}
6669 	btrfs_btree_balance_dirty(fs_info);
6670 	return err;
6671 }
6672 
6673 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6674 		       struct dentry *dentry, umode_t mode)
6675 {
6676 	struct inode *inode;
6677 
6678 	inode = new_inode(dir->i_sb);
6679 	if (!inode)
6680 		return -ENOMEM;
6681 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6682 	inode->i_op = &btrfs_dir_inode_operations;
6683 	inode->i_fop = &btrfs_dir_file_operations;
6684 	return btrfs_create_common(dir, dentry, inode);
6685 }
6686 
6687 static noinline int uncompress_inline(struct btrfs_path *path,
6688 				      struct page *page,
6689 				      struct btrfs_file_extent_item *item)
6690 {
6691 	int ret;
6692 	struct extent_buffer *leaf = path->nodes[0];
6693 	char *tmp;
6694 	size_t max_size;
6695 	unsigned long inline_size;
6696 	unsigned long ptr;
6697 	int compress_type;
6698 
6699 	compress_type = btrfs_file_extent_compression(leaf, item);
6700 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6701 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6702 	tmp = kmalloc(inline_size, GFP_NOFS);
6703 	if (!tmp)
6704 		return -ENOMEM;
6705 	ptr = btrfs_file_extent_inline_start(item);
6706 
6707 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6708 
6709 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6710 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6711 
6712 	/*
6713 	 * decompression code contains a memset to fill in any space between the end
6714 	 * of the uncompressed data and the end of max_size in case the decompressed
6715 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6716 	 * the end of an inline extent and the beginning of the next block, so we
6717 	 * cover that region here.
6718 	 */
6719 
6720 	if (max_size < PAGE_SIZE)
6721 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6722 	kfree(tmp);
6723 	return ret;
6724 }
6725 
6726 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6727 			      struct page *page)
6728 {
6729 	struct btrfs_file_extent_item *fi;
6730 	void *kaddr;
6731 	size_t copy_size;
6732 
6733 	if (!page || PageUptodate(page))
6734 		return 0;
6735 
6736 	ASSERT(page_offset(page) == 0);
6737 
6738 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6739 			    struct btrfs_file_extent_item);
6740 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6741 		return uncompress_inline(path, page, fi);
6742 
6743 	copy_size = min_t(u64, PAGE_SIZE,
6744 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6745 	kaddr = kmap_local_page(page);
6746 	read_extent_buffer(path->nodes[0], kaddr,
6747 			   btrfs_file_extent_inline_start(fi), copy_size);
6748 	kunmap_local(kaddr);
6749 	if (copy_size < PAGE_SIZE)
6750 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6751 	return 0;
6752 }
6753 
6754 /*
6755  * Lookup the first extent overlapping a range in a file.
6756  *
6757  * @inode:	file to search in
6758  * @page:	page to read extent data into if the extent is inline
6759  * @pg_offset:	offset into @page to copy to
6760  * @start:	file offset
6761  * @len:	length of range starting at @start
6762  *
6763  * Return the first &struct extent_map which overlaps the given range, reading
6764  * it from the B-tree and caching it if necessary. Note that there may be more
6765  * extents which overlap the given range after the returned extent_map.
6766  *
6767  * If @page is not NULL and the extent is inline, this also reads the extent
6768  * data directly into the page and marks the extent up to date in the io_tree.
6769  *
6770  * Return: ERR_PTR on error, non-NULL extent_map on success.
6771  */
6772 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6773 				    struct page *page, size_t pg_offset,
6774 				    u64 start, u64 len)
6775 {
6776 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6777 	int ret = 0;
6778 	u64 extent_start = 0;
6779 	u64 extent_end = 0;
6780 	u64 objectid = btrfs_ino(inode);
6781 	int extent_type = -1;
6782 	struct btrfs_path *path = NULL;
6783 	struct btrfs_root *root = inode->root;
6784 	struct btrfs_file_extent_item *item;
6785 	struct extent_buffer *leaf;
6786 	struct btrfs_key found_key;
6787 	struct extent_map *em = NULL;
6788 	struct extent_map_tree *em_tree = &inode->extent_tree;
6789 
6790 	read_lock(&em_tree->lock);
6791 	em = lookup_extent_mapping(em_tree, start, len);
6792 	read_unlock(&em_tree->lock);
6793 
6794 	if (em) {
6795 		if (em->start > start || em->start + em->len <= start)
6796 			free_extent_map(em);
6797 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6798 			free_extent_map(em);
6799 		else
6800 			goto out;
6801 	}
6802 	em = alloc_extent_map();
6803 	if (!em) {
6804 		ret = -ENOMEM;
6805 		goto out;
6806 	}
6807 	em->start = EXTENT_MAP_HOLE;
6808 	em->orig_start = EXTENT_MAP_HOLE;
6809 	em->len = (u64)-1;
6810 	em->block_len = (u64)-1;
6811 
6812 	path = btrfs_alloc_path();
6813 	if (!path) {
6814 		ret = -ENOMEM;
6815 		goto out;
6816 	}
6817 
6818 	/* Chances are we'll be called again, so go ahead and do readahead */
6819 	path->reada = READA_FORWARD;
6820 
6821 	/*
6822 	 * The same explanation in load_free_space_cache applies here as well,
6823 	 * we only read when we're loading the free space cache, and at that
6824 	 * point the commit_root has everything we need.
6825 	 */
6826 	if (btrfs_is_free_space_inode(inode)) {
6827 		path->search_commit_root = 1;
6828 		path->skip_locking = 1;
6829 	}
6830 
6831 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6832 	if (ret < 0) {
6833 		goto out;
6834 	} else if (ret > 0) {
6835 		if (path->slots[0] == 0)
6836 			goto not_found;
6837 		path->slots[0]--;
6838 		ret = 0;
6839 	}
6840 
6841 	leaf = path->nodes[0];
6842 	item = btrfs_item_ptr(leaf, path->slots[0],
6843 			      struct btrfs_file_extent_item);
6844 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6845 	if (found_key.objectid != objectid ||
6846 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6847 		/*
6848 		 * If we backup past the first extent we want to move forward
6849 		 * and see if there is an extent in front of us, otherwise we'll
6850 		 * say there is a hole for our whole search range which can
6851 		 * cause problems.
6852 		 */
6853 		extent_end = start;
6854 		goto next;
6855 	}
6856 
6857 	extent_type = btrfs_file_extent_type(leaf, item);
6858 	extent_start = found_key.offset;
6859 	extent_end = btrfs_file_extent_end(path);
6860 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6861 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6862 		/* Only regular file could have regular/prealloc extent */
6863 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6864 			ret = -EUCLEAN;
6865 			btrfs_crit(fs_info,
6866 		"regular/prealloc extent found for non-regular inode %llu",
6867 				   btrfs_ino(inode));
6868 			goto out;
6869 		}
6870 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6871 						       extent_start);
6872 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6873 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6874 						      path->slots[0],
6875 						      extent_start);
6876 	}
6877 next:
6878 	if (start >= extent_end) {
6879 		path->slots[0]++;
6880 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6881 			ret = btrfs_next_leaf(root, path);
6882 			if (ret < 0)
6883 				goto out;
6884 			else if (ret > 0)
6885 				goto not_found;
6886 
6887 			leaf = path->nodes[0];
6888 		}
6889 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6890 		if (found_key.objectid != objectid ||
6891 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6892 			goto not_found;
6893 		if (start + len <= found_key.offset)
6894 			goto not_found;
6895 		if (start > found_key.offset)
6896 			goto next;
6897 
6898 		/* New extent overlaps with existing one */
6899 		em->start = start;
6900 		em->orig_start = start;
6901 		em->len = found_key.offset - start;
6902 		em->block_start = EXTENT_MAP_HOLE;
6903 		goto insert;
6904 	}
6905 
6906 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6907 
6908 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6909 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6910 		goto insert;
6911 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6912 		/*
6913 		 * Inline extent can only exist at file offset 0. This is
6914 		 * ensured by tree-checker and inline extent creation path.
6915 		 * Thus all members representing file offsets should be zero.
6916 		 */
6917 		ASSERT(pg_offset == 0);
6918 		ASSERT(extent_start == 0);
6919 		ASSERT(em->start == 0);
6920 
6921 		/*
6922 		 * btrfs_extent_item_to_extent_map() should have properly
6923 		 * initialized em members already.
6924 		 *
6925 		 * Other members are not utilized for inline extents.
6926 		 */
6927 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6928 		ASSERT(em->len == fs_info->sectorsize);
6929 
6930 		ret = read_inline_extent(inode, path, page);
6931 		if (ret < 0)
6932 			goto out;
6933 		goto insert;
6934 	}
6935 not_found:
6936 	em->start = start;
6937 	em->orig_start = start;
6938 	em->len = len;
6939 	em->block_start = EXTENT_MAP_HOLE;
6940 insert:
6941 	ret = 0;
6942 	btrfs_release_path(path);
6943 	if (em->start > start || extent_map_end(em) <= start) {
6944 		btrfs_err(fs_info,
6945 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6946 			  em->start, em->len, start, len);
6947 		ret = -EIO;
6948 		goto out;
6949 	}
6950 
6951 	write_lock(&em_tree->lock);
6952 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6953 	write_unlock(&em_tree->lock);
6954 out:
6955 	btrfs_free_path(path);
6956 
6957 	trace_btrfs_get_extent(root, inode, em);
6958 
6959 	if (ret) {
6960 		free_extent_map(em);
6961 		return ERR_PTR(ret);
6962 	}
6963 	return em;
6964 }
6965 
6966 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
6967 						  struct btrfs_dio_data *dio_data,
6968 						  const u64 start,
6969 						  const u64 len,
6970 						  const u64 orig_start,
6971 						  const u64 block_start,
6972 						  const u64 block_len,
6973 						  const u64 orig_block_len,
6974 						  const u64 ram_bytes,
6975 						  const int type)
6976 {
6977 	struct extent_map *em = NULL;
6978 	struct btrfs_ordered_extent *ordered;
6979 
6980 	if (type != BTRFS_ORDERED_NOCOW) {
6981 		em = create_io_em(inode, start, len, orig_start, block_start,
6982 				  block_len, orig_block_len, ram_bytes,
6983 				  BTRFS_COMPRESS_NONE, /* compress_type */
6984 				  type);
6985 		if (IS_ERR(em))
6986 			goto out;
6987 	}
6988 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
6989 					     block_start, block_len, 0,
6990 					     (1 << type) |
6991 					     (1 << BTRFS_ORDERED_DIRECT),
6992 					     BTRFS_COMPRESS_NONE);
6993 	if (IS_ERR(ordered)) {
6994 		if (em) {
6995 			free_extent_map(em);
6996 			btrfs_drop_extent_map_range(inode, start,
6997 						    start + len - 1, false);
6998 		}
6999 		em = ERR_CAST(ordered);
7000 	} else {
7001 		ASSERT(!dio_data->ordered);
7002 		dio_data->ordered = ordered;
7003 	}
7004  out:
7005 
7006 	return em;
7007 }
7008 
7009 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7010 						  struct btrfs_dio_data *dio_data,
7011 						  u64 start, u64 len)
7012 {
7013 	struct btrfs_root *root = inode->root;
7014 	struct btrfs_fs_info *fs_info = root->fs_info;
7015 	struct extent_map *em;
7016 	struct btrfs_key ins;
7017 	u64 alloc_hint;
7018 	int ret;
7019 
7020 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7021 again:
7022 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7023 				   0, alloc_hint, &ins, 1, 1);
7024 	if (ret == -EAGAIN) {
7025 		ASSERT(btrfs_is_zoned(fs_info));
7026 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7027 			       TASK_UNINTERRUPTIBLE);
7028 		goto again;
7029 	}
7030 	if (ret)
7031 		return ERR_PTR(ret);
7032 
7033 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7034 				     ins.objectid, ins.offset, ins.offset,
7035 				     ins.offset, BTRFS_ORDERED_REGULAR);
7036 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7037 	if (IS_ERR(em))
7038 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7039 					   1);
7040 
7041 	return em;
7042 }
7043 
7044 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7045 {
7046 	struct btrfs_block_group *block_group;
7047 	bool readonly = false;
7048 
7049 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7050 	if (!block_group || block_group->ro)
7051 		readonly = true;
7052 	if (block_group)
7053 		btrfs_put_block_group(block_group);
7054 	return readonly;
7055 }
7056 
7057 /*
7058  * Check if we can do nocow write into the range [@offset, @offset + @len)
7059  *
7060  * @offset:	File offset
7061  * @len:	The length to write, will be updated to the nocow writeable
7062  *		range
7063  * @orig_start:	(optional) Return the original file offset of the file extent
7064  * @orig_len:	(optional) Return the original on-disk length of the file extent
7065  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7066  * @strict:	if true, omit optimizations that might force us into unnecessary
7067  *		cow. e.g., don't trust generation number.
7068  *
7069  * Return:
7070  * >0	and update @len if we can do nocow write
7071  *  0	if we can't do nocow write
7072  * <0	if error happened
7073  *
7074  * NOTE: This only checks the file extents, caller is responsible to wait for
7075  *	 any ordered extents.
7076  */
7077 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7078 			      u64 *orig_start, u64 *orig_block_len,
7079 			      u64 *ram_bytes, bool nowait, bool strict)
7080 {
7081 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7082 	struct can_nocow_file_extent_args nocow_args = { 0 };
7083 	struct btrfs_path *path;
7084 	int ret;
7085 	struct extent_buffer *leaf;
7086 	struct btrfs_root *root = BTRFS_I(inode)->root;
7087 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7088 	struct btrfs_file_extent_item *fi;
7089 	struct btrfs_key key;
7090 	int found_type;
7091 
7092 	path = btrfs_alloc_path();
7093 	if (!path)
7094 		return -ENOMEM;
7095 	path->nowait = nowait;
7096 
7097 	ret = btrfs_lookup_file_extent(NULL, root, path,
7098 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7099 	if (ret < 0)
7100 		goto out;
7101 
7102 	if (ret == 1) {
7103 		if (path->slots[0] == 0) {
7104 			/* can't find the item, must cow */
7105 			ret = 0;
7106 			goto out;
7107 		}
7108 		path->slots[0]--;
7109 	}
7110 	ret = 0;
7111 	leaf = path->nodes[0];
7112 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7113 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7114 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7115 		/* not our file or wrong item type, must cow */
7116 		goto out;
7117 	}
7118 
7119 	if (key.offset > offset) {
7120 		/* Wrong offset, must cow */
7121 		goto out;
7122 	}
7123 
7124 	if (btrfs_file_extent_end(path) <= offset)
7125 		goto out;
7126 
7127 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7128 	found_type = btrfs_file_extent_type(leaf, fi);
7129 	if (ram_bytes)
7130 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7131 
7132 	nocow_args.start = offset;
7133 	nocow_args.end = offset + *len - 1;
7134 	nocow_args.strict = strict;
7135 	nocow_args.free_path = true;
7136 
7137 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7138 	/* can_nocow_file_extent() has freed the path. */
7139 	path = NULL;
7140 
7141 	if (ret != 1) {
7142 		/* Treat errors as not being able to NOCOW. */
7143 		ret = 0;
7144 		goto out;
7145 	}
7146 
7147 	ret = 0;
7148 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7149 		goto out;
7150 
7151 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7152 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7153 		u64 range_end;
7154 
7155 		range_end = round_up(offset + nocow_args.num_bytes,
7156 				     root->fs_info->sectorsize) - 1;
7157 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7158 		if (ret) {
7159 			ret = -EAGAIN;
7160 			goto out;
7161 		}
7162 	}
7163 
7164 	if (orig_start)
7165 		*orig_start = key.offset - nocow_args.extent_offset;
7166 	if (orig_block_len)
7167 		*orig_block_len = nocow_args.disk_num_bytes;
7168 
7169 	*len = nocow_args.num_bytes;
7170 	ret = 1;
7171 out:
7172 	btrfs_free_path(path);
7173 	return ret;
7174 }
7175 
7176 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7177 			      struct extent_state **cached_state,
7178 			      unsigned int iomap_flags)
7179 {
7180 	const bool writing = (iomap_flags & IOMAP_WRITE);
7181 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7182 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7183 	struct btrfs_ordered_extent *ordered;
7184 	int ret = 0;
7185 
7186 	while (1) {
7187 		if (nowait) {
7188 			if (!try_lock_extent(io_tree, lockstart, lockend,
7189 					     cached_state))
7190 				return -EAGAIN;
7191 		} else {
7192 			lock_extent(io_tree, lockstart, lockend, cached_state);
7193 		}
7194 		/*
7195 		 * We're concerned with the entire range that we're going to be
7196 		 * doing DIO to, so we need to make sure there's no ordered
7197 		 * extents in this range.
7198 		 */
7199 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7200 						     lockend - lockstart + 1);
7201 
7202 		/*
7203 		 * We need to make sure there are no buffered pages in this
7204 		 * range either, we could have raced between the invalidate in
7205 		 * generic_file_direct_write and locking the extent.  The
7206 		 * invalidate needs to happen so that reads after a write do not
7207 		 * get stale data.
7208 		 */
7209 		if (!ordered &&
7210 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7211 							 lockstart, lockend)))
7212 			break;
7213 
7214 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7215 
7216 		if (ordered) {
7217 			if (nowait) {
7218 				btrfs_put_ordered_extent(ordered);
7219 				ret = -EAGAIN;
7220 				break;
7221 			}
7222 			/*
7223 			 * If we are doing a DIO read and the ordered extent we
7224 			 * found is for a buffered write, we can not wait for it
7225 			 * to complete and retry, because if we do so we can
7226 			 * deadlock with concurrent buffered writes on page
7227 			 * locks. This happens only if our DIO read covers more
7228 			 * than one extent map, if at this point has already
7229 			 * created an ordered extent for a previous extent map
7230 			 * and locked its range in the inode's io tree, and a
7231 			 * concurrent write against that previous extent map's
7232 			 * range and this range started (we unlock the ranges
7233 			 * in the io tree only when the bios complete and
7234 			 * buffered writes always lock pages before attempting
7235 			 * to lock range in the io tree).
7236 			 */
7237 			if (writing ||
7238 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7239 				btrfs_start_ordered_extent(ordered);
7240 			else
7241 				ret = nowait ? -EAGAIN : -ENOTBLK;
7242 			btrfs_put_ordered_extent(ordered);
7243 		} else {
7244 			/*
7245 			 * We could trigger writeback for this range (and wait
7246 			 * for it to complete) and then invalidate the pages for
7247 			 * this range (through invalidate_inode_pages2_range()),
7248 			 * but that can lead us to a deadlock with a concurrent
7249 			 * call to readahead (a buffered read or a defrag call
7250 			 * triggered a readahead) on a page lock due to an
7251 			 * ordered dio extent we created before but did not have
7252 			 * yet a corresponding bio submitted (whence it can not
7253 			 * complete), which makes readahead wait for that
7254 			 * ordered extent to complete while holding a lock on
7255 			 * that page.
7256 			 */
7257 			ret = nowait ? -EAGAIN : -ENOTBLK;
7258 		}
7259 
7260 		if (ret)
7261 			break;
7262 
7263 		cond_resched();
7264 	}
7265 
7266 	return ret;
7267 }
7268 
7269 /* The callers of this must take lock_extent() */
7270 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7271 				       u64 len, u64 orig_start, u64 block_start,
7272 				       u64 block_len, u64 orig_block_len,
7273 				       u64 ram_bytes, int compress_type,
7274 				       int type)
7275 {
7276 	struct extent_map *em;
7277 	int ret;
7278 
7279 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7280 	       type == BTRFS_ORDERED_COMPRESSED ||
7281 	       type == BTRFS_ORDERED_NOCOW ||
7282 	       type == BTRFS_ORDERED_REGULAR);
7283 
7284 	em = alloc_extent_map();
7285 	if (!em)
7286 		return ERR_PTR(-ENOMEM);
7287 
7288 	em->start = start;
7289 	em->orig_start = orig_start;
7290 	em->len = len;
7291 	em->block_len = block_len;
7292 	em->block_start = block_start;
7293 	em->orig_block_len = orig_block_len;
7294 	em->ram_bytes = ram_bytes;
7295 	em->generation = -1;
7296 	em->flags |= EXTENT_FLAG_PINNED;
7297 	if (type == BTRFS_ORDERED_PREALLOC)
7298 		em->flags |= EXTENT_FLAG_FILLING;
7299 	else if (type == BTRFS_ORDERED_COMPRESSED)
7300 		extent_map_set_compression(em, compress_type);
7301 
7302 	ret = btrfs_replace_extent_map_range(inode, em, true);
7303 	if (ret) {
7304 		free_extent_map(em);
7305 		return ERR_PTR(ret);
7306 	}
7307 
7308 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7309 	return em;
7310 }
7311 
7312 
7313 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7314 					 struct inode *inode,
7315 					 struct btrfs_dio_data *dio_data,
7316 					 u64 start, u64 *lenp,
7317 					 unsigned int iomap_flags)
7318 {
7319 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7320 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7321 	struct extent_map *em = *map;
7322 	int type;
7323 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7324 	struct btrfs_block_group *bg;
7325 	bool can_nocow = false;
7326 	bool space_reserved = false;
7327 	u64 len = *lenp;
7328 	u64 prev_len;
7329 	int ret = 0;
7330 
7331 	/*
7332 	 * We don't allocate a new extent in the following cases
7333 	 *
7334 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7335 	 * existing extent.
7336 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7337 	 * just use the extent.
7338 	 *
7339 	 */
7340 	if ((em->flags & EXTENT_FLAG_PREALLOC) ||
7341 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7342 	     em->block_start != EXTENT_MAP_HOLE)) {
7343 		if (em->flags & EXTENT_FLAG_PREALLOC)
7344 			type = BTRFS_ORDERED_PREALLOC;
7345 		else
7346 			type = BTRFS_ORDERED_NOCOW;
7347 		len = min(len, em->len - (start - em->start));
7348 		block_start = em->block_start + (start - em->start);
7349 
7350 		if (can_nocow_extent(inode, start, &len, &orig_start,
7351 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7352 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7353 			if (bg)
7354 				can_nocow = true;
7355 		}
7356 	}
7357 
7358 	prev_len = len;
7359 	if (can_nocow) {
7360 		struct extent_map *em2;
7361 
7362 		/* We can NOCOW, so only need to reserve metadata space. */
7363 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7364 						      nowait);
7365 		if (ret < 0) {
7366 			/* Our caller expects us to free the input extent map. */
7367 			free_extent_map(em);
7368 			*map = NULL;
7369 			btrfs_dec_nocow_writers(bg);
7370 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7371 				ret = -EAGAIN;
7372 			goto out;
7373 		}
7374 		space_reserved = true;
7375 
7376 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7377 					      orig_start, block_start,
7378 					      len, orig_block_len,
7379 					      ram_bytes, type);
7380 		btrfs_dec_nocow_writers(bg);
7381 		if (type == BTRFS_ORDERED_PREALLOC) {
7382 			free_extent_map(em);
7383 			*map = em2;
7384 			em = em2;
7385 		}
7386 
7387 		if (IS_ERR(em2)) {
7388 			ret = PTR_ERR(em2);
7389 			goto out;
7390 		}
7391 
7392 		dio_data->nocow_done = true;
7393 	} else {
7394 		/* Our caller expects us to free the input extent map. */
7395 		free_extent_map(em);
7396 		*map = NULL;
7397 
7398 		if (nowait) {
7399 			ret = -EAGAIN;
7400 			goto out;
7401 		}
7402 
7403 		/*
7404 		 * If we could not allocate data space before locking the file
7405 		 * range and we can't do a NOCOW write, then we have to fail.
7406 		 */
7407 		if (!dio_data->data_space_reserved) {
7408 			ret = -ENOSPC;
7409 			goto out;
7410 		}
7411 
7412 		/*
7413 		 * We have to COW and we have already reserved data space before,
7414 		 * so now we reserve only metadata.
7415 		 */
7416 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7417 						      false);
7418 		if (ret < 0)
7419 			goto out;
7420 		space_reserved = true;
7421 
7422 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7423 		if (IS_ERR(em)) {
7424 			ret = PTR_ERR(em);
7425 			goto out;
7426 		}
7427 		*map = em;
7428 		len = min(len, em->len - (start - em->start));
7429 		if (len < prev_len)
7430 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7431 							prev_len - len, true);
7432 	}
7433 
7434 	/*
7435 	 * We have created our ordered extent, so we can now release our reservation
7436 	 * for an outstanding extent.
7437 	 */
7438 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7439 
7440 	/*
7441 	 * Need to update the i_size under the extent lock so buffered
7442 	 * readers will get the updated i_size when we unlock.
7443 	 */
7444 	if (start + len > i_size_read(inode))
7445 		i_size_write(inode, start + len);
7446 out:
7447 	if (ret && space_reserved) {
7448 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7449 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7450 	}
7451 	*lenp = len;
7452 	return ret;
7453 }
7454 
7455 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7456 		loff_t length, unsigned int flags, struct iomap *iomap,
7457 		struct iomap *srcmap)
7458 {
7459 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7460 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7461 	struct extent_map *em;
7462 	struct extent_state *cached_state = NULL;
7463 	struct btrfs_dio_data *dio_data = iter->private;
7464 	u64 lockstart, lockend;
7465 	const bool write = !!(flags & IOMAP_WRITE);
7466 	int ret = 0;
7467 	u64 len = length;
7468 	const u64 data_alloc_len = length;
7469 	bool unlock_extents = false;
7470 
7471 	/*
7472 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7473 	 * we're NOWAIT we may submit a bio for a partial range and return
7474 	 * EIOCBQUEUED, which would result in an errant short read.
7475 	 *
7476 	 * The best way to handle this would be to allow for partial completions
7477 	 * of iocb's, so we could submit the partial bio, return and fault in
7478 	 * the rest of the pages, and then submit the io for the rest of the
7479 	 * range.  However we don't have that currently, so simply return
7480 	 * -EAGAIN at this point so that the normal path is used.
7481 	 */
7482 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7483 		return -EAGAIN;
7484 
7485 	/*
7486 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7487 	 * to allocate a contiguous array for the checksums.
7488 	 */
7489 	if (!write)
7490 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7491 
7492 	lockstart = start;
7493 	lockend = start + len - 1;
7494 
7495 	/*
7496 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7497 	 * enough if we've written compressed pages to this area, so we need to
7498 	 * flush the dirty pages again to make absolutely sure that any
7499 	 * outstanding dirty pages are on disk - the first flush only starts
7500 	 * compression on the data, while keeping the pages locked, so by the
7501 	 * time the second flush returns we know bios for the compressed pages
7502 	 * were submitted and finished, and the pages no longer under writeback.
7503 	 *
7504 	 * If we have a NOWAIT request and we have any pages in the range that
7505 	 * are locked, likely due to compression still in progress, we don't want
7506 	 * to block on page locks. We also don't want to block on pages marked as
7507 	 * dirty or under writeback (same as for the non-compression case).
7508 	 * iomap_dio_rw() did the same check, but after that and before we got
7509 	 * here, mmap'ed writes may have happened or buffered reads started
7510 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7511 	 * the file range yet.
7512 	 */
7513 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7514 		     &BTRFS_I(inode)->runtime_flags)) {
7515 		if (flags & IOMAP_NOWAIT) {
7516 			if (filemap_range_needs_writeback(inode->i_mapping,
7517 							  lockstart, lockend))
7518 				return -EAGAIN;
7519 		} else {
7520 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7521 						       start + length - 1);
7522 			if (ret)
7523 				return ret;
7524 		}
7525 	}
7526 
7527 	memset(dio_data, 0, sizeof(*dio_data));
7528 
7529 	/*
7530 	 * We always try to allocate data space and must do it before locking
7531 	 * the file range, to avoid deadlocks with concurrent writes to the same
7532 	 * range if the range has several extents and the writes don't expand the
7533 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7534 	 * allocate data space here we continue and later, after locking the
7535 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7536 	 * NOCOW write.
7537 	 */
7538 	if (write && !(flags & IOMAP_NOWAIT)) {
7539 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7540 						  &dio_data->data_reserved,
7541 						  start, data_alloc_len, false);
7542 		if (!ret)
7543 			dio_data->data_space_reserved = true;
7544 		else if (ret && !(BTRFS_I(inode)->flags &
7545 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7546 			goto err;
7547 	}
7548 
7549 	/*
7550 	 * If this errors out it's because we couldn't invalidate pagecache for
7551 	 * this range and we need to fallback to buffered IO, or we are doing a
7552 	 * NOWAIT read/write and we need to block.
7553 	 */
7554 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7555 	if (ret < 0)
7556 		goto err;
7557 
7558 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7559 	if (IS_ERR(em)) {
7560 		ret = PTR_ERR(em);
7561 		goto unlock_err;
7562 	}
7563 
7564 	/*
7565 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7566 	 * io.  INLINE is special, and we could probably kludge it in here, but
7567 	 * it's still buffered so for safety lets just fall back to the generic
7568 	 * buffered path.
7569 	 *
7570 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7571 	 * decompress it, so there will be buffering required no matter what we
7572 	 * do, so go ahead and fallback to buffered.
7573 	 *
7574 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7575 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7576 	 * the generic code.
7577 	 */
7578 	if (extent_map_is_compressed(em) ||
7579 	    em->block_start == EXTENT_MAP_INLINE) {
7580 		free_extent_map(em);
7581 		/*
7582 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7583 		 * fallback to buffered IO. This is not only because we can
7584 		 * block with buffered IO (no support for NOWAIT semantics at
7585 		 * the moment) but also to avoid returning short reads to user
7586 		 * space - this happens if we were able to read some data from
7587 		 * previous non-compressed extents and then when we fallback to
7588 		 * buffered IO, at btrfs_file_read_iter() by calling
7589 		 * filemap_read(), we fail to fault in pages for the read buffer,
7590 		 * in which case filemap_read() returns a short read (the number
7591 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7592 		 */
7593 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7594 		goto unlock_err;
7595 	}
7596 
7597 	len = min(len, em->len - (start - em->start));
7598 
7599 	/*
7600 	 * If we have a NOWAIT request and the range contains multiple extents
7601 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7602 	 * caller fallback to a context where it can do a blocking (without
7603 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7604 	 * success to the caller, which is not optimal for writes and for reads
7605 	 * it can result in unexpected behaviour for an application.
7606 	 *
7607 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7608 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7609 	 * asked for, resulting in an unexpected, and incorrect, short read.
7610 	 * That is, the caller asked to read N bytes and we return less than that,
7611 	 * which is wrong unless we are crossing EOF. This happens if we get a
7612 	 * page fault error when trying to fault in pages for the buffer that is
7613 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7614 	 * have previously submitted bios for other extents in the range, in
7615 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7616 	 * those bios have completed by the time we get the page fault error,
7617 	 * which we return back to our caller - we should only return EIOCBQUEUED
7618 	 * after we have submitted bios for all the extents in the range.
7619 	 */
7620 	if ((flags & IOMAP_NOWAIT) && len < length) {
7621 		free_extent_map(em);
7622 		ret = -EAGAIN;
7623 		goto unlock_err;
7624 	}
7625 
7626 	if (write) {
7627 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7628 						    start, &len, flags);
7629 		if (ret < 0)
7630 			goto unlock_err;
7631 		unlock_extents = true;
7632 		/* Recalc len in case the new em is smaller than requested */
7633 		len = min(len, em->len - (start - em->start));
7634 		if (dio_data->data_space_reserved) {
7635 			u64 release_offset;
7636 			u64 release_len = 0;
7637 
7638 			if (dio_data->nocow_done) {
7639 				release_offset = start;
7640 				release_len = data_alloc_len;
7641 			} else if (len < data_alloc_len) {
7642 				release_offset = start + len;
7643 				release_len = data_alloc_len - len;
7644 			}
7645 
7646 			if (release_len > 0)
7647 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7648 							       dio_data->data_reserved,
7649 							       release_offset,
7650 							       release_len);
7651 		}
7652 	} else {
7653 		/*
7654 		 * We need to unlock only the end area that we aren't using.
7655 		 * The rest is going to be unlocked by the endio routine.
7656 		 */
7657 		lockstart = start + len;
7658 		if (lockstart < lockend)
7659 			unlock_extents = true;
7660 	}
7661 
7662 	if (unlock_extents)
7663 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7664 			      &cached_state);
7665 	else
7666 		free_extent_state(cached_state);
7667 
7668 	/*
7669 	 * Translate extent map information to iomap.
7670 	 * We trim the extents (and move the addr) even though iomap code does
7671 	 * that, since we have locked only the parts we are performing I/O in.
7672 	 */
7673 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7674 	    ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
7675 		iomap->addr = IOMAP_NULL_ADDR;
7676 		iomap->type = IOMAP_HOLE;
7677 	} else {
7678 		iomap->addr = em->block_start + (start - em->start);
7679 		iomap->type = IOMAP_MAPPED;
7680 	}
7681 	iomap->offset = start;
7682 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7683 	iomap->length = len;
7684 	free_extent_map(em);
7685 
7686 	return 0;
7687 
7688 unlock_err:
7689 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7690 		      &cached_state);
7691 err:
7692 	if (dio_data->data_space_reserved) {
7693 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7694 					       dio_data->data_reserved,
7695 					       start, data_alloc_len);
7696 		extent_changeset_free(dio_data->data_reserved);
7697 	}
7698 
7699 	return ret;
7700 }
7701 
7702 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7703 		ssize_t written, unsigned int flags, struct iomap *iomap)
7704 {
7705 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7706 	struct btrfs_dio_data *dio_data = iter->private;
7707 	size_t submitted = dio_data->submitted;
7708 	const bool write = !!(flags & IOMAP_WRITE);
7709 	int ret = 0;
7710 
7711 	if (!write && (iomap->type == IOMAP_HOLE)) {
7712 		/* If reading from a hole, unlock and return */
7713 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7714 			      NULL);
7715 		return 0;
7716 	}
7717 
7718 	if (submitted < length) {
7719 		pos += submitted;
7720 		length -= submitted;
7721 		if (write)
7722 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7723 						    pos, length, false);
7724 		else
7725 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7726 				      pos + length - 1, NULL);
7727 		ret = -ENOTBLK;
7728 	}
7729 	if (write) {
7730 		btrfs_put_ordered_extent(dio_data->ordered);
7731 		dio_data->ordered = NULL;
7732 	}
7733 
7734 	if (write)
7735 		extent_changeset_free(dio_data->data_reserved);
7736 	return ret;
7737 }
7738 
7739 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7740 {
7741 	struct btrfs_dio_private *dip =
7742 		container_of(bbio, struct btrfs_dio_private, bbio);
7743 	struct btrfs_inode *inode = bbio->inode;
7744 	struct bio *bio = &bbio->bio;
7745 
7746 	if (bio->bi_status) {
7747 		btrfs_warn(inode->root->fs_info,
7748 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7749 			   btrfs_ino(inode), bio->bi_opf,
7750 			   dip->file_offset, dip->bytes, bio->bi_status);
7751 	}
7752 
7753 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7754 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7755 					    dip->file_offset, dip->bytes,
7756 					    !bio->bi_status);
7757 	} else {
7758 		unlock_extent(&inode->io_tree, dip->file_offset,
7759 			      dip->file_offset + dip->bytes - 1, NULL);
7760 	}
7761 
7762 	bbio->bio.bi_private = bbio->private;
7763 	iomap_dio_bio_end_io(bio);
7764 }
7765 
7766 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7767 				loff_t file_offset)
7768 {
7769 	struct btrfs_bio *bbio = btrfs_bio(bio);
7770 	struct btrfs_dio_private *dip =
7771 		container_of(bbio, struct btrfs_dio_private, bbio);
7772 	struct btrfs_dio_data *dio_data = iter->private;
7773 
7774 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7775 		       btrfs_dio_end_io, bio->bi_private);
7776 	bbio->inode = BTRFS_I(iter->inode);
7777 	bbio->file_offset = file_offset;
7778 
7779 	dip->file_offset = file_offset;
7780 	dip->bytes = bio->bi_iter.bi_size;
7781 
7782 	dio_data->submitted += bio->bi_iter.bi_size;
7783 
7784 	/*
7785 	 * Check if we are doing a partial write.  If we are, we need to split
7786 	 * the ordered extent to match the submitted bio.  Hang on to the
7787 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7788 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7789 	 * remaining pages is blocked on the outstanding ordered extent.
7790 	 */
7791 	if (iter->flags & IOMAP_WRITE) {
7792 		int ret;
7793 
7794 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7795 		if (ret) {
7796 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7797 						    file_offset, dip->bytes,
7798 						    !ret);
7799 			bio->bi_status = errno_to_blk_status(ret);
7800 			iomap_dio_bio_end_io(bio);
7801 			return;
7802 		}
7803 	}
7804 
7805 	btrfs_submit_bio(bbio, 0);
7806 }
7807 
7808 static const struct iomap_ops btrfs_dio_iomap_ops = {
7809 	.iomap_begin            = btrfs_dio_iomap_begin,
7810 	.iomap_end              = btrfs_dio_iomap_end,
7811 };
7812 
7813 static const struct iomap_dio_ops btrfs_dio_ops = {
7814 	.submit_io		= btrfs_dio_submit_io,
7815 	.bio_set		= &btrfs_dio_bioset,
7816 };
7817 
7818 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7819 {
7820 	struct btrfs_dio_data data = { 0 };
7821 
7822 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7823 			    IOMAP_DIO_PARTIAL, &data, done_before);
7824 }
7825 
7826 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7827 				  size_t done_before)
7828 {
7829 	struct btrfs_dio_data data = { 0 };
7830 
7831 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7832 			    IOMAP_DIO_PARTIAL, &data, done_before);
7833 }
7834 
7835 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7836 			u64 start, u64 len)
7837 {
7838 	int	ret;
7839 
7840 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7841 	if (ret)
7842 		return ret;
7843 
7844 	/*
7845 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7846 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7847 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7848 	 * in the compression of data (in an async thread) and will return
7849 	 * before the compression is done and writeback is started. A second
7850 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7851 	 * complete and writeback to start. We also need to wait for ordered
7852 	 * extents to complete, because our fiemap implementation uses mainly
7853 	 * file extent items to list the extents, searching for extent maps
7854 	 * only for file ranges with holes or prealloc extents to figure out
7855 	 * if we have delalloc in those ranges.
7856 	 */
7857 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7858 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7859 		if (ret)
7860 			return ret;
7861 	}
7862 
7863 	return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
7864 }
7865 
7866 static int btrfs_writepages(struct address_space *mapping,
7867 			    struct writeback_control *wbc)
7868 {
7869 	return extent_writepages(mapping, wbc);
7870 }
7871 
7872 static void btrfs_readahead(struct readahead_control *rac)
7873 {
7874 	extent_readahead(rac);
7875 }
7876 
7877 /*
7878  * For release_folio() and invalidate_folio() we have a race window where
7879  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7880  * If we continue to release/invalidate the page, we could cause use-after-free
7881  * for subpage spinlock.  So this function is to spin and wait for subpage
7882  * spinlock.
7883  */
7884 static void wait_subpage_spinlock(struct page *page)
7885 {
7886 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7887 	struct folio *folio = page_folio(page);
7888 	struct btrfs_subpage *subpage;
7889 
7890 	if (!btrfs_is_subpage(fs_info, page->mapping))
7891 		return;
7892 
7893 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7894 	subpage = folio_get_private(folio);
7895 
7896 	/*
7897 	 * This may look insane as we just acquire the spinlock and release it,
7898 	 * without doing anything.  But we just want to make sure no one is
7899 	 * still holding the subpage spinlock.
7900 	 * And since the page is not dirty nor writeback, and we have page
7901 	 * locked, the only possible way to hold a spinlock is from the endio
7902 	 * function to clear page writeback.
7903 	 *
7904 	 * Here we just acquire the spinlock so that all existing callers
7905 	 * should exit and we're safe to release/invalidate the page.
7906 	 */
7907 	spin_lock_irq(&subpage->lock);
7908 	spin_unlock_irq(&subpage->lock);
7909 }
7910 
7911 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7912 {
7913 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7914 
7915 	if (ret == 1) {
7916 		wait_subpage_spinlock(&folio->page);
7917 		clear_page_extent_mapped(&folio->page);
7918 	}
7919 	return ret;
7920 }
7921 
7922 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7923 {
7924 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7925 		return false;
7926 	return __btrfs_release_folio(folio, gfp_flags);
7927 }
7928 
7929 #ifdef CONFIG_MIGRATION
7930 static int btrfs_migrate_folio(struct address_space *mapping,
7931 			     struct folio *dst, struct folio *src,
7932 			     enum migrate_mode mode)
7933 {
7934 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7935 
7936 	if (ret != MIGRATEPAGE_SUCCESS)
7937 		return ret;
7938 
7939 	if (folio_test_ordered(src)) {
7940 		folio_clear_ordered(src);
7941 		folio_set_ordered(dst);
7942 	}
7943 
7944 	return MIGRATEPAGE_SUCCESS;
7945 }
7946 #else
7947 #define btrfs_migrate_folio NULL
7948 #endif
7949 
7950 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
7951 				 size_t length)
7952 {
7953 	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
7954 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
7955 	struct extent_io_tree *tree = &inode->io_tree;
7956 	struct extent_state *cached_state = NULL;
7957 	u64 page_start = folio_pos(folio);
7958 	u64 page_end = page_start + folio_size(folio) - 1;
7959 	u64 cur;
7960 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
7961 
7962 	/*
7963 	 * We have folio locked so no new ordered extent can be created on this
7964 	 * page, nor bio can be submitted for this folio.
7965 	 *
7966 	 * But already submitted bio can still be finished on this folio.
7967 	 * Furthermore, endio function won't skip folio which has Ordered
7968 	 * (Private2) already cleared, so it's possible for endio and
7969 	 * invalidate_folio to do the same ordered extent accounting twice
7970 	 * on one folio.
7971 	 *
7972 	 * So here we wait for any submitted bios to finish, so that we won't
7973 	 * do double ordered extent accounting on the same folio.
7974 	 */
7975 	folio_wait_writeback(folio);
7976 	wait_subpage_spinlock(&folio->page);
7977 
7978 	/*
7979 	 * For subpage case, we have call sites like
7980 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
7981 	 * sectorsize.
7982 	 * If the range doesn't cover the full folio, we don't need to and
7983 	 * shouldn't clear page extent mapped, as folio->private can still
7984 	 * record subpage dirty bits for other part of the range.
7985 	 *
7986 	 * For cases that invalidate the full folio even the range doesn't
7987 	 * cover the full folio, like invalidating the last folio, we're
7988 	 * still safe to wait for ordered extent to finish.
7989 	 */
7990 	if (!(offset == 0 && length == folio_size(folio))) {
7991 		btrfs_release_folio(folio, GFP_NOFS);
7992 		return;
7993 	}
7994 
7995 	if (!inode_evicting)
7996 		lock_extent(tree, page_start, page_end, &cached_state);
7997 
7998 	cur = page_start;
7999 	while (cur < page_end) {
8000 		struct btrfs_ordered_extent *ordered;
8001 		u64 range_end;
8002 		u32 range_len;
8003 		u32 extra_flags = 0;
8004 
8005 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8006 							   page_end + 1 - cur);
8007 		if (!ordered) {
8008 			range_end = page_end;
8009 			/*
8010 			 * No ordered extent covering this range, we are safe
8011 			 * to delete all extent states in the range.
8012 			 */
8013 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8014 			goto next;
8015 		}
8016 		if (ordered->file_offset > cur) {
8017 			/*
8018 			 * There is a range between [cur, oe->file_offset) not
8019 			 * covered by any ordered extent.
8020 			 * We are safe to delete all extent states, and handle
8021 			 * the ordered extent in the next iteration.
8022 			 */
8023 			range_end = ordered->file_offset - 1;
8024 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8025 			goto next;
8026 		}
8027 
8028 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8029 				page_end);
8030 		ASSERT(range_end + 1 - cur < U32_MAX);
8031 		range_len = range_end + 1 - cur;
8032 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
8033 			/*
8034 			 * If Ordered (Private2) is cleared, it means endio has
8035 			 * already been executed for the range.
8036 			 * We can't delete the extent states as
8037 			 * btrfs_finish_ordered_io() may still use some of them.
8038 			 */
8039 			goto next;
8040 		}
8041 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
8042 
8043 		/*
8044 		 * IO on this page will never be started, so we need to account
8045 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8046 		 * here, must leave that up for the ordered extent completion.
8047 		 *
8048 		 * This will also unlock the range for incoming
8049 		 * btrfs_finish_ordered_io().
8050 		 */
8051 		if (!inode_evicting)
8052 			clear_extent_bit(tree, cur, range_end,
8053 					 EXTENT_DELALLOC |
8054 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8055 					 EXTENT_DEFRAG, &cached_state);
8056 
8057 		spin_lock_irq(&inode->ordered_tree_lock);
8058 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8059 		ordered->truncated_len = min(ordered->truncated_len,
8060 					     cur - ordered->file_offset);
8061 		spin_unlock_irq(&inode->ordered_tree_lock);
8062 
8063 		/*
8064 		 * If the ordered extent has finished, we're safe to delete all
8065 		 * the extent states of the range, otherwise
8066 		 * btrfs_finish_ordered_io() will get executed by endio for
8067 		 * other pages, so we can't delete extent states.
8068 		 */
8069 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8070 						   cur, range_end + 1 - cur)) {
8071 			btrfs_finish_ordered_io(ordered);
8072 			/*
8073 			 * The ordered extent has finished, now we're again
8074 			 * safe to delete all extent states of the range.
8075 			 */
8076 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8077 		}
8078 next:
8079 		if (ordered)
8080 			btrfs_put_ordered_extent(ordered);
8081 		/*
8082 		 * Qgroup reserved space handler
8083 		 * Sector(s) here will be either:
8084 		 *
8085 		 * 1) Already written to disk or bio already finished
8086 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8087 		 *    Qgroup will be handled by its qgroup_record then.
8088 		 *    btrfs_qgroup_free_data() call will do nothing here.
8089 		 *
8090 		 * 2) Not written to disk yet
8091 		 *    Then btrfs_qgroup_free_data() call will clear the
8092 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8093 		 *    reserved data space.
8094 		 *    Since the IO will never happen for this page.
8095 		 */
8096 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8097 		if (!inode_evicting) {
8098 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8099 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8100 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8101 				 extra_flags, &cached_state);
8102 		}
8103 		cur = range_end + 1;
8104 	}
8105 	/*
8106 	 * We have iterated through all ordered extents of the page, the page
8107 	 * should not have Ordered (Private2) anymore, or the above iteration
8108 	 * did something wrong.
8109 	 */
8110 	ASSERT(!folio_test_ordered(folio));
8111 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
8112 	if (!inode_evicting)
8113 		__btrfs_release_folio(folio, GFP_NOFS);
8114 	clear_page_extent_mapped(&folio->page);
8115 }
8116 
8117 /*
8118  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8119  * called from a page fault handler when a page is first dirtied. Hence we must
8120  * be careful to check for EOF conditions here. We set the page up correctly
8121  * for a written page which means we get ENOSPC checking when writing into
8122  * holes and correct delalloc and unwritten extent mapping on filesystems that
8123  * support these features.
8124  *
8125  * We are not allowed to take the i_mutex here so we have to play games to
8126  * protect against truncate races as the page could now be beyond EOF.  Because
8127  * truncate_setsize() writes the inode size before removing pages, once we have
8128  * the page lock we can determine safely if the page is beyond EOF. If it is not
8129  * beyond EOF, then the page is guaranteed safe against truncation until we
8130  * unlock the page.
8131  */
8132 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8133 {
8134 	struct page *page = vmf->page;
8135 	struct folio *folio = page_folio(page);
8136 	struct inode *inode = file_inode(vmf->vma->vm_file);
8137 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8138 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8139 	struct btrfs_ordered_extent *ordered;
8140 	struct extent_state *cached_state = NULL;
8141 	struct extent_changeset *data_reserved = NULL;
8142 	unsigned long zero_start;
8143 	loff_t size;
8144 	vm_fault_t ret;
8145 	int ret2;
8146 	int reserved = 0;
8147 	u64 reserved_space;
8148 	u64 page_start;
8149 	u64 page_end;
8150 	u64 end;
8151 
8152 	ASSERT(folio_order(folio) == 0);
8153 
8154 	reserved_space = PAGE_SIZE;
8155 
8156 	sb_start_pagefault(inode->i_sb);
8157 	page_start = page_offset(page);
8158 	page_end = page_start + PAGE_SIZE - 1;
8159 	end = page_end;
8160 
8161 	/*
8162 	 * Reserving delalloc space after obtaining the page lock can lead to
8163 	 * deadlock. For example, if a dirty page is locked by this function
8164 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8165 	 * dirty page write out, then the btrfs_writepages() function could
8166 	 * end up waiting indefinitely to get a lock on the page currently
8167 	 * being processed by btrfs_page_mkwrite() function.
8168 	 */
8169 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8170 					    page_start, reserved_space);
8171 	if (!ret2) {
8172 		ret2 = file_update_time(vmf->vma->vm_file);
8173 		reserved = 1;
8174 	}
8175 	if (ret2) {
8176 		ret = vmf_error(ret2);
8177 		if (reserved)
8178 			goto out;
8179 		goto out_noreserve;
8180 	}
8181 
8182 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8183 again:
8184 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8185 	lock_page(page);
8186 	size = i_size_read(inode);
8187 
8188 	if ((page->mapping != inode->i_mapping) ||
8189 	    (page_start >= size)) {
8190 		/* page got truncated out from underneath us */
8191 		goto out_unlock;
8192 	}
8193 	wait_on_page_writeback(page);
8194 
8195 	lock_extent(io_tree, page_start, page_end, &cached_state);
8196 	ret2 = set_page_extent_mapped(page);
8197 	if (ret2 < 0) {
8198 		ret = vmf_error(ret2);
8199 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8200 		goto out_unlock;
8201 	}
8202 
8203 	/*
8204 	 * we can't set the delalloc bits if there are pending ordered
8205 	 * extents.  Drop our locks and wait for them to finish
8206 	 */
8207 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8208 			PAGE_SIZE);
8209 	if (ordered) {
8210 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8211 		unlock_page(page);
8212 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8213 		btrfs_start_ordered_extent(ordered);
8214 		btrfs_put_ordered_extent(ordered);
8215 		goto again;
8216 	}
8217 
8218 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8219 		reserved_space = round_up(size - page_start,
8220 					  fs_info->sectorsize);
8221 		if (reserved_space < PAGE_SIZE) {
8222 			end = page_start + reserved_space - 1;
8223 			btrfs_delalloc_release_space(BTRFS_I(inode),
8224 					data_reserved, page_start,
8225 					PAGE_SIZE - reserved_space, true);
8226 		}
8227 	}
8228 
8229 	/*
8230 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8231 	 * faulted in, but write(2) could also dirty a page and set delalloc
8232 	 * bits, thus in this case for space account reason, we still need to
8233 	 * clear any delalloc bits within this page range since we have to
8234 	 * reserve data&meta space before lock_page() (see above comments).
8235 	 */
8236 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8237 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8238 			  EXTENT_DEFRAG, &cached_state);
8239 
8240 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8241 					&cached_state);
8242 	if (ret2) {
8243 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8244 		ret = VM_FAULT_SIGBUS;
8245 		goto out_unlock;
8246 	}
8247 
8248 	/* page is wholly or partially inside EOF */
8249 	if (page_start + PAGE_SIZE > size)
8250 		zero_start = offset_in_page(size);
8251 	else
8252 		zero_start = PAGE_SIZE;
8253 
8254 	if (zero_start != PAGE_SIZE)
8255 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8256 
8257 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
8258 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
8259 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
8260 
8261 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8262 
8263 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8264 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8265 
8266 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8267 	sb_end_pagefault(inode->i_sb);
8268 	extent_changeset_free(data_reserved);
8269 	return VM_FAULT_LOCKED;
8270 
8271 out_unlock:
8272 	unlock_page(page);
8273 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8274 out:
8275 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8276 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8277 				     reserved_space, (ret != 0));
8278 out_noreserve:
8279 	sb_end_pagefault(inode->i_sb);
8280 	extent_changeset_free(data_reserved);
8281 	return ret;
8282 }
8283 
8284 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8285 {
8286 	struct btrfs_truncate_control control = {
8287 		.inode = inode,
8288 		.ino = btrfs_ino(inode),
8289 		.min_type = BTRFS_EXTENT_DATA_KEY,
8290 		.clear_extent_range = true,
8291 	};
8292 	struct btrfs_root *root = inode->root;
8293 	struct btrfs_fs_info *fs_info = root->fs_info;
8294 	struct btrfs_block_rsv *rsv;
8295 	int ret;
8296 	struct btrfs_trans_handle *trans;
8297 	u64 mask = fs_info->sectorsize - 1;
8298 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8299 
8300 	if (!skip_writeback) {
8301 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8302 					       inode->vfs_inode.i_size & (~mask),
8303 					       (u64)-1);
8304 		if (ret)
8305 			return ret;
8306 	}
8307 
8308 	/*
8309 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8310 	 * things going on here:
8311 	 *
8312 	 * 1) We need to reserve space to update our inode.
8313 	 *
8314 	 * 2) We need to have something to cache all the space that is going to
8315 	 * be free'd up by the truncate operation, but also have some slack
8316 	 * space reserved in case it uses space during the truncate (thank you
8317 	 * very much snapshotting).
8318 	 *
8319 	 * And we need these to be separate.  The fact is we can use a lot of
8320 	 * space doing the truncate, and we have no earthly idea how much space
8321 	 * we will use, so we need the truncate reservation to be separate so it
8322 	 * doesn't end up using space reserved for updating the inode.  We also
8323 	 * need to be able to stop the transaction and start a new one, which
8324 	 * means we need to be able to update the inode several times, and we
8325 	 * have no idea of knowing how many times that will be, so we can't just
8326 	 * reserve 1 item for the entirety of the operation, so that has to be
8327 	 * done separately as well.
8328 	 *
8329 	 * So that leaves us with
8330 	 *
8331 	 * 1) rsv - for the truncate reservation, which we will steal from the
8332 	 * transaction reservation.
8333 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8334 	 * updating the inode.
8335 	 */
8336 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8337 	if (!rsv)
8338 		return -ENOMEM;
8339 	rsv->size = min_size;
8340 	rsv->failfast = true;
8341 
8342 	/*
8343 	 * 1 for the truncate slack space
8344 	 * 1 for updating the inode.
8345 	 */
8346 	trans = btrfs_start_transaction(root, 2);
8347 	if (IS_ERR(trans)) {
8348 		ret = PTR_ERR(trans);
8349 		goto out;
8350 	}
8351 
8352 	/* Migrate the slack space for the truncate to our reserve */
8353 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8354 				      min_size, false);
8355 	/*
8356 	 * We have reserved 2 metadata units when we started the transaction and
8357 	 * min_size matches 1 unit, so this should never fail, but if it does,
8358 	 * it's not critical we just fail truncation.
8359 	 */
8360 	if (WARN_ON(ret)) {
8361 		btrfs_end_transaction(trans);
8362 		goto out;
8363 	}
8364 
8365 	trans->block_rsv = rsv;
8366 
8367 	while (1) {
8368 		struct extent_state *cached_state = NULL;
8369 		const u64 new_size = inode->vfs_inode.i_size;
8370 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8371 
8372 		control.new_size = new_size;
8373 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8374 		/*
8375 		 * We want to drop from the next block forward in case this new
8376 		 * size is not block aligned since we will be keeping the last
8377 		 * block of the extent just the way it is.
8378 		 */
8379 		btrfs_drop_extent_map_range(inode,
8380 					    ALIGN(new_size, fs_info->sectorsize),
8381 					    (u64)-1, false);
8382 
8383 		ret = btrfs_truncate_inode_items(trans, root, &control);
8384 
8385 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8386 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8387 
8388 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8389 
8390 		trans->block_rsv = &fs_info->trans_block_rsv;
8391 		if (ret != -ENOSPC && ret != -EAGAIN)
8392 			break;
8393 
8394 		ret = btrfs_update_inode(trans, inode);
8395 		if (ret)
8396 			break;
8397 
8398 		btrfs_end_transaction(trans);
8399 		btrfs_btree_balance_dirty(fs_info);
8400 
8401 		trans = btrfs_start_transaction(root, 2);
8402 		if (IS_ERR(trans)) {
8403 			ret = PTR_ERR(trans);
8404 			trans = NULL;
8405 			break;
8406 		}
8407 
8408 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8409 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8410 					      rsv, min_size, false);
8411 		/*
8412 		 * We have reserved 2 metadata units when we started the
8413 		 * transaction and min_size matches 1 unit, so this should never
8414 		 * fail, but if it does, it's not critical we just fail truncation.
8415 		 */
8416 		if (WARN_ON(ret))
8417 			break;
8418 
8419 		trans->block_rsv = rsv;
8420 	}
8421 
8422 	/*
8423 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8424 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8425 	 * know we've truncated everything except the last little bit, and can
8426 	 * do btrfs_truncate_block and then update the disk_i_size.
8427 	 */
8428 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8429 		btrfs_end_transaction(trans);
8430 		btrfs_btree_balance_dirty(fs_info);
8431 
8432 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8433 		if (ret)
8434 			goto out;
8435 		trans = btrfs_start_transaction(root, 1);
8436 		if (IS_ERR(trans)) {
8437 			ret = PTR_ERR(trans);
8438 			goto out;
8439 		}
8440 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8441 	}
8442 
8443 	if (trans) {
8444 		int ret2;
8445 
8446 		trans->block_rsv = &fs_info->trans_block_rsv;
8447 		ret2 = btrfs_update_inode(trans, inode);
8448 		if (ret2 && !ret)
8449 			ret = ret2;
8450 
8451 		ret2 = btrfs_end_transaction(trans);
8452 		if (ret2 && !ret)
8453 			ret = ret2;
8454 		btrfs_btree_balance_dirty(fs_info);
8455 	}
8456 out:
8457 	btrfs_free_block_rsv(fs_info, rsv);
8458 	/*
8459 	 * So if we truncate and then write and fsync we normally would just
8460 	 * write the extents that changed, which is a problem if we need to
8461 	 * first truncate that entire inode.  So set this flag so we write out
8462 	 * all of the extents in the inode to the sync log so we're completely
8463 	 * safe.
8464 	 *
8465 	 * If no extents were dropped or trimmed we don't need to force the next
8466 	 * fsync to truncate all the inode's items from the log and re-log them
8467 	 * all. This means the truncate operation did not change the file size,
8468 	 * or changed it to a smaller size but there was only an implicit hole
8469 	 * between the old i_size and the new i_size, and there were no prealloc
8470 	 * extents beyond i_size to drop.
8471 	 */
8472 	if (control.extents_found > 0)
8473 		btrfs_set_inode_full_sync(inode);
8474 
8475 	return ret;
8476 }
8477 
8478 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8479 				     struct inode *dir)
8480 {
8481 	struct inode *inode;
8482 
8483 	inode = new_inode(dir->i_sb);
8484 	if (inode) {
8485 		/*
8486 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8487 		 * the parent's sgid bit is set. This is probably a bug.
8488 		 */
8489 		inode_init_owner(idmap, inode, NULL,
8490 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8491 		inode->i_op = &btrfs_dir_inode_operations;
8492 		inode->i_fop = &btrfs_dir_file_operations;
8493 	}
8494 	return inode;
8495 }
8496 
8497 struct inode *btrfs_alloc_inode(struct super_block *sb)
8498 {
8499 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8500 	struct btrfs_inode *ei;
8501 	struct inode *inode;
8502 	struct extent_io_tree *file_extent_tree = NULL;
8503 
8504 	/* Self tests may pass a NULL fs_info. */
8505 	if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8506 		file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8507 		if (!file_extent_tree)
8508 			return NULL;
8509 	}
8510 
8511 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8512 	if (!ei) {
8513 		kfree(file_extent_tree);
8514 		return NULL;
8515 	}
8516 
8517 	ei->root = NULL;
8518 	ei->generation = 0;
8519 	ei->last_trans = 0;
8520 	ei->last_sub_trans = 0;
8521 	ei->logged_trans = 0;
8522 	ei->delalloc_bytes = 0;
8523 	ei->new_delalloc_bytes = 0;
8524 	ei->defrag_bytes = 0;
8525 	ei->disk_i_size = 0;
8526 	ei->flags = 0;
8527 	ei->ro_flags = 0;
8528 	ei->csum_bytes = 0;
8529 	ei->index_cnt = (u64)-1;
8530 	ei->dir_index = 0;
8531 	ei->last_unlink_trans = 0;
8532 	ei->last_reflink_trans = 0;
8533 	ei->last_log_commit = 0;
8534 
8535 	spin_lock_init(&ei->lock);
8536 	ei->outstanding_extents = 0;
8537 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8538 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8539 					      BTRFS_BLOCK_RSV_DELALLOC);
8540 	ei->runtime_flags = 0;
8541 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8542 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8543 
8544 	ei->delayed_node = NULL;
8545 
8546 	ei->i_otime_sec = 0;
8547 	ei->i_otime_nsec = 0;
8548 
8549 	inode = &ei->vfs_inode;
8550 	extent_map_tree_init(&ei->extent_tree);
8551 
8552 	/* This io tree sets the valid inode. */
8553 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8554 	ei->io_tree.inode = ei;
8555 
8556 	ei->file_extent_tree = file_extent_tree;
8557 	if (file_extent_tree) {
8558 		extent_io_tree_init(fs_info, ei->file_extent_tree,
8559 				    IO_TREE_INODE_FILE_EXTENT);
8560 		/* Lockdep class is set only for the file extent tree. */
8561 		lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8562 	}
8563 	mutex_init(&ei->log_mutex);
8564 	spin_lock_init(&ei->ordered_tree_lock);
8565 	ei->ordered_tree = RB_ROOT;
8566 	ei->ordered_tree_last = NULL;
8567 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8568 	INIT_LIST_HEAD(&ei->delayed_iput);
8569 	RB_CLEAR_NODE(&ei->rb_node);
8570 	init_rwsem(&ei->i_mmap_lock);
8571 
8572 	return inode;
8573 }
8574 
8575 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8576 void btrfs_test_destroy_inode(struct inode *inode)
8577 {
8578 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8579 	kfree(BTRFS_I(inode)->file_extent_tree);
8580 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8581 }
8582 #endif
8583 
8584 void btrfs_free_inode(struct inode *inode)
8585 {
8586 	kfree(BTRFS_I(inode)->file_extent_tree);
8587 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8588 }
8589 
8590 void btrfs_destroy_inode(struct inode *vfs_inode)
8591 {
8592 	struct btrfs_ordered_extent *ordered;
8593 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8594 	struct btrfs_root *root = inode->root;
8595 	bool freespace_inode;
8596 
8597 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8598 	WARN_ON(vfs_inode->i_data.nrpages);
8599 	WARN_ON(inode->block_rsv.reserved);
8600 	WARN_ON(inode->block_rsv.size);
8601 	WARN_ON(inode->outstanding_extents);
8602 	if (!S_ISDIR(vfs_inode->i_mode)) {
8603 		WARN_ON(inode->delalloc_bytes);
8604 		WARN_ON(inode->new_delalloc_bytes);
8605 	}
8606 	WARN_ON(inode->csum_bytes);
8607 	WARN_ON(inode->defrag_bytes);
8608 
8609 	/*
8610 	 * This can happen where we create an inode, but somebody else also
8611 	 * created the same inode and we need to destroy the one we already
8612 	 * created.
8613 	 */
8614 	if (!root)
8615 		return;
8616 
8617 	/*
8618 	 * If this is a free space inode do not take the ordered extents lockdep
8619 	 * map.
8620 	 */
8621 	freespace_inode = btrfs_is_free_space_inode(inode);
8622 
8623 	while (1) {
8624 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8625 		if (!ordered)
8626 			break;
8627 		else {
8628 			btrfs_err(root->fs_info,
8629 				  "found ordered extent %llu %llu on inode cleanup",
8630 				  ordered->file_offset, ordered->num_bytes);
8631 
8632 			if (!freespace_inode)
8633 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8634 
8635 			btrfs_remove_ordered_extent(inode, ordered);
8636 			btrfs_put_ordered_extent(ordered);
8637 			btrfs_put_ordered_extent(ordered);
8638 		}
8639 	}
8640 	btrfs_qgroup_check_reserved_leak(inode);
8641 	inode_tree_del(inode);
8642 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8643 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8644 	btrfs_put_root(inode->root);
8645 }
8646 
8647 int btrfs_drop_inode(struct inode *inode)
8648 {
8649 	struct btrfs_root *root = BTRFS_I(inode)->root;
8650 
8651 	if (root == NULL)
8652 		return 1;
8653 
8654 	/* the snap/subvol tree is on deleting */
8655 	if (btrfs_root_refs(&root->root_item) == 0)
8656 		return 1;
8657 	else
8658 		return generic_drop_inode(inode);
8659 }
8660 
8661 static void init_once(void *foo)
8662 {
8663 	struct btrfs_inode *ei = foo;
8664 
8665 	inode_init_once(&ei->vfs_inode);
8666 }
8667 
8668 void __cold btrfs_destroy_cachep(void)
8669 {
8670 	/*
8671 	 * Make sure all delayed rcu free inodes are flushed before we
8672 	 * destroy cache.
8673 	 */
8674 	rcu_barrier();
8675 	bioset_exit(&btrfs_dio_bioset);
8676 	kmem_cache_destroy(btrfs_inode_cachep);
8677 }
8678 
8679 int __init btrfs_init_cachep(void)
8680 {
8681 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8682 			sizeof(struct btrfs_inode), 0,
8683 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8684 			init_once);
8685 	if (!btrfs_inode_cachep)
8686 		goto fail;
8687 
8688 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8689 			offsetof(struct btrfs_dio_private, bbio.bio),
8690 			BIOSET_NEED_BVECS))
8691 		goto fail;
8692 
8693 	return 0;
8694 fail:
8695 	btrfs_destroy_cachep();
8696 	return -ENOMEM;
8697 }
8698 
8699 static int btrfs_getattr(struct mnt_idmap *idmap,
8700 			 const struct path *path, struct kstat *stat,
8701 			 u32 request_mask, unsigned int flags)
8702 {
8703 	u64 delalloc_bytes;
8704 	u64 inode_bytes;
8705 	struct inode *inode = d_inode(path->dentry);
8706 	u32 blocksize = inode->i_sb->s_blocksize;
8707 	u32 bi_flags = BTRFS_I(inode)->flags;
8708 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8709 
8710 	stat->result_mask |= STATX_BTIME;
8711 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8712 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8713 	if (bi_flags & BTRFS_INODE_APPEND)
8714 		stat->attributes |= STATX_ATTR_APPEND;
8715 	if (bi_flags & BTRFS_INODE_COMPRESS)
8716 		stat->attributes |= STATX_ATTR_COMPRESSED;
8717 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8718 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8719 	if (bi_flags & BTRFS_INODE_NODUMP)
8720 		stat->attributes |= STATX_ATTR_NODUMP;
8721 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8722 		stat->attributes |= STATX_ATTR_VERITY;
8723 
8724 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8725 				  STATX_ATTR_COMPRESSED |
8726 				  STATX_ATTR_IMMUTABLE |
8727 				  STATX_ATTR_NODUMP);
8728 
8729 	generic_fillattr(idmap, request_mask, inode, stat);
8730 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8731 
8732 	spin_lock(&BTRFS_I(inode)->lock);
8733 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8734 	inode_bytes = inode_get_bytes(inode);
8735 	spin_unlock(&BTRFS_I(inode)->lock);
8736 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8737 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8738 	return 0;
8739 }
8740 
8741 static int btrfs_rename_exchange(struct inode *old_dir,
8742 			      struct dentry *old_dentry,
8743 			      struct inode *new_dir,
8744 			      struct dentry *new_dentry)
8745 {
8746 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8747 	struct btrfs_trans_handle *trans;
8748 	unsigned int trans_num_items;
8749 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8750 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8751 	struct inode *new_inode = new_dentry->d_inode;
8752 	struct inode *old_inode = old_dentry->d_inode;
8753 	struct btrfs_rename_ctx old_rename_ctx;
8754 	struct btrfs_rename_ctx new_rename_ctx;
8755 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8756 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8757 	u64 old_idx = 0;
8758 	u64 new_idx = 0;
8759 	int ret;
8760 	int ret2;
8761 	bool need_abort = false;
8762 	struct fscrypt_name old_fname, new_fname;
8763 	struct fscrypt_str *old_name, *new_name;
8764 
8765 	/*
8766 	 * For non-subvolumes allow exchange only within one subvolume, in the
8767 	 * same inode namespace. Two subvolumes (represented as directory) can
8768 	 * be exchanged as they're a logical link and have a fixed inode number.
8769 	 */
8770 	if (root != dest &&
8771 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8772 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8773 		return -EXDEV;
8774 
8775 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8776 	if (ret)
8777 		return ret;
8778 
8779 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8780 	if (ret) {
8781 		fscrypt_free_filename(&old_fname);
8782 		return ret;
8783 	}
8784 
8785 	old_name = &old_fname.disk_name;
8786 	new_name = &new_fname.disk_name;
8787 
8788 	/* close the race window with snapshot create/destroy ioctl */
8789 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8790 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8791 		down_read(&fs_info->subvol_sem);
8792 
8793 	/*
8794 	 * For each inode:
8795 	 * 1 to remove old dir item
8796 	 * 1 to remove old dir index
8797 	 * 1 to add new dir item
8798 	 * 1 to add new dir index
8799 	 * 1 to update parent inode
8800 	 *
8801 	 * If the parents are the same, we only need to account for one
8802 	 */
8803 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8804 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8805 		/*
8806 		 * 1 to remove old root ref
8807 		 * 1 to remove old root backref
8808 		 * 1 to add new root ref
8809 		 * 1 to add new root backref
8810 		 */
8811 		trans_num_items += 4;
8812 	} else {
8813 		/*
8814 		 * 1 to update inode item
8815 		 * 1 to remove old inode ref
8816 		 * 1 to add new inode ref
8817 		 */
8818 		trans_num_items += 3;
8819 	}
8820 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8821 		trans_num_items += 4;
8822 	else
8823 		trans_num_items += 3;
8824 	trans = btrfs_start_transaction(root, trans_num_items);
8825 	if (IS_ERR(trans)) {
8826 		ret = PTR_ERR(trans);
8827 		goto out_notrans;
8828 	}
8829 
8830 	if (dest != root) {
8831 		ret = btrfs_record_root_in_trans(trans, dest);
8832 		if (ret)
8833 			goto out_fail;
8834 	}
8835 
8836 	/*
8837 	 * We need to find a free sequence number both in the source and
8838 	 * in the destination directory for the exchange.
8839 	 */
8840 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8841 	if (ret)
8842 		goto out_fail;
8843 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8844 	if (ret)
8845 		goto out_fail;
8846 
8847 	BTRFS_I(old_inode)->dir_index = 0ULL;
8848 	BTRFS_I(new_inode)->dir_index = 0ULL;
8849 
8850 	/* Reference for the source. */
8851 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8852 		/* force full log commit if subvolume involved. */
8853 		btrfs_set_log_full_commit(trans);
8854 	} else {
8855 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8856 					     btrfs_ino(BTRFS_I(new_dir)),
8857 					     old_idx);
8858 		if (ret)
8859 			goto out_fail;
8860 		need_abort = true;
8861 	}
8862 
8863 	/* And now for the dest. */
8864 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8865 		/* force full log commit if subvolume involved. */
8866 		btrfs_set_log_full_commit(trans);
8867 	} else {
8868 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8869 					     btrfs_ino(BTRFS_I(old_dir)),
8870 					     new_idx);
8871 		if (ret) {
8872 			if (need_abort)
8873 				btrfs_abort_transaction(trans, ret);
8874 			goto out_fail;
8875 		}
8876 	}
8877 
8878 	/* Update inode version and ctime/mtime. */
8879 	inode_inc_iversion(old_dir);
8880 	inode_inc_iversion(new_dir);
8881 	inode_inc_iversion(old_inode);
8882 	inode_inc_iversion(new_inode);
8883 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8884 
8885 	if (old_dentry->d_parent != new_dentry->d_parent) {
8886 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8887 					BTRFS_I(old_inode), true);
8888 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8889 					BTRFS_I(new_inode), true);
8890 	}
8891 
8892 	/* src is a subvolume */
8893 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8894 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8895 	} else { /* src is an inode */
8896 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8897 					   BTRFS_I(old_dentry->d_inode),
8898 					   old_name, &old_rename_ctx);
8899 		if (!ret)
8900 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8901 	}
8902 	if (ret) {
8903 		btrfs_abort_transaction(trans, ret);
8904 		goto out_fail;
8905 	}
8906 
8907 	/* dest is a subvolume */
8908 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8909 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8910 	} else { /* dest is an inode */
8911 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8912 					   BTRFS_I(new_dentry->d_inode),
8913 					   new_name, &new_rename_ctx);
8914 		if (!ret)
8915 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8916 	}
8917 	if (ret) {
8918 		btrfs_abort_transaction(trans, ret);
8919 		goto out_fail;
8920 	}
8921 
8922 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8923 			     new_name, 0, old_idx);
8924 	if (ret) {
8925 		btrfs_abort_transaction(trans, ret);
8926 		goto out_fail;
8927 	}
8928 
8929 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8930 			     old_name, 0, new_idx);
8931 	if (ret) {
8932 		btrfs_abort_transaction(trans, ret);
8933 		goto out_fail;
8934 	}
8935 
8936 	if (old_inode->i_nlink == 1)
8937 		BTRFS_I(old_inode)->dir_index = old_idx;
8938 	if (new_inode->i_nlink == 1)
8939 		BTRFS_I(new_inode)->dir_index = new_idx;
8940 
8941 	/*
8942 	 * Now pin the logs of the roots. We do it to ensure that no other task
8943 	 * can sync the logs while we are in progress with the rename, because
8944 	 * that could result in an inconsistency in case any of the inodes that
8945 	 * are part of this rename operation were logged before.
8946 	 */
8947 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8948 		btrfs_pin_log_trans(root);
8949 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8950 		btrfs_pin_log_trans(dest);
8951 
8952 	/* Do the log updates for all inodes. */
8953 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8954 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
8955 				   old_rename_ctx.index, new_dentry->d_parent);
8956 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8957 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
8958 				   new_rename_ctx.index, old_dentry->d_parent);
8959 
8960 	/* Now unpin the logs. */
8961 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
8962 		btrfs_end_log_trans(root);
8963 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
8964 		btrfs_end_log_trans(dest);
8965 out_fail:
8966 	ret2 = btrfs_end_transaction(trans);
8967 	ret = ret ? ret : ret2;
8968 out_notrans:
8969 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8970 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
8971 		up_read(&fs_info->subvol_sem);
8972 
8973 	fscrypt_free_filename(&new_fname);
8974 	fscrypt_free_filename(&old_fname);
8975 	return ret;
8976 }
8977 
8978 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
8979 					struct inode *dir)
8980 {
8981 	struct inode *inode;
8982 
8983 	inode = new_inode(dir->i_sb);
8984 	if (inode) {
8985 		inode_init_owner(idmap, inode, dir,
8986 				 S_IFCHR | WHITEOUT_MODE);
8987 		inode->i_op = &btrfs_special_inode_operations;
8988 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
8989 	}
8990 	return inode;
8991 }
8992 
8993 static int btrfs_rename(struct mnt_idmap *idmap,
8994 			struct inode *old_dir, struct dentry *old_dentry,
8995 			struct inode *new_dir, struct dentry *new_dentry,
8996 			unsigned int flags)
8997 {
8998 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8999 	struct btrfs_new_inode_args whiteout_args = {
9000 		.dir = old_dir,
9001 		.dentry = old_dentry,
9002 	};
9003 	struct btrfs_trans_handle *trans;
9004 	unsigned int trans_num_items;
9005 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9006 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9007 	struct inode *new_inode = d_inode(new_dentry);
9008 	struct inode *old_inode = d_inode(old_dentry);
9009 	struct btrfs_rename_ctx rename_ctx;
9010 	u64 index = 0;
9011 	int ret;
9012 	int ret2;
9013 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9014 	struct fscrypt_name old_fname, new_fname;
9015 
9016 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9017 		return -EPERM;
9018 
9019 	/* we only allow rename subvolume link between subvolumes */
9020 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9021 		return -EXDEV;
9022 
9023 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9024 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9025 		return -ENOTEMPTY;
9026 
9027 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9028 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9029 		return -ENOTEMPTY;
9030 
9031 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9032 	if (ret)
9033 		return ret;
9034 
9035 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9036 	if (ret) {
9037 		fscrypt_free_filename(&old_fname);
9038 		return ret;
9039 	}
9040 
9041 	/* check for collisions, even if the  name isn't there */
9042 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9043 	if (ret) {
9044 		if (ret == -EEXIST) {
9045 			/* we shouldn't get
9046 			 * eexist without a new_inode */
9047 			if (WARN_ON(!new_inode)) {
9048 				goto out_fscrypt_names;
9049 			}
9050 		} else {
9051 			/* maybe -EOVERFLOW */
9052 			goto out_fscrypt_names;
9053 		}
9054 	}
9055 	ret = 0;
9056 
9057 	/*
9058 	 * we're using rename to replace one file with another.  Start IO on it
9059 	 * now so  we don't add too much work to the end of the transaction
9060 	 */
9061 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9062 		filemap_flush(old_inode->i_mapping);
9063 
9064 	if (flags & RENAME_WHITEOUT) {
9065 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9066 		if (!whiteout_args.inode) {
9067 			ret = -ENOMEM;
9068 			goto out_fscrypt_names;
9069 		}
9070 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9071 		if (ret)
9072 			goto out_whiteout_inode;
9073 	} else {
9074 		/* 1 to update the old parent inode. */
9075 		trans_num_items = 1;
9076 	}
9077 
9078 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9079 		/* Close the race window with snapshot create/destroy ioctl */
9080 		down_read(&fs_info->subvol_sem);
9081 		/*
9082 		 * 1 to remove old root ref
9083 		 * 1 to remove old root backref
9084 		 * 1 to add new root ref
9085 		 * 1 to add new root backref
9086 		 */
9087 		trans_num_items += 4;
9088 	} else {
9089 		/*
9090 		 * 1 to update inode
9091 		 * 1 to remove old inode ref
9092 		 * 1 to add new inode ref
9093 		 */
9094 		trans_num_items += 3;
9095 	}
9096 	/*
9097 	 * 1 to remove old dir item
9098 	 * 1 to remove old dir index
9099 	 * 1 to add new dir item
9100 	 * 1 to add new dir index
9101 	 */
9102 	trans_num_items += 4;
9103 	/* 1 to update new parent inode if it's not the same as the old parent */
9104 	if (new_dir != old_dir)
9105 		trans_num_items++;
9106 	if (new_inode) {
9107 		/*
9108 		 * 1 to update inode
9109 		 * 1 to remove inode ref
9110 		 * 1 to remove dir item
9111 		 * 1 to remove dir index
9112 		 * 1 to possibly add orphan item
9113 		 */
9114 		trans_num_items += 5;
9115 	}
9116 	trans = btrfs_start_transaction(root, trans_num_items);
9117 	if (IS_ERR(trans)) {
9118 		ret = PTR_ERR(trans);
9119 		goto out_notrans;
9120 	}
9121 
9122 	if (dest != root) {
9123 		ret = btrfs_record_root_in_trans(trans, dest);
9124 		if (ret)
9125 			goto out_fail;
9126 	}
9127 
9128 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9129 	if (ret)
9130 		goto out_fail;
9131 
9132 	BTRFS_I(old_inode)->dir_index = 0ULL;
9133 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9134 		/* force full log commit if subvolume involved. */
9135 		btrfs_set_log_full_commit(trans);
9136 	} else {
9137 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9138 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9139 					     index);
9140 		if (ret)
9141 			goto out_fail;
9142 	}
9143 
9144 	inode_inc_iversion(old_dir);
9145 	inode_inc_iversion(new_dir);
9146 	inode_inc_iversion(old_inode);
9147 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9148 
9149 	if (old_dentry->d_parent != new_dentry->d_parent)
9150 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9151 					BTRFS_I(old_inode), true);
9152 
9153 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9154 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9155 	} else {
9156 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9157 					   BTRFS_I(d_inode(old_dentry)),
9158 					   &old_fname.disk_name, &rename_ctx);
9159 		if (!ret)
9160 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
9161 	}
9162 	if (ret) {
9163 		btrfs_abort_transaction(trans, ret);
9164 		goto out_fail;
9165 	}
9166 
9167 	if (new_inode) {
9168 		inode_inc_iversion(new_inode);
9169 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9170 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9171 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9172 			BUG_ON(new_inode->i_nlink == 0);
9173 		} else {
9174 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9175 						 BTRFS_I(d_inode(new_dentry)),
9176 						 &new_fname.disk_name);
9177 		}
9178 		if (!ret && new_inode->i_nlink == 0)
9179 			ret = btrfs_orphan_add(trans,
9180 					BTRFS_I(d_inode(new_dentry)));
9181 		if (ret) {
9182 			btrfs_abort_transaction(trans, ret);
9183 			goto out_fail;
9184 		}
9185 	}
9186 
9187 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9188 			     &new_fname.disk_name, 0, index);
9189 	if (ret) {
9190 		btrfs_abort_transaction(trans, ret);
9191 		goto out_fail;
9192 	}
9193 
9194 	if (old_inode->i_nlink == 1)
9195 		BTRFS_I(old_inode)->dir_index = index;
9196 
9197 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9198 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9199 				   rename_ctx.index, new_dentry->d_parent);
9200 
9201 	if (flags & RENAME_WHITEOUT) {
9202 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9203 		if (ret) {
9204 			btrfs_abort_transaction(trans, ret);
9205 			goto out_fail;
9206 		} else {
9207 			unlock_new_inode(whiteout_args.inode);
9208 			iput(whiteout_args.inode);
9209 			whiteout_args.inode = NULL;
9210 		}
9211 	}
9212 out_fail:
9213 	ret2 = btrfs_end_transaction(trans);
9214 	ret = ret ? ret : ret2;
9215 out_notrans:
9216 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9217 		up_read(&fs_info->subvol_sem);
9218 	if (flags & RENAME_WHITEOUT)
9219 		btrfs_new_inode_args_destroy(&whiteout_args);
9220 out_whiteout_inode:
9221 	if (flags & RENAME_WHITEOUT)
9222 		iput(whiteout_args.inode);
9223 out_fscrypt_names:
9224 	fscrypt_free_filename(&old_fname);
9225 	fscrypt_free_filename(&new_fname);
9226 	return ret;
9227 }
9228 
9229 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9230 			 struct dentry *old_dentry, struct inode *new_dir,
9231 			 struct dentry *new_dentry, unsigned int flags)
9232 {
9233 	int ret;
9234 
9235 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9236 		return -EINVAL;
9237 
9238 	if (flags & RENAME_EXCHANGE)
9239 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9240 					    new_dentry);
9241 	else
9242 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9243 				   new_dentry, flags);
9244 
9245 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9246 
9247 	return ret;
9248 }
9249 
9250 struct btrfs_delalloc_work {
9251 	struct inode *inode;
9252 	struct completion completion;
9253 	struct list_head list;
9254 	struct btrfs_work work;
9255 };
9256 
9257 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9258 {
9259 	struct btrfs_delalloc_work *delalloc_work;
9260 	struct inode *inode;
9261 
9262 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9263 				     work);
9264 	inode = delalloc_work->inode;
9265 	filemap_flush(inode->i_mapping);
9266 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9267 				&BTRFS_I(inode)->runtime_flags))
9268 		filemap_flush(inode->i_mapping);
9269 
9270 	iput(inode);
9271 	complete(&delalloc_work->completion);
9272 }
9273 
9274 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9275 {
9276 	struct btrfs_delalloc_work *work;
9277 
9278 	work = kmalloc(sizeof(*work), GFP_NOFS);
9279 	if (!work)
9280 		return NULL;
9281 
9282 	init_completion(&work->completion);
9283 	INIT_LIST_HEAD(&work->list);
9284 	work->inode = inode;
9285 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
9286 
9287 	return work;
9288 }
9289 
9290 /*
9291  * some fairly slow code that needs optimization. This walks the list
9292  * of all the inodes with pending delalloc and forces them to disk.
9293  */
9294 static int start_delalloc_inodes(struct btrfs_root *root,
9295 				 struct writeback_control *wbc, bool snapshot,
9296 				 bool in_reclaim_context)
9297 {
9298 	struct btrfs_inode *binode;
9299 	struct inode *inode;
9300 	struct btrfs_delalloc_work *work, *next;
9301 	LIST_HEAD(works);
9302 	LIST_HEAD(splice);
9303 	int ret = 0;
9304 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9305 
9306 	mutex_lock(&root->delalloc_mutex);
9307 	spin_lock(&root->delalloc_lock);
9308 	list_splice_init(&root->delalloc_inodes, &splice);
9309 	while (!list_empty(&splice)) {
9310 		binode = list_entry(splice.next, struct btrfs_inode,
9311 				    delalloc_inodes);
9312 
9313 		list_move_tail(&binode->delalloc_inodes,
9314 			       &root->delalloc_inodes);
9315 
9316 		if (in_reclaim_context &&
9317 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9318 			continue;
9319 
9320 		inode = igrab(&binode->vfs_inode);
9321 		if (!inode) {
9322 			cond_resched_lock(&root->delalloc_lock);
9323 			continue;
9324 		}
9325 		spin_unlock(&root->delalloc_lock);
9326 
9327 		if (snapshot)
9328 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9329 				&binode->runtime_flags);
9330 		if (full_flush) {
9331 			work = btrfs_alloc_delalloc_work(inode);
9332 			if (!work) {
9333 				iput(inode);
9334 				ret = -ENOMEM;
9335 				goto out;
9336 			}
9337 			list_add_tail(&work->list, &works);
9338 			btrfs_queue_work(root->fs_info->flush_workers,
9339 					 &work->work);
9340 		} else {
9341 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9342 			btrfs_add_delayed_iput(BTRFS_I(inode));
9343 			if (ret || wbc->nr_to_write <= 0)
9344 				goto out;
9345 		}
9346 		cond_resched();
9347 		spin_lock(&root->delalloc_lock);
9348 	}
9349 	spin_unlock(&root->delalloc_lock);
9350 
9351 out:
9352 	list_for_each_entry_safe(work, next, &works, list) {
9353 		list_del_init(&work->list);
9354 		wait_for_completion(&work->completion);
9355 		kfree(work);
9356 	}
9357 
9358 	if (!list_empty(&splice)) {
9359 		spin_lock(&root->delalloc_lock);
9360 		list_splice_tail(&splice, &root->delalloc_inodes);
9361 		spin_unlock(&root->delalloc_lock);
9362 	}
9363 	mutex_unlock(&root->delalloc_mutex);
9364 	return ret;
9365 }
9366 
9367 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9368 {
9369 	struct writeback_control wbc = {
9370 		.nr_to_write = LONG_MAX,
9371 		.sync_mode = WB_SYNC_NONE,
9372 		.range_start = 0,
9373 		.range_end = LLONG_MAX,
9374 	};
9375 	struct btrfs_fs_info *fs_info = root->fs_info;
9376 
9377 	if (BTRFS_FS_ERROR(fs_info))
9378 		return -EROFS;
9379 
9380 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9381 }
9382 
9383 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9384 			       bool in_reclaim_context)
9385 {
9386 	struct writeback_control wbc = {
9387 		.nr_to_write = nr,
9388 		.sync_mode = WB_SYNC_NONE,
9389 		.range_start = 0,
9390 		.range_end = LLONG_MAX,
9391 	};
9392 	struct btrfs_root *root;
9393 	LIST_HEAD(splice);
9394 	int ret;
9395 
9396 	if (BTRFS_FS_ERROR(fs_info))
9397 		return -EROFS;
9398 
9399 	mutex_lock(&fs_info->delalloc_root_mutex);
9400 	spin_lock(&fs_info->delalloc_root_lock);
9401 	list_splice_init(&fs_info->delalloc_roots, &splice);
9402 	while (!list_empty(&splice)) {
9403 		/*
9404 		 * Reset nr_to_write here so we know that we're doing a full
9405 		 * flush.
9406 		 */
9407 		if (nr == LONG_MAX)
9408 			wbc.nr_to_write = LONG_MAX;
9409 
9410 		root = list_first_entry(&splice, struct btrfs_root,
9411 					delalloc_root);
9412 		root = btrfs_grab_root(root);
9413 		BUG_ON(!root);
9414 		list_move_tail(&root->delalloc_root,
9415 			       &fs_info->delalloc_roots);
9416 		spin_unlock(&fs_info->delalloc_root_lock);
9417 
9418 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9419 		btrfs_put_root(root);
9420 		if (ret < 0 || wbc.nr_to_write <= 0)
9421 			goto out;
9422 		spin_lock(&fs_info->delalloc_root_lock);
9423 	}
9424 	spin_unlock(&fs_info->delalloc_root_lock);
9425 
9426 	ret = 0;
9427 out:
9428 	if (!list_empty(&splice)) {
9429 		spin_lock(&fs_info->delalloc_root_lock);
9430 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9431 		spin_unlock(&fs_info->delalloc_root_lock);
9432 	}
9433 	mutex_unlock(&fs_info->delalloc_root_mutex);
9434 	return ret;
9435 }
9436 
9437 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9438 			 struct dentry *dentry, const char *symname)
9439 {
9440 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9441 	struct btrfs_trans_handle *trans;
9442 	struct btrfs_root *root = BTRFS_I(dir)->root;
9443 	struct btrfs_path *path;
9444 	struct btrfs_key key;
9445 	struct inode *inode;
9446 	struct btrfs_new_inode_args new_inode_args = {
9447 		.dir = dir,
9448 		.dentry = dentry,
9449 	};
9450 	unsigned int trans_num_items;
9451 	int err;
9452 	int name_len;
9453 	int datasize;
9454 	unsigned long ptr;
9455 	struct btrfs_file_extent_item *ei;
9456 	struct extent_buffer *leaf;
9457 
9458 	name_len = strlen(symname);
9459 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9460 		return -ENAMETOOLONG;
9461 
9462 	inode = new_inode(dir->i_sb);
9463 	if (!inode)
9464 		return -ENOMEM;
9465 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9466 	inode->i_op = &btrfs_symlink_inode_operations;
9467 	inode_nohighmem(inode);
9468 	inode->i_mapping->a_ops = &btrfs_aops;
9469 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9470 	inode_set_bytes(inode, name_len);
9471 
9472 	new_inode_args.inode = inode;
9473 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9474 	if (err)
9475 		goto out_inode;
9476 	/* 1 additional item for the inline extent */
9477 	trans_num_items++;
9478 
9479 	trans = btrfs_start_transaction(root, trans_num_items);
9480 	if (IS_ERR(trans)) {
9481 		err = PTR_ERR(trans);
9482 		goto out_new_inode_args;
9483 	}
9484 
9485 	err = btrfs_create_new_inode(trans, &new_inode_args);
9486 	if (err)
9487 		goto out;
9488 
9489 	path = btrfs_alloc_path();
9490 	if (!path) {
9491 		err = -ENOMEM;
9492 		btrfs_abort_transaction(trans, err);
9493 		discard_new_inode(inode);
9494 		inode = NULL;
9495 		goto out;
9496 	}
9497 	key.objectid = btrfs_ino(BTRFS_I(inode));
9498 	key.offset = 0;
9499 	key.type = BTRFS_EXTENT_DATA_KEY;
9500 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9501 	err = btrfs_insert_empty_item(trans, root, path, &key,
9502 				      datasize);
9503 	if (err) {
9504 		btrfs_abort_transaction(trans, err);
9505 		btrfs_free_path(path);
9506 		discard_new_inode(inode);
9507 		inode = NULL;
9508 		goto out;
9509 	}
9510 	leaf = path->nodes[0];
9511 	ei = btrfs_item_ptr(leaf, path->slots[0],
9512 			    struct btrfs_file_extent_item);
9513 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9514 	btrfs_set_file_extent_type(leaf, ei,
9515 				   BTRFS_FILE_EXTENT_INLINE);
9516 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9517 	btrfs_set_file_extent_compression(leaf, ei, 0);
9518 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9519 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9520 
9521 	ptr = btrfs_file_extent_inline_start(ei);
9522 	write_extent_buffer(leaf, symname, ptr, name_len);
9523 	btrfs_mark_buffer_dirty(trans, leaf);
9524 	btrfs_free_path(path);
9525 
9526 	d_instantiate_new(dentry, inode);
9527 	err = 0;
9528 out:
9529 	btrfs_end_transaction(trans);
9530 	btrfs_btree_balance_dirty(fs_info);
9531 out_new_inode_args:
9532 	btrfs_new_inode_args_destroy(&new_inode_args);
9533 out_inode:
9534 	if (err)
9535 		iput(inode);
9536 	return err;
9537 }
9538 
9539 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9540 				       struct btrfs_trans_handle *trans_in,
9541 				       struct btrfs_inode *inode,
9542 				       struct btrfs_key *ins,
9543 				       u64 file_offset)
9544 {
9545 	struct btrfs_file_extent_item stack_fi;
9546 	struct btrfs_replace_extent_info extent_info;
9547 	struct btrfs_trans_handle *trans = trans_in;
9548 	struct btrfs_path *path;
9549 	u64 start = ins->objectid;
9550 	u64 len = ins->offset;
9551 	u64 qgroup_released = 0;
9552 	int ret;
9553 
9554 	memset(&stack_fi, 0, sizeof(stack_fi));
9555 
9556 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9557 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9558 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9559 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9560 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9561 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9562 	/* Encryption and other encoding is reserved and all 0 */
9563 
9564 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9565 	if (ret < 0)
9566 		return ERR_PTR(ret);
9567 
9568 	if (trans) {
9569 		ret = insert_reserved_file_extent(trans, inode,
9570 						  file_offset, &stack_fi,
9571 						  true, qgroup_released);
9572 		if (ret)
9573 			goto free_qgroup;
9574 		return trans;
9575 	}
9576 
9577 	extent_info.disk_offset = start;
9578 	extent_info.disk_len = len;
9579 	extent_info.data_offset = 0;
9580 	extent_info.data_len = len;
9581 	extent_info.file_offset = file_offset;
9582 	extent_info.extent_buf = (char *)&stack_fi;
9583 	extent_info.is_new_extent = true;
9584 	extent_info.update_times = true;
9585 	extent_info.qgroup_reserved = qgroup_released;
9586 	extent_info.insertions = 0;
9587 
9588 	path = btrfs_alloc_path();
9589 	if (!path) {
9590 		ret = -ENOMEM;
9591 		goto free_qgroup;
9592 	}
9593 
9594 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9595 				     file_offset + len - 1, &extent_info,
9596 				     &trans);
9597 	btrfs_free_path(path);
9598 	if (ret)
9599 		goto free_qgroup;
9600 	return trans;
9601 
9602 free_qgroup:
9603 	/*
9604 	 * We have released qgroup data range at the beginning of the function,
9605 	 * and normally qgroup_released bytes will be freed when committing
9606 	 * transaction.
9607 	 * But if we error out early, we have to free what we have released
9608 	 * or we leak qgroup data reservation.
9609 	 */
9610 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9611 			inode->root->root_key.objectid, qgroup_released,
9612 			BTRFS_QGROUP_RSV_DATA);
9613 	return ERR_PTR(ret);
9614 }
9615 
9616 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9617 				       u64 start, u64 num_bytes, u64 min_size,
9618 				       loff_t actual_len, u64 *alloc_hint,
9619 				       struct btrfs_trans_handle *trans)
9620 {
9621 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9622 	struct extent_map *em;
9623 	struct btrfs_root *root = BTRFS_I(inode)->root;
9624 	struct btrfs_key ins;
9625 	u64 cur_offset = start;
9626 	u64 clear_offset = start;
9627 	u64 i_size;
9628 	u64 cur_bytes;
9629 	u64 last_alloc = (u64)-1;
9630 	int ret = 0;
9631 	bool own_trans = true;
9632 	u64 end = start + num_bytes - 1;
9633 
9634 	if (trans)
9635 		own_trans = false;
9636 	while (num_bytes > 0) {
9637 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9638 		cur_bytes = max(cur_bytes, min_size);
9639 		/*
9640 		 * If we are severely fragmented we could end up with really
9641 		 * small allocations, so if the allocator is returning small
9642 		 * chunks lets make its job easier by only searching for those
9643 		 * sized chunks.
9644 		 */
9645 		cur_bytes = min(cur_bytes, last_alloc);
9646 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9647 				min_size, 0, *alloc_hint, &ins, 1, 0);
9648 		if (ret)
9649 			break;
9650 
9651 		/*
9652 		 * We've reserved this space, and thus converted it from
9653 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9654 		 * from here on out we will only need to clear our reservation
9655 		 * for the remaining unreserved area, so advance our
9656 		 * clear_offset by our extent size.
9657 		 */
9658 		clear_offset += ins.offset;
9659 
9660 		last_alloc = ins.offset;
9661 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9662 						    &ins, cur_offset);
9663 		/*
9664 		 * Now that we inserted the prealloc extent we can finally
9665 		 * decrement the number of reservations in the block group.
9666 		 * If we did it before, we could race with relocation and have
9667 		 * relocation miss the reserved extent, making it fail later.
9668 		 */
9669 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9670 		if (IS_ERR(trans)) {
9671 			ret = PTR_ERR(trans);
9672 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9673 						   ins.offset, 0);
9674 			break;
9675 		}
9676 
9677 		em = alloc_extent_map();
9678 		if (!em) {
9679 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9680 					    cur_offset + ins.offset - 1, false);
9681 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9682 			goto next;
9683 		}
9684 
9685 		em->start = cur_offset;
9686 		em->orig_start = cur_offset;
9687 		em->len = ins.offset;
9688 		em->block_start = ins.objectid;
9689 		em->block_len = ins.offset;
9690 		em->orig_block_len = ins.offset;
9691 		em->ram_bytes = ins.offset;
9692 		em->flags |= EXTENT_FLAG_PREALLOC;
9693 		em->generation = trans->transid;
9694 
9695 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9696 		free_extent_map(em);
9697 next:
9698 		num_bytes -= ins.offset;
9699 		cur_offset += ins.offset;
9700 		*alloc_hint = ins.objectid + ins.offset;
9701 
9702 		inode_inc_iversion(inode);
9703 		inode_set_ctime_current(inode);
9704 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9705 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9706 		    (actual_len > inode->i_size) &&
9707 		    (cur_offset > inode->i_size)) {
9708 			if (cur_offset > actual_len)
9709 				i_size = actual_len;
9710 			else
9711 				i_size = cur_offset;
9712 			i_size_write(inode, i_size);
9713 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9714 		}
9715 
9716 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
9717 
9718 		if (ret) {
9719 			btrfs_abort_transaction(trans, ret);
9720 			if (own_trans)
9721 				btrfs_end_transaction(trans);
9722 			break;
9723 		}
9724 
9725 		if (own_trans) {
9726 			btrfs_end_transaction(trans);
9727 			trans = NULL;
9728 		}
9729 	}
9730 	if (clear_offset < end)
9731 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9732 			end - clear_offset + 1);
9733 	return ret;
9734 }
9735 
9736 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9737 			      u64 start, u64 num_bytes, u64 min_size,
9738 			      loff_t actual_len, u64 *alloc_hint)
9739 {
9740 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9741 					   min_size, actual_len, alloc_hint,
9742 					   NULL);
9743 }
9744 
9745 int btrfs_prealloc_file_range_trans(struct inode *inode,
9746 				    struct btrfs_trans_handle *trans, int mode,
9747 				    u64 start, u64 num_bytes, u64 min_size,
9748 				    loff_t actual_len, u64 *alloc_hint)
9749 {
9750 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9751 					   min_size, actual_len, alloc_hint, trans);
9752 }
9753 
9754 static int btrfs_permission(struct mnt_idmap *idmap,
9755 			    struct inode *inode, int mask)
9756 {
9757 	struct btrfs_root *root = BTRFS_I(inode)->root;
9758 	umode_t mode = inode->i_mode;
9759 
9760 	if (mask & MAY_WRITE &&
9761 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9762 		if (btrfs_root_readonly(root))
9763 			return -EROFS;
9764 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9765 			return -EACCES;
9766 	}
9767 	return generic_permission(idmap, inode, mask);
9768 }
9769 
9770 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9771 			 struct file *file, umode_t mode)
9772 {
9773 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9774 	struct btrfs_trans_handle *trans;
9775 	struct btrfs_root *root = BTRFS_I(dir)->root;
9776 	struct inode *inode;
9777 	struct btrfs_new_inode_args new_inode_args = {
9778 		.dir = dir,
9779 		.dentry = file->f_path.dentry,
9780 		.orphan = true,
9781 	};
9782 	unsigned int trans_num_items;
9783 	int ret;
9784 
9785 	inode = new_inode(dir->i_sb);
9786 	if (!inode)
9787 		return -ENOMEM;
9788 	inode_init_owner(idmap, inode, dir, mode);
9789 	inode->i_fop = &btrfs_file_operations;
9790 	inode->i_op = &btrfs_file_inode_operations;
9791 	inode->i_mapping->a_ops = &btrfs_aops;
9792 
9793 	new_inode_args.inode = inode;
9794 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9795 	if (ret)
9796 		goto out_inode;
9797 
9798 	trans = btrfs_start_transaction(root, trans_num_items);
9799 	if (IS_ERR(trans)) {
9800 		ret = PTR_ERR(trans);
9801 		goto out_new_inode_args;
9802 	}
9803 
9804 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9805 
9806 	/*
9807 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9808 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9809 	 * 0, through:
9810 	 *
9811 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9812 	 */
9813 	set_nlink(inode, 1);
9814 
9815 	if (!ret) {
9816 		d_tmpfile(file, inode);
9817 		unlock_new_inode(inode);
9818 		mark_inode_dirty(inode);
9819 	}
9820 
9821 	btrfs_end_transaction(trans);
9822 	btrfs_btree_balance_dirty(fs_info);
9823 out_new_inode_args:
9824 	btrfs_new_inode_args_destroy(&new_inode_args);
9825 out_inode:
9826 	if (ret)
9827 		iput(inode);
9828 	return finish_open_simple(file, ret);
9829 }
9830 
9831 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9832 {
9833 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9834 	unsigned long index = start >> PAGE_SHIFT;
9835 	unsigned long end_index = end >> PAGE_SHIFT;
9836 	struct page *page;
9837 	u32 len;
9838 
9839 	ASSERT(end + 1 - start <= U32_MAX);
9840 	len = end + 1 - start;
9841 	while (index <= end_index) {
9842 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9843 		ASSERT(page); /* Pages should be in the extent_io_tree */
9844 
9845 		/* This is for data, which doesn't yet support larger folio. */
9846 		ASSERT(folio_order(page_folio(page)) == 0);
9847 		btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
9848 		put_page(page);
9849 		index++;
9850 	}
9851 }
9852 
9853 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9854 					     int compress_type)
9855 {
9856 	switch (compress_type) {
9857 	case BTRFS_COMPRESS_NONE:
9858 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9859 	case BTRFS_COMPRESS_ZLIB:
9860 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9861 	case BTRFS_COMPRESS_LZO:
9862 		/*
9863 		 * The LZO format depends on the sector size. 64K is the maximum
9864 		 * sector size that we support.
9865 		 */
9866 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9867 			return -EINVAL;
9868 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9869 		       (fs_info->sectorsize_bits - 12);
9870 	case BTRFS_COMPRESS_ZSTD:
9871 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9872 	default:
9873 		return -EUCLEAN;
9874 	}
9875 }
9876 
9877 static ssize_t btrfs_encoded_read_inline(
9878 				struct kiocb *iocb,
9879 				struct iov_iter *iter, u64 start,
9880 				u64 lockend,
9881 				struct extent_state **cached_state,
9882 				u64 extent_start, size_t count,
9883 				struct btrfs_ioctl_encoded_io_args *encoded,
9884 				bool *unlocked)
9885 {
9886 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9887 	struct btrfs_root *root = inode->root;
9888 	struct btrfs_fs_info *fs_info = root->fs_info;
9889 	struct extent_io_tree *io_tree = &inode->io_tree;
9890 	struct btrfs_path *path;
9891 	struct extent_buffer *leaf;
9892 	struct btrfs_file_extent_item *item;
9893 	u64 ram_bytes;
9894 	unsigned long ptr;
9895 	void *tmp;
9896 	ssize_t ret;
9897 
9898 	path = btrfs_alloc_path();
9899 	if (!path) {
9900 		ret = -ENOMEM;
9901 		goto out;
9902 	}
9903 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9904 				       extent_start, 0);
9905 	if (ret) {
9906 		if (ret > 0) {
9907 			/* The extent item disappeared? */
9908 			ret = -EIO;
9909 		}
9910 		goto out;
9911 	}
9912 	leaf = path->nodes[0];
9913 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9914 
9915 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9916 	ptr = btrfs_file_extent_inline_start(item);
9917 
9918 	encoded->len = min_t(u64, extent_start + ram_bytes,
9919 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9920 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9921 				 btrfs_file_extent_compression(leaf, item));
9922 	if (ret < 0)
9923 		goto out;
9924 	encoded->compression = ret;
9925 	if (encoded->compression) {
9926 		size_t inline_size;
9927 
9928 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9929 								path->slots[0]);
9930 		if (inline_size > count) {
9931 			ret = -ENOBUFS;
9932 			goto out;
9933 		}
9934 		count = inline_size;
9935 		encoded->unencoded_len = ram_bytes;
9936 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9937 	} else {
9938 		count = min_t(u64, count, encoded->len);
9939 		encoded->len = count;
9940 		encoded->unencoded_len = count;
9941 		ptr += iocb->ki_pos - extent_start;
9942 	}
9943 
9944 	tmp = kmalloc(count, GFP_NOFS);
9945 	if (!tmp) {
9946 		ret = -ENOMEM;
9947 		goto out;
9948 	}
9949 	read_extent_buffer(leaf, tmp, ptr, count);
9950 	btrfs_release_path(path);
9951 	unlock_extent(io_tree, start, lockend, cached_state);
9952 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
9953 	*unlocked = true;
9954 
9955 	ret = copy_to_iter(tmp, count, iter);
9956 	if (ret != count)
9957 		ret = -EFAULT;
9958 	kfree(tmp);
9959 out:
9960 	btrfs_free_path(path);
9961 	return ret;
9962 }
9963 
9964 struct btrfs_encoded_read_private {
9965 	wait_queue_head_t wait;
9966 	atomic_t pending;
9967 	blk_status_t status;
9968 };
9969 
9970 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
9971 {
9972 	struct btrfs_encoded_read_private *priv = bbio->private;
9973 
9974 	if (bbio->bio.bi_status) {
9975 		/*
9976 		 * The memory barrier implied by the atomic_dec_return() here
9977 		 * pairs with the memory barrier implied by the
9978 		 * atomic_dec_return() or io_wait_event() in
9979 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
9980 		 * write is observed before the load of status in
9981 		 * btrfs_encoded_read_regular_fill_pages().
9982 		 */
9983 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
9984 	}
9985 	if (!atomic_dec_return(&priv->pending))
9986 		wake_up(&priv->wait);
9987 	bio_put(&bbio->bio);
9988 }
9989 
9990 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
9991 					  u64 file_offset, u64 disk_bytenr,
9992 					  u64 disk_io_size, struct page **pages)
9993 {
9994 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9995 	struct btrfs_encoded_read_private priv = {
9996 		.pending = ATOMIC_INIT(1),
9997 	};
9998 	unsigned long i = 0;
9999 	struct btrfs_bio *bbio;
10000 
10001 	init_waitqueue_head(&priv.wait);
10002 
10003 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10004 			       btrfs_encoded_read_endio, &priv);
10005 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10006 	bbio->inode = inode;
10007 
10008 	do {
10009 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10010 
10011 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10012 			atomic_inc(&priv.pending);
10013 			btrfs_submit_bio(bbio, 0);
10014 
10015 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10016 					       btrfs_encoded_read_endio, &priv);
10017 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10018 			bbio->inode = inode;
10019 			continue;
10020 		}
10021 
10022 		i++;
10023 		disk_bytenr += bytes;
10024 		disk_io_size -= bytes;
10025 	} while (disk_io_size);
10026 
10027 	atomic_inc(&priv.pending);
10028 	btrfs_submit_bio(bbio, 0);
10029 
10030 	if (atomic_dec_return(&priv.pending))
10031 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10032 	/* See btrfs_encoded_read_endio() for ordering. */
10033 	return blk_status_to_errno(READ_ONCE(priv.status));
10034 }
10035 
10036 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10037 					  struct iov_iter *iter,
10038 					  u64 start, u64 lockend,
10039 					  struct extent_state **cached_state,
10040 					  u64 disk_bytenr, u64 disk_io_size,
10041 					  size_t count, bool compressed,
10042 					  bool *unlocked)
10043 {
10044 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10045 	struct extent_io_tree *io_tree = &inode->io_tree;
10046 	struct page **pages;
10047 	unsigned long nr_pages, i;
10048 	u64 cur;
10049 	size_t page_offset;
10050 	ssize_t ret;
10051 
10052 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10053 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10054 	if (!pages)
10055 		return -ENOMEM;
10056 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
10057 	if (ret) {
10058 		ret = -ENOMEM;
10059 		goto out;
10060 		}
10061 
10062 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10063 						    disk_io_size, pages);
10064 	if (ret)
10065 		goto out;
10066 
10067 	unlock_extent(io_tree, start, lockend, cached_state);
10068 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10069 	*unlocked = true;
10070 
10071 	if (compressed) {
10072 		i = 0;
10073 		page_offset = 0;
10074 	} else {
10075 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10076 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10077 	}
10078 	cur = 0;
10079 	while (cur < count) {
10080 		size_t bytes = min_t(size_t, count - cur,
10081 				     PAGE_SIZE - page_offset);
10082 
10083 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10084 				      iter) != bytes) {
10085 			ret = -EFAULT;
10086 			goto out;
10087 		}
10088 		i++;
10089 		cur += bytes;
10090 		page_offset = 0;
10091 	}
10092 	ret = count;
10093 out:
10094 	for (i = 0; i < nr_pages; i++) {
10095 		if (pages[i])
10096 			__free_page(pages[i]);
10097 	}
10098 	kfree(pages);
10099 	return ret;
10100 }
10101 
10102 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10103 			   struct btrfs_ioctl_encoded_io_args *encoded)
10104 {
10105 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10106 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10107 	struct extent_io_tree *io_tree = &inode->io_tree;
10108 	ssize_t ret;
10109 	size_t count = iov_iter_count(iter);
10110 	u64 start, lockend, disk_bytenr, disk_io_size;
10111 	struct extent_state *cached_state = NULL;
10112 	struct extent_map *em;
10113 	bool unlocked = false;
10114 
10115 	file_accessed(iocb->ki_filp);
10116 
10117 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10118 
10119 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10120 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10121 		return 0;
10122 	}
10123 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10124 	/*
10125 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10126 	 * it's compressed we know that it won't be longer than this.
10127 	 */
10128 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10129 
10130 	for (;;) {
10131 		struct btrfs_ordered_extent *ordered;
10132 
10133 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10134 					       lockend - start + 1);
10135 		if (ret)
10136 			goto out_unlock_inode;
10137 		lock_extent(io_tree, start, lockend, &cached_state);
10138 		ordered = btrfs_lookup_ordered_range(inode, start,
10139 						     lockend - start + 1);
10140 		if (!ordered)
10141 			break;
10142 		btrfs_put_ordered_extent(ordered);
10143 		unlock_extent(io_tree, start, lockend, &cached_state);
10144 		cond_resched();
10145 	}
10146 
10147 	em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10148 	if (IS_ERR(em)) {
10149 		ret = PTR_ERR(em);
10150 		goto out_unlock_extent;
10151 	}
10152 
10153 	if (em->block_start == EXTENT_MAP_INLINE) {
10154 		u64 extent_start = em->start;
10155 
10156 		/*
10157 		 * For inline extents we get everything we need out of the
10158 		 * extent item.
10159 		 */
10160 		free_extent_map(em);
10161 		em = NULL;
10162 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10163 						&cached_state, extent_start,
10164 						count, encoded, &unlocked);
10165 		goto out;
10166 	}
10167 
10168 	/*
10169 	 * We only want to return up to EOF even if the extent extends beyond
10170 	 * that.
10171 	 */
10172 	encoded->len = min_t(u64, extent_map_end(em),
10173 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10174 	if (em->block_start == EXTENT_MAP_HOLE ||
10175 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
10176 		disk_bytenr = EXTENT_MAP_HOLE;
10177 		count = min_t(u64, count, encoded->len);
10178 		encoded->len = count;
10179 		encoded->unencoded_len = count;
10180 	} else if (extent_map_is_compressed(em)) {
10181 		disk_bytenr = em->block_start;
10182 		/*
10183 		 * Bail if the buffer isn't large enough to return the whole
10184 		 * compressed extent.
10185 		 */
10186 		if (em->block_len > count) {
10187 			ret = -ENOBUFS;
10188 			goto out_em;
10189 		}
10190 		disk_io_size = em->block_len;
10191 		count = em->block_len;
10192 		encoded->unencoded_len = em->ram_bytes;
10193 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10194 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10195 							       extent_map_compression(em));
10196 		if (ret < 0)
10197 			goto out_em;
10198 		encoded->compression = ret;
10199 	} else {
10200 		disk_bytenr = em->block_start + (start - em->start);
10201 		if (encoded->len > count)
10202 			encoded->len = count;
10203 		/*
10204 		 * Don't read beyond what we locked. This also limits the page
10205 		 * allocations that we'll do.
10206 		 */
10207 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10208 		count = start + disk_io_size - iocb->ki_pos;
10209 		encoded->len = count;
10210 		encoded->unencoded_len = count;
10211 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10212 	}
10213 	free_extent_map(em);
10214 	em = NULL;
10215 
10216 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10217 		unlock_extent(io_tree, start, lockend, &cached_state);
10218 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10219 		unlocked = true;
10220 		ret = iov_iter_zero(count, iter);
10221 		if (ret != count)
10222 			ret = -EFAULT;
10223 	} else {
10224 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10225 						 &cached_state, disk_bytenr,
10226 						 disk_io_size, count,
10227 						 encoded->compression,
10228 						 &unlocked);
10229 	}
10230 
10231 out:
10232 	if (ret >= 0)
10233 		iocb->ki_pos += encoded->len;
10234 out_em:
10235 	free_extent_map(em);
10236 out_unlock_extent:
10237 	if (!unlocked)
10238 		unlock_extent(io_tree, start, lockend, &cached_state);
10239 out_unlock_inode:
10240 	if (!unlocked)
10241 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10242 	return ret;
10243 }
10244 
10245 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10246 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10247 {
10248 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10249 	struct btrfs_root *root = inode->root;
10250 	struct btrfs_fs_info *fs_info = root->fs_info;
10251 	struct extent_io_tree *io_tree = &inode->io_tree;
10252 	struct extent_changeset *data_reserved = NULL;
10253 	struct extent_state *cached_state = NULL;
10254 	struct btrfs_ordered_extent *ordered;
10255 	int compression;
10256 	size_t orig_count;
10257 	u64 start, end;
10258 	u64 num_bytes, ram_bytes, disk_num_bytes;
10259 	unsigned long nr_pages, i;
10260 	struct page **pages;
10261 	struct btrfs_key ins;
10262 	bool extent_reserved = false;
10263 	struct extent_map *em;
10264 	ssize_t ret;
10265 
10266 	switch (encoded->compression) {
10267 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10268 		compression = BTRFS_COMPRESS_ZLIB;
10269 		break;
10270 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10271 		compression = BTRFS_COMPRESS_ZSTD;
10272 		break;
10273 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10274 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10275 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10276 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10277 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10278 		/* The sector size must match for LZO. */
10279 		if (encoded->compression -
10280 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10281 		    fs_info->sectorsize_bits)
10282 			return -EINVAL;
10283 		compression = BTRFS_COMPRESS_LZO;
10284 		break;
10285 	default:
10286 		return -EINVAL;
10287 	}
10288 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10289 		return -EINVAL;
10290 
10291 	/*
10292 	 * Compressed extents should always have checksums, so error out if we
10293 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10294 	 */
10295 	if (inode->flags & BTRFS_INODE_NODATASUM)
10296 		return -EINVAL;
10297 
10298 	orig_count = iov_iter_count(from);
10299 
10300 	/* The extent size must be sane. */
10301 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10302 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10303 		return -EINVAL;
10304 
10305 	/*
10306 	 * The compressed data must be smaller than the decompressed data.
10307 	 *
10308 	 * It's of course possible for data to compress to larger or the same
10309 	 * size, but the buffered I/O path falls back to no compression for such
10310 	 * data, and we don't want to break any assumptions by creating these
10311 	 * extents.
10312 	 *
10313 	 * Note that this is less strict than the current check we have that the
10314 	 * compressed data must be at least one sector smaller than the
10315 	 * decompressed data. We only want to enforce the weaker requirement
10316 	 * from old kernels that it is at least one byte smaller.
10317 	 */
10318 	if (orig_count >= encoded->unencoded_len)
10319 		return -EINVAL;
10320 
10321 	/* The extent must start on a sector boundary. */
10322 	start = iocb->ki_pos;
10323 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10324 		return -EINVAL;
10325 
10326 	/*
10327 	 * The extent must end on a sector boundary. However, we allow a write
10328 	 * which ends at or extends i_size to have an unaligned length; we round
10329 	 * up the extent size and set i_size to the unaligned end.
10330 	 */
10331 	if (start + encoded->len < inode->vfs_inode.i_size &&
10332 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10333 		return -EINVAL;
10334 
10335 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10336 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10337 		return -EINVAL;
10338 
10339 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10340 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10341 	end = start + num_bytes - 1;
10342 
10343 	/*
10344 	 * If the extent cannot be inline, the compressed data on disk must be
10345 	 * sector-aligned. For convenience, we extend it with zeroes if it
10346 	 * isn't.
10347 	 */
10348 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10349 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10350 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10351 	if (!pages)
10352 		return -ENOMEM;
10353 	for (i = 0; i < nr_pages; i++) {
10354 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10355 		char *kaddr;
10356 
10357 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10358 		if (!pages[i]) {
10359 			ret = -ENOMEM;
10360 			goto out_pages;
10361 		}
10362 		kaddr = kmap_local_page(pages[i]);
10363 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10364 			kunmap_local(kaddr);
10365 			ret = -EFAULT;
10366 			goto out_pages;
10367 		}
10368 		if (bytes < PAGE_SIZE)
10369 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10370 		kunmap_local(kaddr);
10371 	}
10372 
10373 	for (;;) {
10374 		struct btrfs_ordered_extent *ordered;
10375 
10376 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10377 		if (ret)
10378 			goto out_pages;
10379 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10380 						    start >> PAGE_SHIFT,
10381 						    end >> PAGE_SHIFT);
10382 		if (ret)
10383 			goto out_pages;
10384 		lock_extent(io_tree, start, end, &cached_state);
10385 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10386 		if (!ordered &&
10387 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10388 			break;
10389 		if (ordered)
10390 			btrfs_put_ordered_extent(ordered);
10391 		unlock_extent(io_tree, start, end, &cached_state);
10392 		cond_resched();
10393 	}
10394 
10395 	/*
10396 	 * We don't use the higher-level delalloc space functions because our
10397 	 * num_bytes and disk_num_bytes are different.
10398 	 */
10399 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10400 	if (ret)
10401 		goto out_unlock;
10402 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10403 	if (ret)
10404 		goto out_free_data_space;
10405 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10406 					      false);
10407 	if (ret)
10408 		goto out_qgroup_free_data;
10409 
10410 	/* Try an inline extent first. */
10411 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10412 	    encoded->unencoded_offset == 0) {
10413 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10414 					    compression, pages, true);
10415 		if (ret <= 0) {
10416 			if (ret == 0)
10417 				ret = orig_count;
10418 			goto out_delalloc_release;
10419 		}
10420 	}
10421 
10422 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10423 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10424 	if (ret)
10425 		goto out_delalloc_release;
10426 	extent_reserved = true;
10427 
10428 	em = create_io_em(inode, start, num_bytes,
10429 			  start - encoded->unencoded_offset, ins.objectid,
10430 			  ins.offset, ins.offset, ram_bytes, compression,
10431 			  BTRFS_ORDERED_COMPRESSED);
10432 	if (IS_ERR(em)) {
10433 		ret = PTR_ERR(em);
10434 		goto out_free_reserved;
10435 	}
10436 	free_extent_map(em);
10437 
10438 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10439 				       ins.objectid, ins.offset,
10440 				       encoded->unencoded_offset,
10441 				       (1 << BTRFS_ORDERED_ENCODED) |
10442 				       (1 << BTRFS_ORDERED_COMPRESSED),
10443 				       compression);
10444 	if (IS_ERR(ordered)) {
10445 		btrfs_drop_extent_map_range(inode, start, end, false);
10446 		ret = PTR_ERR(ordered);
10447 		goto out_free_reserved;
10448 	}
10449 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10450 
10451 	if (start + encoded->len > inode->vfs_inode.i_size)
10452 		i_size_write(&inode->vfs_inode, start + encoded->len);
10453 
10454 	unlock_extent(io_tree, start, end, &cached_state);
10455 
10456 	btrfs_delalloc_release_extents(inode, num_bytes);
10457 
10458 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10459 	ret = orig_count;
10460 	goto out;
10461 
10462 out_free_reserved:
10463 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10464 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10465 out_delalloc_release:
10466 	btrfs_delalloc_release_extents(inode, num_bytes);
10467 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10468 out_qgroup_free_data:
10469 	if (ret < 0)
10470 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10471 out_free_data_space:
10472 	/*
10473 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10474 	 * bytes_may_use.
10475 	 */
10476 	if (!extent_reserved)
10477 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10478 out_unlock:
10479 	unlock_extent(io_tree, start, end, &cached_state);
10480 out_pages:
10481 	for (i = 0; i < nr_pages; i++) {
10482 		if (pages[i])
10483 			__free_page(pages[i]);
10484 	}
10485 	kvfree(pages);
10486 out:
10487 	if (ret >= 0)
10488 		iocb->ki_pos += encoded->len;
10489 	return ret;
10490 }
10491 
10492 #ifdef CONFIG_SWAP
10493 /*
10494  * Add an entry indicating a block group or device which is pinned by a
10495  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10496  * negative errno on failure.
10497  */
10498 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10499 				  bool is_block_group)
10500 {
10501 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10502 	struct btrfs_swapfile_pin *sp, *entry;
10503 	struct rb_node **p;
10504 	struct rb_node *parent = NULL;
10505 
10506 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10507 	if (!sp)
10508 		return -ENOMEM;
10509 	sp->ptr = ptr;
10510 	sp->inode = inode;
10511 	sp->is_block_group = is_block_group;
10512 	sp->bg_extent_count = 1;
10513 
10514 	spin_lock(&fs_info->swapfile_pins_lock);
10515 	p = &fs_info->swapfile_pins.rb_node;
10516 	while (*p) {
10517 		parent = *p;
10518 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10519 		if (sp->ptr < entry->ptr ||
10520 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10521 			p = &(*p)->rb_left;
10522 		} else if (sp->ptr > entry->ptr ||
10523 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10524 			p = &(*p)->rb_right;
10525 		} else {
10526 			if (is_block_group)
10527 				entry->bg_extent_count++;
10528 			spin_unlock(&fs_info->swapfile_pins_lock);
10529 			kfree(sp);
10530 			return 1;
10531 		}
10532 	}
10533 	rb_link_node(&sp->node, parent, p);
10534 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10535 	spin_unlock(&fs_info->swapfile_pins_lock);
10536 	return 0;
10537 }
10538 
10539 /* Free all of the entries pinned by this swapfile. */
10540 static void btrfs_free_swapfile_pins(struct inode *inode)
10541 {
10542 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10543 	struct btrfs_swapfile_pin *sp;
10544 	struct rb_node *node, *next;
10545 
10546 	spin_lock(&fs_info->swapfile_pins_lock);
10547 	node = rb_first(&fs_info->swapfile_pins);
10548 	while (node) {
10549 		next = rb_next(node);
10550 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10551 		if (sp->inode == inode) {
10552 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10553 			if (sp->is_block_group) {
10554 				btrfs_dec_block_group_swap_extents(sp->ptr,
10555 							   sp->bg_extent_count);
10556 				btrfs_put_block_group(sp->ptr);
10557 			}
10558 			kfree(sp);
10559 		}
10560 		node = next;
10561 	}
10562 	spin_unlock(&fs_info->swapfile_pins_lock);
10563 }
10564 
10565 struct btrfs_swap_info {
10566 	u64 start;
10567 	u64 block_start;
10568 	u64 block_len;
10569 	u64 lowest_ppage;
10570 	u64 highest_ppage;
10571 	unsigned long nr_pages;
10572 	int nr_extents;
10573 };
10574 
10575 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10576 				 struct btrfs_swap_info *bsi)
10577 {
10578 	unsigned long nr_pages;
10579 	unsigned long max_pages;
10580 	u64 first_ppage, first_ppage_reported, next_ppage;
10581 	int ret;
10582 
10583 	/*
10584 	 * Our swapfile may have had its size extended after the swap header was
10585 	 * written. In that case activating the swapfile should not go beyond
10586 	 * the max size set in the swap header.
10587 	 */
10588 	if (bsi->nr_pages >= sis->max)
10589 		return 0;
10590 
10591 	max_pages = sis->max - bsi->nr_pages;
10592 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10593 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10594 
10595 	if (first_ppage >= next_ppage)
10596 		return 0;
10597 	nr_pages = next_ppage - first_ppage;
10598 	nr_pages = min(nr_pages, max_pages);
10599 
10600 	first_ppage_reported = first_ppage;
10601 	if (bsi->start == 0)
10602 		first_ppage_reported++;
10603 	if (bsi->lowest_ppage > first_ppage_reported)
10604 		bsi->lowest_ppage = first_ppage_reported;
10605 	if (bsi->highest_ppage < (next_ppage - 1))
10606 		bsi->highest_ppage = next_ppage - 1;
10607 
10608 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10609 	if (ret < 0)
10610 		return ret;
10611 	bsi->nr_extents += ret;
10612 	bsi->nr_pages += nr_pages;
10613 	return 0;
10614 }
10615 
10616 static void btrfs_swap_deactivate(struct file *file)
10617 {
10618 	struct inode *inode = file_inode(file);
10619 
10620 	btrfs_free_swapfile_pins(inode);
10621 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10622 }
10623 
10624 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10625 			       sector_t *span)
10626 {
10627 	struct inode *inode = file_inode(file);
10628 	struct btrfs_root *root = BTRFS_I(inode)->root;
10629 	struct btrfs_fs_info *fs_info = root->fs_info;
10630 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10631 	struct extent_state *cached_state = NULL;
10632 	struct extent_map *em = NULL;
10633 	struct btrfs_chunk_map *map = NULL;
10634 	struct btrfs_device *device = NULL;
10635 	struct btrfs_swap_info bsi = {
10636 		.lowest_ppage = (sector_t)-1ULL,
10637 	};
10638 	int ret = 0;
10639 	u64 isize;
10640 	u64 start;
10641 
10642 	/*
10643 	 * If the swap file was just created, make sure delalloc is done. If the
10644 	 * file changes again after this, the user is doing something stupid and
10645 	 * we don't really care.
10646 	 */
10647 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10648 	if (ret)
10649 		return ret;
10650 
10651 	/*
10652 	 * The inode is locked, so these flags won't change after we check them.
10653 	 */
10654 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10655 		btrfs_warn(fs_info, "swapfile must not be compressed");
10656 		return -EINVAL;
10657 	}
10658 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10659 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10660 		return -EINVAL;
10661 	}
10662 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10663 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10664 		return -EINVAL;
10665 	}
10666 
10667 	/*
10668 	 * Balance or device remove/replace/resize can move stuff around from
10669 	 * under us. The exclop protection makes sure they aren't running/won't
10670 	 * run concurrently while we are mapping the swap extents, and
10671 	 * fs_info->swapfile_pins prevents them from running while the swap
10672 	 * file is active and moving the extents. Note that this also prevents
10673 	 * a concurrent device add which isn't actually necessary, but it's not
10674 	 * really worth the trouble to allow it.
10675 	 */
10676 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10677 		btrfs_warn(fs_info,
10678 	   "cannot activate swapfile while exclusive operation is running");
10679 		return -EBUSY;
10680 	}
10681 
10682 	/*
10683 	 * Prevent snapshot creation while we are activating the swap file.
10684 	 * We do not want to race with snapshot creation. If snapshot creation
10685 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10686 	 * completes before the first write into the swap file after it is
10687 	 * activated, than that write would fallback to COW.
10688 	 */
10689 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10690 		btrfs_exclop_finish(fs_info);
10691 		btrfs_warn(fs_info,
10692 	   "cannot activate swapfile because snapshot creation is in progress");
10693 		return -EINVAL;
10694 	}
10695 	/*
10696 	 * Snapshots can create extents which require COW even if NODATACOW is
10697 	 * set. We use this counter to prevent snapshots. We must increment it
10698 	 * before walking the extents because we don't want a concurrent
10699 	 * snapshot to run after we've already checked the extents.
10700 	 *
10701 	 * It is possible that subvolume is marked for deletion but still not
10702 	 * removed yet. To prevent this race, we check the root status before
10703 	 * activating the swapfile.
10704 	 */
10705 	spin_lock(&root->root_item_lock);
10706 	if (btrfs_root_dead(root)) {
10707 		spin_unlock(&root->root_item_lock);
10708 
10709 		btrfs_exclop_finish(fs_info);
10710 		btrfs_warn(fs_info,
10711 		"cannot activate swapfile because subvolume %llu is being deleted",
10712 			root->root_key.objectid);
10713 		return -EPERM;
10714 	}
10715 	atomic_inc(&root->nr_swapfiles);
10716 	spin_unlock(&root->root_item_lock);
10717 
10718 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10719 
10720 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10721 	start = 0;
10722 	while (start < isize) {
10723 		u64 logical_block_start, physical_block_start;
10724 		struct btrfs_block_group *bg;
10725 		u64 len = isize - start;
10726 
10727 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10728 		if (IS_ERR(em)) {
10729 			ret = PTR_ERR(em);
10730 			goto out;
10731 		}
10732 
10733 		if (em->block_start == EXTENT_MAP_HOLE) {
10734 			btrfs_warn(fs_info, "swapfile must not have holes");
10735 			ret = -EINVAL;
10736 			goto out;
10737 		}
10738 		if (em->block_start == EXTENT_MAP_INLINE) {
10739 			/*
10740 			 * It's unlikely we'll ever actually find ourselves
10741 			 * here, as a file small enough to fit inline won't be
10742 			 * big enough to store more than the swap header, but in
10743 			 * case something changes in the future, let's catch it
10744 			 * here rather than later.
10745 			 */
10746 			btrfs_warn(fs_info, "swapfile must not be inline");
10747 			ret = -EINVAL;
10748 			goto out;
10749 		}
10750 		if (extent_map_is_compressed(em)) {
10751 			btrfs_warn(fs_info, "swapfile must not be compressed");
10752 			ret = -EINVAL;
10753 			goto out;
10754 		}
10755 
10756 		logical_block_start = em->block_start + (start - em->start);
10757 		len = min(len, em->len - (start - em->start));
10758 		free_extent_map(em);
10759 		em = NULL;
10760 
10761 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10762 		if (ret < 0) {
10763 			goto out;
10764 		} else if (ret) {
10765 			ret = 0;
10766 		} else {
10767 			btrfs_warn(fs_info,
10768 				   "swapfile must not be copy-on-write");
10769 			ret = -EINVAL;
10770 			goto out;
10771 		}
10772 
10773 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10774 		if (IS_ERR(map)) {
10775 			ret = PTR_ERR(map);
10776 			goto out;
10777 		}
10778 
10779 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10780 			btrfs_warn(fs_info,
10781 				   "swapfile must have single data profile");
10782 			ret = -EINVAL;
10783 			goto out;
10784 		}
10785 
10786 		if (device == NULL) {
10787 			device = map->stripes[0].dev;
10788 			ret = btrfs_add_swapfile_pin(inode, device, false);
10789 			if (ret == 1)
10790 				ret = 0;
10791 			else if (ret)
10792 				goto out;
10793 		} else if (device != map->stripes[0].dev) {
10794 			btrfs_warn(fs_info, "swapfile must be on one device");
10795 			ret = -EINVAL;
10796 			goto out;
10797 		}
10798 
10799 		physical_block_start = (map->stripes[0].physical +
10800 					(logical_block_start - map->start));
10801 		len = min(len, map->chunk_len - (logical_block_start - map->start));
10802 		btrfs_free_chunk_map(map);
10803 		map = NULL;
10804 
10805 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10806 		if (!bg) {
10807 			btrfs_warn(fs_info,
10808 			   "could not find block group containing swapfile");
10809 			ret = -EINVAL;
10810 			goto out;
10811 		}
10812 
10813 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10814 			btrfs_warn(fs_info,
10815 			   "block group for swapfile at %llu is read-only%s",
10816 			   bg->start,
10817 			   atomic_read(&fs_info->scrubs_running) ?
10818 				       " (scrub running)" : "");
10819 			btrfs_put_block_group(bg);
10820 			ret = -EINVAL;
10821 			goto out;
10822 		}
10823 
10824 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10825 		if (ret) {
10826 			btrfs_put_block_group(bg);
10827 			if (ret == 1)
10828 				ret = 0;
10829 			else
10830 				goto out;
10831 		}
10832 
10833 		if (bsi.block_len &&
10834 		    bsi.block_start + bsi.block_len == physical_block_start) {
10835 			bsi.block_len += len;
10836 		} else {
10837 			if (bsi.block_len) {
10838 				ret = btrfs_add_swap_extent(sis, &bsi);
10839 				if (ret)
10840 					goto out;
10841 			}
10842 			bsi.start = start;
10843 			bsi.block_start = physical_block_start;
10844 			bsi.block_len = len;
10845 		}
10846 
10847 		start += len;
10848 	}
10849 
10850 	if (bsi.block_len)
10851 		ret = btrfs_add_swap_extent(sis, &bsi);
10852 
10853 out:
10854 	if (!IS_ERR_OR_NULL(em))
10855 		free_extent_map(em);
10856 	if (!IS_ERR_OR_NULL(map))
10857 		btrfs_free_chunk_map(map);
10858 
10859 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10860 
10861 	if (ret)
10862 		btrfs_swap_deactivate(file);
10863 
10864 	btrfs_drew_write_unlock(&root->snapshot_lock);
10865 
10866 	btrfs_exclop_finish(fs_info);
10867 
10868 	if (ret)
10869 		return ret;
10870 
10871 	if (device)
10872 		sis->bdev = device->bdev;
10873 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10874 	sis->max = bsi.nr_pages;
10875 	sis->pages = bsi.nr_pages - 1;
10876 	sis->highest_bit = bsi.nr_pages - 1;
10877 	return bsi.nr_extents;
10878 }
10879 #else
10880 static void btrfs_swap_deactivate(struct file *file)
10881 {
10882 }
10883 
10884 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10885 			       sector_t *span)
10886 {
10887 	return -EOPNOTSUPP;
10888 }
10889 #endif
10890 
10891 /*
10892  * Update the number of bytes used in the VFS' inode. When we replace extents in
10893  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10894  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10895  * always get a correct value.
10896  */
10897 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10898 			      const u64 add_bytes,
10899 			      const u64 del_bytes)
10900 {
10901 	if (add_bytes == del_bytes)
10902 		return;
10903 
10904 	spin_lock(&inode->lock);
10905 	if (del_bytes > 0)
10906 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10907 	if (add_bytes > 0)
10908 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10909 	spin_unlock(&inode->lock);
10910 }
10911 
10912 /*
10913  * Verify that there are no ordered extents for a given file range.
10914  *
10915  * @inode:   The target inode.
10916  * @start:   Start offset of the file range, should be sector size aligned.
10917  * @end:     End offset (inclusive) of the file range, its value +1 should be
10918  *           sector size aligned.
10919  *
10920  * This should typically be used for cases where we locked an inode's VFS lock in
10921  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10922  * we have flushed all delalloc in the range, we have waited for all ordered
10923  * extents in the range to complete and finally we have locked the file range in
10924  * the inode's io_tree.
10925  */
10926 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10927 {
10928 	struct btrfs_root *root = inode->root;
10929 	struct btrfs_ordered_extent *ordered;
10930 
10931 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10932 		return;
10933 
10934 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10935 	if (ordered) {
10936 		btrfs_err(root->fs_info,
10937 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10938 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10939 			  ordered->file_offset,
10940 			  ordered->file_offset + ordered->num_bytes - 1);
10941 		btrfs_put_ordered_extent(ordered);
10942 	}
10943 
10944 	ASSERT(ordered == NULL);
10945 }
10946 
10947 static const struct inode_operations btrfs_dir_inode_operations = {
10948 	.getattr	= btrfs_getattr,
10949 	.lookup		= btrfs_lookup,
10950 	.create		= btrfs_create,
10951 	.unlink		= btrfs_unlink,
10952 	.link		= btrfs_link,
10953 	.mkdir		= btrfs_mkdir,
10954 	.rmdir		= btrfs_rmdir,
10955 	.rename		= btrfs_rename2,
10956 	.symlink	= btrfs_symlink,
10957 	.setattr	= btrfs_setattr,
10958 	.mknod		= btrfs_mknod,
10959 	.listxattr	= btrfs_listxattr,
10960 	.permission	= btrfs_permission,
10961 	.get_inode_acl	= btrfs_get_acl,
10962 	.set_acl	= btrfs_set_acl,
10963 	.update_time	= btrfs_update_time,
10964 	.tmpfile        = btrfs_tmpfile,
10965 	.fileattr_get	= btrfs_fileattr_get,
10966 	.fileattr_set	= btrfs_fileattr_set,
10967 };
10968 
10969 static const struct file_operations btrfs_dir_file_operations = {
10970 	.llseek		= btrfs_dir_llseek,
10971 	.read		= generic_read_dir,
10972 	.iterate_shared	= btrfs_real_readdir,
10973 	.open		= btrfs_opendir,
10974 	.unlocked_ioctl	= btrfs_ioctl,
10975 #ifdef CONFIG_COMPAT
10976 	.compat_ioctl	= btrfs_compat_ioctl,
10977 #endif
10978 	.release        = btrfs_release_file,
10979 	.fsync		= btrfs_sync_file,
10980 };
10981 
10982 /*
10983  * btrfs doesn't support the bmap operation because swapfiles
10984  * use bmap to make a mapping of extents in the file.  They assume
10985  * these extents won't change over the life of the file and they
10986  * use the bmap result to do IO directly to the drive.
10987  *
10988  * the btrfs bmap call would return logical addresses that aren't
10989  * suitable for IO and they also will change frequently as COW
10990  * operations happen.  So, swapfile + btrfs == corruption.
10991  *
10992  * For now we're avoiding this by dropping bmap.
10993  */
10994 static const struct address_space_operations btrfs_aops = {
10995 	.read_folio	= btrfs_read_folio,
10996 	.writepages	= btrfs_writepages,
10997 	.readahead	= btrfs_readahead,
10998 	.invalidate_folio = btrfs_invalidate_folio,
10999 	.release_folio	= btrfs_release_folio,
11000 	.migrate_folio	= btrfs_migrate_folio,
11001 	.dirty_folio	= filemap_dirty_folio,
11002 	.error_remove_folio = generic_error_remove_folio,
11003 	.swap_activate	= btrfs_swap_activate,
11004 	.swap_deactivate = btrfs_swap_deactivate,
11005 };
11006 
11007 static const struct inode_operations btrfs_file_inode_operations = {
11008 	.getattr	= btrfs_getattr,
11009 	.setattr	= btrfs_setattr,
11010 	.listxattr      = btrfs_listxattr,
11011 	.permission	= btrfs_permission,
11012 	.fiemap		= btrfs_fiemap,
11013 	.get_inode_acl	= btrfs_get_acl,
11014 	.set_acl	= btrfs_set_acl,
11015 	.update_time	= btrfs_update_time,
11016 	.fileattr_get	= btrfs_fileattr_get,
11017 	.fileattr_set	= btrfs_fileattr_set,
11018 };
11019 static const struct inode_operations btrfs_special_inode_operations = {
11020 	.getattr	= btrfs_getattr,
11021 	.setattr	= btrfs_setattr,
11022 	.permission	= btrfs_permission,
11023 	.listxattr	= btrfs_listxattr,
11024 	.get_inode_acl	= btrfs_get_acl,
11025 	.set_acl	= btrfs_set_acl,
11026 	.update_time	= btrfs_update_time,
11027 };
11028 static const struct inode_operations btrfs_symlink_inode_operations = {
11029 	.get_link	= page_get_link,
11030 	.getattr	= btrfs_getattr,
11031 	.setattr	= btrfs_setattr,
11032 	.permission	= btrfs_permission,
11033 	.listxattr	= btrfs_listxattr,
11034 	.update_time	= btrfs_update_time,
11035 };
11036 
11037 const struct dentry_operations btrfs_dentry_operations = {
11038 	.d_delete	= btrfs_dentry_delete,
11039 };
11040