1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/pagemap.h> 25 #include <linux/highmem.h> 26 #include <linux/time.h> 27 #include <linux/init.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mpage.h> 31 #include <linux/swap.h> 32 #include <linux/writeback.h> 33 #include <linux/statfs.h> 34 #include <linux/compat.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/xattr.h> 37 #include <linux/posix_acl.h> 38 #include <linux/falloc.h> 39 #include <linux/slab.h> 40 #include <linux/ratelimit.h> 41 #include "compat.h" 42 #include "ctree.h" 43 #include "disk-io.h" 44 #include "transaction.h" 45 #include "btrfs_inode.h" 46 #include "ioctl.h" 47 #include "print-tree.h" 48 #include "volumes.h" 49 #include "ordered-data.h" 50 #include "xattr.h" 51 #include "tree-log.h" 52 #include "compression.h" 53 #include "locking.h" 54 #include "free-space-cache.h" 55 #include "inode-map.h" 56 57 struct btrfs_iget_args { 58 u64 ino; 59 struct btrfs_root *root; 60 }; 61 62 static const struct inode_operations btrfs_dir_inode_operations; 63 static const struct inode_operations btrfs_symlink_inode_operations; 64 static const struct inode_operations btrfs_dir_ro_inode_operations; 65 static const struct inode_operations btrfs_special_inode_operations; 66 static const struct inode_operations btrfs_file_inode_operations; 67 static const struct address_space_operations btrfs_aops; 68 static const struct address_space_operations btrfs_symlink_aops; 69 static const struct file_operations btrfs_dir_file_operations; 70 static struct extent_io_ops btrfs_extent_io_ops; 71 72 static struct kmem_cache *btrfs_inode_cachep; 73 struct kmem_cache *btrfs_trans_handle_cachep; 74 struct kmem_cache *btrfs_transaction_cachep; 75 struct kmem_cache *btrfs_path_cachep; 76 struct kmem_cache *btrfs_free_space_cachep; 77 78 #define S_SHIFT 12 79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { 80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE, 81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR, 82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV, 83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV, 84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO, 85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK, 86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK, 87 }; 88 89 static int btrfs_setsize(struct inode *inode, loff_t newsize); 90 static int btrfs_truncate(struct inode *inode); 91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end); 92 static noinline int cow_file_range(struct inode *inode, 93 struct page *locked_page, 94 u64 start, u64 end, int *page_started, 95 unsigned long *nr_written, int unlock); 96 97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, 98 struct inode *inode, struct inode *dir, 99 const struct qstr *qstr) 100 { 101 int err; 102 103 err = btrfs_init_acl(trans, inode, dir); 104 if (!err) 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr); 106 return err; 107 } 108 109 /* 110 * this does all the hard work for inserting an inline extent into 111 * the btree. The caller should have done a btrfs_drop_extents so that 112 * no overlapping inline items exist in the btree 113 */ 114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans, 115 struct btrfs_root *root, struct inode *inode, 116 u64 start, size_t size, size_t compressed_size, 117 int compress_type, 118 struct page **compressed_pages) 119 { 120 struct btrfs_key key; 121 struct btrfs_path *path; 122 struct extent_buffer *leaf; 123 struct page *page = NULL; 124 char *kaddr; 125 unsigned long ptr; 126 struct btrfs_file_extent_item *ei; 127 int err = 0; 128 int ret; 129 size_t cur_size = size; 130 size_t datasize; 131 unsigned long offset; 132 133 if (compressed_size && compressed_pages) 134 cur_size = compressed_size; 135 136 path = btrfs_alloc_path(); 137 if (!path) 138 return -ENOMEM; 139 140 path->leave_spinning = 1; 141 142 key.objectid = btrfs_ino(inode); 143 key.offset = start; 144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 145 datasize = btrfs_file_extent_calc_inline_size(cur_size); 146 147 inode_add_bytes(inode, size); 148 ret = btrfs_insert_empty_item(trans, root, path, &key, 149 datasize); 150 BUG_ON(ret); 151 if (ret) { 152 err = ret; 153 goto fail; 154 } 155 leaf = path->nodes[0]; 156 ei = btrfs_item_ptr(leaf, path->slots[0], 157 struct btrfs_file_extent_item); 158 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); 160 btrfs_set_file_extent_encryption(leaf, ei, 0); 161 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 162 btrfs_set_file_extent_ram_bytes(leaf, ei, size); 163 ptr = btrfs_file_extent_inline_start(ei); 164 165 if (compress_type != BTRFS_COMPRESS_NONE) { 166 struct page *cpage; 167 int i = 0; 168 while (compressed_size > 0) { 169 cpage = compressed_pages[i]; 170 cur_size = min_t(unsigned long, compressed_size, 171 PAGE_CACHE_SIZE); 172 173 kaddr = kmap_atomic(cpage, KM_USER0); 174 write_extent_buffer(leaf, kaddr, ptr, cur_size); 175 kunmap_atomic(kaddr, KM_USER0); 176 177 i++; 178 ptr += cur_size; 179 compressed_size -= cur_size; 180 } 181 btrfs_set_file_extent_compression(leaf, ei, 182 compress_type); 183 } else { 184 page = find_get_page(inode->i_mapping, 185 start >> PAGE_CACHE_SHIFT); 186 btrfs_set_file_extent_compression(leaf, ei, 0); 187 kaddr = kmap_atomic(page, KM_USER0); 188 offset = start & (PAGE_CACHE_SIZE - 1); 189 write_extent_buffer(leaf, kaddr + offset, ptr, size); 190 kunmap_atomic(kaddr, KM_USER0); 191 page_cache_release(page); 192 } 193 btrfs_mark_buffer_dirty(leaf); 194 btrfs_free_path(path); 195 196 /* 197 * we're an inline extent, so nobody can 198 * extend the file past i_size without locking 199 * a page we already have locked. 200 * 201 * We must do any isize and inode updates 202 * before we unlock the pages. Otherwise we 203 * could end up racing with unlink. 204 */ 205 BTRFS_I(inode)->disk_i_size = inode->i_size; 206 btrfs_update_inode(trans, root, inode); 207 208 return 0; 209 fail: 210 btrfs_free_path(path); 211 return err; 212 } 213 214 215 /* 216 * conditionally insert an inline extent into the file. This 217 * does the checks required to make sure the data is small enough 218 * to fit as an inline extent. 219 */ 220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans, 221 struct btrfs_root *root, 222 struct inode *inode, u64 start, u64 end, 223 size_t compressed_size, int compress_type, 224 struct page **compressed_pages) 225 { 226 u64 isize = i_size_read(inode); 227 u64 actual_end = min(end + 1, isize); 228 u64 inline_len = actual_end - start; 229 u64 aligned_end = (end + root->sectorsize - 1) & 230 ~((u64)root->sectorsize - 1); 231 u64 hint_byte; 232 u64 data_len = inline_len; 233 int ret; 234 235 if (compressed_size) 236 data_len = compressed_size; 237 238 if (start > 0 || 239 actual_end >= PAGE_CACHE_SIZE || 240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) || 241 (!compressed_size && 242 (actual_end & (root->sectorsize - 1)) == 0) || 243 end + 1 < isize || 244 data_len > root->fs_info->max_inline) { 245 return 1; 246 } 247 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end, 249 &hint_byte, 1); 250 BUG_ON(ret); 251 252 if (isize > actual_end) 253 inline_len = min_t(u64, isize, actual_end); 254 ret = insert_inline_extent(trans, root, inode, start, 255 inline_len, compressed_size, 256 compress_type, compressed_pages); 257 BUG_ON(ret); 258 btrfs_delalloc_release_metadata(inode, end + 1 - start); 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0); 260 return 0; 261 } 262 263 struct async_extent { 264 u64 start; 265 u64 ram_size; 266 u64 compressed_size; 267 struct page **pages; 268 unsigned long nr_pages; 269 int compress_type; 270 struct list_head list; 271 }; 272 273 struct async_cow { 274 struct inode *inode; 275 struct btrfs_root *root; 276 struct page *locked_page; 277 u64 start; 278 u64 end; 279 struct list_head extents; 280 struct btrfs_work work; 281 }; 282 283 static noinline int add_async_extent(struct async_cow *cow, 284 u64 start, u64 ram_size, 285 u64 compressed_size, 286 struct page **pages, 287 unsigned long nr_pages, 288 int compress_type) 289 { 290 struct async_extent *async_extent; 291 292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); 293 BUG_ON(!async_extent); 294 async_extent->start = start; 295 async_extent->ram_size = ram_size; 296 async_extent->compressed_size = compressed_size; 297 async_extent->pages = pages; 298 async_extent->nr_pages = nr_pages; 299 async_extent->compress_type = compress_type; 300 list_add_tail(&async_extent->list, &cow->extents); 301 return 0; 302 } 303 304 /* 305 * we create compressed extents in two phases. The first 306 * phase compresses a range of pages that have already been 307 * locked (both pages and state bits are locked). 308 * 309 * This is done inside an ordered work queue, and the compression 310 * is spread across many cpus. The actual IO submission is step 311 * two, and the ordered work queue takes care of making sure that 312 * happens in the same order things were put onto the queue by 313 * writepages and friends. 314 * 315 * If this code finds it can't get good compression, it puts an 316 * entry onto the work queue to write the uncompressed bytes. This 317 * makes sure that both compressed inodes and uncompressed inodes 318 * are written in the same order that pdflush sent them down. 319 */ 320 static noinline int compress_file_range(struct inode *inode, 321 struct page *locked_page, 322 u64 start, u64 end, 323 struct async_cow *async_cow, 324 int *num_added) 325 { 326 struct btrfs_root *root = BTRFS_I(inode)->root; 327 struct btrfs_trans_handle *trans; 328 u64 num_bytes; 329 u64 blocksize = root->sectorsize; 330 u64 actual_end; 331 u64 isize = i_size_read(inode); 332 int ret = 0; 333 struct page **pages = NULL; 334 unsigned long nr_pages; 335 unsigned long nr_pages_ret = 0; 336 unsigned long total_compressed = 0; 337 unsigned long total_in = 0; 338 unsigned long max_compressed = 128 * 1024; 339 unsigned long max_uncompressed = 128 * 1024; 340 int i; 341 int will_compress; 342 int compress_type = root->fs_info->compress_type; 343 344 /* if this is a small write inside eof, kick off a defragbot */ 345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024) 346 btrfs_add_inode_defrag(NULL, inode); 347 348 actual_end = min_t(u64, isize, end + 1); 349 again: 350 will_compress = 0; 351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1; 352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE); 353 354 /* 355 * we don't want to send crud past the end of i_size through 356 * compression, that's just a waste of CPU time. So, if the 357 * end of the file is before the start of our current 358 * requested range of bytes, we bail out to the uncompressed 359 * cleanup code that can deal with all of this. 360 * 361 * It isn't really the fastest way to fix things, but this is a 362 * very uncommon corner. 363 */ 364 if (actual_end <= start) 365 goto cleanup_and_bail_uncompressed; 366 367 total_compressed = actual_end - start; 368 369 /* we want to make sure that amount of ram required to uncompress 370 * an extent is reasonable, so we limit the total size in ram 371 * of a compressed extent to 128k. This is a crucial number 372 * because it also controls how easily we can spread reads across 373 * cpus for decompression. 374 * 375 * We also want to make sure the amount of IO required to do 376 * a random read is reasonably small, so we limit the size of 377 * a compressed extent to 128k. 378 */ 379 total_compressed = min(total_compressed, max_uncompressed); 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 381 num_bytes = max(blocksize, num_bytes); 382 total_in = 0; 383 ret = 0; 384 385 /* 386 * we do compression for mount -o compress and when the 387 * inode has not been flagged as nocompress. This flag can 388 * change at any time if we discover bad compression ratios. 389 */ 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) && 391 (btrfs_test_opt(root, COMPRESS) || 392 (BTRFS_I(inode)->force_compress) || 393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) { 394 WARN_ON(pages); 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS); 396 BUG_ON(!pages); 397 398 if (BTRFS_I(inode)->force_compress) 399 compress_type = BTRFS_I(inode)->force_compress; 400 401 ret = btrfs_compress_pages(compress_type, 402 inode->i_mapping, start, 403 total_compressed, pages, 404 nr_pages, &nr_pages_ret, 405 &total_in, 406 &total_compressed, 407 max_compressed); 408 409 if (!ret) { 410 unsigned long offset = total_compressed & 411 (PAGE_CACHE_SIZE - 1); 412 struct page *page = pages[nr_pages_ret - 1]; 413 char *kaddr; 414 415 /* zero the tail end of the last page, we might be 416 * sending it down to disk 417 */ 418 if (offset) { 419 kaddr = kmap_atomic(page, KM_USER0); 420 memset(kaddr + offset, 0, 421 PAGE_CACHE_SIZE - offset); 422 kunmap_atomic(kaddr, KM_USER0); 423 } 424 will_compress = 1; 425 } 426 } 427 if (start == 0) { 428 trans = btrfs_join_transaction(root); 429 BUG_ON(IS_ERR(trans)); 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 431 432 /* lets try to make an inline extent */ 433 if (ret || total_in < (actual_end - start)) { 434 /* we didn't compress the entire range, try 435 * to make an uncompressed inline extent. 436 */ 437 ret = cow_file_range_inline(trans, root, inode, 438 start, end, 0, 0, NULL); 439 } else { 440 /* try making a compressed inline extent */ 441 ret = cow_file_range_inline(trans, root, inode, 442 start, end, 443 total_compressed, 444 compress_type, pages); 445 } 446 if (ret == 0) { 447 /* 448 * inline extent creation worked, we don't need 449 * to create any more async work items. Unlock 450 * and free up our temp pages. 451 */ 452 extent_clear_unlock_delalloc(inode, 453 &BTRFS_I(inode)->io_tree, 454 start, end, NULL, 455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 456 EXTENT_CLEAR_DELALLOC | 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK); 458 459 btrfs_end_transaction(trans, root); 460 goto free_pages_out; 461 } 462 btrfs_end_transaction(trans, root); 463 } 464 465 if (will_compress) { 466 /* 467 * we aren't doing an inline extent round the compressed size 468 * up to a block size boundary so the allocator does sane 469 * things 470 */ 471 total_compressed = (total_compressed + blocksize - 1) & 472 ~(blocksize - 1); 473 474 /* 475 * one last check to make sure the compression is really a 476 * win, compare the page count read with the blocks on disk 477 */ 478 total_in = (total_in + PAGE_CACHE_SIZE - 1) & 479 ~(PAGE_CACHE_SIZE - 1); 480 if (total_compressed >= total_in) { 481 will_compress = 0; 482 } else { 483 num_bytes = total_in; 484 } 485 } 486 if (!will_compress && pages) { 487 /* 488 * the compression code ran but failed to make things smaller, 489 * free any pages it allocated and our page pointer array 490 */ 491 for (i = 0; i < nr_pages_ret; i++) { 492 WARN_ON(pages[i]->mapping); 493 page_cache_release(pages[i]); 494 } 495 kfree(pages); 496 pages = NULL; 497 total_compressed = 0; 498 nr_pages_ret = 0; 499 500 /* flag the file so we don't compress in the future */ 501 if (!btrfs_test_opt(root, FORCE_COMPRESS) && 502 !(BTRFS_I(inode)->force_compress)) { 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 504 } 505 } 506 if (will_compress) { 507 *num_added += 1; 508 509 /* the async work queues will take care of doing actual 510 * allocation on disk for these compressed pages, 511 * and will submit them to the elevator. 512 */ 513 add_async_extent(async_cow, start, num_bytes, 514 total_compressed, pages, nr_pages_ret, 515 compress_type); 516 517 if (start + num_bytes < end) { 518 start += num_bytes; 519 pages = NULL; 520 cond_resched(); 521 goto again; 522 } 523 } else { 524 cleanup_and_bail_uncompressed: 525 /* 526 * No compression, but we still need to write the pages in 527 * the file we've been given so far. redirty the locked 528 * page if it corresponds to our extent and set things up 529 * for the async work queue to run cow_file_range to do 530 * the normal delalloc dance 531 */ 532 if (page_offset(locked_page) >= start && 533 page_offset(locked_page) <= end) { 534 __set_page_dirty_nobuffers(locked_page); 535 /* unlocked later on in the async handlers */ 536 } 537 add_async_extent(async_cow, start, end - start + 1, 538 0, NULL, 0, BTRFS_COMPRESS_NONE); 539 *num_added += 1; 540 } 541 542 out: 543 return 0; 544 545 free_pages_out: 546 for (i = 0; i < nr_pages_ret; i++) { 547 WARN_ON(pages[i]->mapping); 548 page_cache_release(pages[i]); 549 } 550 kfree(pages); 551 552 goto out; 553 } 554 555 /* 556 * phase two of compressed writeback. This is the ordered portion 557 * of the code, which only gets called in the order the work was 558 * queued. We walk all the async extents created by compress_file_range 559 * and send them down to the disk. 560 */ 561 static noinline int submit_compressed_extents(struct inode *inode, 562 struct async_cow *async_cow) 563 { 564 struct async_extent *async_extent; 565 u64 alloc_hint = 0; 566 struct btrfs_trans_handle *trans; 567 struct btrfs_key ins; 568 struct extent_map *em; 569 struct btrfs_root *root = BTRFS_I(inode)->root; 570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 571 struct extent_io_tree *io_tree; 572 int ret = 0; 573 574 if (list_empty(&async_cow->extents)) 575 return 0; 576 577 578 while (!list_empty(&async_cow->extents)) { 579 async_extent = list_entry(async_cow->extents.next, 580 struct async_extent, list); 581 list_del(&async_extent->list); 582 583 io_tree = &BTRFS_I(inode)->io_tree; 584 585 retry: 586 /* did the compression code fall back to uncompressed IO? */ 587 if (!async_extent->pages) { 588 int page_started = 0; 589 unsigned long nr_written = 0; 590 591 lock_extent(io_tree, async_extent->start, 592 async_extent->start + 593 async_extent->ram_size - 1, GFP_NOFS); 594 595 /* allocate blocks */ 596 ret = cow_file_range(inode, async_cow->locked_page, 597 async_extent->start, 598 async_extent->start + 599 async_extent->ram_size - 1, 600 &page_started, &nr_written, 0); 601 602 /* 603 * if page_started, cow_file_range inserted an 604 * inline extent and took care of all the unlocking 605 * and IO for us. Otherwise, we need to submit 606 * all those pages down to the drive. 607 */ 608 if (!page_started && !ret) 609 extent_write_locked_range(io_tree, 610 inode, async_extent->start, 611 async_extent->start + 612 async_extent->ram_size - 1, 613 btrfs_get_extent, 614 WB_SYNC_ALL); 615 kfree(async_extent); 616 cond_resched(); 617 continue; 618 } 619 620 lock_extent(io_tree, async_extent->start, 621 async_extent->start + async_extent->ram_size - 1, 622 GFP_NOFS); 623 624 trans = btrfs_join_transaction(root); 625 BUG_ON(IS_ERR(trans)); 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 627 ret = btrfs_reserve_extent(trans, root, 628 async_extent->compressed_size, 629 async_extent->compressed_size, 630 0, alloc_hint, 631 (u64)-1, &ins, 1); 632 btrfs_end_transaction(trans, root); 633 634 if (ret) { 635 int i; 636 for (i = 0; i < async_extent->nr_pages; i++) { 637 WARN_ON(async_extent->pages[i]->mapping); 638 page_cache_release(async_extent->pages[i]); 639 } 640 kfree(async_extent->pages); 641 async_extent->nr_pages = 0; 642 async_extent->pages = NULL; 643 unlock_extent(io_tree, async_extent->start, 644 async_extent->start + 645 async_extent->ram_size - 1, GFP_NOFS); 646 goto retry; 647 } 648 649 /* 650 * here we're doing allocation and writeback of the 651 * compressed pages 652 */ 653 btrfs_drop_extent_cache(inode, async_extent->start, 654 async_extent->start + 655 async_extent->ram_size - 1, 0); 656 657 em = alloc_extent_map(); 658 BUG_ON(!em); 659 em->start = async_extent->start; 660 em->len = async_extent->ram_size; 661 em->orig_start = em->start; 662 663 em->block_start = ins.objectid; 664 em->block_len = ins.offset; 665 em->bdev = root->fs_info->fs_devices->latest_bdev; 666 em->compress_type = async_extent->compress_type; 667 set_bit(EXTENT_FLAG_PINNED, &em->flags); 668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 669 670 while (1) { 671 write_lock(&em_tree->lock); 672 ret = add_extent_mapping(em_tree, em); 673 write_unlock(&em_tree->lock); 674 if (ret != -EEXIST) { 675 free_extent_map(em); 676 break; 677 } 678 btrfs_drop_extent_cache(inode, async_extent->start, 679 async_extent->start + 680 async_extent->ram_size - 1, 0); 681 } 682 683 ret = btrfs_add_ordered_extent_compress(inode, 684 async_extent->start, 685 ins.objectid, 686 async_extent->ram_size, 687 ins.offset, 688 BTRFS_ORDERED_COMPRESSED, 689 async_extent->compress_type); 690 BUG_ON(ret); 691 692 /* 693 * clear dirty, set writeback and unlock the pages. 694 */ 695 extent_clear_unlock_delalloc(inode, 696 &BTRFS_I(inode)->io_tree, 697 async_extent->start, 698 async_extent->start + 699 async_extent->ram_size - 1, 700 NULL, EXTENT_CLEAR_UNLOCK_PAGE | 701 EXTENT_CLEAR_UNLOCK | 702 EXTENT_CLEAR_DELALLOC | 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK); 704 705 ret = btrfs_submit_compressed_write(inode, 706 async_extent->start, 707 async_extent->ram_size, 708 ins.objectid, 709 ins.offset, async_extent->pages, 710 async_extent->nr_pages); 711 712 BUG_ON(ret); 713 alloc_hint = ins.objectid + ins.offset; 714 kfree(async_extent); 715 cond_resched(); 716 } 717 718 return 0; 719 } 720 721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start, 722 u64 num_bytes) 723 { 724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 725 struct extent_map *em; 726 u64 alloc_hint = 0; 727 728 read_lock(&em_tree->lock); 729 em = search_extent_mapping(em_tree, start, num_bytes); 730 if (em) { 731 /* 732 * if block start isn't an actual block number then find the 733 * first block in this inode and use that as a hint. If that 734 * block is also bogus then just don't worry about it. 735 */ 736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 737 free_extent_map(em); 738 em = search_extent_mapping(em_tree, 0, 0); 739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE) 740 alloc_hint = em->block_start; 741 if (em) 742 free_extent_map(em); 743 } else { 744 alloc_hint = em->block_start; 745 free_extent_map(em); 746 } 747 } 748 read_unlock(&em_tree->lock); 749 750 return alloc_hint; 751 } 752 753 /* 754 * when extent_io.c finds a delayed allocation range in the file, 755 * the call backs end up in this code. The basic idea is to 756 * allocate extents on disk for the range, and create ordered data structs 757 * in ram to track those extents. 758 * 759 * locked_page is the page that writepage had locked already. We use 760 * it to make sure we don't do extra locks or unlocks. 761 * 762 * *page_started is set to one if we unlock locked_page and do everything 763 * required to start IO on it. It may be clean and already done with 764 * IO when we return. 765 */ 766 static noinline int cow_file_range(struct inode *inode, 767 struct page *locked_page, 768 u64 start, u64 end, int *page_started, 769 unsigned long *nr_written, 770 int unlock) 771 { 772 struct btrfs_root *root = BTRFS_I(inode)->root; 773 struct btrfs_trans_handle *trans; 774 u64 alloc_hint = 0; 775 u64 num_bytes; 776 unsigned long ram_size; 777 u64 disk_num_bytes; 778 u64 cur_alloc_size; 779 u64 blocksize = root->sectorsize; 780 struct btrfs_key ins; 781 struct extent_map *em; 782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 783 int ret = 0; 784 785 BUG_ON(btrfs_is_free_space_inode(root, inode)); 786 trans = btrfs_join_transaction(root); 787 BUG_ON(IS_ERR(trans)); 788 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 789 790 num_bytes = (end - start + blocksize) & ~(blocksize - 1); 791 num_bytes = max(blocksize, num_bytes); 792 disk_num_bytes = num_bytes; 793 ret = 0; 794 795 /* if this is a small write inside eof, kick off defrag */ 796 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024) 797 btrfs_add_inode_defrag(trans, inode); 798 799 if (start == 0) { 800 /* lets try to make an inline extent */ 801 ret = cow_file_range_inline(trans, root, inode, 802 start, end, 0, 0, NULL); 803 if (ret == 0) { 804 extent_clear_unlock_delalloc(inode, 805 &BTRFS_I(inode)->io_tree, 806 start, end, NULL, 807 EXTENT_CLEAR_UNLOCK_PAGE | 808 EXTENT_CLEAR_UNLOCK | 809 EXTENT_CLEAR_DELALLOC | 810 EXTENT_CLEAR_DIRTY | 811 EXTENT_SET_WRITEBACK | 812 EXTENT_END_WRITEBACK); 813 814 *nr_written = *nr_written + 815 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE; 816 *page_started = 1; 817 ret = 0; 818 goto out; 819 } 820 } 821 822 BUG_ON(disk_num_bytes > 823 btrfs_super_total_bytes(&root->fs_info->super_copy)); 824 825 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); 826 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0); 827 828 while (disk_num_bytes > 0) { 829 unsigned long op; 830 831 cur_alloc_size = disk_num_bytes; 832 ret = btrfs_reserve_extent(trans, root, cur_alloc_size, 833 root->sectorsize, 0, alloc_hint, 834 (u64)-1, &ins, 1); 835 BUG_ON(ret); 836 837 em = alloc_extent_map(); 838 BUG_ON(!em); 839 em->start = start; 840 em->orig_start = em->start; 841 ram_size = ins.offset; 842 em->len = ins.offset; 843 844 em->block_start = ins.objectid; 845 em->block_len = ins.offset; 846 em->bdev = root->fs_info->fs_devices->latest_bdev; 847 set_bit(EXTENT_FLAG_PINNED, &em->flags); 848 849 while (1) { 850 write_lock(&em_tree->lock); 851 ret = add_extent_mapping(em_tree, em); 852 write_unlock(&em_tree->lock); 853 if (ret != -EEXIST) { 854 free_extent_map(em); 855 break; 856 } 857 btrfs_drop_extent_cache(inode, start, 858 start + ram_size - 1, 0); 859 } 860 861 cur_alloc_size = ins.offset; 862 ret = btrfs_add_ordered_extent(inode, start, ins.objectid, 863 ram_size, cur_alloc_size, 0); 864 BUG_ON(ret); 865 866 if (root->root_key.objectid == 867 BTRFS_DATA_RELOC_TREE_OBJECTID) { 868 ret = btrfs_reloc_clone_csums(inode, start, 869 cur_alloc_size); 870 BUG_ON(ret); 871 } 872 873 if (disk_num_bytes < cur_alloc_size) 874 break; 875 876 /* we're not doing compressed IO, don't unlock the first 877 * page (which the caller expects to stay locked), don't 878 * clear any dirty bits and don't set any writeback bits 879 * 880 * Do set the Private2 bit so we know this page was properly 881 * setup for writepage 882 */ 883 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0; 884 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 885 EXTENT_SET_PRIVATE2; 886 887 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 888 start, start + ram_size - 1, 889 locked_page, op); 890 disk_num_bytes -= cur_alloc_size; 891 num_bytes -= cur_alloc_size; 892 alloc_hint = ins.objectid + ins.offset; 893 start += cur_alloc_size; 894 } 895 out: 896 ret = 0; 897 btrfs_end_transaction(trans, root); 898 899 return ret; 900 } 901 902 /* 903 * work queue call back to started compression on a file and pages 904 */ 905 static noinline void async_cow_start(struct btrfs_work *work) 906 { 907 struct async_cow *async_cow; 908 int num_added = 0; 909 async_cow = container_of(work, struct async_cow, work); 910 911 compress_file_range(async_cow->inode, async_cow->locked_page, 912 async_cow->start, async_cow->end, async_cow, 913 &num_added); 914 if (num_added == 0) 915 async_cow->inode = NULL; 916 } 917 918 /* 919 * work queue call back to submit previously compressed pages 920 */ 921 static noinline void async_cow_submit(struct btrfs_work *work) 922 { 923 struct async_cow *async_cow; 924 struct btrfs_root *root; 925 unsigned long nr_pages; 926 927 async_cow = container_of(work, struct async_cow, work); 928 929 root = async_cow->root; 930 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >> 931 PAGE_CACHE_SHIFT; 932 933 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages); 934 935 if (atomic_read(&root->fs_info->async_delalloc_pages) < 936 5 * 1042 * 1024 && 937 waitqueue_active(&root->fs_info->async_submit_wait)) 938 wake_up(&root->fs_info->async_submit_wait); 939 940 if (async_cow->inode) 941 submit_compressed_extents(async_cow->inode, async_cow); 942 } 943 944 static noinline void async_cow_free(struct btrfs_work *work) 945 { 946 struct async_cow *async_cow; 947 async_cow = container_of(work, struct async_cow, work); 948 kfree(async_cow); 949 } 950 951 static int cow_file_range_async(struct inode *inode, struct page *locked_page, 952 u64 start, u64 end, int *page_started, 953 unsigned long *nr_written) 954 { 955 struct async_cow *async_cow; 956 struct btrfs_root *root = BTRFS_I(inode)->root; 957 unsigned long nr_pages; 958 u64 cur_end; 959 int limit = 10 * 1024 * 1042; 960 961 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, 962 1, 0, NULL, GFP_NOFS); 963 while (start < end) { 964 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); 965 BUG_ON(!async_cow); 966 async_cow->inode = inode; 967 async_cow->root = root; 968 async_cow->locked_page = locked_page; 969 async_cow->start = start; 970 971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) 972 cur_end = end; 973 else 974 cur_end = min(end, start + 512 * 1024 - 1); 975 976 async_cow->end = cur_end; 977 INIT_LIST_HEAD(&async_cow->extents); 978 979 async_cow->work.func = async_cow_start; 980 async_cow->work.ordered_func = async_cow_submit; 981 async_cow->work.ordered_free = async_cow_free; 982 async_cow->work.flags = 0; 983 984 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >> 985 PAGE_CACHE_SHIFT; 986 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages); 987 988 btrfs_queue_worker(&root->fs_info->delalloc_workers, 989 &async_cow->work); 990 991 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) { 992 wait_event(root->fs_info->async_submit_wait, 993 (atomic_read(&root->fs_info->async_delalloc_pages) < 994 limit)); 995 } 996 997 while (atomic_read(&root->fs_info->async_submit_draining) && 998 atomic_read(&root->fs_info->async_delalloc_pages)) { 999 wait_event(root->fs_info->async_submit_wait, 1000 (atomic_read(&root->fs_info->async_delalloc_pages) == 1001 0)); 1002 } 1003 1004 *nr_written += nr_pages; 1005 start = cur_end + 1; 1006 } 1007 *page_started = 1; 1008 return 0; 1009 } 1010 1011 static noinline int csum_exist_in_range(struct btrfs_root *root, 1012 u64 bytenr, u64 num_bytes) 1013 { 1014 int ret; 1015 struct btrfs_ordered_sum *sums; 1016 LIST_HEAD(list); 1017 1018 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr, 1019 bytenr + num_bytes - 1, &list, 0); 1020 if (ret == 0 && list_empty(&list)) 1021 return 0; 1022 1023 while (!list_empty(&list)) { 1024 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 1025 list_del(&sums->list); 1026 kfree(sums); 1027 } 1028 return 1; 1029 } 1030 1031 /* 1032 * when nowcow writeback call back. This checks for snapshots or COW copies 1033 * of the extents that exist in the file, and COWs the file as required. 1034 * 1035 * If no cow copies or snapshots exist, we write directly to the existing 1036 * blocks on disk 1037 */ 1038 static noinline int run_delalloc_nocow(struct inode *inode, 1039 struct page *locked_page, 1040 u64 start, u64 end, int *page_started, int force, 1041 unsigned long *nr_written) 1042 { 1043 struct btrfs_root *root = BTRFS_I(inode)->root; 1044 struct btrfs_trans_handle *trans; 1045 struct extent_buffer *leaf; 1046 struct btrfs_path *path; 1047 struct btrfs_file_extent_item *fi; 1048 struct btrfs_key found_key; 1049 u64 cow_start; 1050 u64 cur_offset; 1051 u64 extent_end; 1052 u64 extent_offset; 1053 u64 disk_bytenr; 1054 u64 num_bytes; 1055 int extent_type; 1056 int ret; 1057 int type; 1058 int nocow; 1059 int check_prev = 1; 1060 bool nolock; 1061 u64 ino = btrfs_ino(inode); 1062 1063 path = btrfs_alloc_path(); 1064 if (!path) 1065 return -ENOMEM; 1066 1067 nolock = btrfs_is_free_space_inode(root, inode); 1068 1069 if (nolock) 1070 trans = btrfs_join_transaction_nolock(root); 1071 else 1072 trans = btrfs_join_transaction(root); 1073 1074 BUG_ON(IS_ERR(trans)); 1075 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1076 1077 cow_start = (u64)-1; 1078 cur_offset = start; 1079 while (1) { 1080 ret = btrfs_lookup_file_extent(trans, root, path, ino, 1081 cur_offset, 0); 1082 BUG_ON(ret < 0); 1083 if (ret > 0 && path->slots[0] > 0 && check_prev) { 1084 leaf = path->nodes[0]; 1085 btrfs_item_key_to_cpu(leaf, &found_key, 1086 path->slots[0] - 1); 1087 if (found_key.objectid == ino && 1088 found_key.type == BTRFS_EXTENT_DATA_KEY) 1089 path->slots[0]--; 1090 } 1091 check_prev = 0; 1092 next_slot: 1093 leaf = path->nodes[0]; 1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 1095 ret = btrfs_next_leaf(root, path); 1096 if (ret < 0) 1097 BUG_ON(1); 1098 if (ret > 0) 1099 break; 1100 leaf = path->nodes[0]; 1101 } 1102 1103 nocow = 0; 1104 disk_bytenr = 0; 1105 num_bytes = 0; 1106 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1107 1108 if (found_key.objectid > ino || 1109 found_key.type > BTRFS_EXTENT_DATA_KEY || 1110 found_key.offset > end) 1111 break; 1112 1113 if (found_key.offset > cur_offset) { 1114 extent_end = found_key.offset; 1115 extent_type = 0; 1116 goto out_check; 1117 } 1118 1119 fi = btrfs_item_ptr(leaf, path->slots[0], 1120 struct btrfs_file_extent_item); 1121 extent_type = btrfs_file_extent_type(leaf, fi); 1122 1123 if (extent_type == BTRFS_FILE_EXTENT_REG || 1124 extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1125 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1126 extent_offset = btrfs_file_extent_offset(leaf, fi); 1127 extent_end = found_key.offset + 1128 btrfs_file_extent_num_bytes(leaf, fi); 1129 if (extent_end <= start) { 1130 path->slots[0]++; 1131 goto next_slot; 1132 } 1133 if (disk_bytenr == 0) 1134 goto out_check; 1135 if (btrfs_file_extent_compression(leaf, fi) || 1136 btrfs_file_extent_encryption(leaf, fi) || 1137 btrfs_file_extent_other_encoding(leaf, fi)) 1138 goto out_check; 1139 if (extent_type == BTRFS_FILE_EXTENT_REG && !force) 1140 goto out_check; 1141 if (btrfs_extent_readonly(root, disk_bytenr)) 1142 goto out_check; 1143 if (btrfs_cross_ref_exist(trans, root, ino, 1144 found_key.offset - 1145 extent_offset, disk_bytenr)) 1146 goto out_check; 1147 disk_bytenr += extent_offset; 1148 disk_bytenr += cur_offset - found_key.offset; 1149 num_bytes = min(end + 1, extent_end) - cur_offset; 1150 /* 1151 * force cow if csum exists in the range. 1152 * this ensure that csum for a given extent are 1153 * either valid or do not exist. 1154 */ 1155 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 1156 goto out_check; 1157 nocow = 1; 1158 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 1159 extent_end = found_key.offset + 1160 btrfs_file_extent_inline_len(leaf, fi); 1161 extent_end = ALIGN(extent_end, root->sectorsize); 1162 } else { 1163 BUG_ON(1); 1164 } 1165 out_check: 1166 if (extent_end <= start) { 1167 path->slots[0]++; 1168 goto next_slot; 1169 } 1170 if (!nocow) { 1171 if (cow_start == (u64)-1) 1172 cow_start = cur_offset; 1173 cur_offset = extent_end; 1174 if (cur_offset > end) 1175 break; 1176 path->slots[0]++; 1177 goto next_slot; 1178 } 1179 1180 btrfs_release_path(path); 1181 if (cow_start != (u64)-1) { 1182 ret = cow_file_range(inode, locked_page, cow_start, 1183 found_key.offset - 1, page_started, 1184 nr_written, 1); 1185 BUG_ON(ret); 1186 cow_start = (u64)-1; 1187 } 1188 1189 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { 1190 struct extent_map *em; 1191 struct extent_map_tree *em_tree; 1192 em_tree = &BTRFS_I(inode)->extent_tree; 1193 em = alloc_extent_map(); 1194 BUG_ON(!em); 1195 em->start = cur_offset; 1196 em->orig_start = em->start; 1197 em->len = num_bytes; 1198 em->block_len = num_bytes; 1199 em->block_start = disk_bytenr; 1200 em->bdev = root->fs_info->fs_devices->latest_bdev; 1201 set_bit(EXTENT_FLAG_PINNED, &em->flags); 1202 while (1) { 1203 write_lock(&em_tree->lock); 1204 ret = add_extent_mapping(em_tree, em); 1205 write_unlock(&em_tree->lock); 1206 if (ret != -EEXIST) { 1207 free_extent_map(em); 1208 break; 1209 } 1210 btrfs_drop_extent_cache(inode, em->start, 1211 em->start + em->len - 1, 0); 1212 } 1213 type = BTRFS_ORDERED_PREALLOC; 1214 } else { 1215 type = BTRFS_ORDERED_NOCOW; 1216 } 1217 1218 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, 1219 num_bytes, num_bytes, type); 1220 BUG_ON(ret); 1221 1222 if (root->root_key.objectid == 1223 BTRFS_DATA_RELOC_TREE_OBJECTID) { 1224 ret = btrfs_reloc_clone_csums(inode, cur_offset, 1225 num_bytes); 1226 BUG_ON(ret); 1227 } 1228 1229 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree, 1230 cur_offset, cur_offset + num_bytes - 1, 1231 locked_page, EXTENT_CLEAR_UNLOCK_PAGE | 1232 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC | 1233 EXTENT_SET_PRIVATE2); 1234 cur_offset = extent_end; 1235 if (cur_offset > end) 1236 break; 1237 } 1238 btrfs_release_path(path); 1239 1240 if (cur_offset <= end && cow_start == (u64)-1) 1241 cow_start = cur_offset; 1242 if (cow_start != (u64)-1) { 1243 ret = cow_file_range(inode, locked_page, cow_start, end, 1244 page_started, nr_written, 1); 1245 BUG_ON(ret); 1246 } 1247 1248 if (nolock) { 1249 ret = btrfs_end_transaction_nolock(trans, root); 1250 BUG_ON(ret); 1251 } else { 1252 ret = btrfs_end_transaction(trans, root); 1253 BUG_ON(ret); 1254 } 1255 btrfs_free_path(path); 1256 return 0; 1257 } 1258 1259 /* 1260 * extent_io.c call back to do delayed allocation processing 1261 */ 1262 static int run_delalloc_range(struct inode *inode, struct page *locked_page, 1263 u64 start, u64 end, int *page_started, 1264 unsigned long *nr_written) 1265 { 1266 int ret; 1267 struct btrfs_root *root = BTRFS_I(inode)->root; 1268 1269 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) 1270 ret = run_delalloc_nocow(inode, locked_page, start, end, 1271 page_started, 1, nr_written); 1272 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) 1273 ret = run_delalloc_nocow(inode, locked_page, start, end, 1274 page_started, 0, nr_written); 1275 else if (!btrfs_test_opt(root, COMPRESS) && 1276 !(BTRFS_I(inode)->force_compress) && 1277 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) 1278 ret = cow_file_range(inode, locked_page, start, end, 1279 page_started, nr_written, 1); 1280 else 1281 ret = cow_file_range_async(inode, locked_page, start, end, 1282 page_started, nr_written); 1283 return ret; 1284 } 1285 1286 static void btrfs_split_extent_hook(struct inode *inode, 1287 struct extent_state *orig, u64 split) 1288 { 1289 /* not delalloc, ignore it */ 1290 if (!(orig->state & EXTENT_DELALLOC)) 1291 return; 1292 1293 spin_lock(&BTRFS_I(inode)->lock); 1294 BTRFS_I(inode)->outstanding_extents++; 1295 spin_unlock(&BTRFS_I(inode)->lock); 1296 } 1297 1298 /* 1299 * extent_io.c merge_extent_hook, used to track merged delayed allocation 1300 * extents so we can keep track of new extents that are just merged onto old 1301 * extents, such as when we are doing sequential writes, so we can properly 1302 * account for the metadata space we'll need. 1303 */ 1304 static void btrfs_merge_extent_hook(struct inode *inode, 1305 struct extent_state *new, 1306 struct extent_state *other) 1307 { 1308 /* not delalloc, ignore it */ 1309 if (!(other->state & EXTENT_DELALLOC)) 1310 return; 1311 1312 spin_lock(&BTRFS_I(inode)->lock); 1313 BTRFS_I(inode)->outstanding_extents--; 1314 spin_unlock(&BTRFS_I(inode)->lock); 1315 } 1316 1317 /* 1318 * extent_io.c set_bit_hook, used to track delayed allocation 1319 * bytes in this file, and to maintain the list of inodes that 1320 * have pending delalloc work to be done. 1321 */ 1322 static void btrfs_set_bit_hook(struct inode *inode, 1323 struct extent_state *state, int *bits) 1324 { 1325 1326 /* 1327 * set_bit and clear bit hooks normally require _irqsave/restore 1328 * but in this case, we are only testing for the DELALLOC 1329 * bit, which is only set or cleared with irqs on 1330 */ 1331 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1332 struct btrfs_root *root = BTRFS_I(inode)->root; 1333 u64 len = state->end + 1 - state->start; 1334 bool do_list = !btrfs_is_free_space_inode(root, inode); 1335 1336 if (*bits & EXTENT_FIRST_DELALLOC) { 1337 *bits &= ~EXTENT_FIRST_DELALLOC; 1338 } else { 1339 spin_lock(&BTRFS_I(inode)->lock); 1340 BTRFS_I(inode)->outstanding_extents++; 1341 spin_unlock(&BTRFS_I(inode)->lock); 1342 } 1343 1344 spin_lock(&root->fs_info->delalloc_lock); 1345 BTRFS_I(inode)->delalloc_bytes += len; 1346 root->fs_info->delalloc_bytes += len; 1347 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1348 list_add_tail(&BTRFS_I(inode)->delalloc_inodes, 1349 &root->fs_info->delalloc_inodes); 1350 } 1351 spin_unlock(&root->fs_info->delalloc_lock); 1352 } 1353 } 1354 1355 /* 1356 * extent_io.c clear_bit_hook, see set_bit_hook for why 1357 */ 1358 static void btrfs_clear_bit_hook(struct inode *inode, 1359 struct extent_state *state, int *bits) 1360 { 1361 /* 1362 * set_bit and clear bit hooks normally require _irqsave/restore 1363 * but in this case, we are only testing for the DELALLOC 1364 * bit, which is only set or cleared with irqs on 1365 */ 1366 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { 1367 struct btrfs_root *root = BTRFS_I(inode)->root; 1368 u64 len = state->end + 1 - state->start; 1369 bool do_list = !btrfs_is_free_space_inode(root, inode); 1370 1371 if (*bits & EXTENT_FIRST_DELALLOC) { 1372 *bits &= ~EXTENT_FIRST_DELALLOC; 1373 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) { 1374 spin_lock(&BTRFS_I(inode)->lock); 1375 BTRFS_I(inode)->outstanding_extents--; 1376 spin_unlock(&BTRFS_I(inode)->lock); 1377 } 1378 1379 if (*bits & EXTENT_DO_ACCOUNTING) 1380 btrfs_delalloc_release_metadata(inode, len); 1381 1382 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID 1383 && do_list) 1384 btrfs_free_reserved_data_space(inode, len); 1385 1386 spin_lock(&root->fs_info->delalloc_lock); 1387 root->fs_info->delalloc_bytes -= len; 1388 BTRFS_I(inode)->delalloc_bytes -= len; 1389 1390 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 && 1391 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) { 1392 list_del_init(&BTRFS_I(inode)->delalloc_inodes); 1393 } 1394 spin_unlock(&root->fs_info->delalloc_lock); 1395 } 1396 } 1397 1398 /* 1399 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure 1400 * we don't create bios that span stripes or chunks 1401 */ 1402 int btrfs_merge_bio_hook(struct page *page, unsigned long offset, 1403 size_t size, struct bio *bio, 1404 unsigned long bio_flags) 1405 { 1406 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; 1407 struct btrfs_mapping_tree *map_tree; 1408 u64 logical = (u64)bio->bi_sector << 9; 1409 u64 length = 0; 1410 u64 map_length; 1411 int ret; 1412 1413 if (bio_flags & EXTENT_BIO_COMPRESSED) 1414 return 0; 1415 1416 length = bio->bi_size; 1417 map_tree = &root->fs_info->mapping_tree; 1418 map_length = length; 1419 ret = btrfs_map_block(map_tree, READ, logical, 1420 &map_length, NULL, 0); 1421 1422 if (map_length < length + size) 1423 return 1; 1424 return ret; 1425 } 1426 1427 /* 1428 * in order to insert checksums into the metadata in large chunks, 1429 * we wait until bio submission time. All the pages in the bio are 1430 * checksummed and sums are attached onto the ordered extent record. 1431 * 1432 * At IO completion time the cums attached on the ordered extent record 1433 * are inserted into the btree 1434 */ 1435 static int __btrfs_submit_bio_start(struct inode *inode, int rw, 1436 struct bio *bio, int mirror_num, 1437 unsigned long bio_flags, 1438 u64 bio_offset) 1439 { 1440 struct btrfs_root *root = BTRFS_I(inode)->root; 1441 int ret = 0; 1442 1443 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0); 1444 BUG_ON(ret); 1445 return 0; 1446 } 1447 1448 /* 1449 * in order to insert checksums into the metadata in large chunks, 1450 * we wait until bio submission time. All the pages in the bio are 1451 * checksummed and sums are attached onto the ordered extent record. 1452 * 1453 * At IO completion time the cums attached on the ordered extent record 1454 * are inserted into the btree 1455 */ 1456 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio, 1457 int mirror_num, unsigned long bio_flags, 1458 u64 bio_offset) 1459 { 1460 struct btrfs_root *root = BTRFS_I(inode)->root; 1461 return btrfs_map_bio(root, rw, bio, mirror_num, 1); 1462 } 1463 1464 /* 1465 * extent_io.c submission hook. This does the right thing for csum calculation 1466 * on write, or reading the csums from the tree before a read 1467 */ 1468 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio, 1469 int mirror_num, unsigned long bio_flags, 1470 u64 bio_offset) 1471 { 1472 struct btrfs_root *root = BTRFS_I(inode)->root; 1473 int ret = 0; 1474 int skip_sum; 1475 1476 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 1477 1478 if (btrfs_is_free_space_inode(root, inode)) 1479 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2); 1480 else 1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 1482 BUG_ON(ret); 1483 1484 if (!(rw & REQ_WRITE)) { 1485 if (bio_flags & EXTENT_BIO_COMPRESSED) { 1486 return btrfs_submit_compressed_read(inode, bio, 1487 mirror_num, bio_flags); 1488 } else if (!skip_sum) { 1489 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL); 1490 if (ret) 1491 return ret; 1492 } 1493 goto mapit; 1494 } else if (!skip_sum) { 1495 /* csum items have already been cloned */ 1496 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) 1497 goto mapit; 1498 /* we're doing a write, do the async checksumming */ 1499 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info, 1500 inode, rw, bio, mirror_num, 1501 bio_flags, bio_offset, 1502 __btrfs_submit_bio_start, 1503 __btrfs_submit_bio_done); 1504 } 1505 1506 mapit: 1507 return btrfs_map_bio(root, rw, bio, mirror_num, 0); 1508 } 1509 1510 /* 1511 * given a list of ordered sums record them in the inode. This happens 1512 * at IO completion time based on sums calculated at bio submission time. 1513 */ 1514 static noinline int add_pending_csums(struct btrfs_trans_handle *trans, 1515 struct inode *inode, u64 file_offset, 1516 struct list_head *list) 1517 { 1518 struct btrfs_ordered_sum *sum; 1519 1520 list_for_each_entry(sum, list, list) { 1521 btrfs_csum_file_blocks(trans, 1522 BTRFS_I(inode)->root->fs_info->csum_root, sum); 1523 } 1524 return 0; 1525 } 1526 1527 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 1528 struct extent_state **cached_state) 1529 { 1530 if ((end & (PAGE_CACHE_SIZE - 1)) == 0) 1531 WARN_ON(1); 1532 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, 1533 cached_state, GFP_NOFS); 1534 } 1535 1536 /* see btrfs_writepage_start_hook for details on why this is required */ 1537 struct btrfs_writepage_fixup { 1538 struct page *page; 1539 struct btrfs_work work; 1540 }; 1541 1542 static void btrfs_writepage_fixup_worker(struct btrfs_work *work) 1543 { 1544 struct btrfs_writepage_fixup *fixup; 1545 struct btrfs_ordered_extent *ordered; 1546 struct extent_state *cached_state = NULL; 1547 struct page *page; 1548 struct inode *inode; 1549 u64 page_start; 1550 u64 page_end; 1551 1552 fixup = container_of(work, struct btrfs_writepage_fixup, work); 1553 page = fixup->page; 1554 again: 1555 lock_page(page); 1556 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { 1557 ClearPageChecked(page); 1558 goto out_page; 1559 } 1560 1561 inode = page->mapping->host; 1562 page_start = page_offset(page); 1563 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1; 1564 1565 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0, 1566 &cached_state, GFP_NOFS); 1567 1568 /* already ordered? We're done */ 1569 if (PagePrivate2(page)) 1570 goto out; 1571 1572 ordered = btrfs_lookup_ordered_extent(inode, page_start); 1573 if (ordered) { 1574 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, 1575 page_end, &cached_state, GFP_NOFS); 1576 unlock_page(page); 1577 btrfs_start_ordered_extent(inode, ordered, 1); 1578 goto again; 1579 } 1580 1581 BUG(); 1582 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state); 1583 ClearPageChecked(page); 1584 out: 1585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, 1586 &cached_state, GFP_NOFS); 1587 out_page: 1588 unlock_page(page); 1589 page_cache_release(page); 1590 kfree(fixup); 1591 } 1592 1593 /* 1594 * There are a few paths in the higher layers of the kernel that directly 1595 * set the page dirty bit without asking the filesystem if it is a 1596 * good idea. This causes problems because we want to make sure COW 1597 * properly happens and the data=ordered rules are followed. 1598 * 1599 * In our case any range that doesn't have the ORDERED bit set 1600 * hasn't been properly setup for IO. We kick off an async process 1601 * to fix it up. The async helper will wait for ordered extents, set 1602 * the delalloc bit and make it safe to write the page. 1603 */ 1604 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) 1605 { 1606 struct inode *inode = page->mapping->host; 1607 struct btrfs_writepage_fixup *fixup; 1608 struct btrfs_root *root = BTRFS_I(inode)->root; 1609 1610 /* this page is properly in the ordered list */ 1611 if (TestClearPagePrivate2(page)) 1612 return 0; 1613 1614 if (PageChecked(page)) 1615 return -EAGAIN; 1616 1617 fixup = kzalloc(sizeof(*fixup), GFP_NOFS); 1618 if (!fixup) 1619 return -EAGAIN; 1620 1621 SetPageChecked(page); 1622 page_cache_get(page); 1623 fixup->work.func = btrfs_writepage_fixup_worker; 1624 fixup->page = page; 1625 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work); 1626 return -EAGAIN; 1627 } 1628 1629 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, 1630 struct inode *inode, u64 file_pos, 1631 u64 disk_bytenr, u64 disk_num_bytes, 1632 u64 num_bytes, u64 ram_bytes, 1633 u8 compression, u8 encryption, 1634 u16 other_encoding, int extent_type) 1635 { 1636 struct btrfs_root *root = BTRFS_I(inode)->root; 1637 struct btrfs_file_extent_item *fi; 1638 struct btrfs_path *path; 1639 struct extent_buffer *leaf; 1640 struct btrfs_key ins; 1641 u64 hint; 1642 int ret; 1643 1644 path = btrfs_alloc_path(); 1645 if (!path) 1646 return -ENOMEM; 1647 1648 path->leave_spinning = 1; 1649 1650 /* 1651 * we may be replacing one extent in the tree with another. 1652 * The new extent is pinned in the extent map, and we don't want 1653 * to drop it from the cache until it is completely in the btree. 1654 * 1655 * So, tell btrfs_drop_extents to leave this extent in the cache. 1656 * the caller is expected to unpin it and allow it to be merged 1657 * with the others. 1658 */ 1659 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes, 1660 &hint, 0); 1661 BUG_ON(ret); 1662 1663 ins.objectid = btrfs_ino(inode); 1664 ins.offset = file_pos; 1665 ins.type = BTRFS_EXTENT_DATA_KEY; 1666 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi)); 1667 BUG_ON(ret); 1668 leaf = path->nodes[0]; 1669 fi = btrfs_item_ptr(leaf, path->slots[0], 1670 struct btrfs_file_extent_item); 1671 btrfs_set_file_extent_generation(leaf, fi, trans->transid); 1672 btrfs_set_file_extent_type(leaf, fi, extent_type); 1673 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); 1674 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); 1675 btrfs_set_file_extent_offset(leaf, fi, 0); 1676 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); 1677 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); 1678 btrfs_set_file_extent_compression(leaf, fi, compression); 1679 btrfs_set_file_extent_encryption(leaf, fi, encryption); 1680 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); 1681 1682 btrfs_unlock_up_safe(path, 1); 1683 btrfs_set_lock_blocking(leaf); 1684 1685 btrfs_mark_buffer_dirty(leaf); 1686 1687 inode_add_bytes(inode, num_bytes); 1688 1689 ins.objectid = disk_bytenr; 1690 ins.offset = disk_num_bytes; 1691 ins.type = BTRFS_EXTENT_ITEM_KEY; 1692 ret = btrfs_alloc_reserved_file_extent(trans, root, 1693 root->root_key.objectid, 1694 btrfs_ino(inode), file_pos, &ins); 1695 BUG_ON(ret); 1696 btrfs_free_path(path); 1697 1698 return 0; 1699 } 1700 1701 /* 1702 * helper function for btrfs_finish_ordered_io, this 1703 * just reads in some of the csum leaves to prime them into ram 1704 * before we start the transaction. It limits the amount of btree 1705 * reads required while inside the transaction. 1706 */ 1707 /* as ordered data IO finishes, this gets called so we can finish 1708 * an ordered extent if the range of bytes in the file it covers are 1709 * fully written. 1710 */ 1711 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end) 1712 { 1713 struct btrfs_root *root = BTRFS_I(inode)->root; 1714 struct btrfs_trans_handle *trans = NULL; 1715 struct btrfs_ordered_extent *ordered_extent = NULL; 1716 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1717 struct extent_state *cached_state = NULL; 1718 int compress_type = 0; 1719 int ret; 1720 bool nolock; 1721 1722 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, 1723 end - start + 1); 1724 if (!ret) 1725 return 0; 1726 BUG_ON(!ordered_extent); 1727 1728 nolock = btrfs_is_free_space_inode(root, inode); 1729 1730 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { 1731 BUG_ON(!list_empty(&ordered_extent->list)); 1732 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1733 if (!ret) { 1734 if (nolock) 1735 trans = btrfs_join_transaction_nolock(root); 1736 else 1737 trans = btrfs_join_transaction(root); 1738 BUG_ON(IS_ERR(trans)); 1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1740 ret = btrfs_update_inode(trans, root, inode); 1741 BUG_ON(ret); 1742 } 1743 goto out; 1744 } 1745 1746 lock_extent_bits(io_tree, ordered_extent->file_offset, 1747 ordered_extent->file_offset + ordered_extent->len - 1, 1748 0, &cached_state, GFP_NOFS); 1749 1750 if (nolock) 1751 trans = btrfs_join_transaction_nolock(root); 1752 else 1753 trans = btrfs_join_transaction(root); 1754 BUG_ON(IS_ERR(trans)); 1755 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 1756 1757 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) 1758 compress_type = ordered_extent->compress_type; 1759 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { 1760 BUG_ON(compress_type); 1761 ret = btrfs_mark_extent_written(trans, inode, 1762 ordered_extent->file_offset, 1763 ordered_extent->file_offset + 1764 ordered_extent->len); 1765 BUG_ON(ret); 1766 } else { 1767 BUG_ON(root == root->fs_info->tree_root); 1768 ret = insert_reserved_file_extent(trans, inode, 1769 ordered_extent->file_offset, 1770 ordered_extent->start, 1771 ordered_extent->disk_len, 1772 ordered_extent->len, 1773 ordered_extent->len, 1774 compress_type, 0, 0, 1775 BTRFS_FILE_EXTENT_REG); 1776 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 1777 ordered_extent->file_offset, 1778 ordered_extent->len); 1779 BUG_ON(ret); 1780 } 1781 unlock_extent_cached(io_tree, ordered_extent->file_offset, 1782 ordered_extent->file_offset + 1783 ordered_extent->len - 1, &cached_state, GFP_NOFS); 1784 1785 add_pending_csums(trans, inode, ordered_extent->file_offset, 1786 &ordered_extent->list); 1787 1788 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent); 1789 if (!ret) { 1790 ret = btrfs_update_inode(trans, root, inode); 1791 BUG_ON(ret); 1792 } 1793 ret = 0; 1794 out: 1795 if (nolock) { 1796 if (trans) 1797 btrfs_end_transaction_nolock(trans, root); 1798 } else { 1799 btrfs_delalloc_release_metadata(inode, ordered_extent->len); 1800 if (trans) 1801 btrfs_end_transaction(trans, root); 1802 } 1803 1804 /* once for us */ 1805 btrfs_put_ordered_extent(ordered_extent); 1806 /* once for the tree */ 1807 btrfs_put_ordered_extent(ordered_extent); 1808 1809 return 0; 1810 } 1811 1812 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, 1813 struct extent_state *state, int uptodate) 1814 { 1815 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); 1816 1817 ClearPagePrivate2(page); 1818 return btrfs_finish_ordered_io(page->mapping->host, start, end); 1819 } 1820 1821 /* 1822 * When IO fails, either with EIO or csum verification fails, we 1823 * try other mirrors that might have a good copy of the data. This 1824 * io_failure_record is used to record state as we go through all the 1825 * mirrors. If another mirror has good data, the page is set up to date 1826 * and things continue. If a good mirror can't be found, the original 1827 * bio end_io callback is called to indicate things have failed. 1828 */ 1829 struct io_failure_record { 1830 struct page *page; 1831 u64 start; 1832 u64 len; 1833 u64 logical; 1834 unsigned long bio_flags; 1835 int last_mirror; 1836 }; 1837 1838 static int btrfs_io_failed_hook(struct bio *failed_bio, 1839 struct page *page, u64 start, u64 end, 1840 struct extent_state *state) 1841 { 1842 struct io_failure_record *failrec = NULL; 1843 u64 private; 1844 struct extent_map *em; 1845 struct inode *inode = page->mapping->host; 1846 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1847 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1848 struct bio *bio; 1849 int num_copies; 1850 int ret; 1851 int rw; 1852 u64 logical; 1853 1854 ret = get_state_private(failure_tree, start, &private); 1855 if (ret) { 1856 failrec = kmalloc(sizeof(*failrec), GFP_NOFS); 1857 if (!failrec) 1858 return -ENOMEM; 1859 failrec->start = start; 1860 failrec->len = end - start + 1; 1861 failrec->last_mirror = 0; 1862 failrec->bio_flags = 0; 1863 1864 read_lock(&em_tree->lock); 1865 em = lookup_extent_mapping(em_tree, start, failrec->len); 1866 if (em->start > start || em->start + em->len < start) { 1867 free_extent_map(em); 1868 em = NULL; 1869 } 1870 read_unlock(&em_tree->lock); 1871 1872 if (IS_ERR_OR_NULL(em)) { 1873 kfree(failrec); 1874 return -EIO; 1875 } 1876 logical = start - em->start; 1877 logical = em->block_start + logical; 1878 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 1879 logical = em->block_start; 1880 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 1881 extent_set_compress_type(&failrec->bio_flags, 1882 em->compress_type); 1883 } 1884 failrec->logical = logical; 1885 free_extent_map(em); 1886 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED | 1887 EXTENT_DIRTY, GFP_NOFS); 1888 set_state_private(failure_tree, start, 1889 (u64)(unsigned long)failrec); 1890 } else { 1891 failrec = (struct io_failure_record *)(unsigned long)private; 1892 } 1893 num_copies = btrfs_num_copies( 1894 &BTRFS_I(inode)->root->fs_info->mapping_tree, 1895 failrec->logical, failrec->len); 1896 failrec->last_mirror++; 1897 if (!state) { 1898 spin_lock(&BTRFS_I(inode)->io_tree.lock); 1899 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 1900 failrec->start, 1901 EXTENT_LOCKED); 1902 if (state && state->start != failrec->start) 1903 state = NULL; 1904 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 1905 } 1906 if (!state || failrec->last_mirror > num_copies) { 1907 set_state_private(failure_tree, failrec->start, 0); 1908 clear_extent_bits(failure_tree, failrec->start, 1909 failrec->start + failrec->len - 1, 1910 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1911 kfree(failrec); 1912 return -EIO; 1913 } 1914 bio = bio_alloc(GFP_NOFS, 1); 1915 bio->bi_private = state; 1916 bio->bi_end_io = failed_bio->bi_end_io; 1917 bio->bi_sector = failrec->logical >> 9; 1918 bio->bi_bdev = failed_bio->bi_bdev; 1919 bio->bi_size = 0; 1920 1921 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 1922 if (failed_bio->bi_rw & REQ_WRITE) 1923 rw = WRITE; 1924 else 1925 rw = READ; 1926 1927 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio, 1928 failrec->last_mirror, 1929 failrec->bio_flags, 0); 1930 return ret; 1931 } 1932 1933 /* 1934 * each time an IO finishes, we do a fast check in the IO failure tree 1935 * to see if we need to process or clean up an io_failure_record 1936 */ 1937 static int btrfs_clean_io_failures(struct inode *inode, u64 start) 1938 { 1939 u64 private; 1940 u64 private_failure; 1941 struct io_failure_record *failure; 1942 int ret; 1943 1944 private = 0; 1945 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 1946 (u64)-1, 1, EXTENT_DIRTY, 0)) { 1947 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, 1948 start, &private_failure); 1949 if (ret == 0) { 1950 failure = (struct io_failure_record *)(unsigned long) 1951 private_failure; 1952 set_state_private(&BTRFS_I(inode)->io_failure_tree, 1953 failure->start, 0); 1954 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree, 1955 failure->start, 1956 failure->start + failure->len - 1, 1957 EXTENT_DIRTY | EXTENT_LOCKED, 1958 GFP_NOFS); 1959 kfree(failure); 1960 } 1961 } 1962 return 0; 1963 } 1964 1965 /* 1966 * when reads are done, we need to check csums to verify the data is correct 1967 * if there's a match, we allow the bio to finish. If not, we go through 1968 * the io_failure_record routines to find good copies 1969 */ 1970 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end, 1971 struct extent_state *state) 1972 { 1973 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT); 1974 struct inode *inode = page->mapping->host; 1975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1976 char *kaddr; 1977 u64 private = ~(u32)0; 1978 int ret; 1979 struct btrfs_root *root = BTRFS_I(inode)->root; 1980 u32 csum = ~(u32)0; 1981 1982 if (PageChecked(page)) { 1983 ClearPageChecked(page); 1984 goto good; 1985 } 1986 1987 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) 1988 goto good; 1989 1990 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && 1991 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { 1992 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM, 1993 GFP_NOFS); 1994 return 0; 1995 } 1996 1997 if (state && state->start == start) { 1998 private = state->private; 1999 ret = 0; 2000 } else { 2001 ret = get_state_private(io_tree, start, &private); 2002 } 2003 kaddr = kmap_atomic(page, KM_USER0); 2004 if (ret) 2005 goto zeroit; 2006 2007 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1); 2008 btrfs_csum_final(csum, (char *)&csum); 2009 if (csum != private) 2010 goto zeroit; 2011 2012 kunmap_atomic(kaddr, KM_USER0); 2013 good: 2014 /* if the io failure tree for this inode is non-empty, 2015 * check to see if we've recovered from a failed IO 2016 */ 2017 btrfs_clean_io_failures(inode, start); 2018 return 0; 2019 2020 zeroit: 2021 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u " 2022 "private %llu\n", 2023 (unsigned long long)btrfs_ino(page->mapping->host), 2024 (unsigned long long)start, csum, 2025 (unsigned long long)private); 2026 memset(kaddr + offset, 1, end - start + 1); 2027 flush_dcache_page(page); 2028 kunmap_atomic(kaddr, KM_USER0); 2029 if (private == 0) 2030 return 0; 2031 return -EIO; 2032 } 2033 2034 struct delayed_iput { 2035 struct list_head list; 2036 struct inode *inode; 2037 }; 2038 2039 void btrfs_add_delayed_iput(struct inode *inode) 2040 { 2041 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2042 struct delayed_iput *delayed; 2043 2044 if (atomic_add_unless(&inode->i_count, -1, 1)) 2045 return; 2046 2047 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL); 2048 delayed->inode = inode; 2049 2050 spin_lock(&fs_info->delayed_iput_lock); 2051 list_add_tail(&delayed->list, &fs_info->delayed_iputs); 2052 spin_unlock(&fs_info->delayed_iput_lock); 2053 } 2054 2055 void btrfs_run_delayed_iputs(struct btrfs_root *root) 2056 { 2057 LIST_HEAD(list); 2058 struct btrfs_fs_info *fs_info = root->fs_info; 2059 struct delayed_iput *delayed; 2060 int empty; 2061 2062 spin_lock(&fs_info->delayed_iput_lock); 2063 empty = list_empty(&fs_info->delayed_iputs); 2064 spin_unlock(&fs_info->delayed_iput_lock); 2065 if (empty) 2066 return; 2067 2068 down_read(&root->fs_info->cleanup_work_sem); 2069 spin_lock(&fs_info->delayed_iput_lock); 2070 list_splice_init(&fs_info->delayed_iputs, &list); 2071 spin_unlock(&fs_info->delayed_iput_lock); 2072 2073 while (!list_empty(&list)) { 2074 delayed = list_entry(list.next, struct delayed_iput, list); 2075 list_del(&delayed->list); 2076 iput(delayed->inode); 2077 kfree(delayed); 2078 } 2079 up_read(&root->fs_info->cleanup_work_sem); 2080 } 2081 2082 /* 2083 * calculate extra metadata reservation when snapshotting a subvolume 2084 * contains orphan files. 2085 */ 2086 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans, 2087 struct btrfs_pending_snapshot *pending, 2088 u64 *bytes_to_reserve) 2089 { 2090 struct btrfs_root *root; 2091 struct btrfs_block_rsv *block_rsv; 2092 u64 num_bytes; 2093 int index; 2094 2095 root = pending->root; 2096 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2097 return; 2098 2099 block_rsv = root->orphan_block_rsv; 2100 2101 /* orphan block reservation for the snapshot */ 2102 num_bytes = block_rsv->size; 2103 2104 /* 2105 * after the snapshot is created, COWing tree blocks may use more 2106 * space than it frees. So we should make sure there is enough 2107 * reserved space. 2108 */ 2109 index = trans->transid & 0x1; 2110 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2111 num_bytes += block_rsv->size - 2112 (block_rsv->reserved + block_rsv->freed[index]); 2113 } 2114 2115 *bytes_to_reserve += num_bytes; 2116 } 2117 2118 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans, 2119 struct btrfs_pending_snapshot *pending) 2120 { 2121 struct btrfs_root *root = pending->root; 2122 struct btrfs_root *snap = pending->snap; 2123 struct btrfs_block_rsv *block_rsv; 2124 u64 num_bytes; 2125 int index; 2126 int ret; 2127 2128 if (!root->orphan_block_rsv || list_empty(&root->orphan_list)) 2129 return; 2130 2131 /* refill source subvolume's orphan block reservation */ 2132 block_rsv = root->orphan_block_rsv; 2133 index = trans->transid & 0x1; 2134 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) { 2135 num_bytes = block_rsv->size - 2136 (block_rsv->reserved + block_rsv->freed[index]); 2137 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2138 root->orphan_block_rsv, 2139 num_bytes); 2140 BUG_ON(ret); 2141 } 2142 2143 /* setup orphan block reservation for the snapshot */ 2144 block_rsv = btrfs_alloc_block_rsv(snap); 2145 BUG_ON(!block_rsv); 2146 2147 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2148 snap->orphan_block_rsv = block_rsv; 2149 2150 num_bytes = root->orphan_block_rsv->size; 2151 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 2152 block_rsv, num_bytes); 2153 BUG_ON(ret); 2154 2155 #if 0 2156 /* insert orphan item for the snapshot */ 2157 WARN_ON(!root->orphan_item_inserted); 2158 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2159 snap->root_key.objectid); 2160 BUG_ON(ret); 2161 snap->orphan_item_inserted = 1; 2162 #endif 2163 } 2164 2165 enum btrfs_orphan_cleanup_state { 2166 ORPHAN_CLEANUP_STARTED = 1, 2167 ORPHAN_CLEANUP_DONE = 2, 2168 }; 2169 2170 /* 2171 * This is called in transaction commmit time. If there are no orphan 2172 * files in the subvolume, it removes orphan item and frees block_rsv 2173 * structure. 2174 */ 2175 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 2176 struct btrfs_root *root) 2177 { 2178 int ret; 2179 2180 if (!list_empty(&root->orphan_list) || 2181 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) 2182 return; 2183 2184 if (root->orphan_item_inserted && 2185 btrfs_root_refs(&root->root_item) > 0) { 2186 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root, 2187 root->root_key.objectid); 2188 BUG_ON(ret); 2189 root->orphan_item_inserted = 0; 2190 } 2191 2192 if (root->orphan_block_rsv) { 2193 WARN_ON(root->orphan_block_rsv->size > 0); 2194 btrfs_free_block_rsv(root, root->orphan_block_rsv); 2195 root->orphan_block_rsv = NULL; 2196 } 2197 } 2198 2199 /* 2200 * This creates an orphan entry for the given inode in case something goes 2201 * wrong in the middle of an unlink/truncate. 2202 * 2203 * NOTE: caller of this function should reserve 5 units of metadata for 2204 * this function. 2205 */ 2206 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode) 2207 { 2208 struct btrfs_root *root = BTRFS_I(inode)->root; 2209 struct btrfs_block_rsv *block_rsv = NULL; 2210 int reserve = 0; 2211 int insert = 0; 2212 int ret; 2213 2214 if (!root->orphan_block_rsv) { 2215 block_rsv = btrfs_alloc_block_rsv(root); 2216 if (!block_rsv) 2217 return -ENOMEM; 2218 } 2219 2220 spin_lock(&root->orphan_lock); 2221 if (!root->orphan_block_rsv) { 2222 root->orphan_block_rsv = block_rsv; 2223 } else if (block_rsv) { 2224 btrfs_free_block_rsv(root, block_rsv); 2225 block_rsv = NULL; 2226 } 2227 2228 if (list_empty(&BTRFS_I(inode)->i_orphan)) { 2229 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2230 #if 0 2231 /* 2232 * For proper ENOSPC handling, we should do orphan 2233 * cleanup when mounting. But this introduces backward 2234 * compatibility issue. 2235 */ 2236 if (!xchg(&root->orphan_item_inserted, 1)) 2237 insert = 2; 2238 else 2239 insert = 1; 2240 #endif 2241 insert = 1; 2242 } 2243 2244 if (!BTRFS_I(inode)->orphan_meta_reserved) { 2245 BTRFS_I(inode)->orphan_meta_reserved = 1; 2246 reserve = 1; 2247 } 2248 spin_unlock(&root->orphan_lock); 2249 2250 if (block_rsv) 2251 btrfs_add_durable_block_rsv(root->fs_info, block_rsv); 2252 2253 /* grab metadata reservation from transaction handle */ 2254 if (reserve) { 2255 ret = btrfs_orphan_reserve_metadata(trans, inode); 2256 BUG_ON(ret); 2257 } 2258 2259 /* insert an orphan item to track this unlinked/truncated file */ 2260 if (insert >= 1) { 2261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode)); 2262 BUG_ON(ret); 2263 } 2264 2265 /* insert an orphan item to track subvolume contains orphan files */ 2266 if (insert >= 2) { 2267 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root, 2268 root->root_key.objectid); 2269 BUG_ON(ret); 2270 } 2271 return 0; 2272 } 2273 2274 /* 2275 * We have done the truncate/delete so we can go ahead and remove the orphan 2276 * item for this particular inode. 2277 */ 2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode) 2279 { 2280 struct btrfs_root *root = BTRFS_I(inode)->root; 2281 int delete_item = 0; 2282 int release_rsv = 0; 2283 int ret = 0; 2284 2285 spin_lock(&root->orphan_lock); 2286 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 2287 list_del_init(&BTRFS_I(inode)->i_orphan); 2288 delete_item = 1; 2289 } 2290 2291 if (BTRFS_I(inode)->orphan_meta_reserved) { 2292 BTRFS_I(inode)->orphan_meta_reserved = 0; 2293 release_rsv = 1; 2294 } 2295 spin_unlock(&root->orphan_lock); 2296 2297 if (trans && delete_item) { 2298 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 2299 BUG_ON(ret); 2300 } 2301 2302 if (release_rsv) 2303 btrfs_orphan_release_metadata(inode); 2304 2305 return 0; 2306 } 2307 2308 /* 2309 * this cleans up any orphans that may be left on the list from the last use 2310 * of this root. 2311 */ 2312 int btrfs_orphan_cleanup(struct btrfs_root *root) 2313 { 2314 struct btrfs_path *path; 2315 struct extent_buffer *leaf; 2316 struct btrfs_key key, found_key; 2317 struct btrfs_trans_handle *trans; 2318 struct inode *inode; 2319 int ret = 0, nr_unlink = 0, nr_truncate = 0; 2320 2321 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) 2322 return 0; 2323 2324 path = btrfs_alloc_path(); 2325 if (!path) { 2326 ret = -ENOMEM; 2327 goto out; 2328 } 2329 path->reada = -1; 2330 2331 key.objectid = BTRFS_ORPHAN_OBJECTID; 2332 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY); 2333 key.offset = (u64)-1; 2334 2335 while (1) { 2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2337 if (ret < 0) 2338 goto out; 2339 2340 /* 2341 * if ret == 0 means we found what we were searching for, which 2342 * is weird, but possible, so only screw with path if we didn't 2343 * find the key and see if we have stuff that matches 2344 */ 2345 if (ret > 0) { 2346 ret = 0; 2347 if (path->slots[0] == 0) 2348 break; 2349 path->slots[0]--; 2350 } 2351 2352 /* pull out the item */ 2353 leaf = path->nodes[0]; 2354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2355 2356 /* make sure the item matches what we want */ 2357 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) 2358 break; 2359 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY) 2360 break; 2361 2362 /* release the path since we're done with it */ 2363 btrfs_release_path(path); 2364 2365 /* 2366 * this is where we are basically btrfs_lookup, without the 2367 * crossing root thing. we store the inode number in the 2368 * offset of the orphan item. 2369 */ 2370 found_key.objectid = found_key.offset; 2371 found_key.type = BTRFS_INODE_ITEM_KEY; 2372 found_key.offset = 0; 2373 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL); 2374 if (IS_ERR(inode)) { 2375 ret = PTR_ERR(inode); 2376 goto out; 2377 } 2378 2379 /* 2380 * add this inode to the orphan list so btrfs_orphan_del does 2381 * the proper thing when we hit it 2382 */ 2383 spin_lock(&root->orphan_lock); 2384 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list); 2385 spin_unlock(&root->orphan_lock); 2386 2387 /* 2388 * if this is a bad inode, means we actually succeeded in 2389 * removing the inode, but not the orphan record, which means 2390 * we need to manually delete the orphan since iput will just 2391 * do a destroy_inode 2392 */ 2393 if (is_bad_inode(inode)) { 2394 trans = btrfs_start_transaction(root, 0); 2395 if (IS_ERR(trans)) { 2396 ret = PTR_ERR(trans); 2397 goto out; 2398 } 2399 btrfs_orphan_del(trans, inode); 2400 btrfs_end_transaction(trans, root); 2401 iput(inode); 2402 continue; 2403 } 2404 2405 /* if we have links, this was a truncate, lets do that */ 2406 if (inode->i_nlink) { 2407 if (!S_ISREG(inode->i_mode)) { 2408 WARN_ON(1); 2409 iput(inode); 2410 continue; 2411 } 2412 nr_truncate++; 2413 ret = btrfs_truncate(inode); 2414 } else { 2415 nr_unlink++; 2416 } 2417 2418 /* this will do delete_inode and everything for us */ 2419 iput(inode); 2420 if (ret) 2421 goto out; 2422 } 2423 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; 2424 2425 if (root->orphan_block_rsv) 2426 btrfs_block_rsv_release(root, root->orphan_block_rsv, 2427 (u64)-1); 2428 2429 if (root->orphan_block_rsv || root->orphan_item_inserted) { 2430 trans = btrfs_join_transaction(root); 2431 if (!IS_ERR(trans)) 2432 btrfs_end_transaction(trans, root); 2433 } 2434 2435 if (nr_unlink) 2436 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink); 2437 if (nr_truncate) 2438 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate); 2439 2440 out: 2441 if (ret) 2442 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret); 2443 btrfs_free_path(path); 2444 return ret; 2445 } 2446 2447 /* 2448 * very simple check to peek ahead in the leaf looking for xattrs. If we 2449 * don't find any xattrs, we know there can't be any acls. 2450 * 2451 * slot is the slot the inode is in, objectid is the objectid of the inode 2452 */ 2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf, 2454 int slot, u64 objectid) 2455 { 2456 u32 nritems = btrfs_header_nritems(leaf); 2457 struct btrfs_key found_key; 2458 int scanned = 0; 2459 2460 slot++; 2461 while (slot < nritems) { 2462 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2463 2464 /* we found a different objectid, there must not be acls */ 2465 if (found_key.objectid != objectid) 2466 return 0; 2467 2468 /* we found an xattr, assume we've got an acl */ 2469 if (found_key.type == BTRFS_XATTR_ITEM_KEY) 2470 return 1; 2471 2472 /* 2473 * we found a key greater than an xattr key, there can't 2474 * be any acls later on 2475 */ 2476 if (found_key.type > BTRFS_XATTR_ITEM_KEY) 2477 return 0; 2478 2479 slot++; 2480 scanned++; 2481 2482 /* 2483 * it goes inode, inode backrefs, xattrs, extents, 2484 * so if there are a ton of hard links to an inode there can 2485 * be a lot of backrefs. Don't waste time searching too hard, 2486 * this is just an optimization 2487 */ 2488 if (scanned >= 8) 2489 break; 2490 } 2491 /* we hit the end of the leaf before we found an xattr or 2492 * something larger than an xattr. We have to assume the inode 2493 * has acls 2494 */ 2495 return 1; 2496 } 2497 2498 /* 2499 * read an inode from the btree into the in-memory inode 2500 */ 2501 static void btrfs_read_locked_inode(struct inode *inode) 2502 { 2503 struct btrfs_path *path; 2504 struct extent_buffer *leaf; 2505 struct btrfs_inode_item *inode_item; 2506 struct btrfs_timespec *tspec; 2507 struct btrfs_root *root = BTRFS_I(inode)->root; 2508 struct btrfs_key location; 2509 int maybe_acls; 2510 u32 rdev; 2511 int ret; 2512 bool filled = false; 2513 2514 ret = btrfs_fill_inode(inode, &rdev); 2515 if (!ret) 2516 filled = true; 2517 2518 path = btrfs_alloc_path(); 2519 if (!path) 2520 goto make_bad; 2521 2522 path->leave_spinning = 1; 2523 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); 2524 2525 ret = btrfs_lookup_inode(NULL, root, path, &location, 0); 2526 if (ret) 2527 goto make_bad; 2528 2529 leaf = path->nodes[0]; 2530 2531 if (filled) 2532 goto cache_acl; 2533 2534 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2535 struct btrfs_inode_item); 2536 inode->i_mode = btrfs_inode_mode(leaf, inode_item); 2537 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item); 2538 inode->i_uid = btrfs_inode_uid(leaf, inode_item); 2539 inode->i_gid = btrfs_inode_gid(leaf, inode_item); 2540 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item)); 2541 2542 tspec = btrfs_inode_atime(inode_item); 2543 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2544 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2545 2546 tspec = btrfs_inode_mtime(inode_item); 2547 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2548 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2549 2550 tspec = btrfs_inode_ctime(inode_item); 2551 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec); 2552 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec); 2553 2554 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); 2555 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); 2556 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item); 2557 inode->i_generation = BTRFS_I(inode)->generation; 2558 inode->i_rdev = 0; 2559 rdev = btrfs_inode_rdev(leaf, inode_item); 2560 2561 BTRFS_I(inode)->index_cnt = (u64)-1; 2562 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); 2563 cache_acl: 2564 /* 2565 * try to precache a NULL acl entry for files that don't have 2566 * any xattrs or acls 2567 */ 2568 maybe_acls = acls_after_inode_item(leaf, path->slots[0], 2569 btrfs_ino(inode)); 2570 if (!maybe_acls) 2571 cache_no_acl(inode); 2572 2573 btrfs_free_path(path); 2574 2575 switch (inode->i_mode & S_IFMT) { 2576 case S_IFREG: 2577 inode->i_mapping->a_ops = &btrfs_aops; 2578 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2579 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 2580 inode->i_fop = &btrfs_file_operations; 2581 inode->i_op = &btrfs_file_inode_operations; 2582 break; 2583 case S_IFDIR: 2584 inode->i_fop = &btrfs_dir_file_operations; 2585 if (root == root->fs_info->tree_root) 2586 inode->i_op = &btrfs_dir_ro_inode_operations; 2587 else 2588 inode->i_op = &btrfs_dir_inode_operations; 2589 break; 2590 case S_IFLNK: 2591 inode->i_op = &btrfs_symlink_inode_operations; 2592 inode->i_mapping->a_ops = &btrfs_symlink_aops; 2593 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 2594 break; 2595 default: 2596 inode->i_op = &btrfs_special_inode_operations; 2597 init_special_inode(inode, inode->i_mode, rdev); 2598 break; 2599 } 2600 2601 btrfs_update_iflags(inode); 2602 return; 2603 2604 make_bad: 2605 btrfs_free_path(path); 2606 make_bad_inode(inode); 2607 } 2608 2609 /* 2610 * given a leaf and an inode, copy the inode fields into the leaf 2611 */ 2612 static void fill_inode_item(struct btrfs_trans_handle *trans, 2613 struct extent_buffer *leaf, 2614 struct btrfs_inode_item *item, 2615 struct inode *inode) 2616 { 2617 btrfs_set_inode_uid(leaf, item, inode->i_uid); 2618 btrfs_set_inode_gid(leaf, item, inode->i_gid); 2619 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size); 2620 btrfs_set_inode_mode(leaf, item, inode->i_mode); 2621 btrfs_set_inode_nlink(leaf, item, inode->i_nlink); 2622 2623 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item), 2624 inode->i_atime.tv_sec); 2625 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item), 2626 inode->i_atime.tv_nsec); 2627 2628 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item), 2629 inode->i_mtime.tv_sec); 2630 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item), 2631 inode->i_mtime.tv_nsec); 2632 2633 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item), 2634 inode->i_ctime.tv_sec); 2635 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item), 2636 inode->i_ctime.tv_nsec); 2637 2638 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode)); 2639 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation); 2640 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence); 2641 btrfs_set_inode_transid(leaf, item, trans->transid); 2642 btrfs_set_inode_rdev(leaf, item, inode->i_rdev); 2643 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags); 2644 btrfs_set_inode_block_group(leaf, item, 0); 2645 } 2646 2647 /* 2648 * copy everything in the in-memory inode into the btree. 2649 */ 2650 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, 2651 struct btrfs_root *root, struct inode *inode) 2652 { 2653 struct btrfs_inode_item *inode_item; 2654 struct btrfs_path *path; 2655 struct extent_buffer *leaf; 2656 int ret; 2657 2658 /* 2659 * If the inode is a free space inode, we can deadlock during commit 2660 * if we put it into the delayed code. 2661 * 2662 * The data relocation inode should also be directly updated 2663 * without delay 2664 */ 2665 if (!btrfs_is_free_space_inode(root, inode) 2666 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) { 2667 ret = btrfs_delayed_update_inode(trans, root, inode); 2668 if (!ret) 2669 btrfs_set_inode_last_trans(trans, inode); 2670 return ret; 2671 } 2672 2673 path = btrfs_alloc_path(); 2674 if (!path) 2675 return -ENOMEM; 2676 2677 path->leave_spinning = 1; 2678 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, 2679 1); 2680 if (ret) { 2681 if (ret > 0) 2682 ret = -ENOENT; 2683 goto failed; 2684 } 2685 2686 btrfs_unlock_up_safe(path, 1); 2687 leaf = path->nodes[0]; 2688 inode_item = btrfs_item_ptr(leaf, path->slots[0], 2689 struct btrfs_inode_item); 2690 2691 fill_inode_item(trans, leaf, inode_item, inode); 2692 btrfs_mark_buffer_dirty(leaf); 2693 btrfs_set_inode_last_trans(trans, inode); 2694 ret = 0; 2695 failed: 2696 btrfs_free_path(path); 2697 return ret; 2698 } 2699 2700 /* 2701 * unlink helper that gets used here in inode.c and in the tree logging 2702 * recovery code. It remove a link in a directory with a given name, and 2703 * also drops the back refs in the inode to the directory 2704 */ 2705 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2706 struct btrfs_root *root, 2707 struct inode *dir, struct inode *inode, 2708 const char *name, int name_len) 2709 { 2710 struct btrfs_path *path; 2711 int ret = 0; 2712 struct extent_buffer *leaf; 2713 struct btrfs_dir_item *di; 2714 struct btrfs_key key; 2715 u64 index; 2716 u64 ino = btrfs_ino(inode); 2717 u64 dir_ino = btrfs_ino(dir); 2718 2719 path = btrfs_alloc_path(); 2720 if (!path) { 2721 ret = -ENOMEM; 2722 goto out; 2723 } 2724 2725 path->leave_spinning = 1; 2726 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2727 name, name_len, -1); 2728 if (IS_ERR(di)) { 2729 ret = PTR_ERR(di); 2730 goto err; 2731 } 2732 if (!di) { 2733 ret = -ENOENT; 2734 goto err; 2735 } 2736 leaf = path->nodes[0]; 2737 btrfs_dir_item_key_to_cpu(leaf, di, &key); 2738 ret = btrfs_delete_one_dir_name(trans, root, path, di); 2739 if (ret) 2740 goto err; 2741 btrfs_release_path(path); 2742 2743 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, 2744 dir_ino, &index); 2745 if (ret) { 2746 printk(KERN_INFO "btrfs failed to delete reference to %.*s, " 2747 "inode %llu parent %llu\n", name_len, name, 2748 (unsigned long long)ino, (unsigned long long)dir_ino); 2749 goto err; 2750 } 2751 2752 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 2753 if (ret) 2754 goto err; 2755 2756 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, 2757 inode, dir_ino); 2758 BUG_ON(ret != 0 && ret != -ENOENT); 2759 2760 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, 2761 dir, index); 2762 if (ret == -ENOENT) 2763 ret = 0; 2764 err: 2765 btrfs_free_path(path); 2766 if (ret) 2767 goto out; 2768 2769 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 2770 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME; 2771 btrfs_update_inode(trans, root, dir); 2772 out: 2773 return ret; 2774 } 2775 2776 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 2777 struct btrfs_root *root, 2778 struct inode *dir, struct inode *inode, 2779 const char *name, int name_len) 2780 { 2781 int ret; 2782 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); 2783 if (!ret) { 2784 btrfs_drop_nlink(inode); 2785 ret = btrfs_update_inode(trans, root, inode); 2786 } 2787 return ret; 2788 } 2789 2790 2791 /* helper to check if there is any shared block in the path */ 2792 static int check_path_shared(struct btrfs_root *root, 2793 struct btrfs_path *path) 2794 { 2795 struct extent_buffer *eb; 2796 int level; 2797 u64 refs = 1; 2798 2799 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2800 int ret; 2801 2802 if (!path->nodes[level]) 2803 break; 2804 eb = path->nodes[level]; 2805 if (!btrfs_block_can_be_shared(root, eb)) 2806 continue; 2807 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len, 2808 &refs, NULL); 2809 if (refs > 1) 2810 return 1; 2811 } 2812 return 0; 2813 } 2814 2815 /* 2816 * helper to start transaction for unlink and rmdir. 2817 * 2818 * unlink and rmdir are special in btrfs, they do not always free space. 2819 * so in enospc case, we should make sure they will free space before 2820 * allowing them to use the global metadata reservation. 2821 */ 2822 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir, 2823 struct dentry *dentry) 2824 { 2825 struct btrfs_trans_handle *trans; 2826 struct btrfs_root *root = BTRFS_I(dir)->root; 2827 struct btrfs_path *path; 2828 struct btrfs_inode_ref *ref; 2829 struct btrfs_dir_item *di; 2830 struct inode *inode = dentry->d_inode; 2831 u64 index; 2832 int check_link = 1; 2833 int err = -ENOSPC; 2834 int ret; 2835 u64 ino = btrfs_ino(inode); 2836 u64 dir_ino = btrfs_ino(dir); 2837 2838 trans = btrfs_start_transaction(root, 10); 2839 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 2840 return trans; 2841 2842 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 2843 return ERR_PTR(-ENOSPC); 2844 2845 /* check if there is someone else holds reference */ 2846 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1) 2847 return ERR_PTR(-ENOSPC); 2848 2849 if (atomic_read(&inode->i_count) > 2) 2850 return ERR_PTR(-ENOSPC); 2851 2852 if (xchg(&root->fs_info->enospc_unlink, 1)) 2853 return ERR_PTR(-ENOSPC); 2854 2855 path = btrfs_alloc_path(); 2856 if (!path) { 2857 root->fs_info->enospc_unlink = 0; 2858 return ERR_PTR(-ENOMEM); 2859 } 2860 2861 trans = btrfs_start_transaction(root, 0); 2862 if (IS_ERR(trans)) { 2863 btrfs_free_path(path); 2864 root->fs_info->enospc_unlink = 0; 2865 return trans; 2866 } 2867 2868 path->skip_locking = 1; 2869 path->search_commit_root = 1; 2870 2871 ret = btrfs_lookup_inode(trans, root, path, 2872 &BTRFS_I(dir)->location, 0); 2873 if (ret < 0) { 2874 err = ret; 2875 goto out; 2876 } 2877 if (ret == 0) { 2878 if (check_path_shared(root, path)) 2879 goto out; 2880 } else { 2881 check_link = 0; 2882 } 2883 btrfs_release_path(path); 2884 2885 ret = btrfs_lookup_inode(trans, root, path, 2886 &BTRFS_I(inode)->location, 0); 2887 if (ret < 0) { 2888 err = ret; 2889 goto out; 2890 } 2891 if (ret == 0) { 2892 if (check_path_shared(root, path)) 2893 goto out; 2894 } else { 2895 check_link = 0; 2896 } 2897 btrfs_release_path(path); 2898 2899 if (ret == 0 && S_ISREG(inode->i_mode)) { 2900 ret = btrfs_lookup_file_extent(trans, root, path, 2901 ino, (u64)-1, 0); 2902 if (ret < 0) { 2903 err = ret; 2904 goto out; 2905 } 2906 BUG_ON(ret == 0); 2907 if (check_path_shared(root, path)) 2908 goto out; 2909 btrfs_release_path(path); 2910 } 2911 2912 if (!check_link) { 2913 err = 0; 2914 goto out; 2915 } 2916 2917 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 2918 dentry->d_name.name, dentry->d_name.len, 0); 2919 if (IS_ERR(di)) { 2920 err = PTR_ERR(di); 2921 goto out; 2922 } 2923 if (di) { 2924 if (check_path_shared(root, path)) 2925 goto out; 2926 } else { 2927 err = 0; 2928 goto out; 2929 } 2930 btrfs_release_path(path); 2931 2932 ref = btrfs_lookup_inode_ref(trans, root, path, 2933 dentry->d_name.name, dentry->d_name.len, 2934 ino, dir_ino, 0); 2935 if (IS_ERR(ref)) { 2936 err = PTR_ERR(ref); 2937 goto out; 2938 } 2939 BUG_ON(!ref); 2940 if (check_path_shared(root, path)) 2941 goto out; 2942 index = btrfs_inode_ref_index(path->nodes[0], ref); 2943 btrfs_release_path(path); 2944 2945 /* 2946 * This is a commit root search, if we can lookup inode item and other 2947 * relative items in the commit root, it means the transaction of 2948 * dir/file creation has been committed, and the dir index item that we 2949 * delay to insert has also been inserted into the commit root. So 2950 * we needn't worry about the delayed insertion of the dir index item 2951 * here. 2952 */ 2953 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index, 2954 dentry->d_name.name, dentry->d_name.len, 0); 2955 if (IS_ERR(di)) { 2956 err = PTR_ERR(di); 2957 goto out; 2958 } 2959 BUG_ON(ret == -ENOENT); 2960 if (check_path_shared(root, path)) 2961 goto out; 2962 2963 err = 0; 2964 out: 2965 btrfs_free_path(path); 2966 if (err) { 2967 btrfs_end_transaction(trans, root); 2968 root->fs_info->enospc_unlink = 0; 2969 return ERR_PTR(err); 2970 } 2971 2972 trans->block_rsv = &root->fs_info->global_block_rsv; 2973 return trans; 2974 } 2975 2976 static void __unlink_end_trans(struct btrfs_trans_handle *trans, 2977 struct btrfs_root *root) 2978 { 2979 if (trans->block_rsv == &root->fs_info->global_block_rsv) { 2980 BUG_ON(!root->fs_info->enospc_unlink); 2981 root->fs_info->enospc_unlink = 0; 2982 } 2983 btrfs_end_transaction_throttle(trans, root); 2984 } 2985 2986 static int btrfs_unlink(struct inode *dir, struct dentry *dentry) 2987 { 2988 struct btrfs_root *root = BTRFS_I(dir)->root; 2989 struct btrfs_trans_handle *trans; 2990 struct inode *inode = dentry->d_inode; 2991 int ret; 2992 unsigned long nr = 0; 2993 2994 trans = __unlink_start_trans(dir, dentry); 2995 if (IS_ERR(trans)) 2996 return PTR_ERR(trans); 2997 2998 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0); 2999 3000 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3001 dentry->d_name.name, dentry->d_name.len); 3002 if (ret) 3003 goto out; 3004 3005 if (inode->i_nlink == 0) { 3006 ret = btrfs_orphan_add(trans, inode); 3007 if (ret) 3008 goto out; 3009 } 3010 3011 out: 3012 nr = trans->blocks_used; 3013 __unlink_end_trans(trans, root); 3014 btrfs_btree_balance_dirty(root, nr); 3015 return ret; 3016 } 3017 3018 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3019 struct btrfs_root *root, 3020 struct inode *dir, u64 objectid, 3021 const char *name, int name_len) 3022 { 3023 struct btrfs_path *path; 3024 struct extent_buffer *leaf; 3025 struct btrfs_dir_item *di; 3026 struct btrfs_key key; 3027 u64 index; 3028 int ret; 3029 u64 dir_ino = btrfs_ino(dir); 3030 3031 path = btrfs_alloc_path(); 3032 if (!path) 3033 return -ENOMEM; 3034 3035 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, 3036 name, name_len, -1); 3037 BUG_ON(IS_ERR_OR_NULL(di)); 3038 3039 leaf = path->nodes[0]; 3040 btrfs_dir_item_key_to_cpu(leaf, di, &key); 3041 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); 3042 ret = btrfs_delete_one_dir_name(trans, root, path, di); 3043 BUG_ON(ret); 3044 btrfs_release_path(path); 3045 3046 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root, 3047 objectid, root->root_key.objectid, 3048 dir_ino, &index, name, name_len); 3049 if (ret < 0) { 3050 BUG_ON(ret != -ENOENT); 3051 di = btrfs_search_dir_index_item(root, path, dir_ino, 3052 name, name_len); 3053 BUG_ON(IS_ERR_OR_NULL(di)); 3054 3055 leaf = path->nodes[0]; 3056 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3057 btrfs_release_path(path); 3058 index = key.offset; 3059 } 3060 btrfs_release_path(path); 3061 3062 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index); 3063 BUG_ON(ret); 3064 3065 btrfs_i_size_write(dir, dir->i_size - name_len * 2); 3066 dir->i_mtime = dir->i_ctime = CURRENT_TIME; 3067 ret = btrfs_update_inode(trans, root, dir); 3068 BUG_ON(ret); 3069 3070 btrfs_free_path(path); 3071 return 0; 3072 } 3073 3074 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) 3075 { 3076 struct inode *inode = dentry->d_inode; 3077 int err = 0; 3078 struct btrfs_root *root = BTRFS_I(dir)->root; 3079 struct btrfs_trans_handle *trans; 3080 unsigned long nr = 0; 3081 3082 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE || 3083 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) 3084 return -ENOTEMPTY; 3085 3086 trans = __unlink_start_trans(dir, dentry); 3087 if (IS_ERR(trans)) 3088 return PTR_ERR(trans); 3089 3090 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 3091 err = btrfs_unlink_subvol(trans, root, dir, 3092 BTRFS_I(inode)->location.objectid, 3093 dentry->d_name.name, 3094 dentry->d_name.len); 3095 goto out; 3096 } 3097 3098 err = btrfs_orphan_add(trans, inode); 3099 if (err) 3100 goto out; 3101 3102 /* now the directory is empty */ 3103 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode, 3104 dentry->d_name.name, dentry->d_name.len); 3105 if (!err) 3106 btrfs_i_size_write(inode, 0); 3107 out: 3108 nr = trans->blocks_used; 3109 __unlink_end_trans(trans, root); 3110 btrfs_btree_balance_dirty(root, nr); 3111 3112 return err; 3113 } 3114 3115 /* 3116 * this can truncate away extent items, csum items and directory items. 3117 * It starts at a high offset and removes keys until it can't find 3118 * any higher than new_size 3119 * 3120 * csum items that cross the new i_size are truncated to the new size 3121 * as well. 3122 * 3123 * min_type is the minimum key type to truncate down to. If set to 0, this 3124 * will kill all the items on this inode, including the INODE_ITEM_KEY. 3125 */ 3126 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3127 struct btrfs_root *root, 3128 struct inode *inode, 3129 u64 new_size, u32 min_type) 3130 { 3131 struct btrfs_path *path; 3132 struct extent_buffer *leaf; 3133 struct btrfs_file_extent_item *fi; 3134 struct btrfs_key key; 3135 struct btrfs_key found_key; 3136 u64 extent_start = 0; 3137 u64 extent_num_bytes = 0; 3138 u64 extent_offset = 0; 3139 u64 item_end = 0; 3140 u64 mask = root->sectorsize - 1; 3141 u32 found_type = (u8)-1; 3142 int found_extent; 3143 int del_item; 3144 int pending_del_nr = 0; 3145 int pending_del_slot = 0; 3146 int extent_type = -1; 3147 int encoding; 3148 int ret; 3149 int err = 0; 3150 u64 ino = btrfs_ino(inode); 3151 3152 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); 3153 3154 path = btrfs_alloc_path(); 3155 if (!path) 3156 return -ENOMEM; 3157 path->reada = -1; 3158 3159 if (root->ref_cows || root == root->fs_info->tree_root) 3160 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0); 3161 3162 /* 3163 * This function is also used to drop the items in the log tree before 3164 * we relog the inode, so if root != BTRFS_I(inode)->root, it means 3165 * it is used to drop the loged items. So we shouldn't kill the delayed 3166 * items. 3167 */ 3168 if (min_type == 0 && root == BTRFS_I(inode)->root) 3169 btrfs_kill_delayed_inode_items(inode); 3170 3171 key.objectid = ino; 3172 key.offset = (u64)-1; 3173 key.type = (u8)-1; 3174 3175 search_again: 3176 path->leave_spinning = 1; 3177 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3178 if (ret < 0) { 3179 err = ret; 3180 goto out; 3181 } 3182 3183 if (ret > 0) { 3184 /* there are no items in the tree for us to truncate, we're 3185 * done 3186 */ 3187 if (path->slots[0] == 0) 3188 goto out; 3189 path->slots[0]--; 3190 } 3191 3192 while (1) { 3193 fi = NULL; 3194 leaf = path->nodes[0]; 3195 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3196 found_type = btrfs_key_type(&found_key); 3197 encoding = 0; 3198 3199 if (found_key.objectid != ino) 3200 break; 3201 3202 if (found_type < min_type) 3203 break; 3204 3205 item_end = found_key.offset; 3206 if (found_type == BTRFS_EXTENT_DATA_KEY) { 3207 fi = btrfs_item_ptr(leaf, path->slots[0], 3208 struct btrfs_file_extent_item); 3209 extent_type = btrfs_file_extent_type(leaf, fi); 3210 encoding = btrfs_file_extent_compression(leaf, fi); 3211 encoding |= btrfs_file_extent_encryption(leaf, fi); 3212 encoding |= btrfs_file_extent_other_encoding(leaf, fi); 3213 3214 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3215 item_end += 3216 btrfs_file_extent_num_bytes(leaf, fi); 3217 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3218 item_end += btrfs_file_extent_inline_len(leaf, 3219 fi); 3220 } 3221 item_end--; 3222 } 3223 if (found_type > min_type) { 3224 del_item = 1; 3225 } else { 3226 if (item_end < new_size) 3227 break; 3228 if (found_key.offset >= new_size) 3229 del_item = 1; 3230 else 3231 del_item = 0; 3232 } 3233 found_extent = 0; 3234 /* FIXME, shrink the extent if the ref count is only 1 */ 3235 if (found_type != BTRFS_EXTENT_DATA_KEY) 3236 goto delete; 3237 3238 if (extent_type != BTRFS_FILE_EXTENT_INLINE) { 3239 u64 num_dec; 3240 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); 3241 if (!del_item && !encoding) { 3242 u64 orig_num_bytes = 3243 btrfs_file_extent_num_bytes(leaf, fi); 3244 extent_num_bytes = new_size - 3245 found_key.offset + root->sectorsize - 1; 3246 extent_num_bytes = extent_num_bytes & 3247 ~((u64)root->sectorsize - 1); 3248 btrfs_set_file_extent_num_bytes(leaf, fi, 3249 extent_num_bytes); 3250 num_dec = (orig_num_bytes - 3251 extent_num_bytes); 3252 if (root->ref_cows && extent_start != 0) 3253 inode_sub_bytes(inode, num_dec); 3254 btrfs_mark_buffer_dirty(leaf); 3255 } else { 3256 extent_num_bytes = 3257 btrfs_file_extent_disk_num_bytes(leaf, 3258 fi); 3259 extent_offset = found_key.offset - 3260 btrfs_file_extent_offset(leaf, fi); 3261 3262 /* FIXME blocksize != 4096 */ 3263 num_dec = btrfs_file_extent_num_bytes(leaf, fi); 3264 if (extent_start != 0) { 3265 found_extent = 1; 3266 if (root->ref_cows) 3267 inode_sub_bytes(inode, num_dec); 3268 } 3269 } 3270 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { 3271 /* 3272 * we can't truncate inline items that have had 3273 * special encodings 3274 */ 3275 if (!del_item && 3276 btrfs_file_extent_compression(leaf, fi) == 0 && 3277 btrfs_file_extent_encryption(leaf, fi) == 0 && 3278 btrfs_file_extent_other_encoding(leaf, fi) == 0) { 3279 u32 size = new_size - found_key.offset; 3280 3281 if (root->ref_cows) { 3282 inode_sub_bytes(inode, item_end + 1 - 3283 new_size); 3284 } 3285 size = 3286 btrfs_file_extent_calc_inline_size(size); 3287 ret = btrfs_truncate_item(trans, root, path, 3288 size, 1); 3289 } else if (root->ref_cows) { 3290 inode_sub_bytes(inode, item_end + 1 - 3291 found_key.offset); 3292 } 3293 } 3294 delete: 3295 if (del_item) { 3296 if (!pending_del_nr) { 3297 /* no pending yet, add ourselves */ 3298 pending_del_slot = path->slots[0]; 3299 pending_del_nr = 1; 3300 } else if (pending_del_nr && 3301 path->slots[0] + 1 == pending_del_slot) { 3302 /* hop on the pending chunk */ 3303 pending_del_nr++; 3304 pending_del_slot = path->slots[0]; 3305 } else { 3306 BUG(); 3307 } 3308 } else { 3309 break; 3310 } 3311 if (found_extent && (root->ref_cows || 3312 root == root->fs_info->tree_root)) { 3313 btrfs_set_path_blocking(path); 3314 ret = btrfs_free_extent(trans, root, extent_start, 3315 extent_num_bytes, 0, 3316 btrfs_header_owner(leaf), 3317 ino, extent_offset); 3318 BUG_ON(ret); 3319 } 3320 3321 if (found_type == BTRFS_INODE_ITEM_KEY) 3322 break; 3323 3324 if (path->slots[0] == 0 || 3325 path->slots[0] != pending_del_slot) { 3326 if (root->ref_cows && 3327 BTRFS_I(inode)->location.objectid != 3328 BTRFS_FREE_INO_OBJECTID) { 3329 err = -EAGAIN; 3330 goto out; 3331 } 3332 if (pending_del_nr) { 3333 ret = btrfs_del_items(trans, root, path, 3334 pending_del_slot, 3335 pending_del_nr); 3336 BUG_ON(ret); 3337 pending_del_nr = 0; 3338 } 3339 btrfs_release_path(path); 3340 goto search_again; 3341 } else { 3342 path->slots[0]--; 3343 } 3344 } 3345 out: 3346 if (pending_del_nr) { 3347 ret = btrfs_del_items(trans, root, path, pending_del_slot, 3348 pending_del_nr); 3349 BUG_ON(ret); 3350 } 3351 btrfs_free_path(path); 3352 return err; 3353 } 3354 3355 /* 3356 * taken from block_truncate_page, but does cow as it zeros out 3357 * any bytes left in the last page in the file. 3358 */ 3359 static int btrfs_truncate_page(struct address_space *mapping, loff_t from) 3360 { 3361 struct inode *inode = mapping->host; 3362 struct btrfs_root *root = BTRFS_I(inode)->root; 3363 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3364 struct btrfs_ordered_extent *ordered; 3365 struct extent_state *cached_state = NULL; 3366 char *kaddr; 3367 u32 blocksize = root->sectorsize; 3368 pgoff_t index = from >> PAGE_CACHE_SHIFT; 3369 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3370 struct page *page; 3371 int ret = 0; 3372 u64 page_start; 3373 u64 page_end; 3374 3375 if ((offset & (blocksize - 1)) == 0) 3376 goto out; 3377 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 3378 if (ret) 3379 goto out; 3380 3381 ret = -ENOMEM; 3382 again: 3383 page = find_or_create_page(mapping, index, GFP_NOFS); 3384 if (!page) { 3385 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3386 goto out; 3387 } 3388 3389 page_start = page_offset(page); 3390 page_end = page_start + PAGE_CACHE_SIZE - 1; 3391 3392 if (!PageUptodate(page)) { 3393 ret = btrfs_readpage(NULL, page); 3394 lock_page(page); 3395 if (page->mapping != mapping) { 3396 unlock_page(page); 3397 page_cache_release(page); 3398 goto again; 3399 } 3400 if (!PageUptodate(page)) { 3401 ret = -EIO; 3402 goto out_unlock; 3403 } 3404 } 3405 wait_on_page_writeback(page); 3406 3407 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 3408 GFP_NOFS); 3409 set_page_extent_mapped(page); 3410 3411 ordered = btrfs_lookup_ordered_extent(inode, page_start); 3412 if (ordered) { 3413 unlock_extent_cached(io_tree, page_start, page_end, 3414 &cached_state, GFP_NOFS); 3415 unlock_page(page); 3416 page_cache_release(page); 3417 btrfs_start_ordered_extent(inode, ordered, 1); 3418 btrfs_put_ordered_extent(ordered); 3419 goto again; 3420 } 3421 3422 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 3423 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 3424 0, 0, &cached_state, GFP_NOFS); 3425 3426 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 3427 &cached_state); 3428 if (ret) { 3429 unlock_extent_cached(io_tree, page_start, page_end, 3430 &cached_state, GFP_NOFS); 3431 goto out_unlock; 3432 } 3433 3434 ret = 0; 3435 if (offset != PAGE_CACHE_SIZE) { 3436 kaddr = kmap(page); 3437 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 3438 flush_dcache_page(page); 3439 kunmap(page); 3440 } 3441 ClearPageChecked(page); 3442 set_page_dirty(page); 3443 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, 3444 GFP_NOFS); 3445 3446 out_unlock: 3447 if (ret) 3448 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 3449 unlock_page(page); 3450 page_cache_release(page); 3451 out: 3452 return ret; 3453 } 3454 3455 /* 3456 * This function puts in dummy file extents for the area we're creating a hole 3457 * for. So if we are truncating this file to a larger size we need to insert 3458 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for 3459 * the range between oldsize and size 3460 */ 3461 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) 3462 { 3463 struct btrfs_trans_handle *trans; 3464 struct btrfs_root *root = BTRFS_I(inode)->root; 3465 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 3466 struct extent_map *em = NULL; 3467 struct extent_state *cached_state = NULL; 3468 u64 mask = root->sectorsize - 1; 3469 u64 hole_start = (oldsize + mask) & ~mask; 3470 u64 block_end = (size + mask) & ~mask; 3471 u64 last_byte; 3472 u64 cur_offset; 3473 u64 hole_size; 3474 int err = 0; 3475 3476 if (size <= hole_start) 3477 return 0; 3478 3479 while (1) { 3480 struct btrfs_ordered_extent *ordered; 3481 btrfs_wait_ordered_range(inode, hole_start, 3482 block_end - hole_start); 3483 lock_extent_bits(io_tree, hole_start, block_end - 1, 0, 3484 &cached_state, GFP_NOFS); 3485 ordered = btrfs_lookup_ordered_extent(inode, hole_start); 3486 if (!ordered) 3487 break; 3488 unlock_extent_cached(io_tree, hole_start, block_end - 1, 3489 &cached_state, GFP_NOFS); 3490 btrfs_put_ordered_extent(ordered); 3491 } 3492 3493 cur_offset = hole_start; 3494 while (1) { 3495 em = btrfs_get_extent(inode, NULL, 0, cur_offset, 3496 block_end - cur_offset, 0); 3497 BUG_ON(IS_ERR_OR_NULL(em)); 3498 last_byte = min(extent_map_end(em), block_end); 3499 last_byte = (last_byte + mask) & ~mask; 3500 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { 3501 u64 hint_byte = 0; 3502 hole_size = last_byte - cur_offset; 3503 3504 trans = btrfs_start_transaction(root, 2); 3505 if (IS_ERR(trans)) { 3506 err = PTR_ERR(trans); 3507 break; 3508 } 3509 3510 err = btrfs_drop_extents(trans, inode, cur_offset, 3511 cur_offset + hole_size, 3512 &hint_byte, 1); 3513 if (err) 3514 break; 3515 3516 err = btrfs_insert_file_extent(trans, root, 3517 btrfs_ino(inode), cur_offset, 0, 3518 0, hole_size, 0, hole_size, 3519 0, 0, 0); 3520 if (err) 3521 break; 3522 3523 btrfs_drop_extent_cache(inode, hole_start, 3524 last_byte - 1, 0); 3525 3526 btrfs_end_transaction(trans, root); 3527 } 3528 free_extent_map(em); 3529 em = NULL; 3530 cur_offset = last_byte; 3531 if (cur_offset >= block_end) 3532 break; 3533 } 3534 3535 free_extent_map(em); 3536 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state, 3537 GFP_NOFS); 3538 return err; 3539 } 3540 3541 static int btrfs_setsize(struct inode *inode, loff_t newsize) 3542 { 3543 loff_t oldsize = i_size_read(inode); 3544 int ret; 3545 3546 if (newsize == oldsize) 3547 return 0; 3548 3549 if (newsize > oldsize) { 3550 i_size_write(inode, newsize); 3551 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); 3552 truncate_pagecache(inode, oldsize, newsize); 3553 ret = btrfs_cont_expand(inode, oldsize, newsize); 3554 if (ret) { 3555 btrfs_setsize(inode, oldsize); 3556 return ret; 3557 } 3558 3559 mark_inode_dirty(inode); 3560 } else { 3561 3562 /* 3563 * We're truncating a file that used to have good data down to 3564 * zero. Make sure it gets into the ordered flush list so that 3565 * any new writes get down to disk quickly. 3566 */ 3567 if (newsize == 0) 3568 BTRFS_I(inode)->ordered_data_close = 1; 3569 3570 /* we don't support swapfiles, so vmtruncate shouldn't fail */ 3571 truncate_setsize(inode, newsize); 3572 ret = btrfs_truncate(inode); 3573 } 3574 3575 return ret; 3576 } 3577 3578 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) 3579 { 3580 struct inode *inode = dentry->d_inode; 3581 struct btrfs_root *root = BTRFS_I(inode)->root; 3582 int err; 3583 3584 if (btrfs_root_readonly(root)) 3585 return -EROFS; 3586 3587 err = inode_change_ok(inode, attr); 3588 if (err) 3589 return err; 3590 3591 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { 3592 err = btrfs_setsize(inode, attr->ia_size); 3593 if (err) 3594 return err; 3595 } 3596 3597 if (attr->ia_valid) { 3598 setattr_copy(inode, attr); 3599 mark_inode_dirty(inode); 3600 3601 if (attr->ia_valid & ATTR_MODE) 3602 err = btrfs_acl_chmod(inode); 3603 } 3604 3605 return err; 3606 } 3607 3608 void btrfs_evict_inode(struct inode *inode) 3609 { 3610 struct btrfs_trans_handle *trans; 3611 struct btrfs_root *root = BTRFS_I(inode)->root; 3612 unsigned long nr; 3613 int ret; 3614 3615 trace_btrfs_inode_evict(inode); 3616 3617 truncate_inode_pages(&inode->i_data, 0); 3618 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 || 3619 btrfs_is_free_space_inode(root, inode))) 3620 goto no_delete; 3621 3622 if (is_bad_inode(inode)) { 3623 btrfs_orphan_del(NULL, inode); 3624 goto no_delete; 3625 } 3626 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ 3627 btrfs_wait_ordered_range(inode, 0, (u64)-1); 3628 3629 if (root->fs_info->log_root_recovering) { 3630 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan)); 3631 goto no_delete; 3632 } 3633 3634 if (inode->i_nlink > 0) { 3635 BUG_ON(btrfs_root_refs(&root->root_item) != 0); 3636 goto no_delete; 3637 } 3638 3639 btrfs_i_size_write(inode, 0); 3640 3641 while (1) { 3642 trans = btrfs_join_transaction(root); 3643 BUG_ON(IS_ERR(trans)); 3644 trans->block_rsv = root->orphan_block_rsv; 3645 3646 ret = btrfs_block_rsv_check(trans, root, 3647 root->orphan_block_rsv, 0, 5); 3648 if (ret) { 3649 BUG_ON(ret != -EAGAIN); 3650 ret = btrfs_commit_transaction(trans, root); 3651 BUG_ON(ret); 3652 continue; 3653 } 3654 3655 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); 3656 if (ret != -EAGAIN) 3657 break; 3658 3659 nr = trans->blocks_used; 3660 btrfs_end_transaction(trans, root); 3661 trans = NULL; 3662 btrfs_btree_balance_dirty(root, nr); 3663 3664 } 3665 3666 if (ret == 0) { 3667 ret = btrfs_orphan_del(trans, inode); 3668 BUG_ON(ret); 3669 } 3670 3671 if (!(root == root->fs_info->tree_root || 3672 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) 3673 btrfs_return_ino(root, btrfs_ino(inode)); 3674 3675 nr = trans->blocks_used; 3676 btrfs_end_transaction(trans, root); 3677 btrfs_btree_balance_dirty(root, nr); 3678 no_delete: 3679 end_writeback(inode); 3680 return; 3681 } 3682 3683 /* 3684 * this returns the key found in the dir entry in the location pointer. 3685 * If no dir entries were found, location->objectid is 0. 3686 */ 3687 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, 3688 struct btrfs_key *location) 3689 { 3690 const char *name = dentry->d_name.name; 3691 int namelen = dentry->d_name.len; 3692 struct btrfs_dir_item *di; 3693 struct btrfs_path *path; 3694 struct btrfs_root *root = BTRFS_I(dir)->root; 3695 int ret = 0; 3696 3697 path = btrfs_alloc_path(); 3698 if (!path) 3699 return -ENOMEM; 3700 3701 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name, 3702 namelen, 0); 3703 if (IS_ERR(di)) 3704 ret = PTR_ERR(di); 3705 3706 if (IS_ERR_OR_NULL(di)) 3707 goto out_err; 3708 3709 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); 3710 out: 3711 btrfs_free_path(path); 3712 return ret; 3713 out_err: 3714 location->objectid = 0; 3715 goto out; 3716 } 3717 3718 /* 3719 * when we hit a tree root in a directory, the btrfs part of the inode 3720 * needs to be changed to reflect the root directory of the tree root. This 3721 * is kind of like crossing a mount point. 3722 */ 3723 static int fixup_tree_root_location(struct btrfs_root *root, 3724 struct inode *dir, 3725 struct dentry *dentry, 3726 struct btrfs_key *location, 3727 struct btrfs_root **sub_root) 3728 { 3729 struct btrfs_path *path; 3730 struct btrfs_root *new_root; 3731 struct btrfs_root_ref *ref; 3732 struct extent_buffer *leaf; 3733 int ret; 3734 int err = 0; 3735 3736 path = btrfs_alloc_path(); 3737 if (!path) { 3738 err = -ENOMEM; 3739 goto out; 3740 } 3741 3742 err = -ENOENT; 3743 ret = btrfs_find_root_ref(root->fs_info->tree_root, path, 3744 BTRFS_I(dir)->root->root_key.objectid, 3745 location->objectid); 3746 if (ret) { 3747 if (ret < 0) 3748 err = ret; 3749 goto out; 3750 } 3751 3752 leaf = path->nodes[0]; 3753 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); 3754 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) || 3755 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) 3756 goto out; 3757 3758 ret = memcmp_extent_buffer(leaf, dentry->d_name.name, 3759 (unsigned long)(ref + 1), 3760 dentry->d_name.len); 3761 if (ret) 3762 goto out; 3763 3764 btrfs_release_path(path); 3765 3766 new_root = btrfs_read_fs_root_no_name(root->fs_info, location); 3767 if (IS_ERR(new_root)) { 3768 err = PTR_ERR(new_root); 3769 goto out; 3770 } 3771 3772 if (btrfs_root_refs(&new_root->root_item) == 0) { 3773 err = -ENOENT; 3774 goto out; 3775 } 3776 3777 *sub_root = new_root; 3778 location->objectid = btrfs_root_dirid(&new_root->root_item); 3779 location->type = BTRFS_INODE_ITEM_KEY; 3780 location->offset = 0; 3781 err = 0; 3782 out: 3783 btrfs_free_path(path); 3784 return err; 3785 } 3786 3787 static void inode_tree_add(struct inode *inode) 3788 { 3789 struct btrfs_root *root = BTRFS_I(inode)->root; 3790 struct btrfs_inode *entry; 3791 struct rb_node **p; 3792 struct rb_node *parent; 3793 u64 ino = btrfs_ino(inode); 3794 again: 3795 p = &root->inode_tree.rb_node; 3796 parent = NULL; 3797 3798 if (inode_unhashed(inode)) 3799 return; 3800 3801 spin_lock(&root->inode_lock); 3802 while (*p) { 3803 parent = *p; 3804 entry = rb_entry(parent, struct btrfs_inode, rb_node); 3805 3806 if (ino < btrfs_ino(&entry->vfs_inode)) 3807 p = &parent->rb_left; 3808 else if (ino > btrfs_ino(&entry->vfs_inode)) 3809 p = &parent->rb_right; 3810 else { 3811 WARN_ON(!(entry->vfs_inode.i_state & 3812 (I_WILL_FREE | I_FREEING))); 3813 rb_erase(parent, &root->inode_tree); 3814 RB_CLEAR_NODE(parent); 3815 spin_unlock(&root->inode_lock); 3816 goto again; 3817 } 3818 } 3819 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p); 3820 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3821 spin_unlock(&root->inode_lock); 3822 } 3823 3824 static void inode_tree_del(struct inode *inode) 3825 { 3826 struct btrfs_root *root = BTRFS_I(inode)->root; 3827 int empty = 0; 3828 3829 spin_lock(&root->inode_lock); 3830 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { 3831 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); 3832 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); 3833 empty = RB_EMPTY_ROOT(&root->inode_tree); 3834 } 3835 spin_unlock(&root->inode_lock); 3836 3837 /* 3838 * Free space cache has inodes in the tree root, but the tree root has a 3839 * root_refs of 0, so this could end up dropping the tree root as a 3840 * snapshot, so we need the extra !root->fs_info->tree_root check to 3841 * make sure we don't drop it. 3842 */ 3843 if (empty && btrfs_root_refs(&root->root_item) == 0 && 3844 root != root->fs_info->tree_root) { 3845 synchronize_srcu(&root->fs_info->subvol_srcu); 3846 spin_lock(&root->inode_lock); 3847 empty = RB_EMPTY_ROOT(&root->inode_tree); 3848 spin_unlock(&root->inode_lock); 3849 if (empty) 3850 btrfs_add_dead_root(root); 3851 } 3852 } 3853 3854 int btrfs_invalidate_inodes(struct btrfs_root *root) 3855 { 3856 struct rb_node *node; 3857 struct rb_node *prev; 3858 struct btrfs_inode *entry; 3859 struct inode *inode; 3860 u64 objectid = 0; 3861 3862 WARN_ON(btrfs_root_refs(&root->root_item) != 0); 3863 3864 spin_lock(&root->inode_lock); 3865 again: 3866 node = root->inode_tree.rb_node; 3867 prev = NULL; 3868 while (node) { 3869 prev = node; 3870 entry = rb_entry(node, struct btrfs_inode, rb_node); 3871 3872 if (objectid < btrfs_ino(&entry->vfs_inode)) 3873 node = node->rb_left; 3874 else if (objectid > btrfs_ino(&entry->vfs_inode)) 3875 node = node->rb_right; 3876 else 3877 break; 3878 } 3879 if (!node) { 3880 while (prev) { 3881 entry = rb_entry(prev, struct btrfs_inode, rb_node); 3882 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 3883 node = prev; 3884 break; 3885 } 3886 prev = rb_next(prev); 3887 } 3888 } 3889 while (node) { 3890 entry = rb_entry(node, struct btrfs_inode, rb_node); 3891 objectid = btrfs_ino(&entry->vfs_inode) + 1; 3892 inode = igrab(&entry->vfs_inode); 3893 if (inode) { 3894 spin_unlock(&root->inode_lock); 3895 if (atomic_read(&inode->i_count) > 1) 3896 d_prune_aliases(inode); 3897 /* 3898 * btrfs_drop_inode will have it removed from 3899 * the inode cache when its usage count 3900 * hits zero. 3901 */ 3902 iput(inode); 3903 cond_resched(); 3904 spin_lock(&root->inode_lock); 3905 goto again; 3906 } 3907 3908 if (cond_resched_lock(&root->inode_lock)) 3909 goto again; 3910 3911 node = rb_next(node); 3912 } 3913 spin_unlock(&root->inode_lock); 3914 return 0; 3915 } 3916 3917 static int btrfs_init_locked_inode(struct inode *inode, void *p) 3918 { 3919 struct btrfs_iget_args *args = p; 3920 inode->i_ino = args->ino; 3921 BTRFS_I(inode)->root = args->root; 3922 btrfs_set_inode_space_info(args->root, inode); 3923 return 0; 3924 } 3925 3926 static int btrfs_find_actor(struct inode *inode, void *opaque) 3927 { 3928 struct btrfs_iget_args *args = opaque; 3929 return args->ino == btrfs_ino(inode) && 3930 args->root == BTRFS_I(inode)->root; 3931 } 3932 3933 static struct inode *btrfs_iget_locked(struct super_block *s, 3934 u64 objectid, 3935 struct btrfs_root *root) 3936 { 3937 struct inode *inode; 3938 struct btrfs_iget_args args; 3939 args.ino = objectid; 3940 args.root = root; 3941 3942 inode = iget5_locked(s, objectid, btrfs_find_actor, 3943 btrfs_init_locked_inode, 3944 (void *)&args); 3945 return inode; 3946 } 3947 3948 /* Get an inode object given its location and corresponding root. 3949 * Returns in *is_new if the inode was read from disk 3950 */ 3951 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3952 struct btrfs_root *root, int *new) 3953 { 3954 struct inode *inode; 3955 int bad_inode = 0; 3956 3957 inode = btrfs_iget_locked(s, location->objectid, root); 3958 if (!inode) 3959 return ERR_PTR(-ENOMEM); 3960 3961 if (inode->i_state & I_NEW) { 3962 BTRFS_I(inode)->root = root; 3963 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location)); 3964 btrfs_read_locked_inode(inode); 3965 if (!is_bad_inode(inode)) { 3966 inode_tree_add(inode); 3967 unlock_new_inode(inode); 3968 if (new) 3969 *new = 1; 3970 } else { 3971 bad_inode = 1; 3972 } 3973 } 3974 3975 if (bad_inode) { 3976 iput(inode); 3977 inode = ERR_PTR(-ESTALE); 3978 } 3979 3980 return inode; 3981 } 3982 3983 static struct inode *new_simple_dir(struct super_block *s, 3984 struct btrfs_key *key, 3985 struct btrfs_root *root) 3986 { 3987 struct inode *inode = new_inode(s); 3988 3989 if (!inode) 3990 return ERR_PTR(-ENOMEM); 3991 3992 BTRFS_I(inode)->root = root; 3993 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); 3994 BTRFS_I(inode)->dummy_inode = 1; 3995 3996 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; 3997 inode->i_op = &simple_dir_inode_operations; 3998 inode->i_fop = &simple_dir_operations; 3999 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; 4000 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4001 4002 return inode; 4003 } 4004 4005 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) 4006 { 4007 struct inode *inode; 4008 struct btrfs_root *root = BTRFS_I(dir)->root; 4009 struct btrfs_root *sub_root = root; 4010 struct btrfs_key location; 4011 int index; 4012 int ret = 0; 4013 4014 if (dentry->d_name.len > BTRFS_NAME_LEN) 4015 return ERR_PTR(-ENAMETOOLONG); 4016 4017 if (unlikely(d_need_lookup(dentry))) { 4018 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key)); 4019 kfree(dentry->d_fsdata); 4020 dentry->d_fsdata = NULL; 4021 d_clear_need_lookup(dentry); 4022 } else { 4023 ret = btrfs_inode_by_name(dir, dentry, &location); 4024 } 4025 4026 if (ret < 0) 4027 return ERR_PTR(ret); 4028 4029 if (location.objectid == 0) 4030 return NULL; 4031 4032 if (location.type == BTRFS_INODE_ITEM_KEY) { 4033 inode = btrfs_iget(dir->i_sb, &location, root, NULL); 4034 return inode; 4035 } 4036 4037 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY); 4038 4039 index = srcu_read_lock(&root->fs_info->subvol_srcu); 4040 ret = fixup_tree_root_location(root, dir, dentry, 4041 &location, &sub_root); 4042 if (ret < 0) { 4043 if (ret != -ENOENT) 4044 inode = ERR_PTR(ret); 4045 else 4046 inode = new_simple_dir(dir->i_sb, &location, sub_root); 4047 } else { 4048 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); 4049 } 4050 srcu_read_unlock(&root->fs_info->subvol_srcu, index); 4051 4052 if (!IS_ERR(inode) && root != sub_root) { 4053 down_read(&root->fs_info->cleanup_work_sem); 4054 if (!(inode->i_sb->s_flags & MS_RDONLY)) 4055 ret = btrfs_orphan_cleanup(sub_root); 4056 up_read(&root->fs_info->cleanup_work_sem); 4057 if (ret) 4058 inode = ERR_PTR(ret); 4059 } 4060 4061 return inode; 4062 } 4063 4064 static int btrfs_dentry_delete(const struct dentry *dentry) 4065 { 4066 struct btrfs_root *root; 4067 4068 if (!dentry->d_inode && !IS_ROOT(dentry)) 4069 dentry = dentry->d_parent; 4070 4071 if (dentry->d_inode) { 4072 root = BTRFS_I(dentry->d_inode)->root; 4073 if (btrfs_root_refs(&root->root_item) == 0) 4074 return 1; 4075 } 4076 return 0; 4077 } 4078 4079 static void btrfs_dentry_release(struct dentry *dentry) 4080 { 4081 if (dentry->d_fsdata) 4082 kfree(dentry->d_fsdata); 4083 } 4084 4085 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, 4086 struct nameidata *nd) 4087 { 4088 return d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry); 4089 } 4090 4091 unsigned char btrfs_filetype_table[] = { 4092 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK 4093 }; 4094 4095 static int btrfs_real_readdir(struct file *filp, void *dirent, 4096 filldir_t filldir) 4097 { 4098 struct inode *inode = filp->f_dentry->d_inode; 4099 struct btrfs_root *root = BTRFS_I(inode)->root; 4100 struct btrfs_item *item; 4101 struct btrfs_dir_item *di; 4102 struct btrfs_key key; 4103 struct btrfs_key found_key; 4104 struct btrfs_path *path; 4105 struct list_head ins_list; 4106 struct list_head del_list; 4107 struct qstr q; 4108 int ret; 4109 struct extent_buffer *leaf; 4110 int slot; 4111 unsigned char d_type; 4112 int over = 0; 4113 u32 di_cur; 4114 u32 di_total; 4115 u32 di_len; 4116 int key_type = BTRFS_DIR_INDEX_KEY; 4117 char tmp_name[32]; 4118 char *name_ptr; 4119 int name_len; 4120 int is_curr = 0; /* filp->f_pos points to the current index? */ 4121 4122 /* FIXME, use a real flag for deciding about the key type */ 4123 if (root->fs_info->tree_root == root) 4124 key_type = BTRFS_DIR_ITEM_KEY; 4125 4126 /* special case for "." */ 4127 if (filp->f_pos == 0) { 4128 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR); 4129 if (over) 4130 return 0; 4131 filp->f_pos = 1; 4132 } 4133 /* special case for .., just use the back ref */ 4134 if (filp->f_pos == 1) { 4135 u64 pino = parent_ino(filp->f_path.dentry); 4136 over = filldir(dirent, "..", 2, 4137 2, pino, DT_DIR); 4138 if (over) 4139 return 0; 4140 filp->f_pos = 2; 4141 } 4142 path = btrfs_alloc_path(); 4143 if (!path) 4144 return -ENOMEM; 4145 4146 path->reada = 1; 4147 4148 if (key_type == BTRFS_DIR_INDEX_KEY) { 4149 INIT_LIST_HEAD(&ins_list); 4150 INIT_LIST_HEAD(&del_list); 4151 btrfs_get_delayed_items(inode, &ins_list, &del_list); 4152 } 4153 4154 btrfs_set_key_type(&key, key_type); 4155 key.offset = filp->f_pos; 4156 key.objectid = btrfs_ino(inode); 4157 4158 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4159 if (ret < 0) 4160 goto err; 4161 4162 while (1) { 4163 leaf = path->nodes[0]; 4164 slot = path->slots[0]; 4165 if (slot >= btrfs_header_nritems(leaf)) { 4166 ret = btrfs_next_leaf(root, path); 4167 if (ret < 0) 4168 goto err; 4169 else if (ret > 0) 4170 break; 4171 continue; 4172 } 4173 4174 item = btrfs_item_nr(leaf, slot); 4175 btrfs_item_key_to_cpu(leaf, &found_key, slot); 4176 4177 if (found_key.objectid != key.objectid) 4178 break; 4179 if (btrfs_key_type(&found_key) != key_type) 4180 break; 4181 if (found_key.offset < filp->f_pos) 4182 goto next; 4183 if (key_type == BTRFS_DIR_INDEX_KEY && 4184 btrfs_should_delete_dir_index(&del_list, 4185 found_key.offset)) 4186 goto next; 4187 4188 filp->f_pos = found_key.offset; 4189 is_curr = 1; 4190 4191 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); 4192 di_cur = 0; 4193 di_total = btrfs_item_size(leaf, item); 4194 4195 while (di_cur < di_total) { 4196 struct btrfs_key location; 4197 struct dentry *tmp; 4198 4199 if (verify_dir_item(root, leaf, di)) 4200 break; 4201 4202 name_len = btrfs_dir_name_len(leaf, di); 4203 if (name_len <= sizeof(tmp_name)) { 4204 name_ptr = tmp_name; 4205 } else { 4206 name_ptr = kmalloc(name_len, GFP_NOFS); 4207 if (!name_ptr) { 4208 ret = -ENOMEM; 4209 goto err; 4210 } 4211 } 4212 read_extent_buffer(leaf, name_ptr, 4213 (unsigned long)(di + 1), name_len); 4214 4215 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)]; 4216 btrfs_dir_item_key_to_cpu(leaf, di, &location); 4217 4218 q.name = name_ptr; 4219 q.len = name_len; 4220 q.hash = full_name_hash(q.name, q.len); 4221 tmp = d_lookup(filp->f_dentry, &q); 4222 if (!tmp) { 4223 struct btrfs_key *newkey; 4224 4225 newkey = kzalloc(sizeof(struct btrfs_key), 4226 GFP_NOFS); 4227 if (!newkey) 4228 goto no_dentry; 4229 tmp = d_alloc(filp->f_dentry, &q); 4230 if (!tmp) { 4231 kfree(newkey); 4232 dput(tmp); 4233 goto no_dentry; 4234 } 4235 memcpy(newkey, &location, 4236 sizeof(struct btrfs_key)); 4237 tmp->d_fsdata = newkey; 4238 tmp->d_flags |= DCACHE_NEED_LOOKUP; 4239 d_rehash(tmp); 4240 dput(tmp); 4241 } else { 4242 dput(tmp); 4243 } 4244 no_dentry: 4245 /* is this a reference to our own snapshot? If so 4246 * skip it 4247 */ 4248 if (location.type == BTRFS_ROOT_ITEM_KEY && 4249 location.objectid == root->root_key.objectid) { 4250 over = 0; 4251 goto skip; 4252 } 4253 over = filldir(dirent, name_ptr, name_len, 4254 found_key.offset, location.objectid, 4255 d_type); 4256 4257 skip: 4258 if (name_ptr != tmp_name) 4259 kfree(name_ptr); 4260 4261 if (over) 4262 goto nopos; 4263 di_len = btrfs_dir_name_len(leaf, di) + 4264 btrfs_dir_data_len(leaf, di) + sizeof(*di); 4265 di_cur += di_len; 4266 di = (struct btrfs_dir_item *)((char *)di + di_len); 4267 } 4268 next: 4269 path->slots[0]++; 4270 } 4271 4272 if (key_type == BTRFS_DIR_INDEX_KEY) { 4273 if (is_curr) 4274 filp->f_pos++; 4275 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir, 4276 &ins_list); 4277 if (ret) 4278 goto nopos; 4279 } 4280 4281 /* Reached end of directory/root. Bump pos past the last item. */ 4282 if (key_type == BTRFS_DIR_INDEX_KEY) 4283 /* 4284 * 32-bit glibc will use getdents64, but then strtol - 4285 * so the last number we can serve is this. 4286 */ 4287 filp->f_pos = 0x7fffffff; 4288 else 4289 filp->f_pos++; 4290 nopos: 4291 ret = 0; 4292 err: 4293 if (key_type == BTRFS_DIR_INDEX_KEY) 4294 btrfs_put_delayed_items(&ins_list, &del_list); 4295 btrfs_free_path(path); 4296 return ret; 4297 } 4298 4299 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc) 4300 { 4301 struct btrfs_root *root = BTRFS_I(inode)->root; 4302 struct btrfs_trans_handle *trans; 4303 int ret = 0; 4304 bool nolock = false; 4305 4306 if (BTRFS_I(inode)->dummy_inode) 4307 return 0; 4308 4309 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode)) 4310 nolock = true; 4311 4312 if (wbc->sync_mode == WB_SYNC_ALL) { 4313 if (nolock) 4314 trans = btrfs_join_transaction_nolock(root); 4315 else 4316 trans = btrfs_join_transaction(root); 4317 if (IS_ERR(trans)) 4318 return PTR_ERR(trans); 4319 if (nolock) 4320 ret = btrfs_end_transaction_nolock(trans, root); 4321 else 4322 ret = btrfs_commit_transaction(trans, root); 4323 } 4324 return ret; 4325 } 4326 4327 /* 4328 * This is somewhat expensive, updating the tree every time the 4329 * inode changes. But, it is most likely to find the inode in cache. 4330 * FIXME, needs more benchmarking...there are no reasons other than performance 4331 * to keep or drop this code. 4332 */ 4333 void btrfs_dirty_inode(struct inode *inode, int flags) 4334 { 4335 struct btrfs_root *root = BTRFS_I(inode)->root; 4336 struct btrfs_trans_handle *trans; 4337 int ret; 4338 4339 if (BTRFS_I(inode)->dummy_inode) 4340 return; 4341 4342 trans = btrfs_join_transaction(root); 4343 BUG_ON(IS_ERR(trans)); 4344 4345 ret = btrfs_update_inode(trans, root, inode); 4346 if (ret && ret == -ENOSPC) { 4347 /* whoops, lets try again with the full transaction */ 4348 btrfs_end_transaction(trans, root); 4349 trans = btrfs_start_transaction(root, 1); 4350 if (IS_ERR(trans)) { 4351 printk_ratelimited(KERN_ERR "btrfs: fail to " 4352 "dirty inode %llu error %ld\n", 4353 (unsigned long long)btrfs_ino(inode), 4354 PTR_ERR(trans)); 4355 return; 4356 } 4357 4358 ret = btrfs_update_inode(trans, root, inode); 4359 if (ret) { 4360 printk_ratelimited(KERN_ERR "btrfs: fail to " 4361 "dirty inode %llu error %d\n", 4362 (unsigned long long)btrfs_ino(inode), 4363 ret); 4364 } 4365 } 4366 btrfs_end_transaction(trans, root); 4367 if (BTRFS_I(inode)->delayed_node) 4368 btrfs_balance_delayed_items(root); 4369 } 4370 4371 /* 4372 * find the highest existing sequence number in a directory 4373 * and then set the in-memory index_cnt variable to reflect 4374 * free sequence numbers 4375 */ 4376 static int btrfs_set_inode_index_count(struct inode *inode) 4377 { 4378 struct btrfs_root *root = BTRFS_I(inode)->root; 4379 struct btrfs_key key, found_key; 4380 struct btrfs_path *path; 4381 struct extent_buffer *leaf; 4382 int ret; 4383 4384 key.objectid = btrfs_ino(inode); 4385 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY); 4386 key.offset = (u64)-1; 4387 4388 path = btrfs_alloc_path(); 4389 if (!path) 4390 return -ENOMEM; 4391 4392 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4393 if (ret < 0) 4394 goto out; 4395 /* FIXME: we should be able to handle this */ 4396 if (ret == 0) 4397 goto out; 4398 ret = 0; 4399 4400 /* 4401 * MAGIC NUMBER EXPLANATION: 4402 * since we search a directory based on f_pos we have to start at 2 4403 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody 4404 * else has to start at 2 4405 */ 4406 if (path->slots[0] == 0) { 4407 BTRFS_I(inode)->index_cnt = 2; 4408 goto out; 4409 } 4410 4411 path->slots[0]--; 4412 4413 leaf = path->nodes[0]; 4414 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4415 4416 if (found_key.objectid != btrfs_ino(inode) || 4417 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) { 4418 BTRFS_I(inode)->index_cnt = 2; 4419 goto out; 4420 } 4421 4422 BTRFS_I(inode)->index_cnt = found_key.offset + 1; 4423 out: 4424 btrfs_free_path(path); 4425 return ret; 4426 } 4427 4428 /* 4429 * helper to find a free sequence number in a given directory. This current 4430 * code is very simple, later versions will do smarter things in the btree 4431 */ 4432 int btrfs_set_inode_index(struct inode *dir, u64 *index) 4433 { 4434 int ret = 0; 4435 4436 if (BTRFS_I(dir)->index_cnt == (u64)-1) { 4437 ret = btrfs_inode_delayed_dir_index_count(dir); 4438 if (ret) { 4439 ret = btrfs_set_inode_index_count(dir); 4440 if (ret) 4441 return ret; 4442 } 4443 } 4444 4445 *index = BTRFS_I(dir)->index_cnt; 4446 BTRFS_I(dir)->index_cnt++; 4447 4448 return ret; 4449 } 4450 4451 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, 4452 struct btrfs_root *root, 4453 struct inode *dir, 4454 const char *name, int name_len, 4455 u64 ref_objectid, u64 objectid, int mode, 4456 u64 *index) 4457 { 4458 struct inode *inode; 4459 struct btrfs_inode_item *inode_item; 4460 struct btrfs_key *location; 4461 struct btrfs_path *path; 4462 struct btrfs_inode_ref *ref; 4463 struct btrfs_key key[2]; 4464 u32 sizes[2]; 4465 unsigned long ptr; 4466 int ret; 4467 int owner; 4468 4469 path = btrfs_alloc_path(); 4470 if (!path) 4471 return ERR_PTR(-ENOMEM); 4472 4473 inode = new_inode(root->fs_info->sb); 4474 if (!inode) { 4475 btrfs_free_path(path); 4476 return ERR_PTR(-ENOMEM); 4477 } 4478 4479 /* 4480 * we have to initialize this early, so we can reclaim the inode 4481 * number if we fail afterwards in this function. 4482 */ 4483 inode->i_ino = objectid; 4484 4485 if (dir) { 4486 trace_btrfs_inode_request(dir); 4487 4488 ret = btrfs_set_inode_index(dir, index); 4489 if (ret) { 4490 btrfs_free_path(path); 4491 iput(inode); 4492 return ERR_PTR(ret); 4493 } 4494 } 4495 /* 4496 * index_cnt is ignored for everything but a dir, 4497 * btrfs_get_inode_index_count has an explanation for the magic 4498 * number 4499 */ 4500 BTRFS_I(inode)->index_cnt = 2; 4501 BTRFS_I(inode)->root = root; 4502 BTRFS_I(inode)->generation = trans->transid; 4503 inode->i_generation = BTRFS_I(inode)->generation; 4504 btrfs_set_inode_space_info(root, inode); 4505 4506 if (S_ISDIR(mode)) 4507 owner = 0; 4508 else 4509 owner = 1; 4510 4511 key[0].objectid = objectid; 4512 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY); 4513 key[0].offset = 0; 4514 4515 key[1].objectid = objectid; 4516 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY); 4517 key[1].offset = ref_objectid; 4518 4519 sizes[0] = sizeof(struct btrfs_inode_item); 4520 sizes[1] = name_len + sizeof(*ref); 4521 4522 path->leave_spinning = 1; 4523 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2); 4524 if (ret != 0) 4525 goto fail; 4526 4527 inode_init_owner(inode, dir, mode); 4528 inode_set_bytes(inode, 0); 4529 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME; 4530 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], 4531 struct btrfs_inode_item); 4532 fill_inode_item(trans, path->nodes[0], inode_item, inode); 4533 4534 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, 4535 struct btrfs_inode_ref); 4536 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); 4537 btrfs_set_inode_ref_index(path->nodes[0], ref, *index); 4538 ptr = (unsigned long)(ref + 1); 4539 write_extent_buffer(path->nodes[0], name, ptr, name_len); 4540 4541 btrfs_mark_buffer_dirty(path->nodes[0]); 4542 btrfs_free_path(path); 4543 4544 location = &BTRFS_I(inode)->location; 4545 location->objectid = objectid; 4546 location->offset = 0; 4547 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY); 4548 4549 btrfs_inherit_iflags(inode, dir); 4550 4551 if (S_ISREG(mode)) { 4552 if (btrfs_test_opt(root, NODATASUM)) 4553 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 4554 if (btrfs_test_opt(root, NODATACOW) || 4555 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW)) 4556 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 4557 } 4558 4559 insert_inode_hash(inode); 4560 inode_tree_add(inode); 4561 4562 trace_btrfs_inode_new(inode); 4563 btrfs_set_inode_last_trans(trans, inode); 4564 4565 return inode; 4566 fail: 4567 if (dir) 4568 BTRFS_I(dir)->index_cnt--; 4569 btrfs_free_path(path); 4570 iput(inode); 4571 return ERR_PTR(ret); 4572 } 4573 4574 static inline u8 btrfs_inode_type(struct inode *inode) 4575 { 4576 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; 4577 } 4578 4579 /* 4580 * utility function to add 'inode' into 'parent_inode' with 4581 * a give name and a given sequence number. 4582 * if 'add_backref' is true, also insert a backref from the 4583 * inode to the parent directory. 4584 */ 4585 int btrfs_add_link(struct btrfs_trans_handle *trans, 4586 struct inode *parent_inode, struct inode *inode, 4587 const char *name, int name_len, int add_backref, u64 index) 4588 { 4589 int ret = 0; 4590 struct btrfs_key key; 4591 struct btrfs_root *root = BTRFS_I(parent_inode)->root; 4592 u64 ino = btrfs_ino(inode); 4593 u64 parent_ino = btrfs_ino(parent_inode); 4594 4595 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4596 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key)); 4597 } else { 4598 key.objectid = ino; 4599 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 4600 key.offset = 0; 4601 } 4602 4603 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { 4604 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 4605 key.objectid, root->root_key.objectid, 4606 parent_ino, index, name, name_len); 4607 } else if (add_backref) { 4608 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, 4609 parent_ino, index); 4610 } 4611 4612 if (ret == 0) { 4613 ret = btrfs_insert_dir_item(trans, root, name, name_len, 4614 parent_inode, &key, 4615 btrfs_inode_type(inode), index); 4616 BUG_ON(ret); 4617 4618 btrfs_i_size_write(parent_inode, parent_inode->i_size + 4619 name_len * 2); 4620 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 4621 ret = btrfs_update_inode(trans, root, parent_inode); 4622 } 4623 return ret; 4624 } 4625 4626 static int btrfs_add_nondir(struct btrfs_trans_handle *trans, 4627 struct inode *dir, struct dentry *dentry, 4628 struct inode *inode, int backref, u64 index) 4629 { 4630 int err = btrfs_add_link(trans, dir, inode, 4631 dentry->d_name.name, dentry->d_name.len, 4632 backref, index); 4633 if (!err) { 4634 d_instantiate(dentry, inode); 4635 return 0; 4636 } 4637 if (err > 0) 4638 err = -EEXIST; 4639 return err; 4640 } 4641 4642 static int btrfs_mknod(struct inode *dir, struct dentry *dentry, 4643 int mode, dev_t rdev) 4644 { 4645 struct btrfs_trans_handle *trans; 4646 struct btrfs_root *root = BTRFS_I(dir)->root; 4647 struct inode *inode = NULL; 4648 int err; 4649 int drop_inode = 0; 4650 u64 objectid; 4651 unsigned long nr = 0; 4652 u64 index = 0; 4653 4654 if (!new_valid_dev(rdev)) 4655 return -EINVAL; 4656 4657 /* 4658 * 2 for inode item and ref 4659 * 2 for dir items 4660 * 1 for xattr if selinux is on 4661 */ 4662 trans = btrfs_start_transaction(root, 5); 4663 if (IS_ERR(trans)) 4664 return PTR_ERR(trans); 4665 4666 err = btrfs_find_free_ino(root, &objectid); 4667 if (err) 4668 goto out_unlock; 4669 4670 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4671 dentry->d_name.len, btrfs_ino(dir), objectid, 4672 mode, &index); 4673 if (IS_ERR(inode)) { 4674 err = PTR_ERR(inode); 4675 goto out_unlock; 4676 } 4677 4678 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4679 if (err) { 4680 drop_inode = 1; 4681 goto out_unlock; 4682 } 4683 4684 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4685 if (err) 4686 drop_inode = 1; 4687 else { 4688 inode->i_op = &btrfs_special_inode_operations; 4689 init_special_inode(inode, inode->i_mode, rdev); 4690 btrfs_update_inode(trans, root, inode); 4691 } 4692 out_unlock: 4693 nr = trans->blocks_used; 4694 btrfs_end_transaction_throttle(trans, root); 4695 btrfs_btree_balance_dirty(root, nr); 4696 if (drop_inode) { 4697 inode_dec_link_count(inode); 4698 iput(inode); 4699 } 4700 return err; 4701 } 4702 4703 static int btrfs_create(struct inode *dir, struct dentry *dentry, 4704 int mode, struct nameidata *nd) 4705 { 4706 struct btrfs_trans_handle *trans; 4707 struct btrfs_root *root = BTRFS_I(dir)->root; 4708 struct inode *inode = NULL; 4709 int drop_inode = 0; 4710 int err; 4711 unsigned long nr = 0; 4712 u64 objectid; 4713 u64 index = 0; 4714 4715 /* 4716 * 2 for inode item and ref 4717 * 2 for dir items 4718 * 1 for xattr if selinux is on 4719 */ 4720 trans = btrfs_start_transaction(root, 5); 4721 if (IS_ERR(trans)) 4722 return PTR_ERR(trans); 4723 4724 err = btrfs_find_free_ino(root, &objectid); 4725 if (err) 4726 goto out_unlock; 4727 4728 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4729 dentry->d_name.len, btrfs_ino(dir), objectid, 4730 mode, &index); 4731 if (IS_ERR(inode)) { 4732 err = PTR_ERR(inode); 4733 goto out_unlock; 4734 } 4735 4736 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4737 if (err) { 4738 drop_inode = 1; 4739 goto out_unlock; 4740 } 4741 4742 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 4743 if (err) 4744 drop_inode = 1; 4745 else { 4746 inode->i_mapping->a_ops = &btrfs_aops; 4747 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 4748 inode->i_fop = &btrfs_file_operations; 4749 inode->i_op = &btrfs_file_inode_operations; 4750 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 4751 } 4752 out_unlock: 4753 nr = trans->blocks_used; 4754 btrfs_end_transaction_throttle(trans, root); 4755 if (drop_inode) { 4756 inode_dec_link_count(inode); 4757 iput(inode); 4758 } 4759 btrfs_btree_balance_dirty(root, nr); 4760 return err; 4761 } 4762 4763 static int btrfs_link(struct dentry *old_dentry, struct inode *dir, 4764 struct dentry *dentry) 4765 { 4766 struct btrfs_trans_handle *trans; 4767 struct btrfs_root *root = BTRFS_I(dir)->root; 4768 struct inode *inode = old_dentry->d_inode; 4769 u64 index; 4770 unsigned long nr = 0; 4771 int err; 4772 int drop_inode = 0; 4773 4774 /* do not allow sys_link's with other subvols of the same device */ 4775 if (root->objectid != BTRFS_I(inode)->root->objectid) 4776 return -EXDEV; 4777 4778 if (inode->i_nlink == ~0U) 4779 return -EMLINK; 4780 4781 err = btrfs_set_inode_index(dir, &index); 4782 if (err) 4783 goto fail; 4784 4785 /* 4786 * 2 items for inode and inode ref 4787 * 2 items for dir items 4788 * 1 item for parent inode 4789 */ 4790 trans = btrfs_start_transaction(root, 5); 4791 if (IS_ERR(trans)) { 4792 err = PTR_ERR(trans); 4793 goto fail; 4794 } 4795 4796 btrfs_inc_nlink(inode); 4797 inode->i_ctime = CURRENT_TIME; 4798 ihold(inode); 4799 4800 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index); 4801 4802 if (err) { 4803 drop_inode = 1; 4804 } else { 4805 struct dentry *parent = dentry->d_parent; 4806 err = btrfs_update_inode(trans, root, inode); 4807 BUG_ON(err); 4808 btrfs_log_new_name(trans, inode, NULL, parent); 4809 } 4810 4811 nr = trans->blocks_used; 4812 btrfs_end_transaction_throttle(trans, root); 4813 fail: 4814 if (drop_inode) { 4815 inode_dec_link_count(inode); 4816 iput(inode); 4817 } 4818 btrfs_btree_balance_dirty(root, nr); 4819 return err; 4820 } 4821 4822 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode) 4823 { 4824 struct inode *inode = NULL; 4825 struct btrfs_trans_handle *trans; 4826 struct btrfs_root *root = BTRFS_I(dir)->root; 4827 int err = 0; 4828 int drop_on_err = 0; 4829 u64 objectid = 0; 4830 u64 index = 0; 4831 unsigned long nr = 1; 4832 4833 /* 4834 * 2 items for inode and ref 4835 * 2 items for dir items 4836 * 1 for xattr if selinux is on 4837 */ 4838 trans = btrfs_start_transaction(root, 5); 4839 if (IS_ERR(trans)) 4840 return PTR_ERR(trans); 4841 4842 err = btrfs_find_free_ino(root, &objectid); 4843 if (err) 4844 goto out_fail; 4845 4846 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 4847 dentry->d_name.len, btrfs_ino(dir), objectid, 4848 S_IFDIR | mode, &index); 4849 if (IS_ERR(inode)) { 4850 err = PTR_ERR(inode); 4851 goto out_fail; 4852 } 4853 4854 drop_on_err = 1; 4855 4856 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 4857 if (err) 4858 goto out_fail; 4859 4860 inode->i_op = &btrfs_dir_inode_operations; 4861 inode->i_fop = &btrfs_dir_file_operations; 4862 4863 btrfs_i_size_write(inode, 0); 4864 err = btrfs_update_inode(trans, root, inode); 4865 if (err) 4866 goto out_fail; 4867 4868 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name, 4869 dentry->d_name.len, 0, index); 4870 if (err) 4871 goto out_fail; 4872 4873 d_instantiate(dentry, inode); 4874 drop_on_err = 0; 4875 4876 out_fail: 4877 nr = trans->blocks_used; 4878 btrfs_end_transaction_throttle(trans, root); 4879 if (drop_on_err) 4880 iput(inode); 4881 btrfs_btree_balance_dirty(root, nr); 4882 return err; 4883 } 4884 4885 /* helper for btfs_get_extent. Given an existing extent in the tree, 4886 * and an extent that you want to insert, deal with overlap and insert 4887 * the new extent into the tree. 4888 */ 4889 static int merge_extent_mapping(struct extent_map_tree *em_tree, 4890 struct extent_map *existing, 4891 struct extent_map *em, 4892 u64 map_start, u64 map_len) 4893 { 4894 u64 start_diff; 4895 4896 BUG_ON(map_start < em->start || map_start >= extent_map_end(em)); 4897 start_diff = map_start - em->start; 4898 em->start = map_start; 4899 em->len = map_len; 4900 if (em->block_start < EXTENT_MAP_LAST_BYTE && 4901 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 4902 em->block_start += start_diff; 4903 em->block_len -= start_diff; 4904 } 4905 return add_extent_mapping(em_tree, em); 4906 } 4907 4908 static noinline int uncompress_inline(struct btrfs_path *path, 4909 struct inode *inode, struct page *page, 4910 size_t pg_offset, u64 extent_offset, 4911 struct btrfs_file_extent_item *item) 4912 { 4913 int ret; 4914 struct extent_buffer *leaf = path->nodes[0]; 4915 char *tmp; 4916 size_t max_size; 4917 unsigned long inline_size; 4918 unsigned long ptr; 4919 int compress_type; 4920 4921 WARN_ON(pg_offset != 0); 4922 compress_type = btrfs_file_extent_compression(leaf, item); 4923 max_size = btrfs_file_extent_ram_bytes(leaf, item); 4924 inline_size = btrfs_file_extent_inline_item_len(leaf, 4925 btrfs_item_nr(leaf, path->slots[0])); 4926 tmp = kmalloc(inline_size, GFP_NOFS); 4927 if (!tmp) 4928 return -ENOMEM; 4929 ptr = btrfs_file_extent_inline_start(item); 4930 4931 read_extent_buffer(leaf, tmp, ptr, inline_size); 4932 4933 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size); 4934 ret = btrfs_decompress(compress_type, tmp, page, 4935 extent_offset, inline_size, max_size); 4936 if (ret) { 4937 char *kaddr = kmap_atomic(page, KM_USER0); 4938 unsigned long copy_size = min_t(u64, 4939 PAGE_CACHE_SIZE - pg_offset, 4940 max_size - extent_offset); 4941 memset(kaddr + pg_offset, 0, copy_size); 4942 kunmap_atomic(kaddr, KM_USER0); 4943 } 4944 kfree(tmp); 4945 return 0; 4946 } 4947 4948 /* 4949 * a bit scary, this does extent mapping from logical file offset to the disk. 4950 * the ugly parts come from merging extents from the disk with the in-ram 4951 * representation. This gets more complex because of the data=ordered code, 4952 * where the in-ram extents might be locked pending data=ordered completion. 4953 * 4954 * This also copies inline extents directly into the page. 4955 */ 4956 4957 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 4958 size_t pg_offset, u64 start, u64 len, 4959 int create) 4960 { 4961 int ret; 4962 int err = 0; 4963 u64 bytenr; 4964 u64 extent_start = 0; 4965 u64 extent_end = 0; 4966 u64 objectid = btrfs_ino(inode); 4967 u32 found_type; 4968 struct btrfs_path *path = NULL; 4969 struct btrfs_root *root = BTRFS_I(inode)->root; 4970 struct btrfs_file_extent_item *item; 4971 struct extent_buffer *leaf; 4972 struct btrfs_key found_key; 4973 struct extent_map *em = NULL; 4974 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 4975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 4976 struct btrfs_trans_handle *trans = NULL; 4977 int compress_type; 4978 4979 again: 4980 read_lock(&em_tree->lock); 4981 em = lookup_extent_mapping(em_tree, start, len); 4982 if (em) 4983 em->bdev = root->fs_info->fs_devices->latest_bdev; 4984 read_unlock(&em_tree->lock); 4985 4986 if (em) { 4987 if (em->start > start || em->start + em->len <= start) 4988 free_extent_map(em); 4989 else if (em->block_start == EXTENT_MAP_INLINE && page) 4990 free_extent_map(em); 4991 else 4992 goto out; 4993 } 4994 em = alloc_extent_map(); 4995 if (!em) { 4996 err = -ENOMEM; 4997 goto out; 4998 } 4999 em->bdev = root->fs_info->fs_devices->latest_bdev; 5000 em->start = EXTENT_MAP_HOLE; 5001 em->orig_start = EXTENT_MAP_HOLE; 5002 em->len = (u64)-1; 5003 em->block_len = (u64)-1; 5004 5005 if (!path) { 5006 path = btrfs_alloc_path(); 5007 if (!path) { 5008 err = -ENOMEM; 5009 goto out; 5010 } 5011 /* 5012 * Chances are we'll be called again, so go ahead and do 5013 * readahead 5014 */ 5015 path->reada = 1; 5016 } 5017 5018 ret = btrfs_lookup_file_extent(trans, root, path, 5019 objectid, start, trans != NULL); 5020 if (ret < 0) { 5021 err = ret; 5022 goto out; 5023 } 5024 5025 if (ret != 0) { 5026 if (path->slots[0] == 0) 5027 goto not_found; 5028 path->slots[0]--; 5029 } 5030 5031 leaf = path->nodes[0]; 5032 item = btrfs_item_ptr(leaf, path->slots[0], 5033 struct btrfs_file_extent_item); 5034 /* are we inside the extent that was found? */ 5035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5036 found_type = btrfs_key_type(&found_key); 5037 if (found_key.objectid != objectid || 5038 found_type != BTRFS_EXTENT_DATA_KEY) { 5039 goto not_found; 5040 } 5041 5042 found_type = btrfs_file_extent_type(leaf, item); 5043 extent_start = found_key.offset; 5044 compress_type = btrfs_file_extent_compression(leaf, item); 5045 if (found_type == BTRFS_FILE_EXTENT_REG || 5046 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5047 extent_end = extent_start + 5048 btrfs_file_extent_num_bytes(leaf, item); 5049 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5050 size_t size; 5051 size = btrfs_file_extent_inline_len(leaf, item); 5052 extent_end = (extent_start + size + root->sectorsize - 1) & 5053 ~((u64)root->sectorsize - 1); 5054 } 5055 5056 if (start >= extent_end) { 5057 path->slots[0]++; 5058 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 5059 ret = btrfs_next_leaf(root, path); 5060 if (ret < 0) { 5061 err = ret; 5062 goto out; 5063 } 5064 if (ret > 0) 5065 goto not_found; 5066 leaf = path->nodes[0]; 5067 } 5068 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5069 if (found_key.objectid != objectid || 5070 found_key.type != BTRFS_EXTENT_DATA_KEY) 5071 goto not_found; 5072 if (start + len <= found_key.offset) 5073 goto not_found; 5074 em->start = start; 5075 em->len = found_key.offset - start; 5076 goto not_found_em; 5077 } 5078 5079 if (found_type == BTRFS_FILE_EXTENT_REG || 5080 found_type == BTRFS_FILE_EXTENT_PREALLOC) { 5081 em->start = extent_start; 5082 em->len = extent_end - extent_start; 5083 em->orig_start = extent_start - 5084 btrfs_file_extent_offset(leaf, item); 5085 bytenr = btrfs_file_extent_disk_bytenr(leaf, item); 5086 if (bytenr == 0) { 5087 em->block_start = EXTENT_MAP_HOLE; 5088 goto insert; 5089 } 5090 if (compress_type != BTRFS_COMPRESS_NONE) { 5091 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5092 em->compress_type = compress_type; 5093 em->block_start = bytenr; 5094 em->block_len = btrfs_file_extent_disk_num_bytes(leaf, 5095 item); 5096 } else { 5097 bytenr += btrfs_file_extent_offset(leaf, item); 5098 em->block_start = bytenr; 5099 em->block_len = em->len; 5100 if (found_type == BTRFS_FILE_EXTENT_PREALLOC) 5101 set_bit(EXTENT_FLAG_PREALLOC, &em->flags); 5102 } 5103 goto insert; 5104 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) { 5105 unsigned long ptr; 5106 char *map; 5107 size_t size; 5108 size_t extent_offset; 5109 size_t copy_size; 5110 5111 em->block_start = EXTENT_MAP_INLINE; 5112 if (!page || create) { 5113 em->start = extent_start; 5114 em->len = extent_end - extent_start; 5115 goto out; 5116 } 5117 5118 size = btrfs_file_extent_inline_len(leaf, item); 5119 extent_offset = page_offset(page) + pg_offset - extent_start; 5120 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset, 5121 size - extent_offset); 5122 em->start = extent_start + extent_offset; 5123 em->len = (copy_size + root->sectorsize - 1) & 5124 ~((u64)root->sectorsize - 1); 5125 em->orig_start = EXTENT_MAP_INLINE; 5126 if (compress_type) { 5127 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 5128 em->compress_type = compress_type; 5129 } 5130 ptr = btrfs_file_extent_inline_start(item) + extent_offset; 5131 if (create == 0 && !PageUptodate(page)) { 5132 if (btrfs_file_extent_compression(leaf, item) != 5133 BTRFS_COMPRESS_NONE) { 5134 ret = uncompress_inline(path, inode, page, 5135 pg_offset, 5136 extent_offset, item); 5137 BUG_ON(ret); 5138 } else { 5139 map = kmap(page); 5140 read_extent_buffer(leaf, map + pg_offset, ptr, 5141 copy_size); 5142 if (pg_offset + copy_size < PAGE_CACHE_SIZE) { 5143 memset(map + pg_offset + copy_size, 0, 5144 PAGE_CACHE_SIZE - pg_offset - 5145 copy_size); 5146 } 5147 kunmap(page); 5148 } 5149 flush_dcache_page(page); 5150 } else if (create && PageUptodate(page)) { 5151 WARN_ON(1); 5152 if (!trans) { 5153 kunmap(page); 5154 free_extent_map(em); 5155 em = NULL; 5156 5157 btrfs_release_path(path); 5158 trans = btrfs_join_transaction(root); 5159 5160 if (IS_ERR(trans)) 5161 return ERR_CAST(trans); 5162 goto again; 5163 } 5164 map = kmap(page); 5165 write_extent_buffer(leaf, map + pg_offset, ptr, 5166 copy_size); 5167 kunmap(page); 5168 btrfs_mark_buffer_dirty(leaf); 5169 } 5170 set_extent_uptodate(io_tree, em->start, 5171 extent_map_end(em) - 1, NULL, GFP_NOFS); 5172 goto insert; 5173 } else { 5174 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type); 5175 WARN_ON(1); 5176 } 5177 not_found: 5178 em->start = start; 5179 em->len = len; 5180 not_found_em: 5181 em->block_start = EXTENT_MAP_HOLE; 5182 set_bit(EXTENT_FLAG_VACANCY, &em->flags); 5183 insert: 5184 btrfs_release_path(path); 5185 if (em->start > start || extent_map_end(em) <= start) { 5186 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed " 5187 "[%llu %llu]\n", (unsigned long long)em->start, 5188 (unsigned long long)em->len, 5189 (unsigned long long)start, 5190 (unsigned long long)len); 5191 err = -EIO; 5192 goto out; 5193 } 5194 5195 err = 0; 5196 write_lock(&em_tree->lock); 5197 ret = add_extent_mapping(em_tree, em); 5198 /* it is possible that someone inserted the extent into the tree 5199 * while we had the lock dropped. It is also possible that 5200 * an overlapping map exists in the tree 5201 */ 5202 if (ret == -EEXIST) { 5203 struct extent_map *existing; 5204 5205 ret = 0; 5206 5207 existing = lookup_extent_mapping(em_tree, start, len); 5208 if (existing && (existing->start > start || 5209 existing->start + existing->len <= start)) { 5210 free_extent_map(existing); 5211 existing = NULL; 5212 } 5213 if (!existing) { 5214 existing = lookup_extent_mapping(em_tree, em->start, 5215 em->len); 5216 if (existing) { 5217 err = merge_extent_mapping(em_tree, existing, 5218 em, start, 5219 root->sectorsize); 5220 free_extent_map(existing); 5221 if (err) { 5222 free_extent_map(em); 5223 em = NULL; 5224 } 5225 } else { 5226 err = -EIO; 5227 free_extent_map(em); 5228 em = NULL; 5229 } 5230 } else { 5231 free_extent_map(em); 5232 em = existing; 5233 err = 0; 5234 } 5235 } 5236 write_unlock(&em_tree->lock); 5237 out: 5238 5239 trace_btrfs_get_extent(root, em); 5240 5241 if (path) 5242 btrfs_free_path(path); 5243 if (trans) { 5244 ret = btrfs_end_transaction(trans, root); 5245 if (!err) 5246 err = ret; 5247 } 5248 if (err) { 5249 free_extent_map(em); 5250 return ERR_PTR(err); 5251 } 5252 return em; 5253 } 5254 5255 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 5256 size_t pg_offset, u64 start, u64 len, 5257 int create) 5258 { 5259 struct extent_map *em; 5260 struct extent_map *hole_em = NULL; 5261 u64 range_start = start; 5262 u64 end; 5263 u64 found; 5264 u64 found_end; 5265 int err = 0; 5266 5267 em = btrfs_get_extent(inode, page, pg_offset, start, len, create); 5268 if (IS_ERR(em)) 5269 return em; 5270 if (em) { 5271 /* 5272 * if our em maps to a hole, there might 5273 * actually be delalloc bytes behind it 5274 */ 5275 if (em->block_start != EXTENT_MAP_HOLE) 5276 return em; 5277 else 5278 hole_em = em; 5279 } 5280 5281 /* check to see if we've wrapped (len == -1 or similar) */ 5282 end = start + len; 5283 if (end < start) 5284 end = (u64)-1; 5285 else 5286 end -= 1; 5287 5288 em = NULL; 5289 5290 /* ok, we didn't find anything, lets look for delalloc */ 5291 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start, 5292 end, len, EXTENT_DELALLOC, 1); 5293 found_end = range_start + found; 5294 if (found_end < range_start) 5295 found_end = (u64)-1; 5296 5297 /* 5298 * we didn't find anything useful, return 5299 * the original results from get_extent() 5300 */ 5301 if (range_start > end || found_end <= start) { 5302 em = hole_em; 5303 hole_em = NULL; 5304 goto out; 5305 } 5306 5307 /* adjust the range_start to make sure it doesn't 5308 * go backwards from the start they passed in 5309 */ 5310 range_start = max(start,range_start); 5311 found = found_end - range_start; 5312 5313 if (found > 0) { 5314 u64 hole_start = start; 5315 u64 hole_len = len; 5316 5317 em = alloc_extent_map(); 5318 if (!em) { 5319 err = -ENOMEM; 5320 goto out; 5321 } 5322 /* 5323 * when btrfs_get_extent can't find anything it 5324 * returns one huge hole 5325 * 5326 * make sure what it found really fits our range, and 5327 * adjust to make sure it is based on the start from 5328 * the caller 5329 */ 5330 if (hole_em) { 5331 u64 calc_end = extent_map_end(hole_em); 5332 5333 if (calc_end <= start || (hole_em->start > end)) { 5334 free_extent_map(hole_em); 5335 hole_em = NULL; 5336 } else { 5337 hole_start = max(hole_em->start, start); 5338 hole_len = calc_end - hole_start; 5339 } 5340 } 5341 em->bdev = NULL; 5342 if (hole_em && range_start > hole_start) { 5343 /* our hole starts before our delalloc, so we 5344 * have to return just the parts of the hole 5345 * that go until the delalloc starts 5346 */ 5347 em->len = min(hole_len, 5348 range_start - hole_start); 5349 em->start = hole_start; 5350 em->orig_start = hole_start; 5351 /* 5352 * don't adjust block start at all, 5353 * it is fixed at EXTENT_MAP_HOLE 5354 */ 5355 em->block_start = hole_em->block_start; 5356 em->block_len = hole_len; 5357 } else { 5358 em->start = range_start; 5359 em->len = found; 5360 em->orig_start = range_start; 5361 em->block_start = EXTENT_MAP_DELALLOC; 5362 em->block_len = found; 5363 } 5364 } else if (hole_em) { 5365 return hole_em; 5366 } 5367 out: 5368 5369 free_extent_map(hole_em); 5370 if (err) { 5371 free_extent_map(em); 5372 return ERR_PTR(err); 5373 } 5374 return em; 5375 } 5376 5377 static struct extent_map *btrfs_new_extent_direct(struct inode *inode, 5378 struct extent_map *em, 5379 u64 start, u64 len) 5380 { 5381 struct btrfs_root *root = BTRFS_I(inode)->root; 5382 struct btrfs_trans_handle *trans; 5383 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 5384 struct btrfs_key ins; 5385 u64 alloc_hint; 5386 int ret; 5387 bool insert = false; 5388 5389 /* 5390 * Ok if the extent map we looked up is a hole and is for the exact 5391 * range we want, there is no reason to allocate a new one, however if 5392 * it is not right then we need to free this one and drop the cache for 5393 * our range. 5394 */ 5395 if (em->block_start != EXTENT_MAP_HOLE || em->start != start || 5396 em->len != len) { 5397 free_extent_map(em); 5398 em = NULL; 5399 insert = true; 5400 btrfs_drop_extent_cache(inode, start, start + len - 1, 0); 5401 } 5402 5403 trans = btrfs_join_transaction(root); 5404 if (IS_ERR(trans)) 5405 return ERR_CAST(trans); 5406 5407 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024) 5408 btrfs_add_inode_defrag(trans, inode); 5409 5410 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5411 5412 alloc_hint = get_extent_allocation_hint(inode, start, len); 5413 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0, 5414 alloc_hint, (u64)-1, &ins, 1); 5415 if (ret) { 5416 em = ERR_PTR(ret); 5417 goto out; 5418 } 5419 5420 if (!em) { 5421 em = alloc_extent_map(); 5422 if (!em) { 5423 em = ERR_PTR(-ENOMEM); 5424 goto out; 5425 } 5426 } 5427 5428 em->start = start; 5429 em->orig_start = em->start; 5430 em->len = ins.offset; 5431 5432 em->block_start = ins.objectid; 5433 em->block_len = ins.offset; 5434 em->bdev = root->fs_info->fs_devices->latest_bdev; 5435 5436 /* 5437 * We need to do this because if we're using the original em we searched 5438 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that. 5439 */ 5440 em->flags = 0; 5441 set_bit(EXTENT_FLAG_PINNED, &em->flags); 5442 5443 while (insert) { 5444 write_lock(&em_tree->lock); 5445 ret = add_extent_mapping(em_tree, em); 5446 write_unlock(&em_tree->lock); 5447 if (ret != -EEXIST) 5448 break; 5449 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0); 5450 } 5451 5452 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid, 5453 ins.offset, ins.offset, 0); 5454 if (ret) { 5455 btrfs_free_reserved_extent(root, ins.objectid, ins.offset); 5456 em = ERR_PTR(ret); 5457 } 5458 out: 5459 btrfs_end_transaction(trans, root); 5460 return em; 5461 } 5462 5463 /* 5464 * returns 1 when the nocow is safe, < 1 on error, 0 if the 5465 * block must be cow'd 5466 */ 5467 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans, 5468 struct inode *inode, u64 offset, u64 len) 5469 { 5470 struct btrfs_path *path; 5471 int ret; 5472 struct extent_buffer *leaf; 5473 struct btrfs_root *root = BTRFS_I(inode)->root; 5474 struct btrfs_file_extent_item *fi; 5475 struct btrfs_key key; 5476 u64 disk_bytenr; 5477 u64 backref_offset; 5478 u64 extent_end; 5479 u64 num_bytes; 5480 int slot; 5481 int found_type; 5482 5483 path = btrfs_alloc_path(); 5484 if (!path) 5485 return -ENOMEM; 5486 5487 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode), 5488 offset, 0); 5489 if (ret < 0) 5490 goto out; 5491 5492 slot = path->slots[0]; 5493 if (ret == 1) { 5494 if (slot == 0) { 5495 /* can't find the item, must cow */ 5496 ret = 0; 5497 goto out; 5498 } 5499 slot--; 5500 } 5501 ret = 0; 5502 leaf = path->nodes[0]; 5503 btrfs_item_key_to_cpu(leaf, &key, slot); 5504 if (key.objectid != btrfs_ino(inode) || 5505 key.type != BTRFS_EXTENT_DATA_KEY) { 5506 /* not our file or wrong item type, must cow */ 5507 goto out; 5508 } 5509 5510 if (key.offset > offset) { 5511 /* Wrong offset, must cow */ 5512 goto out; 5513 } 5514 5515 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); 5516 found_type = btrfs_file_extent_type(leaf, fi); 5517 if (found_type != BTRFS_FILE_EXTENT_REG && 5518 found_type != BTRFS_FILE_EXTENT_PREALLOC) { 5519 /* not a regular extent, must cow */ 5520 goto out; 5521 } 5522 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 5523 backref_offset = btrfs_file_extent_offset(leaf, fi); 5524 5525 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); 5526 if (extent_end < offset + len) { 5527 /* extent doesn't include our full range, must cow */ 5528 goto out; 5529 } 5530 5531 if (btrfs_extent_readonly(root, disk_bytenr)) 5532 goto out; 5533 5534 /* 5535 * look for other files referencing this extent, if we 5536 * find any we must cow 5537 */ 5538 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode), 5539 key.offset - backref_offset, disk_bytenr)) 5540 goto out; 5541 5542 /* 5543 * adjust disk_bytenr and num_bytes to cover just the bytes 5544 * in this extent we are about to write. If there 5545 * are any csums in that range we have to cow in order 5546 * to keep the csums correct 5547 */ 5548 disk_bytenr += backref_offset; 5549 disk_bytenr += offset - key.offset; 5550 num_bytes = min(offset + len, extent_end) - offset; 5551 if (csum_exist_in_range(root, disk_bytenr, num_bytes)) 5552 goto out; 5553 /* 5554 * all of the above have passed, it is safe to overwrite this extent 5555 * without cow 5556 */ 5557 ret = 1; 5558 out: 5559 btrfs_free_path(path); 5560 return ret; 5561 } 5562 5563 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, 5564 struct buffer_head *bh_result, int create) 5565 { 5566 struct extent_map *em; 5567 struct btrfs_root *root = BTRFS_I(inode)->root; 5568 u64 start = iblock << inode->i_blkbits; 5569 u64 len = bh_result->b_size; 5570 struct btrfs_trans_handle *trans; 5571 5572 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 5573 if (IS_ERR(em)) 5574 return PTR_ERR(em); 5575 5576 /* 5577 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered 5578 * io. INLINE is special, and we could probably kludge it in here, but 5579 * it's still buffered so for safety lets just fall back to the generic 5580 * buffered path. 5581 * 5582 * For COMPRESSED we _have_ to read the entire extent in so we can 5583 * decompress it, so there will be buffering required no matter what we 5584 * do, so go ahead and fallback to buffered. 5585 * 5586 * We return -ENOTBLK because thats what makes DIO go ahead and go back 5587 * to buffered IO. Don't blame me, this is the price we pay for using 5588 * the generic code. 5589 */ 5590 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || 5591 em->block_start == EXTENT_MAP_INLINE) { 5592 free_extent_map(em); 5593 return -ENOTBLK; 5594 } 5595 5596 /* Just a good old fashioned hole, return */ 5597 if (!create && (em->block_start == EXTENT_MAP_HOLE || 5598 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) { 5599 free_extent_map(em); 5600 /* DIO will do one hole at a time, so just unlock a sector */ 5601 unlock_extent(&BTRFS_I(inode)->io_tree, start, 5602 start + root->sectorsize - 1, GFP_NOFS); 5603 return 0; 5604 } 5605 5606 /* 5607 * We don't allocate a new extent in the following cases 5608 * 5609 * 1) The inode is marked as NODATACOW. In this case we'll just use the 5610 * existing extent. 5611 * 2) The extent is marked as PREALLOC. We're good to go here and can 5612 * just use the extent. 5613 * 5614 */ 5615 if (!create) { 5616 len = em->len - (start - em->start); 5617 goto map; 5618 } 5619 5620 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || 5621 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && 5622 em->block_start != EXTENT_MAP_HOLE)) { 5623 int type; 5624 int ret; 5625 u64 block_start; 5626 5627 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5628 type = BTRFS_ORDERED_PREALLOC; 5629 else 5630 type = BTRFS_ORDERED_NOCOW; 5631 len = min(len, em->len - (start - em->start)); 5632 block_start = em->block_start + (start - em->start); 5633 5634 /* 5635 * we're not going to log anything, but we do need 5636 * to make sure the current transaction stays open 5637 * while we look for nocow cross refs 5638 */ 5639 trans = btrfs_join_transaction(root); 5640 if (IS_ERR(trans)) 5641 goto must_cow; 5642 5643 if (can_nocow_odirect(trans, inode, start, len) == 1) { 5644 ret = btrfs_add_ordered_extent_dio(inode, start, 5645 block_start, len, len, type); 5646 btrfs_end_transaction(trans, root); 5647 if (ret) { 5648 free_extent_map(em); 5649 return ret; 5650 } 5651 goto unlock; 5652 } 5653 btrfs_end_transaction(trans, root); 5654 } 5655 must_cow: 5656 /* 5657 * this will cow the extent, reset the len in case we changed 5658 * it above 5659 */ 5660 len = bh_result->b_size; 5661 em = btrfs_new_extent_direct(inode, em, start, len); 5662 if (IS_ERR(em)) 5663 return PTR_ERR(em); 5664 len = min(len, em->len - (start - em->start)); 5665 unlock: 5666 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1, 5667 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1, 5668 0, NULL, GFP_NOFS); 5669 map: 5670 bh_result->b_blocknr = (em->block_start + (start - em->start)) >> 5671 inode->i_blkbits; 5672 bh_result->b_size = len; 5673 bh_result->b_bdev = em->bdev; 5674 set_buffer_mapped(bh_result); 5675 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 5676 set_buffer_new(bh_result); 5677 5678 free_extent_map(em); 5679 5680 return 0; 5681 } 5682 5683 struct btrfs_dio_private { 5684 struct inode *inode; 5685 u64 logical_offset; 5686 u64 disk_bytenr; 5687 u64 bytes; 5688 u32 *csums; 5689 void *private; 5690 5691 /* number of bios pending for this dio */ 5692 atomic_t pending_bios; 5693 5694 /* IO errors */ 5695 int errors; 5696 5697 struct bio *orig_bio; 5698 }; 5699 5700 static void btrfs_endio_direct_read(struct bio *bio, int err) 5701 { 5702 struct btrfs_dio_private *dip = bio->bi_private; 5703 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 5704 struct bio_vec *bvec = bio->bi_io_vec; 5705 struct inode *inode = dip->inode; 5706 struct btrfs_root *root = BTRFS_I(inode)->root; 5707 u64 start; 5708 u32 *private = dip->csums; 5709 5710 start = dip->logical_offset; 5711 do { 5712 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) { 5713 struct page *page = bvec->bv_page; 5714 char *kaddr; 5715 u32 csum = ~(u32)0; 5716 unsigned long flags; 5717 5718 local_irq_save(flags); 5719 kaddr = kmap_atomic(page, KM_IRQ0); 5720 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset, 5721 csum, bvec->bv_len); 5722 btrfs_csum_final(csum, (char *)&csum); 5723 kunmap_atomic(kaddr, KM_IRQ0); 5724 local_irq_restore(flags); 5725 5726 flush_dcache_page(bvec->bv_page); 5727 if (csum != *private) { 5728 printk(KERN_ERR "btrfs csum failed ino %llu off" 5729 " %llu csum %u private %u\n", 5730 (unsigned long long)btrfs_ino(inode), 5731 (unsigned long long)start, 5732 csum, *private); 5733 err = -EIO; 5734 } 5735 } 5736 5737 start += bvec->bv_len; 5738 private++; 5739 bvec++; 5740 } while (bvec <= bvec_end); 5741 5742 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, 5743 dip->logical_offset + dip->bytes - 1, GFP_NOFS); 5744 bio->bi_private = dip->private; 5745 5746 kfree(dip->csums); 5747 kfree(dip); 5748 5749 /* If we had a csum failure make sure to clear the uptodate flag */ 5750 if (err) 5751 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5752 dio_end_io(bio, err); 5753 } 5754 5755 static void btrfs_endio_direct_write(struct bio *bio, int err) 5756 { 5757 struct btrfs_dio_private *dip = bio->bi_private; 5758 struct inode *inode = dip->inode; 5759 struct btrfs_root *root = BTRFS_I(inode)->root; 5760 struct btrfs_trans_handle *trans; 5761 struct btrfs_ordered_extent *ordered = NULL; 5762 struct extent_state *cached_state = NULL; 5763 u64 ordered_offset = dip->logical_offset; 5764 u64 ordered_bytes = dip->bytes; 5765 int ret; 5766 5767 if (err) 5768 goto out_done; 5769 again: 5770 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered, 5771 &ordered_offset, 5772 ordered_bytes); 5773 if (!ret) 5774 goto out_test; 5775 5776 BUG_ON(!ordered); 5777 5778 trans = btrfs_join_transaction(root); 5779 if (IS_ERR(trans)) { 5780 err = -ENOMEM; 5781 goto out; 5782 } 5783 trans->block_rsv = &root->fs_info->delalloc_block_rsv; 5784 5785 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) { 5786 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5787 if (!ret) 5788 ret = btrfs_update_inode(trans, root, inode); 5789 err = ret; 5790 goto out; 5791 } 5792 5793 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5794 ordered->file_offset + ordered->len - 1, 0, 5795 &cached_state, GFP_NOFS); 5796 5797 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { 5798 ret = btrfs_mark_extent_written(trans, inode, 5799 ordered->file_offset, 5800 ordered->file_offset + 5801 ordered->len); 5802 if (ret) { 5803 err = ret; 5804 goto out_unlock; 5805 } 5806 } else { 5807 ret = insert_reserved_file_extent(trans, inode, 5808 ordered->file_offset, 5809 ordered->start, 5810 ordered->disk_len, 5811 ordered->len, 5812 ordered->len, 5813 0, 0, 0, 5814 BTRFS_FILE_EXTENT_REG); 5815 unpin_extent_cache(&BTRFS_I(inode)->extent_tree, 5816 ordered->file_offset, ordered->len); 5817 if (ret) { 5818 err = ret; 5819 WARN_ON(1); 5820 goto out_unlock; 5821 } 5822 } 5823 5824 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list); 5825 ret = btrfs_ordered_update_i_size(inode, 0, ordered); 5826 if (!ret) 5827 btrfs_update_inode(trans, root, inode); 5828 ret = 0; 5829 out_unlock: 5830 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset, 5831 ordered->file_offset + ordered->len - 1, 5832 &cached_state, GFP_NOFS); 5833 out: 5834 btrfs_delalloc_release_metadata(inode, ordered->len); 5835 btrfs_end_transaction(trans, root); 5836 ordered_offset = ordered->file_offset + ordered->len; 5837 btrfs_put_ordered_extent(ordered); 5838 btrfs_put_ordered_extent(ordered); 5839 5840 out_test: 5841 /* 5842 * our bio might span multiple ordered extents. If we haven't 5843 * completed the accounting for the whole dio, go back and try again 5844 */ 5845 if (ordered_offset < dip->logical_offset + dip->bytes) { 5846 ordered_bytes = dip->logical_offset + dip->bytes - 5847 ordered_offset; 5848 goto again; 5849 } 5850 out_done: 5851 bio->bi_private = dip->private; 5852 5853 kfree(dip->csums); 5854 kfree(dip); 5855 5856 /* If we had an error make sure to clear the uptodate flag */ 5857 if (err) 5858 clear_bit(BIO_UPTODATE, &bio->bi_flags); 5859 dio_end_io(bio, err); 5860 } 5861 5862 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw, 5863 struct bio *bio, int mirror_num, 5864 unsigned long bio_flags, u64 offset) 5865 { 5866 int ret; 5867 struct btrfs_root *root = BTRFS_I(inode)->root; 5868 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1); 5869 BUG_ON(ret); 5870 return 0; 5871 } 5872 5873 static void btrfs_end_dio_bio(struct bio *bio, int err) 5874 { 5875 struct btrfs_dio_private *dip = bio->bi_private; 5876 5877 if (err) { 5878 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu " 5879 "sector %#Lx len %u err no %d\n", 5880 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw, 5881 (unsigned long long)bio->bi_sector, bio->bi_size, err); 5882 dip->errors = 1; 5883 5884 /* 5885 * before atomic variable goto zero, we must make sure 5886 * dip->errors is perceived to be set. 5887 */ 5888 smp_mb__before_atomic_dec(); 5889 } 5890 5891 /* if there are more bios still pending for this dio, just exit */ 5892 if (!atomic_dec_and_test(&dip->pending_bios)) 5893 goto out; 5894 5895 if (dip->errors) 5896 bio_io_error(dip->orig_bio); 5897 else { 5898 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags); 5899 bio_endio(dip->orig_bio, 0); 5900 } 5901 out: 5902 bio_put(bio); 5903 } 5904 5905 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev, 5906 u64 first_sector, gfp_t gfp_flags) 5907 { 5908 int nr_vecs = bio_get_nr_vecs(bdev); 5909 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags); 5910 } 5911 5912 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, 5913 int rw, u64 file_offset, int skip_sum, 5914 u32 *csums, int async_submit) 5915 { 5916 int write = rw & REQ_WRITE; 5917 struct btrfs_root *root = BTRFS_I(inode)->root; 5918 int ret; 5919 5920 bio_get(bio); 5921 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0); 5922 if (ret) 5923 goto err; 5924 5925 if (skip_sum) 5926 goto map; 5927 5928 if (write && async_submit) { 5929 ret = btrfs_wq_submit_bio(root->fs_info, 5930 inode, rw, bio, 0, 0, 5931 file_offset, 5932 __btrfs_submit_bio_start_direct_io, 5933 __btrfs_submit_bio_done); 5934 goto err; 5935 } else if (write) { 5936 /* 5937 * If we aren't doing async submit, calculate the csum of the 5938 * bio now. 5939 */ 5940 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1); 5941 if (ret) 5942 goto err; 5943 } else if (!skip_sum) { 5944 ret = btrfs_lookup_bio_sums_dio(root, inode, bio, 5945 file_offset, csums); 5946 if (ret) 5947 goto err; 5948 } 5949 5950 map: 5951 ret = btrfs_map_bio(root, rw, bio, 0, async_submit); 5952 err: 5953 bio_put(bio); 5954 return ret; 5955 } 5956 5957 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip, 5958 int skip_sum) 5959 { 5960 struct inode *inode = dip->inode; 5961 struct btrfs_root *root = BTRFS_I(inode)->root; 5962 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5963 struct bio *bio; 5964 struct bio *orig_bio = dip->orig_bio; 5965 struct bio_vec *bvec = orig_bio->bi_io_vec; 5966 u64 start_sector = orig_bio->bi_sector; 5967 u64 file_offset = dip->logical_offset; 5968 u64 submit_len = 0; 5969 u64 map_length; 5970 int nr_pages = 0; 5971 u32 *csums = dip->csums; 5972 int ret = 0; 5973 int async_submit = 0; 5974 int write = rw & REQ_WRITE; 5975 5976 map_length = orig_bio->bi_size; 5977 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 5978 &map_length, NULL, 0); 5979 if (ret) { 5980 bio_put(orig_bio); 5981 return -EIO; 5982 } 5983 5984 if (map_length >= orig_bio->bi_size) { 5985 bio = orig_bio; 5986 goto submit; 5987 } 5988 5989 async_submit = 1; 5990 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS); 5991 if (!bio) 5992 return -ENOMEM; 5993 bio->bi_private = dip; 5994 bio->bi_end_io = btrfs_end_dio_bio; 5995 atomic_inc(&dip->pending_bios); 5996 5997 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) { 5998 if (unlikely(map_length < submit_len + bvec->bv_len || 5999 bio_add_page(bio, bvec->bv_page, bvec->bv_len, 6000 bvec->bv_offset) < bvec->bv_len)) { 6001 /* 6002 * inc the count before we submit the bio so 6003 * we know the end IO handler won't happen before 6004 * we inc the count. Otherwise, the dip might get freed 6005 * before we're done setting it up 6006 */ 6007 atomic_inc(&dip->pending_bios); 6008 ret = __btrfs_submit_dio_bio(bio, inode, rw, 6009 file_offset, skip_sum, 6010 csums, async_submit); 6011 if (ret) { 6012 bio_put(bio); 6013 atomic_dec(&dip->pending_bios); 6014 goto out_err; 6015 } 6016 6017 /* Write's use the ordered csums */ 6018 if (!write && !skip_sum) 6019 csums = csums + nr_pages; 6020 start_sector += submit_len >> 9; 6021 file_offset += submit_len; 6022 6023 submit_len = 0; 6024 nr_pages = 0; 6025 6026 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, 6027 start_sector, GFP_NOFS); 6028 if (!bio) 6029 goto out_err; 6030 bio->bi_private = dip; 6031 bio->bi_end_io = btrfs_end_dio_bio; 6032 6033 map_length = orig_bio->bi_size; 6034 ret = btrfs_map_block(map_tree, READ, start_sector << 9, 6035 &map_length, NULL, 0); 6036 if (ret) { 6037 bio_put(bio); 6038 goto out_err; 6039 } 6040 } else { 6041 submit_len += bvec->bv_len; 6042 nr_pages ++; 6043 bvec++; 6044 } 6045 } 6046 6047 submit: 6048 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum, 6049 csums, async_submit); 6050 if (!ret) 6051 return 0; 6052 6053 bio_put(bio); 6054 out_err: 6055 dip->errors = 1; 6056 /* 6057 * before atomic variable goto zero, we must 6058 * make sure dip->errors is perceived to be set. 6059 */ 6060 smp_mb__before_atomic_dec(); 6061 if (atomic_dec_and_test(&dip->pending_bios)) 6062 bio_io_error(dip->orig_bio); 6063 6064 /* bio_end_io() will handle error, so we needn't return it */ 6065 return 0; 6066 } 6067 6068 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode, 6069 loff_t file_offset) 6070 { 6071 struct btrfs_root *root = BTRFS_I(inode)->root; 6072 struct btrfs_dio_private *dip; 6073 struct bio_vec *bvec = bio->bi_io_vec; 6074 int skip_sum; 6075 int write = rw & REQ_WRITE; 6076 int ret = 0; 6077 6078 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; 6079 6080 dip = kmalloc(sizeof(*dip), GFP_NOFS); 6081 if (!dip) { 6082 ret = -ENOMEM; 6083 goto free_ordered; 6084 } 6085 dip->csums = NULL; 6086 6087 /* Write's use the ordered csum stuff, so we don't need dip->csums */ 6088 if (!write && !skip_sum) { 6089 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS); 6090 if (!dip->csums) { 6091 kfree(dip); 6092 ret = -ENOMEM; 6093 goto free_ordered; 6094 } 6095 } 6096 6097 dip->private = bio->bi_private; 6098 dip->inode = inode; 6099 dip->logical_offset = file_offset; 6100 6101 dip->bytes = 0; 6102 do { 6103 dip->bytes += bvec->bv_len; 6104 bvec++; 6105 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1)); 6106 6107 dip->disk_bytenr = (u64)bio->bi_sector << 9; 6108 bio->bi_private = dip; 6109 dip->errors = 0; 6110 dip->orig_bio = bio; 6111 atomic_set(&dip->pending_bios, 0); 6112 6113 if (write) 6114 bio->bi_end_io = btrfs_endio_direct_write; 6115 else 6116 bio->bi_end_io = btrfs_endio_direct_read; 6117 6118 ret = btrfs_submit_direct_hook(rw, dip, skip_sum); 6119 if (!ret) 6120 return; 6121 free_ordered: 6122 /* 6123 * If this is a write, we need to clean up the reserved space and kill 6124 * the ordered extent. 6125 */ 6126 if (write) { 6127 struct btrfs_ordered_extent *ordered; 6128 ordered = btrfs_lookup_ordered_extent(inode, file_offset); 6129 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) && 6130 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) 6131 btrfs_free_reserved_extent(root, ordered->start, 6132 ordered->disk_len); 6133 btrfs_put_ordered_extent(ordered); 6134 btrfs_put_ordered_extent(ordered); 6135 } 6136 bio_endio(bio, ret); 6137 } 6138 6139 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb, 6140 const struct iovec *iov, loff_t offset, 6141 unsigned long nr_segs) 6142 { 6143 int seg; 6144 int i; 6145 size_t size; 6146 unsigned long addr; 6147 unsigned blocksize_mask = root->sectorsize - 1; 6148 ssize_t retval = -EINVAL; 6149 loff_t end = offset; 6150 6151 if (offset & blocksize_mask) 6152 goto out; 6153 6154 /* Check the memory alignment. Blocks cannot straddle pages */ 6155 for (seg = 0; seg < nr_segs; seg++) { 6156 addr = (unsigned long)iov[seg].iov_base; 6157 size = iov[seg].iov_len; 6158 end += size; 6159 if ((addr & blocksize_mask) || (size & blocksize_mask)) 6160 goto out; 6161 6162 /* If this is a write we don't need to check anymore */ 6163 if (rw & WRITE) 6164 continue; 6165 6166 /* 6167 * Check to make sure we don't have duplicate iov_base's in this 6168 * iovec, if so return EINVAL, otherwise we'll get csum errors 6169 * when reading back. 6170 */ 6171 for (i = seg + 1; i < nr_segs; i++) { 6172 if (iov[seg].iov_base == iov[i].iov_base) 6173 goto out; 6174 } 6175 } 6176 retval = 0; 6177 out: 6178 return retval; 6179 } 6180 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb, 6181 const struct iovec *iov, loff_t offset, 6182 unsigned long nr_segs) 6183 { 6184 struct file *file = iocb->ki_filp; 6185 struct inode *inode = file->f_mapping->host; 6186 struct btrfs_ordered_extent *ordered; 6187 struct extent_state *cached_state = NULL; 6188 u64 lockstart, lockend; 6189 ssize_t ret; 6190 int writing = rw & WRITE; 6191 int write_bits = 0; 6192 size_t count = iov_length(iov, nr_segs); 6193 6194 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov, 6195 offset, nr_segs)) { 6196 return 0; 6197 } 6198 6199 lockstart = offset; 6200 lockend = offset + count - 1; 6201 6202 if (writing) { 6203 ret = btrfs_delalloc_reserve_space(inode, count); 6204 if (ret) 6205 goto out; 6206 } 6207 6208 while (1) { 6209 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6210 0, &cached_state, GFP_NOFS); 6211 /* 6212 * We're concerned with the entire range that we're going to be 6213 * doing DIO to, so we need to make sure theres no ordered 6214 * extents in this range. 6215 */ 6216 ordered = btrfs_lookup_ordered_range(inode, lockstart, 6217 lockend - lockstart + 1); 6218 if (!ordered) 6219 break; 6220 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6221 &cached_state, GFP_NOFS); 6222 btrfs_start_ordered_extent(inode, ordered, 1); 6223 btrfs_put_ordered_extent(ordered); 6224 cond_resched(); 6225 } 6226 6227 /* 6228 * we don't use btrfs_set_extent_delalloc because we don't want 6229 * the dirty or uptodate bits 6230 */ 6231 if (writing) { 6232 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING; 6233 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, 6234 EXTENT_DELALLOC, 0, NULL, &cached_state, 6235 GFP_NOFS); 6236 if (ret) { 6237 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, 6238 lockend, EXTENT_LOCKED | write_bits, 6239 1, 0, &cached_state, GFP_NOFS); 6240 goto out; 6241 } 6242 } 6243 6244 free_extent_state(cached_state); 6245 cached_state = NULL; 6246 6247 ret = __blockdev_direct_IO(rw, iocb, inode, 6248 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev, 6249 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL, 6250 btrfs_submit_direct, 0); 6251 6252 if (ret < 0 && ret != -EIOCBQUEUED) { 6253 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset, 6254 offset + iov_length(iov, nr_segs) - 1, 6255 EXTENT_LOCKED | write_bits, 1, 0, 6256 &cached_state, GFP_NOFS); 6257 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) { 6258 /* 6259 * We're falling back to buffered, unlock the section we didn't 6260 * do IO on. 6261 */ 6262 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret, 6263 offset + iov_length(iov, nr_segs) - 1, 6264 EXTENT_LOCKED | write_bits, 1, 0, 6265 &cached_state, GFP_NOFS); 6266 } 6267 out: 6268 free_extent_state(cached_state); 6269 return ret; 6270 } 6271 6272 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 6273 __u64 start, __u64 len) 6274 { 6275 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap); 6276 } 6277 6278 int btrfs_readpage(struct file *file, struct page *page) 6279 { 6280 struct extent_io_tree *tree; 6281 tree = &BTRFS_I(page->mapping->host)->io_tree; 6282 return extent_read_full_page(tree, page, btrfs_get_extent); 6283 } 6284 6285 static int btrfs_writepage(struct page *page, struct writeback_control *wbc) 6286 { 6287 struct extent_io_tree *tree; 6288 6289 6290 if (current->flags & PF_MEMALLOC) { 6291 redirty_page_for_writepage(wbc, page); 6292 unlock_page(page); 6293 return 0; 6294 } 6295 tree = &BTRFS_I(page->mapping->host)->io_tree; 6296 return extent_write_full_page(tree, page, btrfs_get_extent, wbc); 6297 } 6298 6299 int btrfs_writepages(struct address_space *mapping, 6300 struct writeback_control *wbc) 6301 { 6302 struct extent_io_tree *tree; 6303 6304 tree = &BTRFS_I(mapping->host)->io_tree; 6305 return extent_writepages(tree, mapping, btrfs_get_extent, wbc); 6306 } 6307 6308 static int 6309 btrfs_readpages(struct file *file, struct address_space *mapping, 6310 struct list_head *pages, unsigned nr_pages) 6311 { 6312 struct extent_io_tree *tree; 6313 tree = &BTRFS_I(mapping->host)->io_tree; 6314 return extent_readpages(tree, mapping, pages, nr_pages, 6315 btrfs_get_extent); 6316 } 6317 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6318 { 6319 struct extent_io_tree *tree; 6320 struct extent_map_tree *map; 6321 int ret; 6322 6323 tree = &BTRFS_I(page->mapping->host)->io_tree; 6324 map = &BTRFS_I(page->mapping->host)->extent_tree; 6325 ret = try_release_extent_mapping(map, tree, page, gfp_flags); 6326 if (ret == 1) { 6327 ClearPagePrivate(page); 6328 set_page_private(page, 0); 6329 page_cache_release(page); 6330 } 6331 return ret; 6332 } 6333 6334 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) 6335 { 6336 if (PageWriteback(page) || PageDirty(page)) 6337 return 0; 6338 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS); 6339 } 6340 6341 static void btrfs_invalidatepage(struct page *page, unsigned long offset) 6342 { 6343 struct extent_io_tree *tree; 6344 struct btrfs_ordered_extent *ordered; 6345 struct extent_state *cached_state = NULL; 6346 u64 page_start = page_offset(page); 6347 u64 page_end = page_start + PAGE_CACHE_SIZE - 1; 6348 6349 6350 /* 6351 * we have the page locked, so new writeback can't start, 6352 * and the dirty bit won't be cleared while we are here. 6353 * 6354 * Wait for IO on this page so that we can safely clear 6355 * the PagePrivate2 bit and do ordered accounting 6356 */ 6357 wait_on_page_writeback(page); 6358 6359 tree = &BTRFS_I(page->mapping->host)->io_tree; 6360 if (offset) { 6361 btrfs_releasepage(page, GFP_NOFS); 6362 return; 6363 } 6364 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6365 GFP_NOFS); 6366 ordered = btrfs_lookup_ordered_extent(page->mapping->host, 6367 page_offset(page)); 6368 if (ordered) { 6369 /* 6370 * IO on this page will never be started, so we need 6371 * to account for any ordered extents now 6372 */ 6373 clear_extent_bit(tree, page_start, page_end, 6374 EXTENT_DIRTY | EXTENT_DELALLOC | 6375 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0, 6376 &cached_state, GFP_NOFS); 6377 /* 6378 * whoever cleared the private bit is responsible 6379 * for the finish_ordered_io 6380 */ 6381 if (TestClearPagePrivate2(page)) { 6382 btrfs_finish_ordered_io(page->mapping->host, 6383 page_start, page_end); 6384 } 6385 btrfs_put_ordered_extent(ordered); 6386 cached_state = NULL; 6387 lock_extent_bits(tree, page_start, page_end, 0, &cached_state, 6388 GFP_NOFS); 6389 } 6390 clear_extent_bit(tree, page_start, page_end, 6391 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 6392 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS); 6393 __btrfs_releasepage(page, GFP_NOFS); 6394 6395 ClearPageChecked(page); 6396 if (PagePrivate(page)) { 6397 ClearPagePrivate(page); 6398 set_page_private(page, 0); 6399 page_cache_release(page); 6400 } 6401 } 6402 6403 /* 6404 * btrfs_page_mkwrite() is not allowed to change the file size as it gets 6405 * called from a page fault handler when a page is first dirtied. Hence we must 6406 * be careful to check for EOF conditions here. We set the page up correctly 6407 * for a written page which means we get ENOSPC checking when writing into 6408 * holes and correct delalloc and unwritten extent mapping on filesystems that 6409 * support these features. 6410 * 6411 * We are not allowed to take the i_mutex here so we have to play games to 6412 * protect against truncate races as the page could now be beyond EOF. Because 6413 * vmtruncate() writes the inode size before removing pages, once we have the 6414 * page lock we can determine safely if the page is beyond EOF. If it is not 6415 * beyond EOF, then the page is guaranteed safe against truncation until we 6416 * unlock the page. 6417 */ 6418 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 6419 { 6420 struct page *page = vmf->page; 6421 struct inode *inode = fdentry(vma->vm_file)->d_inode; 6422 struct btrfs_root *root = BTRFS_I(inode)->root; 6423 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 6424 struct btrfs_ordered_extent *ordered; 6425 struct extent_state *cached_state = NULL; 6426 char *kaddr; 6427 unsigned long zero_start; 6428 loff_t size; 6429 int ret; 6430 u64 page_start; 6431 u64 page_end; 6432 6433 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE); 6434 if (ret) { 6435 if (ret == -ENOMEM) 6436 ret = VM_FAULT_OOM; 6437 else /* -ENOSPC, -EIO, etc */ 6438 ret = VM_FAULT_SIGBUS; 6439 goto out; 6440 } 6441 6442 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 6443 again: 6444 lock_page(page); 6445 size = i_size_read(inode); 6446 page_start = page_offset(page); 6447 page_end = page_start + PAGE_CACHE_SIZE - 1; 6448 6449 if ((page->mapping != inode->i_mapping) || 6450 (page_start >= size)) { 6451 /* page got truncated out from underneath us */ 6452 goto out_unlock; 6453 } 6454 wait_on_page_writeback(page); 6455 6456 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state, 6457 GFP_NOFS); 6458 set_page_extent_mapped(page); 6459 6460 /* 6461 * we can't set the delalloc bits if there are pending ordered 6462 * extents. Drop our locks and wait for them to finish 6463 */ 6464 ordered = btrfs_lookup_ordered_extent(inode, page_start); 6465 if (ordered) { 6466 unlock_extent_cached(io_tree, page_start, page_end, 6467 &cached_state, GFP_NOFS); 6468 unlock_page(page); 6469 btrfs_start_ordered_extent(inode, ordered, 1); 6470 btrfs_put_ordered_extent(ordered); 6471 goto again; 6472 } 6473 6474 /* 6475 * XXX - page_mkwrite gets called every time the page is dirtied, even 6476 * if it was already dirty, so for space accounting reasons we need to 6477 * clear any delalloc bits for the range we are fixing to save. There 6478 * is probably a better way to do this, but for now keep consistent with 6479 * prepare_pages in the normal write path. 6480 */ 6481 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end, 6482 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING, 6483 0, 0, &cached_state, GFP_NOFS); 6484 6485 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 6486 &cached_state); 6487 if (ret) { 6488 unlock_extent_cached(io_tree, page_start, page_end, 6489 &cached_state, GFP_NOFS); 6490 ret = VM_FAULT_SIGBUS; 6491 goto out_unlock; 6492 } 6493 ret = 0; 6494 6495 /* page is wholly or partially inside EOF */ 6496 if (page_start + PAGE_CACHE_SIZE > size) 6497 zero_start = size & ~PAGE_CACHE_MASK; 6498 else 6499 zero_start = PAGE_CACHE_SIZE; 6500 6501 if (zero_start != PAGE_CACHE_SIZE) { 6502 kaddr = kmap(page); 6503 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start); 6504 flush_dcache_page(page); 6505 kunmap(page); 6506 } 6507 ClearPageChecked(page); 6508 set_page_dirty(page); 6509 SetPageUptodate(page); 6510 6511 BTRFS_I(inode)->last_trans = root->fs_info->generation; 6512 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; 6513 6514 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS); 6515 6516 out_unlock: 6517 if (!ret) 6518 return VM_FAULT_LOCKED; 6519 unlock_page(page); 6520 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE); 6521 out: 6522 return ret; 6523 } 6524 6525 static int btrfs_truncate(struct inode *inode) 6526 { 6527 struct btrfs_root *root = BTRFS_I(inode)->root; 6528 struct btrfs_block_rsv *rsv; 6529 int ret; 6530 int err = 0; 6531 struct btrfs_trans_handle *trans; 6532 unsigned long nr; 6533 u64 mask = root->sectorsize - 1; 6534 6535 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size); 6536 if (ret) 6537 return ret; 6538 6539 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1); 6540 btrfs_ordered_update_i_size(inode, inode->i_size, NULL); 6541 6542 /* 6543 * Yes ladies and gentelment, this is indeed ugly. The fact is we have 6544 * 3 things going on here 6545 * 6546 * 1) We need to reserve space for our orphan item and the space to 6547 * delete our orphan item. Lord knows we don't want to have a dangling 6548 * orphan item because we didn't reserve space to remove it. 6549 * 6550 * 2) We need to reserve space to update our inode. 6551 * 6552 * 3) We need to have something to cache all the space that is going to 6553 * be free'd up by the truncate operation, but also have some slack 6554 * space reserved in case it uses space during the truncate (thank you 6555 * very much snapshotting). 6556 * 6557 * And we need these to all be seperate. The fact is we can use alot of 6558 * space doing the truncate, and we have no earthly idea how much space 6559 * we will use, so we need the truncate reservation to be seperate so it 6560 * doesn't end up using space reserved for updating the inode or 6561 * removing the orphan item. We also need to be able to stop the 6562 * transaction and start a new one, which means we need to be able to 6563 * update the inode several times, and we have no idea of knowing how 6564 * many times that will be, so we can't just reserve 1 item for the 6565 * entirety of the opration, so that has to be done seperately as well. 6566 * Then there is the orphan item, which does indeed need to be held on 6567 * to for the whole operation, and we need nobody to touch this reserved 6568 * space except the orphan code. 6569 * 6570 * So that leaves us with 6571 * 6572 * 1) root->orphan_block_rsv - for the orphan deletion. 6573 * 2) rsv - for the truncate reservation, which we will steal from the 6574 * transaction reservation. 6575 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for 6576 * updating the inode. 6577 */ 6578 rsv = btrfs_alloc_block_rsv(root); 6579 if (!rsv) 6580 return -ENOMEM; 6581 btrfs_add_durable_block_rsv(root->fs_info, rsv); 6582 6583 trans = btrfs_start_transaction(root, 4); 6584 if (IS_ERR(trans)) { 6585 err = PTR_ERR(trans); 6586 goto out; 6587 } 6588 6589 /* 6590 * Reserve space for the truncate process. Truncate should be adding 6591 * space, but if there are snapshots it may end up using space. 6592 */ 6593 ret = btrfs_truncate_reserve_metadata(trans, root, rsv); 6594 BUG_ON(ret); 6595 6596 ret = btrfs_orphan_add(trans, inode); 6597 if (ret) { 6598 btrfs_end_transaction(trans, root); 6599 goto out; 6600 } 6601 6602 nr = trans->blocks_used; 6603 btrfs_end_transaction(trans, root); 6604 btrfs_btree_balance_dirty(root, nr); 6605 6606 /* 6607 * Ok so we've already migrated our bytes over for the truncate, so here 6608 * just reserve the one slot we need for updating the inode. 6609 */ 6610 trans = btrfs_start_transaction(root, 1); 6611 if (IS_ERR(trans)) { 6612 err = PTR_ERR(trans); 6613 goto out; 6614 } 6615 trans->block_rsv = rsv; 6616 6617 /* 6618 * setattr is responsible for setting the ordered_data_close flag, 6619 * but that is only tested during the last file release. That 6620 * could happen well after the next commit, leaving a great big 6621 * window where new writes may get lost if someone chooses to write 6622 * to this file after truncating to zero 6623 * 6624 * The inode doesn't have any dirty data here, and so if we commit 6625 * this is a noop. If someone immediately starts writing to the inode 6626 * it is very likely we'll catch some of their writes in this 6627 * transaction, and the commit will find this file on the ordered 6628 * data list with good things to send down. 6629 * 6630 * This is a best effort solution, there is still a window where 6631 * using truncate to replace the contents of the file will 6632 * end up with a zero length file after a crash. 6633 */ 6634 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close) 6635 btrfs_add_ordered_operation(trans, root, inode); 6636 6637 while (1) { 6638 if (!trans) { 6639 trans = btrfs_start_transaction(root, 3); 6640 if (IS_ERR(trans)) { 6641 err = PTR_ERR(trans); 6642 goto out; 6643 } 6644 6645 ret = btrfs_truncate_reserve_metadata(trans, root, 6646 rsv); 6647 BUG_ON(ret); 6648 6649 trans->block_rsv = rsv; 6650 } 6651 6652 ret = btrfs_truncate_inode_items(trans, root, inode, 6653 inode->i_size, 6654 BTRFS_EXTENT_DATA_KEY); 6655 if (ret != -EAGAIN) { 6656 err = ret; 6657 break; 6658 } 6659 6660 trans->block_rsv = &root->fs_info->trans_block_rsv; 6661 ret = btrfs_update_inode(trans, root, inode); 6662 if (ret) { 6663 err = ret; 6664 break; 6665 } 6666 6667 nr = trans->blocks_used; 6668 btrfs_end_transaction(trans, root); 6669 trans = NULL; 6670 btrfs_btree_balance_dirty(root, nr); 6671 } 6672 6673 if (ret == 0 && inode->i_nlink > 0) { 6674 trans->block_rsv = root->orphan_block_rsv; 6675 ret = btrfs_orphan_del(trans, inode); 6676 if (ret) 6677 err = ret; 6678 } else if (ret && inode->i_nlink > 0) { 6679 /* 6680 * Failed to do the truncate, remove us from the in memory 6681 * orphan list. 6682 */ 6683 ret = btrfs_orphan_del(NULL, inode); 6684 } 6685 6686 trans->block_rsv = &root->fs_info->trans_block_rsv; 6687 ret = btrfs_update_inode(trans, root, inode); 6688 if (ret && !err) 6689 err = ret; 6690 6691 nr = trans->blocks_used; 6692 ret = btrfs_end_transaction_throttle(trans, root); 6693 btrfs_btree_balance_dirty(root, nr); 6694 6695 out: 6696 btrfs_free_block_rsv(root, rsv); 6697 6698 if (ret && !err) 6699 err = ret; 6700 6701 return err; 6702 } 6703 6704 /* 6705 * create a new subvolume directory/inode (helper for the ioctl). 6706 */ 6707 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 6708 struct btrfs_root *new_root, u64 new_dirid) 6709 { 6710 struct inode *inode; 6711 int err; 6712 u64 index = 0; 6713 6714 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid, 6715 new_dirid, S_IFDIR | 0700, &index); 6716 if (IS_ERR(inode)) 6717 return PTR_ERR(inode); 6718 inode->i_op = &btrfs_dir_inode_operations; 6719 inode->i_fop = &btrfs_dir_file_operations; 6720 6721 inode->i_nlink = 1; 6722 btrfs_i_size_write(inode, 0); 6723 6724 err = btrfs_update_inode(trans, new_root, inode); 6725 BUG_ON(err); 6726 6727 iput(inode); 6728 return 0; 6729 } 6730 6731 struct inode *btrfs_alloc_inode(struct super_block *sb) 6732 { 6733 struct btrfs_inode *ei; 6734 struct inode *inode; 6735 6736 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS); 6737 if (!ei) 6738 return NULL; 6739 6740 ei->root = NULL; 6741 ei->space_info = NULL; 6742 ei->generation = 0; 6743 ei->sequence = 0; 6744 ei->last_trans = 0; 6745 ei->last_sub_trans = 0; 6746 ei->logged_trans = 0; 6747 ei->delalloc_bytes = 0; 6748 ei->reserved_bytes = 0; 6749 ei->disk_i_size = 0; 6750 ei->flags = 0; 6751 ei->index_cnt = (u64)-1; 6752 ei->last_unlink_trans = 0; 6753 6754 spin_lock_init(&ei->lock); 6755 ei->outstanding_extents = 0; 6756 ei->reserved_extents = 0; 6757 6758 ei->ordered_data_close = 0; 6759 ei->orphan_meta_reserved = 0; 6760 ei->dummy_inode = 0; 6761 ei->in_defrag = 0; 6762 ei->force_compress = BTRFS_COMPRESS_NONE; 6763 6764 ei->delayed_node = NULL; 6765 6766 inode = &ei->vfs_inode; 6767 extent_map_tree_init(&ei->extent_tree); 6768 extent_io_tree_init(&ei->io_tree, &inode->i_data); 6769 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data); 6770 mutex_init(&ei->log_mutex); 6771 btrfs_ordered_inode_tree_init(&ei->ordered_tree); 6772 INIT_LIST_HEAD(&ei->i_orphan); 6773 INIT_LIST_HEAD(&ei->delalloc_inodes); 6774 INIT_LIST_HEAD(&ei->ordered_operations); 6775 RB_CLEAR_NODE(&ei->rb_node); 6776 6777 return inode; 6778 } 6779 6780 static void btrfs_i_callback(struct rcu_head *head) 6781 { 6782 struct inode *inode = container_of(head, struct inode, i_rcu); 6783 INIT_LIST_HEAD(&inode->i_dentry); 6784 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); 6785 } 6786 6787 void btrfs_destroy_inode(struct inode *inode) 6788 { 6789 struct btrfs_ordered_extent *ordered; 6790 struct btrfs_root *root = BTRFS_I(inode)->root; 6791 6792 WARN_ON(!list_empty(&inode->i_dentry)); 6793 WARN_ON(inode->i_data.nrpages); 6794 WARN_ON(BTRFS_I(inode)->outstanding_extents); 6795 WARN_ON(BTRFS_I(inode)->reserved_extents); 6796 6797 /* 6798 * This can happen where we create an inode, but somebody else also 6799 * created the same inode and we need to destroy the one we already 6800 * created. 6801 */ 6802 if (!root) 6803 goto free; 6804 6805 /* 6806 * Make sure we're properly removed from the ordered operation 6807 * lists. 6808 */ 6809 smp_mb(); 6810 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) { 6811 spin_lock(&root->fs_info->ordered_extent_lock); 6812 list_del_init(&BTRFS_I(inode)->ordered_operations); 6813 spin_unlock(&root->fs_info->ordered_extent_lock); 6814 } 6815 6816 spin_lock(&root->orphan_lock); 6817 if (!list_empty(&BTRFS_I(inode)->i_orphan)) { 6818 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n", 6819 (unsigned long long)btrfs_ino(inode)); 6820 list_del_init(&BTRFS_I(inode)->i_orphan); 6821 } 6822 spin_unlock(&root->orphan_lock); 6823 6824 while (1) { 6825 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); 6826 if (!ordered) 6827 break; 6828 else { 6829 printk(KERN_ERR "btrfs found ordered " 6830 "extent %llu %llu on inode cleanup\n", 6831 (unsigned long long)ordered->file_offset, 6832 (unsigned long long)ordered->len); 6833 btrfs_remove_ordered_extent(inode, ordered); 6834 btrfs_put_ordered_extent(ordered); 6835 btrfs_put_ordered_extent(ordered); 6836 } 6837 } 6838 inode_tree_del(inode); 6839 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0); 6840 free: 6841 btrfs_remove_delayed_node(inode); 6842 call_rcu(&inode->i_rcu, btrfs_i_callback); 6843 } 6844 6845 int btrfs_drop_inode(struct inode *inode) 6846 { 6847 struct btrfs_root *root = BTRFS_I(inode)->root; 6848 6849 if (btrfs_root_refs(&root->root_item) == 0 && 6850 !btrfs_is_free_space_inode(root, inode)) 6851 return 1; 6852 else 6853 return generic_drop_inode(inode); 6854 } 6855 6856 static void init_once(void *foo) 6857 { 6858 struct btrfs_inode *ei = (struct btrfs_inode *) foo; 6859 6860 inode_init_once(&ei->vfs_inode); 6861 } 6862 6863 void btrfs_destroy_cachep(void) 6864 { 6865 if (btrfs_inode_cachep) 6866 kmem_cache_destroy(btrfs_inode_cachep); 6867 if (btrfs_trans_handle_cachep) 6868 kmem_cache_destroy(btrfs_trans_handle_cachep); 6869 if (btrfs_transaction_cachep) 6870 kmem_cache_destroy(btrfs_transaction_cachep); 6871 if (btrfs_path_cachep) 6872 kmem_cache_destroy(btrfs_path_cachep); 6873 if (btrfs_free_space_cachep) 6874 kmem_cache_destroy(btrfs_free_space_cachep); 6875 } 6876 6877 int btrfs_init_cachep(void) 6878 { 6879 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache", 6880 sizeof(struct btrfs_inode), 0, 6881 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once); 6882 if (!btrfs_inode_cachep) 6883 goto fail; 6884 6885 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache", 6886 sizeof(struct btrfs_trans_handle), 0, 6887 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6888 if (!btrfs_trans_handle_cachep) 6889 goto fail; 6890 6891 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache", 6892 sizeof(struct btrfs_transaction), 0, 6893 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6894 if (!btrfs_transaction_cachep) 6895 goto fail; 6896 6897 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache", 6898 sizeof(struct btrfs_path), 0, 6899 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6900 if (!btrfs_path_cachep) 6901 goto fail; 6902 6903 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache", 6904 sizeof(struct btrfs_free_space), 0, 6905 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 6906 if (!btrfs_free_space_cachep) 6907 goto fail; 6908 6909 return 0; 6910 fail: 6911 btrfs_destroy_cachep(); 6912 return -ENOMEM; 6913 } 6914 6915 static int btrfs_getattr(struct vfsmount *mnt, 6916 struct dentry *dentry, struct kstat *stat) 6917 { 6918 struct inode *inode = dentry->d_inode; 6919 generic_fillattr(inode, stat); 6920 stat->dev = BTRFS_I(inode)->root->anon_dev; 6921 stat->blksize = PAGE_CACHE_SIZE; 6922 stat->blocks = (inode_get_bytes(inode) + 6923 BTRFS_I(inode)->delalloc_bytes) >> 9; 6924 return 0; 6925 } 6926 6927 /* 6928 * If a file is moved, it will inherit the cow and compression flags of the new 6929 * directory. 6930 */ 6931 static void fixup_inode_flags(struct inode *dir, struct inode *inode) 6932 { 6933 struct btrfs_inode *b_dir = BTRFS_I(dir); 6934 struct btrfs_inode *b_inode = BTRFS_I(inode); 6935 6936 if (b_dir->flags & BTRFS_INODE_NODATACOW) 6937 b_inode->flags |= BTRFS_INODE_NODATACOW; 6938 else 6939 b_inode->flags &= ~BTRFS_INODE_NODATACOW; 6940 6941 if (b_dir->flags & BTRFS_INODE_COMPRESS) 6942 b_inode->flags |= BTRFS_INODE_COMPRESS; 6943 else 6944 b_inode->flags &= ~BTRFS_INODE_COMPRESS; 6945 } 6946 6947 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, 6948 struct inode *new_dir, struct dentry *new_dentry) 6949 { 6950 struct btrfs_trans_handle *trans; 6951 struct btrfs_root *root = BTRFS_I(old_dir)->root; 6952 struct btrfs_root *dest = BTRFS_I(new_dir)->root; 6953 struct inode *new_inode = new_dentry->d_inode; 6954 struct inode *old_inode = old_dentry->d_inode; 6955 struct timespec ctime = CURRENT_TIME; 6956 u64 index = 0; 6957 u64 root_objectid; 6958 int ret; 6959 u64 old_ino = btrfs_ino(old_inode); 6960 6961 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) 6962 return -EPERM; 6963 6964 /* we only allow rename subvolume link between subvolumes */ 6965 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) 6966 return -EXDEV; 6967 6968 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || 6969 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID)) 6970 return -ENOTEMPTY; 6971 6972 if (S_ISDIR(old_inode->i_mode) && new_inode && 6973 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) 6974 return -ENOTEMPTY; 6975 /* 6976 * we're using rename to replace one file with another. 6977 * and the replacement file is large. Start IO on it now so 6978 * we don't add too much work to the end of the transaction 6979 */ 6980 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size && 6981 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT) 6982 filemap_flush(old_inode->i_mapping); 6983 6984 /* close the racy window with snapshot create/destroy ioctl */ 6985 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 6986 down_read(&root->fs_info->subvol_sem); 6987 /* 6988 * We want to reserve the absolute worst case amount of items. So if 6989 * both inodes are subvols and we need to unlink them then that would 6990 * require 4 item modifications, but if they are both normal inodes it 6991 * would require 5 item modifications, so we'll assume their normal 6992 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items 6993 * should cover the worst case number of items we'll modify. 6994 */ 6995 trans = btrfs_start_transaction(root, 20); 6996 if (IS_ERR(trans)) { 6997 ret = PTR_ERR(trans); 6998 goto out_notrans; 6999 } 7000 7001 if (dest != root) 7002 btrfs_record_root_in_trans(trans, dest); 7003 7004 ret = btrfs_set_inode_index(new_dir, &index); 7005 if (ret) 7006 goto out_fail; 7007 7008 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7009 /* force full log commit if subvolume involved. */ 7010 root->fs_info->last_trans_log_full_commit = trans->transid; 7011 } else { 7012 ret = btrfs_insert_inode_ref(trans, dest, 7013 new_dentry->d_name.name, 7014 new_dentry->d_name.len, 7015 old_ino, 7016 btrfs_ino(new_dir), index); 7017 if (ret) 7018 goto out_fail; 7019 /* 7020 * this is an ugly little race, but the rename is required 7021 * to make sure that if we crash, the inode is either at the 7022 * old name or the new one. pinning the log transaction lets 7023 * us make sure we don't allow a log commit to come in after 7024 * we unlink the name but before we add the new name back in. 7025 */ 7026 btrfs_pin_log_trans(root); 7027 } 7028 /* 7029 * make sure the inode gets flushed if it is replacing 7030 * something. 7031 */ 7032 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode)) 7033 btrfs_add_ordered_operation(trans, root, old_inode); 7034 7035 old_dir->i_ctime = old_dir->i_mtime = ctime; 7036 new_dir->i_ctime = new_dir->i_mtime = ctime; 7037 old_inode->i_ctime = ctime; 7038 7039 if (old_dentry->d_parent != new_dentry->d_parent) 7040 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1); 7041 7042 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { 7043 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid; 7044 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid, 7045 old_dentry->d_name.name, 7046 old_dentry->d_name.len); 7047 } else { 7048 ret = __btrfs_unlink_inode(trans, root, old_dir, 7049 old_dentry->d_inode, 7050 old_dentry->d_name.name, 7051 old_dentry->d_name.len); 7052 if (!ret) 7053 ret = btrfs_update_inode(trans, root, old_inode); 7054 } 7055 BUG_ON(ret); 7056 7057 if (new_inode) { 7058 new_inode->i_ctime = CURRENT_TIME; 7059 if (unlikely(btrfs_ino(new_inode) == 7060 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { 7061 root_objectid = BTRFS_I(new_inode)->location.objectid; 7062 ret = btrfs_unlink_subvol(trans, dest, new_dir, 7063 root_objectid, 7064 new_dentry->d_name.name, 7065 new_dentry->d_name.len); 7066 BUG_ON(new_inode->i_nlink == 0); 7067 } else { 7068 ret = btrfs_unlink_inode(trans, dest, new_dir, 7069 new_dentry->d_inode, 7070 new_dentry->d_name.name, 7071 new_dentry->d_name.len); 7072 } 7073 BUG_ON(ret); 7074 if (new_inode->i_nlink == 0) { 7075 ret = btrfs_orphan_add(trans, new_dentry->d_inode); 7076 BUG_ON(ret); 7077 } 7078 } 7079 7080 fixup_inode_flags(new_dir, old_inode); 7081 7082 ret = btrfs_add_link(trans, new_dir, old_inode, 7083 new_dentry->d_name.name, 7084 new_dentry->d_name.len, 0, index); 7085 BUG_ON(ret); 7086 7087 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) { 7088 struct dentry *parent = new_dentry->d_parent; 7089 btrfs_log_new_name(trans, old_inode, old_dir, parent); 7090 btrfs_end_log_trans(root); 7091 } 7092 out_fail: 7093 btrfs_end_transaction_throttle(trans, root); 7094 out_notrans: 7095 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) 7096 up_read(&root->fs_info->subvol_sem); 7097 7098 return ret; 7099 } 7100 7101 /* 7102 * some fairly slow code that needs optimization. This walks the list 7103 * of all the inodes with pending delalloc and forces them to disk. 7104 */ 7105 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput) 7106 { 7107 struct list_head *head = &root->fs_info->delalloc_inodes; 7108 struct btrfs_inode *binode; 7109 struct inode *inode; 7110 7111 if (root->fs_info->sb->s_flags & MS_RDONLY) 7112 return -EROFS; 7113 7114 spin_lock(&root->fs_info->delalloc_lock); 7115 while (!list_empty(head)) { 7116 binode = list_entry(head->next, struct btrfs_inode, 7117 delalloc_inodes); 7118 inode = igrab(&binode->vfs_inode); 7119 if (!inode) 7120 list_del_init(&binode->delalloc_inodes); 7121 spin_unlock(&root->fs_info->delalloc_lock); 7122 if (inode) { 7123 filemap_flush(inode->i_mapping); 7124 if (delay_iput) 7125 btrfs_add_delayed_iput(inode); 7126 else 7127 iput(inode); 7128 } 7129 cond_resched(); 7130 spin_lock(&root->fs_info->delalloc_lock); 7131 } 7132 spin_unlock(&root->fs_info->delalloc_lock); 7133 7134 /* the filemap_flush will queue IO into the worker threads, but 7135 * we have to make sure the IO is actually started and that 7136 * ordered extents get created before we return 7137 */ 7138 atomic_inc(&root->fs_info->async_submit_draining); 7139 while (atomic_read(&root->fs_info->nr_async_submits) || 7140 atomic_read(&root->fs_info->async_delalloc_pages)) { 7141 wait_event(root->fs_info->async_submit_wait, 7142 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 7143 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 7144 } 7145 atomic_dec(&root->fs_info->async_submit_draining); 7146 return 0; 7147 } 7148 7149 static int btrfs_symlink(struct inode *dir, struct dentry *dentry, 7150 const char *symname) 7151 { 7152 struct btrfs_trans_handle *trans; 7153 struct btrfs_root *root = BTRFS_I(dir)->root; 7154 struct btrfs_path *path; 7155 struct btrfs_key key; 7156 struct inode *inode = NULL; 7157 int err; 7158 int drop_inode = 0; 7159 u64 objectid; 7160 u64 index = 0 ; 7161 int name_len; 7162 int datasize; 7163 unsigned long ptr; 7164 struct btrfs_file_extent_item *ei; 7165 struct extent_buffer *leaf; 7166 unsigned long nr = 0; 7167 7168 name_len = strlen(symname) + 1; 7169 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root)) 7170 return -ENAMETOOLONG; 7171 7172 /* 7173 * 2 items for inode item and ref 7174 * 2 items for dir items 7175 * 1 item for xattr if selinux is on 7176 */ 7177 trans = btrfs_start_transaction(root, 5); 7178 if (IS_ERR(trans)) 7179 return PTR_ERR(trans); 7180 7181 err = btrfs_find_free_ino(root, &objectid); 7182 if (err) 7183 goto out_unlock; 7184 7185 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, 7186 dentry->d_name.len, btrfs_ino(dir), objectid, 7187 S_IFLNK|S_IRWXUGO, &index); 7188 if (IS_ERR(inode)) { 7189 err = PTR_ERR(inode); 7190 goto out_unlock; 7191 } 7192 7193 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); 7194 if (err) { 7195 drop_inode = 1; 7196 goto out_unlock; 7197 } 7198 7199 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index); 7200 if (err) 7201 drop_inode = 1; 7202 else { 7203 inode->i_mapping->a_ops = &btrfs_aops; 7204 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7205 inode->i_fop = &btrfs_file_operations; 7206 inode->i_op = &btrfs_file_inode_operations; 7207 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; 7208 } 7209 if (drop_inode) 7210 goto out_unlock; 7211 7212 path = btrfs_alloc_path(); 7213 if (!path) { 7214 err = -ENOMEM; 7215 drop_inode = 1; 7216 goto out_unlock; 7217 } 7218 key.objectid = btrfs_ino(inode); 7219 key.offset = 0; 7220 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY); 7221 datasize = btrfs_file_extent_calc_inline_size(name_len); 7222 err = btrfs_insert_empty_item(trans, root, path, &key, 7223 datasize); 7224 if (err) { 7225 drop_inode = 1; 7226 btrfs_free_path(path); 7227 goto out_unlock; 7228 } 7229 leaf = path->nodes[0]; 7230 ei = btrfs_item_ptr(leaf, path->slots[0], 7231 struct btrfs_file_extent_item); 7232 btrfs_set_file_extent_generation(leaf, ei, trans->transid); 7233 btrfs_set_file_extent_type(leaf, ei, 7234 BTRFS_FILE_EXTENT_INLINE); 7235 btrfs_set_file_extent_encryption(leaf, ei, 0); 7236 btrfs_set_file_extent_compression(leaf, ei, 0); 7237 btrfs_set_file_extent_other_encoding(leaf, ei, 0); 7238 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); 7239 7240 ptr = btrfs_file_extent_inline_start(ei); 7241 write_extent_buffer(leaf, symname, ptr, name_len); 7242 btrfs_mark_buffer_dirty(leaf); 7243 btrfs_free_path(path); 7244 7245 inode->i_op = &btrfs_symlink_inode_operations; 7246 inode->i_mapping->a_ops = &btrfs_symlink_aops; 7247 inode->i_mapping->backing_dev_info = &root->fs_info->bdi; 7248 inode_set_bytes(inode, name_len); 7249 btrfs_i_size_write(inode, name_len - 1); 7250 err = btrfs_update_inode(trans, root, inode); 7251 if (err) 7252 drop_inode = 1; 7253 7254 out_unlock: 7255 nr = trans->blocks_used; 7256 btrfs_end_transaction_throttle(trans, root); 7257 if (drop_inode) { 7258 inode_dec_link_count(inode); 7259 iput(inode); 7260 } 7261 btrfs_btree_balance_dirty(root, nr); 7262 return err; 7263 } 7264 7265 static int __btrfs_prealloc_file_range(struct inode *inode, int mode, 7266 u64 start, u64 num_bytes, u64 min_size, 7267 loff_t actual_len, u64 *alloc_hint, 7268 struct btrfs_trans_handle *trans) 7269 { 7270 struct btrfs_root *root = BTRFS_I(inode)->root; 7271 struct btrfs_key ins; 7272 u64 cur_offset = start; 7273 u64 i_size; 7274 int ret = 0; 7275 bool own_trans = true; 7276 7277 if (trans) 7278 own_trans = false; 7279 while (num_bytes > 0) { 7280 if (own_trans) { 7281 trans = btrfs_start_transaction(root, 3); 7282 if (IS_ERR(trans)) { 7283 ret = PTR_ERR(trans); 7284 break; 7285 } 7286 } 7287 7288 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size, 7289 0, *alloc_hint, (u64)-1, &ins, 1); 7290 if (ret) { 7291 if (own_trans) 7292 btrfs_end_transaction(trans, root); 7293 break; 7294 } 7295 7296 ret = insert_reserved_file_extent(trans, inode, 7297 cur_offset, ins.objectid, 7298 ins.offset, ins.offset, 7299 ins.offset, 0, 0, 0, 7300 BTRFS_FILE_EXTENT_PREALLOC); 7301 BUG_ON(ret); 7302 btrfs_drop_extent_cache(inode, cur_offset, 7303 cur_offset + ins.offset -1, 0); 7304 7305 num_bytes -= ins.offset; 7306 cur_offset += ins.offset; 7307 *alloc_hint = ins.objectid + ins.offset; 7308 7309 inode->i_ctime = CURRENT_TIME; 7310 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; 7311 if (!(mode & FALLOC_FL_KEEP_SIZE) && 7312 (actual_len > inode->i_size) && 7313 (cur_offset > inode->i_size)) { 7314 if (cur_offset > actual_len) 7315 i_size = actual_len; 7316 else 7317 i_size = cur_offset; 7318 i_size_write(inode, i_size); 7319 btrfs_ordered_update_i_size(inode, i_size, NULL); 7320 } 7321 7322 ret = btrfs_update_inode(trans, root, inode); 7323 BUG_ON(ret); 7324 7325 if (own_trans) 7326 btrfs_end_transaction(trans, root); 7327 } 7328 return ret; 7329 } 7330 7331 int btrfs_prealloc_file_range(struct inode *inode, int mode, 7332 u64 start, u64 num_bytes, u64 min_size, 7333 loff_t actual_len, u64 *alloc_hint) 7334 { 7335 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7336 min_size, actual_len, alloc_hint, 7337 NULL); 7338 } 7339 7340 int btrfs_prealloc_file_range_trans(struct inode *inode, 7341 struct btrfs_trans_handle *trans, int mode, 7342 u64 start, u64 num_bytes, u64 min_size, 7343 loff_t actual_len, u64 *alloc_hint) 7344 { 7345 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, 7346 min_size, actual_len, alloc_hint, trans); 7347 } 7348 7349 static int btrfs_set_page_dirty(struct page *page) 7350 { 7351 return __set_page_dirty_nobuffers(page); 7352 } 7353 7354 static int btrfs_permission(struct inode *inode, int mask) 7355 { 7356 struct btrfs_root *root = BTRFS_I(inode)->root; 7357 7358 if (btrfs_root_readonly(root) && (mask & MAY_WRITE)) 7359 return -EROFS; 7360 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE)) 7361 return -EACCES; 7362 return generic_permission(inode, mask); 7363 } 7364 7365 static const struct inode_operations btrfs_dir_inode_operations = { 7366 .getattr = btrfs_getattr, 7367 .lookup = btrfs_lookup, 7368 .create = btrfs_create, 7369 .unlink = btrfs_unlink, 7370 .link = btrfs_link, 7371 .mkdir = btrfs_mkdir, 7372 .rmdir = btrfs_rmdir, 7373 .rename = btrfs_rename, 7374 .symlink = btrfs_symlink, 7375 .setattr = btrfs_setattr, 7376 .mknod = btrfs_mknod, 7377 .setxattr = btrfs_setxattr, 7378 .getxattr = btrfs_getxattr, 7379 .listxattr = btrfs_listxattr, 7380 .removexattr = btrfs_removexattr, 7381 .permission = btrfs_permission, 7382 .get_acl = btrfs_get_acl, 7383 }; 7384 static const struct inode_operations btrfs_dir_ro_inode_operations = { 7385 .lookup = btrfs_lookup, 7386 .permission = btrfs_permission, 7387 .get_acl = btrfs_get_acl, 7388 }; 7389 7390 static const struct file_operations btrfs_dir_file_operations = { 7391 .llseek = generic_file_llseek, 7392 .read = generic_read_dir, 7393 .readdir = btrfs_real_readdir, 7394 .unlocked_ioctl = btrfs_ioctl, 7395 #ifdef CONFIG_COMPAT 7396 .compat_ioctl = btrfs_ioctl, 7397 #endif 7398 .release = btrfs_release_file, 7399 .fsync = btrfs_sync_file, 7400 }; 7401 7402 static struct extent_io_ops btrfs_extent_io_ops = { 7403 .fill_delalloc = run_delalloc_range, 7404 .submit_bio_hook = btrfs_submit_bio_hook, 7405 .merge_bio_hook = btrfs_merge_bio_hook, 7406 .readpage_end_io_hook = btrfs_readpage_end_io_hook, 7407 .writepage_end_io_hook = btrfs_writepage_end_io_hook, 7408 .writepage_start_hook = btrfs_writepage_start_hook, 7409 .readpage_io_failed_hook = btrfs_io_failed_hook, 7410 .set_bit_hook = btrfs_set_bit_hook, 7411 .clear_bit_hook = btrfs_clear_bit_hook, 7412 .merge_extent_hook = btrfs_merge_extent_hook, 7413 .split_extent_hook = btrfs_split_extent_hook, 7414 }; 7415 7416 /* 7417 * btrfs doesn't support the bmap operation because swapfiles 7418 * use bmap to make a mapping of extents in the file. They assume 7419 * these extents won't change over the life of the file and they 7420 * use the bmap result to do IO directly to the drive. 7421 * 7422 * the btrfs bmap call would return logical addresses that aren't 7423 * suitable for IO and they also will change frequently as COW 7424 * operations happen. So, swapfile + btrfs == corruption. 7425 * 7426 * For now we're avoiding this by dropping bmap. 7427 */ 7428 static const struct address_space_operations btrfs_aops = { 7429 .readpage = btrfs_readpage, 7430 .writepage = btrfs_writepage, 7431 .writepages = btrfs_writepages, 7432 .readpages = btrfs_readpages, 7433 .direct_IO = btrfs_direct_IO, 7434 .invalidatepage = btrfs_invalidatepage, 7435 .releasepage = btrfs_releasepage, 7436 .set_page_dirty = btrfs_set_page_dirty, 7437 .error_remove_page = generic_error_remove_page, 7438 }; 7439 7440 static const struct address_space_operations btrfs_symlink_aops = { 7441 .readpage = btrfs_readpage, 7442 .writepage = btrfs_writepage, 7443 .invalidatepage = btrfs_invalidatepage, 7444 .releasepage = btrfs_releasepage, 7445 }; 7446 7447 static const struct inode_operations btrfs_file_inode_operations = { 7448 .getattr = btrfs_getattr, 7449 .setattr = btrfs_setattr, 7450 .setxattr = btrfs_setxattr, 7451 .getxattr = btrfs_getxattr, 7452 .listxattr = btrfs_listxattr, 7453 .removexattr = btrfs_removexattr, 7454 .permission = btrfs_permission, 7455 .fiemap = btrfs_fiemap, 7456 .get_acl = btrfs_get_acl, 7457 }; 7458 static const struct inode_operations btrfs_special_inode_operations = { 7459 .getattr = btrfs_getattr, 7460 .setattr = btrfs_setattr, 7461 .permission = btrfs_permission, 7462 .setxattr = btrfs_setxattr, 7463 .getxattr = btrfs_getxattr, 7464 .listxattr = btrfs_listxattr, 7465 .removexattr = btrfs_removexattr, 7466 .get_acl = btrfs_get_acl, 7467 }; 7468 static const struct inode_operations btrfs_symlink_inode_operations = { 7469 .readlink = generic_readlink, 7470 .follow_link = page_follow_link_light, 7471 .put_link = page_put_link, 7472 .getattr = btrfs_getattr, 7473 .permission = btrfs_permission, 7474 .setxattr = btrfs_setxattr, 7475 .getxattr = btrfs_getxattr, 7476 .listxattr = btrfs_listxattr, 7477 .removexattr = btrfs_removexattr, 7478 .get_acl = btrfs_get_acl, 7479 }; 7480 7481 const struct dentry_operations btrfs_dentry_operations = { 7482 .d_delete = btrfs_dentry_delete, 7483 .d_release = btrfs_dentry_release, 7484 }; 7485