xref: /linux/fs/btrfs/inode.c (revision 2c1ba398ac9da3305815f6ae8e95ae2b9fd3b5ff)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
56 
57 struct btrfs_iget_args {
58 	u64 ino;
59 	struct btrfs_root *root;
60 };
61 
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
71 
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
77 
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
81 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
82 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
83 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
84 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
85 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
86 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
87 };
88 
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 				   struct page *locked_page,
94 				   u64 start, u64 end, int *page_started,
95 				   unsigned long *nr_written, int unlock);
96 
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 				     struct inode *inode,  struct inode *dir,
99 				     const struct qstr *qstr)
100 {
101 	int err;
102 
103 	err = btrfs_init_acl(trans, inode, dir);
104 	if (!err)
105 		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106 	return err;
107 }
108 
109 /*
110  * this does all the hard work for inserting an inline extent into
111  * the btree.  The caller should have done a btrfs_drop_extents so that
112  * no overlapping inline items exist in the btree
113  */
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 				struct btrfs_root *root, struct inode *inode,
116 				u64 start, size_t size, size_t compressed_size,
117 				int compress_type,
118 				struct page **compressed_pages)
119 {
120 	struct btrfs_key key;
121 	struct btrfs_path *path;
122 	struct extent_buffer *leaf;
123 	struct page *page = NULL;
124 	char *kaddr;
125 	unsigned long ptr;
126 	struct btrfs_file_extent_item *ei;
127 	int err = 0;
128 	int ret;
129 	size_t cur_size = size;
130 	size_t datasize;
131 	unsigned long offset;
132 
133 	if (compressed_size && compressed_pages)
134 		cur_size = compressed_size;
135 
136 	path = btrfs_alloc_path();
137 	if (!path)
138 		return -ENOMEM;
139 
140 	path->leave_spinning = 1;
141 
142 	key.objectid = btrfs_ino(inode);
143 	key.offset = start;
144 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 	datasize = btrfs_file_extent_calc_inline_size(cur_size);
146 
147 	inode_add_bytes(inode, size);
148 	ret = btrfs_insert_empty_item(trans, root, path, &key,
149 				      datasize);
150 	BUG_ON(ret);
151 	if (ret) {
152 		err = ret;
153 		goto fail;
154 	}
155 	leaf = path->nodes[0];
156 	ei = btrfs_item_ptr(leaf, path->slots[0],
157 			    struct btrfs_file_extent_item);
158 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 	btrfs_set_file_extent_encryption(leaf, ei, 0);
161 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 	ptr = btrfs_file_extent_inline_start(ei);
164 
165 	if (compress_type != BTRFS_COMPRESS_NONE) {
166 		struct page *cpage;
167 		int i = 0;
168 		while (compressed_size > 0) {
169 			cpage = compressed_pages[i];
170 			cur_size = min_t(unsigned long, compressed_size,
171 				       PAGE_CACHE_SIZE);
172 
173 			kaddr = kmap_atomic(cpage, KM_USER0);
174 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 			kunmap_atomic(kaddr, KM_USER0);
176 
177 			i++;
178 			ptr += cur_size;
179 			compressed_size -= cur_size;
180 		}
181 		btrfs_set_file_extent_compression(leaf, ei,
182 						  compress_type);
183 	} else {
184 		page = find_get_page(inode->i_mapping,
185 				     start >> PAGE_CACHE_SHIFT);
186 		btrfs_set_file_extent_compression(leaf, ei, 0);
187 		kaddr = kmap_atomic(page, KM_USER0);
188 		offset = start & (PAGE_CACHE_SIZE - 1);
189 		write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 		kunmap_atomic(kaddr, KM_USER0);
191 		page_cache_release(page);
192 	}
193 	btrfs_mark_buffer_dirty(leaf);
194 	btrfs_free_path(path);
195 
196 	/*
197 	 * we're an inline extent, so nobody can
198 	 * extend the file past i_size without locking
199 	 * a page we already have locked.
200 	 *
201 	 * We must do any isize and inode updates
202 	 * before we unlock the pages.  Otherwise we
203 	 * could end up racing with unlink.
204 	 */
205 	BTRFS_I(inode)->disk_i_size = inode->i_size;
206 	btrfs_update_inode(trans, root, inode);
207 
208 	return 0;
209 fail:
210 	btrfs_free_path(path);
211 	return err;
212 }
213 
214 
215 /*
216  * conditionally insert an inline extent into the file.  This
217  * does the checks required to make sure the data is small enough
218  * to fit as an inline extent.
219  */
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 				 struct btrfs_root *root,
222 				 struct inode *inode, u64 start, u64 end,
223 				 size_t compressed_size, int compress_type,
224 				 struct page **compressed_pages)
225 {
226 	u64 isize = i_size_read(inode);
227 	u64 actual_end = min(end + 1, isize);
228 	u64 inline_len = actual_end - start;
229 	u64 aligned_end = (end + root->sectorsize - 1) &
230 			~((u64)root->sectorsize - 1);
231 	u64 hint_byte;
232 	u64 data_len = inline_len;
233 	int ret;
234 
235 	if (compressed_size)
236 		data_len = compressed_size;
237 
238 	if (start > 0 ||
239 	    actual_end >= PAGE_CACHE_SIZE ||
240 	    data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 	    (!compressed_size &&
242 	    (actual_end & (root->sectorsize - 1)) == 0) ||
243 	    end + 1 < isize ||
244 	    data_len > root->fs_info->max_inline) {
245 		return 1;
246 	}
247 
248 	ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 				 &hint_byte, 1);
250 	BUG_ON(ret);
251 
252 	if (isize > actual_end)
253 		inline_len = min_t(u64, isize, actual_end);
254 	ret = insert_inline_extent(trans, root, inode, start,
255 				   inline_len, compressed_size,
256 				   compress_type, compressed_pages);
257 	BUG_ON(ret);
258 	btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 	return 0;
261 }
262 
263 struct async_extent {
264 	u64 start;
265 	u64 ram_size;
266 	u64 compressed_size;
267 	struct page **pages;
268 	unsigned long nr_pages;
269 	int compress_type;
270 	struct list_head list;
271 };
272 
273 struct async_cow {
274 	struct inode *inode;
275 	struct btrfs_root *root;
276 	struct page *locked_page;
277 	u64 start;
278 	u64 end;
279 	struct list_head extents;
280 	struct btrfs_work work;
281 };
282 
283 static noinline int add_async_extent(struct async_cow *cow,
284 				     u64 start, u64 ram_size,
285 				     u64 compressed_size,
286 				     struct page **pages,
287 				     unsigned long nr_pages,
288 				     int compress_type)
289 {
290 	struct async_extent *async_extent;
291 
292 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 	BUG_ON(!async_extent);
294 	async_extent->start = start;
295 	async_extent->ram_size = ram_size;
296 	async_extent->compressed_size = compressed_size;
297 	async_extent->pages = pages;
298 	async_extent->nr_pages = nr_pages;
299 	async_extent->compress_type = compress_type;
300 	list_add_tail(&async_extent->list, &cow->extents);
301 	return 0;
302 }
303 
304 /*
305  * we create compressed extents in two phases.  The first
306  * phase compresses a range of pages that have already been
307  * locked (both pages and state bits are locked).
308  *
309  * This is done inside an ordered work queue, and the compression
310  * is spread across many cpus.  The actual IO submission is step
311  * two, and the ordered work queue takes care of making sure that
312  * happens in the same order things were put onto the queue by
313  * writepages and friends.
314  *
315  * If this code finds it can't get good compression, it puts an
316  * entry onto the work queue to write the uncompressed bytes.  This
317  * makes sure that both compressed inodes and uncompressed inodes
318  * are written in the same order that pdflush sent them down.
319  */
320 static noinline int compress_file_range(struct inode *inode,
321 					struct page *locked_page,
322 					u64 start, u64 end,
323 					struct async_cow *async_cow,
324 					int *num_added)
325 {
326 	struct btrfs_root *root = BTRFS_I(inode)->root;
327 	struct btrfs_trans_handle *trans;
328 	u64 num_bytes;
329 	u64 blocksize = root->sectorsize;
330 	u64 actual_end;
331 	u64 isize = i_size_read(inode);
332 	int ret = 0;
333 	struct page **pages = NULL;
334 	unsigned long nr_pages;
335 	unsigned long nr_pages_ret = 0;
336 	unsigned long total_compressed = 0;
337 	unsigned long total_in = 0;
338 	unsigned long max_compressed = 128 * 1024;
339 	unsigned long max_uncompressed = 128 * 1024;
340 	int i;
341 	int will_compress;
342 	int compress_type = root->fs_info->compress_type;
343 
344 	/* if this is a small write inside eof, kick off a defragbot */
345 	if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 		btrfs_add_inode_defrag(NULL, inode);
347 
348 	actual_end = min_t(u64, isize, end + 1);
349 again:
350 	will_compress = 0;
351 	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
353 
354 	/*
355 	 * we don't want to send crud past the end of i_size through
356 	 * compression, that's just a waste of CPU time.  So, if the
357 	 * end of the file is before the start of our current
358 	 * requested range of bytes, we bail out to the uncompressed
359 	 * cleanup code that can deal with all of this.
360 	 *
361 	 * It isn't really the fastest way to fix things, but this is a
362 	 * very uncommon corner.
363 	 */
364 	if (actual_end <= start)
365 		goto cleanup_and_bail_uncompressed;
366 
367 	total_compressed = actual_end - start;
368 
369 	/* we want to make sure that amount of ram required to uncompress
370 	 * an extent is reasonable, so we limit the total size in ram
371 	 * of a compressed extent to 128k.  This is a crucial number
372 	 * because it also controls how easily we can spread reads across
373 	 * cpus for decompression.
374 	 *
375 	 * We also want to make sure the amount of IO required to do
376 	 * a random read is reasonably small, so we limit the size of
377 	 * a compressed extent to 128k.
378 	 */
379 	total_compressed = min(total_compressed, max_uncompressed);
380 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381 	num_bytes = max(blocksize,  num_bytes);
382 	total_in = 0;
383 	ret = 0;
384 
385 	/*
386 	 * we do compression for mount -o compress and when the
387 	 * inode has not been flagged as nocompress.  This flag can
388 	 * change at any time if we discover bad compression ratios.
389 	 */
390 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391 	    (btrfs_test_opt(root, COMPRESS) ||
392 	     (BTRFS_I(inode)->force_compress) ||
393 	     (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394 		WARN_ON(pages);
395 		pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396 		BUG_ON(!pages);
397 
398 		if (BTRFS_I(inode)->force_compress)
399 			compress_type = BTRFS_I(inode)->force_compress;
400 
401 		ret = btrfs_compress_pages(compress_type,
402 					   inode->i_mapping, start,
403 					   total_compressed, pages,
404 					   nr_pages, &nr_pages_ret,
405 					   &total_in,
406 					   &total_compressed,
407 					   max_compressed);
408 
409 		if (!ret) {
410 			unsigned long offset = total_compressed &
411 				(PAGE_CACHE_SIZE - 1);
412 			struct page *page = pages[nr_pages_ret - 1];
413 			char *kaddr;
414 
415 			/* zero the tail end of the last page, we might be
416 			 * sending it down to disk
417 			 */
418 			if (offset) {
419 				kaddr = kmap_atomic(page, KM_USER0);
420 				memset(kaddr + offset, 0,
421 				       PAGE_CACHE_SIZE - offset);
422 				kunmap_atomic(kaddr, KM_USER0);
423 			}
424 			will_compress = 1;
425 		}
426 	}
427 	if (start == 0) {
428 		trans = btrfs_join_transaction(root);
429 		BUG_ON(IS_ERR(trans));
430 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
431 
432 		/* lets try to make an inline extent */
433 		if (ret || total_in < (actual_end - start)) {
434 			/* we didn't compress the entire range, try
435 			 * to make an uncompressed inline extent.
436 			 */
437 			ret = cow_file_range_inline(trans, root, inode,
438 						    start, end, 0, 0, NULL);
439 		} else {
440 			/* try making a compressed inline extent */
441 			ret = cow_file_range_inline(trans, root, inode,
442 						    start, end,
443 						    total_compressed,
444 						    compress_type, pages);
445 		}
446 		if (ret == 0) {
447 			/*
448 			 * inline extent creation worked, we don't need
449 			 * to create any more async work items.  Unlock
450 			 * and free up our temp pages.
451 			 */
452 			extent_clear_unlock_delalloc(inode,
453 			     &BTRFS_I(inode)->io_tree,
454 			     start, end, NULL,
455 			     EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456 			     EXTENT_CLEAR_DELALLOC |
457 			     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
458 
459 			btrfs_end_transaction(trans, root);
460 			goto free_pages_out;
461 		}
462 		btrfs_end_transaction(trans, root);
463 	}
464 
465 	if (will_compress) {
466 		/*
467 		 * we aren't doing an inline extent round the compressed size
468 		 * up to a block size boundary so the allocator does sane
469 		 * things
470 		 */
471 		total_compressed = (total_compressed + blocksize - 1) &
472 			~(blocksize - 1);
473 
474 		/*
475 		 * one last check to make sure the compression is really a
476 		 * win, compare the page count read with the blocks on disk
477 		 */
478 		total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 			~(PAGE_CACHE_SIZE - 1);
480 		if (total_compressed >= total_in) {
481 			will_compress = 0;
482 		} else {
483 			num_bytes = total_in;
484 		}
485 	}
486 	if (!will_compress && pages) {
487 		/*
488 		 * the compression code ran but failed to make things smaller,
489 		 * free any pages it allocated and our page pointer array
490 		 */
491 		for (i = 0; i < nr_pages_ret; i++) {
492 			WARN_ON(pages[i]->mapping);
493 			page_cache_release(pages[i]);
494 		}
495 		kfree(pages);
496 		pages = NULL;
497 		total_compressed = 0;
498 		nr_pages_ret = 0;
499 
500 		/* flag the file so we don't compress in the future */
501 		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 		    !(BTRFS_I(inode)->force_compress)) {
503 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
504 		}
505 	}
506 	if (will_compress) {
507 		*num_added += 1;
508 
509 		/* the async work queues will take care of doing actual
510 		 * allocation on disk for these compressed pages,
511 		 * and will submit them to the elevator.
512 		 */
513 		add_async_extent(async_cow, start, num_bytes,
514 				 total_compressed, pages, nr_pages_ret,
515 				 compress_type);
516 
517 		if (start + num_bytes < end) {
518 			start += num_bytes;
519 			pages = NULL;
520 			cond_resched();
521 			goto again;
522 		}
523 	} else {
524 cleanup_and_bail_uncompressed:
525 		/*
526 		 * No compression, but we still need to write the pages in
527 		 * the file we've been given so far.  redirty the locked
528 		 * page if it corresponds to our extent and set things up
529 		 * for the async work queue to run cow_file_range to do
530 		 * the normal delalloc dance
531 		 */
532 		if (page_offset(locked_page) >= start &&
533 		    page_offset(locked_page) <= end) {
534 			__set_page_dirty_nobuffers(locked_page);
535 			/* unlocked later on in the async handlers */
536 		}
537 		add_async_extent(async_cow, start, end - start + 1,
538 				 0, NULL, 0, BTRFS_COMPRESS_NONE);
539 		*num_added += 1;
540 	}
541 
542 out:
543 	return 0;
544 
545 free_pages_out:
546 	for (i = 0; i < nr_pages_ret; i++) {
547 		WARN_ON(pages[i]->mapping);
548 		page_cache_release(pages[i]);
549 	}
550 	kfree(pages);
551 
552 	goto out;
553 }
554 
555 /*
556  * phase two of compressed writeback.  This is the ordered portion
557  * of the code, which only gets called in the order the work was
558  * queued.  We walk all the async extents created by compress_file_range
559  * and send them down to the disk.
560  */
561 static noinline int submit_compressed_extents(struct inode *inode,
562 					      struct async_cow *async_cow)
563 {
564 	struct async_extent *async_extent;
565 	u64 alloc_hint = 0;
566 	struct btrfs_trans_handle *trans;
567 	struct btrfs_key ins;
568 	struct extent_map *em;
569 	struct btrfs_root *root = BTRFS_I(inode)->root;
570 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 	struct extent_io_tree *io_tree;
572 	int ret = 0;
573 
574 	if (list_empty(&async_cow->extents))
575 		return 0;
576 
577 
578 	while (!list_empty(&async_cow->extents)) {
579 		async_extent = list_entry(async_cow->extents.next,
580 					  struct async_extent, list);
581 		list_del(&async_extent->list);
582 
583 		io_tree = &BTRFS_I(inode)->io_tree;
584 
585 retry:
586 		/* did the compression code fall back to uncompressed IO? */
587 		if (!async_extent->pages) {
588 			int page_started = 0;
589 			unsigned long nr_written = 0;
590 
591 			lock_extent(io_tree, async_extent->start,
592 					 async_extent->start +
593 					 async_extent->ram_size - 1, GFP_NOFS);
594 
595 			/* allocate blocks */
596 			ret = cow_file_range(inode, async_cow->locked_page,
597 					     async_extent->start,
598 					     async_extent->start +
599 					     async_extent->ram_size - 1,
600 					     &page_started, &nr_written, 0);
601 
602 			/*
603 			 * if page_started, cow_file_range inserted an
604 			 * inline extent and took care of all the unlocking
605 			 * and IO for us.  Otherwise, we need to submit
606 			 * all those pages down to the drive.
607 			 */
608 			if (!page_started && !ret)
609 				extent_write_locked_range(io_tree,
610 						  inode, async_extent->start,
611 						  async_extent->start +
612 						  async_extent->ram_size - 1,
613 						  btrfs_get_extent,
614 						  WB_SYNC_ALL);
615 			kfree(async_extent);
616 			cond_resched();
617 			continue;
618 		}
619 
620 		lock_extent(io_tree, async_extent->start,
621 			    async_extent->start + async_extent->ram_size - 1,
622 			    GFP_NOFS);
623 
624 		trans = btrfs_join_transaction(root);
625 		BUG_ON(IS_ERR(trans));
626 		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627 		ret = btrfs_reserve_extent(trans, root,
628 					   async_extent->compressed_size,
629 					   async_extent->compressed_size,
630 					   0, alloc_hint,
631 					   (u64)-1, &ins, 1);
632 		btrfs_end_transaction(trans, root);
633 
634 		if (ret) {
635 			int i;
636 			for (i = 0; i < async_extent->nr_pages; i++) {
637 				WARN_ON(async_extent->pages[i]->mapping);
638 				page_cache_release(async_extent->pages[i]);
639 			}
640 			kfree(async_extent->pages);
641 			async_extent->nr_pages = 0;
642 			async_extent->pages = NULL;
643 			unlock_extent(io_tree, async_extent->start,
644 				      async_extent->start +
645 				      async_extent->ram_size - 1, GFP_NOFS);
646 			goto retry;
647 		}
648 
649 		/*
650 		 * here we're doing allocation and writeback of the
651 		 * compressed pages
652 		 */
653 		btrfs_drop_extent_cache(inode, async_extent->start,
654 					async_extent->start +
655 					async_extent->ram_size - 1, 0);
656 
657 		em = alloc_extent_map();
658 		BUG_ON(!em);
659 		em->start = async_extent->start;
660 		em->len = async_extent->ram_size;
661 		em->orig_start = em->start;
662 
663 		em->block_start = ins.objectid;
664 		em->block_len = ins.offset;
665 		em->bdev = root->fs_info->fs_devices->latest_bdev;
666 		em->compress_type = async_extent->compress_type;
667 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669 
670 		while (1) {
671 			write_lock(&em_tree->lock);
672 			ret = add_extent_mapping(em_tree, em);
673 			write_unlock(&em_tree->lock);
674 			if (ret != -EEXIST) {
675 				free_extent_map(em);
676 				break;
677 			}
678 			btrfs_drop_extent_cache(inode, async_extent->start,
679 						async_extent->start +
680 						async_extent->ram_size - 1, 0);
681 		}
682 
683 		ret = btrfs_add_ordered_extent_compress(inode,
684 						async_extent->start,
685 						ins.objectid,
686 						async_extent->ram_size,
687 						ins.offset,
688 						BTRFS_ORDERED_COMPRESSED,
689 						async_extent->compress_type);
690 		BUG_ON(ret);
691 
692 		/*
693 		 * clear dirty, set writeback and unlock the pages.
694 		 */
695 		extent_clear_unlock_delalloc(inode,
696 				&BTRFS_I(inode)->io_tree,
697 				async_extent->start,
698 				async_extent->start +
699 				async_extent->ram_size - 1,
700 				NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 				EXTENT_CLEAR_UNLOCK |
702 				EXTENT_CLEAR_DELALLOC |
703 				EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
704 
705 		ret = btrfs_submit_compressed_write(inode,
706 				    async_extent->start,
707 				    async_extent->ram_size,
708 				    ins.objectid,
709 				    ins.offset, async_extent->pages,
710 				    async_extent->nr_pages);
711 
712 		BUG_ON(ret);
713 		alloc_hint = ins.objectid + ins.offset;
714 		kfree(async_extent);
715 		cond_resched();
716 	}
717 
718 	return 0;
719 }
720 
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 				      u64 num_bytes)
723 {
724 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 	struct extent_map *em;
726 	u64 alloc_hint = 0;
727 
728 	read_lock(&em_tree->lock);
729 	em = search_extent_mapping(em_tree, start, num_bytes);
730 	if (em) {
731 		/*
732 		 * if block start isn't an actual block number then find the
733 		 * first block in this inode and use that as a hint.  If that
734 		 * block is also bogus then just don't worry about it.
735 		 */
736 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 			free_extent_map(em);
738 			em = search_extent_mapping(em_tree, 0, 0);
739 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 				alloc_hint = em->block_start;
741 			if (em)
742 				free_extent_map(em);
743 		} else {
744 			alloc_hint = em->block_start;
745 			free_extent_map(em);
746 		}
747 	}
748 	read_unlock(&em_tree->lock);
749 
750 	return alloc_hint;
751 }
752 
753 /*
754  * when extent_io.c finds a delayed allocation range in the file,
755  * the call backs end up in this code.  The basic idea is to
756  * allocate extents on disk for the range, and create ordered data structs
757  * in ram to track those extents.
758  *
759  * locked_page is the page that writepage had locked already.  We use
760  * it to make sure we don't do extra locks or unlocks.
761  *
762  * *page_started is set to one if we unlock locked_page and do everything
763  * required to start IO on it.  It may be clean and already done with
764  * IO when we return.
765  */
766 static noinline int cow_file_range(struct inode *inode,
767 				   struct page *locked_page,
768 				   u64 start, u64 end, int *page_started,
769 				   unsigned long *nr_written,
770 				   int unlock)
771 {
772 	struct btrfs_root *root = BTRFS_I(inode)->root;
773 	struct btrfs_trans_handle *trans;
774 	u64 alloc_hint = 0;
775 	u64 num_bytes;
776 	unsigned long ram_size;
777 	u64 disk_num_bytes;
778 	u64 cur_alloc_size;
779 	u64 blocksize = root->sectorsize;
780 	struct btrfs_key ins;
781 	struct extent_map *em;
782 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783 	int ret = 0;
784 
785 	BUG_ON(btrfs_is_free_space_inode(root, inode));
786 	trans = btrfs_join_transaction(root);
787 	BUG_ON(IS_ERR(trans));
788 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
789 
790 	num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791 	num_bytes = max(blocksize,  num_bytes);
792 	disk_num_bytes = num_bytes;
793 	ret = 0;
794 
795 	/* if this is a small write inside eof, kick off defrag */
796 	if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797 		btrfs_add_inode_defrag(trans, inode);
798 
799 	if (start == 0) {
800 		/* lets try to make an inline extent */
801 		ret = cow_file_range_inline(trans, root, inode,
802 					    start, end, 0, 0, NULL);
803 		if (ret == 0) {
804 			extent_clear_unlock_delalloc(inode,
805 				     &BTRFS_I(inode)->io_tree,
806 				     start, end, NULL,
807 				     EXTENT_CLEAR_UNLOCK_PAGE |
808 				     EXTENT_CLEAR_UNLOCK |
809 				     EXTENT_CLEAR_DELALLOC |
810 				     EXTENT_CLEAR_DIRTY |
811 				     EXTENT_SET_WRITEBACK |
812 				     EXTENT_END_WRITEBACK);
813 
814 			*nr_written = *nr_written +
815 			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816 			*page_started = 1;
817 			ret = 0;
818 			goto out;
819 		}
820 	}
821 
822 	BUG_ON(disk_num_bytes >
823 	       btrfs_super_total_bytes(&root->fs_info->super_copy));
824 
825 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
826 	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
827 
828 	while (disk_num_bytes > 0) {
829 		unsigned long op;
830 
831 		cur_alloc_size = disk_num_bytes;
832 		ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
833 					   root->sectorsize, 0, alloc_hint,
834 					   (u64)-1, &ins, 1);
835 		BUG_ON(ret);
836 
837 		em = alloc_extent_map();
838 		BUG_ON(!em);
839 		em->start = start;
840 		em->orig_start = em->start;
841 		ram_size = ins.offset;
842 		em->len = ins.offset;
843 
844 		em->block_start = ins.objectid;
845 		em->block_len = ins.offset;
846 		em->bdev = root->fs_info->fs_devices->latest_bdev;
847 		set_bit(EXTENT_FLAG_PINNED, &em->flags);
848 
849 		while (1) {
850 			write_lock(&em_tree->lock);
851 			ret = add_extent_mapping(em_tree, em);
852 			write_unlock(&em_tree->lock);
853 			if (ret != -EEXIST) {
854 				free_extent_map(em);
855 				break;
856 			}
857 			btrfs_drop_extent_cache(inode, start,
858 						start + ram_size - 1, 0);
859 		}
860 
861 		cur_alloc_size = ins.offset;
862 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
863 					       ram_size, cur_alloc_size, 0);
864 		BUG_ON(ret);
865 
866 		if (root->root_key.objectid ==
867 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
868 			ret = btrfs_reloc_clone_csums(inode, start,
869 						      cur_alloc_size);
870 			BUG_ON(ret);
871 		}
872 
873 		if (disk_num_bytes < cur_alloc_size)
874 			break;
875 
876 		/* we're not doing compressed IO, don't unlock the first
877 		 * page (which the caller expects to stay locked), don't
878 		 * clear any dirty bits and don't set any writeback bits
879 		 *
880 		 * Do set the Private2 bit so we know this page was properly
881 		 * setup for writepage
882 		 */
883 		op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884 		op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885 			EXTENT_SET_PRIVATE2;
886 
887 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888 					     start, start + ram_size - 1,
889 					     locked_page, op);
890 		disk_num_bytes -= cur_alloc_size;
891 		num_bytes -= cur_alloc_size;
892 		alloc_hint = ins.objectid + ins.offset;
893 		start += cur_alloc_size;
894 	}
895 out:
896 	ret = 0;
897 	btrfs_end_transaction(trans, root);
898 
899 	return ret;
900 }
901 
902 /*
903  * work queue call back to started compression on a file and pages
904  */
905 static noinline void async_cow_start(struct btrfs_work *work)
906 {
907 	struct async_cow *async_cow;
908 	int num_added = 0;
909 	async_cow = container_of(work, struct async_cow, work);
910 
911 	compress_file_range(async_cow->inode, async_cow->locked_page,
912 			    async_cow->start, async_cow->end, async_cow,
913 			    &num_added);
914 	if (num_added == 0)
915 		async_cow->inode = NULL;
916 }
917 
918 /*
919  * work queue call back to submit previously compressed pages
920  */
921 static noinline void async_cow_submit(struct btrfs_work *work)
922 {
923 	struct async_cow *async_cow;
924 	struct btrfs_root *root;
925 	unsigned long nr_pages;
926 
927 	async_cow = container_of(work, struct async_cow, work);
928 
929 	root = async_cow->root;
930 	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931 		PAGE_CACHE_SHIFT;
932 
933 	atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
934 
935 	if (atomic_read(&root->fs_info->async_delalloc_pages) <
936 	    5 * 1042 * 1024 &&
937 	    waitqueue_active(&root->fs_info->async_submit_wait))
938 		wake_up(&root->fs_info->async_submit_wait);
939 
940 	if (async_cow->inode)
941 		submit_compressed_extents(async_cow->inode, async_cow);
942 }
943 
944 static noinline void async_cow_free(struct btrfs_work *work)
945 {
946 	struct async_cow *async_cow;
947 	async_cow = container_of(work, struct async_cow, work);
948 	kfree(async_cow);
949 }
950 
951 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952 				u64 start, u64 end, int *page_started,
953 				unsigned long *nr_written)
954 {
955 	struct async_cow *async_cow;
956 	struct btrfs_root *root = BTRFS_I(inode)->root;
957 	unsigned long nr_pages;
958 	u64 cur_end;
959 	int limit = 10 * 1024 * 1042;
960 
961 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962 			 1, 0, NULL, GFP_NOFS);
963 	while (start < end) {
964 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
965 		BUG_ON(!async_cow);
966 		async_cow->inode = inode;
967 		async_cow->root = root;
968 		async_cow->locked_page = locked_page;
969 		async_cow->start = start;
970 
971 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
972 			cur_end = end;
973 		else
974 			cur_end = min(end, start + 512 * 1024 - 1);
975 
976 		async_cow->end = cur_end;
977 		INIT_LIST_HEAD(&async_cow->extents);
978 
979 		async_cow->work.func = async_cow_start;
980 		async_cow->work.ordered_func = async_cow_submit;
981 		async_cow->work.ordered_free = async_cow_free;
982 		async_cow->work.flags = 0;
983 
984 		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985 			PAGE_CACHE_SHIFT;
986 		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
987 
988 		btrfs_queue_worker(&root->fs_info->delalloc_workers,
989 				   &async_cow->work);
990 
991 		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992 			wait_event(root->fs_info->async_submit_wait,
993 			   (atomic_read(&root->fs_info->async_delalloc_pages) <
994 			    limit));
995 		}
996 
997 		while (atomic_read(&root->fs_info->async_submit_draining) &&
998 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
999 			wait_event(root->fs_info->async_submit_wait,
1000 			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001 			   0));
1002 		}
1003 
1004 		*nr_written += nr_pages;
1005 		start = cur_end + 1;
1006 	}
1007 	*page_started = 1;
1008 	return 0;
1009 }
1010 
1011 static noinline int csum_exist_in_range(struct btrfs_root *root,
1012 					u64 bytenr, u64 num_bytes)
1013 {
1014 	int ret;
1015 	struct btrfs_ordered_sum *sums;
1016 	LIST_HEAD(list);
1017 
1018 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1019 				       bytenr + num_bytes - 1, &list, 0);
1020 	if (ret == 0 && list_empty(&list))
1021 		return 0;
1022 
1023 	while (!list_empty(&list)) {
1024 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025 		list_del(&sums->list);
1026 		kfree(sums);
1027 	}
1028 	return 1;
1029 }
1030 
1031 /*
1032  * when nowcow writeback call back.  This checks for snapshots or COW copies
1033  * of the extents that exist in the file, and COWs the file as required.
1034  *
1035  * If no cow copies or snapshots exist, we write directly to the existing
1036  * blocks on disk
1037  */
1038 static noinline int run_delalloc_nocow(struct inode *inode,
1039 				       struct page *locked_page,
1040 			      u64 start, u64 end, int *page_started, int force,
1041 			      unsigned long *nr_written)
1042 {
1043 	struct btrfs_root *root = BTRFS_I(inode)->root;
1044 	struct btrfs_trans_handle *trans;
1045 	struct extent_buffer *leaf;
1046 	struct btrfs_path *path;
1047 	struct btrfs_file_extent_item *fi;
1048 	struct btrfs_key found_key;
1049 	u64 cow_start;
1050 	u64 cur_offset;
1051 	u64 extent_end;
1052 	u64 extent_offset;
1053 	u64 disk_bytenr;
1054 	u64 num_bytes;
1055 	int extent_type;
1056 	int ret;
1057 	int type;
1058 	int nocow;
1059 	int check_prev = 1;
1060 	bool nolock;
1061 	u64 ino = btrfs_ino(inode);
1062 
1063 	path = btrfs_alloc_path();
1064 	if (!path)
1065 		return -ENOMEM;
1066 
1067 	nolock = btrfs_is_free_space_inode(root, inode);
1068 
1069 	if (nolock)
1070 		trans = btrfs_join_transaction_nolock(root);
1071 	else
1072 		trans = btrfs_join_transaction(root);
1073 
1074 	BUG_ON(IS_ERR(trans));
1075 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1076 
1077 	cow_start = (u64)-1;
1078 	cur_offset = start;
1079 	while (1) {
1080 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1081 					       cur_offset, 0);
1082 		BUG_ON(ret < 0);
1083 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1084 			leaf = path->nodes[0];
1085 			btrfs_item_key_to_cpu(leaf, &found_key,
1086 					      path->slots[0] - 1);
1087 			if (found_key.objectid == ino &&
1088 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1089 				path->slots[0]--;
1090 		}
1091 		check_prev = 0;
1092 next_slot:
1093 		leaf = path->nodes[0];
1094 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 			ret = btrfs_next_leaf(root, path);
1096 			if (ret < 0)
1097 				BUG_ON(1);
1098 			if (ret > 0)
1099 				break;
1100 			leaf = path->nodes[0];
1101 		}
1102 
1103 		nocow = 0;
1104 		disk_bytenr = 0;
1105 		num_bytes = 0;
1106 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1107 
1108 		if (found_key.objectid > ino ||
1109 		    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1110 		    found_key.offset > end)
1111 			break;
1112 
1113 		if (found_key.offset > cur_offset) {
1114 			extent_end = found_key.offset;
1115 			extent_type = 0;
1116 			goto out_check;
1117 		}
1118 
1119 		fi = btrfs_item_ptr(leaf, path->slots[0],
1120 				    struct btrfs_file_extent_item);
1121 		extent_type = btrfs_file_extent_type(leaf, fi);
1122 
1123 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1124 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1125 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1126 			extent_offset = btrfs_file_extent_offset(leaf, fi);
1127 			extent_end = found_key.offset +
1128 				btrfs_file_extent_num_bytes(leaf, fi);
1129 			if (extent_end <= start) {
1130 				path->slots[0]++;
1131 				goto next_slot;
1132 			}
1133 			if (disk_bytenr == 0)
1134 				goto out_check;
1135 			if (btrfs_file_extent_compression(leaf, fi) ||
1136 			    btrfs_file_extent_encryption(leaf, fi) ||
1137 			    btrfs_file_extent_other_encoding(leaf, fi))
1138 				goto out_check;
1139 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1140 				goto out_check;
1141 			if (btrfs_extent_readonly(root, disk_bytenr))
1142 				goto out_check;
1143 			if (btrfs_cross_ref_exist(trans, root, ino,
1144 						  found_key.offset -
1145 						  extent_offset, disk_bytenr))
1146 				goto out_check;
1147 			disk_bytenr += extent_offset;
1148 			disk_bytenr += cur_offset - found_key.offset;
1149 			num_bytes = min(end + 1, extent_end) - cur_offset;
1150 			/*
1151 			 * force cow if csum exists in the range.
1152 			 * this ensure that csum for a given extent are
1153 			 * either valid or do not exist.
1154 			 */
1155 			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1156 				goto out_check;
1157 			nocow = 1;
1158 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1159 			extent_end = found_key.offset +
1160 				btrfs_file_extent_inline_len(leaf, fi);
1161 			extent_end = ALIGN(extent_end, root->sectorsize);
1162 		} else {
1163 			BUG_ON(1);
1164 		}
1165 out_check:
1166 		if (extent_end <= start) {
1167 			path->slots[0]++;
1168 			goto next_slot;
1169 		}
1170 		if (!nocow) {
1171 			if (cow_start == (u64)-1)
1172 				cow_start = cur_offset;
1173 			cur_offset = extent_end;
1174 			if (cur_offset > end)
1175 				break;
1176 			path->slots[0]++;
1177 			goto next_slot;
1178 		}
1179 
1180 		btrfs_release_path(path);
1181 		if (cow_start != (u64)-1) {
1182 			ret = cow_file_range(inode, locked_page, cow_start,
1183 					found_key.offset - 1, page_started,
1184 					nr_written, 1);
1185 			BUG_ON(ret);
1186 			cow_start = (u64)-1;
1187 		}
1188 
1189 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1190 			struct extent_map *em;
1191 			struct extent_map_tree *em_tree;
1192 			em_tree = &BTRFS_I(inode)->extent_tree;
1193 			em = alloc_extent_map();
1194 			BUG_ON(!em);
1195 			em->start = cur_offset;
1196 			em->orig_start = em->start;
1197 			em->len = num_bytes;
1198 			em->block_len = num_bytes;
1199 			em->block_start = disk_bytenr;
1200 			em->bdev = root->fs_info->fs_devices->latest_bdev;
1201 			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1202 			while (1) {
1203 				write_lock(&em_tree->lock);
1204 				ret = add_extent_mapping(em_tree, em);
1205 				write_unlock(&em_tree->lock);
1206 				if (ret != -EEXIST) {
1207 					free_extent_map(em);
1208 					break;
1209 				}
1210 				btrfs_drop_extent_cache(inode, em->start,
1211 						em->start + em->len - 1, 0);
1212 			}
1213 			type = BTRFS_ORDERED_PREALLOC;
1214 		} else {
1215 			type = BTRFS_ORDERED_NOCOW;
1216 		}
1217 
1218 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1219 					       num_bytes, num_bytes, type);
1220 		BUG_ON(ret);
1221 
1222 		if (root->root_key.objectid ==
1223 		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1224 			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1225 						      num_bytes);
1226 			BUG_ON(ret);
1227 		}
1228 
1229 		extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1230 				cur_offset, cur_offset + num_bytes - 1,
1231 				locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1232 				EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1233 				EXTENT_SET_PRIVATE2);
1234 		cur_offset = extent_end;
1235 		if (cur_offset > end)
1236 			break;
1237 	}
1238 	btrfs_release_path(path);
1239 
1240 	if (cur_offset <= end && cow_start == (u64)-1)
1241 		cow_start = cur_offset;
1242 	if (cow_start != (u64)-1) {
1243 		ret = cow_file_range(inode, locked_page, cow_start, end,
1244 				     page_started, nr_written, 1);
1245 		BUG_ON(ret);
1246 	}
1247 
1248 	if (nolock) {
1249 		ret = btrfs_end_transaction_nolock(trans, root);
1250 		BUG_ON(ret);
1251 	} else {
1252 		ret = btrfs_end_transaction(trans, root);
1253 		BUG_ON(ret);
1254 	}
1255 	btrfs_free_path(path);
1256 	return 0;
1257 }
1258 
1259 /*
1260  * extent_io.c call back to do delayed allocation processing
1261  */
1262 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1263 			      u64 start, u64 end, int *page_started,
1264 			      unsigned long *nr_written)
1265 {
1266 	int ret;
1267 	struct btrfs_root *root = BTRFS_I(inode)->root;
1268 
1269 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1270 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1271 					 page_started, 1, nr_written);
1272 	else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1273 		ret = run_delalloc_nocow(inode, locked_page, start, end,
1274 					 page_started, 0, nr_written);
1275 	else if (!btrfs_test_opt(root, COMPRESS) &&
1276 		 !(BTRFS_I(inode)->force_compress) &&
1277 		 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1278 		ret = cow_file_range(inode, locked_page, start, end,
1279 				      page_started, nr_written, 1);
1280 	else
1281 		ret = cow_file_range_async(inode, locked_page, start, end,
1282 					   page_started, nr_written);
1283 	return ret;
1284 }
1285 
1286 static void btrfs_split_extent_hook(struct inode *inode,
1287 				    struct extent_state *orig, u64 split)
1288 {
1289 	/* not delalloc, ignore it */
1290 	if (!(orig->state & EXTENT_DELALLOC))
1291 		return;
1292 
1293 	spin_lock(&BTRFS_I(inode)->lock);
1294 	BTRFS_I(inode)->outstanding_extents++;
1295 	spin_unlock(&BTRFS_I(inode)->lock);
1296 }
1297 
1298 /*
1299  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300  * extents so we can keep track of new extents that are just merged onto old
1301  * extents, such as when we are doing sequential writes, so we can properly
1302  * account for the metadata space we'll need.
1303  */
1304 static void btrfs_merge_extent_hook(struct inode *inode,
1305 				    struct extent_state *new,
1306 				    struct extent_state *other)
1307 {
1308 	/* not delalloc, ignore it */
1309 	if (!(other->state & EXTENT_DELALLOC))
1310 		return;
1311 
1312 	spin_lock(&BTRFS_I(inode)->lock);
1313 	BTRFS_I(inode)->outstanding_extents--;
1314 	spin_unlock(&BTRFS_I(inode)->lock);
1315 }
1316 
1317 /*
1318  * extent_io.c set_bit_hook, used to track delayed allocation
1319  * bytes in this file, and to maintain the list of inodes that
1320  * have pending delalloc work to be done.
1321  */
1322 static void btrfs_set_bit_hook(struct inode *inode,
1323 			       struct extent_state *state, int *bits)
1324 {
1325 
1326 	/*
1327 	 * set_bit and clear bit hooks normally require _irqsave/restore
1328 	 * but in this case, we are only testing for the DELALLOC
1329 	 * bit, which is only set or cleared with irqs on
1330 	 */
1331 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1332 		struct btrfs_root *root = BTRFS_I(inode)->root;
1333 		u64 len = state->end + 1 - state->start;
1334 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1335 
1336 		if (*bits & EXTENT_FIRST_DELALLOC) {
1337 			*bits &= ~EXTENT_FIRST_DELALLOC;
1338 		} else {
1339 			spin_lock(&BTRFS_I(inode)->lock);
1340 			BTRFS_I(inode)->outstanding_extents++;
1341 			spin_unlock(&BTRFS_I(inode)->lock);
1342 		}
1343 
1344 		spin_lock(&root->fs_info->delalloc_lock);
1345 		BTRFS_I(inode)->delalloc_bytes += len;
1346 		root->fs_info->delalloc_bytes += len;
1347 		if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1348 			list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1349 				      &root->fs_info->delalloc_inodes);
1350 		}
1351 		spin_unlock(&root->fs_info->delalloc_lock);
1352 	}
1353 }
1354 
1355 /*
1356  * extent_io.c clear_bit_hook, see set_bit_hook for why
1357  */
1358 static void btrfs_clear_bit_hook(struct inode *inode,
1359 				 struct extent_state *state, int *bits)
1360 {
1361 	/*
1362 	 * set_bit and clear bit hooks normally require _irqsave/restore
1363 	 * but in this case, we are only testing for the DELALLOC
1364 	 * bit, which is only set or cleared with irqs on
1365 	 */
1366 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1367 		struct btrfs_root *root = BTRFS_I(inode)->root;
1368 		u64 len = state->end + 1 - state->start;
1369 		bool do_list = !btrfs_is_free_space_inode(root, inode);
1370 
1371 		if (*bits & EXTENT_FIRST_DELALLOC) {
1372 			*bits &= ~EXTENT_FIRST_DELALLOC;
1373 		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1374 			spin_lock(&BTRFS_I(inode)->lock);
1375 			BTRFS_I(inode)->outstanding_extents--;
1376 			spin_unlock(&BTRFS_I(inode)->lock);
1377 		}
1378 
1379 		if (*bits & EXTENT_DO_ACCOUNTING)
1380 			btrfs_delalloc_release_metadata(inode, len);
1381 
1382 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1383 		    && do_list)
1384 			btrfs_free_reserved_data_space(inode, len);
1385 
1386 		spin_lock(&root->fs_info->delalloc_lock);
1387 		root->fs_info->delalloc_bytes -= len;
1388 		BTRFS_I(inode)->delalloc_bytes -= len;
1389 
1390 		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1391 		    !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1392 			list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1393 		}
1394 		spin_unlock(&root->fs_info->delalloc_lock);
1395 	}
1396 }
1397 
1398 /*
1399  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1400  * we don't create bios that span stripes or chunks
1401  */
1402 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1403 			 size_t size, struct bio *bio,
1404 			 unsigned long bio_flags)
1405 {
1406 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1407 	struct btrfs_mapping_tree *map_tree;
1408 	u64 logical = (u64)bio->bi_sector << 9;
1409 	u64 length = 0;
1410 	u64 map_length;
1411 	int ret;
1412 
1413 	if (bio_flags & EXTENT_BIO_COMPRESSED)
1414 		return 0;
1415 
1416 	length = bio->bi_size;
1417 	map_tree = &root->fs_info->mapping_tree;
1418 	map_length = length;
1419 	ret = btrfs_map_block(map_tree, READ, logical,
1420 			      &map_length, NULL, 0);
1421 
1422 	if (map_length < length + size)
1423 		return 1;
1424 	return ret;
1425 }
1426 
1427 /*
1428  * in order to insert checksums into the metadata in large chunks,
1429  * we wait until bio submission time.   All the pages in the bio are
1430  * checksummed and sums are attached onto the ordered extent record.
1431  *
1432  * At IO completion time the cums attached on the ordered extent record
1433  * are inserted into the btree
1434  */
1435 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1436 				    struct bio *bio, int mirror_num,
1437 				    unsigned long bio_flags,
1438 				    u64 bio_offset)
1439 {
1440 	struct btrfs_root *root = BTRFS_I(inode)->root;
1441 	int ret = 0;
1442 
1443 	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1444 	BUG_ON(ret);
1445 	return 0;
1446 }
1447 
1448 /*
1449  * in order to insert checksums into the metadata in large chunks,
1450  * we wait until bio submission time.   All the pages in the bio are
1451  * checksummed and sums are attached onto the ordered extent record.
1452  *
1453  * At IO completion time the cums attached on the ordered extent record
1454  * are inserted into the btree
1455  */
1456 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1457 			  int mirror_num, unsigned long bio_flags,
1458 			  u64 bio_offset)
1459 {
1460 	struct btrfs_root *root = BTRFS_I(inode)->root;
1461 	return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1462 }
1463 
1464 /*
1465  * extent_io.c submission hook. This does the right thing for csum calculation
1466  * on write, or reading the csums from the tree before a read
1467  */
1468 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1469 			  int mirror_num, unsigned long bio_flags,
1470 			  u64 bio_offset)
1471 {
1472 	struct btrfs_root *root = BTRFS_I(inode)->root;
1473 	int ret = 0;
1474 	int skip_sum;
1475 
1476 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1477 
1478 	if (btrfs_is_free_space_inode(root, inode))
1479 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1480 	else
1481 		ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1482 	BUG_ON(ret);
1483 
1484 	if (!(rw & REQ_WRITE)) {
1485 		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1486 			return btrfs_submit_compressed_read(inode, bio,
1487 						    mirror_num, bio_flags);
1488 		} else if (!skip_sum) {
1489 			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1490 			if (ret)
1491 				return ret;
1492 		}
1493 		goto mapit;
1494 	} else if (!skip_sum) {
1495 		/* csum items have already been cloned */
1496 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1497 			goto mapit;
1498 		/* we're doing a write, do the async checksumming */
1499 		return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1500 				   inode, rw, bio, mirror_num,
1501 				   bio_flags, bio_offset,
1502 				   __btrfs_submit_bio_start,
1503 				   __btrfs_submit_bio_done);
1504 	}
1505 
1506 mapit:
1507 	return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1508 }
1509 
1510 /*
1511  * given a list of ordered sums record them in the inode.  This happens
1512  * at IO completion time based on sums calculated at bio submission time.
1513  */
1514 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1515 			     struct inode *inode, u64 file_offset,
1516 			     struct list_head *list)
1517 {
1518 	struct btrfs_ordered_sum *sum;
1519 
1520 	list_for_each_entry(sum, list, list) {
1521 		btrfs_csum_file_blocks(trans,
1522 		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1523 	}
1524 	return 0;
1525 }
1526 
1527 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1528 			      struct extent_state **cached_state)
1529 {
1530 	if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1531 		WARN_ON(1);
1532 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1533 				   cached_state, GFP_NOFS);
1534 }
1535 
1536 /* see btrfs_writepage_start_hook for details on why this is required */
1537 struct btrfs_writepage_fixup {
1538 	struct page *page;
1539 	struct btrfs_work work;
1540 };
1541 
1542 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1543 {
1544 	struct btrfs_writepage_fixup *fixup;
1545 	struct btrfs_ordered_extent *ordered;
1546 	struct extent_state *cached_state = NULL;
1547 	struct page *page;
1548 	struct inode *inode;
1549 	u64 page_start;
1550 	u64 page_end;
1551 
1552 	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1553 	page = fixup->page;
1554 again:
1555 	lock_page(page);
1556 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1557 		ClearPageChecked(page);
1558 		goto out_page;
1559 	}
1560 
1561 	inode = page->mapping->host;
1562 	page_start = page_offset(page);
1563 	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1564 
1565 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1566 			 &cached_state, GFP_NOFS);
1567 
1568 	/* already ordered? We're done */
1569 	if (PagePrivate2(page))
1570 		goto out;
1571 
1572 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1573 	if (ordered) {
1574 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1575 				     page_end, &cached_state, GFP_NOFS);
1576 		unlock_page(page);
1577 		btrfs_start_ordered_extent(inode, ordered, 1);
1578 		goto again;
1579 	}
1580 
1581 	BUG();
1582 	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1583 	ClearPageChecked(page);
1584 out:
1585 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1586 			     &cached_state, GFP_NOFS);
1587 out_page:
1588 	unlock_page(page);
1589 	page_cache_release(page);
1590 	kfree(fixup);
1591 }
1592 
1593 /*
1594  * There are a few paths in the higher layers of the kernel that directly
1595  * set the page dirty bit without asking the filesystem if it is a
1596  * good idea.  This causes problems because we want to make sure COW
1597  * properly happens and the data=ordered rules are followed.
1598  *
1599  * In our case any range that doesn't have the ORDERED bit set
1600  * hasn't been properly setup for IO.  We kick off an async process
1601  * to fix it up.  The async helper will wait for ordered extents, set
1602  * the delalloc bit and make it safe to write the page.
1603  */
1604 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1605 {
1606 	struct inode *inode = page->mapping->host;
1607 	struct btrfs_writepage_fixup *fixup;
1608 	struct btrfs_root *root = BTRFS_I(inode)->root;
1609 
1610 	/* this page is properly in the ordered list */
1611 	if (TestClearPagePrivate2(page))
1612 		return 0;
1613 
1614 	if (PageChecked(page))
1615 		return -EAGAIN;
1616 
1617 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1618 	if (!fixup)
1619 		return -EAGAIN;
1620 
1621 	SetPageChecked(page);
1622 	page_cache_get(page);
1623 	fixup->work.func = btrfs_writepage_fixup_worker;
1624 	fixup->page = page;
1625 	btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1626 	return -EAGAIN;
1627 }
1628 
1629 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1630 				       struct inode *inode, u64 file_pos,
1631 				       u64 disk_bytenr, u64 disk_num_bytes,
1632 				       u64 num_bytes, u64 ram_bytes,
1633 				       u8 compression, u8 encryption,
1634 				       u16 other_encoding, int extent_type)
1635 {
1636 	struct btrfs_root *root = BTRFS_I(inode)->root;
1637 	struct btrfs_file_extent_item *fi;
1638 	struct btrfs_path *path;
1639 	struct extent_buffer *leaf;
1640 	struct btrfs_key ins;
1641 	u64 hint;
1642 	int ret;
1643 
1644 	path = btrfs_alloc_path();
1645 	if (!path)
1646 		return -ENOMEM;
1647 
1648 	path->leave_spinning = 1;
1649 
1650 	/*
1651 	 * we may be replacing one extent in the tree with another.
1652 	 * The new extent is pinned in the extent map, and we don't want
1653 	 * to drop it from the cache until it is completely in the btree.
1654 	 *
1655 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
1656 	 * the caller is expected to unpin it and allow it to be merged
1657 	 * with the others.
1658 	 */
1659 	ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1660 				 &hint, 0);
1661 	BUG_ON(ret);
1662 
1663 	ins.objectid = btrfs_ino(inode);
1664 	ins.offset = file_pos;
1665 	ins.type = BTRFS_EXTENT_DATA_KEY;
1666 	ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1667 	BUG_ON(ret);
1668 	leaf = path->nodes[0];
1669 	fi = btrfs_item_ptr(leaf, path->slots[0],
1670 			    struct btrfs_file_extent_item);
1671 	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1672 	btrfs_set_file_extent_type(leaf, fi, extent_type);
1673 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1674 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1675 	btrfs_set_file_extent_offset(leaf, fi, 0);
1676 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1677 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1678 	btrfs_set_file_extent_compression(leaf, fi, compression);
1679 	btrfs_set_file_extent_encryption(leaf, fi, encryption);
1680 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1681 
1682 	btrfs_unlock_up_safe(path, 1);
1683 	btrfs_set_lock_blocking(leaf);
1684 
1685 	btrfs_mark_buffer_dirty(leaf);
1686 
1687 	inode_add_bytes(inode, num_bytes);
1688 
1689 	ins.objectid = disk_bytenr;
1690 	ins.offset = disk_num_bytes;
1691 	ins.type = BTRFS_EXTENT_ITEM_KEY;
1692 	ret = btrfs_alloc_reserved_file_extent(trans, root,
1693 					root->root_key.objectid,
1694 					btrfs_ino(inode), file_pos, &ins);
1695 	BUG_ON(ret);
1696 	btrfs_free_path(path);
1697 
1698 	return 0;
1699 }
1700 
1701 /*
1702  * helper function for btrfs_finish_ordered_io, this
1703  * just reads in some of the csum leaves to prime them into ram
1704  * before we start the transaction.  It limits the amount of btree
1705  * reads required while inside the transaction.
1706  */
1707 /* as ordered data IO finishes, this gets called so we can finish
1708  * an ordered extent if the range of bytes in the file it covers are
1709  * fully written.
1710  */
1711 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1712 {
1713 	struct btrfs_root *root = BTRFS_I(inode)->root;
1714 	struct btrfs_trans_handle *trans = NULL;
1715 	struct btrfs_ordered_extent *ordered_extent = NULL;
1716 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1717 	struct extent_state *cached_state = NULL;
1718 	int compress_type = 0;
1719 	int ret;
1720 	bool nolock;
1721 
1722 	ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1723 					     end - start + 1);
1724 	if (!ret)
1725 		return 0;
1726 	BUG_ON(!ordered_extent);
1727 
1728 	nolock = btrfs_is_free_space_inode(root, inode);
1729 
1730 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1731 		BUG_ON(!list_empty(&ordered_extent->list));
1732 		ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1733 		if (!ret) {
1734 			if (nolock)
1735 				trans = btrfs_join_transaction_nolock(root);
1736 			else
1737 				trans = btrfs_join_transaction(root);
1738 			BUG_ON(IS_ERR(trans));
1739 			trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1740 			ret = btrfs_update_inode(trans, root, inode);
1741 			BUG_ON(ret);
1742 		}
1743 		goto out;
1744 	}
1745 
1746 	lock_extent_bits(io_tree, ordered_extent->file_offset,
1747 			 ordered_extent->file_offset + ordered_extent->len - 1,
1748 			 0, &cached_state, GFP_NOFS);
1749 
1750 	if (nolock)
1751 		trans = btrfs_join_transaction_nolock(root);
1752 	else
1753 		trans = btrfs_join_transaction(root);
1754 	BUG_ON(IS_ERR(trans));
1755 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1756 
1757 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1758 		compress_type = ordered_extent->compress_type;
1759 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1760 		BUG_ON(compress_type);
1761 		ret = btrfs_mark_extent_written(trans, inode,
1762 						ordered_extent->file_offset,
1763 						ordered_extent->file_offset +
1764 						ordered_extent->len);
1765 		BUG_ON(ret);
1766 	} else {
1767 		BUG_ON(root == root->fs_info->tree_root);
1768 		ret = insert_reserved_file_extent(trans, inode,
1769 						ordered_extent->file_offset,
1770 						ordered_extent->start,
1771 						ordered_extent->disk_len,
1772 						ordered_extent->len,
1773 						ordered_extent->len,
1774 						compress_type, 0, 0,
1775 						BTRFS_FILE_EXTENT_REG);
1776 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1777 				   ordered_extent->file_offset,
1778 				   ordered_extent->len);
1779 		BUG_ON(ret);
1780 	}
1781 	unlock_extent_cached(io_tree, ordered_extent->file_offset,
1782 			     ordered_extent->file_offset +
1783 			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
1784 
1785 	add_pending_csums(trans, inode, ordered_extent->file_offset,
1786 			  &ordered_extent->list);
1787 
1788 	ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1789 	if (!ret) {
1790 		ret = btrfs_update_inode(trans, root, inode);
1791 		BUG_ON(ret);
1792 	}
1793 	ret = 0;
1794 out:
1795 	if (nolock) {
1796 		if (trans)
1797 			btrfs_end_transaction_nolock(trans, root);
1798 	} else {
1799 		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1800 		if (trans)
1801 			btrfs_end_transaction(trans, root);
1802 	}
1803 
1804 	/* once for us */
1805 	btrfs_put_ordered_extent(ordered_extent);
1806 	/* once for the tree */
1807 	btrfs_put_ordered_extent(ordered_extent);
1808 
1809 	return 0;
1810 }
1811 
1812 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1813 				struct extent_state *state, int uptodate)
1814 {
1815 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1816 
1817 	ClearPagePrivate2(page);
1818 	return btrfs_finish_ordered_io(page->mapping->host, start, end);
1819 }
1820 
1821 /*
1822  * When IO fails, either with EIO or csum verification fails, we
1823  * try other mirrors that might have a good copy of the data.  This
1824  * io_failure_record is used to record state as we go through all the
1825  * mirrors.  If another mirror has good data, the page is set up to date
1826  * and things continue.  If a good mirror can't be found, the original
1827  * bio end_io callback is called to indicate things have failed.
1828  */
1829 struct io_failure_record {
1830 	struct page *page;
1831 	u64 start;
1832 	u64 len;
1833 	u64 logical;
1834 	unsigned long bio_flags;
1835 	int last_mirror;
1836 };
1837 
1838 static int btrfs_io_failed_hook(struct bio *failed_bio,
1839 			 struct page *page, u64 start, u64 end,
1840 			 struct extent_state *state)
1841 {
1842 	struct io_failure_record *failrec = NULL;
1843 	u64 private;
1844 	struct extent_map *em;
1845 	struct inode *inode = page->mapping->host;
1846 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1847 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1848 	struct bio *bio;
1849 	int num_copies;
1850 	int ret;
1851 	int rw;
1852 	u64 logical;
1853 
1854 	ret = get_state_private(failure_tree, start, &private);
1855 	if (ret) {
1856 		failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1857 		if (!failrec)
1858 			return -ENOMEM;
1859 		failrec->start = start;
1860 		failrec->len = end - start + 1;
1861 		failrec->last_mirror = 0;
1862 		failrec->bio_flags = 0;
1863 
1864 		read_lock(&em_tree->lock);
1865 		em = lookup_extent_mapping(em_tree, start, failrec->len);
1866 		if (em->start > start || em->start + em->len < start) {
1867 			free_extent_map(em);
1868 			em = NULL;
1869 		}
1870 		read_unlock(&em_tree->lock);
1871 
1872 		if (IS_ERR_OR_NULL(em)) {
1873 			kfree(failrec);
1874 			return -EIO;
1875 		}
1876 		logical = start - em->start;
1877 		logical = em->block_start + logical;
1878 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1879 			logical = em->block_start;
1880 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1881 			extent_set_compress_type(&failrec->bio_flags,
1882 						 em->compress_type);
1883 		}
1884 		failrec->logical = logical;
1885 		free_extent_map(em);
1886 		set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1887 				EXTENT_DIRTY, GFP_NOFS);
1888 		set_state_private(failure_tree, start,
1889 				 (u64)(unsigned long)failrec);
1890 	} else {
1891 		failrec = (struct io_failure_record *)(unsigned long)private;
1892 	}
1893 	num_copies = btrfs_num_copies(
1894 			      &BTRFS_I(inode)->root->fs_info->mapping_tree,
1895 			      failrec->logical, failrec->len);
1896 	failrec->last_mirror++;
1897 	if (!state) {
1898 		spin_lock(&BTRFS_I(inode)->io_tree.lock);
1899 		state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1900 						    failrec->start,
1901 						    EXTENT_LOCKED);
1902 		if (state && state->start != failrec->start)
1903 			state = NULL;
1904 		spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1905 	}
1906 	if (!state || failrec->last_mirror > num_copies) {
1907 		set_state_private(failure_tree, failrec->start, 0);
1908 		clear_extent_bits(failure_tree, failrec->start,
1909 				  failrec->start + failrec->len - 1,
1910 				  EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1911 		kfree(failrec);
1912 		return -EIO;
1913 	}
1914 	bio = bio_alloc(GFP_NOFS, 1);
1915 	bio->bi_private = state;
1916 	bio->bi_end_io = failed_bio->bi_end_io;
1917 	bio->bi_sector = failrec->logical >> 9;
1918 	bio->bi_bdev = failed_bio->bi_bdev;
1919 	bio->bi_size = 0;
1920 
1921 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
1922 	if (failed_bio->bi_rw & REQ_WRITE)
1923 		rw = WRITE;
1924 	else
1925 		rw = READ;
1926 
1927 	ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1928 						      failrec->last_mirror,
1929 						      failrec->bio_flags, 0);
1930 	return ret;
1931 }
1932 
1933 /*
1934  * each time an IO finishes, we do a fast check in the IO failure tree
1935  * to see if we need to process or clean up an io_failure_record
1936  */
1937 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1938 {
1939 	u64 private;
1940 	u64 private_failure;
1941 	struct io_failure_record *failure;
1942 	int ret;
1943 
1944 	private = 0;
1945 	if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1946 			     (u64)-1, 1, EXTENT_DIRTY, 0)) {
1947 		ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1948 					start, &private_failure);
1949 		if (ret == 0) {
1950 			failure = (struct io_failure_record *)(unsigned long)
1951 				   private_failure;
1952 			set_state_private(&BTRFS_I(inode)->io_failure_tree,
1953 					  failure->start, 0);
1954 			clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1955 					  failure->start,
1956 					  failure->start + failure->len - 1,
1957 					  EXTENT_DIRTY | EXTENT_LOCKED,
1958 					  GFP_NOFS);
1959 			kfree(failure);
1960 		}
1961 	}
1962 	return 0;
1963 }
1964 
1965 /*
1966  * when reads are done, we need to check csums to verify the data is correct
1967  * if there's a match, we allow the bio to finish.  If not, we go through
1968  * the io_failure_record routines to find good copies
1969  */
1970 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1971 			       struct extent_state *state)
1972 {
1973 	size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1974 	struct inode *inode = page->mapping->host;
1975 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1976 	char *kaddr;
1977 	u64 private = ~(u32)0;
1978 	int ret;
1979 	struct btrfs_root *root = BTRFS_I(inode)->root;
1980 	u32 csum = ~(u32)0;
1981 
1982 	if (PageChecked(page)) {
1983 		ClearPageChecked(page);
1984 		goto good;
1985 	}
1986 
1987 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1988 		goto good;
1989 
1990 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1991 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1992 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1993 				  GFP_NOFS);
1994 		return 0;
1995 	}
1996 
1997 	if (state && state->start == start) {
1998 		private = state->private;
1999 		ret = 0;
2000 	} else {
2001 		ret = get_state_private(io_tree, start, &private);
2002 	}
2003 	kaddr = kmap_atomic(page, KM_USER0);
2004 	if (ret)
2005 		goto zeroit;
2006 
2007 	csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2008 	btrfs_csum_final(csum, (char *)&csum);
2009 	if (csum != private)
2010 		goto zeroit;
2011 
2012 	kunmap_atomic(kaddr, KM_USER0);
2013 good:
2014 	/* if the io failure tree for this inode is non-empty,
2015 	 * check to see if we've recovered from a failed IO
2016 	 */
2017 	btrfs_clean_io_failures(inode, start);
2018 	return 0;
2019 
2020 zeroit:
2021 	printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2022 		       "private %llu\n",
2023 		       (unsigned long long)btrfs_ino(page->mapping->host),
2024 		       (unsigned long long)start, csum,
2025 		       (unsigned long long)private);
2026 	memset(kaddr + offset, 1, end - start + 1);
2027 	flush_dcache_page(page);
2028 	kunmap_atomic(kaddr, KM_USER0);
2029 	if (private == 0)
2030 		return 0;
2031 	return -EIO;
2032 }
2033 
2034 struct delayed_iput {
2035 	struct list_head list;
2036 	struct inode *inode;
2037 };
2038 
2039 void btrfs_add_delayed_iput(struct inode *inode)
2040 {
2041 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2042 	struct delayed_iput *delayed;
2043 
2044 	if (atomic_add_unless(&inode->i_count, -1, 1))
2045 		return;
2046 
2047 	delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2048 	delayed->inode = inode;
2049 
2050 	spin_lock(&fs_info->delayed_iput_lock);
2051 	list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2052 	spin_unlock(&fs_info->delayed_iput_lock);
2053 }
2054 
2055 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2056 {
2057 	LIST_HEAD(list);
2058 	struct btrfs_fs_info *fs_info = root->fs_info;
2059 	struct delayed_iput *delayed;
2060 	int empty;
2061 
2062 	spin_lock(&fs_info->delayed_iput_lock);
2063 	empty = list_empty(&fs_info->delayed_iputs);
2064 	spin_unlock(&fs_info->delayed_iput_lock);
2065 	if (empty)
2066 		return;
2067 
2068 	down_read(&root->fs_info->cleanup_work_sem);
2069 	spin_lock(&fs_info->delayed_iput_lock);
2070 	list_splice_init(&fs_info->delayed_iputs, &list);
2071 	spin_unlock(&fs_info->delayed_iput_lock);
2072 
2073 	while (!list_empty(&list)) {
2074 		delayed = list_entry(list.next, struct delayed_iput, list);
2075 		list_del(&delayed->list);
2076 		iput(delayed->inode);
2077 		kfree(delayed);
2078 	}
2079 	up_read(&root->fs_info->cleanup_work_sem);
2080 }
2081 
2082 /*
2083  * calculate extra metadata reservation when snapshotting a subvolume
2084  * contains orphan files.
2085  */
2086 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2087 				struct btrfs_pending_snapshot *pending,
2088 				u64 *bytes_to_reserve)
2089 {
2090 	struct btrfs_root *root;
2091 	struct btrfs_block_rsv *block_rsv;
2092 	u64 num_bytes;
2093 	int index;
2094 
2095 	root = pending->root;
2096 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2097 		return;
2098 
2099 	block_rsv = root->orphan_block_rsv;
2100 
2101 	/* orphan block reservation for the snapshot */
2102 	num_bytes = block_rsv->size;
2103 
2104 	/*
2105 	 * after the snapshot is created, COWing tree blocks may use more
2106 	 * space than it frees. So we should make sure there is enough
2107 	 * reserved space.
2108 	 */
2109 	index = trans->transid & 0x1;
2110 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2111 		num_bytes += block_rsv->size -
2112 			     (block_rsv->reserved + block_rsv->freed[index]);
2113 	}
2114 
2115 	*bytes_to_reserve += num_bytes;
2116 }
2117 
2118 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2119 				struct btrfs_pending_snapshot *pending)
2120 {
2121 	struct btrfs_root *root = pending->root;
2122 	struct btrfs_root *snap = pending->snap;
2123 	struct btrfs_block_rsv *block_rsv;
2124 	u64 num_bytes;
2125 	int index;
2126 	int ret;
2127 
2128 	if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2129 		return;
2130 
2131 	/* refill source subvolume's orphan block reservation */
2132 	block_rsv = root->orphan_block_rsv;
2133 	index = trans->transid & 0x1;
2134 	if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2135 		num_bytes = block_rsv->size -
2136 			    (block_rsv->reserved + block_rsv->freed[index]);
2137 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2138 					      root->orphan_block_rsv,
2139 					      num_bytes);
2140 		BUG_ON(ret);
2141 	}
2142 
2143 	/* setup orphan block reservation for the snapshot */
2144 	block_rsv = btrfs_alloc_block_rsv(snap);
2145 	BUG_ON(!block_rsv);
2146 
2147 	btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2148 	snap->orphan_block_rsv = block_rsv;
2149 
2150 	num_bytes = root->orphan_block_rsv->size;
2151 	ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2152 				      block_rsv, num_bytes);
2153 	BUG_ON(ret);
2154 
2155 #if 0
2156 	/* insert orphan item for the snapshot */
2157 	WARN_ON(!root->orphan_item_inserted);
2158 	ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2159 				       snap->root_key.objectid);
2160 	BUG_ON(ret);
2161 	snap->orphan_item_inserted = 1;
2162 #endif
2163 }
2164 
2165 enum btrfs_orphan_cleanup_state {
2166 	ORPHAN_CLEANUP_STARTED	= 1,
2167 	ORPHAN_CLEANUP_DONE	= 2,
2168 };
2169 
2170 /*
2171  * This is called in transaction commmit time. If there are no orphan
2172  * files in the subvolume, it removes orphan item and frees block_rsv
2173  * structure.
2174  */
2175 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2176 			      struct btrfs_root *root)
2177 {
2178 	int ret;
2179 
2180 	if (!list_empty(&root->orphan_list) ||
2181 	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2182 		return;
2183 
2184 	if (root->orphan_item_inserted &&
2185 	    btrfs_root_refs(&root->root_item) > 0) {
2186 		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2187 					    root->root_key.objectid);
2188 		BUG_ON(ret);
2189 		root->orphan_item_inserted = 0;
2190 	}
2191 
2192 	if (root->orphan_block_rsv) {
2193 		WARN_ON(root->orphan_block_rsv->size > 0);
2194 		btrfs_free_block_rsv(root, root->orphan_block_rsv);
2195 		root->orphan_block_rsv = NULL;
2196 	}
2197 }
2198 
2199 /*
2200  * This creates an orphan entry for the given inode in case something goes
2201  * wrong in the middle of an unlink/truncate.
2202  *
2203  * NOTE: caller of this function should reserve 5 units of metadata for
2204  *	 this function.
2205  */
2206 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2207 {
2208 	struct btrfs_root *root = BTRFS_I(inode)->root;
2209 	struct btrfs_block_rsv *block_rsv = NULL;
2210 	int reserve = 0;
2211 	int insert = 0;
2212 	int ret;
2213 
2214 	if (!root->orphan_block_rsv) {
2215 		block_rsv = btrfs_alloc_block_rsv(root);
2216 		if (!block_rsv)
2217 			return -ENOMEM;
2218 	}
2219 
2220 	spin_lock(&root->orphan_lock);
2221 	if (!root->orphan_block_rsv) {
2222 		root->orphan_block_rsv = block_rsv;
2223 	} else if (block_rsv) {
2224 		btrfs_free_block_rsv(root, block_rsv);
2225 		block_rsv = NULL;
2226 	}
2227 
2228 	if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2229 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2230 #if 0
2231 		/*
2232 		 * For proper ENOSPC handling, we should do orphan
2233 		 * cleanup when mounting. But this introduces backward
2234 		 * compatibility issue.
2235 		 */
2236 		if (!xchg(&root->orphan_item_inserted, 1))
2237 			insert = 2;
2238 		else
2239 			insert = 1;
2240 #endif
2241 		insert = 1;
2242 	}
2243 
2244 	if (!BTRFS_I(inode)->orphan_meta_reserved) {
2245 		BTRFS_I(inode)->orphan_meta_reserved = 1;
2246 		reserve = 1;
2247 	}
2248 	spin_unlock(&root->orphan_lock);
2249 
2250 	if (block_rsv)
2251 		btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2252 
2253 	/* grab metadata reservation from transaction handle */
2254 	if (reserve) {
2255 		ret = btrfs_orphan_reserve_metadata(trans, inode);
2256 		BUG_ON(ret);
2257 	}
2258 
2259 	/* insert an orphan item to track this unlinked/truncated file */
2260 	if (insert >= 1) {
2261 		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2262 		BUG_ON(ret);
2263 	}
2264 
2265 	/* insert an orphan item to track subvolume contains orphan files */
2266 	if (insert >= 2) {
2267 		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2268 					       root->root_key.objectid);
2269 		BUG_ON(ret);
2270 	}
2271 	return 0;
2272 }
2273 
2274 /*
2275  * We have done the truncate/delete so we can go ahead and remove the orphan
2276  * item for this particular inode.
2277  */
2278 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2279 {
2280 	struct btrfs_root *root = BTRFS_I(inode)->root;
2281 	int delete_item = 0;
2282 	int release_rsv = 0;
2283 	int ret = 0;
2284 
2285 	spin_lock(&root->orphan_lock);
2286 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2287 		list_del_init(&BTRFS_I(inode)->i_orphan);
2288 		delete_item = 1;
2289 	}
2290 
2291 	if (BTRFS_I(inode)->orphan_meta_reserved) {
2292 		BTRFS_I(inode)->orphan_meta_reserved = 0;
2293 		release_rsv = 1;
2294 	}
2295 	spin_unlock(&root->orphan_lock);
2296 
2297 	if (trans && delete_item) {
2298 		ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2299 		BUG_ON(ret);
2300 	}
2301 
2302 	if (release_rsv)
2303 		btrfs_orphan_release_metadata(inode);
2304 
2305 	return 0;
2306 }
2307 
2308 /*
2309  * this cleans up any orphans that may be left on the list from the last use
2310  * of this root.
2311  */
2312 int btrfs_orphan_cleanup(struct btrfs_root *root)
2313 {
2314 	struct btrfs_path *path;
2315 	struct extent_buffer *leaf;
2316 	struct btrfs_key key, found_key;
2317 	struct btrfs_trans_handle *trans;
2318 	struct inode *inode;
2319 	int ret = 0, nr_unlink = 0, nr_truncate = 0;
2320 
2321 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2322 		return 0;
2323 
2324 	path = btrfs_alloc_path();
2325 	if (!path) {
2326 		ret = -ENOMEM;
2327 		goto out;
2328 	}
2329 	path->reada = -1;
2330 
2331 	key.objectid = BTRFS_ORPHAN_OBJECTID;
2332 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2333 	key.offset = (u64)-1;
2334 
2335 	while (1) {
2336 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2337 		if (ret < 0)
2338 			goto out;
2339 
2340 		/*
2341 		 * if ret == 0 means we found what we were searching for, which
2342 		 * is weird, but possible, so only screw with path if we didn't
2343 		 * find the key and see if we have stuff that matches
2344 		 */
2345 		if (ret > 0) {
2346 			ret = 0;
2347 			if (path->slots[0] == 0)
2348 				break;
2349 			path->slots[0]--;
2350 		}
2351 
2352 		/* pull out the item */
2353 		leaf = path->nodes[0];
2354 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355 
2356 		/* make sure the item matches what we want */
2357 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2358 			break;
2359 		if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2360 			break;
2361 
2362 		/* release the path since we're done with it */
2363 		btrfs_release_path(path);
2364 
2365 		/*
2366 		 * this is where we are basically btrfs_lookup, without the
2367 		 * crossing root thing.  we store the inode number in the
2368 		 * offset of the orphan item.
2369 		 */
2370 		found_key.objectid = found_key.offset;
2371 		found_key.type = BTRFS_INODE_ITEM_KEY;
2372 		found_key.offset = 0;
2373 		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2374 		if (IS_ERR(inode)) {
2375 			ret = PTR_ERR(inode);
2376 			goto out;
2377 		}
2378 
2379 		/*
2380 		 * add this inode to the orphan list so btrfs_orphan_del does
2381 		 * the proper thing when we hit it
2382 		 */
2383 		spin_lock(&root->orphan_lock);
2384 		list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2385 		spin_unlock(&root->orphan_lock);
2386 
2387 		/*
2388 		 * if this is a bad inode, means we actually succeeded in
2389 		 * removing the inode, but not the orphan record, which means
2390 		 * we need to manually delete the orphan since iput will just
2391 		 * do a destroy_inode
2392 		 */
2393 		if (is_bad_inode(inode)) {
2394 			trans = btrfs_start_transaction(root, 0);
2395 			if (IS_ERR(trans)) {
2396 				ret = PTR_ERR(trans);
2397 				goto out;
2398 			}
2399 			btrfs_orphan_del(trans, inode);
2400 			btrfs_end_transaction(trans, root);
2401 			iput(inode);
2402 			continue;
2403 		}
2404 
2405 		/* if we have links, this was a truncate, lets do that */
2406 		if (inode->i_nlink) {
2407 			if (!S_ISREG(inode->i_mode)) {
2408 				WARN_ON(1);
2409 				iput(inode);
2410 				continue;
2411 			}
2412 			nr_truncate++;
2413 			ret = btrfs_truncate(inode);
2414 		} else {
2415 			nr_unlink++;
2416 		}
2417 
2418 		/* this will do delete_inode and everything for us */
2419 		iput(inode);
2420 		if (ret)
2421 			goto out;
2422 	}
2423 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2424 
2425 	if (root->orphan_block_rsv)
2426 		btrfs_block_rsv_release(root, root->orphan_block_rsv,
2427 					(u64)-1);
2428 
2429 	if (root->orphan_block_rsv || root->orphan_item_inserted) {
2430 		trans = btrfs_join_transaction(root);
2431 		if (!IS_ERR(trans))
2432 			btrfs_end_transaction(trans, root);
2433 	}
2434 
2435 	if (nr_unlink)
2436 		printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2437 	if (nr_truncate)
2438 		printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2439 
2440 out:
2441 	if (ret)
2442 		printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2443 	btrfs_free_path(path);
2444 	return ret;
2445 }
2446 
2447 /*
2448  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2449  * don't find any xattrs, we know there can't be any acls.
2450  *
2451  * slot is the slot the inode is in, objectid is the objectid of the inode
2452  */
2453 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2454 					  int slot, u64 objectid)
2455 {
2456 	u32 nritems = btrfs_header_nritems(leaf);
2457 	struct btrfs_key found_key;
2458 	int scanned = 0;
2459 
2460 	slot++;
2461 	while (slot < nritems) {
2462 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2463 
2464 		/* we found a different objectid, there must not be acls */
2465 		if (found_key.objectid != objectid)
2466 			return 0;
2467 
2468 		/* we found an xattr, assume we've got an acl */
2469 		if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2470 			return 1;
2471 
2472 		/*
2473 		 * we found a key greater than an xattr key, there can't
2474 		 * be any acls later on
2475 		 */
2476 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2477 			return 0;
2478 
2479 		slot++;
2480 		scanned++;
2481 
2482 		/*
2483 		 * it goes inode, inode backrefs, xattrs, extents,
2484 		 * so if there are a ton of hard links to an inode there can
2485 		 * be a lot of backrefs.  Don't waste time searching too hard,
2486 		 * this is just an optimization
2487 		 */
2488 		if (scanned >= 8)
2489 			break;
2490 	}
2491 	/* we hit the end of the leaf before we found an xattr or
2492 	 * something larger than an xattr.  We have to assume the inode
2493 	 * has acls
2494 	 */
2495 	return 1;
2496 }
2497 
2498 /*
2499  * read an inode from the btree into the in-memory inode
2500  */
2501 static void btrfs_read_locked_inode(struct inode *inode)
2502 {
2503 	struct btrfs_path *path;
2504 	struct extent_buffer *leaf;
2505 	struct btrfs_inode_item *inode_item;
2506 	struct btrfs_timespec *tspec;
2507 	struct btrfs_root *root = BTRFS_I(inode)->root;
2508 	struct btrfs_key location;
2509 	int maybe_acls;
2510 	u32 rdev;
2511 	int ret;
2512 	bool filled = false;
2513 
2514 	ret = btrfs_fill_inode(inode, &rdev);
2515 	if (!ret)
2516 		filled = true;
2517 
2518 	path = btrfs_alloc_path();
2519 	if (!path)
2520 		goto make_bad;
2521 
2522 	path->leave_spinning = 1;
2523 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2524 
2525 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2526 	if (ret)
2527 		goto make_bad;
2528 
2529 	leaf = path->nodes[0];
2530 
2531 	if (filled)
2532 		goto cache_acl;
2533 
2534 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2535 				    struct btrfs_inode_item);
2536 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2537 	inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2538 	inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2539 	inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2540 	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2541 
2542 	tspec = btrfs_inode_atime(inode_item);
2543 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2544 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2545 
2546 	tspec = btrfs_inode_mtime(inode_item);
2547 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2548 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2549 
2550 	tspec = btrfs_inode_ctime(inode_item);
2551 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2552 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2553 
2554 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2555 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2556 	BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2557 	inode->i_generation = BTRFS_I(inode)->generation;
2558 	inode->i_rdev = 0;
2559 	rdev = btrfs_inode_rdev(leaf, inode_item);
2560 
2561 	BTRFS_I(inode)->index_cnt = (u64)-1;
2562 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2563 cache_acl:
2564 	/*
2565 	 * try to precache a NULL acl entry for files that don't have
2566 	 * any xattrs or acls
2567 	 */
2568 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2569 					   btrfs_ino(inode));
2570 	if (!maybe_acls)
2571 		cache_no_acl(inode);
2572 
2573 	btrfs_free_path(path);
2574 
2575 	switch (inode->i_mode & S_IFMT) {
2576 	case S_IFREG:
2577 		inode->i_mapping->a_ops = &btrfs_aops;
2578 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2579 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2580 		inode->i_fop = &btrfs_file_operations;
2581 		inode->i_op = &btrfs_file_inode_operations;
2582 		break;
2583 	case S_IFDIR:
2584 		inode->i_fop = &btrfs_dir_file_operations;
2585 		if (root == root->fs_info->tree_root)
2586 			inode->i_op = &btrfs_dir_ro_inode_operations;
2587 		else
2588 			inode->i_op = &btrfs_dir_inode_operations;
2589 		break;
2590 	case S_IFLNK:
2591 		inode->i_op = &btrfs_symlink_inode_operations;
2592 		inode->i_mapping->a_ops = &btrfs_symlink_aops;
2593 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2594 		break;
2595 	default:
2596 		inode->i_op = &btrfs_special_inode_operations;
2597 		init_special_inode(inode, inode->i_mode, rdev);
2598 		break;
2599 	}
2600 
2601 	btrfs_update_iflags(inode);
2602 	return;
2603 
2604 make_bad:
2605 	btrfs_free_path(path);
2606 	make_bad_inode(inode);
2607 }
2608 
2609 /*
2610  * given a leaf and an inode, copy the inode fields into the leaf
2611  */
2612 static void fill_inode_item(struct btrfs_trans_handle *trans,
2613 			    struct extent_buffer *leaf,
2614 			    struct btrfs_inode_item *item,
2615 			    struct inode *inode)
2616 {
2617 	btrfs_set_inode_uid(leaf, item, inode->i_uid);
2618 	btrfs_set_inode_gid(leaf, item, inode->i_gid);
2619 	btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2620 	btrfs_set_inode_mode(leaf, item, inode->i_mode);
2621 	btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2622 
2623 	btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2624 			       inode->i_atime.tv_sec);
2625 	btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2626 				inode->i_atime.tv_nsec);
2627 
2628 	btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2629 			       inode->i_mtime.tv_sec);
2630 	btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2631 				inode->i_mtime.tv_nsec);
2632 
2633 	btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2634 			       inode->i_ctime.tv_sec);
2635 	btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2636 				inode->i_ctime.tv_nsec);
2637 
2638 	btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2639 	btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2640 	btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2641 	btrfs_set_inode_transid(leaf, item, trans->transid);
2642 	btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2643 	btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2644 	btrfs_set_inode_block_group(leaf, item, 0);
2645 }
2646 
2647 /*
2648  * copy everything in the in-memory inode into the btree.
2649  */
2650 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2651 				struct btrfs_root *root, struct inode *inode)
2652 {
2653 	struct btrfs_inode_item *inode_item;
2654 	struct btrfs_path *path;
2655 	struct extent_buffer *leaf;
2656 	int ret;
2657 
2658 	/*
2659 	 * If the inode is a free space inode, we can deadlock during commit
2660 	 * if we put it into the delayed code.
2661 	 *
2662 	 * The data relocation inode should also be directly updated
2663 	 * without delay
2664 	 */
2665 	if (!btrfs_is_free_space_inode(root, inode)
2666 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2667 		ret = btrfs_delayed_update_inode(trans, root, inode);
2668 		if (!ret)
2669 			btrfs_set_inode_last_trans(trans, inode);
2670 		return ret;
2671 	}
2672 
2673 	path = btrfs_alloc_path();
2674 	if (!path)
2675 		return -ENOMEM;
2676 
2677 	path->leave_spinning = 1;
2678 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2679 				 1);
2680 	if (ret) {
2681 		if (ret > 0)
2682 			ret = -ENOENT;
2683 		goto failed;
2684 	}
2685 
2686 	btrfs_unlock_up_safe(path, 1);
2687 	leaf = path->nodes[0];
2688 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
2689 				    struct btrfs_inode_item);
2690 
2691 	fill_inode_item(trans, leaf, inode_item, inode);
2692 	btrfs_mark_buffer_dirty(leaf);
2693 	btrfs_set_inode_last_trans(trans, inode);
2694 	ret = 0;
2695 failed:
2696 	btrfs_free_path(path);
2697 	return ret;
2698 }
2699 
2700 /*
2701  * unlink helper that gets used here in inode.c and in the tree logging
2702  * recovery code.  It remove a link in a directory with a given name, and
2703  * also drops the back refs in the inode to the directory
2704  */
2705 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2706 				struct btrfs_root *root,
2707 				struct inode *dir, struct inode *inode,
2708 				const char *name, int name_len)
2709 {
2710 	struct btrfs_path *path;
2711 	int ret = 0;
2712 	struct extent_buffer *leaf;
2713 	struct btrfs_dir_item *di;
2714 	struct btrfs_key key;
2715 	u64 index;
2716 	u64 ino = btrfs_ino(inode);
2717 	u64 dir_ino = btrfs_ino(dir);
2718 
2719 	path = btrfs_alloc_path();
2720 	if (!path) {
2721 		ret = -ENOMEM;
2722 		goto out;
2723 	}
2724 
2725 	path->leave_spinning = 1;
2726 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2727 				    name, name_len, -1);
2728 	if (IS_ERR(di)) {
2729 		ret = PTR_ERR(di);
2730 		goto err;
2731 	}
2732 	if (!di) {
2733 		ret = -ENOENT;
2734 		goto err;
2735 	}
2736 	leaf = path->nodes[0];
2737 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
2738 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
2739 	if (ret)
2740 		goto err;
2741 	btrfs_release_path(path);
2742 
2743 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2744 				  dir_ino, &index);
2745 	if (ret) {
2746 		printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2747 		       "inode %llu parent %llu\n", name_len, name,
2748 		       (unsigned long long)ino, (unsigned long long)dir_ino);
2749 		goto err;
2750 	}
2751 
2752 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2753 	if (ret)
2754 		goto err;
2755 
2756 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2757 					 inode, dir_ino);
2758 	BUG_ON(ret != 0 && ret != -ENOENT);
2759 
2760 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2761 					   dir, index);
2762 	if (ret == -ENOENT)
2763 		ret = 0;
2764 err:
2765 	btrfs_free_path(path);
2766 	if (ret)
2767 		goto out;
2768 
2769 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2770 	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2771 	btrfs_update_inode(trans, root, dir);
2772 out:
2773 	return ret;
2774 }
2775 
2776 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2777 		       struct btrfs_root *root,
2778 		       struct inode *dir, struct inode *inode,
2779 		       const char *name, int name_len)
2780 {
2781 	int ret;
2782 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2783 	if (!ret) {
2784 		btrfs_drop_nlink(inode);
2785 		ret = btrfs_update_inode(trans, root, inode);
2786 	}
2787 	return ret;
2788 }
2789 
2790 
2791 /* helper to check if there is any shared block in the path */
2792 static int check_path_shared(struct btrfs_root *root,
2793 			     struct btrfs_path *path)
2794 {
2795 	struct extent_buffer *eb;
2796 	int level;
2797 	u64 refs = 1;
2798 
2799 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2800 		int ret;
2801 
2802 		if (!path->nodes[level])
2803 			break;
2804 		eb = path->nodes[level];
2805 		if (!btrfs_block_can_be_shared(root, eb))
2806 			continue;
2807 		ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2808 					       &refs, NULL);
2809 		if (refs > 1)
2810 			return 1;
2811 	}
2812 	return 0;
2813 }
2814 
2815 /*
2816  * helper to start transaction for unlink and rmdir.
2817  *
2818  * unlink and rmdir are special in btrfs, they do not always free space.
2819  * so in enospc case, we should make sure they will free space before
2820  * allowing them to use the global metadata reservation.
2821  */
2822 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2823 						       struct dentry *dentry)
2824 {
2825 	struct btrfs_trans_handle *trans;
2826 	struct btrfs_root *root = BTRFS_I(dir)->root;
2827 	struct btrfs_path *path;
2828 	struct btrfs_inode_ref *ref;
2829 	struct btrfs_dir_item *di;
2830 	struct inode *inode = dentry->d_inode;
2831 	u64 index;
2832 	int check_link = 1;
2833 	int err = -ENOSPC;
2834 	int ret;
2835 	u64 ino = btrfs_ino(inode);
2836 	u64 dir_ino = btrfs_ino(dir);
2837 
2838 	trans = btrfs_start_transaction(root, 10);
2839 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2840 		return trans;
2841 
2842 	if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2843 		return ERR_PTR(-ENOSPC);
2844 
2845 	/* check if there is someone else holds reference */
2846 	if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2847 		return ERR_PTR(-ENOSPC);
2848 
2849 	if (atomic_read(&inode->i_count) > 2)
2850 		return ERR_PTR(-ENOSPC);
2851 
2852 	if (xchg(&root->fs_info->enospc_unlink, 1))
2853 		return ERR_PTR(-ENOSPC);
2854 
2855 	path = btrfs_alloc_path();
2856 	if (!path) {
2857 		root->fs_info->enospc_unlink = 0;
2858 		return ERR_PTR(-ENOMEM);
2859 	}
2860 
2861 	trans = btrfs_start_transaction(root, 0);
2862 	if (IS_ERR(trans)) {
2863 		btrfs_free_path(path);
2864 		root->fs_info->enospc_unlink = 0;
2865 		return trans;
2866 	}
2867 
2868 	path->skip_locking = 1;
2869 	path->search_commit_root = 1;
2870 
2871 	ret = btrfs_lookup_inode(trans, root, path,
2872 				&BTRFS_I(dir)->location, 0);
2873 	if (ret < 0) {
2874 		err = ret;
2875 		goto out;
2876 	}
2877 	if (ret == 0) {
2878 		if (check_path_shared(root, path))
2879 			goto out;
2880 	} else {
2881 		check_link = 0;
2882 	}
2883 	btrfs_release_path(path);
2884 
2885 	ret = btrfs_lookup_inode(trans, root, path,
2886 				&BTRFS_I(inode)->location, 0);
2887 	if (ret < 0) {
2888 		err = ret;
2889 		goto out;
2890 	}
2891 	if (ret == 0) {
2892 		if (check_path_shared(root, path))
2893 			goto out;
2894 	} else {
2895 		check_link = 0;
2896 	}
2897 	btrfs_release_path(path);
2898 
2899 	if (ret == 0 && S_ISREG(inode->i_mode)) {
2900 		ret = btrfs_lookup_file_extent(trans, root, path,
2901 					       ino, (u64)-1, 0);
2902 		if (ret < 0) {
2903 			err = ret;
2904 			goto out;
2905 		}
2906 		BUG_ON(ret == 0);
2907 		if (check_path_shared(root, path))
2908 			goto out;
2909 		btrfs_release_path(path);
2910 	}
2911 
2912 	if (!check_link) {
2913 		err = 0;
2914 		goto out;
2915 	}
2916 
2917 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2918 				dentry->d_name.name, dentry->d_name.len, 0);
2919 	if (IS_ERR(di)) {
2920 		err = PTR_ERR(di);
2921 		goto out;
2922 	}
2923 	if (di) {
2924 		if (check_path_shared(root, path))
2925 			goto out;
2926 	} else {
2927 		err = 0;
2928 		goto out;
2929 	}
2930 	btrfs_release_path(path);
2931 
2932 	ref = btrfs_lookup_inode_ref(trans, root, path,
2933 				dentry->d_name.name, dentry->d_name.len,
2934 				ino, dir_ino, 0);
2935 	if (IS_ERR(ref)) {
2936 		err = PTR_ERR(ref);
2937 		goto out;
2938 	}
2939 	BUG_ON(!ref);
2940 	if (check_path_shared(root, path))
2941 		goto out;
2942 	index = btrfs_inode_ref_index(path->nodes[0], ref);
2943 	btrfs_release_path(path);
2944 
2945 	/*
2946 	 * This is a commit root search, if we can lookup inode item and other
2947 	 * relative items in the commit root, it means the transaction of
2948 	 * dir/file creation has been committed, and the dir index item that we
2949 	 * delay to insert has also been inserted into the commit root. So
2950 	 * we needn't worry about the delayed insertion of the dir index item
2951 	 * here.
2952 	 */
2953 	di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2954 				dentry->d_name.name, dentry->d_name.len, 0);
2955 	if (IS_ERR(di)) {
2956 		err = PTR_ERR(di);
2957 		goto out;
2958 	}
2959 	BUG_ON(ret == -ENOENT);
2960 	if (check_path_shared(root, path))
2961 		goto out;
2962 
2963 	err = 0;
2964 out:
2965 	btrfs_free_path(path);
2966 	if (err) {
2967 		btrfs_end_transaction(trans, root);
2968 		root->fs_info->enospc_unlink = 0;
2969 		return ERR_PTR(err);
2970 	}
2971 
2972 	trans->block_rsv = &root->fs_info->global_block_rsv;
2973 	return trans;
2974 }
2975 
2976 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2977 			       struct btrfs_root *root)
2978 {
2979 	if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2980 		BUG_ON(!root->fs_info->enospc_unlink);
2981 		root->fs_info->enospc_unlink = 0;
2982 	}
2983 	btrfs_end_transaction_throttle(trans, root);
2984 }
2985 
2986 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2987 {
2988 	struct btrfs_root *root = BTRFS_I(dir)->root;
2989 	struct btrfs_trans_handle *trans;
2990 	struct inode *inode = dentry->d_inode;
2991 	int ret;
2992 	unsigned long nr = 0;
2993 
2994 	trans = __unlink_start_trans(dir, dentry);
2995 	if (IS_ERR(trans))
2996 		return PTR_ERR(trans);
2997 
2998 	btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2999 
3000 	ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3001 				 dentry->d_name.name, dentry->d_name.len);
3002 	if (ret)
3003 		goto out;
3004 
3005 	if (inode->i_nlink == 0) {
3006 		ret = btrfs_orphan_add(trans, inode);
3007 		if (ret)
3008 			goto out;
3009 	}
3010 
3011 out:
3012 	nr = trans->blocks_used;
3013 	__unlink_end_trans(trans, root);
3014 	btrfs_btree_balance_dirty(root, nr);
3015 	return ret;
3016 }
3017 
3018 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3019 			struct btrfs_root *root,
3020 			struct inode *dir, u64 objectid,
3021 			const char *name, int name_len)
3022 {
3023 	struct btrfs_path *path;
3024 	struct extent_buffer *leaf;
3025 	struct btrfs_dir_item *di;
3026 	struct btrfs_key key;
3027 	u64 index;
3028 	int ret;
3029 	u64 dir_ino = btrfs_ino(dir);
3030 
3031 	path = btrfs_alloc_path();
3032 	if (!path)
3033 		return -ENOMEM;
3034 
3035 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3036 				   name, name_len, -1);
3037 	BUG_ON(IS_ERR_OR_NULL(di));
3038 
3039 	leaf = path->nodes[0];
3040 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3041 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3042 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3043 	BUG_ON(ret);
3044 	btrfs_release_path(path);
3045 
3046 	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3047 				 objectid, root->root_key.objectid,
3048 				 dir_ino, &index, name, name_len);
3049 	if (ret < 0) {
3050 		BUG_ON(ret != -ENOENT);
3051 		di = btrfs_search_dir_index_item(root, path, dir_ino,
3052 						 name, name_len);
3053 		BUG_ON(IS_ERR_OR_NULL(di));
3054 
3055 		leaf = path->nodes[0];
3056 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3057 		btrfs_release_path(path);
3058 		index = key.offset;
3059 	}
3060 	btrfs_release_path(path);
3061 
3062 	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3063 	BUG_ON(ret);
3064 
3065 	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3066 	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3067 	ret = btrfs_update_inode(trans, root, dir);
3068 	BUG_ON(ret);
3069 
3070 	btrfs_free_path(path);
3071 	return 0;
3072 }
3073 
3074 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3075 {
3076 	struct inode *inode = dentry->d_inode;
3077 	int err = 0;
3078 	struct btrfs_root *root = BTRFS_I(dir)->root;
3079 	struct btrfs_trans_handle *trans;
3080 	unsigned long nr = 0;
3081 
3082 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3083 	    btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3084 		return -ENOTEMPTY;
3085 
3086 	trans = __unlink_start_trans(dir, dentry);
3087 	if (IS_ERR(trans))
3088 		return PTR_ERR(trans);
3089 
3090 	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3091 		err = btrfs_unlink_subvol(trans, root, dir,
3092 					  BTRFS_I(inode)->location.objectid,
3093 					  dentry->d_name.name,
3094 					  dentry->d_name.len);
3095 		goto out;
3096 	}
3097 
3098 	err = btrfs_orphan_add(trans, inode);
3099 	if (err)
3100 		goto out;
3101 
3102 	/* now the directory is empty */
3103 	err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3104 				 dentry->d_name.name, dentry->d_name.len);
3105 	if (!err)
3106 		btrfs_i_size_write(inode, 0);
3107 out:
3108 	nr = trans->blocks_used;
3109 	__unlink_end_trans(trans, root);
3110 	btrfs_btree_balance_dirty(root, nr);
3111 
3112 	return err;
3113 }
3114 
3115 /*
3116  * this can truncate away extent items, csum items and directory items.
3117  * It starts at a high offset and removes keys until it can't find
3118  * any higher than new_size
3119  *
3120  * csum items that cross the new i_size are truncated to the new size
3121  * as well.
3122  *
3123  * min_type is the minimum key type to truncate down to.  If set to 0, this
3124  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3125  */
3126 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3127 			       struct btrfs_root *root,
3128 			       struct inode *inode,
3129 			       u64 new_size, u32 min_type)
3130 {
3131 	struct btrfs_path *path;
3132 	struct extent_buffer *leaf;
3133 	struct btrfs_file_extent_item *fi;
3134 	struct btrfs_key key;
3135 	struct btrfs_key found_key;
3136 	u64 extent_start = 0;
3137 	u64 extent_num_bytes = 0;
3138 	u64 extent_offset = 0;
3139 	u64 item_end = 0;
3140 	u64 mask = root->sectorsize - 1;
3141 	u32 found_type = (u8)-1;
3142 	int found_extent;
3143 	int del_item;
3144 	int pending_del_nr = 0;
3145 	int pending_del_slot = 0;
3146 	int extent_type = -1;
3147 	int encoding;
3148 	int ret;
3149 	int err = 0;
3150 	u64 ino = btrfs_ino(inode);
3151 
3152 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3153 
3154 	path = btrfs_alloc_path();
3155 	if (!path)
3156 		return -ENOMEM;
3157 	path->reada = -1;
3158 
3159 	if (root->ref_cows || root == root->fs_info->tree_root)
3160 		btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3161 
3162 	/*
3163 	 * This function is also used to drop the items in the log tree before
3164 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3165 	 * it is used to drop the loged items. So we shouldn't kill the delayed
3166 	 * items.
3167 	 */
3168 	if (min_type == 0 && root == BTRFS_I(inode)->root)
3169 		btrfs_kill_delayed_inode_items(inode);
3170 
3171 	key.objectid = ino;
3172 	key.offset = (u64)-1;
3173 	key.type = (u8)-1;
3174 
3175 search_again:
3176 	path->leave_spinning = 1;
3177 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3178 	if (ret < 0) {
3179 		err = ret;
3180 		goto out;
3181 	}
3182 
3183 	if (ret > 0) {
3184 		/* there are no items in the tree for us to truncate, we're
3185 		 * done
3186 		 */
3187 		if (path->slots[0] == 0)
3188 			goto out;
3189 		path->slots[0]--;
3190 	}
3191 
3192 	while (1) {
3193 		fi = NULL;
3194 		leaf = path->nodes[0];
3195 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3196 		found_type = btrfs_key_type(&found_key);
3197 		encoding = 0;
3198 
3199 		if (found_key.objectid != ino)
3200 			break;
3201 
3202 		if (found_type < min_type)
3203 			break;
3204 
3205 		item_end = found_key.offset;
3206 		if (found_type == BTRFS_EXTENT_DATA_KEY) {
3207 			fi = btrfs_item_ptr(leaf, path->slots[0],
3208 					    struct btrfs_file_extent_item);
3209 			extent_type = btrfs_file_extent_type(leaf, fi);
3210 			encoding = btrfs_file_extent_compression(leaf, fi);
3211 			encoding |= btrfs_file_extent_encryption(leaf, fi);
3212 			encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3213 
3214 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3215 				item_end +=
3216 				    btrfs_file_extent_num_bytes(leaf, fi);
3217 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3218 				item_end += btrfs_file_extent_inline_len(leaf,
3219 									 fi);
3220 			}
3221 			item_end--;
3222 		}
3223 		if (found_type > min_type) {
3224 			del_item = 1;
3225 		} else {
3226 			if (item_end < new_size)
3227 				break;
3228 			if (found_key.offset >= new_size)
3229 				del_item = 1;
3230 			else
3231 				del_item = 0;
3232 		}
3233 		found_extent = 0;
3234 		/* FIXME, shrink the extent if the ref count is only 1 */
3235 		if (found_type != BTRFS_EXTENT_DATA_KEY)
3236 			goto delete;
3237 
3238 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3239 			u64 num_dec;
3240 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3241 			if (!del_item && !encoding) {
3242 				u64 orig_num_bytes =
3243 					btrfs_file_extent_num_bytes(leaf, fi);
3244 				extent_num_bytes = new_size -
3245 					found_key.offset + root->sectorsize - 1;
3246 				extent_num_bytes = extent_num_bytes &
3247 					~((u64)root->sectorsize - 1);
3248 				btrfs_set_file_extent_num_bytes(leaf, fi,
3249 							 extent_num_bytes);
3250 				num_dec = (orig_num_bytes -
3251 					   extent_num_bytes);
3252 				if (root->ref_cows && extent_start != 0)
3253 					inode_sub_bytes(inode, num_dec);
3254 				btrfs_mark_buffer_dirty(leaf);
3255 			} else {
3256 				extent_num_bytes =
3257 					btrfs_file_extent_disk_num_bytes(leaf,
3258 									 fi);
3259 				extent_offset = found_key.offset -
3260 					btrfs_file_extent_offset(leaf, fi);
3261 
3262 				/* FIXME blocksize != 4096 */
3263 				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3264 				if (extent_start != 0) {
3265 					found_extent = 1;
3266 					if (root->ref_cows)
3267 						inode_sub_bytes(inode, num_dec);
3268 				}
3269 			}
3270 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3271 			/*
3272 			 * we can't truncate inline items that have had
3273 			 * special encodings
3274 			 */
3275 			if (!del_item &&
3276 			    btrfs_file_extent_compression(leaf, fi) == 0 &&
3277 			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
3278 			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3279 				u32 size = new_size - found_key.offset;
3280 
3281 				if (root->ref_cows) {
3282 					inode_sub_bytes(inode, item_end + 1 -
3283 							new_size);
3284 				}
3285 				size =
3286 				    btrfs_file_extent_calc_inline_size(size);
3287 				ret = btrfs_truncate_item(trans, root, path,
3288 							  size, 1);
3289 			} else if (root->ref_cows) {
3290 				inode_sub_bytes(inode, item_end + 1 -
3291 						found_key.offset);
3292 			}
3293 		}
3294 delete:
3295 		if (del_item) {
3296 			if (!pending_del_nr) {
3297 				/* no pending yet, add ourselves */
3298 				pending_del_slot = path->slots[0];
3299 				pending_del_nr = 1;
3300 			} else if (pending_del_nr &&
3301 				   path->slots[0] + 1 == pending_del_slot) {
3302 				/* hop on the pending chunk */
3303 				pending_del_nr++;
3304 				pending_del_slot = path->slots[0];
3305 			} else {
3306 				BUG();
3307 			}
3308 		} else {
3309 			break;
3310 		}
3311 		if (found_extent && (root->ref_cows ||
3312 				     root == root->fs_info->tree_root)) {
3313 			btrfs_set_path_blocking(path);
3314 			ret = btrfs_free_extent(trans, root, extent_start,
3315 						extent_num_bytes, 0,
3316 						btrfs_header_owner(leaf),
3317 						ino, extent_offset);
3318 			BUG_ON(ret);
3319 		}
3320 
3321 		if (found_type == BTRFS_INODE_ITEM_KEY)
3322 			break;
3323 
3324 		if (path->slots[0] == 0 ||
3325 		    path->slots[0] != pending_del_slot) {
3326 			if (root->ref_cows &&
3327 			    BTRFS_I(inode)->location.objectid !=
3328 						BTRFS_FREE_INO_OBJECTID) {
3329 				err = -EAGAIN;
3330 				goto out;
3331 			}
3332 			if (pending_del_nr) {
3333 				ret = btrfs_del_items(trans, root, path,
3334 						pending_del_slot,
3335 						pending_del_nr);
3336 				BUG_ON(ret);
3337 				pending_del_nr = 0;
3338 			}
3339 			btrfs_release_path(path);
3340 			goto search_again;
3341 		} else {
3342 			path->slots[0]--;
3343 		}
3344 	}
3345 out:
3346 	if (pending_del_nr) {
3347 		ret = btrfs_del_items(trans, root, path, pending_del_slot,
3348 				      pending_del_nr);
3349 		BUG_ON(ret);
3350 	}
3351 	btrfs_free_path(path);
3352 	return err;
3353 }
3354 
3355 /*
3356  * taken from block_truncate_page, but does cow as it zeros out
3357  * any bytes left in the last page in the file.
3358  */
3359 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3360 {
3361 	struct inode *inode = mapping->host;
3362 	struct btrfs_root *root = BTRFS_I(inode)->root;
3363 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3364 	struct btrfs_ordered_extent *ordered;
3365 	struct extent_state *cached_state = NULL;
3366 	char *kaddr;
3367 	u32 blocksize = root->sectorsize;
3368 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
3369 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3370 	struct page *page;
3371 	int ret = 0;
3372 	u64 page_start;
3373 	u64 page_end;
3374 
3375 	if ((offset & (blocksize - 1)) == 0)
3376 		goto out;
3377 	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3378 	if (ret)
3379 		goto out;
3380 
3381 	ret = -ENOMEM;
3382 again:
3383 	page = find_or_create_page(mapping, index, GFP_NOFS);
3384 	if (!page) {
3385 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3386 		goto out;
3387 	}
3388 
3389 	page_start = page_offset(page);
3390 	page_end = page_start + PAGE_CACHE_SIZE - 1;
3391 
3392 	if (!PageUptodate(page)) {
3393 		ret = btrfs_readpage(NULL, page);
3394 		lock_page(page);
3395 		if (page->mapping != mapping) {
3396 			unlock_page(page);
3397 			page_cache_release(page);
3398 			goto again;
3399 		}
3400 		if (!PageUptodate(page)) {
3401 			ret = -EIO;
3402 			goto out_unlock;
3403 		}
3404 	}
3405 	wait_on_page_writeback(page);
3406 
3407 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3408 			 GFP_NOFS);
3409 	set_page_extent_mapped(page);
3410 
3411 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
3412 	if (ordered) {
3413 		unlock_extent_cached(io_tree, page_start, page_end,
3414 				     &cached_state, GFP_NOFS);
3415 		unlock_page(page);
3416 		page_cache_release(page);
3417 		btrfs_start_ordered_extent(inode, ordered, 1);
3418 		btrfs_put_ordered_extent(ordered);
3419 		goto again;
3420 	}
3421 
3422 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3423 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3424 			  0, 0, &cached_state, GFP_NOFS);
3425 
3426 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3427 					&cached_state);
3428 	if (ret) {
3429 		unlock_extent_cached(io_tree, page_start, page_end,
3430 				     &cached_state, GFP_NOFS);
3431 		goto out_unlock;
3432 	}
3433 
3434 	ret = 0;
3435 	if (offset != PAGE_CACHE_SIZE) {
3436 		kaddr = kmap(page);
3437 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3438 		flush_dcache_page(page);
3439 		kunmap(page);
3440 	}
3441 	ClearPageChecked(page);
3442 	set_page_dirty(page);
3443 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3444 			     GFP_NOFS);
3445 
3446 out_unlock:
3447 	if (ret)
3448 		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3449 	unlock_page(page);
3450 	page_cache_release(page);
3451 out:
3452 	return ret;
3453 }
3454 
3455 /*
3456  * This function puts in dummy file extents for the area we're creating a hole
3457  * for.  So if we are truncating this file to a larger size we need to insert
3458  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3459  * the range between oldsize and size
3460  */
3461 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3462 {
3463 	struct btrfs_trans_handle *trans;
3464 	struct btrfs_root *root = BTRFS_I(inode)->root;
3465 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3466 	struct extent_map *em = NULL;
3467 	struct extent_state *cached_state = NULL;
3468 	u64 mask = root->sectorsize - 1;
3469 	u64 hole_start = (oldsize + mask) & ~mask;
3470 	u64 block_end = (size + mask) & ~mask;
3471 	u64 last_byte;
3472 	u64 cur_offset;
3473 	u64 hole_size;
3474 	int err = 0;
3475 
3476 	if (size <= hole_start)
3477 		return 0;
3478 
3479 	while (1) {
3480 		struct btrfs_ordered_extent *ordered;
3481 		btrfs_wait_ordered_range(inode, hole_start,
3482 					 block_end - hole_start);
3483 		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3484 				 &cached_state, GFP_NOFS);
3485 		ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3486 		if (!ordered)
3487 			break;
3488 		unlock_extent_cached(io_tree, hole_start, block_end - 1,
3489 				     &cached_state, GFP_NOFS);
3490 		btrfs_put_ordered_extent(ordered);
3491 	}
3492 
3493 	cur_offset = hole_start;
3494 	while (1) {
3495 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3496 				block_end - cur_offset, 0);
3497 		BUG_ON(IS_ERR_OR_NULL(em));
3498 		last_byte = min(extent_map_end(em), block_end);
3499 		last_byte = (last_byte + mask) & ~mask;
3500 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3501 			u64 hint_byte = 0;
3502 			hole_size = last_byte - cur_offset;
3503 
3504 			trans = btrfs_start_transaction(root, 2);
3505 			if (IS_ERR(trans)) {
3506 				err = PTR_ERR(trans);
3507 				break;
3508 			}
3509 
3510 			err = btrfs_drop_extents(trans, inode, cur_offset,
3511 						 cur_offset + hole_size,
3512 						 &hint_byte, 1);
3513 			if (err)
3514 				break;
3515 
3516 			err = btrfs_insert_file_extent(trans, root,
3517 					btrfs_ino(inode), cur_offset, 0,
3518 					0, hole_size, 0, hole_size,
3519 					0, 0, 0);
3520 			if (err)
3521 				break;
3522 
3523 			btrfs_drop_extent_cache(inode, hole_start,
3524 					last_byte - 1, 0);
3525 
3526 			btrfs_end_transaction(trans, root);
3527 		}
3528 		free_extent_map(em);
3529 		em = NULL;
3530 		cur_offset = last_byte;
3531 		if (cur_offset >= block_end)
3532 			break;
3533 	}
3534 
3535 	free_extent_map(em);
3536 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3537 			     GFP_NOFS);
3538 	return err;
3539 }
3540 
3541 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3542 {
3543 	loff_t oldsize = i_size_read(inode);
3544 	int ret;
3545 
3546 	if (newsize == oldsize)
3547 		return 0;
3548 
3549 	if (newsize > oldsize) {
3550 		i_size_write(inode, newsize);
3551 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3552 		truncate_pagecache(inode, oldsize, newsize);
3553 		ret = btrfs_cont_expand(inode, oldsize, newsize);
3554 		if (ret) {
3555 			btrfs_setsize(inode, oldsize);
3556 			return ret;
3557 		}
3558 
3559 		mark_inode_dirty(inode);
3560 	} else {
3561 
3562 		/*
3563 		 * We're truncating a file that used to have good data down to
3564 		 * zero. Make sure it gets into the ordered flush list so that
3565 		 * any new writes get down to disk quickly.
3566 		 */
3567 		if (newsize == 0)
3568 			BTRFS_I(inode)->ordered_data_close = 1;
3569 
3570 		/* we don't support swapfiles, so vmtruncate shouldn't fail */
3571 		truncate_setsize(inode, newsize);
3572 		ret = btrfs_truncate(inode);
3573 	}
3574 
3575 	return ret;
3576 }
3577 
3578 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3579 {
3580 	struct inode *inode = dentry->d_inode;
3581 	struct btrfs_root *root = BTRFS_I(inode)->root;
3582 	int err;
3583 
3584 	if (btrfs_root_readonly(root))
3585 		return -EROFS;
3586 
3587 	err = inode_change_ok(inode, attr);
3588 	if (err)
3589 		return err;
3590 
3591 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3592 		err = btrfs_setsize(inode, attr->ia_size);
3593 		if (err)
3594 			return err;
3595 	}
3596 
3597 	if (attr->ia_valid) {
3598 		setattr_copy(inode, attr);
3599 		mark_inode_dirty(inode);
3600 
3601 		if (attr->ia_valid & ATTR_MODE)
3602 			err = btrfs_acl_chmod(inode);
3603 	}
3604 
3605 	return err;
3606 }
3607 
3608 void btrfs_evict_inode(struct inode *inode)
3609 {
3610 	struct btrfs_trans_handle *trans;
3611 	struct btrfs_root *root = BTRFS_I(inode)->root;
3612 	unsigned long nr;
3613 	int ret;
3614 
3615 	trace_btrfs_inode_evict(inode);
3616 
3617 	truncate_inode_pages(&inode->i_data, 0);
3618 	if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3619 			       btrfs_is_free_space_inode(root, inode)))
3620 		goto no_delete;
3621 
3622 	if (is_bad_inode(inode)) {
3623 		btrfs_orphan_del(NULL, inode);
3624 		goto no_delete;
3625 	}
3626 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3627 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
3628 
3629 	if (root->fs_info->log_root_recovering) {
3630 		BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3631 		goto no_delete;
3632 	}
3633 
3634 	if (inode->i_nlink > 0) {
3635 		BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3636 		goto no_delete;
3637 	}
3638 
3639 	btrfs_i_size_write(inode, 0);
3640 
3641 	while (1) {
3642 		trans = btrfs_join_transaction(root);
3643 		BUG_ON(IS_ERR(trans));
3644 		trans->block_rsv = root->orphan_block_rsv;
3645 
3646 		ret = btrfs_block_rsv_check(trans, root,
3647 					    root->orphan_block_rsv, 0, 5);
3648 		if (ret) {
3649 			BUG_ON(ret != -EAGAIN);
3650 			ret = btrfs_commit_transaction(trans, root);
3651 			BUG_ON(ret);
3652 			continue;
3653 		}
3654 
3655 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3656 		if (ret != -EAGAIN)
3657 			break;
3658 
3659 		nr = trans->blocks_used;
3660 		btrfs_end_transaction(trans, root);
3661 		trans = NULL;
3662 		btrfs_btree_balance_dirty(root, nr);
3663 
3664 	}
3665 
3666 	if (ret == 0) {
3667 		ret = btrfs_orphan_del(trans, inode);
3668 		BUG_ON(ret);
3669 	}
3670 
3671 	if (!(root == root->fs_info->tree_root ||
3672 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3673 		btrfs_return_ino(root, btrfs_ino(inode));
3674 
3675 	nr = trans->blocks_used;
3676 	btrfs_end_transaction(trans, root);
3677 	btrfs_btree_balance_dirty(root, nr);
3678 no_delete:
3679 	end_writeback(inode);
3680 	return;
3681 }
3682 
3683 /*
3684  * this returns the key found in the dir entry in the location pointer.
3685  * If no dir entries were found, location->objectid is 0.
3686  */
3687 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3688 			       struct btrfs_key *location)
3689 {
3690 	const char *name = dentry->d_name.name;
3691 	int namelen = dentry->d_name.len;
3692 	struct btrfs_dir_item *di;
3693 	struct btrfs_path *path;
3694 	struct btrfs_root *root = BTRFS_I(dir)->root;
3695 	int ret = 0;
3696 
3697 	path = btrfs_alloc_path();
3698 	if (!path)
3699 		return -ENOMEM;
3700 
3701 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3702 				    namelen, 0);
3703 	if (IS_ERR(di))
3704 		ret = PTR_ERR(di);
3705 
3706 	if (IS_ERR_OR_NULL(di))
3707 		goto out_err;
3708 
3709 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3710 out:
3711 	btrfs_free_path(path);
3712 	return ret;
3713 out_err:
3714 	location->objectid = 0;
3715 	goto out;
3716 }
3717 
3718 /*
3719  * when we hit a tree root in a directory, the btrfs part of the inode
3720  * needs to be changed to reflect the root directory of the tree root.  This
3721  * is kind of like crossing a mount point.
3722  */
3723 static int fixup_tree_root_location(struct btrfs_root *root,
3724 				    struct inode *dir,
3725 				    struct dentry *dentry,
3726 				    struct btrfs_key *location,
3727 				    struct btrfs_root **sub_root)
3728 {
3729 	struct btrfs_path *path;
3730 	struct btrfs_root *new_root;
3731 	struct btrfs_root_ref *ref;
3732 	struct extent_buffer *leaf;
3733 	int ret;
3734 	int err = 0;
3735 
3736 	path = btrfs_alloc_path();
3737 	if (!path) {
3738 		err = -ENOMEM;
3739 		goto out;
3740 	}
3741 
3742 	err = -ENOENT;
3743 	ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3744 				  BTRFS_I(dir)->root->root_key.objectid,
3745 				  location->objectid);
3746 	if (ret) {
3747 		if (ret < 0)
3748 			err = ret;
3749 		goto out;
3750 	}
3751 
3752 	leaf = path->nodes[0];
3753 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3754 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3755 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3756 		goto out;
3757 
3758 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3759 				   (unsigned long)(ref + 1),
3760 				   dentry->d_name.len);
3761 	if (ret)
3762 		goto out;
3763 
3764 	btrfs_release_path(path);
3765 
3766 	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3767 	if (IS_ERR(new_root)) {
3768 		err = PTR_ERR(new_root);
3769 		goto out;
3770 	}
3771 
3772 	if (btrfs_root_refs(&new_root->root_item) == 0) {
3773 		err = -ENOENT;
3774 		goto out;
3775 	}
3776 
3777 	*sub_root = new_root;
3778 	location->objectid = btrfs_root_dirid(&new_root->root_item);
3779 	location->type = BTRFS_INODE_ITEM_KEY;
3780 	location->offset = 0;
3781 	err = 0;
3782 out:
3783 	btrfs_free_path(path);
3784 	return err;
3785 }
3786 
3787 static void inode_tree_add(struct inode *inode)
3788 {
3789 	struct btrfs_root *root = BTRFS_I(inode)->root;
3790 	struct btrfs_inode *entry;
3791 	struct rb_node **p;
3792 	struct rb_node *parent;
3793 	u64 ino = btrfs_ino(inode);
3794 again:
3795 	p = &root->inode_tree.rb_node;
3796 	parent = NULL;
3797 
3798 	if (inode_unhashed(inode))
3799 		return;
3800 
3801 	spin_lock(&root->inode_lock);
3802 	while (*p) {
3803 		parent = *p;
3804 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
3805 
3806 		if (ino < btrfs_ino(&entry->vfs_inode))
3807 			p = &parent->rb_left;
3808 		else if (ino > btrfs_ino(&entry->vfs_inode))
3809 			p = &parent->rb_right;
3810 		else {
3811 			WARN_ON(!(entry->vfs_inode.i_state &
3812 				  (I_WILL_FREE | I_FREEING)));
3813 			rb_erase(parent, &root->inode_tree);
3814 			RB_CLEAR_NODE(parent);
3815 			spin_unlock(&root->inode_lock);
3816 			goto again;
3817 		}
3818 	}
3819 	rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3820 	rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3821 	spin_unlock(&root->inode_lock);
3822 }
3823 
3824 static void inode_tree_del(struct inode *inode)
3825 {
3826 	struct btrfs_root *root = BTRFS_I(inode)->root;
3827 	int empty = 0;
3828 
3829 	spin_lock(&root->inode_lock);
3830 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3831 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3832 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3833 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3834 	}
3835 	spin_unlock(&root->inode_lock);
3836 
3837 	/*
3838 	 * Free space cache has inodes in the tree root, but the tree root has a
3839 	 * root_refs of 0, so this could end up dropping the tree root as a
3840 	 * snapshot, so we need the extra !root->fs_info->tree_root check to
3841 	 * make sure we don't drop it.
3842 	 */
3843 	if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3844 	    root != root->fs_info->tree_root) {
3845 		synchronize_srcu(&root->fs_info->subvol_srcu);
3846 		spin_lock(&root->inode_lock);
3847 		empty = RB_EMPTY_ROOT(&root->inode_tree);
3848 		spin_unlock(&root->inode_lock);
3849 		if (empty)
3850 			btrfs_add_dead_root(root);
3851 	}
3852 }
3853 
3854 int btrfs_invalidate_inodes(struct btrfs_root *root)
3855 {
3856 	struct rb_node *node;
3857 	struct rb_node *prev;
3858 	struct btrfs_inode *entry;
3859 	struct inode *inode;
3860 	u64 objectid = 0;
3861 
3862 	WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3863 
3864 	spin_lock(&root->inode_lock);
3865 again:
3866 	node = root->inode_tree.rb_node;
3867 	prev = NULL;
3868 	while (node) {
3869 		prev = node;
3870 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3871 
3872 		if (objectid < btrfs_ino(&entry->vfs_inode))
3873 			node = node->rb_left;
3874 		else if (objectid > btrfs_ino(&entry->vfs_inode))
3875 			node = node->rb_right;
3876 		else
3877 			break;
3878 	}
3879 	if (!node) {
3880 		while (prev) {
3881 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
3882 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3883 				node = prev;
3884 				break;
3885 			}
3886 			prev = rb_next(prev);
3887 		}
3888 	}
3889 	while (node) {
3890 		entry = rb_entry(node, struct btrfs_inode, rb_node);
3891 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
3892 		inode = igrab(&entry->vfs_inode);
3893 		if (inode) {
3894 			spin_unlock(&root->inode_lock);
3895 			if (atomic_read(&inode->i_count) > 1)
3896 				d_prune_aliases(inode);
3897 			/*
3898 			 * btrfs_drop_inode will have it removed from
3899 			 * the inode cache when its usage count
3900 			 * hits zero.
3901 			 */
3902 			iput(inode);
3903 			cond_resched();
3904 			spin_lock(&root->inode_lock);
3905 			goto again;
3906 		}
3907 
3908 		if (cond_resched_lock(&root->inode_lock))
3909 			goto again;
3910 
3911 		node = rb_next(node);
3912 	}
3913 	spin_unlock(&root->inode_lock);
3914 	return 0;
3915 }
3916 
3917 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3918 {
3919 	struct btrfs_iget_args *args = p;
3920 	inode->i_ino = args->ino;
3921 	BTRFS_I(inode)->root = args->root;
3922 	btrfs_set_inode_space_info(args->root, inode);
3923 	return 0;
3924 }
3925 
3926 static int btrfs_find_actor(struct inode *inode, void *opaque)
3927 {
3928 	struct btrfs_iget_args *args = opaque;
3929 	return args->ino == btrfs_ino(inode) &&
3930 		args->root == BTRFS_I(inode)->root;
3931 }
3932 
3933 static struct inode *btrfs_iget_locked(struct super_block *s,
3934 				       u64 objectid,
3935 				       struct btrfs_root *root)
3936 {
3937 	struct inode *inode;
3938 	struct btrfs_iget_args args;
3939 	args.ino = objectid;
3940 	args.root = root;
3941 
3942 	inode = iget5_locked(s, objectid, btrfs_find_actor,
3943 			     btrfs_init_locked_inode,
3944 			     (void *)&args);
3945 	return inode;
3946 }
3947 
3948 /* Get an inode object given its location and corresponding root.
3949  * Returns in *is_new if the inode was read from disk
3950  */
3951 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3952 			 struct btrfs_root *root, int *new)
3953 {
3954 	struct inode *inode;
3955 	int bad_inode = 0;
3956 
3957 	inode = btrfs_iget_locked(s, location->objectid, root);
3958 	if (!inode)
3959 		return ERR_PTR(-ENOMEM);
3960 
3961 	if (inode->i_state & I_NEW) {
3962 		BTRFS_I(inode)->root = root;
3963 		memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3964 		btrfs_read_locked_inode(inode);
3965 		if (!is_bad_inode(inode)) {
3966 			inode_tree_add(inode);
3967 			unlock_new_inode(inode);
3968 			if (new)
3969 				*new = 1;
3970 		} else {
3971 			bad_inode = 1;
3972 		}
3973 	}
3974 
3975 	if (bad_inode) {
3976 		iput(inode);
3977 		inode = ERR_PTR(-ESTALE);
3978 	}
3979 
3980 	return inode;
3981 }
3982 
3983 static struct inode *new_simple_dir(struct super_block *s,
3984 				    struct btrfs_key *key,
3985 				    struct btrfs_root *root)
3986 {
3987 	struct inode *inode = new_inode(s);
3988 
3989 	if (!inode)
3990 		return ERR_PTR(-ENOMEM);
3991 
3992 	BTRFS_I(inode)->root = root;
3993 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3994 	BTRFS_I(inode)->dummy_inode = 1;
3995 
3996 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3997 	inode->i_op = &simple_dir_inode_operations;
3998 	inode->i_fop = &simple_dir_operations;
3999 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4000 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4001 
4002 	return inode;
4003 }
4004 
4005 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4006 {
4007 	struct inode *inode;
4008 	struct btrfs_root *root = BTRFS_I(dir)->root;
4009 	struct btrfs_root *sub_root = root;
4010 	struct btrfs_key location;
4011 	int index;
4012 	int ret = 0;
4013 
4014 	if (dentry->d_name.len > BTRFS_NAME_LEN)
4015 		return ERR_PTR(-ENAMETOOLONG);
4016 
4017 	if (unlikely(d_need_lookup(dentry))) {
4018 		memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4019 		kfree(dentry->d_fsdata);
4020 		dentry->d_fsdata = NULL;
4021 		d_clear_need_lookup(dentry);
4022 	} else {
4023 		ret = btrfs_inode_by_name(dir, dentry, &location);
4024 	}
4025 
4026 	if (ret < 0)
4027 		return ERR_PTR(ret);
4028 
4029 	if (location.objectid == 0)
4030 		return NULL;
4031 
4032 	if (location.type == BTRFS_INODE_ITEM_KEY) {
4033 		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4034 		return inode;
4035 	}
4036 
4037 	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4038 
4039 	index = srcu_read_lock(&root->fs_info->subvol_srcu);
4040 	ret = fixup_tree_root_location(root, dir, dentry,
4041 				       &location, &sub_root);
4042 	if (ret < 0) {
4043 		if (ret != -ENOENT)
4044 			inode = ERR_PTR(ret);
4045 		else
4046 			inode = new_simple_dir(dir->i_sb, &location, sub_root);
4047 	} else {
4048 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4049 	}
4050 	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4051 
4052 	if (!IS_ERR(inode) && root != sub_root) {
4053 		down_read(&root->fs_info->cleanup_work_sem);
4054 		if (!(inode->i_sb->s_flags & MS_RDONLY))
4055 			ret = btrfs_orphan_cleanup(sub_root);
4056 		up_read(&root->fs_info->cleanup_work_sem);
4057 		if (ret)
4058 			inode = ERR_PTR(ret);
4059 	}
4060 
4061 	return inode;
4062 }
4063 
4064 static int btrfs_dentry_delete(const struct dentry *dentry)
4065 {
4066 	struct btrfs_root *root;
4067 
4068 	if (!dentry->d_inode && !IS_ROOT(dentry))
4069 		dentry = dentry->d_parent;
4070 
4071 	if (dentry->d_inode) {
4072 		root = BTRFS_I(dentry->d_inode)->root;
4073 		if (btrfs_root_refs(&root->root_item) == 0)
4074 			return 1;
4075 	}
4076 	return 0;
4077 }
4078 
4079 static void btrfs_dentry_release(struct dentry *dentry)
4080 {
4081 	if (dentry->d_fsdata)
4082 		kfree(dentry->d_fsdata);
4083 }
4084 
4085 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4086 				   struct nameidata *nd)
4087 {
4088 	return d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4089 }
4090 
4091 unsigned char btrfs_filetype_table[] = {
4092 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4093 };
4094 
4095 static int btrfs_real_readdir(struct file *filp, void *dirent,
4096 			      filldir_t filldir)
4097 {
4098 	struct inode *inode = filp->f_dentry->d_inode;
4099 	struct btrfs_root *root = BTRFS_I(inode)->root;
4100 	struct btrfs_item *item;
4101 	struct btrfs_dir_item *di;
4102 	struct btrfs_key key;
4103 	struct btrfs_key found_key;
4104 	struct btrfs_path *path;
4105 	struct list_head ins_list;
4106 	struct list_head del_list;
4107 	struct qstr q;
4108 	int ret;
4109 	struct extent_buffer *leaf;
4110 	int slot;
4111 	unsigned char d_type;
4112 	int over = 0;
4113 	u32 di_cur;
4114 	u32 di_total;
4115 	u32 di_len;
4116 	int key_type = BTRFS_DIR_INDEX_KEY;
4117 	char tmp_name[32];
4118 	char *name_ptr;
4119 	int name_len;
4120 	int is_curr = 0;	/* filp->f_pos points to the current index? */
4121 
4122 	/* FIXME, use a real flag for deciding about the key type */
4123 	if (root->fs_info->tree_root == root)
4124 		key_type = BTRFS_DIR_ITEM_KEY;
4125 
4126 	/* special case for "." */
4127 	if (filp->f_pos == 0) {
4128 		over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4129 		if (over)
4130 			return 0;
4131 		filp->f_pos = 1;
4132 	}
4133 	/* special case for .., just use the back ref */
4134 	if (filp->f_pos == 1) {
4135 		u64 pino = parent_ino(filp->f_path.dentry);
4136 		over = filldir(dirent, "..", 2,
4137 			       2, pino, DT_DIR);
4138 		if (over)
4139 			return 0;
4140 		filp->f_pos = 2;
4141 	}
4142 	path = btrfs_alloc_path();
4143 	if (!path)
4144 		return -ENOMEM;
4145 
4146 	path->reada = 1;
4147 
4148 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4149 		INIT_LIST_HEAD(&ins_list);
4150 		INIT_LIST_HEAD(&del_list);
4151 		btrfs_get_delayed_items(inode, &ins_list, &del_list);
4152 	}
4153 
4154 	btrfs_set_key_type(&key, key_type);
4155 	key.offset = filp->f_pos;
4156 	key.objectid = btrfs_ino(inode);
4157 
4158 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4159 	if (ret < 0)
4160 		goto err;
4161 
4162 	while (1) {
4163 		leaf = path->nodes[0];
4164 		slot = path->slots[0];
4165 		if (slot >= btrfs_header_nritems(leaf)) {
4166 			ret = btrfs_next_leaf(root, path);
4167 			if (ret < 0)
4168 				goto err;
4169 			else if (ret > 0)
4170 				break;
4171 			continue;
4172 		}
4173 
4174 		item = btrfs_item_nr(leaf, slot);
4175 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
4176 
4177 		if (found_key.objectid != key.objectid)
4178 			break;
4179 		if (btrfs_key_type(&found_key) != key_type)
4180 			break;
4181 		if (found_key.offset < filp->f_pos)
4182 			goto next;
4183 		if (key_type == BTRFS_DIR_INDEX_KEY &&
4184 		    btrfs_should_delete_dir_index(&del_list,
4185 						  found_key.offset))
4186 			goto next;
4187 
4188 		filp->f_pos = found_key.offset;
4189 		is_curr = 1;
4190 
4191 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4192 		di_cur = 0;
4193 		di_total = btrfs_item_size(leaf, item);
4194 
4195 		while (di_cur < di_total) {
4196 			struct btrfs_key location;
4197 			struct dentry *tmp;
4198 
4199 			if (verify_dir_item(root, leaf, di))
4200 				break;
4201 
4202 			name_len = btrfs_dir_name_len(leaf, di);
4203 			if (name_len <= sizeof(tmp_name)) {
4204 				name_ptr = tmp_name;
4205 			} else {
4206 				name_ptr = kmalloc(name_len, GFP_NOFS);
4207 				if (!name_ptr) {
4208 					ret = -ENOMEM;
4209 					goto err;
4210 				}
4211 			}
4212 			read_extent_buffer(leaf, name_ptr,
4213 					   (unsigned long)(di + 1), name_len);
4214 
4215 			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4216 			btrfs_dir_item_key_to_cpu(leaf, di, &location);
4217 
4218 			q.name = name_ptr;
4219 			q.len = name_len;
4220 			q.hash = full_name_hash(q.name, q.len);
4221 			tmp = d_lookup(filp->f_dentry, &q);
4222 			if (!tmp) {
4223 				struct btrfs_key *newkey;
4224 
4225 				newkey = kzalloc(sizeof(struct btrfs_key),
4226 						 GFP_NOFS);
4227 				if (!newkey)
4228 					goto no_dentry;
4229 				tmp = d_alloc(filp->f_dentry, &q);
4230 				if (!tmp) {
4231 					kfree(newkey);
4232 					dput(tmp);
4233 					goto no_dentry;
4234 				}
4235 				memcpy(newkey, &location,
4236 				       sizeof(struct btrfs_key));
4237 				tmp->d_fsdata = newkey;
4238 				tmp->d_flags |= DCACHE_NEED_LOOKUP;
4239 				d_rehash(tmp);
4240 				dput(tmp);
4241 			} else {
4242 				dput(tmp);
4243 			}
4244 no_dentry:
4245 			/* is this a reference to our own snapshot? If so
4246 			 * skip it
4247 			 */
4248 			if (location.type == BTRFS_ROOT_ITEM_KEY &&
4249 			    location.objectid == root->root_key.objectid) {
4250 				over = 0;
4251 				goto skip;
4252 			}
4253 			over = filldir(dirent, name_ptr, name_len,
4254 				       found_key.offset, location.objectid,
4255 				       d_type);
4256 
4257 skip:
4258 			if (name_ptr != tmp_name)
4259 				kfree(name_ptr);
4260 
4261 			if (over)
4262 				goto nopos;
4263 			di_len = btrfs_dir_name_len(leaf, di) +
4264 				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4265 			di_cur += di_len;
4266 			di = (struct btrfs_dir_item *)((char *)di + di_len);
4267 		}
4268 next:
4269 		path->slots[0]++;
4270 	}
4271 
4272 	if (key_type == BTRFS_DIR_INDEX_KEY) {
4273 		if (is_curr)
4274 			filp->f_pos++;
4275 		ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4276 						      &ins_list);
4277 		if (ret)
4278 			goto nopos;
4279 	}
4280 
4281 	/* Reached end of directory/root. Bump pos past the last item. */
4282 	if (key_type == BTRFS_DIR_INDEX_KEY)
4283 		/*
4284 		 * 32-bit glibc will use getdents64, but then strtol -
4285 		 * so the last number we can serve is this.
4286 		 */
4287 		filp->f_pos = 0x7fffffff;
4288 	else
4289 		filp->f_pos++;
4290 nopos:
4291 	ret = 0;
4292 err:
4293 	if (key_type == BTRFS_DIR_INDEX_KEY)
4294 		btrfs_put_delayed_items(&ins_list, &del_list);
4295 	btrfs_free_path(path);
4296 	return ret;
4297 }
4298 
4299 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4300 {
4301 	struct btrfs_root *root = BTRFS_I(inode)->root;
4302 	struct btrfs_trans_handle *trans;
4303 	int ret = 0;
4304 	bool nolock = false;
4305 
4306 	if (BTRFS_I(inode)->dummy_inode)
4307 		return 0;
4308 
4309 	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4310 		nolock = true;
4311 
4312 	if (wbc->sync_mode == WB_SYNC_ALL) {
4313 		if (nolock)
4314 			trans = btrfs_join_transaction_nolock(root);
4315 		else
4316 			trans = btrfs_join_transaction(root);
4317 		if (IS_ERR(trans))
4318 			return PTR_ERR(trans);
4319 		if (nolock)
4320 			ret = btrfs_end_transaction_nolock(trans, root);
4321 		else
4322 			ret = btrfs_commit_transaction(trans, root);
4323 	}
4324 	return ret;
4325 }
4326 
4327 /*
4328  * This is somewhat expensive, updating the tree every time the
4329  * inode changes.  But, it is most likely to find the inode in cache.
4330  * FIXME, needs more benchmarking...there are no reasons other than performance
4331  * to keep or drop this code.
4332  */
4333 void btrfs_dirty_inode(struct inode *inode, int flags)
4334 {
4335 	struct btrfs_root *root = BTRFS_I(inode)->root;
4336 	struct btrfs_trans_handle *trans;
4337 	int ret;
4338 
4339 	if (BTRFS_I(inode)->dummy_inode)
4340 		return;
4341 
4342 	trans = btrfs_join_transaction(root);
4343 	BUG_ON(IS_ERR(trans));
4344 
4345 	ret = btrfs_update_inode(trans, root, inode);
4346 	if (ret && ret == -ENOSPC) {
4347 		/* whoops, lets try again with the full transaction */
4348 		btrfs_end_transaction(trans, root);
4349 		trans = btrfs_start_transaction(root, 1);
4350 		if (IS_ERR(trans)) {
4351 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4352 				       "dirty  inode %llu error %ld\n",
4353 				       (unsigned long long)btrfs_ino(inode),
4354 				       PTR_ERR(trans));
4355 			return;
4356 		}
4357 
4358 		ret = btrfs_update_inode(trans, root, inode);
4359 		if (ret) {
4360 			printk_ratelimited(KERN_ERR "btrfs: fail to "
4361 				       "dirty  inode %llu error %d\n",
4362 				       (unsigned long long)btrfs_ino(inode),
4363 				       ret);
4364 		}
4365 	}
4366 	btrfs_end_transaction(trans, root);
4367 	if (BTRFS_I(inode)->delayed_node)
4368 		btrfs_balance_delayed_items(root);
4369 }
4370 
4371 /*
4372  * find the highest existing sequence number in a directory
4373  * and then set the in-memory index_cnt variable to reflect
4374  * free sequence numbers
4375  */
4376 static int btrfs_set_inode_index_count(struct inode *inode)
4377 {
4378 	struct btrfs_root *root = BTRFS_I(inode)->root;
4379 	struct btrfs_key key, found_key;
4380 	struct btrfs_path *path;
4381 	struct extent_buffer *leaf;
4382 	int ret;
4383 
4384 	key.objectid = btrfs_ino(inode);
4385 	btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4386 	key.offset = (u64)-1;
4387 
4388 	path = btrfs_alloc_path();
4389 	if (!path)
4390 		return -ENOMEM;
4391 
4392 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4393 	if (ret < 0)
4394 		goto out;
4395 	/* FIXME: we should be able to handle this */
4396 	if (ret == 0)
4397 		goto out;
4398 	ret = 0;
4399 
4400 	/*
4401 	 * MAGIC NUMBER EXPLANATION:
4402 	 * since we search a directory based on f_pos we have to start at 2
4403 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4404 	 * else has to start at 2
4405 	 */
4406 	if (path->slots[0] == 0) {
4407 		BTRFS_I(inode)->index_cnt = 2;
4408 		goto out;
4409 	}
4410 
4411 	path->slots[0]--;
4412 
4413 	leaf = path->nodes[0];
4414 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4415 
4416 	if (found_key.objectid != btrfs_ino(inode) ||
4417 	    btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4418 		BTRFS_I(inode)->index_cnt = 2;
4419 		goto out;
4420 	}
4421 
4422 	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4423 out:
4424 	btrfs_free_path(path);
4425 	return ret;
4426 }
4427 
4428 /*
4429  * helper to find a free sequence number in a given directory.  This current
4430  * code is very simple, later versions will do smarter things in the btree
4431  */
4432 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4433 {
4434 	int ret = 0;
4435 
4436 	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4437 		ret = btrfs_inode_delayed_dir_index_count(dir);
4438 		if (ret) {
4439 			ret = btrfs_set_inode_index_count(dir);
4440 			if (ret)
4441 				return ret;
4442 		}
4443 	}
4444 
4445 	*index = BTRFS_I(dir)->index_cnt;
4446 	BTRFS_I(dir)->index_cnt++;
4447 
4448 	return ret;
4449 }
4450 
4451 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4452 				     struct btrfs_root *root,
4453 				     struct inode *dir,
4454 				     const char *name, int name_len,
4455 				     u64 ref_objectid, u64 objectid, int mode,
4456 				     u64 *index)
4457 {
4458 	struct inode *inode;
4459 	struct btrfs_inode_item *inode_item;
4460 	struct btrfs_key *location;
4461 	struct btrfs_path *path;
4462 	struct btrfs_inode_ref *ref;
4463 	struct btrfs_key key[2];
4464 	u32 sizes[2];
4465 	unsigned long ptr;
4466 	int ret;
4467 	int owner;
4468 
4469 	path = btrfs_alloc_path();
4470 	if (!path)
4471 		return ERR_PTR(-ENOMEM);
4472 
4473 	inode = new_inode(root->fs_info->sb);
4474 	if (!inode) {
4475 		btrfs_free_path(path);
4476 		return ERR_PTR(-ENOMEM);
4477 	}
4478 
4479 	/*
4480 	 * we have to initialize this early, so we can reclaim the inode
4481 	 * number if we fail afterwards in this function.
4482 	 */
4483 	inode->i_ino = objectid;
4484 
4485 	if (dir) {
4486 		trace_btrfs_inode_request(dir);
4487 
4488 		ret = btrfs_set_inode_index(dir, index);
4489 		if (ret) {
4490 			btrfs_free_path(path);
4491 			iput(inode);
4492 			return ERR_PTR(ret);
4493 		}
4494 	}
4495 	/*
4496 	 * index_cnt is ignored for everything but a dir,
4497 	 * btrfs_get_inode_index_count has an explanation for the magic
4498 	 * number
4499 	 */
4500 	BTRFS_I(inode)->index_cnt = 2;
4501 	BTRFS_I(inode)->root = root;
4502 	BTRFS_I(inode)->generation = trans->transid;
4503 	inode->i_generation = BTRFS_I(inode)->generation;
4504 	btrfs_set_inode_space_info(root, inode);
4505 
4506 	if (S_ISDIR(mode))
4507 		owner = 0;
4508 	else
4509 		owner = 1;
4510 
4511 	key[0].objectid = objectid;
4512 	btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4513 	key[0].offset = 0;
4514 
4515 	key[1].objectid = objectid;
4516 	btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4517 	key[1].offset = ref_objectid;
4518 
4519 	sizes[0] = sizeof(struct btrfs_inode_item);
4520 	sizes[1] = name_len + sizeof(*ref);
4521 
4522 	path->leave_spinning = 1;
4523 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4524 	if (ret != 0)
4525 		goto fail;
4526 
4527 	inode_init_owner(inode, dir, mode);
4528 	inode_set_bytes(inode, 0);
4529 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4530 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4531 				  struct btrfs_inode_item);
4532 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
4533 
4534 	ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4535 			     struct btrfs_inode_ref);
4536 	btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4537 	btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4538 	ptr = (unsigned long)(ref + 1);
4539 	write_extent_buffer(path->nodes[0], name, ptr, name_len);
4540 
4541 	btrfs_mark_buffer_dirty(path->nodes[0]);
4542 	btrfs_free_path(path);
4543 
4544 	location = &BTRFS_I(inode)->location;
4545 	location->objectid = objectid;
4546 	location->offset = 0;
4547 	btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4548 
4549 	btrfs_inherit_iflags(inode, dir);
4550 
4551 	if (S_ISREG(mode)) {
4552 		if (btrfs_test_opt(root, NODATASUM))
4553 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4554 		if (btrfs_test_opt(root, NODATACOW) ||
4555 		    (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4556 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4557 	}
4558 
4559 	insert_inode_hash(inode);
4560 	inode_tree_add(inode);
4561 
4562 	trace_btrfs_inode_new(inode);
4563 	btrfs_set_inode_last_trans(trans, inode);
4564 
4565 	return inode;
4566 fail:
4567 	if (dir)
4568 		BTRFS_I(dir)->index_cnt--;
4569 	btrfs_free_path(path);
4570 	iput(inode);
4571 	return ERR_PTR(ret);
4572 }
4573 
4574 static inline u8 btrfs_inode_type(struct inode *inode)
4575 {
4576 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4577 }
4578 
4579 /*
4580  * utility function to add 'inode' into 'parent_inode' with
4581  * a give name and a given sequence number.
4582  * if 'add_backref' is true, also insert a backref from the
4583  * inode to the parent directory.
4584  */
4585 int btrfs_add_link(struct btrfs_trans_handle *trans,
4586 		   struct inode *parent_inode, struct inode *inode,
4587 		   const char *name, int name_len, int add_backref, u64 index)
4588 {
4589 	int ret = 0;
4590 	struct btrfs_key key;
4591 	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4592 	u64 ino = btrfs_ino(inode);
4593 	u64 parent_ino = btrfs_ino(parent_inode);
4594 
4595 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4596 		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4597 	} else {
4598 		key.objectid = ino;
4599 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4600 		key.offset = 0;
4601 	}
4602 
4603 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4604 		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4605 					 key.objectid, root->root_key.objectid,
4606 					 parent_ino, index, name, name_len);
4607 	} else if (add_backref) {
4608 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4609 					     parent_ino, index);
4610 	}
4611 
4612 	if (ret == 0) {
4613 		ret = btrfs_insert_dir_item(trans, root, name, name_len,
4614 					    parent_inode, &key,
4615 					    btrfs_inode_type(inode), index);
4616 		BUG_ON(ret);
4617 
4618 		btrfs_i_size_write(parent_inode, parent_inode->i_size +
4619 				   name_len * 2);
4620 		parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4621 		ret = btrfs_update_inode(trans, root, parent_inode);
4622 	}
4623 	return ret;
4624 }
4625 
4626 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4627 			    struct inode *dir, struct dentry *dentry,
4628 			    struct inode *inode, int backref, u64 index)
4629 {
4630 	int err = btrfs_add_link(trans, dir, inode,
4631 				 dentry->d_name.name, dentry->d_name.len,
4632 				 backref, index);
4633 	if (!err) {
4634 		d_instantiate(dentry, inode);
4635 		return 0;
4636 	}
4637 	if (err > 0)
4638 		err = -EEXIST;
4639 	return err;
4640 }
4641 
4642 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4643 			int mode, dev_t rdev)
4644 {
4645 	struct btrfs_trans_handle *trans;
4646 	struct btrfs_root *root = BTRFS_I(dir)->root;
4647 	struct inode *inode = NULL;
4648 	int err;
4649 	int drop_inode = 0;
4650 	u64 objectid;
4651 	unsigned long nr = 0;
4652 	u64 index = 0;
4653 
4654 	if (!new_valid_dev(rdev))
4655 		return -EINVAL;
4656 
4657 	/*
4658 	 * 2 for inode item and ref
4659 	 * 2 for dir items
4660 	 * 1 for xattr if selinux is on
4661 	 */
4662 	trans = btrfs_start_transaction(root, 5);
4663 	if (IS_ERR(trans))
4664 		return PTR_ERR(trans);
4665 
4666 	err = btrfs_find_free_ino(root, &objectid);
4667 	if (err)
4668 		goto out_unlock;
4669 
4670 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4671 				dentry->d_name.len, btrfs_ino(dir), objectid,
4672 				mode, &index);
4673 	if (IS_ERR(inode)) {
4674 		err = PTR_ERR(inode);
4675 		goto out_unlock;
4676 	}
4677 
4678 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4679 	if (err) {
4680 		drop_inode = 1;
4681 		goto out_unlock;
4682 	}
4683 
4684 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4685 	if (err)
4686 		drop_inode = 1;
4687 	else {
4688 		inode->i_op = &btrfs_special_inode_operations;
4689 		init_special_inode(inode, inode->i_mode, rdev);
4690 		btrfs_update_inode(trans, root, inode);
4691 	}
4692 out_unlock:
4693 	nr = trans->blocks_used;
4694 	btrfs_end_transaction_throttle(trans, root);
4695 	btrfs_btree_balance_dirty(root, nr);
4696 	if (drop_inode) {
4697 		inode_dec_link_count(inode);
4698 		iput(inode);
4699 	}
4700 	return err;
4701 }
4702 
4703 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4704 			int mode, struct nameidata *nd)
4705 {
4706 	struct btrfs_trans_handle *trans;
4707 	struct btrfs_root *root = BTRFS_I(dir)->root;
4708 	struct inode *inode = NULL;
4709 	int drop_inode = 0;
4710 	int err;
4711 	unsigned long nr = 0;
4712 	u64 objectid;
4713 	u64 index = 0;
4714 
4715 	/*
4716 	 * 2 for inode item and ref
4717 	 * 2 for dir items
4718 	 * 1 for xattr if selinux is on
4719 	 */
4720 	trans = btrfs_start_transaction(root, 5);
4721 	if (IS_ERR(trans))
4722 		return PTR_ERR(trans);
4723 
4724 	err = btrfs_find_free_ino(root, &objectid);
4725 	if (err)
4726 		goto out_unlock;
4727 
4728 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4729 				dentry->d_name.len, btrfs_ino(dir), objectid,
4730 				mode, &index);
4731 	if (IS_ERR(inode)) {
4732 		err = PTR_ERR(inode);
4733 		goto out_unlock;
4734 	}
4735 
4736 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4737 	if (err) {
4738 		drop_inode = 1;
4739 		goto out_unlock;
4740 	}
4741 
4742 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4743 	if (err)
4744 		drop_inode = 1;
4745 	else {
4746 		inode->i_mapping->a_ops = &btrfs_aops;
4747 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4748 		inode->i_fop = &btrfs_file_operations;
4749 		inode->i_op = &btrfs_file_inode_operations;
4750 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4751 	}
4752 out_unlock:
4753 	nr = trans->blocks_used;
4754 	btrfs_end_transaction_throttle(trans, root);
4755 	if (drop_inode) {
4756 		inode_dec_link_count(inode);
4757 		iput(inode);
4758 	}
4759 	btrfs_btree_balance_dirty(root, nr);
4760 	return err;
4761 }
4762 
4763 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4764 		      struct dentry *dentry)
4765 {
4766 	struct btrfs_trans_handle *trans;
4767 	struct btrfs_root *root = BTRFS_I(dir)->root;
4768 	struct inode *inode = old_dentry->d_inode;
4769 	u64 index;
4770 	unsigned long nr = 0;
4771 	int err;
4772 	int drop_inode = 0;
4773 
4774 	/* do not allow sys_link's with other subvols of the same device */
4775 	if (root->objectid != BTRFS_I(inode)->root->objectid)
4776 		return -EXDEV;
4777 
4778 	if (inode->i_nlink == ~0U)
4779 		return -EMLINK;
4780 
4781 	err = btrfs_set_inode_index(dir, &index);
4782 	if (err)
4783 		goto fail;
4784 
4785 	/*
4786 	 * 2 items for inode and inode ref
4787 	 * 2 items for dir items
4788 	 * 1 item for parent inode
4789 	 */
4790 	trans = btrfs_start_transaction(root, 5);
4791 	if (IS_ERR(trans)) {
4792 		err = PTR_ERR(trans);
4793 		goto fail;
4794 	}
4795 
4796 	btrfs_inc_nlink(inode);
4797 	inode->i_ctime = CURRENT_TIME;
4798 	ihold(inode);
4799 
4800 	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4801 
4802 	if (err) {
4803 		drop_inode = 1;
4804 	} else {
4805 		struct dentry *parent = dentry->d_parent;
4806 		err = btrfs_update_inode(trans, root, inode);
4807 		BUG_ON(err);
4808 		btrfs_log_new_name(trans, inode, NULL, parent);
4809 	}
4810 
4811 	nr = trans->blocks_used;
4812 	btrfs_end_transaction_throttle(trans, root);
4813 fail:
4814 	if (drop_inode) {
4815 		inode_dec_link_count(inode);
4816 		iput(inode);
4817 	}
4818 	btrfs_btree_balance_dirty(root, nr);
4819 	return err;
4820 }
4821 
4822 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4823 {
4824 	struct inode *inode = NULL;
4825 	struct btrfs_trans_handle *trans;
4826 	struct btrfs_root *root = BTRFS_I(dir)->root;
4827 	int err = 0;
4828 	int drop_on_err = 0;
4829 	u64 objectid = 0;
4830 	u64 index = 0;
4831 	unsigned long nr = 1;
4832 
4833 	/*
4834 	 * 2 items for inode and ref
4835 	 * 2 items for dir items
4836 	 * 1 for xattr if selinux is on
4837 	 */
4838 	trans = btrfs_start_transaction(root, 5);
4839 	if (IS_ERR(trans))
4840 		return PTR_ERR(trans);
4841 
4842 	err = btrfs_find_free_ino(root, &objectid);
4843 	if (err)
4844 		goto out_fail;
4845 
4846 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4847 				dentry->d_name.len, btrfs_ino(dir), objectid,
4848 				S_IFDIR | mode, &index);
4849 	if (IS_ERR(inode)) {
4850 		err = PTR_ERR(inode);
4851 		goto out_fail;
4852 	}
4853 
4854 	drop_on_err = 1;
4855 
4856 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4857 	if (err)
4858 		goto out_fail;
4859 
4860 	inode->i_op = &btrfs_dir_inode_operations;
4861 	inode->i_fop = &btrfs_dir_file_operations;
4862 
4863 	btrfs_i_size_write(inode, 0);
4864 	err = btrfs_update_inode(trans, root, inode);
4865 	if (err)
4866 		goto out_fail;
4867 
4868 	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4869 			     dentry->d_name.len, 0, index);
4870 	if (err)
4871 		goto out_fail;
4872 
4873 	d_instantiate(dentry, inode);
4874 	drop_on_err = 0;
4875 
4876 out_fail:
4877 	nr = trans->blocks_used;
4878 	btrfs_end_transaction_throttle(trans, root);
4879 	if (drop_on_err)
4880 		iput(inode);
4881 	btrfs_btree_balance_dirty(root, nr);
4882 	return err;
4883 }
4884 
4885 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4886  * and an extent that you want to insert, deal with overlap and insert
4887  * the new extent into the tree.
4888  */
4889 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4890 				struct extent_map *existing,
4891 				struct extent_map *em,
4892 				u64 map_start, u64 map_len)
4893 {
4894 	u64 start_diff;
4895 
4896 	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4897 	start_diff = map_start - em->start;
4898 	em->start = map_start;
4899 	em->len = map_len;
4900 	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4901 	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4902 		em->block_start += start_diff;
4903 		em->block_len -= start_diff;
4904 	}
4905 	return add_extent_mapping(em_tree, em);
4906 }
4907 
4908 static noinline int uncompress_inline(struct btrfs_path *path,
4909 				      struct inode *inode, struct page *page,
4910 				      size_t pg_offset, u64 extent_offset,
4911 				      struct btrfs_file_extent_item *item)
4912 {
4913 	int ret;
4914 	struct extent_buffer *leaf = path->nodes[0];
4915 	char *tmp;
4916 	size_t max_size;
4917 	unsigned long inline_size;
4918 	unsigned long ptr;
4919 	int compress_type;
4920 
4921 	WARN_ON(pg_offset != 0);
4922 	compress_type = btrfs_file_extent_compression(leaf, item);
4923 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
4924 	inline_size = btrfs_file_extent_inline_item_len(leaf,
4925 					btrfs_item_nr(leaf, path->slots[0]));
4926 	tmp = kmalloc(inline_size, GFP_NOFS);
4927 	if (!tmp)
4928 		return -ENOMEM;
4929 	ptr = btrfs_file_extent_inline_start(item);
4930 
4931 	read_extent_buffer(leaf, tmp, ptr, inline_size);
4932 
4933 	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4934 	ret = btrfs_decompress(compress_type, tmp, page,
4935 			       extent_offset, inline_size, max_size);
4936 	if (ret) {
4937 		char *kaddr = kmap_atomic(page, KM_USER0);
4938 		unsigned long copy_size = min_t(u64,
4939 				  PAGE_CACHE_SIZE - pg_offset,
4940 				  max_size - extent_offset);
4941 		memset(kaddr + pg_offset, 0, copy_size);
4942 		kunmap_atomic(kaddr, KM_USER0);
4943 	}
4944 	kfree(tmp);
4945 	return 0;
4946 }
4947 
4948 /*
4949  * a bit scary, this does extent mapping from logical file offset to the disk.
4950  * the ugly parts come from merging extents from the disk with the in-ram
4951  * representation.  This gets more complex because of the data=ordered code,
4952  * where the in-ram extents might be locked pending data=ordered completion.
4953  *
4954  * This also copies inline extents directly into the page.
4955  */
4956 
4957 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4958 				    size_t pg_offset, u64 start, u64 len,
4959 				    int create)
4960 {
4961 	int ret;
4962 	int err = 0;
4963 	u64 bytenr;
4964 	u64 extent_start = 0;
4965 	u64 extent_end = 0;
4966 	u64 objectid = btrfs_ino(inode);
4967 	u32 found_type;
4968 	struct btrfs_path *path = NULL;
4969 	struct btrfs_root *root = BTRFS_I(inode)->root;
4970 	struct btrfs_file_extent_item *item;
4971 	struct extent_buffer *leaf;
4972 	struct btrfs_key found_key;
4973 	struct extent_map *em = NULL;
4974 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4975 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4976 	struct btrfs_trans_handle *trans = NULL;
4977 	int compress_type;
4978 
4979 again:
4980 	read_lock(&em_tree->lock);
4981 	em = lookup_extent_mapping(em_tree, start, len);
4982 	if (em)
4983 		em->bdev = root->fs_info->fs_devices->latest_bdev;
4984 	read_unlock(&em_tree->lock);
4985 
4986 	if (em) {
4987 		if (em->start > start || em->start + em->len <= start)
4988 			free_extent_map(em);
4989 		else if (em->block_start == EXTENT_MAP_INLINE && page)
4990 			free_extent_map(em);
4991 		else
4992 			goto out;
4993 	}
4994 	em = alloc_extent_map();
4995 	if (!em) {
4996 		err = -ENOMEM;
4997 		goto out;
4998 	}
4999 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5000 	em->start = EXTENT_MAP_HOLE;
5001 	em->orig_start = EXTENT_MAP_HOLE;
5002 	em->len = (u64)-1;
5003 	em->block_len = (u64)-1;
5004 
5005 	if (!path) {
5006 		path = btrfs_alloc_path();
5007 		if (!path) {
5008 			err = -ENOMEM;
5009 			goto out;
5010 		}
5011 		/*
5012 		 * Chances are we'll be called again, so go ahead and do
5013 		 * readahead
5014 		 */
5015 		path->reada = 1;
5016 	}
5017 
5018 	ret = btrfs_lookup_file_extent(trans, root, path,
5019 				       objectid, start, trans != NULL);
5020 	if (ret < 0) {
5021 		err = ret;
5022 		goto out;
5023 	}
5024 
5025 	if (ret != 0) {
5026 		if (path->slots[0] == 0)
5027 			goto not_found;
5028 		path->slots[0]--;
5029 	}
5030 
5031 	leaf = path->nodes[0];
5032 	item = btrfs_item_ptr(leaf, path->slots[0],
5033 			      struct btrfs_file_extent_item);
5034 	/* are we inside the extent that was found? */
5035 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5036 	found_type = btrfs_key_type(&found_key);
5037 	if (found_key.objectid != objectid ||
5038 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5039 		goto not_found;
5040 	}
5041 
5042 	found_type = btrfs_file_extent_type(leaf, item);
5043 	extent_start = found_key.offset;
5044 	compress_type = btrfs_file_extent_compression(leaf, item);
5045 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5046 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5047 		extent_end = extent_start +
5048 		       btrfs_file_extent_num_bytes(leaf, item);
5049 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5050 		size_t size;
5051 		size = btrfs_file_extent_inline_len(leaf, item);
5052 		extent_end = (extent_start + size + root->sectorsize - 1) &
5053 			~((u64)root->sectorsize - 1);
5054 	}
5055 
5056 	if (start >= extent_end) {
5057 		path->slots[0]++;
5058 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5059 			ret = btrfs_next_leaf(root, path);
5060 			if (ret < 0) {
5061 				err = ret;
5062 				goto out;
5063 			}
5064 			if (ret > 0)
5065 				goto not_found;
5066 			leaf = path->nodes[0];
5067 		}
5068 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5069 		if (found_key.objectid != objectid ||
5070 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
5071 			goto not_found;
5072 		if (start + len <= found_key.offset)
5073 			goto not_found;
5074 		em->start = start;
5075 		em->len = found_key.offset - start;
5076 		goto not_found_em;
5077 	}
5078 
5079 	if (found_type == BTRFS_FILE_EXTENT_REG ||
5080 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5081 		em->start = extent_start;
5082 		em->len = extent_end - extent_start;
5083 		em->orig_start = extent_start -
5084 				 btrfs_file_extent_offset(leaf, item);
5085 		bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5086 		if (bytenr == 0) {
5087 			em->block_start = EXTENT_MAP_HOLE;
5088 			goto insert;
5089 		}
5090 		if (compress_type != BTRFS_COMPRESS_NONE) {
5091 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5092 			em->compress_type = compress_type;
5093 			em->block_start = bytenr;
5094 			em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5095 									 item);
5096 		} else {
5097 			bytenr += btrfs_file_extent_offset(leaf, item);
5098 			em->block_start = bytenr;
5099 			em->block_len = em->len;
5100 			if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5101 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5102 		}
5103 		goto insert;
5104 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5105 		unsigned long ptr;
5106 		char *map;
5107 		size_t size;
5108 		size_t extent_offset;
5109 		size_t copy_size;
5110 
5111 		em->block_start = EXTENT_MAP_INLINE;
5112 		if (!page || create) {
5113 			em->start = extent_start;
5114 			em->len = extent_end - extent_start;
5115 			goto out;
5116 		}
5117 
5118 		size = btrfs_file_extent_inline_len(leaf, item);
5119 		extent_offset = page_offset(page) + pg_offset - extent_start;
5120 		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5121 				size - extent_offset);
5122 		em->start = extent_start + extent_offset;
5123 		em->len = (copy_size + root->sectorsize - 1) &
5124 			~((u64)root->sectorsize - 1);
5125 		em->orig_start = EXTENT_MAP_INLINE;
5126 		if (compress_type) {
5127 			set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5128 			em->compress_type = compress_type;
5129 		}
5130 		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5131 		if (create == 0 && !PageUptodate(page)) {
5132 			if (btrfs_file_extent_compression(leaf, item) !=
5133 			    BTRFS_COMPRESS_NONE) {
5134 				ret = uncompress_inline(path, inode, page,
5135 							pg_offset,
5136 							extent_offset, item);
5137 				BUG_ON(ret);
5138 			} else {
5139 				map = kmap(page);
5140 				read_extent_buffer(leaf, map + pg_offset, ptr,
5141 						   copy_size);
5142 				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5143 					memset(map + pg_offset + copy_size, 0,
5144 					       PAGE_CACHE_SIZE - pg_offset -
5145 					       copy_size);
5146 				}
5147 				kunmap(page);
5148 			}
5149 			flush_dcache_page(page);
5150 		} else if (create && PageUptodate(page)) {
5151 			WARN_ON(1);
5152 			if (!trans) {
5153 				kunmap(page);
5154 				free_extent_map(em);
5155 				em = NULL;
5156 
5157 				btrfs_release_path(path);
5158 				trans = btrfs_join_transaction(root);
5159 
5160 				if (IS_ERR(trans))
5161 					return ERR_CAST(trans);
5162 				goto again;
5163 			}
5164 			map = kmap(page);
5165 			write_extent_buffer(leaf, map + pg_offset, ptr,
5166 					    copy_size);
5167 			kunmap(page);
5168 			btrfs_mark_buffer_dirty(leaf);
5169 		}
5170 		set_extent_uptodate(io_tree, em->start,
5171 				    extent_map_end(em) - 1, NULL, GFP_NOFS);
5172 		goto insert;
5173 	} else {
5174 		printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5175 		WARN_ON(1);
5176 	}
5177 not_found:
5178 	em->start = start;
5179 	em->len = len;
5180 not_found_em:
5181 	em->block_start = EXTENT_MAP_HOLE;
5182 	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5183 insert:
5184 	btrfs_release_path(path);
5185 	if (em->start > start || extent_map_end(em) <= start) {
5186 		printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5187 		       "[%llu %llu]\n", (unsigned long long)em->start,
5188 		       (unsigned long long)em->len,
5189 		       (unsigned long long)start,
5190 		       (unsigned long long)len);
5191 		err = -EIO;
5192 		goto out;
5193 	}
5194 
5195 	err = 0;
5196 	write_lock(&em_tree->lock);
5197 	ret = add_extent_mapping(em_tree, em);
5198 	/* it is possible that someone inserted the extent into the tree
5199 	 * while we had the lock dropped.  It is also possible that
5200 	 * an overlapping map exists in the tree
5201 	 */
5202 	if (ret == -EEXIST) {
5203 		struct extent_map *existing;
5204 
5205 		ret = 0;
5206 
5207 		existing = lookup_extent_mapping(em_tree, start, len);
5208 		if (existing && (existing->start > start ||
5209 		    existing->start + existing->len <= start)) {
5210 			free_extent_map(existing);
5211 			existing = NULL;
5212 		}
5213 		if (!existing) {
5214 			existing = lookup_extent_mapping(em_tree, em->start,
5215 							 em->len);
5216 			if (existing) {
5217 				err = merge_extent_mapping(em_tree, existing,
5218 							   em, start,
5219 							   root->sectorsize);
5220 				free_extent_map(existing);
5221 				if (err) {
5222 					free_extent_map(em);
5223 					em = NULL;
5224 				}
5225 			} else {
5226 				err = -EIO;
5227 				free_extent_map(em);
5228 				em = NULL;
5229 			}
5230 		} else {
5231 			free_extent_map(em);
5232 			em = existing;
5233 			err = 0;
5234 		}
5235 	}
5236 	write_unlock(&em_tree->lock);
5237 out:
5238 
5239 	trace_btrfs_get_extent(root, em);
5240 
5241 	if (path)
5242 		btrfs_free_path(path);
5243 	if (trans) {
5244 		ret = btrfs_end_transaction(trans, root);
5245 		if (!err)
5246 			err = ret;
5247 	}
5248 	if (err) {
5249 		free_extent_map(em);
5250 		return ERR_PTR(err);
5251 	}
5252 	return em;
5253 }
5254 
5255 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5256 					   size_t pg_offset, u64 start, u64 len,
5257 					   int create)
5258 {
5259 	struct extent_map *em;
5260 	struct extent_map *hole_em = NULL;
5261 	u64 range_start = start;
5262 	u64 end;
5263 	u64 found;
5264 	u64 found_end;
5265 	int err = 0;
5266 
5267 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5268 	if (IS_ERR(em))
5269 		return em;
5270 	if (em) {
5271 		/*
5272 		 * if our em maps to a hole, there might
5273 		 * actually be delalloc bytes behind it
5274 		 */
5275 		if (em->block_start != EXTENT_MAP_HOLE)
5276 			return em;
5277 		else
5278 			hole_em = em;
5279 	}
5280 
5281 	/* check to see if we've wrapped (len == -1 or similar) */
5282 	end = start + len;
5283 	if (end < start)
5284 		end = (u64)-1;
5285 	else
5286 		end -= 1;
5287 
5288 	em = NULL;
5289 
5290 	/* ok, we didn't find anything, lets look for delalloc */
5291 	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5292 				 end, len, EXTENT_DELALLOC, 1);
5293 	found_end = range_start + found;
5294 	if (found_end < range_start)
5295 		found_end = (u64)-1;
5296 
5297 	/*
5298 	 * we didn't find anything useful, return
5299 	 * the original results from get_extent()
5300 	 */
5301 	if (range_start > end || found_end <= start) {
5302 		em = hole_em;
5303 		hole_em = NULL;
5304 		goto out;
5305 	}
5306 
5307 	/* adjust the range_start to make sure it doesn't
5308 	 * go backwards from the start they passed in
5309 	 */
5310 	range_start = max(start,range_start);
5311 	found = found_end - range_start;
5312 
5313 	if (found > 0) {
5314 		u64 hole_start = start;
5315 		u64 hole_len = len;
5316 
5317 		em = alloc_extent_map();
5318 		if (!em) {
5319 			err = -ENOMEM;
5320 			goto out;
5321 		}
5322 		/*
5323 		 * when btrfs_get_extent can't find anything it
5324 		 * returns one huge hole
5325 		 *
5326 		 * make sure what it found really fits our range, and
5327 		 * adjust to make sure it is based on the start from
5328 		 * the caller
5329 		 */
5330 		if (hole_em) {
5331 			u64 calc_end = extent_map_end(hole_em);
5332 
5333 			if (calc_end <= start || (hole_em->start > end)) {
5334 				free_extent_map(hole_em);
5335 				hole_em = NULL;
5336 			} else {
5337 				hole_start = max(hole_em->start, start);
5338 				hole_len = calc_end - hole_start;
5339 			}
5340 		}
5341 		em->bdev = NULL;
5342 		if (hole_em && range_start > hole_start) {
5343 			/* our hole starts before our delalloc, so we
5344 			 * have to return just the parts of the hole
5345 			 * that go until  the delalloc starts
5346 			 */
5347 			em->len = min(hole_len,
5348 				      range_start - hole_start);
5349 			em->start = hole_start;
5350 			em->orig_start = hole_start;
5351 			/*
5352 			 * don't adjust block start at all,
5353 			 * it is fixed at EXTENT_MAP_HOLE
5354 			 */
5355 			em->block_start = hole_em->block_start;
5356 			em->block_len = hole_len;
5357 		} else {
5358 			em->start = range_start;
5359 			em->len = found;
5360 			em->orig_start = range_start;
5361 			em->block_start = EXTENT_MAP_DELALLOC;
5362 			em->block_len = found;
5363 		}
5364 	} else if (hole_em) {
5365 		return hole_em;
5366 	}
5367 out:
5368 
5369 	free_extent_map(hole_em);
5370 	if (err) {
5371 		free_extent_map(em);
5372 		return ERR_PTR(err);
5373 	}
5374 	return em;
5375 }
5376 
5377 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5378 						  struct extent_map *em,
5379 						  u64 start, u64 len)
5380 {
5381 	struct btrfs_root *root = BTRFS_I(inode)->root;
5382 	struct btrfs_trans_handle *trans;
5383 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5384 	struct btrfs_key ins;
5385 	u64 alloc_hint;
5386 	int ret;
5387 	bool insert = false;
5388 
5389 	/*
5390 	 * Ok if the extent map we looked up is a hole and is for the exact
5391 	 * range we want, there is no reason to allocate a new one, however if
5392 	 * it is not right then we need to free this one and drop the cache for
5393 	 * our range.
5394 	 */
5395 	if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5396 	    em->len != len) {
5397 		free_extent_map(em);
5398 		em = NULL;
5399 		insert = true;
5400 		btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5401 	}
5402 
5403 	trans = btrfs_join_transaction(root);
5404 	if (IS_ERR(trans))
5405 		return ERR_CAST(trans);
5406 
5407 	if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5408 		btrfs_add_inode_defrag(trans, inode);
5409 
5410 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5411 
5412 	alloc_hint = get_extent_allocation_hint(inode, start, len);
5413 	ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5414 				   alloc_hint, (u64)-1, &ins, 1);
5415 	if (ret) {
5416 		em = ERR_PTR(ret);
5417 		goto out;
5418 	}
5419 
5420 	if (!em) {
5421 		em = alloc_extent_map();
5422 		if (!em) {
5423 			em = ERR_PTR(-ENOMEM);
5424 			goto out;
5425 		}
5426 	}
5427 
5428 	em->start = start;
5429 	em->orig_start = em->start;
5430 	em->len = ins.offset;
5431 
5432 	em->block_start = ins.objectid;
5433 	em->block_len = ins.offset;
5434 	em->bdev = root->fs_info->fs_devices->latest_bdev;
5435 
5436 	/*
5437 	 * We need to do this because if we're using the original em we searched
5438 	 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5439 	 */
5440 	em->flags = 0;
5441 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
5442 
5443 	while (insert) {
5444 		write_lock(&em_tree->lock);
5445 		ret = add_extent_mapping(em_tree, em);
5446 		write_unlock(&em_tree->lock);
5447 		if (ret != -EEXIST)
5448 			break;
5449 		btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5450 	}
5451 
5452 	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5453 					   ins.offset, ins.offset, 0);
5454 	if (ret) {
5455 		btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5456 		em = ERR_PTR(ret);
5457 	}
5458 out:
5459 	btrfs_end_transaction(trans, root);
5460 	return em;
5461 }
5462 
5463 /*
5464  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5465  * block must be cow'd
5466  */
5467 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5468 				      struct inode *inode, u64 offset, u64 len)
5469 {
5470 	struct btrfs_path *path;
5471 	int ret;
5472 	struct extent_buffer *leaf;
5473 	struct btrfs_root *root = BTRFS_I(inode)->root;
5474 	struct btrfs_file_extent_item *fi;
5475 	struct btrfs_key key;
5476 	u64 disk_bytenr;
5477 	u64 backref_offset;
5478 	u64 extent_end;
5479 	u64 num_bytes;
5480 	int slot;
5481 	int found_type;
5482 
5483 	path = btrfs_alloc_path();
5484 	if (!path)
5485 		return -ENOMEM;
5486 
5487 	ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5488 				       offset, 0);
5489 	if (ret < 0)
5490 		goto out;
5491 
5492 	slot = path->slots[0];
5493 	if (ret == 1) {
5494 		if (slot == 0) {
5495 			/* can't find the item, must cow */
5496 			ret = 0;
5497 			goto out;
5498 		}
5499 		slot--;
5500 	}
5501 	ret = 0;
5502 	leaf = path->nodes[0];
5503 	btrfs_item_key_to_cpu(leaf, &key, slot);
5504 	if (key.objectid != btrfs_ino(inode) ||
5505 	    key.type != BTRFS_EXTENT_DATA_KEY) {
5506 		/* not our file or wrong item type, must cow */
5507 		goto out;
5508 	}
5509 
5510 	if (key.offset > offset) {
5511 		/* Wrong offset, must cow */
5512 		goto out;
5513 	}
5514 
5515 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5516 	found_type = btrfs_file_extent_type(leaf, fi);
5517 	if (found_type != BTRFS_FILE_EXTENT_REG &&
5518 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5519 		/* not a regular extent, must cow */
5520 		goto out;
5521 	}
5522 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5523 	backref_offset = btrfs_file_extent_offset(leaf, fi);
5524 
5525 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5526 	if (extent_end < offset + len) {
5527 		/* extent doesn't include our full range, must cow */
5528 		goto out;
5529 	}
5530 
5531 	if (btrfs_extent_readonly(root, disk_bytenr))
5532 		goto out;
5533 
5534 	/*
5535 	 * look for other files referencing this extent, if we
5536 	 * find any we must cow
5537 	 */
5538 	if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5539 				  key.offset - backref_offset, disk_bytenr))
5540 		goto out;
5541 
5542 	/*
5543 	 * adjust disk_bytenr and num_bytes to cover just the bytes
5544 	 * in this extent we are about to write.  If there
5545 	 * are any csums in that range we have to cow in order
5546 	 * to keep the csums correct
5547 	 */
5548 	disk_bytenr += backref_offset;
5549 	disk_bytenr += offset - key.offset;
5550 	num_bytes = min(offset + len, extent_end) - offset;
5551 	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5552 				goto out;
5553 	/*
5554 	 * all of the above have passed, it is safe to overwrite this extent
5555 	 * without cow
5556 	 */
5557 	ret = 1;
5558 out:
5559 	btrfs_free_path(path);
5560 	return ret;
5561 }
5562 
5563 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5564 				   struct buffer_head *bh_result, int create)
5565 {
5566 	struct extent_map *em;
5567 	struct btrfs_root *root = BTRFS_I(inode)->root;
5568 	u64 start = iblock << inode->i_blkbits;
5569 	u64 len = bh_result->b_size;
5570 	struct btrfs_trans_handle *trans;
5571 
5572 	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5573 	if (IS_ERR(em))
5574 		return PTR_ERR(em);
5575 
5576 	/*
5577 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5578 	 * io.  INLINE is special, and we could probably kludge it in here, but
5579 	 * it's still buffered so for safety lets just fall back to the generic
5580 	 * buffered path.
5581 	 *
5582 	 * For COMPRESSED we _have_ to read the entire extent in so we can
5583 	 * decompress it, so there will be buffering required no matter what we
5584 	 * do, so go ahead and fallback to buffered.
5585 	 *
5586 	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5587 	 * to buffered IO.  Don't blame me, this is the price we pay for using
5588 	 * the generic code.
5589 	 */
5590 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5591 	    em->block_start == EXTENT_MAP_INLINE) {
5592 		free_extent_map(em);
5593 		return -ENOTBLK;
5594 	}
5595 
5596 	/* Just a good old fashioned hole, return */
5597 	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5598 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5599 		free_extent_map(em);
5600 		/* DIO will do one hole at a time, so just unlock a sector */
5601 		unlock_extent(&BTRFS_I(inode)->io_tree, start,
5602 			      start + root->sectorsize - 1, GFP_NOFS);
5603 		return 0;
5604 	}
5605 
5606 	/*
5607 	 * We don't allocate a new extent in the following cases
5608 	 *
5609 	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5610 	 * existing extent.
5611 	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
5612 	 * just use the extent.
5613 	 *
5614 	 */
5615 	if (!create) {
5616 		len = em->len - (start - em->start);
5617 		goto map;
5618 	}
5619 
5620 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5621 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5622 	     em->block_start != EXTENT_MAP_HOLE)) {
5623 		int type;
5624 		int ret;
5625 		u64 block_start;
5626 
5627 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5628 			type = BTRFS_ORDERED_PREALLOC;
5629 		else
5630 			type = BTRFS_ORDERED_NOCOW;
5631 		len = min(len, em->len - (start - em->start));
5632 		block_start = em->block_start + (start - em->start);
5633 
5634 		/*
5635 		 * we're not going to log anything, but we do need
5636 		 * to make sure the current transaction stays open
5637 		 * while we look for nocow cross refs
5638 		 */
5639 		trans = btrfs_join_transaction(root);
5640 		if (IS_ERR(trans))
5641 			goto must_cow;
5642 
5643 		if (can_nocow_odirect(trans, inode, start, len) == 1) {
5644 			ret = btrfs_add_ordered_extent_dio(inode, start,
5645 					   block_start, len, len, type);
5646 			btrfs_end_transaction(trans, root);
5647 			if (ret) {
5648 				free_extent_map(em);
5649 				return ret;
5650 			}
5651 			goto unlock;
5652 		}
5653 		btrfs_end_transaction(trans, root);
5654 	}
5655 must_cow:
5656 	/*
5657 	 * this will cow the extent, reset the len in case we changed
5658 	 * it above
5659 	 */
5660 	len = bh_result->b_size;
5661 	em = btrfs_new_extent_direct(inode, em, start, len);
5662 	if (IS_ERR(em))
5663 		return PTR_ERR(em);
5664 	len = min(len, em->len - (start - em->start));
5665 unlock:
5666 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5667 			  EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5668 			  0, NULL, GFP_NOFS);
5669 map:
5670 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5671 		inode->i_blkbits;
5672 	bh_result->b_size = len;
5673 	bh_result->b_bdev = em->bdev;
5674 	set_buffer_mapped(bh_result);
5675 	if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5676 		set_buffer_new(bh_result);
5677 
5678 	free_extent_map(em);
5679 
5680 	return 0;
5681 }
5682 
5683 struct btrfs_dio_private {
5684 	struct inode *inode;
5685 	u64 logical_offset;
5686 	u64 disk_bytenr;
5687 	u64 bytes;
5688 	u32 *csums;
5689 	void *private;
5690 
5691 	/* number of bios pending for this dio */
5692 	atomic_t pending_bios;
5693 
5694 	/* IO errors */
5695 	int errors;
5696 
5697 	struct bio *orig_bio;
5698 };
5699 
5700 static void btrfs_endio_direct_read(struct bio *bio, int err)
5701 {
5702 	struct btrfs_dio_private *dip = bio->bi_private;
5703 	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5704 	struct bio_vec *bvec = bio->bi_io_vec;
5705 	struct inode *inode = dip->inode;
5706 	struct btrfs_root *root = BTRFS_I(inode)->root;
5707 	u64 start;
5708 	u32 *private = dip->csums;
5709 
5710 	start = dip->logical_offset;
5711 	do {
5712 		if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5713 			struct page *page = bvec->bv_page;
5714 			char *kaddr;
5715 			u32 csum = ~(u32)0;
5716 			unsigned long flags;
5717 
5718 			local_irq_save(flags);
5719 			kaddr = kmap_atomic(page, KM_IRQ0);
5720 			csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5721 					       csum, bvec->bv_len);
5722 			btrfs_csum_final(csum, (char *)&csum);
5723 			kunmap_atomic(kaddr, KM_IRQ0);
5724 			local_irq_restore(flags);
5725 
5726 			flush_dcache_page(bvec->bv_page);
5727 			if (csum != *private) {
5728 				printk(KERN_ERR "btrfs csum failed ino %llu off"
5729 				      " %llu csum %u private %u\n",
5730 				      (unsigned long long)btrfs_ino(inode),
5731 				      (unsigned long long)start,
5732 				      csum, *private);
5733 				err = -EIO;
5734 			}
5735 		}
5736 
5737 		start += bvec->bv_len;
5738 		private++;
5739 		bvec++;
5740 	} while (bvec <= bvec_end);
5741 
5742 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5743 		      dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5744 	bio->bi_private = dip->private;
5745 
5746 	kfree(dip->csums);
5747 	kfree(dip);
5748 
5749 	/* If we had a csum failure make sure to clear the uptodate flag */
5750 	if (err)
5751 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5752 	dio_end_io(bio, err);
5753 }
5754 
5755 static void btrfs_endio_direct_write(struct bio *bio, int err)
5756 {
5757 	struct btrfs_dio_private *dip = bio->bi_private;
5758 	struct inode *inode = dip->inode;
5759 	struct btrfs_root *root = BTRFS_I(inode)->root;
5760 	struct btrfs_trans_handle *trans;
5761 	struct btrfs_ordered_extent *ordered = NULL;
5762 	struct extent_state *cached_state = NULL;
5763 	u64 ordered_offset = dip->logical_offset;
5764 	u64 ordered_bytes = dip->bytes;
5765 	int ret;
5766 
5767 	if (err)
5768 		goto out_done;
5769 again:
5770 	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5771 						   &ordered_offset,
5772 						   ordered_bytes);
5773 	if (!ret)
5774 		goto out_test;
5775 
5776 	BUG_ON(!ordered);
5777 
5778 	trans = btrfs_join_transaction(root);
5779 	if (IS_ERR(trans)) {
5780 		err = -ENOMEM;
5781 		goto out;
5782 	}
5783 	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5784 
5785 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5786 		ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5787 		if (!ret)
5788 			ret = btrfs_update_inode(trans, root, inode);
5789 		err = ret;
5790 		goto out;
5791 	}
5792 
5793 	lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5794 			 ordered->file_offset + ordered->len - 1, 0,
5795 			 &cached_state, GFP_NOFS);
5796 
5797 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5798 		ret = btrfs_mark_extent_written(trans, inode,
5799 						ordered->file_offset,
5800 						ordered->file_offset +
5801 						ordered->len);
5802 		if (ret) {
5803 			err = ret;
5804 			goto out_unlock;
5805 		}
5806 	} else {
5807 		ret = insert_reserved_file_extent(trans, inode,
5808 						  ordered->file_offset,
5809 						  ordered->start,
5810 						  ordered->disk_len,
5811 						  ordered->len,
5812 						  ordered->len,
5813 						  0, 0, 0,
5814 						  BTRFS_FILE_EXTENT_REG);
5815 		unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5816 				   ordered->file_offset, ordered->len);
5817 		if (ret) {
5818 			err = ret;
5819 			WARN_ON(1);
5820 			goto out_unlock;
5821 		}
5822 	}
5823 
5824 	add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5825 	ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5826 	if (!ret)
5827 		btrfs_update_inode(trans, root, inode);
5828 	ret = 0;
5829 out_unlock:
5830 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5831 			     ordered->file_offset + ordered->len - 1,
5832 			     &cached_state, GFP_NOFS);
5833 out:
5834 	btrfs_delalloc_release_metadata(inode, ordered->len);
5835 	btrfs_end_transaction(trans, root);
5836 	ordered_offset = ordered->file_offset + ordered->len;
5837 	btrfs_put_ordered_extent(ordered);
5838 	btrfs_put_ordered_extent(ordered);
5839 
5840 out_test:
5841 	/*
5842 	 * our bio might span multiple ordered extents.  If we haven't
5843 	 * completed the accounting for the whole dio, go back and try again
5844 	 */
5845 	if (ordered_offset < dip->logical_offset + dip->bytes) {
5846 		ordered_bytes = dip->logical_offset + dip->bytes -
5847 			ordered_offset;
5848 		goto again;
5849 	}
5850 out_done:
5851 	bio->bi_private = dip->private;
5852 
5853 	kfree(dip->csums);
5854 	kfree(dip);
5855 
5856 	/* If we had an error make sure to clear the uptodate flag */
5857 	if (err)
5858 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
5859 	dio_end_io(bio, err);
5860 }
5861 
5862 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5863 				    struct bio *bio, int mirror_num,
5864 				    unsigned long bio_flags, u64 offset)
5865 {
5866 	int ret;
5867 	struct btrfs_root *root = BTRFS_I(inode)->root;
5868 	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5869 	BUG_ON(ret);
5870 	return 0;
5871 }
5872 
5873 static void btrfs_end_dio_bio(struct bio *bio, int err)
5874 {
5875 	struct btrfs_dio_private *dip = bio->bi_private;
5876 
5877 	if (err) {
5878 		printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5879 		      "sector %#Lx len %u err no %d\n",
5880 		      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5881 		      (unsigned long long)bio->bi_sector, bio->bi_size, err);
5882 		dip->errors = 1;
5883 
5884 		/*
5885 		 * before atomic variable goto zero, we must make sure
5886 		 * dip->errors is perceived to be set.
5887 		 */
5888 		smp_mb__before_atomic_dec();
5889 	}
5890 
5891 	/* if there are more bios still pending for this dio, just exit */
5892 	if (!atomic_dec_and_test(&dip->pending_bios))
5893 		goto out;
5894 
5895 	if (dip->errors)
5896 		bio_io_error(dip->orig_bio);
5897 	else {
5898 		set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5899 		bio_endio(dip->orig_bio, 0);
5900 	}
5901 out:
5902 	bio_put(bio);
5903 }
5904 
5905 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5906 				       u64 first_sector, gfp_t gfp_flags)
5907 {
5908 	int nr_vecs = bio_get_nr_vecs(bdev);
5909 	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5910 }
5911 
5912 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5913 					 int rw, u64 file_offset, int skip_sum,
5914 					 u32 *csums, int async_submit)
5915 {
5916 	int write = rw & REQ_WRITE;
5917 	struct btrfs_root *root = BTRFS_I(inode)->root;
5918 	int ret;
5919 
5920 	bio_get(bio);
5921 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5922 	if (ret)
5923 		goto err;
5924 
5925 	if (skip_sum)
5926 		goto map;
5927 
5928 	if (write && async_submit) {
5929 		ret = btrfs_wq_submit_bio(root->fs_info,
5930 				   inode, rw, bio, 0, 0,
5931 				   file_offset,
5932 				   __btrfs_submit_bio_start_direct_io,
5933 				   __btrfs_submit_bio_done);
5934 		goto err;
5935 	} else if (write) {
5936 		/*
5937 		 * If we aren't doing async submit, calculate the csum of the
5938 		 * bio now.
5939 		 */
5940 		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5941 		if (ret)
5942 			goto err;
5943 	} else if (!skip_sum) {
5944 		ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5945 					  file_offset, csums);
5946 		if (ret)
5947 			goto err;
5948 	}
5949 
5950 map:
5951 	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5952 err:
5953 	bio_put(bio);
5954 	return ret;
5955 }
5956 
5957 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5958 				    int skip_sum)
5959 {
5960 	struct inode *inode = dip->inode;
5961 	struct btrfs_root *root = BTRFS_I(inode)->root;
5962 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5963 	struct bio *bio;
5964 	struct bio *orig_bio = dip->orig_bio;
5965 	struct bio_vec *bvec = orig_bio->bi_io_vec;
5966 	u64 start_sector = orig_bio->bi_sector;
5967 	u64 file_offset = dip->logical_offset;
5968 	u64 submit_len = 0;
5969 	u64 map_length;
5970 	int nr_pages = 0;
5971 	u32 *csums = dip->csums;
5972 	int ret = 0;
5973 	int async_submit = 0;
5974 	int write = rw & REQ_WRITE;
5975 
5976 	map_length = orig_bio->bi_size;
5977 	ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5978 			      &map_length, NULL, 0);
5979 	if (ret) {
5980 		bio_put(orig_bio);
5981 		return -EIO;
5982 	}
5983 
5984 	if (map_length >= orig_bio->bi_size) {
5985 		bio = orig_bio;
5986 		goto submit;
5987 	}
5988 
5989 	async_submit = 1;
5990 	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5991 	if (!bio)
5992 		return -ENOMEM;
5993 	bio->bi_private = dip;
5994 	bio->bi_end_io = btrfs_end_dio_bio;
5995 	atomic_inc(&dip->pending_bios);
5996 
5997 	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5998 		if (unlikely(map_length < submit_len + bvec->bv_len ||
5999 		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6000 				 bvec->bv_offset) < bvec->bv_len)) {
6001 			/*
6002 			 * inc the count before we submit the bio so
6003 			 * we know the end IO handler won't happen before
6004 			 * we inc the count. Otherwise, the dip might get freed
6005 			 * before we're done setting it up
6006 			 */
6007 			atomic_inc(&dip->pending_bios);
6008 			ret = __btrfs_submit_dio_bio(bio, inode, rw,
6009 						     file_offset, skip_sum,
6010 						     csums, async_submit);
6011 			if (ret) {
6012 				bio_put(bio);
6013 				atomic_dec(&dip->pending_bios);
6014 				goto out_err;
6015 			}
6016 
6017 			/* Write's use the ordered csums */
6018 			if (!write && !skip_sum)
6019 				csums = csums + nr_pages;
6020 			start_sector += submit_len >> 9;
6021 			file_offset += submit_len;
6022 
6023 			submit_len = 0;
6024 			nr_pages = 0;
6025 
6026 			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6027 						  start_sector, GFP_NOFS);
6028 			if (!bio)
6029 				goto out_err;
6030 			bio->bi_private = dip;
6031 			bio->bi_end_io = btrfs_end_dio_bio;
6032 
6033 			map_length = orig_bio->bi_size;
6034 			ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6035 					      &map_length, NULL, 0);
6036 			if (ret) {
6037 				bio_put(bio);
6038 				goto out_err;
6039 			}
6040 		} else {
6041 			submit_len += bvec->bv_len;
6042 			nr_pages ++;
6043 			bvec++;
6044 		}
6045 	}
6046 
6047 submit:
6048 	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6049 				     csums, async_submit);
6050 	if (!ret)
6051 		return 0;
6052 
6053 	bio_put(bio);
6054 out_err:
6055 	dip->errors = 1;
6056 	/*
6057 	 * before atomic variable goto zero, we must
6058 	 * make sure dip->errors is perceived to be set.
6059 	 */
6060 	smp_mb__before_atomic_dec();
6061 	if (atomic_dec_and_test(&dip->pending_bios))
6062 		bio_io_error(dip->orig_bio);
6063 
6064 	/* bio_end_io() will handle error, so we needn't return it */
6065 	return 0;
6066 }
6067 
6068 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6069 				loff_t file_offset)
6070 {
6071 	struct btrfs_root *root = BTRFS_I(inode)->root;
6072 	struct btrfs_dio_private *dip;
6073 	struct bio_vec *bvec = bio->bi_io_vec;
6074 	int skip_sum;
6075 	int write = rw & REQ_WRITE;
6076 	int ret = 0;
6077 
6078 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6079 
6080 	dip = kmalloc(sizeof(*dip), GFP_NOFS);
6081 	if (!dip) {
6082 		ret = -ENOMEM;
6083 		goto free_ordered;
6084 	}
6085 	dip->csums = NULL;
6086 
6087 	/* Write's use the ordered csum stuff, so we don't need dip->csums */
6088 	if (!write && !skip_sum) {
6089 		dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6090 		if (!dip->csums) {
6091 			kfree(dip);
6092 			ret = -ENOMEM;
6093 			goto free_ordered;
6094 		}
6095 	}
6096 
6097 	dip->private = bio->bi_private;
6098 	dip->inode = inode;
6099 	dip->logical_offset = file_offset;
6100 
6101 	dip->bytes = 0;
6102 	do {
6103 		dip->bytes += bvec->bv_len;
6104 		bvec++;
6105 	} while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6106 
6107 	dip->disk_bytenr = (u64)bio->bi_sector << 9;
6108 	bio->bi_private = dip;
6109 	dip->errors = 0;
6110 	dip->orig_bio = bio;
6111 	atomic_set(&dip->pending_bios, 0);
6112 
6113 	if (write)
6114 		bio->bi_end_io = btrfs_endio_direct_write;
6115 	else
6116 		bio->bi_end_io = btrfs_endio_direct_read;
6117 
6118 	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6119 	if (!ret)
6120 		return;
6121 free_ordered:
6122 	/*
6123 	 * If this is a write, we need to clean up the reserved space and kill
6124 	 * the ordered extent.
6125 	 */
6126 	if (write) {
6127 		struct btrfs_ordered_extent *ordered;
6128 		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6129 		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6130 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6131 			btrfs_free_reserved_extent(root, ordered->start,
6132 						   ordered->disk_len);
6133 		btrfs_put_ordered_extent(ordered);
6134 		btrfs_put_ordered_extent(ordered);
6135 	}
6136 	bio_endio(bio, ret);
6137 }
6138 
6139 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6140 			const struct iovec *iov, loff_t offset,
6141 			unsigned long nr_segs)
6142 {
6143 	int seg;
6144 	int i;
6145 	size_t size;
6146 	unsigned long addr;
6147 	unsigned blocksize_mask = root->sectorsize - 1;
6148 	ssize_t retval = -EINVAL;
6149 	loff_t end = offset;
6150 
6151 	if (offset & blocksize_mask)
6152 		goto out;
6153 
6154 	/* Check the memory alignment.  Blocks cannot straddle pages */
6155 	for (seg = 0; seg < nr_segs; seg++) {
6156 		addr = (unsigned long)iov[seg].iov_base;
6157 		size = iov[seg].iov_len;
6158 		end += size;
6159 		if ((addr & blocksize_mask) || (size & blocksize_mask))
6160 			goto out;
6161 
6162 		/* If this is a write we don't need to check anymore */
6163 		if (rw & WRITE)
6164 			continue;
6165 
6166 		/*
6167 		 * Check to make sure we don't have duplicate iov_base's in this
6168 		 * iovec, if so return EINVAL, otherwise we'll get csum errors
6169 		 * when reading back.
6170 		 */
6171 		for (i = seg + 1; i < nr_segs; i++) {
6172 			if (iov[seg].iov_base == iov[i].iov_base)
6173 				goto out;
6174 		}
6175 	}
6176 	retval = 0;
6177 out:
6178 	return retval;
6179 }
6180 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6181 			const struct iovec *iov, loff_t offset,
6182 			unsigned long nr_segs)
6183 {
6184 	struct file *file = iocb->ki_filp;
6185 	struct inode *inode = file->f_mapping->host;
6186 	struct btrfs_ordered_extent *ordered;
6187 	struct extent_state *cached_state = NULL;
6188 	u64 lockstart, lockend;
6189 	ssize_t ret;
6190 	int writing = rw & WRITE;
6191 	int write_bits = 0;
6192 	size_t count = iov_length(iov, nr_segs);
6193 
6194 	if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6195 			    offset, nr_segs)) {
6196 		return 0;
6197 	}
6198 
6199 	lockstart = offset;
6200 	lockend = offset + count - 1;
6201 
6202 	if (writing) {
6203 		ret = btrfs_delalloc_reserve_space(inode, count);
6204 		if (ret)
6205 			goto out;
6206 	}
6207 
6208 	while (1) {
6209 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6210 				 0, &cached_state, GFP_NOFS);
6211 		/*
6212 		 * We're concerned with the entire range that we're going to be
6213 		 * doing DIO to, so we need to make sure theres no ordered
6214 		 * extents in this range.
6215 		 */
6216 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
6217 						     lockend - lockstart + 1);
6218 		if (!ordered)
6219 			break;
6220 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6221 				     &cached_state, GFP_NOFS);
6222 		btrfs_start_ordered_extent(inode, ordered, 1);
6223 		btrfs_put_ordered_extent(ordered);
6224 		cond_resched();
6225 	}
6226 
6227 	/*
6228 	 * we don't use btrfs_set_extent_delalloc because we don't want
6229 	 * the dirty or uptodate bits
6230 	 */
6231 	if (writing) {
6232 		write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6233 		ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6234 				     EXTENT_DELALLOC, 0, NULL, &cached_state,
6235 				     GFP_NOFS);
6236 		if (ret) {
6237 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6238 					 lockend, EXTENT_LOCKED | write_bits,
6239 					 1, 0, &cached_state, GFP_NOFS);
6240 			goto out;
6241 		}
6242 	}
6243 
6244 	free_extent_state(cached_state);
6245 	cached_state = NULL;
6246 
6247 	ret = __blockdev_direct_IO(rw, iocb, inode,
6248 		   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6249 		   iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6250 		   btrfs_submit_direct, 0);
6251 
6252 	if (ret < 0 && ret != -EIOCBQUEUED) {
6253 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6254 			      offset + iov_length(iov, nr_segs) - 1,
6255 			      EXTENT_LOCKED | write_bits, 1, 0,
6256 			      &cached_state, GFP_NOFS);
6257 	} else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6258 		/*
6259 		 * We're falling back to buffered, unlock the section we didn't
6260 		 * do IO on.
6261 		 */
6262 		clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6263 			      offset + iov_length(iov, nr_segs) - 1,
6264 			      EXTENT_LOCKED | write_bits, 1, 0,
6265 			      &cached_state, GFP_NOFS);
6266 	}
6267 out:
6268 	free_extent_state(cached_state);
6269 	return ret;
6270 }
6271 
6272 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6273 		__u64 start, __u64 len)
6274 {
6275 	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6276 }
6277 
6278 int btrfs_readpage(struct file *file, struct page *page)
6279 {
6280 	struct extent_io_tree *tree;
6281 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6282 	return extent_read_full_page(tree, page, btrfs_get_extent);
6283 }
6284 
6285 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6286 {
6287 	struct extent_io_tree *tree;
6288 
6289 
6290 	if (current->flags & PF_MEMALLOC) {
6291 		redirty_page_for_writepage(wbc, page);
6292 		unlock_page(page);
6293 		return 0;
6294 	}
6295 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6296 	return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6297 }
6298 
6299 int btrfs_writepages(struct address_space *mapping,
6300 		     struct writeback_control *wbc)
6301 {
6302 	struct extent_io_tree *tree;
6303 
6304 	tree = &BTRFS_I(mapping->host)->io_tree;
6305 	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6306 }
6307 
6308 static int
6309 btrfs_readpages(struct file *file, struct address_space *mapping,
6310 		struct list_head *pages, unsigned nr_pages)
6311 {
6312 	struct extent_io_tree *tree;
6313 	tree = &BTRFS_I(mapping->host)->io_tree;
6314 	return extent_readpages(tree, mapping, pages, nr_pages,
6315 				btrfs_get_extent);
6316 }
6317 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6318 {
6319 	struct extent_io_tree *tree;
6320 	struct extent_map_tree *map;
6321 	int ret;
6322 
6323 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6324 	map = &BTRFS_I(page->mapping->host)->extent_tree;
6325 	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6326 	if (ret == 1) {
6327 		ClearPagePrivate(page);
6328 		set_page_private(page, 0);
6329 		page_cache_release(page);
6330 	}
6331 	return ret;
6332 }
6333 
6334 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6335 {
6336 	if (PageWriteback(page) || PageDirty(page))
6337 		return 0;
6338 	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6339 }
6340 
6341 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6342 {
6343 	struct extent_io_tree *tree;
6344 	struct btrfs_ordered_extent *ordered;
6345 	struct extent_state *cached_state = NULL;
6346 	u64 page_start = page_offset(page);
6347 	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6348 
6349 
6350 	/*
6351 	 * we have the page locked, so new writeback can't start,
6352 	 * and the dirty bit won't be cleared while we are here.
6353 	 *
6354 	 * Wait for IO on this page so that we can safely clear
6355 	 * the PagePrivate2 bit and do ordered accounting
6356 	 */
6357 	wait_on_page_writeback(page);
6358 
6359 	tree = &BTRFS_I(page->mapping->host)->io_tree;
6360 	if (offset) {
6361 		btrfs_releasepage(page, GFP_NOFS);
6362 		return;
6363 	}
6364 	lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6365 			 GFP_NOFS);
6366 	ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6367 					   page_offset(page));
6368 	if (ordered) {
6369 		/*
6370 		 * IO on this page will never be started, so we need
6371 		 * to account for any ordered extents now
6372 		 */
6373 		clear_extent_bit(tree, page_start, page_end,
6374 				 EXTENT_DIRTY | EXTENT_DELALLOC |
6375 				 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6376 				 &cached_state, GFP_NOFS);
6377 		/*
6378 		 * whoever cleared the private bit is responsible
6379 		 * for the finish_ordered_io
6380 		 */
6381 		if (TestClearPagePrivate2(page)) {
6382 			btrfs_finish_ordered_io(page->mapping->host,
6383 						page_start, page_end);
6384 		}
6385 		btrfs_put_ordered_extent(ordered);
6386 		cached_state = NULL;
6387 		lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6388 				 GFP_NOFS);
6389 	}
6390 	clear_extent_bit(tree, page_start, page_end,
6391 		 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6392 		 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6393 	__btrfs_releasepage(page, GFP_NOFS);
6394 
6395 	ClearPageChecked(page);
6396 	if (PagePrivate(page)) {
6397 		ClearPagePrivate(page);
6398 		set_page_private(page, 0);
6399 		page_cache_release(page);
6400 	}
6401 }
6402 
6403 /*
6404  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6405  * called from a page fault handler when a page is first dirtied. Hence we must
6406  * be careful to check for EOF conditions here. We set the page up correctly
6407  * for a written page which means we get ENOSPC checking when writing into
6408  * holes and correct delalloc and unwritten extent mapping on filesystems that
6409  * support these features.
6410  *
6411  * We are not allowed to take the i_mutex here so we have to play games to
6412  * protect against truncate races as the page could now be beyond EOF.  Because
6413  * vmtruncate() writes the inode size before removing pages, once we have the
6414  * page lock we can determine safely if the page is beyond EOF. If it is not
6415  * beyond EOF, then the page is guaranteed safe against truncation until we
6416  * unlock the page.
6417  */
6418 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6419 {
6420 	struct page *page = vmf->page;
6421 	struct inode *inode = fdentry(vma->vm_file)->d_inode;
6422 	struct btrfs_root *root = BTRFS_I(inode)->root;
6423 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6424 	struct btrfs_ordered_extent *ordered;
6425 	struct extent_state *cached_state = NULL;
6426 	char *kaddr;
6427 	unsigned long zero_start;
6428 	loff_t size;
6429 	int ret;
6430 	u64 page_start;
6431 	u64 page_end;
6432 
6433 	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6434 	if (ret) {
6435 		if (ret == -ENOMEM)
6436 			ret = VM_FAULT_OOM;
6437 		else /* -ENOSPC, -EIO, etc */
6438 			ret = VM_FAULT_SIGBUS;
6439 		goto out;
6440 	}
6441 
6442 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6443 again:
6444 	lock_page(page);
6445 	size = i_size_read(inode);
6446 	page_start = page_offset(page);
6447 	page_end = page_start + PAGE_CACHE_SIZE - 1;
6448 
6449 	if ((page->mapping != inode->i_mapping) ||
6450 	    (page_start >= size)) {
6451 		/* page got truncated out from underneath us */
6452 		goto out_unlock;
6453 	}
6454 	wait_on_page_writeback(page);
6455 
6456 	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6457 			 GFP_NOFS);
6458 	set_page_extent_mapped(page);
6459 
6460 	/*
6461 	 * we can't set the delalloc bits if there are pending ordered
6462 	 * extents.  Drop our locks and wait for them to finish
6463 	 */
6464 	ordered = btrfs_lookup_ordered_extent(inode, page_start);
6465 	if (ordered) {
6466 		unlock_extent_cached(io_tree, page_start, page_end,
6467 				     &cached_state, GFP_NOFS);
6468 		unlock_page(page);
6469 		btrfs_start_ordered_extent(inode, ordered, 1);
6470 		btrfs_put_ordered_extent(ordered);
6471 		goto again;
6472 	}
6473 
6474 	/*
6475 	 * XXX - page_mkwrite gets called every time the page is dirtied, even
6476 	 * if it was already dirty, so for space accounting reasons we need to
6477 	 * clear any delalloc bits for the range we are fixing to save.  There
6478 	 * is probably a better way to do this, but for now keep consistent with
6479 	 * prepare_pages in the normal write path.
6480 	 */
6481 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6482 			  EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6483 			  0, 0, &cached_state, GFP_NOFS);
6484 
6485 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6486 					&cached_state);
6487 	if (ret) {
6488 		unlock_extent_cached(io_tree, page_start, page_end,
6489 				     &cached_state, GFP_NOFS);
6490 		ret = VM_FAULT_SIGBUS;
6491 		goto out_unlock;
6492 	}
6493 	ret = 0;
6494 
6495 	/* page is wholly or partially inside EOF */
6496 	if (page_start + PAGE_CACHE_SIZE > size)
6497 		zero_start = size & ~PAGE_CACHE_MASK;
6498 	else
6499 		zero_start = PAGE_CACHE_SIZE;
6500 
6501 	if (zero_start != PAGE_CACHE_SIZE) {
6502 		kaddr = kmap(page);
6503 		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6504 		flush_dcache_page(page);
6505 		kunmap(page);
6506 	}
6507 	ClearPageChecked(page);
6508 	set_page_dirty(page);
6509 	SetPageUptodate(page);
6510 
6511 	BTRFS_I(inode)->last_trans = root->fs_info->generation;
6512 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6513 
6514 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6515 
6516 out_unlock:
6517 	if (!ret)
6518 		return VM_FAULT_LOCKED;
6519 	unlock_page(page);
6520 	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6521 out:
6522 	return ret;
6523 }
6524 
6525 static int btrfs_truncate(struct inode *inode)
6526 {
6527 	struct btrfs_root *root = BTRFS_I(inode)->root;
6528 	struct btrfs_block_rsv *rsv;
6529 	int ret;
6530 	int err = 0;
6531 	struct btrfs_trans_handle *trans;
6532 	unsigned long nr;
6533 	u64 mask = root->sectorsize - 1;
6534 
6535 	ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6536 	if (ret)
6537 		return ret;
6538 
6539 	btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6540 	btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6541 
6542 	/*
6543 	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6544 	 * 3 things going on here
6545 	 *
6546 	 * 1) We need to reserve space for our orphan item and the space to
6547 	 * delete our orphan item.  Lord knows we don't want to have a dangling
6548 	 * orphan item because we didn't reserve space to remove it.
6549 	 *
6550 	 * 2) We need to reserve space to update our inode.
6551 	 *
6552 	 * 3) We need to have something to cache all the space that is going to
6553 	 * be free'd up by the truncate operation, but also have some slack
6554 	 * space reserved in case it uses space during the truncate (thank you
6555 	 * very much snapshotting).
6556 	 *
6557 	 * And we need these to all be seperate.  The fact is we can use alot of
6558 	 * space doing the truncate, and we have no earthly idea how much space
6559 	 * we will use, so we need the truncate reservation to be seperate so it
6560 	 * doesn't end up using space reserved for updating the inode or
6561 	 * removing the orphan item.  We also need to be able to stop the
6562 	 * transaction and start a new one, which means we need to be able to
6563 	 * update the inode several times, and we have no idea of knowing how
6564 	 * many times that will be, so we can't just reserve 1 item for the
6565 	 * entirety of the opration, so that has to be done seperately as well.
6566 	 * Then there is the orphan item, which does indeed need to be held on
6567 	 * to for the whole operation, and we need nobody to touch this reserved
6568 	 * space except the orphan code.
6569 	 *
6570 	 * So that leaves us with
6571 	 *
6572 	 * 1) root->orphan_block_rsv - for the orphan deletion.
6573 	 * 2) rsv - for the truncate reservation, which we will steal from the
6574 	 * transaction reservation.
6575 	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6576 	 * updating the inode.
6577 	 */
6578 	rsv = btrfs_alloc_block_rsv(root);
6579 	if (!rsv)
6580 		return -ENOMEM;
6581 	btrfs_add_durable_block_rsv(root->fs_info, rsv);
6582 
6583 	trans = btrfs_start_transaction(root, 4);
6584 	if (IS_ERR(trans)) {
6585 		err = PTR_ERR(trans);
6586 		goto out;
6587 	}
6588 
6589 	/*
6590 	 * Reserve space for the truncate process.  Truncate should be adding
6591 	 * space, but if there are snapshots it may end up using space.
6592 	 */
6593 	ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6594 	BUG_ON(ret);
6595 
6596 	ret = btrfs_orphan_add(trans, inode);
6597 	if (ret) {
6598 		btrfs_end_transaction(trans, root);
6599 		goto out;
6600 	}
6601 
6602 	nr = trans->blocks_used;
6603 	btrfs_end_transaction(trans, root);
6604 	btrfs_btree_balance_dirty(root, nr);
6605 
6606 	/*
6607 	 * Ok so we've already migrated our bytes over for the truncate, so here
6608 	 * just reserve the one slot we need for updating the inode.
6609 	 */
6610 	trans = btrfs_start_transaction(root, 1);
6611 	if (IS_ERR(trans)) {
6612 		err = PTR_ERR(trans);
6613 		goto out;
6614 	}
6615 	trans->block_rsv = rsv;
6616 
6617 	/*
6618 	 * setattr is responsible for setting the ordered_data_close flag,
6619 	 * but that is only tested during the last file release.  That
6620 	 * could happen well after the next commit, leaving a great big
6621 	 * window where new writes may get lost if someone chooses to write
6622 	 * to this file after truncating to zero
6623 	 *
6624 	 * The inode doesn't have any dirty data here, and so if we commit
6625 	 * this is a noop.  If someone immediately starts writing to the inode
6626 	 * it is very likely we'll catch some of their writes in this
6627 	 * transaction, and the commit will find this file on the ordered
6628 	 * data list with good things to send down.
6629 	 *
6630 	 * This is a best effort solution, there is still a window where
6631 	 * using truncate to replace the contents of the file will
6632 	 * end up with a zero length file after a crash.
6633 	 */
6634 	if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6635 		btrfs_add_ordered_operation(trans, root, inode);
6636 
6637 	while (1) {
6638 		if (!trans) {
6639 			trans = btrfs_start_transaction(root, 3);
6640 			if (IS_ERR(trans)) {
6641 				err = PTR_ERR(trans);
6642 				goto out;
6643 			}
6644 
6645 			ret = btrfs_truncate_reserve_metadata(trans, root,
6646 							      rsv);
6647 			BUG_ON(ret);
6648 
6649 			trans->block_rsv = rsv;
6650 		}
6651 
6652 		ret = btrfs_truncate_inode_items(trans, root, inode,
6653 						 inode->i_size,
6654 						 BTRFS_EXTENT_DATA_KEY);
6655 		if (ret != -EAGAIN) {
6656 			err = ret;
6657 			break;
6658 		}
6659 
6660 		trans->block_rsv = &root->fs_info->trans_block_rsv;
6661 		ret = btrfs_update_inode(trans, root, inode);
6662 		if (ret) {
6663 			err = ret;
6664 			break;
6665 		}
6666 
6667 		nr = trans->blocks_used;
6668 		btrfs_end_transaction(trans, root);
6669 		trans = NULL;
6670 		btrfs_btree_balance_dirty(root, nr);
6671 	}
6672 
6673 	if (ret == 0 && inode->i_nlink > 0) {
6674 		trans->block_rsv = root->orphan_block_rsv;
6675 		ret = btrfs_orphan_del(trans, inode);
6676 		if (ret)
6677 			err = ret;
6678 	} else if (ret && inode->i_nlink > 0) {
6679 		/*
6680 		 * Failed to do the truncate, remove us from the in memory
6681 		 * orphan list.
6682 		 */
6683 		ret = btrfs_orphan_del(NULL, inode);
6684 	}
6685 
6686 	trans->block_rsv = &root->fs_info->trans_block_rsv;
6687 	ret = btrfs_update_inode(trans, root, inode);
6688 	if (ret && !err)
6689 		err = ret;
6690 
6691 	nr = trans->blocks_used;
6692 	ret = btrfs_end_transaction_throttle(trans, root);
6693 	btrfs_btree_balance_dirty(root, nr);
6694 
6695 out:
6696 	btrfs_free_block_rsv(root, rsv);
6697 
6698 	if (ret && !err)
6699 		err = ret;
6700 
6701 	return err;
6702 }
6703 
6704 /*
6705  * create a new subvolume directory/inode (helper for the ioctl).
6706  */
6707 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6708 			     struct btrfs_root *new_root, u64 new_dirid)
6709 {
6710 	struct inode *inode;
6711 	int err;
6712 	u64 index = 0;
6713 
6714 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6715 				new_dirid, S_IFDIR | 0700, &index);
6716 	if (IS_ERR(inode))
6717 		return PTR_ERR(inode);
6718 	inode->i_op = &btrfs_dir_inode_operations;
6719 	inode->i_fop = &btrfs_dir_file_operations;
6720 
6721 	inode->i_nlink = 1;
6722 	btrfs_i_size_write(inode, 0);
6723 
6724 	err = btrfs_update_inode(trans, new_root, inode);
6725 	BUG_ON(err);
6726 
6727 	iput(inode);
6728 	return 0;
6729 }
6730 
6731 struct inode *btrfs_alloc_inode(struct super_block *sb)
6732 {
6733 	struct btrfs_inode *ei;
6734 	struct inode *inode;
6735 
6736 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6737 	if (!ei)
6738 		return NULL;
6739 
6740 	ei->root = NULL;
6741 	ei->space_info = NULL;
6742 	ei->generation = 0;
6743 	ei->sequence = 0;
6744 	ei->last_trans = 0;
6745 	ei->last_sub_trans = 0;
6746 	ei->logged_trans = 0;
6747 	ei->delalloc_bytes = 0;
6748 	ei->reserved_bytes = 0;
6749 	ei->disk_i_size = 0;
6750 	ei->flags = 0;
6751 	ei->index_cnt = (u64)-1;
6752 	ei->last_unlink_trans = 0;
6753 
6754 	spin_lock_init(&ei->lock);
6755 	ei->outstanding_extents = 0;
6756 	ei->reserved_extents = 0;
6757 
6758 	ei->ordered_data_close = 0;
6759 	ei->orphan_meta_reserved = 0;
6760 	ei->dummy_inode = 0;
6761 	ei->in_defrag = 0;
6762 	ei->force_compress = BTRFS_COMPRESS_NONE;
6763 
6764 	ei->delayed_node = NULL;
6765 
6766 	inode = &ei->vfs_inode;
6767 	extent_map_tree_init(&ei->extent_tree);
6768 	extent_io_tree_init(&ei->io_tree, &inode->i_data);
6769 	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6770 	mutex_init(&ei->log_mutex);
6771 	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6772 	INIT_LIST_HEAD(&ei->i_orphan);
6773 	INIT_LIST_HEAD(&ei->delalloc_inodes);
6774 	INIT_LIST_HEAD(&ei->ordered_operations);
6775 	RB_CLEAR_NODE(&ei->rb_node);
6776 
6777 	return inode;
6778 }
6779 
6780 static void btrfs_i_callback(struct rcu_head *head)
6781 {
6782 	struct inode *inode = container_of(head, struct inode, i_rcu);
6783 	INIT_LIST_HEAD(&inode->i_dentry);
6784 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6785 }
6786 
6787 void btrfs_destroy_inode(struct inode *inode)
6788 {
6789 	struct btrfs_ordered_extent *ordered;
6790 	struct btrfs_root *root = BTRFS_I(inode)->root;
6791 
6792 	WARN_ON(!list_empty(&inode->i_dentry));
6793 	WARN_ON(inode->i_data.nrpages);
6794 	WARN_ON(BTRFS_I(inode)->outstanding_extents);
6795 	WARN_ON(BTRFS_I(inode)->reserved_extents);
6796 
6797 	/*
6798 	 * This can happen where we create an inode, but somebody else also
6799 	 * created the same inode and we need to destroy the one we already
6800 	 * created.
6801 	 */
6802 	if (!root)
6803 		goto free;
6804 
6805 	/*
6806 	 * Make sure we're properly removed from the ordered operation
6807 	 * lists.
6808 	 */
6809 	smp_mb();
6810 	if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6811 		spin_lock(&root->fs_info->ordered_extent_lock);
6812 		list_del_init(&BTRFS_I(inode)->ordered_operations);
6813 		spin_unlock(&root->fs_info->ordered_extent_lock);
6814 	}
6815 
6816 	spin_lock(&root->orphan_lock);
6817 	if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6818 		printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6819 		       (unsigned long long)btrfs_ino(inode));
6820 		list_del_init(&BTRFS_I(inode)->i_orphan);
6821 	}
6822 	spin_unlock(&root->orphan_lock);
6823 
6824 	while (1) {
6825 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6826 		if (!ordered)
6827 			break;
6828 		else {
6829 			printk(KERN_ERR "btrfs found ordered "
6830 			       "extent %llu %llu on inode cleanup\n",
6831 			       (unsigned long long)ordered->file_offset,
6832 			       (unsigned long long)ordered->len);
6833 			btrfs_remove_ordered_extent(inode, ordered);
6834 			btrfs_put_ordered_extent(ordered);
6835 			btrfs_put_ordered_extent(ordered);
6836 		}
6837 	}
6838 	inode_tree_del(inode);
6839 	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6840 free:
6841 	btrfs_remove_delayed_node(inode);
6842 	call_rcu(&inode->i_rcu, btrfs_i_callback);
6843 }
6844 
6845 int btrfs_drop_inode(struct inode *inode)
6846 {
6847 	struct btrfs_root *root = BTRFS_I(inode)->root;
6848 
6849 	if (btrfs_root_refs(&root->root_item) == 0 &&
6850 	    !btrfs_is_free_space_inode(root, inode))
6851 		return 1;
6852 	else
6853 		return generic_drop_inode(inode);
6854 }
6855 
6856 static void init_once(void *foo)
6857 {
6858 	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6859 
6860 	inode_init_once(&ei->vfs_inode);
6861 }
6862 
6863 void btrfs_destroy_cachep(void)
6864 {
6865 	if (btrfs_inode_cachep)
6866 		kmem_cache_destroy(btrfs_inode_cachep);
6867 	if (btrfs_trans_handle_cachep)
6868 		kmem_cache_destroy(btrfs_trans_handle_cachep);
6869 	if (btrfs_transaction_cachep)
6870 		kmem_cache_destroy(btrfs_transaction_cachep);
6871 	if (btrfs_path_cachep)
6872 		kmem_cache_destroy(btrfs_path_cachep);
6873 	if (btrfs_free_space_cachep)
6874 		kmem_cache_destroy(btrfs_free_space_cachep);
6875 }
6876 
6877 int btrfs_init_cachep(void)
6878 {
6879 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6880 			sizeof(struct btrfs_inode), 0,
6881 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6882 	if (!btrfs_inode_cachep)
6883 		goto fail;
6884 
6885 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6886 			sizeof(struct btrfs_trans_handle), 0,
6887 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6888 	if (!btrfs_trans_handle_cachep)
6889 		goto fail;
6890 
6891 	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6892 			sizeof(struct btrfs_transaction), 0,
6893 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6894 	if (!btrfs_transaction_cachep)
6895 		goto fail;
6896 
6897 	btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6898 			sizeof(struct btrfs_path), 0,
6899 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6900 	if (!btrfs_path_cachep)
6901 		goto fail;
6902 
6903 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6904 			sizeof(struct btrfs_free_space), 0,
6905 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6906 	if (!btrfs_free_space_cachep)
6907 		goto fail;
6908 
6909 	return 0;
6910 fail:
6911 	btrfs_destroy_cachep();
6912 	return -ENOMEM;
6913 }
6914 
6915 static int btrfs_getattr(struct vfsmount *mnt,
6916 			 struct dentry *dentry, struct kstat *stat)
6917 {
6918 	struct inode *inode = dentry->d_inode;
6919 	generic_fillattr(inode, stat);
6920 	stat->dev = BTRFS_I(inode)->root->anon_dev;
6921 	stat->blksize = PAGE_CACHE_SIZE;
6922 	stat->blocks = (inode_get_bytes(inode) +
6923 			BTRFS_I(inode)->delalloc_bytes) >> 9;
6924 	return 0;
6925 }
6926 
6927 /*
6928  * If a file is moved, it will inherit the cow and compression flags of the new
6929  * directory.
6930  */
6931 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6932 {
6933 	struct btrfs_inode *b_dir = BTRFS_I(dir);
6934 	struct btrfs_inode *b_inode = BTRFS_I(inode);
6935 
6936 	if (b_dir->flags & BTRFS_INODE_NODATACOW)
6937 		b_inode->flags |= BTRFS_INODE_NODATACOW;
6938 	else
6939 		b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6940 
6941 	if (b_dir->flags & BTRFS_INODE_COMPRESS)
6942 		b_inode->flags |= BTRFS_INODE_COMPRESS;
6943 	else
6944 		b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6945 }
6946 
6947 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6948 			   struct inode *new_dir, struct dentry *new_dentry)
6949 {
6950 	struct btrfs_trans_handle *trans;
6951 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
6952 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6953 	struct inode *new_inode = new_dentry->d_inode;
6954 	struct inode *old_inode = old_dentry->d_inode;
6955 	struct timespec ctime = CURRENT_TIME;
6956 	u64 index = 0;
6957 	u64 root_objectid;
6958 	int ret;
6959 	u64 old_ino = btrfs_ino(old_inode);
6960 
6961 	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6962 		return -EPERM;
6963 
6964 	/* we only allow rename subvolume link between subvolumes */
6965 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6966 		return -EXDEV;
6967 
6968 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6969 	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6970 		return -ENOTEMPTY;
6971 
6972 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
6973 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6974 		return -ENOTEMPTY;
6975 	/*
6976 	 * we're using rename to replace one file with another.
6977 	 * and the replacement file is large.  Start IO on it now so
6978 	 * we don't add too much work to the end of the transaction
6979 	 */
6980 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6981 	    old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6982 		filemap_flush(old_inode->i_mapping);
6983 
6984 	/* close the racy window with snapshot create/destroy ioctl */
6985 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6986 		down_read(&root->fs_info->subvol_sem);
6987 	/*
6988 	 * We want to reserve the absolute worst case amount of items.  So if
6989 	 * both inodes are subvols and we need to unlink them then that would
6990 	 * require 4 item modifications, but if they are both normal inodes it
6991 	 * would require 5 item modifications, so we'll assume their normal
6992 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6993 	 * should cover the worst case number of items we'll modify.
6994 	 */
6995 	trans = btrfs_start_transaction(root, 20);
6996 	if (IS_ERR(trans)) {
6997                 ret = PTR_ERR(trans);
6998                 goto out_notrans;
6999         }
7000 
7001 	if (dest != root)
7002 		btrfs_record_root_in_trans(trans, dest);
7003 
7004 	ret = btrfs_set_inode_index(new_dir, &index);
7005 	if (ret)
7006 		goto out_fail;
7007 
7008 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7009 		/* force full log commit if subvolume involved. */
7010 		root->fs_info->last_trans_log_full_commit = trans->transid;
7011 	} else {
7012 		ret = btrfs_insert_inode_ref(trans, dest,
7013 					     new_dentry->d_name.name,
7014 					     new_dentry->d_name.len,
7015 					     old_ino,
7016 					     btrfs_ino(new_dir), index);
7017 		if (ret)
7018 			goto out_fail;
7019 		/*
7020 		 * this is an ugly little race, but the rename is required
7021 		 * to make sure that if we crash, the inode is either at the
7022 		 * old name or the new one.  pinning the log transaction lets
7023 		 * us make sure we don't allow a log commit to come in after
7024 		 * we unlink the name but before we add the new name back in.
7025 		 */
7026 		btrfs_pin_log_trans(root);
7027 	}
7028 	/*
7029 	 * make sure the inode gets flushed if it is replacing
7030 	 * something.
7031 	 */
7032 	if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7033 		btrfs_add_ordered_operation(trans, root, old_inode);
7034 
7035 	old_dir->i_ctime = old_dir->i_mtime = ctime;
7036 	new_dir->i_ctime = new_dir->i_mtime = ctime;
7037 	old_inode->i_ctime = ctime;
7038 
7039 	if (old_dentry->d_parent != new_dentry->d_parent)
7040 		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7041 
7042 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7043 		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7044 		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7045 					old_dentry->d_name.name,
7046 					old_dentry->d_name.len);
7047 	} else {
7048 		ret = __btrfs_unlink_inode(trans, root, old_dir,
7049 					old_dentry->d_inode,
7050 					old_dentry->d_name.name,
7051 					old_dentry->d_name.len);
7052 		if (!ret)
7053 			ret = btrfs_update_inode(trans, root, old_inode);
7054 	}
7055 	BUG_ON(ret);
7056 
7057 	if (new_inode) {
7058 		new_inode->i_ctime = CURRENT_TIME;
7059 		if (unlikely(btrfs_ino(new_inode) ==
7060 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7061 			root_objectid = BTRFS_I(new_inode)->location.objectid;
7062 			ret = btrfs_unlink_subvol(trans, dest, new_dir,
7063 						root_objectid,
7064 						new_dentry->d_name.name,
7065 						new_dentry->d_name.len);
7066 			BUG_ON(new_inode->i_nlink == 0);
7067 		} else {
7068 			ret = btrfs_unlink_inode(trans, dest, new_dir,
7069 						 new_dentry->d_inode,
7070 						 new_dentry->d_name.name,
7071 						 new_dentry->d_name.len);
7072 		}
7073 		BUG_ON(ret);
7074 		if (new_inode->i_nlink == 0) {
7075 			ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7076 			BUG_ON(ret);
7077 		}
7078 	}
7079 
7080 	fixup_inode_flags(new_dir, old_inode);
7081 
7082 	ret = btrfs_add_link(trans, new_dir, old_inode,
7083 			     new_dentry->d_name.name,
7084 			     new_dentry->d_name.len, 0, index);
7085 	BUG_ON(ret);
7086 
7087 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7088 		struct dentry *parent = new_dentry->d_parent;
7089 		btrfs_log_new_name(trans, old_inode, old_dir, parent);
7090 		btrfs_end_log_trans(root);
7091 	}
7092 out_fail:
7093 	btrfs_end_transaction_throttle(trans, root);
7094 out_notrans:
7095 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7096 		up_read(&root->fs_info->subvol_sem);
7097 
7098 	return ret;
7099 }
7100 
7101 /*
7102  * some fairly slow code that needs optimization. This walks the list
7103  * of all the inodes with pending delalloc and forces them to disk.
7104  */
7105 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7106 {
7107 	struct list_head *head = &root->fs_info->delalloc_inodes;
7108 	struct btrfs_inode *binode;
7109 	struct inode *inode;
7110 
7111 	if (root->fs_info->sb->s_flags & MS_RDONLY)
7112 		return -EROFS;
7113 
7114 	spin_lock(&root->fs_info->delalloc_lock);
7115 	while (!list_empty(head)) {
7116 		binode = list_entry(head->next, struct btrfs_inode,
7117 				    delalloc_inodes);
7118 		inode = igrab(&binode->vfs_inode);
7119 		if (!inode)
7120 			list_del_init(&binode->delalloc_inodes);
7121 		spin_unlock(&root->fs_info->delalloc_lock);
7122 		if (inode) {
7123 			filemap_flush(inode->i_mapping);
7124 			if (delay_iput)
7125 				btrfs_add_delayed_iput(inode);
7126 			else
7127 				iput(inode);
7128 		}
7129 		cond_resched();
7130 		spin_lock(&root->fs_info->delalloc_lock);
7131 	}
7132 	spin_unlock(&root->fs_info->delalloc_lock);
7133 
7134 	/* the filemap_flush will queue IO into the worker threads, but
7135 	 * we have to make sure the IO is actually started and that
7136 	 * ordered extents get created before we return
7137 	 */
7138 	atomic_inc(&root->fs_info->async_submit_draining);
7139 	while (atomic_read(&root->fs_info->nr_async_submits) ||
7140 	      atomic_read(&root->fs_info->async_delalloc_pages)) {
7141 		wait_event(root->fs_info->async_submit_wait,
7142 		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7143 		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7144 	}
7145 	atomic_dec(&root->fs_info->async_submit_draining);
7146 	return 0;
7147 }
7148 
7149 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7150 			 const char *symname)
7151 {
7152 	struct btrfs_trans_handle *trans;
7153 	struct btrfs_root *root = BTRFS_I(dir)->root;
7154 	struct btrfs_path *path;
7155 	struct btrfs_key key;
7156 	struct inode *inode = NULL;
7157 	int err;
7158 	int drop_inode = 0;
7159 	u64 objectid;
7160 	u64 index = 0 ;
7161 	int name_len;
7162 	int datasize;
7163 	unsigned long ptr;
7164 	struct btrfs_file_extent_item *ei;
7165 	struct extent_buffer *leaf;
7166 	unsigned long nr = 0;
7167 
7168 	name_len = strlen(symname) + 1;
7169 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7170 		return -ENAMETOOLONG;
7171 
7172 	/*
7173 	 * 2 items for inode item and ref
7174 	 * 2 items for dir items
7175 	 * 1 item for xattr if selinux is on
7176 	 */
7177 	trans = btrfs_start_transaction(root, 5);
7178 	if (IS_ERR(trans))
7179 		return PTR_ERR(trans);
7180 
7181 	err = btrfs_find_free_ino(root, &objectid);
7182 	if (err)
7183 		goto out_unlock;
7184 
7185 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7186 				dentry->d_name.len, btrfs_ino(dir), objectid,
7187 				S_IFLNK|S_IRWXUGO, &index);
7188 	if (IS_ERR(inode)) {
7189 		err = PTR_ERR(inode);
7190 		goto out_unlock;
7191 	}
7192 
7193 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7194 	if (err) {
7195 		drop_inode = 1;
7196 		goto out_unlock;
7197 	}
7198 
7199 	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7200 	if (err)
7201 		drop_inode = 1;
7202 	else {
7203 		inode->i_mapping->a_ops = &btrfs_aops;
7204 		inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7205 		inode->i_fop = &btrfs_file_operations;
7206 		inode->i_op = &btrfs_file_inode_operations;
7207 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7208 	}
7209 	if (drop_inode)
7210 		goto out_unlock;
7211 
7212 	path = btrfs_alloc_path();
7213 	if (!path) {
7214 		err = -ENOMEM;
7215 		drop_inode = 1;
7216 		goto out_unlock;
7217 	}
7218 	key.objectid = btrfs_ino(inode);
7219 	key.offset = 0;
7220 	btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7221 	datasize = btrfs_file_extent_calc_inline_size(name_len);
7222 	err = btrfs_insert_empty_item(trans, root, path, &key,
7223 				      datasize);
7224 	if (err) {
7225 		drop_inode = 1;
7226 		btrfs_free_path(path);
7227 		goto out_unlock;
7228 	}
7229 	leaf = path->nodes[0];
7230 	ei = btrfs_item_ptr(leaf, path->slots[0],
7231 			    struct btrfs_file_extent_item);
7232 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7233 	btrfs_set_file_extent_type(leaf, ei,
7234 				   BTRFS_FILE_EXTENT_INLINE);
7235 	btrfs_set_file_extent_encryption(leaf, ei, 0);
7236 	btrfs_set_file_extent_compression(leaf, ei, 0);
7237 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7238 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7239 
7240 	ptr = btrfs_file_extent_inline_start(ei);
7241 	write_extent_buffer(leaf, symname, ptr, name_len);
7242 	btrfs_mark_buffer_dirty(leaf);
7243 	btrfs_free_path(path);
7244 
7245 	inode->i_op = &btrfs_symlink_inode_operations;
7246 	inode->i_mapping->a_ops = &btrfs_symlink_aops;
7247 	inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7248 	inode_set_bytes(inode, name_len);
7249 	btrfs_i_size_write(inode, name_len - 1);
7250 	err = btrfs_update_inode(trans, root, inode);
7251 	if (err)
7252 		drop_inode = 1;
7253 
7254 out_unlock:
7255 	nr = trans->blocks_used;
7256 	btrfs_end_transaction_throttle(trans, root);
7257 	if (drop_inode) {
7258 		inode_dec_link_count(inode);
7259 		iput(inode);
7260 	}
7261 	btrfs_btree_balance_dirty(root, nr);
7262 	return err;
7263 }
7264 
7265 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7266 				       u64 start, u64 num_bytes, u64 min_size,
7267 				       loff_t actual_len, u64 *alloc_hint,
7268 				       struct btrfs_trans_handle *trans)
7269 {
7270 	struct btrfs_root *root = BTRFS_I(inode)->root;
7271 	struct btrfs_key ins;
7272 	u64 cur_offset = start;
7273 	u64 i_size;
7274 	int ret = 0;
7275 	bool own_trans = true;
7276 
7277 	if (trans)
7278 		own_trans = false;
7279 	while (num_bytes > 0) {
7280 		if (own_trans) {
7281 			trans = btrfs_start_transaction(root, 3);
7282 			if (IS_ERR(trans)) {
7283 				ret = PTR_ERR(trans);
7284 				break;
7285 			}
7286 		}
7287 
7288 		ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7289 					   0, *alloc_hint, (u64)-1, &ins, 1);
7290 		if (ret) {
7291 			if (own_trans)
7292 				btrfs_end_transaction(trans, root);
7293 			break;
7294 		}
7295 
7296 		ret = insert_reserved_file_extent(trans, inode,
7297 						  cur_offset, ins.objectid,
7298 						  ins.offset, ins.offset,
7299 						  ins.offset, 0, 0, 0,
7300 						  BTRFS_FILE_EXTENT_PREALLOC);
7301 		BUG_ON(ret);
7302 		btrfs_drop_extent_cache(inode, cur_offset,
7303 					cur_offset + ins.offset -1, 0);
7304 
7305 		num_bytes -= ins.offset;
7306 		cur_offset += ins.offset;
7307 		*alloc_hint = ins.objectid + ins.offset;
7308 
7309 		inode->i_ctime = CURRENT_TIME;
7310 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7311 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7312 		    (actual_len > inode->i_size) &&
7313 		    (cur_offset > inode->i_size)) {
7314 			if (cur_offset > actual_len)
7315 				i_size = actual_len;
7316 			else
7317 				i_size = cur_offset;
7318 			i_size_write(inode, i_size);
7319 			btrfs_ordered_update_i_size(inode, i_size, NULL);
7320 		}
7321 
7322 		ret = btrfs_update_inode(trans, root, inode);
7323 		BUG_ON(ret);
7324 
7325 		if (own_trans)
7326 			btrfs_end_transaction(trans, root);
7327 	}
7328 	return ret;
7329 }
7330 
7331 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7332 			      u64 start, u64 num_bytes, u64 min_size,
7333 			      loff_t actual_len, u64 *alloc_hint)
7334 {
7335 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7336 					   min_size, actual_len, alloc_hint,
7337 					   NULL);
7338 }
7339 
7340 int btrfs_prealloc_file_range_trans(struct inode *inode,
7341 				    struct btrfs_trans_handle *trans, int mode,
7342 				    u64 start, u64 num_bytes, u64 min_size,
7343 				    loff_t actual_len, u64 *alloc_hint)
7344 {
7345 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7346 					   min_size, actual_len, alloc_hint, trans);
7347 }
7348 
7349 static int btrfs_set_page_dirty(struct page *page)
7350 {
7351 	return __set_page_dirty_nobuffers(page);
7352 }
7353 
7354 static int btrfs_permission(struct inode *inode, int mask)
7355 {
7356 	struct btrfs_root *root = BTRFS_I(inode)->root;
7357 
7358 	if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7359 		return -EROFS;
7360 	if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7361 		return -EACCES;
7362 	return generic_permission(inode, mask);
7363 }
7364 
7365 static const struct inode_operations btrfs_dir_inode_operations = {
7366 	.getattr	= btrfs_getattr,
7367 	.lookup		= btrfs_lookup,
7368 	.create		= btrfs_create,
7369 	.unlink		= btrfs_unlink,
7370 	.link		= btrfs_link,
7371 	.mkdir		= btrfs_mkdir,
7372 	.rmdir		= btrfs_rmdir,
7373 	.rename		= btrfs_rename,
7374 	.symlink	= btrfs_symlink,
7375 	.setattr	= btrfs_setattr,
7376 	.mknod		= btrfs_mknod,
7377 	.setxattr	= btrfs_setxattr,
7378 	.getxattr	= btrfs_getxattr,
7379 	.listxattr	= btrfs_listxattr,
7380 	.removexattr	= btrfs_removexattr,
7381 	.permission	= btrfs_permission,
7382 	.get_acl	= btrfs_get_acl,
7383 };
7384 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7385 	.lookup		= btrfs_lookup,
7386 	.permission	= btrfs_permission,
7387 	.get_acl	= btrfs_get_acl,
7388 };
7389 
7390 static const struct file_operations btrfs_dir_file_operations = {
7391 	.llseek		= generic_file_llseek,
7392 	.read		= generic_read_dir,
7393 	.readdir	= btrfs_real_readdir,
7394 	.unlocked_ioctl	= btrfs_ioctl,
7395 #ifdef CONFIG_COMPAT
7396 	.compat_ioctl	= btrfs_ioctl,
7397 #endif
7398 	.release        = btrfs_release_file,
7399 	.fsync		= btrfs_sync_file,
7400 };
7401 
7402 static struct extent_io_ops btrfs_extent_io_ops = {
7403 	.fill_delalloc = run_delalloc_range,
7404 	.submit_bio_hook = btrfs_submit_bio_hook,
7405 	.merge_bio_hook = btrfs_merge_bio_hook,
7406 	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
7407 	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
7408 	.writepage_start_hook = btrfs_writepage_start_hook,
7409 	.readpage_io_failed_hook = btrfs_io_failed_hook,
7410 	.set_bit_hook = btrfs_set_bit_hook,
7411 	.clear_bit_hook = btrfs_clear_bit_hook,
7412 	.merge_extent_hook = btrfs_merge_extent_hook,
7413 	.split_extent_hook = btrfs_split_extent_hook,
7414 };
7415 
7416 /*
7417  * btrfs doesn't support the bmap operation because swapfiles
7418  * use bmap to make a mapping of extents in the file.  They assume
7419  * these extents won't change over the life of the file and they
7420  * use the bmap result to do IO directly to the drive.
7421  *
7422  * the btrfs bmap call would return logical addresses that aren't
7423  * suitable for IO and they also will change frequently as COW
7424  * operations happen.  So, swapfile + btrfs == corruption.
7425  *
7426  * For now we're avoiding this by dropping bmap.
7427  */
7428 static const struct address_space_operations btrfs_aops = {
7429 	.readpage	= btrfs_readpage,
7430 	.writepage	= btrfs_writepage,
7431 	.writepages	= btrfs_writepages,
7432 	.readpages	= btrfs_readpages,
7433 	.direct_IO	= btrfs_direct_IO,
7434 	.invalidatepage = btrfs_invalidatepage,
7435 	.releasepage	= btrfs_releasepage,
7436 	.set_page_dirty	= btrfs_set_page_dirty,
7437 	.error_remove_page = generic_error_remove_page,
7438 };
7439 
7440 static const struct address_space_operations btrfs_symlink_aops = {
7441 	.readpage	= btrfs_readpage,
7442 	.writepage	= btrfs_writepage,
7443 	.invalidatepage = btrfs_invalidatepage,
7444 	.releasepage	= btrfs_releasepage,
7445 };
7446 
7447 static const struct inode_operations btrfs_file_inode_operations = {
7448 	.getattr	= btrfs_getattr,
7449 	.setattr	= btrfs_setattr,
7450 	.setxattr	= btrfs_setxattr,
7451 	.getxattr	= btrfs_getxattr,
7452 	.listxattr      = btrfs_listxattr,
7453 	.removexattr	= btrfs_removexattr,
7454 	.permission	= btrfs_permission,
7455 	.fiemap		= btrfs_fiemap,
7456 	.get_acl	= btrfs_get_acl,
7457 };
7458 static const struct inode_operations btrfs_special_inode_operations = {
7459 	.getattr	= btrfs_getattr,
7460 	.setattr	= btrfs_setattr,
7461 	.permission	= btrfs_permission,
7462 	.setxattr	= btrfs_setxattr,
7463 	.getxattr	= btrfs_getxattr,
7464 	.listxattr	= btrfs_listxattr,
7465 	.removexattr	= btrfs_removexattr,
7466 	.get_acl	= btrfs_get_acl,
7467 };
7468 static const struct inode_operations btrfs_symlink_inode_operations = {
7469 	.readlink	= generic_readlink,
7470 	.follow_link	= page_follow_link_light,
7471 	.put_link	= page_put_link,
7472 	.getattr	= btrfs_getattr,
7473 	.permission	= btrfs_permission,
7474 	.setxattr	= btrfs_setxattr,
7475 	.getxattr	= btrfs_getxattr,
7476 	.listxattr	= btrfs_listxattr,
7477 	.removexattr	= btrfs_removexattr,
7478 	.get_acl	= btrfs_get_acl,
7479 };
7480 
7481 const struct dentry_operations btrfs_dentry_operations = {
7482 	.d_delete	= btrfs_dentry_delete,
7483 	.d_release	= btrfs_dentry_release,
7484 };
7485