xref: /linux/fs/btrfs/inode.c (revision 2bd87951de659df3381ce083342aaf5b1ea24689)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <crypto/hash.h>
7 #include <linux/kernel.h>
8 #include <linux/bio.h>
9 #include <linux/blk-cgroup.h>
10 #include <linux/file.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14 #include <linux/time.h>
15 #include <linux/init.h>
16 #include <linux/string.h>
17 #include <linux/backing-dev.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/xattr.h>
21 #include <linux/posix_acl.h>
22 #include <linux/falloc.h>
23 #include <linux/slab.h>
24 #include <linux/ratelimit.h>
25 #include <linux/btrfs.h>
26 #include <linux/blkdev.h>
27 #include <linux/posix_acl_xattr.h>
28 #include <linux/uio.h>
29 #include <linux/magic.h>
30 #include <linux/iversion.h>
31 #include <linux/swap.h>
32 #include <linux/migrate.h>
33 #include <linux/sched/mm.h>
34 #include <linux/iomap.h>
35 #include <asm/unaligned.h>
36 #include <linux/fsverity.h>
37 #include "misc.h"
38 #include "ctree.h"
39 #include "disk-io.h"
40 #include "transaction.h"
41 #include "btrfs_inode.h"
42 #include "ordered-data.h"
43 #include "xattr.h"
44 #include "tree-log.h"
45 #include "bio.h"
46 #include "compression.h"
47 #include "locking.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53 #include "zoned.h"
54 #include "subpage.h"
55 #include "inode-item.h"
56 #include "fs.h"
57 #include "accessors.h"
58 #include "extent-tree.h"
59 #include "root-tree.h"
60 #include "defrag.h"
61 #include "dir-item.h"
62 #include "file-item.h"
63 #include "uuid-tree.h"
64 #include "ioctl.h"
65 #include "file.h"
66 #include "acl.h"
67 #include "relocation.h"
68 #include "verity.h"
69 #include "super.h"
70 #include "orphan.h"
71 #include "backref.h"
72 #include "raid-stripe-tree.h"
73 
74 struct btrfs_iget_args {
75 	u64 ino;
76 	struct btrfs_root *root;
77 };
78 
79 struct btrfs_dio_data {
80 	ssize_t submitted;
81 	struct extent_changeset *data_reserved;
82 	struct btrfs_ordered_extent *ordered;
83 	bool data_space_reserved;
84 	bool nocow_done;
85 };
86 
87 struct btrfs_dio_private {
88 	/* Range of I/O */
89 	u64 file_offset;
90 	u32 bytes;
91 
92 	/* This must be last */
93 	struct btrfs_bio bbio;
94 };
95 
96 static struct bio_set btrfs_dio_bioset;
97 
98 struct btrfs_rename_ctx {
99 	/* Output field. Stores the index number of the old directory entry. */
100 	u64 index;
101 };
102 
103 /*
104  * Used by data_reloc_print_warning_inode() to pass needed info for filename
105  * resolution and output of error message.
106  */
107 struct data_reloc_warn {
108 	struct btrfs_path path;
109 	struct btrfs_fs_info *fs_info;
110 	u64 extent_item_size;
111 	u64 logical;
112 	int mirror_num;
113 };
114 
115 /*
116  * For the file_extent_tree, we want to hold the inode lock when we lookup and
117  * update the disk_i_size, but lockdep will complain because our io_tree we hold
118  * the tree lock and get the inode lock when setting delalloc. These two things
119  * are unrelated, so make a class for the file_extent_tree so we don't get the
120  * two locking patterns mixed up.
121  */
122 static struct lock_class_key file_extent_tree_class;
123 
124 static const struct inode_operations btrfs_dir_inode_operations;
125 static const struct inode_operations btrfs_symlink_inode_operations;
126 static const struct inode_operations btrfs_special_inode_operations;
127 static const struct inode_operations btrfs_file_inode_operations;
128 static const struct address_space_operations btrfs_aops;
129 static const struct file_operations btrfs_dir_file_operations;
130 
131 static struct kmem_cache *btrfs_inode_cachep;
132 
133 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
134 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback);
135 
136 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
137 				     struct page *locked_page, u64 start,
138 				     u64 end, struct writeback_control *wbc,
139 				     bool pages_dirty);
140 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
141 				       u64 len, u64 orig_start, u64 block_start,
142 				       u64 block_len, u64 orig_block_len,
143 				       u64 ram_bytes, int compress_type,
144 				       int type);
145 
146 static int data_reloc_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
147 					  u64 root, void *warn_ctx)
148 {
149 	struct data_reloc_warn *warn = warn_ctx;
150 	struct btrfs_fs_info *fs_info = warn->fs_info;
151 	struct extent_buffer *eb;
152 	struct btrfs_inode_item *inode_item;
153 	struct inode_fs_paths *ipath = NULL;
154 	struct btrfs_root *local_root;
155 	struct btrfs_key key;
156 	unsigned int nofs_flag;
157 	u32 nlink;
158 	int ret;
159 
160 	local_root = btrfs_get_fs_root(fs_info, root, true);
161 	if (IS_ERR(local_root)) {
162 		ret = PTR_ERR(local_root);
163 		goto err;
164 	}
165 
166 	/* This makes the path point to (inum INODE_ITEM ioff). */
167 	key.objectid = inum;
168 	key.type = BTRFS_INODE_ITEM_KEY;
169 	key.offset = 0;
170 
171 	ret = btrfs_search_slot(NULL, local_root, &key, &warn->path, 0, 0);
172 	if (ret) {
173 		btrfs_put_root(local_root);
174 		btrfs_release_path(&warn->path);
175 		goto err;
176 	}
177 
178 	eb = warn->path.nodes[0];
179 	inode_item = btrfs_item_ptr(eb, warn->path.slots[0], struct btrfs_inode_item);
180 	nlink = btrfs_inode_nlink(eb, inode_item);
181 	btrfs_release_path(&warn->path);
182 
183 	nofs_flag = memalloc_nofs_save();
184 	ipath = init_ipath(4096, local_root, &warn->path);
185 	memalloc_nofs_restore(nofs_flag);
186 	if (IS_ERR(ipath)) {
187 		btrfs_put_root(local_root);
188 		ret = PTR_ERR(ipath);
189 		ipath = NULL;
190 		/*
191 		 * -ENOMEM, not a critical error, just output an generic error
192 		 * without filename.
193 		 */
194 		btrfs_warn(fs_info,
195 "checksum error at logical %llu mirror %u root %llu, inode %llu offset %llu",
196 			   warn->logical, warn->mirror_num, root, inum, offset);
197 		return ret;
198 	}
199 	ret = paths_from_inode(inum, ipath);
200 	if (ret < 0)
201 		goto err;
202 
203 	/*
204 	 * We deliberately ignore the bit ipath might have been too small to
205 	 * hold all of the paths here
206 	 */
207 	for (int i = 0; i < ipath->fspath->elem_cnt; i++) {
208 		btrfs_warn(fs_info,
209 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu length %u links %u (path: %s)",
210 			   warn->logical, warn->mirror_num, root, inum, offset,
211 			   fs_info->sectorsize, nlink,
212 			   (char *)(unsigned long)ipath->fspath->val[i]);
213 	}
214 
215 	btrfs_put_root(local_root);
216 	free_ipath(ipath);
217 	return 0;
218 
219 err:
220 	btrfs_warn(fs_info,
221 "checksum error at logical %llu mirror %u root %llu inode %llu offset %llu, path resolving failed with ret=%d",
222 		   warn->logical, warn->mirror_num, root, inum, offset, ret);
223 
224 	free_ipath(ipath);
225 	return ret;
226 }
227 
228 /*
229  * Do extra user-friendly error output (e.g. lookup all the affected files).
230  *
231  * Return true if we succeeded doing the backref lookup.
232  * Return false if such lookup failed, and has to fallback to the old error message.
233  */
234 static void print_data_reloc_error(const struct btrfs_inode *inode, u64 file_off,
235 				   const u8 *csum, const u8 *csum_expected,
236 				   int mirror_num)
237 {
238 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
239 	struct btrfs_path path = { 0 };
240 	struct btrfs_key found_key = { 0 };
241 	struct extent_buffer *eb;
242 	struct btrfs_extent_item *ei;
243 	const u32 csum_size = fs_info->csum_size;
244 	u64 logical;
245 	u64 flags;
246 	u32 item_size;
247 	int ret;
248 
249 	mutex_lock(&fs_info->reloc_mutex);
250 	logical = btrfs_get_reloc_bg_bytenr(fs_info);
251 	mutex_unlock(&fs_info->reloc_mutex);
252 
253 	if (logical == U64_MAX) {
254 		btrfs_warn_rl(fs_info, "has data reloc tree but no running relocation");
255 		btrfs_warn_rl(fs_info,
256 "csum failed root %lld ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
257 			inode->root->root_key.objectid, btrfs_ino(inode), file_off,
258 			CSUM_FMT_VALUE(csum_size, csum),
259 			CSUM_FMT_VALUE(csum_size, csum_expected),
260 			mirror_num);
261 		return;
262 	}
263 
264 	logical += file_off;
265 	btrfs_warn_rl(fs_info,
266 "csum failed root %lld ino %llu off %llu logical %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
267 			inode->root->root_key.objectid,
268 			btrfs_ino(inode), file_off, logical,
269 			CSUM_FMT_VALUE(csum_size, csum),
270 			CSUM_FMT_VALUE(csum_size, csum_expected),
271 			mirror_num);
272 
273 	ret = extent_from_logical(fs_info, logical, &path, &found_key, &flags);
274 	if (ret < 0) {
275 		btrfs_err_rl(fs_info, "failed to lookup extent item for logical %llu: %d",
276 			     logical, ret);
277 		return;
278 	}
279 	eb = path.nodes[0];
280 	ei = btrfs_item_ptr(eb, path.slots[0], struct btrfs_extent_item);
281 	item_size = btrfs_item_size(eb, path.slots[0]);
282 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
283 		unsigned long ptr = 0;
284 		u64 ref_root;
285 		u8 ref_level;
286 
287 		while (true) {
288 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
289 						      item_size, &ref_root,
290 						      &ref_level);
291 			if (ret < 0) {
292 				btrfs_warn_rl(fs_info,
293 				"failed to resolve tree backref for logical %llu: %d",
294 					      logical, ret);
295 				break;
296 			}
297 			if (ret > 0)
298 				break;
299 
300 			btrfs_warn_rl(fs_info,
301 "csum error at logical %llu mirror %u: metadata %s (level %d) in tree %llu",
302 				logical, mirror_num,
303 				(ref_level ? "node" : "leaf"),
304 				ref_level, ref_root);
305 		}
306 		btrfs_release_path(&path);
307 	} else {
308 		struct btrfs_backref_walk_ctx ctx = { 0 };
309 		struct data_reloc_warn reloc_warn = { 0 };
310 
311 		btrfs_release_path(&path);
312 
313 		ctx.bytenr = found_key.objectid;
314 		ctx.extent_item_pos = logical - found_key.objectid;
315 		ctx.fs_info = fs_info;
316 
317 		reloc_warn.logical = logical;
318 		reloc_warn.extent_item_size = found_key.offset;
319 		reloc_warn.mirror_num = mirror_num;
320 		reloc_warn.fs_info = fs_info;
321 
322 		iterate_extent_inodes(&ctx, true,
323 				      data_reloc_print_warning_inode, &reloc_warn);
324 	}
325 }
326 
327 static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
328 		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
329 {
330 	struct btrfs_root *root = inode->root;
331 	const u32 csum_size = root->fs_info->csum_size;
332 
333 	/* For data reloc tree, it's better to do a backref lookup instead. */
334 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
335 		return print_data_reloc_error(inode, logical_start, csum,
336 					      csum_expected, mirror_num);
337 
338 	/* Output without objectid, which is more meaningful */
339 	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
340 		btrfs_warn_rl(root->fs_info,
341 "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
342 			root->root_key.objectid, btrfs_ino(inode),
343 			logical_start,
344 			CSUM_FMT_VALUE(csum_size, csum),
345 			CSUM_FMT_VALUE(csum_size, csum_expected),
346 			mirror_num);
347 	} else {
348 		btrfs_warn_rl(root->fs_info,
349 "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
350 			root->root_key.objectid, btrfs_ino(inode),
351 			logical_start,
352 			CSUM_FMT_VALUE(csum_size, csum),
353 			CSUM_FMT_VALUE(csum_size, csum_expected),
354 			mirror_num);
355 	}
356 }
357 
358 /*
359  * Lock inode i_rwsem based on arguments passed.
360  *
361  * ilock_flags can have the following bit set:
362  *
363  * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
364  * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
365  *		     return -EAGAIN
366  * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
367  */
368 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags)
369 {
370 	if (ilock_flags & BTRFS_ILOCK_SHARED) {
371 		if (ilock_flags & BTRFS_ILOCK_TRY) {
372 			if (!inode_trylock_shared(&inode->vfs_inode))
373 				return -EAGAIN;
374 			else
375 				return 0;
376 		}
377 		inode_lock_shared(&inode->vfs_inode);
378 	} else {
379 		if (ilock_flags & BTRFS_ILOCK_TRY) {
380 			if (!inode_trylock(&inode->vfs_inode))
381 				return -EAGAIN;
382 			else
383 				return 0;
384 		}
385 		inode_lock(&inode->vfs_inode);
386 	}
387 	if (ilock_flags & BTRFS_ILOCK_MMAP)
388 		down_write(&inode->i_mmap_lock);
389 	return 0;
390 }
391 
392 /*
393  * Unock inode i_rwsem.
394  *
395  * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
396  * to decide whether the lock acquired is shared or exclusive.
397  */
398 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags)
399 {
400 	if (ilock_flags & BTRFS_ILOCK_MMAP)
401 		up_write(&inode->i_mmap_lock);
402 	if (ilock_flags & BTRFS_ILOCK_SHARED)
403 		inode_unlock_shared(&inode->vfs_inode);
404 	else
405 		inode_unlock(&inode->vfs_inode);
406 }
407 
408 /*
409  * Cleanup all submitted ordered extents in specified range to handle errors
410  * from the btrfs_run_delalloc_range() callback.
411  *
412  * NOTE: caller must ensure that when an error happens, it can not call
413  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
414  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
415  * to be released, which we want to happen only when finishing the ordered
416  * extent (btrfs_finish_ordered_io()).
417  */
418 static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
419 						 struct page *locked_page,
420 						 u64 offset, u64 bytes)
421 {
422 	unsigned long index = offset >> PAGE_SHIFT;
423 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
424 	u64 page_start = 0, page_end = 0;
425 	struct page *page;
426 
427 	if (locked_page) {
428 		page_start = page_offset(locked_page);
429 		page_end = page_start + PAGE_SIZE - 1;
430 	}
431 
432 	while (index <= end_index) {
433 		/*
434 		 * For locked page, we will call btrfs_mark_ordered_io_finished
435 		 * through btrfs_mark_ordered_io_finished() on it
436 		 * in run_delalloc_range() for the error handling, which will
437 		 * clear page Ordered and run the ordered extent accounting.
438 		 *
439 		 * Here we can't just clear the Ordered bit, or
440 		 * btrfs_mark_ordered_io_finished() would skip the accounting
441 		 * for the page range, and the ordered extent will never finish.
442 		 */
443 		if (locked_page && index == (page_start >> PAGE_SHIFT)) {
444 			index++;
445 			continue;
446 		}
447 		page = find_get_page(inode->vfs_inode.i_mapping, index);
448 		index++;
449 		if (!page)
450 			continue;
451 
452 		/*
453 		 * Here we just clear all Ordered bits for every page in the
454 		 * range, then btrfs_mark_ordered_io_finished() will handle
455 		 * the ordered extent accounting for the range.
456 		 */
457 		btrfs_folio_clamp_clear_ordered(inode->root->fs_info,
458 						page_folio(page), offset, bytes);
459 		put_page(page);
460 	}
461 
462 	if (locked_page) {
463 		/* The locked page covers the full range, nothing needs to be done */
464 		if (bytes + offset <= page_start + PAGE_SIZE)
465 			return;
466 		/*
467 		 * In case this page belongs to the delalloc range being
468 		 * instantiated then skip it, since the first page of a range is
469 		 * going to be properly cleaned up by the caller of
470 		 * run_delalloc_range
471 		 */
472 		if (page_start >= offset && page_end <= (offset + bytes - 1)) {
473 			bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
474 			offset = page_offset(locked_page) + PAGE_SIZE;
475 		}
476 	}
477 
478 	return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
479 }
480 
481 static int btrfs_dirty_inode(struct btrfs_inode *inode);
482 
483 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
484 				     struct btrfs_new_inode_args *args)
485 {
486 	int err;
487 
488 	if (args->default_acl) {
489 		err = __btrfs_set_acl(trans, args->inode, args->default_acl,
490 				      ACL_TYPE_DEFAULT);
491 		if (err)
492 			return err;
493 	}
494 	if (args->acl) {
495 		err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
496 		if (err)
497 			return err;
498 	}
499 	if (!args->default_acl && !args->acl)
500 		cache_no_acl(args->inode);
501 	return btrfs_xattr_security_init(trans, args->inode, args->dir,
502 					 &args->dentry->d_name);
503 }
504 
505 /*
506  * this does all the hard work for inserting an inline extent into
507  * the btree.  The caller should have done a btrfs_drop_extents so that
508  * no overlapping inline items exist in the btree
509  */
510 static int insert_inline_extent(struct btrfs_trans_handle *trans,
511 				struct btrfs_path *path,
512 				struct btrfs_inode *inode, bool extent_inserted,
513 				size_t size, size_t compressed_size,
514 				int compress_type,
515 				struct page **compressed_pages,
516 				bool update_i_size)
517 {
518 	struct btrfs_root *root = inode->root;
519 	struct extent_buffer *leaf;
520 	struct page *page = NULL;
521 	char *kaddr;
522 	unsigned long ptr;
523 	struct btrfs_file_extent_item *ei;
524 	int ret;
525 	size_t cur_size = size;
526 	u64 i_size;
527 
528 	ASSERT((compressed_size > 0 && compressed_pages) ||
529 	       (compressed_size == 0 && !compressed_pages));
530 
531 	if (compressed_size && compressed_pages)
532 		cur_size = compressed_size;
533 
534 	if (!extent_inserted) {
535 		struct btrfs_key key;
536 		size_t datasize;
537 
538 		key.objectid = btrfs_ino(inode);
539 		key.offset = 0;
540 		key.type = BTRFS_EXTENT_DATA_KEY;
541 
542 		datasize = btrfs_file_extent_calc_inline_size(cur_size);
543 		ret = btrfs_insert_empty_item(trans, root, path, &key,
544 					      datasize);
545 		if (ret)
546 			goto fail;
547 	}
548 	leaf = path->nodes[0];
549 	ei = btrfs_item_ptr(leaf, path->slots[0],
550 			    struct btrfs_file_extent_item);
551 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
552 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
553 	btrfs_set_file_extent_encryption(leaf, ei, 0);
554 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
555 	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
556 	ptr = btrfs_file_extent_inline_start(ei);
557 
558 	if (compress_type != BTRFS_COMPRESS_NONE) {
559 		struct page *cpage;
560 		int i = 0;
561 		while (compressed_size > 0) {
562 			cpage = compressed_pages[i];
563 			cur_size = min_t(unsigned long, compressed_size,
564 				       PAGE_SIZE);
565 
566 			kaddr = kmap_local_page(cpage);
567 			write_extent_buffer(leaf, kaddr, ptr, cur_size);
568 			kunmap_local(kaddr);
569 
570 			i++;
571 			ptr += cur_size;
572 			compressed_size -= cur_size;
573 		}
574 		btrfs_set_file_extent_compression(leaf, ei,
575 						  compress_type);
576 	} else {
577 		page = find_get_page(inode->vfs_inode.i_mapping, 0);
578 		btrfs_set_file_extent_compression(leaf, ei, 0);
579 		kaddr = kmap_local_page(page);
580 		write_extent_buffer(leaf, kaddr, ptr, size);
581 		kunmap_local(kaddr);
582 		put_page(page);
583 	}
584 	btrfs_mark_buffer_dirty(trans, leaf);
585 	btrfs_release_path(path);
586 
587 	/*
588 	 * We align size to sectorsize for inline extents just for simplicity
589 	 * sake.
590 	 */
591 	ret = btrfs_inode_set_file_extent_range(inode, 0,
592 					ALIGN(size, root->fs_info->sectorsize));
593 	if (ret)
594 		goto fail;
595 
596 	/*
597 	 * We're an inline extent, so nobody can extend the file past i_size
598 	 * without locking a page we already have locked.
599 	 *
600 	 * We must do any i_size and inode updates before we unlock the pages.
601 	 * Otherwise we could end up racing with unlink.
602 	 */
603 	i_size = i_size_read(&inode->vfs_inode);
604 	if (update_i_size && size > i_size) {
605 		i_size_write(&inode->vfs_inode, size);
606 		i_size = size;
607 	}
608 	inode->disk_i_size = i_size;
609 
610 fail:
611 	return ret;
612 }
613 
614 
615 /*
616  * conditionally insert an inline extent into the file.  This
617  * does the checks required to make sure the data is small enough
618  * to fit as an inline extent.
619  */
620 static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
621 					  size_t compressed_size,
622 					  int compress_type,
623 					  struct page **compressed_pages,
624 					  bool update_i_size)
625 {
626 	struct btrfs_drop_extents_args drop_args = { 0 };
627 	struct btrfs_root *root = inode->root;
628 	struct btrfs_fs_info *fs_info = root->fs_info;
629 	struct btrfs_trans_handle *trans;
630 	u64 data_len = (compressed_size ?: size);
631 	int ret;
632 	struct btrfs_path *path;
633 
634 	/*
635 	 * We can create an inline extent if it ends at or beyond the current
636 	 * i_size, is no larger than a sector (decompressed), and the (possibly
637 	 * compressed) data fits in a leaf and the configured maximum inline
638 	 * size.
639 	 */
640 	if (size < i_size_read(&inode->vfs_inode) ||
641 	    size > fs_info->sectorsize ||
642 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
643 	    data_len > fs_info->max_inline)
644 		return 1;
645 
646 	path = btrfs_alloc_path();
647 	if (!path)
648 		return -ENOMEM;
649 
650 	trans = btrfs_join_transaction(root);
651 	if (IS_ERR(trans)) {
652 		btrfs_free_path(path);
653 		return PTR_ERR(trans);
654 	}
655 	trans->block_rsv = &inode->block_rsv;
656 
657 	drop_args.path = path;
658 	drop_args.start = 0;
659 	drop_args.end = fs_info->sectorsize;
660 	drop_args.drop_cache = true;
661 	drop_args.replace_extent = true;
662 	drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
663 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
664 	if (ret) {
665 		btrfs_abort_transaction(trans, ret);
666 		goto out;
667 	}
668 
669 	ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
670 				   size, compressed_size, compress_type,
671 				   compressed_pages, update_i_size);
672 	if (ret && ret != -ENOSPC) {
673 		btrfs_abort_transaction(trans, ret);
674 		goto out;
675 	} else if (ret == -ENOSPC) {
676 		ret = 1;
677 		goto out;
678 	}
679 
680 	btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
681 	ret = btrfs_update_inode(trans, inode);
682 	if (ret && ret != -ENOSPC) {
683 		btrfs_abort_transaction(trans, ret);
684 		goto out;
685 	} else if (ret == -ENOSPC) {
686 		ret = 1;
687 		goto out;
688 	}
689 
690 	btrfs_set_inode_full_sync(inode);
691 out:
692 	/*
693 	 * Don't forget to free the reserved space, as for inlined extent
694 	 * it won't count as data extent, free them directly here.
695 	 * And at reserve time, it's always aligned to page size, so
696 	 * just free one page here.
697 	 */
698 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE, NULL);
699 	btrfs_free_path(path);
700 	btrfs_end_transaction(trans);
701 	return ret;
702 }
703 
704 struct async_extent {
705 	u64 start;
706 	u64 ram_size;
707 	u64 compressed_size;
708 	struct page **pages;
709 	unsigned long nr_pages;
710 	int compress_type;
711 	struct list_head list;
712 };
713 
714 struct async_chunk {
715 	struct btrfs_inode *inode;
716 	struct page *locked_page;
717 	u64 start;
718 	u64 end;
719 	blk_opf_t write_flags;
720 	struct list_head extents;
721 	struct cgroup_subsys_state *blkcg_css;
722 	struct btrfs_work work;
723 	struct async_cow *async_cow;
724 };
725 
726 struct async_cow {
727 	atomic_t num_chunks;
728 	struct async_chunk chunks[];
729 };
730 
731 static noinline int add_async_extent(struct async_chunk *cow,
732 				     u64 start, u64 ram_size,
733 				     u64 compressed_size,
734 				     struct page **pages,
735 				     unsigned long nr_pages,
736 				     int compress_type)
737 {
738 	struct async_extent *async_extent;
739 
740 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
741 	if (!async_extent)
742 		return -ENOMEM;
743 	async_extent->start = start;
744 	async_extent->ram_size = ram_size;
745 	async_extent->compressed_size = compressed_size;
746 	async_extent->pages = pages;
747 	async_extent->nr_pages = nr_pages;
748 	async_extent->compress_type = compress_type;
749 	list_add_tail(&async_extent->list, &cow->extents);
750 	return 0;
751 }
752 
753 /*
754  * Check if the inode needs to be submitted to compression, based on mount
755  * options, defragmentation, properties or heuristics.
756  */
757 static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
758 				      u64 end)
759 {
760 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
761 
762 	if (!btrfs_inode_can_compress(inode)) {
763 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
764 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
765 			btrfs_ino(inode));
766 		return 0;
767 	}
768 	/*
769 	 * Special check for subpage.
770 	 *
771 	 * We lock the full page then run each delalloc range in the page, thus
772 	 * for the following case, we will hit some subpage specific corner case:
773 	 *
774 	 * 0		32K		64K
775 	 * |	|///////|	|///////|
776 	 *		\- A		\- B
777 	 *
778 	 * In above case, both range A and range B will try to unlock the full
779 	 * page [0, 64K), causing the one finished later will have page
780 	 * unlocked already, triggering various page lock requirement BUG_ON()s.
781 	 *
782 	 * So here we add an artificial limit that subpage compression can only
783 	 * if the range is fully page aligned.
784 	 *
785 	 * In theory we only need to ensure the first page is fully covered, but
786 	 * the tailing partial page will be locked until the full compression
787 	 * finishes, delaying the write of other range.
788 	 *
789 	 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
790 	 * first to prevent any submitted async extent to unlock the full page.
791 	 * By this, we can ensure for subpage case that only the last async_cow
792 	 * will unlock the full page.
793 	 */
794 	if (fs_info->sectorsize < PAGE_SIZE) {
795 		if (!PAGE_ALIGNED(start) ||
796 		    !PAGE_ALIGNED(end + 1))
797 			return 0;
798 	}
799 
800 	/* force compress */
801 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
802 		return 1;
803 	/* defrag ioctl */
804 	if (inode->defrag_compress)
805 		return 1;
806 	/* bad compression ratios */
807 	if (inode->flags & BTRFS_INODE_NOCOMPRESS)
808 		return 0;
809 	if (btrfs_test_opt(fs_info, COMPRESS) ||
810 	    inode->flags & BTRFS_INODE_COMPRESS ||
811 	    inode->prop_compress)
812 		return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
813 	return 0;
814 }
815 
816 static inline void inode_should_defrag(struct btrfs_inode *inode,
817 		u64 start, u64 end, u64 num_bytes, u32 small_write)
818 {
819 	/* If this is a small write inside eof, kick off a defrag */
820 	if (num_bytes < small_write &&
821 	    (start > 0 || end + 1 < inode->disk_i_size))
822 		btrfs_add_inode_defrag(NULL, inode, small_write);
823 }
824 
825 /*
826  * Work queue call back to started compression on a file and pages.
827  *
828  * This is done inside an ordered work queue, and the compression is spread
829  * across many cpus.  The actual IO submission is step two, and the ordered work
830  * queue takes care of making sure that happens in the same order things were
831  * put onto the queue by writepages and friends.
832  *
833  * If this code finds it can't get good compression, it puts an entry onto the
834  * work queue to write the uncompressed bytes.  This makes sure that both
835  * compressed inodes and uncompressed inodes are written in the same order that
836  * the flusher thread sent them down.
837  */
838 static void compress_file_range(struct btrfs_work *work)
839 {
840 	struct async_chunk *async_chunk =
841 		container_of(work, struct async_chunk, work);
842 	struct btrfs_inode *inode = async_chunk->inode;
843 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
844 	struct address_space *mapping = inode->vfs_inode.i_mapping;
845 	u64 blocksize = fs_info->sectorsize;
846 	u64 start = async_chunk->start;
847 	u64 end = async_chunk->end;
848 	u64 actual_end;
849 	u64 i_size;
850 	int ret = 0;
851 	struct page **pages;
852 	unsigned long nr_pages;
853 	unsigned long total_compressed = 0;
854 	unsigned long total_in = 0;
855 	unsigned int poff;
856 	int i;
857 	int compress_type = fs_info->compress_type;
858 
859 	inode_should_defrag(inode, start, end, end - start + 1, SZ_16K);
860 
861 	/*
862 	 * We need to call clear_page_dirty_for_io on each page in the range.
863 	 * Otherwise applications with the file mmap'd can wander in and change
864 	 * the page contents while we are compressing them.
865 	 */
866 	extent_range_clear_dirty_for_io(&inode->vfs_inode, start, end);
867 
868 	/*
869 	 * We need to save i_size before now because it could change in between
870 	 * us evaluating the size and assigning it.  This is because we lock and
871 	 * unlock the page in truncate and fallocate, and then modify the i_size
872 	 * later on.
873 	 *
874 	 * The barriers are to emulate READ_ONCE, remove that once i_size_read
875 	 * does that for us.
876 	 */
877 	barrier();
878 	i_size = i_size_read(&inode->vfs_inode);
879 	barrier();
880 	actual_end = min_t(u64, i_size, end + 1);
881 again:
882 	pages = NULL;
883 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
884 	nr_pages = min_t(unsigned long, nr_pages, BTRFS_MAX_COMPRESSED_PAGES);
885 
886 	/*
887 	 * we don't want to send crud past the end of i_size through
888 	 * compression, that's just a waste of CPU time.  So, if the
889 	 * end of the file is before the start of our current
890 	 * requested range of bytes, we bail out to the uncompressed
891 	 * cleanup code that can deal with all of this.
892 	 *
893 	 * It isn't really the fastest way to fix things, but this is a
894 	 * very uncommon corner.
895 	 */
896 	if (actual_end <= start)
897 		goto cleanup_and_bail_uncompressed;
898 
899 	total_compressed = actual_end - start;
900 
901 	/*
902 	 * Skip compression for a small file range(<=blocksize) that
903 	 * isn't an inline extent, since it doesn't save disk space at all.
904 	 */
905 	if (total_compressed <= blocksize &&
906 	   (start > 0 || end + 1 < inode->disk_i_size))
907 		goto cleanup_and_bail_uncompressed;
908 
909 	/*
910 	 * For subpage case, we require full page alignment for the sector
911 	 * aligned range.
912 	 * Thus we must also check against @actual_end, not just @end.
913 	 */
914 	if (blocksize < PAGE_SIZE) {
915 		if (!PAGE_ALIGNED(start) ||
916 		    !PAGE_ALIGNED(round_up(actual_end, blocksize)))
917 			goto cleanup_and_bail_uncompressed;
918 	}
919 
920 	total_compressed = min_t(unsigned long, total_compressed,
921 			BTRFS_MAX_UNCOMPRESSED);
922 	total_in = 0;
923 	ret = 0;
924 
925 	/*
926 	 * We do compression for mount -o compress and when the inode has not
927 	 * been flagged as NOCOMPRESS.  This flag can change at any time if we
928 	 * discover bad compression ratios.
929 	 */
930 	if (!inode_need_compress(inode, start, end))
931 		goto cleanup_and_bail_uncompressed;
932 
933 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
934 	if (!pages) {
935 		/*
936 		 * Memory allocation failure is not a fatal error, we can fall
937 		 * back to uncompressed code.
938 		 */
939 		goto cleanup_and_bail_uncompressed;
940 	}
941 
942 	if (inode->defrag_compress)
943 		compress_type = inode->defrag_compress;
944 	else if (inode->prop_compress)
945 		compress_type = inode->prop_compress;
946 
947 	/* Compression level is applied here. */
948 	ret = btrfs_compress_pages(compress_type | (fs_info->compress_level << 4),
949 				   mapping, start, pages, &nr_pages, &total_in,
950 				   &total_compressed);
951 	if (ret)
952 		goto mark_incompressible;
953 
954 	/*
955 	 * Zero the tail end of the last page, as we might be sending it down
956 	 * to disk.
957 	 */
958 	poff = offset_in_page(total_compressed);
959 	if (poff)
960 		memzero_page(pages[nr_pages - 1], poff, PAGE_SIZE - poff);
961 
962 	/*
963 	 * Try to create an inline extent.
964 	 *
965 	 * If we didn't compress the entire range, try to create an uncompressed
966 	 * inline extent, else a compressed one.
967 	 *
968 	 * Check cow_file_range() for why we don't even try to create inline
969 	 * extent for the subpage case.
970 	 */
971 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
972 		if (total_in < actual_end) {
973 			ret = cow_file_range_inline(inode, actual_end, 0,
974 						    BTRFS_COMPRESS_NONE, NULL,
975 						    false);
976 		} else {
977 			ret = cow_file_range_inline(inode, actual_end,
978 						    total_compressed,
979 						    compress_type, pages,
980 						    false);
981 		}
982 		if (ret <= 0) {
983 			unsigned long clear_flags = EXTENT_DELALLOC |
984 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
985 				EXTENT_DO_ACCOUNTING;
986 
987 			if (ret < 0)
988 				mapping_set_error(mapping, -EIO);
989 
990 			/*
991 			 * inline extent creation worked or returned error,
992 			 * we don't need to create any more async work items.
993 			 * Unlock and free up our temp pages.
994 			 *
995 			 * We use DO_ACCOUNTING here because we need the
996 			 * delalloc_release_metadata to be done _after_ we drop
997 			 * our outstanding extent for clearing delalloc for this
998 			 * range.
999 			 */
1000 			extent_clear_unlock_delalloc(inode, start, end,
1001 						     NULL,
1002 						     clear_flags,
1003 						     PAGE_UNLOCK |
1004 						     PAGE_START_WRITEBACK |
1005 						     PAGE_END_WRITEBACK);
1006 			goto free_pages;
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * We aren't doing an inline extent. Round the compressed size up to a
1012 	 * block size boundary so the allocator does sane things.
1013 	 */
1014 	total_compressed = ALIGN(total_compressed, blocksize);
1015 
1016 	/*
1017 	 * One last check to make sure the compression is really a win, compare
1018 	 * the page count read with the blocks on disk, compression must free at
1019 	 * least one sector.
1020 	 */
1021 	total_in = round_up(total_in, fs_info->sectorsize);
1022 	if (total_compressed + blocksize > total_in)
1023 		goto mark_incompressible;
1024 
1025 	/*
1026 	 * The async work queues will take care of doing actual allocation on
1027 	 * disk for these compressed pages, and will submit the bios.
1028 	 */
1029 	ret = add_async_extent(async_chunk, start, total_in, total_compressed, pages,
1030 			       nr_pages, compress_type);
1031 	BUG_ON(ret);
1032 	if (start + total_in < end) {
1033 		start += total_in;
1034 		cond_resched();
1035 		goto again;
1036 	}
1037 	return;
1038 
1039 mark_incompressible:
1040 	if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && !inode->prop_compress)
1041 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
1042 cleanup_and_bail_uncompressed:
1043 	ret = add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
1044 			       BTRFS_COMPRESS_NONE);
1045 	BUG_ON(ret);
1046 free_pages:
1047 	if (pages) {
1048 		for (i = 0; i < nr_pages; i++) {
1049 			WARN_ON(pages[i]->mapping);
1050 			btrfs_free_compr_page(pages[i]);
1051 		}
1052 		kfree(pages);
1053 	}
1054 }
1055 
1056 static void free_async_extent_pages(struct async_extent *async_extent)
1057 {
1058 	int i;
1059 
1060 	if (!async_extent->pages)
1061 		return;
1062 
1063 	for (i = 0; i < async_extent->nr_pages; i++) {
1064 		WARN_ON(async_extent->pages[i]->mapping);
1065 		btrfs_free_compr_page(async_extent->pages[i]);
1066 	}
1067 	kfree(async_extent->pages);
1068 	async_extent->nr_pages = 0;
1069 	async_extent->pages = NULL;
1070 }
1071 
1072 static void submit_uncompressed_range(struct btrfs_inode *inode,
1073 				      struct async_extent *async_extent,
1074 				      struct page *locked_page)
1075 {
1076 	u64 start = async_extent->start;
1077 	u64 end = async_extent->start + async_extent->ram_size - 1;
1078 	int ret;
1079 	struct writeback_control wbc = {
1080 		.sync_mode		= WB_SYNC_ALL,
1081 		.range_start		= start,
1082 		.range_end		= end,
1083 		.no_cgroup_owner	= 1,
1084 	};
1085 
1086 	wbc_attach_fdatawrite_inode(&wbc, &inode->vfs_inode);
1087 	ret = run_delalloc_cow(inode, locked_page, start, end, &wbc, false);
1088 	wbc_detach_inode(&wbc);
1089 	if (ret < 0) {
1090 		btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
1091 		if (locked_page) {
1092 			const u64 page_start = page_offset(locked_page);
1093 
1094 			set_page_writeback(locked_page);
1095 			end_page_writeback(locked_page);
1096 			btrfs_mark_ordered_io_finished(inode, locked_page,
1097 						       page_start, PAGE_SIZE,
1098 						       !ret);
1099 			mapping_set_error(locked_page->mapping, ret);
1100 			unlock_page(locked_page);
1101 		}
1102 	}
1103 }
1104 
1105 static void submit_one_async_extent(struct async_chunk *async_chunk,
1106 				    struct async_extent *async_extent,
1107 				    u64 *alloc_hint)
1108 {
1109 	struct btrfs_inode *inode = async_chunk->inode;
1110 	struct extent_io_tree *io_tree = &inode->io_tree;
1111 	struct btrfs_root *root = inode->root;
1112 	struct btrfs_fs_info *fs_info = root->fs_info;
1113 	struct btrfs_ordered_extent *ordered;
1114 	struct btrfs_key ins;
1115 	struct page *locked_page = NULL;
1116 	struct extent_map *em;
1117 	int ret = 0;
1118 	u64 start = async_extent->start;
1119 	u64 end = async_extent->start + async_extent->ram_size - 1;
1120 
1121 	if (async_chunk->blkcg_css)
1122 		kthread_associate_blkcg(async_chunk->blkcg_css);
1123 
1124 	/*
1125 	 * If async_chunk->locked_page is in the async_extent range, we need to
1126 	 * handle it.
1127 	 */
1128 	if (async_chunk->locked_page) {
1129 		u64 locked_page_start = page_offset(async_chunk->locked_page);
1130 		u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
1131 
1132 		if (!(start >= locked_page_end || end <= locked_page_start))
1133 			locked_page = async_chunk->locked_page;
1134 	}
1135 	lock_extent(io_tree, start, end, NULL);
1136 
1137 	if (async_extent->compress_type == BTRFS_COMPRESS_NONE) {
1138 		submit_uncompressed_range(inode, async_extent, locked_page);
1139 		goto done;
1140 	}
1141 
1142 	ret = btrfs_reserve_extent(root, async_extent->ram_size,
1143 				   async_extent->compressed_size,
1144 				   async_extent->compressed_size,
1145 				   0, *alloc_hint, &ins, 1, 1);
1146 	if (ret) {
1147 		/*
1148 		 * We can't reserve contiguous space for the compressed size.
1149 		 * Unlikely, but it's possible that we could have enough
1150 		 * non-contiguous space for the uncompressed size instead.  So
1151 		 * fall back to uncompressed.
1152 		 */
1153 		submit_uncompressed_range(inode, async_extent, locked_page);
1154 		goto done;
1155 	}
1156 
1157 	/* Here we're doing allocation and writeback of the compressed pages */
1158 	em = create_io_em(inode, start,
1159 			  async_extent->ram_size,	/* len */
1160 			  start,			/* orig_start */
1161 			  ins.objectid,			/* block_start */
1162 			  ins.offset,			/* block_len */
1163 			  ins.offset,			/* orig_block_len */
1164 			  async_extent->ram_size,	/* ram_bytes */
1165 			  async_extent->compress_type,
1166 			  BTRFS_ORDERED_COMPRESSED);
1167 	if (IS_ERR(em)) {
1168 		ret = PTR_ERR(em);
1169 		goto out_free_reserve;
1170 	}
1171 	free_extent_map(em);
1172 
1173 	ordered = btrfs_alloc_ordered_extent(inode, start,	/* file_offset */
1174 				       async_extent->ram_size,	/* num_bytes */
1175 				       async_extent->ram_size,	/* ram_bytes */
1176 				       ins.objectid,		/* disk_bytenr */
1177 				       ins.offset,		/* disk_num_bytes */
1178 				       0,			/* offset */
1179 				       1 << BTRFS_ORDERED_COMPRESSED,
1180 				       async_extent->compress_type);
1181 	if (IS_ERR(ordered)) {
1182 		btrfs_drop_extent_map_range(inode, start, end, false);
1183 		ret = PTR_ERR(ordered);
1184 		goto out_free_reserve;
1185 	}
1186 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1187 
1188 	/* Clear dirty, set writeback and unlock the pages. */
1189 	extent_clear_unlock_delalloc(inode, start, end,
1190 			NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1191 			PAGE_UNLOCK | PAGE_START_WRITEBACK);
1192 	btrfs_submit_compressed_write(ordered,
1193 			    async_extent->pages,	/* compressed_pages */
1194 			    async_extent->nr_pages,
1195 			    async_chunk->write_flags, true);
1196 	*alloc_hint = ins.objectid + ins.offset;
1197 done:
1198 	if (async_chunk->blkcg_css)
1199 		kthread_associate_blkcg(NULL);
1200 	kfree(async_extent);
1201 	return;
1202 
1203 out_free_reserve:
1204 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1205 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1206 	mapping_set_error(inode->vfs_inode.i_mapping, -EIO);
1207 	extent_clear_unlock_delalloc(inode, start, end,
1208 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
1209 				     EXTENT_DELALLOC_NEW |
1210 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
1211 				     PAGE_UNLOCK | PAGE_START_WRITEBACK |
1212 				     PAGE_END_WRITEBACK);
1213 	free_async_extent_pages(async_extent);
1214 	if (async_chunk->blkcg_css)
1215 		kthread_associate_blkcg(NULL);
1216 	btrfs_debug(fs_info,
1217 "async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1218 		    root->root_key.objectid, btrfs_ino(inode), start,
1219 		    async_extent->ram_size, ret);
1220 	kfree(async_extent);
1221 }
1222 
1223 static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
1224 				      u64 num_bytes)
1225 {
1226 	struct extent_map_tree *em_tree = &inode->extent_tree;
1227 	struct extent_map *em;
1228 	u64 alloc_hint = 0;
1229 
1230 	read_lock(&em_tree->lock);
1231 	em = search_extent_mapping(em_tree, start, num_bytes);
1232 	if (em) {
1233 		/*
1234 		 * if block start isn't an actual block number then find the
1235 		 * first block in this inode and use that as a hint.  If that
1236 		 * block is also bogus then just don't worry about it.
1237 		 */
1238 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1239 			free_extent_map(em);
1240 			em = search_extent_mapping(em_tree, 0, 0);
1241 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1242 				alloc_hint = em->block_start;
1243 			if (em)
1244 				free_extent_map(em);
1245 		} else {
1246 			alloc_hint = em->block_start;
1247 			free_extent_map(em);
1248 		}
1249 	}
1250 	read_unlock(&em_tree->lock);
1251 
1252 	return alloc_hint;
1253 }
1254 
1255 /*
1256  * when extent_io.c finds a delayed allocation range in the file,
1257  * the call backs end up in this code.  The basic idea is to
1258  * allocate extents on disk for the range, and create ordered data structs
1259  * in ram to track those extents.
1260  *
1261  * locked_page is the page that writepage had locked already.  We use
1262  * it to make sure we don't do extra locks or unlocks.
1263  *
1264  * When this function fails, it unlocks all pages except @locked_page.
1265  *
1266  * When this function successfully creates an inline extent, it returns 1 and
1267  * unlocks all pages including locked_page and starts I/O on them.
1268  * (In reality inline extents are limited to a single page, so locked_page is
1269  * the only page handled anyway).
1270  *
1271  * When this function succeed and creates a normal extent, the page locking
1272  * status depends on the passed in flags:
1273  *
1274  * - If @keep_locked is set, all pages are kept locked.
1275  * - Else all pages except for @locked_page are unlocked.
1276  *
1277  * When a failure happens in the second or later iteration of the
1278  * while-loop, the ordered extents created in previous iterations are kept
1279  * intact. So, the caller must clean them up by calling
1280  * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1281  * example.
1282  */
1283 static noinline int cow_file_range(struct btrfs_inode *inode,
1284 				   struct page *locked_page, u64 start, u64 end,
1285 				   u64 *done_offset,
1286 				   bool keep_locked, bool no_inline)
1287 {
1288 	struct btrfs_root *root = inode->root;
1289 	struct btrfs_fs_info *fs_info = root->fs_info;
1290 	u64 alloc_hint = 0;
1291 	u64 orig_start = start;
1292 	u64 num_bytes;
1293 	unsigned long ram_size;
1294 	u64 cur_alloc_size = 0;
1295 	u64 min_alloc_size;
1296 	u64 blocksize = fs_info->sectorsize;
1297 	struct btrfs_key ins;
1298 	struct extent_map *em;
1299 	unsigned clear_bits;
1300 	unsigned long page_ops;
1301 	bool extent_reserved = false;
1302 	int ret = 0;
1303 
1304 	if (btrfs_is_free_space_inode(inode)) {
1305 		ret = -EINVAL;
1306 		goto out_unlock;
1307 	}
1308 
1309 	num_bytes = ALIGN(end - start + 1, blocksize);
1310 	num_bytes = max(blocksize,  num_bytes);
1311 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1312 
1313 	inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
1314 
1315 	/*
1316 	 * Due to the page size limit, for subpage we can only trigger the
1317 	 * writeback for the dirty sectors of page, that means data writeback
1318 	 * is doing more writeback than what we want.
1319 	 *
1320 	 * This is especially unexpected for some call sites like fallocate,
1321 	 * where we only increase i_size after everything is done.
1322 	 * This means we can trigger inline extent even if we didn't want to.
1323 	 * So here we skip inline extent creation completely.
1324 	 */
1325 	if (start == 0 && fs_info->sectorsize == PAGE_SIZE && !no_inline) {
1326 		u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1327 				       end + 1);
1328 
1329 		/* lets try to make an inline extent */
1330 		ret = cow_file_range_inline(inode, actual_end, 0,
1331 					    BTRFS_COMPRESS_NONE, NULL, false);
1332 		if (ret == 0) {
1333 			/*
1334 			 * We use DO_ACCOUNTING here because we need the
1335 			 * delalloc_release_metadata to be run _after_ we drop
1336 			 * our outstanding extent for clearing delalloc for this
1337 			 * range.
1338 			 */
1339 			extent_clear_unlock_delalloc(inode, start, end,
1340 				     locked_page,
1341 				     EXTENT_LOCKED | EXTENT_DELALLOC |
1342 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1343 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1344 				     PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
1345 			/*
1346 			 * locked_page is locked by the caller of
1347 			 * writepage_delalloc(), not locked by
1348 			 * __process_pages_contig().
1349 			 *
1350 			 * We can't let __process_pages_contig() to unlock it,
1351 			 * as it doesn't have any subpage::writers recorded.
1352 			 *
1353 			 * Here we manually unlock the page, since the caller
1354 			 * can't determine if it's an inline extent or a
1355 			 * compressed extent.
1356 			 */
1357 			unlock_page(locked_page);
1358 			ret = 1;
1359 			goto done;
1360 		} else if (ret < 0) {
1361 			goto out_unlock;
1362 		}
1363 	}
1364 
1365 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1366 
1367 	/*
1368 	 * Relocation relies on the relocated extents to have exactly the same
1369 	 * size as the original extents. Normally writeback for relocation data
1370 	 * extents follows a NOCOW path because relocation preallocates the
1371 	 * extents. However, due to an operation such as scrub turning a block
1372 	 * group to RO mode, it may fallback to COW mode, so we must make sure
1373 	 * an extent allocated during COW has exactly the requested size and can
1374 	 * not be split into smaller extents, otherwise relocation breaks and
1375 	 * fails during the stage where it updates the bytenr of file extent
1376 	 * items.
1377 	 */
1378 	if (btrfs_is_data_reloc_root(root))
1379 		min_alloc_size = num_bytes;
1380 	else
1381 		min_alloc_size = fs_info->sectorsize;
1382 
1383 	while (num_bytes > 0) {
1384 		struct btrfs_ordered_extent *ordered;
1385 
1386 		cur_alloc_size = num_bytes;
1387 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1388 					   min_alloc_size, 0, alloc_hint,
1389 					   &ins, 1, 1);
1390 		if (ret == -EAGAIN) {
1391 			/*
1392 			 * btrfs_reserve_extent only returns -EAGAIN for zoned
1393 			 * file systems, which is an indication that there are
1394 			 * no active zones to allocate from at the moment.
1395 			 *
1396 			 * If this is the first loop iteration, wait for at
1397 			 * least one zone to finish before retrying the
1398 			 * allocation.  Otherwise ask the caller to write out
1399 			 * the already allocated blocks before coming back to
1400 			 * us, or return -ENOSPC if it can't handle retries.
1401 			 */
1402 			ASSERT(btrfs_is_zoned(fs_info));
1403 			if (start == orig_start) {
1404 				wait_on_bit_io(&inode->root->fs_info->flags,
1405 					       BTRFS_FS_NEED_ZONE_FINISH,
1406 					       TASK_UNINTERRUPTIBLE);
1407 				continue;
1408 			}
1409 			if (done_offset) {
1410 				*done_offset = start - 1;
1411 				return 0;
1412 			}
1413 			ret = -ENOSPC;
1414 		}
1415 		if (ret < 0)
1416 			goto out_unlock;
1417 		cur_alloc_size = ins.offset;
1418 		extent_reserved = true;
1419 
1420 		ram_size = ins.offset;
1421 		em = create_io_em(inode, start, ins.offset, /* len */
1422 				  start, /* orig_start */
1423 				  ins.objectid, /* block_start */
1424 				  ins.offset, /* block_len */
1425 				  ins.offset, /* orig_block_len */
1426 				  ram_size, /* ram_bytes */
1427 				  BTRFS_COMPRESS_NONE, /* compress_type */
1428 				  BTRFS_ORDERED_REGULAR /* type */);
1429 		if (IS_ERR(em)) {
1430 			ret = PTR_ERR(em);
1431 			goto out_reserve;
1432 		}
1433 		free_extent_map(em);
1434 
1435 		ordered = btrfs_alloc_ordered_extent(inode, start, ram_size,
1436 					ram_size, ins.objectid, cur_alloc_size,
1437 					0, 1 << BTRFS_ORDERED_REGULAR,
1438 					BTRFS_COMPRESS_NONE);
1439 		if (IS_ERR(ordered)) {
1440 			ret = PTR_ERR(ordered);
1441 			goto out_drop_extent_cache;
1442 		}
1443 
1444 		if (btrfs_is_data_reloc_root(root)) {
1445 			ret = btrfs_reloc_clone_csums(ordered);
1446 
1447 			/*
1448 			 * Only drop cache here, and process as normal.
1449 			 *
1450 			 * We must not allow extent_clear_unlock_delalloc()
1451 			 * at out_unlock label to free meta of this ordered
1452 			 * extent, as its meta should be freed by
1453 			 * btrfs_finish_ordered_io().
1454 			 *
1455 			 * So we must continue until @start is increased to
1456 			 * skip current ordered extent.
1457 			 */
1458 			if (ret)
1459 				btrfs_drop_extent_map_range(inode, start,
1460 							    start + ram_size - 1,
1461 							    false);
1462 		}
1463 		btrfs_put_ordered_extent(ordered);
1464 
1465 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1466 
1467 		/*
1468 		 * We're not doing compressed IO, don't unlock the first page
1469 		 * (which the caller expects to stay locked), don't clear any
1470 		 * dirty bits and don't set any writeback bits
1471 		 *
1472 		 * Do set the Ordered (Private2) bit so we know this page was
1473 		 * properly setup for writepage.
1474 		 */
1475 		page_ops = (keep_locked ? 0 : PAGE_UNLOCK);
1476 		page_ops |= PAGE_SET_ORDERED;
1477 
1478 		extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
1479 					     locked_page,
1480 					     EXTENT_LOCKED | EXTENT_DELALLOC,
1481 					     page_ops);
1482 		if (num_bytes < cur_alloc_size)
1483 			num_bytes = 0;
1484 		else
1485 			num_bytes -= cur_alloc_size;
1486 		alloc_hint = ins.objectid + ins.offset;
1487 		start += cur_alloc_size;
1488 		extent_reserved = false;
1489 
1490 		/*
1491 		 * btrfs_reloc_clone_csums() error, since start is increased
1492 		 * extent_clear_unlock_delalloc() at out_unlock label won't
1493 		 * free metadata of current ordered extent, we're OK to exit.
1494 		 */
1495 		if (ret)
1496 			goto out_unlock;
1497 	}
1498 done:
1499 	if (done_offset)
1500 		*done_offset = end;
1501 	return ret;
1502 
1503 out_drop_extent_cache:
1504 	btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
1505 out_reserve:
1506 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1507 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1508 out_unlock:
1509 	/*
1510 	 * Now, we have three regions to clean up:
1511 	 *
1512 	 * |-------(1)----|---(2)---|-------------(3)----------|
1513 	 * `- orig_start  `- start  `- start + cur_alloc_size  `- end
1514 	 *
1515 	 * We process each region below.
1516 	 */
1517 
1518 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1519 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1520 	page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
1521 
1522 	/*
1523 	 * For the range (1). We have already instantiated the ordered extents
1524 	 * for this region. They are cleaned up by
1525 	 * btrfs_cleanup_ordered_extents() in e.g,
1526 	 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1527 	 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1528 	 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1529 	 * function.
1530 	 *
1531 	 * However, in case of @keep_locked, we still need to unlock the pages
1532 	 * (except @locked_page) to ensure all the pages are unlocked.
1533 	 */
1534 	if (keep_locked && orig_start < start) {
1535 		if (!locked_page)
1536 			mapping_set_error(inode->vfs_inode.i_mapping, ret);
1537 		extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1538 					     locked_page, 0, page_ops);
1539 	}
1540 
1541 	/*
1542 	 * For the range (2). If we reserved an extent for our delalloc range
1543 	 * (or a subrange) and failed to create the respective ordered extent,
1544 	 * then it means that when we reserved the extent we decremented the
1545 	 * extent's size from the data space_info's bytes_may_use counter and
1546 	 * incremented the space_info's bytes_reserved counter by the same
1547 	 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1548 	 * to decrement again the data space_info's bytes_may_use counter,
1549 	 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
1550 	 */
1551 	if (extent_reserved) {
1552 		extent_clear_unlock_delalloc(inode, start,
1553 					     start + cur_alloc_size - 1,
1554 					     locked_page,
1555 					     clear_bits,
1556 					     page_ops);
1557 		start += cur_alloc_size;
1558 	}
1559 
1560 	/*
1561 	 * For the range (3). We never touched the region. In addition to the
1562 	 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1563 	 * space_info's bytes_may_use counter, reserved in
1564 	 * btrfs_check_data_free_space().
1565 	 */
1566 	if (start < end) {
1567 		clear_bits |= EXTENT_CLEAR_DATA_RESV;
1568 		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1569 					     clear_bits, page_ops);
1570 	}
1571 	return ret;
1572 }
1573 
1574 /*
1575  * Phase two of compressed writeback.  This is the ordered portion of the code,
1576  * which only gets called in the order the work was queued.  We walk all the
1577  * async extents created by compress_file_range and send them down to the disk.
1578  *
1579  * If called with @do_free == true then it'll try to finish the work and free
1580  * the work struct eventually.
1581  */
1582 static noinline void submit_compressed_extents(struct btrfs_work *work, bool do_free)
1583 {
1584 	struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1585 						     work);
1586 	struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1587 	struct async_extent *async_extent;
1588 	unsigned long nr_pages;
1589 	u64 alloc_hint = 0;
1590 
1591 	if (do_free) {
1592 		struct async_chunk *async_chunk;
1593 		struct async_cow *async_cow;
1594 
1595 		async_chunk = container_of(work, struct async_chunk, work);
1596 		btrfs_add_delayed_iput(async_chunk->inode);
1597 		if (async_chunk->blkcg_css)
1598 			css_put(async_chunk->blkcg_css);
1599 
1600 		async_cow = async_chunk->async_cow;
1601 		if (atomic_dec_and_test(&async_cow->num_chunks))
1602 			kvfree(async_cow);
1603 		return;
1604 	}
1605 
1606 	nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1607 		PAGE_SHIFT;
1608 
1609 	while (!list_empty(&async_chunk->extents)) {
1610 		async_extent = list_entry(async_chunk->extents.next,
1611 					  struct async_extent, list);
1612 		list_del(&async_extent->list);
1613 		submit_one_async_extent(async_chunk, async_extent, &alloc_hint);
1614 	}
1615 
1616 	/* atomic_sub_return implies a barrier */
1617 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1618 	    5 * SZ_1M)
1619 		cond_wake_up_nomb(&fs_info->async_submit_wait);
1620 }
1621 
1622 static bool run_delalloc_compressed(struct btrfs_inode *inode,
1623 				    struct page *locked_page, u64 start,
1624 				    u64 end, struct writeback_control *wbc)
1625 {
1626 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1627 	struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1628 	struct async_cow *ctx;
1629 	struct async_chunk *async_chunk;
1630 	unsigned long nr_pages;
1631 	u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1632 	int i;
1633 	unsigned nofs_flag;
1634 	const blk_opf_t write_flags = wbc_to_write_flags(wbc);
1635 
1636 	nofs_flag = memalloc_nofs_save();
1637 	ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1638 	memalloc_nofs_restore(nofs_flag);
1639 	if (!ctx)
1640 		return false;
1641 
1642 	unlock_extent(&inode->io_tree, start, end, NULL);
1643 	set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
1644 
1645 	async_chunk = ctx->chunks;
1646 	atomic_set(&ctx->num_chunks, num_chunks);
1647 
1648 	for (i = 0; i < num_chunks; i++) {
1649 		u64 cur_end = min(end, start + SZ_512K - 1);
1650 
1651 		/*
1652 		 * igrab is called higher up in the call chain, take only the
1653 		 * lightweight reference for the callback lifetime
1654 		 */
1655 		ihold(&inode->vfs_inode);
1656 		async_chunk[i].async_cow = ctx;
1657 		async_chunk[i].inode = inode;
1658 		async_chunk[i].start = start;
1659 		async_chunk[i].end = cur_end;
1660 		async_chunk[i].write_flags = write_flags;
1661 		INIT_LIST_HEAD(&async_chunk[i].extents);
1662 
1663 		/*
1664 		 * The locked_page comes all the way from writepage and its
1665 		 * the original page we were actually given.  As we spread
1666 		 * this large delalloc region across multiple async_chunk
1667 		 * structs, only the first struct needs a pointer to locked_page
1668 		 *
1669 		 * This way we don't need racey decisions about who is supposed
1670 		 * to unlock it.
1671 		 */
1672 		if (locked_page) {
1673 			/*
1674 			 * Depending on the compressibility, the pages might or
1675 			 * might not go through async.  We want all of them to
1676 			 * be accounted against wbc once.  Let's do it here
1677 			 * before the paths diverge.  wbc accounting is used
1678 			 * only for foreign writeback detection and doesn't
1679 			 * need full accuracy.  Just account the whole thing
1680 			 * against the first page.
1681 			 */
1682 			wbc_account_cgroup_owner(wbc, locked_page,
1683 						 cur_end - start);
1684 			async_chunk[i].locked_page = locked_page;
1685 			locked_page = NULL;
1686 		} else {
1687 			async_chunk[i].locked_page = NULL;
1688 		}
1689 
1690 		if (blkcg_css != blkcg_root_css) {
1691 			css_get(blkcg_css);
1692 			async_chunk[i].blkcg_css = blkcg_css;
1693 			async_chunk[i].write_flags |= REQ_BTRFS_CGROUP_PUNT;
1694 		} else {
1695 			async_chunk[i].blkcg_css = NULL;
1696 		}
1697 
1698 		btrfs_init_work(&async_chunk[i].work, compress_file_range,
1699 				submit_compressed_extents);
1700 
1701 		nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1702 		atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1703 
1704 		btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1705 
1706 		start = cur_end + 1;
1707 	}
1708 	return true;
1709 }
1710 
1711 /*
1712  * Run the delalloc range from start to end, and write back any dirty pages
1713  * covered by the range.
1714  */
1715 static noinline int run_delalloc_cow(struct btrfs_inode *inode,
1716 				     struct page *locked_page, u64 start,
1717 				     u64 end, struct writeback_control *wbc,
1718 				     bool pages_dirty)
1719 {
1720 	u64 done_offset = end;
1721 	int ret;
1722 
1723 	while (start <= end) {
1724 		ret = cow_file_range(inode, locked_page, start, end, &done_offset,
1725 				     true, false);
1726 		if (ret)
1727 			return ret;
1728 		extent_write_locked_range(&inode->vfs_inode, locked_page, start,
1729 					  done_offset, wbc, pages_dirty);
1730 		start = done_offset + 1;
1731 	}
1732 
1733 	return 1;
1734 }
1735 
1736 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1737 					u64 bytenr, u64 num_bytes, bool nowait)
1738 {
1739 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
1740 	struct btrfs_ordered_sum *sums;
1741 	int ret;
1742 	LIST_HEAD(list);
1743 
1744 	ret = btrfs_lookup_csums_list(csum_root, bytenr, bytenr + num_bytes - 1,
1745 				      &list, 0, nowait);
1746 	if (ret == 0 && list_empty(&list))
1747 		return 0;
1748 
1749 	while (!list_empty(&list)) {
1750 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1751 		list_del(&sums->list);
1752 		kfree(sums);
1753 	}
1754 	if (ret < 0)
1755 		return ret;
1756 	return 1;
1757 }
1758 
1759 static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
1760 			   const u64 start, const u64 end)
1761 {
1762 	const bool is_space_ino = btrfs_is_free_space_inode(inode);
1763 	const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
1764 	const u64 range_bytes = end + 1 - start;
1765 	struct extent_io_tree *io_tree = &inode->io_tree;
1766 	u64 range_start = start;
1767 	u64 count;
1768 	int ret;
1769 
1770 	/*
1771 	 * If EXTENT_NORESERVE is set it means that when the buffered write was
1772 	 * made we had not enough available data space and therefore we did not
1773 	 * reserve data space for it, since we though we could do NOCOW for the
1774 	 * respective file range (either there is prealloc extent or the inode
1775 	 * has the NOCOW bit set).
1776 	 *
1777 	 * However when we need to fallback to COW mode (because for example the
1778 	 * block group for the corresponding extent was turned to RO mode by a
1779 	 * scrub or relocation) we need to do the following:
1780 	 *
1781 	 * 1) We increment the bytes_may_use counter of the data space info.
1782 	 *    If COW succeeds, it allocates a new data extent and after doing
1783 	 *    that it decrements the space info's bytes_may_use counter and
1784 	 *    increments its bytes_reserved counter by the same amount (we do
1785 	 *    this at btrfs_add_reserved_bytes()). So we need to increment the
1786 	 *    bytes_may_use counter to compensate (when space is reserved at
1787 	 *    buffered write time, the bytes_may_use counter is incremented);
1788 	 *
1789 	 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1790 	 *    that if the COW path fails for any reason, it decrements (through
1791 	 *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1792 	 *    data space info, which we incremented in the step above.
1793 	 *
1794 	 * If we need to fallback to cow and the inode corresponds to a free
1795 	 * space cache inode or an inode of the data relocation tree, we must
1796 	 * also increment bytes_may_use of the data space_info for the same
1797 	 * reason. Space caches and relocated data extents always get a prealloc
1798 	 * extent for them, however scrub or balance may have set the block
1799 	 * group that contains that extent to RO mode and therefore force COW
1800 	 * when starting writeback.
1801 	 */
1802 	count = count_range_bits(io_tree, &range_start, end, range_bytes,
1803 				 EXTENT_NORESERVE, 0, NULL);
1804 	if (count > 0 || is_space_ino || is_reloc_ino) {
1805 		u64 bytes = count;
1806 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
1807 		struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1808 
1809 		if (is_space_ino || is_reloc_ino)
1810 			bytes = range_bytes;
1811 
1812 		spin_lock(&sinfo->lock);
1813 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1814 		spin_unlock(&sinfo->lock);
1815 
1816 		if (count > 0)
1817 			clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1818 					 NULL);
1819 	}
1820 
1821 	/*
1822 	 * Don't try to create inline extents, as a mix of inline extent that
1823 	 * is written out and unlocked directly and a normal NOCOW extent
1824 	 * doesn't work.
1825 	 */
1826 	ret = cow_file_range(inode, locked_page, start, end, NULL, false, true);
1827 	ASSERT(ret != 1);
1828 	return ret;
1829 }
1830 
1831 struct can_nocow_file_extent_args {
1832 	/* Input fields. */
1833 
1834 	/* Start file offset of the range we want to NOCOW. */
1835 	u64 start;
1836 	/* End file offset (inclusive) of the range we want to NOCOW. */
1837 	u64 end;
1838 	bool writeback_path;
1839 	bool strict;
1840 	/*
1841 	 * Free the path passed to can_nocow_file_extent() once it's not needed
1842 	 * anymore.
1843 	 */
1844 	bool free_path;
1845 
1846 	/* Output fields. Only set when can_nocow_file_extent() returns 1. */
1847 
1848 	u64 disk_bytenr;
1849 	u64 disk_num_bytes;
1850 	u64 extent_offset;
1851 	/* Number of bytes that can be written to in NOCOW mode. */
1852 	u64 num_bytes;
1853 };
1854 
1855 /*
1856  * Check if we can NOCOW the file extent that the path points to.
1857  * This function may return with the path released, so the caller should check
1858  * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1859  *
1860  * Returns: < 0 on error
1861  *            0 if we can not NOCOW
1862  *            1 if we can NOCOW
1863  */
1864 static int can_nocow_file_extent(struct btrfs_path *path,
1865 				 struct btrfs_key *key,
1866 				 struct btrfs_inode *inode,
1867 				 struct can_nocow_file_extent_args *args)
1868 {
1869 	const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1870 	struct extent_buffer *leaf = path->nodes[0];
1871 	struct btrfs_root *root = inode->root;
1872 	struct btrfs_file_extent_item *fi;
1873 	u64 extent_end;
1874 	u8 extent_type;
1875 	int can_nocow = 0;
1876 	int ret = 0;
1877 	bool nowait = path->nowait;
1878 
1879 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1880 	extent_type = btrfs_file_extent_type(leaf, fi);
1881 
1882 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1883 		goto out;
1884 
1885 	/* Can't access these fields unless we know it's not an inline extent. */
1886 	args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1887 	args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1888 	args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1889 
1890 	if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1891 	    extent_type == BTRFS_FILE_EXTENT_REG)
1892 		goto out;
1893 
1894 	/*
1895 	 * If the extent was created before the generation where the last snapshot
1896 	 * for its subvolume was created, then this implies the extent is shared,
1897 	 * hence we must COW.
1898 	 */
1899 	if (!args->strict &&
1900 	    btrfs_file_extent_generation(leaf, fi) <=
1901 	    btrfs_root_last_snapshot(&root->root_item))
1902 		goto out;
1903 
1904 	/* An explicit hole, must COW. */
1905 	if (args->disk_bytenr == 0)
1906 		goto out;
1907 
1908 	/* Compressed/encrypted/encoded extents must be COWed. */
1909 	if (btrfs_file_extent_compression(leaf, fi) ||
1910 	    btrfs_file_extent_encryption(leaf, fi) ||
1911 	    btrfs_file_extent_other_encoding(leaf, fi))
1912 		goto out;
1913 
1914 	extent_end = btrfs_file_extent_end(path);
1915 
1916 	/*
1917 	 * The following checks can be expensive, as they need to take other
1918 	 * locks and do btree or rbtree searches, so release the path to avoid
1919 	 * blocking other tasks for too long.
1920 	 */
1921 	btrfs_release_path(path);
1922 
1923 	ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1924 				    key->offset - args->extent_offset,
1925 				    args->disk_bytenr, args->strict, path);
1926 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1927 	if (ret != 0)
1928 		goto out;
1929 
1930 	if (args->free_path) {
1931 		/*
1932 		 * We don't need the path anymore, plus through the
1933 		 * csum_exist_in_range() call below we will end up allocating
1934 		 * another path. So free the path to avoid unnecessary extra
1935 		 * memory usage.
1936 		 */
1937 		btrfs_free_path(path);
1938 		path = NULL;
1939 	}
1940 
1941 	/* If there are pending snapshots for this root, we must COW. */
1942 	if (args->writeback_path && !is_freespace_inode &&
1943 	    atomic_read(&root->snapshot_force_cow))
1944 		goto out;
1945 
1946 	args->disk_bytenr += args->extent_offset;
1947 	args->disk_bytenr += args->start - key->offset;
1948 	args->num_bytes = min(args->end + 1, extent_end) - args->start;
1949 
1950 	/*
1951 	 * Force COW if csums exist in the range. This ensures that csums for a
1952 	 * given extent are either valid or do not exist.
1953 	 */
1954 	ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1955 				  nowait);
1956 	WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1957 	if (ret != 0)
1958 		goto out;
1959 
1960 	can_nocow = 1;
1961  out:
1962 	if (args->free_path && path)
1963 		btrfs_free_path(path);
1964 
1965 	return ret < 0 ? ret : can_nocow;
1966 }
1967 
1968 /*
1969  * when nowcow writeback call back.  This checks for snapshots or COW copies
1970  * of the extents that exist in the file, and COWs the file as required.
1971  *
1972  * If no cow copies or snapshots exist, we write directly to the existing
1973  * blocks on disk
1974  */
1975 static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
1976 				       struct page *locked_page,
1977 				       const u64 start, const u64 end)
1978 {
1979 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1980 	struct btrfs_root *root = inode->root;
1981 	struct btrfs_path *path;
1982 	u64 cow_start = (u64)-1;
1983 	u64 cur_offset = start;
1984 	int ret;
1985 	bool check_prev = true;
1986 	u64 ino = btrfs_ino(inode);
1987 	struct can_nocow_file_extent_args nocow_args = { 0 };
1988 
1989 	/*
1990 	 * Normally on a zoned device we're only doing COW writes, but in case
1991 	 * of relocation on a zoned filesystem serializes I/O so that we're only
1992 	 * writing sequentially and can end up here as well.
1993 	 */
1994 	ASSERT(!btrfs_is_zoned(fs_info) || btrfs_is_data_reloc_root(root));
1995 
1996 	path = btrfs_alloc_path();
1997 	if (!path) {
1998 		ret = -ENOMEM;
1999 		goto error;
2000 	}
2001 
2002 	nocow_args.end = end;
2003 	nocow_args.writeback_path = true;
2004 
2005 	while (1) {
2006 		struct btrfs_block_group *nocow_bg = NULL;
2007 		struct btrfs_ordered_extent *ordered;
2008 		struct btrfs_key found_key;
2009 		struct btrfs_file_extent_item *fi;
2010 		struct extent_buffer *leaf;
2011 		u64 extent_end;
2012 		u64 ram_bytes;
2013 		u64 nocow_end;
2014 		int extent_type;
2015 		bool is_prealloc;
2016 
2017 		ret = btrfs_lookup_file_extent(NULL, root, path, ino,
2018 					       cur_offset, 0);
2019 		if (ret < 0)
2020 			goto error;
2021 
2022 		/*
2023 		 * If there is no extent for our range when doing the initial
2024 		 * search, then go back to the previous slot as it will be the
2025 		 * one containing the search offset
2026 		 */
2027 		if (ret > 0 && path->slots[0] > 0 && check_prev) {
2028 			leaf = path->nodes[0];
2029 			btrfs_item_key_to_cpu(leaf, &found_key,
2030 					      path->slots[0] - 1);
2031 			if (found_key.objectid == ino &&
2032 			    found_key.type == BTRFS_EXTENT_DATA_KEY)
2033 				path->slots[0]--;
2034 		}
2035 		check_prev = false;
2036 next_slot:
2037 		/* Go to next leaf if we have exhausted the current one */
2038 		leaf = path->nodes[0];
2039 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2040 			ret = btrfs_next_leaf(root, path);
2041 			if (ret < 0)
2042 				goto error;
2043 			if (ret > 0)
2044 				break;
2045 			leaf = path->nodes[0];
2046 		}
2047 
2048 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2049 
2050 		/* Didn't find anything for our INO */
2051 		if (found_key.objectid > ino)
2052 			break;
2053 		/*
2054 		 * Keep searching until we find an EXTENT_ITEM or there are no
2055 		 * more extents for this inode
2056 		 */
2057 		if (WARN_ON_ONCE(found_key.objectid < ino) ||
2058 		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
2059 			path->slots[0]++;
2060 			goto next_slot;
2061 		}
2062 
2063 		/* Found key is not EXTENT_DATA_KEY or starts after req range */
2064 		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
2065 		    found_key.offset > end)
2066 			break;
2067 
2068 		/*
2069 		 * If the found extent starts after requested offset, then
2070 		 * adjust extent_end to be right before this extent begins
2071 		 */
2072 		if (found_key.offset > cur_offset) {
2073 			extent_end = found_key.offset;
2074 			extent_type = 0;
2075 			goto must_cow;
2076 		}
2077 
2078 		/*
2079 		 * Found extent which begins before our range and potentially
2080 		 * intersect it
2081 		 */
2082 		fi = btrfs_item_ptr(leaf, path->slots[0],
2083 				    struct btrfs_file_extent_item);
2084 		extent_type = btrfs_file_extent_type(leaf, fi);
2085 		/* If this is triggered then we have a memory corruption. */
2086 		ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2087 		if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2088 			ret = -EUCLEAN;
2089 			goto error;
2090 		}
2091 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
2092 		extent_end = btrfs_file_extent_end(path);
2093 
2094 		/*
2095 		 * If the extent we got ends before our current offset, skip to
2096 		 * the next extent.
2097 		 */
2098 		if (extent_end <= cur_offset) {
2099 			path->slots[0]++;
2100 			goto next_slot;
2101 		}
2102 
2103 		nocow_args.start = cur_offset;
2104 		ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2105 		if (ret < 0)
2106 			goto error;
2107 		if (ret == 0)
2108 			goto must_cow;
2109 
2110 		ret = 0;
2111 		nocow_bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2112 		if (!nocow_bg) {
2113 must_cow:
2114 			/*
2115 			 * If we can't perform NOCOW writeback for the range,
2116 			 * then record the beginning of the range that needs to
2117 			 * be COWed.  It will be written out before the next
2118 			 * NOCOW range if we find one, or when exiting this
2119 			 * loop.
2120 			 */
2121 			if (cow_start == (u64)-1)
2122 				cow_start = cur_offset;
2123 			cur_offset = extent_end;
2124 			if (cur_offset > end)
2125 				break;
2126 			if (!path->nodes[0])
2127 				continue;
2128 			path->slots[0]++;
2129 			goto next_slot;
2130 		}
2131 
2132 		/*
2133 		 * COW range from cow_start to found_key.offset - 1. As the key
2134 		 * will contain the beginning of the first extent that can be
2135 		 * NOCOW, following one which needs to be COW'ed
2136 		 */
2137 		if (cow_start != (u64)-1) {
2138 			ret = fallback_to_cow(inode, locked_page,
2139 					      cow_start, found_key.offset - 1);
2140 			cow_start = (u64)-1;
2141 			if (ret) {
2142 				btrfs_dec_nocow_writers(nocow_bg);
2143 				goto error;
2144 			}
2145 		}
2146 
2147 		nocow_end = cur_offset + nocow_args.num_bytes - 1;
2148 		is_prealloc = extent_type == BTRFS_FILE_EXTENT_PREALLOC;
2149 		if (is_prealloc) {
2150 			u64 orig_start = found_key.offset - nocow_args.extent_offset;
2151 			struct extent_map *em;
2152 
2153 			em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
2154 					  orig_start,
2155 					  nocow_args.disk_bytenr, /* block_start */
2156 					  nocow_args.num_bytes, /* block_len */
2157 					  nocow_args.disk_num_bytes, /* orig_block_len */
2158 					  ram_bytes, BTRFS_COMPRESS_NONE,
2159 					  BTRFS_ORDERED_PREALLOC);
2160 			if (IS_ERR(em)) {
2161 				btrfs_dec_nocow_writers(nocow_bg);
2162 				ret = PTR_ERR(em);
2163 				goto error;
2164 			}
2165 			free_extent_map(em);
2166 		}
2167 
2168 		ordered = btrfs_alloc_ordered_extent(inode, cur_offset,
2169 				nocow_args.num_bytes, nocow_args.num_bytes,
2170 				nocow_args.disk_bytenr, nocow_args.num_bytes, 0,
2171 				is_prealloc
2172 				? (1 << BTRFS_ORDERED_PREALLOC)
2173 				: (1 << BTRFS_ORDERED_NOCOW),
2174 				BTRFS_COMPRESS_NONE);
2175 		btrfs_dec_nocow_writers(nocow_bg);
2176 		if (IS_ERR(ordered)) {
2177 			if (is_prealloc) {
2178 				btrfs_drop_extent_map_range(inode, cur_offset,
2179 							    nocow_end, false);
2180 			}
2181 			ret = PTR_ERR(ordered);
2182 			goto error;
2183 		}
2184 
2185 		if (btrfs_is_data_reloc_root(root))
2186 			/*
2187 			 * Error handled later, as we must prevent
2188 			 * extent_clear_unlock_delalloc() in error handler
2189 			 * from freeing metadata of created ordered extent.
2190 			 */
2191 			ret = btrfs_reloc_clone_csums(ordered);
2192 		btrfs_put_ordered_extent(ordered);
2193 
2194 		extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
2195 					     locked_page, EXTENT_LOCKED |
2196 					     EXTENT_DELALLOC |
2197 					     EXTENT_CLEAR_DATA_RESV,
2198 					     PAGE_UNLOCK | PAGE_SET_ORDERED);
2199 
2200 		cur_offset = extent_end;
2201 
2202 		/*
2203 		 * btrfs_reloc_clone_csums() error, now we're OK to call error
2204 		 * handler, as metadata for created ordered extent will only
2205 		 * be freed by btrfs_finish_ordered_io().
2206 		 */
2207 		if (ret)
2208 			goto error;
2209 		if (cur_offset > end)
2210 			break;
2211 	}
2212 	btrfs_release_path(path);
2213 
2214 	if (cur_offset <= end && cow_start == (u64)-1)
2215 		cow_start = cur_offset;
2216 
2217 	if (cow_start != (u64)-1) {
2218 		cur_offset = end;
2219 		ret = fallback_to_cow(inode, locked_page, cow_start, end);
2220 		cow_start = (u64)-1;
2221 		if (ret)
2222 			goto error;
2223 	}
2224 
2225 	btrfs_free_path(path);
2226 	return 0;
2227 
2228 error:
2229 	/*
2230 	 * If an error happened while a COW region is outstanding, cur_offset
2231 	 * needs to be reset to cow_start to ensure the COW region is unlocked
2232 	 * as well.
2233 	 */
2234 	if (cow_start != (u64)-1)
2235 		cur_offset = cow_start;
2236 	if (cur_offset < end)
2237 		extent_clear_unlock_delalloc(inode, cur_offset, end,
2238 					     locked_page, EXTENT_LOCKED |
2239 					     EXTENT_DELALLOC | EXTENT_DEFRAG |
2240 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
2241 					     PAGE_START_WRITEBACK |
2242 					     PAGE_END_WRITEBACK);
2243 	btrfs_free_path(path);
2244 	return ret;
2245 }
2246 
2247 static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
2248 {
2249 	if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2250 		if (inode->defrag_bytes &&
2251 		    test_range_bit_exists(&inode->io_tree, start, end, EXTENT_DEFRAG))
2252 			return false;
2253 		return true;
2254 	}
2255 	return false;
2256 }
2257 
2258 /*
2259  * Function to process delayed allocation (create CoW) for ranges which are
2260  * being touched for the first time.
2261  */
2262 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
2263 			     u64 start, u64 end, struct writeback_control *wbc)
2264 {
2265 	const bool zoned = btrfs_is_zoned(inode->root->fs_info);
2266 	int ret;
2267 
2268 	/*
2269 	 * The range must cover part of the @locked_page, or a return of 1
2270 	 * can confuse the caller.
2271 	 */
2272 	ASSERT(!(end <= page_offset(locked_page) ||
2273 		 start >= page_offset(locked_page) + PAGE_SIZE));
2274 
2275 	if (should_nocow(inode, start, end)) {
2276 		ret = run_delalloc_nocow(inode, locked_page, start, end);
2277 		goto out;
2278 	}
2279 
2280 	if (btrfs_inode_can_compress(inode) &&
2281 	    inode_need_compress(inode, start, end) &&
2282 	    run_delalloc_compressed(inode, locked_page, start, end, wbc))
2283 		return 1;
2284 
2285 	if (zoned)
2286 		ret = run_delalloc_cow(inode, locked_page, start, end, wbc,
2287 				       true);
2288 	else
2289 		ret = cow_file_range(inode, locked_page, start, end, NULL,
2290 				     false, false);
2291 
2292 out:
2293 	if (ret < 0)
2294 		btrfs_cleanup_ordered_extents(inode, locked_page, start,
2295 					      end - start + 1);
2296 	return ret;
2297 }
2298 
2299 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
2300 				 struct extent_state *orig, u64 split)
2301 {
2302 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2303 	u64 size;
2304 
2305 	lockdep_assert_held(&inode->io_tree.lock);
2306 
2307 	/* not delalloc, ignore it */
2308 	if (!(orig->state & EXTENT_DELALLOC))
2309 		return;
2310 
2311 	size = orig->end - orig->start + 1;
2312 	if (size > fs_info->max_extent_size) {
2313 		u32 num_extents;
2314 		u64 new_size;
2315 
2316 		/*
2317 		 * See the explanation in btrfs_merge_delalloc_extent, the same
2318 		 * applies here, just in reverse.
2319 		 */
2320 		new_size = orig->end - split + 1;
2321 		num_extents = count_max_extents(fs_info, new_size);
2322 		new_size = split - orig->start;
2323 		num_extents += count_max_extents(fs_info, new_size);
2324 		if (count_max_extents(fs_info, size) >= num_extents)
2325 			return;
2326 	}
2327 
2328 	spin_lock(&inode->lock);
2329 	btrfs_mod_outstanding_extents(inode, 1);
2330 	spin_unlock(&inode->lock);
2331 }
2332 
2333 /*
2334  * Handle merged delayed allocation extents so we can keep track of new extents
2335  * that are just merged onto old extents, such as when we are doing sequential
2336  * writes, so we can properly account for the metadata space we'll need.
2337  */
2338 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
2339 				 struct extent_state *other)
2340 {
2341 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2342 	u64 new_size, old_size;
2343 	u32 num_extents;
2344 
2345 	lockdep_assert_held(&inode->io_tree.lock);
2346 
2347 	/* not delalloc, ignore it */
2348 	if (!(other->state & EXTENT_DELALLOC))
2349 		return;
2350 
2351 	if (new->start > other->start)
2352 		new_size = new->end - other->start + 1;
2353 	else
2354 		new_size = other->end - new->start + 1;
2355 
2356 	/* we're not bigger than the max, unreserve the space and go */
2357 	if (new_size <= fs_info->max_extent_size) {
2358 		spin_lock(&inode->lock);
2359 		btrfs_mod_outstanding_extents(inode, -1);
2360 		spin_unlock(&inode->lock);
2361 		return;
2362 	}
2363 
2364 	/*
2365 	 * We have to add up either side to figure out how many extents were
2366 	 * accounted for before we merged into one big extent.  If the number of
2367 	 * extents we accounted for is <= the amount we need for the new range
2368 	 * then we can return, otherwise drop.  Think of it like this
2369 	 *
2370 	 * [ 4k][MAX_SIZE]
2371 	 *
2372 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2373 	 * need 2 outstanding extents, on one side we have 1 and the other side
2374 	 * we have 1 so they are == and we can return.  But in this case
2375 	 *
2376 	 * [MAX_SIZE+4k][MAX_SIZE+4k]
2377 	 *
2378 	 * Each range on their own accounts for 2 extents, but merged together
2379 	 * they are only 3 extents worth of accounting, so we need to drop in
2380 	 * this case.
2381 	 */
2382 	old_size = other->end - other->start + 1;
2383 	num_extents = count_max_extents(fs_info, old_size);
2384 	old_size = new->end - new->start + 1;
2385 	num_extents += count_max_extents(fs_info, old_size);
2386 	if (count_max_extents(fs_info, new_size) >= num_extents)
2387 		return;
2388 
2389 	spin_lock(&inode->lock);
2390 	btrfs_mod_outstanding_extents(inode, -1);
2391 	spin_unlock(&inode->lock);
2392 }
2393 
2394 static void btrfs_add_delalloc_inode(struct btrfs_inode *inode)
2395 {
2396 	struct btrfs_root *root = inode->root;
2397 	struct btrfs_fs_info *fs_info = root->fs_info;
2398 
2399 	spin_lock(&root->delalloc_lock);
2400 	ASSERT(list_empty(&inode->delalloc_inodes));
2401 	list_add_tail(&inode->delalloc_inodes, &root->delalloc_inodes);
2402 	root->nr_delalloc_inodes++;
2403 	if (root->nr_delalloc_inodes == 1) {
2404 		spin_lock(&fs_info->delalloc_root_lock);
2405 		ASSERT(list_empty(&root->delalloc_root));
2406 		list_add_tail(&root->delalloc_root, &fs_info->delalloc_roots);
2407 		spin_unlock(&fs_info->delalloc_root_lock);
2408 	}
2409 	spin_unlock(&root->delalloc_lock);
2410 }
2411 
2412 void btrfs_del_delalloc_inode(struct btrfs_inode *inode)
2413 {
2414 	struct btrfs_root *root = inode->root;
2415 	struct btrfs_fs_info *fs_info = root->fs_info;
2416 
2417 	lockdep_assert_held(&root->delalloc_lock);
2418 
2419 	/*
2420 	 * We may be called after the inode was already deleted from the list,
2421 	 * namely in the transaction abort path btrfs_destroy_delalloc_inodes(),
2422 	 * and then later through btrfs_clear_delalloc_extent() while the inode
2423 	 * still has ->delalloc_bytes > 0.
2424 	 */
2425 	if (!list_empty(&inode->delalloc_inodes)) {
2426 		list_del_init(&inode->delalloc_inodes);
2427 		root->nr_delalloc_inodes--;
2428 		if (!root->nr_delalloc_inodes) {
2429 			ASSERT(list_empty(&root->delalloc_inodes));
2430 			spin_lock(&fs_info->delalloc_root_lock);
2431 			ASSERT(!list_empty(&root->delalloc_root));
2432 			list_del_init(&root->delalloc_root);
2433 			spin_unlock(&fs_info->delalloc_root_lock);
2434 		}
2435 	}
2436 }
2437 
2438 /*
2439  * Properly track delayed allocation bytes in the inode and to maintain the
2440  * list of inodes that have pending delalloc work to be done.
2441  */
2442 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
2443 			       u32 bits)
2444 {
2445 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2446 
2447 	lockdep_assert_held(&inode->io_tree.lock);
2448 
2449 	if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
2450 		WARN_ON(1);
2451 	/*
2452 	 * set_bit and clear bit hooks normally require _irqsave/restore
2453 	 * but in this case, we are only testing for the DELALLOC
2454 	 * bit, which is only set or cleared with irqs on
2455 	 */
2456 	if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2457 		u64 len = state->end + 1 - state->start;
2458 		u64 prev_delalloc_bytes;
2459 		u32 num_extents = count_max_extents(fs_info, len);
2460 
2461 		spin_lock(&inode->lock);
2462 		btrfs_mod_outstanding_extents(inode, num_extents);
2463 		spin_unlock(&inode->lock);
2464 
2465 		/* For sanity tests */
2466 		if (btrfs_is_testing(fs_info))
2467 			return;
2468 
2469 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2470 					 fs_info->delalloc_batch);
2471 		spin_lock(&inode->lock);
2472 		prev_delalloc_bytes = inode->delalloc_bytes;
2473 		inode->delalloc_bytes += len;
2474 		if (bits & EXTENT_DEFRAG)
2475 			inode->defrag_bytes += len;
2476 		spin_unlock(&inode->lock);
2477 
2478 		/*
2479 		 * We don't need to be under the protection of the inode's lock,
2480 		 * because we are called while holding the inode's io_tree lock
2481 		 * and are therefore protected against concurrent calls of this
2482 		 * function and btrfs_clear_delalloc_extent().
2483 		 */
2484 		if (!btrfs_is_free_space_inode(inode) && prev_delalloc_bytes == 0)
2485 			btrfs_add_delalloc_inode(inode);
2486 	}
2487 
2488 	if (!(state->state & EXTENT_DELALLOC_NEW) &&
2489 	    (bits & EXTENT_DELALLOC_NEW)) {
2490 		spin_lock(&inode->lock);
2491 		inode->new_delalloc_bytes += state->end + 1 - state->start;
2492 		spin_unlock(&inode->lock);
2493 	}
2494 }
2495 
2496 /*
2497  * Once a range is no longer delalloc this function ensures that proper
2498  * accounting happens.
2499  */
2500 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
2501 				 struct extent_state *state, u32 bits)
2502 {
2503 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2504 	u64 len = state->end + 1 - state->start;
2505 	u32 num_extents = count_max_extents(fs_info, len);
2506 
2507 	lockdep_assert_held(&inode->io_tree.lock);
2508 
2509 	if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
2510 		spin_lock(&inode->lock);
2511 		inode->defrag_bytes -= len;
2512 		spin_unlock(&inode->lock);
2513 	}
2514 
2515 	/*
2516 	 * set_bit and clear bit hooks normally require _irqsave/restore
2517 	 * but in this case, we are only testing for the DELALLOC
2518 	 * bit, which is only set or cleared with irqs on
2519 	 */
2520 	if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
2521 		struct btrfs_root *root = inode->root;
2522 		u64 new_delalloc_bytes;
2523 
2524 		spin_lock(&inode->lock);
2525 		btrfs_mod_outstanding_extents(inode, -num_extents);
2526 		spin_unlock(&inode->lock);
2527 
2528 		/*
2529 		 * We don't reserve metadata space for space cache inodes so we
2530 		 * don't need to call delalloc_release_metadata if there is an
2531 		 * error.
2532 		 */
2533 		if (bits & EXTENT_CLEAR_META_RESV &&
2534 		    root != fs_info->tree_root)
2535 			btrfs_delalloc_release_metadata(inode, len, true);
2536 
2537 		/* For sanity tests. */
2538 		if (btrfs_is_testing(fs_info))
2539 			return;
2540 
2541 		if (!btrfs_is_data_reloc_root(root) &&
2542 		    !btrfs_is_free_space_inode(inode) &&
2543 		    !(state->state & EXTENT_NORESERVE) &&
2544 		    (bits & EXTENT_CLEAR_DATA_RESV))
2545 			btrfs_free_reserved_data_space_noquota(fs_info, len);
2546 
2547 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2548 					 fs_info->delalloc_batch);
2549 		spin_lock(&inode->lock);
2550 		inode->delalloc_bytes -= len;
2551 		new_delalloc_bytes = inode->delalloc_bytes;
2552 		spin_unlock(&inode->lock);
2553 
2554 		/*
2555 		 * We don't need to be under the protection of the inode's lock,
2556 		 * because we are called while holding the inode's io_tree lock
2557 		 * and are therefore protected against concurrent calls of this
2558 		 * function and btrfs_set_delalloc_extent().
2559 		 */
2560 		if (!btrfs_is_free_space_inode(inode) && new_delalloc_bytes == 0) {
2561 			spin_lock(&root->delalloc_lock);
2562 			btrfs_del_delalloc_inode(inode);
2563 			spin_unlock(&root->delalloc_lock);
2564 		}
2565 	}
2566 
2567 	if ((state->state & EXTENT_DELALLOC_NEW) &&
2568 	    (bits & EXTENT_DELALLOC_NEW)) {
2569 		spin_lock(&inode->lock);
2570 		ASSERT(inode->new_delalloc_bytes >= len);
2571 		inode->new_delalloc_bytes -= len;
2572 		if (bits & EXTENT_ADD_INODE_BYTES)
2573 			inode_add_bytes(&inode->vfs_inode, len);
2574 		spin_unlock(&inode->lock);
2575 	}
2576 }
2577 
2578 static int btrfs_extract_ordered_extent(struct btrfs_bio *bbio,
2579 					struct btrfs_ordered_extent *ordered)
2580 {
2581 	u64 start = (u64)bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
2582 	u64 len = bbio->bio.bi_iter.bi_size;
2583 	struct btrfs_ordered_extent *new;
2584 	int ret;
2585 
2586 	/* Must always be called for the beginning of an ordered extent. */
2587 	if (WARN_ON_ONCE(start != ordered->disk_bytenr))
2588 		return -EINVAL;
2589 
2590 	/* No need to split if the ordered extent covers the entire bio. */
2591 	if (ordered->disk_num_bytes == len) {
2592 		refcount_inc(&ordered->refs);
2593 		bbio->ordered = ordered;
2594 		return 0;
2595 	}
2596 
2597 	/*
2598 	 * Don't split the extent_map for NOCOW extents, as we're writing into
2599 	 * a pre-existing one.
2600 	 */
2601 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
2602 		ret = split_extent_map(bbio->inode, bbio->file_offset,
2603 				       ordered->num_bytes, len,
2604 				       ordered->disk_bytenr);
2605 		if (ret)
2606 			return ret;
2607 	}
2608 
2609 	new = btrfs_split_ordered_extent(ordered, len);
2610 	if (IS_ERR(new))
2611 		return PTR_ERR(new);
2612 	bbio->ordered = new;
2613 	return 0;
2614 }
2615 
2616 /*
2617  * given a list of ordered sums record them in the inode.  This happens
2618  * at IO completion time based on sums calculated at bio submission time.
2619  */
2620 static int add_pending_csums(struct btrfs_trans_handle *trans,
2621 			     struct list_head *list)
2622 {
2623 	struct btrfs_ordered_sum *sum;
2624 	struct btrfs_root *csum_root = NULL;
2625 	int ret;
2626 
2627 	list_for_each_entry(sum, list, list) {
2628 		trans->adding_csums = true;
2629 		if (!csum_root)
2630 			csum_root = btrfs_csum_root(trans->fs_info,
2631 						    sum->logical);
2632 		ret = btrfs_csum_file_blocks(trans, csum_root, sum);
2633 		trans->adding_csums = false;
2634 		if (ret)
2635 			return ret;
2636 	}
2637 	return 0;
2638 }
2639 
2640 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2641 					 const u64 start,
2642 					 const u64 len,
2643 					 struct extent_state **cached_state)
2644 {
2645 	u64 search_start = start;
2646 	const u64 end = start + len - 1;
2647 
2648 	while (search_start < end) {
2649 		const u64 search_len = end - search_start + 1;
2650 		struct extent_map *em;
2651 		u64 em_len;
2652 		int ret = 0;
2653 
2654 		em = btrfs_get_extent(inode, NULL, search_start, search_len);
2655 		if (IS_ERR(em))
2656 			return PTR_ERR(em);
2657 
2658 		if (em->block_start != EXTENT_MAP_HOLE)
2659 			goto next;
2660 
2661 		em_len = em->len;
2662 		if (em->start < search_start)
2663 			em_len -= search_start - em->start;
2664 		if (em_len > search_len)
2665 			em_len = search_len;
2666 
2667 		ret = set_extent_bit(&inode->io_tree, search_start,
2668 				     search_start + em_len - 1,
2669 				     EXTENT_DELALLOC_NEW, cached_state);
2670 next:
2671 		search_start = extent_map_end(em);
2672 		free_extent_map(em);
2673 		if (ret)
2674 			return ret;
2675 	}
2676 	return 0;
2677 }
2678 
2679 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2680 			      unsigned int extra_bits,
2681 			      struct extent_state **cached_state)
2682 {
2683 	WARN_ON(PAGE_ALIGNED(end));
2684 
2685 	if (start >= i_size_read(&inode->vfs_inode) &&
2686 	    !(inode->flags & BTRFS_INODE_PREALLOC)) {
2687 		/*
2688 		 * There can't be any extents following eof in this case so just
2689 		 * set the delalloc new bit for the range directly.
2690 		 */
2691 		extra_bits |= EXTENT_DELALLOC_NEW;
2692 	} else {
2693 		int ret;
2694 
2695 		ret = btrfs_find_new_delalloc_bytes(inode, start,
2696 						    end + 1 - start,
2697 						    cached_state);
2698 		if (ret)
2699 			return ret;
2700 	}
2701 
2702 	return set_extent_bit(&inode->io_tree, start, end,
2703 			      EXTENT_DELALLOC | extra_bits, cached_state);
2704 }
2705 
2706 /* see btrfs_writepage_start_hook for details on why this is required */
2707 struct btrfs_writepage_fixup {
2708 	struct page *page;
2709 	struct btrfs_inode *inode;
2710 	struct btrfs_work work;
2711 };
2712 
2713 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2714 {
2715 	struct btrfs_writepage_fixup *fixup =
2716 		container_of(work, struct btrfs_writepage_fixup, work);
2717 	struct btrfs_ordered_extent *ordered;
2718 	struct extent_state *cached_state = NULL;
2719 	struct extent_changeset *data_reserved = NULL;
2720 	struct page *page = fixup->page;
2721 	struct btrfs_inode *inode = fixup->inode;
2722 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
2723 	u64 page_start = page_offset(page);
2724 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
2725 	int ret = 0;
2726 	bool free_delalloc_space = true;
2727 
2728 	/*
2729 	 * This is similar to page_mkwrite, we need to reserve the space before
2730 	 * we take the page lock.
2731 	 */
2732 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2733 					   PAGE_SIZE);
2734 again:
2735 	lock_page(page);
2736 
2737 	/*
2738 	 * Before we queued this fixup, we took a reference on the page.
2739 	 * page->mapping may go NULL, but it shouldn't be moved to a different
2740 	 * address space.
2741 	 */
2742 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2743 		/*
2744 		 * Unfortunately this is a little tricky, either
2745 		 *
2746 		 * 1) We got here and our page had already been dealt with and
2747 		 *    we reserved our space, thus ret == 0, so we need to just
2748 		 *    drop our space reservation and bail.  This can happen the
2749 		 *    first time we come into the fixup worker, or could happen
2750 		 *    while waiting for the ordered extent.
2751 		 * 2) Our page was already dealt with, but we happened to get an
2752 		 *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2753 		 *    this case we obviously don't have anything to release, but
2754 		 *    because the page was already dealt with we don't want to
2755 		 *    mark the page with an error, so make sure we're resetting
2756 		 *    ret to 0.  This is why we have this check _before_ the ret
2757 		 *    check, because we do not want to have a surprise ENOSPC
2758 		 *    when the page was already properly dealt with.
2759 		 */
2760 		if (!ret) {
2761 			btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2762 			btrfs_delalloc_release_space(inode, data_reserved,
2763 						     page_start, PAGE_SIZE,
2764 						     true);
2765 		}
2766 		ret = 0;
2767 		goto out_page;
2768 	}
2769 
2770 	/*
2771 	 * We can't mess with the page state unless it is locked, so now that
2772 	 * it is locked bail if we failed to make our space reservation.
2773 	 */
2774 	if (ret)
2775 		goto out_page;
2776 
2777 	lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2778 
2779 	/* already ordered? We're done */
2780 	if (PageOrdered(page))
2781 		goto out_reserved;
2782 
2783 	ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
2784 	if (ordered) {
2785 		unlock_extent(&inode->io_tree, page_start, page_end,
2786 			      &cached_state);
2787 		unlock_page(page);
2788 		btrfs_start_ordered_extent(ordered);
2789 		btrfs_put_ordered_extent(ordered);
2790 		goto again;
2791 	}
2792 
2793 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2794 					&cached_state);
2795 	if (ret)
2796 		goto out_reserved;
2797 
2798 	/*
2799 	 * Everything went as planned, we're now the owner of a dirty page with
2800 	 * delayed allocation bits set and space reserved for our COW
2801 	 * destination.
2802 	 *
2803 	 * The page was dirty when we started, nothing should have cleaned it.
2804 	 */
2805 	BUG_ON(!PageDirty(page));
2806 	free_delalloc_space = false;
2807 out_reserved:
2808 	btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2809 	if (free_delalloc_space)
2810 		btrfs_delalloc_release_space(inode, data_reserved, page_start,
2811 					     PAGE_SIZE, true);
2812 	unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
2813 out_page:
2814 	if (ret) {
2815 		/*
2816 		 * We hit ENOSPC or other errors.  Update the mapping and page
2817 		 * to reflect the errors and clean the page.
2818 		 */
2819 		mapping_set_error(page->mapping, ret);
2820 		btrfs_mark_ordered_io_finished(inode, page, page_start,
2821 					       PAGE_SIZE, !ret);
2822 		clear_page_dirty_for_io(page);
2823 	}
2824 	btrfs_folio_clear_checked(fs_info, page_folio(page), page_start, PAGE_SIZE);
2825 	unlock_page(page);
2826 	put_page(page);
2827 	kfree(fixup);
2828 	extent_changeset_free(data_reserved);
2829 	/*
2830 	 * As a precaution, do a delayed iput in case it would be the last iput
2831 	 * that could need flushing space. Recursing back to fixup worker would
2832 	 * deadlock.
2833 	 */
2834 	btrfs_add_delayed_iput(inode);
2835 }
2836 
2837 /*
2838  * There are a few paths in the higher layers of the kernel that directly
2839  * set the page dirty bit without asking the filesystem if it is a
2840  * good idea.  This causes problems because we want to make sure COW
2841  * properly happens and the data=ordered rules are followed.
2842  *
2843  * In our case any range that doesn't have the ORDERED bit set
2844  * hasn't been properly setup for IO.  We kick off an async process
2845  * to fix it up.  The async helper will wait for ordered extents, set
2846  * the delalloc bit and make it safe to write the page.
2847  */
2848 int btrfs_writepage_cow_fixup(struct page *page)
2849 {
2850 	struct inode *inode = page->mapping->host;
2851 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2852 	struct btrfs_writepage_fixup *fixup;
2853 
2854 	/* This page has ordered extent covering it already */
2855 	if (PageOrdered(page))
2856 		return 0;
2857 
2858 	/*
2859 	 * PageChecked is set below when we create a fixup worker for this page,
2860 	 * don't try to create another one if we're already PageChecked()
2861 	 *
2862 	 * The extent_io writepage code will redirty the page if we send back
2863 	 * EAGAIN.
2864 	 */
2865 	if (PageChecked(page))
2866 		return -EAGAIN;
2867 
2868 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2869 	if (!fixup)
2870 		return -EAGAIN;
2871 
2872 	/*
2873 	 * We are already holding a reference to this inode from
2874 	 * write_cache_pages.  We need to hold it because the space reservation
2875 	 * takes place outside of the page lock, and we can't trust
2876 	 * page->mapping outside of the page lock.
2877 	 */
2878 	ihold(inode);
2879 	btrfs_folio_set_checked(fs_info, page_folio(page), page_offset(page), PAGE_SIZE);
2880 	get_page(page);
2881 	btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL);
2882 	fixup->page = page;
2883 	fixup->inode = BTRFS_I(inode);
2884 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2885 
2886 	return -EAGAIN;
2887 }
2888 
2889 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2890 				       struct btrfs_inode *inode, u64 file_pos,
2891 				       struct btrfs_file_extent_item *stack_fi,
2892 				       const bool update_inode_bytes,
2893 				       u64 qgroup_reserved)
2894 {
2895 	struct btrfs_root *root = inode->root;
2896 	const u64 sectorsize = root->fs_info->sectorsize;
2897 	struct btrfs_path *path;
2898 	struct extent_buffer *leaf;
2899 	struct btrfs_key ins;
2900 	u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
2901 	u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
2902 	u64 offset = btrfs_stack_file_extent_offset(stack_fi);
2903 	u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
2904 	u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
2905 	struct btrfs_drop_extents_args drop_args = { 0 };
2906 	int ret;
2907 
2908 	path = btrfs_alloc_path();
2909 	if (!path)
2910 		return -ENOMEM;
2911 
2912 	/*
2913 	 * we may be replacing one extent in the tree with another.
2914 	 * The new extent is pinned in the extent map, and we don't want
2915 	 * to drop it from the cache until it is completely in the btree.
2916 	 *
2917 	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2918 	 * the caller is expected to unpin it and allow it to be merged
2919 	 * with the others.
2920 	 */
2921 	drop_args.path = path;
2922 	drop_args.start = file_pos;
2923 	drop_args.end = file_pos + num_bytes;
2924 	drop_args.replace_extent = true;
2925 	drop_args.extent_item_size = sizeof(*stack_fi);
2926 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2927 	if (ret)
2928 		goto out;
2929 
2930 	if (!drop_args.extent_inserted) {
2931 		ins.objectid = btrfs_ino(inode);
2932 		ins.offset = file_pos;
2933 		ins.type = BTRFS_EXTENT_DATA_KEY;
2934 
2935 		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2936 					      sizeof(*stack_fi));
2937 		if (ret)
2938 			goto out;
2939 	}
2940 	leaf = path->nodes[0];
2941 	btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
2942 	write_extent_buffer(leaf, stack_fi,
2943 			btrfs_item_ptr_offset(leaf, path->slots[0]),
2944 			sizeof(struct btrfs_file_extent_item));
2945 
2946 	btrfs_mark_buffer_dirty(trans, leaf);
2947 	btrfs_release_path(path);
2948 
2949 	/*
2950 	 * If we dropped an inline extent here, we know the range where it is
2951 	 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
2952 	 * number of bytes only for that range containing the inline extent.
2953 	 * The remaining of the range will be processed when clearning the
2954 	 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
2955 	 */
2956 	if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
2957 		u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
2958 
2959 		inline_size = drop_args.bytes_found - inline_size;
2960 		btrfs_update_inode_bytes(inode, sectorsize, inline_size);
2961 		drop_args.bytes_found -= inline_size;
2962 		num_bytes -= sectorsize;
2963 	}
2964 
2965 	if (update_inode_bytes)
2966 		btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
2967 
2968 	ins.objectid = disk_bytenr;
2969 	ins.offset = disk_num_bytes;
2970 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2971 
2972 	ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
2973 	if (ret)
2974 		goto out;
2975 
2976 	ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
2977 					       file_pos - offset,
2978 					       qgroup_reserved, &ins);
2979 out:
2980 	btrfs_free_path(path);
2981 
2982 	return ret;
2983 }
2984 
2985 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2986 					 u64 start, u64 len)
2987 {
2988 	struct btrfs_block_group *cache;
2989 
2990 	cache = btrfs_lookup_block_group(fs_info, start);
2991 	ASSERT(cache);
2992 
2993 	spin_lock(&cache->lock);
2994 	cache->delalloc_bytes -= len;
2995 	spin_unlock(&cache->lock);
2996 
2997 	btrfs_put_block_group(cache);
2998 }
2999 
3000 static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
3001 					     struct btrfs_ordered_extent *oe)
3002 {
3003 	struct btrfs_file_extent_item stack_fi;
3004 	bool update_inode_bytes;
3005 	u64 num_bytes = oe->num_bytes;
3006 	u64 ram_bytes = oe->ram_bytes;
3007 
3008 	memset(&stack_fi, 0, sizeof(stack_fi));
3009 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3010 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3011 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3012 						   oe->disk_num_bytes);
3013 	btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
3014 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3015 		num_bytes = oe->truncated_len;
3016 		ram_bytes = num_bytes;
3017 	}
3018 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3019 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
3020 	btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3021 	/* Encryption and other encoding is reserved and all 0 */
3022 
3023 	/*
3024 	 * For delalloc, when completing an ordered extent we update the inode's
3025 	 * bytes when clearing the range in the inode's io tree, so pass false
3026 	 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3027 	 * except if the ordered extent was truncated.
3028 	 */
3029 	update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
3030 			     test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
3031 			     test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3032 
3033 	return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3034 					   oe->file_offset, &stack_fi,
3035 					   update_inode_bytes, oe->qgroup_rsv);
3036 }
3037 
3038 /*
3039  * As ordered data IO finishes, this gets called so we can finish
3040  * an ordered extent if the range of bytes in the file it covers are
3041  * fully written.
3042  */
3043 int btrfs_finish_one_ordered(struct btrfs_ordered_extent *ordered_extent)
3044 {
3045 	struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3046 	struct btrfs_root *root = inode->root;
3047 	struct btrfs_fs_info *fs_info = root->fs_info;
3048 	struct btrfs_trans_handle *trans = NULL;
3049 	struct extent_io_tree *io_tree = &inode->io_tree;
3050 	struct extent_state *cached_state = NULL;
3051 	u64 start, end;
3052 	int compress_type = 0;
3053 	int ret = 0;
3054 	u64 logical_len = ordered_extent->num_bytes;
3055 	bool freespace_inode;
3056 	bool truncated = false;
3057 	bool clear_reserved_extent = true;
3058 	unsigned int clear_bits = EXTENT_DEFRAG;
3059 
3060 	start = ordered_extent->file_offset;
3061 	end = start + ordered_extent->num_bytes - 1;
3062 
3063 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3064 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
3065 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3066 	    !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
3067 		clear_bits |= EXTENT_DELALLOC_NEW;
3068 
3069 	freespace_inode = btrfs_is_free_space_inode(inode);
3070 	if (!freespace_inode)
3071 		btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
3072 
3073 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3074 		ret = -EIO;
3075 		goto out;
3076 	}
3077 
3078 	if (btrfs_is_zoned(fs_info))
3079 		btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3080 					ordered_extent->disk_num_bytes);
3081 
3082 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3083 		truncated = true;
3084 		logical_len = ordered_extent->truncated_len;
3085 		/* Truncated the entire extent, don't bother adding */
3086 		if (!logical_len)
3087 			goto out;
3088 	}
3089 
3090 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
3091 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
3092 
3093 		btrfs_inode_safe_disk_i_size_write(inode, 0);
3094 		if (freespace_inode)
3095 			trans = btrfs_join_transaction_spacecache(root);
3096 		else
3097 			trans = btrfs_join_transaction(root);
3098 		if (IS_ERR(trans)) {
3099 			ret = PTR_ERR(trans);
3100 			trans = NULL;
3101 			goto out;
3102 		}
3103 		trans->block_rsv = &inode->block_rsv;
3104 		ret = btrfs_update_inode_fallback(trans, inode);
3105 		if (ret) /* -ENOMEM or corruption */
3106 			btrfs_abort_transaction(trans, ret);
3107 		goto out;
3108 	}
3109 
3110 	clear_bits |= EXTENT_LOCKED;
3111 	lock_extent(io_tree, start, end, &cached_state);
3112 
3113 	if (freespace_inode)
3114 		trans = btrfs_join_transaction_spacecache(root);
3115 	else
3116 		trans = btrfs_join_transaction(root);
3117 	if (IS_ERR(trans)) {
3118 		ret = PTR_ERR(trans);
3119 		trans = NULL;
3120 		goto out;
3121 	}
3122 
3123 	trans->block_rsv = &inode->block_rsv;
3124 
3125 	ret = btrfs_insert_raid_extent(trans, ordered_extent);
3126 	if (ret)
3127 		goto out;
3128 
3129 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3130 		compress_type = ordered_extent->compress_type;
3131 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3132 		BUG_ON(compress_type);
3133 		ret = btrfs_mark_extent_written(trans, inode,
3134 						ordered_extent->file_offset,
3135 						ordered_extent->file_offset +
3136 						logical_len);
3137 		btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3138 						  ordered_extent->disk_num_bytes);
3139 	} else {
3140 		BUG_ON(root == fs_info->tree_root);
3141 		ret = insert_ordered_extent_file_extent(trans, ordered_extent);
3142 		if (!ret) {
3143 			clear_reserved_extent = false;
3144 			btrfs_release_delalloc_bytes(fs_info,
3145 						ordered_extent->disk_bytenr,
3146 						ordered_extent->disk_num_bytes);
3147 		}
3148 	}
3149 	if (ret < 0) {
3150 		btrfs_abort_transaction(trans, ret);
3151 		goto out;
3152 	}
3153 
3154 	ret = unpin_extent_cache(inode, ordered_extent->file_offset,
3155 				 ordered_extent->num_bytes, trans->transid);
3156 	if (ret < 0) {
3157 		btrfs_abort_transaction(trans, ret);
3158 		goto out;
3159 	}
3160 
3161 	ret = add_pending_csums(trans, &ordered_extent->list);
3162 	if (ret) {
3163 		btrfs_abort_transaction(trans, ret);
3164 		goto out;
3165 	}
3166 
3167 	/*
3168 	 * If this is a new delalloc range, clear its new delalloc flag to
3169 	 * update the inode's number of bytes. This needs to be done first
3170 	 * before updating the inode item.
3171 	 */
3172 	if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3173 	    !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
3174 		clear_extent_bit(&inode->io_tree, start, end,
3175 				 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
3176 				 &cached_state);
3177 
3178 	btrfs_inode_safe_disk_i_size_write(inode, 0);
3179 	ret = btrfs_update_inode_fallback(trans, inode);
3180 	if (ret) { /* -ENOMEM or corruption */
3181 		btrfs_abort_transaction(trans, ret);
3182 		goto out;
3183 	}
3184 	ret = 0;
3185 out:
3186 	clear_extent_bit(&inode->io_tree, start, end, clear_bits,
3187 			 &cached_state);
3188 
3189 	if (trans)
3190 		btrfs_end_transaction(trans);
3191 
3192 	if (ret || truncated) {
3193 		u64 unwritten_start = start;
3194 
3195 		/*
3196 		 * If we failed to finish this ordered extent for any reason we
3197 		 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3198 		 * extent, and mark the inode with the error if it wasn't
3199 		 * already set.  Any error during writeback would have already
3200 		 * set the mapping error, so we need to set it if we're the ones
3201 		 * marking this ordered extent as failed.
3202 		 */
3203 		if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3204 					     &ordered_extent->flags))
3205 			mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3206 
3207 		if (truncated)
3208 			unwritten_start += logical_len;
3209 		clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
3210 
3211 		/*
3212 		 * Drop extent maps for the part of the extent we didn't write.
3213 		 *
3214 		 * We have an exception here for the free_space_inode, this is
3215 		 * because when we do btrfs_get_extent() on the free space inode
3216 		 * we will search the commit root.  If this is a new block group
3217 		 * we won't find anything, and we will trip over the assert in
3218 		 * writepage where we do ASSERT(em->block_start !=
3219 		 * EXTENT_MAP_HOLE).
3220 		 *
3221 		 * Theoretically we could also skip this for any NOCOW extent as
3222 		 * we don't mess with the extent map tree in the NOCOW case, but
3223 		 * for now simply skip this if we are the free space inode.
3224 		 */
3225 		if (!btrfs_is_free_space_inode(inode))
3226 			btrfs_drop_extent_map_range(inode, unwritten_start,
3227 						    end, false);
3228 
3229 		/*
3230 		 * If the ordered extent had an IOERR or something else went
3231 		 * wrong we need to return the space for this ordered extent
3232 		 * back to the allocator.  We only free the extent in the
3233 		 * truncated case if we didn't write out the extent at all.
3234 		 *
3235 		 * If we made it past insert_reserved_file_extent before we
3236 		 * errored out then we don't need to do this as the accounting
3237 		 * has already been done.
3238 		 */
3239 		if ((ret || !logical_len) &&
3240 		    clear_reserved_extent &&
3241 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3242 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3243 			/*
3244 			 * Discard the range before returning it back to the
3245 			 * free space pool
3246 			 */
3247 			if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
3248 				btrfs_discard_extent(fs_info,
3249 						ordered_extent->disk_bytenr,
3250 						ordered_extent->disk_num_bytes,
3251 						NULL);
3252 			btrfs_free_reserved_extent(fs_info,
3253 					ordered_extent->disk_bytenr,
3254 					ordered_extent->disk_num_bytes, 1);
3255 			/*
3256 			 * Actually free the qgroup rsv which was released when
3257 			 * the ordered extent was created.
3258 			 */
3259 			btrfs_qgroup_free_refroot(fs_info, inode->root->root_key.objectid,
3260 						  ordered_extent->qgroup_rsv,
3261 						  BTRFS_QGROUP_RSV_DATA);
3262 		}
3263 	}
3264 
3265 	/*
3266 	 * This needs to be done to make sure anybody waiting knows we are done
3267 	 * updating everything for this ordered extent.
3268 	 */
3269 	btrfs_remove_ordered_extent(inode, ordered_extent);
3270 
3271 	/* once for us */
3272 	btrfs_put_ordered_extent(ordered_extent);
3273 	/* once for the tree */
3274 	btrfs_put_ordered_extent(ordered_extent);
3275 
3276 	return ret;
3277 }
3278 
3279 int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered)
3280 {
3281 	if (btrfs_is_zoned(inode_to_fs_info(ordered->inode)) &&
3282 	    !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3283 	    list_empty(&ordered->bioc_list))
3284 		btrfs_finish_ordered_zoned(ordered);
3285 	return btrfs_finish_one_ordered(ordered);
3286 }
3287 
3288 /*
3289  * Verify the checksum for a single sector without any extra action that depend
3290  * on the type of I/O.
3291  */
3292 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3293 			    u32 pgoff, u8 *csum, const u8 * const csum_expected)
3294 {
3295 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3296 	char *kaddr;
3297 
3298 	ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3299 
3300 	shash->tfm = fs_info->csum_shash;
3301 
3302 	kaddr = kmap_local_page(page) + pgoff;
3303 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3304 	kunmap_local(kaddr);
3305 
3306 	if (memcmp(csum, csum_expected, fs_info->csum_size))
3307 		return -EIO;
3308 	return 0;
3309 }
3310 
3311 /*
3312  * Verify the checksum of a single data sector.
3313  *
3314  * @bbio:	btrfs_io_bio which contains the csum
3315  * @dev:	device the sector is on
3316  * @bio_offset:	offset to the beginning of the bio (in bytes)
3317  * @bv:		bio_vec to check
3318  *
3319  * Check if the checksum on a data block is valid.  When a checksum mismatch is
3320  * detected, report the error and fill the corrupted range with zero.
3321  *
3322  * Return %true if the sector is ok or had no checksum to start with, else %false.
3323  */
3324 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
3325 			u32 bio_offset, struct bio_vec *bv)
3326 {
3327 	struct btrfs_inode *inode = bbio->inode;
3328 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3329 	u64 file_offset = bbio->file_offset + bio_offset;
3330 	u64 end = file_offset + bv->bv_len - 1;
3331 	u8 *csum_expected;
3332 	u8 csum[BTRFS_CSUM_SIZE];
3333 
3334 	ASSERT(bv->bv_len == fs_info->sectorsize);
3335 
3336 	if (!bbio->csum)
3337 		return true;
3338 
3339 	if (btrfs_is_data_reloc_root(inode->root) &&
3340 	    test_range_bit(&inode->io_tree, file_offset, end, EXTENT_NODATASUM,
3341 			   NULL)) {
3342 		/* Skip the range without csum for data reloc inode */
3343 		clear_extent_bits(&inode->io_tree, file_offset, end,
3344 				  EXTENT_NODATASUM);
3345 		return true;
3346 	}
3347 
3348 	csum_expected = bbio->csum + (bio_offset >> fs_info->sectorsize_bits) *
3349 				fs_info->csum_size;
3350 	if (btrfs_check_sector_csum(fs_info, bv->bv_page, bv->bv_offset, csum,
3351 				    csum_expected))
3352 		goto zeroit;
3353 	return true;
3354 
3355 zeroit:
3356 	btrfs_print_data_csum_error(inode, file_offset, csum, csum_expected,
3357 				    bbio->mirror_num);
3358 	if (dev)
3359 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
3360 	memzero_bvec(bv);
3361 	return false;
3362 }
3363 
3364 /*
3365  * Perform a delayed iput on @inode.
3366  *
3367  * @inode: The inode we want to perform iput on
3368  *
3369  * This function uses the generic vfs_inode::i_count to track whether we should
3370  * just decrement it (in case it's > 1) or if this is the last iput then link
3371  * the inode to the delayed iput machinery. Delayed iputs are processed at
3372  * transaction commit time/superblock commit/cleaner kthread.
3373  */
3374 void btrfs_add_delayed_iput(struct btrfs_inode *inode)
3375 {
3376 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3377 	unsigned long flags;
3378 
3379 	if (atomic_add_unless(&inode->vfs_inode.i_count, -1, 1))
3380 		return;
3381 
3382 	atomic_inc(&fs_info->nr_delayed_iputs);
3383 	/*
3384 	 * Need to be irq safe here because we can be called from either an irq
3385 	 * context (see bio.c and btrfs_put_ordered_extent()) or a non-irq
3386 	 * context.
3387 	 */
3388 	spin_lock_irqsave(&fs_info->delayed_iput_lock, flags);
3389 	ASSERT(list_empty(&inode->delayed_iput));
3390 	list_add_tail(&inode->delayed_iput, &fs_info->delayed_iputs);
3391 	spin_unlock_irqrestore(&fs_info->delayed_iput_lock, flags);
3392 	if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3393 		wake_up_process(fs_info->cleaner_kthread);
3394 }
3395 
3396 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3397 				    struct btrfs_inode *inode)
3398 {
3399 	list_del_init(&inode->delayed_iput);
3400 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3401 	iput(&inode->vfs_inode);
3402 	if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3403 		wake_up(&fs_info->delayed_iputs_wait);
3404 	spin_lock_irq(&fs_info->delayed_iput_lock);
3405 }
3406 
3407 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3408 				   struct btrfs_inode *inode)
3409 {
3410 	if (!list_empty(&inode->delayed_iput)) {
3411 		spin_lock_irq(&fs_info->delayed_iput_lock);
3412 		if (!list_empty(&inode->delayed_iput))
3413 			run_delayed_iput_locked(fs_info, inode);
3414 		spin_unlock_irq(&fs_info->delayed_iput_lock);
3415 	}
3416 }
3417 
3418 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3419 {
3420 	/*
3421 	 * btrfs_put_ordered_extent() can run in irq context (see bio.c), which
3422 	 * calls btrfs_add_delayed_iput() and that needs to lock
3423 	 * fs_info->delayed_iput_lock. So we need to disable irqs here to
3424 	 * prevent a deadlock.
3425 	 */
3426 	spin_lock_irq(&fs_info->delayed_iput_lock);
3427 	while (!list_empty(&fs_info->delayed_iputs)) {
3428 		struct btrfs_inode *inode;
3429 
3430 		inode = list_first_entry(&fs_info->delayed_iputs,
3431 				struct btrfs_inode, delayed_iput);
3432 		run_delayed_iput_locked(fs_info, inode);
3433 		if (need_resched()) {
3434 			spin_unlock_irq(&fs_info->delayed_iput_lock);
3435 			cond_resched();
3436 			spin_lock_irq(&fs_info->delayed_iput_lock);
3437 		}
3438 	}
3439 	spin_unlock_irq(&fs_info->delayed_iput_lock);
3440 }
3441 
3442 /*
3443  * Wait for flushing all delayed iputs
3444  *
3445  * @fs_info:  the filesystem
3446  *
3447  * This will wait on any delayed iputs that are currently running with KILLABLE
3448  * set.  Once they are all done running we will return, unless we are killed in
3449  * which case we return EINTR. This helps in user operations like fallocate etc
3450  * that might get blocked on the iputs.
3451  *
3452  * Return EINTR if we were killed, 0 if nothing's pending
3453  */
3454 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3455 {
3456 	int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3457 			atomic_read(&fs_info->nr_delayed_iputs) == 0);
3458 	if (ret)
3459 		return -EINTR;
3460 	return 0;
3461 }
3462 
3463 /*
3464  * This creates an orphan entry for the given inode in case something goes wrong
3465  * in the middle of an unlink.
3466  */
3467 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3468 		     struct btrfs_inode *inode)
3469 {
3470 	int ret;
3471 
3472 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3473 	if (ret && ret != -EEXIST) {
3474 		btrfs_abort_transaction(trans, ret);
3475 		return ret;
3476 	}
3477 
3478 	return 0;
3479 }
3480 
3481 /*
3482  * We have done the delete so we can go ahead and remove the orphan item for
3483  * this particular inode.
3484  */
3485 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3486 			    struct btrfs_inode *inode)
3487 {
3488 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3489 }
3490 
3491 /*
3492  * this cleans up any orphans that may be left on the list from the last use
3493  * of this root.
3494  */
3495 int btrfs_orphan_cleanup(struct btrfs_root *root)
3496 {
3497 	struct btrfs_fs_info *fs_info = root->fs_info;
3498 	struct btrfs_path *path;
3499 	struct extent_buffer *leaf;
3500 	struct btrfs_key key, found_key;
3501 	struct btrfs_trans_handle *trans;
3502 	struct inode *inode;
3503 	u64 last_objectid = 0;
3504 	int ret = 0, nr_unlink = 0;
3505 
3506 	if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
3507 		return 0;
3508 
3509 	path = btrfs_alloc_path();
3510 	if (!path) {
3511 		ret = -ENOMEM;
3512 		goto out;
3513 	}
3514 	path->reada = READA_BACK;
3515 
3516 	key.objectid = BTRFS_ORPHAN_OBJECTID;
3517 	key.type = BTRFS_ORPHAN_ITEM_KEY;
3518 	key.offset = (u64)-1;
3519 
3520 	while (1) {
3521 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3522 		if (ret < 0)
3523 			goto out;
3524 
3525 		/*
3526 		 * if ret == 0 means we found what we were searching for, which
3527 		 * is weird, but possible, so only screw with path if we didn't
3528 		 * find the key and see if we have stuff that matches
3529 		 */
3530 		if (ret > 0) {
3531 			ret = 0;
3532 			if (path->slots[0] == 0)
3533 				break;
3534 			path->slots[0]--;
3535 		}
3536 
3537 		/* pull out the item */
3538 		leaf = path->nodes[0];
3539 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3540 
3541 		/* make sure the item matches what we want */
3542 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3543 			break;
3544 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3545 			break;
3546 
3547 		/* release the path since we're done with it */
3548 		btrfs_release_path(path);
3549 
3550 		/*
3551 		 * this is where we are basically btrfs_lookup, without the
3552 		 * crossing root thing.  we store the inode number in the
3553 		 * offset of the orphan item.
3554 		 */
3555 
3556 		if (found_key.offset == last_objectid) {
3557 			/*
3558 			 * We found the same inode as before. This means we were
3559 			 * not able to remove its items via eviction triggered
3560 			 * by an iput(). A transaction abort may have happened,
3561 			 * due to -ENOSPC for example, so try to grab the error
3562 			 * that lead to a transaction abort, if any.
3563 			 */
3564 			btrfs_err(fs_info,
3565 				  "Error removing orphan entry, stopping orphan cleanup");
3566 			ret = BTRFS_FS_ERROR(fs_info) ?: -EINVAL;
3567 			goto out;
3568 		}
3569 
3570 		last_objectid = found_key.offset;
3571 
3572 		found_key.objectid = found_key.offset;
3573 		found_key.type = BTRFS_INODE_ITEM_KEY;
3574 		found_key.offset = 0;
3575 		inode = btrfs_iget(fs_info->sb, last_objectid, root);
3576 		if (IS_ERR(inode)) {
3577 			ret = PTR_ERR(inode);
3578 			inode = NULL;
3579 			if (ret != -ENOENT)
3580 				goto out;
3581 		}
3582 
3583 		if (!inode && root == fs_info->tree_root) {
3584 			struct btrfs_root *dead_root;
3585 			int is_dead_root = 0;
3586 
3587 			/*
3588 			 * This is an orphan in the tree root. Currently these
3589 			 * could come from 2 sources:
3590 			 *  a) a root (snapshot/subvolume) deletion in progress
3591 			 *  b) a free space cache inode
3592 			 * We need to distinguish those two, as the orphan item
3593 			 * for a root must not get deleted before the deletion
3594 			 * of the snapshot/subvolume's tree completes.
3595 			 *
3596 			 * btrfs_find_orphan_roots() ran before us, which has
3597 			 * found all deleted roots and loaded them into
3598 			 * fs_info->fs_roots_radix. So here we can find if an
3599 			 * orphan item corresponds to a deleted root by looking
3600 			 * up the root from that radix tree.
3601 			 */
3602 
3603 			spin_lock(&fs_info->fs_roots_radix_lock);
3604 			dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3605 							 (unsigned long)found_key.objectid);
3606 			if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3607 				is_dead_root = 1;
3608 			spin_unlock(&fs_info->fs_roots_radix_lock);
3609 
3610 			if (is_dead_root) {
3611 				/* prevent this orphan from being found again */
3612 				key.offset = found_key.objectid - 1;
3613 				continue;
3614 			}
3615 
3616 		}
3617 
3618 		/*
3619 		 * If we have an inode with links, there are a couple of
3620 		 * possibilities:
3621 		 *
3622 		 * 1. We were halfway through creating fsverity metadata for the
3623 		 * file. In that case, the orphan item represents incomplete
3624 		 * fsverity metadata which must be cleaned up with
3625 		 * btrfs_drop_verity_items and deleting the orphan item.
3626 
3627 		 * 2. Old kernels (before v3.12) used to create an
3628 		 * orphan item for truncate indicating that there were possibly
3629 		 * extent items past i_size that needed to be deleted. In v3.12,
3630 		 * truncate was changed to update i_size in sync with the extent
3631 		 * items, but the (useless) orphan item was still created. Since
3632 		 * v4.18, we don't create the orphan item for truncate at all.
3633 		 *
3634 		 * So, this item could mean that we need to do a truncate, but
3635 		 * only if this filesystem was last used on a pre-v3.12 kernel
3636 		 * and was not cleanly unmounted. The odds of that are quite
3637 		 * slim, and it's a pain to do the truncate now, so just delete
3638 		 * the orphan item.
3639 		 *
3640 		 * It's also possible that this orphan item was supposed to be
3641 		 * deleted but wasn't. The inode number may have been reused,
3642 		 * but either way, we can delete the orphan item.
3643 		 */
3644 		if (!inode || inode->i_nlink) {
3645 			if (inode) {
3646 				ret = btrfs_drop_verity_items(BTRFS_I(inode));
3647 				iput(inode);
3648 				inode = NULL;
3649 				if (ret)
3650 					goto out;
3651 			}
3652 			trans = btrfs_start_transaction(root, 1);
3653 			if (IS_ERR(trans)) {
3654 				ret = PTR_ERR(trans);
3655 				goto out;
3656 			}
3657 			btrfs_debug(fs_info, "auto deleting %Lu",
3658 				    found_key.objectid);
3659 			ret = btrfs_del_orphan_item(trans, root,
3660 						    found_key.objectid);
3661 			btrfs_end_transaction(trans);
3662 			if (ret)
3663 				goto out;
3664 			continue;
3665 		}
3666 
3667 		nr_unlink++;
3668 
3669 		/* this will do delete_inode and everything for us */
3670 		iput(inode);
3671 	}
3672 	/* release the path since we're done with it */
3673 	btrfs_release_path(path);
3674 
3675 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3676 		trans = btrfs_join_transaction(root);
3677 		if (!IS_ERR(trans))
3678 			btrfs_end_transaction(trans);
3679 	}
3680 
3681 	if (nr_unlink)
3682 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3683 
3684 out:
3685 	if (ret)
3686 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3687 	btrfs_free_path(path);
3688 	return ret;
3689 }
3690 
3691 /*
3692  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3693  * don't find any xattrs, we know there can't be any acls.
3694  *
3695  * slot is the slot the inode is in, objectid is the objectid of the inode
3696  */
3697 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3698 					  int slot, u64 objectid,
3699 					  int *first_xattr_slot)
3700 {
3701 	u32 nritems = btrfs_header_nritems(leaf);
3702 	struct btrfs_key found_key;
3703 	static u64 xattr_access = 0;
3704 	static u64 xattr_default = 0;
3705 	int scanned = 0;
3706 
3707 	if (!xattr_access) {
3708 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3709 					strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3710 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3711 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3712 	}
3713 
3714 	slot++;
3715 	*first_xattr_slot = -1;
3716 	while (slot < nritems) {
3717 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3718 
3719 		/* we found a different objectid, there must not be acls */
3720 		if (found_key.objectid != objectid)
3721 			return 0;
3722 
3723 		/* we found an xattr, assume we've got an acl */
3724 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3725 			if (*first_xattr_slot == -1)
3726 				*first_xattr_slot = slot;
3727 			if (found_key.offset == xattr_access ||
3728 			    found_key.offset == xattr_default)
3729 				return 1;
3730 		}
3731 
3732 		/*
3733 		 * we found a key greater than an xattr key, there can't
3734 		 * be any acls later on
3735 		 */
3736 		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3737 			return 0;
3738 
3739 		slot++;
3740 		scanned++;
3741 
3742 		/*
3743 		 * it goes inode, inode backrefs, xattrs, extents,
3744 		 * so if there are a ton of hard links to an inode there can
3745 		 * be a lot of backrefs.  Don't waste time searching too hard,
3746 		 * this is just an optimization
3747 		 */
3748 		if (scanned >= 8)
3749 			break;
3750 	}
3751 	/* we hit the end of the leaf before we found an xattr or
3752 	 * something larger than an xattr.  We have to assume the inode
3753 	 * has acls
3754 	 */
3755 	if (*first_xattr_slot == -1)
3756 		*first_xattr_slot = slot;
3757 	return 1;
3758 }
3759 
3760 /*
3761  * read an inode from the btree into the in-memory inode
3762  */
3763 static int btrfs_read_locked_inode(struct inode *inode,
3764 				   struct btrfs_path *in_path)
3765 {
3766 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3767 	struct btrfs_path *path = in_path;
3768 	struct extent_buffer *leaf;
3769 	struct btrfs_inode_item *inode_item;
3770 	struct btrfs_root *root = BTRFS_I(inode)->root;
3771 	struct btrfs_key location;
3772 	unsigned long ptr;
3773 	int maybe_acls;
3774 	u32 rdev;
3775 	int ret;
3776 	bool filled = false;
3777 	int first_xattr_slot;
3778 
3779 	ret = btrfs_fill_inode(inode, &rdev);
3780 	if (!ret)
3781 		filled = true;
3782 
3783 	if (!path) {
3784 		path = btrfs_alloc_path();
3785 		if (!path)
3786 			return -ENOMEM;
3787 	}
3788 
3789 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3790 
3791 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3792 	if (ret) {
3793 		if (path != in_path)
3794 			btrfs_free_path(path);
3795 		return ret;
3796 	}
3797 
3798 	leaf = path->nodes[0];
3799 
3800 	if (filled)
3801 		goto cache_index;
3802 
3803 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3804 				    struct btrfs_inode_item);
3805 	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3806 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3807 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3808 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3809 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3810 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3811 			round_up(i_size_read(inode), fs_info->sectorsize));
3812 
3813 	inode_set_atime(inode, btrfs_timespec_sec(leaf, &inode_item->atime),
3814 			btrfs_timespec_nsec(leaf, &inode_item->atime));
3815 
3816 	inode_set_mtime(inode, btrfs_timespec_sec(leaf, &inode_item->mtime),
3817 			btrfs_timespec_nsec(leaf, &inode_item->mtime));
3818 
3819 	inode_set_ctime(inode, btrfs_timespec_sec(leaf, &inode_item->ctime),
3820 			btrfs_timespec_nsec(leaf, &inode_item->ctime));
3821 
3822 	BTRFS_I(inode)->i_otime_sec = btrfs_timespec_sec(leaf, &inode_item->otime);
3823 	BTRFS_I(inode)->i_otime_nsec = btrfs_timespec_nsec(leaf, &inode_item->otime);
3824 
3825 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3826 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3827 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3828 
3829 	inode_set_iversion_queried(inode,
3830 				   btrfs_inode_sequence(leaf, inode_item));
3831 	inode->i_generation = BTRFS_I(inode)->generation;
3832 	inode->i_rdev = 0;
3833 	rdev = btrfs_inode_rdev(leaf, inode_item);
3834 
3835 	BTRFS_I(inode)->index_cnt = (u64)-1;
3836 	btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
3837 				&BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
3838 
3839 cache_index:
3840 	/*
3841 	 * If we were modified in the current generation and evicted from memory
3842 	 * and then re-read we need to do a full sync since we don't have any
3843 	 * idea about which extents were modified before we were evicted from
3844 	 * cache.
3845 	 *
3846 	 * This is required for both inode re-read from disk and delayed inode
3847 	 * in the delayed_nodes xarray.
3848 	 */
3849 	if (BTRFS_I(inode)->last_trans == btrfs_get_fs_generation(fs_info))
3850 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3851 			&BTRFS_I(inode)->runtime_flags);
3852 
3853 	/*
3854 	 * We don't persist the id of the transaction where an unlink operation
3855 	 * against the inode was last made. So here we assume the inode might
3856 	 * have been evicted, and therefore the exact value of last_unlink_trans
3857 	 * lost, and set it to last_trans to avoid metadata inconsistencies
3858 	 * between the inode and its parent if the inode is fsync'ed and the log
3859 	 * replayed. For example, in the scenario:
3860 	 *
3861 	 * touch mydir/foo
3862 	 * ln mydir/foo mydir/bar
3863 	 * sync
3864 	 * unlink mydir/bar
3865 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3866 	 * xfs_io -c fsync mydir/foo
3867 	 * <power failure>
3868 	 * mount fs, triggers fsync log replay
3869 	 *
3870 	 * We must make sure that when we fsync our inode foo we also log its
3871 	 * parent inode, otherwise after log replay the parent still has the
3872 	 * dentry with the "bar" name but our inode foo has a link count of 1
3873 	 * and doesn't have an inode ref with the name "bar" anymore.
3874 	 *
3875 	 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3876 	 * but it guarantees correctness at the expense of occasional full
3877 	 * transaction commits on fsync if our inode is a directory, or if our
3878 	 * inode is not a directory, logging its parent unnecessarily.
3879 	 */
3880 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3881 
3882 	/*
3883 	 * Same logic as for last_unlink_trans. We don't persist the generation
3884 	 * of the last transaction where this inode was used for a reflink
3885 	 * operation, so after eviction and reloading the inode we must be
3886 	 * pessimistic and assume the last transaction that modified the inode.
3887 	 */
3888 	BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
3889 
3890 	path->slots[0]++;
3891 	if (inode->i_nlink != 1 ||
3892 	    path->slots[0] >= btrfs_header_nritems(leaf))
3893 		goto cache_acl;
3894 
3895 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3896 	if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3897 		goto cache_acl;
3898 
3899 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3900 	if (location.type == BTRFS_INODE_REF_KEY) {
3901 		struct btrfs_inode_ref *ref;
3902 
3903 		ref = (struct btrfs_inode_ref *)ptr;
3904 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3905 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3906 		struct btrfs_inode_extref *extref;
3907 
3908 		extref = (struct btrfs_inode_extref *)ptr;
3909 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3910 								     extref);
3911 	}
3912 cache_acl:
3913 	/*
3914 	 * try to precache a NULL acl entry for files that don't have
3915 	 * any xattrs or acls
3916 	 */
3917 	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3918 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3919 	if (first_xattr_slot != -1) {
3920 		path->slots[0] = first_xattr_slot;
3921 		ret = btrfs_load_inode_props(inode, path);
3922 		if (ret)
3923 			btrfs_err(fs_info,
3924 				  "error loading props for ino %llu (root %llu): %d",
3925 				  btrfs_ino(BTRFS_I(inode)),
3926 				  root->root_key.objectid, ret);
3927 	}
3928 	if (path != in_path)
3929 		btrfs_free_path(path);
3930 
3931 	if (!maybe_acls)
3932 		cache_no_acl(inode);
3933 
3934 	switch (inode->i_mode & S_IFMT) {
3935 	case S_IFREG:
3936 		inode->i_mapping->a_ops = &btrfs_aops;
3937 		inode->i_fop = &btrfs_file_operations;
3938 		inode->i_op = &btrfs_file_inode_operations;
3939 		break;
3940 	case S_IFDIR:
3941 		inode->i_fop = &btrfs_dir_file_operations;
3942 		inode->i_op = &btrfs_dir_inode_operations;
3943 		break;
3944 	case S_IFLNK:
3945 		inode->i_op = &btrfs_symlink_inode_operations;
3946 		inode_nohighmem(inode);
3947 		inode->i_mapping->a_ops = &btrfs_aops;
3948 		break;
3949 	default:
3950 		inode->i_op = &btrfs_special_inode_operations;
3951 		init_special_inode(inode, inode->i_mode, rdev);
3952 		break;
3953 	}
3954 
3955 	btrfs_sync_inode_flags_to_i_flags(inode);
3956 	return 0;
3957 }
3958 
3959 /*
3960  * given a leaf and an inode, copy the inode fields into the leaf
3961  */
3962 static void fill_inode_item(struct btrfs_trans_handle *trans,
3963 			    struct extent_buffer *leaf,
3964 			    struct btrfs_inode_item *item,
3965 			    struct inode *inode)
3966 {
3967 	struct btrfs_map_token token;
3968 	u64 flags;
3969 
3970 	btrfs_init_map_token(&token, leaf);
3971 
3972 	btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3973 	btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3974 	btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3975 	btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3976 	btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3977 
3978 	btrfs_set_token_timespec_sec(&token, &item->atime,
3979 				     inode_get_atime_sec(inode));
3980 	btrfs_set_token_timespec_nsec(&token, &item->atime,
3981 				      inode_get_atime_nsec(inode));
3982 
3983 	btrfs_set_token_timespec_sec(&token, &item->mtime,
3984 				     inode_get_mtime_sec(inode));
3985 	btrfs_set_token_timespec_nsec(&token, &item->mtime,
3986 				      inode_get_mtime_nsec(inode));
3987 
3988 	btrfs_set_token_timespec_sec(&token, &item->ctime,
3989 				     inode_get_ctime_sec(inode));
3990 	btrfs_set_token_timespec_nsec(&token, &item->ctime,
3991 				      inode_get_ctime_nsec(inode));
3992 
3993 	btrfs_set_token_timespec_sec(&token, &item->otime, BTRFS_I(inode)->i_otime_sec);
3994 	btrfs_set_token_timespec_nsec(&token, &item->otime, BTRFS_I(inode)->i_otime_nsec);
3995 
3996 	btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3997 	btrfs_set_token_inode_generation(&token, item,
3998 					 BTRFS_I(inode)->generation);
3999 	btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4000 	btrfs_set_token_inode_transid(&token, item, trans->transid);
4001 	btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4002 	flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4003 					  BTRFS_I(inode)->ro_flags);
4004 	btrfs_set_token_inode_flags(&token, item, flags);
4005 	btrfs_set_token_inode_block_group(&token, item, 0);
4006 }
4007 
4008 /*
4009  * copy everything in the in-memory inode into the btree.
4010  */
4011 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
4012 					    struct btrfs_inode *inode)
4013 {
4014 	struct btrfs_inode_item *inode_item;
4015 	struct btrfs_path *path;
4016 	struct extent_buffer *leaf;
4017 	int ret;
4018 
4019 	path = btrfs_alloc_path();
4020 	if (!path)
4021 		return -ENOMEM;
4022 
4023 	ret = btrfs_lookup_inode(trans, inode->root, path, &inode->location, 1);
4024 	if (ret) {
4025 		if (ret > 0)
4026 			ret = -ENOENT;
4027 		goto failed;
4028 	}
4029 
4030 	leaf = path->nodes[0];
4031 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
4032 				    struct btrfs_inode_item);
4033 
4034 	fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
4035 	btrfs_mark_buffer_dirty(trans, leaf);
4036 	btrfs_set_inode_last_trans(trans, inode);
4037 	ret = 0;
4038 failed:
4039 	btrfs_free_path(path);
4040 	return ret;
4041 }
4042 
4043 /*
4044  * copy everything in the in-memory inode into the btree.
4045  */
4046 int btrfs_update_inode(struct btrfs_trans_handle *trans,
4047 		       struct btrfs_inode *inode)
4048 {
4049 	struct btrfs_root *root = inode->root;
4050 	struct btrfs_fs_info *fs_info = root->fs_info;
4051 	int ret;
4052 
4053 	/*
4054 	 * If the inode is a free space inode, we can deadlock during commit
4055 	 * if we put it into the delayed code.
4056 	 *
4057 	 * The data relocation inode should also be directly updated
4058 	 * without delay
4059 	 */
4060 	if (!btrfs_is_free_space_inode(inode)
4061 	    && !btrfs_is_data_reloc_root(root)
4062 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
4063 		btrfs_update_root_times(trans, root);
4064 
4065 		ret = btrfs_delayed_update_inode(trans, inode);
4066 		if (!ret)
4067 			btrfs_set_inode_last_trans(trans, inode);
4068 		return ret;
4069 	}
4070 
4071 	return btrfs_update_inode_item(trans, inode);
4072 }
4073 
4074 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4075 				struct btrfs_inode *inode)
4076 {
4077 	int ret;
4078 
4079 	ret = btrfs_update_inode(trans, inode);
4080 	if (ret == -ENOSPC)
4081 		return btrfs_update_inode_item(trans, inode);
4082 	return ret;
4083 }
4084 
4085 /*
4086  * unlink helper that gets used here in inode.c and in the tree logging
4087  * recovery code.  It remove a link in a directory with a given name, and
4088  * also drops the back refs in the inode to the directory
4089  */
4090 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4091 				struct btrfs_inode *dir,
4092 				struct btrfs_inode *inode,
4093 				const struct fscrypt_str *name,
4094 				struct btrfs_rename_ctx *rename_ctx)
4095 {
4096 	struct btrfs_root *root = dir->root;
4097 	struct btrfs_fs_info *fs_info = root->fs_info;
4098 	struct btrfs_path *path;
4099 	int ret = 0;
4100 	struct btrfs_dir_item *di;
4101 	u64 index;
4102 	u64 ino = btrfs_ino(inode);
4103 	u64 dir_ino = btrfs_ino(dir);
4104 
4105 	path = btrfs_alloc_path();
4106 	if (!path) {
4107 		ret = -ENOMEM;
4108 		goto out;
4109 	}
4110 
4111 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
4112 	if (IS_ERR_OR_NULL(di)) {
4113 		ret = di ? PTR_ERR(di) : -ENOENT;
4114 		goto err;
4115 	}
4116 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4117 	if (ret)
4118 		goto err;
4119 	btrfs_release_path(path);
4120 
4121 	/*
4122 	 * If we don't have dir index, we have to get it by looking up
4123 	 * the inode ref, since we get the inode ref, remove it directly,
4124 	 * it is unnecessary to do delayed deletion.
4125 	 *
4126 	 * But if we have dir index, needn't search inode ref to get it.
4127 	 * Since the inode ref is close to the inode item, it is better
4128 	 * that we delay to delete it, and just do this deletion when
4129 	 * we update the inode item.
4130 	 */
4131 	if (inode->dir_index) {
4132 		ret = btrfs_delayed_delete_inode_ref(inode);
4133 		if (!ret) {
4134 			index = inode->dir_index;
4135 			goto skip_backref;
4136 		}
4137 	}
4138 
4139 	ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
4140 	if (ret) {
4141 		btrfs_info(fs_info,
4142 			"failed to delete reference to %.*s, inode %llu parent %llu",
4143 			name->len, name->name, ino, dir_ino);
4144 		btrfs_abort_transaction(trans, ret);
4145 		goto err;
4146 	}
4147 skip_backref:
4148 	if (rename_ctx)
4149 		rename_ctx->index = index;
4150 
4151 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4152 	if (ret) {
4153 		btrfs_abort_transaction(trans, ret);
4154 		goto err;
4155 	}
4156 
4157 	/*
4158 	 * If we are in a rename context, we don't need to update anything in the
4159 	 * log. That will be done later during the rename by btrfs_log_new_name().
4160 	 * Besides that, doing it here would only cause extra unnecessary btree
4161 	 * operations on the log tree, increasing latency for applications.
4162 	 */
4163 	if (!rename_ctx) {
4164 		btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4165 		btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
4166 	}
4167 
4168 	/*
4169 	 * If we have a pending delayed iput we could end up with the final iput
4170 	 * being run in btrfs-cleaner context.  If we have enough of these built
4171 	 * up we can end up burning a lot of time in btrfs-cleaner without any
4172 	 * way to throttle the unlinks.  Since we're currently holding a ref on
4173 	 * the inode we can run the delayed iput here without any issues as the
4174 	 * final iput won't be done until after we drop the ref we're currently
4175 	 * holding.
4176 	 */
4177 	btrfs_run_delayed_iput(fs_info, inode);
4178 err:
4179 	btrfs_free_path(path);
4180 	if (ret)
4181 		goto out;
4182 
4183 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4184 	inode_inc_iversion(&inode->vfs_inode);
4185 	inode_inc_iversion(&dir->vfs_inode);
4186  	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4187 	ret = btrfs_update_inode(trans, dir);
4188 out:
4189 	return ret;
4190 }
4191 
4192 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4193 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
4194 		       const struct fscrypt_str *name)
4195 {
4196 	int ret;
4197 
4198 	ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
4199 	if (!ret) {
4200 		drop_nlink(&inode->vfs_inode);
4201 		ret = btrfs_update_inode(trans, inode);
4202 	}
4203 	return ret;
4204 }
4205 
4206 /*
4207  * helper to start transaction for unlink and rmdir.
4208  *
4209  * unlink and rmdir are special in btrfs, they do not always free space, so
4210  * if we cannot make our reservations the normal way try and see if there is
4211  * plenty of slack room in the global reserve to migrate, otherwise we cannot
4212  * allow the unlink to occur.
4213  */
4214 static struct btrfs_trans_handle *__unlink_start_trans(struct btrfs_inode *dir)
4215 {
4216 	struct btrfs_root *root = dir->root;
4217 
4218 	return btrfs_start_transaction_fallback_global_rsv(root,
4219 						   BTRFS_UNLINK_METADATA_UNITS);
4220 }
4221 
4222 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4223 {
4224 	struct btrfs_trans_handle *trans;
4225 	struct inode *inode = d_inode(dentry);
4226 	int ret;
4227 	struct fscrypt_name fname;
4228 
4229 	ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4230 	if (ret)
4231 		return ret;
4232 
4233 	/* This needs to handle no-key deletions later on */
4234 
4235 	trans = __unlink_start_trans(BTRFS_I(dir));
4236 	if (IS_ERR(trans)) {
4237 		ret = PTR_ERR(trans);
4238 		goto fscrypt_free;
4239 	}
4240 
4241 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4242 				false);
4243 
4244 	ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4245 				 &fname.disk_name);
4246 	if (ret)
4247 		goto end_trans;
4248 
4249 	if (inode->i_nlink == 0) {
4250 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4251 		if (ret)
4252 			goto end_trans;
4253 	}
4254 
4255 end_trans:
4256 	btrfs_end_transaction(trans);
4257 	btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
4258 fscrypt_free:
4259 	fscrypt_free_filename(&fname);
4260 	return ret;
4261 }
4262 
4263 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4264 			       struct btrfs_inode *dir, struct dentry *dentry)
4265 {
4266 	struct btrfs_root *root = dir->root;
4267 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4268 	struct btrfs_path *path;
4269 	struct extent_buffer *leaf;
4270 	struct btrfs_dir_item *di;
4271 	struct btrfs_key key;
4272 	u64 index;
4273 	int ret;
4274 	u64 objectid;
4275 	u64 dir_ino = btrfs_ino(dir);
4276 	struct fscrypt_name fname;
4277 
4278 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
4279 	if (ret)
4280 		return ret;
4281 
4282 	/* This needs to handle no-key deletions later on */
4283 
4284 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4285 		objectid = inode->root->root_key.objectid;
4286 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4287 		objectid = inode->location.objectid;
4288 	} else {
4289 		WARN_ON(1);
4290 		fscrypt_free_filename(&fname);
4291 		return -EINVAL;
4292 	}
4293 
4294 	path = btrfs_alloc_path();
4295 	if (!path) {
4296 		ret = -ENOMEM;
4297 		goto out;
4298 	}
4299 
4300 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4301 				   &fname.disk_name, -1);
4302 	if (IS_ERR_OR_NULL(di)) {
4303 		ret = di ? PTR_ERR(di) : -ENOENT;
4304 		goto out;
4305 	}
4306 
4307 	leaf = path->nodes[0];
4308 	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4309 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4310 	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4311 	if (ret) {
4312 		btrfs_abort_transaction(trans, ret);
4313 		goto out;
4314 	}
4315 	btrfs_release_path(path);
4316 
4317 	/*
4318 	 * This is a placeholder inode for a subvolume we didn't have a
4319 	 * reference to at the time of the snapshot creation.  In the meantime
4320 	 * we could have renamed the real subvol link into our snapshot, so
4321 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
4322 	 * Instead simply lookup the dir_index_item for this entry so we can
4323 	 * remove it.  Otherwise we know we have a ref to the root and we can
4324 	 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4325 	 */
4326 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4327 		di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
4328 		if (IS_ERR_OR_NULL(di)) {
4329 			if (!di)
4330 				ret = -ENOENT;
4331 			else
4332 				ret = PTR_ERR(di);
4333 			btrfs_abort_transaction(trans, ret);
4334 			goto out;
4335 		}
4336 
4337 		leaf = path->nodes[0];
4338 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4339 		index = key.offset;
4340 		btrfs_release_path(path);
4341 	} else {
4342 		ret = btrfs_del_root_ref(trans, objectid,
4343 					 root->root_key.objectid, dir_ino,
4344 					 &index, &fname.disk_name);
4345 		if (ret) {
4346 			btrfs_abort_transaction(trans, ret);
4347 			goto out;
4348 		}
4349 	}
4350 
4351 	ret = btrfs_delete_delayed_dir_index(trans, dir, index);
4352 	if (ret) {
4353 		btrfs_abort_transaction(trans, ret);
4354 		goto out;
4355 	}
4356 
4357 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - fname.disk_name.len * 2);
4358 	inode_inc_iversion(&dir->vfs_inode);
4359 	inode_set_mtime_to_ts(&dir->vfs_inode, inode_set_ctime_current(&dir->vfs_inode));
4360 	ret = btrfs_update_inode_fallback(trans, dir);
4361 	if (ret)
4362 		btrfs_abort_transaction(trans, ret);
4363 out:
4364 	btrfs_free_path(path);
4365 	fscrypt_free_filename(&fname);
4366 	return ret;
4367 }
4368 
4369 /*
4370  * Helper to check if the subvolume references other subvolumes or if it's
4371  * default.
4372  */
4373 static noinline int may_destroy_subvol(struct btrfs_root *root)
4374 {
4375 	struct btrfs_fs_info *fs_info = root->fs_info;
4376 	struct btrfs_path *path;
4377 	struct btrfs_dir_item *di;
4378 	struct btrfs_key key;
4379 	struct fscrypt_str name = FSTR_INIT("default", 7);
4380 	u64 dir_id;
4381 	int ret;
4382 
4383 	path = btrfs_alloc_path();
4384 	if (!path)
4385 		return -ENOMEM;
4386 
4387 	/* Make sure this root isn't set as the default subvol */
4388 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
4389 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4390 				   dir_id, &name, 0);
4391 	if (di && !IS_ERR(di)) {
4392 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4393 		if (key.objectid == root->root_key.objectid) {
4394 			ret = -EPERM;
4395 			btrfs_err(fs_info,
4396 				  "deleting default subvolume %llu is not allowed",
4397 				  key.objectid);
4398 			goto out;
4399 		}
4400 		btrfs_release_path(path);
4401 	}
4402 
4403 	key.objectid = root->root_key.objectid;
4404 	key.type = BTRFS_ROOT_REF_KEY;
4405 	key.offset = (u64)-1;
4406 
4407 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4408 	if (ret < 0)
4409 		goto out;
4410 	if (ret == 0) {
4411 		/*
4412 		 * Key with offset -1 found, there would have to exist a root
4413 		 * with such id, but this is out of valid range.
4414 		 */
4415 		ret = -EUCLEAN;
4416 		goto out;
4417 	}
4418 
4419 	ret = 0;
4420 	if (path->slots[0] > 0) {
4421 		path->slots[0]--;
4422 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4423 		if (key.objectid == root->root_key.objectid &&
4424 		    key.type == BTRFS_ROOT_REF_KEY)
4425 			ret = -ENOTEMPTY;
4426 	}
4427 out:
4428 	btrfs_free_path(path);
4429 	return ret;
4430 }
4431 
4432 /* Delete all dentries for inodes belonging to the root */
4433 static void btrfs_prune_dentries(struct btrfs_root *root)
4434 {
4435 	struct btrfs_fs_info *fs_info = root->fs_info;
4436 	struct rb_node *node;
4437 	struct rb_node *prev;
4438 	struct btrfs_inode *entry;
4439 	struct inode *inode;
4440 	u64 objectid = 0;
4441 
4442 	if (!BTRFS_FS_ERROR(fs_info))
4443 		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4444 
4445 	spin_lock(&root->inode_lock);
4446 again:
4447 	node = root->inode_tree.rb_node;
4448 	prev = NULL;
4449 	while (node) {
4450 		prev = node;
4451 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4452 
4453 		if (objectid < btrfs_ino(entry))
4454 			node = node->rb_left;
4455 		else if (objectid > btrfs_ino(entry))
4456 			node = node->rb_right;
4457 		else
4458 			break;
4459 	}
4460 	if (!node) {
4461 		while (prev) {
4462 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
4463 			if (objectid <= btrfs_ino(entry)) {
4464 				node = prev;
4465 				break;
4466 			}
4467 			prev = rb_next(prev);
4468 		}
4469 	}
4470 	while (node) {
4471 		entry = rb_entry(node, struct btrfs_inode, rb_node);
4472 		objectid = btrfs_ino(entry) + 1;
4473 		inode = igrab(&entry->vfs_inode);
4474 		if (inode) {
4475 			spin_unlock(&root->inode_lock);
4476 			if (atomic_read(&inode->i_count) > 1)
4477 				d_prune_aliases(inode);
4478 			/*
4479 			 * btrfs_drop_inode will have it removed from the inode
4480 			 * cache when its usage count hits zero.
4481 			 */
4482 			iput(inode);
4483 			cond_resched();
4484 			spin_lock(&root->inode_lock);
4485 			goto again;
4486 		}
4487 
4488 		if (cond_resched_lock(&root->inode_lock))
4489 			goto again;
4490 
4491 		node = rb_next(node);
4492 	}
4493 	spin_unlock(&root->inode_lock);
4494 }
4495 
4496 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry)
4497 {
4498 	struct btrfs_root *root = dir->root;
4499 	struct btrfs_fs_info *fs_info = root->fs_info;
4500 	struct inode *inode = d_inode(dentry);
4501 	struct btrfs_root *dest = BTRFS_I(inode)->root;
4502 	struct btrfs_trans_handle *trans;
4503 	struct btrfs_block_rsv block_rsv;
4504 	u64 root_flags;
4505 	u64 qgroup_reserved = 0;
4506 	int ret;
4507 
4508 	down_write(&fs_info->subvol_sem);
4509 
4510 	/*
4511 	 * Don't allow to delete a subvolume with send in progress. This is
4512 	 * inside the inode lock so the error handling that has to drop the bit
4513 	 * again is not run concurrently.
4514 	 */
4515 	spin_lock(&dest->root_item_lock);
4516 	if (dest->send_in_progress) {
4517 		spin_unlock(&dest->root_item_lock);
4518 		btrfs_warn(fs_info,
4519 			   "attempt to delete subvolume %llu during send",
4520 			   dest->root_key.objectid);
4521 		ret = -EPERM;
4522 		goto out_up_write;
4523 	}
4524 	if (atomic_read(&dest->nr_swapfiles)) {
4525 		spin_unlock(&dest->root_item_lock);
4526 		btrfs_warn(fs_info,
4527 			   "attempt to delete subvolume %llu with active swapfile",
4528 			   root->root_key.objectid);
4529 		ret = -EPERM;
4530 		goto out_up_write;
4531 	}
4532 	root_flags = btrfs_root_flags(&dest->root_item);
4533 	btrfs_set_root_flags(&dest->root_item,
4534 			     root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4535 	spin_unlock(&dest->root_item_lock);
4536 
4537 	ret = may_destroy_subvol(dest);
4538 	if (ret)
4539 		goto out_undead;
4540 
4541 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4542 	/*
4543 	 * One for dir inode,
4544 	 * two for dir entries,
4545 	 * two for root ref/backref.
4546 	 */
4547 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4548 	if (ret)
4549 		goto out_undead;
4550 	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
4551 
4552 	trans = btrfs_start_transaction(root, 0);
4553 	if (IS_ERR(trans)) {
4554 		ret = PTR_ERR(trans);
4555 		goto out_release;
4556 	}
4557 	ret = btrfs_record_root_in_trans(trans, root);
4558 	if (ret) {
4559 		btrfs_abort_transaction(trans, ret);
4560 		goto out_end_trans;
4561 	}
4562 	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
4563 	qgroup_reserved = 0;
4564 	trans->block_rsv = &block_rsv;
4565 	trans->bytes_reserved = block_rsv.size;
4566 
4567 	btrfs_record_snapshot_destroy(trans, dir);
4568 
4569 	ret = btrfs_unlink_subvol(trans, dir, dentry);
4570 	if (ret) {
4571 		btrfs_abort_transaction(trans, ret);
4572 		goto out_end_trans;
4573 	}
4574 
4575 	ret = btrfs_record_root_in_trans(trans, dest);
4576 	if (ret) {
4577 		btrfs_abort_transaction(trans, ret);
4578 		goto out_end_trans;
4579 	}
4580 
4581 	memset(&dest->root_item.drop_progress, 0,
4582 		sizeof(dest->root_item.drop_progress));
4583 	btrfs_set_root_drop_level(&dest->root_item, 0);
4584 	btrfs_set_root_refs(&dest->root_item, 0);
4585 
4586 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4587 		ret = btrfs_insert_orphan_item(trans,
4588 					fs_info->tree_root,
4589 					dest->root_key.objectid);
4590 		if (ret) {
4591 			btrfs_abort_transaction(trans, ret);
4592 			goto out_end_trans;
4593 		}
4594 	}
4595 
4596 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4597 				  BTRFS_UUID_KEY_SUBVOL,
4598 				  dest->root_key.objectid);
4599 	if (ret && ret != -ENOENT) {
4600 		btrfs_abort_transaction(trans, ret);
4601 		goto out_end_trans;
4602 	}
4603 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4604 		ret = btrfs_uuid_tree_remove(trans,
4605 					  dest->root_item.received_uuid,
4606 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4607 					  dest->root_key.objectid);
4608 		if (ret && ret != -ENOENT) {
4609 			btrfs_abort_transaction(trans, ret);
4610 			goto out_end_trans;
4611 		}
4612 	}
4613 
4614 	free_anon_bdev(dest->anon_dev);
4615 	dest->anon_dev = 0;
4616 out_end_trans:
4617 	trans->block_rsv = NULL;
4618 	trans->bytes_reserved = 0;
4619 	ret = btrfs_end_transaction(trans);
4620 	inode->i_flags |= S_DEAD;
4621 out_release:
4622 	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
4623 	if (qgroup_reserved)
4624 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
4625 out_undead:
4626 	if (ret) {
4627 		spin_lock(&dest->root_item_lock);
4628 		root_flags = btrfs_root_flags(&dest->root_item);
4629 		btrfs_set_root_flags(&dest->root_item,
4630 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4631 		spin_unlock(&dest->root_item_lock);
4632 	}
4633 out_up_write:
4634 	up_write(&fs_info->subvol_sem);
4635 	if (!ret) {
4636 		d_invalidate(dentry);
4637 		btrfs_prune_dentries(dest);
4638 		ASSERT(dest->send_in_progress == 0);
4639 	}
4640 
4641 	return ret;
4642 }
4643 
4644 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4645 {
4646 	struct inode *inode = d_inode(dentry);
4647 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4648 	int err = 0;
4649 	struct btrfs_trans_handle *trans;
4650 	u64 last_unlink_trans;
4651 	struct fscrypt_name fname;
4652 
4653 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4654 		return -ENOTEMPTY;
4655 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4656 		if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4657 			btrfs_err(fs_info,
4658 			"extent tree v2 doesn't support snapshot deletion yet");
4659 			return -EOPNOTSUPP;
4660 		}
4661 		return btrfs_delete_subvolume(BTRFS_I(dir), dentry);
4662 	}
4663 
4664 	err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4665 	if (err)
4666 		return err;
4667 
4668 	/* This needs to handle no-key deletions later on */
4669 
4670 	trans = __unlink_start_trans(BTRFS_I(dir));
4671 	if (IS_ERR(trans)) {
4672 		err = PTR_ERR(trans);
4673 		goto out_notrans;
4674 	}
4675 
4676 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4677 		err = btrfs_unlink_subvol(trans, BTRFS_I(dir), dentry);
4678 		goto out;
4679 	}
4680 
4681 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4682 	if (err)
4683 		goto out;
4684 
4685 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4686 
4687 	/* now the directory is empty */
4688 	err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4689 				 &fname.disk_name);
4690 	if (!err) {
4691 		btrfs_i_size_write(BTRFS_I(inode), 0);
4692 		/*
4693 		 * Propagate the last_unlink_trans value of the deleted dir to
4694 		 * its parent directory. This is to prevent an unrecoverable
4695 		 * log tree in the case we do something like this:
4696 		 * 1) create dir foo
4697 		 * 2) create snapshot under dir foo
4698 		 * 3) delete the snapshot
4699 		 * 4) rmdir foo
4700 		 * 5) mkdir foo
4701 		 * 6) fsync foo or some file inside foo
4702 		 */
4703 		if (last_unlink_trans >= trans->transid)
4704 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4705 	}
4706 out:
4707 	btrfs_end_transaction(trans);
4708 out_notrans:
4709 	btrfs_btree_balance_dirty(fs_info);
4710 	fscrypt_free_filename(&fname);
4711 
4712 	return err;
4713 }
4714 
4715 /*
4716  * Read, zero a chunk and write a block.
4717  *
4718  * @inode - inode that we're zeroing
4719  * @from - the offset to start zeroing
4720  * @len - the length to zero, 0 to zero the entire range respective to the
4721  *	offset
4722  * @front - zero up to the offset instead of from the offset on
4723  *
4724  * This will find the block for the "from" offset and cow the block and zero the
4725  * part we want to zero.  This is used with truncate and hole punching.
4726  */
4727 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4728 			 int front)
4729 {
4730 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4731 	struct address_space *mapping = inode->vfs_inode.i_mapping;
4732 	struct extent_io_tree *io_tree = &inode->io_tree;
4733 	struct btrfs_ordered_extent *ordered;
4734 	struct extent_state *cached_state = NULL;
4735 	struct extent_changeset *data_reserved = NULL;
4736 	bool only_release_metadata = false;
4737 	u32 blocksize = fs_info->sectorsize;
4738 	pgoff_t index = from >> PAGE_SHIFT;
4739 	unsigned offset = from & (blocksize - 1);
4740 	struct folio *folio;
4741 	gfp_t mask = btrfs_alloc_write_mask(mapping);
4742 	size_t write_bytes = blocksize;
4743 	int ret = 0;
4744 	u64 block_start;
4745 	u64 block_end;
4746 
4747 	if (IS_ALIGNED(offset, blocksize) &&
4748 	    (!len || IS_ALIGNED(len, blocksize)))
4749 		goto out;
4750 
4751 	block_start = round_down(from, blocksize);
4752 	block_end = block_start + blocksize - 1;
4753 
4754 	ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
4755 					  blocksize, false);
4756 	if (ret < 0) {
4757 		if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
4758 			/* For nocow case, no need to reserve data space */
4759 			only_release_metadata = true;
4760 		} else {
4761 			goto out;
4762 		}
4763 	}
4764 	ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
4765 	if (ret < 0) {
4766 		if (!only_release_metadata)
4767 			btrfs_free_reserved_data_space(inode, data_reserved,
4768 						       block_start, blocksize);
4769 		goto out;
4770 	}
4771 again:
4772 	folio = __filemap_get_folio(mapping, index,
4773 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
4774 	if (IS_ERR(folio)) {
4775 		btrfs_delalloc_release_space(inode, data_reserved, block_start,
4776 					     blocksize, true);
4777 		btrfs_delalloc_release_extents(inode, blocksize);
4778 		ret = -ENOMEM;
4779 		goto out;
4780 	}
4781 
4782 	if (!folio_test_uptodate(folio)) {
4783 		ret = btrfs_read_folio(NULL, folio);
4784 		folio_lock(folio);
4785 		if (folio->mapping != mapping) {
4786 			folio_unlock(folio);
4787 			folio_put(folio);
4788 			goto again;
4789 		}
4790 		if (!folio_test_uptodate(folio)) {
4791 			ret = -EIO;
4792 			goto out_unlock;
4793 		}
4794 	}
4795 
4796 	/*
4797 	 * We unlock the page after the io is completed and then re-lock it
4798 	 * above.  release_folio() could have come in between that and cleared
4799 	 * folio private, but left the page in the mapping.  Set the page mapped
4800 	 * here to make sure it's properly set for the subpage stuff.
4801 	 */
4802 	ret = set_folio_extent_mapped(folio);
4803 	if (ret < 0)
4804 		goto out_unlock;
4805 
4806 	folio_wait_writeback(folio);
4807 
4808 	lock_extent(io_tree, block_start, block_end, &cached_state);
4809 
4810 	ordered = btrfs_lookup_ordered_extent(inode, block_start);
4811 	if (ordered) {
4812 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4813 		folio_unlock(folio);
4814 		folio_put(folio);
4815 		btrfs_start_ordered_extent(ordered);
4816 		btrfs_put_ordered_extent(ordered);
4817 		goto again;
4818 	}
4819 
4820 	clear_extent_bit(&inode->io_tree, block_start, block_end,
4821 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4822 			 &cached_state);
4823 
4824 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4825 					&cached_state);
4826 	if (ret) {
4827 		unlock_extent(io_tree, block_start, block_end, &cached_state);
4828 		goto out_unlock;
4829 	}
4830 
4831 	if (offset != blocksize) {
4832 		if (!len)
4833 			len = blocksize - offset;
4834 		if (front)
4835 			folio_zero_range(folio, block_start - folio_pos(folio),
4836 					 offset);
4837 		else
4838 			folio_zero_range(folio,
4839 					 (block_start - folio_pos(folio)) + offset,
4840 					 len);
4841 	}
4842 	btrfs_folio_clear_checked(fs_info, folio, block_start,
4843 				  block_end + 1 - block_start);
4844 	btrfs_folio_set_dirty(fs_info, folio, block_start,
4845 			      block_end + 1 - block_start);
4846 	unlock_extent(io_tree, block_start, block_end, &cached_state);
4847 
4848 	if (only_release_metadata)
4849 		set_extent_bit(&inode->io_tree, block_start, block_end,
4850 			       EXTENT_NORESERVE, NULL);
4851 
4852 out_unlock:
4853 	if (ret) {
4854 		if (only_release_metadata)
4855 			btrfs_delalloc_release_metadata(inode, blocksize, true);
4856 		else
4857 			btrfs_delalloc_release_space(inode, data_reserved,
4858 					block_start, blocksize, true);
4859 	}
4860 	btrfs_delalloc_release_extents(inode, blocksize);
4861 	folio_unlock(folio);
4862 	folio_put(folio);
4863 out:
4864 	if (only_release_metadata)
4865 		btrfs_check_nocow_unlock(inode);
4866 	extent_changeset_free(data_reserved);
4867 	return ret;
4868 }
4869 
4870 static int maybe_insert_hole(struct btrfs_inode *inode, u64 offset, u64 len)
4871 {
4872 	struct btrfs_root *root = inode->root;
4873 	struct btrfs_fs_info *fs_info = root->fs_info;
4874 	struct btrfs_trans_handle *trans;
4875 	struct btrfs_drop_extents_args drop_args = { 0 };
4876 	int ret;
4877 
4878 	/*
4879 	 * If NO_HOLES is enabled, we don't need to do anything.
4880 	 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
4881 	 * or btrfs_update_inode() will be called, which guarantee that the next
4882 	 * fsync will know this inode was changed and needs to be logged.
4883 	 */
4884 	if (btrfs_fs_incompat(fs_info, NO_HOLES))
4885 		return 0;
4886 
4887 	/*
4888 	 * 1 - for the one we're dropping
4889 	 * 1 - for the one we're adding
4890 	 * 1 - for updating the inode.
4891 	 */
4892 	trans = btrfs_start_transaction(root, 3);
4893 	if (IS_ERR(trans))
4894 		return PTR_ERR(trans);
4895 
4896 	drop_args.start = offset;
4897 	drop_args.end = offset + len;
4898 	drop_args.drop_cache = true;
4899 
4900 	ret = btrfs_drop_extents(trans, root, inode, &drop_args);
4901 	if (ret) {
4902 		btrfs_abort_transaction(trans, ret);
4903 		btrfs_end_transaction(trans);
4904 		return ret;
4905 	}
4906 
4907 	ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
4908 	if (ret) {
4909 		btrfs_abort_transaction(trans, ret);
4910 	} else {
4911 		btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
4912 		btrfs_update_inode(trans, inode);
4913 	}
4914 	btrfs_end_transaction(trans);
4915 	return ret;
4916 }
4917 
4918 /*
4919  * This function puts in dummy file extents for the area we're creating a hole
4920  * for.  So if we are truncating this file to a larger size we need to insert
4921  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4922  * the range between oldsize and size
4923  */
4924 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
4925 {
4926 	struct btrfs_root *root = inode->root;
4927 	struct btrfs_fs_info *fs_info = root->fs_info;
4928 	struct extent_io_tree *io_tree = &inode->io_tree;
4929 	struct extent_map *em = NULL;
4930 	struct extent_state *cached_state = NULL;
4931 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4932 	u64 block_end = ALIGN(size, fs_info->sectorsize);
4933 	u64 last_byte;
4934 	u64 cur_offset;
4935 	u64 hole_size;
4936 	int err = 0;
4937 
4938 	/*
4939 	 * If our size started in the middle of a block we need to zero out the
4940 	 * rest of the block before we expand the i_size, otherwise we could
4941 	 * expose stale data.
4942 	 */
4943 	err = btrfs_truncate_block(inode, oldsize, 0, 0);
4944 	if (err)
4945 		return err;
4946 
4947 	if (size <= hole_start)
4948 		return 0;
4949 
4950 	btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
4951 					   &cached_state);
4952 	cur_offset = hole_start;
4953 	while (1) {
4954 		em = btrfs_get_extent(inode, NULL, cur_offset, block_end - cur_offset);
4955 		if (IS_ERR(em)) {
4956 			err = PTR_ERR(em);
4957 			em = NULL;
4958 			break;
4959 		}
4960 		last_byte = min(extent_map_end(em), block_end);
4961 		last_byte = ALIGN(last_byte, fs_info->sectorsize);
4962 		hole_size = last_byte - cur_offset;
4963 
4964 		if (!(em->flags & EXTENT_FLAG_PREALLOC)) {
4965 			struct extent_map *hole_em;
4966 
4967 			err = maybe_insert_hole(inode, cur_offset, hole_size);
4968 			if (err)
4969 				break;
4970 
4971 			err = btrfs_inode_set_file_extent_range(inode,
4972 							cur_offset, hole_size);
4973 			if (err)
4974 				break;
4975 
4976 			hole_em = alloc_extent_map();
4977 			if (!hole_em) {
4978 				btrfs_drop_extent_map_range(inode, cur_offset,
4979 						    cur_offset + hole_size - 1,
4980 						    false);
4981 				btrfs_set_inode_full_sync(inode);
4982 				goto next;
4983 			}
4984 			hole_em->start = cur_offset;
4985 			hole_em->len = hole_size;
4986 			hole_em->orig_start = cur_offset;
4987 
4988 			hole_em->block_start = EXTENT_MAP_HOLE;
4989 			hole_em->block_len = 0;
4990 			hole_em->orig_block_len = 0;
4991 			hole_em->ram_bytes = hole_size;
4992 			hole_em->generation = btrfs_get_fs_generation(fs_info);
4993 
4994 			err = btrfs_replace_extent_map_range(inode, hole_em, true);
4995 			free_extent_map(hole_em);
4996 		} else {
4997 			err = btrfs_inode_set_file_extent_range(inode,
4998 							cur_offset, hole_size);
4999 			if (err)
5000 				break;
5001 		}
5002 next:
5003 		free_extent_map(em);
5004 		em = NULL;
5005 		cur_offset = last_byte;
5006 		if (cur_offset >= block_end)
5007 			break;
5008 	}
5009 	free_extent_map(em);
5010 	unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
5011 	return err;
5012 }
5013 
5014 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5015 {
5016 	struct btrfs_root *root = BTRFS_I(inode)->root;
5017 	struct btrfs_trans_handle *trans;
5018 	loff_t oldsize = i_size_read(inode);
5019 	loff_t newsize = attr->ia_size;
5020 	int mask = attr->ia_valid;
5021 	int ret;
5022 
5023 	/*
5024 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5025 	 * special case where we need to update the times despite not having
5026 	 * these flags set.  For all other operations the VFS set these flags
5027 	 * explicitly if it wants a timestamp update.
5028 	 */
5029 	if (newsize != oldsize) {
5030 		inode_inc_iversion(inode);
5031 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5032 			inode_set_mtime_to_ts(inode,
5033 					      inode_set_ctime_current(inode));
5034 		}
5035 	}
5036 
5037 	if (newsize > oldsize) {
5038 		/*
5039 		 * Don't do an expanding truncate while snapshotting is ongoing.
5040 		 * This is to ensure the snapshot captures a fully consistent
5041 		 * state of this file - if the snapshot captures this expanding
5042 		 * truncation, it must capture all writes that happened before
5043 		 * this truncation.
5044 		 */
5045 		btrfs_drew_write_lock(&root->snapshot_lock);
5046 		ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
5047 		if (ret) {
5048 			btrfs_drew_write_unlock(&root->snapshot_lock);
5049 			return ret;
5050 		}
5051 
5052 		trans = btrfs_start_transaction(root, 1);
5053 		if (IS_ERR(trans)) {
5054 			btrfs_drew_write_unlock(&root->snapshot_lock);
5055 			return PTR_ERR(trans);
5056 		}
5057 
5058 		i_size_write(inode, newsize);
5059 		btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5060 		pagecache_isize_extended(inode, oldsize, newsize);
5061 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
5062 		btrfs_drew_write_unlock(&root->snapshot_lock);
5063 		btrfs_end_transaction(trans);
5064 	} else {
5065 		struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
5066 
5067 		if (btrfs_is_zoned(fs_info)) {
5068 			ret = btrfs_wait_ordered_range(inode,
5069 					ALIGN(newsize, fs_info->sectorsize),
5070 					(u64)-1);
5071 			if (ret)
5072 				return ret;
5073 		}
5074 
5075 		/*
5076 		 * We're truncating a file that used to have good data down to
5077 		 * zero. Make sure any new writes to the file get on disk
5078 		 * on close.
5079 		 */
5080 		if (newsize == 0)
5081 			set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
5082 				&BTRFS_I(inode)->runtime_flags);
5083 
5084 		truncate_setsize(inode, newsize);
5085 
5086 		inode_dio_wait(inode);
5087 
5088 		ret = btrfs_truncate(BTRFS_I(inode), newsize == oldsize);
5089 		if (ret && inode->i_nlink) {
5090 			int err;
5091 
5092 			/*
5093 			 * Truncate failed, so fix up the in-memory size. We
5094 			 * adjusted disk_i_size down as we removed extents, so
5095 			 * wait for disk_i_size to be stable and then update the
5096 			 * in-memory size to match.
5097 			 */
5098 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5099 			if (err)
5100 				return err;
5101 			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5102 		}
5103 	}
5104 
5105 	return ret;
5106 }
5107 
5108 static int btrfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5109 			 struct iattr *attr)
5110 {
5111 	struct inode *inode = d_inode(dentry);
5112 	struct btrfs_root *root = BTRFS_I(inode)->root;
5113 	int err;
5114 
5115 	if (btrfs_root_readonly(root))
5116 		return -EROFS;
5117 
5118 	err = setattr_prepare(idmap, dentry, attr);
5119 	if (err)
5120 		return err;
5121 
5122 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5123 		err = btrfs_setsize(inode, attr);
5124 		if (err)
5125 			return err;
5126 	}
5127 
5128 	if (attr->ia_valid) {
5129 		setattr_copy(idmap, inode, attr);
5130 		inode_inc_iversion(inode);
5131 		err = btrfs_dirty_inode(BTRFS_I(inode));
5132 
5133 		if (!err && attr->ia_valid & ATTR_MODE)
5134 			err = posix_acl_chmod(idmap, dentry, inode->i_mode);
5135 	}
5136 
5137 	return err;
5138 }
5139 
5140 /*
5141  * While truncating the inode pages during eviction, we get the VFS
5142  * calling btrfs_invalidate_folio() against each folio of the inode. This
5143  * is slow because the calls to btrfs_invalidate_folio() result in a
5144  * huge amount of calls to lock_extent() and clear_extent_bit(),
5145  * which keep merging and splitting extent_state structures over and over,
5146  * wasting lots of time.
5147  *
5148  * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5149  * skip all those expensive operations on a per folio basis and do only
5150  * the ordered io finishing, while we release here the extent_map and
5151  * extent_state structures, without the excessive merging and splitting.
5152  */
5153 static void evict_inode_truncate_pages(struct inode *inode)
5154 {
5155 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5156 	struct rb_node *node;
5157 
5158 	ASSERT(inode->i_state & I_FREEING);
5159 	truncate_inode_pages_final(&inode->i_data);
5160 
5161 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
5162 
5163 	/*
5164 	 * Keep looping until we have no more ranges in the io tree.
5165 	 * We can have ongoing bios started by readahead that have
5166 	 * their endio callback (extent_io.c:end_bio_extent_readpage)
5167 	 * still in progress (unlocked the pages in the bio but did not yet
5168 	 * unlocked the ranges in the io tree). Therefore this means some
5169 	 * ranges can still be locked and eviction started because before
5170 	 * submitting those bios, which are executed by a separate task (work
5171 	 * queue kthread), inode references (inode->i_count) were not taken
5172 	 * (which would be dropped in the end io callback of each bio).
5173 	 * Therefore here we effectively end up waiting for those bios and
5174 	 * anyone else holding locked ranges without having bumped the inode's
5175 	 * reference count - if we don't do it, when they access the inode's
5176 	 * io_tree to unlock a range it may be too late, leading to an
5177 	 * use-after-free issue.
5178 	 */
5179 	spin_lock(&io_tree->lock);
5180 	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5181 		struct extent_state *state;
5182 		struct extent_state *cached_state = NULL;
5183 		u64 start;
5184 		u64 end;
5185 		unsigned state_flags;
5186 
5187 		node = rb_first(&io_tree->state);
5188 		state = rb_entry(node, struct extent_state, rb_node);
5189 		start = state->start;
5190 		end = state->end;
5191 		state_flags = state->state;
5192 		spin_unlock(&io_tree->lock);
5193 
5194 		lock_extent(io_tree, start, end, &cached_state);
5195 
5196 		/*
5197 		 * If still has DELALLOC flag, the extent didn't reach disk,
5198 		 * and its reserved space won't be freed by delayed_ref.
5199 		 * So we need to free its reserved space here.
5200 		 * (Refer to comment in btrfs_invalidate_folio, case 2)
5201 		 *
5202 		 * Note, end is the bytenr of last byte, so we need + 1 here.
5203 		 */
5204 		if (state_flags & EXTENT_DELALLOC)
5205 			btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5206 					       end - start + 1, NULL);
5207 
5208 		clear_extent_bit(io_tree, start, end,
5209 				 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
5210 				 &cached_state);
5211 
5212 		cond_resched();
5213 		spin_lock(&io_tree->lock);
5214 	}
5215 	spin_unlock(&io_tree->lock);
5216 }
5217 
5218 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5219 							struct btrfs_block_rsv *rsv)
5220 {
5221 	struct btrfs_fs_info *fs_info = root->fs_info;
5222 	struct btrfs_trans_handle *trans;
5223 	u64 delayed_refs_extra = btrfs_calc_delayed_ref_bytes(fs_info, 1);
5224 	int ret;
5225 
5226 	/*
5227 	 * Eviction should be taking place at some place safe because of our
5228 	 * delayed iputs.  However the normal flushing code will run delayed
5229 	 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5230 	 *
5231 	 * We reserve the delayed_refs_extra here again because we can't use
5232 	 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5233 	 * above.  We reserve our extra bit here because we generate a ton of
5234 	 * delayed refs activity by truncating.
5235 	 *
5236 	 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5237 	 * if we fail to make this reservation we can re-try without the
5238 	 * delayed_refs_extra so we can make some forward progress.
5239 	 */
5240 	ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
5241 				     BTRFS_RESERVE_FLUSH_EVICT);
5242 	if (ret) {
5243 		ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
5244 					     BTRFS_RESERVE_FLUSH_EVICT);
5245 		if (ret) {
5246 			btrfs_warn(fs_info,
5247 				   "could not allocate space for delete; will truncate on mount");
5248 			return ERR_PTR(-ENOSPC);
5249 		}
5250 		delayed_refs_extra = 0;
5251 	}
5252 
5253 	trans = btrfs_join_transaction(root);
5254 	if (IS_ERR(trans))
5255 		return trans;
5256 
5257 	if (delayed_refs_extra) {
5258 		trans->block_rsv = &fs_info->trans_block_rsv;
5259 		trans->bytes_reserved = delayed_refs_extra;
5260 		btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5261 					delayed_refs_extra, true);
5262 	}
5263 	return trans;
5264 }
5265 
5266 void btrfs_evict_inode(struct inode *inode)
5267 {
5268 	struct btrfs_fs_info *fs_info;
5269 	struct btrfs_trans_handle *trans;
5270 	struct btrfs_root *root = BTRFS_I(inode)->root;
5271 	struct btrfs_block_rsv *rsv = NULL;
5272 	int ret;
5273 
5274 	trace_btrfs_inode_evict(inode);
5275 
5276 	if (!root) {
5277 		fsverity_cleanup_inode(inode);
5278 		clear_inode(inode);
5279 		return;
5280 	}
5281 
5282 	fs_info = inode_to_fs_info(inode);
5283 	evict_inode_truncate_pages(inode);
5284 
5285 	if (inode->i_nlink &&
5286 	    ((btrfs_root_refs(&root->root_item) != 0 &&
5287 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5288 	     btrfs_is_free_space_inode(BTRFS_I(inode))))
5289 		goto out;
5290 
5291 	if (is_bad_inode(inode))
5292 		goto out;
5293 
5294 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5295 		goto out;
5296 
5297 	if (inode->i_nlink > 0) {
5298 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5299 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5300 		goto out;
5301 	}
5302 
5303 	/*
5304 	 * This makes sure the inode item in tree is uptodate and the space for
5305 	 * the inode update is released.
5306 	 */
5307 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5308 	if (ret)
5309 		goto out;
5310 
5311 	/*
5312 	 * This drops any pending insert or delete operations we have for this
5313 	 * inode.  We could have a delayed dir index deletion queued up, but
5314 	 * we're removing the inode completely so that'll be taken care of in
5315 	 * the truncate.
5316 	 */
5317 	btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5318 
5319 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5320 	if (!rsv)
5321 		goto out;
5322 	rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5323 	rsv->failfast = true;
5324 
5325 	btrfs_i_size_write(BTRFS_I(inode), 0);
5326 
5327 	while (1) {
5328 		struct btrfs_truncate_control control = {
5329 			.inode = BTRFS_I(inode),
5330 			.ino = btrfs_ino(BTRFS_I(inode)),
5331 			.new_size = 0,
5332 			.min_type = 0,
5333 		};
5334 
5335 		trans = evict_refill_and_join(root, rsv);
5336 		if (IS_ERR(trans))
5337 			goto out;
5338 
5339 		trans->block_rsv = rsv;
5340 
5341 		ret = btrfs_truncate_inode_items(trans, root, &control);
5342 		trans->block_rsv = &fs_info->trans_block_rsv;
5343 		btrfs_end_transaction(trans);
5344 		/*
5345 		 * We have not added new delayed items for our inode after we
5346 		 * have flushed its delayed items, so no need to throttle on
5347 		 * delayed items. However we have modified extent buffers.
5348 		 */
5349 		btrfs_btree_balance_dirty_nodelay(fs_info);
5350 		if (ret && ret != -ENOSPC && ret != -EAGAIN)
5351 			goto out;
5352 		else if (!ret)
5353 			break;
5354 	}
5355 
5356 	/*
5357 	 * Errors here aren't a big deal, it just means we leave orphan items in
5358 	 * the tree. They will be cleaned up on the next mount. If the inode
5359 	 * number gets reused, cleanup deletes the orphan item without doing
5360 	 * anything, and unlink reuses the existing orphan item.
5361 	 *
5362 	 * If it turns out that we are dropping too many of these, we might want
5363 	 * to add a mechanism for retrying these after a commit.
5364 	 */
5365 	trans = evict_refill_and_join(root, rsv);
5366 	if (!IS_ERR(trans)) {
5367 		trans->block_rsv = rsv;
5368 		btrfs_orphan_del(trans, BTRFS_I(inode));
5369 		trans->block_rsv = &fs_info->trans_block_rsv;
5370 		btrfs_end_transaction(trans);
5371 	}
5372 
5373 out:
5374 	btrfs_free_block_rsv(fs_info, rsv);
5375 	/*
5376 	 * If we didn't successfully delete, the orphan item will still be in
5377 	 * the tree and we'll retry on the next mount. Again, we might also want
5378 	 * to retry these periodically in the future.
5379 	 */
5380 	btrfs_remove_delayed_node(BTRFS_I(inode));
5381 	fsverity_cleanup_inode(inode);
5382 	clear_inode(inode);
5383 }
5384 
5385 /*
5386  * Return the key found in the dir entry in the location pointer, fill @type
5387  * with BTRFS_FT_*, and return 0.
5388  *
5389  * If no dir entries were found, returns -ENOENT.
5390  * If found a corrupted location in dir entry, returns -EUCLEAN.
5391  */
5392 static int btrfs_inode_by_name(struct btrfs_inode *dir, struct dentry *dentry,
5393 			       struct btrfs_key *location, u8 *type)
5394 {
5395 	struct btrfs_dir_item *di;
5396 	struct btrfs_path *path;
5397 	struct btrfs_root *root = dir->root;
5398 	int ret = 0;
5399 	struct fscrypt_name fname;
5400 
5401 	path = btrfs_alloc_path();
5402 	if (!path)
5403 		return -ENOMEM;
5404 
5405 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 1, &fname);
5406 	if (ret < 0)
5407 		goto out;
5408 	/*
5409 	 * fscrypt_setup_filename() should never return a positive value, but
5410 	 * gcc on sparc/parisc thinks it can, so assert that doesn't happen.
5411 	 */
5412 	ASSERT(ret == 0);
5413 
5414 	/* This needs to handle no-key deletions later on */
5415 
5416 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir),
5417 				   &fname.disk_name, 0);
5418 	if (IS_ERR_OR_NULL(di)) {
5419 		ret = di ? PTR_ERR(di) : -ENOENT;
5420 		goto out;
5421 	}
5422 
5423 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5424 	if (location->type != BTRFS_INODE_ITEM_KEY &&
5425 	    location->type != BTRFS_ROOT_ITEM_KEY) {
5426 		ret = -EUCLEAN;
5427 		btrfs_warn(root->fs_info,
5428 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5429 			   __func__, fname.disk_name.name, btrfs_ino(dir),
5430 			   location->objectid, location->type, location->offset);
5431 	}
5432 	if (!ret)
5433 		*type = btrfs_dir_ftype(path->nodes[0], di);
5434 out:
5435 	fscrypt_free_filename(&fname);
5436 	btrfs_free_path(path);
5437 	return ret;
5438 }
5439 
5440 /*
5441  * when we hit a tree root in a directory, the btrfs part of the inode
5442  * needs to be changed to reflect the root directory of the tree root.  This
5443  * is kind of like crossing a mount point.
5444  */
5445 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5446 				    struct btrfs_inode *dir,
5447 				    struct dentry *dentry,
5448 				    struct btrfs_key *location,
5449 				    struct btrfs_root **sub_root)
5450 {
5451 	struct btrfs_path *path;
5452 	struct btrfs_root *new_root;
5453 	struct btrfs_root_ref *ref;
5454 	struct extent_buffer *leaf;
5455 	struct btrfs_key key;
5456 	int ret;
5457 	int err = 0;
5458 	struct fscrypt_name fname;
5459 
5460 	ret = fscrypt_setup_filename(&dir->vfs_inode, &dentry->d_name, 0, &fname);
5461 	if (ret)
5462 		return ret;
5463 
5464 	path = btrfs_alloc_path();
5465 	if (!path) {
5466 		err = -ENOMEM;
5467 		goto out;
5468 	}
5469 
5470 	err = -ENOENT;
5471 	key.objectid = dir->root->root_key.objectid;
5472 	key.type = BTRFS_ROOT_REF_KEY;
5473 	key.offset = location->objectid;
5474 
5475 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5476 	if (ret) {
5477 		if (ret < 0)
5478 			err = ret;
5479 		goto out;
5480 	}
5481 
5482 	leaf = path->nodes[0];
5483 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5484 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5485 	    btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
5486 		goto out;
5487 
5488 	ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5489 				   (unsigned long)(ref + 1), fname.disk_name.len);
5490 	if (ret)
5491 		goto out;
5492 
5493 	btrfs_release_path(path);
5494 
5495 	new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5496 	if (IS_ERR(new_root)) {
5497 		err = PTR_ERR(new_root);
5498 		goto out;
5499 	}
5500 
5501 	*sub_root = new_root;
5502 	location->objectid = btrfs_root_dirid(&new_root->root_item);
5503 	location->type = BTRFS_INODE_ITEM_KEY;
5504 	location->offset = 0;
5505 	err = 0;
5506 out:
5507 	btrfs_free_path(path);
5508 	fscrypt_free_filename(&fname);
5509 	return err;
5510 }
5511 
5512 static void inode_tree_add(struct btrfs_inode *inode)
5513 {
5514 	struct btrfs_root *root = inode->root;
5515 	struct btrfs_inode *entry;
5516 	struct rb_node **p;
5517 	struct rb_node *parent;
5518 	struct rb_node *new = &inode->rb_node;
5519 	u64 ino = btrfs_ino(inode);
5520 
5521 	if (inode_unhashed(&inode->vfs_inode))
5522 		return;
5523 	parent = NULL;
5524 	spin_lock(&root->inode_lock);
5525 	p = &root->inode_tree.rb_node;
5526 	while (*p) {
5527 		parent = *p;
5528 		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5529 
5530 		if (ino < btrfs_ino(entry))
5531 			p = &parent->rb_left;
5532 		else if (ino > btrfs_ino(entry))
5533 			p = &parent->rb_right;
5534 		else {
5535 			WARN_ON(!(entry->vfs_inode.i_state &
5536 				  (I_WILL_FREE | I_FREEING)));
5537 			rb_replace_node(parent, new, &root->inode_tree);
5538 			RB_CLEAR_NODE(parent);
5539 			spin_unlock(&root->inode_lock);
5540 			return;
5541 		}
5542 	}
5543 	rb_link_node(new, parent, p);
5544 	rb_insert_color(new, &root->inode_tree);
5545 	spin_unlock(&root->inode_lock);
5546 }
5547 
5548 static void inode_tree_del(struct btrfs_inode *inode)
5549 {
5550 	struct btrfs_root *root = inode->root;
5551 	int empty = 0;
5552 
5553 	spin_lock(&root->inode_lock);
5554 	if (!RB_EMPTY_NODE(&inode->rb_node)) {
5555 		rb_erase(&inode->rb_node, &root->inode_tree);
5556 		RB_CLEAR_NODE(&inode->rb_node);
5557 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5558 	}
5559 	spin_unlock(&root->inode_lock);
5560 
5561 	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5562 		spin_lock(&root->inode_lock);
5563 		empty = RB_EMPTY_ROOT(&root->inode_tree);
5564 		spin_unlock(&root->inode_lock);
5565 		if (empty)
5566 			btrfs_add_dead_root(root);
5567 	}
5568 }
5569 
5570 
5571 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5572 {
5573 	struct btrfs_iget_args *args = p;
5574 
5575 	inode->i_ino = args->ino;
5576 	BTRFS_I(inode)->location.objectid = args->ino;
5577 	BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5578 	BTRFS_I(inode)->location.offset = 0;
5579 	BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5580 
5581 	if (args->root && args->root == args->root->fs_info->tree_root &&
5582 	    args->ino != BTRFS_BTREE_INODE_OBJECTID)
5583 		set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5584 			&BTRFS_I(inode)->runtime_flags);
5585 	return 0;
5586 }
5587 
5588 static int btrfs_find_actor(struct inode *inode, void *opaque)
5589 {
5590 	struct btrfs_iget_args *args = opaque;
5591 
5592 	return args->ino == BTRFS_I(inode)->location.objectid &&
5593 		args->root == BTRFS_I(inode)->root;
5594 }
5595 
5596 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5597 				       struct btrfs_root *root)
5598 {
5599 	struct inode *inode;
5600 	struct btrfs_iget_args args;
5601 	unsigned long hashval = btrfs_inode_hash(ino, root);
5602 
5603 	args.ino = ino;
5604 	args.root = root;
5605 
5606 	inode = iget5_locked(s, hashval, btrfs_find_actor,
5607 			     btrfs_init_locked_inode,
5608 			     (void *)&args);
5609 	return inode;
5610 }
5611 
5612 /*
5613  * Get an inode object given its inode number and corresponding root.
5614  * Path can be preallocated to prevent recursing back to iget through
5615  * allocator. NULL is also valid but may require an additional allocation
5616  * later.
5617  */
5618 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5619 			      struct btrfs_root *root, struct btrfs_path *path)
5620 {
5621 	struct inode *inode;
5622 
5623 	inode = btrfs_iget_locked(s, ino, root);
5624 	if (!inode)
5625 		return ERR_PTR(-ENOMEM);
5626 
5627 	if (inode->i_state & I_NEW) {
5628 		int ret;
5629 
5630 		ret = btrfs_read_locked_inode(inode, path);
5631 		if (!ret) {
5632 			inode_tree_add(BTRFS_I(inode));
5633 			unlock_new_inode(inode);
5634 		} else {
5635 			iget_failed(inode);
5636 			/*
5637 			 * ret > 0 can come from btrfs_search_slot called by
5638 			 * btrfs_read_locked_inode, this means the inode item
5639 			 * was not found.
5640 			 */
5641 			if (ret > 0)
5642 				ret = -ENOENT;
5643 			inode = ERR_PTR(ret);
5644 		}
5645 	}
5646 
5647 	return inode;
5648 }
5649 
5650 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5651 {
5652 	return btrfs_iget_path(s, ino, root, NULL);
5653 }
5654 
5655 static struct inode *new_simple_dir(struct inode *dir,
5656 				    struct btrfs_key *key,
5657 				    struct btrfs_root *root)
5658 {
5659 	struct timespec64 ts;
5660 	struct inode *inode = new_inode(dir->i_sb);
5661 
5662 	if (!inode)
5663 		return ERR_PTR(-ENOMEM);
5664 
5665 	BTRFS_I(inode)->root = btrfs_grab_root(root);
5666 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5667 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5668 
5669 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5670 	/*
5671 	 * We only need lookup, the rest is read-only and there's no inode
5672 	 * associated with the dentry
5673 	 */
5674 	inode->i_op = &simple_dir_inode_operations;
5675 	inode->i_opflags &= ~IOP_XATTR;
5676 	inode->i_fop = &simple_dir_operations;
5677 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5678 
5679 	ts = inode_set_ctime_current(inode);
5680 	inode_set_mtime_to_ts(inode, ts);
5681 	inode_set_atime_to_ts(inode, inode_get_atime(dir));
5682 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
5683 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
5684 
5685 	inode->i_uid = dir->i_uid;
5686 	inode->i_gid = dir->i_gid;
5687 
5688 	return inode;
5689 }
5690 
5691 static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5692 static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5693 static_assert(BTRFS_FT_DIR == FT_DIR);
5694 static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5695 static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5696 static_assert(BTRFS_FT_FIFO == FT_FIFO);
5697 static_assert(BTRFS_FT_SOCK == FT_SOCK);
5698 static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5699 
5700 static inline u8 btrfs_inode_type(struct inode *inode)
5701 {
5702 	return fs_umode_to_ftype(inode->i_mode);
5703 }
5704 
5705 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5706 {
5707 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
5708 	struct inode *inode;
5709 	struct btrfs_root *root = BTRFS_I(dir)->root;
5710 	struct btrfs_root *sub_root = root;
5711 	struct btrfs_key location;
5712 	u8 di_type = 0;
5713 	int ret = 0;
5714 
5715 	if (dentry->d_name.len > BTRFS_NAME_LEN)
5716 		return ERR_PTR(-ENAMETOOLONG);
5717 
5718 	ret = btrfs_inode_by_name(BTRFS_I(dir), dentry, &location, &di_type);
5719 	if (ret < 0)
5720 		return ERR_PTR(ret);
5721 
5722 	if (location.type == BTRFS_INODE_ITEM_KEY) {
5723 		inode = btrfs_iget(dir->i_sb, location.objectid, root);
5724 		if (IS_ERR(inode))
5725 			return inode;
5726 
5727 		/* Do extra check against inode mode with di_type */
5728 		if (btrfs_inode_type(inode) != di_type) {
5729 			btrfs_crit(fs_info,
5730 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5731 				  inode->i_mode, btrfs_inode_type(inode),
5732 				  di_type);
5733 			iput(inode);
5734 			return ERR_PTR(-EUCLEAN);
5735 		}
5736 		return inode;
5737 	}
5738 
5739 	ret = fixup_tree_root_location(fs_info, BTRFS_I(dir), dentry,
5740 				       &location, &sub_root);
5741 	if (ret < 0) {
5742 		if (ret != -ENOENT)
5743 			inode = ERR_PTR(ret);
5744 		else
5745 			inode = new_simple_dir(dir, &location, root);
5746 	} else {
5747 		inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5748 		btrfs_put_root(sub_root);
5749 
5750 		if (IS_ERR(inode))
5751 			return inode;
5752 
5753 		down_read(&fs_info->cleanup_work_sem);
5754 		if (!sb_rdonly(inode->i_sb))
5755 			ret = btrfs_orphan_cleanup(sub_root);
5756 		up_read(&fs_info->cleanup_work_sem);
5757 		if (ret) {
5758 			iput(inode);
5759 			inode = ERR_PTR(ret);
5760 		}
5761 	}
5762 
5763 	return inode;
5764 }
5765 
5766 static int btrfs_dentry_delete(const struct dentry *dentry)
5767 {
5768 	struct btrfs_root *root;
5769 	struct inode *inode = d_inode(dentry);
5770 
5771 	if (!inode && !IS_ROOT(dentry))
5772 		inode = d_inode(dentry->d_parent);
5773 
5774 	if (inode) {
5775 		root = BTRFS_I(inode)->root;
5776 		if (btrfs_root_refs(&root->root_item) == 0)
5777 			return 1;
5778 
5779 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5780 			return 1;
5781 	}
5782 	return 0;
5783 }
5784 
5785 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5786 				   unsigned int flags)
5787 {
5788 	struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5789 
5790 	if (inode == ERR_PTR(-ENOENT))
5791 		inode = NULL;
5792 	return d_splice_alias(inode, dentry);
5793 }
5794 
5795 /*
5796  * Find the highest existing sequence number in a directory and then set the
5797  * in-memory index_cnt variable to the first free sequence number.
5798  */
5799 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5800 {
5801 	struct btrfs_root *root = inode->root;
5802 	struct btrfs_key key, found_key;
5803 	struct btrfs_path *path;
5804 	struct extent_buffer *leaf;
5805 	int ret;
5806 
5807 	key.objectid = btrfs_ino(inode);
5808 	key.type = BTRFS_DIR_INDEX_KEY;
5809 	key.offset = (u64)-1;
5810 
5811 	path = btrfs_alloc_path();
5812 	if (!path)
5813 		return -ENOMEM;
5814 
5815 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5816 	if (ret < 0)
5817 		goto out;
5818 	/* FIXME: we should be able to handle this */
5819 	if (ret == 0)
5820 		goto out;
5821 	ret = 0;
5822 
5823 	if (path->slots[0] == 0) {
5824 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5825 		goto out;
5826 	}
5827 
5828 	path->slots[0]--;
5829 
5830 	leaf = path->nodes[0];
5831 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5832 
5833 	if (found_key.objectid != btrfs_ino(inode) ||
5834 	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5835 		inode->index_cnt = BTRFS_DIR_START_INDEX;
5836 		goto out;
5837 	}
5838 
5839 	inode->index_cnt = found_key.offset + 1;
5840 out:
5841 	btrfs_free_path(path);
5842 	return ret;
5843 }
5844 
5845 static int btrfs_get_dir_last_index(struct btrfs_inode *dir, u64 *index)
5846 {
5847 	int ret = 0;
5848 
5849 	btrfs_inode_lock(dir, 0);
5850 	if (dir->index_cnt == (u64)-1) {
5851 		ret = btrfs_inode_delayed_dir_index_count(dir);
5852 		if (ret) {
5853 			ret = btrfs_set_inode_index_count(dir);
5854 			if (ret)
5855 				goto out;
5856 		}
5857 	}
5858 
5859 	/* index_cnt is the index number of next new entry, so decrement it. */
5860 	*index = dir->index_cnt - 1;
5861 out:
5862 	btrfs_inode_unlock(dir, 0);
5863 
5864 	return ret;
5865 }
5866 
5867 /*
5868  * All this infrastructure exists because dir_emit can fault, and we are holding
5869  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5870  * our information into that, and then dir_emit from the buffer.  This is
5871  * similar to what NFS does, only we don't keep the buffer around in pagecache
5872  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5873  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5874  * tree lock.
5875  */
5876 static int btrfs_opendir(struct inode *inode, struct file *file)
5877 {
5878 	struct btrfs_file_private *private;
5879 	u64 last_index;
5880 	int ret;
5881 
5882 	ret = btrfs_get_dir_last_index(BTRFS_I(inode), &last_index);
5883 	if (ret)
5884 		return ret;
5885 
5886 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5887 	if (!private)
5888 		return -ENOMEM;
5889 	private->last_index = last_index;
5890 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5891 	if (!private->filldir_buf) {
5892 		kfree(private);
5893 		return -ENOMEM;
5894 	}
5895 	file->private_data = private;
5896 	return 0;
5897 }
5898 
5899 static loff_t btrfs_dir_llseek(struct file *file, loff_t offset, int whence)
5900 {
5901 	struct btrfs_file_private *private = file->private_data;
5902 	int ret;
5903 
5904 	ret = btrfs_get_dir_last_index(BTRFS_I(file_inode(file)),
5905 				       &private->last_index);
5906 	if (ret)
5907 		return ret;
5908 
5909 	return generic_file_llseek(file, offset, whence);
5910 }
5911 
5912 struct dir_entry {
5913 	u64 ino;
5914 	u64 offset;
5915 	unsigned type;
5916 	int name_len;
5917 };
5918 
5919 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5920 {
5921 	while (entries--) {
5922 		struct dir_entry *entry = addr;
5923 		char *name = (char *)(entry + 1);
5924 
5925 		ctx->pos = get_unaligned(&entry->offset);
5926 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5927 					 get_unaligned(&entry->ino),
5928 					 get_unaligned(&entry->type)))
5929 			return 1;
5930 		addr += sizeof(struct dir_entry) +
5931 			get_unaligned(&entry->name_len);
5932 		ctx->pos++;
5933 	}
5934 	return 0;
5935 }
5936 
5937 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5938 {
5939 	struct inode *inode = file_inode(file);
5940 	struct btrfs_root *root = BTRFS_I(inode)->root;
5941 	struct btrfs_file_private *private = file->private_data;
5942 	struct btrfs_dir_item *di;
5943 	struct btrfs_key key;
5944 	struct btrfs_key found_key;
5945 	struct btrfs_path *path;
5946 	void *addr;
5947 	LIST_HEAD(ins_list);
5948 	LIST_HEAD(del_list);
5949 	int ret;
5950 	char *name_ptr;
5951 	int name_len;
5952 	int entries = 0;
5953 	int total_len = 0;
5954 	bool put = false;
5955 	struct btrfs_key location;
5956 
5957 	if (!dir_emit_dots(file, ctx))
5958 		return 0;
5959 
5960 	path = btrfs_alloc_path();
5961 	if (!path)
5962 		return -ENOMEM;
5963 
5964 	addr = private->filldir_buf;
5965 	path->reada = READA_FORWARD;
5966 
5967 	put = btrfs_readdir_get_delayed_items(inode, private->last_index,
5968 					      &ins_list, &del_list);
5969 
5970 again:
5971 	key.type = BTRFS_DIR_INDEX_KEY;
5972 	key.offset = ctx->pos;
5973 	key.objectid = btrfs_ino(BTRFS_I(inode));
5974 
5975 	btrfs_for_each_slot(root, &key, &found_key, path, ret) {
5976 		struct dir_entry *entry;
5977 		struct extent_buffer *leaf = path->nodes[0];
5978 		u8 ftype;
5979 
5980 		if (found_key.objectid != key.objectid)
5981 			break;
5982 		if (found_key.type != BTRFS_DIR_INDEX_KEY)
5983 			break;
5984 		if (found_key.offset < ctx->pos)
5985 			continue;
5986 		if (found_key.offset > private->last_index)
5987 			break;
5988 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5989 			continue;
5990 		di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5991 		name_len = btrfs_dir_name_len(leaf, di);
5992 		if ((total_len + sizeof(struct dir_entry) + name_len) >=
5993 		    PAGE_SIZE) {
5994 			btrfs_release_path(path);
5995 			ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5996 			if (ret)
5997 				goto nopos;
5998 			addr = private->filldir_buf;
5999 			entries = 0;
6000 			total_len = 0;
6001 			goto again;
6002 		}
6003 
6004 		ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
6005 		entry = addr;
6006 		name_ptr = (char *)(entry + 1);
6007 		read_extent_buffer(leaf, name_ptr,
6008 				   (unsigned long)(di + 1), name_len);
6009 		put_unaligned(name_len, &entry->name_len);
6010 		put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
6011 		btrfs_dir_item_key_to_cpu(leaf, di, &location);
6012 		put_unaligned(location.objectid, &entry->ino);
6013 		put_unaligned(found_key.offset, &entry->offset);
6014 		entries++;
6015 		addr += sizeof(struct dir_entry) + name_len;
6016 		total_len += sizeof(struct dir_entry) + name_len;
6017 	}
6018 	/* Catch error encountered during iteration */
6019 	if (ret < 0)
6020 		goto err;
6021 
6022 	btrfs_release_path(path);
6023 
6024 	ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6025 	if (ret)
6026 		goto nopos;
6027 
6028 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
6029 	if (ret)
6030 		goto nopos;
6031 
6032 	/*
6033 	 * Stop new entries from being returned after we return the last
6034 	 * entry.
6035 	 *
6036 	 * New directory entries are assigned a strictly increasing
6037 	 * offset.  This means that new entries created during readdir
6038 	 * are *guaranteed* to be seen in the future by that readdir.
6039 	 * This has broken buggy programs which operate on names as
6040 	 * they're returned by readdir.  Until we re-use freed offsets
6041 	 * we have this hack to stop new entries from being returned
6042 	 * under the assumption that they'll never reach this huge
6043 	 * offset.
6044 	 *
6045 	 * This is being careful not to overflow 32bit loff_t unless the
6046 	 * last entry requires it because doing so has broken 32bit apps
6047 	 * in the past.
6048 	 */
6049 	if (ctx->pos >= INT_MAX)
6050 		ctx->pos = LLONG_MAX;
6051 	else
6052 		ctx->pos = INT_MAX;
6053 nopos:
6054 	ret = 0;
6055 err:
6056 	if (put)
6057 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6058 	btrfs_free_path(path);
6059 	return ret;
6060 }
6061 
6062 /*
6063  * This is somewhat expensive, updating the tree every time the
6064  * inode changes.  But, it is most likely to find the inode in cache.
6065  * FIXME, needs more benchmarking...there are no reasons other than performance
6066  * to keep or drop this code.
6067  */
6068 static int btrfs_dirty_inode(struct btrfs_inode *inode)
6069 {
6070 	struct btrfs_root *root = inode->root;
6071 	struct btrfs_fs_info *fs_info = root->fs_info;
6072 	struct btrfs_trans_handle *trans;
6073 	int ret;
6074 
6075 	if (test_bit(BTRFS_INODE_DUMMY, &inode->runtime_flags))
6076 		return 0;
6077 
6078 	trans = btrfs_join_transaction(root);
6079 	if (IS_ERR(trans))
6080 		return PTR_ERR(trans);
6081 
6082 	ret = btrfs_update_inode(trans, inode);
6083 	if (ret == -ENOSPC || ret == -EDQUOT) {
6084 		/* whoops, lets try again with the full transaction */
6085 		btrfs_end_transaction(trans);
6086 		trans = btrfs_start_transaction(root, 1);
6087 		if (IS_ERR(trans))
6088 			return PTR_ERR(trans);
6089 
6090 		ret = btrfs_update_inode(trans, inode);
6091 	}
6092 	btrfs_end_transaction(trans);
6093 	if (inode->delayed_node)
6094 		btrfs_balance_delayed_items(fs_info);
6095 
6096 	return ret;
6097 }
6098 
6099 /*
6100  * This is a copy of file_update_time.  We need this so we can return error on
6101  * ENOSPC for updating the inode in the case of file write and mmap writes.
6102  */
6103 static int btrfs_update_time(struct inode *inode, int flags)
6104 {
6105 	struct btrfs_root *root = BTRFS_I(inode)->root;
6106 	bool dirty;
6107 
6108 	if (btrfs_root_readonly(root))
6109 		return -EROFS;
6110 
6111 	dirty = inode_update_timestamps(inode, flags);
6112 	return dirty ? btrfs_dirty_inode(BTRFS_I(inode)) : 0;
6113 }
6114 
6115 /*
6116  * helper to find a free sequence number in a given directory.  This current
6117  * code is very simple, later versions will do smarter things in the btree
6118  */
6119 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6120 {
6121 	int ret = 0;
6122 
6123 	if (dir->index_cnt == (u64)-1) {
6124 		ret = btrfs_inode_delayed_dir_index_count(dir);
6125 		if (ret) {
6126 			ret = btrfs_set_inode_index_count(dir);
6127 			if (ret)
6128 				return ret;
6129 		}
6130 	}
6131 
6132 	*index = dir->index_cnt;
6133 	dir->index_cnt++;
6134 
6135 	return ret;
6136 }
6137 
6138 static int btrfs_insert_inode_locked(struct inode *inode)
6139 {
6140 	struct btrfs_iget_args args;
6141 
6142 	args.ino = BTRFS_I(inode)->location.objectid;
6143 	args.root = BTRFS_I(inode)->root;
6144 
6145 	return insert_inode_locked4(inode,
6146 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6147 		   btrfs_find_actor, &args);
6148 }
6149 
6150 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6151 			    unsigned int *trans_num_items)
6152 {
6153 	struct inode *dir = args->dir;
6154 	struct inode *inode = args->inode;
6155 	int ret;
6156 
6157 	if (!args->orphan) {
6158 		ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6159 					     &args->fname);
6160 		if (ret)
6161 			return ret;
6162 	}
6163 
6164 	ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
6165 	if (ret) {
6166 		fscrypt_free_filename(&args->fname);
6167 		return ret;
6168 	}
6169 
6170 	/* 1 to add inode item */
6171 	*trans_num_items = 1;
6172 	/* 1 to add compression property */
6173 	if (BTRFS_I(dir)->prop_compress)
6174 		(*trans_num_items)++;
6175 	/* 1 to add default ACL xattr */
6176 	if (args->default_acl)
6177 		(*trans_num_items)++;
6178 	/* 1 to add access ACL xattr */
6179 	if (args->acl)
6180 		(*trans_num_items)++;
6181 #ifdef CONFIG_SECURITY
6182 	/* 1 to add LSM xattr */
6183 	if (dir->i_security)
6184 		(*trans_num_items)++;
6185 #endif
6186 	if (args->orphan) {
6187 		/* 1 to add orphan item */
6188 		(*trans_num_items)++;
6189 	} else {
6190 		/*
6191 		 * 1 to add dir item
6192 		 * 1 to add dir index
6193 		 * 1 to update parent inode item
6194 		 *
6195 		 * No need for 1 unit for the inode ref item because it is
6196 		 * inserted in a batch together with the inode item at
6197 		 * btrfs_create_new_inode().
6198 		 */
6199 		*trans_num_items += 3;
6200 	}
6201 	return 0;
6202 }
6203 
6204 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6205 {
6206 	posix_acl_release(args->acl);
6207 	posix_acl_release(args->default_acl);
6208 	fscrypt_free_filename(&args->fname);
6209 }
6210 
6211 /*
6212  * Inherit flags from the parent inode.
6213  *
6214  * Currently only the compression flags and the cow flags are inherited.
6215  */
6216 static void btrfs_inherit_iflags(struct btrfs_inode *inode, struct btrfs_inode *dir)
6217 {
6218 	unsigned int flags;
6219 
6220 	flags = dir->flags;
6221 
6222 	if (flags & BTRFS_INODE_NOCOMPRESS) {
6223 		inode->flags &= ~BTRFS_INODE_COMPRESS;
6224 		inode->flags |= BTRFS_INODE_NOCOMPRESS;
6225 	} else if (flags & BTRFS_INODE_COMPRESS) {
6226 		inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
6227 		inode->flags |= BTRFS_INODE_COMPRESS;
6228 	}
6229 
6230 	if (flags & BTRFS_INODE_NODATACOW) {
6231 		inode->flags |= BTRFS_INODE_NODATACOW;
6232 		if (S_ISREG(inode->vfs_inode.i_mode))
6233 			inode->flags |= BTRFS_INODE_NODATASUM;
6234 	}
6235 
6236 	btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode);
6237 }
6238 
6239 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
6240 			   struct btrfs_new_inode_args *args)
6241 {
6242 	struct timespec64 ts;
6243 	struct inode *dir = args->dir;
6244 	struct inode *inode = args->inode;
6245 	const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
6246 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6247 	struct btrfs_root *root;
6248 	struct btrfs_inode_item *inode_item;
6249 	struct btrfs_key *location;
6250 	struct btrfs_path *path;
6251 	u64 objectid;
6252 	struct btrfs_inode_ref *ref;
6253 	struct btrfs_key key[2];
6254 	u32 sizes[2];
6255 	struct btrfs_item_batch batch;
6256 	unsigned long ptr;
6257 	int ret;
6258 
6259 	path = btrfs_alloc_path();
6260 	if (!path)
6261 		return -ENOMEM;
6262 
6263 	if (!args->subvol)
6264 		BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6265 	root = BTRFS_I(inode)->root;
6266 
6267 	ret = btrfs_get_free_objectid(root, &objectid);
6268 	if (ret)
6269 		goto out;
6270 	inode->i_ino = objectid;
6271 
6272 	if (args->orphan) {
6273 		/*
6274 		 * O_TMPFILE, set link count to 0, so that after this point, we
6275 		 * fill in an inode item with the correct link count.
6276 		 */
6277 		set_nlink(inode, 0);
6278 	} else {
6279 		trace_btrfs_inode_request(dir);
6280 
6281 		ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6282 		if (ret)
6283 			goto out;
6284 	}
6285 	/* index_cnt is ignored for everything but a dir. */
6286 	BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
6287 	BTRFS_I(inode)->generation = trans->transid;
6288 	inode->i_generation = BTRFS_I(inode)->generation;
6289 
6290 	/*
6291 	 * We don't have any capability xattrs set here yet, shortcut any
6292 	 * queries for the xattrs here.  If we add them later via the inode
6293 	 * security init path or any other path this flag will be cleared.
6294 	 */
6295 	set_bit(BTRFS_INODE_NO_CAP_XATTR, &BTRFS_I(inode)->runtime_flags);
6296 
6297 	/*
6298 	 * Subvolumes don't inherit flags from their parent directory.
6299 	 * Originally this was probably by accident, but we probably can't
6300 	 * change it now without compatibility issues.
6301 	 */
6302 	if (!args->subvol)
6303 		btrfs_inherit_iflags(BTRFS_I(inode), BTRFS_I(dir));
6304 
6305 	if (S_ISREG(inode->i_mode)) {
6306 		if (btrfs_test_opt(fs_info, NODATASUM))
6307 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6308 		if (btrfs_test_opt(fs_info, NODATACOW))
6309 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6310 				BTRFS_INODE_NODATASUM;
6311 	}
6312 
6313 	location = &BTRFS_I(inode)->location;
6314 	location->objectid = objectid;
6315 	location->offset = 0;
6316 	location->type = BTRFS_INODE_ITEM_KEY;
6317 
6318 	ret = btrfs_insert_inode_locked(inode);
6319 	if (ret < 0) {
6320 		if (!args->orphan)
6321 			BTRFS_I(dir)->index_cnt--;
6322 		goto out;
6323 	}
6324 
6325 	/*
6326 	 * We could have gotten an inode number from somebody who was fsynced
6327 	 * and then removed in this same transaction, so let's just set full
6328 	 * sync since it will be a full sync anyway and this will blow away the
6329 	 * old info in the log.
6330 	 */
6331 	btrfs_set_inode_full_sync(BTRFS_I(inode));
6332 
6333 	key[0].objectid = objectid;
6334 	key[0].type = BTRFS_INODE_ITEM_KEY;
6335 	key[0].offset = 0;
6336 
6337 	sizes[0] = sizeof(struct btrfs_inode_item);
6338 
6339 	if (!args->orphan) {
6340 		/*
6341 		 * Start new inodes with an inode_ref. This is slightly more
6342 		 * efficient for small numbers of hard links since they will
6343 		 * be packed into one item. Extended refs will kick in if we
6344 		 * add more hard links than can fit in the ref item.
6345 		 */
6346 		key[1].objectid = objectid;
6347 		key[1].type = BTRFS_INODE_REF_KEY;
6348 		if (args->subvol) {
6349 			key[1].offset = objectid;
6350 			sizes[1] = 2 + sizeof(*ref);
6351 		} else {
6352 			key[1].offset = btrfs_ino(BTRFS_I(dir));
6353 			sizes[1] = name->len + sizeof(*ref);
6354 		}
6355 	}
6356 
6357 	batch.keys = &key[0];
6358 	batch.data_sizes = &sizes[0];
6359 	batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6360 	batch.nr = args->orphan ? 1 : 2;
6361 	ret = btrfs_insert_empty_items(trans, root, path, &batch);
6362 	if (ret != 0) {
6363 		btrfs_abort_transaction(trans, ret);
6364 		goto discard;
6365 	}
6366 
6367 	ts = simple_inode_init_ts(inode);
6368 	BTRFS_I(inode)->i_otime_sec = ts.tv_sec;
6369 	BTRFS_I(inode)->i_otime_nsec = ts.tv_nsec;
6370 
6371 	/*
6372 	 * We're going to fill the inode item now, so at this point the inode
6373 	 * must be fully initialized.
6374 	 */
6375 
6376 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6377 				  struct btrfs_inode_item);
6378 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6379 			     sizeof(*inode_item));
6380 	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6381 
6382 	if (!args->orphan) {
6383 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6384 				     struct btrfs_inode_ref);
6385 		ptr = (unsigned long)(ref + 1);
6386 		if (args->subvol) {
6387 			btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6388 			btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6389 			write_extent_buffer(path->nodes[0], "..", ptr, 2);
6390 		} else {
6391 			btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6392 						     name->len);
6393 			btrfs_set_inode_ref_index(path->nodes[0], ref,
6394 						  BTRFS_I(inode)->dir_index);
6395 			write_extent_buffer(path->nodes[0], name->name, ptr,
6396 					    name->len);
6397 		}
6398 	}
6399 
6400 	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
6401 	/*
6402 	 * We don't need the path anymore, plus inheriting properties, adding
6403 	 * ACLs, security xattrs, orphan item or adding the link, will result in
6404 	 * allocating yet another path. So just free our path.
6405 	 */
6406 	btrfs_free_path(path);
6407 	path = NULL;
6408 
6409 	if (args->subvol) {
6410 		struct inode *parent;
6411 
6412 		/*
6413 		 * Subvolumes inherit properties from their parent subvolume,
6414 		 * not the directory they were created in.
6415 		 */
6416 		parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6417 				    BTRFS_I(dir)->root);
6418 		if (IS_ERR(parent)) {
6419 			ret = PTR_ERR(parent);
6420 		} else {
6421 			ret = btrfs_inode_inherit_props(trans, inode, parent);
6422 			iput(parent);
6423 		}
6424 	} else {
6425 		ret = btrfs_inode_inherit_props(trans, inode, dir);
6426 	}
6427 	if (ret) {
6428 		btrfs_err(fs_info,
6429 			  "error inheriting props for ino %llu (root %llu): %d",
6430 			  btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6431 			  ret);
6432 	}
6433 
6434 	/*
6435 	 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6436 	 * probably a bug.
6437 	 */
6438 	if (!args->subvol) {
6439 		ret = btrfs_init_inode_security(trans, args);
6440 		if (ret) {
6441 			btrfs_abort_transaction(trans, ret);
6442 			goto discard;
6443 		}
6444 	}
6445 
6446 	inode_tree_add(BTRFS_I(inode));
6447 
6448 	trace_btrfs_inode_new(inode);
6449 	btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
6450 
6451 	btrfs_update_root_times(trans, root);
6452 
6453 	if (args->orphan) {
6454 		ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6455 	} else {
6456 		ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
6457 				     0, BTRFS_I(inode)->dir_index);
6458 	}
6459 	if (ret) {
6460 		btrfs_abort_transaction(trans, ret);
6461 		goto discard;
6462 	}
6463 
6464 	return 0;
6465 
6466 discard:
6467 	/*
6468 	 * discard_new_inode() calls iput(), but the caller owns the reference
6469 	 * to the inode.
6470 	 */
6471 	ihold(inode);
6472 	discard_new_inode(inode);
6473 out:
6474 	btrfs_free_path(path);
6475 	return ret;
6476 }
6477 
6478 /*
6479  * utility function to add 'inode' into 'parent_inode' with
6480  * a give name and a given sequence number.
6481  * if 'add_backref' is true, also insert a backref from the
6482  * inode to the parent directory.
6483  */
6484 int btrfs_add_link(struct btrfs_trans_handle *trans,
6485 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6486 		   const struct fscrypt_str *name, int add_backref, u64 index)
6487 {
6488 	int ret = 0;
6489 	struct btrfs_key key;
6490 	struct btrfs_root *root = parent_inode->root;
6491 	u64 ino = btrfs_ino(inode);
6492 	u64 parent_ino = btrfs_ino(parent_inode);
6493 
6494 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6495 		memcpy(&key, &inode->root->root_key, sizeof(key));
6496 	} else {
6497 		key.objectid = ino;
6498 		key.type = BTRFS_INODE_ITEM_KEY;
6499 		key.offset = 0;
6500 	}
6501 
6502 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6503 		ret = btrfs_add_root_ref(trans, key.objectid,
6504 					 root->root_key.objectid, parent_ino,
6505 					 index, name);
6506 	} else if (add_backref) {
6507 		ret = btrfs_insert_inode_ref(trans, root, name,
6508 					     ino, parent_ino, index);
6509 	}
6510 
6511 	/* Nothing to clean up yet */
6512 	if (ret)
6513 		return ret;
6514 
6515 	ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
6516 				    btrfs_inode_type(&inode->vfs_inode), index);
6517 	if (ret == -EEXIST || ret == -EOVERFLOW)
6518 		goto fail_dir_item;
6519 	else if (ret) {
6520 		btrfs_abort_transaction(trans, ret);
6521 		return ret;
6522 	}
6523 
6524 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6525 			   name->len * 2);
6526 	inode_inc_iversion(&parent_inode->vfs_inode);
6527 	/*
6528 	 * If we are replaying a log tree, we do not want to update the mtime
6529 	 * and ctime of the parent directory with the current time, since the
6530 	 * log replay procedure is responsible for setting them to their correct
6531 	 * values (the ones it had when the fsync was done).
6532 	 */
6533 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
6534 		inode_set_mtime_to_ts(&parent_inode->vfs_inode,
6535 				      inode_set_ctime_current(&parent_inode->vfs_inode));
6536 
6537 	ret = btrfs_update_inode(trans, parent_inode);
6538 	if (ret)
6539 		btrfs_abort_transaction(trans, ret);
6540 	return ret;
6541 
6542 fail_dir_item:
6543 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6544 		u64 local_index;
6545 		int err;
6546 		err = btrfs_del_root_ref(trans, key.objectid,
6547 					 root->root_key.objectid, parent_ino,
6548 					 &local_index, name);
6549 		if (err)
6550 			btrfs_abort_transaction(trans, err);
6551 	} else if (add_backref) {
6552 		u64 local_index;
6553 		int err;
6554 
6555 		err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6556 					  &local_index);
6557 		if (err)
6558 			btrfs_abort_transaction(trans, err);
6559 	}
6560 
6561 	/* Return the original error code */
6562 	return ret;
6563 }
6564 
6565 static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6566 			       struct inode *inode)
6567 {
6568 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
6569 	struct btrfs_root *root = BTRFS_I(dir)->root;
6570 	struct btrfs_new_inode_args new_inode_args = {
6571 		.dir = dir,
6572 		.dentry = dentry,
6573 		.inode = inode,
6574 	};
6575 	unsigned int trans_num_items;
6576 	struct btrfs_trans_handle *trans;
6577 	int err;
6578 
6579 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
6580 	if (err)
6581 		goto out_inode;
6582 
6583 	trans = btrfs_start_transaction(root, trans_num_items);
6584 	if (IS_ERR(trans)) {
6585 		err = PTR_ERR(trans);
6586 		goto out_new_inode_args;
6587 	}
6588 
6589 	err = btrfs_create_new_inode(trans, &new_inode_args);
6590 	if (!err)
6591 		d_instantiate_new(dentry, inode);
6592 
6593 	btrfs_end_transaction(trans);
6594 	btrfs_btree_balance_dirty(fs_info);
6595 out_new_inode_args:
6596 	btrfs_new_inode_args_destroy(&new_inode_args);
6597 out_inode:
6598 	if (err)
6599 		iput(inode);
6600 	return err;
6601 }
6602 
6603 static int btrfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
6604 		       struct dentry *dentry, umode_t mode, dev_t rdev)
6605 {
6606 	struct inode *inode;
6607 
6608 	inode = new_inode(dir->i_sb);
6609 	if (!inode)
6610 		return -ENOMEM;
6611 	inode_init_owner(idmap, inode, dir, mode);
6612 	inode->i_op = &btrfs_special_inode_operations;
6613 	init_special_inode(inode, inode->i_mode, rdev);
6614 	return btrfs_create_common(dir, dentry, inode);
6615 }
6616 
6617 static int btrfs_create(struct mnt_idmap *idmap, struct inode *dir,
6618 			struct dentry *dentry, umode_t mode, bool excl)
6619 {
6620 	struct inode *inode;
6621 
6622 	inode = new_inode(dir->i_sb);
6623 	if (!inode)
6624 		return -ENOMEM;
6625 	inode_init_owner(idmap, inode, dir, mode);
6626 	inode->i_fop = &btrfs_file_operations;
6627 	inode->i_op = &btrfs_file_inode_operations;
6628 	inode->i_mapping->a_ops = &btrfs_aops;
6629 	return btrfs_create_common(dir, dentry, inode);
6630 }
6631 
6632 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6633 		      struct dentry *dentry)
6634 {
6635 	struct btrfs_trans_handle *trans = NULL;
6636 	struct btrfs_root *root = BTRFS_I(dir)->root;
6637 	struct inode *inode = d_inode(old_dentry);
6638 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
6639 	struct fscrypt_name fname;
6640 	u64 index;
6641 	int err;
6642 	int drop_inode = 0;
6643 
6644 	/* do not allow sys_link's with other subvols of the same device */
6645 	if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6646 		return -EXDEV;
6647 
6648 	if (inode->i_nlink >= BTRFS_LINK_MAX)
6649 		return -EMLINK;
6650 
6651 	err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6652 	if (err)
6653 		goto fail;
6654 
6655 	err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6656 	if (err)
6657 		goto fail;
6658 
6659 	/*
6660 	 * 2 items for inode and inode ref
6661 	 * 2 items for dir items
6662 	 * 1 item for parent inode
6663 	 * 1 item for orphan item deletion if O_TMPFILE
6664 	 */
6665 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6666 	if (IS_ERR(trans)) {
6667 		err = PTR_ERR(trans);
6668 		trans = NULL;
6669 		goto fail;
6670 	}
6671 
6672 	/* There are several dir indexes for this inode, clear the cache. */
6673 	BTRFS_I(inode)->dir_index = 0ULL;
6674 	inc_nlink(inode);
6675 	inode_inc_iversion(inode);
6676 	inode_set_ctime_current(inode);
6677 	ihold(inode);
6678 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6679 
6680 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6681 			     &fname.disk_name, 1, index);
6682 
6683 	if (err) {
6684 		drop_inode = 1;
6685 	} else {
6686 		struct dentry *parent = dentry->d_parent;
6687 
6688 		err = btrfs_update_inode(trans, BTRFS_I(inode));
6689 		if (err)
6690 			goto fail;
6691 		if (inode->i_nlink == 1) {
6692 			/*
6693 			 * If new hard link count is 1, it's a file created
6694 			 * with open(2) O_TMPFILE flag.
6695 			 */
6696 			err = btrfs_orphan_del(trans, BTRFS_I(inode));
6697 			if (err)
6698 				goto fail;
6699 		}
6700 		d_instantiate(dentry, inode);
6701 		btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
6702 	}
6703 
6704 fail:
6705 	fscrypt_free_filename(&fname);
6706 	if (trans)
6707 		btrfs_end_transaction(trans);
6708 	if (drop_inode) {
6709 		inode_dec_link_count(inode);
6710 		iput(inode);
6711 	}
6712 	btrfs_btree_balance_dirty(fs_info);
6713 	return err;
6714 }
6715 
6716 static int btrfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
6717 		       struct dentry *dentry, umode_t mode)
6718 {
6719 	struct inode *inode;
6720 
6721 	inode = new_inode(dir->i_sb);
6722 	if (!inode)
6723 		return -ENOMEM;
6724 	inode_init_owner(idmap, inode, dir, S_IFDIR | mode);
6725 	inode->i_op = &btrfs_dir_inode_operations;
6726 	inode->i_fop = &btrfs_dir_file_operations;
6727 	return btrfs_create_common(dir, dentry, inode);
6728 }
6729 
6730 static noinline int uncompress_inline(struct btrfs_path *path,
6731 				      struct page *page,
6732 				      struct btrfs_file_extent_item *item)
6733 {
6734 	int ret;
6735 	struct extent_buffer *leaf = path->nodes[0];
6736 	char *tmp;
6737 	size_t max_size;
6738 	unsigned long inline_size;
6739 	unsigned long ptr;
6740 	int compress_type;
6741 
6742 	compress_type = btrfs_file_extent_compression(leaf, item);
6743 	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6744 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
6745 	tmp = kmalloc(inline_size, GFP_NOFS);
6746 	if (!tmp)
6747 		return -ENOMEM;
6748 	ptr = btrfs_file_extent_inline_start(item);
6749 
6750 	read_extent_buffer(leaf, tmp, ptr, inline_size);
6751 
6752 	max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6753 	ret = btrfs_decompress(compress_type, tmp, page, 0, inline_size, max_size);
6754 
6755 	/*
6756 	 * decompression code contains a memset to fill in any space between the end
6757 	 * of the uncompressed data and the end of max_size in case the decompressed
6758 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6759 	 * the end of an inline extent and the beginning of the next block, so we
6760 	 * cover that region here.
6761 	 */
6762 
6763 	if (max_size < PAGE_SIZE)
6764 		memzero_page(page, max_size, PAGE_SIZE - max_size);
6765 	kfree(tmp);
6766 	return ret;
6767 }
6768 
6769 static int read_inline_extent(struct btrfs_inode *inode, struct btrfs_path *path,
6770 			      struct page *page)
6771 {
6772 	struct btrfs_file_extent_item *fi;
6773 	void *kaddr;
6774 	size_t copy_size;
6775 
6776 	if (!page || PageUptodate(page))
6777 		return 0;
6778 
6779 	ASSERT(page_offset(page) == 0);
6780 
6781 	fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
6782 			    struct btrfs_file_extent_item);
6783 	if (btrfs_file_extent_compression(path->nodes[0], fi) != BTRFS_COMPRESS_NONE)
6784 		return uncompress_inline(path, page, fi);
6785 
6786 	copy_size = min_t(u64, PAGE_SIZE,
6787 			  btrfs_file_extent_ram_bytes(path->nodes[0], fi));
6788 	kaddr = kmap_local_page(page);
6789 	read_extent_buffer(path->nodes[0], kaddr,
6790 			   btrfs_file_extent_inline_start(fi), copy_size);
6791 	kunmap_local(kaddr);
6792 	if (copy_size < PAGE_SIZE)
6793 		memzero_page(page, copy_size, PAGE_SIZE - copy_size);
6794 	return 0;
6795 }
6796 
6797 /*
6798  * Lookup the first extent overlapping a range in a file.
6799  *
6800  * @inode:	file to search in
6801  * @page:	page to read extent data into if the extent is inline
6802  * @start:	file offset
6803  * @len:	length of range starting at @start
6804  *
6805  * Return the first &struct extent_map which overlaps the given range, reading
6806  * it from the B-tree and caching it if necessary. Note that there may be more
6807  * extents which overlap the given range after the returned extent_map.
6808  *
6809  * If @page is not NULL and the extent is inline, this also reads the extent
6810  * data directly into the page and marks the extent up to date in the io_tree.
6811  *
6812  * Return: ERR_PTR on error, non-NULL extent_map on success.
6813  */
6814 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6815 				    struct page *page, u64 start, u64 len)
6816 {
6817 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
6818 	int ret = 0;
6819 	u64 extent_start = 0;
6820 	u64 extent_end = 0;
6821 	u64 objectid = btrfs_ino(inode);
6822 	int extent_type = -1;
6823 	struct btrfs_path *path = NULL;
6824 	struct btrfs_root *root = inode->root;
6825 	struct btrfs_file_extent_item *item;
6826 	struct extent_buffer *leaf;
6827 	struct btrfs_key found_key;
6828 	struct extent_map *em = NULL;
6829 	struct extent_map_tree *em_tree = &inode->extent_tree;
6830 
6831 	read_lock(&em_tree->lock);
6832 	em = lookup_extent_mapping(em_tree, start, len);
6833 	read_unlock(&em_tree->lock);
6834 
6835 	if (em) {
6836 		if (em->start > start || em->start + em->len <= start)
6837 			free_extent_map(em);
6838 		else if (em->block_start == EXTENT_MAP_INLINE && page)
6839 			free_extent_map(em);
6840 		else
6841 			goto out;
6842 	}
6843 	em = alloc_extent_map();
6844 	if (!em) {
6845 		ret = -ENOMEM;
6846 		goto out;
6847 	}
6848 	em->start = EXTENT_MAP_HOLE;
6849 	em->orig_start = EXTENT_MAP_HOLE;
6850 	em->len = (u64)-1;
6851 	em->block_len = (u64)-1;
6852 
6853 	path = btrfs_alloc_path();
6854 	if (!path) {
6855 		ret = -ENOMEM;
6856 		goto out;
6857 	}
6858 
6859 	/* Chances are we'll be called again, so go ahead and do readahead */
6860 	path->reada = READA_FORWARD;
6861 
6862 	/*
6863 	 * The same explanation in load_free_space_cache applies here as well,
6864 	 * we only read when we're loading the free space cache, and at that
6865 	 * point the commit_root has everything we need.
6866 	 */
6867 	if (btrfs_is_free_space_inode(inode)) {
6868 		path->search_commit_root = 1;
6869 		path->skip_locking = 1;
6870 	}
6871 
6872 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6873 	if (ret < 0) {
6874 		goto out;
6875 	} else if (ret > 0) {
6876 		if (path->slots[0] == 0)
6877 			goto not_found;
6878 		path->slots[0]--;
6879 		ret = 0;
6880 	}
6881 
6882 	leaf = path->nodes[0];
6883 	item = btrfs_item_ptr(leaf, path->slots[0],
6884 			      struct btrfs_file_extent_item);
6885 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6886 	if (found_key.objectid != objectid ||
6887 	    found_key.type != BTRFS_EXTENT_DATA_KEY) {
6888 		/*
6889 		 * If we backup past the first extent we want to move forward
6890 		 * and see if there is an extent in front of us, otherwise we'll
6891 		 * say there is a hole for our whole search range which can
6892 		 * cause problems.
6893 		 */
6894 		extent_end = start;
6895 		goto next;
6896 	}
6897 
6898 	extent_type = btrfs_file_extent_type(leaf, item);
6899 	extent_start = found_key.offset;
6900 	extent_end = btrfs_file_extent_end(path);
6901 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6902 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6903 		/* Only regular file could have regular/prealloc extent */
6904 		if (!S_ISREG(inode->vfs_inode.i_mode)) {
6905 			ret = -EUCLEAN;
6906 			btrfs_crit(fs_info,
6907 		"regular/prealloc extent found for non-regular inode %llu",
6908 				   btrfs_ino(inode));
6909 			goto out;
6910 		}
6911 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6912 						       extent_start);
6913 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6914 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6915 						      path->slots[0],
6916 						      extent_start);
6917 	}
6918 next:
6919 	if (start >= extent_end) {
6920 		path->slots[0]++;
6921 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6922 			ret = btrfs_next_leaf(root, path);
6923 			if (ret < 0)
6924 				goto out;
6925 			else if (ret > 0)
6926 				goto not_found;
6927 
6928 			leaf = path->nodes[0];
6929 		}
6930 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6931 		if (found_key.objectid != objectid ||
6932 		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6933 			goto not_found;
6934 		if (start + len <= found_key.offset)
6935 			goto not_found;
6936 		if (start > found_key.offset)
6937 			goto next;
6938 
6939 		/* New extent overlaps with existing one */
6940 		em->start = start;
6941 		em->orig_start = start;
6942 		em->len = found_key.offset - start;
6943 		em->block_start = EXTENT_MAP_HOLE;
6944 		goto insert;
6945 	}
6946 
6947 	btrfs_extent_item_to_extent_map(inode, path, item, em);
6948 
6949 	if (extent_type == BTRFS_FILE_EXTENT_REG ||
6950 	    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6951 		goto insert;
6952 	} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6953 		/*
6954 		 * Inline extent can only exist at file offset 0. This is
6955 		 * ensured by tree-checker and inline extent creation path.
6956 		 * Thus all members representing file offsets should be zero.
6957 		 */
6958 		ASSERT(extent_start == 0);
6959 		ASSERT(em->start == 0);
6960 
6961 		/*
6962 		 * btrfs_extent_item_to_extent_map() should have properly
6963 		 * initialized em members already.
6964 		 *
6965 		 * Other members are not utilized for inline extents.
6966 		 */
6967 		ASSERT(em->block_start == EXTENT_MAP_INLINE);
6968 		ASSERT(em->len == fs_info->sectorsize);
6969 
6970 		ret = read_inline_extent(inode, path, page);
6971 		if (ret < 0)
6972 			goto out;
6973 		goto insert;
6974 	}
6975 not_found:
6976 	em->start = start;
6977 	em->orig_start = start;
6978 	em->len = len;
6979 	em->block_start = EXTENT_MAP_HOLE;
6980 insert:
6981 	ret = 0;
6982 	btrfs_release_path(path);
6983 	if (em->start > start || extent_map_end(em) <= start) {
6984 		btrfs_err(fs_info,
6985 			  "bad extent! em: [%llu %llu] passed [%llu %llu]",
6986 			  em->start, em->len, start, len);
6987 		ret = -EIO;
6988 		goto out;
6989 	}
6990 
6991 	write_lock(&em_tree->lock);
6992 	ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6993 	write_unlock(&em_tree->lock);
6994 out:
6995 	btrfs_free_path(path);
6996 
6997 	trace_btrfs_get_extent(root, inode, em);
6998 
6999 	if (ret) {
7000 		free_extent_map(em);
7001 		return ERR_PTR(ret);
7002 	}
7003 	return em;
7004 }
7005 
7006 static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
7007 						  struct btrfs_dio_data *dio_data,
7008 						  const u64 start,
7009 						  const u64 len,
7010 						  const u64 orig_start,
7011 						  const u64 block_start,
7012 						  const u64 block_len,
7013 						  const u64 orig_block_len,
7014 						  const u64 ram_bytes,
7015 						  const int type)
7016 {
7017 	struct extent_map *em = NULL;
7018 	struct btrfs_ordered_extent *ordered;
7019 
7020 	if (type != BTRFS_ORDERED_NOCOW) {
7021 		em = create_io_em(inode, start, len, orig_start, block_start,
7022 				  block_len, orig_block_len, ram_bytes,
7023 				  BTRFS_COMPRESS_NONE, /* compress_type */
7024 				  type);
7025 		if (IS_ERR(em))
7026 			goto out;
7027 	}
7028 	ordered = btrfs_alloc_ordered_extent(inode, start, len, len,
7029 					     block_start, block_len, 0,
7030 					     (1 << type) |
7031 					     (1 << BTRFS_ORDERED_DIRECT),
7032 					     BTRFS_COMPRESS_NONE);
7033 	if (IS_ERR(ordered)) {
7034 		if (em) {
7035 			free_extent_map(em);
7036 			btrfs_drop_extent_map_range(inode, start,
7037 						    start + len - 1, false);
7038 		}
7039 		em = ERR_CAST(ordered);
7040 	} else {
7041 		ASSERT(!dio_data->ordered);
7042 		dio_data->ordered = ordered;
7043 	}
7044  out:
7045 
7046 	return em;
7047 }
7048 
7049 static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
7050 						  struct btrfs_dio_data *dio_data,
7051 						  u64 start, u64 len)
7052 {
7053 	struct btrfs_root *root = inode->root;
7054 	struct btrfs_fs_info *fs_info = root->fs_info;
7055 	struct extent_map *em;
7056 	struct btrfs_key ins;
7057 	u64 alloc_hint;
7058 	int ret;
7059 
7060 	alloc_hint = get_extent_allocation_hint(inode, start, len);
7061 again:
7062 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7063 				   0, alloc_hint, &ins, 1, 1);
7064 	if (ret == -EAGAIN) {
7065 		ASSERT(btrfs_is_zoned(fs_info));
7066 		wait_on_bit_io(&inode->root->fs_info->flags, BTRFS_FS_NEED_ZONE_FINISH,
7067 			       TASK_UNINTERRUPTIBLE);
7068 		goto again;
7069 	}
7070 	if (ret)
7071 		return ERR_PTR(ret);
7072 
7073 	em = btrfs_create_dio_extent(inode, dio_data, start, ins.offset, start,
7074 				     ins.objectid, ins.offset, ins.offset,
7075 				     ins.offset, BTRFS_ORDERED_REGULAR);
7076 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7077 	if (IS_ERR(em))
7078 		btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7079 					   1);
7080 
7081 	return em;
7082 }
7083 
7084 static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
7085 {
7086 	struct btrfs_block_group *block_group;
7087 	bool readonly = false;
7088 
7089 	block_group = btrfs_lookup_block_group(fs_info, bytenr);
7090 	if (!block_group || block_group->ro)
7091 		readonly = true;
7092 	if (block_group)
7093 		btrfs_put_block_group(block_group);
7094 	return readonly;
7095 }
7096 
7097 /*
7098  * Check if we can do nocow write into the range [@offset, @offset + @len)
7099  *
7100  * @offset:	File offset
7101  * @len:	The length to write, will be updated to the nocow writeable
7102  *		range
7103  * @orig_start:	(optional) Return the original file offset of the file extent
7104  * @orig_len:	(optional) Return the original on-disk length of the file extent
7105  * @ram_bytes:	(optional) Return the ram_bytes of the file extent
7106  * @strict:	if true, omit optimizations that might force us into unnecessary
7107  *		cow. e.g., don't trust generation number.
7108  *
7109  * Return:
7110  * >0	and update @len if we can do nocow write
7111  *  0	if we can't do nocow write
7112  * <0	if error happened
7113  *
7114  * NOTE: This only checks the file extents, caller is responsible to wait for
7115  *	 any ordered extents.
7116  */
7117 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7118 			      u64 *orig_start, u64 *orig_block_len,
7119 			      u64 *ram_bytes, bool nowait, bool strict)
7120 {
7121 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7122 	struct can_nocow_file_extent_args nocow_args = { 0 };
7123 	struct btrfs_path *path;
7124 	int ret;
7125 	struct extent_buffer *leaf;
7126 	struct btrfs_root *root = BTRFS_I(inode)->root;
7127 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7128 	struct btrfs_file_extent_item *fi;
7129 	struct btrfs_key key;
7130 	int found_type;
7131 
7132 	path = btrfs_alloc_path();
7133 	if (!path)
7134 		return -ENOMEM;
7135 	path->nowait = nowait;
7136 
7137 	ret = btrfs_lookup_file_extent(NULL, root, path,
7138 			btrfs_ino(BTRFS_I(inode)), offset, 0);
7139 	if (ret < 0)
7140 		goto out;
7141 
7142 	if (ret == 1) {
7143 		if (path->slots[0] == 0) {
7144 			/* can't find the item, must cow */
7145 			ret = 0;
7146 			goto out;
7147 		}
7148 		path->slots[0]--;
7149 	}
7150 	ret = 0;
7151 	leaf = path->nodes[0];
7152 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
7153 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7154 	    key.type != BTRFS_EXTENT_DATA_KEY) {
7155 		/* not our file or wrong item type, must cow */
7156 		goto out;
7157 	}
7158 
7159 	if (key.offset > offset) {
7160 		/* Wrong offset, must cow */
7161 		goto out;
7162 	}
7163 
7164 	if (btrfs_file_extent_end(path) <= offset)
7165 		goto out;
7166 
7167 	fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7168 	found_type = btrfs_file_extent_type(leaf, fi);
7169 	if (ram_bytes)
7170 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7171 
7172 	nocow_args.start = offset;
7173 	nocow_args.end = offset + *len - 1;
7174 	nocow_args.strict = strict;
7175 	nocow_args.free_path = true;
7176 
7177 	ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7178 	/* can_nocow_file_extent() has freed the path. */
7179 	path = NULL;
7180 
7181 	if (ret != 1) {
7182 		/* Treat errors as not being able to NOCOW. */
7183 		ret = 0;
7184 		goto out;
7185 	}
7186 
7187 	ret = 0;
7188 	if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
7189 		goto out;
7190 
7191 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7192 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7193 		u64 range_end;
7194 
7195 		range_end = round_up(offset + nocow_args.num_bytes,
7196 				     root->fs_info->sectorsize) - 1;
7197 		ret = test_range_bit_exists(io_tree, offset, range_end, EXTENT_DELALLOC);
7198 		if (ret) {
7199 			ret = -EAGAIN;
7200 			goto out;
7201 		}
7202 	}
7203 
7204 	if (orig_start)
7205 		*orig_start = key.offset - nocow_args.extent_offset;
7206 	if (orig_block_len)
7207 		*orig_block_len = nocow_args.disk_num_bytes;
7208 
7209 	*len = nocow_args.num_bytes;
7210 	ret = 1;
7211 out:
7212 	btrfs_free_path(path);
7213 	return ret;
7214 }
7215 
7216 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7217 			      struct extent_state **cached_state,
7218 			      unsigned int iomap_flags)
7219 {
7220 	const bool writing = (iomap_flags & IOMAP_WRITE);
7221 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7222 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7223 	struct btrfs_ordered_extent *ordered;
7224 	int ret = 0;
7225 
7226 	while (1) {
7227 		if (nowait) {
7228 			if (!try_lock_extent(io_tree, lockstart, lockend,
7229 					     cached_state))
7230 				return -EAGAIN;
7231 		} else {
7232 			lock_extent(io_tree, lockstart, lockend, cached_state);
7233 		}
7234 		/*
7235 		 * We're concerned with the entire range that we're going to be
7236 		 * doing DIO to, so we need to make sure there's no ordered
7237 		 * extents in this range.
7238 		 */
7239 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7240 						     lockend - lockstart + 1);
7241 
7242 		/*
7243 		 * We need to make sure there are no buffered pages in this
7244 		 * range either, we could have raced between the invalidate in
7245 		 * generic_file_direct_write and locking the extent.  The
7246 		 * invalidate needs to happen so that reads after a write do not
7247 		 * get stale data.
7248 		 */
7249 		if (!ordered &&
7250 		    (!writing || !filemap_range_has_page(inode->i_mapping,
7251 							 lockstart, lockend)))
7252 			break;
7253 
7254 		unlock_extent(io_tree, lockstart, lockend, cached_state);
7255 
7256 		if (ordered) {
7257 			if (nowait) {
7258 				btrfs_put_ordered_extent(ordered);
7259 				ret = -EAGAIN;
7260 				break;
7261 			}
7262 			/*
7263 			 * If we are doing a DIO read and the ordered extent we
7264 			 * found is for a buffered write, we can not wait for it
7265 			 * to complete and retry, because if we do so we can
7266 			 * deadlock with concurrent buffered writes on page
7267 			 * locks. This happens only if our DIO read covers more
7268 			 * than one extent map, if at this point has already
7269 			 * created an ordered extent for a previous extent map
7270 			 * and locked its range in the inode's io tree, and a
7271 			 * concurrent write against that previous extent map's
7272 			 * range and this range started (we unlock the ranges
7273 			 * in the io tree only when the bios complete and
7274 			 * buffered writes always lock pages before attempting
7275 			 * to lock range in the io tree).
7276 			 */
7277 			if (writing ||
7278 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7279 				btrfs_start_ordered_extent(ordered);
7280 			else
7281 				ret = nowait ? -EAGAIN : -ENOTBLK;
7282 			btrfs_put_ordered_extent(ordered);
7283 		} else {
7284 			/*
7285 			 * We could trigger writeback for this range (and wait
7286 			 * for it to complete) and then invalidate the pages for
7287 			 * this range (through invalidate_inode_pages2_range()),
7288 			 * but that can lead us to a deadlock with a concurrent
7289 			 * call to readahead (a buffered read or a defrag call
7290 			 * triggered a readahead) on a page lock due to an
7291 			 * ordered dio extent we created before but did not have
7292 			 * yet a corresponding bio submitted (whence it can not
7293 			 * complete), which makes readahead wait for that
7294 			 * ordered extent to complete while holding a lock on
7295 			 * that page.
7296 			 */
7297 			ret = nowait ? -EAGAIN : -ENOTBLK;
7298 		}
7299 
7300 		if (ret)
7301 			break;
7302 
7303 		cond_resched();
7304 	}
7305 
7306 	return ret;
7307 }
7308 
7309 /* The callers of this must take lock_extent() */
7310 static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7311 				       u64 len, u64 orig_start, u64 block_start,
7312 				       u64 block_len, u64 orig_block_len,
7313 				       u64 ram_bytes, int compress_type,
7314 				       int type)
7315 {
7316 	struct extent_map *em;
7317 	int ret;
7318 
7319 	ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7320 	       type == BTRFS_ORDERED_COMPRESSED ||
7321 	       type == BTRFS_ORDERED_NOCOW ||
7322 	       type == BTRFS_ORDERED_REGULAR);
7323 
7324 	em = alloc_extent_map();
7325 	if (!em)
7326 		return ERR_PTR(-ENOMEM);
7327 
7328 	em->start = start;
7329 	em->orig_start = orig_start;
7330 	em->len = len;
7331 	em->block_len = block_len;
7332 	em->block_start = block_start;
7333 	em->orig_block_len = orig_block_len;
7334 	em->ram_bytes = ram_bytes;
7335 	em->generation = -1;
7336 	em->flags |= EXTENT_FLAG_PINNED;
7337 	if (type == BTRFS_ORDERED_PREALLOC)
7338 		em->flags |= EXTENT_FLAG_FILLING;
7339 	else if (type == BTRFS_ORDERED_COMPRESSED)
7340 		extent_map_set_compression(em, compress_type);
7341 
7342 	ret = btrfs_replace_extent_map_range(inode, em, true);
7343 	if (ret) {
7344 		free_extent_map(em);
7345 		return ERR_PTR(ret);
7346 	}
7347 
7348 	/* em got 2 refs now, callers needs to do free_extent_map once. */
7349 	return em;
7350 }
7351 
7352 
7353 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7354 					 struct inode *inode,
7355 					 struct btrfs_dio_data *dio_data,
7356 					 u64 start, u64 *lenp,
7357 					 unsigned int iomap_flags)
7358 {
7359 	const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7360 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7361 	struct extent_map *em = *map;
7362 	int type;
7363 	u64 block_start, orig_start, orig_block_len, ram_bytes;
7364 	struct btrfs_block_group *bg;
7365 	bool can_nocow = false;
7366 	bool space_reserved = false;
7367 	u64 len = *lenp;
7368 	u64 prev_len;
7369 	int ret = 0;
7370 
7371 	/*
7372 	 * We don't allocate a new extent in the following cases
7373 	 *
7374 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7375 	 * existing extent.
7376 	 * 2) The extent is marked as PREALLOC. We're good to go here and can
7377 	 * just use the extent.
7378 	 *
7379 	 */
7380 	if ((em->flags & EXTENT_FLAG_PREALLOC) ||
7381 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7382 	     em->block_start != EXTENT_MAP_HOLE)) {
7383 		if (em->flags & EXTENT_FLAG_PREALLOC)
7384 			type = BTRFS_ORDERED_PREALLOC;
7385 		else
7386 			type = BTRFS_ORDERED_NOCOW;
7387 		len = min(len, em->len - (start - em->start));
7388 		block_start = em->block_start + (start - em->start);
7389 
7390 		if (can_nocow_extent(inode, start, &len, &orig_start,
7391 				     &orig_block_len, &ram_bytes, false, false) == 1) {
7392 			bg = btrfs_inc_nocow_writers(fs_info, block_start);
7393 			if (bg)
7394 				can_nocow = true;
7395 		}
7396 	}
7397 
7398 	prev_len = len;
7399 	if (can_nocow) {
7400 		struct extent_map *em2;
7401 
7402 		/* We can NOCOW, so only need to reserve metadata space. */
7403 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7404 						      nowait);
7405 		if (ret < 0) {
7406 			/* Our caller expects us to free the input extent map. */
7407 			free_extent_map(em);
7408 			*map = NULL;
7409 			btrfs_dec_nocow_writers(bg);
7410 			if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7411 				ret = -EAGAIN;
7412 			goto out;
7413 		}
7414 		space_reserved = true;
7415 
7416 		em2 = btrfs_create_dio_extent(BTRFS_I(inode), dio_data, start, len,
7417 					      orig_start, block_start,
7418 					      len, orig_block_len,
7419 					      ram_bytes, type);
7420 		btrfs_dec_nocow_writers(bg);
7421 		if (type == BTRFS_ORDERED_PREALLOC) {
7422 			free_extent_map(em);
7423 			*map = em2;
7424 			em = em2;
7425 		}
7426 
7427 		if (IS_ERR(em2)) {
7428 			ret = PTR_ERR(em2);
7429 			goto out;
7430 		}
7431 
7432 		dio_data->nocow_done = true;
7433 	} else {
7434 		/* Our caller expects us to free the input extent map. */
7435 		free_extent_map(em);
7436 		*map = NULL;
7437 
7438 		if (nowait) {
7439 			ret = -EAGAIN;
7440 			goto out;
7441 		}
7442 
7443 		/*
7444 		 * If we could not allocate data space before locking the file
7445 		 * range and we can't do a NOCOW write, then we have to fail.
7446 		 */
7447 		if (!dio_data->data_space_reserved) {
7448 			ret = -ENOSPC;
7449 			goto out;
7450 		}
7451 
7452 		/*
7453 		 * We have to COW and we have already reserved data space before,
7454 		 * so now we reserve only metadata.
7455 		 */
7456 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7457 						      false);
7458 		if (ret < 0)
7459 			goto out;
7460 		space_reserved = true;
7461 
7462 		em = btrfs_new_extent_direct(BTRFS_I(inode), dio_data, start, len);
7463 		if (IS_ERR(em)) {
7464 			ret = PTR_ERR(em);
7465 			goto out;
7466 		}
7467 		*map = em;
7468 		len = min(len, em->len - (start - em->start));
7469 		if (len < prev_len)
7470 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
7471 							prev_len - len, true);
7472 	}
7473 
7474 	/*
7475 	 * We have created our ordered extent, so we can now release our reservation
7476 	 * for an outstanding extent.
7477 	 */
7478 	btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
7479 
7480 	/*
7481 	 * Need to update the i_size under the extent lock so buffered
7482 	 * readers will get the updated i_size when we unlock.
7483 	 */
7484 	if (start + len > i_size_read(inode))
7485 		i_size_write(inode, start + len);
7486 out:
7487 	if (ret && space_reserved) {
7488 		btrfs_delalloc_release_extents(BTRFS_I(inode), len);
7489 		btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
7490 	}
7491 	*lenp = len;
7492 	return ret;
7493 }
7494 
7495 static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7496 		loff_t length, unsigned int flags, struct iomap *iomap,
7497 		struct iomap *srcmap)
7498 {
7499 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7500 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
7501 	struct extent_map *em;
7502 	struct extent_state *cached_state = NULL;
7503 	struct btrfs_dio_data *dio_data = iter->private;
7504 	u64 lockstart, lockend;
7505 	const bool write = !!(flags & IOMAP_WRITE);
7506 	int ret = 0;
7507 	u64 len = length;
7508 	const u64 data_alloc_len = length;
7509 	bool unlock_extents = false;
7510 
7511 	/*
7512 	 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7513 	 * we're NOWAIT we may submit a bio for a partial range and return
7514 	 * EIOCBQUEUED, which would result in an errant short read.
7515 	 *
7516 	 * The best way to handle this would be to allow for partial completions
7517 	 * of iocb's, so we could submit the partial bio, return and fault in
7518 	 * the rest of the pages, and then submit the io for the rest of the
7519 	 * range.  However we don't have that currently, so simply return
7520 	 * -EAGAIN at this point so that the normal path is used.
7521 	 */
7522 	if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7523 		return -EAGAIN;
7524 
7525 	/*
7526 	 * Cap the size of reads to that usually seen in buffered I/O as we need
7527 	 * to allocate a contiguous array for the checksums.
7528 	 */
7529 	if (!write)
7530 		len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
7531 
7532 	lockstart = start;
7533 	lockend = start + len - 1;
7534 
7535 	/*
7536 	 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7537 	 * enough if we've written compressed pages to this area, so we need to
7538 	 * flush the dirty pages again to make absolutely sure that any
7539 	 * outstanding dirty pages are on disk - the first flush only starts
7540 	 * compression on the data, while keeping the pages locked, so by the
7541 	 * time the second flush returns we know bios for the compressed pages
7542 	 * were submitted and finished, and the pages no longer under writeback.
7543 	 *
7544 	 * If we have a NOWAIT request and we have any pages in the range that
7545 	 * are locked, likely due to compression still in progress, we don't want
7546 	 * to block on page locks. We also don't want to block on pages marked as
7547 	 * dirty or under writeback (same as for the non-compression case).
7548 	 * iomap_dio_rw() did the same check, but after that and before we got
7549 	 * here, mmap'ed writes may have happened or buffered reads started
7550 	 * (readpage() and readahead(), which lock pages), as we haven't locked
7551 	 * the file range yet.
7552 	 */
7553 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7554 		     &BTRFS_I(inode)->runtime_flags)) {
7555 		if (flags & IOMAP_NOWAIT) {
7556 			if (filemap_range_needs_writeback(inode->i_mapping,
7557 							  lockstart, lockend))
7558 				return -EAGAIN;
7559 		} else {
7560 			ret = filemap_fdatawrite_range(inode->i_mapping, start,
7561 						       start + length - 1);
7562 			if (ret)
7563 				return ret;
7564 		}
7565 	}
7566 
7567 	memset(dio_data, 0, sizeof(*dio_data));
7568 
7569 	/*
7570 	 * We always try to allocate data space and must do it before locking
7571 	 * the file range, to avoid deadlocks with concurrent writes to the same
7572 	 * range if the range has several extents and the writes don't expand the
7573 	 * current i_size (the inode lock is taken in shared mode). If we fail to
7574 	 * allocate data space here we continue and later, after locking the
7575 	 * file range, we fail with ENOSPC only if we figure out we can not do a
7576 	 * NOCOW write.
7577 	 */
7578 	if (write && !(flags & IOMAP_NOWAIT)) {
7579 		ret = btrfs_check_data_free_space(BTRFS_I(inode),
7580 						  &dio_data->data_reserved,
7581 						  start, data_alloc_len, false);
7582 		if (!ret)
7583 			dio_data->data_space_reserved = true;
7584 		else if (ret && !(BTRFS_I(inode)->flags &
7585 				  (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7586 			goto err;
7587 	}
7588 
7589 	/*
7590 	 * If this errors out it's because we couldn't invalidate pagecache for
7591 	 * this range and we need to fallback to buffered IO, or we are doing a
7592 	 * NOWAIT read/write and we need to block.
7593 	 */
7594 	ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7595 	if (ret < 0)
7596 		goto err;
7597 
7598 	em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
7599 	if (IS_ERR(em)) {
7600 		ret = PTR_ERR(em);
7601 		goto unlock_err;
7602 	}
7603 
7604 	/*
7605 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7606 	 * io.  INLINE is special, and we could probably kludge it in here, but
7607 	 * it's still buffered so for safety lets just fall back to the generic
7608 	 * buffered path.
7609 	 *
7610 	 * For COMPRESSED we _have_ to read the entire extent in so we can
7611 	 * decompress it, so there will be buffering required no matter what we
7612 	 * do, so go ahead and fallback to buffered.
7613 	 *
7614 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7615 	 * to buffered IO.  Don't blame me, this is the price we pay for using
7616 	 * the generic code.
7617 	 */
7618 	if (extent_map_is_compressed(em) ||
7619 	    em->block_start == EXTENT_MAP_INLINE) {
7620 		free_extent_map(em);
7621 		/*
7622 		 * If we are in a NOWAIT context, return -EAGAIN in order to
7623 		 * fallback to buffered IO. This is not only because we can
7624 		 * block with buffered IO (no support for NOWAIT semantics at
7625 		 * the moment) but also to avoid returning short reads to user
7626 		 * space - this happens if we were able to read some data from
7627 		 * previous non-compressed extents and then when we fallback to
7628 		 * buffered IO, at btrfs_file_read_iter() by calling
7629 		 * filemap_read(), we fail to fault in pages for the read buffer,
7630 		 * in which case filemap_read() returns a short read (the number
7631 		 * of bytes previously read is > 0, so it does not return -EFAULT).
7632 		 */
7633 		ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
7634 		goto unlock_err;
7635 	}
7636 
7637 	len = min(len, em->len - (start - em->start));
7638 
7639 	/*
7640 	 * If we have a NOWAIT request and the range contains multiple extents
7641 	 * (or a mix of extents and holes), then we return -EAGAIN to make the
7642 	 * caller fallback to a context where it can do a blocking (without
7643 	 * NOWAIT) request. This way we avoid doing partial IO and returning
7644 	 * success to the caller, which is not optimal for writes and for reads
7645 	 * it can result in unexpected behaviour for an application.
7646 	 *
7647 	 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7648 	 * iomap_dio_rw(), we can end up returning less data then what the caller
7649 	 * asked for, resulting in an unexpected, and incorrect, short read.
7650 	 * That is, the caller asked to read N bytes and we return less than that,
7651 	 * which is wrong unless we are crossing EOF. This happens if we get a
7652 	 * page fault error when trying to fault in pages for the buffer that is
7653 	 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7654 	 * have previously submitted bios for other extents in the range, in
7655 	 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7656 	 * those bios have completed by the time we get the page fault error,
7657 	 * which we return back to our caller - we should only return EIOCBQUEUED
7658 	 * after we have submitted bios for all the extents in the range.
7659 	 */
7660 	if ((flags & IOMAP_NOWAIT) && len < length) {
7661 		free_extent_map(em);
7662 		ret = -EAGAIN;
7663 		goto unlock_err;
7664 	}
7665 
7666 	if (write) {
7667 		ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
7668 						    start, &len, flags);
7669 		if (ret < 0)
7670 			goto unlock_err;
7671 		unlock_extents = true;
7672 		/* Recalc len in case the new em is smaller than requested */
7673 		len = min(len, em->len - (start - em->start));
7674 		if (dio_data->data_space_reserved) {
7675 			u64 release_offset;
7676 			u64 release_len = 0;
7677 
7678 			if (dio_data->nocow_done) {
7679 				release_offset = start;
7680 				release_len = data_alloc_len;
7681 			} else if (len < data_alloc_len) {
7682 				release_offset = start + len;
7683 				release_len = data_alloc_len - len;
7684 			}
7685 
7686 			if (release_len > 0)
7687 				btrfs_free_reserved_data_space(BTRFS_I(inode),
7688 							       dio_data->data_reserved,
7689 							       release_offset,
7690 							       release_len);
7691 		}
7692 	} else {
7693 		/*
7694 		 * We need to unlock only the end area that we aren't using.
7695 		 * The rest is going to be unlocked by the endio routine.
7696 		 */
7697 		lockstart = start + len;
7698 		if (lockstart < lockend)
7699 			unlock_extents = true;
7700 	}
7701 
7702 	if (unlock_extents)
7703 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7704 			      &cached_state);
7705 	else
7706 		free_extent_state(cached_state);
7707 
7708 	/*
7709 	 * Translate extent map information to iomap.
7710 	 * We trim the extents (and move the addr) even though iomap code does
7711 	 * that, since we have locked only the parts we are performing I/O in.
7712 	 */
7713 	if ((em->block_start == EXTENT_MAP_HOLE) ||
7714 	    ((em->flags & EXTENT_FLAG_PREALLOC) && !write)) {
7715 		iomap->addr = IOMAP_NULL_ADDR;
7716 		iomap->type = IOMAP_HOLE;
7717 	} else {
7718 		iomap->addr = em->block_start + (start - em->start);
7719 		iomap->type = IOMAP_MAPPED;
7720 	}
7721 	iomap->offset = start;
7722 	iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
7723 	iomap->length = len;
7724 	free_extent_map(em);
7725 
7726 	return 0;
7727 
7728 unlock_err:
7729 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7730 		      &cached_state);
7731 err:
7732 	if (dio_data->data_space_reserved) {
7733 		btrfs_free_reserved_data_space(BTRFS_I(inode),
7734 					       dio_data->data_reserved,
7735 					       start, data_alloc_len);
7736 		extent_changeset_free(dio_data->data_reserved);
7737 	}
7738 
7739 	return ret;
7740 }
7741 
7742 static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7743 		ssize_t written, unsigned int flags, struct iomap *iomap)
7744 {
7745 	struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7746 	struct btrfs_dio_data *dio_data = iter->private;
7747 	size_t submitted = dio_data->submitted;
7748 	const bool write = !!(flags & IOMAP_WRITE);
7749 	int ret = 0;
7750 
7751 	if (!write && (iomap->type == IOMAP_HOLE)) {
7752 		/* If reading from a hole, unlock and return */
7753 		unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7754 			      NULL);
7755 		return 0;
7756 	}
7757 
7758 	if (submitted < length) {
7759 		pos += submitted;
7760 		length -= submitted;
7761 		if (write)
7762 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7763 						    pos, length, false);
7764 		else
7765 			unlock_extent(&BTRFS_I(inode)->io_tree, pos,
7766 				      pos + length - 1, NULL);
7767 		ret = -ENOTBLK;
7768 	}
7769 	if (write) {
7770 		btrfs_put_ordered_extent(dio_data->ordered);
7771 		dio_data->ordered = NULL;
7772 	}
7773 
7774 	if (write)
7775 		extent_changeset_free(dio_data->data_reserved);
7776 	return ret;
7777 }
7778 
7779 static void btrfs_dio_end_io(struct btrfs_bio *bbio)
7780 {
7781 	struct btrfs_dio_private *dip =
7782 		container_of(bbio, struct btrfs_dio_private, bbio);
7783 	struct btrfs_inode *inode = bbio->inode;
7784 	struct bio *bio = &bbio->bio;
7785 
7786 	if (bio->bi_status) {
7787 		btrfs_warn(inode->root->fs_info,
7788 		"direct IO failed ino %llu op 0x%0x offset %#llx len %u err no %d",
7789 			   btrfs_ino(inode), bio->bi_opf,
7790 			   dip->file_offset, dip->bytes, bio->bi_status);
7791 	}
7792 
7793 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
7794 		btrfs_finish_ordered_extent(bbio->ordered, NULL,
7795 					    dip->file_offset, dip->bytes,
7796 					    !bio->bi_status);
7797 	} else {
7798 		unlock_extent(&inode->io_tree, dip->file_offset,
7799 			      dip->file_offset + dip->bytes - 1, NULL);
7800 	}
7801 
7802 	bbio->bio.bi_private = bbio->private;
7803 	iomap_dio_bio_end_io(bio);
7804 }
7805 
7806 static void btrfs_dio_submit_io(const struct iomap_iter *iter, struct bio *bio,
7807 				loff_t file_offset)
7808 {
7809 	struct btrfs_bio *bbio = btrfs_bio(bio);
7810 	struct btrfs_dio_private *dip =
7811 		container_of(bbio, struct btrfs_dio_private, bbio);
7812 	struct btrfs_dio_data *dio_data = iter->private;
7813 
7814 	btrfs_bio_init(bbio, BTRFS_I(iter->inode)->root->fs_info,
7815 		       btrfs_dio_end_io, bio->bi_private);
7816 	bbio->inode = BTRFS_I(iter->inode);
7817 	bbio->file_offset = file_offset;
7818 
7819 	dip->file_offset = file_offset;
7820 	dip->bytes = bio->bi_iter.bi_size;
7821 
7822 	dio_data->submitted += bio->bi_iter.bi_size;
7823 
7824 	/*
7825 	 * Check if we are doing a partial write.  If we are, we need to split
7826 	 * the ordered extent to match the submitted bio.  Hang on to the
7827 	 * remaining unfinishable ordered_extent in dio_data so that it can be
7828 	 * cancelled in iomap_end to avoid a deadlock wherein faulting the
7829 	 * remaining pages is blocked on the outstanding ordered extent.
7830 	 */
7831 	if (iter->flags & IOMAP_WRITE) {
7832 		int ret;
7833 
7834 		ret = btrfs_extract_ordered_extent(bbio, dio_data->ordered);
7835 		if (ret) {
7836 			btrfs_finish_ordered_extent(dio_data->ordered, NULL,
7837 						    file_offset, dip->bytes,
7838 						    !ret);
7839 			bio->bi_status = errno_to_blk_status(ret);
7840 			iomap_dio_bio_end_io(bio);
7841 			return;
7842 		}
7843 	}
7844 
7845 	btrfs_submit_bio(bbio, 0);
7846 }
7847 
7848 static const struct iomap_ops btrfs_dio_iomap_ops = {
7849 	.iomap_begin            = btrfs_dio_iomap_begin,
7850 	.iomap_end              = btrfs_dio_iomap_end,
7851 };
7852 
7853 static const struct iomap_dio_ops btrfs_dio_ops = {
7854 	.submit_io		= btrfs_dio_submit_io,
7855 	.bio_set		= &btrfs_dio_bioset,
7856 };
7857 
7858 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
7859 {
7860 	struct btrfs_dio_data data = { 0 };
7861 
7862 	return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7863 			    IOMAP_DIO_PARTIAL, &data, done_before);
7864 }
7865 
7866 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
7867 				  size_t done_before)
7868 {
7869 	struct btrfs_dio_data data = { 0 };
7870 
7871 	return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
7872 			    IOMAP_DIO_PARTIAL, &data, done_before);
7873 }
7874 
7875 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7876 			u64 start, u64 len)
7877 {
7878 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
7879 	int	ret;
7880 
7881 	ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7882 	if (ret)
7883 		return ret;
7884 
7885 	/*
7886 	 * fiemap_prep() called filemap_write_and_wait() for the whole possible
7887 	 * file range (0 to LLONG_MAX), but that is not enough if we have
7888 	 * compression enabled. The first filemap_fdatawrite_range() only kicks
7889 	 * in the compression of data (in an async thread) and will return
7890 	 * before the compression is done and writeback is started. A second
7891 	 * filemap_fdatawrite_range() is needed to wait for the compression to
7892 	 * complete and writeback to start. We also need to wait for ordered
7893 	 * extents to complete, because our fiemap implementation uses mainly
7894 	 * file extent items to list the extents, searching for extent maps
7895 	 * only for file ranges with holes or prealloc extents to figure out
7896 	 * if we have delalloc in those ranges.
7897 	 */
7898 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7899 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7900 		if (ret)
7901 			return ret;
7902 	}
7903 
7904 	btrfs_inode_lock(btrfs_inode, BTRFS_ILOCK_SHARED);
7905 
7906 	/*
7907 	 * We did an initial flush to avoid holding the inode's lock while
7908 	 * triggering writeback and waiting for the completion of IO and ordered
7909 	 * extents. Now after we locked the inode we do it again, because it's
7910 	 * possible a new write may have happened in between those two steps.
7911 	 */
7912 	if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
7913 		ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
7914 		if (ret) {
7915 			btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7916 			return ret;
7917 		}
7918 	}
7919 
7920 	ret = extent_fiemap(btrfs_inode, fieinfo, start, len);
7921 	btrfs_inode_unlock(btrfs_inode, BTRFS_ILOCK_SHARED);
7922 
7923 	return ret;
7924 }
7925 
7926 static int btrfs_writepages(struct address_space *mapping,
7927 			    struct writeback_control *wbc)
7928 {
7929 	return extent_writepages(mapping, wbc);
7930 }
7931 
7932 static void btrfs_readahead(struct readahead_control *rac)
7933 {
7934 	extent_readahead(rac);
7935 }
7936 
7937 /*
7938  * For release_folio() and invalidate_folio() we have a race window where
7939  * folio_end_writeback() is called but the subpage spinlock is not yet released.
7940  * If we continue to release/invalidate the page, we could cause use-after-free
7941  * for subpage spinlock.  So this function is to spin and wait for subpage
7942  * spinlock.
7943  */
7944 static void wait_subpage_spinlock(struct page *page)
7945 {
7946 	struct btrfs_fs_info *fs_info = page_to_fs_info(page);
7947 	struct folio *folio = page_folio(page);
7948 	struct btrfs_subpage *subpage;
7949 
7950 	if (!btrfs_is_subpage(fs_info, page->mapping))
7951 		return;
7952 
7953 	ASSERT(folio_test_private(folio) && folio_get_private(folio));
7954 	subpage = folio_get_private(folio);
7955 
7956 	/*
7957 	 * This may look insane as we just acquire the spinlock and release it,
7958 	 * without doing anything.  But we just want to make sure no one is
7959 	 * still holding the subpage spinlock.
7960 	 * And since the page is not dirty nor writeback, and we have page
7961 	 * locked, the only possible way to hold a spinlock is from the endio
7962 	 * function to clear page writeback.
7963 	 *
7964 	 * Here we just acquire the spinlock so that all existing callers
7965 	 * should exit and we're safe to release/invalidate the page.
7966 	 */
7967 	spin_lock_irq(&subpage->lock);
7968 	spin_unlock_irq(&subpage->lock);
7969 }
7970 
7971 static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7972 {
7973 	int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7974 
7975 	if (ret == 1) {
7976 		wait_subpage_spinlock(&folio->page);
7977 		clear_page_extent_mapped(&folio->page);
7978 	}
7979 	return ret;
7980 }
7981 
7982 static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
7983 {
7984 	if (folio_test_writeback(folio) || folio_test_dirty(folio))
7985 		return false;
7986 	return __btrfs_release_folio(folio, gfp_flags);
7987 }
7988 
7989 #ifdef CONFIG_MIGRATION
7990 static int btrfs_migrate_folio(struct address_space *mapping,
7991 			     struct folio *dst, struct folio *src,
7992 			     enum migrate_mode mode)
7993 {
7994 	int ret = filemap_migrate_folio(mapping, dst, src, mode);
7995 
7996 	if (ret != MIGRATEPAGE_SUCCESS)
7997 		return ret;
7998 
7999 	if (folio_test_ordered(src)) {
8000 		folio_clear_ordered(src);
8001 		folio_set_ordered(dst);
8002 	}
8003 
8004 	return MIGRATEPAGE_SUCCESS;
8005 }
8006 #else
8007 #define btrfs_migrate_folio NULL
8008 #endif
8009 
8010 static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8011 				 size_t length)
8012 {
8013 	struct btrfs_inode *inode = folio_to_inode(folio);
8014 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
8015 	struct extent_io_tree *tree = &inode->io_tree;
8016 	struct extent_state *cached_state = NULL;
8017 	u64 page_start = folio_pos(folio);
8018 	u64 page_end = page_start + folio_size(folio) - 1;
8019 	u64 cur;
8020 	int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
8021 
8022 	/*
8023 	 * We have folio locked so no new ordered extent can be created on this
8024 	 * page, nor bio can be submitted for this folio.
8025 	 *
8026 	 * But already submitted bio can still be finished on this folio.
8027 	 * Furthermore, endio function won't skip folio which has Ordered
8028 	 * (Private2) already cleared, so it's possible for endio and
8029 	 * invalidate_folio to do the same ordered extent accounting twice
8030 	 * on one folio.
8031 	 *
8032 	 * So here we wait for any submitted bios to finish, so that we won't
8033 	 * do double ordered extent accounting on the same folio.
8034 	 */
8035 	folio_wait_writeback(folio);
8036 	wait_subpage_spinlock(&folio->page);
8037 
8038 	/*
8039 	 * For subpage case, we have call sites like
8040 	 * btrfs_punch_hole_lock_range() which passes range not aligned to
8041 	 * sectorsize.
8042 	 * If the range doesn't cover the full folio, we don't need to and
8043 	 * shouldn't clear page extent mapped, as folio->private can still
8044 	 * record subpage dirty bits for other part of the range.
8045 	 *
8046 	 * For cases that invalidate the full folio even the range doesn't
8047 	 * cover the full folio, like invalidating the last folio, we're
8048 	 * still safe to wait for ordered extent to finish.
8049 	 */
8050 	if (!(offset == 0 && length == folio_size(folio))) {
8051 		btrfs_release_folio(folio, GFP_NOFS);
8052 		return;
8053 	}
8054 
8055 	if (!inode_evicting)
8056 		lock_extent(tree, page_start, page_end, &cached_state);
8057 
8058 	cur = page_start;
8059 	while (cur < page_end) {
8060 		struct btrfs_ordered_extent *ordered;
8061 		u64 range_end;
8062 		u32 range_len;
8063 		u32 extra_flags = 0;
8064 
8065 		ordered = btrfs_lookup_first_ordered_range(inode, cur,
8066 							   page_end + 1 - cur);
8067 		if (!ordered) {
8068 			range_end = page_end;
8069 			/*
8070 			 * No ordered extent covering this range, we are safe
8071 			 * to delete all extent states in the range.
8072 			 */
8073 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8074 			goto next;
8075 		}
8076 		if (ordered->file_offset > cur) {
8077 			/*
8078 			 * There is a range between [cur, oe->file_offset) not
8079 			 * covered by any ordered extent.
8080 			 * We are safe to delete all extent states, and handle
8081 			 * the ordered extent in the next iteration.
8082 			 */
8083 			range_end = ordered->file_offset - 1;
8084 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8085 			goto next;
8086 		}
8087 
8088 		range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8089 				page_end);
8090 		ASSERT(range_end + 1 - cur < U32_MAX);
8091 		range_len = range_end + 1 - cur;
8092 		if (!btrfs_folio_test_ordered(fs_info, folio, cur, range_len)) {
8093 			/*
8094 			 * If Ordered (Private2) is cleared, it means endio has
8095 			 * already been executed for the range.
8096 			 * We can't delete the extent states as
8097 			 * btrfs_finish_ordered_io() may still use some of them.
8098 			 */
8099 			goto next;
8100 		}
8101 		btrfs_folio_clear_ordered(fs_info, folio, cur, range_len);
8102 
8103 		/*
8104 		 * IO on this page will never be started, so we need to account
8105 		 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8106 		 * here, must leave that up for the ordered extent completion.
8107 		 *
8108 		 * This will also unlock the range for incoming
8109 		 * btrfs_finish_ordered_io().
8110 		 */
8111 		if (!inode_evicting)
8112 			clear_extent_bit(tree, cur, range_end,
8113 					 EXTENT_DELALLOC |
8114 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8115 					 EXTENT_DEFRAG, &cached_state);
8116 
8117 		spin_lock_irq(&inode->ordered_tree_lock);
8118 		set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8119 		ordered->truncated_len = min(ordered->truncated_len,
8120 					     cur - ordered->file_offset);
8121 		spin_unlock_irq(&inode->ordered_tree_lock);
8122 
8123 		/*
8124 		 * If the ordered extent has finished, we're safe to delete all
8125 		 * the extent states of the range, otherwise
8126 		 * btrfs_finish_ordered_io() will get executed by endio for
8127 		 * other pages, so we can't delete extent states.
8128 		 */
8129 		if (btrfs_dec_test_ordered_pending(inode, &ordered,
8130 						   cur, range_end + 1 - cur)) {
8131 			btrfs_finish_ordered_io(ordered);
8132 			/*
8133 			 * The ordered extent has finished, now we're again
8134 			 * safe to delete all extent states of the range.
8135 			 */
8136 			extra_flags = EXTENT_CLEAR_ALL_BITS;
8137 		}
8138 next:
8139 		if (ordered)
8140 			btrfs_put_ordered_extent(ordered);
8141 		/*
8142 		 * Qgroup reserved space handler
8143 		 * Sector(s) here will be either:
8144 		 *
8145 		 * 1) Already written to disk or bio already finished
8146 		 *    Then its QGROUP_RESERVED bit in io_tree is already cleared.
8147 		 *    Qgroup will be handled by its qgroup_record then.
8148 		 *    btrfs_qgroup_free_data() call will do nothing here.
8149 		 *
8150 		 * 2) Not written to disk yet
8151 		 *    Then btrfs_qgroup_free_data() call will clear the
8152 		 *    QGROUP_RESERVED bit of its io_tree, and free the qgroup
8153 		 *    reserved data space.
8154 		 *    Since the IO will never happen for this page.
8155 		 */
8156 		btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur, NULL);
8157 		if (!inode_evicting) {
8158 			clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8159 				 EXTENT_DELALLOC | EXTENT_UPTODATE |
8160 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8161 				 extra_flags, &cached_state);
8162 		}
8163 		cur = range_end + 1;
8164 	}
8165 	/*
8166 	 * We have iterated through all ordered extents of the page, the page
8167 	 * should not have Ordered (Private2) anymore, or the above iteration
8168 	 * did something wrong.
8169 	 */
8170 	ASSERT(!folio_test_ordered(folio));
8171 	btrfs_folio_clear_checked(fs_info, folio, folio_pos(folio), folio_size(folio));
8172 	if (!inode_evicting)
8173 		__btrfs_release_folio(folio, GFP_NOFS);
8174 	clear_page_extent_mapped(&folio->page);
8175 }
8176 
8177 /*
8178  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8179  * called from a page fault handler when a page is first dirtied. Hence we must
8180  * be careful to check for EOF conditions here. We set the page up correctly
8181  * for a written page which means we get ENOSPC checking when writing into
8182  * holes and correct delalloc and unwritten extent mapping on filesystems that
8183  * support these features.
8184  *
8185  * We are not allowed to take the i_mutex here so we have to play games to
8186  * protect against truncate races as the page could now be beyond EOF.  Because
8187  * truncate_setsize() writes the inode size before removing pages, once we have
8188  * the page lock we can determine safely if the page is beyond EOF. If it is not
8189  * beyond EOF, then the page is guaranteed safe against truncation until we
8190  * unlock the page.
8191  */
8192 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8193 {
8194 	struct page *page = vmf->page;
8195 	struct folio *folio = page_folio(page);
8196 	struct inode *inode = file_inode(vmf->vma->vm_file);
8197 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
8198 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8199 	struct btrfs_ordered_extent *ordered;
8200 	struct extent_state *cached_state = NULL;
8201 	struct extent_changeset *data_reserved = NULL;
8202 	unsigned long zero_start;
8203 	loff_t size;
8204 	vm_fault_t ret;
8205 	int ret2;
8206 	int reserved = 0;
8207 	u64 reserved_space;
8208 	u64 page_start;
8209 	u64 page_end;
8210 	u64 end;
8211 
8212 	ASSERT(folio_order(folio) == 0);
8213 
8214 	reserved_space = PAGE_SIZE;
8215 
8216 	sb_start_pagefault(inode->i_sb);
8217 	page_start = page_offset(page);
8218 	page_end = page_start + PAGE_SIZE - 1;
8219 	end = page_end;
8220 
8221 	/*
8222 	 * Reserving delalloc space after obtaining the page lock can lead to
8223 	 * deadlock. For example, if a dirty page is locked by this function
8224 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8225 	 * dirty page write out, then the btrfs_writepages() function could
8226 	 * end up waiting indefinitely to get a lock on the page currently
8227 	 * being processed by btrfs_page_mkwrite() function.
8228 	 */
8229 	ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8230 					    page_start, reserved_space);
8231 	if (!ret2) {
8232 		ret2 = file_update_time(vmf->vma->vm_file);
8233 		reserved = 1;
8234 	}
8235 	if (ret2) {
8236 		ret = vmf_error(ret2);
8237 		if (reserved)
8238 			goto out;
8239 		goto out_noreserve;
8240 	}
8241 
8242 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8243 again:
8244 	down_read(&BTRFS_I(inode)->i_mmap_lock);
8245 	lock_page(page);
8246 	size = i_size_read(inode);
8247 
8248 	if ((page->mapping != inode->i_mapping) ||
8249 	    (page_start >= size)) {
8250 		/* page got truncated out from underneath us */
8251 		goto out_unlock;
8252 	}
8253 	wait_on_page_writeback(page);
8254 
8255 	lock_extent(io_tree, page_start, page_end, &cached_state);
8256 	ret2 = set_page_extent_mapped(page);
8257 	if (ret2 < 0) {
8258 		ret = vmf_error(ret2);
8259 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8260 		goto out_unlock;
8261 	}
8262 
8263 	/*
8264 	 * we can't set the delalloc bits if there are pending ordered
8265 	 * extents.  Drop our locks and wait for them to finish
8266 	 */
8267 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8268 			PAGE_SIZE);
8269 	if (ordered) {
8270 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8271 		unlock_page(page);
8272 		up_read(&BTRFS_I(inode)->i_mmap_lock);
8273 		btrfs_start_ordered_extent(ordered);
8274 		btrfs_put_ordered_extent(ordered);
8275 		goto again;
8276 	}
8277 
8278 	if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8279 		reserved_space = round_up(size - page_start,
8280 					  fs_info->sectorsize);
8281 		if (reserved_space < PAGE_SIZE) {
8282 			end = page_start + reserved_space - 1;
8283 			btrfs_delalloc_release_space(BTRFS_I(inode),
8284 					data_reserved, page_start,
8285 					PAGE_SIZE - reserved_space, true);
8286 		}
8287 	}
8288 
8289 	/*
8290 	 * page_mkwrite gets called when the page is firstly dirtied after it's
8291 	 * faulted in, but write(2) could also dirty a page and set delalloc
8292 	 * bits, thus in this case for space account reason, we still need to
8293 	 * clear any delalloc bits within this page range since we have to
8294 	 * reserve data&meta space before lock_page() (see above comments).
8295 	 */
8296 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8297 			  EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8298 			  EXTENT_DEFRAG, &cached_state);
8299 
8300 	ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
8301 					&cached_state);
8302 	if (ret2) {
8303 		unlock_extent(io_tree, page_start, page_end, &cached_state);
8304 		ret = VM_FAULT_SIGBUS;
8305 		goto out_unlock;
8306 	}
8307 
8308 	/* page is wholly or partially inside EOF */
8309 	if (page_start + PAGE_SIZE > size)
8310 		zero_start = offset_in_page(size);
8311 	else
8312 		zero_start = PAGE_SIZE;
8313 
8314 	if (zero_start != PAGE_SIZE)
8315 		memzero_page(page, zero_start, PAGE_SIZE - zero_start);
8316 
8317 	btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
8318 	btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
8319 	btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
8320 
8321 	btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
8322 
8323 	unlock_extent(io_tree, page_start, page_end, &cached_state);
8324 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8325 
8326 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8327 	sb_end_pagefault(inode->i_sb);
8328 	extent_changeset_free(data_reserved);
8329 	return VM_FAULT_LOCKED;
8330 
8331 out_unlock:
8332 	unlock_page(page);
8333 	up_read(&BTRFS_I(inode)->i_mmap_lock);
8334 out:
8335 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8336 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
8337 				     reserved_space, (ret != 0));
8338 out_noreserve:
8339 	sb_end_pagefault(inode->i_sb);
8340 	extent_changeset_free(data_reserved);
8341 	return ret;
8342 }
8343 
8344 static int btrfs_truncate(struct btrfs_inode *inode, bool skip_writeback)
8345 {
8346 	struct btrfs_truncate_control control = {
8347 		.inode = inode,
8348 		.ino = btrfs_ino(inode),
8349 		.min_type = BTRFS_EXTENT_DATA_KEY,
8350 		.clear_extent_range = true,
8351 	};
8352 	struct btrfs_root *root = inode->root;
8353 	struct btrfs_fs_info *fs_info = root->fs_info;
8354 	struct btrfs_block_rsv *rsv;
8355 	int ret;
8356 	struct btrfs_trans_handle *trans;
8357 	u64 mask = fs_info->sectorsize - 1;
8358 	const u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8359 
8360 	if (!skip_writeback) {
8361 		ret = btrfs_wait_ordered_range(&inode->vfs_inode,
8362 					       inode->vfs_inode.i_size & (~mask),
8363 					       (u64)-1);
8364 		if (ret)
8365 			return ret;
8366 	}
8367 
8368 	/*
8369 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8370 	 * things going on here:
8371 	 *
8372 	 * 1) We need to reserve space to update our inode.
8373 	 *
8374 	 * 2) We need to have something to cache all the space that is going to
8375 	 * be free'd up by the truncate operation, but also have some slack
8376 	 * space reserved in case it uses space during the truncate (thank you
8377 	 * very much snapshotting).
8378 	 *
8379 	 * And we need these to be separate.  The fact is we can use a lot of
8380 	 * space doing the truncate, and we have no earthly idea how much space
8381 	 * we will use, so we need the truncate reservation to be separate so it
8382 	 * doesn't end up using space reserved for updating the inode.  We also
8383 	 * need to be able to stop the transaction and start a new one, which
8384 	 * means we need to be able to update the inode several times, and we
8385 	 * have no idea of knowing how many times that will be, so we can't just
8386 	 * reserve 1 item for the entirety of the operation, so that has to be
8387 	 * done separately as well.
8388 	 *
8389 	 * So that leaves us with
8390 	 *
8391 	 * 1) rsv - for the truncate reservation, which we will steal from the
8392 	 * transaction reservation.
8393 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8394 	 * updating the inode.
8395 	 */
8396 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8397 	if (!rsv)
8398 		return -ENOMEM;
8399 	rsv->size = min_size;
8400 	rsv->failfast = true;
8401 
8402 	/*
8403 	 * 1 for the truncate slack space
8404 	 * 1 for updating the inode.
8405 	 */
8406 	trans = btrfs_start_transaction(root, 2);
8407 	if (IS_ERR(trans)) {
8408 		ret = PTR_ERR(trans);
8409 		goto out;
8410 	}
8411 
8412 	/* Migrate the slack space for the truncate to our reserve */
8413 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8414 				      min_size, false);
8415 	/*
8416 	 * We have reserved 2 metadata units when we started the transaction and
8417 	 * min_size matches 1 unit, so this should never fail, but if it does,
8418 	 * it's not critical we just fail truncation.
8419 	 */
8420 	if (WARN_ON(ret)) {
8421 		btrfs_end_transaction(trans);
8422 		goto out;
8423 	}
8424 
8425 	trans->block_rsv = rsv;
8426 
8427 	while (1) {
8428 		struct extent_state *cached_state = NULL;
8429 		const u64 new_size = inode->vfs_inode.i_size;
8430 		const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8431 
8432 		control.new_size = new_size;
8433 		lock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8434 		/*
8435 		 * We want to drop from the next block forward in case this new
8436 		 * size is not block aligned since we will be keeping the last
8437 		 * block of the extent just the way it is.
8438 		 */
8439 		btrfs_drop_extent_map_range(inode,
8440 					    ALIGN(new_size, fs_info->sectorsize),
8441 					    (u64)-1, false);
8442 
8443 		ret = btrfs_truncate_inode_items(trans, root, &control);
8444 
8445 		inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
8446 		btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
8447 
8448 		unlock_extent(&inode->io_tree, lock_start, (u64)-1, &cached_state);
8449 
8450 		trans->block_rsv = &fs_info->trans_block_rsv;
8451 		if (ret != -ENOSPC && ret != -EAGAIN)
8452 			break;
8453 
8454 		ret = btrfs_update_inode(trans, inode);
8455 		if (ret)
8456 			break;
8457 
8458 		btrfs_end_transaction(trans);
8459 		btrfs_btree_balance_dirty(fs_info);
8460 
8461 		trans = btrfs_start_transaction(root, 2);
8462 		if (IS_ERR(trans)) {
8463 			ret = PTR_ERR(trans);
8464 			trans = NULL;
8465 			break;
8466 		}
8467 
8468 		btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8469 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8470 					      rsv, min_size, false);
8471 		/*
8472 		 * We have reserved 2 metadata units when we started the
8473 		 * transaction and min_size matches 1 unit, so this should never
8474 		 * fail, but if it does, it's not critical we just fail truncation.
8475 		 */
8476 		if (WARN_ON(ret))
8477 			break;
8478 
8479 		trans->block_rsv = rsv;
8480 	}
8481 
8482 	/*
8483 	 * We can't call btrfs_truncate_block inside a trans handle as we could
8484 	 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8485 	 * know we've truncated everything except the last little bit, and can
8486 	 * do btrfs_truncate_block and then update the disk_i_size.
8487 	 */
8488 	if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
8489 		btrfs_end_transaction(trans);
8490 		btrfs_btree_balance_dirty(fs_info);
8491 
8492 		ret = btrfs_truncate_block(inode, inode->vfs_inode.i_size, 0, 0);
8493 		if (ret)
8494 			goto out;
8495 		trans = btrfs_start_transaction(root, 1);
8496 		if (IS_ERR(trans)) {
8497 			ret = PTR_ERR(trans);
8498 			goto out;
8499 		}
8500 		btrfs_inode_safe_disk_i_size_write(inode, 0);
8501 	}
8502 
8503 	if (trans) {
8504 		int ret2;
8505 
8506 		trans->block_rsv = &fs_info->trans_block_rsv;
8507 		ret2 = btrfs_update_inode(trans, inode);
8508 		if (ret2 && !ret)
8509 			ret = ret2;
8510 
8511 		ret2 = btrfs_end_transaction(trans);
8512 		if (ret2 && !ret)
8513 			ret = ret2;
8514 		btrfs_btree_balance_dirty(fs_info);
8515 	}
8516 out:
8517 	btrfs_free_block_rsv(fs_info, rsv);
8518 	/*
8519 	 * So if we truncate and then write and fsync we normally would just
8520 	 * write the extents that changed, which is a problem if we need to
8521 	 * first truncate that entire inode.  So set this flag so we write out
8522 	 * all of the extents in the inode to the sync log so we're completely
8523 	 * safe.
8524 	 *
8525 	 * If no extents were dropped or trimmed we don't need to force the next
8526 	 * fsync to truncate all the inode's items from the log and re-log them
8527 	 * all. This means the truncate operation did not change the file size,
8528 	 * or changed it to a smaller size but there was only an implicit hole
8529 	 * between the old i_size and the new i_size, and there were no prealloc
8530 	 * extents beyond i_size to drop.
8531 	 */
8532 	if (control.extents_found > 0)
8533 		btrfs_set_inode_full_sync(inode);
8534 
8535 	return ret;
8536 }
8537 
8538 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
8539 				     struct inode *dir)
8540 {
8541 	struct inode *inode;
8542 
8543 	inode = new_inode(dir->i_sb);
8544 	if (inode) {
8545 		/*
8546 		 * Subvolumes don't inherit the sgid bit or the parent's gid if
8547 		 * the parent's sgid bit is set. This is probably a bug.
8548 		 */
8549 		inode_init_owner(idmap, inode, NULL,
8550 				 S_IFDIR | (~current_umask() & S_IRWXUGO));
8551 		inode->i_op = &btrfs_dir_inode_operations;
8552 		inode->i_fop = &btrfs_dir_file_operations;
8553 	}
8554 	return inode;
8555 }
8556 
8557 struct inode *btrfs_alloc_inode(struct super_block *sb)
8558 {
8559 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8560 	struct btrfs_inode *ei;
8561 	struct inode *inode;
8562 	struct extent_io_tree *file_extent_tree = NULL;
8563 
8564 	/* Self tests may pass a NULL fs_info. */
8565 	if (fs_info && !btrfs_fs_incompat(fs_info, NO_HOLES)) {
8566 		file_extent_tree = kmalloc(sizeof(struct extent_io_tree), GFP_KERNEL);
8567 		if (!file_extent_tree)
8568 			return NULL;
8569 	}
8570 
8571 	ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
8572 	if (!ei) {
8573 		kfree(file_extent_tree);
8574 		return NULL;
8575 	}
8576 
8577 	ei->root = NULL;
8578 	ei->generation = 0;
8579 	ei->last_trans = 0;
8580 	ei->last_sub_trans = 0;
8581 	ei->logged_trans = 0;
8582 	ei->delalloc_bytes = 0;
8583 	ei->new_delalloc_bytes = 0;
8584 	ei->defrag_bytes = 0;
8585 	ei->disk_i_size = 0;
8586 	ei->flags = 0;
8587 	ei->ro_flags = 0;
8588 	ei->csum_bytes = 0;
8589 	ei->index_cnt = (u64)-1;
8590 	ei->dir_index = 0;
8591 	ei->last_unlink_trans = 0;
8592 	ei->last_reflink_trans = 0;
8593 	ei->last_log_commit = 0;
8594 
8595 	spin_lock_init(&ei->lock);
8596 	ei->outstanding_extents = 0;
8597 	if (sb->s_magic != BTRFS_TEST_MAGIC)
8598 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8599 					      BTRFS_BLOCK_RSV_DELALLOC);
8600 	ei->runtime_flags = 0;
8601 	ei->prop_compress = BTRFS_COMPRESS_NONE;
8602 	ei->defrag_compress = BTRFS_COMPRESS_NONE;
8603 
8604 	ei->delayed_node = NULL;
8605 
8606 	ei->i_otime_sec = 0;
8607 	ei->i_otime_nsec = 0;
8608 
8609 	inode = &ei->vfs_inode;
8610 	extent_map_tree_init(&ei->extent_tree);
8611 
8612 	/* This io tree sets the valid inode. */
8613 	extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO);
8614 	ei->io_tree.inode = ei;
8615 
8616 	ei->file_extent_tree = file_extent_tree;
8617 	if (file_extent_tree) {
8618 		extent_io_tree_init(fs_info, ei->file_extent_tree,
8619 				    IO_TREE_INODE_FILE_EXTENT);
8620 		/* Lockdep class is set only for the file extent tree. */
8621 		lockdep_set_class(&ei->file_extent_tree->lock, &file_extent_tree_class);
8622 	}
8623 	mutex_init(&ei->log_mutex);
8624 	spin_lock_init(&ei->ordered_tree_lock);
8625 	ei->ordered_tree = RB_ROOT;
8626 	ei->ordered_tree_last = NULL;
8627 	INIT_LIST_HEAD(&ei->delalloc_inodes);
8628 	INIT_LIST_HEAD(&ei->delayed_iput);
8629 	RB_CLEAR_NODE(&ei->rb_node);
8630 	init_rwsem(&ei->i_mmap_lock);
8631 
8632 	return inode;
8633 }
8634 
8635 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8636 void btrfs_test_destroy_inode(struct inode *inode)
8637 {
8638 	btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
8639 	kfree(BTRFS_I(inode)->file_extent_tree);
8640 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8641 }
8642 #endif
8643 
8644 void btrfs_free_inode(struct inode *inode)
8645 {
8646 	kfree(BTRFS_I(inode)->file_extent_tree);
8647 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8648 }
8649 
8650 void btrfs_destroy_inode(struct inode *vfs_inode)
8651 {
8652 	struct btrfs_ordered_extent *ordered;
8653 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8654 	struct btrfs_root *root = inode->root;
8655 	bool freespace_inode;
8656 
8657 	WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8658 	WARN_ON(vfs_inode->i_data.nrpages);
8659 	WARN_ON(inode->block_rsv.reserved);
8660 	WARN_ON(inode->block_rsv.size);
8661 	WARN_ON(inode->outstanding_extents);
8662 	if (!S_ISDIR(vfs_inode->i_mode)) {
8663 		WARN_ON(inode->delalloc_bytes);
8664 		WARN_ON(inode->new_delalloc_bytes);
8665 	}
8666 	WARN_ON(inode->csum_bytes);
8667 	WARN_ON(inode->defrag_bytes);
8668 
8669 	/*
8670 	 * This can happen where we create an inode, but somebody else also
8671 	 * created the same inode and we need to destroy the one we already
8672 	 * created.
8673 	 */
8674 	if (!root)
8675 		return;
8676 
8677 	/*
8678 	 * If this is a free space inode do not take the ordered extents lockdep
8679 	 * map.
8680 	 */
8681 	freespace_inode = btrfs_is_free_space_inode(inode);
8682 
8683 	while (1) {
8684 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8685 		if (!ordered)
8686 			break;
8687 		else {
8688 			btrfs_err(root->fs_info,
8689 				  "found ordered extent %llu %llu on inode cleanup",
8690 				  ordered->file_offset, ordered->num_bytes);
8691 
8692 			if (!freespace_inode)
8693 				btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8694 
8695 			btrfs_remove_ordered_extent(inode, ordered);
8696 			btrfs_put_ordered_extent(ordered);
8697 			btrfs_put_ordered_extent(ordered);
8698 		}
8699 	}
8700 	btrfs_qgroup_check_reserved_leak(inode);
8701 	inode_tree_del(inode);
8702 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
8703 	btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8704 	btrfs_put_root(inode->root);
8705 }
8706 
8707 int btrfs_drop_inode(struct inode *inode)
8708 {
8709 	struct btrfs_root *root = BTRFS_I(inode)->root;
8710 
8711 	if (root == NULL)
8712 		return 1;
8713 
8714 	/* the snap/subvol tree is on deleting */
8715 	if (btrfs_root_refs(&root->root_item) == 0)
8716 		return 1;
8717 	else
8718 		return generic_drop_inode(inode);
8719 }
8720 
8721 static void init_once(void *foo)
8722 {
8723 	struct btrfs_inode *ei = foo;
8724 
8725 	inode_init_once(&ei->vfs_inode);
8726 }
8727 
8728 void __cold btrfs_destroy_cachep(void)
8729 {
8730 	/*
8731 	 * Make sure all delayed rcu free inodes are flushed before we
8732 	 * destroy cache.
8733 	 */
8734 	rcu_barrier();
8735 	bioset_exit(&btrfs_dio_bioset);
8736 	kmem_cache_destroy(btrfs_inode_cachep);
8737 }
8738 
8739 int __init btrfs_init_cachep(void)
8740 {
8741 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8742 			sizeof(struct btrfs_inode), 0,
8743 			SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
8744 			init_once);
8745 	if (!btrfs_inode_cachep)
8746 		goto fail;
8747 
8748 	if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8749 			offsetof(struct btrfs_dio_private, bbio.bio),
8750 			BIOSET_NEED_BVECS))
8751 		goto fail;
8752 
8753 	return 0;
8754 fail:
8755 	btrfs_destroy_cachep();
8756 	return -ENOMEM;
8757 }
8758 
8759 static int btrfs_getattr(struct mnt_idmap *idmap,
8760 			 const struct path *path, struct kstat *stat,
8761 			 u32 request_mask, unsigned int flags)
8762 {
8763 	u64 delalloc_bytes;
8764 	u64 inode_bytes;
8765 	struct inode *inode = d_inode(path->dentry);
8766 	u32 blocksize = btrfs_sb(inode->i_sb)->sectorsize;
8767 	u32 bi_flags = BTRFS_I(inode)->flags;
8768 	u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
8769 
8770 	stat->result_mask |= STATX_BTIME;
8771 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime_sec;
8772 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime_nsec;
8773 	if (bi_flags & BTRFS_INODE_APPEND)
8774 		stat->attributes |= STATX_ATTR_APPEND;
8775 	if (bi_flags & BTRFS_INODE_COMPRESS)
8776 		stat->attributes |= STATX_ATTR_COMPRESSED;
8777 	if (bi_flags & BTRFS_INODE_IMMUTABLE)
8778 		stat->attributes |= STATX_ATTR_IMMUTABLE;
8779 	if (bi_flags & BTRFS_INODE_NODUMP)
8780 		stat->attributes |= STATX_ATTR_NODUMP;
8781 	if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
8782 		stat->attributes |= STATX_ATTR_VERITY;
8783 
8784 	stat->attributes_mask |= (STATX_ATTR_APPEND |
8785 				  STATX_ATTR_COMPRESSED |
8786 				  STATX_ATTR_IMMUTABLE |
8787 				  STATX_ATTR_NODUMP);
8788 
8789 	generic_fillattr(idmap, request_mask, inode, stat);
8790 	stat->dev = BTRFS_I(inode)->root->anon_dev;
8791 
8792 	spin_lock(&BTRFS_I(inode)->lock);
8793 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8794 	inode_bytes = inode_get_bytes(inode);
8795 	spin_unlock(&BTRFS_I(inode)->lock);
8796 	stat->blocks = (ALIGN(inode_bytes, blocksize) +
8797 			ALIGN(delalloc_bytes, blocksize)) >> SECTOR_SHIFT;
8798 	return 0;
8799 }
8800 
8801 static int btrfs_rename_exchange(struct inode *old_dir,
8802 			      struct dentry *old_dentry,
8803 			      struct inode *new_dir,
8804 			      struct dentry *new_dentry)
8805 {
8806 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
8807 	struct btrfs_trans_handle *trans;
8808 	unsigned int trans_num_items;
8809 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
8810 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8811 	struct inode *new_inode = new_dentry->d_inode;
8812 	struct inode *old_inode = old_dentry->d_inode;
8813 	struct btrfs_rename_ctx old_rename_ctx;
8814 	struct btrfs_rename_ctx new_rename_ctx;
8815 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8816 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8817 	u64 old_idx = 0;
8818 	u64 new_idx = 0;
8819 	int ret;
8820 	int ret2;
8821 	bool need_abort = false;
8822 	struct fscrypt_name old_fname, new_fname;
8823 	struct fscrypt_str *old_name, *new_name;
8824 
8825 	/*
8826 	 * For non-subvolumes allow exchange only within one subvolume, in the
8827 	 * same inode namespace. Two subvolumes (represented as directory) can
8828 	 * be exchanged as they're a logical link and have a fixed inode number.
8829 	 */
8830 	if (root != dest &&
8831 	    (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
8832 	     new_ino != BTRFS_FIRST_FREE_OBJECTID))
8833 		return -EXDEV;
8834 
8835 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
8836 	if (ret)
8837 		return ret;
8838 
8839 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
8840 	if (ret) {
8841 		fscrypt_free_filename(&old_fname);
8842 		return ret;
8843 	}
8844 
8845 	old_name = &old_fname.disk_name;
8846 	new_name = &new_fname.disk_name;
8847 
8848 	/* close the race window with snapshot create/destroy ioctl */
8849 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8850 	    new_ino == BTRFS_FIRST_FREE_OBJECTID)
8851 		down_read(&fs_info->subvol_sem);
8852 
8853 	/*
8854 	 * For each inode:
8855 	 * 1 to remove old dir item
8856 	 * 1 to remove old dir index
8857 	 * 1 to add new dir item
8858 	 * 1 to add new dir index
8859 	 * 1 to update parent inode
8860 	 *
8861 	 * If the parents are the same, we only need to account for one
8862 	 */
8863 	trans_num_items = (old_dir == new_dir ? 9 : 10);
8864 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8865 		/*
8866 		 * 1 to remove old root ref
8867 		 * 1 to remove old root backref
8868 		 * 1 to add new root ref
8869 		 * 1 to add new root backref
8870 		 */
8871 		trans_num_items += 4;
8872 	} else {
8873 		/*
8874 		 * 1 to update inode item
8875 		 * 1 to remove old inode ref
8876 		 * 1 to add new inode ref
8877 		 */
8878 		trans_num_items += 3;
8879 	}
8880 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
8881 		trans_num_items += 4;
8882 	else
8883 		trans_num_items += 3;
8884 	trans = btrfs_start_transaction(root, trans_num_items);
8885 	if (IS_ERR(trans)) {
8886 		ret = PTR_ERR(trans);
8887 		goto out_notrans;
8888 	}
8889 
8890 	if (dest != root) {
8891 		ret = btrfs_record_root_in_trans(trans, dest);
8892 		if (ret)
8893 			goto out_fail;
8894 	}
8895 
8896 	/*
8897 	 * We need to find a free sequence number both in the source and
8898 	 * in the destination directory for the exchange.
8899 	 */
8900 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8901 	if (ret)
8902 		goto out_fail;
8903 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8904 	if (ret)
8905 		goto out_fail;
8906 
8907 	BTRFS_I(old_inode)->dir_index = 0ULL;
8908 	BTRFS_I(new_inode)->dir_index = 0ULL;
8909 
8910 	/* Reference for the source. */
8911 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8912 		/* force full log commit if subvolume involved. */
8913 		btrfs_set_log_full_commit(trans);
8914 	} else {
8915 		ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
8916 					     btrfs_ino(BTRFS_I(new_dir)),
8917 					     old_idx);
8918 		if (ret)
8919 			goto out_fail;
8920 		need_abort = true;
8921 	}
8922 
8923 	/* And now for the dest. */
8924 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8925 		/* force full log commit if subvolume involved. */
8926 		btrfs_set_log_full_commit(trans);
8927 	} else {
8928 		ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
8929 					     btrfs_ino(BTRFS_I(old_dir)),
8930 					     new_idx);
8931 		if (ret) {
8932 			if (need_abort)
8933 				btrfs_abort_transaction(trans, ret);
8934 			goto out_fail;
8935 		}
8936 	}
8937 
8938 	/* Update inode version and ctime/mtime. */
8939 	inode_inc_iversion(old_dir);
8940 	inode_inc_iversion(new_dir);
8941 	inode_inc_iversion(old_inode);
8942 	inode_inc_iversion(new_inode);
8943 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
8944 
8945 	if (old_dentry->d_parent != new_dentry->d_parent) {
8946 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8947 					BTRFS_I(old_inode), true);
8948 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8949 					BTRFS_I(new_inode), true);
8950 	}
8951 
8952 	/* src is a subvolume */
8953 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8954 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
8955 	} else { /* src is an inode */
8956 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
8957 					   BTRFS_I(old_dentry->d_inode),
8958 					   old_name, &old_rename_ctx);
8959 		if (!ret)
8960 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
8961 	}
8962 	if (ret) {
8963 		btrfs_abort_transaction(trans, ret);
8964 		goto out_fail;
8965 	}
8966 
8967 	/* dest is a subvolume */
8968 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8969 		ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
8970 	} else { /* dest is an inode */
8971 		ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
8972 					   BTRFS_I(new_dentry->d_inode),
8973 					   new_name, &new_rename_ctx);
8974 		if (!ret)
8975 			ret = btrfs_update_inode(trans, BTRFS_I(new_inode));
8976 	}
8977 	if (ret) {
8978 		btrfs_abort_transaction(trans, ret);
8979 		goto out_fail;
8980 	}
8981 
8982 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8983 			     new_name, 0, old_idx);
8984 	if (ret) {
8985 		btrfs_abort_transaction(trans, ret);
8986 		goto out_fail;
8987 	}
8988 
8989 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8990 			     old_name, 0, new_idx);
8991 	if (ret) {
8992 		btrfs_abort_transaction(trans, ret);
8993 		goto out_fail;
8994 	}
8995 
8996 	if (old_inode->i_nlink == 1)
8997 		BTRFS_I(old_inode)->dir_index = old_idx;
8998 	if (new_inode->i_nlink == 1)
8999 		BTRFS_I(new_inode)->dir_index = new_idx;
9000 
9001 	/*
9002 	 * Now pin the logs of the roots. We do it to ensure that no other task
9003 	 * can sync the logs while we are in progress with the rename, because
9004 	 * that could result in an inconsistency in case any of the inodes that
9005 	 * are part of this rename operation were logged before.
9006 	 */
9007 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9008 		btrfs_pin_log_trans(root);
9009 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9010 		btrfs_pin_log_trans(dest);
9011 
9012 	/* Do the log updates for all inodes. */
9013 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9014 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9015 				   old_rename_ctx.index, new_dentry->d_parent);
9016 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9017 		btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
9018 				   new_rename_ctx.index, old_dentry->d_parent);
9019 
9020 	/* Now unpin the logs. */
9021 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9022 		btrfs_end_log_trans(root);
9023 	if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9024 		btrfs_end_log_trans(dest);
9025 out_fail:
9026 	ret2 = btrfs_end_transaction(trans);
9027 	ret = ret ? ret : ret2;
9028 out_notrans:
9029 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9030 	    old_ino == BTRFS_FIRST_FREE_OBJECTID)
9031 		up_read(&fs_info->subvol_sem);
9032 
9033 	fscrypt_free_filename(&new_fname);
9034 	fscrypt_free_filename(&old_fname);
9035 	return ret;
9036 }
9037 
9038 static struct inode *new_whiteout_inode(struct mnt_idmap *idmap,
9039 					struct inode *dir)
9040 {
9041 	struct inode *inode;
9042 
9043 	inode = new_inode(dir->i_sb);
9044 	if (inode) {
9045 		inode_init_owner(idmap, inode, dir,
9046 				 S_IFCHR | WHITEOUT_MODE);
9047 		inode->i_op = &btrfs_special_inode_operations;
9048 		init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9049 	}
9050 	return inode;
9051 }
9052 
9053 static int btrfs_rename(struct mnt_idmap *idmap,
9054 			struct inode *old_dir, struct dentry *old_dentry,
9055 			struct inode *new_dir, struct dentry *new_dentry,
9056 			unsigned int flags)
9057 {
9058 	struct btrfs_fs_info *fs_info = inode_to_fs_info(old_dir);
9059 	struct btrfs_new_inode_args whiteout_args = {
9060 		.dir = old_dir,
9061 		.dentry = old_dentry,
9062 	};
9063 	struct btrfs_trans_handle *trans;
9064 	unsigned int trans_num_items;
9065 	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9066 	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9067 	struct inode *new_inode = d_inode(new_dentry);
9068 	struct inode *old_inode = d_inode(old_dentry);
9069 	struct btrfs_rename_ctx rename_ctx;
9070 	u64 index = 0;
9071 	int ret;
9072 	int ret2;
9073 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9074 	struct fscrypt_name old_fname, new_fname;
9075 
9076 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9077 		return -EPERM;
9078 
9079 	/* we only allow rename subvolume link between subvolumes */
9080 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9081 		return -EXDEV;
9082 
9083 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9084 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9085 		return -ENOTEMPTY;
9086 
9087 	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9088 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9089 		return -ENOTEMPTY;
9090 
9091 	ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9092 	if (ret)
9093 		return ret;
9094 
9095 	ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9096 	if (ret) {
9097 		fscrypt_free_filename(&old_fname);
9098 		return ret;
9099 	}
9100 
9101 	/* check for collisions, even if the  name isn't there */
9102 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9103 	if (ret) {
9104 		if (ret == -EEXIST) {
9105 			/* we shouldn't get
9106 			 * eexist without a new_inode */
9107 			if (WARN_ON(!new_inode)) {
9108 				goto out_fscrypt_names;
9109 			}
9110 		} else {
9111 			/* maybe -EOVERFLOW */
9112 			goto out_fscrypt_names;
9113 		}
9114 	}
9115 	ret = 0;
9116 
9117 	/*
9118 	 * we're using rename to replace one file with another.  Start IO on it
9119 	 * now so  we don't add too much work to the end of the transaction
9120 	 */
9121 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9122 		filemap_flush(old_inode->i_mapping);
9123 
9124 	if (flags & RENAME_WHITEOUT) {
9125 		whiteout_args.inode = new_whiteout_inode(idmap, old_dir);
9126 		if (!whiteout_args.inode) {
9127 			ret = -ENOMEM;
9128 			goto out_fscrypt_names;
9129 		}
9130 		ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9131 		if (ret)
9132 			goto out_whiteout_inode;
9133 	} else {
9134 		/* 1 to update the old parent inode. */
9135 		trans_num_items = 1;
9136 	}
9137 
9138 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9139 		/* Close the race window with snapshot create/destroy ioctl */
9140 		down_read(&fs_info->subvol_sem);
9141 		/*
9142 		 * 1 to remove old root ref
9143 		 * 1 to remove old root backref
9144 		 * 1 to add new root ref
9145 		 * 1 to add new root backref
9146 		 */
9147 		trans_num_items += 4;
9148 	} else {
9149 		/*
9150 		 * 1 to update inode
9151 		 * 1 to remove old inode ref
9152 		 * 1 to add new inode ref
9153 		 */
9154 		trans_num_items += 3;
9155 	}
9156 	/*
9157 	 * 1 to remove old dir item
9158 	 * 1 to remove old dir index
9159 	 * 1 to add new dir item
9160 	 * 1 to add new dir index
9161 	 */
9162 	trans_num_items += 4;
9163 	/* 1 to update new parent inode if it's not the same as the old parent */
9164 	if (new_dir != old_dir)
9165 		trans_num_items++;
9166 	if (new_inode) {
9167 		/*
9168 		 * 1 to update inode
9169 		 * 1 to remove inode ref
9170 		 * 1 to remove dir item
9171 		 * 1 to remove dir index
9172 		 * 1 to possibly add orphan item
9173 		 */
9174 		trans_num_items += 5;
9175 	}
9176 	trans = btrfs_start_transaction(root, trans_num_items);
9177 	if (IS_ERR(trans)) {
9178 		ret = PTR_ERR(trans);
9179 		goto out_notrans;
9180 	}
9181 
9182 	if (dest != root) {
9183 		ret = btrfs_record_root_in_trans(trans, dest);
9184 		if (ret)
9185 			goto out_fail;
9186 	}
9187 
9188 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9189 	if (ret)
9190 		goto out_fail;
9191 
9192 	BTRFS_I(old_inode)->dir_index = 0ULL;
9193 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9194 		/* force full log commit if subvolume involved. */
9195 		btrfs_set_log_full_commit(trans);
9196 	} else {
9197 		ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9198 					     old_ino, btrfs_ino(BTRFS_I(new_dir)),
9199 					     index);
9200 		if (ret)
9201 			goto out_fail;
9202 	}
9203 
9204 	inode_inc_iversion(old_dir);
9205 	inode_inc_iversion(new_dir);
9206 	inode_inc_iversion(old_inode);
9207 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
9208 
9209 	if (old_dentry->d_parent != new_dentry->d_parent)
9210 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9211 					BTRFS_I(old_inode), true);
9212 
9213 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9214 		ret = btrfs_unlink_subvol(trans, BTRFS_I(old_dir), old_dentry);
9215 	} else {
9216 		ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
9217 					   BTRFS_I(d_inode(old_dentry)),
9218 					   &old_fname.disk_name, &rename_ctx);
9219 		if (!ret)
9220 			ret = btrfs_update_inode(trans, BTRFS_I(old_inode));
9221 	}
9222 	if (ret) {
9223 		btrfs_abort_transaction(trans, ret);
9224 		goto out_fail;
9225 	}
9226 
9227 	if (new_inode) {
9228 		inode_inc_iversion(new_inode);
9229 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9230 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9231 			ret = btrfs_unlink_subvol(trans, BTRFS_I(new_dir), new_dentry);
9232 			BUG_ON(new_inode->i_nlink == 0);
9233 		} else {
9234 			ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
9235 						 BTRFS_I(d_inode(new_dentry)),
9236 						 &new_fname.disk_name);
9237 		}
9238 		if (!ret && new_inode->i_nlink == 0)
9239 			ret = btrfs_orphan_add(trans,
9240 					BTRFS_I(d_inode(new_dentry)));
9241 		if (ret) {
9242 			btrfs_abort_transaction(trans, ret);
9243 			goto out_fail;
9244 		}
9245 	}
9246 
9247 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9248 			     &new_fname.disk_name, 0, index);
9249 	if (ret) {
9250 		btrfs_abort_transaction(trans, ret);
9251 		goto out_fail;
9252 	}
9253 
9254 	if (old_inode->i_nlink == 1)
9255 		BTRFS_I(old_inode)->dir_index = index;
9256 
9257 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9258 		btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
9259 				   rename_ctx.index, new_dentry->d_parent);
9260 
9261 	if (flags & RENAME_WHITEOUT) {
9262 		ret = btrfs_create_new_inode(trans, &whiteout_args);
9263 		if (ret) {
9264 			btrfs_abort_transaction(trans, ret);
9265 			goto out_fail;
9266 		} else {
9267 			unlock_new_inode(whiteout_args.inode);
9268 			iput(whiteout_args.inode);
9269 			whiteout_args.inode = NULL;
9270 		}
9271 	}
9272 out_fail:
9273 	ret2 = btrfs_end_transaction(trans);
9274 	ret = ret ? ret : ret2;
9275 out_notrans:
9276 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9277 		up_read(&fs_info->subvol_sem);
9278 	if (flags & RENAME_WHITEOUT)
9279 		btrfs_new_inode_args_destroy(&whiteout_args);
9280 out_whiteout_inode:
9281 	if (flags & RENAME_WHITEOUT)
9282 		iput(whiteout_args.inode);
9283 out_fscrypt_names:
9284 	fscrypt_free_filename(&old_fname);
9285 	fscrypt_free_filename(&new_fname);
9286 	return ret;
9287 }
9288 
9289 static int btrfs_rename2(struct mnt_idmap *idmap, struct inode *old_dir,
9290 			 struct dentry *old_dentry, struct inode *new_dir,
9291 			 struct dentry *new_dentry, unsigned int flags)
9292 {
9293 	int ret;
9294 
9295 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9296 		return -EINVAL;
9297 
9298 	if (flags & RENAME_EXCHANGE)
9299 		ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9300 					    new_dentry);
9301 	else
9302 		ret = btrfs_rename(idmap, old_dir, old_dentry, new_dir,
9303 				   new_dentry, flags);
9304 
9305 	btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9306 
9307 	return ret;
9308 }
9309 
9310 struct btrfs_delalloc_work {
9311 	struct inode *inode;
9312 	struct completion completion;
9313 	struct list_head list;
9314 	struct btrfs_work work;
9315 };
9316 
9317 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9318 {
9319 	struct btrfs_delalloc_work *delalloc_work;
9320 	struct inode *inode;
9321 
9322 	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9323 				     work);
9324 	inode = delalloc_work->inode;
9325 	filemap_flush(inode->i_mapping);
9326 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9327 				&BTRFS_I(inode)->runtime_flags))
9328 		filemap_flush(inode->i_mapping);
9329 
9330 	iput(inode);
9331 	complete(&delalloc_work->completion);
9332 }
9333 
9334 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9335 {
9336 	struct btrfs_delalloc_work *work;
9337 
9338 	work = kmalloc(sizeof(*work), GFP_NOFS);
9339 	if (!work)
9340 		return NULL;
9341 
9342 	init_completion(&work->completion);
9343 	INIT_LIST_HEAD(&work->list);
9344 	work->inode = inode;
9345 	btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL);
9346 
9347 	return work;
9348 }
9349 
9350 /*
9351  * some fairly slow code that needs optimization. This walks the list
9352  * of all the inodes with pending delalloc and forces them to disk.
9353  */
9354 static int start_delalloc_inodes(struct btrfs_root *root,
9355 				 struct writeback_control *wbc, bool snapshot,
9356 				 bool in_reclaim_context)
9357 {
9358 	struct btrfs_inode *binode;
9359 	struct inode *inode;
9360 	struct btrfs_delalloc_work *work, *next;
9361 	LIST_HEAD(works);
9362 	LIST_HEAD(splice);
9363 	int ret = 0;
9364 	bool full_flush = wbc->nr_to_write == LONG_MAX;
9365 
9366 	mutex_lock(&root->delalloc_mutex);
9367 	spin_lock(&root->delalloc_lock);
9368 	list_splice_init(&root->delalloc_inodes, &splice);
9369 	while (!list_empty(&splice)) {
9370 		binode = list_entry(splice.next, struct btrfs_inode,
9371 				    delalloc_inodes);
9372 
9373 		list_move_tail(&binode->delalloc_inodes,
9374 			       &root->delalloc_inodes);
9375 
9376 		if (in_reclaim_context &&
9377 		    test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9378 			continue;
9379 
9380 		inode = igrab(&binode->vfs_inode);
9381 		if (!inode) {
9382 			cond_resched_lock(&root->delalloc_lock);
9383 			continue;
9384 		}
9385 		spin_unlock(&root->delalloc_lock);
9386 
9387 		if (snapshot)
9388 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9389 				&binode->runtime_flags);
9390 		if (full_flush) {
9391 			work = btrfs_alloc_delalloc_work(inode);
9392 			if (!work) {
9393 				iput(inode);
9394 				ret = -ENOMEM;
9395 				goto out;
9396 			}
9397 			list_add_tail(&work->list, &works);
9398 			btrfs_queue_work(root->fs_info->flush_workers,
9399 					 &work->work);
9400 		} else {
9401 			ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
9402 			btrfs_add_delayed_iput(BTRFS_I(inode));
9403 			if (ret || wbc->nr_to_write <= 0)
9404 				goto out;
9405 		}
9406 		cond_resched();
9407 		spin_lock(&root->delalloc_lock);
9408 	}
9409 	spin_unlock(&root->delalloc_lock);
9410 
9411 out:
9412 	list_for_each_entry_safe(work, next, &works, list) {
9413 		list_del_init(&work->list);
9414 		wait_for_completion(&work->completion);
9415 		kfree(work);
9416 	}
9417 
9418 	if (!list_empty(&splice)) {
9419 		spin_lock(&root->delalloc_lock);
9420 		list_splice_tail(&splice, &root->delalloc_inodes);
9421 		spin_unlock(&root->delalloc_lock);
9422 	}
9423 	mutex_unlock(&root->delalloc_mutex);
9424 	return ret;
9425 }
9426 
9427 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
9428 {
9429 	struct writeback_control wbc = {
9430 		.nr_to_write = LONG_MAX,
9431 		.sync_mode = WB_SYNC_NONE,
9432 		.range_start = 0,
9433 		.range_end = LLONG_MAX,
9434 	};
9435 	struct btrfs_fs_info *fs_info = root->fs_info;
9436 
9437 	if (BTRFS_FS_ERROR(fs_info))
9438 		return -EROFS;
9439 
9440 	return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
9441 }
9442 
9443 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
9444 			       bool in_reclaim_context)
9445 {
9446 	struct writeback_control wbc = {
9447 		.nr_to_write = nr,
9448 		.sync_mode = WB_SYNC_NONE,
9449 		.range_start = 0,
9450 		.range_end = LLONG_MAX,
9451 	};
9452 	struct btrfs_root *root;
9453 	LIST_HEAD(splice);
9454 	int ret;
9455 
9456 	if (BTRFS_FS_ERROR(fs_info))
9457 		return -EROFS;
9458 
9459 	mutex_lock(&fs_info->delalloc_root_mutex);
9460 	spin_lock(&fs_info->delalloc_root_lock);
9461 	list_splice_init(&fs_info->delalloc_roots, &splice);
9462 	while (!list_empty(&splice)) {
9463 		/*
9464 		 * Reset nr_to_write here so we know that we're doing a full
9465 		 * flush.
9466 		 */
9467 		if (nr == LONG_MAX)
9468 			wbc.nr_to_write = LONG_MAX;
9469 
9470 		root = list_first_entry(&splice, struct btrfs_root,
9471 					delalloc_root);
9472 		root = btrfs_grab_root(root);
9473 		BUG_ON(!root);
9474 		list_move_tail(&root->delalloc_root,
9475 			       &fs_info->delalloc_roots);
9476 		spin_unlock(&fs_info->delalloc_root_lock);
9477 
9478 		ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
9479 		btrfs_put_root(root);
9480 		if (ret < 0 || wbc.nr_to_write <= 0)
9481 			goto out;
9482 		spin_lock(&fs_info->delalloc_root_lock);
9483 	}
9484 	spin_unlock(&fs_info->delalloc_root_lock);
9485 
9486 	ret = 0;
9487 out:
9488 	if (!list_empty(&splice)) {
9489 		spin_lock(&fs_info->delalloc_root_lock);
9490 		list_splice_tail(&splice, &fs_info->delalloc_roots);
9491 		spin_unlock(&fs_info->delalloc_root_lock);
9492 	}
9493 	mutex_unlock(&fs_info->delalloc_root_mutex);
9494 	return ret;
9495 }
9496 
9497 static int btrfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
9498 			 struct dentry *dentry, const char *symname)
9499 {
9500 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9501 	struct btrfs_trans_handle *trans;
9502 	struct btrfs_root *root = BTRFS_I(dir)->root;
9503 	struct btrfs_path *path;
9504 	struct btrfs_key key;
9505 	struct inode *inode;
9506 	struct btrfs_new_inode_args new_inode_args = {
9507 		.dir = dir,
9508 		.dentry = dentry,
9509 	};
9510 	unsigned int trans_num_items;
9511 	int err;
9512 	int name_len;
9513 	int datasize;
9514 	unsigned long ptr;
9515 	struct btrfs_file_extent_item *ei;
9516 	struct extent_buffer *leaf;
9517 
9518 	name_len = strlen(symname);
9519 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9520 		return -ENAMETOOLONG;
9521 
9522 	inode = new_inode(dir->i_sb);
9523 	if (!inode)
9524 		return -ENOMEM;
9525 	inode_init_owner(idmap, inode, dir, S_IFLNK | S_IRWXUGO);
9526 	inode->i_op = &btrfs_symlink_inode_operations;
9527 	inode_nohighmem(inode);
9528 	inode->i_mapping->a_ops = &btrfs_aops;
9529 	btrfs_i_size_write(BTRFS_I(inode), name_len);
9530 	inode_set_bytes(inode, name_len);
9531 
9532 	new_inode_args.inode = inode;
9533 	err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9534 	if (err)
9535 		goto out_inode;
9536 	/* 1 additional item for the inline extent */
9537 	trans_num_items++;
9538 
9539 	trans = btrfs_start_transaction(root, trans_num_items);
9540 	if (IS_ERR(trans)) {
9541 		err = PTR_ERR(trans);
9542 		goto out_new_inode_args;
9543 	}
9544 
9545 	err = btrfs_create_new_inode(trans, &new_inode_args);
9546 	if (err)
9547 		goto out;
9548 
9549 	path = btrfs_alloc_path();
9550 	if (!path) {
9551 		err = -ENOMEM;
9552 		btrfs_abort_transaction(trans, err);
9553 		discard_new_inode(inode);
9554 		inode = NULL;
9555 		goto out;
9556 	}
9557 	key.objectid = btrfs_ino(BTRFS_I(inode));
9558 	key.offset = 0;
9559 	key.type = BTRFS_EXTENT_DATA_KEY;
9560 	datasize = btrfs_file_extent_calc_inline_size(name_len);
9561 	err = btrfs_insert_empty_item(trans, root, path, &key,
9562 				      datasize);
9563 	if (err) {
9564 		btrfs_abort_transaction(trans, err);
9565 		btrfs_free_path(path);
9566 		discard_new_inode(inode);
9567 		inode = NULL;
9568 		goto out;
9569 	}
9570 	leaf = path->nodes[0];
9571 	ei = btrfs_item_ptr(leaf, path->slots[0],
9572 			    struct btrfs_file_extent_item);
9573 	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9574 	btrfs_set_file_extent_type(leaf, ei,
9575 				   BTRFS_FILE_EXTENT_INLINE);
9576 	btrfs_set_file_extent_encryption(leaf, ei, 0);
9577 	btrfs_set_file_extent_compression(leaf, ei, 0);
9578 	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9579 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9580 
9581 	ptr = btrfs_file_extent_inline_start(ei);
9582 	write_extent_buffer(leaf, symname, ptr, name_len);
9583 	btrfs_mark_buffer_dirty(trans, leaf);
9584 	btrfs_free_path(path);
9585 
9586 	d_instantiate_new(dentry, inode);
9587 	err = 0;
9588 out:
9589 	btrfs_end_transaction(trans);
9590 	btrfs_btree_balance_dirty(fs_info);
9591 out_new_inode_args:
9592 	btrfs_new_inode_args_destroy(&new_inode_args);
9593 out_inode:
9594 	if (err)
9595 		iput(inode);
9596 	return err;
9597 }
9598 
9599 static struct btrfs_trans_handle *insert_prealloc_file_extent(
9600 				       struct btrfs_trans_handle *trans_in,
9601 				       struct btrfs_inode *inode,
9602 				       struct btrfs_key *ins,
9603 				       u64 file_offset)
9604 {
9605 	struct btrfs_file_extent_item stack_fi;
9606 	struct btrfs_replace_extent_info extent_info;
9607 	struct btrfs_trans_handle *trans = trans_in;
9608 	struct btrfs_path *path;
9609 	u64 start = ins->objectid;
9610 	u64 len = ins->offset;
9611 	u64 qgroup_released = 0;
9612 	int ret;
9613 
9614 	memset(&stack_fi, 0, sizeof(stack_fi));
9615 
9616 	btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9617 	btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9618 	btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9619 	btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9620 	btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9621 	btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9622 	/* Encryption and other encoding is reserved and all 0 */
9623 
9624 	ret = btrfs_qgroup_release_data(inode, file_offset, len, &qgroup_released);
9625 	if (ret < 0)
9626 		return ERR_PTR(ret);
9627 
9628 	if (trans) {
9629 		ret = insert_reserved_file_extent(trans, inode,
9630 						  file_offset, &stack_fi,
9631 						  true, qgroup_released);
9632 		if (ret)
9633 			goto free_qgroup;
9634 		return trans;
9635 	}
9636 
9637 	extent_info.disk_offset = start;
9638 	extent_info.disk_len = len;
9639 	extent_info.data_offset = 0;
9640 	extent_info.data_len = len;
9641 	extent_info.file_offset = file_offset;
9642 	extent_info.extent_buf = (char *)&stack_fi;
9643 	extent_info.is_new_extent = true;
9644 	extent_info.update_times = true;
9645 	extent_info.qgroup_reserved = qgroup_released;
9646 	extent_info.insertions = 0;
9647 
9648 	path = btrfs_alloc_path();
9649 	if (!path) {
9650 		ret = -ENOMEM;
9651 		goto free_qgroup;
9652 	}
9653 
9654 	ret = btrfs_replace_file_extents(inode, path, file_offset,
9655 				     file_offset + len - 1, &extent_info,
9656 				     &trans);
9657 	btrfs_free_path(path);
9658 	if (ret)
9659 		goto free_qgroup;
9660 	return trans;
9661 
9662 free_qgroup:
9663 	/*
9664 	 * We have released qgroup data range at the beginning of the function,
9665 	 * and normally qgroup_released bytes will be freed when committing
9666 	 * transaction.
9667 	 * But if we error out early, we have to free what we have released
9668 	 * or we leak qgroup data reservation.
9669 	 */
9670 	btrfs_qgroup_free_refroot(inode->root->fs_info,
9671 			inode->root->root_key.objectid, qgroup_released,
9672 			BTRFS_QGROUP_RSV_DATA);
9673 	return ERR_PTR(ret);
9674 }
9675 
9676 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9677 				       u64 start, u64 num_bytes, u64 min_size,
9678 				       loff_t actual_len, u64 *alloc_hint,
9679 				       struct btrfs_trans_handle *trans)
9680 {
9681 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
9682 	struct extent_map *em;
9683 	struct btrfs_root *root = BTRFS_I(inode)->root;
9684 	struct btrfs_key ins;
9685 	u64 cur_offset = start;
9686 	u64 clear_offset = start;
9687 	u64 i_size;
9688 	u64 cur_bytes;
9689 	u64 last_alloc = (u64)-1;
9690 	int ret = 0;
9691 	bool own_trans = true;
9692 	u64 end = start + num_bytes - 1;
9693 
9694 	if (trans)
9695 		own_trans = false;
9696 	while (num_bytes > 0) {
9697 		cur_bytes = min_t(u64, num_bytes, SZ_256M);
9698 		cur_bytes = max(cur_bytes, min_size);
9699 		/*
9700 		 * If we are severely fragmented we could end up with really
9701 		 * small allocations, so if the allocator is returning small
9702 		 * chunks lets make its job easier by only searching for those
9703 		 * sized chunks.
9704 		 */
9705 		cur_bytes = min(cur_bytes, last_alloc);
9706 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9707 				min_size, 0, *alloc_hint, &ins, 1, 0);
9708 		if (ret)
9709 			break;
9710 
9711 		/*
9712 		 * We've reserved this space, and thus converted it from
9713 		 * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9714 		 * from here on out we will only need to clear our reservation
9715 		 * for the remaining unreserved area, so advance our
9716 		 * clear_offset by our extent size.
9717 		 */
9718 		clear_offset += ins.offset;
9719 
9720 		last_alloc = ins.offset;
9721 		trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9722 						    &ins, cur_offset);
9723 		/*
9724 		 * Now that we inserted the prealloc extent we can finally
9725 		 * decrement the number of reservations in the block group.
9726 		 * If we did it before, we could race with relocation and have
9727 		 * relocation miss the reserved extent, making it fail later.
9728 		 */
9729 		btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9730 		if (IS_ERR(trans)) {
9731 			ret = PTR_ERR(trans);
9732 			btrfs_free_reserved_extent(fs_info, ins.objectid,
9733 						   ins.offset, 0);
9734 			break;
9735 		}
9736 
9737 		em = alloc_extent_map();
9738 		if (!em) {
9739 			btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
9740 					    cur_offset + ins.offset - 1, false);
9741 			btrfs_set_inode_full_sync(BTRFS_I(inode));
9742 			goto next;
9743 		}
9744 
9745 		em->start = cur_offset;
9746 		em->orig_start = cur_offset;
9747 		em->len = ins.offset;
9748 		em->block_start = ins.objectid;
9749 		em->block_len = ins.offset;
9750 		em->orig_block_len = ins.offset;
9751 		em->ram_bytes = ins.offset;
9752 		em->flags |= EXTENT_FLAG_PREALLOC;
9753 		em->generation = trans->transid;
9754 
9755 		ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
9756 		free_extent_map(em);
9757 next:
9758 		num_bytes -= ins.offset;
9759 		cur_offset += ins.offset;
9760 		*alloc_hint = ins.objectid + ins.offset;
9761 
9762 		inode_inc_iversion(inode);
9763 		inode_set_ctime_current(inode);
9764 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9765 		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9766 		    (actual_len > inode->i_size) &&
9767 		    (cur_offset > inode->i_size)) {
9768 			if (cur_offset > actual_len)
9769 				i_size = actual_len;
9770 			else
9771 				i_size = cur_offset;
9772 			i_size_write(inode, i_size);
9773 			btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
9774 		}
9775 
9776 		ret = btrfs_update_inode(trans, BTRFS_I(inode));
9777 
9778 		if (ret) {
9779 			btrfs_abort_transaction(trans, ret);
9780 			if (own_trans)
9781 				btrfs_end_transaction(trans);
9782 			break;
9783 		}
9784 
9785 		if (own_trans) {
9786 			btrfs_end_transaction(trans);
9787 			trans = NULL;
9788 		}
9789 	}
9790 	if (clear_offset < end)
9791 		btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
9792 			end - clear_offset + 1);
9793 	return ret;
9794 }
9795 
9796 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9797 			      u64 start, u64 num_bytes, u64 min_size,
9798 			      loff_t actual_len, u64 *alloc_hint)
9799 {
9800 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9801 					   min_size, actual_len, alloc_hint,
9802 					   NULL);
9803 }
9804 
9805 int btrfs_prealloc_file_range_trans(struct inode *inode,
9806 				    struct btrfs_trans_handle *trans, int mode,
9807 				    u64 start, u64 num_bytes, u64 min_size,
9808 				    loff_t actual_len, u64 *alloc_hint)
9809 {
9810 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9811 					   min_size, actual_len, alloc_hint, trans);
9812 }
9813 
9814 static int btrfs_permission(struct mnt_idmap *idmap,
9815 			    struct inode *inode, int mask)
9816 {
9817 	struct btrfs_root *root = BTRFS_I(inode)->root;
9818 	umode_t mode = inode->i_mode;
9819 
9820 	if (mask & MAY_WRITE &&
9821 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9822 		if (btrfs_root_readonly(root))
9823 			return -EROFS;
9824 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9825 			return -EACCES;
9826 	}
9827 	return generic_permission(idmap, inode, mask);
9828 }
9829 
9830 static int btrfs_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
9831 			 struct file *file, umode_t mode)
9832 {
9833 	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
9834 	struct btrfs_trans_handle *trans;
9835 	struct btrfs_root *root = BTRFS_I(dir)->root;
9836 	struct inode *inode;
9837 	struct btrfs_new_inode_args new_inode_args = {
9838 		.dir = dir,
9839 		.dentry = file->f_path.dentry,
9840 		.orphan = true,
9841 	};
9842 	unsigned int trans_num_items;
9843 	int ret;
9844 
9845 	inode = new_inode(dir->i_sb);
9846 	if (!inode)
9847 		return -ENOMEM;
9848 	inode_init_owner(idmap, inode, dir, mode);
9849 	inode->i_fop = &btrfs_file_operations;
9850 	inode->i_op = &btrfs_file_inode_operations;
9851 	inode->i_mapping->a_ops = &btrfs_aops;
9852 
9853 	new_inode_args.inode = inode;
9854 	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
9855 	if (ret)
9856 		goto out_inode;
9857 
9858 	trans = btrfs_start_transaction(root, trans_num_items);
9859 	if (IS_ERR(trans)) {
9860 		ret = PTR_ERR(trans);
9861 		goto out_new_inode_args;
9862 	}
9863 
9864 	ret = btrfs_create_new_inode(trans, &new_inode_args);
9865 
9866 	/*
9867 	 * We set number of links to 0 in btrfs_create_new_inode(), and here we
9868 	 * set it to 1 because d_tmpfile() will issue a warning if the count is
9869 	 * 0, through:
9870 	 *
9871 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9872 	 */
9873 	set_nlink(inode, 1);
9874 
9875 	if (!ret) {
9876 		d_tmpfile(file, inode);
9877 		unlock_new_inode(inode);
9878 		mark_inode_dirty(inode);
9879 	}
9880 
9881 	btrfs_end_transaction(trans);
9882 	btrfs_btree_balance_dirty(fs_info);
9883 out_new_inode_args:
9884 	btrfs_new_inode_args_destroy(&new_inode_args);
9885 out_inode:
9886 	if (ret)
9887 		iput(inode);
9888 	return finish_open_simple(file, ret);
9889 }
9890 
9891 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
9892 {
9893 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
9894 	unsigned long index = start >> PAGE_SHIFT;
9895 	unsigned long end_index = end >> PAGE_SHIFT;
9896 	struct page *page;
9897 	u32 len;
9898 
9899 	ASSERT(end + 1 - start <= U32_MAX);
9900 	len = end + 1 - start;
9901 	while (index <= end_index) {
9902 		page = find_get_page(inode->vfs_inode.i_mapping, index);
9903 		ASSERT(page); /* Pages should be in the extent_io_tree */
9904 
9905 		/* This is for data, which doesn't yet support larger folio. */
9906 		ASSERT(folio_order(page_folio(page)) == 0);
9907 		btrfs_folio_set_writeback(fs_info, page_folio(page), start, len);
9908 		put_page(page);
9909 		index++;
9910 	}
9911 }
9912 
9913 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
9914 					     int compress_type)
9915 {
9916 	switch (compress_type) {
9917 	case BTRFS_COMPRESS_NONE:
9918 		return BTRFS_ENCODED_IO_COMPRESSION_NONE;
9919 	case BTRFS_COMPRESS_ZLIB:
9920 		return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
9921 	case BTRFS_COMPRESS_LZO:
9922 		/*
9923 		 * The LZO format depends on the sector size. 64K is the maximum
9924 		 * sector size that we support.
9925 		 */
9926 		if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
9927 			return -EINVAL;
9928 		return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
9929 		       (fs_info->sectorsize_bits - 12);
9930 	case BTRFS_COMPRESS_ZSTD:
9931 		return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
9932 	default:
9933 		return -EUCLEAN;
9934 	}
9935 }
9936 
9937 static ssize_t btrfs_encoded_read_inline(
9938 				struct kiocb *iocb,
9939 				struct iov_iter *iter, u64 start,
9940 				u64 lockend,
9941 				struct extent_state **cached_state,
9942 				u64 extent_start, size_t count,
9943 				struct btrfs_ioctl_encoded_io_args *encoded,
9944 				bool *unlocked)
9945 {
9946 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
9947 	struct btrfs_root *root = inode->root;
9948 	struct btrfs_fs_info *fs_info = root->fs_info;
9949 	struct extent_io_tree *io_tree = &inode->io_tree;
9950 	struct btrfs_path *path;
9951 	struct extent_buffer *leaf;
9952 	struct btrfs_file_extent_item *item;
9953 	u64 ram_bytes;
9954 	unsigned long ptr;
9955 	void *tmp;
9956 	ssize_t ret;
9957 
9958 	path = btrfs_alloc_path();
9959 	if (!path) {
9960 		ret = -ENOMEM;
9961 		goto out;
9962 	}
9963 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
9964 				       extent_start, 0);
9965 	if (ret) {
9966 		if (ret > 0) {
9967 			/* The extent item disappeared? */
9968 			ret = -EIO;
9969 		}
9970 		goto out;
9971 	}
9972 	leaf = path->nodes[0];
9973 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
9974 
9975 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
9976 	ptr = btrfs_file_extent_inline_start(item);
9977 
9978 	encoded->len = min_t(u64, extent_start + ram_bytes,
9979 			     inode->vfs_inode.i_size) - iocb->ki_pos;
9980 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
9981 				 btrfs_file_extent_compression(leaf, item));
9982 	if (ret < 0)
9983 		goto out;
9984 	encoded->compression = ret;
9985 	if (encoded->compression) {
9986 		size_t inline_size;
9987 
9988 		inline_size = btrfs_file_extent_inline_item_len(leaf,
9989 								path->slots[0]);
9990 		if (inline_size > count) {
9991 			ret = -ENOBUFS;
9992 			goto out;
9993 		}
9994 		count = inline_size;
9995 		encoded->unencoded_len = ram_bytes;
9996 		encoded->unencoded_offset = iocb->ki_pos - extent_start;
9997 	} else {
9998 		count = min_t(u64, count, encoded->len);
9999 		encoded->len = count;
10000 		encoded->unencoded_len = count;
10001 		ptr += iocb->ki_pos - extent_start;
10002 	}
10003 
10004 	tmp = kmalloc(count, GFP_NOFS);
10005 	if (!tmp) {
10006 		ret = -ENOMEM;
10007 		goto out;
10008 	}
10009 	read_extent_buffer(leaf, tmp, ptr, count);
10010 	btrfs_release_path(path);
10011 	unlock_extent(io_tree, start, lockend, cached_state);
10012 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10013 	*unlocked = true;
10014 
10015 	ret = copy_to_iter(tmp, count, iter);
10016 	if (ret != count)
10017 		ret = -EFAULT;
10018 	kfree(tmp);
10019 out:
10020 	btrfs_free_path(path);
10021 	return ret;
10022 }
10023 
10024 struct btrfs_encoded_read_private {
10025 	wait_queue_head_t wait;
10026 	atomic_t pending;
10027 	blk_status_t status;
10028 };
10029 
10030 static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
10031 {
10032 	struct btrfs_encoded_read_private *priv = bbio->private;
10033 
10034 	if (bbio->bio.bi_status) {
10035 		/*
10036 		 * The memory barrier implied by the atomic_dec_return() here
10037 		 * pairs with the memory barrier implied by the
10038 		 * atomic_dec_return() or io_wait_event() in
10039 		 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10040 		 * write is observed before the load of status in
10041 		 * btrfs_encoded_read_regular_fill_pages().
10042 		 */
10043 		WRITE_ONCE(priv->status, bbio->bio.bi_status);
10044 	}
10045 	if (!atomic_dec_return(&priv->pending))
10046 		wake_up(&priv->wait);
10047 	bio_put(&bbio->bio);
10048 }
10049 
10050 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10051 					  u64 file_offset, u64 disk_bytenr,
10052 					  u64 disk_io_size, struct page **pages)
10053 {
10054 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10055 	struct btrfs_encoded_read_private priv = {
10056 		.pending = ATOMIC_INIT(1),
10057 	};
10058 	unsigned long i = 0;
10059 	struct btrfs_bio *bbio;
10060 
10061 	init_waitqueue_head(&priv.wait);
10062 
10063 	bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10064 			       btrfs_encoded_read_endio, &priv);
10065 	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10066 	bbio->inode = inode;
10067 
10068 	do {
10069 		size_t bytes = min_t(u64, disk_io_size, PAGE_SIZE);
10070 
10071 		if (bio_add_page(&bbio->bio, pages[i], bytes, 0) < bytes) {
10072 			atomic_inc(&priv.pending);
10073 			btrfs_submit_bio(bbio, 0);
10074 
10075 			bbio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ, fs_info,
10076 					       btrfs_encoded_read_endio, &priv);
10077 			bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
10078 			bbio->inode = inode;
10079 			continue;
10080 		}
10081 
10082 		i++;
10083 		disk_bytenr += bytes;
10084 		disk_io_size -= bytes;
10085 	} while (disk_io_size);
10086 
10087 	atomic_inc(&priv.pending);
10088 	btrfs_submit_bio(bbio, 0);
10089 
10090 	if (atomic_dec_return(&priv.pending))
10091 		io_wait_event(priv.wait, !atomic_read(&priv.pending));
10092 	/* See btrfs_encoded_read_endio() for ordering. */
10093 	return blk_status_to_errno(READ_ONCE(priv.status));
10094 }
10095 
10096 static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10097 					  struct iov_iter *iter,
10098 					  u64 start, u64 lockend,
10099 					  struct extent_state **cached_state,
10100 					  u64 disk_bytenr, u64 disk_io_size,
10101 					  size_t count, bool compressed,
10102 					  bool *unlocked)
10103 {
10104 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10105 	struct extent_io_tree *io_tree = &inode->io_tree;
10106 	struct page **pages;
10107 	unsigned long nr_pages, i;
10108 	u64 cur;
10109 	size_t page_offset;
10110 	ssize_t ret;
10111 
10112 	nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10113 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10114 	if (!pages)
10115 		return -ENOMEM;
10116 	ret = btrfs_alloc_page_array(nr_pages, pages, 0);
10117 	if (ret) {
10118 		ret = -ENOMEM;
10119 		goto out;
10120 		}
10121 
10122 	ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10123 						    disk_io_size, pages);
10124 	if (ret)
10125 		goto out;
10126 
10127 	unlock_extent(io_tree, start, lockend, cached_state);
10128 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10129 	*unlocked = true;
10130 
10131 	if (compressed) {
10132 		i = 0;
10133 		page_offset = 0;
10134 	} else {
10135 		i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10136 		page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10137 	}
10138 	cur = 0;
10139 	while (cur < count) {
10140 		size_t bytes = min_t(size_t, count - cur,
10141 				     PAGE_SIZE - page_offset);
10142 
10143 		if (copy_page_to_iter(pages[i], page_offset, bytes,
10144 				      iter) != bytes) {
10145 			ret = -EFAULT;
10146 			goto out;
10147 		}
10148 		i++;
10149 		cur += bytes;
10150 		page_offset = 0;
10151 	}
10152 	ret = count;
10153 out:
10154 	for (i = 0; i < nr_pages; i++) {
10155 		if (pages[i])
10156 			__free_page(pages[i]);
10157 	}
10158 	kfree(pages);
10159 	return ret;
10160 }
10161 
10162 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10163 			   struct btrfs_ioctl_encoded_io_args *encoded)
10164 {
10165 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10166 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
10167 	struct extent_io_tree *io_tree = &inode->io_tree;
10168 	ssize_t ret;
10169 	size_t count = iov_iter_count(iter);
10170 	u64 start, lockend, disk_bytenr, disk_io_size;
10171 	struct extent_state *cached_state = NULL;
10172 	struct extent_map *em;
10173 	bool unlocked = false;
10174 
10175 	file_accessed(iocb->ki_filp);
10176 
10177 	btrfs_inode_lock(inode, BTRFS_ILOCK_SHARED);
10178 
10179 	if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10180 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10181 		return 0;
10182 	}
10183 	start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10184 	/*
10185 	 * We don't know how long the extent containing iocb->ki_pos is, but if
10186 	 * it's compressed we know that it won't be longer than this.
10187 	 */
10188 	lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10189 
10190 	for (;;) {
10191 		struct btrfs_ordered_extent *ordered;
10192 
10193 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10194 					       lockend - start + 1);
10195 		if (ret)
10196 			goto out_unlock_inode;
10197 		lock_extent(io_tree, start, lockend, &cached_state);
10198 		ordered = btrfs_lookup_ordered_range(inode, start,
10199 						     lockend - start + 1);
10200 		if (!ordered)
10201 			break;
10202 		btrfs_put_ordered_extent(ordered);
10203 		unlock_extent(io_tree, start, lockend, &cached_state);
10204 		cond_resched();
10205 	}
10206 
10207 	em = btrfs_get_extent(inode, NULL, start, lockend - start + 1);
10208 	if (IS_ERR(em)) {
10209 		ret = PTR_ERR(em);
10210 		goto out_unlock_extent;
10211 	}
10212 
10213 	if (em->block_start == EXTENT_MAP_INLINE) {
10214 		u64 extent_start = em->start;
10215 
10216 		/*
10217 		 * For inline extents we get everything we need out of the
10218 		 * extent item.
10219 		 */
10220 		free_extent_map(em);
10221 		em = NULL;
10222 		ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10223 						&cached_state, extent_start,
10224 						count, encoded, &unlocked);
10225 		goto out;
10226 	}
10227 
10228 	/*
10229 	 * We only want to return up to EOF even if the extent extends beyond
10230 	 * that.
10231 	 */
10232 	encoded->len = min_t(u64, extent_map_end(em),
10233 			     inode->vfs_inode.i_size) - iocb->ki_pos;
10234 	if (em->block_start == EXTENT_MAP_HOLE ||
10235 	    (em->flags & EXTENT_FLAG_PREALLOC)) {
10236 		disk_bytenr = EXTENT_MAP_HOLE;
10237 		count = min_t(u64, count, encoded->len);
10238 		encoded->len = count;
10239 		encoded->unencoded_len = count;
10240 	} else if (extent_map_is_compressed(em)) {
10241 		disk_bytenr = em->block_start;
10242 		/*
10243 		 * Bail if the buffer isn't large enough to return the whole
10244 		 * compressed extent.
10245 		 */
10246 		if (em->block_len > count) {
10247 			ret = -ENOBUFS;
10248 			goto out_em;
10249 		}
10250 		disk_io_size = em->block_len;
10251 		count = em->block_len;
10252 		encoded->unencoded_len = em->ram_bytes;
10253 		encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10254 		ret = btrfs_encoded_io_compression_from_extent(fs_info,
10255 							       extent_map_compression(em));
10256 		if (ret < 0)
10257 			goto out_em;
10258 		encoded->compression = ret;
10259 	} else {
10260 		disk_bytenr = em->block_start + (start - em->start);
10261 		if (encoded->len > count)
10262 			encoded->len = count;
10263 		/*
10264 		 * Don't read beyond what we locked. This also limits the page
10265 		 * allocations that we'll do.
10266 		 */
10267 		disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10268 		count = start + disk_io_size - iocb->ki_pos;
10269 		encoded->len = count;
10270 		encoded->unencoded_len = count;
10271 		disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10272 	}
10273 	free_extent_map(em);
10274 	em = NULL;
10275 
10276 	if (disk_bytenr == EXTENT_MAP_HOLE) {
10277 		unlock_extent(io_tree, start, lockend, &cached_state);
10278 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10279 		unlocked = true;
10280 		ret = iov_iter_zero(count, iter);
10281 		if (ret != count)
10282 			ret = -EFAULT;
10283 	} else {
10284 		ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10285 						 &cached_state, disk_bytenr,
10286 						 disk_io_size, count,
10287 						 encoded->compression,
10288 						 &unlocked);
10289 	}
10290 
10291 out:
10292 	if (ret >= 0)
10293 		iocb->ki_pos += encoded->len;
10294 out_em:
10295 	free_extent_map(em);
10296 out_unlock_extent:
10297 	if (!unlocked)
10298 		unlock_extent(io_tree, start, lockend, &cached_state);
10299 out_unlock_inode:
10300 	if (!unlocked)
10301 		btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
10302 	return ret;
10303 }
10304 
10305 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10306 			       const struct btrfs_ioctl_encoded_io_args *encoded)
10307 {
10308 	struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10309 	struct btrfs_root *root = inode->root;
10310 	struct btrfs_fs_info *fs_info = root->fs_info;
10311 	struct extent_io_tree *io_tree = &inode->io_tree;
10312 	struct extent_changeset *data_reserved = NULL;
10313 	struct extent_state *cached_state = NULL;
10314 	struct btrfs_ordered_extent *ordered;
10315 	int compression;
10316 	size_t orig_count;
10317 	u64 start, end;
10318 	u64 num_bytes, ram_bytes, disk_num_bytes;
10319 	unsigned long nr_pages, i;
10320 	struct page **pages;
10321 	struct btrfs_key ins;
10322 	bool extent_reserved = false;
10323 	struct extent_map *em;
10324 	ssize_t ret;
10325 
10326 	switch (encoded->compression) {
10327 	case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10328 		compression = BTRFS_COMPRESS_ZLIB;
10329 		break;
10330 	case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10331 		compression = BTRFS_COMPRESS_ZSTD;
10332 		break;
10333 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10334 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10335 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10336 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10337 	case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10338 		/* The sector size must match for LZO. */
10339 		if (encoded->compression -
10340 		    BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10341 		    fs_info->sectorsize_bits)
10342 			return -EINVAL;
10343 		compression = BTRFS_COMPRESS_LZO;
10344 		break;
10345 	default:
10346 		return -EINVAL;
10347 	}
10348 	if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10349 		return -EINVAL;
10350 
10351 	/*
10352 	 * Compressed extents should always have checksums, so error out if we
10353 	 * have a NOCOW file or inode was created while mounted with NODATASUM.
10354 	 */
10355 	if (inode->flags & BTRFS_INODE_NODATASUM)
10356 		return -EINVAL;
10357 
10358 	orig_count = iov_iter_count(from);
10359 
10360 	/* The extent size must be sane. */
10361 	if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10362 	    orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10363 		return -EINVAL;
10364 
10365 	/*
10366 	 * The compressed data must be smaller than the decompressed data.
10367 	 *
10368 	 * It's of course possible for data to compress to larger or the same
10369 	 * size, but the buffered I/O path falls back to no compression for such
10370 	 * data, and we don't want to break any assumptions by creating these
10371 	 * extents.
10372 	 *
10373 	 * Note that this is less strict than the current check we have that the
10374 	 * compressed data must be at least one sector smaller than the
10375 	 * decompressed data. We only want to enforce the weaker requirement
10376 	 * from old kernels that it is at least one byte smaller.
10377 	 */
10378 	if (orig_count >= encoded->unencoded_len)
10379 		return -EINVAL;
10380 
10381 	/* The extent must start on a sector boundary. */
10382 	start = iocb->ki_pos;
10383 	if (!IS_ALIGNED(start, fs_info->sectorsize))
10384 		return -EINVAL;
10385 
10386 	/*
10387 	 * The extent must end on a sector boundary. However, we allow a write
10388 	 * which ends at or extends i_size to have an unaligned length; we round
10389 	 * up the extent size and set i_size to the unaligned end.
10390 	 */
10391 	if (start + encoded->len < inode->vfs_inode.i_size &&
10392 	    !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10393 		return -EINVAL;
10394 
10395 	/* Finally, the offset in the unencoded data must be sector-aligned. */
10396 	if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10397 		return -EINVAL;
10398 
10399 	num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10400 	ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10401 	end = start + num_bytes - 1;
10402 
10403 	/*
10404 	 * If the extent cannot be inline, the compressed data on disk must be
10405 	 * sector-aligned. For convenience, we extend it with zeroes if it
10406 	 * isn't.
10407 	 */
10408 	disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10409 	nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10410 	pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10411 	if (!pages)
10412 		return -ENOMEM;
10413 	for (i = 0; i < nr_pages; i++) {
10414 		size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10415 		char *kaddr;
10416 
10417 		pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10418 		if (!pages[i]) {
10419 			ret = -ENOMEM;
10420 			goto out_pages;
10421 		}
10422 		kaddr = kmap_local_page(pages[i]);
10423 		if (copy_from_iter(kaddr, bytes, from) != bytes) {
10424 			kunmap_local(kaddr);
10425 			ret = -EFAULT;
10426 			goto out_pages;
10427 		}
10428 		if (bytes < PAGE_SIZE)
10429 			memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
10430 		kunmap_local(kaddr);
10431 	}
10432 
10433 	for (;;) {
10434 		struct btrfs_ordered_extent *ordered;
10435 
10436 		ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10437 		if (ret)
10438 			goto out_pages;
10439 		ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10440 						    start >> PAGE_SHIFT,
10441 						    end >> PAGE_SHIFT);
10442 		if (ret)
10443 			goto out_pages;
10444 		lock_extent(io_tree, start, end, &cached_state);
10445 		ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10446 		if (!ordered &&
10447 		    !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10448 			break;
10449 		if (ordered)
10450 			btrfs_put_ordered_extent(ordered);
10451 		unlock_extent(io_tree, start, end, &cached_state);
10452 		cond_resched();
10453 	}
10454 
10455 	/*
10456 	 * We don't use the higher-level delalloc space functions because our
10457 	 * num_bytes and disk_num_bytes are different.
10458 	 */
10459 	ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10460 	if (ret)
10461 		goto out_unlock;
10462 	ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10463 	if (ret)
10464 		goto out_free_data_space;
10465 	ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10466 					      false);
10467 	if (ret)
10468 		goto out_qgroup_free_data;
10469 
10470 	/* Try an inline extent first. */
10471 	if (start == 0 && encoded->unencoded_len == encoded->len &&
10472 	    encoded->unencoded_offset == 0) {
10473 		ret = cow_file_range_inline(inode, encoded->len, orig_count,
10474 					    compression, pages, true);
10475 		if (ret <= 0) {
10476 			if (ret == 0)
10477 				ret = orig_count;
10478 			goto out_delalloc_release;
10479 		}
10480 	}
10481 
10482 	ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10483 				   disk_num_bytes, 0, 0, &ins, 1, 1);
10484 	if (ret)
10485 		goto out_delalloc_release;
10486 	extent_reserved = true;
10487 
10488 	em = create_io_em(inode, start, num_bytes,
10489 			  start - encoded->unencoded_offset, ins.objectid,
10490 			  ins.offset, ins.offset, ram_bytes, compression,
10491 			  BTRFS_ORDERED_COMPRESSED);
10492 	if (IS_ERR(em)) {
10493 		ret = PTR_ERR(em);
10494 		goto out_free_reserved;
10495 	}
10496 	free_extent_map(em);
10497 
10498 	ordered = btrfs_alloc_ordered_extent(inode, start, num_bytes, ram_bytes,
10499 				       ins.objectid, ins.offset,
10500 				       encoded->unencoded_offset,
10501 				       (1 << BTRFS_ORDERED_ENCODED) |
10502 				       (1 << BTRFS_ORDERED_COMPRESSED),
10503 				       compression);
10504 	if (IS_ERR(ordered)) {
10505 		btrfs_drop_extent_map_range(inode, start, end, false);
10506 		ret = PTR_ERR(ordered);
10507 		goto out_free_reserved;
10508 	}
10509 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10510 
10511 	if (start + encoded->len > inode->vfs_inode.i_size)
10512 		i_size_write(&inode->vfs_inode, start + encoded->len);
10513 
10514 	unlock_extent(io_tree, start, end, &cached_state);
10515 
10516 	btrfs_delalloc_release_extents(inode, num_bytes);
10517 
10518 	btrfs_submit_compressed_write(ordered, pages, nr_pages, 0, false);
10519 	ret = orig_count;
10520 	goto out;
10521 
10522 out_free_reserved:
10523 	btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10524 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10525 out_delalloc_release:
10526 	btrfs_delalloc_release_extents(inode, num_bytes);
10527 	btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10528 out_qgroup_free_data:
10529 	if (ret < 0)
10530 		btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes, NULL);
10531 out_free_data_space:
10532 	/*
10533 	 * If btrfs_reserve_extent() succeeded, then we already decremented
10534 	 * bytes_may_use.
10535 	 */
10536 	if (!extent_reserved)
10537 		btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10538 out_unlock:
10539 	unlock_extent(io_tree, start, end, &cached_state);
10540 out_pages:
10541 	for (i = 0; i < nr_pages; i++) {
10542 		if (pages[i])
10543 			__free_page(pages[i]);
10544 	}
10545 	kvfree(pages);
10546 out:
10547 	if (ret >= 0)
10548 		iocb->ki_pos += encoded->len;
10549 	return ret;
10550 }
10551 
10552 #ifdef CONFIG_SWAP
10553 /*
10554  * Add an entry indicating a block group or device which is pinned by a
10555  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10556  * negative errno on failure.
10557  */
10558 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10559 				  bool is_block_group)
10560 {
10561 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10562 	struct btrfs_swapfile_pin *sp, *entry;
10563 	struct rb_node **p;
10564 	struct rb_node *parent = NULL;
10565 
10566 	sp = kmalloc(sizeof(*sp), GFP_NOFS);
10567 	if (!sp)
10568 		return -ENOMEM;
10569 	sp->ptr = ptr;
10570 	sp->inode = inode;
10571 	sp->is_block_group = is_block_group;
10572 	sp->bg_extent_count = 1;
10573 
10574 	spin_lock(&fs_info->swapfile_pins_lock);
10575 	p = &fs_info->swapfile_pins.rb_node;
10576 	while (*p) {
10577 		parent = *p;
10578 		entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10579 		if (sp->ptr < entry->ptr ||
10580 		    (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10581 			p = &(*p)->rb_left;
10582 		} else if (sp->ptr > entry->ptr ||
10583 			   (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10584 			p = &(*p)->rb_right;
10585 		} else {
10586 			if (is_block_group)
10587 				entry->bg_extent_count++;
10588 			spin_unlock(&fs_info->swapfile_pins_lock);
10589 			kfree(sp);
10590 			return 1;
10591 		}
10592 	}
10593 	rb_link_node(&sp->node, parent, p);
10594 	rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10595 	spin_unlock(&fs_info->swapfile_pins_lock);
10596 	return 0;
10597 }
10598 
10599 /* Free all of the entries pinned by this swapfile. */
10600 static void btrfs_free_swapfile_pins(struct inode *inode)
10601 {
10602 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10603 	struct btrfs_swapfile_pin *sp;
10604 	struct rb_node *node, *next;
10605 
10606 	spin_lock(&fs_info->swapfile_pins_lock);
10607 	node = rb_first(&fs_info->swapfile_pins);
10608 	while (node) {
10609 		next = rb_next(node);
10610 		sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10611 		if (sp->inode == inode) {
10612 			rb_erase(&sp->node, &fs_info->swapfile_pins);
10613 			if (sp->is_block_group) {
10614 				btrfs_dec_block_group_swap_extents(sp->ptr,
10615 							   sp->bg_extent_count);
10616 				btrfs_put_block_group(sp->ptr);
10617 			}
10618 			kfree(sp);
10619 		}
10620 		node = next;
10621 	}
10622 	spin_unlock(&fs_info->swapfile_pins_lock);
10623 }
10624 
10625 struct btrfs_swap_info {
10626 	u64 start;
10627 	u64 block_start;
10628 	u64 block_len;
10629 	u64 lowest_ppage;
10630 	u64 highest_ppage;
10631 	unsigned long nr_pages;
10632 	int nr_extents;
10633 };
10634 
10635 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10636 				 struct btrfs_swap_info *bsi)
10637 {
10638 	unsigned long nr_pages;
10639 	unsigned long max_pages;
10640 	u64 first_ppage, first_ppage_reported, next_ppage;
10641 	int ret;
10642 
10643 	/*
10644 	 * Our swapfile may have had its size extended after the swap header was
10645 	 * written. In that case activating the swapfile should not go beyond
10646 	 * the max size set in the swap header.
10647 	 */
10648 	if (bsi->nr_pages >= sis->max)
10649 		return 0;
10650 
10651 	max_pages = sis->max - bsi->nr_pages;
10652 	first_ppage = PAGE_ALIGN(bsi->block_start) >> PAGE_SHIFT;
10653 	next_ppage = PAGE_ALIGN_DOWN(bsi->block_start + bsi->block_len) >> PAGE_SHIFT;
10654 
10655 	if (first_ppage >= next_ppage)
10656 		return 0;
10657 	nr_pages = next_ppage - first_ppage;
10658 	nr_pages = min(nr_pages, max_pages);
10659 
10660 	first_ppage_reported = first_ppage;
10661 	if (bsi->start == 0)
10662 		first_ppage_reported++;
10663 	if (bsi->lowest_ppage > first_ppage_reported)
10664 		bsi->lowest_ppage = first_ppage_reported;
10665 	if (bsi->highest_ppage < (next_ppage - 1))
10666 		bsi->highest_ppage = next_ppage - 1;
10667 
10668 	ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10669 	if (ret < 0)
10670 		return ret;
10671 	bsi->nr_extents += ret;
10672 	bsi->nr_pages += nr_pages;
10673 	return 0;
10674 }
10675 
10676 static void btrfs_swap_deactivate(struct file *file)
10677 {
10678 	struct inode *inode = file_inode(file);
10679 
10680 	btrfs_free_swapfile_pins(inode);
10681 	atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10682 }
10683 
10684 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10685 			       sector_t *span)
10686 {
10687 	struct inode *inode = file_inode(file);
10688 	struct btrfs_root *root = BTRFS_I(inode)->root;
10689 	struct btrfs_fs_info *fs_info = root->fs_info;
10690 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10691 	struct extent_state *cached_state = NULL;
10692 	struct extent_map *em = NULL;
10693 	struct btrfs_chunk_map *map = NULL;
10694 	struct btrfs_device *device = NULL;
10695 	struct btrfs_swap_info bsi = {
10696 		.lowest_ppage = (sector_t)-1ULL,
10697 	};
10698 	int ret = 0;
10699 	u64 isize;
10700 	u64 start;
10701 
10702 	/*
10703 	 * If the swap file was just created, make sure delalloc is done. If the
10704 	 * file changes again after this, the user is doing something stupid and
10705 	 * we don't really care.
10706 	 */
10707 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10708 	if (ret)
10709 		return ret;
10710 
10711 	/*
10712 	 * The inode is locked, so these flags won't change after we check them.
10713 	 */
10714 	if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10715 		btrfs_warn(fs_info, "swapfile must not be compressed");
10716 		return -EINVAL;
10717 	}
10718 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10719 		btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10720 		return -EINVAL;
10721 	}
10722 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10723 		btrfs_warn(fs_info, "swapfile must not be checksummed");
10724 		return -EINVAL;
10725 	}
10726 
10727 	/*
10728 	 * Balance or device remove/replace/resize can move stuff around from
10729 	 * under us. The exclop protection makes sure they aren't running/won't
10730 	 * run concurrently while we are mapping the swap extents, and
10731 	 * fs_info->swapfile_pins prevents them from running while the swap
10732 	 * file is active and moving the extents. Note that this also prevents
10733 	 * a concurrent device add which isn't actually necessary, but it's not
10734 	 * really worth the trouble to allow it.
10735 	 */
10736 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
10737 		btrfs_warn(fs_info,
10738 	   "cannot activate swapfile while exclusive operation is running");
10739 		return -EBUSY;
10740 	}
10741 
10742 	/*
10743 	 * Prevent snapshot creation while we are activating the swap file.
10744 	 * We do not want to race with snapshot creation. If snapshot creation
10745 	 * already started before we bumped nr_swapfiles from 0 to 1 and
10746 	 * completes before the first write into the swap file after it is
10747 	 * activated, than that write would fallback to COW.
10748 	 */
10749 	if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
10750 		btrfs_exclop_finish(fs_info);
10751 		btrfs_warn(fs_info,
10752 	   "cannot activate swapfile because snapshot creation is in progress");
10753 		return -EINVAL;
10754 	}
10755 	/*
10756 	 * Snapshots can create extents which require COW even if NODATACOW is
10757 	 * set. We use this counter to prevent snapshots. We must increment it
10758 	 * before walking the extents because we don't want a concurrent
10759 	 * snapshot to run after we've already checked the extents.
10760 	 *
10761 	 * It is possible that subvolume is marked for deletion but still not
10762 	 * removed yet. To prevent this race, we check the root status before
10763 	 * activating the swapfile.
10764 	 */
10765 	spin_lock(&root->root_item_lock);
10766 	if (btrfs_root_dead(root)) {
10767 		spin_unlock(&root->root_item_lock);
10768 
10769 		btrfs_exclop_finish(fs_info);
10770 		btrfs_warn(fs_info,
10771 		"cannot activate swapfile because subvolume %llu is being deleted",
10772 			root->root_key.objectid);
10773 		return -EPERM;
10774 	}
10775 	atomic_inc(&root->nr_swapfiles);
10776 	spin_unlock(&root->root_item_lock);
10777 
10778 	isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10779 
10780 	lock_extent(io_tree, 0, isize - 1, &cached_state);
10781 	start = 0;
10782 	while (start < isize) {
10783 		u64 logical_block_start, physical_block_start;
10784 		struct btrfs_block_group *bg;
10785 		u64 len = isize - start;
10786 
10787 		em = btrfs_get_extent(BTRFS_I(inode), NULL, start, len);
10788 		if (IS_ERR(em)) {
10789 			ret = PTR_ERR(em);
10790 			goto out;
10791 		}
10792 
10793 		if (em->block_start == EXTENT_MAP_HOLE) {
10794 			btrfs_warn(fs_info, "swapfile must not have holes");
10795 			ret = -EINVAL;
10796 			goto out;
10797 		}
10798 		if (em->block_start == EXTENT_MAP_INLINE) {
10799 			/*
10800 			 * It's unlikely we'll ever actually find ourselves
10801 			 * here, as a file small enough to fit inline won't be
10802 			 * big enough to store more than the swap header, but in
10803 			 * case something changes in the future, let's catch it
10804 			 * here rather than later.
10805 			 */
10806 			btrfs_warn(fs_info, "swapfile must not be inline");
10807 			ret = -EINVAL;
10808 			goto out;
10809 		}
10810 		if (extent_map_is_compressed(em)) {
10811 			btrfs_warn(fs_info, "swapfile must not be compressed");
10812 			ret = -EINVAL;
10813 			goto out;
10814 		}
10815 
10816 		logical_block_start = em->block_start + (start - em->start);
10817 		len = min(len, em->len - (start - em->start));
10818 		free_extent_map(em);
10819 		em = NULL;
10820 
10821 		ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
10822 		if (ret < 0) {
10823 			goto out;
10824 		} else if (ret) {
10825 			ret = 0;
10826 		} else {
10827 			btrfs_warn(fs_info,
10828 				   "swapfile must not be copy-on-write");
10829 			ret = -EINVAL;
10830 			goto out;
10831 		}
10832 
10833 		map = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10834 		if (IS_ERR(map)) {
10835 			ret = PTR_ERR(map);
10836 			goto out;
10837 		}
10838 
10839 		if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10840 			btrfs_warn(fs_info,
10841 				   "swapfile must have single data profile");
10842 			ret = -EINVAL;
10843 			goto out;
10844 		}
10845 
10846 		if (device == NULL) {
10847 			device = map->stripes[0].dev;
10848 			ret = btrfs_add_swapfile_pin(inode, device, false);
10849 			if (ret == 1)
10850 				ret = 0;
10851 			else if (ret)
10852 				goto out;
10853 		} else if (device != map->stripes[0].dev) {
10854 			btrfs_warn(fs_info, "swapfile must be on one device");
10855 			ret = -EINVAL;
10856 			goto out;
10857 		}
10858 
10859 		physical_block_start = (map->stripes[0].physical +
10860 					(logical_block_start - map->start));
10861 		len = min(len, map->chunk_len - (logical_block_start - map->start));
10862 		btrfs_free_chunk_map(map);
10863 		map = NULL;
10864 
10865 		bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10866 		if (!bg) {
10867 			btrfs_warn(fs_info,
10868 			   "could not find block group containing swapfile");
10869 			ret = -EINVAL;
10870 			goto out;
10871 		}
10872 
10873 		if (!btrfs_inc_block_group_swap_extents(bg)) {
10874 			btrfs_warn(fs_info,
10875 			   "block group for swapfile at %llu is read-only%s",
10876 			   bg->start,
10877 			   atomic_read(&fs_info->scrubs_running) ?
10878 				       " (scrub running)" : "");
10879 			btrfs_put_block_group(bg);
10880 			ret = -EINVAL;
10881 			goto out;
10882 		}
10883 
10884 		ret = btrfs_add_swapfile_pin(inode, bg, true);
10885 		if (ret) {
10886 			btrfs_put_block_group(bg);
10887 			if (ret == 1)
10888 				ret = 0;
10889 			else
10890 				goto out;
10891 		}
10892 
10893 		if (bsi.block_len &&
10894 		    bsi.block_start + bsi.block_len == physical_block_start) {
10895 			bsi.block_len += len;
10896 		} else {
10897 			if (bsi.block_len) {
10898 				ret = btrfs_add_swap_extent(sis, &bsi);
10899 				if (ret)
10900 					goto out;
10901 			}
10902 			bsi.start = start;
10903 			bsi.block_start = physical_block_start;
10904 			bsi.block_len = len;
10905 		}
10906 
10907 		start += len;
10908 	}
10909 
10910 	if (bsi.block_len)
10911 		ret = btrfs_add_swap_extent(sis, &bsi);
10912 
10913 out:
10914 	if (!IS_ERR_OR_NULL(em))
10915 		free_extent_map(em);
10916 	if (!IS_ERR_OR_NULL(map))
10917 		btrfs_free_chunk_map(map);
10918 
10919 	unlock_extent(io_tree, 0, isize - 1, &cached_state);
10920 
10921 	if (ret)
10922 		btrfs_swap_deactivate(file);
10923 
10924 	btrfs_drew_write_unlock(&root->snapshot_lock);
10925 
10926 	btrfs_exclop_finish(fs_info);
10927 
10928 	if (ret)
10929 		return ret;
10930 
10931 	if (device)
10932 		sis->bdev = device->bdev;
10933 	*span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10934 	sis->max = bsi.nr_pages;
10935 	sis->pages = bsi.nr_pages - 1;
10936 	sis->highest_bit = bsi.nr_pages - 1;
10937 	return bsi.nr_extents;
10938 }
10939 #else
10940 static void btrfs_swap_deactivate(struct file *file)
10941 {
10942 }
10943 
10944 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10945 			       sector_t *span)
10946 {
10947 	return -EOPNOTSUPP;
10948 }
10949 #endif
10950 
10951 /*
10952  * Update the number of bytes used in the VFS' inode. When we replace extents in
10953  * a range (clone, dedupe, fallocate's zero range), we must update the number of
10954  * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
10955  * always get a correct value.
10956  */
10957 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
10958 			      const u64 add_bytes,
10959 			      const u64 del_bytes)
10960 {
10961 	if (add_bytes == del_bytes)
10962 		return;
10963 
10964 	spin_lock(&inode->lock);
10965 	if (del_bytes > 0)
10966 		inode_sub_bytes(&inode->vfs_inode, del_bytes);
10967 	if (add_bytes > 0)
10968 		inode_add_bytes(&inode->vfs_inode, add_bytes);
10969 	spin_unlock(&inode->lock);
10970 }
10971 
10972 /*
10973  * Verify that there are no ordered extents for a given file range.
10974  *
10975  * @inode:   The target inode.
10976  * @start:   Start offset of the file range, should be sector size aligned.
10977  * @end:     End offset (inclusive) of the file range, its value +1 should be
10978  *           sector size aligned.
10979  *
10980  * This should typically be used for cases where we locked an inode's VFS lock in
10981  * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
10982  * we have flushed all delalloc in the range, we have waited for all ordered
10983  * extents in the range to complete and finally we have locked the file range in
10984  * the inode's io_tree.
10985  */
10986 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
10987 {
10988 	struct btrfs_root *root = inode->root;
10989 	struct btrfs_ordered_extent *ordered;
10990 
10991 	if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
10992 		return;
10993 
10994 	ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
10995 	if (ordered) {
10996 		btrfs_err(root->fs_info,
10997 "found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
10998 			  start, end, btrfs_ino(inode), root->root_key.objectid,
10999 			  ordered->file_offset,
11000 			  ordered->file_offset + ordered->num_bytes - 1);
11001 		btrfs_put_ordered_extent(ordered);
11002 	}
11003 
11004 	ASSERT(ordered == NULL);
11005 }
11006 
11007 static const struct inode_operations btrfs_dir_inode_operations = {
11008 	.getattr	= btrfs_getattr,
11009 	.lookup		= btrfs_lookup,
11010 	.create		= btrfs_create,
11011 	.unlink		= btrfs_unlink,
11012 	.link		= btrfs_link,
11013 	.mkdir		= btrfs_mkdir,
11014 	.rmdir		= btrfs_rmdir,
11015 	.rename		= btrfs_rename2,
11016 	.symlink	= btrfs_symlink,
11017 	.setattr	= btrfs_setattr,
11018 	.mknod		= btrfs_mknod,
11019 	.listxattr	= btrfs_listxattr,
11020 	.permission	= btrfs_permission,
11021 	.get_inode_acl	= btrfs_get_acl,
11022 	.set_acl	= btrfs_set_acl,
11023 	.update_time	= btrfs_update_time,
11024 	.tmpfile        = btrfs_tmpfile,
11025 	.fileattr_get	= btrfs_fileattr_get,
11026 	.fileattr_set	= btrfs_fileattr_set,
11027 };
11028 
11029 static const struct file_operations btrfs_dir_file_operations = {
11030 	.llseek		= btrfs_dir_llseek,
11031 	.read		= generic_read_dir,
11032 	.iterate_shared	= btrfs_real_readdir,
11033 	.open		= btrfs_opendir,
11034 	.unlocked_ioctl	= btrfs_ioctl,
11035 #ifdef CONFIG_COMPAT
11036 	.compat_ioctl	= btrfs_compat_ioctl,
11037 #endif
11038 	.release        = btrfs_release_file,
11039 	.fsync		= btrfs_sync_file,
11040 };
11041 
11042 /*
11043  * btrfs doesn't support the bmap operation because swapfiles
11044  * use bmap to make a mapping of extents in the file.  They assume
11045  * these extents won't change over the life of the file and they
11046  * use the bmap result to do IO directly to the drive.
11047  *
11048  * the btrfs bmap call would return logical addresses that aren't
11049  * suitable for IO and they also will change frequently as COW
11050  * operations happen.  So, swapfile + btrfs == corruption.
11051  *
11052  * For now we're avoiding this by dropping bmap.
11053  */
11054 static const struct address_space_operations btrfs_aops = {
11055 	.read_folio	= btrfs_read_folio,
11056 	.writepages	= btrfs_writepages,
11057 	.readahead	= btrfs_readahead,
11058 	.invalidate_folio = btrfs_invalidate_folio,
11059 	.release_folio	= btrfs_release_folio,
11060 	.migrate_folio	= btrfs_migrate_folio,
11061 	.dirty_folio	= filemap_dirty_folio,
11062 	.error_remove_folio = generic_error_remove_folio,
11063 	.swap_activate	= btrfs_swap_activate,
11064 	.swap_deactivate = btrfs_swap_deactivate,
11065 };
11066 
11067 static const struct inode_operations btrfs_file_inode_operations = {
11068 	.getattr	= btrfs_getattr,
11069 	.setattr	= btrfs_setattr,
11070 	.listxattr      = btrfs_listxattr,
11071 	.permission	= btrfs_permission,
11072 	.fiemap		= btrfs_fiemap,
11073 	.get_inode_acl	= btrfs_get_acl,
11074 	.set_acl	= btrfs_set_acl,
11075 	.update_time	= btrfs_update_time,
11076 	.fileattr_get	= btrfs_fileattr_get,
11077 	.fileattr_set	= btrfs_fileattr_set,
11078 };
11079 static const struct inode_operations btrfs_special_inode_operations = {
11080 	.getattr	= btrfs_getattr,
11081 	.setattr	= btrfs_setattr,
11082 	.permission	= btrfs_permission,
11083 	.listxattr	= btrfs_listxattr,
11084 	.get_inode_acl	= btrfs_get_acl,
11085 	.set_acl	= btrfs_set_acl,
11086 	.update_time	= btrfs_update_time,
11087 };
11088 static const struct inode_operations btrfs_symlink_inode_operations = {
11089 	.get_link	= page_get_link,
11090 	.getattr	= btrfs_getattr,
11091 	.setattr	= btrfs_setattr,
11092 	.permission	= btrfs_permission,
11093 	.listxattr	= btrfs_listxattr,
11094 	.update_time	= btrfs_update_time,
11095 };
11096 
11097 const struct dentry_operations btrfs_dentry_operations = {
11098 	.d_delete	= btrfs_dentry_delete,
11099 };
11100